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Abstract

Fluid flow through a porous channel and cylindrical pipe walls are important area

of research due to its wide applications in transpiration cooling, gaseous diffusion

technology, cooling of rocket, mechanized irrigation and filtration processes. It is

therefore necessary to examine the effect of Navier slip, combined effects of buoyancy

forces and variable viscosity on the entire flow structure. Analyzing the magneto-

hydrodynamics (MHD) of unsteady flow with buoyancy effect and also investigate

numerically the entropy generation in an unsteady flow through porous pipe. We

have also examined the thermal stability and entropy generation in the system. The

problems were investigated theoretically using appropriate mathematical models for

both transient and steady state scenario. Both analytical techniques and numerical

methods are employed to tackle the model nonlinear equations derived from the law

of conservation of mass, momentum and energy balance.

Some definitions of terms to come across and introduction to fluid flow are given in

chapter 1, together with literature reviews, statement of problem and objectives of

the study.

Chapter 2 lays the foundation for basic fundamental equations governing fluid flow.

In chapter 3, the combined effect of suction/injection and asymmetric Navier slip on

the entropy generation rate for steady flow of an incompressible viscous fluid through

v



a porous channel subjected to different temperature at the walls are investigated.

Chapter 4 analyze combined effects of buoyancy forces together with Navier slip on

the entropy generation in a vertical porous channel wall with suction/injection wall.

Analysis of MHD unsteady flow through a porous pipe with buoyancy effects are

carried out in chapter 5, while chapter 6 investigates numerically entropy generation

of unsteady flow through a porous pipe with suction and chapter 7 gives concluding

remarks.
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Nomenclature

cp Specific heat at a constant pressure. Greek letters

k Thermal Conductivity. ρ Density.

CV Control Volume. µ Coefficient of dynamic viscosity.

CS Control Surface. θ Dimensionless Temperature.

h Channel width. τ̄w Shear stress.

u Velocity of the fluid. σ Thermal Diffusivity

P Fluid pressure. β1, β2 Dimensionless Slip Parameters.

V Uniform Suction/Injection. ν Fluid Viscosity.

EG Volumetric Entropy Generation. γ1, γ2 Slip Coefficient.

g Aceleration due to gravity. φ Irreversibility Ratio.

Re Reynolds Number. Ω Temperature Difference.

Pe Peclet Number. σ Electrical Conductivity.

Pr Prandtl Number. τ Time.

Br Brinkmann Number.

qw Heat Transfer Rate at the Channel.

Be Bejan Number.

Cf Dimensionless Wall Shear Stress.

Nu Dimensionless Heat Transfer.

R Pipe Radius.

T0 Fluid Initial Temperature.

Tw Channel Wall Temperature.

Gr Grashof Number.

M Magnetic Field Parameter.

Ns Dimensionless Entropy Generation.

ū Axial Velocity.

r̄, z̄ Distance measured in the radial and axial
directions.
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Chapter 1

Introduction

A fluid is any substance that deforms continuously when subjected to a shear stress

(tangential force per unit area), no matter how small according to McDonough [85].

The work of Leonardo Da Vinci gave rapid advancement to the study of fluids me-

chanics more than 500 years ago, but earlier than this time; fluid behavior were much

more available by the time of ancient Egyptian. Enough practical information had

been gathered during the Roman Empire to allow fluid dynamics application. Several

centuries ago both father and son began more modern understanding of fluids motion

known as Bernoulli’s equation. Since then, many researchers have done numerous

work on fluid mechanics. A porous channel walls is a channel with permeable walls.

The walls are made up of a solid matrix with its void space filled with fluids. The walls

are interconnected such that fluids can flow through the medium. The study of fluids

convection processes in porous channel fascinated mankind for many centuries due

to its applications in many areas of life. Such areas are: agriculture (e.g. irrigation,

land drainage), geothermal system, microelectric heat transfer equipment, coal and

grain storage, nuclear waste disposal, hydraulic engineering (e.g. storage reservoirs,

seepage, channel hydraulics), atmospheric sciences (e.g. global circulation, mesoscale
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weather patterns), oceanography (e.g. ocean circulation pattern, effects of pollution

on living organisms), geophysics (e.g. convection in the earth’s mantle, convection

in earth’s molten core). So also in astrophysics ( e.g. galactic structure and cluster-

ing, stellar evolution), chemical and petroleum engineering (e.g. industrial filtration,

fluidization, sedimentation, metallurgy, ceramics, powders, drying and wetting of tex-

tiles and wood), building engineering (e.g. aeration insulation against moisture) and

biological area (e.g. flow of blood and water in the system, action of kidney and

rise of juices in plant). Another applications of fluids flow in a porous channel is

found in heat pumps and thermoacoustic prime mover (Rott[100],Swift [107]). Fig.

(1.1) shows some of the above mentioned applications. Universality of modern sci-

ence arises through the investigation of fluids convection and thus, the diversity of

background has caused the investigations to be many-faced, even to the thinking of

the applied Mathematician. In this thesis, analysis of laminar flow, thermal stability

and entropy generation in porous channel and cylindrical pipes are studied.

1.1 Definitions of Terms

Some of the terms that are relevant to this study are defined as follows:

1.1.1 Porous channel

This consists of a channel with permeable walls. The walls are made up of a solid

matrix with its void space filled with fluids. The walls are interconnected such that

fluids can flow through the medium.
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(a) Irrigation

 

 

 

(b) Fluid catalytic cracking
 

 

 

(c) Engine cooling system

 

 

 

(d) Circulatory System
 

 

(e) Sketch of Heat pump

 

 

(f) Incinerator

Figure 1.1: Applications of fluids flow
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1.1.2 Streamline

This is an imaginary curve in the fluid across which, at a given instant, there is no

flow. The velocity of every particles of the fluid along the streamline is tangential to

it at that moment. Since at the boundaries, there can be no flow, then this can be

referred to as streamline.

1.1.3 The control volume

A control volume (CV) is a volume in space through which fluid may flow; in some

cases, the volume may move or deform. It has a boundary which separates it from

the surrounding and defines as control surfaces.

1.1.4 Material Derivative

Given a velocity of the fluid by ~V = (u(t, x(t)), v(t, y(t)), w(t, z(t))) where u =

∂x
∂t
, v = ∂y

∂t
, w = ∂z

∂t
and function f(t, ~V ) describing some properties of a fluid

particles. Then,

df

dt
=

∂f

∂t
+

∂x

∂t

∂f

∂x
+

∂y

∂t

∂f

∂y
+

∂z

∂t

∂f

∂z

=
∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z

=
∂f

∂t
+ ~V · ∇f

This implies:

D

Dt
=

∂

∂t
+ ~V · ∇
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∂
∂t

is the local derivative, ~V · ∇ is the convective derivative and D
Dt

is the material

derivative.

1.1.5 The Reynolds Transport Theorem

The extensive quantityB, a scalar or vector or tensor, is defined as a property of a fluid

and b (as the corresponding value per unit mass) the intensive value. The Reynold

transport theorem for moving and arbitrarily deforming control volume (CV), with

boundary control surface (CS) states that:

d

dt
Bsystem =

d

dt

∫∫∫

CV

ρbdv +

∫∫

CS

(ρbV · n)dA

where Bsystem is the total quantity of B in the system, n is the outward normal to

the CS, V is the velocity of the fluid particle and d
dt

is the derivative of the fluid mass

comprising the system.

Reynolds transport theorem states that the time rate of change of the total B in the

system is equal to the rate of change within the CV plus the net flux of B through

the CS.

1.1.6 Laminar Flow

When a flow is so slow that no mixing of the fluid takes place, Laminar flow takes

place as if the fluid consists of thin layer sliding parallel over each other. Laminar

flow represents highly ordered fluid motion characterized by smooth layers of fluid.

Newton’s law of viscosity is applicable here.
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1.1.7 Thermal Stability

This represents the quantitative response of a material to temperature change or vari-

ation.

1.1.8 Thermal Diffusivity

When the temperature distribution changes with time, there is occurrence of transient

heat transfer. Thermal diffusivity is a fundamental quantity that enters into heat

transfer situation not at steady state. Thermal diffusivity measures how quick a

body can change its temperature and relates to thermal conductivity through the

equation:

α =
k

ρCp

,

where α is the thermal diffusivity, k is the thermal conductivity, Cp is the specific

heat at a constant pressure and ρ is the density.

1.1.9 Buoyancy

An object submerged when a fluid exerts a force in it. Such a force due to a fluid in

equilibrium is known as the buoyancy or the upthrust. Buoyancy is very important

in many engineering application such as in the designing of ships, boats, buoys and

so on. The weight of the displace volume of fluid and the buoyance has the same

magnitude. Buoyancy acts upwards through the centre of gravity of the displaced
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volume of fluid is referring to as centre of buoyancy.

1.1.10 Viscosity

With the viscosity of a fluid, we normally mean the thickness of the fluid. Viscosity

of a fluid could be regarded as the resistance that the fluid offer against deforming

under the influence of a shear stress. Shearing force does not applicable to fluid at

rest. If such forces acts on a fluid which is in contact with solid boundary, the fluid

will flow over the boundary in such a way that the particle immediately in contact

with the boundary have the same velocity as the boundary while successive layers of

fluid parallel to the boundary move with increasing velocity. Shear stresses opposing

the relative motion of these layers are set up and their magnitude depending on the

velocity gradient from layer to layer. The shear stress of fluid obeying Newton’s law

of viscosity, taking the direction of motion as the x-direction and u as the velocity

of the fluid in the same x-direction at a distance y from the boundary is given by

White[128]

τx = ν
du

dy
,

where the constant ν is the coefficient of the dynamic viscosity.

Classification of fluids into either Newtonian or non-Newtonian fluids can be done

through the help of viscosity property. The unit of dynamic viscosity is kgm−1s−1.

Viscosity is the most important material property and good knowledge of fluid re-

sponses required a basic understanding of viscosity. Its associated with collective

currents that carry momentum from one region of the fluid to another. In general,

the Newtonian model describes the rheological behavior of fluids. The Newtonian
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model is simply a special case with a constant viscosity. However, viscosity is a

strong deformation of fluids. It is the key factor in determining the amount of fluid

flowing in channels. It also helps to determine whether the flow regime is laminar,

transitional or turbulent. Accurate knowledge of viscosity is very useful for compu-

tation of the pressure, velocity and temperature within the channels.

Viscosity also helps to describe the flow behaviour of shear stress with respect to

the rate of deformation of the fluid. In general the application of viscosity includes

reservoir modelling, in which production rates and mobility for water flooding plays

a major role.

1.1.11 Temperature-Dependent Viscosity

If the temperature of the fluid increases, the rate of molecular interchange moves

faster and further away from each other, so that the cohesive forces decrease rapidly.

As the cohesive forces are decreasing, the shear stress will be decreasing as well. Sim-

ilarly, as the rate of molecular interchange is increasing, there will be increase in shear

stress. For instance most lubricants used in automobile had a dynamic viscosity of

0.0095Pas at 40◦C and 0.0097Pas at 100◦C, the operating oil viscosity being taken

as 0.015Pas corresponding to an effective operating temperature of 80◦C. Shear rate

in the lubricant will thus be in the range 4×10−4s−1 to 4×10−4s−1. Such shear rates

would certainly cause shear thinning effects in a multigrade lubricant [121]. Unlike

liquids for which different temperature-dependent viscosity equations exist only two

main laws describes the response of gas viscosity to temperature, they are: power law

and Sutherland law. Table 1.1 shows different viscosity models.
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Table 1.1: Viscosity-Temperature Equation as in the literatures ([122-124]),a,b,C
are constants, T0 is a reference temperature, µ0 is the viscosity at T0 and ν0 is the
kinematic viscosity at T0.

Name Equation

Sutherland µ =
( T
T0

)
3
2 (T0+C)

T+C

Power Law µ = ( T
T0
)n

Reynolds µ = be−aT

Slotte µ = a
(b+T )c

Walther µ = µ0 + bd
1

TC

Vogel µ = ae
b

T−C

Arrhenius Type µ = µ0(
T
T0
)ne(

E
RT

)

Williams, Landel, Ferry log( µ

µ0
) = −

C1(T−T0)
C2+T−T0

1.1.12 The First Law of Thermodynamics

The first law of thermodynamic states the conservation of energy. The law states

that energy cannot be created nor destroyed; but it can be changed from one form

to another. The first law of thermodynamics defines the internal energy as a state

function and provides a formal statement of the conservation of energy. However,

it provides no information about the direction in which processes can spontaneously

occur, that is, the reversibility aspect of thermodynamics processes. For example, it

cannot say how cells can perform work while existing in an isothermal environment.

It gives no information about the inability of any thermodynamics processes to con-

vert heat into mechanical work with full efficiency, or any insight into why mixtures

cannot spontaneously separate themselves. An experimentally derived principle to

characterize the availability of energy is required to do this. This is precisely the role
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of the second law of thermodynamics that will be explained next.

1.1.13 The Second Law of Thermodynamics

Although a spontaneously process can proceed only in a definite direction, the first

law of thermodynamics give no information about direction; it merely states that

when one form of energy is converted into another, identical quantities of energy

are involved regardless of feasibility of the process. In this regard, events could be

envisioned that would not violate the first law of thermodynamics, e.g. transfer of

certain quantity of heat from a low-temperature body to a high-temperature body,

without doing any work. However, the reality shows that, this is impossible and the

first law of thermodynamics becomes inadequate in picturizing the complete energy

transfer. Furthermore, experiments indicated that when energy in the form of heat

is transferred to a system, only a portion of heat can be converted to work.

The second law of thermodynamics established the differences in quality between

different forms of energy and explains why some processes can spontaneously occur,

whereas others cannot. It indicated a trend of change and is usually expressed as an

inequality. The second law of thermodynamics has been confirmed by experimental

evidences like other physical laws of nature.

The second law of thermodynamics defines the fundamental physical quantity entropy

as randomized energy state unavailable for direct conversion to work. It also states

that all spontaneous processes, both chemical and physical, proceed to maximize en-

tropy, that is, to become more randomized and convert energy into a less available

form. A direct consequence of fundamental importance is the implication that, at
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thermodynamics equilibrium the entropy of a system is at a relative maximum; that

is , no further increase in disorder is possible without changing by some external

means (such as adding heat) the thermodynamics state of the system.

A basic corollary of the second law of thermodynamics is the statement that the sum

of the entropy change of a system and that of the surroundings must always be posi-

tive, that is, the universe ( the sum of all the systems and surrounds) is constrained to

become forever more disordered and to proceed towards thermodynamics equilibrium

with some absolute maximum value of entropy. From a biological standpoint this

is certainly a reasonable concept, since unless gradients in concentration and tem-

perature are forcibly maintained by the consumption of energy, organisms proceed

spontaneously towards the biological equivalent of equilibrium-death.

The second law of thermodynamics is quite general. However, when intermolecu-

lar forces are long range, as in the case of particles interacting through gravitation,

there are difficulties because our classification into extensive variables (proportional

to volume) and intensive variable (independent of volume) does not apply. The total

energy is no longer proportional to the volume. Fortunately gravitation forces are the

very weak as compared to the short-range intermolecular forces. It is only on the as-

trophysical scale that this problem becomes important. The generality of the second

law of thermodynamics gives us a powerful means to understand the thermodynam-

ics aspects of real systems through the usage of ideal systems. A classical example is

Planck’s analysis of radiation in thermodynamics equilibrium with matter (blackbody

radiation) in which Plank considered simple harmonic oscillators not merely because

they are good approximations of molecules but because the properties of radiation in

thermal equilibrium with matter are universal, regardless of the particular nature of
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the matter with which the radiation interacts. The conclusion one arrives at using

idealized oscillators and the laws of thermodynamics must also be valid for all other

forms of matter, however, complex they are. What makes this new statement of the

second law of thermodynamics valuable as a guide to energy policy is the relationship

between entropy and the usefulness of energy. Energy is most useful to us when we

can get it to flow from one substance to another, e.g. to warm a house and we can

use it to do work. Useful energy thus must have low entropy so that the second law

of thermodynamics will allow transfer or conversions to occur spontaneously.

1.1.14 Entropy

Entropy analysis is a medium to quantified the thermodynamics irreversibility in any

fluid flow process. The first law of thermodynamics is simply an expression of the

conservation of energy principle. The second law of thermodynamics states that all

real processes are irreversible. Entropy generation is a measure of the account of

irreversibility associated to the real processes. As entropy generation takes place, the

quality of energy (i.e exergy) decreases. In order to preserve the quality of energy in a

fluid flow process or at least to reduce the entropy generation, it is important to study

the distribution of the entropy generation within the fluid volume. The optimal design

for any thermal system can be achieved by minimizing entropy generation in the

systems. Entropy generation in thermal engineering systems destroys available work

and thus reduces its efficiency. Many studies have been published to assess the sources

of irreversibility in components and systems. Bejan [11] studies the entropy generation

for forced convective heat transfer due to temperature gradient and viscosity effect
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in a fluid. Bejan [7] also presented various reasons behind entropy generation in

applied thermal engineering where the generation of entropy destroys the available

work, called exergy, of a system. The general equation for the entropy generation per

unit volume is given by:

Sm =
k

T 2
w

(∇T )2 +
µ

Tw

Φ,

the first term in the equation is the irreversibility due to heat transfer and the second

term is the entropy generation due to viscous dissipation.

Within the past 50 years our view of nature has changed drastically. Classical science

emphasized equilibrium and stability. Now we see fluctuations, instability, evolution-

ary processes on all levels from chemistry and biology to cosmology. Everywhere

we observe irreversible processes in which time symmetry is broken. The distinction

between reversible and irreversible processes was first introduced in thermodynamics

through the concept of ”entropy”. In the modern context the formulation of entropy

is for the understanding the thermodynamics aspects of self-organization, evolution

of order and life that we see in nature. When a system is isolated, energy increase

will be zero. In this case the entropy of the system will continue to increase due to

irreversibility processes and reach the maximum possible value, which is the state of

thermodynamics equilibrium. In the state of equilibrium, all irreversible processes

cease. When the system begins to exchange entropy with the exterior then, in gen-

eral, it is driven away from equilibrium, and the entropy producing the irreversible

processes begins to operate. The exchange of entropy is due to exchange of heat and

matter. The entropy flowing out of an adiabatic system is always larger than the

entropy flowing into the system, the difference arising due to entropy produced by

irreversible processes within the system. The internal energy of the system is ran-
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domly distributed as kinetic energy at a the molecular and submolecular levels and

as energy associated with attractive or repulsive forces between molecular and sub-

molecular entities, which are moving closer together or further apart in relation to the

mean separation. This energy is sometimes describe as being ’disordered’ as it is not

accessible as work at the macroscopic level in the same way as is the kinetic energy or

gravitational potential energy that an entire system possesses owning to its velocity or

position in the gravitational field. Although energy is the capability to do work, it is

not possible directly to access the minute quantities of disordered energy possessed at

a given instant by the various modes of energy possession of the entities so as to yield

mechanical shaft work on the macroscopic scale. The term ’disorder’ refers to the lack

of information about exactly how much energy is associated at any moment with each

mode of energy possession of each molecular or submolecular entity within the system.

1.1.15 Channel Flow

Channel flow constitutes a very important class of flows in fluid mechanics due to

its numerous applications in biological and engineering systems. As a result, it is

important that we study the characteristics of this flow. We are particular interested

in how the flow pattern is modified by the effects of changing viscosity. The viscosity

of many fluids varies with temperature e.g physiological fluids such as blood, vari-

ous lubricants used in engineering systems like polymer solutions, mineral oils with

polymer additives, etc. This variation in the fluid viscosity due to temperature is

certainly going to affect the flow characteristics. In this respect, we shall consider

two types of channel flows, namely Poiseuille flow and Couette flow. Poiseuille flow
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is flow between two parallel stationary plates due to an imposed constant pressure

gradient. Its general characteristics is parabolic axial velocity profile. Couette flow is

considered with the effect of viscosity due to temperature changes on the lubrication

that occurs between two moving plates or between a fixed plate and a moving plate.

1.1.16 Gauss’s Divergence Theorem

Let F be a vector field. The Gauss’s divergence theorem relates the volume integral

of div F (∇ ·F ) with the surface flux integral of F ( i.e the surface integral of F · n̂).

i.e
∫∫∫

V

∇ · FdV =

∫∫

s

F · n̂ds

where V is the volume and s is its bounding surface, with unit outwards normal n̂.

1.2 Literature Review

The study of fluids convection in porous channel has received considerable attention

over few centuries due to its wide applications in physical, biological and applied

sciences. Berman [8] studied laminar flow in a two-dimensional rectangular chan-

nel with porous wall. He showed that the corresponding Navier-Stoke equations can

be reduced to a nonlinear third order ordinary differential equation with two point

boundary conditions and Reynolds number Re based on injection-velocity. The per-

turbation results for extremely small Reynolds number was given by him. Some

years later, Sellar [108] obtained a solution for large Reynolds number and Yuan [127]

obtained solution for large negative Reynolds number. Jocelyne [52] presented an

analytical solution for the axial and transverse flow fields in laminar flow in porous
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channels for both a rectangular channel with one porous wall and a porous tubular

channel. Various asymptotic results and numerical results were given in years later by

[94,101,113,115,116]. Makinde [75] considered the computer extension of perturbation

series solution, its analysis and analytic continuation in obtainning valuable informa-

tion on the solution structure at large Reynolds numbers, including bifurcation study

for porous tube flow problem. Munson-McGee [86] presented an approximate solution

for fluid dynamics of flow through a porous tube, such as encountered in the cross-flow

filtration process. Makinde [76] investigated a new series summation and converging

improvement technique to study the steady flow of a viscous incompressible fluid

flow both in a porous pipe with moving walls and an exponentially diverging asym-

metrical channel. Makinde [77] investigated the problem of laminar flow in channels

of slow varying width permeable boundaries. Rashidi et at [95] proposed a reliable

algorithms to develop exact and approximate solutions for the problem of laminar

viscous flow in a semi-porous channel in the presence of a transverse magnetic field.

They used differential transform method (DTM) to compute an approximation to the

solution of the system of nonlinear differential equations governing the problem and

concluded that DTM was applied successfully to find the analytical solution of the

resulting ordinary differential equation. It’s also reduces the computational difficuties

of the other methods. Awartani and Hamdan [4] studied the effects of the porous

matrix and the microscopic inertia on the velocity profiles for different flow-driving

mechanisms by considering plane, parallel and fully-developed flow through straight

porous channels. They concluded that introducing a porous structure in the flow

domain resulted in slowing down the flow and the presence of microscopic inertia

in a chosen model further reduces the velocity and slows down the flow. Kamisli

16



[41] developed a model with which to determine the transient velocity profiles of a

non-Newtonia fluid that is disturbed by transverse mass suction/injection from the

bottom plate. He examined the power-law fluid flow in rectangular channel with one

of its walls porous, in terms of determining velocity profiles as functions of time,

non-Newtonian behaviour (power-law index) and mass suction/injection rate at the

lower plate. Several work have been carried out on porous channel wall ( see, example

[16,53,55,78,79,87,110,119]).

Recently there has been an increased interest in thermal stability/ heat transfer

through porous media. Various fluids flow and heat transfer arrangement have been

dealt with both analytical and numerical. Vafai et al [120] investigated the nature and

importance of the boundary and inertial effects on the flow and heat transfer in porous

media. They showed that the effect of the boundary on the heat transfer was quite

important. The inertial effects increase with permeability and decrease with fluid vis-

cosity. Chawla et al [38] investigated the effect of radiation heat transfer on thermally

developing Poiseuille flow. Makinde [80] investigated the thermal stability of a reac-

tive viscous fluid flowing steadily through a porous-saturated channel with convective

cooling at the boundaries using a special type of Hermite-Pade approximants. Jou

[56] investigated onset of thermal stability of the horizontal superpodes system of fluid

and porous layers, in a rotating coordinate by employing Boussinesq’s approximation,

local volume average technique and Darcy’s law and assumed the slipping interface.

Terril [117] solved heat transfer problem of a discontinuous change in temperature in

porous channel. Calgagni et al [39] performed an experimental and numerical study

of free convective heat transfer in a square enclosure characterized by a discrete heat-

ing at lower walls and cooled from the vertical walls. Aydin at al [5] investigated
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numerically the natural convection of air in a vertical square cavity with localized

isothermal heating from below and symmetrical cooling from the side walls. Hossain

et al [47] studied the effect of temperature dependent viscosity on natural convection

of fluid from heated vertical wavy surface. The unsteady MHD convective heat and

mass transfer flow past a semi-infinite vertical porous plate with variable viscosity

and thermal conductivity, assuming that viscosity of the fluid varies as an inverse

linear function of temperature was studied by Reddy et al [98]. Makinde [81] inves-

tigated the combined effects of viscosity variation and energy dissipation on steady

flow of an incompressible fluid in a pipe with moving surface. Makinde [82] examined

the effect of thermal radiation on inherent irreversible in the flow of a variable vis-

cosity optically thin fluid through a channel with isothermal walls. Yeroshenko [125]

considered heat transfer in a developed laminar incompressible flow with constant

physical properties in a two-dimensional channel with porous walls having constant

temperature. They obtained several asymptotic solutions of the energy equation for

small and large wall Peclet numbers and large Prandlt numbers. Many research work

have been conducted on thermal stability/heat transfer in a porous channel.

Furthermore, entropy generation which is the measure of the destruction of available

energy in a system plays an important role in the design and development of engi-

neering processes such as heat exchangers, pumps, turbine and pipe networks. The

energy utilization during the convection in any fluids flow as well as the improvement

in thermal system is one of the fundamental problems of the engineering processes.

An improvement of thermal system according to Makinde [65] will provide better ma-

terial processing, energy conservation and environmental effects. Second law analysis

method is therefore used for predicting the performance of the engineering processes.
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The second law of thermodynamics is applied to investigate the irreversibility in

terms of the entropy generation rate. Bejan [10] was the pioneer work on entropy

generation. He first presented the second law aspect of heat transfer using different

examples of fundamental forced convection problem. He introduced the concept of

energy generation number, irreversibility distribution ratio and presented the spatial

distribution of irreversibility, entropy generation profiles for the examples. Ever since

then, numerous researches have been conducted to determine the entropy genera-

tion and irreversibility profiles for different geometric configurations, flow situation

and thermal boundary conditions. Bejan [7,11] investigated entropy generation and

minimization and showed the fundamental importance of entropy minimization for

efficient engineering processes. Mahmud [59] investigated second law analysis in fun-

damental convective heat transfer and entropy generation for natural convection in a

two-dimensional circular section enclose. Tasnism et al [111] performed an analytical

work to study the first and second law (of thermodynamics) characteristics of flow

and heat transfer inside a vertical channel made of two parallel plates embedded in a

porous medium and under the action of transverse magnetic field. They showed that,

for positive value of heat generation/absorption parameter, entropy generation rate

was higher than the negative value of the same magnitude. Makinde [65] investigated

the entropy generation rate in a laminar flow through a channel filled with saturated

porous media. Makinde [83] studied the second law analysis of a laminar falling

viscous incompressible liquid film along an inclined porous heated plate while the

upper surface of the liquid film is considered free and adiabatic. Makinde [84] consid-

ered criticality and entropy analysis for variable viscosity Couette flow. Tasnim and

Makinde [112] considered entropy generation in a vertical concentric isothermal chan-
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nel with temperature-dependent viscosity by indicating that the maximum volumetric

entropy generation is largely influenced by the fluid viscosity variation. Haddad et al

[43] conducted numerical investigation on the entropy generation due to steady lam-

inar forced convection fluid flow through parallel plates micro-channel. Heat transfer

and entropy generation for a gravity-driven, non-Newtonian Ostwald-deWaele power-

law, liquid film along an inclined isothermal plate was discussed by Makinde [68].

Makinde [68-69] investigated the effect of variable viscosity on thermodynamics irre-

versibility that occurs in plane Poiseuille flow with convective cooling at the walls. He

reported that a decrease in fluid viscosity enhances the entropy generation rate, while

the dominant effect of heat transfer irreversibility near the channel walls decreases

with an increase in convective cooling. Several work have been conducted on second

law analysis as well as entropy generation profiles such as[18,23,24,26,45,66,93].

The present study sets out to investigate the analysis of laminar flow, thermal stabil-

ity and entropy generation in a porous channel and cylindrical pipes.

1.3 Statement of the Problem

Fluid flow through a porous channel and cylindrical pipe walls are important area of

research due to its wide applications in transpiration cooling, gaseous diffusion tech-

nology, cooling of rocket, mechanized irrigation and filtration processes. It is therefore

necessary to examine the combined effects of buoyancy forces, Navier slip and variable

viscosity on the entire flow structure, thermal stability and entropy generation in the

system. The problem will be investigated theoretically using appropriate mathemat-

ical models for both transient and steady scenarios.
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1.4 Aim of the Study

The aim of this study is to analyze theoretically the laminar flow, thermal stability

and entropy generation in porous channel and cylindrical pipe walls.

1.5 Objectives of the Study

The objectives of this study are:

(1) To examine velocity profiles, temperature profiles, skin friction and Nusselt

number for both time dependent and steady flow problems.

(2) To examine Navier slip effect, combined effects of buoyancy forces and variable

viscosity on the entire flow structure.

(3) To obtain the thermal stability condition for flow in porous channel and porous

pipe geometries.

(4) To examine the entropy production rate, irreversibility ratio, Bejan number and

some of the embedded parameters for the flow.

1.6 Methodology

We employed both the numerical and analytical methods in solving the models equa-

tions i.e. the boundary valued problems (BPV). By numerical method, we used shoot-

ing method together with fourth order Runge-Kutta integration method. Shooting

method reformulates the boundary value problem (BVP) to initial value problem

(IVP) by adding sufficient number of conditions at one end and adjust these con-

ditions until the given conditions are satisfied at the other end while Runge-Kutta
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method solve the initial value problems. These methods are based on finite-difference

numerical techniques.

NUMERICAL APPROACH: Consider the two-point boundary value problem

y′′ = f(x, y, y′), y(a) = α, y(b) = β, (1.1)

where a < b and x ∈ [a, b].

Making an initial guess ̺ for y′(a) and denote by y(x; ̺) the solution of the initial

value problem is

y′′(x) = f(x, y, y′), y(a) = α, y′(a) = ̺. (1.2)

Introducing the notation Υ(x; ̺) = y(x; ̺) and ν(x; ̺) = ∂
∂x
y(x; ̺), equation (1.2) can

be rewritten as

∂

∂x
Υ(x; ̺) = ν(x; ̺), Υ(a; ̺),

∂

∂x
ν(x; ̺) = f(x,Υ(x; ̺), ν(x; ̺)), ν(a; ̺). (1.3)

The solution Υ(x; ̺) of the initial value problem (1.3) will coincide with the solution

y(x) of the boundary value problem (1.1) provided we can find a value of ̺ such that

Φ(̺) ≡ Υ(b; ̺)− β = 0. (1.4)

The basic ideal of the shooting method for the numerical solution of the boundary

value problem (1.1) is to find a root to the equation (1.4). Here fourth order Runge-

Kutta techniques is used to find the root and the scheme for the fourth order Runge-

Kutta is

yn+1 = yn +
h

6

(

k1 + 2k2 + 2k3 + k4

)

,
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where

k1 = f(xn, yn),

k2 = f(xn +
h

2
, yn +

hk1
2

),

k3 = f(xn +
h

2
, yn +

hk2
2

),

k3 = f(xn + h, yn + hk3).

We developed a numerical code that incorporate the methods described above, using

maple to tackled the problems.

ANALYTICAL APPROACH: Due to the nonlinear nature of our model problem,

it is convenient to form a power series expansion

w =
∞∑

n=0

wnε
n,

substitute the power series expansion into the problem and collecting the coefficients

of the likes powers of ε. Solve the equations for the coefficients of solution series

iteratively to get solution for w.
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Chapter 2

Basic equations for the Problem

The basis of computational fluid dynamics is the fundamental governing equations of

fluid dynamics which are: the continuity, momentum and energy equations. These

are the three fundamental physical principle upon which all the fluid dynamics are

based on.

2.1 Continuity Equations

Continuity equation represents the law of mass. The total amount of mass conserved

inside any control volume can only be changed by the amount that passes in or out

of the control volume through the boundary. This means that the mass conserved

cannot be created nor destroyed; it can only be changed from one form to another.

Fluid in motion moves in such a way that mass is conserved. We shall consider the

differential and integral approaches of deriving continuity equation.

Differential Approach

Consider a small control volume (CV) as shown in Fig. (2.1) below:

The principle of conservation of mass states that, the rate at which mass increase

within the control volume is equal to the rate at which mass enters or leaves the

24



dz

dx

dy

Face 6

Face 3
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Figure 2.1: Control Volume with six faces

control volume through its six boundaries. Suppose ρ is the average density of the

fluid within the control volume with velocity components (u, v, w) and the volume is

dV = dxdydz. Then,

Mass within the control volume

= ρdV = ρdxdydz. (2.1)

We consider the rate at which mass enters or leaves the control volume through centres

of the six faces one by one using Taylor series expansion.

Mass enters through the centre at face 1, we have:

ρu−
dx

2
= ρu−

dx

2

∂

∂x
(ρu) +

(dx

2

)2 ∂2

dx2 (ρu)−
(dx

2

)3 ∂3

dx3 (ρu) + · · · (2.2)

Mass leaves through the centre at face 2, we have

ρu+
dx

2
= ρu+

dx

2

∂

∂x
(ρu) +

(dx

2

)2 ∂2

dx2 (ρu) +
(dx

2

)3 ∂3

dx3 (ρu) + · · · (2.3)
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Mass enters through the centre at face 3, we have:

ρv −
dy

2
= ρv −

dy

2

∂

∂y
(ρv) +

(dy

2

)2 ∂2

dy2
(ρv)−

(dy

2

)3 ∂3

dy3
(ρv) + · · · (2.4)

Mass leaves through the centre at face 4, we have:

ρv +
dy

2
= ρv +

dy

2

∂

∂y
(ρv) +

(dy

2

)2 ∂2

dy2
(ρv) +

(dy

2

)3 ∂3

dy3
(ρv) + · · · (2.5)

Mass enters through the centre at face 5, we have:

ρw −
dz

2
= ρw −

dz

2

∂

∂z
(ρw) +

(dz

2

)2 ∂2

dz2
(ρw)−

(dz

2

)3 ∂3

dz3
(ρw) + · · · (2.6)

Mass leaves through the centre at face 6, we have:

ρw +
dz

2
= ρw +

dz

2

∂

∂z
(ρw) +

(dz

2

)2 ∂2

dz2
(ρw) +

(dz

2

)3 ∂3

dz3
(ρw) + · · · (2.7)

dz

dx

dy

(ρu− dx
2

∂
∂x
(ρu))dydz (ρu+ dx

2
∂
∂x
(ρu))dydz

(ρv − dy

2
∂
∂y
(ρv))dxdz

(ρv + dy

2
∂
∂y
(ρv))dxdz

(ρw − dz
2

∂
∂z
(ρw))dxdy

(ρw + dz
2

∂
∂z
(ρw))dxdy

Figure 2.2: Control Volume

Ignoring derivatives of order 2 and higher orders from the above equation, then

the mass flow rate into the control volume through faces, 1, 3 and 5 are
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(

ρu− dx
2

∂
∂x
(ρu)

)

dydz,
(

ρv − dy

2
∂
∂y
(ρv)

)

dxdz,
(

ρw − dz
2

∂
∂z
(ρw)

)

dxdy,

and the mass flow rate out of the control volume through the faces,2, 4 and 6 are
(

ρu+ dx
2

∂
∂x
(ρu)

)

dydz,
(

ρv + dy

2
∂
∂y
(ρv)

)

dxdz,
(

ρw + dz
2

∂
∂z
(ρw)

)

dxdy.

The summation of mass flow rate into the control volume is:

∑

min =
(

ρu−
dx

2

∂

∂x
(ρu)

)

dydz +
(

ρv −
dy

2

∂

∂y
(ρv)

)

dxdz +
(

ρw −
dz

2

∂

∂z
(ρw)

)

dxdy

=
(

ρu−
1

2

∂

∂x
(ρu) + ρv −

1

2

∂

∂y
(ρv) + ρw −

dz

2

∂

∂z
(ρw)

)

dxdydz.

The summation of mass flow rate out the control volume is:

∑

mout =
(

ρu+
dx

2

∂

∂x
(ρu)

)

dydz +
(

ρv +
dy

2

∂

∂y
(ρv)

)

dxdz +
(

ρw +
dz

2

∂

∂z
(ρw)

)

dxdy

=
(

ρu+
1

2

∂

∂x
(ρu) + ρv +

1

2

∂

∂y
(ρv) + ρw +

dz

2

∂

∂z
(ρw)

)

dxdydz.

By the conservation of mass equation, the rate of change of mass within the control

volume with respect to time is equal to the summation of mass flow rate into the

control volume minus summation of the mass flow rate out of the control volume.

dxdydz
∂ρ

∂t
=

∑

min −
∑

mout

=
(

ρu−
1

2

∂

∂x
(ρu) + ρv −

1

2

∂

∂y
(ρv) + ρw −

dz

2

∂

∂z
(ρw)

)

dxdydz

−

(
(

ρu+
1

2

∂

∂x
(ρu) + ρv +

1

2

∂

∂y
(ρv) + ρw +

dz

2

∂

∂z
(ρw)

)

dxdydz

)

=

(

−
∂

∂x
(ρu)−

∂

∂y
(ρv)−

∂

∂z
(ρw)

)

dxdydz.

This implies:

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0 (2.8)
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Equation (2.8) is called continuity equation. We shall see other ways of written it

later.

Integral Approach

Consider a control volume, V , bounded by the control surface S. The net rate of

d ~A

control surface

control volume

Figure 2.3: Control Volume for derivation of continuity equation (integral form)

mass efflux across the control surface, S, velocity vector ~V at an elemental area d ~A

is:
∫∫

s

ρ~V d ~A.

Mass accumulation rate within the control volume is therefore

∂

∂t

∫∫∫

v

ρdV,

where V is the total volume, the principle of conservation of mass states that, the

rate of accumulation of mass in the control volume together with the rate of mass

efflux from the control volume must be zero. Hence,

∂

∂t

∫∫∫

v

ρdV +

∫∫

s

ρ~V d ~A = 0. (2.9)
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Applying Gauss’s divergence theorem on the second expression on the left hand, then

∫∫

s

ρ~V d ~A =

∫∫∫

v

div(ρ~V )dV =

∫∫∫

v

∇ · (ρ~V )dV. (2.10)

Subtitute equation (2.10) to (2.9), we have

∂

∂t

∫∫∫

v

ρdV +

∫∫∫

v

∇ · (ρ~V )dV = 0. (2.11)

Since volume does not change with time, then

∫∫∫

v

(∂ρ

∂t
+∇ · (ρ~V )

)

dV = 0,

therefore,

∂ρ

∂t
+∇ · (ρ~V ) = 0. (2.12)

Since ∇ = ∂
∂x
i+ ∂

∂y
j+ ∂

∂z
k and ~V = ui+vj+wk, therefore equation(2.8) and equation

(2.12) are the same and they are called continuity equation for compressible flow.

For a constant density, ρ, then we have continuity equation for incompressible flow

∇ · (ρ~V ) = 0,

where ∇· (ρ~V ) is called divergence of the velocity and physically, is the rate of change

of volume of a moving fluid element, per unit volume.

The continuity equation in cartesian coordinate is:

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0.

In spherical polar coordinates:

∂ρ

∂t
+

∂

r2∂r
(ρr2ur) +

∂

rsinθ∂θ
(ρuθsinθ) +

∂

rsinθ∂φ
(ρuφ) = 0.
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In cylindrical polar coordinates:

ur, uθ and uz, are the velocity components in their respective direction. The trans-

formation between the cartesian and the polar system is given by the relations,

r =
√

x2 + y2, θ = tan−1 y

x
, z = z

and del operator as ∇ρ = 1
r

∂
∂r
(rρ)+ 1

r
∂
∂θ
(ρ)+ ∂

∂z
(ρ), therefore the continuity equation

in a cylindrical polar coordinate is given as:

∂ρ

∂t
+

∂

r∂x
(ρrur) +

∂

r∂θ
(ρuθ) +

∂

∂z
(ρuz) = 0.

2.2 Navier-Stoke Equations

The central equations for fluid dynamics are the Navier Stoke equations, which are

nonlinear partial differential equations with time and space dependency. Its describe

the flow of a fluid whose stress depends linearly on velocity and pressure. These

equations were originally derived in the 1840s on the basis of conservation laws and

first-order approximations. In fact, they are very simple in nature but very difficult

to solve. There are very few analytical solutions and the numerical approach is

very challenging task. Therefore, many simplification approaches are developed to

describe specific fluids. The sets of equations give continuum phenomena in all areas

of sciences.

By Newton’s second law which state that the net forces on the fluid element equals

to its mass times the acceleration of the element.

m~a = m
D~V

Dt
=
∑

~f, (2.13)

but

ρ =
m

V
, V = dxdydz, m = ρdxdydz, (2.14)
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where m is the mass, V is the volume, ρ is the density and ~V is the velocity vector.

By material derivatives

D~V

Dt
=

∂~V

∂t
+ (~V · ∇)~V . (2.15)

In cartesian coordinates, ~V = (u, v, w) and the material derivatives becomes:

Du

Dt
=

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
Dv

Dt
=

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
Dw

Dt
=

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

We express the total force as the sum of body forces and surface forces.

∑
~f =

∑
~fb +

∑
~fs. (2.16)

Body forces consist of gravity force, electromagnetic force, centrifugal force and cori-

olis force while surface forces consist of pressure forces and viscous forces.

Considering the y-component where ~V = (u, v, w), substitute equations (2.14)-(2.16)

and to (2.13), we obtain

ρdxdydz
Dv

Dt
=
∑

~fby +
∑

~fsy. (2.17)

We assume the body force is the gravitational force, then

∑
~fby = mgy = ρdxdydzgy. (2.18)

Surface forces act directly on the surface of the fluid element and they are only due

to two sources:

(i) The pressure distribution acting on the surfaces, imposed by the outside fluid

surrounding the fluid element.
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dy

dz

dx

(τyy +
∂τyy
∂y

dy

2
)dxdz

(τyy −
∂τyy
∂y

dy

2
)dxdz

(τxy +
∂τxy
∂x

dx
2
)dydz(τxy −

∂τxy
∂x

dx
2
)dydz

(τyz −
∂τyz
∂z

dz
2
)dxdy

(τyz +
∂τyz
∂z

dz
2
)dxdy

(P − ∂P
∂y

dy

2
)dxdz

(P + ∂P
∂y

dy

2
)dxdz

Figure 2.4: Details of forces acting on a three-dimensional control volume

(ii) The shear and normal stress distribution acting as well on the surfaces.

The net y-component of pressure force using Taylor series expansion at the centre of

the face neglecting order two and the higher order terms, we obtain

(

P −
∂P

∂y

dy

2

)

dxdz −

[
(

P +
∂P

∂y

dy

2

)

dxdz

]

= −
∂P

∂y
dydxdz.

The net y-component of the viscous forces using Taylor series expansion at the centre

of the faces neglecting order two and the higher order terms:

= −

(

τyy −
∂τyy
∂y

dy

2

)

dxdz +
(

τyy +
∂τyy
∂y

dy

2

)

dxdz

−

(

τxy −
∂τxy
∂x

dx

2

)

dydz +
(

τxy +
∂τxy
∂x

dx

2

)

dydz

−

(

τzy −
∂τzy
∂z

dz

2

)

dxdy +
(

τzy +
∂τzy
∂z

dz

2

)

dxdy

=
(∂τyy

∂y
+

∂τxy
∂x

+
∂τyz
∂z

)

dxdydz (2.19)

Net surface force in the y-component:

∑
~fsy =

(

−
∂P

∂y
+

∂τyy
∂y

+
∂τxy
∂x

+
∂τyz
∂z

)

dxdydz. (2.20)
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The total forces in y-component is the sum of equations (2.18) and (2.20) which is

∑
~f =

(

−
∂P

∂y
+

∂τyy
∂y

+
∂τxy
∂x

+
∂τyz
∂z

+ ρgy

)

dxdydz. (2.21)

Combining equations (2.21), (2.13) and (2.14), we obtain,

ρ
Dv

Dt
= −

∂P

∂y
+

∂τyy
∂y

+
∂τxy
∂x

+
∂τyz
∂z

+ ρgy, (2.22)

which is y-component of the momentum for viscous flow. In the same manner, x and

z- components can be derived as

ρ
Du

Dt
= −

∂P

∂x
+

∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

+ ρgx (2.23)

and

ρ
Dw

Dt
= −

∂P

∂z
+

∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

+ ρgz. (2.24)

These are non-conservative form of Navier-Stoke equations. The Navier-Stoke equa-

tions in form of conservative can be obtained by writing ρDv
Dt

in terms of material

derivatives,

ρ
Dv

Dt
= ρ
(∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

,

= ρ
∂v

∂t
+ ρ~V · (∇v). (2.25)

By product rules,

∂

∂t
(ρv) = ρ

∂v

∂t
+ v

∂ρ

∂t
,

ρ
∂v

∂t
=

∂

∂t
(ρv)− v

∂ρ

∂t
. (2.26)

Furthermore by divergence product,

∇ · (ρv~V ) = v∇ · (ρ~V ) + ρ~V · (v∇)

ρ~V · (v∇) = ∇ · (ρv~V )− v∇ · (ρ~(V )) (2.27)
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Combining equations (2.25),(2.26) and (2.27) we obtain,

ρ
Dv

Dt
=

∂

∂t
(ρv)− v

(∂ρ

∂t
+∇ · (ρ~V )

)

+∇ · (ρv~V ). (2.28)

The equation in the bracket in equation (2.28) is referred to as continuity equation

which is zero. Hence,

ρ
Dv

Dt
=

∂

∂t
(ρv) +∇ · (ρv~V ). (2.29)

Combining equations (2.22) and (2.29), we obtain,

∂

∂t
(ρv) +∇ · (ρv~V ) = −

∂P

∂y
+

∂τyy
∂y

+
∂τxy
∂x

+
∂τyz
∂z

+ ρgy. (2.30)

Similarly for x and z-components:

∂

∂t
(ρu) +∇ · (ρu~V ) = −

∂P

∂x
+

∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

+ ρgx, (2.31)

∂

∂t
(ρw) +∇ · (ρw~V ) = −

∂P

∂z
+

∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

+ ρgz. (2.32)

By Newton’s law of viscosity, the viscous stress components are related to the dy-

namics viscosity coefficient µ and second viscosity coefficient λ by:

τxx = 2µ
∂u

∂x
+ λ∇ · ~V τyy = 2µ

∂v

∂y
+ λ∇ · ~V , τzz = 2µ

∂w

∂z
+ λ∇ · ~V

τxy = τyx = µ
(∂v

∂x
+

∂u

∂y

)

, τzx = τxz = µ
(∂w

∂x
+

∂u

∂z

)

, τyz = τzy = µ
(∂v

∂z
+

∂w

∂y

)

Substitute these to equation (2.30), we obtain

∂

∂t
(ρv)+∇·(ρv~V ) = −

∂P

∂y
+

∂

∂y

(

2µ
∂v

∂y
+λ∇·~v

)

+
∂

∂x

(

µ
(∂v

∂x
+
∂u

∂y

))

+
∂

∂z

(

µ
(∂v

∂z
+
∂w

∂y

))

+ρgy

(2.33)

Similarly equations (2.31) and (2.32) become,

∂

∂t
(ρu)+∇·(ρu~V ) = −

∂P

∂x
+

∂

∂x

(

2µ
∂u

∂x
+λ∇·~v

)

+
∂

∂y

(

µ
(∂v

∂x
+
∂u

∂y

))

+
∂

∂z

(

µ
(∂w

∂x
+
∂u

∂z

))

+ρgx

(2.34)
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and

∂

∂t
(ρw)+∇·(ρw~V ) = −

∂P

∂z
+

∂

∂x

(

µ
(∂w

∂x
+
∂u

∂z

))

+
∂

∂y

(

µ
(∂v

∂z
+
∂w

∂y

))

+
∂

∂z

(

2µ
∂w

∂z
+λ∇·~v

)

+ρgz

(2.35)

Equations (2.33),(2.34),and (2.35) are complete Navier Stoke equations in conser-

vation form. For compressible flow when ∇ · ~V = 0 and ρ is constant, then the

Navier-Stoke equations for y-component is of the form:

ρ
(∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

= −
∂P

∂y
+ µ
(∂2v

∂y2
+

∂2v

∂x2
+

∂2v

∂z2

)

+ ρgy.

Similarly for x-component:

ρ
(∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

= −
∂P

∂x
+ µ
(∂2u

∂y2
+

∂2u

∂x2
+

∂2u

∂z2

)

+ ρgx,

and for z-component:

ρ
(∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)

= −
∂P

∂z
+ µ
(∂2w

∂y2
+

∂2w

∂x2
+

∂2w

∂z2

)

+ ρgz.

With the vectorial form of:

ρ
D~V

Dt
= −∇P + µ∇2~V + ρ~g.

2.3 Energy Equation

We require conservation of energy to complete the system of equations. Energy

equation is a mathematical statement that is based on the physical law i.e. first law

of thermodynamics which states that the sum of the work and heat added to a system

will equal the increase of energy. Going by the derivation given by White[122]:

dEt
︸︷︷︸

Change of the total energy of the system

= dQ
︸︷︷︸

Change of the heat added

+ dW
︸︷︷︸

Change of work done on the system

(2.36)
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The quantity Et consists of internal energy, kinetic and potential energy given by

Et = ρ

(

e+
V 2

2
− g · r)

)

, (2.37)

where e is the internal energy, the second term on the right hand side is kinetic

energy while the last term is potential energy, r is the displacement of the particle

and V = dr
dt
.

Writing equation (2.36) in terms of time rate of change, it becomes

DEt

Dt
=

DQ

Dt
+

DW

Dt
. (2.38)

Using equation (2.37), then equation (2.38) becomes

ρ

(

De

Dt
+ V

DV

Dt
− g · V

)

=
DQ

Dt
+

DW

Dt
. (2.39)

We therefore need to express the Q and W in terms of fluid properties. The heat flow

dx

dy

dz

(qy +
∂q

∂y

dy

2
)dxdz

(qy −
∂q

∂y

dy

2
)dxdz

Figure 2.5: y-component of heat flux in and out of control volume

into and out of the control volume is identical to mass flow. From figure (2.5) above,

the net heat flow into the control volume in y-component is:

qyin − qyout = (qy −
∂q

∂y

dy

2
)dxdz − (qy +

∂q

∂y

dy

2
)dxdz

= −
∂q

∂y
dydxdz. (2.40)
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In the similar manner, we obtain the net heat flow into the control volume in x and

z-components. Summing up all the net heat flow into the control volume in y,x and

z-components and divide by dydxdz gives the net rate of heat transfer to the fluid

per unit volume. i.e.

DQ

Dt
= −

(

∂q

∂y
+

∂q

∂x
+

∂q

∂z

)

= −∇q. (2.41)

Fourier’s Law relates heat flow to the temperature:

q = −k∇T. (2.42)

Therefore, combining equations (2.41) and (2.42) we obtain,

DQ

Dt
= ∇ · (k∇T ). (2.43)

Work done on the system, by the definition of work done,work = force × distance,

hence the rate of work is:

DW

Dt
= force×

dr

dt
= stress× velocity

The net work done on y-component is −(Wyin
−Wyout

) which is

−(Wyin
−Wyout

) = (vτyy −
∂

∂y
(vτyy)

dy

2
)dxdz −

(

(vτyy +
∂

∂y
(vτyy)

dy

2
)dxdz

)

+ (vτxy −
∂

∂x
(vτxy)

dx

2
)dydz −

(

(vτxy +
∂

∂x
(vτxy)

dx

2
)dydz

)

+ (vτyz +
∂

∂z
(vτyz)

dz

2
)dxdy −

(

(vτyz +
∂

∂z
(vτyz)

dz

2
)dxdy

)

,

−(Wyin
−Wyout

) =
( ∂

∂y
(vτyy +

∂

∂x
(vτxy +

∂

∂z
(vτyz

)

dydxdz (2.44)

Similarly for x-component

−(Wxin −Wxout) =
( ∂

∂x
(uτxx +

∂

∂y
(uτxy +

∂

∂z
(uτxz

)

dydxdz (2.45)
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dz

dx

(vτyy +
∂
∂y
(vτyy)

dy

2
)dxdz

(vτyy −
∂
∂y
(vτyy)

dy

2
)dxdz

(vτxy +
∂
∂x
(vτxy)

dx
2
)dydz

(vτxy −
∂
∂x
(vτxy)

dx
2
)dydz

(vτyz −
∂
∂z
(vτyz)

dz
2
)dxdy

(vτyz +
∂
∂z
(vτyz)

dz
2
)dxdy

Figure 2.6: y-component of work done in and out of control volume

and for z-component

−(Wzin −Wzout) =
( ∂

∂z
(wτzz +

∂

∂x
(wτxz +

∂

∂y
(wτyz

)

dydxdz. (2.46)

Summing equation (2.44), (2.45) and (2.46) divide by dxdydz gives the net rate of

work done per unit volume

DW

Dt
= −divW =

∂

∂x

(

uτxx + vτxy + wτxz

)

+
∂

∂y

(

uτxy + vτyy + wτyz

)

+
∂

∂z

(

uτxz + vτyz + wτzz

)

, (2.47)

which can be written as

DW

Dt
= ∇ · (V · τij). (2.48)

By product rule,

∇ · (V · τij) = V · (∇ · τij) + τij(∇V ), (2.49)

the first bracket on the right hand side of equation (2.49) related to momentum

equation

∇ · τij = ρ
(DV

Dt
− g
)

. (2.50)
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Therefore,

V · (∇ · τij) = ρ
(

V
DV

Dt
− g · V

)

. (2.51)

Combine equation (2.48),(2.49) and (2.51), we obtain:

DW

Dt
= ρ
(

V
DV

Dt
− g · V

)

+ τij(∇V ). (2.52)

Combine equations (2.39) ,(2.43) and (2.52), we obtain:

ρ
(De

Dt

)

= ∇ · (k∇T ) + τij(∇V ). (2.53)

From enthalpy definition, h = e + P
ρ
and τij(∇V ) = Φ, therefore equation (2.53)

becomes

ρ
Dh

Dt
=

DP

Dt
+ ∇ · (k∇T )
︸ ︷︷ ︸

heat conduction

+ Φ
︸︷︷︸

viscous dissipation

, (2.54)

where

Φ = µ

[

2
(∂u

∂x

)2

+ 2
(∂v

∂y

)2

+ 2
(∂w

∂z

)2

+
(∂v

∂x
+

∂u

∂y

)2

+
(∂w

∂y
+

∂v

∂z

)2

+
(∂u

∂z
+

∂w

∂x

)2
]

+ λ

(

∂u

∂x
+

∂y

∂y
+

∂w

∂z

)2

. (2.55)

Equation (2.54) is called energy equation and it can be written in numerous forms.

In this chapter, we considered some of the fundamental governing equations of fluid

dynamics which we shall be using in the subsequent chapters.
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Chapter 3

Effects of Navier Slip on Entropy
Generation in a Porous Channel
with Suction/Injection

In this chapter, we investigate the combined effects of suction/injection and asymmet-

ric Navier slips on the entropy generation rate in a steady flow of an incompressible

viscous fluid through a porous channel subjected to non-uniform temperature at the

walls. The nonlinear model problem is tackled numerically using shooting quadrature.

Both the velocity and temperature profiles are obtained and utilized to compute the

entropy generation number. The effects of slip parameter, Brinkmann number, the

Peclet number and suction/injection Reynolds number on the fluid velocity, tempera-

ture profile, skin friction, Nusselt number, entropy generation rate and Bejan number

are depicted graphically and discussed quantitatively.

3.1 Introduction

Rapid progress in science and technology has led to the development of an increasing

number of flow devices that involve the manipulation of fluid flow in various goeme-
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tries. Many textbooks of fluid dynamics fails to mention that the no-slip condition

remains an assumption due to unusual agreement with experimental results for a cen-

tury. Nevertheless, another approach supposed that fluid can slide over a solid surface

because the experimental fact was not always accepted in the past. Navier [90] pro-

posed general boundary conditions which include possibility of fluid slip at the solid

boundary. He proposed that velocity at a solid surface is proportional to the shear

stress at the surface. The phenomenon of slip occurrence has been demonstrated by

the recent theoretical and experimental studies, these include; Sahraoui et al [102],

Buckingham et al [13], Berh [12], Raoufpanah [96], Chauhan et al [17], Tripathi et al

[118], Gupta [42], etc.

Moreover, entropy generation in engineering and industrial flow systems provides

insight into the power consumption through thermodynamic losses. Therefore, the

entropy minimization provides power optimization for the fluid motion in the porous

channel. Efficient energy utilization during the convection in any fluid flow is one

of the fundamental problems of the engineering processes to improve the system.

Consequently, investigation of entropy generation due to combined effects of wall suc-

tion/injection, Navier slip and non-uniform surface temperature become essential. In

a pioneering work, Bejan [6] presented the analysis of thermodynamic second-law to

inherent irreversibility in heat transfer with respect to thermal design of an engineer-

ing system. Thereafter, considerable research studies were carried out to investigate

entropy generation such as: Bejan [7], Sahin [105], Sahin et al [104], Makinde et al

[60], Makinde [61], Ozalp [92], Erbay et al [40], Vazquez et al [121], Haddad et al [43],

e.t.c.

Meanwhile, fluid flow through a porous channel has been studied theoretically and ex-
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perimentally by numerous authors due to its wide applications in various fields such as

diffusion technology, transpiration cooling, hemodialysis processes, desalination, flow

control in nuclear reactors, etc. In a pioneering work, Berman [8] presented an ex-

act solution of the Navier-Stokes equations that describes the steady two-dimensional

flow of an incompressible viscous fluid along a channel with parallel rigid porous walls,

the flow being driven by uniform suction or injection at the walls. Thereafter, many

authors such as Terrill [113, 114], Makinde [62], Robinson [101], Brady [14], Makinde

[63], etc., have extended and reconsidered the problem under various physical con-

ditions. To the best of authors knowledge, none of these chapters have addressed

combined effects of wall suction/injection and asymmetric Navier slips on steady flow

in a porous channel with non uniform walls temperature.

In this chapter, our objective is to investigate the combined effects of wall suc-

tion/injection and asymmetric Navier slips on an incompressible viscous flow in a

porous channel subjected to non-uniform walls temperature. The work essentially

extends the recent work of Ajibade et al [2] to include asymmetric Navier slip and

non-uniform wall temperature. The nonlinear model problem is tackled numerically.

The chapter is organized as follows: in section 3.2, we define the problem, given the

governing equations and present the mathematical formulation. In section 3.3, we

derive the entropy generation rate, skin friction, Nusselt number and Bejan number.

In section 3.4, we present and discuss the pertinent results graphically and quantita-

tively. Finally, a concluding remark is given in section 3.5.
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3.2 Mathematical Model

We consider steady flow of an incompressible viscous fluid through a uniformly porous

channel under the combined action of constant axial pressure gradient, wall suction

/ injection and asymmetric Navier slip as shown in fig.(3.1) below.

v = V, u = γ2
du
dy
, T = Th

y = h(suction)
y

x

v = V, u = γ1
du
dy
, T = T0

y = 0(injection)

Figure 3.1: Schematic diagram of the problem

The fluid equations for momentum and energy balance governing the problem under

consideration can be written as (Ajibade et al[2]):

V
du

dy
= −

1

ρ

dP

dx
+

µ

ρ

d2u

dy2
(3.1)

and

V
dT

dy
= α

d2T

dy2
+

µ

ρcP

(du

dy

)2

. (3.2)

The boundary conditions are:

u(0) = γ1
du(0)

dy
, T (0) = T0 (3.3a)

and

u(h) = γ2
du(h)

dy
, T (h) = Th (3.3b)

where equations (3.1) and (3.2) are momentum and energy equations respectively,

h is the channel width, u is the velocity of the fluid, P is the fluid pressure, V is
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the uniform suction/injection at the channel walls, µ is the fluid viscosity, α is the

thermal diffusivity, k is the thermal conductivity coefficient, cP is the specific heat at

constant pressure, T is the temperature, γ1 and γ2 are slip coefficients. We introduce

the following non-dimensional quantities:

θ =
T − T0

Th − T0

, α =
k

ρcP
, w =

u

V
, P̄ =

hP

µV
, η =

y

h
, X =

x

h
, G = −

dP̄

dX
.

(3.4)

Substituting equation (3.4) into equations (3.1)-(3.3b), we obtain

d2w

dη2
−Re

dw

dη
+G = 0 (3.5)

and

d2θ

dη
− Pe

dθ

dη
+ Br

(dw

dη

)2

= 0, (3.6)

with the boundary conditions

w(0) = β1
dw(0)

dη
, θ(0) = 0 (3.7a)

and

w(1) = β2
dw(1)

dη
, θ(1) = 1, (3.7b)

where G is the pressure gradient,

Re =
V hρ

µ
(Reynolds number), P e = PrRe =

V h

α
(Peclet number),

P r =
µ

αρ
(Prandtl number), Br =

µV 2

ρcPα(Th − T0)
(Brinkmann number),

β1 =
γ1
h
(lower plate slip parameter), β2 =

γ2
h
(upper plate slip parameter).
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Moreover, equation (3.5) subjected to boundary conditions in equations (3.7a) and

(3.7b) were solved analytically and we obtain

w(η) =
eReηG(1− β2 + β1)

Re(1− eRe − β1Re+ eReβ2Re)
+

ηG

Re

+
G(β1Re+Reβ1β2e

Re − β1β2Re− eReβ1 + β2 − 1)

Re(1− eRe − β1Re+ eReβ2Re)
. (3.8)

The above coupled nonlinear boundary value problem represented by equations (3.5)-

(3.6) together with their boundary conditions in equation (3.7a, b) have been solved

numerically using the shooting iteration technique together with Runge-Kutta fourth-

order integration scheme, Nachtshein and Swigert [88].

3.3 Entropy Generation

Fluid flow and heat transfer processes inside a porous narrow channel are irreversible.

The non-equilibrium conditions arise due to the exchange of energy and momentum

within the fluid and at porous solid boundaries, thus resulting in entropy generation.

Following Bejan [7], the volumetric entropy generation rate is given as :

EG =
k

T 2
0

(dT

dy

)2

+
µ

T0

(du

dy

)2

, (3.9)

where the first term on the right side of equation (3.9) is the irreversibility due to

heat transfer and the second term is the entropy generation due to viscous dissipation.

Using equation (3.4), we express equation (3.9) in dimensionless form as:

NS =
T 2
0H

2EG

k(Th − T0)2
=

(

dθ(η)

dη

)2

+
Br

Ω

(

dw(η)

dη

)2

, (3.10)

where Ω =
(Th − T0)

T0

is the temperature difference parameter and

N1 =

(

dθ(η)

dη

)2

, N2 =
Br

Ω

(

dw(η)

dη

)2

(3.11).
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The Bejan number is given as:

Be =
N1

NS

. (3.12)

It is noteworthy that the Bejan number ranges from 0 to 1 and Be = 0 is the limit

where the irreversibility is dominated by fluid friction effects. Be = 1 is the limit

where the irreversibility due to heat transfer dominates the flow system by virtue

of finite temperature differences. The contribution of both heat transfer and fluid

friction to entropy generation are equal when Be = 1/2.

3.4 Results and Discussion

In order to validate our results, we have chosen physically meaningful values for the

parameters. The Prandtl number was taken in the range of Pr = 0.71 to 7.1 which

corresponds to Prandtl number in the range of air and that of water. From our model

in Fig.(3.1), it is important to note that the fluid suction takes place at the upper wall

while the fluid injection occurs at the lower wall simultaneously. In order to validate

the accuracy of our numerical procedure, the exact solution obtained in equation (3.8)

is compared with the numerical solution obtained using shooting iteration technique

together with Runge-Kutta fourth-order integration scheme as illustrated in table 3.1.

A perfect agreement is achieved between the numerical and exact solutions.

Fig.(3.2) depicts the effects of increase in Reynolds number (Re). As Re increases,

fluid injection into the channel through the lower wall of the channel increases while

the rate of fluid suction at the upper wall of the channel increases as well. This leads

to a decrease in the fluid velocity at the lower channel wall region and an increase
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Table 3.1: Computation showing comparison between the exact and numerical solu-
tion of velocity profile for G = 1, Re = β1 = β2 = 0.1

n Exact Solution w(η) Numerical Solution w(η)
0 0.03956249 0.03956249
0.1 0.07430662 0.07430662
0.2 0.09934983 0.09934983
0.3 0.11459457 0.11459457
0.4 0.11994234 0.11994234
0.5 0.11529370 0.11529370
0.6 0.10054817 0.10054817
0.7 0.07560428 0.07560428
0.8 0.04035953 0.04035953
0.9 −0.00528959 −0.005289591
1.0 −0.06144767 −0.061447671

in flow reversal (represented by negative velocity) at the upper wall region (η = 1).

Fig.(3.3) shows velocity profile while β1 is increasing. An increase in slip coefficient
 

 

Figure 3.2: Velocity profile, β1 = β2 = Br = 0.1, G = 1, P r = 0.71

β1 at the lower wall causes an increase in the velocity at the injection wall while the

velocity reversal at suction wall increases slightly. In Fig.(3.4) we observed that an

increase in the slip coefficient β2 at the upper wall causes a little decrease in velocity

at injection wall while a large decrease in the fluid velocity is noticed with a high rate

of flow reversal at the suction wall. Fig.(3.5) depicts the variation in velocity profile
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Figure 3.3: Velocity profile, β2 = Br = 0.1, G = Re = 1, P r = 0.71
 

 

 

Figure 3.4: Velocity profile, β1 = Br = 0.1, G = Re = 1, P r = 0.71

with increasing values of pressure gradient parameter. As the pressure gradient in-

creases, the velocity at injection wall increases and attains its maximum value along

the channel centerline region. A slight increase in the reverse flow appears at suction

wall. Fig.(3.6) shows temperature profile when there is increment in Brinkmann (Br)

number due to viscous dissipation effects. The fluid temperature increases with an

increase Br with minimum value at the injection wall and maximum value at suction

wall satisfying the boundary condition. Fig.(3.7) depicts temperature profile when

the Prandtl number is increasing from 0.71 (air) to 7.1 (water). Increase in Prandtl

number causes a sporadic decrease in temperature at the injection wall region and a

slight decrease in temperature at the suction wall region. Similar trend is observed in
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Figure 3.5: Velocity profile, β1 = β2 = Br = 0.1, Re = 1, P r = 0.71

Fig.(3.8) as the Reynolds number increases. A slight decrease in the fluid temperature

is noticed with increasing value of Reynolds number.
 

 

 

Figure 3.6: Temperature profile, β1 = β2 = 0.1, G = Re = 1, P r = 0.71

 

 

Figure 3.7: Temperature profile, β1 = β2 = Br = 0.1, G = Re = 1
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Figure 3.8: Temperature profile, β1 = β2 = Br = 0.1, G = 1, P r = 0.71

Fig.(3.9) illustrates the entropy generation rate when Reynolds number is increas-

ing and other parameters remain constant. The entropy production at the injection

walls decreases, however, at suction wall, entropy generation rate increases. Fig.(3.10)

depicts entropy generation rate when group parameter BrΩ−1 increases due to a com-

bined decrease in the temperature difference parameter and an increase in the viscous

heating. As BrΩ−1 increases, the entropy generation rate at both walls increases but

more at suction wall. The entropy generation is lowest within the channel centerline

region. In Fig.(3.11), an increase in Prandtl number decreases the rate of entropy

production at the injection wall but increase entropy generation rate at the suction

wall. Figs.(3.12)-(3.13) depict entropy generation rate when the slip coefficients are

increasing while other parameters remain constant. Increase in β1 and β2 decrease

entropy generation rate at the injection wall and increase entropy generation rate

at the suction wall. Fig.(3.14) shows the effect of an increase in pressure gradient

parameter (G) on entropy generation rate. As G increases, an increase in entropy

production is observed at both walls but the increment in entropy generation is more

at suction wall.
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Figure 3.9: Entropy generation rate, BrΩ−1 = β1 = β2 = 0.1, G = 1, P r = 0.71

 

 

 

Figure 3.10: Entropy generation rate, β1 = β2 = Re = 0.1, G = 1, P r = 0.71

 

 

Figure 3.11: Entropy generation rate, BrΩ−1 = β1 = β2 = Re = 0.1, G = 1
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Figure 3.12: Entropy generation rate, BrΩ−1 = β2 = Re = 0.1, G = 1, P r = 0.71

 

 

 

Figure 3.13: Entropy generation rate, BrΩ−1 = β1 = Re = 0.1, G = 1, P r = 0.71

 

 

Figure 3.14: Entropy generation rate, BrΩ−1 = β1 = β2 = Re = 0.1, P r = 0.71

Figs.(3.15)-(3.20) illustrate the effects of various thermophysical parameters on

the Bejan number. Generally we noticed that heat transfer irreversibility dominates
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the flow process within the channel centerline region with Bejan number very close to

1, while the little influence of fluid friction irreversibility can be observed at the chan-

nel walls. This perfectly agrees with the observation of Ajibade et al[2]. In Fig.(3.15),

we observed that increase in Reynolds number; decreases the Bejan number on injec-

tion wall and increases the Bejan number on suction wall. This shows clearly that

the irreversibility due to fluid friction tends to dominate the flow system at injec-

tion wall while heat transfer irreversibility dominates at the suction wall. Fig.(3.16)

depicts the effects of increasing group parameter; the Bejan number at both walls

decrease leading to increasing influence of fluid friction irreversibility. Figs.(3.17)-

(3.18) demonstrate the effects of asymmetric slip coefficients β1 and β2. The Bejan

number at injection wall increases while it decreases at the suction wall leading to the

increasing influence of heat transfer irreversibility at the lower wall and fluid friction

irreversibility at the upper wall. Increase in Prandtl number leads to decrease in Be-

jan number at injection wall and an increase in Bejan number at the suction wall (see

Fig.(3.19)). Consequently, the fluid friction irreversibility tends to dominate the flow

system at injection wall while heat transfer irreversibility dominates at the suction

wall. Fig.(3.20) shows that an increase in axial pressure gradient causes the influence

of fluid friction irreversibility at both walls to increase greatly.
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Figure 3.15: Bejan Number, BrΩ−1 = β1 = β2 = 0.1, G = 1, P r = 0.71

 

 

 

Figure 3.16: Bejan Number, β1 = β2 = Re = 0.1, G = 1, P r = 0.71

 

 

Figure 3.17: Bejan Number, BrΩ−1 = β2 = Re = 0.1, G = 1, P r = 0.71
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Figure 3.18: Bejan Number, BrΩ−1 = β1 = Re = 0.1, G = 1, P r = 0.71

 

 

 

Figure 3.19: Bejan Number G = 1,BrΩ− = β1 = β2 = Re = 0.1

 

 

Figure 3.20: Bejan Number Pr = 0.71,BrΩ− = β1 = β2 = Re = 0.1
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3.5 Conclusion

We analyzed in this chapter, the combined effects of suction/injection and asymmetric

Navier slips on the entropy generation rate in a steady flow of an incompressible fluid

through a porous channel with non uniform walls temperature, putting into consider-

ation that these will be of help in upgrading the system in terms of energy loss. Our

results revealed among others the presence of flow reversal at the channels upper wall

due to suction. The heat transfer irreversibility dominates the flow process within

the channel centerline region, while the influence of fluid friction irreversibility can be

observed at the channel walls. However, as the values of asymmetric slip parameters

increase, the dominance effects of heat transfer irreversibility at the lower wall and

fluid friction irreversibility at the upper wall increase. Entropy generation minimiza-

tion has become most important area of research for scientists and engineers in this

crucial time. Moreover, with appropriate combination of thermophysical parameter

values, entropy minimization can be achieved in a flow process.
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Chapter 4

Combined Effect of Buoyancy
Force and Navier Slip on Entropy
Generation in a Vertical Porous
Channel

In this chapter, we investigate the combined effects of buoyancy force and Navier slip

on the entropy generation rate in a vertical porous channel with wall suction/injection.

The nonlinear model problem is tackled numerically using Runge Kutta - Fehlberg

method with shooting technique. Both the velocity and temperature profiles are ob-

tained and utilized to compute the entropy generation number. The effects of slip

parameter, Brinkmann number, the Prandtl number and suction/injection Reynolds

number on the fluid velocity, temperature profile, Nusselt number, entropy generation

rate and Bejan number are depicted graphically and discussed quantitatively.

4.1 Introduction

The study of fluid flow and heat transfer in a porous channel have received consider-

able attention during the last several decades due to its occurrence in a wide range

57



of biological and engineering settings such as ground water hydrology, irrigation, and

drainage problems and also in absorption and filtration processes in chemical engi-

neering. The scientific treatment of the problem of irrigation, soil erosion and tile

drainage are the present development of porous media flow [49,91,122]. Meanwhile,

the problem of the slip flow regime is very important in this era of modern science,

technology and vast ranging industrialization. In many practical applications, the

fluid adjacent to a solid surface no longer takes the velocity of the surface. The fluid

at the surface has a finite tangential velocity; it slips along the surface. The flow

regime is called the slip flow regime and its effect cannot be neglected. The effects of

slip conditions on the hydromagnetic steady flow in a channel with permeable bound-

aries were discussed by Makinde and Osalusi [64]. Khalid and Vafai [51] obtained the

closed form solutions for steady periodic and transient velocity field under slip con-

dition. Watanebe et al [123] studied the effect of Navier Slip on Newtonian fluids at

solid boundary. Chen and Tian [21] investigated entropy generation in a micro annu-

lus flow and discussed the influence of velocity slip on entropy generation. Chauhan

and Kumar [17] investigated fully developed forced convection in a circular channel

filled with a highly porous medium saturated with a rarefied gas and uniform heat flux

at the wall in the slipflow region, using the Darcy extended Brinkman-Forchheimer

momentum equation and the entropy generation due to heat transfer. Meanwhile,

there is continuous transfer of momentum and energy between the fluid and the solid

boundaries, causing the fluid to undergo irreversible processes and therefore increase

the entropy generation in the system. Since entropy production destroys the avail-

able energy in the system, the improvement in the energy utilization during the fluid

convection is one of the fundamental problems in engineering processes. The optimal
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use of energy can be achieved, if the second law of thermodynamics is taken into

consideration. Mahmud and Fraser[57] examined the flow, thermal and entropy gen-

eration fields inside a parallel-plate porous channel, when subjected to differentially

heated isothermal wall. Chauhan and Olkha [18] investigated the hydrodynamics

and heat transfer of the flow of a third-grade fluid incorporating entropy analysis.

Chauhan and Kumar [19] analyzed the heat transfer and entropy generation in a sit-

uation where the compressible fluid flow is caused by moving an impermeable wall of

a composite channel partially filled with a porous medium and a clear fluid. Chauhan

and Rastogi [20] considered an unsteady two-dimensional MHD flow and heat trans-

fer through a porous medium adjacent to a non-isothermal stretching sheet. Several

researchers have carried out analysis on second law analysis such as [44, 45, 93, 111].

Furthermore, starting from the pioneering work of Bejan [7, 9], several investigations

on entropy generation on fluid flow under various physical situations have been stud-

ied [22− 32, 65− 67]. Chen [31] performed a detailed study on the effects of Reynolds

number and Grashof number on entropy generation inside disk driven convectional

flow for the first time. Chen et al [32] investigated the effects of Rayleigh number, cur-

vature of annulus and Prandtl number on the flow pattern, temperature distribution

and entropy generation for natural convection inside a vertically concentric annular

space. It appears that very little or no study has considered the combined effects of

buoyancy force and velocity slip on the entropy generation in a porous channel with

suction and injection, which is the focus of this chapter. In this chapter, the inherent

irreversibility of a porous channel under the influence of velocity slip and buoyancy

force is investigated numerically using Runge-Kutta-Fehlberg method with shooting

technique. The solution of the resulting momentum and energy balance equations are
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reported for representative values of thermo-physical parameters characterizing the

fluid convection processes.

4.2 Mathematical Analysis

The steady laminar incompressible viscous boundary layer flow through a vertical

porous channel with non-uniform temperature, injection at the left wall and suction

at the right wall under the combined effect of buoyancy forces and Navier slip as

shown in Fig.(4.1) below are considered.

The density variation due to buoyancy effects is taken into account in the momentum

v = V, T = T0

u = γ1
du(y)
dy

v = V, T = Th

u = γ2
du(y)
dy

suctioninjection

g

Figure 4.1: Flow configuration and coordinate system

equation using Boussinesq approximation. The momentum and energy equations

describing the flow can be written as:

Momentum equation:

V
du(y)

dy
= −

1

ρ

dP

dx
+

µ

ρ

d2u(y)

dy2
+ gβ(T − T0) (4.1)

and Energy equation:

V
dT (y)

dy
= α

d2T (y)

dy2
+

µ

ρcP

(du(y)

dy

)2

, (4.2)
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with the boundary conditions:

v(0) = V, u(0) = γ1
du(0)

dy
, T (0) = T0, (4.3a)

v(h) = V, u(h) = γ1
du(h)

dy
, T (h) = Th, (4.3b)

where is the u velocity of the fluid, P is the fluid pressure, µ is the fluid viscosity,

α is the thermal diffusivity,ρ is the fluid density, cP is the specific heat at constant

pressure, T is the temperature, γ1 and γ2 are slip coefficients, β is volumetric ex-

pansion coefficient and g is acceleration due to gravity. We introduced the following

dimensionless quantities:

θ =
T − T0

Th − T0

, k = −
dP̄

dx̄
, x̄ =

x

h
, P̄ =

Ph

µV
, w =

u

V
, η =

y

h
. (4.4)

Using these dimensionless quantities in equation (4.1) -(4.3b), we obtain,

d2w(η)

dη2
−Re

dw(η)

dη
+K +Grθ(η) = 0, (4.5)

d2θ(η)

dη2
− Pe

dθ(η)

dη
+ Br

(dw(η)

dη
)2 = 0, (4.6)

with the boundary conditions

w(0) = β1
dw(0)

dη
, θ(0) = 0 (4.7a)

and

w(1) = β1
dw(1)

dη
, θ(1) = 1 (4.7b)

where

Re =
V ρh

µ
(Reynolds Number), P e =

V h

α
(Peclet Number), β2 =

γ1
h
(slip parameter),

K =
dP̄

dx̄
(Pressure gradient parameter), Br =

V 2µ

ρcPα(Th − T0)
(Brinkmann Number),
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Gr =
gβh2(Th − T0)

µV
(Grashof Number), β1 =

γ1
h
(slip parameter)

Equations (4.5)-(4.6) together with boundary conditions (4.7a)-(4.7b) are coupled

nonlinear boundary value problems which are solved numerically using Runge-Kutta-

Fehlberg method with shooting technique. The numerical solution procedure em-

ployed to solve the model boundary valued problem in Equations (4.5)-(4.7b) is based

on shooting techniques [66, 88]. It involves, transforming Equations (4.5)-(4.7b) into a

set of initial value problems. The transformed initial value problems will contain few

unknown initial values that need to be determined. After guessing the unknown ini-

tial values, a fourth order Runge-Kutta iteration scheme is employed to integrate the

set of initial valued problems until the given boundary conditions are satisfied. The

computations are done by a written program which used a symbolic and computa-

tional computer language MAPLE. The entire procedure is implemented on MAPLE.

The gradient of the velocity at the channel walls referring to skin fiction is equivalent

to:

Sf = µ
du

dy

∣
∣
∣
y=0,h

, (4.8)

therefore, the skin-friction coefficient at the wall using dimensionless quantities (4.4)

is given by:

Cf =
h

V µ
=

dw(η)

dη

∣
∣
∣
η=0,1

. (4.9)

The rate of heat transfer at the channels wall in dimensionless form is given by:

Nu = −
dθ(η)

dη

∣
∣
∣
η=0,1

. (4.10)
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4.3 Entropy Generation

The convection process along a porous channel is naturally irreversible. Exchange

of energy and momentum within the fluid and at the solid boundaries causes non-

equilibrium condition, which therefore leads to continuous entropy generation in the

porous channel. Bejan [9] gave volumetric rate of entropy generation in a Cartesian

coordinates as:

EG =
k

T 2
0

(
(dT

dx

)2

+
(dT

dy

)2
)

+
µ

T0

(

2

{
(du

dx

)2

+
(dv

dy

)2
}

+
(du

dx
+

dv

dy

)2
)

. (4.11)

The velocity and temperature distributions are simplified in many fundamental con-

vection problems by assuming that the flow is fully developed by Fantomo et al[122]

as:

EG =
k

T 2
0

(

dT

dy

)2

+
µ

T0

(

du

dy

)2

, (4.12)

where the first term on the right hand side of Equation (4.12) is the irreversibility

due to heat transfer and the second term is the entropy generation due to viscous

dissipation. Introducing the dimensionless quantities defined in equation (4.4) to

equation (4.12), we obtain

NS =
T 2
0 h

2EG

k(Th − T0)2
=

(

dθ(η)

dη

)2

+
Br

Ω

(

dw(η)

dη

)2

, (4.13)

where Ω = (Th − T0)/T0) is the temperature difference parameter and:

N1 =

(

dθ(η)

dη

)2

, N2 =
Br

Ω

(

dw(η)

dη

)2

(4.14)

where N1 represents irreversibility due to heat transfer and N2 gives entropy gen-

eration due to viscous dissipation. In order to have an idea whether the entropy
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generation due to viscous dissipation dominates over the irreversibility due to heat

transfer or vice versa, the authors defined irreversibility ratio as:

φ =
N2

N1

. (4.15)

Entropy generation due to viscous dissipation dominates if φ > 0 and if 0 ≤ φ < 1 ,

then irreversibility due to heat transfer dominates, but if φ = 1 implies that both of

them contribute equally.

The Bejan number (Be) is defined as:

Be =
N1

NS

=
1

1 + φ
, (4.16)

where Be = 1 is the limit at which heat transfer irreversibility dominates, Be = 0 is

the limit at which fluid friction irreversibility dominates, and Be = 1/2 implies that

both of them contribute equally.

4.4 Results and Discussion

The validity of boundary layer approximation for this model channel flow problem

can be attributed to the fact that the combined effects of suction and injection on

the flow system are more pronounced within the channel walls region [57, 66]. Using

appropriate parameters, the detailed discussion and graphical representation of the

results of above equations are reported in this section. We refer to vertical lines at

η = 0 as injection wall and at η = 1 as suction wall in this discussion. Fig.(4.2)

depicts the velocity profile while Grashof number (Gr) is increasing and other pa-

rameters remain constant.

The buoyancy effect on the flow system is demonstrated by variation in parameter

value of Grashof number (Gr). The choice of the values for Gr used in this chapter
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is motivated by the increasing effects of buoyancy due to gravity and temperature

difference between the channel walls. Increase in Gr, decreased the fluid injection

toward the channel from the injection wall and increased the suction fluid rate at the

suction wall. Consequently, the velocity increased at the injection wall and decreased

at the suction wall. A reversal flow is noticed at the suction wall as Gr is increasing.

Towards the centerline of the channel, the flow attains its maximum velocity and it

is asymmetric. Fig. (4.3) shows the effect of increasing Reynolds number (Re). As

Re is increasing, fluid injection into the channel, as well as the fluid suction rate is

increasing. At the injection wall, the velocity decreases and the flow reversal at the

suction wall increases.

 

 

 

Figure 4.2: velocity Profile,Re = 2, Br = 1, K = β1 = β2 = 0.1, P e = 3

Fig.(4.4) depicts the velocity profile while the pressure gradient (K) is increasing. As

the pressure gradient is increasing, there is a little increase in velocity at the injection

wall and a reversal flow at the suction wall is noticed. The flow attains its maximum

velocity very close to the centerline of the channel. Fig.(4.5) shows the velocity pro-

file as Peclet number (Pe) is increasing. As Pe is increasing, the fluid injection into
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Figure 4.3: velocity Profile,Gr = Br = 1, K = β1 = β2 = 0.1, P e = 3

the channel at the injection wall increases, similarly, there is an increase in the fluid

suction rate at the suction wall. The velocity at injection wall decreases a little but

at suction wall, the velocity increases. Meanwhile, at the centerline of the channel,

the velocity decreases greatly.

 

 

Figure 4.4: velocity Profile,Re = 2, Br = Gr = 1, β1 = β2 = 0.1, P e = 3

Fig.(4.6) shows the velocity profile with increase in slip parameter β1. As β1 is in-

creasing, the flow velocity at the injection wall increases and a slight reversal flow

effect at the suction wall is noticed. Fig.(4.7) depicts an increase in slip parameter
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Figure 4.5: velocity Profile,Gr = Br = 1, K = β1 = β2 = 0.1, Re = 2

β2. As β2 is increasing, the flow velocity at the injection wall decrease slightly but

greater decrease in the velocity is noticed at the suction wall.
 

 

 

Figure 4.6: velocity Profile,Re = 2, Br = Gr = 1, K = β2 = 0.1, P e = 3

When each of the parameters (Gr,Re,Br,K, β1, β2) varies while others remain con-

stant for the temperature profile, there is no effect on both suction and injection

channel walls. Fig.(4.8) depicts the temperature profile as Peclet Number (Pr) is

increasing. An increase in the Peclet number leads to a decrease in the temperature

at both injection and suction channel walls.

Fig.(4.9) depicts the variation of Peclet number and its effect on entropy generation
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Figure 4.7: velocity Profile,Gr = Br = 1, K = β1 = K = 0.1, Re = 2

number. The graph reveals that as the Peclet number is increasing, entropy genera-

tion number has no effect on the injection wall but rather on the suction wall, with

great increase in entropy generation. This shows that there are restrictive medium

leading to high disorder in the fluid particle at the suction wall.

 

 

 

Figure 4.8: Temperature Profile,Re = 2, Br = Gr = 1, K = β1 = β2 = 0.1

Figs.(4.10) and (4.11) depict an increase in group parameter BrΩ−1 and Grashof

number (Gr) and their effects on entropy generation. As BrΩ−1 and (Gr) are in-

creasing in Figs.(4.10) and (4.11) respectively, a slight increase in entropy generation
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Figure 4.9: Entropy Generation,Gr = Br = 1, K = β2 = β1 = K = 0.1, Re = 2,Ω =
1

on the injection wall and greater increase in entropy generation on the suction wall

are noticed. This indicates that, there is little restrictive medium at the injection

walls and more restrictive medium at the suction walls. Like Figs.(4.10) and (4.11),

Fig.(4.12) holds the same explanation as the pressure gradient parameter K varies.

Fig.(4.13) takes into consideration the variation of the asymmetric slip parameter β1

and its effect on entropy generation. This means that there is less restrictive medium

at the injection wall but more restrictive medium at the suction wall. Fig.(4.14) de-

picts variation in slip parameter β2 . As β2 increased, there is an increase in entropy

generation on both walls but with a greater increase on the suction wall.

Figs.(4.15)-(4.20) show the effect of Reynolds number, Peclet number, slip parame-

ters, group parameters, pressure gradient and Grashof number on the Bejan number.

Fig.(4.15) takes into account the variation of Reynolds number and its effect on the

Bejan number. The graph shows that as Reynolds number is increasing, Bejan number

on the injection wall is increasing while Bejan number on suction wall is decreasing.

Hence, irreversibility due to heat transfer dominates the flow process at the injection

wall and irreversibility due to fluid friction dominates at the suction wall. Fig.(4.16)
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Figure 4.10: Entropy Generation,Gr = 1, K = β2 = β1 = 0.1, Re = 2, P e = 0.1
 

 

 

Figure 4.11: Entropy Generation,Br = 1, K = Pe = β2 = β1 = K = 0.1, Re = 2,Ω =
1

 

 

Figure 4.12: Entropy Generation,Gr = Br = 1, β2 = β1 = 0.1, Re = 2, P e = 3,Ω = 1
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Figure 4.13: Entropy Generation,Gr = 4, Br = 1, K = β2 = 0.1, Re = 2, P e =
0.95,Ω = 1

 

 

 

Figure 4.14: Entropy Generation,Gr = 2, P e = 3, Br = 1, K = β1 = K = 0.1, Re =
2,Ω = 1

considers the variation of the pressure gradient parameter (K) and its effect on Bejan

number. As pressure gradient parameter is increasing, a decrease in the Bejan num-

ber at both walls is noticed. Hence, irreversibility due to fluid friction dominates at

both walls. At the centerline of the channel, both irreversibility due to heat transfer

and irreversibility due to fluid friction contribute equally.

Fig.(4.17) looks at increase in Peclet number and its effect on Bejan number. As the
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Peclet number is increasing, Bejan number at the injection wall is decreasing and

increasing at suction wall. Therefore, irreversibility due to fluid friction dominates

the injection channel wall and irreversibility due to heat transfer dominates the flow

process at the suction wall, but both of them contributed equally at the centerline of

the channel. Fig.(4.18) takes into account the variations of group parameters and its

effect on Bejan number. The graph shows that as the group parameter is increasing,

at the injection and suction channel walls, Bejan number is decreasing. This implies

that irreversibility due to heat transfer decrease at both walls, but at the centerline

of the channel both irreversibility due to fluid friction and irreversibility due to heat

transfer contributed equally.

Figs.(4.19) and (4.20) show increase in the asymmetric slip coefficients β1 and β2
 

 

 

Figure 4.15: Bejan Profile,Gr = BrΩ−1 = 1, K = β1 = β2 = 0.1, P e = 3

with their effects on Bejan number. The graphs show that as asymmetric slip coef-

ficients β1 and β2 are increasing; Bejan number is decreasing at injection wall and

increasing at suction wall. A flow reversal at suction wall is noticed as well.
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Figure 4.16: Bejan Profile,Gr = BrΩ−1 = 1, β1 = β2 = 0.1, Re = 2, P e = 3
 

 

 

Figure 4.17: Bejan Profile,Gr = K = BrΩ−1 = 1, β1 = β2 = 0.1, Re = 2
 

 

 

Figure 4.18: Bejan Profile,Gr = K = 1, β1 = β2 = 0.1, Re = 2, P e = 1.5
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Figure 4.19: Bejan Profile,Gr = K = BrΩ−1 = 1, β2 = 0.1, Re = 2, P e = 2
 

 

 

Figure 4.20: Bejan Profile,Gr = K = 1, BrΩ−1 = β1 = 0.1, Re = 2, P e = 0.71

4.5 Conclusions

Combined effect of buoyancy forces and Navier slip on the entropy generation rate in

a vertical porous channel with wall suction/injection was investigated. In the course

of considering the effect of buoyancy forces (i.e., increases in Grashof number), the

we noticed a slight increase in the entropy generation rate at the injection wall and

sporadic increase at the suction wall. Furthermore, entropy generation decreased at

the injection wall and increased at the suction wall as slip parameter β1 increased.

However, as the slip parameter β2 increased, the entropy generation rate at both
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suction and injection walls increased. Also, increase in both slip parameters β1 and

β2 resulted in a flow reversal in the Bejan number.
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Chapter 5

Entropy analysis of MHD unsteady
flow through a porous pipe with
buoyancy effects

The chapter focuses on first and second laws analysis for flow and heat transfer inside

a uniformly porous vertical pipe. The pipe flow is subjected to constant suction at the

wall and is acted upon by a combination of buoyancy forces, a transverse magnetic

field and constant pressure gradient. The pipe walls are kept isothermal and the flow

of the conducting fluid is assumed to be unsteady with variable viscosity. The non-

linear governing equations in cylindrical coordinates are obtained under axisymmetric

assumptions and solved numerically using semi-implicit finite difference techniques

to obtain expressions for velocity and temperature profiles. The entropy generation

number, irreversibility distribution ratio and Bejan number are presented graphically

and discussed quantitatively for various values of the embedded parameters.
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5.1 Introduction

Investigations of the flow of electrically conducting fluids in a porous geometries is

of particular importance due to of its widespread prevalence in a number of engi-

neering and industrial applications such as in geothermal reservoirs, nuclear reactor

cooling, Magnetohydrodynamic (MHD) marine propulsion, electronic packages, micro

electronic devices, thermal insulation, and petroleum reservoirs. Preliminary exper-

imental evidence suggests promising future applications in the field of metallurgy,

in particular in the MHD stirring of molten metal and magnetic-levitation casting.

Further applications also arise in the operations of micro-electronic devices. The ex-

perimental investigation of modern MHD flow in a laboratory was first carried out

by Hartmann and Lazarus [46]. Riley [99] studied buoyancy induced flow and trans-

port in the presence of magnetic field. Chamkha [37] reported the unsteady natural

convection in a porous channel in the presence of magnetic field. For a rectangular

vertical duct, Hunt [48] and Buhler [15] analyzed the fluid flow problem in magnetic

field with or without buoyancy effects. For conducting fluids, Shercliff [109] analyzed

the fluid flow characteristics in a pipe under a transverse magnetic field. Alboussiere

et al[1] did an asymptotic analysis to study the buoyancy driven convection in a uni-

form magnetic field. Makinde and Aziz [73] reported the effects of magnetic field

and convective heat transfer on mixed convection from a vertical plate embedded in a

porous medium. The combined effects of variable viscosity and electrical conductivity

on hydromagnetic flow and heat transfer between a fixed plate and moving parallel

plate was numerically analyzed by Makinde and Onyejekwe [74]. The investigations

in these references are all restricted to first law analysis under the thermodynamics

framework.
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Meanwhile, the contemporary trend in the field of heat transfer and thermal de-

sign is the second law analysis and its design-related concept of entropy generation

minimization. The foundation of knowledge of entropy production goes back to Clau-

sius and Kelvins studies on the irreversible aspects of the Second Law of Thermody-

namics. Since then the theories based on these foundations have rapidly developed.

However, the entropy production resulting from combined effects of velocity and tem-

perature gradients has remained untreated by classical thermodynamics, which has

motivated many researchers to conduct analyses of fundamental and applied engi-

neering problems based on second law analysis. Entropy generation is associated with

thermodynamic irreversibility, which is common in all types of heat transfer processes.

Moreover, in thermodynamical analysis of flow and heat transfer processes, one thing

of core interest is to improve the thermal systems to avoid the energy losses and

fully utilize the energy resources. Since the pioneering work of Bejan [7, 10], many

investigations have been made on entropy generation analysis [54, 60, 69]. Sahin [106]

investigated the second law analysis for a viscous fluid in a circular duct with isother-

mal boundary conditions. Tasnim and Mahmud [112] studied the first and second law

characteristics of the flow and the heat transfer inside a vertical channel embedded

in a porous medium under the influence of transverse magnetic field. Mahmud and

Fraser [58] applied the second law analysis to heat and fluid flow due to forced convec-

tion inside a channel. The entropy generation in boundary layer flow was investigated

by Arpaci and Selamet [3]. Makinde and Beg [72] studied the effect of magnetic field

on entropy generation due to a reactive flow in a channel.
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The purpose of this chapter is to analyze the first and second laws of thermodynamics

with respect to inherent irreversibility in an unsteady flow of a viscous incompressible

conducting fluid through a uniformly porous pipe subjected to constant fluid suction

at the isothermal walls and a transversely imposed magnetic field. Expressions for

dimensionless velocity, temperature and entropy generation number are presented un-

der axisymmetric conditions. These flow quantities are also presented graphically and

discussed quantitatively with respect to the embedded parameters.

The chapter is organized as follows: the mathematical model of the physical problem

is described in section 5.2 leading to the relevant (dimensionless) governing equations.

We follow this up in section 5.3 with the development of the mathematical tools to be

used in analyzing the entropy generation and irreversibility. The numerical method of

solution for the nonlinear set of governing partial differential equations is developed

in section 5.4 and then employed in section 5.5 to obtain and discuss the relevant

graphical results. Concluding remarks follow in section 5.6.

5.2 Mathematical Model

Consider an unsteady flow of an incompressible electrically conducting viscous fluid

through a cylindrical pipe under the combined action of constant axial pressure gra-

dient; buoyancy force and uniform suction through pipe wall in the presence of a

transversely imposed magnetic field of strength B0 (see Fig.(5.1)). In addition, there

is no applied electric field and all of the Hall effects are neglected. For most indus-

trial applications, the magnetic Reynolds number is assumed to be very small and

the induced magnetic field is negligible. The fluid temperature dependent variable
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viscosity (µ(T )) is expressed as:

µ̄ = µ0e
−γ(T−T0), (5.1)

where µ0 is the initial fluid dynamic viscosity at the temperature T0 . Then, assum-

z̄

g

r̄ = 0

suctionsuction

r̄ = R

ū = 0
v = V

ū = 0
v = V

T = Tw
T = Tw

B0,Magnetic fieldB0,Magnetic field

Figure 5.1: Problem’s Schematic diagram

ing a Boussinesq incompressible fluid model, the continuity, momentum and energy

equations governing the problem are given as [1, 58, 74, 106];

∂ū

∂z̄
= 0, (5.2)

ρ
∂ū

∂τ
+ ρV

∂ū

∂r̄
= −

∂p̄

∂z̄
+

1

r̄

∂

∂r̄

(

r̄µ̄
∂ū

∂r̄

)

− σB2
0 ū+ ρgα(T − T0), (5.3)

ρcp
∂T

∂τ
+ ρcpV

∂T

∂r̄
=

k

r̄

∂

∂r̄

(

r̄
∂T

∂r̄

)

+ µ̄
(∂ū

∂r̄

)2

+ σB2
0 µ̄

2 (5.4)

with the initial and boundary conditions;

u(0, r̄) = 0, T (0, r̄) = T0, (5.5a)

ū(τ, 0) = 0, T (τ, 0) = Tw, ū(τ, R) = 0, T (τ, R) = Tw (5.5b)
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where (r̄, z̄) are the distance measured in the radial and axial directions respectively,

τ is the time,ρ is the fluid density, is the thermal conductivity,α is the volumetric ex-

pansion coefficient, g is the gravitational acceleration,σ is the electrical conductivity,

T is the fluid temperature,Tw is the channel walls temperature, R is the pipe radius,

T0 is the fluid initial temperature,V is the uniform suction/injection velocity, ū is the

axial velocity, cp is the specific heat at constant pressure and P is the fluid pressure.

We introduce the following non-dimensional quantities into Equations (5.2)-(5.5b);

r =
r̄

R
, z =

z̄

R
, u =

ū

V
, v =

v̄

V
, µ =

µ̄

µ0

, θ =
(T − T0)

(Tw − T0)
, t =

τV

R
,

P =
RP

µ0V
, Br =

µ0V
2

k(Tw − T0)
, Re =

ρV R

µ0

, β = γ(Tw − T0),

A = −
∂P

∂z
, Pr =

ρcpV R

k
, M =

σB2
0R

2

µ0

, Gr =
gα(Tw − T0)ρR

2

V µ0

, (5.6)

and obtain;

Re
(∂u

∂t
+

∂u

∂r

)

= A+
1

r

∂

∂r

(

re−βθ ∂u

∂r

)

−Mu+Grθ, (5.7)

Pr
(∂θ

∂t
+

∂θ

∂r

)

=
1

r

∂

∂r

(

r
∂θ

∂r

)

+ Bre−βθ
(∂u

∂r

)2

+ BrMu2 (5.8)

with;

u(0, r) = 0, θ(0, r) = 0, (5.9a)

u(t, 0) = 0, θ(t, 0) = 1, u(t, 1) = 0, θ(t, 1) = 1. (5.9b)

where β is the viscosity variation parameter, Gr is the Grashof number, M is the

Magnetic field parameter, Br is the Brinkman number, Re is the suction/injection

Reynolds number and Pr is the Prandtl number. Other quantities of interest in this

chapter include the wall shear stress ιw and the heat transfer rate at the channel

surface qw given as

ιw = −µ̄
∂ū

∂r̄

∣
∣
∣
r̄=R

, qw = −
∂T

∂r̄

∣
∣
∣
r̄=R

(5.10)
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and in dimensionless form, we obtain

Cf =
ιwR

µ0V
= −e−βθ ∂u

∂r

∣
∣
∣
r=1

, Nu =
qwR

k(Tw − T0)
= −

∂θ

∂r

∣
∣
∣
r=1

. (5.11)

5.3 Entropy Analysis

Second law analysis in terms of entropy generation rate is a useful tool for predicting

the performance of the engineering processes by investigating the irreversibility arising

during the processes. According to Woods [126], the local entropy generation rate is

defined as:

Sm =
k

T 2
w

(∂T

∂r̄

)

+
µ̄

Tw

(∂ū

∂r̄

)

+
σB2

0

Tw

ū2. (5.12)

The first term in Equation (5.12) is the irreversibility due to heat transfer and the

second term is the entropy generation due to viscous dissipation and third term is due

to magnetic field. Using Equation (5.6), we express the entropy generation number

in dimensionless form as:

NS =
R2T 2

wS
m

k(Tw − T0)2
=
(∂θ

∂r

)2

+
Bre−βθ

Ω

(∂u

∂r

)2

+
MBr

Ω
u2, (5.13)

where Ω = (Tw−T0)/T0 is the temperature difference parameter. In Equation (5.13),

the first term can be assigned as N1 and the second term due to viscous dissipation

as N2 , i.e.

N1 =
(∂θ

∂r

)2

, N2 =
Bre−βθ

Ω

(∂u

∂r

)2

+
MBr

Ω
u2. (5.14)

Following Bejan [10, 11], the irreversibility distribution ratio is defined as φ = N2/N1.

Heat transfer dominates for 0 ≤ φ < 1 and fluid friction and magnetic field effects

dominate when φ > 1. The contribution of both heat transfer and fluid friction with
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magnetic field effects to entropy generation are equal when Φ = 1. Alternatively,

the dominant effect of either heat transfer irreversibility or fluid friction with mag-

netic field irreversibility can be investigated using the Bejan number (Be) defined

mathematically as:

Be =
N1

NS

=
1

1 + φ
. (5.15)

Clearly, the Bejan number ranges from 0 to 1. Be = 0 is the limit where the fluid

friction with magnetic field irreversibility dominates and Be = 1 corresponds to the

limit where the heat transfer irreversibility dominates. The contribution of both

heat transfer and fluid friction with magnetic field to entropy generation are equal

when Be = 1/2. In section 5.4, Equations (5.7)-(5.15) are solved numerically using a

semi-implicit finite difference scheme.

5.4 Numerical Procedure

Our numerical algorithm is based on the semi-implicit finite difference scheme and

is implemented along the same lines as in, say, [33 − 36]. Implicit terms are taken

at the intermediate time level (N + ξ) where 0 ≤ ξ ≤ 1. The discretization of

the governing equations is based on a linear Cartesian mesh and uniform grid on

which finite-differences are taken. We approximate both the second and first spatial

derivatives with second-order central differences. The equations corresponding to the

first and last grid points are modified to incorporate the boundary conditions. The

semi-implicit scheme for the velocity component reads:

Re
u
(N+1)
j − u

(N)
j

∆t
+Mu(N+ξ)

− e(−βθ
(N)
j )u(N+ξ)

rr = A+Grθ
(N)
j + u(N)

r

[

µr +
µ

rj
−Re

](N)

.

(5.16)
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In equation (5.16) it is understood that subscript r denote partial differentiation

under the finite difference framework described earlier, the subscript j represents

the mesh position and the superscripts denote the time levels such that ς(N+ξ) =

ξς(N+1) + (1 − ξ)ς(N) . Since the unsteady problem under investigation is posed as

an initial value problem, given a solution at a time level(N), i.e. [u(N), θ(N)], the

equations for the velocity solution at the subsequent time level (N + 1) reduce to:

−r1u
(N+1)
j−1 +

(

Re+M∆tξ + 2r1

)

u
(N+1)
j − r1u

(N+1)
j+1 = explicit terms, (5.17)

where the explicit terms contain terms prescribed at the earlier time level (N) and;

r1 = ξ
∆t

∆r2
e(−βθ

(N)
j ).

The solution procedure for u(N+1) thus reduces to inversion of tri-diagonal matrices

which is an advantage over a full implicit scheme. The semi-implicit integration

scheme for the energy equation is similar to that for the velocity:

Pr
θ
(N+1)
j − θ

(N)
j

∆t
−θ(N+ξ)

rr = θ(N)
r

[ 1

rj
−Pr

]

+Bre(−βθ
(N)
j )
[

u(N)
r

]2

+BrM
[

u(N)
r

]2

. (5.18)

The equation for θ(N+1) thus become:

−rθ
(N+1)
j−1 + (Pr + 2r)θ

(N+1)
j − rθ

(N+1)
j+1 = explicit terms, (5.19)

where r = ξ∆t/∆r2 . The solution procedure again reduces to inversion of tridiagonal

matrices. The schemes (5.17&5.19) were checked for consistency. For ξ = 1, these

are first-order accurate in time but second order in space. The schemes in Chinyoka

[33] have ξ = 1/2 which improves the accuracy in time to second order. We use ξ = 1

here so that the options of choosing larger time steps is possible.
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5.5 Results and Discussion

Unless otherwise stated, we employ the parameter values: A = 1, β = 0.5,M =

0.5, Gr = 0.1, Br = 0.1, P r = 7.1, Re = 1,∆r = 0.02, ∆t = 0.01, t = 400

These will be the default values in this work and hence in any graph where any of these

parameters is not explicitly mentioned, it will be understood that such parameters

take on the default values.

5.5.1 Transient and steady flow profiles

We display the transient solutions in figs.(5.2) and (5.3). Both figures show a transient

increase in fluid quantities (velocity and temperature) until a steady state is reached.

Fig.(5.3) in particular shows the development of the temperature field from an initial

state in which the wall temperature started higher than the bulk fluid temperature.

5.5.1.1 Parameter dependence of solutions

As one way of validating the accuracy of our numerical algorithms, we investigate in

this section the response of the velocity and temperature (at steady state) to varying

values of the relevant parameters. To ensure that all solutions have indeed reached

steady state, we employ a time of t = 400 in all graphs under this section. The

response of the velocity and temperature to variations in the viscosity parameter β

is illustrated in Figs.(5.4) and (5.5) respectively.

An increase in the viscosity parameter corresponds to a decrease in fluid viscosity

and hence also reduces the resistance to flow. This in turn leads to increased fluid

velocity as shown in Fig.(5.4). The increased fluid velocity in turn increases the mag-

nitude of the sources terms in the energy equation and hence leads to increased fluid
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Figure 5.2: Transient and steady state velocity profiles. 

 

 

Figure 5.3: Transient and steady state temperature profiles.

temperatures as illustrated in Fig.(5.5).

The response of the velocity and temperature to variations in the Brinkman number

(Br) is illustrated in Figs.(5.6) and (5.7) respectively.

The terms linked to the Brinkman number act as strong heat sources in the energy

equation. Increases in the Brinkman number hence significantly also increase the fluid

temperature shown Fig.(5.7) and hence also increase the fluid velocity, see Fig.(5.6),

due to the coupling of the temperature to the velocity through the buoyancy terms.

Figs.(5.8) and (5.9) respectively show the response of the fluid velocity and

temperature to variations in the suction Reynolds number. Increases in the suction
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Figure 5.4: Effects of viscosity parameter (β) on steady state velocity. 

 

 

Figure 5.5: Effects of viscosity parameter (β) on steady state temperature. 

 

Figure 5.6: Effects of Brinkman number (Br) on steady state velocity.
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Figure 5.7: Effects of Brinkman number (Br) on steady state temperature. 

 

 

Figure 5.8: Effects of the suction Reynolds number (Re) on steady state velocity. 

 

Figure 5.9: Effects of the suction Reynolds number (Re) on steady state temperature.
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Reynolds (i.e. the axisymmetric suction strength) increases the velocity of the bulk

fluid and hence also the as explained earlier.

The behaviour of the flow quantities in response to increases in the Grashof number

is similar to that with respect to the Brinkman number. Both fluid velocity and

temperature increase with increasing Gr as illustrated in Figs.(5.10) and (5.11).

An increased magnetic field strength expectedly leads to decreased magnitudes in 

 

 

Figure 5.10: Effects of the Grashof number (Gr) on steady state velocity.

 

 

Figure 5.11: Effects of the Grashof number (Gr) on steady state temperature.

fluid velocity due to the increased resistance to flow, see Fig.(5.12). The response

of the temperature field however depends on the magnitude of the magnetic field
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Figure 5.12: Effects of the magnetic field strength (M) on steady state velocity 

 

 

Figure 5.13: Effects of the magnetic field strength (M) on steady state temperature.

strength (M). For low values of M , the magnetic field source terms in the energy

equation dominate the effects of the reduced velocity and hence an increase in tem-

perature is noted, Fig.(5.13). For larger values of M the effects of the reduced velocity

field dominate leading to corresponding decreases in the temperature field.

5.5.2 Skin friction

The wall shear stress (at the right hand side wall, r = 1) dependence on β is illus-

trated in Fig.(5.14) for varying values of the Brinkman number Br. Similarly, the

wall shear stress dependence on Re is illustrated in Fig.(5.15) at different times and
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the wall shear stress dependence on M is illustrated in Fig.(5.16) for varying values

of the Grashof number.

The results of Figs. (5.14)-(5.16) are consistent with the conclusions of the previous-

section, on parameter dependence of solutions. In general, parameters that decrease

(increase) the fluid velocity correspondingly decrease (increase) the wall shear stress

respectively. This is so, since fluid viscosity at the wall remains constant due to the

fixed wall temperatures while the decrease (increase) of the bulk flow velocity corre-

spondingly decreases (respectively increases) velocity gradients at the wall.

 

 

 

Figure 5.14: Variation of wall shear stress with β and Br.

5.5.3 Wall heat transfer

The wall heat transfer rate dependence on β is illustrated in Fig.(5.17) for varying

values of the Brinkman number Br. Similarly, the wall heat transfer rate dependence

on Re is illustrated in Fig.(5.18) at different times and the wall heat transfer rate de-

pendence on M is illustrated in Fig.(5.19) for varying values of the Grashof number.

As with the wall shear stress, parameters that decrease (increase) the fluid tempera-
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Figure 5.15: Variation of wall shear stress with Re and t. 

 

 

Figure 5.16: Variation of wall shear stress with M and Gr.

ture correspondingly decrease (increase) the wall heat transfer rate respectively. The

negative values in Fig.(5.18) simply indicate that we have captured the solution at the

early stages of development when the temperature profiles are still convex up! The

non-monotonic behaviour of temperature with increases in M (as explained before)

is clearly shown in Fig.(5.13).
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Figure 5.17: Variation of wall heat transfer rate with β and Br. 

 

 

Figure 5.18: Variation of wall heat transfer rate with Re and t. 

 

Figure 5.19: Variation of wall heat transfer rate with M and Gr.
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5.5.4 Entropy generation

In this section, we plot the entropy generation rate (Ns) across the channel under

varying parameter conditions. We use a mesh size of ∆y = 0.01 in all subsequent

graphs.

Figs.(5.20)-(5.24) show the expected increase in Ns with corresponding increases in

BrΩ−1, β, Gr, Re and t respectively. This follows from the realization that in-

creases in these parameters correspondingly increase the flow quantities and hence

also the fluid friction with magnetic field contribution to the entropy generation. In

Figs.(5.20)-(5.24), the entropy generation rate is expectedly maximum at the wall

where velocity and temperature gradients as well as fluid viscosity are highest and

minimum at the channel centerline where the maximum temperature and velocity

and hence also zero temperature and velocity gradients are recorded.

The behaviour of the entropy generation rate with increasing magnetic field strength

(M) results from the earlier alluded to complex interaction of the effects of M on the

flow quantities, see Fig.(5.25). 

 

Figure 5.20: Variation of entropy generation rate with r and BrΩ−1
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Figure 5.21: Variation of entropy generation rate with r and β. 

 

 

Figure 5.22: Variation of entropy generation rate with r and Gr. 

 

Figure 5.23: Variation of entropy generation rate with r and Re.

95



 

 

 

Figure 5.24: Variation of entropy generation rate with r and t. 

 

 

Figure 5.25: Variation of entropy generation rate with r and M .

5.5.5 Bejan number

In this section, we plot the Bejan number (Be) across the channel under varying pa-

rameter conditions. The analysis in this section is similar to that for the previous

section with Ns now replaced by Be.

Fig.(5.26), shows as expected that higher values of BrΩ−1 , which increase the mag-

nitude of fluid friction with magnetic field irreversibility (N2) but has no effect on

the heat transfer irreversibility (N1), increases the values of Φ leading to lower Bejan

numbers.
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Figs.(5.27)-(5.31) show that the effects of each of β, Gr, Re, t and M on Be depend

on their (individual) competing influence on N1 and N2 . In general we notice that

these parameters have a higher effect on the heat transfer irreversibility (N1) than on

fluid friction with magnetic field irreversibility (N2) and hence an increase in any of

these parameters gives correspondingly higher Bejan numbers.

Away from the wall (i.e. inside the main flow), the fluid friction with magnetic field ir-

reversibility strongly dominates over heat transfer irreversibility. In the vicinity of the

wall, the strength of the fluid parameters will determine which mode of irreversibility

dominates over the other. 

 

 

Figure 5.26: Variation of Bejan number with r and BrΩ−1 .

5.6 Conclusion

We, computationally, investigate the transient pressure driven pipe flow of a fluid

under gravity and axisymmetric conditions in the presence of buoyancy effects and

constant suction at the walls. We employ second law analysis to study the irre-

versibility properties within the flow field. Inside the main pipe flow and away from

the wall, the fluid friction with magnetic field irreversibility strongly dominates over
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Figure 5.27: Variation of Bejan number with r and β. 

 

 

Figure 5.28: Variation of Bejan number with r and Gr. 

 

Figure 5.29: Variation of Bejan number with r and Re.
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Figure 5.30: Variation of Bejan number with r and t. 

 

 

Figure 5.31: Variation of Bejan number with r and M .

heat transfer irreversibility. Close to the wall which is subjected to fluid suction, the

strength of the fluid parameters will determine which mode of irreversibility domi-

nates over the other. It is thus possible to choose parameter values so that either heat

transfer irreversibility or fluid friction with magnetic field irreversibility dominates in

the vicinity of wall.
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Chapter 6

Numerical investigation of entropy
generation in an unsteady flow
through a porous pipe with suction

This chapter investigates the entropy generation rates in an unsteady flow of a vari-

able viscosity incompressible fluid through a porous pipe with uniform suction at the

surface. The nonlinear governing equations for momentum and energy balance are

derived and solved numerically using a semi-implicit finite difference scheme in order

to obtain the fluid velocity and temperature profiles. Numerical results for volumetric

entropy generation numbers, irreversibility distribution ratio and the Bejan number

are presented graphically and discussed quantitatively for various values of the embed-

ded parameters.

6.1 Introduction

Heat transfer and fluid flow are central to the design and function of a wide spectrum

of industrial and engineering systems. In the modern times, the drive has been largely

towards the development of industrial and engineering processes that are both cost
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effective and environmentally friendly. In this light, the optimization of industrial

and engineering systems around issues, say, of minimizing unnecessary energy losses

and maximizing performance forms a fundamental area of ongoing importance and

research. To this end, the pioneering work of Bejan [7, 9] with respect to entropy

generation and minimization deserves special mention. This pioneering work has re-

sulted in a variety of related follow up work by researchers worldwide, see for example

the work in [2, 7, 50, 54, 60, 61, 68−72, 89, 97, 103, 112]. Each of the cited work looked

at either the effect of flow geometry or that of flow properties on entropy generation

and a detailed review of the current state of the science in entropy generation is well

summarized in recent work [2, 54, 60, 72].

In Ajibade et al [2], it is observed that the literature on suction/injection effects

on entropy generation is still quite sparse and thus the investigation in Ajibade et

al [2] is dedicated to such suction/injection effects on entropy generation in steady

(both Couette and plane Poiseuille) flow. Noting the importance of not only time

dependent effects but also of circular pipe geometry in heat transfer and fluid flow

systems of industrial and engineering interest, our investigation extends the work in

Ajibade et al [2] to the transient regime and relevant cylindrical geometry in which

the axi-symmetric assumptions as well as axi-symmetric suction are invoked. In par-

ticular most fluid dynamical industrial and engineering designs are such that the flow

and heat transfer regimes of interest may take place over short time scales such that

observations are recorded before the steady states are achieved, if indeed they are

achievable. The work in [33− 36] for example demonstrate the finite time blow up of

solutions for certain reacting flows and hence that steady states may not be achiev-

able for such flows under certain conditions.
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In fact, our current chapter together with the work in [33, 34, 36] will no doubt lay

the ground work for, among others, future research on the interaction of entropic

and energetic effects in the flow of viscoelastic fluids. The current chapter focuses

mostly on irreversibility analysis due to entropy generation but, among other work,

the investigations in [33, 34, 36] have analyzed reversibility effects due to the energy

elastic properties of viscoelastic fluids. The comparative results of Chinyoka [34] in

particular demonstrate that entropic heat generation is minimized for viscoelastic

fluids via the said energy elastic properties. Similarly, the results of Chinyoka [36]

demonstrate the effects of suction/injection on heat transfer characteristics of react-

ing shear-banded viscoelastic flows.

The objectives of this investigation is to examine the entropy generation rates in an

unsteady flow of a variable viscosity incompressible fluid through a porous pipe with

uniform suction at the surface. The chapter is organized as follows: the mathemati-

cal model of the physical problem is described in section 6.2 leading to the relevant

(dimensionless) governing equations. We follow this up in section 6.3 with the devel-

opment of the mathematical tools to be used in analyzing the entropy generation and

irreversibility. The numerical method of solution for the nonlinear set of governing

partial differential equations is developed in section 6.4 and then employed in section

6.5 to obtain and discuss the relevant graphical results. Concluding remarks follow

in section 6.6.

6.2 Mathematical Model

The configuration of the problem studied in this chapter is depicted in Fig.(6.1) which

is an infinite porous cylinder of radius a. The flow is considered to be unsteady in
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the z̄-direction under the action of uniform suction/injection through pipe walls. The

fluid is incompressible and the temperature (T ) dependent viscosity (µ̄(T )) can be

expressed as:

µ̄ = µ0e
−γ(T−T0), (6.1)

where µ0 is the initial fluid dynamic viscosity at the initial temperature T0 and γ is

a viscosity variation parameter which depends on the particular fluid.

Let (ū, v̄) represents velocity in (z̄, r̄) direction respectively, τ represent the time, ρ

4

ū = 0, v̄ = V, T = Tw

r̄ = a

z̄

Figure 6.1: Schematic diagram

the fluid density, κ the thermal conductivity, T the fluid temperature, Tw the pipe

wall temperature, a the pipe radius, T0 the fluid initial temperature, V the uniform

suction/injection velocity, cp the specific heat at constant pressure and P the fluid

pressure. Under these conditions the continuity, momentum and energy equations

governing the problem may be written as in [54, 60, 61, 69− 71]

∂ū

∂z̄
= 0, (6.2)

ρ
∂ū

∂τ
+ ρV

∂ū

∂r̄
= −

∂P̄

∂z̄
+

1

r̄

∂

∂r̄

(

r̄µ̄
∂ū

∂r̄

)

, (6.3)
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ρcP
∂T

∂τ
+ ρcPV

∂T

∂r̄
=

κ

r̄

∂

∂r̄

(

r̄
∂T

∂r̄

)

+ µ̄
(∂ū

∂r̄

)2

. (6.4)

The initial and boundary conditions are given as:

ū(0, r̄) = 0, T (0, r̄) = T0, (6.5a)

∂ū

∂r̄
(τ, 0) = 0,

∂T

∂r̄
(τ, 0) = 0, ū(τ, a) = 0, T (τ, a) = Tw. (6.5b)

We introduce the following non-dimensional quantities into Equations (6.2)-(6.5b);

r =
r̄

H
, z =

z̄

H
, u =

ū

V
, µ =

µ̄

µ0

, Br =
µ0V

2

κ(Tw − T0)
, θ =

(T − T0)

(Tw − T0)
, t =

τV

a
,

p =
aP̄

µ0V
, v =

v̄

V
, Re =

ρV a

µ0

, β = γ(Tw − T0), P r =
ρcpV a

κ
. (6.6)

We further assume that the flow is driven by a constant and adverse pressure gradient:

G = −
∂p

∂z
,

and obtain the dimensionless governing equations as:

Re
(∂u

∂t
+

∂u

∂r

)

= G+
1

r

∂

∂r

(

re−βθ ∂u

∂r

)

(6.7)

Pr
(∂θ

∂t
+

∂θ

∂r

)

=
1

r

∂

∂r

(

r
∂θ

∂r

)

+ Bre−βθ
(∂u

∂r

)2

(6.8)

with the corresponding initial and boundary conditions;

u(0, r) = 0, θ(0, r) = 0, (6.9a)

∂u

∂r
(t, 0) = 0,

∂θ

∂r
(t, 0) = 0, u(t, 1) = 0, θ(t, 1) = 0, for t > 0 (6.9b)

where β is the viscosity variation parameter, Br is the Brinkman number, Re is the

suction/injection Reynolds number and Pr is the Prandtl number. Other quantities
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of interest in this study include the wall shear stress ιw and the heat transfer rate at

the pipe surface qw given as:

ιw = −µ̄
∂ū

∂r̄

∣
∣
∣
r̄=a

, qw = −
∂T

∂r̄

∣
∣
∣
r̄=a

. (6.10)

The dimensionless wall shear stress Cf and dimensionless heat transfer rate Nu are

defined as;

Cf =
ιwa

µ0V
= −e−βθ ∂u

∂r

∣
∣
∣
r=1

, Nu =
qwa

κ(Tw − T0)
= −

∂θ

∂r

∣
∣
∣
r=1

. (6.11)

6.3 Irreversibility Analysis

Entropy generation related to the unsteady flow and heat transfer in a porous pipe

with suction/injection is considered. In engineering design problems, the determi-

nation of the entropy generation rate in the system is extremely important in order

to optimize energy in the system for efficient operation of the system. The general

equation for the entropy generation per unit volume is given by [7, 9, 89];

Sm =
κ

T 2
w

(∇T )2 +
µ̄

Tw

Ψ. (6.12)

The first term in Equation (6.12) is the irreversibility due to heat transfer and the

second term is the entropy generation due to viscous dissipation. Using Equation

(6.6), we express the entropy generation number in dimensionless form as,

NS =
a2T 2

wS
m

κ(Tw − T0)2
=
(∂θ

∂r

)2

+
Bre−βθ

Ω

(∂u

∂r

)2

, (6.13)

where Ω = (TwT0)/T0 is the temperature difference parameter. In Equation (6.13),

the first term can be assigned as N1 and the second term due to viscous dissipation

as N2 , i.e.

N1 =
(∂θ

∂r

)2

, N2 =
Bre−βθ

Ω

(∂u

∂r

)2

. (6.14)
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Following Bejan [9], the irreversibility distribution ratio is defined as φ = N2/N1 .

Heat transfer dominates for 0 ≤ φ < 1 and fluid friction dominates when φ > 1. The

contribution of both heat transfer and fluid friction to entropy generation are equal

when φ = 1. Alternatively, the dominant effect of either heat transfer irreversibility

or fluid friction irreversibility can be investigated using the Bejan number (Be) define

mathematically as

Be =
N1

NS

=
1

1 + φ
. (6.15)

Clearly, the Bejan number ranges from 0 to 1. Be = 0 is the limit where the fluid

friction irreversibility dominates and Be = 1 corresponds to the limit where the heat

transfer irreversibility dominates. The contribution of both heat transfer and fluid

friction to entropy generation are equal when Be = 1/2.

In section 6.4, Equations (6.7)-(6.15) are solved numerically using a semi-implicit

finite difference scheme.

6.4 Numerical Procedure

Our numerical algorithm is based on the semi-implicit finite difference scheme and is

implemented along the same lines as in, say, [33−36]. In this section, it will be under-

stood that subscript r denotes partial differentiation under the given finite difference

framework, the subscript j will represent the mesh position and the superscripts N

and N + 1 will denote current and future time levels.

Implicit terms are taken at the intermediate time level (N + ξ) where 0 ≤ ξ ≤ 1 and,

for example,

θ(N+ξ) = ξθ(N+1) + (1− ξ)θ(N).
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The discretization of the governing equations is based on a linear Cartesian mesh and

uniform grid on which finite-differences are taken. We approximate both the second

and first spatial derivatives with second-order central differences, for example,

θr =
θj+1 − θj−1

2∆r
, θrr =

θj+1 − 2θj + θj−1

∆r2
.

The time derivatives are approximated via first-order forward difference formulas, for

example,

∂θ

∂t
=

θ(N+1) − θ(N)

∆t
.

As with standard finite difference methods, the equations corresponding to the first

and last grid points are modified to incorporate the boundary conditions. The semi-

implicit scheme for the velocity component reads:

Re
∂uj

∂t
+Reu(N)

r = G+ e(−βθ
(N)
j )u(N+ξ)

rr + e(−βθ
(N)
j )θ

(N)
j u(N)

r +
1

r
e(−βθ

(N)
j )u(N)

r . (6.16)

Since the unsteady problem under investigation is posed as an initial value problem,

given a solution at a time level (N), i.e. [u(N), θ(N)], the objective is to obtain the

velocity and temperature fields at the subsequent time level (N + 1). By replacing

the continuous partial derivatives in Equation (6.16) with the relevant finite difference

formulas given earlier, the equation for the velocity filed reduces to the following linear

system of algebraic equations:

−r1u
(N+1)
j−1 + (Re+ 2r1)u

(N+1)
j − r1u

(N+1)
j+1 = explicit terms, (6.17)

where the explicit terms contain terms prescribed at the earlier time level (N) and;

r1 = ξ
∆t

∆r2
e(−βθ

(N)
j ).
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The solution procedure for u(N+1) thus reduces to inversion of tri-diagonal matrices

which is an advantage over a full implicit scheme. The semi-implicit integration

scheme for the energy equation is similar to that for the velocity:

Pr
∂θj
∂t

+ Prθ(N)
r = θ(N+ξ)

rr +
1

r
θ(N)
r + Bre(−βθ(N))j(u(N)

r )2. (6.18)

On replacing the continuous partial derivatives in Equation (6.18) with the relevant

finite difference formulas given earlier, the equation for θ(N + 1) thus reduces to the

following linear system of algebraic equations:

−rθ
(N+1)
j−1 + (Pr + 2r)θ

(N+1)
j − rθ

(N+1)
j+1 = explicit terms, (6.19)

where r = ξ∆t/∆r2 . The solution procedure again reduces to inversion of tri-diagonal

matrices. The schemes (6.17) and (6.19) were checked for consistency. Forξ = 1, these

are first-order accurate in time but second order in space. The schemes in [33] have

ξ = 1/2 which improves the accuracy in time to second order. We use ξ = 1 here so

that we are free to choose larger time steps.

6.5 Results and Discussion

Unless otherwise stated, we employ the parameter values: G = 1, β = 0.5, Br = 1,

Pr = 7.1, Re = 1, ∆r = 0.01, ∆t = 0.5 and t = 500.

These will be the default values in this work and hence in any graph where any of these

parameters is not explicitly mentioned, it will be understood that such parameters

take on the default values.
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6.5.1 Transient and steady flow profiles

We display the transient solutions in Figs.(6.2) and (6.3). Both figures show a tran-

sient increase in fluid quantities (velocity and temperature) until a steady state is

reached.

We draw attention to the apparent change in concavity of the steady state velocity

profiles close to the pipe wall, see Fig.(6.2). This change in concavity is due to the

suction at the wall and will lead to some counter intuitive effects on the wall shear

stress as will be demonstrated later. 

 

 

Figure 6.2: Transient and steady state velocity profiles.
 

 

Figure 6.3: Transient and steady state temperature profiles.

109



6.5.1.1 Parameter dependence of solutions

In this section, we investigate the response of the velocity and temperature (at steady

state) to varying values of the embedded parameters. The response of the velocity

and temperature to variations in the viscosity parameter β is illustrated in Figs.(6.4)

and (6.5) respectively.

An increase in the viscosity parameter corresponds to a decrease in fluid viscosity

and hence a reduce resistance to flow. This in turn leads to increased fluid velocity

within the bulk flow as illustrated in Fig.(6.4). The increased fluid velocity in turn

increases the magnitude of the viscous heating sources terms in the energy equations

and hence leads to increased fluid temperatures as illustrated in Fig. 6.5.

The response of the velocity and temperature to variations in the Brinkman number

(Br) is illustrated in Figs.(6.6) and (6.7) respectively. As previously explained, 

 

Figure 6.4: Effects of viscosity parameter (β) on steady state velocity.

the increased strength of the viscous heating source terms (due to increases in the

Brinkman number) is directly responsible for the significant increase in fluid tem-

perature shown Fig.(6.7). The temperature is coupled to the velocity through the

temperature dependent viscosity. The fluid viscosity decreases significantly in re-
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Figure 6.5: Effects of viscosity parameter (β) on steady state temperature. 

 

 

Figure 6.6: Effects of Brinkman number (Br) on steady state velocity.

sponse to the large increases in fluid temperature (due to increases in the Brinkman

number). The decreased viscosity is ultimately responsible for the increased fluid

velocity with increased Brinkman number shown in Fig.(6.6).

The suction Reynolds number primarily represents the strength of the suction through

the walls but may also be thought of as a measure of the friction between the fluid

molecules. Thus Re = 0 may represent, not only, the case of (steady) Hagen-Poiseuille

flow in a pipe with impermeable walls but may also indicate a densely packed fluid in

which viscosity between fluid particles is very high. Similarly, Re > 0 would represent
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flow with uniform suction and hence a loosely packed fluid with diminished viscosity

between fluid particles. Figs.(6.8) and (6.9) respectively show the response of the

fluid velocity and temperature to variations in the suction Reynolds number. The

reduced viscosity between fluid molecules with increased Re leads to corresponding

increases in the fluid velocity as shown in Fig.(6.8). As explained before, the nature

of the coupling of the velocity to the source terms in the energy equation leads to cor-

responding increases in fluid temperature with increased suction Reynolds numbers

(i.e. with increased fluid velocity strength) as shown in Fig.(6.9). 

 

 

Figure 6.7: Effects of Brinkman number (Br) on steady state temperature.

 

 

Figure 6.8: Effects of the suction Reynolds number (Re) on steady state velocity.
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Figure 6.9: Effects of the suction Reynolds number (Re) on steady state temperature.

6.5.2 Skin friction

The wall shear stress dependence on β is illustrated in Fig.(6.10) for varying values

of the Brinkman number Br. Similarly, the wall shear stress dependence on Re is

illustrated in Fig.(6.11) at different times.

Keeping in mind the results of the previous section, on parameter dependence of

solutions, the results shown in Figs.(6.10) and (6.11) may at first glance seem counter

intuitive. In particular, we would expect that parameters that decrease (increase) the

fluid velocity correspondingly decrease (increase) the wall shear stress respectively.

However, this will usually hold if the velocity profiles have uniform concavities in

which case the decrease (increase) of the bulk flow velocity would correspondingly

decrease (respectively increase) velocity gradients at the wall. The change in concavity

of the velocity profiles close to the wall thus explains the decrease in wall shear stress

with increases in either Br or time shown in Figs. (6.10) and (6.11).
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Figure 6.10: Variation of wall shear stress with β and Br. 

 

 

Figure 6.11: Variation of wall shear stress with Re and t.

6.5.3 Wall heat transfer

The wall heat transfer rate dependence on β is illustrated in Fig.(6.12) for varying

values of the Brinkman number Br. Similarly, the wall heat transfer rate dependence

on Re is illustrated in Fig.(6.13) at different times. As expected, parameters that

decrease (increase) the bulk fluid temperature correspondingly decrease (increase)

the wall heat transfer rate respectively. The negative values in Fig. 13 at the earlier

times simply indicate that we have captured the developing temperature profiles close

to the initial stages when the maximum temperature still obtains at the walls.
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Figure 6.12: Variation of wall heat transfer rate with β and Br. 

 

 

Figure 6.13: Variation of wall heat transfer rate with Re and t.

6.5.4 Entropy generation

In this section, we plot the entropy generation rate (Ns) across the pipe under varying

parameter conditions. Figs. 6.14 show the expected increase in Ns with corresponding

increases in BrΩ−1. This follows from the realization that increases in BrΩ−1 corre-

spondingly increase the fluid friction contribution to the entropy generation. Similarly

Figs. (6.15) and (6.16) show that at higher β or Re values, the increased fluid velocity

(see Figs. (6.4) and (6.8)) and hence increased velocity gradients (see Figs.6.10 and

6.11) each leads to overall increases in the magnitudes of N2 and hence the observed
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increase in entropy generation rates. In Figs. (6.14), (6.15) and (6.16), the entropy

generation rate is expectedly maximum at the walls where velocity and temperature

gradients as well as fluid viscosity are highest and minimum at the centerline where

these quantities are at their minimum. As soon as a time, tmin , is reached at which
 

 

 

Figure 6.14: Variation of entropy generation rate with r and BrΩ−1.

 

 

 

Figure 6.15: Variation of entropy generation rate with r and β.

the temperature gradient at the wall becomes negative, the entropy generation rate

NS will increase with increasing time as shown in Fig.(6.17). As with Figs.(6.14),

(6.15) and (6.16), this is due to the significantly increased temperature gradients as

time increases beyond tmin, see Fig.(6.13). In Fig.(6.17), we have included a time
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Figure 6.16: Variation of entropy generation rate with r and Re.

t = 10 < tmin which is close to the initial condition and hence at which time we have

very large temperature gradients and hence the correspondingly large values of the

entropy generation rates.
 

 

 

Figure 6.17: Variation of entropy generation rate with r and t.

6.5.5 Bejan number

In this section, we plot the Bejan number (Be) across the pipe under varying param-

eter conditions. The analysis in this section is similar to that for the previous section

with NS now replaced by Be.

Fig. (6.18), shows as expected that higher values of BrΩ−1, which increase the
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magnitude of fluid friction irreversibility (N2) but has no effect on the heat transfer

irreversibility (N1), increases the values of φ leading to lower Bejan numbers. Similar

conclusions are inferred from Fig. (6.19) in which the increase in β reduces the mag-

nitude of N2 (with N1 unaffected) and hence also of φ thus giving correspondingly

higher Bejan numbers.

As with Fig. (6.19), a decrease in φ with either an increase in Re or an increase in
 

 

 

Figure 6.18: Variation of Bejan number with r and BrΩ−1 .

 

 

Figure 6.19: Variation of Bejan number with r and β.

time (beyond tmin ) is illustrated in Figs.(6.20) and (6.21). This increase in φ is due to

the much larger increases in temperature (and temperature gradients) as compared
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to the velocity (and velocity gradients) as either Re or t increases. The result, as

shown in Figs. (6.20) and (6.21), is thus an increase in the Bejan number as either

Re or t increases.

Figs.(6.18)- (6.21) all indicate that fluid friction irreversibility dominates close to the

pipe centerline. The temperature profiles exhibit are quite blunt around the centerline

and hence there exists a significant radius around the centerline where the temper-

ature gradients are zero or very nearly so. This is in contrast to the much sharper

velocity fronts and hence the significantly larger velocity gradients around the same

regions and hence the dominance of N2 over N1 . Figs.(6.18)-(6.21) also all indicate

that heat transfer irreversibility dominates in the vicinity of the walls. This is due to

the significantly larger temperature gradients (as compared to the velocity gradients)

close to the walls. Inside the main flow, Figs. (6.18)-(6.21) show an interplay of both

modes of irreversibility and also that fluid parameters may be chosen so as to enhance

(or reduce) the dominance of any of the two forms of irreversibility.
 

 

Figure 6.20: Variation of Bejan number with r and Re.
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Figure 6.21: Variation of Bejan number with r and t.

6.6 Conclusion

We, numerically, investigate the transient pressure driven pipe flow of a fluid in the

presence of uniform suction at the walls and employ second law analysis to study the

irreversibility properties within the flow field. The suction at the walls lead to veloc-

ity profiles of non-uniform concavity in the wall region. In the regions of maximum

velocity, heat transfer irreversibility dominates and fluid friction irreversibility is rela-

tively insignificant. Fluid friction irreversibility dominates close to the pipe centerline

and heat transfer irreversibility dominates in the vicinity of the walls. Away from the

pipe walls (and inside the main flow) fluid parameters may be chosen so as to enhance

(or reduce) the dominance of either heat transfer or fluid friction irreversibility. In

particular, the following parameters can (depending on their magnitude) enhance or

reduce the dominance of either heat transfer or fluid friction irreversibility, these are

the (i) Brinkman number, Br, (ii) viscosity variation parameter, β, (iii) Reynolds

number, Re and the (iv) time, t.
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Chapter 7

CONCLUDING REMARKS

In this thesis, we considered the theoretical analysis of laminar flow, thermal stability

and entropy generation in a porous channel and porous pipe. we investigated in

chapter 3 the combined effects of suction/injection and asymmetric Navier slip on

the entropy generation rate in a steady flow of an incompresible viscous fluid through

a porous channel subjected to a non-uniform temperature at the walls. We solved

the problems using both numerical and analytical methods. The velocity results were

compared as shown in table 3.1 . The effect of some of the parameter were tested

and our results revealed flow reversal at the channel upper wall as a result of suction.

Heat transfer irreversibility dominated the centreline of the flow channel and fluid

friction irreversibility were observed at the channel walls. Heat transfer irreversibility

dominated lower wall and fluid friction irreversibility dominated upper wall as the

values of asymmetric slip parameters were increased.

In chapter 4, combined effect of buoyancy force and Navier slip on entropy generation

in a vertical porous channel with suction/injection walls was carried out. We solved

numerically using Runge-Kutta-Ferhlberg method with shooting technique. Velocity

and temperature profile were obtained which we used to compute entropy generation
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and Bejan number. Our results revealed that bouyancy force had effect on entropy

generation rates at both walls but the increase were more pronounced at suction wall

than injection wall. We also observed opposite effect on the entropy generation rate

on the walls as slip parameter β1 increases but same effect on entropy generation rate

as β2 increases or decreases.

In chapter 5, we carried out entropy analysis of MHD unsteady flow through a porous

pipe with buoyancy effects. We analysed the first and second law of thermodynamic

with respect to inherent irreversibility in an unsteady flow of a viscous in compressible

conducting fluid through a uniformly porous pipe subjected to constant fluid suction

at the isothermal walls and transverse imposed magnetic field. Under axisymmetric

assumption, we obtained in cylindrical coordinate the nonlinear governing equations

and solve numerically using semi-implicit finite difference technique to obtain solution

for fluid velocity and temperature profile. Our results reveal that inside the cyclidrical

pipe flow and away from the suction wall, magnetic fields irreversibility with fluid

friction strongly dominates over heat transfer irreversibility. Also increase in viscosity

parameter reduces resistance to fluid flow and increase fluid velocity. Furthermore,

increase in Buoyancy effect (Gr) and heat sources (Br), increase both velocity and

temperature profiles of the fluid.

In chapter 6, we investigated numerically the entropy generation rate in an unsteady

flow of a variable voscosity incompressible fluid through a porous pipe with uniform

suction at the surface. The nonlinear equations were solved numerically using semi-

implicit finite difference sheme to obtain fluid velocity and temperature profile. We

used these to compute the entropy generation and Bejan number. Our results reveal

that at maximum velocity, heat transfer irreversibility dominates and fluid friction
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irreversibility is relatively insignificant. Close to the pipe centreline, fluid friction

irreeversibility dominates and heat transfer irreversibility dominates in the vicinity of

the walls.

7.1 Further work

For future work, one can look at the interaction of entropic and energetic effects on

the flow of viscoelastic fluid.
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Appendix

Articles already published or submitted for publication

(1) A. S. Eegunjobi, O. D. Makinde: Combined Effect of Buoyancy Force

and Navier Slip on Entropy Generation in a Vertical Porous Channel.

Entropy, 14, 1028-1044, (2012) (Published)

(2) A. S. Eegunjobi, O. D. Makinde: Effects of Navier Slip on Entropy

Generation in a Porous Channel with Suction/Injection. Journal of

Thermal Science and Technology,Vol. 7, No. 4, 522-535, (2012).

(Published)

(3) O. D. Makinde, T. Chinyoka, A. S. Eegunjobi: Numerical investi-

gation of entropy generation in an unsteady flow through a porous

pipe with suction. International Journal of Exergy- Accepted and

in press 2012.

(4) T. Chinyoka, O. D. Makinde, A. S. Eegunjobi: Entropy analysis of

MHD unsteady flow through a porous pipe with buoyancy effects.

Journal of porous media-Submitted 2012.
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