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Abstract

Title of the Thesis: Finite Elements and Dynamic Hardness to

Develop a Small Punch Test

Degree Candidate: Simphiwe Ngabisa
Degree and Year: Master of Technology, 2005
Thesis directed by: Mr. W Kohlhofer

A Small Punch Test is a non-destructive technique for evaluating mechanical behaviour.
The main advantage of this testing technique is the fact that material can be extracted
from a component in service due to the small dimensions of the specimens. Typical test

specimens cut from components are similar in size to a normal human fingernail.

The aim of this thesis is to use finite elements analysis (FEA) as well as dynamic
hardness principles to develop a Small Punch Test. The obtained parameters are used as
input in shape sensitivity and specimen simulation when using the finite element method
(FEM). A Small Punch was constructed and retrofitted into the university’s existing

tensile test.

The Marc Mentat (FEA) program was used to model four different shapes of indenters
for the purpose of selecting a suitable indenter to be used in the Small Punch test. A
circular shape and a pyramidal shape were found to be the optimal shapes to be used for
the Small Punch indenter. Hardness testing experiment was performed using an impact

test to validate the finite elements results.

. Experimental analysis models for two types of materials namely; aluminum and mild
steel were developed and a tungsten carbide circular indenter was used during the Small
Punch testing. Small Punch test and tensile test results were compared to prove that the

Small Punch Test is an attractive method of evaluating mechanical behavior.



Nomenclature

‘There are many symbols or notations used for vectors, matrices and tensors. In this
thesis no distinction is made in the notation if there is a physical quantity such as a vector
or tensor or if it is a non-physical array of quantities that is written down in matrix form.
The notation used is either vector-matrix form or index notation depending on what is
most convenient. When index notation is used, summation convention

(aibi =a;b, +a,b, + a3b3) for tensors is used also. Symbols with special meaning, such
as forces, displacement and so forth are explained when they are first presented in the
text.

Scalars or tensors of zero order are written in italics, usually in lower case such as a
Vectors or tensors of rank one are written in boldface upright font, such as v, or in
indicial notation asv,. Usually in lower case letters. Vector components are written as

V=V, |, v =(v,,¥,,V,) L and Y

Here, T means the transpose of the column vector, v, means any of the three vector

components and (v, ) means all the components.

Matrix form or index form are used for tensors of rank two. Either with bold face upper
case letters, such as S or italic letter S. Components are (usually) written in lowercase

italic letter such as m. Writing out the components of a matrix or a tensor is done as

M, M, M; M, M, My
M=M, M, M,;}; M'=M, M, M;| m, and
M; M Mg, M;; M, M,

M. and the meaning is the same as for vectors, with T for transpose, m;

referring to any of the nine components and (M;) all components.
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The usual Cartesian coordinate system OX;X,Xs, has an orthogonal set of base vectors

written with a ‘hat’ above the letter or an underscore underneath the letter.

A

{€,,€,,8,} or simply {€,} and "éi” =1

The ‘hat’ is used as a general symbol for a unit vector here, to emphasize that a vector is
of unit length. Base vectors not of unit length are simply written as e, , with roman index.
A vector in this particular case is then written in component base vector form as
v=v,€, +V,€, +V,€,
=V
=(v;)

and a matrix as

M=¢m, e +em,@e,+..+tem, e, +€.m,.€e,

o>

m,
M

Il
o>

i

>

DLE.E;

M)

In the last expression the generalized tensor product or dyad product (&, ® €, =¢, -€,) of

two vectors are utilized. In a rectangular Cartesian coordinate system the base vectors
can be used to introduce two useful symbols. The dot product between two base vectors
is
ifi=j
M ={ 10 if;s;
where 8, is well known as the Kronecker Delta. The other symbol is defined by the
vector-or cross-product of two base vectors which is
I k=123 23,1:3,12
e xé =¢,€&  where gy =4-1if ijk =3,2,1;2,1,3;1,3,2
0 if i=j,i=k j=k
The latter symbol (&, ) is well known as permutation symbol. The dot and the cross

products of vectors can be compactly written;




The components
W=w-¢€
=U; Vg €, -€
= uivjsijkakl

=UViEy

Any other special notation will be clarified when it is used in the text.

and
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Chapter 1

Introduction

The work documented in this thesis consists of three interconnected parts: first a theoretical
background related to the description of Hardness Testing, secondly an experimental study to
compare the traditional tensile and hardness results with the proposed Small Punch test results, lastly
a part including numerical computer simulation of the Small Punch experiment using the finite

element method.

Almost all branches of engineering, especially those dealing with structures and machines are closely
concerned with materials, the properties of which must be determined by tests. Although requisite
design and fabrication procedures are listed in the appropriate specifications so that critical plant
components enter service in a safe condition, nuclear power plants, chemical and petrochemical
plants are subject to severe environments in which materials degenerate by time dependant

degradation mechanisms, Penny (1995).

Such material degeneration leads to crack initiation and propagation and can, in severe cases, bring
about rapid or catastrophic failure once the crack reaches a critical size. The structural integrity of
any industrial plant is necessary to be assured that catastrophic failures can be prevented or at least
minimised. To assure the structural integrity, frequent inspections for flaws are made using the

procedures specified in the ASME Boiler and Pressure Vessel Code, Section XI (ASME 2001).

The use of metals in every phase of civilization relies on their ability to withstand the stresses
encountered in service without breaking, plastically deforming, or weakening. No characteristic of a
metal is more important than its response to applied stress. Engineers, designers and manufacturers
are constantly aware that machinery, engines, tools, structures both large and small, and instruments
of all kinds must be designed with the knowledge in mind of the mechanical properties of the metals

they contain and the property changes that might occur in-service.
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There is determined effort to discover the basic mechanisms that operate when a metal responds to a
constantly applied stress and to device theories and equations that can quantitatively account for this

response and predict it under all conditions that would be encountered in-service

The Small Punch testing technique is an attractive method for évaluating mechanical properties at
different levels of degradation of material/component service life. The main advantage of this
testing technique is the fact that material can be extracted and tested from a component while it is in
service. Specimens to be tested have small dimensions and thus do not introduce damage or cause
weakening of components. Upon removal of these specimens, components do not require post repair
procedures such as that required with other kinds of destructive testing techniques. This makes the
Small Punch test a non-destructive mechanical test, Ngabisa (2003). Typical test specimens cut from
components are similar in size and thickness to a normal human fingernail. These techniques were
invented in the United States of America in 1981, and explored in Japan in the early 80’s. America
progressed in this technology since the mid 80’s and then it was introduced to Europe in the early

90’s for tests on high strength steels, Foulds (1995).

When a metal responds to a constantly applied stress and an elevated temperature, a continuum
damage approach is widely used to show that the governing equations can quantitatively account for

this response. This would also encompass the various Finite Element Analyses to be performed.
1.1  Background Information

Over the last decades, many techniques applied on non-standard small specimens have been
developed to extract a multitude of mechanical and physical properties i.e. yield strength, ultimate
tensile strength, Young’s Modulus, Ductility, etc. The use of small-scale techniques for mechanical
testing of materials is now spreading through out ’the world. The Small Punch test technique (also
known as the miniaturised disc bend test) is a tool for measuring mechanical characteristics of

materials extracted from components during their operation, Manahan et al. (1986).

The technique has been used mainly for the determination of fracture toughness, and to the
estimation of mechanical properties such as yield stress and ultimate tensile stress, Foulds et al.
(1995) & Dobes et al. (2002). For this purpose Small Punch with a constant displacement rate will

be developed and used.
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In the field of Small Punch testing the finite element analysis (FEA) is a simulation instrument,
which is widely used. The FEM is considered to be the most powerful tool because it can handle
large degrees of freedom simulations with a wide range of working conditions. The simulation of a
Small Punch is a complex problem. The process involves non-linear parts such as material
deformation, history dependant material behaviour and contact phenomena. Accepting that the finite
element analysis (FEA) is the solution of a mathematical model of structural‘ behaviour, the
implication must be that the solution is an approximated answer. One part of the simulation is the
modelling of the material behaviour. This field is generally established on the principles of
continuum mechanics and there are a number of constitutive models to choose from when
performing a FEA. In order to get reliable results from a Small Pﬁﬁch s_irﬁulation, one important

precondition is that the material model is representative.

The development of the Small Punch test is a process involving several steps also depending on
the intended use. Generally it involves construction of a specimen holder, indenter or a punch
rod its holder and the specimen to be tested. Then, these components are assembled together and
retrofitted on a tensile or fatigue tester. During the testing phase a specimen is indented using a
high strength indenter (tungsten carbide) and a load displacement curve is deduced as an output

result.

A load—displacement curve from the Small Punch test includes useful information that is related
to the standard test properties such as the tensile property, fracture toughness and ductile-brittle
transition temperature. Some early works have focused on obtaining empirical correlations
between the transition temperatures from the Small Punch test and the fracture appearance
transition temperature (FATT) or ductile-brittle transition temperature (DBTT) from the Charpy
test (Bulloch, 1998; Baik et al., 1983; McNaney et al., 1991; Misawa et al., 1987; Joo et al., 1992;
Saucedo-Munoz et al., 2000).

In the mid 90’s Foulds et al. (1995) developed an analytical method for directly measuring the
fracture toughness from the Small Punch test by calculating the local strain energy in the Small
Punch specimen. But these empirical and analytical approaches for predicting the standard
properties have been mostly made for the unirradiated materials while an application for the

irradiated materials to predict the transition temperature shifts (TTS) by irradiation is limited.
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1.2  Statement of Problem

Materials and components enter service with a safe design stress. = When these materials are
subjected to constant or cyélic mechanical and thermal loading, time dependant degradation of the
material’s yield stress occurs. Time dependant degradation weakens and deteriorates the materials
yield stresses. When the yield stress degrades to a point where it becomes equal to the working

stress, catastrophic failure occurs.

Japanese scientists performed degradation experiments on several high strength steels that are used
in power plants, chemical and petrochemical industries.  During these experiments, a material
specimen were placed in a furnace and heated to some elevated temperature. The material specimen
was left in the furnace at the given temperature and a tensile load was applied to it for the entire time
duration of the experiment. =~ Some of these experiments continued for up to 20 years. Test
specimens were removed from the material specimens at different time intervals and mechanical
testing was performed on these test specimens to determine yield stress values. A set of yield stress
data points were obtained for different materials being subjected to this kind of load (thermal and
mechanical)-time degradation experiment. The yield stress data points were plotted as a function of
time and an example of such a graph is given in fig. 1 (yield stress-time represented by triangular
points). Penny et al (2005) developed a mathematical tool to fit two functions to these yield stress
data points. Their investigations provided two mathematical functions that would best fit these data
points and describe the yield stress degradation phenomena observed in engineering steels. These
two mathematical functions are represented by a straight-line curve and the logarithmic curve (see
fig. 1.1). These two curves are on a logarithmic scale. Where these two curves meet it is
hypothesised that an optimum yield stress degradation point occurs. Furthermore it is hypothesized
that this optimum point represents the starting point of rapid degradation. This means that the
degradation rate of a material’s yield stress before it reaches the optimum point is relatively slow

compared to the degradation rate after the optimum point has been reached, Penny (2005).

Fig.1.2 shows the plotted yield stress values as a function of time for an 18 Cr10NiTi stainless steel
Subjected to a tensile stress of 90 MPa while being kept at a constant temperature of 630°C. The
two fitted mathematical functions can also be observed and as stated previously, the point at which
these two fitted curves intersect represents the optimal yield stress degradation point. This example

of a stress-time graph is considered to illustrate the yield stress degeneration phenomenon as a
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function of static thermal and mechanical loading. The stress in the vertical axis is the yield stress
of the material when it enters service. The vertical and horizontal dotted lines represent the time and

yield stress respectively at this optimal point.

A study of this graph shows that when the material is just put into service, it will display minute

deterioration, i.e. between 10 and 100 hours (a day to five days) deterioration is infinitesimal.

The material starts to degenerate between 100 and 1000 hours (period where optimal point is
reached) and inspections for flaws and other deterioration factors can be recommended to be
performed at least once a year. The recommendations are based on a simple calculation (e.g. if
a tensile test is conducted after say 500 hours and a yield stress value is found to be say 80 MPa
Then the testing time (500h) is subtracted from time to failure (100 000) to give the remaining
life span which in this case is 11 years, Penny (2005).

Furthermore when the material’s life span is between 1000 and 10 000 hours (a month to a year)
it is still in a safe region and inspections for flaws should be done on a semester basis. When the
life span of the material is between 10 000 and 100 000 hours inspections for flaws other

deterioration factors must be done frequently on a trimester base.

¥ 3
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Figure 1.1: Yield stress deterioration given as a function of time for most engineering materials
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These recommendations are for this particular example and are made just to demonstrate how
very useful the stress time graph can be used in conjunction with the Small Punch test results to

predict the remaining life of a component.

100
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/Stress Value
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< .
= i
= | Q

w ! :
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% Deterioration takes place in this direction \

10 E

10 100 1000 10 000 100 000

Time (hours)

Figure 1.2: Yield stress deterioration given as a function of time for an 18 Cr10NiTi stainless steel

The Small Punch testing technique is an attractive method for evaluating mechanical properties
such as the yield stress at different levels of degradation of material/component service life. The
main advantage of this testing technique is the fact that material can be extracted and tested from

a component while it is in service.

The yield stress values obtained from the Small Punch test can be used in conjunction with the
plots similar plots to fig.1 to determine two very important parameters. These include the
initialization of the design (i.e., when it was initially put into service) and remaining life
CXpectancy.  Most heavy plant EpOWCI‘ generation, petroleum refining and petro-chemical
industries) has been placed into service many years ago. One of the problems encountered today

with regards to maintenance planning for these plants is that no clear records exist for their design
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parameters. The yield stress obtained from the Small Punch can thus give an indication of the

age of a plant and then a calculation of its life expectancy can be obtained.

The importance of the Small Punch test is the fact that when the specimen is scooped it does not
damage, weaken, or tamper with the bulk material properties. The test can be performed in a
short reasonable amount of time. When the miniature specimen is scooped it is then punched (in
a similar procedure to that of a hardness test) to produce a load-displacement curve. From the
load-displacement curve a yield stress value is obtained which then is laid over stress-time similar
to the plot in figure 1 of that particular material. A corresponding time value is then read from
the stress-time graph which is then used to predict the remaining life span of that material. Also,
based on the predicted remaining life span, recommendations for inspections and for preventative

maintenance are made.
1.3  Objectives of the Thesis

The main objective of this study is to manufacture and test the first South African Small Punch
test. This Small Punch test will assist in the maintenance planning of our local heavy plant, i.e.,
power generation, petroleum refining and petro-chemical industries. This section thus described

how this objective will be achieved.

e An initial investigation into material deterioration factors will be conducted. This should
inform on current technologies being used and how the Small Punch test compares with
them.

e Secondly an investigation into the working characteristics of the Small Punch test will be
conducted. This will inform on the procedures to use when the manufacture and testing of
Small Punch test has to occur.

e Thirdly, an investigation into an optimal indenter shape for the Small Punch test will be
performed. Here we will employ the use of finite element procedures, since the cost
involved with these kinds of test could be overwhelming.

e The forth step would be to manufacture the Small Punch test. Certain components of our
Small Punch test will be manufactured while other components will be standard. The idea

would be to retrofit the manufactured components to the tensile testing machine housed in
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the Strength of Materials Laboratory in the Department of Mechanical Engineering
(Bellville Campus) at the Cape Peninsula University of Technology.
e The fifth and last step would be to conduct experimental investigations into the
performance of the Small Punch test.
o The results will be presented as load-displacement curves. These results should be
similar existing Small Punch test results.

o The results should clearly indicate the yield load of material specimens tested.

o The results obtained from these investigations should inform if our approach
meets the requirements for Small Punch tests.

o Use FEA to simulate various tester designs.

o Furthermore the results should provide recommendations on how to improve our

initial design.

1.4 Structure of the Thesis

This thesis is composed of six chapters. Chapter 1 is an introduction to the study and background
information of a Small Punch Test. A literature review including principles of hardness test and
application of Small Punch tests are presented in Chapter 2. In Chapter3, a process modeling and
some theoretical aspects including material deformation are thoroughly discussed. Experiments
and the equipment used to obtain the results are presented in Chapter 4. In Chapter 5, results and
discussion of hardness and Small Punch testing are presented. In Chapter 6, conclusions and

recommendations are presented.
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Chapter 2

Literature Review

The following literature review gives an overview of a Small Punch testing technique its applications
and limitations. As a point of departure, it starts off by defining principles of hardness testing and
then the Small Punch technique to be used. These hardness principles are to be well understood as to
be applied in the Small Punch test. The purpose of gaining insights to hardness principles is the fact
that Small Punch operates in the same principle as the dynamic hardness. Furthermo-re impact

hardness is used later in this work to validate FEA results.
2.1 Hardness — A Definition

Hardness is a term, which has different meanings in different situations. It may mean a resistance to
penetration Davis, et al. (1964), resistance to wear Lipson, (1967) or a measure of flow O’Neill
(1967). Despite the fact that these processes appear different in quality, they are all related to the

plastic flow of the material.

The hardness of a material may be expressed in terms of the elastic and plastic properties of that
material. This indicates that there is a relation between the hardness and the other material

properties: e.g. yield strength. In this thesis hardness will be referred to as a measure of flow.
2.1.1 Scratch hardness

Mineralogists developed this type of hardness and it is the oldest form of hardness measurement,
which was developed, in the early 1800’s. It depends on the ability of one solid to scratch another.
This method was first put on a semi scientific and experimental basis by Mohs (1822), who selected
ten minerals as standards commencing with talc (scratch hardnessl) and ending with diamond

(scratch hardness 10). Some classical values in ascending order of hardness are given in table 2.1

below.
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However, mineralogist and lapidaries broadly use the Mohs hardness scale. It is not suited for metals
since its intervals are not well spaced in higher ranges of hardness. The scratching process is a
complicated function of the elastic, plastic, and friction properties of surfaces that the method is not

practical and does not lend to a theoretical analysis.

Table2.1: Mohs hardness scale

Material Mohs Material Mohs Material Mohs
(Minerals) (Hardness (Metals) (Hardness)| (Miscellaneous) (Hardness
Talc 1 ) Lead 1S Mg (OH) 3 1.5
Gypsum 2 Tin, cadmium 2 Fingernail 2-25
Calcite 9 Aluminium 2.3-29 C,20 3.5-4
Fluorite 4 Gold, Mg, Zn 2.5 ZnO 4-4.5
Apatite 5 Silver 2 Mn304 5-5.5
Orthoclase | 6 Antimony 3 Fe O3 5.5-6
Quartz 7 Copper 3 MgO 6
Topaz 8 Iron 3.5-4.5 Mn,O5 6.5
Corundum |9 Nickel 3.5-5 SnO; 6.5
Diamond 10 Chromium (soft) | 4.5 Martensite 6.5-7
Cobalt 5 MoC 7
Rhodium 6 VaCs 7-8
Osmium 7 1€ 8
Tantalum i 8-9
Tungsten 7
Silicon 7
Manganese 7 Al,O3 (sapphire) |9
Chromium 8 Mo,C; SiC; VC 9-10
Case-hardened stq 8 Boron diamond 10+

Thus, if a mineral is scratched by Orthoclase but not by Apatite, its Mohs hardness is interpolated
between 5 and 6. In the determination procedure it is necessary to make sure that a scratch is
actually made and not just a “chalk” mark that will rub off. If the species being tested is fine-grained

or friable the test may only loosen grain without testing individual mineral surfaces. Supplements to
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the mineral scale include the fingernail (27); a copper coin (about 3); a pocket-knife blade (5%);
window glass (5 2); and a steel file (6 12).

2.1.2 Static indentation hardness

This is the most commonly used method in determining the hardness of metals. This method also
involves formation of a permanent indentation in the surface of the metal to be examined, the
hardness being determined by the load and the size of the indentation formed. In the Brinell test
(1900), Meyer (1908) the indenter consists of a hard steel ball, though in examining very hard metals

the circular indenter may be made of diamond or tungsten carbide.

Another type of indenter that is used widely is the circular shape used by Ludwik (1908) and the
Vickers hardness tests. Other types of indenters have been described, but they are not widely used
and do not involve new principles. For this reason my discussion will be restricted to circular
indenters, flat surface indenter, wedge and a pyramidal indenter. Furthermore, a finite element
analysis was performed for the above-mentioned small indenters to account for the discussion. The

discussion for indenter simulations will follow in chapter 4 which deals with process modelling.

The Brinell hardness test is the oldest of the hardness test and the most commonly used today for the
determination of hardness for metallic material. The test is frequently used to determine the hardness
of forging and the castings that have a grain structure that is too course for the Rockwell or Vickers
hardness testing. However, the Brinell test is conducted on large parts of the material in question by
varying the test force and the ball size. Indentation diameters must be read using a microscope. The
hardness number corresponding to a particular indentation diameter is read off from a table in which
load, indenter size, indentation sizes, and hardness numbers are correlated. It is often difficult to
read indentation diameters accurately as sinking or piling often occur around the indentation. This

test can be used on any metallic materials.
Advantages of the Brinell test
(a) One scale covers the entire hardness range although compatible results can be obtained if the

ball size and test force relationship is the same.

(D) There is a wide range of test forces and ball sizes to suit every application.
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The Brinell test suffers from serious disadvantages

(a) The main weakness of this test is the need to optically measure the indent size.

(b) The process is very slow and the sample preparation is much slower than the actual testing
(c) It produces a fairly large indentation, particularly on soft materials

(d) It cannot be used near the edge of the specimen.

(e) It cannot be used on thin metals since the reactions from the test anvil might influence the test

results

However, irrespective of these limitations, it does give a linear scale of hardness and is particularly
useful for my research work. It is rarely employed for production testing since it takes time, requires

expensive equipment and leaves large indentations on the work.

The Vickers hardness test method consists of indenting the test material with a diamond indenter, in
the form of a right pyramid with a square base and an angle 136° between opposite faces. The
hardness number is equal to the load divided by the product of the lengths of the diagonals of the
square impression. The Shore scleroscope measures hardness in terms of the elasticity of the
material. A diamond-tipped hammer in a graduated glass tube is allowed to fall from a known height
on the specimen to be tested, and the hardness number depends on the height to which the hammer
rebounds; the harder the material, the higher the rebound. The advantages of this test are that the test
is rapid, accurate, suitable for metals as 0.15mm, can be used up for values exceeding 800 Brinell,
and is most suitable for determining the hardness of case-hardened or nitrated surfaces, only one type
of indenter is used for all types of metals and surface treatments. The test is also thoroughly
adaptable and very precise for testing the softness and hardness materials under varying loads. The
main disadvantage to this test is that the Vickers machine is a floor standing machine that is more

expensive than the Brinell or Rockwell machines.

Furthermore, it should be noted that the performance of this test might lead to indenters deforming.
Thus, it is of particular interest to note that the indenter itself may be deformed or permanently
deform in the course of the indentation process. I would have to accept that for soft metals the
indenter will be deformed elastically, but for harder metals some permanent deformation may occur

if this happens during the application.
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2.1.3 Dynamic hardness

Dynamic hardness can be defined with static hardness as metal resistance to local indentation when a
fast moving indenter prodﬁces an indentation. In practical terms/method this can simply be
explained as, an indenter that is allowed to fall under gravity on to the metal surface. The indenter
will rebound to a certain height and leave an indentation on the surface. It should be noticed that it is
assumed that Young’s modulus for the indenter metal is the same as for static conditions. This type
of hardness measurement involves the dynamic deformation or indentation of the metal specimen. In
this type of hardness, an indenter is dropped on the metal surface and the hardness is expressed in
terms of impact energy and the remaining indentation size Martel, (1895). Shore, (1918) in his

rebound scleroscope the hardness is expressed in terms of the height of rebound of indentation.

A typical example of a dynamic hardness test is the Scleroscope hardness test. This test consists of
dropping a diamond tipped hammer, which falls in a glass tube under the force of its own weight
from a fixed height, onto the test specimen. The test measures hardness in terms of the elasticity of
the material and the hardness number depending on the height to which the hammer rebounds. The
harder the material then the higher would be the rebound. Advantages of this method are its

portability and the non-marking of the test surface.
214 Comparison of Static and Dynamic Hardness

The dynamic hardness of a metal is the pressure with which it resists local indentation by a fast
moving indenter. Under usual experimental conditions, where the speed of impact is not too large,
the dynamic yield pressure is of the same order of magnitude as the static yield pressure so that, as
with static hardness is essentially a measure of the elastic limit or yield stress of the metal. The
dynamic yield pressure is always greater than the static yield pressure, Tabor (1951). Dynamic
hardness values determined from rebound measurements will yield values which are close to those
obtained in static measurements. The dynamic hardness values of hard metals are of the order of a
few percent, but with soft metals the difference may be much more marked and will increase with the

velocity of impact.
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2.1.5 Practical Applications of Hardness

Hardness tests have a broad field of use, although as commercial tests they are possibly used on

metals than any other class of materials. The hardness tests phenomenon may be used as follows:

Similar materials may be arranged in a sequence of grades according to hardness, and a specific
grade may be specified for some type of service. The degree of hardness chosen depends, on
experience with materials under a given service, and not upon any fundamental implication of
hardness number. It is also noted that the observed hardness number cannot be utilised directly in
design or analysis as can tensile strength for example.

Hardness tests can be used for products or materials quality control. They may be utilised to
determine the consistency or uniformity throughout the structure of the samples of metal or the
uniformity of results of some treatment such as forming, heat treatment or alloying.

When correlation between hardness and tensile strength is well established, simple hardness tests
may serve to control the uniformity of the tensile strength and to indicate whether more complete
tests are justified. It should also be noted that the correlation apply only over a range of materials on
which tests have previously been made; heavy reliance should not be put on extrapolations from

empirical formulations, rather these empirical relations should be made with extreme caution.

In general; the idea of obtaining mechanical properties, for example, tensile strength, yield stress,
percentage elongation Broklen, (1971) and fatigue life, by a simple indentation will remain the aim

of technological investigations concerned. J.A. Brinell has proved the fact that such correlations can
be found when he established his empirical formula in 1900:

Tensile Strength = Constant X Brinell hardness

Up to this time, this equation has been considerable help to the expert, although it only holds for

certain groups of metals.
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2.2 Small Punch Sampling Technique

In the Small Punch test, a disk like specimén of ¢ 10 x 0.5 mm is scooped using a cutter (see Fig. 2.2

below) specially designed for this application. The first position (a) shows the cutter prior sampling

and the second position (b) shows the cutter during sampling.

Figure 2.1: Specimen Cutter

In general, the sample after this specimen cutter cuts them they are ground on a horizontal surface-
grinding machine. Furthermore, the sample is mechanically polished by emery paper to obtain the

desired dimensions.

It is also essential to understand the indenter geometry (shape sensitivity) and hardness of the

indenter itself to avoid bending or buckling of the indenter.
23  Theoretical Background of a Small Punch Test

The Small Punch test can simply be described as a punch and die loading test in which a small flat
Specimen is punched with a ball punch or an indenter (See Fig 2.2 below). In general, the Small
Punch test operates in the same principles as the dynamic hardness test, but it is usually conducted
under elevated temperatures more especially for fatigue or creep testing. The temperatures are

Usually carefully controlled through the use of an environmental chamber, a small test specimen of
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about 10mm diameter and 0.5mm thickness are positioned within a specimen holder while an

indenter made of tungsten carbide is positioned at the centre of the sample.

Figure 2.2: A schematic presentation of a Small Punch Test

The development of depth sensing indentation has allowed reliable determination of two of the most
widespread mechanical properties, the Hardness and Young’s modulus. In general hardness implies
the resistance to deformation. If, we think of hardness as the ability of a body to resist a permanent
deformation, a substance such as rubber would appear to be harder than most metals. This is because
the range over which rubber can deform elastically is much larger than that of metals. The elastic
properties play an essential part in the assessment of hardness for rubber-like materials.

With, metals the position is different, although the elastic moduli are large, the range over which
metals deform is relatively small. Subsequently, when metals are deformed or indented, the
deformation is primarily outside the elastic range and they involve considerable plastic or permanent

deformation.
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Figure 2.3: Load Displacement Curve of a Small Punch Test results

At first, the indenter is aligned to the centre of the specimen, and it is just allowed to touch the
specimen and this stage is defined as a Toe-In (demonstrated in figure2.3 above). When the load is
applied or the specimen is penetrated, it then undergoes the initial stiffness stage to the transition
load. The peak load is reached at a punch displacement equal to about 50% of the initial thickness of
the specimen. Then, a complete shear-through of a specimen occurs roughly at or slightly beyond a

peak load. The graph goes down due to the fact that the indenter has protruded the specimen.

Hardness is now seen as the property of a material that enables it to resist plastic deformation by
penetration. It can also refer to resistance to loading, scratching abrasion or cutting. Hardness is an
empirical test and it is not a material property. This is due to the different hardness tests of each
determines a different hardness value for the same piece of material. Hardness is used to
characterize materials and to determine if they are suitable for their use. This study involves
hardness testing and the use of specifically shaped indenters, which significantly harder than the test
sample that is, pressed into the surface of the sample using some loading. The hardness test method
has been used because it is inexpensive, easy to perform, practical and more importantly because any
Size or shape can be tested. Furthermore, to determine if a material has the properties necessary for
its indented use. The following determining factors are used to determine the correct hardness test

for an application namely,

*“* Approximate hardness - hardened steel, rubber etc
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% Material - grain- size, metal
¢ Shape - thickness, size, etc
% Heat treatment — through or casehardened, annealed
% Production requirement - sample or 100%
The above factors show the importance of hardness and how very useful it is in industrial Research
and Development (R+D) applications. This allows a correlation between the hardness results and the

desired material property.
2.4 True Stress- Strain Curves under Tension

Firstly, it is vital to give a careful consideration of an elastic, perfectly plastic material under tension
and plot the linear strain (€) as a function of true stress (G). The gradient of the line O A is the ratio
of stress to strain and is the Young’s modulus (E) of the metal (refer to figure 2.4 below). When the
load reaches a certain level, the cylinder will increase in length and this increase is non reversible.

The stress at which this occurs is called the yield stress Y.

If the material does not work — harden, that is, if the stress remains constant during the extension, the
stress strain curve is a straight line B C and is parallel to the strain axis. If at any point D, the load is
reduced, the cylinder contracts elastically along the line D O, where this is approximately parallel to
O A. If the load is completely released, the cylinder will have undergone permanent deformation

0 0. On increasing the load again, the deformation will proceed elastically along O’ D. and then
deform plastically further along D C. Other metals, which have an unvarying, yield Y and have
similar stress-strain curve as shown in figure 2.5, are called ideal plastic materials (perfectly elastic
plastic). No real metals have these properties, but it is possible to obtain a close approximation to
them, e.g. structural steel. In practice all metals work-harden at some stage as a result of the

deformation and the stress-strain curve is of the type shown in figure2.6.
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Figure2.4: True Stress-Strain Curve

Once plastic yielding has occurred, the stress required to produce further yielding increases rapidly at
first and then gradually. Thus at any point D the stress is required to produce further plastic flow is
no longer the initial yield stress Yy but a larger stress, so that the yield stress varies with the amount

of deformation.

True Stress
1

Linear Strain
Figure 2.5: True stress-strain curve of a metal, which work-hardens
With many metals the dependence of yield stress Y on the strain (¢) may be approximated by the
Cquation Y =be* Nadai (1931). If at point D the stress is removed, the specimen contracts

elastically along D 0.
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23 Creep under Constant Loading and Temperature

Ever since creep was identified as a problem in the design of high temperature components, the
constant tensile load creep test has been the most important means of providing creep data. The
data obtained from this test reveals, how a given material will act under different loading and
temperature conditions. The creep test is usually conducted at constant temperature and constant
load and from this the data extracted are:

e Deformation data usually represented in terms of a strain, measured over a gauge length,

at various times. This gives the creep curve which generally takes the form shown in

Fig. 2.6

= s

i Tertiary
7

% Constant load? temperature

= L]

&) / Secondary

/{ Primary

Figure 2.6: Strain accumulation during the standard creep test.

Time (t)

Rapture data: this amount to the measurement of one coordinate - t; the time at which

rapture occurs — of the last point in figure 2.6.
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Chapter 3

Process Modelling and Some Theoretical Aspects

The theory described in this chapter is purposed to serve as a background to the following chapters,
especially chapter 4 and onwards. It is meant to be a short review of some of the topics in
mechanical engineering and a follow up in mathematics that is necessary to have knowledge in order
to get good performance from computer simulation of Small Punch. Large strains are measured
during the Small Punch test in the initial configuration. The purpose of this chapter is to provide an

in-depth measure of these strains from a continuum mechanics approach.

The outline of the chapter is to start with the most comprehensive part, material deformation. This
topic is a connection between the kinematics of the body and the specific material’s constitutive
behaviour. As a result thereof it is a linkage between well-known and relevant physical principles

and a mathematical model of the internal composition of the material.

The primary objective is to make it possible to predict the response of systems or components
subjected to external loads. Next, a short finite element recapitulation is also made. In the field of
continuum mechanics in general the consideration is that, a material has similar structure, i.e. it is
said to be homogeneous. Therefore, the constitutive relation of the material in question purely

defines the response to externally applied loads.
31 Review of Material Deformation

In describing the kinematics of deformation, the Lagrangian (material) description and the Eularian
(spatial) description are two approaches that are adopted in this thesis. Some basic fundamentals of
continuum mechanics pertaining to material deformation can be found in Fung (1994) the Mase

brothers (1999) and Holzapfel (2001).
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Lagrangian Description

In his description, Lagrange suggests that one follows the history of individual particles. Therefore
the two variables are a particle label and time. The label, is for example, the particle position at
some reference in time, i.e. the initial position X at t = ty. The assumption is then that the current
position, x, of a material particle is related to the initial position for the same particle through a
smooth differentiable vector valued functionf : A — B, that is to say

x=f(X,t), Where, fT = (f ,f,,f;) 3.1.1

The initial position vector X=X.€, is the material coordinate of a particle and the current position
vector X=X,€, is the spatial coordinate. The dummy index is summed over the Cartesian indexes

(1, 2, 3), which means the summation convention has been used. To satisfy the continuum

assumption of a material (at least in interior points) it is also necessary that there is an exact one-to-
one mapping between material particle positions at two arbitrary ty and t; (or initial time and current

time). In other words, the function that maps the material points from A to B must tally the points in
the initial to the points in the current configuration. Conversely, the inverse mapping function
should be true and it should be achieved as,f” : B — A the initial position of the material point as a
function of the current position.
X=f"x 1) 3.3

In principle this latter formulation is called Eularian description, where the independent variables are
the current time and current position '. The spatial description is foremost used in fluids dynamics
where the particle history is not of great importance. In solid mechanics the Lagrangian formulation

is the most common in use.

It (Lagrangian) has a credible advantage that the finite element mesh will deform along with the
analysed body. From now on, the functions like the one in equation (3.1.1) will be written

asx = x(X,t) and we will adopt the use of Lagrange formulation only.

1Although this is the basis of the spatial description usually the function f'is not known. It is possible
though to measure the velocity, or continuum rate of motion at a spatial point in a flow field (fluid or gas for
€xample). We then have the velocity vector field as v = v (x, t) which then leads to the so called the material

derivative in the Eularian description.
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In the material description the velocity and acceleration of the particle is then written in indicial

notation as

i | alxti= i
ot |y aand fhe s WikpE) Ko o

v.(X,t) =

respectively.

In figure 3.1 below a material element Q in a continuum body in a region in space R’ is shown in the
initial (A) and deformed, or current configuration (B) in a Cartesian frame of reference. The
deformation of a body is defined by the displacement of every material point in the body with
reference to initial or referential configuration (A in figure 3.1). The displacement is the cause of

rigid-rotation, translation and deformation of material element.

Initial configuration, A.

Py
Q
aX g
/ £ 0
P. /N
x
u Po
o Pa dx
63 A
A
X
X Current configuration, B

v
Q
S}

€y

Figure3.1: Deformation of a material element Q in a continuum body, from initial configuration A,

10 current (deformed) configuration B
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In order to measure the deformation in a body the measure of strain is used 2. The measure of strain
makes it possible to do a distinction between rigid-body motion and deformation of a material
element in a body. This -i’s useful when dealing with constitutive models for a material as fhey
' descﬁibé the relation between stress (force per unit area) and strain. For small displacements a linear

measure of deformation, is called the strain tensor >

. For large displacement it implies large rigid-
body motion and large deformation, and hence the linear deformation is not applicable. In the next
section, a general formulation, of displacement of a continuum body is followed by presentation of

relevant deformation measures and coupled stress measures that can be used in numerical analysis.
3.1.1 Summary of the Displacement

From figure 3.1 above we can define the displacement of a material point, P, for example, from
initial configuration A to current configuration B, with label p, as

uX)=xX)-X. 3.14
The time symbol t is then dropped for convenience. With material point Pob taken into account, the

relative displacements for the two material points, du, is

e Dk or | it i g 3.1.5
oX ax,

Where G :g—; is defined as the Displacement Gradient tensor. Another quantity can be defined by

considering the transformation of the infinitesimal material vector dX form A to
B, with the aid of the ‘mapping’ function x =x(X,t) in equation (3.1.1). The differential change of
X in the current configuration B is

ox = g

dx = —dX or dx. =—21dX. 3.1.6
oX : BXJ. g

To get a percentage of strain; we assume uni-axial tension of a rod. Then strain 1s the change in length per

original length, i.e., a 1000 [mm] rod stretched to 1005 [mm)] gives a 0.5 % strain.

3 . : . x
The Cartesian coordinates (X1, X2, X3) and the displacementu = u.é.

! - du;
Strain tensor g, :l @’——i— |
2l dn i,

give us the linear symmetric
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and F:aa—; is defined as the Deformation Gradient tensor. The relationship between G and F is

noticeable by writing equation (3.1.4) as

du=GdX=dx-dX 3.1.7(A)
and ’
dx=FdX=GdX +dX 3.1.7(b)
SO
F=G+1 or G =F-1 3.1.7(c)
1 00
Where, I is the identity matrix (i.e.] 0 1 0 |) consequently if F and G are known for all time t, the
0 0 1

local deformation for each material point is also known, in principle.
F and G contain rigid-body rotation that does not contribute to the deformation of the continuum
body. Thus, straining deforms the body and some other measure is needed. One possible alternative

is to define a stretch ratio between initial and current configuration for the material vector.

Let the square of the lengths in A and B configurations for the infinitesimal vector be

dL? =]dX|” = dX,dX,, 3.1.8 (a)
dl* =|dx|* =dx dx, 3.1.8 (b)

respectively, and define the stretch ratio A as current length divided by initial length. Thus,

g gl e, (3.1.9)
dL | dX,dx,

When A=1 it simply means that, there is no stretching and therefore rigid-body motion of the

material vector only. Substituting the above relationship into equation (3.1.6) it then yields the

current square length to be

dI’ =dx dx; =F,dX, F,dX,, 3.1.10
using this equation in the expression for A it then yields

A

_RX.FdX;  dx,

dX ;
F.F,——-——=R,F,FN 3.1.11
dXdax, ~ JBOEx T dx <

)\’2
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Where N is a unit vector in the dX direction. In vector-matrix notation or the so-called symbolic

notation, this can be written

T
S :NTFTEN , 3,1.12

A=
Jax] ™ ax]

The use of these equations can aid and make it possible to measure the stretch ratio in any direction

N at any material point defined by X or x.

It order to get valuable results from the previous equation it is essential to derive principal stretch
directions. The polar decomposition theorem states that any motion can be decomposed into pure
rigid-body rotation and pure stretch in three mutual perpendicular directions. The deformation
gradient tensor F specifies the rotation and stretch of each material line in a body between two
times*. To decompose F, the point of departure is to recognise that an arbitrary material vector can
be transformed from A to B (see figure 3.1) in two ways: a stretch along the principal axes followed
by a rigid-body rotation of those axes, or a rigid-body rotation of the principal stretch axes followed
by a stretch in those directions. The decomposition is then

F = RU=VR, and R'R=I AP

Where U is the right stretch tensor, V the left stretch tensor and R the rigid-body rotational matrix.
To obtain the symmetric tensor U, using the initial configuration as the basis, the square of the
current length is used. From equation (3.1.10) it is

dI* =dx"dx = dX"F'FdX =dX"CdX, 3.1.14

And C=F"F , is the Cauchy-Green deformation tensor. Now from the decomposition theorem
C=RU)"RU=U"R"RU=U"U=U?, 3.1.15

where the last term means every component in U squared (symmetric matrix). The decomposition of

Cin eigenvectors and eigenvalues leads to the sought tensor, i.e.

3 S— A A

C=)2MiN®N, 3.1.16
i=1

And then
3 e A A

U=>LN®N, 3.1.17
i=1 .

Finally, from the right polar decomposition the above rotational matrix is

R=FU’' 3.1.18

4 : . : : : :
The path between these two times is not known and can be of importance, especially in non-isotropic

Materials. For the purpose of this thesis, it is possible to neglect the path.
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A left polar decomposition using the current configuration as the basis, the square of the reference

length is

dl? =dX"dX =(F'dx)"F'dx=dx" (FF") 'dx=dx"B 'dx, 3.1.19
Where B =FF " is the Finger deformation tensor. The decomposition now gives
B=VR(VR)" =VRR'VT =VVT =V? 3.1.20
Again this decomposition yields
3 ~
B=> \’A, ®n, 3:0.21
i=1
And
3 ~
V=> L h ®h 3.1.22
i=l

Another way of finding U is to use the R matrix, from equation (3.1.13) and from the expression for
1§

3 m— A A
F=RU==V=RUR" =), (RN,)®(RN,) 3.1.23
i=]
Take note, from the above equations the following relationship is valid: A, = Xi andfi, = RN, , which
shows that the order of rotation and stretch are irrelevant. In the previous results in equation (3.1.12)

If Ni are principal directions then the principal stretches can be obtained as

2

T d,

= 3 ) _RroeR, or  A=—L=U, 3.1.24
dL dL,

And index i is the principal direction for U the dL; and dl; are the initial and current lengths of a
material vector in the principal direction i. Therefore, a measure of the stretching of a material line
in three mutual orthogonal directions is obtained. It should be noted that this measure tells nothing

about the path between initial and deformed configuration.
3.1.2 A Summary of Strain

As a point of departure, a one-dimensional description of strain is made and thereafter a more

general approach is made using the theory from the previous section.
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One-dimensional strain

In essence, a measure of deformation is already obtained with the stretch ratio. It can be used in
some situations to quantify deformation i.e. measure of strain. As mentioned in our discussion
earlier on that, L = 1.0 means no straining. For the materials (metals) that will be used to perform
experiments in the contents of the next chapter 4, it is not adequate. A typical structural steel can
have a strain of 1.001 (or 0.1%) at yield and to use the stretch ratio, as a measure does not give
sufficient resolution in the results. Instead the measure of strain is used with zero strain when A has a
value one (1). In one dimension, along an arbitrary material vector dX, the strain is defined as the
function of the stretch ratio A that is,

g=f (L) 3.1.25

The function f is subjected to some chosen constraints, and they can be derived using a mathematical
tool called: Tailor series expansion and f to be considered around the unstrained state. Tailor series
can be expanded to the desired number of terms but we will show only the first four terms to

demonstrate the beauty of mathematics.

2 3¢
a1 (L —1)° L (>V—1)39—f—+... 3.1.26

=f(1)+{h-1)— y
== I 21 DE 3 g

The series motivates the choice of f (1) = 0 to get ¢ to be zero at A = 1. For small strains, when

second order and higher terms are ignored, the well-known definition of one-dimensional strain

should be achieved, i.e., if j—;::l for A =1 this is the case. Also, to get the exponential increased

2
strain with increased stretch the choice can be

22 >0 for A>0 this gives positive strain in

tension. These moderate restrictions give many possibilities to choose a ‘strain function’. A

commonly used measure in plasticity, which is also relevant here, is the logarithmic or true strain

f(L) = Ik or g, =e" =lnk 3.1.27
Considering the standard uniaxial tensile test, the strain is defined as
B 3.1.28

1

Where 1 is the current specimen length. The definition is infinitesimal because 1 is constantly
changing during the test. Integrating the above equation (3.1.28) from the initial configuration (C;)
10 deformed configuration (C»), therefore from initial length L to final length 1, it gives the true strain

of the specimen. i.e.
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c 1
i dl 1
Eiue = |dEe = |——=In— 2.1.29
t C_!‘ tru ; 1 L

[ am aware of the fact that it is not so easy to generalise a total strain measure to general
deformation. However the path dependence of a material element makes it necessary to follow the
deformation continuum events of each element through a large strain path. It is essential to relate an
incremental strain measure to the total strain, obviously obeying the rate laws. In the one-
dimensional tensile test case, where the path is completely specified, this is possible with equation

(3.1.29).

Strain Considered in General Deformation

In a general case, strain can now be deduced from the polar decomposition of F derived from the
previous above equations. A robust two-point approximation of a likely path dependent deformation
or material strain is followed. The true strain of a material vector (or material line) oriented in N :

direction (from equation 3.1.24) can be written as

& :lnl—l_:lnkl. 3.1.30
Li

This is in correspondence with the one-dimensional case. Using the initial confi guration as a basis
We can now construct a matrix, which defines a strain for a material point.

Assuming thate, =f(4,) is the strain’ in the principal directions given by equation (3.1.17) ®. Then

the strain tensor is

3
g:Zgi N, ®N, 3.1.31
i=1

The above equation can be used to calculate the eigenvectors and eigenvalues of FIF for each
material point in every step of an algorithm using this measure. From equations (3.1.8 a) and (3.1.8
b) we can now derive a change in length (square) equation of a material vector from initial to

deformed state.

dI* - dI? =dX" (F'F-1)dX =dx" (I- (F'F)") dx, 3.1.32

To keep the generality no function is chosen. This means therefore, strain is the function of the stretch ratio
in a principal direction given by F'F.

6 : : : : : : .
The stretch ratios are identical to the eigenvalues in this equation.
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Where, E:—;—(FTF -1) is the Green-Langrage strain tensor and e:—;-(l—(FTF)‘l) is the Almansi

strain tensor. In these formulae the strain is obtained directly from the deformation gradient without
the need of calculating the principal directions.
It has been mentioned earlier on that, the relevant measure of strain in metal plasticity is the
logarithmic or true strain. Therefore in linear deforination (using two point approximations) the
strain tensor is

3

e” => Ink; N, ® N, =InU 3.1.33
i=1

and 1 refer to the principal values and directions of U.

Strain rate
A definition of strain rate is necessary, in order to cope with the path-dependence of the material,
which simply means that, the constitutive relations must be in rate form.

From equation (3.1.13) the velocity of the material particle is defined as

ox (X, 1)
at |’

X

v(X,t)= 3.1.34

and the deferential velocity between two adjacent particles in the current configuration (B in figure
3.1)is

dv=9ax =9V X 4 I dx=LFdX or 3.1.35
ox 0X ox

dv=d>‘<:%(FdX): (FdX) 3.1.3

Where the dot (‘.’) means the material time derivativei, and F :ﬂ and where L:a—v is the

velocity gradient. Now the equation above yields the following
L=FF" 3.1:37
And considering the polar decomposition theorem, L consists of a rate of deformation part and a rate

of rotation part. As a result it is possible to decompose L into strain rate, the deformation velocity

lensor;

1
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And the skew symmetric spin tensor
Q:—;—(L—LT) 3.1.39

Finally, if the strain rate is D; then an increment of strain is defined as

A d(v.dt
de=Ddt :l (L+L")dt or in component form, de, :—1— o) + 00 3.1.40
2 ‘ 0X ox;
and an incremental strain measure is obtained. The total strain is then
2 t2
e; = [de; = [D; dt 3.1.41
tl

tl
which is the three-dimensional extension of the logarithmic strain. There are some limitations to. the
above formulation. If it is possible to follow the material point through the deformation and evaluate
the integral at a time (t), then the quantity will be meaningful. Another serious considerable
restriction is that either the principal strain axes do not rotate during the deformation or they follow
the rigid body motion. To put it more robustly, the material deformation must be consistent with the
geometrically defined deformation. The deformation velocity tensor is not an adequate strain
measure for the overall deformation because it describes only the current deformation. The total
deformation can be obtained with rate form of the Green-Lagrange strain tensorE . This tensor is
related to D as

E=F"DF 3.1.42

And it must be integrated to give a total strain measure.
3.2 An Overview of Stress

The conventional concept of stress suggests that when designing for working loads, component
dimensions and forces need to be related in order to decide on suitable operating stress values. In
this summary, the basic forms of stresses are discussed in relation to external factors (forces) and

internal stresses and strains. These relationships are crucial for an insight into component behaviour.

It is interesting to note that stress is not a physical or measurable parameter but only a mathematical
tool relating loading to geometry. On the other hand, strain is a physical measure. It is also
iﬂteresting to note that in general deformation however; there is number of stress measures available,

Just as for strain. Therefore, the stress and the strain measures must be work-conjugate which means
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that an increment of strain multiplied by the current stress must be a valid infinitesimal increment of
work per unit volume of material. From a material point of view, and possibly the most impoftaht
measure of stress from an engineering perspective is the Cauchy stress. This is a direct measure of
traction per unit area of any internal surface in the body, i.e. force per unit area. The Cauchy stress
tensor is given as
0-11 0—12 0-13
O=|0, O 0 3.1.43
0-31 0-32 0-33 )

and it is a Eularian measure, with all variables defined at an instance in time. The current force da in
the current configuration is then
df =cda=cnda 3.1.43
Then, the complementary strain to use with this stress is the deformation velocity tensor, i.e. the
power P per unit current volume is
P=o:D 3.1.44
and the increment of work derived from the increment of strain, de = Ddt is
dW=0¢:Ddt=0:de 3.1.45
The colon (*:”) means the inner product of two matrices, i.e. the component of the matrices is
multiplied and the products are summed. The incremental work derived in (3.1.45) can be written in
component form or the well-known indicial notation as,dW =ijDij .
Considering changes of a body from an initial or undeformed configuration to a current configuration
a Lagrange concept must be used because strain is normally measured from the former state. A
stress measure formulated with the material description is the second Piola-Kirchoff stress tensor S.
It transforms the current force df, back to the initial state dfy, and is related to an area element in the
initial state dag
df, =S da, =S Nda, 3.1.46

Where df =Fdf, and F is a deformation gradient tensor. Previously we have defined the rate of

Lagrangian strain, E which relate the work-conjugate strain measure to the stress measure. Now,
the power (P) per unit initial volume is

P=S:E 3.1.47

and the increment of work is, dE = Edt

dW =S.dE 3.1.48
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Using the non-vanishing Jacobean (J), this transforms stress from one measure to the other. Now let
dv A ! ! ' k
J=detF=——where V and V, are material’s volumes in current and referential configurations
: 0

respectively. Then the relations can be written as
-1 -1\T -1 i
S=JF'c(F) Or ¢ =J"'FSF 3.1.49
The strain and stress measures that are mentioned here are commonly used in engineering, but there

are other mechanical complementary variable that can be found in reference literature.

3.3 Finite Element Method

In this segment some basic information about non-linear finite element theory is given. Most of the
equations listed in this section are given without prior derivation. The topic is very broad and the
theory, or information given, in this section is based primarily on Logan (1993), Bathe (1982),

Zienkiewics (1994) and the Nastran Patran manuals.

The general idea behind the finite element method (FEM) is to build a mathematical model of a
structure, based on a series of discrete finite elements, where each element has a mathematically
defined relationship between force (load) and displacement. These relationships are assembled to a
global stiffness matrix, for the analysed structure. Upon applying homogeneous boundary
conditions, a matrix solution scheme can be utilised to determine a structural response to the applied
loads. For static stress problems this can be formulated in general terms as F =KU where a vector

of forces (F) is related to a displacement vector U via the global stiffness matrix K.

In non-linear problems, the stiffness matrix K is not assumed to be constant as opposed to linear
problems, hence it is presumed to incorporate geometrical material, and load stiffness terms. In
order to solve these non-linear problems, the prescribed loading or displacement is applied in
incremental stages, and an iterative mathematical solution scheme is used to find equilibrium at each
increment. It should be noted that if the non-linear changes (become non-smooth) in the stiffness

terms during the iteration process, the solution may diverge or may not converge at all.

To find the response of a solid body subjected to loading, some knowledge of the equilibrium
conditions may be required. For any volume of the body the force and moment equilibrium must be

Maintained for all times. Substituting this with a less involving condition; that the equilibrium
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should be maintained in average, over a finite number of elements of the body is the bases of the
displacement finite element method. In principle the equilibrium statement is usually formulated in
the form of virtual work, a form that is suitable for the discrete finite element formulation.

3.3.1 Virtual Work

For a volume V with surface S in the current (deformed) configuration representing a part (element)
of a body, the virtual work statement (in a rate form suitable for finite element formulation) can be

written as

[0,8D;dV = [t;év,ds + [fév,dV 3.3.1.1

Where 8D;;is the virtual rate of deformation (virtual strain rate), 8v,is the virtual velocity, t, is the

force per unit current area (surface force) and f; are the forces per unit current volume (body forces).
Hence, the internal rate of work is equal to the work of the applied force in thé virtual velocity field.
To formulate the discrete system of equations in the reference configuration, the left hand side of the
virtual work expression can be written in reference variables. The work-conjugate stress-strain
(Cauchy stress and rate deformation tensor) with the internal rate of virtual work in the reference

configuration is

JGijSDij V= _[J GijSDij dv, | 3.3.1.2

v Vo
Where Jo; is complementary to D, in the reference configuration and J is the Jacobean defined

earlier on.
3.3.2 Fundamental Equations of Finite Element

In general the element displacement function is u, and it is given by
u=N"U" 3.3.2.1
Where NV are basis function or vector interpolation function and U™ are nodal displacements, and

also N = 1, 2...to the number of variables present (for example the number of nodes in an element) .

The summation convention is used on the nodal variables, indicated with uppercase superscripts.
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Equation 3.3.2.1 is a kinematics constraint, and this constraint also bounds the virtual displacement -
field, so the virtual variation is

' sv=NWN » 3322

and the continuum virtual Work formulation, equations (3.3.2.1) and (3.3.2.2) is discretized. The
virtual rate of strain 8D is associated with dv (see, for example, equation (3.3.11)) and with the
assumption (3.3.2.1) it can be formulated 8 as

SD=@"v" Where ®" =®"(x,NV) 3828

In the above formulation the approximation of the virtual work is

3N | [@,0,dV, - [t,NNdS— [fNNdV =0 3.3.2.4

Where the quantities inside the square brackets form a non-linear system of equilibrium equations.
3.3.3 Solution Method

The system of equations above, expressed more precisely as a force equilibrium is,

F (™) =0 3.3.3.1

and the solution can be found using various mathematics techniques, like Newton method etc. In
equation (3.5.7) F" in the conjugate component force to the N™ variable in the equations and the
value of the M™ variable is u™. The solution procedure is incremental, and in each increment the
iterative Newton method solution scheme is used to find an approximation to the equilibrium

equations.
34 A Summary of Mefal Plasticity

A constitutive model stands for a mathematical model that describes our ideas of the behaviour of
material Desai (1984) and Hill (1985). In this summary some topics in metal plasticity are described.
Plasticity is also known as the flow stress theory and the formulation is such that the current

infinitesimal strain increments (see previous section on strain) are dependant on the stresses.

N

AL ION:
N, 2 v —aNay™
ox;  Ox, !

1
¥ The actual formulation is: 8Dij = —(

2
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The 1nitial response of a metal to loading is elastically, i.e. the deformation is fully recoverable. If
the load goes beyond the yield point, the deformation cannot be recovered. For small elastic strains,

which is common in metals, the strain increment can be separated into an elastic portion and a plastic

portion by using that L from section 3.1.2 can be written L = L + L7 . The particular law for metals,

used in the numerical simulations later on this work, is described here.

Incremental plasticity is usually formulated in three related terms. The first one is a yield surface:
which simply means to éxtrapolate the concept of load at yield, and to make it possible to determine
when a material responds purely elastic. The second one is a flow rule: which describes the plastic
deformation of a material point. The final one is an evolution law which defines the hardening ® of a
material. A thorough review of the topicsvmentioned here can be found in Desai (1984), Hill (1985)

and others.

The material to be used in the experiments is to be assumed to follow some idealizing criteria. As a
result thereof, the following assumptions must follow: the material is isotropic, which means
therefore that, the material properties are the same in all three mutual perpendicular axes, which is
reasonable for mild steel. There are no environmental chambers or temperature dependence, that is
to say, standard room temperature will be assumed.

The hardening behaviour is isotropic and the strain rate independent. No Bauschinger effect will be
considered, which simply means that after initial loading, no unloading followed by reloading will be
introduced. That is to say the magnitude of the yield stress is the same in tension and in
compression. Mild steel is like other ductile materials, it exhibits large inelastic strain, and it yields
at stress values lower than the fnaterial’s elastic modulus (E) which is also well known as the
Young’s modulus. The implication is that relevant stress strain variables are the Cauchy stress and

logarithmic (plastic) strain.

* Hardenin g means how the yield and flow definitions change with plastic deformation.
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Chapter 4

Experiments

The main objectives of the experimental work described here were to record the response of a normal
mild steel specimen subjected to a tensile, hardness and in a Small Punch experiment. Some basic
fundamental principles pertaining to the properties and testing of materials can be found in Harmer et
al (1982) and Patricia, (1993). In these paragraphs these concepts will be mentioned as a preamble
or an introductory statement. The mechanical properties of an engineering material are those that
deal with the material response under applied loads. It is imperative to recapitulate that these
properties are often related to stress and strain. Material testing is basically a research area that
covers procédures and methods to determine and measure mechanical properties in the most

approximated and reliable way.

There are primarily two quantities, mentioned above, that are used in the scope of the experiment'
presented in this chapter. The first one is stress or the determination of the applied force or load on
the tested material. The second quantity is strain or the change in specimen geometry as a result of
the applied load. The basic mechanical property that is most crucial for the experiment described
here is plasticity or the ability of a material to deform beyond the elastic range, namely, permanent

deformation without rupture.

Materials testing is purposed to simulate the working conditions of a material and because of the
large number of applications for a material there is no one ‘overall-test’ to perform. Alternatively

tests are categorised mainly according to conditions regardih g see table 4.1 below.

' The terms experimentation and testing are considered to have the same meaning in this thesis. Although,
materials’ testing involves both, they are closely related but not identical. The main difference is the aim to
perform one or the other. Experiment, is to gather information when the outcome is uncertain. Test, is to

follow standard procedures and only record the necessary information Timing (1998).
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Table 4.1: Test categories'

Load Application Material Specimen Conditions | Environmental Conditions
The kind of stress induced 1. Form Temperature

The rate of stress propagation 2. Dimension Atmospheric pressure

The number of load cycles

The details given in table above are some examples of classification factors, but there are more than
this. There are various loading conditions that are possible but the ones used in this experiment are
tension and compression. Regarding the rate of load application, this experiment is classified as a
dynamic test, where the load is applied at the rate where it is possible to disregard inertial effects on
the test results. Also, the test is carried out at room temperature and normal atmospheric pressures as
it has been mentioned previously. The main focus is on the basic quantities which are stress and
strain although it is not an easy task to measure them directly. Hence we measure the load acting on
a specimen in combination with the displacement of the specimen due to the applied load, and then

we convert these two parameters into stress and strain.

4.1 Equipment

The testing equipment used in this experiment were a Tensile Test Hounsfield see figure 4.1 and a
specimen holder and steel indenter of own construction and a tungsten carbide indenter. The tensile
test consists of a frame with a bottom fixed member and a movable crosshead with the load cell
attached to it. The load cell used in this experiment is registered 50 kN. In the bottom cross member

~a servo-actuator system with 250 kN dynamic capacity is mounted.

All measurements were made with built in sensors. The applied load was measured with the load
cell, and the stretch with the displacement transducer located inside the frame. The test frame is
controlled, monitored and programmed a M300 microprocessor unit, remotely accessed through an
ordinary PC and tensile test in-house software. The analog to digital to digital (A/D) conversion of
measurement signals is made with a resolution 240 VAC, 50/60 Hz, 530 VA of input range which

means a precision of 48 VAC in the conversion.
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Figure 4.1: Hounsfield tensile test used in the experiments.

4.2  The Specimens

The specimens were made from two different materials, namely aluminium and mild steel. For
further material data see appendix A. Ten samples were taken out from each of the plates, each
with dimensions, thickness (T) 3[mm], width (W) 20[mm] and a length of 40 [mm]. The
specimens were not prepared in any special way after they were cut from the plates and the cuts
were made only in one direction. Small test specimen with the above mentioned dimensions
were positioned within a specimen holder while an indenter made of tungsten carbide is

positioned at the centre of the sample.

4.3  Experimental Set up

The material test was mainly conducted according to SABS (South African standard), which
correspond to ISO 7438 (International standard). The following description is valid for each of the
twenty specimens from the two plates. A specimen was placed in the specimen holder according to
figure 4.2 and the punch was lowered to nearly contact before punching started. Next, the punch

moves downward at a rate of 0.5 [mm.s"]. After that, the punch pause (four
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Control Panel

Cross Head

Load Cell
Indenter Holder
Indenter/Punch

Specimen Holder

Emergency stop button
TacEiA

Bottom cross member

Figure 4.2: Hounsfield tensile test used in the experiments.

seconds) when it sheared through in the lowest positions, approximately 3.1 mm below the starting
position, followed by a movement in the up direction at a rate of 1 [mm.s"']. During this punching
procedure the punch force F ¥ and the punch displacement U * were continuously monitored and

recorded.

Hardness Testing Equipment

A portable ROCKLY HLN-11A (see figure 4.3) has been used in this work for the purpose of
comparing various hardness values. ROCKLY HLN-11A is an advanced hand held hardness tester,
characterised by its high accuracy, wide range and simplicity for operation. It is suitable for testing
the hardness of all metals and widely applied in many industrial fields. The instrument is capable of
converting the hardness into strength parameter automatically.

Measuring Method

The measuring method is defined as quotient of the impact body’s rebound velocity over its impact

velocity, multiplied by 1000. An impact body with a circular tip made of tungsten carbide is
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impelled against the sample surface by the spring force and then rebound back. At a distance of
Imm from the sample surface, impact and rebound velocity of the impact body are measured by the
following method: a permanent magnet embedded in the impact body, when passing through the coil
in its coil holder, induces, in the coil, an electric voltage proportional to the velocity of the magnet.
Functions available

e Easy input of date, kind of material to be tested and impact direction

Test data display in any kind of hardness (HRC, HRB, HB, HV, HSD, HL)

Hardness measuring range : HRC 20-70; HRB 10-100; HB 30-700; HV 80-1030;

HSD 30-105; HL 200-900

Strength measuring range :from 370-2000 MPa

Tolerance +0.8 %

Figure 4.3: ROCKLY HLN-11A
Likewise the specimens were made from two different materials, namely aluminium and mild steel. .
Ten samples were taken out from each of the plates, each with dimensions, thickness (T) 3[mml],
width (W) 20[mm] and a length of 40 [mm]. The specimens were not prepared in any special way

after they were cut from the plates and the cuts were made only in one direction.

44  Expected Material Behaviour

Because of the ductility of the tested materials, no rupture of the specimen was expected. As long as

the compressive stress in the sample is lower than the yield stress, o, the force displacement curve
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should resemble a straight line or it should be linear. When the bending moment acting on the
sample Has reached a‘ sufficient magnitude (with maximum in the midsection, below the indenter) the
entire midsection is strained into the plastic range of the material hence stressed beyond the yield
stress and the force—displacément curve becomes non-linear. This should be evident from the force

displacement curve, with a ‘point’ on the plot where deviation from linearity occurs.

Under the assumption that the yield stress is equal magnitude in tension and in compression, we can |
calculate an approximated value of the punch force needed to reach the yield stress and the shear
through of the specimen. From beam theory Tonge (1972) and with the dimension given under the

specimen section we can estimate the maximum bending moment, My, to initiate the yield as,

WT? 1 WT? .
=0 — =0

SN =G =
' 12 % ., 6

I
y y;

In this instance, I is the second moment of area, of the cross section of the specimen and y is the

: ) : T ) . .
distance from the neutral axis to the outer fiber, that is to sayz. The elastic bending moment acting

on the specimen isM = %, where F is the punch force. Consequently, we get the punch force to

initiate yield

2
FV:O'VEWT
‘ *3°D

And we use the value of the tabulated yield stress, Rey = o, (see appendix A) then |, = 25kN . As
yielding penetrates the cross-section the bendi'ng moment M approaches the fully plastic moment M,
which for an elastic perfectly plastic material of the same or similar cross-section as our specimens is

2
M:O'WT

P Y

Replacing o, with tabular value, like with the one above, and solving for punch force we get

F, =28 kN when there is fully developed plastic behaviour in the material. But because the real

material is not perfectly plastic, and a hardening behaviour is expected, the output from the

experiments is expected to deviate from the values calculated here.
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Tensile Test Data

The first set is standard tensile test data (see appendix A) recalculated to get the flow stress and the
equivalent strain from nine points of the nominal stress-strain curve. The true values used to sketch
the true stress and strain curve in (appendix A) have been achieved by using the well known
relatioﬁships

cStl'l.lc

o (1+¢ e? = In(l+¢

true = Gnom nom ); nom ) H

Where o, is the ‘true’ stress or (Cauchy stress) which we just named it a flow stress, and & is the
logarithmic or ‘true’ plastic strain. The second set is the linear approximation of the plastic
behaviour. The equivalent plastic straine™, was set in nine point, ranging from 0% to 120% strain
and backward biased towards the lower values. The corresponding flow o, stress is then calculated

from the initial values by using the least squares criteria. See appendix A for strain values that were

read from a data file (in order to satisfy C++ code).
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Chapter 5

Results and Discussions

The results presented in this chapter follow the outline of the thesis. First some experimental
results of hardness values, FEA and the Small Punch testing are shown. Thereafter a
comparison of material parameters from a tensile test (see appendix A) and the optimised
parameter is made, followed by some standard output from FEA with the different material

parameter set.

5.1 Experimental Results and Discussions

5.1.1 Hardness Values

Figure 5.1 below shows a comparison between the various hardness values. HRB, HRC,

and HVN are Hardness Rockwell B-scale, Hardness Rockwell C-scale, and Hardness

Vickers Number respectively.

Comparison of Hardness Values
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10

0! 0
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Figure 5.1: Hardness numbers as a function of Brinell hardness. Tungsten carbide ball

used above 500 kg/mm2
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5.1.2 Discussion of the Hardness Results

Circular and Pyramidal indenters (both Vickers and Rockwell) produce plastic flow at the
tip of the indenter at very light loads. The circular indenter is indicated by the magenta
line which is HRB on the graph. The Pyramidal is shown by navy blue line which is
HRC on the graph. The flat sﬁrface indenter is shown by a yellowish colour. These

results are quite significant and they validate the FEA results.

This is due to the fact that the tip is infinitesimal. Thus the hardness number obtained
from these tests has the single value over a wide range of loads. This fact makes Vickers

and Rockwell very convenient to use as careful load constraints are not critical.

For circular indenters (Brinell) this is not the case. The yield pressure increases with the
size of indentation. This is due to the fact that the indentation changes shape as it varies
in size. Thus, the yield pressure increases with the load. These tests are easy to perform,
and thus the Brinell test, using the analysis of Meyer, may be used to examine the stress-

strain characteristics of the material.
5.1.3 FEA Results

Case 1 The indenter properties are mild steel and the specimen properties are

aluminium. All these contour plots show the Von Mises stresses.
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Figure 5.3: Pyramidal Analysis
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Figure 5.4: Flat Surface Analysis
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Table 5.1 a: Showing the stresses induced and material characteristics\

Circular indenter] Flat indenter Pyramidal indenter] Wedge indenter
Oumax (PSI) 1.021 x 10° 1.708 x 10° | 1.855 x 10° 4.963 x 10°
Material of indenter Mild steel
Material of specimen aluminium
E (mild steel) PSI 30 x 10°
E (aluminium) PSI 10 x 10°
v (mild steel) 0.3
v (aluminium) 0.33
P (PSI) 20 000
Case 2: The following analyses were performed using the indenter properties of

tungsten carbide and the specimen has been considered to be engineering steel.

Figure 5.6: Circular Punch Analysis
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Figure 5.9: Wedge Surface Analysis

The mechanical properties of the used materials are presented in table 5.1 b below. In these
table Onax 1S @ maximum stress obtained from the results, v is the Poisson’s ratio E is the
Young’s modulus and the edge pressure P. An example of an FEA output file is shown in

Appendix B.

Table 5.1 b: Showing the stresses induced and material characteristics\

Circular indenter| Flat indenter| Pyramidal indenter] Wedge indenter
Gmax (PST) 4.564x10° 6.745x10" | 2.76x10° 1.090x10°
Material of indenter tungsten carbide
Material of specimen steel
E (tungsten carbide) PSI | 92x10°
E (steel) PSI 30x10°
v (tungsten carbide) 0.26
v (steel) 0.3
P (PSI) 20 000
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5.1.4 Discuassion of ‘the FEA Test Results

A computer numerical simulation was performed on four different shapes of indenters,
namely, a circular indenter, a pyramidal indenter, a flat surface and wedge surface indenter.,
The elastic behaviour of all four indenters is considered to be isotropic. All non-linearity’s,
induced by the elasto-plastic behaviour of the material and by the contact with friction, are
assuméd to be negligible small Tabor (1951). The indenters that are used in this simulation

are defined by Tabor as circular, flat surface, Wedge surface and pyramidal.

The purpose of doing a numerical simulation looked into the deformation of the indenter,
‘strain-less’ indentation effects and effectively validated the results. The analyses together

with the experiments support a mathematical model in order to explain the results.

The Finite Element Analysis (FEA) is a type of elasticity solution because it approximately
satisfies the mechanical governing equations. The problem is formulated in térms of load
and displacement degrees of freedom, so that the compatibility and stress distribution
equations are satisfied. All these effects give a description of the plastic deformation and
yielding of a metal under a uniform tension or compression when the metal (indenter) is
pressed against the specimen. The results show that the stresses are not really simple tensile

or compressive stresses but they are set up in various directions under the indenter.

The maximum stress values exhibits that, for the circular and the pyramidal shapes the
maximum stresses occur at the tips of the indenters. This can be clearly seen on the steel vs.
aluminium Von Mises contour plots above where maximum stresses are distributed around
the indenter tips and these maximum stresses are 1.021 x 10° and 1.885 x 10° for the circular
and the pyramidal indenters respectively. For the tungsten carbide vs. steel the maximum the
stresses are 4.564 x 10° and 2.76 x 10° for the circular and the pyramidal indenters

respectively.
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The maximum stresses of flat surface and wedge indenters are 1.708 x 10° and 4.963 x 10*
for steel vs. aluminium. Similarly the maximum stresses of flat surface and wedge indenters
are 6.745x10 and 1.090x 10 for tungsten carbide vs. steel. These maximum stresses occur at
the edges of the indenters for the flat surface and the wedge indenters. This implies that in
general for these two types of indenters the edge pressure has to be increased quite
significantly in order to cause yielding. Thus this makes consideration for plastic flow under

combined stresses.

In all the FE models discussed here the edge load was applied gradually. The hardness test
which was performed applied impact load. Therefore energy transferred to the specimen was
considered when these FEA results were validated. Furthermore, load-displacement curves
below were plotted using the FEA results. These load-displacement curves were plotted on
strategic nodal points of contact between the indenter and the specimen. The purpose of
these FEA load-displacements curve is to compare them with those of the Small Punch test.
The circular indenter proves to be feasible in both cases shown below. For both of these

cases the displacement is in proportion to the load applied (see fig. 5.10 & fig.5. 14)

Case 1 Load displacement curves of a mild steel indenter and an aluminium

specimen

| III




Chapter 5: Results and Discussions 53

Figure 5.10: Circular Indenter Analysis Results
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Figure 5.11: Pyramidal Analysis Results
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Figure 5.12: Flat Surface Analysis Results
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quivalent Yon Mises Stress

1.08

Displacement [x.1]

Figure 5.13: Wedge Surface Analysis Results ‘

Case 2 Load displacement curves of a tungsten carbide indenter and a steel specimen

Figure 5.14: Circular Indenter Analysis Results
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Figure 5.16: Flar Surface Analysis Results
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Figure5.17: W Lae Analysis Results

When an indentation is formed by circular and pyramidal indenters, the material around
the indentation is displaced and, in general the yield stress Y is increased. As the load on
the indenter is increased, the amount of plastic deformation around the indentation
increases and the mean pressure steadily rises until the whole material around the
indentation is in a state of plasticity. Hence the maximum stresses occur at the tips of
these indenters. It is not easy to define the stage at which this occurs, and the simple
approach is to say that it is reached when the yield pressure varies little with further

increase in indentation size.

It was observed that when these two metals are in contact the hydrostatic pressure will
not of itself produce plastic deformation. The indenter, for which the yield stress under
uni-axial stress is Y, is subjected to the hydrostatic pressure, it still require a
superimposed uni-axial stress Y to produce plastic deformation. The plastic deformation
occurs when the maximum shear stress reaches a certain critical value. This result is also

consistent with the Tresca criterion, which suggests that plastic flow in general occurs

: 1
when the maximum shear becomes equal toz Ve
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5.1.5 Small Punch Results

For the results presented in figure 9 below circular tungsten carbide indenter was used on

mild steel specimens.

Figure 5.18: Small Punch Test Data, load vs. displacement

For the results presented in figure 5.19 below circular mild steel indenter was used on

aluminium specimens.

Figure 5.19: Small Punch Test Data, load vs. displacement



Chapter 5: Results and Discussions 58

5.1.6 Discussion of the Small Punch Results

These significant results are used to deduce mechanical properties of material under the
indenter. They show a direct proportion between the load and displacement parameters.
For the tungsten carbide indenter results, the yield strength which is the most important
property that is generally used in component design was found to be 77.5 MPa. The
stiffness was found to be 203 GPa. Similarly, for the mild steel indenter results the yield
stress is 4.875 MPa.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

This thesis was directed at manufacturing a Small Punch test for South African heavy
industry as a means of determining mechanical properties of materials at different levels
of degradation. The indentation method derived in this thesis for measurement of
mechanical properties is not new. Small Punch testing is a growing field that
incorporates fracture toughness, fatigue, thermal fatigue, fracture appearance and

transition temperature (FATT), creep etc.

Shape sensitivity analysis using FEA was used to determine suitable shapes to be used for
the Small Punch test. From the FEA results the circular and pyramidal indenters were
found to be suitable for the indenter application in the Small Punch experiment (refer to
figure 5.2 and 5.3 for the shapes.). The validation of these FEA results using the
hardness test (ROCKLY HLN-11A) proved that these two indenters caused yielding or
plastic flow easily. For circular and pyramidal indenter, the material displaced by the
indenter was accommodated by the elastic-plastic expansion of the surrounding material.
During this phase, the displacement of material was approximately radial from the point
of first contact. The material displaced by the indenter piles up at the sides without any

further increase in pressure.

The wedge and the flat surface indenters required a significant increase of the load or the
edge pressure in order to cause plastic flow or yielding. Hence the wedge and the flat

surface indenters were not chosen for indenter application.
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The funcﬁonality of the Small Punch test was verified and can be used to determine

mechanical properties at different levels of degradation. The objectives of the thesis were

met and the results are summarised as follows:

@)

(ii)

(iii)

@v)

The Small Punch test indenter (6 mm diameter and 150 mm long),
indenter holder (10 mm treaded diameter and IOOmmn long) and a
specimen holder (250 mm x 200 mm with a 100 mm diameter and 50mm
deep hole in the middle) were manufactured assembled and retrofitted into
the University’s existing tensile testing machine (See figure 4.2 for the
illustration)

Small Punch and tensile tests were performed on 20 specimens of which
10 were mild steel and the other 10 were aluminium.

Small Punch load displacement curve gave similar results to the tensile
test results in the elastic region of the mateﬂal. The elastic moduli of both
materials were determined and found to be 203 GPa and 68 GPa when
using a Small Punch test or a tensile test on mild steel specimens and
aluminium specimens respectively. Similarly, the yield stress was found
to be 77.5 MPa and 4.875 MPa when using a Small Punch test or a tensile
test on mild steel and aluminium specimens respectively.

In order to calculate all displacement curves up to the maximum load, it
was necessary to consider a small friction effect between the indenter and
the specimen. The friction effect is apparent only for displacement

smaller than 0.8 mm and fades away as the load is increased.

The results obtained from the Small Punch test are similar to the Small Punch test results

by Campitelli et al when they tested other ductile steel.

6.2 Recommendations

To date, the Small Punch Testing technique is not used world wide because the test

results are not return in formats.
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The future work should be focused on testing of materials of industrial choice at both
ambient and elevated témperatures. Furthermore, focus should be on designing a small
scale Small Punch which can be used as an on-line plant testing in collaboration with
industry. The determination of fracture toughness, fatigue at ambient temperature and
thermal fatigue at elevated temperatures will be the next step of this technological

investigation.

This work can also on a larger scale be focused on creep studies as well as the estimation of

remaining life in in-service components.
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Appendix A

Material Data

IN THIS APPENDIX some standard properties of mild steel and aluminium used in the

experiments described in chapter 4 are presented.

A.1 Steel Properties

Material Name: Mild Steel
Manufacturer: Mac Steel

Physical Properties:

Property Symbol Value Unit
Density p 7850 kg/m’
Young’s Modulus E 210 GPa
Shear Modulus G 810 GPa
Poisson ratio v 0.3 o
Mechanical Properties:
Property Symbol Value Unit
Yield Limit (min) Ren 355 MPa
Tensile Strength (min-max) R,, 430-550 MPa
A.2 Aluminium Properties
Material Name: Aluminium
Manufacturer: Mac Steel
Physical Properties:
Property Symbol Value Unit
Density p 2700 kg/m’

Young’s Modulus E 70 GPa
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Mechanical Properties:

A-2
Shear Modulus G 26 GPa
Poisson ratio v 0.33 BT
Property Symbol Value Unit
Yield Limit (min) Ren 49 MPa
Tensile Strength Rn 90 MPa

A.3 Tensile Test Data

The data presented here is a plot of true (Cauchy) stress versus true (logarithmic) strain in

figure A.1 below

true stress [Mpa]
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Figure A.1: Tensile test Data, true stress versus true strain
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A.4 Strain Data

The strain values were distributed over a range of 0% to 120% strain with 10 points.
0.00000
0.00420
0.00850
0.01500
0.03500
0.05500
0.09500
0.15000
0.55000
1.20000

A.4 Strain Values were calculated using a Python code

and the values are read from a data file

strain=0.0;

while (1 < 99) {
strain = 1.03*strain + 0.00165;
print "strain on file"

i++}
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