THE IMPACT OF SERVICE DELIVERY OF WATER DEMAND MANAGEMENT FOR LOW INCOME COMMUNITIES

by

Madliwa Nokhanyo

Dissertation submitted in fulfilment of the requirements for the degree

Master of Technology: Quality
in the Faculty of Engineering
at the Cape Peninsula University of Technology

Supervisor: Mr P McLaren
Co-supervisor: Prof. Dr. J A Watkins

Bellville

November 2011

DECLARATION

I, Nokhanyo Madliwa, hereby declare that this dissertation submitted for the degree Magister Technologiae at the Cape Peninsula University of Technology is my own original unaided work, and has not previously been submitted for academic examination towards any qualification. Furthermore, it represents my own opinions and not necessarily those of the Cape Peninsula University of Technology.

Nokhanyo Madliwa

Copyright © Cape Peninsula University of Technology (2011)

DEDICATION

This study is dedicated to my beloved parents, Sidumo Dennison Madliwa and Hazel Nomambethu Madliwa. Thank you for your love, care and for all you have done for me in my lifetime, and especially your outstanding support of my future endeavours; my late brother Phelela Madliwa who passed away in November 1994; my brother Xolisa Madliwa and little sister Unathi Madliwa, thank you for your encouragement and support.

ACKNOWLEDGEMENTS

The roots of true achievement lie in the will to become the best you can become
Harold Taylor

The author of this dissertation wishes to acknowledge the contribution of the following people in the completion of this research:
$>$ God, my creator, for strength and wisdom.
> My supervisor Patrick McLaren without whose encouragement and strictness I would not have completed my degree on time. Thank you for seeing a potential in me.
> Dr. Bingwen Yan, thank you for your kindness and motivational words.
> Manager of Water Demand Management Zolile Basholo for having faith in me. Without your great support and kindness I would not be where I am today.
> My dear sister and a great friend, Nobayeni Madikizela; thank you for being so loyal and supportive in my life.
> To Professor Watkins; thank you for your guidance and assistance.

Abstract

Poor service delivery is becoming one of the core factors that can ruin the reputation of organisations in South Africa, and all over the world. In order to have satisfied users, an organisation should implement business improvement initiatives to enhance, and continually improve, service delivery. Service delivery is becoming one of the key critical performance measures in the Government and other service providing sectors. Performance by various departments of Government, regarding service delivery, draws a considerable amount of attention from citizens throughout the country. Organisations need to understand that there are benefits in delivering an excellent service to the users, as it increases user satisfaction.

An understanding of the importance of service delivery in organisations can help managers in the formulation and development of service charters, and in making strategic service improvement decisions. Water Demand Management, a branch of Water and Sanitation at the City of Cape Town, has a long term goal, whereby the department is striving to become a leader in the provision of equitable, sustainable, people-centred, affordable and reliable water and sanitation services to all the residents in the low income areas of the Cape Town Metropole.

The department is currently faced with a challenge of poor service delivery to the low income areas that result in dissatisfaction and discontent among the residents. This research will focus on the impact of service delivery on user satisfaction. The current standard of service delivery of Water Demand Management will be reviewed and improved upon.

TABLE OF CONTENTS Page
DECLARATION i
DEDICATION ii
ACKNOWLEDGEMENTS iii
ABSTRACT iv
TABLE OF CONTENTS v
LIST OF TABLES xi
LIST OF FIGURES xii
GLOSSARY OF TERMS xiii
ACRONYMS xiv
CHAPTER 1
THE SCOPE OF THE RESEARCH 1
1.1 INTRODUCTION AND MOTIVATION 1
1.2 BACKGROUND TO THE RESEARCH PROBLEM 2
1.2.1 Statement of the research problem 4
1.3 RESEARCH QUESTION 5
1.3.1 Investigative (sub) questions 5
1.4 PRIMARY RESEARCH OBJECTIVES 5
1.5 THE RESEARCH PROCESS 6
1.6 RESEARCH DESIGN AND METHODOLOGY 7
1.7 DATA COLLECTION AND METHODOLOGY 8
1.8 DATA VALIDITY AND RELIABILITY 9
1.9 ETHICS 10
1.10 RESEARCH ASSUMPTIONS 11
1.11 RESEARCH CONSTRAINTS 11
1.12 SIGNIFICANCE OF THE PROPOSED RESEARCH 12
1.13 CHAPTER AND CONTENT ANALYSIS 12

CHAPTER 2

WATER DEMAND MANAGEMENT

14

2.1 INTRODUCTION 14
2.2 MUNICIPAL SERVICE DELIVERY 14
2.2.1 Water and Sanitation services 14
2.2.2 Roles and responsibilities 15
2.3 PROVISION OF SERVICES 15
2.3.1 Local government (Municipality) 16
2.3.2 Capacity Building 16
2.3.3 Corporatisation 17
2.3.4 Municipal service partnerships 18
2.3.5 $\begin{aligned} & \text { Implementation of a Municipal Service Partnership (MSP) in a } \\ & \text { municipality }\end{aligned}$
2.3.6 Operation of a municipality service partnership 19
2.3.7 Role of citizens in Municipal Service Partnerships 20
2.4 SERVICE LEVELS 20
2.5 PROVISION OF FREE BASIC MUNICIPAL SERVICES 21
2.6 OPTIONS FOR FREE BASIC SERVICE 21
$\begin{array}{ll}\text { 2.7 THE QUALITY FRAMEWORK TO ENHANCE SERVICE } \\ & \text { DELIVERY }\end{array}$
2.8 CHALLENGES 22
2.9 STANDARDS 23
2.10 INTERNAL AUDIT 23
2.11 BENCHMARKING 24
2.12 PROCESS MANAGEMENT 24
2.13 ENVIRONMENT MANAGEMENT AND SAFETY 2425
CHAPTER 3
SERVICE DELIVERY: A LITERATURE REVIEW 26
3.1 INTRODUCTION 26
3.2 DEFINITION OF SERVICE 26
3.3 DEFINITION OF VOICE OF THE CUSTOMER (VOC) 27
3.3.1 A systematic approach 28
3.3.2 Customer needs 28
3.3.3 Experience design 28
3.4 CAPTURING THE VOICE OF THE CUSTOMER 29
3.5 LISTENING TO THE VOICE OF THE CUSTOMER 31
3.5.1 Relationship 31
3.5.2 Products and processes 31
3.5.3 Customer experience 32
3.5.4 Ubiquitous VOC 33
3.6 LEVELS OF ACTIVITIES IN A VOC PROGRAMME 33
3.7 INVOLVEMENT WITH CUSTOMERS 34
3.8 COLLECTING CUSTOMER INFORMATION 35
3.9 IDENTIFYING CUSTOMER NEEDS 36
3.10 ORGANISING CUSTOMER NEEDS 36
3.11 CUSTOMER ENGAGEMENT AND CUSTOMER SATISFACTION 37
3.12 TAKING ACTION ON CUSTOMER FEEDBACK 38
3.12.1 Questions designed for action 38
3.12.2 Action Alerts 38
3.12.3 Action Alert Management 38
3.12.4 Manager Action Planning Tool 39
3.13 CUSTOMER-DRIVEN PROCESS ENTERPRISE 39
3.14 CUSTOMER EXPECTATIONS 40
3.15 SERVQUAL 41
3.16 FOCUS GROUPS 42
3.17 CUSTOMER INTERVIEWS 43
3.18 THE KEYSTONE CUSTOMER 44
3.19 COHERENT SERVICE PLANNING 45
3.20 QUALITY FUNCTION DEPLOYMENT 46
3.21 HISTORY OF QUALITY FUNCTION DEPLOYMENT 46
3.22 QUALITY FUNCTION DEPLOYMENT PROCESS 47
3.23 BENEFITS OF QUALITY FUNCTION DEPLOYMENT 48
3.23.1 Main 'process' benefits of using QFD 49
3.23.2 Main 'bottom line' benefits of using QFD 49
3.24 THE DEPLOYMENT OF SERVICE QFD 49
3.25 KANO MODELAPPROACH 51
3.25.1 Revealed requirements 51
3.25.2 Expected requirements 51
3.25.3 Exciting requirements 51
3.26 CONCLUSION 53
CHAPTER 4
KNOWLEDGE MANAGEMENT SURVEY DESIGN AND METHODOLOGY 54
4.1 THE SURVEY ENVIRONMENT 54
4.2 AIM OF THIS CHAPTER 54
4.3 THE TARGET POPULATION 54
4.4 DATA COLLECTION 55
4.5 MEASUREMENT SCALES 56
4.6 THE DEMAND OF QUALITATIVE RESEARCH STRATEGY 57
4.7 SURVEY SENSITIVITY 58
4.8 SURVEY DESIGN 58
4.9 THE VALIDATION SURVEY QUESTIONS 60
4.9.1 Questionnaire on service delivery for low income communities 60
4.10 CONCLUSION 62
CHAPTER 5
DATA ANALYSIS AND INTERPRETATION OF RESULTS 63
5.1 INTRODUCTION 63
5.2 METHOD OF ANALYSIS 64
5.2.1 VALIDATION OF SURVEY RESULTS 64
5.2.2 DATA FORMAT 64
5.2.3 PRELIMINARY ANALYSIS 65
5.2.4 INFERENTIAL STATISTICS USED 65
5.2.5 ASSISTANCE TO RESEARCHER 66
5.2.6 SAMPLE 66
5.3 ANALYSIS 67
5.3.1 RELIABILITY TESTING 67
5.3.2 DESCRIPTIVE STATISTICS 71
5.3.3 UNI-VARIATE GRAPHS 78
5.3.4 INFERENTIAL STATISTICS 84
5.3.4.1 Comparisons with regard to differences in proportion who agreed and who disagreed 85
5.3.4.2 Comparisons with regard to whether the two independent groups differed in their perceptions 87
5.4 DISCUSSIONS AND CONCLUSIONS 97
CHAPTER 6
CONCLUSION AND RECOMMENDATIONS 99
6.1 INTRODUCTION 99
6.2 THE RESEARCH THUS FAR 99
6.3 THE RESEARCH PROBLEM RE-VISITED 100
6.4 THE RESEARCH QUESTION RE-VISITED 100
6.5 THE INVESTIGATIVE QUESTIONS RE-VISITED 101
6.6 THE KEY RESEARCH OBJECTIVES RE-VISITED 103
6.7 RECOMMENDATIONS 104
6.8 CONCLUSION 106
REFERENCES 107
APPENDIXES
Appendix A: Cronbach alpha Coefficients 114
Appendix B: Descriptive statistics: Frequency tables 116
Appendix C: Descriptive statistics: Uni-variate 124
Appendix D: Comparison of proportions 138
Appendix E: Chi-square test for comparisons 144
Appendix F: Factor analysis 189

LIST OF TABLES

Table 2.1: \quad Service Levels 21
Table 3.1: Methods for capturing the voice of the customer 31
Table 3.2: Organisation Deployment Chart 50
Table 5.1: Cronbach Alpha Coefficient 68
Table 5.2: Original variables and corresponding factor loadings 70
Table 5.3: Descriptive statistics for all the variables 72
Table 5.4: Descriptive statistics 77
Table 5.5: Statistically significant Chi-square test 85
Table 5.6: Contingency table for Gender vs A4 88
Table 5.7: Chi-square test for Gender vs A4 88
Table 5.8: Contingency table for Gender vs B7 89
Table 5.9: Chi-Square test for Gender vs B7 89
Table 5.10: Contingency table for Gender vs B8 90
Table 5.11: Chi-Square test for Gender vs B8 90
Table 5.12: Contingecy table for Number of people residing vs B12 91
Table 5.13: Chi-square test for Number of people residing vs B12 91
Table 5.14: Contingency table for Number of people residing vs C18 92
Table 5.15: Chi-Square test for Number of people residing vs C18 92
Table 5.16: Contingency table for Number of people at home vs B8 93
Table 5.17: Chi-square test for Number of people at home vs B8 93
Table 5.18: Contingency table for Number of people at home vs C14 94
Table 5.19: Chi-square test for Number of people at home vs C14 94
Table 5.20: Contingency table for Number of people at home vs D19 95
Table 5.21: Chi-square test for Number of people at home vs D19 95
Table 5.22: Contingency table for Number of years at home vs D24 96
Table 5.23: Chi-square test for Number of years at home vs D24 96

LIST OF FIGURES

Figure 3.1: Customer relationship 29
Figure 3.2: The key customer 45
Figure 3.3: Incoherent Planning and Development 45
Figure 3.4: History of QFD 46
Figure 3.5: QFD Methodology flow 47
Figure 3.6: The KANO Model 52
Figure 5.1: Distribution of respondents 79
Figure 5.2: Gender distribution 79
Figure 5.3: Responses on Section A 80
Figure 5.4: Responses on Section B 81
Figure 5.5: Responses on Section C 82
Figure 5.6: Responses on Section D 83
Figure 5.7: The water meters are always faulty 89
Figure 5.8: \quad Site awareness facilitators give wrong information 90
Figure 5.9: No education on water wastage is provided 91
Figure 5.10: The daily water allocation of 350 litres is not sufficient 92
Figure 5.11: Follow-ups on complaints are not being done. 93
Figure 5.12: No education on water wastage is provided 94
Figure 5.13: Plumbers go to the wrong households 95
Figure 5.14: WDM does not comply with consumer service charter 96
Figure 5.15: Work instructions are not being followed 97

GLOSSARY OF TERMS

Services	Refers to intangible products that are not goods (tangible products).
SERVQUAL	Is a quality tool which measures service quality as perceived by customers.
Voice of the customer	Systematic approach for incorporating the needs of customers into the design of customer experiences.
Expectation	Is defined as a perceived-value customers seek from the purchase of good or service.
Low income	Refers to individuals or households supported by an income that is below average.
Customer Satisfaction	Customers' perceptions of the degree to which their requirements have been fulfilled.

ACRONYMS

LUMS:	Land Use Management System
IDP:	Integrated Development Planning
LED:	Local Economic Development
MIG:	Municipal Infrastructure Grant
WDM:	Water Demand Management
WC:	Water Conservation
VOC:	Voice of the Customer
QFD:	Quality Function Deployment
SABS:	South African Bureau of Standard
MSP:	Municipal Service Partnership

CHAPTER 1: SCOPE OF THE RESEARCH

1.1 INTRODUCTION AND MOTIVATION

Water Demand Management, a branch of Water and Sanitation, specialises in water conservation and focuses on saving water by fixing all leaks at no cost in the households of people residing in low income areas of the Cape Metropole. Water Demand Management ensures that users residing in low income areas of the Cape Metropole have access to basic water supply. Water, sanitation and hygiene are also included in the list of aspects on which Water Demand Management focuses.

Water Demand Management ensures that there is availability and reliability of water resources at all times for the people. The department also ensures that the water that is supplied to the residents is safe to drink. Measurement of service delivery, however, is rarely conducted by Water Demand Management, calling for the need to measure the actual or perceived gap between customer expectations, and perceptions of service delivery of the department by users. The researcher intends to provide insight into how the department could improve its overall customer satisfaction by addressing obstacles to quality of service delivery.

The research of Munyai (1997:37), revealed that most of the unemployed people in South Africa are residing in low income areas. These people are sometimes regarded as the poorest of the poor, due to their low lifestyle and the state of conditions under which they live in their communities. The quality of service delivery of government departments rendering a service is determined by residents living in these low income communities. Service delivery rendered to them is normally very poor and unsatisfactory.

According to Zeithaml and Bitner (2003:135), a sound measure of service quality is necessary for identifying aspects of service needing performance improvement, and also for assessing how much improvement is needed on each aspect of the services provided. Hayes (1991:6), states that services are intangible in nature,
and therefore customers' judgment about quality of service is usually based on dimensions of the service. This service should be continually improved, in order to remain competitive.

Pearson (2000:87), argues that service delivery strategies need to be supported by reliable data on the present and future demand for services. This will require an agency to:
$>$ Determine the demand for services from the community, substantiated by research and analysis.
$>$ Specify the nature of the service demands.
$>$ Detail its statutory service obligations (e.g. provision of education services).
$>$ Describe requirements for community service obligations.
> Analyse other relevant services within government.
$>$ Quantify levels of service that can be achieved.
This research will be executed through the distribution of questionnaires. The data will be analysed and recommendations made for service delivery improvement initiatives.

1.2 BACKGROUND TO THE RESEARCH PROBLEM

Poor service delivery of services rendered to users often leads to the dissatisfaction of users. The residents in the low income communities are often dissatisfied with the poor services rendered to them by the various departments of Government (Bonaveja \& Philander, 1975:45). Rogers, Peenz and Moller (1978: 16), found that in the Government sector, good service delivery is extremely important. Good service delivery builds good relationships between the local municipalities and citizens.

Mati and Luyt (2000:17), found that a review carried out in the 1990s revealed that there were challenges in providing good service delivery by local municipalities to the users in the communities. The following were among the challenges identified:
$>$ The ability to keep up with the infrastructure needs.
> The need to spontaneously provide infrastructure to meet the unpredictable growing demand.
> The continuous maintenance and upgrading of the existing infrastructure.
$>$ Affordability of the service, and willingness to pay.
$>$ The need to constantly improve effectiveness and efficiency.
$>$ Poor conditions of the residents.

Since the advent of the new democracy in the Republic of South Africa in 1994, municipalities across the country have embarked on several service-oriented programmes, primarily to improve the quality of life of ordinary citizens within their areas of jurisdiction. Some of these programmes were commissioned by National and Provincial sectors of Government and are designed to assist District and Local municipalities to achieve their constitutional mandates.

In terms of Section 152 of the Constitution of Republic of South Africa (Act 108 of 1996), these mandates include the provision of democratic and accountable Government for local communities; provision of basic services to local communities in a sustainable manner; promotion of socio-economic development in rural, urban and peri-urban communities; and the creation of a safe and healthy environment.

Some of the programmes that were commissioned by the National Government include Land Use Management System (LUMS), Integrated Development Planning (IDP), Integrated Sustainable Rural Development, Local Economic Development (LED), Urban Renewal Strategy and Municipal Infrastructure Grant (MIG). The key objective of these programmes is to fast track service delivery in municipalities by building capacity enterprises, and promoting small, medium and micro enterprises, in local communities, as a means of alleviating poverty (Local Government Programmes, 2004: Paragraph 4).

Subsequently, the responsibility for improving the quality of life of ordinary citizens in the Republic is largely delegated to District and Local municipalities across the country, in terms of the Constitution of the Republic (Constitution of Republic of South Africa, Act No. 108 of 1996).

Local municipalities should function as a truly accountable, effective and efficient sector of Government. These local municipalities play a major role in the war against poverty, and the promotion of socio-economic development in the local communities. In order to perform their constitutional duties effectively and efficiently, as stipulated in Section 154 (1) and 156 of the Republic of South Africa Constitution (Act No. 108 of 1996), it is deemed essential that municipalities acquire the requisite capabilities and manpower to deliver a good service to the residents in the communities.

According to Fitzsimmons and Fitzsimmons (2001:44), quality of service is deemed unacceptable when customer expectations are not met. This means, customer satisfaction is based on the comparison between perceptions of service rendered and expectations of services desired. When expectations are exceeded, service is perceived to be of exceptional quality, and vice versa. In this sense, customers are the ultimate judges of the value of services rendered to them by service providers.

In this research study, the gap between user expectation, and their perception of the quality of services rendered to them by Water Demand Management will be determined.

$>\quad$ 1.2.1 \quad Statement of the research problem

Against the above background, the research problem to be researched within the ambit of this dissertation reads as follows:
"Poor service delivery from Water Demand Management to low income areas results in dissatisfaction and discontent".

1.3 RESEARCH QUESTION

Following on the research problem, the following research question will form the primary focus of the research: "Which mechanisms can be employed by Water Demand Management to improve service delivery to low income areas?"

$>\quad$ 1.3.1 Investigative (sub-) questions

The investigative questions to be researched in support of the research question read as follows:
$>$ Is there a need for improvement in the current status of service delivery of Water Demand Management?
> What are the current perceptions of the residents in low income areas, regarding the service delivery of Water Demand Management?
$>$ Is the daily water allocation adequate for the households in the low income areas?
$>$ Is there a need for response times of Water Demand Management to complaints, to be improved?
> To what extent are the users dissatisfied with the service delivery from Water Demand Management?

1.4 PRIMARY RESEARCH OBJECTIVES

The primary research objectives of this study read as follows:
$>$ To identify the impact of service delivery on user satisfaction.
$>$ To continually improve the service delivery of Water Demand Management.
$>$ To measure the level of customer satisfaction with regard to service delivery.
$>$ To review the current standard of service delivery and performance of Water Demand Management, and establish mechanisms for improving service delivery.

1.5 THE RESEARCH PROCESS

The research process provides insight into the process of 'how' the research will be conducted, from formulating the research proposal to final submission of the dissertation. Fundamental stages in the research process, common to all scientific based investigations, are listed below:

Citing the work of Remenyi, Williams, Money and Swartz (2002:64-65), Watkins (2008) explains the research process as consisting of eight specific phases, namely:
> Reviewing the literature.
> Formalising a research question.
$>$ Establishing the methodology.
$>$ Collecting evidence.
> Analysing the evidence.
> Developing conclusions.
$>$ Understanding the limitations of the research.
$>$ Producing management guidelines or recommendations.

Watkins (2008), citing Collis and Hussey (2003:16), mentioned that there are six fundamentals stages in the research process, namely:
$>$ Identification of the research topic.
> Definition of the research problem.
$>$ Determining how the research is going to be conducted.
$>$ Collection of the research data.
$>$ Analysis and interpretation of the research data.
$>$ Writing of the dissertation.

After careful consideration of the above research processes, the researcher will adopt the approach as proposed by Watkins (2008), citing Collis and Hussey (2003:16).

1.6 RESEARCH DESIGN AND METHODOLOGY

Falling within the phenomenological (qualitative) paradigm, action research will be used in this research study, which is a type of applied research, designed to find an effective way of bringing about conscious change in a partly controlled environment; for example, a study aimed at improving communications between management and staff in a particular company. The main aim of action research is to enter into a situation, attempt to bring about change, and to monitor the results. There are clear tangent planes between action research and case study research.

Action research is described by Watkins (2008), citing Gummeson (2000:116) as, "...a method of doing case study research". According to Watkins (2008), citing Collis and Hussey (2003:66-67), "...action research is a type of applied research designed to find an effective way of bringing about a conscious change in a partly controlled environment". Watkins (2008), citing Coghlan \& Brannick (2002:6-7), lists the following as the most salient features of 'action research':
$>$ Action researchers take action.
> Action science always involves two goals: 'Solve a problem for the client' and 'contribute to science'. This means being 'a management consultant' and an 'academic researcher' at the same time.
$>$ Action research is interactive. It requires cooperation between the researcher and the client personnel, and continuous adjustments to new information and new events.
> Action science is applicable to the understanding, planning and implementation of change in business firms and other organisations.
> It is essential to understand the ethical framework, and the value norms within which action research is used in a particular context.
$>$ Action research can include all types of data gathering methods, but requires the total involvement of the researcher.
> Constructively applied pre-understanding of the corporate environment and of the conditions of business, is essential.
> 'Management action research' should be conducted in real time, though retrospective research is also acceptable.
> The 'management action research' paradigm requires its own quality criteria.

Watkins (2008), citing Coghlan and Brannick (2002:17-18), describes the action research cycle as follows:
> Diagnosing: Diagnosing involves naming what the issues are, however provisionally, as a working theme on the basis of which action will be planned and taken.
> Planning action: Planning action follows from the analysis of the context and purpose of the project, the framing of the issue, and the diagnosis, and is consistent with them.
$>$ Taking action: Plans are implemented and interventions are made.
$>$ Evaluating action: The outcomes of the action, both intended and unintended, are examined with a view to seeing:
$>$ If the original diagnosis was correct.
$>$ If the action taken was correct.
> If the action was taken in an appropriate manner.
> All of the above, which feeds into the next cycle of diagnosis, planning and action.

1.7 DATA COLLECTION DESIGN AND METHODOLOGY

Questionnaires fall within the ambit of a broader definition of 'survey research' or 'descriptive survey'. The concept of 'survey' is defined by Watkins (2008), citing Remenyi et al. (2002:290), as: "......the collection of a large quantity of evidence usually numeric, or evidence that will be converted to numbers, normally by means of a questionnaire". A questionnaire is a list of carefully structured questions, chosen after considerable testing, with a view to eliciting reliable responses from a chosen sample. The aim is to establish what a selected group of participants do, think or feel. A positivistic approach suggests structured 'closed' questions, while a phenomenological approach suggests unstructured 'openended' questions.

For the purpose of this research, 'questionnaires' will be used to collect data. Closed-ended questions will be used in the questionnaire as this technique implies a research approach which allows respondents to quickly rate a list of well-
structured questions, with predetermined answers. Furthermore, data will be collected from a random sample of 80 residents who live and own houses in Ward 3 at Litha Park. This research will be conducted in Ward 3. This Ward falls under the zoning region of Litha Park. Litha Park is a small section of Khayelitsha, and has been in existence for more than 20 years.

1.8 DATA VALIDITY AND REALIBILITY

According to Watkins (2008), citing Collis and Hussey (2003:186), 'validity' is concerned with the extent to which the research findings accurately represent what is happening, or more specifically, whether the data is a true picture of what is being studied. According to Watkins (2008), citing Cooper and Schindler (2006:318-320), three major forms of validity can be identified, namely 'content validity', 'criterion-related validity' and 'construct validity', which is expanded upon below to provide a holistic perspective of each of the concepts:
> Content validity: The content of the measuring instrument is the extent to which it provides adequate coverage of the investigative sub-questions guiding the study. If the instrument contains a representative sample of the universe of subject matter of interest, then content validity is good.
> Criterion-related validity: This reflects the success of measures used for prediction or estimation. Any criterion measure must be judged in terms of the following four qualities:
$>$ Criterion is relevant: This is if the criterion is defined and scored in the terms we judge as the proper measures of success.
> Freedom from bias: The criterion must give each respondent the opportunity to score well.
$>$ Reliability: A reliable criterion is stable and reproducible.
> Availability: The information specified by the criterion must be available.
> Construct validity: In attempting to evaluate construct validity, both the theory and the measuring instrument being used should be considered.

According to Watkins (2008), citing Collis and Hussey (2003:59), construct validity relates to the problem when there are a number of phenomena which are not directly observable, such as motivation, satisfaction, ambition and anxiety. These are known as hypothetical constructs, which are assumed to exist as factors which explain observable phenomena. For example, you may observe someone shaking or sweating before an interview. You are not actually observing anxiety, but a manifestation of anxiety.

Reliability (also referred to as 'trustworthiness'), is concerned with the findings of the research (Collis \& Hussey, 2003:186, cited by Watkins, 2008). The findings are considered to be reliable if you, or anyone else, repeated the research and obtained the same results. There are three common ways of estimating the reliability of the responses to questions in questionnaires or interviews, namely:
$>$ Test re-test method;
$>$ Split-halves method (which will be applied in this research); and
> Internal consistency method

1.9 ETHICS

In the context of research, according to Watkins (2008), citing Saunders, Lewis and Thornhill (2000:130), "...ethics refers to the appropriateness of your behaviour in relation to the rights of those who become the subject of your work, or are affected by it."

The following ethical norms will be applied in conducting this research:
> Informed consent: Participants will be informed of the nature of the study and will be given a choice to participate or withdraw if they feel uncomfortable about the research.
> Right to privacy: The right to privacy of the participants will be respected and the performance of the participants will be strictly kept confidential.
> Honesty with Professional Colleagues: The findings will be reported in a complete and honest manner, without misrepresenting what the participants have done. The data will not be fabricated to support the research conclusion.

1.10 RESEARCH ASSUMPTIONS

In this research, it is assumed that in Water Demand Management the importance of service delivery is often overlooked. The impact of service delivery is rarely measured to determine the trends in the performance of the department. The lack of measuring, and improving service delivery at Water Demand Management will lead to a high rate of customer complaints and backlog, and will affect the overall performance of the department.

1.11 RESEARCH CONSTRAINTS

Research constraints (limitations and de-limitations); pertain to any inhibiting factor which would in any way constrain the research student's ability to conduct the research in a normal way. Watkins (2008), citing Collis and Hussey (2003:128-129), stated that 'limitations' identify weaknesses in the research, while 'de-limitations' explain how the scope of the study was focused on only one particular area or entity, as opposed to, say, a wider or holistic approach. The constraints to this research are as follows:
> Limitations: The research may be weakened by the fact that as Ward 3 increases in the number of residents, it becomes difficult and complex to measure people's perceptions and expectations of service delivery.
$>$ De- limitations: The researcher realises that, although Khayelitsha is extensive in its applications, this research will focus only on Ward 3 which falls under Litha Park.

It was realised that most of Water Demand Management research focuses on water conservation and educational awareness. It should be noted that the focus of this research is on 'service delivery'.

1.12 SIGNIFICANCE OF THE PROPOSED RESEARCH

The significance of the proposed research is vested in the fact that, although Water Demand Management is regarded by the Directors as one of the most productive departments in Water and Sanitation, the impact on service delivery from the department to the low income areas in the Cape Metropole needs to be looked at. This is due to the high rate of customer complaints coming to the department from the residents living in low income areas. This research aims to identify the key effective measures to improve the service delivery of Water Demand Management, to enhance customer satisfaction and to create a good relationship between the residents and the department.

1.13 CHAPTER AND CONTENT ANALYSIS

The chapter and content analysis, which will pertain to this research, reads as follows:

Chapter 1 - Scope of the research: In this chapter, a high level background will be provided of the scope of the research taking place within the government sector in the department of Water Demand Management. The research process will be explained, and the research design and methodology elaborated upon. The research constraints will be stated, and an overview of the chapter and content analysis of the dissertation will be provided. The chapter will be concluded with a list of primary research objectives.

Chapter 2 - Background and insight to the research environment: This chapter will provide a holistic overview of the research environment. Water Demand Management, is the organisation in which the research will be conducted, as well as looking into the provision of services.
Chapter 3 - Service Delivery (A literature review): In this chapter, a literature review will be conducted on the concept of service delivery.
Chapter 4 - Data collection design and methodology: In this chapter, the survey environment will be elaborated upon, and the approach to data collection explained. The chapter will be concluded with a list of survey questions to be posed to the target respondents.

Chapter 5 - Data analysis and interpretation of results: In this chapter, data gleaned from the survey conducted within the ambit of Chapter 4, will be analysed in detail and interpreted in terms of the primary theme of the dissertation.

Chapter 6 - Conclusion: In this chapter, the research will be concluded. The research problem, research question, investigative questions and research objectives will be revisited and final conclusions drawn.

CHAPTER 2: WATER DEMAND MANAGEMENT

2.1 INTRODUCTION

Water Demand Management is a small branch of Water and Sanitation. The department is fairly new. Water Demand Management was established six years ago. There are forty qualified plumbers working for Water Demand Management. The department has a total of one hundred and sixty eight employees. This includes the administration staff, artisans and technicians. There is a head office for the department as well. The head office is situated in Goodwood.

Water Demand Management has embarked on its vision of becoming a leader in the provision of equitable, sustainable, people-centred, affordable and credible water services to the users. This was done by putting into operation a water demand management (WDM) and water conservation (WC) strategy. The purpose of the WDM/WC strategy is to ensure a long-term balance between available water resources and water demand. The other purpose is to minimise water wastage.

2.2 MUNICIPAL SERVICE DELIVERY

There are two important aspects that every municipality which supplies water to the residents should understand. These are:

2.2.1 Water and Sanitation services

All municipalities that supply water to the residents must be accountable for the provision of basic water and sanitation services. Water Demand Management has the responsibility of ensuring that residents in the low income areas of the Cape metropole are provided with water and sanitation services. The services are to ensure that the basic needs of the residents are satisfied. Water Demand Management provides these services at an affordable cost.

Water Demand Management looks at what role the residents in the low income communities can play, to help the department to provide an excellent service at all times.

2.2.2 Roles and responsibilities

Municipalities should ensure that their departments provide the people in the communities with the basic services. There are a large number of services. These include:
> Water supply
$>$ Sewage collection and disposal
> Refuse removal
$>$ Electricity and gas supply
> Municipal health services
$>$ Municipal roads and storm water drainage
$>$ Street lighting
> Municipal parks and recreation

These services could have a direct and immediate effect on the quality of the lives of the residents in the communities. For example, if the water provided is of poor quality, or refuse is not collected regularly, it could contribute to the creation of an unhealthy and unsafe living environment. Poor services could also make it difficult to attract business or industry to an area, and could limit job opportunities for the residents.

The scope of Water Demand Management involves the provision of water supply to the residents in low income areas. The department further ensures that the residents receive the basic water and sanitation services.

2.3 PROVISION OF SERVICES

Provision of services to the citizens involves a few factors that must be taken into consideration by municipalities. These factors assist in providing excellent service, and include the following:

2.3.1 Local government (Municipality)

The Republic of South Africa Constitution (Act No. 108 of 1996), states that Local Government is the sphere of Government closest to the people. They are elected by citizens to represent them. The responsibility for Local Government is to ensure that services are delivered to the communities. One way in which municipalities can do this, is to provide the services themselves through the use of their own resources. This includes finance, equipment and employees. A municipality may also outsource the provision of a service.

Local Government may choose to hire someone else to deliver the service. However, it still remains the responsibility of the municipality to choose the service provider, and to make sure that they deliver the service properly. Many municipalities are, however, unable to deliver services to residents. This might be because of lack of finances, or lack of capacity to provide a good service at an affordable price. The municipalities should find other ways to ensure that the services are improved and reach the people most in need of them.

Water Demand Management has resources in place to ensure service delivery to the residents in low income communities. The department hires contractors annually, to assist in effectively providing water supply and basic sanitation services. However, the impact of service delivery of Water Demand Management for low income communities still needs to be measured. Measurement should be done continually, to improve the performance of the department and promote customer satisfaction.

2.3.2 Capacity Building

According to the Republic of South Africa Constitution (Act No. 108 of 1996), it is possible for a municipality to improve and expand the delivery of services by improving its own ability to do so. By improving a number of skills, municipalities may be better able to deliver services effectively and efficiently
from inside. Better communication between the municipality and citizens will help determine the needs of the community and whether they are being met. Improved financial planning will help find the best possible ways to use available funds. Better technical skills will improve delivery of a particular municipal service.

Water Demand Management has a budget to ensure that the department operates productively. The department has competent, skilled and qualified plumbers. The plumbers attend to customer complaints that are lodged by the residents. These plumbers are trained every two years, on special technical courses. The training is to ensure that they remain competitive. With the available resources, Water Demand Management has the potential to provide an excellent service to the residents in low income areas.

2.3.3 Corporatisation

In some cases a municipality can improve the delivery of service by corporatising it. This is done by creating a municipal company that will provide the service. The company belongs to council which is accountable for its performance. Council usually appoints a board to oversee the work of the company management. The company is able to function more independently than a municipal department, whilst acting under the overall control and supervision of council. Municipalities have to deliver many different services. Sometimes it is a challenge for them to focus on the best way to deliver certain specialised services. Allowing the company some independence makes it free to experiment with new techniques and technology (Republic of South Africa Constitution, Act No. 108 of 1996).

Water Demand Management does not have an independent company in its employ. The contractors that are hired by Water Demand Management to assist in delivering a service to the residents do not work independently. The contractors operate under the supervision of the department. The quality of their workmanship is closely monitored and controlled by the quality assurance officers from Water Demand Management.

2.3.4 Municipal service partnerships

There are instances where a municipality might feel that, instead of providing the service directly, they would rather hire someone to do it. One reason why a municipality would choose this route is that other municipalities, organisations or private companies may have better resources and management skills to provide the service. Whatever method a municipality chooses must always be in line with the overall goals of improving the quality of services. This can be done by extending services to residents who do not have them. Services must be provided at an affordable cost (Republic of South Africa Constitution, Act No. 108 of 1996).

The contractors who work for Water Demand Management are operating under the same objectives as the department. Water Demand Management strives to provide services that are affordable to the residents in low income communities. The contractors and Water Demand Management have an agreement, in terms of which, the contractors are required to provide basic water and sanitation services to the low income areas specified on the job list. The job list is issued daily to the contractors by Water Demand Management. The contractors have to deliver the services within the specified time frames, budgets and targets. It is the responsibility of the contractor to provide an excellent service, in order to meet the goals of Water Demand Management. The operating assets of the council are hired to the contractors. This is to assist them to perform the service more effectively and efficiently.

2.3.5 Implementation of a Municipality Service Partnership (MSP) in a Municipality

The Republic of South Africa Constitution (Act No. 108 of 1996), stipulates that when a municipality has decided to provide a service through a MSP, it must then decide on an appropriate service provider. This means that a provider must meet the municipality's delivery goals at an affordable price, and by means of affirmative procurement procedures.

The municipality must ensure the participation of local residents and small companies which are owned and operated by previously disadvantaged individuals. Sometimes the appropriate service provider could be an NGO or CBO. A private company, or a public body, such as another municipality or a water board, can also be a service provider.

Usually the best way to find the right service provider is to get a number of them to compete against each other in a bidding process. This helps the municipality to decide on the provider, which will provide the best quality of service at the best possible price. This protects the interests of citizens, as it reduces opportunities for corruption. The various bids are then evaluated, a preferred bidder chosen, and a contract negotiated. Once the contract has been signed, the MSP can begin to operate.

2.3.6 Operation of a municipality service partnership

The Republic of South Africa Constitution, Act No. 108 of 1996), expresses the view that the contract between the two parties will describe each side's rights and responsibilities. For example, for a refuse collection contract in a particular part of the community, the service provider may be required to provide refuse tips in designated areas, and empty them a certain number of times a week. The contract will also specify how often the service provider will receive payment. The fee may be fixed, or vary, based on the provider's performance.

The contract must state that the municipality has the right to inspect the operations of the service provider, to ensure that they are doing what they are supposed to do. If the service is not provided at a satisfactory level, the municipality has the right to take certain actions. For example, the municipality could withhold payment until the service provider acts in terms of the contract. In more serious cases the municipality could even end the contract. The municipality's most important job, during implementation of the MSP contract, is to monitor performances to ensure that all the requirements are being met, and that citizens receive the correct number and quality of services.

2.3.7 Role of citizens in Municipal Service Partnerships

The Republic of South Africa Constitution (Act No. 108 of 1996), points out that citizens and their organisations also have very important roles to play in the planning and implementation of MSP's. Some of these are:
$>$ Assisting the municipality to accurately decide on which services are to be expanded and improved, particularly during the planning stages.
$>$ Assisting council in consulting citizens during decision-making.
> Residents should work with NGOs, CBOs and political parties to develop proposals for council to consider.
$>$ Communities can request the municipality to appoint a committee of community representatives to monitor processes, as well as to advise the municipality on priorities for service extension and improvement.
> Communities, or their representatives, could also play some role in the evaluation of potential service providers, the involvement of communities in service provision, and the monitoring of the performance of service providers.

2.4 SERVICE LEVELS

The most important factor to consider is the level or standard at which the service is provided. The choice of the level of a particular service is influenced by affordability as well as community needs. When municipalities make decisions about the level of services, they should seriously consider the long-term viability of providing a service at that level. If a municipality provides a service at a higher level, the cost of providing the service increases, and so does the price. The municipality will have to charge its customers accordingly. Municipalities rely heavily on income received from users. If the costs are too high and people are unable to pay, the municipality could lose money. This can result in the municipality being unable to continue to provide the service. The following table lists the different service levels for the most important services.

Table 2. 1: Service Levels (Source: The Republic of South Africa Constitution, Act 108 of 1996)

SERVICE TYPE	LEVEL 1 BASIC	LEVEL 2 INTERMEDIATE	LEVEL 3 FULL
Water	Communal standpipes	Yard taps and yard tanks	In house water
Sanitation	Sewage collection/disposal	VIP latrine septic tanks	Full water borne
Electricity	5-8 Amp or non-grid electricity	20 Amps	60 Amps
Roads	Graded	Gravel	 kerbed
Storm water drainage	Earth lined open channel	Open channel lined	Piped systems
Solid Waste disposal	Communal (residents)	Communal (contractors)	Kerbside

2.5 PROVISION OF FREE BASIC MUNICIPAL SERVICES

As part of its overall strategy to alleviate poverty in South Africa, the Government has put in place a policy for the provision of a free basic level of municipal services. The provision of free basic amounts of electricity and water to the users could alleviate the plight of the poorest among the people. The plans for the stimulation of the local economy could lead to the creation of new jobs and the reduction of poverty. From the above statements it is clear that water and electricity have been prioritised as a free basic service for the poor.

However, the researcher is of the view that other services certainly also fit the definition of "basic services". For example, low-income residents in rural areas generally do not see electricity as critical, as they can access other sources of energy, such as wood or paraffin. Roads, or rather the lack of accessible roads negatively affects their daily economic activity, mobility and safety. This implies that some flexibility should be allowed for municipalities to determine which services they will define as basic services.

2.6 OPTIONS FOR FREE BASIC SERVICE

By far the most complex issue to consider when discussing the provision of free basic services, is the funding of such services.

Municipalities receive their part of the equitable share. They can apply for infrastructure grants and raise their own revenue through service charges. Municipalities need to analyse what their costs for free basic service provision are, what allocations they receive and what their internal resource base is. This should then form the basis of what would be affordable, and therefore what the most suitable options for implementation would be.

2.7 THE QUALITY FRAMEWORK TO ENHANCE SERVICE DELIVERY

There is a framework at Water Demand Management to assist the department in achieving the best value in providing services. This is conducted through continuous improvement initiatives. The aim of the framework is to promote good quality of water and sanitation services from Water Demand Management, to the residents in low income communities. The framework includes the following components:
> Quality Management System;
> by-laws; and
$>$ social regulations.

2.8 CHALLENGES

Water Demand Management has a number of challenges that still need to be addressed. These include the following:
$>$ Slow feedback of human resource issues from the corporate department: requests from the branch to corporate takes a long time to be attended to, be it working equipment or furniture requests. The response time is slow. The slow feedback from corporate affects the branch negatively. This also has a major impact on service delivery, as Water Demand Management has to wait on corporate for certain resource requests or human resource queries.
$>$ Security of water supply and water loss: The water pipes and reservoirs where water is being stored before distribution to citizens, require constant maintenance and extensive labour to avoid water losses due to potential deteriorating infrastructure.
> Informal settlements: It is difficult to install water supply lines through informal settlements as they are too congested.
> Budget restrictions: All the branches of Water and Sanitation are allocated an annual operating budget by Corporate Finance, but most of the time the budget is not adequate to conduct all the necessary operational activities.
> Poor workmanship of sub-contractors: Water Demand Management has strict requirements when employing contractors. However, when the contractors win the tender, they employ sub-contractors who are not always competent. The quality of workmanship of these sub-contractors is a major challenge for Water Demand Management.
> Increasing projects: The number of incoming projects from Executive Management of Water and Sanitation to Water Demand Management is increasing, but there are no additional resources.
$>$ Low morale: The majority of the staff feels demoralised due to increasing loads of work and hectic deadlines that are not always possible to meet.

2.9 STANDARDS

Water Demand Management has developed a set of practice standards to improve service delivery. The standards provide a clear direction on how excellent service delivery practice can be achieved in future, by Water Demand Management. These standards are understood by all employees working in Water Demand Management.

2.10 INTERNAL AUDIT

Water Demand Management has an ISO 9001:2008 quality management system in place. The system was implemented to help Water Demand Management to improve service delivery and other aspects of the department. Internal auditing forms part of this system. The department conducts internal audits three times a year. The purpose of the audit is to provide feedback on what is working well, and what can be improved within Water Demand Management. Even though the system has been implemented, it is fairly new and has not yet served its full purpose. The employees are still trying to adapt to it.

The employees at Water Demand Management are all responsible for providing an excellent service to the residents in low income areas. Quality is everyone's responsibility at Water Demand Management.

2.11 BENCHMARKING

Benchmarking activity is highly promoted at Water Demand Management. The managers give their full support throughout the department, to facilitate service improvement initiatives, whenever it is necessary. Benchmarking involves learning from others, and implementing good practice. It can play a key part in delivering high quality services and ensuring continuous improvement within Water Demand Management.

Benchmarking at Water Demand Management involves the following:
> Regularly comparing critical aspects of performance with the best practice that can be found, either within or outside the organisation.
$>$ Identifying gaps in performance.
$>$ Seeking new approaches to bring about improvements in performance.
> Monitoring progress and reviewing the results.

2.12 PROCESS MANAGEMENT

Managing processes at Water Demand Management is a critical element in the continual drive to efficiently meet service user needs and expectations. This is the essential part of service delivery management. The processes in Water Demand Management, support policy and strategy. They are central to the department and often involve input from all staff. The managers ensure that the key processes for each service area are identified, measured and improved, as needed. This is to ensure that service users are satisfied.

2.13 ENVIRONMENT MANAGEMENT AND SAFETY

Water Demand Management is currently planning on implementing ISO 14001: 2004 Environment and OHSAS 18001:2007 Safety and Health management
systems. The two systems will be integrated with ISO 9001:2008, which is currently in place. This will assist in improving the impact of service delivery of Water Demand Management for low income communities. The systems are planned to improve the conditions which plumbers and contractors work under on site. Other staff members and users will also benefit. This initiative will further assist Water Demand Management in having fewer safety-related accidents.

The systems will be implemented throughout the organisation in accordance with the requirements of international and national regulatory requirements. These systems will not only address requirements. They will provide values for employee behaviour in creating a safe working environment and culture. The support that is shown by top management, to implement these systems, is visible. The systems will be monitored, audited and continuously improved upon. Staff will be trained on how the systems work. The roles and responsibilities will be clearly defined to the employees. This is to ensure that everyone understands how the systems work in conjunction with each other.

2. 14 CONCLUSION

Many municipalities in South Africa have embarked on the journey of service delivery excellence to promote customer satisfaction among the citizens. This further ensures that the municipalities remain competitive in the market, both locally and globally. However, adopting a specific quality management system is not indicative of achieving excellence. The leadership of South African municipalities has to optimally be knowledgeable about features surrounding an innovative approach, aimed at improving the impact of service delivery to communities. For Water Demand Management, the perceptions of the residents in the low income area of Litha Park in Khayelitsha will be looked at in this research. Service delivery initiatives and improvements will be implemented, in order to alleviate the research problem. Chapter 3 will look at relevant literature under discussion in this field.

CHAPTER 3:

3.1 INTRODUCTION

A literature review is a critical examination and analysis of a published body of knowledge that has been theorised and conceptualised by many scholars (Mouton, 2001:87). Watkins (2008:130), describes a literature review as a focus on a very specific problem that needs to be mitigated.

In this chapter, a literature review will be conducted, with regard to available publications on service delivery, and different aspects of customer satisfaction. The definition of service and 'voice of the customer' will be elaborated upon. The following areas will be looked at:
> Definition of service;
$>$ Voice of the customer;
> Customer needs and satisfaction;
> Customer Expectations;
> SERVQUAL;
$>$ Focus groups;
> Quality Function Deployment; and
$>$ KANO model.

3.2 DEFINITION OF SERVICE

The concept of 'service' comes from marketing literature, and many scholars have offered different definitions of 'service', based on their diverse perceptions about what a services constitutes (Chang, Chen \& Hsu, 2002:1). According to Zeithaml and Bitner (2003:3), services are defined as deeds, processes and performances. Perreault and McCarthy (1999:245), define services as deeds performed by one party for another.

Fitzsimmons and Fitzsimmons (2001:5), citing Quinn, Baruch and Paquette (1987:50) and Zeithaml and Bitner (2003:3), indicate that services include all economic activities whose output is not a physical product or construction. The output is generally consumed at the time of production, and provides added value in forms such as convenience, amusement, timeliness, comfort, or health, which are essentially intangible in nature. Kotler (1994:464), defines a service as any act or performance that one party can offer to another that is essentially intangible and does not result in the ownership of anything. Kotler (1994:465), is of the opinion that services are intangible, inseparable, variable and perishable. The author further mentioned that services normally require more quality control, supplier credibility and adaptability.

According to Gronroos (1990:27), services represent activities, or a series of activities, of more or less intangible in nature. They normally take place in interactions between customers and service employees, physical resources or goods and systems of the service provider, which are provided as solutions to customer problems. Yong (2000:43), in reviewing the various definitions of a service, pointed out that the features of service are noteworthy in order to better understand the concept. The author further explains that service is a performance and occurs through interaction between consumers and service providers.

Yong (2000:47), expresses the view that other factors, such as physical resources or environment, play an important role in the process of service production and consumption. Service is needed by consumers to provide certain functions, such as problem-solving. Juxtaposing the features concludes that a service, combined with goods or products, is experienced and evaluated by consumers who have particular goals and motivations for consuming the service.

3.3 DEFINITION OF VOICE OF THE CUSTOMER (VOC)

Sproul (2001:45), defines 'voice of the customer' as a systematic approach for incorporating the needs of customers into the design of customer experiences. This definition contains the following three key elements:

3.3.1 A systematic approach

Most organisations take an informal approach to gathering customer feedback. The Voice of the Customer (VOC) programme should augment, not replace, the adhoc approaches, with a more structured way to gather and use customer insights.

3.3.2 Customer needs

Organisations often have access to a great deal of customer data. Customers' insights do not automatically surface from data. A good VOC programme uncovers the current and emerging needs of key customers. It helps in identifying areas where those needs are not being met.

3.3.3 Experience design

Gathering customer insights is only an interim step to improving customer experience. VOC programmes deliver the most value when organisations make changes to better serve the customer needs.

According to Crow (2002:1), quality can be defined as meeting customer needs and providing superior value. Meeting customer needs, requires that those needs be understood. The 'voice of the customer' is the term to describe the stated, and unstated, customer needs or requirements. The voice of the customer can be captured in a variety of ways. This includes the following:
$>$ Direct discussion or interviews;
$>$ Surveys;
$>$ Focus groups;
> Customer specifications;
> Observation;
> Warranty data; and
> Field reports.

3.4 CAPTURING THE VOICE OF THE CUSTOMER

Crow (2002:6), points out that once a product plan, which defines the target market and customers, is established, the next step is to plan how to capture the customers' needs for each development project. This includes the following:
$>$ Determining how to identify target customers.
> Knowing which customers to contact in order to capture their needs.
$>$ Understanding the mechanisms to use to collect their needs.
$>$ Scheduling an estimation of resources to capture the voice of the customer.

The author further mentioned that, as opportunities are identified, appropriate techniques are used to capture the voice of the customer. The techniques used will depend on the nature of the customer relationship, as illustrated in Figure 3.1 below.

Figure 3.1: Customer relationship, (Source: Crow, 2002:6)

Crow (2002:8), explains that there is not only one monolithic voice of the customer. Customer voices are diverse. In consumer markets, there are varieties of different needs.

Even within one buying unit, there are multiple customer voices. This applies to industrial and government markets as well. There are even multiple customer voices within a single organisation. These diverse voices need to be considered, reconciled and balanced, to develop a truly successful product. These involve of the following:
> The voice of the procuring organisation;
$>$ the voice of the user; and
$>$ the voice of the support, or maintenance organisation.

According to Crow (2002:12), marketing has the responsibility for defining customer needs and product requirements. This has tended to isolate engineering and other development personnel from the customer, and from gaining a firsthand understanding of customer needs. Customers' real needs can become abstract to other development personnel. Product development personnel need to be directly involved in understanding customer needs. This may include the following:
> Visiting or meeting with customers.
$>$ Observing customers using or maintaining products.
$>$ Participating in focus groups.
> Rotating development personnel through marketing, sales or customer support functions.

Sanger (1971:20), mentioned that the voice of the customer can provide an organisation with valuable information for innovations and customer services. Over a period, an organisation's value proposition of products and services becomes the expectation, and no longer the differentiator from the competitor. By actively pursuing the voice of the customer, organisations can continuously adjust their value proposition to the changing wants and needs of the customer. The organisation can determine the unknown wants and needs by staying close to the customer. Table 3.1 below illustrates common techniques for capturing the voice of the customer, and their strengths and weaknesses.

Table 3.1 Methods for capturing the voice of the customer, (Source: Sanger, 1971:20)

Method	Strength	Weakness
Interviews	One on one	Sample size \&cost
Survey	Reach many customers	Low response rate
Focus groups	One on few	Group think
Quality Function Deployment	 implementation	Leadership buy-in
Empathic design	Observation of current products	May not lead to new products
Lead users	Leaders in knowledge of future products	Available resources for deployment

3.5 LISTENING TO THE VOICE OF THE CUSTOMER

Priebe (2004:56-59), points out that only the customer can define quality. This fundamental law of business illustrates the reason why it is important to understand the collective needs, wants and expectations of customers. This is what is meant by the term 'voice of customer'. The goal is to create a shared understanding with customers so that an organisation consistently delivers products that conform to requirements. Voice of customer (VOC) should be treated as a programme that integrates customer input into all aspects of the business. To visualise this, various levels of customer feedback are outlined below, as follows:

3.5.1 Relationship

The highest level of VOC is the customer's assessment of the overall business relationship. This is also referred to as customer satisfaction, or loyalty. Relationship feedback is typically gathered once or twice a year, via a standardised survey.

3.5.2 Products and processes

This focuses on requirements research. If a 'customer' is defined as any recipient of a good, service or work process (internal or external), then it makes sense that their input, when designing products and processes, be solicited.

Common data gathering methods include the following:
$>$ Interviews.
$>$ Focus groups.
$>$ Historical queries.
$>$ Competitive intelligence.
$>$ Benchmarking.
> Consumer reports.
$>$ Market research.
$>$ Ethnographical studies.
> Customer surveys

By fully integrating customer input into the product or process development lifecycle, a state of co-creation is achieved. This ensures that product specifications, service levels and quality metrics are perfectly synchronised with customer requirements.

3.5.3 Customer experience

This level focuses on transaction-based feedback. Every time an organisation interacts with a customer, an impression is created. If the organisation makes an effort, these impressions can be recorded, quantified and tracked. The first step in building this into a VOC programme is to identify which customer interactions should be measured. This usually includes the following:
$>$ Sales experience.
$>$ Onboarding.
> Product usage
$>$ Service Delivery.
$>$ Problem resolution.
Once the collection methods have been determined, clear processes for responding to customer input should be drawn. This applies to all levels. There is no point in gathering feedback unless an organisation is prepared to take action.

3.5.4 Ubiquitous VOC

This last level is called 'Ubiquitous VOC.' This can be the most challenging feedback to gather and classify, because it is typically unsolicited and unstructured. Customers' opinions regarding a company and its products is continually getting shared in a variety of mediums. This includes the following:
$>$ Customers' complaints to employees.
> Post messages online.
$>$ Email ideas for product improvement.
> Talk to others about how the organisation is treating its customers.
To understand and react to all the above points, the organisation must build robust communication channels for its customers and employees. The explosion of online mediums, web tools and social media sites can make this easier if the organisation is willing to get creative.

3.6 LEVELS OF ACTIVITIES IN A VOC PROGRAMME

Rheeder (1990: 56), states that there are five distinct levels of activities in a 'voice of the customer' programme. This involves the following:
> Relationship tracking: Organisations need to track the health of customer relationships over time. The organisation must conduct customer surveys. This should be done quarterly or annually. Feedback from the surveys must be used to improve the aspects of service delivery.
> Interaction monitoring: Every customer interaction from an online transaction, to a phone call to the call centre, is important. Organisations need a method to monitor how effectively they handle these customer interactions. Some organisations conduct post-interaction surveys. During these surveys they ask customers for feedback on recent interactions with the organisation.
> Continuous listening: Structured feedback through customer surveys provides enormous opportunities for analysis. Organisations must put processes in place for executives to regularly listen to customers. There are many opportunities to hear what customers are saying.
$>$ Project infusion: Projects that affect customers should incorporate insights about them.

Despite the clear need for this type of effort, many companies lack a formalised approach for infusing customer insights into projects. To ensure that this does not happen, some firms are incorporating customer insight steps in the front-end of their sigma processes.
$>$ Periodic immersion: It is valuable for all employees, including executives, to spend a significant amount of time interacting directly with customers, or working alongside frontline employees. These experiences, which should be at least a half day, provide an excellent opportunity for the organisation to question the status quo.

3.7 INVOLVEMENT WITH CUSTOMERS

Seko (2004:17), points out that direct involvement with the customers is important. Direct involvement provides the following:
$>$ Better understanding of customer needs.
$>$ The customer environment.
$>$ Product use.
$>$ Development of greater empathy on the part of product development personnel.
> Minimisation of hidden knowledge.
$>$ Overcoming technical arrogance.
> Better perspective for development decisions.

These practices have resulted in fundamental insights, such as the engineering of highly technical products. When a company has a direct relationship with a very small number of customers, it is desirable to have a customer representative on the product development team. Alternatively, mechanisms, such as focus groups, should be used where there is a larger number of customers, to ensure on-going feedback over the development cycle. Current customers, as well as potential customers, should be considered and included. This customer involvement is useful for defining requirements, answering questions and providing input during development, and critiquing a design or prototype (Seko, 2004:19-20).

The author further states that customers are the first source of information if the product is aimed at the current market. It is important to communicate with potential customers because they are the primary source of information. Customers provide a good source of information on the strengths of competitors' products. Lead customers are a special class of customers who can provide important insights, particularly with new products. Lead customers are those customers who are the most advanced users of the product; customers who are pushing the product to its limits; or customers who are adapting an existing product to new uses.

Joubert (1993:46), mentioned that during customer discussions, it is essential to identify the basic customer needs. Frequently, customers will try to express their needs in terms of how the need can be satisfied, and not in terms of what the need is. This limits consideration of development alternatives. Development and marketing personnel should ask questions, until they truly understand what the root need is. They should break down general requirements into more specific requirements, by probing what is needed. Customer requirements need to be challenged, questioned and clarified until they make sense. Situations and circumstances must be documented to illustrate a customer need. It is important to address the priorities related to each need. Not all customer needs are equally important. In order to prioritise customer needs, ranking and paired comparisons must be used. Fundamentally, the objective is to understand how satisfying a particular need influences the purchase decision.

According to Meyer (2000:104), to obtain an understanding of customer needs, it is important to obtain the customer's perspective on the competition, relative to the proposed product. This may require follow-up contact once the concept for the product is determined or a prototype is developed.

3.8 COLLECTING CUSTOMER INFORMATION

In each technique, the organisation is trying to secure the customer's view point on satisfaction

The organisation identifies the customer's needs and determines new and future needs that are either unknown or difficult to describe by the customer. Interviews, surveys and focus groups are targeted at asking the customer questions to determine their requirements. Quality Function Deployment and Emphatic Design take the process a step further by incorporating observation to the questioning technique (Spears, 1996:12-14).

The author further stated that, lead user process is a more advanced process which networks knowledgeable experts together to develop new products and services. The primary purpose of the 'voice of the customer' is to assist an organisation with innovation. The innovation allows the company to serve the customers with new products and services, which lead to loyal customers and increased profits for the organisation. Innovation is the key to reinventing the value proposition of an organisation, and by including the customer, it creates a fair 'win-win' situation.

3.9 IDENTIFYING CUSTOMER NEEDS

Tovey (1973:34-35), explains that an organisation will only gain a competitive edge if it has correctly identified its customer needs. In order to identify customer needs, and make use of this information, an organisation will need to do the following:
$>$ Communicate with customers and find out how their needs can be satisfied;
$>$ establish ways to record and interpret customer feedback; and
$>$ use this information when making important decisions about marketing, buying, merchandising and selling.

3.10 ORGANISING CUSTOMER NEEDS

Yevu (1972:17-24), explains that once customer needs are gathered, they have to be organised. The mass of interview notes, requirements documents, market research and customer data, needs to be distilled into a handful of statements that express key customer needs. Affinity diagramming is a useful tool to assist with this effort. Brief statements which capture key customer needs are prepared to avoid any misinterpretation.

These are organised into logical groupings or related needs. This makes it easy to identify any redundancy and serves as a basis for organising the customer needs.

3.11 CUSTOMER ENGAGEMENT AND CUSTOMER SATISFACTION

According to Andries (1999:19-30), organisations are increasingly seeking to maximise the value of their customer satisfaction measurement investment. Customer satisfaction is good, but it does not result in a secure customer. Satisfied customers may be pleased with a recent experience, but often do not have an emotional connection with the company. This lack of emotional connection often results in customers with high levels of customer satisfaction, switching to competitors for reasons such as a minor cost difference, or a slightly more convenient location.

Olain (2001:67), is of the view that customer engagement is good for an organisation. Customer engagement is used by the best and most successful organisations in the world. Characteristics of customer engagement involve the following:
> Retention: Engaged customers will spend more with you over their lifetime, than with your competitors.
> Effort: Engaged customers will actually go out of their way to do business with you. They even spend more, to benefit from your products, service and brand.
> Advocacy: Engaged customers spread the good word, making it easier and cheaper for you to attract new customers.
> Passion: Engaged customers are passionate about the brand. They are so passionate that they may even spend time actively promoting the brand to others or defending the brand, if others speak negatively about it.

3.12 TAKING ACTION ON CUSTOMER FEEDBACK

Moll (2005:29), states that every time a customer provides feedback on experience, organisations have the opportunity to use that feedback to improve their business. Some organisations utilise this feedback to view general trends over time. Unfortunately, a majority of organisations focus on aggregate trends rather than empowering managers to take the best actions on customer feedback to improve customer engagement. Organisations need to take the best actions on customer feedback. The VOC programmes should be designed to assist managers to respond in the most effective way to customer feedback. This includes the following:

3.12.1 Questions designed for action

Question sets are designed to enable clients to take action on specific aspects of the customer experience. Tracking surveys are short and enjoyable for the client or customer.

3.12.2 Action Alerts

Based on the individual customer responses to specific questions in the survey, action alerts are sent directly to the designated people within the client organisation, immediately after the customer submits feedback. VOC consists of the following five types of action alerts.
$>$ Recover.
$>$ Grow.
$>$ Recognise.
$>$ Improve.
> Market.

3.12.3 Action Alert Management

After an action alert is sent, a case is automatically created in the VOC centre and assigned to the appropriate person who provides updates regarding progress.

This person, or a supervisor, can then close out cases, as appropriate actions are taken. Suggestions are provided on what specific actions will be most effective. This will depend on the type of action alert generated. Successful actions are recorded, tracked and shared within the entire organisation.

3.12.4 Manager Action Planning Tool

This enables managers to identify areas of focus that, if improved, will have the greatest impact on customer engagement within their location. This tool includes a proprietary library of best-practice actions for each question in the survey.

3.13 CUSTOMER-DRIVEN PROCESS ENTERPRISE

Lopez (1983:17), mentioned that every organisation wants to satisfy its customers. The organisations discuss customer surveys and the gathering of 'voice of customer'. Some organisations have even allocated responsibility for collecting and analysing the information received from surveys. When there is a strong performance related to customer relationships, the following characteristics are observed:
$>$ The focus is on process, rather than on functions. The reason for this is simple. When focus is on the process, the organisation focuses on resolving the causes of problems and measuring upstream metrics that give early warnings. When organisations focus on functions, it is usually an indication of the desire to attribute or deflect blame.
$>$ Employees know, and accept their roles in the processes they own.
> Everyone understands how the organisation's processes are operating. People know how things fit in. The people do not just look at their processes, or their role in a process, but they begin to understand, and relate to, how the processes are linked. When people focus on their linkages, there are fewer hidden processes.
$>$ Processes are measured objectively, and measures are reported regularly.

An organisation needs to bring together all its initiatives under one umbrella responsible for the business's improvements. The organisation needs to
communicate the seriousness of the need. One of the best ways to do that is to put the customer information in front of the process owners. Most of the time the customer data is hidden. People are given just what the organisation believes they need to know, to do their jobs. The customer data, especially the most unpleasant, which, in fact, is the most motivating, is locked up, so that no one knows the bad news. This just means that no one knows the need to change. Leadership need to be committed.(Khan, 1990:67).

3.14 CUSTOMER EXPECTATIONS

According to Zeithaml and Bitner (2003:86), customer needs, or expectations, change over time, due to a variety of factors such as customer emotional responses, attribution, or perceptions of quality. Throughout the service cycle, customers have different experiences which ultimately impact on their satisfaction. Customer satisfaction is dynamic. When measuring customer satisfaction, or service quality dimensions, the evaluating organisations should identify a point in the experience cycle that needs more focus and attention.

Kumar, Aaker and Day (1999:575), point out that the importance for organisations to develop a customer satisfaction programme, is to measure performance and satisfaction over time. The organisations feel that the majority of dissatisfied customers never complain. Most of these silent, dissatisfied, customers sometimes choose not to buy again from the company they are dissatisfied with. According to Zeithaml and Bitner (2003:135), a sound measure of service quality is necessary for identifying aspects of services needing performance improvement, assessing how much improvement is needed on each aspect, and evaluating the impact of improvement efforts. Wisniewski (2001: 380), explains that obtaining adequate information about the quality of services as perceived or expected by customers, is absolutely necessary for evaluating an organisation's performance. Feedback obtained from customer surveys could be misleading, from both policy and operational perspective.

Based on the above discussion, one may argue that information about customer expectations and perceptions of quality of services should not only be adequate,
but should also be gathered accurately, using the right measuring instrument or methodology.

In this regard, Jain and Gupta (2004:25), state that different scales for measuring service quality have been put forward by researchers, based on their perceptions about service quality. The authors further state that, SERVQUAL and SERVPERF are the two major service quality measurement scales, but it is still unclear as to which one is the more superior. However, in the authors view, SERVQUAL scale outperforms SERVPERF scale. SERVQUAL possesses higher diagnostic powers to pinpoint areas for managerial interventions, in the event of service quality shortfalls.

3.15 SERVQUAL

According to Parasuraman, Zeithaml and Berry (1988:12), the SERVQUAL scale was first published in 1988, but has since undergone numerous improvements and changes. In terms of its applicability, it has been noted that the SERVQUAL scale has been extensively used by many service research institutions and organisations. The scale can be applied in different service settings, including local authorities. The SERVQUAL scale allows an organisation to determine the aspects on which it has to work to improve the global perception of its service quality. The organisation does so by comparing customer expectations of their services with their perceptions of what is received or offered to them by the organisation. In spite of its extensive use, the SERVQUAL scale has also attracted numerous criticisms around its universal applicability. The issues concerning its dimensionality and validity are questionable.

According to Llosa, Chandon and Orsingher (1998:19), the SERVQUAL scale has been replicated in many different service categories, so as to examine its generalisation. Some of the results show that conceptual and methodological problems exist, regarding the measurement of perceived service quality and its true dimensionality.

Building from the above discussion, and also taking into account the positive elements of the SERVQUAL scale, it is evident that the SERVQUAL scale could be useful in this research, for determining the gap between user expectations and perceptions of service delivery from Water Demand Management. Since this research is aimed at assessing the impact of service delivery of Water Demand Management to low income communities, it is deemed important to draw a distinction between services and goods, or manufactured products.

According to Fitzsimmons and Fitzsimmons (2001:5), Perreault and McCarthy (1999:245), and Zeithaml and Bitner (2003:5), goods and services should be distinguished on the basis of their attributes. Goods are tangible physical objects which can be created and transferred. They can exist over time and therefore can be stored and used later. Services tend to be intangible, unlike goods or manufactured products. Goods are created and used. For example, a customer, after watching a movie at the cinema, would at least have a sound memory of the movie that was played, but cannot take ownership of anything tangible. The above example explains why services cannot be touched, or owned, by consumers.

From the above discussion, it is evident that intangibility is the key determinant of whether provision of something is a service or not.

3.16 FOCUS GROUPS

According to Nkomo (2000: 89), focus groups are a common mechanism for gathering the voice of the customer through a structured group interview. They provide an opportunity to get multiple customers together to discuss their needs, evaluate concepts, and provide feedback to developers. Focus groups are used to elicit a range of ideas, attitudes, experiences, and opinions held, by a selected sample of participants on a defined topic. There are two basic types of focus groups. These are:
$>$ Exploratory focus groups: used to discuss customer needs, develop concepts for new products and evaluate new concepts of products; and
$>$ experiential focus groups: used to observe customers using products (and to learn from those observations) or to hear motivations for the purchase of a product.

Focus groups require an experienced facilitator to plan and organise the session, invite participants, and conduct the session.

The sessions are typically one to three hours in length. The objectives need to be clearly identified. Based on this, the facilitator should develop a presentation and a discussion guide. Customers must be identified and recruited. There are, typically, eight to twelve participants per session. A moderator will start with introductions, describe procedures, and often make a product presentation. Usually the session is observed by multiple people in a separate room and it is also audio- and video-taped to accurately capture all of the comments and feedback from customers (Smith, 2003: 80).

It is important to keep in mind that, because the numbers involved are small, the participants cannot be expected to be thoroughly representative, in a statistical sense, of the target population from which they are drawn, and findings cannot reliably be generalised beyond their number. Consideration must be taken in selecting the participants. Multiple sessions should be conducted to increase the validity of the results (Dladla, 2005:55-61).

3.17 CUSTOMER INTERVIEWS

Kruger (1993:43), explains that customer interviews are a common mechanism for gathering the voice of the customer. Customer interviews are usually conducted one-on-one with an individual customer, or with a small number of people from the same business or family unit.

They provide an opportunity to get in-depth information from a single customer. The interviews are used to understand the following questions:
$>$ What is the customer's problem or need?
> How will the product solve the customer's problem or need?
> What are the specific customer's needs that must be satisfied to address the customer's problem?
> What are the priorities of these needs? What is most important to the customer in making a buying decision?
$>$ What are the strengths and weaknesses of products, versus the competition?
> What are the customer's business issues?

The first step in the process is to identify the customers to interview. Based on market segment characteristics and dimensions, the organisation should work with marketing and sales people to identify potential customers. Current customers, competitors' customers, and potential customers should be taken into consideration. Various company contacts, channels and mechanisms must be utilised to pursue customer visits and interviews. If the interviews are within a business, meetings with individuals that interact with the product in different functions, need to be scheduled (Chuene, 1960:21).

Kruger (1993: 43), further states that there are two types of customer interviews. These include 'planned' and 'ad-hoc'. Planned interviews are scheduled ahead of time and are typically longer in duration. They usually take one and half, to two hours. Ad-hoc interviews are requested on the spot, at places such as shopping malls or stores.

3.18 THE KEYSTONE CUSTOMER

Increasing economic pressure from competition, government and rapidly changing technology has forced organisations to give more responsibilities to their few employees. Internal company services are no longer ancillary activities, but have become critical processes in assuring end customer satisfaction, and achieving organisational objectives. Many service organisations are part of a chain of customers. Quality Function Deployment (QFD) can accommodate multiple customers.

The keystone customer determines the success or failure of a service, as illustrated in Figure 3.2 below. In QFD, it is important that the needs of the keystone customer be addressed first (Mazur, 1991: 3).

Figure 3.2: The Key customer, (Source: Mazur, 1991:3)

3.19 COHERENT SERVICE PLANNING

Zultner (1992:84-97), is of the opinion that once customer requirements are known, they must be translated into actionable plans and communicated throughout the service organisation. This requires analysing the customer needs for expected requirements; designing and planning new services and facilities; developing training programmes and finally implementing the new service. Traditional development lacks the structure to communicate what matters most to the customer, and to align organisational components and employees behind these critical requirements. This system is incoherent and inefficient. Thus, more time is spent correcting and adjusting customer complaints than planning it correctly the first time (See Figure 3.3).

Figure 3.3 Incoherent Planning and Development, (Source: Zulter, 1992:84)

3.20 QUALITY FUNCTION DEPLOYMENT

According to Barnet and Smith (1992: 34), Quality Function Deployment (QFD) is a way of making the 'voice of the customer' heard throughout an organisation. It is a systematic process for capturing customer requirements and translating these into requirements that must be met throughout the supply chain. The result is a new set of target values aimed at for designers, production people, and even suppliers, in order to produce the output desired by customers.

3.21 HISTORY OF QUALITY FUNCTION DEPLOYMENT

Mizuno and Akao (1993:67-80), state that Quality Function Deployment began more than twenty years ago in Japan, as a quality system focused on delivering products and services that satisfy customers. To efficiently deliver value to customers, it is necessary to listen to the voice of the customer throughout the product or service development process. Quality experts in Japan developed the tools and techniques of QFD and organised them into a comprehensive system to assure quality and customer satisfaction in new products and services (See Figure 3.4 below).

Figure 3.4 History of QFD, (Source: Mizuno \& Akao, 1993:67)

3.22 QUALITY FUNCTION DEPLOYMENT PROCESS

Quality Function Deployment begins with product planning. It then continues with product design and process design, and finishes with process control, quality control, testing, equipment maintenance and training. As a result, this process requires multiple functional disciplines to adequately address this range of activities. QFD is synergistic with multi-function product development teams. It can provide a structured process for these teams to begin communicating, making decisions and planning the product.

It is a useful methodology, along with product development teams, to support a concurrent engineering or integrated product development approach, as illustrated in Figure 3.5 below (Crow, 2002:8-10).

Figure 3.5 QFD Methodology Flow, (Source: Crow, 2002:8-10)

According to Crow (2002:15-17), Quality Function Deployment, by its very structure and planning approach, requires that more time be spent up-front in the development process, making sure that the team determines, understands and agrees with what needs to be done, before plunging into design activities. As a result, less time will be spent downstream because of differences of opinion over
design issues or redesign, because the product was not on target. It leads to consensus decisions, greater commitment to the development effort, better coordination, and reduced time over the course of the development effort.

Crow (2002:20), further states that QFD requires discipline. It is not necessarily easy to get started with. The following is a list of recommendations to facilitate initiation, with QFD:
> Obtain management commitment to use QFD.
> Establish clear objectives and scope of QFD use.
> Establish multi-functional team.
$>$ Get an adequate time commitment from team members.
> Obtain QFD training with practical hands-on exercises to learn the methodology and use a facilitator to guide the initial efforts.
$>$ Schedule regular meetings to maintain focus
> Avoid gathering perfect data. Many times significant customer insights and data exist within the organisation, but they are in the form of hidden knowledge. They are not communicated to people with the need for this information. It may be necessary to spend additional time gathering the voice of the customer before beginning QFD.
> Avoid technical arrogance and the belief that company personnel know more than the customer.

According to Phillips (2000: 91), Quality Function Deployment is an extremely useful methodology to facilitate communication, planning, and decision-making within a product development team. It is not a paperwork exercise, or additional documentation that must be completed in order to proceed to the next development milestone. It does not only bring the new product closer to the intended target, but reduces development cycle time and cost in the process.

3.23 BENEFITS OF QUALITY FUNCTION DEPLOYMENT

According to Mulder (1996: 21), the benefits of QFD are categorised into process and bottom line benefits, as follows:

3.23.1 Main 'process' benefits of using QFD are:

$>$ Improved communication and sharing of information within a cross-functional team tasked with developing a new product. This team will typically include people from a variety of functional groups, including marketing, sales, service, distribution, product engineering, process engineering, procurement and production.
$>$ The identification of holes in the current knowledge of the design team.
> The capture and display of a wide variety of important design information in one place, in a compact form.
> Support for understanding, consensus and decision making.
$>$ The creation of an informational base, which is valuable for repeated cycles of product or service improvement.

3.23.2 Main 'bottom line' benefits of using QFD are:

$>$ Greater likelihood of product success in the marketplace, due to the precise targeting of key customer requirements.
$>$ Reduced overall design cycle time, mainly due to reduction in time-consuming design changes.
> Reduced overall cost due to reducing design changes, which are not only time consuming but very costly, especially those which occur at a later stage.
$>$ Reduced product cost, by eliminating redundant features and over-design.

3.24 THE DEPLOYMENT OF SERVICE QFD

According to Mizuno and Chalmers (1992; 17), organisational deployment is used to map the QFD steps to the different organisational functions. This includes the following:
$>$ President.
> Marketing and planning.
$>$ Development
$>$ Training.
$>$ Customer service

Organisational deployment shows that it is responsible for activities during the service planning and development process. Often, it is used with a responsibility matrix to clarify organisational roles. Organisation deployment is recommended to be actioned before QFD is applied to a specific service. This will ensure that the necessary team players understand their respective roles, activities and schedules (See Table 3.2).

Table 3.2 Organisation Deployment Chart, (Source: Mizuno and Chalmers, 1992: 17)

Mazur (1992: 76), explains that task deployment is used to break down critical jobs into tasks and steps. It identifies what the tasks and steps are, and the responsible parties. The task deployment table can be used to yield valuable information. This includes the following:
$>$ Job descriptions.
$>$ Schedules.
$>$ Floor plans.
$>$ Standards.
$>$ Equipment.
$>$ Training requirements.

The next section discusses the Kano Model. This model assists organisations in understanding their customer requirements. When the customer requirements are clearly understood, the organisation can come up with different strategies of
promoting customer satisfaction. In the section below three customer requirements are elaborated upon.

3.25 KANO MODEL APPROACH

Kano (1984:39-48), mentioned that, in order to satisfy customers, an organisation must understand how meeting their requirements affects satisfaction. There are three types of customer requirements to consider (See Figure 3.6).

3.25.1 Revealed requirements

This is typically what an organisation gets by asking customers what they want. These requirements satisfy or dissatisfy in proportion to their presence or absence in the product or service. Fast delivery would be a good example. The faster or slower the delivery, the more the customers like or dislike it.

3.25.2 Expected requirements

These requirements are often basic. The customer might fail to mention them until the organisation fails to perform them. They are basic expectations without which the product or service may cease to be of value. Their absence is very dissatisfying. Further, meeting these requirements often goes unnoticed by most customers. Expected requirements must be fulfilled.

3.25.3 Exciting requirements

These are difficult to discover. They are beyond the customers' expectations. Their absence does not dissatisfy. Their presence excites the customers. Since customers are not apt to voice these requirements, it is the responsibility of the organisation to explore customer problems and opportunities to uncover such unspoken items. World-class services have to meet all these three types of requirements, not just what the customer says.

Figure 3.6 The Kano Model, (Source: Kano, 1984:51)

Kano's model, depicted in Figure 3.6, is dynamic in that, what excites the customers today is expected tomorrow. That is, once introduced, an exciting service will soon be imitated by competitors and customers will come to expect it from everyone. An example would be special long distance telephone rates at certain hours. Expected requirements can become exciting after a real or potential failure. An example might be the passengers applauding a pilot who has safely manoeuvred a landing, despite severe weather conditions. The Kano Model has an additional dimension, regarding which customer segments the target marketing includes. Knowing which customer segments the organisation wishes to serve is critical to understanding their requirements (Gaucher \& Walker, 1991:72-74).

William and Gibson (1991:73-91), are of the opinion that eliminating service problems can be likened to expected requirements. There is little satisfaction or competitive advantage when nothing goes wrong. Conversely, great value can be gained by discovering and delivering exciting requirements ahead of the competitors. The exciting customer needs, which are tied to adding value, are unspoken and thus invisible to both the customer and the producer or service provider. They change over time, technology and market segment. The voice of customer analysis tools and techniques were created to break through this. Understanding the true needs of customers requires work on the part of the organisation. This is not an easy task.

3.26 CONCLUSION

This chapter discloses a theory gathered from various literatures sources, in order to improve service delivery. The definitions of service, voice of the customer (VOC) programmes, and involvement of customers were uncovered. Capturing the voice of the customer, listening to the voice of the customer, collecting customer information, identifying and organising customer needs, engagement with customers, customer satisfaction initiatives, taking action on customer feedback, customer driven enterprise, understanding customer expectations, using SERVQUAL, forming focus groups, conducting customer interviews, understanding the keystone customer and its role in service delivery, the history of Quality Function Deployment (QFD), the Quality Function Deployment process, and adaption of KANO model approach, were all identified as critical success factors for improving service delivery within an organisation. Having an appropriate theory on service delivery, VOC programmes' application and service excellence requirements simply allow the student researcher to look forward to the next chapter, which will tackle the research survey, design and methodology.

CHAPTER 4: KNOWLEDGE MANAGEMENT SURVEY DESIGN AND METHODOLOGY

4.1 THE SURVEY ENVIRONMENT

Water Demand Management consists of various functional areas in the low income communities of the Cape Metropole. The various functional areas, which will serve as the research environment in Khayelitsha, include the following phases in Ward 3 at Litha Park:
> Mew Way;
> Hlungulu Crescent;
> Ngwamza;
> Gwava;
> Mbaneni; and
> Sikhova.

4.2 AIM OF THIS CHAPTER

The aim of this chapter and the survey contained therein is to determine what the key factors are that impact on service delivery of Water Demand Management for low income communities. The ultimate objective is to solve the research problem as defined in Chapter 1, Paragraph 1.2, and which reads as follows: "Poor service delivery from Water Demand Management to low income areas results in dissatisfaction and discontent".

4.3 THE TARGET POPULATION

With any survey, it is necessary to clearly define the target population, which Watkins (2008), citing Collis \& Hussey (2003: 157), defines as: "A population is any precisely defined set of people or collection of items which is under consideration".
$>$ The 'sampling frame' is defined by Vogt (1993) and cited by Collis and Hussey (2003: 150-160), as 'a list or record of the population from which all the sampling units are drawn.' For this survey, 80 households, randomly selected from Khayelitsha at various phases of Ward 3 in Litha Park represent the sampling frame. This transposes into 80 households (See paragraph 4.1) being randomly selected.

The organisation has a five level hierarchy, which is made up as follows:
$>$ Executive: the executive, supports the organisations' directors and manages the department.
> Branch Manager (BM): responsible to the Executive, and manages a branch functional area.
> Section Head (SH): responsible to a BM, and manages a functional area.
$>$ Senior Professional Officer (SPO): responsible to a SH and manages a business unit within a functional area.
> Professional Officer (PO): A professional individual.
> Staff: Shop floor personnel responsible for carrying out service delivery duties.

The target population was specifically chosen in order to validate the practicality of the concepts as presented here. The risk of bias, which cannot be statistically eliminated, is recognised by the author, based on the very definition of the target population, as well as the number of respondents selected.

4.4 DATA COLLECTION

According to Emory and Cooper (1995:278), three primary types of data collection (survey) methods can be distinguished, namely:
$>$ Personal interviewing.
$>$ Telephone interviewing.
$>$ Self-administered questionnaires/surveys.

Primary data or evidence will be collected using self-administered questionnaires, which fall within the ambit of a broader definition of 'survey research' or
'descriptive survey'. The concept of survey is defined by Watkins (2008), citing Remenyi et al. (2002:290) as: "...the collection of a large quantity of evidence, usually numeric, or evidence that will be converted into numbers, normally by means of a questionnaire. A questionnaire is a list of carefully structured questions, chosen after considerable testing, with a view to eliciting reliable responses from a chosen sample. The aim is to establish what a group of participants do, think or feel. A positivistic approach suggests structured 'closed' questions, while a phenomenological approach suggests unstructured 'openended' questions. In this research a positivistic approach will be used. The evidence collected could suggest ways in which the organisation could improve the service delivery strategy.

The data collection method used in the survey, falls within the context of a survey, defined by Hussey and Hussey (1997), as:
> "A sample of subjects being drawn from a population and studied to make inferences about the population"

More specifically, the survey conducted in this dissertation falls within the ambit of the 'descriptive survey' as defined by Ghauri, Grønhaug and Kristianslund (1995). The data collection method used falls within the ambit of both the definitions attributed to the concepts 'survey' and 'field study'. 'Survey', according to Gay and Diebl (1992:238), is an attempt to collect data from members of a population in order to determine the current status of that population with respect to one or more variables. Kerlinger (1986:372), defines 'field study' as non-experimental scientific inquiries aimed at discovering the relations and interactions among ... variables in real ... structures. As in the case of most academic research, the collection of data forms an important part of the overall dissertation content.

4.5 MEASUREMENT SCALES

The survey will be based on the well-known Lickert scale, whereby respondents were asked to respond to questions or statements (Parasuraman 1991:410) in order
to determine consensus, probability and importance. The Lickert scale was chosen, due to its ability to be used in both respondent-centred (how responses differ between people) and stimulus-centred (how responses differ between various stimuli) studies, most appropriate to glean data in support of the research problem in question (Emory and Cooper 1995:180-181). According to Emory and Cooper (1995:180-181), the advantages in using the Lickert scale are:
$>$ Easy and quick to construct.
> Each item meets an empirical test for discriminating ability.
> The Lickert scale is probably more reliable than the Thurston scale, and it provides a greater volume of data than the Thurston differential scale.
> The Lickert scale is also treated as an interval scale.

According to Remenyi, Money and Twite (1995:224), interval scales facilitate meaningful statistics when calculating means, standard deviations and Pearson correlation coefficients. To generate a significant amount of data, other means, such as rated responses and numeric scales, will also be used.

4.6 THE DEMAND FOR A QUALITATIVE RESEARCH STRATEGY

While this author acknowledges that a number of strategies can be applied in similar research projects, the well-known concepts of objectivity and reliability, as inherited from the empirical analytical paradigm, are suggested for business research in more or less the traditional way. Quoting Thorndike \& Hagen, these concepts are defined by Emory \& Cooper (1995:156), as follows:
$>$ Practicality: Practicality is concerned with a wide range of factors of economy, convenience, and interpretability.
> Validity: Validity refers to the extent to which a test measures what we actually wish to measure. Yin (2003:34), identifies 3 subsets to the concept validity, namely: Construct validity, internal validity and external validity.
> Reliability: Reliability has to do with the accuracy and precision of a measurement procedure.

4.7 SURVEY SENSITIVITY

The research is conducted in areas of a sensitive nature. A case like this survey poses particular challenges to the researcher.
The following guidelines from various academics serve to illustrate the mitigation process, which can be deployed in an instance where research is conducted in areas of a sensitive nature:
> A qualitative investigation of a particularly sensitive nature conducted by Oskowitz and Meulenberg-Buskens (1997:83), qualified the importance of handling mission critical issues, as identified above, when the authors stated:
"Thus any type of qualitative investigation could benefit from the researchers being skilled and prepared, and the sensitive nature of an investigation, into a stigmatizing condition made the need for such an undertaking even more imperative in the current study".
$>$ The sensitivity of certain issues, and issues identified as impacting on the research negatively in the environments being evaluated, not only demand intimate personal involvement, but also demand the 'personal and practical experience' of the researcher. This view was upheld by Meulenberg-Buskens (1997:94), as being imperative to assure that the quality in qualitative research is undertaken. Checkland (1989:152), supports this view, but extends the concept with the opinion that: "The researcher becomes a participant in the action, and the process of change itself becomes the subject of research".

4.8 SURVEY DESIGN

Collis \& Hussey (2003:60), are of the opinion that, 'if research is to be conducted in an efficient manner and makes the best of opportunities and resources available, it must be organised.' Furthermore, if it is to provide a coherent and logical route to a reliable outcome, it must be conducted systematically, using appropriate methods to collect and analyse the data. A survey should be designed in accordance with the following stages:
$>$ Stage one: Identify the topic and set some objectives.
$>$ Stage two: Pilot a questionnaire to find out what people know, and what they see as the important issues.
$>$ Stage three: List the areas of information needed and define the objectives.
$>$ Stage four: Review the responses to the 'pilot.'
$>$ Stage five: Finalise the objectives.
$>$ Stage six: Write the questionnaire.
$>$ Stage seven: Re-pilot the questionnaire.
$>$ Stage eight: Finalise the questionnaire.
> Stage nine: Code the questionnaire.

The survey design, to be used in this instance, is that of the descriptive survey, as opposed to the analytical survey. The descriptive survey is, according to Collis \& Hussey (2003:10), frequently used in business research in the form of attitude surveys. The descriptive survey, as defined by Ghauri, Grønhaug and Kristianslund (1995:60), has furthermore the characteristics to indicate how many members of a particular population have a certain characteristic. Particular care was taken to avoid bias in the formulation of the questions.

The statements within the survey have been designed with the following principles in mind:
$>$ Avoidance of double-barrelled statements.
$>$ Avoidance of double-negative statements.
> Avoidance of prestige bias.
$>$ Avoidance of leading statements.
$>$ Avoidance of the assumption of prior knowledge.

Statements were so formulated as to allow the same respondents to respond to each of the two questionnaires, to determine if a paradigm shift occurred after the concept of 'knowledge management' was adopted.

4.9 THE VALIDATION SURVEY QUESTIONS

The author has developed survey questionnaires. Questions were prepared and piloted to ensure they reflected a high degree of 'validity' (Easterby-Smith, Thorpe \& Lowe, 1996).

4.9.1 Questionnaire on service delivery for low income communities

Question 1: Plumbers do not fix water leaks. To what extent do you personally agree or disagree with this statement?

Question 2: Broken cisterns are not replaced and attended to by plumbers. To what extent do you personally agree or disagree with this statement?

Question 3: The water flow pressure from the taps is low. To what extent do you personally agree or disagree with this statement?

Question 4: The water meters are always faulty. To what extent do you personally agree or disagree with this statement?

Question 5: Plumbing material being used is of poor quality. To what extent do you personally agree or disagree with this statement?

Question 6: Site awareness facilitators are rude and not helpful. To what extent do you personally agree or disagree with this statement?

Question 7: Site awareness facilitators give wrong information. To what extent do you personally agree or disagree with this statement?

Question 8: No education on water wastage is provided. To what extent do you personally agree or disagree with this statement?

Question 9: Job cards are not signed by the owner. To what extent do you personally agree or disagree with this statement?

Question 10: There is a lack of site inspection prior to water meter installation. To what extent do you personally agree or disagree with this statement?

Question 11: There are no follow-up inspections after completion of repairs. To what extent do you personally agree or disagree with this statement?

Question 12: The daily water allocation of 350 litres is not sufficient. To what extent do you personally agree or disagree with this statement?

Question13: The water coming out of taps is not always fit for human consumption (smelling). To what extent do you personally agree or disagree with this statement?

Question 14: Plumbers go to the wrong households when attending to complaints. To what extent do you personally agree or disagree with this statement?

Question 15: Call centre staff does not answer complaint calls on time. To what extent do you personally agree or disagree with this statement?

Question 16: Plumbers do not attend to complaints within the specified time. To what extent do you personally agree or disagree with this statement?

Question 17: The complaints capturers do not capture details correctly. To what extent do you personally agree or disagree with this statement?
Question 18: Follow-ups are not being done on complaints. To what extent do you personally agree or disagree with this statement?

Question 19: Water Demand Management does not comply with the consumer service charter. To what extent do you personally agree or disagree with this statement?

Question 20: Household owners do not understand the water bill. To what extent do you personally agree or disagree with this statement?

Question 21: Service is acceptable. To what extent do you personally agree or disagree with this statement?

Question 22: Inadequate reporting processes in place to address complaints. To what extent do you personally agree or disagree with this statement?
Question 23: Meter readers record estimations, instead of physical reading meters. To what extent do you personally agree or disagree with this statement?
Question 24: Work instructions are not being followed. To what extent do you personally agree or disagree with this statement?

Question 25: No cleaning is done after repairs. To what extent do you personally agree or disagree with this statement?

4.10 CONCLUSION

In this chapter, the 'service delivery' survey design and methodology was addressed under the following functional headings:
$>$ Survey environment.
$>$ The aim of the chapter.
$>$ Choice of sampling method.
> Target population.
> Data collection.
> Measurement scales.
$>$ Demand for a qualitative research strategy.
> Survey sensitivity.
$>$ Survey design.
$>$ Survey questions.

In Chapter 5, results from the survey will be analysed in detail and conclusions drawn.

CHAPTER 5: DATA ANALYSIS AND INTERPRETATION OF RESULTS

5.1 INTRODUCTION

Data analysis is "the process of bringing order, structure and meaning to the mass of collected data" (de Vos 2002, 339). This chapter discusses the statistical analysis of the questionnaire compiled by N Madliwa, for the purpose of obtaining Magister Technologiae: Quality in the Faculty of Engineering at the Cape Peninsula University of Technology. The aim of this study is to determine the impact of service delivery of Water Demand Management on low income communities. In this chapter the data obtained from the completed questionnaires will be presented and analysed.

In most social research, the analysis entails three major steps, in the following order:
$>$ Cleaning and organising the information that was collected, which is called the data preparation step,
$>$ Describing the information that was collected (Descriptive Statistics); and
$>$ Testing the assumptions made through hypothesis and modeling (Inferential Statistics).

The responses to the questionnaire, developed by the researcher for the purpose of obtaining information regarding the impact of service delivery on user satisfaction, the current standard of service delivery, and the establishment of mechanisms to improve service delivery, have been analysed, using SAS software.

5.2 METHOD OF ANALYSIS

5.2.1 VALIDATION OF SURVEY RESULTS

A descriptive analysis of the survey results returned by the research questionnaire respondents is reflected below. The responses to the questions obtained through the questionnaires are indicated in table format for ease of reference. Data validation is the process of ensuring that a programme operates on clean, correct and useful data. The construct validation, however, can only be taken to the point where the questionnaire measures what it is supposed to measure. Construct validation should be addressed in the planning phases of the survey, and when the questionnaire is developed. This questionnaire is supposed to measure whether poor service delivery from Water Demand Management to low income areas, such as Ward 3 at Litha Park Khayelitsha, results in dissatisfaction and discontent.

5.2.2 DATA FORMAT

The data was received in questionnaires, which were coded and captured in a database developed on Microsoft Access, for this purpose. These questionnaires were captured twice and then the two datasets were compared to minimise capturing mistakes. When the database had been developed, use was made of rules, with respect to the questionnaire, that set boundaries for the different variables (questions). For instance, if the Lickert scale is used, as follows:
$>$ 'Strongly disagree' is coded as 1
$>$ 'Disagree' is coded as 2
$>$ 'Undecided' is coded as 3
$>$ 'Agree' is coded as 4
$>$ 'Strongly agree' is coded as 5 .
A boundary is set on Microsoft Access as less than 6. This means that if the number 6 , or more than 6 , is captured an error will show until a number less than 6 is captured. It was then imported into SAS-format through the SAS ACCESS module. This information, which had been double checked for correctness, was then analysed by the custodian of this document.

5.2.3 PRELIMINARY ANALYSIS

The reliability of the statements in the questionnaire posed to the respondents in Khayelitsha was measured by using the Cronbach Alpha test. (See paragraph 5.3.1). A Uni-variate descriptive analysis is performed on all the original variables; displaying frequencies, percentages, cumulative frequencies, cumulative percentages, means, standard deviations, range, median, mode etc. These descriptive statistics are discussed in paragraphs 5.3.2 and 5.3.3. (See also computer printouts in Annexure B \& C).

5.2.4 INFERENTIAL STATISTICS USED

Inferential statistics that were used, include:
$>$ Cronbach Alpha test. Cronbach's Alpha is an index of reliability associated with the variation accounted for by the true score of the "underlying construct". Construct is the hypothetical variables that are being measured (Cooper \& Schindler, 2001:216-217). Another way to put it would be that Cronbach's Alpha measures how well a set of items (or variables) measures a single uni-dimensional latent construct. When data has a multidimensional structure, Cronbach's Alpha will usually be low.
$>$ Chi-square tests for nominal data. The Chi-square (two-sample) tests are probably the most widely used nonparametric test of significance that is useful for tests involving nominal data, but it can be used for higher scales as well, like cases where persons, events or objects are grouped in two or more nominal categories such as 'yes-no' or cases A, B, C or D. The technique is used to test for significant differences between the observed distribution of data among categories, and the expected distribution based on the null hypothesis. It has to be calculated with actual counts rather than percentages (Cooper \& Schindler, 2001:499).
> The SAS software computes a P-value (Probability value) that measures statistical significance when comparing variables with each other, determining relationships between variables, or determining association between variables. Results will be regarded as significant if the p-values are smaller than 0.05 , because this value presents an acceptable level on a 95% confidence interval
($\mathrm{p} \leq 0.05$). The p -value is the probability of observing a sample value as extreme as, or more extreme than, the value actually observed, given that the null hypothesis is true. This area represents the probability of a Type 1 error that must be assumed if the null hypothesis is rejected (Cooper \& Schindler, 2001:509).
> The p -value is compared to the significance level (α) and on this basis the null hypothesis is either rejected or not rejected. If the p value is less than the significance level, the null hypothesis is rejected (if p value $<\alpha$, reject null). If the p value is greater than, or equal to, the significance level, the null hypothesis is not rejected (if p value $\geq \alpha$, do not reject null). Thus with $\alpha=0.05$, if the p value is less than 0.05 , the null hypothesis will be rejected. The p value is determined by using the standard normal distribution. The small p value represents the risk of rejecting the null hypothesis.
$>$ A difference has statistical significance if there is good reason to believe the difference does not represent random sampling fluctuations only. Results will be regarded as significant if the p -values are smaller than 0.05 , because this value is used as the cut-off point in most behavioural science research.

5.2.5 ASSISTANCE TO RESEARCHER

The conclusions made by the researcher, were validated by the statistical report. Help was given to interpret the outcome of the data. The final report, written by the researcher, was to be validated and checked by the statistician to exclude any misleading interpretations. All inferential statistics are discussed in paragraphs 5.3.4.

5.2.6 SAMPLE

The target population is residents who live and own houses in Ward 3 at Litha Park. A random sample of 80 was drawn in the target population and the sample realisation was 80 .

5.3 ANALYSIS

In total, 80 residents of Ward 3 at Litha Park, Khayelitsha completed the questionnaire. Descriptive statistics will be given for each variable, and only the respondents who completed the entire questionnaire will be utilised in the inferential statistics.

5.3.1 RELIABILITY TESTING

Reliability tests (Cronbach's Alpha Coefficient) will be conducted on the questions/statements (which is the measuring instrument in this case) posed to the respondents of Ward 3 at Litha Park, Khayelitsha. As statement D21 is stated positively as "Service is acceptable" whilst the rest of the statements are stated negatively, it might suggest that some reversal issues are present. Thus, if the respondents agreed with the statement "Service is acceptable" they will disagree with the statement "Service is unacceptable". It is thus necessary to recode D21 by creating a new variable D 21 n that is the reverse of the original variable and the transformation for D21is as follows:
$\mathrm{D} 21 \mathrm{n}=1$ if D21 $=5$;
D21n $=2$ if D21 $=4$;
D21n $=3$ if D21 $=3$;
D21n $=4$ if D21 $=2$;
D21n $=5$ if D21 $=1$;
When interpreting the result, note should be taken that D 21 n is the reverse of the original statement D21.

The Cronbach's Alpha Coefficient for this measuring instrument is less than 0.70 (the acceptable level according to Nunnally, 1978: 245), and thus this measuring instrument is not consistent.

The results of the Cronbach Alpha tests for the all the raw variables are shown in table 5.1 and in Annexure A. It shows the correlation between the respective item and the total sum score (without the respective item) and the internal consistency of the scale (coefficient alpha) if the respective item were to be deleted.

By deleting the items (statements) one by one each time, with the statement with the highest Cronbach Alpha value, the Alpha value will increase. In the right-most column of table 5.1, it shows that the reliability of the scale could be higher if some of these statements were to be deleted.

For instance, if statement D20 is deleted from this measuring scale then the Cronbach Alpha Coefficient will increase to 0.5564 . This does not help much as it is still smaller than 0.70 . If we carry on, and each time delete the item (statement) with the highest Cronbach alpha value the best overall Cronbach Alpha Coefficient achieved will be 0.6700 after deleting statements A1, A4, A5, B9, B10, B11, B12, B13, C14, C18, D21n, D23, D24 and D25. This shows that the measuring instrument may not be reliable, or exist out of multi constructs (measure more than one aspect). When the Cronbach Alpha Coefficient is calculated for the items in the different sections, the Cronbach Alpha for each section is very small.

TABLE 5.1: Cronbach's Alpha Coefficient for all the items forming the measuring instrument in this survey for the total sample

Statements (Test all statements without current one's input)	Variable nr.	Correlation with total	Cronbach's Alpha Coefficient
Section A			
1. Plumbers do not fix water leaks.	A1	0.3083	0.4907
2. Broken cisterns are not replaced and attended to by plumber.	A2	0.1824	0.5118
3. The water flow pressure from the taps is low.	A3	0.1311	0.5207
4. The water meters are always faulty.	A4	0.1265	0.5209
5. Plumbing material being used is of poor quality.	A5	0.0059	0.5386
Section B			
6. Site awareness facilitators are rude and not helpful.	B6	0.1817	0.5122
7. Site awareness facilitators give wrong information.	B7	0.3223	0.4869
8. No education on water wastage is provided.	B8	0.1549	0.5165

Statements (Test all statements without current one's input)	Variable nr.	Correlation with total	Cronbach's Alpha Coefficient
9. Job cards are not signed by the owner.	B9	-0.1034	0.5541
10. Lack of site inspection prior to water meter installation.	B10	0.2212	0.5072
11. No follow-up inspections after completion of repairs.	B11	0.0743	0.5272
12. The daily water allocation of 350 litres is not sufficient.	B12	0.1726	0.5136
13. The water coming out of taps is not always fit for human consumption (smelling).	B13	0.1480	0.5177
Section C			
14. Plumbers go to the wrong households when attending to complaints.	C14	0.2748	0.4962
15. Call centre staff does not answer complaint calls on time.	C15	0.3143	0.4953
16. Plumbers do not attend to complaints within the specified time.	C16	0.2928	0.5046
17. The complaints capturers do not capture details correctly.	C17	0.4350	0.4875
18. Follow-ups are not being done on complaints.	C18	0.1829	0.5144
Section D			
19. Water demand management does not comply with the consumer service charter.	D19	0.0968	0.5246
20. Household owners do not understand the water bill.	D20	-0.1094	0.5564
21. Service is acceptable.	D21	0.0761	0.5290
22. Inadequate reporting processes in place to address complaints.	D22	0.2354	0.5072
23. Meter readers record estimations, instead of physically reading meters.	D23	-0.0376	0.5413
24. Work instructions are not being followed.	D24	0.2603	0.5014
25. No cleaning is done after repairs.	D25	-0.0191	0.5418
Cronbach's Coefficient Alpha for standardized variables			0.5506
Cronbach's Coefficient Alpha for raw variables			0.5276

After performing an exploratory factor analysis it was determined that this measuring instrument consists of at least 6 constructs which grouped the items (statements) into six factors. Exploratory factor analysis is used to investigate the factor structure underlying the set of original observed (25) variables that represent the measurement items regarding the impact of poor service delivery from water demand management, to low income areas, to determine the latent variables which it describes. Per definition, factor analysis identifies the nature and number of latent factors responsible for co-variation in data analysis. Results, including the rotated factor pattern and communality estimates of the exploratory factor analysis are shown in Table 5.3. The SAS printout can be found in Annexure F. The communality refers to the percent of variance in an observed variable that is accounted for by the retained factors (Hatcher, L 1994: 13).

TABLE 5.2: Original variables and corresponding factor loadings from the rotated factor pattern.

Factor Pattern						Final Communality Estimates	Questionnaire Statements
1	2	3	4	5	6		
78	12	18	-17	7	-9	0.6345	C15
74	13	25	6	19	-4	0.5896	C17
63	1	14	12	5	-2	0.4474	C16
22	64	-24	7	-1	5	0.5028	D25
27	62	-7	-10	9	-2	0.4857	D24
0	53	-27	8	-27	-7	0.3798	D23
1	46	11	25	15	5	0.3031	C14
15	-12	80	7	19	23	0.6853	B7
23	1	69	-9	10	-28	0.5820	B6
15	-30	59	-12	17	19	0.4519	B8
-2	9	-9	61	-6	7	0.3975	B11
13	23	-3	60	1	-13	0.4457	B10
42	-9	-3	-46	29	6	0.4091	A3
37	-15	11	-13	67	-35	0.5964	A2
7	22	20	10	54	-10	0.3887	A1
-4	-9	13	0	51	17	0.3249	B13
-	-11	13	-13	7	70	0.5578	A4
-	19	-6	34	-26	60	0.5268	A5

Factor Pattern					Final Communality Cstimates	Questionnaire Statements	
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$		
20							

- Take note that all the loadings are multiplied by a 100 and rounded to the nearest integer.

Measurements on the impact of poor service delivery are subjected to an exploratory factor analysis, using squared multiple correlations (SMC) as prior communality estimates. The principal factor method was used to extract the factors, and this was followed by an oblique rotation. A Scree test, as well as an eigenvalue of more than 1 , suggested six meaningful factors, so only these factors were retained for rotation.

In interpreting the rotated factor pattern, an item was said to load on a given factor if the factor loading was 0.40 or greater for that factor, and was less than 0.40 for the other. Using these criteria, three items were found to load on the first factor, which was subsequently labelled the "Complaints" factor. Four items loaded on the second factor, which was labelled the "Work Ethics" factor. Three items loaded on the third factor, which was labelled the "Site awareness" factor. Three items loaded on the fourth factor, which was labelled the "Site inspections" factor. Three items loaded on the fifth factor, which was labelled the "Customer issues" factor. Two items loaded on the sixth factor, which was labelled the "Material quality" factor. Thus, the measuring instrument that measures the impact of poor service delivery consists of six constructs, and that is why, if used as one measuring instrument, it proofs to be unreliable.

The Cronbach alpha coefficient was calculated for these six factors and they are still not reliable. Thus, each statement will be analysed and compared, with respect to the biographical variables. No summaries of variables will be tested.

5.3.2 DESCRIPTIVE STATISTICS

Table 5.3 shows the descriptive statistics for all the categorical variables with the frequencies in each category and the percentage out of the total number of
questionnaires. The number of years residing in the house, the number of people residing in the house or who stay at home during the day will be grouped in sensible groupings to be used later in comparisons. However, the average number of years and people will also be given in table 5.4. Take note that the descriptive statistics are based on the total sample. These descriptive statistics are also shown in Annexures B \& C.

TABLE 5. 3: Descriptive statistics for all the variables

Variables	Categories	Frequency	Percentage out of total
Biographic variables			
1. Type of dwelling.	House	30	37.5\%
	Shack	25	31.2\%
	Wendy-house	25	31.2\%
2. Gender.	Male	39	48.8\%
	Female	41	51.2\%
3. How many people are residing in your household?	1-4 years	26	32.5\%
	5-8 years	26	32.5\%
	>8 years	28	35.0\%
4. Number of people at home during the day.	0-1	26	32.5\%
	2-5	35	43.8\%
	>5	19	23.8\%
5. How long have you been living in your household?	1-4 years	28	35.0\%
	5-9 years	26	32.5\%
	>8 years	26	32.5\%
Section A			
1. Plumbers do not fix water leaks.	Strongly disagree	9	11.2\%
	Disagree	21	26.2\%
	Undecided	2	2.5\%
	Agree	27	33.8\%
	Strongly agree	21	26.2\%
2. Broken cisterns are not replaced and attended to by plumber.	Strongly disagree	10	12.5\%
	Disagree	18	22.5\%
	Undecided	3	3.8\%

Variables	Categories	Frequency	Percentage out of total
	Strongly agree	26	32.5\%
9. Job cards are not signed by the owner.	Strongly disagree	7	8.8\%
	Disagree	19	23.8\%
	Undecided	3	3.8\%
	Agree	32	40.0\%
	Strongly agree	17	21.2\%
	Unknown	2	2.5\%
10. Lack of site inspection prior to water meter installation.	Strongly disagree	6	7.5\%
	Disagree	11	13.8\%
	Undecided	5	6.2\%
	Agree	39	48.8\%
	Strongly agree	18	22.5\%
	Unknown	1	1.2\%
11. No follow-up inspections after completion of repairs.	Strongly disagree	1	1.2\%
	Disagree	13	16.2\%
	Undecided	5	6.2\%
	Agree	33	41.2\%
	Strongly agree	28	35.0\%
12. The daily water allocation of 350 litres is not sufficient	Strongly disagree	10	12.5\%
	Disagree	12	15.0\%
	Undecided	4	5.0\%
	Agree	20	25.0\%
	Strongly agree	34	42.5\%
13. The water coming out of taps is not always fit for human consumption (smelling).	Strongly disagree	7	8.8\%
	Disagree	25	31.2\%
	Undecided	5	6.2\%
	Agree	23	28.8\%
	Strongly agree	20	25.0\%
Section C			
14. Plumbers go to the wrong households when attending to complaints.	Strongly disagree	7	8.8\%
	Disagree	25	31.2\%
	Undecided	1	1.2\%
	Agree	25	31.2\%

Variables	Categories	Frequency	Percentage out of total
	Strongly agree	22	27.5\%
15. Call centre staff does not answer complaint calls on time.	Strongly disagree	2	2.5\%
	Disagree	7	8.8\%
	Undecided	4	6.0\%
	Agree	20	25.0\%
	Strongly agree	47	58.8\%
16. Plumbers do not attend to complaints within the specified time.	Strongly disagree	1	1.2\%
	Disagree	4	5.0\%
	Undecided	3	3.8\%
	Agree	20	25.0\%
	Strongly agree	52	65.0\%
17. The complaints capturers do not capture details correctly.	Strongly disagree	3	3.8\%
	Disagree	4	5.0\%
	Undecided	5	6.2\%
	Agree	20	25.0\%
	Strongly agree	48	60.0\%
18. Follow-ups are not being done on complaints.	Strongly disagree	0	0.0\%
	Disagree	5	10.0\%
	Undecided	2	2.5\%
	Agree	19	23.8\%
	Strongly agree	51	63.8\%
Section D			
19. Water demand management does not comply with the consumer service charter.	Strongly disagree	7	8.8\%
	Disagree	23	28.8\%
	Undecided	10	12.5\%
	Agree	33	41.2\%
	Strongly agree	7	8.8\%
20. Household owners do not understand the water bill.	Strongly disagree	12	15.0\%
	Disagree	18	22.5\%
	Undecided	10	12.5\%
	Agree	30	37.5\%
	Strongly agree	9	11.2\%
	Unknown	1	1.2 \%

Variables	Categories	Frequency	Percentage out of total
21. Service is acceptable.	Strongly disagree	36	45.0\%
	Disagree	23	28.8\%
	Undecided	5	6.2\%
	Agree	7	8.8\%
	Strongly agree	8	10.0\%
	Unknown	1	1.2\%
22. Inadequate reporting processes in place to address complaints.	Strongly disagree	4	5.0\%
	Disagree	6	7.5\%
	Undecided	16	20.0\%
	Agree	35	43.8\%
	Strongly agree	16	20.0\%
	Unknown	3	3.8\%
23. Meter readers record estimations, instead of physically reading meters.	Strongly disagree	2	2.5\%
	Disagree	12	15.0\%
	Undecided	6	7.5\%
	Agree	31	38.8\%
	Strongly agree	29	36.2\%
24. Work instructions are not being followed.	Strongly disagree	2	2.5\%
	Disagree	17	21.2\%
	Undecided	8	10.0\%
	Agree	28	35.0\%
	Strongly agree	25	31.2\%
25. No cleaning is done after repairs.	Strongly disagree	3	3.8\%
	Disagree	18	22.5\%
	Undecided	1	1.2\%
	Agree	26	32.5\%
	Strongly agree	32	40.0\%

TABLE 5. 4: Descriptive statistics - Mean, Median, Standard Deviation and Range

Variable	N	Mean	Standard Deviation	Median	Range
Biographic continuous variables					
3. How many people are residing in your household?	80	7.14	4.1605	6.00	16.0
4. Number of people at home during the day.	80	3.51	3.1981	3.00	13.0
5. How long have you been living in your household?	80	7.31	4.1813	6.00	15.0
Section A					
1. Plumbers do not fix water leaks.	80	3.38	1.4086	4.00	4.0
2. Broken cisterns are not replaced and attended to by plumber.	80	3.50	1.4841	4.00	4.0
3. The water flow pressure from the taps is low.	80	3.29	1.4249	4.00	4.0
4. The water meters are always faulty.	80	3.39	1.3168	4.00	4.0
5. Plumbing material being used is of poor quality.	79	3.87	1.2646	4.00	4.0
Section B					
6. Site awareness facilitators are rude and not helpful.	80	3.10	1.3274	4.00	4.0
7. Site awareness facilitators give wrong information.	80	3.30	1.4355	4.00	4.0
8. No education on water wastage is provided.	80	3.41	1.4293	4.00	4.0
9. Job cards are not signed by the owner.	78	3.42	1.3144	4.00	4.0
10. Lack of site inspection prior to water meter installation.	79	3.66	1.1971	4.00	4.0
11. No follow-up inspections after completion of repairs.	80	3.92	1.0882	4.00	4.0
12. The daily water allocation of 350 litres is not sufficient.	80	3.70	1.4617	4.00	4.0
13. The water coming out of taps is not always fit for human consumption	80	3.30	1.3724	4.00	4.0

Variable	N	Mean	Standard Deviation	Median	Range
(smelling).					
Section C					
14. Plumbers go to the wrong households when attending to complaints.	80	3.38	1.3996	4.00	4.0
15. Call centre staff does not answer complaint calls on time.	80	4.29	1.0696	5.00	4.0
16. Plumbers do not attend to complaints within the specified time.	80	4.48	0.8855	5.00	4.0
17. The complaints capturers do not capture details correctly.	80	4.32	1.0527	5.00	4.0
18. Follow-ups are not being done on complaints.	80	4.41	0.9506	5.00	3.0
Section D					
19. Water demand management does not comply with the consumer service charter.	80	3.12	1.1840	3.50	4.0
20. Household owners do not understand the water bill.	79	3.08	1.2986	3.00	4.0
21. Service is acceptable.	79	2.09	1.3415	2.00	4.0
22. Inadequate reporting processes in place to address complaints.	77	3.69	1.0546	4.00	4.0
23. Meter readers record estimations, instead of physically reading meters.	80	3.91	1.1273	4.00	4.0
24. Work instructions are not being followed.	80	3.71	1.1927	4.00	4.0
25. No cleaning is done after repairs.	40	3.82	1.2806	4.00	4.0

5.3.3 UNI-VARIATE GRAPHS

This paragraph will illustrate the distribution of the responses for each statement in the survey.

FIGURE 5. 1: Distribution of respondents
The respondents were equally distributed among the three types of dwellings.

FIGURE 5. 2: Gender distribution

There was also an equal gender distribution.

The following graph shows the distribution of the responses in respect of section A in the questionnaire. Section A consists of questions regarding the poor service delivery. As can be seen in figure 5.3, more than half of the respondents agree to strongly agree with these negative statements.

FIGURE 5. 3: Responses to section A

The statements were sorted from the statement where the respondents 'mostly agree with' to the statement that they 'least agree with'. The respondents mostly agree with the following statements:
> Plumbing material being used is of poor quality. (70.9\% agree, to strongly agree).
> Broken cisterns are not replaced and attended to by a plumber. (61.2\% agree, to strongly agree).
$>$ The water meters are always faulty. (56.2% agree, to strongly agree).
$>$ Plumbers do not fix water leaks. (60.0% agree, to strongly agree).
$>$ The water flow pressure from the taps is low. (52.5% agree, to strongly agree).

The following graph shows the distribution of the responses in respect of section B in the questionnaire. Section B also consists of questions regarding the poor service delivery. As can be seen in figure 5.4 , more than half of the respondents agree, to strongly agree with these negative statements.

FIGURE 5. 4: Responses to Section B

The statements were sorted from the statement where the respondents 'mostly agree with' to the statement that they 'least agree with.' The respondents agreed more with the following statements:
$>$ No follow-up inspections after completion of repairs. (76.27% agree, to strongly agree).
$>$ The daily water allocation of 350 litres is not sufficient. (67.5% agree, to strongly agree).
$>$ Lack of site inspection prior to water meter installation. (72.2% agree, to strongly agree).
$>$ No education on water wastage is provided. (53.8% agree, to strongly agree).
$>$ Job card is not signed by the owner. (62.8% agree, to strongly agree).
$>$ The water coming out of taps is not always fit for human consumption. (53.8% agree, to strongly agree).
$>$ Site awareness facilitators give wrong information. (52.5\% agree, to strongly agree).
> Site awareness facilitators are rude and not helpful. (55.0\% agree, to strongly agree).

The following graph shows the distribution of the responses in respect of section C in the questionnaire. Section C also consists of questions regarding the poor service delivery, especially in respect of the complaints. As can be seen in figure 5.5 that more than a half of the respondents agree, to strongly agree with these negative statements.

FIGURE 5. 5: Responses on Section C

The statements were sorted from the statement where the respondents 'mostly agree' with to the statement that they 'least agree with.' The respondents agreed more with the following statements:
$>$ Plumbers do not tend to complaints within the specified time. (90.0% agree, to strongly agree).
$>$ Follow-ups are not being made on complaints. (87.5% agree, to strongly agree).
> The complaints capturers do not capture details correctly. (85.0% agree, to strongly agree).
$>$ Call centre staff does not answer complaint calls on time. (83.8% agree, to strongly agree).
$>$ Plumbers go to the wrong households when attending to complaints. (58.8\% agree, to strongly agree).

The following graph shows the distribution of the responses in respect of section D in the questionnaire. Section D also consists of questions regarding the poor service delivery. Statement D21 was the only statement that was stated positively; and to continue in a standard formatting of the statements this statement is reversed coded as follows:
$\mathrm{A} 5 \mathrm{n}=1$ if $\mathrm{A} 5=5$;
$\mathrm{A} 5 \mathrm{n}=2$ if $\mathrm{A} 5=4 ;$
$\mathrm{A} 5 \mathrm{n}=3$ if $\mathrm{A} 5=3$;
$A 5 n=4$ if $A 5=2$;
$\mathrm{A} 5 \mathrm{n}=5$ if A5 $=1$;
This means that statement D21 will now read "The service is unacceptable".

FIGURE 5. 6: Responses to Section D

The statements were sorted from the statement where the respondents 'mostly agree with' to the statement that they 'least agree with'. The respondents mostly agreed with the following statements:
> Meter readers record estimations, instead of physical readings. (75.0\% agree, to strongly agree).
$>$ The service is unacceptable. (74.7% agree, to strongly agree).
$>$ No cleaning is done after repairs. (72.5% agree, to strongly agree).
$>$ Work instructions are not being followed. (66.2% agree, to strongly agree).
> Inadequate reporting processes in place to address complaints. (66.2% agree, to strongly agree).
$>$ Water demand management does not comply with the consumer service charter. (50.0% agree, to strongly agree).
> Household owners do not understand the water bill. (49.4\% agree, to strongly agree).

5.3.4 INFERENTIAL STATISTICS

The following inferential statistics will be performed on the survey data:
> For all the statements in the survey a comparison will be made between the proportions of respondents who agree, to strongly agree and the proportions of respondents who disagree, to strongly disagree with the statements. This is done to serve as statistical evidence when the results are discussed. Note that the group of respondents who were undecided is taken out, as there were a small number of respondents who were undecided and it will make all the comparisons statistically significantly different, as the undecided group has the smallest proportion of respondents.
$>$ A comparison will be made between the types of dwellings, the gender of the house owner, the number of people who reside in the house, the number of people alone at home during the day, and the number of years the respondent was living in the house.

Comparative statistics for the abovementioned comparisons that were used, are discussed in paragraphs 5.3.4.1 and 5.3.4.2; and the computer printouts are shown in Annexures D and E.

The hypotheses being tested for the comparisons under point 1 , will be as follows:
$>\mathrm{H}_{0}=$ The proportion of respondents who agree, to strongly agree is not different from the proportion of respondents who disagree, to strongly disagree.
$>\mathrm{H}_{1}=$ The proportion of respondents who agree, to strongly agree is different from the proportion of respondents who disagree, to strongly disagree.

The hypotheses being tested for the comparisons under point 2 will be as follows:
$>\mathrm{H}_{0}=$ The three independent groups (House, Shack, and Wendy house owners) do not differ with respect to their perceptions in this survey.
$>\mathrm{H}_{1}=$ The three independent groups (House, Shack, and Wendy house owners) do differ with respect to their perceptions in this survey.

5.3.4.1 Comparisons with regard to the difference in proportions who agreed and who disagreed

Chi-square tests were performed to determine whether the proportion of respondents who agreed is equal to the proportion of respondents who disagreed for each question (statement).

The results for only the statistically significant differences are shown in table 5.5 and in Annexure D.

TABLE 5. 5: Statistically significant Chi-square test for equal proportions

Question / Statement	Sample Size	Chi-Square	DF	P-Value	
Section A					
1. Plumbers do not fix water leaks.	78	4.1538	1	0.0415^{*}	
2.Broken cisterns are not replaced and attended to by plumber.	77	5.7273	1	0.0167^{*}	
5.Plumbing material being used is of poor quality. Section B 9. Job cards are not signed by the owner.					

Question / Statement	Sample Size	Chi-Square	DF	P-Value
10. Lack of site inspection prior to water meter installation.	74	21.6216	1	$<0.0001 * * *$
11. No follow-up inspections after completion of repairs.	75	29.4533	1	$<0.0001 * * *$
12. The daily water allocation of 350 litres is not sufficient.	76	13.4737	1	0.0002***
Section C				
15. Call centre staff does not answer complaint calls on time.	76	44.2632	1	$<0.0001 * * *$
16. Plumbers do not attend to complaints within the specified time.	77	58.2987	1	$<0.0001^{* * *}$
17. The complaints capturers do not capture details correctly.	75	49.6133	1	$<0.0001 * * *$
18. Follow-ups are not being done on complaints.	78	49.2821	1	$<0.0001 * * *$
Section D				
21. Service is acceptable.	74	26.1622	1	<0.0001***
22. Inadequate reporting processes in place to address complaints.	61	27.5574	1	$<0.0001^{* * *}$
23. Meter readers record estimations, instead of physically reading meters.	74	28.5946	1	$<0.0001 * * *$
24. Work instructions are not being followed.	72	16.0556	1	<0.0001***
25. No cleaning is done after repairs.	79	17.3291	1	$<0.0001^{* * *}$

* Statistically significant at level 0.05
** Statistically significant at level 0.01
*** Statistically significant at level 0.001

As Table 5.5 shows; there were statistically significant differences for the following statements:
> Plumbing material being used is of poor quality. (75.7% agree, to strongly agree and 24.3% disagree, to strongly disagree).
$>$ Broken cisterns are not replaced and attended to by a plumber. (63.6% agree, to strongly agree and 36.4% disagree, to strongly disagree).
$>$ Plumbers do not fix water leaks. (61.5\% agree, to strongly agree and 38.5% disagree, to strongly disagree).
$>$ No follow-up inspections after completion of repairs. (81.3\% agree, to strongly agree and 18.7% disagree, to strongly disagree).
$>$ The daily water allocation of 350 litres is not sufficient. (71.0% agree, to strongly agree and 29.0% disagree, to strongly disagree).
$>$ Lack of site inspection prior to water meter installation. (77.0% agree, to strongly agree and 23.0% disagree, to strongly disagree).
$>$ Job card is not signed by the owner. (65.3% agree, to strongly agree and 34.7% disagree, to strongly disagree).
$>$ Plumbers do not tend to complaints within the specified time. (93.5\% agree, to strongly agree and 6.5% disagree, to strongly disagree).
> Follow-ups are not being done on complaints. (89.7\% agree, to strongly agree and 10.3% disagree, to strongly disagree).
> The complaints capturers do not capture details correctly. (90.7% agree, to strongly agree and 9.3% disagree, to strongly disagree).
> Call centre staff does not answer complaint calls on time. (88.2% agree, to strongly agree and 11.8% disagree, to strongly disagree).
> Meter readers record estimations, instead of physical readings. (81.1\% agree, to strongly agree and 18.9% disagree, to strongly disagree).
$>$ The service is unacceptable. (79.7% agree, to strongly agree and 20.3% disagree, to strongly disagree).
> No cleaning is done after repairs. (73.4% agree, to strongly agree and 26.6% disagree, to strongly disagree).
> Work instructions are not being followed. (73.6% agree, to strongly agree and 26.4% disagree, to strongly disagree).
> Inadequate reporting processes in place to address complaints. (83.6\% agree, to strongly agree and 16.4% disagree, to strongly disagree).

5.3.4.2 Comparisons with regard to whether the two independent groups differed in respect of their perceptions

A comparison is made between the three groups of respondents (who owned a house, a Wendy house, or a shack) to see whether there is a difference in their
perceptions with respect to the statements that were made. The three groups are compared in respect of each statement by using Chi-square. In this case the undecided group was also left out of the comparison as it was a small number of respondents who were undecided.

All the statistically significant results will be discussed in this paragraph, but all the results significant or not significant can be found in Annexure E.

Firstly, there were no statistically significant differences between the respondents whose type of dwelling is a house or a Wendy house or a shack.

TABLE 5. 6: Contingency table for Gender vs A4

Frequency / Row percentage	Disagree -Strongly Disagree	Agree- Strongly agree	TOTAL
Male	19	16	35
54.7%	45.7%	47.3%	
Female	10	29	39
	25.6%	74.4%	52.7%
TOTAL	29	45	74
	39.2%	60.8%	

TABLE 5.7: Chi-Square test for Gender vs A4

Question / Statement	Sample Size	Chi-Square	DF	P-Value
4. The water meters are always faulty.	74	6.3510	1	0.0117^{*}

FIGURE 5. 7: The water meters are always faulty

Statistically significant more females than males agree, to strongly agree to the statement 'The water meters are always faulty".

TABLE 5. 8: Contingency table for Gender vs B7

Frequency / Row percentage	Disagree -Strongly Disagree	Agree- Strongly agree	TOTAL
Male	15	14	29
Female	51.7%	48.3%	42.6%
TOTAL	11	28	39
	28.2%	71.8%	52.74
	26	42	68

TABLE 5.9: Chi-Square test for Gender vs B7

Question / Statement	Sample Size	Chi-Square	DF	P-Value
7. Site awareness facilitators give wrong	68	3.8975	1	0.0484^{*}
\quadinformation.	68			

FIGURE 5. 8: Site awareness facilitators give wrong information

There were statistically significantly more females than males that agree, to strongly agree with the statement 'Site awareness facilitators give wrong information.

TABLE 5. 10: Contingency table for Gender vs B8

Frequency / Row percentage	Disagree -Strongly Disagree	Agree- Strongly agree	TOTAL
Male	18	17	35
51.4%	48.6%	50.0%	
Female	9	26	35
	25.7%	74.3%	50.0%
TOTAL	27	43	70
	38.6%	61.4%	

TABLE 5. 11: Chi-Square test for Gender vs B8

Question / Statement	Sample Size	Chi-Square	DF	P-Value
8. No education on water wastage is provided.	70	4.8837	1	0.0271^{*}

FIGURE 5. 9: No education on water wastage is provided

There were statistically significantly more females than males that agree, to strongly agree with respect to the statement 'No education on water wastage is provided'.

The 'Number of people who reside in the home' was grouped in, as near as possible, equal groups of ' 1 to 6 people' and 'More than 6 people'. These two groups are then compared with respect to their responses for each statement. The following statistically significant results were obtained.

TABLE 5. 12: Contingency table for Number of people residing vs B12

Frequency / Row percentage	Disagree -Strongly Disagree	Agree- Strongly agree	TOTAL
1-6 people	16	23	39
41.0%	59.0%	51.3%	
> 6 people	6	31	37
	16.2%	83.8%	48.7%
TOTAL	22	54	76
	29.0%	71.0%	

TABLE 5. 13: Chi-Square test for Number of people residing vs B12

Question / Statement	Sample Size	Chi-Square	DF	P-Value
12. \quadThe daily water allocation of 350 litres is not sufficient..	76	5.6819	1	0.0171^{*}

FIGURE 5. 10: The daily water allocation of 350 litres is not sufficient

Statistically significantly more respondents from the group 'More than 6 people' agree, to strongly agree that the daily water allocation of 350 liters is not sufficient.

TABLE 5. 14: Contingency table for Number of people residing vs C18

Frequency / Row percentage	Disagree -Strongly Disagree	Agree- Strongly agree	TOTAL
1-6 people	1	40	41
	2.44%	97.6%	52.6%
> 6 people	7	30	37
	18.9%	81.1%	47.4%
TOTAL	8	70	78
	10.3%	89.7%	

TABLE 5. 15: Chi-Square test for Number of people residing vs C18

Question / Statement	Sample Size	Chi-Square	DF	P-Value	
18.	Follow-up are not being done on complaints.	78	5.7385	1	0.0166^{*}

FIGURE 5. 11: Follow-ups are not being done on complaints

Statistically significantly more respondents from the ' $1-6$ people residing' group agree, to strongly agree.

The 'Number of people who stay at home during the day' was grouped in, as near as possible, equal groups of ' $0-2$ people' and 'More than 2 people'. These two groups are then compared with respect to their responses for each statement. The following statistically significant results were obtained.

TABLE 5. 16: Contingency table for Number of people at home vs B8

Frequency / Row percentage	Disagree -Strongly Disagree	Agree- Strongly agree	TOTAL
0-2 people	5	22	27
$\mathbf{1 8 . 5 \%}$	81.5%	43.6%	
2 people	16	19	35
	45.7%	54.3%	56.4%
TOTAL	21	41	62
	33.9%	66.1%	

TABLE 5. 17: Chi-Square test for Number of people at home vs B8

Question / Statement	Sample Size	Chi-Square	DF	P-Value
$8 . \quad$ No education on water wastage is provided.	62	5.0330	1	0.0249^{*}

FIGURE 5. 12: No education on water wastage is provided

Statistically significantly more respondents from the ' $0-2$ people staying at home' agree, to strongly agree that no education on wastage is provided.

TABLE 5. 18: Contingency table for Number of people at home vs C14

Frequency / Row percentage	Disagree -Strongly Disagree	Agree- Strongly agree	TOTAL
0-2 people	17	12	29
58.6%	41.4%	42.0%	
> 2 people	12	28	40
33.0%	70.0%	58.0%	
TOTAL	29	40	69
	42.0%	58.0%	

TABLE 5. 19: Chi-Square test for Number of people at home vs C14

| Question / Statement | Sample
 Size | Chi-Square | DF | P-Value |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $14 . \quad$Plumbers go to the wrong households when
 attending complaints. | 69 | 5.6521 | 1 | 0.0174^{*} |

FIGURE 5. 13: Plumbers go to wrong households when attending complaints

Statistically significantly more respondents from the ' >2 people staying at home' agree to strongly agree that plumbers go to wrong households when attending complaints.

TABLE 5. 20: Contingency table for Number people at home vs D19

Frequency / Row percentage	Disagree -Strongly Disagree	Agree- Strongly agree	TOTAL
0-2 people	19	8	27
70.4%	29.6%	42.9%	
>2 people	8	28	36
22.2%	77.8%	57.1%	
TOTAL	27	36	
52.9%	57.1%	63	

TABLE 5. 21: Chi-Square test for Number of people at home vs D19

Question / Statement	Sample Size	Chi-Square	DF	P-Value
$19 . \quad$Water demand management does not comply with the consumer service charter.	63	14.6049	1	$0.0001^{* * *}$

FIGURE 5. 14: Water demand management does not comply

Statistically significantly more respondents from the ' >2 people staying at home' agree to strongly agree that the water demand management does not comply with the consumer service charter.

The 'Number of years living in your household' variable was grouped in, as near as possible, equal groups of '1-6 years' and ' >6 years'. These two groups are then compared with respect to their responses for each statement. The following statistically significant results were obtained.

TABLE 5. 22: Contingency table for Number of years residing at home vs D24

Frequency / Row percentage	Disagree -Strongly Disagree	Agree- Strongly agree	TOTAL
1-6 years	5	32	37
13.5%	86.5%	51.4%	
> 6 years	14	21	35
	40.0%	60.0%	49.6%
TOTAL	19	53	72
	26.4%	73.6%	

TABLE 5. 23: Chi-Square test for Number of years residing at home vs D24

Question / Statement	Sample Size	Chi-Square	DF	P-Value
$24 . \quad$ Work instructions are not being followed.	2	6.4956	1	0.0108^{*}

FIGURE 5. 15: Work instructions are not being followed

Statistically significantly more respondents from the '1-6 years' agree, to strongly agree that the work instructions are not being followed.

5.4 DISCUSSIONS AND CONCLUSIONS

From the results obtained through this survey the following analogies can be drawn:
$>$ The plumbing material being used is of poor quality;
$>$ Broken cisterns are not replaced and attended to by a plumber;
> Plumbers do not fix water leaks;
$>$ No follow-up inspections after completion of repairs;
$>$ The daily water allocation of 350 litres is not sufficient;
$>$ There is a lack of site inspection prior to water meter installation;
$>$ Job cards are not signed by the owners;
> Plumbers do not attend to complaints within the specified time;
$>$ Follow-ups are not being done on complaints;
> The complaints capturers do not capture details correctly;
$>$ Call centre staff does not answer complaint calls on time;
$>$ The meter readers record estimations, instead of physical readings;
$>$ The service is not acceptable;
$>$ No cleaning is done after repairs;
$>$ The work instructions are not being followed; and
> There are inadequate reporting processes in place to address complaints.

When determining which groups contributed the most to these outcomes, females agreed more to the following statements than the males:
$>$ The water meters are always faulty.
$>$ Site awareness facilitators give wrong information.
$>$ No education on water wastage is provided.

When determining which groups contributed the most to these outcomes, the "number of people residing $=>6$ " agreed more with the statement "The daily allocation of 350 liters of water is not sufficient" and the "number of people residing $=1-6$ " agreed more with the statement "Follow-ups are not being done on complaints".

The group of respondents where more than 2 people stayed at home during the day agreed more to the statements:
$>$ Plumbers go to the wrong households when attending complaints
$>$ Water demand management does not comply with the consumer service charter.

The group of respondents where 2 or less people stayed at home during the day agreed more with the statement "No education on water wastage is provided".

Those that were living in a residence for 1-6 years agreed more with the statement "Work instructions are not being followed".

CHAPTER 6 : CONCLUSION AND RECOMMENDATIONS

6.1 INTRODUCTION

In this chapter, the research is summarised and final conclusions drawn. The research problem is revisited to ascertain whether it has been solved as a result of the research. The key research objectives, research question and investigative questions will be re-visited to determine whether the research contained within the ambit of the dissertation produced not only feasible, but also viable, answers to the posed research questions.

The research design and methodology, as well as the data collection design and methodology will be evaluated to determine if the research was executed in terms of the stated design and methodology. The key research objectives will be restated together with key findings culminating as a result of the research. The chapter will conclude with recommendations to Water Demand Management on mechanisms and approaches to improve the impact of service delivery in low income areas

6.2 THE RESEARCH THUS FAR

The research thus far has elaborated on the importance of measuring the impact of service delivery in low income communities for municipal departments to facilitate improvement and promote customer satisfaction. Services have been defined as, "... deeds, processes and performances." The research has investigated the current perceptions of residents regarding service delivery from Water Demand Management to low income communities. The responses were analysed and specific conclusions drawn. These will be evaluated against the current performance of Water Demand Management in achieving service delivery targets and satisfying its customers.

The extent of the research was provided in Chapter 1: Scope of the Research. In Chapter 2, a holistic overview on the research environment was provided. In Chapter 3, a literature review was conducted on the issue of service delivery and
its aspects in promoting customer satisfaction with specific focus leveled at the following:
> Definition of service;
$>$ Voice of the customer;
> Customer needs and satisfaction;
> Customer Expectations;
> SERVQUAL;
$>$ Focus groups;
> Quality Function Deployment; and
> KANO model.

In Chapter 4, the research design and methodology was elaborated upon to culminate in the data analysis and interpretation of results in Chapter 5. In this final Chapter 6, the research will be concluded and final analogies will be drawn.

6.3 THE RESEARCH PROBLEM RE-VISITED

The research problem which has been researched within the ambit of this dissertation reads as follows: "Poor service delivery from Water Demand Management to low income areas result in dissatisfaction and discontent".

Service delivery from Water Demand Management to low income communities is unsatisfactory. The research returned that 79.7% of the residents agree, to strongly agree that the service is unacceptable and 20.3% disagree, to strongly disagree.

6.4 THE RESEARCH QUESTION RE-VISITED

The research question which has been researched within the ambit of this dissertation reads as follows: "Which mechanisms can be employed by Water Demand Management to improve service delivery to low income areas?"

The mechanisms that can be employed by Water Demand Management to improve service delivery to low income communities are contained within the recommendations (refer to paragraph 6.7).

6.5 THE INVESTIGATIVE QUESTIONS RE-VISITED

The investigative questions to be researched in support of the research question read as follows:
$>$ Is there a need for improvement on the current status of service delivery of Water Demand Management?
$>$ What are the current perceptions of the residents in low income areas regarding service delivery of Water Demand Management?
> Is the daily water allocation adequate for the households in the low income areas?
> Is there a need for response times of Water Demand Management to complaints to be improved?
> To what extent are the users dissatisfied with the service delivery from Water Demand Management?

Is there a need for improvement on the current status of service delivery of Water Demand Management?
> The current status of service delivery of Water Demand Management to low income communities needs to be improved.
> Most residents strongly agree that the service of Water Demand Management is unacceptable and dissatisfactory.

Findings from the survey indicate that the respondents mostly agree with the following statements:
> Plumbing material being used is of poor quality. (70.9\% agree, to strongly agree).
> Broken cisterns are not replaced and attended to by plumbers. (61.2\% agree, to strongly agree).
$>$ The water meters are always faulty. (56.2% agree, to strongly agree). Statistically significant more females than males agree, to strongly agree with this statement.
> Plumbers do not fix water leaks. (60.0% agree, to strongly agree).
$>$ The water flow pressure from the taps is low. (52.5% agree, to strongly agree).
> Meter readers record estimations, instead of physical readings. (75.0\% agree, to strongly agree).
$>$ No cleaning is done after repairs. (72.5% agree, to strongly agree).
$>$ Work instructions are not being followed. (66.2% agree, to strongly agree).
> Inadequate reporting processes in place to address complaints. (66.2% agree, to strongly agree).
> Water Demand Management does not comply with the consumer service charter. (50.0\% agree, to strongly agree).
> Household owners do not understand the water bill. (49.4\% agree, to strongly agree).

What are the current perceptions of the residents in low income areas regarding service delivery of Water Demand Management?
> No follow-up inspections after completion of repairs. (76.27% agree, to strongly agree).
$>$ Lack of site inspection prior to water meter installation. (72.2% agree, to strongly agree).
$>$ No education on water wastage is provided. (53.8% agree, to strongly agree).
$>$ Job card is not signed by the owner. (62.8% agree, to strongly agree).
$>$ The water coming out of taps is not always fit for human consumption.(53.8\% of respondents agree, to strongly agree).
$>$ Site awareness facilitators give wrong information. (52.5\% of respondents agreed to this statement).
> Site awareness facilitators are rude and not helpful. (55.0% agree, to strongly agree).

Is the daily water allocation adequate for the households in the low income areas?
> The daily water allocation of 350 liters is not sufficient. (67.5% agree, to strongly agree).
> Statistically significantly more respondents from the group 'more than 6 people' in a household agree, to strongly agree that the daily water allocation of 350 liters is not sufficient.

Is there a need for response times of Water Demand Management to complaints to be improved?

Based on the survey findings, the researcher can conclude that, there is a need for improvement in the response times to complaints in Water Demand Management.

Findings from the survey indicate that the respondents mostly agree with the following statements:
$>$ Plumbers do not attend to complaints within the specified time. (90.0\% agree, to strongly agree).
$>$ The complaints capturers do not capture details correctly. (85.0% agree, to strongly agree).
> Call centre staff does not answer complaint calls on time. (83.8\% agree, to strongly agree).
> Plumbers go to the wrong households when attending to complaints. (58.8\% agree, to strongly agree).

To what extent are the users dissatisfied with the service delivery from Water Demand Management?

> Based on the survey findings, the service of Water Demand Management is unacceptable. (74.7% of respondents agree, to strongly agree).

6.6 THE KEY RESEARCH OBJECTIVES RE-VISITED

The primary research objectives of this dissertation read as follows:
$>$ To identify the impact of service delivery on user satisfaction.
> To continually improve the service delivery of Water Demand Management.
$>$ To measure the level of customer satisfaction with regard to service delivery.
$>$ To review the current standard of service delivery and performance of Water Demand Management, and establish mechanisms for improving service delivery.

In assessing the perceptions of residents in low income communities, regarding the importance of excellent service delivery, it is imperative for the municipal departments to understand and identify the impact that service delivery has on
promoting user satisfaction. Residents in the communities know what their rights are. The department is also aware of the requirements to satisfy their customers, however, the high rate of negative responses from the survey indicates that Water Demand Management do not fulfill them. This reflects the current status of service delivery of Water Demand Management to low income communities.

Management needs to establish and implement new strategies to continually improve service delivery. Failure to improve service delivery can result in serious customer dissatisfaction. Customers want to feel valued by their service provider by receiving excellent service delivery at all times. The customer service charter needs to be adhered to. All the requirements to satisfy customers are clearly stipulated in the charter. Effectiveness and efficiency of the charter should be visible. The employees responsible for the provision of service delivery should understand the charter and comply with it.

Customer surveys and frequent focus group meetings are some of the crucial mechanisms that must be established to improve service delivery. These mechanisms assist in reviewing the current standard of service delivery and performance of the organisation. They further assist in measuring the level of customer satisfaction. The department can use the responses from the surveys to improve the business and its service delivery. Surveys assist organisations in understanding their customer requirements and to know what their needs are. Suggestions can be formulated, using the information obtained from focus group meetings. This information can be transformed into new approaches and strategies for improving service delivery.

6.7 RECOMMENDATIONS

The following recommendations are made to mitigate the research problem and provide answers to the research question.
> Plumbing material that is used should be bought only from approved suppliers.
> An approved supplier list should be established and controlled.
> All plumbing material need to be SABS approved. This will ensure that the material used for plumbing purposes is durable.
> Water meters should be SANAS approved.
$>$ Tests must be performed on the water meters.
> Leak detection devices must be given to plumbers who attend to different customer complaints in the communities. This device can be used to detect leaks that are not visible.
> Quality control programmes need to be put in place to ensure that follow-up inspections are conducted after the completion of repairs in the households.
> Water Demand Management needs to replace the 15 mm diameter water supply pipes with 25 mm .pipes. This will improve the water pressure.
> Top management need to review the daily water allocation of 350 liters in households which have more than 6 people. The survey findings indicated that statistically significantly more respondents from the group 'more than 6 people' agree, to strongly agree that the daily water allocation of 350 liters is not sufficient. (67.5% agree, to strongly agree).
> Training needs to be arranged for all the site facilitators that educate people in the communities about prevention of water wastage. Training records must be controlled and maintained.
> Support department i.e. Scientific Services need to conduct regular water tests. Effective sampling methods must be implemented to ensure that the water coming out of people's taps is always fit for human consumption.
> Corrective and preventive actions need to be established to promote effective follow-up and closing of customer complaints.
> To avoid plumbers going to wrong households when attending to complaints, map books must be ordered by administration personnel and given to each plumber. Each plumber must sign for the receipt of the map book.
> Skills transfer should be performed on all the data capturers to decrease errors when capturing complaints.
> All employees responsible for service delivery need to be trained on all the processes and work instructions in place.

6.8 CONCLUSION

It makes business sense to pay attention to the ultimate customer requirements and needs. It is critical for an organisation to develop an excellent customer loyalty base that is consistent at all costs. Organisations world-wide recognise the importance of meeting customer needs in order to succeed in the competitive market place. The level of understanding customer requirements between management and employees responsible for service delivery is an essential requirement. This helps in improving service delivery and performance of the organisation. Overall understanding of the importance of service delivery to customers should be clear to both management and employees.

REFERENCES

Andries, B. 1999. Customer satisfaction develops healthy relationships. Minnesota: West Publishing.

Barnet, K. \& Smith. D. 1992. The House of Quality and its application. Boston; Harvard Business School Press.

Bonaveja, T. C. \& Philander, E. S. 1975. Service Delivery is key. Boston: Irwin.

Chang, C., Chen, C. \& Hsu, C. 2002. A Review of Service Quality in Corporate and recreational Sport/Fitness Programs. The Sport Journal, 5(3):1

Checkland, P. 1989. Systems Thinking, Systems Practice. New York: Wiley.

Chuene, A. 1960. Conducting customer interviews for business improvement purposes. Improving Service Delivery, 29 (2): 25-37.

Collis, J. \& Hussey, R. 2003. Business Research: A practical guide for undergraduate and post graduate students. Houndmills: Macmillan Palgrave.

Cooper, D. R. \& Schindler, P. S. 2001/2003. Business Research Methods. Seventh/Eight Edition. New York. McGraw-Hill.

Crow, L. 2002. Understanding customer needs and expectations. London: Wiley.

De Vos, A. S. (2002). Scientific theory and professional research. in de Vos, A.S. Strydom, H. Fouché, C.S.L. \& Delport, C.S.L. (eds) Research at grass roots: for the social sciences and human service professions. $2^{\text {nd }}$ edition. Pretoria: Van Schaik.

Dladla, T. 2005. Selection of focus groups within an organisation. Boston: McGraw-Hill.

Easterby-Smith, M., Thorpe, R. \& Lowe, A. 1996. Management Research: An Introduction. London: Sage Publications.

Emory, C. W. \& Cooper, D. R. 1995. Business Research Methods. Fifth Edition. Irwin: Homewood.

Fitzsimmons, J. A. \& Fitzsimmons, M. J. 2001. Service Management: Operations, Strategy and Information Technology. New York: Irwin/McGraw-Hill Inc.

Gaucher, E. \& Walker, J. 1991. Quality Function Deployment and KANO Model Approach in Ambulatory Care Service. Boston: Harvard Business School Press.

Gay, L. R. \& Diebl, P. L. 1992. Research methods for business and management. New York: MacMillan Publishing Company.

Ghauri, P., Grønhaug, K. \& Kristianslund, I. 1995. Research methods in business studies. New York: Prentice Hall.

Gronroos, C. 1990. Service Management and Marketing. Lexington Books. Lexington: Mass.

Hatcher, L. A. 1994. Step-by-Step Approach to using SAS for Factor Analysis and Structural Equation Modeling. Cary, NC: SAS Institute Inc.

Hayes, B. E. 1991. Measuring Customer Satisfaction: Development and use of Questionnaires. Wisconsin: ASQC Quality Press.

Hussey, J. \& Hussey, R. 1997. Business Research: A practical guide for undergraduate and post graduate students. Houndmills: Macmillan Press.

Jain, S. K. \& Gupta, G. 2004. Measuring Service Quality: SERVQUAL vs. SERVPERF Scales. Vikalpa, 29(2): 25-37.

Joubert, S. 1993. Challenging customer requirements is fundamental. Boston: Irwin.

Kano, N. 1984. Attractive Quality and Must-Be Quality. Hinshitsu, 14(2): 39-48, February 24.

Kerlinger, F. N. 1986. Foundations of behavioural research. New York: CBS College Publishing.

Khan, V. 1990. Customer Focused Product Development by Conjoint Analysis and QFD. Tokyo: JUSE Press.

Kotler, P. 1994. Marketing Management: Analysis, Planning, Implementation, and Control. New Jersey: Prentice-Hall International Inc.

Kruger, M. 1993. Common mechanisms for capturing the voice of the customer. London: Wiley.

Kumar, V., Aaker, D. A. \& Day, G. S. 1999. Essentials of marketing research. New York: N. Y. Wiley.

Llosa, S., Chandon, J. \& Orsingher, C. 1998. An Empirical Study of SERVQUAL's Dimensionality. The Service Industries Journal, 18(2): 16-44.

Local Government Programmes. 2004. [Online].Available from: http://www.info.gov.za/aboutgovt/structure/locgovt/programmes.htm [Accessed 03/03/2011]

Lopez, N. 1983. Process-enterprises and measuring of key business improvements. Performance Management, 9 (2):61-64.

Mati, Z. \& Luyt, L. 2000. Reviewing the service delivery of Local Municipalities in South Africa.

Mazur, G. 1991. Quality Function Deployment Process. Quality Management Forum, 7 (3).

Mazur, G. 1992. Introduction to Task Deployment. Boston: Irwin.

Meulenberg-Buskens, I. 1997. Turtles all the way down? - On a quest for quality in qualitative research. South African Journal of Psychology, 27(2), June.

Meyer, C. 2000. Customers Perspective regarding products and services.
London: Wiley.

Mizuno, S. \& Chalmers, P. 1992. Basics of Service Quality Function Deployment. Japan: Business Consultants.

Mizuno, S. \& Akao, Y. 1993. Management for Quality Improvement. Cambridge: Productivity Press.

Moll, D. 2005. Utilising customer feedback for improving customer satisfaction. Actions on Customer Feedback, 14(2):81-94.

Mouton, J. 2001. How to succeed in your master's \& doctorate studies. Pretoria: Van Schaik Publishers.

Mulder, C. 1996. Comprehensive Quality function Deployment. Japan: Business Institute.

Munyai, P. D. 1997. The impact of unemployment to South African residents. A dissertation submitted in partial fulfilment of the requirements for the degree of Magister Technologiae in the faculty of Business at the University of Port Elizabeth.

Nkomo, F. 2000. Improving organisational attitude through focus groups.
Organisational Behaviour , 15(3): 20-21.

Nunnally, J. C. (1978). Psychometric theory. (2 ${ }^{\text {nd }}$ ed.). New York: McGraw-Hill.

Olain, J. 2001. Customer engagement promotes success. Service Delivery, 11 (4):17-20.

Oskowitz, B. \& Meulenberg-Buskens, I. 1997. Preparing researchers for qualitative investigation of a particularly sensitive nature: Reflections from the field. South African Journal of Psychology. 27(2), June.

Parasuraman, A., Zeithaml, V. A. \& Berry, L. L. 1988. SERVQUAL: A multiitem scale for measuring consumer perceptions of service quality. Journal of Retailing, 64(1): 12-40.

Parasuraman, A. 1991. Market Research. $2^{\text {nd }}$ Edition, Eddision-Wesley.

Pearson, D. 2000. Service Delivery Strategies and Approach. Boston: Irwin.

Perreault, Jr., W. D. \& McCarthy, E. J. 1999. Basic Marketing: A GlobalManagerial Approach. New York: Irwin.

Phillips, B. J. 2000. Facilitating and Training in Quality Function Deployment. Toronto: Bantam Publishers.

Priebe, E. 2004. Listening to the voice of the customer. Toronto: Bantam Publishers

Quinn, P. Baruch, D. \& Paquette, S. 1987 Importance of service delivery in organizations. Minnesota: West Publishing.

Remenyi, D. Williams, B. Money, A. \& Twite. 1995. Effective Measurement \& Management of IT Costs \& Benefits. Oxford: Butterwork - Heinemann.

Republic of South Africa. 1996. Constitution of South Africa. Act No. 108 of 1996. Pretoria: Government Printer.

Rheeder, A. 1990. Implementing customer programmes for measuring the impact of service delivery in organisations. Service Excellence, 11 (1):11-14.

Rogers, P., Peenz, K. \& Moller, S. 1978. Service delivery in Local Municipalities.

Sanger, T. 1971. Voice of the customer programmes for effective service delivery in an organisation. Managing Perceptions, 10 (7): 80-88.

Seko, H. 2004. Direct involvement with customers for better understanding of their needs. Customer needs, 13 (2):11-24.

Smith, J. 2003. Effective implementation of focus groups within industries. Focus Group Sessions, 14 (1):78-80.

Spears, F. 1996. Quality Assurance in service industries using QFD. Cambridge: Productivity Press.

Sproul, K. 2001. The Voice of the customer is key. New York: McGraw-Hill.

Tovey, G. 1973. Identifying customer needs in the competitive market. Boston: Irwin.

Vogt, W. P. 1993. Dictionary of statistics and methodology. Newbury Park: Sage.

Watkins, J. A. 2008. Theses/dissertation/research reports: A practical guide for students to the preparation of written presentations of academic research. Cape Town: Cape Peninsula University of Technology.

William, M. \& Gibson, P. 1991. Customer Integration: The Quality Function Deployment (QFD) Leader's Guide for Decision Making. New York: Wiley.

Wisniewski, M. 2001. Using SERVQUAL to assess customer satisfaction with public sector services. Managing Service Quality, 11 (6): 380-388.

Yevu, C. 1972. Needs of the customers can improve businesses. Boston: Harvard Business School Press.

Yin, R. K. 2003. Case Study Research: Design and Methods. $3^{\text {rd }}$ ed. Thousand: Sage.

Yong, A. 2000. Features of services.

Zeithaml, V. A. \& Bitner, M. J. 2003. Services Marketing: Integrating Customer Focus across the firm. New York: Irwin.

Zultner, R.E. 1992. Quality Function Deployment for Software: Satisfying customers. America: Selly Publishers.

ANNEXURES

Annexure A:
Cronbach Alpha Coefficients for all the items in the Questionnaire

Cronbach Coefficient Alpha	
Variables	Alpha
ffffffffffffffffffffffffffff	
Raw	0.670054
Standardized	0.681661

Cronbach Coefficient Alpha with Deleted Variable Raw Variables Standardized Variables

Deleted	Correlation				
Variable	With Total	Alpha	Correlation with Total	Alpha	Label
fff					
A2	0.280122	0.661494	0.279530	0.671019	A2
A3	0.273695	0.661343	0.272811	0.672372	A3
B6	0.444761	0.619892	0.422491	0.641336	B6
B7	0.401237	0.630218	0.375679	0.651248	B7
B8	0.410326	0.627884	0.365792	0.653318	B8
C15	0.464049	0.621531	0.524585	0.619054	C15
C16	0.358714	0.646954	0.389101	0.648426	C16
C17	0.274892	0.656979	0.311592	0.664514	C17
D22	0.260145	0.659585	0.265690	0.673801	D22

Annexure B:
Descriptive statistics: Frequency tables

Type_ dwelling	Frequency	Percent	Cumulative Frequency	Cumulative Percent
ff				
House	30	37.50	30	37.50
Shack	25	31.25	55	68.75
Wendy-house	25	31.25	80	100.00

Chi-Square Test
for Equal Proportions
$f f$
Chi-Square 0.6250
DF 2
Pr > ChiSq 0.7316
Sample Size = 80

		Cumulative	Cumulative	
Gender	Frequency	Percent	Frequency	Percent
$f f$				
Male	39	48.75	39	48.75
Female	41	51.25	80	100.00

Chi-Square Test
$\begin{array}{lr}\text { for Equal Proportions } \\ \text { ffffffffffffffffffffff } \\ \text { Chi-Square } & 0.0500 \\ \text { DF } & 1 \\ \text { Pr } \quad \text { ChiSq } & 0.8231 \\ \text { Sample Size }=80\end{array}$

Number_residing				
Ffequency	Percent	Cumulative Frequency	Cumulative Percent	
1	4	5.00	4	5.00
2	8	10.00	12	15.00
3	5	6.25	17	21.25
4	9	11.25	26	32.50
5	4	5.00	30	37.50
6	11	13.75	41	51.25
7	5	6.25	46	57.50
8	6	7.50	52	65.00
9	7	8.75	59	73.75
10	4	5.00	63	78.75
11	4	5.00	67	83.75
12	2	2.50	69	86.25
13	4	5.00	73	91.25
14	3	3.75	76	95.00
16	2	2.50	78	97.50
17	2	2.50	80	100.00

Chi-Square Test
for Equal Proportions ffffffffffffffffffffff Chi-Square 20.4000
DF 15

Pr > ChiSq 0.1571
Sample Size = 80

Number_home	Frequency	Percent	Cumulative Frequency	Cumulative Percent
ff				
0	10	12.50	10	12.50
1	16	20.00	26	32.50
2	13	16.25	39	48.75
3	9	11.25	48	60.00
4	10	12.50	58	72.50
5	3	3.75	61	76.25
6	7	8.75	68	85.00
7	3	3.75	71	88.75
8	2	2.50	73	91.25

B7	Frequency	Percent	Cumulative Frequency	Cumulative Percent
ff				
Strongly Disagree	13	16.25	13	16.25
Disagree	13	16.25	26	32.50
Undecided	12	15.00	38	47.50
Agree	21	26.25	59	73.75
Strongly Agree	21	26.25	80	100.00

Chi-Square Test
for Equal Proportions $f f$ Chi-Square 5.2500
DF
Pr > ChiSq 0.2626
Sample Size = 80

| | B8 | Frequency | Percent | Cumulative
 Frequency |
| :--- | :---: | :---: | :---: | :---: | | Cumulative |
| :---: |
| Percent |

Chi-Square Test
for Equal Proportions $f f$ Chi-Square 11.8750 DF
11.8750

Pr > ChiSq 0.0183
Sample Size $=80$

			Cumulative	Cumulative
B9	Frequency	Percent	Frequency	Percent
fff				
	0	2	2.50	2

Chi-Square Test
for Equal Proportions $f f$ Chi-Square 50.2000 DF 5 Pr > ChiSq <.0001

Sample Size $=80$

B10	Frequency	Percent	Cumulative Frequency	Cumulative Percent
ff				
0	1	1.25	1	1.25
Strongly Disagree	6	7.50	7	8.75
Disagree	11	13.75	18	22.50
Undecided	5	6.25	23	28.75
Agree	39	48.75	62	77.50
Strongly Agree	18	22.50	80	100.00
Chi-Square Test				
for Equal Proportions				
$f f$				
Chi-Square 72.1000				
DF 5				
Pr > ChiSq <.0001				
Sample Size $=80$				
		Cumulative		Cumulative
B11	Frequency	Percent	Frequency	Percent

			Cumulative	Cumulative
C14	Frequency	Percent	Frequency	Percent

Chi-Square Test

for Equal Proportions	
fffffffffffffffffffff	
Chi-Square r	31.5000
DF	4
Pr $>$ ChiSq	$<.0001$
Sample Size $=80$	

	C15	Frequency	Percent	Cumulative Frequency
Cumulative				
Percent				

			Cumulative	Cumulative
C16	Frequency	Percent	Frequency	Percent

Chi-Square Test
for Equal Proportions $f f$ Chi-Square 115.6250 DF 4 Pr > ChiSq <.0001

Sample Size = 80

	C17	Frequency	Percent	Cumulative Frequency
Cfff				

Chi-Square Test
for Equal Proportions $f f$ Chi-Square 92.1250 DF
Pr > ChiSq <.0001
Sample Size $=80$

	C18	Frequency	Percent	Cumulative Frequency
Cumulative				

Chi-Square Test

for Equal Proportions	
fffffffffffffffffffff	
Chi-Square	71.5000
DF	3
Pr $>$ ChiSq	$<.0001$
Sample Size $=80$	

			Cumulative	Cumulative

$$
\begin{aligned}
& \text { DF } \\
& \text { Pr }>\text { ChiSq } \\
& \quad<.0001 \\
& \text { Sample Size }=80
\end{aligned}
$$

D20	Frequency	Percent	Cumulative Frequency	Cumulative Percent
ff				
0	1	1.25	1	1.25
Strongly Disagree	12	15.00	13	16.25
Disagree	18	22.50	31	38.75
Undecided	10	12.50	41	51.25
Agree	30	37.50	71	88.75
Strongly Agree	9	11.25	80	100.00
Chi-Square Test				
for Equal Proportions				
fffffffffffffffffffff				
Chi-Square 36.2500				
DF 5				
Pr > ChiSq <.0001				
Sample Size $=80$				

	D21	Frequency	Percent	Cumulative		
Frequency					\quad	Cumulative
:---:						
Percent						

Chi-Square Test
for Equal Proportions $f f$ Chi-Square 67.3000 DF $\begin{array}{r}5 \\ \hline 0001\end{array}$ Pr > ChiSq <.000
Sample Size = 80

| | D22 | Frequency | Percent | Cumulative
 Frequency |
| :--- | :---: | :---: | :---: | :---: | | Cumulative |
| :---: |
| Percent |

Chi-Square Test
for Equal Proportions ffffffffffffffffffffff Chi-Square 54.8500 DF

5
Pr > ChiSq <.0001
Sample Size = 80

			Cumulative	Cumulative
D23	Frequency	Percent	Frequency	Percent
fff				
Strongly Disagree	2	2.50	2	2.50
Disagree	12	15.00	14	17.50
Undecided	6	7.50	20	25.00
Agree	31	38.75	51	63.75
Strongly Agree	29	36.25	80	100.00

Chi-Square Test
for Equal Proportions $f f$ Chi-Square 44.1250 DF

Pr > ChiSq <.0001
Sample Size = 80

			Cumulative Frequency	Cumulative Percent
frequency	Percent	Frfff		
Strongly Disagree	2	2.50	2	2.50
Disagree	17	21.25	19	23.75
Undecided	8	10.00	27	33.75
Agree	28	35.00	55	68.75
Strongly Agree	25	31.25	80	100.00

Chi-Square Test
for Equal Proportions $f f$ Chi-Square 30.3750 DF 4

Pr > ChiSq <.0001
Sample Size = 80

			Cumulative	Cumulative
D25	Frequency	Percent	Frequency	Percent

Chi-Square Test
for Equal Proportions
$f f$ Chi-Square 47.1250 DF

Pr > ChiSq <.0001
Sample Size = 80

Annexure C:

Descriptive statistics: Uni-variate with means \& standard deviations where appropriate

	Variable:	Number_residing (Number_residing)	
N	80		Sum Weights

Basic Statistical Measures

Basic			
Statistical Measures			
Location	Variability		
Mean	7.137500	Std Deviation	4.16053
Median	6.000000	Variance	17.30997
Mode	6.000000	Range	16.00000
		Interquartile Range	6.00000

Quantiles	(Definition 5)
Quantile	Estimate
100% Max	17.0
99%	17.0
95%	15.0
90%	13.0
75% Q3	10.0
50% Median	6.0
25% Q1	4.0
10%	2.0
5%	1.5
1%	1.0
0% Min	1.0

	Variable:	Number_home	(Number_home)	80
N	80	Sum Weights	281	
Mean	3.5125	Sum Observations	10.2276899	
Std Deviation	3.19807596	Variance	1.15882878	
Skewness	1.24789384	Kurtosis	807.9875	
Uncorrected SS	1795	Corrected SS	0.35755576	

Basic			
Statistical Measures			
Location	Variability		
Mean	3.512500	Std Deviation	3.19808
Median	3.000000	Variance	10.22769
Mode	1.000000	Range	13.00000
		Interquartile Range	4.00000

	Variable:	A1 (A1)	
N	80	Sum Weights	80
Mean	3.375	Sum Observations	270
Std Deviation	n 1.40860825	Variance	1.98417722
Skewness	-0.3649328	Kurtosis	-1.3412518
Uncorrected SS	SS 1068	Corrected SS	156.75
Coeff Variation	ion 41.7365409	Std Error Mean	0.15748719
Location Basic Statistical Measures			
Mean	3.375000 Std D	viation	1.40861
Median	4.000000 Varia		1.98418
Mode	4.000000 Range		4.00000
	Inter	quartile Range	3.00000
Quantiles (Definition 5)			
Quantile Estimate			
100\% Max 5			
99\% 5			
95\% 5			
90\% 5			
75\% Q3 5			
50\% Median 4			
25\% Q1 2			
10\% 1			
5\% 1			
1\% 1			
0\% Min 1			

	Variable: A2 (A2)		
N	80	Sum Weights	80
Mean	3.5	Sum Observations	280
Std Deviation	1.48409287	Variance	2.20253165
Skewness	-0.4646981	Kurtosis	-1.3437698
Uncorrected SS	1154	Corrected SS	174
Coeff Variation	42.4026534	Std Error Mean	0.16592663

Coeff Variation
42.4026534 Std Error Mean
0.16592663

	5\%	1	
	1\%	1	
	0\% Min	1	
	Variable: A3 (A3)		
N	80	Sum Weights	80
Mean	3.2875	Sum Observations	263
Std Deviation	1.42485842	Variance	2.03022152
Skewness	-0.1760882	Kurtosis	-1.4473162
Uncorrected SS) 1025	Corrected SS	160.3875
Coeff Variation	n 43.341701	Std Error Mean	0.15930401
Basic Statistical Measures			
Location Variability			
Mean 3.2	Std Deviation		1.42486
Median 4.0	4.000000 Variance		2.03022
Mode 2.0	2.000000 Range		4.00000
	Interquartile Range		3.00000
	Quantiles (Definition 5)		
	Quantile	Estimate	
	100\% Max	5	
	99\%	5	
	95\%	5	
	90\%	5	
	75\% Q3	5	
	50\% Median	4	
	25\% Q1	2	
	10\%	1	
	5\%	1	
	1\%	1	
	0\% Min	1	
	Variable:	A4 (A4)	
N	80	Sum Weights	80
Mean	3.3875	Sum Observations	271
Std Deviation	1.31682155	Variance	1.73401899
Skewness	-0.2439345	Kurtosis	-1.3447063
Uncorrected SS	S 1055	Corrected SS	136.9875
Coeff Variation	on 38.8729608	Std Error Mean	0.14722512

	Variable:	B6 (B6)	
N	80	Sum Weights	80
Mean	3.1	Sum Observations	248
Std Deviation	1.32741302	Variance	1.76202532
Skewness	-0.2877498	Kurtosis	-1.3385967
Uncorrected SS	908	Corrected SS	139.2
Coeff Variation	42.8197747	Std Error Mean	0.14840929

Note: The mode displayed is the smallest of 2 modes with a count of 21.

Quantiles	(Definition 5)
Quantile	Estimate
100% Max	5
99%	5
95%	5
90%	5
75% Q3	5
50% Median	4
25% Q1	2
10%	1
5%	1
1%	1
0% Min	1

	Variable: B8 (B8)		
N	80	Sum Weights	80
Mean	3.4125	Sum Observations	273
Std Deviation	1.42929344	Variance	2.04287975
Skewness	-0.3127218	Kurtosis	-1.3372671
Uncorrected SS	1093	Corrected SS	161.3875
Coeff Variation	41.8840569	Std Error Mean	0.15979986

Basic			
Location			
Lotical Measures			
Mean	3.412500	Std Deviation	
Median	4.000000	Variance	1.42929
Mode	5.000000	Range	2.04288
		Interquartile Range	4.00000
			3.00000

Quantiles	(Definition 5)
Quantile	Estimate
100% Max	5
99%	5
95%	5
90%	5
75% Q3	5
50% Median	4
25% Q1	2
10%	1
5%	1
1%	1
0% Min	1

	Variable:	B9 (B9)	
N	78	Sum Weights	78
Mean	3.42307692	Sum Observations	267
Std Deviation	n 1.3144475	Variance	1.72777223
Skewness	-0.479865	Kurtosis	-1.1076465
Uncorrected	SS 1047	Corrected SS	133.038462
Coeff Variation 38	ion 38.3995899	Std Error Mean	0.14883187
Location Basic Statistical Measures			
Mean	3.423077 Std D	viation	1.31445
Median	4.000000 Varia		1.72777
Mode	4.000000 Range		4.00000
	Inter	uartile Range	2.00000
	Quantiles (D	finition 5)	
	Quantile	Estimate	
	100\% Max	5	
	99\%	5	
	95\%	5	
	90\%	5	
	75\% Q3	4	
	50\% Median	4	
	25\% Q1	2	
	10\%	2	
	5\%	1	
	1\%	1	
	0\% Min	1	

	Variable:	B10 (B10)	
N	79	Sum Weights	79
Mean	3.65822785	Sum Observations	289
Std Deviation	1.19706988	Variance	1.43297631
Skewness	-0.9143681	Kurtosis	-0.1347798
Uncorrected SS	1169	Corrected SS	111.772152

Basic Statistical Measures

Basic Statistical Measures				
Location			Variability	
Mean	3.658228	Std Deviation	1.19707	
Median	4.000000	Variance	1.43298	
Mode	4.000000	Range	4.00000	
		Interquartile Range	1.00000	

Quantiles	(Definition 5)
Quantile	Estimate
100% Max	5
99%	5
95%	5
90%	5
75% Q3	4
50% Median	4
25% Q1	3
10%	2
5%	1
1%	1
0% Min	1

	Variable:	B11 (B11)	
N	80	Sum Weights	80
Mean	3.925	Sum Observations	314
Std Deviatio	n 1.08819907	Variance	1.18417722
Skewness	-0.8756902	Kurtosis	-0.2660479
Uncorrected	SS 1326	Corrected SS	93.55
Coeff Variation	ion 27.7248171	Std Error Mean	0.12166435
Location Basic Statistical Measures			
Mean	3.925000 Std D	eviation	1.08820
Median	4.000000 Varia	nce	1.18418
Mode	4.000000 Range		4.00000
	Inter	quartile Range	1.00000
	Quantiles (D	afinition 5)	
	Quantile	Estimate	
	100\% Max	5	
	99\%	5	
	95\%	5	
	90\%	5	
	75\% Q3	5	
	50\% Median	4	
	25\% Q1	4	
	10\%	2	
	5\%	2	
	1\%	1	
	0\% Min	1	

	Variable:	B12 (B12)	
N	80	Sum Weights	80
Mean	3.7	Sum Observations	296
Std Deviation	1.46174856	Variance	2.13670886
Skewness	-0.7561896	Kurtosis	-0.9339848
Uncorrected SS	1264	Corrected SS	168.8
Coeff Variation	39.5067179	Std Error Mean	0.16342846

	Variable:	B13 (B13)	
N	80	Sum Weights	80
Mean	3.3	Sum Observations	264
Std Deviation	n 1.37242279	Variance	1.8835443
Skewness	-0.1711607	Kurtosis	-1.4239773
Uncorrected	SS 1020	Corrected SS	148.8
Coeff Variation	ion 41.5885693	Std Error Mean	0.15344153
Location Basic Statistical Measures			
$\begin{array}{lll}\text { Location } \\ \text { Mean } & 3.300000 & \text { Std Deviation }\end{array}$			1.37242
MedianMode	4.000000 Varia	nce	1.88354
	2.000000 Range		4.00000
	Inter	quartile Range	2.50000
	Quantiles (D	finition 5)	
	Quantile	Estimate	
	100\% Max	5.0	
	99\%	5.0	
	95\%	5.0	
	90\%	5.0	
	75\% Q3	4.5	
	50\% Median	4.0	
	25\% Q1	2.0	
	10\%	2.0	
	5\%	1.0	
	1\%	1.0	
	0\% Min	1.0	

	Variable:	C14 (C14)	
N	80	Sum Weights	80
Mean	3.375	Sum Observations	270
Std Deviation	1.39959307	Variance	1.95886076
Skewness	-0.276137	Kurtosis	-1.4469799
Uncorrected SS	1066	Corrected SS	154.75
Coeff Variation	41.4694243	Std Error Mean	0.15647926

Basic Statistical Measures			
Variability			
Location	Van		
Mean	3.375000	Std Deviation	1.39959
Median	4.000000	Variance	1.95886
Mode	2.000000	Range	4.00000
		Interquartile Range	3.00000

Note: The mode displayed is the smallest of 2 modes with a count of 25 .

Quantiles	(Definition 5)
Quantile	Estimate
100% Max	5
99%	5
95%	5
90%	5
75% Q3	5
50% Median	4
25% Q1	2
10%	2
5%	1
1%	1
0% Min	1

	Variable:	C16 (C16)	
N	80	Sum Weights	80
Mean	4.475	Sum Observations	358
Std Deviation	0.88553781	Variance	0.78417722
Skewness	-1.9977064	Kurtosis	3.88036542
Uncorrected SS	1664	Corrected SS	61.95

19.7885544 Std Error Mean
0.09900614

	Variable:	C18 (C18)	
N	80	Sum Weights	80
Mean	4.4125	Sum Observations	353
Std Deviation	0.95059941	Variance	0.90363924
Skewness	-1.6467647	Kurtosis	1.65902771
Uncorrected SS	1629	Corrected SS	71.3875
Coeff Variation	21.5433294	Std Error Mean	0.10628025

Basic Statistical Measures			
Location			
Variability			
Mean	4.412500	Std Deviation	0.95060
Median	5.000000	Variance	0.90364
Mode	5.000000	Range	3.00000
		Interquartile Range	1.00000

Quantiles	(Definition 5)
Quantile	Estimate
100% Max	5.0
99%	5.0
95%	5.0
90%	5.0
75% Q3	5.0
50% Median	5.0
25% Q1	4.0
10%	2.5
5%	2.0
1%	2.0
0% Min	2.0

Quantiles	(Definition 5)
Quantile	Estimate
100% Max	5
99%	5
95%	5
90%	5
75% Q3	4
50% Median	3
25% Q1	2
10%	1
5%	1
1%	1
0% Min	1

	Variable:	D21 (D21)	
N	79	Sum Weights	79
Mean	2.08860759	Sum Observations	165
Std Deviatio	n 1.34154401	Variance	1.79974034
Skewness	1.10934444	Kurtosis	-0.0317542
Uncorrected	SS 485	Corrected SS	140.379747
Coeff Variation	64.2315013	Std Error Mean	0.15093549
Location Basic Statistical Measures			
Mean	2.088608 Std D	viation	1.34154
Median	2.000000 Varia	nce	1.79974
Mode	1.000000 Range		4.00000
	Inter	quartile Range	2.00000
	Quantiles (D	finition 5)	
	Quantile	Estimate	
	100\% Max	5	
	99\%	5	
	95\%	5	
	90\%	5	
	75\% Q3	3	
	50\% Median	2	
	25\% Q1	1	
	10\%	1	
	5\%	1	
	1\%	1	
	0\% Min	1	

	Variable:	D22 (D22)	
N	77	Sum Weights	77
Mean	3.68831169	Sum Observations	284
Std Deviation	1.05456077	Variance	1.11209843
Skewness	-0.8597188	Kurtosis	0.43484349
Uncorrected SS	1132	Corrected SS	84.5194805
Coeff Variation	28.5919647	Std Error Mean	0.12017835

	Variable:	D24 (D24)	
N	80	Sum Weights	80
Mean	3.7125	Sum Observations	297
Std Deviation	1.19273911	Variance	1.42262658
Skewness	-0.5674519	Kurtosis	-0.9213734
Uncorrected SS	1215	Corrected SS	112.3875
Coeff Variation	32.1276528	Std Error Mean	0.13335229

Basic			
Statistical Measures			
Location	Variability		
Mean	3.712500	Std Deviation	1.19274
Median	4.000000	Variance	1.42263
Mode	4.000000	Range	4.00000
		Interquartile Range	2.00000

Quantiles	(Definition 5)
Quantile	Estimate
100% Max	5
99%	5
95%	5
90%	5
75% Q3	5
50% Median	4
25% Q1	3
10%	2
5%	2
1%	1
0% Min	1

	Variable:	D25 (D25)	
N	80	Sum Weights	80
Mean	3.825	Sum Observations	306
Std Deviation	n 1.28057542	Variance	1.63987342
Skewness	-0.776239	Kurtosis	-0.8206988
Uncorrected	SS 1300	Corrected SS	129.55
Coeff Variation	ion 33.4790961	Std Error Mean	0.14317268
Location Basic Statistical Measures			
Mean	3.825000 Std D	eviation	1.28058
Median	4.000000 Varia	nce	1.63987
Mode	5.000000 Range		4.00000
	Inter	quartile Range	3.00000
Quantiles (Definition 5)			
Quantile Estimate			
100\% Max 5			
99\% 5			
95\% 5			
90\% 5			
75\% Q3 5			
50\% Median 4			
25\% Q1 2			
10\% 2			
5\% 2			
1\% 1			
	0\% Min	1	

Annexure D:
 Comparison of proportions

			Cumulative	
Cumulative				
	A1 Frequency	Percent	Frequency	Percent
ff				
Disagree - Strongly Disagree	ee 30	38.46	30	38.46
Agree - Strongly Agree	48	61.54	78	100.00
Chi-Square Test				
for Equal Proportions				
$f f$				
Chi-Square 4.1538				
DF 1				
Pr > ChiSq 0.0415				
Sample Size $=78$				
Cumulative				
Cumulative				
	A2 Frequency	Percent	Frequency	Percent
fff				
Agree - Strongly Agree	49	63.64	77	100.00
Chi-Square Test				
for Equal Proportions				
fffffffffffffffffffff				
Chi-Square 5.7273				
DF 1				
Pr > ChiSq 0.0167				
Sample Size = 77				
Cumulative				
Cumulative				
	A3 Frequency	Percent	Frequency	Percent
$f f$				
Disagree - Strongly Disagree	ee 32	43.24	32	43.24
Agree - Strongly Agree	42	56.76	74	100.00
Chi-Square Test				
for Equal Proportions				
fffffffffffffffffffff				
Chi-Square 1.3514				
DF 1				
Pr > ChiSq 0.2450				
Sample Size $=74$				
Cumulative				
Cumulative				
	A4 Frequency	Percent	Frequency	Percent
fff.				
Disagree - Strongly Disagree	ee 29	39.19	29	39.19
Agree - Strongly Agree	45	60.81	74	100.00
Chi-Square Test				
for Equal Proportions				
ffffffffffffffffffffff				
Chi-Square 3.4595				
DF 1				
Pr > ChiSq 0.0629				
Sample Size = 74				
	Cumulative			
Cumulative				
	A5 Frequency	Percent	Frequency	Percent

Disagree - Strongly Disagree Agree - Strongly Agree	e 18	24.32	18	24.32
	56	75.68	74	100.00
Chi-Square Test				
for Equal Proportions				
$f f$				
Chi-Square 19.5135				
DF				
Pr > ChiSq <.0001				
Effective Sample Size $=74$				
Frequency Missing = 1				
Cumulative				
Cumulative				
	36 Frequency	Percent	Frequency	Percent
fff.				
Disagree - Strongly Disagree Agree - Strongly Agree	ee $\begin{aligned} & 33 \\ & 44\end{aligned}$	$\begin{aligned} & 42.86 \\ & 57.14 \end{aligned}$	33 77	$\begin{array}{r} 42.86 \\ 100.00 \end{array}$
Chi-Square Test				
for Equal Proportions				
$f f$				
Chi-Square 1.5714				
DF 1				
Pr > ChiSq 0.2100				
Sample Size $=77$				
Cumulative				
Cumulative				
	37 Frequency	Percent	Frequency	Percent
ff				
Disagree - Strongly Disagree	26	38.24	26	38.24
Agree - Strongly Agree	42	61.76	68	100.00
Chi-Square Test				
for Equal Proportions				
$f f$				
Chi-Square 3.7647				
DF 1				
$\mathrm{Pr}>$ ChiSq 0.0523				
Sample Size $=68$				
Cumulative				
Cumulative				
	38 Frequency	Percent	Frequency	Percent
fff				
Agree - Strongly Agree	43	61.43	70	100.00
Chi-Square Test				
for Equal Proportions				
$f f$				
Chi-Square 3.6571				
DF 1				
$\mathrm{Pr}>$ ChiSq 0.0558				
Sample Size $=70$				
	Cumulative			
Cumulative				
	39 Frequency	Percent	Frequency	Percent
ff.				
Disagree - Strongly Disagree	26	34.67	26	34.67
Agree - Strongly Agree	49	65.33	75	100.00
Chi-Square Test				
for Equal Proportions				
$f f$				
Chi-Square 7.0533				
	DF	1		
$\mathrm{Pr}>$ ChiSq 0.0079				

			Cumulative	
Cumulative				
D19	Frequency	Percent	Frequency	Percent
ff				
Disagree - Strongly Disagree	30	42.86	30	42.86
Agree - Strongly Agree	40	57.14	70	100.00
Chi-Square Test				
for Equal Proportions				
$f f$				
Chi-Square 1.4286				
DF 1				
$\mathrm{Pr}>$ ChiSq 0.2320				
Sample Size $=70$				
Cumulative				
Cumulative				
D20	Frequency	Percent	Frequency	Percent
fff.f				
Agree - Strongly Agree	39	56.52	69	100.00
Chi-Square Test				
for Equal Proportions				
$f f$				
Chi-Square 1.1739				
DF 1				
Pr > ChiSq 0.2786				
Effective Sample Size = 69				
Frequency Missing = 1				
Cumulative				
Cumulative				
D21	Frequency	Percent	Frequency	Percent
fff				
Agree - Strongly Agree	15	20.27	74	100.00
Chi-Square Test				
for Equal Proportions				
ffffffffffffffffffffff				
Chi-Square 26.1622				
DF 1				
Pr > ChiSq <.0001				
Effective Sample Size = 74				
Frequency Missing = 1				
Cumulative				
Cumulative				
D22	Frequency	Percent	Frequency	Percent
ff				
Disagree - Strongly Disagree	10	16.39	10	16.39
Agree - Strongly Agree	51	83.61	61	100.00
for Equal Proportions				
$f f$				
Chi-Square 27.5574				
DF 1				
Pr > ChiSq <.0001				
Effective Sample Size = 61				
Frequency Missing = 3				
Cumulative				
Cumulative				
D23	Frequency	Percent	Frequency	Percent
$f f$				
Disagree - Strongly Disagree	14	18.92	14	18.92
Agree - Strongly Agree	60	81.08	74	100.00

Annexure E:

Chi-square test for comparisons

Table of Number_residing by A1
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
,gree
ffffffffff ffffffff^ffffffff^
1-6 , $12, \quad 28$, 40
, 15.38 , 35.90 , 51.28
, 30.00 , 70.00 ,
, 40.00 , 58.33 ,
ffffffffff ffffffff^ffffffff

| >6 | , | 23.08, | 25.64, |
| :--- | ---: | ---: | ---: |$\quad 48.72$

Statistics for Table of Number residing by A1

	DF	Value	Prob
Statistic	1	2.4837	0.1150
fff			
Chi-Square	1	2.4964	0.1141
Likelihood Ratio Chi-Square	1	1.8041	0.1792
Continuity Adj. Chi-Square	1	2.4518	0.1174
Mantel-Haenszel Chi-Square	1	-0.1784	
Phi Coefficient		0.1757	
Contingency Coefficient		-0.1784	
Cramer's V			

Fisher's Exact Test	
ffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	12
Left-sided Pr <= F	0.0895
Right-sided Pr >= F	0.9651
Table Probability (P)	0.0545
Two-sided Pr <= P	0.1626

Sample Size $=78$
Table of Number_residing by A2 Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff 'ffffffff ffffffff^ 1-6 , 14 , 26 , 40
, 18.18 , 33.77 , 51.95
, 35.00 , 65.00 ,
, 50.00 , 53.06 ,
fffffffff ${ }^{\wedge} f f f f f f f^{\wedge} f f f f f f f f$
>6, 14,23 , 37
, $18.18,29.87,48.05$
, 37.84 , 62.16, fffffffff^ffffffff^ffffffff^

Total	28	49	77
	36.36	63.64	100.00

Statistics for Table of Number_residing by A2
Statistic DF Value Prob ff Chi-Square 100.06690 .7959
Likelihood Ratio Chi-Square 1 0.0669 0.7959
Continuity Adj. Chi-Square $1 \quad 0.00050 .9828$

| Mantel-Haenszel Chi-Square | 1 | 0.0660 | 0.7972 |
| :--- | :--- | :--- | :--- | :--- |

Phi Coefficient	-0.0295
Contingency Coefficient	0.0295
Cramer's V	-0.0295

Fisher's Exact Test
$f f$ Cell $(1,1)$ Frequency (F) 14 Left-sided Pr <= F 0.4911 Right-sided Pr >= F 0.6900 Table Probability (P) 0.1810 Two-sided Pr <= P 0.8169

Sample Size = 77
Table of Number_residing by A3 Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff ,ffffffff^ffffffff*
1-6 , $13, \quad 25$, 38
, $17.57,33.78,51.35$
, 34.21 , 65.79 ,
, 40.63 , 59.52 ,
ffffffffff ffffffff^ffffffff
$>6 \quad, \quad 19,17, \quad 36$
, $25.68,22.97,48.65$
, 52.78 , 47.22 ,
, 59.38 , 40.48 ,
ffffffffff fffffffff ffffffff^

Total	32	42	74

Statistics for Table of Number_residing by A3
Statistic DF Value Prob ff Chi-Square 1

| Likelihood Ratio Chi-Square | 1 | 2.6108 | 0.1061 |
| :--- | :--- | :--- | :--- | :--- |

Continuity Adj. Chi-Square 1 1.8952 0.1686

Mantel-Haenszel Chi-Square	1	2.5616	0.1095

Phi Coefficient
-0.1873
Contingency Coefficient 0.1841
Cramer's V
-0.1873
Fisher's Exact Test fffffffffffffffffffffffffffffffffff
Cell (1,1) Frequency (F) 13
Left-sided Pr <= F 0.0841

Right-sided Pr >= F 0.9679
Table Probability (P) 0.0520
Two-sided Pr <= P 0.1588
Sample Size = 74

Table of Number_residing by A4
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
fffffffff , ffffffff^ffffffff ’
1-6 , 15,24 , 39
, $20.27,32.43,52.70$
, 38.46 , 61.54 ,
, 51.72 , 53.33
fffffffff^ffffffff^ffffffff^
>6 , 14 , 21 , 35
$18.92,28.38,47.30$
, 40.00 , 60.00 ,
, 48.28 , 46.67,

fffffffff^ffffffff^ffffffff			
Total	29	45	74
	39.19	60.81	100.00

Statistics for Table of Number_residing by A4

Statistic	DF	Value	Prob
fff			
Chi-Square	1	0.0183	0.8923
Likelihood Ratio Chi-Square	1	0.0183	0.8923
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0181	0.8931
Phi Coefficient		-0.0157	
Contingency Coefficient		0.0157	
Cramer's V		-0.0157	

Fisher's Exact Test
$f f$ Cell (1,1) Frequency (F) 15 Left-sided Pr <= F 0.5406 Right-sided Pr >= F 0.6459 Table Probability (P) 0.1865 Two-sided Pr <= P 1.0000

Sample Size = 74

Table of Number_residing by A5 Frequency, Percent Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff^ffffffff^ffffffff
1-6 , $7, \quad 32$
, $9.46,43.24,52.70$
, 17.95 , 82.05 ,
, 38.89 , 57.14 ,
fffffffff^ffffffff^ffffffff
$>6 \quad 11$, 24 , 35
, $14.86,32.43,47.30$
, 31.43 , 68.57 ,
, 61.11, 42.86 , ffffffffff ffffffff ffffffff*
Total $18 \quad 56$
$24.32 \quad 75.68 \quad 100.00$
Statistics for Table of Number_residing by A5
Statistic DF Value Prob
ff
Chi-Square $\quad 1 \quad 1.8209 \quad 0.1772$
Likelihood Ratio Chi-Square 1 1.8268 0.1765

Continuity Adj. Chi-Square	1	1.1622	0.2810

Mantel-Haenszel Chi-Square 1 1.7962 0.1802
Cramer's V -0.1569

Fisher's Exact Test $f f$ Cell (1,1) Frequency (F) 7 Left-sided Pr <= F 0.1406 Right-sided Pr >= F 0.9478 Table Probability (P) 0.0883 Two-sided Pr <= P 0.2777

Effective Sample Size = 74
Frequency Missing = 1

Table of Number_residing by B6 Frequency,
Percent Row Pct ,

Statistics for Table of Number_residing by B6

Statistic	DF	Value	Prob
fff			
Chi-Square	1	1.1084	0.2924
Likelihood Ratio Chi-Square	1	1.1117	0.2917
Continuity Adj. Chi-Square	1	0.6765	0.4108
Mantel-Haenszel Chi-Square	1	1.0940	0.2956
Phi Coefficient		0.1200	
Contingency Coefficient		0.1191	
Cramer's V		0.1200	

Fisher's Exact Test
$f f$ Cell (1,1) Frequency (F) 19 Left-sided Pr <= F 0.9004 Right-sided Pr >= F 0.2055 Table Probability (P) 0.1060
Two-sided Pr <= P 0.3594

Sample Size = 77

Table of Number_residing by B7 Frequency,
Percent
Row Pct ,
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree

$1-6 \quad 16,19, \quad 35$
, 23.53 , 27.94 , 51.47
, 45.71, 54.29,
, 61.54 , 45.24 ,
ffffffffff ${ }^{\prime} f f f f f f f^{\wedge} f f f f f f f f$
>6, 10,23 , 33
, $14.71,33.82,48.53$
, 30.30 , 69.70 ,
, 38.46 , 54.76 ,
ffffffffff fffffffff ffffffff^

Total	26	42	68
	38.24	61.76	100.00

Statistics for Table of Number_residing by B7
Statistic DF Value Prob fff Chi-Square 1

Likelihood Ratio Chi-Square	1	1.7199	0.1897

| Continuity Adj. Chi-Square | 1 | 1.1180 | 0.2904 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}\text { Mantel-Haenszel Chi-Square } & 1 & 1.6831 & 0.1945\end{array}$
Phi Coefficient
0.1585

Contingency Coefficient 0.1565
Cramer's V 0.1585
Fisher's Exact Test
$f f$

Cell (1,1) Frequency (F)	16
Left-sided Pr <= F	0.9407
Right-sided Pr >= F	0.1452
Table Probability (P)	0.0859
Two-sided Pr <= P	0.2200
Sample Size = 68	

Table of Number_residing by B8
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ’ffffffff ffffffff^
1-6 , 14 , 21 , 35
, 20.00 , 30.00 , 50.00
, 40.00 , 60.00 ,
, 51.85 , 48.84 ,
ffffffffff ffffffff^ffffffff
$>6 \quad, \quad 13, \quad 22$, 35
, $18.57,31.43,50.00$
, 37.14 , 62.86 ,

Total	27	43	70
	38.57	61.43	100.00

Statistics for Table of Number_residing by B8

Statistic	DF	Value	Prob
ff			
Chi-Square	1	0.0603	0.8060
Likelihood Ratio Chi-Square	1	0.0603	0.8060
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0594	0.8074
Phi Coefficient		0.0293	
Contingency Coefficient		0.0293	
Cramer's V		0.0293	

Fisher's Exact Test
$f f$
Cell $(1,1)$ Frequency (F) 14
Left-sided Pr <= F 0.6881

Right-sided Pr >= F 0.5000
Table Probability (P) 0.1881
Two-sided Pr <= P 1.0000
Sample Size $=70$
Table of Number_residing by B9
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron, Strongly,
,gly Disa, Agree
, gree
fffffffff ffffffff^ffffffff
1-6 , 11 , 28 , 39
, $14.67,37.33,52.00$
, 28.21 , 71.79
, 42.31, 57.14,
fffffffff^ffffffff^ffffffff^
>6, 15 , 36
, 20.00 , 28.00 , 48.00
, 41.67 , 58.33 ,
, 57.69 , 42.86 ,
ffffffffff ffffffff^ffffffff^

Total	26	49	75
	34.67	65.33	100.00

Statistics for Table of Number_residing by B9
Statistic DF Value Prob

Table of Number_residing by B10 Frequency, Percent Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff ’ffffffff^ffffffff^
1-6 , $11, \quad 25$, 36
, 14.86 , 33.78 , 48.65
, 30.56 , 69.44 ,
, 64.71 , 43.86
fffffffff^ffffffff^ffffffff
>6, 62,38
, $8.11,43.24,51.35$
, 15.79 , 84.21 ,
, 35.29 , 56.14 ,
ffffffffff ${ }^{\prime}$ ffffffff ${ }^{\prime}$ ffffffff^

Total	17	57	74
	22.97	77.03	100.00

Statistics for Table of Number_residing by B10

Statistic	DF	Value	Prob
fff			
Chi-Square	1	2.2778	0.1312
Likelihood Ratio Chi-Square	1	2.3003	0.1293
Continuity Adj. Chi-Square	1	1.5198	0.2176
Mantel-Haenszel Chi-Square	1	2.2471	0.1339
Phi Coefficient		0.1754	
Contingency Coefficient		0.1728	
Cramer's V		0.1754	

Fisher's Exact Test
fffffffffffffffffffffffffffffffffff
Cell (1,1) Frequency (F) 11
Left-sided Pr <= F 0.9636

Right-sided Pr >= F 0.1087
Table Probability (P) 0.0723
Two-sided Pr <= P 0.1705
Effective Sample Size $=74$
Frequency Missing = 1

Table of Number_residing by B11
Frequency,
Percent
Row Pct ,
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff ffffffff^ffffffff
1-6 , 9 , 36

Statistics for Table of Number_residing by B11

Statistics for Table of			
Statistic	DF	Value	Prob
ff			
Chi-Square	1	1.8291	0.1762
Likelihood Ratio Chi-Square	1	1.8440	0.1745
Continuity Adj. Chi-Square	1	1.1148	0.2910
Mantel-Haenszel Chi-Square	1	1.8047	0.1791
Phi Coefficient		0.1562	
Contingency Coefficient		0.1543	
Cramer's V		0.1562	

Fisher's Exact Test

ffffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	9
Left-sided Pr <= F	0.9511
Right-sided Pr >= F	0.1456
Table Probability (P)	0.0967
Two-sided Pr <= P	0.2387
Sample Size = 75	

Table of Number_residing by B12
Frequency, Percent Row Pct , Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ffffffff^ffffffff^
1-6 , $16, \quad 23$, 39
, $21.05,30.26,51.32$
, 41.03 , 58.97 ,
, 72.73 , 42.59
ffffffffff ffffffff^ffffffff
$>6,37$
, $7.89,40.79$,
48.68
, 16.22 , 83.78
, 27.27 , 57.41 ,
ffffffffff ffffffff^ffffffff^
Total $22 \quad 54$
$28.95 \quad 71.05 \quad 100.00$

Statistics for Table of			
Stamber_residing by B12			
Stic	DF	Value	Prob
fff			
Chi-Square	1	5.6819	0.0171
Likelihood Ratio Chi-Square	1	5.8535	0.0155
Continuity Adj. Chi-Square	1	4.5397	0.0331
Mantel-Haenszel Chi-Square	1	5.6072	0.0179
Phi Coefficient		0.2734	
Contingency Coefficient		0.2637	
Cramer's V	0.2734		

Fisher's Exact Test

ffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	16
Left-sided Pr <= F	0.9963
Right-sided Pr >= F	0.0158
Table Probability (P)	0.0121
Two-sided Pr <= P	0.0230
Sample Size = 76	

Table of Number_residing by B13

Table of Number_residing by C14
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff^ffffffff^ffffffff
1-6 , 16 , 25 , 41
, 20.25 , 31.65 , 51.90
, 39.02 , 60.98 ,
, 50.00 , 53.19 ,
$f f f f f f f f f f^{\wedge} f f f f f f f^{\wedge} f f f f f f f f$
>6 , 16 , 22 , 38
, $20.25,27.85,48.10$
, 42.11 , 57.89 ,
, 50.00 , 46.81 ,
fffffffff^ffffffff^ffffffff
Total $32 \quad 47$
$40.51 \quad 59.49 \quad 100.00$
Statistics for Table of Number_residing by C14 Statistic DF Value Prob ff Chi-Square 100.07770 .7805 Likelihood Ratio Chi-Square 1 0.0777 0.7805 $\begin{array}{lllll}\text { Continuity Adj. Chi-Square } & 1 & 0.0024 & 0.9606\end{array}$ Mantel-Haenszel Chi-Square 1 0.0767 0.7818

Phi Coefficient	-0.0314
Contingency Coefficient	0.0313
Cramer's V	-0.0314

Fisher's Exact Test

ffffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	16
Left-sided Pr <= F	0.4801
Right-sided Pr >= F	0.6943
Table Probability (P)	0.1744
Two-sided Pr <= P	0.8216

Sample Size = 79

Table of Number_residing by C15
Frequency,
Percent
Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ffffffff^ffffffff
1-6 , 6 , 33
$7.89,43.42$,
, 15.38 , 84.62 ,
, 66.67 , 49.25 , fffffffff^ffffffff^ffffffff^
>6, 34 , 37
, $3.95,44.74,48.68$
, 8.11 , 91.89 ,
, 33.33 , 50.75 fffffffff^ffffffff^ffffffff^ Total 9676
$11.84 \quad 88.16 \quad 100.00$
Statistics for Table of Number_residing by C15
Statistic DF Value Prob ff

Chi-Square	1	0.9630	0.3264

Likelihood Ratio Chi-Square 1 0.9817 0.3218

| Continuity Adj. Chi-Square | 1 | 0.3921 | 0.5312 |
| :--- | :--- | :--- | :--- | :--- |

| Mantel-Haenszel Chi-Square 1 | 0.9503 | 0.3296 |
| :--- | :--- | :--- | :--- | :--- |

Phi Coefficient
0.1126

Contingency Coefficient
0.1119

Cramer's V
0.1126

WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Fisher's Exact Test
$f f$
Cell $(1,1)$ Frequency (F) 6 Left-sided Pr <= F 0.9106 Right-sided Pr >= F 0.2673
Table Probability (P) 0.1779
Two-sided Pr <=
0.4814

Sample Size = 76

Table of Number_residing by C16
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff^ffffffff^ffffffff
1-6 , 4 , 35
, 5.19 , 45.45 ,
50.65
, 10.26 , 89.74
, 80.00 , 48.61
ffffffffffffffffff^ffffffff
>6 , 1 , 37

$$
\begin{aligned}
& \text {, } 1.30,48.05 \text {, } 49.35 \\
& \text {, } 2.63,97.37, \\
& \text { ffffffffff^ffffffff^ffffffff^ } \\
& \begin{array}{lrrr}
\text { Total } & 5 & 72 & 77 \\
& 6.49 & 93.51 & 100.00
\end{array}
\end{aligned}
$$

Statistics for Table of Number_residing by C16

Statistic	DF	Value	Prob
ff			
Chi-Square	1	1.8429	0.1746
Likelihood Ratio Chi-Square	1	1.9700	0.1604
Continuity Adj. Chi-Square	1	0.8010	0.3708
Mantel-Haenszel Chi-Square	1	1.8189	0.1774
Phi Coefficient		0.1547	
Contingency Coefficient		0.1529	
Cramer's V		0.1547	

WARNING: 50\% of the cells have expected counts less than 5 . Chi-Square may not be a valid test.

Fisher's Exact Test
$f f$ Cell (1,1) Frequency (F) 4 Left-sided Pr <= F 0.9709 Right-sided Pr >= F 0.1873 Table Probability (P) 0.1582 Two-sided Pr <= P 0.3584

Sample Size = 77

Table of Number_residing by C17 Frequency, Percent Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree

1-6 , 4,34
, 5.33 , 45.33 , 50.67
, $10.53,89.47$,
, $57.14,50.00$,
ffffffffff ffffffff^fffffffff
>6, 3,37
, $4.00,45.33,49.33$
, 8.11, 91.89,
, 42.86 , 50.00 ,
fffffffff^ffffffff^ffffffff^

Total	7	68	75

Statistics for Table of Number_residing by C17
Statistic DF Value Prob $f f$ Chi-Square 100.12950 .7189

| Likelihood Ratio Chi-Square | 1 | 0.1300 | 0.7184 |
| :--- | :--- | :--- | :--- | :--- |

| Continuity Adj. Chi-Square | 1 | 0.0000 | 1.0000 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}\text { Mantel-Haenszel Chi-Square } & 1 & 0.1278 & 0.7207\end{array}$
Phi Coefficient
0.0416

Contingency Coefficient 0.0415
Cramer's V 0.0416
WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Fisher's Exact Test
$f f$ Cell (1,1) Frequency (F) 4 Left-sided Pr <= F 0.7738 Right-sided Pr >= F 0.5152 Table Probability (P) 0.2890 Two-sided Pr <= P 1.0000

Table of Number_residing by C18 Frequency,
Percent
Row Pct
Col Pct ,Disagree, Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree , ,gree
ffffffffff fffffffff ffffffff^
$1-6,41$
, $1.28,51.28,52.56$
, $2.44,97.56$,
, 12.50 , 57.14 ,
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$
>6, 7,37
, $8.97,38.46,47.44$
, 18.92 , 81.08 ,
, 87.50 , 42.86 ,
fffffffff^ffffffff^ffffffff^
Total $\quad 8 \quad 70 \quad 78$
$10.26 \quad 89.74 \quad 100.00$

Statistics for Table of Number residing by C18

Statistic	DF	Value	Prob
fff			
Chi-Square	1	5.7385	0.0166
Likelihood Ratio Chi-Square	1	6.2903	0.0121
Continuity Adj. Chi-Square	1	4.0878	0.0432
Mantel-Haenszel Chi-Square	1	5.6650	0.0173
Phi Coefficient		-0.2712	
Contingency Coefficient		0.2618	
Cramer's V		-0.2712	

WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Fisher's Exact Test
$f f$
Cell $(1,1)$ Frequency (F) 1
Left-sided Pr <= F 0.0196

Right-sided Pr >= F 0.9984
Table Probability (P) 0.0180
Two-sided Pr <= P 0.0237

Sample Size $=78$

Table of Number_residing by D19
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff fffffffff ffffffff^
$1-6$, 18,19 , 37
, $25.71,27.14,52.86$
, 48.65 , 51.35 ,
, 60.00 , 47.50 ,
fffffffff^ffffffff^ffffffff
$>6 \quad 12, \quad 21$, 33
$17.14,30.00,47.14$
, 36.36 , 63.64 ,
, 40.00 , 52.50
fffffffff ${ }^{\prime} f f f f f f f f f^{\wedge} f f f f f f f$ ^
Total $\quad 30 \quad 40$

Statistics for Table of Number_residing by D19 Statistic DF Value Prob fff

Chi-Square	1	1.0749	0.2998
Likelihood Ratio Chi-Square	1	1.0795	0.2988
Continuity Adj. Chi-Square	1	0.6318	0.4267
Mantel-Haenszel Chi-Square	1	1.0596	0.3033
Phi Coefficient		0.1239	
Contingency Coefficient		0.1230	
Cramer's V		0.1239	

Fisher's Exact Test
$f f$
Cell (1,1) Frequency (F) 18
Left-sided Pr <= F 0.8997

Right-sided Pr >= F 0.2136
Table Probability (P) 0.1133
Two-sided Pr <= P 0.3406
Sample Size $=70$

Table of Number_residing by D20 Frequency, Percent Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron,Strongly, ,gly Disa, Agree , , gree
ffffffffff ffffffff^ffffffff
1-6 , 16,19 , 35
, $23.19,27.54,50.72$
, 45.71 , 54.29 ,
, 53.33 , 48.72
fffffffff^ffffffff^ffffffff

Statistics for Table of Number residing by D20

	DF	Value	Prob
Statistic	1	0.1445	0.7038
ff			
Chi-Square	1	0.1446	0.7038
Likelihood Ratio Chi-Square	1	0.0188	0.8908
Continuity Adj. Chi-Square	1	0.1424	0.7059
Mantel-Haenszel Chi-Square	1	0.0458	
Phi Coefficient		0.0457	
Contingency Coefficient		0.0458	
Cramer's V			

Fisher's Exact Test
$f f$ Cell (1,1) Frequency (F) 16 Left-sided Pr <= F 0.7331 Right-sided Pr >= F 0.4455 Table Probability (P) 0.1787 Two-sided $\operatorname{Pr}<=P \quad 0.8094$

Effective Sample Size $=69$ Frequency Missing = 1

Table of Number_residing by D21

 Frequency,Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
$\begin{array}{ll}\text { gree , gree } \\ \text { ffffffff } \\ 1-6 & 28,\end{array}$

1-6		

, 73.68 , 26.32 ,

Table of Number_residing by D23

Frequency,

Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff 'ffffffff^fffffffff
1-6 , $6, \quad 30,36$
, $8.11,40.54,48.65$
, 16.67 , 83.33
, 42.86 , 50.00 ,
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f$
>6, 80 , 38
, $10.81,40.54,51.35$
, 21.05 , 78.95 ,
, 57.14 , 50.00 ,
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f$

Total	14	60	74
	18.92	81.08	100.00

Statistics for Table of Number_residing by D23
Statistic DF Value Prob ff

Chi-Square	1	0.2318	0.6302
Likelihood Ratio Chi-Square	1	0.2326	0.6296
Continuity Adj. Chi-Square	1	0.0341	0.8536
Mantel-Haenszel Chi-Square	1	0.2287	0.6325
Phi Coefficient		-0.0560	
Contingency Coefficient		0.0559	
Cramer's V		-0.0560	

Fisher's Exact Test
$f f$ Cell $(1,1)$ Frequency (F) 6 Left-sided $\mathrm{Pr}<=\mathrm{F}$ 0.4278 Right-sided Pr >= F 0.7811 Table Probability (P) 0.2089 Two-sided Pr <= P 0.7690

Sample Size = 74

Table of Number_residing by D24 Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff „ffffffff^ffffffff^
1-6 , $10, \quad 28$, 38
, $13.89,38.89,52.78$
, 26.32 , 73.68 ,
, 52.63 , 52.83 ,
ffffffffff ${ }^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f$
>6, 9 , 34
, $12.50,34.72,47.22$
, 26.47 , 73.53,
ffffffffff ffffffff^ffffffff^

Total	19	53	72

Statistics for Table of Number_residing by D24
Statistic DF Value Prob ff Chi-Square 100.00020 .9881

| Likelihood Ratio Chi-Square | 1 | 0.0002 | 0.9881 |
| :--- | :--- | :--- | :--- | :--- |

| Continuity Adj. Chi-Square 10.0000 | 1.0000 |
| :--- | :--- | :--- | :--- | :--- |

Mantel-Haenszel Chi-Square	1	0.0002	0.9882
Phi Coefficient		-0.0018	
Contingency Coefficient		0.0018	
Cramer's V		-0.0018	

Fisher's Exact Test $f f$ Cell $(1,1)$ Frequency (F) 10 Left-sided Pr <= F 0.5987 Right-sided Pr >= F 0.6119 Table Probability (P) 0.2106 Two-sided Pr <= P 1.0000

Sample Size = 72

Table of Number_residing by D25
Frequency,
Percent Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff^ffffffff^ffffffff^
1-6 , $10, \quad 30$, 40
, 12.66 , 37.97 , 50.63
, 25.00 , 75.00
, 47.62, 51.72,
fffffffff^ffffffff^ffffffff
>6 , 11 , 28 , 39
, $13.92,35.44$, 49.37
, 28.21 , 71.79 ,
, 52.38 , 48.28 ,
ffffffffff $f f f f f f f f \wedge f f f f f f f f$

Total	21	58	79
	26.58	73.42	100.00

Statistics for Table of Number_residing by D25
Statistic DF Value Prob ff
Chi-Square 10.10390 .7471

| Likelihood Ratio Chi-Square | 1 | 0.1040 | 0.7471 |
| :--- | :--- | :--- | :--- | :--- |

Continuity Adj. Chi-Square 100.00460 .9460

| Mantel-Haenszel Chi-Square 10.1026 | 0.7487 |
| :--- | :--- | :--- | :--- | Phi Coefficient

-0.0363
Contingency Coefficient 0.0362
Cramer's V
-0.0363
Fisher's Exact Test
$f f$
Cell (1,1) Frequency (F) 10
Left-sided Pr <= F 0.4729

Right-sided Pr >= F 0.7178
Table Probability (P) 0.1907
Two-sided Pr <= P 0.8027
Sample Size = 79

Table of Number_home by A1
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff , greefffff^ffffffff^
0-2 , 10,18 , 28
, $14.71,26.47,41.18$
, 35.71 , 64.29,
, 40.00 , 41.86 ,
fffffffff $f f f f f f f f^{\wedge} f f f f f f f f$
>2, $15, \quad 25,40$
, $22.06,36.76$, 58.82

Statistics for Table of Number_home by A1

Statistic	DF	Value	Prob
fff			
Chi-Square	1	0.0226	0.8805
Likelihood Ratio Chi-Square	1	0.0226	0.8804
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0223	0.8814
Phi Coefficient		-0.0182	
Contingency Coefficient		0.0182	
Cramer's V		-0.0182	

Fisher's Exact Test
$f f$ Cell $(1,1)$ Frequency (F) 10 Left-sided Pr <= F 0.5434 Right-sided Pr >= F 0.6560 Table Probability (P) 0.1995 Two-sided Pr <= P 1.0000

Sample Size = 68

> Table of Number_home by A2 Frequency, Percent Row Pct , Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ffffffff^ffffffff 0-2 , 10 , 19 , 29
, $14.93,28.36,43.28$
, 34.48 , 65.52 ,
, 43.48 , 43.18 ,
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f$
$>2 \quad, \quad 13, \quad 25, \quad 38$
, 19.40 , 37.31 , 56.72
, 34.21 , 65.79 ,
, 56.52 , 56.82
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f$ ^

Total	23	44	67
	34.33	65.67	100.00

Statistics for Table of Number home by A2
Statistic DF Value Prob fff Chi-Square 100.000500 .9814

| Likelihood Ratio Chi-Square | 1 | 0.0005 | 0.9815 |
| :--- | :--- | :--- | :--- | :--- |

Continuity Adj. Chi-Square $1 \quad 0.00001 .0000$

| Mantel-Haenszel Chi-Square 1 | 0.0005 | 0.9816 |
| :--- | :--- | :--- | :--- | :--- |

Phi Coefficient
0.0028

Contingency Coefficient 0.0028
Cramer's V
0.0028

Fisher's Exact Test
$f f$
Cell $(1,1)$ Frequency (F) 10
Left-sided Pr <= F 0.6125

Right-sided Pr >= F 0.5919
Table Probability (P) 0.2044
Two-sided Pr <= P 1.0000
Sample Size $=67$

Table of Number_home by A3
Frequency,
Percent
Row Pct ,

Cell (1,1) Frequency (F)	11
Left-sided Pr <= F	0.6086
Right-sided Pr >= F	0.5943
Table Probability (P)	0.2030
Two-sided Pr <= P	1.0000
Sample Size = 64	

Table of Number_home by A5
Frequency,
Percent
Row Pct ,
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ’ffffffff ffffffff^
0-2 , 9 , 19
, $14.06,29.69,43.75$
, 32.14 , 67.86 ,
, 50.00 , 41.30 ,
fffffffff^ffffffff^ffffffff
$>2 \quad, \quad 97$
, 14.06 , $42.19,56.25$
, 25.00 , 75.00 ,
fffffffff^ffffffff^fffffffff

Total	18	46	64
	28.13	71.88	100.00

Statistics for Table of Number_home by A5 Statistic DF Value Prob ff Chi-Square 100.397500 .5284

| Likelihood Ratio Chi-Square | 1 | 0.3958 | 0.5293 |
| :--- | :--- | :--- | :--- | :--- |

Continuity Adj. Chi-Square 1 0.1227 0.7261

| Mantel-Haenszel Chi-Square | 1 | 0.3913 | 0.5316 |
| :--- | :--- | :--- | :--- | :--- | Phi Coefficient

$0.3913 \quad 0.5316$
0.0788

Cramer's V
0.0786
0.0788

Fisher's Exact Test
$f f$
Cell (1,1) Frequency (F) 9
Left-sided $\operatorname{Pr}<=\mathrm{F} \quad 0.8189$

Right-sided Pr >= F 0.3617
Table Probability (P) 0.1805
Two-sided Pr <= P 0.5831
Effective Sample Size $=64$
Frequency Missing = 1

Table of Number_home by B6
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff^ffffffff^ffffffff^
0-2 , 10 , 19 , 29
, 14.71 , 27.94 , 42.65
, 34.48 , 65.52 ,
, 40.00 , 44.19 ,
ffffffffff ffffffff^ffffffff
>2 , 15 , 24 , 39
, 22.06 , $35.29,57.35$
, 38.46 , 61.54 ,
, 60.00 , 55.81 ,
$f f f f f f f f f^{\wedge} f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$
Total $25 \quad 43 \quad 68$
$36.76 \quad 63.24 \quad 100.00$

Table of Number_home by B8 Frequency, Percent Row Pct , Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff ffffffff^ffffffff
0-2 $\quad 5,22,27$

Frequency Missing = 2

Table of Number_home by B10 Frequency, Percent Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ffffffff^ffffffff^
0-2 , 8 , 18 , 26
, $12.50,28.13,40.63$
, 30.77 , 69.23 ,
, 50.00 , 37.50
ffffffffff $f f f f f f f f f^{\wedge} f f f f f f f f$
>2 , 8 , 38
, $12.50,46.88$, 59.38
, 21.05 , 78.95 ,
, 50.00 , 62.50 ,
$f f f f f f f f f f^{\wedge} f f f f f f f f f^{\wedge} f f f f f f f f$ ^

Total	16	48	64
	25.00	75.00	100.00

Statistics for Table of Number_home by B10
Statistic DF Value Prob ff

Chi-Square	1	0.7773	0.3780
Likelihood Ratio Chi-Square	1	0.7687	0.3806
Continuity Adj. Chi-Square	1	0.3455	0.5567
Mantel-Haenszel Chi-Square	1	0.7652	0.3817
Phi Coefficient		0.1102	
Contingency Coefficient		0.1095	
Cramer's V		0.1102	

Fisher's Exact Test
$f f$ Cell $(1,1)$ Frequency (F) 8 Left-sided Pr <= F 0.8797 Right-sided Pr >= F 0.2767 Table Probability (P) 0.1564 Two-sided Pr <= P 0.3957

Effective Sample Size $=64$
Frequency Missing = 1

Table of Number_home by B11
Frequency,
Percent
Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,

0-2 , 8 , 17 , 25
, $12.31,26.15,38.46$
, 32.00 , 68.00 ,
, 61.54 , 32.69 ,
fffffffff $f f f f f f f f^{\wedge} f f f f f f f f$
>2, 5 , 35
, 7.69 , 53.85
, 12.50 , 87.50
, 38.46 , 67.31 ffffffffff fffffffff ffffffff^
Total $13 \quad 52 \quad 65$
$20.00 \quad 80.00 \quad 100.00$
Statistics for Table of Number_home by B11
Statistic DF Value Prob ff
Chi-Square $\quad 1 \quad 3.6563 \quad 0.0559$
Likelihood Ratio Chi-Square 1 3.5672 0.0589

Continuity Adj. Chi-Square	1	2.5391	0.1111
Mantel-Haenszel Chi-Square	1	3.6000	0.0578
Phi Coefficient		0.2372	
Contingency Coefficient		0.2308	
Cramer's V		0.2372	

Fisher's Exact Test ffffffffffffffffffffffffffffffffff Cell (1,1) Frequency (F) 8 Left-sided Pr <= F 0.9864 Right-sided Pr >= F 0.0569 Table Probability (P) 0.0433 Two-sided Pr <= P 0.1084

Sample Size $=65$

Table of Number_home by B12
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
,gree
ffffffffff ’ffffffff^ffffffff^
$0-2$, 10,18 , 28
, $15.15,27.27,42.42$
, 35.71 , 64.29,
, 55.56 , 37.50
fffffffff^ffffffff^ffffffff^
>2 , 8 , 38
, $12.12,45.45,57.58$
, 21.05 , 78.95 ,
, 44.44 , 62.50 , fffffffff ffffffff^ffffffff^ Total $\quad 18 \quad 48 \quad 66$
$27.27 \quad 72.73 \quad 100.00$

Statistics for Table of Number_home by B12

	DF	Value	Prob
Statistic	1	1.7472	0.1862
fff			
Chi-Square	1	1.7337	0.1879
Likelihood Ratio Chi-Square	1	1.0862	0.2973
Continuity Adj. Chi-Square	1	1.7207	0.1896
Mantel-Haenszel Chi-Square	1	0.1627	
Phi Coefficient		0.1606	
Contingency Coefficient		0.1627	
Cramer's V			

Fisher's Exact Test

fffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	10
Left-sided Pr <= F	0.9449
Right-sided Pr >= F	0.1488
Table Probability (P)	0.0937
Two-sided Pr <= P	0.2641
Sample Size = 66	

Table of Number_home by B13

Statistics for Table of Number_home by B13

Statistic	DF	Value	Prob
ff			
Chi-Square	1	1.5460	0.2137
Likelihood Ratio Chi-Square	1	1.5628	0.2113
Continuity Adj. Chi-Square	1	0.9803	0.3221
Mantel-Haenszel Chi-Square	1	1.5226	0.2172
Phi Coefficient		-0.1530	
Contingency Coefficient		0.1513	
Cramer's V		-0.1530	

Fisher's Exact Test $f f$ Cell $(1,1)$ Frequency (F) 9 Left-sided Pr <= F 0.1611 Right-sided Pr >= F 0.9335 Table Probability (P) 0.0946 Two-sided Pr <= P 0.3112

Sample Size = 66
Table of Number_home by C14 Frequency, Percent Row Pct , Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff 'ffffffff ffffffff^ 0-2 , 17, 12 , 29
, $24.64,17.39,42.03$
, 58.62 , 41.38 ,
, 58.62 , 30.00 ,
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f$
$>2 \quad, \quad 12, \quad 28$, 40
, $17.39,40.58,57.97$
, 30.00 , 70.00 ,
, 41.38 , 70.00 , ffffffffff fffffffff ffffffff^

Total	29	40	69
	42.03	57.97	100.00

Statistics for Table of Number_home by C14
Statistic DF Value Prob ff Chi-Square $1 \quad 5.652100 .0174$

| Likelihood Ratio Chi-Square | 1 | 5.6879 | 0.0171 |
| :--- | :--- | :--- | :--- | :--- |

Continuity Adj. Chi-Square 1 4.5384 0.0331

| Mantel-Haenszel Chi-Square 1 | 5.57020 .0183 |
| :--- | :--- | :--- | :--- |

Phi Coefficient
0.2862

Contingency Coefficient 0.2752
Cramer's V
0.2862

Fisher's Exact Test
fffffffffffffffffffffffffffffffffff
Cell $(1,1)$ Frequency (F) 17
Left-sided Pr <= F 0.9958
Right-sided Pr >= F 0.0164

Table Probability (P) 0.0122
Two-sided Pr <= P 0.0260
Sample Size $=69$

Table of Number_home by C15
Frequency,
Percent
Row Pct ,

than 5. Chi-Square may not be a valid test.
Fisher's Exact Test
fffffffffffffffffffffffffffffffffff
Cell (1,1) Frequency (F)
Left-sided Pr <= F 0.4412
Right-sided Pr >= F $\quad 0.8927$
Table Probability (P) 0.3339
Two-sided Pr <= P 0.6346
Sample Size = 67

Table of Number_home by C17
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ffffffff^ffffffff
0-2 , 3 , 24
, 4.55 , 36.36 ,
, 11.11 , 88.89
, $50.00,40.00$
$f f f f f f f f f f^{\wedge} f f f f f f f^{\wedge} f f f f f f f f$
>2 , 3 , 36 , 39
, $4.55,54.55,59.09$
, 7.69 , 92.31 ,
, 50.00 , 60.00 ,
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$
$\begin{array}{lrrr}\text { Total } & 6 & 60 & 66 \\ & 9.09 & 90.91 & 100.00\end{array}$
Statistics for Table of Number_home by C17

Fisher's Exact Test	
fffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	3
Left-sided Pr <= F	0.8190
Right-sided Pr >= F	0.4752
Table Probability (P)	0.2942
Two-sided Pr <= P	0.6823
Sample Size = 66	

Table of Number_home by C18
Frequency,
Percent
Row Pct ,
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff 'ffffffff^ffffffff
0-2 , 4 , 24
, $5.88,35.29,41.18$
, 14.29 , 85.71 ,
, 50.00 , 40.00 ,
fffffffff ${ }^{\prime} f f f f f f f f$ ^ffffffff
>2 , 4 , 36

Statistics for Table of Number_home by C18

Statistic	DF	Value	Prob
fff			
Chi-Square	1	0.2914	0.5893
Likelihood Ratio Chi-Square	1	0.2875	0.5918
Continuity Adj. Chi-Square	1	0.0248	0.8749
Mantel-Haenszel Chi-Square	1	0.2871	0.5921
Phi Coefficient		0.0655	
Contingency Coefficient		0.0653	
Cramer's V		0.0655	

WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Fisher's Exact Test
$f f$ Cell (1,1) Frequency (F) 4 Left-sided Pr <= F 0.8221 Right-sided Pr >= F 0.4311 Table Probability (P) 0.2531 Two-sided Pr <= P 0.7084

Sample Size $=68$

Table of Number_home by D19 Frequency, Percent , Row Pct , Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ffffffff^ffffffff
0-2 , 19 , 27
, $30.16,12.70,42.86$
, 70.37 , 29.63 ,
, 70.37 , 22.22
ffffffffff $f f f f f f f f^{\wedge} f f f f f f f f$

Statistics for Table of Number_home by D19

Statistic	DF	Value	Prob
ff			
Chi-Square	1	14.6049	0.0001
Likelihood Ratio Chi-Square	1	15.0921	0.0001
Continuity Adj. Chi-Square	1	12.7051	0.0004
Mantel-Haenszel Chi-Square	1	14.3731	0.0001
Phi Coefficient		0.4815	
Contingency Coefficient		0.4338	
Cramer's V		0.4815	

Fisher's Exact Test $f f$
Cell (1,1) Frequency (F) 19
Left-sided Pr <= F 1.0000 Right-sided Pr >= F $\quad 1.536 \mathrm{E}-04$ Table Probability (P) $1.373 \mathrm{E}-04$ Two-sided Pr <= P 2.444E-04

Sample Size $=63$

Statistics for Table of Number_home by D20 Statistic DF Value Prob fff Chi-Square $1 \quad 1.1429 \quad 0.2850$

| Likelihood Ratio Chi-Square | 1 | 1.1551 | 0.2825 |
| :--- | :--- | :--- | :--- | :--- |

Continuity Adj. Chi-Square 1 0.6429 0.4227

| Mantel-Haenszel Chi-Square 1.1238 | 0.2891 |
| :--- | :--- | :--- | :--- | :--- |

Phi Coefficient -0.1380
Contingency Coefficient 0.1367
Cramer's V -0.1380
Fisher's Exact Test

fffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	8
Left-sided Pr <= F	0.2119
Right-sided Pr >= F	0.9099
Table Probability (P)	0.1218
Two-sided Pr <= P	0.4231

Effective Sample Size $=60$ Frequency Missing = 1
Table of Number_home by D21

Statistics for Table of Number_home by D21
Statistic DF Value Prob fff Chi-Square $1 \quad 0.47470 .4908$ Likelihood Ratio Chi-Square 1 0.4841 0.4866 $\begin{array}{llll}\text { Continuity Adj. Chi-Square } & 1 & 0.1331 & 0.7153\end{array}$ Mantel-Haenszel Chi-Square 1 0.4673 0.4942

Phi Coefficient	0.0861
Contingency Coefficient	0.0858
Cramer's V	0.0861
Fisher's Exact Test	
ffffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	23
Left-sided Pr <= F	0.8444
Right-sided Pr >= F	0.3619
Table Probability (P)	0.2063
Two-sided Pr <= P	0.5374

Effective Sample Size $=64$
Frequency Missing = 1

Table of Number_home by D22
Frequency,
Percent Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ’ffffffff^ffffffff^
0-2 , 4 , 17
, 7.55 , 32.08 , 39.62
, 19.05 , 80.95
, 50.00 , 37.78 ,
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f$
$>2, \quad 4, \quad 28, \quad 32$
, $7.55,52.83,60.38$
, 12.50 , 87.50 ,
, 50.00, 62.22,
fffffffff $f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$

Total	8	45	53
	15.09	84.91	100.00

Statistics for Table of Number_home by D22

Statistic	DF	Value	Prob
$f f$			
Chi-Square	1	0.4241	0.5149
Likelihood Ratio Chi-Square	1	0.4166	0.5186
Continuity Adj. Chi-Square	1	0.0671	0.795
Mantel-Haenszel Chi-Square	1	0.4161	0.5189
Phi Coefficient		0.0895	
Contingency Coefficient		0.0891	
Cramer's V 0.0895			
ARNING: 50% of the cells than 5. Chi-Squar		ted coun be a val	$\begin{aligned} & \text { less } \\ & \text { test. } \end{aligned}$

Fisher's Exact Test
$f f$ Cell $(1,1)$ Frequency (F) 4 Left-sided Pr <= F 0.8513 Right-sided Pr >= F 0.3915 Table Probability (P) 0.2428 Two-sided Pr <= P 0.6978

Effective Sample Size $=53$
Frequency Missing = 3

Table of Number home by D23

Frequency,
Percent
Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff^ffffffff^ffffffff^
0-2 , 7 , 19 , 26
, 10.94 , 29.69 , 40.63
, 26.92 , 73.08 ,
, 53.85 , 37.25 ,

fffffffff^ffffffff^ffffffff^			
>2	6	32	38
	9.38	, 50.00	59.38
	15.79	, 84.21	
	46.15	62.75	
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$			
Total	13	51	64
	20.31	79.69	100.00

Statistics for Table of Number_home by D23

Table of Number_home by D24
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
,gree
ffffffffff 'ffffffff ffffffff*
0-2 , 10,17 , 27
, $16.13,27.42,43.55$
, 37.04 , 62.96 ,
, 62.50 , 36.96 ,
fffffffff^ffffffff^ffffffff^
>2, $6, \quad 35$
, $9.68,46.77,56.45$
, 17.14 , 82.86 ,
, 37.50 , 63.04 ,
ffffffffff $f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$
Total $16 \quad 46$

Statistics for Table of Number home by D24

Statistics for Table of		Number_home by D24	
Statistic	DF	Value	Prob
fff			
Chi-Square	1	3.1506	0.0759
Likelihood Ratio Chi-Square	1	3.1425	0.0763
Continuity Adj. Chi-Square	1	2.1973	0.1383
Mantel-Haenszel Chi-Square	1	3.0998	0.0783
Phi Coefficient		0.2254	
Contingency Coefficient		0.2199	
Cramer's V		0.2254	

Fisher's Exact Test

ffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	10
Left-sided Pr <= F	0.9807
Right-sided Pr >= F	0.0694
Table Probability (P)	0.0501
Two-sided Pr <= P	0.0885
Sample Size = 62	

Statistics for Table of Number_home by D25

Statistic	DF	Value	Prob
fff			
Chi-Square	1	2.7089	0.0998
Likelihood Ratio Chi-Square	1	2.6874	0.1011
Continuity Adj. Chi-Square	1	1.8848	0.1698
Mantel-Haenszel Chi-Square	1	2.6696	0.1023
Phi Coefficient		0.1981	
Contingency Coefficient		0.1944	
Cramer's V		0.1981	

Fisher's Exact Test
$f f$
Cell $(1,1)$ Frequency (F) 11
Left-sided Pr <= F 0.9722

Right-sided Pr >= F 0.0853
Table Probability (P) 0.0575
Two-sided Pr <= P 0.1118
Sample Size = 69

Table of Years_in_house by A1
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
,gree
fffffffff^ffffffff^ffffffff^
$1-6$, 15,25 , 40
, 19.23 , 32.05 , 51.28
, 37.50 , 62.50 ,
, 50.00 , 52.08 ,
fffffffff^ffffffff^ffffffff^
>6 , 15 , 23 , 38
, 19.23 , 29.49 , 48.72
, 39.47 , 60.53,
, 50.00 , 47.92 ,
fffffffff^ffffffff^ffffffff^
$\begin{array}{llll}\text { Total } & 30 & 48 & 78\end{array}$
$38.46 \quad 61.54 \quad 100.00$

Statistics for Table of Years_in_house by A1

Statistic	DF	Value	Prob
fff			
Chi-Square	1	0.0321	0.8579
Likelihood Ratio Chi-Square	1	0.0321	0.8579
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0317	0.8588
Phi Coefficient		-0.0203	
Contingency Coefficient		0.0203	
Cramer's V		-0.0203	

isher's Exact Test

ffffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	15
Left-sided Pr <= F	0.5212
Right-sided Pr >= F	0.6598
Table Probability (P)	0.1810
Two-sided Pr <= P	1.0000

Sample Size = 78

Table of Years_in_house by A2
Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff^ffffffff^ffffffff^
$1-6$, $12, \quad 28$,
, 15.58 , 36.36 , 51.95
, 30.00 , 70.00 ,
, 42.86 , 57.14 ,
fffffffff ${ }^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f$
$>6 \quad, \quad 16, \quad 21$, 37
, 20.78 , $27.27,48.05$
, 43.24, 56.76,
, 57.14 , 42.86 , ffffffffff^ffffffff^ffffffff^ Total $28 \quad 49$
$36.36 \quad 63.64 \quad 100.00$
Statistics for Table of Years_in_house by A2

	DF	Value	Prob
Statistic	1	1.4568	0.2274
ff			
Chi-Square	1	1.4599	0.2269
Likelihood Ratio Chi-Square	1	0.9407	0.3321
Continuity Adj. Chi-Square	1	1.4378	0.2305
Mantel-Haenszel Chi-Square	1	-0.1375	
Phi Coefficient		0.1363	
Contingency Coefficient		-0.1375	
Cramer's V			

Fisher's Exact Test
ffffffffffffffffffffffffffffffffff
Cell (1,1) Frequency (F) 12

Left-sided $\operatorname{Pr}<=\mathrm{F} \quad 0.1661$
Right-sided Pr >= F 0.9258
Table Probability (P) 0.0919
Two-sided Pr <= P 0.2463
Sample Size = 77

Table of Years_in_house by A3
Frequency,
Percent
Row Pct ,
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff ffffffff^ffffffff
1-6 , 19 , 39

Table of Years_in_house by A5
Frequency,
Percent ,
Row Pct ,
Col Pct , Disagree, Agree - , Total
, - Stron, Strongly,
, gly Disa, Agree ,

Statistics for Table of Years in house by A5

Statistic	DF	Value	Prob
ff			
Chi-Square	1	0.0216	0.8832
Likelihood Ratio Chi-Square	1	0.0216	0.8831
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0213	0.8840
Phi Coefficient		0.0171	
Contingency Coefficient		0.0171	
Cramer's V		0.0171	

Fisher's Exact Test
fffffffffffffffffffffffffffffffffff Cell (1,1) Frequency (F) 10 Left-sided Pr <= F 0.6607 Right-sided Pr >= F $\quad 0.5511$ Table Probability (P) 0.2118 Two-sided Pr <= P 1.0000

Effective Sample Size = 74
Frequency Missing = 1

Table of Years_in_house by B6 Frequency, Percent Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff „ffffffff ${ }^{\prime}$ ffffffff^
1-6 , 16,25 , 41
, $20.78,32.47,53.25$
, 39.02 , 60.98 ,
, 48.48 , 56.82
ffffffffff $f f f f f f f f^{\wedge} f f f f f f f f$
>6, 17,19 , 36
, $22.08,24.68,46.75$
, 47.22, 52.78,
, 51.52 , 43.18 ,
ffffffffff fffffffff ffffffff^

Total	33	44	77
	42.86	57.14	100.00

Statistics for Table of Years_in_house by B6
Statistic DF Value Prob ff Chi-Square 10.52600 .4683

| Likelihood Ratio Chi-Square | 1 | 0.5261 | 0.4682 |
| :--- | :--- | :--- | :--- | :--- |

Continuity Adj. Chi-Square 1 0.2445 0.6209

Mantel-Haenszel Chi-Square	1	0.5192
Phi Coefficient		-0.0827
Contingency Coefficient		0.0824
Cramer's V		-0.0827

Fisher's Exact Test $f f$

Cell (1,1) Frequency (F)	16
Left-sided $\mathrm{Pr}<=\mathrm{F}$	0.3105
Right-sided $\mathrm{Pr}>=\mathrm{F}$	0.8304
Table Probability (P)	0.1409
Two-sided $\mathrm{Pr}<=\mathrm{P}$	0.4973

Sample Size $=77$

Statistics for Table of Years_in_house by B7

Statistic	DF	Value	Prob
ff			
Chi-Square	1	0.0559	0.8130
Likelihood Ratio Chi-Square	1	0.0560	0.8129
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0551	0.8144
Phi Coefficient		0.0287	
Contingency Coefficient		0.0287	
Cramer's V		0.0287	

Fisher's Exact Test
ffffffffffffffffffffffffffffffffffff Cell $(1,1)$ Frequency (F) 15 Left-sided Pr <= F 0.6863 Right-sided Pr >= F 0.5068 Table Probability (P) 0.1931 Two-sided Pr <= P 1.0000

Sample Size = 68

Table of Years_in_house by B8
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree , , gree
fffffffff^ffffffff^ffffffff
1-6 , 11 , 25 , 36
, $15.71,35.71$, 51.43
, 30.56 , 69.44 ,
, 40.74 , 58.14 ,
fffffffff ${ }^{\prime} f f f f f f f f f^{\wedge} f f f f f f f f$
>6 , 16 , 18 , 34

Statistics for Table of Years_in_house by B8

	DF	Value	Prob
Statistic	1	2.0100	0.1563
ff			
Chi-Square	1	2.0188	0.1554
Likelihood Ratio Chi-Square	1	1.3738	0.2412
Continuity Adj. Chi-Square	1	1.9812	0.1593
Mantel-Haenszel Chi-Square		-0.1695	
Phi Coefficient		0.1671	
Contingency Coefficient		-0.1695	
Cramer's V			

Fisher's Exact Test	
ffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	11
Left-sided Pr <= F	0.1205
Right-sided Pr >= F	0.9522
Table Probability (P)	0.0727
Two-sided Pr <= P	0.2198

Sample Size $=70$

Table of Years_in_house by B9
Frequency, Percent Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,

1-6 , $13, \quad 26$, 39
, $17.33,34.67,52.00$
, 33.33 , 66.67,
, 50.00 , 53.06 ,
fffffffff^ffffffff^ffffffff
>6 , 13 , 23 , 36
, $17.33,30.67$, 48.00
, 36.11 , 63.89 ,
, 50.00 , 46.94 , ffffffffff^ffffffff^ffffffff^ Total $26 \quad 49$
$34.67 \quad 65.33 \quad 100.00$
Statistics for Table of Years_in_house by B9

Statistics for Table of Statistic DF		Value	Prob
ff			
Chi-Square	1	0.0638	0.8006
Likelihood Ratio Chi-Square	1	0.0638	0.8007
Continuity Adj. Chi-Square	1	0.0001	0.9923
Mantel-Haenszel Chi-Square	1	0.0629	0.8019
Phi Coefficient		-0.0292	
Contingency Coefficient		0.0291	
Cramer's V		-0.0292	

Fisher's Exact Test
fffffffffffffffffffffffffffffffffff Cell (1,1) Frequency (F) 13 Left-sided Pr <= F 0.4957 Right-sided Pr >= F $\quad 0.6899$ Table Probability (P) 0.1856 Two-sided $\mathrm{Pr}<=\mathrm{P} \quad 0.8133$

Effective Sample Size = 75
Frequency Missing = 2

Table of Years_in_house by B10 Frequency,

Statistics for Table of Years_in_house by B10

Statistic	DF	Value	Prob
ff			
Chi-Square	1	0.9146	0.3389
Likelihood Ratio Chi-Square	1	0.9173	0.3382
Continuity Adj. Chi-Square	1	0.4623	0.4966
Mantel-Haenszel Chi-Square	1	0.9023	0.3422
Phi Coefficient		-0.1112	
Contingency Coefficient		0.1105	
Cramer's V		-0.1112	

Fisher's Exact Test
$f f$ Cell (1,1) Frequency (F) 7 Left-sided Pr <= F 0.2485 Right-sided Pr >= F 0.8913 Table Probability (P) 0.1398 Two-sided Pr <= P 0.4124

Effective Sample Size = 74
Frequency Missing = 1

Table of Years_in_house by B11
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree , ,gree
ffffffffff fffffffff ffffffff^
1-6 $\quad 3,38$
, $6.67,44.00,50.67$
, 13.16 , 86.84 ,
, 35.71 , 54.10 ,
ffffffffff ffffffff^ffffffff^
>6 , 9 , 28 , 37
, $12.00,37.33,49.33$
, 24.32 , 75.68 ,
, 64.29 , 45.90 , ffffffffff ffffffff^ffffffff^ Total $14 \quad 61 \quad 75$
$18.67 \quad 81.33 \quad 100.00$

Statistics for Table of Years_in_house by B11
Statistic DF Vrob ff
Chi-Square 1
Likelihood Ratio Chi-Square 1 1.5559 0.2123

| Continuity Adj. Chi-Square | 1 | 0.8920 | 0.3449 |
| :--- | :--- | :--- | :--- | :--- |

| Mantel-Haenszel Chi-Square | 1 | 1.5191 | 0.2178 |
| :--- | :--- | :--- | :--- | :--- |

Phi Coefficient
-0.1433
Contingency Coefficient $\quad 0.1418$
Cramer's V
-0.1433

Fisher's Exact Test
$f f$
Cell $(1,1)$ Frequency (F) 5
Left-sided Pr <= F 0.1727

Right-sided Pr >= F	0.9387
Table Probability (P)	0.1114

Two-sided Pr <= P 0.2486

Sample Size $=75$

Table of Years_in_house by B12
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff ffffffff^ffffffff
1-6 , 12 , 39
, $15.79,35.53,51.32$
, 30.77 , 69.23 ,
, 54.55 , 50.00 ,
ffffffffff $f f f f f f f f$ ^ffffffff
$>6 \quad 10, \quad 27, \quad 37$
, $13.16,35.53,48.68$
, 27.03 , 72.97 ,
, 45.45 , 50.00 ,
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$
Total $\quad 22 \quad 54$

Statistics for Table of Years_in_house by B12

Statistic	DF	Value	Prob
ff			
Chi-Square	1	0.1293	0.7192
Likelihood Ratio Chi-Square	1	0.1294	0.7190
Continuity Adj. Chi-Square	1	0.0113	0.9152
Mantel-Haenszel Chi-Square	1	0.1276	0.7210
Phi Coefficient		0.0412	
Contingency Coefficient		0.0412	
Cramer's V		0.0412	

Fisher's Exact Test
$f f$ Cell (1,1) Frequency (F) 12 Left-sided Pr <= F 0.7294 Right-sided Pr >= F 0.4581 Table Probability (P) 0.1875 Two-sided Pr <= P 0.8028

Sample Size = 76

Table of Years_in_house by B13 Frequency, Percent Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
,gree
ffffffffff ffffffff ffffffff^
1-6 , 16 , 42
, 21.33 , 34.67 , 56.00
, 38.10 , 61.90 ,
, 50.00 , 60.47 ,
fffffffff $f f f f f f f f$ ^ffffffff
>6 , 16 , 17 , 33
, $21.33,22.67,44.00$
, 48.48, 51.52,
, 50.00 , 39.53 ,
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$

Total	32	43	75
	42.67	57.33	100.00

Statistics for Table of Years_in_house by B13
Statistic DF Value Prob fff

| Chi-Square | 1 | 0.8155 | 0.3665 |
| :--- | :--- | :--- | :--- | :--- |

Likelihood Ratio Chi-Square 1 0.8151 0.3666

Continuity Adj. Chi-Square	1	0.4460	0.5042

| Mantel-Haenszel Chi-Square 10.8046 | 0.3697 |
| :--- | :--- | :--- | :--- |

Phi Coefficient
-0. 1043
Contingency Coefficient 0.1037
Cramer's V -0.1043

Fisher's Exact Test
$f f$

Cell (1,1) Frequency (F)	16
Left-sided Pr <= F	0.2520
Right-sided Pr >= F	0.8725
Table Probability (P)	0.1245
Two-sided Pr <= P	0.4811
Sample Size = 75	

Table of Years_in_house by C14
Frequency,
Percent
Row Pct ,
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ’ffffffff ffffffff^
1-6 , 16 , 26 , 42
, $20.25,32.91,53.16$
, 38.10 , 61.90 ,
, 50.00 , 55.32 ,
fffffffff^ffffffff^ffffffff
$>6 \quad, \quad 16, \quad 21$, 37
, $20.25,26.58,46.84$
, 43.24 , 56.76 ,
, 50.00 , 44.68 ,
fffffffff^ffffffff^ffffffff

Total	32	47	79
	40.51	59.49	100.00

Statistics for Table of Years_in_house by C14
Statistic DF Value Prob $f f$
Chi-Square $1 \quad 0.21630 .6419$
$\begin{array}{lllll}\text { Likelihood Ratio Chi-Square } & 1 & 0.2163 & 0.6419\end{array}$

| Continuity Adj. Chi-Square | 1 | 0.0554 | 0.8139 |
| :--- | :--- | :--- | :--- | :--- |

Mantel-Haenszel Chi-Square 10.21360 .6440
Phi Coefficient
-0.0523
Contingency Coefficient 0.0523
Cramer's V
-0.0523

Fisher's Exact Test
ffffffffffffffffffffffffffffffffffff Cell $(1,1)$ Frequency (F) 16
Left-sided Pr <= F 0.4067
Right-sided Pr >= F 0.7564

Table Probability (P) 0.1631
Two-sided Pr <= P 0.6543

Sample Size = 79

Table of Years_in_house by C15
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree

fffffffff^ffffffff(ffffffff			
1-6	5	35	40
	6.58	46.05	52.63
	12.50	87.50	
	55.56	52.24	
$f f f f f f f f f{ }^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$			
>6	4	32	36
	5.26	, 42.11	47.37
	11.11	, 88.89	
	44.44	47.76	
$f f f f f f f f f^{\wedge} \mathrm{fffffffff}$ ^ffffffff^			
Total	9	67	76
	11.84	88.16	100.0

Statistics for Table of Years_in_house by C15 Statistic DF Value Prob fff
Chi-Square $100.0350 \quad 0.8516$
Likelihood Ratio Chi-Square 1 0.0351 0.8514

| Continuity Adj. Chi-Square | 1 | 0.0000 | 1.0000 |
| :--- | :--- | :--- | :--- | :--- |

Mantel-Haenszel Chi-Square 1 0.0345 0.8525 Phi Coefficient 0.0215 Contingency Coefficient 0.0215 Cramer's V 0.0215

WARNING: 50% of the cells have expected counts less than 5 . Chi-Square may not be a valid test.

Fisher's Exact Test
fffffffffffffffffffffffffffffffffff
Cell $(1,1)$ Frequency (F) 5
Left-sided Pr <= F 0.7038
Right-sided Pr >= F 0.5682
Table Probability (P) 0.2721
Two-sided Pr <= P 1.0000
Sample Size = 76

Table of Years_in_house by C16
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ${ }^{\prime} f f f f f f f f^{\wedge}$ fffffffff
1-6 , 38 , 41
, $3.90,49.35,53.25$
, 7.32 , 92.68 ,
, 60.00 , 52.78 ,
$f f f f f f f f f^{\wedge} f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$
>6 , 34 , 36
, $2.60,44.16,46.75$
, 5.56 , 94.44 ,
, 40.00 , 47.22
$f f f f f f f f f^{\wedge} f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$
Total $\quad 5 \quad 72$
Statistics for Table of Years_in_house by C16
Statistic DF Value Prob
ff
Chi-Square $1 \quad 0.0980 \quad 0.7543$
Likelihood Ratio Chi-Square 1 0.0988 0.7533

Continuity Adj. Chi-Square	1	0.0000	1.0000

Mantel-Haenszel Chi-Square 1 0.0967 0.7558
Phi Coefficient
0.0357

Contingency Coefficient 0.0356
Cramer's V 0.0357
WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Statistics for Table of Years_in_house by C17
Statistic DF Value Prob ff Chi-Square 0.2586 $\begin{array}{lllll}\text { Likelihood Ratio Chi-Square } & 1 & 0.2587 & 0.6110\end{array}$ $\begin{array}{lllll}\text { Continuity Adj. Chi-Square } & 1 & 0.0124 & 0.9114\end{array}$ $\begin{array}{lllll}\text { Mantel-Haenszel Chi-Square } 1 & 0.2551 & 0.6135\end{array}$ Phi Coefficient
-0.0587 Contingency Coefficient 0.0586
Cramer's V
-0.0587
WARNING: 50\% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Fisher's Exact Test
$f f$ Cell $(1,1)$ Frequency (F) 3 Left-sided Pr <= F 0.4544 Right-sided Pr >= F 0.8168 Table Probability (P) 0.2712 Two-sided $\mathrm{Pr}<=\mathrm{P}$

Sample Size = 75

Table of Years_in_house by C18 Frequency,
Percent
Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ’ffffffff ffffffff^
1-6 , 4 , 37
, $5.13,47.44$,
, 9.76 , 90.24 ,
, 50.00 , 52.86 ,
$f f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f$ ^
$>6 \quad, \quad 4,33$
, $5.13,42.31,47.44$
, 10.81 , 89.19 ,
, 50.00 , 47.14 ,
ffffffffff ${ }^{\wedge} f f f f f f f \wedge f f f f f f f f$

Total	8	70	78

$10.26 \quad 89.74 \quad 100.00$

Statistics for Table of Years_in_house by C18

Statistic	DF	Value	Prob
ff			
Chi-Square	1	0.0235	0.8782
Likelihood Ratio Chi-Square	1	0.0235	0.8782
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0232	0.8789
Phi Coefficient		-0.0174	
Contingency Coefficient		0.0174	
Cramer's V		-0.0174	

WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Fisher's Exact Test
ffffffffffffffffffffffffffffffffff
Cell (1,1) Frequency (F) 4

Left-sided Pr <= F 0.5844
Right-sided Pr >= F 0.7009
Table Probability (P) 0.2853
Two-sided Pr <= P 1.0000
Sample Size = 78

Table of Years_in_house by D19
Frequency,
Percent
Row Pct ,
Col Pct ,Disagree,Agree - , Total
, - Stron, Strongly,
,gly Disa, Agree ,
, gree
fffffffff ffffffff^ffffffff
1-6 , 18 , 19 , 37
, $25.71,27.14,52.86$
, 48.65 , 51.35 ,
, $60.00,47.50$
ffffffffff $f f f f f f f f^{\wedge} f f f f f f f f f^{\wedge}$
$>6 \quad 12, \quad 21$, 33
, $17.14,30.00,47.14$
, 36.36 , 63.64 ,
, 40.00 , 52.50 ,
$f f f f f f f f f f^{\wedge} f f f f f f f f f^{\wedge} f f f f f f f f$ ^
Total $30 \quad 40 \quad 70$
$42.86 \quad 57.14 \quad 100.00$

Statistics for Table of Years_in_house by D19

Statistic	DF	Value	Prob
ff			
Chi-Square	1	1.0749	0.2998
Likelihood Ratio Chi-Square	1	1.0795	0.2988
Continuity Adj. Chi-Square	1	0.6318	0.4267
Mantel-Haenszel Chi-Square	1	1.0596	0.3033
Phi Coefficient		0.1239	
Contingency Coefficient		0.1230	
Cramer's V		0.1239	

Fisher's Exact Test
$f f$
Cell $(1,1)$ Frequency (F) 18
Left-sided Pr <= F 0.8997
Right-sided Pr >= F 0.2136
Table Probability (P) 0.1133
Two-sided Pr <= P 0.3406

Sample Size = 70

Table of Years_in_house by D20
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,

Fisher's Exact Test ffffffffffffffffffffffffffffffffff Cell (1,1) Frequency (F) 28
Left-sided Pr <= F 0.2821
Right-sided Pr >= F 0.8765
Table Probability (P) 0.1586
Two-sided Pr <= P 0.5642

Effective Sample Size = 74
Frequency Missing = 1

Table of Years_in_house by D22
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,

1-6 , $5, \quad 36$
, $8.20,50.82,59.02$
, 13.89 , 86.11 ,
, 50.00 , 60.78 ,
fffffffff^ffffffff^ffffffff^
>6, $5,20,25$
, $8.20,32.79,40.98$
, 20.00 , 80.00 ,
, 50.00 , 39.22 ,
fffffffff^ffffffff^ffffffff^
Total $10 \quad 51 \quad 61$

Statistics for Table of Years in house by D22

Statistic	DF	Value	Prob
fff			
Chi-Square	1	0.4020	0.5261
Likelihood Ratio Chi-Square	1	0.3968	0.5287
Continuity Adj. Chi-Square	1	0.0798	0.7776
Mantel-Haenszel Chi-Square	1	0.3954	0.5295
Phi Coefficient		-0.0812	
Contingency Coefficient		0.0809	
Cramer's V		-0.0812	

WARNING: 25% of the cells have expected counts less
than 5. Chi-Square may not be a valid test.
Fisher's Exact Test
fffffffffffffffffffffffffffffffffff
Cell (1,1) Frequency (F) 5
Left-sided Pr <= F 0.3843
Right-sided Pr >= F 0.8378
Table Probability (P) 0.2221
Two-sided Pr <= P 0.7268
Effective Sample Size $=61$ Frequency Missing = 3

Table of Years_in_house by D23
Frequency,
Percent
Row Pct ,
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
,gree
fffffffff 'ffffffff^ffffffff
1-6 , 7 , 34
, $9.46,45.95,55.41$
, 17.07 , 82.93 ,
, 50.00 , 56.67 ,
ffffffffff fffffffff ffffffff^
$>6 \quad, \quad 7, \quad 26$, 33
, $9.46,35.14,44.59$
, 21.21 , 78.79 ,

50.00,			43.33,
fffffffff ${ }^{\prime}$ ffffffff^fffffffff			
Total	14	60	74
	18.92	81.08	100.00

Statistics for Table of Years_in_house by D23

Statistic		Value	ob
$f f$			
Chi-Square	1	0.2042	0.6514
Likelihood Ratio Chi-Square	1	0.2033	0.6521
Continuity Adj. Chi-Square	1	0.0235	0.8782
Mantel-Haenszel Chi-Square	1	0.2014	0.6536
Phi Coefficient		-0.0525	
Contingency Coefficient		0.0525	
Cramer's V		-0.0525	

Fisher's Exact Test

ffffffffffffffffffffffffffffffffffff Cell (1,1) Frequency (F) 7 Left-sided Pr <= F 0.4367 Right-sided Pr >= F 0.7739

Table Probability (P) 0.2106
Two-sided Pr <= P 0.7679

Sample Size = 74

Table of Years_in_house by D24 Frequency,
Percent
Row Pct ,
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff 'fffffffffffffffff^
1-6 , 5 , 32
, $6.94,44.44,51.39$
, 13.51 , 86.49 ,
, 26.32 , 60.38 ,
fffffffff^ffffffff^ffffffff
$>6 \quad 14, \quad 21$, 35
, 19.44 , 29.17 , 48.61
, 40.00 , 60.00 ,
, 73.68 , 39.62 ,
ffffffffff fffffffff ffffffff^

Total	19	53	72
	26.39	73.61	100.00

Statistics for Table of Years_in_house by D24
Statistic DF - Value Prob ff Chi-Square $1 \quad 6.49560 .0108$

| Likelihood Ratio Chi-Square | 1 | 6.6830 | 0.0097 |
| :--- | :--- | :--- | :--- | :--- |

Continuity Adj. Chi-Square 1 5.2037 0.0225

| Mantel-Haenszel Chi-Square | 1 | 6.4054 | 0.0114 |
| :--- | :--- | :--- | :--- | :--- |

Phi Coefficient
-0. 3004
Contingency Coefficient 0.2877
Cramer's V
-0.3004
Fisher's Exact Test
$f f$
Cell (1,1) Frequency (F) 5
Left-sided Pr <= F 0.0107

Right-sided Pr >= F	0.9979
Table Probability (P)	0.0086

Two-sided $\operatorname{Pr}<=P$ P 0.0157
Sample Size = 72

Table of Years_in_house by D25
Frequency,
Percent
Row Pct ,

Statistics for Table of Years_in_house by D25

Statistic	DF	Value	Prob
fff			
Chi-Square	1	0.0071	0.9331
Likelihood Ratio Chi-Square	1	0.0071	0.9331
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0070	0.9335
Phi Coefficient		-0.0094	
Contingency Coefficient		0.0094	
Cramer's V		-0.0094	

Fisher's Exact Test
$f f$
Cell $(1,1)$ Frequency (F) 11
Left-sided $\operatorname{Pr}<=\mathrm{F} \quad 0.5668$
Right-sided Pr >= F 0.6333
Table Probability (P) 0.2002
Two-sided Pr <= P 1.0000
Sample Size = 79

Annexure F:

Factor analysis

Eigenvalues of the Reduced Correlation Matrix: Total = 11.7124533 Average $=0.46849813$

Reduced Correlation Matrix:	Total $=11.7124533$	Average $=0.46849813$	
Eigenvalue	Difference	Proportion	Cumulative
2.68477551	0.35305562	0.2292	0.2292
2.33171990	0.75778073	0.1991	0.4283
1.57393917	0.25896160	0.1344	0.5627
1.31497757	0.13570194	0.1123	0.6750
1.17927563	0.11356886	0.1007	0.7756
1.06570677	0.25287569	0.0910	0.8666
0.81283108	0.09096322	0.0694	0.9360
0.72186786	0.17286947	0.0616	0.9977
0.54899839	0.18691838	0.0469	1.0445
0.36208001	0.05504629	0.0309	1.0755
0.30703372	0.00615752	0.0262	1.1017
0.30087620	0.12358155	0.0257	1.1274
0.17729464	0.04155525	0.0151	1.1425
0.13573939	0.08707426	0.0116	1.1541
0.04866513	0.01044927	0.0042	1.1582
0.03821586	0.08970316	0.0033	1.1615
-.05148730	0.05588462	-0.0044	1.1571
-.10737192	0.01462281	-0.0092	1.1479
-.12199472	0.08717227	-0.0104	1.1375
-.20916700	0.01555924	-0.0179	1.1197
-.22472624	0.03849721	-0.0192	1.1005
-.26322344	0.01058111	-0.0225	1.0780
-.27380455	0.04056001	-0.0234	1.0546
-.31436456	0.01103928	-0.0268	1.0278
-.32540383		-0.0278	1.0000

6 factors will be retained by the NFACTOR criterion.

Initial Factor Method: Principal Factors

C15	C15	61 *	34	-16		-35	0	3
B7	B7	53 *	-16	50	*	20	23	-20
B6	B6	51 *	-4	4		23	17	-49*
C16	C16	48 *	29	5		-29	-23	4
A2	A2	47 *	-8	-33		33	-30	25
B8	B8	47 *	-32	29		5	18	-11
A3	A3	37	-6	-30		-19	15	35
D22	D22	36	26	-13		13	30	-10
D24	D24	9	58 *	-19		5	29	16
D23	D23	-26	51 *	-13		-8	14	-5
D25	D25	-37	48*	-5		17	30	7
C14	C14	1	41 *	16		31	9	8
C18	C18	4	37	1		-2	2	-3
D20	D20	-1	-27	-15		12	-8	26
B9	B9	9	-30	-5		4	-9	5
A5	A5	-28	20	57	*	-16	16	19
B12	B12	5	7	42	*	10	-17	18
A1	A1	22	15	0		52 *	-3	20
D19	D19	-7	29	-5		33	3	-11
D21	D21	-16	-17	-16		24	21	14
B11	B11	-13	27	36		5	-42*	2
B10	B10	0	43 *	21		14	-44*	-6
A4	A4	14	-13	42	*	-24	33	42 *
B13	B13	15	-17	12		35	-1	37
Variance Explained by Each Factor								
	r1	Factor2	Fa				Factor5	Factor6
2.68	755	2.3317199	1.57				1.1792756	1.0657068

Final Communality Estimates: Total $=10.150395$
$\begin{array}{rrrrrrr}\text { A1 } & \text { A2 } & \text { A3 } & \text { A4 } & \text { A5 } & \text { B6 } & \text { B7 } \\ 0.38869685 & 0.59635284 & 0.40911224 & 0.55777806 & 0.52678754 & 0.58196032 & 0.68527977 \\ \text { B8 } & \text { B9 } & \text { B10 } & \text { B11 } & \text { B12 } & \text { B13 } & \text { C14 }\end{array}$

Inter-Factor Correlations													
		Factor1		Factor2		Factor3		Factor4		Factor5		Factor6	
Factor1		100	*	4		22		-13		22		-12	
Factor2		4		100 *		-7		15		-7		-8	
Factor3		22		-7		100 *		2		21		3	
Factor4		-13		15		2		100	*	-13		6	
Factor5		22		-7		21		-13		100 *		-8	
Factor6		-12		-8		3		6		-8		100	*
		Rotated Factor Pattern Factor1 Factor2				(Standardized Factor3		Regression Coefficients)				Factor6	
C15	C15	78	*	9		4		-10		-11		1	
C17	C17	73	*	9		8		15		4		5	
C16	C16	68	*	-5		-1		20		-7		4	
D21	D21	-34		9		-4		-26		23		0	
D25	D25	-21		66	*	-14		-6		0		8	
D24	D24	23		64	*	-9		-16		8		7	
D23	D23	6		50	*	-20		-1		-21		-3	
C14	C14	-4		46	*	10		20		20		8	
D22	D22	18		38		31		-23		4		-8	
D19	D19	-15		35		9		11		11		-20	
C18	C18	19		29		-1		10		-7		-1	
B9	B9	-6		-28		1		-6		13		-5	
B7	B7	0		-6		78	*	5		4		20	
B6	B6	4		4		71	*	-10		-10		-30	
B8	B8	4		-23		56	*	-10		3		17	
B11	B11	9		-2		-13		63		3		5	
B10	B10	19		12		-8		62		7		-13	
B12	B12	4		-4		4		40		19		27	
A3	A3	38		-3		-15		-38		20		14	
A2	A2	23		-15		-8		2		60	*	-29	
A1	A1	-7		24		12		13		56	*	-6	
B13	B13	-14		-4		3		5		55	*	19	
D20	D20	-11		-20		-18		-10		32		0	
A4	A4	13		-3		6		-14		6		73	
A5	A5	-6		19		-2		25		-15		59	

Reference Axis Correlations						
	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
Factor1	$100 *$	-8	-20	13	-16	11
Factor2	-8	$100 *$	8	-16	5	8
Factor3	-20	8	-8	-18	-6	
Factor4	13	-16	-8	$100 *$	11	-4
Factor5	-16	5	-18	11	$100 *$	6
Factor6	11	8	-6	-4	6	$100 *$

Final Communality Estimates: Total $=10.150395$						
A1	A2	A3	A4	A5	B6	B7
0.38869685	0.59635284	0.40911224	0.55777806	0.52678754	0.58196032	0.68527977
B8	B9	B10	B11	B12	B13	C14
0.45191389	0.11426121	0.44565775	0.39751167	0.25960130	0.32488572	0.30309800
C15	C16	C17	C18	D19	D20	D21
0.63445632	0.44738740	0.58956907	0.13825322	0.21240654	0.18371507	0.19818182
			D23	D24	D25	
	0.33524	0.379	22450.4	69678	0276277	

Scoring Coefficients Estimated by Regression

Factor1		Squared	le Correla	3 of the	ables with	Factor ctor5	Factor6
0.83928013		0.79130	0.805		84	45917	0.74557319
Standardized Scoring Coefficients							
		Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
C15	C15	0.36952	0.03424	0.00070	-0.13536	-0.05770	-0.04379
C17	C17	0.29165	0.05488	0.07686	0.08496	0.06453	0.02670
C16	C16	0.19795	-0.04766	-0.01564	0.08878	-0.02571	0.00808
D21	D21	-0.05860	0.02616	-0.00939	-0.08147	0.09045	0.01391
D25	D25	-0.09626	0.28924	-0.06312	-0.01891	0.02271	0.03733
D24	D24	0.08094	0.26583	-0.02536	-0.08039	0.03473	0.01054
D23	D23	0.02829	0.18921	-0.04723	-0.00033	-0.11566	-0.01097
C14	C14	-0.02444	0.17044	0.06490	0.08691	0.08790	0.01480
D22	D22	0.03139	0.15666	0.12286	-0.09482	0.06476	-0.03658
D19	D19	-0.03362	0.10738	0.02589	0.04435	0.03860	-0.07886
C18	C18	0.03703	0.09263	-0.02080	0.03094	-0.02795	-0.02212
B9	B9	0.00145	-0.06689	0.00941	-0.01607	0.06026	-0.00729
B7	B7	-0.00998	-0.01458	0.46541	0.09794	0.05587	0.15749
B6	B6	0.03263	0.05524	0.30786	-0.03981	-0.04471	-0.21500
B8	B8	0.01607	-0.10051	0.17702	-0.04953	0.01524	0.08797
B11	B11	-0.00515	-0.01629	-0.04727	0.28108	-0.01179	0.02584
B10	B10	0.03019	0.04785	0.00086	0.32954	0.02850	-0.07422
B12	B12	0.01769	-0.00875	0.01959	0.14216	0.06582	0.09646
A3	A3	0.14529	-0.03707	-0.07595	-0.24395	0.10837	0.07191
A2	A2	0.13637	-0.04548	-0.01692	-0.00799	0.40300	-0.17136
A1	A1	-0.01324	0.08253	0.04609	0.02661	0.26728	-0.02564
B13	B13	-0.03588	-0.01094	0.01510	-0.00184	0.21130	0.07704
D20	D20	-0.02416	-0.05805	-0.04525	-0.03042	0.13553	0.01389
A4	A4	0.02220	-0.05090	-0.00318	-0.09397	0.08891	0.41986
A5	A5	-0.03085	0.10399	0.00614	0.15101	-0.09834	0.3150

Cronbach Alpha Coefficients for all the items in the Questionnaire

Simple Statistics							
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	Label
A1	71	3.43662	1.38081	244.00000	1.00000	5.00000	A1
A2	71	3.50704	1.47235	249.00000	1.00000	5.00000	A2
A3	71	3.22535	1.44615	229.00000	1.00000	5.00000	A3
A4	71	3.43662	1.32807	244.00000	1.00000	5.00000	A4
A5	71	3.94366	1.27489	280.00000	1.00000	5.00000	A5
B6	71	2.98592	1.33623	212.00000	1.00000	5.00000	B6
B7	71	3.18310	1.44726	226.00000	1.00000	5.00000	B7
B8	71	3.33803	1.40350	237.00000	1.00000	5.00000	B8
B9	71	3.40845	1.27142	242.00000	1.00000	5.00000	B9
B10	71	3.70423	1.17588	263.00000	1.00000	5.00000	B10
B11	71	3.94366	1.10696	280.00000	1.00000	5.00000	B11
B12	71	3.70423	1.50612	263.00000	1.00000	5.00000	B12
B13	71	3.21127	1.39300	228.00000	1.00000	5.00000	B13
C14	71	3.47887	1.39242	247.00000	1.00000	5.00000	C14
C15	71	4.22535	1.11095	300.00000	1.00000	5.00000	C15
C16	71	4.47887	0.82565	318.00000	2.00000	5.00000	C16
C17	71	4.43662	0.89014	315.00000	1.00000	5.00000	C17
C18	71	4.42254	0.93598	314.00000	2.00000	5.00000	C18
D19	71	3.23944	1.17674	230.00000	1.00000	5.00000	D19
D20	71	3.00000	1.32017	213.00000	1.00000	5.00000	D20
D21n	71	3.88732	1.34748	276.00000	1.00000	5.00000	
D22	71	3.69014	1.02248	262.00000	1.00000	5.00000	D22
D23	71	3.92958	1.09966	279.00000	1.00000	5.00000	D23
D24	71	3.69014	1.19034	262.00000	1.00000	5.00000	D24
D25	71	3.85915	1.25693	274.00000	1.00000	5.00000	D25

Variable
A2
A3
B6
B7
B8
C15
C16
C17
D22

Simple Statistics

Std Dev	Sum	Minimum	Maximum	Label
1.48333	271.00000	1.00000	5.00000	A2
1.41288	253.00000	1.00000	5.00000	A3
1.33950	238.00000	1.00000	5.00000	B6
1.44966	253.00000	1.00000	5.00000	B7
1.40949	265.00000	1.00000	5.00000	B8
1.08381	329.00000	1.00000	5.00000	C15
0.80497	347.00000	2.00000	5.00000	C16
1.02481	336.00000	1.00000	5.00000	C17
1.05456	284.00000	1.00000	5.00000	D22

ffffffffffffffffffffffffffff
 Raw
 0.670054
 Standardized
 0.681661

Cronbach Coefficient Alpha with Deleted Variable Raw Variables Standardized Variables

Deleted Variable	Correlation with Total	Alpha	Correlation with Total	Alpha	Label
ff					
A2	0.280122	0.661494	0.279530	0.671019	A2
A3	0.273695	0.661343	0.272811	0.672372	A3
B6	0.444761	0.619892	0.422491	0.641336	B6
B7	0.401237	0.630218	0.375679	0.651248	B7
B8	0.410326	0.627884	0.365792	0.653318	B8
C15	0.464049	0.621531	0.524585	0.619054	C15
C16	0.358714	0.646954	0.389101	0.648426	C16
C17	0.274892	0.656979	0.311592	0.664514	C17
D22	0.260145	0.659585	0.265690	0.673801	D22

Descriptive statistics: Frequency tables

Type_ dwelling	Frequency	Percent	Cumulative Frequency	Cumulative Percent
ff				

Chi-Square Test
for Equal Proportions
ffffffffffffffffffffff
Chi-Square 0.6250
DF 2
Pr > ChiSq 0.7316
Sample Size = 80

Gender	Frequency	Percent	Cumulative Frequency	Cumulative Percent
ff				
Male	39	48.75	39	48.75
Female	41	51.25	80	100.00

Chi-Square Test
for Equal Proportions $f f$ Chi-Square 0.0500 DF 1 Pr > ChiSq 0.8231

Sample Size = 80

Number_home	Frequency	Percent ff Frequency	Cumulative Percent	
0	10	12.50	10	12.50
1	16	20.00	26	32.50
2	13	16.25	39	48.75
3	9	11.25	48	60.00
4	10	12.50	58	72.50
5	3	3.75	61	76.25
6	7	8.75	68	85.00
7	3	3.75	71	88.75
8	2	2.50	73	91.25
9	1	1.25	74	92.50

Cumulative Cumulative

B7	Frequency	Percent	Frequency	Percent
ff				
Strongly Disagree	13	16.25	13	16.25
Disagree	13	16.25	26	32.50
Undecided	12	15.00	38	47.50
Agree	21	26.25	59	73.75
Strongly Agree	21	26.25	80	100.00

Chi-Square Test
for Equal Proportions $f f$ Chi-Square 5.2500 DF 2500 Pr > ChiSq 0.2626
Sample Size = 80

	B9	Frequency	Percent	Cumulative Frequency
Cff				

Chi-Square Test
for Equal Proportions $f f$ Chi-Square 50.2000
DF 5

Pr > ChiSq <. 0001
Sample Size $=80$

			Cumulative	Cumulative
B10	Frequency	Percent	Frequency	Percent

Strongly Disagree	1	1.25	1	1.25
Disagree	13	16.25	14	17.50
Undecided	5	6.25	19	23.75
Agree	33	41.25	52	65.00
Strongly Agree	28	35.00	80	100.00

	B12	Frequency	Percent	Cumulative Frequency
Cumulative				
Percent				

Chi-Square Test
for Equal Proportions $f f$ Chi-Square 33.5000 DF Pr > ChiSq <.0001

Sample Size $=80$

	B13	Frequency	Percent	Cumulative Frequency
Cumulative				

$\begin{gathered} \text { Pr >ChiSq } \\ \text { Sample Size }=80 \end{gathered}$				
D20	Frequency	Percent	Cumulative Frequency	Cumulative Percent
$f f$				
0	1	1.25	1	1.25
Strongly Disagree	12	15.00	13	16.25
Disagree	18	22.50	31	38.75
Undecided	10	12.50	41	51.25
Agree	30	37.50	71	88.75
Strongly Agree	9	11.25	80	100.00
Chi-Square Test				
for Equal Proportions				
$f f$				
Chi-Square 36.2500				
DF				
Pr > ChiSq <.0001				
Sample Size $=80$				
D21	Frequency	Percent	Cumulative Frequency	Cumulative Percent
$f f$				
0	1	1.25	1	1.25
Strongly Disagree	36	45.00	37	46.25
Disagree	23	28.75	60	75.00
Undecided	5	6.25	65	81.25
Agree	7	8.75	72	90.00
Strongly Agree	8	10.00	80	100.00
Chi-Square Test				
for Equal Proportions				
ffffffffffffffffffffff				
Chi-Square 67.3000				
DF 5				
Pr > ChiSq <.0001				
Sample Size $=80$				

	D22	Frequency	Percent	Cumulative Frequency
Cumulative				

			Cumulative	Cumulative
D23	Frequency	Percent	Frequency	Percent

Descriptive statistics: Uni-variate with means \& standard deviations where appropriate

	Quantiles ((Definition 5)	
	Quantile	Estimate	
	100\% Max	17.0	
	99\%	17.0	
	95\%	15.0	
	90\%	13.0	
	75\% Q3	10.0	
	50\% Median	n 6.0	
	25\% Q1	4.0	
	10\%	2.0	
	5\%	1.5	
	1\%	1.0	
	0\% Min	1.0	
	Variable: Number	r_home (Number_home)	
N	80	Sum Weights	80
Mean	3.5125	Sum Observations	281
Std Deviation	3.19807596	Variance	10.2276899
Skewness	1.24789384	Kurtosis	1.15882878
Uncorrected SS	S 1795	Corrected SS	807.9875
Coeff Variation	on 91.048426	Std Error Mean	0.35755576

Basic Statistical Measures

Basic			
Statistical Measures			
Location	Variability		
Mean	3.512500	Std Deviation	3.19808
Median	3.000000	Variance	10.22769
Mode	1.000000	Range	13.00000
		Interquartile Range	4.00000

Quantiles	(Definition 5)
Quantile	Estimate
100% Max	13.0
99%	13.0
95%	10.5
90%	8.0
75% Q3	5.0
50% Median	3.0
25% Q1	1.0
10%	0.0
5%	0.0
1%	0.0
0% Min	0.0

Variable: Years_in_house (Years_in_house)

N	80	Sum Weights	80
Mean	7.3125	Sum Observations	585
Std Deviation	4.18131392	Variance	17.4833861
Skewness	0.75756483	Kurtosis	-0.4972311
Uncorrected SS	5659	Corrected SS	1381.1875
Coeff Variation	57.1803613	Std Error Mean	0.46748511

Basic Statistical Measures			
Location	Variability		
Mean $\quad 7.312500$	Std Deviation	4.18131	

	Variable: A2 (A2)		
N	80	Sum Weights	80
Mean	3.5	Sum Observations	280
Std Deviation	1.48409287	Variance	2.20253165
Skewness	-0.4646981	Kurtosis	-1.3437698
Uncorrected SS	1154	Corrected SS	174
Coeff Variation	42.4026534	Std Error Mean	0.16592663

Coeff Variation
42.4026534 Std Error Mean
0.16592663

	Variable:	A5 (A5)	
N	79	Sum Weights	79
Mean	3.87341772	Sum Observations	306
Std Deviation	n 1.26457745	Variance	1.59915612
Skewness	-0.8096147	Kurtosis	-0.6989694
Uncorrected SS	SS 1310	Corrected SS	124.734177
Coeff Variation 3	ion 32.6475877	Std Error Mean	0.14227608
Basic Statistical Measures			
Location Variability			
Mean	3.873418 Std D	viation	1.26458
Median	4.000000 Varia		1.59916
Mode	5.000000 Range		4.00000
	Inter	uartile Range	2.00000
	Quantiles (D	finition 5)	
	Quantile	Estimate	
	100\% Max	5	
	99\%	5	
	95\%	5	
	90\%	5	
	75\% Q3	5	
	50\% Median	4	
	25\% Q1	3	
	10\%	2	
	5\%	2	
	1\%	1	
	0\% Min	1	

	Variable:	B6 (B6)	
N	80	Sum Weights	80
Mean	3.1	Sum Observations	248
Std Deviation	1.32741302	Variance	1.76202532
Skewness	-0.2877498	Kurtosis	-1.3385967
Uncorrected SS	908	Corrected SS	139.2
Coeff Variation	42.8197747	Std Error Mean	0.14840929

Note: The mode displayed is the smallest of 2 modes with a count of 21.

Quantiles	(Definition 5)
Quantile	Estimate
100% Max	5
99%	5
95%	5
90%	5
75% Q3	5
50% Median	4
25% Q1	2
10%	1
5%	1
1%	1
0% Min	1

	Variable:	B8 (B8)	
N	80	Sum Weights	80
Mean	3.4125	Sum Observations	273
Std Deviation	1.42929344	Variance	2.04287975
Skewness	-0.3127218	Kurtosis	-1.3372671
Uncorrected SS	1093	Corrected SS	161.3875
Coeff Variation	41.8840569	Std Error Mean	0.15979986

Basic Statistical Measures

Location		Variability	
Mean	3.412500	Std Deviation	1.42929
Median	4.000000	Variance	2.04288
Mode	5.000000	Range	4.00000
		Interquartile Range	3.00000

Quantiles	(Definition 5)
Quantile	Estimate
100% Max	5
99%	5
95%	5
90%	5
75% Q3	5
50% Median	4
25% Q1	2
10%	1
5%	1
1%	1
0% Min	1

	Variable:	B9 (B9)	
N	78	Sum Weights	78
Mean	3.42307692	Sum Observations	267
Std Deviation	n 1.3144475	Variance	1.72777223
Skewness	-0.479865	Kurtosis	-1.1076465
Uncorrected	SS 1047	Corrected SS	133.038462
Coeff Variation 38	ion 38.3995899	Std Error Mean	0.14883187
Location Basic Statistical Measures			
Mean	3.423077 Std D	viation	1.31445
Median	4.000000 Varia		1.72777
Mode	4.000000 Range		4.00000
	Inter	uartile Range	2.00000
	Quantiles (D	finition 5)	
	Quantile	Estimate	
	100\% Max	5	
	99\%	5	
	95\%	5	
	90\%	5	
	75\% Q3	4	
	50\% Median	4	
	25\% Q1	2	
	10\%	2	
	5\%	1	
	1\%	1	
	0\% Min	1	

	Variable:	B10 (B10)	
N	79	Sum Weights	79
Mean	3.65822785	Sum Observations	289
Std Deviation	1.19706988	Variance	1.43297631
Skewness	-0.9143681	Kurtosis	-0.1347798
Uncorrected SS	1169	Corrected SS	111.772152

Basic Statistical Measures

Basic Statistical Measures			
Location		Variability	
Mean	3.658228	Std Deviation	1.19707
Median	4.000000	Variance	1.43298
Mode	4.000000	Range	4.00000
		Interquartile Range	1.00000

Quantiles	(Definition 5)
Quantile	Estimate
100% Max	5
99%	5
95%	5
90%	5
75% Q3	4
50% Median	4
25% Q1	3
10%	2
5%	1
1%	1
0% Min	1

	Variable:	B11 (B11)	
N	80	Sum Weights	80
Mean	3.925	Sum Observations	314
Std Deviatio	n 1.08819907	Variance	1.18417722
Skewness	-0.8756902	Kurtosis	-0.2660479
Uncorrected	SS 1326	Corrected SS	93.55
Coeff Variation	ion 27.7248171	Std Error Mean	0.12166435
Location Basic Statistical Measures			
Mean	3.925000 Std D	eviation	1.08820
Median	4.000000 Varia	nce	1.18418
Mode	4.000000 Range		4.00000
	Inter	quartile Range	1.00000
	Quantiles (D	afinition 5)	
	Quantile	Estimate	
	100\% Max	5	
	99\%	5	
	95\%	5	
	90\%	5	
	75\% Q3	5	
	50\% Median	4	
	25\% Q1	4	
	10\%	2	
	5\%	2	
	1\%	1	
	0\% Min	1	

	Variable:	B12 (B12)	
N	80	Sum Weights	80
Mean	3.7	Sum Observations	296
Std Deviation	1.46174856	Variance	2.13670886
Skewness	-0.7561896	Kurtosis	-0.9339848
Uncorrected SS	1264	Corrected SS	168.8
Coeff Variation	39.5067179	Std Error Mean	0.16342846

	Variable:	B13 (B13)	
N	80	Sum Weights	80
Mean	3.3	Sum Observations	264
Std Deviatio	n 1.37242279	Variance	1.8835443
Skewness	-0.1711607	Kurtosis	-1.4239773
Uncorrected	SS 1020	Corrected SS	148.8
Coeff Variation	41.5885693	Std Error Mean	0.15344153
Location Basic Statistical Measures			
MeanMedian	3.300000 Std D	viation	1.37242
	4.000000 Varia	nce	1.88354
Mode	2.000000 Range		4.00000
	Inter	quartile Range	2.50000
Quantiles (Definition 5)			
Quantile Estimate			
100\% Max 5.0			
99\% 5.0			
95\% 5.0			
90\% 5.0			
75\% Q3 4.5			
50\% Median 4.0			
25\% Q1 2.0			
10\% 2.0			
5% 1.0			
1\% 1.0			
	0\% Min	1.0	

	Variable:	C14 (C14)	
N	80	Sum Weights	80
Mean	3.375	Sum Observations	270
Std Deviation	1.39959307	Variance	1.95886076
Skewness	-0.276137	Kurtosis	-1.4469799
Uncorrected SS	1066	Corrected SS	154.75
Coeff Variation	41.4694243	Std Error Mean	0.15647926

Basic Statistical Measures			
Variability			
Location	Van		
Mean	3.375000	Std Deviation	1.39959
Median	4.000000	Variance	1.95886
Mode	2.000000	Range	4.00000
		Interquartile Range	3.00000

Note: The mode displayed is the smallest of 2 modes with a count of 25 .

Quantiles	(Definition 5)
Quantile	Estimate
100% Max	5
99%	5
95%	5
90%	5
75% Q3	5
50% Median	4
25% Q1	2
10%	2
5%	1
1%	1
0% Min	1

	Variable:	C16 (C16)	
N	80	Sum Weights	80
Mean	4.475	Sum Observations	358
Std Deviation	0.88553781	Variance	0.78417722
Skewness	-1.9977064	Kurtosis	3.88036542
Uncorrected SS	1664	Corrected SS	61.95

19.7885544 Std Error Mean
0.09900614

	Variable:	C17 (C17)	
N	80	Sum Weights	80
Mean	4.325	Sum Observations	346
Std Deviatio	n 1.05272401	Variance	1.10822785
Skewness	-1.759451	Kurtosis	2.54449918
Uncorrected	SS 1584	Corrected SS	87.55
Coeff Variation 2	ion 24.3404396	Std Error Mean	0.11769812
Basic Statistical Measures			
Location Variability			
Mean	4.325000 Std D	eviation	1.05272
Median	5.000000 Varia	nce	1.10823
Mode	5.000000 Range		4.00000
	Inter	quartile Range	1.00000
	Quantiles (D	efinition 5)	
	Quantile	Estimate	
	100\% Max	5	
	99\%	5	
	95\%	5	
	90\%	5	
	75\% Q3	5	
	50\% Median	5	
	25\% Q1	4	
	10\%	3	
	5\%	2	
	1\%	1	
	0\% Min	1	

	Variable:	C18 (C18)	
N	80	Sum Weights	80
Mean	4.4125	Sum Observations	353
Std Deviation	0.95059941	Variance	0.90363924
Skewness	-1.6467647	Kurtosis	1.65902771
Uncorrected SS	1629	Corrected SS	71.3875
Coeff Variation	21.5433294	Std Error Mean	0.10628025

Basic Statistical Measures			
Location			
Variability			
Mean	4.412500	Std Deviation	0.95060
Median	5.000000	Variance	0.90364
Mode	5.000000	Range	3.00000
		Interquartile Range	1.00000

Quantiles	(Definition 5)
Quantile	Estimate
100% Max	5.0
99%	5.0
95%	5.0
90%	5.0
75% Q3	5.0
50% Median	5.0
25% Q1	4.0
10%	2.5
5%	2.0
1%	2.0
0% Min	2.0

Quantiles	(Definition 5)
Quantile	Estimate
100% Max	5
99%	5
95%	5
90%	5
75% Q3	4
50% Median	3
25% Q1	2
10%	1
5%	1
1%	1
0% Min	1

	Variable:	D21 (D21)	
N	79	Sum Weights	79
Mean	2.08860759	Sum Observations	165
Std Deviatio	n 1.34154401	Variance	1.79974034
Skewness	1.10934444	Kurtosis	-0.0317542
Uncorrected	SS 485	Corrected SS	140.379747
Coeff Variation	ion 64.2315013	Std Error Mean	0.15093549
Location Basic Statistical Masiability			
Mean	2.088608 Std D	viation	1.34154
Median	2.000000 Varia	nce	1.79974
Mode	1.000000 Range		4.00000
	Inter	quartile Range	2.00000
	Quantiles (D	finition 5)	
	Quantile	Estimate	
	100\% Max	5	
	99\%	5	
	95\%	5	
	90\%	5	
	75\% Q3	3	
	50\% Median	2	
	25\% Q1	1	
	10\%	1	
	5\%	1	
	1\%	1	
	0\% Min	1	

	Variable:	D22 (D22)	
N	77	Sum Weights	77
Mean	3.68831169	Sum Observations	284
Std Deviation	1.05456077	Variance	1.11209843
Skewness	-0.8597188	Kurtosis	0.43484349
Uncorrected SS	1132	Corrected SS	84.5194805
Coeff Variation	28.5919647	Std Error Mean	0.12017835

	Variable:	D24 (D24)	
N	80	Sum Weights	80
Mean	3.7125	Sum Observations	297
Std Deviation	1.19273911	Variance	1.42262658
Skewness	-0.5674519	Kurtosis	-0.9213734
Uncorrected SS	1215	Corrected SS	112.3875
Coeff Variation	32.1276528	Std Error Mean	0.13335229

Basic			
Statistical Measures			
Location	Variability		
Mean	3.712500	Std Deviation	1.19274
Median	4.000000	Variance	1.42263
Mode	4.000000	Range	4.00000
		Interquartile Range	2.00000

Quantiles	(Definition 5)
Quantile	Estimate
100% Max	5
99%	5
95%	5
90%	5
75% Q3	5
50% Median	4
25% Q1	3
10%	2
5%	2
1%	1
0% Min	1

	Variable:	D25 (D25)	
N	80	Sum Weights	80
Mean	3.825	Sum Observations	306
Std Deviation	n 1.28057542	Variance	1.63987342
Skewness	-0.776239	Kurtosis	-0.8206988
Uncorrected	SS 1300	Corrected SS	129.55
Coeff Variation	ion 33.4790961	Std Error Mean	0.14317268
Location Basic Statistical Measures			
Mean	3.825000 Std D	eviation	1.28058
Median	4.000000 Varia	nce	1.63987
Mode	5.000000 Range		4.00000
	Inter	quartile Range	3.00000
Quantiles (Definition 5)			
Quantile Estimate			
100\% Max 5			
99\% 5			
95\% 5			
90\% 5			
75\% Q3 5			
50\% Median 4			
25\% Q1 2			
10\% 2			
5\% 2			
1\% 1			
	0\% Min	1	

Comparison of proportions

	Cumulative			
Cumulative				
	A3 Frequency	Percent	Frequency	Percent
ff				
Disagree - Strongly Disagree	ee 32	43.24	32	43.24
Agree - Strongly Agree	42	56.76	74	100.00
Chi-Square Test				
for Equal Proportions				
$f f$				
Chi-Square 1.3514				
DF 1				
Pr > ChiSq 0.2450				
Sample Size $=74$				

	Cumulative			
Cumulative				
	A4 Frequency	Percent	Frequency	Percent
ff				
Disagree - Strongly Disagree	29	39.19	29	39.19
Agree - Strongly Agree	45	60.81	74	100.00
Chi-Square Test				
for Equal Proportions				
fffffffffffffffffffff				
Chi-Square 3.4595				
DF 1				
Pr > ChiSq 0.0629				
Sample Size = 74				

Disagree - Strongly Disagree Agree - Strongly Agree	ee 18	24.32	18	24.32
	56	75.68	74	100.00
	Chi-Squar	Test		
	for Equal Pr	ortions		
	$f f f f f f f f f f f f$	fffffff		
	Chi-Square	19.5135		
	DF	1		
	Pr > ChiSq	<. 0001		
	Effective Samp	Size = 74		
	Frequency Mi	ng = 1		
		Cumulative		
Cumulative				
	B6 Frequency	Percent	Frequency	Percent
fff.				
Disagree - Strongly Disagree	33	42.86	33	42.86
Agree - Strongly Agree	44	57.14	77	100.00
	Chi-Squar	Test		
	for Equal Pr	rtions		
	$f f f f f f f f f f f f$	fffffff		
	Chi-Square	1.5714		
	DF			
	Pr > ChiSq	0.2100		
	Sample Si	= 77		
		Cumulative		
Cumulative				
	37 Frequency	Percent	Frequency	Percent
ff				
Agree - Strongly Agree	42	61.76	68	100.00
	Chi-Squar	Test		
	for Equal Pr	ortions		
	$f f f f f f f f f f f f$	fffffff		
	Chi-Square	3.7647		
	DF	1		
	$\mathrm{Pr}>\mathrm{ChiSq}$	0.0523		
	Sample Si	$=68$		
		Cumulative		
Cumulative				
	38 Frequency	Percent	Frequency	Percent
fff.				
Disagree - Strongly Disagree	27	38.57	27	38.57
Agree - Strongly Agree	43	61.43	70	100.00
	Chi-Squar	est		
	for Equal Pr	rtions		
	fffffffffffff	fffffff		
	Chi-Square	3.6571		
	DF	1		
	$\mathrm{Pr}>\mathrm{ChiSq}$	0.0558		
	Sample Si	$=70$		
		Cumulative		
Cumulative				
	39 Frequency	Percent	Frequency	Percent
$f f$				
Disagree - Strongly Disagree	26	34.67	26	34.67
Agree - Strongly Agree	49	65.33	75	100.00
	Chi-Squar	Test		
	for Equal Pr	rtions		
	$f f f f f f f f f f f f$	ffffff		
	Chi-Square	7.0533		
	DF	1		
	$\mathrm{Pr}>\mathrm{ChiSq}$	0.0079		

			Cumulative	
Cumulative				
D19	Frequency	Percent	Frequency	Percent
ff				
Disagree - Strongly Disagree	30	42.86	30	42.86
Agree - Strongly Agree	40	57.14	70	100.00
Chi-Square Test				
for Equal Proportions				
$f f$				
Chi-Square 1.4286				
DF 1				
$\mathrm{Pr}>$ ChiSq 0.2320				
Sample Size $=70$				
Cumulative				
Cumulative				
D20	Frequency	Percent	Frequency	Percent
fff.				
Agree - Strongly Agree	39	56.52	69	100.00
Chi-Square Test				
for Equal Proportions				
$f f$				
Chi-Square 1.1739				
DF 1				
Pr > ChiSq 0.2786				
Effective Sample Size = 69				
Frequency Missing = 1				
Cumulative				
Cumulative				
D21	Frequency	Percent	Frequency	Percent
fff				
Disagree - Strongly Disagree	59	79.73	59	79.73
Agree - Strongly Agree	15	20.27	74	100.00
Chi-Square Test				
for Equal Proportions				
ffffffffffffffffffffff				
Chi-Square 26.1622				
DF 1				
Pr > ChiSq <.0001				
Effective Sample Size = 74				
Frequency Missing = 1				
Cumulative				
Cumulative				
D22	Frequency	Percent	Frequency	Percent
ff				
Disagree - Strongly Disagree	10	16.39	10	16.39
Agree - Strongly Agree	51	83.61	61	100.00
for Equal Proportions				
$f f$				
Chi-Square 27.5574				
DF 1				
$\mathrm{Pr}>$ ChiSq <.0001				
Effective Sample Size = 61				
Frequency Missing = 3				
Cumulative				
Cumulative				
D23	Frequency	Percent	Frequency	Percent
fff.				
Disagree - Strongly Disagree	14	18.92	14	18.92
Agree - Strongly Agree	60	81.08	74	100.00

Chi-square test for comparisons

Table of Number_residing by A1
Frequency,
Percent Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff fffffffff ffffffff^ 1-6 , $12, \quad 28$, 40
, $15.38,35.90$, 51.28
, 30.00 , 70.00 ,
, 40.00 , 58.33 ,
fffffffff $f f f f f f f f^{\wedge} f f f f f f f f$ $>6 \quad, \quad 18, \quad 20, \quad 38$
, $23.08,25.64,48.72$
, 47.37, 52.63,
, 60.00 , 41.67 ,
fffffffff^ffffffff^ffffffff^

Total	30	48	78
	38.46	61.54	100.00

Statistics for Table of Number_residing by A1

Statistic	DF	Value	Prob
fff			
Chi-Square	1	2.4837	0.1150
Likelihood Ratio Chi-Square	1	2.4964	0.1141
Continuity Adj. Chi-Square	1	1.8041	0.1792
Mantel-Haenszel Chi-Square	1	2.4518	0.1174
Phi Coefficient		-0.1784	
Contingency Coefficient		0.1757	
Cramer's V		-0.1784	

Fisher's Exact Test
$f f$ Cell $(1,1)$ Frequency (F) 12
Left-sided Pr <= F 0.0895

Right-sided Pr >= F 0.9651
Table Probability (P) 0.0545
Two-sided Pr <= P 0.1626
Sample Size = 78
Table of Number_residing by A2
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
,gree
fffffffff^ffffffff^ffffffff^
1-6 , 14 , 26
, $18.18,33.77$, 51.95
, 35.00 , 65.00 ,
, 50.00 , 53.06 ,
fffffffff^ffffffff^ffffffff
>6, 14 , 37
, $18.18,29.87,48.05$
, 37.84 , 62.16 ,
, 50.00 , 46.94 ,
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$

Total	28	49	77
	36.36	63.64	100.00

Statistics for Table of Number_residing by A2
Statistic DF Value Prob $f f$
Chi-Square $1 \quad 0.0669 \quad 0.7959$

Likelihood Ratio Chi-Square 1 0.0669 0.7959
$\begin{array}{lllll}\text { Continuity Adj. Chi-Square } & 1 & 0.0005 & 0.9828\end{array}$
Mantel-Haenszel Chi-Square 1 0.0660 0.7972

Phi Coefficient	-0.0295
Contingency Coefficient	0.0295
Cramer's V	-0.0295

Fisher's Exact Test
$f f$ Cell $(1,1)$ Frequency (F) 14 Left-sided Pr <= F 0.4911 Right-sided Pr >= F 0.6900 Table Probability (P) 0.1810 Two-sided Pr <= P 0.8169

Sample Size = 77
Table of Number_residing by A3 Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff ,ffffffff^ffffffff*
$1-6$, 13,38
, $17.57,33.78,51.35$
, 34.21 , 65.79 ,
, 40.63 , 59.52
ffffffffff ffffffff^ffffffff
$>6 \quad, \quad 19,17, \quad 36$
, $25.68,22.97,48.65$
, 52.78 , 47.22 ,
, 59.38 , 40.48 ,
ffffffffff fffffffff ffffffff^

Total	32	42	74

Statistics for Table of Number_residing by A3
Statistic DF - Value Prob $f f$ Chi-Square $1 \quad 2.5967 \quad 0.1071$

| Likelihood Ratio Chi-Square | 1 | 2.6108 | 0.1061 |
| :--- | :--- | :--- | :--- | :--- |

Continuity Adj. Chi-Square 1 1.8952 0.1686

| Mantel-Haenszel Chi-Square | 1 | 2.5616 | 0.1095 |
| :--- | :--- | :--- | :--- | :--- |

Phi Coefficient
-0.1873
Contingency Coefficient 0.1841
Cramer's V
-0.1873
Fisher's Exact Test fffffffffffffffffffffffffffffffffff
Cell (1,1) Frequency (F) 13
Left-sided Pr <= F 0.0841

Right-sided Pr >= F 0.9679
Table Probability (P) 0.0520
Two-sided Pr <= P 0.1588
Sample Size = 74

Table of Number_residing by A4
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
fffffffff , ffffffff^ffffffff ’
1-6 , 15,24 , 39
, $20.27,32.43,52.70$
, 38.46 , 61.54 ,
, 51.72 , 53.33
fffffffff^ffffffff^ffffffff^
>6, 14 , 21 , 35
$18.92,28.38,47.30$
, 40.00 , 60.00 ,
, 48.28 , 46.67,

fffffffff^ffffffff^ffffffff			
Total	29	45	74
	39.19	60.81	100.00

Statistics for Table of Number_residing by A4

Statistic	DF	Value	Prob
ff			
Chi-Square	1	0.0183	0.8923
Likelihood Ratio Chi-Square	1	0.0183	0.8923
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0181	0.8931
Phi Coefficient		-0.0157	
Contingency Coefficient		0.0157	
Cramer's V		-0.0157	

Fisher's Exact Test
$f f$ Cell (1,1) Frequency (F) 15 Left-sided Pr <= F 0.5406 Right-sided Pr >= F 0.6459 Table Probability (P) 0.1865 Two-sided Pr <= P 1.0000

Sample Size = 74

Table of Number_residing by A5 Frequency, Percent Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff^ffffffff^ffffffff
1-6 , 7 , 32 , 39
, $9.46,43.24,52.70$
, 17.95 , 82.05 ,
, 38.89 , 57.14 ,
fffffffff^ffffffff^ffffffff
$>6 \quad 11$, 24 , 35
, $14.86,32.43,47.30$
, 31.43 , 68.57 ,
, 61.11, 42.86 ,
fffffffff ${ }^{\prime}$ ffffffff^ffffffff
$24.32 \quad 75.68 \quad 100.00$
Statistics for Table of Number_residing by A5
Statistic DF Value Prob
ff
Chi-Square 1
Likelihood Ratio Chi-Square 1 1.8268 0.1765

Continuity Adj. Chi-Square	1	1.1622	0.2810

Mantel-Haenszel Chi-Square 1 1.7962 0.1802

Fisher's Exact Test $f f$ Cell (1,1) Frequency (F) 7 Left-sided Pr <= F 0.1406 Right-sided Pr >= F 0.9478 Table Probability (P) 0.0883 Two-sided Pr <= P 0.2777

Effective Sample Size = 74
Frequency Missing = 1

Table of Number_residing by B6 Frequency,
Percent Row Pct ,

Statistics for Table of Number_residing by B6

Statistic	DF	Value	Prob
fff			
Chi-Square	1	1.1084	0.2924
Likelihood Ratio Chi-Square	1	1.1117	0.2917
Continuity Adj. Chi-Square	1	0.6765	0.4108
Mantel-Haenszel Chi-Square	1	1.0940	0.2956
Phi Coefficient		0.1200	
Contingency Coefficient		0.1191	
Cramer's V		0.1200	

Fisher's Exact Test
$f f$ Cell (1,1) Frequency (F) 19 Left-sided Pr <= F 0.9004 Right-sided Pr >= F 0.2055 Table Probability (P) 0.1060
Two-sided Pr <= P 0.3594

Sample Size = 77

Table of Number_residing by B7 Frequency,
Percent
Row Pct ,
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree

$1-6 \quad 16,19, \quad 35$
, 23.53 , $27.94,51.47$
, 45.71, 54.29,
, 61.54 , 45.24 ,
ffffffffff ${ }^{\prime} f f f f f f f^{\wedge} f f f f f f f f$
>6, 10,23 , 33
, $14.71,33.82,48.53$
, 30.30 , 69.70 ,
, 38.46 , 54.76 ,
ffffffffff'ffffffff^ffffffff

Total	26	42	68
	38.24	61.76	100.00

Statistics for Table of Number_residing by B7
Statistic DF Value Prob fff Chi-Square 1

Likelihood Ratio Chi-Square	1	1.7199	0.1897

| Continuity Adj. Chi-Square | 1 | 1.1180 | 0.2904 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}\text { Mantel-Haenszel Chi-Square } & 1 & 1.6831 & 0.1945\end{array}$
Phi Coefficient
0.1585

Contingency Coefficient 0.1565
Cramer's V 0.1585
Fisher's Exact Test
$f f$

Cell (1,1) Frequency (F)	16
Left-sided Pr <= F	0.9407
Right-sided Pr >= F	0.1452
Table Probability (P)	0.0859
Two-sided Pr <= P	0.2200
Sample Size = 68	

Table of Number_residing by B8
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ’ffffffff ffffffff^
1-6 , 14 , 21 , 35
, 20.00 , 30.00 , 50.00
, 40.00 , 60.00 ,
, 51.85 , 48.84 ,
fffffffff ${ }^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f$
$>6 \quad, \quad 13, \quad 22$, 35
, $18.57,31.43,50.00$
, 37.14 , 62.86 ,

Total	27	43	70
	38.57	61.43	100.00

Statistics for Table of Number_residing by B8
Statistic DF Value Prob ff Chi-Square $1 \quad 0.06030 .8060$ $\begin{array}{lllll}\text { Likelihood Ratio Chi-Square } & 1 & 0.0603 & 0.8060\end{array}$ Continuity Adj. Chi-Square $1 \quad 0.00001 .0000$ $\begin{array}{lllll}\text { Mantel-Haenszel Chi-Square } & 1 & 0.0594 & 0.8074\end{array}$ Phi Coefficient 0.0594 Contingency Coefficient 0.0293 Cramer's V

Fisher's Exact Test
$f f$
Cell $(1,1)$ Frequency (F) 14
Left-sided Pr <= F 0.6881

Right-sided Pr >= F 0.5000
Table Probability (P) 0.1881
Two-sided Pr <= P 1.0000
Sample Size = 70
Table of Number_residing by B9
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree
, gree
fffffffff ffffffff^ffffffff
1-6 , 11 , 28 , 39
, $14.67,37.33,52.00$
, 28.21 , 71.79 ,
, 42.31 , 57.14 ,
fffffffff^ffffffff^ffffffff^
$>6 \quad, \quad 15, \quad 21$, 36
, 20.00 , 28.00 , 48.00
, 41.67 , 58.33 ,
, 57.69 , 42.86 ,
fffffffff ffffffff^ffffffff^

Total	26	49	75
	34.67	65.33	100.00

Statistics for Table of Number_residing by B9
Statistic DF Value Prob

Table of Number_residing by B10 Frequency, Percent Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff ’ffffffff^ffffffff^
1-6 , $11, \quad 25$, 36
, 14.86 , 33.78 , 48.65
, 30.56 , 69.44 ,
, 64.71 , 43.86
fffffffff^ffffffff^ffffffff
>6, 62,38
, $8.11,43.24,51.35$
, 15.79 , 84.21 ,
, 35.29 , 56.14 ,
ffffffffff fffffffff ffffffff

Total	17	57	74
	22.97	77.03	100.00

Statistics for Table of Number_residing by B10

Statistic	DF	Value	Prob
fff			
Chi-Square	1	2.2778	0.1312
Likelihood Ratio Chi-Square	1	2.3003	0.1293
Continuity Adj. Chi-Square	1	1.5198	0.2176
Mantel-Haenszel Chi-Square	1	2.2471	0.1339
Phi Coefficient		0.1754	
Contingency Coefficient		0.1728	
Cramer's V		0.1754	

Fisher's Exact Test
fffffffffffffffffffffffffffffffffff
Cell (1,1) Frequency (F) 11
Left-sided Pr <= F 0.9636

Right-sided Pr >= F 0.1087
Table Probability (P) 0.0723
Two-sided Pr <= P 0.1705
Effective Sample Size $=74$
Frequency Missing = 1

Table of Number_residing by B11
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff ffffffff^ffffffff
1-6 , 9 , 36

Statistics for Table of Number_residing by B11

Statistic	DF	Value	Prob
fff			
Chi-Square	1	1.8291	0.1762
Likelihood Ratio Chi-Square	1	1.8440	0.1745
Continuity Adj. Chi-Square	1	1.1148	0.2910
Mantel-Haenszel Chi-Square	1	1.8047	0.1791
Phi Coefficient		0.1562	
Contingency Coefficient		0.1543	
Cramer's V		0.1562	

Fisher's Exact Test

fffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	9
Left-sided Pr <= F	0.9511
Right-sided Pr >= F	0.1456
Table Probability (P)	0.0967
Two-sided Pr <= P	0.2387
Sample Size = 75	

Table of Number_residing by B12
Frequency,
Percent
Row Pct ,
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ffffffff^ffffffff^
1-6 , $16, \quad 23$, 39
, $21.05,30.26$, 51.32
, 41.03 , 58.97 ,
, 72.73 , 42.59 ,
fffffffff^ffffffff^ffffffff^
>6, 61 , 37
, $7.89,40.79$,
48.68
, 16.22 , 83.78
, 27.27 , 57.41 ,
ffffffffff ffffffff^ffffffff^
Total $22 \quad 54$
$28.95 \quad 71.05 \quad 100.00$

Statistics for Table of			
Stamber_residing by	B12		
Stistic	DF	Value	Prob
fff			
Chi-Square	1	5.6819	0.0171
Likelihood Ratio Chi-Square	1	5.8535	0.0155
Continuity Adj. Chi-Square	1	4.5397	0.0331
Mantel-Haenszel Chi-Square	1	5.6072	0.0179
Phi Coefficient		0.2734	
Contingency Coefficient		0.2637	
Cramer's V		0.2734	

Fisher's Exact Test

ffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	16
Left-sided Pr <= F	0.9963
Right-sided Pr >= F	0.0158
Table Probability (P)	0.0121
Two-sided Pr <= P	0.0230
Sample Size = 76	

Table of Number_residing by B13

Table of Number_residing by C14
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff^ffffffff^ffffffff
1-6 , 16 , 25 , 41
, 20.25 , 31.65 , 51.90
, 39.02 , 60.98 ,
, 50.00 , 53.19 ,
$f f f f f f f f f f^{\wedge} f f f f f f f^{\wedge} f f f f f f f f$
>6 , 16 , 22 , 38
, $20.25,27.85,48.10$
, 42.11 , 57.89 ,
, 50.00 , 46.81 ,
fffffffff^ffffffff^ffffffff
Total $32 \quad 47$
$40.51 \quad 59.49 \quad 100.00$
Statistics for Table of Number_residing by C14
Statistic DF Value Prob ff Chi-Square 100.07770 .7805 Likelihood Ratio Chi-Square 1 0.0777 0.7805 $\begin{array}{llll}\text { Continuity Adj. Chi-Square } & 1 & 0.0024 & 0.9606\end{array}$ Mantel-Haenszel Chi-Square 1 0.0767 0.7818

Phi Coefficient	-0.0314
Contingency Coefficient	0.0313
Cramer's V	-0.0314

Fisher's Exact Test

ffffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	16
Left-sided Pr <= F	0.4801
Right-sided Pr >= F	0.6943
Table Probability (P)	0.1744
Two-sided Pr <= P	0.8216

Sample Size = 79

Table of Number_residing by C15
Frequency,
Percent
Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ffffffff^ffffffff
1-6 , 6 , 33
$7.89,43.42$,
, 15.38 , 84.62 ,
, 66.67 , 49.25 , fffffffff^ffffffff^ffffffff^
>6, 34 , 37
, $3.95,44.74,48.68$
, 8.11 , 91.89 ,
, 33.33 , 50.75 fffffffff^ffffffff^ffffffff^ Total 9676
$11.84 \quad 88.16 \quad 100.00$
Statistics for Table of Number_residing by C15
Statistic DF Value Prob ff

Chi-Square	1	0.9630	0.3264

Likelihood Ratio Chi-Square 1 0.9817 0.3218

| Continuity Adj. Chi-Square | 1 | 0.3921 | 0.5312 |
| :--- | :--- | :--- | :--- | :--- |

| Mantel-Haenszel Chi-Square 1 | 0.9503 | 0.3296 |
| :--- | :--- | :--- | :--- | :--- |

Phi Coefficient
0.1126

Contingency Coefficient
0.1119

Cramer's V 0.1126
WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Fisher's Exact Test
$f f$
Cell $(1,1)$ Frequency (F) 6 Left-sided Pr <= F 0.9106
Right-sided Pr >= F 0.2673
Table Probability (P) 0.1779
Two-sided Pr <= P 0.4814
Sample Size = 76

Table of Number_residing by C16
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff^ffffffff^ffffffff
1-6 , 4 , 35
, $5.19,45.45$
50.65
, 10.26 , 89.74 ,
, 80.00 , 48.61
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f$
>6 , 1 , 37

$$
\begin{aligned}
& \text {, } 1.30,48.05 \text {, } 49.35 \\
& \text {, } 2.63,97.37, \\
& \text { ffffffffff^ffffffff^ffffffff^ } \\
& \begin{array}{lrrr}
\text { Total } & 5 & 72 & 77 \\
& 6.49 & 93.51 & 100.00
\end{array}
\end{aligned}
$$

Statistics for Table of Number_residing by C16

	DF	Value	Prob
Statistic	1	1.8429	0.1746
ff			
Chi-Square	1	1.9700	0.1604
Likelihood Ratio Chi-Square	1	0.8010	0.3708
Continuity Adj. Chi-Square	1	1.8189	0.1774
Mantel-Haenszel Chi-Square	1	0.1547	
Phi Coefficient		0.1529	
Contingency Coefficient		0.1547	
Cramer's V			

WARNING: 50\% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Fisher's Exact Test
$f f$ Cell (1,1) Frequency (F) 4 Left-sided Pr <= F 0.9709 Right-sided Pr >= F 0.1873 Table Probability (P) 0.1582 Two-sided Pr <= P 0.3584

Sample Size = 77

Table of Number_residing by C17 Frequency, Percent Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree

1-6 , 4,34
, 5.33 , 45.33 , 50.67
, $10.53,89.47$,
, $57.14,50.00$,
ffffffffff ffffffff^fffffffff
>6, 3,37
, $4.00,45.33,49.33$
, 8.11, 91.89,
, 42.86 , 50.00 ,
fffffffff^ffffffff^ffffffff^

Total	7	68	75

Statistics for Table of Number_residing by C17
Statistic DF Value Prob $f f$ Chi-Square 10.12950 .7189

| Likelihood Ratio Chi-Square | 1 | 0.1300 | 0.7184 |
| :--- | :--- | :--- | :--- | :--- |

| Continuity Adj. Chi-Square | 1 | 0.0000 | 1.0000 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}\text { Mantel-Haenszel Chi-Square } & 1 & 0.1278 & 0.7207\end{array}$
Phi Coefficient 0.0416

Contingency Coefficient 0.0415
Cramer's V 0.0416
WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Fisher's Exact Test
$f f$ Cell (1,1) Frequency (F) 4 Left-sided Pr <= F 0.7738 Right-sided Pr >= F 0.5152 Table Probability (P) 0.2890 Two-sided Pr <= P 1.0000

Table of Number_residing by C18 Frequency,
Percent
Row Pct
Col Pct ,Disagree, Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
fffffffff^ffffffff^ffffffff^
$1-6,41$
, $1.28,51.28,52.56$
, $2.44,97.56$,
, 12.50 , 57.14 ,
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$
>6, 7,37
, $8.97,38.46,47.44$
, 18.92 , 81.08 ,
, 87.50 , 42.86 ,
fffffffff^ffffffff^ffffffff^
Total $\quad 8 \quad 70$
$10.26 \quad 89.74 \quad 100.00$

Statistics for Table of Number residing by C18

Statistic	DF	Value	Prob
fff			
Chi-Square	1	5.7385	0.0166
Likelihood Ratio Chi-Square	1	6.2903	0.0121
Continuity Adj. Chi-Square	1	4.0878	0.0432
Mantel-Haenszel Chi-Square	1	5.6650	0.0173
Phi Coefficient		-0.2712	
Contingency Coefficient		0.2618	
Cramer's V		-0.2712	

WARNING: 50\% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Fisher's Exact Test
$f f$
Cell $(1,1)$ Frequency (F) 1
Left-sided Pr <= F 0.0196

Right-sided Pr >= F 0.9984
Table Probability (P) 0.0180
Two-sided Pr <= P 0.0237

Sample Size $=78$

Table of Number_residing by D19
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,

$1-6$, 18,19 , 37
, $25.71,27.14,52.86$
, 48.65 , 51.35 ,
, 60.00 , 47.50 ,
fffffffff^ffffffff^ffffffff^

Statistics for Table of Number_residing by D19 Statistic DF Value Prob $f f$

Chi-Square	1	1.0749	0.2998
Likelihood Ratio Chi-Square	1	1.0795	0.2988
Continuity Adj. Chi-Square	1	0.6318	0.4267
Mantel-Haenszel Chi-Square	1	1.0596	0.3033
Phi Coefficient		0.1239	
Contingency Coefficient		0.1230	
Cramer's V		0.1239	

Fisher's Exact Test
$f f$
Cell (1,1) Frequency (F) 18
Left-sided Pr <= F 0.8997

Right-sided Pr >= F 0.2136
Table Probability (P) 0.1133
Two-sided Pr <= P 0.3406
Sample Size $=70$

Table of Number_residing by D20 Frequency, Percent Row Pct , Col Pct ,Disagree,Agree - , Total , - Stron,Strongly, ,gly Disa, Agree , , gree
ffffffffff ffffffff^ffffffff
1-6 , 16,19 , 35
, $23.19,27.54,50.72$
, 45.71 , 54.29 ,
, 53.33 , 48.72
fffffffff^ffffffff^ffffffff

Statistics for Table of Number residing by D20

	DF	Value	Prob
Statistic	1	0.1445	0.7038
ff			
Chi-Square	1	0.1446	0.7038
Likelihood Ratio Chi-Square	1	0.0188	0.8908
Continuity Adj. Chi-Square	1	0.1424	0.7059
Mantel-Haenszel Chi-Square	1	0.0458	
Phi Coefficient		0.0457	
Contingency Coefficient		0.0458	
Cramer's V			

Fisher's Exact Test
$f f$ Cell (1,1) Frequency (F) 16 Left-sided Pr <= F 0.7331 Right-sided Pr >= F 0.4455 Table Probability (P) 0.1787 Two-sided $\operatorname{Pr}<=P \quad 0.8094$

Effective Sample Size $=69$ Frequency Missing = 1

Table of Number_residing by D21 Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
$\begin{array}{ll}\text { gree , gree } \\ \text { ffffffff } \\ 1-6 & 28,\end{array}$ $\begin{array}{rrrr}1-6 & 28, & 10, & 38 \\ & , & 37.84, & 13.51, \\ & & & \end{array}$
, 73.68 , 26.32 ,

Table of Number_residing by D23

Frequency,

Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff 'ffffffff^fffffffff
1-6 , $6, \quad 30,36$
, $8.11,40.54,48.65$
, 16.67 , 83.33
, 42.86 , 50.00 ,
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f$
>6, 80 , 38
, $10.81,40.54,51.35$
, 21.05 , 78.95 ,
, 57.14 , 50.00
fffffffff ${ }^{\wedge} f f f f f f f^{\wedge} f f f f f f f f$

Total	14	60	74
	18.92	81.08	100.00

Statistics for Table of Number_residing by D23
Statistic DF Value Prob ff

Chi-Square	1	0.2318	0.6302
Likelihood Ratio Chi-Square	1	0.2326	0.6296
Continuity Adj. Chi-Square	1	0.0341	0.8536
Mantel-Haenszel Chi-Square	1	0.2287	0.6325
Phi Coefficient		-0.0560	
Contingency Coefficient		0.0559	
Cramer's V		-0.0560	

Fisher's Exact Test
$f f$ Cell $(1,1)$ Frequency (F) 6 Left-sided $\mathrm{Pr}<=\mathrm{F}$ 0.4278 Right-sided Pr >= F 0.7811 Table Probability (P) 0.2089 Two-sided Pr <= P 0.7690

Sample Size = 74

Table of Number_residing by D24 Frequency,
Percent
Row Pct ,
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff „ffffffff^ffffffff^
1-6 , 10,28 , 38
, $13.89,38.89,52.78$
, 26.32 , 73.68 ,
, 52.63 , 52.83 ,
ffffffffff $f f f f f f f f{ }^{\wedge} f f f f f f f f$
>6, $9, \quad 25, \quad 34$
, $12.50,34.72,47.22$
, 26.47 , 73.53,
, 47.37 , 47.17 ,
ffffffffff^ffffffffeffffffff

Total	19	53	72

Statistics for Table of Number_residing by D24
Statistic DF Value Prob ff Chi-Square 10.00020 .9881

| Likelihood Ratio Chi-Square | 1 | 0.0002 | 0.9881 |
| :--- | :--- | :--- | :--- | :--- |

| Continuity Adj. Chi-Square 10.0000 | 1.0000 |
| :--- | :--- | :--- | :--- |

Mantel-Haenszel Chi-Square	1	0.0002	0.9882
Phi Coefficient		-0.0018	
Contingency Coefficient		0.0018	
Cramer's V		-0.0018	

Fisher's Exact Test $f f$ Cell $(1,1)$ Frequency (F) 10 Left-sided Pr <= F 0.5987 Right-sided Pr >= F 0.6119 Table Probability (P) 0.2106 Two-sided Pr <= P 1.0000

Sample Size = 72

Table of Number_residing by D25
Frequency,
Percent Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ’ffffffff^ffffffff^
1-6 , $10, \quad 30$, 40
, 12.66 , 37.97 , 50.63
, 25.00 , 75.00
, 47.62, 51.72,
fffffffff^ffffffff^ffffffff
>6 , 11 , 28 , 39
, $13.92,35.44$, 49.37
, 28.21 , 71.79 ,
, 52.38 , 48.28 ,
ffffffffff ffffffff^ffffffff

Total	21	58	79
	26.58	73.42	100.00

Statistics for Table of Number_residing by D25
Statistic DF Value Prob ff
Chi-Square 10.10390 .7471

| Likelihood Ratio Chi-Square | 1 | 0.1040 | 0.7471 |
| :--- | :--- | :--- | :--- | :--- |

Continuity Adj. Chi-Square 100.00460 .9460

| Mantel-Haenszel Chi-Square 10.1026 | 0.7487 |
| :--- | :--- | :--- | :--- | Phi Coefficient

-0.0363
Contingency Coefficient 0.0362
Cramer's V
-0.0363
Fisher's Exact Test
$f f$
Cell (1,1) Frequency (F) 10
Left-sided Pr <= F 0.4729

Right-sided Pr >= F 0.7178
Table Probability (P) 0.1907
Two-sided Pr <= P 0.8027
Sample Size = 79

Table of Number_home by A1
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ’ffffffff^ffffffff^
0-2 , 10,18 , 28
, $14.71,26.47$, 41.18
, 35.71 , 64.29,
, 40.00 , 41.86 ,
fffffffff $f f f f f f f f^{\wedge} f f f f f f f f$
$>2 \quad, \quad 15, \quad 25,40$
, $22.06,36.76$, 58.82

Statistics for Table of Number_home by A1

Statistic	DF	Value	Prob
ff			
Chi-Square	1	0.0226	0.8805
Likelihood Ratio Chi-Square	1	0.0226	0.8804
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0223	0.8814
Phi Coefficient		-0.0182	
Contingency Coefficient		0.0182	
Cramer's V		-0.0182	

Fisher's Exact Test
$f f$ Cell $(1,1)$ Frequency (F) 10 Left-sided Pr <= F 0.5434 Right-sided Pr >= F 0.6560 Table Probability (P) 0.1995 Two-sided Pr <= P 1.0000

Sample Size = 68

> Table of Number_home by A2 Frequency, Percent Row Pct , Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ffffffff^ffffffff 0-2 , 10 , 19 , 29
, $14.93,28.36,43.28$
, 34.48 , 65.52 ,
, 43.48 , 43.18 ,
fffffffff^ffffffff^ffffffff
$>2 \quad, \quad 13, \quad 25, \quad 38$
, 19.40 , 37.31 , 56.72
, 34.21 , 65.79 ,
, 56.52 , 56.82
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f$ ^

Total	23	44	67
	34.33	65.67	100.00

Statistics for Table of Number home by A2
Statistic DF Value Prob fff Chi-Square 100.000500 .9814

| Likelihood Ratio Chi-Square | 1 | 0.0005 | 0.9815 |
| :--- | :--- | :--- | :--- | :--- |

Continuity Adj. Chi-Square $1 \quad 0.00001 .0000$

| Mantel-Haenszel Chi-Square 1 | 0.0005 | 0.9816 |
| :--- | :--- | :--- | :--- | :--- |

Phi Coefficient
0.0028

Contingency Coefficient 0.0028
Cramer's V
0.0028

Fisher's Exact Test
$f f$
Cell $(1,1)$ Frequency (F) 10
Left-sided Pr <= F 0.6125

Right-sided Pr >= F 0.5919
Table Probability (P) 0.2044
Two-sided Pr <= P 1.0000
Sample Size $=67$

Table of Number_home by A3
Frequency,
Percent
Row Pct ,

Cell (1,1) Frequency (F)	11
Left-sided Pr <= F	0.6086
Right-sided Pr >= F	0.5943
Table Probability (P)	0.2030
Two-sided Pr <= P	1.0000
Sample Size = 64	

Table of Number_home by A5
Frequency,
Percent
Row Pct ,
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ’ffffffff ffffffff^
0-2 , 9 , 28
, $14.06,29.69,43.75$
, 32.14 , 67.86 ,
, 50.00 , 41.30 ,
fffffffff^ffffffff^ffffffff
$>2 \quad, \quad 97$
, 14.06 , $42.19,56.25$
, 25.00 , 75.00 ,
fffffffff^ffffffff^fffffffff

Total	18	46	64
	28.13	71.88	100.00

Statistics for Table of Number_home by A5 Statistic DF Value Prob ff Chi-Square 100.39750 .5284

| Likelihood Ratio Chi-Square | 1 | 0.3958 | 0.5293 |
| :--- | :--- | :--- | :--- | :--- |

Continuity Adj. Chi-Square 1 0.1227 0.7261

| Mantel-Haenszel Chi-Square | 1 | 0.3913 | 0.5316 |
| :--- | :--- | :--- | :--- | :--- | Phi Coefficient

$0.3913-0.5316$
0.0788

Cramer's V
0.0786
0.0788

Fisher's Exact Test
$f f$
Cell (1,1) Frequency (F) 9
Left-sided $\operatorname{Pr}<=\mathrm{F} \quad 0.8189$

Right-sided Pr >= F 0.3617
Table Probability (P) 0.1805
Two-sided Pr <= P 0.5831
Effective Sample Size $=64$
Frequency Missing = 1

Table of Number_home by B6
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff^ffffffff^ffffffff^
0-2 , 10 , 19 , 29
, 14.71 , 27.94 , 42.65
, 34.48 , 65.52 ,
, 40.00 , 44.19 ,
ffffffffff ffffffff^ffffffff
>2 , 15 , 24 , 39
, 22.06 , $35.29,57.35$
, 38.46 , 61.54 ,
, 60.00 , 55.81 ,
ffffffffff $f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$
$\begin{array}{lrrr}\text { Total } & 25 & 43 & 68 \\ & 36.76 & 63.24 & 100.00\end{array}$

Table of Number_home by B8 Frequency, Percent Row Pct , Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff ${ }^{\prime}$ ffffffff^ffffffff
0-2 $\quad 5,22,27$

Frequency Missing = 2

Table of Number_home by B10 Frequency, Percent Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron, Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ffffffff^ffffffff^
0-2 , 8 , 18 , 26
, $12.50,28.13,40.63$
, 30.77 , 69.23 ,
, 50.00 , 37.50
$f f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f$
$>2 \quad$, $\quad 30$, 38
, $12.50,46.88$, 59.38
, 21.05 , 78.95 ,
, 50.00 , 62.50 ,
$f f f f f f f f f f^{\wedge} f f f f f f f f f^{\wedge} f f f f f f f f$

Total	16	48	64
	25.00	75.00	100.00

Statistics for Table of Number_home by B10
Statistic DF Value Prob ff

Chi-Square	1	0.7773	0.3780
Likelihood Ratio Chi-Square	1	0.7687	0.3806
Continuity Adj. Chi-Square	1	0.3455	0.5567
Mantel-Haenszel Chi-Square	1	0.7652	0.3817
Phi Coefficient		0.1102	
Contingency Coefficient		0.1095	
Cramer's V		0.1102	

Fisher's Exact Test
$f f$ Cell $(1,1)$ Frequency (F) 8 Left-sided Pr <= F 0.8797 Right-sided Pr >= F 0.2767 Table Probability (P) 0.1564 Two-sided Pr <= P 0.3957

Effective Sample Size = 64
Frequency Missing = 1

Table of Number_home by B11
Frequency,
Percent
Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree , , gree
ffffffffff ’ffffffff^ffffffff^
0-2 , 8 , 17 , 25
, 12.31 , 26.15 , 38.46
, 32.00 , 68.00 ,
, 61.54 , 32.69 ,
fffffffff $f f f f f f f f^{\wedge} f f f f f f f f$
>2, 5 , 35
, 7.69 , 53.85
, 12.50 , 87.50
, 38.46 , 67.31 ffffffffff fffffffffffffffff^
Total $13 \quad 52 \quad 65$
$20.00 \quad 80.00 \quad 100.00$
Statistics for Table of Number_home by B11
Statistic DF Value Prob ff

Chi-Square	1	3.6563	0.0559

Likelihood Ratio Chi-Square 1 3.5672 0.0589

Continuity Adj. Chi-Square	1	2.5391	0.1111
Mantel-Haenszel Chi-Square	1	3.6000	0.0578
Phi Coefficient		0.2372	
Contingency Coefficient		0.2308	
Cramer's V		0.2372	

Fisher's Exact Test ffffffffffffffffffffffffffffffffff Cell (1,1) Frequency (F) 8 Left-sided Pr <= F 0.9864 Right-sided Pr >= F 0.0569 Table Probability (P) 0.0433 Two-sided Pr <= P 0.1084

Sample Size $=65$

Table of Number_home by B12
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
,gree
ffffffffff ’ffffffff^ffffffff^
$0-2$, 10,18 , 28
, $15.15,27.27,42.42$
, 35.71 , 64.29,
, 55.56 , 37.50
fffffffff^ffffffff^ffffffff^
>2 , 8 , 38
, $12.12,45.45,57.58$
, 21.05 , 78.95 ,
, 44.44 , 62.50 , fffffffff ffffffff^ffffffff^ Total $\quad 18 \quad 48 \quad 66$
$27.27 \quad 72.73 \quad 100.00$

Statistics for Table of Number_home by B12

	DF	Value	Prob
Statistic	1	1.7472	0.1862
fff			
Chi-Square	1	1.7337	0.1879
Likelihood Ratio Chi-Square	1	1.0862	0.2973
Continuity Adj. Chi-Square	1	1.7207	0.1896
Mantel-Haenszel Chi-Square	1	0.1627	
Phi Coefficient		0.1606	
Contingency Coefficient		0.1627	
Cramer's V			

Fisher's Exact Test

fffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	10
Left-sided Pr <= F	0.9449
Right-sided Pr >= F	0.1488
Table Probability (P)	0.0937
Two-sided Pr <= P	0.2641
Sample Size = 66	

Table of Number_home by B13

Statistics for Table of Number_home by B13

Statistic	DF	Value	Prob
ff			
Chi-Square	1	1.5460	0.2137
Likelihood Ratio Chi-Square	1	1.5628	0.2113
Continuity Adj. Chi-Square	1	0.9803	0.3221
Mantel-Haenszel Chi-Square	1	1.5226	0.2172
Phi Coefficient		-0.1530	
Contingency Coefficient		0.1513	
Cramer's V		-0.1530	

Fisher's Exact Test $f f$ Cell $(1,1)$ Frequency (F) 9 Left-sided Pr <= F 0.1611 Right-sided Pr >= F 0.9335 Table Probability (P) 0.0946 Two-sided Pr <= P 0.3112

Sample Size = 66
Table of Number_home by C14 Frequency, Percent Row Pct , Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff fffffffff ffffffff^ 0-2 , 17 , 29
, $24.64,17.39,42.03$
, 58.62 , 41.38 ,
, 58.62 , 30.00 ,
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f$
$>2 \quad, \quad 12, \quad 28$, 40
, $17.39,40.58,57.97$
, 30.00 , 70.00 ,
, 41.38 , 70.00 , ffffffffff fffffffff ffffffff^

Total	29	40	69
	42.03	57.97	100.00

Statistics for Table of Number_home by C14
Statistic DF Value Prob ff Chi-Square $1 \quad 5.652100 .0174$

| Likelihood Ratio Chi-Square | 1 | 5.6879 | 0.0171 |
| :--- | :--- | :--- | :--- | :--- |

Continuity Adj. Chi-Square 1 4.5384 0.0331

Mantel-Haenszel Chi-Square	1	5.5702	0.0183

Phi Coefficient
0.2862

Contingency Coefficient 0.2752
Cramer's V
0.2862

Fisher's Exact Test
fffffffffffffffffffffffffffffffffff
Cell $(1,1)$ Frequency (F) 17
Left-sided Pr <= F 0.9958
Right-sided Pr >= F 0.0164

Table Probability (P) 0.0122
Two-sided Pr <= P 0.0260
Sample Size $=69$

Table of Number_home by C15
Frequency,
Percent
Row Pct ,

than 5. Chi-Square may not be a valid test.
Fisher's Exact Test
fffffffffffffffffffffffffffffffffff
Cell (1,1) Frequency (F)
Left-sided Pr <= F 0.4412
Right-sided Pr >= F 0.8927
Table Probability (P) 0.3339
Two-sided Pr <= P 0.6346
Sample Size = 67

Table of Number_home by C17
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ffffffff^ffffffff
0-2 , 3 , 24
, 4.55 , 36.36 ,
, 11.11 , 88.89
, $50.00,40.00$
$f f f f f f f f f f^{\wedge} f f f f f f f^{\wedge} f f f f f f f f$
>2 , 3 , 36 , 39
, $4.55,54.55,59.09$
, 7.69 , 92.31 ,
, 50.00 , 60.00 ,
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$
$\begin{array}{lrrr}\text { Total } & 6 & 60 & 66 \\ & 9.09 & 90.91 & 100.00\end{array}$
Statistics for Table of Number_home by C17

Statistic	DF	Value	Prob
fff			
Chi-Square	1	0.2256	0.6348
Likelihood Ratio Chi-Square	1	0.2223	0.6373
Continuity Adj. Chi-Square	1	0.0016	0.9684
Mantel-Haenszel Chi-Square	1	0.2222	0.6374
Phi Coefficient		0.0585	
Contingency Coefficient		0.0584	
Cramer's V		0.0585	
WARNING: 50\% of the cells have expected counts less			
	than 5. Chi-Square may not be a valid test.		

Fisher's Exact Test	
fffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	3
Left-sided Pr <= F	0.8190
Right-sided Pr >= F	0.4752
Table Probability (P)	0.2942
Two-sided Pr <= P	0.6823
Sample Size = 66	

Table of Number_home by C18
Frequency,
Percent
Row Pct ,
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff 'ffffffff^ffffffff
0-2 , 4 , 24
, 5.88 , 35.29 ,
41.18
, 14.29 , 85.71 ,
, $50.00,40.00$
fffffffff ${ }^{\prime} f f f f f f f f$ ^ffffffff
>2 , 4 , 40

Statistics for Table of Number_home by C18

Statistic	DF	Value	Prob
fff			
Chi-Square	1	0.2914	0.5893
Likelihood Ratio Chi-Square	1	0.2875	0.5918
Continuity Adj. Chi-Square	1	0.0248	0.8749
Mantel-Haenszel Chi-Square	1	0.2871	0.5921
Phi Coefficient		0.0655	
Contingency Coefficient		0.0653	
Cramer's V		0.0655	

WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Fisher's Exact Test
$f f$ Cell (1,1) Frequency (F) 4 Left-sided Pr <= F 0.8221 Right-sided Pr >= F 0.4311 Table Probability (P) 0.2531 Two-sided Pr <= P 0.7084

Sample Size $=68$

Table of Number_home by D19 Frequency Percent , Row Pct , Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ffffffff^ffffffff
0-2 , 19 , 27
, $30.16,12.70,42.86$
, 70.37 , 29.63 ,
, 70.37 , 22.22
ffffffffff $f f f f f f f f^{\wedge} f f f f f f f f$

Statistics for Table of Number_home by D19

Statistic	DF	Value	Prob
fff			
Chi-Square	1	14.6049	0.0001
Likelihood Ratio Chi-Square	1	15.0921	0.0001
Continuity Adj. Chi-Square	1	12.7051	0.0004
Mantel-Haenszel Chi-Square	1	14.3731	0.0001
Phi Coefficient		0.4815	
Contingency Coefficient		0.4338	
Cramer's V		0.4815	

Fisher's Exact Test $f f$
Cell (1,1) Frequency (F) 19
Left-sided Pr <= F 1.0000 Right-sided Pr >= F $\quad 1.536 \mathrm{E}-04$ Table Probability (P) $1.373 \mathrm{E}-04$ Two-sided Pr <= P 2.444E-04

Sample Size $=63$

Statistics for Table of Number_home by D20 Statistic DF Value Prob fff Chi-Square $1 \quad 1.1429 \quad 0.2850$

| Likelihood Ratio Chi-Square | 1 | 1.1551 | 0.2825 |
| :--- | :--- | :--- | :--- | :--- |

Continuity Adj. Chi-Square 1 0.6429 0.4227

| Mantel-Haenszel Chi-Square 1.1238 | 0.2891 |
| :--- | :--- | :--- | :--- | :--- |

Phi Coefficient -0.1380
Contingency Coefficient 0.1367
Cramer's V -0.1380
Fisher's Exact Test

fffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	8
Left-sided Pr <= F	0.2119
Right-sided Pr >= F	0.9099
Table Probability (P)	0.1218
Two-sided Pr <= P	0.4231

Effective Sample Size $=60$ Frequency Missing = 1
Table of Number_home by D21

Statistics for Table of Number_home by D21
Statistic DF Value Prob fff Chi-Square $1 \quad 0.47470 .4908$ Likelihood Ratio Chi-Square 1 0.4841 0.4866 $\begin{array}{llll}\text { Continuity Adj. Chi-Square } & 1 & 0.1331 & 0.7153\end{array}$ Mantel-Haenszel Chi-Square 1 0.4673 0.4942

Phi Coefficient	0.0861
Contingency Coefficient	0.0858
Cramer's V	0.0861
Fisher's Exact Test	
ffffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	23
Left-sided Pr <= F	0.8444
Right-sided Pr >= F	0.3619
Table Probability (P)	0.2063
Two-sided Pr <= P	0.5374

Effective Sample Size $=64$
Frequency Missing = 1

Table of Number_home by D22
Frequency,
Percent Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ’ffffffff^ffffffff^
0-2 , 4 , 17
, 7.55 , 32.08 , 39.62
, 19.05 , 80.95 ,
, 50.00 , 37.78 ,
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f$
$>2, \quad 4, \quad 28, \quad 32$
, $7.55,52.83,60.38$
, 12.50 , 87.50 ,
, 50.00, 62.22,
fffffffff $f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$

Total	8	45	53
	15.09	84.91	100.00

Statistics for Table of Number_home by D22

Statistic	DF	Value	Prob
$f f$			
Chi-Square	1	0.4241	0.5149
Likelihood Ratio Chi-Square	1	0.4166	0.5186
Continuity Adj. Chi-Square	1	0.0671	0.795
Mantel-Haenszel Chi-Square	1	0.4161	0.5189
Phi Coefficient		0.0895	
Contingency Coefficient		0.0891	
Cramer's V 0.0895			
ARNING: 50% of the cells than 5. Chi-Squar		ted coun be a val	$\begin{aligned} & \text { less } \\ & \text { test. } \end{aligned}$

Fisher's Exact Test
$f f$ Cell $(1,1)$ Frequency (F) 4 Left-sided Pr <= F 0.8513 Right-sided Pr >= F 0.3915 Table Probability (P) 0.2428 Two-sided Pr <= P 0.6978

Effective Sample Size $=53$
Frequency Missing = 3

Table of Number home by D23

Frequency,
Percent
Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff^ffffffff^ffffffff 0-2 , 7 , 19 , 26
, 10.94 , 29.69 , 40.63
, 26.92 , 73.08 ,
, 53.85 , 37.25 ,

ffffffffff^ffffffff^ffffffff^			
>2 ,	6	32	38
	9.38	, 50.00	59.38
	15.79	, 84.21	
	46.15	62.75	
$f f f f f f f f f^{\wedge} f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$			
Total	13	51	64
	20.31	79.69	100.00

Statistics for Table of Number_home by D23

Table of Number_home by D24
Frequency,
Percent
Row Pct ,
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff fffffffff ffffffff^
0-2 , 10,17 , 27
, $16.13,27.42,43.55$
, 37.04 , 62.96 ,
, 62.50 , 36.96 ,
fffffffff ffffffff^ffffffff^
>2, $6, \quad 35$
, $9.68,46.77,56.45$
, 17.14 , 82.86 ,
, 37.50 , 63.04 ,
fffffffff $f f f f f f f f^{\wedge} f f f f f f f f$ ^
Total $16 \quad 46$

Statistics for Table of Number home by D24

Statistics for Table of		Number_home by D24	
Statistic	DF	Value	Prob
fff			
Chi-Square	1	3.1506	0.0759
Likelihood Ratio Chi-Square	1	3.1425	0.0763
Continuity Adj. Chi-Square	1	2.1973	0.1383
Mantel-Haenszel Chi-Square	1	3.0998	0.0783
Phi Coefficient		0.2254	
Contingency Coefficient		0.2199	
Cramer's V		0.2254	

Fisher's Exact Test

ffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	10
Left-sided Pr <= F	0.9807
Right-sided Pr >= F	0.0694
Table Probability (P)	0.0501
Two-sided Pr <= P	0.0885
Sample Size = 62	

Statistics for Table of Number_home by D25

Statistic	DF	Value	Prob
fff			
Chi-Square	1	2.7089	0.0998
Likelihood Ratio Chi-Square	1	2.6874	0.1011
Continuity Adj. Chi-Square	1	1.8848	0.1698
Mantel-Haenszel Chi-Square	1	2.6696	0.1023
Phi Coefficient		0.1981	
Contingency Coefficient		0.1944	
Cramer's V		0.1981	

Fisher's Exact Test
$f f$
Cell $(1,1)$ Frequency (F) 11
Left-sided Pr <= F 0.9722

Right-sided Pr >= F 0.0853
Table Probability (P) 0.0575
Two-sided Pr <= P 0.1118
Sample Size = 69

Table of Years_in_house by A1
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
,gree
fffffffff^ffffffff^ffffffff^
1-6 , $15, \quad 25$, 40
, 19.23 , 32.05 , 51.28
, 37.50 , 62.50 ,
, 50.00 , 52.08 ,
fffffffff^ffffffff^ffffffff^
>6 , 15 , 23 , 38
, 19.23 , 29.49 , 48.72
, 39.47 , 60.53,
, 50.00 , 47.92 ,
fffffffff^ffffffff^ffffffff^
$\begin{array}{llll}\text { Total } & 30 & 48 & 78\end{array}$
$38.46 \quad 61.54 \quad 100.00$

Statistics for Table of Years_in_house by A1

Statistic	DF	Value	Prob
fff			
Chi-Square	1	0.0321	0.8579
Likelihood Ratio Chi-Square	1	0.0321	0.8579
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0317	0.8588
Phi Coefficient		-0.0203	
Contingency Coefficient		0.0203	
Cramer's V		-0.0203	

isher's Exact Test

ffffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	15
Left-sided Pr <= F	0.5212
Right-sided Pr >= F	0.6598
Table Probability (P)	0.1810
Two-sided Pr <= P	1.0000

Sample Size = 78

Table of Years_in_house by A2
Frequency, Percent , Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff^ffffffff^ffffffff^
$1-6$, $12, \quad 28$,
, 15.58 , 36.36 , 51.95
, 30.00 , 70.00 ,
, 42.86 , 57.14 ,
fffffffff ${ }^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f$
$>6 \quad, \quad 16, \quad 21$, 37
, 20.78 , $27.27,48.05$
, 43.24, 56.76,
, 57.14 , 42.86 , ffffffffff^ffffffff^ffffffff^ Total $28 \quad 49$
$36.36 \quad 63.64 \quad 100.00$
Statistics for Table of Years_in_house by A2

	DF	Value	Prob
Statistic	1	1.4568	0.2274
ff			
Chi-Square	1	1.4599	0.2269
Likelihood Ratio Chi-Square	1	0.9407	0.3321
Continuity Adj. Chi-Square	1	1.4378	0.2305
Mantel-Haenszel Chi-Square	1	-0.1375	
Phi Coefficient		0.1363	
Contingency Coefficient		-0.1375	
Cramer's V			

Fisher's Exact Test
ffffffffffffffffffffffffffffffffff
Cell (1,1) Frequency (F) 12

Left-sided $\operatorname{Pr}<=\mathrm{F} \quad 0.1661$
Right-sided Pr >= F 0.9258
Table Probability (P) 0.0919
Two-sided Pr <= P 0.2463
Sample Size = 77

Table of Years_in_house by A3
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff ffffffff^ffffffff
1-6 , 19 , 39

Statistics for Table of Years in house by A5

Statistic	DF	Value	Prob
ff			
Chi-Square	1	0.0216	0.8832
Likelihood Ratio Chi-Square	1	0.0216	0.8831
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0213	0.8840
Phi Coefficient		0.0171	
Contingency Coefficient		0.0171	
Cramer's V		0.0171	

Fisher's Exact Test
fffffffffffffffffffffffffffffffffff Cell (1,1) Frequency (F) 10 Left-sided Pr <= F 0.6607 Right-sided Pr >= F $\quad 0.5511$ Table Probability (P) 0.2118 Two-sided Pr <= P 1.0000

Effective Sample Size = 74
Frequency Missing = 1

Table of Years_in_house by B6 Frequency, Percent Row Pct Col Pct ,Disagree,Agree - , Total , - Stron,Strongly, ,gly Disa, Agree , , gree
ffffffffff „ffffffff ${ }^{\prime}$ ffffffff^
1-6 , $16, \quad 25$, 41
, $20.78,32.47,53.25$
, 39.02 , 60.98 ,
, 48.48 , 56.82
ffffffffff $f f f f f f f f^{\wedge} f f f f f f f f$
$>6 \quad 17,19$, 36
, $22.08,24.68,46.75$
, 47.22, 52.78,
, 51.52 , 43.18
ffffffffff' ffffffff^ffffffff

Total	33	44	77
	42.86	57.14	100.00

Statistics for Table of Years_in_house by B6
Statistic DF Value Prob ff Chi-Square 10.52600 .4683

| Likelihood Ratio Chi-Square | 1 | 0.5261 | 0.4682 |
| :--- | :--- | :--- | :--- | :--- |

Continuity Adj. Chi-Square 10.24450 .6209

Mantel-Haenszel Chi-Square	1
Phi Coefficient	0.5192
Contingency Coefficient	-0.0827
Cramer's V	0.0824
	-0.0827
Fisher's Exact Test	
fffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	16
Left-sided Pr <= F	0.3105
Right-sided Pr >= F	0.8304
Table Probability (P)	0.1409
Two-sided Pr <= P	0.4973

Sample Size = 77

Statistics for Table of Years_in_house by B7

Statistic	DF	Value	Prob
ff			
Chi-Square	1	0.0559	0.8130
Likelihood Ratio Chi-Square	1	0.0560	0.8129
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0551	0.8144
Phi Coefficient		0.0287	
Contingency Coefficient		0.0287	
Cramer's V		0.0287	

Fisher's Exact Test
ffffffffffffffffffffffffffffffffffff Cell $(1,1)$ Frequency (F) 15 Left-sided Pr <= F 0.6863 Right-sided Pr >= F 0.5068 Table Probability (P) 0.1931 Two-sided Pr <= P 1.0000

Sample Size = 68

Table of Years_in_house by B8
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree , , gree
fffffffff^ffffffff^ffffffff^
1-6 , 11 , 25 , 36
, $15.71,35.71,51.43$
, 30.56 , 69.44 ,
, 40.74 , 58.14 ,
ffffffffff fffffffff ffffffff^
>6 , 16 , 18 , 34

Statistics for Table of Years_in_house by B8

	DF	Value	Prob
Statistic	1	2.0100	0.1563
ff			
Chi-Square	1	2.0188	0.1554
Likelihood Ratio Chi-Square	1	1.3738	0.2412
Continuity Adj. Chi-Square	1	1.9812	0.1593
Mantel-Haenszel Chi-Square	1	-0.1695	
Phi Coefficient		0.1671	
Contingency Coefficient		-0.1695	
Cramer's V			

Fisher's Exact Test	
fffffffffffffffffffffffffffffffffff	
Cell (1,1) Frequency (F)	11
Left-sided Pr <= F	0.1205
Right-sided Pr >= F	0.9522
Table Probability (P)	0.0727
Two-sided Pr <= P	0.2198
Sample Size = 70	

Table of Years_in_house by B9
Frequency, Percent Row Pct , Col Pct ,'Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
ffffffffff ffffffff^ffffffff
$1-6 \quad 13, \quad 26$, 39
, $17.33,34.67$, 52.00
, 33.33 , 66.67 ,
, 50.00 , 53.06 ,
fffffffff^ffffffff^ffffffff
$>6 \quad, \quad 13, \quad 23, \quad 36$
, $17.33,30.67,48.00$
, 36.11 , 63.89 ,
, 50.00 , 46.94 , ffffffffff^ffffffff^ffffffff Total $26 \quad 49$
$34.67 \quad 65.33 \quad 100.00$
Statistics for Table of Years_in_house by B9

Statistics for Table of Years_in_house by B9			
Statistic	DF	Value	Prob
fff			
Chi-Square	1	0.0638	0.8006
Likelihood Ratio Chi-Square	1	0.0638	0.8007
Continuity Adj. Chi-Square	1	0.0001	0.9923
Mantel-Haenszel Chi-Square	1	0.0629	0.8019
Phi Coefficient		-0.0292	
Contingency Coefficient		0.0291	
Cramer's V		-0.0292	

Fisher's Exact Test
$f f$ Cell (1,1) Frequency (F) 13 Left-sided Pr <= F 0.4957 Right-sided Pr >= F $\quad 0.6899$ Table Probability (P) 0.1856 Two-sided Pr <= P 0.8133

Effective Sample Size $=75$
Frequency Missing = 2

Table of Years_in_house by B10 Frequency,

Statistics for Table of Years_in_house by B10

Statistic	DF	Value	Prob
ff			
Chi-Square	1	0.9146	0.3389
Likelihood Ratio Chi-Square	1	0.9173	0.3382
Continuity Adj. Chi-Square	1	0.4623	0.4966
Mantel-Haenszel Chi-Square	1	0.9023	0.3422
Phi Coefficient		-0.1112	
Contingency Coefficient		0.1105	
Cramer's V		-0.1112	

Fisher's Exact Test
$f f$ Cell (1,1) Frequency (F) 7 Left-sided Pr <= F 0.2485 Right-sided Pr >= F 0.8913 Table Probability (P) 0.1398 Two-sided Pr <= P 0.4124

Effective Sample Size = 74
Frequency Missing = 1

Table of Years_in_house by B11
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree , ,gree
ffffffffff fffffffff ffffffff^
1-6 $\quad 3,38$
, $6.67,44.00,50.67$
, 13.16 , 86.84 ,
, 35.71 , 54.10 ,
fffffffff^ffffffff^ffffffff^
>6 , 9 , 28 , 37
, $12.00,37.33,49.33$
, 24.32 , 75.68 ,
, 64.29 , 45.90 , ffffffffff ffffffff^ffffffff^ Total $14 \quad 61 \quad 75$
$18.67 \quad 81.33 \quad 100.00$

Statistics for Table of Years_in_house by B11
Statistic DF Vrob ff
Chi-Square 1
Likelihood Ratio Chi-Square 1 1.5559 0.2123

| Continuity Adj. Chi-Square | 1 | 0.8920 | 0.3449 |
| :--- | :--- | :--- | :--- | :--- |

| Mantel-Haenszel Chi-Square | 1 | 1.5191 | 0.2178 |
| :--- | :--- | :--- | :--- | :--- |

Phi Coefficient
-0.1433
Contingency Coefficient $\quad 0.1418$
Cramer's V
-0.1433

Fisher's Exact Test
$f f$
Cell $(1,1)$ Frequency (F) 5

Left-sided Pr <= F	0.1727
Right-sided Pr >= F	0.9387
Table Probability (P)	0.1114

Table Probability (P) 0.1114
Two-sided Pr <= P 0.2486

Sample Size = 75

Table of Years_in_house by B12
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
fffffffff ffffffff^ffffffff
1-6 , 12 , 39
, $15.79,35.53,51.32$
, 30.77 , 69.23 ,
, 54.55 , 50.00 ,
ffffffffff $f f f f f f f f$ ^ffffffff
$>6 \quad 10, \quad 27, \quad 37$
, $13.16,35.53,48.68$
, 27.03 , 72.97 ,
, 45.45 , 50.00 ,
$f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$
Total $22 \quad 54$

Statistics for Table of Years_in_house by B12

Statistic	DF	Value	Prob
ff			
Chi-Square	1	0.1293	0.7192
Likelihood Ratio Chi-Square	1	0.1294	0.7190
Continuity Adj. Chi-Square	1	0.0113	0.9152
Mantel-Haenszel Chi-Square	1	0.1276	0.7210
Phi Coefficient		0.0412	
Contingency Coefficient		0.0412	
Cramer's V		0.0412	

Fisher's Exact Test
$f f$ Cell (1,1) Frequency (F) 12 Left-sided Pr <= F 0.7294 Right-sided Pr >= F 0.4581 Table Probability (P) 0.1875 Two-sided Pr <= P 0.8028

Sample Size = 76

Table of Years_in_house by B13 Frequency, Percent Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
,gree
ffffffffff ffffffff ffffffff^
1-6 , 16 , 42
, 21.33 , 34.67 , 56.00
, 38.10 , 61.90 ,
, 50.00 , 60.47 ,
fffffffff $f f f f f f f f$ ^ffffffff
>6 , 16 , 17 , 33
, $21.33,22.67,44.00$
, 48.48, 51.52,
, 50.00 , 39.53 ,
$f f f f f f f f f^{\wedge} f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$

Total	32	43	75
	42.67	57.33	100.00

Statistics for Table of Years_in_house by B13
Statistic DF Value Prob fff

Chi-Square	1	0.8155	0.3665

Likelihood Ratio Chi-Square 1 0.8151 0.3666

Continuity Adj. Chi-Square	1	0.4460	0.5042

| Mantel-Haenszel Chi-Square 10.8046 | 0.3697 |
| :--- | :--- | :--- | :--- |

Phi Coefficient
-0. 1043
Contingency Coefficient 0.1037
Cramer's V -0.1043

Fisher's Exact Test
$f f$

Cell (1,1) Frequency (F)	16
Left-sided Pr <= F	0.2520
Right-sided Pr >= F	0.8725
Table Probability (P)	0.1245
Two-sided Pr <= P	0.4811
Sample Size = 75	

Table of Years_in_house by C14
Frequency,
Percent
Row Pct ,
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ’ffffffff ffffffff^
1-6 , 16 , 26 , 42
, $20.25,32.91,53.16$
, 38.10 , 61.90 ,
, 50.00 , 55.32 ,
fffffffff^ffffffff^ffffffff
$>6 \quad, \quad 16, \quad 21$, 37
, $20.25,26.58,46.84$
, 43.24 , 56.76 ,
, 50.00 , 44.68 ,
fffffffff^ffffffff^ffffffff

Total	32	47	79
	40.51	59.49	100.00

Statistics for Table of Years_in_house by C14
Statistic DF Value Prob $f f$
Chi-Square $1 \quad 0.21630 .6419$
$\begin{array}{lllll}\text { Likelihood Ratio Chi-Square } & 1 & 0.2163 & 0.6419\end{array}$

| Continuity Adj. Chi-Square | 1 | 0.0554 | 0.8139 |
| :--- | :--- | :--- | :--- | :--- |

Mantel-Haenszel Chi-Square 10.21360 .6440
Phi Coefficient
-0.0523
Contingency Coefficient 0.0523
Cramer's V
-0.0523

Fisher's Exact Test
fffffffffffffffffffffffffffffffffff Cell $(1,1)$ Frequency (F) 16
Left-sided Pr <= F 0.4067
Right-sided Pr >= F 0.7564

Table Probability (P) 0.1631
Two-sided Pr <= P 0.6543

Sample Size = 79

Table of Years_in_house by C15
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree

fffffffff^ffffffff(ffffffff			
1-6	5	35	40
	6.58	46.05	52.63
	12.50	87.50	
	55.56	52.24	
$f f f f f f f f f{ }^{\wedge} f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$			
>6	4	32	36
	5.26	, 42.11	47.37
	11.11	, 88.89	
	44.44	47.76	
$f f f f f f f f f^{\wedge} \mathrm{fffffffff}$ ^ffffffff^			
Total	9	67	76
	11.84	88.16	100.0

Statistics for Table of Years_in_house by C15 Statistic DF Value Prob $f f$
Chi-Square $100.0350 \quad 0.8516$
Likelihood Ratio Chi-Square 1 0.0351 0.8514

| Continuity Adj. Chi-Square | 1 | 0.0000 | 1.0000 |
| :--- | :--- | :--- | :--- | :--- |

Mantel-Haenszel Chi-Square 1 0.0345 0.8525 Phi Coefficient 0.0215 Contingency Coefficient 0.0215 Cramer's V 0.0215

WARNING: 50% of the cells have expected counts less than 5 . Chi-Square may not be a valid test.

Fisher's Exact Test
ffffffffffffffffffffffffffffffffff
Cell $(1,1)$ Frequency (F) 5
Left-sided Pr <= F 0.7038
Right-sided Pr >= F 0.5682
Table Probability (P) 0.2721
Two-sided Pr <= P 1.0000
Sample Size = 76

Table of Years_in_house by C16
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ${ }^{\prime} f f f f f f f f^{\wedge}$ fffffffff
1-6 , 38 , 41
, $3.90,49.35,53.25$
, 7.32 , 92.68 ,
, 60.00 , 52.78 ,
$f f f f f f f f f^{\wedge} f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$
>6 , 34 , 36
, $2.60,44.16,46.75$
, 5.56 , 94.44 ,
, 40.00 , 47.22
$f f f f f f f f f^{\wedge} f f f f f f f f f^{\wedge} f f f f f f f f^{\wedge}$
Total $\quad 5 \quad 72$
Statistics for Table of Years_in_house by C16
Statistic DF Value Prob
ff
Chi-Square $\quad 1 \quad 0.0980 \quad 0.7543$
Likelihood Ratio Chi-Square 10.09880 .7533

Continuity Adj. Chi-Square	1	0.0000	1.0000

Mantel-Haenszel Chi-Square 1 0.0967 0.7558
Phi Coefficient
0.0357

Contingency Coefficient 0.0356
Cramer's V 0.0357
WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Statistics for Table of Years_in_house by C17 Statistic DF Value Prob ff Chi-Square 0.2586 $\begin{array}{lllll}\text { Likelihood Ratio Chi-Square } & 1 & 0.2587 & 0.6110\end{array}$ $\begin{array}{lllll}\text { Continuity Adj. Chi-Square } & 1 & 0.0124 & 0.9114\end{array}$ $\begin{array}{llll}\text { Mantel-Haenszel Chi-Square } 1 & 0.2551 & 0.6135\end{array}$ Phi Coefficient
-0.0587 Contingency Coefficient 0.0586
Cramer's V
-0.0587
WARNING: 50\% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Fisher's Exact Test
$f f$ Cell $(1,1)$ Frequency (F) 3 Left-sided Pr <= F 0.4544 Right-sided Pr >= F 0.8168 Table Probability (P) 0.2712 Two-sided Pr <= P

Sample Size = 75

Table of Years_in_house by C18 Frequency,
Percent
Row Pct Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff ’ffffffff^ffffffff*
1-6 , 4 , 37
, $5.13,47.44$,
, 9.76 , 90.24 ,
, 50.00 , 52.86 ,
fffffffff^ffffffff^ffffffff
$>6 \quad, \quad 4,33,37$
, $5.13,42.31,47.44$
, 10.81 , 89.19 ,
, $50.00,47.14$,
ffffffffff ${ }^{\prime} f f f f f f f f^{\wedge} f f f f f f f f{ }^{\prime}$
Total $\quad 8 \quad 8 \quad 70 \quad 78$

Statistics for Table of Years_in_house by C18

Statistic	DF	Value	Prob
ff			
Chi-Square	1	0.0235	0.8782
Likelihood Ratio Chi-Square	1	0.0235	0.8782
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0232	0.8789
Phi Coefficient		-0.0174	
Contingency Coefficient		0.0174	
Cramer's V		-0.0174	

WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Fisher's Exact Test
ffffffffffffffffffffffffffffffffff
Cell (1,1) Frequency (F) 4

Left-sided Pr <= F 0.5844
Right-sided Pr >= F 0.7009
Table Probability (P) 0.2853
Two-sided Pr <= P 1.0000
Sample Size = 78

Table of Years_in_house by D19
Frequency,
Percent
Row Pct ,
Col Pct ,Disagree,Agree - , Total
, - Stron, Strongly,
,gly Disa, Agree ,
, gree
fffffffff ffffffff^ffffffff
1-6 , 18 , 19 , 37
, $25.71,27.14,52.86$
, 48.65 , 51.35 ,
, $60.00,47.50$
ffffffffff ffffffff^ffffffff^
$>6 \quad 12, \quad 21$, 33
, $17.14,30.00,47.14$
, 36.36 , 63.64 ,
, 40.00 , 52.50 ,
$f f f f f f f f f f^{\wedge} f f f f f f f f f^{\wedge} f f f f f f f f$ ^

Total	30	40	70
	42.86	57.14	100.00

Statistics for Table of Years_in_house by D19

Statistic	DF	Value	Prob
ff			
Chi-Square	1	1.0749	0.2998
Likelihood Ratio Chi-Square	1	1.0795	0.2988
Continuity Adj. Chi-Square	1	0.6318	0.4267
Mantel-Haenszel Chi-Square	1	1.0596	0.3033
Phi Coefficient		0.1239	
Contingency Coefficient		0.1230	
Cramer's V		0.1239	

Fisher's Exact Test
$f f$
Cell $(1,1)$ Frequency (F) 18
Left-sided Pr <= F 0.8997
Right-sided Pr >= F 0.2136
Table Probability (P) 0.1133
Two-sided Pr <= P 0.3406

Sample Size = 70

Table of Years_in_house by D20
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,

Fisher's Exact Test ffffffffffffffffffffffffffffffffff Cell (1,1) Frequency (F) 28
Left-sided Pr <= F 0.2821
Right-sided Pr >= F 0.8765
Table Probability (P) 0.1586
Two-sided Pr <= P 0.5642

Effective Sample Size = 74
Frequency Missing = 1

Table of Years_in_house by D22
Frequency,
Percent
Row Pct
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,

$1-6$, 50,36
, 8.20 , 50.82
59.02
, 13.89 , 86.11 ,
, 50.00 , 60.78 ,
fffffffff^ffffffff^ffffffff^
>6, $5,20,25$
, $8.20,32.79,40.98$
, 20.00 , 80.00 ,
, 50.00 , 39.22 ,
fffffffff ffffffff^ffffffff
Total $10 \quad 51$

Statistics for Table of Years_in_house by D22

Statistic	DF	Value	Prob
fff			
Chi-Square	1	0.4020	0.5261
Likelihood Ratio Chi-Square	1	0.3968	0.5287
Continuity Adj. Chi-Square	1	0.0798	0.7776
Mantel-Haenszel Chi-Square	1	0.3954	0.5295
Phi Coefficient		-0.0812	
Contingency Coefficient		0.0809	
Cramer's V		-0.0812	

WARNING: 25% of the cells have expected counts less
than 5. Chi-Square may not be a valid test.
Fisher's Exact Test
fffffffffffffffffffffffffffffffffff
Cell (1,1) Frequency (F) 5
Left-sided Pr <= F 0.3843
Right-sided Pr >= F 0.8378
Table Probability (P) 0.2221
Two-sided Pr <= P 0.7268
Effective Sample Size $=61$ Frequency Missing = 3

Table of Years_in_house by D23
Frequency,
Percent
Row Pct ,
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
,gree
fffffffff 'ffffffff^ffffffff
1-6 , 7 , 34
, $9.46,45.95,55.41$
, 17.07 , 82.93 ,
, 50.00 , 56.67 ,
ffffffffff fffffffff ffffffff^
$>6 \quad, \quad 7, \quad 26$, 33
, $9.46,35.14,44.59$
, 21.21 , 78.79 ,

50.00,			43.33,
fffffffff ${ }^{\prime}$ ffffffff^fffffffff			
Total	14	60	74
	18.92	81.08	100.00

Statistics for Table of Years_in_house by D23

Statistic		Value	ob
$f f$			
Chi-Square	1	0.2042	0.6514
Likelihood Ratio Chi-Square	1	0.2033	0.6521
Continuity Adj. Chi-Square	1	0.0235	0.8782
Mantel-Haenszel Chi-Square	1	0.2014	0.6536
Phi Coefficient		-0.0525	
Contingency Coefficient		0.0525	
Cramer's V		-0.0525	

Fisher's Exact Test

ffffffffffffffffffffffffffffffffffff Cell (1,1) Frequency (F) 7 Left-sided Pr <= F 0.4367 Right-sided Pr >= F 0.7739

Table Probability (P) 0.2106
Two-sided Pr <= P 0.7679

Sample Size = 74

Table of Years_in_house by D24 Frequency,
Percent
Row Pct ,
Col Pct ,Disagree,Agree - , Total
, - Stron,Strongly,
,gly Disa, Agree ,
, gree
ffffffffff 'fffffffffffffffff^
1-6 , 5 , 32
, $6.94,44.44,51.39$
, 13.51 , 86.49 ,
, 26.32 , 60.38 ,
fffffffff^ffffffff^ffffffff
$>6 \quad 14$, 21 , 35
, 19.44 , 29.17 , 48.61
, 40.00 , 60.00 ,
, 73.68 , 39.62 ,
ffffffffff fffffffff ffffffff^

Total	19	53	72
	26.39	73.61	100.00

Statistics for Table of Years_in_house by D24
Statistic DF - Value Prob ff Chi-Square $1 \quad 6.49560 .0108$

| Likelihood Ratio Chi-Square | 1 | 6.6830 | 0.0097 |
| :--- | :--- | :--- | :--- | :--- |

Continuity Adj. Chi-Square 1 5.2037 0.0225

| Mantel-Haenszel Chi-Square | 1 | 6.4054 | 0.0114 |
| :--- | :--- | :--- | :--- | :--- |

Phi Coefficient
-0. 3004
Contingency Coefficient 0.2877
Cramer's V
-0.3004
Fisher's Exact Test
$f f$
Cell (1,1) Frequency (F) 5

Left-sided $\mathrm{Pr}<=\mathrm{F}$	0.0107
Right-sided Pr >= F	0.9979
Table Probability (P)	0.0086

Table Probability (P) 0.0086
Two-sided Pr <= P 0.0157
Sample Size = 72

Table of Years_in_house by D25
Frequency,
Percent
Row Pct ,

Statistics for Table of Years_in_house by D25

Statistic	DF	Value	Prob
fff			
Chi-Square	1	0.0071	0.9331
Likelihood Ratio Chi-Square	1	0.0071	0.9331
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.0070	0.9335
Phi Coefficient		-0.0094	
Contingency Coefficient		0.0094	
Cramer's V		-0.0094	

Fisher's Exact Test
$f f$
Cell $(1,1)$ Frequency (F) 11
Left-sided $\operatorname{Pr}<=\mathrm{F} \quad 0.5668$
Right-sided Pr >= F 0.6333
Table Probability (P) 0.2002
Two-sided Pr <= P 1.0000
Sample Size = 79

Factor analysis

Final Communality Estimates: Total $=10.150395$
$\begin{array}{rrrrrrr}\text { A1 } & \text { A2 } & \text { A3 } & \text { A4 } & \text { A5 } & \text { B6 } & \text { B7 } \\ 0.38869685 & 0.59635284 & 0.40911224 & 0.55777806 & 0.52678754 & 0.58196032 & 0.68527977 \\ \text { B8 } & \text { B9 } & \text { B10 } & \text { B11 } & \text { B12 } & \text { B13 } & \text { C14 }\end{array}$

0.4519	91389	0.11426121	0.44565775	0.39751167	0.25960130	0.32488572	0.30309800
	C15	C16	C17	C18	D19	D20	D21
0.6344	45632	0.44738740	0.58956907	0.13825322	0.21240654	0.18371507	0.19818182
			22	D23	D24	D25	
		0.33524	97 0.3798	22450.4	8569678 0	0.50276277	
			Scoring Coeffic	ients Estimat	d by Regressi	ion	
	Factor1	Squared Fact	ltiple Correla	tions of the tor 3	Variables with Factor4	h Each Factor Factor5	Factor6
0.82	2376704	0.78471	$019 \quad 0.7878$	32910.7	27803790	0.70719196	0.73933763
			Standardiz	ed Scoring Co	fficients		
		Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
C15	C15	0.37561	0.02955	-0.02809	-0.12216	-0.11141	-0.01479
C17	C17	0.29635	0.04835	0.03787	0.10128	0.03187	0.04606
C16	C16	0.21855	-0.05858	-0.04393	0.10746	-0.04599	0.01649
D21	D21	-0.07196	0.03301	-0.00531	-0.08449	0.10019	0.01617
D25	D25	-0.10776	0.29501	-0.04381	-0.05641	0.05672	0.04743
D24	D24	0.06757	0.27050	-0.02337	-0.10505	0.03847	0.03241
D23	D23	0.03258	0.18727	-0.03460	-0.02632	-0.11024	-0.00179
C14	C14	-0.03919	0.17303	0.06551	0.07214	0.10026	0.01870
D19	D19	-0.04604	0.10647	0.03214	0.03464	0.04515	-0.07832
D22	D22	-0.00049	0.16718	0.13100	-0.11073	0.05072	-0.02661
C18	C18	0.03944	0.08940	-0.02064	0.02259	-0.02623	-0.01663
B9	B9	-0.00167	-0.06617	0.00293	-0.00494	0.05736	-0.00874
B7	B7	-0.04973	0.00600	0.46921	0.09222	0.01718	0.14336
B6	B6	-0.01285	0.06300	0.32920	-0.04993	-0.09480	-0.22104
B8	B8	0.00187	-0.08930	0.17623	-0.04277	-0.00973	0.08245
B11	B11	0.02227	-0.03151	-0.06313	0.28939	0.00831	0.01734
B10	B10	0.04684	0.02943	-0.01757	0.33760	0.04170	-0.08044
B12	B12	0.02727	-0.01182	0.00273	0.14972	0.07535	0.09494
A3	A3	0.14121	-0.02930	-0.09549	-0.22963	0.09366	0.09307
A2	A2	0.11203	-0.05123	-0.06255	0.03525	0.39629	-0.15624
A1	A1	-0.03877	0.08648	0.03075	0.03374	0.27936	-0.01900
B13	B13	-0.04811	-0.00484	0.00039	0.00878	0.22585	0.07949
D20	D20	-0.02746	-0.05674	-0.05627	-0.01675	0.14588	0.01504
A4	A4	0.03428	-0.03368	-0.02194	-0.09184	0.10183	0.42897
A5	A5	-0.00551	0.10771	0.00594	0.12823	-0.07331	0.31436
		Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
C15	5 C15	100	0	0	-1	0	0
C17	$7 \quad$ C17	95	* 1	1	0	-	0
C16	6 C16	100	0	0	1	0	0
D21	1 D21	-33	0	0	-18	15	0
D25	5 D25	-3	100 *	-2	0	0	0
D24	4 D24	5	96 *	0	-1	0	0
D23	3 D23	0	80	-7	0	-6	0
C14	4 C14	0	77 *	1	6	5	0
D19	9 D19	-2	63 *	0	2	1	-10
D22	2 D22	-8	28	18	-5	0	-1
C18	8 C18	11	75	0	2	-1	0
B9	B9	0	-87*	0	-1	9	0
B7	B7	0	0	100 *	0	0	2
B6	B6	1	0	89 *	0	0	-6
B8	B8	0	-8	73 *	0	0	2
B11	1 B11	0	0	-1	100	0	0
B10	0 B10	2	4	0	78	0	-1
B12	2 B12	0	0	0	48 *	4	18
A3	A3	27	0	0	-30	6	0
A2	A2	7	-1	0	0	64 *	-8
A1	A1	0	6	2	1	84 *	0
B13	3 B13	0	0	0	0	100 *	3
D20	0 D20	-1	-18	-5	-3	45 *	0
A4	A4	0	0	0	0	0	100 *
A5	A5	-1	3	0	6	-2	62 *
			Procrustea	n Transformat	ion Matrix		
		1	2	3	4	5	6
	1	1.14373425	-0.0673215	-0.1216723	0.07081482	-0.0730533	0.04453124
	2	-0.0292732	1.47059968	0.04726441	-0.0497447	0.01191377	0.02825909
	3	-0.1275659	0.06184607	1.14916485	-0.0513303	-0.0937874	-0.024976
	4	0.06927964	-0.1655057	-0.0229071	1.03625806	0.07497484	-0.0183588
	5	-0.1304771	0.06843601	-0.1274452	0.05105896	1.22066441	0.03997237
	6	0.07444524	0.06699064	-0.0306245	-0.0313994	0.02682786	0.92017628
			Rotation Normalized O	ethod: Promax lique Transfo	$\text { (power }=3 \text {) }$ rmation Matrix		
		1	2	3	4	5	6
	1	0.65219	-0.12932	0.48086	-0.08345	0.21305	-0.02505
	2	0.42776	0.78635	-0.15870	0.31200	-0.10309	-0.01400
	3	-0.08923	-0.08597	0.42570	0.56428	-0.10188	0.62327
	4	-0.62646	0.31076	0.32310	0.17518	0.72045	-0.31935
	5	-0.29165	0.55295	0.42228	-0.77980	-0.17452	0.39298
	6	0.17433	0.03604	-0.61846	-0.05427	0.69902	0.61986

Inter-Factor Correlations													
		Factor1		Factor2		Factor3		Factor4		Factor5		Factor6	
Factor1		100	*	4		22		-13		22		-12	
Factor2		4		100 *		-7		15		-7		-8	
Factor3		22		-7		100 *		2		21		3	
Factor4		-13		15		2		100	*	-13		6	
Factor5		22		-7		21		-13		100		-8	
Factor6		-12		-8		3		6		-8		100	*
		Rotated Factor Pattern Factor1 Factor2				(Standardized Regression Coefficients)						Factor6	
C15	C15	78	*	9		4		-10		-11		1	
C17	C17	73	*	9		8		15		4		5	
C16	C16	68	*	-5		-1		20		-7		4	
D21	D21	-34		9		-4		-26		23		0	
D25	D25	-21		66	*	-14		-6		0		8	
D24	D24	23		64	*	-9		-16		8		7	
D23	D23	6		50	*	-20		-1		-21		-3	
C14	C14	-4		46	*	10		20		20		8	
D22	D22	18		38		31		-23		4		-8	
D19	D19	-15		35		9		11		11		-20	
C18	C18	19		29		-1		10		-7		-1	
B9	B9	-6		-28		1		-6		13		-5	
B7	B7	0		-6		78	*	5		4		20	
B6	B6	4		4		71	*	-10		-10		-30	
B8	B8	4		-23		56	*	-10		3		17	
B11	B11	9		-2		-13		63		3		5	
B10	B10	19		12		-8		62		7		-13	
B12	B12	4		-4		4		40		19		27	
A3	A3	38		-3		-15		-38		20		14	
A2	A2	23		-15		-8		2		60	*	-29	
A1	A1	-7		24		12		13		56	*	-6	
B13	B13	-14		-4		3		5		55	*	19	
D20	D20	-11		-20		-18		-10		32		0	
A4	A4	13		-3		6		-14		6		73	
A5	A5	-6		19		-2		25		-15		59	

	Reference Axis Correlations					
	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
Factor1	$100 *$	-8	-20	13	-16	11
Factor2	-8	$100 *$	8	-16	5	8
Factor3	-20	8	-8	-18	-6	
Factor4	13	-16	-8	$100 *$	11	-4
Factor5	-16	5	-18	11	$100 *$	6
Factor6	11	8	-6	-4	6	$100 *$

Scoring Coefficients Estimated by Regression

Factor1		Squared	le Correla	3 of the	ables with	Factor ctor5	Factor6
0.83928013		0.79130	0.805		84	45917	0.74557319
Standardized Scoring Coefficients							
		Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
C15	C15	0.36952	0.03424	0.00070	-0.13536	-0.05770	-0.04379
C17	C17	0.29165	0.05488	0.07686	0.08496	0.06453	0.02670
C16	C16	0.19795	-0.04766	-0.01564	0.08878	-0.02571	0.00808
D21	D21	-0.05860	0.02616	-0.00939	-0.08147	0.09045	0.01391
D25	D25	-0.09626	0.28924	-0.06312	-0.01891	0.02271	0.03733
D24	D24	0.08094	0.26583	-0.02536	-0.08039	0.03473	0.01054
D23	D23	0.02829	0.18921	-0.04723	-0.00033	-0.11566	-0.01097
C14	C14	-0.02444	0.17044	0.06490	0.08691	0.08790	0.01480
D22	D22	0.03139	0.15666	0.12286	-0.09482	0.06476	-0.03658
D19	D19	-0.03362	0.10738	0.02589	0.04435	0.03860	-0.07886
C18	C18	0.03703	0.09263	-0.02080	0.03094	-0.02795	-0.02212
B9	B9	0.00145	-0.06689	0.00941	-0.01607	0.06026	-0.00729
B7	B7	-0.00998	-0.01458	0.46541	0.09794	0.05587	0.15749
B6	B6	0.03263	0.05524	0.30786	-0.03981	-0.04471	-0.21500
B8	B8	0.01607	-0.10051	0.17702	-0.04953	0.01524	0.08797
B11	B11	-0.00515	-0.01629	-0.04727	0.28108	-0.01179	0.02584
B10	B10	0.03019	0.04785	0.00086	0.32954	0.02850	-0.07422
B12	B12	0.01769	-0.00875	0.01959	0.14216	0.06582	0.09646
A3	A3	0.14529	-0.03707	-0.07595	-0.24395	0.10837	0.07191
A2	A2	0.13637	-0.04548	-0.01692	-0.00799	0.40300	-0.17136
A1	A1	-0.01324	0.08253	0.04609	0.02661	0.26728	-0.02564
B13	B13	-0.03588	-0.01094	0.01510	-0.00184	0.21130	0.07704
D20	D20	-0.02416	-0.05805	-0.04525	-0.03042	0.13553	0.01389
A4	A4	0.02220	-0.05090	-0.00318	-0.09397	0.08891	0.41986
A5	A5	-0.03085	0.10399	0.00614	0.15101	-0.09834	0.3150

