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Summary

A thermal buckling analysis of laminated composite plates is studied using plates with
rectangular geometry and antisymmetric lamination with respect to the middle plane.
A Duhamel-Neumann type constitutive model is used. The effects of transverse shear
deformation are accounted for by the use of the Mindlin first-order shear deformation
(FSDT) plate theory. An angle-ply laminated construction was used to generalise the
formulation. Since buckling is essentially a non-linear behaviour, the intermediate
class of deformation was employed. The buckling analysis was carried out in a series
of steps; the derivation of the equilibrium equation, nonlinear prebuckling and
linearized buckling analysis, and the evaluation of the critical temperature by solving
the resulting eigenproblem. The first variation of the total potential energy establishes
the equilibrium equation and the second variation analyses the stability of the
laminated composite. A displacement-based finite element with five degrees of
freedom in each node was used. The effects of lamination angle, modulus ratio, plate
aspect ratio, and boundary constrains upon the critical buckling temperature were
investigated and found to be quite significant.

In this study several tools are used to analyse the behaviour of composite plates that
are subjected to temperature variations on a macro-level. The study can be divided
into three different parts: formulation of finite elements, constitutive modelling, and
application to specific problems using ABAQUS computer package. The present
analysis will be limited to the prediction of the non-linear structural behaviour of
composites in the prebuckling and buckling regime, with postbuckling being outside
the scope of this study. With respect to the description of structural failure a
distinction is made between discrete and continuous modelling of buckling and this
study will be based on the latter, again with the former being beyond the scope of this
work. For the structural analysis on a macro-level, layered plate elements will be used
to model the laminated thin wall structure. Loss of structural stability on a global
level is an important cause for structural collapse and therefore an investigation into
problems involving structural stability is carried out.

Although a great deal of work has been done on thermal problems of plates, an
opportunity exists to make use of the modemn computer software to simulate the
process of thermal loading. The results can then be compared to those in real life
applications and those found in published work. Either way, the need for improved,
cost-effective and more accurate method of analysis warrants a research of this nature.
The advent of digital computer and the accompanying development of the Finite
Element Method has put a challenge to the traditional ways of solving problems,
where exact solutions are not only difficult to find, but more expensive as well. That
the approximate answers to complicated problems are satisfactory can, perhaps be
shown in this project.

A considerable amount of work has been done on buckling of laminated composite
plates, but most of the studies have been confined to in-plane mechanical loading.
Zeggane and Sridharan (1991) studied the stability of deformable laminated
composite plates under combined loading using ‘infinite’ strips. Walker er al. (1995)
examined the optimal fibre angles for four layer rectangular laminates with central
cut-outs subjected to biaxial buckling loads. They concluded that the effect of the cut-
out is greatest when the aspect ratio of the plate is small and the buckling load
capacity of the laminates containing holes is lower than those without holes.
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However, studies were also conducted for the buckling of composite laminates
involving temperature distribution. Chen and Chen (1991) studied thermal buckling
of laminated plates under uniform and nonuniform temperature distribution using the
eight-node Serendipity finite element. Mathew, Singh and Rao (1992) investigated
thermal buckling of antisymmetric cross-ply composite laminates with a one-
dimensional! finite element having two nodes and six degrees of freedom.
Chandrashekhara (1992) accounted for transverse shear flexibility by using the
thermo-elastic version of the first-order shear deformation theory. This will also be
the case in this report. Literature on buckling and laminated composites abounds.
Brush and Almroth (1975) published a book on Buckling of Bars, Plates, and Shells,
while Bushnell (1985) surveyed the Methods and Modes of Behaviour in Static
Collapse. The foundation for the study of composite materials was based on the
references [8], [10], [15] and [18]. The use of the Finite Element Method to analyse
the buckling behaviour of laminated structures comes from references [1], [4], [12],
[16), [24] and [32]. Reference [14] provided the basis for the formulation of the
variation of the governing equations. Most of the ideas in this report are based on
these publications and references.

Chapter 1 of this report introduces the concept of a composite, the formation of a
composite and a brief overview of the elements of a composite material. This chapter
also presents the concept of buckling that will form the basis of the development of
this project. At the end of this chapter the choice of the element that is used in this
study is justified. Chapter 2 provides the fundamentals of elasticity that relate to the
deformation of a loaded body. In this Chapter the stresses and strains are defined and
the temperature terms are introduced. In Chapter 3 the Mindlin plate theory is
presented with a view to laying the foundation for the analysis of laminated plates,
and as a starting point in the formulation of thermal buckling behaviour of laminated
plates. In Chapter 4 the elements of a composite material are discussed and the
constitutive equations of a laminated composite plate are built. Also the idea of
amination is introduced and the various simplifications that can be introduced as a
result of lamination are discussed. The non-linear equilibrium equations and the
stability analysis of a composite plate are formulated in Chapter 5 using the
conventional analytical method. The resulting equations justify the use of the Finite
Element Method as introduced in Chapter 6 and it is the method by which the
governing equations will be solved in ABAQUS computer analysis. The results for
various computer runs are presented for a normal plate, a plate with a square hole, and
the plate with a circular cut-out in Chapter 7. Also in chapter 7 a comparison is made
between the laminate with a central hole and a normal plate to study the effect of a
cut-out on a critical buckling temperature. Appendices A deals the transverse shear in
plates, and Appendix B deals with the transformation of the laminate elastic constants
form the principal matenal direction to the general Cartesian co-ordinates. Also in
Appendix B the laminate stiffness matrices and these matrices are briefly evaluated
analytically. Appendix C is about the governing equations of laminated composites,
while Appendix D gives a full representation of the abbreviated finite element
equations of Chapter 6. Appendix E presents the list of ABAQUS input files that
were used in the computer simulation of Chapter 7.
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Chapter 1

On Composites and Buckling

1.1 Introduction

The advent of new stiff, strong and lightweight composites consisting of high
performance fibers offers aerospace engineers a lucrative choice in designing
composite structures which have high potential in replacing metallic structures for
most of the structural applications. The analysis of composite laminates is a complex
task because composites are generally anisotropic and are characterized by bending
extension coupling. Structures such as beams, plates, shells, and so on are often
subjected to severe thermal environments during launching and re-entry, and so their
stability study under themmal loads is of utmost importance to aerospace engineers.
Aircraft and space vehicles are examples of applications that are weight-sensitive. As
aresult thermal-buckling analysis of composite laminates is very important, especially
in thin-walled members, since structural components of these high-speed machines are
usually subjected to nonuniform temperature distribution due to aerodynamic and
solar radiation heating.

1.2  Background on Composites

Among the most important developments in materials in recent years ar¢ composite
materials. These are defined as a combination of two or more chemically distinct and
insoluble phases whose properties and structural performance is superior to those of the
constituents acting independently. Plastics, for example, possess mechanical properties
(particularly strength, stiffness, and creep resistance) that are generally inferior to those
of metals and alloys. These properties can be improved by embedding reinforced
plastics. Reinforcements improve the strength, stiffness, and creep-resistance of plastics
- and their strength-to-weight and stiffness-to-weight ratios. Composite materials have
found increasingly wider applications in aircraft, automobiles, boats, ladders, and
sporting goods. Metals and ceramics also can be embedded with fibers or particles to
improve their properties. Reinforced plastics consist of fibers (the discontinuous or
dispersed phase) in a plastic matrix (the continuous phase). Commonly used fibers are
glass, graphite, aramids, and boron. These fibers are strong and stiff, and have high
specific strength (strength-to-weight ratio) and specific modulus (stiffness-to-weight
ratio). However, they are generally brittle and abrasive and lack toughness. Thus fibers,
by themselves, have little structural valuve. The plastic matrix is less strong and less stiff
but tougher than the fibers. Thus reinforced plastics combine the advantages of each of
the two constituents. When more than one type of fiber is used in a reinforced plastic,
the composite is called a hybrid, which generally has better properties yet. In addition to
high specific strength and specific modulus, reinforced plastic structures have improved
fatigue resistance, greater toughness, and higher creep-resistance than unreinforced
plastics, These structures are relatively easy to design, fabricate, and repair. The
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percentage of fibers (by volume) in reinforced plastics usually ranges between 10
percent and 60 percent. Practically, the average distances between adjacent fibers or
particles limit the percentage of fiber in a matrix. The highest practical fiber content is
65 percent; higher percentages generally result in diminished structural properties.

Fiber

€ Matrix

Figure 1.1 A single fiber surrounded by its matrix shell

The properties of reinforced plastics depend on the kind, shape, and orientation of the
reinforcing material, the length of the fibers, and the volume fraction (percentage) of the
reinforcing material. Short fibers are less effective than long fibers, and their properties
are strongly influenced by time and temperature. Long fibers transmit the load through
the matrix better and thus are commonly used in critical applications, particularly at
elevated temperatures, Fiber reinforcement also affects the physical and other properties
of composites. These include thermal conductivity and thermal expansion, electrical
resistance, creep resistance and wear resistance, as well as endurance limit. A critical
factor in reinforced plastics is the strength of the bond between the fiber and the polymer
matrix, since the load is transmitted through the fiber-matrix interface. Weak bonding
causes fiber pullout and delamination of the structure, particularly under adverse
environmental conditions. Poor bonding in composites is analogous to a brick structure
with poor bonding between the bricks and the mortar. Bonding can be improved by
special surface treatments for better adhesion at the interface, such as coatings and the
use of coupling agents. Generally, the greatest stiffness and strength in reinforced
plastics is obtained when the fibers are aligned in the direction of the tension force. This
composite, of course, is highly anisotropic. As a result, other properties of the
composite, such as stiffness, creep resistance, thermal and electrical conductivity, and
thermal expansion, are also amisotropic. The transverse properties of such a
unidirectionally reinforced structure are much lower than the longitudinal. This is
evident when one can easily split a fiber-reinforced packaging tape but finds it difficult
to pull on it (tension). For a specific service condition (for example in thin-walled,
pressurized vessels), a reinforced plastic part can be given an optimal configuration by
crisscrossing the fibers in the matrix. Reinforced plastics may also be made with
various other materials and shapes of the polymer matrix in order to impart specific
properties, such as permeability and dimensional stability, as well as making processing
easier and reducing costs.
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1.2.1 A Brief Overview of Composites

In recent years there has been a rapid growth in the use of fiber-reinforced composites.
As it is becoming increasingly likely that engineers and designers will at some stage
have to become involved in the design of components made from fiber composites it
is important that they should have an appreciation of the stages in the design process.
The major advantages of such materials are that high strength and stiffness can be
achieved at low weight. Products that have benefited from the use of composites
include aircraft, ships, automobiles, chemical vessels and sporting goods. In these
industries the base material is usually metal or plastic and the fiber used include glass,
carbon, aramid (“Kevlar’), boron and asbestos. In some cases short (“chopped™)
fibers are used and this provides a significant property enhancement over base resin.
However, by far the greatest improvement in properties is observed if the fibers are
continuous, for example, if unidirectional {same direction) carbon fibers are added to
epoxy resin. The modulus of the resulting composite is improved by a factor of about
60 and the strength by a factor of about 30 compared with the unreinforced base resin.
However, the composite is markedly anisotropic in that in the direction perpendicular
to the fiber axis the modulus is only improved by a factor of about 2 and the strength
is likely to be reduced. Therefore, in the aircraft industry, for example, in order to get
property enhancement in all the required directions within the component, it is normal
practice to build up a laminate structure where each layer has fibers arranged in the
desired direction. There are various forms of fiber arrangement in composites; (a) a
square fiber arrays, hexagonal fiber arrays, random fiber arrays, and so on. A square
array, for example, will have symmetry plane parallel to the fibers as well as
perpendicular to them. Such a material is an orthotropic material (three mutually
perpendicular planes of symmetry) and possesses nine independent elastic constants.
Hexagonal and random arrays of aligned fibers are transversely isotropic and have
five independent elastic constants. There are two Poisson ratios: one gives the
transverse strain caused by an axially applied stress and the other gives the axial strain
caused by a transversely applied stress. The two are not independent but are related.
Thus, the number of independent elastic constants for a transversely isotropic
composite is five.

1.2.2 Reinforcing fiber

Fibers are classified as short or long; both also called chopped fibers. Short fibers
generally have an aspect ratio between 20 and 60 and long fibers between 200 and 500.
In addition to the discrete fibers, reinforcements in composites may be in the form of
continuous roving (slightly twisted strand of fibers), yarn (twisted strand), woven fabric
(similar to cloth), and mars of various combinations. Reinforcing elements may also be
in the form of particles and flakes. Some of the more common fibers are;

Glass: Glass fibers are the most widely used and least expensive of all fibers. The
composite matenal is called glass-fiber reinforced plastic {(GFRP) and may contain
between 30 percent and 60 percent glass fibers by volume. There are two principal
types of glass fibers: (1) the E type, a borosilicate glass, which is used most; and (2) the
S type, a magnesia-alumina-silicate glass, which has higher strength and stiffness and is
more expensive.

Graphite: Although more expensive than glass, graphite fibers have a
combination of low density, high strength, and high stiffness. The product is called
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carbon fiber reinforced plastic (CFRP). All graphite fibers are made by pyrolysis of
organic precursors, commonly polyacrylonitrile (PAN) because of its low cost. Rayon
and pitch (the residue from catalytic crackers in petroleum refining) can also be used as
precursors. Pyrolysis is the term for inducing chemical changes by heat, such as burning
a length of yam, which becomes carbon and black in colour. The temperatures for
carbonizing range up to about 3000°C. The difference between carbon and graphite,
although the words are often used interchangeably, depends on the temperature of
pyrolysis and the purity of the material. Carbon fibers are generally 93-95 percent
carbon, and graphite fibers are usually more than 99 percent carbon.

Aramids: Marketed under the trade name Kevlar, aramids are the toughest fibers
available and have the highest specific strength of any fiber. They can undergo some
plastic deformation before fracture and thus have higher toughness than brittle fibers.
However, aramids absorb moisture, which reduces their properties and complicates their
application.

Boron: Boron fibers consist of boron deposited (by chemical vapour-deposition
techniques) on tungsten fibers, although boron can also be deposited on carbon fibers.
These fibers have favourable properties, such as high strength and stiffness in tension
and compression and resistance to high temperatures. However, because of the use of
tungsten, they have high density and are expensive, thus increasing the cost and weight
of the reinforced plastic component.

Other fibers: Other fibers that are being used are nylon, silicon carbide, silicon
nitride, aluminum oxide, sapphire, steel, tungsten, molybdenum, boron carbide, boron
nitride, and tantalum. Whiskers are also used as reinforcing fibers. They are tiny
needlelike single crystals that grow to luym to 10pm in diameter and have aspect ratios
(length to diameter) ranging from 100 to 15 000. Because of their small size, either they
are free of imperfections or the imperfections they contain do not significantly affect
their strength, which approaches the theoretical strength of the material. The mean
diameter of fibers used in reinforced plastics is usually less than 0.01mm. The fibers are
very strong and rigid in tension. The reason is that the molecules are oriented in the
longitudinal direction, and their cross-sections are so small that the probability 1s low
that any defects exist in the fiber. Glass fibers, for example, can have tensile strengths
as high as 4600MPa, whereas the strength of glass in bulk form is much lower. So glass
fibers are stronger than steel.

1.2.3 Matrix material

The matrix in reinforced plastics has three functions:

» Support and transfer the stresses to the fibers, which carry most of the load.

» Protect the fiber against physical damage and the environment

» Prevents propagation of cracks in the composite by virtue of the ductility and
toughness of the matrix

Matrix materials are usually epoxy, polyester, phenolic, fluorocarbon, polyethersulfone,
and silicon. The most used are epoxies (80 percent of all reinforced plastics) and
polyesters, which are less expensive than epoxies. Polyimides, which resist exposure to
temperatures in excess of 300° C, are being developed for use with graphite fibers.
Some thermoplastics, such as polyetheretherketone, are also being developed as matrix
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materials. They generally have higher toughness than thermosets, but their resistance to
temperature is low, being limited to 100-200° C.

1.2.4 Other composites

New developments in composite materials are continually taking place, with a wide
range and form of polymeric, metallic, and ceramic materials being used both as fibers
and as matrix materials. Research and development activities in this area are concerned
with improving strength, toughness, stiffness, resistance to high temperatures, and
reliability in service.

Metal-matrix composites The advantage of a metal matrix over a polymer matrix
is its higher resistance to elevated temperatures and higher ductility and toughness. The
limitations are higher density and greater difficulty in processing components. Matrix
materials in these composites are usually aluminum, aluminum-lithium, magnesium,
and titanium, although other metals are also being investigated. Fiber materials are
graphite, aluminum oxide, silicon carbide, and boron, with beryllium and tungsten as
other possibilities. Metal-matrix composites are used for structural tubular supports in
the space shutters. Other applications include bicycle frames and sporting goods.

Ceramic-matrix composite Ceramic-matrix composites are another important
development in engineering materials because of their resistance to high temperatures
and corrosive environments. Ceramics are strong and stiff, resist high temperatures, but
lack toughness. New matrix materials that retain their strength to 1700°C are silicon
carbide, silicon nitride, aluminum oxide, and mullite (a compound of aluminum, silicon,
and oxygen). Present applications for ceramic-matrix composites are in jet and
automotive engines, deep-sea mining equipment, pressure vessels, and various structural
components. Composites may also consist of coatings of various kinds of base metals
or substrates. Examples are plating of aluminum and other metals over plastics for
decorative purposes and enamels. Composites are also made into cutting tools and dies,
such as cemented carbides, usually tungsten carbide and titanium carbide, with cobalt
and nickel, respectively as a binder. Yet other composites are grinding wheels made of
aluminum oxide, silicon carbide, diamond, or cubic boron nitride abrasive particles, held
together with vartous organic, inorganic, or metallic binders.

Honeycomb structure and similar sandwich, or laminate, structures are another
form of composites having high strength and specific stiffness. The structure consists
basically of a core of honeycomb or other corrugated shapes bonded to two thin outer
skins, The simplest example is the corrugated cardboard, which has a high stiffness-to-
weight ratio and is used extensively in packaging for consumer and industrial goods.
Because of their lightweight and high resistance to bending forces, honeycombs
structures are used for aircraft and aerospace components, as wel! as in buildings and
transportation equipment. The core in the honeycomb can be filled with fiberglass, or
similar batting materials, which serve as sound- and vibration-absorbing media, thus
reducing engine noise levels in the fuselage.
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1.3 Background on Buckling

If an axially loaded column is purposely bent and the compressive load is then
gradually decreased until the column becomes perfectly straight, the load at this point
is the limiting load that the column can carry without buckling. This load is known as
the critical load, crippling load, buckling load or failing load. Also, a short and
stocky column that is axially loaded does not tend to bend sideways, while a long and
slender column will buckle and collapse under an axial compressive load less than
that which will cause crushing in a short column of the same material and cross-
sectional area. This could be due to the fact that the column is not straight prior to
loading, the load is applied eccentrically, and that the material of the column is not
homogeneous. These are termed imperfections. Buckling analysis follows three
general procedures. The first one is the determination of nonlinear equilibrium
equation. The second one is the stability analysis to determine the existence of the
bifurcation point on the equilibrium paths. The third procedure studies the post-
buckling behaviour of the structure under consideration. The formulation for the
equilibrium equations will be done using the Stationary Potential Energy criterion and
the stability analysis will be done using the Minimum Potential Energy criterion.

1.3.1 Buckling of Structures

For thin wall structures the membrane stiffness is generally several orders of
magnitude greater than the bending stiffness. A thin wall structure can absorb a great
deal of membrane strain energy without deforming too much. It must deform much
more in order to absorb an equivalent amount of bending strain energy. If the
structure is loaded in such a way that most of its strain energy is in the form of
membrane compression, and if there is a way that this stored-up membrane energy
can be converted into bending energy, the plate may fail rather dramatically in a
process called “buckling”, as it exchanges its membrane energy for bending energy.
The way in which buckling occurs depends on how the structure is loaded and on its
geometrical and material properties. The prebuckling process is often non-linear if
there is a reasonably large percentage of bending energy being stored in the structure
throughout the loading history. According to the percentage of bending energy, the
two basic ways in which a conservative elastic system may lose its stability are non-
linear collapse (snap-through) and bifurcation buckling. Non-linear collapse is
predicted by means of a non-linear analysis. The stiffness of the structure or slope of
the load-deflection curve decreases with increasing load. At the collapse load the
load-deflection curve has zero slope and, if the load is maintained as the structure
deforms, failure is ofien called snap-through, a term derived from the many early tests
and theoretical models of shallow arches, caps and cones [28]. These very non-linear
systems initially deform slowly with increasing load. As the load approaches the
maximum value, the rate of deformation increases until, reaching a status of neutral
equilibrium in which the average curvature is almost zero, these shallow structures
subsequently “snap-through™ to a post buckled state which resembles the original
structure in an inverted form. On the other hand *bifurcation buckling” refers to a
different kind of failure, the onset of which is predicted by means of an eigenvalue
analysis. At the buckling load, or bifurcation point on the load-deflection path, the
deformation begins to grow in a new pattern that is quite different from the
prebuckling pattern. Failure, or unbounded growth of this new deflection mode,
occurs if the post-bifurcation load-deflection curve has a negative slope and the
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applied load is independent of the deformation amplitude. In this study, the
discussion is restricted to those structures that lose their stability through bifurcation.

1.3.2 C(lassical Buckling Analysis

Buckling analysis is fundamentally a subtopic of nonlinear rather than linear
mechanics [6]. Also, this analysis is essentially an eigenvalue analysis where the
central question is, ”Assuming that the steady-state solution of the system is known, is
there another solution into which the system could bifurcate if it were slightly
perturbed from its equilibrium position?” (Bath, 1996). The essence of buckling is a
disproportionate increase in displacement resulting from small increase in load. The
treatment in this work considers the geometric nonlinearity where the nonlinearity
enters the theory in expressions representing the influence of rotation of structural
elements on the behaviour of the structure. The stresses and strains are assumed to
obey Hooke’s law.

Classical eigenvalue buckling analysis is often used to estimate the critical (buckling)
load of “stiff structures. “Stiff” structures are those that carry design loads primarily
by axial or membrane action, rather than by bending action. Their response usually
involves very little deformation prior to buckling. In the finite element context, the
classical eigenvalue-buckling problem may be stated as follows; Given a structure
with an elastic stiffness matrix, K, a loading pattern defined by the vector {N}, and an
initial stress and loading stiffness matrix, K¢, find load multipliers (eigenvalues), A,
and buckling modes shapes (eigenvectors), a, which satisfy [K + AK;}{a} = 0. The
critical buckling loads are then given by AN. Usually only the smallest load multiplier
and its associated mode shape are of interest.

In static analysis of structures, two phenomena are generally investigated in
connection with buckling; these are collapse at the maximum point in a load versus
deflection curve and bifurcation buckling. Fig. 1.3.1 illustrates an axially compressed
cylinder that deformed approximately axisymmetrically along the path OA until a
maximum or limit load Ar is reached at point A. The reduction in axial stiffness may
relieve the axial load A. If this does not happen, the perfect cylinder will fail at this
limit load, following either the path ABC along which it continues to deform
axisymmetrically, or some other path ABD along which it first deforms
axisymmetrically from A to B and then nonaxisymmetrically form B to D.
Snapthrough or limit point buckling occurs at point A, and bifurcation buckling at
point B. The equilibrium path OABC corresponding to the axisymmetrical mode of
deformation is called fundamental path, and the postbifurcation equilibrium path BD,
corresponding to the nonaxisymmetrical mode of deformation, is called the secondary
path. Buckling of either type may occur at loads for which some or all of the
structural material has been stressed beyond its proportional limit. The example in
Fig.1.3.1 is somewhat unusual in that the bifurcation point B is shown (o occur after
the collapse point has been reached. In this particular case, therefore, bifurcation
buckling is of less engineering significance than axisymmetric collapse.
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Figure 1.3.1 Load/end-shortening curves with collapse load A, bifurcation point B and postbifurcation
equilibrium path BD [7].

Fig 1.3.2(a) illustrates 2 more commonly occurring situation where the bifurcation
point B is between O and A. If the fundamental path OAC corresponds to
axisymmetrical deformation and BD to nonaxisymmetrical deformation, then initial
failure of the structure would generally be characterised by rapidly growing
nonaxisymmetrical deformations. In this case, the collapse load of the perfect
structure Ay is of less engineering significance than the bifurcation point, Ac. In the
case of real structures that contain unavoidable imperfections, there is no such thing
as bifurcation buckling. The actual structure will follow a fundamental path OEF,
with the failure corresponding to ‘snapthrough’ at point E at the collapse load As.
However, the bifurcation buckling analytical model is valid in that it is convenient
and often leads to a good approximation of the actual failure and mode, particularly in
cases involving much prebifurcation symmetry. Fig. 1.3.2(a) thus illustrates the
general non-linear approach in which the computations involve essentially a
‘prebuckling’ analysis, or a determination of the unique equilibrium states along the
fundamental path OEF. On the other hand Fig. 1.3.2(b) depicts the asymptotic
approach in which the prebuckling state is usually statically determinate.
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Figure 1.3.2(a) General non-linear analysis Figure 1.3.2(b) Asymptotic analysis

In laminated composites, failure of one layer does not necessarily imply failure of the
entire laminate; the laminate may, in fact, be capable of sustaining higher loads
despite a significant change in stiffness. An analogy to this phenomenon is the ability
of an in-plane loaded plate to carry loads higher than the buckling load, but at an
increase in the amount of deformation per unit of load (a decreased stiffness) as in
Figure 1.3.3(a) and 1.3.3(b) below.

Buckled

Buckling Ny

e
Flat

A

Figure 1.3.3({a) Plate Joad-deformation behaviour
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Figure 1.3.3(b) Laminate load-deformation behaviour

All strength theories for composite materials depend on the strength in the principal
material directions, which likely do not coincide with principal stress direction.
Therefore, the strength of each lamina in a {aminate must be assessed in a co-ordinate
system that is likely different from those of its neighbouring laminae. This co-
ordinate mismatch is but one of the complications that characterises even a
macroscopic strength theory. The main factors that are peculiar to laminate strength
analysis are:

laminae strength

laminae stiffnesses

laminae coefficient of thermal expansion

faminae orientations

laminae thicknesses

stacking sequence

curing temperature

The thermomechanical properties, thicknesses, and orientations are important in
determining the directional characteristics of strength. The stacking sequence affects
the bending and coupling stiffnesses and hence the strengths of the laminate. The
curing temperature, or operating versus curing temperature, influences the residual
stresses that are developed upon cool-down of the laminate from stress-free elevated
temperature curing cycle. In general, if the operating or service temperature is
different from the curing temperature, thermal stresses will arise; whether they are
called thermal stresses or residual stresses is partly a matter of convenience, but is
mainly semantics.

e & ¢ & o 0 @
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1.4 Choice of Mindlin Plate Element

A plate, though three-dimensional in nature, has the thickness which is much smaller
than other dimensions and a three-dimensional analysis would not only be costly but
may also lead to equations that are ill-conditioned and difficult to deal with. To make
these simplifications, Kirchhoff formulated what is refereed to as the Classical Plate
Theory (CPL) with the following assumptions
e straight lines normal to the mid-surface remain straight and normal after

deformation,

the displacement gradients are small,

the length of a normal remains unchanged, and

the transverse normal stress is small and it can be neglected.

The analysis of composite structures may take two forms; one is the study of the
relationship between the fibre and the matrix at a microscopic level, the
micromechanics of the composite, the other is the general behaviour of the entire
composite, the macromechanics of the composite.

The classical plate theory does not account for transverse normal and shear deformation
but was found to work well with phenomenon such as debonding, delamination and
could predict the relationship between the individual layers in a composite. On the
other hand Mindlin and Reissner formulated a thick plate theory, normally refereed to
as the first-order shear deformation theory (SFDT). This theory removes the
normality assumption in Kirchhoff's theory. This means that a straight and normal
line does remain straight after deformation, but not necessarily normal. [Instead it
rotates about an angle according to the application of the load. Consequently excellent
results for global response characteristics, such as displacements, natural frequencies and
buckling loads are obtained (Wung et al' 1991). But this theory yields poor results for
the interlaminar shear stresses. The interlaminar shear stresses obtained from FSDT
through the constitutive relations are discontinuous across the laminar interfaces. Thus
these results cannot satisfy the lamina interface continuity conditions and the equilibrium
conditions, which are the major sources of layer debonding/delamination [32].

Therefore to conduct an analysis such as buckling the Mindlin/Reissner theory must
be used. The assumptions made by the first-order shear deformation theory then
reduce the three-dimenstonal nature of the plate into a two-dimensional analysis with
references made to the midplane. With FSDT, thermal buckling of composite plates
can then be formulated. Though this theory yields poor results for the interlaminar
shear stress than the classical plate theory, the main concem of this work is the global
response of the composite laminates to the thermal loads applied to them.



Chapter 2
Fundamentals of Elasticity

2.1 Introduction

According to the theory of elasticity, there are nine stress components acting on the
front faces of an elemental cube. A stress component o represents the force per unit
area in the i direction on the face whose normal is the j direction. Rotational
equilibrium requires that ¢; = o ; and this leaves six stress components in whichi=j

are the normal stresses while i # j are the shear stresses. The most generalized form of
the linear relations between the components of stress and the components of strain,
generally known as Hooke’s law, can be written in a tensor form as

o, = Cijldald (2.1}
where o, is the stress components and g, the strain components. C,; represents the
material properties. In the formulation of elastic behaviour of plates, we denote the
material coordinates of a point in the undeformed reference configuration by

X = (X, X3, X3)

In the deformed configuration the spatial coordinates of the point become

E£=(%,&:,85)

2.2 Definition of stress

The body-force distribution, which may be represented as a function of position and
time, is denoted as F(x,, X,, ¥,,t) and as an intensity function, it is generally evaluated
per unit volume of the material acted on. The surface traction, the force distribution
that is applied at the boundanies directly from the material outside the domain, are
denoted as T(x,, X;, X;,t). These are also intensity functions and are given on the basis
of per unit area. Considering a vanishingly small rectangular parallelepiped taken at
some time t from a continuum and using the superscript to identify the surfaces, the
traction vector may be written as

Ti('](xl,xz,)(},t)

where, for example, the Cartesian components of the vector T are T,\", T,*, T,".
The stress components can be represented by employing ¢ and t in place of T and
moving the superscript down to be the first subscript while deleting the enclosing
parenthesis. In general then, we have
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O3 ={Tn On TIx 2.2)

where the terms in the main diagonal are called normal stresses, since the force
intensity corresponding to these stresses are normal to the surface, while the off-
diagonal terms are the shear stresses. Knowing o; for a set of axes, that is, for the
three orthogonal interfaces at a point, a stress vector T can be determined for an
interface at a point having any direction whatever. Thus

(v} _
T )“’ij"j

where v; can be considered to give the direction cosines of the unit normal of the
interface on which the traction force is desired. o, can be shown to form a symmetric
array [14], that is

The equation of motion for an element of mass dm at any point P can be found by
considering Newton’s law:

df =dmV

where df is the sum of the total traction force on the element and the total body force

on the element and V the acceleration. Integrating the above over some arbitrary
spatial domain Q and a boundary surface I, it can be noted as a result of Newton’s
third law that only traction on the boundary surface do not cancel out so that

f Tar + [[[ ra = [[] Veaa 2.3)

where p is the density of the element. Employing equation T = o, v, to replace the
stress vector T by stresses, we obtain

‘ﬁ“iﬁ"’jdr"' .ULFidQ; H.Lvif’dg (2.4)

By employing Gauss divergent theorem for the first integral and collecting terms on
integral, we get

Iﬂ;{ciij +F - V;P}iQ =0 (2.5)

Since the domain Q is arbitrary, it can be concluded that at any point the following
must hold
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o, +F =pV, (2.6)
which is the desired equation of motion.

2.3 Differential equations of motion of 2 deformed body

In deriving differential equations' of motion (differential equations of equilibrium if
the body has zero acceleration), the form of the equation depends on the type of
orthogonal coordinate axes employed. For small displacements’, which are the only
considerations in this study, no distinction is made between coordinate axes in the
deformed state and in the undeformed state. Hence the rectangular’ coordinate axes
(x.y,z) whose directions are parallel to the edge of the deformed volume element. In a
box-shaped element discussed previously, six cutting planes are imagined to bound
the volume element. In general, the state of stress changes with the location of a
point. In particular, the stress components undergo changes from one face of the
volume to another face. Body forces (F,, F,, F,) are included in the formulation. Each
stress component must be multiplied by the area on which it acts and each body force
must be multiplied by the volume of the element since (F,, F,, F,) have dimensions of
force per unit volume. The equations of motion for the volume element are obtained
by summation of forces and summation of moments. Summation of forces in the x- y-

and z-directions, respectively, gives

do_ Ot ot

ax"-t- a;’+(,;+l‘;=0

o, ot Or,

a;+a:+ ~+F, =0

%, Fa, Tn F, =0 2
2 T ex Loy T (2.7)

where 1 =1, ,and 1,, = 1, and F,, F, and F, are the components of body force per
unit volume including inertial forces.

2.4 Definition of strain

If we express the undeformed configuration with reference x; and the deformed
configuration with £, a one-to-one mapping is expected, that is, for some
deformation®;

! These equations are necded when the theory of clasticity is used to derive load-stress and load-deflection relations for a

member.

2 Additional equilibrium equations of compatibility are needed for the method of theory of elasticity. The derivation employs
small displacement approximations and the sssociated strain-displacement mlations, which form the basis of plate
formulation.

? In other situations it is necessary to use the general form of the differential equations 1o accommodate other cootdinate
systems, for example, the cylindnical, the spherical, and so on.

* For this deformation x, = u, X, = v, X, = W
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& = &i(x1, Xz, X3)

A unique inverse to this expression 1S expected to be of the form

X = X(&p, €2, €3)

By expressing the differentials dx; and d&; using the above, the measure of
deformation of a line segment ds to ds” is found to be

(@) - (@)’ = 2€,dxdx
(@) - (ds)’ = 2n,dEdE;

where the Green’s strain tensor €;;, expressed as a function of the coordinates in the
undeformed state - that is, the so-called Lagrange coordinates, and the Almansi
measure of strain [14] n;, formulated as a function of the coordinates for the
deformed state- the so-called Eulerian coordinates, are

BBy s
G‘-j--z{aXi axj 8”} (2.8)

1. ox, ox,
=] 5 -k 2.9
nu 2( [}3 &i aéj) ( )

where §; is the Kronecker delta.
Introducing the displacement field u;, defined such that

=g -x

the following deformation gradient relation can be written in terms of this equation

a’fi =8;j—aui (2.10)
agi aﬁj '
&, o,

LY (2.11)
&x; ox, °

Substituting these into Equations (2.8) and (2.9) we obtain

1f &u, aui fu, u,
L —— b + .
’ 2(6.\(} ox, &, o, 212

m
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Tlij :l{a‘ll +aul ___au'k auk} (2_13)
208, o O &;

where €; are referred to the initial undeformed geometry and n; are referred to the
deformed or instantaneous geometry of the body.

A restriction to infinitesimal strain, wherein the derivatives of the displacement
components are small compared to unity, and neglecting the product of the derivatives
of displacement components in Equations (2.12) and (2.13), the following formulation
for strain is obtained

€=My =% +7T—
"2 ox; 0ox

= %(U;,j + “j,i) (2.14)

[=3
XX Xy Xz
eij: ny eyy yz (2.]53)
L= ezy €,
or
1 1
lex 7 Txy ?'hcz
gi=drx 5y 1y (2.15b)

1
M Ty 2
where the y; are the engineering shear strains.

Apart from stretching, a vanishingly small line element, considering the complete
mutual relative motion of its endpoints, has the rotation tensor defined by

=1
05 = i(ui,j - “,-,i) (2.16)
where o; is a skew-symmetric tensor.

Thus the complete representation of a parallelepiped undergoing both deformation and
rotation is given as

=€, +0, 217
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2.5 Intreduction of thermal stresses

The stresses can be written in terms of strains as follows

o, = Ae +2Ge,

o, =Xe +2Ge,

c,=ie +2Ge, (2.18a)
where

A= VB ,e=¢g,+¢g, +g, E=Young’s modulus, and G = shear modulus.
(1+v)1-2v)

In index notation this can be written as
o; = Ae + 2Gg; (2.18b)

One method of solution of the problems of elasticity is to eliminate the stress
components from Equation (2.18) and the surface forces

Fxy=o,l+1, m+1,,0

F,=c m+1, n+71,l

F.=on+1 l+1, m (2.19)

where |, m, and n are the direction cosines of the external normal to the surface of the
body at the point under consideration. This elimination can be done using Hooke’s
law and expressing the strain components in terms of displacements by using the
strain-displacement relations. In this manner three equations of equilibrium
containing only the three unknown functions u, v, w are arrived at, that is

~

(l+G)§-+GV2u+F, =0
(r +G)~:§+(}V2u+1=y =0

-

(L+G) =+ GV?wW+F, =0
CZ

-

2.20)

where
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a! 62 62
V= PR Y o

The differential equations of equilibrium in terms of displacement can be extended to
cover thermal stress and strain where thermal stresses are defined as

a.ET
G. =1

1 1-v

where o are the coefficient of thermal expansion. The thermal strain are defined as

g =oT

such that Equation (2.20) becomes

aF or

1-2v ox,

(JLWL(})‘:_%qui +F - =0 (i=123) .21

and the displacements u, produced by the temperature change T are the same as the
displacement produced by the body forces

F = oE ﬂ
P12 B,

and normal tension (or hydrostatic pressure)

a.ET

i=—-1—~2v

(3]

are distributed over the surface and proportional at each point to the temperature
change at that point. Thus, the total stress produced by nonuniform heating is
obtained by superposing hydrostatic pressure on the stresses produced by body forces
and surface forces.

Whether strain due to nonuniform heating are suppressed, the same conclusion may be
reached and the equilibrium Equation (2.20) must be satisfied [14]

cl=—"""7-1 (i=)=123) and (1=Ilmn)



Chapter 3
Mindlin Plate Formulation

3.1 Analytical Structure of Mindlin Plate

In the development that follows, u, v and w denote x, y and z components of
displacement respectively, and the midplane coincides with the xy-plane. Mindlin
plate theory is an assumed strain theory, which offers an altermnative to the classical
Kirchhoff thin plate theory because in this theory it is possible to allow transverse
shear deformation. It is a two dimensional equivalent of Timoshenko beam theory
[34]. The motion of a point not on the midsurface is not governed by slopes wy and
w,y as in Kirchhoff theory. Rather, its motion depends on rotations 64 and 8, of the
lines that were normal to the midsurface of the undeformed plate. This theory is
therefore suitable to the analysis of thick, composite, and sandwich plates. The main

assumptions are

e displacements are small compared with the plate thickness.
s the stress normal to the midsurface of the plate is negligible.

e normals to the midsurface before deformation remain straight but not necessarily
normal to the midsurface after deformation.

It is further assumed that the original cross-section has, after deformation, rotated
through an angle 0, where 0 is a vector rotation about a given axis. The govemning
equations are assumed to be the strain-displacement equation, the stress-strain
relations, and the equilibrium equation. This results in a five-variable model with u,
v, 8,, 8, and w, such that the total deformation field is defined as

u(x, ¥, z) = ug(X, y) - z0x(X, ¥)
VX, ¥, 2) = vo(X, ¥) - Z0(X, ¥)

WX, y, 2} = Wo(X, y) (3.1)

where ug, vy and wy are the displacements of the reference surface in the x, y and z
direction, respectively, and 0,, 6, are the rotations of the transverse normal about the y
and x axes in the xz- and yz-planes. The co-ordinate frame is chosen in such a way
that the xy-plane coincides with the midplane of the plate. This is shown in Figure
3.1. B, and 6, are small angles of rotation.
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Figure 3.1 Differential element of a plate; (a) before loading, {b) after loading

During the buckling process the incremental displacement components of u, v and w
are measured from the configuration immediately prior to buckling and the co-
ordinate frame is chosen in such a way that the xy-plane coincides with the midplane

of the plate.

3.2 Definition of Strains

Firstly we let u, v, w be the displacement components at any point in the plate, and
u, v, w be the comresponding middle-plane quantities, with the subscript “y” being
dropped from Eq. (3.1). These quantities are related as follows

u=u+z9, v=u+z, w=w
where @, =-w_, and ¢, =-w  are rotations relative to the y and x coordinate
directions, respectively

The intermediate class of deformation is defined by the limitations that the strains be
small compared with unity, the rotations relative to the X and y directions moderately
small, and rotations relative to the z direction negligibly small. The following
mechanical strains are then defined for the plate:

Ex =&, +ng,x Er =€ +29” ;rr =Tw +2Z(B!J +9!—*)

Y = ‘\;.y _9,
while the thermal strains are defined as
g, =a, AT g, =a,AT £, =, AT Yoy = 2a, AT.

ci; are the coefficients of thermal expansion and AT is the change in temperature. The
thermal strains are known to oppose the mechanical strains. In matrix we have;

{E}:(a! €, yv)r-i-z(x, K, n“)T—(a‘ a, a“)TAT
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fy=(. 7..) =(: :g’J (3.3)

k. x, xof=0.. 8, 0,+6,) (3.4)

Ex, By, Yay > ?ﬂ and ¥ L are extensional and shearing strains at any point through the

plate thickness and €, €, and yxy denote the corresponding quantities at points on the
plate middle plane only. “,” and “,” represent partial differentiation with respect to x
and y. The deformation field can also be written in the following form

g, =g+zk =L _u+zLu er=L,u (3.5)

where the indices “m”, “b”, and “s” stand for membrane, bending and shear
respectively. & = {&, &, e,‘,,}T and & = {gy, sn}T contain the in-plane and
transversal strain components respectively. u = {u, v, 0, 8,, w} is the displacement
vector, € = {uy , Vy , (uy + v )}T and x = {84, Oy, , By + 0,,)}" are the
deformation vectors in the reference surface. (, denotes differentiation with respect
to a) The matrices L are given in Section 3.4.

3.3 Stress Resultants in a Plate

A flat plate, like a straight beam, supports transverse loads by bending. The stresses
may act on the cross-sections of the plate whose material is homogencous and linearly
elastic. Normal stresses o, and o, vary linearly with z and are associated with
bending moments M, and M,. Shear stress 1,y also varies linearly with z and is
associated with twisting moment M,y. Normal stress o, is considered negligible in
comparison with oy, oy, and Ty. Transverse shear stresses 1y, and tx vary
quadratically with z. In general, “plate bending means that external loads have no
components parallel to the xy-plane and that ox = oy = 14, = 0. Except for stress T4y,
the foregoing stress patterns are a direct extension of beam theory from one dimension
to two. The stress resultants and the moment resultants can be obtained by the
integration of stress over the thickness h. They are positive in the same directions as
the corresponding stress components and they give the total force per unit length
acting at the midplane. In addition to that, there are moments applied at the midplane,
which are equivalent to the moments produced by the stresses with respect to the
midplane. There are also forces per unit length. All these are defined as

N = (NN, N )= (oo, iz (3.6)
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M) = (MMM, )= [ (o,.0,.5, oz G.7)
Vit =(v,.v,) = _[i(tu,tyz)dz (3.8)

The M’s are moments per unit length and the V’s are forces per unit length. Stresses
Ox, Oy, and Tyy are largest at the surfaces z = £ h/2, where they have the respective
magnitudes 6M,/h, 6My/h2, and GM,W/h2 [5]. At arbitrary values of z,

ox = 12M,z/’ oy = 12Myz/h’ Ty = 12M,y2/h’

Transverse shear stresses are usually small in comparison with o,, gy, and 14,. They
have the greatest magnitude at z = 0, where 1,; = 1.5 Q,/h and 1 = 1.5Q,/h. The
membrane stresses oy, Gy, and Tyy are either known a priory or calculated by standard
static stress analysis.

The thermal stress resultants and the thermal moment resultants are defined as

NJ =(N,N,,N, )= f;(cru,c,,,tm Xz (3.9)
™M) =M. M, .M, )= ff;(on,o,,_,r,,,)adz (3.10)

where o and Gy, are thermal stresses in the x and y directions respectively, and 1y, is
the thermal stress in the xy plane.

X

Figure 3.2 Differential element of a flat plate, showing membrane forces

In this theory it can be deduced that w depends only on x and y and that u and v are
linear in z. Thus the main assumptions reduce to

u=[u v, w0, 9,,.]T (.11

in which u and v are in-plane displacements, w is the lateral displacement normal to
the xy-plane. The variables 8, and 0y are the normal rotation in the xz and yz planes.

We note that
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ow ow
0x =§"¢x and ey ="67—¢y

23

(3.12)

where ¢, and ¢, are the rotations of the normal in the xz and yz-planes respectively
and are integrated measures of the transverse shear strain. In thin plate theory it is

assumed that ¢ and ¢, are zero. A typical Mindlin plate is shown in Figure 3.3.

Figure 3.3 Mindlin Plate Rotation

The total stress resultants are

Nx N:x UX ™=~
{N}T = Ny - Nr_v = K/ O',, - 0',), dz
N, N, Ty T

and the total moment resultants can be written as

Mx Mtx cl GB!
IMT={M, |-|M =f o, l-lo, |lzdz
- ¥ ty Y4 y ty

M, M, Ty Txy

The shear forces are given by

vy’ =[§j= )

¥z

(3.13)

(3.14)

(3.15)
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3.4 Differential Governing Equations of Mindlin Plate

The strains are separated into in-plane and transverse shear groups
x=L06 g=-2zL0 y=Vw-0 (3.16)

In addition to normal bending moments, a twisting moment arises. The introduction of
the appropriate constitutive relations enables one to relate all moment components to
displacement derivatives. For isotropic elasticity

M=DL6 (3.17)

where, assuming plane stress behaviour in each layer, D will be the material
properties. The shear force resultants are

S=a(Vw-0) (3.18)
Again for isotropic elasticity
a=a=08Gh (3.19)

The constitutive relations can be generalised to anisotropic or inhomogeneous
behaviour such as can be manifested if several layers of material are assembled to
form a composite. The only apparent difference is the structure of D and a matrices,
which can always be found by simple integration. The equilibrium relations complete
the governing equations for thick and thin plate behaviour. Omitting the in-plane
behaviour, we have

LTM+S=0 | (3.20)
ViS+q=0 (3.21)

These equations are the basis from which the solutions of both thick and thin plates
are formulated. The formulation of a thin plate problem suppresses shear deformation
such that

S=a(Vw-6) (3.22)
Becomes
Vw-8=0 (3.23)

We are now able to write both the mixed and irreducible form of the goveming
equations. We wish to remain with w as the only variable and this we can do by
eliminating M, S and 0. This elimination is done by applying the operator V'. The
result is

(LVYDLVw+q=0 (3.24)

and this is a scalar equation and is irreducible.
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In all the above

r |8 & &
(L) “[6x“ay2’2c?xay]

For constant D this becomes the bihamomnic equation of plate flexure.

12(1-v?)

. (3.25)

Viw=—q

For thick plates any (or all} of the independent variables can be approximated
independently, leading to a mixed formulation. It is convenient to eliminate M and
write the system of three equations

L'TDLO+S=0 (3.26)
Sla+8-Vw=0 3.27)
vVis=-q (3.28)

This equation system can be reduced further to yield an imeducible form by
eliminating shear forces.

L'DLO+a(Vw-6)=0 (3.29)
VT (@) + VT (aVw) = q (3.30)

The operators and matrices are

K= (ex.x 9)',)’ e"'y +9y?,)

M=M, M, M_J

e={e, & 71,J

Vw = ow  ow
ox oy
8=, o)
T
dog
_10x bS]
L= 3 63
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The governing equations of Mindlin plates can be given as
(3 x =0 ) + [,y -0y ), + bpa=0

w.x ~Ox ﬂtﬁ—lgﬁ[(f;ax,x +vyy) 5elxy +eyx)y] 0

D I-v
W’y "ey + E‘é“{[(ﬂ}(,y + VBX,X ),y '_"‘"—2 (OX,Y + ey’x ),X ] = 0
Introducing the following functions
Ox =@x +yy 0, =0y +Vx

the last two equations become
2 I-v D 2 _
W@+ V (p) —( -5 eV 1;1) =1
( ﬁ(}t X M 2 BGI 54

oy D g2 {y_lv D g2 _
(v-or o) (vl v =0

According to the theory of complex analysis, we have
w =¢—E%;V2¢ y-1¥ 5%;"“\? 0

and

V4¢=q

26

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(337

(3.38)
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¢ is referred to as the displacement function, and  is called shear deformation
function. A single governing equation of w can be derived as

Viw = %(1 - B—%—tvz)q (3.39)
Using the stress-strain relations,
‘YXZ Zz
.1=0 =-— (3.40)
Ya"" {Y,J G (TJ
2
where G’ =K’G = ——
12G

and denoting the plate thickness by h and time by t, Mindlin [22] includes the effects
of rotary inertia' with the result that the displacements are expressed as

D[ s ol éwY) ph’ 5%
Zla- - xkGh| 6, + — | =2
o R e (,+ax) wZe

D[ il aw) _ph’ 3’0
5 ._(1 - V)Vzgy + (1 + V)'E-y—- - Kth(ey + —(5)71 = —E-Ezz-

’Gh(Vw + ®)+q = ph%';-‘i (3.41)

0 . . .
where ©= ‘2‘ +2% and V2 is the Laplace’s two dimensional operator. x is a

constant selected to modify the relation between the average transverse shear and
strain. p is the density of the plate.

The constitutive relationships are given in the form

o=De _ (3.42)
where

o=pMy My My vy Vyff

M, and M, are the direcf bending moments and My, is the twisting moment. The

quantities Vy and V, are the shear forces in the xz and yz planes. For isotropic elastic
materiat '

! See Mindtin for a full treatment
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D vD 0 D 0

vD D 0 0 0
(1-v)

D=0 O 5 D O O

0 0 0 S 0

(0 o0 0 0 S

in which for a plate of thickness h

3
D= Eh ;v and S=—%
12(-v?) 1.2

where G is the shear modulus and the factor 1.2 is a shear correction term.

Finally the governing equation for a Mindlin plate, including Equations (3.37), is

p & ph® &* &'w
(V’ ““GTFJ(DVZ “Ral)v M 43

which is a two dimensional analogue of Timoshenko’s beam equation. If the rotatory
inertia terms are omitted and the transverse shear deformation is neglected, equation

(3.43) reduces to

62
DV‘W+ph-a—§Y~ =p (3.44)

which is referred to as the Lagrange’s equation. Mindlin’s theory involves the
modelling (neglect) of the in-plane strain gradient.



Chapter 4

Constitutive Equations of Laminated Composites Plates

4.1 Introduction

A.n anjsotropic body in the most general case has 21 independent elastic constants.
Anisotropic body, on the other hand, has only two independent elastic constants. In
suich abody, when a tensile stress is applied in the z direction, a tensile strain €, results
i that direction. In addition to this, because of the Poisson ratio effect, two equal
compressive strains (g, = €)) result in the x and y directions. In a generally anisotropic
body, the two transverse strains are not equal. In fact, in such a body, tensile loading
can result in tensile as well as shear strains. A composite containing uniaxially
aligned fibers will have a plane of symmetry perpendicular to the fiber direction (that
is, material on one side of the plane will be the mirror image of the material on the
other side). Such a material will have 13 independent elastic constants. Additional
symrmelry elements, depending on the fiber arrangements, can be present.

4.2 Elsstic Constants of a Composite Material

Avs dissussed in Chapter 2, from the theory of elasticity, there are nine stress

components acting on the front faces of an elemental cube. A stress component %;

rezpresents the force per unit area in the i direction on the face whose normal is the j
dirction. Rotational equilibrium requires thato, =o; and this leaves six stress

components in which i = j are the normal stresses while i = j are the shear stresses.
T he xuost generalized form of Hooke’s law can be written in a tensor form as

&, = Coaty (@.1)

which when expanded, will have 81 elastic constants. C;, are the elastic constants or
stiffnesses. In the discussion that follows, C,5, will be represented by C_,.0, by
o and £, by £_ as perthe following procedure

jorkl | 11 §2214 33| 23| 31 12
morn 1 2 3 4 5 6

where4, 5,and 6 now represent the state of shear, this then gives us

Itcanbe shownthat o, =c, . Conversely,
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€, =5_,0,.

where S__, the compliance matrix, is the inverse of the stiffness matrix C_,. In the
expanded form, we get a symmetric matrix, which gives 21 independent elastic
constants in the most general case. For most materials, this number of independent
elastic constants is further reduced because of the various symmetry elements present.
For isotropic materials where elastic properties are independent of direction, only two
constants are independent, that is C;, and C,, (or S,;, and §,;). In practice, use is
frequently made of the elastic constants such as Young’s modulus E, Poisson ratio v,
shear modulus G, and bulk modulus K. However, only two of these are independent
because E, G, v, and K are interrelated by

E=2G(l1+v) and K=E/3(l-2v).
The relationship between these engineering constants and compliances are

1 S
E=— Vz_‘“s_l:"’ G:—%(S“*-Su)

i1 i

and the compliances are refated to the stiffnesses by

Cy
(Cn -Cy XCH + 2C12)

= Cn +Cu
8 (Cu _Cuxcu +2C12)

S Sy =~

4.3 Macromechanics of Composites

A lamina, the unit building block of a composite, can be considered to represent a
state of generalized plane stress. This implies that the through thickness stress
components are zero. Thus, o, = ¢, = 65 = 0, that is, using the rectangular Cartesian
coordinates, o, = 7,, = 7, = 0, and this reduces the expanded form of the elastic
constant matrix even further in that the terms involving the z-axis are eliminated. The
equations thus produced describe the stress-strain relationship for an isotropic lamina,
for example, an aluminum sheet. A fiber-reinforced lamina, however, is not an
isotropic material. It is an orthoropic material; that is, it has three mutually
perpendicular axes of symmetry. A fiber-reinforced lamina generally contains
unidirectionally oriented fibers, and is quite thin (about 0.1mm). These thin laminae
are stacked in a specific order of fiber orientation, cured, and bonded into a laminated
composite. The behaviour of a laminated composite depends on the characteristics
and the directionality of the individual laminae. Three-dimensional orthotropy
requires nine independent elastic constants, while bidimensional orthotropy requires
only four. For an isotropic matenal (two or three-dimensional) two independent
elastic constants are needed. When the terms with indices 16 and 26 are taken as zero,
we get a special case of orthotropy when the principal material axes of symmetry
(fiber direction and the direction transverse to it coincide with the principal loading
direction). However, if the material symmetry axes and the geometry axes do not
coincide, which is a more general case of orthotropy, then a fully populated elastic
constant matrix is obtained. In a generally orthotropic lamina wherein there are
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nonzero 16 and 26 terms, a unidirectional normal stress o, has both normal as well as

shear strains as responses and vice versa: that is. there is a coupling between the
normnal and shear effects. In the case of a specially orthotropic lamina where the 16
and 26 terms are zero, there are normal stresses producing normal strains and shear
stresses producing shear strains and vice versa. In this case there is no coupling
between the normal and shear components. Figure 4.3.1 of the following page shows
a lamina with unidirectional fibers embedded in 2 homogeneous matrix.

Figure 4.3.1 Homogencously orthofropic plate

When the natural {or material) axes coincide with the yeometric axes, the relationship
between the engineering constants (E,, E;, G.. vi. and v;) and the reduced stiffness’
are found to be

E, __E vE.  vE _
Q" = ——‘—!“VV. 0_.: - j“‘V‘V: Qu I’V‘V! e *"V‘V: OM. “'Gh

whiles the relationship between the engineering constants and the compliance are

Sn 1/E; S0 = ”E,!_ S = "\'If{El = V;J’Ez Sia = 1/G,

—

The conventional material constants can be referred to the geometric axes x-y.

4.4 Laminated Composite Plates

Composite structures are fabricated by stacking up thin sheets of unidirectional
composites called plies in an appropriate orentation sequence dictated by elastic
theory. Bonding together two or more laminae makes in particular, laminated fibrous
composites.  The individual unidirectional laminae or plies are oriented in such a
manner that the resulting structural component has the desired mechanical and/or
physical characteristics in different directions. This is shown in Figure 4.4.1. Thus,
one exploits the inherent anisotropy of fibrous composites to design a composite
material having the appropriate properties. The displacements, like in plate analysis,
are presented as u, v, and w in the x, y, and z directions, respectively. The rotations
are also presented as 8, and 6,. For i = j, € represents engineenny shear strain
components equal to twice the tensorial shear components. The assumptions that are
made in analyzing the composite plates are very similar to those made for ordinary
plate analysis. These are:
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¢ The laminate thickness is small compared to its lateral dimensions. This means that
the stresses acting on the interlaminar planes in the interior of the laminate, that is,
away from the free edges, are negligibly small.

e There exists a perfect bond between any two laminae. This implies that the laminae
cannot slide over each other and the displacements across the bond are continuous.
There exists a perfect bond between the matrix and the fibrous material.

There are no empty spaces in the whole laminated composite.

.............................

Fimure 4.4.1 A Imninated compasite plale

With these assumptions the [aminate behaviour can be reduced to a two-dimensional
analysis of the laminate midplane. The coordinate frame is also chosen in such a way
that the xy-plane coincides with the midplane of the plate. Based on the above
postulates, a composite made of n stacked layers or plies. with thickness h and
applying the analysis to the k-th layer, we have a constitutive relationship which will be
formulated as the discussion continues.

In the analysis that foliows, it may be necessary to generalize the case where the
operating temperature of the laminate differs from the temperature at which it was
laminated and cured. Effectively, this means that there are stresses produced owing 1o
the restriction of thermally induced expansion or contraction of a body. These
stresses, unlike in a uniformly heated free-plate which experience normal strains but no
- thermal stress, occur when a plate expeniences a nonuniform temperature field, or if the
displacements are prevented from occurring freely or if the material displays
anisotropic properties. According to the Duhamel-Neumann law [8], the stress-strain
relations of the m-th layer is given by

[o]. = [l (e~ aaT), | (42)

where a1, 0. and oy3 are thermal expansion coefficients in the principal directions.
AT is the temperature rise. The full version of equation (4.2) is given in Appendix C.
In Equation (4.2)

C“.C‘i QIZ = C!‘ - C:qu Q-n = C-w - C:4C34

Q=G - C.. T, =T e e
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Qi = C; st = Css st =Ce

The correspondence between these terms and the usual engineering constants that
might be given for a simple orthotropic layer in a laminate is

E, v,,E v,.E E
Q11 - t Qu — 1242 = H1 sz . 2
1-v,v, I-vyvy 1-vyvy, I=v,vy
Q33 = GlZ st =G|3 Qsé =st

In the derivation of the above equation, the stresses and strains are defined in the
principal directions (1, 2, and 3) for that orthotropic lamina. However, in angle-ply
laminated plates the principal directions of orthotropy of each individual lamina do
not coincide with the geometric coordinate frame. The detailed microstructural nature
(the micromechanical analysis of a thin unidirectional lamina that are used as input to
the macromechanical analysis) is ignored (Figure 4.4.2)

7,

—
o

Figure 4.4.2 A laminated composite plate

It is necessary then to use the transformed reduced stiffness
[U]x-y = [ég kﬁa = rﬁ} ka,- jaT (4.3)

where the thirteen constants 6%3 are related to the nine Q, through the usual
transformation law. This 66 matrix (written in full in Equation B.1.6) is called the
transformed reduced . stiffness matrix because it is obtained by transformingQ

]

(specially orthotropic) to as,- {generally orthotropic) according to

Py=r,nP, (4.4)
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where P; is a second-rank tensor, andr, and r; are the direction cosines. Figure 4.4.3

shows the situation for a unidirectional comp051te lamina where two sets of axes do
not coincide.

7 1

N
///A N

>

Figure 4.43 An off-axis unidirectional lamina

Angle v is positive when the x-y axes are rotated counterclockwise with respect to the
1-2 axes.

The strains are as defined in Chapter 3 and Appendix B gives the transformation of
the stress-strain matrix. Both the stresses and strains are second-rank tensors.

Although aij is a completely filled matrix, only four of its components are

independent: Q,; and Q,, are linear combinations of the other four.

The stress resultants and the moment resultants are obtained by integration of stress
over the thickness h with Equation (4.3) and summing over the number of layers N,
from a particular layer to the k-th layer. Also present are the shear forces. These are

defined as

(N, N, N.,)=Zn:(°x g, fg)ﬁ'_fiz (4.5)
n
(M, M, Mx},)xkzl(cx oy r"Y)il:_fdz (4.6)
(Vx. Vy)zZ(txz T)’z) “dz 4.7
k=1 k-1

These stress resultants, having the dimensions of force per unit length, are positive in
the same directions as the corresponding stress components. These resultants give the
total force per unit length acting at the midplane. Using equation (4.3), the stress
resultants are given by

{N} [a] [B] © N3
(B] [p] o - {M,} (4.8)

v}oo[‘ 0

>
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where
(&, B, DYl 2 2)f'e Gi-129
k=1 k-i

A; = bi[ﬁﬁ]‘ f:fiz Gj=4,5) 4.9)

b is the shear correction factor [36].

The extensional stiffness A, flexural-extensional coupling stiffness By, and flexural
stiffness D;; of the plate are defined in Appendix B. The state of stress developed in
the plate very much depends on the lay-up and boundary conditions, and it is this
stress state that is responsible for plate buckling rather than the applied one. Equation
(4.8) is the constitutive model of the laminated composite plate and is the basis from
which buckling analysis can be carried out.

4.5 Special Cases of Laminated Stiffnesses

There are cases of laminated composites for which the stiffnesses take on certain
simplified values as opposed to the general form of Equation 4.9. Many of the cases
result from the common practice of constructing Jaminates from laminae that have the
same material properties and thickness, but have different orientations of their
principal material directions relative to one another and relative to the laminate axes
as discusses above. These may be listed as follows

45.1 Single-layered Configurations

These include

+ Single isotropic layer

The resultant forces are dependent only on the in-surface strains of the laminate
middle surface, and the resultant moments are dependent only on the curvatures of
the middle surface. There is no coupling between bending and extension of a

single isotropic layer

o Single specially orthotropic layer

As with a single isotropic layer, the resultant forces depend only on the in-surface
strains, and the resultant momeants depend only on the curvature. However, this
type of laminated contains the lamina stiffness Q..

« Single generally orthotropic layer

This laminate contains the stiffness a,i with no coupling between bending and
extension. In contrast to both an isotropic layer and a specially orthotropic layer,
the extensional forces depend on shearing strain as well as on extensional strain.
Also, the resultant shearing force, N,,, depends on the extensional strains £, and g,
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as well as on the shearing strain y,,. Similarly, the moment resultants all depend on
both the curvatures x, and k, and on the twist x,.

¢ Single anisotropic layer

The only difference in appearance between a single generally orthotropic layer and
an anisotropic layer is that the latter has lamina stiffnesses, Q;, whereas the

generally orthotropic Iayer has stiffnesses 6ij .

4.5.2 Symmetric Laminates

For laminates that are symmetric in both geometry and material properties about the
middle surface, the general stiffness equations, Equation (4.9), simplify considerably.
In particular, because of the symmetry of the(Qij)k and the thickness t,, all the
coupling stiffness, that is, the B;, can be shown to be zero. The elimination of
coupling between bending and extension has two ramifications. First, such laminates
are usually much easier to analyze than laminates with coupling. Second, symmetric
laminates do not have a tendency to twist from the inevitable thermally induced
contractions that occur during cooling following the curing process. Consequently,
symmetric laminates are commonly used unless special circumstances require an
unsymmetric laminate. For example, part of the function of a faminate may be to
serve as a heat shield, but the heat comes from only one side; thus, an unsymmetric
laminate is likely to be used.

¢ Symmetric laminates with multiple isotropic layers

If multiple isotropic layers of various thicknesses are arranged symmetrically
about a middle surface from both a geometric and a material property standpoint,
the resulting laminate does not exhibit coupling between bending and extension.

e Symmetric laminates with multiple specially orthotropic layer

Because of the analytical complications involving the stiffnesses A,,, A, D,,, and
" D, a laminate is desired that does not have these stiffnesses. Laminates can be
made with orthotropic layers that have principal material directions aligned with
the laminate axes. If the thicknesses, locations, and material properties of the
laminae are symmetric about the middle surface of the laminate, there is no

coupling between bending and extension. Because (6“, l and (626)‘ are zero, the
stiffnesses Ajq, Ay, Dig, and Dy, vanish. Also, the stiffness B, are zero because of
symmetry. This type of laminate could therefore be called a specially orthotropic
laminate in analogy to a specially orthotropic lamina. A very comumon special case
of symmetric laminates with multiple specially orthotropic layers occur when the
laminae are all of the same thickness and material properties, but have their major
principal material directions alternating at 0° and 90° to the laminate axes, for
example, 0°/90%0°. Such laminates are called regular symmetric cross-ply
laminates.
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¢ Symmetric laminates with multiple generally orthotropic layers

A laminate of multiple generally orthotropic layers that are symmetrically disposed
about the middle surface exhibits no coupling between bending and extension; that
is; the By are zero. All the A; and D, are required because of coupling between
normal forces and shearing strain, shearing force and normal strains, normal
moments and twist, and twisting moment and nommal curvatures. Such coupling is
evidenced by the Ay, Ay, D,q, and Dy, stiffnesses. A special subclass of this class
of symmetric laminates is the regular symmetric angle-ply laminate. Such
laminates have orthotropic laminae of equal thicknesses. The adjecent laminae
have opposite signs of the angle of orientation of the principal material properties
with respect to the laminate axes, for example, +8/-6/+6. Thus, for symmetry,
there must be an odd number of layers.

e Symmetric laminates with multiple anisotropic laters

The general case of a laminate with multiple anisotropic layers symmetrically
disposed about the middle surface does not have any stiffness simplifications other
than the elimination of the B; by vitue of symmetry. The A, Ay, Dy, and D,,,
stiffnesses all exist and do not necessarily go to zero as the number of layers is
increased. Many of the stiffness simplifications possible for other laminates cannot

be achieved for this class.

45.3 Antisymmetric Laminates

Symmetry of a laminate about the middle surface is often desirable to avoid coupling
between bending and extension. However, many physical applications of laminated
composites require nonsymmetric laminates to achieve design requirements. For
example, coupling is a necessary feature to make jet turbine fan blades with pretwist.
As a further example, if the shear stiffness of a laminate of made laminae with
unidirectional fibers must be increased, one way to achieve this requirement is to
position layers at some angle to the laminate axes. To stay within weight and cost
requirements, an even number of such layers may be necessary at orientations that
alternate from layer to layer, e.g., +y/-y/+y/-y. Therefore, symmetry about the
middle surface is destroyed and the behavioural characteristics of the laminate can be
substantially changed from the symmetry case. Although the example Jaminate is not
symmetric, it is antisymmetric about the middle surface, and certain stiffness
simplifications are possible. Two important classes of antisymmetric laminates are

* Antisymmetric cross-ply laminates

An antisymmetric cross-ply laminate consists of an even number of orthotropic
laminae laid on each other with principal material directions alternating at 0° and
90° to the laminate axes. Such laminates do not have A, A, D, and D,,, but do
have coupling between bending and extension. A regular antisymmetric cross-ply
laminate is defined to have laminae all of equal thickness and is common because
of simplicity of fabrication. As the number of layers increases, the coupling
stiffness B,, can be shown to approach zero.
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e Antisymmetric angle-ply laminates

An antisymmetric angle-ply laminate has laminae onientated at +y degrees to the
laminate coordinate axes on one side of the middle surface and corresponding
equal thickness laminae oriented at -y degrees on the other side. A regular
antisymmetric angle-ply laminate has laminae all of the same thickness for ease of
fabrication. This class of laminates can be further restricted to have a single value
of y as opposed to several orientations. The coupling stiffnesses B,; and By, can
be shown to go to zero as the number of layers in the laminate increases for a fixed

laminate thickness.

4.5.4 Nonsymmetric Laminates

No special reduction of the stiffnesses is possible when t, is arbitrary. That is,
coupling between bending and extension can be obtained by unsymmetric
arrangement about the middle surface of isotropic layers with different material
properties and possibly (but not necessarily) different thicknesses. Thus, coupling
between bending and extension is not a manifestation material orthotropy but rather of
laminate heterogeneity; that is, a combination of both geometric and material

properties.



Chapter 5

Buckling Equations of Laminated Composite Plates

5.1 Non-linear Equilibrium Equations

From ¢lementary mechanics we know that a static conservative system is in equilibrium
if its potential energy is stationary and the equilibrium is stable if the potential energy is a
relative minimum. This criterion will be applied to formulate both the prebuckling
equilibrium equation and the buckling equation of the laminated composite plate and is
carried out in Appendix C. For a conservative structural system, the total potential
energy of a loaded structure is defined as the sum of the strain energy of the structure
itself and the potential energy of the applied load.

M=, +[,, (.1)

For I, = 0, the strain energy (which is the product of the internal strains caused by the
internal stresses in the composite maternial, we have

H:%Hﬂo €+ Gy8y + 0,8+ Tuy T, +Tualy, + Tre¥ }dxdi‘dz (5.2)

Omission of ;nand ; v according to the basic approximation of the Mindlin theory and

substituting equation (4.3) from Chapter 4 into Equation (5.2) and using the stress
resultant and moment resultant definitions of Chapter 3, the potential energy equation of a

laminated composite plate is found to be

=1 ff{{e}"[alie} + (e} "[Blix) + x) " [Blie) + ) [DYx) + ) [A]fr Haxay
~4 [J{ter" [N, ]+ 637 M, Jhaxdy (5.3)

The first variations of the total potential energy may be written as

8= | j({e}‘f[a]{aa}+ {e}"[BHax}+ i} [Blfse}+ i} [DYox} + {r} [A}{5r} }dxdy
~ [J(IN, Jioe} +[M, J{ox} Jaxdy (5.4)
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where 8YII is the sum of the first-order terms in the expression for the change in
potential energy. To carry out the necessary operations in order to arrive at a more
convenient form of the non-linear equilibrium equations, Equation (5.4) is rewritten as

501 = | [([ﬁ]r{as} +[M] fox} + [V] {ov} - [N, ] (oed - M, S BK})d.xdy (5.5)

where

(N7 [M] [9) =Efi ; %n] (56)
0

Vu Vﬂ

(5.7

(e} fox} b)) =

ok, ©Ox, &k

dy.. oy 0

xz ¥z

{Se, de, &y,

so that after integration by parts we get the following,

50T =~ [[{fNxx =N J# (Nxy, x — Nigy, ¢ Joudxdy

- J_.{(ﬁy,y "Nty,y)+ (Nay.y ~Nuxy, y)}f’"d"d?

- I{(ﬁx x — M x) (Muyy - Mmy,y)“ Vi O, dxdy

I {(—y y ~ My, 3) (May.x "'Mtxy,x)"?)’beded}'

I {Vyy +Vx x + (ﬁx ~Ni )w,n + 2(§xy ‘“Ntxy)w.xy +(§y —-N,),}w'},y
+(N_, ~N_ W, +(N,_, ~N v,

+ N"?v‘ me ¥ + (HN_Y”‘ *NU-Y }'v-! }S“dXdy
+ Boundary terms (5.8)

The boundary terms are listed in the Appendix C. From the principle of total potential
energy we equate the first variation to zero and get a strong form of the non-linear

equilibrium equation.
- (No-N), +(No -N) =0

(N, -N,) +(N, -N, ) =0

V)’Y‘*Vxx*‘(— Nu)“xx {NxY'NU‘y}VXY (\ty NW}' Yoyt
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Ny -N, ) w, +({Nu “Nmy),, w, +(Ny —I‘th,)'xv.r'y +(N, -N, )_y w, =0

(My My ) + My ~Mpy) ~Vx =0 (5.9)

3 2

Using the definition in N, M, and V the full form of equation (5.9) is

Aju, + ALV, + A,G(Zu” + V,“)-f- Ayv,, + A“(uw + v”)

+ Bliex.xx + Blzey,n + Blﬁ(zax.xy + er-u) + Bzﬁemr + Bﬁﬁ (8*-93' + emr ) = Nﬂm + Nﬂm

Alzu,xy +A16u.u +A22v.}? +A26(u.)'¥ +2V-!!)+A66(u.ly + v.lt)

+B,0, +Bp0,, +B,0,  +B, (0. 20, )+B,(0,, 40, )=N, +N,,
A“(ww +9”)+ A.,(an +0., +9,,,)+A,,(w’u +9=-:)=§*W,u +2§'?“'._xy +ﬁr“’n

Byu,, +B,v, + Bm(zuchy +V ) +Byv,, + Bc-e(“.n + v_,,)
+ Diiex.n + Dlley.:y + Dlﬁ(zex.ly +9y-u)+ DZﬁev,n + Dﬁé(ew +9y.‘¥)
- Au(\v’y +By)—~ A_ﬁ(w‘, + 9‘) = L{u.x + Mtt)r.y

Bu, +Bu, +Byv, + st(u,n + 2\*_,,.)-!- B‘%(ujy + ",_u)
+D,,0,,, +Dy0,,, +D,0,, +Dy(0.,, +20,,.}+ D0, +0, )
-_AH(“'.y +9r)-‘-A“(WJ_ +e:)= M“!,! + Mfr-r (510)

It is noted that w, 6, and 9, are zero for prebuckling analysis and the plate still maintains
its initial flat configuration.

5.2 Linear Stability Equations

To investigate the possible existence of adjacent equilibrium configurations, we give
small increments to the displacement variables and examine the two adjacent
configurations represented by the displacements before and after the increment, as

follows

u=y, 4y, vEvghy, wEwtw, 0,=0,+8, 8,=0,+0, (5.11)
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where (4, Vo, Wy , 8,9 » 6,0) is the configuration on the primary equilibrium path and (u,,
vy, W, 8, 0,)) is the virtual increment. This is a perturbation method to analyse the loss
of stability. Introduction into Equation (5.3) is seen to give terms that are linear,
quadratic, and cubic in the u, , v,, w, and u,, v,, w, displacement components. In the new
equations, the terms in u, , v,, W, alone add to zero because (u, , v,, W) is an equilibrium
configuration, and terms that are quadratic and cubic in u,, v,, w, may be omitted because
of the smallness of the incremental displacement. Thus the resulting equation is
homogeneous and linear in u,, v,, w,, with variable coefficients in u,, v,, w,. The
coefficients u,, v,, W,, however, are governed by the original non-linear equations. For
this reason it is desirable to limit the range of applicability of the linearized equation by
requiring that u,, v,, W, be confined to configurations that are governed by the linear
equilibrium equations. The second variation of the total potential energy is the sum of all
terms in the expression for the potential energy increment that are quadratic in u, , v, and
w;,. This results in a simplified and linearized form of the buckling equation. The second-
order terms together are called the second variation of IT and are denoted by 871

where, for instance,

(881)2 = ulz.x +uO.xcP§l ’ zmdsoon. . (512)

This is applied to the strain terms of the second variation and we rewrite the resulting
equation is a simpler form

3¢r1= [fl N fe 1+ M T e J+ VTl )+ ING TS 4050 ¢ paxay (5.13)

where [N, ], {51}, [“ T, &}, [V]T fr, , and [NJ are listed in Appendix C.
Integration by parts as in Section 5.1, we obtain

5(6°M1) =~ [{N ., + N, u,ddy = N, + N, v dxdy
= ”‘{!‘“ﬂ; + hiryl.y - Vxl Paxld“(dy = II{‘“ vy T Pﬂxyi.x - Vy! k-’eyidxdy
- mvr,_, + Vo PN W, +IN_w,  + N oW,

+(an_; +Nx’_~‘0,y )‘Vl.x +(N3 +Nx~0v}“’ly dXdy
+ Boundary terms (5.14)

uhere the thermal Joads N, N,, and N, will be converted into equivalent mechanical
loads by the terms N,,. N, and N‘w The boundary terms result from integration by parts
of the second variation of the tota} potential energy and are listed in the Appendix C.
When the variation of equation (5.14) is set equal to zero, that is
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8(5%1)=0 (5.15)

five equations, which govern the buckling of laminated composite plates, are derived.

N,y + N, =0
N,,+N,.,.=0
Mxl.x "’Mxy!.y -Q, =0
M, +M_,,.-Q,=0

vyt,)' +Vxl,x + Nx()wl,xx +2Nx)‘0w|.xy + Nyowi.)’)' +

(Nxﬂ_x +Nooy )""'i.x +(Ny0.r + Ny Wy, =0 | (5.16)

where the subscript denotes a variation of the principal symbol from its value in the
prebuckled equilibrium state. Thus, the terms N, M,,, ... are variations of forces and
moments, respectively, from a membrane prebuckled equilibrium state. The terms Sw,
and, by implication, du, and dv, are variations in displacement from the same flat
prebuckled state. If the prebuckled state is a membrane, then 5w = w. The applied in-
plane loads Nx,Ny, and Ny enter the mathematical formulation of the eigenvalue
problem as coefficients of the curvatures rather than as “loads” on the right-hand side of
the equation. The essence of the eigenvalue problem is to determine the smallest applied
loads, Ny, and so on, that cause buckiing. An important consequence of this type of
problem is that the magnitude of the deformations after buckling cannot be determined
without resorting to large deflection cousiderations; that is, the deformations are
indeterminate when only the above equations are available.

The boundary conditions for buckling problems are applied only to the buckling
deformations since the prebuckling deformations are assumed to be a membrane state.
On of the distinguishing features of an eigenvalue problem is that all the boundary
conditions are homogeneous, that is, zero. These boundary conditions, as listed in
Appendix C, could be different for each edge of a plate, so the number of combinations of
possible boundary conditions is enormous.

These equations give the exact solutions of the critical buckling temperature and they are
quite difficult to solve. The Finite Element Method, which gives the approximate solution
(depending on the type of element used), is used to solve the problem. Equation (5.14)
forms the basis for the finite element formulation that is the topic of the next chapter.



Chapter 6
Finite Element Modelling of Laminated Composite Plates

6.1 Introduction

Standard finite elements based on Mindlin’s assumptions have one important
advantage over elements based on classical Kirchhoff’s thin plate theory. Mindlin
plate elements require only C° continuity of the lateral displacement w and the
independent normal rotations Oy and 8y. However, elements based on classical thin
plate Kirchhoff theory require C' continuity. In other words, wx and w, as well
should ideally be continuous across element interface although this condition is
relaxed in non-conforming plate elements. Thus, it would appear that Mindlin plate
elements are simpler to formulate and they have the added advantage of being able to
mode! shear-weak as well as shear-stiff plates. If transverse shear effects are present
in the plate they are automatically modelled with Mindlin elements. Some of the
conditions that are satisfied by the Mindlin plate element are:

6.1.1 Compatibility

This means that the displacements within the elements across the element boundary
must be continuous. Compatibility is one of the ways of verifying the convergence of
the numerical solution to the exact sofution. Physically, compatibility ensures that no
gaps occur between elements when assemblage is loaded. When only translational
degrees of freedom are defined at the element nodes, only continuity in the
displacement u, v, or w, which are applicable, must be preserved. However, when
rotational degrees of freedom are also defined that are obtained by differentiation of
the transverse displacement (such as in the formulation of the plate bending element),
it is also necessary to satisfy element continuity in the corresponding first
displacement derivatives. This is the consequence of the kinematic assumption on the
displacement over the depth of the plate bending element; that is, the continuity in the
displacement w and the derivatives éw/cx and/or éw/Cy along the respective element
edges ensures continuity of displacement over the thickness of adjoining elements.
Companbxhty is automaticatly ensured between truss and beam elements because they
join only at the nodal points, and compatibility is relatively easy to maintain in two-
dimensional plane strain, plane stress, and axisymmetric analysis and in three-
dimensional analysis, when only u, v, and w degrees of freedom are used as nodal
point variables. However, the requirements of compatibility are difficult to satisfy in
plate bending analysis, and particulasly in thin shejl analysis if the rotations are
derived from the transverse displacements. For this reason, much emphasis has been
directed toward the development of plate and shell elements, in which the
displacements and rotations are vanables.

6.1.2 Completeness

This means that the displacement functions of the element must be able to represent
the rigid body displacements and the constant strain states.
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Rigid body displacements are those displacement modes that the element
must be able to undergo as a rigid body without stresses being developed in it.
The number of element rigid body modes is equal to the number of element
degrees of freedom minus the number of element straining modes (or natural
- modes).

Constant strain state: We imagine that more and more elements are used in
the assemblage to represent the structure. Then in the limit as each element
approaches a very small size, the strain in each element approaches a constant
value, and any complex variation of strain within the structure can be
approximated.

6.1.3 Completeness condition on an element assemblage

As the finite element mesh is refined (i.e., the size of the element gets smaller), each
element should approach a constant strain condition, so the second condition on
convergence of an assemblage of incompatible finite elements, where the element
may be of any size, is that the elements together can represent constant strain
conditions. This is not a condition on a single element but on an assemblage of
elements. That is, although an individual element is able to represent all constant
strain states, when the element is used in an assemblage, the incompatibilities between
elements may prohibit constant strain states from being represented,

6.1.4 Patch test

This is to investigate whether an assemblage of nonconforming elements is complete.
In this test a specific element is considered and a patch of elements is subjected to the
minimum displacement boundary conditions to eliminate all rigid body modes and to
the boundary nodal point forces that by an analysis should result in constant stress
conditions. If for any patch of elements the element stresses actually represent the
constant stress conditions and all nodal poeint displacements are correctly predicted,
we say that the element passes the patch test. Since a patch may also consist of only a
single element, this test ensures that the element itself is complete and that the
completeness condition is also satisfied by any element assemblage. The number of
constant stress states in a patch depends of course on the actual number of constant

stress states that pertain to the mathematical model.

6.1.5 Incompatible modes

The completeness condition must always be satisfied, and this condition is not
- affected by the size of the element. On the other hand the compatibility can be
relaxed somewhat at the expense of not obtaining a monotonically convergent
solution, provided that when relaxing this requirement, the essential ingredients of the
completeness condition are not lost. Sometimes satisfactory finite element analysis
results are obtained although some continuity requirements between displacement-
based elements in the mesh employed are violated. The violation happens when

The nodal point layout is such that interelement continuity is not preserved
e Elements are used that contain interelement incompatibility.
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6.2 Mindlin Plate Element

In this section use will be made of the symbol H to denote the strain-displacement
matrix for both the Mindlin plate model and the formulation of the buckling equation
for laminated composite plate. The context in which this symbol is used will be
clarified

Interpolation of displacements and normal rotation in a bilinear element: Nodal
degrees of freedom consist of lateral deflection w; and rotations 6,; and 6,; of
midsurface normals. The corresponding deflections and rotations within an element
are obtained by independent shape functions interpolations:

w = ZNjw; Ox = ZN;O,; 0y = ZN;By; 6.2.1)

If we introduce an unknown column in an element e, the above can be written in
matrix form as

ut = Zn:Nfaf (6.2.2)
i=l

in which the function Nfare used to interpolate both the nodal lateral displacement w
and the normal rotation 0y, 6y of an n-noded element. The shape function Njare
expressed in terms of the natural (local) element co-ordinate system (§,1). u° is the
element displacement vector and a] is the vector of variables for node i in the
element e.

Interpolation of strains, B-matrix: The changes of curvature may be written as

£, =ZH§°? (6.2.3)
i=}

where H, is the curvature-displacement matrix associated with e, and the shear

strains can be put as

g,=» Hia (6.2.4)
i=!

where H., is the shear-displacement matrix.

Stress-strain matrix D: Using the constitutive equations, we have

M®=-Del = -Din;af = —i DH{a} = ~i Dya; (6.2.5)

=l y=l inl

and
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$* =aGhd Hiaf =3 Dial (6.2.6)
izl it

where D;, =DHj,; is the moment-curvature matrix, and D}, =aGhHS, is the shear
force-shear strain matrix. Then stress-strain matrix D of the element is defined as

o={“;:}=z[ }a “2;“ 62.7)

Element stiffness matrix K°; Having the above relations of the element, we can
derive stiffness matrix of the element from virtual work principle, neglecting point
loads or couples, the contribution to the total potential energy from element e may be
expressed as

—ZZ Ll T {15z, T om, + onfire [ g hedxdy - Z[[a PINTlg o o dxdy

=§:§[37F{Kh, +K5 B Z[a | & (6.2.8)

where K}, and K are the contributions to the submatrix of the element stiffness
linking nodes i and j and respectively associated with the bending and shear strain
energies. f° is the element force vector. They are defined as

K& =% H[HL- | phgaxdy (6.2.9a)
K, =%an [l ] Hgaxay (6.2.9b)
= fI~la o of axay (6.2.9¢)

The transverse shear stiffness: This is computed by matching the shear response for
the case of the plate bending about one axis, using a parabolic variation of transverse
shear stress in each layer. The approach is outlined in Appendix A. For now we
define the transverse shear stiffness of the section of a shear flexible element as

=p,K% | (6.2.10)

k:, are the components of the section shear stiffness (x, ¥y = 1,2 refer 1o the default
surface direction on the plate)

B, is a dimensionless factor that is used to prevent the shear stiffness from
becoming 100 large in thin plates and is defined as
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B, =1/(1 +0.25x10* &) (6.2.11)

where A is the area of the element and h is the thickness of the plate; and K{ is the
actual shear stiffness of the section. In the present analysis, where we have a
homogenecous plate made of a linear, orthotropic elastic material, and the strong
material direction aligns with the element’s local I-direction, the transverse shear
stiffness is given as

K& =3Gh, K% =$Gh, K2 =0.0.

G 3 and Gy are the material’s shear moduli in the out-of-plane direction. The number
5/6 is the shear correction coefficient that results from matching the transverse shear
energy to that for a three-dimensiona! structure in pure bending. The present analysis
uses the same value.

Bilinear isoparametric element: A bilinear element has an advantage that the node
values are only needed to construct the element. Because of its simplicity, it is widely
used in the finite element formulation. The isoparametric {local) co-ordinates (€, 1)
in a plane are shown in Fig.6.2.1. For a typical 4-noded element, the axes £ and 7
pass through midpoints of opposite sides. Axes £ and 7 need not be orthogonal,
neither do they need to be parallel to the global x and y co-ordinate axis. The sides of
the element are at £ =+ 1 and =+ 1. The global co-ordinate x and y within the
element are defined by

$

4
x=YNx, and y=2.Ny, (6.2.12)

=] i=}

5

e \<

> X

Figore 6.2.1 Isoparametric Bilinear Element

The shape function of a bilinear isoparametric element N, and their derivatives are
expanded in Appendix D. The Jacobean matrix of the bilinear isoparametric element
is also given in the same Appendix.

Isoparametric representation of Mindlin plate: The contribution to the stiffness
matrices and [oad vector of the Mindlin plate may be written as

+121

K, =1 | {{us ] pug de(izdn
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+14]

K, =4 aGh [ [[H: [ B det(rhzdn

-1-1

+14l
t:= [{[N:][a 0 o]det(t)dzdn (6.2.13)
-1-1
For an isoparametric element, the integration must be calculated in the local co-
ordinate system. The clement stiffness matrix is Kjj = K§; + K.

6.3 Finite Element Formulation of Buckling

The problem is solved by dividing the region 2 of the plate into n-noded quadrilateral
finite elements, each with five degrees-of-freedom per node. Using the same shape
function associated with node i(i = 1, 2,... n ), for interpolating the vanation in each
element, we can write

u =iNfd:H . (6.3.1)

i

where N} are the interpolation functions and are used to interpolate the nodal in-
plane displacements u; and vy, and the lateral displacement w, as well as the normal

rotation Oy, 0y;. The shape function N; are expressed in terms of the natural (local)
element co-ordinate system (€, 7). u; is the element displacement vector and d{(" is
the vector of variables for node i in the element e. We note that d') now contains the

in-plane displacements u and v, i.ed}) = {u;, v;, w;, 8y, 0,,).

Interpolation of strains, H-matrix: The normal strains are given by

&5 =Y Hi @ (6.3.2)
i=1

The change of curvature may be written as

£, =Y HL (6.3.3)
i=1

where H{, is the curvature-displacement matrix associated with element e,
The shear strains can be written as

£, =y Hid) (6.3.4)
1=l

where Hjis the shear-displacement matrix. H is called the strain-displacement
matrix.
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Stress matrix o: There are no temperature terms in the second variation of the total
potential energy. The bending stress and the shear stress of a laminated composite are
defined as

c* =) (AR +BH; B (6.3.5)
i=]
and
=3 AHL i (63.6)
i=i
where A, B and A are material property matrices of the laminated composite.

Stress-strain matrix: Using the constitutive equations, we have

v ={lalm ]+ (B o ¥

v,y =[[Bm; ]+ ofu; Jloi ¥

o.f =[alu: Jai¥ (6.3.7)

6.4 Buckling Equations of a Laminated Composite Plate

Substitution of Equation (6.3.7) into the second variation of the total potential energy
(Equation 5.13) gives;

ooy =3 [fffalms. ]l )+ alus, ]+ g, D e

+(alng, ]+ BIns, )+ almc, )+ [Bfug, Dot F o,
+(Bfnc, )+ Iofng. )+ BIag, J+ ofug, - [A]us Do e,
+ (B, ]+ oIug, |+ BInc, -+ g, - [Jn: Da; Fso,,
(el ]+ ol ]+ 281z, |+ o[, )
+[B]m,, |+ [ofms,, a; | ow,

(NN ] aN N e NG Ne,

N+ N, TN SN0+ N DN, Dl T, iy

=([K|]‘5“: +[K,fav, +[K, [0, “'[Kirae:i +[K,Jow, +[K“]’5w1ygli}(
(6.4.2)

where [K, T (1 =1,...5) are defined in Appendix D

For arbitrary du, &v, dw, 88,, 80, and making 8(5‘2’ﬂ)= 0, we have
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(F +[x, ) Jaif =0 (64.3)

where

KT =[K,J +[,F +[K, ] +[K, ] + K,

Substituting into the total potential energy leads to the formulation of the structural

stiffness matrix [K]and the geometric stiffness matrix [K,_,] for the entire domain,
such that

((K1+[K; }u} = {0) (6.4.4)

where {u} is still the vector of nodal displacement as discussed above.

A level of stress [Kc] is sought such that a solution {u} other than {u} = 0 is

possible. The use of this stiffness matrix implies that prebuckling rotations are either
ignored or are zero, and is referred to as the classical buckling analysis. A reference
level of loading is first applied to the structure and a standard linear static analysis is
carried out to obtain membrane stresses in the elements. We refer to this loading as

{u}er and the stress stiffness matrix generated as [Ko]m_. Using X as a scalar
multiplier for the next load level, that is

[KG] = l[KO]mf

leads to the load vector being

{R} = A{R} ¢

This implies that multiplying all foads by A also multiplies the intensity of the stress
field by X but does not change the distribution of stresses. Since the external loads do

not change during an infinitesimal buckling displacement, an cigenvalue problem,
whose lowest eigenvalue A is associated with the buckling, is defined. Thus

([K] + 1.c,[1(o]mf){u} = {0} (6.4.5)
and the critical or buckling load is

(Rl =per{R} s (6.4.6)
The eigenvector {u} associated with 2 defines the buckling mode. The combination
of numerical/mechanical aspects is essential for the accurate prediction of the non-

linear structural behaviour of composites (where instead of secant stiffness matrix, we
use tangent stiffness matrix) in the prebuckling, buckling and postbuckling regime.



Chapter 7
Computer Simulation and Numerical Results

7.1 Introduction

The study is performed using a 4 x 4, 9-noded doubly curved thin shell element, with
reduced integration and five degrees of freedom per node (S9RS). However, to account
for the transverse shear deformation, the transverse shear stiffness (as discussed in the
previous chapter and in Appendix A) of 5/6 is introduced in the ABAQUS input file.

7.1.1 Isotropic Square Plate
In order to establish a benchmark or the integrity of the present analysis, the critical

buckling temperatures of a simply supported square isotropic plate subjected to a uniform
temperature increase are compared with those of Chandrashekhara {9} in Table 7.1. The
dimensions are

a=b = 10mm and thickness t = 0.Imm

with the following boundary conditions

» Simply supported edges

x=0a U=wy=0,=0

y=0b vo=Wo=0,=0

x=0,a W=vy=wp=0,=8,=0

y=0,b %:\10=“’0=63=9":G
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l a ]

1 =1

Figure 7.1.1 Square plate buckling study

The following nondimensional buckling temperatures were obtained in the ABAQUS
computer simulations.

E=10GPa, v=03, 21=100, a=b=10, a=10x10%°C

a/b aTx 107
Present Chandrashekhara {9]
0.25 0.6730 0.6727
0.50 0.7916 0.7913
0.75 - 0.9892 0.989
1.00 1.2659 1.2657
1.25 1.6214 1.6234
1.50 2.0558 2.0561
1.75 2.5691 ) _ 2.5696
2.00 3.1607 3.1617
2.25 3.8311 3.8324
2.50 4.5798 4.5817
2.75 5.4068 5.4096
3.00 6.3118 6.3144
Table 7.1 Comparison of nondimensional critical buckling temperature for a simply
supported isotropic thia plate

The results of the present analysis and reference [9] are in excellent agreement. Figure
7.2 on page 54 shows a deformed rectangular plate under uniform temperature
distribution.
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Table 7.1.2 Buckling mode of a typical rectangular isotropic plate

The next step is to change the properties of the isotropic plate to the one of a laminated
composite according to the discussions from Chapters 1 to 6, and this is done throughout
the remainder of this chapter.
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7.2 Laminated Square Plate

The first block in the ABAQUS input data defines the mesh, that is, the nodes and
their co-ordinates, and the elements (in this case the S9RS5 element as defined in
ABAQUS). The nodes and the elements are generated automatically by the *NGEN
and *ELGEN (see the copy of an Input File in APPENDIX E). They are also grouped
into sets using *NSET and ELSET respectively. The properties associated with the
shell elements used in this COMPOSITE analysis are:

the thickness of the plate

the number of integration points

the material, in this case the lamina and
the orientation of each layer

These are repeated as often as is necessary to vary the number of layers being used.
The LAMINA type elastic option is used to define the linear elastic moduli, and these
are given in the input file and Table 7.2.

The thermal expansion coefficients of the composite are defined with *EXPANSION
option and are also tabled in Table 7.2. A rectangular system of orientation is used to
specify a local axis system and this concept is explained further in the ABAQUS
User’ Manual {1]. The *STEP option begin the analysis and is followed by
*BUCKLE which controls the eigenvalue buckling estimation. In this estimation
three eigenvalues are extracted, although in some instances the number of eigenvalues
is increased to increase the number of iterations. Finally the boundary conditions are
applied as described in Chapter 7.1,

In the analysis of a laminated, orthotropic, composite plate, each layer has the same
material properties. The effects of the various parameters are studied and the graphs
are used to show the trends as these parameters are changed. Two sets of graphs are
shown for each type of analysis, one for simply supported edges and another for
clamped edges. Unless otherwise stated, each lamina has the following material

properties;

V2 oy a2 Ky Kz En Ex Gy Gz | On

028 | 002 | 225 | 2987 2587 | 181.0 1 1030 { 7.17 | 7.17 | 6.21

Table 7.2 Material properties of a composite

where the 1-direction is along the fibres, the 2-direction is transverse to the fibres in
the surface of the lamina, and the 3~direction is normal to the lamina, Figure 7.2 (a).
Eit, Exz, Gia. Gis and Gy are in 10° Pascals and «y; and oy are in 10 per degrees
Celsius. Figure 7.2 (b) shows the dimensions and co-ordinates of a typically stacked
laminate.
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Figure 7.2(a) A typical lamina

il

Figure 7.2(b) Geometry of a typical two-layered laminated square plate
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7.2.1 Effect of ply orientation

Figure 7.2.1.1 shows the critical buckling temperature T versus lamination angle
for a simply supported and clamped plate. The variation in lamination angle y may
result in large changes of T, as shown by the figure. Also the critical buckling
temperature for a given thickness of laminated plates increases as the number of
layers, N, increases. The maximum value of T, occurs at y = 45° for clamped N = 4
and N = 8 plates. However, the reverse phenomenon is observed in two-layer
Jaminates. This is because bending-stretching coupling stiffness reach their maximum
values at stacking layers N=2 and decrease rapidly as N increases.

Clamped

Layers | layers | Layers | Layers
0 10.5290)0.5290 | 0.5290 | 0.5290
10 }0.4354 [0.5037 ] 0.5200 | 0.5241

o—21layers |
2 —O—< AYERS || 1571073087 [ 04580 | 0.4932 | 0.5019
X —e—4layers | 1551572565 [04075 | 04432| 04525
Ga +8 Layersg 40 10.1843|0.3534 1 0.3841 ] 0.4041
[

é_x_.16 layers | {45 | 0.1766 [ 0.3457 | 0.3859 | 0.4958

0.1843]10.3534 1 0.3941 | 0. 4041
0.2265 ] 0.4015| 0.4432 | 0.4535
0.3082 | 0.4580 | 0.4932 | 0.5019
y 80 §0.4354{0.5037 | 05200 | 0.5241
90 {05260} 0.5290 [ D.5290 | 0.5290

3 &8
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Figure 7.2.1.1 Effect of ply orientation on the critical buckiing temperature of laminates
(2/1=20,a/b=1)
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Figure 7.2.1.2 gives a summary of the buckling modes predictions for N=2. We note
that the eigenvalue of the first buckling mode or (eigenmode) is smaller than the
eigenvalue of the second buckling mode, and so on. These buckling modes are the
same forN=4, N=8 and N = 16.

Buckling Mode 1

Buckling Mode 2

Buckling Mode 3

Figure 7.2.1.2 Buckling modes of a laminated square plate
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7.2.2 Effect of plate thickness ratio
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Figures 7.2.2 depicts the effects of plate thickness ratio a/t on the critical buckling
temperature for a square laminated plates having lamination angle y = 45% It is
shown that the thermal buckling loads decrease with an increase in laminate thickness.
This is in agreement with Ref. [33]. It is evident that the nigidity and hence the
critical temperature decreases rapidly as the plate thickness ratio increases. This is
because the stiffness of the laminate is greatly reduces when it becomes relatively
thin. The effect of the number of stacking layers N on Ty, is insignificant when a/t is

large.
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Figure 7.2.2 Effect of plate thickness on the critical buckling temperature of laminates

(ab=1, y=4a5)
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7.2.3 Effect of aspectratioa/b

The effect of aspect ratio a/b on the critical temperature is illustrated in Figure 7.2.3.1.
It can be seen that T, goes up as the plate aspect ratio increases. Since geometry has
a significant influence on in-plane loaded structures, it is expected that the buckling
load of a laminate will be greatly influenced by the change in the plate geometry.
However, for a thermally loaded laminate, the graph shows that at a/b = 1.2 the
critical buckling temperature increases proportionally with the increase in the aspect
ratio. There is no change of the buckling mode shape with the variation of aspect
ratio, since the curves go up smoothly without any cusp, more especially for a/b> 1.8,
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Figure 7.2.3.1 Effect of aspect ratio on the critical buckling temperarure of laminates
(@lt=20, y =45
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The buckling mode shapes for different aspect ratios are shown in Figure 7.2.3.2

below.
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Figure 7.2.3.2 Buckling mode shapes for each of the aspect ratios
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7.2.4 The effect of the modulus ratio E;/ E;

Figure 7.2 4 shows the influence of the modulus ratio E;/ E; on critical buckling
temperature. Itis observed that in a simply supported plate of N = 4, N= 8 and
N =16, T incresses with increase of modulus ratio and plotted curves are rather flat
when E, / F; =10. The increase in the number of layers means the increase in the
material substanee and hence the rigidity of a laminate. The interaction of the various
stiffnesses means greater ability of the laminate to withstand buckling loads. For
simply supportededges, Figure 7.2.4 shows that the boundaries have less influence on
the modulus ratio of a laminate. The graph of N = 2 for the simply supported and
clamped plates shows that the plate is more susceptible to buckling as a result of the
Change inE/ E

Clamped
ETEZ] 2 1 ) %
0.5 Layers | Layers { Layers | Layers
‘a4 A o2 Layers
n 04 - 3 1 4La:e(s .| [ 70 02556 0.3788 | 0.4057 | 04123
% 03- e | [720]0.2380]03907 | 04270 | 0.4359
g 02 - Y —a—~-Blayers | 5157574503660 [ 04368 [ 04467
=01 - . ——16Llayers | (5 T07163] 0390 | 04422 | 04529
0 ——— 55 |0.2107 | 0.4000 | 0.4456 | 04570
1020 30 40 50
EE,
Simply Supportd
EvE ] 2 3 g ] 18
0.4 7 _ Layers | Layers | Layers { Layers
L0ty e
5 03 D e_4layers 10 [0.237103355 | 0.3640 | 03701
% 02 "o 0 o0 §Layers || 20| 0202203349 | 03688 [ 03747
:a 0.1 ;T s | {30 [07870]03326 | 03676 | 03762
0! - —16layers | i~ e 103312 (03679 [ 03790
0 20 30 40 50 50 |0.1728|0.3303 ] 03681 [ 03775
E/E,
L™
™

Figure 7.24 E fiect of the modulus ratio on the critical buckling temperature of laminates
(@fb=1a/t=20, y=45)
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7.2.5 The effect of thermal expansion coefficient ratio a/o;

The effect of thermal expansion coefficient ratio o / oy on the critical temperature is
shown in Figure 7.2.5. The higher the ratio of thermal expansion coefficients, the
higher the value of T,,. This means that the thermal coefficient of expansion has a
linear relationship with the buckling temperature of a laminate. It is pointed out that
in the present analysis oy was varied while o, was left constant. An increase in the
coefficient of expansion means that more temperature has to be applied to cause
buckling on a laminated composite. The interaction of the different coefficients of the
different materials in a laminate has a tendency to increase the temperature needed to
cause buckling. We note that in Ref. {11] the opposite trend is observed for T, versus
as a; is varied. The expansion coefficients of a laminated composite have a direct
influence on the buckling temperature as expected from the strain equations of
Chapter 3.
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Figure 7.2.5 Effect of thermal expansion ratio on the critical buckling temperature of luninates
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7.2.6 The effect of boundary conditions

Figure 7.2.6 shows the effect of boundary condition on the varation of critical
temperature. The boundary condition has a strong impact on the critical temperature
Ter, as shown in the figure. Also, the variation of T, for different aspect ratios is
presented in Figure 7.2.6 for both simply supported and clamped plates with N =4 in
order to compare the effect of the boundary condition. It can be seen that the critical
temperatures of clamped cases are higher than those of the simply supported cases.
This is because of the enhanced stiffness of the laminate by the clamping of the
laminate. The simply supported edges make the plate susceptible to buckling, as the
edges are not restricted from expanding. The effect of the aspect ratio was discussed
in Section 7.6.3.

ab | Clamped Simply
25 Supported

2 ot ro®T0zE18 03110

:: 1 : Simpie Support 12| 05162 0.4334
= s S e 1.8 10088 0.8002
'0 [ 24| 15472 1.2028

© N m 2« o 3] 20573 1.5848

o - - ™~
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Figure 7.2.6 Influence of boundary condition and aspect ratio on the critical buckling temperature of
laminates (/1 =20, N =4, y = 45%

It has been seen that of all the variables that were used to study the behaviour of a
laminated plate, the number of layers affects the buckling temperature the most. For
two layers, the bending-stretching coupling is at the maximum and as the number of
layers increases, the laminate approaches orthotropy and the critical buckling
temperature decreases.
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7.3. Plate with a square hole
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The same analyses are performed as in the previous section but with a rectangular
hole as shown in Figure 7.3. The outside dimensions are 10mm by 10mm and the
square hole is Smm by 5mm. The values in this section are #ot to be compared with
the results in the previous section. This is because of the difference in the number of
elements, and the fact that the present plate was constructed with a different type of
element; the 8-noded shell element with 5 degrees of freedom and reduced integration
(S8R5). The aim here is to study the general behaviour of a laminate with a

rectangular hole.

Figure 7.3 Plate with a square hole

7.3.1 Effect of ply orientation

Similar trends are observed as in Section 7.2 where the cnitical buckling temperature
increases with the increase in the number of layers N, with the clamped edges having

a higher value.
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Figore 7.3.1.1 Effect of ply orientation on the critical buckling temperature of laminates

(at=20,ab=1)
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Figure 7.3.1.2 shows the first three buckling modes of a 2-layered laminate with a
stacking sequence of 0%/0°. Of significance in this diagram is the deformation of the
inner edges where there is stress concentration at the corners.

Buckling Mode |

Buckling Mode 2

Buckling Mode 3

Figure 7.3.1.2 Buckling mode predictions for a laminated plate with a square hole
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7.3.2 Effects of plate thickness ratio

For a simply supported plate, the critical buckling temperature is lower for N = 2 and
it increases as the number of layer increases. The trend for N=2 is slightly different
from N = 4, 8 and 16. There is not much difference as the number of layers is
increased from 2. This shows that for a given lamination thickness, the increase in the
number of plies has little effect on the critical buckling loads in a laminate with a
rectangular cut-out. For a clamped plate, the graphs show a similar pattern for any
given number of plies. This is because the edges in a clamped laminate are always
kept together and the interaction of the various material properties is prevented from
acting independently.
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Figare 7.3.2 Effects of plate thickness ratio on the critical buckling temperature of laminates
{ab= 1,y u.;s")
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7.3.3 The effect of the modulus ratio E,/ E,

When N = 2, the effects are quite significant and T,, decreases as the modulus ratio
increases. For more layers, the effect is not so significant and the graphs tend to
flatten out as the modulus ratio is increased. This situation was observed in a normal
laminate of Section 7.2.4 and a similar explanation can be given as in Section 7.2.4
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Figure 7.3.3 Effect of the modulus ratio on the critical buckling temperature of laminates
(a/t=20,vy = 45"

The increase in the number of layers does not change the overall behaviour of the
laminates with a rectangular hole, both with simply supported and clamped edges.
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7.3.4 The effect of thermal expansion coefficient ratio a/a;

Figure 7.3.4 depicts a situation where the critical buckling temperature increases with
the increase in the expansion coefficient ratio. A similar situation was seen for a plate
in Section 7.2.5. This means that the influence of the expansion coefficient is
independent of the shape of the laminated, but rather this thermal coefficient

influences the critical buckling temperature of the laminate linearly.
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Figure 7.3.4 The effect of thermal expansion coefficient ratio on the critical buckling temperature of
laminates (a/b=1,a/t=20, ¢ =45%

As this section was meant to study the overall behaviour of a laminated plate with a
rectangular cut-out, it can be concluded that the laminate thickness plays a significant
role in the buckling behaviour of structures as observed in Figure 7.3.2. The other
variables, that is, the lamination angle, the modulus ratio and the coefficient of

thermal expansion, do not alter the general behaviour of laminates under thermal
loading.
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7.4 Plate with a circular hole

Figure 7.4 shows a plate with a 4mm-diameter hole. It is meshed with the S9RS
element as the other plate in section 7.2, t is the plate thickness and the boundary
conditions are applied on the outer edges while the hole has free supports. The plate
dimensions are such that a = b = 20mm and the hole has a diameter of 4mm. Similar
analyses are performed as in the previous sections, and once again the results in this
section are independent of the two previous sections. This analysis is intended to
observe the general behaviour of a laminated plate with a central cut-out.
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Figure 7.4 Plate with a circular hole

7.4.1 Effects of ply orientation

Figure 7.4.1.1 shows that for a simply supported plate, the minimum value occurs at y
= 45% and for a clamped plate the maximum occurs at the same orientation angle.
The buckling temperature is seen to increases as the number of layers increases. The
same behaviour was observed in the two previous sections.
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Figure 7.4.1.1 Effect of ply orientation on the critical buckling temperature of laminates
(eg. 30°-30"..%at=20,ab=1) |
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Figure 7.4.1.2 shows the different buckling mode shapes for an initially flat 2-layered
simply supported square plate with a central cut-out. The different lamination angles

are also shown and the shapes were tilted to show the side profiles.
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Figure 7.4.1.2 Buckling mode predictions for a laminated plate with a circular hole
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Figure 7.3.1.2 shows the different buckling modes for a laminated plate with a square

hole and clamped boundary conditions. The effects of the boundary conditions are
evident from the deformed meshes.
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7.4.2 Effects of plate thickness ratio

Figure 74.2 shows the effects of plate thickness ratio on the critical buckling
temperature of laminates for both the simply supported and clamped edges. In both
instances, the maximum buckling load occurs at about a/t = 20 and then the graph
decreases rapidly until a/t = 30, from where it decreases gradually. From the tables
next to the graphs, it is seen that the difference between the simply supported and the
clamped boundary conditions for a given number of layers is small.
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Figure 7.4.2 Effects of plate thickness ratio on the critical buckling temperature of laminates
(ab=1,y=45%

At 10 > a/t < 20 the laminate is relatively thick and can support a certain amount of
buckling load. When the thickness of the plate is reduced, so does the ability of the
plate to withstand load, and thus the critical buckling temperature decreases. This is
explained by the fact that when the thickness of the plate is reduced, the coupling
effect of the individual laminae is reduced and laminate stiffness is increased, rapidly
between a/t = 20 and a/t = 30, and steadily thereafler.
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7.43 Effect of aspect ratio

From Figure 7.4.3.1 the critical buckling temperature is a maximum at 2/b = 1.2 and it
decreases rabidly at a/b > 1.2. For a/b > 1.8 the behaviour is the same for N=2, N =
4 and N = 8 in both the simply supported and the clamped edges. Also the values are
nearly similar. The critical buckling temperature decreases very rapidly after a/b =1.8
and this is because of the significant influence of the geometry on the ability of the
structure to withstand buckling loads. This point will be explained further in Section
7.6 when the effect of geometry on the critical buckling temperature of a laminate is
investigated. For now we concentrate on the overall performance of the laminate with
a hole as compared to the overall performance of a ‘normal™ laminate.
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Figure 7.4.3.1 Effect of aspect ratio on the critical buckling temperature of laminates
(a/t=20, v=45%

At present we conclude that a central cut-out alters the general behaviour of a plate
significantly from that of a “normal” plate
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Figure 7.4.3.2 and Figure 7.4.3.3 show the different buckling modes for the different
aspect ratios of 2-layered laminated composite plate with a circular hole at the centre.
We observe that the edges of a simply supported plate are less affected, although a
different behaviour would be expected from the clamped edges, where the
deformation is fully restricted.
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Figure 7.4.3.2 Buckling mode shapes for each of the aspect ratios
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Simply supported (continued)
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Figure 7.43.2 Buckling mode shapes for cach of the aspect ratios
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The buckling mode shapes in the diagrams below were tilted such that the maximum
deformation is visible. The protruding lines are the distortions of the finite element
meshes of the plate that was initially flat.

Simply supported (continued) .

3o

Buckling Mode 1 Buckling Mode 2 Buckling Mode 3

Figure 7.4.3.2 Buckling mode shapes for each of the aspect ratios
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Clamped

0.6
Buckling Mode ! Buckling Mode 2
12 .2
Buckling Mode | Buckling Mode 2 Buckling Mode 3
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Figore 7.43.3 Buckling mode shapes for each of the aspect ratios
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Clamped (continued)
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W
Buckiing Mode 1 Buckling Mode 2 Buckling Mode 3
24 24
Buckling Mode 1 Buckling Mode 2

Buckling Mode 3

Figare 7.4.3.2 Buckling mode shapes for each of the aspect ratios



7. Computer Simulation and Numerical Results

Clamped (continued)
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Figure 7.4.3.2 Buckling mode shapes for each of the aspect ratios
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7.4.4 The effect of the modulus ratic E;/ E;

The influence of the modulus ratio in a laminate with a central hole is the same as the
influence on a laminate without a hole. This was also the case in the previous section.

Simply supported
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Figure 7.4.4 Effect of the modulus ratio on the critical buckling temperature of laminates

The elastic moduli E; and E» affect the material behaviour of a laminate. This is

{(alt=20,y=45%

because of the interaction of the material properties of the different layers.
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7.4.5 The effect of thermal expansion coefficient ratio o2/o;

Figure 7.4.5 shows that, as with other material property configurations, the change in
the critical buckling temperature of a laminate is proportional to the change in the
expansion coefficient ratio.

Clamped
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Figure 7.4.5 The effect of thermal expansion coefficient ratio on the critical buckling temperature of
laminates (a/b=1,2/1=20, y =45%)

For a given lamination geometry, the material properties do not influence the buckling
behaviour of laminate under mechanicai compressive load as much as under the
thermal load. However from the derivations in the previous chapters we know that the
thermal load is converted to the equivalent mechanical load. This effectively means
that the thermal buckling behaviour of laminate is more of a geometric consideration
than a material one, although the former was seen to have some effect as well. The
next section compares the different geometric configurations, noting the influence of
each of the variable as was done previously.
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7.5 A cracked plate with a circular hole

Figure 7.5 shows a plate with a 4mm-diameter hole. It is meshed with the S9RS finite
element. The dimensions are also a = b = 20mm and the diameter is 4mm. The
boundary conditions are applied on the outer edges while the hole is a free edge. The
crack will be apparent as the plate deforms. In actual fact, the crack is in such a way
that the nodes are not connected along a diagonal line, and this will be evident in the
deformed meshes of the following page. Similar analyses are performed as in the
previous sections.

Figure 7.5 Plate with 2 circular hole

7.5.1 Effects of ply orientation

The two graphs below show the same pattern as in Figure 7.3.1.1, where the critical
buckling temperature increases as the number of layers increases. For the clamped
boundaries, the effect of ply orientation is not as significant as in the simply supported
case.
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Figure 7.5.1.1 Effects of ply orientation on the critical buckling temperature of laminates
(a/t=20,a/b=1)
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Figures 7.5.1.2 and 7.5.1.3 show the different buckling modes for the different
lamination angles and boundary conditions. These buckling modes are associated
with the eigenvalues that were calculated in ABAQUS. As the angle of orientation is
increased, the severity of deformation becomes more significant. Although the nodes
along the discontinuous edges are given the same geometric co-ordinates, the
deformation of these edges occurs independently of these nodes.
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Figure 7.5.1.2 Buckling mode predictions for 2-layered simply supported plate
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Figure 7.5.13 Buckling mode predictions for 2-layered clamped plate
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7.5.2 Effects of plate thickness ratio

The graph for the simply supported plate is the same as the graph for clamped edges
as shown in Figure 7.5.2, with the clamped case having higher values of the critical
buckling temperature than the simply supported laminate. This is to be expected due
to the fact that the boundary conditions were applied only on the outer edges. Tg
increases with the number of layers but this becomes insignificant for a/t 2 50.

Clamped
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Figure 7.5.2 Effect of plate d;;ckness ratio on the critical buckling temperature of laminates
{(ab=1,y=45
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7.5.3 The effect of the modulus ratio E,/ E,

Figure 7.5.3 shows that the effect of the modulus ratio becomes less as the number of
layers is increased. For Ei/E; = 20, the graph flattens ocut for N =4 and N = §, while
for N =2 it slopes down gently until E|/E; reaches the value of about 40 and then start
to flatten out. A similar trend is observed in both the simply supported and clamped

edges.
Clamped
EvEz] 2 4 8
0.7 . Layers | Layers | Layers
06 | o=t—0—06—8
2 05 e 107 [ 0.4804 | 0.6013 [ 0.6231
204 . TTO—o—0 o —o—2laes | mTomETT000[ 0642
% 03 . .| —o—4Layers 30 | 0427 {0.6265[0.6568
2 0.2 | —o— 8 Layers | 40 104162{0.6288]0.6638
0-(1) - 50 [0.4092 | 0.6318 | 0.6668
10 20 30 40 50
E/E;
Simply Supported
(€] 2 4 8
0.6 “_?}‘Eo_‘:@o Loyers | Layers | Layers
. 95 - | T Towszr [ossT05578
2 04. oo o5 o o0-2Llayes 20 [041471 10,5694 | 05807
;i 03 - . .o—4 Layers 30 {0384610.5772 [0.5910
- 0.2 .
50 8 Layers 40 |0.3831]0.5810 {05962
0.1 - S 50 [0.3756 | 0.5633 | 0.5994
0

10 20 30 40 50
EJE,

Figure 7.5.3 The effect of the modulus ratio on the critical buckling temperature of laminates

(@a/1=20,y =459
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7.5.4 The effect of thermal expansion coefficient ratio ay/a;

In Figure 7.5.4 the critical buckling temperature is directly proportional to a)/a;. In
fact the relationship is linear. As the number of layers increases, so does the critical
buckling temperature. For N = 4 and N = 8, the slope is steeper as a result of
increased interaction as the number of layers in increased.

Simply Supported
aglus 2 4 8
12 Layers { Layers | Layers
10 . ;
2 g o & [1.6054 |2.1953 [2.2948
% 6. - —o-2layers 8 |32108 |4.3907 |4.5697
T 4 ; | —o—4layers 12 14.8162 |6.586 [6.9845
L * L 8 Layers | 6 [6.4216 [8.7874 [9.1754
0 | RS 20 [8.0270 [10.977 [11.474
4 8 121620
ajfa,
Clamped
i 2 4 8
L S —— Layers | Layers | Layers
10 .
" : R — 4 |1.3358 [2.0740 |2.1313
o 8: - —o-2layers, B 126716 [4.1480 [3.2627
’,:_s 6 - . —o—4layers: 12 14.0074 [6.2221 16,3940
Lo " _.p-8layers . 16 |5.3432 {8.2081 18,5254
2. e 70 [6.6790 {10.370 {10.657
0 . S—
4 8 1216 20
ajday

Figure 7.5.4 The effect of thermal expansion coefficient ratio on the critical buckling temperature of
laminates (a /b= 1,2/t =20 y = 45"

The same conclusions are drawn as in the previous two sections. For different
geomeiric pattems, with ail the other variables being the same, the thermal buckling
behaviour will follow the same trend, of course the values of the critical buckling
temperatures will occur at different points. The only geometric considerations that
was treated so far were the plate laminate aspect ratio and the Jaminate thickness, the
following section studies the effect of a central cut-out on a laminated composite

plate.
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7.6 Effect of a cut-out on critical buckling temperature

Laminates, as any structure, have holes to serve various purposes. An obvious
purpose is to accommodate a bolt. Another reason is to provide access from one side
of the laminate to the other. This section compares the effects of the cut-outs on the
critical buckling temperature of a laminated composite plate with two layers, Unless
otherwise stated, the lamination sequence is 45%-45°, a/t =20, ab = 1. Both plates in
Figure 7.6.1 and Figure 7.6.2 have the dimension of 2 = b = 20mm and the plate with
a hole has the radius of 2Zmm.

Figure 7.6.1 Rectangular plate without a central cut-out
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Figure 7.6.2 Rectangular plate with a central cut-out

As can be seen in the two diagrams above, the finite elements do not have the same
shape, the obvious reason being the different in geometry. However, each element
has midside nodes and another node at the centre. The hole is expected 1o have a
significant influence on the critical buckling temperature, because of the altered
integrity of the structure. This is now investigated in the following sections,
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7.6.1 Effects of ply orientation

Table 7.6.1 shows that the critical buckling temperature of a laminate containing holes
is lower that those without holes, and in both instances this temperature decreases as
the lamination angle approaches 45%/-45°. This is expected because the presence of a
hole reduces the ability of a laminate to carry the same applied load and the coupling
stiffness [B] (from Chapter 4) in a two layered laminate is less effective as the
laminate becomes a cross-ply. The same conclusion was reached by Wu et al [32).

Lamination sequence Nommal plate Plate with cut-out
0°/0° 482.23 429.45
30%-30° 391.90 236.13
457/-45" 329.40 173.75

‘Table 7.6.1 Effect of ply onentation

7.6.2 Effect of thickness ratio

Generally, the thicker the laminate, the more it can carry the loads, and an increase in
the thickness ratio effectively makes the laminate thinner. The decreasing values of
the critical buckling temperature in Table 6.7.2 attest to this. Once again the presence
of a hole reduces the critical buckling temperature. We note from the table that at

a/t > 30 the reverse takes place.

Thickness ratio (a/t) Normal plate Plate with cut-out
10 494.83 245.39
20 177570 173.75
30 82.678 84.355
40 47.062 48.533
50 30.249 31.318

Table 7.6.2 Effect of thickness ratio

7.6.3 [Effect of aspect ratio

In a layered laminate, an increase in aspect ratio enhances the critical buckling
temperature, and this is evident in Table 7.6.3. However, the presence of a hole alters
this behaviour and the buckling temperature is actually lower. At a’b =1.8 the critcal

buckling temperature could not be calculated for a laminate containing the hole.

Aspect ratio (a/b) - Normal plate Plate wath cut-out
0.6 143.88 128.78
1.2 218.55 211.29
1.8 415.66 XXX
2.4 630.10 154.90
3 865.25 90.671

Figure 7.6.3 Effect of aspect ratio
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Figure 7.6.3 shows the predicted buckling mode shapes for each of the aspect ratios of
Section 7.6.3. We note in passing that for lower critical buckling temperatures, the
hole seems to maintain its shape, and as the temperature is increased, so does the
severity of deformation. The buckling mode shapes were rotated to expose the
maximum deformation.
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Figure 7.6.3 Buckling mode predictions for each of the aspect ratios
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Figure 7.6.3 Buckling mode predictions for cach of the aspect ratios (continued)

7.6.4 The effect of the modulus ratio

As expected the critical buckling temperatures for a laminate containing a hole are
lIower than those without 2 hole. This is because the removal of a material implies the
lowering of material properties. In Ref. [31] the same conclusion was reached.

Modulus ratio (E/E;) Normal plate Plate with cut-out
Taay T
10 206.25 195.72
20 172.17 169.37
30 158.01 157.61
40 150.29 151.02
50 145.44 146.81

Table 7.6.4 Effect of modulus ratio
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7.6.5 The effect of thermal expansion coefficient ratio

The same conclusions can be made as in Section 7.6.5 that because of the presence of

a hole, the load carrying capacity of the laminate is compromised.

Expansion coefficient ratio Normal plate Plate with cut-out
(ax/a) Taot Tt
4 0.63138 0.61776
8 1.2628 1.2355
12 1.8941 1.8533
16 2.5255 24711
20 3.1569 3.0888

Table 7.6.1 Effect of thermal expansion coefficient

7.7 Conclusions

A general background on composites was presented in Chapter 1. The basic
components such as the fiber and the matrix that together constitute a composite
material were discussed. It was discovered that these fibers and matrix material could
be arranged in various ways according to the use for which they are intended. The
idea was to combine two distinctly different materials into the one with a superior
performance. Also in Chapter 1 the buckling phenomenon was presented as an
introduction to the study of buckling in laminated composite plates. However a rather
thin cylinder was used to highlight two types of buckling that might occur in
structures; collapse at the maximum point in a load versus deflection curve and
bifurcation buckling, with the latter being the basis of this project. It was also pointed
out that, unlike isotropic plates, laminated plates might fail “several times” before the
actual failure, for the failure of layer does not necessarily imply failure of the entire
laminate. The main factors that influence the strength of a laminate were introduced.
The use of Mindlin plate theory was found to be suitable for the study of laminated
composifes.

The elastic deformation of an elemental cube, as discussed in Chapter 2, showed that
because of rotational equilibrium, the governing equations that describe the motion of
a point in a body could be simplified. The non-linear behaviour of the strains in
buckling was defined in Chapter 3. Also the stresses that influence the behaviour of a
plate under bending load were formulated. For the sake of completion, the differential
governing equations of a Mindlin plate were formulated.

In Chapter 4 the macromechanics of lamination were formulated with a view to
building up the constitutive model of laminated composite plates. The elastic
constants were combined with the stress and moment resultants to form the general
governing equations. A closer look at this equation revealed that this equation could
be manipulated into special cases according to laminate construction, thereby
simplifying the analysis of laminated composites.
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Buckling was formulated analytically in Chapter 5 and the resulting equations were
found to be more complex, and as a resuit the Finite Element Method of Chapter 6
was used as a too!l to solve the buckling equations. FEM is also used by ABAQUS
and the procedures are discussed at end of Chapter 6and the beginning of Chapters 7,
and also in Appendix E.

From the results presented throughout Chapter 7, it can be concluded that the presence
of coupling between bending and extension in a laminate generally decreases the
effective stiffnesses of a laminate, while at the same time it reduces buckling loads or
temperatures. Generally, there is no significant increase in the buckling temperature
for the laminate with the number of layers N greater than 4 and an increase in
lamination angle. This is because the coupling effect decreases with increasing
number of plies. However, the thicker the laminate, the higher the thermal buckling
load. Any defect or imperfection would reduce the ability of a structure to withstand
the applied load, and a hole is one of them. Here we distinguish between a defect that
is induced deliberately, such as a hole, and the one that cannot be avoided, such as
impurities and voids in a laminate. The latter was also discussed at great length in
Section1.3.2. In any case, no real structure is perfect and in order to serve any
purpose, the plates may be drilled and machined. This causes the integrity of the
laminate to be compromised, as can be seen in the preceding results. For a normal
plate (without cut-outs) and the plate with central cut-outs, the increase in the number
of layers causes an increase in the buckling temperature, and this applies to all the
variables (ply orientation, plate thickness, aspect ratio, modulus ratio and the
expansion coefficient ratio). As pointed out in Section 7.2 and Reference [29], the
effect of the aspect ratio is greater on the laminate with a central cut-out than is an
ordinary plate. As concluded in Reference [31], a central cut-out will have a greater
effect when the aspect ratio is small. This would be expected because the geometry is
significantly changed by the central cut-out while the width is being reduced.

In the final analysis

The thicker the laminate is the lower the thermal buckling load.

The thermal buckling load increases with an increase of the number of layers.

The thermal buckling load increases with an increase in the aspect ratio

The thermal buckling load decreases greatly with increasing modulus ratio.

The thermal buckling load decreases greatly with increasing expansion coefficient
ratio.

e The presence of hole reduces the critical buckling load of a laminate

" & & & @

Finally, the types of analysis that were performed during this particular study are by
no means the only options available to determine the strength, and consequently, the
critical buckling temperature of laminated composite plate. For example, as stated in
Chapter 5, the number of boundary conditions that may be imposed on a composite
plate, and the combinations thereof, is enormous. Also the lamination sequence, the
thickness of each particular layer, as well as any other variable that is of interest to the
analyst, can provide endless options as to the behaviour of laminated composite
~ plates. This effectively means that there is a lot of room for future study of the effects
that other thermal stress fields and other laminated plates would have on this and
other geometries. Consequently, this project had to be limited, not by the number of
available options, but by the fact that at a given time, one can only do so much.
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Appendix A

Transverse Shear in Composite Plates

As the Mindlin plate element is based on first-order transverse shear flexible theory in
which the transverse shear strain is assumed to be constant through the thickness of
the plate, it is necessary to use shear correction factors. These correction factors are
easily shown to be 5/6 for isotropic plates.

For laminated plates the equivalent factors are established by calculating the
distribution of transverse shear stress through the thickness of the plate, for the case of
unidirectional bending and assuming linear elastic response. The shear strain energy,
expressed in terms of section forces and strains, is then equated to the strain energy of
this distribution of transverse stresses. This method supplies reasonable estimates of
transverse shear stiffness and can be outlined as follows;

Considering a plate in the (x-y) plane, and assuming only bending and shear in the x-
direction, without gradients in the y-direction, the membrane forces in the plate are
zero: N, = N, =N, , and /3y = 0 for all response variables. In this case equilibrium
within the section in the z-direction is:

o &t

Moment equilibrium about the y-axis gives:

aMx
Vx +“a*x"—' =0 (AZ)

where V| is the transverse shear force per unit width in the plate and M, is the bending
moment per unit width for bending about the y-axis.

For the bending behaviour we assume the strain varies linearly across the section:

where £ is the membrane strain of the reference surface and z=z,, and Kap is the
curvature of that surface. If the response of the plate is linearly elastic, any in-plane
component of stress at a point through the plate section, o, , is given by

D £ = (2 =2 Yo (A3)
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where the plane stress elastic stiffness, D4, is defined from the elasticity and

orientation of the material at the particular layer of the plate. The Greek subscripts
take the range (1,2). Integrating through the thickness and inverting the resultant
section stiffness provides the 6 x 6 section matrix, [H]:

BIEC Wt

It has already been assumed that

N, =N, =N,

It is also now assumed that

M, =M, =0

that is, that it is possible to have no bending in the y-direction without any restraining
moments associated with the y-direction. This is clearly not the case for unbalanced

composite section, but we nevertheless use it as a simplifying assumption used to
obtain the shear correction factor. Thus

{E“B}x{H“}M, ()

Kap

where {Hi 4} is the fourth column of [H}. Combining this result with the elastic
stiffness at a point through the plate thickness provides the in-plane stress components
in terms of M, as

o, =B, -(z~2,)B, M, (A5)
where

B, =D, H, +DH, +D,Hy

and

B, =D, H, +D_ H; +DH.

Combining the gradient of this equation in the x-direction with the equilibrium

Equations Al and A2 yields a descripticn of the variation of the transverse shear
stress through the thickness of the plate:

T2 = (8, - (- 2,)B. Vx- (A6)
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In calculating do,/0x we have assumed that the elasticity and thickness of the
composite section do not vary (or vary slowly) with position along the plate.

A laminated composite plate section consists of N layers 1,2,3, ... with different
values of (B;I,B;z) at layer 1, (de,B2 ) at layer 2, . (Bf:',,BN ) at layer N. Layer i
extends from z; to z,, and its thicknessist; = z,,, - . Integratmg Equation A6 t.hrough
the plate, using the boundary conditions 1, =0 atz=0, 1, =1 atz=z, and 1,

0 at z = z,,,, gives the transverse shear stress in layer i as

= [B:u (z- zi)"(% (Zz = )—zxo(z —Z )blu + B’;O]V‘ (A7)

where
Bl = it [B % z,, +2Z; ) zwad]

and

Tt e+2)Ba Bl
Zyp= N1, .

The subscript z,, is used instead of z, in this case because the result is associated with
pure bending in the x-direction. The variation of t,, through the plate thickness is
obtained using a similar procedure, based on pure bending in the y-direction.

These results provide the estimates of interlaminar shear stresses.

We define the shear flexibility of the plate section by matching the shear strain energy
obtained by integrating the elastic strain energy density associated with transverse
shear stress distribution obtained above:

e -

where [F’ is the shear flexibility of the section and [Fi] 1s the continuum transverse
shear flexibility within layer i. Here we introduce the assumption that the transverse
shear flexibility within a layer is not coupled to the in-plane flexibility. This is
usually the case for plate constructions.

Substituting the relations for t,, and t,, into the above equation and integrating
defines the shear flexibility of the section as

.-: Ft ,[(B )l“”a xo xo)sz)*'zt-( )B;z)z
-1tBL(B, -z - xo)B )I“' (B )
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F = iZ::F;ti[(B;a)z +tiB§0(B;l —(z,. —-zw)B';z)+§tf(B‘;l _(Zi “zw)Biyz)z
‘%t?B;z(Byl ‘(Zi —zw)B;z)z "'z_lot:(B;a)z]

F:y = S:Fiyti[BioB;o +%ti[BiO(Biyl "(Zi —zyo)Biyz)"‘B;o(Bn _(Zi _Zxo)B:;z)]
+%ti2(Bil _(Zi _ZxO)BiIXBiyl _(zi -—Zy0}B';,2)
m%tis[BiZ(Biyl -(Zo _zyo)Biyz)"' B;(Bia "(Zo _Zxo)Biz )]
+4t/BLB]

The transverse shear stiffness of the section is then available as [F‘:B ]4. We notice

that F, will be nonzero if any layer is anisotropic or orthotropic in a local system

(since then F, will be nonzero).



Stress-Strain Matrix of a Laminated Composite

Appendix B

B.1 Transformation of Stress-Strain Relationships

Using the principal material directions (1,2,3) the stress-strain relations are written as

o, |

Qll
Q.
Qs
Q.
QS]

Qq

Q:;
Qx
Qs
Q42
Qs
Qe

o
Qqs
Qs
Q43
Qs
Qe

QH
Qu
Qu
Qs
Qs
Qe

QIS
Qus
Qs
Qs
Qss
Qs

Q|

Qa
Q36
Qs
Qs
Qe

-

L.

(€, -0, AT ]
g, — 0, AT
€; —0,AT

Y4
Ts
Ts

(B.1.1)

When each layer (or ply) is taken to be macroscopically homogeneous and orthotropic,

the above reduces to

Qi
Q.
QJI

0

-

Q:
Qx

Qs
0

0
0

Qi
Q:;

Q,,
0

0
0

0

0 0
0 0
0 o
0 o0

st 0
0 Q.

—

g, —a, AT ]
£, — A, AT
£, —a,AT

Y4

Ys

Te

(B.1.2)

These relations were defined using the principal material directions (1,2,3). However, for
angle-ply laminated plate the principal direction of orthotropy of each individual lamina
do not coincide with the geometrical co-ordinate frame. It is therefore necessary to
transform the principal-direction quantities into the co-ordinate frame quantities.
Because of the highly directional nature of the properties, laminae are used in laminates
and the stresses or strains are applied in the plane in directions (x, y) at angle y to the
principal directions (1,2). The strains in the (x,y) directions are related to the stresses in
the (x,y) directions using the measured properties in the (1,2) directions and the
transformation matrix {T] On rotation of the co-ordinate system (1,2) to an angle y to the
(x,y)system, the stresses transform according to
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o, ¢, —a,AT ]
G, g, ~a AT
=[1]"| 7 |=[T]"[QIRITIR]™| O
T3 0
| T | Y ay —axyAT_

where the stress transformation matrix is given by

[T] =

cos’ y sin® y
sin’ y cos’ y
0 0
0 0
0 0

| ~cosysiny  cosysiny

0 o 0
0 0 0
1 0 0
0 cosy siny
0 siny cosy
0 0 0

2cosysiny
~2cosysiny
0
0
0

cos’ y —sin® y

B.2

(B.1.3)

(B.1.4)

and [T]™ is the inverse. The strain transforms according to the Reiter’s matrix [8}:

[R]

L= = B e B o I o IR o]
oo O O @ O
N OO O O O

OO0 O -
SO O O =0
Lo I e Y o B o BN o

1 0 0
010
000
_|_
[R]‘ooo
000
0 0 0

After multiplying out Equation (B.1.3), we obtain;

Q

x

e
“:QQ

ot
2

—_ -y

Pau 6!2 0 0 0 §1& €, §u 911
Q: @ 0 0 0 Q)% | |Q Q
Qs @ Qu 0 0 Q& |1Q; Q
0 0 0 Qu Qs 0]7n 0 0
0 0 0 Qs Qs Of{Y|{0 O
Qe @ 0 0 0 Qulive] Qs Qi
[Qu Quz 00 0 Qe

Qu Qxn 00 0 Quj o
- 611 613 000 Quf % AT

0 0 000 O L.

0 0 00O _0 LU

_atIB 6123 000 Qﬂl_,za“"

0 0 0

0 00

0 00

0 0 0

0 00

00 %

0 0 0 Q)
0 0 0 Q
Q; 0 0 Q,
0 Qu Qs ©
0 Qs Qs O
0 0 0 Quj

!

~

OOOQ

B

(B.1.5)

(B.1.6)
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where, with subscript " denoting thermat effects;

6,, =Q lcos41|; + ngsin4q1 +(2Q1 + 4Q66)coszwsin2q1

Q.. = Quzcos’y + sin'y) + (Qu + Qa2 - 4Qes)cos’ysin’y

Q. =Qusin‘y + Queos’y + (2Qi; + 4Qgs)cos ysiny

Qs = (Qui - Qiz - 2Qes)cos’ysiny - (Quz - Q2 - 2Qes)cosysin’y
Qs =(Qi1 - Q2 - 2Qse)cosysin’y - (Qzz - Qiz - 2Qes)cos ysiny
Qs = (Qut + Q22 - 2Qu2 - 2Qes)cos ysin’y + Qes(cos’y + sin’y)
6:11 =Qiicos’y +_szsin4w +2Q2 coszwsinzgu

Gﬂz = Qzcos’y + Quzsin*y + (Qu + Qq)sin*ycos’y

Qus = (Qa1 - Qu)cos’ysiny +(Qz - Qu)sin’yeosy

Qi1 = Quz(sin'y + cos'y) + (Qu + Qu)sin*yeos’y

Q. = Quisin’y + Qucosy +2Qyzsin*ycos’y

Quzs = (Qiz - Qu)sin’yeosy + Qa2 - Qu)cos’ysiny

Qe = (Qu1 - Quz)ecos’ysiny + (Quz + Quz)sin’yeosy

Qo2 = (Qu1 - Qu2)sin’yeosy - (Qiz + Qu)cos’ysiny

Qus = [(Quz- Qu1) - (Qzz - Qua)lsin’yeos’y

Q “w = Q44c052\p + Q555in2l|.l

Qs = (Qus + Qss)cos’ysin’y

Qs5 = Qussin’y + Qsscos’y

With o, = 03, the normal stress o, transforms according to
o; = Qu3(e1 - anAT) + Qua(ez - 02AT) + Qus(e; - @5AT)
with

Q. =Quscos’y + Qusin’y

Q. =Q 3sin21y + Qucosz\y

Qn = Q33

Q,c =(Qu3 - Qu)sinycosy

B3

The bar over the [6 “] matnx denotes that we are dealing with the transformed reduced

stiffnesses instead of the reduced stiffnesses [Q, |-
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B.2 Formulation of Laminated Stiffness Matrix

The system of stress resultants and moment resultants in Chapter 3 is statically equivalent
to actual stress distribution through the thickness of the composite laminate. These stress
resultants having the dimensions of force per unit length are positive in the same
directions as the comresponding stress components. These resultants give the total force
per unit length acting at the midplane. In addition to that, there are moments applied at
the midplane, which are equivalent to the moments produced by the stresses with respect
to the midplane.

To obtain the constitutive model of a laminated composite, we substitute the transformed
stress matrix into the stress resultants and sum over the N plies. Thus

N, N 611 6:2 6!6 £y 911 §‘2 g“ s 9'“ 9"2 9“6 ®
Ny =Z 6]6 622 625 sy + 916 922 st Ky - Qna lez Q|26 a’r
ny = 616 6.26 6& Y ay QI6 st 666 Ky 6116 6:26 6:66 2(1,),

(B.2.1)

T
where [Nx N, N“] is the stress resultant in x, y, and xy. These equations may be
written as

Nx An Au At& E‘ BII BIZ Bla K, Nu
N, |=|Ap Ap Ax| &, |* B, B, Byix, |- N, (B.2.2)
ny A, Ay Ag 1y Ay B, B, B Xy N“y

Typically
. ;2[(6,15: +QyE, +Q,Y ‘y)f:_:dz+(6.,lcx +Qx, +§'6K“)f;zdz]

=Z[(6u€x '*‘61283« +616nylht —hy)+ (all"x +612‘cy +6|6xxyxh: _h:-l)]

 £51
such that the first part of the first term is Ay, and the first part of the second term is By;.

The moment resultants are given by

[
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B, B D,, Dy | x, M
M, [=|B, By Byje, [+|D, Dy Dypx, |-|M
B, B D,,

-3

y tr
D66 ny Mtx

-

and the shear force resuitant are given as

V¥ Qft.|p
y|_ X a5 Ty dz
[Vx :l é [Qu st E‘Y xz :'E‘"

= [A“ AIS ixz
Ay A Y

B.S

(B.2.3)

(B.2.4)

where extensional stiffness A;, flexural-extensional coupling stiffness B;;, and flexural
stiffness D;; of the plate are as defined previously. Thermal stress resultants, [Ny}, and

thermal moment resultants, [M,], are defined as

N | [Amr Auz Auz| %
Ny |=]Auz Az Ams] oy AT
_Ntxyd L Ans Az Azl _zaxy
My | [Bai Buz Bus| ox
My |=|Byz Bgz Bus| ay [AT
Mpy| [Bus B By33 ) 20y

pol-Efadlre  [e]-Tle]l

These are combined into

(B.2.5)

(B.2.6)
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N, Ay, A, Ay B, B, B, 0 0 Ex N,

N, A, A, A, B, B, B, 0 0 £, N,

ny A!G A26 Asﬁ BIG B26 B66 0 0 Txy Nuy

M, _ B, B, B¢ D, D, D, 0 O " Kel M, B2.7)
M, B, B, B, D, D, D, 0 0 K, M,

M,, B By Bg D Dy Dy 0 0 Ky M,,

v, 0 0 0 0 0 0 A, A, ¥y 0
V.1 |0 0 0 0 0 0 Ay Agf|Y.] L O

B.3 Analytical Evaluation of the Stiffness Matrix

An examination of the above expression reveals a complex situation in laminated
composites, where the stress resultants, for example

N, = Ajg, + AjE, + Ay, + Byx, + Bk, + Bk, (B.3.1)

is a function of midplane tensile strain ¢, and ¢, the midplane shear (¥, ), the bending
curvatures (kx and x,), and twisting (Kxy). In a laminated plate, there is coupling between

e tensile and shear due to Ajs and Aag
tensile and bending
e tensile and twisting

Bis and Bjs bring about tension-twisting coupling and Dy and Dy, in a similar
expression for M, represent flexture-twisting coupling

Equations (B.2.7) can be used to obtain the partially or fully inverted form of the

constitutive equation. After solving for [€] and substituting, the combination of the
resulting equations leads to the partially inverted form of the constitutive equation

£ A'|BIN
BRRGH
From this form, we can solve for {x], substitute into the equation involving [€] and obtain
the fully inverted form:

GiEH I
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Each of the combined form of the constitutive equations involves obtaining the elastic

properties of the lamina (form the Q values for each lamina) and the ply stacking
sequence (z coordinate).

The governing equations of the anisotropic composite plate are determined using
equation (B.3.3). In expanded form, this equation becomes

{M] = [C"][N] + [D"][x]

[e] =[A")IN] + [B][x] (B.3.4)
where we note that

[A"]=[A]"=[a]

[B']=-[A]" [B] = [b]

[C1=[BJA]" =- [B'] =[c]

[D]=[D] - [b)(AT'[B] = [d]

A system of two determinative equations is needed to reduce the two equations (B.3.4) to
the final two governing differential equations. The first is the equilibrium equation, given

by
My + Myyy + 2Myyxy =4 (B.3.5)

where M are the moment resultants and q is the lateral force. Substituting Equation
(B.3.4) into this equation, based on Kirchhoff's thin plate theory, results in the first
goveming equation

(cuNx + ey N, + €31Nyy) xx + (€12Nx + €Ny +c32Nyy ) 5y
+ AW anex + 2(di2 + 2d33)W xxyy + 4d|3‘.’4',,‘,‘;,qr
+ 4d23w,xyyy 2(C13N; + Cz3Ny + C33ny)‘,q, + dnw,,m, =-q (3.3.6)

The second equation is the compatibility equation for the in-plane strain components at
the reference surface of the plate

Slw+82n-7;m=0 (B.3.7)

When Equation (B.3.6) is substituted into this equation, the second goveming equation is
given by

(21N + aaNy + 213Nyy) yy + (@12Nx + 2N, + 233Ny ) xx - (213Nx + 223Ny + 233Ny )4y +
b21W xrax + (2023 - D3)Woaxry + (D11 + b2z + 2b33)W xayy + (213 - bia)Wapyy + b12Wyyyy = 0

(B.3.8)
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The derivation of equations (B.3.6) and (B.3.7) is called the classical theory of laminated
plates because a generalisation of the classical small deflection theory of plates to account
for the orthotropic characteristics of the various laminae composing the plate was made,
and the complexity of the goveming equations practically defies solution by exact
methods.



Appendix E
ABAQUS Input Files

E.1 Introduction

ABAQUS/Standard is a general purpose finite element program and the following
input files are examples of the analysis that were conducted in this study. Some of the
concepts are explained throughout the main text while a thorough treatment is found
in the ABAQUS/Standard User’s Manuals {1] and ABAQUS Theory Manual [2], as
well as in the ABAQUS/Standard Example Problems Manuals [38] . We note here
that the basic structure of these input files stays the same while the vanables are
changed according to the analysis as contained in the report.

Thermal buckling is a linear perturbation step and all loads are defined as change in
load to the reference state. ABAQUS uses the sparse solver for the analysis, The
temperature values are given as values at the centroid and gradient. The middle
surface of the shell is the reference surface and the Simpson integration is used.

The analysis in ABAQUS is generally carried out as follows
Buckling load estimate = (“Dead loads™) + Eigenvalue x (“Live™ loads)
where

“Dead” load = Total loads before x Buckle step
“Live” loads = Incremental load x Buckle step

E.2  Plate Section Properties
The plate section response is defined by

{N}= (1)) {£} - N (E2.1)
where

{N}  are the forces and moments on the plate section (membrane forces per unit
length, bending moment per unit length)

{E}  are the generalized plate strains in the shell (middle surface strains and

: curvatures)

[D]  is the section stiffness matrix

y(T) is the scaling modulus, which can be used to introduce temperature (T)
dependence of the cross-section, and

{‘N "‘} are the plate forces and moments caused by thermal strains.
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E2

These thermal forces and moments in the plate are generalized according to the

formula

)= (e -1°)- alr, Y1, - 1° e}

where

ofT) is a scaling factor (the “thermal expansion coefficient™)

(E2.2)

T is the initial (stress-free) temperature at this point in the plate, defined by the

initial nodal temperature

{F}  are the generalized stresses caused by a fully constrained unit temperature rise

as input by the user.

E.3  Thermal Expansion Coefficient

Thermal expansion coefficients are interpreted as total expansion coefficients from a
reference temperature, so that they generate thermal strains according to the following

formula;

e® = afT, £, T - T°)-o(T", £ T' - T°)

where

e® = is the total thermal strain at a material point,

a(’i‘, _fg) = is the thermal expansion coefficient

T = is the current temperature

T = is the initial temperature

£y = are the current values of the predefined field variables

f; = are the initial values of the predefined field variables

T° = is the reference temperature for the coefficient of thermal

expansion, in this case zero

(E.3.1)
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E.4  Isotropic Square Plate (with 16 Elements)

*HEADING
ISOTROPIC SQUARE PLATE - ELASTIC BUCKLING
A STUDY BY P.S. SIMELANE

*NODE

101

108,10.
$01,0.,10.
909,10.,10.

*NGEN, NSET=XSYM
101,901,100

*NGEN, NSET=XEDG

105,909,100

*NFILL,NSET=ALL

XSYM, XEDG, 8, 1

*NGEN, NSET=YSYM

101,109

*NGEN, NSET=YEDG

901, 909

*NSET, NSET=RIGHT
109,209,309,409,509,609,709,809, 909
*NSET, NSET=LEFT
101,201,301,401,501,601,701,801,901
*NSET, NSET=BOTTOM

101,102,103, 104,105,106,107,108,109
*NSET, NSET=TOP
901,902,903, 904, 905, 906, 907, 908,909
*ELEMENT, TYPE=S9R5, ELSET=ONE
1,101,103,303,301,102,203,302,201,202
*ELGEN, ELSET=ONE

1,4,2,1,4,200,4

*MATERIAL, NAME=PLATE

*ELASTIC

1.E9,.3

*EXPANSION

1.E-6

*SHELL SECTION, MATERIAL=PLATE, ELSET=ONE
0.1,3

e XA IR ARRE b &N

*STEP

*BUCKLE

3,

*TEMPERATURE

ALL,100.

*EhERA NS AT kR

*BOUNDARY

*+SIMPLY SUPPORTED EDGES

LEFT, 1

LEFT, 3 -

LEFT, 4

RIGHT, 1

RIGHT, 3

RIGHT, 4

TOP, 2

TOP, 3

TOP, 5

BOTTOM, 2

BOTTOM, 3

BOTTOM, 5

*MODAL FILE

E3
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*PRINT, RESIDUAL=NO

*EL PRINT, ELSET=0NE, SUMMARY=NO, POSITION=CENTROID
g

*EL FILE, ELSET=0NE, POSITION=CENTROID

S R

*NODE FILE

U,RF,CF

*RESTART, WRITE, FREQUENCY=99%

*END STEP

E.S Laminated Square Plate (16 Elements)

*HEADING

SQUARE LAMINATED PLATE - ELASTIC BUCKLING
*NODE

101

109,10.

%01,0.,10.

909,10.,10.

*NGEN, NSET=X5YM

101,901,100

*NGEN, NSET=XEDG

109,909,100

*NFILL,NSET=ALL

XSYM,XEDG, 8,1

*NGEN, NSET=YSYM

101,109

*NGEN, NSET=YEDG

901,909

*NSET,NSET=RIGHT
109,209,309,409,509,608,709,809,90%9
*NSET,NSET=LEFT
101,201,301,401,501,601,701,801,901
*NSET,NSET=E0TTCM
101,102,103,104,105,106,107,108,109
*NSET,NSET=TOP

501,902,903, 904,905,906,907,908,309
*ELEMENT, TYPE=S9RS5, ELSET=0NE
1,101,103,303,301,102,203,302,201,202
*ELGEN, ELSET=PLATE

1,4,2,1,4,200,4

*SHELL SECTION, ELSET=PLATE,COMPOSITE, ORIENTATION=SECORI
0.25,3,LAMINA,O.

**CENTER LINE

0.25,3, LAMINA,C.
*MATERIAL , NAME=LAMINA

*ELASTIC, TYPE=LAMINA
181.0E9,10.3E9,0.28,7.17E9,7.17E9,6.21E9
*EXPANSION '
0.02E-6,22.5E-6

*ORIENTATION, NAME=SECCRI, SYSTEM=RECTANGULAR
1.,1.,0.,-1.,1.,1.

3,0. .

IS X222 22203 2 2 R Al 2t

*STEP

*BUCKLE

3,

*TEMPERATURE

ALL, 1000.

I Z 2 22 X200 5 0 & 4

*BOUNDARY
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**SIMPLY SUPPORTED EDGES
LEFT, 1

LEFT, 3

LEFT, 5

RIGHT, 1

RIGHT, 3

RIGHT, 5

TOP, 2

TOP, 3

TOF, 4

BOTTOM, 2

BOTTOM, 3

BOTTOM, 4

dkkdkhhh

*MODAL FILE
*RESTART, WRITE, FREQUENCY=1
*END STEP

E.6  Square Plate with a Circular Hole (160 elements)

*HEADING
BUCKLING OF COMPOSITE HOLE WITH A CIRCULAR HOLE
*NODE

1001,10.,-10.

1017,10.,10.

1033,-10.,10.

1049, -10.,-10.

1065,10., -10.

+*NGEN, NSET=OUTSIDE

1001,1017

1001, 1017

1017,1033

1033, 1049

1049,1065

* &

**DEFINE A HOLE

* %

*NODE

1,2.,-2.

17,2.,2.

33,-2.,2.

49,-2.,-2.

65,2.,-2. :
*NGEN, LINE=C, NSET=HOLE
1,17

17,33

33,49

49,65

*NPILL, NSET=ALL
HOLE,OUTSIDE, 10,100
*NSET, NSET=RIGHT, GENERATE
1001,1017

*NSET,NSET=TOP, GENERATE
1017,1033
*NSET,NSET=LEFT, GENERATE
1033,1049 '

*NSET, NSET=BOTTOM, CENERATE
1049,1065

*BLEMENT, TYPE=5S9RS5
1,1,201,203,3,101,202,103,2,102
*ELGEN, ELSET=PLATE



E. ABAQUS Input Files

1,5,200,100,32,2,1
*ELEMENT, TYPE=S9R5
32,63,263,201,1,163,264,101,64,164
*ELGEN, ELSET=PLATE

32,5,200,100

*SHELL SECTION,ELSET=PLATE,COMPOSITE, ORIENTATION=SECORI
0.25,3,LAMINA, O.

**CENTRE LINE

0.25,3, LAMINA,O.

*TRANSVERSE SHEAR STIFFNESS
2.9875E9,2.5875E9

*MATERIAL, NAME=LAMINA

*ELASTIC, TYPE=LAMINA
181.0E9,10.3E9,0.28,7.17E9,7.17E9,6.21E9
*EXPANSION

0.02E-6,22.5E-6

*ORIENTATICN, NAME=SECORI, SYSTEM=RECTANGULAR
1.,1.,0.,-1.,1.,1.

3,0.

kkkkhhkhhkhthrhhdihddhkidhd

*STEP

*BUCKLE

5,

*TEMPERATURE

ALL,1000.

* %

*BOUNDARY

**SIMPLY SUPPORTED

LEFT, 1

LEFT, 3

LEFT,

RIGHT, 1

RIGHT, 3

RIGHT, S

TOP, 2

TOP, 3

TOP, 4

BOTTOM, 2

BOTTOM, 3

BOTTOM, 4

L 2

*MODAL FILE

*RESTART, WRITE, FREQUENCY=1

*END STEP

E.7 Square Laminated Plate - (156 elements)

*NODE

101

125,10.
27¢1,0.,10.
2725,10.,10.
*NGEN, NSET=LEFT
101,2701,100
*NGEN, NSET=RIGHT
125,2725,100
*NFILL, NSET=ALL
LEFT,RIGHT, 24,1
*NGEN, NSET=BOTTOM
101,125

*NGEM, NSET=TOP



E. ABAQUS Input Files E7

2701,2725
*ELEMENT, TYPE=S9R5, ELSET=ONE
1,101,103,303,301,102,203,302,201,202
*ELGEN, ELSET=PLATE
1,12,2,1,13,200,12

*SHELL SECTION, ELSET=PLATE,COMPOSITE, ORIENTATION=SECORI
0.25,3,LAMINA, 45.

**CENTER LINE

0.25,3,LAMINA, -45.

*TRANSVERSE SHEAR STIFFNESS
2.9875E9,2.5875E9
*MATERTAL , NAME=LAMINA

*ELASTIC, TYPE=LAMINA
181.0E9,10.3E9,0.28,7.17E9,7.17E9,6.21E9
*EXPANSION

0.02E-6,22.5E-6

*ORIENTATION, NAME=SECORI, SYSTEM=RECTANGULAR
1.,1.,0.,-1.,1.,1.

3,0.

AEEXRRNT AT A A A TN A AR SN

*STEP

*BUCKLE

3,

*TEMPERATURE

ALL, 1000.

*hkhkhkhkkhhkkhin

*BOUNDARY

**STMPLY SUPPORTED EDGES

LEFT, 1

LEFT, 3

LEFT, 5

RIGHT, 1

RICHT, 3

RIGHT, 5

TOP, 2

TOP, 3

TOP, 4

BOTTOM, 2

BOTTOM, 3

BOTTOM, 4

tF 2 2 2 3 & X 3

*MODAL FILE
*RESTART, WRITE, FREQUENCY=1

*END STEP
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