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Smart structures technology featuring a network of sensors and actuators, real-time
control capabilities, computational capabilities and host material wifl have tremendous
impact upon the design, development and manufacture of the next generation of
products in diverse industries. The idea of applying smart materials to mechanical and
structural systems has been studied by researchers in various disciplines. Among the
promising materials with adaptable properties such as piezoelectric polymers and
ceramics, shape memory alloys, electrorheological fluids and optical fibers,
piezoelectric materials can be used both as sensors and actuators because of their high
direct and converse piezoelectric effects. The advantage of incorporating these special
types of material into the structure is that the sensing and actuating mechanism becomes
part of the structure by sensing and actuating strains directly. This advantage is
especially apparent for structures that are deployed in aerospace and civil engineering.

Active control systems that rely on piezoelectric materials are effective in controlling
the vibrations of structural elements such as beams, plates and shells. The beam as a
fundamental structural element is widely used in all construction. The purpose of the
present project is to derive a set of approximate governing equations of smart composite
beams. The approximate analytical solution for laminated beams with piezoelectric
laminae and its control effect will be also presented. According to the review of the
related literature, active vibration control analysis of smart beams subjected to an
impulsive loading and a periodic excitation are simulated numerically and tested
experimentally. The research currently in progress is highly industry related and will
have definite benefits for designers as well as engineers in the future.

The present beam model is to demonstrate the vibration control effects of smart
composite beam structures with piezoelectric sensor and actuator layers. The equations
of motion are developed using Hamilton’s principle {(energy principle). These equations
are based on Mindlin laminated theory, and include the coupling between mechanical
deformation and the charge equations of electrostatics. The approximate analytical
solutions by using software package MATLAB and MATHEMATICA is to study the
effectiveness of piezoelectric sensors and actuators in actively controlling the transverse
response of smart laminated beams. The behaviour of the output voltage from the sensor
layer and the input voltage acting on the actuator layer is also studied. In this thesis, the
following three important issues have been presented. Firstly, the governing equations
of smart laminated beams, which include the charge equation, are derived and
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evaluated. The formulations of the output voltage from sensor and input voltage acting
on actuator have been clearly expressed. Secondly, the significant idea of this thesis is
to, creatively introduce a mathematical tool - complex numbers, to simplify the
governing equations. This is the first presentation of this form. Finally, the approximate
analytical solutions of smart laminated composite beams have been derived by using
software package MATLAB. The graphical outputs are generated using the software
package MATHEMATICA. From these graphical results, the experiential formulation
of the amplitude of beam vibration and negative velocity feedback control gain has also
been evaluated.

This thesis includes five chapters. Chapter 1 is the background of smart structures. The
constitutive equation of smart laminated beams is introduced in chapter 2. In chapter 3,
we will discuss the governing equations of smart composite beams. Approximate
analytical solutions of smart composite beams are derived in chapter 4 and the results
and discussions are included in chapter 5.
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Chapter 1

Introduction

1.1 Background of Smart Composite Materials and Structures

Composite materials consist of two or more different materials that form regions large
enough to be regarded as continua and which are usually firmly bonded together at the
interface. Many natural and artificial materials are of this nature, such as: reinforced
rubber, filled polymers, mortar and concrete, alloys, porous and cracked media, aligned
and chopped fiber composites, polycrystalline aggregates (metals), etc.

Analytical determination of the properties of composite materials originates with some
of the most illustrious names in science. J. C. Maxwell in 1873 and Lord Rayleigh in
1892 computed the effective conductivity of composites consisting of a matrix and
certain distributions of spherical particles. Analysis of mechanical properties apparently
originated with a famous paper by Albert Einstein in 1906 in which he computed the
effective viscosity of fluid containing a small amount of rigid spherical particles. Until
about 1960, work was primarily concemed with macroscopically isotropic composites,
in particular, matrix/particle composites and also polycrystalline aggregates. During this
period the primary motivation was scientific. While the composite materials
investigated were of technological importance, a technology of composite materials did
not as yet exist. Such a technology began to emerge about 1960 with the advent of
modern fiber composites consisting of very stiff and strong aligned fibers (glass, boron,
carbon, graphite) in a polymeric matrix and later also in a light weight metal matrix.

The engineering significance of reliable analysis of properties is quite different for
particulate composites and for fiber composites. For the former, such capability is
desirable, while for the latter it is crucial. The reason is that the range of realizable
properties and the ability to contro] the internal geometry are quite different in two
cases. For example: the effective Young’s modulus of an isotropic composite consisting
of matrix and very much stiffer and stronger spherical type particles will depend
primarily on volume fractions and can be increased in practice only up to about four-
five times the matrix modulus. The strength of such a composite is only of the order of
the matrix strength and may even be lower. The effect of stiffening and strengthening
increases if particles have elongated shapes but at the price of lowering the maximum
attamable particle volume fraction.

A unidirectional fiber composite is highly anisotropic and therefore has many more
stiffness and strength parameters than a particulate composite. Stiffness and strength in
the fiber direction are of fiber value order, and thus very high. Stiffnesses and strengths
transverse to fiber direction are of matrix order, similar to that of a particulate
composite, and thus much lower. Carbon and graphite are themselves significantly
amisotropic, their elastic properties being defined by five numbers instead of the usual
two for an isotropic material. Furthermore, matrix properties may be strongly influenced
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by environmental changes such as heating, cooling, and moisture absorption. All of this
creates an enormous varicty of properties, of a much wider range than for a particulate
composite.

The generally low values of stiffness and strength transversely to the fibers provide the
motivation for laminate construction consisting of thin unidirectional layers with
different reinforcement directions. The laminates are formed into laminated structures.
The layer thickness, fiber directions, choice of fibers, and matrix are at the designers
disposal and should, ideally, be chosen from the point of view of optimization of such
structures is an integrated process leading from constituents to structure in the sequence:
FIBERS AND MATRIX -» UNIDIRECTIONAL COMPOSITE = LAMINATE —
LAMINATED STRUCTURE.

Traditionally, material properties have been obtained by experiment and material
improvement has been achieved empirically and qualitatively. The structural designer
had at his disposal a limited number of material options provided by the materials
developer. This situation is entirely different for fiber composite structures. The only
constituents that are materials in the traditional sense are fibers and matrix. Everything
following in the sequence, including the unidirectional material, is of such immense
variety that analysis, rather than expenimentation, is the practical procedure to obtain
properties. Thus, the relevant methods are those of applied mechanics rather than those
of materials science.

Normally, the analysis of composite materials include the following properties of
various kinds of composite materials: elasticity, thermal expansion, moisture swelling,
viscoelasticity, conductivity (which includes, by mathematical analogy, dielectrics,
magnetics, and diffusion), static strength, and fatigue. The other two important subjects
are plasticity of composite materials, and dynamic behaviour and wave propagation in
composites. In the above statement, the subjects of strength and failure of composite
materials are of special nature. Engineering design requirements have motivated an
immense literature much of which is confined to unpublished reports. At the same time
the problem are of such difficulty that an analytical definition and/or solution has not
been achieved in many cases and therefore much of the available work is of
semiempirical nature. The many important problems that require analytical solution
continue to be a primary challenge in composite materials research.

+ Smart Materials and Structures

The history of science of materials from its conception in paleolithic times through the
Stone Age, the Bronze Age and Iron Age to the current Synthetic Materials Age and
beyond to the Smart Materials Age 1s pictorially chronicled in Figure 1.1. A review of
the historical evolution of this science is presented in Figure 1.2 which highlights the
distinct transition from structural materials to functional materials; and now smart
materials; as humankind’s scientific and technological prowess has matured.

Structural materials are those matenals that are principally characterized by their
mechanical strength and are generally employed in load-bearing situations.
Consequently some one million years ago Homo Habilis selected flint as the most
appropriate material for tools and weapons because it was structurally superior to other
natural materials available such as bone and wood. Similarly aeronautical engineers in
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the 1990s will design the load-bearing members of advanced fighter aircraft in
polymeric fiberous composite materials, because they possess structural properties
which are substantially superior to those of the monolithic structural materials.

Figure 1.1 The eras of materials science ') Figure 1.2 Evolution of materials science %

The most sophisticated class of smart materials and structures are currently based upon
notions of biomimetics, and feature appropriately configured actuators, sensors, signal-
processing capabilities and control algorithms which enable the materials to respond
actonomously to external stimuli. Smart materials will have the capability to select and
execute specific functions intelligently in response to changes in environmental stimuli.
This ability may be complemented by several other capabilities that are characteristic of
intelligent system, such as self-diagnosis, self-repair, self-multiplication, self-
degradation, and self-leamming. Furthermore, these features may be augmented by
capabilities for anticipating future challenges and missions and the ability to recognize
and discriminate. It is clearly evident, therefore, that all aspects of our lives will be
significantly touched as the development of smart materials impacts industries as
diverse as automotive, acrospace, defense, biomedical devices, advanced
manufacturing, robotics, industrial machinery, sporting goods, high-precision
instruments, highways, buildings and bridges.

These material functions of structure, actuator and sensor are currently incorporated into
a smart structure in a discrete global sense. Thus, for example, a2 generation smart
structure might feature a load-bearing graphite-epoxy, fiberous polymeric structural
materials, in which piezoelectric discs are embedded for sensing and actuation purposes.
Research is currently being pursued on embedding these material functions of sensor,
actuator, and structure at a2 much more local level. These generation of smart materials
and structures incorporate one or more of the following features:

1. Sensors which are either embedded within a structural material or else bonded to the
surface of that material. Alternatively the sensing function can be performed by a
functional materiali which, for example, measures the intensity of the stimulus
associated with a stress, strain, electrical, thermal, radiative, or chemical
phenomenon. This functional material may, in some circumstances, also serve as a
structural material.
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2. Actuators which are embedded within a structural material or else bonded on the
surface of the material. These actuators are typically excited by an external stimulus,
such as electricity in order to either change their geometrical configuration or else
change their stiffness and energy-dissipation properties in a controlled manner.
Alternatively, the actuator function can be performed directly by a hybrid material
which serves as both a structural material and also as a functional material.

3. Control capabilities which permit the behaviour of the material to an external
stimulus according to a prescribed functional relationship or control algonthm.
These capabilities typically involve one or more microprocessors and data
ransmission links which are based upon the utilization of an automatic control
theory.

Materials with the above features are indeed worthy of being described by the adjective
“smart”, as defined by Webster's Third International Dictionary of the English
Language, which states that the meaning of ‘smart’ is: having or showing mental
alertness and quickness of perception, shrewd informed calculation, or contrived
resourcefulness, marked by or suggesting brisk vigor, speedy effective activity, or
spirited-liveliness. Clearly, materials featuring control capabilitics possess ‘mental
alertness’, and some will certainly be ‘informed’ and ‘resourceful’ within specified
limitations. Materials featuring sensing characteristics have the opportunity to
demonstrate an ‘informed’ response along with ‘quickness of perception’. Finally,
materials featuring actuator functions possess ‘spirited-liveliness’ characteristics. Thus
‘smart’ materials clearly exist today in the arsenal of weapons for deployment by the
materials scientist. We also can call the ‘smart materials and structures’ as ‘intelligent
materials and structures’. But actually, the ‘intelligent® materials are an order of
magnitude more sophisticated than smart materials because ‘intelligence’ is associated
with learning, abstract thought, and the ability to think and reason. These capabilities
have not been demonstrated at this time and they shall be the focus of much research
and development during the coming decades.

% G oty
y

processing!
POWEL I0UICE
Figure 1.3 The loop control system of smart structive

o Smart Control System

The previous sections have been devoted to the discussion of the definition of smari
materials and structures and its features. The next section, which will be discussed here,
is a control system featuring computational capabilities, in order to orchestrate the
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behaviour of the actuators in smart structure in response to the excitation data furnished
by the sensors embedded in the smart structure. The smart structure Joop control system
is shown in Figure 1.3. The field of automatic control is a mature discipline,
consequently, comprehensive literature on linear, nonlinear, adaptative, and optimal
control system is relevant to the synthesis of viable smart structures featuring intelligent
control system. To the knowledge-domain of automatic control, the designer of smart
materials must consider adjoining theory and knowledge from the embryonic fields of
artificial intelligence and neural networks. These fields embody notions of biomimetics,
as with many other sub-ficlds of the smart materials discipline. Neural networks mimic
the structure and capabilitics of the human brain where approximately 12x10° nerve
cells, or neurons, each have between 6000 and 60 000 dendritic connections with a
signal carrying capacity. Furthermore, each processing element of neural network is
relatively simple, and because of the parallel structure of the network, the computational
time for complex problem is very fast. This is especially true where approximate
solutions are acceptable wherein rules of fuzzy logic can be exploited.

Networks feature unstructured decision making logic while being devoid of the precise
rule-based computer program characteristics of expert systems. Furthermore, every
decision is the result of complex interactions between the interconnected network of
processors, and the neural network features self-learning characteristics because it
incorporates previous experiences into the interconnection patterms of neurons.

In this project, the active vibration control is the main objective of this research. The
following description is the simple introduction of vibration control of smart structures
by using neural networks. Many advanced systems are often required to be stiffer,
lighter, and have sufficient damping for high precision pointing accuracy. These
performance requirements have motivated a new approach in structural control: smart
structures with build-in sensors and actuators that can actively and adaptively change
their physical geometry and properties. Recent research has focused on the applications
of piezoelectric sensor and actuator in smart structures. Crawley and de Luis (1987)
were among the first to embed piezoelectric materials in composite laminated beams.
Yang and Chiu (1993) also developed the manufacturing technique for composite
structures with embedded piezoelectric sensors and actuators. Effective applications in
vibration control, however, require that the system dynamics can be adequately and/or
accurately determined and that controller design can be easily implemented. Vibration
control of smart structures using neural networks has thus been receiving attention for
their advantages in self-learning, fault tolerance, and parallel processing. Snyder and
Tanaka (1993) developed a nonlinear feedforward controller for smart structures, and
they showed that the neural network is essentially a transversal filter with a nonlinear
hidden layer between the input and output. Bryant et al. (1993) presented a neural
network model for the vibration isolation of a three-leg table by magnetostrictive
terfenol actuators. Chen et al (1994} numerically investigated the vibration control of a
cantilevered beam by using modified independent modal space control with a neural
network state estimator. Damle et al (1994) also implemented a neural network for the
identification of a clamp-free beam; model reference adaptive control with a shape
memory alloy actuator was then applied in the later work (Rao et al., 1994). Clark
(1994) analyzed the relationship between velocity feedback and the monosynaptic
pathway of the central nervous system by using a simply supported beam with a pair of
piezoelectric sensor and actnator. Zeinoun and Khorrami (1994) also proposed a fuzzy-
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logic algorithm for vibration suppression of a clamp-free beam with piezoelectric
sensor/actuator.

Although there has been much work on the active control of structural systems, the
implementation of neural networks for vibration suppression of composite smart
structures 1s still very limited. Mathematical and numerical analysis of this concept is
presented in this research work. The experimental research and validation of this
analysis will be included towards a PhD study.

This section presents an overview and assessment of technology leadmg to the
development of smart structures. Smart structures are those which incorporate actuators
and sensors that are highly integrated into the structure and have structural functionality,
as well as highly integrated control logic, signal conditioning, and power amplification
electronics. Such actuating, sensing, and signal processing clements are incorporated
into a structure for the purpose of influencing its states or characteristics, be they
mechanical, thermal, optical, chemical, electrical, or magnetic. For example, a
mechanically intelligent structure is capable of altering both its mechanical states (its
position or velocity) or its mechanical characteristics (its stiffness or damping). An
optically intelligent structure could, for example, change color to match its background.

Smart structures are a subset of a much larger field of research, as shown in Figure
1.4. Those structures which have actuators distributed throughout are defined as
adaptive or, altematively, actuated. Classical examples of such mechanically adaptive
structures are conventional aircraft wings with articulated leading- and trailing-edge
control surfaces and robotic systems with articulated manipulators and end effectors.
More advanced examples currently in research include highly articulated adaptive space
cranes.

Active

Intelligent
Stnicture

Figure 1.4 Intelligent structures as a subset of active and controlled structures

Structures which have sensors distributed throughout are a subset referred to as sensory.
These structures have sensors which might detect displacements, strains or other
mechanical states or properties, electromagnetic states or properties, temperature or heat
flow, or the presence or accumulation of damage. Applications of this technology might
include damage detection in long life structures, or embedded or conformal RF antennas
within a structure. The smart structures which contain both actuators and sensors
(implicitly linked by closed-loop control) are referred to as controlled structures. Any
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structure whose properties or states can be influenced in this category. A subset of
controlled structures is active structures, distinguished from controlled structures by
highly distributed actuators which have structural functionality and are part of the load
bearing system. Also, smart structures are a subset of active structures that have hmghly
distributed actuator and sensor systems with structural functionality and, in addition,
distributed control functions and computing architecture. To date, such intelligent
structures have not been built. The ultimate realization of intelligent structures is a goal
which has motivated this technology assessment.

For the development background of smart structure, there are three historical trends
which have combined to establish the potential feasibility of smart structures. The first
is a transition to laminated materials. In the past, structures were manufactured from
large pieces of monolithic material which were machined, forged, or formed to a final
structural shape, make it difficult to imagine the incorporation of active elements.
However, in the past 30 years a transition to laminated material technology has
occurred. Laminated materials, which are built up from smaller constitutive elements,
allow for the easy incorporation of active elements within the structural form. One can
now envision the incorporation of an intelligent ply camrying actuators, sensors,
processors, and interconnections within the laminated materials.

Exploitation of the off-diagonal terms in the material constitutive relations is a second
trend which enables intelligent structures at this time. The full constitutive relations of a
material include characterizations of its mechanical, optical, electromagnetic, chemical,
physical, and thermal properties. For the most part, researchers have focused only on
block diagonal terms. Those interested in exploiting a material for its structural benefits
have focused only on the mechanical characterization, and those interested in exploiting
its electrical properties have focused on the electrical characterization. However, much
can be gained by exploiting the off-diagonal terms in the constitutive relations which,
for example, couple the mechanical and electrical properties. The characterization and
exploitation of these off-diagonal material constitutive relations has led to much of the
progress in the creation of intelligent structures.

The third and perhaps most obvious comes in the electrical engineering and computer
science disciplines. These include the development of microelectronics, bus
architectures, switching circuitry, and fiber optic technology. Also central to the
emergence of intelligent structures is the development of information processing,
artificial intelligence, and control disciplines.

The sum of these three evolving technologies (the transition to laminated matenials, the
exploitation of the off-diagonal terms in material constitutive relations, and the
advances in microelectronics) has created the enabling infrastructure in which
intelligent structures can develop.

There are four component technologies critical to the evolution and application of
intelligent structures: actuators for intelligent structures, sensory elements, control
methodologies and algorithms, and controller architecture and 1mplementation
hardware. Advances in these component technologies must be matched by a cost
effective manufacturing technology which allows for the incorporation of the active
elements and interconnections onto or into the structure in a structurally robust manner
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and in such a way that the inherent properties of the host structure are not degraded. The
requirements, capabilities, and manufacturability of four component technologies for
mechanically intelligent structures are discussed in this section.

¢ Actuator for Intelligent Structures

Actuator for intelligent structures must be capable of being highly distributed and
influencing the mechanical states of the structure. The ideal mechanical actuator would
directly convert electrical inputs into strain or displacement in the host structures. Its
primary performance parameters include its maximum achievable stroke or strain,
stiffness, and bandwidth. Secondary performance parameters include linearity,
temperature sensitivity, strength, density, and efficiency. These properties will be
assessed and compared for several types of strain actuators.

The principal actuating mechanism of strain actuators is referred to as actuation strain,
which is the controllable strain not due to stress. Actuation strains are produced by a
variety of phenomena, with the most common but least controllable being temperature
and moisture absorption. Other examples, less common but more useful for active
control, include piezoelectricity, electrostriction, magnetostriction, and the shape
memory effect.

e Sensory Elements

Sensory elements of intelligent structures must be sensitive to the mechanical states of
the structure and capable of being highly distributed. The ideal sensor for intelligent
structure converts strain or displacement {or their temporal derivatives) directly into
electrical outputs. The primary functional requirements for such sensors are their
sensitivity to the strain or displacement {or their time derivatives), spatial resolution,
and bandwidth. Secondary requirements include the transverse and temperature
sensitivity, linearity and hysteresis, electromagnetic compatibility, and size of sensor
packaging. Although actuators are so large they must be explicitly accommodated in the
built-up laminates, it is desirable to make sensors small enough to be placed in
interlaminar or otherwise unobtrusive positions.

s Control Methodologies and Algorithms

The real intelligent structures stem from their highly distributed control functionality.
There ‘are three levels of control methodology and algorithm design which must be
considered for smart structures: local control, global algorithms control, and higher
cognitive functions. The objectives of local control are to add damping and/or absorb
energy and minimize residual displacements. The objectives of global algorithmic
control are to stabilize the structure, control shapes, and reject disturbances. These two
levels are achievable within the current technology. In the future, controller with higher
cognitive functions will have objectives such as system identification, identification and
diagnosis of component failures, the ability to reconfigure and adapt after failures, and
eventually to learn.

e Controller Architecture and Implementation Hardware

The presence of actuators, sensors, and highly distributed control functionality
throughout the structure implies that there must be a distributed computing architecture.



Chapter I Introduction : 9

The functional requirements for such a computing architecture include a bus
architecture, an interconnection scheme, and distributed processing. The bus
architecture should be chosen to yield a high transmission rate of data in convenient
(probably digital) form throughout the structure. The interconnections must be suitable
for connecting a (potentially) large number of devices, actuators, sensors, and processor
with the least degradation of structural integrity. If the actuators and sensors are
embedded within the structure, the interconnections should also be embedded within the
structure to avoid the necessity of running the electrical connections through otherwise
structurally important plies. The processing requirements are that the full functionality
(signal conditioning, amplification, digital/analog (D/A) and analog/digital (A/D)
conversion, and digital computation) be distributed throughout the structure. Secondary
requirements for the computing architecture include minimizing electromagnetic
interference, maintaining the mechanical strength and longevity of the structure and of
the electronics components, and thermal chemical compatibility of electronic
components within the host structure.

e Application for Smart Structures

A wide variety of application exist for smart structures technologies. Despite the fact
that truly intelligent structures (i.e., those with embedded controllers as well as actuators
and sensors) have not yet been built, a number of experimental implementations of
active structures (i.e., those with distributed actuators and sensors) have been
successfully demonstrated. Notable experimental implementations include aeroelastic
control and maneuver enhancement, reduction of vibration and structure borne noise
and acoustic transmission, jitter reduction in precision pointing system, shape contro! of
plates and mirrors, trusses and lifting surfaces, isolation of offending machinery and
sensitive instruments, and robotic control. To understand the potential and limitations of
current technology, four examples found in the recent literature are discussed
subsequently: the aeroservoelastic control of a lifting surface, precision control of truss,
seismic control of building, and the control of radiated sound.

In the first example, a typical high performance aircraft-like wing was built of a
graphite epoxy laminate with piezoelectric actuators distnbuted over 71% of its
surfaces. The actuators were arranged into three banks which consisted of the vertical
strips shown in Figure 1.5. The actuators were wired so as to induce bending in the
laminate. Three tip displacement measurements were used for feedback. The controller
implemented was a reduced order, 14-state, LOG controller. The control objective was
gust disturbance rejection and flutter suppression. Shown in Figure 1.6 are the
analytically predicted and experimentally measured open- and closed-loop transfer
functions from disturbance to tip displacement. As can be seen, the static response of
the structure was reduced by almost 10 dB, which corresponds to approximately a
threefold stiffening in the structure due to the application of the closed-loop control. The
first mode was virtually eliminated from dynamic consideration, being reduced 30 dB
from an mitial 1% damping. The second mode, which was torsional, was less strongly
influenced, with a 10 dB reduction. This was due to the fact that this mode was less
controllable than the first or third mode. The third mode achieved a 20 dB reduction.
Overall the rms response in bandwidth up to 100 Hz was reduced by 15.4 dB. This is an
example of the relatively high gain control which can be introduced into a structure, and
is probably the largest control authority which has yet been reported on a structural test
article in experimental implementation.
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The second example of a prototypical intelligent structure is the ‘dial-a-strut’ or locally
controlled strut, which is part of a precision control truss experiment (Figure 1.7). In
this case, the structure contains two active piezoelectric struts. Each strut has a
collocated displacement and force feedback. By making measurements of the collocated
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displacement and force, the previously described localized optimal impedance matching
can be implemented. The control objective of this experiment was rejection of
disturbances due to onboard machinery, typical of a jitter reduction task in precision
interferemetric spacecraft. Figure 1.8 shows typical transfer functions (open loop and
closed loop) for one and two of the dial-a-struts. By comparing the open-loop and two
strut closed-loop responses, it can be scen that the first and second structural modes
were significantly modified. Both the first and second mode response was reduced by
40 dB from an initial structural damping of a few tenths of a present. Thus, the local
collocated approximation to the optimal noncausal controller is seen to achieve good
performance in a realistic structural configuration.

The seismic control of buildings is a considerably larger scale application of smart
structure. Experiments were performed on 2 model building with a simulated large
carthquake disturbance (Figure 1.9). Control was effected by an active shear brace
incorporated into the structure. Five transverse accelerometers were used to monitor the
contro] response of the structure, and two were used for feedback control. The control
objective was to minimize building acceleration in response to the disturbance. Figure
1.10 shows the building excitation with the control system. As a result of the closed-
loop control, the damping factor was increased from nearly zero to 20% in the first three
modes, with significant reduction in the low frequency response.
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The final example considers the reduction of sound radiated into a room or aircraft
cabin by active control of shell-like members which form the walls. To simulate this
situation, a rectangular plate was placed inside a test chamber. The plate was controlled
by three piezoceramic actuators placed as shown in Figure 1.11. Two PVDF
piezoelectric film sensors were used to measure the vibration of the plate. The excitation
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source was an electromagnetic shaker which drove the plate at known frequency
corresponding to, for example, the excitation of aircraft cabin wall from the rotation of
an external propeller at a known rpm. In these cases, adaptive least-mean-square
algorithms are likely candidates for control scheme. These schemes make use of
knowledge of frequency at which the primary excitation is occurring. The control
objective in this example was narrow-band reduction of the radiated far-field noise.

,

00 mm

——— 350N i

Figure 1.11 Actively controlled panel for control of sound radiation [

These four examples are but a few of the cases in which investigators throughout the
world are now applying distributed actuation and sensing to a wide variety of control
problems. It is encouraging that these early experiments show not only the feasibility of
intelligent structures applications show not only the feasibility of smart structures
application but also remarkably good agreement between theory and experimental result
as well. Of course, further experimentation is necessary to establish the technological
limitations as well as feasibility of distributing the processing and control architectures.

¢ Anticipated Research and Development

In the next decades, it is expected that there will be widespread application of the
technology under development, in its current and evolutionary forms. The breadth of
application of this technology is expected to not only span the aerospace industry but
become widespread in the construction, automotive, and machine tool industries as well.

In the more distant future, the evolution of new physical-bio-logical technology is
anticipated. This technology will have two trends which are complementary. The first is
the patural evolution of the technology discussed earlier: the infroduction of intelligence
into the physical world, by the application of machine electronic intelligence to
otherwise unintelligent devices. The second is more revolutionary: the introduction of
life into engineering application, i.e., the application of biological processes to the
solution of engineering problems. Much as the steam engine drove the technology of the
19™ century and electronics drove the technology of the 20™ century, one can envision
that the application of biological concepts to engineering will drive the technology of
the 21™ century. Engineering will cease to be the application of only the physical
sciences for the betterment of mankind and become the application of all sciences,
including both physical and life sciences, for the betterment of humanity.
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1.2 Theoretical Background of Composite laminates

A composite laminae is a building block for Jaminates. Lamina are bonded together to
form a laminate with the desired thickness and stiffness. In most applications, the
thickness of a laminae is small compared to the planar dimensions (i.e., the side-to-
thickness ratio of a laminate is greater than 20). Therefore, laminate theories based on
equivalent two-dimensional descriptions are used to analyze laminated composite
structures. The two-dimensional theories, termed equivalent-single layer theories, are
obtained from the three-dimensional elasticity theory by making assumptions
concerning the variation of displacements and/or stresses through the thickness of the
laminae.

In the classical laminated plate theory (CLPT), which is an extension of the classical
plate theory to laminated plates, the inplane displacements are assumed to vary linearly
through the thickness and the transverse displacement is assumed to be constant through
the thickness. The classical laminate theory is found to be adequate for most
applications where the thickness of laminate is small, by two orders of magnitude
compared to the inplane dimensions. When the classical laminate theory is not
applicable, a refine theory that accounts for the transverse shear strains is used. The
first-order shear deformation theory (FSDT) accounts for constant state of transverse
shear strains through the thickness. There are higher-order, equivalent-single-layer shear
deformation theories as well as layerwise theories, which are not covered in this project.

e The Classical Laminated Plate Theory (Kirchhoff Plate Theory)

The classical laminated plate theory is an extension of the classical plate theory of plates
to laminated composite plates. In the classical plate theory one assumes that straight
lines perpendicular to midplane before deformation remain (1) straight, (2) inextensible,
and (3) normal to the midplane after deformation. These three assumptions, collectively
known as the Kirchhoff-Love Hypothesis, lead to zero transverse shear strains (&, &)
and transverse normal strain {&;). Since the (virtual) work done by the actual internal
forces of the plate in moving through the virtual displacements is the product of forces
associated with the stress field and the (virtual) displacements, which result in (virtual)
strains, the (virtual) work done by the transverse stresses is zero because of the zero
transverse (virtual) strains. Consequently, transverse stresses o, oy; and o, do not
contribute to the equations of motion. This amounts of omitting the transverse stresses
in the classical laminated theory. This is equivalent to, from a physical point of view,
assuming that the plate is ‘infinitely” rigid in the transverse direction. When plates are
very thin, this assumption is not so bad as it may appear on the surface.

Consider a laminate of total thickness # composed of N orthotropic layers. A typical
lamina, say the kth layer (k = 1,2, ... L), has a uniform thickness &, material properties
E, E*, etc., and its principal material coordinates oriented at an angle @ = k to the
laminate (global) coordinate, x. For the classical laminated plate theory, as mentioned
before, the following assumptions have been made:

(a) The layers are perfectly bonded together,

(b) The material of each layer is linearly elastic and has three planes of material
symmertry (i.e., orthotropic),

(c) Each layer is uniform thickness,
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(d) The strains are small, and
(e) The Kirchhoff-Love hypothesis holds.

Figure 1.12 Bending of laminated plates under the Love-Kirchhoff hypothesis

The laminate coordinate system is chosen such that the xy-plane coincides with the
midplane of the laminate. Although this is not necessary, it makes the derivations
simple and consistent with the approach taken in a vast majority of the literature. The
assumptions of the Kirchhoff hypothesis require that the displacements («, v, w) be such
that (see Figure 1.12)

u(x,y,z,t)=uo(x,y,:)-z%(x,y,t)

v(x,y,z,t)=vo(x,y,t)——z%(x,y,t) (11)
w(x, y,2,t)=w(x, y,1)

where (u, v, wo) 18 the displacement of a point on the xy-plane (or midplane), and ¢
denotes time.

It is important to note that, in modelling a laminated plate composed of multiple layers
of possibly dissimilar-material layers, we tacitly assume that the strains are continuous
through the thickness, including the interfaces of dissimilar-material layers. This
assumption plays a significant role in the developing laminate theories; it allows us to
replace a laminate with an equivalent single layer with material coefficients which are
averaged over the laminate thickness.

o The First-Order Shear Deformation Theory (Mindlin Plate Theory)

The classical plate theory is adequate for the analysis of thin laminates, especially when
the transverse deformation is negligible. However, laminates made of advanced fiber-
reinforced composite materials, whose elastic to linear modulus ratio (E,/G,; and
Ei/Gy;) are very large, are susceptible to thickness failures because their effective
transverse shear moduli (3 and Gz3) are significantly smaller than the effective moduli
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(E1) along the fiber direction. Although the transverse shear and normal stresses (0,
Gz, 03) are an order of magnitude smaller than the mplane stresses (o;, Gy, 0y), the
material strength allowables for the transverse stresses are also an order of magnitude
smaller than the allowables for the inplane stresses. Thus, the classical laminate theory
mentioned here is not to be used for composites that are likely to fail in transverse shear
or delamination.

The most widely used displacement based on shear deformation theory is the first-order
shear deformation theory, which is also called Mindlin plate theory. In this theory the
normality condition of the Kirchhoff-Love hypothesis is removed, allowing for
independent rotation of transverse normals. Thus, the straight line normal to the
midplane of laminate remains straight and inextensible after deformation, but it does not
necessarily remain perpendicular to the midsurface. Thus, the displacement field of the
first-order deformation theory 1s assumed to be of the form

u(x&yﬁzat) = uo(x’ybr)—ZWx(x’y’t)
v(x,3,2,t)= v, (x, y,t)~ 2y, (x,3,7) (1.2)
wx, y,2,t)=wy(x, ,)

where y; and y; are rotations of the transverse normal about the y-axis and x-axis,
respectively.

In this project, the first-order shear deformation theory (Mindlin plate theory) will be
used to develop a set of the governing equations of smart composite laminate beams
(see Chapter 2). The laminate constitutive equations of smart composite structures will
be introduced in Chapter 2.

As we know, the stiffness of laminated structure can be affected by the laminated
_ stacking sequence. This is significant to design analysts. Here, it is useful to discuss the
terminology and notation used in connection with lamination schemes or stacking
sequences. The lamination scheme of a laminate can be denoted by [o//90/-a/0/...],
where « 1s the orientation of the first ply, £ is the orientation of the second ply, and so
on. The plies are counted in the positive z direction (see Figure 1.12). Unless stated
otherwise, this project also implies that all layers are of the same thickness and mode of
the same material. A general laminate has layers of different orientations & where -90°<
6 <90°. Angle-ply laminates have ply orientations of & or -& where 0°< € < 90°, with
at least one layer having an orientation other than 0° 90°. Cross-ply laminates are those
which have ply orientations of 0° or £ 90°. The effect of some special cases of
lamination scheme of laminates with four and eight layers will be discussed in Chapter
5, such as Symmetric laminates with isotropic layers, Symmetric laminates with
specially orthotropic layers, Symmetric laminates with generally orthotropic layers,
Antisymmetric cross-ply laminates, Antisymmetric cross-ply laminates and
nonsymmetric laminates, and so on.

1.3 Review

Advanced structures with integrated self-monitoring and control capabilities are
increasingly becoming important due to the rapid development of ‘intelligent’ space
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structures and mechanical systems. Since these structures are, in general, distributed and
flexible m nature, distributed dynamic measurement and active vibration suppression
are essential to their performance. Vibration suppression and control of distributed
parameter system (e.g., beams, plates and shells) always represents a challenge, both in
theory and practice. Theoretical development has been constantly advanced in the past
20 years. However, due to the limitation of materials and actuator design, practical
application of theory to general distributed parameter systems will need to be further
explored.

Due to the increasing demands of high structural performance requirement and the
coupled mechanical and electrical properties, the modelling and control of light weight
composite structures with embedded or surface-mounted piezoelectric materials in
structures have attracted a considerable amount of research in recent years. One reason
for this is that it may be possible to create certain types of structures and systems
capable of adapting to or correcting for changing operating conditions. The rapid
developments in space exploration have reached a level which calls for a departure from
the conventional control approaches in order to satisfy the stringent system performance
requirements, such as pointing and displacement requirements, set forth for space
structures. The advantage of incorporating these special types of material into the
structure is that the sensing and actuating mechanism becomes part of the structure by
sensing and actuating strains directly. Active control counters undesirable forces by
auxiliary mechanisms such as sensors, actuators and feedback controllers. Piezoelectric
materials, which exhibit mechanical deformation when an electric field is applied and
conversely, generate a change in response to mechanical deformation, can be used as
actuators and sensors, respectively. By employing piezoelectric matenals, 1t is feasible
to achieve accurate response monitoring and effective control of flexible structures. This
advantage is especially apparent for structures that are deployed in aerospace and civil
engineering. In view of these advantages and characters, researching mechanical
characters of smart structures vibration and its control methodology is becoming very
important.

Polyvinylidene fluoride (PVDF) was initially discovered by Kawai in 1969. Raw
polymetric PVDF (a-phase) is an electrical insulator and it does not have any intrinsic
piezoelectric properties. If the raw material is polarized during the manufacturing
process, PVDF transforms to B-phase — a tough and flexible semi-crystalline material
and it can be made to strain either in one or two directions in the film plane. Since B-
phase PVDF possesses a strong direct piezoelectric effect, it has been in many
transducer applications: e.g., sonar, medical ultrasonic equipment, robot tactile sensors,
acoustic pick-ups, forces and strains gages, etc. Due to its distinct characteristics, such
as flexibility, durability, manufacturability, etc., PVDF is an ideal material for the
distributed sensing and vibration suppression/control of distributed parameter systems
(e.g., beams, plates, shells, etc.).

In order to utilize the strain-sensing and actuating properties of piezoelectric materials,
the interaction between the structure and SSA (strain sensing and actuating) material
must be well understood. There have been many theories and models proposed for
analysis of laminated composite beams and plates containing active and passive
piezoelectric layers. Bailey and Hubbard (1985) designed a distributed-parameter
actuator and control theory. They used the angular velocity at the tip of cantilever
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isotropic beam with constant-gain and constant-amplitude negative velocity algorithms
and expermmentally achieved vibration control. Hangud et al. (1985) presented a
procedure, combining theory and experiments, to quantify the effects of an active
feedback system on the damping matrix of an isotropic beam. Mechanical model for
studying the interaction of piezoelectric patches surface-mounted to beams have been
developed by Crawley and de Luis (1987), Im and Atluri (1989), and Chandra and
Chopra (1993). The study presented here is different from these in that we study
laminated beams containing piezoelectric laminae. The strain sensing and actuating
(SSA) lamina can offer both discrete effects similar to patches as well as distributed
effect. Gerhold and Rocha (1989) used piezoelectric sensor/driver pairs that are
collocated equidistant from the neutral axis for the active vibration control of free-free
isotropic beams using constant-gain feedback control. They neglected the effect of
piezoelectric elements on the mass and stiffness properties of the beam element. The
modeling aspects of laminated plates incorporating the piezoelectric property of
materials have been reported in Lee (1990) and Crawley and Lazarus (1991). Wang and
Rogers (1991) used the assumptions of classical lamination theory combined with
inclusion of the cffects of spatially distributed, small-size induced strain actuators
embedded at any location of the laminate. And Lee (1990) derived a theory for
laminated piezoelectric plates, where the linear piezoelectric constitutive equations were
the only source of coupling between the electric field and the mechanical displacement
field. Lee and co-workers (1991) used the assumptions of Kirchhoff plate theory to
derive a simple theory for piczoelectric plates, used primarily for the design of
piezoelectric laminates for bending and torsional control. Pai et al. (1993) has presented
a geometrically non-linear plate theory for the analysis of composite plates with
distributed piezoelectric laminae. However, their model does not include the charge
equations of electrostatics. And these models are based on classical laminated plate
theory, which neglects the transverse shear effects. But the effects of transverse shear
stresses are important in composite fiber-reinforced materials because the interlaminar
shear module are usually much smaller than the in-plane Young’s module. In contrast,
Tzou and Gadre (1989) derived equations of motion for laminated shells with
piezoelectric layers based upon Love’s first-approximation shell theory and Hamilton’s
principle. At that time, they did not include the charge equations in the model. Later,
Tzou and Zhong (1993) derived governing equations for piezoelectric shells using first-
order shear deformation theory and include the change equations of electrostatics. And a
finite element model for the active vibration control of laminated plate based on first-
order shear deformation theory has been presented in Chandrashekhara and Agarwal
(1993). An overview of recent developments in the area of sensing and control of
structures by piezoelectric materials has been reported in Rao and Sunar (1994).
Recently G. Mei and Y. Shen (1997) used optical fiber sensors to measure transient
impact induced strain. The issue of the feedback control gain of smart composite
structures has also been discussed in B. Sun and D. Huang (1999).

1.4 Research Motivation

Comparing with the analysis of laminated plates without piezoelectric layers, the work
reported in the area of fiber-reinforced composite beams with piezoelectric layers is still
quite limited, especially for active vibration control of composite beams with
piezoelectric laminae. Also, according to the above description, there are quite extensive
works done by using the finite element method. The kinds of different finite element
model of smart laminated composite beams have been well established. However, for
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the analytical solution or exact solution, there are very few studies concentrated on this
research area. As we know, the analytical or exact solution is more accurate than the
numerical solution. The present study will focus on this approach and try to bring more
attraction to this field. The work, which will be done here, can be compared by other
researchers in the future.

The major goal of this work is to develop a set of goveming equations for laminated
composite beams with piezoelectric laminae using Hamilton’s principle by introducing
the electric potential function. The approximate analytical solutions of smart laminated
beams with piezoelectric laminae based on a first-order shear deformation theory
(MINDLIN plate theory) is to be derived by using the special method. The present beam
model accounts for lateral strains, which are often neglected in conventional beam
models (Vinson and Sierakowsky, 1986). The behaviour of output voltage from sensor
and input voltage acting on actuator will be discussed and the relation between
amplitude of vibration and feedback control will be also investigated.

1.5 The Scope of Thesis

The scope of this thesis contains five chapters. Chapter 1 is the introduction, which
covers the background of smart composite materials and structures. The theoretical
background of composite laminates, the motivation and objective of this research are
included in this chapter. The mathematical model of smart laminated composite beams
will be established in chapter 2. In this chapter, we will discuss the constitutive
relationship of the smart composite beam structure. We can notice that the constitutive
equation of the present beam model derived from the plate theory and can be treated as
a special plate structure. The goveming equation of the present smart beam model,
which includes the charge equation, will be derived in chapter 3. In order to derive the
governing equation, some assumptions have been made for the electric field in this
chapter. The approximate analytical solution is presented in chapter 4. The software
package MATLAB that is used and its brief introduction will be contained here. Finally,
chapter 5 will present the numerical results to study the effectiveness of piezoelectric
sensors and actuators in sensory and actively controlling the transverse response of
smart laminated beams. The graphical outputs presented are generated using the
MATHEMATICA software package. Some conclusions have been obtained in this
chapter as well.
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Constitutive Equations of Smart Laminated Beams

In this chapter, we will discuss the constitutive relations of smart composite laminate
beams. The theory of piezoelectricity, which relates to the present smart composite
structural model will also be presented in this chapter.

2.1 Theory of Piezoelectricity

In this section, the theory of piezoelectricity will be presented. The piezoelectric
phenomenon is a very important feature and is the main idea of smart composite
structures.

2.1.1 Introduction

Electricity provides the engineer confronted with the task of synthesizing a smart
materials system with an attractive thread of commonality during the evaluation of
candidate sensors, actuators, data transmission links, and microprocessors. The two
groups are mature fields of scientific endeavour but in the context of materials
exhibiting electro-mechanical phenomena for sensing and actuation functions, the field
is somewhat embryonic in nature. This section opens with a brief review of basic
electro-mechanical properties of some classes of materials prior to discussing
piezoelectric materials and applications utilizing these materials.

Piezoelectricity is an electro-deformation phenomenon derived from the Greek word
‘piezein’ for ‘press’ from which is derived the term ‘pressure electricity’, the first
‘appeared in the scientific literature in 1880 when Pierre and Paul-Jacques Curie
published a paper, describing how various crystals developed an electrical charge on
their surface when they were mechanically deformed in certain directions. This
piezoelectric phenomenon is similar to electrostriction, which is a property of all
dielectrics. The electrostriction phenomenon is evidenced in practice as a small change
of geometry of a body when it is subjected to an electrical field. The direction of this
small change in geometry does not change if the direction of electrical field is reversed.
In sharp contrast to this situation, piezoelectric matenals, which are a unique class of
non-conducting materials, exhibit a reversal in the direction of geometrical change when
the direction of the electrical field is reversed. The unique characteristics of
piezoelectric materials permit them to be employed as actuators or sensors which can be
exploited in the synthesis of smart materials utilizing electric energy for sensing,
communication and actuation functions. Indeed, the deployment of piezoelectric
materials in the synthesis of smart materials involves the exploitation of a biomimetics
philosophy because the anatomy of Homo sapiens features piezoelectric materials. For
example, both skin and bone have piezoclectric properties. Thus, our sensing system at
the fingertips involves the generation of an electrical potential at the surface of skin
which is then transmitted to the brain by the nervous system prior to evaluation,
interpretation and subsequent action.



Chapter 2: Constitutive Equations of Smart Laminated Beams 20

Curmrently, piezoelectric materials are employed in a variety of conventional commercial
applications such as phonographic pickup cartridges, where the vibrational motion of
the phonograph stylus is converted into a time-varying electrical signal; microphones,
where sound pressure waves are converted signals and where the shape of the crystal is
carefully shaped in order to ensure that only signals of a specific frequency pass through
them.

In the next decades, it is expected that there will be widespread application of the
technology under development, in its current and evolutionary forms. The breath of
application of this technology is expected to not only span the aerospace industry but
become widespread in the construction, automotive and machine tool industries as well.
Some topics which are likely to attach research studies in the distributed sensing and
control of flexible structures via piezoelectricity are listed below:

1. development of piezoelectric sensors/actuators which are robust with respect to
thermal changes, thermo-piezoelectric sensors/actuators, may be important for
advanced intelligent space structures as well as robotic manipulators operating in
environments where thermal effects are important,

2. more rtesearch in exploring the unique features and versatility of placement of
piezoelectric materials as actuators and sensors is needed and more control theory
needs to be introduced and applied to this area of research,

3. although some papers have been reported in the past dealing with the finite element
analysis of piezoelectric medium, further research in this area will be useful
especially in developing thin-layer finite elements, for distributed contro! purposes,
and

4. the distributed sensor/actuator output may be partially or completely cancelled in
symmetrical models of structural vibrations. Possible solutions should be

investigated to avoid these cancellation effects.

2.1.2 Piezoelectricity

Due to the increasing demands of high structural performance requirements, the
modelling and control of flexible structures has attracted considerable amount of
research in recent years. Control studies of flexible structures have coursed into new
channels to design controlled structures with high performance characteristics. These
control studies have resulted in emergence of various new research areas particularly
over the last decade. The distributed modelling, sensing and control of flexible
structures usually involve, without loss of generality, beam, plate and shell-like
problems depending upon the structural configuration. In the present beam model, the
top piezoelectric layer (piezoelectric sensor) senses the displacement of the beam by
generating voltage in response to the beam displacement. This voltage is multiplied by
some gain according to the control law implemented and is fed back to the bottom
piezoelectric layer (piezoelectric actuator). The bottom layer reacts to the feedback
voltage and generates mechanical motion. The structures with distributed sensors and
controllers are often called intelligent structures due to their self-monitoring and self-
adaptive capabilities, which have been stated in chapter 1. These structures contain
highly integrated or hierarchic control architecture. The intelligent structures bave
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several distinct advantages over conventional actively controlled structures. Since the
sensing of intelligent structures is distributed instead of being discrete in nature, a much
more accurate structural response measurement is possible, and hence in return, the
controller design is improved. Furthermore, the sensor/actuator selection problem
characteristics of conventional actively controlled structures are alleviated.

In practice, piezoelectricity is the phenomenon used most in the distributed sensing and
actuation of relation between applied electric field and strain, or applied strain and
electric field in certain piezoelectric ceramics, films and crystals. Piezoelectric materials
tan be bonded to the surfaces of beams, plates, shells, ¢tc, or they can be embedded in
these structural elements. Surface mounted components are easy to access and maintain,
but they may be easily damaged during service and have some adverse effects on the
structural surface. Surface mounted piezoelectric devices were used by many
researchers in strain prediction and control of structures. The advantage of embedding is
the better mechanical and electrical link between the piezoelectric material and main
structure and the absence of bondage materials from the surface of main structure.

As stated earlier, there arc two basic phenomena, characteristic of piezoelectric
materials which permit them to be used as sensors and actuators in a control system.
The first phenomenon is called the direct piezoelectric effect which implies that when
some mechanical force or pressure (strain) is applied on a piezoelectric component,
some electrical charge or voltage is induced in the piezoelectric material. Conversely, if
some charge or voltage is imposed on a piezoelectric material, the material reacts by
generating some mechanical force and strain. This phenomenon is called the converse
piezoelectric effect. These direct and converse piezoelectric effects form a basis in the
use of a piezoelectric material as sensor and actuator, respectively. The direct and
converse piezoelectric phenomena, involving an interaction between the mechanical and
electrical behaviour of matenal, can be usefully modelled by linear constitutive
equations involving two mechanical variables and two electrical variables. Thus in
matrix form the equations goveming the direct piezoelectric effect and converse
piezoelectric effect are written respectively,

{D}=[elfe} + [ KE} @.1)
{o}=[cls]+[e] {E} 2.2)

where {D} is the electric displacement vector; [e] the transpose of [e], the dielectric
permittivity matrix; {€} is the strain vector; [g] is the dielectric matrix at constant
mechanical strain; {E} is the electric field vector; {c}is the stress vector and [C] is the
matrix of elastic coefficients at constant electric field strength.

Two basic equations readily distill from these linear constitutive expressions. The first
is the electrical expression governing an unstressed material subjected to an electrical
field. Since the strain vector contains zeros, equation (2.1) reduces to a relationship
relating the field strength to the electric displacement. The second basic equation is the
mechanical expression governing the material at zero field strength. Thus since the
electrical field vector is only populated by zero elements, equation (2.2) reduces to a
relationship relating the stress and strain components of deformation.
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Piezoelectric materials possess anisotropic propertics. Consequently, from a
mathematical perspective, their mechanical and electrical behaviour is dependent upon
the direction of the external electric field relative to a set of axes fixed in the material.
Alternatively, the electrical response of the material is dependent upon the direction of
external mechanical loads, and hence stresses and strains, relative to a set of axes fixed
in the material. Thus, design methodologies involving piezoelectric materials must
carefully accommodate these anisotropic features. Consequently, with reference to
equations (2.1) and (2.2), if {D} comprises three elements, and {c} and {e} comprise
six elements, then the designer must potentially have access to a comprehensive
material data base of these electro-mechanical properties because [e] has 18 elements,
[g] has nine elements, and {C] has 36 elements.

In order to define these electro-mechanical properties relative to prescribed body-fixed
axis frames; conventions have been developed for piezoelectric plate-like gerometries.
Consider a beam of length I, width b and thickness 4, the standard convention dictates
that subscript 1 corresponds to length direction, subscript 2 corresponds to the width
direction, and subscript 3 corresponds to the thickness direction as shown in Figure 2.1.
The coefficients in the matrices featured in equations (2.1) and (2.2) are defined using
two subscripts: the first number identifies the axis of the applied electric field, while the
second number identifies the axis of induced mechanical deformation. The axis of
polarization is typically in the 03 or thickness direction.

Figure 2.1 Body axes for defining piezoelectric constants

Several books in the phenomenon and theory of piezoelectricity have been written over
the course of many years. Among the books are the references by Cady and Tiersten.
The former treats the physical properties of piezoelectric crystal as well as their
practical applications and the latter deals with the linear equations of vibrations in
piezoelectric materials. A recent book written by Gandhi and Thompson is devoted
entirely to the field of smart material systems and structures. In chapter 5 of this book,
the physical description and use of piezoelectric materials are provided. The three
piezoelectric materials of importance are lithium niobate (LiNbQO:;), lead zirconate
titanate (PZT) and polyvinylidene flnoride (PVDF or PVF,). LiNbO; is a crystal with a
high electro-mechanical coupling and a very low acoustical attenuation and is largely
applied in surface wave devices. Recently, LiNbO; and PZT were used as piezoelectric

tactile sensor materials in robotics by Shahinpoor.
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In this project, Hamilton’s principle is applied to derive a set of approximate govermning
equations for laminated plate with piezoelectric laminae base on the linear theory of
piezoelectricity, which in turn is based on a sequence of two approximations. First, the
non-linear theory of electro-elasticity is derived from the well-known conservation laws
for a mechanical continuum and the conservation laws derived from Maxwells’
equations [see Penfield and Haus (1967)]. In this step, a quasistatic electric field
approximation is made, which allows for the electric field to be derivable from a scalar
potential function. It is also assumed that the magnetic field and magnetization have
negligible influence and that the electric field, polarization, and charge density are of
primary concern when describing the motion and deformation of the material.

The second approximation, from whence the linear theory of piezoelectricity is derived,
is that deformations are infinitesimal and that electric fields are small. In the theory, the
charge equations of electrostatics are coupled to the mechanical deformations by using a
modified Lagrangian function given by

L= % piigi, —H ;. E,) (2.3)

where H(g,,E;) is called the electric enthalpy density function, €, are the components

of the strain tensor, and E; are the components of the electric field vector. In the present
study H(g;,E;) is taken as

]'j)

1 1
H(ﬁysEi) =§C§H€§r’8ﬂ "eg'kEisjk _'i"gyEiEj (2.4)
[see Tiersten (1969) and Reddy (1994)], where C;, , e, , and g, are the elastic,
piezoelectric, and dielectric permittivity tensors, respectively. As described above, the
electric field Z, is derived from a scalar potential function ¢ as follows:

__ %
E=-—1 (2.5)

I

Equations (2.3), (2.4) and (2.5) describe the linear theory of piezoelectricity, which
when combined with Hamilton’s principle, can be used to derive a set of approximate
governing equations for composite laminated beams.

o, and D; are the components of the stress tensor and the electric displacement vector,

respectively. They can be derived from H(g;, E;) as

oH
;= 2.6
D=2 2.6)
éH
and G; = 58_" (2‘7)

g
Piezoelectricity and its applications to various fields with an emphasis in the distributed
sensing and control of flexible structures are discussed. Since its discovery by the Curie
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brothers, piezoelectricity has always fascinated researchers in diverse fields and various
piezoelectric materials have been used in many transducer designs, sonar applications,
medical ultrasonic equipment, robot tactile sensors, acoustic pick-ups, force and strain
gages, ctc. In recent years, piezoelectric materials have attracted many research
activities in the distributed sensing and control of structural system. The development of
distributed piezoelectric sensor and actuators is expected to be essential for design of
future light-weight and high-performance structures with intelligent adaptive
capabilities. Hence, it appears that piezoelectricity will be an active research topic in the
area of distributed sensing and control of structures and in other areas as well for many
years {o come.

2.2 Constitutive Equations of Smart Laminated Structures

A piezoelectric laminate theory that uses the piezoelectric phenomenon to effect
distributed control and sensing of bending, shearing, torsion, shrinking, and stretching
of a flexible plate has been developed. This newly developed theory is capable of
modelling the electromechanical (actuating) and mechanoelectrical (sensing) behaviour.
Because of their coupled mechanical and electrical properties, piezoelectric ceramics
have recently attracted significant attention for their potential application as sensors for
monitoring and as actuators for controlling the response of structures. The concept of
using a network of actuators and sensors to form a self-controlling and self-monitoring
‘smart” system in advanced structural design has drawn considerable interest among the
research community. This new technology could possibly be applied to design of large-
scale space structures, aircraft structures, satellites, and so forth. In this chapter, we will
discuss the constitutive relationship on composite plate bonded with piezoelectric sensor
and actuator layers. From the constitutive equation of the intelligent composite plate, we
will derive the constitutive relationship of the smart composite beam.

The mathematical model proposed in this thesis is useful for laminates with laminae
having arbitrary orientations through the thickness. However, in most cases, the
principal material co-ordinate system does not coincide with the plate co-ordinate
directions. Then, the transforming constitutive relations from the principal material
directions to the plate (laminate) co-ordinate directions are becoming necessary. Also,
in this project, the two types of constitutive relationships of the smart structures will be

considered.

2.2.1 Constitutive Equations for Non-piezoelectric Laminae

For a plate of constant thickness and composed of thin layers of orthotropic material,
the constitutive equations for the ¥" non-piezoelectric layer can be written as:

by f

(0'1 ] —Qu 0, O, O 0 0 g,

g, O, On Qs O 0 0 £,

) s L _ Qs O O, 0 0 0 ) £, 2.8)
Ty 0 0 0 9, 0 0 Yu

T c ¢ 0 0 Qs O Y

(Ta), L 0 0 0 0 0 Q“_k Y2,
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where Oy are the plane-stress-reduced elastic constants in the material axes of the layer,
and the bar over the quantities implies that the quantitics are referred to principal
material directions of the layer. In this analysis, the plane stress approximation is made,
thus requiring modifications to the above constitutive relationship. By setting ;= 0, the
strain €; is eliminated from the constitutive relationship. Then, the constitutive equation
for non-piezoelectric laminae can be written as:

’51 Qn le 0 0
G, 0, 0, 0 0 0 €,
0 0 | 9Ysy 2.9)

~TIZJ 0 0 0 0 65 _|g L‘YIZJ k

where

3 - _213_2 3 = __Qtsta A = _%2_
O =9 0., s G =00 Qas_, 0, =0 0.,

Q44 =Q0u> st =Q55’ O = Oss
Upon transformation by using transformation matrix [7] (see Appendix A), the lamina

constitutive equations for non-piezoelectric layer can be expressed in term of stresses
and strains in the plate (laminate) co-ordinates (x, y, z) as:

(c.) [0, G, 0 0 O [&]

GJ’ QZ QZZ 0 0 §26 E)’

b=l o 0 G B 0[{vey (2.10)
Wl [0 0 O Os 0 la

LT‘J’J k _Qﬁ Qﬁ 0 0 Q‘%_& :YWJ k

where QJ are the transformed material constants (for more details, see Appendix A).

2.2.2 Constitutive Equations for Piezoelectric Laminae

The lamina constitutive equations accounting for piezoelectric effect for the £ layer in
the material axes can be written (here setting o3 = 0, the strain €; 13 eliminated from the

constitutive relationships) as:

(a, ~ -Qll le 0 0 0| (=] 0 0 e,

9, le sz 0 0 0 € 0 0 €5 E:

femp =| 0 0 Qu 0 0| q¥mp o0 @ 0 iE; 11a)
T3 0 0 0 Qs O Tis €5 0 E; .

%), L0 0 o0 0 O | 1), LO 0 0]
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(&, l
D, 0 0 0 e, O] is, g, 0 O E,
D,y =0 0 e, 0 0{<y,r +{0 g, O© E, (2.11b)
D, ¢ LEn €x: 0 0 0O g | Vi3 0 0 g4, & i

Y2 ) s

where D; is the electric displacement, E; is the electric field intensity, Oy is the elastic
stiffness constants, e; is the piezoelectric stress coefficient and gj; is the dielectric
permittivity constants. Here, the labels for the elastic, piezoelectric stress and dielectric
permittvity constants are not changed while the strain £3 is eliminated from the
constitutive relationships, it is assumed that they have been adjusted to accommodate
the plane stress approxirnation.

Upon transformation by using the transformation matrixes [T] and [7p], the constitutive
equations including piezoelectric effects with respect to the plane (laminate) co-
ordinates (x, y, Z), is given as:

6,] [Gi G 0 O Of[e] [O 0 &]
g, Qz sz 0 0 ézﬁ g, 0 0 e, E,
1752 L =l 0 0 Q‘“ 645 0 TY}a L ~|&as & O E ¢+ (2.12a)
Tx 0 0 §45 gss 0 Y €; € 0O E, )
I _Qa O 0 0 éﬁﬁ_k Yoj, LO 0 e}
rS’lr \
D‘ 0 0 &, és 0 €y gn g 0 E,,
D,p =10 0 & é&; 014Vt *82 8n O E, (2.12b)
Dy, (e e 0 0 el 17x 0 0 g, £ A
)

where Q ., &, g are the coefficient after transformation (for more details, see

E;f ?
Appendix A).

Using the matrix expression, these constitutive equations for the plate shape sensor and
actuator are written as follows:

{U}k = [Q]k {8}k - [EK {E}, (2.133)
{p}, =l e}, +[gL{EL (2.13b)

where {D}, {£}, {€} and {o} are the electric displacement, electric field, strain and
stress vectors, and [@], [E], [§] are the elasticity, piezoelectric and permittivity
constant matrices, respectively. [E]jr is defined as the transpose of [E]. Equation (2.13a)
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describes the inverse piezoelectric effect and equation (2.13b) describes the direct
piezoelectric effect.

The constitutive equation in the elastic field by using matrix expression is as follows:

[l =[o){el (2.14)

where [Q_) ] is the elasticity constant matrix of the main structural laminae in the smart
structure. Also, the equation (2.14) can be modelled by simply sctting the piezoelectric
constants to zero from equation (2.13a).

2.3 Constitutive Equations of Smart Laminated Beam Model

All structures, no matter what their dimensions are, should be treated as three-
dimensional structures. It is well-known that the solution of the three-dimensional
elasticity equations is too involved and in some cases is even unattainable. To overcome
this difficulty it is usual engineering practice, depending on the dimensions of the
structure, to make some assumptions and reduce the structure to a two-dimensional
problem or even a one-dimensional problem. For example, in the case of plates,
thickness is far less than length or width, and hence one can neglect the influence of
strains and stresses in the thickness direction and model it as a two-dimensional
problem using Kirchhoff’s hypothesis. Similarly, beams are modelled as one-
dimensional structures using the Euler-Bernoulli hypothesis because their width and
depth are far less than their length.

Because of the type of assumption made, the solution of reduced problems, in the
present beam problem, differs from the solution obtained from the three-dimensional
elasticity theory or that obtained from the two-dimensional plate theory. It is to be noted
here that the beam approximations that give us at least the comparable result with the
two-dimensional plate theory result are best approximations to be considered. In the
present case of the beam, one should consider such approximations that allow analysis
of the structure as a one-dimensional problem, yet giving results that are as close as
possible to those obtained from considering the same structure as two-dimensional plate
problem. This means, the present model of beam comes from plate. It is a specific plate.
The assumption to the point where existing theories can be utilised. At this point in
development of composite technology, simplifications of plate theory appear to offer the
most feasible approaches from which to begin.

In the present case, the beam is a smart composite beam model including the
piezoelectric materials, which possess anisotropic properties. PVDF (polyvinylidene
fluoride) and PZT (piezoceramics, such as lead zirconate Titanates) are excellent
candidates for the role of sensors and actuators. In this project, the PVDF is chosen as
sensors and actuators’ materials. Piezoelectric material layers are polarised in the
thickness direction and exhibit transversely isotropic properties in the xy-plane.
Considering piezoelectric materials while retaining the anisotropic behaviour of the

master structure, Eq. (2.12a) can be written as:
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Oy ‘ —Ql (—212 0 0 Qﬁ [8: ] 0 0 531

Oy Qz gzz 0 0 éz(, E, 0 0 e 0

ft.0=| 0 0 Oy Os 0|{¥.t—|&s & 0[]0} (215
L2 0 0 05 05 0 |l1e| |8 & Of|E],

o)y LQG 0, 0 O QS&-!: Yo), LO O 0]

where @,, =e,,, &, =e,(cos’8—sin’*@) and &, =-2e,sinfcosd.

Thus, because of the above statement, for a beam problem, one can use
o,=1t, =1, =0 while assuming the £ #y _ =#y #0, to obtain the following
reduced constitutive equations of smart composite beams from Eq. (2.15):

o-x éu 0 8; %1 k
= ~ - E 2.16
{sz}t I: 0 st]k{Yn}k { 0 }k ’ ( )

where
¢
Q]6Q26 0.0 = QHQ% 010y =
Q“ Q“ Q22Q66 Qza Q]z Q22Q66 Q26 Q16
0--2 gﬁ 2.17
Oss st_ 0. 217
z =(1__Q12Q66 Q15Q26 —
” QZZQ&S sz,

_ The relations for QI in terms of Q; and € in terms of &; are given in Appendix A.



Chapter 3

Vibration Analysis of Smart Composite Beams

3.1 Introduction

Composite materials have increasingly been accepted as suitable materials in the high-
performance but weight-sensitive structures such as space vehicles and automobiles.
This is due to the high strength-to-weight and high stiffness-to-weight ratios offered by
composite materials. Laminated composite materials consist of two or more layers of
different materials so as to achieve desired structural properties. Since the laminated
composite is made of different material layers, the material property is discontinuous
through its thickness. The material mis-match across the laminate interfaces, bending-
stretching coupling, and geometric nonlinear effects make the analysis of composite
structures very complicated.

In the analysis of laminated plates, the Kirchhoff plate theory, known as the classical
plate theory is used. It is based on the assumptions, that: (i) straight lines normal to the
mid-surface remain straight and normal after deformation, (ii) the displacement
gradients are small, (iii) the length of a normal remains unchanged, and (iv) the
transverse normal stress is small and it can be neglected. Thus the classical plate theory
does not account for the transverse normal and shear deformations. Shear deformation
theories are those in which the transverse shear stresses are accounted for. Such theories
can be used to describe the kinematics of deformation of laminated plate accurately. The
first-order shear deformation theory (FSDT), known as the Reissner-Mindlin plate
theory, which is presented in this thesis, removes the normality assumption and includes
transverse shear deformation.

3.2 Displacement Components and Stress Resultants

In chapter 2, we discussed that the present beam mathematical model came from the
plate theory. This is a specific plate. For discussing the displacement components of the
composite beam, we start from the Mindline plate theory (see chapter 1). In order to
account for transverse shear deformation and rotary inertia effects in the plate, the
displacement components of Reissner-Mindlin plate theory of the form for vibration

problem are described as

u,(x, y, z,t) =u(x, y, N+zy (x, v, 1)
uz(x7 y’ Za t)=v0(x’ }’, t)+ZWy(x! y: t) (3.1)
uy(x, ¥, 2, 1) = wy(x, y, 1)

where u,, v, and w, representing the mid-plane displacements in the x, y, z directions,
and y,, , represent the rotations of transverse normal to mid-plane about the y and x
co-ordinates. For the composite beam problem, the displacement field can be written as
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u (X, ¥, 2, 8) =uy(x, ) + zi, (x, 1)
u,(x, y,z,t)=0 (3.2)

u,(x, v, z,1) =wy(x, 1)

Heré, we assume that the displacement for y-direction is neglected and u,, v, and y, are
only functions of x-axis and time (t) in the present model of beam.

Consider a beam length /, width b, and total thickness %, made up of a number of
perfectly bonded layers including the piezoelectric layers as shown in Figure 3.1.
z

R e et

(3 Non-piezoelectric layers
x Freer) Piezoelectric layers

Figure 3.1 Laminated beam with integrated piezoelectric sensor and actuator

The strain displacement relations of a laminated beam based on a first order shear
deformation theory associated with the displacement field are given by

g =& +zK!
{Yx =7 -
where
oo a9
0 ox o, Ox (3.4)
=y, +
},_tz WO ax

In this project, we assume that the top and bottom layers are the actuator and sensor,
respectively. Then, for non-piezoelectric laminae (main structure), the constitutive
equation (2.16) for k™ layer can be written by setting the piezoelectric constants to zero
as

G, = éilsx > g™ QSSYH (3.5a~b)

For piezoelectric laminae, the constitutive equation (2.16) for the top and bottom layers
of the respecting actuator and sensor can be written as
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o, =018, ~&El, 1.=04Y, (3.6a~b)
The stress resultants of the first order shear deformation theory are defined as
N, = f,, cdz, M, = E o,zdz, Q.= fktzdz (3.7a~c)
2 ] H
Substituting Egs. (3-5a~b) and (3-6a~b) in Egs. (3-7a~c), we get

non— piezoelectric layers piezoelectric lavers
——.— A

N, = "Z_l f ngxdz +r_[n (é]lax _331‘6: }iz"' _[[(éllgx _ESIE: )dz‘
k=2 ~* ! d

(3.8a)
- ; [ Qe[ &Eld:- [@Ete
oo picoctecric ayers ‘
M, =g [ | O, zdz + [ (é”gx %, Ef ez + E(@llex ~ %, E* bz G.8b)
=; [ Oue.zdz- [ &,Etzdz- [.E! 2z
——— J—
0. =3[! Burodes [ arodes [ Bt 650

= ki: _[:_' éssyzdz
=

where z, and z,, are defined in Figure 3.2. Note that z=-h/2, z,=h/2.

217, 7 Middle surface
1 Z, .
A DS N S . {-

Figure 3.2 Geometry of an n-layered laminated beam

In the present beam model, we assume that the bottom and top layers are sensor and
actuator layers, respectively. For sensor laminae, there is no external electric field is
applied to this layer. Then, the electric field intensity for sensor is zero. Substituting Eq.
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(3.3) in Egs. (3.8a~c) and setting the sensor layer as Ef =0, we can obtain the stress

resultants as
N A4, B, 0 |[e2] [w?
M_t=|B, D, 0 {xls—iM?* (3.9)

0. 0 0 55 'Y.?z 0

—
-

1
x

-

where

{‘ZII B_u ‘ﬁll}zi[‘t éu(l,z,zz)dz

{Zss } = i_ [:_I éssdz

X

e mrd= [ aEH 2y

From Mitchell J.A. and Reddy J.N. in 1995 [36], the electric potential variable @ can be
expressed as

O(x, y,2,8) = [ (2)P, (%, 3.1) (3.10)

For the beam problem, we do not consider the varying of y-axis because any physical
variables are uniformed distributed through the Y-direction. The electric field of smart
composite beams can be written as

O(x,2,0) = f(2)P,{x.1) (3.11)

Because the thickness of the piezoelectric layers is very thin, we also assume that the
voltage is uniformed distributed through the thickness (Z-direction) of the piezoelectric

layers. That is f(z) =1. Then the electric field intensity £ can be expressed as

_ Py (x,1)
h

4

E* (3.12)

where k), is the thickness of the piezoelectric layers.

3.3 Governing Equations

In this section, we will use Hamilton’s principle and the mechanoelectrical constitutive
equation, as starting point to discuss the goveming equation including the effect of
piezoelectric layer and the closed circuit charge or current generated across the
thickness direction of each individual lamina caused by the displacement of the
laminates based on the first order shear deformation theory (Mindlin Theory). The
charge or current can be easily measured through the surface of sensor laminae. The
applied electric field through the actuator laminae can also be defined. The closed loop
control system is shown in Figure 3.3.
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Controller Structure

Figure 3.3 The active vibration control system for intelligent beam

‘The mathematical statement of Hamilton’s principle can be expressed as

[T ~8U +6W)dt =0 (3.13)

where U =U,, +U_, T'is the kinetic energy, U, is the strain energy, U, is the electrical
field potential energy of piezoelectric layers, and W is the work done by surface
tractions and applied surface electrical charge density. In this project, the body forces
are not considered. In Eq. (3.13), t, and t, are two arbitrary time variables and & denotes
the first variation. We begin with the first integral. Here, we assume that each layer of
the present composite beam model has same the vibration speed. The kinetic energy can
be expressed as

n

=3[ 1, { oG i sy
k=1 k-1 7

where p, is the k™ layer mass intensity. Substituting Eq. (3.2) in the kinetic energy
expression, we get

2 2
f f£ %y W) %J dxdyds
- ot ot ot
2 2 27
:21: I, Oty +1, Oy + 26u° a%+13 %J dx
2 ot ot ot ot ot
The first variation of kinetic energy is given by

sr=1||4 Gty  j OWa |00y g B0 30, [y Oty ; V010V iy (315)
ot at ] ot at ot ot ot ot

(3.14)

where

@1y =X [ plzaKe

PR
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For the second integral of the Eq. (3.16), the strain energy of the smart composite beam
can be expressed as

U, = % [[[o.z, + 7.7, )dxdydz

Substituting Egs. (2.16) and (3.3) in the strain energy expression and in view of Eq.
(3.9), we have

Uy =% _[(N,sf: +M Kk, +Q_ 7o bdx (3.16)

Substitution of Eq. (3.4) into Eq. (3.16), then the second integral of Eq. (3.13) can be
written as

5U, = [(N,8e2 + M &x, + 075 Ybdx
(3.17)

dx ox Ix

Piezoelectric materials are polarized in the thickness direction and exhibit transversely
isotropic properties in XY-plane. So for the equation (2.12b), only D, is of interest to us.
Considering piezoelectric materials while retaining the anisotropic behaviour of the
master structure, the constitutive equation (2.12b) can be written as

k- - -
D; =é, &, +&,£, + gk,

QGGESIE: - (Qz@s& - Q(,st )e,

For the present beam problem, we have £, = — (See
szQas - ch.
Appendix A). Substitution of g, in above expression, we get
D} =&,6, +E,E; (3.18)
where
. 0,06 =060 .- - O _
e, =(1- QEQ{& Ql—6—226 ey, Ep==—2" 31——2 + 833
sz Qsa - st sz Q66 - Qza

The electrical field potential energy of piezoelectric layers can be written as
Ug= 1 HI D} Efdxdyd: = li [* ﬁ ID: (M)dxdydz
29% 2% G ¥ h,

b ¢
=2 [Glg o

where
Gt =% pr L
=

dz
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and the first variation of the electrical field potential energy is
8U, = [ G*5p,bdx (3.19)

Thie virtmal work done by external surface force and the applied surface charge density
is given by

W = L pw,dA - _[ q,D(x,1)dA

where S, and S; arc the surface area applied forces and the electrical charge,
respectively. The vanation of the virtual work can be expressed as

SW = [ powy b~ [ q,6p,bux (3.20)

where p is the surface traction and g, is the surface charge density applied to the present
intelligent composite beam model, respectively. Substituting the Eqgs. (3.15), (3.17),
(3.19) and (3.20) in the Hamilton’s principle Eq. (3.13), we can obtain

r IH" du, 3 3;00)65!10 o dw, ddw, +(I,_ Ouy 6:;/0)65% ~

Yot or | ot o o o o) o
, s (3.21)
oou ow
-N, on -0, axu -M, a.ilo _Qz5Wo_G:§¢o+p5Wo"‘I0§¢o ]bdxdt:o

Using the distributive (by parts) integral method on the above equation and collecting
the coefficients of (u,,dw,, Sy, 0p,)and setting them to zero, the goveming

equations for vibration of smart composite beams based on the Reissner-Mindlin plate
theory can be expressed as

oN
&uy: Ly + Ly, ——==0 (3.22a)
Ox
. 00
ow,: Iw,—== 3.22b
o "o P p ( )
oM
Swoi  Diio + Lo =2+ 0, =0 (3.22¢)
5¢,: GI+g,=0 (3.22d)

Equations (3.22) are subject to the following boundary conditions as

x=0,and x=1I: Nx=]vx,oruu=ffo
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—~

x=0,and x=/: 0.=0,,0rw, =W,
x=0,and x=1: M_=M_ory, =y,
and “~” denotes the know value.

According to the Eq.(3.18), the coefficient G can be expanded as

Ou L Oy

G! =¢,G} Exg+e3lG + 8, GEy (x,1) (3.23)

where
=Z [ ym ), 6= ; [ n )iz, G} = ; [ yn,fe

With the definitions for stress resultants, equation (3.9) can be re-written as

ou, — Oy, .

N, = Aug + B, axo ~&,G{ g, (x,1)

M, =B, Aty +D, %W, -2,,G; ¢y (x.1) (3.24)
Ox Jx

~ ow,
Q.. = 4;; ('Vo + _é;c‘o')

Substitution of Eq. (3.23) into Eq. (3.22d), we can obtain

~ ou L OW
es.G:‘—a;" €,,G; ax°+gnG*¢o(x,t)-— (3.25)

From the equation (3.25), the electrical field potential function can be expressed as
é,G, du, _ €,G; Oy,

@y (x,0) = —= ~
’ & G; & gy G; ox
where ¢,(x, ) is the input control electric potential voltage acting on the actuator layer.

+¢,(x,1) (3.26)

Substituting Egs. (3.24) and (3.26) in Egs. (3.22a~c), we can get the governing equation
in the following form:

o’u w, - 0u, = Oy op
duy: I &2" +1, az“—A“ szo s —ﬂ1 -—ﬂ2 6x2 = 6:: (3.27a)
0’w, ayfo azwo
Swy: 1= 2oy = (3.27b)
2 2 N 62 _ 62 62 62
5’#0: I:J_ a uO +I a Wo B uO V/O ﬁz uo WO _ 6¢A (3.270)

a o "ad Ve T o ox
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where
~2 2 ~32 o~k vk ~2g!
B = 5, Gy _ &G G _ 331,(33
| S ﬂz—— ~ F ﬂs‘“? vl
G G G
810, &334, LA

If the sensing information is required, the electrical potential can be récgvexed by

ou 0
¢0(x,t)=al—axl+a2—a%+¢A(x,t) (3.28)
where
&6 _ &0
1

o. =
— ~kc Y2 ~
2,0, £1,0;

Note the ¢,(x,r) is usually zero in the piezoelectric sensor layer. Thu$, i piezoclectne
sensor electrical potential output is estimated by

u P
S (r.) =y —axﬂ +ayg %’;ﬂ (3.29)

In the active vibration control application the electric force term can by, egzarded as the
feedback control force. The piezoelectric actuator electrical potential ipput in terms of
the output signal from the piezoelectric sensor layer can be written as

o*u oy
D) =-G.la ° 4 0 3.30
¢,(x,0) :( 14 5 a,, axat) (3.30)

where the negative velocity feedback control method is implemented and G; is the
feedback control gain. The symbol a;s and aj4 (=1,2) are the relatiVe caefficients of
sensor laminae and actuator laminae, respectively.

Substituting the equation (3.30) in equations (3.27a~c) and using the deyivative operator
forms, the governing equations can be written as simple form in term © ¢ he mechanijcal
and piezoelectric resultants

duy: Ly + Ly, =0 (331a)
oWyt Lyywy +Lyy,=p (3:31b)
Sy Lyuy + Lyywy+ Ly, =0 {3.31¢)

where L; are the derivative operators given by

. o? a* Fox
L“ 3—05x—+11¥+6,-al"5x2—&, le =L21 =0

2
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& ?° o’
e

& - & ~ 0
L22=I15?;—A55¥’ Lzsz"Assgx“

o o? o - 0
L3,=—b¥+12§2-+G,-a,a—x—%, L3z:AssEt’
Gh ok o =

L3’__d5x_2+]35}7+6‘a26x2 + Ay,

and a=zu+ﬁn b=§u+ﬂ2’ d=1311+ﬁ3
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Chapter 4

Approximate Analytical Solutions
of Smart Composite Beams

4.1 Introduction

In this chapter, the approximate analytical solutions of smart composite laminated
beams will be presented. According to the govemning equations, which is derived in
chapter 3, we assume that the external exciting force has the characteristics of harmonic
vibration. In this project, the significant idea is to use the mathematical tool of complex
numbers to reduce the orders of the governing equations. This method has never been
applied before. Also, from the relative references, the numerical results of smart
composite beams have been presented by using the finite element method. The main
objective of the present work is to find the approximate analytical solutions of smart
laminate beams under the harmonic external exciting force. This is also the first
analytical solution in the research field of smart composite beams. In this research work,
we will find the displacements of the present mathematical beam model through solving
the sixth-order differential equation of the displacement potential function F(x, 1)
instead of finding the displacements of present beam model directly. The software
package of MATLAB will be used in this procedure.

e A Brief Introduction of MATLAB

MATLAB is a high-performance language for technical computing. It integrates
computation, visualization, and programming in an easy-to-use environment where
problems and solutions are expressed in familiar mathematical notation. Typical uses
include:

Mathematics and computation

Algorithm development

Modelling, simulation, and prototyping

Data analysis, exploration, and visualization

Scientific and engineering graphics

Application development, including Graphical User Interface building

MATLAB is an interactive system whose basic data element is an array that does not
require dimensioning. This allows you to solve many technical computing problems,
especially those with matrix and vector formulations, in a fraction of the time it would
take to write a program in a scalar noninteractive language such as C or Fortran. The
name MATLAB stands for matrix laboratory. It has evolved over a peniod of years with
input from many users. In university environments, it is the standard instructional tool
for introductory and advanced courses in mathematics, engineering, and science. In
industry, MATLAB is the tool of choice for high-productivity research, development,
and analysis.
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MATLAB features a family of application-specific solutions called toolboxes. Very
important to most users of this package, toolboxes allow you to learn and apply
specialized technology. Toolboxes are comprehensive collections of MATLAB
functions (M-files) that extend the MATLAB environment to solve particular classes of
problems. Areas in which toolboxes are available include signal processing, control
systems, neural networks, fuzzy logic, wavelets, simulation, and many others. The
MATLAB system consists of five main parts:

The MATLAB language This is a high-level matrix/array language with control flow
statements, functions, data structures, input/output, and object-oriented programming
features. It allows both "programming in the small" to rapidly create quickly and dirty
throwaway programs, and "programming in the large” to create complete large and
complex application programs.

The MATLAB working environment This is the set of tools and facilities that you work
with as the MATLAB user or programmer. It includes facilities for managing the
variables in your workspace and importing and exporting data. It also includes tools for
developing, managing, debugging, and profiling M-files, MATLARB's applications.

Handle Graphics This is the MATLAB graphics system. It includes high-level
commands for two-dimensional and three-dimensional data visunalization, image
processing, animation, and presentation graphics. It also includes low-level commands
that allow you to fully customize the appearance of graphics as well as to build
complete Graphical User Interfaces on your MATLAB applications.

The MATLAB mathematical function library This is a vast collection of computational
algorithms ranging from elementary functions like sum, sine, cosine, and complex
arithmetic, to more sophisticated functions like matrix inverse, matrix eigenvalues,
Bessel functions, and fast Fourier transforms.

The MATLAB Application Program Interface (API) This is a library that allows you to
write C and Fortran programs that interact with MATLAB. It include facilities for
calling routines from MATLAB (dynamic linking), calling MATLAB as a
computational engine, and for reading and writing MAT-files.

In this project, the part of Mathematics and Computation in package MATLAB is used
to solve the sixth-order differential equation.

4.2 Simplification of the Governing Equation

From the chapter 3, we can rewrite the governing equation (3.31) as

Suy: Lyuy+L,w, + Ly, =0 (4.1a)
owy: Lyt +Lpywy +Lyw,=p (4.1b)
OWo: Lyttg + Lyywy + Ly, =0 (4.1¢)

where
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8° a? a°
L“ =—a—a?+11 —2—+G‘-a1 axl R le =L2! =0
aZ 62 63
Ll3 =—ba7+12—?+6‘-a’2-6'x—26;
@ - @ ~ 3
Lzz:11 a2 —Assé;z"’ Lzsz_AssEx’
o° a2 & - 0
L, "'bé;z“"fzgt_z”*'q PR L32=Assa
8? a* b2 —
L33 =—d 3 +I35?2*-+G‘-a2 3 +A55

and

The equations (4.1a) and (4.1c) can be rewritten as

L, (uu )+ L, (wo ) = "Lls('/fo)
L, (uo )"' Ly (Wo ) ==Ly (Wo )

Using matrix form, the equation (4.2) can be expressed as

[Lu Ltzil{uo}z {"Lls(V/O)}
Ly, Ly |w — Ly, (Wo )
From Eq. (4.3), we can get

Au, = (_ LiyLy + Ly, L4 )1”0
Aw, = (_ LyLy+ L L, )//o

where
4=1L,L,—-L,L,

41

(4.2)

4.3)

(4.4)

Introducing the displacement potential function F{(x, f) and taking info account

L, =1L, =0,wecanhave
U, =L1(F), Wo =LZ(F)! Vo =L3(F)

where
L= ’L:3L3z , L= "'LHLsJ +L,L,, Ly=L L,

(4.5)

Substituting Eq. (4.5) in Eq. (4.1b), we obtain the equation of the displacement potential

function F(x, f) as

Ly L, (F)+ Ly Ly(F) = p(x, 1)

(4.6)
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The derivative operators L, L,, L;, L,,L, and L,,L, are shown in Appendix B.

Substitution of the derivative operators L,,L, and L,,L, into equation (4.6), we can
obtain

o°F ¢ F a'F 8'F O°F o'F

a, 8x6 -HI2 6x4t2 +d4a, axﬁt +a, 6x4t3 +a5 6x2t4 +06 axztz + (4 7)
oF o°F O*F °F )
+d, PaEN +a, Py +a, P +a, ax-zts = p(x, 1)

where
a, =~Ab* + A ad, a,=-A,(I,a+1d-20,b)+I,(b* —ad)
a, =—-4;,G (aa, +da, -ba, - ba,)
a, =—A,G.(L,e, +1I,a, -1 a, -1,a))+1,G,(aa, +da, —ba, -ba,)
a, =—A(I,° -1 1)+ I,(I,a+I,d -2Lb), a,=1Iad,
a, =1,G(La, + La, - L, - La,), a;=I(I,"-11,)
a, ==A, 1", a,=-A41,Ga,

Here, we assume that the external exciting force has the feature of harmonic vibration
with the following form

p(x, 1) = p,(x)si{@t) + p,(x)cos(w?) (4.8)

as well as the displacement potential function F(x, ) is the form
F(x,t)=K,(x)}sin(w 1)+ K,(x)cos(w1) (4.9)

Substituting the Egs. (4.8) and (4.9) in Eq. (4.7), we can obtain

6 4
md Kzﬁ(x)_‘_a m3d Kz(x)+

3 4 4
dx

6 a
a, d Ktﬁ(x) —a,0 d K14(x) —a
dx dx

2 2 2
+d dli;z(x) _Fa6wz d fxnz(x) -a,0° d Kzz(x)
s 7K, () ]

2

+asm —a,0° K, (x) +

d*K,(x) d*K, (%)
.—26__ . a)z ___2?___

+a,0°K,(x)+ a,,0 )

sin{wi) + [al

_ , , (4.10)
dﬁKl(x) 3 d‘K!(x)_,_a o° d Kz(x)_a o’ d°K,(x) _

—asm-—?«——ka,ﬁ) dx4 3 dxz 6 dxz
2
K

—a,0° d dxlz(X) -a,0°K,(x)+a,0° K, (x)+

2
a,w’ g—%’z&x—) ]cos(a) t) = p,(x)sin(@ ) + p,(x)cos(w t)
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Separating the two variables of the field of space and time in equation (4.10), and

canceling the terms sin(w ¢) and cos(@ ¢), we can get the two coupled differentiation
equations of functions K(x) and K>(x) as

6 4 2
{ d Eﬁ(x) —a,@” d K14(x) +(a,@* —a,@*) 4 K]z(x) —(a0° ~ a,0*)K, (x) -
(4.11a)
K, LdK,® 4°K, ()
—[ay&) d):ﬁ —0460 x ——+{a,@ *alows)? = p,(x)
é 4 2
AL E1C Y TGO B S .1 S T I
dx dx dx (4.11b)
d°K (x 4K, (x 4°K, (x |
_[aﬂ) Eﬁ( )—04(0 X )+(a7 @ ) dx’ ):] Py ()
The equation (4.11) can be written as a simple form as following
4
bﬁd LfCIN K4(x) d’K,(x) ~b,K,(x)
dx® dx d’ (4.12a)
12a
d*K.(x d’K,(x d’K x)
—[b‘] dxzﬁ( ) _bs dxz4( ) + b3 dxzz( ] = p 1 (x)
6 4
b, d"K,(x) _b, d Kz4(x) d’K,(x) —bK,(x)-
dx® dx dx’ (4.12b)
d°K d'K,(x) , d’K,(x) '
_[57 KD _p 4505, LB

where

2 2
b, =(a, —a,@")w*, b, =(as-a0’)w
b, =(a,, —07w2)a)2, b, :azmz,

JR. - =
b, =a,0°, b;=a,, b,=a,w

The solution for the governing equations (4.1a~c) for the said smart laminate beam is
derived in solving the two coupled differential equations (4.12a~b). It was found that
the two coupled differential equations are twelfth-orders differential equation. Now,
applying the mathematical tool, complex numbers, the twelfth-order differential
equation is reduced to a sixth-order.

The product of Eq. (4.12b) and imaginary unit #, and consequently the sum of the above
product and Eq. (4.12a), allowed us to present the reduced equation as
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) 4 2

by T K8 + KW=y [ )+ Ky (b, S K, )+ K, ]+

4

+h[K (x)+iK, (x)]—{ib, %[Kz(x) —iK,(x)]+ib, d%;;[l(2 (x)-iK,(x)]+ (4.13)

2

+ib; 'j?[Kz(x)—iKr(x)] }:p] (x)+i p,(x)

Where
K, (0)—iK, () = ~i[K, (0) — - K, (x)]
14
and

=z ="

1
i

then we have
K,(x)—iK, (x) =i[K (x) +iK,(x)]

Substitution of above expression into Eq. (4.13) and set K(x)=K,(x)+iK,(x), we can

get

d’K(x)
de

d*K(x)
P

d*K(x)
P

d*K(x)
b, R -
d°K(x)
d*

b, b, +b,K(x)+

4.14
d*K(x) (414)

dx2

+ib, ib ib, = p(x)+ip,(x)

The equation (4.14) can be also written as the simple form

d*K(x)

2

d*K(x)
dx6

d*K{(x) .

2t + A,K(x) = p(x) (4.15)

A, +4, A,

where
Ay =b,+ib,, A, =—b,+ibs), A, =—(b, +ib,)

4, =b,, p(x)=p @) +ip,(x)

4.3 Approximate Analytical Solutions
The solutions of equation (4.15) can be expressed as

Kx,0)=K,(x,0)+ K ,(x,1) (4.16)

where K, (x,1)is the homogeneous solution and X ,(x, £} is the particular solution, and
they are satisfied the following equations, respectively,

6
4K,

K, (x) . dK, (%)
. drﬁ d_:4 + AZ ;

dxz

A, + AK,(x)=0 (4.172)
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d°K (x) d*K_(x) d’K (x) _
A, d:f’ + A4, d:4 + 4, d:z + Ai,Kp(x) = p(x) (4.17b)
Especially for uniform distributed load, p,(x) and p,(x) are constant, consequently
P(x) is also constant. By using the option ‘Dsolve’ in Software Package MATLAB, the

homogeneous solution of the present beam model (4.17a) can be written in the
following form

K, (x) = Cie" + C,e"" + C,e" + C,e" + Cie™ + Cye™ (4.18)

where C, ~C, are six constants of integration produced in solving a sixth-order

differential equation (4.17a) and the particular solution of equation (4.17b) can be easily
evaluated as

_P
KP(X)_fTo (4.19)
As we discussed before, the complete solution of Eq. {4.15) can be obtained as

K(x)=K,(x)+ K (x)

7} 4.20
=Ce" +C,e" + Cie" + Cie" + Cie™ + Cye + £ (4.20)

(4]

where
1 2y
k= JAE(24,E+E*—124,A, +44 )2
1 JEAﬁ.f[ 6§( 46 5 2476 4
1

I i TealAs24 L+E 124, 4, +44,")]

k3 - T"‘_[-A«;Aﬁ‘:z —9A2A4A52 + 27ADA63 + 2A43A6 - 3J§A62§ * 3A3 Af’zg -
34.¢

1
— A, ZA E+iN3OA,A, A7 —2TA A — 24, 4y +3V3AE +34,4. — A7 4.5

AL A A AT ¥ 2TA A + 24,74, 334 +34,4.°6 -

k, =
! IA
L

—AZAEINBOA,A,A7 —2TA A =24 A4+ 334 434,47 — 47 A )

ks = AALE 94,4, A7 +2T4,4 +24,° 4, =334, ¢ + 34,426 -
IAJ[ §*-94, +274,45" + &+ ¢

1
- A42A6§ —i‘/g(gAon.Aéz _27A0A63 "2A43A6 t 3‘6‘4524’ + ?’Aer2 - A42A6§)]2

by = [ A AE —OA, A A +2TA A 240 Ay ~INBAL + 34,426 -
NEYR

i
—A2AE-iN3OA,A A —2TAAS —2A A+ 3NBAE 34,47 — AP AE))
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and
1
C=(44, A, - A,°A,° 184, 4, A A, + 274, A" +44,4,°)?
1
E=(364,4,4, —1084,4,7 ~8A," +12/34,£)°

The original input and output files of Software Package MATLAB to solve the
Eq.(4.17) is shown in Appendix C. In the solution (4.20), the six constants C, ~ C, can
be determined by using the boundary conditions as shown in chapter 3.

The equation (4.17) is called the complex differentiation equation and the coefficients
A, ~ A, are complex numbers. So the solution X(x)is also the complex function. The
two functions K, (x) and K,(x)can be derived by scparating the real part and
imaginary part of the complex function K(x), respectively. After we obtain the

functions X, (x) and K,(x), we can use the equations (4.9), (4.5) and (3.4), (3.9) to get
the displacement and resultant force of smart composite laminate beams.

4.4 Special Condition of Governing Equation

In the previous section, we discussed the general analytical solution of smart composite
laminate beams. The formulation and solution can apply to any type of beams, such as
cantilever beam, simply supported beam, laminate beam symmetric-ply layers and
unsymmeltric-ply layers. But for the laminate beams with symmetric-ply layers, the
governing equations (4.1a~c) have a special condition. In this section, we will mainly
discuss this problem.

When the laminate beam has symmefric ply distribution, for the governing equation
(4.1a~c), we have B, =0,8,=0,6=0 and I, =0. However when the external
electrical field is applied to the actuator Iayer, that is the feedback control gainG, # 0,
the laminated beam still exhibits the electromechanical behaviour. The reason for this
phenomenon is the extemal electrical field only applies to the actuator layer. But for the

sensor layer, there is that not any external electrical force. For this condition, we can
still use the solution that is shown in the previous section, But when the feedback

control gain G, =0, that is, no external electrical field is applied to the beam structure.
The derivative operators L, = L,, =0, then the governing equations (4.1a~c) can be
simply rewritten as

L (u;)=0 (4.21a)
L, (wy)+ Ly (o) = plx, 1) (4.21b)
L, (wo )+ Lys(w,) =0 (4.21¢c)

where the Eq. (4.21a) is not coupled with Egs. (4.21b) and (4.21c). The equation (4.21a)
is the axial vibration of beam and the equation (4.21b~c) are the transverse vibration of
the beam accounting for the effect of transverse deformation.
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Substitution of derivative operator L, into Eq. (4.21a), we have

8?2 Pk
_a a;ﬂ +1, a;o =0 (4.22)

Applying the same procedure as in the section 4.3, from Eq. (4.21c), we have
L, (w,)=-L,;(y,), introducing the displacement potential function F(x, £), we can get

the displacement w, and rotation y, as
Wy, ==L, (F), ¥, =L,(F) (4.23)

Substituting Eq. (4.23) in Eq. (4.21b), we can obtain the equation of the displacement
potential function F(x, ) as

= Ly Ly (F) + Lyy Ly, (F) = p(x, 1) (4.24)
From the above discussion, we can observe that if the beam has symmetric-ply
distribution and the negative velocity feedback control gain is zero, the governing
equation will change to two uncoupled equations (4.22) and (4.24).
Here, cxactly same as in the previous section, we assume the forms of the external

exciting force, the displacement potential function as Egs. (4.8) and (4.9) and axial
displacement as

uy(x, t) = Uy (x)[si{w?) + cos(@w )] (4.25)
o . I 1
Substituting Eq. (4.25) in Eq. (4.22) and setting e we can get

d’a, o _
dx“;’ oy, = 0 (4.26)

and the solution of Eq. (4.26) can be easily obtained as

-iZ

T,(x)=Cie * +Cye * 4.27)

Substitution of Eq. (4.27) into Eq. (4.25), we can get the complete solution of axial
displacement as

u,(x,1) = '(c,e"af‘ + Cze_i%r Jsin(@ ) + cos(ew?)] (4.28)

Substituting Eqgs. (4.8) and (4.9) in Eq. (4.24), expanding the derivative operators (for
more detail, please see Appendix B) and simplifying the equations, we can obtain the
two equations of functions K, {x)and K,(x) as
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d'K\(x) ,, 4K ()

b4 dx4 2 dx2 + blKl (x) = pl (x) (4293-)

4 2
b, d K14(x) vh, d sz(x)
dx dx?

+b K, (x)=p,(x) (4.29b)
respectively, where
b, = (IIZSS _Illrsc’)z)“’2 » b= —(13255 "Iad)"oz » b= _Zssd

The product of Eq. (4.12b) and imaginary unit ;, and consequently the sum of the above
product and Eq. (4.12a), allowed us to present the reduced equation as

b, :x—i[K, (x)+iK,(x)]+5, 5—;[!(1 (x)+iK,(x)]+

+5[K,(x) +i K, (x)]= py(¥) +i p, (%)

(4.30)

By setting K(x)=K,(x)+iK,(x) and p(x)= p,(x)+ip,(x), the Eq. (4.30) can be
writien as

d*K(x)

2

I
d'K(x) +
dx4

b, b, +b K (x) = p(x) (4.31)

Compare with equation (4.15), the equation (4.31) is only a fourth-order differentiation
equation because of the symmetric-ply of laminated beam and negative velocity of
feedback control gain G, = 0. The solutions of Eq. (4.31) can also be written as

K(x,0=K,(x,0)+K,(x,1) (4.32)

where K, (x, ) is the homogeneous solution and K, (x, #) is the particular solution, and
they satisfy the following equations,

K (), K@)

b, I 2 +5,K,(x)=0 (4.33a)
d*K (x) d’K (x) _
. dx’; +b, dx"z +b,K ,(x) = p(x) (4.33b)

respectively.

Similar to the previous section, for the uniform distributed load, p,(x) and p,(x)are
constant and p(x) is also constant. Then the particular solution K ,(x,#) can be easily
found by observing the Eq. (4.33b) as
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K,(x= (4.33)

SN

The homogeneous solution XK, (x,f) can be obtained by using Software Package
MATLAB as

K, (x)=Ce™ +C,e"" + C,e™ + C e (4.35)
] 3 4 5 6

where

»

‘- J—bz—‘szz -4bb, f _‘sz-,!b; —4b.b,
1= 2 =

2b, 2b,
P - \/—b2+,/bj—4blb4 i - ~b, ++/b,> —4bb,
T 2b, ’ o 2b,

The complete solution of Eq. (4.31) can be written as

Kx)=K,(x)+K ,(x)

7} 4.36
=C,e™ + C,e"™ +C,e™ + Ce!” +b£ (4.36)

i

In the equations (4.28) and (4.36), the six constants C, ~ C, can also be determined by
using the boundary conditions as shown in chapter 3. The two functions X (x) and
| K,(x)can be derived by separating the real part and imaginary part of the complex
solution K{(x), which is shown in Eq. (4.36). Also, after we get the two functions
K, (x) and K, (x), we can use the equations (4.9), (4.23), (4.28) and (3.4), (3.9) to get

the displacement and resultant force of smart composite laminate beam when there is no
external electrical field applied to the present beam model.

In this chapter, we discussed the approximate analytical solution of smart composite
laminate beams based on the Reissner-Mindlin plate theory. The numerical results of
this approximate analytical solution will be presented in next chapter.



Chapter 5

Results and Discussions

5.1 Introduction

The applications of laminate beams with active and sensory piezoelectric layers (PVDF)
are presented in this chapter. The force-vibration of a cantilevered laminated composite
beam with surface bonded continuous piezoelectric layers is analyzed. Several examples
will be considered in this section. The four-layers and eight-layers laminated beams
with different ply orientation of smart composite beams are studied. In all cases, the
standard laminate notation is augmented to indicate the lamination and the location of
piezoelectric material through the thickness, with the letter p indicating the piezoelectric
layer. The Software Package MATHEMATICA will be used to calculate the numerical
results and graphical representation thereof in this chapter. The next paragraph is the
brief introduction of this software package.

s About Software Package MATHEMATICA

Mathematica is the world's only fully integrated environment for technical computing.
First released in 1988, it has had a profound effect on the way computers are used in
many technical and other fields.

It is often said that the release of Mathematica marked the beginning of modern
technical computing. Ever since the 1960s individual packages had existed for specific
numerical, algebraic, graphical and other tasks. But the visionary concept of the
package was to create once and for all a single system that could handle all the various
aspects of technical computing in a coherent and unified way. The key intellectual
advance that made this possible was the invention of a new kind of symbolic computer
language that could for the first time manipulate the very wide range of objects involved
in technical computing using only a fairly small number of basic primitives.

At first, Mathematica's impact was felt mainly in the physical sciences, engineering and
mathematics. But over the years, it has become important in a remarkably wide range of
fields. Mathematica is used today throughout the sciences—physical, biological, social
and other—and counts many of the world's foremost scientists among its enthusiastic
supporters. It has played a crucial role in many important discoveries, and has been the
basis for thousands of technical papers. In engineering, the software package has
become a standard tool for both development and production, and by now many of the
world's important new products rely at one stage or another in their design on
Mathematica. In commerce, Mathematica has played a significant role in the growth of
sophisticated financial modelling, as well as being widely used in many kinds of general
planning and analysis. It has also emerged as an important tool in computer science and
sofiware development: its language component is widely used as a research, prototyping
and interface environment.
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At a technical level, Mathematica is widely regarded as a major feat of software
engineering. It is one of the largest single application programs ever developed, and it
contains a vast array of novel algorithms and important technical innovations. Among
these innovations is the concept of platform-independent interactive documents known
as notebooks. Notebooks have already become the standard for many kinds of
courseware and reports, and with the new capabilities added in Mathematica 3.0 they
are poised to emerge as a general standard for publishing technical documents on the
web and elsewhere.

There are today nearly a hundred specialized commercial packages available for
Mathematica, as well as several peniodicals and more than two hundred books devoted
to the system.

5.2 Numerical Results

An intelligent beam structure containing distributed piezoelectric Sensor/Actuator on
both the top and bottom surface is shown in Figure 5.1. In this structure, the
piezoelectric of the bottom layer is considered as a sensor to sense the strain and
generate the electrical potential and the piezoelectric of the top layer as an actuator to
control the vibration of the structure. As mentioned before, the model of cantilever
beam will be considered in this section. The smart structure can be divided arbitrarily.
All material properties used are shown in Table 5.1.

T PVDF actuator layer

PVDF sensor layer

Figure 5.1 A beam with piezoelectric sensor and actuator

In the classical vibration theory, the natural frequency of Bernoulli-Euler cantilever
beam can be written as

i=1,2,.
pAI*

o, = (ﬂil)z
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For the first natural frequency, the above expression can be rewritten as

EI
@, =3.515 |—— (5.1)
pAl

Table 5.1 The material properties of the main structure and piezoelectric

Property PVDF Graphite/Epoxy
E 0.2E+10 N/m® 0.98E+11 N/m’
E, 0.2E+10 N/m’ 0.79E+10 N/m’
Gi 0.775E+9 N/m’ 0.56E+10 N/m*
Gz — 0.385E+10 N/m’
Via 0.29 0.28

0 1800 kg/m’ 1520 kg/m®
e 0.046 C/m” —
€ 0.046 C/m’ —
es3 0.0 _
g 0.1062E-9 F/m —
g&n 0.1062E-9 F/m —_—
2s3 0.1062E-9 F/m —
t 0.1E-3m 0.125E-3 m

As we know, the Bernoulli-Euler beam does not account for the lateral strain. For thin
beams, accurate results can still be obtamned. In this project, the present beam model
comes from Reissner-Mindlin plate theory. It considers the effect of the transverse
strain. Compared to the length of beam, the present beam model is still very thin and we
can use Eq. (5.1) to estimate the first natural frequency of different ply orientation of
laminated beams. To calculate the equivalent stiffness (E£I), we use the stiffness along

the length of beam of each layer. That is ZQ, A » I 1s the moment of inertia to the
k=1
mid-plane of the laminate beam for #* layer. The first natural frequency of different ply

orientation is shown in Table 5.2.

Table 5.2 The first natural frequency of laminated beams

Ply Orientation Equivalent Stiffness EI First Natural Frequency
(Nm®) (rad/s)
[0°/0°/0°/0°] 5.30188E-3 342.016
[0°/90°/90°/0°] 4.71529E-3 322.541
[45°/-45°/-45°/45°] 0.87053E-3 138.587
[30°/50°/50°/30%) 1.26172E-3 166.843
[-45°/30°/-30°/45°] 0.927769E-3 143.071
[0°/90°/0°/90°] 2.95553E-3 255.358
[0°/45°/-45°/90°] 2.6949E-3 243.839
[0°/30°/-30°/90°] 2.75214E3 246.415
[0°/0°/0°/0°/0°/0°/0°/0°] 4.14936E-2 738.502
[0°/0°/90°/90°/90°/90°/0°/0°] 3.68009E-2 695.489

[0°/6°/90°/90°/0°/0°/90°/90°] 2.27228E-2 546.502
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A cantilever laminated beam with distributed piezoelectric PVDF layer serving as a
distributed actuator on the top surface, and another PVDF on the bottom surface as a
distributed sensor, will be used as a case study. The beam dimensions considered are:
length I = 100 mm and width b = 5mm. As we mentioned before, the numerical results
of the four layers and eight layers laminated beams will be presented in this chapter.
The thickness of the beam can be generally written as A = n x 0.125E-3 m and
piezoelectric PVDF layer is taken as 0.1x10> m (see Table 5.1). The applied transverse

load is uniformly distributed and has a magnitude of p,{x} = p,(x) =2.5x 10° N/m®.

The transverse displacement for the tip of the laminated cantilever beam with the
different ply orientation is obtained using the present method. The transverse
displacement of four layers laminated composite beams with actuator and sensor layer
on the top and bottom surface respectively, for feedback gains of 0, 40, 100 and 140, are
shown in the following figures. Firstly, according to Table 5.2, we take the frequency of
the external applied force as 10 Hz.
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Figure 5.2 Effect of negative velocity feedback gain on the tip transient response [0°/0°/0°/0°]
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From the above figures, it is observed that for orthotropic and cross-ply beams there is
hardly a noticeable difference, but there exists a considerable difference in the case of
angle-ply beams. Having studied the open loop response, the direct and converse
piezoelectric features are coupled with a negative velocity feedback control algorithm in
order to analyze the closed loop response. It is evident from all the above graphs that
transient tip amplitude of the beam gets damped out quickly when the higher feedback
control gains are applied. This also illustrates the applicability of the present
approximate solution. From the Figure (5.2) to (5.9), it can be easily observed the
significant effect of the lamination scheme or stacking sequences of Jaminated beams.
According to different ply orientation of each layer and lamination scheme, the stiffness
of the laminated beam also has significant difference, which is shown in Table 5.2,
There is larger amplitude on the tip of the beam if the stiffness of the beam is small.
This can be observed from the Figures (5.2) ~ (5.9}. This also verified the correctness of
the present method. We can also see that the Figures (5.2) and (5.3) show very good
control purpose for the general orthotropic and regular symmetric cross-ply laminated
beams. From the above results, we can also find that when the feedback control

gainG, > 100, the control purpose is not very distinct. In order to analyze the optimal

feedback control gain, the following results (The tip deflection of the beam versus
feedback controi gain for the different ply orientation) will be presented.
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The above results show the effect of feedback control gain for the tip deflection of
laminated beams. It can be found that the tip deflection (amplitude) of the beam
decreases quickly while the feedback control gain increases. When the control gain G;
less than 100 coulombs/ampere, the control purpose is very effective. But when the
control gain G; > 100 coulombs/ampere, the tip deflection decreases very slowly. From
all these phenomena, we can say the optimal feedback control gain of present beam
model is about 100 coulombs/ampere. From Figure (5.10) to {(5.13), we can also see the
ply orientation or lamination scheme of the laminated beam really affect the control
purpose. The symmetric cross-ply of laminated beams has a good control purpose than
symmetric angle-ply, the antisymmetric cross-ply and angle-ply as well.

The output (sensitive) and input (active) voltage is another important feature of smart
laminate composite structure. The next results will present the output and input voltage
of vibration of smart laminated beams with different ply orientations. The relations
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between output voltage and input voltage will also be analyzed. Please note that all of
the input and output voltages, which are presented here, is based on the feedback contro}

gain G; = 40 coulombs/ampere.
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The above results showed the output and input voltage from sensor and actuator layers
with the different ply orientation, respectively. Firstly, we can observe that the output
and input voltage vary as the beam vibrates, and their vibrational period is the same as
the period of laminated beam. From the figures, we can also see that there is about a n/2
phasic difference between input and output voltage. Secondly, from the results, it
shows that the different ply orientation causes the different output and input voltage. It
is affected by several reasons, such as the stiffness of the beam, the frequency of the
external applied force, and so on. In this project, we first assume that the frequency of
the external applied force is 10 Hz. For some of the ply orientation laminated beams,
this frequency is far from their first natural frequency (such as symmetric cross-ply), but
for some of the laminated beams, it is very close to their first natural frequency (such as
symmetric angle-ply). Hence, these results show us the very complicated situation of the
input and output voltage with the different ply orientation.

In the following section, the vibration control is studied while the higher frequency of
external force act on the laminated beam. They included the two cases, the regular
symmetric cross-ply ([0°/90°/90°/0°]) laminated beam which applied by the higher
frequency (55 Hz) of the external force; the regular symmetric angle-ply
([45°/-45°/-45°/45°]) laminated beam which is subjected to the frequency (25 Hz) of
the external applied force. These results serve to illustrate the control effect of the
present method if the frequency of external force is more than the first natural frequency
of laminated beams.
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The Figures (5.22) and (5.23) contain the amplitude of vibration at the tip of the
cantilever beam for two different ply orientations which are subjected to the higher
frequency of external force as we mentioned previously. The tip deflection of the beam
versus the feedback control gain is shown in Figure (5.24). The Figures (5.22) and
(5.23) indicate that control function of the composite beam that is subject to the higher
frequency of applied force is very evident. Comparing with the previous results, the
results in Figure (5.24) shows that the optimal control gain is about 80
coulombs/ampere, which is subjected to the higher frequency of applied force on the
beam. Also, the symmetric cross-ply has the better control purpose than the symmetric
angle-ply of the composite beamn. The input and output voltage are also shown in the
following figures, which indicates that the extemnal force has the high frequency.
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In the previous study, we discussed the behaviour of the four layers smart laminated
composite beam with the different lamination schemes or stacking sequences. The
results also pointed out predominant effects in the response of composite beams with
the lower and higher frequency of external applied force. The next study, we will
consider the laminated composite beam with eight different ply orientation layers and
discuss the control effects of these cases. According to the Table 5.2, we first take 50
Hz as the frequency of externa!l force.
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The effect of feedback control gain on the tip transverse response of eight-layer
laminated beams are shown in Figures (5.29)~(5.31). The amplitude of the beam
vibration damped out quickly by increasing the feedback control gain. Comparing with
four-layer laminated beams, the eight-layer laminated beam has higher stiffness, which
is shown in Table 5.2. The deflection of the eight-layer beam is smaller than four-layer
beam when there is no feedback control (G; = 0) and the effect of number of layers with
amplitude of vibration of a laminated composite beam can be also noticed. From these
figures, the control effect is not very evident between 100 coulombs/ampere and 140
coulombs/ampere of feedback control gain. In order to analyze the optimal feedback
gain for the eight-layer laminated beams, the following results have been presented.
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(a) [0°/0°/0°/0°/0°/0°/0°/0°]; (b) [0°/0°/90°/90°/90°/90°10°10° ; (c) (0°/0°190°/90°/0°10%/90°/90°]

From the Figure (5.32), it is easy to notice the effect of the lamination schemes or
stacking sequences, which (b) is called symmetric cross-ply and (¢) is called
antisymmetric cross-ply. From the above results, we can also observe that the amplitude
of vibration damped out very quickly between G; = 0 and G, = 50. After G, = 100
coulombs/ampere, the curve go down smoothly. This shows us that the optimal
feedback control gain is also about 100 coulombs/ampere for the eight-layer laminated
beam.
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Similar to the four-layer laminated beam, in the following results, we will discuss the
features of input and output voltage of the eight-layer laminated beam with two
different ply orientations.
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It should be noted that all the input and output voltage is based on the feedback gain G;
= 40. For the eight-layer smart laminated composite beam, from the above results, we
can also observe that input and output voltage vary with the vibration of beam, and they
have the same vibrational period with the laminated response. Also, the output voltage
has the 7/2 phasic difference with the input voltage of smart beams. In order to illustrate
the effects of eight-layer smart laminated beam subjecting to the higher frequency of
external force, the following results will be included in this section. For the symmetric
cross-ply, the frequency of applied force is 120 Hz (Figure 5.37), and for the
antisymmetric cross-ply, it will take 100 Hz (Figure 5.38) as the frequency of external
load.
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The effect of feedback control gain under the higher frequency of extemal force is
shown in Figures (5.37) and (5.38). It can be noticed that the amplitude of vibration
reduced quickly. The optimal feedback gain can also be obtained from Figure (5.39),
which is about G; = 70 coulombs/ampere. From all these results, we can find that it still
has a good control purpose for eight-layer of the present beam model even applied by
the higher frequency (120 Hz for the symmetric cross-ply and 100 Hz for the
antisymmetric cross-ply) of external force. The input and output voitage of this case are
also shown in Figures (5.40)~(5.43).

5.3 Conclusions

Advanced ‘intelligent’ structures with integrated sensors, actuators and control
electronics are becoming increasingly important in high-performance space structures
and mechanical systems. In this project, an integrated distributed piezoelectnc
sensor/actuator for laminated composite beams has been proposed. Laminate and
structural mechanics and the corresponding coupled electromechanical model for the
dynamic analysis of smart composite beam structures with embedded piezoelectric
actuators and sensors were developed and described. The governing equation of smart
laminated composite beams and its approximate analytical solutions have also been

presented.

Performance of a beam model coupled with the distributed piezoelectric sensor/actuator
was studied in a force vibration analysis. Distributed dynamic measurement of the
laminated beam was demonstrated and the input and output voitage were studied. It was
observed that the input and output voltage vary with the vibration of beam and there is
n/2 phasic difference between input and output voltage. It was also found that the
reciprocal relationship between piezoelectric sensors and actuators attest to advantage of
contro} algorithms which combine piezoelectric sensors and actuators. Active
distributed vibration suppression and control of the beam was also studied by using
negative velocity feedback control law. It can be observed that the amplitude of beam
vibration damped out very quickly when the feedback control gain increased. The
relation between the amplitude of vibration and feedback contro! gain was also
described and analyzed. From these results, we can approximately estimate the optimal
feedback control gain. An approximate analytical solution was developed for analyzing
system with complicated stiffness couplings, arbitrary boundary conditions, and
external loads. Also, the present beam model is based on the laminated theory.
Obviously, different ply orientations would change the frequency predictions and
control effect.

In this project, three important issues have been presented. Firstly, at the aspect of
mathematical model, the governing equations of the smart laminated composite beam
based on the first order shear deformation theory (Reissner-Mindlin plate theory) has
been derived by introducing the electric potential function. Comparing with the finite
element method which was mentioned in chapter 1, the present govemning equation is
continuous at both fields of space and time. However for the governing equation of the
finite element method, only the field of time is continuous and the field of space is
discrete. From this regard, we can easily find that the governing equation of the finite
element method is a differential equation and the present govemning equation is a partial
differential equation. In general, the solution of present goverming equation will be more
accurate than the fimte element method. Secondly, considenng the aspect of the
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deriving method, the present method creatively introduces a mathematical too! of
complex numbers to reduce the two coupled differential equations to one complex
differential equation and from twelfth-order differential equation to sixth-order
differential equation. This is the first presentation of this method. Finally, from the
aspect of solution, the approximate analytical solution of the smart laminated beam
under the external harmonic vibration loads has been derived. After reviewing the
relative literature, very few papers were found that concentrates on the analytical
solution or exact solution of smart laminated composite beam. The present work focuses
on this approach and can thus be seen as a foundation for future work.

By observing the Figures (5.10)~(5.13), (5.24), (5.32) and (5.39), the mathematical
relation of the amplitude of beam vibration and feedback control gain can be written as

f=41-¢"")+B (5.2)

where f is the amplitude of vibration and G; is the feedback control gain. The
coefficients A, B and « can be determined by choosing three points from the above
graphical results.

It should also be noted that the piezoelectric PVDF used in the distributed
sensor/actuator of the advanced structure has a ‘breakdown’ voltage of around 200
volts. When the feedback voltage exceeds this breakdown voltage, the dipolar molecular
structure of the PVDF will be destroyed. Additionally, the temperature variation in the
piezoelectric crystal could also affect the overall performance, which is not considered
in this project. Also, the performance of other piezoelectric materials, such as PZTs,
needs to be explored further. The present work is based on the beam model, but it also
can be applied to the plate and shell structure. The future work will address this issue.
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Appendix A

Arbitrary Transformation of Constitutive Equations

1. Constitutive equations for piezoelectric composite structures

For an orthotropic laminate, the constitutive equations in the principal material axes
including the piezoelectric effect are given as (Eq. 2.11):

(o, o, Qu o 0 © e,] [0 0 g,
G, Qu Q: 6 0 0 o 0 0 ey £
1Ty =| 0 0 Q.u 0 0 {{Yaf ~|© e 0 E, (A1)
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However, laminates are constructed in such a manner that the principal matenial co-
ordinate system do not coincide with the natural co-ordinate system of the reference

body. Given the constitutive model, we use the transformation QJ =e, e,0,. toobtain

the constitutive model in an arbitrary co-ordinate systemn. We now represent 7;=e, and
Tr=eimejs as first and second order transformation matrices, respectively.

First, we introduce the transformation matrix [7g), [7] and Reuter’s matrix [R], such that
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Our aim is to determine material properties in the arbitrary direction when those in the
principal material co-ordinate are known. Here, some important relationships have been

considered. These transform as follows:
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Using the Reuter’s matrix {R], we can define the following relationships:
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Substituting the expressions {A.3a~d), (A.4a~b) and matrices (T], [Ty], (R] in Egs. (A.1)
and {A.2), we can have
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Expanding the above equations, we can obtain the following constitutive equations as:

where

and
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2. The relations between the coefficients ¢, and g,

n Chapter 2, we have the constitutive equation for smart composite structure in the arbitrary
lirection, such as:
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For the beam problem, we set o, =1,, =7, =0, such that
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From expressions (A.7), we can get
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Substitution of (A.8b), (A.8c) and (A.8a) in the expression g, and 7., respectively, we can get
the following expressions as:
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then, we can obtain the constitutive equations of smart composite beams as:
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Calculation of Derivative Operators

From chapter 3, we have the derivative operators as
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then the following derivative operators will be calculated.
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Appendix B: Calculation of Derivative Operators B.2
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Appendix C
Input and Output Files of MATLAB

Input file
K0=dsolve('A6*D6K+A4*D4K+A2*D2K+A0*K=0",'x"}

Output file
Ko =

C1*exp(1/6/A6/(36* A2*A4*A6-108* A0*A6"2-8* A4"3+12*37(1/2)*(4* A2"3* A6-
A272*A4M2-

18*A2* A4*AG*AQ+27* A0 2* A6 2+4* A0* A473)*(1/2)* A6) (1/3)*37(1/2)* 2~(1/2)%(
-A6*(36*A2* A4*A6-108*A0* A6 2-8*A4"3+12*37(1/2)*(4* A2"I*A6-A2"2* A4"2-
18*A2* A4*AG*AO+2T*AQ 22 A6 2+4* A0 A4 3N (1/2)*A6)N(1/3)*(2*A4* (36" A2*A
4*A6-108*A0*A6°2-8*A4"3+]12*3M1/2)*(4*A273*A6-A2"2* Ad"2-
18*A2*A4*AG*AO+2T*AD2* A6 2+4* A0 A4 3 (1/2)* A6)" (1/3)-(36® A2* A4* A6-
108*A0*A6"2-8*Ad”3+12*3~(1/2)*(4* A2"3* A6-A2"2* A4 2-

18*A2*A4*AG*AO+27T* A0 2* A6 2+4* AD* A4 3Y (1/2)* AG)™(2/3)+12* A2* A6-

4* AAr)N(1/2)*x)+C2%exp(-1/6/A6/(36* A2* A4* A6-108*A0* A6"2-
8*A4"3+12%37(1/2)*(4* A2 3*A6-A2"2*Ad"2-
1S¥A2*A4*AG*AQ+27*AD 2 A6 2+4* A0 A4 3) M (172)*A6) (17312371722~ {172y%(
-A6*(36*A2*A4*A6-108*A0*A6"2-8*A4"3+12%37(1/2)*(4*A2"I*A6-A2"2* A4"2-
18*A2*A4*AG*ADH27*AD 22 AG 2 H4T A ASN3)M1/2)*A6)N(1/3)* (2* A4*(36* A2*A
4*A6-108*A0* A6 2-8* A4 3+]12*37(1/2)*(4* A2"3* AG-A2"2* A4"2-
18*A2*A4*AG*AGHT* AN 2* A6 2+4* A0* A4 3)(1/2)* A6) (1/3)-(36*A2* Ad* AG-
108*A0* A6 2-8*A4~3+12*37(1/2)*(4* A2 3* A6-A2"2* A4~ 2-

18*A2* A4*AG*AQ+H27* A0 2* A6 2+4* A0*A4°3) (1/2)* A6 (2/3)+12* A2* A6-

4* A4 )N (1/2)*x)+C3*exp(-1/3/A6/(36*A2* A4* A6-108* A0* A6"2-
8*A4A3+12438(1/2)*(4* A2 3*A6-A2"2*A4"2-

IS*A2* A4*AG*ACGH2TRADZ*AG 2 HATAD* A4 IV (1/2)* A6 (1/3)*37(1/2)*(~

Q* A2 AL*AGN 22T AP A6 342 A4 3 A6-3*37(1/2)* (4* A2 3* AG-A2"2* A4"2-
18*A2*A4*AGTAQ+27* A0 2* A6 2+4* A0* A473(1/2)* A6 24+3* A6 2% (36 A2* A4
AG-108*A0*A6"M2-8%A473+12%3%(1/2)*(4* A2"3*A6-A2"2* A4 2-
18*A2*AA*AG*AQ27* A0 2* A6 2+4% A0* A4 3 (1/2)*A6)"(1/3)*A2-
AG*(36*A2*A4*A6-108*A0* A6 2-8* A4 I+ 273 (1/2)*(4* A2 3* A6-A2"2* A4"2-
18*A2* A4*AG*AQ+2T* A2 A6 2+4* A0* A4 3 (1/2)*A6)(1/3)* A4"2-
A6*(36*A2*A4*A6-108*A0* A0 2-8*A4"3+12*37(172)*(4* A2"3* A6-A2"2* A4"2-

18*A2* A4*AG*AQH2T*AGZ*AG"2+4* A0* A4 3)(1/2)*A6)(2/3)* Ad-
GH*FAGI*IN(1/2)* A2* A4+27%1* A6 3 IN(1/2)* AD+2%1* A6*3M1/2)* A4"3-
O%*AG"2%(4*A273*A6-A2"2* A4

18*A2* A4*AG*ADH2T* A0 2% A6 2+4* A0* A4 3)N(172)-3%1* A6 2% (36* A2* A4* Ab-

108* A0*A6™2-8* A4 3+12234(1/2)*(4* A273* AB-A2"2* A4 2-

18*A2* A4 AG*ACGH27*AD M 2* A6 2+4* A0* A4 IV (1/2)* A6 (1/3)*3M(1/2)* A2+1* A6



Appendix C: Input and Output files of MATLAB C2

*(36*A2¥A4* AG-108* A0*AG"2-8* A4 3+12%37(1/2)*(4* A273* A6-A2°2* A4™2-
18*A2* Ad*AG*AO+2T* A0 2* A6 2+4* A0* A4 3YN(1/2)* A6YN(1/3)*37(1/2)* A4 2)~ (1
12y x)+CA*exp(1/3/A6/(36*A2* A4* AG-108* AD*A6"2-
8*A4N3+12%37(1/2)*(4* A2/ 3* A6-A2 2* A4 2-

18%A2¥ A4*AG* AQ+2T*AD"2* A6 2+4% A0* A4~ 3YN(1/2)* A6YN(1/3)* 37 (1/2)*(-

OF AT*AL* AGA2+2THAD* AGA3+2* A4N3* AG-3*3A(1/2)*(4* A273* AG-A2"2* A4™2-
18¥A2* A4*AG* AQ+2T+AD N 2* A6 2+4* A0* A4~ 3)N(1/2)* A6 2+3* A6 2*(36* A2* Ad*
A6-108*A0* A6 2-8% A4~ 3+12*37(1/2)*(4* A2"3*A6-A2"2* A4 2-

18%A2*A4*A6* AOH27T*A0N2* A6 2+4* A0* A4~3) (1/2)*A6YN(1/3)* A2-
AG*(36*A2* Ad* AG-108* A0*A672-8* A4~ 3+12%3N1/2)X (4% A2 3% A6-A2"2* A4"2-
18*A2*A4*AG*AD+27* A0 2+ A6 2+4* A0* A4 3N (1/2)* A6)(1/3)* A4"2-
AG*(36*A2* Ad* AG-108* A0*A6°2-8* A4~ 3+12%37(1/2)*(4*A2"3* A6-A2"2* Ad"2-
18*A2* A4*AG*ADH2T*AD2* A6 2+4* A0* A4 3N(1/2)* A6 ) (2/3)*Ad-

%% A6 2¥3N(1/2)* A2* A4+2TH* A6 3*3M(1/2)* AD+ 2% * A6*37(1/2)* A4 3-

O*i* A6 2*(4* A2 3¥A6-A2 2+ A4N2-

18*A2* A4*A6* AO+2T+A0"2* A6 2+4* A0* A4~ 3)N(1/2)-3*1* A672*(36* A2* A4* AG-
108*A0* A6 2-8* AdA3+12%37(1/2)*(4* A2 3* A6-A2"2* A4"2-

18*A2* A4*AG* AO+2T*AD 2* A6 2+4* A0* A4 3N (1/2)* A6 (1/3)*37(1/2)* A2+i* A6
*(36*A2* Ad* A6-108*A0* A6 2-8* A4 3+12%37(1/2)*(4* A2 3% A6-A2"2* A4™2-
18*A2*A4*AG* AO+2TFAD 2* A 2+4* A0* A4~ 3)N(1/2)* A6 (1/3)* 37 (1/2)* A4~ 2) (1
/2)*x)+C5%exp(1/3/A6/(36* A2* A4* AG-108* A0* A6"2-

8% A4r3+12%37(1/2)*(4* A273* A6-A2"2* A4"2-

18*A2* A4*AG*AD+2T*AD 2* A6 2+4* A0* A43WN(1/2)* A6YN(1/3)*37(1/2)*(-

0% AD* A4* A6 2+2TFAD* A6 3H2* A4N3*AG-3%37(1/2)%(4* A2 3* AG-A2"2* A4 2-
18%A2*A4* AG*AD+27* A0 2* A6 2+4* AO* A4 )N (1/2)* A6 2+3% A6 2* (36* A2* A4+
A6-108*A0* A6 2-8* A4~ 3+12%37(1/2)*(4* A23* AG-A2 2* Ad™2-
18*A2*A4*AG* AD+2T* A 2* A6 2+4* A0* A4~ 3)N(1/2)*AGY(1/3)* A2-
A6*(36*A2¥A4*A6-108* A0*A6"2-8* A4"3+12%34(1/2)*(4* A2"3* A6-A2"2* Ad"2-
18*A2*A4* AG*AD+2T*A02* A6 2+4* AD* A4 3)N(1/2)* A6) (1/3)* Ad™2-
A6*(36*A2*A4*A6-108*A0* A6 2-8* Ad"3+12%3N(1/2)*(4* A2 3*A6-A2"2* A4"2-
18*A2*A4* A6+ AD+2T* A0 2* A6 2+4* A0* A4 3)N(1/2)* A6 (2/3)* A4+9%i* AG 2% 37
(172)* A2* A4-27*i* A6"3*37(1/2)* A0-2*1* A6*37(1/2)* A4 3+9%* AG 2% (4* A2 3* AG-
A272%A42-

18* A2 A4*AG* A0+ 27* A0 2* AG 2+4* A0* A4 3N (1/2)+3** A6 2* (36* A2* A4* AG-
108* AO*A672-8* A4 3+12*37(1/2)*(4* A2~ 3* A6-A2"2* Ad"2-
18*AZ*A4*AG*AO+2T* A0 2* A6 2+4* A0* A4~ 3)N(1/2)*A6) (1/3)*37(1/2)* A2-

i* AG*(36*A2*A4* AG-108* A0 AG 2-8* A4 3+12%37(1/2)*(4* A2/ 3* A6-A2"2* Ad~2-
18*A2* A4*AG*AD+2TFADA2* A6 N 2+H4* AO* A4N3)N(1/2)* A6)N(1/3)*3~(1/2)* A4~2)~ (1
12)*x)+C6*exp(-1/3/A6/(36* A2* A4*A6-108* AD* A6"2-

8* Adr3+12%37N(1/2)*(4* A2°3* A6-A2/2* Adr2-

18*A2* A4*AG*AD+2T* A0 2* A6 2+4* AO* A4 3YN(1/2)* AGY (1/3)*37(1/2)*(-

9% ADF AL AG2+2TFAD* A6 3+2* A4NI*AG-3*37(1/2)*(4* A2 3* A6-A2 2+ Ad"2-
18*A2*A4*AG* ADH2T*AD"2* A6"2+4* AD* A4 3)N(1/2)* A6 2+3* A6 2*(36* A2* A4+
A6-108*A0*AG"2-8* A473+12%37N(1/2)*(4* A2 3* A6-A2"2* Ad~2-
18*A2*A4*AG* AD+2T* A0 2* A6 2+4* A0* A4"3)7(1/2)* A6) (1/3)* A2-
AG*(36*A2*A4*AG-108*A0* A6 2-8* A4 3+12%37(1/2)%(4* A2 3* AG-A2 2+ A42-
18*A2*A4*AG*AG+27* A0 2* A6 2+4* A0* A4 3)N(1/2)* A6Y (1/3)* Ad~2-

A6*(36*A2* A4* AG-108*A0* A6™2-8* A4~ 3+12*37(1/2)*(4* A2 3* A6-A272* Ad"2-
18*A2* A4*AG*ADH27* A0 2* A6 2+4* A0* A4 3)N(1/2)* AG)N(2/3)* Ad+O%i* A6 2*3"



Appendix C: Input and Quput files of MATLAB C.3

(1/2)*A2* A4-27** A673#37(1/2)* AD-2%* AG*37(1/2)* Ad~3+9%{* AG" 2*(4* A2 3* AG-
A2N2*A4ND.

18* A2* Ad* AG* AQ+2T* ALY 2* AGAT+4* AD* A4 3 (1/2)+3*1* A6 2*(36* A2* Ad* A6-
108*A0* AG2-8* A4 3+12*%37(1/2)*(4* A2°3* A6-A2"2* A4~2-

18*A2* A4* AG* AG+2T*ADN2* A6 2+4* A0* A4 3YN(1/2)* A6)(1/3)*37(1/2)* A2-
i*AG6*(36*A2*A4* AG-108* A0* AG"2-8* A4"3+12%37(1/2)*(4* A2 3* A6-A2"2* A4"2-
18*A2* A4*AG* AD+27*A0A2* AG2+H4* A0* A4~ 3)N(1/2)* A6)N(1/3)*37(1/2)* Ad~2)~(1
12)*x)
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