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Abstract

Engineers and Technologists have always been identified as those individuals
that put info practice the theories developed by scientists and physicists to
enhance the lives of human beings. In the same spirit as those that came before,
this thesis describes the development of a computafional engineering ool that
will aid Engineers and Technologists to design smart or intelligent structures

comprising of NiTi shape memory alloy rods for actuation purposes.

The design of smart actuators consisting of NiTi shape memory alloy structurat
members will be beneficial to industries where light weight, compactness,
reliability and failure tolerance is of utmost importance. This is mainly due to the
unique material responses exhibited by this smart material. The shape memory
effect, one of these material responses consists out of two stages: a low
temperature load induced phase transformation causing a macroscopic
deformation (either extension, contraction, etc.) also known as quasi-plasticity;
and a high temperature phase transformation that erases the low temperature
macroscopic deformation and reverts the material to some predefined geometry.
When designing actuators consisting of this smart material, the quasi-plastic
material response produces the actuation stroke while the high temperature

phase transformation produces the actuation force.
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The successful engineering design of smart structures and devices particularly
suited for applications where they operate in a capacity, as actuators hamessing
the shape memory effect are dependent on a few important factors. These
include the engineers familiarity with the type of smart material used, the
availability of sound experimental data pertaining to the complex material
responses exhibited by the smart material, the engineers level of proficiency with
existing constitutive models available to simulates these material responses, dand
the engineers knowledge of simulation tools consisting of a suitable control
algorithm for the modeling of not only the device or structure itself but also the

actuator involved in the design.

This thesis presents the successful development of a computational engineering
design tool specifically suited for the design of actuators consisting of NiTi shape
memory alloys harnessing the shape memory effect. The thermo-mechanical
model developed for this application is based on a Helmholtz free energy
function for this material coupled with phase transformation evolution laws. The
design tool is capable of simulating the full spectrum of required data for this type
of actuator design. This data includes actuation stroke, actuation force and low
and high temperature phase transformations associated with the shape memory

effect.

The computational tool combines a novel but powerful numerical thermodynamic
and statistical thermodynamic model for simulating the wunique phase
transformation kinetics observed in shape memory alloys with a finite element
method based on the Total Lagrangian formulation for non-linear material
responses. This engineering design tool is validated by experimental data
obtained from experiments performed to study the uniaxial quasi-plastic behavior

of NiTi shape memory alloys subjected to a variety of displacement rates.

The experiments were conducted in the Faculty of Engineering, Department of

Mechanical Engineering at the Peninsula Technikon. 1, 2, and 3mm diameter
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NiTi shape memory alloy wires with lengths of 100, 150, 200, and 250mm were
tested. The specimens were subjected to displacement rates of 2, 3, 4, 5, 7, 10,
and 15mm/min. The results obtained from these experiments showed the effect
of material geometric properties and different displacement rates on the quasi-
plastic material response observed in this material. The results are consistent
with that obtained by other researchers in the field and also provides interesting

discussion points.

The thesis describes the use of the dynamic one-dimensional thermodynamic
and statistical thermodynamic constifutive model proposed by Miiler and
Achenbach and further refined by Miller and Seelecke in the simulation of shape
memory alloy line actuators. This model permits the simulation of the response of
a tensile specimen to a thermodynamic input and calculates all phase
transformations, phase proportions and deformations as functions of time if the

temperature and applied load are prescribed as functions of time.

Certain aspects of this model are used in the formulation of a Shape Memory
Alloy Truss (SMAT) finite element capable of experiencing non-linear material
responses. A comparison of the SMAT finite element and the numerical model
proposed by Miller and his co-workers to experimental data showed that the
SMAT finite element provided a better fit to the experimental data than the
numerical model. This is ascribed to the non-linear nature of the SMAT finite
element. A software program was then develaped using the software language
C, to simulate the behavior of more complex NiTi shape memory alloy structural

members for use in actuator systems.
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Chapter 1

Introduction

1.1 Problem Statement

Engineers and Technologist are called upon to develop a new generation of
“smart” products that may be used in military, aerospace, medical,
automotive, and commercial products for the twenty first century. The
development of these products has previously been accomplished through the
advancement of smart materials and intelligent structures with inherent
“brains”, “nervous systems”, and “skeletons”. They were realised through the
integration of knowledge bases associated with material science, information
technology and biotechnology. Smart materials and structures have been
found to be attractive for applications such as active vibration and acoustic

transmission control, active shape control, and active damage control [43].

The key methodology behind the design of smart structures and devices
particularly suited for applications where they operate in the capacity of
actuators, sensors and actuator-sensor environments lies in drastically
reducing the weight of these actuator devices by use of shape memory alloy
wires as the actuating devices. These smart devices and structures are

strong, lightweight and compact compared to conventional linear actuators.
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Conventional linear actuators are used in a variety of applications and
particularly in space flight application where shape, size and weight of the
linear actuator is an important factor typically to produce fine linear
adjustments (e.g. optical mounts), small angle tilting motions {(e.g. “tilt table”
gimbals; thrust vector control), to operate lever-crank mechanisms (e.g.
scanners; positioners), to operate mechanisms (e.g. launch locks; movable

covers), and generally when ever linear motion is needed.

Linear moiion may be required either directly as an output motion, or as input
to other mechanisms. The simplest device delivering linear output is the
screw-but pair. This device integrates easily with a motor and thus forms an

overall compact and symmetrical unit.

The successful engineering design of smart structures and devices
particularly suited for applications where they operate in the capacity of
actuators, sensors and actuator-sensor environmenis are dependent on a few
important factors. These include the engineers familiarity with the type of
smart material used, the availability of scund experimental data pertaining to
the complex material responses exhibited by the smart material, the
engineers level of proficiency with existing constitutive models available to
simulates these material responses, and the engineers knowledge of
simulation tools consisting of a suitable control algorithm for the modelling of
not only the device or structure itself but also the actuator involved in the

design.

1.2 Objectives

This thesis is aimed at developing an engineering tool that can be used for the
design of smart or intelligent actuators comprising of shape memory alloy
wires. An experimental database pertaining to one aspect of the shape
memory effect, the quasi-plastic material response is developed to serve as
an engineering design aid but also to serve as a verification tool for

constitutive modelling of this material response.
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The computational framework of this tool will consist of a calibrated
constitutive model (a modified version of the Muller-Achenbach mode! [32],
[39]-{42]) to simulate the complex material responses exhibited by shape
memory alloys, which will be incorporated into a finiie element formulation
with a control algorithm to study multi-dimensional uniaxial shape memory
alloy line actuators as structural members in dynamic mechanical systems. It
is envisaged that this computational tool will enhance the design of shape
memory line actuators by providing necessary information for actuator heating

and cooling, actuaior force and stroke, and actuator efficiency.
1.3 Background

In a contribution by Shakeri et al. [43] the authors elaborate on clear criteria

for identifying a material to be termed “smart” in the following different ways:

1.  Materals functioning in a capacity of both sensing and actuation;

2. Materials which have multiple responses to one stimulus in a
coordinated fashion;

3. Passively smart materials with self-repairing or stand-by
characteristics to withstand sudden changes:

4.  Actively smart materials utilizing feedback; and
Smart materials reproducing biological functions in load bearing

struciures.

Shape memory alloys fall within the realm of being termed “smart” in that they
belong to a special group of metallic materials that remembers their shape
even after severe deformation [46], [54]. When a load is applied to the
material at low temperatures, it will deform causing an apparent plastic
deformation, which is maintained until an increase in temperature causes the
deformation to disappear completely. 4-8% erasable deformations have been
observed in alloys like NiTi, CuZnAl, CuAINi, and AuCd. This material
response is termed the Shape Memory Effect [19], [31], [24], [45]-[48].
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At high temperatures however, the material exhibits a material response
termed the pseudo-elastic behaviour, and plastic deformations are recovered
by releasing the applied load [19], [46]. This high temperature material
response is also characterised by significant internal damping, non-linear
elastic ranges, non-homogeneous deformations and high yield stresses [46],
[471.

These unique material responses, i.e., the shape memory effect, and the
pseudo-elastic effect are ascribed to shear deformations associated with a
thermo-elastic martensitic transformation and ifs reverse transformation [8],
1301, [52]. |

In a typical transformation during cooling, the high-temperature austenitic
phase structure, which has a greater crystallographic symmetry than the low-
temperature martensitic phase gives rise to the formation of multiple
symmetry-related variants or proportions of twinned martensite when a critical
temperature, the martensitic start temperature, Mg, is reached. Up to 24
different variants of martensite may result from this transformation, which is
completed when the martensitic finish temperature, M;, is reached [1]. This
transformation however, does not cause the formation of locked in stresses as
observed in classical steels, and hence no change in 'the geometric
dimensions of the material occurs. These twinned variants of martensite form
complex patterns at a length-scale much smaller than the size of the
specimen. The actual length-scale can range from a few nanometers to tenths
of millimeters and it depends on a variety of factors including the chemical
composition, specimen size, grain size and heating and/or cooling history [6],
(8], [23], [38].

When a load is applied to the material, while in the twinned martensitic state
(at low temperature), only those variants of martensite sensitive to the applied
load will transform through a process of de-twinning the twinned variants of
martensite and cause an apparent macroscopic plastic deformation. An
increase in temperature will transform this de-twinned martensitic crystal

structure back to austenite and the material regains its original dimensions.
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This process is termed the shape memory effect. The critical temperature at
which the de-twinned martensite transformed to austenite is the austenitic
start temperature, A;, and the temperature at which all the de-twinned
martensite fully transforms to austenite is termed the austenitic finish
temperature, Af[1], [O], [6], [23], [38].

If 2 specimen is heated 1o a temperature between the Mg and Ar temperatures
it may contain variants of twinned martensite, austenite or a mixture of the
two. If a load is now applied to the material, it fransforms o de-twinned
martehsite and produces an apparent plastic deformation as in the shape
memory effect. Unloading results in either an elastic response or a pértial
reverse transformation to austenite that follows a hysteretic path, depending
on the temperature being either above or below the A temperature. The latter
material response is also termed the partial pseudo-elastic effect. The
remaining apparent plastic deformation can completely be recovered by
heating above the A; temperature. [5], [6], [23], [38].

When a load is applied to the high temperature austenitic phase (above the As
temperature), it will first perform elastically until a certain transformation or
yielding value of stress is reached. The austenite will now transform to de-
twinned variants of martensite and again induce an apparent macroscaopic
plastic deformation. This deformation is maintained until subsequent
unloading forces the material to now follow a hysteretic unloading path and all
deformation is removed. This process describes the pseudo-elastic behavior
of the material. Fig. 1.1. shows the schematic representation of the three

material responses [46]-[48].

The reverse transformations of the shape memory effect (upon heating) and
the energy dissipation due to the hysteretic partial pseudo-elastic and pseudo-
elastic behaviours produce actuation forces that could be hamessed for
various actuator applications in mechanical systems. This has been the focus
of researchers and inventors for the past forty years [54]. For practical

applications, shape memory alloys are usually used in NiTi alloy form [9], [36].
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Figure 1.1: Schematic representation of (a) the shape memory effect, (b) the partial pseudo-
elastic effect, and (¢) the pseudo-elastic effect. (Observation in [8], [38], [45] and [46])

Beuler et al., while commissioned to develop a material for the nose cone of
the US Navy missile, SUBROC, discovered this material in 1961. The goal of
this work was to find a material that had a high melting point and high impact
resistant properties and NiTi alloy best suited these criteria. It was only later
through an accident that Beuler stumbled upon the remarkable shape memory
characteristics of this material [25].

Since then NiTi alloy wires have be used in many novel applications ranging
from shower springs that are activated above a certain temperature to shut off
water that is too hot to the active shape control used in the adaptive
aerodynamic lifting surface of a variable camber wing both utilizing the shape
memory effect. Energy dissipation in pseudo-elastic hysteresis has
successfully been used in vibration damping of mechanical systems [2], [9],
[44], [54], [55].

The successful design of smart or intelligent structures with either embedded
shape memory alloy fibres or structural shape memory alloy components
relies on a good constitutive description for this material behaviour [36], [46].
Literature shows us that this is indeed an enormous task in that the
complicated coupling between mechanical and thermal properties and many

aspects of their interactions as it pertains to the phase transformations
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occurring in this material has 1o be taken into account. This is evidenced by
the sensitivity of the transformation temperature and other properties by
relatively small changes in the composition of the alloy by various thermo-
mechanical treatments and the effect of rate dependencies, which includes
thermal and/or mechanical responses on transformation processes [17], [31]
[37), [441, [46], [57].

Research related to the constitutive modelling of shape memory alloys have
focussed on phenomenological and micro-mechanics approaches. Within
these approaches their exist sub-groups such as Sate Space
Phenomenological [26], [42], Two- and Three- Component Phenomenological
[57], Crystallographic Micro-Mechanics, Free Energy Function Micro-
Mechanics [26], [36]. and Micro-Plane Models [9]. Constitutive models
fbi!owing the state space phenomenological approach, has been the
engineers choice since they are conceptually easy to implement and use
measurable quantities as parameters in their construction. Most of these
models were constructed to fit one-dimensional experimental data and thus
predict the uniaxial mechanical behaviour of these materials quite well [26],
{42]. They do however lack the thermodynamic aspects related 1o the shape
memory alloy material response and their suitability for the simulation in
actuator applications is very limited {42]. Micrc-mechanics models on the
other hand follow the crystallographic behaviour of these materials quite well
and aIthoUgh they possess a very high level of sophistication, they are far too
complex for use in the design of one-dimensional shape memory actuators
[42].

Other constitutive medels based on the Maxwellian Visco-Elastic approach
[13], and the Rubber-Like approach [33], are developed from experimental
observations and an in depth knowledge of the mechanics of solid structures.
These models however, only show good qualitative agreement with
experimental data [13], [33] and work still has to be conducted to bring them

to a quantitative level.



Chapier t Intractuction 8

This thesis focuses on the use of a constitutive description for shape memory
alloys based on the Multi-Well approach [17], [32], [20], [21], [39]-[42]. This
approach not only incorporates the complex thermodynamic and mechanical
aspects of the shape memory alloy material behaviour, but also lends itself to
integration into robust numerical algorithms within a computational setting
[17], [32], [39]H{42]. While some of the other constitutive models require the
need for numerous material constants (in one case up to eighteen [8]) for their
successful implementation to simulate shape memory alloy material response,
this model only requires two, i.e., the Elastic Modulus of each metallurgical
phase, i.e., low temperature mariensite and high {emperature austenite [32],
[39]42]. ’

These factors make this constitutive model a prime candidate for use in the
design of complex multi-dimensional structural engineering systems that uses
one-dimensional shape memory alloy actuators for active and/or passive
vibration control or active shape control applications. We will therefore not try
to improve on any of the existing constitutive models, but rather employ the
selected model to suit our experimental data through calibration and use it in

the design of our smart shape memory alloy line actuators.

A literature review on constitutive models that has been developed over the
past forty years will show the validity of the Multi-Well constitutive approach in
this regard. Secondly, experimental analyses were p'erformed to study the
effects of displacement rates on the martensitic transformation that occurs
during the quasi-plastic deformation of the shape memory effect. The
experiménts were performed at the Depariment of Mechanical Engineering of
the Peninsula Campus of the Cape University of Technology. Thirdly, a full
description of the chosen constitutive model will follow with a full numerical
implementation that provides qualitative and quantitative agreement with the
experimental results. This constitutive model is then used in a Finite Element
Formulation to further study complex multi-dimensional structural engineering

systems.
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1.4 Related Literature
1.4.1 Review of Shape Memory Actuated Devices

Shape memory alloys are the only crystaliine solids that exhibit the shape
memory effect at low temperatures and the pseudo-elastic effect at high
temperatures [8], [30], [52]. These two remarkable material phenomena are
ascribed to the shear deformation associated with the thermo-elastic
reversible martensitic transformations of the material (Delay et al., Perkins,
Schetsky) [52]. Bhattacharya [6] gives an excellent crystallographic and
numerical interpretation on the theory of martensitc microstructure, its
transformations and its particular manifestations as it pertains to the shape
memory effect and the reader is prompted to study this contribution for a
clearer understanding of this transformation mechanism. While in its low
temperature state, shape memory alloys, exist as different variants of
martensite (up to 24) called martensitic twinned variants or the product phase
(see Fig. 1.2a. [22]).

The material will remain in this state until acted upon by an externat stimulus
~ that will either transform the material's crystallographic structure to austenite
(see Fig. 1.2b. [22]) or the parent phase through a temperature induced
transformation (heating) that causes no change in the material’s macroscopic
appearance, or a de-twinned martensite through a stress-induced
transformation at low temperature that causes only those twinned martensite
variants that are sensitive to the applied stress to reorientate and induce a
change in the macroscopic dimensions {(an apparent plastic deformation) of
the material. The apparent plastic deformation that occurs due fo the stress-
induced transformation will remain until an increase in temperature transforms

this de-twinned martensite back to austenite (see Fig. 1.3.).

Upon cooling from the austenite region the material will once again transform
to the twinned variants of martensite with no locked-in or residual stresses.
This cycle is termed the shape memory effect (see Fig. 3). The transformation

from de-twinned martensite to austenite produces an actuation force that can
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be used in various engineering systems. The magnitude of this force is
dependant on a number of factors that may include the chemical composition
of the material, the' dimensions of the material, the degree to which the
twinned martensite was transformed, the type of loading applied (tension,

compression, torsion, efc.), and the type of heating (electrical or ambient).

At high temperatures, when the material is in its austenite state {see Fig. 1.2b.
[22]), and subjected to mechanical loading, it will first perform elastically as
many crystalline solids do. The elasticity of the material will remain untii a
yielding or transformation stress is reached. The austenite will now transform
to de-twinned martensite and induce a macroscopic change in the material’s
dimensions. Macroscopically this change is similar to the hardening
phenomenon of classical engineering steels. Upon subsequent unloading
from this region however, the material follows a hysteretic unloading path.
During this process all the de-twinned martensite transforms back to austenite
and the material regains its original dimensions. This process of hysteretic
loading and unloading is termed the pseudo-elastic efiect with inherent energy

dissipation.

~ The shape memory effect has found applications in the development of smart
or active compaosites (Duerig and Melton, Duerig et al., Escher and
Hombogen, Lagoudas and Tadjbakhsh, Taya et al., Furuya et al., Boyd and
Lagoudas, Lagoudas et al., [8], [17], [45], [46]). Here the pre-stressed shape
memory alloy (in its de-twinned martensite state) is surrounded or embedded
in a non-shape memory alloy matrix material. It was found that this process
enhanced the overall yield and hardening characteristics of the composite at
elevated temperatures [26]. Liang and Rogers reported on the use of these
active metal matrix composites in helicopter rotor blades [36]. Chaudry and
Rogers and Hughes and Wen [55] used shape memory alloys in active shape
control applications to be used in mechanisms such as the adaptive

aerodynamig lifting surface or variable camber wing.

Pruski and Kihl [55] used micro-miniature shape memory alloy actuators in

robotic systems where strain measurements from the actuator were used for
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position feedback. Giurgiutiu et al. [55] used shape memory alloys as force-
displacement actuators to reduce vibration of helicopter rotor blades. Davison
et al. and Jardine et al. [36] reported on the usage of shape memory alloys for
torque tube actuators in aircraft wings. Melton [54] reported on a shrink to fit
shape memory alloy coupling that was used to connect titanium hydraulic
tubing in the Grumman F-14 fighter jet. Rediniotis et al. used shape memory

alloys as actuation devices for hyper silent naval submersibles [36].

Figure 1.2: Metallurgical phases observed in NiTi alloy shape memory alloys. These images were
abtained using transmission electron microscopy (TEM). (a) The low temperature martensite phase
showing different twinned variants, and (b) the high temperature austenite phase. [22]
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(a) Schematic representation of the less
symmetric martensite phase. It shows at
least 5 twinned variants of martensite.
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(b) The applied load causes only the variants of martensite
sensitive to the applied load to transform causing a
macroscopic plastic deformation

o
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(c) An increase in temperature causes a transformation to the more
symmetric austenite phase and the deformation disappears.

Figure 1.3: Schematic representation of the shape memory effect
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Duerig et al. and Pelton et al. [45] have reported innovative applications for
the pseudo-elastic effect and its inherent energy dissipation. Sachdeva and
Miyazaki [36] found abpiications for pseudo-elasticity in orthodontic wires. The
energy dissipation of shape memory alloys were used for damping
applications by Graesser and Cozzarelli, Lagoudas et al., Oberaigner et al.,

and Boyd and Lagoudas [9].

Other applications included eyeglass frames, frames for brassieres, antennas
for portable cellular telephones, blood clot filters, and window latches. The
literature is rich with novel applications for shape memory alioys and new
devices are developed everyday. Van Hambeeck [54] gives a good overviéw

of more mainstream engineering applicalions of shape memory alloys.

1.4.2 Review of Experimental Analyses and Findings on Shape

Memory Alloys

The above discussion shows that at the heart of the unique material
responses that shape memory alloys exhibit lies within its austenite (A) <
twinned martensite (M") transformation upon heating or cooling, the austenite
(A) < de-twinned martensite (M"") transformation at elevated temperatures
due to an induced stress (either tension, compression, torsion, etc.), and the
twinned martensite (MT) = de-twinned martensite (M°") transformation at low
temperature due fo an induced stress (either tension, compression, torsion,
etc.). These phase transformations have been the focus of many experimental
studies in the past forty years ([10], [141, [22], [28], [31], [38], [46] - [48], [51]).

Otsuka et al., Delaey et al., Perkins, Schetky, and Funakubo [2], [44], [52]
were among the first researchers to report that the remarkable behaviour of
shape memory alloys is caused by interplay of a high temperature austenite
phase and a low temperature martensite phase. Furthermore, Wasilewski et
al., Khachin et al. and Miyazaki et al. [46] demonstrated that the
transformation temperature and other properties of shape memory alloys

could be altered by small changes in the composition of the alloy and by
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various thermo-mechanical heat treatments. Daniels, and Pope and Judd
used a differential scanning calorimeter to study the phase transformations

exhibited by shape memory alloys [46].

For most practical engineering applications, shape memory alloys are usually
used in NiTi alloy wire forms [9]. After the shape memory effect was first
observed in NiTi alloys a great amount of metallurgical research has gone into
it and Wasilewski, Jackson et al., Ling and Kaplow and Miyazaki were among
the first researchers to experimentally study NiTi [46]. These experiments
looked at the effects of temperature, strain range and mechanical cycling on

NiTi alloys.

Due to the complexities of the energy dissipation associated with the
hysteretic nature of pseudo-elastic behaviour, most researchers appeared to
study this phenomenon experimentally more than the shape memory effect.
Wayman and Deurig, Wayman, and Fu are among these researchers while
Miller and Xu, and Fu, Muller and Xu were among the first to experimentally

study the interior of the hysteresis loop [2], [20-21].

_ As time progressed and experimental apparatus became more sophisticated
Chrysochoos et al, Shaw and Kyriakides, Tobushi et al. and Lim and
McDowell found that the pseudo-elastic material response of shape memory
alloys is associated with significant temperature variations. Furthermore, the
stress-induced austenite (A) <> de-twinned martensite (M”") transformation at
glevated temperatures occurs in well defined stress — temperature regions, it
is dependant on the kind of mechanical- loading — unloading and thermal-
heating — cooling cycles, and the combined effects of the mechanical and
thermal cycles [2], [4648].

The stress-induced austenite (A) <> de-twinned martensite (M™7)
transformation at elevated temperatures is an unstable transformation and
thus produces inhomogeneous macroscopic deformations as reported by Leo
et al.,, Shaw and Kyriakides, Sittner et al. [2], [4648], [52]. From a
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crystallographic point of view, the de-twinned mariensite (MDT) phase
nucleates and grows as interfaces within the austenite phase until all the
austenite has transformed to de-twinned martensite (MP"). Larche and Cahn,
Robin, Heidug and Lemer, Johnson and Alexander were among the first
researchers to study the equilibrium conditions of these interfaces and motion
of the interfaces between regions of two phases [20], [21]. Salzbrenner and
Cohen performed investigations to study the motion of these interfaces by

controlling the temperature [20], [21].

By far the most detail and beneficial experimental investigations into the
unstable transfermation and inhomogeneous macroscopic deformation of
shape memory alloys, is the works by Shaw and Kyriakides [46-48]. A brief

summary of their findings will thus be given below:

= Experimental observation show that stress-induced martensitic
transformation in certain polycrystalline NiTi shape memory alloy can lead
_to strain localization and propagation phenomena when uniaxially loaded
in tension; |
» The Number of nucleation events and kinetics of transformation fronts
were found to be sensitive to the nature of ambient media and imposed
loading rate due fo release / absorption of latent heat and the material's
inherent temperature sensitivity of transformation stress;
= Nucleation stress is higher than the transformation stress;
= During unstable transformation, deformation is distinctly inhomogeneous;
» FEach nucleation spawns two transition fronts and active deformation of
~ the transition fronts is limited to the neighbourhood of these fronts;
= As a result, latent heat is released in discrete local regions rather than
distributed over the entire length of the specimen {suggest strong thermo-
mechanical coupling);
= Higher nucleation stress and displacement rates results in multiple fronts;
=  Coexisting fronts travel at the same speed;
» The front speed is proportional to the rate of the applied end

displacement;
= The front speed in inversely proportional to the number of active fronts;
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= More proportions of frents implies lower front speed and reduced local
rate of heating;

= Distinct instability and Liders-like deformation occurs under iscthermal
conditions;

= Within an insulating media and higher loading rates the material cause
self-heating, which leads to higher force-displacement response and
multiple transformation fronts; and

= As the number of fronts increase the deformation appears to become

homogeneous.

The type of loading cycle (tension, compression, torsion, etc.) to induce the
austenite (A) < de-twinned martensite (M°') transformation at elevated
temperatures, and the twinned martensite (MT) = de-twinned martensite
(MPT) transformation at low temperature also has important implications to the
shape memory alloy material response. Adler et al. and Melton showed
experimentally that shape memory alloys subjected to compressive loading
showed lower recoverable strains, steeper hardening behaviour, and higher
transformation stress levels compared to tensile behaviour [36]. Leo et al.,
Shaw and Kyriakides, Sittner et al., Gall et al., and Zang et al. studied the
. effects of tension — compression asymmeiry on shape memory material
response [46-48], [52]. Gall and Sehitoglu performed experiments on one-
dimensional shape memory alloy bars loaded in tension and compression.
Their results showed that the shape memory alloys phase transformations is

influenced by the texture of the specimen [36].

Sittner et al. performed experimental analyses to study the three-dimensional
constitutive behaviour of shape memory alloys. They investigated the
stabilization of transformation behaviour in stress-induced martensitic
transformation in NiTi alloy hollow bar. The loading cycles were for combined
Tension and Torsion. The specimen was then loaded either in tension or
torsion. The results revealed strain anisotropy, which implies the existence of

other strain components [52].
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Jacobus et al. studied the effect of stress state on the stress — induced
martensitic phase transformation. NiTi alloy bar specimens were subjected to
tension, compression, hydrostatic pressure, and various tri-axial compression
tests. The resulis showed that shape memory alloy phase transformation is
pressure dependant and the effective stress for phase transformation

increase with increasing hydrostatic pressure [36].

Lim and McDowell conducted experiments on shape memory alloy torque
tubes using proportional and non-proportional loading conditions. They
investigated the stress-temperature coupling in tension, compression, and
torsion. Their results showed that more latent heat was available Vin
compression, which was evidenced by larger temperature increases in
compression than in tension for the completion of a phase transformation.
They also found that the thermo-mechanical behaviour in positive and

negative torsion was found to be symmetrical [36].

In conclusion all experimental efiorts tries to bridge the gap between the
microscopic and macroscopic material responses of shape memory alloys.
The experimental findings detailed above shows the strong coupling between
“thermal and mechanical properties of shape memory alloys. The mechanical
material response is dependant on many factors including temperature, strain
range, thermo-mechanical history, loading rate, specimen geometry, nature of
ambient medium, and the interactions of some of these [see 46-47].
Furthermore, the phase transformations associated with the shape memory
effect and the pseudo-elastic effect produces unstable material behaviour and
inhomogeneous deformations due to the propagating phase transformation
phenomena, which is also temperature and load dependant. Added to this is
the sensitivity of the phase transformations on magnitude and type of the
applied loading and unloading conditions. All of these material complexities
make the constitutive modelling of shape memory alloys an enormous task. In
order for successful constitutive models to be constructed knowledge bases

assaciated with Material Science, Physics, Mathematics, and Engineering has

to merge.
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1.4.3 Review of Constitutive Modelling for Shape Memory Alloys
1.4.3.1 Phenomenological Approach

The earliest form of constitutive models used to study shape memory alloy
material response were of a phenomenological nature. The progression of
these models took the form of the initial mechanical state space
phenomenclogical models, and then later when thermodynamics were
included in the formulations, two- and three-component phenomenological

models.

The state space one-dimensional constitutive phenomenological models
formulated to study shape memory alloy material response have been ideally
suited for the _ehgineering practice since these models make use of
measurable quantities as parameters in their construction. Most of these
models were constructed to fit one-dimensional experimental data and thus
predict the uniaxial behaviour of these materials quite well. These models
consist of mechanical laws for the governance of stress — strain behaviour of
the material and kinetic laws, which governs the crystaliographic behaviour of

the material.

The kinetic laws describe the evolution of phase fractions as functions of
applied stress and temperature and they usually make use of phase diagrams
to show the crystallographic behaviour of the material under stress and/or
temperatﬁre. Two methodologies are foliowed for the derivation of the
evolution laws. The one employs the use of transformation micro-mechanics
(Tanaka, Sato and Tanaka), while the other is obtained by directly matching
experimental results {Liang and Rogers, Graesser and Cozzarelli, Barrit) [26].
Brinson and Huang reported that main difference between these models are
the kinetic laws since the mechanical elastic strain components are small
compared to the transformation strain components and the mechanical part

thus plays a less significant role in these models [9].
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The phenomenclogical constitutive model also has two categories where
either a two or three component model is described {57]. The two component
models consist of crystallographic variants of austenite and a single variant of
martensite (Sun and Hwang, Raniecki and Lexcellent), while the three
component models describes the existence of austenite and two variants of
martensite, i.e., the self accommodating twinned variant of martensite and the
non-self accommodating de-twinned variants of martensite (Boyd and
Lagoudas, Leclercq and Lexcellent). Both of these categcries are derived
from the assumption that the direction of the strain rate is the same as that of
the devatoric stress. This assumption is used in the construction of the free-
energy function and only holds for proportional loading. Furthermoré,
thermodynamic dissipation potential functions are postulated in the

construction of the evolution equations for the phase transformations [57].

Several attempts have been made to extend these models to a three-
dimensional setting. The three-dimensional models capture most of the typical
features of shape memory alioy material response. There is however
problems in evaluating their performance due to a lack of sound experimental
data for the multi-axial material response. These models are in the form of
plasticity models that consist of an internal variable representing the volume

fraction of mariensite.

Tanaka and Ngaki proposed a state space uniaxial phenomenological
constitutive model that used a fraction of martensite as an internal variable.
The phenomenological equation of state is given in the form of an expanential
function and uses the Kiostenen — Marburger type of kinetics to describe
transformation behaviour of shape memory alloys [42], [52]. The evolution of
the phase fraction is dependant on stress and temperature. These
researchers were the first to use Edelen’s formulation to study the material
reéponse of shape memory alloys [8]. This formulation demonstrates the
existence of a vector decomposition theorem such that the generalized fluxes
appearing in the entropy production inequality can be decomposed into
dissipative and non-dissipative components. The dissipative fluxes must now

be derived from the dissipation potential [8].
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Tanaka et al. constructed a three-dimensional thermo-mechanical framework
to study the stress-induced martensitic phase transformation and its reverse
transformation which gives rise to the pseudo-elastic and the shape memory
effects of shape memory alloys. This constitutive model was generalized form
one-dimensional experiments. The transformations are characterised by
intemal state variables. The thermo-mechanical constitutive equations and
phase transformation kinetics are derived as a consequence of the Claussius
— Duhem inequality. The Koistenen — Marburger and Wang and Inoue type of
transformation kinetics are employed to study phase transformations
occurring in shape memory alloys. A theoretical and numerical study on the
stress-siraintemperature curves and the shape recovery on heating were
examined. This study was however limited to macroscopic behaviour of shape
memory alloys and the martensite-martensite and stress-induced

transformations were not considered here [52].

Brinson was the first to recognise the decompo.sition of martensite into
twinned and de-twinned components which now made it possible to model the
quasi-plasticity of shape memory alloys [42]. He developed a uniaxial
“phenomenological macroscopic model based on previous work by Tanaka to
also study the material response. Here the intemal variable consisted of a
purely thermal self-accommodating phase fraction (representing twinned
martensite) and a thermo-mechanical stress-induced orientated phase
fraction (representing de-twinned martensite) [9], {27]. Liang and Rogers
studied the one-dimensional behaviour of shape memory alloys with a state
space phenomenological model that used a cosine law for the calculation of
martensitic volume fractions. This evolution law was obtained by matching
experimental data [9], [17], [18], [42]. Liang and Rogers later extended this
uniaxial phenomenological model to a three-dimensional setting in the form of
a plasticity mode! with internal state variables representing martensitic volume

fractions [9], [36]. Brinson and Lammering also followed this approach [17],
[36].
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Sun and Hwang presented a two component three-dimensional
phenomenological model that was generalized from one-dimensional
expenmental data [36], [57]. Raniecki and Lexcellent proposed a 3 component
phenomenological constitutive model to study transformations that occur
during pseudo-elasticity [8], [27], [57]. Boyd and Lagoudas followed the same
approach as Sun and Hwang. This model was derived from irreversible
thermodynamics with evolution laws being developed from the basis entropy
preduction. The three-dimensional model follows the classical theory of
plasticity with yield conditions for the onset of phase transformations.
Aithough thermodynamics is used in this formulation, the authors still used
phenomenoclogical observations to construct it [26], [36], {42]. Lagoudas et él.
shows that several earlier models based on different approaches are all

related to each other under thermodynamic formulations {17].

Leglercq showed that the effect of reorientation of the self-accommodating
product phase was not adequately taken into account, and thus prevents
good prediction of the shape memory alloy material behaviour [27]. Tanaka et
al. now presented a comprehensive three-dimensional exponential
constitutive model that attempts to account for reorientation, kinematic and
isotropic hardening to include the dependence on applied stresses. Again

generalized from one-dimensional experimental data [36-37].

In their three component phenomenological model, Leclercq and Lexcellent,
present a macroscopic description for shape memory alloys to allow for the
simulation of the global thermo-mechanical material response. It is based on
the framework of thermodynamics of irreversible processes and accounts for
two intemal variables. One accounts for the self accommodating twinned
martensite variant, dependant on temperature only, and the other represents
the orientated de-twinned martensite variant dependent on the induced stress.
The specific free energy function derived for this model covers the total range
of phase transformations. The kinetic equations is formulated according to the
Second Law of Thermodynamics and five yield functions are postulated for
each of the related processes associated with the material behaviour. The

simulated results show good agreement with experimental data [27], [57].
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Auricchio and Sacco proposed a macro-level constitutive model based on
kinematical approaches and assumes that sections that are plane in the un-
deformed configuration remain so in the deformed configuration. Furthermore
they assume that shear deformations are negligible. A one-dimensional
constitutive equation is used for the stress — strain behaviour and uses an
intemal scalar variable to represent the martensitic volume fraction. The
scalar variable is dependant on evolution equations for the onset of phase
transformations. Thermo-mechanical coupling is accounted for by the
presence of internal heat sources in the form of phase transformation latent
heats and mechanical dissipation. The computational framework was set ub
for the simulation of shape memory alloy devices consisting of beam elements
with generic cross-sections. These elements were subjected to complex

foading conditions [2].

Shaw presents a thermo-mechanical boundary value problem and a
constitutive model for a NiTi alloy wire subjected to uniaxial loading
conditions. The thermodynamic relationships are derived from
phenomenological observations consistent with experimental data. An explicit
Helmholtz free energy function is developed that includes internal variables
representing phase fractions for austenite, and one-dimensional variants of
martensite. Hysteretic kinetic relations augment this free energy function,
which governs the rate of phase transformation as a chemical driving force.
The model accounts for temperature and stress-induced phase transformation
and thus makes it possible to study both shape memory and pseudo-elastic
behaviours. Furthermore, the model accommodates for possible unstable
mechanical behaviour during stress-induced transformations by allowing

softening transformation paths including strain gradient effects [45].

Recently, Helm and Haupt proposed a phenomenological material model o
represent multi-axial material behaviour of shape memory alloys. The model
accounts for the one-way shape memory effect, two-way shape memory
effect due to extemnal loading contributions, pseudo-elasticity, pseudo-

plasticity, and the transition range between pseudo-elasticity and pseudo-



Chapter 1 Intreduction 22

plasticity. The free energy function is dependent temperature and internal
variables representing a martensitic volume fraction, an inelastic strain tensor,
and a strain like variable describing internal or residual stress fields. Evolution
equations govern the history dependence on these internal variables. Viscous
behaviour during phase transformation and reorientation of martensitic
variants are dealt with by including a Perzyna type inelastic multiplier.
Different deformation mechanisms are dealt with by introducing case
distinctions into evolution equations. Thermodynamic consistency is ensured

since the constitutive model satisfies the Cluasius — Duhem inequality [18].
1.4:3.2 Micro-Mechanics Approach

The constitutive models following the micro-mechanics approach follow
closely the crystallographic phenomena occurring in the internal structure of
the shape memory alloy material. These models use the Thermodynamic
Laws to describe the transformation phenomena. Two methodologies are also
followed here. One uses the crystallographic modelling of a single crystal or
grain represented by a volume that consist of inclusions representing possible
variants of mariensite. The results (stresses and strains) of this modelling are
averaged over what is termed the representative volume element (RVE) to
obtain the overall polycrystalline response. Researchers following this

approach included Patoor et al., Sun and Hwang, Tokuda et al., and Lim and

McDowell [2], [8], [9], [36].

Raniecki and Lexcellent, Reisner et al., Bo and Lagoudas, Gillet et al., and
Lagoudas and Bo [36], [42] used the other approach which starts off with the
construction of a macro free energy potential which is obtained directly from
micro-mechanical modelling. The Coleman-Noil procedure is employed to

derive constraints on the material constitutive behaviour

These constitutive models employ dissipation potentials in conjunction with
the Second Law of Thermodynamics to derive Evolution Laws that describe
internal variables. The main difference between these methodologies lies in

the form of the transformation strain induced strain hardening term in the free
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energy function. Also, different choices of transformation function or criteria,

which defines the thermo-elastic domain, are made.

Qidwai and Lagoudas [36] reported that researchers that used the J;
transformation function (Boyd and Lagoudas [36], Bo and Lagoudas [36], [42])
are incapable of modelling asymmetric behaviour and the dependence of
phase transformations on hydrostatic pressure. Volumetric changes
associated with phase transformations also cannot be modelled if the
associative transformation strain flow rule is assumed. The J, - L
transformation function (Aurricchio et al. [36]) can model the tension —
compression asymmetry and phase transformation pressure dependencé.
Models that use the J, — J; — |1 transformation function however demonstrate
the ability to capture most of the material dependence on loading conditions
such as volumetric changes associated with phase transformation,
asymmetrical behaviour, and the phase transformation pressure dependence

by distorting the transformation surface [36].
1.4.3.3 Micro-Plane Approach

The constitutive model derived from Micro-Plane Approach falls between the
two methods described above. Brocca et al. {9] first introduced this theory. it
is in essence a phenomenological model that is aimed at reproducing the
macroscopic mechanical behaviour of a material. In the micro-plane approach
the macroscopic material response is obtained along several planes of
different orientations, which is called micro-planes. This is in contrast to the
phenomenological approach since constitutive laws are expressed here
directly in terms of sitress and strain tensors and their invariants. By
considering micro-planes to be representative of the material microstructure,
the cumbersome task of microstructural modelling is eliminated. This then
lends a new method at dealing with material phenomena at a micro-scale.
Results obtained on these micro-planes can be used to describe phenomena

such as crystallographic slip, shear bands, crack opening, friction, etc.



Chaptar 1 Intraduction 24

The model proposed by Brocca et al. [9] for the material behaviour of
polycrystalline shape memory alloys can predict three-dimensional response
by superposing the effects of inelastic deformations obtained on several
planes with different orientation. This then closely mimics the actual physical
behaviour of the material. The constitutive law for the material is composed of
a simple constitutive model and a robust kinetic expression for each of the
orientated micro-planes. This mode! showed promising results in that uniaxial
material response of shape memory alloys were easily reproduced. The
model also tackles complex responses such as stress — strain sub-loops,
tension — compression asymmetry, and material effects associated with non-

proportional loading paths.
1.4.3.4 Multi-Well Approach

This approach has been followed by researchers such as Achenbach and
Miller, Achenbach, Miiller and Xu, Huo and Muller, Abeyaratne et al., and
Abeyaratne and Kim [8], [21], [27]. The extended version of the Muiller-
Achenbach model [32], [42] describes the thermo-mechanical behaviour of a
shape memory alloys wire for actoric purposes. This model is strongly
dependent on experimental data, and the resulting mathematical structure is
given by a- set of differential-algebraic equations [32], [39-42]. The basic
element of this model is a small piece of metallic lattice, which can exist in
three equilibrium conditions, ie., austenite, and the martensitic twins.
Microscopically, a tensile specimen is arranged as layers of such alternating
lattice particles. A train of parabola or a triple-well function gives the
postulated form of the potential energy of this lattice. It is characterised by two
stable minima each representing one of the martensite twins and a
metastable minimum for the austenite. The points at which these wells are
joined are called the potential barriers [32], [39-42]. Under certain thermal and
mechanical loading conditions, the layers are able to overcome the potential
barriers through thermal activation, which gives rise to time rates of change
for the different phase variants. These transformation kinetics is based on
statistical physics, wherein it is postulated that the rate of transformation

between constituents is proportional to the net probability that one phase will
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overcome the energetic barrier required to transform to a second phase. This
model also uses the analytical description for the coherence energy first
introduced Miller (1989) [21], for the hysteretic behaviour of shape memory
alloys material response during pseudo-elasticity. Miller and Seelecke [32]
used this model and it agrees at least qualitatively with experimental data.
Seelecke and Biskens [41] used it to optimally control beam structures using
shape memory alloys Seelecke [39] studied the tforsional vibration of shape

memory alloys with it.

1.4.3.5 Maxwellian Visco-Elastic Approach

This approach is used to find simple and appropriate dissipative mechanisms
to be included in the constitutive description of materials so that the nucleation
and propagation of phase fractions associated with phase transformations
may be analyséd. Suliciu [13] formulated a new approach to solve material
instabilities caused by phase transformations or strain localization. This
approach falls in the framework of a one-dimensional and isothermal context.
Other researchers that followed this approach include Faciu, Suliciu, Faciu
and Suliciu, Ficiu, and Milhailescu-Suliciu and Suliciu [13]. This constitutive
approach is based on rate-type visco-elastic constitutive equations with
Maxwellian viscosity. The rate of stress, rate of strain, and the over stress
function are considered to be linearly dependent. Equilibrium states are
considered to be situated on a stress — strain curve corresponding 1o a non-
monotone elastic material. The model may be compared to a simpie body with
one interal variable (inelastic strain) and is capable of describing relaxation,
creep, and instantaneous processes occurring within a material, Furthermare,
the nucleation, growth of one phase in anocther, the creation and propagation

of phase boundaries is automaticaily accounted for in this model [13].

Faciu and Milhailescu-Suliciu [13] used this approach and included thermal
effects associated with the phase transformations occurring in shape memory

alloys to formulate a rate-type semi-linear thermo-visco-elastic constitutive
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approach for a non-linear and non-monotone thermo-elastic body. Thermo-
mechanical coupling is considered by including a Newton type convection
mode for heat transfer between the material and its environment. Numerical
simulations with this model were conducted for three end-displacement rates

and compared qualitatively with experimental results [13]
1.4.3.6 Rubber-Like Elasticity Approach

This theory found it's footing in the curious aging effects observed in shape
memory alloys. Sawada et al. [38] performed experiments on NiTi alloy wire to
determine the effect that the shape memory processing temperature has oh
its material response. The wires were held at a certain temperature (623K < 7T
< 773K) for one hour and cooled in a furnace. This process is referred to as
aging of the NiTi alloy wires. The wires were now subjected to a uniaxial
tensile test at different temperatures. it was found that the aging process
increased the martensite start temperature and decreased the austenite start
temperature [38]. This caused the aged martensite to transform to austenite at
a lower temperature and thus pseudo-elasticity is now observed at lower
temperatures. Ohta [33] summarizes the aging effects as follows: (1)
martensitic phases are stabilized by aging, and (2) the aged martensite
reveals rubber-like elasticity {pseudo-elasticity). Olander discovered rubber-
like elasticity and a number of experimental studies regarding the phenomena
have been conducted. Otha formulated a theory for the rubber-like behaviour
exhibited by shape memory alloys. The kinetics of the martensitic phase
transformation is represented in terms of a local strain field or primary order
parameter. The evolution of the primary is foliowed by a secondary order
parameter that has an extremely slow movement. This set of equations then
enables the derivation for the equation of motion for twin boundaries. The
stress — strain relation due fo the motion of this twin boundary is obtained by
taking account of the aging effect. The results obtained here were found to be

qualitatively consistent with experimental data [33].



Chapter 1 Introduction 27

1.4.3.7 Concluding Remarks on Constitutive Modelling of
Shape Memory Alloys

Most of the material responses, i.e., shape memory effect, partial pseudo-
elasticity, and pseudo-elasticity, observed in shape memory alloys have been
captured to some extent by all constitutive models described above. tt is clear
that all researchers acknowledge that at the heart of the unique material
responses exhibited by shape memory alloys lies the thermo-elastic reversible
martensitic phase transformation and thus all constitutive models used this as
an initial starting point for their formulations. Since Thermodynamics is the
choice of science for the derivation of shape memory alloy constitutive
models, the extent to which the thermodynamics of phase transformations
were studied and implemented in these models displayed their level of
accuracy in simulating the material responses. Other aspects related to the
inhomogeneous deformation associated with the phase transformations
(Shaw [45]) and the dependence of the phase transformations on thermal and
mechanical fields, and type of loading conditions, were also accounted for

{Auricchio and Sacco [2], Brocca et al. [9]).

State space phenomenological constitutive models (Tanaka and Ngaki,
Tanaka, Liang and Rogers {8}, [9], [18], [37], [42]) although the choice of
engineers lack the thermodynamic aspects related to the shape memory alioy
material response. Their suitability for the simulation of actuator applications
is also very limited [42]. Two- and Three- Component Phenomenological
Models (Sun and Hwang, Raniecki and Lexcellent, [54]), Micro-mechanics
Models (Patoor et al., Sun and Hwang, Tokuda et al. [9], [36]), and the Micro-
Plane Model! (Brocca et al. [9]) possess a high level of sophistication and can
simulate shape memory alloy material response to a high degree in that they
offer very good agreements with experimental data, both qualitatively and
quantitatively. They are however too complex for use in the design one-
dimensional shape memory alloy actuators. Most of these models require the
calculation of different constants for their successful implementation. The
model by Shaw [45] requires eight material constants while the model by

Boyd and Lagoudas [8] requires up to eighteen material constants.
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Other constitutive models based on the Maxwellian Visco-Elastic approach
(Faciu and Mihailescu-Suliciu [13]), and the Rubber-Like approach (Otha
[33]),' are developed from experimental observations and an in depth
knowledge of the constitutive approach that was used. These models
however, only show good qualitative agreement with experimental data and

work sfill has to be conducted to bring them to a quantitative level [13], [33].

The Multi-Well or Triple Well Function approach (Muller and Seelecke, [32])
used in the constitutive modelling of shape memory alloys provides a good
one-dimensional description of the material response accounting for both
thermodynamic and mechanical aspects [32], {42]. Al model variables
required for the implementation of this constitutive approach are obtained
from only two tensile tests. This model requires only two material constants
for its implementation, i.e., the Elastic Modulus of each metallurgical phase.
Furthermore, it offers the possibility of being implemented into advanced

control algorithms [39], [40], [41].
1.5 Scope of the Thesis

Chapter 2 gives details about an experimental investigation that was
conducted on NiTi shape memory alloys wires. This section served as a
reference when various constitutive responses were consulted for their use in
the computational design tool. Chapter 3 presents the constitutive model that
was used in the finite element formulation and Chapter 4 gives the formulation
of the Shape Memory Alloy Truss (SMAT) finite element. Chapter 5 gives the
computation framework of the design tool and includes a discussion on the
numerical solution scheme used. This section also shows the use of the
design tool by simulating the behaviour of shape memory alloy actuators

hamessing the shape memory effect.
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Chapter 2

Experimental and Macroscopic

Observations of Shape Memory Alloys

2.1 Introduction

In crder to fix ideas about our present investigation into the complex
constitutive modelling of shape memary alloys it is necessary to present some
experimental data and results obtained for these materials. Shape memory
élloys exhibit two unique material responses ascribed to solid-solid thermo-
elastic martensitic forward and reverse phase transformations, i.e., the shape
memory effect and the pseudo-elastic effect. The experimental investigation
was performed to study only one aspect of the shape memory effect, the
quasi-plastic material response under tensile loading conditions. Shape
memory alloy while in its low temperature martensitic state exhibit this
behaviour under different loading conditions {tension, compression, torsion,
tension-torsion, compression-tarsion, etc.). The experimental results obtained
are consistent with what other researchers found in the field and even show
some interesting findings regarding this unique material response, It is hoped
that these results will add to the body of work performed in this area of
research but also more importantly provide an insight into the different

approaches used in the constitutive modelling of shape memory ailoys. All
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experiments were conducted at the Strength of Materials Laboratory of the

Deparntment of Mechanical Engineering at the Peninsula Technikon.

2.2 Materials Tested

Commercially available NiTi shape memory alloy wires of 1, 2 and 3mm
diameter were used in these experiments. The material was obtained from the
supplier Johnson Matthey, based in the United Sates of America and Table
2.1 shows their properties. It should be noted that quantitative comparison of
these three materials would not be possible since slight changes in the
chemical composition may result in drastic inconsistencies with regards to
material responses. We will therefore have a qualitative discussion on the

material response of three materials and a quantitative discussion on each.

. Chemical Composition e
Dl(z::lnit)er - . c o Total Al Temper Surface ’\c(tf,‘ce) Ar
™ H Others
1 §5.32 | 4467 | <005 <005 0.20 Straight Oxide 50.7
Annealed
Straight :

52 < 5 ! =

2 35.38 44.62 <0.05 <003 <0.20 Anncaled Oxide 60.5
£z . < 2 Straight .

3 55.32 Bal <0.03 <0.05 <0.30 Ansicaled Oxide 73

All Others Are: AL Co, Cr, Cu. Fe, Mn, Mo, Nb, Si, W

Materials ebtained from Johnson Matthey, 1070 COMMERCIAL ST., SUITE 110, SAN JOSE, CA 95112

Table 2.1: Shape memory alloy material data

2.3 Experimental Set-ups

Four lengths of 100, 150, 200 and 250mm for each diameter wire were
considered for testing. Three specimens of each length were cut from the
respective wire reels using an industrial bolt cufter and gave a total of thirty-
six specimens to be tested. The as cut specimens were placed in an furnace
and heated to a temperature of 1 00°C. The specimens were held at this
temperature for a sufficient amount of time and this ensured that all
specimens were transformed to their austenitic state (Table 2.1 shows
austenitic finish temperature of each material). All specimens were then

removed from the fumace and allowed to cool to room temperature in still air
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ensuring that at the beginning of testing they were all in their martensitic
states. A Hounsfield Tensile Tester was used for tensile experiments and
specimens were clamped in such a way that the effective gauge lengths were
60, 110, 160 and 210mm. Loads were measured with 5kN (for 1mm diameter
specimens) and 20kN (for 2 and 3mm diameter wires) load cells. The cross
head displacement was measured by a digital encoder built in to the tensile
tester. Each specimen were subjected to displacement rates of 2, 3, 4, 5, 7,
10 and 15mm/min which gave three data sheets per length and gives a total
eighty-four data sheets per diameter. The specimens were never fractured
and after unloading they were placed back into the furnace and heated to

restore their origirtal geometric properties.
2.4 Quasi-Plastic Material Responses Exhibited by Shape Memory Alloys

The quasi-plastic material response is inherent to the shape memory effect
exhibited by shape memory alloys. When a load is applied to the material at
low temperatures, it will deform causing an apparent plastic deformation, i.e.
quasi-plasticity. This deformation is maintained until an increase in
temperature causes the deformation to disappear completely. 4-8% erasable
deformations have been observed in alloys like NiTi, CuZnAl, CuAlNi, and
AuCd [19], [31], [24], [45}-148]. For a general discussion on this material
response it is suggested that the reader not focus on the values for force and
displacement at this stage but rather look at a qualitative description. A
discussion of load vs. extension behaviour for iow, intermediate and high

displacement rates for the different diameter wires are shown below.

2.5 Results and Discussion
2.5.1 Qualitative Discussion

The most observable feature of thequasi-plastic material response is the three
distinct regions it shows when plotted graphically (see Fig 2.1a, b and c). For
discussion purposes lets call them respectively the initial elastic region (IE), a

nearly horizontal region (NH), and finally another elastic region (FE). All of



Chapter 2 Experimentat and Macroscopic Otservations of Shape Memory Alloys 32

these regions show an amount of yielding. Since regions 1 and 3 shows
elastic behaviour (which implies elastic properties), unloading from these
regions will remove the strains obtained here. These two elastic regions
suggest that thé specimen changes from its initial state to some final state.
Furthermore it is also seen that the slopes of these elastic curves are similar
thus implying equal elastic constants. The nearly horizontal regions on these
graphs thus determine the location of the transformation behaviour from one
elastic state to the other. It also has the largest value of displacement
compared to the other two regions. The end of transformation usually has a

distinct point. This is evidenced by the graphs shown in Figs. 2.1a, b and c.

Literature telis us that this initial state is in fact composed of different variants
‘of martensite formed during the transformation from austenite (particularly
during cooling). One explanation for this horizontal region [60] is that when
these variants are subjected to an applied load only those variants sensitive to
the applied load will elongate once a certain transformation load is achieved.
The sum of these variant elongations thus produces the overall or total

deformation of the specimen.

Another explanation considers these variants as altemate layers or
martensitic twins packed on top of each other. When a load is applied to these
twins, shear loads are produced at the twin boundaries. When the shear load
reaches a certain value one of the twins flip and takes the orientation of the
6ther. This flipping or de-twinning of layers thus produces the total

deformation of the specimen [42], [45].

A closer look at the transformation region for a low displacement rate (Fig.
2.1a) of the 1mm diameter shape memory alloy wire shows some very
interesting load-displacement behaviour. The insert in Fig 2.1a shows an
exploded view of the transformation region. It shows very smali fluctuations of
the load with regions of constant load between them. It is now seen that the
first explanation given above disqualifies itself since it does not give an
explanation for these fluctuations. If we consider the second explanation given

for the horizontal region, we can take these fluctuations as the load required
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to produce the flipping or de-twinning of the martensitic twins. This de-
fwinning occurs almost at constant load and thus suggests a load induced

phase transformation.

Fig. 2.1a shows a decrease in the frequency of these fluctuations with an
increase in the displacement rate. This implies that at low displacement rates
more of the martensitc twins transform and at high displacement rates less
transform. This would then suggest that at low displacement rates greater
deformation should be achieved. This is however not the case as seen in Fig.
2.1a. High displacement rates cause lesser fluctuations with approximately
the same amount of deformation indicating that higher displacement rates
induce a more homogeneous deformation in the 1mm diameter NiTi shape
memory alloy wire. An explanation for this could be that at higher
displacement rates certain variants of martensite undergo deformation for a
longer period of time thus giving the appearance of near homogeneous

deformation.

Shaw and Kyriakedis [46-48] experimentally studied propagating phase fronts
of shape memory alloys. They found that increases in the displacement rate
also increased the occurrence of these propagating fronts and thus produced

more homogeneous deformation behaviour.

The 2 and 3mm diameter NiTi shape memory alloy wires does not show the
fluctuations observed in the transformation region (see Figs 2.1b and c).
These specimens actually show a steeper transformation region and thus

imply different kind transformation behaviour.

After the transformation load has been reached and transformation
commences, the 1mm diameter wire transforms from one state to the other
with a seemingly perfectly plastic behaviour while the 2 and 3mm diameter

wires can take the form of plasticity with isotropic or kinematic hardening.

The steeper transformation region observed in the 2 and 3mm diameter NiTi

shape memory alloy wire could be ascribed to the geometric changes of the
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material only. Thinner wires (1mm or less) can thus be considered as uniaxial
test specimens showing the actual horizontal transformation behaviour of

shape memory alloys.

Thicker wires thus show a transformational behaviour with hardening, which
brings into play the Poisson effect as exhibited by classical steels. These
kinds of constitutive approaches using the framework of plasticity-based
models was followed by researchers like Shaw and Kyriakides and Bo and
Lagoudas to study mostly pseudo-elastic material responses of shape

memory alloys [42], [48].

Another interesting observation regarding the quasi-plastic material response
_is that certain displacement rates applied to different lengths of wire induce
the same kind of material response (the same transformation loads, amount
of deformation during transformation, and the same slopes for the initial and
final elastic regions) in all three specimens tested. Examples of this material
response is observed in 1mm diameter wires of 100, 200 and 250mm lengths
at displacement rates of 2 and 15mm/min (see Fig. 2.4), 2, 4 and 10mm/min
and 2 and 10mm/min respectively. Other displacement rates simply produced
different values for the material response. This would then imply that quasi-
plasticity has preferred displacement rates and this kind of material response

is also observed in 2 (see Fig. 2.5) and 3mm diameter wires.

In their experimental investigation into the behaviour of the pseudo-elastic
material response exhibited by shape memory alloys, Shaw and Kyriakides
[46-48] found the nucleation load of transformation to be higher than that of
the transformation load. This behaviour was also observed for the quasi-
plastic material response of 2 and 3mm diameter wires but not for the 1mm
diameter wire. Fig. 2.6 shows this phenomena for 2 and 3mm diameter wire of

lengths 100 and 150mm respectively at a displacement rate of 2mm/min.

This behaviour also resembles the Liders deformation found in classical
Engineering Steels. This behaviour however disappears with an increase in

the displacement rate for certain lengths of wire. Fig. 2.6 shows the load-
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exiension behaviour of three 2mm diameter wires of length 100mm at a
displacement rate of 7mm/min. This behaviour occurs only in one specimen
and it is interesting to note that when specimens behave in this way the
transformation regioh becomes steeper showing hardening-like behaviour.
This observation was made for most of the 3mm diameter wire (see Fig. 2.8)
and also for certain 2mm diameter specimens. A summary of the

experimental data is graphically given in Appendix A.
2.5.2 Quantitative Discussion

Experiments were performed to find the effect of displacement rates on
geometric properties (diameter and length) and mechanical properties {Initial
and Second Yield Stress, Total Transformation Strain) of the NiTi shape
memory alloy wire specimens. Exponential functions were extrapolated from
the averaged data obtained from the experiments to establish the trend of
quasi-plastic material responses for the three different wire diameters that

was tested.

Fig. 2.9a, b and ¢ show the relationship between the tfotal transformation
strain and the different displacement rates that the specimens were subjected
t0. The trend lines indicate that an increase in the displacement rate had no
effect on the total transformation strain for the 1mm diameter wire specimens
but showed slight decreases for the 2 and 3mm diameter wires. Fig. 2.10a, b
and ¢ show a slight decrease in the value of the initial yield stress of the

different wire specimens as the displacement rate is increased.

Increases in the specimen length show a decrease in the value for the initial
yield stresses for the 1 and 2mm diameter wire specimens (see Fig2.10 a and
b). This would then suggest that longer wires of these diameters yield easier
than shorter wires. For a 1mm diameter wire however, the value of the second
yield stress increases with the increase in specimen length and thus
compensates for the drop in initial vield stress (see Fig 2.10a). This behaviour

then maintains the total amount of transformation strain that the 1mm

diameter specimens produce.
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The 2mm diameter wire specimens exhibit a different behaviour for the
second yield stress (see Fig. 2.9b) compared to that of the 1mm diameter wire
specimens. Although this trend line shows a decrease in the value of the
second yield with increasing specimen length, it is not as declivitous as the
initial yield stress trend line. This could then validate the slight decrease in the
total transformation strain as seen in Fig. 2.7b for the 2mm diameter wire

specimen.

Both trend lines for the initial and second vyield stress values for the 3mm
diameter wire specimens show an increase with increasing specimen length.
The trend line showing the behaviour of the second yield siress is however
steeper than that of the trend line for the initial yield stress and almost
resembles the behaviour of the 1mm diameter wire. We can then conclude
that this is the way that the 3mm wire specimens are trying to maintain the
amount of transformation strain that these wires produce. The slope of the
initial vyield stress trend line would then suggest a decrease in the total

transformation strain and this is indeed the case as seen in Fig 2.9c.

Fig. 2.10a, b and c show trend lines for difference in yield stress values
(second yield — initial yield) with respect o increasing specimen length. These
trend lines show a parabolic increase and we can thus conclude that this is
the way in which the material tries to maintain the total transformation strain

that the wire specimens exhibit.

2.5.3 Summary of Experimental Findings

The experimental investigation was performed to determine the effect that
different displacement rates have on geometric and mechanical properties of
1, 2 and 3mm diameter NiTi shape memory alloys wires specimens of varying
lengths. Selected stress-strain graphs are shown in Appendix A. A summary

of these findings will now follow.
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= Quasi-plastic material response displays three distinct regions when
plotted graphically, i.e., an initial elastic region (IE), a nearly horizontal

region (NH), and finaily another elastic region (FE).

= Elastic regions suggest that the specimen changes from its initial state to
some final state through a transformation and the slopes of these elastic

regions are similar.

=  The nearly horizontal regions on these graphs thus determine the location

of the transformation behaviour from one elastic state to the other.

=  Transformation region of the 1mm diameter shape memory alloy wire
specimens shows very small fluctuations of the load with regions of
constant load between them. These load fluctuations can be regarded as

the flipping or de-twinning of the martensitic twins.

= Increase in the displacement rate causes a decrease in the frequency of

these fluctuations and thus produce a more homogeneous deformation.

= The 2 and 3mm diameter NiTi shape memory alloy wires does not show
the fluctuations observed in the transformation region and show a steeper

transformation region.

= 1mm diameter wire transforms from one state to the other with a
seemingly perfectly plastic behaviour while the 2 and 3mm diameter wires

can take the form of plasticity models that exhibit hardening behaviours,

= The steeper transformation region observed in the 2 and 3mm diameter
NiTi shape memory alloy wire could be ascribed to the geometric

changes of the material only.

=  Thinner wires (tmm or less) can thus be considered as uniaxial test
specimens showing the actual horizontal transformation behaviour of

shape memory alloys.
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=  Thicker wires thus show a transformational behaviour with hardening-like

hehaviour.

» Quasi-plasticity has preferred displacement rates.

* For quasi-plasticity, the nucleation load of transformation is higher than

that of the transformation load.

» [ {ders-like deformation was observed but disappears with an increase in

the displacemént rate for certain lengths of wire.

» Increase in the displacement rate had no effect on the total transformation
strain for the 1mm diameter wire specimens but showed slight decreases

for the 2 and 3mm diameter wires.

« Decreases in the value of the initial yield stress of the different wire

specimens as the displacement rate is increased.

= The difference in yield stress values (second yield — initial yield) indicates
the way in which the material tries to maintain the total transformation

strain that the wire specimens produce.
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Figure 2.1: Load — Extension behaviour for NiTi Shape memory alloy wires of (a) 1mm, (b)
2mm and (c) 3mm diameters at Low, Intermediate and High Displacement Rates
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Specimeni — Specimen 2 —

Extension

Figure 2.2: Effect of displacement rate on 1mm diameter wire of length 100mm. (a)
2mm/min, (b) 4mm/min and (c) 15mm/min.
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Specimeni —Specimen 2 -

Load

Extension

Figure 2.3: Effect of displacement rate on 2mm diameter wire of length 250mm. (a)
2mm/min, (b) 4mm/min and (c) 10mm/min.
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2mm diameter wire of length 100mm — 3mm diametér wire of length 150mm

Figure 2.4: Quasi-plastic material response showing relation between Nucleation
and Transformation Load behaviour at a displacement rate of 2mm/min.

n

Specimen 1 — Specimen 2

Figure 2.5: Three 2mm diameter specimens of length 100mm each subjected to a

displacement rate of 7mm/min.

Figure 2.6: Three 3mm diameter specimens of length 150mm each subjected to a

displacement rate of 2mm/min.
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Chapter 3

Constitutive Model for Shape
Memory Alloy Line Actuators

3.1 Introduction

This section describes the Multi-Well or Triple Well constitutive approach to
simulate the complex material response, i.e., the shape memory effect and
the pseudo-elastic effect, exhibited by shape memory alloy materials. The
idea behind this particular shape memory alloy model was originally
developed by Achenbach and Muller and Achenbach and was then further
refined by Miiller and Seelecke and Seelecke and Kastner [40-42]. The model
finds it's footing firmly in the foundations of Thermodynamics and Statistical
Thermodyna.rnics. The model is particularly appropriate to study the case of a
shape memory alloy element subjected to uniaxial loading conditions. The
model assumes the existence of an austenitic phase fraction and describes
the evolution of two martensitic phase fractions based on the theory of
thermally activated processes. What follows is a brief overview gathered from
[20], [21], [32] and [39-42] of the steps followed to formulate this
comprehensible uniquely powerful constitutive approach to simulate the

complex material responses exhibited by shape memory alloys.
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3.2 Mechanical Properties of the Model

The basic element of ’ihe madel is the lattice particle, i.e., a small piece of
metallic lattice, shown in Fig. 3.1. The figure shows the three equilibrium
configurations (M, and M_ for the martensitic twins and A for the austenite)
that a shape memory alloy line actuator can find itself in. Form this description
it I.s' easy to see that the two martensitic variants are sheared versions of the -

austenite with the shear lengths, A =+J. Other shear lengths are however

also possible.

The specific potential energy, IT, of the lattice particle corresponds to a given
shear length. Fig. 3.1 also shows the postulated form of that specific potential
energy as a train of three convex parabolas. It is characterised by two stable
minima for the martensitic twins and a metastable minimum for the austenite.
Analytically this given by

1
EEM(A—J)z

1, (A) =+ %EMAZ + g (3.1)

1
\5 EM(A + J)Z

The intersection points for these minima are the potential barriers given by

A =*Ag. If the lattice particle is subjected to a shear load P, the potential

energy of the load must be added. This is a linearly decreasing function of
Aand therefore the potentiél energy of the particle becomes distorted as
shown in Fig. 3.2. The right minimum becomes deeper and the left minimum
becomes shallower. The potential barriers also change their heights due to

this distortion.
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In order to construct a model for the line actuator as a whole, the latiice
particles are arranged in layers to form a stack of N such layers thus
representing a single crystal tensile specimen. The layers are arranged at an
ahgle, 0, to the direction of the tensile load according to the crystallographic
axes of the specimen (éee Fig. 3.3a). This angle is chosen as 45° so that the
layers experience the maximum shear load. On the lefi of Fig. 3.3a we see
the body at low temperature, in the martensitic state. It has alternating layers

of the two martensitic variants, M_and M_ at 50% each. This defines the
natural state of the body that has an original length of L. The application ofa

tensile load will sub]'ect the layers to a shear load. As seen in the figure, the

M. layers become flatter while the M_ layers will become steeper.

The vertical component of the shear lengths, % (summed over all N layers)

will provide the total deformation of the body and is given by
1
D=L-ly=——$ AN (32)
0 \/E%: A

Nais the number of layers with the shear length A and the summation
extends over all possible shear lengths. Unloading lets the specimen fall back
to the natural state so that a small deformation is elastic. If the load is
increased however, there comes a point where the M_ layers will flip over and
become M, layers (see Fig. 3.3a at load F;). The flipped layers provide a
large shear length and consequently, the deformation increases drasticaily.

Upon subsequent unloading, the layers settle into the M, minimum so that a

large deformation remains.

Fig. 3.3b is a schematic representation of the load versus deformation
behaviour of the shape memory alloy layers. It is considered that while the

specimen is loaded between 0 and Fy, its behaviour is still purely elastic. As
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Fs is reached however, the layers are preparing to flip. F, thus represents
our vield load and flipping or de-twinning, as we shall call it from now on,
commences at this constant load. This is also the region where we observe

the greatest deformation. The region between 0 and F;signifies the initial
elastic region and F, the initial yield stress. It is noted that not all the layers

flip at once but instead go one after the other. This then simulates the
inhomogeneous deformation during the transformation region as observed in

the experimental investigation of Chapter 2.

When all the M_layers have de-twinned to M, we see a linear relationship of -
the load versus deformation behaviour of the M, layers. Unloading from this
point, F3, shows some degree of elastic unloading and the deformation that

remains appear to be plastic. The behaviour described above is purely
mechanical and ssubsequent heating will cause a phase transformation to the
austenitic phase and the lattice layers straighten up and accordingly the
specimen contracts to its original length. This is seen on the far right hand
side of Fig. 3.3a. At this point the specimen has the outward shape of the
natural state, but intemally it is different (more symmetric/ordered austenitic
phase). The intemal and external shape recovery is completed by a cooling
phase where at a certain point the austenite becomes unstable and the layers
revert back to their martensitic state having equal proportions of M_and M_
that the specimen started out with, i.e., the original zig-zag internal structure
of alternating martensitic variants. This then simulates the shape memory

effect exhibited by shape memory alloys.

At high temperatures however the model assumes an initial austenitic neutral

state (see Fig. 3.4a and b). If the model body is now subjected to a uniaxial
load while in the region 0 and F2, it will perform elastically. When F2 is

reached, certain austenitic layers will transform to M, variants and induce the
apparent macroscopic permanent deformation. Again these austenitic layers

flip or de-twin one at a time and a macroscopic inhomogeneous deformation
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is observed. Once all these layers have transformed to M: variants, the

model body exhibits the elastic behaviour of these variants up to F3 .

Unloading from this region will now guide the model body through a hysteretic

path. When F1 is now reached the M. variants of martensite will now
transform back to austenite. When this transformation is complete the model

body now follows the initial elastic path back to O and the model body

reassumes its original internal and exiernal properties.
We can conclude that the model is able to simulate:
The shape memory effect through

» The initial elastic deformation from the low temperature neutral state,

= The yield through de-twinning,

» The residual deformation, and

= The shape recovery upon heating by conversion of the layers to

austenite..
THe pseudo-elastic material response through

= The initial elastic deformation from the high temperature neuiral state,
= The yield through de-twinning,

= FElastic deformation after complete de-twinning

= Hysteretic unloading path, and

= The complete high temperature shape recovery.

The mechanical features of this model are easily interpreted. The thermally
induced phase transformations however require thermodynamic arguments,

which will now be discussed.
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3.3 Thermodynamic Properties of the Model

Any change in the thermodynamic state of a system is ascribed to four
thermodynamic potentials. These thermodynamic potentials are useful in the
chemical thermodynamics of reactions and non-cyclic processes. They are

internal energy, e, enthalpy, 71, the Helmholiz free energy, v, and the Gibbs

free energy, ¢. The Helmholtz and Gibbs free energies are respectively

defined as:
v=e-Ty, (3.3)
and

p=n-Ty (3.4)

where n=e—-PD, y is the entropy, and T is the temperature. For this model

description, the internal energy considers potential energy of the I.attice

structure as well as the kinetic energy of their random motion and is given as

e= ZH INA +A(T-Tr)+eR (3.5)

where er is the energy of the reference state at T=Tg. Since thermal

fluctuations are taken into account the mode! deformation can no longer be
described by energetic considerations only and entropic effects has to be
considered due to its importance with an increase in temperature. The
relevant thermodynamic potential is given by the Gibbs free energy of (3.4)
and the entropy term is given by a term for the entropy of thermal fluctuation,
an entropy constant given for the reference state, and the Boltzmann formula.

Seelecke and Muller [42] now give the Gibbs free energy in the form
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@=Z(H(A)APA+kTInWNNAJNA+A(T—TR)+UR
A
T
~T| Aln—+
( nTR XRJ

and the equilibrium conditions for a given temperature and applied load

(3.6)

- occurs when the Gibbs free energy is @ minimum. Since our model body
consists of layers that may belong to different metallurgical phases, which wili
be denoted by «, partial equilibrium states may exist. Under these conditions
one might find that these metallurgical phases are in equilibrium for a given
external load P and the temperature, T, of an exiernal heat bath but the _

number of layers of metallurgical phases, N, might not be dictated by the

minimum of the Gibbs free energy as given by (3.6). This is quite plausible
since thermal and dynamic equilibrium establish themselves quickly, whereas
the process of obtaining phase equilibrium is considered slower because
potential barriers have to be overcome. This is particularly true for solid

bodies, where the thermal activation energy, kT, is low compared to potential

energy barriers. The Gibbs free energy for each particular phase, «, in partial

equilibrium is thus given by

bu=NkT 3 oxp-(LelP0 e 1 7e)
Aca (37)

T <o
+Ug —T[Au '”ﬁ*SR)

Partial equilibrium conditions dictate that fluctuation of the layers occurs only
in the immediate neighbourhood of the different potential minima. The sums in
(7) can then be approximated by integrating over all possible shear lengths,

A, from -« to +. Considering 11, given by (3.1}, the specific Gibbs free

energy, ¢y = ;i—“ now reduces to
[0
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b P.T)={ ——+2 (3.8)

where

Ay = cm(T—TR)-T[ugL +%kTR]

(3.9)

the speci.ﬁc heat of each metallurgical phase, ¢, is introduced in (3.9) and

from thermodynamics the specific deformation, d, =—*

o

, and the specific

entropy, %4 =%‘1—, is obtained from the Gibbs free energy. We thus have
a

~E—+J
Em
dy =1 i (3.10)
PEA
—J
LEm
and
;“(azca!n_!_l+na (3.11)
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The specific Helmholtz free energies and the specific enthalpies of each

metallurgical phase may now be determined from ¥, (T,P)=¢, +Pd, and

hy =0y + T, and given as

Uglde.T)=1 =2da+1, (3.12)

where A is given by (9) and

P PYon(T-T)
————PJ+op (T=-Tg )+
2EM M+ R £M+

-~ 2
h (P.T)=1 -—%-P-CA(T—TR)-FEA (3.13)

Ly (T-Tr)
—— 4P T-TR)+ M-
ZEM + +Cm- R €M

It should be noted that apart from the temperature dependant terms, the

specific Helmholtz free energies, v, , depend on d, by the same functions

as the potential energies, I, depend on A. Since the specific deformation
d=B of the entire model body is the weighted sum of the specific
deformation of each of the metallurgical phases, d,, and the phase
proportions, &, ZEN&' given as weighting factors we may write the total

specific deformation as

d=Y &, dq (3.14)
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and similarly this additive decomposition can be applied to the other

thermodynamic potentials reveals the following

®=Z§a%= iZZE_.aﬁa
(3 o

=2 EVq,  h=DENg (3.15)

3.4 The Effective Potential Energy of the Model Body

Seelecke, Miller and Seelecke now modified this constitutive approach under
the premise that because of the existence of thermal fluctuations, there will
always be a few layers even while in partial equilibrium that will have enough
kinetic energy to overcome the potential barriers. These layers will be able to
sample the energies of a neighbouring potential well and they will thus settle
so as to permit the body to lower its Gibbs free energy. These researchers
now made the assumption that in an average sense a layer moves in an
effective potential energy field, which is given by Gibbs free energy, or, i_n the

absence of a load, the Helmholtz free energy of the form given by (3.12).

Acceptance of this conjecture now lead to a smoothing out of the free energy
function in (3.12) by connecting the three convex parabola of Fig. 3.1

continuously and differentiably by two concave parabola of the form

aA? +b,A+c. The specific Helmholtz free energy (A, T)is thus given by

rEA 2
713 +6g +Bg ;A <AL

(A T)={ arA’+b.A+c AL SASAR (3.16)
EZM(A?J)%% | AR SHA

with
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By =Cu(T-TRr)+eq —T(cOL lnTlﬂla] (3.17)
R

the horizontal coordinates of the points where the parabola merge are

denoted by + Ap and A . If J, Ep and Ey are known, the parameters a,

b, and ¢, of the concave parabola may be given as

Em(-AR)+Eady

A (3.18)
2(Ag-A)
Em(d-A }+Eps
by =+ M RZAR A (3.19)
* (AR —AL)

¢ =gy _Em(d—a0)+Eary
2 2(ar A1)

AR% +em(T-Tr)
(3.20)

+aM—T(CM[n%+nMJ

The fourth condition for the smooth connection of the parabola relates to the

difference in the heights of the minima to Ag and A, i.e.,

o +(ca —om)(T-Tr)+ea —Em~

1
T[(CA —cp)inz—+ma _"IM) = —Ewd? + (3.21)
Tr 2

1 1
E(EM ~Ea)AR AL _EEMJ(AR +A)

The connection points, Ag and A, as defined in egs. 3.16 — 3.21 are
dependant on the temperature of the body. Fig. 3.5 a, b, ¢ shows this
dependence as well as the temperature dependence of the heights of the
minima of the convex and concave parabola. These graphs are drawn under

the assumption that
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&M -*T]]M >8A—TT|A (322)

At high temperatures the minimum potential energy lies with the austenitic
well at A =0. For intermediate temperature three minima is apparent, i.e., one
for austenite and one for each of the two variants of martensite. When the
temperature is below the shape memory alloy’s transition temperature, the
austenitic minima ceases to be relevant and the martensitic wells themselves
are connected by a single concave parabola. This situation arises at a

temperature where +A | (T)=0. This temperature is the martensitic start

Mg temperature.

Under a load, the effective potential energy is given by the Gibbs free,
®(A,T)=4(A,T)-PA (see Fig. 3.6). This then shows that under a load, the
potential energy may exhibit a barrier at high temperature. This barrier may be

eliminated by the loads

PL=EaAL(T) (3.23)
anc_:i
Pz =Em(Ag(T)-J) (3.24)

These two lpads are identified with the pseudo-elastic yield and recovery

loads in a tensile test.
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3.5 Phase transition of the model

Phase transitions in the model is govemed by the rate laws for the phase

fractions &y, , €5 andis given by

. -A A~ A+ - A-

EM_ =-| p+p [EM_ —PEM, TP (3.25)
and

. A+ +A A+ A+

M, =—pEm_ -] P+ (&M, + P (3.26)

under the constraint 1=&y, + &y +&a . For a typical transformation, the rate
of change of £y consists of a loss, due to layers that jump from M_ to A,

and a gain due to layers that jump in the reverse direction. The number of

jumps is proportional to the phase fractions in the phase of origin.

afp

The quantities p in (3.25) and (3.26) are the transition probabilities from
phase a to phase B and are calculated using statistical thermodynamics.
They are determined by the Boltzman factor corresponding to ((Ag,T)-Pag
where Ag are shear lengths at the barriers of the effective potential energy

(see Fig. 3.6). These quantities may then be given as

ol )P

wle W (3.27)
S % R '
Ze KT
AeM

or
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BT

A+-—1 e kT -
P o §AT)Pa (3.28)
Eze kKT
AeM_

-A
so that, for example, p is proportional to the fraction of M_ layers that have

A+ A-  +A
the energy of the left barrier. The probabilites p, andp, p are

constructed in the same way with obvious changes appropriate to the different
phases of origin ang different barriers. The idea behind (3.27) and (3.28) is
that once a layer has the energy of the barrier, it may pass over it. The
relaxation time of this process is denoted by 1, and needs to be adjusted to
yie'id rate of recovery rate as observed in an experiment. T represents the
temperature of the model body and initially we will assume it to be a constant.
The system of ordinary differential equations in time (3.25) and (3.26) permits
the calculation of phase fractions for a given initial conditions provided the
temperature, loading condition, and environmental temperature are known.
The total specific deformation of the body is given by the sum of deformation

~ of all the layers (derived from (3.10)) and is given by 7
d=da +&ym_(du, —da)+Em_(dw_-da) (3.29)

(3.29) can also be considered the load-deformation relation which is

complemented by the system of non-linear ordinary differential equations for

the martensitic phase fractions.
3.6 Numerical Implementation of the Model

This section is concluded with numerical simulations to illustrate the models
capability to reproduce the quasi-plastic material response exhibited by shape
memory alloy specimens observed in the experimental investigation of
Chapter 2. The preceding section shows that the mathematical structure of

the model is given by the system of non-linear ordinary differential equations
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in time (3.25) and (3.26) and the algebraic relation (3.29). It was observed that
this system exhibits extreme numerical stiffness. To this end an implicit
method was employed to obtain a stable solution [58]. A FORTRAN program
was constructed that uses the RADAUS routine for solution of the ODE'’s. This
routine was developed by Harrier and Wanner and uses an implicit Runga-
Kutta solution scheme of order five with step size control and continuous
output. This routine can be used for the numerical solution of a stiff systemn of
first order ordinary differential equations. This system can be implicit or

explicit. An example of this code is given in Appendix C.

Since the model assumes an equal amount of martensitic variants (50% of
each) as an initial condition, Fig. 3.8a shows the evolution of the phase
transformation as the given load is applied (see Fig. 3.7). It shows how the

Ev. variant increases to 100% and the &y variant decreases to 0%. The

characteristic s-shaped curve of transformation is also observed in Fig. 3.8a.

The computational variables (see Table 3.1) were obtained from experimental
data (from Chapter 2) for a NiTi shape memory alloy rod of 3mm diameter and
a length of 200mm. The load-extension data was then plotted with the results
of the numerical simulation. These results compared favourably as seen in
Fig. 3.8b. Although there is some variation in the initial loading region, the
model shows its appropriateness in handling the shape memory effect

observed in 3mm diameter NiTi shape memory alloy rods.
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Computational Variables Symbol Value
Interfacial Energy IE 169.0
Total Transformation Strain J 1.83E-3
Potential Energy at Barrier Psi 170.0
Potential Energy éf Austenitic Well Psi0 To Be Calculated
Elastic Stiffness of Austenite Ea 291.80E6
Elastic Stiffness of Martensite Em 119.53E6
Transformation Strain at Barrier deltaS (Below Transit?c;g Temperature)
Transformation Strain ét Left Smoothing Point deltal. (Below Transigfn Temperatre)
Transformation Strain at Right Smoothing Point deltaR 0.267E-3
Boltzmann Constant k 1.3804E-23
Absoluie Temperature Temp 298
Transformation Volume Vv 17.710E-23
Rate of Transformation Omega 19.5E-1
Reference Temparature Tr 298
Reference Free Energy of Martensite Epm 0.0
Reference Free Energy of Austenite Epa 12.375
Specific Heat of Martensite SHM 395.0
Specfic Heat of Astenite SHA 395.0
Reference Entropy of Martensite ENM 0.0
Reference Entrohy of Austenite ENA 57.84
Smoathing Parameters of Effective Potential Energy | a, b, ¢ To Be Calculated
Phase Fraction of Martensite + =M To Be Calculated
Phase Fraction of Martensite - M To Be Calculated
Phase Fraction of Austenite A To Be Calcutated

Table 3.1: Computational variables used in numerical simulations
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Figure. 3.1: Three conﬁgurat:on of a lattice particle (M., M_and A) and the postulated form of the
potential energy
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Figure. 3.2; Lattice particle subjected to shear load and distorted potential
energy
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Figure 3.3: (a) Microscopic behaviour of constitutive model showing the shape memory effect. (b) Macroscopic
description of the constitutive model corresponding to (a).
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Figure 3.4: (a) Microscopic behaviour of the model showing the pseudo-elastic effect. (b) Macroscopic description of
the model corresponding to (a).
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Figure 3.7: Load-Time relation used for model simulation.
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Figure 3.8: (a) Numerical interpretation of load induced martensitic phase transformation
during quasi-plastic material response. (b) Mechanical load cycle of a NiTi shape memory
alloy wire specimen of 3mm diameter and length 200mm showing numerical fit.
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Chapter 4

Finite Element Formulation for a Shape
Memory Alloy Truss (SMAT) Element

In the development of a Finite Element formulation for our shape memory
alloy element, we will use the Tbta! Lagrangian formulation as presented by
Bathe [59], [60], to-describe its unigue maternal .behaviour. This type of
analysis describes large displacements, large rotations, and large strains and
uses the Second Piola-Kirchhoff stress measure, which is work-conjugate with

the Green-Lagrange strain measure.
4.1 Incremental Finite Element Equation

In a non-linear analysis such as ours, the main objective is to find the state of
equilibrium of our shape memory ailoy body that corrésponds to a given
externally applied load. These externally applied loads are functions of time
and the equilibrium conditions of the system of finite elements used for our

shape memory alloy body under consideration is given by
tRYE-p (4.1)

where 'R and 'F represent the vector of externally applied nodal forces and
nodal point forces comresponding to element stresses in the configuration at
time, t, respectively. The relation given by (4.1} must satisfy equilibrium of the

shape memory alloy body in the current deformed configuration, taking
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cognisance of all material non-linearities. In the solution of the non-linear
response, it should be recognised that (4.1) must be satisfied throughout the
complete history of the applied load, i.e., t can take on any value ranging
frormn zero to @ maximum value. In our static analysis with material time effects
caused by either temperature or load induced phase transformations, the time
variable should be considered as an actual variable to be properly included in

the modelling of the physical situation.

An incremental step-by-step solution will be used to calculate the analysis
results. This approach requires the solution for the discrete time, t, to be
known, while we require the solution for the discrete time, t+at, where at,

represents a suitably chosen time increment. At time t+ At, 4.1 is given by
t+At R__t-H')t F=0 _ (42)

with 2R being independent of deformations. Since the solution is known at

time t, "*Fis given by
t+AlF:fF+F (43)

where F represents an increment of nodal point forces corresponding to the

increment in element displacements and stresses from time t to time t+at. It

can be approximated using a tangent stiffness matrix, 'K, which corresponds
to the geometric and material conditions of our shape memory alloy at time t

and is given by
F=tKu (4.4)

where U represents a vector of incremental nodal displacements and the
tangent stifness matrix, 'K, is calculated by differentiating the internal
element nodal point forces, 'F, with respect to the nodal point displacements,

ty. Substiti;ting these relations into (4.2) produces
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t+AtL R_,t""At FﬁtKU X (4-5)

The solution of U in (4.5), calculates an approximation to the displacements at

time t+at,ie.,
traty_ty. u (4.6)

The exact displacements at time t+ at, corresponds to the externally applied

load, tAtR . It shoulq be noted that an approximation of these displacements
are calculated in (4.6) since (4.4) was used. The assumptions used in (4.4)
may be subject to significant calculation errors, and depending on time and
load step size used, it may even become unstable. To counter this, an
iterative method, the Newton-Raphson technigue will be employed to smooth
the calculation. This method is an extension of the incremental technique
given in (4.5) and (4.6), i.e., having calculated an increment in the nodal point
dispfacemenfs that defines the new total displacement vector, we can repeat
the incremental solution presented above using the currently known total
displacements instead of the displacements at time t. The equations used for

the Newton-Raphson iteration are for i =12,3,...,

trAtge(i-1) A _tratg tratpli-1) (4.7)
and
teary (i) _teat yli-1) | Ay® (4.8)

with the initial conditions

Aty 0}ty bratp(0) _tg - tratp(0) _tp (4.9)

in the first iteration, (4.8) and (4.9), reduces the equations to (4.5) and (4.6).

in subsequent iterations, the latest estimates for the nodal point
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displacements are used to evaluate the corresponding element stresses and.
nodal point forces, HAtEED and the tangent stiffness matrix, "3tk The
out-of-balance load vector, trtR_tatp(-1 correspond to a load vector that is
not yet balanced by element stresses, and hence an increment in the nodal
point displacements is required. This updating of the nodal point
displacements in the iteration is continued until the out-of-balance loads and

incremental displacements are very small.
4.2 Continuum-Mechanics-Based Approach

A consistent continuum-mechanics-based approach is used to develop the
goveming finite element equation fo be used for the simulation of our non-
linear shape memory alloy material response. The continuum mechanics
equation is developed for a displacement-based finite element solution. The
principle of virtual work is used and is formulated for large displacement, large

rotation, and large strain with a non-linear constitutive matenal response.

The Lagrangian description of body motion is used here, i.e., the particles of
our shape memory alloy body will be followed in a stationary Cartesian .
coordinate system from an original configuration at time t=0 to some final

configuration at time t =t + At (See Fig. 4.1).

The aim is.to evaluate the equilibrium positions of the complete body at
discrete time points 0, At, 2At, 3At, .., where At is an increment in time.
The sb!ution strategy assumes that the solutions for the static and kinematic
variables for all time steps frem time 0 to t, inclusive, have been obtained.
The solution process for the next required equitibrium position corresponding

to time t+at is typical and is applied repetitively until the complete path has

been solved for.
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Chapter 4
Configuration at time corresponding to
variation in the displacement 6u on auy
t+AL
Y du=|duy
I" ---- ‘\\ 6“3
# ' Configuration at time t+ At
Ve Surface Area ¥Ats
i Volume Aty
f P(t+Atx1’ t+Atx2l t+Atx3)
I”
’
X 1
:’
',’ Configuration at time t
X34 |/ Surface Area 'S
] Volume tv
i
i
]
1
1
\\
Ay
P(OX1, ux2, 0X3)
™ \ Configuration at time 0
X5 Surface Area s
Volume °v
tafatwli::“i Jteaty
t %
X4 (Ol' t'X1, tX1,t+MX1) txi: X+ U i=123
Aty ty Ly,

Figure 4.1: Motion of a body in a Stationary Cartesian Coordinate Frame.

4.3 Relevant Notation, Kinematic Descriptions and Strain-Stress

Measures.

A key point in presenting our continuum level finite element equations to
simulate the non-linear shape memory alloy material responses lies in the
successful representation of all relevant state variables which will be
measured in a stationary Cartesian coordinate system (See Fig. 4.1). A

summary of the notation used in this work is presented next.
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The coordinates of a generic point P in the body at time o are (°x1, °x2,°x3);
at time t they are (tx1, txz,tx3); and at time t+at they are
(**A*x1, t+Atxz,t+f‘r‘x3). The left superscript denotes the configuration that the

body finds itself in while the right subscript represents the coordinate axis.
The notation for the displacements is given in an analogous manner to the

coordinates: at time t the displacemeﬁt is 'u;,i=1,2,3, and attime t+aAt the

displacement is t3ty,,i=1,2, 3. We then have the following relations

t 0 t
Xi= Xt Ui i=12,3. (4.10)
t+Atxi:Dxi+t-rAtui} .

with incremental representation of the displacement from time t to t+At

. given by
=ty ty (4.11)

The motion of the body causes continuous changes in its specific mass, érea,
and volume and thus for our body these vaiues are given respectively for
times 0, t, and t+at is given as %p, fp, ¥t 0A, A, YA Oy vy and
Aty The configuration of the body at the time t+at is unknown and
therefore we will refer applied forces, stresses measures, and strain
measures o a known equilibrium configuration. In analogy to the notation
used for coordinates and displacements a left superscript indicates in which
configuration the quantity occurs with a left subscript indicating the
configuration with respect to which the quantity is measured. If for example G
is a tensor representing a given quantity and finds itself in the configuration at

time t+at, but will be measured in the configuration at time o it will be given

t+At
as OG .

The strain measure with value to the finite element analysis is the Green-

Lagrange Strain Tensor, gs_ All derivatives of this strain measure are taken
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with respect to the initial coordinates of a particular body in question. It is
therefore said the Green-Lagrange Strain Tensor is defined with respect to

the initial coordinates of the body. In this formulation we will use the Second

Piola-Kirchoff Stress Tensor, (s, as the work-conjugate to the Green-

Lagrange Strain Tensor. Table 4.1 summarizes all the relevant stress and

strain measures that will be used in our continuum level non-linear finite

element formulation. -
Ex¥ :Fx, Yxy ‘x3T Coordinates of a particle at time t
T
oVl = L A Gradient Operator
5°x1 lede & 8°x1
ix= (gv 'xT)T Deformation Gradient
the det(& X) Jacobian Determinant / Volume Raztio
th = "p/detGX) Mass Density of the Body at Time £
to_tyTty Right Cauchy-Green De_formaﬁon
o0t o Tensor / Green Deformation Tensor
tp_tytxT Leit Cauqhy-Greer: Deformation
0= Tensor / Piola Deformation Tensor
ir Orthogonal (Rotation) Tensor
1] Symmetric Stretch Tensor
;X
Polar Decomposition of °
gui=4C
iX=gR$U
. f_t?
U=4U
otl=o
dRTIR=1
: D Velocity Strain Tensor
tw Spin Tensor
fL=fD+iw Velocity Gradient
ge= %(é cC- I) Green-Lagrange Strain Tensor
. Rate of change of Green-Lagrange
to tyTtot
aé=gX aDoX Strain Tensor
to Cauchy Stress Tensor
a
is = gx e gx’ Second Piola-Kirchoff Stress Tensor
o

Table 4.1: Summary of Continuum Level Stress and Strain Measures
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4.4 Continuum Mechanics Incremental Total Lagrangian Formulation

The solution approach to effective incremental analysis of non-linear problems
relies heavily on the selection of appropriate stress and strain measures that
will be employed. The equation that we want to solve should express the
equilibrium and compatibility requirement of our shape memory alloy body in

the configuration at time t+ At . This equation is generally given as

j‘ trat 'l.'ij 6t+Ateij dt+AtV = teat p (4'12)
Aty

where

Aty Cartesian companents of the Cauchy Stress Tensor
8 t.arey - Strain Tensor corresponding to virtual work

Aty - yolume at time t+At

and

t+,¢\t'5<J = [tAtgB guataty 4 jtmtfjs 5uisdt+MS (4.13)
t+AtV t+AtSf

where

k2t B components of externally applied forces per unit volume at time t+at
t+4t¢S: components of extemally applied surface fractions per unit surface

area attime t+at

ttg. - surface at time t+At on which external tractions are applied

5u¥ = su; evaluated on the surface **'s;

In (4.12), the left-hand side represents the intemmal virtual wark while the right-

hand side represents the extenal virtual work and has the following

equilibrium equations
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Within ¥ty fori=1,2,3,
BAt AR =0 sum over j=1,2,3, (4.14)
and on the surface *Ats; fori=1,2,3,

tat,, tratntatgS. sum over j=1,2,3, (4.15)

where the *“'n; are the components of the unit normal to the surface *4!s;

atfime t+At.

Under the assumption that our body undergoes large displacement and large
strains with non-linear constitutive relations, (4.12) cannot be solved directly.
it can however he overcome by determining an approximate solution that
refers all variable to a previously calculated equilibrium configuration and then
linearizing the resulting equation. This solution may then be improved by

iterations.

In developing this linearized equation, recall that the solutions for times o, At,
2At, 3At, ..., thave been solved for already. The appropriate stress and

strain measures can then be refemed to any one of these known
configurations. The Total Lagrangian Formulation is used in this analysis to
develop the desired approximate solution. All static and kinematic variables
are referred to the initial configuration at time o for this solution scheme. it
also includes all kinematic non-linear effects due to large displacement, large
rotation and large strains. The successful implementation of this solution
scheme depends on the appropriate modelling of the particular material's
constitutive description. Use of the Total Lagrangian formulation reduces

(4.12} to the following form

[oCijrs 8 o dV? + [4Si5 0 dv0=tAt o 1086 geydv? (4.16)
Oy Oy Oy
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where (Cys is the incremental stress-strain tensor at time t referred to the

configuration at time 0. ;S is known at time t; and ge; , gq; are the linear

and non-linear strains, which are referred to the configuration at, time 0.
Table 4.2 summarize the relations used to arrive at the linearized equation of

motion for the state at time t in the Total Lagrangian formulation.

1. Equation of Motion
j‘ t+A(; sij 5 t+AgEij_ dvﬂ:tﬂ}t @
o

. v
where
[
teAt P oo, t o, . trat, _ o1 (:mt LAL teAR teAt )
nSij = -?; t+atXim Tmn t+Atxj,n N 3 oéy = 55 nui,j+ u“j,i"’ oY%, nuk,j
2.  Incremental Decomposition
{a} Siresses
AL 1 .
0Si=oSi*0Sy
{b) Strains
At _t_ o
p&j=0EG oL 0Eij=o 8 rodi
1 ot . t } 1
08y = 2 ol jreljitals ol jtolly, oti)> 80 = 3 ol i ol

3. Equation of Motion with Incremental Decomposition (with '3z = 5 gg5)

Iﬂsij ] ueij qu - IJS,JS nqij dv0=t+jt 7 f&suﬁ ueij an
0y Oy 0y

" 4. Linearization of Equation of Motion (with the approximation oS;=0Cirs 08 and ’”‘;aij =8 gg;)

{0Cirs 8 08 AV + [§56 0qgdVO=""" o~ [§5;5 ey dV°
Oy by Oy

Table 4.2: Continuum Mechanics incremental Decompaosition of the Total Lagrangian Formulation

The relation in (4.16) is employed to calculate an increment in the
displacement, which is then used to evaluate approximations to the
displacements, strains and stresses corresponding to time t-at. The
displacement approximations comresponding to time t+At are obtained by
adding the calculated increments to the displacements at time t. The strain

approximations are evaluated from displacements using the kinematic
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relations shown in Table 4.1. The calculations of stresses corresponding to

time t+At depend on the correct implementation of the constitutive relations

to be employed.

If we now assume that the approximate displacements, strains, and stresses
have been obtained, a check for the error between intermal virtual work

(evaluated using static and kinematic variables for time t+aAt) and external

virtual work. Denoting approximate values with a right superscript (1), this

error due to linearization is given by

Error = | toesil 8t A0l aOv (4.17)
| v |

and noting that the right-hand side of (4.17) is equivalent 1o {4.16) (since

t,+A;sij =38 0g;)- In each case the cument configurations with corresponding

stress and strain variables are used. It shows that the right-hand side of (4.16)
represent an out-of-balance virtual work prior to the calculations of increments
in displacements whereas (4.17) represent an out-of-balance virtual work after

the solution, which is due to the linearizations performed on (4.16).

In order to further reduce this out-of-balance virtual work we need to perform
an iteration in which the above solution step is repeated until the difference
between the external virtual work and internal virtual work is negligible within
a certain convergence measure. A similar procedure to that used in section
4.1 is now employed td develop a Newton-Raphson iterative solution scheme

for the adee problem. The equation solved repetitively for 1=1,2,3,._., is
- teat o -1 b0 tiat ¢ teat o (1) o t+at_{1-1) 4,0
05 OC( 1)A06£26V0 +aj ﬂs(_ )SA injdV = g— | Osij & oeij dv
v

iirs ij 0
v v

(4.18)

where in the case 1 =1 (4.18) corresponds to (4.16} with displacements being

updated as follows
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et l_ t+Atui{l-1}+Au§l) (4.19)

with initial condition

t+,z\tui(u)=tui (4.20)

4.5 Matrix Equations for a Displacement-Based Continuum Element

used for Finite Element Analysis in Structural Analysis

The goveming finite element matrices for an isoparametric continuum finite
element with displacement degrees of freedom are presented here. The
derivation of the goveming finite element equations depend on the selection
of the interpolation functions and the interpolation of the element coordinates
‘and displacements with these functions in the governing continuum
mechanics equations. We only consider a single element in this derivation
since the governing equilibrium equation of an assemblage of these elements

is easily constructed using the direct stiffness method.

Subétituting element coordinates and displacement interpolation functions into
the linearized equations derived in Table 4.2, we obtain (for either a single
element or an assemblage of elements) for a static analysis using the Total

Lagrangian Formulation the matrix equation of the following form
( tkp stk JU=t2tRoF (4.21)

(4.21) considers non-linear constitutive material responses and assumes that
externally applied loads are deformation-independent, i.e., the Joad vector for
all load (time) steps are known before the incremental analysis is performed.

Table 4.3 summarizes {for a single element) the integrals considered with

their corresponding matrix evaluations.
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Integral Matrix Evaluation

[ oCiirs 0&rs S085d%V oKa= [ (55[ oG iB d%V )G
av Dv

[ {8800, d°V o= [ (BT, &5 (B d®V |

By Oy

[ isygezd®V sF= [¢B] tSd°v

UV 0‘;

where

0BL : finear strain-displacement transformation matrix
¢Bu : non-linear strain-displacement transformation
maifix

oC :incremental stress-strain material properties

!; s : Matrix of Second Piofa-Kirchoff stresses

Ot S : Vector of Second Fiola-Kirchoff stresses

" Table 4.3: Finite Element Matrices

4.6 Constitutive Relations

The kinematic descriptions used the Total Lagrangian Formulation
representing large displacement and large strain is for a general element. To
accurately predict a desired material response, it is necessary to use the
appropriate constitutive relations. In the Total Lagrangian Formulation it is
 assumed that the Second Piola-Kirchoff stress tensor is given in terms of the

Green-Lagrange strain tensor and that we have

ts- 2y (4.22)
& 55

and
Ezw

oC = (4.23)




Chapter 4 Finite Eiement Formulation of a Shape Memory Alloy Truss {SMAT) Element 82

where, for our current shape memory alloy material description, v, represents
the total sum of the Helmholtz Potential of the body. This kind of constitutive
description is often employed to model Hyperelastic materia! responses to
simulate Rubber-like material behaviour. Examples of these models are the
Mooney-Rivlin and Ogden models. For shape memory alloys, this approach
has been used by Govindjee and Hall [17] and Auricchio and Sacco [2]. The
Helmholiz Potential may be expressed as the sum of contributions of each

phase present in a given volume of the spatial continuum [17]. lt is given as
e L AR (4.24)

with the following fundamental restrictions applied to the volume fractions at

every point in the spatial continuum [17]

1= Mo A M- : (4.25)
and
0=éM++éA+&Mu (4.26)

Using the description of the Helmholtz Potential given in section 3.3, we re-

write these Helmholtz contributions to include thermal effects as

. CM+ ) N 1
M- _0 5 (éa—sm")Z—Saam*('f—TR)+CM+(T—TR)+(UE +5kTR)
=IEM+

(4.27)
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L AT A 1
Yo o= (Ds) —gea (T-Tg)+ea(T-Tr)+ uf + kT

2 0 2
.
i:EA
(4.28)
1 C
—Tlepaln——+32 In— | O°A
RRE "[Y 2szJ
:'T]A
M- oCMJ(t M—)Z t . M- ' M1
yoo= 2 gE—¢& —gEQ (TWTR)+CM_(T7TR)+ Ug +§kTR
_ A/
=g—
(4.29)
T M- 1 OCNF
Tl ey Ino— ‘i3 feCm
S R (Y 2kT
=gM- ’

Using (4.22) and (4.23) and assuming «* - o* =«*-, we find respectively the
Second Piola-Kirchoff stress tensor and the effective material modutus tensor

to be given by

gs =E_|A OCA (5E—G.A(T—TR))+€M_ ocM‘ EM_ —§M+ GCM‘T gM"r

4.30
+(t€_aM(T_TR))(§M~ JCM- M 0CM+) { )

Q
and

o€ =g oCR+ M oM+ g™ o (4.31)

4.7 De\felopment of a Shape Memory Alloy Truss (SMAT) Element

We will now proceed with the derivation of the tangent stiffness matrix and
force vector for our one-dimensional non-linear elastic, constant cross-
sectional area Shape Memory Alloy Truss element (SMAT) that is subjected
to large displacements and large strains. The truss element is formuiated
using an isoparametric formulation with the natural coordinate, s, attached as

shown in Fig. 4.2(a). This element is subjected to tensile loads directed along
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the axis of the SMAT element and applied at nodes 1 and 2. The nodal

degrees of freedom are the local axial displacements represented by u, and
u, at the ends of the each node of the SMAT element and associated to a
global coordinate in the reference configuration %x,, ®x, and the current
cbnﬁguration 'x,, 'x, (See Fig. 4.2(b)). The global coordinates of the nodal
points of the SMAT element are at time 0, %xX, ®x§ and at time t, tx%, tx,
where k=1, ~.,N, With N equal to the number of nodes (N =2 ). The nodal point

coordinates are assumed to determine the spatial configuration of the SMAT

element at time 0 and t using

N N
®x4(s)= kz1hk %K ; Ox,(s)= E&hk Oxk for reference configuration (4.32)
and
N
tx,(s)= k%hk txK 5 txy(s)= 1(Z1hk x% for current configuration  (4.33)
=1 =

The interpolation functions h, for the two nodal positions are hy = %(1»5) and
h, =%(1+s) and using (4.32) and (4.33) it follows that

N
tu(s)= Thtuk,  i=12 (4.34)

k=1 :
and

N
u;s)= thu!‘ . i=12 (4.35)

k=1
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Figure 4.2: Two-node Shape Memory Alloy Truss Element in (a) natural
coordinate system and in (b) global coordinate system
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Figure 4.3: Two-node Shape Memory Alloy Truss Element in the
referencefinitial and current/deformed configurations
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Fig. 4.2 shows the SMAT element in its reference and current configurations.

It should be noted that the element is straight at time o0 and aligned with the
®x,. A load, 'P, is applied to the element and causes an axial deformation

while rotating it through an angle 9 to bring it to the current configuration at
time t. Using the Total Lagrangian formulation we need to express the linear

{(oe;) and non-linear (,q;) strains given in Table 4.2 in terms of the element

displacement functions. Our SMAT element only undergoes displacements in

the ®x,, ®x, plane and therefore we have

ty 5!.]1 & U> 6!.[2 (4 36)
é

2 2 '
1|{ fuy éu,
- + 4.37
0941 2{[6%1} [éox.,]} ( )7

Using relations given in (4.32) and (4.34) we obtain

1 . 2 _ 1
cuy :”$“U1 : cuz =”20_uz (4.38)
3%, oL &%, L
Substituting (4.38) into (4.36) we obtain

- 2 1 - 2 1
0€14 = uf -uy gty uy U +Ctuz uz ~4; (4.39)

+
oL &%, L O UL

In matrix form (4.39}) is given as
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1
uy
At At ~1 ~t 1
d'u éru o'y o u u
0€11 =0l 1 0 1 ~To 2 1+ 1 o 2. % (440)
lho & G x4 6°Xqy ) &7xq| juy
2
vz

With the aid of Fig. 4.2 and since the displacements are known at time ¢ and

t , we easily obtain

n t 0_2 t 1 ~0 1 -
otu.l _ X12— X.I 1 1 . OtU-] tLCDSB—oL (4 41)
6ﬂx1 ux1z_nx: 0 12_0)(\ %% X4 0,
0 due to geomelry
and

0,1 "
gtu, 'x2-%x3 t\xz\xz_ d'uy  ‘Lcose
_ - (4.42)
2 0,1
17 %4

6.2 0 ~0 0
x,f—'% o Xy L

0 due to geometry

with- L= + AL and substituting (4.41) and (4.42) into (4.40) gives

ug
‘L+AL . 1 g
0€44 = _cos® _sind cosd sing]- 2 {4.43)
(L)z “
2
and hence,
t
! —ﬁf—ll[—cose ~sin® cos® sind] (4.44)

The non-linear strain-displacement matrix is obtained in an analogous manner

and is given as
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e _1[-1 0 10
OBNL_G_JD e J (4.45)

In the Total Lagrangian formulation we assume that (8, is given in terms of

s&11, and from section 4.6 we have

89811 -

0C1111 =— (4.46)
Tt
The tangent stifiness matrix and force vector is therefore given as
cos?o sinfcos8 -cos?0 —sinBcoso
tho o {°L+ALf sinbcos®  sin’8 —sinbcos® —sin?@
L (“L ‘cos?0  sinBcos®  cos? @ sinfcos®
_sinfBcos® -sin?0  sinBcos6 sin? 0 (4.47)
1 0 -1 ¢0
tp |0 1 0 -1
teT
L+ALI-1T O 1 O
6 -1 0 1
—cosh
t - 5ing
oF='P cosh (4.48)
sinB

where tp is the current force applied in the SMAT element. The Cauchy

stress equals 'P/*A, giving the rest of the relations as

2 2
-0 0 t AL 1{AL
tol fL+aL) 'A L 2%
1] t
L P
0 0,0 t (0 . t _

LA="pl"L+ALJA; Syq=7""7— (4.50
P A ) 0¥ "0y AL %A )
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% L AL
0

tP=5S110A (451)

4.8 Solution of a Shape Memory Alloy Truss (SMAT) element

We will now illustrate the use of the equations developed in sections 4.5-4.8.
The direct stiffness method will be used to assemble the total stiffness matrix
and equations for the following plane shape memory alloy truss example

problems.
Problem 1: Single SMAT element

The plane SMAT element shown in Fig. 4.4a is subjected to an axially applied
load. This load is given as a function of time, 'P{t) and is applied at node 2 of
the element (See Fig 4.4.b). The element represents a NiTi shape memory
alloy and has a constant cross-sectional area of 7.068E-6m? with a length of

200mm. Let (€™ = ,cM =34GPaand ,c* = 89GPa.

w Node 1 7 3mm Node 2
\ | 2
N v
_____ ,‘ [ 9-,;;,,;_“m,~,w,m;;;.%.swm,,w-.f,w,»,n:qa-_«,:-;-' Bt Mo A R b Yo i B i 261 .— ,_._._’ - mm_;}
\ | v
I<_—_- 0t =200mm 4"
(a) Plane SMAT element subjected to an axially applied load
350 -
_ =
Z 200+
= i
= 150 W
ot
100 -
5 1
‘ : : : — 0 : : .
5 10 15 20 25 0 05 1 15 2
Time (s) Extension (mm)
(b) Load-Time relation {c) Load-Extension relation

Figure 4.4: (a) Plane SMAT element subjected to an axially appiied load. (b) Load-Time relation (c)
Load-Exfensian relation
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Considering the geometry of the problem and using (4.7)-(4.9) and (4.30)-
(4.31) with the terms given in (4.47) an algorithm (See Table 4.4) is developed

to solve for the load steps of this SMAT element. The results of u?(P,t) are

presented in Table 4.5.

Given: u,2 , F ., tolerance, maximum number of iterafions

Set newui = uf
newF = F
Repeat
Set oldu? = pewuf
Setf: oldF = newF
newui = function(oldu? )
newf = function{oldf )
if [R- newF }is less than or equal fo folerance then
Note: ‘solved’

Until ‘soived’ {or imit on number of iferations)
If ‘solved’ then

Record: uf, F, number of iterations
i #imit’ then
Racord: fastu?

Table 4.4: Algorithm for solving displacements for the plane SMAT element of Problem 1.

u? (mm) tF(N) u? (mm) te Ny | uf (mm) 'F (N)j
1.58E-02 3.81E+01 565E-01 | 2.01E+02 | 1.67E+00 | 2.79E+02
3.06E-02 6.48E+01 6.89E-01 | 2.11E+02 | 1.74E+00 | 2.86E+02
4.65E-02 1.04E+02 827E01 | 2.21E+02 | 1.80E+00 | 2.93E+02"
9.83E-02 1.22E+02 9.80E-01 | 2.31E+02 | 1.85E+00 | 3.026+02
1.42E-01 1.39E+02 1.15E+00 | 2.42E+02 | 1.89E+00 | 3.11E+02
2.15E-01 157E+02 1.28E+00 | 250E+02 | 1.91E+00 | 3.18E+02
2.90E-01 1.70E+02 1.35E+00 | 2.55E+02 | 1.93E+00 | 3.25E+02
3.48E-01 1.78E+02 1.47E+00 | 2.63E+02 | 1.94E+00 | 3.31E+02
4.48E-01 1.90E+02 1.58E+00 | 2.71E+02 | 1.95E+00 | 3.42E+02 |

Table 4.5: Results of Finite Element solution for the plane SMAT element of Problem 1.

The results found in Table 4.5 were plotted (see Fig. 4.5) with the

experimental data of a 3mm diameter NiTi shape memory alloy wire of length

200mm, and the numerical results of the model presented in Chapter 3. The

finite element method shows better agreement with the experimental data.
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This is shown in Fig. 4.6a and b where the percentage error of FEM and
Numerical data is plotted with respect to the experimental data. The negative
values shown in Fig. 3a and b represent the positions where the FEM and
Numerical data crosses the experimental data. From Figs. 4.5 and 46 it is
evident that the both methods experience difficulties in modelling the initial
material response of our NiTi shape memory alloy wires and produces
Y%errors of 97% and 56% respecitively for the Numerical and FEM models.
This initial material response is where the material shows its initial elastic

response as discussed in Chapter 2.

When the initial yield point is reached (Load=178N and Extension=0.32mm),
these ermors decrease to 8% and -17% respectively for the Numerical and
FEM data. During the transformation (de-twinning) from its initial elastic to
final elastic regions the %error remains small. The FEM model then shows
better agreement with the experimental data as the final elastic region is
reached.

150 4 *

Load (N)
&
&

08 : ST . ]
0 Q2 04 06 0.8 1 1.2 14 1.6 1.8

Displacement (mm)

+« NUMERICAL DATA EXPERIMENTAL DATA FE Method

Figure 4.5: Comparison of Experimental, Numerical and Finite Element Data
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Figure 4.6: Representation of the %Error of (a) Displacement and (b) Load of FEM and
Numerical Model compared to Experimental data.
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Chapter 5

Development of a Computational Design
Tool to Simulate the Behaviour of NiTi

Shape Memory Alloys

In Chapters 3 and 4 we successfully managed to simulate the complex quasi-
plastic material response exhibited by shape memory alloys at low temperatures.
This response is inherent to the shape memory effect. The design of actuators
comprising of.shape memory alloys that hamess the shape memory effect is

dependent on the reliable simulation of this material response.

In this section we show the development of a computational design too! to
simulate the behaviour of NiTi shape memory alloys. This design tool is
specifically suited to deéign actuators consisting of NiTi shape memory alloys
that hamess the shape memory effect for their operation. The framework of this
tool is written in the Language of C++ and C++ Builder was used fo construct the
software program. The computational framework of this tool will consist of a
calibrated constitutive model (a modified version of the Miller-Achenbach model
[32], [39]]42]) to simulate the complex material responses exhibited by shape
memory alloys, which is incorporated into a finite element formulation with a

control algorithm to study multi-dimensional uniaxial shape memory alloy line
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actuators as structural members in dynamic mechanical systems. This
computational tool enhances the design of shape memory alloy line actuators by
providing necessary information for actuator heating and cooling, actuator force

and stroke, and actuator efficiency.

Finite element implementations have been have been done by Brinson and
~ Lammering and Lagoudas et al. Seelecke used the finite element method to
simulate the control of adaptive beams using shape memory alloy wires, which
were all orientated in the same direction (one-dimensional) [40]. Recently
Masuda et al. used ’d;e finite element method in the design of base isolation
devi.cesﬂconsisting of shape memory alloy springs the hamessed the pseudo-

elastic effect for their operation [63].

The géneral applicability of the finite element method makes it the most widely
used simulation tool [40]. The technique has unique capabilities and can be cost
effective if properly used. In Chapter 4 we have shown how the constitutive
model could be implemented into a finite element formulation and successfully

simulated the material response of single SMAT element being subjected to an

externally applied load that is dependent of time.
5.1 Numerical Solution of Stiff Sets of Equations

Our solution technique had to be altered when we started considering multi-
dimensional uniaxial shape memory alloy systems. We found that the RADAU5
routine (described in Chapter 3) was not suited for the finite element method and
a search was conducted to find a suitable numerical scheme that could be easily
implemented into the finite element method. The generic problem in ordinary

differential equations is to study a set of N coupled first-order differential

equations for the functions y;, i=12,...,N, having the general form
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Qu

’é‘f‘):fi(x,yh.._,yN), i=1,..,N - (5.1)

where the functions f, on the right-hand side are known. We settled for the

Semi-implicit Euler Method of the form (as presented by Press et al. [62]):

T
Yol = Ya +l{1—lf] f{¥n) (5.2)
cy _

where  is the interval through which the solution is advanced. Here we only
consider two functions, i.e., rate laws for the two martensitic phase fractions

Em. - A Jacobian matrix, A, was constructed to aid in the solution and is given in

the form

(1-2[”1) (1-1?“}
Ao a1 CY¥2 7 (5.3)

: (1—1 of2 } )[14& ff‘ }
1 1 6yz Cyz (54)

considering (5.3) and (5.4), (5.2) can now be rewritten in the form
yp =yl oAy g T (5.5)

The implementation of this numerical solution scheme into C++ is given in

Appendix C.
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5.2 Program Description

The solution algorithm used in this p}ogram is presented in Figure 5.1. It staris off
by calculating the nodal displacements, (4.21) of a given structural system being
subjected to an externally applied load. This load .can be dependent or
independent on time. These displacements are then used to determine the
strains, which is then substituted into the relation for the Second Piola-Kirchoff
stress (4.30). The !atte’r relation is given in terms of the phase fractions, which is
calculated using the phase transformation kinetic equations (3.25 — 3.28). The
Second Piola-Kirchoff stress is now used to determine the intemnal force that the
element is b_ei.ng subjected to. This force value is used to determine if the
structural system is in equilibrium dr not (4.1). If so, the calculation is stopped
and the results plotted. If not, the result for the force is substituted back info the

solution until equilibrium has been achieved.

The program makes use of an input file (see Fig. 5.2) for reading in nbdaf
coordinate data, element connectivity and displacement and load boundary
conditions. The user is prompted to open this input file when the program is
initialized (see Fig. 5.3). The data is now read in and a plot of the input data is
presented (seé Fig. 5.4) in terms of the position of nodes and elements. At the
start of thé a'na!ysis ‘a window appears asking the user for the initial time, time
increrﬁent and the final time (see Fig. 5.5). When these values have been
entered and the analysis is run, the user has the option of viewing the
deformation of the entire structure, the x-displacment, y-displacement, uniaxial
stress and strain, the deformed structure, and the two variants of martensite (see
Figs. 5.6 — 5.12). The contour plots in Figs. 5.11 and 5.12 shows the unique
nature of this program. Since we start off with equal amounts of martensitic
variants (50% of each) these plots show the transformation of twinned martensite
to de-twinned martensite. Fig. 5.12 shows elements 3 and 6 experienced

complete transformation, while elements 1,24.57 and 8 only partially
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transformed, with element 8 showing no transformation at all. It shows in fact that
element 9 is redundant in this position. In the next section we will demonstrate

the program’s use the design of other smart actuators,
5.3 Program usage in Actuator design

The preceding section shows the ease at which the pragram can be used to
design multi-dimensional actuators consisting of NiTi shape memory alloy wires.
The results presented shows the complex quasi-plastic material behaviour
exhibited by this materi.al. These dev_ié.es can be used in a variety of applications
ranging from very sophisticated space deployment actuators to simple switchés

that may be used to control valves used in fluid pipelines.
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Transition Probabilities j

Rate Equations based on
Transition Probabilities

Figure 5.1: Solution algorithm used in the program
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Input File used for the Program

Number of Elements, Number of Nodes
Node Number, X-coordinate, Y-coordinate

Number of Load Boundary Conditions
Node Number, X-Load, Y-Load

Number of Displacement Boundary Conditions
Node Number, X-Boundary Condition, Y-Boundary Condition

Figure 5.2: Typical Input File used in the Program

SMA beam analysis

=8 Analysis Display View

Open

B
...

Figure 5.3: Inter-Active Window prompting the User to open the input File
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3 T 2 E 3
Figure 5.4: Plot of the input data presented.
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Figure 5.5: Window prompting the user to type in initial time, time step, and final time
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Figure 5.6: Deformation of the entire structure
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SMA beam anzlysis

Fe Ansiyss Deplay Vew

0.6666 Igsm Ia.zsas (1] 42556 |9.5333 |08 *10E -3 ¥ dizplacement

Figure 5.7: Contour plot of x-displacement

Fie Anayss Osplay View

22688 |-4533 {1667 (18 2133 (-2888 (32 -18E -3 Y displacement
Figure 5.8: Contour plot of y-displacement
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SMA beam analysis

a.5704 Ill.ﬂﬁ‘l.ﬂﬂ a3 (2074 |01837 'l -10ES Stess

Figure 5.9: Contour plot of Uniaxial Stress

SEAK heans analysis

Fie Anaiysks CDisplay Vew

iml{tm!m!{ﬂ 4533 I-‘.I'l. k-3 Stran

Figure 5.10: Contour plot of Uniaxial Strain
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SMA bearn analysts

Fe Anaivsic Display View

4,405 4888 (3206 |2405 [1603 |08O16 (O “10E 1 Martensite Vaaant 1

Figure 5.11: Contour plot of Martensite: Variant 1

S#A beam anzlysis

L3156 Iﬂ.tlzll 06553 |04354 !nm |l,lﬁ L] “EED Matenzie Vanant 2

Figure 5.12: Contour plot of Martensite: Variant 2
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Chapter 6

Conclusion

6.1 Conclusions

This thesis presents the successful development an engineering computational
design tool that can be used for the design of smart or intelligent actuators
comprising of NiTi shape memory alloy wires that harness the shape memory
effect for their operation. An experimentai database pertaining to one aspect of
the shape memory effect, the quasi-plastic material response was developed to
serve as an engineering design aid but also to serve as a verification tool for the

simulation of this unique material response.

The computational framework of this tool consists of a calibrated constitutive
model (a modified version of the Miiler-Achenbach) to simulate the complex
material responses exhibited by shape memory alloys, which is then incorporated
into a finite element formulation with a control algorithm to study multi-
dimensional uniaxial shape memory alloy line actuators as structural members in
dynamic mechanical systems. This computational tool enhances the design of
shape memory line actuators by providing necessary information for actuator

heating and cooling, actuator force and stroke, and actuator efficiency.
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6.1.1 Experimental Investigation

Shape memory alloys exhibit two unique material responses ascribed to solid-
solid thermo-elastic martensitic forward and reverse phase transformations, i.e.,
the shape memory effect and the pseudo-elastic effect. The experimental
investigation was performed to study only one aspect of the shape memory
effect, the quasi-plastic material response under tensile loading conditions.
Shape memory alloy while in its low temperature martensitic state exhibit this
behaviour under different loading conditions (tension, compression, torsion,
tension-torsion, compression-torsion, etc.). The experimental results obtained
were consistent with what other researchers found in the field and even show
some interesting findings regarding this unique material response. It is hoped
that these results will add to the body of work performed in this area of research
but also more importantly it provided better insight into the different approaches
used in the constitutive modeling of shape memory alloys. All experiments were
conducted at the Strength of Materials Laboratory of the Department of

Mechanical Engineering at the Peninsula Technikon.

The experimental investigation was performed to determine the effect that
different displacement rates have on geometric and mechanical properties of 1, 2
and 3mm diameter NiTi shape memory alloys wires specimens of varying

lengths. A summary of these findings will now follow.

»  Quasi-plastic materiaj response displays three distinct regions when plotted
graphically, i.e., an initial elastic region (IE), a nearly horizontal region (NH),

and finally another elastic region (FE).

. Elastic regions suggest that the specimen changes from its initial state to

some final state through a transformation and the slopes of these elastic

regions are similar.
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The nearly horizontal regions on these graphs thus determine the location of

the transformation behaviour from one elastic state to the other.

Transformation region of the 1mm diameter shape memory alloy wire
" specimens shows very small fluctuations of the load with regions of constant
load between them. These load fluctuations can be regarded as the flipping

or de-twinning of the martensitic twins.

Increase in the displacement rate causes a decrease in the frequency of

these fluctuations and thus produce a more homogeneous deformation.

The 2 and 3mm diameter NiTi shape memory alloy wires does not show the
fluctuations observed in the transformation region and show a sieeper

transformation region.

1mm diameter wire transforms from one state fo the other with a seemingly
perfectly plastic behaviour while the 2 and 3mm diameter wires can take the

form of plasticity models that exhibit hardening behaviours.

The steeper transformation region observed in the 2 and 3mm diameter NiTi
shape memory alloy wire could be ascribed to the geometric changes of the

material only.

Thinner wires (1mm or less) can thus be considered as uniaxial test

“specimens showing the actual harizontal transformation behaviour of shape

memory alloys.

Thicker wires thus show a transformational behaviour with hardening-like

behaviour.

Quasi-plasticity has preferred displacement rates.
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= For quasi-plasticity, the nucleation load of transformation is higher than that

of the transformation load.

= | {iders-like deformation was observed but disappears with an increase in the

displacement rate for certain lengths of wire.

* Increase in the displacement rate had no effect on the total transformation
strain for the Imm diameter wire specimens but showed slight decreases for

the 2 and 3mm diameter wires.

= Decreases in the value of the initial yield stress of the different wire

specimens as the displacement rate is increased.

= The differencé in yield stress values (second yield — initial yield) indicates the
way in which the material tries to maintain the total transformation strain that

the wire specimens produce.

6.1.2 Constitutive Modeling

The Muli-Well or Triple Well constitutive approach was used to simulate the
complex material response, i.e., the shape memory effect, exhibited by NiTi
shape memory alloy wires. The idea behind this particular shape memory alloy
model was ariginally developed by Achenbach and Miller and Achenbach and
was then further refined by Miller and Seelecke and Seelecke and Kastner. The
model finds it's footing firmly in the foundations of Thermodynamics and
Statistical Thermodynamics. The model is particularly appropriate to study the
case of a shape memory alloy element subjected to uniaxial loading conditions.

The model assumes the existence of an austenitic phase fraction and describes
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the evolution of two martensitic phase fractions based on the theory of thermally

activated processes.

Numerical simulations to illustrate the modet's capability to reproduce the quasi-
plastic material response exhibitéd by NiTi shape memory alloy wires were
performed. The mathematical structure of the model is given by the system of
nondinear ordinary differential equations in time coupled with an algebraic
relation for the displacement of the shape memory alloy specimen. A FORTRAN
program was constructed that uses the RADAUS routine for solution of the
QDFE's.

The computational variables were obtained from experimental data (from
Chapter 2) for a NiTi shape memory alloy rod of 3mm diameter and a length of
200mm. The load-extension data was then plotted with the results of the
numerical simulation. These results compared favourably. Although there is
some variation in the initial loading region, the mode! shows its appropriateness
in handiing the shape memory effect observed in 3mm diameter NiTi shape

memory alloy rods.

6.1.3 Finite Element Modeling

The Finite Element formulation of our shape memory alloy element foliows the
Total Lagrangian formulation to describe its unique material behaviour. This type
of analysis describes large displacements, large rotations, and large strains and
uses the Second Piola-Kirchhoff stress measure, which is work-conjugate with
the Green-Lagrange strain measure. The governing finite element matrices for an
isoparametric continuum finite element with displacement degrees of freedom
were presented. Constitufive relations were presented using the descriptions
given in Chapter 3. The derivation of the tangent stiffness matrix and force vector

for our one-dimensional non-linear elastic, constant cross-sectional area Shape
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Memory Alloy Truss element (SMAT) subjected to large displacements and large
strains is also given. The finite element equations are used to solve for a simple
one-dimensional truss subjected to a tensile load. The direct stiffness method

was used to assemble the total stiffness matrix and equations.

The same computational variables as those used in Chapter 3 were used. The
results obtained from the solution were plotied with the experimental data of a
3mm diameter NiTi shape memory alloy wire of length 200mm, and the
numerical results of the’model presented in Chapter 3. The finife element method

showed better agreement with the experimental data.

6.1.4 Implementation of Finite Element Formulation into the

Computation Design Tool

The finite element formulation described in Chapter 4 was successfully
implemented into a computational design tool that may be used for the design of
multi-dimensional actuator systems comprising of NiTi shapé memory alloy
wires. The program uses the Semi-Implicit Euler method to solve the differential
equations used for the phase transformation kinetics. The phase fractions that
are calculated using this method, is substituted into the constitutive relations for
this material. The program gives results for the x-displacement, y-displacement,
uniaxial stress and strain, the deformed structure, and the evolution of the two
variants of martensite. To the best of the author's knowledge, this kind of

analysis approach has not yet been attempted.

6.2 Recommendations

Although this program shows its versatility for its use in the design of smart
actuator systems comprising of NiTi shape memory alloy wires, there is however

more work to be dane in refining it. Currently the program only simulates the load
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induced phase transformation or quasi-plastic material response thus producing
the actuator stroke for a given actuator system. Work still has to be done to

include temperature effects to complete the full shape memory effect.

In terms of experimental investigation, we still need to investigate the complex
pseudo-elastic material behaviour. Once this is completed, we may include this

material response in the program.

It has been observed that the constitutive approach used can simulate the
behaviour of 3mm diameter wire quite well. This is however not the case for 1
and 2mm diameter wires and thus a further investigation needs to be conducted

to improve the numerical results obtained for 1 and 2mm diameter wires.
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Selected Stress-Strain Graphs of
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1. 1mm diameter NiTi Shape memory alloy Wires
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Stress (Pa)
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2. 2mm diameter NiTi Shape Memory Alloy Wires
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Stress (o)
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3. 3mm diameter NiTi Shape Memory Alloy Wires
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FORTRAN Codes used for Numerical
Simulations and RADAUS5 routine as
discussed in Chapter 3.
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1. FORTRAN SMA Code

¢ Simulation of NiTi wire with Siniscidal Load

c

program SMAOD1
implicit none

integer n.lwork, liwork
parameter (n=3,lwork=4"n"n+12"n+20 liwork=3"n+20)

integer ijac,mijac.imas jout itol, mimas, mumas idid i,mujac ipar
real”8 y(n),work{lwork)

integer iwork(liwork)
real*8 th,mpar riol(n) atol(n),abstol reltol

real*8 IE.J,PSI,PSI0,EM,EA.DELTAS,DELTAL DELTAR k, Temp,V,OMEGA
common fv/ 1E.J,PSILPSI0,EM, EA DELTAS.DELTAL DELTAR &k, Temp,V,OMEGA
real’8 a.b,d,c,.TR,FM,FA,EPM,EPA,SHM,SHA ENM,ENA
common /v/ a,b,d,c, TR,FM,FA EPM,EPA SHM,SHA,ENM,ENA
real"8 THETAMINUSA AMINUS, PLUSSA APLUSS

real®8 PMA,PAM,PPA PAP

common /tranprob/ PMA ,PAM,PPA PAP

real*8 tende, DEF

common /v/ tende,DEF

real*8 AP.DP

external fon jac,mas.solout radaud

call opfile
call initial(y, n,abstol relfol)

> Preparation for RADAUS

t=0.0d0
h=1.0d-5

rpar = 1.0d-7
ijac=0
mijac=n
imas =0

iout =1
itol=1
mas=0
mimas =0
mumas =0
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idid =0

do =1 fwark
fwork(i) =0
enddo

do i=1 lwork
work (i) = 0.0d0
enddo

work{2)= 500000

doi=tn
atol{i} = abstol
rtol(i) = reltofl
enddo

call radaus{n,fcn,ty tende h,
riol,atcl.itof, N
Jac.jjac.mljac,mujac,
mas,imas,mimas,mumas,
solput,iout,
work,fwark iwork liwork. rpar.ipar,idid)

R0 Ro o po Qo

call clfile

stop ".....End of Calculation ....."
end

real*8 function AP(t)
real™8 z. t
z=0.058823529

AP =17 .8d+04 * sin{z* 1)
return

end

real*8 function DP{)
real™8zt
z=0.058823529

DP =350 * sin{z* 1)
refum

end

c o

subrcutine initial{y,n,atol,riol)
implicit nane

integer nplot.n,i

real*8 riol,atoly(n)

real™8 IE,J,PSI,PSIO,EM,EA.DELTAS.DELTAL,DELTAR,k,Temp,V,OMEGA
common i IE,J,PS1LPSI0,EM,EA, DELTAS DELTAL DELTAR k., Temp,V CMEGA
real*d a,b d.c,TR,FM,FA,EPM,EPA,SHM, SHA ENM, ENA
cornmon /v a,b,d,c,TR,FM,FA,EPM,EPA SHM,SHA ENM.ENA
real’8 THETA.MINUSA AMINUS, PLUSSA APLUSS

real*8 PMA PAM PPA,PAP

comman ftranprob/ PMA,PAM,PPA PAP

reald tende DEF

comman fv/ tende DEF

real’8 AP DP

integer n2

read (20,1001
read (20,1001)
read (20,1001)
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read (20,1001)

read (20,1001) IE_4,PSt

read (20,1001)

read (20,1001)

read (20,1001)

read (20,1001) EM EADELTAS k
read (20,1001)

read (20,1001)

read (20,1001)

read (20,1001) Temp,V.OMEGA
read (20,1001)

read (20,1001}

read (20,1001}

read (20,1001) tende, DELTAL DELTAR
read (20,1001)

read (20,1001)

read (20,1001)

read (20,1001 TR

read (20,1001)

read (20,1001) ,
read (20,1001)

read (20,1001) EPM,EPA SHM,SHA
read (20,1001)

read {20,1001)

read (20,1001)

read (20,1001) ENM,ENA

Ct“ ik
¢... Initial Inpufs
npict =0
- atol=1.0d-07
riot=1.04-07

print", These are the inpuis’

print*

print", INTERFACIAL ENERGY=\IE

print*, TOTAL TRANSFORMATION STRAIN="J
print*, POTENTIAL ENERGY AT BARRIER=",P3!
print®, 'ELASTIC STIFFNESS OF MARTENSITE="EM
print’, 'ELASTIC STIFFNESS OF AUSTENITE="EA

print*, TRANSFORMATICN STRAIN AT BARRIER="DELTAS
print*, TRANSFORMATION STRAIN AT SMOOTHING POINT L="DELTAL
print*, TRANSFORMATION STRAIN AT SMOOTHING POINT R="DELTAR

print”, 'BOLTZMANN CONSTANT=k
print*, '"ABSOLUTE TEMPERATURE="Temp
print*, TRANSFORMATION VOLUME="V
print*, TRANSFORMATION RATE="OMEGA
- print*, Final Time="tende

print*, 'Reference Temperature=", TR

print*, 'Reference Energy for Martensite=",EPM
print*, ‘Reference Energy for Austenite=' EPA
print*, ‘Specific Heat for Martensite="SHu
print*, 'Specific Heat for Austenite=",SHA
print*, 'Reference Entropy for Martensite="ENM
print*, "Reference Entropy for Austenite=" ENA
print*

y(1)=0.5
y{2)=0.0
¥(3)=0.5

1001 format {5d14.6}
ct wir :

retum
end

subroufine mas{n,am,Imas}

retum
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end

subrouting jac(n.ty dfy Idfy)

retyrn
end

subroutineg fon (nty . f)
implicit none

integer n,i,n2
real*s t,y(n),f{n)

real™8 IE,J,PSEPSI0,EMEA DELTAS, DELTAL DELTAR k,Temp,V.OMEGA
commonn A 1E,J,PS1L,PSI0,EM,EA DELTAS DELTAL DELTAR k, Temp,V.OMEGA
real*8 &,b.d.c, TR FM,FAEPM EPA SHM,SHA ENM,ENA
common M a,b,d.c, TR,FM,FA EPM,EPA SHM SHA.ENM.ENA
real*8 THETAMINUSA AMINUS, PLUSSA APLUSS

real"8 PMA FPAM, PPA,PAP

common firanprobl PMA PAM PPABAP -

real*8 tende, DEF

commen v/ tende, DEF

real*8 AP,DP

w2)=(1-y(1}v(3))

a={DELTALEA + EM*(-DELTAR + J))(2.4(-DELTAL + DELTAR))
b={DELTAL*({DELTAR'EA + EMY(-DELTAR + J))){-DELTAL + DELTAR)
c={EM3™2Y2. - (DELTAR™Z (DELTAL EA + EM(-DELTAL + 1))(2.*

&(-DELTAL + DELTAR)) + SHM*(Temp - TR} + EPM - Temp”

&(ENM + SHM Log(Temp/TR))

PSI0=(DELTAL*DELTAR™(-EA + EM))/2. - ((DELTAL + DELTAR) EM*J)¥2.

&+ (EM=I2)/2. - (SHA - SHM)*(Temp - TR) - EPA + EPM + Temp™

&(ENA, - ENM + (SHA - SHM) Log(Temp/TR})

FM=SHM*(Temp - TR} + EPM - Temp*(ENM + SHM"Lag(Temp/TR))

FA=SHA*(Temp - TR} + EPA - Temp*(ENA + SHA*Log(Temp/TR)}

MINUSA=B*2/(4.%8) - ¢ - FM + IE + DELTAS"AP() - J'AP{Y) + AP{E)
&=2/(2 *EM) + PSL- ZIE'Y(2)

AMINUS=b"2/(4.7a) - C - FA - IE + DELTAS'AP(t) + AP(t)2/(2."EA)
&+ PS[ - PSI0 + 2"E*y(2)

PLUSSA=D™2/(4."a) - C - FM + IE - DELTAS"AP(Y) + J*AP(t) + AP(1)
&2/(2.*EM) + PS! - 271E7y(2)

APLUSS=b"2/(4.a) - ¢ - FA - E - DELTAS'AP(t) + AP({)"2/(27EA)
&+ PSI - PSI0 + 2*IE*y(2)

THETA = Vik*Temp)

PMA = (1/OMEGAEXP(-{MINUSA THETA))
PAM = (1OMEGAYEXP({AMINUS THETA))
PPA = (11OMEGA}'EXP({PLUSSA*THETA))
PAP = {1/OMEGAYEXP{-{APLUSS* THETA))

DEF=((y{ 1){ EM*3.5TE-3))H{y(3}(EM"9.57E-3))+{y(2)( EA'9.57E-3))
&*(DP(1))H(1.83)(¥( 1-¥3]

(1) = (1) PMA+y(2) PAM

f(2) = PMA*y(1-PAMy(2-PAPy(2)+PPA%Y(3)
f(3) = {3y PPA+y(2)'PAP

Term
end

subrautine solout {n7,told, ty,cont Irc,n,rpar,ipar,irtrm}

implicit none

integer n,ar inm,ire,ipar.i
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real*8 told.ty(n},cont{lrc).rpar

real*8 IE,J,PS|,PSI0EMEADELTAS DELTAL DELTAR k. Temyn,V,OMEGA
common N/ 1E,J,PSIPSI0EMEADELTAS. DELTAL DELTAR k,Temp V,.OMEGA
real™8 a,b,d.c, TR,FM,FA EPM,EPA, SHM SHA ENM,ENA
cormnmon i a,b,d.c, TR,FM,FA EPM,EPA,SHM,SHA,ENM,ENA
real*8 THETA MINUSA AMINUS, PLUSSA APLUSS

real*3 PMA,PAM PPA PAP

common /iranprob/ PMA PAM,PFA PAP

real*8 tende,DEF

comman vl tende, DEF

real*8 AP,OP

write (30,3001) t{y{i).i=1,n)

write (31,3001) t DEF

write (32,3001) t,DP()

write (33,3001} t,0EF ,DP(®)

write (34,3001) t,PMA,PAM,PPA.PAP
ot A e -
3001 formal{41e20.5) M

retum
er_1d

subroutine opfite
implicit none
integer ioplotiodat,jorand

open (20, file = /Diminpuil2.inp’,
& form = ‘formatted’,

& status = ‘unknowny’,

& iostat =jodat )

if (lodat.ne.0} then
print*,"......fehler beim oefinen der £ingabedatei...’
stop

endif

rewing (20)

open {30.file ='/Dimless50.out,
& form = formatied”,

& status = ‘unknowr’,

& iostat = iaplot )

if {ioplot.ne.) then
print*,’ .....fehler beim pefinen der Plotdatei..
stop

endif

rewind (30)

open (31,file = "/Dimless5t.out’,
& form = ‘formatted’,

& status = ‘unknown’,

& iostat = ioplot )

if (ioplot.ne.0) then
pring*," ......fehier beim oefinen der Plotdatel..”
stop

endif

rewind (31)

open (32 fle =" /Dimless52.out,
& form = "formatted’,

& status = ‘unknown’,

& iostat = igplof )
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if (ioplot.ne.t) then
print™,” ......fehler beim oeffnen der Plotdatsi..!
stop

endif

rewind (32}

open (33,file = "/Dimless53.0ut,
& form = formatted’,

& status = ‘unknown’,

& iostat = ioplot }

if (ioplot.ne.0) then
print*,’ ......fehler beim oeffnen der Plotdatei...!

stop
endif

rewind (33)

open (34 fie = "./Dimiess54.out,
& form = formatted’,

& status = ‘unknown’,

& iostat = ioplot )

if {ioplot.ne 0} then
prin*," ......fehter beim oeffhen der Plotdatei..'

stop
endif

rewind (34)

refum
end

subroutine cifile
implicit none

Close (20)

close (30)
close (31}
close (32)
close (33)
close (34}

return
end

[l + e

2. RADAUS5 Routine

SUBROUTINE RADALS(N,FCN XY XEND H,
RTOLATOLTOL,

JAC IJAC MLJAC MUJAC,

MAS IMAS MLMAS MUMAS,
SOLOUT,IOUT,

oG9 Qo fo o

MTY'=F(X.Y).

OR EXPLICIT (M=l}.

OOO00000

WORK, LWORK,IWORK,LIWORK,RPAR,IPAR,IDID)

NUMERICAL SOLUTION OF A STIFF (OR DIFFERENTIAL ALGEBRAIC)
SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS

THE SYSTEM CAN BE (LINEARLY) IMPLICIT (MASS-MATRIX M NE_ )
THE METHCD USED IS AN MPLICIT RUNGE-KUTTA METHOD (RADAU 11A)



Appendix B 131

OO00Co000O0O00OO0N00000000000000N0000000000N0NNNa0NRN000NNN0000Aaa00N00000000

OF ORDER 5 WITH STEP SIZE CONTROL AND CONTINUQUS QUTPUT.
CF.SECTIONIVE

AUTHORS: E. HAIRER AND G. WANNER
UNIVERSITE DE GENEVE, DEPT. DE MATHEMATIQUES
CH-1211 GENEVE 24, SW{TZERLAND
E-MAIL: EmstHairer@math.unige.ch
Gerhard Wanner@rmath.unige ch

THIS CODE IS PART OF THE BOOK:
E. HAIRER AND G. WANNER, SOLVING ORDINARY DIFFERENTIAL
EQUATIONS II. STIFF AND DIFFERENTIAL-ALGEBRAIC PROBLEMS.
SPRINGER SERIES IN COMPUTATIONAL MATHEMATICS 14,
SPRINGER-VERLAG 1991, SECOND EDITION 1936.

VERSION OF JULY 9, 1996
{small correction April 14, 2000)

INPUT PARAMETERS
N DIMENSION OF THE SYSTEM

FCN NAME (EXTERNAL) OF SUBROUTINE COMPUTING THE
VALUE OF F{X,Y):
SUBRCUTINE FCN{N.X,Y,F,RPAR, IPAR)
DCUBLE PRECISION X, Y{N),F{N)
F{1)=.. ETC.
RPAR, IPAR (SEE BELOW)

X INITIAL X-VALUE
Y{N}) INITIAL VALUES FOR Y
XEND FINAL X-VALUE (XEND-X MAY BE POSITIVE OR NEGATIVE)

H INITIAL STEP SIZE GUESS;
FOR STIFF EQUATIONS WITH INITIAL TRANSIENT,
H=1,D0{NORM CF F'), USUALLY 1.D-3 OR 1.D0-5, 1S GOOD.
THIS CHOICE IS NQT VERY IMPORTANT, THE STEP SIZE IS
QUICKLY ADAPTED, {IF H=0.D0, THE CODE PUTS H=1.D-6).

RTOLATOL RELATIVE AND ABSOLUTE ERRCR TOLERANCES. THEY
CAN BE BOTH SCALARS OR ELSE BOTHVECTORS OF LENGTHN.

ITOL  SWITCH FOR RTOL AND ATOL:
ITOL=0: BOTH RTOL AND ATOL ARE SCALARS.
THE CODE KEEPS, ROUGHLY, THE LOCAL £RROR QF
Y(1) BELOW RTOL*ABS(Y{)}+ATOL
ITOL=1: BOTH RTOL AND ATOL ARE VECTORS.
THE CODE KEEPS THE LOCAL ERROR OF Y(I) BELOW

RTOL{I)*ABS(Y())}+ATOL().

JAC  NAME (EXTERNAL) OF THE SUBROUTINE WHICH COMPUTES
THE PARTIAL DERIVATIVES OF F{X.Y) WITH RESPECTTO Y
(THIS ROUTINE IS ONLY CALLED IF [JAC=1; SUPPLY
A DUMMY SUBROUTINE IN THE CASE WAC=0).

FOR IJAC=1, TH!S SUBROUTINE MUST HAVE THE FORM
SUBROUTINE JAC(N.X.Y DFY LDFY.RPAR,IPAR)
DOUBLE PRECISION X,Y{N),DFY(LDFY,N)
DFY{1,1)=...

LDFY, THE COLUMN-LENGTH OF THE ARRAY, IS

FURNISHED BY THE CALLING PROGRAM.

IF (MLJAC EQ.N} THE JACOBIAN 1S SUPPOSED TO
BE FULL AND THE PARTIAL DERIVATIVES ARE
STORED IN DFY AS

DFY(L,J) = PARTIAL F{i) / PARTIAL Y(J}

ELSE, THE JACOBIAN IS TAKEN AS BANDED AND
THE PARTIAL DERIVATIVES ARE STORED
DIAGONAL-WISE AS

DEY(I-J+MUJACH,J) = PARTIAL E() / PARTIAL Y(J).
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IJAC SWITCH FOR THE CCMPUTATION OF THE JACOBIAN:
1JAC=0: JACOEIAN |18 COMPUTED INTERNALLY BY FINITE
DIFFERENCES, SUBROUTINE "JAC" IS NEVER CALLED,

LIAC=1: JACOBIAN 1S SUPPLIED BY SUBROUTINE JAC.

MLIAC  SWITCH FOR THE BANDED STRUCTURE OF THE JACOBIAN:
MLJAC=N: JACOBIAN IS A FULL MATRIX, THE LINEAR
ALGEBRA IS DONE BY FULL-MATRIX GAUSS-ELIMINATION.
0<=MLJAC<N: MLJAC IS THE LOWER BANDWITH OF JACOBIAN
MATRIX (>= NUMBER OF NON-ZERQ DIAGONALS BELOW
THE MAIN DIAGONAL),

MUJAC  UPPER BANDWITH OF JACOBIAN MATRIX (>= NUMBER OF NON-
ZERO DIAGONALS ABOVE THE MAIN DIAGONAL).
NEED NOT BE DEFINED IF MLIAC=N.

~— MASAMAS MLMAS, AND MUNMAS HAVE ANAI OG MEANINGS  —
— FOR THE "MASS MATRIX" (THE MATRIX "M” OF SECTION IV.8): -

~ MAS NAME (EXTERNAL}) OF SUBROUTINE COMPUTING THE MASS-

MATRIX M. :
IF [IMAS=0, THIS MATRIX IS ASSUMED TO BE THE IDENTITY
MATRIX AND NEEDS NOT TO BE DEFINED;
SUPPLY A DUMMY SUBROUTINE IN THIS CASE.
IF IMAS=1, THE SUBROUTINE MAS IS OF THE FORM
SUBROUTINE MAS(N,AM LMAS,RPAR,IPAR)
DOUBLE PRECISION AM(LMAS N)
AM{1,T)=...
F (MLMAS EQ.N) THE MASS-MATRIX 1S STORED
AS FULL MATRIX LIKE
AM{1L) = M(1LJ)
ELSE, THE MATRIX IS TAKEN AS BANDED AND STORED
DIAGONAL-WISE AS
AM(-0+MUMAS+1,J) = M(1,J).

IMAS  GIVES INFORMATION ON THE MASS-MATRIX:
IMAS=0: M |S SUPPOSED TO BE THE IDENTITY
MATRIX, MAS IS NEVER CALLED.
IMAS=1: MASS-MATRIX 1S SUPPLIED.

MLMAS SWITCH FOR THE BANDED STRUCTURE OF THE MASS-MATRIX:
MLMAS=N: THE FULL MATRIX CASE. THE LINEAR
ALGEBRA IS DONE BY FULL-MATRIX GAUSS-ELIMINATION.
O<=MLMAS<N: MLMAS S THE LOWER BANDWI|TH OF THE
MATRIX (>= NUMBER OF NON-ZERQ DIAGONALS BELOW
THE MAIN DIAGONAL).
MLMAS IS SUPPOSED TO BE .LE. MLIAC.

MUMAS UPPER BANDWITH OF MASS-MATRIX (>= NUMBER OF NON-
ZERQ DIAGONALS ABOVE THE MAIN DIAGONAL).
NEED NOT BE DEFINED IF MLMAS=N.
MUMAS IS SUPPOSED TO BE .LE. MUJAC.

SOLOUT  NAME (EXTERNAL} OF SUBROUTINE PROVIDING THE
NUMERICAL SOLUTION DURING INTEGRATION.
IF 10UT=1, ITIS CALLED AFTER EVERY SUCCESSFUL STEP.
SUPPLY A DUMMY SUBROUTINE IF IOUT=0.
IT MUST HAVE THE FORM
SUBROUTINE SOLOUT (NRXOLD,X.Y,CONT,LRC.N,
RPAR,IPAR,IRTRN)
DOUBLE PRECISION X, Y(N),CONT(LRC)

SOLOUT FURNISHES THE SOLUTION "Y* AT THE NR-TH
GRID-POINT "X™ (THEREBY THE INITIAL VALUE IS
THE FIRST GRID-POINT).

"XOLD" IS THE PRECEEDING GRID-PQINT.

"IRTRN" SERVES TO INTERRUPT THE INTEGRATICN. IF IRTRN
IS SET <0, RADAUS RETURNS TO THE CALLING PROGRAM.
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— CONTINUQUS GUTPUT: —
DURING CALLS TO "SOLOUT", A CONTINUCUS SOLUTION
FOR THE INTERVAL [XOLD.X] IS AVAILABLE THROUGH
THE FUNCTION

>>> CONTRS5(LS,CONTLRC) <<<

WHICH PROVIDES AN APPROXIMATION TO THE |-TH
COMPONENT OF THE SOLUTION AT THE POINT S. THE VALUE
S SHOULD LIE IN THE INTERVAL [XOLD,X].
DO NOT CHANGE THE ENTRIES OF CONT(LRC), IF THE
DENSE OUTPUT FUNCTION IS USED.

IouUT SWITCH FOR CALLING THE SUBROUTINE SOLOUT:
I0UT=0: SUBROUTINE IS NEVER CALLED
I0UT=1; SUBROUTINE 15 AVAILABLE FOR OUTPUT.

WORK  ARRAY OF WORKING SPACE OF LENGTH "LWORK®.
WORK(1), WORK(2)..., WORK(20) SERVE AS PARAMETERS
FOR THE CODE. FOR STANDARD USE OF THE CODE
WORK(1),.. WORK(20) MUST BE SET TQ ZERO BEFORE
CALLING. SEE BELGW FOR A MORE SOPHISTICATED USE.
WORK(21),.., WORK(LWORK) SERVE AS WORKING SPACE
FOR ALL VECTORS AND MATRICES.

"LWORK" MUST BE AT LEAST
N*(LJAC+H MAS+3"LE+12)+20

WHERE

LIAC=N iIF MLJAC=N (FULL JACOBIAN})

LJAC=MLJAC+MUJAC+1 IF MLJAC<N (BANDED JAC))
AND

LMAS=0 IF IMAS=0

LMAS=N iF IMAS=1 AND MLMAS=N (FULL)

LMAS=MLMAS+MUMAS+1 IF MLMAS<N (BANDED MASS-M.)
AND

LE=N IF MLJAC=N (FULL JACOBIAN)

LE=Z"MLJAC+MUJAC+T IF MLJAC<N (BANDED JAC.)

IN THE USUAL CASE WHERE THE JACOBIAN IS FULL AND THE
MASS-MATRIX IS THE INDENTITY (IMAS=0), THE MINIMUM
STORAGE REQUIREMENT IS
LWORK = 4"N*N+12*N+20.

IF IWORK{9)=M1>0 THEN "LWORK" MUST BE AT LEAST

NTLJACH1ZH(N-M1y(LMAS+3"LE)+20
WHERE IN THE DEFINITIONS OF LJAC, LMAS AND LE THE
NUMBER N CAN BE REPLACED BY N-M1,

LWORK  DECLARED LENGTH OF ARRAY "WORK".

IWORK  INTEGER WORKING SPACE OF LENGTH "LIWORK".
FWORK(1),JWORK(2),... IWORK{20) SERVE AS PARAMETERS
FOR THE CODE. FOR STANDARD USE, SET IWORK(1), .,
IWORK(20) TO ZERQ BEFORE CALLING.
IWORK(21).... INORK(LIWORK) SERVE AS WORKING AREA.
"LIWORK" MUST BE AT LEAST 3*N+20.

LIWORK ~ DECLARED LENGTH OF ARRAY "IWORK"™.
RPAR, IPAR REAL AND INTEGER PARAMETERS (OR PARAMETER ARRAYS) WHICH

CAN BE USED FOR COMMUNICATION BETWEEN YOUR CALLING
PROGRAM AND THE FCN, JAC, MAS, SOLOUT SUBROUTINES.

o000 000N0a0ao000000N000000N0000000000N00N000000NC000N000N000000000C00R0000

SOPHISTICATED SETTING OF PARAMETERS

SEVERAL PARAMETERS OF THE CODE ARE TUNED TQ MAKE IT WORK
WELL. THEY MAY BE DEFINED BY SETTING WORK(1}....

AS WELL AS IWORK(1).... DIFFERENT FROM ZERO.

FOR ZERQ INPUT, THE CODE CHOOSES DEFAULT VALUES:

IWORK({1) IF IWORK(1).NE.Q, THE CODE TRANSFORMS THE JACOBIAN
MATRIX TO HESSENBERG FORM. THIS IS PARTICULARLY
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ADVANTAGEOQUS FOR LARGE SYSTEMS WITH FULL JACOBIAN.
IT DOES NOT WCRK FOR BANDED JACOBIAN (MLJAC<N)
AND NOT FOR IMPLICIT SYSTEMS (IMAS=1).

IWORK(2) THIS IS THE MAXIMAL NUMBER OF ALLOWED STEPS.
THE DEFAULT VALUE (FOR IWORK({2)=0} IS 400000.

IWORK(3) THE MAXIMUM NUMBER OF NEWTON [TERATIONS FOR THE
SOLUTION OF THE IMPLICIT SYSTEM IN EACH STEPR.
THE DEFAULT VALUE (FOR IWORK(3)=0} IS 7.

IWORK(4) IF IWORK(4).EQ.0 THE EXTRAPOLATED COLLOCATION SOLUTION
IS TAKEN AS STARTING VALUE FOR NEWTON'S METHOD.
IF IWORK(4}.NE.0 ZERD STARTING VALUES ARE USED.
THE LATTER IS RECOMMENDED IF NEWTON'S METHOD HAS
DIFFICULTIES WITH CONVERGENCE (THIS IS THE CASE WHEN
NSTEP IS LARGER THAN NACCPT + NREJCT; SEE OUTPUT PARAM. ).
DEFAULT IS IWORK(4)=0.

THE FOLLOWING 3 PARAMETERS ARE IMPORTANT FOR
DIFFERENTIAL-ALGEBRAIC SYSTEMS OF INDEX > 1.

THE FUNCTION-SUBROUTINE SHOULD BE WRITTEN SUCH THAT
THE INDEX 1,2,3 VARIABLES APPEAR IN THIS ORDER.

IN ESTIMATING THE ERROR THE INDEX 2 VARIABLES ARE
MULTIPLIED BY H, THE INDEX 3 VARIABLES BY H™2.

IWORK(5) DIMENSION OF THE iNDEX 1 VARIABLES (MUST BE > 0). FOR
ODE'S THIS EQUALS THE DIMENSION OF THE SYSTEM.
DEFAULT IWORK{5)=N.

WORK(6) DIMENSION OF THE INDEX 2 VARIABLES. DEFAULT IWORK(8)=0.
IWORK{7) DIMENSION OF THE INDEX 3 VARIABLES. DEFAULT IWORK(7)=0.

IWORK(8) SWITCH FOR STEP SIZE STRATEGY
IF IWORK(8).EQ.1 MOD. PREDICTIVE CONTROLLER (GUSTAFSSON)
IF IWORK(8).EQ.2 CLASSICAL STEP SIZE CONTROL
THE DEFAULT VALUE (FOR IWORK(8)=0) IS IWORK(8)=1.
THE CHCICE IWORK(8}.EQ.1 SEEMS TO PRODUCE SAFER RESULTS;
FOR SIMPLE PROBLEMS, THE CHOICE IWORK(8).EQ.2 PRODUCES
_ OFTEN SLIGHTLY FASTER RUNS

[F THE DIFFERENTIAL SYSTEM HAS THE SPECIAL STRUCTURE THAT
Y =Y({l+M2} FOR I=1....M1,
WITH M1 A MULTIPLE OF M2, A SUBSTANTIAL GAIN IN COMPUTERTIME
CAN BE ACHIEVED BY SETTING THE PARAMETERS IWORK(9) AND IWORK(10).
E.G., FOR SECOND ORDER SYSTEMS P'=V, V'=G({PV), WHERE P AND V ARE
VECTORS OF DIMENSION N/2, ONE HAS TO PUT M1i=M2=N/2.
FOR M1>0 SCME OF THE INPUT PARAMETERS HAVE DIFFERENT MEANINGS:
- JAC: ONLY THE ELEMENTS OF THE NON-TRIVIAL PART OF THE
JACOBIAN HAVE TQ BE STORED
IF (MLJAC EQ.N-M1) THE JACOBIAN [S SUPPOSED TO BE FULL
DFY({l..)) = PARTIAL F(I+M1)f PARTIAL Y(J}
FOR I=1,N-M1 AND J=1,N.
ELSE, THE JACOBIAN IS BANDED ( M1 =M2* MM )
DFY(l-+MUJAC+1,J+K*M2) = PARTIAL F{I+M1) / PARTIAL Y{J+K*"M2}
FOR I=1 MLJAC+MUJAC+1 AND J=1,M2 AND K=0,MM.
~ MLIAC: MLJAC=N-M1: IF THE NON-TRIVIAL PART OF THE JACOBIAN IS FULL
0<=MLJAC<N-M1: IF THE {MM+1) SUBMATRICES (FOR K=0,MM)
PARTIAL F(1+M1)/ PARTIAL Y(J+K"'M2), 1.J=1,M2
ARE BANDED, MLJAC IS THE MAXIAL LOWER BANDWIDTH
OF THESE MM+1 SUBMATRICES
- MUJAC: MAXIMAL UPPER BANDWIDTH OF THESE MM+ SUBMATRICES
NEED NOT BE DEFINED IF MLJAC=N-M1
- MAS: IF IMAS=0 THIS MATRIX IS ASSUMED TO BE THE IDENTITY AND
NEED NOT BE DEFINED. SUPPLY A DUMMY SUBROUTINE IN THIS CASE.
IT IS ASSUMED THAT ONLY THE ELEMENTS OF RIGHT LOWER BLOCK OF
DIMENSION N-M1 DIFFER FROM THAT OF THE IDENTITY MATRIX.
IF {MLMAS.EQ.N-M1} THIS SUBMATRIX [S SUPPOSED TO BE FULL
AM(LJY = MO+M1,J+M1)  FOR I=1,N-M1 AND J=1N-M1.
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ELSE, THE MASS MATRIX IS BANDED
AM(I-J+MUMAS+1,J) = M(I+M1,J+M1)
- MLMAS: MLMAS=N-M1: iF THE NON-TRIVIAL PART OF M IS FULL
0<=MLMAS<N-M1: LOWER BANDWIDTH OF THE MASS MATRIX
- MUMAS: UPPER BANDWIDTH OF THE MASS MATRIX
NEED NOT BE DEFINED IF MLMAS=N-M1

IWORK(9) THE VALUE OF M1. DEFAULT M1=0.

WORK(10) THE VALUE OF M2, DEFAULT M2=M1.

WORK(1) URQUND, THE ROUNDING UNIT, DEFAULT 1.D-16.

WORK(2) THE SAFETY FACTOR IN STEP SIZE PREDICTION,
DEFAULT 0.8D0.

WORK(3) DECIDES WHETHER THE JACOBIAN SHOULD BE RECOMPUTED:
INCREASE WORK(3), T® 0.1 SAY, WHEN JACOBIAN EVALUATIONS
ARE COSTLY. FOR SMALL SYSTEMS WORK(3) SHOULD BE SMALLER
(0.001D0, SAY). NEGATIV WCRK(3) FORCES THE COBE TO
COMPUTE THE JACOBIAN AFTER EVERY ACCEPTED STEP.
DEFAULT 0.001D0.

WORK(4) STOPPING CRITERION FOR NEWTON'S METHOD, USUALLY CHOSEN <1,
SMALLER VALUES OF WORK{4) MAKE THE GODE SLOWER, BUT SAFER.
- DEFAULT MIN(0.03D0,RTOL(1)™0.5D0)

WORK(5) AND WORK(B) : [F WORK(S) < HNEW/HOLD < WORK(8), THEN THE
STEP SIZE IS NOT CHANGED. THIS SAVES, TOGETHER WITH A
LARGE WORK(3), LU-DECCMPOSITIONS AND COMPUTING TIME FOR
LARGE SYSTEMS. FOR SMALL SYSTEMS ONE MAY HAVE
WORK(5)=1.D0, WORK(6)=1.2D0, FOR LARGE FULL SYSTEMS
WORK(5)=0.99D0, WORK(6)=2.D0 MIGHT BE GOOD.

DEFAULTS WORK(5)=1.D0, WORK(6)=1.2D0 .

WORK(7) MAXIMAL STEP SIZE, DEFAULT XEND-X.

WORK(8), WORK(9} PARAMETERS FOR STEP SIZE SELECTIGN
_ THE NEW STEP SIZE IS CHOSEN SUBJECT TO THE RESTRICTION
WORK(8) <= HNEW/HOLD <= WORK{9)
DEFAULT VALUES: WORK(8)=0.2D0, WORK{(9)=8.D0

OOOOOOOOOOOOOOO('"JOOOOOOOOO()(‘)OOOOOOOOOOOOOOOOOOOOOOOhOOODODOODOOOOOOOOOO

QUTPUT PARAMETERS

X X-VALUE FOR WHICH THE SOLUTION HAS BEEN COMPUTED
(AFTER SUCCESSFUL RETURN X=XEND).

Y(N) NUMERICAL SOLUTICN AT X
H PREDICTED STEP SIZE OF THE LAST ACCEPTED STEP

iDID REPORTS ON SUCCESSFULNESS UPCN RETURN:
DID=1 COMPUTATION SUCCESSFUL,
IDID=2 COMPUT. SUCCESSFUL {INTERRUPTED BY SOLOUT)
IDID=-1 INPUT IS NOT CONSISTENT,
IDID=-2 LARGER NMAX |§ NEEDED,
IDID=-3 STEP SIZE BECCMES TCO SMALL,
IDID=-4 MATRIX IS REFPEATEDLY SINGULAR.

IWORK({14) NFCN NUMBER OF FUNCTION EVALUATIONS (THOSE FOR NUMERICAL
EVALUATION OF THE JACORIAN ARE NOT COUNTED)

IWORK(15) NJAC NUMSER OF JACOBIAN EVALUATIONS (EITHER ANALYTICALLY
OR NUMERICALLY)

IWORK(16) NSTEP NUMBER OF COMPUTED STEPS

IWORK(17) NACCPT NUMBER OF ACCEPTED STEPS

IWORK(18) NREJCT NUMBER OF REJECTED STEPS (DUE TO ERROR TEST),
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C (STEP REJECTIONS IN THE FIRST STEP ARE NOT COUNTED)
C IWORK({19) NDEC NUMBER OF LU-DECOMPOSITICNS CF BOTH MATRICES
C IWORK(20) NSOL NUMBER OF FORWARD-BACKWARD SUBSTITUTIONS, OF BOTH

C SYSTEMS; THE NSTEP FORWARD-BACKWARD SUBSTITUTIONS,
c NEEDED FOR STEP SIZE SELECTION, ARE NOQT COUNTED
C--

Cm*ﬁﬁtmmﬁ#mtﬂ*ﬂiﬂmﬂ**ﬁ

c DECLARATIONS
Cmmmmmmmm*ﬂmmtﬂm
IMPLICIT DOUBLE PRECISION (A-H,0-7)
DIMENSION Y{N)ATOL(*).RTOL(*). WORK(LWORK),WORK(LIWORK)
DIMENSION RPAR(*},IPAR(*)
LOGICAL IMPLCT JBAND,ARRET,STARTN,PRED
EXTERNAL FCN,JAC,MAS,SOLOUT

Cﬂ*ﬁ*ﬁtmmﬂi*ﬂ

C  SETTING THE PARAMETERS
C Ak vkt ik dkk R Ak TER

NFCN=0

NJAC=0

NACCPT=0

NREJCT=0

NDEC=0

NSOL=0

ARRET=.FALSE.
C —— UROUND SMALLEST NUMBER SATISFYING 1.0D0+URQUND=>1.000

IF (WORK({1).EQ.0.0D0) THEN

URQUND=1.00-16

ELSE

UROUND=WORK(1) :

IF (UROQUND.LE. 1.0D-19.0R UROUND.GE. 1.0D0) THEN
WRITE(8,") COEFFICIENTS HAVE 20 DIGITS, URQUND='WORK(1)
ARRET=TRUE.

ENDIF -

END IF
C — CHECK AND CHANGE THE TOLERANCES
EXPM=2.000/3.0D0
IF (ITOL.EQ.0) THEN
IF (ATOL(1}.L€.0.00. OR.RTOL(1).LE.10.D0*UROUND) THEN
WRITE (6,5) ' TOLERANCES ARE TOO SMALL'
ARRET=.TRUE.
ELSE
QUOT=ATOL{1YRTOL(1)
RTOL(1)=0.100°RTAL{1 ) EXPM
ATOL(1}=RTOL{1}QUOT
END IF
ELSE
DO I=1,N
IF (ATOL{[).LE.0.D0O.OR.RTOL(I).LE. 10 DO"URQUND) THEN
WRITE (6.*)* TOLERANCES('l,'} ARE TOO SMALL'
ARRET=TRUE.
ELSE
QUOT=ATOL(IYRTOL{I)
RTOL(N=0.1DF*RTOL{I)"EXPM
ATOL()=RTOL({I"QUOT
END IF
END DO
END IF
C ——— NMAX , THE MAXIMAL NUMBER OF STEPS --—
IF (IWORK(2).EQ.0) THEN
NAAAX=100000
ELSE

NMAX=IWORK(2)

IF (NMAX LE 0) THEN
WRITE(6.") WRONG INPUT IWORK{2)=WORK(2)
ARRET=TRUE.

END IF

ENDIF
C—— NIT MAXIMAL NUMBER OF NEWTON ITERATIONS

IF (IWORK(3).EQ.0) THEN
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NIT=7
ELSE
NIT=IWORK(3)
IF (NIT.LE.0) THEN
WRITE(8,”}' CURIOUS INPUT IWORK(3)=" IWORK(3)
ARRET=.TRUE.
END IF
END IF
C —— STARTN SWITCH FOR STARTING VALUES OF NEWTON ITERATIONS
TF(IWORK(4).EQ.0)THEN
STARTN=FALSE.
ELSE
STARTN=.TRUE.
END IF
C —— PARAMETER FOR DIFFERENTIAL-ALGEBRAIC COMPONENTS
NIND1={WORK(5)
NIND2=IWORK(8)
_ NIND3=IWORK(7)
IF (NIND'T.EQ.0) NIND1=N
F (NIND1+NIND2+NING3 NE.N) THEN
WRITE(8,*Y CURIOUS INPUT FOR IWORK(5,6.7)="NIND1,NINDZ,NIND3
ARRET=.TRUE.
END IF
¢ - PRED STEP SIZE CONTROL
[FIWORK(8)LE.1)THEN -
PRED=.TRUE.
ELSE
PRED=.FALSE.
END IF
C -— PARAMETER FOR SECOND ORDER EQUATIONS
M1=IWORK(9)
M2=IWORK(10}
NMT=N-M1
IF (M1.EQ.0) M2=N
IF (M2.EQ.0) M2=M1
IF (M1.LT.0.0R M2.LT.0.0R.M1+M2.GT.N) THEN
WRITE(6,*} CURIQUS INPUT FOR IWORK(S,10)="M1,M2
ARRET=TRUE.
END IF
C———SAFE SAFETY FACTOR IN STEP SIZE PREDICTION
IF (WORK(2).EQ.0.0D0) THEN
SAFE=0.9D0
ELSE
SAFE=WORK(2)
IF (SAFE.LE.0.001D0.0R.SAFE GE.1.0D0) THEN
WRITE(6,*Y CURIOUS INPUT FOR WORK(2)="WORK(2)

ARRET=TRUE.
ENDIF
END IF
C - THET DECIDES WHETHER THE JACOBIAN SHOULD BE RECOMPUTED;
IF (WORK(3).EQ.0.D0) THEN
THET=0.001D0
ELSE

THET=WORK(3)
IF {THET.GE.1.0D0) THEN
WRITE(6,”} CURICUS INPUT FOR WORK(3)="WORK(3)
ARRET=TRUE.
END IF
END IF

C — FNEWT STOPPING CRITERION FOR NEWTON'S METHOD, USUALLY CHOSEN <1.

TOLST=RTOL{1)
IF {(WORK{4).EQ.0.D0) THEN
FNEWT=MAX(40*UROUND/TOLST,MIN(0.03D0, TOLST**0.5D0}}
ELSE
FNEWT=WORK(4)
IF (FNEWT.LE.UROUND/TOLST) THEN
WRITE(6,*) CURIOUS INPUT FOR WORK(4)="WORK(4)
ARRET=TRUE.
END IF
END IF



Appendix B

138

C — QUOT1 AND QUOTZ: IF QUCT1 < HNEW/HOLD < QUOTZ, STEP SIZE = CONST.

IF (WORK(5}.£Q.0.D0) THEN
QUaT1=1.00
ELSE
QUOT1=WORK(5)
END IF
IF (WORK(E).EQ.0.D0) THEN
QUOT2=1.200
ELSE
QUOT2=WORK(5)
END IF
IF (QUOT1.GT.1.000.0R.QUOTZ.LT.1.000) THEN
WRITE(8,*y CURIOUS INPUT FOR WORK(5,6)=.QUOT1,QUOT2
ARRET=TRUE.
END IF
C — - MAXIMAL STEP SIZE
IF (WORK(7).EQ.0.D0) THEN
HMAX=XEND-X
ELSE
HMAX=WORK(7) .
END iF
C—— FACLFACR PARAMETERS FOR STEP SIZE SELECTION
IF(WORK(8).EQ.0.D0)THEN
FACL=5.D0
ELSE
FACL=1.DO/WORK(8)
END IF
IF(WORK(9).EQ.0.D0)THEN
FACR=1.00/8.0D0
ELSE
FACR=1.D0MWORK(S)
END IF
IF (FACL.LT.1.0D0.OR FACR.GT.1.0D0) THEN
WRITE(6,"} CURIOUS INPUT WORK(8,9)="WORK(8) WORK({9)
ARRET=.TRUE.
END IF

C"immmmmmmmmtﬂmt"

C  COMPUTATION OF ARRAY ENTRIES
Cﬂ*m“*t“mmﬁtmmiﬂtﬂmﬂi
C — IMPLICIT, BANDED OR NOT ?
IMPLCT=IMAS.NE.O
JBAND=MLJAC LT.NM1
¢ —— COMPUTATION OF THE ROW-DIMENSIONS OF THE 2-ARRAYS -
C — JACOBIAN AND MATRICES E1, E2
IF {JBAND) THEN
LDJAC=MLIAC+MUJAC+1
LDE1=MLIAC+LDJAC
ELSE
MLJAC=NM1
MUJAC=NM1
LOJAC=NM1
LDE1=NM1
END IF
C - MASS MATRIX
IF IMPLCT) THEN
IF (MLMAS.NE.NM1) THEN
LOMAS=MLMAS+MUMAS+1
IF (JBAND) THEN
1JOB=4
ELSE
1JOB=3
END IF
ELSE
MUMAS=NM1
LOMAS=NM1
LJOB=5
END IF
C — BANDWITH OF “MAS™ NOT SMALLER THAN BANDWITH OF “JAC”
IF (MLMAS.GT MLJAC.OR. MUMAS.GT.MUJAC) THEN

WRITE (6,*) ‘BANDWITH OF "MAS™NOT SMALLER THAN BANDWITH OF
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& JAC™
ARRET=TRUE.
END IF
ELSE
LDMAS=0
IF (JBAND) THEN
1JOB=2
ELSE
1JOB=1
IF {N.GT.2.AND.IVWORK(1).NE.O} LJOB=7
END IF
END IF
LDMAS2=MAX(1,LDMAS)
C —— HESSENBERG OPTION ONLY FOR EXPLICIT EQU. WITH FULL JACOBIAN
IF ({(IMPLCT.OR.JBAND).AND.IJOB.EQ.7) THEN
WRITE(8,*) HESSENBERG CPTION ONLY FOR EXPLICIT EQUATIONS WITH
&FULL JACOBIAN'
ARRET=TRUE.
END IF
C - PREPARE THE ENTRY-POINTS FOR THE ARRAYS IN WORK —~—
[EZ1=21
IEZ2=1EZ1+N
[EZ3=1EZ2+N
IEY0=IEZ3+N
IESCAL=IEYO+N
IEF1=IESCAL+N
IEF2=IEF 1+N
IEF3=IEF2+N
IECON=IEF3+N
IEJAC=IECON+4*N
[EMAS=IEJAC+N*LDJAC
IEE1=IEMAS+NM1*LDMAS
IEE2R=IEE1+NM1*LDE1
IEE2I=IEE2R+NM1*LDE1
C — TOTAL STORAGE REQUIREMENT
ISTORE=IEE2I+NM1*LDE1-1
IF(ISTORE.GT.LWORK)THEN
WRITE(6.*) INSUFFICIENT STORAGE FGR WORK, MIN. LWORK="iSTORE
ARRET=TRUE.
END IF
C —— ENTRY POINTS FOR INTEGER WORKSPACE -
[ElPt=21
IEIP2=IEIP{+NM1
IEIPH=IEIP2:-NM1
TOTAL REQUIREMENT
ISTORE=IEIPH+NM1-1
IF (ISTORE.GT.LIWORK) THEN
WRITE(6,*) INSUFF. STORAGE FOR IWORK, MIN. LIWORK=" ISTORE
ARRET=.TRUE.
END IF
€~ WHEN A FAIL HAS OCCURED, WE RETURN WITH IDID=-1
IF (ARRET) THEN
IDID=1
RETURN
END IF
¢ —— CALL TO CORE INTEGRATOR ————
CALL RADCOR(N,FCN X,Y XEND,HMAX,H,RTOLATOL,ITOL,
& JAC.IJACMLIAC MUJAC MAS.MLMAS, MUMAS,SOLOUT,IOUT,I0ID,
& NMAX.UROUND SAFE, THET,FNEWT,QUOT1,QUOTZ NIT.IJOB.STARTN,
& NIND1,NIND2 NIND3,PRED,FACL,FACR M1 M2ZNMT,
& IMPLCT.JBAND LDJAC,LDE1LDMAS2 WORK(IEZ1) WORK(IEZ2),
&
2
&
&

c

WORK(IEZ3) WORK(IEY0) WORK(IESCAL),WORK(IEF 1), WORK(IEF2),
WORK(IEF3) WORK(EJAC), WORK(IEE 1) WORK(IEE2R), WORK(IEE21),
WORK(IEMAS),IWORK(IEIP1) IWORK(IEIP2),IWORK(IEIPH),
WORK(IECON).NFCN,NJAC, NSTEP,NACCPT NREJCT NDEC, NSOL RPAR, IPAR)

IWORK(14)=NFCN

IWORK(15)=NJAC

IWORK(16)=NSTEP

WORK(17)=NACCPT

IWORK(18)=NREJCT
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IWORK(19)=NDEC
TWORK(20)=NSOL
C —— RESTORE TOLERANCES
EXPM=1.0D0/EXPM
IF (ITOL.EQ.0) THEN
QUOT=ATOL({1)RTOL(1)
RTOL(1)=(10.0D0*RTOL(1) " EXPM
ATOL{1)=RTOL{1}*QUOT
ELSE
DO I=1N
QUOT=ATOL(!YRTOL(l)
RTOL{N=(10.0D0*RTOL{)}EXPM
ATOL{1=RTOL{1"QUOT
END DO
END IF
RETURN
RETURN
END

Cc

END OF SUBROUTINE RADAUS

OO00O0O0

SUBRQUTINE RADCOR(N,FCNX,Y XEND HMAX H.RTOLATOL,ITOL,
JAC,IJAC MLJAC, MUJAC MAS MLMAS MUMAS, SOLOUT,IQUT,IDID,
NMAX UROUND,SAFE, THET FNEWT,QUOT1,QUOTZ,NIT LIOB,STARTN,
NIND1,NIND2, NIND3,PRED,FACL,FACR,M1,M2,NM1,

IMPLCT BANDED,LDJAC LDE Y LDMAS 71,72 73,
Y0,SCAL,F1,F2,F3FIAC.E1.E2R E2|,FMAS IP1,1P2 IPHES,

CONT NFCN,NJAC NSTEP,NACCPT,NREJCT ,NDEC ,NSOL,RPAR,(FAR)

Ro Qo ga Ro Ro Ro

CORE INTEGRATOR FOR RADAUS
PARAMETERS SAME AS IN RADAUS WITH WORKSPACE ADDED

DECLARATIONS

o000

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION Y(N},Z1({N}.Z2(N).Z3(N).YO(N}.SCAL(N).F1(N}.F2(N).F 3(N)
DIMENSION FJAC(LDJAC.N),FMAS(LDMAS,NM1),CONT(4°N)
DIMENSION E1(LDE1,NM1),E2R({LDE1,NM1),E2I(LDE1,NM1)
DIMENSION ATOL(*),RTOL(*),RPAR(*}.IPAR(")

INTEGER IPH{NM1),[P2(NM1) IPHES(NM1)

COMMON /CONRAS/NN,NN2,NN3 NN4 XSOL HSOL.C2M1,C 1M1
COMMON/LINAL/IMLE, MUE, MBJAC, MBB MDIAG, MDIFF MBDIAG

{ OGICAL REJECT FIRST.IMPLCT,BANDED,CALIAC, STARTN,CALHES
LOGICAL INDEX1,INDEX2,INDEX3,LAST,PRED

EXTERNAL FCN

Cﬁtmmmmmm

C INITIALISATIONS
C Wi kW Uik ik arior FEx Aok
C ———-- DUPLIFY N FOR COMMON BLOCK CONT -—
NN=N
NN2=2"N
NN3=3N
LRC=4"N
C — CHECK THE INDEX OF THE PROBLEM —
INDEX1=NIND1.NE.O
INDEX2=NIND2.NE .0
INDEX3=NIND3.NE.Q
€ —— COMPUTE MASS MATRIX FOR IMPLICIT CASE
IF (IMPLCT) CALL MAS{NM1,FMAS LDMAS,RPAR IPAR)
CONSTANTS ~——
SQ6=DSQRT(6.00)
C1=(4.D0-SQ6Y10.00
C2=(4.D0+SQEY10.00
C1M1=C1-1.00
C2M1=C2-1.00
CIMC2=C1-C2
DE1={13.00+7.00*SQ6¥3.D0
DD2=(-13.D0+7.D0°5Q6)/3.D0

c
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DD3=1.D0/3.00
U1=(6.D0+81.00%(1.00/3.00)-9.00*(1.00/3.00))/30.00
ALPH=(12.D0-81.007(1.00/3.00)+9.00"(1.D0/3.D0))/60.00
BETA=(81.00**(1.D0/3.D0)+9.00°(1.D0/3.00))*DSQRT(3.D00)/60.D0
CNO=ALPH*"2+BETA™2
U1=1.0D0U1
ALPH=ALPH/CNO
BETA=BETA/CNC
T11=9.12323048708929427920-02
T12=-0.14125529502095420843D0
T13=-3.0029194105147424492D-02
T21=0.2417179327071070189600
T22=0.2041293522937999319900
T23=0.3829421127572619377900
T31=0.966048182615092936 1900
T111=4.325579890063155351000
T112=0.33919925181550986354D0
T113=0.5417705339358748711900
TI21=-4.1787185915519047273D0
Ti22=-0.3276828207510623870800
TI23=0.4766235545005504513600
TI31=-0.5028726349457868759500
TI32=2.57192684908556054292D0
T133=-0.556030204828224982497D0
IF (M1.GT.0) LIOB=tI0B+10
POSNEG=SIGN(1.D0,XEND-X)
HMAXN=MIN(ABS(HMAX) ABS{XEND-X)}
IF (ABS{H).LE.10.00"UROUND) H=1.0D-6
H=MIN(ABS(H)HMAXN) .
H=SIGN{H,POSNEG)

HOLD=H
REJECT=FALSE.
FIRST=.TRUE.
LAST=FALSE.
IF ((X+H*1.0001D0-XEND)*POSNEG.GE.C.00) THEN
H=XEND-X
LAST=TRUE.
END IF
FACCON=1.00
CFAC=SAFE*(1+2'NIT)
NSING=0
XOLD=X
IF (IOUT.NE.0) THEN
IRTRN=1
NRSOL=1
XOSOL=X0LD
XSOL=X
DO I=1,N
CONT{I}=Y(l)
END DO
NSOLU=N
HSOL=HOLD :
CALL SOLOUT{NRSOL . XOSOL,XSOL,Y,CONT,LRC.NSOLU,
& RPAR,IPAR,IRTRN)
IF (IRTRN.LT.0) GOTO 179
END IF
MLE=MLJAC
MUE=MUJAC
MBJAC=MLJAC+MUJAC+1
MBE=MLMAS+MUMAS+1
MOIAG=MLE+MUE+1
MDIFF=MLE+MUE-MUMAS
MBDIAG=MUMAS+1
N2=2"N
N3=3"N
IF (ITOL.EQ.0) THEN
DO I=1.N
SCAL{}=ATOL1)+RTOL{ 1) ABS(Y(1))
END DO
ELSE
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DO 1=1,N
SCAL(N=ATOL()+RTOL(I*ABS(Y(I))

END DO

END IF

HHFAC=H

CALL FCN{N,XY,YO,RPAR !PAR)

NFCN=NFCN+1

C — BASIC INTEGRATICN STEP
10 CONTINUE

< COMPUTATION OF THE JACOBIAN
C drdrdr kdrd Ak E deked deew Rt ek
NJAC=NJAC+1
IF (IJAC.EQ.0) THEN
C — COMPUTE JACOBIAN MATRIX NUMERICALLY
IF (BANDED) THEN
C -~ JACOBIAN IS BANDED
MUJACP=MUJAC+1
MD=MIN{MBJAC M2}
DO MM=1 M1/M2+1 4
DO K=1,MD
J=K+{MM-1y"M2
12 F1(J)=Y(J}
F2{J)=DSQRT(UROUND MAX{1.D-5,ABS(Y{J)))}
Y{N=Y(I)+F2()
J=J+MD
IF (J.LEMM*M2) GOTO 12
CALL FCN(N.X,Y,CONT RPAR,IPAR)
J=KHMM-1" M2
J1=K
LBEG=MAX({1,J1-MUJAC)+M1
14 LEND=MIN{M2,01 +MLJAC)+M1
Y(H=F1{d)
MUJACJ=MUACP-J1-M1
DO L=LBEG,LEND
FJAC{L+MUJACJI.N={CONT{L}YO(L)¥F2(J)
END DO
J=J+MD
J1=J1+MD
LBEG=LEND+1
IF (J.LE MM*M2) GOTO 14
END DO
END DO
ELSE
C — JACOBIAN IS FULL
DO I=1.N
YSAFE=Y(l}
DELT=DSQRT{URCUND™MAX(1 D-5,ABS{YSAFE)))
Y({)=YSAFE+DELT
CALL FCN{NX,Y,CONT,RPAR IPAR}
DO J=M1+1N
FJAC(J-M1,1)={CONT{J}vO(J)DELT
END DO
Y(I)=YSAFE
END DO
ENDIF
ELSE
C --- COMPUTE JACOBIAN MATRIX ANALYTICALLY
CALL JAC{N XY, FJAC L DJAC,RPAR,IPAR}
END IF
CALJAC=TRUE.
CALHES=TRUE.
20 CONTINUE
C - COMPUTE THE MATRICES E1 AND E2 AND THEIR DECOMPQOSITIONS
FAC1=tH/H
ALPHN=ALPH/H

BETAN=BETA/H
CALL DECOMR(N,FJAC LDJAC FMAS | DMAS MLMAS MUMAS,

& M1.M2 NM1FAC1.ETLDETIP1IER LOB,CALHES IPHES)
IF {IERNE.0) GOTO 78
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CALL DECOMC(N,FJAC,LDJAC,FMAS, L DMAS MLMAS MUMAS,
a M1,M2,NM1,ALPHN,BETAN,E2R E2I LDE1,1P2,IER, LIOB)
IF (IER.NE.0) GOTO 78
NDEC=NDEC+1
30 CONTINUE
NSTEP=NSTEP+1
IF (NSTEP.GT.NMAX) GOTO 178
IF {0.1D0*ABS(H).LE ABS(X)*URCUND) GOTO 177
IF (INDEX2) THEN
DO I=NIND1+1,NIND1+NIND2
SCAL{I)=SCAL{IYHHFAC
END DO
END IF
IF {INDEX3) THEN
DO I=NIND1+NIND2+1,NIND1+NIND2+NIND3
SCAL(=SCAL(L)/(HHFACHHFAC)
END DO
END IF
XPH=X+H

(G ¥os Sk AR ey e .

C STARTING VALUES FOR NEWTCN ITERATION
C ik Aok e ik kR S ek
"IF (FIRST.OR.STARTN) THEN

DO =1 M
Z1()=0.D0
Z2(1=0.D0
Z3(1)=0.00
F1(1)=0.D0
F2(1)=0.00
F3(1)=0.D0

END DO

ELSE

C3Q=H/HOLD

C10=C1*C3Q

C2Q=C2*C3Q

DO I=1,N
AKA=CONT{1+N)
AK2=CONT(I+N2)
AK3=CONT(i+N3}
Z11=C1Q4AK1+C10-CZM1y{AK2+C1Q-CTM1)*AK3))
Z21=C2QHAK1+C20-CIM1)(AK2+C2Q-C1M1)"AK3))
Z31=C3AYAKA H{C3Q-CAM1 J(AK2+{C3Q-CIMT)"AK3))
ZA(H=Z11
Z2(l)=z2!
Z3()=zZ31
FUN=TI 1" Z1+TI12°Z21+T113°Z31
F2(I)=TI21*Z11+T122:Z21+T123°231
F3(H=TI31"Z11+TI32°Z21+ TI33°Z3|

END DO

END IF

Cmt“m*ﬁmmm

C LOOP FOR THE SIMPLIFIED NEWTON ITERATION
C i Wik ik i dnink Sl Sk
NEWT=0
FACCON=MAX(FACCON UROUND)™0.8D0
THETA=ABS(THET)
40 CONTINUE
IF (NEWT.GE.NIT) GOTO 78
C— COMPUTE THE RIGHT-HAND SIDE
DO =N
CONT{)=Y(I+Z (1)
END DO
CALL FCN{N,X+C1°H,CONT Z1. RPAR IPAR)
DO I=1N
CONT(N=Y(1+Z2(})
END DO
CALL FCN(N,X+C2*H,CONT Z2.RPARIPAR)
DO =1,N
CONT()=Y(IHZ X))
END DO
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CALL FCN(N.XPH,CONT,Z3 RPAR IPAR)
NFCN=NFCN+3
C-- SOLVE THE LINEAR SYSTEMS
DO I=1,N
A1=Z1(1)
A2=72(i)
A3=Z3(l)
ZA()=TIH 1*AT+THZ A2+ TI13*A3
Z2()=TI21*A1+TI22* A2+ TIZ3*A3
Z3{N=TIAT AT+ TIR2 A2+ T133°A3
END DO
CALL SLVRAD(N,FJAC LDJAC MLJAC MUJAC FMAS | DMAS MLMAS MUMAS,
& M1,M2,NM1,FACT,ALPHN BETAN E1 £2R E2| LDE1,21.22.23,
& F1,F2,F3,CONT,IP1,IP2,IPHES, IER JOB)
NSOL=NSOL+1
NEWT=NEWT+1
DYNO=0.D0
DO I=1,N
DENOM=SCAL{l)
DYNO=DYNQ+Z1(IYDENOM}=2+(Z2( YDENOM}™2
& +{Z3{[YDENOM)*2
END DO
DYNO=DSQRT(DYNO/MN3)
C— BAD CONVERGENGE OR NUMBER OF ITERATIONS TO LARGE
IF (NEWT.GT.1AND.NEWT LT.NIT) THEN
THQ=DYNO/DYNOLD
IF (NEWT.EQ.2) THEN
THETA=THQ
ELSE
THETA=SQRT(THQ THQOLD)
END IF
THQOLD=THQ
IF (THETA.LT.0.99D0) THEN
FACCON=THETAJ(1.0D0-THETA)
DYTH=FACCON"DYNO*THETA™(NIT-1-NEWT)/FNEWT
IF (DYTH.GE.1.0D0) THEN
QNEWT=CMAX1(1.0D-4 DMIN1(20.0D0.DYTH))
HHFAC=.8D0*QNEWT*"(-1.000/(4.0D0+NIT-1-NEWT))
H=HHFAC™H
REJECT=TRUE.
{ AST=FALSE.
IF (CALJAC) GOTO 20
GOTO 10
END IF
ELSE
GOTO 78
END IF
END IF
DYNOLD=MAX(DYNO,UROUND)
DO =1 N
FAU=F1{11+Z1(1)
F2A=F2(1)+Z2(1)
F3I=F3(1+Z3(1)
F1(1)=F1l
F2(l)=F2i
F3()=F3l
ZHD=T11*FU+T1Z°F21+T13'F3l
Z2AN=T2A F1+ T2 F 214 T23°F3
Z3()=T31*F1+ F2I
END DO
IF (FACCON"DYNO.GT.FNEWT) GOTO 40

C — ERROR ESTIMATICN
CALL ESTRAD (N.FJAC.LDJAC MLIAC MUJAC FMAS LDMAS, MLMAS MUMAS,

& H.DD1,0D2.0D3,FCN.NFCN,Y0,Y LIOB X, M1 M2 NM1,
& E1LDE.21.22 23, CONT F1.F2,§P1 JPHES, SCAL ERR,
& FIRST REJECT FAC1,RPAR IPAR)

C — COMPUTATION OF HNEW

C — WE REQUIRE 2<=HNEW/H<=8.
FAC=MIN(SAFE,CFAC/ANEWT+2*NIT))
QUOT=MAX(FACR MIN{FACL,ERR"* 25D0/FAC))
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HNEW=H/QUOT

O FEE A b vk ek T bk

C IS THE ERROR SMALL ENQUGH ?

(O 3wk wkde ik bk bk ek

IF (ERR.LT.1.D00) THEN

C — STEP IS ACCEFTED

FIRST=.FALSE.
NACCPT=NACCPT+1
_{F (PRED) THEN
— PREDICTIVE CONTROLLER OF GUSTAFSSON
IF (NACCPT.GT.1) THEN
FACGUS=(HACC/H)*(ERR™2/ERRACC)™0.2500/SAFE
FACGUS=MAX/FACR,MIN(FACL,FACGUS))
QUOT=MAX(QUOT,FACGUS)
HNEW=H/QUOT .
END IF
HACC=H
ERRACC=MAX(1.0D-2,ERR)
END IF
XOLD=X .
HOLD=H ‘
X=XPH
DO =1N
YREY()+Z3Y
Z21=Z2(1)
Z11=Z1(l)
CONT(+N)=(Z21-Z3{)C2M1
AK=(ZA1-Z2)/CIMGC2
ACONT3=Z11/C1
ACONT3=(AK-ACONT3)YC2
CONT(1+N2)=(AK-CONT(I+N))C 1M1
CONT{1+N3)=CONT(1+N2}-ACONT3
END DO
IF (ITOL.EQ.0) THEN
DO I=t,N
SCAL()=ATOL(1)*RTOL(1)"ABS(Y(1))
END DO
ELSE
DO 1=1,N
SCAL{=ATOL(I+RTOL(1)*ABS(Y(1))
END DO
END IF
IF (JOUT.NE.0) THEN
NRSOL=NACCPT+1
XSOL=X
XOSOL=XOLD
DO I=1,N
CONT{1)=Y{})
END DO
NSOLU=N
HSOL=HOLD

CALL SOLOUT(NRSOL XOSOLXSOL,Y,CONT,LRC,NSOLU,

RPAR,IPAR,IRTRN)
IF (IRTRN.LT.0) GOTO 179
END IF
CALJAC=FALSE.
IF {LAST) THEN
H=HOPT
IDID=1
RETURN
END IF
CALL FCN(NX.Y,Y0 RPAR,IPAR)
NFCN=NFCN+1
HNEW=POSNEG*MIN(ABS{HNEW),HMAXN)
HOPT=HNEW
HOPT=MIN(H,HNEW)
IF (REJECT) HNEW=POSNEG"MIN(ABS(HNEW),ABS(H))
REJECT=FALSE.
IF ((X+HNEW/QUOT1-XEND)"POSNEG.GE 0.D0) THEN
H=XEND-X
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LAST=TRUE.
ELSE
QT=HNEW/MH
HHFAC=H
[l-li: (HTNHETA. LE.THET.AND.QT.GE.QUOT1 ANDQT.LE.QUOT2) GOTO 30
=HNEW

HHFAC=H
IF (THETALE.THET) GOTO 20
GOTO 10
ELSE
C — STEP IS REJECTED
REJECT=TRUE.
LAST=FALSE.
IF (FIRST) THEN
H=H*0.1D0
HHFAG=0.100
ELSE
HHFAC=HNEW/H
H=HNEW .
END IF
IF (NACCPT.GE.1) NREJCT=NREJCT+1
IF (CALJAC) GOTO 20
GOTO 10
END IF :
C — UNEXPECTED STEP-REJECTION
78 CONTINUE
IF (IER.NE.0) THEN
NSING=NSING+1
IF (NSING.GE.5) GOTO 176
END IF
H=H"0.5D0
HHFAC=0.500
REJECT=TRUE.
LAST=FALSE.
IF (CALJAC) GOTO 20
GOTO 10
C — FAIL EXIT
176 CONTINUE
" WRITE(6,979)X
WRITE(6,*) MATRIX IS REPEATEDLY SINGULAR, IER="IER
iDID=-1
RETURN
177 CONTINUE
WRITE(6,979)X
WRITE(6,"} * STEP SIZE T0O SMALL, H="H
iDID=-3
RETURN
178 CONTINUE
WRITE(6,979)X
WRITE(6,")* MORE THAN NMAX =" NMAX,'STEPS ARE NEEDED'
IDID=-2 :
RETURN
C - EXIT CAUSED BY SOLOUT
179 CONTINUE
WRITE(6,979)X
979 FORMAT{' EXIT OF RADAUS AT X="E18.4)
IDID=2
RETURN
END

END OF SUBROUTINE RADCOR

DOUBLE PRECISION FUNCTION CONTRS5{LX, CONT LRC)

O aoooa

C  THISFUNCTION CAN BE USED FOR CCNINUGUS QUTPUT, IT PROVIDES AN
C APPROXIMATION TO THE TH COMPONENT OF THE SOLUTION AT X,
C IT GIVES THE VALUE OF THE COLLCCATION POLYNOMIAL, DEFINED FOR
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C THE LAST SUCCESSFULLY COMPUTED STEP {BY RADAUS).
c

IMPLICIT DOUBLE PRECISION (A-H.0-Z)
DIMENSION CONT(LRC)
COMMON /CONRAS/NN,NN2,NN3,NN4 XSOL HSOL,C2M1,C 1M1
S=(X-XSOL)YHSOL
CONTRS=CONT{I}+S<(CONT(I+NN}+{S-C2M1)"(GONT(I+NN2)
&  +(S-C1M1)*CONT{I+NN3})
RETURN
END

c

C END OF FUNCTION CONTRS

c

C = s ok
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Appendix C

C++ Code used to solve Stiff Ordinary
Differential Equations Presented in
. Chapter 5

1. Semi-Implicit Euler Method

h=Time_lInc;

double det_A;

*x=h;
defta_nf1]=0.C;
celta_n[2]=0.0;
delta_0[1]=0.0;
defta_0[2}=0.0;
A[1][11=1.0-h*df1dy1{x.yn,param};
A[1]{2]=1.0-h*dftdy2(x,yn param}),
A[Z][1}=1.0-h df2dy 1{x,yn,param);
AR2I[2]=1.0-h"df2dy2({x,yn,param),
det_ A=A ARIIZFAN] 2T ALZIN:
A_inv[1[11=A[2][2det_A;
A_inv[1Ji2]=-A[][2]/det_A:
A_inv[2][1]=-AlZ][1)/det_A;
A_invI2IZIA[][1)/det_A;

if(t=0)

{

i

for(i=1;i<=2;i++)

delta_n[il=delta_n[+A_inv[[1]"f1{x.yn,param};
delta_nfil=delta_n[l+A_invii{2]"h*f2(x,yn param}.

}for(i=1;i<=2;i++)
{ynﬁ]=ynm+delta_nm;
}

}a!se if{t==Finish_Time)
{for(i=1;i<=2;i++)

{
ternp_nf]=0.0;

temp_n[ij=temp_nf+A_invil[1 J{h*fi{x,yn param}detta_C[1])
temp_n[ij=temp_n{+A_iv{[2]*(h"fZ(x.yn,param)-detta_0jZ});

delta_n[ij=temp_n{:

}
for{i=1;i<=2;i++)
{



Appendix C 149

yn[i=ynfi+delta_nfl;
}
'

else

{
u

for(i=1;i<=2;i++)

temp_n[]=0.0;

temp_n[il=temp_n[+A_inv[i[13=(h*F}{x.yn param}-delta_O[1]);
temp_nfil=temp_n[+A_mvji2](h~f2(x.yn,param)-delta_0[2]);
delta_n[il=delta_n[i]+2.0*temp_n[;

}

for{i=1;i<=2;i++)

{
yr[il=yn[i}+celta_n[];
x=x+h;
phasemiinodet)=yn[1]; *
phasemi[nodeZl=yn[1];

phasemZ[node1]=yn[2];
phasem2[node2]=yn[2];

2. C++ Program

i

#include <vcl.h>

Fpragma hdrstop

#include <time.h>

#Anclude "smat.h”®

#include <string.h>

#Anclude <math.h>

#include "matrix.h"

#Finclude "rik_fun3.h"

#nclude "Time_stepping.h”

#define SWAP(a.b) {dum={a);{a)=(b);(b)=dum;}

#define TINY 1.0e-20

,!‘I

#pragma package(smart_init)

#pragma resource " .dfm”

TForm1 *Form1;

It

__fasteall TForm1::TForm1{TCompanent® Owner)
- TForm{Qwner}

}
i
void __fastcall TForm1:OpenData1CIick(TObject *Sender)

{
if use dialeg to open data file for read
{OpenDialog1->Execute()}

{

I/ initialize maximum values for plotting
max_x=-1E15;

max_y=-1E15;

min_x=1E15;

min_y=1E15;
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- il get file name
file_name = OpenDialog1->FileName;
{ open input file sfream

ifstream fef(file_name.c_str());

/ read in number of nodes and elements
fef>>nodes>>elements;

out_file<<"number of nodes: "<<nodes<<" number of elements: "<<elements<<"n",

int i,j; ’

inf el;

} define arays and matrix to store geometry
elem=imairix(1,elements, 1,2);
nx=vector(1,nodes);
ny=vectar(1,nades);
nx1=vector(1,nodes);
ny1=vector{1,nodes);

{I displacment vector

u=vector{1,nodes"2});

R=vector{1,nodes*2);
variable=vector{1,nodes);

for(i=1;ix=nodes*2;i++) ulll=0.0;

for{i=1:i<=nades"2;i++) R[i}=0.0;

K=matrix{1,nodes"2,1,nodes™2),

loadx=vectar({ 1,nodes);

loady=vector(1,nodes),

bound=ivector{ 1,nodes*2);

F=vector{1,nodes"2);

P=vecior{1,nodses*2);

for{i=1;i<=nodes 2ji++)

for(j=1;j<=nodes*2;j++}

KIi=a.0;
I

for(i=1;ix=nodes;i++} loadx[}=0.0;
jor{i=1;i<=nodes;i++) loady[=0.0;
for{i=1;ke=nodes"2;i++) bound{i}=()
for(i=1;i<=nodes*Zii++) F[II=0.0;
for(i=1;i<=nodes™2;i++} P[I=0.0;
for(i=1;i<=nodes;i++)}

{ .
fet>>node>>mx[il>>ny[i],

i nx[ij=max_x) max_x=nx{];
if(my[}>max_y) max_y=nyll;
if{nx[i]<min_x} min_x=nx[1];
if{ny[ilemin_y} min_y=ny[l}

1/ read in element connectvity
for{i=1;i<=elements;i++}

{
fet>>el;
for{j=1;j<=2;j++} fef>>elemE]:

1 write out the data 1o file
0Uf_ﬁ!e<<"'“**""‘"""N0des"”’m’"'“"'\n';
for(i=1;i<=nodes;i++)
{ H - L]
out_file<<ic<® “<<nxj<<", <<nyj<<tn’
}
out | fllacc e Elaments TN
far{i=1;i<=elements:i++)

out_file<<i<<” ~c<glemi[1]<<","<<elem[ili2]<<"\n";

fet->number_of_loads; .
for(i=1:i<=number of_loadsi++}

{
fef>>node;
fet>>loadx[node}>>loady[node];



Appendix C

151

for( i=1i<=nodes;i++)
out_file<<"loadx: "<<loagx[}<<" loady: "<<loady[iJ<<"n":

fef>>number_of bounds;
num_bound=0;
for{i=1;l<=number_of bounds;i++)

{

fef>>node;
fef>>bound[node™2-1]>>boundnode*2];
i#f{bound[node*2-11==1) num_bound++;
if{ bound[nede*2]==1) num_bound++;

geom=true;
cantour_x=false;
contour_y=false;
contour_s=false;
contour_e=false;
Form1->Invalidate();
©?

}
L.'
void __fastcalt TForm1::FormCreate{ TObject “Sender)
{
{f open output file

out_file.open{"sma_out” jos::out);

out_file.seff{ios::scientific);

out_file<< \it,
out file<<™"* SMAFE Mn";
out_file<< \n";

out_file<<" Job Staried: "<<DateTlmeToSh'(,Now()).c_sh()«"\n';
contour_file.open(“contour.cut” ios:out);
contour_file setf{ios:scientific);

contour_file<< i “\n"
contour_file<<™** SMAFE i
contour_file<< \n";
contour_file<<” Job Started: "<<DateTimeToStr{Now()).c_str{)<<"n";
geom=false;
result=false;
dmag=100.0;
vanable=vector(1,nodes};
dtype=0;
}
[,"
void __fastcall TFormr1zExit1Click{TObject *Sender)
{
i exit

Form1->Close();
}

i

void __fasteall TForm1::Analysis1Click{ TObject “Sender)

{

out file<<"Start Time:"<<Start_Time<<"\n";
out_file<<"Time Inc: ™<<Time_inc<<"\n";
out_file=<"Finish_time: "<<Finish_Time<<"n®,

/l analyse

int &l,node1,node2,ij;

. double X1,X2,¥1,Y2,L0,cos_phi0,sin_phiC;

double x1,x2,y1,y2,L.cos_phisin_phi;

double ax.ay;

KM=matrix(14,1.4);

KG=matrix(1.4.1.4);

KB=matrix(1,nades 2-num_bound,1 nodes*2-num_bound);
KM_keep=matrix{ 1,nodes"2-num_bound, .nodes™2-nurn_bound);
FB=matrix(1,nodes*2-num_bound,1,1);

UB=vecter( 1.nodes™2-nurn_bound};

param=vector(1,20);

A=mafrix(1,2,1,2);
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A_inv=matrix(1,2,1.2);

yn=vector(1,2);

delta _n=vecior{1.2);
delta_0=vector(1,2);
temp_n=vector(1,2);
residual=vector{1.ncdes*2-num_bound},
double k1,k2; :
double estran, strgss;

double E.AQ;

E=34ES6;

A0=7.8;

11 while solutton is not converged
iter=0; :
max_iter=10;

TOL=1E-15;
not_converged=true;
stress_y=vecior(1,nodes);
strain_v=vector(1,nodes);
phasem1=vector{1.nades);
phasem2=vector( 1 nodes),

/f time step

double time;

long t,in;
tn=ceil((Finish_Time-Start_Time)/Time_Inc);
time=Start_Time;

{f intial phases

yr{11=0.5;

yn[2]=0.5;

for(t=1;te=tm;t++)

+

fime=time+Time_Inc;
while(nat_converged)
{
fi—————— for each element start
for(el=1,ei<=elements ;el++)
{
{f reference configuration
node1=elem[el][1};
node2=elem{el]ZL;
X1=nx[nodel];
X2=nx[node2];
Y 1=ny[node1];
Y2=ny[node2],
L0=sqri{{X2-X 1y (X2 XY 2- Y1) (Y- Y 1))
ff calculate cos theta
cos_phiG=(X2-X1)/L0;
/I caleulate cos theta
sin_phi0=(Y2-Y1)/L0;
out filecs"X1: "e<X 1< X2: "eX2e<” Y1 "< 1<<" Y21 °
<<Y_2<<' LO; "<<0<<"\n";
out_file<<" cos_phil): "<<cos_phi0<<" sin _philk: "<<sin_phi0<<mn";
/f current cenfiguration
x1=X1+u[nade1"2-1]
x2=X2+u{nodeZ2-1];
y1=Y1+u[node1"2];
y2=Y2+u[node2*2};
L=sqri((x2-x1)(x2-x1)Hy2-¥y 1) [yZ-y )}
i1 calculate cos theta
cos_phi={x2-x1)L;
{I catculate cos thets
sin_phi=(y2-y 1)L
out flee<™x]: "cax << x2: "<<x2<<” y1: "oy lat y2u 7
<<;‘Z<<" L "e<le<Tn";
out_file<<"cos_phi: “<<cos_phi<<" 5in ,_phiz "s<sin_phi<<n";
j# compenents of strain displacement matrix
ax=1/L{"cos_phi;
ay=1/Lg"sin_phi;
out_file<<"ax: Te<ax<<” @yl "eay<<nT,
1! define material stiffness matrix
k1=E*AQ/LD;
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KM =k axtax;
KM[1][2]=k1"ax*ay;
KM1]3]=—k 1 axax;
KM[1][4]=k T*ax*ay;
KM[2[{1]=k1"ax ay;
KM2][2}=k1 ay"ay;
KM[2[(3]=-k1"ax"ay;
KM[2][4]=-k1*ay*ay;
KM[3[i1]=k1*ax"ax;
KM{3i[2]=-k1*ax*ay;
KM[3[[3]=k1*axax;
KM[3)[4]=k 1*ax*ay;
KM[A][1]=k1"ax*ay;
KM4i[2[=k 1*ay*ay.
KM[4][3]=k1*ax"ay;
KM{4i[41=k1*ay*ay,;
out_file<<” KM n";
for(i=1;i<=4;i++)

for(j=1}<=4j++)
out_file<<KMi[f]<<"";
Lut_ﬁle«"’\n‘; -
for{i=1;i<=nodes*2-num_baund;i++)
residualfii=0;

out_file<<ax: "<<ax<<" ay: "<<ay<<mn’
{i define geomertic stifness matrix
estran={L*"L-L0*L0y(2.0"L0 LAY,
siress=E"esfran;
stress=stress+yn[1*E-param{Zlyn[2]"E*param{2];
stress_v[node1]=siress;
stress_v[nodeZ2]=stress;
strain_vinodet}=esiran;
strain_v[nodeZ]=estran;
out_file<<"stran: "<<estrarn<<"stress: "<<stregs<<n’;
N=AQ'stress;
- K2=NLO;

KG[1][1]=k2;

KG[1]{2]=0;

KG][3}=k2;

KG[1][41=0;

KGI2][1]=0;

KG[2][2]=k2;

KG[2][3]=0;

KG[2)4j=k2;

KG3][1]=+2;

KG[31[21=0;

KG3][3]=k2Z;

KO3

KGRI[1]=0;

KGHIP2l=k2;

KG4][3]=0;

KGA1=K2;

out_filgeg" T TKG LI
for(i=1ic=4;i++)

{

for{i=1j<=4;j++)

{

out_file<<KGHIOR<"™

}

out_flle=<"n",

1
{f assemble stiffness matrix

K{node1‘2—1][nodeT*2—1I=KEn0de1*2-1][ﬂ0de1'2-1]+KM[1]{1 T+EGI];

K[node1*2-1}fnode1"2] =K[node1*2-1lincde172] ~KM{TIZI+KG11(2;
Kinode1 *2-1]{nod32*2-1]=K[noc!e1’2—1]{node2’2—1]+KM[1]{3]+KG[1][31;
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it

K[node1*2-1]node2*2] =Kfnode1*2-1]jnode2*2] +KM{1][4[+KG[1}i4};

Kinode1*2)[nodet*2-1]=K[node 1" 2Z][node 1*2-1]+KM[2){ 1]+KG[2][1];
Klnode1*2][node1*2] =Knode1*2][node1*2] +KM[2][2]+KGI212):
Kinode1*2][node2*2-1]=K[node 1*2][node2*2-1]+KM[2][3]+KG{2]3];
Klnade1*2l[node2*2] =K[node1-2)[nade2*2] +KM[2J[41+KG]2]j4];

Kinote2*2-1)jnode 1*2-11=Kfnote2*2-1Jinode1*2- 11+ KM 11+ K G 1);
Kinode2*2-1]fnode1*2] =K[node2"2-1]inode1*2] +KM[3][21+KGI3][2};
K[node2*2-1][node2*2-1]=Knode2*2-1]inode2* 2-1 1+KM3][3]+KG[3][3];
Klnode2*2-1][node2*2] =K[nade2"2-1][node2*2} +KM[3I[4]+KG3I[4]:

Klnode2*2]node1*2- 1i=Knode2*Z]inodet*2- 11+ KMIAI1 1+ KG41[1}
Klnode2*2)[node1*2] =K[node2*2lincde1*2] +KM{4][2]+KG[4][2];
Kinode2*2][node2*2-1]=K[node2*2][node2*2-1]+KM[4][3]+KG[4][3];
KlnodeZ*2jnode2*2] =K[node2*2linade2*2] +KMIAJ[4]+KGHIM4L
{/ farce vector

double time_scale;

time_scale=Finish_Timeftime;
Finode1*2-1]=loadx[node1]'ime_scale;

FInode*2}= loadynodet} tirme_scale;

FlnodeZ"2-1]=loadx[nade2] ime_scale;
Fnode2*2]=loady[node2)time_scale;

/ internal forces

Plnode1*2-1]=P[node1*2-1]-ax’N;

Plnode1*2=Plhode1*2] -ay*N;

Plnode2*2-1}=Pnode2 2-1]+ax*N;

Pinode2*2]=Pjnode2*2] +ay*N;

double c1,y value;
double k1,k2.k3,kd h;

double y1,y2;

int tij,m;

x={;
param[1]=169.0;
param[2]=1.83e-3;
param[3]=170.0;
param[4]=291.80e5;
param{5]=1192.53et;
param[61=0.0;
param{7]=0.0;
param[8]=0.267e-3;.
param[9]=1.3804e-23;
param[10]=298.0;
param[i1]=17.71e-23;
param[12]=19.5E-1;
param[13]=298.0;
param[14]=0.0;
param(151=12.3750;
param[16]=375.0;
param[17}=375.0;
param{18}=0.0;
param{19]=57.8440;

/lm=10000;

/ldouble H=160.0;

h=Time_inc;

double det_A;

x=h;

delta_n[1}=0.0;

delta_nj2}=0.0;

defta_0[1}=0.0;

delta_0{2]=0.0;
A[1][1]=1.0-h*df1dy1{x,yn.param};
A[I2]=1.0-h"dAdy2{x,yn,param);
AfZ][1]=1.0-h*df2dy 1{x.yn.param};
A[2][21=1.0-h*dfR2dy2(x.yn param),
det_A=A[][1TA[ZIZFANI2IARZI];
A_imvi1[1]=A2]I2Vdet_A;

A nv[1[2=AD T2 det A
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A v T=-ART et A
A inv[2][Z1=A[][1]idet_A;
if¢=0}

{

[

for(i=1;i<=2;i++)

delta_n[iJ=deita_n[iJ+A_inv]ij[1]"h*f1(x.yn,param);
delta_n[il=delta_n{il+A_invill[21"h™E2(x.yn param);

}
for(i=1;i<=2;i++}
{
yn[il=yn[il+detta_nfi;
}
else if{t==Finish_Time}
{
for(i=1;i<=2;i++)
{

temp_n[]=0.0; *

temp_nfii=temp_n[+A_invII[1]*(h*f1(x.yn,param)}-delta_0[1]}:
temp_n[ij=temp_n[i]+A_inv[[2]{h*f2(x,yn,param}-detta_0[2);

delta_n{ij=temp_n[i];
}
for(i="1;i<=2ji++}

{
yn[i]=yn[i}+deHta_nfi];
}

1

else
{
ft
for(i=1;i<=2;i++)
temp n[=0.0;

temp_nfil=temp_n[[+A_inv[§{1]*(h-f(x yn param}-delta_C[11);
temp_n[fj=temp_n{i}+A_inv[i][2]"(h*f2(x.yn param)-detta_0{Z}

delta_n(ij=detta_n{i[+2.0"temp_n[l.
}for(i=1 =2,k
yn{fl;yn [+defta_n(i;
1

x=x+h;

phasem1inode 1}=yn[1};

phasemi[nadeZ]=yn[1];

phasem?2[node 11=yni2];

phasem2[node2]=yn[2};
it

Wi elements .
out_filgs<® e stiffness™ T
for{i=1;i<=nodes"2;i++)
for{j=1;j<=nodes"2;j++}
{
out_file<<K[][j<<" "
out_file<<T ",
for(i=1;i<=nodes"Z;i++}
{

out_file<<Ffl<<"n";

out_fle<<™ = intemnal load P T

for(i=1;i<=nodss*2;i++)

out_file<<P[ij<<"n™;
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| .
{#f apply boundary conditions
intibjb;
ib=0};
for(i=1;ix=nodes*2;i++)
if{boundfii==0}
{

ib++;
ib=0;
for(i=1;j<=nodes*2;j++)
{

if{bound[f]==0}

{

joiH,

KB[ib]o]=KEI[l:
}

}

}
out_file<<® #—-r==srrhondary conditions KB siiffngss™""\n™

for(i=1;i<=nodes*2-num_bound;i++)
{
for(j=1;j<=ncdes*2-num_bound;j++}
out_file<<KB[fl<<"";
out_filee<n®;
) .
# haundary conditions applied to load
ib=0;
for(i=1;i<=nodes*Z;i++)
{
ifbound [1==0)
{

ib++;
FBIb1=F-RIbL;
}

}

out_file<<"* boundary conditions load FB *™"**"\n";
for(i=1;/<=nodes*2-num_bound;i++}
{

out_file<<FB[[1]<<"n";

}
e
H Salve the reduced matrix and vector f
TR T
for(i=1;i<=nodes*2—num_bound;i++) )

{
for(j=1;j<=nodes"2-nurm_bound;J++)

{
KM _keep{H[I=KBHI
}

}

gaussj(KB,nades'Z—num_bound,FB,1 ¥,

out_file<<” FB post T
for{i=1;i<=nodes*2-num_bound;i++}

{

out_file<<FBRf1}<<"n";

i
/I store solution in displacement vector
ih=(;
for(i=1i<=nodes 2;i++}

{
iffbound[i]==0)
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{

ib++;

u=uf}+FBbIH];
} _

out filges" e galition M0,

for{i=1;i<=nodes*2;i++)
{

out file<<u[i]<<"n";
il calculate residual
for(i=1;i<=nodes™2-num_bound;i++)
far(j=1:j<=nodes*2-num_bound;j++}

{

RII=RIT+(KM_keepfiI'FBE(1]:
}
} L3
out file<<"R:\n%;
for(i=1;i<=nodes"2-num_baund;i++)
{

out_file<<R[}<<"n";
for(i=1;ix=nodes*2-num_bound;i++)
{

residualfil=F IR0

out_ﬁle<<"res'iduatz \n;
for(i=1;i<=nodes*2;i++)
out file<<resigualfl<<™n~;
/I calculate maximum residual

max_residual=0.0;
for(i=1;i<=nodes*2;i++)

if{ fabs(residuallll)>fabs{max_residual)) max_residual=residualll];

fter++; .

out_file<<"iteration: "<<iter<<" maximum residual: “<<max_residual<<mn";

not_converged=false;
if{fabs(max_residual)>TOL) not_converged=true;
i{iter>max_iter) not_converged=false;

resuli=true;
Form1->Invalidate(};
}f not converged
Y time
} .
'!‘f
void _fastcall TForm1::DisplayGeorry()
[
I
int1;
double Hmax;
double Vmax;
intj;
# initialize maximum values for plotting
max_x=-1E15;
max_y=1E15;
min_x=1E15;
min_y=1E15;
for(i=1;i<=nodes;i++}

mx1fj=nx[ij+ul(F1)2+1]"dmag;
ny 1 [il=ny[irul(-1y2+2]"dmag;

for(i=1:i<=nodes:i++)
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if{nx 15i[>max_x) max_x=nx1[i;
f{(ny1il>max_y) max_y=ny1fil;
iffnx1fij<min_x) min_x=nx 1[I}
if{ny1fil<min_y) min_y=ny1[t;
}

max_xdime=max_x-min_x;
max_ydime=max _y-rnin_y;
if (min_x<Q0) shiftx=fabs(min_x);
else shiftx=0;
if {min_y<0) shifty=fabs{min_y?;
else shifty=0;
/I drawing dimensions
doubie Ib,rb tb,bb;
double fx;
double fy;
double x,y;
il page dimensions
Hmax=ClientWicith;
Vmax=ClientHeight;
f page borders
Ib=20;
rb=0;
tb=0;
bb=60;
Hmax=Hmax-lb-rb;
Vmax=Vmax-tb-bh;
Canvas->Pen->Width=1;
Canvas->Pen->Caolor=ciFuchsta;
Canvas->Brush->Color=cWhite;
iflgeom&&diype==0}

x={Hmax-tb-rb)/max_xdime;
if{max_ydime!=0)

{
fy=(Vmax-th-bb)max_ydime;

else fy=fx;
int nade_number! node_number?;
double x1,y1;
char.str{10};
Canvas->Font->Size=8;

Canvas->Font->Style=TFontStyles()<<fsBoid;
int x0,v0;
for(i=1;i<=elements;i++}
{
node_numbert=elem[i[1};
node_number2=elem{ij[2];
x=lb+{nx[elem[][ 1] +shiftx)fx;
y=(nylelem[i][1]]+shifty)“fy;
y=\max-y,;
x1=x;
yi=y
x0=x;

=,

Canvas->MaveTo(xy);
gevi{node_number, 4, sir);
Canvas->Font->Color=ciBlack;

Canvas->Brush->Color=ciWhite;
Canvas->TextOut({x,y.str);
x=Ib+H{nx[elem{][2[1+shiftx) fx;
y=(nyfelem[JF2[]+shifty)™fy;
y=Vmax-y;
geviinoce_nurnber2, 4, sir);

Canvas->Font->Color=clBlack;

Canvas->Brush->Color=ciWhite;
Canvas->TextOut{x.y.str):
Canvas->MoveTo{x1yT)
Canvas—>tineTo{xy)
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gevi, 4, sir); .
Canvas->Font->Calor=clYellow;
Canvas->Brush->Color=ciBiue;

Canvas->TextOut{(x0+x)/2.0,(y0+y)l2.0,str);

}
}
iflgeam&&resutd&dtype==0)

fx={Hmax-b-rb)max_xdime;
fy={Vmax-tb-bhymax_ydime;
 Canvas->Pen->Color=clBlue ;
Canvas->Brush->Color=clWhite:
for(i=1i<=eglements;i++)
{
x=lo+{roct felemi[1+shifx) o
y=(nyt[elem[)[1[+shifty}fy;
y=Vmax-y;
Canvas->MoveTo{xy);
x=lo+{rocd [elem{z[2])+shifod ix;
y={ny1[elem{lZ +shifty)'fy;.
y=Vmax-y;
Canvas->LineTo({x.y);
}

}
iidtype>0)

char stri10];
Canvas->Font->3ize=9;

fx={ Hmax-lb-rb¥max_xdime;
fy=(Vmax-th-bb)/max_ydime;

int nc=7;
inte;
int node1.node2;
double cx1,ox2,cy1.cy2;
double cpx.cpy;
int levels;
double con_x.con_y;
int num_cor;
int "c_list;
double “cx_list,"cy list;
cx_list=vector(1.nc+2);
r_list=vector(1.nc+2);
¢_list=ivector{1,nc+2};
§f find maximurn and maximum vaiue of variable
double min_ var=0;
daouble max_var=0;
double “contour_val;
double small_num=0.0;
double factor;
centour_val=vector(1,nc)
}f colour map for contours
TCalor col[9];
col[01=0x00FFR000;
col{11=0xQuFF1000;
col[2]=0x00FF8000;
col[3]=0x0CFFFO00;
col[4)=0xQ00FFFO0;
col[5]=0x0000FFFF;
col[6]=0x00006FF8;
cot[7]=0x00000FF0;
col[8]=0x00000EFD;
int direction;
for(i=1;i<=nodes;i++)

if(variable[flxmin_var) min_var=variableff];
if{variable[i]>max_var) max_var=varable[l];

'
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if(fabs(min_var)<1E-15)min_var=0.0;
contour_file<<"max variable: "<<max_var<<" min variable: "<<min_var<<"n";
#l cantour levels : -
contour_file<<"contour_levels: \n™;
doubte delta_temp=(max_var-min_var){nc-1} ;
contaur_val(1]=min_var;
contour_val[2]=min_var+delta_temp;
contour_vall3]=min_var+delta_temp*2;
contour_val[4]=min_var+delta_temp*3;
contour_val[5]=min_var+delta_temp*4;
contoyr_val[gl=min_var+detta_temp*3;
contour_val[f]=min_var+delta_temp*6-0.5"delta_temp;
for(i=1ic=nc;i++)

{
if{(fabs{contour_val[ij}<1E-15) contour_valfi}=0.0;
1 .

If contour legend
Canvas->Font->Color=ciBlack;

Canvas->Pen->Color=c!Black;

int height=ClientHeight; ’
Canvas->Brush->Color=cel[7};
Canvas->Rectangle(lb,height-30,Ib+55.height-50);
Canvas->Brush->Color=col[6];
Canvas->Rectangle(lb+55,height-30,lb+110,height-50);
Canvas->Brush->Color=coi[5]; :
Canvas->Rectangle(tb+110,heighi-30 lb+165,height-50);
Canvas->Brush->Color=colf4];
Canvas->Rectangle(ib+165,height-30,I0+220,height-50);
Canvas->Brush->Color=col{3];
Ganvas->Rectangle(lb+220 height-30,1b+275 height-50);
Canvas->Brush->Color=col[2];
Canvas->Rectangle(lb+275 height-30,1b+330,height-50);

Canvas->Brush->Color=col[1];
Canvas->Rectangle(lb+330,height-30,Ib+385,height-30);
Canvas->MoveTo{lb+55,height-30);
Canvas->LineTo{lb+55 height-10);
Canvas->MoveTo{lb+110,height-30);
Canvas->LineTo{lb+110,height-10);
Canvas->MoveTo{lb+165,height-30);

- Canvas->LineTo(lb+165,height-10);
Canvas->MoveTo{lb+220,height-30);
Canvas->LineTo{ib+220,height-10);
Canvas—>MoveTo{lb+275,height-30);
Canvas->LineTo{lp4+ 275, height-4 0},

Canvas->MoveTo(lb+330,height-30);
Canvas->LineTo{lb+330,height-10);
Canvas->8rush->Color=ciWhite;

I/ format numbers for output

int dec1,5gn1;

double convertl;

char *string; )

string=ecvi{delta_temp 4,8dec1,&sgnt};
contaur_file<<ecvt " <<string<<” "<<deci<<" "e<sgni<< \n%
converti=pow({10.dec1);

contour_file<<"canvert!: "<<corwert1 <<
gevi{contour_val[7Jconvertt, 4, str);

Canvas->TextOut{lb height-25,str);

gevi{contour_val)/convert?, 4, strk;
Canvas->TextOut{ib+60 height-25.5r);

govi{contour_val[Slconvertt, 4, str);
Canvas->TextOut{lo+115 height-25.str);

gevi{contour_val[4iconvertl, 4, str);
Canvas~>Tex10ut(lb+1?O.height-zs,str);

gevi(contour_val[3)/convert1, 4, stry
Canvas->TextQut{lb+225 height-25,str);
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gevi{contour_val{2)/convert1, 4, str);
Canvas->TextOul{Ib+280,height-25,str);

gevi(contour_val{1l/convert1, 3, str);

Canvas->TextOui({lb+335,height-25,str);

{f muft factor

Canvas->TextOut(|b+3930 height-25,"10E™);

Canvas->TexiOut{lb+420,height-25,dec1);

if{dtype==1) Canvas->TextQui(lb+500 height-25,"X displacement™);
else if{dtypa==2) Canvas->TextOut{lb+500 height-25,"Y displacement™);
glse if{dtype==3) Canvas->TextQut{lb+500 height-25,"Siress");
else if{dtype==4) Canvas->TextQul{lb+500 height-25"Strain™);

i
for{i=1;i<=nc;i++)

contour_file<<i<<" "<<contour_valfjl<<"n";
int lcount=0; iy

boo! first;

for(e=1;e<=elements;g++)

{
first=true;
{ get node 1 and 2 of element
nade1=clemie]i1l;
node2=elemfe][2]:
contour_file<<node1<<" "<<node2<<"n";
cx1=nixfnode1};
cy1=ny[node1};
cx2=nx[node2}
cy2=ny[node2];
contour_file<<™x,y: "<<cxl<<” "oy le<” "eexZa<” ey <<,
contour_file<<"variable: "<<variable[nodeij<<" “«<variablefnode2]<<"n";
/i check within contour band
double x_old,y_old;
Canvas->Pen->Width=4;
int counter=1;
if{variable[nodeZ]>variable[node 1]}

for{i=1:i<=nci++)
if {variablelnode 1]>=contour_val[i]}

cx_lisf{1}=cx1;

cy_list{1}=cy1;
c_listfil=i;
}
1
}
else

for(i=1;k<=nc;i++)
if (variablejnodeZ]>=contour_vall])
ox_listf1}=cx2;
cy_list{1]=cy2;
c_listf1]=%;
}
}

for{i=1;i<=nc;i++)

{
JURRI Vinear interpolation case 1
if{{variable[nace1]<contour_val[l)&&{varable[node2]>contour_vaili]}))

if{fabs(variabIe{nodeZ]—vaﬁable[node11)>5ma[l_num)

{ . .
factor:(camwr_vaiﬁ}-variable{nodﬂ]}i(vanab%e[mdeZ]—vanable{nodﬂ}};
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counter++;

H

else factor=0.0;

cpx=cx1+Hcxd-cx1) factor;

epy=cy1+{cy2-cyt)factor;

cx_listfecaunter]=cpx;

cy_listlcounterl=cpy;

¢ _listlcounter]=i;

direction=1;

contour_file<<"cpx,cpy: "<<cpx<<" "<<cpy<<” direction 1\n";
contour_file<<™: "<<j<<n";

}
HitiiHiis linear interpolation case 2

else iff(variable[node2]<cantour_val[i[}&&{variable[node1}>contour_val[)}

if{ fabs{variable[node2)-variable[noda1])>small_num)

fact0r=(contour_vaIﬁ]—variabl‘e[nodm])l(variable[node2]—variab!e[node H)s

counter++;
¥
else factor=0.0;

cpx=cxT+{ex2-ex1)*factor;
cpy=cy1+{cy2-cy1)*factor;
cx_list{fcountert=cpx;
cy_Estfcounterj=cpy;
c_listfcounter]=i;
cortour_file<<"cpx,cpy: "<<cpx<<" "<<cpy<<" direction 2 \n™;
Canvas->Pen->Color=col[i];
x=th+{cpxix;
y={cpy)'fy;
y=Vmax-y;
ifCanvas->LinaTo(x,y}
contour_file<<"i: "<<i<<n";

}
Wi
iff variable[node2]>variable[node 1]}

far(i=1;i<=nc;i++)}
if (variable[node2]>=contour_val[}}

ex_listicounfer+1l=cx2;
cy_listlcounter+1]=cy2;
c_listfcounter+1]=i;

}
}

else
for{i=1;i=ng;i++)
{
if (variabie[node T}>=contour_val(if)

cx_listfcounter+1]=cxt;
¢y_listfocounter+ti=cy1.
¢_listfcounter+1j=i;
}
!

contour_file<<"Paint List for element "<<e<<™n";

int c;
for{c=1;c<=counter+1;c++)

contour file<<cx_listfcl<<" "<<cy_listfc]<<" "<<c_list{c]<<"n";
x=lb+ox_fistic] i
y=cy listicI"fy:
y=Vmax-y,
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Canvas->Pen->Color=colfc_listfc]);
if{ first)
{
Canvas->MoveTo(x.y);
first=false;
}

else

Canvas->LineTo(x.y);

}

}
We

}
}

it

void __fasteall TForm1::FormPaint(TObject *Sender)

Form1->DisplayGeom();

}
It

void __fastcall TForm1::FormResize{TObject *Sender)

Form1->Invalidate{);

¥

if -
void __ fastcall TForm1::gaussj(double **a, int n, double **b, int m}

int *indxc,*indxr, *ipiv;

int iicolirow j kLI
double big,dum,piviny;
indxc=ivectar(1,n);
indxr=ivector(1,n};
ipiv=ivectar(t.n);- .
for(j=1;j<=n;j++) ipiv[=0;
for{i=1i<=m;i++)

{ .
big=0.0;
for{j=1j<=nj+)

iffipivi]i=1)
for(k=1;k<=n;k++)

{

ifipiviki==0)

{
Ef(fabs(am(l)”big)

big=fabs{afll{k}};
irow=j;
icol=k;

}

}

}
+H{ipiv]icol]);
ii{irow!=icol)

{
for(i=1;l<=n;}++) SWAP(afrow][l.aficolll])
fqr(l=1;l<=m;l++) SWAP!{bfrow][iL.bicol[l}

}
indxrfij=irow;
indxcfi]=icol;
pivinv="1.0/aficol]ficoll;
aficol][icofi=1.0;
for(i=1:le=n;i++) aficoiiff=pivinv,
for{l=1;}<=m;H+) blicol}{lf =pivinv;
for(l=1:ll<=n;li++)

if{li=tcof)
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{

dum=a[lifficoll;

alfjicol=0.0;

for{i=1le=n;1++) aflii-=aficol][]*dum;
, for{l=1:l<=m;i++) b[]-=b[eolf]*durm;

}
Eor(l=n;l>=1 =)

il indxr[]'=indxc[)
for(k="1;k<=nk++)
SWAP(aki[indxrI]},alki[indxc[)

free_ivector(ipiv,1.n};
free_ivector{indxr, 1,n);
free_ivector(indxc,1,n);
1
l‘l

void __fasicall TForm1::xdisp1Click(TObject *Sender)
{
inti;
contour_x=false;
coniour_y=irue;
contour_s=false;
contour_e=false;
{hransfer variable
for{i=1;i<=nodes;i++}

{
variable[il=ul(i-1)"2+1];
1

diype=1;
Form1->tnvalidate(};

}

if.

void _ fastcall TForm1::geometry 1Click{TChject *Sender)
{
i geometry
dmag=0;
dtype=0,
Form1->Invalidate(};

}
‘l‘_l

void __ fasteall TForm1:displaced1Click(TObject *Sender)

{
dmag=10Q;
dtype=0,
Form1->invalidate();
}
It

void __fasteall TForm1:ydisp1Click{TObiect *Sender)
{
inti;

Hiransfer variable

for{i=1;i<=nodes;i++)

{van'ablem=u[(i—1 y2+2%:
}

diype=2;
Form1-=Invaiidate();
} .
]‘I

void __ fastcall TForm1zstresstClick{TObject *Sender)
{
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i/ display stress

inti;
ffiransfer variabie
for(i=1;i<=nodes;i++}

variablell=stress_v{l;

}
dtype=3;
Formi->Invalidate();
}

1

void __ fastcall TFomm1:straintClick(TObject *Sender)

If display stress

inti;
f#ransfer variable
for(i=1;i<=nodes;i++}

{

vartabieflj=strain_v{ij;

}

dtype=4;
Form1->invalidate();

}
it

void __fastcall TFormi::Dmag1Click(TObject *Sender)

{

dmag=dmag~2.0;
Farm1->invalidate(};
H

I
i

void __fastcall TForm1::Dmag2Ciick(TObject *Sender)
{

dmag=dmag/2.0;
Form1->invalidate();

}
F/

void __fastcall TForm1:Dmag01Click{TObject *Sender}
{

dmag=100;

Form1-=Invalidate();

}
1

It
H3

double ﬂ(double t,double *yn,double *param)

{
double a,deltal Ea,Em,deltaR.J;

doubie b,d,SHM,Temp TR EPM ENM kO V;
double Psi0,SHA EPA ENA FM FA;
double minus_AA_minus,A_plus,plus_A,IE.deltas,Psi;
double PPAPAP PMA PAM omega,theta;
{! parameters
I[E=pararn{1};
J=param{Zl,
Psi=param([3];
Ea=param[4];
Em=param[5];
deltaS=param(6};
deltal =parami{7];
deltaR=param(8};
kQ=param{2};
Temp=param{10];
V=param[11];
omega=param{12},
TR=param{13};
EPM=param[14],
EPA=param[15];
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SHM=param[16};
SHA=paramf17];
ENM=param[18];
ENA=param{19];

char str{25];

int sig = 8&; F* significant digits */

a={deltal *Ea + Em*(-deltaR + Jj}{2 *(-deltal + deltaR));
b=(deftal *(deltaR*Ea + Em*(-deltaR +.J))){-deltal. + deltaR);
d=(Em*J*J)/2. - (deltaR"deltaR™(deltaL *Ea + Em*(-delal + J)))
2. (-dettal_ + deltaR}) + SHM*(Temp - TR) + EPM

- Temp*(ENM + SHM™og(Temp/TR));

Psil=(deltal *deltaR*-Ea + Em))/2. - {(deltaL. + deftaRy*Em*J)2.0
+Em*J*J)2. - (SHA - SHM)*(Temp - TR) - EPA + EPM
+Temp*(ENA - ENM + (SHA - SHM)"log(Temp/TR));

FM=SHM*(Temp - TR) + EPM - Temp*{ENM + SHM*log(Temp/TR));
FA=SHA*Temp - TR} + EPA - Temp*(ENA + SHAlog(Temp/TR));

miinus_A=b*bi(4.*a) - d - FM + |E + deltaS"AP(t)
- JAR(t) + AP{R*AP(DW{2."Em) + Psi;

A_minus=p*b/(4.7a) - d - FA - IE + deltaS"AP{t)
+ APty AP(t)W{2.*Ea)+Psi - Psi0 ;

plus_A=b'bi(4.a) - d - FM + IE - deltaS*AR()
+ FAR(t) + AP(IFAP(EH(2.Em) + Psi;

A_plus=b*bi(4.~a) - d - FA - IE - deltaS*AP(t)
+ AP(t)"AP(B)/(2.*Ea)+Psi - Psi0 ; :
theta = Vk0* Temp); ‘
PMA = (l/omega)exp(-{minus_A*theta));
PAM = (Tiomega) exp(-{A_minus*theta));
PPA = (1lamega)exp(-{plus_A‘theta));

PAP = (1/omega)exp({A_plus*theta));

double

f=-PAP*yNZI{PPA+PAP) yn[1]+PAP;

return f;

}

it

double f2(double t double *yn,double *param)

{

double a deltal ,Ea,Em.deitaR,J;
double b,d SHM,Temp, TR EPM,ENM.KO,V;
double Psi0,SHA,EPAENAFM FA;
double minus_AA_minus.A_plus,plus_A,IE.dettaS,Psi;
double PPA,PAP,PMA,PAM,omega theta;
#f parameters ’
1E=param[1};
J=parami2};
Psi=param[3};
Ea=pararc[4];
Ern=param{5j;
dettaS=param[E];
deltal=param[7},
delaR=param[8];
kO=param[3};
Temp=param[10];
=param{ti}
omega=param[12];
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TR=param[13};

EPM=param[14];

EPA=param[15];

SHM=param{16];

SHA=param[17];

ENM=param[18};

ENA=param[19];

char str{25];

int stg = 8; /* significant digits */
a={deltal “Ea + Em*(-deltaR + J})/(2.*(-deltsL + deltaR})};
b={deltal *(deltaR*Ea + Em*{-deliaR + J}}){-deltal. + deltaR};
d={Em*J"J}2. - (dettaR*deltaR*(deltat. *Ea + Em*(-deftal + 1}}))
{2.*(deltal + deltaR)) + SHM*{Temp - TR} + EPM
- Temp*(ENM + SHM log{Temp/TR});
Psi0=(deltal *"deltaR*(-Ea + Em))¥2. - {{deliaL + deltaR)"Em*J)y2.0
+HEm*"J"J)2. - (SHA - SHM)*(Temp - TR) - EPA + EPM
+Temp*(ENA - ENM + (SHA - SHM)*log(Temp/TR});

FM=SHM*(Temp - TR} + EPM - Temp*(ENM + SHM"log(Temp/TR));
FA=SHA*(Temp - TR} + EPA - Temp*“(ENA + SHA™og(Temp/TR));

minus_A=b*bi(4.%a) - d - FM + IE + deltaS*AP(t)
- JFAP(t) + AP(YAP((2 *Em) + Psi ;

A_minus=b*b/{4.a} - d - FA - |IE + deltaS*AP(t)
+ AP(ty"AP{1)/(2 *Ea)+Psi - Psi0 ;

plus_A=b*bl(4.a}-d - FM + IE - deltaS*AP(t)
+ JAP(t) + AP()*AP(8)(2."Em) + Psi ;

A_phis=b*ni{4. a) - d - FA - IE - deltaS*AP{D)

+ AP(1)* AP(DA(2.*Ea)+Psi - Psi0 ;

theta = V(kO*Temp);

PMA = (1/omega) exp{{minus_A"theta)};

PAM = (1/omega)*exp({A_minus'theta));

PPA = (1omega)*exp({pius_A‘theta));

PAP = {1/omega)'exp{(A_plus thetal),
double f;

f={PMA+PAM) yn[2[-PAP*yn[1]+PAM;
return f

}
double AP{double t}

{

/] define icad

double F;
[IF=19E3*sin{0.05823529°1);
F=N;

retum F;

}
l.l
double df1dy1(double t,double *yn.double *param)

{
double adeltal Fa EmdetaR. )

double b,d,SHM,Termp, TR,EPM ENMKO.V;
double Psi0,SHA EPA ENA FM.FA;
double minus_AA_minus,A_plus,plus_AIE,deltaS Psi;
double PPA,PAP PMA PAM,.omega,thela;
{{ parameters
{E=param[1};
J=param[Z];
Psi=param|3L;
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Ea=param[4];
Em=param{5];

~ deltaS=param{6};
deltal =param[7];
deftaR=param[8];
kQ=param(9];
Temp=param[10];
\=param[11],
omega=param[12];
TR=pararnf13];
EPM=param]14];
EPA=param[15];
SHM=param(16];
SHA=param[17],
ENM=param[18];
ENA=param(i%};
char str{25];
int sig = 8; /* significant digits */

a=-{deltal *Ea + Em*(-delaR % J))(2.5(-delial + deHaR));
b={deital {deltaR*Ea + Em*(-deltaR + J}))/(-deltaL + deltaR);

d=(Em*J*J)/2. - (dettaR*deltaR*(deltaL*Ea + Em*(-deftal + J}})
K2X(«deftal + deltaR)) + SHM*(Temp - TR) + EPM
- Temp*(ENM + SHM tog(Temp/TR});

PsiD={deltal *detaR"(-Ea + Em))'2. - ({deftal + deltaR)"Em*J)/2.0
HEm )2, - (SHA - SHM)*(Temp - TR) - EPA + EPM
+Temp*(ENA - ENM + {SHA - SHM)"log{Temp/TR)},

FM=SHM=(Temp - TR) + EPM - Temp*(ENM + SHM"log{Temp/TR));
FA=SHA*(Temp - TR) + EPA - Temp*"(ENA + SHA"log(Temp/TR));

minus_A=b*b/(4.7a) - d - FM + IE + deltaS*AP(t)
- JPAP(t) + AP()AP(t)(2.“Em) + Psi;

A_minus=b*b/(4.*a) - d - FA- IE+deEtaS*AP(t)
+ APV AP(D(Z *Ea)+Psi - Psi0 ;

plus_A=b*bi4.%a) - d - FM + IE - deRaS AP(t)
+ J*AP(t) + AP{y"AP(t)(2.Em) + Psi ;

A_plus=b*bi{4a) - d - FA - |E - deltaS*AP(t)
+ AP(ty AP(t)/(2."Ea)+Psi - Psi0 ;
theta = VAk0O*Temp);

PMA = (1/omega)*exp(-{minus_ATtheta));
PAM = (1fomega)exp{{A minus theta)};
PPA = {1/lomega)exp({plus_A‘theia)y
PAP = {1fomega)‘exp({A_plustheta)),
double f;
=-(PPAPAP);

retumn f;

}
l.’
double df1dy2(doubte t,double “yn,double *param)

double a,deltal Ea,Em dettaR.J;

double b,d,SHM, Temp, TR EPM,ENMX0.V;

double Psi0,SHA,EPA.ENAFMFA;

dauble minus_AA_minus,A _plus plus_A.IE deltaS Psi;
double PPA PAP.PMA PAM omega,theta;

If parameters

|E=param[1];
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J=pararn2];

Psi=param{3];

Ea=param{4l];

Em=param[3];

deltaS=param|[6];

deltal =param{7];

deltaR=param{8];

kQ=param[3];

Temp=param[10};

V=param{11];

omega=paramf12];

TR=param{13];

EPM=param{14];

EPA=param[15];

SHM=param[18];

SHA=param[17];

ENM=param[18];

ENA=param[19];

char str{25];

in sig = ; /* significant digifs */
a={deltal “Ea + Em*{-detiaR + J){2.(-dekal + deltaR));
b=(deltal *{deltaR*Ea + Em*(-deftaRk + J})){-deftal + deltaR);
d=(Em*J*J)/2. - (deftaR*deltaR"(deltal"Ea + Em*{-deltal +J))
K2 *(deltal + dettaR)} + SHM"(Temp - TR) + EPM
- Temp*(ENM + SHM"log{Temp/TR}};
Psi0={dekal*deltaR*{-Ea + Em})/2. - {{deltal + deltaRy"Em~J)}2.0
HEm*J*JY2. - (SHA - SHM)y(Temp - TR) - EPA + EPM
+Temp*(ENA - ENM + (SHA - SHM)log(Temp/TR));

FM=SHM*(Ternp - TR} + EPM - Temp*(ENM + SHM"og{Temp/TR));
FA=SHA*{Temp - TR) + EPA - Temp*(ENA + SHA"og{Temp/TR));

minus_A=b*b/(4.*a) - d - FM + IE + deltaS*AP(t)
- J*AP{Y) + AP(E)*AP(t}(2.*Em) + Psi ;

A_mins=h'b/(4.*a) - d - FA - [E + dettaS*AP(1)
+ AP()*AP()){ 2 *Ea)+Psi - Psi0 ;

plus A=b*Di(4.%a) - d - FM + IE - deltaS*AP(t)
+ J'AP(t) + AP() AP(BI2."Em) + Psi ;

A_plus=h"bi(4.*a) - d - FA - IE - deltaS*ARP(t)
+ APty AP(t)/(2.'Ea)+Psi - Psi0 ;

theta = VA{k{(*Temp});

PMA = (1/amega)exp{-(minus_Atheta));
PAM = (1/omega)exp{{A_minus theta));
PPA = {1/omega) exp({plus_A*thetz));

PAP = (1/omega)‘exp(-{A_plus*theta));

double f;
=-PAP;

retumn f;

H

il
double df2dy1{double t.double *yn,double *param)

{
double a,deltal Fa,Em deltaR, [
double bd SHM, Temp TR,EPM,ENMKD.V;
double Psi0, SHAEPA,ENAFMFA;
doubte minus_AA_minus A __plus.plus_A,IE deltaS,Psi;
double PPA.PAP,PMAPAM, omega thela;
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/I parameters
|E=param[t],
J=param{2];
Psi=param][3];
Ea=param[4};
Em=param{s};
deltaS=param[6];
deltal =param{7];
deltaR=param[8];
kQ=param3];
Temp=param[10];
V=paramf11i]; -
omega=param[12];
TR=param[13};
EPM=param[14];
EPA=param{i5};
SHM=param{16];
SHA=param{17];
ENM=param[18];
ENA=param[19];
char sirf25]; )
it sig = 8; /* significant digits */

a=-{deltal *Ea + Em*(-deltaR + J)}(2.*(-deltal + delaR));
b={dettal (deltaREa + Em*(-deltaR + J))){-deltal. + detaR);
d=(Em*J*J)/2. - (deltaR*deltaR*(deltal *Ea + Em*(-deltal. + J})})
{2 *(~deltal + detaR)) + SHM*(Temp - TR} + EPM

- Temp*(ENM + SHEM*log(Temp/TR});

Psi0={deltal *deltaR*(-Ea + Em)y2. - ((deltal + deltaR)*Em*J)y2.0
+HEm*J*J)y2. - (SHA - SHM)*{Temp - TR) - EPA + EPM
+Temp*{ENA - ENM + (SHA - SHM)log{TempfTR}),

FM=SHM*(Temp - TR) + EPM - Temp*(ENM + SHM*iog{Temp/TR));
FA=SHA*(Temp - TR} + EPA - Temp*(ENA + SHA"log(Temp/TR});

minus_A=b*bi{4.*a) - d - FM + IE + deliaS"AP()
- J*AP(D) + AP(L"AP(t)(2.“Em) + Psi;

A_minus=b"b/(4."a) - d - FA - [E + deltaS"AP(t)
+ AP(1)"AP(t)/(2."Ea)+Psi - Psi0 ;

plus A=b*bi(4.*a) - d - FM + IE - deltaS*AP(t)
+ J*AP(t) + AP("AP(t)(2.Em) + Psi ;

A_plus=bb/(4.7a) - d - FA - IE - deftaS"AP(t)
+ AP(t)"AP(1)/(2.*Ea)+Psi - Psi0 ;
theta = VAkO*Temp);
PMA = {1/amega)*exp{-{minus_A"theta)),
PAM = (1/omega}*exp(-{A_minus*theta));
PPA = (1/omega) exp({plus_A"theta)),
PAP = (1/omega)exp({{A_pluis*theta));
double f;
=-PAP;
retum f;
}

1
dauble df2dy2(dauble tdouble *yn.double *paramy}

double a,deltal Ea Em.detaR,J;
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double b,d.SHM, Temp, TR,EPM,ENM kD,V;
double Psi0,SHA,EPA,ENA FMFA;
double minus A A minus, A plus plus_AIE deltas, Psi;
double PPA,PAP,PMA PAM, omega, theta;
/f parameters
|E=param[1];
J=param[2];
Psi=param{3];
Ea=param[4];
Em=param[5];
deltaS=param[B];
deltal=param[7];
deltaR=param(8];
kO=param[9);
Temp=param{10];
=param[it};

omega=param[12];
TR=param{13};
EPM=param{14};
EPA=param[15];
SHM=param[16];
SHA=param[17];
ENM=param[18};
ENA=param[1SL;
char str{25];
int sig = 8; * significant digits */

a={dettal *Ea + Em*(-deltaR + J})/(2.*{-delal + deltaR));

b={delal *{dettaR*Ea + Em*{-deliaR + J))){-deltal + deltzR);

d={Em*J*J)/2. - (dettaR*deltaR*(deltal *Ea + Em*(-deltal. + J))}

. H{2.4{-deltaL + deftaR}) + SHM*(Temp - TR} + EPM

- Temp*(ENM + SHM"log{Temp/TR});

Psif=(deltal *deltaR*(-Ea + Em))/2. - (deltal. + dettaR)"Em"J)¥2.0

+HEm*J*J)y2. - (SHA - SHM)*(Temp - TR) - EPA + EPM

+Temp*(ENA - ENM + (SHA - SHMJ"log{Temp/TR}};

FM=SHM*(Temp - TR} + EPM - Temp*(ENM + SHM"log(Temp/TR})
FA=SHA*(Temp - TR} + EPA - Temp™{ENA + SHAlog(Temp/TR));

minus_A=b*bi4."a) - d - FM + IE + deltaS"AP(t)
- JYAF(t) + AP(t}AP()(2.Em) + Psi;

A _minus=b*b/{4.*a) - d - FA - |E + deftaS"AP(t)
+ AP(1)*AP(1}{2."Ea}+Psi - Psi0 ;

plus_A=b*bi{4.*a}- d - FM + [E - detaS"AP(Y)
+ J*AP(t) + AP()*AP(1){(2."Em) + Psi ;

A_plus=b*b4.*a} - d - FA - |E - deltzS*AR(1)

+ AP AP(T/(2.*Ea)+Psi - Psi0;

theta = VAk0*Temp);

PMA = ( 1/omega)exp{-{minus_A’theta));

PAM = {1/omega)exp({-{A_minus‘theta));

PPA = (1/omega)*exp{-{plus_A"theta));

PAP = (1/omegayexp(H{A _plus*theta));
dauble £ '

F={PMA+PAM);

retumn T

}
void _ fasteall TForm1:Start1Click(TCbject *Sender)

{
#l start the analysis
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1
i

void __ fasicall TForm1::Start2Click(TObject *Sender)

If time stepping for the analysis
Time_step->Show();

} .

1

void __fasteall TForm1::phasem11Click{TObject *Sender)

{

i

/I display phase

inti;

- HMiransfer variable
for{i=1;i<=nodes;i++)
{
variablebi=phasemif]; *
}
dtype=5;

Form1->Invalidate();

}

if

void __fastcall TForm1::phasem21Click{TObject *Sender)

{

i display phase

inti;
/Hransfer varable
for(i=1;i<=nodes;i++)

variable[ll=phasem2fi};
} !
diype=6;

Form1->invalidate();

}

!.I
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