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ABSTRACT 

 

In this thesis, we investigate certain key aspects of mathematical modelling to explain the 

epidemiology of HIV/AIDS at the workplace and to assess the potential benefits 

of proposed control strategies. Deterministic models to investigate the effects of 

the transmission dynamics of HIV/AIDS on labour force productivity are 

formulated. The population is divided into mutually exclusive but exhaustive compartments 

and a system of differential equations is derived to describe the spread of the epidemic. The 

qualitative features of their equilibria are analyzed and conditions under which 

they are stable are provided. Sensitivity analysis of the reproductive number is carried out to 

determine the relative importance of model parameters to init ial disease 

transmission. Results suggest that optimal control theory in conjunction with 

standard numerical procedures and cost effective analysis can be used to 

determine the best intervention strategies to curtail the burden HIV/AIDS is 

imposing on the human population, in particular to the global economy through 

infection of the most productive individuals. We utilise Pontryagin’s Maximum 

Principle to derive and then analyze numerically the conditions for optimal control of the 

disease with effective use of condoms, enlightenment/educational programs, treatment 

regime and screening of infectives. We study the potential impact on productivity of 

combinations of these conventional control measures against HIV. Our numerical results 

suggest that increased access to antiretroviral therapy (ART) could decrease not only the 

HIV prevalence but also increase productivity of the infected especially when coupled with 

prevention, enlightenment and screening efforts. We conclude that the successful screening 

especially of unaware infectives has a significant impact in reducing the endemicity of 

HIV/AIDS.  

 

We initially investigate the productivity of organizational labour force in the presence of 

HIV/AIDS with three intervention strategies, enlightenment/monitoring, preventive and 

HAART treatment measures, in enhancing workforce output. The model is used to estimate 

the cost of the non-productive susceptibles and the non-productive infectious individuals 

(depressed) to organizations as well as project the benefits when the non-productive and 

depressed employees have access to interventions. We first consider the constant control 

case, calculate the basic reproduction number and investigate the existence and stability of 

equilibria. The model is found to exhibit backward bifurcation implying that for the disease to 

be eradicated, the basic reproductive number must be below a critical value less than one. 

 

The model used to analyze recruitment effects of susceptible and infected people in order to 

assess the productivity of organizational labour force in the presence of HIV/AIDS with 
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screening, enlightenment, preventive and HAART treatment measures in enhancing 

workforce output is found to exhibit backward and Hopf bifurcations implying that for the 

disease to be eradicated, the basic reproductive number must be below a critical value less 

than one. Cost effectiveness analysis results indicate that putting in efforts on recruitment 

(HIV screening of applicants, etc.) is not necessarily the most cost-effective strategy to 

enhance productivity in organizational labour force. Hence, to enhance employees’ 

productivity, effective education programs and strict adherence to preventive measures 

should also be promoted. 

 

We also study the impact of optimal control on the treatment of HIV/AIDS and screening of 

unaware infectives on the transmission dynamics of the disease in a homogeneous 

population with constant immigration of susceptibles. The model of [113] is modified by 

incorporating use of condoms, treatment and screening of unaware infectives as time 

dependent control measures. The model is found to exhibit trans-critical bifurcation. 

Formulating the appropriate optimal control problem, we investigate the necessary conditions 

for the disease control in order to determine the role of unaware infectives in the spread of 

HIV/AIDS. We found that unawareness by infectives has a great cost impact on the 

community. We investigate the impact of a combination of these strategies in the control of 

HIV/AIDS. The costs associated with these strategies are investigated through the 

formulation of the costs function problem, and then we use the Maximum Principle to solve 

the resulting optimal control problem and determine optimal strategies for controlling the 

spread of the disease. Carrying out cost-effectiveness analysis, we found that the most cost-

effective strategy is the combination of all the control strategies. 
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CHAPTER ONE 

 

GENERAL INTRODUCTION  

 

1.1 Introduction 

 

1.1.1 HIV/AIDS Biological History 

AIDS, caused by the lentivirus HIV, is a condition in humans in which the immune system 

begins to fail leading to life-threatening opportunistic infections [124, 34]. Lentiviruses are 

characteristically responsible for long-duration illnesses with a long incubation period [75]. 

Infection with HIV occurs by the transfer of bodily fluids such as blood, semen, vaginal fluid, 

pre-ejaculate or breast milk. Within these fluids, HIV is present as both free virus particles 

and virus within infected immune cells. The major routes of transmission are unsafe sex, 

contaminated needles, from a mother to her baby during pregnancy, birth (prenatal 

transmission) and breast feeding.  Therefore, the most susceptible individuals at risk of 

acquiring infection include people having sexual contacts with the HIV infected, babies of 

infected parents, homosexual and bisexual individuals, intravenous drug abusers and people 

transfused with contaminated blood.  

 

HIV only replicates in dividing cells and primarily infects a class of white blood cells or 

lymphocytes called CD4 T-cells, but it also infects other cells such as dendritic cells. When 

the CD4 T-cell count, normally around 1 000 per ��, decreases to 200 per �� or below, a 

patient is characterized as having AIDS [90]. HIV works by infecting the cells of the immune 

system, using them to make more viruses, and then killing them. Some antibodies that the 

body produces actually work to enhance HIV replication. 

 

There is no cure for HIV/AIDS besides anti-retroviral therapy (ART) which helps boost the 

immune system of the infected against secondary infections thereby significantly prolonging 

their life span [127]. However, for far too many people HIV infection eventually progresses to 

AIDS and ultimately death [79]. HIV infection has four basic stages: incubation period, acute 

infection, latency stage and AIDS. HIV progresses to AIDS at a variable rate affected by viral, 

host and environmental factors. Most people will progress to AIDS within 10 years of HIV 

infection while some will have progressed much sooner and yet others will take much longer 

[16]. Even after HIV has progressed to diagnosable AIDS, the average survival time with 

antiretroviral therapy was estimated to be more than 5 years as of 2005 [110]. Without 

antiretroviral therapy, someone who has AIDS typically dies within a year [88]. Antiretroviral 
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treatment reduces both the mortality and the morbidity of HIV infection, but routine access to 

antiretroviral medication is not easily available in all countries [96]. 

 

The initial incubation period upon infection is asymptomatic and usually lasts between two 

and four weeks. The second stage, acute infection, lasts an average of 28 days and can 

include symptoms. This is a period of rapid viral replication that immediately follows the 

individual's exposure to HIV leading to an abundance of virus in the peripheral blood with 

levels of HIV commonly approaching several million viruses per mL [100]. During this stage 

(usually 2-4 weeks post-exposure) most individuals (80% to 90%) develop an influenza or 

mononucleosis-like illness called acute HIV infection, the most common symptoms of which 

may include fever, lymphadenopathy (swollen lymph nodes), pharyngitis (sore throat), rash, 

myalgia (muscle pain), malaise, mouth and esophageal sores, and may also include, but less 

commonly, headache, nausea and vomiting, enlarged liver/spleen, weight loss, thrush, and 

neurological symptoms. Infected individuals may experience all, some, or none of these 

symptoms. The duration of symptoms varies, averaging 28 days and usually lasting at least a 

week [60]. Because of the nonspecific nature of these symptoms, they are often not 

recognized as signs of HIV infection. Even if patients go to their doctors or a hospital, they 

will often be misdiagnosed as having one of the more common infectious diseases with the 

same symptoms. As a consequence, these primary symptoms are not used to diagnose HIV 

infection, as they do not develop in all cases and because many are caused by other more 

common diseases. However, recognizing the syndrome can be important because the 

patient is much more infectious during this period [26].  

 

The latency stage, which occurs third, shows few or no symptoms and can last anywhere 

from two weeks to twenty years and beyond. A strong immune defence reduces the number 

of viral particles in the blood stream, marking the start of secondary or chronic HIV infection. 

During this phase of infection, HIV is active within lymph nodes, which typically become 

persistently swollen, in response to large amounts of virus that becomes trapped in the 

follicular dendritic cells (FDC) network [17]. During this stage of infection early initiation of 

antiretroviral therapy significantly improves survival, as compared with deferred therapy [68]. 

AIDS, the fourth and final stage of HIV infection shows as symptoms of various opportunistic 

infections. 
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Fig 1.1: Pathogenesis of HIV infection. A schematic diagram of the pathogenic events 

that occur from initial infection with HIV to the development of clinical disease. (Modified 

from [97]) 
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Fig 1.2: Typical course of HIV infection. Patterns of CD4+ T-cell decline and virus load 

increase vary greatly from one patient to another, as do the actual values of viral RNA 

load. (Modified from [97])  

 
1.1.2 HIV/AIDS Impact 

AIDS is one of the deadliest epidemics ever encountered in the history of mankind as it 

compromises the body's defence from infections and diseases [66]. HIV/AIDS is the greatest 

single public health challenge that humanity has ever faced, is considered pandemic by the 

World Health Organization (WHO) and it continues largely unabated. Timely control and 

prevention of HIV/AIDS, and other infectious diseases, are among the key global health 

priorities in light of the available statistics which starkly expose the severity of the pandemic. 

 

Global databases consistently demonstrate the higher incidence, prevalence, mortality and 

burden of HIV/AIDS. In 2006 HIV infected about 0.6% of the world's population [54]. If 2007 

trends persisted, it was projected that 60 million more HIV infections would occur by 2015 

and the annual number of new infections could increase by 20% or more by 2012 [42]. 

Today, an estimated 33.3 million people live with HIV and AIDS worldwide and more than 25 

million people have died from AIDS since the first cases of AIDS were identified in 1981. 

Besides the human cost, HIV/AIDS is having profound effects on productive employment and 
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economic development in Africa, and hence on its ability to cope with the pandemic [12]. 

Globally, around 2.6 million people became infected with HIV in 2009 whilst an estimated 1.8 

million people died as a result of AIDS in the same year [7].  Sub-Saharan Africa is more 

heavily affected by HIV and AIDS than any other region of the world with an estimated 22.5 

million people living with HIV in the region, around two thirds of the global total. 

 

The HIV epidemic touches on almost every aspect of society, is unevenly distributed in the 

population and has a tremendous impact on morbidity (illness) and mortality [92]. HIV/AIDS 

has socio-economic and psychological implications on patients, their families and the 

community as a whole [65]. 

 

The social and economic consequences of the AIDS epidemic are widely felt, not only in the 

health sector but also in education, industry, agriculture, transport, human resources and the 

economy in general [118]. HIV has affected both the demand for and supply of education 

(respectively, number of students and teachers), a critical factor for development and the 

generation of human capital. This is particularly the case in some African and Asian countries 

that already face significant challenges in their educational systems [62]. Ultimately, the 

quality of education may be compromised. While deaths among teachers are occurring in 

large numbers in highly affected countries, frequent bouts of sickness of either teachers 

or family members take away many person hours from classroom teaching. Even worse, 

the stress of sickness and the knowledge of impending death reduce the quality of 

lecture preparation and delivery. The end result is the poor quality of people flowing from 

the education system in relation to the demands of the workplace and society [85]. The 

AIDS epidemic in sub-Saharan Africa continues to devastate communities, rolling back 

decades of development progress as families lose income earners leaving behind orphans 

who are often cared for by members of the extended family.  

 

Labour is dramatically affected, which in turn slows down economic activity and social 

progress since employers have to train other staff to replace those at the workplace that 

become too ill to work. For instance, given agriculture’s reliance on labour, illness and death 

directly affect productivity and, therefore, affect crop yields, the types of crops being 

cultivated, income and, ultimately, food security. The impact of HIV/AIDS on economic 

growth is a critical area to examine, yet difficult to measure, as it is tied to job creation, higher 

living standards and the resources governments have available - all of which have 

implications for overall development. Studies of some of the worst affected countries show 

that their Gross Domestic Product (GDP— a commonly used measure of economic growth) 

grew more slowly than it would have without AIDS [9, 19, 115].  
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Other than inflicting physical pain, HIV/AIDS imposes a significant psychological burden to 

both the infected and the affected [91]. On one hand, infected individuals often suffer from 

depression and anxiety as they adjust to the impact of their diagnosis. On the other, those 

who live and work with the HIV infected also experience some form of stress as a result of 

fear of being infected or heavy workload experienced due to slowdown of the infected 

colleagues [99]. 

 

The spread of HIV/AIDS is a threat to national economies globally as the pandemic has 

weakened the human capital base (has led to poor mental health and poor physical health) 

across all sectors, a situation that undoes efforts to reduce poverty through improvements in 

labour productivity [91]. However, despite the potential adverse impact of HIV/AIDS, its 

economic impact is largely unknown as little empirical evidence exists on this issue. This 

study hopes to fill this gap by undertaking a detailed mathematical epidemiology analysis 

relating HIV/AIDS to industrial labour productivity. 

 

In addition to the enormous socio-economic burden it imposes, AIDS is now the leading 

cause of death in sub-Saharan Africa, and has cut the life expectancy in a number of 

countries in this region [47]. In 2009, around 1.3 million people died from AIDS in sub-

Saharan Africa and 1.8 million people became infected with HIV. Since the beginning of the 

epidemic, 14.8 million children have lost one or both parents to HIV/AIDS [118]. In 2005, 

AIDS claimed an estimated 2.4 - 3.3 million lives, of which more than 570 000 were children. 

A third of these deaths occurred in sub-Saharan Africa, retarding economic growth and 

increasing poverty [44]. At that time, it was estimated that HIV would infect 90 million people 

in Africa, resulting in a minimum estimate of 18 million orphans [53]. 

 

The greatest burden of the HIV/AIDS scourge is in southern Africa. In 2010, the HIV 

prevalence in South Africa was pegged at 17.8% while the national adult HIV prevalence rate 

in three other southern African countries exceeded 20%. These countries are Botswana, 

Lesotho and Swaziland with prevalence rates of, respectively, 24.8%, 23.6% and 25.9% 

[118]. Swaziland and Botswana have the highest and second highest prevalence in the world 

among the 15 - 49 year olds. In 2001, about 20% of the entire adult population aged 15 - 49 

was infected in nine southern African countries — Botswana, Lesotho, Malawi, Mozambique, 

Namibia, South Africa, Swaziland, Zambia and Zimbabwe [102]. An estimated 5.6 million 

people were living with HIV and AIDS in South Africa in 2009, more than in any other country 

[118]. It is believed that in 2009, an estimated 310 000 South Africans died of AIDS.  The 

impact of the AIDS epidemic is reflected in the dramatic change in South Africa’s mortality 

rates. The overall number of annual deaths increased sharply from 1997, when 316 559 

people died, to 2006 when 607 184 people died [6]. In 2003, projections of the future 
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HIV/AIDS burden in South Africa underscored the importance of immediate action to reduce 

the number of new infections and plan for medical and social care needs [105]. Studies show 

that HIV/AIDS is now the number one overall cause of death in Africa, yet, only less than one 

percent of those infected receive combination antiretroviral therapy [46, 69]. 

 

 
Fig 1.3: HIV Prevalence in Adults in Africa [116] 

 

 
 

Fig 1.4: Global HIV Prevalence in 2007 [117] 
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Fig 1.5: Global Prevalence of HIV in 2009 [118]  

 

1.1.3 Impact on Firms 

The impact of the HIV/AIDS epidemic goes far beyond the household level. The virus does 

not discriminate as personnel from hotel staff, business people, migrant workers to public 

servants are all affected, but while their lives may be different, work stands out as a unifying 

activity. Firms and businesses are, without doubt, also affected as HIV-infected people are 

usually in the prime working years and are involved in the process of production.  

 

“Especially in its early stages, the epidemic tended to strike urban centres, the better 

educated, the elite in leadership and the most productive members of society.” (Kofi Annan, 

Secretary General of the United Nations, 12/01/2004 in [126]).  

 

Many businesses realize that the rapid spread of HIV/AIDS negatively affects their workforce, 

market and, ultimately ability to earn a profit [51]. These organizations understand that 

HIV/AIDS is not only a health issue, but a core business issue. A business may decide to 

address HIV/AIDS for purely economic reasons. A study on the financial impact of the 

epidemic on six corporations in South Africa and Botswana revealed that the "AIDS tax" - 

increased medical costs, decreased productivity, and other costs associated with HIV/AIDS 

in the work force - was as much as 5.9% of the corporations' labour costs [49]. According to 

the mathematical model the researchers used, all six companies in the study would have 
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earned positive returns on their investments and reduced this "AIDS tax" by as much as 

40.4% if they had provided antiretroviral drugs at no cost to employees with HIV/AIDS. 

Findings from a survey conducted by the World Economic Forum revealed that of the 10 993 

business leaders polled globally, 22% of respondent firms reported experiencing impacts 

from the virus [18]. In hard-hit sub-Saharan Africa, 65% of respondent firms reported some 

impact while 21 % reported serious impact. 

 

One result of ill-health associated with HIV/AIDS is that it affects the physical and mental 

health of the infected and affected persons. Poor health reduces labour productivity, work 

effort and discourages the maintenance of human and social capital [106, 123]. In a business 

or manufacturing enterprise, the worker’s health concerns such as worries, expressed or 

unexpressed, as a result of the risks of exposure to HIV/AIDS, or about their HIV-positive 

status or that of their family members or fellow workers could be a source of mental 

distractions and can adversely affect labour productivity [21, 35]. Since HIV induced ill-health 

is irreversible and poses a high mortality risk, the potential loss in productivity as a result of 

mortality and days lost due to poor health can be substantial. Furthermore, the poor health 

may limit the ability to work, which may mean less output per worker, reduced sales and 

diminished profitability. Social capital, labour relations and employee morale could also be 

adversely affected when employees are contending with HIV/AIDS [91].  

 

Another area of concern is the effect of the pandemic on the competitiveness of 

enterprises in the production of quality goods and services. Losses in labour time and 

skills will reduce the quantity and quality of outputs produced. This can directly affect the 

quality of products and services, leading to reputation losses and ultimately a reduction 

in customers [85]. Also, what happens in one sector could impact events in another 

sector. For example, skills losses and interruption of production in say the information 

technology and telecommunications sectors may lead to production losses in all other 

sectors using these services. 

 

Previous research provides little evidence on employer and employee concerns about 

HIV/AIDS and the effects of the concerns on labour productivity. The present study is 

therefore an important empirical contribution to an understanding of the impact of HIV/AIDS 

on labour productivity of the firms. In general, labour productivity would be affected by 

HIV/AIDS because of the loss of skilled workers, an increase in absenteeism and the entry 

into the labour market of less experienced young people and older persons who have not 

worked before [24]. At micro level, the impact is more apparent as results are based on 

surveys of enterprises. The study by Coulibaly, through national surveys and reports, 

showed that worker productivity declined as AIDS progressed, especially in the last years 
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before death. The costs to any organization arising from an employee becoming infected are 

not immediate but delayed as the virus can incubate for 3 - 5 years before the infected 

person begins to suffer HIV-related illnesses and, if unable to get adequate treatment, suffers 

increasing bouts of more severe and varied opportunistic illnesses and, ultimately, death 5 - 

10 years after infection [83]. The company therefore does not incur any costs during the 

initial period of about 1 - 8 years from infection. When sickness starts, the company incurs 

illness-related costs (absenteeism, productivity, management time, medical care and 

insurance). The employee will ultimately leave the workforce due to either death or 

retirement wherein the organization incurs costs associated to funeral expenses, pay-out 

from the retirement fund as well as loss of experience and morale. The company may 

choose to either replace the employee or not, in which case they incur turnover costs 

(vacancy, recruiting, training, reduced productivity). The organization’s total workforce-

related costs due to HIV/AIDS may be calculated as the aggregate of direct and indirect 

costs as explained in Table 1.1. 

 
 Direct (out of pocket) Costs Indirect (productivity) Costs 
From one employee 
(Individual Costs) 

• Benefits payments 
• Medical care 
• Recruitment and training 

of a replacement 
employee 

• Reduced on-the-job 
productivity 

• Increased leave and 
absenteeism 

• Supervisor’s time 
• Vacancy until 

replacement is hired 
• Poorer performance while 

new employee learns the 
job 

From many 
employees 
(Organizational 
Costs) 

• Benefits premiums 
• Accidents 
• Legal costs 

• Senior management time 
• Production disruptions 
• Loss of workforce morale, 

cohesion and experience 
• Deteriorating labour 

relations 

 
Table 1.1: Costs of HIV/AIDS in the workforce, [108] 

 
HIV/AIDS affects corporations by increasing costs and reducing productivity, as outlined in 

Fig 1.6. 
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Fig 1.6: Impact of HIV/AIDS on a Company, [27] 

 

In the absence of increased access to antiretroviral therapy, the International Labour 

Organization estimated that global labour force losses due to HIV could reach 45 million by 

2010 and expected the number to peak at 64 million by 2015 [52].  

 

1.2 Mathematical Epidemiology 

 

Epidemiology is the study of the spread of diseases in populations, and primarily the human 

population is of interest. Mathematical epidemiology is concerned with the quantitative 

aspects of the study, often consisting of the following activities: 

 

i) model formulation, 

ii) estimation of parameters, 

iii) investigation of the sensitivity of the model to changes in the parameters, and 

iv) simulations. 
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All these activities are expected to give us information about the spread of the disease in the 

population, the possibility to control this spread and maybe how to make the disease 

disappear from the population. 

 

The diseases which are modelled most often are the so called infectious diseases, that is, 

diseases that are contagious and can be transferred from one individual to another through 

contact. Examples of such diseases are measles, chicken pox, sexually transmitted diseases 

(HIV/AIDS, gonorrhea, syphilis, etc), hepatitis, tuberculosis, and the very familiar influenza. 

What constitutes a contact so that the disease can be transmitted in each case is different. 

For example, we know that the common flu can be obtained by just being physically close to 

a person who already has it. In sexually transmitted diseases, in most cases, a sexual 

contact is necessary for transmission. 

 

Mathematical models are extremely important in scientific and industrial investigations as 

they can be used to predict results. Models are generally aimed at predicting a result or 

investigating a question of interest [101]. A good mathematical model attempts to describe 

part of the real world through equations. Mathematical models provide an explicit framework 

within which to develop and communicate an understanding of infectious disease 

transmission dynamics. Mathematical models can also be used to estimate the expected 

costs and benefits of alternative disease prevention, diagnostic, and treatment interventions 

and, ultimately, to aid policy makers with allocating limited disease-control resources [78]. 

 

The process of describing a system like the spread of an infectious disease forces one to 

recognise the assumptions made and the data available in order to estimate parameter 

values, and allows for qualitative or quantitative predictions that can be tested. Thus, the 

central role of creating and analysing mathematical models is to develop our understanding 

of a system. Once the transmission dynamics of an infectious disease are appropriately 

described by a model it is possible to evaluate the potential impact of proposed interventions. 

Models should assist in the identification of successful interventions, their necessary scale, 

and the role or ability of new technologies to deliver public health benefits [41]. 

 

Mathematical models have been proposed as an aid to understanding the immune dynamics 

underlying AIDS. However, theoretical and clinical models of AIDS that assume that HIV has 

a central role in disease progression have not met expectations [25]. Deterministic 

mathematical modelling of infectious diseases on the molecular level is still a relatively new 

field. Mathematicians and immunologists have begun to work together to create models that 

attempt to predict the progression of disease in an individual. Classical epidemiologic models 

use variables to describe the state of being of individuals within a population that has been 
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exposed to an infectious disease. The standard categories include susceptible, infectious, 

recovered, immune and exposed (but not infectious) individuals. The number of variables to 

be incorporated depends on the particular disease being studied as well as on the desired 

complexity of the model. Parameters incorporated into the equations represent fundamental 

quantities such as birth rate, rate of transmission of infectious agent, death rate, and so forth. 

Simplicity allows a better understanding of the intrinsic properties of the models. However, 

oversimplified models may not be able to capture the reality of epidemiological disease 

transmission. Thus, it is necessary to use models that are complex enough to capture the 

finest details of disease transmission. 

 

1.3 Literature Review  

The human immune system is complex and not fully understood, and no model, 

mathematical or otherwise can fully capture every facet of its phenomenology. Nevertheless, 

mathematical modelling of HIV infection has proven to be instrumental for the current 

understanding of the AIDS pathogenesis [55]. Generally, mathematical models and computer 

simulations are crucial in analyzing the spread and control of infectious diseases [79]. 

Mathematical models of transmission dynamics of HIV play an important role in better 

understanding of epidemiological patterns for disease control as they provide short and long 

term prediction of HIV and AIDS incidence [113]. HIV epidemic projection is essential in 

determining the type of services that will be needed to prevent new infections and treat, care 

for, and support sufferers in the future. Without this kind of modelling, it would be impossible 

to determine how much funding will be needed to control the spread of HIV. 

There are many research studies about modelling HIV/AIDS using different approaches and 

epidemiological apparatus and instruments in determining the prevalence of the disease and 

to come up with effective alternative ways to control and prevent the proliferation of the 

disease. Anderson, Medley, May and Johnson, [4], presented a simple mathematical HIV 

transmission model to investigate the effects of various factors on the overall pattern of the 

AIDS epidemic. Nikolaos, Dietz and Schenzle, [93], proposed a detailed analysis of a 

dynamical model to describe the pathogenesis of HIV infection. Christopher and Jorge, [23], 

derived a simple two-dimensional SIS (susceptible-infected-susceptible) model with 

vaccination and multiple endemic states. Li and Jin, [77], studied the global dynamics of an 

SEIR (susceptible-exposed-infected-recovered) epidemic model in which latent and immune 

states were infective. Mukandavire, Gumel, Garira and Tchuenche, [89], proposed and 

examined a deterministic model for the co-infection of HIV and malaria in a community. 

Tripathi, Naresh and Sharma, [113], proposed a mathematical model to study the effect of 

screening of unaware infectives on the spread of HIV infection. 
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Elaiw, [36], conducted a study on the global properties of a class of HIV models. A model 

with exposed state and a model with nonlinear incidence rate are also analyzed and 

Lyapunov functions are constructed to establish the global asymptotic stability of the 

uninfected and infected steady states. In a control system framework, a model incorporating 

the effect of Highly Active AntiRetroviral Therapy (HAART) is shown to be globally 

asymptotically controllable to the uninfected steady state. 

Karrakchou, Rachik and Gourari, [63], investigated the fundamental role of chemotherapy 

treatment in controlling the virus reproduction in an HIV patient, while Adams, Banks, Kwon 

and Tran, [1], derived HIV therapeutic strategies by formulating and analyzing an optimal 

control problem using two types of dynamic treatments. Hattaf, Rachik, Saadi and Yousfi, 

[48], applied optimal control to a system of ordinary differential equations modelling the 

Hepatitis B Virus (HBV) infection. They used Pontryagin’s maximum principle to characterize 

the optimal controls representing the efficiency of drug therapy in inhibiting viral production 

and preventing new infections. Gajic, [40], considered a nonlinear third-order mathematical 

model of HIV-virus dynamics and proposed an efficient control strategy to keep the number 

of HIV virons under a pre-specified level and to reduce the total amount of medications that 

patients receive.  

Greenhalgh, [45], dealt with a model for controlling an epidemic by removal and isolation of 

infected people with the objective of maximizing the expected number of people removed at 

some terminal time. Wickwire, [125], conducted a survey on the applications of mathematical 

optimization theory to the optimal control of pests and infectious diseases. Jung, Iwami, 

Takeuchi and Jo, [58], studied the prevention of pandemic influenza to evaluate the time-

dependent optimal prevention policies, which are associated with elimination policy and 

quarantine policy, considering its execution cost. Miller Neilan, Schaefer, Gaff, Fister and 

Lenhart, [87], formulated a model for cholera disease to include components such as a 

hyperinfectious, short-lived bacterial state, a separate class for mild human infections, and 

waning disease immunity. Using optimal control theory, parameter sensitivity analysis and 

numerical simulations, a cost-effective balance of multiple intervention methods was 

compared for two endemic populations. 

Dhar and Dhar, [30], considered an optimal control problem on the use of condoms, taken as 

control, so as to attain a specified reduced value of the infected population of HIV within a 

certain stipulated time under the minimization of the cost of the control with the aid of a 

maximum principle by incorporating statistical knowledge on VCTC report in the 

mathematical model. Fister, Lenhart and McNally, [38], examined an ordinary differential 

system modelling the interaction of the HIV virus and the immune system of the human body. 

They considered an optimal control representing a percentage effect the chemotherapy had 

on the interaction of the CD4+T cells with the virus. They maximized the benefit based on the 
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T cell count and minimized the systemic cost based on the percentage of chemotherapy 

given. The existence of an optimal control was proven, and the optimal control was uniquely 

characterized in terms of the solution of the optimality system. Bowong, [13], dealt with the 

problem of optimal control for the transmission dynamics of tuberculosis using a model which 

incorporated the essential biological and epidemiological features of the disease: 

susceptible, latently infected (exposed to TB but not infectious) and infectious (has active 

TB). Landi et al, [71], considered a variant of the Wodarz and Nowak mathematical model, 

adding “aggressiveness” as a new state variable in order to quantify the strength of the virus 

and its response to drugs. They found out that though relatively simple, the model may be 

useful in predicting the impact of the effectiveness of therapy on HIV dynamics. Mathieu et 

al, [82], introduced and defined a non-homogeneous semi-Markov (NHSM) model in 

continuous time for the evolution of HIV-1 infected patients. 

Various studies on applied optimal control methods to investigate viral infections such as 

HIV/AIDS, Tuberculosis and Rabies have been conducted extensively [28, 5, 57]. 

 

1.4 Statement of the Problem  

The negative impacts of the HIV/AIDS scourge are quite varied as highlighted in the 

preceding sections of this chapter to the extent that the disease affects global economies. 

Hence, the upper-most question is: How does an infected and/or affected employee cope? 

Specifically, we can ask the following further questions: What is the impact of HIV/AIDS on 

individual labour productivity during disease progression in the absence of intervention? How 

healthy and, by extension, productive does the labour force become when screening, 

prevention, enlightenment and treatment interventions are implemented? Using these 

interventions, is it possible to optimally control the disease? Which combination of the 

intervention strategies is cost effective given the tight budgetary constraints organizations 

and governments operate on? What are the implications regarding human resources policies 

on especially recruitment of employees in light of the need for staff wellness? 

 

1.5 Aim of the Study  

Many mathematical models already exist describing HIV/AIDS dynamics, and we propose 

adopting and refining some of these models to monitor the dynamics of HIV/AIDS in the 

workplace. The aim of the study is thus to describe and control the epidemiology of HIV and 

AIDS at the workplace. The plan is to make use of well-known mathematical concepts and 

techniques to propose cost effective intervention strategies towards curtailing the impact of 

the HIV/AIDS pandemic in industry. 
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1.6 Research Objectives 

 

Despite the magnitude of the problem, little rigorous empirical research on the micro level 

effects of HIV/AIDS at the firm and industry levels has been published in the literature on 

African development. Though numerous studies have been undertaken, there is no ample 

theoretical study on the optimal control of the impact of the HIV/AIDS epidemic on labour 

productivity.  

 

The baseline objective of this study is to assess the impact of HIV/AIDS on firms. In order to 

achieve this objective, the study addresses the questions raised in the problem statement. 

The study is geared not only at estimating the future economic and health outcomes under 

different control scenarios but also to determine the optimal allocation of limited resources 

between competing interventions. The main thrust of this investigation is thus to suggest an 

optimal method of controlling the HIV/AIDS pandemic given the known facts about the 

transmission and progression process especially since a cure remains elusive with a view to 

enhancing the productivity of labour force. 

 

Actually, this research project aims to accomplish several objectives. The first and foremost 

is an examination of how a firm’s productivity changes as a consequence of exposure of 

employees to health risks associated with HIV/AIDS. We will also examine whether firms’ 

responses to HIV concerns of workers, for example, through interventions that reduce risks 

of contracting HIV/AIDS or activities that support or treat infected workers affect performance 

of firms. 

 

Although we undertake theoretical analysis using empirical data in literature, this study seeks 

to add value to the scant literature on the application of compartmental modelling to 

investigate effects of HIV/AIDS on firm productivity and to a wider epidemiology literature in 

several key aspects. The study adapts existing mathematical techniques in creative ways 

thus making it possible to deal with the common prevention and intervention strategies of 

HIV/AIDS in the improvement of productivity whilst ensuring cost effectiveness. The study 

intends to show that the optimal control approach can be used to consistently estimate 

mathematical models of effects of HIV/AIDS on the productivity of labour at firms. 

 

1.7 Significance of the Study 

 

Mathematical modelling is used to provide a description of the current situation of the HIV 

epidemic and its future projection at the workplace. The findings can be used by a wide 

range of parties in planning HIV and AIDS intervention programmes in a better and more 
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directed way. The results of this study will be useful in informing government and 

organizational policies on HIV/AIDS issues. Furthermore, it is also expected that the 

epidemic modelling can also be used as a basis for evaluating the implementation of a 

variety of on-going HIV and AIDS prevention programmes and conducting advocacy to 

enhance the commitment of a number of parties directly and indirectly involved in the 

programmes [8]. It is hoped that the modelling results can be used as a basis for making 

concerted efforts of preventing and controlling HIV and AIDS. In particular, this work should, 

in some small measure, contribute towards helping organizations, governments, public-

health agencies and health care providers to determine how best to allocate scarce 

resources for the treatment and prevention of HIV and AIDS. 

 

1.8 Outline of the Thesis 

 

In this thesis, we derive and analyze HIV/AIDS transmission mathematical models which 

incorporate the productivity of labour. We incorporate controls into the models, namely the 

use of condoms, screening, enlightenment and treatment, with appropriate cost functions in 

order to study and determine the possible impacts of these strategies for controlling the 

epidemic. We further define and obtain the mathematical expression of the basic 

reproduction number, ��, as a function of state and control variables as well as model 

parameters. The role or impact of the control strategies on the value of �� is investigated. We 

carry out optimal control analyses of the models to determine optimal strategies for the 

control of the disease. We identify the necessary conditions for optimal control of the disease 

using Pontryagin’s Maximum Principle. 

 

In Chapter 1, a general background of HIV/AIDS is provided, citing the various stages in the 

development of the disease, factors contributing to the spread of the epidemic and 

highlighting the impact on society and the economy. It is in this chapter where we review 

some studies done on modelling HIV/AIDS. In Chapter 2, we give some mathematical 

preliminary definitions and concepts needed in the later chapters to gain valuable insights 

into disease dynamics with emphasis on the analytical and numerical techniques. In Chapter 

3, we formulate a deterministic compartmental model to investigate the productivity of 

organizational labour force in the presence of HIV/AIDS while considering susceptible 

recruits. In Chapter 4, we extend the model to analyze recruitment effects of susceptible and 

infected people in order to assess the productivity of organizational labour force. In Chapter 

5, we study the impact of optimal control on the treatment of HIV/AIDS and screening of 

unaware infectives on the transmission dynamics of the disease. 
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CHAPTER TWO 

 

BASIC MATHEMATICAL CONCEPTS 

 

In this chapter, we discuss the various approaches used in gaining valuable insights into the 

dynamics of infectious diseases. The theoretical nature of this study entails that both 

numerical and analytical techniques will be employed to tackle models under consideration. 

Mathematical tools to be applied include: i) Compartmental Modelling, a generalized 

differential equations approach used to model disease dynamics and control, ii) Stability 

Theory, iii) Optimal Control Theory, allowing resource management to be optimized with 

respect to suitably defined objective functions and iv) Numerical solutions aided by the 

MATLAB and MAPLE software packages 

 

2.1 Model Formulation 

 

A variety of models ranging from simple linear models and decision/probability trees to 

complex network-based simulations can be used to analyze such problems. Markov models 

with single or multiple decision epochs, individual microsimulation models, population-level 

dynamic compartmental models (both deterministic and stochastic) and linear programming 

models are also possible approaches [78]. The fact that infectious diseases are dynamic 

(epidemics evolve over time), nonlinear (the rate of new infection is approximately a function 

of the number of people who are infective multiplied by the number of people who are 

susceptible), and stochastic (many factors, such as behavioural and biological factors that 

influence the transmission and progression of a disease vary across individuals and over 

time) is key to determining the appropriate mathematical framework approach. 

 

All the other approaches fail to appropriately capture disease transmission in the population 

except dynamic compartmental models and network models which are better suited for 

projecting the evolution of an epidemic over time. In compartmental models, the population is 

divided into a set of mutually exclusive but collectively exhaustive compartments with 

individual transitions between subclasses modelled by a system of nonlinear difference or 

differential equations. Deterministic compartmental models are useful when considering large 

populations, where model parameters for an average individual are sufficient whereas 

stochastic epidemic models are particularly useful when random variations in model 

parameters are important, or if the population under consideration is small and/or 

heterogeneous [78]. Besides, stochastic models can become computationally intensive as is 

the case with network models wherein each individual in the population is modelled as well 
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as his or her partnerships. In this study deterministic ordinary differential equations model 

formulations are developed to describe the state system making use of the appropriate form 

of infection. 

 

2.1.1 Compartmental Modelling  

In 1927, Kermack and McKendrick wrote a pioneering article discussing the application of 

nonlinear dynamic systems to epidemic control. In 1979, Anderson and May applied this 

theory to many modern infectious diseases [2, 84]. The underlying idea behind a 

deterministic model is to characterize the epidemic by the number of susceptible and infected 

individuals over time. This approach for modelling the transmission of infectious diseases in 

human populations involves subdivision of the population under consideration into a number 

of epidemiological classes called compartments and the resulting models are thus called 

compartmental models. The primary classes usually considered are the following: 

 

Susceptible (S): This group consists of those individuals in a population who are not infected 

but are however capable of contracting the disease under appropriate conditions. 

 

Exposed (E): This class comprises of individuals who are infected with the disease pathogen, 

but are not yet able to infect others. They are still in the incubating stage, and do not possess 

immunity. This group is also known as the latent class. 

 

Infected (I): This is a collection of individuals who have contracted the disease or infection. 

These people are infectious with the disease pathogen, that is, they can transmit the disease 

after a contact with a susceptible individual. 

 

Recovered/removed (R): This is a set of individuals who possess temporary or permanent 

immunity and may not contract or transmit the disease, either because they are no longer 

infectious, have been vaccinated or may be dead. 

 

Compartmental models have provided valuable insights into the epidemiology of so many 

infectious diseases including AIDS. Diseases that confer immunity have a different 

compartmental structure from diseases without immunity [94]. For diseases which confer 

immunity, the SIR terminology is used to describe the transition of individuals from the 

susceptible to the infected and then to the removed/recovered class. The term SIS describes 

a disease with no immunity against re-infection, indicating the movement of individuals from 

the susceptible to infective and then back to the susceptible class. Other possibilities include 

SEIR and SEIS models with an exposed period of being infected and becoming infective, 

and SIRS models with temporary immunity on recovery from infection [15]. 
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The sizes of each class at any time � are represented by �(�), "(�), �(�), �(�) respectively 

with #(�) denoting the total population size, that is, #(�) = �(�) + "(�) + �(�) + �(�). Some 

other classes may be adopted to increase accuracy of the model. 

 

Deterministic compartmental models with few disease states can often be solved analytically. 

As the number of disease states increases, a compartmental model can more realistically 

capture the subtleties of disease transmission and progression. However, the model can 

become analytically intractable. In this case, numerically solving the system of differential 

equations is the best alternative. After specifying initial conditions for each equation, the 

ordinary differential equations system can be solved by using numerical solution techniques 

such as the Runge-Kutta methods [78]. 

 

The transmission of diseases may be through horizontal incidence, from infectives to 

susceptibles, and/or vertical transmission, for example from mothers to babies. The 

probability, per unit time, at which susceptible members of the population are infected is 

called the force of infection and is generally viewed as a function of the total number of 

infectives. Epidemic measures such as incidence, prevalence and the basic reproduction 

number are relevant for models of infectious disease control. Incidence refers to the number 

of individuals in the population who become infected in a given period of time. It is often 

referred to as incidence rate, which is actually the number of new cases per person per unit 

time. Prevalence is defined as the proportion of the population that is infected at a given 

point in time. The basic reproduction number, ��, is defined as the average number of 

secondary infections caused by a typical infected individual during his entire period of 

infectiousness, in a completely susceptible population, absent any interventions [78]. It 

represents the strength of an infectious disease at sustaining itself in a population: when �� < 1 the disease will die out in the long run; when �� > 1 the disease will remain endemic 

in the population. In cases where �� = 1, the disease becomes endemic, meaning the 

disease remains in the population at a consistent rate, as one infected individual transmits 

the disease to one susceptible [114]. In general, higher values of �� correspond to diseases 

that are more difficult to eliminate. �� is clearly a theoretical outcome, derived from 

mathematical analyses as described later, given that the population is no longer entirely 

susceptible by the time a new epidemic raises public health concerns. 

 

2.1.2 Incidence/Transmission 

The probability of transmission in a given time period may be regarded as either a function of 

the number of infectious individuals in a given area or as a function of the prevalence of 

infection in the population. In the former case, the contact rate depends on the size of the 

total host population and thus models are said to represent mass action (density dependent) 
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transmission. This type of incidence has been used in modelling several infectious diseases 

and is mostly suitable when a small population size is considered. In the latter case, the 

contact rate is assumed to be constant. Transmission models for this scenario are said to be 

for standard (frequency dependent) transmission. 

 

While modelling the transmission of measles in 1906, William Hamer observed that the 

incidence of new cases in a time interval was proportional to the product �� of the number of 

susceptibles and infectives in the population. This conceptualization, called mass action in 

analogy to its origin in chemical reaction kinetics, is fundamental in the modern theory of 

deterministic epidemic modelling [107]. It offers convenience and it is a reasonable 

assumption for complex contact processes especially for low population densities. 

 

A single susceptible individual in a homogeneously mixing population contacts other 

members at a rate  �. The proportion of these contacts that are with infectious individuals is � #⁄ . If the probability of infection given contact is (, then the rate of transmission of infection 

to susceptibles is (�� #⁄ . The rate of infection for the susceptible population is then (��� #⁄ . 

Terms such as (� #⁄  and (�� #⁄  are frequent in literature given that the contact rate is, quite 

often, a function of population density. In particular, � may either be proportional to # or may 

be constant. The contact rate function � can be subsumed into (, which is then no longer a 

probability but a transmission coefficient. 

 

In modelling the HIV/AIDS dynamics, the population N(t) is divided into various subclasses, 

for example, of HIV negatives but susceptibles �(�), HIV positives or infectives �(�), 
individuals undergoing treatment +(�) and that of AIDS patients ,(�), i.e.  

#(�) = �(�) + �(�) + +(�) + ,(�). 
Susceptibles are assumed to become infected via sexual contacts with infectives and 

infectives move with a constant rate to develop AIDS. The resulting systems of equations are 

derived based on the assumptions applicable based on the interaction and progression from 

one subclass to the other. It is important to note that models should rely on assumptions that 

are consistent with empirical evidence. Existing models of nominal heterosexual HIV 

transmission for sub-Saharan Africa have not accurately portrayed the epidemiological 

situation. Deuchert and Brody [29] implore modelers to realistically simulate HIV spread by 

ensuring that parameter values are based on the most accurate data. 

Other feasible compartmental models will be derived and these will be analyzed using 

stability theory of differential equations as well as numerical simulation. The model analysis 

will incorporate comparison of the theoretical results with known HIV data. Investigations in 
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the necessary conditions for controlling the disease will be undertaken by initially formulating 

the appropriate optimal control problems. 

 

2.2 Stability Analysis 

For an autonomous system of ordinary differential equations 

 

-. = /-/0 = 1(�, -), 
 

where - = 34546∙∙∙48
9 and 1 = 3:5:6∙∙∙:8

9, any point -∗ such that 1(-∗) = � is referred to as an 

equilibrium point. 

 

Equilibrium points represent stationary conditions for the dynamics of a system. Typically, 

equilibrium points govern long time behaviour of physical models. In particular, solutions tend 

to approach stable equilibrium points as time gets large, and to move away from unstable 

equilibrium points. A general method for studying stability regards the consideration of 

eigenvalues. 

 

Definition 2.1 : The equilibrium point -∗ is 

• stable if ∀	> > 0	∃	�(>) > 0 such that |-(0) − -∗| < �	 ⟹ |-(�) − -∗| < >, ∀	� > 0 

• unstable if it is not stable 

• asymptotically stable if it is stable and � can be chosen such that |-(0) − -∗| < �	 ⟹	lim0→F -(�) = -∗. 
-∗ is said to be a locally or simply stable equilibrium point if initial conditions that start near -∗ 
remain close to -∗. In other words, no eigenvalue of the Jacobian matrix of 1(-∗) has a 

positive real part.  

 

Definition 2.2 : Let -∗ be an asymptotically stable equilibrium point of the system -. = 1(-), 
where 1 is a locally Lipschitz function defined on a domain G ⊂ ℝJ (-∗ 	 ∈ G). 

• The region of attraction is the set of all points -�	in G such that the solution of -. = 1(-), -(0) = -� is defined for all �	 ≥ 0 and converges to -∗ as � tends to infinity. 

• -∗ is said to be globally asymptotically stable if the region of attraction is the whole of ℝJ. 

The region of attraction is also referred to as the region of asymptotic stability, domain of 

attraction or basin. Steady state solutions where there is no disease in the population are 
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called disease-free equilibrium (DFE) points whereas steady state solutions where the 

disease persists are called endemic equilibrium (EE) points. Many epidemiological models 

have disease-free and endemic equilibrium points. 

 

A major task in deterministic epidemiological modelling of heterogeneous populations is to 

identify conditions for local and global stability of the equilibria and to work out the relations 

among these stability conditions, the threshold of epidemic take-off, and endemicity, and the 

basic reproduction [111]. Thus, after formulating the models, stability analysis will be given 

by computing the basic reproduction number, ��, by using the definition which is to be 

verified by the condition for stability of the disease free equilibrium. �� is a threshold for 

stability of a disease-free equilibrium and is related to the peak and final size of an epidemic 

[119]. It is characterized by regarding the infection transmission as a ‘demographic process’, 

where causing a new infection through transmission is treated as an ‘epidemiological birth’. 

The infection process is then viewed in terms of consecutive ‘generations of infected 

individuals’ [33]. Subsequent generations growing in size then indicate a growing population 

(i.e. an epidemic), and the growth factor per generation indicates the potential for growth. 

This growth factor is then the mathematical characterization of ��. A matrix that relates the 

numbers of newly infected individuals in the various categories in consecutive generations is 

then defined. This matrix, usually denoted by M, is called the next-generation matrix (NGM). 

It was introduced by Diekmann et al [32] who proposed to define �� as the dominant 

eigenvalue of M.  

 

The natural basis for the definition and calculation of �� is the next-generation matrix (NGM) 

[33]. To compute the basic reproduction number we only consider the states that apply to 

infected individuals. One begins with those equations of the ODE system that describe the 

production of new infections and changes in state among infected individuals. The first step 

is to linearize the so-called infected subsystem of nonlinear ODEs about the infection-free 

steady state, that is, the disease-free equilibrium. This linearized infected subsystem is the 

starting point of calculations. Using the fact that any linear system of ODEs can be described 

by a matrix, the matrix is decomposed as N − O, where N is the transmission part, describing 

the production of new infections, and O is the transition part, describing changes in state 

(including removal by death). Next, the dominant eigenvalue, or more precisely the spectral 

radius �, of the matrix M = NOP� is computed [33, 120].  

 

In addition, the disease free and endemic equilibrium points of the models are to be 

computed from which the conditions for local and global stability will be established. The 

conditions for local stability will be established using the Jacobian matrix by incorporating 

Routh-Hurwitz criteria while the global stability conditions can be established via the 
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Lyapunov function. In particular, an equilibrium point is locally asymptotically stable if the 

trace and the determinant of the Jacobian matrix evaluated at the equilibrium point are, 

respectively, negative and positive.  It has been established that if �� < 1, then the DFE is 

locally asymptotically stable, and the disease cannot invade the population, but if �� 	> 1, 

then the DFE is unstable and invasion is always possible [50]. 

 

2.3 Sensitivity Analysis 

 

In determining how best to reduce mortality and morbidity due to any disease, it is necessary 

to know the relative importance of the different factors responsible for its transmission. 

Essential to any mathematical model of disease progression, thus, is a sensitivity analysis to 

gauge the impact of parameters on solutions. This analysis allows for the impact of varying 

parameters to be explored. Since initial disease transmission is directly related to ��, we 

calculate the sensitivity indices of the reproductive number to the parameters in the model. 

These indices tell us how crucial each parameter is to disease transmission. Sensitivity 

analysis is commonly used to determine the robustness of model predictions to parameter 

values since there are usually errors in data collection and presumed parameter values [22]. 

Here we use it to discover parameters that have a high impact on �� and these should be 

targeted by intervention strategies. 

 

Sensitivity indices allow us to measure the relative change in a state variable when a 

parameter changes. We make use of the normalized forward sensitivity index of a variable to 

a parameter, a ratio of the relative change in the variable to the relative change in the 

parameter. When the variable is a differentiable function of the parameter, the sensitivity 

index is defined as follows: 

 

Definition 2.3 : The normalized forward sensitivity index of a variable, Q, that depends 

differentiably on a parameter, R, is defined as: 

STU = VQVR × RQ 

As we have an explicit formula for ��, we derive an analytical expression for the sensitivity of �� to each of the different parameters described in the model. However, some of the 

expressions for the sensitivity indices might be complex with little obvious structure. In this 

case, we evaluate the sensitivity indices using the baseline parameter values. 

 

It is sometimes desirable to also calculate the sensitivity indices of the endemic equilibrium 

point to the model parameters given that disease prevalence is directly related to the 

endemic equilibrium point.  
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2.4 Optimal Control 

 

Optimal control theory, an extension of the calculus of variations, is a mathematical 

optimization method for deriving control policies. It has been a powerful mathematical 

technique useful in decision making regarding complex biological systems. The technique 

deals with the problem of finding a control law for a given system such that a certain 

optimality criterion is achieved. The method is used to solve for an extremum value of an 

objective functional, XY�, -(�), Z(�)[, involving dynamic variables which are divided into two 

classes: state variables, -, and control variables, Z. This maximizing or minimizing process is 

accomplished by adjusting the control variables, Z, until the maximum or minimum is 

attained. The control set which yields the extreme value is denoted by Z∗ and is called an 

optimal control. These control variables, which in our case are functions of time, can be used 

in many modelling situations and could be functions of any controllable variable [86]. When 

dealing with a finite dimensional system in time, the states of infection are described by 

ODEs and the control is deterministic. Initial conditions for the state variables should always 

be provided and sometimes explicit intra-temporal constraints. Optimal control problems can 

be solved more easily using the vehicle of the Hamiltonian.  

 

There are a number of different methods for calculating the optimal control for specific 

models. Pontryagin’s Maximum Principle, for example, allows the calculation of the optimal 

control for an ordinary differential equations model with given constraints. In particular, the 

optimal control can be derived from the necessity conditions using Pontryagin's maximum 

principle [103] and sufficiency conditions by solving the Hamilton-Jacobi-Bellman equation. In 

[61, 72], other powerful optimal control techniques have been derived for partial differential 

equations and difference equations. 

 

2.4.1 The General Optimal Control Problem 

We consider a system whose state at any time � is described by a vector - = -(�) ∈ ℝJ. The 

system evolves in time, and we have the ability to influence its evolution through a vector-

valued control Z(�) ∈ 	ℝ\. The evolution of the system is determined by a set of ordinary 

differential equations given by -. (�) = 1Y�, -(�), Z(�)[; 	-(0) = -� 

and the goal is to choose the function Z(�) for 0	 < �	 < + so as to maximize some utility or 

minimize some cost, the objective functional e.g.  

 

X = ^ _Y�, -(�), Z(�)[`� + aY+, -(+)[.b
�  
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The problem is determined by specifying the dynamics 1, the initial state -�, the final time +, 

the "running utility" _ and the "final utility" a. The problem is solved by finding the optimal 

control Z(�) for 0 < � < + and the value of the extremum. 

 

2.4.2 Pontryagin’s Maximum Principle 

This is a powerful method for the computation of optimal controls, which has the crucial 

advantage that it does not require prior evaluation of the cost function.This principle converts 

the maximization/minimization of the objective functional, X, coupled with the state variable 

into maximizing/minimizing point-wise a corresponding Hamiltonian with respect to the 

controls.  

 

Theorem 2.1 : If Z∗(�) and -∗(�) are optimal for the problem, then there exists piece-wise 

differential adjoint variables c(�) ∈ ℝJ such that d(�, -(�), Z(�), c(�)) ≤ d(�, -∗(�), Z∗(�), c(�)) 
for all controls Qf at each time �, where the Hamiltonian d is given by 

d = _Y�, -(�), Z(�)[ + cg(�)1Y�, -(�), Z(�)[, 
and `hi(�)`� = −Vd(�, -∗(�), Z∗(�), c(�))Vji  

constitute the adjoint system, VdVQf = 0 

provide the stationary conditions for the controls while 

 hi(+) = 0 

specify the transversality conditions. 

 

The adjoint variable	hi(�) is the shadow price or co-state variable which denotes the increase 

of the objective function due to marginal increase of the state variable ji , k = 1,…m. At any 

time, the decision maker can use the control variable to generate direct contributions to the 

objective function (represented by the cost function term _Y�, -(�), Z(�)[ in the Hamiltonian), 

or he/she can use the control variable to change the value of the state variable in order to 

generate contributions to the objective function in the future. These indirect contributions are 

measured by the term cg(�)1Y�, -(�), Z(�)[ in the Hamiltonian, where cg(�) is the transpose of c. 
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2.5 Numerical Analysis 

Solutions to ordinary differential equations cannot be determined uniquely without some 

outside condition, typically an initial value or a boundary value. The optimality system 

consisting of the state and adjoint systems will be solved computationally using an iterative 

scheme. In particular, the fourth order Runge-Kutta scheme will be used because it is quite 

accurate, stable, relatively easy to program and does not require a lot of computing effort. 

This numerical technique is reasonably simple and robust and is a good general candidate 

for numerical solution of differential equations when combined with an intelligent adaptive 

step-size routine [104].  

 

The Runge-Kutta fourth order method is based on the following: 

 -Jn� = -J + (o�p� + o�p� + o�p� + oqpq)ℎ 

 

Knowledge of the value of -J = -(�J) is used to approximate the value of -Jn� = -(�Jn�), 
where ℎ = �Jn� − �J. Comparing the approximation to the first five terms of the Taylor series 

of -Jn� about -J, the technique is then specified by the following algorithm: 

-Jn� = -J + ℎ(p� + 2p� + 2p� + pq)6  

where 

 p� = 1(�J, -J); p� = 1Y�J + t6, -J + u56 [; p� = 1Y�J + t6, -J + u66 [; pq = 1(�J + �, -J + vw) 
 

Another frequently used scheme uses 

 p� = 1(�J, -J); p� = 1Y�J + t6, -J + u56 �[; p� = 1Y�J + t6, -J + u66 �[; pq = 1(�J + �, -J + vwℎ) 
 

Computational programming software such as MATLAB and MAPLE will be employed to 

implement simulation of the data into models so as to analyze and interpret the dynamics of 

the models graphically.  

 

2.6 Cost Effective Analysis 

The goal of modelling infectious disease epidemics is not only to estimate future economic 

and health outcomes under different control scenarios but also to determine the optimal 

allocation of limited resources between competing interventions [78]. Before determining the 

optimal disease-control policy, decision makers must choose the appropriate decision 

criteria. In other words, they must choose how to select programs based on the cost-
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effectiveness information. The choice of criteria must take into consideration the appropriate 

constraints. These may include budget constraints, limitations on allowable allocations of 

resources, etc. 

 

To quantify the cost-effectiveness of disease control measures, it is important to examine the 

cost effectiveness ratios of the strategies, so as to draw our conclusions. There are three 

types of cost effectiveness ratios: 1) Average Cost-Effectiveness Ratio (ACER) which deals 

with a single intervention and evaluates that intervention against its baseline option (e.g. no 

intervention or current practice). It is calculated by dividing the net cost of the intervention by 

the total number of health outcomes prevented by the intervention. 2) Marginal Cost-

Effectiveness Ratio (MCER) for the assessment of the specific changes in cost and effect 

when a program is expanded or contracted. 3) Incremental Cost-Effectiveness Ratio (ICER) 

used to compare the differences between the costs and health outcomes of two alternative 

intervention strategies that compete for the same resources and is generally described as 

the additional cost per additional health outcome [95]. This involves a comparison of the 

costs and health effects of an intervention to assess the extent to which it can be regarded 

as providing value for money with a view to informing decision-making in order to determine 

where to allocate limited healthcare resources. 

 

Cost effectiveness analysis is a standard tool for comparing the costs and benefits of two or 

more medical interventions [43]. The incremental cost effectiveness ratio (ICER) is calculated 

as the marginal cost of an intervention divided by the marginal benefit. It measures how 

much additional “bang for the buck” could be achieved by switching from one intervention to 

another. This can be written as 

 

�x"� = xyz�z{i0�	iJ0|}~|J0i�J − xyz�z{i0��U0	iJ0|}~|J0i�J��m��k�z{i0�	iJ0|}~|J0i�J − ��m��k�z{i0��U0	iJ0|}~|J0i�J 

 

This allows us to compare the cost-effectiveness of combinations of at least two of the 

control strategies, e. g. screening, preventive, enlightenment and treatment of infective 

individuals. When comparing competing intervention strategies incrementally, one 

intervention should be compared with the next less-effective alternative. The ICER numerator 

includes the differences in intervention costs, averted disease costs, costs of prevented 

cases and averted productivity losses if applicable. While, ICER’s denominator is the 

difference in health outcomes (e.g. total number of infection averted, number of susceptibility 

cases prevented). 
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Alternative interventions are ranked by their incremental cost effectiveness ratio, from most 

favourable to least favourable. The decision maker can go down the list and select 

interventions until a predefined budget is exhausted [78]. If medical interventions offer 

substantial gains in health benefits, perhaps it is wise to increase the funds available for such 

interventions. These considerations make this way of implementation difficult in practice. 

 

An alternative and preferred approach is to rank interventions by their gains in health benefits 

from least favourable to most favourable, and then calculate incremental cost effectiveness 

ratios. The cost of a medical intervention includes the direct cost of the intervention itself e.g., 

prescription drug cost, prevention program cost, etc. as well as all indirect costs of related 

health care e.g., hospital visits, ancillary services, etc. The counterpart to an intervention’s 

cost is the expected health benefit it generates in the population. Outcomes specific to a 

particular disease or intervention such as number of infections averted or number of people 

who die are often relevant when comparing interventions for controlling a particular disease, 

but not when comparing different diseases. 
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CHAPTER THREE 

 

LABOUR FORCE PRODUCTIVITY IN THE PRESENCE OF HIV/AI DS 

 

In this chapter, we investigate the productivity of organizational labour force in the presence 

of HIV/AIDS with enlightenment/monitoring, preventive and HAART treatment measures in 

enhancing workforce output. We formulate a mathematical productivity epidemiological 

model for the transmission dynamics of HIV/AIDS that includes the three intervention 

strategies. We use the model to estimate the cost of the non-productive susceptibles and the 

non-productive infectious individuals (depressed) to organizations as well as project the 

benefits when the non-productive and depressed employees have access to interventions. 

 

We first consider the constant control case, calculate the basic reproduction number and 

investigate the existence and stability of equilibria. The model is found to exhibit backward 

bifurcation implying that for the disease to be eradicated, the basic reproductive number 

must be below a critical value less than one. We also investigate, by calculating the 

sensitivity indices, the sensitivity of the basic reproductive number to the model’s 

parameters. In the time dependent control case, we use Pontryagin's Maximum Principle to 

derive necessary conditions for the optimal control of the disease. Finally, numerical 

simulations are performed to illustrate the analytical results. 

 

3.1 Introduction 

 

The productivity of labour force is a key variable in the profitability of any organizational 

venture. Productivity can also be influenced by factors such as skill level, motivation, 

satisfaction and schedule pressure. The question now is how motivated and productive 

would an employee be in the face of HIV/AIDS infection? 

 

HIV/AIDS is not only beyond a health issue but is a substantial threat to socio-economic 

development, imposing a heavy burden on families, communities and economies. The 

pandemic has affected most countries in the world. In 2003, about 26 million of the estimated 

38 million HIV-positive persons were workers between the ages of 15 and 49, the most 

productive age group [115]. This has great implications for families and economies in terms 

of employment, productivity and labour market changes [51]. 

 

In 2005, about 3.1 million people died from AIDS world-wide and 4.9 million people became 

infected with HIV, bringing to 40.3 million the number of people living with the virus across 

the world [116]. In 2010, a total of 34 million people (30.1 million adults) were living with HIV, 
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2.7 million were new infections (2.3 million adults) and 1.8 million (1.5 million adults) died due 

to AIDS [119].  HIV infection, which causes AIDS, is a global problem which has shown a 

high degree of prevalence in populations all over the world especially in sub-Saharan Africa. 

The most susceptible individuals at risk of acquiring infection include people having sexual 

contacts with HIV infected, homosexual and bisexual men, intravenous drug abusers and 

persons transfused with contaminated blood. 

 

HIV is preventable but not curable. Highly Active Anti-Retroviral Therapy (HAART) is not a 

cure, but the use of drugs to halt the decline in immune deficiency and prevent disease 

progression and death. HAART suppresses viral replication, and successful treatment helps 

in slowing or halting the disease progression, prevention of drug resistance, and 

improvement in the quality of life. Although the number of infected people receiving HAART 

in low and middle- income countries increased dramatically, optimal disease management is 

not well defined. Despite substantial progress in access to treatment, only 20% of adults who 

needed HAART were receiving it in 2008 [11]. By 2010, of the estimated 15 million people 

living with HIV in low- and middle-income countries who need treatment, 5.2 million had 

access, which translated into fewer AIDS-related deaths. For the estimated 33.3 million 

people living with HIV after nearly 30 years into a very complex epidemic, the gains are real 

but still fragile [118]. 

 

There is still an on-going intensive search for an anti-HIV vaccine. The use of 

chemotherapies is aimed at killing or halting the pathogen, but treatment which can boost the 

immune system can serve to help the body fight infection on its own [56]. The new 

treatments are aimed at reducing viral population and improving the immune response. This 

brings new hope to the treatment of HIV infection, and we are exploring strategies for such 

treatments using optimal control techniques. 

 

A host of social, economic, cultural and political factors facilitate the spread of HIV through 

populations. HIV spreads more widely where wrong perspectives or attitudes about HIV are 

common. An example is an extensive organizational (office) sexual network, where a person 

is having sex with more than one partner in an office location. Having multiple partners 

concurrently creates a node of transfer from one sexual network to another. Where sexual 

networks are smaller and more circumscribed, HIV can spread but less widely. The 

challenges posed by the peoples’ attitude and ignorance to the disease dynamics call for a 

better understanding of the disease transmission and development of effective and optimal 

strategies for prevention and control of the spread of HIV/AIDS disease. Research has also 

shown that behavioural or attitudinal change has a great influence in disease spread. 
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In an organizational work place, individuals are recruited blindly without knowledge of their 

HIV/AIDS status. In other words, it is not known whether the individual would become an 

asset (productive) or a liability (non-productive) to the company. The non-productive 

employees can be associated with their lifestyle choices such as carelessness, alcoholism, 

wrong value perception, office politicking and multiple sexual partners. It is clear from various 

studies that interventions designed to support employment, or economic policy, or a national 

HIV/AIDS strategy cannot be implemented without considering the particular impact HIV and 

AIDS are having on the economically active and productive population. As very little is known 

about the impact of HIV/AIDS on the labour force structure and productivity, this study then 

seeks to fill some of the gaps in this knowledge. 

 

The impact of AIDS in economic sectors is significant. Studies done in some countries have 

shown that AIDS will continue to have adverse effects on agriculture, including loss of labour 

supply and remittance income. Agriculture, which accounts for a large portion of production 

and large employment opportunities and is the largest sector in most African economies, 

bears the brunt of HIV/AIDS. The loss of a few workers at the crucial periods of planting and 

harvesting can significantly reduce the size of the harvest [80]. AIDS related illnesses and 

deaths to employees affect firms by both increasing expenditures and reducing revenues. 

Expenditures are increased for health care costs, burial fees and training and recruitment of 

replacement employees. Revenues may be decreased because of absenteeism due to 

illness or attendance at funerals and time spent on training. Labour turnover can lead to a 

less experienced labour force that is less productive [121]. 

 

Minimal or no attention has been paid to study models which incorporate classes such as 

productive and non-productive individuals (susceptibles and infected) which may be helpful 

in determining the productivity level of labour force in organizations in the presence of 

HIV/AIDS. What is considered here is an improved dynamical system model through the 

inclusion of a productive susceptible class, productive HIV infected class and time dependent 

control parameters. We study and determine the possible impact of optimal enlightenment 

and HAART treatment for enhancing productivity on the spread of HIV. We carry out detailed 

qualitative optimal control analysis of the resulting model and we determine the necessary 

conditions for optimal control of the disease using Pontryagin’s Maximum Principle in order to 

identify optimal strategies for controlling the spread of the disease. 

 

Our main goal is to set up an optimal control problem related to the model. In order to do this, 

we use the following: preventive measures on susceptibles Q�, enlightenment or educational 

parameter Q�, HAART treatment rate of individuals with HIV Q�, as time dependent control 

parameters in the model. Hence, we investigate the role of productive susceptibles, 
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productive infected, optimal prevention (through condom use), enlightenment (through 

counselling, mentoring, training, screening, educational campaigns) and HAART treatment 

on the spread of HIV/AIDS. 

 

3.2 Model Formulation 

 

We consider a standard compartmental model of HIV/AIDS in which three time dependent 

control measures are incorporated simultaneously, the following: i) preventive measure 

(condom use), ii) enlightenment campaign, iii) HAART treatment of HIV individuals for 

enhanced productivity. The total workforce population at any time �, denoted by #(�), is sub-

divided into the following five classes: susceptible productive workers (�T(�)), susceptible 

non-productive workers (�J(�)), infected non-productive workers (�J(�)), infected productive 

individuals on HAART treatment (�T(�)) and individuals with full blown AIDS (,(�)), so that 

 #(�) = �T(�) + �J(�) + �J(�) + �T(�) + ,(�). 
 

Susceptibles are individuals who have not contracted the infection but may be infected 

through sexual contacts. The susceptible non-productive are individuals whose lifestyle 

places them at high risk of contracting the disease. We assume that individuals with AIDS 

are sexually inactive. 

 

The organization recruits workers at a rate �, where the proportion of susceptible non-

productive workers are recruited at a rate 
�. The per capita contact rate for susceptible 

non-productive individuals is ( while the susceptible productive workers have a per capita 

contact rate of (� ≔ �( < (, where � is the modification parameter due to right values 

perception of the susceptible productive workers. When susceptible non-productive 

individuals are enlightened (through counselling, mentoring or monitoring) and their attitudes 

change, they progress to the susceptible productive class at a rate Q��, where Q� is the 

control efforts on enlightenment. We assume that unprotected sexual contact between any 

type of susceptible and any type of infective would eventually land the susceptible into the 

infected non-productive class. The infected non-productive individuals on HAART treatment 

progress at a rate Q�� to the infected productive class, where � is the proportion of the 

infected non-productive individuals on HAART treatment for enhanced productivity, Q� is the 

control efforts on HAART treatment to enhanced productivity. Infected non-productive 

workers not on HAART treatment progress to the full blown AIDS class at a rate of � while  

is the rate of progression of infected productive individuals to full blown AIDS, where  < �. 
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The term � is the modification parameter due to HAART treatment and right values 

perception of the infected productive individuals. The disease induced death rate of 

individuals with AIDS is denoted by � while μ is the natural mortality rate unrelated to 

HIV/AIDS. We assume, as already stated, that the AIDS class is sexually inactive and non-

productive. 
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Fig 3.1: Flow diagram for HIV/AIDS transmission 
 

The resulting state system  of ordinary differential equations is the following: 

 /��/0 = (1 � 
!Q �  1 � u�!ρβ��S� $ u�αS� � μS�/�8/0 � 
Q �  1 � u�!β��S� � u�αS� � μS�/�8/0 �  1 � u�!β���� �  u�σ $ δ $ μ!I�/��/0 � u�σI� � γI� � μI� � u�σI� �  γ $ μ!I�/�/0 � �I� $ γI� � κA � μA � �I� $ γI� �  κ $ μ!A��
��
��
�

   (3.1) 

 

where �� � I� $ ηI� is the force of infection and �� � ρS� $ S� is susceptibility to infection. 
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3.3 Existence and Stability of Equilibria 

 

3.3.1 Stability of the Disease-Free Equilibrium (DF E) 

 

Disease-free equilibrium entails setting �J = �T = , = 0 and also assumes steady-state, i.e. 

/(∙)/0 = 0. The DFE of our HIV/AIDS model exists and is given by 

 

�� = (�T�, �J�, �J�, �T�, ,�) =  (Q�� + � − 
�)��(Q�� + �) , 
�Q�� + � , 0, 0, 0¡. 
 
The control reproduction number, ��, of the model in the presence of non-productive 

susceptible individuals is calculated using the next generation matrix ¢£P�, where ¢ 

represents the rate of appearance of new infections in each compartment and is given by 

 

¢ = ¤(1 − u�)β�� (1 − u�)βη�� 00 0 00 0 0¥ 
 
while £ represents the rate of transfer of individuals out of  each compartment and is given 

by 

£ = ¤u�σ + δ + μ 0 0−u�σ γ + μ 0−� −γ κ + μ¥. 
 

Taking the most positive eigenvalue of ¢£P� evaluated at the DFE �� gives 

 �� = (�P¦5)§(¨n©nª¦w«){(U6®n¯P°¯)n°¯}²¯(¦w«n³n©)(¨n©)(U6®n¯)      (3.2) 

 
The DFE is locally asymptotically stable if R� < 1 and unstable if R� > 1. 

 

3.3.2 Existence of Endemic Equilibrium 

Calculating the endemic equilibrium point, �∗ = (�T∗ , �J∗ , �J∗ , �T∗ , ,∗), we obtain 
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�T∗ = (�P°)²nU6®�8∗(�P¦5)§µ¶∗n©�J∗ = °²(�P¦5)§µ¶∗nU6®n©�J∗ = (�P¦5)ª§��∗µ·∗¦w«n³n©P(�P¦5)§µ·∗�T∗ = ¦w«�8∗¸n¯,∗ = ¹�8∗n¸��∗ºn¯ ��
���
���
�

        (3.3) 

 

where ��∗ = �J∗ + ��T∗ is the endemic force of infection and ��∗ = ρ�T∗ + �J∗ is the endemic 

susceptibility. 

 

The endemic equilibrium satisfies the following polynomial equation 

 »(��∗) = �	��∗� + x	��∗ + ¼ = 0      (3.4) 
 
where 
 � = �( + μ)(� + μ + u�σ)x = ©½(¸n©)(¹n©n¦w«)(©nU6®)°©(�P½)n½(©nU6®) (� − ��)¼ = μ( + μ)(μ + Q��))(� + μ + u�σ)(1 − ��)¾     (3.5) 

 
with � = (©n½(©nU6®))(°©(�P½)n½(©nU6®))©½(©nU6®)       (3.6) 

 � > 1 if and only if  
 
 > 
¿ ≔ μ�(μ + Q��) + �(μ + Q��)(� + �(μ + Q��))μ(1 − �)(� + �(μ + Q��))  

 

We obtain the following result: 

 

Proposition 3.1 :  

1. If 
 ≥ 
¿, then the state system (3.1) exhibits trans-critical bifurcation. 

2. If 
 < 
¿, then the state system (3.1) exhibits backward bifurcation. That is, there 

exists �À in (0, 1) such that if 

i. 1 ≤ ��, then there is one endemic equilibrium point. 

ii. �À < �� < 1, then there are two endemic equilibrium points. 

iii.  �� = �À, then there is one endemic equilibrium point. 

iv. �� < �À, then there are no endemic equilibrium points. 
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Proof : 

1. If 
 ≥ 
¿, then � ≥ 1. In this case, we have the following: 

i. If �� > 1, then x < 0. In this case (3.4) has a unique positive solution. 

ii. If �� ≤ 1, then x ≥ 0 and � ≥ 0 (because �� ≤ 1 ≤ √�). This together with , > 0 imply that (3.4) has no positive solution. 

2. If 
 < 
¿, then 
¿ < 1. In this case, we have that 

i. if �� ≥ 1, then x ≤ 0 which implies that (3.4) has a unique positive solution. 

ii. if �� < √�, then � ≥ 0 and x > 0. This implies that (3.4) has no positive 

solution. 

iii.  If √� < ��, we consider the discriminant of (3.4) Δ(��) = �� − 4,x. One can 

see that ∆Y√�[ = −4,x < 0 and ∆(1) = �� > 0. Therefore, there exists 

�À ∈ Y√�, 1[ such that ∆(�À) = 0 and ∆(��) < 0 for �� ∈ Y√�,�À[ and ∆(��) >0 for �� ∈ (�À , 1). In this case we have the following: 

a. If √� < �� < �À, then (3.4) has no positive solution. 

b. If �� = �À, then ∆= 0 and � < 0. This implies that (3.4) has one positive 

solution. 

c. If �À < �� < 1, then (3.4) has two real solutions which are positive since x > 0 and � < 0.        ∎ 

 

Proposition 3.1 establishes the existence of two endemic equilibria for � in (�À , 1). 
 

3.4 Sensitivity Analysis 

Due to uncertainties associated with the estimation of certain parameter values, it is useful to 

conduct an investigation to determine how sensitive the basic reproductive number is with 

respect to its parameters. This will also allow us to identify which of the parameters cause 

the most reduction in �� and therefore determine the control measure which is the most 

effective in controlling the disease. For this we compute the normalized forward sensitivity 

index of the reproduction number with respect to its parameters. This index measures the 

relative change in a variable with respect to relative changes in its parameters (see [81] for 

the application of this index to a malaria transmission model). 

 

Definition 3.1 : If a variable ℎ depends differentiably on a parameter R, then the normalized 

forward sensitivity index of ℎ with respect to R, denoted by ST, is defined as 

 ST = T� Å�ÅT. 
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The sensitivity index of �� with respect to β and � is equal to 1. For the other parameters we 

obtain 

 S½ = ½(¯P°¯nU6®)°¯(�P½)n½(¯nU6®), S¹ = − ¹¹n©n¦w«, S° = °¯(�P½)°¯(�P½)n½(¯nU6®). 
 

Indices for �, �,  and � have complex expressions. We observe that the sensitivity indices 

using the parameter values in Table 3.2 are always constant (even though their expressions 

depend on u� and u�). Therefore, we calculate the sensitivity indices of 
, �, �, �, , �, � and �. 

Their values are given in the table below: 

 

Parameter Description Index 
 recruited proportion in non-productive susceptible class 0.035 � mortality rate -0.38 � modification parameter on productive susceptible 0.96 � enlightenment rate -0.02215 u� control effort on HAART treatment -0.0128 � modification parameter on productive infected 0.00362 � proportion of non-productive infected on HAART treatment  -0.0128 � rate of progression to AIDS for non-productive infected -0.82 u� control effort on enlightenment -0.0221 
 

Table 3.1: Sensitivity indices for �� 
 
The interpretation of the sensitivity index values is that an increase/decrease of 1% in any of 

the parameter values in the first column results in a percentage increase/decrease given by 

the corresponding value in the third column. In particular, an increase in the modification 

parameter due to productivity mindset	� or a decrease in the progression rate to AIDS � have 

negative impact in controlling HIV epidemics, and hence productivity, at the workplace. The 

most sensitive parameters are transmission and recruitment rates β and �. Since SÆ = SÇ =1, increasing (or decreasing) the transmission probability rate, β, by 10% increases (or 

decreases) �� by 10%. Similarly, increasing (or decreasing) the recruitment rate, �, by 10% 

increases (or decreases) �� by 10%. Increasing (or decreasing) the modification parameter � 

by 10%, increases (or decreases) �� by 9.6%. In the same way, increasing (or decreasing) 

the progression to AIDS rate � by 10% results in a decrease (or increase) in �� of 8.1%. 

 

In the next section, we apply Pontryagin’s Maximum Principle to determine the necessary 

conditions for the optimal control of the non-productive, both susceptible and infected, on the 

spread of HIV. 
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3.5 Analysis of Optimal Control 

We investigate the optimal level of efforts that would be needed to control the disease and 

optimize productivity, that is, to minimize the number of non-productive susceptible and 

infectious individuals at a minimal cost of applying the controls u�, u� and u� over a finite time 

interval È0, +É. This is achieved by defining the objective functional, X, by choosing a quadratic 

cost on the controls, in accordance with the existing literature on epidemic controls [56, 1, 37, 

74, 67]. 

 X =Ê (mS� + ËI� + Ì�Q�� + Ì�Q�� + Ì�Q��)`�b� ,    (3.7) 

 

where m, Ë, Ì�, Ì� and Ì� are positive weights. With the given objective functional, X(u�, u�, u�), our goal is to minimize the number of carefree susceptibles S�, while minimizing 

the cost of controls u�(t), u�(t) and u�(t). We thus seek an optimal control triple YQ�#, Q�#, Q�#[ 

such that 

 X(Q�#, Q�#, Q�#) = min¬X(u�, u�, u�):	(u�, u�, u�) ∈ Ð± ,    (3.8) 

 

where 

 Ð = ¬(u�, u�, u�):	u�, u�, u�	are	measurable	with	0 ≤ uØ ≤ 1, i = 1, 2, 3	for	t ∈ È0, TÉ± 
 

is the control set. The necessary conditions that an optimal control problem must satisfy 

come from Pontryagin’s Maximum Principle [103]. We use this principle to convert the 

problem of minimization of the objective functional coupled with the state variable into a 

problem of minimizing point-wise a Hamiltonian, d, with respect to the controls u�, u� and u�. 

 d = mS� + ËI� + Ì�Q�� + Ì�Q�� + Ì�Q�� + hÜÝÞ(1 − 
)Q − (1 − u�)ρβYI� + ηI�[S� + u�αS� − μS�ß+ hÜàÞ
Q − (1 − u�)ρβYI� + ηI�[S� − u�αS� − μS�ß+ háàÞ(1 − u�)ρβYI� + ηI�[S� + (1 − u�)ρβYI� + ηI�[S� − u�σI� − δI� − μI�ß+ háÝÞu�σI� − γI� − μI�ß + h�{�I� + γI� − κA − μA} 
           (3.9) 
 
where hÜÝ , hÜà , háà , háÝ and h� are adjoint or co-state variables. By applying Pontryagin’s 

Maximum Principle and the existence result for the optimal control [39], we obtain 

 

Proposition 3.2 : For the optimal control triple YQ�#, Q�#, Q�#[ that minimizes X(u�, u�, u�) over Ð, 

there exist adjoint variables hÜÝ , hÜà , háà , háÝ and h� satisfying the following: 
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(i) Adjoint System 

 /âãÝ/0 = (1 − u�)ρβYI� + ηI�[ ähÜÝ − háàå + μhÜÝ/âãà/0 = −m + (1 − u�)βYI� + ηI�[YhÜà − háà[ + (u�α + μ)hÜà − u�αhÜÝ/âæà/0 = −Ë + (1 − u�)βh�� + u�σ äháà − háÝå + �(háà − hç) + μháà/âæÝ/0 = (1 − u�)βη{ρS�(hÜÝ − háà) + S�(hÜà − háà)} + γ(háÝ − h�) + μháÝ/âè/0 = (κ + μ)hç ���
��
���
�
	(3.10) 

 

where  h�� = ρS�(hÜÝ − háà) + S�YhÜà − háà[. 
 

(ii) Transversality Conditions 
 hÜÝ(+) = hÜà(+) = háà(+) = háÝ(+) = hç(+) = 0     (3.11) 

 

(iii) Stationary Values 
 

Q�# = Ëkm é1,Ëoj ê0, §YáànªáÝ[{ÜÝ(âæàPâãÝ)nÜàYâæàPâãà[}�ë5 ìí
Q�# = Ëkm î1,Ëoj é0, ïÜàäâ·àPâã�å�ë6 íð
Q�# = Ëkm î1,Ëoj é0, «áàäâ¶àPâ¶�å�ëw íð ���

�
���

   (3.12) 

 

Proof : 

 

Corollary 4.1 in [39], gives the existence of an optimal control due to the convexity of the 

integrand of X with respect to Q�, Q� and Q�, a priori boundedness of the state solutions, and 

the Lipschitz property of the state system with respect to the state variables [39]. The 

differential equations governing the adjoint variables are obtained by differentiation of the 

Hamiltonian function, evaluated at the optimal control. In particular 

 VdVj = −`j`�  

 

where j = �T, �J, �J, �T, , establishes the adjoint system and 
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VdVQi = 0 

 

gives Qñi, k = 1, 2, 3 and coupled with standard control arguments involving the bounds on the 

controls 

 

Qi# = ò0, k�	Qñi ≤ 0Qñi	,	k�	0 < Qñi < 11, k�	Qñi ≥ 1  

 

provide the stationary values. 

 

Due to the a priori boundedness of the state system, the adjoint system and the resulting 

Lipschitz structure of the ODEs, we obtain the uniqueness of the optimal control for small +. 

The uniqueness of the optimal control follows from the uniqueness of the optimality system, 

which consists of the state system (3.1) and the adjoint system (3.10) characterized by the 

stationary values (3.12). There is a restriction on the length of time interval in order to 

guarantee the uniqueness of the optimality system. This smallness restriction of the length 

on the time is due to the opposite time orientations of the state and adjoint systems; the state 

problem (3.1) has initial values and the adjoint problem (3.10) has final values. This 

restriction is very common in control problems (see [56, 37, 74, 67]).   ∎ 

     

3.6 Numerical Results and Discussions 

In this section, we study numerically an optimal transmission parameter control for the HIV 

model. The optimal control set is obtained by solving the associated optimality system which 

consists of state and adjoint equations. An iterative scheme is used for solving the optimality 

system. We start to solve the state equations (3.1) with a guess for the controls over the 

simulated time using the fourth order Runge-Kutta scheme. The state equations are solved 

using a forward method with given initial conditions for the state variables (3.1). The 

corresponding adjoint system (3.10) is solved using a backward scheme with the 

transversality conditions (3.11). The controls are updated by using a convex combination of 

the previous controls and the stationary value characterizations. This process is repeated 

and iterations stopped if the values of the unknowns at the previous iterations are very close 

to the ones at the present iterations [72]. 

 

We investigate and compare numerical results in the following scenarios: (i) when the 

preventive control, u�, is set to zero and the other control parameters optimized (ii) when the 

enlightenment control, u�, is set to zero and the other control parameters optimized (iii) when 
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the HAART treatment control, u�, is set to zero and the other control parameters optimised 

(iv) when all controls were optimized. 

 

Parameter Description Value Reference ( contact rate for the non-productive susceptible 0.344 [113] � natural mortality unrelated to HIV/AIDS 0.02 [113] � AIDS related death rate 1 [113] � productivity mind-set modification parameter 0.02 [113] � non-productive susceptibles’ AIDS progression rate 0.1 [113] � proportion of non-productive infected on HAART 0.002 Assumed 
 non-productive susceptible recruits proportion 0.002 Assumed � non-productive susceptible enlightened proportion 0.034 Assumed � modification parameter on productive infected 0.4 Assumed  rate of progression to AIDS for productive infected 0.01 Assumed 
 

Table 3.2: Model parameter values 

 

We assume that the weight factor Ì� associated with control u� is greater than m and Ì� 

which are associated with the control Q�. This assumption is based on the fact that the cost 

associated with Q� will include the cost of prevention (condom use) for the entire population 

over and above enlightenment, Q�, costs related to educating people about the disease 

dynamics while the cost associated with HAART treatment, Q�, will include the cost of drugs, 

medical examinations and hospitalization for the ill. We have chosen the same set of weight 

factors:	m = 800,	Ë = 950, Ì� = 150, Ì� = 30 and Ì� = 20 and initial state variables ST(0) =800, S�(0) = 40,	I�(0) = 45, �T(0) = 30 and	,(0) = 0 to illustrate the effect of different 

optimal control strategies on the spread of HIV/AIDS in a population. Thus, we have 

considered the spread of HIV/AIDS in an endemic population. 

 

3.6.1 Condom Use (Prevention) Control Set to Zero  
 

With this strategy, the other controls were used to optimize the objective functional  X while 

the control on prevention,Q�, is set to zero. The plots, Fig 3.2 (a) – (h), show a significant 

difference in the number of HIV/AIDS cases recorded using this strategy compared with the 

case without any control. The total number of the non-productive infected and AIDS 

individuals is reduced drastically at the end of final time. The plot for adjoint variables shows 

that the shadow price of non-productive susceptible workers, hÜà, is much more damaging to 

the economy followed by the shadow price on non-productive infected workers, h�à. 
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Fig 3.2: Simulations of the model showing the effect of enlightenment and treatment 

 

3.6.2 Enlightenment/Monitoring Control Set to Zero 

 

With this strategy, the other controls were used to optimize the objective functional  X while 

the control on enlightenment, Q�, is set to zero. Plots show a significant difference in the 
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number of HIV/AIDS cases recorded using this strategy compared with the case without 

control. Under this strategy, the total numbers of the non-productive infected and those with 

AIDS reduce quite remarkably. 
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Fig 3.3: Simulations of the model showing the effect of prevention and treatment 

 

Shadow price simulations show that non-productive susceptible individuals have a much 

more damaging impact on organizational labour productivity followed by the non-productive 

infected. 
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3.6.3 HAART Treatment Control Set to Zero  

 

With this strategy, the other controls were used to optimize the objective functional  X while 

the control on HAART treatment, Q�, is set to zero. Results show a significant difference in 

the number of HIV/AIDS cases recorded using this strategy compared with the case without 

control. Under this strategy, the total number of infected and AIDS individuals start to 

decrease drastically due to control efforts.  
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Fig 3.4: Simulations of the model showing the effect of prevention and enlightenment 

 

Shadow price dynamics show that the adjoint variable for non-productive infected individuals, h�à, is much higher and more damaging to the organizational outputs followed by the shadow 

price for the non-productive susceptible, h�à. 
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3.6.4 All Controls Optimized 

 

With this strategy, all the three controls were used to optimize the objective functional, X. This 

strategy shows a significant reduction in the non-productive individuals in the population and 

also reduces the endemicity of the disease. From the figures it easy to notice that the 

controls help in stabilizing the number of the non-productive infected and AIDS individuals. 
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Fig 3.5: Simulations of the model showing the effect of prevention, enlightenment and 

treatment 

 

Fig 3.5 (g) shows that the shadow price for the non-productive susceptible, hÜà, is  more 

damaging to the productivity of an organization followed by the shadow price on the non-

productive infected, h�à. 
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3.7 Cost Effective Analysis 

We compare the four control scenarios to determine the most cost effective one(s). The key 

question is: What are the additional benefits to be gained from one strategy to the other and 

at how much greater cost? In order to answer such a question, we use incremental cost-

effectiveness  ratios (ICERs)  calculated as the marginal cost of an intervention divided by 

the marginal benefit. It measures how much additional “bang for the buck” could be achieved 

by switching from one intervention to another [78]. This can be written as 

 

�x"� = ¼k���õ�m��	km	�yz�z	Ì��ö��m	z�õo��ak�z¼k���õ�m��	km	ℎ�o÷�ℎ	������z	Ì��ö��m	z�õo��ak�z 

 

The alternative strategies are ranked according to their effectiveness – on the basis of 

securing maximum effect rather than considering cost – and ICERs are calculated. Effects 

are calculated as the reduction in the non-productive (both susceptible and infected) for each 

of the strategies compared to the case when there are no controls. 

Strategy A – No Prevention : Averted = 179; Cost = 63 717 

Strategy B – No Enlightenment : Averted = 92; Cost = 13 892 

Strategy C – No Treatment : Averted = 147; Cost = 65 519 

Strategy D – All Controls : Averted = 174; Cost = 41 626 

Strategy Effects 
(E) 

Costs 
(C) 

Incremental Costs 
(∆x) 

Incremental Effects 
(∆") 

ICER (∆x ∆"⁄ ) 

B 92 13 892 13 892 92 151 
C 147 65 519 51 627 55 938.67 
D 174 41 626 -23 893 27 -884.93 
A 179 63 717 22 091 5 4418.2 

 

The negative ICER for Strategy D means that by adopting Strategy D rather than Strategy C 

there is an improvement in cases averted and a reduction in costs. The ICER for Strategy A 

works out to be 4 418.2 , which means that it costs $4 418.20  to generate each additional 

case averted compared with Strategy D. Strategy C is followed by a programme that has  

increased effectiveness and reduced cost, i.e. Strategy C is more expensive and less 

effective and is therefore excluded. ICERs are then recalculated for Strategies B, D and A. 

 
Strategy Effects 

(E) 
Costs 

(C) 
Incremental Costs 

(∆x) 
Incremental Effects 

(∆") 
ICER (∆x ∆"⁄ ) 

B 92 13 892 13 892 92 151 
D 174 41 626 27 734 82 338.22 
A 179 63 717 22 091 5 4418.2 
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Strategy A is dominated by Strategy D which in turn is dominated by Strategy B. Therefore 

Strategy B is the most cost-effective. However, in deciding between B and D, the size of the 

available budget may be brought to bear.  

 

3.8 Conclusion 

In this chapter, we derived and analyzed a deterministic model for the transmission of 

HIV/AIDS disease that includes non-productive susceptible and infected individuals, 

enlightenment/monitoring campaign of the non-productive susceptible and HAART treatment 

of non-productive infected individuals. We also performed optimal control analysis of the 

model employing Pontryagin’s Maximum Principle to derive and analyze the conditions for 

optimal control of the disease with effective HAART treatment regime and enlightenment of 

non-productive susceptible and infectious individuals. 

 

From the shadow price analysis and the numerical results from the combinations of control 

strategies, it is clear that the cost and impact of the non-productive susceptible workers in an 

organization is very high. This will ultimately have a negative effect on the organization 

profits. The results also suggest that the successful enlightenment/monitoring of employees 

has a significant impact in reducing the non-productivity of an infected employee in the 

presence of HIV/AIDS. Therefore, control programs that follow these strategies can 

effectively reduce the spread of HIV/AIDS and non-productivity among HIV/AIDS individuals 

in organizational labour force. 
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CHAPTER FOUR 

 

ANALYSIS OF RECRUITMENT AND INDUSTRIAL HUMAN RESOUR CES 

MANAGEMENT FOR OPTIMAL PRODUCTIVITY IN THE PRESENCE  OF THE 

HIV/AIDS EPIDEMIC 

 

In this chapter, we analyze recruitment effects of susceptible and infected people in order to 

assess the productivity of organizational labour force in the presence of HIV/AIDS with 

screening, enlightenment, preventive and HAART treatment measures in enhancing 

workforce output. We consider constant controls as well as time-dependent controls. In the 

constant control case, we calculate the basic reproduction number and investigate the 

existence and stability of equilibria. The model is found to exhibit backward and Hopf 

bifurcations implying that for the disease to be eradicated, the basic reproductive number 

must be below a critical value less than one. We also investigate, by calculating sensitivity 

indices, the sensitivity of the basic reproductive number to the model’s parameters. In the 

time-dependent control case, we use Pontryagin’s Maximum Principle to derive necessary 

conditions for the optimal control of the disease. Finally, numerical simulations are performed 

to illustrate the analytical results. Cost effectiveness analysis results show that putting in 

efforts on recruitment (HIV screening of applicants, etc.) is not the most cost-effective 

strategy to enhance productivity in the organizational labour force. Hence, to enhance 

employees’ productivity, effective education programs and strict adherence to preventive 

measures should be promoted. 

 

4.1 Introduction 

 

The profitability of any organizational venture depends largely on the productivity of its 

workforce. The main determining factors include skill level, motivation, satisfaction and 

schedule pressure. The question now is, how would an ineffective employee recruitment 

policy affect an organization in the face of HIV/AIDS infection?  

 

We, here, consider a scenario where employees may be recruited whilst already infected 

over and above the susceptible recruits as discussed in the previous chapter. Our main goal 

is to set up an optimal control problem related to the model. In order to do this, we use the 

following: recruitment strategy (effective screening of applicants) Q�, preventive measures 

(abstinence, being faithful, condom use) parameter on susceptibles Q�, enlightenment or 

educational parameter Q� and HAART treatment parameter for individuals with HIV Qq, as 

time dependent controls in the model. Hence, we investigate the role of productive 

susceptibles, productive infected, optimal enlightenment (through counselling, mentoring, 
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training, screening, educational campaigns) and HAART treatment on the spread of 

HIV/AIDS. 

 

4.2 Model Formulation 

 

We propose a standard compartmental model of HIV/AIDS in which four time dependent 

control measures are incorporated simultaneously: i) recruitment strategy, ii) preventive 

measure (condom use), iii) enlightenment campaign, iv) HAART treatment of HIV individuals 

for enhanced productivity. The total workforce population at any time �, denoted by #(�), is 

sub-divided into the following five classes: productive susceptible workers, �T(�), non-

productive susceptible workers, �J(�), non-productive infected workers, �J(�), productive 

infected individuals on HAART treatment, �T(�) and individuals with full blown AIDS, ,(�), so 

that 

 #(�) = �T(�) + �J(�) + �J(�) + �T(�) + ,(�). 
 

Susceptibles are individuals who have not contracted the infection but may be infected 

through sexual contacts. The susceptible non-productive are individuals whose lifestyle 

places them at high risk of contracting the disease. 

 

The organization recruits workers at the rate �, where the proportion of non-productive 

susceptible, non-productive infected and productive infected workers are recruited at rates 
�, 
� and 
� respectively. The parameter ( is the per capita contact rate for non-productive 

susceptible individuals. The productive susceptible workers have a per capita contact rate of (� = �( < (, where � is the modification parameter due to right values perception of the 

productive susceptible workers. When non-productive susceptible individuals are enlightened 

(through counselling, mentoring or monitoring) and their attitude changed they progress to 

the productive susceptible class at a rate Q��, where Q� is the enlightenment control effort. 

We assume that unprotected sexual contact between any type of susceptible and any type of 

infective would eventually land the susceptible into the infected non-productive class. The 

non-productive infected individuals on HAART treatment progress to the productive infected 

class at a rate Q��, where � is the proportion of the non-productive infected individuals on 

HAART treatment for enhanced productivity and Q� is the control effort on HAART treatment 

to enhanced productivity. Infected non-productive workers not on HAART treatment progress 

to the full blown AIDS class at a rate �, while γ is the rate of progression of productive 

infected individuals into full blown AIDS, here  γ	< �. The term � is the modification 

parameter due to HAART treatment and right value perceptions of the productive infected 

individuals. The disease induced death rate of AIDS individuals is denoted by ø and � is the 
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natural mortality rate unrelated to HIV/AIDS. We also assume the AIDS class to be sexually 

active, albeit weakly, and non-productive. We denote by ù the transmission probability of an 

AIDS individual infecting susceptible humans. 
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Fig 4.1: Flow diagram for HIV/AIDS disease transmission 

 

The resulting system of equations for the constant control case is as follows: 

 /��/0 = (1 �	
� �	
� �	
�!� � ����T $ ��J � μ�T/�8/0 � 
�� � (Y�J $ ��T $ τA[�J � ��J � μ�J � 
�� �  �� $ �$μ!�J/�8/0 � 
�� $ ��Y��T $ �J[ �  � $ � $ μ!�J/��/0 � 
�� $ ��J � �T � μ�T � 
�� $ ��J �   $ μ!�T/�/0 � ��J $ �T � �, � μ, � ��J $ �T �  ø $ μ!, ��
��
��
�

 (4.1) 

 

where �� � (Y�J $ ��T $ τA[. 
 

4.3 Analysis of Equilibria  

The endemic equilibrium point exists and is given by 
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�T∗ = (�P°)Çn®�8∗©n½µ¶∗�J∗ = °5Ç©n®nµ¶∗�J∗ = °6Çnµ¶∗(½��n�8)ûn¹n©�T∗ = °6Çnû�8∗¸n©,∗ = ¹�8∗n¸��∗ün© ���
��
���
�

        (4.2) 

 

where  ��∗ = ((�J∗ + ��T∗ + ù,∗) 
 

The endemic equilibrium satisfies the following polynomial equation 

 »(��∗) = ��(��∗)� + ��(��∗)� + ��(��∗) + �� = 0     (4.3) 

 

where 

 �� = �( + μ)(� + μ + �)(μ + ø) 
 �� = ( + �)(� + � + �)(� + ø)(�(1 + �) + ��)− �(� ý�� + ��� + ��ù + �ø + ��ø− ä(1 − �)μ(� + ø) − �Y−�ù + �(� + ø)[å
�+ (� + (� + �)ù + ø + (�(−1 + ù) − ø)
�)þ 
           (4.4) �� = μ( + μ)(� + �)(� + μ + �)(μ + ø)− �(��{�� + ��ø + μ(�� + �ù + ø) + (� + (� + �)ù + ø)}(
� + 
�)+ (� + � + �)Yù + �(� + ø)[
��− �(�È�{�� + ��ø + μ(�� + �ù + ø) + (� + (� + �)ù + ø)}É(1 − 
�) + ��+ ��� + ��μ� + ���ù + �(� + �)ù + �ø + �μø + ���ø− 
� �−� ä�(−1 + ù) − ø + (−1 + �)μ(� + ø) + �Y−�ù + �(� + ø)[å+ �(�(−1 + ù) − ø) + � ä(−1 + �)�(� + ø) + �Y−�ù + �(� + ø)[å� 

 �� = −�(��Y�� + ��ø + �(�� + �ù + ø) + (� + (� + �)ù + ø)[
�+ (� + � + �)Yù + �(� + ø)[
��(� + �) 
 

We shall examine the endemic equilibrium polynomial equation under the following three 

scenarios: (i) when there is recruitment of productive susceptibles only (
� = 
� = 
� = 0), 

(ii) when there is recruitment of susceptibles only (productive and non-productive, i.e. 
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� ≠ 0, 
� = 
� = 0) and (iii) when there is recruitment of productive individuals only 

(susceptible and infected, i.e. 
� = 
� = 0, 
� ≠ 0). 

 

4.3.1 Productive Susceptible Recruits Only 

Assuming there is no recruitment of non-productive susceptibles and the infected, that is 
� = 
� = 
� = 0, the DFE of the HIV/AIDS model exists and is given by 

 

�� = Y�T�, �J�, �J�, �T�, ,�[ = ��μ , 0, 0, 0, 0� 

 

The endemic equilibrium polynomial equation then gives 

 �� = �( + μ)(� + μ + �)(μ + ø)��� = μ( + μ)(� + μ + �)(μ + ø)(	 − ��)��� = μ( + μ)(� + �)(� + μ + �)(μ + ø)(1 − ��)��� = 0 ��
�

    (4.5) 

where 

 

�� = ÇÆ½È¯6n
ûün©(
ûn¹�nü)n¸(¯n(¹nû)�)nüÉ¯(¸n¯)(¹nûn¯)(¯nü)    (4.6) 

 
is the basic reproductive number for this scenario and 
 ¯n(®n¯)½¯ = 	        (4.7) 

 	 > 1 if and only if  � > �¿ = 0 

 

We obtain the following result: 

 

Proposition 4.1 : 

 

1. If � ≥ �¿, then the state system (4.1) exhibits trans-critical bifurcation. 

2. If � < �¿, then the state system (4.1) exhibits backward bifurcation. That is, there 

exists �À  in (0, 1) such that 

i.  if 1 ≤ �� , then the state system has one endemic equilibrium point. 

ii. if �À < �� < 1 , then the state system has two endemic equilibrium points. 

iii. if �À = �� , then the state system has one endemic equilibrium point. 
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iv. if �À > �� ,  then the state system has no endemic equilibrium points. 

 

Proof: 

 

1. If � ≥ �¿, then 	 ≥ 1. In this case, we have the following: 

i. If �� > 1, then �� < 0. In this case the endemic equilibrium polynomial 

equation (4.3) has a unique positive solution. 

ii. If �� ≤ 1, then �� ≥ 0 and �� ≥ 0(because �� ≤ 1 ≤ √	 ). This together with �� > 0 imply that the endemic equilibrium polynomial equation (4.3) has no 

positive solution. 

  

2. If � < �¿, then 	 < 1. In this case we have 

i. If �� ≥ 1, then �� ≤ 0 which implies that the endemic equilibrium polynomial 

equation (4.3) has a unique positive solution. 

ii. If �� ≤ √	, then �� ≥ 0 and �� > 0. This implies that the endemic equilibrium 

polynomial equation (4.3) has no positive solution. 

iii. If √	 < ��, we consider the discriminant of (4.3), ∆(��) ≔ ��� − 4����. One 

can see that ∆Y√	[ ≔ −4���� and ∆(1) ≔ ��� > 0. Therefore, there exists 

�À ∈ Y√	, 1[ such that ∆(�À) = 0 and ∆(��) < 0 for �� ∈ Y√	, �À[ and ∆(��) >0 for �� ∈ (�À , 1). In this case we have 

a. if √	 < �� < �À then (4.3) has no positive solution. 

b. if �� = �À then ∆= 0 and �� < 0. This implies that (4.3) has one positive 

solution. 

c. if �À < �� < 1, then (4.3) has two real solutions which are positive since �� > 0 and �� < 0.       ∎ 

 

Proposition 4.1 establishes the existence of two endemic equilibria for 	 in (�À , 1). 
 

4.3.2 Susceptible Recruits Only 

 

If there is no recruitment of infected individuals, i.e.	
� ≠ 0, 
� = 
� = 0, the DFE of the 

model (4.1) is given by  

 �� = Y�T�, �J�, �J�, �T�, ,�[ =  (1 − 
�)� + �μ , �
�� + μ , 0, 0, 0¡ 

 

while the endemic equilibrium polynomial equation now results in 
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�� = �( + μ)(� + μ + �)(μ + ø)��� = �( + μ)(� + μ + �)(μ + ø)(	 − ��)��� = ¯(¸n©)(¯n®)(¹n©nû)(©nü)È(®n¯)½n(�P½)¯°5É½ (� − ��)��� = 0 ���
��

    (4.8) 

 

where 

 � = ½(®n¯)½n(�P½)¯°5       (4.9) 

 

Note that this scenario is a generalisation of the preceding one (where � = 1). In this case, 

� = 1 if and only if  

� = �
�1 − � − �(1 − 
�) 
 

Hence, the model exhibits backward bifurcation in the presence of non-productive 

susceptible recruits. 

 

4.3.3 Productive Recruits Only 

 

Assuming there is no recruitment of the non-productive, i.e. 
� = 
� = 0, 
� ≠ 0, the endemic 

equilibrium polynomial equation coefficients are then given by 

 �� = �( + μ)(� + μ + �)(μ + ø)��� = �( + μ)(� + μ + �)(μ + ø)(	� − ��)��� = �( + μ)(� + �)(� + μ + �)(μ + ø)(	� − ��)��� = −�(�(� + �)(� + μ + �)Yù + �(� + ø)[
� ���
��

   (4.10) 

 

where 

 �( + �)(� + (� + �)�)(� + � + �)(� + ø) + ¢�( + �)(� + � + �)(� + ø) = 	� 

 �( + �)(� + �)(� + � + �)(� + ø) + �( + �)(� + �)(� + � + �)(� + ø) = 	� 

           (4.11) ¢ = �(��(�(1 − ù) + ø) + (1 − �)�(� + ø) + �Y�ù − �(� + ø)[�
� 
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 = �(�(� + �)�Þ�(1 � ù! $ ø $  1 � �!� � $ ø! $ �Y�ù � � � $ ø![ß
� � � $ � $ �!Yù $ � � $ ø![�
� 

 

By the Routh-Hurwitz criteria the roots of the endemic equilibrium polynomial equation (4.3) 

have negative real parts if and only if �� & 0, ��� & 0 and ����� � ��� & 0. It is clear from 

(4.10) that ��� % 0, so the disease free equilibrium is unstable. Numerically, we shall show 

that periodic solutions bifurcate from the endemic equilibrium, implying that the endemic 

equilibrium is also unstable, Fig 4.2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
   (a) 

(b) 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
   (c)       (d) 
 
Fig 4.2: Simulations of the state system (4.1) for � � 100, � � 0.04, 
� � 0.03,  � 0.288, � � 0.2, � � 0.04, � � 0.8, � � 0.81. (a) �T versus time � (b) �J versus time � (c) the projected �J � �T phase plane of the phase space (d) �J � �T phase plane with � � 10 while all the other 
parameters remain the same 
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In Fig 4.3 (b), the endemic equilibrium loses its stability and periodic solutions bifurcate from 

endemic equilibrium. This is an explicit example of the existence of Hopf bifurcation using � 

as bifurcation parameter and variation of initial values of state variables. 

 
 

(a)        (c)   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b)        (d)   

Fig 4.3: Simulations of the state system (4.1) for � � 100, � � 0.04, 
� � 0.03,  � 0.288, � � 0.2, � � 0.04, � � 0.8, � � 0.81 (a) �T versus time � (b) the projected �J � �T phase plane 

(c) �J versus time � (d) the projected �J � �T phase plane of the phase space. 

    

4.4 Optimal Control Analysis 

We now incorporate time-dependent controls into the model to obtain the following state 

system:  
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/��/0 �  1 −	Q�(
� +	
� +	
�))� − (1 − Q�)�(Y�J + ��T + τA[�T + Q���J − μ�T/�8/0 � Q�
�� �  1 − Q�)(Y�J + ��T + τA[�J − Q���J − μ�J/�8/0 � Q�
�� +  1 − Q�)(Y�J + ��T + τA[(��T + �J) − Qq��J − ��J − μ�J/��/0 � Q�
�� + Qq��J � �T � μ�T/�/0 � ��J + �T � ø, � μ, ��
��
��
�

 (4.12) 

 

where Q� , Q� , Q� and Qq are time-dependent controls. Q� is the control effort to minimise the 

recruitment of non-productive and infected individuals (e.g. screening, etc), Q� is the 

enlightenment/monitoring control on the non-productive susceptible in order to enhance their 

productivity, Q� is the preventive control measure on susceptible individuals from getting 

infected with HIV/AIDS and Qq is the treatment strategy on the non-productive infected 

individuals. 

 

To investigate the optimal level of efforts that would be needed to control the disease and 

ensure productivity, we wish to minimize the number of the non-productive susceptible and 

infectious individuals and the cost of applying the controls u�, u�, u� and uq over a finite time 

interval È0, +É. We achieve this by defining an objective functional, X, by choosing a quadratic 

cost on the controls, this is similar with what is in other literature on epidemics control [57, 1, 

37, 73, 67]. 

 X =Ê (mS� + ËI� + Ì�Q�� + Ì�Q�� + Ì�Q�� + ÌqQq�)`�b� ,   (4.13) 

 
where m, Ë, Ì�, Ì�, Ì� and Ìq are positive weights. With the given objective functional, X(u�, u�, u�), our goal is to minimize the number of carefree susceptibles S�, while minimizing 

the cost of controls u�(t), u�(t), u�(t) and uq(t). We thus seek an optimal control quadruple YQ�#, Q�#, Q�#, Qq#[ such that 

 XYQ�#, Q�#, Q�#, Qq#[ = min¬X(u�, u�, u�, uq	):	(u�, u�, u�, uq) ∈ Ð±,    (4.14) 

 

where 
 Ð = ¬(u�, u�, u�, uq	):	u�, u�, u�, uq	are	measurable	with	0 ≤ uØ ≤ 1, i = 1, 2, 3, 4	for	t ∈ È0, TÉ± 
 

is the control set. The necessary conditions that an optimal control problem must satisfy 

come from Pontryagin’s Maximum Principle [103]. We use this principle to convert the 

problem of minimization of the objective functional (4.13) coupled with the state variable 
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system (4.12) into a problem of minimizing point-wise a Hamiltonian, d, with respect to the 

controls u�, u�, u� and uq 

 d � mS� + ËI� + Ì�Q�� + Ì�Q�� + Ì�Q�� + ÌqQq�+ hÜÝÞY1 −	(1 − Q�)(
� +	
� +	
�)[� − (1 − Q�)�(Y�J + ��T + τA[�T + Q���J− μ�Tß + hÜàÞ 1 − Q�)
�� − (1 − Q�)(Y�J + ��T + τA[�J − Q���J − μ�Jß+ háà{ 1 − Q�)
�� + (1 − Q�)(Y�J + ��T + τA[(��T + �J) − Qq��J − ��J − μ�J}+ háÝ{ 1 − Q�)
�� + Qq��J − �T − μ�T} + h�{��J + �T � ø, � μ,} 
           (4.15) 
 

where hÜÝ , hÜà , háà , háÝ and h� are adjoint or co-state variables. By applying Pontryagin’s 

Maximum Principle and the existence result for the optimal control [39], we obtain 

 

Proposition 4.2 : For the optimal control quadruple YQ�#, Q�#, Q�#, Qq#[ that minimizes 

X u�, u�, u�, uq) over Ð, there exist adjoint variables hÜÝ , hÜà , háà , háÝ and h� satisfying the 

following: 

 

(i) Adjoint System 
 

/â·�/0 �  1 − Q�)�(Y�J + ��T + τA[ äh�� − h�8å + μh��/â·8/0 � �m + Q�� äh�8 � h��å +  1 − Q�)(Y�J + ��T + τA[Yh�8 − h�8[ + μh�8/â¶8/0 � �Ë +  1 − Q�)(h�� + Qq� äh�8 − h��å + �Yh�8 − h�[ + μh�8/â¶�/0 �  1 − Q�)(� ���T äh�� − h�8å + �JYh�8 − h�8[� +  äh�� − h�å + μh��/âè/0 �  1 − Q�)(ù ���T äh�� − h�8å + �JYh�8 − h�8[� + (ø + μ)h� ��
��
�
���
�

(4.16) 

 

where h�� � ��T äh�� � h�8å + �JYh�8 � h�8[. 
 

(ii) Transversality Conditions 

 hÜ� +) � hÜà +) � háà +) � háÝ +) � hç +) � 0     (4.17) 
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(iii) Stationary Values 

 

Q�# � Ëoj î0,Ëkm é1, Çý°5äâ·8Pâ·�ån°6äâ¶8Pâ·�ån°wäâ¶�Pâ·�åþ�ë5 íð
Q�# = Ëoj î0,Ëkm é1, ®�8äâ·8Pâ·�å�ë6 íð
Q�# = Ëoj î0,Ëkm é1, ÆY�8n
��n�ç[ý½��äâ¶8Pâ·�ån�8Yâ¶8Pâ·8[þ�ëw íð
Qq# = Ëoj î0,Ëkm é1, û�8äâ¶8Pâ¶�å�ë� íð ��

���
�
���
��

  (4.18) 

 

Proof : Corollary 4.1 in [39], gives the existence of an optimal control due to the convexity of 

the integrand of X with respect to Q�, Q�, Q�, Qq a priori boundedness of the state solutions 

and the Lipschitz property of the state system with respect to the state variables [39]. The 

differential equations governing the adjoint variables are obtained by differentiation of the 

Hamiltonian function, evaluated at the optimal control. In particular 

 VdVj = −`j`�  

 

where j = �T, �J, �J, �T, , establishes the adjoint system. Furthermore, by equating to zero the 

derivatives of the Hamiltonian with respect to the controls we obtain (see [72]) 

 

Qñ� = Çý°5äâ·8Pâ·�ån°6äâ¶8Pâ·�ån°wäâ¶�Pâ·�åþ�ë5Qñ� = ®�8äâ·8Pâ·�å�ë6Qñ� = ÆY�8n
��n�ç[ý½��äâ¶8Pâ·�ån�8Yâ¶8Pâ·8[þ�ëwQñq = û�8äâ¶8Pâ¶�å�ë� ���
��
���
�

     (4.19) 

 

Standard control arguments involving the bounds on the controls 

 

Qi# = ò0, k�	Qñi ≤ 0Qñi	,	k�	0 < Qñi < 11, k�	Qñi ≥ 1         (4.20) 

 



 65

provide the stationary values. 

 

Due to the a priori boundedness of the state system, adjoint system and the resulting 

Lipschitz structure of the ODEs, we obtain the uniqueness of the optimal control for small +. 

The uniqueness of the optimal control follows from the uniqueness of the optimality system, 

which consists of the state system (4.12) and adjoint system (4.16) with characterization 

(4.18). There is a restriction on the length of the time interval in order to guarantee the 

uniqueness of the optimality system. This smallness restriction of the length on the time is 

due to the opposite time orientations of the state and adjoint systems; the state problem 

(4.12) has initial values and the adjoint problem (4.16) has final values (4.17). This restriction 

is very common in control problems (see [57, 37, 74, 67]).     ∎ 

 

4.5 Numerical Results and Discussion 

In this section, we examine a deterministic model with non-productive susceptibles and we 

study numerically the effects of prevention, enlightenment and HAART treatments on the 

spread of HIV/AIDS. The optimal control is obtained by solving the optimality system, 

consisting of the state and adjoint systems. An iterative scheme is used for solving the 

optimality system. We start to solve the state equations with a guess for the controls over the 

simulated time using the fourth order Runge-Kutta scheme. Because of the transversality 

conditions (4.17), the adjoint equations (4.16) are solved by a backward fourth order Runge-

Kutta scheme using the current iteration’s solutions of the state system (4.12). Then the 

controls are updated by using a convex combination of the previous controls and the value 

from the stationarity characterizations (4.18). This process is repeated and iterations stopped 

if the values of the unknowns at the previous iterations are very close to the ones at the 

present iterations [72]. 

 

We explore a simple model with screening, prevention, enlightenment and treatment as 

control measures to study the effects of control practices and transmission of HIV using 

various combinations of the controls: four, three and two controls at a time. This is done 

under the following scenarios to compare numerical results: 

 

• Strategy A: Using screening (Q�) and enlightenment (Q�) without prevention (Q� � 0) and no 

treatment of infectives (Qq = 0) 

• Strategy B: Using screening (Q�) and treatment of infectives (Qq) without enlightenment 

(Q� = 0) and no prevention (Q� = 0) 

• Strategy C: Using screening (Q�) and prevention (Q�) without enlightenment (Q� = 0) and no 

treatment of infectives (Qq = 0) 
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• Strategy D: Using enlightenment (Q�) and prevention (Q�) without screening (Q� � 0) and no 

treatment of infectives (Qq � 0) 

• Strategy E: Using enlightenment (Q�) and treatment of infectives (Qq) without screening 

(Q� � 0) and no prevention (Q� � 0) 

• Strategy F: Using prevention (Q�) and treatment of infectives (Qq) without screening (Q� � 0) 

and no enlightenment (Q� � 0) 

• Strategy G: Using screening (Q�), enlightenment (Q�) and prevention (Q�) with no treatment 

of infectives (Qq � 0) 

• Strategy H: Using screening (Q�), enlightenment (Q�) and treatment of infectives (Qq) with 

no prevention (Q� � 0) 

• Strategy I: Using screening (Q�), prevention (Q�) and treatment of infectives (Qq) with no 

enlightenment (Q� � 0) 

• Strategy J: Using enlightenment (Q�), prevention (Q�) and treatment of infectives (Qq) with 

no screening (Q� � 0) 

• Strategy K: Using all four control measures (Q�, Q�, Q� and Qq) 

 

4.5.1 Strategy A 

The control profiles suggest that control Q� be kept at the upper bound for the entire period 

while Q� should be at the upper bound for the first two years before dropping gradually to the 

lower bound. Shadow prices indicate the negative impact of the non-productive and the 

infected. 

 
Fig 4.4 (a): Simulations of the model showing the effect of control strategy A on susceptibles
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Fig 4.4 (b): Simulations of the model showing the effect of control strategy A on infectives 
 

 
Fig 4.4 (c): Simulations of the model showing the effect of control strategy A on AIDS 
individuals and controls 



 68

 
Fig 4.4 (d): Simulations of the model showing the effect of control strategy A on co-state 

variables 

 

4.5.2 Strategy B 

 
 

Fig 4.5 (a): Simulations of the model showing the effect of control strategy B on susceptibles 
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Fig 4.5 (b): Simulations of the model showing the effect of control strategy B on infectives 
 

 
 
Fig 4.5 (c): Simulations of the model showing the effect of control strategy B on AIDS 

individuals and controls 
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Fig 4.5 (d): Simulations of the model showing the effect of control strategy B on adjoints 

 

The control profiles suggest that the control Q� must be kept at the upper bound throughout 

the intervention period whilst the control Qq must be maintained at the upper bound for about 

four years, dropping slightly to about 0.8 before rising again to the upper bound between the 

tenth and twelfth years then dropping sharply to the lower bound during the last two years. 

Shadow prices for the non-productive and the infected are quite significant. 

 

4.5.3 Strategy C 

 

Plots show significant drops in the non-productive and the number of AIDS individuals 

despite the fall in the number of the productive infected. However, shadow prices for the non-

productive and the infected are quite significant. 
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Fig 4.6 (a): Simulations of the model showing the effect of strategy C on the non-productive 

 
Fig 4.6 (b): Simulations of the model showing the effect of strategy C on productive infectives 
and AIDS individuals 
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Fig 4.6 (c): Simulations of the model showing the effect of strategy C on co-state variables 

 

4.5.4 Strategy D 

 
Fig 4.7 (a): Simulations showing the effect of strategy D on the spread of the non-productive 
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Fig 4.7 (b): Simulations showing the effect of strategy D on productive infectives and AIDS 
individuals 

 
Fig 4.7 (c): Simulations showing the effect of strategy D on adjoint variables 
 

Simulations show marked declines in the non-productive infected and AIDS sub-classes. 

Shadow prices for the non-productive dominate. 
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4.5.5 Strategy E 

The control profiles suggest that the control Q� must be at the upper bound for the first two 

years before dropping gradually to the lower bound while the control Qq should be maintained 

at the upper bound throughout the intervention period. 

 

 
Fig 4.8 (a): Simulations showing the effect of strategy E on susceptibles 
 

 
Fig 4.8 (b): Simulations showing the effect of strategy E on infectives 
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Fig 4.8 (c): Simulations showing the effect of strategy E on AIDS individuals and controls 
 

 
Fig 4.8 (d): Simulations showing the effect of strategy E on shadow prices 
 
 

 



 76

4.5.6 Strategy F 

 
Fig 4.9 (a): Simulations showing the effect of strategy F on the non-productive 
 

 
Fig 4.9 (b): Simulations showing the effect of strategy F on productive infectives and AIDS 
individuals 
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Fig 4.9 (c): Simulations showing the effect of strategy F on adjoints 
 

Simulations show a significant reduction in the non-productive infected and the number of 

individuals with AIDS coupled with marked improvements in the productive infected. Shadow 

prices for the non-productive still stand out. 

 

4.5.7 Strategy G 
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class, despite reductions in the productive infected. Shadow prices for the non-productive are 

quite significant. 
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Fig 4.10 (a): Simulation results showing the effect of strategy G on the non-productive 

 
Fig 4.10 (b): Simulation results showing the effect of strategy G on productive infectives and 
AIDS individuals 
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Fig 4.10 (c): Simulation results showing the effect of strategy G on shadow prices 
 

4.5.8 Strategy H 

 
Fig 4.11 (a): Simulations showing the effect of strategy H on susceptibles 
 
 

0 2 4 6 8 10 12 14

0

50

100

150

200

250

300

Time (years)

A
dj

oi
nt

 v
ar

ia
bl

es

 

 

λSp

λSn

λIn

λIp

λA



 80

 
Fig 4.11 (b): Simulations showing the effect of strategy H on infectives 
 

 
Fig 4.11 (c): Simulations showing the effect of strategy H on AIDS individuals and controls 
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Fig 4.11 (d): Simulations showing the effect of strategy H on co-state variables 
 

The control profiles suggest that the control Q� must be maintained at the upper bound for 

the whole intervention period while Q� should be kept at the upper bound only for the first two 

years then gradually reducing to the lower bound. Qq should be at the upper bound for the 

first three years  before dropping gradually to about 0.7 then rising again to just above 0.9 by 

the twelfth year and finally reducing to the lower bound in the last two years of intervention. 

 

4.5.9 Strategy I 

 
Fig 4.12 (a): Simulations showing the effect of strategy I on the non-productive 
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Fig 4.12 (b): Simulations showing the effect of strategy I on productive infectives and AIDS 
individuals 

 
Fig 4.12 (c): Simulations showing the effect of strategy I on adjoints 
 

Significant reductions in the non-productive infected and AIDS cases are evident. Once 

more, non-productive co-state variables dominate. 
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4.5.10 Strategy J 

 
Fig 4.13 (a): Simulations showing the effect of strategy J on the non-productive 
 

 
Fig 4.13 (b): Simulations showing the effect of strategy J on productive infectives and AIDS 
individuals 
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Fig 4.13 (c): Simulations showing the effect of strategy J on adjoints 
 

Results show significant declines in the number of the non-productive infected and the AIDS 

population coupled with increases in the productive infected. Non-productive adjoint 

variables are significant. 

 

4.5.11 Strategy K 

 
Fig 4.14 (a): Simulations showing the effect of strategy K on the non-productive 
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Fig 4.14 (b): Simulations showing the effect of strategy K on productive infectives and AIDS 
individuals 

 
Fig 4.14 (c): Simulations showing the effect of strategy K on the adjoints 
 
Results show significant declines in the number of the non-productive and the AIDS 
population coupled with increases in the productive infected. Non-productive adjoint 
variables are significant 
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From the numerical simulations, Figs. 4.4 – 4.14, we can see that one cannot easily 

conclude which control strategy gives optimal results. Most of the strategies produce almost 

similar patterns and effects, therefore we need to further ascertain which of these four most 

effective strategies is the most cost-effective and efficient. In the next section, we carry out 

the cost-effectiveness analysis. 

 

4.6 Cost Effective Analysis 

To quantify the cost-effectiveness of the control measures, we examine the cost 

effectiveness ratios of the strategies, so that we can draw our conclusions. We assume that 

the costs are directly proportional to the number of controls deployed. This assumption is 

based on the understanding that the primary goal of providing preventive measures, 

enlightenment programs and treatment of infective individuals is to reduce infection. We 

obtained the total number of cases averted by calculating the difference between the non-

productive individuals without control and the non-productive individuals with control 

according to the specified strategies making use of the following parameter values: ( �0.0344, � = 0.02, ø = 1,  = 0.01, � = 0.4, � = 0.61, � = 0.53, � = 0.72, � = 0.02, ù = 0.75, � = 20, 
� = 0.1, 
� = 0.05, 
� = 0.25, + = 14, m = 210,	Ë = 90, Ì� = 55,Ì� = 150, Ì� = 35 

and Ìq = 75and initial state variables ST(0) = 800, S�(0) = 40,	I�(0) = 45, �T(0) = 30 

and	,(0) = 0 to illustrate the effect of different optimal control strategies on the spread of 

HIV/AIDS in a population. 

 

The cases averted and the costs of implementation for all the strategies are as tabled below: 

 

Strategy Cases Averted Costs 
A 989 112 530 
B 724 80 486 
C 801 131 910 
D 473 40 891 
E 612 36 811 
F 590 36 931 
G 1 120 89 903 
H 1 159 98 024 
I 739 32 272 
J 656 37 020 
K 1 165 188 350 

 

Table 4.1: Cases averted and associated costs for intervention strategies 

 

For the purpose of our study, we consider the incremental cost-effectiveness ratios (ICER). 

Based on the model simulation results, we conduct the analysis by ranking the strategies in 

order of increasing effectiveness. 
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Strategy Cases Averted Costs ICER 
D 473 40 891 86.45 
F 590 36 931 -33.85 

 

The ICER is calculated as follows: 

 

�x"� ¼) � 40	891473 = 86.45 

 

�x"�(¢) = 36	931 − 40	891590 − 473 = −33.85 

 

The comparison between strategies D and F shows a cost saving of $33.85 per additional 

case averted for strategy F over strategy D. The negative ICER for strategy F indicates that 

strategy D is “dominated”. That is, strategy D is more costly and less effective than strategy 

F. Therefore, strategy D is excluded from the set of alternatives so it does not consume 

limited resources. 

 

We recalculate ICERs for strategies F and E 

 
Strategy Cases Averted Costs ICER 

F 590 36 931 62.49 
E 612 36 811 -5.45 

 

The comparison between strategies F and E shows a cost saving of $5.45 per additional 

case averted for strategy E over strategy F. Similarly, the negative ICER for strategy E 

indicates that strategy F is “dominated”. That is, strategy F is more costly and less effective 

than strategy E. Therefore, strategy F is excluded from the set of alternatives so it does not 

consume limited resources. 

 

We recalculate ICERs for strategies E and J 

 

Strategy Cases Averted Costs ICER 
E 612 36 811 60.15 
J 656 37 020 4.75 

 

The comparison between strategies E and J shows an additional cost of $4.75 per additional 

case averted for strategy J over strategy E. The positive ICER for strategy J indicates that 

strategy E “dominates”. That is, strategy J is more costly than strategy E. Therefore, strategy 

J is excluded from the set of alternatives so it does not consume limited resources. 

 

We recalculate ICERs for strategies E and B 
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Strategy Cases Averted Costs ICER 
E 612 36 811 60.15 
B 724 80 486 389.96 

 

The comparison between strategies E and B shows an additional cost of $389.96 per 

additional case averted for strategy B over strategy E. The positive ICER for strategy B 

indicates that strategy E “strongly dominates”. That is, strategy B is more costly than strategy 

E. Therefore, strategy B is excluded from the set of alternatives so it does not consume 

limited resources. 

 

We recalculate ICERs for strategies E and I 

 

Strategy Cases Averted Costs ICER 
E 612 36 811 60.15 
I 739 32 272 -35.74 

 

The comparison between strategies E and I shows a cost saving of $35.74 per additional 

case averted for strategy I over strategy E. Similarly, the negative ICER for strategy I 

indicates that strategy E is “dominated”. That is, strategy E is more costly and less effective 

than strategy I. Therefore, strategy E is excluded from the set of alternatives so it does not 

consume limited resources. 

 

We recalculate ICERs for strategies I and C 

 

Strategy Cases Averted Costs ICER 
I 739 32 272 43.67 
C 801 131 910 1 607.07 

 

The comparison between strategies I and C shows an additional cost of $1 607.07 per 

additional case averted for strategy C over strategy I. Similarly, the positive ICER for strategy 

C indicates that strategy I “strongly dominates”. That is, strategy C is more costly than 

strategy I. Therefore, strategy C is excluded from the set of alternatives so it does not 

consume limited resources. 

 

We recalculate ICERs for strategies I and A 

 

Strategy Cases Averted Costs ICER 
I 739 32 272 43.67 
A 989 112 530 321.03 
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The comparison between strategies I and A shows an additional cost of $321.03 per 

additional case averted for strategy A over strategy I. Similarly, the positive ICER for strategy 

A indicates that strategy I “strongly dominates”. That is, strategy A is more costly than 

strategy I. Therefore, strategy A is excluded from the set of alternatives so it does not 

consume limited resources. 

 

We recalculate ICERs for strategies I and G 

 

Strategy Cases Averted Costs ICER 
I 739 32 272 43.67 
G 1 120 89 903 151.26 

 

The comparison between strategies I and G shows an additional cost of $151.26 per 

additional case averted for strategy G over strategy I. Similarly, the positive ICER for strategy 

G indicates that strategy I “strongly dominates”. That is, strategy G is more costly than 

strategy I. Therefore, strategy G is excluded from the set of alternatives so it does not 

consume limited resources. 

 

We recalculate ICERs for strategies I and H 

 
Strategy Cases Averted Costs ICER 

I 739 32 272 43.67 
H 1 159 98 024 156.55 

 

The comparison between strategies I and H shows an additional cost of $156.55 per 

additional case averted for strategy H over strategy I. Similarly, the positive ICER for strategy 

H indicates that strategy I “strongly dominates”. That is, strategy H is more costly than 

strategy I. Therefore, strategy H is excluded from the set of alternatives so it does not 

consume limited resources. 

 

We recalculate ICERs for strategies I and K 

 

Strategy Cases Averted Costs ICER 
I 739 32 272 43.67 
K 1 165 188 350 366.38 

 

The comparison between strategies I and K shows an additional cost of $366.38 per 

additional case averted for strategy K over strategy I. Similarly, the positive ICER for strategy 

K indicates that strategy I “strongly dominates”. That is, strategy K is more costly than 

strategy I. Therefore, strategy K is excluded from the set of alternatives so it does not 

consume limited resources. 
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With this result, we conclude that strategy I (combination of screening, prevention and 

treatment measures) has the least ICER and therefore is the most cost-effective strategy. 

 

4.7 Conclusion 

In this chapter, we derived and analyzed a deterministic model for the transmission of 

HIV/AIDS disease to examine the recruitment effect of the following: non-productive 

susceptible individuals, non-productive infected individuals, productive susceptible 

individuals and productive infected individuals into an organizational workforce. We carried 

out the stability analysis of the equilibrium and found that the model exhibits backward and 

Hopf bifurcation under different scenarios respectively. Furthermore, we also performed 

optimal control analysis of the model by using Pontryagin’s Maximum Principle to derive and 

analyze the conditions for optimal control of the disease with effective screening, prevention, 

HAART treatment regime and enlightenment of non-productive susceptible and infectious 

individuals. The results suggest that the effective recruitment strategy must include screening 

and prevention for the susceptible and treatment of the infected towards reducing the non-

productivity of employees thereby ensuring productivity. However, deliberate budgetary 

provisions need to be put in place so that enlightenment/monitoring of employees may be 

included observing as it has a significant impact in reducing the non-productivity of 

employees (labour force) in the presence of HIV/AIDS. 
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CHAPTER FIVE 

 

IMPACT OF OPTIMAL CONTROL ON THE TREATMENT OF HIV/A IDS AND 

SCREENING OF UNAWARE INFECTIVES 

 

In this chapter, we study the impact of optimal control on the treatment of HIV/AIDS and screening of 

unaware infectives on the transmission dynamics of the disease in a homogeneous population with 

constant immigration of susceptibles. We modify the model of [113] by incorporating use of condoms, 

treatment and screening of unaware infectives as time dependent control measures. We first consider 

the constant control case, calculate the basic reproduction number and investigate the existence and 

stability of equilibria. The model is found to exhibit trans-critical bifurcation. Formulating the 

appropriate optimal control problem, we investigate the necessary conditions for the disease control 

in order to determine the role of unaware infectives in the spread of HIV/AIDS. We found that 

unawareness by infectives has a great cost impact on the community. Secondly, we investigate the 

impact of a combination of these strategies in the control of HIV/AIDS. The costs associated with 

these strategies are investigated through the formulation of the costs function problem. We then 

used a Maximum Principle to solve the resulting optimal control problem and determine optimal 

strategies for controlling the spread of the disease. Carrying out cost-effectiveness analysis, we found 

that the most cost-effective strategy is the combination of all the control strategies. 

 

5.1 Introduction 

Infection with the human immunodeficiency virus (HIV) is generally fatal if left untreated and 

uncontrolled. Worldwide, HIV is now the major cause of years of potential life lost and the 

most common cause of death attributed to an infectious disease. Just in 2005 alone, 3.1 

million people died from AIDS (acquired immunodeficiency syndrome) globally, and 4.9 

million people became infected with HIV, leading to 40.3 million people living with the virus 

across the world [116]. 

 

Almost three decades since the first HIV case was reported, it has not been possible to 

effectively control the spread of the disease, so the need to re-examine the control approach 

is desirable. The difficulties arise from lack of adequate medical facilities and personnel, 

unwillingness of people to strictly adhere to preventive measures. To successfully control the 

spread of HIV, susceptible individuals must be protected from being infected and the already 

infected individuals must be rendered less infectious. However, at present there is no cure 

for the disease and so various strategies to control its spread in order to protect susceptible 

individuals are very important. The other major challenge is that in most parts of Sub-

Saharan Africa and Asia, many people who are infected are not even aware of the disease 
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due to illiteracy, scarcity of medical equipment and other factors and those who are aware of 

their infection do not always take necessary precautions deliberately while having sexual 

interactions [20, 14]. 

 

The present modes of controlling the disease include abstinence, use of condoms, treatment 

of infections and blood screening. It is important to note that to effectively control the spread 

of HIV, the susceptible individuals must be protected from being infected and the already 

infected individuals must be adequately informed of available measures in ensuring that they 

do not spread the disease any further. However, at present there is no cure for the disease 

and hence examining various strategies for controlling the spread of HIV/AIDS in order to 

minimize the disease prevalence is very important. 

 

This work is motivated by the large number of cases of unaware infectives reported 

worldwide, which has now become a global concern. For example in France, it was found 

that roughly 40 000 of the estimated 106 000 - 134 000 HIV infected people throughout the 

entire country remain unaware of their infection [128]. Findings from a survey carried out by 

US Center for Disease Control and Prevention in 2008 on HIV among men who have sex 

with other men indicated that among the 8 153 men tested, 1 562 tested positive for HIV and 

of these 1 562, the number of persons that were unaware of their infection was 680, 

amounting to about 44% of the infected cases. The study further revealed that the proportion 

of those who were unaware of their infection was highest among blacks and lowest among 

whites and this also decreased with increased education and income [20]. Also, the United 

Kingdom Health Protection Agency reported that over 22 000 people were unaware that they 

have the HIV virus [10]. According to the Taipei Times report of 2004, 90% of the Chinese 

HIV-AIDS cases were unaware of their infection status. Despite the effort, the total number of 

people tested for HIV globally remains low with an estimated 90% of people who are HIV-

infected worldwide unaware of their status [122]. The challenge posed by the number of 

cases of unaware infectives calls for urgent need for a better understanding of the important 

parameters in the disease transmission, and to develop effective and optimal strategies for 

prevention and control of the spread of HIV/AIDS disease. 

 

Having pointed out that the screening of unaware infectives has substantial effect on the 

spread of AIDS [113], it is therefore desirable to promote the voluntary or random screening 

of infectives who do not know that they are infected by targeting especially the high risk 

groups. After being detected, the individual may be motivated to change their behaviour and 

to take preventive measures like condom use so that the risk of spreading the infection is 

reduced. To the best of our knowledge, very little attention has been paid to models to study 

this aspect which may be helpful in reducing the spread of the disease. 
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The model we consider in this chapter is an extension of the model in [113] by the inclusion 

of time dependent control parameters (use of condoms, screening of unaware infectives and 

treatment of infectives) with the assumption that the AIDS individuals can also transmit the 

disease recklessly. In this study, we analyze and apply optimal control to the improved model 

and determine the possible impact of condom use, optimal screening of unaware infectives 

and treatment on the spread of HIV. We carry out a detailed qualitative optimal control 

analysis of the resulting model and we find the necessary conditions for optimal control of the 

disease using Pontryagin’s Maximum Principle in order to determine optimal strategies for 

controlling the spread of the disease. 

 

Our main goals are: firstly, to investigate the model under the assumption that the control 

measures are constants (condom use, screening of unaware infectives and treatment of 

infectives) and secondly, to set up an optimal control problem relative to the model. In order 

to do this, we use the following control parameters, use of condoms (Q�), screening of 

unaware infectives (�) and treatment rate of HIV individuals (
) as time dependent variables. 

Hence, we investigate the role of optimal screening of unaware infectives through medical 

screening, educational preventive campaigns and treatment of HIV and AIDS on the spread 

of HIV/AIDS. 

 

5.2 Model Formulation 

The model sub-divides the total human population at time �, denoted by # �), into the 

following sub-populations of susceptible individuals � �), individuals who have contracted the 

infection but are not aware that they are infected �� �), HIV positive individuals who know that 

they are infected �� �) and that of the AIDS population 	, �), so that 

 # �) � � �) + �� �) + �� �) + , �) 
 

The susceptibles are individuals that have not contracted the infection but may be infected 

through sexual contacts with either type of infectives. The infected population who are aware 

of their status comprise of individuals that have contracted the virus and are known to be 

infected after being detected by a screening method (i.e. by way of medical screening or 

otherwise). We use standard incidence to model the disease transmission. 
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 Fig 5.1: Flow diagram for HIV/AIDS disease transmission model  

 

 

Here (i (k � 1,  2,  3) are the per capita contact rates for susceptible individuals with unaware 

infectives, infectives that are already aware of their status and AIDS individuals respectively. 

Control Q� ∈ È0, 1É is the successful use of condoms by susceptibles to protect themselves. 

The variable � measures the rate at which unaware infectives are detected by a screening 

method to become aware infectives, the variable 
 measures the progression rate at which 

the already aware infective individuals on treatment move to the , class in each time period. 

Here, � is the rate by which both types of infectives not on treatment develop AIDS  
 % �!. 
� is the natural mortality rate unrelated to HIV/AIDS disease and � is the AIDS related death 

rate. It is assumed that the rate of contact of susceptibles with AIDS individuals is much less 

than that with aware infectives which in turn is much less than that with unaware infectives 

Y(3 ≪ (2 ≪ (1[. This is so because on becoming aware of their infection, the infected 

persons may choose to use preventive measures and change their behavior and thus may 

contribute little in spreading the infection. However, in some cases, the aware infectives may 

also contribute to spreading of infection due to lack of taking necessary precautions or the 

decreased fear of the disease. We assume also that individuals in the , class are less 

sexually active. 

 

The resulting system of equations is as shown below: 

 

/�/0 � �� � (\� � μ�/�5/0 = (\� − (� + � + μ)��/�6/0 = ��� − (� + μ + 
)��/�/0 = ��� + ��� − (� + μ),��
�
��

       (5.1) 
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where 

 

(\ �  �PU5) Æ5À5�5nÆ6À6�6nÆwÀw�)�        (5.2) 

 

The terms �i	 k � 1, 2, 3) are the number of sexual partners of susceptibles with individuals 

from the ��, �� and , classes respectively in each time period. 

 

5.3 Mathematical Analysis of the HIV/AIDS model 

 

5.3.1 Positivity and Boundedness of Solutions 

For the HIV/AIDS transmission model to be epidemiologically meaningful, it is important to 

prove that all solutions with non-negative initial data will remain non-negative for all time. 

 

Theorem 5.1 : If �(0), ��(0), ��(0) and ,(0) are non-negative, then so are �(�), ��(�), ��(�) 
and ,(�) for all time � > 0. Moreover, 

 

lim	0	→	F #(�) ≤ 	Ç�© .         (5.3) 

 

Furthermore, if #(0) ≤ Ç�© , then #(�) ≤ Ç�©  . 

 

The feasible region for the system is therefore given by 

 ¼ = ¼� ⊂ ℝnq           (5.4) 

 

where 

 

¼� = �(�, ��, ��, ,) ∈ ℝnq : � + �� + �� + , ≤ Ç�© �.      (5.5) 

 ¼ is positively invariant (see [113]) . 

 

5.3.2 Stability of the Disease-Free Equilibrium 

The disease-free equilibrium (DFE) of the HIV/AIDS model (5.1) exists only when Q� and � 

are constant, it is given by 

 



 96

�� �  ��, ���, ���, ,�) � ä	Ç�© , 0, 0, 0å. 

 

The basic reproduction number of the model with condom use and screening of unaware 

infective individuals is given by 

 � = (�PU5)¬Æ5À5(¹n©n°)(®n©)nÆ6À6�(®n©)nÆwÀwÈ�(¹n©)n¹(¹n©n°)É±(�n¹n©)(¹n©n°)(®n©)    (5.6) 

 

while the basic reproduction number of the model without condom use and screening of 

unaware infective individuals is then given by 

 �� = Æ5À5(¹n©n°)(®n©)nÆwÀw¹(¹n©n°)(¹n©)(¹n©n°)(®n©)       (5.7) 

 

We use Theorem 2 of van den Driessche and Watmough [120] to establish the following 

result: 

 

Proposition 5.1 : The DFE of the HIV/AIDS model is locally asymptotically stable if �	 < 1 

and unstable if �	 > 1. 

 

The basic reproduction number, �, measures the average number of new infections 

generated by a single infected individual in a completely susceptible population. Thus, 

Proposition 5.1 implies that the disease can be eliminated from the community when �	 < 1. 

Next, we calculate the endemic steady states. 

 

5.3.3 Existence of Endemic Equilibrium 

Solving the HIV/AIDS model equations in terms of (\∗ , we calculate the endemic equilibrium 

point to obtain 

 �∗ = Ç�Æ�∗ n©��∗ = Æ�∗ Ç�(Æ�∗ n©)(�n¹n¯)��∗ = �Æ�∗ Ç�(Æ�∗ n©)(�n¹n¯)(¹n¯n°),∗ = Æ�∗ Ç�È¹(¹n¯n°)n�(¹n°)É(Æ�∗ n©)(�n¹n¯)(¹n¯n°)(®n¯)#∗ =	Ç�P®�∗
© ���

��
���
�

      (5.8) 
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By solving the model system (5.1) at equilibrium we obtain (\∗ � 0 (which corresponds to the 

DFE) or 

 ��(\∗ + �� = 0          (5.9) 

 

where 

 �� = (� + � + �)(� + � + �) + 
(� + � + � + �)�� = (� + �)(
 + � + �)(� + � + �)(1 − �) ì    (5.10) 

 

�� > 0 and �� ≥ 0 whenever � < 1 or � > �∗, so that (\∗ = − ���5 ≤ 0. Therefore the HIV/AIDS 

model has no endemic equilibrium whenever � > �∗ where the critical screening coverage �∗ 
is given by 

 

�∗ = (
 + � + �)Y(1 − Q�)���(� + (� + �)(1 − Q�)��(� − (� + �)(� + �)[(1 − Q�)Y(� + �)��(� + (
 + �)��(�[ − (� + �)(
 + � + �)  

 

Proposition 5.2 : The HIV model has a unique endemic equilibrium if and only if � > 1. 

 

The above result suggests the impossibility of backward bifurcation in the HIV/AIDS model, 

since no endemic equilibrium exists when � < 1 or � > �∗. 
 

5.4 Modified Model 

We now modify the model (5.1) by sub-dividing the total human population at any time �, 
denoted by #(�), into the following sub-populations: susceptible individuals (�(�)), unaware 

infective individuals (��(�)), screened and already aware infective individuals who are not yet 

on treatment (��(�)), HIV positive individuals who are on treatment (d(�)) and that of the 

AIDS population (,(�)), so that 

 #(�) = �(�) + ��(�) + ��(�) + d(�) + ,(�) 
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Fig 5.2: Flow diagram for the modified HIV/AIDS disease transmission model 

 

The resulting system of equations is the following: 

 

/�/0 � �� � (�� � μ�/�5/0 = (�� − (� + � + μ)��/�6/0 = ��� − (� + μ + 
)��/�/0 = 
�� − (�� + μ)d/�/0 = ��� + ��� + ��d − (� + μ),��
��
��
�

      (5.11) 

 

Here  

 (� = (�PU5)(Æ5À5�5nÆ6À6�6nÆwÀw�nÆtÀt�)�       (5.12) 

 

where (� is the per capita contact rate for susceptible individuals with HIV positive individuals 

on treatment and �� is the number of sexual partners of susceptibles with HIV positive 

individuals on treatment. Here �� is the rate of progression of HIV positive individuals on 

treatment to the AIDS population, where � is the modification parameter due to treatment. 
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5.4.1 Stability of the Disease-Free Equilibrium 

The disease-free equilibrium (DFE) of the modified model (5.11) also exists only when Q� 

and � are constant and it is given by 

 

�� �  ��, ���, ���, d�, ,�) � �	��μ ,0, 0, 0, 0� 

 

The basic reproduction number for the modified model with condom use and screening of 

unaware infective individuals is given by the linear stability of �� established by using the next 

generation operator method [119]. The matrices ¢ and £, for the new infection terms and the 

remaining transfer terms are, respectively, given by 

 

¢ = (1 − Q�) ��� �� �� ��0 0 0 000 00 00 00 � 
 

where 

 �i = À�Æ�� , k = 1, 2, 3, ℎ and 

 

£ = �� + � + � 0 0 0−� � + 
 + � 0 0−
−� 0−� �� + �−�� 0� + �� 
 

It follows that the reproduction number is given by 

 

�� = (1 − Q�)¬� + �È(� + � + μ) + 
 � � + �) + μ)É(��� + 
� � + �)(���} � + � + μ) � + μ + 
) � + μ) �� + �)  

           (5.13) � �  �� + �){ � + μ + 
) � + μ)(��� + � � + μ)(���} 
 

while the basic reproduction number of the modified model without condom use and 

screening of unaware infective individuals is then given by 

 ��� �  ®n©)Æ5À5n¹ÆwÀw �n¹n©) ®n©)         (5.14) 

 

We use Theorem 2 of [119] to establish the following result. The critical condom use 

coverage Q�� that would be required to contain HIV/AIDS can be calculated by setting �� � 1, 

to obtain 
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Q�� � 1 − 1��� 

 �� ≥ 1 if and only if Q� ≤ Q��. Hence when Q� < Q��, then the disease will persist, but when Q� > Q��, the disease may be eradicated if DFE is globally asymptotically stable. 

 

Proposition 5.3 : The DFE of the modified HIV/AIDS model is locally asymptotically stable if �� < 1 and unstable if �� > 1. 

 

Thus, Proposition 5.3 also implies that the disease can be eliminated from the community 

when �� < 1. Next we calculate the endemic steady states of the modified model. 

 

5.4.2 Existence of Endemic Equilibrium 

Solving the HIV/AIDS model equation in terms of (�∗ , we calculate the endemic equilibrium 

point and obtain 

 �∗ = Ç�Æ�∗ n©��∗ = Æ�∗ Ç�(Æ�∗ n©)(�n¹n¯)��∗ = �Æ�∗ Ç�(Æ�∗ n©)(�n¹n¯)(¹n¯n°)d∗ = °�Æ�∗ Ç�(Æ�∗ n©)(�n¹n¯)(¹n¯n°)(û¹n¯),∗ = ¹Æ�∗ Ç�È(û¹n¯)(¹n¯n°)n°(¯nû(¹n�)É(Æ�∗ n©)(�n¹n¯)(¹n¯n°)(®n¯)(û¹n¯)#∗ =	Ç�P®�∗
© ��

���
�
���
��

     (5.15) 

 

By solving the modified system at equilibrium we obtain (�∗ = 0 (which corresponds to the 

DFE) or 

 »�(�∗ + »� = 0         (5.16) 
 

where 

 »� = (� + � + �)(� + � + �)(�� + �) + 
¬(� + � + �)(�� + �) + �(� + � + ��)±»� = (� + � + �)(� + � + 
)(� + �)(�� + �)(1 − ��) ì (5.17) 
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It is clear that »� > 0 and »� ≥ 0 whenever �� < 1 or � > ��∗, so that (�∗ = − ���5 ≤ 0. Therefore 

the modified HIV/AIDS model has no endemic equilibrium whenever � > ��∗ where the critical 

screening coverage is given by 

 

��∗ = (� + � + 
)(�� + �)¬�(1 − Q�)(��� + (� + �)(1 − Q�)(��� − (� + �)(� + �)±(1 − Q�)Þ(� + �)(�� + �)(��� + �Y� + �(
 + �)[(��� + 
(� + �)(���ß −   

 

where  = (� + � + 
)(�� + �)(� + �). 
 

Theorem 5.2 : The DFE is locally asymptotically stable if �� < 1 and unstable if �� > 1. 

 

Proof: . We evaluate the Jacobian matrix of the model at the disease-free equilibrium and we 

obtain 

 

X! =
"##
#$− − � 0 0 X� X�0 −� + X� Xq −X� −X�000

�0�
−x
�

0−¼��
00−"%&&
&'
 

 

where 

 � = � + � + �, x = � + 
 + �, ¼ = �� + �, " = � + �, 
 

 = (#∗ − �∗)(1 − Q�)(��(���∗ + ��(���∗ + ��(�,∗ + ��(�d∗)#�  

 

X� = ���(�(1 − Q�)# + �(1 − Q�)(��(���∗ + ��(���∗ + ��(�,∗ + ��(�d∗)#�  

 

X� = ���(�(1 − Q�)# + �(1 − Q�)(��(���∗ + ��(���∗ + ��(�,∗ + ��(�d∗)#�  

 

X� = ���(�(1 − Q�)# + �(1 − Q�)(��(���∗ + ��(���∗ + ��(�,∗ + ��(�d∗)#�  

 

Xq = ���(�(1 − Q�)# + �(1 − Q�)(��(���∗ + ��(���∗ + ��(�,∗ + ��(�d∗)#�  

 

Then, the local stability of the DFE is determined by the eigenvalues of the matrix 
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X! �
"##
#$�� 0 0 −(� −(�0 −� + (� (� (� (�000

�0�
−x
�

0−¼��
00−"%&
&&' 

 

where 

 (� = ��(�(1 − Q�), (� = ��(�(1 − Q�), (� = ��(�(1 − Q�) and (� = ��(�(1 − Q�). 
 

It is clear that the first column has diagonal entry, so, this diagonal entry −� is an eigenvalue. 

Hence, removing this column and the row corresponding to it, the Jacobian matrix (X!) is then 

reduced to the following: 

 

X)! = �−� + (� (� (� (�� −x 0 00� 
� −¼�� 0−"� 
 

We therefore calculate the eigenvalues of the reduced matrix. Solving the eigenvalues of X)!, 
requires that 

 `��(X)! − 	) = 0 
 

which leads to the following characteristic equation: 

 	q + o�	� + o�	� + o�	 + oq = 0. 

 

Here 

 o� = (� + x + ¼ + ") − (1 − Q�)��(� 

 o� = �x + �¼ + x¼ + (� + x + ¼)" − (1 − Q�)Y(x + ¼ + ")��(� + ���(� + ���(�[ 
           (5.18) o� = �x¼ + x¼" + �"(¼ + x)

− (1 − Q�) äY¼" + x(¼ + ")[��(� + (¼ + ")���(� + �(x + ¼ + �)��(�
+ 
���(�å 

 oq = �x¼" − (1 − Q�)(x¼"��(� + ¼"���(� + �(¼(x + �) + 
��)��(� + "
���(�)= �x¼"(1 − ��) 
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By applying the Routh–Hurwitz stability conditions, we establish the following for the 

characteristic equation: o� > 0, o� > 0, o� > 0, oq > 0 and 

 

d� = o� > 0, d� = *o� 1o� o�* > 0, d� = +o� 1 0o� o� o�0 oq o�+ > 0, dq = ,o� 1 0 0o� o� o� 100 oq0 o�0 o�oq
, > 0 

 

The steady state is stable (that is, �� < 0) for all h if and only if detdf ≥ 0 for . = 1, 2, 3, 4. 

Furthermore, we only need to prove that d� > 0, d� > 0, dq > 0. 

 d� = o�o� − o�, d� = o�(o�o� − o�) − oqo�� and dq = oqd� 

 

Using Mathematica 5.0, we found that 

 d� = (x + ¼)(x + ")(¼ + ") + ��(x + ¼ + ") + �(x + ¼ + ")�+ ��(�(1 − Q�)�Y(x + ¼ + ")��(� + ���(� + ���(�[− (1 − Q�)Y(2� + x + ¼ + ")(x + ¼ + ")��(� + �(� + x)��(�+ �(� + " − �)��(� − 
���(�[ 
           (5.19) d� = o�d� − oqo�� 

 dq = oqd� 

 

Consequently, having d� > 0, d� > 0 and dq > 0 shows that the eigenvalues of the Jacobian 

matrix, X)!, all have negative real parts whenever �� < 1. But if �� > 1, then clearly we can 

see that oq < 0. Moreover, having o� > 0, o� > 0, o� > 0 and oq > 0 shows that not all the 

roots of the polynomial will have negative real parts. This means that whenever �� > 1, the 

disease-free equilibrium point is unstable. 

 

Proposition 5.4 : The modified HIV model has a unique endemic equilibrium if and only if �� > 1. 

 

The above result suggests the impossibility of backward bifurcation in the HIV/AIDS model, 

since no endemic equilibrium exists when �� < 1 or � > ��∗. We now investigate the global 

stability property of the endemic equilibrium of the modified HIV/AIDS model for a special 

case. 
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5.4.3 Global Stability of the Endemic Equilibrium f or � � � 

Considering the model (5.11) with � = 0, we get 

 /�/0 = �� − (�� − μ�
/�5/0 � (�� �  � + � + μ)��/�6/0 � ��� �  � + μ + 
)��/�/0 � 
�� �  �� + μ)d
/�/0 � ��� + ��� + ��d � μ,��

��
��
�

       (5.20) 

 

It is obvious from (5.15) that there is no change in the endemic equilibrium. Let, 

 

¼� � Þ �, ��, ��, d, ,) ∈ ℝn/ : �� � �� � d � , � 0ß and ��� = ��|®0�   (5.21) 

 

We then claim the following: 

 

Theorem 5.3 : The endemic equilibrium of the HIV model (5.20) is globally asymptotically 

stable (GAS) in ¼�	¼� whenever ��� > 1. 

 

Proof : It can be shown, as for the case of Proposition 5.2, that the unique endemic 

equilibrium for this special case exists only if ��� > 1. Further, # = Ç�̄ as � → ∞. Thus, using 

� = Ç�̄ − �� − �� − d − , and substituting in (5.20) gives the following limiting system: 

 /�5/0 = (� äÇ�̄ − �� − �� − d − ,å − (� + � + μ)��
/�6/0 � ��� �  � + μ + 
)��/�/0 � 
�� �  �� + μ)d
/�/0 � ��� + ��� + ��d � μ, ���

�
���

    (5.22) 

 

Using the Dulacs multiplier 
��5�, (see [89]), it follows that 

 

ÅÅ� ý ¹�6�� + ¹�5�� + ¹û�5�6� � ¯�5�6�þ + 
ÅÅ�5 ý �PU5) Æ5À5�5nÆ6À6�6nÆwÀw�nÆtÀt�)�5�6��Ç� ¯⁄ äÇ�̄ � �� � �� �

d � ,å �  �n¹n¯)�6�� þ 
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� � Ç���n¹�6��66�6�6 � ¹�6��56�6�6 � û¹�5�6�56�66�6 � À5Æ5¯Ç��6�� � À6Æ6�56�� ä1 − (�6n�n�)Ç� ¯⁄ å − ÀwÆw�56�6� ä1 −
(�6n�n�)Ç� ¯⁄ å − ÀtÆt�56�6� ä1 − (�6n�n�)Ç� ¯⁄ å < 0,       (5.23) 

 

since �� + d + , < �� �⁄  in ¼�. Hence, by Dulacs criterion, there are no periodic orbits in ¼�	¼�. Since ¼� is positively invariant and the endemic equilibrium exists whenever ��� > 1, 

then it follows from the Poincare–Bendixson Theorem [98] that all solutions of the limiting 

system originating in ¼� remain in ¼� for all �. Further, the absence of periodic orbits in ¼� 

implies that the unique endemic equilibrium of the special case of the HIV/AIDS model is 

GAS whenever ��� > 1.         ∎ 

 

The HIV/AIDS model has a locally-asymptotically stable disease-free equilibrium whenever �� ≤ 1, and a unique endemic equilibrium whenever �� > 1. The unique endemic equilibrium 

is globally-asymptotically stable for the case � = 0 if ��� > 1. In Fig 5.3 we show the contour 

plot of the reproductive number �� as a function of � and 
 when there is condom use and 

the case without condom use. 

 

In the next section, we apply the optimal control method using Pontryagin’s Maximum 

Principle to determine the necessary conditions for the optimal control of screening of 

unaware infectives and use of condom on the spread of HIV. 

 

5.5 Optimal Control Analysis 

From the previous section, we show that effective control of the disease may be too costly 

when constant controls are considered as it requires treatment at higher levels for all time. 

For effective control to be achievable in a finite time, we need to consider time dependent 

controls. When the control is time dependent the disease-free equilibrium no longer exists 

[95]. We then proceed by applying Pontryagin’s Maximum Principle to determine the 

conditions for effective control in finite time. We introduce into the modified model, condom 

use control (Q�), screening control of unaware infectives (Q�) and treatment control (Q�) as 

time dependent controls to curtail the spread of HIV/AIDS. The modified model (5.11) 

becomes 
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/�/0 � �� � (�� � μ�
/�5/0 � (�� �  Q�� + � + μ)��/�6/0 � Q���� �  � + μ + Q�
)��/�/0 � Q�
�� �  �� + μ)d
/�/0 � ��� + ��� + ��d �  � + μ),��

��
��
�

      (5.24) 

 

with 

 

(� �  �PU5) Æ5À5�5nÆ6À6�6nÆwÀw�nÆtÀt�)�       (5.25) 

 

where 0	 ≤ Q� ≤ 1 models the control on condom use,  0	 ≤ Q� ≤ 1 is the control on 

screening of unaware infectives and 0	 ≤ Q� ≤ 1 is the control on treatment. To investigate 

the optimal level of efforts that would be needed to control the disease, we give the objective 

functional X, which is to minimize the number of unaware infectives and the cost of applying 

the controls Q�, Q� and Q�. 

 

X = Ê (o�� + Ì�Q�� + Ì�Q�� + Ì�Q��)`�b� ,       (5.26) 

 

where o, Ì�, Ì�, and Ì� are positive weights. The terms Ì�Q��, Ì�Q�� and Ì�Q�� are the costs 

associated with condom use, screening of unaware infectives and treatment respectively. We 

choose a quadractic cost on the controls, in keeping with what is in other literature on 

epidemics control [1, 37, 56, 74, 67]. 

 

With the given objective functional, X(u�, u�, u�), our goal is to minimize the number of 

unaware infectives ��, while minimizing the cost of controls u�(t), u�(t) and u�(t). We thus 

seek an optimal control triple (Q�∗ , Q�∗ , Q�∗) such that 

 X(Q�∗ , Q�∗ , Q�∗) = min¬X(u�, u�, u�):	(u�, u�, u�) ∈ Ð±,     (5.27) 

 

where 

 Ð = ¬(u�, u�, u�):	u�, u�, u�	are	measurable	with	0 ≤ uØ ≤ 1, i = 1, 2, 3	for	t ∈ È0, TÉ± 
 

is the control set. The necessary conditions that an optimal control problem must satisfy 

come from Pontryagin’s Maximum Principle [103]. We use this principle to convert the 
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problem of minimization of the objective functional (5.26) coupled with the state variable 

system (5.24) into a problem of minimizing point-wise a Hamiltonian, d\, with respect to the 

controls u�, u� and u�. The Hamiltonian is defined by 

 

d\ � o�� + Ì�Q�� + Ì�Q�� + Ì�Q�� + h� /�/0 + h�5 /�5/0 + h�6 /�6/0 + h� /�/0 + h� /�/0 ,  (5.28) 

 

where the h�, h�5, h�6, h� and h� are the adjoint variables or co-state variables. By applying 

Pontryagin’s Maximum Principle [103] and the existence result for the optimal control from 

[39], we obtain 

 

Proposition 5.5 : For the optimal control triple  Q�∗ , Q�∗ , Q�∗) that minimizes X u�, u�, u�) over Ð, 

there exist adjoint variables h�, h�5, h�6, h� and h� satisfying: 

 

(i) Adjoint System 

 

/â·/0 �  1 − Q�) äÆ5À5�5nÆ6À6�6nÆwÀw�nÆtÀt�� − 2·�6å (h� − h�5) + �h�/â¶5/0 = −o + (1 − Q�) äÆ5À5�� − 2·�6å Yh� − h�5[ + (Q�� + � + �)h�5 − Q��h�6 − �h�/â¶6/0 = (1 − Q�) äÆ6À6�� − 2·�6å Yh� − h�5[ + (Q�
 + � + �)h�6 − Q�
h� − �h�/â�/0 = (1 − Q�) äÆtÀt�� − 2·�6å Yh� − h�5[ + (�� + �)h� − ��h�/âè/0 = (1 − Q�) äÆwÀw�� − 2·�6å Yh� − h�5[ + (� + �)h� ���
��
���
�

 (5.29) 

 

where 3� = �((����� + (����� + (���, + (���d). 
 

(ii) Transversality Conditions 

 h�(+) = h�5(+) = h�6(+) = h�(+) = h�(+) = 0     (5.30) 

 

(iii) Stationary Values 

 

Q�∗ = Ëoj  0,Ëkm ä1, Yâ¶5Pâ·[�(Æ5À5�5nÆ6À6�6nÆwÀw�nÆtÀt�)�ë5 å¡
Q�∗ = Ëoj  0,Ëkm ä1, �(â¶5Pâ¶6)�5�ë6 å¡
Q�∗ = Ëoj  0,Ëkm ä1, °Yâ¶6Pâ�[�6�ëw å¡ ���

�
���

   (5.31) 

 



 108

Proof : Corollary 4.1 of [39] gives the existence of an optimal control due to the convexity of 

the integrand of X with respect to Q�, Q� and Q�, a priori boundedness of the state solutions, 

and the Lipschitz property of the state system with respect to the state variables. The 

differential equations governing the adjoint variables are obtained by differentiation of the 

Hamiltonian function, evaluated at the optimal control. 

 

Due to the a priori boundedness of the state system, adjoint system and the resulting 

Lipschitz structure of the ODEs, we obtain the uniqueness of the optimal control for small +. 

The uniqueness of the optimal control follows from the uniqueness of the optimality system, 

which consists of (5.29) and (5.30) with characterization (5.31). There is a restriction on the 

length of the time interval in order to guarantee the uniqueness of the optimality system. This 

smallness restriction of the length of time is due to the opposite time orientations of (5.24) 

and (5.29); the state problem has initial values whereas the adjoint problem has final values. 

This restriction is very common in control problems (see [37, 56, 74, 67, 81]).  ∎ 

 

5.6 Numerical Results and Discussion 

In this section, we examine the modified deterministic HIV/AIDS model and study the effects 

of condom use, screening of unaware infectives and treatment on the transmission dynamics 

of the disease. We carry out numerical simulations and discuss results. The optimal control 

set is obtained by solving the optimality system, consisting of the state and adjoint systems. 

An iterative scheme is used for solving the optimality system. We start to solve the state 

equations (5.24) with a guess for the controls over the simulated time using the fourth order 

Runge-Kutta scheme. Because of the transversality conditions (5.30), the adjoint equations 

(5.29) are solved by a backward fourth order Runge-Kutta scheme using the current 

iteration’s solutions of the state equations. Then the controls are updated by using a convex 

combination of the previous controls and the value from the characterizations (5.31). This 

process is repeated and iterations are stopped if the values of the unknowns at the previous 

iteration are very close to the ones at the present iteration [72].  

 

We investigate and compare numerical results in the following scenarios (i) when control 

efforts on screening (Q�) and treatment (Q�) are optimized while the control on condom use 

(Q�) is set to zero (ii) when control efforts on screening (Q�) and condom use (Q�) are 

optimized while the treatment control (Q�) is set to zero (iii) when control efforts on treatment 

(Q�) and condom use (Q�) are optimized while the control on screening (Q�) is set to zero (iv) 

when all controls are optimized. 

 

We assume that the weight factor, Ì�, associated with control Q� is lower than Ì� and Ì� 

which are associated with controls Q� and Q�. This assumption is based on the facts that the 
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cost associated with Q� will include the cost of screening and the cost associated with 

treatment, Q�, will include the cost of drugs, medical examinations and hospitalization. We 

have chosen the same set of the weight factors, o � 800, Ì� � 35, Ì� � 55 and Ì� � 75 with 

initial state variables � 0) � 800, �� 0) � 40, �� 0) � 45, d 0) � 30, and , 0) � 0 to illustrate 

the effect of different optimal control strategies on the spread of HIV/AIDS in a population.  

 

 
Fig 5.3: Simulation of the model (5.11) showing contour plots of the reproduction number �� 

as a function of � and 
 at steady state. 

 
Fig 5.4: The projected �� � �� phase plane of the phase space 
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The parameter values used are as given in Table 5.1, the following: 

 

Parameter Value Reference (� 0.20 Assumed (� 0.15 [113] (� 0.12 [113] (� 0.15 Assumed � 0.02 [113] � 1.0 [113] �� 2 000 [113] � 0.1 [113] � 0.002 Assumed � 0.02 Assumed 
 0.6 Assumed 
 

Table 5.1: HIV/AIDS model parameter values 

 

5.6.1 Screening and Treatment Only  

With this strategy, the screening control Q� and the treatment control Q� are both used to 

optimize the objective function X while the condom use control Q� is set to zero. In Fig 5.5, we 

observe that this control strategy results in a significant decrease in the number of unaware 

infectives (��) and AIDS cases (,) compared with the case without control. The total averted 

cases of unaware infectives and AIDS are 6100 and 7900 respectively. Also this control 

strategy results in a significant increase in the number of HIV positive individuals on 

treatment which stabilizes at 250. The control profiles show that Q� is at the upper bound for 

98 days before dropping to the lower bound at the final time and Q� remains at the upper 

bound till the final time. 
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Fig 5.5 (a): Simulations showing the effect of screening and treatment on infectives 

 
Fig 5.5 (b): Simulations showing the effect of screening and treatment on the treated and 
AIDS individuals 
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Fig 5.5 (c): Simulations showing control profiles and the effect of screening and treatment on 
adjoints 
 

5.6.2 Screening and Condom Use Only 

With this strategy, the screening control Q� and the condom use control Q� are both used to 

optimize the objective function X while the treatment control Q� is set to zero. In Fig 5.6, we 

observe that this control strategy also results in a significant decrease in the number of 

unaware infectives (��) and AIDS cases (,) compared with the case without control. Here, 

the total averted cases of unaware infectives and AIDS are 6100 and 7800 respectively. The 

control profiles show that Q� is at the upper bound for 18 days before dropping to the lower 

bound at the final time and Q� remains at the upper bound till the final time. 
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Fig 5.6 (a): Simulations showing the effect of condom use and screening on infectives 

 
Fig 5.6 (b): Simulations showing the effect of condom use and screening on individuals on 
the treated and AIDS individuals 
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Fig 5.6 (c): Simulations showing control profiles and the effect of condom use and screening 
on adjoints 
 

5.6.3 Condom Use and Treatment Only 

With this strategy, the control on treatment Q� and the condom use control Q� are both used 
to optimize the objective function X while the screening control Q� is set to zero.  

 
Fig 5.7 (a):  Simulations showing the effect of condom use and treatment on infectives 
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Fig 5.7 (b):  Simulations showing the effect of condom use and treatment on the treated and 
AIDS individuals 

 
Fig 5.7 (c):  Simulations showing control profiles and the effect of condom use and treatment 
on adjoints 
 
In Fig 5.7, we observe that this control strategy results in a significant increase in the number 

of HIV positive individuals on treatment (d) which stabilizes at 45 and a significant reduction 

in the number of AIDS cases (,). The control Q� is at the upper bound till the final time and 

the control Q� is also maintained at the upper bound till the final time. 
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5.6.4 Condom Use, Screening and Treatment 

With this strategy, the condom use control Q�, control on screening Q� and the treatment 

control Q� are all used to optimize the objective function X. In Fig 5.8, we observe that this 

control strategy results in a significant increase in the number of HIV positive individuals on 

treatment (d) which stabilizes at 140 and a significant reduction in the number of AIDS cases 

(,). Control profiles show that Q� and Q� are at the upper bound till the final time and Q�  

drops gradually from the upper bound to the lower bound after 18 days. 

 
Fig 5.8 (a): Simulations showing the effect of all controls on infectives 

 
Fig 5.8 (b): Simulations showing the effect of all controls on the treated and AIDS individuals 
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Fig 5.8 (c): Simulations showing control profiles and the effects of all controls on adjoints 
 
Simulations of the effect of the control strategies on adjoint variables indicate that, in all the 

intervention strategies, the shadow price of the unaware infectives has the highest impact on 

the economy.  

 
Fig 5.9: Simulations showing the effect of the number of sexual partners (��) and (��) on 

AIDS spread. 
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Fig 5.9 shows that the number of sexual partners of susceptibles with unaware infectives has 

a greater impact on the AIDS individuals in the absence of all controls. However, when all 

controls are used the number of sexual partners does not have a significant effect on the 

total number of AIDS individuals. 

 
Fig 5.10: Simulations showing the effect of the number of sexual partners (��) and (��) on 

AIDS spread. 

  
The red lines in Figs 5.9 and 5.10 indicate the effect on the spread of AIDS when there is 

optimal control of use of condom, screening of unaware infectives and treatment. 

 

5.7 Cost Effective Analysis 

To determine the most cost effective strategy to use to control the disease (combination of 

screening and condom use only, treatment and condom use only, combination of screening 

and treatment only, and combination of screening, treatment and condom use), we use cost 

effectiveness analysis. To achieve this purpose we need to compare the differences between 

the costs and health outcomes of these interventions. This is done by calculating the 

Incremental Cost-Effectiveness Ratio (ICER) which is generally described as the additional 

cost per additional health outcome. When comparing two or more competing intervention 

strategies incrementally, one intervention should be compared with the next-less-effective 

alternative. The ICER numerator includes the differences in intervention costs, averted 

disease costs, costs of prevented cases and averted productivity losses if applicable. The 

ICER denominator is the differences in health outcomes (e.g. total number of infections 

averted, number of susceptibility cases prevented). 
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We rank the strategies in increasing order of effectiveness, namely combination of screening 

and condom use only (strategy A), treatment and condom use only (strategy B), combination 

of screening and treatment only (strategy C) and combination of screening, treatment and 

condom use (strategy D) based on the model simulation results. The difference between the 

total infectious individuals without control and the total infectious individuals with control was 

used to determine the “total number of infections averted” used in the table of cost-

effectiveness analysis. 

 

Strategy Total Infections Averted Total Costs ($) 
A 622 230 149 310 
B 626 760 87 691 000 

 

�x"� ,) � 149	310622	230 = 0.24 

 

�x"�(�) = 87	691	000 − 149	310626	760 − 622	230 = 19	324.88 

 

The comparison between ICER(A) and ICER(B) shows an additional cost $19 324.88 per 

infection averted for strategy B over strategy A. The ICER for strategy A indicates that 

strategy B is “strongly dominated”. That is, strategy B is more costly and less effective than 

strategy A. Therefore, strategy B, the strongly dominated is excluded from the set of 

alternatives so it does not consume limited resources. 

 

We exclude strategy B and compare strategy A with C. From the numerical results we have 

 

Strategy Total Infections Averted Total Costs ($) 
A 622 230 149 310 
C 627 800 507 980 

 

This leads to the following ICERs: 

 

�x"�(,) = 149	310622	230 = 0.24 

 

�x"�(x) = 507	980 − 149	310627	800 − 622	230 = 64.39 

 

The comparison between ICER(A) and ICER(C) shows that it costs an additional $64.39 to 

avert one infection when switching fr0m strategy A to strategy C. Similarly, the ICER for 



 120

strategy A indicates that strategy C is “strongly dominated”. That is, strategy C is more costly 

and less effective than strategy A. Therefore, strategy C, the strongly dominated is excluded 

and then we compare strategies A and D. From the numerical results we have 

 

Strategy Total Infections Averted Total Costs ($) 
A 622 230 149 310 
D 628 190 148 680 

 

This leads to the following: 

 

�x"� ,) � 149	310622	230 = 0.24 

 

�x"�(¼) = 148	680 − 149	310628	190 − 622	230 = −0.106 

 

The comparison between ICER(A) and ICER(D) shows a cost saving of $0.106 for strategy D 

over strategy A. The negative ICER for strategy D indicates that strategy A is “strongly 

dominated”. That is, strategy A is more costly and less effective than strategy D. Therefore, 

strategy A, the strongly dominated is excluded. 

 

With this result, we therefore conclude that strategy D (a combination of screening Q� with 

treatment Q� and condom use Q�) is the most cost-effective of all the strategies for HIV/AIDS 

disease control considered. 

 

5.8 Conclusion 

In this chapter, we performed optimal control analysis for a HIV/AIDS model.  We derived 

and analyzed the conditions for optimal control of the disease with effective use of condoms, 

treatment regime and screening of infectives. We conclude that the successful screening of 

unaware infectives has a significant impact in reducing the endemicity of HIV/AIDS. This may 

be as a result of awareness by infectives who also took necessary precautionary measures 

not to spread the disease. Control programs that follow these strategies can effectively 

reduce the spread of HIV/AIDS in a population. Also, from the numerical results it is very 

clear that the impact and cost of unaware infectives in the community is very high. 
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CHAPTER SIX 

 

CONCLUDING REMARKS 

 

In this thesis, we considered the theoretical analysis of compartmental HIV/AIDS models. 

The work was motivated by the possibility that mathematical modelling could improve our 

understanding of the HIV/AIDS dynamics, particularly the impact of infection on an 

employee’s productivity at the workplace. We developed relatively simple but reliable models 

which confirmed our expectations: that a combination of intervention strategies including 

enlightenment, prevention, screening and ART treatment has the potential to control HIV 

transmission at a community level, indirectly also improving the productivity of a labour force. 

We extended this analysis to recruitment and employment policies regarding wellness of 

staff. This was done by adapting principles from fields such as dynamical systems, control 

theory and economics utilising data available in literature. The end result is, in our opinion, a 

good framework for integrating available data with a toolkit of mathematical methods which 

can be continuously improved in accordance with the ever-changing picture of the HIV/AIDS 

epidemic. 

 

Initially, motivated by the work of Tripathi et al, [113], we undertook investigations on the 

impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives 

by incorporating condom use, screening of unaware infectives and treatment of the infected. 

We observed that unawareness by infectives has a great cost impact on the community. We 

further investigated the impact of combinations of the strategies in the control of HIV/AIDS. 

Conducting cost-effectiveness analysis, we found that the most cost-effective strategy is the 

combination of all the control strategies. We then formulated realistic models that recognize 

five possible states for employees at the workplace: non-productive susceptible, productive 

susceptible, non-productive infected, productive infected and the AIDS class. The sensitivity 

of the models was tested with respect to changes in critical parameters: modification 

parameter on the productive susceptible, rate of progression to AIDS, mortality rate, 

proportion of recruited in non-productive susceptible class. Further, we showed that 

interventions result in more people being in the productive classes and less people in the 

non-productive and AIDS classes. Furthermore, the study showed that optimal control 

theory, numerical simulations and cost effectiveness analysis can be used to make 

meaningful decisions on choosing appropriate combinations of interventions to manage 

epidemics. 

 

We know that the transition from one disease state to another is not instantaneous, it is worth 

considering time delay in the models formulated during this study as part of future work. The 
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importance of taking epidemiological modelling from the realm of the purely theoretical and 

applying it to real world situations cannot be overstated. Thus the future work will, therefore, 

extend to other problems related to HIV/AIDS dynamics, for instance substance abuse and 

TB, common problems faced by communities. Although this may limit the range of suitable 

mathematical tools, it is envisaged that even fairly simple models based on limited available 

data could lead to valuable insights. We would then have to cherry-pick the most useful 

mathematical tools and apply them to the most complete data in HIV. This may entail having 

to conduct surveys wherein it may become necessary to incorporate parameter estimation 

techniques.  
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