

THE IMPACT OF SERVICE DELIVERY OF WATER DEMAND MANAGEMENT FOR LOW INCOME COMMUNITIES

by

Madliwa Nokhanyo

Dissertation submitted in fulfilment of the requirements for the degree

Master of Technology: Quality

in the Faculty of Engineering

at the Cape Peninsula University of Technology

Supervisor: Mr P McLaren Co-supervisor: Prof. Dr. J A Watkins

Bellville

November 2011

DECLARATION

I, Nokhanyo Madliwa, hereby declare that this dissertation submitted for the degree Magister Technologiae at the Cape Peninsula University of Technology is my own original unaided work, and has not previously been submitted for academic examination towards any qualification. Furthermore, it represents my own opinions and not necessarily those of the Cape Peninsula University of Technology.

Nokhanyo Madliwa

Copyright © Cape Peninsula University of Technology (2011)

DEDICATION

This study is dedicated to my beloved parents, Sidumo Dennison Madliwa and Hazel Nomambethu Madliwa. Thank you for your love, care and for all you have done for me in my lifetime, and especially your outstanding support of my future endeavours; my late brother Phelela Madliwa who passed away in November 1994; my brother Xolisa Madliwa and little sister Unathi Madliwa, thank you for your encouragement and support.

ACKNOWLEDGEMENTS

The roots of true achievement lie in the will to become the best you can become

Harold Taylor

The author of this dissertation wishes to acknowledge the contribution of the following people in the completion of this research:

- ➢ God, my creator, for strength and wisdom.
- My supervisor Patrick McLaren without whose encouragement and strictness I would not have completed my degree on time. Thank you for seeing a potential in me.
- > Dr. Bingwen Yan, thank you for your kindness and motivational words.
- Manager of Water Demand Management Zolile Basholo for having faith in me. Without your great support and kindness I would not be where I am today.
- My dear sister and a great friend, Nobayeni Madikizela; thank you for being so loyal and supportive in my life.
- > To Professor Watkins; thank you for your guidance and assistance.

ABSTRACT

Poor service delivery is becoming one of the core factors that can ruin the reputation of organisations in South Africa, and all over the world. In order to have satisfied users, an organisation should implement business improvement initiatives to enhance, and continually improve, service delivery. Service delivery is becoming one of the key critical performance measures in the Government and other service providing sectors. Performance by various departments of Government, regarding service delivery, draws a considerable amount of attention from citizens throughout the country. Organisations need to understand that there are benefits in delivering an excellent service to the users, as it increases user satisfaction.

An understanding of the importance of service delivery in organisations can help managers in the formulation and development of service charters, and in making strategic service improvement decisions. Water Demand Management, a branch of Water and Sanitation at the City of Cape Town, has a long term goal, whereby the department is striving to become a leader in the provision of equitable, sustainable, people-centred, affordable and reliable water and sanitation services to all the residents in the low income areas of the Cape Town Metropole.

The department is currently faced with a challenge of poor service delivery to the low income areas that result in dissatisfaction and discontent among the residents. This research will focus on the impact of service delivery on user satisfaction. The current standard of service delivery of Water Demand Management will be reviewed and improved upon.

TABLE OF CONTENTS

DECLARATION	i
DEDICATION	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	xi
LIST OF FIGURES	xii
GLOSSARY OF TERMS	xiii
ACRONYMS	xiv

CHAPTER 1

THE SCOPE OF THE RESEARCH	1

1.1	INTRODUCTION AND MOTIVATION	1
1.2	BACKGROUND TO THE RESEARCH PROBLEM	2
1.2.1	Statement of the research problem	4
1.3	RESEARCH QUESTION	5
1.3.1	Investigative (sub) questions	5
1.4	PRIMARY RESEARCH OBJECTIVES	5
1.5	THE RESEARCH PROCESS	6
1.6	RESEARCH DESIGN AND METHODOLOGY	7
1.7	DATA COLLECTION AND METHODOLOGY	8
1.8	DATA VALIDITY AND RELIABILITY	9
1.9	ETHICS	10
1.10	RESEARCH ASSUMPTIONS	11
1.11	RESEARCH CONSTRAINTS	11
1.12	SIGNIFICANCE OF THE PROPOSED RESEARCH	12
1.13	CHAPTER AND CONTENT ANALYSIS	12

CHAPTER 2

WATER DEMAND MANAGEMENT

14

2.1	INTRODUCTION	14
2.2	MUNICIPAL SERVICE DELIVERY	14
2.2.1	Water and Sanitation services	14
2.2.2	Roles and responsibilities	15
2.3	PROVISION OF SERVICES	15
2.3.1	Local government (Municipality)	16
2.3.2	Capacity Building	16
2.3.3	Corporatisation	17
2.3.4	Municipal service partnerships	18
2.3.5	Implementation of a Municipal Service Partnership (MSP) in a municipality	18
2.3.6	Operation of a municipality service partnership	19
2.3.7	Role of citizens in Municipal Service Partnerships	20
2.4	SERVICE LEVELS	20
2.5	PROVISION OF FREE BASIC MUNICIPAL SERVICES	21
2.6	OPTIONS FOR FREE BASIC SERVICE	21
2.7	THE QUALITY FRAMEWORK TO ENHANCE SERVICE	
	DELIVERY	22
2.8	CHALLENGES	22
2.9	STANDARDS	23
2.10	INTERNAL AUDIT	23
2.11	BENCHMARKING	24
2.12	PROCESS MANAGEMENT	24
2.13	ENVIRONMENT MANAGEMENT AND SAFETY	24

CHADTED 3

CHAPTER 3		
SERV	SERVICE DELIVERY: A LITERATURE REVIEW	
3.1	INTRODUCTION	26
3.2	DEFINITION OF SERVICE	26
3.3	DEFINITION OF VOICE OF THE CUSTOMER (VOC)	27
3.3.1	A systematic approach	28
3.3.2	Customer needs	28
3.3.3	Experience design	28
3.4	CAPTURING THE VOICE OF THE CUSTOMER	29
3.5	LISTENING TO THE VOICE OF THE CUSTOMER	31
3.5.1	Relationship	31
3.5.2	Products and processes	31
3.5.3	Customer experience	32
3.5.4	Ubiquitous VOC	33
3.6	LEVELS OF ACTIVITIES IN A VOC PROGRAMME	33
3.7	INVOLVEMENT WITH CUSTOMERS	34
3.8	COLLECTING CUSTOMER INFORMATION	35
3.9	IDENTIFYING CUSTOMER NEEDS	36
3.10	ORGANISING CUSTOMER NEEDS	36
3.11	CUSTOMER ENGAGEMENT AND CUSTOMER	
	SATISFACTION	37
3.12	TAKING ACTION ON CUSTOMER FEEDBACK	38
3.12.1	Questions designed for action	38

3.12.3 Action Alert Management

3.12.2 Action Alerts

38

38

3.12.4	Manager Action Planning Tool	39
3.13	CUSTOMER-DRIVEN PROCESS ENTERPRISE	39
3.14	CUSTOMER EXPECTATIONS	40
3.15	SERVQUAL	41
3.16	FOCUS GROUPS	42
3.17	CUSTOMER INTERVIEWS	43
3.18	THE KEYSTONE CUSTOMER	44
3.19	COHERENT SERVICE PLANNING	45
3.20	QUALITY FUNCTION DEPLOYMENT	46
3.21	HISTORY OF QUALITY FUNCTION DEPLOYMENT	46
3.22	QUALITY FUNCTION DEPLOYMENT PROCESS	47
3.23	BENEFITS OF QUALITY FUNCTION DEPLOYMENT	48
3.23.1	Main 'process' benefits of using QFD	49
3.23.2	Main 'bottom line' benefits of using QFD	49
3.24	THE DEPLOYMENT OF SERVICE QFD	49
3.25	KANO MODELAPPROACH	51
3.25.1	Revealed requirements	51
3.25.2	Expected requirements	51
3.25.3	Exciting requirements	51
3.26	CONCLUSION	53

CHAPTER 4

KNOWLEDGE MANAGEMENT SURVEY DESIGN AND METHODOLOGY

4.1	THE SURVEY ENVIRONMENT	54
4.2	AIM OF THIS CHAPTER	54
4.3	THE TARGET POPULATION	54
4.4	DATA COLLECTION	55

54

4.5	MEASUREMENT SCALES	56
4.6	THE DEMAND OF QUALITATIVE RESEARCH STRATEGY	57
4.7	SURVEY SENSITIVITY	58
4.8	SURVEY DESIGN	58
4.9	THE VALIDATION SURVEY QUESTIONS	60
4.9.1	Questionnaire on service delivery for low income communities	60
4.10	CONCLUSION	62

DATA ANALYSIS AND INTERPRETATION OF RESULTS

63

CHAPTER 5

5.1	INTRODUCTION	63
5.2	METHOD OF ANALYSIS	64
5.2.1	VALIDATION OF SURVEY RESULTS	64
5.2.2	DATA FORMAT	64
5.2.3	PRELIMINARY ANALYSIS	65
5.2.4	INFERENTIAL STATISTICS USED	65
5.2.5	ASSISTANCE TO RESEARCHER	66
5.2.6	SAMPLE	66
5.3	ANALYSIS	67
5.3.1	RELIABILITY TESTING	67
5.3.2	DESCRIPTIVE STATISTICS	71
5.3.3	UNI-VARIATE GRAPHS	78
5.3.4	INFERENTIAL STATISTICS	84
5.3.4.1	Comparisons with regard to differences in proportion who agreed	
	and who disagreed	85
5.3.4.2	Comparisons with regard to whether the two independent groups	
	differed in their perceptions	87
5.4	DISCUSSIONS AND CONCLUSIONS	97

CHAPTER 6

CON	ICLUSION AND RECOMMENDATIONS	99
6.1	INTRODUCTION	99
6.2	THE RESEARCH THUS FAR	99
6.3	THE RESEARCH PROBLEM RE-VISITED	100
6.4	THE RESEARCH QUESTION RE-VISITED	100
6.5	THE INVESTIGATIVE QUESTIONS RE-VISITED	101
6.6	THE KEY RESEARCH OBJECTIVES RE-VISITED	103
6.7	RECOMMENDATIONS	104
6.8	CONCLUSION	106

REFERENCES

107

APPENDIXES

Appendix A:	Cronbach alpha Coefficients	114
Appendix B:	Descriptive statistics: Frequency tables	116
Appendix C:	Descriptive statistics: Uni-variate	124
Appendix D:	Comparison of proportions	138
Appendix E:	Chi-square test for comparisons	144
Appendix F:	Factor analysis	189

LIST OF TABLES

Table 2.1:	Service Levels	21
Table 3.1:	Methods for capturing the voice of the customer	31
Table 3.2:	Organisation Deployment Chart	50
Table 5.1:	Cronbach Alpha Coefficient	68
Table 5.2:	Original variables and corresponding factor loadings	70
Table 5.3:	Descriptive statistics for all the variables	72
Table 5.4:	Descriptive statistics	77
Table 5.5:	Statistically significant Chi-square test	85
Table 5.6:	Contingency table for Gender vs A4	88
Table 5.7:	Chi-square test for Gender vs A4	88
Table 5.8:	Contingency table for Gender vs B7	89
Table 5.9:	Chi-Square test for Gender vs B7	89
Table 5.10:	Contingency table for Gender vs B8	90
Table 5.11:	Chi-Square test for Gender vs B8	90
Table 5.12:	Contingecy table for Number of people residing vs B12	91
Table 5.13:	Chi-square test for Number of people residing vs B12	91
Table 5.14:	Contingency table for Number of people residing vs C18	92
Table 5.15:	Chi-Square test for Number of people residing vs C18	92
Table 5.16:	Contingency table for Number of people at home vs B8	93
Table 5.17:	Chi-square test for Number of people at home vs B8	93
Table 5.18:	Contingency table for Number of people at home vs C14	94
Table 5.19:	Chi-square test for Number of people at home vs C14	94
Table 5.20:	Contingency table for Number of people at home vs D19	95
Table 5.21:	Chi-square test for Number of people at home vs D19	95
Table 5.22:	Contingency table for Number of years at home vs D24	96
Table 5.23:	Chi-square test for Number of years at home vs D24	96

LIST OF FIGURES

Figure 3.1:	Customer relationship	29
Figure 3.2:	The key customer	45
Figure 3.3:	Incoherent Planning and Development	45
Figure 3.4:	History of QFD	46
Figure 3.5:	QFD Methodology flow	47
Figure 3.6:	The KANO Model	52
Figure 5.1:	Distribution of respondents	79
Figure 5.2:	Gender distribution	79
Figure 5.3:	Responses on Section A	80
Figure 5.4:	Responses on Section B	81
Figure 5.5:	Responses on Section C	82
Figure 5.6:	Responses on Section D	83
Figure 5.7:	The water meters are always faulty	89
Figure 5.8:	Site awareness facilitators give wrong information	90
Figure 5.9:	No education on water wastage is provided	91
Figure 5.10:	The daily water allocation of 350 litres is not sufficient	92
Figure 5.11:	Follow-ups on complaints are not being done.	93
Figure 5.12:	No education on water wastage is provided	94
Figure 5.13:	Plumbers go to the wrong households	95
Figure 5.14:	WDM does not comply with consumer service charter	96
Figure 5.15:	Work instructions are not being followed	97

GLOSSARY OF TERMS

Services	Refers to intangible products that are not goods (tangible products).
SERVQUAL	Is a quality tool which measures service quality as perceived by customers.
Voice of the customer	Systematic approach for incorporating the needs of customers into the design of customer experiences.
Expectation	Is defined as a perceived-value customers seek from the purchase of good or service.
Low income	Refers to individuals or households supported by an income that is below average.
Customer Satisfaction	Customers' perceptions of the degree to which their requirements have been fulfilled.

ACRONYMS

LUMS:	Land Use Management System		
IDP:	Integrated Development Planning		
LED:	Local Economic Development		
MIG:	Municipal Infrastructure Grant		
WDM:	Water Demand Management		
WC:	Water Conservation		
VOC:	Voice of the Customer		
QFD:	Quality Function Deployment		
SABS:	South African Bureau of Standard		
MSP:	Municipal Service Partnership		

CHAPTER 1: SCOPE OF THE RESEARCH

1.1 INTRODUCTION AND MOTIVATION

Water Demand Management, a branch of Water and Sanitation, specialises in water conservation and focuses on saving water by fixing all leaks at no cost in the households of people residing in low income areas of the Cape Metropole. Water Demand Management ensures that users residing in low income areas of the Cape Metropole have access to basic water supply. Water, sanitation and hygiene are also included in the list of aspects on which Water Demand Management focuses.

Water Demand Management ensures that there is availability and reliability of water resources at all times for the people. The department also ensures that the water that is supplied to the residents is safe to drink. Measurement of service delivery, however, is rarely conducted by Water Demand Management, calling for the need to measure the actual or perceived gap between customer expectations, and perceptions of service delivery of the department by users. The researcher intends to provide insight into how the department could improve its overall customer satisfaction by addressing obstacles to quality of service delivery.

The research of Munyai (1997:37), revealed that most of the unemployed people in South Africa are residing in low income areas. These people are sometimes regarded as the poorest of the poor, due to their low lifestyle and the state of conditions under which they live in their communities. The quality of service delivery of government departments rendering a service is determined by residents living in these low income communities. Service delivery rendered to them is normally very poor and unsatisfactory.

According to Zeithaml and Bitner (2003:135), a sound measure of service quality is necessary for identifying aspects of service needing performance improvement, and also for assessing how much improvement is needed on each aspect of the services provided. Hayes (1991:6), states that services are intangible in nature,

and therefore customers' judgment about quality of service is usually based on dimensions of the service. This service should be continually improved, in order to remain competitive.

Pearson (2000:87), argues that service delivery strategies need to be supported by reliable data on the present and future demand for services. This will require an agency to:

- Determine the demand for services from the community, substantiated by research and analysis.
- Specify the nature of the service demands.
- > Detail its statutory service obligations (e.g. provision of education services).
- > Describe requirements for community service obligations.
- > Analyse other relevant services within government.
- Quantify levels of service that can be achieved.

This research will be executed through the distribution of questionnaires. The data will be analysed and recommendations made for service delivery improvement initiatives.

1.2 BACKGROUND TO THE RESEARCH PROBLEM

Poor service delivery of services rendered to users often leads to the dissatisfaction of users. The residents in the low income communities are often dissatisfied with the poor services rendered to them by the various departments of Government (Bonaveja & Philander, 1975:45). Rogers, Peenz and Moller (1978: 16), found that in the Government sector, good service delivery is extremely important. Good service delivery builds good relationships between the local municipalities and citizens.

Mati and Luyt (2000:17), found that a review carried out in the 1990s revealed that there were challenges in providing good service delivery by local municipalities to the users in the communities. The following were among the challenges identified:

> The ability to keep up with the infrastructure needs.

- The need to spontaneously provide infrastructure to meet the unpredictable growing demand.
- > The continuous maintenance and upgrading of the existing infrastructure.
- > Affordability of the service, and willingness to pay.
- > The need to constantly improve effectiveness and efficiency.
- Poor conditions of the residents.

Since the advent of the new democracy in the Republic of South Africa in 1994, municipalities across the country have embarked on several service-oriented programmes, primarily to improve the quality of life of ordinary citizens within their areas of jurisdiction. Some of these programmes were commissioned by National and Provincial sectors of Government and are designed to assist District and Local municipalities to achieve their constitutional mandates.

In terms of Section 152 of the Constitution of Republic of South Africa (Act 108 of 1996), these mandates include the provision of democratic and accountable Government for local communities; provision of basic services to local communities in a sustainable manner; promotion of socio-economic development in rural, urban and peri-urban communities; and the creation of a safe and healthy environment.

Some of the programmes that were commissioned by the National Government include Land Use Management System (LUMS), Integrated Development Planning (IDP), Integrated Sustainable Rural Development, Local Economic Development (LED), Urban Renewal Strategy and Municipal Infrastructure Grant (MIG). The key objective of these programmes is to fast track service delivery in municipalities by building capacity enterprises, and promoting small, medium and micro enterprises, in local communities, as a means of alleviating poverty (Local Government Programmes, 2004: Paragraph 4).

Subsequently, the responsibility for improving the quality of life of ordinary citizens in the Republic is largely delegated to District and Local municipalities across the country, in terms of the Constitution of the Republic (Constitution of Republic of South Africa, Act No. 108 of 1996).

Local municipalities should function as a truly accountable, effective and efficient sector of Government. These local municipalities play a major role in the war against poverty, and the promotion of socio-economic development in the local communities. In order to perform their constitutional duties effectively and efficiently, as stipulated in Section 154 (1) and 156 of the Republic of South Africa Constitution (Act No. 108 of 1996), it is deemed essential that municipalities acquire the requisite capabilities and manpower to deliver a good service to the residents in the communities.

According to Fitzsimmons and Fitzsimmons (2001:44), quality of service is deemed unacceptable when customer expectations are not met. This means, customer satisfaction is based on the comparison between perceptions of service rendered and expectations of services desired. When expectations are exceeded, service is perceived to be of exceptional quality, and vice versa. In this sense, customers are the ultimate judges of the value of services rendered to them by service providers.

In this research study, the gap between user expectation, and their perception of the quality of services rendered to them by Water Demand Management will be determined.

> 1.2.1 Statement of the research problem

Against the above background, the research problem to be researched within the ambit of this dissertation reads as follows:

"Poor service delivery from Water Demand Management to low income areas results in dissatisfaction and discontent".

1.3 RESEARCH QUESTION

Following on the research problem, the following research question will form the primary focus of the research: "Which mechanisms can be employed by Water Demand Management to improve service delivery to low income areas?"

> 1.3.1 Investigative (sub-) questions

The investigative questions to be researched in support of the research question read as follows:

- Is there a need for improvement in the current status of service delivery of Water Demand Management?
- What are the current perceptions of the residents in low income areas, regarding the service delivery of Water Demand Management?
- Is the daily water allocation adequate for the households in the low income areas?
- Is there a need for response times of Water Demand Management to complaints, to be improved?
- To what extent are the users dissatisfied with the service delivery from Water Demand Management?

1.4 PRIMARY RESEARCH OBJECTIVES

The primary research objectives of this study read as follows:

- > To identify the impact of service delivery on user satisfaction.
- > To continually improve the service delivery of Water Demand Management.
- > To measure the level of customer satisfaction with regard to service delivery.
- To review the current standard of service delivery and performance of Water Demand Management, and establish mechanisms for improving service delivery.

1.5 THE RESEARCH PROCESS

The research process provides insight into the process of 'how' the research will be conducted, from formulating the research proposal to final submission of the dissertation. Fundamental stages in the research process, common to all scientific based investigations, are listed below:

Citing the work of Remenyi, Williams, Money and Swartz (2002:64-65), Watkins (2008) explains the research process as consisting of eight specific phases, namely:

- Reviewing the literature.
- ➢ Formalising a research question.
- Establishing the methodology.
- Collecting evidence.
- Analysing the evidence.
- Developing conclusions.
- Understanding the limitations of the research.
- Producing management guidelines or recommendations.

Watkins (2008), citing Collis and Hussey (2003:16), mentioned that there are six fundamentals stages in the research process, namely:

- Identification of the research topic.
- Definition of the research problem.
- > Determining how the research is going to be conducted.
- Collection of the research data.
- > Analysis and interpretation of the research data.
- ➤ Writing of the dissertation.

After careful consideration of the above research processes, the researcher will adopt the approach as proposed by Watkins (2008), citing Collis and Hussey (2003:16).

1.6 RESEARCH DESIGN AND METHODOLOGY

Falling within the phenomenological (qualitative) paradigm, action research will be used in this research study, which is a type of applied research, designed to find an effective way of bringing about conscious change in a partly controlled environment; for example, a study aimed at improving communications between management and staff in a particular company. The main aim of action research is to enter into a situation, attempt to bring about change, and to monitor the results. There are clear tangent planes between action research and case study research.

Action research is described by Watkins (2008), citing Gummeson (2000:116) as, "...a method of doing case study research". According to Watkins (2008), citing Collis and Hussey (2003:66-67), "...action research is a type of applied research designed to find an effective way of bringing about a conscious change in a partly controlled environment". Watkins (2008), citing Coghlan & Brannick (2002:6-7), lists the following as the most salient features of 'action research':

- Action researchers take action.
- Action science always involves two goals: 'Solve a problem for the client' and 'contribute to science'. This means being 'a management consultant' and an 'academic researcher' at the same time.
- Action research is interactive. It requires cooperation between the researcher and the client personnel, and continuous adjustments to new information and new events.
- Action science is applicable to the understanding, planning and implementation of change in business firms and other organisations.
- It is essential to understand the ethical framework, and the value norms within which action research is used in a particular context.
- Action research can include all types of data gathering methods, but requires the total involvement of the researcher.
- Constructively applied pre-understanding of the corporate environment and of the conditions of business, is essential.
- 'Management action research' should be conducted in real time, though retrospective research is also acceptable.
- > The 'management action research' paradigm requires its own quality criteria.

Watkins (2008), citing Coghlan and Brannick (2002:17-18), describes the action research cycle as follows:

- Diagnosing: Diagnosing involves naming what the issues are, however provisionally, as a working theme on the basis of which action will be planned and taken.
- Planning action: Planning action follows from the analysis of the context and purpose of the project, the framing of the issue, and the diagnosis, and is consistent with them.
- **Taking action:** Plans are implemented and interventions are made.
- Evaluating action: The outcomes of the action, both intended and unintended, are examined with a view to seeing:
 - ➢ If the original diagnosis was correct.
 - If the action taken was correct.
 - ➢ If the action was taken in an appropriate manner.
 - All of the above, which feeds into the next cycle of diagnosis, planning and action.

1.7 DATA COLLECTION DESIGN AND METHODOLOGY

Questionnaires fall within the ambit of a broader definition of 'survey research' or 'descriptive survey'. The concept of 'survey' is defined by Watkins (2008), citing Remenyi *et al.* (2002:290), as: ".....the collection of a large quantity of evidence usually numeric, or evidence that will be converted to numbers, normally by means of a questionnaire". A questionnaire is a list of carefully structured questions, chosen after considerable testing, with a view to eliciting reliable responses from a chosen sample. The aim is to establish what a selected group of participants do, think or feel. A positivistic approach suggests structured 'closed' questions, while a phenomenological approach suggests unstructured 'open-ended' questions.

For the purpose of this research, 'questionnaires' will be used to collect data. Closed-ended questions will be used in the questionnaire as this technique implies a research approach which allows respondents to quickly rate a list of wellstructured questions, with predetermined answers. Furthermore, data will be collected from a random sample of 80 residents who live and own houses in Ward 3 at Litha Park. This research will be conducted in Ward 3. This Ward falls under the zoning region of Litha Park. Litha Park is a small section of Khayelitsha, and has been in existence for more than 20 years.

1.8 DATA VALIDITY AND REALIBILITY

According to Watkins (2008), citing Collis and Hussey (2003:186), 'validity' is concerned with the extent to which the research findings accurately represent what is happening, or more specifically, whether the data is a true picture of what is being studied. According to Watkins (2008), citing Cooper and Schindler (2006:318-320), three major forms of validity can be identified, namely 'content validity', 'criterion-related validity' and 'construct validity', which is expanded upon below to provide a holistic perspective of each of the concepts:

- Content validity: The content of the measuring instrument is the extent to which it provides adequate coverage of the investigative sub-questions guiding the study. If the instrument contains a representative sample of the universe of subject matter of interest, then content validity is good.
- Criterion-related validity: This reflects the success of measures used for prediction or estimation. Any criterion measure must be judged in terms of the following four qualities:
 - Criterion is relevant: This is if the criterion is defined and scored in the terms we judge as the proper measures of success.
 - Freedom from bias: The criterion must give each respondent the opportunity to score well.
 - > **Reliability:** A reliable criterion is stable and reproducible.
 - Availability: The information specified by the criterion must be available.
- Construct validity: In attempting to evaluate construct validity, both the theory and the measuring instrument being used should be considered.

According to Watkins (2008), citing Collis and Hussey (2003:59), construct validity relates to the problem when there are a number of phenomena which are not directly observable, such as motivation, satisfaction, ambition and anxiety. These are known as hypothetical constructs, which are assumed to exist as factors which explain observable phenomena. For example, you may observe someone shaking or sweating before an interview. You are not actually observing anxiety, but a manifestation of anxiety.

Reliability (also referred to as 'trustworthiness'), is concerned with the findings of the research (Collis & Hussey, 2003:186, cited by Watkins, 2008). The findings are considered to be reliable if you, or anyone else, repeated the research and obtained the same results. There are three common ways of estimating the reliability of the responses to questions in questionnaires or interviews, namely:

- ➤ Test re-test method;
- Split-halves method (which will be applied in this research); and
- Internal consistency method

1.9 ETHICS

In the context of research, according to Watkins (2008), citing Saunders, Lewis and Thornhill (2000:130), "...ethics refers to the appropriateness of your behaviour in relation to the rights of those who become the subject of your work, or are affected by it."

The following ethical norms will be applied in conducting this research:

- Informed consent: Participants will be informed of the nature of the study and will be given a choice to participate or withdraw if they feel uncomfortable about the research.
- Right to privacy: The right to privacy of the participants will be respected and the performance of the participants will be strictly kept confidential.
- Honesty with Professional Colleagues: The findings will be reported in a complete and honest manner, without misrepresenting what the participants have done. The data will not be fabricated to support the research conclusion.

1.10 RESEARCH ASSUMPTIONS

In this research, it is assumed that in Water Demand Management the importance of service delivery is often overlooked. The impact of service delivery is rarely measured to determine the trends in the performance of the department. The lack of measuring, and improving service delivery at Water Demand Management will lead to a high rate of customer complaints and backlog, and will affect the overall performance of the department.

1.11 RESEARCH CONSTRAINTS

Research constraints (limitations and de-limitations); pertain to any inhibiting factor which would in any way constrain the research student's ability to conduct the research in a normal way. Watkins (2008), citing Collis and Hussey (2003:128-129), stated that 'limitations' identify weaknesses in the research, while 'de-limitations' explain how the scope of the study was focused on only one particular area or entity, as opposed to, say, a wider or holistic approach. The constraints to this research are as follows:

- Limitations: The research may be weakened by the fact that as Ward 3 increases in the number of residents, it becomes difficult and complex to measure people's perceptions and expectations of service delivery.
- De- limitations: The researcher realises that, although Khayelitsha is extensive in its applications, this research will focus only on Ward 3 which falls under Litha Park.

It was realised that most of Water Demand Management research focuses on water conservation and educational awareness. It should be noted that the focus of this research is on 'service delivery'.

1.12 SIGNIFICANCE OF THE PROPOSED RESEARCH

The significance of the proposed research is vested in the fact that, although Water Demand Management is regarded by the Directors as one of the most productive departments in Water and Sanitation, the impact on service delivery from the department to the low income areas in the Cape Metropole needs to be looked at. This is due to the high rate of customer complaints coming to the department from the residents living in low income areas. This research aims to identify the key effective measures to improve the service delivery of Water Demand Management, to enhance customer satisfaction and to create a good relationship between the residents and the department.

1.13 CHAPTER AND CONTENT ANALYSIS

The chapter and content analysis, which will pertain to this research, reads as follows:

Chapter 1 - Scope of the research: In this chapter, a high level background will be provided of the scope of the research taking place within the government sector in the department of Water Demand Management. The research process will be explained, and the research design and methodology elaborated upon. The research constraints will be stated, and an overview of the chapter and content analysis of the dissertation will be provided. The chapter will be concluded with a list of primary research objectives.

Chapter 2 – **Background and insight to the research environment:** This chapter will provide a holistic overview of the research environment. Water Demand Management, is the organisation in which the research will be conducted, as well as looking into the provision of services.

Chapter 3 – Service Delivery (A literature review): In this chapter, a literature review will be conducted on the concept of service delivery.

Chapter 4 - Data collection design and methodology: In this chapter, the survey environment will be elaborated upon, and the approach to data collection explained. The chapter will be concluded with a list of survey questions to be posed to the target respondents.

Chapter 5 - Data analysis and interpretation of results: In this chapter, data gleaned from the survey conducted within the ambit of Chapter 4, will be analysed in detail and interpreted in terms of the primary theme of the dissertation.

Chapter 6 – Conclusion: In this chapter, the research will be concluded. The research problem, research question, investigative questions and research objectives will be revisited and final conclusions drawn.

CHAPTER 2: WATER DEMAND MANAGEMENT

2.1 INTRODUCTION

Water Demand Management is a small branch of Water and Sanitation. The department is fairly new. Water Demand Management was established six years ago. There are forty qualified plumbers working for Water Demand Management. The department has a total of one hundred and sixty eight employees. This includes the administration staff, artisans and technicians. There is a head office for the department as well. The head office is situated in Goodwood.

Water Demand Management has embarked on its vision of becoming a leader in the provision of equitable, sustainable, people-centred, affordable and credible water services to the users. This was done by putting into operation a water demand management (WDM) and water conservation (WC) strategy. The purpose of the WDM/WC strategy is to ensure a long-term balance between available water resources and water demand. The other purpose is to minimise water wastage.

2.2 MUNICIPAL SERVICE DELIVERY

There are two important aspects that every municipality which supplies water to the residents should understand. These are:

2.2.1 Water and Sanitation services

All municipalities that supply water to the residents must be accountable for the provision of basic water and sanitation services. Water Demand Management has the responsibility of ensuring that residents in the low income areas of the Cape metropole are provided with water and sanitation services. The services are to ensure that the basic needs of the residents are satisfied. Water Demand Management provides these services at an affordable cost.

Water Demand Management looks at what role the residents in the low income communities can play, to help the department to provide an excellent service at all times.

2.2.2 Roles and responsibilities

Municipalities should ensure that their departments provide the people in the communities with the basic services. There are a large number of services. These include:

- ➢ Water supply
- Sewage collection and disposal
- Refuse removal
- Electricity and gas supply
- Municipal health services
- Municipal roads and storm water drainage
- Street lighting
- Municipal parks and recreation

These services could have a direct and immediate effect on the quality of the lives of the residents in the communities. For example, if the water provided is of poor quality, or refuse is not collected regularly, it could contribute to the creation of an unhealthy and unsafe living environment. Poor services could also make it difficult to attract business or industry to an area, and could limit job opportunities for the residents.

The scope of Water Demand Management involves the provision of water supply to the residents in low income areas. The department further ensures that the residents receive the basic water and sanitation services.

2.3 **PROVISION OF SERVICES**

Provision of services to the citizens involves a few factors that must be taken into consideration by municipalities. These factors assist in providing excellent service, and include the following:

2.3.1 Local government (Municipality)

The Republic of South Africa Constitution (Act No.108 of 1996), states that Local Government is the sphere of Government closest to the people. They are elected by citizens to represent them. The responsibility for Local Government is to ensure that services are delivered to the communities. One way in which municipalities can do this, is to provide the services themselves through the use of their own resources. This includes finance, equipment and employees. A municipality may also outsource the provision of a service.

Local Government may choose to hire someone else to deliver the service. However, it still remains the responsibility of the municipality to choose the service provider, and to make sure that they deliver the service properly. Many municipalities are, however, unable to deliver services to residents. This might be because of lack of finances, or lack of capacity to provide a good service at an affordable price. The municipalities should find other ways to ensure that the services are improved and reach the people most in need of them.

Water Demand Management has resources in place to ensure service delivery to the residents in low income communities. The department hires contractors annually, to assist in effectively providing water supply and basic sanitation services. However, the impact of service delivery of Water Demand Management for low income communities still needs to be measured. Measurement should be done continually, to improve the performance of the department and promote customer satisfaction.

2.3.2 Capacity Building

According to the Republic of South Africa Constitution (Act No.108 of 1996), it is possible for a municipality to improve and expand the delivery of services by improving its own ability to do so. By improving a number of skills, municipalities may be better able to deliver services effectively and efficiently from inside. Better communication between the municipality and citizens will help determine the needs of the community and whether they are being met. Improved financial planning will help find the best possible ways to use available funds. Better technical skills will improve delivery of a particular municipal service.

Water Demand Management has a budget to ensure that the department operates productively. The department has competent, skilled and qualified plumbers. The plumbers attend to customer complaints that are lodged by the residents. These plumbers are trained every two years, on special technical courses. The training is to ensure that they remain competitive. With the available resources, Water Demand Management has the potential to provide an excellent service to the residents in low income areas.

2.3.3 Corporatisation

In some cases a municipality can improve the delivery of service by corporatising it. This is done by creating a municipal company that will provide the service. The company belongs to council which is accountable for its performance. Council usually appoints a board to oversee the work of the company management. The company is able to function more independently than a municipal department, whilst acting under the overall control and supervision of council. Municipalities have to deliver many different services. Sometimes it is a challenge for them to focus on the best way to deliver certain specialised services. Allowing the company some independence makes it free to experiment with new techniques and technology (Republic of South Africa Constitution, Act No.108 of 1996).

Water Demand Management does not have an independent company in its employ. The contractors that are hired by Water Demand Management to assist in delivering a service to the residents do not work independently. The contractors operate under the supervision of the department. The quality of their workmanship is closely monitored and controlled by the quality assurance officers from Water Demand Management.

2.3.4 Municipal service partnerships

There are instances where a municipality might feel that, instead of providing the service directly, they would rather hire someone to do it. One reason why a municipality would choose this route is that other municipalities, organisations or private companies may have better resources and management skills to provide the service. Whatever method a municipality chooses must always be in line with the overall goals of improving the quality of services. This can be done by extending services to residents who do not have them. Services must be provided at an affordable cost (Republic of South Africa Constitution, Act No.108 of 1996).

The contractors who work for Water Demand Management are operating under the same objectives as the department. Water Demand Management strives to provide services that are affordable to the residents in low income communities. The contractors and Water Demand Management have an agreement, in terms of which, the contractors are required to provide basic water and sanitation services to the low income areas specified on the job list. The job list is issued daily to the contractors by Water Demand Management. The contractors have to deliver the services within the specified time frames, budgets and targets. It is the responsibility of the contractor to provide an excellent service, in order to meet the goals of Water Demand Management. The operating assets of the council are hired to the contractors. This is to assist them to perform the service more effectively and efficiently.

2.3.5 Implementation of a Municipality Service Partnership (MSP) in a Municipality

The Republic of South Africa Constitution (Act No.108 of 1996), stipulates that when a municipality has decided to provide a service through a MSP, it must then decide on an appropriate service provider. This means that a provider must meet the municipality's delivery goals at an affordable price, and by means of affirmative procurement procedures. The municipality must ensure the participation of local residents and small companies which are owned and operated by previously disadvantaged individuals. Sometimes the appropriate service provider could be an NGO or CBO. A private company, or a public body, such as another municipality or a water board, can also be a service provider.

Usually the best way to find the right service provider is to get a number of them to compete against each other in a bidding process. This helps the municipality to decide on the provider, which will provide the best quality of service at the best possible price. This protects the interests of citizens, as it reduces opportunities for corruption. The various bids are then evaluated, a preferred bidder chosen, and a contract negotiated. Once the contract has been signed, the MSP can begin to operate.

2.3.6 Operation of a municipality service partnership

The Republic of South Africa Constitution, Act No.108 of 1996), expresses the view that the contract between the two parties will describe each side's rights and responsibilities. For example, for a refuse collection contract in a particular part of the community, the service provider may be required to provide refuse tips in designated areas, and empty them a certain number of times a week. The contract will also specify how often the service provider will receive payment. The fee may be fixed, or vary, based on the provider's performance.

The contract must state that the municipality has the right to inspect the operations of the service provider, to ensure that they are doing what they are supposed to do. If the service is not provided at a satisfactory level, the municipality has the right to take certain actions. For example, the municipality could withhold payment until the service provider acts in terms of the contract. In more serious cases the municipality could even end the contract. The municipality's most important job, during implementation of the MSP contract, is to monitor performances to ensure that all the requirements are being met, and that citizens receive the correct number and quality of services.

2.3.7 Role of citizens in Municipal Service Partnerships

The Republic of South Africa Constitution (Act No.108 of 1996), points out that citizens and their organisations also have very important roles to play in the planning and implementation of MSP's. Some of these are:

- Assisting the municipality to accurately decide on which services are to be expanded and improved, particularly during the planning stages.
- > Assisting council in consulting citizens during decision-making.
- Residents should work with NGOs, CBOs and political parties to develop proposals for council to consider.
- Communities can request the municipality to appoint a committee of community representatives to monitor processes, as well as to advise the municipality on priorities for service extension and improvement.
- Communities, or their representatives, could also play some role in the evaluation of potential service providers, the involvement of communities in service provision, and the monitoring of the performance of service providers.

2.4 SERVICE LEVELS

The most important factor to consider is the level or standard at which the service is provided. The choice of the level of a particular service is influenced by affordability as well as community needs. When municipalities make decisions about the level of services, they should seriously consider the long-term viability of providing a service at that level. If a municipality provides a service at a higher level, the cost of providing the service increases, and so does the price. The municipality will have to charge its customers accordingly. Municipalities rely heavily on income received from users. If the costs are too high and people are unable to pay, the municipality could lose money. This can result in the municipality being unable to continue to provide the service. The following table lists the different service levels for the most important services.

SERVICE TYPE	LEVEL 1 BASIC	LEVEL 2 INTERMEDIATE	LEVEL 3 FULL
Water	Communal standpipes	Yard taps and yard tanks	In house water
Sanitation	Sewage collection/disposal	VIP latrine septic tanks	Full water borne
Electricity	5-8 Amp or non-grid electricity	20 Amps	60 Amps
Roads	Graded	Gravel	Paved/tarred & kerbed
Storm water drainage	Earth lined open channel	Open channel lined	Piped systems
Solid Waste disposal	Communal (residents)	Communal (contractors)	Kerbside

 Table 2. 1: Service Levels (Source: The Republic of South Africa Constitution, Act 108 of 1996)

2.5 PROVISION OF FREE BASIC MUNICIPAL SERVICES

As part of its overall strategy to alleviate poverty in South Africa, the Government has put in place a policy for the provision of a free basic level of municipal services. The provision of free basic amounts of electricity and water to the users could alleviate the plight of the poorest among the people. The plans for the stimulation of the local economy could lead to the creation of new jobs and the reduction of poverty. From the above statements it is clear that water and electricity have been prioritised as a free basic service for the poor.

However, the researcher is of the view that other services certainly also fit the definition of "basic services". For example, low-income residents in rural areas generally do not see electricity as critical, as they can access other sources of energy, such as wood or paraffin. Roads, or rather the lack of accessible roads negatively affects their daily economic activity, mobility and safety. This implies that some flexibility should be allowed for municipalities to determine which services they will define as basic services.

2.6 OPTIONS FOR FREE BASIC SERVICE

By far the most complex issue to consider when discussing the provision of free basic services, is the funding of such services.
Municipalities receive their part of the equitable share. They can apply for infrastructure grants and raise their own revenue through service charges. Municipalities need to analyse what their costs for free basic service provision are, what allocations they receive and what their internal resource base is. This should then form the basis of what would be affordable, and therefore what the most suitable options for implementation would be.

2.7 THE QUALITY FRAMEWORK TO ENHANCE SERVICE DELIVERY

There is a framework at Water Demand Management to assist the department in achieving the best value in providing services. This is conducted through continuous improvement initiatives. The aim of the framework is to promote good quality of water and sanitation services from Water Demand Management, to the residents in low income communities. The framework includes the following components:

- Quality Management System;
- ➢ by-laws; and
- ➢ social regulations.

2.8 CHALLENGES

Water Demand Management has a number of challenges that still need to be addressed. These include the following:

- Slow feedback of human resource issues from the corporate department: requests from the branch to corporate takes a long time to be attended to, be it working equipment or furniture requests. The response time is slow. The slow feedback from corporate affects the branch negatively. This also has a major impact on service delivery, as Water Demand Management has to wait on corporate for certain resource requests or human resource queries.
- Security of water supply and water loss: The water pipes and reservoirs where water is being stored before distribution to citizens, require constant maintenance and extensive labour to avoid water losses due to potential deteriorating infrastructure.

- Informal settlements: It is difficult to install water supply lines through informal settlements as they are too congested.
- Budget restrictions: All the branches of Water and Sanitation are allocated an annual operating budget by Corporate Finance, but most of the time the budget is not adequate to conduct all the necessary operational activities.
- Poor workmanship of sub-contractors: Water Demand Management has strict requirements when employing contractors. However, when the contractors win the tender, they employ sub-contractors who are not always competent. The quality of workmanship of these sub-contractors is a major challenge for Water Demand Management.
- Increasing projects: The number of incoming projects from Executive Management of Water and Sanitation to Water Demand Management is increasing, but there are no additional resources.
- Low morale: The majority of the staff feels demoralised due to increasing loads of work and hectic deadlines that are not always possible to meet.

2.9 STANDARDS

Water Demand Management has developed a set of practice standards to improve service delivery. The standards provide a clear direction on how excellent service delivery practice can be achieved in future, by Water Demand Management. These standards are understood by all employees working in Water Demand Management.

2.10 INTERNAL AUDIT

Water Demand Management has an ISO 9001:2008 quality management system in place. The system was implemented to help Water Demand Management to improve service delivery and other aspects of the department. Internal auditing forms part of this system. The department conducts internal audits three times a year. The purpose of the audit is to provide feedback on what is working well, and what can be improved within Water Demand Management. Even though the system has been implemented, it is fairly new and has not yet served its full purpose. The employees are still trying to adapt to it. The employees at Water Demand Management are all responsible for providing an excellent service to the residents in low income areas. Quality is everyone's responsibility at Water Demand Management.

2.11 BENCHMARKING

Benchmarking activity is highly promoted at Water Demand Management. The managers give their full support throughout the department, to facilitate service improvement initiatives, whenever it is necessary. Benchmarking involves learning from others, and implementing good practice. It can play a key part in delivering high quality services and ensuring continuous improvement within Water Demand Management.

Benchmarking at Water Demand Management involves the following:

- Regularly comparing critical aspects of performance with the best practice that can be found, either within or outside the organisation.
- Identifying gaps in performance.
- Seeking new approaches to bring about improvements in performance.
- Monitoring progress and reviewing the results.

2.12 PROCESS MANAGEMENT

Managing processes at Water Demand Management is a critical element in the continual drive to efficiently meet service user needs and expectations. This is the essential part of service delivery management. The processes in Water Demand Management, support policy and strategy. They are central to the department and often involve input from all staff. The managers ensure that the key processes for each service area are identified, measured and improved, as needed. This is to ensure that service users are satisfied.

2.13 ENVIRONMENT MANAGEMENT AND SAFETY

Water Demand Management is currently planning on implementing ISO 14001: 2004 Environment and OHSAS 18001:2007 Safety and Health management

systems. The two systems will be integrated with ISO 9001:2008, which is currently in place. This will assist in improving the impact of service delivery of Water Demand Management for low income communities. The systems are planned to improve the conditions which plumbers and contractors work under on site. Other staff members and users will also benefit. This initiative will further assist Water Demand Management in having fewer safety-related accidents.

The systems will be implemented throughout the organisation in accordance with the requirements of international and national regulatory requirements. These systems will not only address requirements. They will provide values for employee behaviour in creating a safe working environment and culture. The support that is shown by top management, to implement these systems, is visible. The systems will be monitored, audited and continuously improved upon. Staff will be trained on how the systems work. The roles and responsibilities will be clearly defined to the employees. This is to ensure that everyone understands how the systems work in conjunction with each other.

2.14 CONCLUSION

Many municipalities in South Africa have embarked on the journey of service delivery excellence to promote customer satisfaction among the citizens. This further ensures that the municipalities remain competitive in the market, both locally and globally. However, adopting a specific quality management system is not indicative of achieving excellence. The leadership of South African municipalities has to optimally be knowledgeable about features surrounding an innovative approach, aimed at improving the impact of service delivery to communities. For Water Demand Management, the perceptions of the residents in the low income area of Litha Park in Khayelitsha will be looked at in this research. Service delivery initiatives and improvements will be implemented, in order to alleviate the research problem. Chapter 3 will look at relevant literature under discussion in this field.

CHAPTER 3: SERVICE DELIVERY: A LITERATURE REVIEW

3.1 INTRODUCTION

A literature review is a critical examination and analysis of a published body of knowledge that has been theorised and conceptualised by many scholars (Mouton, 2001:87). Watkins (2008:130), describes a literature review as a focus on a very specific problem that needs to be mitigated.

In this chapter, a literature review will be conducted, with regard to available publications on service delivery, and different aspects of customer satisfaction. The definition of service and 'voice of the customer' will be elaborated upon. The following areas will be looked at:

- Definition of service;
- Voice of the customer;
- Customer needs and satisfaction;
- Customer Expectations;
- SERVQUAL;
- ➢ Focus groups;
- Quality Function Deployment; and
- ➤ KANO model.

3.2 DEFINITION OF SERVICE

The concept of 'service' comes from marketing literature, and many scholars have offered different definitions of 'service', based on their diverse perceptions about what a services constitutes (Chang, Chen & Hsu, 2002:1). According to Zeithaml and Bitner (2003:3), services are defined as deeds, processes and performances. Perreault and McCarthy (1999:245), define services as deeds performed by one party for another.

Fitzsimmons and Fitzsimmons (2001:5), citing Quinn, Baruch and Paquette (1987:50) and Zeithaml and Bitner (2003:3), indicate that services include all economic activities whose output is not a physical product or construction. The output is generally consumed at the time of production, and provides added value in forms such as convenience, amusement, timeliness, comfort, or health, which are essentially intangible in nature. Kotler (1994:464), defines a service as any act or performance that one party can offer to another that is essentially intangible and does not result in the ownership of anything. Kotler (1994:465), is of the opinion that services are intangible, inseparable, variable and perishable. The author further mentioned that services normally require more quality control, supplier credibility and adaptability.

According to Gronroos (1990:27), services represent activities, or a series of activities, of more or less intangible in nature. They normally take place in interactions between customers and service employees, physical resources or goods and systems of the service provider, which are provided as solutions to customer problems. Yong (2000:43), in reviewing the various definitions of a service, pointed out that the features of service are noteworthy in order to better understand the concept. The author further explains that service is a performance and occurs through interaction between consumers and service providers.

Yong (2000:47), expresses the view that other factors, such as physical resources or environment, play an important role in the process of service production and consumption. Service is needed by consumers to provide certain functions, such as problem-solving. Juxtaposing the features concludes that a service, combined with goods or products, is experienced and evaluated by consumers who have particular goals and motivations for consuming the service.

3.3 DEFINITION OF VOICE OF THE CUSTOMER (VOC)

Sproul (2001:45), defines 'voice of the customer' as a systematic approach for incorporating the needs of customers into the design of customer experiences. This definition contains the following three key elements:

3.3.1 A systematic approach

Most organisations take an informal approach to gathering customer feedback. The Voice of the Customer (VOC) programme should augment, not replace, the adhoc approaches, with a more structured way to gather and use customer insights.

3.3.2 Customer needs

Organisations often have access to a great deal of customer data. Customers' insights do not automatically surface from data. A good VOC programme uncovers the current and emerging needs of key customers. It helps in identifying areas where those needs are not being met.

3.3.3 Experience design

Gathering customer insights is only an interim step to improving customer experience. VOC programmes deliver the most value when organisations make changes to better serve the customer needs.

According to Crow (2002:1), quality can be defined as meeting customer needs and providing superior value. Meeting customer needs, requires that those needs be understood. The 'voice of the customer' is the term to describe the stated, and unstated, customer needs or requirements. The voice of the customer can be captured in a variety of ways. This includes the following:

- Direct discussion or interviews;
- ➤ Surveys;
- ➢ Focus groups;
- Customer specifications;
- Observation;
- Warranty data; and
- ➢ Field reports.

3.4 CAPTURING THE VOICE OF THE CUSTOMER

Crow (2002:6), points out that once a product plan, which defines the target market and customers, is established, the next step is to plan how to capture the customers' needs for each development project. This includes the following:

- > Determining how to identify target customers.
- > Knowing which customers to contact in order to capture their needs.
- Understanding the mechanisms to use to collect their needs.
- Scheduling an estimation of resources to capture the voice of the customer.

The author further mentioned that, as opportunities are identified, appropriate techniques are used to capture the voice of the customer. The techniques used will depend on the nature of the customer relationship, as illustrated in Figure 3.1 below.

Figure 3.1: Customer relationship, (Source: Crow, 2002:6)

Crow (2002:8), explains that there is not only one monolithic voice of the customer. Customer voices are diverse. In consumer markets, there are varieties of different needs.

Even within one buying unit, there are multiple customer voices. This applies to industrial and government markets as well. There are even multiple customer voices within a single organisation. These diverse voices need to be considered, reconciled and balanced, to develop a truly successful product. These involve of the following:

- > The voice of the procuring organisation;
- \succ the voice of the user; and
- ➤ the voice of the support, or maintenance organisation.

According to Crow (2002:12), marketing has the responsibility for defining customer needs and product requirements. This has tended to isolate engineering and other development personnel from the customer, and from gaining a first-hand understanding of customer needs. Customers' real needs can become abstract to other development personnel. Product development personnel need to be directly involved in understanding customer needs. This may include the following:

- Visiting or meeting with customers.
- > Observing customers using or maintaining products.
- Participating in focus groups.
- Rotating development personnel through marketing, sales or customer support functions.

Sanger (1971:20), mentioned that the voice of the customer can provide an organisation with valuable information for innovations and customer services. Over a period, an organisation's value proposition of products and services becomes the expectation, and no longer the differentiator from the competitor. By actively pursuing the voice of the customer, organisations can continuously adjust their value proposition to the changing wants and needs of the customer. The organisation can determine the unknown wants and needs by staying close to the customer. Table 3.1 below illustrates common techniques for capturing the voice of the customer, and weaknesses.

Method	Strength	Weakness			
Interviews	One on one	Sample size &cost			
Survey	Reach many customers	Low response rate			
Focus groups	One on few	Group think			
Quality Function Deployment	Identification, prioritisation &	Leadership buy-in			
	implementation				
Empathic design	Observation of current products	May not lead to new products			
Lead users	Leaders in knowledge of future	Available resources for			
	products	deployment			

Table 3.1 Methods for capturing the voice of the customer, (Source: Sanger, 1971:20)

3.5 LISTENING TO THE VOICE OF THE CUSTOMER

Priebe (2004:56-59), points out that only the customer can define quality. This fundamental law of business illustrates the reason why it is important to understand the collective needs, wants and expectations of customers. This is what is meant by the term 'voice of customer'. The goal is to create a shared understanding with customers so that an organisation consistently delivers products that conform to requirements. Voice of customer (VOC) should be treated as a programme that integrates customer input into all aspects of the business. To visualise this, various levels of customer feedback are outlined below, as follows:

3.5.1 Relationship

The highest level of VOC is the customer's assessment of the overall business relationship. This is also referred to as customer satisfaction, or loyalty. Relationship feedback is typically gathered once or twice a year, via a standardised survey.

3.5.2 Products and processes

This focuses on requirements research. If a 'customer' is defined as any recipient of a good, service or work process (internal or external), then it makes sense that their input, when designing products and processes, be solicited. Common data gathering methods include the following:

- ➢ Interviews.
- ➢ Focus groups.
- ➢ Historical queries.
- Competitive intelligence.
- > Benchmarking.
- ➢ Consumer reports.
- Market research.
- ➤ Ethnographical studies.
- Customer surveys

By fully integrating customer input into the product or process development lifecycle, a state of co-creation is achieved. This ensures that product specifications, service levels and quality metrics are perfectly synchronised with customer requirements.

3.5.3 Customer experience

This level focuses on transaction-based feedback. Every time an organisation interacts with a customer, an impression is created. If the organisation makes an effort, these impressions can be recorded, quantified and tracked. The first step in building this into a VOC programme is to identify which customer interactions should be measured. This usually includes the following:

- ➢ Sales experience.
- > Onboarding.
- Product usage
- Service Delivery.
- Problem resolution.

Once the collection methods have been determined, clear processes for responding to customer input should be drawn. This applies to all levels. There is no point in gathering feedback unless an organisation is prepared to take action.

3.5.4 Ubiquitous VOC

This last level is called 'Ubiquitous VOC.' This can be the most challenging feedback to gather and classify, because it is typically unsolicited and unstructured. Customers' opinions regarding a company and its products is continually getting shared in a variety of mediums. This includes the following:

- Customers' complaints to employees.
- Post messages online.
- Email ideas for product improvement.
- > Talk to others about how the organisation is treating its customers.

To understand and react to all the above points, the organisation must build robust communication channels for its customers and employees. The explosion of online mediums, web tools and social media sites can make this easier if the organisation is willing to get creative.

3.6 LEVELS OF ACTIVITIES IN A VOC PROGRAMME

Rheeder (1990: 56), states that there are five distinct levels of activities in a 'voice of the customer' programme. This involves the following:

- Relationship tracking: Organisations need to track the health of customer relationships over time. The organisation must conduct customer surveys. This should be done quarterly or annually. Feedback from the surveys must be used to improve the aspects of service delivery.
- Interaction monitoring: Every customer interaction from an online transaction, to a phone call to the call centre, is important. Organisations need a method to monitor how effectively they handle these customer interactions. Some organisations conduct post-interaction surveys. During these surveys they ask customers for feedback on recent interactions with the organisation.
- Continuous listening: Structured feedback through customer surveys provides enormous opportunities for analysis. Organisations must put processes in place for executives to regularly listen to customers. There are many opportunities to hear what customers are saying.
- Project infusion: Projects that affect customers should incorporate insights about them.

Despite the clear need for this type of effort, many companies lack a formalised approach for infusing customer insights into projects. To ensure that this does not happen, some firms are incorporating customer insight steps in the front-end of their sigma processes.

Periodic immersion: It is valuable for all employees, including executives, to spend a significant amount of time interacting directly with customers, or working alongside frontline employees. These experiences, which should be at least a half day, provide an excellent opportunity for the organisation to question the status quo.

3.7 INVOLVEMENT WITH CUSTOMERS

Seko (2004:17), points out that direct involvement with the customers is important. Direct involvement provides the following:

- Better understanding of customer needs.
- > The customer environment.
- Product use.
- Development of greater empathy on the part of product development personnel.
- Minimisation of hidden knowledge.
- Overcoming technical arrogance.
- Better perspective for development decisions.

These practices have resulted in fundamental insights, such as the engineering of highly technical products. When a company has a direct relationship with a very small number of customers, it is desirable to have a customer representative on the product development team. Alternatively, mechanisms, such as focus groups, should be used where there is a larger number of customers, to ensure on-going feedback over the development cycle. Current customers, as well as potential customers, should be considered and included. This customer involvement is useful for defining requirements, answering questions and providing input during development, and critiquing a design or prototype (Seko, 2004:19-20).

The author further states that customers are the first source of information if the product is aimed at the current market. It is important to communicate with potential customers because they are the primary source of information. Customers provide a good source of information on the strengths of competitors' products. Lead customers are a special class of customers who can provide important insights, particularly with new products. Lead customers are those customers who are the most advanced users of the product; customers who are pushing the product to its limits; or customers who are adapting an existing product to new uses.

Joubert (1993:46), mentioned that during customer discussions, it is essential to identify the basic customer needs. Frequently, customers will try to express their needs in terms of how the need can be satisfied, and not in terms of what the need is. This limits consideration of development alternatives. Development and marketing personnel should ask questions, until they truly understand what the root need is. They should break down general requirements into more specific requirements, by probing what is needed. Customer requirements need to be challenged, questioned and clarified until they make sense. Situations and circumstances must be documented to illustrate a customer needs are equally important. In order to prioritise customer needs, ranking and paired comparisons must be used. Fundamentally, the objective is to understand how satisfying a particular need influences the purchase decision.

According to Meyer (2000:104), to obtain an understanding of customer needs, it is important to obtain the customer's perspective on the competition, relative to the proposed product. This may require follow-up contact once the concept for the product is determined or a prototype is developed.

3.8 COLLECTING CUSTOMER INFORMATION

In each technique, the organisation is trying to secure the customer's view point on satisfaction. The organisation identifies the customer's needs and determines new and future needs that are either unknown or difficult to describe by the customer. Interviews, surveys and focus groups are targeted at asking the customer questions to determine their requirements. Quality Function Deployment and Emphatic Design take the process a step further by incorporating observation to the questioning technique (Spears, 1996:12-14).

The author further stated that, lead user process is a more advanced process which networks knowledgeable experts together to develop new products and services. The primary purpose of the 'voice of the customer' is to assist an organisation with innovation. The innovation allows the company to serve the customers with new products and services, which lead to loyal customers and increased profits for the organisation. Innovation is the key to reinventing the value proposition of an organisation, and by including the customer, it creates a fair 'win-win' situation.

3.9 IDENTIFYING CUSTOMER NEEDS

Tovey (1973:34-35), explains that an organisation will only gain a competitive edge if it has correctly identified its customer needs. In order to identify customer needs, and make use of this information, an organisation will need to do the following:

- Communicate with customers and find out how their needs can be satisfied;
- establish ways to record and interpret customer feedback; and
- use this information when making important decisions about marketing, buying, merchandising and selling.

3.10 ORGANISING CUSTOMER NEEDS

Yevu (1972:17-24), explains that once customer needs are gathered, they have to be organised. The mass of interview notes, requirements documents, market research and customer data, needs to be distilled into a handful of statements that express key customer needs. Affinity diagramming is a useful tool to assist with this effort. Brief statements which capture key customer needs are prepared to avoid any misinterpretation. These are organised into logical groupings or related needs. This makes it easy to identify any redundancy and serves as a basis for organising the customer needs.

3.11 CUSTOMER ENGAGEMENT AND CUSTOMER SATISFACTION

According to Andries (1999:19-30), organisations are increasingly seeking to maximise the value of their customer satisfaction measurement investment. Customer satisfaction is good, but it does not result in a secure customer. Satisfied customers may be pleased with a recent experience, but often do not have an emotional connection with the company. This lack of emotional connection often results in customers with high levels of customer satisfaction, switching to competitors for reasons such as a minor cost difference, or a slightly more convenient location.

Olain (2001:67), is of the view that customer engagement is good for an organisation. Customer engagement is used by the best and most successful organisations in the world. Characteristics of customer engagement involve the following:

- Retention: Engaged customers will spend more with you over their lifetime, than with your competitors.
- Effort: Engaged customers will actually go out of their way to do business with you. They even spend more, to benefit from your products, service and brand.
- Advocacy: Engaged customers spread the good word, making it easier and cheaper for you to attract new customers.
- Passion: Engaged customers are passionate about the brand. They are so passionate that they may even spend time actively promoting the brand to others or defending the brand, if others speak negatively about it.

3.12 TAKING ACTION ON CUSTOMER FEEDBACK

Moll (2005:29), states that every time a customer provides feedback on experience, organisations have the opportunity to use that feedback to improve their business. Some organisations utilise this feedback to view general trends over time. Unfortunately, a majority of organisations focus on aggregate trends rather than empowering managers to take the best actions on customer feedback to improve customer engagement. Organisations need to take the best actions on customer feedback. The VOC programmes should be designed to assist managers to respond in the most effective way to customer feedback. This includes the following:

3.12.1 Questions designed for action

Question sets are designed to enable clients to take action on specific aspects of the customer experience. Tracking surveys are short and enjoyable for the client or customer.

3.12.2 Action Alerts

Based on the individual customer responses to specific questions in the survey, action alerts are sent directly to the designated people within the client organisation, immediately after the customer submits feedback. VOC consists of the following five types of action alerts.

- \succ Recover.
- Grow.
- \triangleright Recognise.
- Improve.
- ➢ Market.

3.12.3 Action Alert Management

After an action alert is sent, a case is automatically created in the VOC centre and assigned to the appropriate person who provides updates regarding progress.

This person, or a supervisor, can then close out cases, as appropriate actions are taken. Suggestions are provided on what specific actions will be most effective. This will depend on the type of action alert generated. Successful actions are recorded, tracked and shared within the entire organisation.

3.12.4 Manager Action Planning Tool

This enables managers to identify areas of focus that, if improved, will have the greatest impact on customer engagement within their location. This tool includes a proprietary library of best-practice actions for each question in the survey.

3.13 CUSTOMER-DRIVEN PROCESS ENTERPRISE

Lopez (1983:17), mentioned that every organisation wants to satisfy its customers. The organisations discuss customer surveys and the gathering of 'voice of customer'. Some organisations have even allocated responsibility for collecting and analysing the information received from surveys. When there is a strong performance related to customer relationships, the following characteristics are observed:

- The focus is on process, rather than on functions. The reason for this is simple. When focus is on the process, the organisation focuses on resolving the causes of problems and measuring upstream metrics that give early warnings. When organisations focus on functions, it is usually an indication of the desire to attribute or deflect blame.
- Employees know, and accept their roles in the processes they own.
- Everyone understands how the organisation's processes are operating. People know how things fit in. The people do not just look at their processes, or their role in a process, but they begin to understand, and relate to, how the processes are linked. When people focus on their linkages, there are fewer hidden processes.
- Processes are measured objectively, and measures are reported regularly.

An organisation needs to bring together all its initiatives under one umbrella responsible for the business's improvements. The organisation needs to

communicate the seriousness of the need. One of the best ways to do that is to put the customer information in front of the process owners. Most of the time the customer data is hidden. People are given just what the organisation believes they need to know, to do their jobs. The customer data, especially the most unpleasant, which, in fact, is the most motivating, is locked up, so that no one knows the bad news. This just means that no one knows the need to change. Leadership need to be committed.(Khan, 1990:67).

3.14 CUSTOMER EXPECTATIONS

According to Zeithaml and Bitner (2003:86), customer needs, or expectations, change over time, due to a variety of factors such as customer emotional responses, attribution, or perceptions of quality. Throughout the service cycle, customers have different experiences which ultimately impact on their satisfaction. Customer satisfaction is dynamic. When measuring customer satisfaction, or service quality dimensions, the evaluating organisations should identify a point in the experience cycle that needs more focus and attention.

Kumar, Aaker and Day (1999:575), point out that the importance for organisations to develop a customer satisfaction programme, is to measure performance and satisfaction over time. The organisations feel that the majority of dissatisfied customers never complain. Most of these silent, dissatisfied, customers sometimes choose not to buy again from the company they are dissatisfied with. According to Zeithaml and Bitner (2003:135), a sound measure of service quality is necessary for identifying aspects of services needing performance improvement, assessing how much improvement is needed on each aspect, and evaluating the impact of improvement efforts. Wisniewski (2001: 380), explains that obtaining adequate information about the quality of services as perceived or expected by customers, is absolutely necessary for evaluating an organisation's performance. Feedback obtained from customer surveys could be misleading, from both policy and operational perspective.

Based on the above discussion, one may argue that information about customer expectations and perceptions of quality of services should not only be adequate, but should also be gathered accurately, using the right measuring instrument or methodology.

In this regard, Jain and Gupta (2004:25), state that different scales for measuring service quality have been put forward by researchers, based on their perceptions about service quality. The authors further state that, SERVQUAL and SERVPERF are the two major service quality measurement scales, but it is still unclear as to which one is the more superior. However, in the authors view, SERVQUAL scale outperforms SERVPERF scale. SERVQUAL possesses higher diagnostic powers to pinpoint areas for managerial interventions, in the event of service quality shortfalls.

3.15 SERVQUAL

According to Parasuraman, Zeithaml and Berry (1988:12), the SERVQUAL scale was first published in 1988, but has since undergone numerous improvements and changes. In terms of its applicability, it has been noted that the SERVQUAL scale has been extensively used by many service research institutions and organisations. The scale can be applied in different service settings, including local authorities. The SERVQUAL scale allows an organisation to determine the aspects on which it has to work to improve the global perception of its service quality. The organisation does so by comparing customer expectations of their services with their perceptions of what is received or offered to them by the organisation. In spite of its extensive use, the SERVQUAL scale has also attracted numerous criticisms around its universal applicability. The issues concerning its dimensionality and validity are questionable.

According to Llosa, Chandon and Orsingher (1998:19), the SERVQUAL scale has been replicated in many different service categories, so as to examine its generalisation. Some of the results show that conceptual and methodological problems exist, regarding the measurement of perceived service quality and its true dimensionality. Building from the above discussion, and also taking into account the positive elements of the SERVQUAL scale, it is evident that the SERVQUAL scale could be useful in this research, for determining the gap between user expectations and perceptions of service delivery from Water Demand Management. Since this research is aimed at assessing the impact of service delivery of Water Demand Management to low income communities, it is deemed important to draw a distinction between services and goods, or manufactured products.

According to Fitzsimmons and Fitzsimmons (2001:5), Perreault and McCarthy (1999:245), and Zeithaml and Bitner (2003:5), goods and services should be distinguished on the basis of their attributes. Goods are tangible physical objects which can be created and transferred. They can exist over time and therefore can be stored and used later. Services tend to be intangible, unlike goods or manufactured products. Goods are created and used. For example, a customer, after watching a movie at the cinema, would at least have a sound memory of the movie that was played, but cannot take ownership of anything tangible. The above example explains why services cannot be touched, or owned, by consumers.

From the above discussion, it is evident that intangibility is the key determinant of whether provision of something is a service or not.

3.16 FOCUS GROUPS

According to Nkomo (2000: 89), focus groups are a common mechanism for gathering the voice of the customer through a structured group interview. They provide an opportunity to get multiple customers together to discuss their needs, evaluate concepts, and provide feedback to developers. Focus groups are used to elicit a range of ideas, attitudes, experiences, and opinions held, by a selected sample of participants on a defined topic. There are two basic types of focus groups. These are:

Exploratory focus groups: used to discuss customer needs, develop concepts for new products and evaluate new concepts of products; and experiential focus groups: used to observe customers using products (and to learn from those observations) or to hear motivations for the purchase of a product.

Focus groups require an experienced facilitator to plan and organise the session, invite participants, and conduct the session.

The sessions are typically one to three hours in length. The objectives need to be clearly identified. Based on this, the facilitator should develop a presentation and a discussion guide. Customers must be identified and recruited. There are, typically, eight to twelve participants per session. A moderator will start with introductions, describe procedures, and often make a product presentation. Usually the session is observed by multiple people in a separate room and it is also audio- and video-taped to accurately capture all of the comments and feedback from customers (Smith, 2003: 80).

It is important to keep in mind that, because the numbers involved are small, the participants cannot be expected to be thoroughly representative, in a statistical sense, of the target population from which they are drawn, and findings cannot reliably be generalised beyond their number. Consideration must be taken in selecting the participants. Multiple sessions should be conducted to increase the validity of the results (Dladla, 2005:55-61).

3.17 CUSTOMER INTERVIEWS

Kruger (1993:43), explains that customer interviews are a common mechanism for gathering the voice of the customer. Customer interviews are usually conducted one-on-one with an individual customer, or with a small number of people from the same business or family unit.

They provide an opportunity to get in-depth information from a single customer. The interviews are used to understand the following questions:

- ➤ What is the customer's problem or need?
- ▶ How will the product solve the customer's problem or need?

- What are the specific customer's needs that must be satisfied to address the customer's problem?
- What are the priorities of these needs? What is most important to the customer in making a buying decision?
- > What are the strengths and weaknesses of products, versus the competition?
- What are the customer's business issues?

The first step in the process is to identify the customers to interview. Based on market segment characteristics and dimensions, the organisation should work with marketing and sales people to identify potential customers. Current customers, competitors' customers, and potential customers should be taken into consideration. Various company contacts, channels and mechanisms must be utilised to pursue customer visits and interviews. If the interviews are within a business, meetings with individuals that interact with the product in different functions, need to be scheduled (Chuene, 1960:21).

Kruger (1993: 43), further states that there are two types of customer interviews. These include 'planned' and 'ad-hoc'. Planned interviews are scheduled ahead of time and are typically longer in duration. They usually take one and half, to two hours. Ad-hoc interviews are requested on the spot, at places such as shopping malls or stores.

3.18 THE KEYSTONE CUSTOMER

Increasing economic pressure from competition, government and rapidly changing technology has forced organisations to give more responsibilities to their few employees. Internal company services are no longer ancillary activities, but have become critical processes in assuring end customer satisfaction, and achieving organisational objectives. Many service organisations are part of a chain of customers. Quality Function Deployment (QFD) can accommodate multiple customers.

The keystone customer determines the success or failure of a service, as illustrated in Figure 3.2 below. In QFD, it is important that the needs of the keystone customer be addressed first (Mazur, 1991: 3).

Figure 3.2: The Key customer, (Source: Mazur, 1991:3)

3.19 COHERENT SERVICE PLANNING

Zultner (1992:84-97), is of the opinion that once customer requirements are known, they must be translated into actionable plans and communicated throughout the service organisation. This requires analysing the customer needs for expected requirements; designing and planning new services and facilities; developing training programmes and finally implementing the new service. Traditional development lacks the structure to communicate what matters most to the customer, and to align organisational components and employees behind these critical requirements. This system is incoherent and inefficient. Thus, more time is spent correcting and adjusting customer complaints than planning it correctly the first time (See Figure 3.3).

Figure 3.3 Incoherent Planning and Development, (Source: Zulter, 1992:84)

3.20 QUALITY FUNCTION DEPLOYMENT

According to Barnet and Smith (1992: 34), Quality Function Deployment (QFD) is a way of making the 'voice of the customer' heard throughout an organisation. It is a systematic process for capturing customer requirements and translating these into requirements that must be met throughout the supply chain. The result is a new set of target values aimed at for designers, production people, and even suppliers, in order to produce the output desired by customers.

3.21 HISTORY OF QUALITY FUNCTION DEPLOYMENT

Mizuno and Akao (1993:67-80), state that Quality Function Deployment began more than twenty years ago in Japan, as a quality system focused on delivering products and services that satisfy customers. To efficiently deliver value to customers, it is necessary to listen to the voice of the customer throughout the product or service development process. Quality experts in Japan developed the tools and techniques of QFD and organised them into a comprehensive system to assure quality and customer satisfaction in new products and services (See Figure 3.4 below).

Figure 3.4 History of QFD, (Source: Mizuno & Akao, 1993:67)

3.22 QUALITY FUNCTION DEPLOYMENT PROCESS

Quality Function Deployment begins with product planning. It then continues with product design and process design, and finishes with process control, quality control, testing, equipment maintenance and training. As a result, this process requires multiple functional disciplines to adequately address this range of activities. QFD is synergistic with multi-function product development teams. It can provide a structured process for these teams to begin communicating, making decisions and planning the product.

It is a useful methodology, along with product development teams, to support a concurrent engineering or integrated product development approach, as illustrated in Figure 3.5 below (Crow, 2002:8-10).

Figure 3.5 QFD Methodology Flow, (Source: Crow, 2002:8-10)

According to Crow (2002:15-17), Quality Function Deployment, by its very structure and planning approach, requires that more time be spent up-front in the development process, making sure that the team determines, understands and agrees with what needs to be done, before plunging into design activities. As a result, less time will be spent downstream because of differences of opinion over

design issues or redesign, because the product was not on target. It leads to consensus decisions, greater commitment to the development effort, better coordination, and reduced time over the course of the development effort.

Crow (2002:20), further states that QFD requires discipline. It is not necessarily easy to get started with. The following is a list of recommendations to facilitate initiation, with QFD:

- > Obtain management commitment to use QFD.
- Establish clear objectives and scope of QFD use.
- Establish multi-functional team.
- ➢ Get an adequate time commitment from team members.
- Obtain QFD training with practical hands-on exercises to learn the methodology and use a facilitator to guide the initial efforts.
- Schedule regular meetings to maintain focus
- Avoid gathering perfect data. Many times significant customer insights and data exist within the organisation, but they are in the form of hidden knowledge. They are not communicated to people with the need for this information. It may be necessary to spend additional time gathering the voice of the customer before beginning QFD.
- Avoid technical arrogance and the belief that company personnel know more than the customer.

According to Phillips (2000: 91), Quality Function Deployment is an extremely useful methodology to facilitate communication, planning, and decision-making within a product development team. It is not a paperwork exercise, or additional documentation that must be completed in order to proceed to the next development milestone. It does not only bring the new product closer to the intended target, but reduces development cycle time and cost in the process.

3.23 BENEFITS OF QUALITY FUNCTION DEPLOYMENT

According to Mulder (1996: 21), the benefits of QFD are categorised into process and bottom line benefits, as follows:

3.23.1 Main 'process' benefits of using QFD are:

- Improved communication and sharing of information within a cross-functional team tasked with developing a new product. This team will typically include people from a variety of functional groups, including marketing, sales, service, distribution, product engineering, process engineering, procurement and production.
- > The identification of holes in the current knowledge of the design team.
- The capture and display of a wide variety of important design information in one place, in a compact form.
- Support for understanding, consensus and decision making.
- The creation of an informational base, which is valuable for repeated cycles of product or service improvement.

3.23.2 Main 'bottom line' benefits of using QFD are:

- Greater likelihood of product success in the marketplace, due to the precise targeting of key customer requirements.
- Reduced overall design cycle time, mainly due to reduction in time-consuming design changes.
- Reduced overall cost due to reducing design changes, which are not only time consuming but very costly, especially those which occur at a later stage.
- > Reduced product cost, by eliminating redundant features and over-design.

3.24 THE DEPLOYMENT OF SERVICE QFD

According to Mizuno and Chalmers (1992; 17), organisational deployment is used to map the QFD steps to the different organisational functions. This includes the following:

- > President.
- Marketing and planning.
- Development
- ➤ Training.
- Customer service.

Organisational deployment shows that it is responsible for activities during the service planning and development process. Often, it is used with a responsibility matrix to clarify organisational roles. Organisation deployment is recommended to be actioned before QFD is applied to a specific service. This will ensure that the necessary team players understand their respective roles, activities and schedules (See Table 3.2).

CA	PD	Customer	President	Mkt/Sales	Design	R&D	Mfg	Doc
C E	С	Customer needs and use		Identify customer requirements				VOCT
Review competilie	A		Se	lect target mar	ket			Quality Plaming Table
	Р				Prioritize performance measures Design technical benchmark			House of Quality

Table 3.2 Organisation Deployment Chart, (Source: Mizuno and Chalmers, 1992: 17)

Mazur (1992: 76), explains that task deployment is used to break down critical jobs into tasks and steps. It identifies what the tasks and steps are, and the responsible parties. The task deployment table can be used to yield valuable information. This includes the following:

- Job descriptions.
- Schedules.
- \succ Floor plans.
- ➤ Standards.
- Equipment.
- > Training requirements.

The next section discusses the Kano Model. This model assists organisations in understanding their customer requirements. When the customer requirements are clearly understood, the organisation can come up with different strategies of promoting customer satisfaction. In the section below three customer requirements are elaborated upon.

3.25 KANO MODEL APPROACH

Kano (1984:39-48), mentioned that, in order to satisfy customers, an organisation must understand how meeting their requirements affects satisfaction. There are three types of customer requirements to consider (See Figure 3.6).

3.25.1 Revealed requirements

This is typically what an organisation gets by asking customers what they want. These requirements satisfy or dissatisfy in proportion to their presence or absence in the product or service. Fast delivery would be a good example. The faster or slower the delivery, the more the customers like or dislike it.

3.25.2 Expected requirements

These requirements are often basic. The customer might fail to mention them until the organisation fails to perform them. They are basic expectations without which the product or service may cease to be of value. Their absence is very dissatisfying. Further, meeting these requirements often goes unnoticed by most customers. Expected requirements must be fulfilled.

3.25.3 Exciting requirements

These are difficult to discover. They are beyond the customers' expectations. Their absence does not dissatisfy. Their presence excites the customers. Since customers are not apt to voice these requirements, it is the responsibility of the organisation to explore customer problems and opportunities to uncover such unspoken items. World-class services have to meet all these three types of requirements, not just what the customer says.

51

Figure 3.6 The Kano Model, (Source: Kano, 1984:51)

Kano's model, depicted in Figure 3.6, is dynamic in that, what excites the customers today is expected tomorrow. That is, once introduced, an exciting service will soon be imitated by competitors and customers will come to expect it from everyone. An example would be special long distance telephone rates at certain hours. Expected requirements can become exciting after a real or potential failure. An example might be the passengers applauding a pilot who has safely manoeuvred a landing, despite severe weather conditions. The Kano Model has an additional dimension, regarding which customer segments the target marketing includes. Knowing which customer segments the organisation wishes to serve is critical to understanding their requirements (Gaucher & Walker, 1991:72-74).

William and Gibson (1991:73-91), are of the opinion that eliminating service problems can be likened to expected requirements. There is little satisfaction or competitive advantage when nothing goes wrong. Conversely, great value can be gained by discovering and delivering exciting requirements ahead of the competitors. The exciting customer needs, which are tied to adding value, are unspoken and thus invisible to both the customer and the producer or service provider. They change over time, technology and market segment. The voice of customer analysis tools and techniques were created to break through this. Understanding the true needs of customers requires work on the part of the organisation. This is not an easy task.

3.26 CONCLUSION

This chapter discloses a theory gathered from various literatures sources, in order to improve service delivery. The definitions of service, voice of the customer (VOC) programmes, and involvement of customers were uncovered. Capturing the voice of the customer, listening to the voice of the customer, collecting customer information, identifying and organising customer needs, engagement with customers, customer satisfaction initiatives, taking action on customer feedback, customer driven enterprise, understanding customer expectations, using SERVQUAL, forming focus groups, conducting customer interviews, understanding the keystone customer and its role in service delivery, the history of Quality Function Deployment (QFD), the Quality Function Deployment process, and adaption of KANO model approach, were all identified as critical success factors for improving service delivery within an organisation. Having an appropriate theory on service delivery, VOC programmes' application and service excellence requirements simply allow the student researcher to look forward to the next chapter, which will tackle the research survey, design and methodology.

CHAPTER 4: KNOWLEDGE MANAGEMENT SURVEY DESIGN AND METHODOLOGY

4.1 THE SURVEY ENVIRONMENT

Water Demand Management consists of various functional areas in the low income communities of the Cape Metropole. The various functional areas, which will serve as the research environment in Khayelitsha, include the following phases in Ward 3 at Litha Park:

- ➢ Mew Way;
- Hlungulu Crescent;
- ➢ Ngwamza;
- ➤ Gwava;
- ➢ Mbaneni; and
- > Sikhova.

4.2 AIM OF THIS CHAPTER

The aim of this chapter and the survey contained therein is to determine what the key factors are that impact on service delivery of Water Demand Management for low income communities. The ultimate objective is to solve the research problem as defined in Chapter 1, Paragraph 1.2, and which reads as follows: "Poor service delivery from Water Demand Management to low income areas results in dissatisfaction and discontent".

4.3 THE TARGET POPULATION

With any survey, it is necessary to clearly define the target population, which Watkins (2008), citing Collis & Hussey (2003: 157), defines as: "A population is any precisely defined set of people or collection of items which is under consideration".

The 'sampling frame' is defined by Vogt (1993) and cited by Collis and Hussey (2003: 150-160), as 'a list or record of the population from which all the sampling units are drawn.' For this survey, 80 households, randomly selected from Khayelitsha at various phases of Ward 3 in Litha Park represent the sampling frame. This transposes into 80 households (See paragraph 4.1) being randomly selected.

The organisation has a five level hierarchy, which is made up as follows:

- Executive: the executive, supports the organisations' directors and manages the department.
- Branch Manager (BM): responsible to the Executive, and manages a branch functional area.
- > Section Head (SH): responsible to a BM, and manages a functional area.
- Senior Professional Officer (SPO): responsible to a SH and manages a business unit within a functional area.
- > **Professional Officer (PO):** A professional individual.
- Staff: Shop floor personnel responsible for carrying out service delivery duties.

The target population was specifically chosen in order to validate the practicality of the concepts as presented here. The risk of bias, which cannot be statistically eliminated, is recognised by the author, based on the very definition of the target population, as well as the number of respondents selected.

4.4 DATA COLLECTION

According to Emory and Cooper (1995:278), three primary types of data collection (survey) methods can be distinguished, namely:

- Personal interviewing.
- Telephone interviewing.
- Self-administered questionnaires/surveys.

Primary data or evidence will be collected using self-administered questionnaires, which fall within the ambit of a broader definition of 'survey research' or

'descriptive survey'. The concept of survey is defined by Watkins (2008), citing Remenyi *et al.* (2002:290) as: "...the collection of a large quantity of evidence, usually numeric, or evidence that will be converted into numbers, normally by means of a questionnaire. A questionnaire is a list of carefully structured questions, chosen after considerable testing, with a view to eliciting reliable responses from a chosen sample. The aim is to establish what a group of participants do, think or feel. A positivistic approach suggests structured 'closed' questions, while a phenomenological approach suggests unstructured 'openended' questions. In this research a positivistic approach will be used. The evidence collected could suggest ways in which the organisation could improve the service delivery strategy.

The data collection method used in the survey, falls within the context of a survey, defined by Hussey and Hussey (1997), as:

"A sample of subjects being drawn from a population and studied to make inferences about the population"

More specifically, the survey conducted in this dissertation falls within the ambit of the 'descriptive survey' as defined by Ghauri, Grønhaug and Kristianslund (1995). The data collection method used falls within the ambit of both the definitions attributed to the concepts 'survey' and 'field study'. 'Survey', according to Gay and Diebl (1992:238), is an attempt to collect data from members of a population in order to determine the current status of that population with respect to one or more variables. Kerlinger (1986:372), defines 'field study' as non-experimental scientific inquiries aimed at discovering the relations and interactions among ... variables in real ... structures. As in the case of most academic research, the collection of data forms an important part of the overall dissertation content.

4.5 MEASUREMENT SCALES

The survey will be based on the well-known Lickert scale, whereby respondents were asked to respond to questions or statements (Parasuraman 1991:410) in order

to determine consensus, probability and importance. The Lickert scale was chosen, due to its ability to be used in both respondent-centred (how responses differ between people) and stimulus-centred (how responses differ between various stimuli) studies, most appropriate to glean data in support of the research problem in question (Emory and Cooper 1995:180-181). According to Emory and Cooper (1995:180-181), the advantages in using the Lickert scale are:

- Easy and quick to construct.
- Each item meets an empirical test for discriminating ability.
- The Lickert scale is probably more reliable than the Thurston scale, and it provides a greater volume of data than the Thurston differential scale.
- > The Lickert scale is also treated as an interval scale.

According to Remenyi, Money and Twite (1995:224), interval scales facilitate meaningful statistics when calculating means, standard deviations and Pearson correlation coefficients. To generate a significant amount of data, other means, such as rated responses and numeric scales, will also be used.

4.6 THE DEMAND FOR A QUALITATIVE RESEARCH STRATEGY

While this author acknowledges that a number of strategies can be applied in similar research projects, the well-known concepts of objectivity and reliability, as inherited from the empirical analytical paradigm, are suggested for business research in more or less the traditional way. Quoting Thorndike & Hagen, these concepts are defined by Emory & Cooper (1995:156), as follows:

- Practicality: Practicality is concerned with a wide range of factors of economy, convenience, and interpretability.
- Validity: Validity refers to the extent to which a test measures what we actually wish to measure. Yin (2003:34), identifies 3 subsets to the concept validity, namely: Construct validity, internal validity and external validity.
- Reliability: Reliability has to do with the accuracy and precision of a measurement procedure.
4.7 SURVEY SENSITIVITY

The research is conducted in areas of a sensitive nature. A case like this survey poses particular challenges to the researcher.

The following guidelines from various academics serve to illustrate the mitigation process, which can be deployed in an instance where research is conducted in areas of a sensitive nature:

A qualitative investigation of a particularly sensitive nature conducted by Oskowitz and Meulenberg-Buskens (1997:83), qualified the importance of handling mission critical issues, as identified above, when the authors stated:

"Thus any type of qualitative investigation could benefit from the researchers being skilled and prepared, and the sensitive nature of an investigation, into a stigmatizing condition made the need for such an undertaking even more imperative in the current study".

The sensitivity of certain issues, and issues identified as impacting on the research negatively in the environments being evaluated, not only demand intimate personal involvement, but also demand the 'personal and practical experience' of the researcher. This view was upheld by Meulenberg-Buskens (1997:94), as being imperative to assure that the quality in qualitative research is undertaken. Checkland (1989:152), supports this view, but extends the concept with the opinion that: "The researcher becomes a participant in the action, and the process of change itself becomes the subject of research".

4.8 SURVEY DESIGN

Collis & Hussey (2003:60), are of the opinion that, 'if research is to be conducted in an efficient manner and makes the best of opportunities and resources available, it must be organised.' Furthermore, if it is to provide a coherent and logical route to a reliable outcome, it must be conducted systematically, using appropriate methods to collect and analyse the data. A survey should be designed in accordance with the following stages:

Stage one: Identify the topic and set some objectives.

- Stage two: Pilot a questionnaire to find out what people know, and what they see as the important issues.
- **Stage three:** List the areas of information needed and define the objectives.
- Stage four: Review the responses to the 'pilot.'
- **Stage five:** Finalise the objectives.
- Stage six: Write the questionnaire.
- Stage seven: Re-pilot the questionnaire.
- **Stage eight:** Finalise the questionnaire.
- **Stage nine:** Code the questionnaire.

The survey design, to be used in this instance, is that of the descriptive survey, as opposed to the analytical survey. The descriptive survey is, according to Collis & Hussey (2003:10), frequently used in business research in the form of attitude surveys. The descriptive survey, as defined by Ghauri, Grønhaug and Kristianslund (1995:60), has furthermore the characteristics to indicate how many members of a particular population have a certain characteristic. Particular care was taken to avoid bias in the formulation of the questions.

The statements within the survey have been designed with the following principles in mind:

- > Avoidance of double-barrelled statements.
- > Avoidance of double-negative statements.
- Avoidance of prestige bias.
- Avoidance of leading statements.
- > Avoidance of the assumption of prior knowledge.

Statements were so formulated as to allow the same respondents to respond to each of the two questionnaires, to determine if a paradigm shift occurred after the concept of 'knowledge management' was adopted.

4.9 THE VALIDATION SURVEY QUESTIONS

The author has developed survey questionnaires. Questions were prepared and piloted to ensure they reflected a high degree of 'validity' (Easterby-Smith, Thorpe & Lowe, 1996).

4.9.1 Questionnaire on service delivery for low income communities

Question 1: Plumbers do not fix water leaks. To what extent do you personally agree or disagree with this statement?

Question 2: Broken cisterns are not replaced and attended to by plumbers. To what extent do you personally agree or disagree with this statement?

Question 3: The water flow pressure from the taps is low. To what extent do you personally agree or disagree with this statement?

Question 4: The water meters are always faulty. To what extent do you personally agree or disagree with this statement?

Question 5: Plumbing material being used is of poor quality. To what extent do you personally agree or disagree with this statement?

Question 6: Site awareness facilitators are rude and not helpful. To what extent do you personally agree or disagree with this statement?

Question 7: Site awareness facilitators give wrong information. To what extent do you personally agree or disagree with this statement?

Question 8: No education on water wastage is provided. To what extent do you personally agree or disagree with this statement?

Question 9: Job cards are not signed by the owner. To what extent do you personally agree or disagree with this statement?

Question 10: There is a lack of site inspection prior to water meter installation. To what extent do you personally agree or disagree with this statement?

Question 11: There are no follow-up inspections after completion of repairs. To what extent do you personally agree or disagree with this statement?

Question 12: The daily water allocation of 350 litres is not sufficient. To what extent do you personally agree or disagree with this statement?

Question13: The water coming out of taps is not always fit for human consumption (smelling). To what extent do you personally agree or disagree with this statement?

Question 14: Plumbers go to the wrong households when attending to complaints. To what extent do you personally agree or disagree with this statement?

Question 15: Call centre staff does not answer complaint calls on time. To what extent do you personally agree or disagree with this statement?

Question 16: Plumbers do not attend to complaints within the specified time. To what extent do you personally agree or disagree with this statement?

Question 17: The complaints capturers do not capture details correctly. To what extent do you personally agree or disagree with this statement?

Question 18: Follow-ups are not being done on complaints. To what extent do you personally agree or disagree with this statement?

Question 19: Water Demand Management does not comply with the consumer service charter. To what extent do you personally agree or disagree with this statement?

Question 20: Household owners do not understand the water bill. To what extent do you personally agree or disagree with this statement?

Question 21: Service is acceptable. To what extent do you personally agree or disagree with this statement?

Question 22: Inadequate reporting processes in place to address complaints. To what extent do you personally agree or disagree with this statement?

Question 23: Meter readers record estimations, instead of physical reading meters. To what extent do you personally agree or disagree with this statement?

Question 24: Work instructions are not being followed. To what extent do you personally agree or disagree with this statement?

Question 25: No cleaning is done after repairs. To what extent do you personally agree or disagree with this statement?

4.10 CONCLUSION

In this chapter, the 'service delivery' survey design and methodology was addressed under the following functional headings:

- Survey environment.
- \succ The aim of the chapter.
- Choice of sampling method.
- > Target population.
- ➢ Data collection.
- Measurement scales.
- > Demand for a qualitative research strategy.
- Survey sensitivity.
- Survey design.
- ➢ Survey questions.

In Chapter 5, results from the survey will be analysed in detail and conclusions drawn.

CHAPTER 5: DATA ANALYSIS AND INTERPRETATION OF RESULTS

5.1 INTRODUCTION

Data analysis is "the process of bringing order, structure and meaning to the mass of collected data" (de Vos 2002, 339). This chapter discusses the statistical analysis of the questionnaire compiled by N Madliwa, for the purpose of obtaining Magister Technologiae: Quality in the Faculty of Engineering at the Cape Peninsula University of Technology. The aim of this study is to determine the impact of service delivery of Water Demand Management on low income communities. In this chapter the data obtained from the completed questionnaires will be presented and analysed.

In most social research, the analysis entails three major steps, in the following order:

- Cleaning and organising the information that was collected, which is called the data preparation step,
- Describing the information that was collected (Descriptive Statistics); and
- Testing the assumptions made through hypothesis and modeling (Inferential Statistics).

The responses to the questionnaire, developed by the researcher for the purpose of obtaining information regarding the impact of service delivery on user satisfaction, the current standard of service delivery, and the establishment of mechanisms to improve service delivery, have been analysed, using SAS software.

5.2 METHOD OF ANALYSIS

5.2.1 VALIDATION OF SURVEY RESULTS

A descriptive analysis of the survey results returned by the research questionnaire respondents is reflected below. The responses to the questions obtained through the questionnaires are indicated in table format for ease of reference. Data validation is the process of ensuring that a programme operates on clean, correct and useful data. The construct validation, however, can only be taken to the point where the questionnaire measures what it is supposed to measure. Construct validation should be addressed in the planning phases of the survey, and when the questionnaire is developed. This questionnaire is supposed to measure whether poor service delivery from Water Demand Management to low income areas, such as Ward 3 at Litha Park Khayelitsha, results in dissatisfaction and discontent.

5.2.2 DATA FORMAT

The data was received in questionnaires, which were coded and captured in a database developed on Microsoft Access, for this purpose. These questionnaires were captured twice and then the two datasets were compared to minimise capturing mistakes. When the database had been developed, use was made of rules, with respect to the questionnaire, that set boundaries for the different variables (questions). For instance, if the Lickert scale is used, as follows:

- Strongly disagree' is coded as 1
- ➢ 'Disagree' is coded as 2
- 'Undecided' is coded as 3
- ➢ 'Agree' is coded as 4
- Strongly agree' is coded as 5.

A boundary is set on Microsoft Access as less than 6. This means that if the number 6, or more than 6, is captured an error will show until a number less than 6 is captured. It was then imported into SAS-format through the SAS ACCESS module. This information, which had been double checked for correctness, was then analysed by the custodian of this document.

5.2.3 PRELIMINARY ANALYSIS

The reliability of the statements in the questionnaire posed to the respondents in Khayelitsha was measured by using the Cronbach Alpha test. (See paragraph 5.3.1). A Uni-variate descriptive analysis is performed on all the original variables; displaying frequencies, percentages, cumulative frequencies, cumulative percentages, means, standard deviations, range, median, mode etc. These descriptive statistics are discussed in paragraphs 5.3.2 and 5.3.3. (See also computer printouts in Annexure B & C).

5.2.4 INFERENTIAL STATISTICS USED

Inferential statistics that were used, include:

- Cronbach Alpha test. Cronbach's Alpha is an index of reliability associated with the variation accounted for by the true score of the "underlying construct". Construct is the hypothetical variables that are being measured (Cooper & Schindler, 2001:216-217). Another way to put it would be that Cronbach's Alpha measures how well a set of items (or variables) measures a single uni-dimensional latent construct. When data has a multidimensional structure, Cronbach's Alpha will usually be low.
- Chi-square tests for nominal data. The Chi-square (two-sample) tests are probably the most widely used nonparametric test of significance that is useful for tests involving nominal data, but it can be used for higher scales as well, like cases where persons, events or objects are grouped in two or more nominal categories such as 'yes-no' or cases A, B, C or D. The technique is used to test for significant differences between the observed distribution of data among categories, and the expected distribution based on the null hypothesis. It has to be calculated with actual counts rather than percentages (Cooper & Schindler, 2001:499).
- The SAS software computes a P-value (Probability value) that measures statistical significance when comparing variables with each other, determining relationships between variables, or determining association between variables. Results will be regarded as significant if the p-values are smaller than 0.05, because this value presents an acceptable level on a 95% confidence interval

 $(p \le 0.05)$. The p-value is the probability of observing a sample value as extreme as, or more extreme than, the value actually observed, given that the null hypothesis is true. This area represents the probability of a Type 1 error that must be assumed if the null hypothesis is rejected (Cooper & Schindler, 2001:509).

- ➤ The p-value is compared to the significance level (α) and on this basis the null hypothesis is either rejected or not rejected. If the p value is less than the significance level, the null hypothesis is rejected (if p value <α, reject null). If the p value is greater than, or equal to, the significance level, the null hypothesis is not rejected (if p value ≥α, do not reject null). Thus with α=0.05, if the p value is less than 0.05, the null hypothesis will be rejected. The p value is determined by using the standard normal distribution. The small p value represents the risk of rejecting the null hypothesis.</p>
- A difference has statistical significance if there is good reason to believe the difference does not represent random sampling fluctuations only. Results will be regarded as significant if the p-values are smaller than 0.05, because this value is used as the cut-off point in most behavioural science research.

5.2.5 ASSISTANCE TO RESEARCHER

The conclusions made by the researcher, were validated by the statistical report. Help was given to interpret the outcome of the data. The final report, written by the researcher, was to be validated and checked by the statistician to exclude any misleading interpretations. All inferential statistics are discussed in paragraphs 5.3.4.

5.2.6 SAMPLE

The target population is residents who live and own houses in Ward 3 at Litha Park. A random sample of 80 was drawn in the target population and the sample realisation was 80.

In total, 80 residents of Ward 3 at Litha Park, Khayelitsha completed the questionnaire. Descriptive statistics will be given for each variable, and only the respondents who completed the entire questionnaire will be utilised in the inferential statistics.

5.3.1 RELIABILITY TESTING

Reliability tests (Cronbach's Alpha Coefficient) will be conducted on the questions/statements (which is the measuring instrument in this case) posed to the respondents of Ward 3 at Litha Park, Khayelitsha. As statement D21 is stated positively as "Service is acceptable" whilst the rest of the statements are stated negatively, it might suggest that some reversal issues are present. Thus, if the respondents agreed with the statement "Service is acceptable". It is thus necessary to recode D21 by creating a new variable D21n that is the reverse of the original variable and the transformation for D21is as follows:

D21n = 1 if D21 = 5; D21n = 2 if D21 = 4; D21n = 3 if D21 = 3; D21n = 4 if D21 = 2; D21n = 5 if D21 = 1;

When interpreting the result, note should be taken that D21n is the reverse of the original statement D21.

The Cronbach's Alpha Coefficient for this measuring instrument is less than 0.70 (the acceptable level according to Nunnally, 1978: 245), and thus this measuring instrument is not consistent.

The results of the Cronbach Alpha tests for the all the raw variables are shown in table 5.1 and in Annexure A. It shows the correlation between the respective item and the total sum score (without the respective item) and the internal consistency of the scale (coefficient alpha) if the respective item were to be deleted.

By deleting the items (statements) one by one each time, with the statement with the highest Cronbach Alpha value, the Alpha value will increase. In the right-most column of table 5.1, it shows that the reliability of the scale could be higher if some of these statements were to be deleted.

For instance, if statement D20 is deleted from this measuring scale then the Cronbach Alpha Coefficient will increase to 0.5564. This does not help much as it is still smaller than 0.70. If we carry on, and each time delete the item (statement) with the highest Cronbach alpha value the best overall Cronbach Alpha Coefficient achieved will be 0.6700 after deleting statements A1, A4, A5, B9, B10, B11, B12, B13, C14, C18, D21n, D23, D24 and D25. This shows that the measuring instrument may not be reliable, or exist out of multi constructs (measure more than one aspect). When the Cronbach Alpha Coefficient is calculated for the items in the different sections, the Cronbach Alpha for each section is very small.

TABLE 5.1:Cronbach's Alpha Coefficient for all the items forming the measuringinstrument in this survey for the total sample

Stat	tements (Test all statements without current	Variable	Correlation	Cronbach's
one	's input)	nr.	with total	Alpha
				Coefficient
Sec	tion A			
1.	Plumbers do not fix water leaks.	A1	0.3083	0.4907
2.	Broken cisterns are not replaced and attended to	A2	0.1824	0.5118
	by plumber.			
3.	The water flow pressure from the taps is low.	A3	0.1311	0.5207
4.	The water meters are always faulty.	A4	0.1265	0.5209
5.	Plumbing material being used is of poor quality.	A5	0.0059	0.5386
Sec	tion B		1	
6.	Site awareness facilitators are rude and not	B6	0.1817	0.5122
	helpful.			
7.	Site awareness facilitators give wrong	B7	0.3223	0.4869
	information.			
8.	No education on water wastage is provided.	B8	0.1549	0.5165

Statements (Test all statements without current	Variable	Correlation	Cronbach's
one's input)	nr.	with total	Alpha
			Coefficient
9. Job cards are not signed by the owner.	B9	-0.1034	0.5541
10. Lack of site inspection prior to water meter	B10	0.2212	0.5072
installation.			
11. No follow-up inspections after completion of	B11	0.0743	0.5272
repairs.			
12. The daily water allocation of 350 litres is not	B12	0.1726	0.5136
sufficient.			
13. The water coming out of taps is not always fit	B13	0.1480	0.5177
for human consumption (smelling).			
Section C			
14. Plumbers go to the wrong households when	C14	0.2748	0.4962
attending to complaints.			
15. Call centre staff does not answer complaint	C15	0.3143	0.4953
calls on time.			
16. Plumbers do not attend to complaints within the	C16	0.2928	0.5046
specified time.			
17. The complaints capturers do not capture details	C17	0.4350	0.4875
correctly.			
18. Follow-ups are not being done on complaints.	C18	0.1829	0.5144
Section D			
19. Water demand management does not comply	D19	0.0968	0.5246
with the consumer service charter.			
20. Household owners do not understand the water	D20	-0.1094	0.5564
bill.			
21. Service is acceptable.	D21	0.0761	0.5290
22. Inadequate reporting processes in place to	D22	0.2354	0.5072
address complaints.			
23. Meter readers record estimations, instead of	D23	-0.0376	0.5413
physically reading meters.			
24. Work instructions are not being followed.	D24	0.2603	0.5014
25. No cleaning is done after repairs.	D25	-0.0191	0.5418
Cronbach's Coefficient Alpha for standardized vari	iables	1	0.5506
Cronbach's Coefficient Alpha for raw variables			0.5276
			1

After performing an exploratory factor analysis it was determined that this measuring instrument consists of at least 6 constructs which grouped the items (statements) into six factors. Exploratory factor analysis is used to investigate the factor structure underlying the set of original observed (25) variables that represent the measurement items regarding the impact of poor service delivery from water demand management, to low income areas, to determine the latent variables which it describes. Per definition, factor analysis identifies the nature and number of latent factors responsible for co-variation in data analysis. Results, including the rotated factor pattern and communality estimates of the exploratory factor analysis are shown in Table 5.3. The SAS printout can be found in Annexure F. The communality refers to the percent of variance in an observed variable that is accounted for by the retained factors (Hatcher, L 1994: 13).

Factor Pattern						Final	Questionnaire
						Communality	Statements
1	2	3	4	5	6	Estimates	
78	12	18	-17	7	-9	0.6345	C15
74	13	25	6	19	-4	0.5896	C17
63	1	14	12	5	-2	0.4474	C16
-	64	-24	7	-1	5	0.5028	D25
22							
27	62	-7	-10	9	-2	0.4857	D24
0	53	-27	8	-27	-7	0.3798	D23
1	46	11	25	15	5	0.3031	C14
15	-12	80	7	19	23	0.6853	B7
23	1	69	-9	10	-28	0.5820	B6
15	-30	59	-12	17	19	0.4519	B8
-2	9	-9	61	-6	7	0.3975	B11
13	23	-3	60	1	-13	0.4457	B10
42	-9	-3	-46	29	6	0.4091	A3
37	-15	11	-13	67	-35	0.5964	A2
7	22	20	10	54	-10	0.3887	A1
-4	-9	13	0	51	17	0.3249	B13
-	-11	13	-13	7	70	0.5578	A4
-	19	-6	34	-26	60	0.5268	A5

TABLE 5. 2: Original variables and corresponding factor loadings from the rotated factor pattern.

Fac	tor Pattern	l	Final	Questionnaire			
						Communality	Statements
1	2	3	4	5	6	Estimates	
20							

• Take note that all the loadings are multiplied by a 100 and rounded to the nearest integer.

Measurements on the impact of poor service delivery are subjected to an exploratory factor analysis, using squared multiple correlations (SMC) as prior communality estimates. The principal factor method was used to extract the factors, and this was followed by an oblique rotation. A Scree test, as well as an eigenvalue of more than 1, suggested six meaningful factors, so only these factors were retained for rotation.

In interpreting the rotated factor pattern, an item was said to load on a given factor if the factor loading was 0.40 or greater for that factor, and was less than 0.40 for the other. Using these criteria, three items were found to load on the first factor, which was subsequently labelled the "Complaints" factor. Four items loaded on the second factor, which was labelled the "Work Ethics" factor. Three items loaded on the third factor, which was labelled the "Site awareness" factor. Three items loaded on the fourth factor, which was labelled the "Site inspections" factor. Three items loaded on the fifth factor, which was labelled the "Customer issues" factor. Two items loaded on the sixth factor, which was labelled the "Material quality" factor. Thus, the measuring instrument that measures the impact of poor service delivery consists of six constructs, and that is why, if used as one measuring instrument, it proofs to be unreliable.

The Cronbach alpha coefficient was calculated for these six factors and they are still not reliable. Thus, each statement will be analysed and compared, with respect to the biographical variables. No summaries of variables will be tested.

5.3.2 DESCRIPTIVE STATISTICS

Table 5.3 shows the descriptive statistics for all the categorical variables with the frequencies in each category and the percentage out of the total number of

questionnaires. The number of years residing in the house, the number of people residing in the house or who stay at home during the day will be grouped in sensible groupings to be used later in comparisons. However, the average number of years and people will also be given in table 5.4. Take note that the descriptive statistics are based on the total sample. These descriptive statistics are also shown in Annexures B & C.

Variables		Categories	Frequency	Percentage
				out of total
Bio	graphic variables			
1.	Type of dwelling.	House	30	37.5%
		Shack	25	31.2%
		Wendy-house	25	31.2%
2.	Gender.	Male	39	48.8%
		Female	41	51.2%
3.	How many people are residing in your	1-4 years	26	32.5%
	household?	5-8 years	26	32.5%
		> 8 years	28	35.0%
4.	Number of people at home during the day.	0-1	26	32.5%
		2-5	35	43.8%
		>5	19	23.8%
5.	How long have you been living in your	1-4 years	28	35.0%
	household?	5-9 years	26	32.5%
		> 8 years	26	32.5%
Sect	tion A			
1.	Plumbers do not fix water leaks.	Strongly disagree	9	11.2%
		Disagree	21	26.2%
		Undecided	2	2.5%
		Agree	27	33.8%
		Strongly agree	21	26.2%
2.	Broken cisterns are not replaced and	Strongly disagree	10	12.5%
	attended to by plumber.	Disagree	18	22.5%
		Undecided	3	3.8%

TABLE 5. 3:	Descriptive	statistics f	for all th	e variables
--------------------	-------------	--------------	------------	-------------

Variables		Categories	Frequency	Percentage
				out of total
		Agree	20	25.0%
		Strongly agree	29	36.2%
3.	The water flow pressure from the taps is	Strongly disagree	9	11.2%
	low.	Disagree	23	28.8%
		Undecided	6	7.5%
		Agree	20	25.0%
		Strongly agree	22	27.5%
4.	The water meters are always faulty.	Strongly disagree	5	6.2%
		Disagree	24	30.0%
		Undecided	6	7.5%
		Agree	25	31.2%
		Strongly agree	20	25.0%
5.	Plumbing material being used is of poor	Strongly disagree	3	3.8%
	quality.	Disagree	15	18.8%
		Undecided	5	6.2%
		Agree	22	27.5%
		Strongly agree	34	42.5%
		Unknown	1	1.2%
Sec	tion B		1	
6.	Site awareness facilitators are rude and not	Strongly disagree	12	15.0%
	helpful.	Disagree	21	26.2%
		Undecided	3	3.8%
		Agree	35	43.8%
		Strongly agree	9	11.2%
7.	Site awareness facilitators give wrong	Strongly disagree	13	16.2%
	information.	Disagree	13	16.2%
		Undecided	12	15.0%
		Agree	21	26.2%
		Strongly agree	21	26.2%
8.	No education on water wastage is provided.	Strongly disagree	9	11.2%
		Disagree	18	22.5%
		Undecided	10	12.5%
		Agree	17	21.2%

Variables	Categories	Frequency	Percentage
			out of total
	Strongly agree	26	32.5%
9. Job cards are not signed by the owner.	Strongly disagree	7	8.8%
	Disagree	19	23.8%
	Undecided	3	3.8%
	Agree	32	40.0%
	Strongly agree	17	21.2%
	Unknown	2	2.5%
10. Lack of site inspection prior to water meter	Strongly disagree	6	7.5%
installation.	Disagree	11	13.8%
	Undecided	5	6.2%
	Agree	39	48.8%
	Strongly agree	18	22.5%
	Unknown	1	1.2%
11. No follow-up inspections after completion	Strongly disagree	1	1.2%
of repairs.	Disagree	13	16.2%
	Undecided	5	6.2%
	Agree	33	41.2%
	Strongly agree	28	35.0%
12. The daily water allocation of 350 litres is	Strongly disagree	10	12.5%
not sufficient	Disagree	12	15.0%
	Undecided	4	5.0%
	Agree	20	25.0%
	Strongly agree	34	42.5%
13. The water coming out of taps is not always	Strongly disagree	7	8.8%
fit for human consumption (smelling).	Disagree	25	31.2%
	Undecided	5	6.2%
	Agree	23	28.8%
	Strongly agree	20	25.0%
Section C			
14. Plumbers go to the wrong households when	Strongly disagree	7	8.8%
attending to complaints.	Disagree	25	31.2%
	Undecided	1	1.2%
	Agree	25	31.2%

Variables	Categories	Frequency	Percentage
			out of total
	Strongly agree	22	27.5%
15. Call centre staff does not answer complaint	Strongly disagree	2	2.5%
calls on time.	Disagree	7	8.8%
	Undecided	4	6.0%
	Agree	20	25.0%
	Strongly agree	47	58.8%
16. Plumbers do not attend to complaints	Strongly disagree	1	1.2%
within the specified time.	Disagree	4	5.0%
	Undecided	3	3.8%
	Agree	20	25.0%
	Strongly agree	52	65.0%
17. The complaints capturers do not capture	Strongly disagree	3	3.8%
details correctly.	Disagree	4	5.0%
	Undecided	5	6.2%
	Agree	20	25.0%
	Strongly agree	48	60.0%
18. Follow-ups are not being done on	Strongly disagree	0	0.0%
complaints.	Disagree	5	10.0%
	Undecided	2	2.5%
	Agree	19	23.8%
	Strongly agree	51	63.8%
Section D		1	
19. Water demand management does not	Strongly disagree	7	8.8%
comply with the consumer service charter.	Disagree	23	28.8%
	Undecided	10	12.5%
	Agree	33	41.2%
	Strongly agree	7	8.8%
20. Household owners do not understand the	Strongly disagree	12	15.0%
water bill.	Disagree	18	22.5%
	Undecided	10	12.5%
	Agree	30	37.5%
	Strongly agree	9	11.2%
	Unknown	1	1.2 %

Variables	Categories	Frequency	Percentage
			out of total
21. Service is acceptable.	Strongly disagree	36	45.0%
	Disagree	23	28.8%
	Undecided	5	6.2%
	Agree	7	8.8%
	Strongly agree	8	10.0%
	Unknown	1	1.2%
22. Inadequate reporting processes in place to	Strongly disagree	4	5.0%
address complaints.	Disagree	6	7.5%
	Undecided	16	20.0%
	Agree	35	43.8%
	Strongly agree	16	20.0%
	Unknown	3	3.8%
23. Meter readers record estimations, instead	Strongly disagree	2	2.5%
of physically reading meters.	Disagree	12	15.0%
	Undecided	6	7.5%
	Agree	31	38.8%
	Strongly agree	29	36.2%
24. Work instructions are not being followed.	Strongly disagree	2	2.5%
	Disagree	17	21.2%
	Undecided	8	10.0%
	Agree	28	35.0%
	Strongly agree	25	31.2%
25. No cleaning is done after repairs.	Strongly disagree	3	3.8%
	Disagree	18	22.5%
	Undecided	1	1.2%
	Agree	26	32.5%
	Strongly agree	32	40.0%

Variable		N	Mean	Standard	Median	Range
				Deviation		
Bioş	graphic continuous variables	1		1	-	
3.	How many people are residing in your household?	80	7.14	4.1605	6.00	16.0
4.	Number of people at home during the day.	80	3.51	3.1981	3.00	13.0
5.	How long have you been living in your household?	80	7.31	4.1813	6.00	15.0
Sect	tion A	I				
1.	Plumbers do not fix water leaks.	80	3.38	1.4086	4.00	4.0
2.	Broken cisterns are not replaced and attended to by plumber.	80	3.50	1.4841	4.00	4.0
3.	The water flow pressure from the taps is low.	80	3.29	1.4249	4.00	4.0
4.	The water meters are always faulty.	80	3.39	1.3168	4.00	4.0
5.	Plumbing material being used is of poor quality.	79	3.87	1.2646	4.00	4.0
Sect	tion B					
6.	Site awareness facilitators are rude and not helpful.	80	3.10	1.3274	4.00	4.0
7.	Site awareness facilitators give wrong information.	80	3.30	1.4355	4.00	4.0
8.	No education on water wastage is provided.	80	3.41	1.4293	4.00	4.0
9.	Job cards are not signed by the owner.	78	3.42	1.3144	4.00	4.0
10.	Lack of site inspection prior to water meter installation.	79	3.66	1.1971	4.00	4.0
11.	No follow-up inspections after completion of repairs.	80	3.92	1.0882	4.00	4.0
12.	The daily water allocation of 350 litres is not sufficient.	80	3.70	1.4617	4.00	4.0
13.	The water coming out of taps is not always fit for human consumption	80	3.30	1.3724	4.00	4.0

TABLE 5. 4: Descriptive statistics – Mean, Median, Standard Deviation and Range

Variable	Ν	Mean	Standard	Median	Range
			Deviation		
(smelling).					
Section C					
14. Plumbers go to the wrong households when attending to complaints.	80	3.38	1.3996	4.00	4.0
15. Call centre staff does not answer complaint calls on time.	80	4.29	1.0696	5.00	4.0
16. Plumbers do not attend to complaints within the specified time.	80	4.48	0.8855	5.00	4.0
17. The complaints capturers do not capture details correctly.	80	4.32	1.0527	5.00	4.0
18. Follow-ups are not being done on complaints.	80	4.41	0.9506	5.00	3.0
Section D					
19. Water demand management does not comply with the consumer service charter.	80	3.12	1.1840	3.50	4.0
20. Household owners do not understand the water bill.	79	3.08	1.2986	3.00	4.0
21. Service is acceptable.	79	2.09	1.3415	2.00	4.0
22. Inadequate reporting processes in place to address complaints.	77	3.69	1.0546	4.00	4.0
23. Meter readers record estimations, instead of physically reading meters.	80	3.91	1.1273	4.00	4.0
24. Work instructions are not being followed.	80	3.71	1.1927	4.00	4.0
25. No cleaning is done after repairs.	40	3.82	1.2806	4.00	4.0

5.3.3 UNI-VARIATE GRAPHS

This paragraph will illustrate the distribution of the responses for each statement in the survey.

FIGURE 5.1: Distribution of respondents

FIGURE 5. 2: Gender distribution

There was also an equal gender distribution.

The following graph shows the distribution of the responses in respect of section A in the questionnaire. Section A consists of questions regarding the poor service delivery. As can be seen in figure 5.3, more than half of the respondents agree to strongly agree with these negative statements.

FIGURE 5. 3: Responses to section A

The statements were sorted from the statement where the respondents 'mostly agree with' to the statement that they 'least agree with'. The respondents mostly agree with the following statements:

- Plumbing material being used is of poor quality. (70.9% agree, to strongly agree).
- Broken cisterns are not replaced and attended to by a plumber. (61.2% agree, to strongly agree).
- The water meters are always faulty. (56.2% agree, to strongly agree).
- Plumbers do not fix water leaks. (60.0% agree, to strongly agree).
- \blacktriangleright The water flow pressure from the taps is low. (52.5% agree, to strongly agree).

The following graph shows the distribution of the responses in respect of section B in the questionnaire. Section B also consists of questions regarding the poor service delivery. As can be seen in figure 5.4, more than half of the respondents agree, to strongly agree with these negative statements.

FIGURE 5. 4: Responses to Section B

The statements were sorted from the statement where the respondents 'mostly agree with' to the statement that they 'least agree with.' The respondents agreed more with the following statements:

- No follow-up inspections after completion of repairs. (76.27% agree, to strongly agree).
- The daily water allocation of 350 litres is not sufficient. (67.5% agree, to strongly agree).
- Lack of site inspection prior to water meter installation. (72.2% agree, to strongly agree).
- ▶ No education on water wastage is provided. (53.8% agree, to strongly agree).
- ▶ Job card is not signed by the owner. (62.8% agree, to strongly agree).
- The water coming out of taps is not always fit for human consumption. (53.8% agree, to strongly agree).
- Site awareness facilitators give wrong information. (52.5% agree, to strongly agree).

Site awareness facilitators are rude and not helpful. (55.0% agree, to strongly agree).

The following graph shows the distribution of the responses in respect of section C in the questionnaire. Section C also consists of questions regarding the poor service delivery, especially in respect of the complaints. As can be seen in figure 5.5 that more than a half of the respondents agree, to strongly agree with these negative statements.

FIGURE 5. 5: Responses on Section C

The statements were sorted from the statement where the respondents 'mostly agree' with to the statement that they 'least agree with.' The respondents agreed more with the following statements:

- Plumbers do not tend to complaints within the specified time. (90.0% agree, to strongly agree).
- Follow-ups are not being made on complaints. (87.5% agree, to strongly agree).
- The complaints capturers do not capture details correctly. (85.0% agree, to strongly agree).
- Call centre staff does not answer complaint calls on time. (83.8% agree, to strongly agree).

Plumbers go to the wrong households when attending to complaints. (58.8% agree, to strongly agree).

The following graph shows the distribution of the responses in respect of section D in the questionnaire. Section D also consists of questions regarding the poor service delivery. Statement D21 was the only statement that was stated positively; and to continue in a standard formatting of the statements this statement is reversed coded as follows:

A5n = 1 if A5 = 5; A5n = 2 if A5 = 4; A5n = 3 if A5 = 3; A5n = 4 if A5 = 2; A5n = 5 if A5 = 1;

This means that statement D21 will now read "The service is unacceptable".

FIGURE 5. 6: Responses to Section D

The statements were sorted from the statement where the respondents 'mostly agree with' to the statement that they 'least agree with'. The respondents mostly agreed with the following statements:

- Meter readers record estimations, instead of physical readings. (75.0% agree, to strongly agree).
- > The service is unacceptable. (74.7% agree, to strongly agree).
- ▶ No cleaning is done after repairs. (72.5% agree, to strongly agree).
- ▶ Work instructions are not being followed. (66.2% agree, to strongly agree).
- Inadequate reporting processes in place to address complaints. (66.2% agree, to strongly agree).
- Water demand management does not comply with the consumer service charter. (50.0% agree, to strongly agree).
- Household owners do not understand the water bill. (49.4% agree, to strongly agree).

5.3.4 INFERENTIAL STATISTICS

The following inferential statistics will be performed on the survey data:

- For all the statements in the survey a comparison will be made between the proportions of respondents who agree, to strongly agree and the proportions of respondents who disagree, to strongly disagree with the statements. This is done to serve as statistical evidence when the results are discussed. Note that the group of respondents who were undecided is taken out, as there were a small number of respondents who were undecided and it will make all the comparisons statistically significantly different, as the undecided group has the smallest proportion of respondents.
- A comparison will be made between the types of dwellings, the gender of the house owner, the number of people who reside in the house, the number of people alone at home during the day, and the number of years the respondent was living in the house.

Comparative statistics for the abovementioned comparisons that were used, are discussed in paragraphs 5.3.4.1 and 5.3.4.2; and the computer printouts are shown in Annexures D and E.

The hypotheses being tested for the comparisons under point 1, will be as follows:

- > H_0 = The proportion of respondents who agree, to strongly agree is not different from the proportion of respondents who disagree, to strongly disagree.
- > H_1 = The proportion of respondents who agree, to strongly agree is different from the proportion of respondents who disagree, to strongly disagree.

The hypotheses being tested for the comparisons under point 2 will be as follows:

- H₀ = The three independent groups (House, Shack, and Wendy house owners) do not differ with respect to their perceptions in this survey.
- H₁ = The three independent groups (House, Shack, and Wendy house owners) do differ with respect to their perceptions in this survey.

5.3.4.1 Comparisons with regard to the difference in proportions who agreed and who disagreed

Chi-square tests were performed to determine whether the proportion of respondents who agreed is equal to the proportion of respondents who disagreed for each question (statement).

The results for only the statistically significant differences are shown in table 5.5 and in Annexure D.

Que	Question / Statement		Chi-Square	DF	P-Value
		Size			
Sect	tion A				
1.	Plumbers do not fix water leaks.	78	4.1538	1	0.0415*
2.	Broken cisterns are not replaced and attended to by plumber.	77	5.7273	1	0.0167*
5.	Plumbing material being used is of poor quality.	74	19.5135	1	<0.0001***
Section B					
9.	Job cards are not signed by the owner.	75	7.0533	1	0.0079**

TABLE 5. 5: Statistically significant Chi-square test for equal proportions

Question / Statement	Sample	Chi-Square	DF	P-Value
	Size			
10. Lack of site inspection prior to water meter	74	21.6216	1	< 0.0001***
installation.				
11. No follow-up inspections after completion of	75	29.4533	1	<0.0001***
repairs.				
12. The daily water allocation of 350 litres is not	76	13.4737	1	0.0002***
sufficient.				
Section C				
15. Call centre staff does not answer complaint	76	44.2632	1	<0.0001***
calls on time.				
16. Plumbers do not attend to complaints within	77	58.2987	1	< 0.0001***
the specified time.				
17. The complaints capturers do not capture	75	49.6133	1	<0.0001***
details correctly.				
18. Follow-ups are not being done on	78	49.2821	1	< 0.0001***
complaints.				
Section D				
21. Service is acceptable.	74	26.1622	1	<0.0001***
22. Inadequate reporting processes in place to	61	27.5574	1	< 0.0001***
address complaints.				
23. Meter readers record estimations, instead of	74	28.5946	1	< 0.0001***
physically reading meters.				
24. Work instructions are not being followed.	72	16.0556	1	<0.0001***
25. No cleaning is done after repairs.	79	17.3291	1	<0.0001***

* Statistically significant at level 0.05

** Statistically significant at level 0.01

*** Statistically significant at level 0.001

As Table 5.5 shows; there were statistically significant differences for the following statements:

- Plumbing material being used is of poor quality. (75.7% agree, to strongly agree and 24.3% disagree, to strongly disagree).
- Broken cisterns are not replaced and attended to by a plumber. (63.6% agree, to strongly agree and 36.4% disagree, to strongly disagree).

- Plumbers do not fix water leaks. (61.5% agree, to strongly agree and 38.5% disagree, to strongly disagree).
- No follow-up inspections after completion of repairs. (81.3% agree, to strongly agree and 18.7% disagree, to strongly disagree).
- The daily water allocation of 350 litres is not sufficient. (71.0% agree, to strongly agree and 29.0% disagree, to strongly disagree).
- Lack of site inspection prior to water meter installation. (77.0% agree, to strongly agree and 23.0% disagree, to strongly disagree).
- Job card is not signed by the owner. (65.3% agree, to strongly agree and 34.7% disagree, to strongly disagree).
- Plumbers do not tend to complaints within the specified time. (93.5% agree, to strongly agree and 6.5% disagree, to strongly disagree).
- Follow-ups are not being done on complaints. (89.7% agree, to strongly agree and 10.3% disagree, to strongly disagree).
- The complaints capturers do not capture details correctly. (90.7% agree, to strongly agree and 9.3% disagree, to strongly disagree).
- Call centre staff does not answer complaint calls on time. (88.2% agree, to strongly agree and 11.8% disagree, to strongly disagree).
- Meter readers record estimations, instead of physical readings. (81.1% agree, to strongly agree and 18.9% disagree, to strongly disagree).
- The service is unacceptable. (79.7% agree, to strongly agree and 20.3% disagree, to strongly disagree).
- No cleaning is done after repairs. (73.4% agree, to strongly agree and 26.6% disagree, to strongly disagree).
- Work instructions are not being followed. (73.6% agree, to strongly agree and 26.4% disagree, to strongly disagree).
- Inadequate reporting processes in place to address complaints. (83.6% agree, to strongly agree and 16.4% disagree, to strongly disagree).

5.3.4.2 Comparisons with regard to whether the two independent groups differed in respect of their perceptions

A comparison is made between the three groups of respondents (who owned a house, a Wendy house, or a shack) to see whether there is a difference in their

perceptions with respect to the statements that were made. The three groups are compared in respect of each statement by using Chi-square. In this case the undecided group was also left out of the comparison as it was a small number of respondents who were undecided.

All the statistically significant results will be discussed in this paragraph, but all the results significant or not significant can be found in Annexure E.

Firstly, there were no statistically significant differences between the respondents whose type of dwelling is a house or a Wendy house or a shack.

Frequency /	Disagree	Agree-	TOTAL
Row percentage	-Strongly	Strongly	
	Disagree	agree	
Male	19	16	35
	54.7%	45.7%	47.3%
Female	10	29	39
	25.6%	74.4%	52.7%
TOTAL	29	45	74
	39.2%	60.8%	

TABLE 5. 6:Contingency table for Gender vs A4

TABLE 5. 7:Chi-Square test for Gender vs A4

Qu	estion / Statement	Sample Size	Chi-Square	DF	P-Value
4.	The water meters are always faulty.	74	6.3510	1	0.0117*

FIGURE 5. 7: The water meters are always faulty

Statistically significant more females than males agree, to strongly agree to the statement 'The water meters are always faulty''.

Frequency /	Disagree	Agree-	TOTAL
Row percentage	-Strongly	Strongly	
	Disagree	agree	
Male	15	14	29
	51.7%	48.3%	42.6%
Female	11	28	39
	28.2%	71.8%	52.74
TOTAL	26	42	68
	38.2%	61.8%	

 TABLE 5. 8:
 Contingency table for Gender vs B7

TABLE 5. 9:	Chi-Square test for Gender vs B7
--------------------	----------------------------------

Qu	estion / Statement	Sample Size	Chi-Square	DF	P-Value
7.	Site awareness facilitators give wrong	68	3.8975	1	0.0484*
	information.				

FIGURE 5. 8: Site awareness facilitators give wrong information

There were statistically significantly more females than males that agree, to strongly agree with the statement 'Site awareness facilitators give wrong information.

Frequency /	Disagree	Agree-	TOTAL
Row percentage	-Strongly	Strongly	
	Disagree	agree	
Male	18 17		35
	51.4%	48.6%	50.0%
Female	9	26	35
	25.7%	74.3%	50.0%
TOTAL	27	43	70
	38.6%	61.4%	

 TABLE 5. 10:
 Contingency table for Gender vs B8

Question / Statement	Sample Size	Chi-Square	DF	P-Value
8. No education on water wastage is provided.	70	4.8837	1	0.0271*

FIGURE 5. 9: No education on water wastage is provided

There were statistically significantly more females than males that agree, to strongly agree with respect to the statement 'No education on water wastage is provided'.

The 'Number of people who reside in the home' was grouped in, as near as possible, equal groups of '1 to 6 people' and 'More than 6 people'. These two groups are then compared with respect to their responses for each statement. The following statistically significant results were obtained.

Frequency /	Disagree	Agree-	TOTAL
Row percentage	-Strongly	Strongly	
	Disagree	agree	
1-6 people	16	23	39
	41.0%	59.0%	51.3%
>6 people	6	31	37
	16.2%	83.8%	48.7%
TOTAL	22	54	76
	29.0%	71.0%	

 TABLE 5. 12:
 Contingency table for Number of people residing vs B12

 TABLE 5. 13:
 Chi-Square test for Number of people residing vs B12

Ques	tion / Statement	Sample Size	Chi-Square	DF	P-Value
12.	The daily water allocation of 350 litres is	76	5.6819	1	0.0171*
	not sufficient				

FIGURE 5. 10: The daily water allocation of 350 litres is not sufficient

Statistically significantly more respondents from the group 'More than 6 people' agree, to strongly agree that the daily water allocation of 350 liters is not sufficient.

Frequency /	Disagree	Agree-	TOTAL	
Row percentage	-Strongly	Strongly		
	Disagree	agree		
1-6 people	1	40	41	
	2.44%	97.6%	52.6%	
>6 people	7	30	37	
	18.9%	81.1%	47.4%	
TOTAL	8	70	78	
	10.3%	89.7%		

 TABLE 5. 14:
 Contingency table for Number of people residing vs C18

 TABLE 5. 15:
 Chi-Square test for Number of people residing vs C18

Question / Statement	Sample Size	Chi-Square	DF	P-Value
18. Follow-up are not being done on	78	5.7385	1	0.0166*
complaints.				

FIGURE 5. 11: Follow-ups are not being done on complaints

Statistically significantly more respondents from the '1-6 people residing' group agree, to strongly agree.

The 'Number of people who stay at home during the day' was grouped in, as near as possible, equal groups of '0-2 people' and 'More than 2 people'. These two groups are then compared with respect to their responses for each statement. The following statistically significant results were obtained.

Frequency /	Disagree	Agree-	TOTAL	
Row percentage	-Strongly	Strongly		
	Disagree	agree		
0-2 people	5	22	27	
	18.5%	81.5%	43.6%	
> 2 people	16	19	35	
	45.7%	54.3%	56.4%	
TOTAL	21	41	62	
	33.9%	66.1%		

 TABLE 5. 16:
 Contingency table for Number of people at home vs B8

TABLE 5. 17:	Chi-Square test for Number of people at home vs B8
---------------------	--

Que	estion / Statement	Sample Size	Chi-Square	DF	P-Value
8.	No education on water wastage is provided.	62	5.0330	1	0.0249*

FIGURE 5. 12: No education on water wastage is provided

Statistically significantly more respondents from the '0-2 people staying at home' agree, to strongly agree that no education on wastage is provided.

Frequency /	Disagree	Agree-	TOTAL
Row percentage	-Strongly	Strongly	
	Disagree	agree	
0-2 people	17	12	29
	58.6%	41.4%	42.0%
> 2 people	12	28	40
	30.0%	70.0%	58.0%
TOTAL	29	40	69
	42.0%	58.0%	

 TABLE 5. 18:
 Contingency table for Number of people at home vs C14

 TABLE 5. 19:
 Chi-Square test for Number of people at home vs C14

Ques	stion / Statement	Sample Size	Chi-Square	DF	P-Value
14.	Plumbers go to the wrong households when	69	5.6521	1	0.0174*
	attending complaints.				

FIGURE 5. 13: Plumbers go to wrong households when attending complaints

Statistically significantly more respondents from the '>2 people staying at home' agree to strongly agree that plumbers go to wrong households when attending complaints.

Frequency /	Disagree	Agree-	TOTAL
Row percentage	-Strongly	Strongly	
	Disagree	agree	
0-2 people	19	8	27
	70.4%	29.6%	42.9%
> 2 people	8	28	36
	22.2%	77.8%	57.1%
TOTAL	27	36	63
	42.9%	57.1%	

 TABLE 5. 20:
 Contingency table for Number people at home vs D19

 TABLE 5. 21:
 Chi-Square test for Number of people at home vs D19

Ques	stion / Statement	Sample Size	Chi-Square	DF	P-Value
19.	Water demand management does not	63	14.6049	1	0.0001***
	comply with the consumer service charter.				

FIGURE 5. 14: Water demand management does not comply

Statistically significantly more respondents from the '>2 people staying at home' agree to strongly agree that the water demand management does not comply with the consumer service charter.

The 'Number of years living in your household' variable was grouped in, as near as possible, equal groups of '1-6 years' and '>6 years'. These two groups are then compared with respect to their responses for each statement. The following statistically significant results were obtained.

Frequency /	Disagree	Agree-	TOTAL
Row percentage	-Strongly	Strongly	
	Disagree	agree	
1-6 years	5	32	37
	13.5%	86.5%	51.4%
> 6 years	14	21	35
	40.0%	60.0%	49.6%
TOTAL	19	53	72
	26.4%	73.6%	

 TABLE 5. 22:
 Contingency table for Number of years residing at home vs D24

 TABLE 5. 23:
 Chi-Square test for Number of years residing at home vs D24

Question / Statement	Sample Size	Chi-Square	DF	P-Value
24. Work instructions are not being followed.	2	6.4956	1	0.0108*

FIGURE 5. 15: Work instructions are not being followed

Statistically significantly more respondents from the '1-6 years' agree, to strongly agree that the work instructions are not being followed.

5.4 DISCUSSIONS AND CONCLUSIONS

From the results obtained through this survey the following analogies can be drawn:

- > The plumbing material being used is of poor quality;
- Broken cisterns are not replaced and attended to by a plumber;
- Plumbers do not fix water leaks;
- ➢ No follow-up inspections after completion of repairs;
- > The daily water allocation of 350 litres is not sufficient;
- > There is a lack of site inspection prior to water meter installation;
- Job cards are not signed by the owners;
- Plumbers do not attend to complaints within the specified time;
- Follow-ups are not being done on complaints;
- > The complaints capturers do not capture details correctly;
- Call centre staff does not answer complaint calls on time;
- > The meter readers record estimations, instead of physical readings;
- The service is not acceptable;
- No cleaning is done after repairs;
- > The work instructions are not being followed; and

> There are inadequate reporting processes in place to address complaints.

When determining which groups contributed the most to these outcomes, females agreed more to the following statements than the males:

- ➤ The water meters are always faulty.
- > Site awareness facilitators give wrong information.
- > No education on water wastage is provided.

When determining which groups contributed the most to these outcomes, the "number of people residing = >6" agreed more with the statement "The daily allocation of 350 liters of water is not sufficient" and the "number of people residing = 1-6" agreed more with the statement "Follow-ups are not being done on complaints".

The group of respondents where more than 2 people stayed at home during the day agreed more to the statements:

- Plumbers go to the wrong households when attending complaints
- Water demand management does not comply with the consumer service charter.

The group of respondents where 2 or less people stayed at home during the day agreed more with the statement "No education on water wastage is provided".

Those that were living in a residence for 1-6 years agreed more with the statement "Work instructions are not being followed".

CHAPTER 6: CONCLUSION AND RECOMMENDATIONS

6.1 INTRODUCTION

In this chapter, the research is summarised and final conclusions drawn. The research problem is revisited to ascertain whether it has been solved as a result of the research. The key research objectives, research question and investigative questions will be re-visited to determine whether the research contained within the ambit of the dissertation produced not only feasible, but also viable, answers to the posed research questions.

The research design and methodology, as well as the data collection design and methodology will be evaluated to determine if the research was executed in terms of the stated design and methodology. The key research objectives will be restated together with key findings culminating as a result of the research. The chapter will conclude with recommendations to Water Demand Management on mechanisms and approaches to improve the impact of service delivery in low income areas.

6.2 THE RESEARCH THUS FAR

The research thus far has elaborated on the importance of measuring the impact of service delivery in low income communities for municipal departments to facilitate improvement and promote customer satisfaction. Services have been defined as, "... deeds, processes and performances." The research has investigated the current perceptions of residents regarding service delivery from Water Demand Management to low income communities. The responses were analysed and specific conclusions drawn. These will be evaluated against the current performance of Water Demand Management in achieving service delivery targets and satisfying its customers.

The extent of the research was provided in Chapter 1: Scope of the Research. In Chapter 2, a holistic overview on the research environment was provided. In Chapter 3, a literature review was conducted on the issue of service delivery and its aspects in promoting customer satisfaction with specific focus leveled at the following:

- Definition of service;
- Voice of the customer;
- Customer needs and satisfaction;
- Customer Expectations;
- ➢ SERVQUAL;
- ➢ Focus groups;
- Quality Function Deployment; and
- KANO model.

In Chapter 4, the research design and methodology was elaborated upon to culminate in the data analysis and interpretation of results in Chapter 5. In this final Chapter 6, the research will be concluded and final analogies will be drawn.

6.3 THE RESEARCH PROBLEM RE-VISITED

The research problem which has been researched within the ambit of this dissertation reads as follows: "Poor service delivery from Water Demand Management to low income areas result in dissatisfaction and discontent".

Service delivery from Water Demand Management to low income communities is unsatisfactory. The research returned that 79.7% of the residents agree, to strongly agree that the service is unacceptable and 20.3 % disagree, to strongly disagree.

6.4 THE RESEARCH QUESTION RE-VISITED

The research question which has been researched within the ambit of this dissertation reads as follows: "Which mechanisms can be employed by Water Demand Management to improve service delivery to low income areas?"

The mechanisms that can be employed by Water Demand Management to improve service delivery to low income communities are contained within the recommendations (refer to paragraph 6.7).

6.5 THE INVESTIGATIVE QUESTIONS RE-VISITED

The investigative questions to be researched in support of the research question read as follows:

- Is there a need for improvement on the current status of service delivery of Water Demand Management?
- What are the current perceptions of the residents in low income areas regarding service delivery of Water Demand Management?
- Is the daily water allocation adequate for the households in the low income areas?
- Is there a need for response times of Water Demand Management to complaints to be improved?
- To what extent are the users dissatisfied with the service delivery from Water Demand Management?

Is there a need for improvement on the current status of service delivery of Water Demand Management?

- The current status of service delivery of Water Demand Management to low income communities needs to be improved.
- Most residents strongly agree that the service of Water Demand Management is unacceptable and dissatisfactory.

Findings from the survey indicate that the respondents mostly agree with the following statements:

- Plumbing material being used is of poor quality. (70.9% agree, to strongly agree).
- Broken cisterns are not replaced and attended to by plumbers. (61.2% agree, to strongly agree).
- The water meters are always faulty. (56.2% agree, to strongly agree). Statistically significant more females than males agree, to strongly agree with this statement.
- Plumbers do not fix water leaks. (60.0% agree, to strongly agree).
- > The water flow pressure from the taps is low. (52.5% agree, to strongly agree).

- Meter readers record estimations, instead of physical readings. (75.0% agree, to strongly agree).
- ▶ No cleaning is done after repairs. (72.5% agree, to strongly agree).
- ▶ Work instructions are not being followed. (66.2% agree, to strongly agree).
- Inadequate reporting processes in place to address complaints. (66.2% agree, to strongly agree).
- Water Demand Management does not comply with the consumer service charter. (50.0% agree, to strongly agree).
- Household owners do not understand the water bill. (49.4% agree, to strongly agree).

What are the current perceptions of the residents in low income areas regarding service delivery of Water Demand Management?

- No follow-up inspections after completion of repairs. (76.27% agree, to strongly agree).
- Lack of site inspection prior to water meter installation. (72.2% agree, to strongly agree).
- ▶ No education on water wastage is provided. (53.8% agree, to strongly agree).
- ▶ Job card is not signed by the owner. (62.8% agree, to strongly agree).
- The water coming out of taps is not always fit for human consumption.(53.8% of respondents agree, to strongly agree).
- Site awareness facilitators give wrong information. (52.5% of respondents agreed to this statement).
- Site awareness facilitators are rude and not helpful. (55.0% agree, to strongly agree).

Is the daily water allocation adequate for the households in the low income areas?

- The daily water allocation of 350 liters is not sufficient. (67.5% agree, to strongly agree).
- Statistically significantly more respondents from the group 'more than 6 people' in a household agree, to strongly agree that the daily water allocation of 350 liters is not sufficient.

Is there a need for response times of Water Demand Management to complaints to be improved?

Based on the survey findings, the researcher can conclude that, there is a need for improvement in the response times to complaints in Water Demand Management.

Findings from the survey indicate that the respondents mostly agree with the following statements:

- Plumbers do not attend to complaints within the specified time. (90.0% agree, to strongly agree).
- The complaints capturers do not capture details correctly. (85.0% agree, to strongly agree).
- Call centre staff does not answer complaint calls on time. (83.8% agree, to strongly agree).
- Plumbers go to the wrong households when attending to complaints. (58.8% agree, to strongly agree).

To what extent are the users dissatisfied with the service delivery from Water Demand Management?

Based on the survey findings, the service of Water Demand Management is unacceptable. (74.7% of respondents agree, to strongly agree).

6.6 THE KEY RESEARCH OBJECTIVES RE-VISITED

The primary research objectives of this dissertation read as follows:

- > To identify the impact of service delivery on user satisfaction.
- > To continually improve the service delivery of Water Demand Management.
- > To measure the level of customer satisfaction with regard to service delivery.
- To review the current standard of service delivery and performance of Water Demand Management, and establish mechanisms for improving service delivery.

In assessing the perceptions of residents in low income communities, regarding the importance of excellent service delivery, it is imperative for the municipal departments to understand and identify the impact that service delivery has on promoting user satisfaction. Residents in the communities know what their rights are. The department is also aware of the requirements to satisfy their customers, however, the high rate of negative responses from the survey indicates that Water Demand Management do not fulfill them. This reflects the current status of service delivery of Water Demand Management to low income communities.

Management needs to establish and implement new strategies to continually improve service delivery. Failure to improve service delivery can result in serious customer dissatisfaction. Customers want to feel valued by their service provider by receiving excellent service delivery at all times. The customer service charter needs to be adhered to. All the requirements to satisfy customers are clearly stipulated in the charter. Effectiveness and efficiency of the charter should be visible. The employees responsible for the provision of service delivery should understand the charter and comply with it.

Customer surveys and frequent focus group meetings are some of the crucial mechanisms that must be established to improve service delivery. These mechanisms assist in reviewing the current standard of service delivery and performance of the organisation. They further assist in measuring the level of customer satisfaction. The department can use the responses from the surveys to improve the business and its service delivery. Surveys assist organisations in understanding their customer requirements and to know what their needs are. Suggestions can be formulated, using the information obtained from focus group meetings. This information can be transformed into new approaches and strategies for improving service delivery.

6.7 **RECOMMENDATIONS**

The following recommendations are made to mitigate the research problem and provide answers to the research question.

- Plumbing material that is used should be bought only from approved suppliers.
- > An approved supplier list should be established and controlled.

- All plumbing material need to be SABS approved. This will ensure that the material used for plumbing purposes is durable.
- ➤ Water meters should be SANAS approved.
- > Tests must be performed on the water meters.
- Leak detection devices must be given to plumbers who attend to different customer complaints in the communities. This device can be used to detect leaks that are not visible.
- Quality control programmes need to be put in place to ensure that follow-up inspections are conducted after the completion of repairs in the households.
- Water Demand Management needs to replace the 15mm diameter water supply pipes with 25mm.pipes. This will improve the water pressure.
- Top management need to review the daily water allocation of 350 liters in households which have more than 6 people. The survey findings indicated that statistically significantly more respondents from the group 'more than 6 people' agree, to strongly agree that the daily water allocation of 350 liters is not sufficient. (67.5% agree, to strongly agree).
- Training needs to be arranged for all the site facilitators that educate people in the communities about prevention of water wastage. Training records must be controlled and maintained.
- Support department i.e. Scientific Services need to conduct regular water tests. Effective sampling methods must be implemented to ensure that the water coming out of people's taps is always fit for human consumption.
- Corrective and preventive actions need to be established to promote effective follow-up and closing of customer complaints.
- To avoid plumbers going to wrong households when attending to complaints, map books must be ordered by administration personnel and given to each plumber. Each plumber must sign for the receipt of the map book.
- Skills transfer should be performed on all the data capturers to decrease errors when capturing complaints.
- All employees responsible for service delivery need to be trained on all the processes and work instructions in place.

6.8 CONCLUSION

It makes business sense to pay attention to the ultimate customer requirements and needs. It is critical for an organisation to develop an excellent customer loyalty base that is consistent at all costs. Organisations world-wide recognise the importance of meeting customer needs in order to succeed in the competitive market place. The level of understanding customer requirements between management and employees responsible for service delivery is an essential requirement. This helps in improving service delivery and performance of the organisation. Overall understanding of the importance of service delivery to customers should be clear to both management and employees.

REFERENCES

Andries, B. 1999. *Customer satisfaction develops healthy relationships*.Minnesota: West Publishing.

Barnet, K. & Smith. D. 1992. *The House of Quality and its application*. Boston; Harvard Business School Press.

Bonaveja, T. C. & Philander, E. S. 1975. Service Delivery is key. Boston: Irwin.

Chang, C., Chen, C. & Hsu, C. 2002. A Review of Service Quality in Corporate and recreational Sport/Fitness Programs. *The Sport Journal*, 5(3):1

Checkland, P. 1989. Systems Thinking, Systems Practice. New York: Wiley.

Chuene, A. 1960. Conducting customer interviews for business improvement purposes. *Improving Service Delivery*, 29 (2): 25-37.

Collis, J. & Hussey, R. 2003. Business Research: A practical guide for undergraduate and post graduate students. Houndmills: Macmillan Palgrave.

Cooper, D. R. & Schindler, P. S. 2001/2003. *Business Research Methods*. Seventh/Eight Edition. New York. McGraw-Hill.

Crow, L. 2002. Understanding customer needs and expectations. London: Wiley.

De Vos, A. S. (2002). Scientific theory and professional research. in de Vos, A.S. Strydom, H. Fouché, C.S.L. & Delport, C.S.L. (eds) Research at grass roots: for the social sciences and human service professions. 2nd edition. Pretoria: Van Schaik.

Dladla, T. 2005. *Selection of focus groups within an organisation*. Boston: McGraw-Hill.

Easterby-Smith, M., Thorpe, R. & Lowe, A. 1996. *Management Research: An Introduction*. London: Sage Publications.

Emory, C. W. & Cooper, D. R. 1995. *Business Research Methods*. Fifth Edition. Irwin: Homewood.

Fitzsimmons, J. A. & Fitzsimmons, M. J. 2001. Service Management: Operations, Strategy and Information Technology. New York: Irwin/McGraw-Hill Inc.

Gaucher, E. & Walker, J. 1991. *Quality Function Deployment and KANO Model Approach in Ambulatory Care Service*. Boston: Harvard Business School Press.

Gay, L. R. & Diebl, P. L. 1992. *Research methods for business and management*. New York: MacMillan Publishing Company.

Ghauri, P., Grønhaug, K. & Kristianslund, I. 1995. *Research methods in business studies*. New York: Prentice Hall.

Gronroos, C. 1990. *Service Management and Marketing*. Lexington Books. Lexington: Mass.

Hatcher, L. A. 1994. Step-by-Step Approach to using SAS for Factor Analysis and Structural Equation Modeling. Cary, NC: SAS Institute Inc.

Hayes, B. E. 1991. *Measuring Customer Satisfaction: Development and use of Questionnaires*. Wisconsin: ASQC Quality Press.

Hussey, J. & Hussey, R. 1997. Business Research: A practical guide for undergraduate and post graduate students. Houndmills: Macmillan Press.

Jain, S. K. & Gupta, G. 2004. Measuring Service Quality: SERVQUAL vs. SERVPERF Scales. *Vikalpa*, 29(2): 25-37.

Joubert, S. 1993. *Challenging customer requirements is fundamental*. Boston: Irwin.

Kano, N. 1984. Attractive Quality and Must-Be Quality. *Hinshitsu*, 14(2): 39-48, February 24.

Kerlinger, F. N. 1986. *Foundations of behavioural research*. New York: CBS College Publishing.

Khan, V. 1990. *Customer Focused Product Development by Conjoint Analysis* and QFD. Tokyo: JUSE Press.

Kotler, P. 1994. *Marketing Management: Analysis, Planning, Implementation, and Control.* New Jersey: Prentice-Hall International Inc.

Kruger, M. 1993. *Common mechanisms for capturing the voice of the customer*. London: Wiley.

Kumar, V., Aaker, D. A. & Day, G. S. 1999. *Essentials of marketing research*. New York: N. Y. Wiley.

Llosa, S., Chandon, J. & Orsingher, C. 1998. An Empirical Study of SERVQUAL's Dimensionality. *The Service Industries Journal*, 18(2): 16-44.

Local Government Programmes. 2004. [**Online**].Available from: <u>http://www.info.gov.za/aboutgovt/structure/locgovt/programmes.htm</u> [Accessed 03/03/2011]

Lopez, N. 1983. Process-enterprises and measuring of key business improvements. *Performance Management*, 9 (2):61-64.

Mati, Z. & Luyt, L. 2000. *Reviewing the service delivery of Local Municipalities in South Africa*.

Mazur, G. 1991. Quality Function Deployment Process. *Quality Management Forum*, 7 (3).

Mazur, G. 1992. Introduction to Task Deployment. Boston: Irwin.

Meulenberg-Buskens, I. 1997. Turtles all the way down? – On a quest for quality in qualitative research. *South African Journal of Psychology*, 27(2), June.

Meyer, C. 2000. *Customers Perspective regarding products and services*. London: Wiley.

Mizuno, S. & Chalmers, P. 1992. *Basics of Service Quality Function Deployment*. Japan: Business Consultants.

Mizuno, S. & Akao, Y. 1993. *Management for Quality Improvement*. Cambridge: Productivity Press.

Moll, D. 2005. Utilising customer feedback for improving customer satisfaction. *Actions on Customer Feedback*, 14(2):81-94.

Mouton, J. 2001. *How to succeed in your master's & doctorate studies*. Pretoria: Van Schaik Publishers.

Mulder, C. 1996. *Comprehensive Quality function Deployment*. Japan: Business Institute.

Munyai, P. D. 1997. *The impact of unemployment to South African residents*. A dissertation submitted in partial fulfilment of the requirements for the degree of Magister Technologiae in the faculty of Business at the University of Port Elizabeth.

Nkomo, F. 2000. Improving organisational attitude through focus groups. *Organisational Behaviour*, 15(3): 20-21.

Nunnally, J. C. (1978). Psychometric theory. (2nd ed.). New York: McGraw-Hill.

Olain, J. 2001. Customer engagement promotes success. *Service Delivery*, 11 (4):17-20.

Oskowitz, B. & Meulenberg-Buskens, I. 1997. Preparing researchers for qualitative investigation of a particularly sensitive nature: Reflections from the field. *South African Journal of Psychology*. 27(2), June.

Parasuraman, A., Zeithaml, V. A. & Berry, L. L. 1988. SERVQUAL: A multiitem scale for measuring consumer perceptions of service quality. *Journal of Retailing*, 64(1): 12-40.

Parasuraman, A. 1991. *Market Research*. 2nd Edition, Eddision-Wesley.

Pearson, D. 2000. Service Delivery Strategies and Approach. Boston: Irwin.

Perreault, Jr., W. D. & McCarthy, E. J. 1999. *Basic Marketing: A Global-Managerial Approach*. New York: Irwin.

Phillips, B. J. 2000. *Facilitating and Training in Quality Function Deployment*. Toronto: Bantam Publishers.

Priebe, E. 2004. *Listening to the voice of the customer*. Toronto: Bantam Publishers

Quinn, P. Baruch, D. & Paquette, S. 1987 Importance of service delivery in organizations. Minnesota: West Publishing.

Remenyi, D. Williams, B. Money, A. & Twite. 1995. *Effective Measurement & Management of IT Costs & Benefits*. Oxford: Butterwork – Heinemann.

Republic of South Africa. 1996. *Constitution of South Africa. Act No.108 of 1996.* Pretoria: Government Printer. Rheeder, A. 1990. Implementing customer programmes for measuring the impact of service delivery in organisations. *Service Excellence*, 11 (1):11-14.

Rogers, P., Peenz, K. & Moller, S. 1978. Service delivery in Local Municipalities.

Sanger, T. 1971. Voice of the customer programmes for effective service delivery in an organisation. *Managing Perceptions*, 10 (7): 80-88.

Seko, H. 2004. Direct involvement with customers for better understanding of their needs. *Customer needs*, 13 (2):11-24.

Smith, J. 2003. Effective implementation of focus groups within industries. *Focus Group Sessions*, 14 (1):78-80.

Spears, F. 1996. *Quality Assurance in service industries using QFD*. Cambridge: Productivity Press.

Sproul, K. 2001. The Voice of the customer is key. New York: McGraw-Hill.

Tovey, G. 1973. *Identifying customer needs in the competitive market*. Boston: Irwin.

Vogt, W. P. 1993. Dictionary of statistics and methodology. Newbury Park: Sage.

Watkins, J. A. 2008. Theses/dissertation/research reports: A practical guide for students to the preparation of written presentations of academic research. Cape Town: Cape Peninsula University of Technology.

William, M. & Gibson, P. 1991. *Customer Integration: The Quality Function Deployment (QFD) Leader's Guide for Decision Making*. New York: Wiley.

Wisniewski, M. 2001. Using SERVQUAL to assess customer satisfaction with public sector services. *Managing Service Quality*, 11 (6): 380-388.

Yevu, C. 1972. *Needs of the customers can improve businesses*. Boston: Harvard Business School Press.

Yin, R. K. 2003. *Case Study Research: Design and Methods.* 3rd ed. Thousand: Sage.

Yong, A. 2000. Features of services.

Zeithaml, V. A. & Bitner, M. J. 2003. Services Marketing: Integrating Customer Focus across the firm. New York: Irwin.

Zultner, R.E. 1992. *Quality Function Deployment for Software: Satisfying customers. America:* Selly Publishers.

ANNEXURES

Annexure A: Cronbach Alpha Coefficients for all the items in the Questionnaire

			Simple Sta	atistics			
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	Label
A1	71	3.43662	1.38081	244.00000	1.00000	5.00000	A1
A2	71	3.50704	1.47235	249.00000	1.00000	5.00000	A2
A3	71	3.22535	1.44615	229.00000	1.00000	5.00000	A3
A4	71	3.43662	1.32807	244.00000	1.00000	5.00000	A4
A5	71	3.94366	1.27489	280.00000	1.00000	5.00000	A5
B6	71	2.98592	1.33623	212.00000	1.00000	5.00000	B6
B7	71	3.18310	1.44726	226.00000	1.00000	5.00000	B7
B8	71	3.33803	1.40350	237.00000	1.00000	5.00000	B8
B9	71	3.40845	1.27142	242.00000	1.00000	5.00000	B9
B10	71	3.70423	1.17588	263.00000	1.00000	5.00000	B10
B11	71	3.94366	1.10696	280.00000	1.00000	5.00000	B11
B12	71	3.70423	1.50612	263.00000	1.00000	5.00000	B12
B13	71	3.21127	1.39300	228.00000	1.00000	5.00000	B13
C14	71	3.47887	1.39242	247.00000	1.00000	5.00000	C14
C15	71	4.22535	1.11095	300.00000	1.00000	5.00000	C15
C16	71	4.47887	0.82565	318.00000	2.00000	5.00000	C16
C17	71	4.43662	0.89014	315.00000	1.00000	5.00000	C17
C18	71	4.42254	0.93598	314.00000	2.00000	5.00000	C18
D19	71	3.23944	1.17674	230.00000	1.00000	5.00000	D19
D20	71	3.00000	1.32017	213.00000	1.00000	5.00000	D20
D21n	71	3.88732	1.34748	276.00000	1.00000	5.00000	
D22	71	3.69014	1.02248	262.00000	1.00000	5.00000	D22
D23	71	3.92958	1.09966	279.00000	1.00000	5.00000	D23
D24	71	3.69014	1.19034	262.00000	1.00000	5.00000	D24
D25	71	3.85915	1.25693	274.00000	1.00000	5.00000	D25

Cronbach Coefficient Alpha with Deleted Variable							
	Raw Vari	ables	Standardized V	Variables			
Deleted	Correlation		Correlation				
Variable	with Total	Alpha	with Total	Alpha	Label		
fffffffff	fffffffffffffffffff	fffffffffffffffff	fffffffffffffffffffff	ffffffffffffffff	ffffff		
A1	0.308266	0.490665	0.291476	0.521708	A1		
A2	0.182440	0.511808	0.177776	0.537891	A2		
A3	0.131080	0.520695	0.141647	0.542929	A3		
A4	0.126527	0.520921	0.103627	0.548177	A4		
A5	0.005936	0.538570	0.010707	0.560773	A5		
B6	0.181700	0.512178	0.183245	0.537124	B6		
B7	0.322269	0.486933	0.294397	0.521285	B7		
B8	0.154941	0.516518	0.120554	0.545847	B8		
B9	103405	0.554108	122418	0.578264	B9		
B10	0.221166	0.507251	0.243006	0.528668	B10		
B11	0.074321	0.527224	0.083029	0.550997	B11		
B12	0.172569	0.513578	0.173732	0.538457	B12		
B13	0.147989	0.517655	0.113316	0.546844	B13		
C14	0.274779	0.496248	0.291702	0.521675	C14		
C15	0.314276	0.495330	0.362085	0.511403	C15		
C16	0.292824	0.504577	0.310670	0.518926	C16		
C17	0.434986	0.487492	0.462746	0.496370	C17		
C18	0.182949	0.514368	0.200368	0.534715	C18		
D19	0.096775	0.524638	0.099085	0.548800	D19		
D20	109409	0.556392	136438	0.580069	D20		
D21n	0.076140	0.528951	0.099994	0.548675			
D22	0.235437	0.507223	0.241108	0.528939	D22		
D23	037573	0.541281	0.003251	0.561770	D23		
D24	0.260337	0.501442	0.292747	0.521524	D24		
D25	019091	0.541843	0.002078	0.561927	D25		

		Simple Sta	atistics			
N	Mean	Std Dev	Sum	Minimum	Maximum	Label
77	3.51948	1.48333	271.00000	1.00000	5.00000	A2
77	3.28571	1.41288	253.00000	1.00000	5.00000	A3
77	3.09091	1.33950	238.00000	1.00000	5.00000	B6
77	3.28571	1.44966	253.00000	1.00000	5.00000	B7
77	3.44156	1.40949	265.00000	1.00000	5.00000	B8
77	4.27273	1.08381	329.00000	1.00000	5.00000	C15
77	4.50649	0.80497	347.00000	2.00000	5.00000	C16
77	4.36364	1.02481	336.00000	1.00000	5.00000	C17
	N 77 77 77 77 77 77 77 77	N Mean 77 3.51948 77 3.28571 77 3.09091 77 3.28571 77 3.44156 77 4.27273 77 4.50649 77 4.36364	Simple St. N Mean Std Dev 77 3.51948 1.48333 77 3.28571 1.41288 77 3.09091 1.33950 77 3.28571 1.44966 77 3.28571 1.44966 77 3.44156 1.40949 77 4.27273 1.08381 77 4.50649 0.80497 77 4.36364 1.02281	Simple Statistics N Mean Std Dev Sum 77 3.51948 1.48333 271.00000 77 3.28571 1.41288 253.00000 77 3.28571 1.33950 238.00000 77 3.28571 1.44966 253.00000 77 3.24156 1.40949 265.00000 77 4.27273 1.08381 329.00000 77 4.36649 0.80497 347.00000 77 4.36364 1.02481 336.00000	Simple Statistics N Mean Std Dev Sum Minimum 77 3.51948 1.48333 271.00000 1.00000 77 3.28571 1.41288 253.00000 1.00000 77 3.28571 1.41288 253.00000 1.00000 77 3.28571 1.44966 253.00000 1.00000 77 3.28571 1.44966 253.00000 1.00000 77 3.44156 1.40949 265.00000 1.00000 77 4.27273 1.08381 329.00000 1.00000 77 4.50649 0.80497 347.00000 2.00000 77 4.36364 1.02481 336.00000 1.00000	Simple Statistics N Mean Std Dev Sum Minimum Maximum 77 3.51948 1.48333 271.00000 1.00000 5.00000 77 3.28571 1.41288 253.00000 1.00000 5.00000 77 3.28571 1.41288 253.00000 1.00000 5.00000 77 3.28571 1.44966 253.00000 1.00000 5.00000 77 3.28571 1.44966 253.00000 1.00000 5.00000 77 3.44156 1.40949 265.00000 1.00000 5.00000 77 4.27273 1.08381 329.00000 1.00000 5.00000 77 4.50649 0.80497 347.00000 2.00000 5.00000 77 4.36364 1.02481 336.00000 1.00000 5.00000

cronbuch cocrif	cicile Aiplia
Variables	Alpha
fffffffffffffffff	ffffffffffff
Raw	0.670054
Standardized	0.681661

	Cronbach Co	efficient Alpha w	ith Deleted Vari	able	
	Raw Var	iables	Standardized	Variables	
Deleted	Correlation		Correlation		
Variable	with Total	Alpha	with Total	Alpha	Label
ffffffffff	ffffffffffffffffff	ffffffffffffffffffff	ffffffffffffffffff	ſſſſſſſſſſſ	ffffff
A2	0.280122	0.661494	0.279530	0.671019	A2
A3	0.273695	0.661343	0.272811	0.672372	A3
B6	0.444761	0.619892	0.422491	0.641336	B6
B7	0.401237	0.630218	0.375679	0.651248	B7
B8	0.410326	0.627884	0.365792	0.653318	B8
C15	0.464049	0.621531	0.524585	0.619054	C15
C16	0.358714	0.646954	0.389101	0.648426	C16
C17	0.274892	0.656979	0.311592	0.664514	C17
D22	0.260145	0.659585	0.265690	0.673801	D22

Annexure B: Descriptive statistics: Frequency tables

Type_		Cu	mulative	Cumulative
dwelling Fre	quency	Percent F	requency	Percent
ffffffffffffffffff	fffffff	fffffffffffffffff	fffffffff	ffffffffff
House	30	37.50	30	37.50
Shack	25	31.25	55	68.75
Wendy-house	25	31.25	80	100.00
		Chi Cawana Taat		
	for	Equal Proportion	c	
	101		s f	
	Chi	-Sauare 0 625	9	
	DF	54441 C 01025	2	
	Pr	> ChiSa 0.731	6	
	S	ample Size = 80		
		•		
		Cumu	lative	Cumulative
Gender Frequ	iency	Percent Fre	quency	Percent
ffffffffffffff	fffffff	ffffffffffffffffff	ffffffffffffffffffffffffffffffffffff	fffffffff
Male	39	48.75	39	48.75
Female	41	51.25	80	100.00
		Chi-Squane Test		
	for	Equal Proportion	c	
	101		5 £	
	Chi	-Sauare 0 050	<u>ј</u>	
	DF	-540016 0.050	1	
	Pr	> ChiSa 0.823	1	
	S	ample Size = 80	-	
		•		
			Cumulative	e Cumulative
Number_residing F	requenc	y Percent	Frequency	/ Percent
ffffffffffffffffffff	fffffff	fffffffffffffffff	fffffffff	ŧffffffffffff
1	4	5.00	4	5.00
2	8	10.00	12	15.00
3	5	6.25	17	21.25
4	9	11.25	26	32.50
5	4	12 75	50 /11	57.50
7	5	6 25	46	57 50
8	6	7 50	52	65 00
9	7	8.75	59	73.75
10	4	5.00	63	78.75
11	4	5.00	67	83.75
12	2	2.50	69	86.25
13	4	5.00	73	91.25
14	3	3.75	76	95.00
16	2	2.50	78	97.50
1/	2	2.50	80	100.00
		Chi-Squane Test		
	for	Faual Proportion	c	
	fff	fffffffffffffffffffff	f	
	Chi	-Square 20.400	0	
	DF	1	5	
	Pr	> ChiSq 0.157	1	
	S	ample Size = 80		
		Cu	mulative	Cumulative
Number_home Fre	quency	Percent F	requency	Percent
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1111111		ttttttttt	
0	10	12.50	10	12.50
⊥ ว	10 12	20.00	20	J2.JU 18 75
2	д СТ	11 25	<u>4</u> 8	60 00
4	10	12 50	58	72.50
5	1.61		50	/
	3	3.75	61	76.25
6	10 3 7	3.75	61 68	76.25 85.00
6 7	10 3 7 3	3.75 8.75 3.75	61 68 71	76.25 85.00 88.75

9	1	1.25	74	92.50
10	2	2.50	76	95.00
11	1	1.25	77	96.25
12	1	1.25	78	97.50
13	2	2.50	80	100.00

Chi-Square Test for Equal Proportions fffffffffffffffffffff Chi-Square 57.9000 DF 13 Pr > ChiSq <.0001 Sample Size = 80

			Cumulative	Cumulative
Years_in_house	Frequency	Percent	Frequency	Percent
ffffffffffffffffff	ffffffffffff	, fffffffffffffff	ffffffffffffff	ffffffffffff
2	6	7.50	6	7.50
3	7	8.75	13	16.25
4	15	18.75	28	35.00
5	5	6.25	33	41.25
6	9	11.25	42	52.50
7	8	10.00	50	62.50
8	4	5.00	54	67.50
9	5	6.25	59	73.75
10	3	3.75	62	77.50
11	1	1.25	63	78.75
12	5	6.25	68	85.00
13	2	2.50	70	87.50
14	3	3.75	73	91.25
15	2	2.50	75	93.75
16	4	5.00	79	98.75
17	1	1.25	80	100.00

			Cumulative	Cumulative
A1	Frequency	Percent	Frequency	Percent
<i><i><i><i>fffffffffffffffffffff</i></i></i></i>	fffffffffffffff	+++++++++++++++++++++++++++++++++++++++	ffffffffffffffffffffffffffffffffffff	ffffffffffff
Strongly Disagree	9	11.25	9	11.25
Disagree	21	26.25	30	37.50
Undecided	2	2.50	32	40.00
Agree	27	33.75	59	73.75
Strongly Agree	21	26.25	80	100.00
	Chi-S	quare Test		
	for Equa	l Proportio	ns	
	fffffff	fffffffffff	ff	
	Chi-Squa	re 26.00	00	
	DF		4	
	Pr ≻ Chi	.Sg <.00	01	
	Sample	Size = 80		
			Cumulative	Cumulative
A2	Frequency	Percent	Frequency	Percent
fffffffffffffffffffffff	fffffffffffff	ffffffffff	fffffffffffffff	fffffffffff
Strongly Disagree	10	12.50	10	12.50
Disagree	18	22.50	28	35.00
Undecided	3	3.75	31	38.75
Agree	20	25.00	51	63.75
Strongly Agree	29	36.25	80	100.00
	Chi-S	auana Tast		

Chi-Square Test for Equal Proportions ffffffffffffffffffffffffff Chi-Square 24.6250 DF 4 Pr > ChiSq <.0001 Sample Size = 80

			Cumulative	Cumulative		
A3	Frequency	Percent	Frequency	Percent		
ffffffffffffffffffff	, fffffffffffffff	<i>fffffffffff</i>	fffffffffffffff	fffffffffff		
Strongly Disagree	9	11.25	9	11.25		
Disagree	23	28.75	32	40.00		
Undecided	6	7.50	38	47.50		
Agree	20	25.00	58	72.50		
Strongly Agree	22	27.50	80	100.00		
	Chi-Square Test					
	for Equa	1 Proportion	ns			

fffffffffffffffffffffff Chi-Square 15.6250 DF 4 Pr > ChiSq 0.0036 Sample Size = 80

			Cumulative	Cumulative
A4	Frequency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffff	fffffffffffffff	ffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffffffff
Strongly Disagree	5	6.25	5	6.25
Disagree	24	30.00	29	36.25
Undecided	6	7.50	35	43.75
Agree	25	31.25	60	75.00
Strongly Agree	20	25.00	80	100.00

Chi-Square Test for Equal Proportions ffffffffffffffffffffff Chi-Square 23.8750 DF 4 Pr > ChiSq <.0001 Sample Size = 80

			Cumulative	Cumulative
A5	Frequency	Percent	Frequency	Percent
<i>ffffffffffffffffffffff</i>	, ffffffffffffffff	fffffffffff	ffffffffffffff	fffffffffff
0	1	1.25	1	1.25
Strongly Disagree	3	3.75	4	5.00
Disagree	15	18.75	19	23.75
Undecided	5	6.25	24	30.00
Agree	22	27.50	46	57.50
Strongly Agree	34	42.50	80	100.00

Chi-Square Test for Equal Proportions DF 5 Pr ≻ ChiSq <.0001 Sample Size = 80

			Cumulative	Cumulative
B6	Frequency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffff	fffffffffffff	ffffffffffff	ffffffffffffffff	fffffffffff
Strongly Disagree	12	15.00	12	15.00
Disagree	21	26.25	33	41.25
Undecided	3	3.75	36	45.00
Agree	35	43.75	71	88.75
Strongly Agree	9	11.25	80	100.00

Chi-Square Test for Equal Proportions fffffffffffffffffffff Chi-Square 38.7500 DF 4 Pr > ChiSq <.0001 Sample Size = 80

			Cumulative	Cumulative
B7	Frequency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffff	, fffffffffffffffff	fffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffffffff
Strongly Disagree	13	16.25	13	16.25
Disagree	13	16.25	26	32.50
Undecided	12	15.00	38	47.50
Agree	21	26.25	59	73.75
Strongly Agree	21	26.25	80	100.00

			Cumulative	Cumulative
B8	Frequency	Percent	Frequency	Percent
fffffffffffffffffffff	fffffffffffffff	fffffffffff	ffffffffffffffff	ffffffffff
Strongly Disagree	9	11.25	9	11.25
Disagree	18	22.50	27	33.75
Undecided	10	12.50	37	46.25
Agree	17	21.25	54	67.50
Strongly Agree	26	32.50	80	100.00

			Cumulative	Cumulative
B9	Frequency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffff	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffffffff	fffffffffffffff	fffffffffff
0	2	2.50	2	2.50
Strongly Disagree	7	8.75	9	11.25
Disagree	19	23.75	28	35.00
Undecided	3	3.75	31	38.75
Agree	32	40.00	63	78.75
Strongly Agree	17	21.25	80	100.00

			Cumulative	Cumulative	
B10	Frequency	Percent	Frequency	Percent	
fffffffffffffffffff	, ffffffffffffffffff	fffffffffff	fffffffffffffffff	ffffffffff	
0	1	1.25	1	1.25	
Strongly Disagree	6	7.50	7	8.75	
Disagree	11	13.75	18	22.50	
Undecided	5	6.25	23	28.75	
Agree	39	48.75	62	77.50	
Strongly Agree	18	22.50	80	100.00	
Chi-Square Test					

for Equal Proportions fffffffffffffffffffffff Chi-Square 72.1000 DF 5 Pr > ChiSq <.0001 Sample Size = 80

			Cumulative	Cumulative
B11	Frequency	Percent	Frequency	Percent

<i>ffffffffffffffffffffffffffffff</i>	fffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , ,	ffffffffffff
Strongly Disagree	1	1.25	1	1.25
Disagree Undecided	13	16.25	14	17.50
Agree	33	41.25	52	65.00
Strongly Agree	28	35.00	80	100.00
	Chi-	Square Test		
	fffffff			
	Chi-Squ	are 49.2500		
	DF	4		
	Pr > Ch	iSq <.0001		
	Sampl	e Size = 80		
		Ci	umulative	Cumulative
B12 Fre	quency	Percent F	requency	Percent
ffffffffffffffffffffffff	fffffff	fffffffffffffffff	ffffffffff	fffffffffff
Strongly Disagree	10	12.50	10	12.50
Disagree	12	15.00	22	27.50
	4 20	25.00	26	52.50
Strongly Agree	34	42.50	80	100.00
	-			
	Chi-	Square Test		
	for Equ	al Proportions		
	fffffff	111111111111111		
	DF	4		
	Pr > Ch	iSq <.0001		
	Sampl	e Size = 80		
		C.		Cumulatius
B13 Fre	auency	Percent F	Imulative Frequency	Percent
ffffffffffffffffffffffff	ffffffff	fffffffffffffff	ffffffffff	ffffffffff
Strongly Disagree	7	8.75	7	8.75
Disagree	25	31.25	32	40.00
Undecided	5	6.25	37	46.25
Agree	23	28.75	60 80	100 00
Strongly Agree	20	25.00	00	100.00
	Chi-	Square Test		
	for Equ	al Proportions		
		$\frac{1}{2}$		
	DF	are 21.7500 4		
	Pr > Ch	iSq 0.0002		
	Sampl	e Size = 80		
		Cu	umulative	Cumulative
C14 Fre	quency	Percent F	requency	Percent
	ffffffff	ffffffffffffffff	ffffffffffff	ffffffffff
Strongly Disagree	25	8./5	22	8.75
Undecided	1	1.25	33	40.00
Agree	25	31.25	58	72.50
Strongly Agree	22	27.50	80	100.00
	ch ł	C		
	for Fau	Square lest		
	fffffff			
	Chi-Squ	are 31.5000		
	DF	4		
	Pr > Ch	iSq <.0001		
	Sampl	e 512e = 80		
		Cu	umulative	Cumulative
C15 Fre	quency	Percent F	requency	Percent
ffffffffffffffffffffffffffff	ffffffff	fffffffffffffffff	ffffffffff	ffffffffff
Strongly Disagree	2 7	2.50	2	2.50
Undecided	4	5.00	13	16.25

Agree Strongly Agree	20 47	25.00 58.75	33 80	41.25 100 00
Strongly Agree	47	50.75	00	100.00
	Chi-9	Square Test	5	
	fffffff	fffffffffffffff	s f	
	Chi-Squa	are 87.3750	9	
	DF Pr > Chi	ر iSa <.000	4 1	
	Sample	e Size = 80	-	
			Cumulative	Cumulative
C16 Fre	equency	Percent	Frequency	Percent
ffffffffffffffffffffffff	fffffffff 1	ffffffffffff 1 25	ffffffffffffff 1	ffffffffffff 1 25
Disagree	4	5.00	5	6.25
Undecided	3	3.75	8	10.00
Agree Strongly Agree	20	25.00	28 80	35.00 100 00
				100100
	Chi-9	Square Test	5	
	fffffff		f	
	Chi-Squa	are 115.6250	9	
	DF Pr > Chi	ر iSa <u>م</u> 000	4 1	
	Sample	e Size = 80	-	
			Cumulative	Cumulative
C17 Fre	equency	Percent	Frequency	Percent
ffffffffffffffffffffffff	fffffffff ~	ffffffffffff 2 75	fffffffffffffff >	ffffffffffff 2 75
Disagree	4	5.00	7	8.75
Undecided	5	6.25	12	15.00
Agree Strongly Agree	20 48	25.00	32 80	40.00 100.00
	Chi-S	Square Test	5	
	fffffff	fffffffffffffff	f	
	Chi-Squa	are 92.1250	9	
	Pr > Chi	iSa <.000	4 1	
	Sample	e Size = 80		
			Cumulative	Cumulative
C18 Fre	equency	Percent	Frequency	Percent
Disagree	8 8	10.00	8 8	10.00
Undecided	2	2.50	10	12.50
Agree Strongly Agree	19 51	23.75	29 80	36.25 100 00
Schongry Agree	51	05.75	00	100.00
	Chi-S	Square Test	_	
	fffffff		s f	
	Chi-Squa	are 71.500	9	
	DF Pr > Chi	iSa < 000°	3 1	
	Sample	e Size = 80	-	
			Cumulative	Cumulative
D19 Fre	equency	Percent	Frequency	Percent
ttifffffffffffffffffffffff	+}ffffff 7	8 75	ttfffffffffff 7	ttffffffff ≈ ק
Disagree	23	28.75	30	37.50
Undecided	10	12.50	40	50.00
Agree Stronglv Agree	33 7	41.25 8.75	73 80	91.25 100.00
		22		
	Chi-S	Square Test	c .	
	tttttt	T I ODOLITOUS	5 £	

ffffffffffffffffffffff Chi-Square 33.5000

DF 4 Pr > ChiSq <.0001 Sample Size = 80

			Cumulative	Cumulative
D20 Fre	quency	Percent	Frequency	Percent
<i>ffffffffffffffffffffffffffffff</i>	ffffffff	fffffffffff	fffffffffffff	fffffffffff
0	1	1.25	1	1.25
Strongly Disagree	12	15.00	13	16.25
Disagree	18	22.50	31	38.75
Undecided	10	12.50	41	51.25
Agree	30	37.50	71	88.75
Strongly Agree	9	11.25	80	100.00
	Chi-S	quare Test		
	for Equa	1 Proportion	าร	
	fffffff	fffffffffff	ff	
	Chi-Squa	re 36.250	90	
	DF		5	
	Pr > Chi	Sq <.000	91	
	Sample	Size = 80		
			Cumulative	Cumulative
D21 Fre	quency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffff	ffffffff	ffffffffff	ffffffffffffff	fffffffffff
0	1	1.25	1	1.25
Strongly Disagree	36	45.00	37	46.25
Disagree	23	28.75	60	75.00
Undecided	5	6.25	65	81.25
Agree	7	8.75	72	90.00
Strongly Agree	8	10.00	80	100.00
	Chi-S	quare Test		
	for Equa	1 Proportion	าร	
	fffffff	fffffffffff	ff	
	Chi-Squa	re 67.300	90	
	DF		5	
	Pr > Chi	Sq <.000	91	
	Sample	Size = 80		
			Cumulative	Cumulative
D22 Fre	quency	Percent	Frequency	Percent
<i>fffffffffffffffffffffffffffff</i>	ffffffff	<i>fffffffffff</i>	fffffffffffffffff	fffffffffff
0	3	3.75	3	3.75
Strongly Disagree	4	5.00	7	8.75
Disagree	6	7.50	13	16.25
Undecided	16	20.00	29	36.25
Agree	35	43.75	64	80.00
Strongly Agree	16	20.00	80	100.00
	/ la = (C			
	Cn1-S	quare Test		
	for Equa	quare Test 1 Proportion	1S	
	for Equa	quare Test 1 Proportion ffffffffffff	ns ff	
	for Equa ffffffff Chi-Squa	quare Test l Proportion fffffffffff re 54.850	ns Ff 90	
	for Equa ffffffff Chi-Squa DF	quare Test 1 Proportion fffffffffff re 54.856	ns ff 500	
	for Equa ffffffff Chi-Squa DF Pr > Chi	quare Test l Proportion fffffffffff re 54.856 Sq <.006	ns ff 5 91	
	for Equa ffffffff Chi-Squa DF Pr > Chi Sample	<pre>quare Test 1 Proportion fffffffffff re 54.856 Sq <.006 Size = 80</pre>	ns ff 90 5 91	
	for Equa ffffffff Chi-Squa DF Pr > Chi Sample	<pre>quare Test 1 Proportion fffffffffffre 54.850 Sq <.000 Size = 80</pre>	15 6f 5 01	Cumulation
D22 5	for Equa ffffffff Chi-Squa DF Pr > Chi Sample	quare Test 1 Proportion fffffffffff re 54.856 Sq <.006 Size = 80 Parcent	ns ff 500 501 Cumulative	Cumulative
D23 Fre	chi-S for Equa ffffffff Chi-Squa DF Pr > Chi Sample	quare Test 1 Proportion fffffffffff re 54.856 Sq <.006 Size = 80 Percent	ns Ff 30 5 31 Cumulative Frequency	Cumulative Percent
D23 Fre ffffffffffffffffffffffffffffff	for Equa fffffff Chi-Squa DF Pr > Chi Sample quency ffffffffff	<pre>quare Test 1 Proportion fffffffffffre re 54.850 Sq <.000 Size = 80 Percent fffffffffffff 2 50</pre>	ns ff 30 5 31 Cumulative Frequency fffffffffffff	Cumulative Percent ffffffffff 2 50
D23 Fre fffffffffffffffffffffffffffffffff Strongly Disagree Disagree	for Equa fffffff Chi-Squa DF Pr > Chi Sample quency fffffffff 2 12	quare Test 1 Proportion fffffffffff re 54.856 Sq <.006 Size = 80 Percent fffffffffffff 2.50 15.00	Cumulative Frequency	Cumulative Percent ffffffffff 2.50
D23 Fre fffffffffffffffffffffffffff Strongly Disagree Disagree Underided	cn1-S for Equa DF Pr > Chi Sample quency fffffffff 2 12 c	<pre>quare Test 1 Proportion fffffffffff re 54.856 Sq <.000 Size = 80 Percent ffffffffffffff 2.50 15.00 7 52</pre>	Cumulative Frequency fffffffffff 2 2 14 20	Cumulative Percent ffffffffff 2.50 17.50 25 00
D23 Fre fffffffffffffffffffffffff Strongly Disagree Disagree Undecided	chi-S for Equa fffffff Chi-Squa DF Pr > Chi Sample quency fffffffff 2 12 6 31	<pre>quare Test 1 Proportion fffffffffff re 54.856 Sq <.000 Size = 80 Percent fffffffffffffff 2.50 15.00 7.50 28.75</pre>	Cumulative Frequency Frequency Fffffffffff 2 14 20 51	Cumulative Percent ffffffffff 2.50 17.50 25.00 62.75
D23 Fre fffffffffffffffffffffff Strongly Disagree Disagree Undecided Agree Strongly Agree	chi-S for Equa fffffff Chi-Squa DF Pr > Chi Sample quency fffffffff 2 12 6 31 20	<pre>quare Test 1 Proportion fffffffffff re 54.856 Sq <.006 Size = 80 Percent fffffffffff 2.50 15.00 7.50 38.75 26.25</pre>	Cumulative Frequency fffffffffff 2 14 20 51	Cumulative Percent ffffffffff 2.50 17.50 25.00 63.75 100.00
D23 Fre ffffffffffffffffffffff Strongly Disagree Disagree Undecided Agree Strongly Agree	chi-s for Equa ffffffff Chi-Squa DF Pr > Chi Sample quency fffffffff 2 12 6 31 29	<pre>quare Test 1 Proportion ffffffffff re 54.850 Sq <.000 Size = 80 Percent fffffffffff 2.50 15.00 7.50 38.75 36.25</pre>	15 ff 20 5 21 Cumulative Frequency ffffffffffff 2 14 20 51 80	Cumulative Percent fffffffffff 2.50 17.50 25.00 63.75 100.00
D23 Fre fffffffffffffffffffffff Strongly Disagree Disagree Undecided Agree Strongly Agree	chi-S for Equa ffffffff Chi-Squa DF Pr > Chi Sample quency ffffffff 2 12 6 31 29 chi S	quare Test 1 Proportion fffffffffff re 54.856 Sq <.006 Size = 80 Percent ffffffffffff 2.50 15.00 7.50 38.75 36.25 guare Test	Cumulative Frequency ffffffffffff 2 14 20 51 80	Cumulative Percent fffffffffff 2.50 17.50 25.00 63.75 100.00
D23 Fre ffffffffffffffffffffff Strongly Disagree Disagree Undecided Agree Strongly Agree	chi-S for Equa ffffffff Chi-Squa DF Pr > Chi Sample quency fffffffff 2 12 6 31 29 Chi-S for E	<pre>quare Test 1 Proportion ffffffffff re 54.856 Sq <.006 Size = 80 Percent ffffffffffff 2.50 15.00 7.50 38.75 36.25 quare Test 1 Proportion</pre>	Cumulative Frequency ffffffffffff 2 14 20 51 80	Cumulative Percent fffffffffff 2.50 17.50 25.00 63.75 100.00
D23 Fre ffffffffffffffffffffff Strongly Disagree Disagree Undecided Agree Strongly Agree	chi-S for Equa ffffffff Chi-Squa DF Pr > Chi Sample quency fffffffff 2 12 6 31 29 Chi-S for Equa	<pre>quare Test 1 Proportion fffffffffff re 54.850 Sq <.000 Size = 80 Percent fffffffffffff 2.50 15.00 7.50 38.75 36.25 quare Test 1 Proportion</pre>	ns ff 20 5 20 Cumulative Frequency ffffffffffffff 2 14 20 51 80 15 64	Cumulative Percent fffffffffff 2.50 17.50 25.00 63.75 100.00
D23 Fre ffffffffffffffffffffff Strongly Disagree Disagree Undecided Agree Strongly Agree	<pre>chi-S for Equa fffffff Chi-Squa DF Pr > Chi Sample quency fffffffff 2 12 6 31 29 Chi-S for Equa fffffffff Chi Cau-</pre>	<pre>quare Test 1 Proportion ffffffffff re 54.850 Sq <.000 Size = 80 Percent ffffffffffff 2.50 15.00 7.50 38.75 36.25 quare Test 1 Proportion ffffffffffff page 44.127</pre>	ns ff 20 5 21 Cumulative Frequency ffffffffffffff 2 14 20 51 80 15 ff 50	Cumulative Percent fffffffffff 2.50 17.50 25.00 63.75 100.00

DF 4 Pr > ChiSq <.0001 Sample Size = 80

			Cumulative	Cumulative
D24	Frequency	Percent	Frequency	Percent
ffffffffffffffffff	ffffffffffffffff	ffffffffffff	fffffffffffffffff	ffffffffff
Strongly Disagree	2	2.50	2	2.50
Disagree	17	21.25	19	23.75
Undecided	8	10.00	27	33.75
Agree	28	35.00	55	68.75
Strongly Agree	25	31.25	80	100.00

			Cumulative	Cumulative
D25	Frequency	Percent	Frequency	Percent
<i>fffffffffffffffffffffff</i>	·ffffffffffffff	fffffffffff	ffffffffffffffff	fffffffffff
Strongly Disagree	3	3.75	3	3.75
Disagree	18	22.50	21	26.25
Undecided	1	1.25	22	27.50
Agree	26	32.50	48	60.00
Strongly Agree	32	40.00	80	100.00

Chi-Square Test for Equal Proportions ffffffffffffffffffff Chi-Square 47.1250 DF 4 Pr > ChiSq <.0001 Sample Size = 80

Annexure C:

Descriptive statistics: Uni-variate with means & standard deviations where appropriate

				Julie)
Ν		80	Sum Weights	80
Mean	7	.1375	Sum Observatio	ons 571
Std Deviation	1 4.160	52501	Variance	17.3099684
Skewness	0.539	4951/	Kurtosis	-0.442234
Uncorrected S	5	5443	Corrected SS	1367.4875
Coeff Variati	Lon 58.29	10684	Sta Error Mean	0.46516084
	Pacie	Ctatictic	al Maacupac	
Locat	Dasic .	Statistic	.ai Measures Vaniahility	,
Mean	7 137500	Std Dev	variauriity	1 16053
Median	6 000000	Varianc		17 30997
Mode	6.000000	Range		16,00000
		Interau	artile Range	6.00000
	Quant	iles (Def	inition 5)	
	Quan	tile	Estimate	
	100%	Max	17.0	
	99%		17.0	
	95%		15.0	
	90%		13.0	
	75%	Q3	10.0	
	50%	Median	6.0	
	25%	Q1	4.0	
	10%		2.0	
	5% 1%		1.5	
	1% 0% M	in	1.0	
	0/0 11	1 11	1.0	
	Variable:	Number ho	ome (Number ho	ome)
Ν		80	Sum Weights	- / 80
Mean	3	.5125	Sum Observatio	ons 281
Std Deviation	n 3.198	07596	Variance	10.2276899
Skewness	1.247	89384	Kurtosis	1.15882878
Uncorrected S	55	1795	Corrected SS	807.9875
Cooff Vaniati	on 01 0	10176	Std Ennon Moon	
COETT Valiati	1011 91.04	40420	Stu Enfor Mean	0.35/555/6
		40420		0.35/555/6
	Basic	48428 Statistic	al Measures	0.35/555/6
Locat	Basic Stion	Statistic	al Measures Variability	2 10909
Locat Mean Median	Basic 1 3.512500	Statistic Std Dev	al Measures Variability	3.19808
Locat Mean Median Mode	Basic 1 Basic 1 1001 3.512500 3.000000 1 000000	40420 Statistic Std Dev Varianc Range	al Measures Variability viation	3.19808 10.22769
Locat Mean Median Mode	Basic 1 Basic 1 3.512500 3.000000 1.000000	Statistic Std Dev Varianc Range Thtergu	al Measures Variability Viation ee	3.19808 10.22769 13.00000 4.00000
Locat Mean Median Mode	Basic 1 Basic 1 3.512500 3.000000 1.000000	Statistic Std Dev Varianc Range Interqu	al Measures Variability Viation se Martile Range	3.19808 10.22769 13.00000 4.00000
Locat Mean Median Mode	Basic 1 Basic 1 3.512500 3.000000 1.000000 Quant	48420 Statistic Std Dev Varianc Range Interqu iles (Def	al Measures Variability Variability Variability Variability Variability Partile Range	3.19808 10.22769 13.00000 4.00000
Locat Mean Median Mode	Basic 1 Basic 1 100 3.512500 3.000000 1.000000 Quant Quant	40420 Statistic Std Dev Varianc Range Interqu iles (Def tile	al Measures Variability Variability Variability Variability Variability Partile Range Variability	3.19808 10.22769 13.00000 4.00000
Locat Mean Median Mode	Basic 1 Basic 1 100 3.512500 3.000000 1.000000 Quant Quant 100%	Statistic Std Dev Varianc Range Interqu iles (Def tile Max	al Measures Variability Mation Partile Range Finition 5) Estimate 13.0	3.19808 10.22769 13.00000 4.00000
Locat Mean Median Mode	Basic 1 Basic 1 100 3.000000 1.000000 Quant Quant 100% 99%	Statistic Std Dev Varianc Range Interqu iles (Def tile Max	al Measures Variability dation ee artile Range inition 5) Estimate 13.0 13.0	3.19808 10.22769 13.00000 4.00000
Locat Mean Median Mode	Basic 1 Basic 1 10n 3.000000 1.000000 Quant Quant 100% 99% 95%	Statistic Std Dev Varianc Range Interqu iles (Def tile Max	al Measures Variability Mation Partile Range Finition 5) Estimate 13.0 13.0 10.5	3.19808 10.22769 13.00000 4.00000
Locat Mean Median Mode	Basic 1 Basic 1 tion 3.512500 1.000000 Quant Quant 100% 99% 95% 90%	44420 Statistic Std Dev Varianc Range Interqu iles (Def tile Max	al Measures Variability Mation Secontile Range Sinition 5) Estimate 13.0 13.0 10.5 8.0	3.19808 10.22769 13.00000 4.00000
Locat Mean Median Mode	Basic 1 Basic 1 tion 3.512500 1.000000 Quant Quant 100% 99% 95% 90% 75% 0	40420 Statistic Std Dev Varianc Range Interqu iles (Def tile Max	al Measures Variability Mation Partile Range Finition 5) Estimate 13.0 13.0 10.5 8.0 5.0	3.19808 10.22769 13.00000 4.00000
Locat Mean Median Mode	Basic 1 Basic 1 tion 3.512500 3.000000 1.000000 Quant Quant 100% 99% 95% 90% 75% 0 50% 1	40420 Statistic Std Dev Varianc Range Interqu iles (Def tile Max Q3 Median	al Measures Variability Mation Partile Range Finition 5) Estimate 13.0 10.5 8.0 5.0 3.0	3.19808 10.22769 13.00000 4.00000
Locat Mean Median Mode	Basic 3 Basic 3 tion 3.512500 3.000000 1.000000 Quant Quant 100% 99% 95% 90% 75% 50% 25%	40420 Statistic Std Dev Varianc Range Interqu iles (Def tile Max Q3 Median Q1	al Measures Variability viation e artile Range finition 5) Estimate 13.0 13.0 10.5 8.0 5.0 3.0 1.0 0 0	3.19808 10.22769 13.00000 4.00000
Locat Mean Median Mode	Basic 3 Basic 3 tion 3.512500 1.000000 1.000000 Quant Quant 100% 99% 95% 90% 75% 50% 10%	40420 Statistic Std Dev Varianc Range Interqu iles (Def tile Max Q3 Median Q1	al Measures Variability viation e artile Range inition 5) Estimate 13.0 10.5 8.0 5.0 3.0 1.0 0.0 0.0 0.0	3.19808 10.22769 13.00000 4.00000
Locat Mean Median Mode	Basic 3 Basic 3 tion 3.512500 1.000000 1.000000 Quant Quant 100% 99% 95% 90% 75% 50% 10% 5%	40420 Statistic Std Dev Varianc Range Interqu iles (Def tile Max Q3 Median Q1	al Measures Variability Variab	3.19808 10.22769 13.00000 4.00000
Locat Mean Median Mode	Basic 3 Basic 3 tion 3.512500 3.000000 1.000000 Quant Quant 100% 99% 95% 90% 75% 10% 5% 1% 0% M	40420 Statistic Std Dev Varianc Range Interqu iles (Def tile Max Q3 Median Q1	al Measures Variability Variab	3.19808 10.22769 13.00000 4.00000
Locat Mean Median Mode	Basic : Basic : tion 3.512500 3.000000 1.0000000 Quant Quant 100% 99% 95% 90% 75% 10% 5% 10% 5% 10% 5%	40420 Statistic Std Dev Varianc Range Interqu iles (Def tile Max Q3 Median Q1 in rs in hou	al Measures Variability Variab	3.19808 10.22769 13.00000 4.00000
Locat Mean Median Mode Var N	Basic 3 Basic 3 tion 3.512500 3.000000 1.0000000 Quant Quant 100% 99% 95% 90% 75% 10% 50% 10% 5% 10% 5% 10%	40420 Statistic Std Dev Varianc Range Interqu iles (Def tile Max Q3 Median Q1 in rs_in_hou 80	al Measures Variability Variability Variability Variability Variability Variability Variability Sumation 5) Estimate 13.0 10.5 8.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	house)
Locat Mean Median Mode Var N Mean	Basic : Basic : tion 3.512500 3.000000 1.000000 Quant Quant 100% 99% 95% 90% 75% 10% 50% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%	40420 Statistic Std Dev Varianc Range Interqu iles (Def tile Max Q3 Median Q1 in rs_in_hou 80 .3125	al Measures Variability Variability Variability Variability Variability Variability Variability Sumation 5) Estimate 13.0 10.5 8.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	house) 80.35755576 3.19808 10.22769 13.00000 4.00000 80 585
Locat Mean Median Mode Var N Mean Std Deviatior	Basic : Basic : tion 3.512500 3.000000 1.000000 Quant Quant 100% 99% 95% 90% 75% 10% 50% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 10% 5% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10	<pre>40420 Statistic Std Dev Varianc Range Interqu iles (Def tile Max Q3 Median Q1 in rs_in_hou 80 .3125 31392</pre>	al Measures Variability viation e artile Range finition 5) Estimate 13.0 10.5 8.0 5.0 3.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	house) 80 10.3575576 10.22769 13.00000 4.00000 4.00000 80 15.555 17.4833861
Locat Mean Median Mode Var N Mean Std Deviatior Skewness	Basic 3 Basic 3 100 3.512500 3.000000 1.000000 Quant Quan 100% 99% 95% 90% 75% 10% 50% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 10% 5% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10	40420 Statistic Std Dev Varianc Range Interqu iles (Def tile Max Q3 Median Q1 in rs_in_hou 80 .3125 31392 56483	al Measures Variability viation e artile Range inition 5) Estimate 13.0 10.5 8.0 5.0 3.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	house) ho
Locat Mean Median Mode Var N Mean Std Deviatior Skewness Uncorrected S	Basic : Basic : iion 3.512500 3.000000 1.000000 Quant Quant 100% 99% 95% 90% 75% 10% 50% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10	40420 Statistic Std Dev Varianc Range Interqu iles (Def tile Max Q3 Median Q1 in rs_in_hou 80 .3125 31392 56483 5659	al Measures Variability Variability viation e artile Range inition 5) Estimate 13.0 10.5 8.0 5.0 3.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	house) house) house) house) 13.00000 4.00000 80 17.4833861 -0.4972311 1381.1875
Locat Mean Median Mode Var N Mean Std Deviation Skewness Uncorrected S Coeff Variati	Basic : Basic : tion 3.512500 3.000000 1.000000 Quant Quant 100% 99% 95% 90% 75% 10% 50% 10% 5% 10% 10% 5% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10	40420 Statistic Std Dev Varianc Range Interqu iles (Def tile Max Q3 Median Q1 in rs_in_hou 80 .3125 31392 56483 5659 03613	al Measures Variability Variability viation e artile Range inition 5) Estimate 13.0 10.5 8.0 5.0 3.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	house) 80 10.22769 13.00000 4.00000 4.00000 80 90 17.483861 -0.4972311 1381.1875 0.46748511
Locat Mean Median Mode Var N Mean Std Deviation Skewness Uncorrected S Coeff Variati	Basic 1 Basic 1 100 3.512500 3.000000 1.000000 Quant Quant 100% 99% 95% 90% 75% 10% 50% 50% 50% 10% 50% 50% 50% 50% 50% 50% 50% 50% 50% 5	40420 Statistic Std Dev Varianc Range Interqu iles (Def tile Max Q3 Median Q1 in rs_in_hou 80 .3125 31392 56483 5659 03613	al Measures Variability Variability viation e artile Range inition 5) Estimate 13.0 10.5 8.0 5.0 3.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	house) 80 10.22769 13.00000 4.00000 4.00000 4.00000 80 17.483861 -0.4972311 1381.1875 0.46748511
Locat Mean Median Mode Var N Mean Std Deviation Skewness Uncorrected S Coeff Variati	Basic : Basic : tion 3.512500 3.000000 1.000000 Quant Quant 100% 99% 95% 90% 75% 0 50% 1 25% 0 10% 5% 1% 0% M riable: Yea 7 n 4.181 0.757 55 ion 57.180 Basic :	<pre>40420 Statistic Std Dev Varianc Range Interqu iles (Def tile Max Q3 Median Q1 in rs_in_hou 80 .3125 31392 56483 5659 03613 Statistic</pre>	al Measures Variability viation e artile Range inition 5) Estimate 13.0 10.5 8.0 5.0 3.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	house) house)
Locat Mean Median Mode Var N Mean Std Deviation Skewness Uncorrected S Coeff Variati	Basic : Basic : tion 3.512500 3.000000 1.000000 Quant Quant 100% 99% 95% 90% 75% 0 50% 1 25% 0 10% 5% 1% 0% M riable: Yea 7 n 4.181 0.757 55 ion 57.180 Basic :	<pre>40420 Statistic Std Dev Varianc Range Interqu iles (Def tile Max Q3 Median Q1 in rs_in_hou 80 .3125 31392 56483 5659 03613 Statistic Std Dev </pre>	al Measures Variability viation e artile Range inition 5) Estimate 13.0 10.5 8.0 5.0 3.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	house) house) 80 10.22769 13.00000 4.00000 4.00000 80 17.483861 -0.4972311 1381.1875 0.46748511 4.18131

	Median Mode	6.0000 4.0000	900 900	Varian Range Interq	ce uartile Range	1 1	7.48339 5.00000 6.00000
			Quantii Quantii 100% M 99% 95% 90% 75% Qi 50% Me 25% Qi 10% 5% 1% 0% Mir	les (De ile Max 3 edian 1	finition 5) Estimate 17 16 14 10 6 4 3 2 2 2 2		
N Mear Std Skev Unco Coef	n Deviation wness prrected S Ff Variat:	n SS ion	Var: 3. 1.40866 -0.3649 2 41.7365	iable: 80 .375 0825 0328 1068 5409	A1 (A1) Sum Weights Sum Observati Variance Kurtosis Corrected SS Std Error Mea	ons n	80 270 1.98417722 -1.3412518 156.75 0.15748719
	Loca Mean Median Mode	E 3.3750 4.0000 4.0000	3asic S1 000 000 000	tatistio Std Dev Variano Range Interqu	cal Measures Variabilit viation ce uartile Range	У	1.40861 1.98418 4.00000 3.00000
			Quanti: Quant: 100% M 99% 95% 90% 75% Q2 50% Me 25% Q2 10% 5% 1% 0% Mir	les (De ile Max 3 edian 1	finition 5) Estimate 5 5 5 5 4 2 1 1 1 1 1		
N Mear Std Skev Unco Coef) Deviation wness prrected S Ff Variat:	n SS ion	Var: 1.48409 -0.4646 1 42.4026	iable: 80 3.5 9287 5981 1154 5534	A2 (A2) Sum Weights Sum Observati Variance Kurtosis Corrected SS Std Error Mea	ons n	80 280 2.20253165 -1.3437698 174 0.16592663
	Loca Mean Median Mode	E tion 3.5000 4.0000 5.0000	3asic 51 000 000 000	Std Dev Varian Range Interqu	cal Measures Variabilit viation ce uartile Range	у	1.48409 2.20253 4.00000 3.00000
			Quantil Quanti 100% M 99% 95% 90% 75% Q3 50% M 25% Q2 10%	les (De [.] ile Max Max B dian 1	finition 5) Estimate 5 5 5 5 5 4 2 1		

		5%		1	
		1%		1	
		0%	Min	1	
		V	ariable:	A3 (A3)	
N			80	Sum Weights	80
Mean	۱ ـ		3.28/5	Sum Observations	263
Std	Deviatio	n 1.42	485842	Variance	2.03022152
Skew	iness	-0.1	/60882	Kurtosis	-1.44/3162
Unco	prrected !	55	1025	Corrected SS	160.38/5
Coet	+ variat	10n 43.	341701	Std Error Mean	0.15930401
		- ·		1	
		Basic	Statisti	cal Measures	
	Loca	tion		variability	1 12100
	Median	3.28/500	Sta De	Viation	1.42486
	Median	4.000000	Varian	ce	2.03022
	mode	2.000000	Range	wantila Danaa	4.00000
			Interq	uartile Range	3.00000
		0	+:105 (Do	finition ()	
		Quan	ciies (De ntilo	Ectimate	
		200 100	Max	ESTIMALE	
		100.	/o Max	5	
		99%		5	
		93%		5	
		50% 75%	03	5	
		50%	Median	1	
		25%	01	4	
		10%	Ϋ́	2	
		10%		1	
		5% 1%		1	
		1/0		1	
		A%	Min	1	
		0%	Min	1	
		0%	Min	1	
		0% V	Min ariable:	1	
N		0% V	Min ariable: 80	1 A4 (A4) Sum Weights	80
N Mean	1	0% V	Min ariable: 80 3.3875	1 A4 (A4) Sum Weights Sum Observations	80 271
N Mean Std) Deviatio	0% V	Min ariable: 80 3.3875 682155	1 A4 (A4) Sum Weights Sum Observations Variance	80 271 1.73401899
N Mean Std Skew) Deviation ness	0% V n 1.31 -0.2	Min ariable: 80 3.3875 682155 439345	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis	80 271 1.73401899 -1.3447063
N Mean Std Skew Unco) Deviation ness prrected 3	0% V n 1.31 -0.2	Min ariable: 80 3.3875 682155 439345 1055	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS	80 271 1.73401899 -1.3447063 136.9875
N Mean Std Skew Unco Coef) Deviation uness prrected S f Variat	0% V -0.2 SS ion 38.8	Min 80 3.3875 682155 439345 1055 729608	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	80 271 1.73401899 -1.3447063 136.9875 0.14722512
N Mean Std Skew Unco Coef) Deviation ness prected : f Variat:	0% V V -0.2 SS ion 38.8	Min 80 3.3875 682155 439345 1055 729608	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	80 271 1.73401899 -1.3447063 136.9875 0.14722512
N Mean Std Skew Unco Coef) Deviation Iness Inrected S F Variat	0% V n 1.31 -0.2 SS ion 38.8 Basic	Min 80 3.3875 682155 439345 1055 729608 Statisti	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures	80 271 1.73401899 -1.3447063 136.9875 0.14722512
N Mean Std Skew Unco Coef) Deviation Iness Inrected 1 f Variat: Loca	0% V -0.2 SS ion 38.8 Basic tion	Min 80 3.3875 682155 439345 1055 729608 Statisti	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability	80 271 1.73401899 -1.3447063 136.9875 0.14722512
N Mean Std Skew Unco Coef) Deviation ness prrected 1 F Variat Loca Mean	0% V n 1.31 -0.2 SS ion 38.8 Basic tion 3.387500	Min ariable: 80 3.3875 682155 439345 1055 729608 Statisti Stat De	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682
N Mean Std Skew Unco Coef	Deviation Iness Inrected S F Variat: Loca Mean Median	0% V n 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000	Min ariable: 80 3.3875 682155 439345 1055 729608 Statisti Stat De Varian	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402
N Mean Std Skew Unco Coef	Deviation Iness Inrected S F Variat: Loca Mean Median Mode	0% v. 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000	Min 80 3.3875 682155 439345 1055 729608 Statisti Std De Varian Range	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000
N Mean Std Skew Unco Coef	Deviation Iness Prrected S F Variat Loca Mean Median Mode	0% v. 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000	Min 80 3.3875 682155 439345 1055 729608 Statisti Std De Varian Range Interq	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mean Std Skew Unco Coef	Deviation Jorrected S F Variat Loca Mean Median Mode	0% v. 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000	Min 80 3.3875 682155 439345 1055 729608 Statisti Std De Varian Range Interq	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mean Std Skew Unco Coef	Deviation Deviation Prrected S F Variat: Loca Mean Median Mode	0% V. h 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000 Quan	Min 80 3.3875 682155 439345 1055 729608 Statisti Std De Varian Range Interq tiles (De	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5)	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mean Std Skew Unco Coef	Deviation Deviation Prrected S F Variat: Loca Mean Median Mode	0% V. -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000 Quan Qua	Min 80 3.3875 682155 439345 1055 729608 Statisti Std De Varian Range Interq tiles (De ntile	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mean Std Skew Unco Coef	Deviation Deviation Prrected S F Variat: Loca Mean Median Mode	0% V. -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000 Quan Qua 100	Min 80 3.3875 682155 439345 1055 729608 Statisti Std De Varian Range Interq tiles (De ntile % Max	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mean Std Skew Unco Coef	Deviation Deviation Prrected S F Variat Loca Mean Median Mode	0% V V 1.31 -0.2 55 ion 38.8 Basic tion 3.387500 4.000000 4.000000 Quan Qua 100 99%	Min 80 3.3875 682155 439345 1055 729608 Statisti Std De Varian Range Interq tiles (De ntile % Max	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mean Std Skew Unco Coef	Deviation Deviation Prrected S F Variat Loca Mean Median Mode	0% V v ion 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000 4.000000 Quan Qua 100 99% 95%	Min 80 3.3875 682155 439345 1055 729608 Statisti Std De Varian Range Interq tiles (De ntile % Max	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0 5.0	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mean Std Skew Unco Coef	Deviation Deviation Prrected S F Variat: Loca Mean Median Mode	0% V v ion 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000 4.000000 Quan Qua 100 99% 95% 90%	Min 80 3.3875 682155 439345 1055 729608 Statisti Std De Varian Range Interq tiles (De ntile % Max	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0 5.0 5.0	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mean Std Skew Unco Coef	Deviation Iness Prrected S F Variat Loca Mean Median Mode	0% V N 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000 4.000000 Quan Qua 100 99% 95% 90% 75%	Min ariable: 80 3.3875 682155 439345 1055 729608 Statisti Std De Varian Range Interq tiles (De ntile % Max Q3	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0 5.0 5.0 4.5	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mean Std Skew Unco Coef	Deviation mess prected S F Variat: Loca Mean Median Mode	0% V v n 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000 4.000000 4.000000 99% 99% 99% 99% 95% 90% 75%	Min 80 3.3875 682155 1055 729608 Statisti Std De Varian Range Interq tiles (De ntile % Max Q3 Median	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0 5.0 5.0 4.5 4.0	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mean Std Skew Unco Coef	Deviation mess prected S f Variat: Loca Mean Median Mode	0% v v n 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000 Quan Qua 100 99% 95% 90% 75% 50%	Min ariable: 80 3.3875 682155 1055 729608 Statisti Std De Varian Range Interq tiles (De ntile % Max Q3 Median Q1	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0 5.0 5.0 4.5 4.0 2.0	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mean Std Skew Unco Coef	n Deviation Incess Incrected S F Variat: Loca Mean Median Mode	0% v v n 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000 4.000000 Quan Qua 100 99% 95% 90% 75% 50% 25%	Min ariable: 80 3.3875 682155 439345 1055 729608 Statisti Std De Varian Range Interq tiles (Den tiles (Den tile	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0 5.0 5.0 4.5 4.0 2.0 2.0	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mean Std Skew Unco Coef	n Deviation Incess Incrected S F Variat: Loca Mean Median Mode	0% v. v. n 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000 4.000000 Quan Qua 100 99% 95% 90% 75% 50% 25% 10%	Min ariable: 80 3.3875 682155 439345 1055 729608 Statisti Std De Varian Range Interq tiles (Den tiles (Den tile	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 1.0	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mean Std Skew Unco Coef	n Deviation Incess Dirrected S F Variat: Loca Mean Median Mode	0% 1 V n 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000 Quan Qua 100 99% 95% 90% 75% 50% 25% 10% 5% 1%	Min ariable: 80 3.3875 682155 439345 1055 729608 Statisti Std De Varian Range Interq tiles (De ntile % Max Q3 Median Q1	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mean Std Skew Unco Coef	n Deviation Incess Dirrected S F Variat: Loca Mean Median Mode	0% 1 V n 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000 Quan Qua 100 99% 95% 90% 75% 50% 25% 10% 5% 1% 0%	Min ariable: 80 3.3875 682155 439345 1055 729608 Statisti Std De Varian Range Interq tiles (De ntile % Max Q3 Median Q1 Min	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 1.0 1.0 1.0	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000

N Mean Std Deviation Skewness Uncorrected S Coeff Variat:	Var 3.8734 1.2645 -0.809 55 ion 32.647	riable: 79 1772 7745 66147 1310 25877	A5 (A5) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	79 306 1.59915612 -0.6989694 124.734177 0.14227608
Loca Mean Median Mode	Basic S tion 3.873418 4.000000 5.000000	Statisti Std De Varian Range Interq	cal Measures Variability viation ce quartile Range	1.26458 1.59916 4.00000 2.00000
	Quanti Quant 100% 99% 95% 90% 75% Q 50% M 25% Q 10% 5% 1% 0% Mi	les (De ile Max 23 Median 21 .n	finition 5) Estimate 5 5 5 5 4 3 2 2 1 1	
N Mean Std Deviation Skewness Uncorrected S Coeff Variat:	Var 1.3274 -0.287 55 ion 42.819	riable: 80 3.1 1302 7498 908 97747	B6 (B6) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	80 248 1.76202532 -1.3385967 139.2 0.14840929
Loca Mean Median Mode	Basic S tion 3.100000 4.000000 4.000000	Statisti Std De Varian Range Interq	cal Measures Variability viation ce quartile Range	1.32741 1.76203 4.00000 2.00000
	Quanti Quanti 100% 99% 95% 90% 75% Q 50% M 25% Q 10%	les (De ile Max 23 Median 21	finition 5) Estimate 5 5 5 5 4 4 4 2 1	

Variable: B7 (B7) Ν 80 Sum Weights 80 Mean Sum Observations 264 3.3 Std Deviation 1.43553457 Variance 2.06075949 -1.2474549 Skewness -0.3365189 Kurtosis Uncorrected SS Corrected SS 162.8 1034 Coeff Variation 43.5010475 Std Error Mean 0.16049764 Basic Statistical Measures Location Variability 3.300000 Std Deviation 1.43553 Mean 4.000000 Variance Median 2.06076 Mode 4.000000 Range 4.00000 Interquartile Range 3.00000 Note: The mode displayed is the smallest of 2 modes with a count of 21. Quantiles (Definition 5) Quantile Estimate 100% Max 5 5 5 99% 95% 90% 5 75% Q3 5 50% Median 4 25% Q1 2 10% 1 5% 1 1% 1 0% Min 1 Variable: B8 (B8) Ν 80 Sum Weights 80 Mean 3.4125 Sum Observations 273 Std Deviation 1.42929344 Variance 2.04287975 Skewness -0.3127218 Kurtosis -1.3372671 Uncorrected SS 1093 Corrected SS 161.3875 Coeff Variation 41.8840569 Std Error Mean 0.15979986 Basic Statistical Measures Variability Location Std Deviation Mean 3.412500 1.42929 Median 4.000000 Variance 2.04288 4.00000 Mode 5.000000 Range Interquartile Range 3.00000 Quantiles (Definition 5) Quantile Estimate 100% Max 5 99% 5 95% 5 90% 5 75% Q3 5 50% Median 4 25% Q1 2 10% 1 5% 1 1% 1 0% Min 1

N Mean Std Deviatio Skewness Uncorrected Coeff Variat	3.4 n 1. -0 SS ion 38.	Variable: 78 2307692 3144475 .479865 1047 3995899	B9 (B9) Sum Weights Sum Observation Variance Kurtosis Corrected SS Std Error Mean	78 267 1.72777223 -1.1076465 133.038462 0.14883187
Loca Mean Median Mode	Basi tion 3.423077 4.000000 4.000000	c Statist: Std De Varia Range Intere	ical Measures Variability eviation nce quartile Range	1.31445 1.72777 4.00000 2.00000
	Qua Qu 10/ 99: 95: 90: 75: 50/ 25: 10/ 5% 1% 0%	ntiles (Du antile 2% Max % % % % Q3 % Median % Q1 %	efinition 5) Estimate 5 5 5 4 4 4 2 2 2 1 1 1 1	
N Mean Std Deviatio Skewness Uncorrected Coeff Variat	V. 3.6 n 1.1 -0.1 SS ion 32.	ariable: 79 5822785 9706988 9143681 1169 7226716	B10 (B10) Sum Weights Sum Observation Variance Kurtosis Corrected SS Std Error Mean	79 289 1.43297631 -0.1347798 111.772152 0.13468088
Loca Mean Median Mode	Basi tion 3.658228 4.000000 4.000000	c Statist: Std Do Varia Range Intero	ical Measures Variability eviation nce quartile Range	1.19707 1.43298 4.00000 1.00000
	Qua Qu. 100 995 905 907 755 509 255 100 5% 1% 0%	Mines (Di antile 3% Max % % % % Q3 % Median % Min	Estimate 5 5 5 4 4 3 2 1 1 1	
	Variable:	B11 (B11)		
---	---	---	--	
Ν	80	Sum Weights	80	
Mean	3.925	Sum Observations	314	
Std Deviation	1.08819907	Variance	1.18417722	
Skewness	-0.8756902	Kurtosis	-0.2660479	
Uncorrected SS	1326	Corrected SS	93.55	
Coeff Variation	27.7248171	Std Error Mean	0.12166435	
		M		
Location	Basic Statist	1cal Measures		
LUCALION Moon 3.0	25000 Std D	eviation	1 08820	
Median / 0	23000 Stud 00000 Varia		1 18/18	
Mode 4.0	00000 Varia 00000 Range	lice	4 00000	
1000 4.0	Tnter	quartile Range	1 00000	
	111001	qual circ hange	1.00000	
	Quantiles (D	efinition 5)		
	Quantile	Estimate		
	100% Max	5		
	99%	5		
	95%	5		
	90%	5		
	75% Q3	5		
	50% Median	4		
	25% Q1	4		
	10%	2		
	5%	2		
	1%	1		
	0% Min	1		
	Variable	B12 (B12)		
N	Variable:	B12 (B12) Sum Weights	80	
N Mean	Variable: 80 3.7	B12 (B12) Sum Weights Sum Observations	80 296	
N Mean Std Deviation	Variable: 80 3.7 1.46174856	B12 (B12) Sum Weights Sum Observations Variance	80 296 2.13670886	
N Mean Std Deviation Skewness	Variable: 80 3.7 1.46174856 -0.7561896	B12 (B12) Sum Weights Sum Observations Variance Kurtosis	80 296 2.13670886 -0.9339848	
N Mean Std Deviation Skewness Uncorrected SS	Variable: 80 3.7 1.46174856 -0.7561896 1264	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS	80 296 2.13670886 -0.9339848 168.8	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	80 296 2.13670886 -0.9339848 168.8 0.16342846	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	80 296 2.13670886 -0.9339848 168.8 0.16342846	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures	80 296 2.13670886 -0.9339848 168.8 0.16342846	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability	80 296 2.13670886 -0.9339848 168.8 0.16342846	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation	80 296 2.13670886 -0.9339848 168.8 0.16342846	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 2.2020	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5)	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Ouantile	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantile 100% Max	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantiles (D Quantile 100% Max 99%	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantiles (D Quantile 100% Max 99% 95%	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantiles (D Quantiles (D Quantile 100% Max 99% 95% 90%	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5 5	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantiles (D Quantiles (D Quantile 100% Max 99% 95% 90% 75% Q3	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5 5 5 5	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantile 100% Max 99% 95% 90% 75% Q3 50% Median	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5 5 5 4	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantile 100% Max 99% 95% 90% 75% Q3 50% Median 25% Q1	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5 5 4 2	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantile 100% Max 99% 95% 90% 75% Q3 50% Median 25% Q1 10%	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5 4 2 1	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantile (D Quantile (D Quantile (D Quantile (D Quantile (D) 90% 75% Q3 50% Median 25% Q1 10% 5%	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5 4 2 1 1	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantile (D Quantile (D Quantile (D Quantile (D Quantile (D) Quantile (D) 00% 75% Q3 50% Median 25% Q1 10% 5% 1%	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5 5 4 2 1 1 1	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantiles (D Quantile (D Quantile (D Quantile (D Quantile (D) 00% Max 99% 95% 90% 75% Q3 50% Median 25% Q1 10% 5% 1% 0% Min	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5 5 4 2 1 1 1 1	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000	

N Mean Std I Skew Unco Coef	Deviatior ness rrected S f Variati	Va 1.37 -0.1 55 Jon 41.5	riable: 80 3.3 242279 711607 1020 885693	B13 Sum Sum Sum Sum Sum Sum Sum Sum Sum Sum	(B13) Weights Observatior ance osis ected SS Error Mean	ıs - 6	80 264 1.8835443 1.4239773 148.8 0.15344153	
		. Basic	Statist	ical M	easures			
	Locat Mean Median Mode	10n 3.300000 4.000000 2.000000	Std D Varia Range Inter	vi eviationce quarti	ariability on le Range	1.3 1.8 4.0 2.5	37242 38354 90000 50000	
		Quan Qua 100 99% 95% 75% 25% 10% 5% 1% 0%	tiles (D ntile % Max Q3 Median Q1 Min	efinit Est	ion 5) imate 5.0 5.0 5.0 4.5 4.0 2.0 2.0 1.0 1.0			
N Mean Std I Skew Unco Coef	Deviatior ness rrected S f Variati	Va 1.39 -0. 55 -0.	riable: 80 3.375 959307 276137 1066 694243	C14 Sum (Sum (Vari; Kurt Corr Std	(C14) Weights Observatior ance osis ected SS Error Mean	ıs 1 -	80 270 1.95886076 1.4469799 154.75 0.15647926	
		Basic	Statist	ical M	easures			
Note: The	Locat Mean Median Mode e mode di	tion 3.375000 4.000000 2.000000 splayed is	Std D Varia Range Inter the sma	V eviationce quarti llest o	ariability on le Range of 2 modes	1.3 1.9 4.0 3.0 with a	89959 95886 90000 90000 a count of	25.
		Quan	tiles (D	efinit	ion 5)			
		Qua 100	ntile % Max	Est	imate 5			
		99% 95%			5			
		90%			5			
		75%	Q3 Median		5			
		50% 25%	neulan 01		4 2			
		10%	-		2			
		5%			1			
		1%	Min		1 1			

	Var:	iable:	C15 (C15)	
Ν		80	Sum Weights	80
Mean	4	.2875	Sum Observations	343
Std Deviation	1.069	96474	Variance	1.14414557
Skewness	-1.55	79403	Kurtosis	1.56188837
Uncorrected S	55	1561	Corrected SS	90.3875
Coeff Variati	ion 24.948	30444	Std Error Mean	0.11959022
	Basic S	Statist	ical Measures	
Locat	tion		Variability	
Mean	4.287500	Std D	eviation	1.06965
Median	5.000000	Varia	nce	1.14415
Mode	5.000000	капде		4.00000
		Inter	quartile Range	1.00000
	Quant	ilos (D	efinition 5)	
	Quant	tiles (D	Estimate	
	100%	Max	5	
	99%	nax	5	
	95%		5	
	90%		5	
	75% (03	5	
	50% 1	Median	5	
	25% (Q1	4	
	10%	•	2	
	5%		2	
	1%		1	
	0% M:	in	1	
	Var:	iable:	C16 (C16)	
N	Var	iable: 80	C16 (C16) Sum Weights	80
N Mean	Var	iable: 80 4.475	C16 (C16) Sum Weights Sum Observations	80 358
N Mean Std Deviatior	Var: 2 1 0.885!	iable: 80 4.475 53781	C16 (C16) Sum Weights Sum Observations Variance	80 358 0.78417722
N Mean Std Deviatior Skewness	Var: 0.885 -1.99	iable: 80 4.475 53781 77064	C16 (C16) Sum Weights Sum Observations Variance Kurtosis	80 358 0.78417722 3.88036542
N Mean Std Deviatior Skewness Uncorrected S	Var: 0.885 -1.99	iable: 80 4.475 53781 77064 1664	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS	80 358 0.78417722 3.88036542 61.95
N Mean Std Deviatior Skewness Uncorrected S Coeff Variati	Var: 0.885 -1.99 55 ion 19.78	iable: 80 4.475 53781 77064 1664 35544	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	80 358 0.78417722 3.88036542 61.95 0.09900614
N Mean Std Deviatior Skewness Uncorrected S Coeff Variati	Var: 0.8855 -1.997 55 ion 19.788 Basic 5	iable: 80 4.475 53781 77064 1664 35544 Statist	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures	80 358 0.78417722 3.88036542 61.95 0.09900614
N Mean Std Deviatior Skewness Uncorrected S Coeff Variati	Var: 0.8855 -1.997 55 ion 19.784 Basic 5	iable: 80 4.475 53781 77064 1664 35544 Statist	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability	80 358 0.78417722 3.88036542 61.95 0.09900614
N Mean Std Deviation Skewness Uncorrected S Coeff Variati Locat Mean	Var: 0.8855 -1.997 55 ion 19.784 Basic 5 tion 4.475000	iable: 80 4.475 53781 77064 1664 35544 Statist Std D	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation	80 358 0.78417722 3.88036542 61.95 0.09900614 0.88554
N Mean Std Deviation Skewness Uncorrected S Coeff Variati Locat Mean Median	Var: 0.8855 -1.997 55 ion 19.788 Basic 5 tion 4.475000 5.000000	iable: 80 4.475 53781 77064 1664 35544 Statist Std D Varia	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce	80 358 0.78417722 3.88036542 61.95 0.09900614 0.88554 0.78418
N Mean Std Deviation Skewness Uncorrected S Coeff Variati Locat Mean Median Mode	Var: 0.8855 -1.997 55 ion 19.788 Basic 5 tion 4.475000 5.000000 5.000000	iable: 80 4.475 53781 77064 1664 35544 5tatist Std D Varia Range	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce	80 358 0.78417722 3.88036542 61.95 0.09900614 0.88554 0.78418 4.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variati Locat Mean Median Mode	Var: 0.8855 -1.997 55 ion 19.784 Basic 5 tion 4.475000 5.000000 5.000000	iable: 80 4.475 53781 77064 1664 35544 Statist Std D Varia Range Inter	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range	80 358 0.78417722 3.88036542 61.95 0.09900614 0.88554 0.78418 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variati Locat Mean Median Mode	Var: 0.8855 -1.995 55 ion 19.788 Basic 5 tion 4.475000 5.000000 5.000000	iable: 80 4.475 53781 77064 1664 35544 5tatist Std D Varia Range Inter	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range	80 358 0.78417722 3.88036542 61.95 0.09900614 0.88554 0.78418 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variati Locat Mean Median Mode	Var: 0.8855 -1.997 55 ion 19.788 Basic 5 tion 4.475000 5.000000 5.000000 Quant: Quant:	iable: 80 4.475 53781 77064 1664 35544 5tatist Std D Varia Range Inter illes (D tile	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate	80 358 0.78417722 3.88036542 61.95 0.09900614 0.88554 0.78418 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variati Locat Mean Median Mode	Var: 0.8855 -1.997 55 ion 19.788 Basic 5 tion 4.475000 5.000000 5.000000 5.000000 Quant: Quant 100%	iable: 80 4.475 53781 77064 1664 35544 Statist Std D Varia Range Inter iles (D tile Max	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5.0	80 358 0.78417722 3.88036542 61.95 0.09900614 0.88554 0.78418 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variati Locat Mean Median Mode	Var: 0.8855 -1.997 55 ion 19.788 Basic 5 tion 4.475000 5.000000 5.000000 Quant: Quant: Quant: 99%	iable: 80 4.475 53781 77064 1664 35544 Statist Std D Varia Range Inter iles (D tile Max	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5.0 5.0	80 358 0.78417722 3.88036542 61.95 0.09900614 0.88554 0.78418 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variati Locat Mean Median Mode	Var: 0.8855 -1.997 55 ion 19.784 Basic 5 tion 4.475000 5.000000 5.000000 5.000000 Quant: Quant 100% 99% 95%	iable: 80 4.475 53781 77064 1664 35544 Statist Std D Varia Range Inter iles (D tile Max	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5.0 5.0 5.0 5.0	80 358 0.78417722 3.88036542 61.95 0.099900614 0.88554 0.78418 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variati Locat Mean Median Mode	Var: 0.8855 -1.997 55 ion 19.784 Basic 9 tion 4.475000 5.000000 5.000000 5.000000 Quant: Quant 100% 99% 95% 90%	iable: 80 4.475 53781 77064 1664 35544 Statist Std D Varia Range Inter iles (D tile Max	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5.0 5.0 5.0 5.0 5.0	80 358 0.78417722 3.88036542 61.95 0.099900614 0.88554 0.78418 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variati Locat Mean Median Mode	Var: 0.8855 -1.997 55 ion 19.784 Basic 9 tion 4.475000 5.000000 5.000000 5.000000 Quant: Quant 100% 99% 95% 90% 75% 0	iable: 80 4.475 53781 77064 1664 35544 5tatist Std D Varia Range Inter iles (D tile Max	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5.0 5.0 5.0 5.0 5.0 5.0	80 358 0.78417722 3.88036542 61.95 0.09900614 0.88554 0.78418 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variati Locat Mean Median Mode	Var: 0.8855 -1.997 55 ion 19.788 Basic 5 tion 4.475000 5.000000 5.000000 5.000000 5.000000 90% 95% 90% 75% (50% r	iable: 80 4.475 53781 77064 1664 35544 5tatist Std D Varia Range Inter iles (D tile Max	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	80 358 0.78417722 3.88036542 61.95 0.09900614 0.88554 0.78418 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variati Locat Mean Median Mode	Var: 0.8855 -1.997 55 ion 19.788 Basic 5 tion 4.475000 5.000000 5.000000 5.000000 900 90% 95% 90% 75% (50% r 25% (iable: 80 4.475 53781 77064 1664 55544 5tatist 5tatist Std D Varia Range Inter iles (D tile Max	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.0	80 358 0.78417722 3.88036542 61.95 0.099900614 0.88554 0.78418 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variati Locat Mean Median Mode	Var: 0.8855 -1.997 55 ion 19.788 Basic 5 tion 4.475000 5.000000 5.000000 5.000000 5.000000 Quant: 100% 99% 95% 90% 75% (50% r 25% (10%	iable: 80 4.475 53781 77064 1664 35544 5tatist Std D Varia Range Inter iles (D tile Max 23 Median 21	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.0 3.5	80 358 0.78417722 3.88036542 61.95 0.099900614 0.88554 0.78418 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variati Locat Mean Median Mode	Var: 0.8855 -1.997 55 19.788 Basic 5 tion 4.475000 5.000000 5.000000 Quant: Quant 100% 99% 95% 90% 75% (0 50% N 25% (0 10% 5%	iable: 80 4.475 53781 77064 1664 35544 Statist Std D Varia Range Inter iles (D tile Max 23 Median 21	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	80 358 0.78417722 3.88036542 61.95 0.099900614 0.88554 0.78418 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variati Locat Mean Median Mode	Var: 0.8855 -1.997 55 ion 19.788 Basic 5 tion 4.475000 5.000000 5.000000 Quant: Quant 100% 99% 95% 90% 75% (0 50% r 25% (0 10% 5% 1%	iable: 80 4.475 53781 77064 1664 35544 Statist Std D Varia Range Inter illes (D tile Max 23 Median 21	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 1.0	80 358 0.78417722 3.88036542 61.95 0.099900614 0.88554 0.78418 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variati Locat Mean Median Mode	Var: 0.8855 -1.997 55 ion 19.788 Basic 5 tion 4.475000 5.000000 5.000000 Quant: Quant 100% 99% 95% 90% 75% (0 50% M 25% (0 10% 5% 1% 0% M:	iable: 80 4.475 53781 77064 1664 35544 Statist Std D Varia Range Inter illes (D tile Max 23 Median 21	C16 (C16) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5.0 5.0 5.0 5.0 5.0 5.0 5.0 1.0 1.0	80 358 0.78417722 3.88036542 61.95 0.099900614 0.88554 0.78418 4.00000 1.00000

N Mean Std Deviation Skewness Uncorrected SS Coeff Variatio	Variab 4.3 1.0527244 -1.7594 5 15 5 24.34043	le: C17 (C17 30 Sum Weig 25 Sum Obse 31 Variance 51 Kurtosis 34 Correcte 36 Std Erro) its rvations d SS r Mean	80 346 1.10822785 2.54449918 87.55 0.11769812
Locat: Mean 4 Median 5 Mode 5	Basic Stat ion 4.325000 St 5.000000 Va 5.000000 Ra In	tistical Measu Varial d Deviation ariance ange nterquartile R	res pility 1 1 4 ange 1	1.05272 1.10823 1.00000 1.00000
	Quantile Quantil 100% Ma: 99% 95% 90% 75% Q3 50% Med: 25% Q1 10% 5% 1% 0% Min	s (Definition e Estimat <	5) 5 5 5 5 5 5 4 4 3 2 1 1	
N Mean Std Deviation Skewness Uncorrected S Coeff Variatio	Variab 4.41 0.9505994 -1.646764 5 16 5 21.54332	le: C18 (C18 30 Sum Weig 25 Sum Obse 41 Variance 47 Kurtosis 29 Correcte 34 Std Erro) its rvations d SS r Mean	80 353 0.90363924 1.65902771 71.3875 0.10628025
Locat: Mean 4 Median 9 Mode 9	Basic Stat ion 4.412500 S ⁻¹ 5.000000 Va 5.000000 Ra In	tistical Measu Varial td Deviation ariance ange nterquartile R	res pility e ange 1).95060).90364 3.00000 L.00000
	Quantile: Quantile 100% Ma: 99% 90% 75% Q3 50% Med: 25% Q1 10% 5% 1% 0% Min	s (Definition) e Estimate 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5) ≥ 3 3 3 3 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3	

N	Var	iable: 80	D19 (D19) Sum Weights	80
Mean	:	3.125	Sum Observations	250
Std Deviation	n 1.1840	01805	Variance	1.40189873
Skewness	-0.24	78457	Kurtosis	-1.1338184
Uncorrected S	55	892	Corrected SS	110.75
Coeff Variati	ion 37.88	85775	Std Error Mean	0.13237724
Locat	Basic S	Statisti	ical Measures	
Mean	3 125000	Std De	variation	1 18402
Median	3.500000	Variar		1.40190
Mode	4.000000	Range		4.00000
		Interd	quartile Range	2.00000
	Quant	iloc (D	finition E)	
	Quarre	lies (De File	Fstimate	
	100%	Max	5 0	
	99%		5.0	
	95%		5.0	
	90%		4.0	
	75% (Q3	4.0	
	50%	Median	3.5	
	25% (Q1	2.0	
	10%		2.0	
	5% 1%		1.0	
	0% M	in	1.0	
	0,0 11.		1.0	
	Var	iable:	D20 (D20)	
N	Var	iable: 79	D20 (D20) Sum Weights	79
N Mean	Var: 3.075	iable: 79 94937	D20 (D20) Sum Weights Sum Observations	79 243
N Mean Std Deviatior	Var: 3.0759 n 1.2980	iable: 79 94937 53984	D20 (D20) Sum Weights Sum Observations Variance	79 243 1.68646543
N Mean Std Deviatior Skewness	Var: 3.075 1.298 -0.25	iable: 79 94937 53984 22868	D20 (D20) Sum Weights Sum Observations Variance Kurtosis	79 243 1.68646543 -1.2096182
N Mean Std Deviation Skewness Uncorrected S	Var: 3.075 1.298 -0.25 55	iable: 79 94937 53984 22868 879	D20 (D20) Sum Weights Sum Observations Variance Kurtosis Corrected SS	79 243 1.68646543 -1.2096182 131.544304
N Mean Std Deviation Skewness Uncorrected S Coeff Variat	Var: 3.075 n 1.298 -0.25 SS ion 42.21	iable: 79 94937 53984 22868 879 91553	D20 (D20) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	79 243 1.68646543 -1.2096182 131.544304 0.1461084
N Mean Std Deviation Skewness Uncorrected S Coeff Variat	Var: 3.0759 n 1.2980 -0.255 55 ion 42.219 Basic 5	iable: 79 94937 53984 22868 879 91553 Statisti	D20 (D20) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures	79 243 1.68646543 -1.2096182 131.544304 0.1461084
N Mean Std Deviation Skewness Uncorrected S Coeff Variat	Var: 3.075 n 1.298 -0.25 SS ion 42.21 Basic 1 tion	iable: 79 94937 53984 22868 879 91553 Statist:	D20 (D20) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability	79 243 1.68646543 -1.2096182 131.544304 0.1461084
N Mean Std Deviation Skewness Uncorrected S Coeff Variat: Locat Mean	Var: 3.0759 n 1.2980 -0.255 SS ion 42.219 Basic 9 tion 3.075949	iable: 79 94937 53984 22868 879 91553 Statist: Std De	D20 (D20) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation	79 243 1.68646543 -1.2096182 131.544304 0.1461084 1.29864
N Mean Std Deviation Skewness Uncorrected S Coeff Variat: Locat Mean Median	Var: 3.0759 n 1.2980 -0.253 SS ion 42.219 Basic 9 tion 3.075949 3.000000	iable: 79 94937 53984 22868 879 91553 5tatist: Std De Variar	D20 (D20) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ice	79 243 1.68646543 -1.2096182 131.544304 0.1461084 1.29864 1.29864 1.68647
N Mean Std Deviation Skewness Uncorrected S Coeff Variat Locat Mean Median Mode	Var: 3.0759 n 1.2980 -0.253 SS ion 42.219 Basic 9 tion 3.075949 3.000000 4.000000	iable: 79 94937 53984 22868 879 91553 5tatist: Std De Variar Range	D20 (D20) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ice	79 243 1.68646543 -1.2096182 131.544304 0.1461084 1.29864 1.68647 4.00000 2.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat: Locat Mean Median Mode	Var: 3.0759 n 1.2980 -0.255 SS ion 42.219 Basic 9 tion 3.075949 3.000000 4.000000	iable: 79 94937 53984 22868 879 91553 5tatisti Std De Variar Range Intere	D20 (D20) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce	79 243 1.68646543 -1.2096182 131.544304 0.1461084 1.29864 1.68647 4.00000 2.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat Locat Mean Median Mode	Var: 3.0759 n 1.2980 -0.253 SS Basic 2 tion 3.075949 3.000000 4.000000 Quant:	iable: 79 94937 53984 22868 879 91553 5tatisti Std De Variar Range Interco iles (De	D20 (D20) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ice quartile Range	79 243 1.68646543 -1.2096182 131.544304 0.1461084 1.29864 1.68647 4.00000 2.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat Locat Mean Median Mode	Var: 3.0759 n 1.2980 -0.255 SS ion 42.219 Basic 9 tion 3.075949 3.000000 4.000000 Quant: Quant:	iable: 79 94937 53984 22868 879 91553 5tatisti Std De Variar Range Interd iles (De tile	D20 (D20) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ice quartile Range efinition 5) Estimate	79 243 1.68646543 -1.2096182 131.544304 0.1461084 1.29864 1.68647 4.00000 2.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat Locat Mean Median Mode	Var: 3.0759 n 1.2980 -0.255 SS Basic 2 tion 42.219 Basic 2 tion 3.000000 4.000000 Quant: Quant: 100%	iable: 79 94937 53984 22868 879 91553 5tatisti Std De Variar Range Interd iles (De tile Max	D20 (D20) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ice quartile Range efinition 5) Estimate 5	79 243 1.68646543 -1.2096182 131.544304 0.1461084 1.29864 1.68647 4.00000 2.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat Locat Mean Median Mode	Var: 3.0759 n 1.2980 -0.253 SS ion 42.219 Basic 9 tion 3.075949 3.000000 4.000000 4.000000 Quant: Quant: 100% 99%	iable: 79 94937 53984 22868 879 91553 5tatisti Std De Variar Range Interc iles (De tile Max	D20 (D20) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ice quartile Range efinition 5) Estimate 5 5	79 243 1.68646543 -1.2096182 131.544304 0.1461084 1.29864 1.68647 4.00000 2.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat Locat Mean Median Mode	Var: 3.0759 n 1.2980 -0.253 SS ion 42.219 Basic 9 tion 3.000000 4.000000 4.000000 Quant: Quant 100% 99%	iable: 79 94937 53984 22868 879 91553 5tatisti Std De Variar Range Interc iles (De tile Max	D20 (D20) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ice quartile Range efinition 5) Estimate 5 5 5 5	79 243 1.68646543 -1.2096182 131.544304 0.1461084 1.29864 1.68647 4.00000 2.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat Locat Mean Median Mode	Var: 3.0759 n 1.2980 -0.253 SS ion 42.219 Basic 1 tion 3.075949 3.000000 4.000000 4.000000 Quant: 100% 99% 95% 90% 75% 0	iable: 79 94937 53984 22868 879 91553 5tatisti Std De Variar Range Interc iles (De tile Max	D20 (D20) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ice quartile Range efinition 5) Estimate 5 5 5 4	79 243 1.68646543 -1.2096182 131.544304 0.1461084 1.29864 1.68647 4.00000 2.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat Locat Mean Median Mode	Var: 3.0759 n 1.2980 -0.253 SS ion 42.219 Basic 1 tion 3.075949 3.000000 4.000000 4.000000 Quant: Quant 100% 99% 95% 90% 75% 0 50% 1	iable: 79 94937 53984 22868 879 91553 5tatisti Std De Variar Range Interc iles (De tile Max	D20 (D20) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ice quartile Range efinition 5) Estimate 5 5 5 4 3	79 243 1.68646543 -1.2096182 131.544304 0.1461084 1.29864 1.68647 4.00000 2.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat Locat Mean Median Mode	Var: 3.0759 n 1.2980 -0.253 55 ion 42.219 Basic 2 tion 3.075949 3.000000 4.000000 4.000000 Quant: Quant 100% 99% 95% 90% 75% 0 50% 1 25% 0	iable: 79 94937 53984 22868 879 91553 5tatisti Std De Variar Range Interc iles (De tile Max	D20 (D20) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 4 3 2	79 243 1.68646543 -1.2096182 131.544304 0.1461084 1.29864 1.68647 4.00000 2.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat Locat Mean Median Mode	Var: 3.0759 n 1.2980 -0.253 SS ion 42.219 Basic 2 tion 3.075949 3.000000 4.000000 4.000000 Quant: Quant 100% 99% 95% 90% 75% 0 50% 1 25% 0	iable: 79 94937 53984 22868 879 91553 5tatisti Std De Variar Range Interc iles (De tile Max 23 Median 21	D20 (D20) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ice quartile Range efinition 5) Estimate 5 5 5 4 3 2 1	79 243 1.68646543 -1.2096182 131.544304 0.1461084 1.29864 1.68647 4.00000 2.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat Locat Mean Median Mode	Var: 3.0759 n 1.2980 -0.250 SS ion 42.219 Basic 2 tion 3.075949 3.000000 4.000000 4.000000 Quant: Quant 100% 99% 95% 90% 75% 0 50% 1 25% 0 10%	iable: 79 94937 53984 22868 879 91553 5tatisti Std De Variar Range Interc iles (De tile Max	D20 (D20) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 4 3 2 1 1	79 243 1.68646543 -1.2096182 131.544304 0.1461084 1.29864 1.68647 4.00000 2.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat Locat Mean Median Mode	Var: 3.0759 n 1.2980 -0.253 SS ion 42.219 Basic 2 tion 3.075949 3.000000 4.000000 4.000000 Quant: Quant 100% 99% 95% 90% 75% 0 50% 1 25% 0 10% 5%	iable: 79 94937 53984 22868 879 91553 5tatisti Std De Variar Range Interc iles (De tile Max	D20 (D20) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation ice quartile Range efinition 5) Estimate 5 5 5 4 3 2 1 1 1 1	79 243 1.68646543 -1.2096182 131.544304 0.1461084 1.29864 1.68647 4.00000 2.00000

N	Var	iable: 79	D21 (D21) Sum Weights	79
Mean	2.088	60759	Sum Observations	165
Std Deviation	n 1.341	54401	Variance	1.79974034
Skewness	1.109	34444	Kurtosis	-0.0317542
Uncorrected S	55	485	Corrected SS	140.379747
Coeff Variat	ion 64.23	15013	Std Error Mean	0.15093549
Locat	Basic	Statist	ical Measures	
Mean	2 088608	std D	eviation	1 3/15/
Median	2.000000	Varia	nce	1 79974
Mode	1.000000	Range		4.00000
noue	1.000000	Inter	quartile Range	2.00000
			1	
	Quant	iles (D	efinition 5)	
	Quan	tile	Estimate	
	100%	Max	5	
	99%		5	
	95%		5	
	90%	~~	5	
	/5%	Q3 Madžau	3	
	50%	Median	2	
	25%	ŲΙ	1	
	5%		1	
	1%		1	
	0% M	in	1	
	Var	iable:	D22 (D22)	
N	Var	iable: 77	D22 (D22) Sum Weights	77
N Mean	Var 3.688	iable: 77 31169	D22 (D22) Sum Weights Sum Observations	77 284
N Mean Std Deviatior	Var 3.688 1.054	iable: 77 31169 56077	D22 (D22) Sum Weights Sum Observations Variance	77 284 1.11209843
N Mean Std Deviatior Skewness	Var 3.688 1.054 -0.85	iable: 77 31169 56077 97188	D22 (D22) Sum Weights Sum Observations Variance Kurtosis	77 284 1.11209843 0.43484349
N Mean Std Deviation Skewness Uncorrected S	Var 3.688 1.054 -0.85 55	iable: 77 31169 56077 97188 1132	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS	77 284 1.11209843 0.43484349 84.5194805
N Mean Std Deviation Skewness Uncorrected S Coeff Variat:	Var 3.688 n 1.054 -0.85 55 ion 28.59	iable: 77 31169 56077 97188 1132 19647	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	77 284 1.11209843 0.43484349 84.5194805 0.12017835
N Mean Std Deviation Skewness Uncorrected S Coeff Variat:	Var 3.688 1.054 -0.85 55 ion 28.59 Basic	iable: 77 31169 56077 97188 1132 19647 Statist	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures	77 284 1.11209843 0.43484349 84.5194805 0.12017835
N Mean Std Deviation Skewness Uncorrected S Coeff Variat: Locat	Var 3.688 1.054 -0.85 55 ion 28.59 Basic tion	iable: 77 31169 56077 97188 1132 19647 Statist	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability	77 284 1.11209843 0.43484349 84.5194805 0.12017835
N Mean Std Deviation Skewness Uncorrected S Coeff Variat: Locat Mean	Var 3.688 n 1.054 -0.85 55 ion 28.59 Basic tion 3.688312	iable: 77 31169 56077 97188 1132 19647 Statist Std D	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation	77 284 1.11209843 0.43484349 84.5194805 0.12017835 1.05456
N Mean Std Deviation Skewness Uncorrected S Coeff Variat: Locat Mean Median	Var 3.688 n 1.054 -0.85 55 ion 28.59 Basic tion 3.688312 4.000000	iable: 77 31169 56077 97188 1132 19647 Statist Statist Varia	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce	77 284 1.11209843 0.43484349 84.5194805 0.12017835 1.05456 1.11210
N Mean Std Deviation Skewness Uncorrected S Coeff Variat Locat Mean Median Mode	Var 3.688 n 1.054 -0.85 55 ion 28.59 Basic tion 3.688312 4.000000 4.000000	iable: 77 31169 56077 97188 1132 19647 Statist Statist Varia Range Toton	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce	77 284 1.11209843 0.43484349 84.5194805 0.12017835 1.05456 1.11210 4.00000 1 202020
N Mean Std Deviation Skewness Uncorrected S Coeff Variat: Locat Mean Median Mode	Var 3.688 n 1.054 -0.85 55 ion 28.59 Basic tion 3.688312 4.000000 4.000000	iable: 77 31169 56077 97188 1132 19647 Statist Statist Std D Varia Range Inter	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range	77 284 1.11209843 0.43484349 84.5194805 0.12017835 1.05456 1.11210 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat: Locat Mean Median Mode	Var 3.688 n 1.054 -0.85 55 ion 28.59 Basic tion 3.688312 4.000000 4.000000	iable: 77 31169 56077 97188 1132 19647 Statist Statist Std D Varia Range Inter iles (D	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5)	77 284 1.11209843 0.43484349 84.5194805 0.12017835 1.05456 1.11210 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat: Locat Mean Median Mode	Var 3.688 n 1.054 -0.85 55 ion 28.59 Basic tion 3.688312 4.000000 4.000000 Quant Quant	iable: 77 31169 56077 97188 1132 19647 Statist Statist Varia Range Inter iles (D tile	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate	77 284 1.11209843 0.43484349 84.5194805 0.12017835 1.05456 1.11210 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat: Locat Mean Median Mode	Var 3.688 n 1.054 -0.85 55 ion 28.59 Basic tion 3.688312 4.000000 4.000000 Quant Quant Quan	iable: 77 31169 56077 97188 1132 19647 Statist Statist Varia Range Inter iles (D tile Max	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5	77 284 1.11209843 0.43484349 84.5194805 0.12017835 1.05456 1.11210 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat: Locat Mean Median Mode	Var 3.688 n 1.054 -0.85 55 ion 28.59 Basic tion 3.688312 4.000000 4.000000 Quant Quant Quan 100% 99%	iable: 77 31169 56077 97188 1132 19647 Statist Statist Varia Range Inter iles (D tile Max	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5	77 284 1.11209843 0.43484349 84.5194805 0.12017835 1.05456 1.11210 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat: Locat Mean Median Mode	Var 3.688 n 1.054 -0.85 55 ion 28.59 Basic tion 3.688312 4.000000 4.000000 Quant Quant Quan 100% 99%	iable: 77 31169 56077 97188 1132 19647 Statist Statist Varia Range Inter iles (D tile Max	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5	77 284 1.11209843 0.43484349 84.5194805 0.12017835 1.05456 1.11210 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat: Locat Mean Median Mode	Var 3.688 n 1.054 -0.85 55 ion 28.59 Basic tion 3.688312 4.000000 4.000000 Quant Quant Quan 100% 99% 95% 90%	iable: 77 31169 56077 97188 1132 19647 Statist Statist Varia Range Inter iles (D tile Max	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5	77 284 1.11209843 0.43484349 84.5194805 0.12017835 1.05456 1.11210 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat: Locat Mean Median Mode	Var 3.688 n 1.054 55 ion 28.59 Basic tion 3.688312 4.000000 4.000000 Quant Quant Quan 100% 99% 95% 90% 75%	iable: 77 31169 56077 97188 1132 19647 Statist Statist Varia Range Inter iles (D tile Max	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5 4	77 284 1.11209843 0.43484349 84.5194805 0.12017835 1.05456 1.11210 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat: Locat Mean Median Mode	Var 3.688 1.054 -0.85 55 ion 28.59 Basic tion 3.688312 4.000000 4.000000 4.000000 Quant Quant Quan 100% 99% 95% 90% 75% 50%	iable: 77 31169 56077 97188 1132 19647 Statist Statist Varia Range Inter iles (D tile Max Q3 Median	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 4 4 4	77 284 1.11209843 0.43484349 84.5194805 0.12017835 1.05456 1.11210 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat: Locat Mean Median Mode	Var 3.688 1.054 -0.85 55 ion 28.59 Basic tion 3.688312 4.000000 4.000000 Quant Quant Quant 99% 95% 90% 75% 50% 25%	iable: 77 31169 56077 97188 1132 19647 Statist Statist Varia Range Inter iles (D tile Max Q3 Median Q1	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 4 4 3 2	77 284 1.11209843 0.43484349 84.5194805 0.12017835 1.05456 1.11210 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat: Locat Mean Median Mode	Var 3.688 1.054 -0.85 55 55 50 Basic tion 3.688312 4.000000 4.000000 Quant Quant Quant 90% 95% 90% 75% 50% 25% 10% 5%	iable: 77 31169 56077 97188 1132 19647 Statist Statist Varia Range Inter iles (D tile Max Q3 Median Q1	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 4 4 3 2 1	77 284 1.11209843 0.43484349 84.5194805 0.12017835 1.05456 1.11210 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat: Locat Mean Median Mode	Var 3.688 1.054 -0.85 55 55 55 55 55 55 55 55 55	iable: 77 31169 56077 97188 1132 19647 Statist Statist Varia Range Inter iles (D tile Max Q3 Median Q1	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 4 4 3 2 1 1	77 284 1.11209843 0.43484349 84.5194805 0.12017835 1.05456 1.11210 4.00000 1.00000
N Mean Std Deviation Skewness Uncorrected S Coeff Variat: Locat Mean Median Mode	Var 3.688 n 1.054 -0.85 55 ion 28.59 Basic tion 3.688312 4.000000 4.000000 4.000000 4.000000 Quant Quant Quant Quan 100% 99% 95% 90% 75% 50% 25% 10% 1% 0% M	iable: 77 31169 56077 97188 1132 19647 Statist Statist Varia Range Inter iles (D tile Max Q3 Median Q1	D22 (D22) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5 4 4 3 2 1 1 1	77 284 1.11209843 0.43484349 84.5194805 0.12017835 1.05456 1.11210 4.00000 1.00000

	Variable:	D23 (D23)	
N	2 0125	Sum Weights	80
Mean	3.9125	Sum Observations	1 27072795
Std Deviation	1.12/26565	Variance	1.2/0/2/85
Skewness	-0.911/264	KURTOSIS	-0.1641245
Uncorrected SS	1325	Corrected SS	100.38/5
Coeff Variation	28.8119016	Std Error Mean	0.12603213
	Basic Statist	ical Measures	
Locatio	on	Variability	
Mean 3.	912500 Std D	eviation	1.12727
Median 4.	000000 Varia	nce	1.27073
Mode 4.	000000 Range		4.00000
	Inter	quartile Range	1.50000
	Quantiles (D	efinition 5)	
	Quantile	Estimate	
	100% Max	5.0	
	99%	5.0	
	95%	5.0	
	90%	5.0	
	75% Q3	5.0	
	50% Median	4.0	
	25% Q1	3.5	
	10%	2.0	
	5%	2.0	
	1%	1.0	
	0% Min	1.0	
	Variable:	D24 (D24)	
N	80	Sum Weights	80
Mean	3.7125	Sum Observations	297
Std Deviation	1.192/3911	Variance	1.42262658
Skewness	-0.56/4519	Kurtosis	-0.9213/34
Uncorrected SS	1215	Corrected SS	112.38/5
Coeff Variation	32.12/6528	Sta Error Mean	0.13335229
	Basic Statist	ical Measures	
Locatio	on	Variability	
Mean 3.	712500 Std D	eviation	1.19274
Median 4.	000000 Varia	nce	1.42263
Mode 4.	000000 Range		4.00000
	Inter	quartile Range	2.00000
	o 111 /o	c ···· c >	
	Quantiles (D	efinition 5)	
	Quantile	Estimate	
	100% Max	5	
	99% 05%	5	
	32% 00%	5	
	30% 75% 00	5	
	13% US EQ9 Madian	С И	
	25% Meutan	4 2	
	20% QI 10%	ວ າ	
	5%	2	
	1%	ے 1	
	-70 0% Min	± 1	
	OV0 FITTI	1	

N Mean Std Deviatic Skewness Uncorrected Coeff Variat	on SS cion	Variable: 80 3.825 1.28057542 -0.776239 1300 33.4790961	: D25 Sum Sum Var Kur Cor Std	(D25) Weights Observa iance tosis rected S Error M	itions S Nean	80 306 1.63987342 -0.8206988 129.55 0.14317268
		Basic Statis	stical	Measures	;	
Loca	ation			Variabil	ity	
Mean	3.825	000 Std	Deviat	ion		1.28058
Median	4.000	000 Vari	iance			1.63987
Mode	5.000	000 Rang	ge			4.00000
		Inte	erquart	ile Rang	ge	3.00000
		Quantiles (Quantile 100% Max 99% 95% 90% 75% Q3 50% Mediar 25% Q1 10% 5% 1% 0% Min	(Defini Es 1	tion 5) timate 5 5 5 5 4 2 2 2 1 1		

Annexure D: Comparison of proportions

				Cumulative	
Cumulative	A1	Frequency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffffff	ffff: ree	fffffffffffff 30 48	ffffffffff 38.46 61.54	fffffffffffffffff 30 78	38.46 100.00
		Chi-Square for Equal Prop ffffffffffffff Chi-Square DE	Test ortions fffffff 4.1538 1		
		Pr > ChiSq Sample Size	0.0415 = 78		
Cumulation				Cumulative	
Cumulative	A2	Frequency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffffff	ffff ree	fffffffffffff 28 49	fffffffffff 36.36 63.64	ffffffffffffff 28 77	36.36 100.00
		Chi-Square for Equal Prop ffffffffffffff Chi-Square DF Pr > ChiSq Sample Size	Test ortions fffffff 5.7273 1 0.0167 = 77		
				Cumulative	
Cumulative	A3	Frequency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffffff	ffff: ree	fffffffffffff 32 42	fffffffffff 43.24 56.76	ffffffffffff 32 74	43.24 100.00
		Chi-Square for Equal Prop ffffffffffffff Chi-Square DF Pr > ChiSq Sample Size	Test ortions fffffff 1.3514 1 0.2450 = 74		
				Cumulative	
Cumulative	A4	Frequency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffffff	ffff ree	ffffffffffffffffff 29 45	fffffffffff 39.19 60.81	ffffffffffffffff 29 74	39.19 100.00
		Chi-Square for Equal Prop ffffffffffffff Chi-Square DF Pr > ChiSq Sample Size	Test ortions fffffff 3.4595 1 0.0629 = 74		
				Cumulative	
Cumulative	A5	Frequency	Percent	Frequency	Percent

	Disagree - Strongly Disagree	18	24.32	18	24.32
	Agree - Strongly Agree	56	75.68	74	100.00
		Chi-Square for Equal Pro fffffffffffff Chi-Square	e Test oportions ffffffff 19.5135		
	E	DF Pr > ChiSq ffective Samp Frequency Mi	1 <.0001 le Size = 74 ssing = 1		
				Cumulative	
Cumulative	e B6	Frequency	Percent	Frequency	Percent
<i><i><i><i>tfffffffffffff</i></i></i></i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+++++++++++++++++++++++++++++++++++++++	****	****	
	Disagree - Strongly Disagree Agree - Strongly Agree	33 44	42.86 57.14	33 77	42.86 100.00
		Chi-Square for Equal Pro fffffffffffff Chi-Square	e Test oportions ffffffff 1.5714		
		DF	1		
		Pr > ChiSq Sample Si	0.2100 ze = 77		
Cumulativ	_			Cumulative	
Cumulative	B7	Frequency	Percent	Frequency	Percent
fffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+++++++++++++++++++++++++++++++++++++++	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	****	
	Disagree - Strongly Disagree Agree - Strongly Agree	26 42	38.24 61.76	26 68	38.24 100.00
		Chi-Square for Equal Pro ffffffffffff Chi-Square	e Test oportions ffffffff 3.7647		
		Pr > ChiSq Sample Si	1 0.0523 ze = 68		
				Cumulative	
Cumulative	e B8	Frequency	Percent	Frequency	Percent
fffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffffffffff	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffffffffffff	
	Disagree - Strongly Disagree Agree - Strongly Agree	27 43	38.57 61.43	27 70	38.57 100.00
		Chi-Squard for Equal Pro fffffffffffff Chi-Square DF Pr > ChiSq	e Test pportions ffffffff 3.6571 1 0.0558		
		Sample Si	ze = 70		
Cumulativ	e			Cumulative	
	В9	Frequency	Percent	Frequency	Percent
ffffffff	ffffffffffffffffffffffffffffffffff Disagree - Stronglv Disagree		fffffffffffff 34.67	fffffffffffffff 26	34.67
	Agree - Strongly Agree	49	65.33	75	100.00
		Chi-Squard for Equal Pro fffffffffffff Chi-Square DF	e Test oportions fffffffff 7.0533 1		
		Pr ≻ ChiSq	0.0079		

Effective Sample Size = 75 Frequency Missing = 2

				Cumulative	
Cumulative	B10	Frequency	Percent	Frequency	Percent
<i>fffffffffffffffffffffffffffffffffffff</i>	ffff			+++++++++++++++++++++++++++++++++++++++	
Disagree - Strongly Disa	agree	17	22.97	17	22.97
Agree - Strongly Agree		57	77.03	74	100.00
		Chi-Sauare	e Test		
		for Equal Pro	portions		
		ffffffffffff	fffffff		
		Chi-Square	21.6216		
		DF Pr > ChiSa	⊥ < 0001		
	E	ffective Sampl	e Size = 74		
		Frequency Mis	sing = 1		
				Cumulative	
Cumulative				cumuracive	
	B11	Frequency	Percent	Frequency	Percent
Disagree - Strongly Disa	JJJJJ Agree	111111111111111 14	18.67	14	18.67
Agree - Strongly Agree	.9	61	81.33	75	100.00
		Chi-Square	e Test		
		ffffffffffffffff	portions		
		Chi-Square	29.4533		
		DF	1		
		Pr > ChiSq	<.0001		
		Sample 312	e = 75		
				Cumulative	
Cumulative	B12	Energy	Percent	Erequency	Percent
	DIZ	rrequency	Fercenc	riequency	reitent
<i>fffffffffffffffffffffffffffffffffffff</i>	fffff	fffffffffffffff	fffffffffffff	ffffffffffffffff	
Disagree - Strongly Disa	agree	22	28.95	22	28.95
Agree - Strongly Agree		54	/1.05	76	100.00
		Chi-Square	e Test		
		for Equal Pro	portions		
		fffffffffffff	fffffff 12 4727		
		DF	15.4757		
		Pr > ChiSq	0.0002		
		Sample Siz	e = 76		
Cumulative				Cumulative	
	B13	Frequency	Percent	Frequency	Percent
Disagnee - Strongly Disa	ttttt	ללללללללללללללללללללללללללללללללללללל	ללללללללללללללללללללללללללללללללללללל	22	12 67
Agree - Strongly Agree	igi cc	43	57.33	75	100.00
		Chi-Square	e Test		
		fffffffffffffff	ffffffff		
		Chi-Square	1.6133		
		DF	1		
		Pr > ChiSq	0.2040		
		Jampie 312			
				Cumulative	
Cumulative	C14	Energy	Dencent	Enequency	Dencen+
	C14	riequency	rercent	riequency	rencent
<i>fffffffffffffffffffffffffffffffffffff</i>	fffff	ſſſſſſ	fffffffffffff	fffffffffffffff	
Disagree - Strongly Disa	agree	32	40.51	32	40.51
Agree - Strongly Agree		47	59.49	/9	T00.00

	Chi-Square	Test		
	for Equal Pro	portions		
	Chi-Square	2.8481		
	DF	1		
	Pr > ChiSq Sample Siz	0.0915 e = 79		
			Cumulative	
Cumulative C15	Frequency	Percent	Frequency	Percent
<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ffffffffffff	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Disagree - Strongly Disagree	9	11.84	9	11.84
Agree - Strongly Agree	67	88.10	76	100.00
	Chi-Square	Test		
	for Equal Pro	portions		
	Chi-Square	44.2632		
	DF	1		
	Pr > ChiSq Sample Siz	<.0001 e = 76		
	F		Cumulatius	
Cumulative			Cumulative	
C16	Frequency	Percent	Frequency	Percent
<i><i><i><i>ffffffffffffffffffffffffffffffffff</i></i></i></i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ffffffffffff	ffffffffffffffff	
Disagree - Strongly Disagree	5	6.49	5	6.49
Agree - Strongly Agree	72	93.51	11	100.00
	Chi-Square	Test		
	for Equal Pro	portions		
	Chi-Square	58.2987		
	DF	1		
	Pr > ChiSq Sample Size	<.0001 e = 77		
	56p10 511			
			Cumulative	
Cumulative C17	Enequency	Pencent	Enequency	Pencent
	Frequency	Percent	Frequency	Percent
fffffffffffffffffffffffffffffffffffff	fffffffffffffffff 	ffffffffffffff	<i>fffffffffffffffff</i>	0.22
Agree - Strongly Agree	68	9.55	7 75	9.35
	Chi-Square	lest		
	fffffffffffff	fffffff		
	Chi-Square	49.6133		
	DF Pr \ ChiSa	1 < 0001		
	Sample Size	e = 75		
			Cumulative	
Cumulative	_		_	
C18	Frequency	Percent	Frequency	Percent
*****	fffffffffffffff	ffffffffffff	ffffffffffffffff	
Disagree - Strongly Disagree	8	10.26	8	10.26
Agree - Scholigty Agree	70	89.74	78	100.00
	Chi-Square	Test		
	tor Equal Pro	portions ffffffff		
	Chi-Square	49.2821		
	DF	1		
	Pr > ChiSq Sample Size	<.0001 e = 78		
	50pic 512			

Cumulation				Cumulative	
Cumulative	D19	Frequency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffff	fffff		ffffffffffff 42 86	fffffffffffffffff	42 86
Agree - Strongly Agree	agiee	40	57.14	70	100.00
		Chi-Square for Equal Prop ffffffffffffff Chi-Square DF Pr > ChiSq Sample Size	Test portions ffffffff 1.4286 1 0.2320 e = 70		
Cumulative				Cumulative	
Cumulative	D20	Frequency	Percent	Frequency	Percent
<i><i>fffffffffffffffffffffffffffffff</i></i>	fffff		fffffffffff	fffffffffffffffff	
Disagree - Strongly Disa Agree - Strongly Agree	agree	30 39	43.48	30 69	43.48 100 00
Agree - Strongry Agree			50.52	05	100.00
	E	Chi-Square for Equal Prop fffffffffffff Chi-Square DF Pr > ChiSq ffective Sample Frequency Miss	Test portions fffffff 1.1739 1 0.2786 e Size = 69 sing = 1		
				Cumulative	
Cumulative	D21	Frequency	Percent	Frequency	Percent
Disagree - Strongly Disa	agree	59	79 . 73	59	79.73
Agree - Strongly Agree	0	15	20.27	74	100.00
	E	Chi-Square for Equal Prop ffffffffffff Chi-Square DF Pr > ChiSq Ffective Sample Frequency Miss	Test portions ffffffff 26.1622 1 <.0001 e Size = 74 sing = 1		
Cumulative				Cumulative	
	D22	Frequency	Percent	Frequency	Percent
fffffffffffffffffffffffffffffffffff Disagree - Strongly Disa Agree - Strongly Agree	ffffff agree	<i>ffffffffffffffff</i> 10 51	ffffffffffff 16.39 83.61	<i>fffffffffffffffffffffffffffffffffffff</i>	16.39 100.00
	E	Chi-Square for Equal Prop fffffffffffff Chi-Square DF Pr > ChiSq Effective Sample Frequency Miss	Test portions fffffff 27.5574 1 <.0001 e Size = 61 sing = 3		
Cumulative				Cumulative	
	D23	Frequency	Percent	Frequency	Percent
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffff		ffffffffffff	fffffffffffffffff	
Disagree - Strongly Disa Agree - Strongly Agree	agree	14 60	18.92 81.08	14 74	18.92 100.00

Chi-Square Test for Equal Proportions fffffffffffffffffffffffffff Chi-Square 28.5946 DF 1 Pr > ChiSq <.0001 Sample Size = 74

Cumulative

Cumulative	D24	Frequency	Percent	Frequency	Percent
<i><i><i><i>ffffffffffffffffffffffffffffffffff</i></i></i></i>	fffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ffffffffff		
Disagree - Strongly Disa	agree	19	26.39	19	26.39

Cumulative

Cumulative

100.00

Disagree - Strongly Disagree	19	26.39	19
Agree - Strongly Agree	53	73.61	72
	Chi-Squar	e Test	
	for Equal Pr	oportions	
	fffffffffff	ffffffff	
	Chi-Square	16.0556	
	DF	1	
	Pr ≻ ChiSq	<.0001	
	Sample Si	ze = 72	

Cumulative				
D25	Frequency	Percent	Frequency	Percent
*****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	f
Disagree - Strongly Disagree	21	26.58	21	26.58
Agree - Strongly Agree	58	73.42	79	100.00
	Chi-Squar	e Test		
	for Equal Pro	oportions		
	fffffffffff	ffffffff		
	Chi-Square	17.3291		
	DF	1		
	Pr ≻ ChiSq	<.0001		

Sample Size = 79

Annexure E: Chi-square test for comparisons

```
Table of Number_residing by A1
Frequency,
Percent ,
Row Pct
Col Pct ,Disagree,Agree - , Total
             , - Stron, Strongly,
             ,gly Disa, Agree ,
,gree , ,
fffffffffffffffffffffffffff
1-6 , 12 , 28 , 40
, 15.38 , 35.90 , 51.28
, 30.00 , 70.00 ,
, 40.00 , 58.33 ,
ffffffffffffffffffffff
>6 , 18 , 20 , 38
, 23.08 , 25.64 , 48.72
, 47.37 , 52.63 ,
, 60.00 , 41.67 ,
ffffffffffffffffffff
Total
                   30
                               48
                                                78
                  38.46
                             61.54
                                        100.00
```

Statistics for Table of	Number	_residing	by A1
Statistic	DF	Value	Prob
<i>fffffffffffffffffffffffffffffff</i>	fffffff	ffffffffff	ffffffff
Chi-Square	1	2.4837	0.1150
Likelihood Ratio Chi-Square	1	2.4964	0.1141
Continuity Adj. Chi-Square	1	1.8041	0.1792
Mantel-Haenszel Chi-Square	1	2.4518	0.1174
Phi Coefficient		-0.1784	
Contingency Coefficient		0.1757	
Cramer's V		-0.1784	

Table of Number residing by A2 Frequency, Percent , Row Pct Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 14, 26, 18.18, 33.77, 1-6 40 , 51.95 , , 35.00 , 65.00 , , 50.00 , 53.06 , ffffffffffffffffffffffffff , 14, 23, 37 >6 18.18 , 29.87 , 48.05 37.84 , 62.16 , , 46.94 , , 50.00 , 46.94 ffffffffffffffffffffffffffffffffff 77 Total 28 49 36.36 63.64 100.00

Statistics for Table of Number_residing by $\ensuremath{\mathsf{A2}}$ Statistic DF Value Prob Chi-Square 1 0.0669 0.7959 Likelihood Ratio Chi-Square 1 0.0669 0.7959 Continuity Adj. Chi-Square Mantel-Haenszel Chi-Square 0.0005 1 0.9828 0.0660 0.7972 1

Phi Coefficient -0.0295 Contingency Coefficient 0.0295 Cramer's V -0.0295 Fisher's Exact Test Cell (1,1) Frequency (F) 14 Left-sided Pr <= F 0.4911 Right-sided Pr >= F 0.6900 Table Probability (P) 0.1810 Two-sided Pr <= P 0.8169 Sample Size = 77 Table of Number_residing by A3 Frequency, Percent , Row Pct Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree 1-6 , 13 , 25 , 38 , 17.57 , 33.78 , 51.35 , 34.21 , 65.79 , , 40.63 , 59.52 , ffffffffffffffffffffffff , 19 , 17 , 36 , 25.68 , 22.97 , 48.65 , 52.78 , 47.22 , , 59.38 , 40.48 , >6 *ffffffff*^*fffffff*^*fffffff* 32 42 74 Total 43.24 56.76 100.00 Statistics for Table of Number_residing by A3 DF Prob Statistic Value 1 2.5967 1 2.6108 Chi-Square 0.1071 Likelihood Ratio Chi-Square 0.1061 1.8952 Continuity Adj. Chi-Square 0.1686 1 Mantel-Haenszel Chi-Square 1 2.5616 0.1095 Phi Coefficient -0.1873 Contingency Coefficient 0.1841 Cramer's V -0.1873 Fisher's Exact Test Cell (1,1) Frequency (F) 13 Left-sided Pr <= F Right-sided Pr >= F 0.0841 0.9679 Table Probability (P) 0.0520 Two-sided Pr <= P 0.1588 Sample Size = 74 Table of Number_residing by A4 Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , , 15 , 24 , 39 , 20.27 , 32.43 , 52.70 1-6 , 38.46 , 61.54 , , 51.72 , 53.33 , ffffffffffffffffffffffffff , 14 , 21 , 35 , 18.92 , 28.38 , 47.30 , 40.00 , 60.00 , >6 , 48.28 , 46.67 ,

Statistics for Tab Statistic ffffffffffffffffffffffffffffffffffff	le of Nu D ffffffff uare are	umber_r)F fffffff: 1 1	esiding by Value ffffffffff 0.0183 0.0183 0.0000	y A4 Prob ffffffff 0.8923 0.8923 1.0000
Phi Coefficient Contingency Coefficient Cramer's V	are	T	0.0181 -0.0157 0.0157 -0.0157	0.8931
Fisher ffffffffffff Cell (1,1) Fr Left-sided Pr Right-sided P Table Probabi Two-sided Pr Samp	's Exact ffffffff equency <= F r >= F lity (P) <= P le Size	: Test ffffff: (F) = 74	fffffff 15 0.5406 0.6459 0.1865 1.0000	
Table of Nu Frequency,	mber_res	iding	by A5	
Percent				
Row Pct				
Col Pct .Dis	agree.Ag	ree -	. Total	
	Stron St	rongly	, 10001	
, 		anoo	,	
,gra	D15a, P	lee .	,	
, gr.e	e ,		•	
	<i>ttttt tt</i>	****		
1-6 ,	7,	32	, 39	
و	9.46 ,	43.24	, 52.70	
, 1	7.95 ,	82.05	,	
, 3	8.89,	57.14	,	
ffffffff [^] fff	fffff [^] ff	ffffff	^	
>6 .	11 .	24	. 35	
. 1	4.86 .	32.43	. 47.30	
, , ,	1.43 .	68.57		
, 6	1 11	42 86	,	
, , , , , , , , , , , , , , , , , , , ,	, fffff^ff	++++++	^	
Total	18	56	74	
2	4 32	75 68	100 00	
-	1.52	/ 5100	100.00	
Statistics for Tab	le of Nu	mber r	esiding h	ν Δ5
Statistic		NE	Value	Proh
+++++++++++++++++++++++++++++++++++++++	++++++++		ttttttt	++++++++
Chi-Square		1	1 8209	0 1777
Likelihood Ratio Chi-So	uare	1	1 8268	0 1765
Continuity Adi Chi-Sau	are	1	1 1622	0 2810
Mantel-Haenszel Chi-Squ	are	1	1 7962	0.1802
Phi Coefficient	are	1	-0 1560	0.1002
Contingency Coefficient			0.1500	
Contrigency coerricient			-0 1569	
			-0.109	
Fisher	'c Evact	Toct		
Fisher				
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	` <i>ŢŢŢŢŢŢ</i> Ţ	,,,,,,,,,,	
	equency	(F)	/	
Lett-sided Pr	<= ⊢		0.1406	
Right-sided P	r >= F		и.94/8	

Left-Sided Pr <= F</td>0.1406Right-sided Pr >= F0.9478Table Probability (P)0.0883Two-sided Pr <= P</td>0.2777Effective Sample Size = 74Frequency Missing = 1

Table of Number_residing by B6 Frequency, Percent , Row Pct ,

	Col Pct	,Disagree,A	gree - ,	, Total	
		, - Stron,S	trongly,	,	
		,gly Disa,	Agree ,	,	
		,gree ,			
	ffffffff	^	fffffff		
	1-6	. 19 .	20.	. 39	
		. 24.68 .	25.97	50.65	
		. 48.72 .	51.28		
		. 57.58 .	45.45		
	<i><i><i><i>ffffffffffff</i></i></i></i>	, , , , , , , , , , , , , , , , , , ,	fffffff		
	>6	. 14 .	. 24	. 38	
		18 18	31 17	49 35	
		36 84	63 16	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		, 50.04 ,	54 55	•	
		, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	Total	ר נונונונו.		77	
	IULAI	42.96	44 57 14	100 00	
		42.00	57.14	100.00	
Ctati	istics for		umbon na	ciding h	, DC
Stat.	LSLICS TOP	. LADIE OF N	umber_re	Value	y DO Dnah
				value	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 1	1 1004	
Chi-Square			1	1.1084	0.2924
Likelinood	i Ratio Ch	11-Square	1	1.111/	0.291/
Continuity	/ Adj. Chi	-Square	1	0.6/65	0.4108
Mantel-Hae	enszel Chi	-Square	1	1.0940	0.2956
Phi Coetti	lcient	• .		0.1200	
Contingen	cy Coeffic	ient		0.1191	
Cramer's \	/			0.1200	
	Fi	sher's Exac	t Test		
	ffffffff	fffffffffff	fffffff	ffffff	
	Cell (1,1	 Frequency 	(F)	19	
	Left-side	ed Pr <= F		0.9004	
	Right-sid	led Pr >= F		0.2055	
	Table Pro	bability (P)	0.1060	
	Two-sided	1 Pr <= P		0.3594	
		Sample Size	= 77		
	Table c	of Number re	ciding k	υν B7	

Table of Number_residing by B7 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , , fffffffff fffffffffffff 1-6 , 16 , 19 , 35 , 23.53 , 27.94 , 51.47 , 45.71 , 54.29 , , 61.54 , 45.24 , ffffffffffffffffffffff >6 , 10 , 23 , 33 , 14.71 , 33.82 , 48.53 , 30.30 , 69.70 , , 38.46 , 54.76 , fffffffffffffffffffff Total 26 42 68
 26
 42
 68

 38.24
 61.76
 100.00
 Total 38.24

Statistics for Table of Number_residing by B7 Statistic DF Value Prob 0.1912 1 1.7082 Chi-Square 1.7199 1.1180 Likelihood Ratio Chi-Square 1 0.1897 Continuity Adj. Chi-Square 0.2904 1 Mantel-Haenszel Chi-Square 1 1.6831 0.1945 Phi Coefficient 0.1585 Contingency Coefficient 0.1565 0.1585 Cramer's V

> Fisher's Exact Test *ffffffffffffffffffffffffffffffffffff*

Cell (1,1) Frequency (F)	16
Left-sided Pr <= F	0.9407
Right-sided Pr >= F	0.1452
Table Probability (P)	0.0859
Two-sided Pr <= P	0.2200
Sample Size = 68	

```
Table of Number_residing by B8
Frequency,
Percent ,
Row Pct ,
Col Pct ,Disagree,Agree - , Total
             , - Stron, Strongly,
             ,gly Disa, Agree ,
,gree , ,
ffffffffffffffffffffffffffffffff
1-6 , 14 , 21 , 35
, 20.00 , 30.00 , 50.00
, 40.00 , 60.00 ,
, 51.85 , 48.84 ,
fffffffffffffffffffff
>6 , 13 , 22 ,
, 18.57 , 31.43 ,
, 37.14 , 62.86 ,
, 48.15 , 51.16 ,
fffffffffffffffffffffffffffffff
                                                 35
                                           50.00
                   27 43
                                                 70
Total
                  38.57
                              61.43 100.00
```

Statistics for Table of	Number_	_residing	by B8
Statistic	DF	Value	Prob
<i>fffffffffffffffffffffffffffffffffffff</i>	ffffff	ſſſſſ	fffffffff
Chi-Square	1	0.0603	0.8060
Likelihood Ratio Chi-Square	1	0.0603	0.8060
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0594	0.8074
Phi Coefficient		0.0293	
Contingency Coefficient		0.0293	
Cramer's V		0.0293	

Table of Number_residing by B9 Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 1-6 , 11 , 28 , , 14.67 , 37.33 , , 28.21 , 71.79 , , 42.31 , 57.14 , ffffffffffffffffffffffffffffff 39 52.00 36 48.00 49 75 Total 26 34.67 65.33 100.00

Statistics for Table of Number_residing by B9 Statistic DF Value Prob

1 1.4978 1 1.5012 Chi-Sauare 0.2210 Likelihood Ratio Chi-Square 0.2205 Continuity Adj. Chi-Square 0.9624 0.3266 1 Mantel-Haenszel Chi-Square 1.4778 0.2241 1 Phi Coefficient -0.1413 Contingency Coefficient 0.1399 Cramer's V -0.1413 Fisher's Exact Test Cell (1,1) Frequency (F) 11 Left-sided Pr <= F 0.1633 Right-sided Pr >= F 0.9289 Table Probability (P) 0.0923 Two-sided Pr <= P 0.2368 Effective Sample Size = 75 Frequency Missing = 2 Table of Number_residing by B10 Frequency, Percent , Row Pct Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , fffffffffffffffffffffffffffff 1-6 , 11 , 25 , 36 , 14.86 , 33.78 , 48.65 , 30.56 , 69.44 , , 64.71 , 43.86 , fffffffffffffffffffff 6, 32, 38 8.11, 43.24, 51.35 , >6 , , 8.11 , 43.24 , , 15.79 , 84.21 , , 35.29 , 56.14 , ffffffffffffffffffffffff Total 17 57 74 77.03 100.00 22.97 Statistics for Table of Number_residing by B10 DF Value Prob Statistic 1 2.2778 Chi-Square 0.1312 2.3003 Likelihood Ratio Chi-Square 0.1293 1 Continuity Adj. Chi-Square 1 Mantel-Haenszel Chi-Square 1 1.5198 0.2176 2.2471 0.1339 Phi Coefficient 0.1754 Contingency Coefficient 0.1728 Cramer's V 0.1754 Fisher's Exact Test Cell (1,1) Frequency (F) 11 Left-sided Pr <= F 0.9636 Right-sided Pr >= F 0.1087 Table Probability (P) 0.0723 Two-sided Pr <= P 0.1705 Effective Sample Size = 74 Frequency Missing = 1 Table of Number_residing by B11 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , 9, 27, 36 1-6

, 12.00 , 36.00 , 48.00 , 25.00 , 75.00 , , 64.29 , 44.26 , fffffffffffffffffffff 5, 34, 39 >6 , 6.67 , 45.33 , 52.00 , , 12.82 , 87.18 , , 35.71 , 55.74 , ffffffffffffffffffffffffffffffffff 75 Total 14 61 18.67 81.33 100.00 Statistics for Table of Number_residing by B11 Statistic DF Value Prob Chi-Square 1 1.8291 0.1762 0.1745 Likelihood Ratio Chi-Square 1.8440 1 Continuity Adj. Chi-Square 1 1.1148 0.2910 Mantel-Haenszel Chi-Square 1.8047 0.1791 1 Phi Coefficient 0.1562 Contingency Coefficient 0.1543 Cramer's V 0.1562 Fisher's Exact Test Cell (1,1) Frequency (F) 9 Left-sided Pr <= F 0.9511 Right-sided Pr >= F 0.1456 0.0967 Table Probability (P) Two-sided Pr <= P 0.2387 Sample Size = 75 Table of Number_residing by B12 Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 1-6 , 16 , 23 , , 21.05 , 30.26 , , 41.03 , 58.97 , , 72.73 , 42.59 , , fffffffffffffffffffffffff 39 51.32 31, 6, >6 37 , 7.89, 40.79, 48.68 , , 16.22 , 83.78 , , 27.27 , 57.41 , ffffffffffffffffffffffffffffffffff 54 76 Total 22 28.95 71.05 100.00 Statistics for Table of Number_residing by B12 DF Value Prob 1 5.6819 0.0171 1 5.8535 0.0155 4.5397 0.0331 1 1 5.6072 0.0179 0.2734 0.2637 0.2734 Fisher's Exact Test

Statistic Chi-Square Likelihood Ratio Chi-Square Continuity Adj. Chi-Square Mantel-Haenszel Chi-Square Phi Coefficient Contingency Coefficient Cramer's V

Cell (1,1) Frequency (F) 16 Left-sided Pr <= F 0.9963 Right-sided Pr >= F 0.0158 Table Probability (P) 0.0121 Two-sided Pr <= P 0.0230 Sample Size = 76

Table of Number_residing by B13 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 1-6 , 14 , 26 , 40 , 18.67 , 34.67 , 53.33 , 35.00 , 65.00 , , 43.75 , 60.47 , ffffffffffffffffffffff , 18 , 17 , 35 , 24.00 , 22.67 , 46.67 >6 , 51.43 , 48.57 , , 56.25 , 39.53 , ffffffffffffffffffffffffffff Total 32 43 75 42.67 57.33 100.00

Statistics for Table of	Number_	_residing by	B13
Statistic	DF	Value	Prob
<i>fffffffffffffffffffffffffffffff</i>	fffffff	, , , , , , , , , , , , , , , , , , ,	fffffff
Chi-Square	1	2.0595	0.1513
Likelihood Ratio Chi-Square	1	2.0655	0.1507
Continuity Adj. Chi-Square	1	1.4427	0.2297
Mantel-Haenszel Chi-Square	1	2.0321	0.1540
Phi Coefficient		-0.1657	
Contingency Coefficient		0.1635	
Cramer's V		-0.1657	
Fisher's Ex	kact Tes	st	
ffffffffffffffffffffffffffffffffffff	fffffff	ffffffff	
Cell (1,1) Frequer	ιcy (F)	14	
Left-sided Pr <= H	=	0.1148	
Right-sided Pr >=	0.9527		
Table Probability	(P)	0.0675	
Two-sided Pr <= P		0.1684	

Sample Size = 75

Table of Number_residing by C14 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree ,
 fiffiff
 fiffiff
 fiffiff

 1-6
 ,
 16
 ,
 25
 ,

 ,
 20.25
 ,
 31.65
 ,
 ,
 39.02
 ,
 60.98
 ,
 ,
 50.00
 ,
 53.19
 ,
 ,
 ,
 ,
 ,
 ,
 16
 ,
 27
 .
 .
 ,
 50.00
 ,
 53.19
 ,
 ,
 ,
 ,
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 41 51.90 , 16 , 22 , 38 , 20.25 , 27.85 , 48.10 >6 Total 32 47 79 59.49 100.00 40.51

Statistics for Table of	Number_r	esiding by	C14
Statistic	DF	Value	Prob
<i>fffffffffffffffffffffffffffffff</i>	ffffffff	ffffffffff	fffffff
Chi-Square	1	0.0777	0.7805
Likelihood Ratio Chi-Square	1	0.0777	0.7805
Continuity Adj. Chi-Square	1	0.0024	0.9606
Mantel-Haenszel Chi-Square	1	0.0767	0.7818

Phi Coefficient -0.0314 Contingency Coefficient 0.0313 Cramer's V -0.0314 Fisher's Exact Test Cell (1,1) Frequency (F) 16 Left-sided Pr <= F 0.4801 Right-sided Pr >= F 0.6943 Table Probability (P) 0.1744 Two-sided Pr <= P 0.8216 Sample Size = 79 Table of Number_residing by C15 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree . *ffffffff*,*fffffff*,*fffffff*, 6, 33, 39 7.89, 43.42, 51.32 1-6 , , 3, 34, 37 3.95, 44.74, 48.68 >6 , , , 8.11 , 91.89 , , 33.33 , 50.75 , ffffffff^fffffffffffffffffffff 9 Total 67 76 11.84 88.16 100.00 Statistics for Table of Number_residing by C15 DF Prob Statistic Value 0.3264 Chi-Square 1 0.9630 0.9817 Likelihood Ratio Chi-Square 0.3218 Continuity Adj. Chi-Square 1 1 0.3921 0.5312 Mantel-Haenszel Chi-Square 1 0.9503 0.3296 Phi Coefficient 0.1126 Contingency Coefficient 0.1119 Cramer's V 0.1126 WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Fisher's Exact Test Cell (1,1) Frequency (F) 6 Left-sided Pr <= F 0.9106 Right-sided Pr >= F 0.2673 Table Probability (P) 0.1779 Two-sided Pr <= P 0.4814 Sample Size = 76 Table of Number_residing by C16 Frequency, Percent , Row Pct Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree fffffffff[^]fffffff[^]fffffff^ŕ 1-6 , 4 , 35 , 39 , 5.19 , 45.45 , 50.65 , 10.26 , 89.74 , , 80.00 , 48.61 , fffffffffffffffffffff >6 1, 37, 38 ,

,	1.30	, 48.05	, 49.35
,	2.63	, 97.37	,
,	20.00	, 51.39	,
ffffffff^f	ffffff	^ffffffff	^
Total	5	72	77
	6.49	93.51	100.00

Statistics for Table of Number_residing by C16 Statistic DF Value Prob 1.8429 Chi-Square 0.1746 1 Likelihood Ratio Chi-Square 1 1.9700 0.1604 Continuity Adj. Chi-Square 0.8010 0.3708 1 Mantel-Haenszel Chi-Square 1.8189 1 0.1774 Phi Coefficient 0.1547 Contingency Coefficient 0.1529 Cramer's V 0.1547 WARNING: 50% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Table of	f Number_re	siding b	y C17
Frequency	,		
Percent	,		
Row Pct	•		
Col Pct	, Disagree,A	gree - ,	Total
-	Stron.S	trongly.	
	glv Disa	Δgree	
-	gree	, giec j	
	, gi ee ,	, , ,	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1-6	, 4,	34,	38
	, 5.33,	45.33 ,	50.67
	, 10.53 ,	89.47 ,	
	, 57.14 ,	50.00 ,	
ffffffff	^fffffffff	ffffff	
>6	, 3,	34,	37
-	4.00	45.33	49.33
-	. 8.11	91.89 .	
	. 42.86 .	50.00	
<i><i><i><i><i></i></i></i></i></i>	, . <u>_</u> ,cc, , ^fffffffff	<i>fffffff</i>	
Total	7	22	75
IUCAL	0 22	00 67	100 00
	9.33	90.6/	100.00

Statistics for Table of Number_residing by C17 DF Proh Statistic Value Chi-Square 0.1295 0.7189 1 Likelihood Ratio Chi-Square 0.1300 0.7184 1 Continuity Adj. Chi-Square 1 0.0000 1.0000 Mantel-Haenszel Chi-Square 1 0.1278 0.7207 Phi Coefficient 0.0416 Contingency Coefficient 0.0415 Cramer's V 0.0416 WARNING: 50% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 75

```
Table of Number_residing by C18
Frequency,
Percent ,
Row Pct
Col Pct ,Disagree,Agree - , Total
         , - Stron, Strongly,
         ,gly Disa, Agree ,
         ,gree
            ffffffffffffffffffffffffffffffff
                                 41
1-6
        ,
                             52.56
         ,
         ,
, 12.50 , 57.14
ffffffffffffffffffffffffffffffffff
            7, 30,
8.97, 38.46,
81.08,
                                 37
>6
        ر
                             47.44
         ,
           18.92 , 81.08 ,
87.50 , 42.86 ,
         ,
78
Total
               8
                        70
            10.26
                   89.74
                            100.00
```

Statistics for Table of Number_residing by C18 Statistic DF Value Prob Chi-Square 1 5.7385 0.0166 Likelihood Ratio Chi-Square 6.2903 0.0121 1 Continuity Adj. Chi-Square 4.0878 1 0.0432 Mantel-Haenszel Chi-Square 1 5.6650 0.0173 Phi Coefficient -0.2712 Contingency Coefficient 0.2618 Cramer's V -0.2712 WARNING: 50% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Table of Number_residing by D19 Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree 1-6 , 18 , 19 , 37 , 25.71 , 27.14 , 52.86 , 48.65 , 51.35 , , 60.00 , 47.50 , fffffffffffffffffffff 12, 21, >6 33 , , 17.14 , 30.00 , 47.14 , 36.36 , 63.64 , , 40.00 , 52.50 , 30 40 70 Total 57.14 100.00 42.86

```
Chi-Square
                                  1.0749
                                            0.2998
                            1
Likelihood Ratio Chi-Square
                                   1.0795
                                            0.2988
                            1
Continuity Adj. Chi-Square
                            1
                                   0.6318
                                            0.4267
Mantel-Haenszel Chi-Square
                                   1.0596
                                            0.3033
                            1
Phi Coefficient
                                   0.1239
Contingency Coefficient
                                   0.1230
Cramer's V
                                   0.1239
               Fisher's Exact Test
         Cell (1,1) Frequency (F)
                                      18
         Left-sided Pr <= F
                                   0.8997
         Right-sided Pr >= F
                                   0.2136
         Table Probability (P)
                                   0.1133
         Two-sided Pr <= P
                                   0.3406
                 Sample Size = 70
           Table of Number_residing by D20
         Frequency,
         Percent ,
         Row Pct
         Col Pct ,Disagree,Agree - , Total
                 , - Stron, Strongly,
                 ,gly Disa, Agree ,
         1-6 , 16 , 19 ,
, 23.19 , 27.54 ,
, 45.71 , 54.29 ,
, 53.33 , 48.72 ,
ffffffffffffffffffffffffff
                                        35
                                    50.72
                      14 ,
                               20,
                                        34
         >6
                 ,
                    20.29 , 28.99 , 49.28
                 ,
                    41.18 , 58.82 ,
46.67 , 51.28 ,
                 ,
                    46.67 ,
         30
                                        69
         Total
                               39
                                  100.00
                    43.48
                            56.52
   Statistics for Table of Number_residing by \mathsf{D20}
Statistic
                           DF
                                   Value
                                              Prob
0.1445
Chi-Square
                                            0.7038
                            1
Likelihood Ratio Chi-Square
                            1
                                   0.1446
                                            0.7038
Continuity Adj. Chi-Square
                                   0.0188
                                            0.8908
                            1
Mantel-Haenszel Chi-Square
                                   0.1424
                                            0.7059
                            1
Phi Coefficient
                                   0.0458
Contingency Coefficient
                                   0.0457
Cramer's V
                                   0.0458
               Fisher's Exact Test
         Cell (1,1) Frequency (F)
                                      16
         Left-sided Pr <= F
                                   0.7331
         Right-sided Pr >= F
                                   0.4455
         Table Probability (P)
                                   0.1787
         Two-sided Pr <= P
                                   0.8094
             Effective Sample Size = 69
               Frequency Missing = 1
           Table of Number_residing by D21
         Frequency,
         Percent ,
         Row Pct
         Col Pct , Disagree, Agree - , Total
                 , - Stron, Strongly,
                 ,gly Disa, Agree ,
         28 , 10 , 38
37.84 , 13.51 , 51.35
         1-6
                 ر
ر
                    73.68 , 26.32 ,
                 ,
```

```
155
```

, 47.46 , 66.67 , fffffffffffffffffffffffffffffff >6 31, 5, 36 , 41.89 , 6.76 , 48.65 , 41.35 , 0.76 , , 86.11 , 13.89 , , 52.54 , 33.33 , fffffffffffffffffffffffffffffff 59 Total 15 74 79.73 20.27 100.00 Statistic DF Value Prob 1 1.7664 Chi-Square 0.1838 1.7975 Likelihood Ratio Chi-Square 1 0.1800 Continuity Adj. Chi-Square 1 1.0812 0.2984 Mantel-Haenszel Chi-Square 1 1.7426 0.1868 Phi Coefficient -0.1545 Contingency Coefficient 0.1527 Cramer's V -0.1545 Fisher's Exact Test Cell (1,1) Frequency (F) 28 Left-sided Pr <= F 0.1492 Right-sided Pr >= F 0.9485 Table Probability (P) 0.0977 Two-sided Pr <= P 0.2503 Effective Sample Size = 74 Frequency Missing = 1 Table of Number_residing by D22 Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , ffffffffffffffffffffffffffff 1-6 , 6 , 21 , , 9.84 , 34.43 , , 22.22 , 77.78 , , 60.00 , 41.18 , fffffffffffffffffffffffffffff 27 44.26 , 4, 30, , 6.56, 49.18, >6 34 55.74 , 11.76 , 88.24 , , 40.00 , 58.82 , ffffffff^fffffffffffffffffffff Total 10 51 61 83.61 100.00 16.39 Statistics for Table of Number_residing by D22 Statistic DF Prob Value 1.2008 1.1942 Chi-Square 1 0.2732 Likelihood Ratio Chi-Square 0.2745 1 Continuity Adj. Chi-Square 0.5590 0.4547 1 Mantel-Haenszel Chi-Square 1.1811 0.2771 1 Phi Coefficient 0.1403 0.1389 Contingency Coefficient Cramer's V 0.1403 WARNING: 25% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Fisher's Exact Test Cell (1,1) Frequency (F) 6 Left-sided Pr <= F 0.9254 Right-sided Pr >= F 0.2268 Table Probability (P) Two-sided Pr <= P 0.1522 0.3147

156

Effective Sample Size = 61

Frequency Missing = 3

Table of Number_residing by D23 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , 6, 30, , 8.11, 40.54, 1-6 36 48.65 , 16.67 , 83.33 , , 42.86 , 50.00 , ffffffffffffffffffffffffffffffffff >6 , 8 , 30 , 38 , 10.81 , 40.54 , 51.35 , 21.05 , 78.95 , , 57.14 , 50.00 , ffffffffffffffffffffff 14 60 74 Total 81.08 100.00 18.92 Statistics for Table of Number_residing by D23 Statistic DF Value Prob 0.2318 1 Chi-Square 0.6302 Likelihood Ratio Chi-Square 1 0.2326 0.6296 Continuity Adj. Chi-Square 0.0341 0.8536 1 Mantel-Haenszel Chi-Square 0.2287 1 0.6325 Phi Coefficient -0.0560 0.0559 Contingency Coefficient Cramer's V -0.0560 Fisher's Exact Test Cell (1,1) Frequency (F) 6 Left-sided Pr <= F 0.4278 Right-sided Pr >= F 0.7811 Table Probability (P) Two-sided Pr <= P 0.2089 0.7690 Sample Size = 74 Table of Number_residing by D24 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree 1-6 , 10 , 28 , 38 , 13.89 , 38.89 , 52.78 , 26.32 , 73.68 , , 52.63 , 52.83 , ffffffffffffffffffffff , 9, 25, , 12.50, 34.72, , 26.47, 73.53, , 47.37, 47.17, 34 >6 47.22 *fffffff*^*ffffff*^*ffffff* 19 53 72 Total 26.39 73.61 100.00 Statistics for Table of Number_residing by D24

DF Prob Statistic Value 1 0.0002 0.9881 Chi-Square Likelihood Ratio Chi-Square 0.0002 0.9881 1 Continuity Adj. Chi-Square 0.0000 1.0000 1

Mantel-Haenszel Ch Phi Coefficient Contingency Coeffi Cramer's V	i-Square cient	1 0 -0 0 -0	.0002 .0018 .0018 .0018	0.9882
F ffffffff Cell (1, Left-sid Right-si Table Pr Two-side	isher's Exac ffffffffffff 1) Frequency ed Pr <= F ded Pr >= F obability (P d Pr <= P Sample Size	t Test fffffffff (F) 0 0 0 1 = 72	fffff 10 .5987 .6119 .2106 .0000	
Table Frequenc Percent Row Pct Col Pct	of Number_res y, , ,Disagree,A , - Stron,S ,gly Disa, /	siding by gree - , trongly, Agree ,	D25 Total	
<i>ffffffff</i> 1-6	<pre>,gree , f fffffffff f , 10 , , 12.66 , , 25.00 , , 47.62 .</pre>	fffffff 30, 37.97, 75.00, 51.72,	40 50.63	
ffffffff >6	f [^] fffffffffffff , 11 , , 13.92 , , 28.21 , , 52.38 ,	fffffff 28, 35.44, 71.79, 48.28,	39 49.37	
Total	<i>t ttttttt t:</i> 21 26.58	58 73.42	79 100.00	
Statistics for Statistic ffffffffffffffffffffffffffffffffffff	Table of Num ffffffffffffffffff	mber_resi DF fffffffff 1 0	ding by Value ffffffff .1039	D25 Prob fffffff 0.7471
Likelihood Ratio C Continuity Adj. Ch Mantel-Haenszel Ch Phi Coefficient Contingency Coeffi Cramer's V	hi-Square i-Square i-Square cient	1 0 1 0 1 0 -0 0 -0	.1040 .0046 .1026 .0363 .0362 .0363	0.7471 0.9460 0.7487
F ffffffff Cell (1, Left-sid Right-si Table Pr Two-side	isher's Exac fffffffffffff 1) Frequency ed Pr <= F ded Pr >= F obability (P d Pr <= P Sample Size	t Test fffffffff (F) 0 0 0) 0 0 = 79	fffff 10 .4729 .7178 .1907 .8027	
Tabl Frequenc Percent Row Pct Col Pct	e of Number_ y, , ,Disagree,Af , - Stron,S ⁻ ,gly Disa, /	home by A gree - , trongly, Agree ,	1 Total	
<i>ffffffff</i> 0-2	,gree , f^ffffffffffff , 10 , , 14.71 , , 35.71 , , 40.00 ,	, 18, 26.47, 64.29, 41.86,	28 41.18	
<i>ffffffff</i> >2	f fffffffff , 15 , , 22.06 ,	tttffff 25 , 36.76 ,	40 58.82	

	, 37.50,	62.50,	
	, 60.00 ,	58.14 ,	
ffffffff	^ <i>ffffffff</i>	fffffff^	
Total	25	43	68
	36.76	63.24	100.00

Statistics for Table	of Numb	er_home by	A1
Statistic	DF	Value	Prob
<i>fffffffffffffffffffffffffffffff</i>	fffffff	fffffffffff	fffffff
Chi-Square	1	0.0226	0.8805
Likelihood Ratio Chi-Square	1	0.0226	0.8804
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0223	0.8814
Phi Coefficient		-0.0182	
Contingency Coefficient		0.0182	
Cramer's V		-0.0182	
Fisher's Ex	kact Tes	t	

fffffffffffffffffffffffffffff	ffffff
Cell (1,1) Frequency (F)	10
Left-sided Pr <= F	0.5434
Right-sided Pr >= F	0.6560
Table Probability (P)	0.1995
Two-sided Pr <= P	1.0000
Sample Size = 68	

Table of Number_home by A2
Frequency,
Percent ,
Row Pct ,
Col Pct , Disagree, Agree - , Total
, - Stron, Strongly,
,gly Disa, Agree ,
,gree , ,
fffffffffffffffffffffff
0-2 , 10 , 19 , 29
, 14.93 , 28.36 , 43.28
, 34.48 , 65.52 ,
, 43.48 , 43.18 ,
fffffffff^fffffffffffff
>2 , 13 , 25 , 38
, 19.40 , 37.31 , 56.72
, 34.21 , 65.79 ,
, 56.52 , 56.82 ,
<i><i><i><i><i><i><i><i><i><i></i></i></i></i></i></i></i></i></i></i>
Total 23 44 67
34.33 65.67 100.00

Statistics for Table of Number_home by A2 Statistic Prob DF Value 0.0005 0.9814 Chi-Square 1 Likelihood Ratio Chi-Square 1 0.0005 0.9815 Continuity Adj. Chi-Square Mantel-Haenszel Chi-Square 0.0000 1.0000 1 0.0005 0.9816 1 Phi Coefficient 0.0028 Contingency Coefficient Cramer's V 0.0028 0.0028

Table of Number_home by A3 Frequency, Percent , Row Pct ,

	Col Pct	,Disagree,A	gree - trongly	, Total ,	
		,gly Disa,	Agree	,	
	ffffffff	,gree , f^fffffffff	fffffff	, ^	
	0-2	, 11 ,	17	, 28	
		, 16.92 ,	26.15	, 43.08	
		, 39.29, , 39.29,	45.95	ر ر	
	fffffff	f [^] fffffffff [^] f	ffffff	~ ~~	
	>2	, 1/, , 26.15.	20 30.77	, 37 , 56,92	
		, 45.95 ,	54.05	,	
	<i>tttttt</i>	, 60.71 , f^fffffffff	54.05	, ^	
	Total	28	37	65	
		43.08	56.92	100.00	
Sta	atistics f	for Table of	Number	_home by	A3
Statistic		ffffffffffff	D⊢ fffffff;	Value ffffffff	Prob fffffffff
Chi-Square	2		1	0.2883	0.5913
Likelihood	d Ratio Ch / Adi Chi	ni-Square	1	0.2891	0.5908
Mantel-Hae	enszel Chi	i-Square	1	0.2839	0.5942
Phi Coeff:	icient			-0.0666	
Contingend Cramer's N	cy Coettic /	cient		0.0665 -0.0666	
	Fi <i>ffffffff</i>	isher's Exac £££££££	t Test ffffffff	fffffff	
	Cell (1,1	1) Frequency	(F)	11	
	Left-side	ed Pr <= F		0.3889	
	Table Pro	obability (P)	0.1738	
	Two-sided	d Pr <= P		0.6223	
		c 1 c'	6 F		
		Sample Size	= 65		
	Table	Sample Size	= 65 home by	Α4	
	Table	Sample Size e of Number_ /,	= 65 home by	Α4	
	Table Frequency Percent Row Pct	Sample Size e of Number_ /,	e = 65 home by	Α4	
	Table Frequency Percent Row Pct Col Pct	Sample Size e of Number_ /, , , ,Disagree,A	= 65 home by gree -	A4 , Total	
	Table Frequency Percent Row Pct Col Pct	<pre>Sample Size of Number_ , , , , , , , , , , , , , , , , , , ,</pre>	= 65 home by gree - trongly	A4 , Total	
	Table Frequency Percent Row Pct Col Pct	<pre>Sample Size of Number_ , , , , , , , , , , , , , , , , , , ,</pre>	= 65 home by gree - trongly Agree	A4 , Total	
	Table Frequency Percent Row Pct Col Pct	<pre>Sample Size of Number_ , , , , , , , , , , , , , , , , , , ,</pre>	= 65 home by gree - trongly Agree ffffffff	A4 , Total	
	Table Frequency Percent Row Pct Col Pct fffffffff 0-2	<pre>Sample Size of Number_ , , ,Disagree,A , - Stron,S ,gly Disa, ,gree , f`ffffffffffff , 11 , . 17.19 .</pre>	= 65 home by gree - trongly Agree ffffffff 16 25.00	A4 , Total , , , , , , , , , , , , , , , , , , ,	
	Table Frequency Percent Row Pct Col Pct fffffffff 0-2	<pre>Sample Size of Number_ , , ,Disagree,A , - Stron,S ,gly Disa, ,gree , fffffffffff , 11 , , 17.19 , , 40.74 ,</pre>	= 65 home by gree - trongly Agree fffffff 16 25.00 59.26	A4 , Total , 27 , 42.19	
	Table Frequency Percent Row Pct Col Pct fffffffff 0-2	<pre>Sample Size of Number_ , , ,Disagree,A , - Stron,S ,gly Disa, ,gree , fffffffffff , 11 , , 17.19 , , 40.74 , , 42.31 ,</pre>	= 65 home by gree - trongly Agree fffffff 16 25.00 59.26 42.11	A4 , Total , 27 , 42.19	
	Table Frequency Percent Row Pct Col Pct <i>fffffffff</i> 0-2 <i>ffffffffff</i> >2	<pre>Sample Size e of Number_ /, , Disagree,A , - Stron,S ,gly Disa, ,gree , ffffffffff , 11, , 17.19, , 40.74, , 42.31, fffffffffff , 15,</pre>	= 65 home by gree - trongly Agree ffffffff 16 25.00 59.26 42.11 ffffffff 22	A4 , Total , 27 , 42.19 , 37	
	Table Frequency Percent Row Pct Col Pct fffffffff 0-2 ffffffffff >2	<pre>Sample Size e of Number_ , , Disagree,A , - Stron,S ,gly Disa, ,gree , f ffffffffff , 11 , , 17.19 , , 40.74 , , 42.31 , f ffffffffff , 15 , , 23.44 , , .</pre>	= 65 home by gree - trongly Agree fffffff 16 25.00 59.26 42.11 fffffff 22 34.38	A4 , Total , 27 , 42.19 , 37 , 57.81	
	Table Frequency Percent Row Pct Col Pct #ffffffff 0-2 #fffffffff >2	Sample Size of Number_ , , , , , , , , , , , , ,	= 65 home by gree - trongly Agree fffffff 16 25.00 59.26 42.11 fffffff 22 34.38 59.46 57.89	A4 , Total , 27 , 42.19 , 37 , 57.81	
	Table Frequency Percent Row Pct Col Pct ####################################	<pre>Sample Size e of Number_ /, , Disagree,A , - Stron,S ,gly Disa, ,gree , fffffffffff , 11 , , 17.19 , , 40.74 , , 42.31 , ffffffffffff , 15 , , 23.44 , , 40.54 , , 57.69 , ffffffffffff</pre>	= 65 home by gree - trongly Agree fffffff 16 25.00 59.26 42.11 ffffffff 22 34.38 59.46 57.89 ffffffff	A4 , Total , 27 , 42.19 , 37 , 57.81	
	Table Frequency Percent Row Pct Col Pct <i>fffffffff</i> 0-2 <i>fffffffffff</i> >2 <i>fffffffffff</i> >2	Sample Size e of Number_ , , , , , , , , , , , , ,	= 65 home by gree - trongly Agree fffffff 16 25.00 59.26 42.11 fffffff 22 34.38 59.46 57.89 ffffffff 38 59.38	A4 , Total , 27 , 42.19 , 37 , 57.81	
	Table Frequency Percent Row Pct Col Pct #fffffffff 0-2 fffffffffff >2 fffffffffff Total	Sample Size of Number_ , , , , , , , , , , , , ,	= 65 home by gree - trongly Agree fffffff 16 25.00 59.26 42.11 fffffff 22 34.38 59.46 57.89 ffffffff 38 59.38	A4 , Total , 27 , 42.19 , 37 , 57.81 , 64 100.00	
Sta	Table Frequency Percent Row Pct Col Pct <i>ffffffffff</i> 0-2 <i>fffffffffff</i> >2 <i>fffffffffff</i> Total	Sample Size e of Number_ , , , , , , , , , , , , ,	= 65 home by gree - trongly Agree fffffff 16 25.00 59.26 42.11 ffffffff 22 34.38 59.46 57.89 fffffff 38 59.38 Number DE	A4 , Total , 27 , 42.19 , 37 , 57.81 , 64 100.00 _home by	A4 Dack
Sta Statistic	Table Frequency Percent Row Pct Col Pct <i>fffffffff</i> 0-2 <i>fffffffffff</i> >2 <i>fffffffffff</i> >2 <i>fffffffffff</i> >2	Sample Size e of Number_ , , , , , , , , , , , , ,	= 65 home by gree - trongly Agree fffffff 16 25.00 59.26 42.11 fffffff 22 34.38 59.46 57.89 fffffffff 38 59.38 Number DF ffffffff	A4 , Total , 27 , 42.19 , 37 , 57.81 , 57.81 , 64 100.00 _home by Value	A4 Prob fffffffff
Statistic ffffffffff Chi-Square	Table Frequency Percent Row Pct Col Pct fffffffff 0-2 ffffffffff >2 fffffffffff Total atistics f	Sample Size e of Number_ , , , , , , , , , , , , ,	= 65 home by gree - trongly Agree fffffff 16 25.00 59.26 42.11 fffffff 22 34.38 59.46 57.89 ffffffff 38 59.38 Number DF ffffffff	A4 , Total , 27 , 42.19 , 37 , 57.81 , 57.81 , 64 100.00 _home by Value fffffffff; 0.0003	A4 Prob ffffffff 0.9872
Sta Statistic fffffffff Chi-Squar Likelihood Continuity	Table Frequency Percent Row Pct Col Pct fffffffff 0-2 ffffffffff >2 fffffffffff Total atistics f fffffffffff atistics f ffffffffffff atistics f fffffffffffffffffffffffffffffffffff	Sample Size e of Number_ , , Disagree,A , - Stron,S ,gly Disa, ,gree , fffffffffff , 11 , , 17.19 , , 40.74 , , 40.74 , , 40.74 , , 23.44 , , 57.69 , fffffffffff 26 40.63 for Table of ffffffffffffff fffffffffffffff ffffff	= 65 home by gree - trongly Agree fffffff 16 25.00 59.26 42.11 ffffffff 22 34.38 59.26 42.11 ffffffff 38 59.38 Number DF fffffffff 1 1 1	A4 , Total , 27 , 42.19 , 57.81 , 57.81 , 64 100.00 _home by Value fffffffff 0.0003 0.0003	A4 Prob fffffffff 0.9872 0.9872 1.0000
Sta Statistic fffffffff Chi-Square Likelihood Continuity Mantel-Had	Table Frequency Percent Row Pct Col Pct ffffffffff 0-2 fffffffffff >2 fffffffffff >2 ffffffff	Sample Size e of Number_ , , Disagree,A , - Stron,S ,gly Disa, ,gree , 11 , 17.19 , 40.74 , 42.31 , ffffffffff , 15 , 23.44 , 40.54 , 57.69 , ffffffffffff 26 40.63 for Table of ffffffffffffff ffffffffffffff i-Square i-Square	= 65 home by gree - trongly Agree fffffff 16 25.00 59.26 42.11 ffffffff 22 34.38 59.46 57.89 ffffffff 38 59.38 Number DF fffffffff 1 1 1 1	A4 , Total , 27 , 42.19 , 57.81 , 57.81 , 64 100.00 _home by Value ffffffff 0.0003 0.0003 0.0000 0.0003	A4 Prob ffffffff 0.9872 0.9872 1.0000 0.9873
Statistic fffffffff Chi-Square Likelihooo Continuity Mantel-Hae Phi Coefff Contingend	Table Frequency Percent Row Pct Col Pct ffffffffff 0-2 fffffffffff >2 fffffffffff >2 ffffffff	Sample Size e of Number_ , , Disagree,A , - Stron,S ,gly Disa, ,gree , 11, , 17.19, , 40.74, , 42.31, fffffffffff , 15, , 23.44, , 40.54, , 57.69, fffffffffff 26 40.63 for Table of fffffffffffffff ffffffffffffffffff	= 65 home by gree - trongly Agree fffffff 16 25.00 59.26 42.11 fffffff 22 34.38 59.46 57.89 ffffffff 38 59.38 Number DF ffffffff 1 1 1 1	A4 , Total , 27 , 42.19 , 37 , 57.81 , 57.81 , 64 100.00 _home by Value fffffffff 0.0003 0.0003 0.0003 0.0003 0.0020 0.0020	A4 Prob fffffffff 0.9872 0.9872 1.0000 0.9873

Cell (1,1) Frequency (F)	11
Left-sided Pr <= F	0.6086
Right-sided Pr >= F	0.5943
Table Probability (P)	0.2030
Two-sided Pr <= P	1.0000
Sample Size = 64	

Statistics for Table	of Numbe	er_home by	A5
Statistic	DF	Value	Prob
fffffffffffffffffffffffffffffff	fffffff;	fffffffffff	fffffff
Chi-Square	1	0.3975	0.5284
Likelihood Ratio Chi-Square	1	0.3958	0.5293
Continuity Adj. Chi-Square	1	0.1227	0.7261
Mantel-Haenszel Chi-Square	1	0.3913	0.5316
Phi Coefficient		0.0788	
Contingency Coefficient		0.0786	
Cramer's V		0.0788	

Fisher's Exact Test	
<i>fffffffffffffffffffffffffffffff</i>	ffffff
Cell (1,1) Frequency (F)	9
Left-sided Pr <= F	0.8189
Right-sided Pr >= F	0.3617
Table Probability (P)	0.1805
Two-sided Pr <= P	0.5831
Effective Sample Size =	64
Frequency Missing =	1

Tabl	e of Number	_home by I	B6
Frequenc	у,		
Percent	,		
Row Pct	, ,		
Col Pct	,Disagree,A	Agree - ,	Total
	, - Stron,	Strongly,	
	,gly Disa,	Agree ,	
	,gree ,	,	
fffffff	<i>f^ffffffff</i> ;	fffffff^	
0-2	, 10,	19,	29
	, 14.71 ,	27.94 ,	42.65
	, 34.48 ,	65.52 ,	
	, 40.00 ,	44.19 ,	
fffffff	<i>f^ffffffff</i> ;	fffffff^	
>2	, 15,	24,	39
	, 22.06 ,	35.29 ,	57.35
	, 38.46 ,	61.54 ,	
	, 60.00 ,	55.81 ,	
fffffff	<i>f^ffffffff</i> ;	fffffff^	
Total	25	43	68
	36.76	63.24	100.00

```
Statistics for Table of Number_home by B6
Statistic
                          DF
                                  Value
                                            Prob
0.1133
Chi-Square
                           1
                                          0.7365
Likelihood Ratio Chi-Square
                                 0.1136
                                          0.7361
                           1
Continuity Adj. Chi-Square
                           1
                                 0.0068
                                          0.9344
Mantel-Haenszel Chi-Square
                                 0.1116
                                          0.7383
                           1
Phi Coefficient
                                 -0.0408
Contingency Coefficient
                                 0.0408
Cramer's V
                                 -0.0408
               Fisher's Exact Test
         Cell (1,1) Frequency (F)
                                     10
         Left-sided Pr <= F
                                 0.4686
         Right-sided Pr >= F
                                 0.7217
         Table Probability (P)
                                 0.1903
         Two-sided Pr <= P
                                 0.8028
                Sample Size = 68
            Table of Number_home by B7
         Frequency,
        Percent
                ,
         Row Pct
         Col Pct , Disagree, Agree - , Total
                 , - Stron, Strongly,
                 ,gly Disa, Agree ,
        5, 20,
8.62, 34.48,
         0-2
                                      25
                ,
                                  43.10
                 ,
        , 20.00 , 80.00 ,
, 27.78 , 50.00 ,
fffffffffffffffffffffffff
                     13,
         >2
                             20,
                                      33
                ,
                   22.41 , 34.48 , 56.90
                   39.39 , 60.61 ,
                 ,
                   72.22 , 50.00
         58
         Total
                     18
                             40
                   31.03
                           68.97
                                  100.00
      Statistics for Table of Number_home by B7
Statistic
                          DF
                                  Value
                                            Prob
2.4997
Chi-Square
                           1
                                          0.1139
Likelihood Ratio Chi-Square
                           1
                                 2.5760
                                          0.1085
Continuity Adj. Chi-Square
                                 1.6757
                                          0.1955
                           1
Mantel-Haenszel Chi-Square
                                 2.4566
                           1
                                          0.1170
Phi Coefficient
                                 -0.2076
Contingency Coefficient
                                 0.2033
Cramer's V
                                 -0.2076
               Fisher's Exact Test
         Cell (1,1) Frequency (F)
                                      5
         Left-sided Pr <= F
                                  0.0968
         Right-sided Pr >= F
                                 0.9708
         Table Probability (P)
                                 0.0677
         Two-sided Pr <= P
                                 0.1552
                 Sample Size = 58
            Table of Number_home by B8
         Frequency,
        Percent ,
         Row Pct
         Col Pct
                ,Disagree,Agree - , Total
                 , - Stron, Strongly,
                 ,gly Disa, Agree ,
        ,gree , ,
ffffffffffffffffffffffffffffffff
                 ,gree
                                      27
         0-2
                     5, 22,
               ,
```

```
162
```

, 8.06 , 35.48 , 43.55 , 18.52 , 81.48 , , 23.81 , 53.66 , ffffffffffffffffffff 16, 19, 35 >2 , 25.81, 30.02, 45.71, 54.29, 76 19, 46.34, 25.81 , 30.65 , 56.45 , , , 76.19 , 46.34 ffffffffffffffffffffffffffffffff Total 21 41 62 33.87 66.13 100.00 Statistics for Table of Number_home by B8 Statistic DF Value Prob Chi-Square 1 5.0330 0.0249 0.0220 Likelihood Ratio Chi-Square 5.2440 1 Continuity Adj. Chi-Square 1 3.8920 0.0485 Mantel-Haenszel Chi-Square 4.9518 0.0261 1 Phi Coefficient -0.2849 Contingency Coefficient 0.2740 Cramer's V -0.2849 Fisher's Exact Test Cell (1,1) Frequency (F) 5 Left-sided Pr <= F 0.0229 Right-sided Pr >= F 0.9949 Table Probability (P) 0.0178 Two-sided Pr <= P 0.0320 Sample Size = 62 Table of Number_home by B9 Frequency, Percent , Row Pct Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 9, 19, 13.64, 28.79, 0-2 28 , 42.42 , , 32.14 , 67.86 , , 36.00 , 46.34 , fffffffffffffffffffffffff 16, 22, ... 24.24, 33.33, 57.58 57.89, >2 , , Total 25 41 66 37.88 62.12 100.00 Statistics for Table of Number_home by B9 Statistic DF Value Prob Chi-Square 1 0.6800 0.4096 Likelihood Ratio Chi-Square 1 0.6852 0.4078 Continuity Adj. Chi-Square 0.3225 0.5701 1 Mantel-Haenszel Chi-Square 1 0.6697 0.4132 Phi Coefficient -0.1015 Contingency Coefficient 0.1010

Cramer's V

-0.1015

Frequency Missing = 2

Table of Number_home by B10 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , 8, 18, , 12.50, 28.13, 0-2 26 40.63 >2 , 8 , 30 , 38 , 12.50 , 46.88 , 59.38 , 21.05 , 78.95 , , 50.00 , 62.50 , fffffffffffffffffffff 16 48 64 Total 75.00 100.00 25.00 Statistics for Table of Number_home by B10 DF Statistic Value Prob 0.7773 Chi-Square 1 0.3780 Likelihood Ratio Chi-Square 1 0.7687 0.3806 Continuity Adj. Chi-Square 0.3455 0.5567 1 Mantel-Haenszel Chi-Square 0.7652 0.3817 1 Phi Coefficient 0.1102 Contingency Coefficient 0.1095 Cramer's V 0.1102 Fisher's Exact Test Cell (1,1) Frequency (F) 8 Left-sided Pr <= F 0.8797 Right-sided Pr >= F 0.2767 Table Probability (P) 0.1564 Two-sided Pr <= P 0.3957 Effective Sample Size = 64 Frequency Missing = 1 Table of Number_home by B11 Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , 8, 17, 25 , 12.31, 26.15, 38.46 , 32.00, 68.00, 0-2 , 61.54 , 32.69 , ffffffffffffffffffffffffffffffff 5, 35, 7.69, 53.85, >2 40 ر 61.54 , 12.50, 87.50, , 67.31, , 38.46 , 67.31 ffffffffffffffffffffffffffffffffff 65 Total 13 52 20.00 80.00 100.00 Statistics for Table of Number_home by B11

Continuity Mantel-Hae Phi Coeffi Contingend Cramer's \	/ Adj. Chi enszel Chi icient cy Coeffic /	-Square -Square ient	1 1	2.5391 3.6000 0.2372 0.2308 0.2372	0.1111 0.0578
	Fi ffffffff Cell (1,1 Left-side	sher's Exact fffffffffff) Frequency d Pr <= F	t Test fffffff (F)	ffffff 8 0.9864	
	Table Pro	bability (P)	0.0569	
	Two-sided	Pr <= P	/	0.1084	
		Sample Size	= 65		
	Table	e of Number_I	nome by	B12	
	Frequency	',			
	Percent Pow Pct	و			
	Col Pct	, Disagree.A	ree -	. Total	
		, - Stron,St ,gly Disa, /	trongly Agree	,	
		,gree ,			
	<i>jjjjjjjj</i> 0_2	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1111111 18	28	
	0-2	, 15.15 .	27.27	, 20	
		, 35.71 ,	64.29	,	
		, 55.56 ,	37.50	,	
	ffffffff	*^ <i>ffffffff</i> f;	fffffff	•	
	>2	, 8,	30	, 38	
		, 12.12 , 21.05	45.45	, 57.58	
		, 44.44 ,	62.50	,	
	ffffffff	^ <i>fffffffff</i>	fffffff	~	
	Total	18	48	66	
		27.27	72.73	100.00	
Stat	istics fo	or Table of M	Number H	nome bv B1	2
Stat Statistic	istics fo	or Table of I	Number_H DF	nome by B1 Value	.2 Prob
Stat Statistic fffffffff	istics fo	or Table of I I	Number_H DF fffffff	nome by B1 Value ffffffffff	.2 Prob fffffff
Stat Statistic fffffffff Chi-Square	cistics for ffffffffff e	or Table of I	Number_H DF fffffff; 1	nome by B1 Value ffffffffff 1.7472	.2 Prob fffffff 0.1862
Stat Statistic ffffffffff Chi-Square Likelihood	tistics fo ffffffffff e d Ratio Ch 4 Adi Chi	or Table of I I Iffffffffffff ni-Square	Number_H DF ffffffff 1 1 1	nome by B1 Value ffffffffff 1.7472 1.7337 1 0862	2 Prob fffffff 0.1862 0.1879 0.2973
Stat Statistic ffffffffff Chi-Square Likelihooo Continuity Mantel-Hae	ffffffffff A Ratio Ch Adj. Chi enszel Chi	or Table of I I ffffffffffff ni-Square -Square -Square	Number_H DF fffffff 1 1 1 1	nome by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207	.2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Statistic ffffffffff Chi-Square Likelihooo Continuity Mantel-Hae Phi Coeffi	tistics for ffffffffff d Ratio Ch / Adj. Chi enszel Chi lcient	or Table of I I ffffffffffff ni-Square Square Square	Number_H DF ffffffff 1 1 1 1	nome by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stati Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend	fffffffffff d Ratio Ch / Adj. Chi enszel Chi lcient cy Coeffic	or Table of I I ffffffffffff ni-Square Square Square :ient	Number_t DF ffffffff 1 1 1	home by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1606	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stati Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	fistics for fffffffffff d Ratio Ch v Adj. Chi enszel Chi icient cy Coeffic v	or Table of I I Ifffffffffff -Square -Square -Square ient	Number_H DF fffffff; 1 1 1	home by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1606 0.1627	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stat Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	tistics for ffffffffffff d Ratio Ch / Adj. Chi enszel Chi icient cy Coeffic / Fi	or Table of I I I I I-Square -Square Square I ient Sher's Exact	Number_H DF 1 1 1 1 t Test	nome by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1606 0.1627	2 Frob 6,1862 0.1879 0.2973 0.1896
Stat Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	tistics for ffffffffffff d Ratio Chi Adj. Chi enszel Chi iccient ty Coeffic / Fi fffffffffff Cell (11	or Table of I I Iffffffffffff i-Square -Square Cancer Square Cancer State Inter Inte	Number_F FFFFFfff 1 1 1 1 1 1 t Test ffffffff	home by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1606 0.1627 ffffffff 10	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stat Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	tistics for ffffffffffff a Ratio Ch Adj. Chi enszel Chi iccient cy Coeffic Fi fffffffffff Cell (1,1 Left-side	or Table of I I Iffffffffffff i-Square -Square Sient Sher's Exact Iffffffffff J Frequency ed Pr <= F	Number_f Ffffffff 1 1 1 1 1 t Test ffffffff (F)	home by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1627 0.1606 0.1627 ffffffff 10 0.9449	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stat Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	tistics for ffffffffffff Adj. Chi enszel Chi iccient ty Coeffic ffffffffff Cell (1,1 Left-side Right-sid	or Table of I ffffffffffff -Square -Square cient fffffffffffff) Frequency d Pr <= F led Pr >= F	Number_f Ffffffff 1 1 1 1 1 t Test fffffff; (F)	home by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1606 0.1627 ffffffff 10 0.9449 0.1488	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stat Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	tistics for ffffffffffff A Ratio Chi conszel Chi cons	or Table of M ffffffffffff i-Square -Square cient fffffffffffff i Frequency d Pr <= F led Pr >= F bability (P	Number_f Ffffffff 1 1 1 1 t Test ffffffff (F)	home by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1606 0.1627 fffffff 10 0.9449 0.1488 0.0937	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stat Statistic fffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	fifffffffff A Ratio Ch Adj. Chi enszel Chi iccient cy Coeffic Fi ffffffffff Cell (1,1 Left-side Right-sid Table Pro Two-sided	or Table of I fffffffffffff Square Square Square tient tient Start Square tient Square 	Number_H Ffffffff 1 1 1 t Test ffffffff (F)	home by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1627 0.1606 0.1627 ffffffff 10 0.9449 0.1488 0.0937 0.2641	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stat Statistic fffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	fistics for fffffffffff d Ratio Chi anszel Chi iccient cy Coeffic / ffffffffff Cell (1,1 Left-side Right-side Table Proc Two-sided	or Table of I fffffffffffff -Square -Square -Square ient sher's Exact fffffffffff -State -Sta	Number_f ffffffff 1 1 1 t Test fffffff (F)) = 66	home by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1626 0.1627 (fffffff 10 0.9449 0.1488 0.0937 0.2641	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stat Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	fistics for ffffffffffff d Ratio Ch v Adj. Chi enszel Chi iccient cy Coeffic / Fi ffffffffff Cell (1,1 Left-side Right-sid Table Pro Two-sided	or Table of I ffffffffffff i-Square -Square Square cient isher's Exact ffffffffffff i Frequency d Pr <= F bability (P I Pr <= P Sample Size	Number_f Ffffffff 1 1 1 t Test ffffffff (F)) = 66	nome by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1606 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stat Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	tistics for ffffffffffff a Ratio Chi conszel Chi cicient cy Coeffic fffffffffff Cell (1,1 Left-side Right-side Table Pro Table Frequency	or Table of I ffffffffffff i-Square -Square Sient Sher's Exact fffffffffff D Frequency d Pr <= F led Pr >= F bability (P) I Pr <= P Sample Size of Number_I	Number_F Ffffffff 1 1 1 t Test ffffffff (F)) = 66 home by	home by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1627 0.1627 0.1627 0.1627 0.1627 0.1627 0.1627 0.1627 0.1628 0.1627 0.2641 B13	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stat Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	tistics for ffffffffffff a Ratio Chi conszel Chi cicient cy Coeffic ffffffffff Cell (1,1 Left-side Right-side Table Pro Two-sided Table Frequency Percent	or Table of M fffffffffffff Square Square Square tient tient Streat Square tient Square Squ	Number_F Ffffffff 1 1 1 t Test ffffffff (F)) = 66 nome by	home by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1606 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641 B13	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stat Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	tistics for ffffffffffff Adj. Chi enszel Chi iccient ty Coeffic Fi ffffffffff Cell (1,1 Left-side Right-sid Table Pro Two-sided Table Frequency Percent Row Pct	<pre>or Table of I I I I I I I I I I I I I I I I I I I</pre>	Number_f ffffffff 1 1 1 t Test fffffff (F)) = 66 home by	home by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1627 0.1626 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641 B13	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stat Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	tistics for ffffffffffff Adj. Chi enszel Chi iccient ty Coeffic Fi ffffffffff Cell (1,1 Left-side Right-sid Table Pro Two-sided Table Frequency Percent Row Pct Col Pct	<pre>or Table of I I fffffffffffff i-SquareSquareSquare ient ient sher's Exact ffffffffffff i Pr <= F led Pr >= F led Pr >= F Sample Size of Number_I , , Disagree,Aq</pre>	Number_f ffffffff 1 1 1 t Test fffffff (F)) = 66 home by gree	home by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1627 0.1626 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641 B13	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stat Statistic ffffffffffffffffffffffffffffffffffff	tistics for fffffffffff a Ratio Chi conszel Chi icient cy Coeffic ffffffffff Cell (1,1 Left-side Right-side Table Proc Two-sided Table Frequency Percent Row Pct Col Pct	<pre>or Table of I I ffffffffffffff i-SquareSquareSquare .:ent</pre>	Number_H Fffffffff 1 1 1 t Test ffffffff (F) = 66 nome by gree - trongly.	home by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1606 0.1627 0.1606 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641 B13	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stat Statistic ffffffffffffffffffffffffffffffffffff	tistics for fffffffffff d Ratio Ch v Adj. Chi enszel Chi icient cy Coeffic v Fi ffffffffff Cell (1,1 Left-side Right-side Table Pro Table Frequency Percent Row Pct Col Pct	<pre>or Table of I I ffffffffffffff i-SquareSquareSquare .:ent</pre>	Number_f fffffffff 1 1 1 t Test ffffffff (F) = 66 home by gree	home by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1626 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641 B13	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stat Statistic fffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	tistics for fffffffffff d Ratio Ch v Adj. Chi enszel Chi icient cy Coeffic v Fi ffffffffff Cell (1,1 Left-side Right-sid Table Pro Table Frequency Percent Row Pct Col Pct	<pre>or Table of I I ffffffffffffff i-SquareSquareSquareSquaresher's Exac: ffffffffffffff .) Frequency ed Pr <= F led Pr >= F led Pr >= F Sample Size e of Number_I f, ,</pre>	Number_f ffffffff 1 1 1 t Test ffffffff (F) = 66 home by gree trongly Agree ffffffff	nome by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1626 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641 B13	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stat Statistic fffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	tistics for ffffffffffff d Ratio Ch v Adj. Chi enszel Chi icient cy Coeffic v fffffffffff Cell (1,1 Left-side Right-sid Table Pro Table Pro Table Frequency Percent Row Pct Col Pct fffffffffff 0-2	<pre>or Table of I I ffffffffffffff i-SquareSquareSquare .:entsher's Exac: fffffffffffffff .) Frequency ed Pr <= F led Pr >= F bability (P led Pr >= P Sample Size, of Number_I, j, Disagree,Aq , - Stron,Sr ,gly Disa,, fffffffffffffff, gree ,,,,,,,,</pre>	Number_f fffffffff 1 1 1 t Test ffffffff (F)) = 66 home by gree - trongly Agree ffffffff 18	nome by B1 Value fffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1626 0.1627 (0.1627 0.1606 0.1627 (0.1627 0.1641 0.9449 0.1488 0.0937 0.2641 B13 B13 , Total	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stat Statistic fffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	tistics for ffffffffffff a Ratio Ch Adj. Chi enszel Chi icient cy Coeffic fffffffffff Cell (1,1 Left-side Table Frequency Percent Row Pct Col Pct fffffffffff 0-2	<pre>or Table of I I ffffffffffffff i-SquareSquareSquare .:entsher's Exact ffffffffffffff i Pr <= P Sample Size of Number_I , , Disagree,Aq , - Stron,S- ,gly Disa, / ,gree , 13.64 ,</pre>	Number_f ffffffff 1 1 1 t Test ffffffff (F)) = 66 home by gree - trongly Agree ffffffff 18 27.27	home by B1 Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1606 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641 B13 B13 , Total	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stat Statistic fffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	tistics for fffffffffff a Ratio Ch Adj. Chi enszel Chi icient cy Coeffic fffffffffff Cell (1,1 Left-side Table Pro Table Frequency Percent Row Pct Col Pct fffffffffff 0-2	<pre>or Table of M ffffffffffffffffffffffffffffffffff</pre>	Number_f ffffffff 1 1 1 t Test ffffffff (F)) = 66 home by gree - trongly Agree ffffffff 18 27.27 66.67	nome by B1 Value fffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1606 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641 B13 B13 , Total	2 Prob fffffff 0.1862 0.2973 0.2973 0.1896
Stat Statistic fffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	tistics for ffffffffffff a Ratio Chi enszel Chi icient cy Coeffic ffffffffffff Cell (1,1 Left-side Right-sid Table Frequency Percent Row Pct Col Pct fffffffffff 0-2	<pre>or Table of I I fffffffffffff i-SquareSquareSquare ient sher's Exact fffffffffffff ied Pr <= F bability (P i Pr <= P Sample Size of Number_I , , Disagree,Aq , - Stron,St ,gly Disa, A ,gree , fffffffffff ; , 9, , 13.64, , 33.33, , 32.14 , 33.33,</pre>	Number_f ffffffff 1 1 1 t Test ffffffff (F)) = 66 home by gree - trongly Agree ffffffff 18 27.27 66.67 47.37 fffffff	nome by B1 Value fffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1627 0.1606 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641 B13 B13 , Total	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stat Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	tistics for ffffffffffff a Ratio Chi enszel Chi icient cy Coeffic ffffffffffff Cell (1,1 Left-side Right-sid Table Pro Table Pro Table Frequency Percent Row Pct Col Pct fffffffffff 0-2 ffffffffffff >2	<pre>or Table of I fffffffffffff i-Square -Square -Square ient sher's Exact fffffffffffff ied Pr >= F bability (P i Pr <= P Sample Size of Number_I , , Disagree,Aq , - Stron,S' ,gly Disa, A ,gree , 13.64 , , 32.14 , fffffffffff ff 19 </pre>	Number_f ffffffff 1 1 1 1 t Test ffffffff (F)) = 66 home by gree - trongly Agree ffffffff 18 27.27 66.67 47.37 ffffffff 26 27.27 66.67 47.37 ffffffff 20	nome by B1 Value fffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1627 0.1606 0.1627 fffffff 0.9449 0.1488 0.0937 0.2641 B13 B13 Total	2 Prob fffffff 0.1862 0.1879 0.2973 0.1896
ر	28.79 ,	30.30,	59.09		
-----------	-----------	---------	--------		
,	48.72 ,	51.28 ,			
ر	67.86 ,	52.63,			
fffffffff	fffffff^f	ffffff			
Total	28	38	66		
	42.42	57.58	100.00		

Statistics for Table of Number_home by B13 Statistic DF Value Prob 1.5460 0.2137 Chi-Square 1 Likelihood Ratio Chi-Square 1 1.5628 0.2113 Continuity Adj. Chi-Square 0.9803 0.3221 1 Mantel-Haenszel Chi-Square 1.5226 1 0.2172 Phi Coefficient -0.1530 Contingency Coefficient 0.1513 Cramer's V -0.1530 Fisher's Exact Test Cell (1,1) Frequency (F) 9 Left-sided Pr <= F 0.1611 Right-sided Pr >= F 0.9335 Table Probability (P) 0.0946 Two-sided Pr <= P 0.3112 Sample Size = 66 Table of Number_home by C14 Frequency, Percent ,

Row Pct	,		
Col Pct	,Disagree,A	gree - ,	Total
	, - Stron,S	trongly,	
	,gly Disa,	Agree ,	
	,gree ,	,	
fffffff	f^fffffffff	ffffff^	
0-2	, 17,	12,	29
	, 24.64 ,	17.39 ,	42.03
	, 58.62 ,	41.38 ,	
	, 58.62 ,	30.00 ,	
fffffff	f^fffffffff	ffffff^	
>2	, 12,	28,	40
	, 17.39 ,	40.58 ,	57.97
	, 30.00 ,	70.00 ,	
	, 41.38 ,	70.00 ,	
fffffff	f^fffffffff	ffffff^	
Total	29	40	69
	42.03	57.97	100.00

Statistics for Table of Number_home by C14 Statistic DF Value Prob 5.6521 0.0174 Chi-Square 1 Likelihood Ratio Chi-Square 1 5.6879 0.0171 Continuity Adj. Chi-Square 4.5384 0.0331 1 Mantel-Haenszel Chi-Square 5.5702 1 0.0183 Phi Coefficient 0.2862 Contingency Coefficient 0.2752 Cramer's V 0.2862

Table of Number_home by C15 Frequency, Percent , Row Pct ,

ſ	ol Pct	Disagree A	gree -	Total	
C	or rec	- Stron S	thongly	iocui	
		gly Dica	Agnee	•	
		,giy Disa,	Agree ,	•	
		, gree ,			
f	;;;;;;;;;;;	• • • • • • • • • • • • • • • • • • • •			
0	-2	, 1,	ر 26	27	
		, 1.49,	38.81,	40.30	
		, 3.70,	, 96.30	,	
		, 14.29 ,	, 43.33	,	
f	ſſſſſ	f^fffffffff	fffffff		
>	2	, 6,	, 34	40	
		, 8.96,	50.75 ,	59.70	
		, 15.00 ,	85.00 ,	,	
		, 85.71 ,	56.67		
f	fffffff	[^] fffffffff	fffffff		
Ţ	otal	7	60	67	
	0001	10 45	89 55	100 00	
		10.45	05.55	100.00	
5+-++	cticc fo	n Tabla of	Numbon k	nome by C1	E
	SLICS IC	of lable of	Nulliber_I		Duch
				value	
JJJJJJJJJJJJ	,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	7777777777	77777777
Chi-Square			1	2.1985	0.1381
Likelihood	Ratio Cr	11-Square	1	2.4938	0.1143
Continuity	Adj. Chi	-Square	1	1.1569	0.2821
Mantel-Haen	szel Chi	L-Square	1	2.1657	0.1411
Phi Coeffic	ient		-	-0.1811	
Contingency	Coeffic	ient		0.1782	
Cramer's V			-	0.1811	
WARNING: 5	0% of th	ne cells hav	e expect	ed counts	less
t	han 5. (Chi-Square m	nay not b	be a valid	l test.
	Fj	isher's Exac	t Test		
f	fffffff	*+++++++++++	fffffff	ffffff	
Ć	ell (1.1) Frequency	(F)	1	
-	eft-side	ad $Pr <= F$	()	0.1406	
= R	ight_sic	led Pr >= F		0 9786	
т	ahla Dro	hahility (E	2	0.1192	
т Т	wo cidoo	l Do <- D)	0.1172	
1	wo-siued	$I = P \cdot X = P$	67	0.22//	
		Sample Size	2 = 67		
		<u>.</u>			
	Table	e of Number_	home by	C16	
F	requency	/ ,			
P	ercent	,			
R	ow Pct	ر			
C	ol Pct	,Disagree,A	gree - ,	, Total	

Col Pct ,	Total		
,	- Stron,	Strongly,	
,	gly Disa,	Agree ,	
ر	gree ,	ر	
ffffffff^	ffffffff^:	fffffff^	
0-2 ,	1,	27,	28
ر	1.49 ,	40.30 ,	41.79
ر	3.57 ,	96.43 ,	
ر	25.00 ,	42.86 ,	
ffffffff	fffffff	fffffff	
>2 ,	3,	36,	39
,	4.48,	53.73 ,	58.21
ر	7.69 ,	92.31 ,	
ر	75.00 ,	57.14 ,	
ffffffff^	ffffffff^:	fffffff^	
Total	4	63	67
	5.97	94.03	100.00

Statistics for Table of	Numbe	r_home by (216
Statistic	DF	Value	Prob
ffffffffffffffffffffffffffffff	ffffff	ffffffffff	ffffffff
Chi-Square	1	0.4930	0.4826
Likelihood Ratio Chi-Square	1	0.5224	0.4698
Continuity Adj. Chi-Square	1	0.0322	0.8576
Mantel-Haenszel Chi-Square	1	0.4857	0.4859
Phi Coefficient		-0.0858	
Contingency Coefficient		0.0855	
Cramer's V		-0.0858	
WARNING: 50% of the cells ha	ive exp	ected count	ts less

than 5. Chi-Square may not be a valid test.

FISHER'S EXACT TEST	
ffffffffffffffffffffffffffffff	ffffff
Cell (1,1) Frequency (F)	1
Left-sided Pr <= F	0.4412
Right-sided Pr >= F	0.8927
Table Probability (P)	0.3339
Two-sided Pr <= P	0.6346
Sample Size = 67	

Table of Number_home by C17 Frequency, Percent Row Pct Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , , 3, 24, 27 0-2 , 4.55 , 36.36 , , 11.11 , 88.89 , , 50.00 , 40.00 , fffffffffffffffffffffffffffff 40.91 >2 , 3 , 36 , 39 , 4.55 , 54.55 , 59.09 , 7.69 , 92.31 , , 50.00 , 60.00 , ffffffffffffffffffff 6 Total 60 66 9.09 90.91 100.00

Statistics for Table of Number_home by C17 Statistic DF Value Prob 1 0.2256 1 0.2223 Chi-Square 0.6348 Likelihood Ratio Chi-Square 0.6373 Continuity Adj. Chi-Square 1 0.0016 0.9684 Mantel-Haenszel Chi-Square 0.2222 0.6374 1 Phi Coefficient 0.0585 Contingency Coefficient 0.0584 Cramer's V 0.0585 WARNING: 50% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

,	5.88,	52.94 ,	58.82
,	10.00 ,	90.00 ,	
,	50.00 ,	60.00 ,	
ffffffffff	fffffff	fffffff^	
Total	8	60	68
	11.76	88.24	100.00

Statistics for Table of Number_home by C18 Statistic DF Value Prob 0.2914 0.5893 Chi-Square 1 Likelihood Ratio Chi-Square 1 0.2875 0.5918 Continuity Adj. Chi-Square 0.0248 0.8749 1 Mantel-Haenszel Chi-Square 0.5921 0.2871 1 Phi Coefficient 0.0655 Contingency Coefficient 0.0653 Cramer's V 0.0655 WARNING: 50% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Fisher's Exact Test			

Cell (1,1) Frequency (F)	4		
Left-sided Pr <= F	0.8221		
Right-sided Pr >= F	0.4311		
Table Probability (P)	0.2531		
Two-sided Pr <= P	0.7084		
Sample Size = 68			

Statistics for Table of Number_home by D19 DF Statistic Value Proh Chi-Square 14.6049 0.0001 1 Likelihood Ratio Chi-Square 15.0921 0.0001 1 Continuity Adj. Chi-Square 1 12.7051 0.0004 Mantel-Haenszel Chi-Square 1 14.3731 0.0001 Phi Coefficient 0.4815 Contingency Coefficient 0.4338 Cramer's V 0.4815 Fisher's Exact Test

Table of Number home by D20 Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , , ffffffffffffffffffff 0-2 , 8 , 17 , 25 , 13.33 , 28.33 , 41.67 ,gree , 16 , 19 , 35 , 26.67 , 31.67 , 58.33 , 45.71 , 54.29 , , 66.67 , 52.78 , >2 ffffffff^ffffffffffffffffffffff Total 24 36 60 40.00 60.00 100.00 Statistics for Table of Number_home by D20 Statistic DF Prob Value 1.1429 1.1551 Chi-Square 1 0.2850 Likelihood Ratio Chi-Square 1 0.2825 Continuity Adj. Chi-Square 0.6429 0.4227 1 Mantel-Haenszel Chi-Square 1 1.1238 0.2891 Phi Coefficient -0.1380 Contingency Coefficient 0.1367 Cramer's V -0.1380 Fisher's Exact Test Cell (1,1) Frequency (F) 8 Left-sided Pr <= F Right-sided Pr >= F 0.2119 0.9099 Table Probability (P) 0.1218 Two-sided Pr <= P 0.4231 Effective Sample Size = 60 Frequency Missing = 1 Table of Number_home by D21 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 23, 4, 27 0-2 , , 25, 4, , 35.94, 6.25, , 85.19, 14.81, , 44.23, 33.33, 42.19 >2 , 29 , 8 , 37 , 45.31 , 12.50 , 57.81 , 78.38 , 21.62 , , 55.77 , 66.67 , fffffffffffffffffffffffff 52 12 64 Total 18.75 100.00 81.25

Statistics for Table of	Numb	er_home by Di	21
Statistic	DF	Value	Prob
<i>fffffffffffffffffffffffffffffffffffff</i>	fffff	fffffffffffff	fffffff
Chi-Square	1	0.4747	0.4908
Likelihood Ratio Chi-Square	1	0.4841	0.4866
Continuity Adj. Chi-Square	1	0.1331	0.7153
Mantel-Haenszel Chi-Square	1	0.4673	0.4942

Phi Coefficient 0.0861 Contingency Coefficient 0.0858 Cramer's V 0.0861 Fisher's Exact Test Cell (1,1) Frequency (F) 23 Left-sided Pr <= F Right-sided Pr >= F 0.8444 0.3619 Table Probability (P) 0.2063 Two-sided Pr <= P 0.5374 Effective Sample Size = 64 Frequency Missing = 1 Table of Number home by D22 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , , gree , , ffffffff^ffffffffffffffffffffffff , 4, 17, 21 , 7.55, 32.08, 39.62 , 19.05, 80.95, , 50.00, 37.78, 0-2 >2 , 4 , 28 , 32 , 7.55 , 52.83 , 60.38 , 12.50 , 87.50 , , 50.00 , 62.22 , ffffffffffffffffffffffffff Total 8 45 53 15.09 84.91 100.00 Total Statistics for Table of Number_home by D22 Statistic DF Value Prob 1 0.4241 Chi-Square 0.5149 Likelihood Ratio Chi-Square 1 0.4166 0.5186 Continuity Adj. Chi-Square 1 0.0671 0.7956 Mantel-Haenszel Chi-Square 1 0.4161 0.5189 Phi Coefficient 0.0895 Contingency Coefficient 0.0891 Cramer's V 0.0895 WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Fisher's Exact Test 4 Cell (1,1) Frequency (F) Left-sided Pr <= F Right-sided Pr >= F 0.8513 0.3915 Table Probability (P) 0.2428 Two-sided Pr <= P 0.6978 Effective Sample Size = 53 Frequency Missing = 3 Table of Number_home by D23 Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , , 7, 19, 26 , 10.94 , 29.69 , 40.63 , 26.92 , 73.08 , , 53.85 , 37.25 , 0-2

<i>fffffffff^fffffffffffffffff</i>							
>2	,	6	,	32	,	38	
	,	9.38	,	50.00	,	59.38	
	, 1	5.79	,	84.21	,		
	, 4	46.15	,	62.75	,		
ffffff	fff^ff	ffff	f^f	ffffff	c ^ 1		
Total		13		51		64	
	2	20.31		79.69		100.00	

Statistics for Table of Number_home by D23 Statistic DF Value Prob Chi-Square 1.1822 0.2769 1 1.1642 0.2806 Likelihood Ratio Chi-Square 1 Continuity Adj. Chi-Square 1 0.5944 0.4407 Mantel-Haenszel Chi-Square 1.1637 0.2807 1 Phi Coefficient 0.1359 Contingency Coefficient 0.1347 Cramer's V 0.1359 Fisher's Exact Test

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,
Cell (1,1) Frequency (F)	7
Left-sided Pr <= F	0.9189
Right-sided Pr >= F	0.2193
Table Probability (P)	0.1382
Two-sided Pr <= P	0.3484
Sample Size = 64	

Table of Number_home by D24 Frequency, Percent Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 10 , 17 , 16.13 , 27.42 , 0-2 27 , 43.55 , 37.04 , 62.96 , 62.50 , 36.96 , , 6, 29, >2 35 , 9.68 , 46.77 , 56.45 , 17.14 , 82.86 , , , 37.50 , 63.04 fffffffffffffffffffffffffffffffff Total 16 46 62 25.81 74.19 100.00

Statistics for Table of Number_home by D24 Statistic DF Value Prob Chi-Square 1 3.1506 0.0759 Likelihood Ratio Chi-Square 1 3.1425 0.0763 Continuity Adj. Chi-Square 2.1973 0.1383 1 3.0998 Mantel-Haenszel Chi-Square 0.0783 1 Phi Coefficient 0.2254 Contingency Coefficient 0.2199 Cramer's V 0.2254

0.0694
0.0501
0.0885

Table of Number_home by D25

Frequency, Percent , Row Pct Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 0-2 , 11 , 18 , 29 , 15.94 , 26.09 , 42.03 , 37.93 , 62.07 , , 57.89 , 36.00 , ffffffffffffffffffff , 8, 32, 40 , 11.59, 46.38, 57.97 >2 , 20.00 , 80.00 , Total 19 50 69 100.00 72.46 27.54

Statistics for Table of Number_home by D25 DF Statistic Value Prob Chi-Square 1 2.7089 0.0998 Likelihood Ratio Chi-Square 2.6874 0.1011 1 Continuity Adj. Chi-Square 1 1.8848 0.1698 Mantel-Haenszel Chi-Square 2.6696 0.1023 1 Phi Coefficient 0.1981 Contingency Coefficient 0.1944 Cramer's V 0.1981

Table of Years in house by A1 Frequency, Percent , Row Pct Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 1-6 , 15 , 25 , 40 , 19.23 , 32.05 , 51.28 , 37.50 , 62.50 , , 50.00 , 52.08 , ffffffffffffffffffff , 15 , 23 , 38 , 19.23 , 29.49 , 48.72 >6 , , 19.25 , 29.49 , , 39.47 , 60.53 , , 50.00 , 47.92 , ffffffffffffffffffffffffff Total 30 48 78 38.46 61.54 100.00

```
Statistics for Table of Years_in_house by A1
                            DF
                                               Prob
Statistic
                                    Value
Chi-Square
                             1
                                   0.0321
                                             0.8579
Likelihood Ratio Chi-Square
                                   0.0321
                                             0.8579
                             1
Continuity Adj. Chi-Square
                             1
                                   0.0000
                                             1.0000
Mantel-Haenszel Chi-Square
                                   0.0317
                                             0.8588
                             1
Phi Coefficient
                                   -0.0203
Contingency Coefficient
                                   0.0203
Cramer's V
                                   -0.0203
               Fisher's Exact Test
         Cell (1,1) Frequency (F)
                                       15
         Left-sided Pr <= F
                                   0.5212
         Right-sided Pr >= F
                                   0.6598
         Table Probability (P)
                                   0.1810
         Two-sided Pr <= P
                                   1.0000
                 Sample Size = 78
            Table of Years_in_house by A2
         Frequency,
         Percent ,
         Row Pct ,
         Col Pct , Disagree, Agree - , Total
                  , - Stron, Strongly,
                  ,gly Disa, Agree ,
         1-6 , 12 , 28 ,
, 15.58 , 36.36 ,
, 30.00 , 70.00 ,
, 42.86 , 57.14 ,
fffffffffffffffffffffffffffff
                                        40
                                     51.95
                    16, 21, 5,
20.78, 27.27, 48.05
56 76,
         >6
                 ,
                   43.24 , 56.76 ,
57.14 , 42.86 ,
                  ,
         ffffffffffffffffffffffffffffffff
                                        77
         Total
                      28
                              49
                    36.36
                             63.64
                                   100.00
    Statistics for Table of Years_in_house by A2
Statistic
                            DF
                                    Value
                                               Prob
1.4568
Chi-Square
                             1
                                             0.2274
Likelihood Ratio Chi-Square
                             1
                                   1.4599
                                             0.2269
Continuity Adj. Chi-Square
                                   0.9407
                                             0.3321
                             1
Mantel-Haenszel Chi-Square
                                   1.4378
                             1
                                             0.2305
Phi Coefficient
                                   -0.1375
Contingency Coefficient
                                   0.1363
Cramer's V
                                   -0.1375
                Fisher's Exact Test
         Cell (1,1) Frequency (F)
                                       12
         Left-sided Pr <= F
                                   0.1661
         Right-sided Pr >= F
                                   0.9258
         Table Probability (P)
                                   0.0919
         Two-sided Pr <= P
                                   0.2463
                 Sample Size = 77
            Table of Years_in_house by A3
         Frequency,
         Percent ,
         Row Pct
                 ,
         Col Pct
                 ,Disagree,Agree - , Total
                  , - Stron, Strongly,
                 ,gly Disa, Agree ,
         ,gree , ,
ffffffffffffffffffffffffffffffff
                  ,gree
         1-6
                , 19, 20,
                                        39
```

, 25.68 , 27.03 , 52.70
, 48.72 , 51.28 ,
, 59.38 , 47.62 ,
fffffffffffffffffffff 13 , 22 , 35 17.57 , 29.73 , 47.30 >6 , , , 37.14 , 62.86 , , 40.63 , 52.38 , ffffffffffffffffffffffffffffffffff Total 32 42 74 43.24 56.76 100.00 Statistics for Table of Years_in_house by A3 Statistic DF Value Prob Chi-Square 1 1.0070 0.3156 1.0106 Likelihood Ratio Chi-Square 1 0.3147 Continuity Adj. Chi-Square 1 0.5906 0.4422 Mantel-Haenszel Chi-Square 0.9934 0.3189 1 Phi Coefficient 0.1167 Contingency Coefficient 0.1159 Cramer's V 0.1167 Fisher's Exact Test Cell (1,1) Frequency (F) 19 Left-sided Pr <= F 0.8924 Right-sided Pr >= F 0.2213 Table Probability (P) 0.1137 Two-sided Pr <= P 0.3545 Sample Size = 74 Table of Years_in_house by A4 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree 13, 25, 17.57, 33.78, 38 1-6 , 51.35 ر , 34.21 , 65.79 , , 44.83 , 55.56 , ffffffffffffffffffffffffff 16, 20, 50 21.62, 27.03, 48.65 55.56, >6 , , 44.44 , 55.56 , 55.17 , 44.44 , , 74 Total 29 45 100.00 39.19 60.81 Statistics for Table of Years_in_house by A4 Statistic DF Value Prob Chi-Square 1 0.8124 0.3674 Likelihood Ratio Chi-Square 1 0.8135 0.3671 Continuity Adj. Chi-Square 0.4398 0.5072 1 Mantel-Haenszel Chi-Square 0.8015 1 0.3707 Phi Coefficient -0.1048 Contingency Coefficient 0.1042 -0.1048 Cramer's V Fisher's Exact Test Cell (1,1) Frequency (F) 13 Left-sided Pr <= F 0.2537 Right-sided Pr >= F 0.8728

175

Sample Size = 74

0.1265

0.4757

Table Probability (P)

Two-sided Pr <= P

Table of Years_in_house by A5 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 1-6 , 10 , 30 , 40 , 13.51 , 40.54 , 54.05 , 25.00 , 75.00 , , 55.56 , 53.57 , fffffffffffffffffffff 8, 26, 34 >6 , , 10.81 , 35.14 , 45.95 , 23.53 , 76.47 , , 44.44 , 46.43 , , 44.44 , 46.43 fffffffffffffffffffffffffffff 18 56 74 Total 75.68 100.00 24.32 Statistics for Table of Years_in_house by A5 DF Statistic Value 1 0.0216 0.0216 1

Prob

Chi-Square 0.8832 Likelihood Ratio Chi-Square 0.8831 Continuity Adj. Chi-Square 1 0.0000 1.0000 Mantel-Haenszel Chi-Square 0.0213 0.8840 1 Phi Coefficient 0.0171 Contingency Coefficient 0.0171 Cramer's V 0.0171 Fisher's Exact Test Cell (1,1) Frequency (F) 10 Left-sided Pr <= F 0.6607 Right-sided Pr >= F 0.5511 Table Probability (P) 0.2118 Two-sided Pr <= P 1.0000 Effective Sample Size = 74 Frequency Missing = 1 Table of Years_in_house by B6 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree 1-6 , 16 , 25 , 41 , 20.78 , 32.47 , 53.25 , 39.02 , 60.98 , , 48.48 , 56.82 , ffffffffffffffffffffff , 17 , 19 , , 22.08 , 24.68 , , 47.22 , 52.78 , , 51.52 , 43.18 , 36 >6 , 46.75 ffffffff[^]fffffff[^]fffffff 33 44 77 Total 42.86 57.14 100.00

Statistics for Table of Years_in_house by B6 DF Value Prob Statistic 0.5260 0.4683 Chi-Square 1 Likelihood Ratio Chi-Square 0.5261 0.4682 1 Continuity Adj. Chi-Square 1 0.2445 0.6209

Mantel-Haenszel Chi-Square	1	0.5192	0.4712
Phi Coefficient		-0.0827	
Contingency Coefficient		0.0824	
Cramer's V		-0.0827	

Fisher's Exact Test	
<i>fffffffffffffffffffffffffffffff</i>	ffffff
Cell (1,1) Frequency (F)	16
Left-sided Pr <= F	0.3105
Right-sided Pr >= F	0.8304
Table Probability (P)	0.1409
Two-sided Pr <= P	0.4973
Sample Size = 77	

Table of Years_in_house by B7 Frequency, Percent , Row Pct ,Disagree,Agree - , Total Col Pct , - Stron, Strongly, ,gly Disa, Agree , ,gree 15 , 23 , 22.06 , 33.82 , 39.47 , 60.53 , 57.69 , 54.76 , 1-6 38 , 55.88 , , , 57.69 , 54.76 fffffffffffffffffffffffffffffffffff و 11 , 19 , 16.18 , 27.94 , 19, 30 >6 , 44.12 , 36.67 , 63.33 , 42.31 , 45.24 , , fffffffffffffffffffffffffffffff Total 26 42 68 38.24 61.76 100.00

Statistics for Table of Years_in_house by B7 DF Statistic Value Prob Chi-Square 1 0.0559 0.8130 Likelihood Ratio Chi-Square 0.0560 1 0.8129 Continuity Adj. Chi-Square 0.0000 1.0000 1 Mantel-Haenszel Chi-Square 1 0.0551 0.8144 Phi Coefficient 0.0287 Contingency Coefficient 0.0287 Cramer's V 0.0287

Table of Years_in_house by B8 Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree ffffffffffffffffffffffffffff 11, 25, 15.71, 35.71, 1-6 36 , 51.43 , , 30.56 , 69.44 , , 40.74 , 58.14 , , fffffffffffffffffffffffff >6 16 , 18, 34 ,

ر	22.86 ,	25.71 ,	48.57
ر	47.06 ,	52.94 ,	
,	59.26 ,	41.86 ,	
fffffffff	ffffffff	ffffff	
Total	27	43	70
	38.57	61.43	100.00

Statistics for Table of Years_in_house by B8 Statistic DF Value Prob 2.0100 0.1563 Chi-Square 1 Likelihood Ratio Chi-Square 1 2.0188 0.1554 Continuity Adj. Chi-Square 1.3738 0.2412 1 Mantel-Haenszel Chi-Square 1.9812 0.1593 1 Phi Coefficient -0.1695 Contingency Coefficient 0.1671 Cramer's V -0.1695

Fisher's Exact Test

,,,,,,,,,
11
0.1205
0.9522
0.0727
0.2198

Table of Years_in_house by B9 Frequency, Percent , Row Pct ر Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , , fffffffffffffffffffffffffff 13 , 26 , 17.33 , 34.67 , 1-6 39 , 52.00 , 33.33 , 66.67 , , , 50.00 , 53.06 ffffffffffffffffffffffffffffffffff 13, 23, 36 >6 , 17.33 , 30.67 , 48.00 , 36.11 , 63.89 , , 50.00 , 46.94 , *ffffffffffffffffffffffffffff* Total 26 49 75 34.67 65.33 100.00

Statistics for Table of Years_in_house by B9 Statistic DF Value Prob Chi-Square 1 0.0638 0.8006 Likelihood Ratio Chi-Square 0.0638 0.8007 1 Continuity Adj. Chi-Square 0.0001 0.9923 1 Mantel-Haenszel Chi-Square 1 0.0629 0.8019 Phi Coefficient -0.0292 0.0291 Contingency Coefficient Cramer's V -0.0292

Table of Years_in_house by B10 Frequency,

	Percent				
	Row Pct	, ,			
	Col Pct	,Disagree,A	gree -	, Total	
		, - Stron,S	trongly	,	
		,gly Disa,	Agree	,	
	ffffffff	,g,ee , ffffffffff	fffffff		
	1-6	, 7,	31	, 38	
		, 9.46,	41.89	, 51.35	
		, 18.42 ,	81.58	,	
	<i><i><i><i><i><i><i><i><i></i></i></i></i></i></i></i></i></i>	, 41.10 , ^{(^} ffffffff	54.59		
	>6	, 10 ,	26	, 36	
		, 13.51 ,	35.14	, 48.65	
		, 27.78 ,	72.22	,	
		, 58.82 , .^	45.61		
	Total	17 17	57	74	
		22.97	77.03	100.00	
Stati	istics for	• Table of Y	'ears in	house by	B10
Statistic			DF -	Value	Prob
ffffffff	ffffffff	fffffffffff	fffffff	fffffffff	ffffff
Chi-Square	e 1 Potio Ch	i Sauana	1	0.9146	0.3389
Continuity	/ Adi Chi	-Square	1	0.9175	0.3382
Mantel-Hae	enszel Chi	L-Square	1	0.9023	0.3422
Phi Coeffi	icient			-0.1112	
Contingen	y Coeffic	ient		0.1105	
Cramer's \	/			-0.1112	
	Fi	isher's Exac	t Test		
	ffffffff	ffffffffff	ffffff	ffffff	
	Cell (1,1	L) Frequency	(F)	7	
	Left-side	ed Pr <= F		0.2485	
	Table Pro	Jeu Pr >= F Shahility (P	2	0.8913	
	Two-sided	1 Pr <= P	/	0.4124	
	Effec	tive Sample	Size =	74	
	Fr	requency Mis	sing = 1	1	
	Table o	of Years_in_	house by	/ B11	
	Frequency	/ ,			
	Percent Pow Pct	ر			
	Col Pct	, .Disagree.A	gree -	. Total	
		, - Stron,S	trongly)	
		gly Disa,	Agree	,	
		,gree ,			
	1-6	5	22	38	
	1 0	, 6.67,	44.00	, 50.67	
		, 13.16 ,	86.84	,	
		, 35.71,	54.10	,	
	11111111111111111111111111111111111111	f ^ttttttt •	ftttttt or	רכ	
	/0	, ⁹ , .	20 37.33	, <i>57</i> , 49.33	
		, 24.32 ,	75.68	,	
		, 64.29,	45.90	,	
	fffffff	ffffffffffff	fffffff	` 	
	IOTAL	14 18 67	61 81 २२	75 100 00	
		10.07	رر.یں	100.00	
Stati	istics for	• Table of Y	′ears in	house by	B11

Statistics for Table of	Years	_in_house by	B11
Statistic	DF	Value	Prob
<i>ffffffffffffffffffffffffffffffffff</i>	fffff	fffffffffffff	ffffff
Chi-Square	1	1.5396	0.2147
Likelihood Ratio Chi-Square	1	1.5559	0.2123
Continuity Adj. Chi-Square	1	0.8920	0.3449
Mantel-Haenszel Chi-Square	1	1.5191	0.2178
Phi Coefficient		-0.1433	
Contingency Coefficient		0.1418	
Cramer's V		-0.1433	

Fisher's Exact Test fffffffffffffffffffffffffffffffff			
Cell (1,1) Frequency (F)	5		
Left-sided Pr <= F 0.1727			
Right-sided Pr >= F 0.9387			
Table Probability (P) 0.1114			
Two-sided Pr <= P 0.2486			
Sample Size = 75			

Table of Years_in_house by B12 Frequency, Percent , Row Pct Col Pct , Disagree, Agree - , Total , - Stron,Strongly, ,gly Disa, Agree , 39 51.32 10, 27, 37 13.16, 35.53, 48.68 >6 , , , 13.16 , 33.33 , , 27.03 , 72.97 , , 45.45 , 50.00 , fffffffffffffffffffffffffffffffff 22 54 Total 76 28.95 71.05 100.00

Statistics for Table of	Years_	_in_house by	B12
Statistic	DF	Value	Prob
<i>fffffffffffffffffffffffffffffffffffff</i>	fffff	, ffffffffffff	fffffff
Chi-Square	1	0.1293	0.7192
Likelihood Ratio Chi-Square	1	0.1294	0.7190
Continuity Adj. Chi-Square	1	0.0113	0.9152
Mantel-Haenszel Chi-Square	1	0.1276	0.7210
Phi Coefficient		0.0412	
Contingency Coefficient		0.0412	
Cramer's V		0.0412	

Fisher's Exact Test	
ffffffffffffffffffffffffffff	ffffff
Cell (1,1) Frequency (F)	12
Left-sided Pr <= F	0.7294
Right-sided Pr >= F	0.4581
Table Probability (P)	0.1875
Two-sided Pr <= P	0.8028
Sample Size = 76	

Total	32	43	75
	42.67	57.33	100.00

Statistics for T	able of Years_in	house by	B13
	UF FFFFFFFFFFFFFFFF	vaiue	Prob
Chi-Square	1	0.8155	0.3665
Likelihood Ratio Chi-	Square 1	0.8151	0.3666
Continuity Adj. Chi-S	quare 1	0.4460	0.5042
Phi Coefficient	quare I	0.8046 -0.1043	0.3697
Contingency Coefficie	nt	0.1037	
Cramer's V		-0.1043	
- · ·			
F1SN <i>+++++++++</i>	er's Exact lest		
Cell (1,1)	Frequency (F)	16	
Left-sided	Pr <= F	0.2520	
Right-sided	Pr >= F	0.8725	
Two-sided P	bility (P)	0.1245 0.4811	
Sa	mple Size = 75	0.4011	
Table of	Years_in_house t	oy C14	
Frequency,		-	
Percent ,			
ROW PCT ,	isagree Agree -	Total	
, , ,	- Stron, Strongly	, 10tai /,	
,g	ly Disa, Agree	,	
,g	ree ,	,	
<i></i>		. 42	
, ¹	20.25, 32.91	, 53.16	
,	38.10 , 61.90	,	
, , ,	50.00 , 55.32	ر	
<i>;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;</i>		. 37	
, , , , , , , , , , , , , , , , , , ,	20.25, 26.58	, 46.84	
,	43.24 , 56.76	, ,	
, , , , , , , , , , , , , , , , , , , ,	50.00 , 44.68	, ,	
Total	37 37 37 37 37 37 37 37 37 37 37 37 37 3	- 79	
	40.51 59.49	100.00	
Statistics for T	able of Veans in	house by	C14
Statistic	DF	Value	Prob
fffffffffffffffffffffff	ffffffffffffffff	, ffffffffff	ffffff
Chi-Square	1	0.2163	0.6419
Continuity Adi Chi-S	Square 1	0.2163 0.0554	0.6419
Mantel-Haenszel Chi-S	quare 1	0.2136	0.6440
Phi Coefficient		-0.0523	
Contingency Coefficie	nt	0.0523	
Cramer's V		-0.0523	
Fish	er's Exact Test		
ffffffffff	<i></i>	ffffff	
Cell (1,1)	Frequency (F)	16 0 1067	
Right-sided	Pr >= F	0.7564	
Table Proba	bility (P)	0.1631	
Two-sided P	r <= P	0.6543	
Sa	mpie Size = /9		
Table of	Veans in house !	W C1E	
Frequency.	rears_th_house t	y CI3	
Percent ,			
Row Pct ,			
Col Pct ,D	- Stron Strong	, ∣ota⊥ ′	
, .g	ly Disa, Agree	ر <i>ا</i>	

اد	gree ,	,			
ffffffff^ffffffffffffffff					
1-6 ,	5,	35,	40		
ر	6.58,	46.05 ,	52.63		
ر	12.50 ,	87.50 ,			
ر	55.56,	52.24 ,			
ffffffff?	fffffff^	fffffff			
>6,	4,	32,	36		
ر	5.26,	42.11 ,	47.37		
ر	11.11 ,	, 88.89			
ر	44.44 ,	47.76 ,			
ffffffff^fffffffffffffff					
Total	9	67	76		
	11.84	88.16	100.00		

Statistics for Table of Years_in_house by C15 DF Prob Statistic Value Chi-Square 0.0350 0.8516 1 Likelihood Ratio Chi-Square 0.0351 1 0.8514 Continuity Adj. Chi-Square 1 0.0000 1.0000 Mantel-Haenszel Chi-Square 0.0345 0.8525 1 Phi Coefficient 0.0215 Contingency Coefficient 0.0215 Cramer's V 0.0215

WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Fisher's Exact Test				
ffffffffffffffffffffffffffff	ffffff			
Cell (1,1) Frequency (F)	5			
Left-sided Pr <= F	0.7038			
Right-sided Pr >= F	0.5682			
Table Probability (P)	0.2721			
Two-sided Pr <= P	1.0000			
Sample Size = 76				

Table c	of Years_in	_house by	C16
Frequency	/,		
Percent	,		
Row Pct	,		
Col Pct	,Disagree,	Agree - ,	Total
	, - Stron,	Strongly,	
	,gly Disa,	Agree ,	
	,gree ,	ر	
ffffffff	⁻ fffffff	fffffff	
1-6	, ₃ ,	38,	41
	, 3.90,	49.35 ,	53.25
	, 7.32,	92.68 ,	
	, 60.00 ,	52.78 ,	
ffffffff	`^ <i>ffffffff</i>	fffffff	
>6	, 2,	34,	36
	, 2.60,	44.16 ,	46.75
	, 5.56,	94.44 ,	
	, 40.00 ,	47.22 ,	
ffffffff	~ <i>ffffffff</i>	fffffff	
Total	5	72	77
	6.49	93.51	100.00

Statistics for Table of Years_in_house by C16 DF Prob Statistic Value Chi-Square 0.0980 0.7543 1 Likelihood Ratio Chi-Square 0.0988 0.7533 1 Continuity Adj. Chi-Square Mantel-Haenszel Chi-Square 1 0.0000 1.0000 1 0.0967 0.7558 Phi Coefficient 0.0357 Contingency Coefficient 0.0356 Cramer's V 0.0357 WARNING: 50% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Fisher's Exact Test

Cell (1,1) Frequency (F) Left-sided Pr <= F 3 0.7776 Right-sided Pr >= F 0.5624 Table Probability (P) 0.3399 Two-sided Pr <= P 1.0000 Sample Size = 77 Table of Years_in_house by C17 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 1-6 , 3 , 36 , 39 , 4.00 , 48.00 , 52.00 , 7.69 , 92.31 , , 42.86 , 52.94 , ffffffffffffffffffff 4, 32, 36 5.33, 42.67, 48.00 >6 , , , 11.11 , 88.89 , , 57.14 , 47.06 , fffffffffffffffffffffffffffffffff Total 7 68 75 9.33 90.67 100.00

Statistics for Table of	Years	_in_house by	C17
Statistic	DF	Value	Prob
<i>fffffffffffffffffffffffffffffffffffff</i>	fffff	ſſſſſſ	fffffff
Chi-Square	1	0.2586	0.6111
Likelihood Ratio Chi-Square	1	0.2587	0.6110
Continuity Adj. Chi-Square	1	0.0124	0.9114
Mantel-Haenszel Chi-Square	1	0.2551	0.6135
Phi Coefficient		-0.0587	
Contingency Coefficient		0.0586	
Cramer's V		-0.0587	

WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Fisher's Exact Test	
ffffffffffffffffffffffffffff	ffffff
Cell (1,1) Frequency (F)	3
Left-sided Pr <= F	0.4544
Right-sided Pr >= F	0.8168
Table Probability (P)	0.2712
Two-sided Pr <= P	0.7041
Sample Size = 75	

Table of	Years_i	in_house	by	C18
Frequency,				
Percent ,				
Row Pct ,				
Col Pct ,	Disagree	e,Agree ·	.,	Total
,	- Stror	i,Strong	Ly,	
,	gly Disa	a, Agree	,	
,	gree	,	,	
fffffff	Ĵfffffff	, f [^] fffffff	f	
1-6 ,	4	, 37	ź,	41
,	5.13	, 47.44	ļ,	52.56
,	9.76	, 90.24	ļ,	
,	50.00	, 52.86	5,	
fffffff	fffffff	ſ [^] ffffff	f	
>6,	4	, 33	β,	37
,	5.13	, 42.32	L,	47.44
,	10.81	, 89.19	Э,	
,	50.00	, 47.14	ļ,	
ffffffff^	fffffff	f^ffffff	f^	
Total	8	76)	78
	10.26	89.74	ļ.	100.00

Statistics for Table of Years_in_house by C18 Statistic DF Value Prob 0.0235 Chi-Square 0.8782 1 Likelihood Ratio Chi-Square 1 0.0235 0.8782 Continuity Adj. Chi-Square 0.0000 1.0000 1 Mantel-Haenszel Chi-Square 0.0232 0.8789 1 Phi Coefficient -0.0174 Contingency Coefficient 0.0174 Cramer's V -0.0174 WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Fisher's Exact Test Cell (1,1) Frequency (F) 4 Left-sided Pr <= F 0.5844 Right-sided Pr >= F 0.7009 Table Probability (P) 0.2853 Two-sided Pr <= P 1.0000 Sample Size = 78 Table of Years_in_house by D19 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree 1-6 , 18 , 19 , , 25.71 , 27.14 , , 48.65 , 51.35 , , 60.00 , 47.50 , fffffffffffffffffffffffff 37 52.86 , 12 , 21 , 33 , 17.14 , 30.00 , 47.14 , >6 , 36.36 , 63.64 , , 40.00 , 52.50 , fffffffffffffffffffffffff 30 Total 40 70 57.14 100.00 42.86 Statistics for Table of Years_in_house by D19 Statistic DF Value Prob 1 1.0749 0.2998 1 1.0795 0.2988 Chi-Square Likelihood Ratio Chi-Square 0.6318 Continuity Adj. Chi-Square 0.4267 1 Mantel-Haenszel Chi-Square 1 1.0596 0.3033 Phi Coefficient 0.1239 Contingency Coefficient 0.1230 Cramer's V 0.1239 Fisher's Exact Test Cell (1,1) Frequency (F) 18 Left-sided Pr <= F 0 8997 Right-sided Pr >= F 0.2136 Table Probability (P) 0.1133 Two-sided Pr <= P 0.3406 Sample Size = 70 Table of Years_in_house by D20 Frequency, Percent , Row Pct Col Pct , Disagree, Agree - , Total , - Stron, Strongly,

,g	ly Disa,	Agree ,	
,g	ree ,	ر	
ffffffffff	fffffff^j	ffffff	
1-6,	16,	20,	36
ر	23.19 ,	28.99 ,	52.17
,	44.44 ,	55.56 ,	
,	53.33 ,	51.28 ,	
fffffffff	ffffffff	fffffff^	
>6,	14 ,	19,	33
,	20.29 ,	27.54 ,	47.83
,	42.42 ,	57.58 ,	
,	46.67 ,	48.72 ,	
ffffffffff	fffffff^j	fffffff^	
Total	30	39	69
	43.48	56.52	100.00

Statistics for Table of	Years_	in_house by	D20
Statistic	DF	Value	Prob
<i>fffffffffffffffffffffffffffffff</i>	ffffff	ſ	fffffff
Chi-Square	1	0.0286	0.8657
Likelihood Ratio Chi-Square	1	0.0286	0.8657
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0282	0.8667
Phi Coefficient		0.0204	
Contingency Coefficient		0.0204	
Cramer's V		0.0204	

Table of Years_in_house by	D21
Frequency,	
Percent ,	
Row Pct ,	
Col Pct ,Disagree,Agree - ,	Total
, - Stron, Strongly,	
,gly Disa, Agree ,	
,gree , ,	
ffffffffffffffffffffffff	
1-6 , 28 , 9 ,	37
, 37.84 , 12.16 ,	50.00
, 75.68 , 24.32 ,	
, 47.46 , 60.00 ,	
<i>ffffffff</i> , <i>ffffff</i> , <i>ffffff</i> ,	
>6 , 31 , 6 ,	37
, 41.89 , 8.11 ,	50.00
, 83.78 , 16.22 ,	
, 52.54 , 40.00 ,	
<i>ffffffff</i> , <i>ffffff</i> , <i>ffffff</i> ,	
Total 59 15	74
79.73 20.27	100.00

Statistics for Table of	Years	_in_house by	D21
Statistic	DF	Value	Prob
<i>fffffffffffffffffffffffffffffffffff</i>	ffffff	ffffffffffffff	ffffff
Chi-Square	1	0.7525	0.3857
Likelihood Ratio Chi-Square	1	0.7567	0.3844
Continuity Adj. Chi-Square	1	0.3345	0.5630
Mantel-Haenszel Chi-Square	1	0.7424	0.3889
Phi Coefficient		-0.1008	
Contingency Coefficient		0.1003	
Cramer's V		-0.1008	

```
Fisher's Exact Test
          Cell (1,1) Frequency (F)
                                         28
          Left-sided Pr <= F
                                     0.2821
          Right-sided Pr >= F
                                     0.8765
          Table Probability (P)
                                     0.1586
          Two-sided Pr <= P
                                     0.5642
              Effective Sample Size = 74
                Frequency Missing = 1
           Table of Years_in_house by D22
          Frequency,
         Percent ,
          Row Pct
          Col Pct ,Disagree,Agree - , Total
                  , - Stron, Strongly,
                  ,gly Disa, Agree ,
                   ,gree
         1-6 , 5 , 31 , 36
, 8.20 , 50.82 , 59.02
, 13.89 , 86.11 ,
, 50.00 , 60.78 ,
ffffffffffffffffffff
         >6 , 5 , 20 , 25
, 8.20 , 32.79 , 40.98
, 20.00 , 80.00 ,
, 50.00 , 39.22 ,
ffffffffffffffffffffff
                       10
                                          61
          Total
                                 51
                             83.61
                                     100.00
                     16.39
     Statistics for Table of Years_in_house by D22
Statistic
                             DF
                                      Value
                                                 Prob
1 0.4020
Chi-Square
                                               0.5261
                                     0.3968
                                               0.5287
Likelihood Ratio Chi-Square
                              1
Continuity Adj. Chi-Square
                              1
                                    0.0798
                                               0.7776
Mantel-Haenszel Chi-Square
                                    0.3954
                              1
                                               0.5295
Phi Coefficient
                                    -0.0812
Contingency Coefficient
                                     0.0809
Cramer's V
                                     -0.0812
WARNING: 25% of the cells have expected counts less
          than 5. Chi-Square may not be a valid test.
                Fisher's Exact Test
          Cell (1,1) Frequency (F)
                                          5
          Left-sided Pr <= F
                                     0 3843
          Right-sided Pr >= F
                                     0.8378
          Table Probability (P)
                                     0.2221
          Two-sided Pr <= P
                                     0.7268
             Effective Sample Size = 61
                Frequency Missing = 3
           Table of Years_in_house by D23
          Frequency,
          Percent ,
          Row Pct ,
          Col Pct ,Disagree,Agree - , Total
                  , - Stron, Strongly,
                  ,gly Disa, Agree ,
                   ,gree
         7, 34,
9.46, 45.95,
                                          41
         1-6
                  ,
                                      55.41
                   ,
         , 17.07 , 82.93 ,
, 50.00 , 56.67 ,
ffffffffffffffffffffffffff
                     7, 26, 33
9.46, 35.14, 44.59
21.21, 78.79,
                 و
          >6
                  ,
```

,

,	, 50.00	43.33	,
fffffff^	fffffff	ſ	•
Total	14	60	74
	18.92	81.08	100.00

Stati Statistic fffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingenc Cramer's V	stics for fffffffff Adj. Ch nszel Ch cient y Coeffic	r Table of ffffffffff ni-Square i-Square i-Square	f Years_i DF fffffffff 1 1 1 1	n_house by Value ffffffffff 0.2042 0.2033 0.0235 0.2014 -0.0525 0.0525 -0.0525	D23 Prob ffffffff 0.6514 0.6521 0.8782 0.6536
	F:	isher's Ex	kact Test	:	
	fffffff	Fffffffff	ffffffff	fffffff	
	Cell (1,	L) Frequer	ncy (F)	7	
	Left-side	ed Pr <= I	=	0.4367	
	Right-si	ded Pr >=	F	0.7739	
	Table Dr	babili+v	(D)	0 2106	
	Two-side	f Pr $\zeta = P$	(Г)	0.2100	
	110 5140	Sample Si	ize = 74	01/0/2	
	Table of Frequency Percent Row Pct	of Years_: /, ,	in_house	by D24	
	Col Pct	Disagree, , - Stron, gly Disa, gree f^ffffffff	e,Agree - n,Strongl a, Agree , f^ffffffff	y, Total y, , f^	
	1-6	, 5	, 32	2, 37	
	ffffffff	, 6.94 , 13.51 , 26.32	, 44.44 , 86.49 , 60.38 f^fffffff	<pre>4 , 51.39 9 , 3 , 5f[^]</pre>	
	>6	, 14 , 19.44 , 40.00	, 29.17 , 29.17 , 60.00	7, 48.61	
	tttttt.	, 12.00	tvtttttt 22.07	- , - ,	
	Total	נ <i>דנדנ</i> ונ י 19	53	, , 72	
		26.39	73.61	100.00	
C+-+;	ctice for	Table of	C Voonc i	n hausa hu	D24

Statistics for Table of	Years	_in_house by	D24
Statistic	DF	Value	Prob
ffffffffffffffffffffffffffffff	fffff	ffffffffffff	fffffff
Chi-Square	1	6.4956	0.0108
Likelihood Ratio Chi-Square	1	6.6830	0.0097
Continuity Adj. Chi-Square	1	5.2037	0.0225
Mantel-Haenszel Chi-Square	1	6.4054	0.0114
Phi Coefficient		-0.3004	
Contingency Coefficient		0.2877	
Cramer's V		-0.3004	

Fisher's Exact Test	
<i>fffffffffffffffffffffffffffffff</i>	ffffff
Cell (1,1) Frequency (F)	5
Left-sided Pr <= F	0.0107
Right-sided Pr >= F	0.9979
Table Probability (P)	0.0086
Two-sided Pr <= P	0.0157
Sample Size = 72	

Table of Years_in_house by D25 Frequency, Percent , Row Pct ,

Col Pct	,Disagree,A	gree - ,	Total
	, - Stron,S	trongly,	
	,gly Disa,	Agree ,	
	.gree .		
fffffff	f^fffffffffff	, fffffff	
1-6	, 11,	31,	42
	, 13.92 ,	39.24 ,	53.16
	, 26.19 ,	73.81 ,	
	, 52.38 ,	53.45 ,	
fffffff	f^ffffffffff	ffffff^	
>6	, 10,	27,	37
	, 12.66 ,	34.18 ,	46.84
	, 27.03 ,	72.97 ,	
	, 47.62 ,	46.55 ,	
fffffff	f^ffffffffff	ffffff^	
Total	21	58	79
	26.58	73.42	100.00

Statistics for Table of	Years	_in_house by	D25
Statistic	DF	Value	Prob
<i>fffffffffffffffffffffffffffffffffffff</i>	fffff	ſſſſſſſ	fffffff
Chi-Square	1	0.0071	0.9331
Likelihood Ratio Chi-Square	1	0.0071	0.9331
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0070	0.9335
Phi Coefficient		-0.0094	
Contingency Coefficient		0.0094	
Cramer's V		-0.0094	

Annexure F:

Factor analysis

		Tł	he FACTOR Proce	edure		
		Input Data Ty	ype	Raw Data	a	
		Number of Red	cords Read	86	9	
		Number of Red	cords Used	71	L	
		N for Signif:	icance Tests	7:	L	
	Мо	and Standay	nd Doviations +	from 71 Obconvot	ionc	
	ne	Variable	Mean	Std Dev	10113	
		A1	3,4366197	1.3808113		
		A2	3.5070423	1.4723474		
		A3	3.2253521	1.4461494		
		A4	3.4366197	1.3280748		
		A5	3.9436620	1.2748930		
		B6	2.9859155	1.3362309		
		B7	3.1830986	1.4472620		
		BO	3.3380282	1.4035024		
		B9 B10	3.408450/	1.2/14161		
		B10 B11	3 9436620	1 1069562		
		B12	3,7042254	1,5061243		
		B13	3.2112676	1.3929977		
		C14	3.4788732	1.3924198		
		C15	4.2253521	1.1109479		
		C16	4.4788732	0.8256453		
		C17	4.4366197	0.8901428		
		C18	4.4225352	0.9359788		
		D19	3.2394366	1.1767363		
		D20	3.0000000	1.3201731		
		D21	2.1126/61	1.34/4//0		
		D22	3.6901408	1.0224837		
		D25 D24	3.9295775	1 1903367		
		D25	3.8591549	1,2569325		
		Initial Fact	tor Method: Pri	incipal Factors		
		Prior Com	nunality Estima	ates: SMC		
A1	A2	A3	A4	A5	B6	B7
0.45634130	0.58583135	0.50155067	0.54091258	0.58345879	0.57775304	0.64073092
B8	B9	B10	B11	B12	B13	C14
0.48824522	0.28630832	0.48698364	0.45915130	0.33752869	0.36022802	0.39977858
C15 0 64164222	0 E2612160	CI/ 0 E0612001	0 20711726	DI9	0 22262401	DZI 0 24121262
0.04104252	0.55612160	1002106210	0.30/11/20	0.30362176	0.32203491 D25	0.24121303
	0.4764	7519 0.474	435287 0.5	50391030 0.4	52422298	
	014704	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Eigenval	ues of the R	educed Correlat	tion Matrix: To	otal = 11.712453	3 Average = 0	0.46849813
U U		Eigenvalue	Difference	Proportion Cu	umulative	
	1	2.68477551	0.35305562	0.2292	0.2292	
	2	2.33171990	0.75778073	0.1991	0.4283	
	3	1.57393917	0.25896160	0.1344	0.5627	
	4	1.31497757	0.135/0194	0.1123	0.6/50	
	5	1.1/92/563	0.11320880	0.100/	0.//50	
	6 7	1,00,2000// 0 81282100	0.2320/309	0.0210	0 9360	
	, 8	0.72186786	0.17286947	0.0616	0.9977	
	9	0.54899839	0.18691838	0.0469	1.0445	
	10	0.36208001	0.05504629	0.0309	1.0755	
	11	0.30703372	0.00615752	0.0262	1.1017	
	12	0.30087620	0.12358155	0.0257	1.1274	
	13	0.17729464	0.04155525	0.0151	1.1425	
	14	0.13573939	0.08707426	0.0116	1.1541	
	15	0.04866513	0.01044927	0.0042	1.1582	
	16	0.03821586	0.08970316	0.0033	1.1615	
	1/	05148/30	0.05588462	-0.0044	1.15/1	
	10 10	10/3/192	0.01402281 0 08717007	-0.0092	1.14/9	
	20	- 20916700	0.01555924	-0.0104	1,1197	
	20	22472624	0.03849721	-0.0192	1.1005	
	22	26322344	0.01058111	-0.0225	1.0780	
	23	27380455	0.04056001	-0.0234	1.0546	
	24	31436456	0.01103928	-0.0268	1.0278	
	25	32540383		-0.0278	1.0000	

6 factors will be retained by the NFACTOR criterion.

Initial Factor Method: Principal Factors Factor Pattern

				Factor Patter			
		Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
C17	C17	62 *	38	2	-18	-13	8

C15	C15	61	*	34	-16	-35	0	3	
B7	B7	53	*	-16	50 *	20	23	-20	
B6	B6	51	*	-4	4	23	17	-49 *	
C16	C16	48	*	29	5	-29	-23	4	
A2	A2	47	*	-8	-33	33	-30	25	
B8	B8	47	*	-32	29	5	18	-11	
A3	A3	3/		-6	-30	-19	15	35	
D22	D22	36		20 58 *	-13	13	30	-10	
D24 D23	D24	-26		51 *	-13	-8	14	-5	
D25	D25	-37		48 *	-5	17	30	7	
C14	C14	1		41 *	16	31	9	8	
C18	C18	4		37	1	-2	2	-3	
D20	D20	-1		-27	-15	12	-8	26	
B9	B9	9		-30	-5	4	-9	5	
A5 010	A5 010	-28		20	5/*	-16	16	19	
Δ1Z	Δ12 Δ1	22		15	42 *	10	-17	18	
D19	D19	-7		29	-5	33	3	-11	
D21	D21	-16		-17	-16	24	21	14	
B11	B11	-13		27	36	5	-42 *	2	
B10	B10	0		43 *	21	14	-44 *	-6	
A4	A4	14		-13	42 *	-24	33	42 *	
B13	B13	15		-17	12	35	-1	37	
				Variance F	vnlained by	Fach Factor			
Fa	ctor1	Fact	or2	Fact	tor3	Factor4	Factor5	Factor6	
2.684	47755	2.3317	199	1.5739	9392 1.	3149776	1.1792756	1.0657068	
		F	inal	Communality	/ Estimates:	Total = 10.150	395		
0 20252	A1	A2	~	A3	A4	A5	B6	B7	
0.388690	R8 R8	4×252090.0	0	.40911224 B10	0.00///06 110	0.526/8/54 دام	0.50196032 10	//۷/۷۲۵۵۵.0 ۲۱۸	
0.45191	389	0.11426121	Ø	44565775	0.39751167	0.25960130	0.32488572	0.30309800	
(),45151	C15	C16	Ŭ	C17	C18	D19	D20	D21	
0.63445	632	0.44738740	0	.58956907	0.13825322	0.21240654	0.18371507	0.19818182	
		I	D22		D23	D24	D25		
		0.33524	597	0.37982	2245 0.4	8569678 0	.50276277		
				Prerota	ation Method:	Varımax			
		1		ortnogonal	L Iranstormat	ion Matrix	5	6	
	1	0.73194		-0.14426	0.57687	-0.12637	0.30264	-0.05576	
	2	0.38586		0.84403	-0.15469	0.31488	-0.11401	-0.05140	
	3	-0.13423		-0.06462	0.41472	0.60296	-0.12454	0.65325	
	4	-0.47116		0.27607	0.32108	0.18911	0.67940	-0.31837	
	5	-0.22746		0.43173	0.34831	-0.68925	-0.12444	0.38730	
	6	0.15371		-0.00315	-0.49688	-0.10244	0.63469	0.56227	
				Rotat	ed Factor Pa	ttern			
		Factor1		Factor2	Factor3	Factor4	Factor5	Factor6	
C15	C15	77	*	11	11	-14	-5	-3	
C17	C17	73	*	12	16	10	9	1	
C16	C16	65	*	-1	6	16	-4	2	
D21	D21	-30		4	-5	-24	22	0	
D25	D25	-22		64 *	-19	-2	-4	/	
D24	D24	24		52 *	-0	-15	-23	-4	
C14	C14	-1		46 *	11	21	18	7	
D19	D19	-11		36	7	12	10	-20	
D22	D22	24		35	31	-21	9	-10	
C18	C18	17		31	-1	10	-6	-2	
89 89	89 89	-4		-29	3	-7	14	-4	
D/ R6	D/ RG	0 1 2		- 9	۲۵ × ۲۵ ×	٥ د	-2	-28	
B8	B8	10		-27	57 *	-8	-2	18	
B11	B11	3		6	-11	61 *	-1	6	
B10	B10	16		20	-6	60 *	3	-13	
B12	B12	3		-2	8	39	16	27	
A3	A3	40		-7	-8	-42 *	23	10	
A2	A2	31		-15	2	-4	61 *	-32	
AI R13	AT B13	1 _ 2		- 2	д Тр	7	54 * 52 *	-9 18	
D20	D20	-0		-22	-15	-12	30	-1	
A4	A4	10		-8	10	-12	7	71 *	
A5	A5	-14		20	-5	28	-19	59 *	
-		-		Variance E	Explained by	Each Factor		F	
Fa	CTOP1	Facto	or2	Fact	5700 1	ractor4	Factor5	Factor6	
2.19	12002	2.0435	212	1./016		+041233	1.3331343	1.3332/0/	
		F:	inal	Communality	/ Estimates:	Total = 10.150	395		
	A1	A2		A3	A4	A5	B6	B7	
0.38869	685	0.59635284	0	.40911224	0.55777806	0.52678754	0.58196032	0.68527977	
	B8	B9		B10	B11	B12	B13	C14	

0.45191389	0.11426121	0.44565775	0.39751167	0.25960130	0.32488572	0.30309800
C15	C16	C17	C18	D19	D20	D21
0.63445632	0.44738740	0.58956907	0.13825322	0.21240654	0.18371507	0.19818182
	D	22	D23	D24	D25	
	0.335245	97 0.3798	82245 0.4	8569678 0	.50276277	

Scoring Coefficients Estimated by Regression

_		Squared Mu	ltiple Correla	tions of the	Variables with	Each Factor	
6 82	actor1 376704	Facto 0 784710	0r2 Fac	tor3	Factor4	Factor5	Factor6
0.02	570704	0.784710	0.7878	5291 0.	12/803/9 0	./0/19190	0.73333703
			Standardiz	ed Scoring Co	oefficients		
		Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
C15	C15	0.37561	0.02955	-0.02809	-0.12216	-0.11141	-0.01479
C17	C17	0.29635	0.04835	0.03787	0.10128	0.03187	0.04606
C16	C16	0.21855	-0.05858	-0.04393	0.10/46	-0.04599	0.01649
D21 D25	D21 D25	-0.07196	0.05501	-0.00551	-0.08449	0.10019	0.01017
D23	D23	0.10770	0.29501	-0.04331	-0.05041	0.03072	0.04745
D23	D23	0.03258	0.18727	-0.03460	-0.02632	-0.11024	-0.00179
C14	C14	-0.03919	0.17303	0.06551	0.07214	0.10026	0.01870
D19	D19	-0.04604	0.10647	0.03214	0.03464	0.04515	-0.07832
D22	D22	-0.00049	0.16718	0.13100	-0.11073	0.05072	-0.02661
C18	C18	0.03944	0.08940	-0.02064	0.02259	-0.02623	-0.01663
B9	B9	-0.00167	-0.06617	0.00293	-0.00494	0.05736	-0.00874
B7	B7	-0.04973	0.00600	0.46921	0.09222	0.01718	0.14336
B6	B6	-0.01285	0.06300	0.32920	-0.04993	-0.09480	-0.22104
B8 D11	B8 D11	0.00187	-0.08930	0.1/623	-0.042//	-0.009/3	0.08245
BII B10	BII B10	0.02227	0.03131	-0.00313	0.20555	0.00031	-0 0801/34
B10 B12	B12	0.04084	-0 01182	0.0173	0.33700	0.04170	0.00044
Δ3	Δ3	0.14121	-0.02930	-0.09549	-0.22963	0.09366	0.09307
A2	A2	0.11203	-0.05123	-0.06255	0.03525	0.39629	-0.15624
A1	A1	-0.03877	0.08648	0.03075	0.03374	0.27936	-0.01900
B13	B13	-0.04811	-0.00484	0.00039	0.00878	0.22585	0.07949
D20	D20	-0.02746	-0.05674	-0.05627	-0.01675	0.14588	0.01504
A4	A4	0.03428	-0.03368	-0.02194	-0.09184	0.10183	0.42897
A5	A5	-0.00551	0.10771	0.00594	0.12823	-0.07331	0.31436
		Factor1	Eactor2	Factor3	Factor4	Factor5	Factor6
C15	C15	100 *		0	-1	0	0
C17	C17	95 *	1	1	0	0	0
C16	C16	100 *	. 0	0	1	0	0
D21	D21	-33	0	0	-18	15	0
D25	D25	-3	100 *	-2	0	0	0
D24	D24	5	96 *	0	-1	0	0
D23	D23	0	80 *	-7	0	-6	0
C14	C14	0	77 *	1	6	5	0
D19	D19	-2	63 *	0	2	1	-10
D22 C19	022	8	28	18	- 5	0	-1
RQ	R9	0	-87 *	0	-1	-1	0
B7	B7	0	0, 0	100 *	9	9	2
B6	B6	1	0	89 *	0	õ	-6
B8	B8	0	-8	73 *	0	0	2
B11	B11	0	0	-1	100 *	0	0
B10	B10	2	4	0	78 *	0	-1
B12	B12	0	0	0	48 *	4	18
A3	A3	27	0	0	-30	6	0
A2	A2	7	-1	0	0	64 *	-8
A1	A1	0	6	2	1	84 *	0
B13	B13	0	0	0	0	100 *	3
D20	D20	-1	-18	-5	- 3	45 *	0 100 *
A4 ^5	A4 ^5	-1	9	0	6	-2	100 *
AJ	AJ	-1	5	0	0	-2	02
			Procrustea	n Transformat	tion Matrix	_	
	1	1	2	3	4	5	6
	1	1.143/3425	-0.06/3215	-0.1216/23	0.0/081482	-0.0/30533	0.04453124
	2	-0.0292/32	1.4/059968	0.04/26441	-0.049/44/	0.011913//	0.02825909
	3	0.12/3039	-0 1655057	-0 0220071	1 03625806	-0.0337874	-0.024970
	5	-0 1304771	0.06843601	-0.0229071	0 05105896	1 22066441	0.0105500
	6	0.07444524	0.06699064	-0.0306245	-0.0313994	0.02682786	0.92017628
					(
			котатіоп M Normalized Ob	lique Transfo	< (power = 3) ormation Matrix		
		1	2	. 3	4	5	6
	1	0.65219	-0.12932	0.48086	-0.08345	0.21305	-0.02505
	2	0.42776	0.78635	-0.15870	0.31200	-0.10309	-0.01400
	3	-0.08923	-0.08597	0.42570	0.56428	-0.10188	0.62327
	4	-0.62646	0.310/6	0.32310	0.1/518	0./2045	-0.31935
	5	20123105 0 17422	0.00290	0.42228	-0.//980 -0 05407	-0.1/452 0 60002	0.39298
	5	0.1/400	0.00004	0.01040	0.03427	0.03502	0.01900

			Inter-Fa	ctor Correlat	ions		
		Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
Eact	on1	100 *	1	22	_12	22	_12
Fact	01.1	100	4	22	-13	22	-12
Fact	or2	4	100 *	-7	15	-7	-8
Fact	or3	22	-7	100 *	2	21	3
Eact	on/	-13	15	2	100 *	-13	6
Fact	-	-13	13	2	100	-13	0
Fact	or5	22	-7	21	-13	100 *	-8
Fact	or6	-12	-8	3	6	-8	100 *
		Rotated Facto	or Pattern (St	andardized Re	egression Co	efficients)	
		Factor1	Factor2	Eactor3	- Factor4	Factor5	Factor6
C1 F	645		1 400012	1400015	1000014	Tuccors	Tuccoro
C15	C15	/8 *	9	4	-10	-11	1
C17	C17	73 *	9	8	15	4	5
C1C	C1C	C0 *	F	1	20	7	4
C10	C19	68 *	-5	-1	20	-/	4
D21	D21	-34	9	-4	-26	23	0
DDE	DDE	21	<i>cc</i> *	1/	6	0	0
025	025	-21	00	-14	-0	0	8
D24	D24	23	64 *	-9	-16	8	7
D23	623	6	50 *	-20	-1	- 21	-3
025	025	0	50	20		21	5
C14	C14	-4	46 *	10	20	20	8
D22	D22	18	38	31	-23	4	-8
D10	D10	10	25		11	11	20
D19	019	-15	35	9	11	11	-20
C18	C18	19	29	-1	10	-7	-1
DO.	DO.	C	20	1	ć	10	-
D9	69	-0	-20	T	-0	15	- 5
B7	B7	0	-6	78 *	5	4	20
R6	B6	4	Λ	71 *	-10	-10	- 30
DO	DU	4	4	/1	-10	-10	-50
B8	B8	4	-23	56 *	-10	3	17
B11	B11	9	-2	-13	63 *	з	5
510	510	10	12	10	co *	5	10
BT0	BT0	19	12	-8	62 *	/	-13
B12	B12	4	-4	4	40	19	27
A 2		20	2	1 -	20	20	14
A3	A3	38	-3	-15	-38	20	14
A2	A2	23	-15	-8	2	60 *	-29
۸1	۸1	7	24	10	12	EC *	6
AI	AI	= /	24	12	15	30	-0
B13	B13	-14	-4	3	5	55 *	19
D20	D20	-11	- 20	-18	-10	32	a
020	020	11	20	10	10	52	
A4	A4	13	- 3	6	-14	6	/3 *
A5	A5	-6	19	-2	25	-15	59 *
			Reference	Axis Correla	ations		
		Eactor1	Eacton2	Eactor?	Eactor/	EactonE	Eactone
		Factori	Factorz	Factors	Factor4	Factors	Factore
Fact	or1	100 *	-8	-20	13	-16	11
Eact	002	_ 8	100 *	Q	-16	5	8
	012	0	100	0	10	5	0
Fact	or3	-20	8	100 *	-8	-18	-6
Fact	or4	13	-16	-8	100 *	11	-4
Fact	or4	13	-16	-8	100 *	11	-4
Fact Fact	or4 or5	13 -16	-16 5	-8 -18	100 * 11	11 100 *	-4 6
Fact Fact Fact	or4 or5 or6	13 -16 11	-16 5 8	-8 -18 -6	100 * 11 -4	11 100 * 6	-4 6 100 *
Fact Fact Fact	or4 or5 or6	13 -16 11	-16 5 8	-8 -18 -6	100 * 11 -4	11 100 * 6	-4 6 100 *
Fact Fact Fact	or4 or5 or6	13 -16 11	-16 5 8	-8 -18 -6	100 * 11 -4	11 100 * 6	-4 6 100 *
Fact Fact Fact	or4 or5 or6	13 -16 11	-16 5 8 Rotation Met	-8 -18 -6 hod: Promax (100 * 11 -4 (power = 3)	11 100 * 6	-4 6 100 *
Fact Fact Fact	or4 or5 or6	13 -16 11 Refe	-16 5 8 Rotation Met	-8 -18 -6 hod: Promax (100 * 11 -4 (power = 3)	11 100 * 6	-4 6 100 *
Fact Fact Fact	or4 or5 or6	13 -16 11 Refe	-16 5 8 Rotation Met rence Structur	-8 -18 -6 hod: Promax (e_(Semipartia	100 * 11 -4 (power = 3) al Correlati	11 100 * 6	-4 6 100 *
Fact Fact Fact	or4 or5 or6	13 -16 11 Refer Factor1	-16 5 8 Rotation Met rence Structur Factor2	-8 -18 -6 hod: Promax (e (Semipartia Factor3	100 * 11 -4 (power = 3) al Correlati Factor4	11 100 * 6 ons) Factor5	-4 6 100 * Factor6
Fact Fact Fact	or4 or5 or6	13 -16 11 Refer Factor1 74 *	-16 5 8 Rotation Met rence Structur Factor2 9	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4	100 * 11 -4 (power = 3) al Correlati Factor4 -9	11 100 * 6 ons) Factor5 -11	-4 6 100 * Factor6 1
Fact Fact Fact	or4 or5 or6 C15	13 -16 11 Refer Factor1 74 *	-16 5 8 Rotation Met rence Structur Factor2 9	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4	100 * 11 -4 2 power = 3) al Correlati Factor4 -9 14	11 100 * 6 ons) Factor5 -11	-4 6 100 * Factor6 1
Fact Fact Fact C15 C17	or4 or5 or6 C15 C17	13 -16 11 Factor1 74 * 69 *	-16 5 8 Rotation Met rence Structur Factor2 9 9	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14	11 100 * 6 ons) Factor5 -11 4	-4 6 100 * Factor6 1 5
Fact Fact Fact C15 C17 C16	or4 or5 or6 C15 C17 C16	13 -16 11 Factor1 74 * 69 * 64 *	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20	11 100 * 6 ons) Factor5 -11 4 -7	-4 6 100 * Factor6 1 5 4
Fact Fact Fact C15 C17 C16 D21	or4 or5 or6 C15 C17 C16 D21	13 -16 11 Factor1 74 * 69 * 64 *	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 0	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -1	100 * 11 -4 (power = 3) 11 Correlati Factor4 -9 14 20 -25	11 100 * 6 ons) Factor5 -11 4 -7 22	-4 6 100 * Factor6 1 5 4
Fact Fact C15 C17 C16 D21	or4 or5 or6 C15 C17 C16 D21	13 -16 11 Factor1 74 * 69 * 64 * -33	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25	11 100 * 6 ons) Factor5 -11 4 -7 22	-4 6 100 * Factor6 1 5 4 0
Fact Fact Fact C15 C17 C16 D21 D25	or4 or5 or6 C15 C17 C16 D21 D25	13 -16 11 Factor1 74 * 69 * 64 * -33 -20	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 *	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -1 -4 -1 -4	100 * 11 -4 (power = 3) 11 Correlati Factor4 -9 14 20 -25 -6	11 100 * 6 ons) Factor5 -11 4 -7 22 0	-4 6 100 * Factor6 1 5 4 0 8
Fact Fact Fact C15 C17 C16 D21 D25 D24	or4 or5 or6 C15 C17 C16 D21 D25 D24	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 *	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8	-4 6 100 * Factor6 1 5 4 0 8 7
Fact Fact Fact C15 C17 C16 D21 D25 D24	or4 or5 or6 C15 C17 C16 D21 D25 D24	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 *	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -1 -4 -13 -9 -9	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 20	-4 6 100 * Factor6 1 5 4 0 8 7
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 *	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20	-4 6 100 * Factor6 1 5 4 0 8 7 -3
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 *	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D23 C14	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 *	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 20	100 * 11 -4 (power = 3) 11 Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 8
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D23	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 4	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -8 -20
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34 28	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -8 -20 -1
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 P9	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 C19 C18	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -14	-16 5 8 Rotation Met rence Structur Factor2 9 9 9 5 9 64 * 63 * 49 * 45 * 37 34 28 28	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 -1	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 12	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -8 -20 -1
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 1	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -20 -1 -5
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 1 74 *	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -8 -20 -1 -5 20
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B7 B6	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 R6	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 *	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -20 -1 -5 20 -29
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 1 74 * 68 *	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -20 -1 -5 20 -29
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 29 8 -1 1 74 * 68 * 53 *	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -20 -1 -5 20 -29 16
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B8 B11	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 *	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -20 -1 -5 20 -29 16 5
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B1 B7	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -14 17 -5 0 4 4 9	-16 5 8 Rotation Met rence Structur Factor2 9 9 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * -6 *	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 5	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -8 -20 -1 -5 20 -29 16 5
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 *	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -20 -1 -5 20 -29 16 5 -13
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4	-16 5 8 Rotation Met rence Structur Factor2 9 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -20 -1 -5 20 -29 16 5 -13 27
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D23 C18 B9 B7 B6 B8 B11 B10 B12 A3	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36	-16 5 8 Rotation Met rence Structur Factor2 9 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -2 12 -4 -3	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -27	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -20 -1 -5 20 -29 16 5 -13 27 14
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 C12	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 3	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 1 74 * 68 * 53 * -12 -8 4 -15	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8 -20 -1 -5 20 -29 16 5 -13 27 14
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 9 18 4 36 21	-16 5 8 Rotation Met rence Structur Factor2 9 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 *	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -3 8 -20 -1 -5 20 -29 16 5 -13 27 14 -28
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -2 12 -4 -3 -15 24	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 *	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B7 B6 B8 B11 B10 B12 A3 A2 A1	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 A2 A1	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -14 17 -5 0 4 4 9 18 4 36 21 -7	-16 5 8 Rotation Met rence Structur Factor2 9 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 45 -22 -2 12 -4 -3 -15 24	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 9 3 3 6 18 19 57 * 53 *	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 9 18 4 36 21 -7 -13	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -2 12 -4 -3 -15 24 -4	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 *	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D29	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B12 A1 B12	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -14 17 -5 0 4 4 9 18 4 9 18 4 36 21 -7 -13 -10	-16 5 8 Rotation Met rence Structur Factor2 9 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 9 3 3 6 18 19 57 * 53 * 52 *	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 6
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20	13 -16 11 Refer Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 9 18 4 36 21 -7 -13 -10	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -2 12 -4 -3 -15 24 -4 -19	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B10 B10 B12 A3 A2 A1 B13 D20 A4	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 9 18 4 36 21 -7 -13 -10 12	-16 5 8 Rotation Met rence Structur Factor2 9 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0 72 *
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5	13 -16 11 Refer Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 9 18 4 36 21 -7 -13 -10 12 -6	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -2 12 -4 -3 -15 24 -4 -19 -3 19	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8 -3 -3 8 -3 8 -20 -1 -5 20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0 72 *
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5	13 -16 11 Refer Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6	-16 5 8 Rotation Met rence Structur Factor2 9 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -3 8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0 72 *
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5	13 -16 11 Refer Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -2 12 -4 -3 -15 24 -4 -19 -3 19	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5	13 -16 11 Refer Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance E:	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19 explained by Ea	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Eli	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 -24	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factors	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance Es Factor2	-16 5 8 Rotation Met rence Structur Factor2 9 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19 kplained by Ea	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Elif	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 Liminating Ot	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factor5	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 Fac	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5	13 -16 11 Refer Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance Ex Factor2	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19 kplained by Ea Facto	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Eli r3 Factor Factor Eli	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 Iminating Ot	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factor5	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 Fac C1.983	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 tor1 5725	13 -16 11 Refer Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance E: Factor2 1.8997398	-16 5 8 Rotation Met rence Structur Factor2 9 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19 xplained by Ea Facto 1.55955	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Eli r3 Fa	100 * 11 -4 (power = 3) 1 Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 Liminating Ot actor4 -61750	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factors Factor5 1.2694708	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 Fac 1.983	or4 or5 or6 C15 C17 C16 D21 D25 D24 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 tor1 5725	13 -16 11 Refer Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance E: Factor2 1.8997398	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19 xplained by Ea Facto 1.55955	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Eli r3 Fa 65 1.41	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 Iminating Ot actor4 16/1750	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factor5 1.2694708	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 Fac 1.983	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B10 B12 A3 A2 A1 B13 D20 A4 A5 tor1 5725	13 -16 11 Refer Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance E: Factor2 1.8997398	-16 5 8 Rotation Met rence Structur Factor2 9 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19 splained by Ea Facto 1.55955	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Eli r3 Fa	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 minating Ot actor4 16750	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factors Factor5 1.2694708	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -8 -3 8 -3 8 -3 8 -3 8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0 72 * 58 *
Fact Fact Fact C15 C17 C16 D21 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 Fac 1.983	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 tor1 5725	13 -16 11 Refer Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance E: Factor2 1.8997398	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19 xplained by Ea Factor Stru	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Eli r3 Fa 65 1.41 cture (Correl	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 minating Ot actor4 161750 Lations)	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factor5 1.2694708	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 Fac 1.983	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 tor1 5725	13 -16 11 Refer Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance E: Factor2 1.8997398 Factor1	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19 xplained by Ea Factor Stru Factor2	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Eli r3 Fa	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 Aminating Ot actor4 161750 Lations) Factor4	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factor5 1.2694708 Factor5	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8
Fact Fact Fact C15 C17 C16 D21 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 Fac C15 C17 C16 D21 D24 D23 C14 D23 C14 D22 D24 D23 C14 D23 C14 D25 C17 C16 D21 D24 D23 C14 D25 C17 C16 D21 D24 D23 C14 D25 C17 C16 D24 D23 C14 D25 C17 C16 D21 D24 D25 C17 C16 D21 D24 D23 C14 D25 C17 C16 D24 D23 C14 D25 C17 C16 D24 D23 C18 B9 B7 B6 B11 B10 B12 A1 D26 C18 C17 C16 D21 D25 C17 C16 D24 D23 C18 B9 B7 B6 B11 B10 B12 A1 D26 C18 C18 C17 C16 D21 D25 C18 B11 B10 B12 A3 C14 D25 C18 B11 B10 B12 A3 C14 C16 C17 C16 D21 C18 B10 B12 A3 C14 C18 B11 B10 B12 A3 C14 C19 C18 B11 B13 D20 C18 C19 C18 C18 C14 C17 C18 C18 C17 C18 C18 C14 C18 C18 C14 C18 C18 C14 C17 C18 C18 C17 C18 C18 C18 C18 C19 C18 C18 C19 C18 C18 C19 C18 C19 C18 C19 C18 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C19 C18 C19 C19 C18 C19 C19 C18 C19 C19 C19 C19 C19 C19 C19 C19 C19 C19	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 tor1 5725	13 -16 11 Refer Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance E: Factor2 1.8997398 Factor1 7 * *	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 4 -22 -2 12 -4 -2 12 -4 -3 -15 24 -4 -19 -3 19 xplained by Ea Factor Stru Factor2	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Eli r3 Fa 65 1.41 cture (Correl] Factor3	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 minating Ot actor4 L61750	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factor5 1.2694708 Factor5 7	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8 -3 -3 8 -3 8 -3 8 -3 8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0 72 * 58 * 58 *
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 Fac C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B7 B6 B8 C17 C16 D21 D25 C17 C16 D21 D25 D24 D23 C14 D25 C17 C16 D21 D25 D24 D23 C14 D25 C17 C16 D21 D25 C17 C16 D21 D25 D24 D23 C14 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C14 D22 C18 B7 B6 B8 C11 C18 C18 C18 C18 C18 C18 C18 C18 C1	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 tor1 5725	13 -16 11 Refer Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance E: Factor2 1.8997398 Factor1 78 *	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19 xplained by Ea Factor Stru Factor2 12	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Eli r3 Fa 65 1.41 cture (Correl Factor3 18	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 Aminating Ot actor4 -15 -1 -1 -1 -2 -1 -1 -1 -2 -1 -1 -2 -1 -1 -1 -2 -1 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -2 -1 -1 -2 -1 -1 -2 -2 -1 -1 -2 -2 -1 -1 -2 -2 -1 -2 -2 -1 -1 -2 -2 -1 -1 -2 -2 -1 -1 -2 -2 -1 -2 -1 -1 -2 -2 -1 -1 -2 -2 -3 -1 -2 -1 -2 -2 -1 -1 -2 -2 -1 -2 -2 -1 -1 -2 -2 -2 -1 -2 -2 -1 -2 -1 -2 -2 -1 -2 -1 -2 -1 -1 -2 -2 -1 -2 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factor5 1.2694708 Factor5 7	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8 -3 -3 8 -3 -3 8 -3 -3 8 -3 -3 8 -3 -3 8 -3 -3 8 -3 -3 8 -3 -3 8 -3 -3 8 -3 -3 8 -3 -3 8 -3 -3 8 -3 -3 8 -3 -3 8 -3 -3 8 -3 -3 -3 8 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D24 D23 C14 D22 D19 C18 B9 B7 B6 B12 A1 B10 B12 A1 B10 B12 A1 B12 A1 B13 D20 A1 B12 A1 B13 D20 A1 C16 D21 D25 C17 C16 D21 D25 D24 D23 C14 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C18 B9 B7 B6 B11 B10 B12 A1 B12 A1 C19 C18 B12 A1 C19 C18 B11 B10 B12 A1 C19 C18 B10 B12 A1 C19 C18 B11 B10 C18 C17 C16 C17 C16 C17 C18 C19 C18 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C18 C17 C10 C17 C17 C17 C18 C17 C17 C18 C17 C17 C18 C17 C17 C18 C17 C17 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C18 C19 C19 C18 C19 C19 C18 C19 C19 C18 C19 C19 C18 C19 C19 C18 C19 C19 C19 C19 C19 C19 C19 C19 C19 C19	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 C15 C17 C15 C17 C15 C17 C16 C17 C18 B9 C18 B7 B7 B7 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C18 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C17 C16 C17 C16 C17 C16 C17 C18 C17 C17 C16 C17 C17 C16 C17 C16 C17 C17 C16 C17 C17 C16 C17 C16 C17 C17 C16 C17 C17 C17 C16 C17 C17 C17 C16 C17 C17 C17 C18 C17 C17 C17 C17 C17 C17 C17 C17 C17 C17	13 -16 11 Refer Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance E: Factor2 1.8997398 Factor1 78 * 74 *	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19 scplained by Ea Factor Stru Factor2 12 13	-8 -18 -6 hod: Promax (e (Semipartia Factor ³ 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Eli r ³ Fa 65 1.41 cture (Correl Factor ³ 18 25	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 connating Ot actor4 161750 Factor4 -17 6	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factor5 1.2694708 Factor5 7 19	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8 -3 -3 8 -3 8 -20 -1 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0 72 * 58 * 58 * 58 *
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 Fac C15 C17 C16 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 C18 C17 C16 D21 D25 C17 C16 D21 D25 D24 D23 C14 D25 C17 C16 D21 D25 C17 C16 D21 D25 D24 D23 C14 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C17 C16 D21 D25 C14 D22 C18 B9 B7 B6 B11 B10 B12 A3 A2 A1 B13 D20 A4 D20 C15 C17 C16 C17 C16 D21 C18 C18 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 D21 D25 C14 D22 C18 B9 C18 C17 C16 C17 C16 C17 C17 C16 C17 C16 C17 C17 C16 C17 C17 C16 C17 C17 C17 C16 C17 C17 C17 C17 C17 C17 C17 C17 C17 C17	or4 or5 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 tor1 5725 C15 C17 C16 C16 C17 C17 C16 C17 C17 C16 C17 C17 C17 C17 C17 C17 C17 C17 C17 C17	13 -16 11 Refer Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance E: Factor2 1.8997398 Factor1 78 * 74 * 6 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	-16 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19 sxplained by Ea Factor Stru Factor2 12 13	-8 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Eli r3 Fa 65 1.41 cture (Correl Factor3 14	100 * 11 -4 (power = 3) al Correlati Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 Aminating Ot actor4 -17 6 12	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factor5 1.2694708 Factor5 7 19 -11 -7 -7 -22 0 8 -20 19 4 -20 19 4 -20 19 4 -20 19 4 -20 19 4 -20 19 4 -20 19 4 -20 19 4 -20 19 4 -20 19 4 -20 19 -20 -20 -20 -20 -20 -20 -20 -20	-4 6 100 * Factor6 1 5 4 0 8 7 -3 8 -8 -3 8 -3 8 -3 8 -3 8 -3 8 -3

D21	D21	-26	3	-8	-23	18	0
D25	D25	-22	64 *	-24	7	-12	5
D24	D24	27	62 *	-7	-10	9	-2
D23	D23	0	53 *	-27	8	-27	-7
C14	C14	1	46 *	11	25	15	5
D22	D22	31	33	32	-20	15	-14
D19	D19	-8	36	5	16	8	-21
C18	C18	17	32	-1	13	-6	-4
B9	B9	-3	-30	4	-11	15	- 3
B7	B7	15	-12	80 *	7	19	23
B6	B6	23	1	69 *	-9	10	-28
B8	B8	15	-30	59 *	-12	17	19
B11	B11	-2	9	-9	61 *	-6	7
B10	B10	13	23	- 3	60 *	1	-13
B12	B12	1	-1	11	38	14	28
A3	A3	42 *	-9	- 3	-46 *	29	6
A2	A2	37	-15	11	-13	67 *	-35
A1	A1	7	22	20	10	54 *	-10
B13	B13	-4	-9	13	0	51 *	17
D20	D20	-8	-22	-13	-16	28	-1
A4	A4	9	-11	13	-13	7	70 *
A5	A5	-20	19	-6	34	-26	60 *
		Variance Ex	nlained by Fa	ch Factor Tgr	oring Other F	actors	

Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
2.3580986	2.1074889	1.9579754	1.5720592	1.5737641	1.3792212

Final	Communality	Estimates:	Total =	10.150395	

B7	B6	A5	A4	A3	A2	A1
0.68527977	0.58196032	0.52678754	0.55777806	0.40911224	0.59635284	0.38869685
C14	B13	B12	B11	B10	B9	B8
0.30309800	0.32488572	0.25960130	0.39751167	0.44565775	0.11426121	0.45191389
D21	D20	D19	C18	C17	C16	C15
0.19818182	0.18371507	0.21240654	0.13825322	0.58956907	0.44738740	0.63445632
	D25	D24	23		D	
	50276277	8569678 0	45 0.48	0.3798	0.335245	

Scoring Coefficients Estimated by Regression

	Squared Multiple Correlations of the Variables with Each Factor							
	Factor1	Factor2	Fac	ctor3 F	actor4	Factor5	Factor6	
0.	83928013	0.79130229	0.805	70697 0.73	956784 0	.73145917	0.74557319	
			Standardi	zed Scoring Coe	fficients			
		Factor1	Factor2	Factor3	Factor4	Factor5	Factor6	
C15	C15	0.36952	0.03424	0.00070	-0.13536	-0.05770	-0.04379	
C17	C17	0.29165	0.05488	0.07686	0.08496	0.06453	0.02670	
C16	C16	0.19795	-0.04766	-0.01564	0.08878	-0.02571	0.00808	
D21	D21	-0.05860	0.02616	-0.00939	-0.08147	0.09045	0.01391	
D25	D25	-0.09626	0.28924	-0.06312	-0.01891	0.02271	0.03733	
D24	D24	0.08094	0.26583	-0.02536	-0.08039	0.03473	0.01054	
D23	D23	0.02829	0.18921	-0.04723	-0.00033	-0.11566	-0.01097	
C14	C14	-0.02444	0.17044	0.06490	0.08691	0.08790	0.01480	
D22	D22	0.03139	0.15666	0.12286	-0.09482	0.06476	-0.03658	
D19	D19	-0.03362	0.10738	0.02589	0.04435	0.03860	-0.07886	
C18	C18	0.03703	0.09263	-0.02080	0.03094	-0.02795	-0.02212	
B9	B9	0.00145	-0.06689	0.00941	-0.01607	0.06026	-0.00729	
B7	B7	-0.00998	-0.01458	0.46541	0.09794	0.05587	0.15749	
B6	B6	0.03263	0.05524	0.30786	-0.03981	-0.04471	-0.21500	
B8	B8	0.01607	-0.10051	0.17702	-0.04953	0.01524	0.08797	
B11	B11	-0.00515	-0.01629	-0.04727	0.28108	-0.01179	0.02584	
B10	B10	0.03019	0.04785	0.00086	0.32954	0.02850	-0.07422	
B12	B12	0.01769	-0.00875	0.01959	0.14216	0.06582	0.09646	
A3	A3	0.14529	-0.03707	-0.07595	-0.24395	0.10837	0.07191	
A2	A2	0.13637	-0.04548	-0.01692	-0.00799	0.40300	-0.17136	
A1	A1	-0.01324	0.08253	0.04609	0.02661	0.26728	-0.02564	
B13	B13	-0.03588	-0.01094	0.01510	-0.00184	0.21130	0.07704	
D20	D20	-0.02416	-0.05805	-0.04525	-0.03042	0.13553	0.01389	
A4	A4	0.02220	-0.05090	-0.00318	-0.09397	0.08891	0.41986	
A5	A5	-0.03085	0.10399	0.00614	0.15101	-0.09834	0.31509	

Cronbach Alpha Coefficients for all the items in the Questionnaire

			Simple St	atistics			
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	Label
A1	71	3.43662	1.38081	244.00000	1.00000	5.00000	A1
A2	71	3.50704	1.47235	249.00000	1.00000	5.00000	A2
A3	71	3.22535	1.44615	229.00000	1.00000	5.00000	A3
A4	71	3.43662	1.32807	244.00000	1.00000	5.00000	A4
A5	71	3.94366	1.27489	280.00000	1.00000	5.00000	A5
B6	71	2.98592	1.33623	212.00000	1.00000	5.00000	B6
B7	71	3.18310	1.44726	226.00000	1.00000	5.00000	B7
B8	71	3.33803	1.40350	237.00000	1.00000	5.00000	B8
B9	71	3.40845	1.27142	242.00000	1.00000	5.00000	B9
B10	71	3.70423	1.17588	263.00000	1.00000	5.00000	B10
B11	71	3.94366	1.10696	280.00000	1.00000	5.00000	B11
B12	71	3.70423	1.50612	263.00000	1.00000	5.00000	B12
B13	71	3.21127	1.39300	228.00000	1.00000	5.00000	B13
C14	71	3.47887	1.39242	247.00000	1.00000	5.00000	C14
C15	71	4.22535	1.11095	300.00000	1.00000	5.00000	C15
C16	71	4.47887	0.82565	318.00000	2.00000	5.00000	C16
C17	71	4.43662	0.89014	315.00000	1.00000	5.00000	C17
C18	71	4.42254	0.93598	314.00000	2.00000	5.00000	C18
D19	71	3.23944	1.17674	230.00000	1.00000	5.00000	D19
D20	71	3.00000	1.32017	213.00000	1.00000	5.00000	D20
D21n	71	3.88732	1.34748	276.00000	1.00000	5.00000	
D22	71	3.69014	1.02248	262.00000	1.00000	5.00000	D22
D23	71	3.92958	1.09966	279.00000	1.00000	5.00000	D23
D24	71	3.69014	1.19034	262.00000	1.00000	5.00000	D24
D25	71	3,85915	1,25693	274,00000	1,00000	5,00000	D25

	Cronbach Coe	fficient Alpha w	ith Deleted Vari	able	
	Raw Vari	ables	Standardized	Variables	
Deleted	Correlation		Correlation		
Variable	with Total	Alpha	with Total	Alpha	Label
fffffffffff	fffffffffffffffff	ffffffffffffffff	fffffffffffffffff	fffffffffffffffff	ffffff
A1	0.308266	0.490665	0.291476	0.521708	A1
A2	0.182440	0.511808	0.177776	0.537891	A2
A3	0.131080	0.520695	0.141647	0.542929	A3
A4	0.126527	0.520921	0.103627	0.548177	A4
A5	0.005936	0.538570	0.010707	0.560773	A5
B6	0.181700	0.512178	0.183245	0.537124	B6
B7	0.322269	0.486933	0.294397	0.521285	B7
B8	0.154941	0.516518	0.120554	0.545847	B8
B9	103405	0.554108	122418	0.578264	B9
B10	0.221166	0.507251	0.243006	0.528668	B10
B11	0.074321	0.527224	0.083029	0.550997	B11
B12	0.172569	0.513578	0.173732	0.538457	B12
B13	0.147989	0.517655	0.113316	0.546844	B13
C14	0.274779	0.496248	0.291702	0.521675	C14
C15	0.314276	0.495330	0.362085	0.511403	C15
C16	0.292824	0.504577	0.310670	0.518926	C16
C17	0.434986	0.487492	0.462746	0.496370	C17
C18	0.182949	0.514368	0.200368	0.534715	C18
D19	0.096775	0.524638	0.099085	0.548800	D19
D20	109409	0.556392	136438	0.580069	D20
D21n	0.076140	0.528951	0.099994	0.548675	
D22	0.235437	0.507223	0.241108	0.528939	D22
D23	037573	0.541281	0.003251	0.561770	D23
D24	0.260337	0.501442	0.292747	0.521524	D24
D25	019091	0.541843	0.002078	0.561927	D25

Simple Statistics							
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	Label
A2	77	3.51948	1.48333	271.00000	1.00000	5.00000	A2
A3	77	3.28571	1.41288	253.00000	1.00000	5.00000	A3
B6	77	3.09091	1.33950	238.00000	1.00000	5.00000	B6
B7	77	3.28571	1.44966	253.00000	1.00000	5.00000	B7
B8	77	3.44156	1.40949	265.00000	1.00000	5.00000	B8
C15	77	4.27273	1.08381	329.00000	1.00000	5.00000	C15
C16	77	4.50649	0.80497	347.00000	2.00000	5.00000	C16
C17	77	4.36364	1.02481	336.00000	1.00000	5.00000	C17
D22	77	3.68831	1.05456	284.00000	1.00000	5.00000	D22

Cronbach Coefficient Alpha Variables Alpha

	Cronbach Coefficient Alpha with Deleted Variable				
	Raw Vari	ables	Standardized	Variables	
Deleted	Correlation		Correlation		
Variable	with Total	Alpha	with Total	Alpha	Label
ffffffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffffffffffffff		ffffffffffffffff	ffffff
A2	0.280122	0.661494	0.279530	0.671019	A2
A3	0.273695	0.661343	0.272811	0.672372	A3
B6	0.444761	0.619892	0.422491	0.641336	B6
B7	0.401237	0.630218	0.375679	0.651248	B7
B8	0.410326	0.627884	0.365792	0.653318	B8
C15	0.464049	0.621531	0.524585	0.619054	C15
C16	0.358714	0.646954	0.389101	0.648426	C16
C17	0.274892	0.656979	0.311592	0.664514	C17
D22	0.260145	0.659585	0.265690	0.673801	D22

Descriptive statistics: Frequency tables

Type_ dwelling Fre	equency	Percent	Cumulative Frequency	Cumulative Percent

House	30	37.50	30	37.50
Wendy-house	25	31 25	80	100.00
wendy=nouse	25	51.25	00	100.00
		Chi-Square Tes	st	
	for	Equal Proport	tions	
	fff	fffffffffffff	ffff	
	Chi	-Square 0	.6250	
	DF		2	
	Pr	> ChiSq 0	.7316	
	S	ample Size = 8	30	
				Cumulativa
Gender Freg	iency	Percent	Erequency	Percent
	ffffffff	ffffffffffffffff	ffffffffffffffff	
Male	39	48.75	39	48.75
Female	41	51.25	80	100.00
		Chi-Square Tes	st	
	for	Equal Proport	tions	
	fff	fffffffffffff	ffff	
	Chi	-Square 0	.0500	
	DF		1	
	Pr	> ChiSq 0	.8231	
	S	ample Size = 8	30	
			Cumulati	ve Cumulative
Number residing	requency	v Percent	Erequen	ve cumulative
	fffffff	,	ffffffffffffff	fffffffffffffffffff
1	4	5.00		1 5.00
2	8	10.00	12	2 15.00
3	5	6.25	17	7 21.25
4	9	11.25	20	5 32.50
5	4	5.00	30	37.50
6	11	13.75	43	L 51.25
7	5	6.25	46	5 57.50
8	6	7.50	52	2 65.00
9	7	8.75	59	73.75
10	4	5.00	6.	3 /8./5
11	4	5.00	6.	/ 83./5
12	2	2.50	5	
13	4	3 75	7.	5 95.00
16	2	2.50	7	3 97.50
17	2	2.50	80	100.00
		Chi-Square Te	st	
	for	Equal Proport	tions	
	fft:	*****	+++++	
	Chi	-Square 20	.4000	
	DF		15	
	PI' C	ample Size - 9	. 1571	
	5	ampie Size – e		
			Cumulative	Cumulative
Number home Fre	equency	Percent	Frequency	Percent
ffffff f ffffffffffff	fffffff	fffffffffffff	fffffffffffff	fffffffffffff
0	10	12.50	10	12.50
1	16	20.00	26	32.50
2	13	16.25	39	48.75
3	9	11.25	48	60.00
4	10	12.50	58	72.50
5	3	3./5	61	/6.25
6 7	/	8./5 2 75	68 71	85.00 00 75
/ Q	5 2	5./5 2 EQ	/1 72	00./5 Q1 75
o 9	∠ 1	2.50	73	92.50

10	2	2.50	76	95.00			
11	1	1.25	77	96.25			
12	1	1.25	78	97.50			
13	2	2.50	80	100.00			

CIII-Square	Test
for Equal Prop	portions
ffffffffffffff	fffffff
Chi-Square	57.9000
DF	13
Pr ≻ ChiSq	<.0001
Sample Size	= 80

			Cumulative	Cumulative
Years_in_house	Frequency	Percent	Frequency	Percent
fffffffffffffffff	fffffffffffff	fffffffffffff	fffffffffffffffff	ffffffffffff
2	6	7.50	6	7.50
3	7	8.75	13	16.25
4	15	18.75	28	35.00
5	5	6.25	33	41.25
6	9	11.25	42	52.50
7	8	10.00	50	62.50
8	4	5.00	54	67.50
9	5	6.25	59	73.75
10	3	3.75	62	77.50
11	1	1.25	63	78.75
12	5	6.25	68	85.00
13	2	2.50	70	87.50
14	3	3.75	73	91.25
15	2	2.50	75	93.75
16	4	5.00	79	98.75
17	1	1.25	80	100.00

			Cumulative	Cumulative
A1	Frequency	Percent	Frequency	Percent
<i>fffffffffffffffffffff</i>	ſſſſſſſ	fffffffffff	fffffffffffffff	ffffffffffff
Strongly Disagree	9	11.25	9	11.25
Disagree	21	26.25	30	37.50
Undecided	2	2.50	32	40.00
Agree	27	33.75	59	73.75
Strongly Agree	21	26.25	80	100.00
	Chi-S	guare Test		

			Cumulative	Cumulative
A2	Frequency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffff	ffffffffffffff	ffffffffff	ffffffffffffffff	fffffffffff
Strongly Disagree	10	12.50	10	12.50
Disagree	18	22.50	28	35.00
Undecided	3	3.75	31	38.75
Agree	20	25.00	51	63.75
Strongly Agree	29	36.25	80	100.00

Chi-Square Test for Equal Proportions fffffffffffffffffffff Chi-Square 24.6250

DF 4 Pr > ChiSq <.0001 Sample Size = 80

			Cumulative	Cumulative
A3 Fre	quency	Percent	Frequency	Percent
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****	•++++++++++++++++++++++++++++++++++++++	11 25
Disagree	23	11.25 28 75	32	11.25
Undecided	6	7.50	38	47.50
Agree	20	25.00	58	72.50
Strongly Agree	22	27.50	80	100.00
	Chi-S	oquare lest		
	ffffffff	ar huobourtous		
	Chi-Saua	are 15.6250)	
	DF	4	Ļ	
	Pr > Chi	iSq 0.0036	5	
	Sample	e Size = 80		
			Cumulativo	Cumulativa
Δ4 Fre	quency	Percent	Erequency	Percent
fffffffffffffffffffffffff	fffffffff	ffffffffffffff	fffffffffffff	ffffffffffff
Strongly Disagree	5	6.25	5	6.25
Disagree	24	30.00	29	36.25
Undecided	6	7.50	35	43.75
Agree	25	31.25	60	/5.00
Strongly Agree	20	25.00	80	100.00
	Chi-9	Square Test		
	for Equa	al Proportions	5	
	fffffff	ffffffffffffff	:	
	Chi-Squa	are 23.8750)	
	DF	4	L	
	Pr > Chi	LSQ <.0001	L	
	Samhte	2 3128 = 80		
			Cumulative	Cumulative
A5 Fre	quency	Percent	Frequency	Percent
<i>ffffffffffffffffffffffffffff</i>	ffffffff	fffffffffffffff	fffffffffffff	fffffffffff
0 Starsala Discourse	1	1.25	1	1.25
Strongly Disagree	3 15	3.75	4	5.00
Undecided	5	6.25	24	30.00
Agree	22	27.50	46	57.50
Strongly Agree	34	42.50	80	100.00
	Chi-S	square Test		
	ttttttt	al Proportions		
	Chi-Squa	are 62.5000)	
	DF	5	5	
	Pr > Chi	iSq <.0001	L	
	Sample	e Size = 80		
			C	Cumulatius
R6 Eno	auency	Pencent	Englight	Cumulative
ffffffffffffffffffffffffff	quency fffffffff	ffffffffffffffffff	fffffffffffff	ffffffffffff
Strongly Disagree	12	15.00	12	15.00
Disagree	21	26.25	33	41.25
Undecided	3	3.75	36	45.00
Agree	35	43.75	71	88.75
Strongly Agree	~		80	גאגז גזגו
0, 0	9	11.25	80	100.00
	9 Chi-9	II.25 Square Test	80	100.00
	9 Chi-S for Equa	II.25 Square Test al Proportions	5	100.00
	9 Chi-S for Equa ffffffff	II.25 Square Test al Proportions	5	100.00
	9 Chi-S for Equa ffffffff Chi-Squa	Gquare Test al Proportions ffffffffffffff are 38.7500	5	100.00
	9 Chi-S for Equa ffffffff Chi-Squa DF	Gquare Test al Proportions ffffffffffffff are 38.7500	5 	100.00
	9 Chi-S for Equa ffffffff Chi-Squa DF Pr > Chi	Gquare Test al Proportions ffffffffffffff are 38.7500 4 LSq <.0001		100.00

Cumulative Cumulative

B7	Frequency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffff	fffffffffffff	fffffffffffff	ffffffffffffff	ffffffffff
Strongly Disagree	13	16.25	13	16.25
Disagree	13	16.25	26	32.50
Undecided	12	15.00	38	47.50
Agree	21	26.25	59	73.75
Strongly Agree	21	26.25	80	100.00

			Cumulative	Cumulative
B8	Frequency	Percent	Frequency	Percent
ffffffffffffffffffff	fffffffffffffff	ffffffffffff	fffffffffffffff	fffffffffff
Strongly Disagree	9	11.25	9	11.25
Disagree	18	22.50	27	33.75
Undecided	10	12.50	37	46.25
Agree	17	21.25	54	67.50
Strongly Agree	26	32.50	80	100.00

			Cumulative	Cumulative
B9	Frequency	Percent	Frequency	Percent
fffffffffffffffffffff	ffffffffffffff	fffffffffff	ffffffffffffff	fffffffffff
0	2	2.50	2	2.50
Strongly Disagree	7	8.75	9	11.25
Disagree	19	23.75	28	35.00
Undecided	3	3.75	31	38.75
Agree	32	40.00	63	78.75
Strongly Agree	17	21.25	80	100.00

			Cumulative	Cumulative
B10	Frequency	Percent	Frequency	Percent
<i>ffffffffffffffffffffff</i>	ffffffffffffff		ffffffffffffff	ffffffffffff
0	1	1.25	1	1.25
Strongly Disagree	6	7.50	7	8.75
Disagree	11	13.75	18	22.50
Undecided	5	6.25	23	28.75
Agree	39	48.75	62	77.50
Strongly Agree	18	22.50	80	100.00

Chi-Square Test for Equal Proportions fffffffffffffffffffff Chi-Square 72.1000 DF 5 Pr > ChiSq <.0001 Sample Size = 80

Strongly Disagree Disagree Undecided	1 13 5	1.25 16.25 6.25	1 14 19	1.25 17.50 23.75
Agree Strongly Agree	33 28	41.25 35.00	52 80	65.00 100.00
	Chi-	Square Test		
	fffffff			
	Chi-Squ	are 49.2500		
	DF Pr \ Ch	4 iSa 20001		
	Sampl	e Size = 80		
		C.		C
B12 Fre	auencv	Percent F	mulative requency	Percent
<i>fffffffffffffffffffffffffffffff</i>	, fffffffff	ffffffffffffffff	fffffffffff	fffffffff
Strongly Disagree	10	12.50	10	12.50
Undecided	4	5.00	22	27.50
Agree	20	25.00	46	57.50
Strongly Agree	34	42.50	80	100.00
	Chi-	Square Test		
	for Equ	al Proportions		
	fffffff	fffffffffffff		
	DF	are 55.5000 4		
	Pr > Ch	iSq <.0001		
	Sampi	e Size = 80		
		Cu	mulative	Cumulative
B13 Free	quency	Percent F	requency	Percent
Strongly Disagree	7	8.75		8.75
Disagree	25	31.25	32	40.00
Undecided	5	6.25	37	46.25
Agree Strongly Agree	23	28.75	60 80	75.00 100.00
501011529 7161 00	20	23.00		100.00
	Chi-	Square Test		
	fffffff			
	Chi-Squ	are 21.7500		
	DF Pr \ Ch	4 isa 0.0002		
	Sampl	e Size = 80		
C14 Enc		Cu	mulative	Cumulative
	quency ffffffff	fffffffffffffffff	requency	ffffffffff
Strongly Disagree	7	8.75	7	8.75
Disagree	25	31.25	32	40.00
Agree	1 25	31.25	58	41.25
Strongly Agree	22	27.50	80	100.00
	Chi-	Square Test		
	for Equ	al Proportions		
	ffffff	ffffffffffff		
	Chi-Squ DF	are 31.5000 4		
	Pr > Ch	iSq <.0001		
	Sampl	e Size = 80		
		Cu	mulative	Cumulative
C15 Free	quency	Percent F	requency	Percent
JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ Strongly Disagree	ללללללז כ	11111111111111111111 2.50	ללללללללללל: 2	77777777777777777777777777777777777777
Disagree	7	8.75	9	11.25
Undecided				
ondecided	4	5.00	13	16.25

Strongly Agree	47	58.75	80	100.00			
Chi-Square Test for Equal Proportions ffffffffffffffff Chi-Square 87.3750 DF 4 Pr > ChiSq <.0001 Sample Size = 80							
C16 Fre	quency ffffffff	Percent ffffffffffff	Cumulative Frequency ffffffffffffff	Cumulative Percent			
Strongly Disagree Disagree	1 4	1.25	1 5	1.25			
Undecided	3	3.75	8	10.00			
Agree Strongly Agree	20 52	25.00	28 80	35.00 100 00			
Scholigty Agree	52	09.00	80	100.00			
	Chi- for Equ fffffff Chi-Squ DF Pr > Ch Sampl	Square Test al Proportion ffffffffffff are 115.625 iSq <.000 e Size = 80	s f 0 4 1				
C17 Fre	quency ffffffff	Percent ffffffffffff	Cumulative Frequency fffffffffffffff	Cumulative Percent fffffffffff			
Strongly Disagree	3	3.75	3	3.75			
Undecided	5	6.25	12	15.00			
Agree	20	25.00	32	40.00			
Strongly Agree	40	60.00	80	100.00			
	for Equ fffffff Chi-Squ DF Pr > Ch Sampl	al Proportion ffffffffffff are 92.125 iSq <.000 e Size = 80	s f 0 4 1				
			Cumulative	Cumulative			
C18 Fre	quency ffffffff	Percent	Frequency	Percent			
Disagree	8	10.00	8	10.00			
Undecided	2	2.50	10	12.50			
Strongly Agree	51	63.75	80	100.00			
	Chi- for Equ fffffff Chi-Squ DF Pr > Ch Sampl	Square Test al Proportion fffffffffff are 71.500 iSq <.000 e Size = 80	s f 0 3 1				
			Cumulative	Cumulative			
D19 Frequency Percent Frequency Percent							
Strongly Disagree	7	8.75	ד <i>דד</i> דוונונוניי 7	8.75			
Disagree Undecided	23	28.75	30	37.50			
Agree	33	41.25	40 73	50.00 91.25			
Strongly Agree	7	8.75	80	100.00			
Chi-Square Test for Equal Proportions fffffffffffffffff Chi-Square 33.5000 DF 4							
Pr > ChiSq <.0001 Sample Size = 80

			Cumulative	Cumulative
D20 Fre	quency	Percent	Frequency	Percent
<i>ffffffffffffffffffffffffffffff</i>	fffffff	fffffffffffff	<i>fffffffffffff</i>	ffffffffff
0 Chanala Dianana	1	1.25	1	1.25
Strongly Disagree	12	15.00	13	16.25
Undecided	10	12.50	51	50./5
	30	37 50	41 71	51.25 88 75
Strongly Agree	9	11 25	71 80	100 00
Selongry Agree	2	11.25		100.00
	Chi-S	Square Test		
	for Equa	al Proportion	S	
	fffffff	ſſſſſ	f	
	Chi-Squa	are 36.250	0	
	DF		5	
	Pr > Ch	iSq <.000	1	
	Sample	e Size = 80		
			c 1	c 1
D21 5		Demonst	Cumulative	Cumulative
	dneuch	Percent	Frequency	Percent
۵ ۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱	ננננננננ 1	1 25	נונונונונונונו 1	1 25
Strongly Disagree	36	45 00	37	46 25
Disagree	23	28.75	60	75.00
Undecided	5	6.25	65	81.25
Agree	7	8.75	72	90.00
Strongly Agree	8	10.00	80	100.00
	Chi-S	Square Test		
	for Equa	al Proportion	S	
	ffffff	fffffffffffff	f	
	Chi-Squa	are 67.300	0	
	DF Dr		5	
	Pr > Cn	15q <.000	1	
	Sampre	$e^{512e} = 60$		
			Cumulative	Cumulative
D22 Fre	auencv	Percent	Cumulative Frequency	Cumulative Percent
D22 Fre fffffffffffffffffffffffff	quency ffffffff	Percent ffffffffffff	Cumulative Frequency	Cumulative Percent ffffffffff
D22 Fre ffffffffffffffffffffff 0	quency ffffffff 3	Percent fffffffffff 3.75	Cumulative Frequency ffffffffffff 3	Cumulative Percent fffffffff 3.75
D22 Fre fffffffffffffffffffff Ø Strongly Disagree	quency ffffffff 3 4	Percent ffffffffffff 3.75 5.00	Cumulative Frequency ffffffffffff 3 7	Cumulative Percent ffffffffff 3.75 8.75
D22 Fre fffffffffffffffffff 0 Strongly Disagree Disagree	quency ffffffff 3 4 6	Percent fffffffffffff 3.75 5.00 7.50	Cumulative Frequency ffffffffffff 3 7 13	Cumulative Percent ffffffffff 3.75 8.75 16.25
D22 Fre fffffffffffffffffff 0 Strongly Disagree Disagree Undecided	quency ffffffff 3 4 6 16	Percent ffffffffffff 3.75 5.00 7.50 20.00	Cumulative Frequency fffffffffffff 7 13 29	Cumulative Percent ffffffffff 3.75 8.75 8.75 16.25 36.25
D22 Fre fffffffffffffffffffff 0 Strongly Disagree Disagree Undecided Agree	quency ffffffff 4 6 16 35	Percent ####################################	Cumulative Frequency ffffffffffffff 7 13 29 64	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00
D22 Fre ffffffffffffffffffffff Ø Strongly Disagree Disagree Undecided Agree Strongly Agree	quency ffffffff 3 4 6 16 35 16	Percent fffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00	Cumulative Frequency fffffffffffff 7 13 29 64 80	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00
D22 Fre fffffffffffffffffffff Ø Strongly Disagree Disagree Undecided Agree Strongly Agree	quency fffffffff 3 4 6 16 35 16 Chiese	Percent fffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00 Squape Tect	Cumulative Frequency fffffffffffff 7 13 29 64 80	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00
D22 Fre ffffffffffffffffffffffff Ø Strongly Disagree Disagree Undecided Agree Strongly Agree	quency fffffffff 3 4 6 16 35 16 Chi-5 for Equa	Percent <i>ffffffffffffff</i> 3.75 5.00 7.50 20.00 43.75 20.00 Square Test	Cumulative Frequency ffffffffffffff 7 13 29 64 80	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00
D22 Fre fffffffffffffffffffffff Ø Strongly Disagree Disagree Undecided Agree Strongly Agree	quency fffffffff 3 4 6 16 35 16 Chi-5 for Equa ffffffff	Percent <i>ffffffffffffff</i> 3.75 5.00 7.50 20.00 43.75 20.00 Square Test al Proportion <i>ffffffffffffffff</i>	Cumulative Frequency ffffffffffffff 7 13 29 64 80 s f	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00
D22 Fre ffffffffffffffffffffff Ø Strongly Disagree Disagree Undecided Agree Strongly Agree	quency fffffffff 3 4 6 16 35 16 Chi-S for Equa ffffffff Chi-Sau	Percent ffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00 Square Test al Proportion ffffffffffffffffffffffffffffffffffff	Cumulative Frequency fffffffffffff 7 13 29 64 80 s f 0	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00
D22 Fre ffffffffffffffffffffff 0 Strongly Disagree Disagree Undecided Agree Strongly Agree	quency fffffffff 3 4 6 16 35 16 Chi-S for Equa ffffffff Chi-Squa DF	Percent ####################################	Cumulative Frequency ffffffffffffffff 3 7 13 29 64 80 s f 0 5	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00
D22 Fre fffffffffffffffffffffff Ø Strongly Disagree Disagree Undecided Agree Strongly Agree	quency <i>fffffffff</i> 3 4 6 16 35 16 Chi-5 for Equa <i>ffffffff</i> Chi-Squa DF Pr > Chi	Percent ffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00 Square Test al Proportion ffffffffffffffff are 54.850 iSq <.000	Cumulative Frequency fffffffffffffff 3 7 13 29 64 80 s f 0 5 1	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00
D22 Fre ffffffffffffffffffffff Ø Strongly Disagree Disagree Undecided Agree Strongly Agree	quency fffffffff 3 4 6 16 35 16 Chi-S for Equa ffffffff Chi-Squa DF Pr > Chi Sample	Percent ffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00 Square Test al Proportion ffffffffffffffffffffffffffffffffffff	Cumulative Frequency fffffffffffffff 3 7 13 29 64 80 s f 0 5 1	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00
D22 Fre fffffffffffffffffffffff 0 Strongly Disagree Disagree Undecided Agree Strongly Agree	quency <i>fffffffff</i> 3 4 6 16 35 16 Chi-S for Equa <i>ffffffff</i> Chi-Squa DF Pr > Chi Sample	Percent ffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00 Square Test al Proportion ffffffffffffffff are 54.850 iSq <.000 e Size = 80	Cumulative Frequency fffffffffffffff 3 7 13 29 64 80 5 f 0 5 1	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00
D22 Fre fffffffffffffffffffffff Ø Strongly Disagree Disagree Undecided Agree Strongly Agree	quency <i>fffffffff</i> 3 4 6 16 35 16 Chi-S for Equa <i>ffffffff</i> Chi-Squa DF Pr > Chi Sample	Percent fffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00 Square Test al Proportion fffffffffffffff are 54.850 iSq <.000 e Size = 80	Cumulative Frequency ffffffffffffff 3 7 13 29 64 80 s f 0 5 1 Cumulative	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00
D22 Fre fffffffffffffffffffff 0 Strongly Disagree Disagree Undecided Agree Strongly Agree Strongly Agree	<pre>quency fffffffff</pre>	Percent fffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00 Square Test al Proportion ffffffffffffffff are 54.850 iSq <.000 e Size = 80 Percent	Cumulative Frequency fffffffffffffff 3 7 13 29 64 80 5 f 0 5 1 Cumulative Frequency	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00 Cumulative Percent
D22 Fre ffffffffffffffffffffffffffffffffffff	<pre>quency ffffffffff</pre>	Percent ffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00 Square Test al Proportion fffffffffffffff are 54.850 iSq <.000 e Size = 80 Percent ffffffffffffffffffffffffffffffffffff	Cumulative Frequency ffffffffffff 3 7 13 29 64 80 5 5 1 Cumulative Frequency fffffffffffff	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00 100.00
D22 Fre ffffffffffffffffffffffffffffffffffff	<pre>quency fffffffff</pre>	Percent ffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00 Square Test al Proportion fffffffffffffff are 54.850 iSq <.000 e Size = 80 Percent fffffffffffff 2.50 15.00	Cumulative Frequency fffffffffffff 3 7 13 29 64 80 5 1 Cumulative Frequency fffffffffffffff 2 1 2	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00 100.00 Cumulative Percent fffffffffff 2.50
D22 Fre ffffffffffffffffffffffffffffffffffff	<pre>quency ffffffffff</pre>	Percent ffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00 Square Test al Proportion ffffffffffffffffffffffffffffffffffff	Cumulative Frequency fffffffffffff 3 7 13 29 64 80 s f 0 5 1 Cumulative Frequency fffffffffffff 2 14 20	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00 100.00 Cumulative Percent fffffffffff 2.50 17.50 25.00
D22 Fre ffffffffffffffffffffffffffffffffffff	<pre>quency ffffffffff</pre>	Percent ffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00 Square Test al Proportion ffffffffffffff are 54.850 iSq <.000 e Size = 80 Percent ffffffffffffff 2.50 15.00 7.50 38.75	Cumulative Frequency ffffffffffffff 3 7 13 29 64 80 5 1 Cumulative Frequency ffffffffffffff 2 14 20 51	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00 100.00 Cumulative Percent ffffffffff 2.50 17.50 25.00 63 75
D22 Fre ffffffffffffffffffffffffffffffffffff	<pre>quency ffffffffff</pre>	Percent fffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00 Square Test al Proportion ffffffffffffffff are 54.850 iSq <.000 e Size = 80 Percent ffffffffffffff 2.50 15.00 7.50 38.75 36.25	Cumulative Frequency fffffffffffff 3 7 13 29 64 80 s f 0 5 1 Cumulative Frequency fffffffffffff 2 14 20 51 80	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00 100.00 100.00 25.00 63.75 100.00
D22 Fre ffffffffffffffffffffffffffffffffffff	<pre>quency fffffffff</pre>	Percent fffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00 Square Test al Proportion fffffffffffff are 54.850 iSq <.000 e Size = 80 Percent fffffffffffff 2.50 15.00 7.50 38.75 36.25	Cumulative Frequency fffffffffffff 3 7 13 29 64 80 5 1 Cumulative Frequency fffffffffffff 2 14 20 51 80	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00 100.00 Cumulative Percent fffffffffff 2.50 17.50 25.00 63.75 100.00
D22 Fre ffffffffffffffffffffffffffffffffffff	<pre>quency fffffffff</pre>	Percent ffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00 Square Test al Proportion ffffffffffffff are 54.850 iSq <.000 e Size = 80 Percent fffffffffffff 2.50 15.00 7.50 38.75 36.25 Square Test	Cumulative Frequency ffffffffffff 3 7 13 29 64 80 5 1 Cumulative Frequency ffffffffffffff 2 14 20 51 80	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00 100.00 Cumulative Percent fffffffffff 2.50 17.50 25.00 63.75 100.00
D22 Fre ffffffffffffffffffffffffffffffffffff	<pre>quency ffffffffff</pre>	Percent ffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00 Square Test al Proportion fffffffffffff are 54.850 iSq <.000 e Size = 80 Percent fffffffffffff 2.50 15.00 7.50 38.75 36.25 Square Test al Proportion	Cumulative Frequency fffffffffffff 3 7 13 29 64 80 s f 0 5 1 Cumulative Frequency fffffffffffff 2 14 20 51 80 s	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00 100.00 Cumulative Percent ffffffffff 2.50 17.50 25.00 63.75 100.00
D22 Fre ffffffffffffffffffffffffffffffffffff	<pre>quency ffffffffff</pre>	Percent fffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00 Square Test al Proportion fffffffffffff are 54.850 iSq <.000 e Size = 80 Percent fffffffffffff 2.50 15.00 7.50 38.75 36.25 Square Test al Proportion ffffffffffffffffffffffffffffffffffff	Cumulative Frequency ffffffffffffff 3 7 13 29 64 80 5 1 Cumulative Frequency fffffffffffff 2 14 20 51 80 5	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00 100.00 Cumulative Percent fffffffffff 2.50 17.50 25.00 63.75 100.00
D22 Fre ffffffffffffffffffffffffffffffffffff	<pre>quency ffffffffff</pre>	Percent ffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00 Square Test al Proportion ffffffffffffff are 54.850 iSq <.000 e Size = 80 Percent fffffffffffff 2.50 15.00 7.50 38.75 36.25 Square Test al Proportion ffffffffffffffffffffffffffffffffffff	Cumulative Frequency ffffffffffffff 3 7 13 29 64 80 5 1 Cumulative Frequency fffffffffffff 2 14 20 51 80 5 5	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00 100.00 Cumulative Percent ffffffffff 2.50 17.50 25.00 63.75 100.00
D22 Fre ffffffffffffffffffffffffffffffffffff	<pre>quency ffffffffff</pre>	Percent ffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00 Square Test al Proportion fffffffffffff are 54.850 iSq <.000 e Size = 80 Percent fffffffffffff 2.50 15.00 7.50 38.75 36.25 Square Test al Proportion ffffffffffffffffffffffffffffffffffff	Cumulative Frequency ffffffffffffff 3 7 13 29 64 80 5 1 Cumulative Frequency fffffffffffff 2 14 20 51 80 5 5	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00 100.00 Cumulative Percent ffffffffff 2.50 17.50 25.00 63.75 100.00
D22 Fre ffffffffffffffffffffffffffffffffffff	<pre>quency ffffffffff</pre>	Percent ffffffffffff 3.75 5.00 7.50 20.00 43.75 20.00 Square Test al Proportion fffffffffffff are 54.850 iSq <.000 e Size = 80 Percent fffffffffffff 2.50 15.00 7.50 38.75 36.25 Square Test al Proportion ffffffffffffffff are 44.125 iSq <.000	Cumulative Frequency fffffffffffffff 3 7 13 29 64 80 5 1 Cumulative Frequency ffffffffffffff 2 14 20 51 80 5 5 1 80 5	Cumulative Percent ffffffffff 3.75 8.75 16.25 36.25 80.00 100.00 100.00 Cumulative Percent ffffffffff 2.50 17.50 25.00 63.75 100.00

			Cumulative	Cumulative
D24	Frequency	Percent	Frequency	Percent
ffffffffffffffffffffff	ffffffffffff	ffffffffffff	fffffffffff	ffffffffffff
Strongly Disagree	2	2.50	2	2.50
Disagree	17	21.25	19	23.75
Undecided	8	10.00	27	33.75
Agree	28	35.00	55	68.75
Strongly Agree	25	31.25	80	100.00
	Chi-S	quare Test		
	for Equa	l Proportion	IS	
	ffffffff		f	
	Chi-Squa	re 30.375	50	
	DF		4	
	Pr > Chi	.Sq <.000)1	
	Comm lo	, Size - 80		
	Sampie	. 3126 - 00		
	Sampie	5126 - 66		
	Sampie	5126 - 60	Cumulative	Cumulative
D25	Sample Frequency	Percent	Cumulative Frequency	Cumulative Percent
D25	Sample Frequency fffffffffffff	Percent	Cumulative Frequency	Cumulative Percent fffffffffffff
D25 fffffffffffffffffffff Strongly Disagree	Sample Frequency fffffffffff 3	Percent fffffffffff 3.75	Cumulative Frequency ffffffffffff 3	Cumulative Percent fffffffffff 3.75
D25 fffffffffffffffffffff Strongly Disagree Disagree	Sample Frequency fffffffffff 3 18	Percent <i>ffffffffffffff</i> 3.75 22.50	Cumulative Frequency ffffffffffff 3 21	Cumulative Percent fffffffffff 3.75 26.25
D25 ffffffffffffffffffff Strongly Disagree Disagree Undecided	Sample Frequency fffffffffff 3 18 1	Percent fffffffffffff 3.75 22.50 1.25	Cumulative Frequency fffffffffff 3 21 22	Cumulative Percent ffffffffffff 3.75 26.25 27.50
D25 ffffffffffffffffffffff Strongly Disagree Disagree Undecided Agree	Frequency fffffffffffffff 3 18 1 26	Percent Ffffffffffffff 3.75 22.50 1.25 32.50	Cumulative Frequency ffffffffffff 3 21 22 48	Cumulative Percent ffffffffffff 3.75 26.25 27.50 60.00
D25 ffffffffffffffffffff Strongly Disagree Disagree Undecided Agree Strongly Agree	Frequency fffffffffff 3 18 1 26 32	Percent Fffffffffffff 3.75 22.50 1.25 32.50 40.00	Cumulative Frequency fffffffffffff 3 21 22 48 80	Cumulative Percent fffffffffff 3.75 26.25 27.50 60.00 100.00
D25 fffffffffffffffffffffff Strongly Disagree Disagree Undecided Agree Strongly Agree	Frequency ffffffffffffffff 18 1 26 32 Chi-S	Percent <i>fffffffffffffff</i> 3.75 22.50 1.25 32.50 40.00 Square Test	Cumulative Frequency fffffffffffff 21 22 48 80	Cumulative Percent ffffffffffff 3.75 26.25 27.50 60.00 100.00
D25 ffffffffffffffffffffff Strongly Disagree Disagree Undecided Agree Strongly Agree	Frequency ffffffffffffff 18 1 26 32 Chi-S for Equa	Percent Ffffffffffff 3.75 22.50 1.25 32.50 40.00 Square Test	Cumulative Frequency fffffffffffff 21 22 48 80	Cumulative Percent fffffffffff 3.75 26.25 27.50 60.00 100.00
D25 fffffffffffffffffffff Strongly Disagree Disagree Undecided Agree Strongly Agree	Frequency fffffffffffff 3 18 1 26 32 Chi-S for Equa ffffffff	Percent Ffffffffffff 3.75 22.50 1.25 32.50 40.00 Square Test I Proportion	Cumulative Frequency fffffffffffffff 21 22 48 80	Cumulative Percent fffffffffff 3.75 26.25 27.50 60.00 100.00
D25 fffffffffffffffffffff Strongly Disagree Disagree Undecided Agree Strongly Agree	Frequency ffffffffffff 3 18 1 26 32 Chi-S for Equa fffffffff Chi-Squa	Percent Ffffffffffff 3.75 22.50 1.25 32.50 40.00 Square Test Il Proportion Fffffffffffffffffffffffffffffffffffff	Cumulative Frequency ffffffffffffff 21 22 48 80	Cumulative Percent fffffffffff 3.75 26.25 27.50 60.00 100.00
D25 ffffffffffffffffffff Strongly Disagree Disagree Undecided Agree Strongly Agree	Frequency fffffffffff 3 18 1 26 32 Chi-S for Equa ffffffff Chi-Squa DF	Percent Fffffffffffff 3.75 22.50 1.25 32.50 40.00 Square Test I Proportion Fffffffffffffffffffffffffffffffffffff	Cumulative Frequency ffffffffffffff 22 48 80 15 50 4	Cumulative Percent fffffffffff 3.75 26.25 27.50 60.00 100.00
D25 ffffffffffffffffffff Strongly Disagree Disagree Undecided Agree Strongly Agree	Frequency fffffffffff 3 18 1 26 32 Chi-S for Equa ffffffff Chi-Squa DF Pr > Chi	Percent Fffffffffffff 3.75 22.50 1.25 32.50 40.00 Square Test I Proportion Fffffffffffffffffffffffffffffffffffff	Cumulative Frequency ffffffffffffff 22 48 80 15 56 4	Cumulative Percent fffffffffff 3.75 26.25 27.50 60.00 100.00

Descriptive statistics: Uni-variate with means & standard deviations where appropriate

Var	iable:	Number	r_resid	ing	(Numb	er_resi	ding	;)
Ν			80	Sum	Weigh	ts		80
Mean		7.3	1375	Sum	Obser	vations		571
Std Deviatio	n ·	4.1605	2501	Var	iance			17.3099684
Skewness		0.5394	9517	Kur	tosis	~~		-0.442234
Uncorrected	55	50 201	5443	Cor	rected	SS		1367.4875
COETT Variat	101	58.2910	0684	δτα	Error	mean		0.46516084
	в	acic S	taticti	c = 1	Maasun	<u>م</u> د		
Loca	tion	asic 5	lalisli		Variah	ilitv		
Mean	7.1375	00	Std De	viat	ion	11109	4.	16053
Median	6.0000	00	Varian	ce			17.	30997
Mode	6.0000	00	Range				16.	00000
			Interq	uart	ile Ra	nge	6.	00000
						-		
		Quanti	les (De	fini	tion 5)		
		Quant	ile	Es	timate			
		100%	Мах		17.0			
		99%			17.0			
		95%			15.0			
		90%	-		13.0			
		75% Q.	3		10.0			
		50% M	edian		6.0			
		25% Q.	1		4.0			
		10%			2.0			
		5% 1%			1.5			
		0% Mi	n		1.0			
		0/0 1121			1.0			
	Variab	le: N	umber h	ome	(Numb	er home)	
Ν			80 -	Sum	Weigh	ts_		80
Mean		3.	5125	Sum	Obser	vations		281
Std Deviatio	n	3.1980	7596	Var	iance			10.2276899
Skewness		1.2478	9384	Kur	tosis			1.15882878
Uncorrected	SS	:	1795	Cor	rected	SS		807.9875
Coeff Variat	ion	91.04	8426	Std	Error	Mean		0.35755576
	_							
	B.	asic S	tatıstı	cal I	Measur	es		
Loca	10n	00			variad ion	111ty	2	10000
Median	2 0000	00	Vanian	VIAL	TOU		۰ ۱۵	19000
Mode	1 0000	00 00	Range	ce			13	22709
noue	1.0000	00	Intera	uart	ile Ra	nge	4.	00000
			Turcei d	uur c	iic nu			00000
		Quanti	les (De	fini	tion 5)		
		Quant	ile `	Es	timate	<i>,</i>		
		100%	Мах		13.0			
		99%			13.0			
		95%			10.5			
		90%			8.0			
		75% Q	3		5.0			
		50% M	edian		3.0			
		25% Q	1		1.0			
		10%			0.0			
		5% 1%			0.0			
		1% 0% Mi	n		0.0			
Va	riable·	Vear	s in ho	lise	(Year	s in ho	use)	1
N		i cui i	80	Sum	Weigh	ts		80
Mean		7.	3125	Sum	Obser	vations		585
Std Deviatio	n .	4.1813	1392	Var	iance			17.4833861
Skewness		0.7575	6483	Kur	tosis			-0.4972311
Uncorrected	SS	!	5659	Cor	rected	SS		1381.1875
Coeff Variat	ion	57.180	3613	Std	Error	Mean		0.46748511
				_				
	B	asic S [.]	tatisti	cal	Measur	es		
Loca	tion	00	C+	، + - ÷،	varıab	ility	~	10101
riean	1.3125	00	sta De	viat	TOU		4.	TQTQT

	Median Mode	6.0000 4.0000	900 900	Varian Range Interq	ce uartile Range	17.48339 15.00000 6.00000
			Quanti: Quant: 100% / 99% 95% 90% 75% Q: 50% Mi 25% Q: 10% 5% 1% 0% Min	les (De ile Max 3 edian 1	finition 5) Estimate 17 16 14 10 6 4 3 2 2 2 2	
N Mear Std Skew Unco Coet	n Deviation wness prrected S ff Variat:	n 5S ion	Var: 3 1.40866 -0.3649 41.7365	iable: 80 .375 0825 9328 1068 5409	A1 (A1) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	80 270 1.98417722 -1.3412518 156.75 0.15748719
	Loca Mean Median Mode	E 3.3750 4.0000 4.0000	Basic St 000 000 000	tatisti Std Dev Varian Range Interqu	cal Measures Variability viation ce uartile Range	1.40861 1.98418 4.00000 3.00000
			Quanti: Quant: 100% M 99% 95% 90% 75% Qi 50% Ma 25% Qi 10% 5% 1% 0% Min	les (De ile Max 3 edian 1	finition 5) Estimate 5 5 5 5 4 2 1 1 1 1 1	
N Mear Std Skew Unco Coet	n Deviation wness prrected S Ff Variat:	n 5S ion	Var: 1.48409 -0.4646 2 42.4026	iable: 80 3.5 9287 6981 1154 6534	A2 (A2) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	80 280 2.20253165 -1.3437698 174 0.16592663
	Loca Mean Median Mode	E tion 3.5000 4.0000 5.0000	Basic St 000 000 000	Std Dev Varian Range Interqu	cal Measures Variability viation ce uartile Range	1.48409 2.20253 4.00000 3.00000
			Quanti Quant: 100% M 99% 95% 90% 75% Q 50% M 25% Q 10%	les (De [.] ile Max Max 3 edian 1	finition 5) Estimate 5 5 5 5 5 4 2 1	

		5%		1	
		1%		1	
		0%	Min	1	
		,	/aniahla:	A2 (A2)	
N		,	20 20	AS (AS) Sum Weights	80
Moor	.		3 2875	Sum Observations	263
Std	Deviatio	n 143	2485842	Variance	205
Skev	ness	-0 1	1760882	Kurtosis	-1 4473162
Unco	orrected (55	1025	Corrected SS	160.3875
Coef	ff Variat	ion 43.	.341701	Std Error Mean	0.15930401
		Basid	: Statisti	cal Measures	
	Loca	tion		Variability	
	Mean	3.287500	Std De	viation	1.42486
	Median	4.000000	Varian	ce	2.03022
	Mode	2.000000	Range		4.00000
			Interq	uartile Range	3.00000
		_			
		Quar	ntiles (De	finition 5)	
		Qua	antile	Estimate	
		106	0% Max	5	
		997	6	5	
		95/	6 V	5	
		90/	% /	5	
		/ 5/	6 Q5 V Madian	5	
		20/		4	
		109	∾ Q⊥ ∕	2	
		5%	0	1	
		5% 1%		1	
		1/6		1	
		9%	Min	1	
		0%	Min	1	
		0%	Min	1	
		0%	Min /ariable:	1 A4 (A4)	
N		0% \	Min /ariable: 80	1 A4 (A4) Sum Weights	80
N Mear	ı	0% \	Min /ariable: 80 3.3875	1 A4 (A4) Sum Weights Sum Observations	80 5 271
N Mear Std	ו Deviatio	0% \ n 1.31	Min /ariable: 80 3.3875 1682155	1 A4 (A4) Sum Weights Sum Observations Variance	80 5 271 1.73401899
N Mear Std Skev	ı Deviatio vness	0% N 1.31 -0.2	Min /ariable: 80 3.3875 1682155 2439345	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis	80 5 271 1.73401899 -1.3447063
N Mear Std Skev Unco	n Deviation wness prrected S	0% N -0.2 SS	Min /ariable: 80 3.3875 1682155 2439345 1055	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS	80 271 1.73401899 -1.3447063 136.9875
N Mear Std Skev Unco Coet	n Deviation wness prrected S ff Variat:	0% n 1.31 -0.2 SS ion 38.8	Min /ariable: 80 3.3875 1682155 2439345 1055 3729608	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	80 271 1.73401899 -1.3447063 136.9875 0.14722512
N Mear Std Skev Unco Coel	n Deviation wness prrected S ff Variat:	0% n 1.31 -0.2 SS ion 38.8	Min /ariable: 80 3.3875 1682155 2439345 1055 8729608	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	80 271 1.73401899 -1.3447063 136.9875 0.14722512
N Mear Std Skev Uncc Coef	n Deviation wness porrected S ff Variat:	0% n 1.31 -0.2 SS ion 38.8 Basio	Min /ariable: 80 3.3875 1682155 2439345 1055 3729608 5 Statisti	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures	80 271 1.73401899 -1.3447063 136.9875 0.14722512
N Mear Std Skev Unco Coef	n Deviation wness porrected S ff Variat: Loca	0% n 1.31 -0.2 SS ion 38.8 Basid	Min /ariable: 80 3.3875 1682155 2439345 1055 3729608 5 Statisti	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability	80 271 1.73401899 -1.3447063 136.9875 0.14722512
N Mear Std Skev Unco Coel	n Deviation wness prrected S Ff Variat: Locar Mean	0% n 1.31 -0.2 SS ion 38.8 Basic tion 3.387500	Min /ariable: 80 3.3875 1682155 2439345 1055 3729608 c Statisti Std De	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation	80 271 1.73401899 -1.3447663 136.9875 0.14722512 1.31682 1.72402
N Mear Std Skev Unco Coel	n Deviation wness prrected S ff Variat: Loca Mean Median Modo	0% n 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000	Min /ariable: 80 3.3875 1682155 2439345 1055 3729608 c Statisti Std De Varian Bango	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000
N Mear Std Skev Uncc Coet	n Deviation wness prrected S ff Variat: Loca Mean Median Mode	0% n 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000	Min /ariable: 80 3.3875 1682155 2439345 1055 3729608 c Statisti Std De Varian Range	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mear Std Skev Uncc Coet	n Deviation wness prrected S ff Variat: Loca Mean Median Mode	0% n 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000	Min /ariable: 80 3.3875 1682155 2439345 1055 3729608 c Statisti Std De Varian Range Interq	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mear Std Skev Uncc Coet	n Deviation wness prrected S ff Variat: Loca Mean Median Mode	0% n 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000	Min /ariable: 80 3.3875 1652155 2439345 1055 3729608 c Statisti Std De Varian Range Interq	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5)	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mear Std Skev Uncc Coet	n Deviation wness prrected S ff Variat: Loca Mean Median Mode	0% n 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000 Quar Ou	Min /ariable: 80 3.3875 1682155 2439345 1055 3729608 c Statisti Std De Varian Range Interq ntiles (De	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mear Std Skev Unccoet	n Deviation wness prrected S ff Variat: Loca Mean Median Mode	0% n 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000 Quan Qua Qua	Min /ariable: 80 3.3875 1682155 2439345 1055 3729608 c Statisti Std De Varian Range Interq ntiles (De antile % Max	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mear Std Skev Uncc Coet	n Deviation wness prrected S ff Variat: Loca Mean Median Mode	0% n 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000 Quar Qua 100 999	Min /ariable: 80 3.3875 1682155 2439345 1055 3729608 c Statisti Std De Varian Range Interq ntiles (De antile 3% Max	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mear Std Skev Uncc Coet	n Deviation wness prrected S ff Variat: Loca Mean Median Mode	0% n 1.31 55 ion 38.8 Basic tion 3.387500 4.000000 4.000000 Quar Qua 100 999 959	Min /ariable: 80 3.3875 1682155 2439345 1055 3729608 c Statisti Std De Varian Range Interq htiles (De antile 3% Max 6	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0 5.0	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mear Std Skev Uncc Coet	n Deviation wness prrected S ff Variat: Loca Mean Median Mode	0% n 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000 4.000000 Quar Qua 100 99 95 959 959	Min /ariable: 80 3.3875 1682155 2439345 1055 3729608 c Statisti Std De Varian Range Interq ntiles (De antile 3% Max 6 6	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0 5.0 5.0	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mear Std Skev Uncc Coet	n Deviation wness prrected S Ff Variat: Loca Mean Median Mode	0% n 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000 Quar Qua 100 999 955 909 759	Min /ariable: 80 3.3875 1682155 2439345 1055 3729608 c Statisti Std De Varian Range Interq htiles (De antile 3% Max 6 6 6 23	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0 5.0 5.0 4.5	80 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mear Std Skev Uncc Coet	n Deviation wness prrected S Ff Variat: Loca Mean Median Mode	0% n 1.31 -0.2 SS ion 38.8 tion 3.387500 4.000000 4.000000 4.000000 Quar Qua 100 999 955 909 759	Min /ariable: 80 3.3875 1682155 2439345 1055 3729608 c Statisti Std De Varian Range Interq htiles (De antile 3% Max 6 6 6 23 6 4 6 4 6 6 4 9 6 6 6 4 6 6 6 6 9 10 10 10 10 10 10 10 10 10 10	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0 5.0 5.0 4.5 4.0	80 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mear Std Skev Uncc Coet	n Deviation wness prrected S Ff Variat: Loca Mean Median Mode	0% n 1.31 -0.2 SS ion 38.8 Basic tion 3.387500 4.000000 4.000000 Quar Qua 100 999 959 959 959 959 959 959 9	Min /ariable: 80 3.3875 1682155 2439345 1055 3729608 c Statisti Std De Varian Range Interq htiles (De antile 3% Max 6 6 6 23 6 4 6 21 6 21 10 10 10 10 10 10 10 10 10 1	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0 5.0 5.0 4.5 4.0 2.0	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mear Std Skev Uncc Coet	n Deviation wness prrected f Ff Variat: Loca Mean Median Mode	0% n 1.31 -0.2 SS ion 38.8 tion 38.8 4.000000 4.000000 4.000000 Quar Qua 100 999 959 969 96	Min /ariable: 80 3.3875 1682155 2439345 1055 8729608 5 Statisti Std De Varian Range Interq htiles (De antile % Max % % % % % % % % % % % % %	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0 5.0 5.0 4.5 4.0 2.0 2.0	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mear Std Skev Uncc Coet	n Deviation wness prrected f Ff Variat: Loca Mean Median Mode	0% n 1.31 -0.2 SS ion 38.8 tion 38.8 tion 3.387500 4.000000 4.000000 4.000000 Quar Qua 100 999 959 909 759 509 259 109 5%	Min /ariable: 80 3.3875 1682155 2439345 1055 8729608 5 Statisti Std De Varian Range Interq htiles (De antile % Max % % % % % % % % % % % % %	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0 5.0 5.0 4.5 4.0 2.0 2.0 1.0	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mear Std Skew Uncc Coet	n Deviation wness prrected f Ff Variat: Loca Mean Median Mode	0% n 1.31 -0.2 SS ion 38.8 tion 38.8 tion 3.387500 4.000000 4.000000 4.000000 Quar Qua 100 999 957 907 559 509 259 109 5%	Min /ariable: 80 3.3875 1682155 2439345 1055 8729608 5 Statisti Std De Varian Range Interq ntiles (De antile 2% Max 6 6 6 8 9 9 10 10 10 10 10 10 10 10 10 10	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.5 4.0 2.0 2.0 1.0 1.0	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000
N Mear Std Skew Uncc Coet	n Deviation wness prrected f Ff Variat: Loca Mean Median Mode	0% n 1.31 -0.2 SS ion 38.8 tion 3.387500 4.000000 4.000000 4.000000 Quar Qua 100 999 957 907 759 509 907 759 509 907 759 509 907 759 509 907 759 509 907 759 509 907 759 509 807 80 80 80 80 80 80 80 80 80 80 80 80 80	Min /ariable: 80 3.3875 1682155 2439345 1055 8729608 5 Statisti Std De Varian Range Interq htiles (De antile 3% Max 6 6 6 023 6 Median 6 Q1 6 Min	1 A4 (A4) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean cal Measures Variability viation ce uartile Range finition 5) Estimate 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	80 271 1.73401899 -1.3447063 136.9875 0.14722512 1.31682 1.73402 4.00000 2.50000

N Mean Std Deviation Skewness Uncorrected S Coeff Variat	Var 3.8734 n 1.2645 -0.809 SS ion 32.647	riable: 79 1772 57745 96147 1310 75877	A5 (A5) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	79 306 1.59915612 -0.6989694 124.734177 0.14227608
Loca Mean Median Mode	Basic S tion 3.873418 4.000000 5.000000	Statisti Std De Variar Range Interc	cal Measures Variability viation nce quartile Range	1.26458 1.59916 4.00000 2.00000
	Quanti Quant 100% 99% 95% 90% 75% Q 50% M 25% Q 10% 5% 1% 0% Mi	iles (De :ile Max 23 Median 21	efinition 5) Estimate 5 5 5 5 5 4 3 2 2 2 1 1	
N Mean Std Deviation Skewness Uncorrected S Coeff Variat	Var 1.3274 -0.287 55 ion 42.819	riable: 80 3.1 1302 77498 908 97747	B6 (B6) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	80 248 1.76202532 -1.3385967 139.2 0.14840929
Loca Mean Median Mode	Basic S tion 3.100000 4.000000 4.000000	Statisti Std De Variar Range Interc	ical Measures Variability eviation nce quartile Range	1.32741 1.76203 4.00000 2.00000
	Quanti Quant 100% 99% 95% 90% 75% (50% M 25% (10%	iles (De cile Max 23 Median 21	efinition 5) Estimate 5 5 5 4 4 4 2 1	

Variable: B7 (B7) Ν 80 Sum Weights 80 Mean Sum Observations 264 3.3 Std Deviation 1.43553457 Variance 2.06075949 -1.2474549 Skewness -0.3365189 Kurtosis Uncorrected SS Corrected SS 162.8 1034 Coeff Variation 43.5010475 Std Error Mean 0.16049764 Basic Statistical Measures Location Variability 3.300000 Std Deviation 1.43553 Mean 4.000000 Variance Median 2.06076 Mode 4.000000 Range 4.00000 Interquartile Range 3.00000 Note: The mode displayed is the smallest of 2 modes with a count of 21. Quantiles (Definition 5) Quantile Estimate 100% Max 5 5 5 99% 95% 90% 5 75% Q3 5 50% Median 4 25% Q1 2 10% 1 5% 1 1% 1 0% Min 1 Variable: B8 (B8) Ν 80 Sum Weights 80 Mean 3.4125 Sum Observations 273 Std Deviation 1.42929344 Variance 2.04287975 Skewness -0.3127218 Kurtosis -1.3372671 Uncorrected SS 1093 Corrected SS 161.3875 Coeff Variation 41.8840569 Std Error Mean 0.15979986 Basic Statistical Measures Variability Location Std Deviation Mean 3.412500 1.42929 Median 4.000000 Variance 2.04288 4.00000 Mode 5.000000 Range Interquartile Range 3.00000 Quantiles (Definition 5) Quantile Estimate 100% Max 5 99% 5 5 95% 90% 5 75% Q3 5 50% Median 4 25% Q1 2 10% 1 5% 1 1% 1 0% Min 1

N Mean Std Dev Skewnes Uncorre Coeff N	viation s ected S /ariati	3.42 1.3 -0. S on 38.3	/ariable: 78 2307692 3144475 479865 1047 3995899	B9 (B9) Sum Weights Sum Observatio Variance Kurtosis Corrected SS Std Error Mean	78 267 1.72777223 -1.1076465 133.038462 0.14883187
Mea Meo Moo	Locat in lian le	Basid ion 3.423077 4.000000 4.000000	Statist: Std De Variar Range Intere	ical Measures Variability eviation nce quartile Range	1.31445 1.72777 4.00000 2.00000
		Quar Qua 100 995 965 967 759 569 259 109 5% 1% 0%	Hiles (Dantile Mantile Max Max G G G G G G G G Median G Q I Min	Estimate 5 5 5 4 4 2 2 1 1 1	
N Mean Std Dev Skewnes Uncorre Coeff V	viation s ected S /ariati	Va 3.65 1.19 -0.9 S on 32.7	ariable: 79 5822785 9706988 9143681 1169 7226716	B10 (B10) Sum Weights Sum Observatio Variance Kurtosis Corrected SS Std Error Mean	79 289 1.43297631 -0.1347798 111.772152 0.13468088
Mea Mec Moc	Locat in lian le	Basid ion 3.658228 4.000000 4.000000 Quar Qua 100 997 955 90	Statist: Std De Variar Range Interd htiles (De ntile % Max	ical Measures Variability eviation quartile Range efinition 5) Estimate 5 5 5 5 5	1.19707 1.43298 4.00000 1.00000
		759 509 259 109 5% 1%	6 Q3 6 Median 6 Q1 6 Min	4 4 3 2 1 1 1	

	Variable:	B11 (B11)	
Ν	80	Sum Weights	80
Mean	3.925	Sum Observations	314
Std Deviation	1.08819907	Variance	1.18417722
Skewness	-0.8756902	Kurtosis	-0.2660479
Uncorrected SS	1326	Corrected SS	93.55
Coeff Variation	27.7248171	Std Error Mean	0.12166435
		M	
Location	Basic Statist	1cal Measures	
LUCALION Moon 3.0	25000 Std D	eviation	1 08820
Median / 0	23000 Stud 00000 Varia		1 18/18
Mode 4.0	00000 Varia 00000 Range	lice	4 00000
1000 4.0	Tnter	quartile Range	1 00000
	111001	qual circ hange	1.00000
	Quantiles (D	efinition 5)	
	Quantile	Estimate	
	100% Max	5	
	99%	5	
	95%	5	
	90%	5	
	75% Q3	5	
	50% Median	4	
	25% Q1	4	
	10%	2	
	5%	2	
	1%	1	
	0% Min	1	
	Variable	B12 (B12)	
N	Variable:	B12 (B12) Sum Weights	80
N Mean	Variable: 80 3.7	B12 (B12) Sum Weights Sum Observations	80 296
N Mean Std Deviation	Variable: 80 3.7 1.46174856	B12 (B12) Sum Weights Sum Observations Variance	80 296 2.13670886
N Mean Std Deviation Skewness	Variable: 80 3.7 1.46174856 -0.7561896	B12 (B12) Sum Weights Sum Observations Variance Kurtosis	80 296 2.13670886 -0.9339848
N Mean Std Deviation Skewness Uncorrected SS	Variable: 80 3.7 1.46174856 -0.7561896 1264	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS	80 296 2.13670886 -0.9339848 168.8
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	80 296 2.13670886 -0.9339848 168.8 0.16342846
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	80 296 2.13670886 -0.9339848 168.8 0.16342846
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures	80 296 2.13670886 -0.9339848 168.8 0.16342846
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability	80 296 2.13670886 -0.9339848 168.8 0.16342846
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation	80 296 2.13670886 -0.9339848 168.8 0.16342846
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 2.2020
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5)	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Ouantile	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantile 100% Max	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantiles (D Quantile 100% Max 99%	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantiles (D Quantile 100% Max 99% 95%	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantiles (D Quantiles (D Quantile 100% Max 99% 95% 90%	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5 5	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantiles (D Quantiles (D Quantile 100% Max 99% 95% 90% 75% Q3	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5 5 5 5	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantile 100% Max 99% 95% 90% 75% Q3 50% Median	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5 5 5 4	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantile 100% Max 99% 95% 90% 75% Q3 50% Median 25% Q1	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5 5 4 2	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantile 100% Max 99% 95% 90% 75% Q3 50% Median 25% Q1 10%	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5 4 2 1	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantile (D Quantile (D Quantile (D Quantile (D Quantile (D) 90% 75% Q3 50% Median 25% Q1 10% 5%	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5 4 2 1 1	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantile (D Quantile (D Quantile (D Quantile (D Quantile (D) Quantile (D) 00% 75% Q3 50% Median 25% Q1 10% 5% 1%	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5 5 4 2 1 1 1	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000
N Mean Std Deviation Skewness Uncorrected SS Coeff Variation Location Mean 3.7 Median 4.0 Mode 5.0	Variable: 80 3.7 1.46174856 -0.7561896 1264 39.5067179 Basic Statist 00000 Std D 00000 Varia 00000 Range Inter Quantiles (D Quantiles (D Quantile 100% Max 99% 95% 90% 75% Q3 50% Median 25% Q1 10% 5% 1% 0% Min	B12 (B12) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean ical Measures Variability eviation nce quartile Range efinition 5) Estimate 5 5 5 5 4 2 1 1 1 1	80 296 2.13670886 -0.9339848 168.8 0.16342846 1.46175 2.13671 4.00000 3.00000

N Mean Std Deviation Skewness Uncorrected SS Coeff Variatio	Variable: 80 3.3 1.37242279 -0.1711607 1020 n 41.58855693	B13 (B13) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	80 264 1.8835443 -1.4239773 148.8 0.15344153
Locati Mean 3 Median 4 Mode 2	Basic Statist: on .300000 Std Da .000000 Varian .000000 Range Intere	ical Measures Variability eviation nce quartile Range	1.37242 1.88354 4.00000 2.50000
	Quantiles (De Quantile 100% Max 99% 95% 90% 75% Q3 50% Median 25% Q1 10% 5% 1% 0% Min	efinition 5) Estimate 5.0 5.0 5.0 4.5 4.0 2.0 2.0 1.0 1.0 1.0	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variatio	Variable: 80 3.375 1.39959307 -0.276137 1066 n 41.4694243	C14 (C14) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	80 270 1.95886076 -1.4469799 154.75 0.15647926
Locati Mean 3 Median 4 Mode 2 Note: The mode dis	Basic Statist on .375000 Std Do .000000 Varian .000000 Range Intero played is the smal	ical Measures Variability eviation nce quartile Range llest of 2 modes wi	1.39959 1.95886 4.00000 3.00000 th a count of 25.
	Quantiles (De Quantile 100% Max 99% 95% 90% 75% Q3 50% Median 25% Q1 10% 5% 1% 0% Min	efinition 5) Estimate 5 5 5 5 4 2 2 1 1 1	

	Vai	riable:	C15 (C15)	
N		80	Sum Weights	80
Mean	1 04	4.2875	Sum Observations	343
Std Deviatio	on 1.00	596474	Variance	1.14414557
Skewness	-1.5	1561	Kurtosis	1.5018883/
Coeff Variat	ion 24.94	180444	Std Error Mean	0 11959022
	24.5	100111	Sta Error near	0.11999022
	Basic	Statist	ical Measures	
Loca	ition		Variability	
Mean	4.287500	Std D	eviation	1.06965
Median	5.000000	Varia	nce	1.14415
Mode	5.000000	Range		4.00000
		Inter	quartile Range	1.00000
	Quant	tiles (D	efinition 5)	
	Quan	ntile	Estimate	
	1009	% Max	5	
	99%		5	
	95%		5	
	90%		5	
	75%	Q3	5	
	50%	Median	5	
	25%	QI	4	
	10%		2	
	1%		1	
	0% N	۱in	- 1	
	Var	riable:	C16 (C16)	
N		80	Sum Weights	80
Mean Std Deviatio	n 0.88	4.4/5	Variance	358 0 78/17722
Skewness	-1.99	977064	Kurtosis	3,88036542
Uncorrected	SS	1664	Corrected SS	61.95
Coeff Variat	ion 19.78	385544	Std Error Mean	0.09900614
	Basic	Statist	ical Measures	
Loca				
	ition	<u> </u>	Variability	0.00554
Mean	4.475000	Std D	Variability eviation	0.88554
Mean Median Mode	tion 4.475000 5.000000 5.000000	Std D Varia Range	Variability eviation nce	0.88554 0.78418
Mean Median Mode	tion 4.475000 5.000000 5.000000	Std D Varia Range Inter	Variability eviation nce quartile Range	0.88554 0.78418 4.00000 1.00000
Mean Median Mode	tion 4.475000 5.000000 5.000000	Std D Varia Range Inter	Variability eviation nce quartile Range	0.88554 0.78418 4.00000 1.00000
Mean Median Mode	tion 4.475000 5.000000 5.000000 Quant	Std D Varia Range Inter tiles (D	Variability eviation nce quartile Range efinition 5)	0.88554 0.78418 4.00000 1.00000
Mean Median Mode	tion 4.475000 5.000000 5.000000 Quan Quan	Std D Varia Range Inter tiles (D ntile	Variability eviation nce quartile Range efinition 5) Estimate	0.88554 0.78418 4.00000 1.00000
Mean Median Mode	tion 4.475000 5.000000 5.000000 Quan Quan 1005	Std D Varia Range Inter tiles (D ntile % Max	Variability eviation nce quartile Range efinition 5) Estimate 5.0	0.88554 0.78418 4.00000 1.00000
Mean Median Mode	tion 4.475000 5.000000 5.000000 Quan Quan 100 99%	Std D Varia Range Inter tiles (D ntile % Max	Variability eviation nce quartile Range efinition 5) Estimate 5.0 5.0 5.0	0.88554 0.78418 4.00000 1.00000
Mean Median Mode	tion 4.475000 5.000000 5.000000 Quan 1007 99%	Std D Varia Range Inter tiles (D ntile & Max	Variability eviation nce quartile Range efinition 5) Estimate 5.0 5.0 5.0 5.0	0.88554 0.78418 4.00000 1.00000
Mean Median Mode	tion 4.475000 5.000000 5.000000 Quan 1007 99% 95% 90% 75%	Std D Varia Range Inter tiles (D ntile & Max	Variability eviation nce quartile Range efinition 5) Estimate 5.0 5.0 5.0 5.0 5.0 5.0	0.88554 0.78418 4.00000 1.00000
Mean Median Mode	ition 4.475000 5.000000 5.000000 Quant Quan 100 99% 95% 95% 75%	Std D Varia Range Inter tiles (D tile & Max Q3 Median	Variability eviation nce quartile Range efinition 5) Estimate 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.88554 0.78418 4.00000 1.00000
Mean Median Mode	ition 4.475000 5.000000 5.000000 Quant Quan 100 99% 95% 95% 50% 25%	Std D Varia Range Inter tiles (D tile % Max Q3 Median Q1	Variability eviation nce quartile Range efinition 5) Estimate 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.0	0.88554 0.78418 4.00000 1.00000
Mean Median Mode	ition 4.475000 5.000000 5.000000 Quant Quar 100 99% 95% 95% 50% 25% 10%	Std D Varia Range Inter tiles (D tile % Max Q3 Median Q1	Variability eviation nce quartile Range efinition 5) Estimate 5.0 5.0 5.0 5.0 5.0 5.0 4.0 3.5	0.88554 0.78418 4.00000 1.00000
Mean Median Mode	tion 4.475000 5.000000 5.000000 Quant 007 99% 95% 90% 75% 50% 25% 10% 5%	Std D Varia Range Inter tiles (D tile & Max Q3 Median Q1	Variability eviation nce quartile Range efinition 5) Estimate 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.0 3.5 2.0	0.88554 0.78418 4.00000 1.00000
Mean Median Mode	tion 4.475000 5.000000 5.000000 Quant 00% 99% 95% 90% 75% 50% 25% 10% 5% 1%	Std D Varia Range Inter tiles (D tile & Max Q3 Median Q1	Variability eviation nce quartile Range efinition 5) Estimate 5.0 5.0 5.0 5.0 5.0 5.0 4.0 3.5 2.0 1.0	0.88554 0.78418 4.00000 1.00000
Mean Median Mode	tion 4.475000 5.000000 5.000000 Quant Quan 100 99% 95% 99% 75% 50% 25% 10% 5% 1% 0% M	Std D Varia Range Inter tiles (D tile & Max Q3 Median Q1 4in	Variability eviation nce quartile Range efinition 5) Estimate 5.0 5.0 5.0 5.0 5.0 5.0 4.0 3.5 2.0 1.0 1.0	0.88554 0.78418 4.00000 1.00000

N Mean Std Deviation Skewness Uncorrected S Coeff Variat:	Vari 1.0527 -1.75 SS ion 24.346	80 80 325 2401 59451 1584 04396	C17 (C17) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	80 346 1.10822785 2.54449918 87.55 0.11769812
Loca Mean Median Mode	Basic S tion 4.325000 5.000000 5.000000	Statist Std D Varia Range Inter	ical Measures Variability eviation nce quartile Range	1.05272 1.10823 4.00000 1.00000
	Quanti Quant 100% 99% 95% 90% 75% Q 50% M 25% Q 10% 5% 1% 0% Mi	lles (D ille Max 23 Median 21 .n	efinition 5) Estimate 5 5 5 5 5 4 3 2 1 1	
N Mean Std Deviation Skewness Uncorrected S Coeff Variat:	Vari 4. 0.9505 -1.646 SS ion 21.543	able: 80 4125 59941 57647 1629 33294	C18 (C18) Sum Weights Sum Observations Variance Kurtosis Corrected SS Std Error Mean	80 353 0.90363924 1.65902771 71.3875 0.10628025
Loca Mean Median Mode	Basic S tion 4.412500 5.000000 5.000000	Statist Std D Varia Range Inter	ical Measures Variability eviation nce quartile Range	0.95060 0.90364 3.00000 1.00000
	Quanti Quant 100% 99% 95% 90% 75% Q 50% M 25% Q 10% 5% 1% 0% Mi	lles (D ile Max 23 Median 21	Pefinition 5) Estimate 5.0 5.0 5.0 5.0 5.0 4.0 2.5 2.0 2.0 2.0	

N	V	ariable: 80	D19 (D19) Sum Weights	80
Mean		3.125	Sum Observations	5 250
Std Deviation	n 1.1	8401805	Variance	1.40189873
Skewness	-0.	2478457	Kurtosis	-1.1338184
Uncorrected S	55	892	Corrected SS	110.75
Coeff Variat:	ion 37.	8885775	Std Error Mean	0.13237724
Locat	Basi	c Statist	ical Measures	
Mean	3.125000	Std D	Variability Deviation	1,18402
Median	3.500000	Varia	ince	1.40190
Mode	4.000000	Range	 !	4.00000
		Inter	quartile Range	2.00000
	Qua	ntiles (D	efinition 5)	
	Quu	antile	Estimate	
	10	0% Max	5.0	
	995	%	5.0	
	955	%	5.0	
	905	%	4.0	
	75	% Q3	4.0	
	50	% Median	3.5	
	25	% QI	2.0	
	5%	/0	2.0	
	1%		1.0	
	0%	Min	1.0	
	V	ariable:	D20 (D20)	
Ν		79	Sum Weights	79
Mean	3.0	7594937	Sum Observations	5 243
Std Deviation	n 1.2	9863984	Variance	1.68646543
Skewness	-0.	2522868 070	Kurtosis	-1.2096182
Coeff Variat	ion 42	2191553	Std Error Mean	0 1461084
				011101001
	Basi	c Statist	ical Measures	
Mean	3 0750/0	Std D	Variability	1 20861
Median	3 000000	Varia		1 68647
Mode	4.000000	Range		4.00000
		Inter	quartile Range	2.00000
	0.12	ntiles (F	ofinition 5)	
	Qua	antile	Estimate	
	10	0% Max	5	
	995	%	5	
	955	%	5	
	90	%	5	
	75	% Q3 % Madia	4	
	50	% Median % 01	3 7	
	25. 10 ⁰	~ \7 %	2 1	
	5%	-	1	
	1%		1	
	0%	Min	1	

N Mean Std Deviation Skewness Uncorrected SS Coeff Variatio	Variable 79 2.08860759 1.34154401 1.10934444 485 n 64.2315013	2: D21 (D21) 3 Sum Weights 4 Sum Observations 5 Variance 4 Kurtosis 5 Corrected SS 8 Std Error Mean	79 165 1.79974034 -0.0317542 140.379747 0.15093549
Locati Mean 2 Median 2 Mode 1	Basic Stati on .088608 Sto .000000 Var .000000 Rar Int	istical Measures Variability Deviation riance nge cerquartile Range	1.34154 1.79974 4.00000 2.00000
	Quantiles Quantile 100% Max 99% 95% 90% 75% Q3 50% Media 25% Q1 10% 5% 1% 0% Min	(Definition 5) Estimate 5 5 5 3 an 2 1 1 1 1 1 1 1	
N Mean Std Deviation Skewness Uncorrected SS Coeff Variatio	Variable 77 3.68831169 1.05456077 -0.8597188 1132 n 28.5919647	e: D22 (D22) 7 Sum Weights 9 Sum Observations 7 Variance 8 Kurtosis 2 Corrected SS 7 Std Error Mean	77 284 1.11209843 0.43484349 84.5194805 0.12017835
Locati Mean 3 Median 4 Mode 4	Basic Stati on .688312 Sto .000000 Var .000000 Rar Int Quantile 100% Max 99% 95%	istical Measures Variability d Deviation riance ge cerquartile Range (Definition 5) Estimate 5 5 5	1.05456 1.11210 4.00000 1.00000
	90% 75% Q3 50% Media 25% Q1 10% 5% 1%	5 4 3n 4 3 2 1 1	

	Variable:	D23 (D23)	
N	2 0125	Sum Weights	80
Mean	3.9125	Sum Observations	1 27072795
Std Deviation	1.12/26565	Variance	1.2/0/2/85
Skewness	-0.911/264	KURTOSIS	-0.1641245
Uncorrected SS	1325	Corrected SS	100.38/5
Coeff Variation	28.8119016	Std Error Mean	0.12603213
	Basic Statist	ical Measures	
Locatio	on	Variability	
Mean 3.	912500 Std D	eviation	1.12727
Median 4.	000000 Varia	nce	1.27073
Mode 4.	000000 Range		4.00000
	Inter	quartile Range	1.50000
	Quantiles (D	efinition 5)	
	Quantile	Estimate	
	100% Max	5.0	
	99%	5.0	
	95%	5.0	
	90%	5.0	
	75% Q3	5.0	
	50% Median	4.0	
	25% Q1	3.5	
	10%	2.0	
	5%	2.0	
	1%	1.0	
	0% Min	1.0	
	Variable:	D24 (D24)	
N	80	Sum Weights	80
Mean	3.7125	Sum Observations	297
Std Deviation	1.192/3911	Variance	1.42262658
Skewness	-0.56/4519	Kurtosis	-0.9213/34
Uncorrected SS	1215	Corrected SS	112.38/5
Coeff Variation	32.12/6528	Sta Error Mean	0.13335229
	Basic Statist	ical Measures	
Locatio	on	Variability	
Mean 3.	712500 Std D	eviation	1.19274
Median 4.	000000 Varia	nce	1.42263
Mode 4.	000000 Range		4.00000
	Inter	quartile Range	2.00000
	o 111 /o	c ···· c >	
	Quantiles (D	efinition 5)	
	Quantile	Estimate	
	100% Max	5	
	99% 05%	5	
	32% 00%	5	
	30% 75% 00	5	
	13% US EQ9 Madiaa	С И	
	25% Meutan	4 2	
	20% QI 10%	ວ າ	
	5%	2	
	1%	ے 1	
	-70 0% Min	± 1	
	OV0 FITTI	1	

N Mean Std Deviatic Skewness Uncorrected Coeff Variat	on SS cion	Variable 80 3.825 1.28057542 -0.776239 1300 33.4790961	: D25 (D Sum We Sum Ob Varian Kurtos Correc Std Er	25) ights servations ce is ted SS ror Mean	80 306 1.63987342 -0.8206988 129.55 0.14317268
		Basic Stati	stical Mea	sures	
Loca	ation		Var	iability	
Mean	3.825	000 Std	Deviation	1	1.28058
Median	4.000	000 Var	iance		1.63987
Mode	5.000	000 Ran	ge		4.00000
		Int	erquartile	Range	3.00000
		Quantiles Quantile 100% Max 99% 95% 90% 75% Q3 50% Media 25% Q1 10% 5% 1% 0% Min	(Definitio Estim n	n 5) ate 5 5 5 5 4 2 2 2 1 1	

Comparison of proportions

				Cumulative	
Cumulative	A1	Frequency	Percent	Frequency	Percent
*****	ffff		ffffffffffff	ffffffffffffffff	
Disagree - Strongly Disag	ree	30 48	38.46 61 54	30 78	38.46 100 00
Agree - Scholigty Agree			01.94	78	100.00
		Chi-Square	Test		
		fffffffffffff	fffffff		
		Chi-Square	4.1538		
		Dr Pr > ChiSq	0.0415		
		Sample Size	e = 78		
				Cumulative	
Cumulative	۸۵	Englionav	Doncont	Enoquanav	Doncont
	AZ	Frequency	Percent	Frequency	Percent
fffffffffffffffffffffffffffffffffff	ffff	ffffffffffffff 28	fffffffffffff 36 36	75555555555555555555555555555555555555	36 36
Agree - Strongly Agree	,	49	63.64	77	100.00
		Chi-Square	Toc+		
		for Equal Pro	portions		
		fffffffffffff	fffffff E ZZZZ		
		DF	5.7275 1		
		Pr > ChiSq	0.0167		
		Sample Size	e = //		
Cumulative				Cumulative	
	A3	Frequency	Percent	Frequency	Percent
****	ffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ffffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Disagree - Strongly Disag	ree	32	43.24	32	43.24
Agree - Strongly Agree		42	56.76	74	100.00
		Chi-Square	Test		
		ffffffffffffff	fffffff		
		Chi-Square	1.3514		
		DF Pr > ChiSq	1 0.2450		
		Sample Size	e = 74		
				Cumulative	
Cumulative	Δ4	Frequency	Percent	Frequency	Percent
Disagree - Strongly Disag	ree	29	39.19	29	39.19
Agree - Strongly Agree		45	60.81	74	100.00
		Chi-Square	Test		
		for Equal Pro	portions		
		Chi-Square	3.4595		
		DF	1		
		Sample Size	0.0629 e = 74		
Completion				Cumulative	
Cumulative	A5	Frequency	Percent	Frequency	Percent
<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	ffff	<i></i>	ffffffffffff	<i>ffffffffffffffffff</i>	

	Disagree - Strongly Disagree	18	24.32	18	24.32
	Agree - Strongly Agree	56	/5.68	/4	100.00
		Chi-Square	Test		
		for Equal Pro	portions		
		ttttttttttt	10 5125		
		DF	19.5155		
		Pr > ChiSq	<.0001		
	E	ffective Sampl	e Size = 74		
		Trequency Tirs	5111 <u>6</u> - 1		
C	_			Cumulative	
Cumulative	e B6	Frequency	Percent	Frequency	Percent
		- 1 5			
ffffffff		ffffffffffffffffff	<i>ffffffffffff</i>	ffffffffffffffffff	12 96
	Agree - Strongly Agree	44	42.80 57.14	55 77	42.88
		Chi-Square	Test		
		ffffffffffffff	fffffff		
		Chi-Square	1.5714		
		DF Pr \ Chisa	1 0 2100		
		Sample Siz	e = 77		
				Cumulativa	
Cumulative	e			Cumulative	
	В7	Frequency	Percent	Frequency	Percent
<i><i><i><i>ffffffffffff</i></i></i></i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+++++++++++++++++++++++++++++++++++++++		****	
	Disagree - Strongly Disagree	26	38.24	26	38.24
	Agree - Strongly Agree	42	61.76	68	100.00
		Chi-Square	Test		
		for Equal Pro	portions		
		fffffffffff	fffffff		
		DF	3.7647		
		Pr ≻ ChiSq	0.0523		
		Sample Siz	e = 68		
				Cumulative	
Cumulative	e	Enoquancy	Boncont	Enoquoney	Doncont
		rrequency	Fercenc	riequency	reitent
ffffffff	ffffffffffffffffffffffffffffffff	fffffffffffffff	fffffffffffff	<i>ffffffffffffffff</i>	20 57
	Agree - Strongly Disagree	43	38.57	27 70	38.57
			01110		200100
		Chi-Square	Test		
		for Equal Pro	portions		
		Chi-Square	3.6571		
		DF	1		
		Sample Siz	0.0558 e = 70		
		·			
Cumulative	a			Cumulative	
	В9	Frequency	Percent	Frequency	Percent
<i>tttttt</i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+++++++++++++++++++++++++++++++++++++++		****	
	Disagree - Strongly Disagree	26	34.67	26	34.67
	Agree - Strongly Agree	49	65.33	75	100.00
		Chi-Sausso	Tost		
		for Equal Pro	portions		
		fffffffffffff	fffffff		
		Chi-Square	7.0533		
		Dr Pr > ChiSa	ı 0.0079		
		•			

Effective Sample Size = 75 Frequency Missing = 2

				Cumulative	
Cumulative	B10	Frequency	Percent	Frequency	Percent
<i>{{}}</i>	fffff		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>ffffffffffffffffff</i>	
Disagree - Strongly Disa	gree	17	22.97	17	22.97
Agree - Strongly Agree		57	77.03	74	100.00
		Chi-Square	Test		
		for Equal Pro	portions		
		fffffffffffff	fffffff		
		Chi-Square	21.6216		
		Pr > ChiSq	<.0001		
	E	ffective Sampl	e Size = 74		
		Frequency Mis	sing = 1		
				Cumulative	
Cumulative					
	B11	Frequency	Percent	Frequency	Percent
<i>fffffffffffffffffffffffffffffffffffff</i>	fffff	+++++++++++++++++++++++++++++++++++++++	<i></i>	fffffffffffffffff	
Disagree - Strongly Disa	gree	14	18.67	14	18.67
Agree - Strongly Agree		61	81.33	75	100.00
		Chi-Square	Test		
		for Equal Pro	portions		
		ffffffffffff	fffffff		
		Chi-Square	29.4533 1		
		Pr > ChiSq	<.0001		
		Sample Siz	e = 75		
				Cumulative	
Cumulative					
	B12	Frequency	Percent	Frequency	Percent
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffff		fffffffffff	ffffffffffffffff	
Disagree - Strongly Disa	gree	22	28.95	22	28.95
Agree - Strongly Agree		54	/1.05	/6	100.00
		Chi-Square	Test		
		for Equal Pro	portions		
		<i>ffffffffffffff</i> Chi-Square	<i>11111111</i> 13 4737		
		DF	19.4757		
		Pr > ChiSq	0.0002		
		Sample Siz	e = 76	Cumulativo	
Cumulative				Cullurative	
	B13	Frequency	Percent	Frequency	Percent
*****			****	****	
Disagree - Strongly Disa	gree	32	42.67	32	42.67
Agree - Strongly Agree	0	43	57.33	75	100.00
		Chi-Square	Tost		
		for Equal Pro	portions		
		ffffffffffff	fffffff		
		Chi-Square	1.6133		
		₽r > ChiSa	ı 0.2040		
		Sample Siz	e = 75		
				Cumulative	
Cumulative				Cumulative	
	C14	Frequency	Percent	Frequency	Percent
+++++++++++++++++++++++++++++++++++++++	tttt			+++++++++++++++++++++++++++++++++++++++	
Disagree - Strongly Disa	igree	32	40.51	32	40.51
Agree - Strongly Agree		47	59.49	79	100.00

	Chi-Square	Test		
	for Equal Pro	portions		
	DF	2.8481		
	Pr > ChiSq Sample Siz	0.0915 e = 79		
Cumulativa			Cumulative	
Cumulative C15	Frequency	Percent	Frequency	Percent
	••••••••••••	ffffffffffff	*****	11 04
Agree - Strongly Agree	67	88.16	76	100.00
	Chi-Square for Equal Pro	Test portions		
	Chi-Square DF	44.2632 1		
	Pr > ChiSq Sample Siz	<.0001 e = 76		
Cumulative			Cumulative	
C16	Frequency	Percent	Frequency	Percent
<i>fffffffffffffffffffffffffffffffffffff</i>	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffffffffff	ffffffffffffffff	
Disagree - Strongly Disagree	5	6.49	5	6.49 100 00
Agree - Scrongry Agree	12	55.51	,,	100.00
	Chi-Square	Test		
	for Equal Pro	portions		
	Chi-Square	58.2987		
	DF	1		
	Sample Siz	<.0001 e = 77		
			Cumulative	
Cumulative C17	Frequency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffffff	fffffffffffffffff	fffffffffffff 9 33	, , , , , ,	9 33
Agree - Strongly Agree	68	90.67	75	100.00
	Chi-Square	Test		
	fffffffffffffff Chi-Square	<i>fffffff</i> 49.6133		
	DF	1		
	Pr > ChiSq Sample Siz	<.0001 e = 75		
Cumulative			Cumulative	
C18	Frequency	Percent	Frequency	Percent
*****	, fffffffffffffffffff	fffffffffffff	ffffffffffffffff	
Disagree - Strongly Disagree Agree - Strongly Agree	8 70	10.26 89.74	8 78	10.26 100.00
	Chi-Sauare	Test		
	for Equal Pro	portions		
	fffffffffffff	fffffff		
	Chi-Square	49.2821 1		
	Pr > ChiSq	<.0001		
	Sampre S1Z	c = 10		

Cumulation				Cumulative	
Cumulative	D19	Frequency	Percent	Frequency	Percent
ffffffffffffffffffffffffffffffffffffff	fffff agree		ffffffffff 42.86	ffffffffffffffffff 30	42.86
Agree - Strongly Agree	0	40	57.14	70	100.00
		Chi-Square for Equal Prop ffffffffffffff Chi-Square DF Pr > ChiSq Sample Size	Test portions fffffff 1.4286 1 0.2320 e = 70		
				Cumulative	
Cumulative	D20	Frequency	Percent	Frequency	Percent
<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	fffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		fffffffffffffffff	
Disagree - Strongly Disa	agree	30	43.48	30	43.48
Agree - Strongly Agree		39	56.52	69	100.00
	E	Chi-Square for Equal Prop ffffffffffffff Chi-Square DF Pr > ChiSq ffective Sample Frequency Miss	Test portions fffffff 1.1739 1 0.2786 e Size = 69 sing = 1		
				Cumulative	
Cumulative	D21	Frequency	Percent	Frequency	Percent
Disagree - Strongly Disa	agree	59	79 . 73	59	79.73
Agree - Strongly Agree		15	20.27	74	100.00
	E	Chi-Square for Equal Prop ffffffffffffff Chi-Square DF Pr > ChiSq ffective Sample Frequency Miss	Test portions fffffff 26.1622 1 <.0001 2 Size = 74 sing = 1		
				Cumulative	
Cumulative	D22	Frequency	Percent	Frequency	Percent
<i>fffffffffffffffffffffffffffffffffffff</i>	fffff			fffffffffffffffff	
Disagree - Strongly Disa Agree - Strongly Agree	agree	10 51	16.39 83.61	10 61	16.39 100.00
	E	Chi-Square for Equal Prop ffffffffffffff Chi-Square DF Pr > ChiSq ffective Sample Frequency Miss	Test portions fffffff 27.5574 1 <.0001 e Size = 61 sing = 3		
				Cumulative	
Cumulative	D23	Frequency	Percent	Frequency	Percent
*****	fffff	ffffffffffffffff	ffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
uisagree - Strongly Disa Agree - Strongly Agree	agree	14 60	18.92	14 74	18.92

Cumulative					Cumulative	
Cumuracive	D	024	Frequency	Percent	Frequency	Percent
fffffffff		fff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Disagree - Strongly Disagr	ree	19	26.39	19	26.39
	Agree - Strongly Agree		53	73.61	72	100.00
			Chi-Square for Equal Pro ffffffffffff Chi-Square DF Pr > ChiSq Sample Size	Test portions fffffff 16.0556 1 <.0001 e = 72		
					Cumulative	
Cumulative	2					
	D)25	Frequency	Percent	Frequency	Percent
fffffffff		fff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ffffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Disagree - Strongly Disagr	ree	21	26.58	21	26.58
	Agree - Strongly Agree		58	73.42	79	100.00
			Chi-Square for Equal Pro fffffffffffff Chi-Square DF Pr > ChiSq Sample Size	Test portions fffffff 17.3291 1 <.0001 e = 79		

Chi-square test for comparisons

Statistics for lable of	Number_	residing	by A2
Statistic	DF	Value	Prob
<i>fffffffffffffffffffffffffffffff</i>	fffffff	ffffffffff	ffffffff
Chi-Square	1	0.0669	0.7959
Likelihood Ratio Chi-Square	1	0.0669	0.7959
Continuity Adj. Chi-Square	1	0.0005	0.9828
Mantel-Haenszel Chi-Square	1	0.0660	0.7972

Phi Coefficient -0.0295 Contingency Coefficient 0.0295 Cramer's V -0.0295 Fisher's Exact Test Cell (1,1) Frequency (F) 14 Left-sided Pr <= F 0.4911 Right-sided Pr >= F 0.6900 Table Probability (P) 0.1810 Two-sided Pr <= P 0.8169 Sample Size = 77 Table of Number_residing by A3 Frequency, Percent , Row Pct Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree 1-6 , 13 , 25 , 38 , 17.57 , 33.78 , 51.35 , 34.21 , 65.79 , 40.63 , 59.52 , fffffffffffffffffffff , 19 , 17 , 36 , 25.68 , 22.97 , 48.65 , 52.78 , 47.22 , , 59.38 , 40.48 , >6 *ffffffff*^*fffffff*^*fffffff* 32 42 74 Total 43.24 56.76 100.00 Statistics for Table of Number_residing by A3 DF Prob Statistic Value 1 2.5967 1 2.6108 Chi-Square 0.1071 Likelihood Ratio Chi-Square 0.1061 1.8952 Continuity Adj. Chi-Square 0.1686 1 Mantel-Haenszel Chi-Square 1 2.5616 0.1095 Phi Coefficient -0.1873 Contingency Coefficient 0.1841 Cramer's V -0.1873 Fisher's Exact Test Cell (1,1) Frequency (F) 13 Left-sided Pr <= F Right-sided Pr >= F 0.0841 0.9679 Table Probability (P) 0.0520 Two-sided Pr <= P 0.1588 Sample Size = 74 Table of Number_residing by A4 Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , , 15 , 24 , 39 , 20.27 , 32.43 , 52.70 1-6 , 38.46 , 61.54 , , 51.72 , 53.33 , fffffffffffffffffffffffff , 14 , 21 , 35 , 18.92 , 28.38 , 47.30 , 40.00 , 60.00 , >6 , 48.28 , 46.67 ,

Statist	ics for Ta	able of	Number 1	residing h	/ Δ4
	105 101 10			Value	, 74 Daeb
Statistic				varue	Prod
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	******	+++++++++	**********	+++++++++
Chi-Square			1	0.0183	0.8923
Likelihood R	atio Chi-9	Sauare	1	0.0183	0.8923
Continuity A	di Chi-Su		1	0 0000	1 0000
Montel Here		quare	1	0.0000	1.0000
Mantel-Haens	zel Chi-So	quare	T	0.0181	0.8931
Phi Coeffici	ent			-0.0157	
Contingency (Coefficie	nt		0.0157	
Cramer's V				-0.0157	
				010107	
	F 4 - 1- 1-		.		
	Fishe	er's Exa	act lest		
ff	ffffffff	fffffff	fffffff	fffffff	
Ce	11 (1,1)	Frequen	cy (F)	15	
l e	ft-sided H	Pr < = F		0.5406	
Di.	abt cidod		-	0.6450	
	giit-Siueu	PI: 2= 1	- (D)	0.0455	
Ia	DIE Probai	σιιιτγ	(P)	0.1865	
Two	o-sided Pı	r <= P		1.0000	
	Sar	nple Si	ze = 74		
	Table of N	Number_	residing	by A5	
Fr	equency.	_	-	-	
Do	ncont				
Pe	rcent ,				
Roi	w Pct ,				
Co	l Pct ,D:	isagree	,Agree -	, Total	
		- Stron	,Strongly	v.	
	σ [.]	lv Disa	Δgree		
	, 5-		, Agree	,	
	، Si		,	, ,	
<i>tt</i> :	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+++++++	******	t	
1-0	6,	7	, 32	, 39	
		9.46	, 43.24	. 52.70	
		17 95	82 05		
	,	20 00	, 02.05	,	
	, , , , , , , , , , , , , , , , , , , ,	20.09	, 57.14	, ,	
<i>tt</i> :	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+++++++	******	t	
>6	ر	11	, 24	, 35	
	,	14.86	, 32.43	, 47.30	
		31 43	68 57		
	,	61 11	12 96	,	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, 42.00	, (^	
<i>ft</i> :	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	t i i i i i i i i i i i i i i i i i i i	
To [.]	tal	18	56	74	
		24.32	75.68	100.00	
Statict	ics for T	able of	Number	reciding h	/ 15
Ctatictic	105 101 10			Value	, 75 Doob
Statistic				value	PI'00
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	******	+++++++++	**********	+++++++++
Chi-Square			1	1.8209	0.1772
Likelihood R	atio Chi-9	Square	1	1.8268	0.1765
Continuity A	di Chi-Su		1	1 1622	0 2810
Montol Hoone	aj. chi S	quare	1	1,1022	0.2010
Mantel-Haens	zei chi-So	quare	T	1.7962	0.1802
Phi Coettici	ent			-0.1569	
Contingency (Coefficie	nt		0.1550	
Cramer's V				-0.1569	
	F 2 - 1-				
	Fishe	er s EX	act lest		
ff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	tttfff	ttttfff	ttttff	
Ce	11 (1,1)	Frequen	cy (F)	7	
l e'	ft-sided H	Pr < = F		0.1406	
Ri	ght_sided	Pr >= 1	F	0 9478	
N1 T-1	blo Doob-	/- hili+./	(D)	0.04/0	
	DIE PRODA	<u>-</u>	(")	2000.0	
Two	o-sided Pi	r <= P		0.2777	

Effective Sample Size = 74 Frequency Missing = 1

Table of Number_residing by B6 Frequency, Percent , Row Pct ,

Col Pct	,Disagree,A	gree - ,	Total	
	, - Stron,S ,gly Disa,	trongiy, Agree ,		
<i>fffffff;</i> 1-6	,gree , f^ffffffffff , 19 ,	, fffffff^ 20 ,	39	
	, 24.68 , , 48.72 ,	25.97 , 51.28 ,	50.65	
fffffff	, 57.58 , f^fffffffff	45.45 , fffffff^		
>6	, 14,	24,	38	
	, 18.18 ,	31.17 ,	49.35	
	, 36.84 ,	63.16 ,		
	, 42.42 , 	54.55 ,		
JJJJJJJJ	T JJJJJJJJ J. CC	, TTTTTT 44	77	
TOCAL	12 86	44 57 1/	100 00	
	42.00	57.14	100.00	
Statistics for	∽ Table of N	umber re	siding	bv B6
Statistic		DF	Value	Prob
<i>ffffffffffffffffff</i>	, ffffffffffff	fffffff	fffffff	ffffffff
Chi-Square		1	1.1084	0.2924
Likelihood Ratio C	ni-Square	1	1.1117	0.2917
Continuity Adj. Ch:	i-Square	1	0.6765	0.4108
Mantel-Haenszel Cha	i-Square	1	1.0940	0.2956
Phi Coefficient			0.1200	
Contingency Coeffic	cient		0.1191	
Cramer's V			0.1200	
_				
F:	isher's Exac	t lest		
		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	11111	
Cell (l,	I) Frequency	(F)	19	
Lett-Siu	dod Dn = F		0.9004	
Table Dr	bahility (P	١	0.2055	
Two-side	d Pr <= P)	0.1000	
1.10 5100	Sample Size	= 77	C. J J J T	
Table (of Number re	siding h	IV B7	

Statistics for Table of Number_residing by B7 Statistic DF Value Prob 0.1912 1 1.7082 Chi-Square Likelihood Ratio Chi-Square 1 1.7199 0.1897 Continuity Adj. Chi-Square 1.1180 0.2904 1 Mantel-Haenszel Chi-Square 1 1.6831 0.1945 Phi Coefficient 0.1585 Contingency Coefficient 0.1565 0.1585 Cramer's V

Cell (1,1) Frequency (F)	16
Left-sided Pr <= F	0.9407
Right-sided Pr >= F	0.1452
Table Probability (P)	0.0859
Two-sided Pr <= P	0.2200
Sample Size = 68	

Table of Number_residing by B8 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 1-6 , 14 , 21 , 35 , 20.00 , 30.00 , 50.00 , 40.00 , 60.00 , , 51.85 , 48.84 , fffffffffffffffffffff >6 , 13 , 22 , , 18.57 , 31.43 , , 37.14 , 62.86 , , 48.15 , 51.16 , fffffffffffffffffffffffffffffff 35 50.00 27 43 70 Total 38.57 61.43 100.00

Statistics for Table of	Number_	_residing	by B8
Statistic	DF	Value	Prob
<i>fffffffffffffffffffffffffffffffffffff</i>	ffffff	fffffffff	fffffffff
Chi-Square	1	0.0603	0.8060
Likelihood Ratio Chi-Square	1	0.0603	0.8060
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0594	0.8074
Phi Coefficient		0.0293	
Contingency Coefficient		0.0293	
Cramer's V		0.0293	

Table of Number_residing by B9 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 1-6 , 11 , 28 , , 14.67 , 37.33 , , 28.21 , 71.79 , , 42.31 , 57.14 , ffffffffffffffffffffffffffffff 39 52.00 >6 , 15 , 21 , 36 , 20.00 , 28.00 , 48.00 , 41.67 , 58.33 , , 57.69 , 42.86 , fffffffffffffffffffffff 49 75 Total 26 34.67 65.33 100.00

Statistics for Table of Number_residing by B9 Statistic DF Value Prob

1 1.4978 1 1.5012 Chi-Sauare 0.2210 Likelihood Ratio Chi-Square 0.2205 Continuity Adj. Chi-Square 0.9624 0.3266 1 Mantel-Haenszel Chi-Square 1.4778 0.2241 1 Phi Coefficient -0.1413 Contingency Coefficient 0.1399 Cramer's V -0.1413 Fisher's Exact Test Cell (1,1) Frequency (F) 11 Left-sided Pr <= F 0.1633 Right-sided Pr >= F 0.9289 Table Probability (P) 0.0923 Two-sided Pr <= P 0.2368 Effective Sample Size = 75 Frequency Missing = 2 Table of Number_residing by B10 Frequency, Percent , Row Pct Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , 1-6 , 11 , 25 , 36 , 14.86 , 33.78 , 48.65 , 30.56 , 69.44 , , 64.71 , 43.86 , fffffffffffffffffffff 6, 32, 38 8.11, 43.24, 51.35 >6 , , , 8.11 , 43.24 , , 15.79 , 84.21 , , 35.29 , 56.14 , ffffffffffffffffffffffff Total 17 57 74 22.97 77.03 100.00 Statistics for Table of Number_residing by B10 DF Prob Statistic Value 1 2.2778 Chi-Square 0.1312 2.3003 Likelihood Ratio Chi-Square 0.1293 1 Continuity Adj. Chi-Square Mantel-Haenszel Chi-Square 1 1.5198 0.2176 1 2.2471 0.1339 Phi Coefficient 0.1754 Contingency Coefficient 0.1728 Cramer's V 0.1754 Fisher's Exact Test Cell (1,1) Frequency (F) 11 Left-sided Pr <= F 0.9636 Right-sided Pr >= F 0.1087 Table Probability (P) 0.0723 Two-sided Pr <= P 0.1705 Effective Sample Size = 74 Frequency Missing = 1 Table of Number_residing by B11 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , 9, 27, 36 1-6

, 12.00 , 36.00 , 48.00 , 25.00 , 75.00 , , 64.29 , 44.26 , fffffffffffffffffffff 5, 34, 39 >6 , 6.67 , 45.33 , 52.00 , , 12.82 , 87.18 , , 35.71 , 55.74 , ffffffffffffffffffffffffffffffffff Total 14 61 75 18.67 81.33 100.00 Statistics for Table of Number_residing by B11 Statistic DF Value Prob Chi-Square 1 1.8291 0.1762 0.1745 Likelihood Ratio Chi-Square 1.8440 1 Continuity Adj. Chi-Square 1 1.1148 0.2910 Mantel-Haenszel Chi-Square 1.8047 0.1791 1 Phi Coefficient 0.1562 Contingency Coefficient 0.1543 Cramer's V 0.1562 Fisher's Exact Test Cell (1,1) Frequency (F) 9 Left-sided Pr <= F 0.9511 Right-sided Pr >= F 0.1456 0.0967 Table Probability (P) Two-sided Pr <= P 0.2387 Sample Size = 75 Table of Number_residing by B12 Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 1-6 , 16 , 23 , , 21.05 , 30.26 , , 41.03 , 58.97 , , 72.73 , 42.59 , , fffffffffffffffffffffffff 39 51.32 31, 6, >6 37 , 7.89, 40.79, 48.68 , , 7.85, 40.75, , 16.22, 83.78, , 27.27, 57.41, ffffffffffffffffffffffffffffffffff 54 76 Total 22 28.95 71.05 100.00 Statistics for Table of Number_residing by B12 Statistic DF Value Prob Chi-Square 1 5.6819 0.0171 Likelihood Ratio Chi-Square 1 5.8535 0.0155 Continuity Adj. Chi-Square 4.5397 0.0331 1 Mantel-Haenszel Chi-Square 1 5.6072 0.0179 Phi Coefficient 0.2734 Contingency Coefficient 0.2637 Cramer's V 0.2734 Fisher's Exact Test

Table of Number_residing by B13 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 14 , 26 , 40 18.67 , 34.67 , 53.33 1-6 , , 18 , 17 , 35 24.00 , 22.67 , 46.67 >6 , 24.00 , 22.0, , 51.43 , 48.57 , 56 25 , 39.53 , , , , 56.25 , 39.53 ffffffffffffffffffffffffffff 32 43 75 Total 42.67 57.33 100.00

Statistics for Table of	Number_	_residing by	B13
Statistic	DF	Value	Prob
<i>fffffffffffffffffffffffffffffffffffff</i>	fffffff	, fffffffffffff	fffffff
Chi-Square	1	2.0595	0.1513
Likelihood Ratio Chi-Square	1	2.0655	0.1507
Continuity Adj. Chi-Square	1	1.4427	0.2297
Mantel-Haenszel Chi-Square	1	2.0321	0.1540
Phi Coefficient		-0.1657	
Contingency Coefficient		0.1635	
Cramer's V		-0.1657	
Fisher's Ex	kact Tes	st	
ffffffffffffffffffffffffffffffffffff	fffffff	ffffffff	
Cell (1,1) Frequer	ncy (F)	14	
Left-sided Pr <= F	=	0.1148	
Right-sided Pr >=	F	0.9527	
Table Deebability	(D)	0 0675	

Table Probability (P) Two-sided Pr <= P 0.0675 0.1684 Sample Size = 75

Table of Number_residing by C14 Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree 1-6 , 16 , 25 , , 20.25 , 31.65 , , 39.02 , 60.98 , , 50.00 , 53.19 , 41 51.90 16 , 22 , 38 20.25 , 27.85 , 48.10 >6 , , , 42.11 , 57.89 , , 50.00 , 46.81 , ffffffffffffffffffffffffff 79 Total 32 47 40.51 59.49 100.00

Statistics for Table of Number_residing by C14 Statistic DF Value Prob Chi-Square 1 0.0777 0.7805 Likelihood Ratio Chi-Square 1 0.0777 0.7805 Continuity Adj. Chi-Square 0.0024 0.9606 1 Mantel-Haenszel Chi-Square 0.0767 0.7818 1

Phi Coefficient -0.0314 Contingency Coefficient 0.0313 Cramer's V -0.0314 Fisher's Exact Test Cell (1,1) Frequency (F) 16 Left-sided Pr <= F 0.4801 Right-sided Pr >= F 0.6943 Table Probability (P) 0.1744 Two-sided Pr <= P 0.8216 Sample Size = 79 Table of Number_residing by C15 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree . *ffffffff*,*fffffff*,*fffffff*, 6, 33, 39 7.89, 43.42, 51.32 1-6 , , 3, 34, 37 3.95, 44.74, 48.68 >6 , , , 8.11 , 91.89 , , 33.33 , 50.75 , *ffffffffffffffffffffffffffffffff* 9 Total 67 76 11.84 88.16 100.00 Statistics for Table of Number_residing by C15 DF Prob Statistic Value Chi-Square 1 0.9630 0.3264 0.9817 Likelihood Ratio Chi-Square 0.3218 1 Continuity Adj. Chi-Square 1 0.3921 0.5312 Mantel-Haenszel Chi-Square 1 0.9503 0.3296 Phi Coefficient 0.1126 Contingency Coefficient 0.1119 Cramer's V 0.1126 WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Fisher's Exact Test Cell (1,1) Frequency (F) 6 Left-sided Pr <= F 0.9106 Right-sided Pr >= F 0.2673 Table Probability (P) 0.1779 Two-sided Pr <= P 0.4814 Sample Size = 76 Table of Number_residing by C16 Frequency, Percent , Row Pct Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree fffffffff[^]fffffff[^]fffffff^ŕ 1-6 , 4 , 35 , 39 , 5.19 , 45.45 , 50.65 , 10.26 , 89.74 , , 80.00 , 48.61 , fffffffffffffffffffff >6 1, 37, 38 ,

,	1.30	,	48.05	,	49.35
ر	2.63	,	97.37	,	
ر	20.00	,	51.39	,	
fffffffffff	ffffff	f.	fffffff	^	
Total	5		72		77
	6.49		93.51		100.00

Statistics for Table of Number_residing by C16 Statistic DF Value Prob Chi-Square 1.8429 0.1746 1 Likelihood Ratio Chi-Square 1 1.9700 0.1604 Continuity Adj. Chi-Square 0.8010 0.3708 1 Mantel-Haenszel Chi-Square 1.8189 1 0.1774 Phi Coefficient 0.1547 Contingency Coefficient 0.1529 Cramer's V 0.1547 WARNING: 50% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Table of	Number_re	esiding b	y C17
Frequency,	_	_	
Percent ,			
Row Pct ,			
Col Pct	Disagree,	Agree	Total
	- Stron.	Strongly.	
,	glv Disa.	Agree .	
,	gree	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
<i>,</i>	ftttttt.	,	
1 (20
1-6 ,	4,	34,	38
,	5.33,	45.33 ,	50.67
,	10.53 ,	89.47,	
,	57.14 ,	50.00 ,	
ffffffff	ffffffff;	fffffff^	
>6,	3,	34,	37
,	4.00 ,	45.33 ,	49.33
,	8.11,	91.89,	
,	42.86,	50.00,	
fffffff	fffffff	ſffffff	
Total	7	68	75
	9.33	90.67	100.00

Statistics for Table of Number_residing by C17 DF Proh Statistic Value Chi-Square 0.1295 0.7189 1 Likelihood Ratio Chi-Square 0.1300 0.7184 1 Continuity Adj. Chi-Square 1 0.0000 1.0000 Mantel-Haenszel Chi-Square 1 0.1278 0.7207 Phi Coefficient 0.0416 Contingency Coefficient 0.0415 Cramer's V 0.0416 WARNING: 50% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Sample Size = 75

```
Table of Number_residing by C18
Frequency,
Percent ,
Row Pct
Col Pct ,Disagree,Agree - , Total
           , - Stron, Strongly,
           ,gly Disa, Agree ,
           ,gree
ffffffffffffffffffffffffffffffff
1-6 , 1 , 40 ,
, 1.28 , 51.28 ,
, 2.44 , 97.56 ,
, 12.50 , 57.14 ,
ffffffffffffffffffffffffffff
                                       41
                                  52.56
               7, 30,
8.97, 38.46,
81.08,
                                       37
>6
          ,
                                   47.44
           ,
             18.92 , 81.08 ,
87.50 , 42.86 ,
           ,
78
Total
                  8
                            70
              10.26
                       89.74
                                 100.00
```

Statistics for Table of Number_residing by C18 DF Statistic Value Prob Chi-Square 1 5.7385 0.0166 Likelihood Ratio Chi-Square 6.2903 0.0121 1 Continuity Adj. Chi-Square 4.0878 1 0.0432 Mantel-Haenszel Chi-Square 1 5.6650 0.0173 Phi Coefficient -0.2712 Contingency Coefficient 0.2618 Cramer's V -0.2712 WARNING: 50% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Table of Number_residing by D19 Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree ,gree , , ffffffffffffffffffffffffffffffff 1-6 , 18 , 19 , 37 , 25.71 , 27.14 , 52.86 , 48.65 , 51.35 , , 60.00 , 47.50 , fffffffffffffffffffff 12 , 21, >6 33 , , 17.14 , 30.00 , 47.14 , 36.36 , 63.64 , , 40.00 , 52.50 , 30 40 70 Total 57.14 100.00 42.86

```
Chi-Square
                                  1.0749
                                            0.2998
                            1
Likelihood Ratio Chi-Square
                                   1.0795
                                            0.2988
                            1
Continuity Adj. Chi-Square
                            1
                                   0.6318
                                            0.4267
Mantel-Haenszel Chi-Square
                                   1.0596
                                            0.3033
                            1
Phi Coefficient
                                   0.1239
Contingency Coefficient
                                   0.1230
Cramer's V
                                   0.1239
               Fisher's Exact Test
         Cell (1,1) Frequency (F)
                                      18
         Left-sided Pr <= F
                                   0.8997
         Right-sided Pr >= F
                                   0.2136
         Table Probability (P)
                                   0.1133
         Two-sided Pr <= P
                                   0.3406
                 Sample Size = 70
           Table of Number_residing by D20
         Frequency,
         Percent ,
         Row Pct
         Col Pct ,Disagree,Agree - , Total
                 , - Stron, Strongly,
                 ,gly Disa, Agree ,
         1-6 , 16 , 19 ,
, 23.19 , 27.54 ,
, 45.71 , 54.29 ,
, 53.33 , 48.72 ,
ffffffffffffffffffffffffff
                                        35
                                    50.72
                              20,
                      14 ,
                                        34
         >6
                 ,
                    20.29 , 28.99 , 49.28
                 ,
                    41.18 , 58.82 ,
46.67 , 51.28 ,
                 ,
                    46.67 ,
         30
                                        69
         Total
                               39
                                  100.00
                    43.48
                            56.52
   Statistics for Table of Number_residing by \mathsf{D20}
Statistic
                           DF
                                   Value
                                              Prob
0.1445
Chi-Square
                                            0.7038
                            1
Likelihood Ratio Chi-Square
                            1
                                   0.1446
                                            0.7038
Continuity Adj. Chi-Square
                                   0.0188
                                            0.8908
                            1
Mantel-Haenszel Chi-Square
                                   0.1424
                                            0.7059
                            1
Phi Coefficient
                                   0.0458
Contingency Coefficient
                                   0.0457
Cramer's V
                                   0.0458
               Fisher's Exact Test
         Cell (1,1) Frequency (F)
                                      16
         Left-sided Pr <= F
                                   0.7331
         Right-sided Pr >= F
                                   0.4455
         Table Probability (P)
                                   0.1787
         Two-sided Pr <= P
                                   0.8094
             Effective Sample Size = 69
               Frequency Missing = 1
           Table of Number_residing by D21
         Frequency,
         Percent ,
         Row Pct
         Col Pct , Disagree, Agree - , Total
                 , - Stron, Strongly,
                 ,gly Disa, Agree ,
         28 , 10 , 38
37.84 , 13.51 , 51.35
         1-6
                ر
ر
                    73.68 , 26.32 ,
                 ,
```

, 47.46 , 66.67 , fffffffffffffffffffffffffffffff >6 31, 5, 36 , 41.89 , 6.76 , 48.65 , 41.05 , 0.76 , , 86.11 , 13.89 , , 52.54 , 33.33 , fffffffffffffffffffffffffff 59 Total 15 74 100.00 79.73 20.27 Statistic DF Value Prob 1 1.7664 Chi-Square 0.1838 1.7975 Likelihood Ratio Chi-Square 1 0.1800 Continuity Adj. Chi-Square 1 1.0812 0.2984 Mantel-Haenszel Chi-Square 1 1.7426 0.1868 Phi Coefficient -0.1545 Contingency Coefficient 0.1527 Cramer's V -0.1545 Fisher's Exact Test Cell (1,1) Frequency (F) 28 Left-sided Pr <= F 0.1492 Right-sided Pr >= F 0.9485 Table Probability (P) 0.0977 Two-sided Pr <= P 0.2503 Effective Sample Size = 74 Frequency Missing = 1 Table of Number_residing by D22 Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , ffffffffffffffffffffffffffff 1-6 , 6 , 21 , , 9.84 , 34.43 , , 22.22 , 77.78 , , 60.00 , 41.18 , fffffffffffffffffffffffffffff 27 44.26 , 4, 30, , 6.56, 49.18, >6 34 55.74 , 11.76 , 88.24 , , 40.00 , 58.82 , ffffffff^fffffffffffffffffffff Total 10 51 61 83.61 100.00 16.39 Statistics for Table of Number_residing by D22 Statistic DF Value Prob 1.2008 1.1942 Chi-Square 1 0.2732 Likelihood Ratio Chi-Square 0.2745 1 Continuity Adj. Chi-Square 0.5590 0.4547 1 Mantel-Haenszel Chi-Square 1.1811 0.2771 1 Phi Coefficient 0.1403 0.1389 Contingency Coefficient Cramer's V 0.1403 WARNING: 25% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Fisher's Exact Test Cell (1,1) Frequency (F) 6 Left-sided Pr <= F 0.9254 Right-sided Pr >= F 0.2268 Table Probability (P) Two-sided Pr <= P 0.1522 0.3147

Effective Sample Size = 61

Frequency Missing = 3

Table of Number_residing by D23 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , 6, 30, , 8.11, 40.54, 1-6 36 48.65 , 16.67 , 83.33 , , 42.86 , 50.00 , ffffffffffffffffffffffffffffffffff >6 , 8 , 30 , 38 , 10.81 , 40.54 , 51.35 , 21.05 , 78.95 , , 57.14 , 50.00 , ffffffffffffffffffffff 14 60 74 Total 81.08 100.00 18.92 Statistics for Table of Number_residing by D23 Statistic DF Value Prob 0.2318 0.6302 1 Chi-Square Likelihood Ratio Chi-Square 1 0.2326 0.6296 Continuity Adj. Chi-Square 0.0341 0.8536 1 Mantel-Haenszel Chi-Square 0.2287 1 0.6325 Phi Coefficient -0.0560 0.0559 Contingency Coefficient Cramer's V -0.0560 Fisher's Exact Test Cell (1,1) Frequency (F) 6 Left-sided Pr <= F 0.4278 Right-sided Pr >= F 0.7811 Table Probability (P) Two-sided Pr <= P 0.2089 0.7690 Sample Size = 74 Table of Number_residing by D24 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , , ffffffffffffffffffffffffff ,gree 1-6 , 10 , 28 , 38 , 13.89 , 38.89 , 52.78 , 26.32 , 73.68 , , 52.63 , 52.83 , fffffffffffffffffffff , 9, 25, , 12.50, 34.72, , 26.47, 73.53, , 47.37, 47.17, 34 >6 47.22 *fffffff*^*ffffff*^*ffffff* 19 53 72 Total 26.39 73.61 100.00 Statistics for Table of Number_residing by D24

DF Prob Statistic Value 1 0.0002 0.9881 Chi-Square Likelihood Ratio Chi-Square 0.0002 0.9881 1 Continuity Adj. Chi-Square 0.0000 1.0000 1
Mantel-Hae Phi Coeffi Contingenc Cramer's V	enszel Chi .cient :y Coeffic /	-Square	1 -	0.0002 0.0018 0.0018 0.0018 0.0018	0.9882
	Fi fffffffff Cell (1,1 Left-side Right-sid Table Pro Two-sided	sher's Exac ffffffffffff) Frequency d Pr <= F led Pr >= F bability (P l Pr <= P Sample Size	t Test <i>ffffffff</i> (F)) = 72	ffffff 10 0.5987 0.6119 0.2106 1.0000	
	Table c Frequency Percent Row Pct Col Pct	of Number_res , , ,Disagree,A , - Stron,S ⁻	siding b gree - , trongly,	y D25 Total	
	<i>ffffffff</i> 1-6	<pre>,gly Disa, , ,gree ,</pre>	Agree , , , , , , , , , , , , , , , , , , ,	40 50.63	
	ffffffff >6	, 47.62 , ^ffffffffffff , 11 , , 13.92 , , 28.21 , , 52.38 ,	51.72 , ffffffff 28 , 35.44 , 71.79 , 48.28 ,	39 49.37	
	Total	21 26.58	58 73.42	79 100.00	
Statist Statistic fffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingenc Cramer's V	fffffffffff Ratio Ch Adj. Chi enszel Chi ccient y Coeffic	Table of Num fffffffffff i-Square -Square -Square	mber_res DF ffffffff 1 1 1 - -	iding by Value ffffffff 0.1039 0.1040 0.0046 0.0046 0.0363 0.0363 0.0363	D25 Prob fffffff 0.7471 0.7471 0.9460 0.7487
	Fi fffffffff Cell (1,1 Left-side Right-sid Table Pro Two-sided	sher's Exac ffffffffffff) Frequency d Pr <= F led Pr >= F bability (P l Pr <= P Sample Size	t Test ffffffff (F)) = 79	ffffff 10 0.4729 0.7178 0.1907 0.8027	
	Table Frequency Percent Row Pct Col Pct	e of Number_ , , ,Disagree,A , - Stron,S ,gly Disa,	home by gree - , trongly, Agree ,	A1 Total	
	ffffffff 0-2 fffffffff >2	<pre> ^fffffffffffffff , 10 , 14.71 , 35.71 , 40.00 , ^ffffffffff , 15 ,</pre>	, 18 , 26.47 , 64.29 , 41.86 , fffffff	28 41.18 40	
		, 22.06 ,	36.76 ,	58.82	

	, 37.50,	62.50,	
	, 60.00 ,	58.14 ,	
ffffffff	^ <i>fffffffff</i>	fffffff^	
Total	25	43	68
	36.76	63.24	100.00

Statistics for Table	of Numb	er_home by	A1
Statistic	DF	Value	Prob
<i>fffffffffffffffffffffffffffffff</i>	ffffffff	ffffffffffffffffffffffffffffffffffff	fffffff
Chi-Square	1	0.0226	0.8805
Likelihood Ratio Chi-Square	1	0.0226	0.8804
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0223	0.8814
Phi Coefficient		-0.0182	
Contingency Coefficient		0.0182	
Cramer's V		-0.0182	
Fisher's Ex	kact Tes	t	

<i>fffffffffffffffffffffffffffffffff</i>	fffffff
Cell (1,1) Frequency (F)	10
Left-sided Pr <= F	0.5434
Right-sided Pr >= F	0.6560
Table Probability (P)	0.1995
Two-sided Pr <= P	1.0000
Sample Size = 68	

Table of Number_home by A2 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , , ffffffffffffffffffffffffffffffff 29 43.28 >2 , 13 , 25 , 38 , 19.40 , 37.31 , 56.72 , 34.21 , 65.79 , , 56.52 , 56.82 , fffffffffffffffffffffff Total 23 44 67 Total 65.67 100.00 34.33

Statistics for Table of Number_home by A2 Statistic DF Value Prob 0.0005 0.9814 Chi-Square 1 Likelihood Ratio Chi-Square 1 0.0005 0.9815 Continuity Adj. Chi-Square 0.0000 1.0000 1 Mantel-Haenszel Chi-Square 0.0005 0.9816 1 Phi Coefficient 0.0028 Contingency Coefficient 0.0028 Cramer's V 0.0028

Table of Number_home by A3 Frequency, Percent , Row Pct ,

		,Disagree,A	gree -	, Total	
		, - Stron, S ,gly Disa,	Agree	, ,	
		,gree ,		, ^	
	0-2	, 11 ,	17 17	, 28	
		, 16.92 ,	26.15	, 43.08	
		, 39.29, , 39.29,	45.95	, ,	
	<i>fffffff</i>	f [^] fffffffff [^] f	fffffff	^ ~	
	>2	, 1/, , 26.15,	30.77	, 37 , 56.92	
		, 45.95 ,	54.05	, ,	
	fffffff	, 60./1 , f^fffffffff	54.05 fffffff	,	
	Total	28	37	65	
		43.08	56.92	100.00	
St	atistics	for Table of	Number	_home by	A3 Daab
fffffffff	fffffffff	ffffffffffff	ur fffffff:	vaiue ffffffff	fffffffff
Chi-Squar	e d Datia Cl		1	0.2883	0.5913
Continuit	d Ratio Cr y Adj. Chi	11-Square i-Square	1 1	0.2891 0.0807	0.5908
Mantel-Ha	enszel Ch	i-Square	1	0.2839	0.5942
Contingen	ıcıent cv Coeffi	cient		-0.0666 0.0665	
Cramer's	V			-0.0666	
	F:	isher's Exac	t Test		
	fffffff	ffffffffffff	fffffff	ffffff	
	Cell (1,1	1) Frequency ⊳d Pr <= F	′(F)	11 0.3889	
	Right-sid	ded Pr >= F		0.7848	
	Table Pro	obability (P d Pr <= P	·)	0.1738	
		Sample Size	e = 65		
		Sample Size	e = 65		
	Table	Sample Size e of Number_	e = 65 home by	Α4	
	Table Frequency Percent	Sample Size e of Number_ y,	e = 65 home by	Α4	
	Table Frequency Percent Row Pct	Sample Size e of Number_ y,	e = 65 _home by	Α4	
	Table Frequency Percent Row Pct Col Pct	Sample Size e of Number_ y, , ,Disagree,A , - Stron,S	e = 65 home by gree - itrongly	A4 , Total	
	Table Frequency Percent Row Pct Col Pct	Sample Size e of Number_ y, ,Disagree,A , - Stron,S ,gly Disa,	e = 65 home by gree - itrongly Agree	A4 , Total	
	Table Frequency Percent Row Pct Col Pct	Sample Size e of Number_ y, ,Disagree,A , - Stron,S ,gly Disa, ,gree , fffffffffff	home by gree - trongly Agree	A4 , Total	
	Table Frequency Percent Row Pct Col Pct fffffffff 0-2	<pre>Sample Size of Number_ y, , Disagree,A , - Stron,S ,gly Disa, ,gree ,ffffffffff , 11,</pre>	home by gree - trongly Agree ffffffff	A4 , Total	
	Table Frequency Percent Row Pct Col Pct fffffffff 0-2	<pre>Sample Size of Number_ y, , Disagree,A , - Stron,S ,gly Disa, ,gree , f`ffffffffff , 11 , , 17.19 , , 40.74 ,</pre>	home by gree - trongly Agree ffffffff 16 25.00 59.26	A4 , Total , 27 , 42.19	
	Tabla Frequency Percent Row Pct Col Pct fffffffff 0-2	<pre>Sample Size e of Number_ y, , Disagree,A , - Stron,S ,gly Disa, ,gree , fffffffffff , 11 , , 17.19 , , 40.74 , , 42.31 ,</pre>	e = 65 home by gree - trongly Agree fffffff 16 25.00 59.26 42.11	A4 , Total , 27 , 42.19	
	Table Frequency Percent Row Pct Col Pct <i>fffffffff</i> 0-2 <i>ffffffffff</i>	<pre>Sample Size e of Number_ y, , Disagree,A , - Stron,S ,gly Disa, ,gree , f fffffffff f , 11 , , 17.19 , , 40.74 , , 42.31 , f ffffffffff f , 15 ,</pre>	e = 65 home by sgree - trongly Agree fffffff 25.00 59.26 42.11 ffffffff 22	A4 , Total , 27 , 42.19 , 37	
	Table Frequency Percent Row Pct Col Pct <i>fffffffff</i> 0-2 <i>ffffffffff</i> >2	Sample Size e of Number_ y, ,Disagree,A ,- Stron,S ,gly Disa, ,gree , ffffffffffff , 11 , , 17.19 , , 40.74 , , 42.31 , fffffffffff , 15 , , 23.44 ,	e = 65 home by gree - trongly Agree fffffff 16 25.00 59.26 42.11 ffffffff 22 34.38	A4 , Total , 27 , 42.19 , 37 , 57.81	
	Table Frequency Percent Row Pct Col Pct <i>fffffffff</i> 0-2 <i>ffffffffff</i> >2	Sample Size e of Number_ y, , Disagree,A , - Stron,S ,gly Disa, ,gree , fffffffffff , 11 , , 17.19 , , 40.74 , , 42.31 , fffffffffff , 15 , , 23.44 , , 40.54 , , 57.69 ,	e = 65 home by gree - trongly Agree fffffff 16 25.00 59.26 42.11 ffffffff 22 34.38 59.46 57.89	A4 , Total , 27 , 42.19 , 37 , 57.81	
	Table Frequency Percent Row Pct Col Pct fffffffff >2 ffffffffff >2	Sample Size e of Number_ y, , Disagree,A , - Stron,S ,gly Disa, ,gree , f fffffffff f , 11 , , 17.19 , , 40.74 , , 42.31 , f ffffffffff f , 15 , , 23.44 , , 40.54 , , 57.69 , f fffffffff f	e = 65 home by strongly Agree fffffff 25.00 59.26 42.11 ffffffff 22 34.38 59.46 57.89 fffffffff	A4 , Total , 27 , 42.19 , 37 , 57.81	
	Table Frequency Percent Row Pct Col Pct <i>ffffffffff</i> >2 <i>ffffffffff</i> >2	Sample Size e of Number_ y, , Disagree,A , - Stron,S ,gly Disa, ,gree , fffffffffff , 11 , , 17.19 , , 40.74 , , 42.31 , ffffffffffff , 23.44 , , 57.69 , fffffffffff 26 40.63	e = 65 home by gree - trongly Agree fffffff 25.00 59.26 42.11 ffffffff 22 34.38 59.46 57.89 fffffffff 38 59.38	A4 , Total , 27 , 42.19 , 37 , 57.81 , 64 100.00	
	Tabla Frequency Percent Row Pct Col Pct <i>ffffffffff</i> 0-2 <i>fffffffffff</i> >2 <i>fffffffffff</i> >2	Sample Size e of Number_ y, , Disagree, A , - Stron, S ,gly Disa, ,gree , 11, , 17.19, , 40.74, , 42.31, f ffffffffff , 15, , 23.44, , 57.69, f fffffffffff 26 40.63	e = 65 home by sgree - itrongly Agree fffffff 25.00 59.26 42.11 ffffffff 22 34.38 59.46 57.89 fffffff 38 59.38	A4 , Total , 27 , 42.19 , 57.81 , 64 100.00	
St	Table Frequency Percent Row Pct Col Pct <i>ffffffffff</i> o-2 <i>fffffffffff</i> >2 <i>fffffffffff</i> >2	Sample Size e of Number_ y, , Disagree,A , - Stron,S ,gly Disa, ,gree , f fffffffff f , 11 , , 17.19 , , 40.74 , , 42.31 , f fffffffff f , 15 , , 23.44 , , 57.69 , f fffffffff f 26 40.63 for Table of	e = 65 home by gree - trongly Agree fffffff 25.00 59.26 42.11 fffffff 22 34.38 59.46 57.89 fffffff 38 59.38 Number DF	A4 , Total , 27 , 42.19 , 37 , 57.81 , 57.81 , 64 100.00 _home by Value	A4 Prob
Statistic fffffffff	Tabla Frequency Percent Row Pct Col Pct <i>ffffffffff</i> 0-2 <i>fffffffffff</i> >2 <i>fffffffffff</i> Total atistics ffffffffff	Sample Size e of Number_ y, , Disagree,A , - Stron,S ,gly Disa, ,gree , fffffffffff , 11 , , 17.19 , , 40.74 , , 40.74 , , 40.74 , , 23.44 , , 57.69 , ffffffffffff 26 40.63 for Table of	e = 65 home by gree - trongly Agree fffffff 16 25.00 59.26 42.11 fffffff 234.38 59.46 57.89 ffffffff 38 59.38 Number DF ffffffff	A4 , Total , 27 , 42.19 , 37 , 57.81 , 57.81 , 64 100.00 _home by Value fffffffff	A4 Prob fffffffff
Sta Statistic fffffffff Chi-Squar Likelihoo	Tabla Frequency Percent Row Pct Col Pct <i>ffffffffff</i> 0-2 <i>fffffffffff</i> >2 <i>fffffffffff</i> >2 <i>fffffffffff</i> >2 <i>ffffffffffff</i> >2 <i>ffffffffffff</i> >2 <i>ffffffffffff</i> >2 <i>fffffffffffffffffffffffffffffffffff</i>	Sample Size e of Number_ y, , Disagree, A , - Stron, S ,gly Disa, ,gree , f ffffffffff , 11 , , 17.19 , , 40.74 , , 42.31 , f fffffffffff , 15 , , 23.44 , , 57.69 , f fffffffffff 26 40.63 for Table of fffffffffffffffff fffffffffffffffff	e = 65 home by sgree - itrongly Agree fffffff 25.00 59.26 42.11 ffffffff 22 34.38 59.46 57.89 ffffffff 38 59.38 Number DF fffffffff 1	A4 , Total , 27 , 42.19 , 57.81 , 57.81 , 64 100.00 _home by Value ffffffff 0.0003 0.0003	A4 Prob fffffffff 0.9872 0.9872
St Statistic fffffffff Chi-Squar Likelihoo Continuit	Table Frequency Percent Row Pct Col Pct <i>ffffffffff</i> 0-2 <i>fffffffffff</i> >2 <i>fffffffffff</i> >2 <i>fffffffffff</i> >2 <i>fffffffffff</i> atistics f <i>ffffffffffff</i> e d Ratio Cl y Adj. Ch:	Sample Size e of Number_ , Disagree,A , - Stron,S ,gly Disa, ,gree , f fffffffff f , 11, , 17.19, , 40.74, , 42.31, f fffffffff f , 15, , 23.44, , 40.54, , 57.69, f fffffffff f	e = 65 home by gree - trongly Agree fffffff 25.00 59.26 42.11 fffffff 22 34.38 59.46 57.89 fffffffff 38 59.38 Number DF fffffffff 1 1 1	A4 , Total , 27 , 42.19 , 37 , 57.81 , 57.81 , 64 100.00 _home by Value fffffffff 0.0003 0.0000 0.0000	A4 Prob ffffffff 0.9872 0.9872 1.0000
St Statistic fffffffff Chi-Squar Likelihoo Continuit Mantel-Ha Phi Coeff	Tabla Frequency Percent Row Pct Col Pct <i>ffffffffff</i> 0-2 <i>fffffffffff</i> >2 <i>ffffffffffff</i> Total atistics f <i>fffffffffffff</i> e d Ratio CH y Adj. Ch enszel Ch icient	Sample Size e of Number_ y, , Disagree, A , - Stron, S ,gly Disa, ,gree , fffffffffff , 11 , , 17.19 , , 40.74 , , 40.74 , , 40.54 , , 57.69 , ffffffffffff 26 40.63 for Table of fffffffffffff hi-Square i-Square	e = 65 home by gree - trongly Agree fffffff 16 25.00 59.26 42.11 ffffffff 22 34.38 59.26 42.11 ffffffff 22 34.38 59.38 ffffffff 1 1 1 1 1	A4 , Total , 27 , 42.19 , 37 , 57.81 , 57.81 , 57.81 , 64 100.00 , 0003 0.0003 0.0003 0.0003 0.0020	A4 Prob fffffffff 0.9872 0.9872 1.0000 0.9873
St. Statistic ffffffff Chi-Squar Likelihoo Continuit Mantel-Ha Phi Coeff Contingen	Table Frequency Percent Row Pct Col Pct <i>ffffffffff</i> 0-2 <i>fffffffffff</i> >2 <i>fffffffffff</i> >2 <i>fffffffffff</i> >2 <i>ffffffffffff</i> cal atistics f <i>ffffffffffffffff</i> e d Ratio Ch enszel Ch icient cy Coeffic	Sample Size e of Number_ y, , Disagree, A , - Stron, S ,gly Disa, ,gree , f fffffffff f , 11 , , 17.19 , , 40.74 , , 42.31 , f ffffffffff f , 15 , , 23.44 , , 40.54 , , 57.69 , f fffffffff f 26 40.63 for Table of fffffffffffff hi-Square i-Square cient	e = 65 home by sgree - itrongly Agree fffffff 25.00 59.26 42.11 ffffffff 22 34.38 59.46 57.89 ffffffff 38 59.38 Number DF fffffffff 1 1 1 1	A4 , Total , 27 , 42.19 , 57.81 , 57.81 , 64 100.00 _home by Value ffffffff 0.0003 0.0003 0.0003 0.0003 0.0020 0.0020	A4 Prob ffffffffff 0.9872 0.9872 1.0000 0.9873

Cell (1,1) Frequency (F)	11
Left-sided Pr <= F	0.6086
Right-sided Pr >= F	0.5943
Table Probability (P)	0.2030
Two-sided Pr <= P	1.0000
Sample Size = 64	

Statistics for Table	of Number	er_home by	A5
Statistic	DF	Value	Prob
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffff:	fffffffffff	fffffff
Chi-Square	1	0.3975	0.5284
Likelihood Ratio Chi-Square	1	0.3958	0.5293
Continuity Adj. Chi-Square	1	0.1227	0.7261
Mantel-Haenszel Chi-Square	1	0.3913	0.5316
Phi Coefficient		0.0788	
Contingency Coefficient		0.0786	
Cramer's V		0.0788	

Fisher's Exact Test	
ffffffffffffffffffffffffffffffffffff	ffffff
Cell (1,1) Frequency (F)	9
Left-sided Pr <= F	0.8189
Right-sided Pr >= F	0.3617
Table Probability (P)	0.1805
Two-sided Pr <= P	0.5831
Effective Sample Size =	64
Frequency Missing =	1

Tabl	e of Number	_home by I	B6
Frequenc	У,		
Percent	, ,		
Row Pct	, ,		
Col Pct	,Disagree,	Agree - ,	Total
	, - Stron,	Strongly,	
	,gly Disa,	Agree ,	
	,gree ,	,	
fffffff	f^ffffffff	fffffff	
0-2	, 10,	19,	29
	, 14.71 ,	27.94 ,	42.65
	, 34.48 ,	65.52 ,	
	, 40.00 ,	44.19 ,	
fffffff	f^ffffffff	fffffff	
>2	, 15,	24,	39
	, 22.06 ,	35.29 ,	57.35
	, 38.46 ,	61.54 ,	
	, 60.00 ,	55.81 ,	
fffffff	f^ffffffff	fffffff	
Total	25	43	68
	36.76	63.24	100.00

```
Statistics for Table of Number_home by B6
Statistic
                           DF
                                   Value
                                             Prob
0.1133
Chi-Square
                            1
                                           0.7365
Likelihood Ratio Chi-Square
                                  0.1136
                                           0.7361
                            1
Continuity Adj. Chi-Square
                            1
                                  0.0068
                                           0.9344
Mantel-Haenszel Chi-Square
                                  0.1116
                                           0.7383
                            1
Phi Coefficient
                                  -0.0408
Contingency Coefficient
                                  0.0408
Cramer's V
                                  -0.0408
               Fisher's Exact Test
         Cell (1,1) Frequency (F)
                                      10
                                  0.4686
         Left-sided Pr <= F
         Right-sided Pr >= F
                                  0.7217
         Table Probability (P)
                                  0.1903
         Two-sided Pr <= P
                                  0.8028
                 Sample Size = 68
            Table of Number_home by B7
         Frequency,
         Percent
                ,
         Row Pct
         Col Pct , Disagree, Agree - , Total
                 , - Stron, Strongly,
                 ,gly Disa, Agree ,
         5, 20,
8.62, 34.48,
         0-2
                                       25
                 ,
                                   43.10
                 ,
         , 20.00 , 80.00 ,
, 27.78 , 50.00 ,
fffffffffffffffffffffffff
                      13,
         >2
                              20,
                                       33
                 ,
                    22.41 , 34.48 , 56.90
                   39.39 , 60.61 ,
                 ,
                   72.22 , 50.00 ,
         ffffffffffffffffffffffffffffffff
                              40
                                       58
         Total
                      18
                    31.03
                            68.97
                                   100.00
      Statistics for Table of Number_home by B7
Statistic
                           DF
                                   Value
                                             Prob
2.4997
Chi-Square
                            1
                                           0.1139
Likelihood Ratio Chi-Square
                            1
                                  2.5760
                                           0.1085
Continuity Adj. Chi-Square
                                  1.6757
                                           0.1955
                            1
Mantel-Haenszel Chi-Square
                                  2.4566
                            1
                                           0.1170
Phi Coefficient
                                  -0.2076
Contingency Coefficient
                                  0.2033
Cramer's V
                                  -0.2076
               Fisher's Exact Test
         Cell (1,1) Frequency (F)
                                       5
         Left-sided Pr <= F
                                  0.0968
                                  0.9708
         Right-sided Pr >= F
         Table Probability (P)
                                  0.0677
         Two-sided Pr <= P
                                  0.1552
                 Sample Size = 58
            Table of Number_home by B8
         Frequency,
         Percent ,
         Row Pct
         Col Pct
                ,Disagree,Agree - , Total
                 , - Stron, Strongly,
                 ,gly Disa, Agree ,
         ,gree , ,
ffffffffffffffffffffffffffffffff
                 ,gree
                                       27
         0-2
                     5, 22,
                ,
```

```
242
```

, 8.06 , 35.48 , 43.55 , 18.52 , 81.48 , , 23.81 , 53.66 , ffffffffffffffffffff 16 , 19 , 35 25.81 , 30.65 , 56.45 >2 , 25.81, 30.02, 45.71, 54.29, 76 19, 46.34, , , , 76.19 , 46.34 fffffffffffffffffffffffffffffff Total 21 41 62 33.87 66.13 100.00 Statistics for Table of Number_home by B8 DF Statistic Value Prob Chi-Square 1 5.0330 0.0249 Likelihood Ratio Chi-Square 5.2440 0.0220 1 Continuity Adj. Chi-Square 1 3.8920 0.0485 Mantel-Haenszel Chi-Square 4.9518 0.0261 1 Phi Coefficient -0.2849 Contingency Coefficient 0.2740 Cramer's V -0.2849 Fisher's Exact Test Cell (1,1) Frequency (F) 5 Left-sided Pr <= F 0.0229 Right-sided Pr >= F 0.9949 Table Probability (P) 0.0178 Two-sided Pr <= P 0.0320 Sample Size = 62 Table of Number_home by B9 Frequency, Percent , Row Pct Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 9, 19, 13.64, 28.79, 0-2 28 , 42.42 , 16, 22, 50 24.24, 33.33, 57.58 57.89, >2 , , Total 25 41 66 37.88 62.12 100.00 Statistics for Table of Number_home by B9 Statistic DF Value Prob 0.6800 Chi-Square 1 0.4096 Likelihood Ratio Chi-Square 1 0.6852 0.4078 Continuity Adj. Chi-Square 0.3225 0.5701 1 Mantel-Haenszel Chi-Square 1 0.6697 0.4132 Phi Coefficient -0.1015 Contingency Coefficient 0.1010 -0.1015 Cramer's V

Frequency Missing = 2

Table of Number_home by B10 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , 8, 18, , 12.50, 28.13, 0-2 26 40.63 >2 , 8 , 30 , 38 , 12.50 , 46.88 , 59.38 , 21.05 , 78.95 , , 50.00 , 62.50 , fffffffffffffffffffff 16 48 64 Total 75.00 100.00 25.00 Statistics for Table of Number_home by B10 DF Statistic Value Prob 0.3780 0.7773 Chi-Square 1 Likelihood Ratio Chi-Square 1 0.7687 0.3806 Continuity Adj. Chi-Square 0.3455 0.5567 1 Mantel-Haenszel Chi-Square 0.7652 0.3817 1 Phi Coefficient 0.1102 Contingency Coefficient 0.1095 Cramer's V 0.1102 Fisher's Exact Test Cell (1,1) Frequency (F) 8 Left-sided Pr <= F 0.8797 Right-sided Pr >= F 0.2767 Table Probability (P) 0.1564 Two-sided Pr <= P 0.3957 Effective Sample Size = 64 Frequency Missing = 1 Table of Number_home by B11 Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , 8, 17, 25 , 12.31, 26.15, 38.46 , 32.00, 68.00, 0-2 , , 61.54 , 32.69 , ffffffffffffffffffffffffffffffff 5, 35, 40 7.69, 53.85, 61.54 >2 ر , 12.50, 87.50, , 67.31, , 38.46 , 67.31 ffffffffffffffffffffffffffffffffff Total 65 13 52 20.00 80.00 100.00 Statistics for Table of Number_home by B11

Mantel-Hae Phi Coeff: Contingeno Cramer's N	/ Adj. Chi enszel Chi icient cy Coeffic /	-Square -Square ient	1 1	2.5391 3.6000 0.2372 0.2308 0.2372	0.1111 0.0578
	Fi ffffffff Cell (1,1 Left-side	sher's Exact fffffffffff) Frequency d Pr <= F	t Test fffffff (F)	fffffff 8 0.9864	
	Right-sid	led Pr >= F	`	0.0569	
	Two-sided	Pr <= P)	0.1084	
		Sample Size	= 65		
	Table	e of Number_H	nome by	B12	
	Percent	و			
	Row Pct	, Diamana ()		T 1	
	COI PCT	,Disagree,Ag , - Stron,St ,gly Disa, A	gree - trongly Agree	, IOTAL ,	
	ffffffff	,gree , ^fffffffff	fffffff	2	
	0-2	, 10 ,	18	, 28	
		, 15.15 ,	27.27	, 42.42	
		, 35.71 , . 55.56 .	64.29 37.50	,	
	ffffffff	, , , , , , , , , , , , , , , , , , ,	fffffff		
	>2	, 8,	30	, 38	
		, 12.12 , . 21.05 .	45.45	, 57.58	
		, 44.44 ,	62.50	,	
	ffffffff	^ffffffffff 10	fffffff ^°		
	IUCAL	27.27	72.73	100.00	
Stat	tistics fo	or Table of M	Number_H	nome by B	12
Stat Statistic	tistics fo	or Table of M	Number_H DF	nome by B Value	12 Prob
Stat Statistic fffffffff Chi-Square	tistics fo	or Table of M I fffffffffffff	Number_H DF fffffff 1	nome by B Value fffffffff 1.7472	12 Prob fffffff 0.1862
Stat Statistic fffffffff Chi-Square Likelihood	tistics fo f <i>ffffffffff</i> a d Ratio Ch	or Table of M I Iffffffffffff ni-Square	Number_H DF fffffff 1 1	nome by B Value fffffffff 1.7472 1.7337	12 Prob fffffff 0.1862 0.1879
Statistic fffffffff Chi-Square Likelihood Continuity	tistics fo ffffffffff e d Ratio Ch / Adj. Chi	or Table of M ffffffffffff ni-Square -Square	Number_H DF ffffffff 1 1 1	nome by B Value fffffffff 1.7472 1.7337 1.0862	12 Prob fffffff 0.1862 0.1879 0.2973
Statistic fffffffffff Chi-Square Likelihooo Continuity Mantel-Hae Phi Coeffi	tistics fo ffffffffff d Ratio Ch / Adj. Chi enszel Chi icient	or Table of M f ffffffffffff ni-Square Square Square	Number_H DF ffffffff 1 1 1 1	nome by B Value fffffffff 1.7472 1.7337 1.0862 1.7207 0.1627	12 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Stati Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeff Contingend	tistics for fffffffffff a d Ratio Ch / Adj. Chi enszel Chi icient cy Coeffic	or Table of M T fffffffffffff ni-Square -Square -Square tient	Number_H DF ffffffff 1 1 1	nome by B Value fffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1606	12 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Statistic ffffffffffffffffffffffffffffffffffff	tistics for fffffffffff d Ratio Ch / Adj. Chi enszel Chi icient cy Coeffic /	or Table of M I ffffffffffff ni-Square -Square -Square L-Square	Number_H DF fffffff 1 1 1 1	Nome by B Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1606 0.1627	12 Prob ffffffff 0.1862 0.1879 0.2973 0.1896
Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coefff Contingend Cramer's N	tistics for ffffffffffff d Ratio Ch d Ratio Chi enszel Chi icient cy Coeffic ffffffffffffffffffffffffffffffffff	or Table of M ffffffffffff ni-Square Square tient tient sher's Exact	Number_f Ffffffff 1 1 1 1 t Test	nome by B Value fffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1606 0.1627 fffffff	12 Prob ffffffff 0.1862 0.1879 0.2973 0.1896
Stati Statistic fffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeff Contingend Cramer's N	tistics for fffffffffff a d Ratio Ch / Adj. Chi enszel Chi icient cy Coeffic / ffffffffff Cell (1,1	or Table of M ffffffffffff ni-Square -Square Sient sher's Exact fffffffffff ffffffffff) Frequency	Number_f Ffffffff 1 1 1 1 t Test ffffffff (F)	nome by B Value fffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1606 0.1627 fffffff 10	12 Prob ffffffff 0.1862 0.1879 0.2973 0.1896
Statistic ffffffffffffffffffffffffffffffffffff	tistics for fffffffffff a Ratio Ch Adj. Chi enszel Chi icient cy Coeffic ffffffffff Cell (1,1 Left-side Right-sid	or Table of M fffffffffffff i-Square -Square Sient sher's Exact fffffffffff) Frequency d Pr <= F ied Pr >= F	Number_f DF 1 1 1 1 1 t Test ffffffff (F)	nome by B Value fffffffff 1.7472 1.737 1.0862 1.7207 0.1627 0.1606 0.1627 fffffff 10 0.9449 0.1488	12 Prob <i>fffffff</i> 0.1862 0.1879 0.2973 0.1896
Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeff Contingend Cramer's N	tistics for fffffffffff a Ratio Ch Adj. Chi enszel Chi icient cy Coeffic ffffffffff Cell (1,1 Left-side Right-sid Table Pro	or Table of M fffffffffffff i-Square -Square Square ient ient ffffffffffffffff i Frequency d Pr <= F ded Pr >= F bability (P)	Number_f DF ffffffff 1 1 1 1 t Test ffffffff (F)	nome by B Value fffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1606 0.1627 fffffff 10 0.9449 0.1488 0.0937	12 Prob ffffffff 0.1862 0.1879 0.2973 0.1896
Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coefff Contingend Cramer's N	tistics for fffffffffff a Ratio Ch / Adj. Chi enszel Chi icient cy Coeffic / Fi fffffffff Cell (1,1 Left-side Right-sid Table Pro Two-sided	br Table of M ffffffffffff hi-Square -Square Square cont con	<pre>Vumber_f Fffffff 1 1 1 1 t Test ffffffff (F)) - 66</pre>	nome by B Value fffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1606 0.1627 0.1606 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641	12 Prob ffffffff 0.1862 0.1879 0.2973 0.1896
Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coefff Contingend Cramer's N	tistics for fffffffffff a Ratio Ch a Ratio Chi icient cy Coeffic ffffffffff Cell (1,1 Left-side Right-sid Table Pro Two-sided	or Table of M fffffffffffff i-Square -Square Square ient ient ffffffffffffffff i Frequency d Pr <= F ded Pr >= F bability (P) i Pr <= P Sample Size	<pre>Number_f DF ffffffff 1 1 1 1 t Test ffffffff (F)) = 66</pre>	nome by B Value fffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1606 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641	12 Prob ffffffff 0.1862 0.1879 0.2973 0.1896
Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	tistics for fffffffffff a Ratio Ch Adj. Chi enszel Chi icient cy Coeffic fffffffffff Cell (1,1 Left-side Right-sid Table Pro Table	or Table of M fffffffffffff i-Square -Square -Square cient sher's Exact fffffffffffff) Frequency d Pr <= F led Pr >= F bability (P A Pr <= P Sample Size e of Number_M	<pre>Number_f FF FF I I I I I I I FF FF FF FF FF FF F</pre>	nome by B Value fffffffff 1.7472 1.737 1.0862 1.7207 0.1627 0.1606 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641 B13	12 Prob <i>fffffff</i> 0.1862 0.1879 0.2973 0.1896
Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingend Cramer's N	tistics for fffffffffff a Ratio Ch Adj. Chi enszel Chi icient cy Coeffic Fi ffffffffff Cell (1,1 Left-side Right-sid Table Pro Two-sided Table Frequency Percent	or Table of M fffffffffffff i-Square -Square -Square ient ient ient ffffffffffffffff i Pr <= F led Pr >= F bability (P) i Pr <= P Sample Size of Number_M	<pre>Number_f DF ffffffff 1 1 1 1 t Test ffffffff (F)) = 66 nome by</pre>	nome by B Value fffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1606 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641 B13	12 Prob ffffffff 0.1862 0.1879 0.2973 0.1896
Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coefff Contingend Cramer's N	tistics for fffffffffff a Ratio Ch / Adj. Chi enszel Chi icient cy Coeffic / Fi fffffffff Cell (1,1 Left-side Right-side Table Pro Two-sided Table Frequency Percent Row Pct	or Table of N fffffffffffff i-Square -Square -Square ient ient ient ffffffffffffffff Pr <= F bability (P) Pr <= P Sample Size of Number_f , ,	<pre>Number_f F F f f f f f f f f f f f f f f f f f</pre>	nome by B Value fffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1627 0.1606 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641 B13	12 Prob <i>ffffffff</i> 0.1862 0.1879 0.2973 0.1896
Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coefff Contingend Cramer's M	tistics for fffffffffff a Ratio Ch Adj. Chi enszel Chi icient cy Coeffic ffffffffff Cell (1,1 Left-side Table Pro Table Frequency Percent Row Pct Col Pct	<pre>or Table of M f ffffffffffffff i-SquareSquareSquare cient cie</pre>	Yumber_H DF fffffffff 1 1 1 t Test fffffffff (F)) = 66 home by gree	nome by B Value fffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1626 0.1627 0.1606 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641 B13	12 Prob <i>ffffffff</i> 0.1862 0.1879 0.2973 0.1896
Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeff Contingend Cramer's N	tistics for fffffffffff a Ratio Ch Adj. Chi enszel Chi icient cy Coeffic Fi ffffffffff Cell (1,1 Left-side Right-sid Table Pro Two-sided Table Frequency Percent Row Pct Col Pct	<pre>or Table of M fffffffffffff i-Square -Square -Square cient ci</pre>	Yumber_f Ffffffff 1 1 1 t Test ffffffff (F)) = 66 home by gree trongly Agree	nome by B Value fffffffff 1.7472 1.737 1.0862 1.7207 0.1627 0.1606 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641 B13	12 Prob <i>ffffffff</i> 0.1862 0.2973 0.2973 0.1896
Statistic ffffffffffffffffffffffffffffffffffff	tistics for fffffffffff a Ratio Ch Adj. Chi enszel Chi icient cy Coeffic Fi fffffffffff Cell (1,1 Left-side Right-sid Table Pro Table Frequency Percent Row Pct Col Pct	<pre>or Table of f fffffffffffffffffffffffffffffffff</pre>	Number_f DF fffffffff 1	nome by B Value fffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1606 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641 B13	12 Prob <i>ffffffff</i> 0.1862 0.1879 0.2973 0.1896
Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coefff Contingend Cramer's N	tistics for fffffffffff a Ratio Ch / Adj. Chi enszel Chi icient cy Coeffic / Fi ffffffffff Cell (1,1 Left-side Right-side Table Pro Table Frequency Percent Row Pct Col Pct ffffffffff 0-2	<pre>or Table of M fffffffffffff i-Square -Square -Square -Square itent i i i i i i i i i i i i i i i i i i i</pre>	<pre>Vumber_f Ffffffff 1 1 1 1 t Test ffffffff (F)) = 66 home by gree - trongly Agree ffffffff 1 8 27.27</pre>	nome by B Value ffffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1626 0.1627 (0.1627 0.1606 0.1627 (0.1627 0.1606 0.9449 0.9449 0.9449 0.9449 0.9449 0.9449 0.2641 B13 B13 , Total	12 Prob fffffff 0.1862 0.1879 0.2973 0.1896
Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeff Contingend Cramer's M	tistics for fffffffffff a Ratio Ch / Adj. Chi enszel Chi icicent cy Coeffic / Fi ffffffffff Cell (1,1 Left-side Right-side Table Pro Table Frequency Percent Row Pct Col Pct ffffffffff 0-2	<pre>or Table of M fffffffffffff i-Square -Square -Square cient sher's Exact ffffffffffffff) Frequency d Pr <= F bability (P) d Pr <= P Sample Size of Number_M , - Stron,St ,gly Disa, A ,gree, , ffffffffffffff , 9, , 13.64, , 33.33,</pre>	Number_f PF fffffffff 1	nome by B Value fffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1626 0.1627 0.1606 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641 B13 B13 , Total	12 Prob <i>ffffffff</i> 0.1862 0.1879 0.2973 0.1896
Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coefff Contingend Cramer's N	tistics for fffffffffff a Ratio Ch Adj. Chi enszel Chi icient cy Coeffic Fi ffffffffff Cell (1,1 Left-side Right-sid Table Pro Table Pro Table Pro Table Frequency Percent Row Pct Col Pct ffffffffff 0-2	<pre>or Table of f fffffffffffff i-SquareSquareSquare cient cient content conten</pre>	Yumber_f Ffffffff 1 1 1 1 t Test ffffffff (F)) = 66 home by gree - trongly Agree ffffffff 18 27.27 66.67 47.37	nome by B Value fffffffff 1.7472 1.737 1.0862 1.7207 0.1627 0.1606 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641 B13 B13 , Total	12 Prob <i>ffffffff</i> 0.1862 0.2973 0.2973 0.1896
Statistic ffffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coefff Contingend Cramer's N	tistics for fffffffffff a Ratio Ch / Adj. Chi enszel Chi icient cy Coeffic / Fiffffffff Cell (1,1 Left-side Right-side Table Pro Table Frequency Percent Row Pct Col Pct fffffffffff 0-2 ffffffffffff >2	<pre>or Table of f fffffffffffff i-SquareSquareSquare c-Square ffffffffffffffffffffffffffffffffffff</pre>	<pre>Vumber_f Ffffffff 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	nome by B Value fffffffff 1.7472 1.7337 1.0862 1.7207 0.1627 0.1626 0.1627 fffffff 10 0.9449 0.1488 0.0937 0.2641 B13 B13 , Total , 27 , 40.91	12 Prob <i>ffffffff</i> 0.1862 0.1879 0.2973 0.1896

ر	28.79 ,	30.30,	59.09
,	48.72 ,	51.28 ,	
ر	67.86 ,	52.63,	
fffffffff	fffffff^f	ffffff	
Total	28	38	66
	42.42	57.58	100.00

Statistics for Table of Number_home by B13 Statistic DF Value Prob 1.5460 0.2137 Chi-Square 1 Likelihood Ratio Chi-Square 1 1.5628 0.2113 Continuity Adj. Chi-Square 0.9803 0.3221 1 Mantel-Haenszel Chi-Square 1.5226 1 0.2172 Phi Coefficient -0.1530 Contingency Coefficient 0.1513 Cramer's V -0.1530 Fisher's Exact Test Cell (1,1) Frequency (F) 9 Left-sided Pr <= F 0.1611 Right-sided Pr >= F 0.9335 Table Probability (P) 0.0946 Two-sided Pr <= P 0.3112 Sample Size = 66 Table of Number_home by C14 Frequency

i i equency	,		
Percent	,		
Row Pct	,		
Col Pct	Disagree.A	gree	Total
	- Stron S	trongly	
	, 501011,5	· · · · · · · · · · · · · · · · · · ·	
	,gly Disa,	Agree ,	
	,gree ,	ر	
ffffffff	f^fffffffff	`fffffff	
0-2	, 17,	12,	29
	. 24.64 .	17.39 .	42.03
	, FO CO	41 70	
	, 58.62 ,	41.38 ,	
	, 58.62 ,	30.00 ,	
ffffffff	⁻ ^ffffffff^f	`fffffff	
>2	, 12,	28,	40
	, 17.39 ,	40.58,	57.97
	. 30.00	70.00	
	, , , , , , , , , , , , , , , , , , , ,	70.00	
	, 41.38 ,	70.00 ,	
ffffffff	f^fffffffff	`fffffff^	
Total	29	40	69
	42.03	57.97	100.00

Statistics for Table of Number_home by C14 Statistic DF Value Prob 5.6521 0.0174 Chi-Square 1 Likelihood Ratio Chi-Square 1 5.6879 0.0171 Continuity Adj. Chi-Square 4.5384 0.0331 1 Mantel-Haenszel Chi-Square 5.5702 1 0.0183 Phi Coefficient 0.2862 Contingency Coefficient 0.2752 Cramer's V 0.2862

Table of Number_home by C15 Frequency, Percent , Row Pct ,

	Col Pct	,Disagree,A	Agree -	, Total	
		, - Stron,S	Strongly	,	
		gly Disa,	Agree	,	
		,gree ,		,	
		· ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		72	
	0-2	, i, 1,49	38 81	, 27 40 30	
		, <u>1</u> , <u>-</u> , , <u>3</u> , 70 ,	96.30	, 40.50	
		, 14.29 ,	43.33	,	
	ffffffff	[^] ffffffff	fffffff		
	>2	, 6,	34	, 40	
		, 8.96,	50.75	, 59.70	
		, 15.00 ,	85.00	,	
		, 85.71 ,	56.67		
		• +++++++++ +		67	
	Ισται	10.45	60 80 FF	100 00	
		10.45	09.00	100.00	
Stat	tistics fo	or Table of	Number H	nome by C1	5
Statistic			DF	Value	Prob
ffffffff	fffffffff		fffffff	fffffffff	ffffff
Chi-Square	2		1	2.1985	0.1381
Likelihoo	d Ratio Ch	ni-Square	1	2.4938	0.1143
Continuity	y Adj. Chi	-Square	1	1.1569	0.2821
Mantel-Hae	enszel Chi	-Square	1	2.1657	0.1411
Phi Coeff:	icient			-0.1811	
Contingen	cy Coettic	lent		0.1/82	
	v EQ% of th	o colle hou	·o ovnoci	-0.1011	loce
WARNING.	than 5 (bi-Square n	av not h	ne a valid	1035
	than 5. t	JIII-5quare i	ay not i		iest.
	Fi	isher's Exac	t Test		
	ffffffff		fffffff	ffffff	
	Cell (1,1	L) Frequency	/ (F)	1	
	Left-side	ed Pr <= F		0.1406	
	Right-sic	led Pr >= F		0.9786	
	Table Pro	bability (F	?)	0.1192	
	lwo-sided	1 Pr <= P		0.22//	
		Sample Size	2 = 67		
	Table	e of Number_	home by	C16	
	Frequency	,			
	Percent Pow Det	ر			
	NUW PCC	,			

NOW ICC	,		
Col Pct	,Disagree,	Agree - ,	Total
	, - Stron,	Strongly,	
	,gly Disa,	Agree ,	
	,gree ,	ر	
fffffff	f^ffffffff	fffffff	
0-2	, 1,	27,	28
	, 1.49,	40.30 ,	41.79
	, 3.57,	96.43 ,	
	, 25.00 ,	42.86 ,	
fffffff	f^ffffffff	fffffff	
>2	, 3,	36,	39
	, 4.48,	53.73 ,	58.21
	, 7.69 ,	92.31 ,	
	, 75.00 ,	57.14 ,	
fffffff	f^ffffffff	fffffff	
Total	4	63	67
	5.97	94.03	100.00

Statistics for Table of	Numbe	r_home by C	16
Statistic	DF	Value	Prob
ffffffffffffffffffffffffffffff	ffffff	ffffffffff	fffffff
Chi-Square	1	0.4930	0.4826
Likelihood Ratio Chi-Square	1	0.5224	0.4698
Continuity Adj. Chi-Square	1	0.0322	0.8576
Mantel-Haenszel Chi-Square	1	0.4857	0.4859
Phi Coefficient		-0.0858	
Contingency Coefficient		0.0855	
Cramer's V		-0.0858	
WARNING: 50% of the cells ha	ave exp	ected count	s less

than 5. Chi-Square may not be a valid test.

FISHER'S EXACT TEST	
ffffffffffffffffffffffffffffff	ffffff
Cell (1,1) Frequency (F)	1
Left-sided Pr <= F	0.4412
Right-sided Pr >= F	0.8927
Table Probability (P)	0.3339
Two-sided Pr <= P	0.6346
Sample Size = 67	

Table of Number_home by C17 Frequency, Percent Row Pct Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , , 3, 24, 27 0-2 , 4.55 , 36.36 , , 11.11 , 88.89 , , 50.00 , 40.00 , fffffffffffffffffffffffffff 40.91 >2 , 3 , 36 , 39 , 4.55 , 54.55 , 59.09 , 7.69 , 92.31 , , 50.00 , 60.00 , ffffffffffffffffffff 6 Total 60 66 90.91 100.00 9.09

Statistics for Table of Number_home by C17 Statistic DF Value Prob 1 0.2256 1 0.2223 Chi-Square 0.6348 Likelihood Ratio Chi-Square 0.6373 Continuity Adj. Chi-Square 1 0.0016 0.9684 Mantel-Haenszel Chi-Square 0.2222 0.6374 1 Phi Coefficient 0.0585 Contingency Coefficient 0.0584 Cramer's V 0.0585 WARNING: 50% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

,	5.88,	52.94 ,	58.82
,	10.00 ,	90.00 ,	
,	50.00 ,	60.00 ,	
ffffffff^f	fffffff;	fffffff^	
Total	8	60	68
	11.76	88.24	100.00

Statistics for Table of Number_home by C18 Statistic DF Value Prob 0.2914 0.5893 Chi-Square 1 Likelihood Ratio Chi-Square 1 0.2875 0.5918 Continuity Adj. Chi-Square 0.0248 0.8749 1 Mantel-Haenszel Chi-Square 0.5921 0.2871 1 Phi Coefficient 0.0655 Contingency Coefficient 0.0653 Cramer's V 0.0655 WARNING: 50% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Fisher's Exact Test				

Cell (1,1) Frequency (F)	4			
Left-sided Pr <= F	0.8221			
Right-sided Pr >= F	0.4311			
Table Probability (P)	0.2531			
Two-sided Pr <= P	0.7084			
Sample Size = 68				

Statistics for Table of Number_home by D19 DF Statistic Value Proh Chi-Square 14.6049 0.0001 1 Likelihood Ratio Chi-Square 15.0921 0.0001 1 Continuity Adj. Chi-Square 1 12.7051 0.0004 Mantel-Haenszel Chi-Square 1 14.3731 0.0001 Phi Coefficient 0.4815 Contingency Coefficient 0.4338 Cramer's V 0.4815 Fisher's Exact Test

Table of Number home by D20 Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , , ffffffffffffffffffff 0-2 , 8 , 17 , 25 , 13.33 , 28.33 , 41.67 , 32.00 , 68.00 , , 33.33 , 47.22 , ffffffffffffffffffffffffffffffffff

 JJJJJJJJJJ JJJJJJJJ JJJJJJJJ

 >2
 ,
 16
 ,
 19
 ,
 35

 ,
 26.67
 ,
 31.67
 ,
 58.33

 ,
 45.71
 ,
 54.29
 ,

 ,
 66.67
 ,
 52.78
 ,

 ffffffffffffffffffffffffffffffff
 JA
 26
 60

 Total 24 36 60 40.00 60.00 100.00 Statistics for Table of Number_home by D20 Statistic DF Prob Value 1 1.1429 1 1.1551 Chi-Square 0.2850 Likelihood Ratio Chi-Square 0.2825 Continuity Adj. Chi-Square 0.6429 0.4227 1 Mantel-Haenszel Chi-Square 1 1.1238 0.2891 Phi Coefficient -0.1380 Contingency Coefficient 0.1367 Cramer's V -0.1380 Fisher's Exact Test Cell (1,1) Frequency (F) 8 Left-sided Pr <= F Right-sided Pr >= F 0.2119 0.9099 Table Probability (P) 0.1218 Two-sided Pr <= P 0.4231 Effective Sample Size = 60 Frequency Missing = 1 Table of Number_home by D21 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 0-2 , 23 , 4 , , 35.94 , 6.25 , , 85.19 , 14.81 , , 44.23 , 33.33 , fffffffffffffffffffffffffff 27 42.19 >2 , 29 , 8 , 37 , 45.31 , 12.50 , 57.81 , 78.38 , 21.62 , , 55.77 , 66.67 , fffffffffffffffffffffffff Total 52 12 64 81.25 18.75 100.00 Statistics for Table of Number_home by D21 rob C+ - + - - -Val

Statistic	DF	varue	Prob
<i>fffffffffffffffffffffffffffffffffffff</i>	fffff	ſſſſſ	ffffff
Chi-Square	1	0.4747	0.4908
Likelihood Ratio Chi-Square	1	0.4841	0.4866
Continuity Adj. Chi-Square	1	0.1331	0.7153
Mantel-Haenszel Chi-Square	1	0.4673	0.4942

Phi Coefficient 0.0861 Contingency Coefficient 0.0858 Cramer's V 0.0861 Fisher's Exact Test Cell (1,1) Frequency (F) 23 Left-sided Pr <= F Right-sided Pr >= F 0.8444 0.3619 Table Probability (P) 0.2063 Two-sided Pr <= P 0.5374 Effective Sample Size = 64 Frequency Missing = 1 Table of Number home by D22 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , , gree , , ffffffff^ffffffffffffffffffffffff , 4, 17, 21 , 7.55, 32.08, 39.62 , 19.05, 80.95, , 50.00, 37.78, 0-2 >2 , 4 , 28 , 32 , 7.55 , 52.83 , 60.38 , 12.50 , 87.50 , , 50.00 , 62.22 , fffffffffffffffffffff 8 45 53 15.09 84.91 100.00 Total Statistics for Table of Number_home by D22 Statistic DF Value Prob 1 0.4241 Chi-Square 0.5149 Likelihood Ratio Chi-Square 1 0.4166 0.5186 Continuity Adj. Chi-Square 1 0.0671 0.7956 Mantel-Haenszel Chi-Square 1 0.4161 0.5189 Phi Coefficient 0.0895 Contingency Coefficient 0.0891 Cramer's V 0.0895 WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Fisher's Exact Test 4 Cell (1,1) Frequency (F) Left-sided Pr <= F Right-sided Pr >= F 0.8513 0.3915 Table Probability (P) 0.2428 Two-sided Pr <= P 0.6978 Effective Sample Size = 53 Frequency Missing = 3 Table of Number_home by D23 Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , , 7, 19, 26 , 10.94 , 29.69 , 40.63 , 26.92 , 73.08 , , 53.85 , 37.25 , 0-2

fffffffff^ffffffffffffffff							
>2	,	6	,	32	,	38	
	,	9.38	,	50.00	,	59.38	
	, 1	5.79	,	84.21	,		
	, 4	46.15	,	62.75	,		
ffffff	fff^ff	ffff	f^f	ffffff	c ^ 1		
Total		13		51		64	
	2	20.31		79.69		100.00	

Statistics for Table of Number_home by D23 Statistic DF Value Prob Chi-Square 1.1822 0.2769 1 0.2806 Likelihood Ratio Chi-Square 1.1642 1 Continuity Adj. Chi-Square 1 0.5944 0.4407 Mantel-Haenszel Chi-Square 1.1637 0.2807 1 Phi Coefficient 0.1359 Contingency Coefficient 0.1347 Cramer's V 0.1359 Fisher's Exact Test

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Cell (1,1) Frequency (F)	7		
Left-sided Pr <= F	0.9189		
Right-sided Pr >= F	0.2193		
Table Probability (P)	0.1382		
Two-sided Pr <= P	0.3484		
Sample Size = 64			

Table of Number_home by D24 Frequency, Percent Row Pct Col Pct ,Disagree,Agree - , Total , - Stron,Strongly, ,gly Disa, Agree , 10 , 17 , 16.13 , 27.42 , 0-2 27 , 43.55 , , 37.04 , 62.96 , , 62.50 , 36.96 , ffffffffffffffffffffffffff 6, 29, >2 35 , 9.68 , 46.77 , 56.45 , 17.14 , 82.86 , , , 37.50 , 63.04 , fffffffffffffffffffffffffffffff Total 16 46 62 25.81 74.19 100.00

Statistics for Table of Number_home by D24 Statistic DF Value Prob 3.1506 Chi-Square 1 0.0759 Likelihood Ratio Chi-Square 1 3.1425 0.0763 Continuity Adj. Chi-Square 2.1973 0.1383 1 Mantel-Haenszel Chi-Square 3.0998 0.0783 1 Phi Coefficient 0.2254 Contingency Coefficient 0.2199 Cramer's V 0.2254

Right-sided Pr >= F	0.0694
Table Probability (P)	0.0501
Two-sided Pr <= P	0.0885
Sample Size = 62	

Table of Number_home by D25

Frequency, Percent , Row Pct Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 0-2 , 11 , 18 , 29 , 15.94 , 26.09 , 42.03 , 37.93 , 62.07 , , 57.89 , 36.00 , ffffffffffffffffffff , 8, 32, 40 , 11.59, 46.38, 57.97 >2 , 20.00 , 80.00 , Total 19 50 69 72.46 100.00 27.54

Statistics for Table of Number_home by D25 DF Statistic Value Prob Chi-Square 1 2.7089 0.0998 Likelihood Ratio Chi-Square 2.6874 0.1011 1 Continuity Adj. Chi-Square 1 1.8848 0.1698 Mantel-Haenszel Chi-Square 2.6696 0.1023 1 Phi Coefficient 0.1981 Contingency Coefficient 0.1944 Cramer's V 0.1981

Table of Years in house by A1 Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 1-6 , 15 , 25 , 40 , 19.23 , 32.05 , 51.28 , 37.50 , 62.50 , , 50.00 , 52.08 , ffffffffffffffffffff , 15 , 23 , 38 , 19.23 , 29.49 , 48.72 >6 , , 19.23 , 29.49 , , 39.47 , 60.53 , , 50.00 , 47.92 , ffffffffffffffffffffffffff Total 30 48 78 38.46 61.54 100.00

```
Statistics for Table of Years_in_house by A1
                           DF
                                              Prob
Statistic
                                    Value
Chi-Square
                            1
                                   0.0321
                                            0.8579
Likelihood Ratio Chi-Square
                                   0.0321
                                            0.8579
                             1
Continuity Adj. Chi-Square
                             1
                                   0.0000
                                            1.0000
Mantel-Haenszel Chi-Square
                                   0.0317
                                            0.8588
                            1
Phi Coefficient
                                  -0.0203
Contingency Coefficient
                                   0.0203
Cramer's V
                                  -0.0203
               Fisher's Exact Test
         Cell (1,1) Frequency (F)
                                       15
         Left-sided Pr <= F
                                   0.5212
         Right-sided Pr >= F
                                   0.6598
         Table Probability (P)
                                   0.1810
         Two-sided Pr <= P
                                   1.0000
                 Sample Size = 78
            Table of Years_in_house by A2
         Frequency,
         Percent ,
         Row Pct ,
         Col Pct , Disagree, Agree - , Total
                 , - Stron, Strongly,
                  ,gly Disa, Agree ,
         1-6 , 12 , 28 ,
, 15.58 , 36.36 ,
, 30.00 , 70.00 ,
, 42.86 , 57.14 ,
ffffffffffffffffffffffffffffff
                                        40
                                    51.95
                    16, 21, 5,
20.78, 27.27, 48.05
56 76,
         >6
                 ,
                    43.24 , 56.76 ,
                  ,
                   57.14 , 42.86 ,
         ffffffffffffffffffffffffffffffff
                                        77
         Total
                      28
                              49
                                  100.00
                    36.36
                             63.64
    Statistics for Table of Years_in_house by A2
Statistic
                           DF
                                    Value
                                              Prob
1.4568
Chi-Square
                            1
                                            0.2274
Likelihood Ratio Chi-Square
                             1
                                   1.4599
                                            0.2269
Continuity Adj. Chi-Square
                                   0.9407
                                            0.3321
                            1
                                  1.4378
Mantel-Haenszel Chi-Square
                                            0.2305
                            1
Phi Coefficient
                                  -0.1375
Contingency Coefficient
                                   0.1363
Cramer's V
                                  -0.1375
               Fisher's Exact Test
         Cell (1,1) Frequency (F)
                                       12
         Left-sided Pr <= F
                                   0.1661
         Right-sided Pr >= F
                                   0.9258
         Table Probability (P)
                                   0.0919
         Two-sided Pr <= P
                                   0.2463
                 Sample Size = 77
            Table of Years_in_house by A3
         Frequency,
         Percent ,
         Row Pct
                 ,
         Col Pct ,Disagree,Agree - , Total
                  , - Stron, Strongly,
                 ,gly Disa, Agree ,
         ,gree , ,
ffffffffffffffffffffffffffffffff
                  ,gree
         1-6
                , 19, 20,
                                        39
```

, 25.68 , 27.03 , 52.70
, 48.72 , 51.28 ,
, 59.38 , 47.62 ,
fffffffffffffffffffff 13 , 22 , 35 17.57 , 29.73 , 47.30 >6 , , , 37.14 , 62.86 , , 40.63 , 52.38 , ffffffffffffffffffffffff Total 32 42 74 43.24 56.76 100.00 Statistics for Table of Years_in_house by A3 Statistic DF Value Prob Chi-Square 1 1.0070 0.3156 Likelihood Ratio Chi-Square 1.0106 1 0.3147 Continuity Adj. Chi-Square 1 0.5906 0.4422 Mantel-Haenszel Chi-Square 0.9934 0.3189 1 Phi Coefficient 0.1167 Contingency Coefficient 0.1159 Cramer's V 0.1167 Fisher's Exact Test Cell (1,1) Frequency (F) 19 Left-sided Pr <= F 0.8924 Right-sided Pr >= F 0.2213 Table Probability (P) 0.1137 Two-sided Pr <= P 0.3545 Sample Size = 74 Table of Years_in_house by A4 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree 13, 25, 17.57, 33.78, 1-6 38 , 51.35 ر , 34.21 , 65.79 , , 44.83 , 55.56 , fffffffffffffffffffffffff 16 , 20 , 36 21.62 , 27.03 , 48.65 >6 , , , 44.44 , 55.56 , , 55.17 , 44.44 , fffffffffffffffffffffffffff 45 74 Total 29 60.81 100.00 39.19 Statistics for Table of Years_in_house by A4 Statistic DF Value Prob 0.8124 Chi-Square 1 0.3674 Likelihood Ratio Chi-Square 1 0.8135 0.3671 Continuity Adj. Chi-Square 1 0.4398 0.5072 Mantel-Haenszel Chi-Square 0.8015 1 0.3707 Phi Coefficient -0.1048 Contingency Coefficient 0.1042 Cramer's V -0.1048 Fisher's Exact Test Cell (1,1) Frequency (F) 13 Left-sided Pr <= F 0.2537 Right-sided Pr >= F 0.8728

Two-sided Pr <=	P
Sample	Size = 74

0.1265

0.4757

Table Probability (P)

Table of Years_in_house by A5 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 1-6 , 10 , 30 , 40 , 13.51 , 40.54 , 54.05 , 25.00 , 75.00 , , 55.56 , 53.57 , fffffffffffffffffffff fffffffffffffffff , 8, 26, 34 , 10.81, 35.14, 45.95 , 23.53, 76.47, 44.44, 46.43, >6 , , 44.44 , 46.43 fffffffffffffffffffffffffffff 18 56 74 Total 75.68 100.00 24.32 Statistics for Table of Years_in_house by A5 DF Statistic Value 1 0.0216

Prob

Chi-Square 0.8832 Likelihood Ratio Chi-Square 0.0216 0.8831 1 Continuity Adj. Chi-Square 1 0.0000 1.0000 Mantel-Haenszel Chi-Square 0.0213 0.8840 1 Phi Coefficient 0.0171 Contingency Coefficient 0.0171 Cramer's V 0.0171 Fisher's Exact Test Cell (1,1) Frequency (F) 10 Left-sided Pr <= F 0.6607 Right-sided Pr >= F 0.5511 Table Probability (P) 0.2118 Two-sided Pr <= P 1.0000 Effective Sample Size = 74 Frequency Missing = 1 Table of Years_in_house by B6 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree 1-6 , 16 , 25 , 41 , 20.78 , 32.47 , 53.25 , 39.02 , 60.98 , , 48.48 , 56.82 , ffffffffffffffffffffff , 17 , 19 , , 22.08 , 24.68 , , 47.22 , 52.78 , , 51.52 , 43.18 , 36 >6 , 46.75 ffffffff[^]fffffff[^]fffffff 33 44 77 Total 42.86 57.14 100.00

Statistics for Table of Years_in_house by B6 DF Value Prob Statistic 0.5260 0.4683 Chi-Square 1 Likelihood Ratio Chi-Square 0.5261 0.4682 1 Continuity Adj. Chi-Square 1 0.2445 0.6209

Mantel-Haenszel Chi-Square	1	0.5192	0.4712
Phi Coefficient		-0.0827	
Contingency Coefficient		0.0824	
Cramer's V		-0.0827	

Fisher's Exact Test		
<i>fffffffffffffffffffffffffffffffffffff</i>		
Cell (1,1) Frequency (F)	16	
Left-sided Pr <= F	0.3105	
Right-sided Pr >= F	0.8304	
Table Probability (P)	0.1409	
Two-sided Pr <= P	0.4973	
Sample Size = 77		

Table of Years_in_house by B7 Frequency, Percent , Row Pct ,Disagree,Agree - , Total Col Pct , - Stron, Strongly, ,gly Disa, Agree , ,gree 15 , 23 , 22.06 , 33.82 , 39.47 , 60.53 , 57.69 , 54.76 , 1-6 38 , 55.88 , , , 57.69 , 54.76 fffffffffffffffffffffffffffffffffff و 11 , 19 , 16.18 , 27.94 , 19, 30 >6 , 44.12 , 36.67 , 63.33 , 42.31 , 45.24 , , ffffffff^fffffffffffffffffffff Total 26 42 68 38.24 61.76 100.00

Statistics for Table of Years_in_house by B7 DF Statistic Value Prob Chi-Square 1 0.0559 0.8130 Likelihood Ratio Chi-Square 0.0560 1 0.8129 Continuity Adj. Chi-Square 0.0000 1.0000 1 Mantel-Haenszel Chi-Square 1 0.0551 0.8144 Phi Coefficient 0.0287 Contingency Coefficient 0.0287 Cramer's V 0.0287

Table of Years_in_house by B8 Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree ffffffffffffffffffffffffffff 11, 25, 15.71, 35.71, 1-6 36 , 51.43 , , 30.56 , 69.44 , , 40.74 , 58.14 , , fffffffffffffffffffffffff >6 16 , 18, 34 ,

ر	22.86 ,	25.71 ,	48.57
ر	47.06 ,	52.94 ,	
,	59.26 ,	41.86 ,	
fffffffff	ffffffff	ffffff	
Total	27	43	70
	38.57	61.43	100.00

Statistics for Table of Years_in_house by B8 Statistic DF Value Prob 2.0100 Chi-Square 0.1563 1 Likelihood Ratio Chi-Square 1 2.0188 0.1554 Continuity Adj. Chi-Square 1.3738 0.2412 1 Mantel-Haenszel Chi-Square 1.9812 0.1593 1 Phi Coefficient -0.1695 Contingency Coefficient 0.1671 Cramer's V -0.1695

Fisher's Exact Test

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1111111
Cell (1,1) Frequency (F)	11
Left-sided Pr <= F	0.1205
Right-sided Pr >= F	0.9522
Table Probability (P)	0.0727
Two-sided Pr <= P	0.2198
Sample Size = 70	

Table of Years_in_house by B9 Frequency, Percent , Row Pct ر Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , , ffffffffffffffffffffffffffffffff 13 , 26 , 17.33 , 34.67 , 1-6 39 , 52.00 , 33.33 , 66.67 , , , 50.00 , 53.06 ffffffffffffffffffffffffffffffffff 13, 23, 36 >6 , 17.33 , 30.67 , 48.00 , 36.11 , 63.89 , , 50.00 , 46.94 , *ffffffffffffffffffffffffffff* Total 26 49 75 34.67 65.33 100.00

Statistics for Table of Years_in_house by B9 Statistic DF Value Prob Chi-Square 1 0.0638 0.8006 Likelihood Ratio Chi-Square 0.0638 0.8007 1 Continuity Adj. Chi-Square 0.0001 0.9923 1 Mantel-Haenszel Chi-Square 1 0.0629 0.8019 Phi Coefficient -0.0292 0.0291 Contingency Coefficient Cramer's V -0.0292

Table of Years_in_house by B10 Frequency,

	Percent				
	Row Pct	, ,			
	Col Pct	,Disagree,	Agree -	, Total	
		, - Stron,	Strongly Agree	,	
		, gree ,	Agree	, ,	
	ffffffff	ה הלדלל לי	fffffff	~	
	1-6	, 7,	31	, 38	
		, 9.46 , 18 / 2	41.89 81 58	, 51.35	
		, 41.18 ,	54.39	י י	
	ffffffff	^	fffffff	^	
	>6	, 10,	26	, 36	
		, 13.51 , 27 78	35.14	, 48.65	
		, 58.82 ,	45.61	, ,	
	ffffffff	<u>ה</u> ללללי ^י	fffffff	~	
	Total	17	57	74	
		22.97	//.03	100.00	
Stati	istics for	Table of	Years_in	_house by	B10
Statistic			DF	Value	Prob
ffffffff	fffffffff	fffffffff	ffffffff: 1	fffffffff 0 0146	fffffff
Likelihood	: 1 Ratio Ch	i-Square	1	0.9146	0.3382
Continuity	/ Adj. Chi	-Square	1	0.4623	0.4966
Mantel-Hae	enszel Chi	-Square	1	0.9023	0.3422
Phi Coeff:	icient			-0.1112	
Cramer's \	/ COETTIC	. Tent		-0.1112	
	Fi	lsher's Exa	ct Test		
) Erequenci	<i>††††††††</i> v (E)	tttttt 7	
	Left-side	ed Pr <= F	y (')	, 0.2485	
	Right-sid	led Pr >= F		0.8913	
	Table Pro	bability (P)	0.1398	
	IWO-SIDEC	1 Pr <= P rtive Sampl	e Size =	0.4124 74	
	Fr	requency Mi	ssing =	1	
			0		
	Table a	f Voons in	house h	D11	
	Frequency	of rears_in	_nouse b	уыт	
	Percent	ر ، ر			
	Row Pct	,		_	
	Col Pct	,Disagree,	Agree -	, Total	
		, - stron, .glv Disa.	Agree	,	
		,gree ,		, ,	
	fffffff	*^ffffffff	fffffff	^	
	1-6	, 5, 	33	, 38	
		, 0.07,	44.00 86.84	, 50.07	
		, 35.71 ,	54.10	, ,	
	fffffff	^ffffffff	fffffff	• 	
	>6	, 9, 12.00	28 	, 37	
		, 24.32	75.68	, 47.00	
		, 64.29 ,	45.90	-)	
	ffffffff	^ <i>fffffff</i>	fffffff	·	
	IOTAL	14 18 67	61 81 33	75 100 00	
		10.07	01.55	100.00	
C+-+	· · · · · · · · · · · · · · · · · · ·			In a constant data of	544

Statistics for Table of Years_in_house by B11 istic DF Value F Statistic Prob Likelihood Ratio Chi-Square 1 1.5559 0.2123 Continuity Adj. Chi-Square Mantel-Haenszel Chi-Square 0.8920 0.3449 1 1.5191 0.2178 1 Phi Coefficient -0.1433 Contingency Coefficient Cramer's V 0.1418 -0.1433

Fisher's Exact Test ffffffffffffffffffffffffffffffffffff		
Cell (1,1) Frequency (F)	5	
Left-sided Pr <= F	0.1727	
Right-sided Pr >= F 0.9387		
Table Probability (P) 0.1114		
Two-sided Pr <= P 0.248		
Sample Size = 75		

Table of Years_in_house by B12 Frequency, Percent , Row Pct Col Pct , Disagree, Agree - , Total , - Stron,Strongly, ,gly Disa, Agree , 39 51.32 >6 , 10 , 27 , 37 , 13.16 , 35.53 , 48.68 , 27.03 , 72.97 , , 45.45 , 50.00 , fffffffffffffffffffff 22 54 Total 76 28.95 71.05 100.00

Statistics for Table of	Years	in house by	B12
Statistic		Value	Diz
		Vaiue	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Chi-Square	1	0.1293	0.7192
Likelihood Ratio Chi-Square	1	0.1294	0.7190
Continuity Adj. Chi-Square	1	0.0113	0.9152
Mantel-Haenszel Chi-Square	1	0.1276	0.7210
Phi Coefficient		0.0412	
Contingency Coefficient		0.0412	
Cramer's V		0.0412	

Fisher's Exact Test	
ffffffffffffffffffffffffffffffffffff	fffffff
Cell (1,1) Frequency (F)	12
Left-sided Pr <= F	0.7294
Right-sided Pr >= F	0.4581
Table Probability (P)	0.1875
Two-sided Pr <= P	0.8028
Sample Size = 76	

Total	32	43	75
	42.67	57.33	100.00

Statistics for Table of Years_in_house by B13StatisticDFValueProbfffffffffffffffffffffffffffffffffff
Fisher's Exact Test ffffffffffffffffffffffffffffffffffff
Table of Years_in_house by C14 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron,Strongly, ,gly Disa, Agree , ,gree ,
fffffffff ffffffff fffffff 1-6 , 16 , 26 , 42 , 20.25 , 32.91 , 53.16 , 38.10 , 61.90 , , 50.00 , 55.32 , fffffffff fffffffffff >6 , 16 , 21 , 37 , 20.25 , 26.58 , 46.84 43.24 , 56 76
, 43.24 , 30.70 , , 50.00 , 44.68 , <i>ffffffffffffffffffffffffffffffffffff</i>
StatisticDFValueProbfffffffffffffffffffffffffffffffffff
Fisher's Exact Test ffffffffffffffffffffffffffffffffffff
Table of Years_in_house by C15 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron,Strongly, ,gly Disa, Agree ,

<u>ع</u> ر	gree ,	, ,			
fffffffff	ffffffff [~] fffffff [~] fffffff [~]				
1-6 ,	5,	35,	40		
,	6.58,	46.05 ,	52.63		
,	12.50,	87.50,			
,	55.56,	, 52.24			
fffffffff	fffffff^	`ffffffff			
>6,	4,	32,	36		
,	5.26,	, 42.11	47.37		
ر	11.11 ,	, 88.89			
,	44.44 ,	47.76 ,			
ffffffff^fffffffffffffff					
Total	9	67	76		
	11.84	88.16	100.00		

Statistics for Table of Years_in_house by C15 DF Prob Statistic Value Chi-Square 0.0350 0.8516 1 Likelihood Ratio Chi-Square 0.0351 1 0.8514 Continuity Adj. Chi-Square 1 0.0000 1.0000 Mantel-Haenszel Chi-Square 0.0345 0.8525 1 Phi Coefficient 0.0215 Contingency Coefficient 0.0215 Cramer's V 0.0215

WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Fisher's Exact Test		
<i>fffffffffffffffffffffffffffffffffffff</i>		
Cell (1,1) Frequency (F)	5	
Left-sided Pr <= F	0.7038	
Right-sided Pr >= F	0.5682	
Table Probability (P)	0.2721	
Two-sided Pr <= P	1.0000	
Sample Size = 76		

Table (of Years_in_	house by	C16
Frequency	у,		
Percent	, ,		
Row Pct	,		
Col Pct	,Disagree,A	gree - ,	Total
	, - Stron,S	trongly,	
	,gly Disa,	Agree ,	
	,gree ,	· ·	
fffffff	f [^] fffffffff	ffffff	
1-6	, 3,	38,	41
	, 3.90,	49.35,	53.25
	, 7.32 ,	92.68,	
	, 60.00 ,	52.78,	
fffffff	f [^] fffffffff	ffffff	
>6	, 2,	34,	36
	, 2.60,	44.16 ,	46.75
	, 5.56,	94.44 ,	
	, 40.00 ,	47.22 ,	
fffffff	f^fffffffff	ffffff^	
Total	5	72	77
	6.49	93.51	100.00

Statistics for Table of Years_in_house by C16 Prob DF Statistic Value Chi-Square 0.0980 0.7543 1 Likelihood Ratio Chi-Square 0.0988 0.7533 1 Continuity Adj. Chi-Square Mantel-Haenszel Chi-Square 1 0.0000 1.0000 1 0.0967 0.7558 Phi Coefficient 0.0357 Contingency Coefficient 0.0356 Cramer's V 0.0357 WARNING: 50% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Fisher's Exact Test

Cell (1,1) Frequency (F) Left-sided Pr <= F 3 0.7776 Right-sided Pr >= F 0.5624 Table Probability (P) 0.3399 Two-sided Pr <= P 1.0000 Sample Size = 77 Table of Years_in_house by C17 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , 1-6 , 3 , 36 , 39 , 4.00 , 48.00 , 52.00 , 7.69 , 92.31 , , 42.86 , 52.94 , ffffffffffffffffffff 4, 32, 36 5.33, 42.67, 48.00 >6 , , , 11.11 , 88.89 , , 57.14 , 47.06 , fffffffffffffffffffffffffffffffff Total 7 68 75 90.67 9.33 100.00

Statistics for Table of	Years	_in_house by	C17
Statistic	DF	Value	Prob
<i>fffffffffffffffffffffffffffffffffffff</i>	fffff	ffffffffffff	fffffff
Chi-Square	1	0.2586	0.6111
Likelihood Ratio Chi-Square	1	0.2587	0.6110
Continuity Adj. Chi-Square	1	0.0124	0.9114
Mantel-Haenszel Chi-Square	1	0.2551	0.6135
Phi Coefficient		-0.0587	
Contingency Coefficient		0.0586	
Cramer's V		-0.0587	

WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Fisher's Exact Test	
ffffffffffffffffffffffffffff	ffffff
Cell (1,1) Frequency (F)	3
Left-sided Pr <= F	0.4544
Right-sided Pr >= F	0.8168
Table Probability (P)	0.2712
Two-sided Pr <= P	0.7041
Sample Size = 75	

Table of	Years_i	in_house	by	C18
Frequency,				
Percent ,				
Row Pct ,				
Col Pct ,	Disagree	Agree -	,	Total
,	- Stror	,Strongl	у,	
,	gly Disa	a, Agree	,	
,	gree	,	,	
fffffff		, fffffff	f	
1-6 ,	4	, 37	,	41
,	5.13	, 47.44	,	52.56
,	9.76	, 90.24	,	
,	50.00	, 52.86	,	
ffffffff	fffffff	, ^ffffffff	f	
>6,	4	, 33	,	37
,	5.13	, 42.31	,	47.44
,	10.81	, 89.19	,	
,	50.00	, 47.14	,	
ffffffff^	fffffff	f^ffffff	f^	
Total	8	70		78
	10.26	89.74		100.00

Statistics for Table of Years_in_house by C18 Statistic DF Value Prob 0.0235 0.8782 Chi-Square 1 Likelihood Ratio Chi-Square 1 0.0235 0.8782 Continuity Adj. Chi-Square 0.0000 1.0000 1 Mantel-Haenszel Chi-Square 0.0232 0.8789 1 Phi Coefficient -0.0174 Contingency Coefficient 0.0174 Cramer's V -0.0174 WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Fisher's Exact Test Cell (1,1) Frequency (F) 4 Left-sided Pr <= F 0.5844 Right-sided Pr >= F 0.7009 Table Probability (P) 0.2853 Two-sided Pr <= P 1.0000 Sample Size = 78 Table of Years_in_house by D19 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree 1-6 , 18 , 19 , , 25.71 , 27.14 , , 48.65 , 51.35 , , 60.00 , 47.50 , fffffffffffffffffffffffff 37 52.86 , 12 , 21 , 33 , 17.14 , 30.00 , 47.14 , >6 , 36.36 , 63.64 , , 40.00 , 52.50 , fffffffffffffffffffffffff 30 70 Total 40 57.14 100.00 42.86 Statistics for Table of Years_in_house by D19 Statistic DF Value Prob 1 1.0749 0.2998 1 1.0795 0.2988 Chi-Square Likelihood Ratio Chi-Square 0.6318 Continuity Adj. Chi-Square 0.4267 1 Mantel-Haenszel Chi-Square 1.0596 0.3033 1 Phi Coefficient 0.1239 Contingency Coefficient 0.1230 Cramer's V 0.1239 Fisher's Exact Test Cell (1,1) Frequency (F) 18 Left-sided Pr <= F 0 8997 Right-sided Pr >= F 0.2136 Table Probability (P) 0.1133 Two-sided Pr <= P 0.3406 Sample Size = 70 Table of Years_in_house by D20 Frequency, Percent , Row Pct Col Pct , Disagree, Agree - , Total , - Stron, Strongly,

, g	ly Disa,	Agree ,	
,g	ree ,	,	
ffffffffff	ffffffff	ffffff^	
1-6,	16,	20,	36
ر	23.19 ,	28.99 ,	52.17
ر	44.44 ,	55.56 ,	
ر	53.33 ,	51.28 ,	
ffffffffff	ffffffff	ffffff^	
>6,	14 ,	19,	33
ر	20.29 ,	27.54 ,	47.83
ر	42.42 ,	57.58 ,	
,	46.67 ,	48.72 ,	
ffffffffff	· ffffffff	fffffff^	
Total	30	39	69
	43.48	56.52	100.00

Statistics for Table of	Years_	in_house by	D20
Statistic	DF	Value	Prob
<i>fffffffffffffffffffffffffffffff</i>	fffffff	ffffffffffff	fffffff
Chi-Square	1	0.0286	0.8657
Likelihood Ratio Chi-Square	1	0.0286	0.8657
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0282	0.8667
Phi Coefficient		0.0204	
Contingency Coefficient		0.0204	
Cramer's V		0.0204	

Table of	Years_in	_house by	D21
Frequency,			
Percent ,			
Row Pct ,			
Col Pct ,	Disagree,	Agree - ,	Total
,	- Stron,	Strongly,	
,	gly Disa,	Agree ,	
,	gree ,	- ,	
ffffffff		fffffff	
1-6,	28,	9,	37
,	37.84 ,	12.16 ,	50.00
,	75.68 ,	24.32 ,	
,	47.46 ,	60.00 ,	
ffffffff	ffffffff^:	fffffff^	
>6,	31,	6,	37
ر	41.89 ,	8.11 ,	50.00
ر	83.78 ,	16.22 ,	
ر	52.54 ,	40.00 ,	
ffffffff	ffffffff?	fffffff	
Total	59	15	74
	79.73	20.27	100.00

Statistics for Table of	Years	_in_house by	D21
Statistic	DF	Value	Prob
<i>ffffffffffffffffffffffffffffffffff</i>	fffff	ffffffffffffff	ffffff
Chi-Square	1	0.7525	0.3857
Likelihood Ratio Chi-Square	1	0.7567	0.3844
Continuity Adj. Chi-Square	1	0.3345	0.5630
Mantel-Haenszel Chi-Square	1	0.7424	0.3889
Phi Coefficient		-0.1008	
Contingency Coefficient		0.1003	
Cramer's V		-0.1008	

```
Fisher's Exact Test
          Cell (1,1) Frequency (F)
                                         28
          Left-sided Pr <= F
                                     0.2821
          Right-sided Pr >= F
                                     0.8765
          Table Probability (P)
                                     0.1586
          Two-sided Pr <= P
                                     0.5642
              Effective Sample Size = 74
                Frequency Missing = 1
           Table of Years_in_house by D22
          Frequency,
          Percent ,
          Row Pct
          Col Pct ,Disagree,Agree - , Total
                  , - Stron, Strongly,
                  ,gly Disa, Agree ,
                   ,gree
          1-6 , 5 , 31 , 36
, 8.20 , 50.82 , 59.02
, 13.89 , 86.11 ,
, 50.00 , 60.78 ,
ffffffffffffffffffff
         >6 , 5 , 20 , 25
, 8.20 , 32.79 , 40.98
, 20.00 , 80.00 ,
, 50.00 , 39.22 ,
ffffffffffffffffffffff
                       10
                                          61
          Total
                                 51
                             83.61
                                     100.00
                     16.39
     Statistics for Table of Years_in_house by D22
Statistic
                                                 Prob
                             DF
                                      Value
1 0.4020
Chi-Square
                                               0.5261
                                     0.3968
                                               0.5287
Likelihood Ratio Chi-Square
                              1
Continuity Adj. Chi-Square
                              1
                                    0.0798
                                               0.7776
Mantel-Haenszel Chi-Square
                                    0.3954
                              1
                                               0.5295
Phi Coefficient
                                    -0.0812
Contingency Coefficient
                                     0.0809
Cramer's V
                                     -0.0812
WARNING: 25% of the cells have expected counts less
          than 5. Chi-Square may not be a valid test.
                Fisher's Exact Test
          Cell (1,1) Frequency (F)
                                          5
          Left-sided Pr <= F
                                     0 3843
          Right-sided Pr >= F
                                     0.8378
          Table Probability (P)
                                     0.2221
          Two-sided Pr <= P
                                     0.7268
             Effective Sample Size = 61
                Frequency Missing = 3
           Table of Years_in_house by D23
          Frequency,
          Percent ,
          Row Pct ,
          Col Pct ,Disagree,Agree - , Total
                  , - Stron, Strongly,
                  ,gly Disa, Agree ,
                   ,gree
         7, 34,
9.46, 45.95,
                                          41
          1-6
                  ,
                                      55.41
                   ,
          , 17.07 , 82.93 ,
, 50.00 , 56.67 ,
ffffffffffffffffffffffffffffffff
                     7, 26, 33
9.46, 35.14, 44.59
21.21, 78.79,
                 ,
          >6
                  ,
```

,

,	, 50.00	43.33	,
fffffff^	fffffff	ſ	•
Total	14	60	74
	18.92	81.08	100.00

Fisher's Exact Test ffffffffffffffffffffffffffffffffffff	Stati Statistic fffffffff Chi-Square Likelihood Continuity Mantel-Hae Phi Coeffi Contingenc Cramer's V	stics f ffffffff Ratio Adj. C enszel C cient cy Coeff	or Table ffffffff Chi-Squa hi-Squar hi-Squar icient	of Y fffff re e e	ears_in_ DF <i>ffffffff</i> 1 1 1	house by Value fffffffff 0.2042 0.2033 0.0235 0.2014 -0.0525 0.0525 -0.0525	/ D23 Prob ffffffff 0.6514 0.6521 0.8782 0.6536
<pre>ffffffffffffffffffffffffffffffffffff</pre>			Fisher's	Exac	t Test		
Cell (1,1) Frequency (F) 7 Left-sided Pr <= F 0.4367 Right-sided Pr >= F 0.7739 Table Probability (P) 0.2106 Two-sided Pr <= P 0.7679 Sample Size = 74 Table of Years_in_house by D24 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron,Strongly, ,gly Disa, Agree , ,gree , , 5, 32, 37 , 6.94, 44.44, 51.39 , 13.51, 86.49 , , 26.32, 60.38 , fffffffffffffffffffffffff >6 , 14 , 21 , 35 , 19.44 , 29.17 , 48.61 , 40.00 , 60.00 , , 73.68 , 39.62 , fffffffffffffffffffffffffffffff Total 19 53 72 26.39 73.61 100.00		ffffff	fffffff	fffff	fffffff	ffffff	
Left-sided Pr <= F 0.4367 Right-sided Pr >= F 0.7739 Table Probability (P) 0.2106 Two-sided Pr <= P 0.7679 Sample Size = 74 Table of Years_in_house by D24 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total		Cell (1	,1) Freq	uency	(F)	7	
<pre>Right-sided Pr >= F 0.7739 Table Probability (P) 0.2106 Two-sided Pr <= P 0.7679 Sample Size = 74 Table of Years_in_house by D24 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , , ffffffffff ffffffff</pre>		Left-si	ded Pr <	= F		0.4367	
Table Probability (P) 0.2106 Two-sided Pr <= P 0.7679 Sample Size = 74 Table of Years_in_house by D24 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron,Strongly, ,gly Disa, Agree , ,gree , ,fffffffffffffffffffffffffff 1-6 , 5 , 32 , 37 , 6.94 , 44.44 , 51.39 , 13.51 , 86.49 , , 26.32 , 60.38 , fffffffffffffffffffffffffff >6 , 14 , 21 , 35 , 19.44 , 29.17 , 48.61 , 40.00 , 60.00 , , 73.68 , 39.62 , fffffffffffffffffffffffffffff Total 19 53 72 26.39 73.61 100.00		Right-s	ided Pr	>= F		0.7739	
Table Probability (P) 0.2106 Two-sided Pr <= P 0.7679 Sample Size = 74 Table of Years_in_house by D24 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gree , , ffffffffffffffffffffffffffffffffff					、	0 0406	
Table of Years_in_house by D24 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron,Strongly, ,gly Disa, Agree , ,gree , ,gree , ,gree , , 5 , 32 , 37 , 6.94 , 44.44 , 51.39 , 13.51 , 86.49 , , 26.32 , 60.38 , fffffffffffffffffffffffff >6 , 14 , 21 , 35 , 19.44 , 29.17 , 48.61 , 40.00 , 60.00 , , 73.68 , 39.62 , fffffffffffffffffffffffffff Total 19 53 72 26.39 73.61 100.00		Tuo cid	robabili	ty (P)	0.2106	
Table of Years_in_house by D24 Frequency, Percent , Row Pct , Col Pct , Disagree, Agree - , Total , - Stron, Strongly, ,gly Disa, Agree , ,gree , ,gree , , 1-6 , 5 , 32 , 37 , 6.94 , 44.44 , 51.39 , 13.51 , 86.49 , , 26.32 , 60.38 , ffffffffffffffffffffffff >6 , 14 , 21 , 35 , 19.44 , 29.17 , 48.61 , 40.00 , 60.00 , , 73.68 , 39.62 , ffffffffffffffffffffffffffff Total 19 53 72 26.39 73.61 100.00		100-510	eu Pr <=	P 5170	- 74	0./6/9	
Table of Years_in_house by D24 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron,Strongly, ,gly Disa, Agree , ,gree , ,fffffffffffffffffffffffffffffffffff			Samhie	3126	- /4		
<pre>// // // // // // // // // // // // //</pre>		Table Frequen Percent Row Pct	of Year cy, ,	s_in_	house by	y D24	
<pre>fifffffff ffffffffffffffffffffffffffff</pre>			, - St ,gly D ,gree	ron,S isa,	trongly Agree	, IOLAI	
1-6 , 5 , 32 , 37 , 6.94 , 44.44 , 51.39 , 13.51 , 86.49 , , 26.32 , 60.38 , fffffffffffffffffffff >6 , 14 , 21 , 35 , 19.44 , 29.17 , 48.61 , 40.00 , 60.00 , , 73.68 , 39.62 , fffffffffffffffffffffff Total 19 53 72 26.39 73.61 100.00		111111	<i>tt tttt</i>	<i>ttt t</i>		72	
, 0.94, 44.44, 51.39 , 13.51, 86.49, , 26.32, 60.38, ffffffffffffffffffff >6, 14, 21, 35 , 19.44, 29.17, 48.61 , 40.00, 60.00, , 73.68, 39.62, ffffffffffffffffffffffffff Total 19 53 72 26.39 73.61 100.00		1-0	,	, د ۵۸		, 57 51 30	
<pre>ffffffffffffffffffffffff >6 , 14 , 21 , 35 , 19.44 , 29.17 , 48.61 , 40.00 , 60.00 , , 73.68 , 39.62 , ffffffffffffffffffffff Total 19 53 72 26.39 73.61 100.00</pre>			, 13. , 26.	51, 32,	86.49	, <u>,</u>	
<pre>>6 , 14 , 21 , 35 , 19.44 , 29.17 , 48.61 , 40.00 , 60.00 , , 73.68 , 39.62 , fffffffffffffffffffff Total 19 53 72 26.39 73.61 100.00</pre>		ffffff	ff^ffff	fff^f	ffffff	^	
, 19.44, 29.17, 48.61 , 40.00, 60.00, , 73.68, 39.62, ffffffffffffffffffff Total 19 53 72 26.39 73.61 100.00		>6	,	14 ,	21	, 35	
, 73.00, 39.02, ffffffffffffffffff Total 19 53 72 26.39 73.61 100.00			, 19. , 40.	44 , 00 ,	29.17	, 48.61 ,	
Total 19 53 72 26.39 73.61 100.00		TTTTTT	, /). , /),	., 00 100	29.02	,	
26.39 73.61 100.00		Total]] <u>]]]]</u>]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	ן זזן J 19	52	70	
20.00 , 5.01 100.00		10101	26	39	73.61	100.00	
			201			200100	

Statistics for Table of	Years	_in_house by	D24
Statistic	DF	Value	Prob
<i>fffffffffffffffffffffffffffffffffffff</i>	fffff	ſſſſſſſ	fffffff
Chi-Square	1	6.4956	0.0108
Likelihood Ratio Chi-Square	1	6.6830	0.0097
Continuity Adj. Chi-Square	1	5.2037	0.0225
Mantel-Haenszel Chi-Square	1	6.4054	0.0114
Phi Coefficient		-0.3004	
Contingency Coefficient		0.2877	
Cramer's V		-0.3004	

Fisher's Exact Test	
fffffffffffffffffffffffffffff	ffffff
Cell (1,1) Frequency (F)	5
Left-sided Pr <= F	0.0107
Right-sided Pr >= F	0.9979
Table Probability (P)	0.0086
Two-sided Pr <= P	0.0157
Sample Size = 72	

Table of Years_in_house by D25 Frequency, Percent , Row Pct ,

Col Pct	,Disagree,A	gree - ,	Total
	, - Stron,S	trongly,	
	,gly Disa,	Agree ,	
	.gree .		
fffffff	f^fffffffffff	, fffffff	
1-6	, 11,	31,	42
	, 13.92 ,	39.24 ,	53.16
	, 26.19 ,	73.81 ,	
	, 52.38 ,	53.45 ,	
fffffff	f^ffffffffff	ffffff^	
>6	, 10,	27,	37
	, 12.66 ,	34.18 ,	46.84
	, 27.03 ,	72.97 ,	
	, 47.62 ,	46.55 ,	
fffffff	f^ffffffffff	ffffff^	
Total	21	58	79
	26.58	73.42	100.00

Statistics for Table of	Years	_in_house by	D25
Statistic	DF	Value	Prob
<i>fffffffffffffffffffffffffffffffffffff</i>	fffff	ſſſſſſſ	fffffff
Chi-Square	1	0.0071	0.9331
Likelihood Ratio Chi-Square	1	0.0071	0.9331
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0070	0.9335
Phi Coefficient		-0.0094	
Contingency Coefficient		0.0094	
Cramer's V		-0.0094	

Factor analysis

		1	The FACTOR Proced	lure		
		Input Data 1	Гуре	Raw Data	a	
		Number of Re	ecords Read	86	9	
		Number of Re	cords Used	71	L	
		N for Signif	Ficance Tests	7:	1	
				=1 01		
	Me	ans and Standa	ard Deviations fr	rom 71 Observat:	ions	
		Variable	Mean	5T0 Dev		
		A1 A2	2 5070197	1.3000113		
		AZ A3	3 2252521	1.4/234/4		
		Δ4	3 4366197	1 3280748		
		A5	3,9436620	1,2748930		
		B6	2,9859155	1.3362309		
		B7	3.1830986	1.4472620		
		B8	3.3380282	1.4035024		
		B9	3.4084507	1.2714161		
		B10	3.7042254	1.1758810		
		B11	3.9436620	1.1069562		
		B12	3.7042254	1.5061243		
		B13	3.2112676	1.3929977		
		C14	3.4788732	1.3924198		
		C15	4.2253521	1.1109479		
		C16	4.4788732	0.8256453		
		C17	4.4366197	0.8901428		
		C18	4.4225352	0.9359788		
		D19	3.2394366	1.1767363		
		D20	3.0000000	1.3201731		
		D21	2.1126/61	1.34/4//0		
		D22	3.6901408	1.0224837		
		D23	3.9295//5	1.0996616		
		D24 D25	3 85015/0	1 2560325		
A1	A2	Initial Fac Prior Com A:	ctor Method: Prir nmunality Estimat 3 A4	ncipal Factors ces: SMC A5	B6	Β7
0.45634130	0.58583135	0.50155067	0.54091258	0.58345879	0.57775304	0.64073092
B8	B9	B16) B11	B12	B13	C14
0.48824522	0.28630832	0.48698364	0.45915130	0.33752869	0.36022802	0.39977858
C15	C16	0.50612001		D19	D20	D21
0.64164232	0.53612160	0.5208510	L 0.38/11/26	0.30382178	0.32263491	0.24121363
	0 1761	7510 0.45	UZS 7435287 0.50	D24 0301030 0 1	220	
	0.4/04	/515 0.4/	455287 0.50		52422250	
Figenval	ues of the R	educed Correla	ation Matrix: Tot	$a_1 = 11.712453$	8 Average = 6	9,46849813
8		Eigenvalue	Difference F	Proportion Cu	umulative	
	1	2.68477551	0.35305562	0.2292	0.2292	
	2	2.33171990	0.75778073	0.1991	0.4283	
	3	1.57393917	0.25896160	0.1344	0.5627	
	4	1.31497757	0.13570194	0.1123	0.6750	
	5	1.17927563	0.11356886	0.1007	0.7756	
	6	1 06570677				
	_	1.005/00//	0.25287569	0.0910	0.8666	
	7	0.81283108	0.25287569 0.09096322	0.0910 0.0694	0.8666 0.9360	
	7 8	0.81283108 0.72186786	0.25287569 0.09096322 0.17286947	0.0910 0.0694 0.0616	0.8666 0.9360 0.9977	
	7 8 9	0.81283108 0.72186786 0.54899839	0.25287569 0.09096322 0.17286947 0.18691838	0.0910 0.0694 0.0616 0.0469	0.8666 0.9360 0.9977 1.0445	
	7 8 9 10	0.81283108 0.72186786 0.54899839 0.36208001 0.30703372	0.25287569 0.09096322 0.17286947 0.18691838 0.05504629 0.005504629	0.0910 0.0694 0.0616 0.0469 0.0309 0.0309	0.8666 0.9360 0.9977 1.0445 1.0755 1.1017	
	7 8 9 10 11	0.81283108 0.72186786 0.54899839 0.36208001 0.30703372 0.30087629	0.25287569 0.09096322 0.17286947 0.18691838 0.05504629 0.00615752 0.12358155	0.0910 0.0694 0.0616 0.0469 0.0309 0.0262 0.0257	0.8666 0.9360 0.9977 1.0445 1.0755 1.1017 1 1274	
	7 8 9 10 11 12 13	0.81283108 0.72186786 0.54899839 0.36208001 0.30703372 0.30087620 0.17729464	0.25287569 0.09096322 0.17286947 0.18691838 0.05504629 0.00615752 0.12358155 0.04155525	0.0910 0.0694 0.0616 0.0469 0.0309 0.0262 0.0257 0.0151	0.8666 0.9360 0.9977 1.0445 1.0755 1.1017 1.1274 1.1425	
	7 8 9 10 11 12 13 14	0.81283108 0.72186786 0.54899839 0.36208001 0.30703372 0.30087620 0.17729464 0.13573939	0.25287569 0.09096322 0.17286947 0.18691838 0.05504629 0.00615752 0.12358155 0.04155525 0.08707426	0.0910 0.0694 0.0616 0.0469 0.0309 0.0262 0.0257 0.0151 0.0116	0.8666 0.9360 0.9977 1.0445 1.0755 1.1017 1.1274 1.1425 1.1541	
	7 8 9 10 11 12 13 14 15	0.81283108 0.72186786 0.54899839 0.36208001 0.30703372 0.30087620 0.17729464 0.13573939 0.04866513	0.25287569 0.09096322 0.17286947 0.18691838 0.05504629 0.00615752 0.12358155 0.04155525 0.08707426 0.61044927	0.0910 0.0694 0.0616 0.0469 0.0309 0.0262 0.0257 0.0151 0.0116 0.0042	0.8666 0.9360 0.9977 1.0445 1.0755 1.1017 1.1274 1.1425 1.1541 1.1582	
	7 8 9 10 11 12 13 14 15 16	0.81283108 0.72186786 0.54899839 0.36208001 0.30703372 0.30087620 0.17729464 0.13573939 0.04866513 0.03821586	0.25287569 0.09096322 0.17286947 0.18691838 0.05504629 0.00615752 0.12358155 0.04155525 0.08707426 0.01044927 0.08970316	0.0910 0.0694 0.0616 0.0469 0.0309 0.0262 0.0257 0.0151 0.0116 0.0042 0.0033	0.8666 0.9360 0.9977 1.0445 1.0755 1.1017 1.1274 1.1425 1.1541 1.1582 1.1615	
	7 8 9 10 11 12 13 14 15 16 17	0.81283108 0.72186786 0.54899839 0.36208001 0.30703372 0.30087620 0.17729464 0.13573939 0.04866513 0.03821586 05148730	0.25287569 0.09096322 0.17286947 0.18691838 0.05504629 0.00615752 0.12358155 0.04155525 0.08707426 0.01044927 0.08970316 0.05588462	0.0910 0.0694 0.0616 0.0469 0.0309 0.0262 0.0257 0.0151 0.0116 0.0016 0.0033 -0.0044	0.8666 0.9360 0.9977 1.0445 1.0755 1.1017 1.1274 1.1425 1.1541 1.1582 1.1615 1.1571	
	7 8 9 10 11 12 13 14 15 16 17 18	0.81283108 0.72186786 0.54899839 0.36208001 0.30703372 0.30087620 0.17729464 0.13573939 0.04866513 0.03821586 05148730 10737192	0.25287569 0.09096322 0.17286947 0.18691838 0.05504629 0.00615752 0.42358155 0.04155525 0.08707426 0.01044927 0.08970316 0.05588462 0.01462281	0.0910 0.0694 0.0616 0.0469 0.0309 0.0262 0.0257 0.0151 0.0116 0.0042 0.0033 -0.0044 -0.0092	0.8666 0.9360 0.9977 1.0445 1.0755 1.1017 1.1274 1.1425 1.1541 1.1582 1.1615 1.1571 1.1479	
	7 8 9 10 11 12 13 14 15 16 17 18 19	0.81283108 0.72186786 0.54899839 0.36208001 0.30703372 0.30087620 0.17729464 0.13573939 0.04866513 0.03821586 05148730 10737192 12199472	0.25287569 0.09096322 0.17286947 0.18691838 0.05504629 0.00615752 0.12358155 0.04155525 0.08707426 0.01044927 0.08970316 0.05588462 0.01462281 0.08717227	0.0910 0.0694 0.0616 0.0309 0.0262 0.0257 0.0151 0.0116 0.0042 0.0033 -0.0044 -0.0092 -0.0104	0.8666 0.9360 0.9977 1.0445 1.0755 1.1017 1.1274 1.1425 1.1541 1.1582 1.1615 1.1571 1.1479 1.1375	
	7 8 9 10 11 12 13 14 15 16 17 18 19 20	0.81283108 0.72186786 0.54899839 0.36208001 0.30703372 0.30087620 0.17729464 0.13573939 0.04866513 0.03821586 05148730 10737192 12199472 20916700	0.25287569 0.09096322 0.17286947 0.18691838 0.05504629 0.00615752 0.12358155 0.04155525 0.08707426 0.01044927 0.08970316 0.05588462 0.01462281 0.08717227 0.01555924	0.0910 0.0694 0.0616 0.0469 0.0209 0.0262 0.0257 0.0151 0.0116 0.0042 0.0033 -0.0044 -0.0092 -0.0104 -0.0179	0.8666 0.9360 0.9977 1.0445 1.0755 1.1017 1.1274 1.1274 1.12425 1.1541 1.1582 1.1541 1.1571 1.1479 1.1375 1.1197	
	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	0.81283108 0.72186786 0.54899839 0.36208001 0.30703372 0.30087620 0.17729464 0.13573939 0.04866513 0.03821586 05148730 1209472 220916700 22472624	0.25287569 0.09096322 0.17286947 0.18691838 0.05504629 0.00615752 0.12358155 0.04155525 0.08707426 0.01044927 0.08970316 0.05588462 0.01462281 0.08717227 0.01555924 0.03849721	0.0910 0.0694 0.0616 0.0469 0.0309 0.0262 0.0257 0.0151 0.0116 0.0042 0.0033 -0.0044 -0.0092 -0.0104 -0.0179 -0.0192	0.8666 0.9360 0.9977 1.0445 1.0755 1.1017 1.1274 1.1274 1.125 1.1541 1.1582 1.1511 1.1571 1.1571 1.1479 1.1375 1.1197 1.1005	
	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	0.81283108 0.72186786 0.54899839 0.36208001 0.30703372 0.30087620 0.17729464 0.13573939 0.04866513 0.03821586 05148730 10737192 20916700 22472624 26322344	0.25287569 0.09096322 0.17286947 0.18691838 0.05504629 0.00615752 0.12358155 0.04155525 0.08707426 0.01044927 0.08970316 0.05588462 0.01462281 0.08717227 0.01555924 0.03849721 0.01058111	0.0910 0.0694 0.0616 0.0309 0.0262 0.0257 0.0151 0.0116 0.0042 0.0033 -0.0044 -0.0092 -0.0104 -0.0179 -0.0192 -0.0225	0.8666 0.9360 0.9977 1.0445 1.0755 1.1017 1.1274 1.1274 1.1541 1.1582 1.1615 1.1571 1.1571 1.1479 1.1375 1.1197 1.1005 1.0780	
	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	0.81283108 0.72186786 0.54899839 0.36208001 0.30703372 0.30087620 0.17729464 0.13573939 0.04866513 0.03821586 05148730 10737192 12199472 20916700 22472624 26322344 27380455 05145	0.25287569 0.09096322 0.17286947 0.18691838 0.05504629 0.00615752 0.12358155 0.04155525 0.08707426 0.01044927 0.08970316 0.05588462 0.01462281 0.08717227 0.01555924 0.03849721 0.03849721 0.01058111 0.04055001	0.0910 0.0694 0.0616 0.0469 0.0309 0.0262 0.0257 0.0151 0.0116 0.0042 0.0033 -0.0044 -0.0092 -0.0104 -0.0179 -0.0192 -0.0225 -0.0234	0.8666 0.9360 0.9977 1.0445 1.0755 1.1017 1.1274 1.1425 1.1541 1.1582 1.1615 1.1571 1.1479 1.1375 1.1197 1.1005 1.0780 1.0546	
	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 24	0.81283108 0.72186786 0.54899839 0.36208001 0.30703372 0.30087620 0.17729464 0.13573939 0.04866513 0.03821586 05148730 05148730 12199472 20916700 22472624 26322344 27380455 31436456 31436456	0.25287569 0.09096322 0.17286947 0.18691838 0.05504629 0.00615752 0.12358155 0.04155525 0.08707426 0.01044927 0.08970316 0.05588462 0.01462281 0.08717227 0.01555924 0.03849721 0.01058111 0.04056001 0.01103928	0.0910 0.0694 0.0616 0.0309 0.0262 0.0257 0.0151 0.0116 0.0042 0.0033 -0.0044 -0.0092 -0.0104 -0.0179 -0.0192 -0.0225 -0.0225 -0.0234 -0.0268	0.8666 0.9360 0.9977 1.0445 1.0755 1.1017 1.1274 1.1425 1.1541 1.1582 1.1615 1.1571 1.1479 1.1375 1.1197 1.1005 1.0780 1.0546 1.0278	

6 factors will be retained by the NFACTOR criterion.

Initial Factor Method: Principal Factors Factor Pattern

		Factor Pattern					
		Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
C17	C17	62 *	38	2	-18	-13	8

C15 C15 B7 B7 B6 B6 C16 C16 A2 A2 B8 B8 A3 A3 D22 D22 D24 D24 D23 D23 D25 D25	61 * 53 * 51 * 48 * 47 * 37 36 9 -26 -37	34 -16 -4 29 -8 -32 -6 26 58 * 51 * 48 *	-16 50 * 4 5 -33 29 -30 -13 -19 -13 -5	-35 20 23 -29 33 5 -19 13 5 -8 17	0 23 17 -23 -30 18 15 30 29 14 30	3 -20 -49 * 4 25 -11 35 -10 16 -5 7	
C18 C18 D20 D20 B9 B9 A5 A5 B12 B12 D19 D19 D21 D21 B11 B11	4 -1 9 -28 5 22 -7 -16 -13	37 -27 -30 20 7 15 29 -17 27	1 -15 -5 57 * 42 * 0 -5 -16 36	-2 12 4 -16 10 52 * 33 24 5	2 -8 -9 16 -17 -3 3 21 -42 *	-3 26 5 19 18 20 -11 14 2	
B10 B10 A4 A4 B13 B13	0 14 15	-13 -17	21 42 * 12	-24 35	-44 * 33 -1	-6 42 * 37	
Factor1 2.6847755	Factor2 2.3317199	Variance E Facto 1.5739	xplained by E or3 F 392 1.3	ach Factor actor4 149776 1	Factor5 .1792756	Factor6 1.0657068	
A1 0.38869685 B8 0.45191389 C15 0.63445632	Final A2 0.59635284 0 B9 0.11426121 0 C16 0.44738740 0 D22 0.33524597	Communality A3 .40911224 B10 .44565775 C17 .58956907 0.37982	Estimates: Tr A4 0.55777806 B11 0.39751167 C18 0.13825322 D23 245 0.48	otal = 10.1503 A5 0.52678754 B12 0.25960130 D19 0.21240654 D24 569678 0.	95 B6 0.58196032 B13 0.32488572 D20 0.18371507 D25 50276277	B7 0.68527977 C14 0.30309800 D21 0.19818182	
1 2 3 4 5 6	1 0.73194 0.38586 -0.13423 -0.47116 -0.22746 0.15371	Prerota Orthogonal 2 -0.14426 0.84403 -0.06462 0.27607 0.43173 -0.00315	tion Method: Transformati 3 0.57687 -0.15469 0.41472 0.32108 0.34831 -0.49688	Varimax on Matrix 4 -0.12637 0.31488 0.60296 0.18911 -0.68925 -0.10244	5 0.30264 -0.11401 -0.12454 0.67940 -0.12444 0.63469	6 -0.05576 -0.05140 0.65325 -0.31837 0.38730 0.56227	
C15 C15 C17 C17 C16 C16 D21 D21 D25 D25 D24 D24 D23 D23 C14 C14 D19 D19 D22 D22 C18 C18 B9 B9 B7 B7 B6 B6 B8 B8 B11 B11 B10 B10 B12 B12 A3 A3 A2 A2 A1 A1 B13 B13 D20 D20 A4 A4 A5 A5 Factor1 2.1919689	Factor1 77 * 73 * 65 * -30 -22 24 2 -1 -11 24 17 -4 8 13 10 3 16 3 16 3 40 31 1 -8 -9 10 -14 Factor2 2.0435915 Final	Rotat Factor2 11 12 -1 4 64 * 62 * 52 * 46 * 36 35 31 -29 -9 3 -27 6 20 -2 -7 -15 22 -8 -22 -8 20 Variance E Fact 1.7616	ed Factor Pat Factor3 11 16 6 -5 -19 -8 -24 11 7 31 -1 3 78 * 69 * 57 * -11 -6 8 -8 2 16 9 -15 10 -5 xplained by E or3 F. 79 1.4 Estimates: T	Tern Factor4 -14 10 16 -24 -2 -15 1 21 12 -21 10 -7 8 -8 -9 61 * 60 * 39 -42 * -4 12 -12 28 actor4 647293 1 octal = 10.1503	Factor5 -5 9 -4 22 -4 9 -23 18 10 9 -6 14 10 -2 8 -1 3 16 23 61 * 54 * 52 * 30 61 * 54 * 52 * 30 7 -19 Factor5 .3551543	Factor6 -3 1 2 0 7 3 -4 7 -20 -10 -2 -4 22 -28 18 6 -13 27 10 -32 -9 18 -1 71 * 59 * Factor6 1.3332707	
A1 0.38869685 B8	A2 0.59635284 0 B9	A3 .40911224 B10	A4 0.55777806 B11	A5 0.52678754 B12	B6 0.58196032 B13	B7 0.68527977 C14	

0.45191389	0.11426121	0.44565775	0.39751167	0.25960130	0.32488572	0.30309800
C15	C16	C17	C18	D19	D20	D21
0.63445632	0.44738740	0.58956907	0.13825322	0.21240654	0.18371507	0.19818182
	D	22	D23	D24	D25	
	0.335245	97 0.3798	32245 0.4	8569678 0	.50276277	

Scoring Coefficients Estimated by Regression

-		Squared Mu	ltiple Correla	tions of the	Variables with	Each Factor	
Fa 0 823	actor1 376704	Facto 0 784710	19 6 7878	tor3 3291 0'	Factor4 72780379 0	Factor5	Factor6 0 73933763
0.02	570704	0.784710	0.7878	5251 0.	12/803/9 0	./0/19190	0.73933703
			Standardiz	ed Scoring Co	pefficients		
		Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
C15	C15	0.37561	0.02955	-0.02809	-0.12216	-0.11141	-0.01479
C17	C17	0.29635	0.04835	0.03787	0.10128	0.03187	0.04606
C16	C16	0.21855	-0.05858	-0.04393	0.10/46	-0.04599	0.01649
D21 D25	D21 D25	-0.07196	0.05501	-0.00551	-0.08449	0.10019	0.01017
D23	D23	0.10770	0.29501	-0.04331	-0.05041	0.03072	0.04745
D23	D23	0.03258	0.18727	-0.03460	-0.02632	-0.11024	-0.00179
C14	C14	-0.03919	0.17303	0.06551	0.07214	0.10026	0.01870
D19	D19	-0.04604	0.10647	0.03214	0.03464	0.04515	-0.07832
D22	D22	-0.00049	0.16718	0.13100	-0.11073	0.05072	-0.02661
C18	C18	0.03944	0.08940	-0.02064	0.02259	-0.02623	-0.01663
B9	B9	-0.00167	-0.06617	0.00293	-0.00494	0.05736	-0.00874
B7	B7	-0.04973	0.00600	0.46921	0.09222	0.01718	0.14336
B6	B6	-0.01285	0.06300	0.32920	-0.04993	-0.09480	-0.22104
B8 D11	B8 D11	0.00187	-0.08930	0.1/623	-0.042//	-0.009/3	0.08245
BII B10	BII B10	0.02227	0.03131	-0.00313	0.20555	0.00831	-0 0801/34
B10 B12	B12	0.04034	-0 01182	0.0173	0.33700	0.04170	0.00044
Δ3	Δ3	0.14121	-0.02930	-0.09549	-0.22963	0.09366	0.09307
A2	A2	0.11203	-0.05123	-0.06255	0.03525	0.39629	-0.15624
A1	A1	-0.03877	0.08648	0.03075	0.03374	0.27936	-0.01900
B13	B13	-0.04811	-0.00484	0.00039	0.00878	0.22585	0.07949
D20	D20	-0.02746	-0.05674	-0.05627	-0.01675	0.14588	0.01504
A4	A4	0.03428	-0.03368	-0.02194	-0.09184	0.10183	0.42897
A5	A5	-0.00551	0.10771	0.00594	0.12823	-0.07331	0.31436
		Factor1	Eactor2	Factor3	Factor4	Factor5	Factor6
C15	C15	100 *	0	0	-1	0	0
C17	C17	95 *	1	1	0	0	0
C16	C16	100 *	0	0	1	0	0
D21	D21	-33	0	0	-18	15	0
D25	D25	-3	100 *	-2	0	0	0
D24	D24	5	96 *	0	-1	0	0
D23	D23	0	80 *	-7	0	-6	0
C14	C14	0	77 *	1	6	5	0
D19	D19	-2	63 *	0	2	1	-10
D22	D22	8	28	18	-5	0	-1
C18		11	/5 * 07 *	0	2	-1	0
B7	B7	0	-87	100 *	-1	9	2
B6	B6	1	0	89 *	a	0	-6
B8	B8	0	-8	73 *	0	õ	2
B11	B11	0	0	-1	100 *	0	0
B10	B10	2	4	0	78 *	0	-1
B12	B12	0	0	0	48 *	4	18
A3	A3	27	0	0	-30	6	0
A2	A2	7	-1	0	0	64 *	-8
A1	A1	0	6	2	1	84 *	0
B13	B13	0	0	0	0	100 *	3
D20	D20	-1	-18	-5	-3	45 *	0
A4	A4	0	0	0	0	0	100 *
AD	AS	-1	5	0	0	-2	62 **
			Procrustea	n Transforma	tion Matrix		
		1	2	3	4	5	6
	1	1.14373425	-0.0673215	-0.1216723	0.07081482	-0.0730533	0.04453124
	2	-0.0292732	1.47059968	0.04726441	-0.0497447	0.01191377	0.02825909
	3	-0.12/5659	0.06184607	1.14916485	-0.0513303	-0.093/8/4	-0.024976
	4	0.0092/904	-0.1055057	-0.0229071	1.03023000	1 22066441	0.02007027
	6	0.07444524	0.06699064	-0.0306245	-0.0313994	0.02682786	0.03997237
	0	0.0/444524	0.00055004	0.0500245	0.0515554	0.02002/00	0.92017020
			Rotation M	ethod: Proma	x (power = 3)		
		1	Normalized Ob	lique Transfo	ormation Matrix ء	E	E
	1	0.65219	-0.12932	5 0.48086	4 -0,08345	0,21305	-0 02505
	2	0.42776	0.78635	-0.15870	0.31200	-0.10309	-0.01400
	3	-0.08923	-0.08597	0.42570	0.56428	-0.10188	0.62327
	4	-0.62646	0.31076	0.32310	0.17518	0.72045	-0.31935
	5	-0.29165	0.55295	0.42228	-0.77980	-0.17452	0.39298
	6	0.17433	0.03604	-0.61846	-0.05427	0.69902	0.61986

			Inter-Fa	ctor Correlat	ions		
		Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
Fact	or1	100 *	4	22	-13	22	-12
Fact	or2	4	100 *	-7	15	-7	-8
Fact	or3	22	-7	100 *	2	21	3
Fact	or4	_13	15	200	100 *	_13	6
Eact	onE	10		2	12	100 *	0
Fact	01.2	22	-/	21	-15	100 *	-0
Fact	ore	-12	-8	3	6	-8	100 *
		Rotated Facto	or Pattern (St	andardized Re	egression Coe	efficients)	
		Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
C15	C15	78 *	9	4	-10	-11	1
C17	C17	73 *	9	8	15	4	5
C17	C1/	(0 *	5	1	20		1
C10	C16	68 *	-5	-1	20	-/	4
D21	D21	- 34	9	-4	-26	23	0
D25	D25	-21	66 *	-14	-6	0	8
D24	D24	23	64 *	-9	-16	8	7
E20	D23	6	50 *	-20	-1	-21	-3
C1 4	C1 4	0	50 AC *	20	20	21	5
C14	C14	-4	40 **	10	20	20	0
D22	D22	18	38	31	-23	4	-8
D19	D19	-15	35	9	11	11	-20
C18	C18	19	29	-1	10	-7	-1
B9	B9	-6	-28	1	-6	13	-5
70	70	0	20	70 *	5	15	20
D7	D7	0	-0	70 .	5	4	20
B6	B6	4	4	/1 *	-10	-10	-30
B8	B8	4	-23	56 *	-10	3	17
B11	B11	9	-2	-13	63 *	3	5
B10	B10	19	12	-8	62 *	7	-13
D10	D10	15	12	4	40	10	27
DIZ	DIZ	4	-4	4	40	19	27
A3	A3	38	-3	-15	-38	20	14
A2	A2	23	-15	-8	2	60 *	-29
A1	A1	-7	24	12	13	56 *	-6
R13	B13	-14	-1	3	5	55 *	19
D10	D10	11		10	10	22	10
D20	D20	-11	-20	-18	-10	32	0
A4	A4	13	-3	6	-14	6	73 *
A5	A5	-6	19	-2	25	-15	59 *
			Reference	Axis Correla	ations		
		Eactor1	Eactor?	Eacton?	Eacton4	EactonE	Eactone
		Factori	Factorz	Factors	Factor4	Factors	Factore
Fact	or1	100 *	-8	-20	13	-16	11
Fact	or2	-8	100 *	8	-16	5	8
Fact	or3	-20	8	100 *	-8	-18	-6
Fact	004	10	16	_ 8	100 *	11	-4
Edit	111.7	15	- 10	=/1			
Fact	01'4 00E	13	-10	-0	11	100 *	4
Fact	or5	-16	-10	-18	11	100 *	6
Fact Fact	or5 or6	-16 11	-18 5 8	-18 -6	100 11 -4	100 * 6	6 100 *
Fact Fact	or5 or6	-16 11	5	-18 -6	11 -4	100 * 6	6 100 *
Fact Fact	or5 or6	-16 11	5 8 Rotation Met	-18 -6 hod: Promax (11 -4 (power = 3)	100 * 6	6 100 *
Fact Fact	or5 or6	13 -16 11 Refei	5 8 Rotation Met rence Structur	-18 -6 hod: Promax (e (Semipartia	11 -4 (power = 3)	100 * 6	6 100 *
Fact Fact	or5 or6	13 -16 11 Refer	Rotation Met Fance Structur	-18 -6 hod: Promax (e (Semipartia Factor3	11 -4 (power = 3) al Correlation	100 * 6 ons)	6 100 *
Fact Fact	or5 or6	13 -16 11 Refei Factor1	5 8 Rotation Met Pence Structur Factor2	-18 -6 hod: Promax (e (Semipartia Factor3	11 -4 (power = 3) al Correlation Factor4	00 * 6 ons) Factor5	6 100 * Factor6
Fact Fact C15	or5 or6	-16 11 Refer Factor1 74 *	Rotation Met rence Structur Factor2 9	-18 -6 hod: Promax (e (Semipartia Factor3 4	11 -4 (power = 3) al Correlation Factor4 -9	00 * 6 ons) Factor5 -11	6 100 * Factor6 1
Fact Fact C15 C17	014 or5 or6 C15 C17	13 -16 11 Factor1 74 * 69 *	Figure 2015 5 8 Rotation Met rence Structur Factor2 9 9 9	-18 -6 hod: Promax (e (Semipartia Factor3 4 8	100 11 -4 (power = 3) al Correlatio Factor4 -9 14	00 * 6 5 Factor5 -11 4	6 100 * Factor6 1 5
Fact Fact Fact C15 C17 C16	C15 C17 C16	-16 11 Factor1 69 * 64 *	Figure 2 5 8 Rotation Met rence Structur Factor2 9 9 -5	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1	100 11 -4 (power = 3) 11 Correlation Factor4 -9 14 20	100 * 6 ons) Factor5 -11 4 -7	6 100 * Factor6 1 5 4
Fact Fact C15 C17 C16 D21	C15 C15 C17 C16 D21	-16 11 Factor1 74 * 69 * 64 * -33	Figure 2 Structur Factor2 9 9 -5 9	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4	100 11 -4 (power = 3) ol Correlatio Factor4 -9 14 20 -25	100 * 6 ons) Factor5 -11 4 -7 22	6 100 * Factor6 1 5 4 0
Fact Fact Fact C15 C17 C16 D21 D25	C15 C15 C17 C16 D21 D25	13 -16 11 Factor1 74 * 69 * 64 * -33 -20	5 8 Rotation Met Fence Structur Factor2 9 9 -5 9 64 *	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13	100 11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6	100 * 6 ons) Factor5 -11 4 -7 22 0	6 100 * Factor6 1 5 4 0 8
Fact Fact C15 C17 C16 D21 D25 D24	C15 C15 C17 C16 D21 D25 D24	-16 11 Factor1 74 * 69 * 64 * -33 -20 22	Figure 2 for the second	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9	11 -4 (power = 3) 11 Correlation Factor4 -9 14 20 -25 -6 -15	100 * 6 ons) Factor5 -11 4 -7 22 0 8	6 100 * Factor6 1 5 4 0 8 7
Fact Fact C15 C17 C16 D21 D25 D24	C15 C15 C17 C16 D21 D25 D24	-16 11 Factor1 74 * 69 * 64 * -33 -20 22	Factor2 Factor2 Factor2 Factor2 Factor3 Fac	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -1 -4 -13 -9 10	11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6 -15	100 * 6 ons) Factor5 -11 4 -7 22 0 8	6 100 * Factor6 1 5 4 0 8 7 2
Fact Fact C15 C17 C16 D21 D25 D24 D23	C15 C17 C16 D21 D25 D24 D23	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6	5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 *	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19	100 11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6 -15 -1	100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20	6 100 * Factor6 1 5 4 0 8 7 -3
C15 C17 C16 D21 D25 D24 D23 C14	C15 C15 C17 C16 D21 D25 D24 D23 C14	-13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3	5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 *	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10	11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6 -15 -1 19	100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19	6 100 * Factor6 1 5 4 0 8 7 -3 8
C15 C17 C16 D21 D25 D24 D23 C14 D22	C15 C15 C17 C16 D21 D25 D24 D23 C14 D22	-13 -16 11 Factor1 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17	5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29	130 11 -4 (power = 3) 61 Correlatic Factor4 -9 14 20 -25 -6 -15 -1 19 -22	100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4	6 100 * Factor6 1 5 4 0 8 7 -3 8 -8
C15 C17 C16 D21 D25 D24 D23 C14 D22 D19	C15 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14	-10 5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -1 -4 -13 -9 -19 10 29 8	100 11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11	6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -20
Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18	C15 or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17	5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1	100 11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6	6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -20 -1
C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 P9	C15 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 5	5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 29	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1	130 11 -4 (power = 3) el Correlatio Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 5	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 12	6 100 * Factor6 1 5 4 0 8 7 -3 8 -8 -20 -1 5
Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9	C15 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 -2	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 1 29	100 11 -4 (power = 3) 11 Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 -5	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13	6 100 * Factor6 1 5 4 0 8 7 -3 8 -20 -1 -5
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7	C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0	5 8 Rotation Met Fence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -28 -6	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 1 74 *	100 11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4	6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -20 -1 -5 20
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6	C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4	5 8 Rotation Met rence Structur Factor2 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -28 -6 4	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 *	11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9	100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9	6 100 * Factor6 1 5 4 0 8 7 -3 8 -8 -20 -1 -5 20 -29
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8	C15 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B8	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4	-10 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 *	100 11 -4 (power = 3) 11 Correlatic Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10	100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3	6 100 * Factor6 1 5 4 0 8 7 -3 8 -8 -20 -1 -5 20 -29 16
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11	C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B8 B11	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9	5 8 Rotation Met Frence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 1 74 * 68 * 53 * -12	100 11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 *	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3	6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -3 8 -3 8 -20 -1 -5 20 -29 16 5
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10	C15 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B1 B10	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18	-10 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8	11 -4 (power = 3) al Correlatio Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -22 11 9 -5 5 -9 -10 61 * 60 *	100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 5	6 100 * Factor6 1 5 4 0 8 7 -3 8 -8 -20 -1 -5 20 -29 16 5 -13
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12	C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D23 C14 B9 B7 B6 B8 B11 B10 B9	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 4	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4	100 11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 20	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 6	6 100 * Factor6 1 5 4 0 8 7 -3 8 -7 -3 8 -8 -20 -1 -5 20 -29 16 5 -13 27
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12	C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 9 18 4 -15 -15 -15 -15 -15 -15 -15 -15	5 8 Rotation Met Fence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -2	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4	100 11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18	6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -20 -1 -5 20 -29 16 5 -13 27
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3	C15 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36	-10 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15	130 11 -4 (power = 3) el Correlatio Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19	6 100 * Factor6 1 5 4 0 8 7 -3 8 -8 -20 -1 -5 20 -29 16 5 -13 27 14
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2	C15 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D23 C14 B9 B7 B6 B8 B11 B10 B12 A3 A2	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7	100 11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 3 6 18 19 57 *	6 100 * Factor6 1 5 4 0 8 7 -3 8 8 -20 -1 -5 20 -29 16 5 -13 27 14 -28
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1	C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 9 18 4 36 21 -7	-10 5 8 Rotation Met Fence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -2 12 -4 -3 -15 24	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11	100 11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 *	6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13	C15 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 R13	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13	-10 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -11 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3	130 11 -4 (power = 3) el Correlatio Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 *	6 100 * Factor6 1 5 4 0 8 7 -3 8 -7 -3 8 -8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D22	C15 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D23 C14 D23 C14 B8 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 C12 C15 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 D21 D25 C17 C16 C17 C16 C17 C16 C17 C16 D21 D25 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 D21 D25 C17 C16 C17 C18 C17 C18 C17 C18 C18 C17 C18 C18 C17 C18 C18 C18 C18 C18 C18 C18 C18 C18 C18	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 10	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -2	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3	100 11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -0 -15 -1 -1 -22 -1 -1 -22 -1 -22 -1 -22 -1 -22 -1 -22 -1 -22 -25 -6 -15 -1 -1 -22 -27 -5 -5 -1 -1 -22 -1 -22 -1 -3 -22 -1 -1 -22 -1 -22 -1 -22 -1 -1 -22 -1 -22 -1 -22 -1 -22 -1 -22 -1 -22 -1 -22 -1 -22 -1 -22 -1 -22 -1 -22 -1 -22 -1 -22 -37 -22 -37 -22 -37 -37 -22 -37 -37 -37 -22 -37 -37 -22 -37 -37 -22 -37 -37 -37 -22 -37 -37 -37 -22 -37 -37 -37 -37 -37 -22 -37 -37 -37 -37 -37 -37 -37 -37	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 *	Factor6 100 * Factor6 1 5 4 0 8 7 -3 8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 2
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20	C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 9 18 4 36 21 -7 -13 -10	5 8 Rotation Met Fence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -2 12 -4 -3 -15 24 -4 -19	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18	100 11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31	6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4	C15 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D23 C14 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6	130 11 -4 (power = 3) 11 Correlation Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -22 11 9 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6	6 100 * Factor6 1 5 4 0 8 7 -3 8 -8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0 72 *
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D24 A5	C15 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D23 C14 D23 C14 B3 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 9 18 4 36 21 -7 -13 -10 12 -6	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2	100 11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14	Factor6 100 * Factor6 1 5 4 0 8 7 -3 8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0 72 * 58 *
C15 Fact Fact C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5	C15 or6 C15 C17 C16 D21 D25 D24 D23 C14 D25 D24 D23 C14 D25 D24 D29 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 9 18 4 36 21 -7 -13 -10 12 -6	-16 5 8 Rotation Mett Fence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -2 12 -4 -3 -15 24 -4 -19 -3 19	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2	100 11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24	11 100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14	6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0 72 * 58 *
C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5	C15 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D23 C14 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance Ex	-10 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19 scalared by East	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Eactor Els	11 -4 (power = 3) al Correlatio Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 22 * 31 6 -14 here Eactors	6 100 * Factor6 1 5 4 0 8 7 -3 8 -7 -3 8 -8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0 72 * 58 *
C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5	C15 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D25 D24 D23 C14 D25 D24 D23 C14 D25 D24 D23 C14 D25 D24 D25 D24 D25 D24 D25 D24 D25 D24 D25 D24 D25 D24 D25 D24 D25 C17 C16 C17 C16 D25 D24 D25 D25 D25 D25 D25 D25 D25 D25 D25 D25	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance E:	-10 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -4 -3 -15 24 -4 -19 -3 19 scplained by Ea	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Elif	11 -4 (power = 3) al Correlatio Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factor5	6 100 * Factor6 1 5 4 0 8 7 -3 8 8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0 72 * 58 *
C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 Fact	C15 or6 Or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 C17 C16 D25 D24 D25 D25 D24 D25 D24 D25 D24 D25 D24 D25 D24 D25 D26 D25 D24 D25 D26 D25 D24 D25 D26 D25 D24 D25 D24 D25 D24 D25 D26 D25 D24 D25 D24 D25 D26 D25 D24 D25 D24 D25 D25 D24 D25 D25 D24 D25 D26 D25 D26 D25 D24 D25 D26 D25 D26 D25 D26 D25 D26 D25 D26 D25 D26 D25 D26 D25 D26 D25 D26 D25 D26 D25 D26 D25 D26 D25 D26 D25 D26 D25 D26 D25 D26 D25 D26 D26 D25 D26 D26 D26 D26 D26 D26 D26 D26 D26 D26	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance E: Factor2	5 8 Rotation Mett Fence Structur Factor2 9 9 64 * 63 * 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19 cplained by Ea Factor 2 	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Elfir 7 Factor Elfir	11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 Iminating Other Actor4	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factor5	6 100 * Factor6 1 5 4 0 8 7 -3 8 -8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0 72 * 58 *
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 Fac 1.983	C15 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D23 C14 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 tor1 5725	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance E: Factor2 1.8997398	-10 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19 cplained by Ea Facto 1.55955	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Eli r3 Fa	11 -4 (power = 3) al Correlatio Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -22 11 9 -22 11 9 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 cminating Other actor4	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factors Factors 1.2694708	Factor6 100 * Factor6 1 5 4 0 8 7 -3 8 -8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0 72 * 58 * Factor6
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 Fact	C15 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D25 D24 D23 C14 D25 D24 D23 C14 D25 D24 D23 C14 D25 D24 D23 C14 D25 D24 D25 D24 D25 D24 D25 D24 D25 D24 D25 C17 C16 C17 C16 C17 C16 D25 D24 D25 D24 D25 D24 D25 D24 D25 D24 D25 C17 C16 C17 C16 C17 C16 D25 D24 D25 D24 D25 D24 D25 D24 D25 D24 D25 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 D25 D24 D25 D24 D25 C17 C18 C17 C16 C17 C16 D25 D24 D25 D24 D25 C17 C18 D25 D24 D25 D24 D25 C17 C18 D25 C17 C18 D25 C17 C18 D25 C17 C18 D25 C17 C18 D25 C14 D25 C17 C18 D25 C14 D25 C14 D25 C14 C14 D25 C14 D25 C14 C14 D25 C14 C14 D25 C14 C14 D25 C14 C14 D25 C14 C14 C14 D25 C14 C14 C14 C14 C14 C14 C14 C15 C15 C15 C15 C15 C15 C15 C15 C15 C15	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance E: Factor2 1.8997398	5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -4 -3 -15 24 -4 -19 -3 19 scplained by Ea Facto 1.55955	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Elif r3 Factor 1 -2	11 -4 (power = 3) al Correlatio Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 minating Oth actor4 -6 -15 -1 -1 -1 -2 -2 -3 -1 -1 -2 -3 -1 -1 -2 -1 -1 -1 -2 -2 -1 -1 -2 -2 -1 -1 -2 -2 -1 -1 -2 -2 -1 -1 -2 -1 -1 -2 -1 -2 -1 -2 -1 -2 -1 -1 -2 -1 -1 -2 -1 -2 -1 -1 -2 -1 -2 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -1 -2 -1 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -1 -1 -2 -1 -2 -1 -1 -2 -1 -1 -1 -1 -1 -2 -1 -1 -2 -1 -1 -1 -2 -1 -1 -2 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factors 1.2694708	Factor6 100 * Factor6 1 5 4 0 8 7 -3 8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0 72 * 58 * Factor6 1.3003375
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D25 D24 D23 C14 D25 D24 D23 C14 D25 D24 D23 C14 D25 D24 D23 C14 D25 D24 D23 C14 D25 D24 D23 C14 D25 D24 D23 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 Fact	C15 or6 Or6 C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 tor1 5725	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance Es Factor2 1.8997398	5 8 Rotation Met rence Structur Factor2 9 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19 cplained by Ea Factor Stru	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Elir r3 Fa	11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 Lations)	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factor5 1.2694708	6 100 * Factor6 1 5 4 0 8 7 -3 8 -3 8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0 72 * 58 * Factor6 1.3003375
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 Fac 1.983	C15 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D23 C14 D23 C14 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 tor1 5725	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance E: Factor2 1.8997398 Factor1	-10 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19 cplained by Ea Factor Stru Factor Stru	-18 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Eli r3 Fa 65 1.41 cture (Correl] Factor3	11 -4 (power = 3) al Correlatio Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 minating Other actor4 16750 Lations) Factor4	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factor5 1.2694708 Factor5	Factor6 100 * Factor6 1 5 4 0 8 7 -3 8 -8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0 72 * 58 * Factor6 1.5 Factor6 1.5 -6 1.5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 Fact	C15 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D23 C14 D25 D24 D23 C14 D25 D24 D23 C14 D25 D24 D23 C14 D25 D24 D23 C14 D25 D24 D25 D24 D25 D24 D25 D24 D25 D24 D25 C17 C16 C17 C16 C17 C16 D25 D24 D25 D24 D25 D24 D25 D24 D25 D24 D25 C17 C16 C17 C16 D25 D24 D25 D24 D25 D24 D25 D24 D25 D24 D25 D24 D25 C17 C16 C17 C16 C17 C16 D25 D24 D25 D24 D25 D24 D25 C17 C18 C17 C18 D25 D24 D25 C19 C18 D25 D24 D25 D24 D25 D24 D25 D24 D25 D24 D25 C18 D37 C18 C18 C C19 C18 D37 C18 D37 C18 C C19 C18 C C19 C18 C C19 C18 C C19 C18 C C19 C18 C C19 C18 C C19 C18 C C19 C18 C18 C18 C18 C18 C18 C18 C18 C18 C18	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance E: Factor2 1.8997398 Factor1 72 *	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 47 37 34 28 -28 -6 4 -22 -2 12 -4 -4 -3 -15 24 -4 -19 -3 19 scplained by Ea Factor Stru Factor Stru Factor2	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Elif r3 Factor3 Fa	11 -4 (power = 3) al Correlatio Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 contained of the second of the s	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factor5 1.2694708 Factor5 7	Factor6 100 * Factor6 1 5 4 0 8 7 -3 8 -8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0 72 * 58 * Factor6 1.3003375 Factor6 -29 -29 -1 -5 -3 -29 -1 -5 -3 -20 -29 -1 -5 -20 -29 -1 -5 -3 -20 -29 -1 -5 -3 -20 -1 -5 -20 -29 -1 -5 -20 -29 -1 -5 -20 -29 -1 -5 -3 -3 -27 -4 -28 -6 -1 -5 -3 -1 -5 -3 -27 -1 -5 -1 -5 -20 -29 -1 -5 -1 -5 -20 -29 -1 -5 -3 -1 -5 -20 -29 -1 -5 -3 -3 -1 -5 -1 -3 -7 -3 -27 -1 -5 -20 -29 -29 -1 -5 -3 -3 -7 -3 -1 -5 -20 -29 -1 -5 -3 -1 -5 -1 -5 -6 -1 -5 -7 -8 -6 -9 -7 -5 -8 -7 -7 -5 -8 -6 -9 -7 -5 -5 -7 -7 -5 -7 -7 -7 -5 -6 -7 -5 -7 -7 -5 -7 -7 -7 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D25 D24 D23 C14 D25 D24 D23 C14 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 Fact	C15 or6 C15 C17 C16 D21 D25 D24 D23 C14 D25 D24 D23 C14 D25 D24 D29 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 tor1 5725	13 -16 11 Refer Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance ES Factor2 1.8997398 Factor1 78 *	-16 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19 cplained by Ea Factor Stru Factor2 12	-18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Eli r3 Fa 65 1.41 cture (Correl Factor3 18	11 -4 (power = 3) al Correlatic Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 Iminating Oth actor4 Idford Idfo	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 52 * 31 6 -14 her Factor5 1.2694708 Factor5 7 7	Factor6 100 * Factor6 1 5 4 0 8 7 -3 8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0 72 * 58 * Factor6 1.3003375 Factor6 -9 -9
Fact Fact Fact C15 C17 C16 D21 D25 D24 D23 C14 D22 D19 C18 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 Fact	C15 or6 C15 C17 C16 D21 D25 D24 D23 C14 D23 C14 D23 C14 D23 C14 B9 B7 B6 B8 B11 B10 B12 A3 A2 A1 B13 D20 A4 A5 tor1 5725	13 -16 11 Factor1 74 * 69 * 64 * -33 -20 22 6 -3 17 -14 17 -5 0 4 4 9 18 4 36 21 -7 -13 -10 12 -6 Variance E: Factor2 1.8997398 Factor1 78 * 74 *	-10 5 8 Rotation Met rence Structur Factor2 9 9 -5 9 64 * 63 * 49 * 45 * 37 34 28 -28 -6 4 -22 -2 12 -4 -3 -15 24 -4 -19 -3 19 cplained by Ea Factor Stru Factor Stru Factor Stru Factor 2 12 13	-18 -18 -6 hod: Promax (e (Semipartia Factor3 4 8 -1 -4 -13 -9 -19 10 29 8 -1 1 74 * 68 * 53 * -12 -8 4 -15 -7 11 3 -18 6 -2 ch Factor Eli r3 Fa 65 1.41 cture (Correl Factor3 18 25	11 -4 (power = 3) al Correlatio Factor4 -9 14 20 -25 -6 -15 -1 19 -22 11 9 -22 11 9 -22 11 9 -5 5 -9 -10 61 * 60 * 39 -37 2 13 5 -10 -14 24 minating Other actor4 -17 6	1100 * 6 ons) Factor5 -11 4 -7 22 0 8 -20 19 4 11 -6 13 4 -9 3 3 6 18 19 57 * 53 * 31 6 -14 her Factor5 1.2694708 Factor5 7 19	Factor6 100 * Factor6 1 5 4 0 8 7 -3 8 -8 -20 -1 -5 20 -29 16 5 -13 27 14 -28 -6 19 0 72 * 58 * Factor6 1.3003375 Factor6 -9 -4

D21	D21	-26	3	-8	-23	18	0
D25	D25	-22	64 *	-24	7	-12	5
D24	D24	27	62 *	-7	-10	9	-2
D23	D23	0	53 *	-27	8	-27	-7
C14	C14	1	46 *	11	25	15	5
D22	D22	31	33	32	-20	15	-14
D19	D19	-8	36	5	16	8	-21
C18	C18	17	32	-1	13	-6	-4
B9	B9	- 3	-30	4	-11	15	-3
B7	B7	15	-12	80 *	7	19	23
B6	B6	23	1	69 *	-9	10	-28
B8	B8	15	-30	59 *	-12	17	19
B11	B11	-2	9	-9	61 *	-6	7
B10	B10	13	23	- 3	60 *	1	-13
B12	B12	1	-1	11	38	14	28
A3	A3	42 *	-9	-3	-46 *	29	6
A2	A2	37	-15	11	-13	67 *	-35
A1	A1	7	22	20	10	54 *	-10
B13	B13	-4	-9	13	0	51 *	17
D20	D20	-8	-22	-13	-16	28	-1
A4	A4	9	-11	13	-13	7	70 *
A5	A5	-20	19	-6	34	-26	60 *
		Variance Ex	plained by Ea	ach Factor Igr	noring Other F	actors	
-			·				

Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
2.3580986	2.1074889	1.9579754	1.5720592	1.5737641	1.3792212

Final	Communality	Estimates:	Total =	10.150395	

	F	inal Communality	Estimates:	Total = 10.150	0395	
A1	A2	A3	A4	A5	B6	B7
0.38869685	0.59635284	0.40911224	0.55777806	0.52678754	0.58196032	0.68527977
B8	B9	B10	B11	B12	B13	C14
0.45191389	0.11426121	0.44565775	0.39751167	0.25960130	0.32488572	0.30309800
C15	C16	C17	C18	D19	D20	D21
0.63445632	0.44738740	0.58956907	0.13825322	0.21240654	0.18371507	0.19818182
		D22	D23	D24	D25	
	0.33524	597 0.37982	245 0.4	48569678	0.50276277	

Scoring Coefficients Estimated by Regression

	Squared Multiple Correlations of the Variables with Each Factor							
	Factor1	Factor2	Fa	ctor3 F	actor4	Factor5	Factor6	
0.	83928013	0.79130229	0.805	70697 0.73	956784 6	0.73145917	0.74557319	
			Standardi	zed Scoring Coe	efficients			
		Factor1	Factor2	Factor3	Factor4	Factor5	Factor6	
C15	C15	0.36952	0.03424	0.00070	-0.13536	-0.05770	-0.04379	
C17	C17	0.29165	0.05488	0.07686	0.08496	0.06453	0.02670	
C16	C16	0.19795	-0.04766	-0.01564	0.08878	-0.02571	0.00808	
D21	D21	-0.05860	0.02616	-0.00939	-0.08147	0.09045	0.01391	
D25	D25	-0.09626	0.28924	-0.06312	-0.01891	0.02271	0.03733	
D24	D24	0.08094	0.26583	-0.02536	-0.08039	0.03473	0.01054	
D23	D23	0.02829	0.18921	-0.04723	-0.00033	-0.11566	-0.01097	
C14	C14	-0.02444	0.17044	0.06490	0.08691	0.08790	0.01480	
D22	D22	0.03139	0.15666	0.12286	-0.09482	0.06476	-0.03658	
D19	D19	-0.03362	0.10738	0.02589	0.04435	0.03860	-0.07886	
C18	C18	0.03703	0.09263	-0.02080	0.03094	-0.02795	-0.02212	
B9	B9	0.00145	-0.06689	0.00941	-0.01607	0.06026	-0.00729	
B7	B7	-0.00998	-0.01458	0.46541	0.09794	0.05587	0.15749	
B6	B6	0.03263	0.05524	0.30786	-0.03981	-0.04471	-0.21500	
B8	B8	0.01607	-0.10051	0.17702	-0.04953	0.01524	0.08797	
B11	B11	-0.00515	-0.01629	-0.04727	0.28108	-0.01179	0.02584	
B10	B10	0.03019	0.04785	0.00086	0.32954	0.02850	-0.07422	
B12	B12	0.01769	-0.00875	0.01959	0.14216	0.06582	0.09646	
A3	A3	0.14529	-0.03707	-0.07595	-0.24395	0.10837	0.07191	
A2	A2	0.13637	-0.04548	-0.01692	-0.00799	0.40300	-0.17136	
A1	A1	-0.01324	0.08253	0.04609	0.02661	0.26728	-0.02564	
B13	B13	-0.03588	-0.01094	0.01510	-0.00184	0.21130	0.07704	
D20	D20	-0.02416	-0.05805	-0.04525	-0.03042	0.13553	0.01389	
A4	A4	0.02220	-0.05090	-0.00318	-0.09397	0.08891	0.41986	
A5	A5	-0.03085	0.10399	0.00614	0.15101	-0.09834	0.31509	