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ABSTRACT 
 

 
Vibration is an inherent phenomenon in dynamic mechanical systems. The work 

undertaken in this thesis is to identify natural frequencies of a variable length blade. 

Therefore designers can ensure that natural frequencies will not be close to the 

frequency (or integer multiples) of the main excitation forces in order to avoid 

resonance. For a wind turbine blade, the frequency range between 0.5 Hz and 30 Hz 

is relevant. The turbine blade is approximated by a cantilever, therefore, it is fully 

constrained where attached to a turbine shaft/hub. Flap-wise, edge-wise and torsional 

natural frequencies are calculated. 

 

The MATLAB program “BEAMANALYSIS.m” has been developed for the finite 

element analysis of a one dimensional model of the beam. Similarly, a three 

dimensional model of the beam has been developed in a finite element program 

Unigraphics NX5. The results found using the MATLAB program are compared with 

those found with NX5. Satisfactory agreement between the results is found for 

frequencies up to almost 500 Hz. Additionally, the frequencies one might expect in an 

experiment are identified. 

 

Experimental modal analysis has been performed on a uniform and stepped beam 

made of mild steel to extract the first five flap-wise natural frequencies. The results 

found have been compared to numerical results and the exact solution of an Euler-

Bernoulli beam. Concurrence is found for the frequency range of interest. Although, 

some discrepancies exist at higher frequencies (above 500 Hz), finite element 

analysis proves to be reliable for calculating natural frequencies.  

 

Finally, the fixed portion and moveable portion of the variable length blade are 

approximated respectively by a hollow and a solid beam which can be slid in and out. 

Ten different configurations of the variable length blade, representing ten different 

positions of the moveable portion are investigated. A MATLAB program named 

VARIBLADEANALYSIS.m was developed to predict natural frequencies. Similarly 

three dimensional models of the variable length blade have been developed in the 

finite element program Unigraphics NX5.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Thesis Structure 

 

The research described in this thesis is directed towards a better understanding of 

the structural dynamic characteristics of a variable length blade for wind turbines. 

Three basic shapes representing the wind turbine blade have been investigated: 

 A uniform beam; 

 a stepped beam and, 

 a variable length blade (variblade). 
 

Chapter 1 includes background on wind turbines in general, partly for the purpose of 

contextualising the problem and making the thesis accessible to non-specialists. This 

chapter leads to the concept of a variable length blade for wind turbines and to the 

goal of the research. 
 

In Chapter 2, a literature survey is given.  
 

In Chapter 3, structural dynamic considerations related to wind turbine blade are 

presented. Excitations and resonances have been described. Moreover, the 

frequency equation and mode shapes for an uniform Euler-Bernoulli beam has been 

investigated. 
 

Chapter 4 describes experimental modal analysis performed on a uniform beam and 

stepped beam for three purposes: 

 To gain insight into experimental verification; 

 to measure flap-wise natural frequencies and, 

 to validate numerical results. 
 

 In Chapter 5, finite element analysis is discussed: 

 To gain insight into the numerical simulation by developing a MATLAB program 

for a one-dimensional model and three-dimensional model in NX5; 

 to calculate natural frequencies of a uniform beam and a stepped beam and, 

 to calculate natural frequencies of a composite variblade.  
 

Chapter 6 presents, compares and discusses the results. 
 

Chapter 7 summarises the contribution of this thesis. The chapter also includes 

recommendations for further research. 
 

Appendices present instruments specifications, the purpose written MATLAB codes 

and numerical results.  
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1.2 Wind turbine technology and design concepts 

 
1.2.1 Wind energy 

 

“A wind turbine is a machine which converts the wind’s kinetic energy into mechanical 

energy. If the mechanical energy is used directly by machinery, such as a pump or 

grinding stones, the machine is usually called a windmill. If the mechanical energy is 

converted to electricity, the machine is described as wind generator, or more 

commonly a wind turbine (wind energy converter WEC)” (Burton et al., 2008).  Wind 

turbines are classified according to their size and power output. Small wind turbines 

supply energy for battery charging systems and large wind turbines, grouped on wind 

farms supply electricity to a grid. Whatever the size or output, the basic arrangement 

of electricity generating turbines remains identical. 

 

Wind energy has been used for centuries. The first field of application was to propel 

boats along the River Nile around 5000 BC (United States Department of Energy, 

2005). By comparison, wind turbines are a more modern invention. The first simple 

windmills were used in Persia as early as the seventh century for irrigation purposes 

and for milling grain (Edinger & Kaul, 2000). The modern concept of windmills began 

around the time of the industrial revolution. However, as the industrial revolution 

proceeded, industrialisation sparked the development of larger wind turbines to 

generate electricity. The first electricity generating wind turbine was developed by 

Poul la Cour in 1897 (Danish Wind Turbine Manufacturers Association, 2003). 

“Today, wind energy is the world’s fastest growing energy technology”. Wind energy 

installations have surged from a capacity of less than 2 GW in 1990 to about 94 MW 

(October 2008) (Wind Power Monthly, 2008). 

 

An abundance of wind energy resources, vast tracts of open land and electricity 

distribution infrastructure give South Africa a potential to become a “wind 

powerhouse” (Kowalik & Coetzee, 2005). According to wind power revolution 

pioneers in South Africa, “the Western Cape has prevailing winds from the south-east 

and north-west and they often blow during peak electricity consumption periods. 

These winds have a potential to generate 10 times the official national wind energy 

estimates” (Kowalik & Coetzee, 2005). There are two pilot wind power projects in 

South Africa: At Klipheuwel and Darling, both in the Western Cape (Kowalik & 

Coetzee, 2005). 

 

 

http://www.solarnavigator.net/electricity_and_magnetism.htm
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1.2.2  Types of wind turbines 

 

The most common turbine design is the horizontal axis wind turbine (HAWT). There 

are also vertical axis wind turbines (VAWT). The HAWT is more practical than the 

VAWT and is the focus of remainder of the discussion here for the following reasons 

(Manwell et al, 2004): 

 Horizontal axis wind turbines are more efficient, since the blades always move 

perpendicularly to the wind, receiving power through the entire rotation. In contrast, 

all vertical axis wind turbines require aerofoil surfaces to backtrack against the wind 

for part of the cycle. Backtracking against the wind leads to inherently lower 

efficiency.  

 Vertical axis wind turbines use guy wires to keep them in place and put stress 

on the bottom bearing as all the weight of the rotor is on the bearing. Guy wires 

attached to the top bearing increase downward thrust during wind gusts. Solving this 

problem requires a superstructure to hold a top bearing in place to eliminate the 

downward thrusts of gusts in guy wired models.  

 
 

Figure 1.1: Two basic wind turbines, horizontal axis and vertical axis 

 

(Adapted from Ontario Ministry of Energy, 2008) 

 

1.2.3  Components of wind energy systems 

 

The principal subsystems of a typical horizontal axis wind turbine are shown in  

Figure 1.2. These include: rotor; drive train, nacelle and main frame, including wind 

turbine housing and bedplate, yawing system, tower and foundation, machine 

controls,  alternator and balance of the electrical system (Manwell et al, 2004). 

http://en.wikipedia.org/wiki/Guy-wires
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Figure 1.2: Major components of a horizontal axis wind turbine 
 

(Adapted from Manwell et al, 2004) 

 

The rotor  

The rotor (the hub and blades of a wind turbine) is often considered to be the most 

important component from performance and overall cost standpoints. The rotor 

assembly may be placed in the following two directions (Manwell et al, 2004): 

 Upwind of the tower and nacelle, therefore, it receives unperturbed wind and 

must be actively yawed by an electrical motor. 

 Downwind of the tower, this enables self-alignment of the rotor with the wind 

direction (yawing), but the tower causes deflection and turbulence before the 

wind arrives at the rotor (tower shadow). 

Some rotors include a pitch drive. This system controls the pitch of the blades to 

achieve an optimum angle to handle the wind speed and the desired rotation speed. 

For lower wind speed, an almost perpendicular pitch increases the energy harnessed 

by the blades; at high wind speed, a parallel pitch minimizes the blade surface area 

and prevents over speeding the rotor. Typically one motor controls each blade.  

 

Many types of materials are used in wind turbines construction. The following list 

provides materials in general use for blade manufacture (Burton et al, 2004): 

 Wood (including laminated wood composites) 

Alternator 
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 Synthetic composites (usually a polyester or epoxy matrix reinforced by glass 

fibres) 

 Metals (predominantly steel or aluminium alloys) 

 

 The drive train 

The drive train consists of the rotating parts of the wind turbine (exclusive of the 

rotor). These, typically, include shafts, gearbox, bearings, a mechanical brake and an 

alternator. Blades are connected to the main shaft and ultimately the rest of the drive 

train by the hub.  There are three basic types of hub design which have been applied 

in modern horizontal wind turbines (Figure 1.3): 

 Rigid hubs; 

 teetering hubs and, 

 hinged hubs. 

 

 

 

Figure 1.3: Hub options 
 

(Adapted from Manwell et al, 2004) 

 

The nacelle and yaw system 

This category includes the wind housing, machine bedplate or mainframe and the 

yaw orientation system. The main frame provides for the mounting and proper 

alignment of the drive train components. A yaw orientation system for upwind turbines 

is required to ensure the rotor shaft remains parallel with the wind. 

 

Tower and the foundation 

This includes the tower structure and supporting foundation. The tower of a wind 

turbine supports the nacelle assembly and elevates the rotor to a height at which the 

wind velocity is significantly greater and less perturbed than at ground level.  
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Controls and Balance of electrical system 

A wind turbine control system includes the following components: Sensors, 

controllers, power amplifiers and actuators. In addition to the alternator, the wind 

turbine utilises a number of other electrical components such as cables, switchgear, 

transformers and possibly electronic power converters, power factor correction 

capacitors, yaw and pitch motors. 

 

Alternator  

The most common types encountered in wind turbines are induction and synchronous 

alternators. In addition, some smaller turbines use DC machines (generators).  

 

1.2.4 Working principle of a wind turbine 

 

Modern wind turbines work on an aerodynamic lift principle, just as do the wings of an 

aeroplane. The wind does not "push" the turbine blades, but instead, as wind flows 

across and passes a turbine blade, the difference in pressure on either side of the 

blade produces a lifting force, causing the rotor to rotate and cut across the wind as 

illustrated in Figure 1.4. 

 

 

Figure 1.4: Lift and drag on the rotor of a wind turbine 
 

(Adapted from Aerowind Systems, n.d.) 

 

A section of a blade at radius r is illustrated in Figure 1.5, with the associated 

velocities, forces and angles indicated.  
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 The relative wind velocity vector at radius r, denoted by wV , is the resultant of 

the axial component PU  and  the rotational component TU  

 The axial velocity PU  is reduced by a component 0V a, because of the wake 

effect or retardation imposed by the blades, where 0V  is the upstream 

undisturbed wind speed.  

 The rotational component is the sum of the velocity from to the blade’s motion, 

r , and the swirl velocity of the air, r a’.  

The a’ and a terms represent rotational and axial interference factors respectively. 

 

  = Section pitch angle 

  = Angle of attack 

  =  + = Angle of relative wind velocity 

fL  = Resultant lift force 

D = Resultant drag force 

 

 

 

Figure 1.5: Blade element force-velocity diagram 

(Adapted from Lee & Flay, 2000) 

 

Wind turbines are designed to work between certain wind speeds. When the wind 

speed increases above a certain velocity, known as the “cut in” speed (typically about 

3 to 4 m/s) the turbine will begin to generate electricity and continue to do so until the 

wind speed reaches “cut out” speed (about 25 m/s). At this point the turbine shuts 

down, rotates the blades out of the wind and waits for the wind speed to drop to a 

suitable speed which will allow the turbine to restart. The “cut out” speed is 

wV  

fL  
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determined by any particular machine’s ability to withstand high wind (Research 

Institute for Sustainable Energy, 2006). The turbine will have an optimum operating 

wind speed (“rated speed”) at which maximum output will be achieved; typically about 

13 to 16 m/s. The “rated speed” is the wind speed at which a particular machine 

achieves its design output power. Above this speed it may have mechanisms to 

maintain the output at a constant value with increasing wind speed (see Figure 1.6). 

 
 

 
Figure 1.6: Power output from a wind turbine as a function of wind speed 

 
(Adapted from Research Institute for Sustainable Energy, 2006) 

 

Figure 1.6 details an ideal power curve for a small wind turbine with a furling 

mechanism. The machine starts to produce power at Vc (cut in speed), it reaches its 

rated power at Vr (rated speed) and shuts down to avoid damage at Vf (the furling 

speed). Pr is the rated output of the turbine. This curve is typical of a horizontal-axis 

two- or three-bladed machine. The curve is ideal, as the machine follows the peak 

power available from the wind until it reaches alternator capacity, then regulates to 

maintain a steady output until shut down. 

1.3  Wind turbine power output and variable length blade concept 

The power P of the wind that flows at speed V through an area A is given by the 

expression (Ackermann, 2000): 

P = 
3

2

1
AV                             Equation 1.1 

  = air density  

A = area is the cross-sectional area of the flowing air  

V  = wind speed 

 



 

 
 

9 

 

 

Figure 1.7: Wind turbine schematic 
 

(Adapted from Ontario Ministry of Energy, 2008) 

 
 

The power in the wind is the total available energy per unit time. This power is 

converted into the mechanical-rotational energy of the wind turbine rotor, resulting in 

a reduced speed of the air mass.  

 

There are three basic physical laws governing the amount of energy available from 

the wind (Research Institute for Sustainable Energy, 2006).  

 Firstly, the power generated by a turbine is proportional to the cube of wind 

speed. For example if the wind speed doubles, the power available increases 

by a factor of eight; if the wind speed triples then 27 times more power is 

available. Conversely, there is little power in the wind at low speed; 

 secondly, power available is directly proportional to the swept area of the 

blades. Hence, the power is proportional to the square of the blade length. For 

example, doubling the blade length will increase the potential for power 

generation four times; tripling blade length increases the potential for power 

generation nine times and,  

 finally, power in the wind cannot be extracted completely by a wind turbine. 

The theoretical optimum for utilizing the power by reducing its velocity was 

first discovered by Betz in 1926. He argued the theoretically maximum power 

to be extracted from the wind is given by (Ackermann, 2000): 
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BetzP = 
2

1
 A

3V BetzPC . =
2

1
 A

3V 0.59                                    Equation 1.2 

Hence, even if power extraction without any loss was possible, only 59% of the power 

in the wind could be utilized by a wind turbine (Ackermann, 2000). 

 

The energy capture at low wind speed (below Vc in Figure 1.6) is proportional to the 

rotor’s swept area, which in turn is proportional to the rotor diameter squared. From 

Equation 1.2, it can be seen that significant increases in the output power can be 

achieved only by increasing the swept area of the rotor, or locating the wind turbines 

on sites with higher wind speeds. If a large rotor relative to the size of the alternator is 

suddenly acted upon by high winds, it might produce more electricity than the 

alternator can absorb and additionally overstress the structure. Conversely, in time of 

low winds, if a rotor is too small for the alternator, wind turbine efficiency may be low 

and the system only achieves a small proportion of its energy producing potential.  

 

What is required is a wind turbine able to adjust to handling varying wind speed 

conditions efficiently, while attempting to maximise energy capture for a given support 

structure. This constitutes the basic concept of the variable length blade for wind 

turbine. The variable length blade considered here: 

 Allows the rotor to yield significant increases in power capture through 

increase of its swept area and, 

 provides a method of controllably limiting mechanical loads, such as torque, 

thrust, blade lead-lag (in-plane), blade flap (out-of-plane), or tower top bending 

loads, delivered by the rotor to the power train below a threshold value. 

Achieving this goal enables a single extended rotor blade configuration to 

operate within an adjustable load limit. 

 

The torque ( ) delivered by the rotor to the power train is given by (U.S. Patent No 

6,726,439 B2, 2004) 

 =
r

P


                               Equation 1.3 

where P  is power and r  is rotor angular velocity. When the angular velocity is 

limited by tip speed ( tipV ), the torque can be shown to be related to the rotor radius, 

r , as 

  = r
V

P

tip

                             Equation 1.4 
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To hold torque below a set design limit, lim , the maximum power the rotor can 

produce, while remaining within the tip speed and torque limit, can be seen to be 

inversely proportional to the rotor radius, as given by (U.S. Patent No 6,726,439 B2, 

2004) 

r

V
P

tiplim

max


                              Equation 1.5 

Then, if we observe that power for a given wind speed V  and density   is given as 

(U.S. Patent No 6,726,439 B2, 2004) 

 PCVrP 32

2

1
                   Equation 1.6 

where PC  is the power capture efficiency of a given rotor geometry at a specified 

rotor angular velocity and wind speed. The relationship between rotor radius and wind 

velocity can be shown to be 

3
lim21

P

tip

C

V

V
r




                             Equation 1.7 

This means as wind speed increases, the rotor radius must decrease almost as much 

as the inverse of this increase ( PC  may vary slightly as this occurs) to remain within 

torque limitations. However, in practice a wind turbine will measure its power output 

(via electrical current for instance) and rotor speed. Therefore, one may determine the 

appropriate radius by (U.S. Patent No 6,726,439 B2, 2004) 

P

V
r

Ptip lim
                              Equation 1.8 

where P  is the approximate power train efficiency at a given observed output power, 

P. The thrust load ( tF ) is calculated as (U.S. Patent No 6,726,439 B2, 2004) 

 tt CVrF 22

2

1
                             Equation 1.9 

where tC  is the rotor thrust coefficient at a given flow velocity, rotor speed and blade 

pitch angle. If the thrust is held below the nominal limit ( lim,tF ), then the rotor radius 

can be seen to vary as  

t

t

C

F

V
r



lim,21
                            Equation 1.10 

where the rotor radius must decrease nearly as much as the inverse of an increase in 

velocity, similar to Equation 1.7. 
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Variable length blade (variblade) is possible if there are two parts: an inboard portion 

and an outboard part. The outboard portion is mounted inside the inboard portion, 

guided to be telescoped relative to the inboard portion. An actuator system moves the 

outboard portion of the blade radially to adjust the wind turbine’s rotor diameter. A 

controller will measure electrical power and retract the outboard portion of the blade 

when rated power is reached, or nearly reached (Pasupulati et al., 2005). However, 

the mechanism is beyond the scope of this research. Design manufacture and testing 

of variable length blade for wind turbine is being undertaken by another student. 

 

 

 

Figure 1.8: Wind turbine with variable length blades with the blades extended and retracted 

(Adapted from Pasupulati et al., 2005) 

 

1.4 Vibration and Resonance 

 

The term vibration refers to the limited reciprocating motion of a particle or an object 

in an elastic system (Manwell et al, 2004). In most mechanical systems, vibrations are 

undesirable and dangerous if the vibratory motion becomes excessive. However, in a 

rotating system, such as in a wind turbine, vibrations are unavoidable. Wind turbines 

are partially elastic structures and operate in an unsteady environment that tends to 

result in vibrating response. Therefore, the interplay of the forces from the external 

environment, primarily because of the wind and the motion of the various components 

of the wind turbine, results not only in the desired energy production from the turbine, 

but also in stresses in its constituent materials. For the turbine designer these 

stresses are of primary concern, as they directly affect the strength of the turbine and 

how long it will last. In order to be viable for providing energy, a wind turbine must: 

 Produce energy; 

 survive and, 
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 be cost-effective. 

That means that the turbine design must not only be functional in terms of extracting 

energy. It must also be structurally sound so that it can withstand the loads it 

experiences and the costs to make it structurally sound must be commensurate with 

the value of energy produced. 

 

Hence, a key to good wind turbine design is to minimize vibrations by avoiding 

resonance. Resonance is a phenomenon occurring in a structure when an exciting or 

forcing frequency equals or nearly equals one of the natural frequencies of the 

system (Burton et al., 2004). It is characterized by a large increase in displacements 

and internal loads. Damping reduces these displacements and loads. That is why 

some turbines blades are partially filled with a foam material, which helps dampen the 

vibration of a blade in turbulent wind conditions (Composites world, 2008). This 

reduces the chances of the blade generating a resonant response. 

 

In a rotating system the exciting frequencies are integer multiples of the rotational 

speed. The designer must ensure the resonant frequencies are not excited 

excessively. Although dynamic loads on the blades will, in general, also excite the 

tower dynamics, in this study, tower head motion is excluded from consideration, in 

order to focus exclusively on blade dynamic behaviour. 

 

For a wind turbine blade, the deflections of interest are lateral translations (flap-wise, 

edge-wise) and cord rotation (about the blade’s longitudinal axis) (Hau, 2000). Most 

directions and loads referred to are illustrated in Figure 1.9. The chordwise direction 

is often called edge-wise direction. 

 

Figure 1.9: Terms used for representing displacements, loads and stresses on the rotor. 

(Adapted from Hau, 2000) 
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The design of a wind turbine structure involves many considerations such as 

strength, stability, cost and vibration. Reduction of vibration is a good measure for a 

successful design in blade structure (Maalawi & Negm 2002). Dealing with vibration in 

an early phase of the design process avoids costly modification of a prototype after 

detection of a problem. Therefore, both experimental and theoretical methods are 

required for studying the structural characteristics of turbine blades in order to avoid 

vibration problems. 

 

1.5  Problem statement 

 

The amplitude of the generated vibrations of a wind turbine blade depends on its 

stiffness (Jureczko et al. 2005) which is a function of material, design and size. One 

issue a variable length blade design presents to blade designers is that of structural 

dynamics. A wind turbine blade has certain characteristic natural frequencies and 

mode shapes which can be excited by mechanical or aerodynamic forces. Variable 

length blade design presents additional challenges as stiffness and mass distribution 

change as the moveable blade portion slides in and out of the fixed blade portion.  

 

This vibration analysis has the aim of verifying dynamic stability and the absence of 

resonance within the permissible operating range. Although material properties are an 

important factor, this analysis does  not include the effect of material choice. 

However, it provides tools which enable wind turbine blade designers to investigate 

the effect of material choices. 

 

1.6 Aims and objectives 

 

The previous section indicated that vibration problems in a variable length blade 

results in two needs: 

 To verify the dynamic stability and absence of resonance and 

 to understand structural dynamic characteristics. 

 

In engineering, there is a prerequisite for accurate numerical models. Computational 

fluid dynamics for new aircraft, the finite element method for structural analysis and 

finite difference programs for heat transfer are examples of numerical methods 

essential to a design process. In such applications, numerical models provide design 

performance prediction which facilitates making decisions early in the design process, 

thus saving money and ultimately delivering a better product. Numerical models allow 
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the comparison of design alternatives, normally prohibitively expensive to conduct 

using manufactured prototypes. 

 

The goals of this project are: 

 To develop computer models of a variblade. The model chosen is of a single 

blade fitted with a telescoping mechanism to vary length; 

 to calculate the natural frequencies of the variblade with the computer models for 

the two main vibration directions (flap-wise and edge-wise); 

 

 

 

Figure 1.10: Edge-wise and flap-wise vibrations of the blade 

(Adapted from Grabau  & Petersensvej, 1999) 

 

 to gain insight into experimental modal analysis, finite element analysis and 

analytical methods; 

 to compare the output of a computer model with the experimental data and, 

 to use the computer model to make recommendations on design and operation of 

variblades. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1.  Vibration 

 

2.1.1  Classification of previous research 

 

Vibration in wind turbines is a recognised phenomenon. As far back as the Middle 

Ages, the post windmill of that time was also called a “rocking mill”, as the mounting 

of the entire mill house on a trestle led to a rocking motion. This drawback then 

became the stimulus to continued development, from which evolved the more stable 

Dutch windmill which ran more smoothly (Hau, 2000). 

 

Patil et al. classified the previous research on the structural dynamics of HAWTs into 

three groups:  

 The first group of studies analyzed isolated blades; 

 studies on rotor/tower or rotor/yaw coupling problems form the second group and, 

 a third group of studies considers the complete system dynamics of HAWTs.  

 

An isolated variable length blade constitutes the focus of this research and this study 

fits quite well in the first group of studies. 

 

2.1.2  Presenting natural frequency data 

 

Historically, the most basic requirement of structural dynamics analysis was to identify 

structural resonances and ensure they were not close to the frequency or harmonics 

of main rotor excitation forces (Thresher, 1982). In wind turbines, as with other 

rotating structures, exciting forces are generated by the rotating structure before 

being transmitted to the fixed structure at the frequencies which are integer multiples 

of the rotation rate.  

 

A common way to present natural frequency data and to look for possible resonances 

is to plot a Campbell Diagram. Figure 2.1 taken from Sullivan (Sullivan, 1981), is a 

Campbell Diagram for a hypothetical wind turbine. It consists of: 

 A plot of natural frequencies of a system versus the rotor speed and 

 a set of star-like straight lines which pass through the origin and express the 

relationship between the possible exciting frequencies and the rotor speed.  
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Because it is expected that excitation frequencies will always be integer multiples of 

the rotor speed, the intersection of one of the straight lines with one of the natural 

frequency curves indicates a potential for resonant vibration near the rotor speed of 

the intersection point. 

 

 

 

Figure 2.1: Campbell Diagram for a hypothetical wind turbine  
 

(Adapted from Sullivan, 1981) 

 

Another way to present this same information is to make a tabulation as shown in 

Figure 2.2. In this presentation of the Mod-1 (a horizontal axis wind turbine) system 

natural frequencies, also from Sullivan, the per revolution frequencies of various 

important motions are tabulated in columns. Regions of possible resonance near 

integer multiples of the rotational speed have been designated as regions to be 

avoided. 
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Figure 2.2: Mod-1 system natural frequencies  
 

(Adapted from Sullivan, 1981) 

 

2.2  Beam models 

 

The blades of a wind turbine rotor are generally regarded as the most critical 

component of the wind turbine system (Kong et al, 2000). A concentrated study was 

made by Zhiquan et al. (Zhiquan et al., 2001). They used both experimental and 

theoretical methods to study the structural dynamic characteristics of rotor blades to 

avoid sympathetic vibration. Experimental and theoretical modal analyses were 

performed on a blade from a 300 W machine. In the experiments, to extract modal 

parameters, a DAS (dynamic signal analysis and fault diagnosis system) was used by 

measuring vibrations at various locations along the blade’s surface. For the 

theoretical modal analysis a finite element analysis method was used. The effects of 

different constraint conditions of the finite element model were discussed. The results 

calculated using “Bladed for Windows” of Garrad Hassan and Partners Ltd. (UK) are 

compared with those found previously and satisfactory agreement between them 

obtained. The test indicated the natural frequencies of flap-wise vibrations as being 

lower than the torsional vibrations; flap-wise vibration being the main vibration mode 

of the rotor blade. 

 

From a modelling viewpoint, properties such as mass and stiffness distributions are of 

great importance for the dynamic behaviour of the wind turbine blade (Mckittrick et al., 

2001). The spar (Figure 2.3) is the most important part for structural analysis and acts 
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as a main beam. The blade can, therefore, be treated as a beam structure and a 

classical beam element is often used (Spera, 1994). There are several beam element 

types available. The most common types are based on the Euler-Bernoulli or the 

Timoshenko beam theories. The Euler-Bernoulli beam can be chosen because of the 

slender nature of the structure, which makes shear effects small. The blade is 

modelled as a cantilever, therefore, it is fully constrained where attached to the 

turbine shaft/hub. 

 

 

 

Figure 2.3: Typical fibreglass blade cross-section  
 

(Adapted from Manwell et al., 2004) 

 

2.3  Rotating beams/ blades 

 

A detailed analysis of the blade undertaken by Bechly and Clausent (Bechly & 

Clausent, 1997) indicates the natural frequencies of a rotating blade are higher than 

those of its non-rotating counterpart, because of stress-stiffening. Therefore, 

mechanical systems, such as helicopter or turbine blades, robotic arms and satellite 

appendages, will often be represented by an Euler-Bernoulli cantilever beam 

attached to a rotating body. A well-known result from a free vibration analysis is that 

as the rotation speed increases, the natural frequencies of the beam also increase 

(Bazoune, 2001). In fact, this “stiffening'' effect has been measured on rotor blades in 

the helicopter and engine industries. Since significant variations of dynamics 

characteristics result from rotational motion of such structures, they have been 

investigated for many years.  

 

Southwell and Gough suggested an analytical model to calculate natural frequencies 

of a rotating cantilever beam (Southwell & Gough, 1921). They established a simple 

equation, relating the natural frequency to the rotating frequency of a beam based on 

the Raleigh Energy Theorem. This equation is known as the Southwell Equation.  The 

stiffening effect due to centrifugal forces could be estimated by using the Southwell 

Equation, (Southwell & Gough, 1921) 
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2

1

2

0,1,1  ff R                            Equation 2.1 

in which 
0,1f  is the corresponding frequency for the non-rotating blade and   the 

rotating speed of the rotor. The 1  value is dependent on the mass and stiffness 

distribution and is typically set to 1.73 (Madsen, 1984). With knowledge of: 

 The speed of rotation; 

 the out-of-plane frequencies for the non-rotating blade; 

 the in-plane frequencies the non-rotating blade and, 

 the Southwell Equation.  

the in-plane or out-of-plane frequency of the rotating blade is easily investigated 

without recourse to further extensive calculations. Therefore, the Southwell Equation 

provides a suitable tool for natural frequency estimates of rotating beams at a 

preliminary design stage. 

 

2.4  Extendable blades 

 

Extendable rotor blades have been recognised since the 1930’s (U.S. Patent No 

2,163,482, 1939).  Numerous specific mechanical designs have been shown: 

 The torque tube and spar assembly for a screw-driven extendable rotor blade 

(U.S. Patent No 5,636,969, 1997); 

 The mounting arrangement for variable diameter rotor assemblies (U.S. No 

Patent 5,655,879, 1997); 

 The variable diameter rotor blade actuation with system retention straps wound 

around a centrally actuated drum (U.S. Patent No 5,642,982, 1997); 

 A locking mechanism and safety stop against over extension for a variable 

diameter rotor (U.S. No Patent 4,080,097, 1978); 

 A variable diameter rotor with offset twist (U.S. No Patent 5,253,979, 1993) and, 

  A drive system for changing the diameter of a variable rotor using right angle 

gears to interface with screw-driven retraction mechanism (U.S. Patent No 

5,299,912, 1994). 

 

U.S. Patent No 6,902,370, to Dawson and Wallace, granted in June 2005, entitled 

“Telescoping wind turbine blade” disclosed a wind turbine blade made of a fixed 

section attached to a wind turbine hub. A moveable blade section is attached to the 

fixed section so that it is free to move in a longitudinal direction relative to the fixed 

blade section. A positioning device allows the rotor diameter to be increased to 

provide high power output in low wind conditions. Diameter can be decreased in 
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order to minimize loads in high wind conditions. U.S. Patent No 6,972,498, to 

Jamieson, Jones, Moroz and Blakemore, granted in December 2003, entitled 

“Variable diameter wind turbine rotor blades”, discloses a system and method for 

changing wind turbine rotor diameters to meet changing speeds and control system 

loads. U.S. Patent No 6,726,439, to Mikhail and Deane, granted in March 2003, 

entitled “Retractable rotor blades for power generating wind and ocean current 

turbines and means for operating below set rotor torque limits” discloses a method of 

controlling wind or ocean current turbines in a manner that increases energy 

production, while constraining torque, thrust, or other loads below a threshold value. 

An advantage of the invention is it enables an extended rotor blade configuration to 

operate within adjustable torque and thrust load limits  

 

2.5  Summary and Conclusion  

  

Based on the Campbell diagram (see Figure 2.1), regions of possible resonance may 

be determined and avoided. Through the use of experimental, numerical and 

theoretical methods, natural frequencies can be determined. A cantilever beam can 

be used to approximate the blade. Once properties such as mass and stiffness 

distribution are available from the design process, they can be used as input data in a 

computer simulation for calculating natural frequencies. Using the Southwell equation 

(Equation 2.1), the effects of rotation on natural frequencies can be understood. 

When all this is accomplished, knowledge of the structural behaviour of a wind turbine 

blade can be gained. 

 

An area that has not been widely considered is the structural dynamics of a variable 

length blade for wind turbines. Such study could assist wind turbine designers to 

optimise many aspects of wind turbine design. Stiffness and mass distribution change 

when the moveable portion of the blade slides in and out of the fixed portion. 

Moreover, since the natural frequencies are functions of the geometry of the structure 

and the variable length blade will have different configurations (position of the 

outboard portion of the blade), its natural frequencies will also vary.  Numerical 

modelling is an efficient way to determine the natural frequencies for each 

configuration. 
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CHAPTER 3 

STRUCTURAL DYNAMIC CONSIDERATIONS IN WIND TURBINE DESIGN 

 

3.1.  Introduction 

 

Problems of structural dynamics can be subdivided into two broad classifications 

(Knight, 1993): 

 The first deals with the determination of natural frequencies of vibration and 

corresponding mode shapes. Usually, these natural frequencies of the structure 

are compared to frequencies of excitation. In design, it is usually desirable to 

assure these frequencies are well separated.  

 A second investigates how the structure moves with time under prescribed loads 

and/or motions of its supports; in other words, a time history analysis has to be 

performed. 

  In this study, the focus is on determining natural frequencies. 

 

3.2.  Fundamentals of vibration analysis 

 

The importance of proper modelling of the structural dynamics can be most 

conveniently illustrated by considering a single degree of freedom mass-spring-

damper system as shown in Figure 3.1. 

 

 

 

Figure 3.1: Single degree of freedom mass-spring-damper system  

(Adapted from Van Der Tempel & Molenaar, 2002) 

 

When a harmonic excitation force (i.e. a sinusoid) )(tF  is applied to a mass, the 

magnitude and phase of the resulting displacement u strongly depends on the 

frequency of excitation  . Three response regions can be distinguished:  

 Quasi-static (or stiff);  

 resonance and,  

 inertia dominated (or soft).  
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For frequencies of excitation well below the natural frequency of the system, the 

response will be quasi-static as illustrated in Figure 3.2: the displacement of the 

mass follows the time-varying force almost instantaneously (i.e. with a small phase 

lag) as if it had been excited by a static force.  

 

 

 
Figure 3.2: Quasi-static response. Solid line: excitation force, and dashed line: simulated 

response. 

 

Figure 3.3 presents a typical response for frequencies of excitation within a narrow 

region around the system’s natural frequency. In this region the spring force and 

inertia force (almost) cancel, producing a response a number of times larger than it 

would be statically (the resulting amplitude is governed by the damping present in the 

system).  

 

 

 

Figure 3.3: Resonant response. Solid line: excitation force, and dashed line: simulated 

response. 
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For frequencies of excitation well above the natural frequency, the mass can no 

longer “follow” the movement. Consequently, the response level is low and almost in 

counter-phase as illustrated in Figure 3.4. In this case the inertia of the system 

dominates the response and is, therefore, classified as “soft”.  

 

 

Figure 3.4: Inertia dominated response. Solid line: excitation force, and dashed line: simulated 
response. 

 

In all three figures the magnitude of the excitation force )(tF  is identical, but it is 

applied at different excitation frequencies. The normalised ratios of the amplitude of 

the Figures 3.2-3.4 illustrate that: 

 In steady state, sinusoidal inputs applied to a linear system generate sinusoidal 

outputs of the same frequency and, 

 the magnitude and phase (i.e. shift between the sinusoidal input and output) are 

different. 

The magnitude and phase modifying property of linear systems can be conveniently 

summarised by plotting the frequency response function (FRF). This depicts the ratio 

of output to input amplitudes, as well as the corresponding phase shift as functions of 

the frequency of excitation. Figure 3.5 shows the FRF of the single degree of freedom 

system depicted in Figure 3.1.  
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Figure 3.5: Frequency response function. Upper figure: magnitude versus frequency, and lower 

figure: phase lag versus frequency. 

(Adapted from Van Der Tempel & Molenaar, 2002) 

 

The peak in Figure 3.5 corresponds to the system’s natural frequency. The height of 

the peak is determined by damping. In structural dynamics, the frequency of the 

excitation force is at least as important as its magnitude. Resonant behaviour can 

result in severe load cases, even failure; but it is most feared for fatigue problems 

(Hau, 2000). Fatigue of materials occurs due to time varying external loads, when 

cracks develop causing internal damage. Wind turbines are subject to fluctuating 

loads, which can cause such material failure. The lifetime of a wind turbine blade 

Fig 3.3 

Fig 3.2  

Fig 3.4 
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depends, among other factors, on the intensity and frequency of these loads. For 

structures subject to dynamics loads, detailed knowledge of the expected frequencies 

of the excitation forces and the natural frequencies of the structure and its 

substructures becomes vital.  

 

Strictly speaking, the vibrational behaviour of a system with several degrees of 

freedom can be treated only as a total system. This is true above all, when the 

dynamic coupling of the excited degrees of freedom is so strong that complex 

vibrational coupling modes produce natural frequencies which deviate distinctly from 

the separate natural frequencies of the components involved. This is basically the 

situation found in wind turbines (Hau, 2000). In addition, aerodynamic forces, 

gravitational forces, structural and aerodynamic damping and control characteristics 

must also be included in the calculation. 

 

Before beginning with a mathematical simulation of such an overall system, it is 

helpful to discover as much as possible about the basic vibrational character of the 

turbine so that critical vibration modes can be recognised. In most cases, isolated 

mathematical treatment of the components of a specific subsystem of the turbine is 

feasible. For this purpose, the first and some higher natural frequencies of the 

variblade are calculated. 

 

3.3.  Turbine loadings and their origins 

 

In this section, the term “load” refers to forces or moments that may act upon the 

turbine. Wind turbines are, by necessity, installed in areas with relatively consistent 

and often strong winds. As a result, wind loads are one of the dominant concerns in 

regard to the structural behaviour and life of a wind turbine blade. The load on a wind 

turbine during operation is complex. The multitude of loads of varying frequencies 

and amplitudes can result in potentially dangerous dynamic structural responses. 

 

During design and operation of a wind turbine, it is necessary: 

 To understand turbine loads and, 

 to understand the response of the turbine due to these loads. 

Wind turbine loads can be considered in five categories (Manwell et al., 2004):  

 Steady loads include those because of mean wind speed, centrifugal forces 

in the blades due to the rotation, weight of the machine on the tower, etc; 

 cyclic loads are those which arise due to the rotation of the rotor. The most 

basic periodic load is that experienced at the blade roots (of a HAWT) from 
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gravity. Other periodic loads arise from wind shear, cross wind (yaw error), 

vertical wind, yaw velocity and tower shadow. Mass imbalances or pitch 

imbalances can also give rise to periodic loads; 

 stochastic loads are from turbulence or short-term variations in wind speed, 

both in time and space across the rotor. These can cause rapidly varying 

aerodynamic forces on the blades. The variations appear random, but may be 

described in statistical terms; 

 transient loads are those which occur occasionally and, because of events of 

limited duration. The most common transient loads are associated with 

starting and stopping. Other transient loads arise from sudden wind gusts, 

change in wind direction, blade pitching motions or teetering. However, wind 

turbines are seldom erected in areas where gusts are frequent and,  

 resonance-induced loads arise as a result of some part of the structure 

being excited at one of its natural frequencies. The designer tries to avoid the 

possibility of that taking place, but response to turbulence often inevitably 

excites some resonant response. 

These loads and their origins are summarised and illustrated in Figures 3.6 and 3.7. 

 

 

 

 

 

 

Figure 3.6: Sources of wind turbine loads  

(Adapted from Manwell et al., 2004) 
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.      

 

Figure 3.7: Exciting forces and degrees of vibrational freedom of a wind turbine  

(Adapted from Hau, 2000) 

 

3.4.  Rotor excitations and resonances 

 

In this section, the dynamic approach presented in Section 3.2 is applied to a wind 

turbine system. To translate the basic model to a wind turbine system, first excitation 

frequencies are examined.  

 

The most visible source of excitation in a wind turbine system is the rotor. In this 

example a constant speed turbine will be investigated. The constant rotational speed 

is the first excitation frequency, mostly referred to as 1P. The second excitation 

frequency is the rotor blade passing frequency emanating from the wake generated 

by the tower when the rotor revolves downwind of the support: N
b
P in which N

b 
is the 

number of rotor blades (2P for a turbine equipped with two rotor blades, 3P for a 

three-bladed rotor). To avoid resonance, the structure should be designed so its first 

natural frequency does not coincide with either 1P or N
b
P (Van Der Tempel & 

Molenaar, 2002). This leaves three possible intervals of safe operation. Using a 

three-bladed turbine as an example, a very stiff structure, with a high natural 

frequency, above 3P (stiff-stiff), a natural frequency between 1P and 3P: soft-stiff and 

a very soft structure below 1P: soft-soft (Figure 3.8). 
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Figure 3.8: Soft to stiff frequency intervals of a three-bladed, constant rotational speed wind 

turbine  

(Adapted from Van Der Tempel & Molenaar, 2002) 

 

Most large wind turbines have three blades; smaller turbines may use two blades for 

ease of construction and installation. Vibration intensity decreases with increasing 

number of blades (Van Der Tempel & Molenaar, 2002). Noise and wear generally 

diminish, but efficiency improves when using three instead of two blades. Turbines 

with larger numbers of smaller blades operate at a lower Reynolds number and so 

are less efficient. Small turbines, with four or more blades, suffer further losses as 

each blade operates partly in the wake of other blades. Also, as the number of blades 

increases, usually cost also increases (Van Der Tempel & Molenaar, 2002). 

 

3.5.  Beam: theory and background 

 

In order to determine the dynamic behaviour of a mechanical system, one needs to 

develop an appropriate mathematical model. This section deals with vibration of 

beams. The equation of motion for a beam is described and a free vibration solution 

derived. Investigation is made in terms of natural frequencies and modes shapes by 

considering the case of a cantilever. [The source of most of the material presented in 

Sections 3.5.2 and 3.5.3 is Rao, 2004]. 

 

3.5.1  Equation of motion for a uniform beam  

 

Consider a free-body diagram of an element of a beam shown in Figure 3.9(a). The 

transverse vibrations are denoted as ),( txw . The cross-sectional area is )(xA , the 

modulus of elasticity is )(xE , the density is )(x  and the moment of inertia is )(xI . 

The external force applied to the beam per unit length is denoted by ),( txf . The 

bending moment ),( txM  is related to the beam deflection ),( txw  by 

 

 
0P 
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2

2 ),(
)()(),(

x

txw
xIxEtxM




                                        Equation 3.1 

 

 
 

Figure 3.9: A beam in bending  
 

(Adapted from Rao, 2004) 

),( txV is the shear force at the left end of the element dx  and dx
x

txV
txV






),(
),(  is 

the shear force at the right end of the element. One can consider an infinitesimal 

element of the beam, shown in Figure 3.9(b) and determine the model of transverse 

vibrations. It is assumed the deformation is small enough such that the shear 

deformation is far smaller than ),( txw . The force equation of motion in the y direction 

gives 
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















                         Equation 3.2 

And the equation simplifies to 

2

2

∂

),(∂
)()(),(

∂

),(∂

t

txw
xAxtxf

x

txV
                           Equation 3.3 

The term on the right hand side of the equation is the inertia force of the element. 

The moment equation of motion about the z axis passing through point O in Figure 

3.9(b) leads to  

  0
2

),(
),(

),(),(
),(

),( 


























dx
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x

txV
txVtxMdx

x

txM
txM    Equation 3.4 
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Assuming that the rotary inertia of the element dx is negligible; the right hand side of 

Equation 3.4 is zero. Simplification of this expression leads to 

0)(
2

),(),(
),(

),( 2 


























dx

txf

x

txV
dxtxV

x

txM
               Equation 3.5 

Since dx is small, it is assumed that 
2)(dx  is negligible and the above expression 

takes the form  

x

txM
txV






),(
),(                    Equation 3.6 

This expression relates shear force and the bending moment. Substituting Equation 

3.6 in Equation 3.3 leads to 
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2

2
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)()(),(),(
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xAxtxftxM

x 
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


                              Equation 3.7 

 
Substituting Equation 3.1 in Equation 3.7 leads to 
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                                         Equation 3.8 

 

If no external force is applied 0),( txf . The equation of motion for free vibration of 

the beam (0< x < L , t>0) is then given as  

0
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),(

)()(
2

2

2

2

2

2























x

txw
xIxE

xt

txw
xAx                                     Equation 3.9 

The above expression (Equation 3.9) is a fourth-order partial differential equation, 

which governs the free vibration of a non-uniform Euler-Bernoulli beam. If the 

parameters )(xE , )(xA , )(xI and )(x are constant then Equation 3.9 can be further 

simplified to give  

0
),(),(

4

4
2

2
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









x

txw
c

t

txw
,                                     Equation 3.10 

Where 

A

EI
c


                                        Equation 3.11 

 

3.5.2  Natural frequencies and modes shapes 

 

The equation of motion (Equation 3.10) contains a fourth-order derivative with respect 

to position x  and a second-order derivative with respect to time t. Hence, in order to 

determine a unique solution for ),( txw , four boundary conditions and two initial 

conditions are required. Usually, the values of displacement and velocity are specified 

at time t=0, and so the initial conditions can be given as,  



 

 
 

32 

,0)0,( xw  and 0)0,( xw ,                                     Equation 3.12 

where dots denote derivates with respect to time. The method of separation of 

variables is used to determine the free vibration solution,  

)()(),( tTxVtxw                                        Equation 3.13 

Substituting Equation 3.2 in Equation 3.10 and rearranging leads to  
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dt

tTd

tTdx

xVd

xV

c
                                    Equation 3.14 

Here 
2  is a positive constant. The above equation can now be written as two 

ordinary differential equations as shown below.  

,0)(
)( 4

4

4

 xV
dx

xVd
                                       Equation 3.15 

,0)(
)( 2

2

2

 tT
dt

tTd
                                       Equation 3.16 

Where 

EI

A

c

2

2

2
4 

                                        Equation 3.17 

 

The solution to Equation 3.15 is assumed as to be of the form  

sxexV )(                                        Equation 3.18 

Where   and s  are constants and we derive the auxiliary equation 

044  s  

The roots of this equation are  

,2,1 s      ,4,3 is                                       Equation 3.19 

Hence, the solution to Equation 3.15 can be given as  

xixixx eeeexV 
4321)(                                            Equation 3.20 

Equation 3.20 can also be expressed as 

xxxxxV  sinhcoshsincos)( 4321   

Or 

)sinh(sin)sinh(sin)cosh(cos)cosh(cos)( xxxxxxxxxV   4321

  where ,1  ,2  3  and 4 are arbitrary constants.  

The function )(xV  is known as the normal mode or characteristic function of the 

beam. The frequency equation and the mode shapes for the transverse vibration of 

the cantilever is obtained by applying the four boundary conditions to )(xV . The 

natural frequency of the beam can therefore be computed from Equation 3.17. The 
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frequency equation and the mode shapes (normal functions) for cantilevered beams 

are given in Table 3.1. The natural frequency of the beam is obtained from 

 
4

2

22 AL

EIL
f








                     Equation 3.21 

The value of   in Equation 3.21 can be determined from the third column in Table 

3.1. 

 

Table 3.1: Frequency equation and mode shape for the transverse vibration of a cantilever 

 

Frequency equation Mode shape (normal function) Value for Ln  

1LL nn  coshcos  )]cosh(cossinh[sin)( xxxxxV nnnnnnn    

Where 















LL

LL

nn

nn
n






coshcos

sinhsin
 

L1 =1.875104 

L2 =4.694091 

L3 =7.854757 

L4 =10.995541 

L5 =14.137168 

 

3.6 Summary  

 

Structural dynamic considerations related to the wind turbine blade have been presented; 

Excitations and resonances described. 

 

The wind turbine blade can be approximated by an Euler-Bernoulli beam. For this purpose, 

the five first natural frequencies and the vibration modes of the beam are presented for a 

non-rotating condition. To validate numerical and modal testing results, those natural 

frequencies will be compared to these available solutions. 
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CHAPTER 4 

 EXPERIMENTAL VERIFICATION 

 
4.1.  Introduction 

 

This chapter examines the experimental modal analysis techniques applied in 

experiments using a uniform and a stepped beam. These simplified shapes are 

representative of the non-extendable blades. The aims are: 

 To gain an insight into experimental modal analysis; 

 to provide an overview of this theory and,  

 to explain some of the experimental tasks related to that theory. 

In Chapter 6, comparison will be made between those experimental results and 

numerical results. Therefore, the simplified shapes shown on Page 40 (Figure 4.3 and 

Figure 4.4) were chosen. 

 
4.2  Theory of experimental modal analysis 

 

Modal analysis provides information on the dynamic characteristics of structural elements 

at resonance, and thus helps in understanding the detailed dynamic behaviour of these 

(Ewins, 2000). Modal analysis can be accomplished through experimental techniques. It 

is the most common method for characterising the dynamic properties of a mechanical 

system. The modal parameters are:  

 The modal frequency;  

 the damping factor and, 

 the mode shape.  

The free dynamic response of the wind turbine blade can be reduced to these discrete 

set of modes. It should be noted that determination of the damping properties is usually 

considered to be somewhat uncertain, which relates to the small quantities of the 

damping characteristics (Larsen et al., 2002).  

 

4.2.1  Discrete blade motion 

 

Real structures have an infinite number of degrees of freedom (DOFs) and an infinite 

number of modes. They can be sampled spatially at as many DOFs as is desired from a 

testing point of view. There is no limit to the number of unique DOFs between which FRF 

(frequency response function) measurements can be made. However, time and cost 
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constraints, result in only a small subset of the FRFs being measured on a structure. The 

modes that are within the frequency range of the measurements can be accurately 

defined, from this small subset of FRFs. The more the surface of the structure is spatially 

sampled by taking more measurements, the more definition is given to its mode shapes. 

Because a wind turbine blade is generally a large structure (length >20m) it is necessary 

to treat it in successive cross-sections. The modal analysis of the wind turbine blade is 

performed by exciting it at a fixed point during the test. This excitation represents the 

input signal to the system. The output signal consists of accelerations measured in cross 

sections along the blade. A finite number of degrees of freedom are used to describe 

blade motion. The mode shapes of the blade are assumed to be described by deflection 

in the flap-wise and edge-wise directions as well as by rotation of the chord about the 

pitch axis (torsion). The rigid body motion can be described by three DOFs in each cross-

section. Two flap-wise DOFs describe the flap-wise deflection and torsion (denoted yU  

and t ) and one edge-wise DOF describes the edge-wise deflection (denoted xU ). The 

rigid body motion (response) can be derived as a function of the three amplitudes of the 

DOFs in the following form: 

AxU                                 Equation 4.1  

where U is the motion of the cross-section and x  (excitation) is the corresponding 

amplitudes in the three DOFs of the cross-section. 


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and A  (the FRFs) is a three by three matrix given by the positions of the three DOFs. 

 

 
 

Figure 4.1: The degrees of freedom for a wind turbine blade  
 

(Adapted from Larsen et al., 2002) 
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Using Equation 4.1 a mode shape of the blade can be estimated in a number of cross-

sections, presuming the corresponding modal amplitudes (U and x ) have been 

measured in the three DOFs of each cross-section. 

 

4.2.2  Extraction of modal properties 

 

a. Modal properties from an eigenvalue problem 

To introduce this mathematical concept the linear equation of free motion for the blade is 

considered. The motion of the blade is described by N DOFs as shown in Figure 4.1. The 

deflection in DOF i  is denoted ix , and the vector x  describes the discretized motion of 

the blade. Assuming small deflections and moderate rotation of the blade cross-sections, 

the linear equation of motion can be written as (Larsen et al., 2002): 

0 SxxCxM  ,                       Equation 4.2 

where dots denote derivates with respect to time, and the matrices M ,C  and S  are the 

mass, damping and stiffness matrices. Inserting the solution 
tvex   into Equation 4.2 

yields 

0)( 2  vSCM  ,                      Equation 4.3 

which is an eigenvalue problem. The solution to this problem is the eigenvalues k  and 

the corresponding eigenvectors kv  for k = 1, 2, . . ., N. The eigenvalues of a damped 

blade are complex and given by: 

kkk i    

where k  and k  are respectively the damping factor and  the modal frequency for 

mode k . The relationship between natural frequencies ( kf ), logarithmic decrements 

( k ) and the eigenvalues are: 





2

k

kf   and kkk f/                       Equation 4.4 

The natural frequencies and logarithmic decrements are obtained from the eigenvalues, 

and mode shapes are obtained from the eigenvectors of the eigenvalue problem. The 

above eigenvalue problem indicates that the problem of determining natural frequencies, 

logarithmic decrements, and mode shapes of a blade could be solved if one had a way to 

measure mass, damping, and stiffness matrices. Such measurements are, however, 



 

 37 

impossible. Instead one can measure transfer functions in the frequency domain which 

hold enough information to extract the modal properties. 

 

b. From transfer functions to modal properties 

A transfer function describes in the frequency domain what the response is in one DOF 

due to a unity forcing function in another DOF. It is defined as (Larsen et al., 2002): 

)(/)()(  jiij FXH                        Equation 4.5 

where, 

  is the frequency of excitation  

)(iX  is the Fourier transform of the response )(txi  in DOF i  

)(jF  is the Fourier transform of a force )(tf j  acting in DOF number j.  

By measuring the response ix  and the forcing function jf , and performing the Fourier 

transformations, the transfer function ijH  can be calculated from Equation 4.5. This 

transfer function is one of N × N transfer functions which can be measured for the blade 

with N DOFs. The complete set of functions is referred to as the transfer matrix H . To 

understand this basic principle of modal analysis, consider the linear equation of motion 

(Equation 4.2) for the blade with external excitation. 

SxxCxM    = f )(t                        Equation 4.6 

Where the vector f is a forcing vector containing the external forces )(tf j  which may be 

acting in the DOFs j  = 1, 2, . . ., N. 

The transfer matrix can be derived as (Larsen et al., 2002): 

  
  


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k kkkk
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iiii

vv
HH

1 1 ))((
)()(


                   Equation 4.7

  

This relation is the basis of modal analysis. It relates the measurable transfer functions to 

the modal properties k , k , and kv . Each mode k  contributes a modal transfer matrix 

kH  to the complete transfer matrix. Hence, a measured transfer function can be 

approximated by a sum of modal transfer functions (Larsen et al., 2002): 





N

k

ijkij HH
1

, )()(  ,                       Equation 4.8 

where the modal transfer functions )(, ijkH  by decomposition can be written as (Larsen 

et al., 2002) 
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                                   Equation 4.9 

where the bar denotes the complex conjugate. kkk ip    is called the pole of mode 

k  and jkikijk vvr ,,,   is called the residue of mode k  at DOF i  with reference to DOF j . 

Thus, a pole is a complex quantity describing the natural frequency and damping of the 

mode. A residue is a complex quantity describing the product of two complex modal 

amplitudes. The modal properties are extracted from measured transfer functions by 

curve fitting functions derived from Equation 4.8 and Equation 4.9, with poles and 

residues as fitting parameters. 

 

4.3  Experimental setup 

 

4.3.1 Measurement method 

 

There are several methods available to measure the frequency response functions 

needed to perform a modal analysis. The most important differences between these 

methods are in the number of inputs and outputs and in the excitation method used: 

 The single input single output (SISO) methods and,  

 the multiple input multiple output (MIMO) methods. 

The two most common excitation methods are  

 Excitation using an impact hammer and,  

 excitation using an electrodynamical shaker.  

Each of these methods has specific advantages and disadvantages which determine the 

most suitable measurement in a specific case. The advantages and disadvantages of 

each method are discussed by Ewins (Ewins, 2000). In order to measure the frequency 

response functions of the turbine blade model a single input, single output impact test 

with fixed boundary conditions is performed. The reasons behind the choice for this type 

of test are:  

 The test has been performed to extract only the natural frequencies; 

 all the test equipment needed for an impact test were readily available making an 

impact test cheaper than alternative methods for which most of the equipment 

required is not available and, 

 the extra sensors and data processing capability needed to implement an alternative 

testing method were also unavailable. 
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4.3.2  Exciting modes with impact testing 

 

Impact testing is a quick, convenient way of finding the modes of machines and 

structures. Impact testing is shown in Figure 4.2. The equipment required to perform an 

impact test in one direction are: 

1. An impact hammer with a load cell attached to its head to measure the input force. 

2. An accelerometer to measure the response acceleration at a fixed point and in a 

fixed direction. 

3. A two channel FFT analyser to compute frequency response function (FRFs). 

4. Post-processing modal software for identifying modal parameters and displaying 

the mode shapes in animation.  

 

 

 

Figure 4.2: Impact testing  

(Adapted from Schwarz & Richardson, 1999) 

 

4.3.3  Determination of natural frequencies 

 

Experimental modal analysis has been performed successively on uniform and stepped 

beams, to extract natural frequencies. The uniform beam was chosen as a starting point 

because the analytical solution is available (Chapter 3). The stepped beam is an 

approximation for a tapered wind turbine blade. 
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Figure 4.3: Dimensions of the uniform beam used in the experiment 
 

 

 

Figure 4.4: Dimensions of the uniform and stepped beam used in the experiment 

 

Modal testing has been performed in order to extract the natural frequencies of the test 

beam. The following material gives a brief description of the set-up, necessary equipment 

and procedure for performing the test  

 

 (i) Test Beam  

A test beam is fastened to a table with a clamp at one location. Clamping details are 

shown in Figure 4.5.  
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Figure 4.5: Clamping details 

 

(ii) Impact Hammer  

Model 086C02 from PCB Piezotronics is used to cause an impact. It consists of an 

integral ICP quartz force sensor mounted on the striking end of the hammerhead. The 

hammer range is about  440 N. Its resonant frequency is near 22 kHz. Figure 4.6 

shows a picture of the hammer and the beam. Some relevant properties of this impact 

hammer are presented in Appendix A. 

 

      

  

Figure 4.6: Impact hammer 

 

 (iii) Accelerometer 

IEPE Accelerometer, Model IA11T, from IDEAS SOLUTION is used in the test. The 

range of frequencies is from 0.32 Hz to 10 kHz and voltage sensitivity is 10.2 

)//( 2smmV . The relevant properties of this accelerometer are presented in Appendix A. 

Clamp 

Test beam 

Table 

Hammer 

Test Beam 
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Figure 4.7: Accelerometer 

  

  (iv) Dynamic Signal Analyser 

Measurement of the force and acceleration signals is performed using a “OneproD MVP-

2C” 2-channel dynamic signal analyser. Some properties of this dynamic signal analyser 

are shown in Appendix A. The dynamic signal analyser samples the voltage signals 

emanating from the impact hammer and accelerometer. The sensitivity information of the 

sensors is used to convert the voltages to equivalent force and acceleration values. The 

dynamic signal analyser also performs the transformations and calculations necessary to 

convert the two measured time domain signals into a frequency response function. 

Measurement data may be processed on a computer using Vib-Graph software. 

         

         

 
 

Figure 4.8: Dynamic signal analyser 

Accelerometer 

Test beam 
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4.4  Modal analysis technique  

 

The idea of exciting a structure with an impact hammer is actually simple: 

 One strikes a structure at a particular location and in a particular direction with an 

impact hammer. The uniform and stepped beams are successively excited in flap-

wise direction; 

 the force transducer in the tip of the impact hammer measures the force used to 

excite the structure; 

 responses are measured by means of accelerometers mounted successively at the 

tip of the uniform and stepped beams; 

 the force input and corresponding responses are then used to compute the FRFs 

(frequency response functions) and, 

 desktop or laptop computer with suitable software collects the data, estimates the 

modal parameters and displays results.  

For this work a program named Vib-Graph was used. It is special software for the 

measurement of frequency response functions of structures. Using the transfer function 

measurements, it determines the dynamic parameters of a system.  

 

4.5 Summary  
 

This chapter describes the theory and laboratory setup of the experimental modal 

analysis that was performed on a uniform and a stepped beam. The purpose is to gain 

insight in modal testing and to use experimental results to validate finite element results. 

 

 

 

 

 

 

 



 

 44 

 

CHAPTER 5 

NUMERICAL SIMULATION 

 

5.1  Introduction 

 

There are two main approaches to wind turbine blade dynamics analysis. For existing 

blades, dynamics can be measured using experimental techniques as discussed in 

Chapter 4. Although this is considered a rapid approach, it requires the experimental set-

up to be available. Prediction of the blade dynamics during the design is critical where 

dynamics analysis is required. Obviously, testing is not a possible technique in this case. 

Finite element analysis (and similar methods) constitutes the second approach. It can be 

used to predict the dynamics. 

 

5.2  Modelling theory 

 

The goal of this analysis is to determine at what frequencies a structure vibrates if it is 

excited by a load applied suddenly, then removed. As mentioned in section 1.2, these 

frequencies are described as natural frequencies and are dependent on the fundamental 

characteristics of the structure, such as geometry, density and stiffness. These same 

characteristics may be included in a finite element model of a structural component. The 

finite element model can be used to determine the natural modes of vibration and 

corresponding frequencies. Once the geometry, density, and elastic material models 

have been defined for the finite element model, in the absence of damping, the dynamic 

character of the model can be expressed in matrix form as (Mckittrick et al., 2001): 

MVKV 2                        Equation 5.1 

Here K  is the stiffness matrix, M  is the mass matrix,  is the angular frequency of 

vibration for a given mode and V  is the mode vector that expresses the corresponding 

mode shape. A finite element program uses iterative techniques to determine a set of 

frequencies and shapes that satisfy the finite element matrix equation.  

 

5.3  Euler-Bernoulli beam element 

 

The beam element is shown in Figure 5.1  
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Figure 5.1: Euler-Bernoulli beam element  
 

(Adapted from Palm, 2007) 

 

The variables 1v  and 2v  are the displacements of the endpoints. The variables 1  and 

2  are the rotational displacements at the end of the beam element. Thus we defined the 

displacement vector of the beam element to be 


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




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



v

v

V                         Equation 5.2 

This displacement vector is linked to the solution ),( txw  of the Euler-Bernoulli beam 

Equation 3.9 by the conditions 

 )(),0( 1 tvtw   

 )(
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It is assumed that ),( txw , the solution of the distributed-parameter model, is 

approximated by 

32 +++≈ x)t(dx)t(cx)t(b)t(a)t,x(w  

Applying the boundary conditions, we find that 

 )(=)( 1 tvta  

 )t(θ)t(b 1=  

 )]()()()([)( tLtvtLtv
L

tc 22112
323

1
   

 )](+)(2-)(+)(2[
1

=)( 22113 tθLtvtθLtv
L

td  

Thus ),( txw  has the form 

)()(+)()(+)()(+)()(≈),( 24231211 tθxStvxStθxStvxStxw                     Equation 5.3 

where the )(xS i  terms are the following shape functions: 
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With the assumed mode shape, the kinetic energy of the beam can be expressed as 

follows:  ∫ ∫ )()()()()()()()(
∂

∂
L L

dxtxStvxStxStvxSAdx
t

w
AKE

0 0
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Evaluation of the integrals gives 
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The mass matrix of the beam element is (Rao, 2004) 
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The stiffness matrix K  can be derived from the potential energy expression for the beam 

element, as follows: 
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Using Equation 5.3 and calculating the integrals gives (Rao, 2004) 
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5.4  One-dimensional models: MATLAB 

 

Although many commercial finite element codes exist which are capable of modelling the 

beam structure, it was decided that a code would be written within MATLAB to do all the 

modelling. This provides the benefit of being able to run the code on any computer using 

MATLAB. The basis for the MATLAB code was the one-dimensional Euler-Bernoulli 

beam element. Two different programs (BEAMANALYSYS.m and 

VARIBLADEANALYSIS.m) were developed. The natural frequencies are provided by the 

solution of the resulting eigenvalue problem. 

 

The purpose of this study is to predict the dynamic properties of a variable length blade. 

Before building a computer model of a variable length blade, a uniform beam and a 

stepped beam were investigated. The first MATLAB program (BEAMANALYSIS.m) was 

written for the purpose of: 

 Validate and update the computer model, by comparing it to the experimental 

result obtained after performing modal testing on a stepped beam and a uniform 

beam (Figure 4.3) and, 

 adapt changes (geometries and materials properties) to the blade being 

designed. 

 

The program requires the following input data, supplied in an m-file (Appendix B): 
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 Beam dimensions (length , width and thickness); 

 material properties (Young’s modulus, density); 

 global degree of freedom; 

 vibration direction (flap-wise or edge-wise) and, 

 element definition (number of elements). 

BEAMANALYSIS.m uses this input data and constructs element stiffness and mass 

matrices according to the formulas for the Euler-Bernoulli element in Section 5.3. These 

element stiffness and mass matrices are transformed into global coordinates and added 

to appropriate locations in the global stiffness and mass matrices. A detailed program 

explanation is given in Appendix C. 

  

A wind turbine blade can be seen as beam of finite length with airofoil profiles as cross 

sections. A rectangular cross section representing a cross section of the blade can give 

qualitatively appropriate results in a simpler way. Therefore, such a model has been 

adopted for this analysis. The fixed portion and the moveable portion of the variable 

length blade have been approximated respectively by a hollow beam and a solid beam 

which can be slid in and out as shown in Figure 2. 

 
 

Figure 5. 2: Variblade 

 

The second MATLAB program (VARIBLADEANALYSIS.m) has been developed for a 

one- dimensional model for the variblade. The geometry, material properties, vibration 

modes (flap-wise or edge-wise), number of elements and configuration of the variblade 

have been made as selectable parameters which allow analysis of blades with different 

sizes and properties. The program requires the following input data, supplied in an m-file 

(Appendix D): 

Portion1 

Portion2 
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 Beam dimensions (length of beam portions, width of hollow and solid beam, 

thickness of hollow and solid beam), 

 material properties sets: Young’s modulus, density; 

 global degree of freedom; 

 vibration direction (flap-wise or edge-wise); 

 element definition (number of element) and, 

 beam configuration (position of moveable portion). 

Both flap-wise and edge-wise natural frequencies have been calculated for ten different 

configurations. The ten different configurations depending on the position of the second 

portion of the variblade are represented below. These configurations change from zero 

extension to full extension in ten equal steps. 

 

 

 

Figure 5.3: Ten configurations of variblade 
 

5.4  Three-dimensional model: NX5 

 

Three-dimensional models of all the different previous beams have been developed in 

the commercial finite element analysis program Unigraphics NX5. Those models are 

designed to capture three-dimensional behaviour. The blade has been modelled as a 

cantilever, therefore, is fully constrained at the end of the inboard portion (where it is 

attached to the turbine shaft/hub). The outputs of the simulation are the natural 

frequencies of vibration: flap-wise, edge-wise and torsional natural frequencies as well as 

their mode shapes. 

Configuration 1 

Configuration 2 
 

Configuration 3 
 

Configuration 4 
 

Configuration 5 
 

Configuration 6 
 

Configuration 7 
 

Configuration 8 
 

Configuration 9 
 

Configuration 10 
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One end in each model has been fully constrained. The geometrical model of the beams 

is meshed by using a tetrahedral mesh. Nastran-SEMODES103 has been used as solver 

for modal analysis. Normal modes and natural frequencies have been evaluated. 

Damping is not considered and loads are irrelevant (Figure 5.4). The mode shapes were 

identified by examining the deformation plot (flap-wise, edge-wise and torsional 

deformation) and by the animated mode shape display. 

 

Figure 5.4: Simulation part with constraint 

 

5.5  Summary 
 

A one-dimensional model and a three-dimensional model of a uniform beam and stepped 

beam have been investigated, to gain insight into finite element modelling. A MATLAB 

program for a one dimensional model (BEAMANALYSIS.m) has been used, the results 

(natural frequencies) found will be compared to those of a three-dimensional model built 

in NX5.  

 

Subsequently, to gain insight into the nature of the vibration problem for the variblade, a 

rectangular cross-section model with two portions have been used to approximate the 

blade. That model has been chosen in this analysis for reason of simplicity. A MATLAB 

program for a one-dimensional model (VARIBLADEANALYSIS.m) has been developed 

to predict natural frequencies of a variblade.  

 

In Chapter 6, the results found will be compared to those found using a three- 

dimensional model in NX5. 
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CHAPTER 6 

RESULTS AND DISCUSSION 

 

6.1  Introduction 

 

In this study the natural frequencies of three different beams have been investigated: 

 A uniform beam (Figure 4.3); 

 a stepped beam (Figure 4.4) and, 

 a variblade (Figure 4.5). 

 

The main objective of this work is to calculate natural frequencies of the variblade 

using commercial software. A secondary aim is to gain insight in experimental modal 

analysis, finite element modelling and analytical methods. Therefore, a uniform beam 

and a stepped beam have been investigated. 

 

Four different methods are used for obtaining the natural frequencies: 

 Exact solution of Euler-Bernoulli beam equations; 

 MATLAB program for one-dimensional finite element models; 

 NX5 three dimensional models and, 

 experimental modal analysis. 

To validate results, the outputs from different methods are evaluated and compared.  

 

Finally, the effect of varying blade length is examined. Some suggestions concerning 

blade design conclude the chapter.  

 

6.2  Convergence test for finite element models 

 

The number of elements used in finite element analysis affects the quality of the 

solution. As the number of elements increases, natural frequencies converge to 

values independent of the mesh size. However, a finer mesh with more elements 

places greater demands on the computing resources than does a coarse mesh. A 

good compromise is to select the coarsest mesh for which natural frequencies are 

independent of mesh size. Such a mesh can be found by using finer meshes to 

model the structure until the results converge; the coarsest mesh for which results are 

adequate can then be selected and used in future simulations. Convergence tests on 

the finite element models have been conducted to confirm a fine enough 

discretisation has been used. Several models with different mesh sizes have been 
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created and the resulting natural frequencies compared. Values of the material and 

geometric properties of the uniform beam under investigation are given in Table 6.1. 

 

Table 6.1: Material and geometric properties of the beam 

 

Geometric properties 

Material properties 

(mild steel)  

(Southern Africa Institute of Steel Construction, n.d) 

L( mm) W( mm) T( mm) E(
2/ mmmN )  (

3/ mmkg ) v  

1000 40 5 206
610  7.85

610  0.3 

L: length 

W: width 

T: thickness 

E: Young’s modulus 

 : density 

v : Poisson’s ratio 
 

 

The one-dimensional model (MATLAB) developed has been divided successively into 

3, 6, 12, and 24 elements. The first five frequencies associated with the modes are 

presented in Figure 6.1.  

 

 

 

Figure 6.1: MATLAB program convergence test results 

 

The same procedure has been applied to the three-dimensional model (NX5). 

Successively the following overall element size has been chosen: 25.4, 20, 15, 10, 5 

and 2 mm. The first five frequencies are presented in Figure 6.2. 
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Figure 6.2: NX convergence test results 

 

The two previous tests indicated the predicted frequencies are not influenced 

significantly by mesh size in the range chosen for investigation. Therefore, for the 

simulations presented here, a minimum of 12 elements and overall element size of 10 

mm were chosen respectively for the one-dimensional and the three-dimensional 

models. 

 

6.3  Results for uniform beam 

 

The uniform beam had a rectangular cross-section with width W and thickness T. The 

length of the beam was L. The values of these dimensions are shown in Table 6.2. 

 

Table 6.2: Material and geometric properties of the uniform beam 
 

Geometric properties 

Material properties 

(mild steel)  

(Southern Africa Institute of Steel Construction, n.d) 

L( mm) W( mm) T( mm) E(
2/ mmmN )  (

3/ mmKg ) v  

795 40 4.45 206
610  7.85

610  0.3 

L: length 

W: width 

T: thickness 

E: Young’s modulus 

 : density 

v : Poisson’s ratio 
 

 



 

 54 

 

6.3.1  Exact solution 

 

The exact solution was established in Section 3.5. The natural frequency of the beam 

can be calculated from Equation 3.21 as follows  

A

EI
f





2

2

 =
 

4

2

2 AL

EIL




 

Values of L  are shown in Table 3.1    

L1 1.875104 

L2 4.6940914 

L3 7.8547577 

L4 10.995541 

L5 14.137168 

Values of   can be obtained by dividing those previous values by length L = 

795 mm, as follows: 

1 0023586210
795

8751041
.

.
   

The cross-section A  and the area moment of inertia I  are given as follow 

A W ×  T  

45440 .  

 178
2mm  

For flap-wise modes,  

 I   
12

1
(W   T

3
)  

  
12

1
 ( 40   3454. )  

  74293 .
4mm  

The natural frequencies can be calculated as follows: 

 
 

4

2

1
1

2 AL

EIL
f




  


 

2
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  5.83 Hz 

Similarly 

2f  36.5 Hz 

 3f 102 Hz 
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 =4f 200 Hz 

=5f  331 Hz 

For edge-wise modes, 

 I   
12

1
(W 

3
   T) 

   
12

1
 (

340  454. ) 

   23733.33 
4mm  
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452= .  Hz 

Similarly  

 =2f  328 Hz 

 =3f 919 Hz 

 =4f  1800 Hz 

=5f  2977 Hz 

The frequencies of torsional modes of a rectangular cantilever with a width to 

thickness ratio greater than six may be approximated by (Harris, 1988): 

=nf


G

W

T

L

n 2
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Where the shear modulus G is given by: 
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E
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  79230769.23 

Therefore, the torsional modes become: 

=1f 610857
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224.79 Hz 

Similarly 

 =2f  449.57 Hz 
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 =3f 674.36 Hz 

 =4f 899.14 Hz 

=5f  1123.93Hz 

 

6.3.2  MATLAB program 

 

The MATLAB program (BEAMANALYSIS) found in Appendix C is used to compute 

successively flap-wise and edge-wise natural frequencies. Material and geometric 

properties used as input data are given in Table 6.2. As mentioned before, this 

program is based on the Euler-Bernoulli model. The following first five flap-wise and 

edge-wise natural frequencies have been found: 

 

Table 6.3: MATLAB natural frequencies 

 

Natural frequencies (Hz) 

Flap-wise Edge-wise 

5.89 52.52 

36.92 327.86 

103.45 919.92 

202.76 1801.63 

335.34 2980.97 

 

6.3.3  NX5 model 

 

The three dimensional model shown in Figure 5.4 is designed to capture three 

dimensional behaviour. Therefore flap-wise, edge-wise and additionally torsional 

natural frequencies have been found. As previously, material and geometric 

properties are given in Table 6.2. The mode shape associated with a specific 

frequency indicates whether it is a flap-wise, edge-wise or torsional frequency. Some 

examples of mode shapes are given in Figure 6.3. 
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Flap-wise deflection (Mode 2)  Edge-wise deflection (Mode 7) 

      
 

Torsional deflection (Mode 6) 

 

 

Figure 6.3: Uniform beam deflections 

 

The first five flap-wise, edge-wise and torsional natural frequencies are: 

 

Table 6.4: NX5 natural frequencies 

 

Natural frequencies (Hz) 

Flap-wise Edge-wise Torsional 

5.918 52.34 219.4 

37.08 324.2 659.1 

103.8 891.6 1102 

203.5 1704 1549 

336.6 2734 2005 

 

6.3.4  Experimental modal analysis results 

 

The performed modal analysis gives estimates of only flap-wise natural frequencies. 

The results are based on the measurements performed on uniform beam as 

described in Chapter 4. Figure 6.4 shows a screenshot of Vib-Graph after measured 

transfer functions are imported. Crosses (+) indicate natural frequencies. The natural 

frequencies, obtained from the modal analysis, are presented in Table 6.5.   
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Figure 6.4: Measured transfer functions imported into Vib-Graph 

 

6.3.5  Comparison of natural frequencies 

 

The results found using the four different methods have been compared. It should be 

noted that: 

 The experimental modal analysis provides only the first five flap-wise natural 

frequencies and, 

 The MATLAB program provides only flap-wise and edge-wise natural 

frequencies. 

Therefore, the comparison has been limited to the data available.  
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Table 6.5: Measured and computed natural frequencies 

 

 Exact solution [Hz] Measured frequencies [Hz] 
Computed frequencies [Hz] 

MATLAB NX5 

F
la

p
-w

is
e
 

5.83 5.62 5.89 5.918 

36.5 32.5 36.92 37.08 

102 99.3 103.45 103.8 

200 198.75 202.76 203.5 

331 315.62 335.34 336.6 

E
d

g
e
-w

is
e

 

52.4 

 

52.52 52.34 

328 327.86 324.2 

919 919.92 891.6 

1800 1801.63 1704 

2977 2980.97 2734 

T
o
rs

io
n
a

l 

224.79 

  

219.4 

449.57 659.1 

674.36 1102 

899.14 1549 

1123.93 2005 

 

Some conclusions can be drawn from the previous table: 

 As expected, there are no significant discrepancies between the exact solution 

and MATLAB results; 

 highest edge-wise frequencies introduce some discrepancies between MATLAB 

and NX5 results. This may be due to the limitation of the one dimensional model 

(MATLAB) compared to the three dimensional model (NX5) when it comes to 

computing higher natural frequencies; 

 highest torsional frequencies produce also some discrepancies between exact 

solution and NX5 results for similar reason as above. Interestingly, Larsen et al. 

(Larsen et al., 2002) in their study compares the results from the modal analysis 

with the corresponding results from the finite element analysis. Better agreement 

has been found for the deflection components associated with low natural 

frequencies than for deflection components associated with higher natural 

frequencies. The same tendency was also observed in the estimation of natural 

frequencies. The bending torsion coupling has been identified as a reason for 

those discrepancies. It has been found that these deflections are difficult to 

resolve experimentally (due to small signal levels) as well as numerically (due to 

lack of sufficiently detailed information on the material properties).  The numerical 
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model is seen to over-estimate the structural couplings. Although, torsional 

natural frequencies are not included in experimental results, this may also explain 

discrepancies at higher frequencies. 

 the closeness between the experimental (for at least the first five flap-wise and 

edge-wise and the first torsional) results and the finite element analysis results 

means that finite element analysis can be used as a good computational tool and, 

 the closeness between the analytical results, the measured frequencies and the 

computed frequencies means that natural frequencies can be predicted 

accurately by either of those methods. 

 

6.4  Results for stepped beam 

 

The stepped beam (Figure 4.4) had a rectangular cross-section with width W1, W2, 

W3 and thickness T. The length of each portion was given by L1, L2, L3. The values 

of these dimensions are shown in Table 6.6.  

 

Table 6.6: Material and geometric properties of the stepped beam 

 

 Geometric properties 
Material properties  

(Southern Africa Institute of Steel Construction, n.d) 

 L( mm) W( mm) T( mm) E(
2/ mmmN )  (

3/ mmkg ) v  

Portion1 295 40 4.5 206
610  7.85

610  0.3 

Portion2 250 36 4.5 206
610  7.85

610  0.3 

Portion3 250 30 4.5 206
610  7.85

610  0.3 

L: length 

W: width 

T: thickness 

E: Young’s modulus 

 : Density 

v : Poisson’s ratio 
 

 

Hereafter the MATLAB, NX5 and experimental modal analysis results are presented. 

No exact solution is available for the stepped beam. 

 

6.4.1 MATLAB program 

 

The MATLAB program (BEAMANALYSIS) found in Appendix C is used to compute 

successively flap-wise and edge-wise natural frequencies. The following first five flap-

wise and edge-wise natural frequencies have been found: 
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Table 6.7: MATLAB natural frequencies 
 

Natural frequencies (Hz) 

Flap-wise Edge-wise 

6.61 57.62 

37.88 305.41 

103.55 807.10 

202.72 1587.27 

335.28 2628.71 

 

6.4.2  NX5 model 

 

A three-dimensional stepped beam (Figure 4.4) has been built in the finite element 

program NX5. Flap-wise, edge-wise and additionally torsional natural frequencies 

have been found.  The mode shapes corresponding to the natural frequencies are 

used to determine whether a particular frequency is flap-wise, edge-wise or torsional. 

 

Flap-wise deflection (Mode 2)  Edge-wise deflection (Mode 7) 

      

Torsional deflection (Mode 6) 

 
 

Figure 6.5: Stepped beam deflections 
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The first five flap-wise, edge-wise and torsional natural frequencies are: 

 

Table 6.8: NX5 natural frequencies 

 

Natural frequencies (Hz) 

Flap-wise Edge-wise Torsional  

6.636 57.55 282.6 

38.02 301.9 742.1 

103.9 786 1202 

203.5 1516 1733 

336.2 2447 2249 

 

6.4.3  Experimental modal analysis results 

 

The performed modal analysis gives estimates of only flap-wise natural frequencies. 

The results are based the measurements performed on the stepped beam described 

in Chapter 4. Figure 6.6 shows a screenshot of Vib-Graph after measured transfer 

functions are imported. Crosses (+) indicates natural frequencies. The natural 

frequencies, obtained from the modal analysis, are presented in Table 6.9.   

 

 

 

Figure 6.6: Measured transfer functions imported into Vib-Graph 
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6.4.4  Comparison of natural frequencies 

 

The results found previously have been compared. This comparison has been limited 

to the data available.  

 

Table 6.9: Measured and computed natural frequencies 

 

 Measured frequencies [Hz] 
Computed frequencies [Hz] 

MATLAB NX5 

F
la

p
-w

is
e
 

5.62 6.61 6.636 

35.62 37.88 38.02 

99.37 103.55 103.9 

201.87 202.72 203.5 

307.5 335.28 336.2 

E
d

g
e
-w

is
e
 

 

57.62 57.55 

305.41 301.9 

807.10 786 

1587.27 1516 

2628.71 2447 

 

It can be seen that the measured frequencies results and the computed frequencies 

remain close. However, as previously, some discrepancies can be observed for 

highest frequencies.  Interestingly, Jaworski and Dowell (Jaworski & Dowell, 2007) in 

their study predicted the three lowest natural frequencies of a multiple-stepped beam 

using:  

 A classic Rayleigh–Ritz formulation; 

 commercial finite element code ANSYS and, 

  experimental results from impact testing data. 

It has been shown that: 

 Classical Rayleigh–Ritz provides more accurate results at the highest 

frequency for global parameters once sufficient degrees-of-freedom are 

introduced and, 

 the disagreement between beam model and experimental results is attributed 

to non-beam effects present in the higher-dimensional elasticity models, but 

absent in Euler–Bernoulli and Timoshenko beam theories. This conclusion is 

corroborated by predictions from one-, two-, and three-dimensional finite 

element models. 
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It should be specified, however, that this study is not concerned with higher natural 

frequencies. 

 

6.5  Results for variblade 

 

6.5.1 NX5 and MATLAB results comparison for variblade 

 

Since finite element analysis has been established as an important tool in vibration 

analysis and proven reliable in this study, it has been used to provide an 

approximation for the variblade being designed. 

 

As explained before the variable length blade has been approximated to a variblade 

with two portions (Figure 5.2). Ten different configurations (Figure 5.3) depending of 

the position of the outboard portion are investigated. These configurations change 

from zero extension to full extension in ten equal steps of 100 mm. Values of the 

material and geometric properties of the two portion of the variblade under 

investigation are given in Table 6.10. No exact solution and experimental modal 

analysis results are available. 

 

Table 6.10: Material and geometric properties of the variblade 

 

 Geometric properties 

Material properties 

(Carbon fiber composite)  

(Zweben et al., 1989) 

 L( mm) W( mm) T( mm) Wh( mm) E(
2/ mmmN )  (

3/ mmkg ) v  

Portion1 1000 60 20 5 230
610  1.8

610  0.3 

Portion2 1000 50 10 N/A 230
610  1.8

610  0.3 

L: length 

W: width 

T: thickness 

Wh: wall thickness 

E: Young’s modulus 

 : density 

v : Poisson’s ratio 
 

 

This section contains examples of the results obtained with NX5 for three different 

configurations of the variblade. Flap-wise, edge-wise and torsional deflections are 

represented. 
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Mode 3 (Flap-wise)    Mode 5 (Edge-wise) 

         

Mode 6 (Torsional) 
 

 

 

Figure 6.7: Flap-wise, edge-wise and torsional deflection for configuration 1 
 

 

 

Mode 3 (Flap-wise)    Mode 5 (Edge-wise) 

         

Mode 9 (Torsional) 

 

 

Figure 6.8: Flap-wise, edge-wise and torsional deflection for configuration 5 
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Mode 4 (Flap-wise)        Mode 8 (Edge-wise) 

        

Mode 10 (Torsional) 

 

 

Figure 6.9: Flap-wise, edge-wise and torsional deflection for configuration 10 

 

The complete set of NX5 results are presented in Appendix E. 

 

The MATLAB program VARIBLADEANALYSIS.m (Appendix D) has been used to 

compute natural frequencies. The results found using this MATLAB program have 

been compared to those found using NX5. The first five natural frequencies (flap-wise 

and edge-wise) of the variblade are calculated successively for ten different 

configurations. Torsional natural frequencies obtained with NX5 have been ignored 

because the MATLAB program can calculate only flap-wise and edge-wise natural 

frequencies. Figure 6.10 represents the results obtained for configuration 1, 

configuration 5 and configuration 10. The complete results comparison for all 

configurations is presented in Appendix F. 
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Figure 6.10: MATLAB and NX5 results comparison 

 

6.5.2 Influence of blade length 

 

The influence of varying the blade length has been studied and the results are shown 

in Figure 6.11 for the first five natural frequencies related to the configurations of the 

variblade. Table 6.11 and Table 6.12 provide values of these first five natural 

frequencies calculated for each configuration of the variblade shown in Figure 5.3.  

 

Table 6.11: Computed natural frequencies (NX5) 

 

Configuration 

number 

Computed natural frequencies (Hz) 

Mode1 Mode2 Mode3 Mode4 Mode5 

1 36.6 109 229 640 675 

2 33.1 94.6 205 560 589 

3 29.5 82.2 174 422 509 

4 26.4 72.7 140 302 434 

5 23.6 64.7 108 250 364 

6 21.0 57.8 83.8 225 305 

7 18.7 51.8 67.8 205 259 

8 16.5 46.5 57.2 184 224 

9 14.5 41.9 50.0 162 198 

10 12.7 37.8 45.2 141 178 
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Table 6.12: Computed natural frequencies (MATLAB) 

 

Configuration 

number 

Computed natural frequencies (Hz) 

Mode1 Mode2 Mode3 Mode4 Mode5 

1 36.6 111 229 641 684 

2 33.4 95.5 204 562 589 

3 30.2 79.6 175 426 525 

4 27.1 73.2 142 304 441 

5 23.9 65.3 108 251 369 

6 20.7 63.7 84.4 226 302 

7 19.1 47.8 68.4 205 255 

8 15.9 47.8 57.3 184 223 

9 14.3 47.8 49.3 162 206 

10 12.7 40.0 44.6 142 175 

 

 

 

Figure 6.11: Natural frequencies 

 
6.5.3 Effect of rotation 

 

Referring to Equation 2.1, it has been shown that there is an increase of the first 

mode frequency due to centrifugal stiffening. 

2

1

2

0,1,1  ff R  

The natural frequencies calculated (Table 6.7) correspond to 0,1f . The value of 1  

depends on the blade mass and stiffness distribution, and Madsen and al. (Madsen 

and al., 1984) suggest the value of 1.73 for wind turbine blade flap-wise oscillations. 
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In the case of blade rotating at 30 r.p.m and for 1 =1.73, the following natural 

frequencies will be obtained: 

 

Table 6.13: Natural frequencies of the rotating variblade 

 

Configuration 

number 
0,1f [Hz] 

Rf ,1
[Hz] Percentage increase [%] 

1 36.6 36.606 0.016 

2 33.1 33.107 0.020 

3 29.5 29.507 0.025 

4 26.4 26.408 0.031 

5 23.6 23.609 0.039 

6 21.0 21.010 0.049 

7 18.7 18.712 0.062 

8 16.5 16.513 0.079 

9 14.5 14.515 0.103 

10 12.7 12.717 0.134 

 

6.6.  Contextualization of the findings 

 

During design of a wind turbine blade, the 1st flap-wise, 2nd flap-wise, 1st edge-wise 

and the 1st torsional natural frequencies shall be determined as a minimum (Larsen et 

al., 2002). It can be seen (Figure 6.10) there is good agreement between the 

MATLAB and NX5 results for the first five natural frequencies. 

 

It should be noted that only the frequency range between 0.5 Hz and 30 Hz (Larsen 

et al., 2002) is of relevance to wind turbine blades. In that range, MATLAB and NX5 

provide identical results. Torsional natural frequencies have been calculated using 

NX5. The lowest torsional natural frequency (configuration 10) determined is 595 Hz 

(Appendix E). It can be concluded that torsional natural frequencies are not a concern 

for this variblade model as they are out of the range of interest. 

 

The study of the influence of blade length on natural frequencies represented in 

Figure 6.11 has shown that with increasing blade length, the natural frequencies 

decrease. This is probably because the blade becomes more flexible as its length 

increases. The excitation loads are concentrated in the interval 0.5 Hz-30 Hz. As 

shown in Table 6.11 and Table 6.12, mode 1 (included in the interval 12.7 Hz-36.6 
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Hz) may coincide with these excitation frequencies. Therefore the first mode may be 

subjected to excitation. 

The relative effect of the centrifugal loads is small because of the small size of the 

model under investigation. In fact, the longer the length of the model, the lower the 

natural frequencies will be. The increase in the first mode frequency for edge-wise 

oscillations from centrifugal force is 0.134 % for configuration10; the largest expected 

increase; which is probably small enough to be ignored. 

 



 

 71 

CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

7.1  Conclusions  

 

A variblade can be seen as beam of finite length with aerofoils as cross sections. A 

rectangular cross-section model, representing the variblade, can give qualitatively 

appropriate results in a simpler way than considering a blade with aerofoil profiles. 

Therefore, such a model has been adopted for this analysis. The fixed and sliding 

portions of the blade have been approximated by a hollow beam and a solid beam. As 

the outboard portion of the blade can be slid in and out of the inboard portion, 10 different 

configurations have been investigated. A one-dimensional model and a three- 

dimensional model have been investigated 

 

The following expected conclusions have been drawn: 

 Good agreement between NX5 and MATLAB results has been confirmed for the 

frequency range of interest using a composite material variblade. Therefore both NX5 

and the MATLAB program can be use to calculate natural frequencies for any other 

isotropic material. This means that an effective method to compute natural 

frequencies of a variblade was developed; 

 natural frequencies are a function of configuration number and, 

 increasing the blade length reduces natural frequencies. 

 

More specifically for variblades, the following conclusions have been drawn: 

 The range between 0.5 Hz and 30 Hz is of relevance to wind turbine blades. 

Although the first five natural frequencies have been calculated, only the first flap-

wise natural frequency is of concern. Higher flap-wise natural frequencies, all edge-

wise and all torsional natural frequencies are out of this range of concern.  

 the first mode (included in the interval 12.7-36.6 Hz) (Table 6.11 and Table 6.12) may 

coincide with the excitation frequencies, therefore during operation this range of 

frequencies should be avoided; 

 modal testing only needs to be performed to extract the first flap-wise natural 

frequency in each configuration of the variblade and, 

 influence of rotation on natural frequencies is small enough to be ignored. 
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 Non-obvious advantages of the variblades is the following: The higher the rotor 

speed, the smaller the blade length becomes and, therefore the higher the natural 

frequency is. Similarly, as the rotor speed decreases, natural frequency decreases. 

 For the variblade, it can be seen that a smaller blade size (Table 6.11 and Table 

6.12) (configuration 1, configuration 2 and configuration 3) does not present a risk for 

the variblade, since those natural frequencies are out of the range of concern. 

Therefore, reducing the blade length reduces the chances of resonance. Although it 

is an obvious conclusion, it is an non-obvious benefit. 

 Due to variation in blade length, natural frequency is not constant. Even if one found 

that the first flap-wise natural frequency is in the region of concern, that frequency is 

not constant, thus reducing chances of resonance. 

 

7.2  Recommendations 

 

7.2.1  Finite element analysis 

 

 The models developed include some approximation. The results for these simplified 

models shows further research with a more accurate model is required since the first 

mode may be subjected to excitation. The blade profile needs to be taken into 

account for more accurate results; 

 the MATLAB program was written to be applicable to different blade shapes and 

materials, therefore, the cross section can be taken into account for the variblade 

being designed; 

 the two portions of the blade have been considered as one body in finite element 

analysis. Further studies can be undertaken to investigate the the effect of modelling 

the blade with the two portions joined in a more realistic way (e.g. with gap or contact 

elements) and, 

 since discrepancies between results have been found for frequencies above 500 Hz, 

further research can be undertaken in order to assess the ability of finite element 

analysis software to compute higher natural frequencies. 
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7.2.2  Experimental modal analysis 

 

 Experimental verification for the variblade is left for future studies to extend the work 

presented in this thesis; 

 experimental modal analysis should be performed on the variblade being designed: 

o To verify the accuracy of the computed natural frequencies.  

o to verify the method considering the two portions of the blade as one portion 

in finite element analysis and, 

 higher natural frequencies (edge-wise and torsional natural frequencies) should also 

be measured in order to assess the ability of the finite element software to accurately 

compute higher natural frequencies.  
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APPENDICES 

 

Appendix A: Instrument specifications 
 

This appendix presents a summary of the hardware used and evaluated in the 

experimental investigations performed. The product identification and product 

specifications are given. 

 

 ICP IMPACT HAMMER 

 

Model Number 086C02 

 

PERFORMANCE ENGLISH SI 

Sensitivity (±15 %) 50 flbmV /  11.2 NmV /  

Measurement Range ±100 flb  pk ±440 N  pk 

Resonant Frequency ≥22 kHz  ≥22 kHz  

Non-Linearity ≤1 % ≤1 % 

 
 

 ACCELEROMETER 

 

Model  IA11T 

 

DYNAMIC PERFORMANCE ENGLISH SI 

Sensitivity (±10%)  100 gmV /  10.2 )//( 2smmV  

Measurement Range  ±50 g  ±490 
2/ sm  

Frequency Range: (±3 dB)  20 – 600k cpm 0.32 – 10k Hz 

Mounted Resonant Frequency  1320k cpm 22k Hz 

Amplitude Linearity  ±1% ±1% 

Transverse Sensitivity  ≤7% ≤7% 
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 DYNAMIC SIGNAL ANALYSER 

The OneproD MVP-2C Portable Analyser is a modular, fully adaptable machinery 

analyser that can be configured at any time to be a two-channel vibration analyser, data 

collector, balancer, and data recorder to suit a wide variety of condition monitoring 

needs. 

Specifications (Short Form) 

 1 or 2 channels;  

 cross-channel functions with 2-channel configuration;  

 resonance Analysis, bump test etc;  

 running machine resonance/bump test;  

 128MB internal memory (-+ 20,000 Spectra @ 3200 lines);  

 12 800 lines of resolution;  

 true zoom;  

 USB/Ethernet communications;  

 built-in laser tachometer;  

 built-in pyrometer (infra-red thermometer) with laser sighting;  

 8 hours battery life (Li-On);  

 remote route loading/unloading with E-route option;  

 balancing option: 1 or 2 channels up to 4 planes;  

 order analysis (run-up and run-down) and, 

 long time-record acquisition for slow speed machines and event capture.  
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Appendix B: MATLAB program for uniform and stepped beam 
 

 

 

%**************************************************************************** 

%**************************************************************************** 

%************************ BEAMANALYSIS *********************************** 

%**************************************************************************** 

%************************* Written by ****************************************** 

%**************************************************************************** 

%******************* TARTIBU KWANDA 2008 ********************************** 

%**************************************************************************** 

%**************************************************************************** 

%**************************************************************************** 

%Uniform beam and Stepped beam finite element program. Selectable number of step and %number of 

elements. Solves for eigenvalues and eigenvectors of a beam with user defined %dimensions. This 

program is able to calculate the natural frequencies of different uniform and %stepped beam geometries 

and material’s properties. 

%default values are included in the program for the purpose of showing how to input data. 

    echo off 

    clf; 

    clear all; 

    inp = input('Input "1" to enter beam dimensions, "Enter" to use default ... '); 

    if (isempty(inp)) 

        inp = 0; 

    else 

    end 

    if inp == 0 

%   input size of beam and material 

%   xl(i) = length of element (step)i 

%   w(i) = width of element (step)i 

%   t(i) = thickness of element (step)i 

%   e = Young's modulus 

%   bj = global degree of freedom number corresponding to the jth local degree 

%   of freedom of element i 

%   a(i) = area of cross section of element i 

%   ne = number of elements 

%   n = total number of degree of freedom 

%   no = number of nodes 

    format short 

%   INPUT DATA 
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    xl = [40 32 24]; 

    xi = [1.333333 6.75 0.08333]; 

    w = [4 6 2]; 

    t = [2 3 1]; 

    e = 206e+6; 

    rho = 7.85e-6; 

    bj = [1 2 3 4;3 4 5 6;5 6 7 8]; 

    ne = 3; 

    n = 8; 

    else 

         

 

    

 ne = input ('Input number of elements, default 3 ... '); 

    if (isempty(ne)) 

        ne = 3; 

    else 

    end 

     

    xl = input ('Input lengths of stepped beam, default [40 32 24], ... '); 

    if (isempty(xl)) 

        xl = [40 32 24]; 

    else 

    end 

     

    w = input ('Input widths of stepped beam, default [4 6 2], ... '); 

    if (isempty(w)) 

        w = [4 6 2]; 

    else 

    end 

     

    t = input ('Input thickness of stepped beam, default [2 3 1], ... '); 

    if (isempty(t)) 

        t = [2 3 1]; 

    else 

    end 

%   INPUT SIZE OF STEPPED BEAM AND MATERIAL 
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    e = input('Input modulus of material, mN/mm^2, default mild steel 206e+6 ... '); 

    if (isempty(e)) 

        e=206e+6; 

    else 

    end 

     

    rho = input('Input density of material,kg/mm^3 , default mild steel 7.85e-6 ... '); 

    if (isempty(rho)) 

        rho = 7.85e-6; 

    else 

    end 

     

    bj = input('Input global degree of freedom, default global degree of freedom [1 2 3 4;3 4 5 6;5 6 7 8] ... 

'); 

    if (isempty(bj)) 

        bj = [1 2 3 4;3 4 5 6;5 6 7 8]; 

    else 

    end 

    end 

 

 

 

%   Calculate area (a), area moment of Inertia (xi) and mass per unit of length (xmas) of 

%   the stepped beam 

    a = w.*t; 

%   Define area moment of inertia according to flap-wise or edge-wise 

%   vibration of the stepped beam. 

    vibrationdirection = input('enter "1" for edge-wise vibration, "enter" for flap-wise vibration ... '); 

    if (isempty(vibrationdirection)) 

        vibrationdirection = 0; 

    else 

    end 

    if vibrationdirection == 0 

        xi=w.*t.^3/12; 

    else 

%   CALCULATION 
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        xi=t.*w.^3/12; 

    end 

     

    for i=1:ne 

       xmas(i)=a(i)*rho; 

    end 

     

 

 

%   Size the stiffness and mass matrices 

    no = ne+1; 

    n = 2*no;   

bigm = zeros(n,n); 

bigk = zeros(n,n);  

%   Now build up the global stiffness and consistent mass matrices, element 

%   by element 

 ai = zeros(4,n);    

       i1=bj(ii,1); 

       i2=bj(ii,2); 

       i3=bj(ii,3); 

       i4=bj(ii,4); 

       ai(1,i1)=1; 

       ai(2,i2)=1; 

       ai(3,i3)=1; 

       ai(4,i4)=1; 

       xm(1,1)=156; 

       xm(1,2)=22*xl(ii); 

       xm(1,3)=54; 

       xm(1,4)=-13*xl(ii); 

       xm(2,2)=4*xl(ii)^2; 

       xm(2,3)=13*xl(ii); 

       xm(2,4)=-3*xl(ii)^2; 

       xm(3,3)=156; 

       xm(3,4)=-22*xl(ii); 

       xm(4,4)=4*xl(ii)^2; 

       xk(1,1)=12; 

%   BUILDING OF MATRICES 
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       xk(1,2)=6*xl(ii); 

       xk(1,3)=-12; 

       xk(1,4)=6*xl(ii); 

       xk(2,2)=4*xl(ii)^2; 

       xk(2,3)=-6*xl(ii); 

       xk(2,4)=2*xl(ii)^2; 

       xk(3,3)=12; 

       xk(3,4)=-6*xl(ii); 

       xk(4,4)=4*xl(ii)^2; 

       for i=1:4 

          for j=1:4 

             xm(j,i)=xm(i,j); 

             xk(j,i)=xk(i,j); 

          end 

       end 

       for i=1:4 

          for j=1:4 

             xm(i,j)=(((xmas(ii)*xl(ii))/420))*xm(i,j); 

             xk(i,j)=((e*xi(ii))/(xl(ii)^3))*xk(i,j); 

          end 

       end 

       for i=1:n 

          for j=1:4 

             ait(i,j)=ai(j,i); 

          end 

       end 

       xka=xk*ai; 

       xma=xm*ai; 

       aka=ait*xka; 

       ama=ait*xma; 

      for i=1:n 

          for j=1:n 

             bigm(i,j)=bigm(i,j)+ama(i,j); 

             bigk(i,j)=bigk(i,j)+aka(i,j); 

          end 

       end 
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    end 

%   Application of boundary conditions 

%   Rows and columns corresponding to zero displacements are deleted 

     

     bigk(1:2,:) = []; 

     bigk(:,1:2) = []; 

         

     bigm(1:2,:) = []; 

     bigm(:,1:2) = []; 

     

 

 

%   Calculation of eigenvector and eigenvalue 

     

    [L, V] = eig (bigk,bigm) 

     

%   Natural frequency 

    V1 = V.^(1/2) 

    W = diag(V1) 

    f =W/(2*pi)     

 

%   CALCULATION OF NATURAL FREQUENCY 
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Appendix C: MATLAB Program explanation: 3 elements mesh 
 

%: MATLAB treats all the information after the % on that line as a comment. MATLAB ignores this 

comment line when you run the M-file. 

echo off: Turns off the echoing of commands in all script files 

clf: deletes from the current figure all graphics objects whose handles are not hidden 

clear all: removes all variables, functions, and MEX-files from memory, leaving the workspace empty 

format long: scaled fixed point format with 14 to 15 digits after the decimal point for double; and 7 

digits after the decimal point for single. 

xl = [xl1 xl2 xl3] 

xl1 = length of step 1 (ii = 1) 

xl2 = length of step 2 (ii = 2) 

xl3 = length of step 3 (ii = 3) 

xi = [xi1 xi2 xi3] 

xi1 = area moment of inertia step 1 

xi2 = area moment of inertia step 2 

xi3 = area moment of inertia step 3 

w = [w1 w2 w3] 

w1 = width of step 1 

w2 = width of step 2 

w3 = width of step 3 

t = [t1 t2 t3] 

t1 = thickness of step 1 

t2 = thickness of step 2 

t3 = thickness of step 3 

bj = [1 2 3 4;3 4 5 6;5 6 7 8] = 

















8765

6543

4321

  

a = w.*t = [w1 w2 w3].* [t1 t2 t3] = [w1*t1 w2*t2 w3*t3] = [a1 a2 a3] 

xi = w.*t.^3/12 = [w1 w2 w3].* [t1 t2 t3].^3/12 = [w1*t1^3 w2*t2^3 w3*t3^3]/12 

xmas1 = a1*rho for i = 1 

xmas2 = a2*rho for i = 2 

xmas3 = a3*rho for i = 3 
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bigm = 

































00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

 

bigk = 

































00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

 

ai(i,j) = 



















00000000

00000000

00000000

00000000

 

i1 = bj(1,1) = 1 for ii = 1 or bj(2,1) = 1 for ii = 2 or bj(3,1) = 1 for ii = 3 

i2 = bj(1,2) = 1 for ii = 1 or bj(2,2) = 1 for ii = 2 or bj(3,2) = 1 for ii = 3 

i1 = bj(1,3) = 1 for ii = 1 or bj(2,3) = 1 for ii = 2 or bj(3,3) = 1 for ii = 3 

i1 = bj(1,4) = 1 for ii = 1 or bj(2,4) = 1 for ii = 2 or bj(3,4) = 1 for ii = 3 

For ii = 1 ai(i,j) = 



















00001000

00000100

00000010

00000001

 

For ii = 2 ai(i,j) = 



















00100000

00010000

00001000

00000100
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For ii = 3 ai(i,j) = 



















10000000

01000000

00100000

00010000

 

xm = 



























2)^(*4)(*22)(*3)(*13

)(*22156)(*1354

2)^(*3)(*132)^(*4)(*22

)(*1354)(*22156

iixliixliixliixl

iixliixl

iixliixliixliixl

iixliixl

 for ii = 1:3 

xk = 



























2)^(*4)(*6)(*2)(*6

)(*612)(*66

2)^(*2)(*62)^(*4)(*22

)(*612)(*612

iixliixliixliixl

iixliixl

iixliixliixliixl

iixliixl

 for ii = 1:3 

xm(i,j) = (xmas(ii)*xl(ii)/420)*



























2)^(*4)(*22)(*3)(*13

)(*22156)(*1354

2)^(*3)(*132)^(*4)(*22

)(*1354)(*22156

iixliixliixliixl

iixliixl

iixliixliixliixl

iixliixl

 

 xm(i,j) = 



















axmaxmaxmaxm

axmaxmaxmaxm

axmaxmaxmaxm

axmaxmaxmaxm

44434241

34333231

24232221

14131211

for ii = 1 

 xm(i,j) = 



















bxmbxmbxmbxm

bxmbxmbxmbxm

bxmbxmbxmbxm

bxmbxmbxmbxm

44434241

34333231

24232221

14131211

 for ii = 2 

 xm(i,j) = 



















cxmcxmcxmcxm

cxmcxmcxmcxm

cxmcxmcxmcxm

cxmcxmcxmcxm

44434241

34333231

24232221

14131211

 for ii = 3 

xk(i,j) = (e*xi(ii)/(xl(ii)^3))* 



























2)^(*4)(*6)(*2)(*6

)(*612)(*66

2)^(*2)(*62)^(*4)(*22

)(*612)(*612

iixliixliixliixl

iixliixl

iixliixliixliixl

iixliixl
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 xk(i,j) = 



















axkaxkaxkaxk

axkaxkaxkaxk

axkaxkaxkaxk

axkaxkaxkaxk

44434241

34333231

24232221

14131211

 for ii = 1 

 xk(i,j) = 



















bxkbxkbxkbxk

bxkbxkbxkbxk

bxkbxkbxkbxk

bxkbxkbxkbxk

44434241

34333231

24232221

14131211

 for ii = 2 

 xk(i,j) = 



















cxkcxkcxkcxk

cxkcxkcxkcxk

cxkcxkcxkcxk

cxkcxkcxkcxk

44434241

34333231

24232221

14131211

 for ii = 3 

For ii = 1 ait(i,j) = ai(j,i) = 

































0000

0000

0000

0000

1000

0100

0010

0001

 

For ii = 2 ait(i,j) = 

































0000

0000

1000

0100

0010

0001

0000

0000
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For ii = 3 ait(i,j) = 

































1000

0100

0010

0001

0000

0000

0000

0000

 

 For ii = 1  

xka=



















axkaxkaxkaxk

axkaxkaxkaxk

axkaxkaxkaxk

axkaxkaxkaxk

44434241

34333231

24232221

14131211

*



















00001000

00000100

00000010

00000001

=



















000044434241

000034333231

000024232221

000014131211

axkaxkaxkaxk

axkaxkaxkaxk

axkaxkaxkaxk

axkaxkaxkaxk

 

xma=



















axmaxmaxmaxm

axmaxmaxmaxm

axmaxmaxmaxm

axmaxmaxmaxm

44434241

34333231

24232221

14131211

*



















00001000

00000100

00000010

00000001

=



















000044434241

000034333231

000024232221

000014131211

axmaxmaxmaxm

axmaxmaxmaxm

axmaxmaxmaxm

axmaxmaxmaxm

 

 

 For ii = 2 

xka=



















bxkbxkbxkbxk

bxkbxkbxkbxk

bxkbxkbxkbxk

bxkbxkbxkbxk

44434241

34333231

24232221

14131211

*



















00100000

00010000

00001000

00000100

= 
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

















004443424100

003433323100

002423222100

001413121100

bxkbxkbxkbxk

bxkbxkbxkbxk

bxkbxkbxkbxk

bxkbxkbxkbxk

 

xma=



















bxmbxmbxmbxm

bxmbxmbxmbxm

bxmbxmbxmbxm

bxmbxmbxmbxm

44434241

34333231

24232221

14131211

*



















00100000

00010000

00001000

00000100

=



















004443424100

003433323100

002423222100

001413121100

bxmbxmbxmbxm

bxmbxmbxmbxm

bxmbxmbxmbxm

bxmbxmbxmbxm

 

 For ii = 3 

xka=



















cxkcxkcxkcxk

cxkcxkcxkcxk

cxkcxkcxkcxk

cxkcxkcxkcxk

44434241

34333231

24232221

14131211

*



















10000000

01000000

00100000

00010000

= 



















cxkcxkcxkcxk

cxkcxkcxkcxk

cxkcxkcxkcxk

cxkcxkcxkcxk

444342410000

343332310000

242322210000

141312110000

 

xma=



















cxmcxmcxmcxm

cxmcxmcxmcxm

cxmcxmcxmcxm

cxmcxmcxmcxm

44434241

34333231

24232221

14131211

*



















10000000

01000000

00100000

00010000

=



















cxmcxmcxmcxm

cxmcxmcxmcxm

cxmcxmcxmcxm

cxmcxmcxmcxm

444342410000

343332310000

242322210000

141312110000
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 For ii = 1 

aka = 

































0000

0000

0000

0000

1000

0100

0010

0001

*



















000044434241

000034333231

000024232221

000014131211

axkaxkaxkaxk

axkaxkaxkaxk

axkaxkaxkaxk

axkaxkaxkaxk

= 

































00000000

00000000

00000000

00000000

000044434241

000034333231

000024232221

000014131211

axkaxkaxkaxk

axkaxkaxkaxk

axkaxkaxkaxk

axkaxkaxkaxk

 

ama = 

































0000

0000

0000

0000

1000

0100

0010

0001

*



















000044434241

000034333231

000024232221

000014131211

axmaxmaxmaxm

axmaxmaxmaxm

axmaxmaxmaxm

axmaxmaxmaxm

= 

































00000000

00000000

00000000

00000000

000044434241

000034333231

000024232221

000014131211

axmaxmaxmaxm

axmaxmaxmaxm

axmaxmaxmaxm

axmaxmaxmaxm
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 For ii = 2 

aka = 

































0000

0000

1000

0100

0010

0001

0000

0000

*



















004443424100

003433323100

002423222100

001413121100

bxkbxkbxkbxk

bxkbxkbxkbxk

bxkbxkbxkbxk

bxkbxkbxkbxk

= 

































00000000

00000000

004443424100

003433323100

002423222100

001413121100

00000000

00000000

bxkbxkbxkbxk

bxkbxkbxkbxk

bxkbxkbxkbxk

bxkbxkbxkbxk

 

ama = 












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 For ii = 3 

aka = 
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bigm=
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bigk=
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bigk(1:2,:) = []; 

bigk(:,1:2) = []; 

         

bigm(1:2,:) = []; 

bigm(:,1:2) = []; 
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Appendix D: MATLAB program for VARIBLADE 
 

 

 

 

%**************************************************************************** 

%**************************************************************************** 

%********************VARIBLADEANALYSIS ********************************** 

%**************************************************************************** 

%************************* Written by ****************************************** 

%**************************************************************************** 

%******************* TARTIBU KWANDA 2008********************************** 

%**************************************************************************** 

%**************************************************************************** 

%**************************************************************************** 

%Variable length blade finite element program.  Two portions of beam: hollow beam %(fixed portion) 

and solid beam (moveable portion). Solves for eigenvalues and eigenvectors of %stepped beam with 

user defined dimensions and configurations. This program can calculate the %natural frequencies of 

different beam geometries and configurations ( position of moveable portion) 

%default values are included in the program for the purpose of showing how to input data. 

    echo off 

    clf; 

    clear all; 

        inp = input('Input "1" to enter beam dimensions, "Enter" to use default ... '); 

    if (isempty(inp)) 

        inp = 0; 

    else 

    end 

     

    if inp == 0 

%   input beam's geometries and material's properties 

%   xl(i) = length of element (step)i 

%   w(i) = width of element (step)i 

%   t(i) = thickness of element (step)i 

%   e = Young's modulus 

%   bj = global degree of freedom number corresponding to the jth local degree 

%   of freedom of element i 

%   a(i) = area of cross section of element i 

%   ne = number of elements 

%   n = total number of degree of freedom 

%   no = number of nodes 

%   wa = width of hollow for the first portion of stepped beam 

%   ta = thickness of hollow for the first portion of stepped beam 

%   INPUT DATA 
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    format long 

    beamconfiguration = 1; 

    n1 = 10; 

    n2 = 10; 

    l1 = 1000; 

    l2 = 1000; 

    h1 = 1000/10; 

    h2 = 1000/10; 

    xl = [h1*ones(1,n1) h2*ones(1,beamconfiguration-1)]; 

    w1 = 60; 

    w2 = 50; 

    w = [w1*ones(1,n1) w2*ones(1,beamconfiguration-1)]; 

    t1 = 20; 

    t2 = 10; 

    t = [t1*ones(1,n1) t2*ones(1,beamconfiguration-1)]; 

    wh = 50; 

    th = 10; 

    wa = [wh*ones(1,beamconfiguration-1) 0*ones(1,n2)]; 

    ta = [th*ones(1,beamconfiguration-1) 0*ones(1,n2)]; 

%   configurations of stepped beam: 

%   beamconfiguration ≤ n1 & n2 

%   for configuration 1, w = [w1*ones(1,n1) w2*ones(1,1-1)],  

%   t = [t1*ones(1,n1) t2*ones(1,1-1)] 

%   wa = [wh*ones(1,1-1) 0*ones(1,n2)],  

%   ta = [th*ones(1,1-1) 0*ones(1,n2)] 

%   for configuration 2, w = [w1*ones(1,n1) w2*ones(1,2-1)] 

%   t = [t1*ones(1,n1) t2*ones(1,2-1)] 

%   wa = [wh*ones(1,2-1) 0*ones(1,n2)] 

%   ta = [th*ones(1,2-1) 0*ones(1,n2)] 

%   for configuration 3, w = [w1*ones(1,n1) w2*ones(1,3-1)] 

%   t = [t1*ones(1,n1) t2*ones(1,3-1)] 

%   wa = [wh*ones(1,3-1) 0*ones(1,n2)] 

%   ta = [th*ones(1,3-1) 0*ones(1,n2)] 

%   for configuration 4, w = [w1*ones(1,n1) w2*ones(1,4-1)] 

%   t = [t1*ones(1,n1) t2*ones(1,4-1)]  

%   wa = [wh*ones(1,4-1) 0*ones(1,n2)] 

%   ta = [th*ones(1,4-1) 0*ones(1,n2)] 

%   for configuration 5, w = [w1*ones(1,n1) w2*ones(1,5-1)] 
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%   t = [t1*ones(1,n1) t2*ones(1,5-1)] 

%   wa = [wh*ones(1,5-1) 0*ones(1,n2)] 

%   ta = [th*ones(1,5-1) 0*ones(1,n2)] 

    xi = [40000 40000 40000 40000 40000 40000 40000 40000 40000 40000]; 

    a = [1200 1200 1200 1200 1200 1200 1200 1200 1200 1200]; 

    e = 206e+6; 

    rho = 7.85e-6; 

    bj = [1 2 3 4;3 4 5 6;5 6 7 8;7 8 9 10;9 10 11 12;11 12 13 14;13 14 15 16;15 16 17 18;17 18 19 

20;19 20 21 22;21 22 23 24;23 24 25 26;25 26 27 28;27 28 29 30;29 30 31 32; 31 32 33 34;33 34 35 

36;35 36 37 38;37 38 39 40;39 40 41 42]; 

    ne = 20; 

    n = 22; 

    else 

         

 

 

    beamconfiguration = input ('Input beamconfiguration of stepped beam, default 1 ... '); 

    if (isempty(beamconfiguration)) 

        beamconfiguration = 1; 

    else 

    end 

     

    n1 = input ('Input number of elements for the first portion of stepped beam, default 10 ... '); 

    if (isempty(n1)) 

        n1 = 10; 

    else 

    end 

     

    n2 = input ('Input number of elements for the second portion of stepped beam, default 10 ... '); 

    if (isempty(n2)) 

        n2 = 10; 

    else 

    end 

     

    l1 = input ('Input length of first portion of stepped beam, default 1000, ... '); 

    if (isempty(l1)) 

        l1 = 1000; 

    else 

%   INPUT SIZE OF STEPPED BEAM AND MATERIAL 
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    end 

     

     l2 = input ('Input length of second portion of stepped beam, default 1000, ... '); 

    if (isempty(l2)) 

        l2 = 1000; 

    else 

    end 

     

    w1 = input ('Input width of first portion of stepped beam, default 60, ... '); 

    if (isempty(w1)) 

            w1 = 60; 

    else 

    end 

     

     w2 = input ('Input width of second portion of stepped beam, default 50, ... '); 

    if (isempty(w2)) 

            w2 = 50; 

    else 

    end 

     

    t1 = input ('Input thickness of first portion of stepped beam, default 20 , ... '); 

    if (isempty(t1)) 

          t1 = 20; 

    else 

    end 

     

    t2 = input ('Input thickness of second portion of stepped beam, default 10 , ... '); 

    if (isempty(t2)) 

          t2 = 10; 

    else 

    end 

     

    wh = input ('input width of hollow of first portion of stepped beam, default 50, ... '); 

    if (isempty(wh)) 

        wh = 50; 

    else 

    end 
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    th = input ('input thickness of hollow of first portion of stepped beam, default 10, ... '); 

    if (isempty(th)) 

        th = 10; 

    else 

    end 

     

    e = input('Input modulus of material, mN/mm^2, default mild steel 206e+6 ... '); 

    if (isempty(e)) 

        e=206e+6; 

    else 

    end 

     

    rho = input('Input density of material,kg/mm^3 , default mild steel 7.85e-6 ... '); 

    if (isempty(rho)) 

        rho = 7.85e-6; 

    else 

    end 

     

    bj = input('Input global degree of freedom, default global degree of freedom [1 2 3 4;3 4 5 6;5 6 7 

8;7 8 9 10;9 10 11 12;11 12 13 14;13 14 15 16;15 16 17 18;17 18 19 20;19 20 21 22;21 22 23 24;23 

24 25 26;25 26 27 28;27 28 29 30;29 30 31 32; 31 32 33 34;33 34 35 36;35 36 37 38;37 38 39 40;39 

40 41 42]; ... '); 

    if (isempty(bj)) 

        bj =[1 2 3 4;3 4 5 6;5 6 7 8;7 8 9 10;9 10 11 12;11 12 13 14;13 14 15 16;15 16 17 18;17 18 19 

20;19 20 21 22;21 22 23 24;23 24 25 26;25 26 27 28;27 28 29 30;29 30 31 32; 31 32 33 34;33 34 35 

36;35 36 37 38;37 38 39 40;39 40 41 42]; 

    else 

    end 

    end 

     

 

     

    ne = n1+beamconfiguration-1; 

    h1 = l1/n1; 

    h2 = l2/n2; 

    xl = [h1*ones(1,n1) h2*ones(1,beamconfiguration-1)]; 

    w = [w1*ones(1,n1) w2*ones(1,beamconfiguration-1)]; 

    t = [t1*ones(1,n1) t2*ones(1,beamconfiguration-1)]; 

%   CALCULATION 
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    wa = [wh*ones(1,beamconfiguration-1) 0*ones(1,n2)]; 

    ta = [th*ones(1,beamconfiguration-1) 0*ones(1,n2)]; 

     

%   calculate area (a), area moment of Inertia (xi) and mass per unit of length (xmas) of 

%   the stepped beam 

    a = (w.*t)-(wa.*ta); 

%   define area moment of inertia according to flap-wise or edge-wise 

%   vibration of the stepped beam. 

    vibrationdirection = input('enter "1" for edge-wise vibration, "enter" for flap-wise vibration ... '); 

    if (isempty(vibrationdirection)) 

        vibrationdirection = 0; 

    else 

    end 

    if vibrationdirection == 0 

        xi=((w.*t.^3)-(wa.*ta.^3))/12; 

    else 

        xi=((t.*w.^3)-(ta.*wa.^3))/12; 

    end 

     

    for i=1:ne 

       xmas(i)=a(i)*rho; 

    end 

     

         

 

%   Size the stiffness and mass matrices 

    no = ne+1; 

    n = 2*no; 

bigm = zeros(n,n); 

bigk = zeros(n,n); 

%   Now build up the global stiffness and consistent mass matrices, element 

%   by element 

ai = zeros(4,n); 

       i1=bj(ii,1); 

       i2=bj(ii,2); 

       i3=bj(ii,3); 

       i4=bj(ii,4); 

       ai(1,i1)=1; 

%   BUILDING OF MATRICES 
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       ai(2,i2)=1; 

       ai(3,i3)=1; 

       ai(4,i4)=1; 

       xm(1,1)=156; 

       xm(1,2)=22*xl(ii); 

       xm(1,3)=54; 

       xm(1,4)=-13*xl(ii); 

       xm(2,2)=4*xl(ii)^2; 

       xm(2,3)=13*xl(ii); 

       xm(2,4)=-3*xl(ii)^2; 

       xm(3,3)=156; 

       xm(3,4)=-22*xl(ii); 

       xm(4,4)=4*xl(ii)^2; 

       xk(1,1)=12; 

       xk(1,2)=6*xl(ii); 

       xk(1,3)=-12; 

       xk(1,4)=6*xl(ii); 

       xk(2,2)=4*xl(ii)^2; 

       xk(2,3)=-6*xl(ii); 

       xk(2,4)=2*xl(ii)^2; 

       xk(3,3)=12; 

       xk(3,4)=-6*xl(ii); 

       xk(4,4)=4*xl(ii)^2; 

       for i=1:4 

          for j=1:4 

             xm(j,i)=xm(i,j); 

             xk(j,i)=xk(i,j); 

          end 

       end 

       for i=1:4 

          for j=1:4 

             xm(i,j)=(((xmas(ii)*xl(ii))/420))*xm(i,j); 

             xk(i,j)=((e*xi(ii))/(xl(ii)^3))*xk(i,j); 

          end 

       end 

       for i=1:n 

          for j=1:4 

             ait(i,j)=ai(j,i); 
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          end 

       end 

       xka=xk*ai; 

       xma=xm*ai; 

       aka=ait*xka; 

       ama=ait*xma; 

      for i=1:n 

          for j=1:n 

             bigm(i,j)=bigm(i,j)+ama(i,j); 

             bigk(i,j)=bigk(i,j)+aka(i,j); 

          end 

       end 

     

    end    

%   Application of boundary conditions 

%   Rows and columns corresponding to zero displacements are deleted 

     

     bigk(1:2,:) = []; 

     bigk(:,1:2) = []; 

         

     bigm(1:2,:) = []; 

     bigm(:,1:2) = []; 

     

 

 

 

%   Calculation of eigenvector and eigenvalue    

    [L, V] = eig (bigk,bigm)     

%   Natural frequency 

    V1 = V.^(1/2) 

    W = diag(V1) 

    f =W/(2*pi) 

  

%   CALCULATION OF NATURAL FREQUENCY 
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Appendix E: NX5 results 
 

A. Configuration1 

 

Mode1 (flap-wise)    Mode2 (Edge-wise) 

 

         

 

Mode3 (Flap-wise)    Mode4 (Flap-wise) 

 

           

 

Mode5 (Edge-wise)    Mode6 (Torsional): 985.3 Hz 
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B. Configuration2 

 

Mode1 (Flap-wise)    Mode2 (Edge-wise) 

 

            

 

Mode3 (Flap-wise)    Mode4 (Flap-wise) 

 

            

 

Mode5 (Edge-wise)               Mode6 (Torsional): 947.6 Hz 
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C. Configuration3 

 

Mode1 (Flap-wise)    Mode2 (Edge-wise) 

 

            

 

Mode3 (Flap-wise)    Mode4 (Flap-wise) 

 

              

 

Mode5 (Edge-wise)    Mode7 (Torsional) : 905.4 Hz 
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D. Configuration4 

 

Mode1 (Flap-wise)    Mode2 (Edge-wise) 

 

             

 

Mode3 (Flap-wise)    Mode4 (Flap-wise) 

 

                 

 

Mode5 (Edge-wise)    Mode7 (Torsional): 867.8 Hz 
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E. Configuration5 

      

Mode1 (Flap-wise)    Mode2 (Edge-wise) 

 

               

 

Mode3 (Flap-wise)    Mode4 (Flap-wise) 

 

                 

 

Mode5 (Edge-wise)      Mode7 (Torsional) : 829.9 Hz 
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F. Configuration6 

 

Mode1 (Flap-wise)    Mode2 (Edge-wise) 

 

            

 

Mode3 (Flap-wise)    Mode4 (Flap-wise) 

 

             

 

Mode5 (Edge-wise)    Mode9 (Torsional): 788.8 Hz 
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G. Configuration7 

 

Mode1 (Flap-wise)              Mode2 (Edge-wise) 

 

            

 

Mode3 (Flap-wise)    Mode4 (Flap-wise) 

 

                  

 

Mode5 (Edge-wise)    Mode9 (Torsional): 743 Hz 
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H. Configuration8 

 

Mode1 (Flap-wise)    Mode2 (Edge-wise) 

 

            

 

Mode3 (Flap-wise)    Mode4 (Flap-wise) 

 

            

 

Mode5 (Edge-wise)    Mode9 (Torsional) : 693.5 Hz 
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I. Configuration9 

 

Mode1 (Flap-wise)    Mode2 (Edge-wise) 

 

           

 

Mode3 (Flap-wise)    Mode4 (Flap-wise) 

 

            

 

Mode5 (Edge-wise)    Mode9 (Torsional) : 643.2 Hz 
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J. Configuration10 

 

Mode1 (Flap-wise)    Mode2 (Edge-wise) 

 

                   

            

Mode3 (Flap-wise)    Mode4 (Flap-wise) 

 

                   

 

Mode5 (Edge-wise)    Mode9 (Torsional) : 595 Hz 
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Appendix F: NX5 and MATLAB results comparison  
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	DECLARATION
	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	GLOSSARY
	CHAPTER 1
	INTRODUCTION
	1.1 Thesis Structure
	1.2 Wind turbine technology and design concepts
	1.2.1 Wind energy
	1.2.2  Types of wind turbines
	1.2.3  Components of wind energy systems
	1.2.4 Working principle of a wind turbine
	1.3  Wind turbine power output and variable length blade concept

	1.4 Vibration and Resonance
	1.5  Problem statement
	1.6 Aims and objectives

	CHAPTER 2
	LITERATURE REVIEW
	2.1.  Vibration
	2.1.1  Classification of previous research
	2.1.2  Presenting natural frequency data

	2.2  Beam models
	2.3  Rotating beams/ blades
	2.4  Extendable blades
	2.5  Summary and Conclusion

	CHAPTER 3
	STRUCTURAL DYNAMIC CONSIDERATIONS IN WIND TURBINE DESIGN
	3.1.  Introduction
	3.2.  Fundamentals of vibration analysis
	3.3.  Turbine loadings and their origins
	3.4.  Rotor excitations and resonances
	3.5.  Beam: theory and background
	3.5.1  Equation of motion for a uniform beam
	3.5.2  Natural frequencies and modes shapes

	3.6 Summary

	CHAPTER 4
	EXPERIMENTAL VERIFICATION
	4.1.  Introduction
	4.2  Theory of experimental modal analysis
	4.2.1  Discrete blade motion
	4.2.2  Extraction of modal properties

	4.3  Experimental setup
	4.3.1 Measurement method
	4.3.2  Exciting modes with impact testing
	4.3.3  Determination of natural frequencies

	4.4  Modal analysis technique

	4.5 Summary
	CHAPTER 5
	NUMERICAL SIMULATION
	5.1  Introduction
	5.2  Modelling theory
	5.3  Euler-Bernoulli beam element
	5.4  One-dimensional models: MATLAB
	5.4  Three-dimensional model: NX5

	5.5  Summary
	CHAPTER 6
	RESULTS AND DISCUSSION
	6.1  Introduction
	6.2  Convergence test for finite element models
	6.3  Results for uniform beam
	6.3.1  Exact solution
	6.3.2  MATLAB program
	6.3.3  NX5 model
	6.3.4  Experimental modal analysis results
	6.3.5  Comparison of natural frequencies

	6.4  Results for stepped beam
	6.4.1 MATLAB program
	6.4.2  NX5 model
	6.4.3  Experimental modal analysis results
	6.4.4  Comparison of natural frequencies

	6.5  Results for variblade
	6.5.1 NX5 and MATLAB results comparison for variblade
	6.5.2 Influence of blade length
	6.5.3 Effect of rotation

	6.6.  Contextualization of the findings

	CHAPTER 7
	CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK
	7.1  Conclusions
	7.2  Recommendations
	7.2.1  Finite element analysis
	7.2.2  Experimental modal analysis


	BIBLIOGRAPHY/REFERENCES
	APPENDICES

