
i 

 

 

LAMINAR FLOW IN A CHANNEL FILLED WITH SATURATED 

POROUS MEDIA 

By 

LAZARUS RUNDORA 

(Student Number: 210266430) 

BSc (Hons), MSc (UZ) 

Thesis submitted in fulfilment of the requirements for the degree 

 

Doctor of Technology: Mechanical Engineering 

Cape Peninsula University of Technology 

Supervisor:      Professor O.D. Makinde 

Senior Professor & Director, Institute for Advanced Research in  

Mathematical Modelling and Computations 

Cape Peninsula University of Technology, South Africa 

 

Year 2013 

CPUT copyright information 

The thesis may not be published either in part (in scholarly, scientific or technical journals), or as 

a whole (as a monograph), unless permission has been obtained from the University. 

 



ii 

 

DECLARATION 

I, Lazarus Rundora, declare that the contents of this thesis represent my own unbiased work, 

and that the thesis has not previously been submitted for academic examination towards any 

qualification. Furthermore, it represents my own opinions and not necessarily those of the Cape 

Peninsula University of Technology. 

 

Signed       Date 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

ACKNOWLEDGEMENTS 

 

� My Supervisor, Professor Oluwole D Makinde, I have gained useful and life-changing 

knowledge from you. Your readiness to assist and to share your wide knowledge is 

beyond human imagination. Thank you and may the Lord continue to reward you. 

� Dr Tirivanhu Chinyoka, collaborating with you has assisted me a lot more than you can 

imagine. Thank you for the guidance that you provided me. 

� My wife, Rosebud and children: Laura, Nicola, Tashinga and Ashlynn, I will forever 

cherish your daily company and patience. If it were not for all of you, it may not have 

been possible. 

� Dr. Kazeem Okosun, your willingness to help at any time with the technicalities and your 

academic advice and encouragement is appreciated. I have known you for a few months 

but you have already impacted my life positively. Thank you and be blessed. 

� Isaac Takaidza and Solly Lebelo, we have been together on this journey, and especially 

you Isaac, we have been together for years now. Thank you for the day to day 

collaboration that we always had. It helped. 

� Dr. Kenneth Zimba, Head of VUT Mathematics Department, thank you for your support 

and willingness to allow me time out visiting my supervisor. 

� My employer, Vaal University of Technology, thank you for funding my doctorate studies. 

I will forever be indebted. 

 

 

 

 

 

 

 

 



iv 

 

 

DEDICATION 

 

 

To Ashlynn, Tashinga, Nicola, Laura and Tinashe 

My children, this is for you, let it inspire you. 

To Rosebud 

My beautiful wife, if this did not come to fruition, you too were going to be blamed. 

Thanks for everything. 

To my mother, Martha  

Suffice to say you are the strongest woman I have ever known. You are the rock upon 

which my life is rooted. To God be the glory. 

 

 

 

 

 

 

 

 

 

 



v 

 

ABSTRACT 

The flow of reactive viscous fluids in porous media presents a theoretically challenging problem 

and has a broad range of scientific, technological and engineering applications. Real life areas 

where such flow systems are encountered include drying of food, geothermal energy extraction, 

nuclear waste disposal, the flow of heat and fluid inside human organs, insulation of buildings, 

groundwater movement, oil and gas production, astrophysical plasmas, magnetohydrodynamic 

(MHD) pumps and generators, metal extraction and granulation of metals, aerospace and ship 

propulsion and automobile exhaust systems. The reactions within such flow systems are 

inherently exothermic. It is in this view that we carry out studies of thermal effects and thermal 

stability criteria for unsteady flows of reactive variable viscosity non-Newtonian fluids through 

saturated porous media. The study focuses on non-Newtonian fluids mainly because the 

majority of industrial fluids exhibit non-Newtonian character. Particular focus will be on fluids of 

the differential type exemplified by third grade fluid.  

Both analytical and numerical techniques were employed to solve the nonlinear partial 

differential equations that were derived from the conservation principles, namely the principles 

of conservation of mass, momentum and energy balance. Graphical representations were 

adopted in trying to explain the response of solutions to various flow parameter variations. 

In chapter 1 we defined important terms and expressions, laid down a summary of important 

applications, carried out literature survey, stated the statement of the problem, the aims and 

objectives of the study as well as an outline of the envisaged research methodology. Chapter 2 

focuses on the derivations of the fundamental equations that derive the flow system. These are 

the continuity equation, the momentum equation and the energy equation.  

In chapter 3 we computationally investigated the unsteady flow of a reactive temperature 

dependent viscosity third grade fluid through a porous saturated medium with asymmetric 

convective boundary conditions. The response of velocity and temperature fields to each of the 

various flow parameters was analysed and interpreted. A transient increase in both the velocity 

and temperature profiles with an increase in the reaction strength, viscous heating and fluid 

viscosity parameter was observed. On the other hand, a transient decrease in the field 

properties was observed with increase in non-Newtonian character and the porous medium 

shape parameter. The reaction was noticed to blow-up if, depending on other flow parameters, 

the reaction strength is not carefully controlled. 
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In chapter 4 the effects of suction/injection on the flow system described in chapter 3 was 

analysed. The effects of the flow parameters on the temperature and velocity fields, the skin 

friction and the wall heat transfer rate were simulated and discussed. It was observed that the 

suction/injection Reynolds number has a retarding effect on the velocity and temperature fields 

and increases the wall shear stress. On the other hand the suction/injection Reynolds number 

was observed to diminish the rate of heat transfer at the channel walls. 

The analysis of unsteady MHD reactive flow of a third grade fluid through a porous saturated 

medium with asymmetric boundary conditions was carried out in chapter 5. The major finding in 

this chapter is that the presence of the magnetic field decreases the velocity and temperature 

profiles. Blow up of solutions was also noticed to occur earlier than in the case of the problem in 

chapter 3. 

Chapter 6 is a statement of concluding remarks as well as envisaged future work.  
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NOMENCLATURE 

��   specific heat at constant pressure  ��   Biot number 

�   thermal conductivity   �    porous medium shape parameter 

�   channel width   ��  Hartmann number 

	   pressure   
    velocity  

	�   modified pressure   �    time 

   acceleration due to gravity   ��  electromagnetic induction  

��  Reynolds number     Greek symbols 

	�   Prandtl number   �   variable viscosity parameter 

��   dimensionless wall shear stress   �   dimensionless temperature 

�
  dimensionless wall heat transfer rate  �   dimensionless material parameter 

��   initial fluid temperature   ��, ��  material coefficients 

��   ambient temperature   �    non-Newtonian parameter 

�   permeability       activation energy parameter 

�   universal gas constant   !   fluid dynamic viscosity 

"   Planck’s number   #  electrical conductivity 

$   Boltzmann’s constant   Ω   viscous heating parameter 

��   initial concentration of the reactant species &   Frank-Kamenetskii parameter  

'   activation energy   (   fluid density 

)   heat of the reaction   *   vibration frequency 

+   rate constant   ,   shear stress 

$�, $-   heat transfer coefficients at the lower and upper plates, resp. 

. ∈ 012,0,0.56   numerical exponent for sensitized, Arrhenius and biomolecular kinetics 

7   dimensionless velocity 

8   pressure gradient parameter 

��   ambient temperature parameter 

9�   Darcy number 
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CHAPTER ONE 

INTRODUCTION 

 

A fluid is a substance that deforms continuously, or flows, when subjected to shearing forces 

[35]. Alternatively, it can be defined as a substance that offers negligible resistance to a change 

of shape and is capable of flowing. Fluid mechanics (or dynamics) is concerned with the flow of 

fluids and is one of the most important of all the areas of physics. Its scope is varied and has 

wide applications. Physical phenomena are often dominated by fluids, and as such life would 

not exist without fluids and without the behaviour that fluids exhibit [49, 77]. Fluids play an 

important part in technology. It is thus inevitable that engineers must at least have a working 

knowledge of fluid behaviour in order for them to be able to efficiently analyse many of the 

systems they encounter and work with in everyday life.  

1.1. Definition of terms 
 

1.1.1. Channel flow 

Channel flow  (internal flow) refers to the flow of fluids in closed conduits like pipes or air ducts, 

and the flows are entirely in contact with the rigid boundaries of the conduits. Such flows are of 

great interest in science, engineering, technology and in everyday life. Most closed conduits in 

engineering applications are either circular or rectangular in cross section. Poiseuille flow and 

Couette flow are two examples of channel flow that are frequently encountered. Poiseuille flow 

is the flow resulting from pressure gradients in a long duct or pipe. Couette flow is the flow of 

fluid between infinite parallel flat plates driven by the motion of one or more plates [110]. 

A steady flow is one in which the flow field properties like velocity, pressure and cross section 

may differ from point to point but do not change with time. In contrast, if at any point in the fluid 

the conditions change with time, the flow is described as unsteady. A Laminar flow is one in 

which the fluid particles move in smooth layers, or laminas. A turbulent flow is one in which the 

fluid particles rapidly mix as they move along due to random three dimensional velocity 

fluctuations. A pictorial illustration of channel flow, as defined herein, is given in Figure 1.1. 
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Figure 1.1. Poiseuille flow in a circular tube 

1.1.2. Temperature dependent viscosity 

Following [30], viscosity (dynamic viscosity) is the quantity that describes a fluid's resistance to 

shear or to flow. The cohesion and interaction between or among the molecules in a fluid brings 

about viscosity. When subjected to the same magnitude of the shear stress, different fluids 

deform differently. A major determinant of viscosity is temperature – viscosity varies with 

temperature. Engine oil and hydraulic fluids, for example, thicken appreciably on cold days and 

may significantly affect the performance of cars and other machinery during the cold periods. 

The viscosity of a liquid tends to decrease with increasing temperature, whereas for gases the 

opposite is true. A few models that describe the dependence of viscosity on temperature have 

been proposed. One of which is the Arrhenius-type equation, [70], 

!B�C = !��D EFG  

where !� is dynamic viscosity at some reference temperature, ' is the activation energy, � is 

the universal gas constant and � is temperature. The other common temperature dependent 

viscosity model is the exponential relationship, (see [69]), 

!B�C = !��HIBFHFJC 
where K is a viscosity variation parameter and !� is the fluid dynamic viscosity at temperature ��. 

A second kind of viscosity, the coefficient of kinematic viscosity [35], is the ratio of the dynamic 

(absolute) viscosity to the fluid density denoted by 

* = LM. 

The SI unit of viscosity is the pascal second (Pa s) or millipascal second (mPa s). In Table 1.1, 

we list the viscosities, !, of some selected materials at some specific temperatures. 
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Table 1.1.  Viscosities of selected materials [30] 

Simple liquids  NBOC PBQRS	TC Complex materials  NBOC PBRS	TC 
alcohol, ethyl 20 1.1 Glass, room temp 25 10�V-10-� 

alcohol, methyl 20 0.59 Glass, melting  10- 

blood 37 3 - 4 Honey 20 10 

Ethylene glycol 25 16.1 Molasses 20 5 

Ethylene glycol 100 1.98 Mustard 25 70 

glycerin 20 1420 Peanut butter 20 150 – 250 

glycerin 40 280 Syrup, chocolate 20 10 – 25 

mercury 15 1.55 Tar 20 30000 

milk 25 3 Gases NBOC PBPRS	TC 
Vegetable oil, canola 25 57 Air 15 17.9 

Light machine oil 20 102 Hydrogen 0 8.42 

Heavy machine oil 20 233 Helium (gas) 0 18.6 

Motor oil, SAE 20 20 125 Nitrogen 0 16.7 

water 0 1.79 Oxygen 0 18.1 

water 100 0.28    

 

1.1.3. Non-Newtonian fluid 

Fluid behaviour can be visualized in two ways namely Newtonian or non-Newtonian, depending 

on their general characteristic response to shear stress [35]. For a Newtonian fluid, shear stress 

is directly proportional to the rate of strain. If the deformation rate, rate of strain or shearing 

strain is defined by 
WXWY , where u is the fluid velocity in the <-direction, then the shear stress 

,	acting on a plane normal to the <-axis in a Newtonian fluid is such that  , ∝ WXWY,   i.e.        

                   , = ! WXWY ,                                                            (1.1) 

where !	is the absolute or dynamic viscosity. Equation (1.1) is Newton's law of viscosity for one 

dimensional flow. On the other hand, for a non-Newtonian fluid shear stress is not directly 

proportional to the rate of strain. Clay suspensions, polymer solutions, grease and toothpaste 

are examples of non-Newtonian fluids.  
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Over the years, many empirical equations have been proposed to model the observed relations 

between the shear stress ,  and 
WXWY   for non-Newtonian fluids. The most common of such 

equations is the Power Law model 

, = � [WXWY\] = ^� [WXWY\]H�_ WXWY       (1.2) 

 where � is called the consistency index and ` = [WXWY\]H�
is the flow behaviour index [35].  

According to Sochi, [98], non-Newtonian fluids fall into three broad categories: time-

independent, visco-elastic and time-dependent. Fluids exhibiting a combination of properties 

from more than one group are described as complex fluids. Time-independent fluids are those 

where the strain rate at a given point is solely dependent upon the instantaneous stress at that 

point. The fluid is described as thinning or pseudoplastic if the viscosity decreases, and 

thickening or dilatants if the viscosity increases with increasing shear rate.  

Fluids that show partial elastic recovery upon the removal of a deforming stress are called 

viscoelastic fluids. They possess properties of both viscous fluids and elastic solids. Polymeric 

fluids are viscoelastic. Strong viscoelastic effects include shear-thinning, extension-thickening, 

normal stresses, and time-dependent rheology.  

Time-dependent fluids are those for which the strain rate is a function of both the magnitude and 

the duration of stress and possibly of the time lapse between consecutive applications of stress. 

Two main categories of this type are thixotropic (work softening) and rheopectic (work 

hardening or anti-thixotropic) depending upon whether the stress decreases or increases with 

time at a given strain rate and constant temperature. 

Yield-stress or viscoplastic fluids are characterised by their ability to sustain shear stresses. A 

certain amount of stress must be exceeded before the fluid starts to flow. Thus, an ideal yield-

stress is a solid before yield and a fluid later. Accordingly, the viscosity of the substance 

changes from an infinite to a finite value. Yield-stress is a problematic phenomenon which is 

significantly difficult to model. 
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1.1.3.1. A note on fluids of the differential type 

Following [28], fluids of the differential type are one of the earliest classes of materials bearing 

characteristics that cannot be adequately described by the classical linearly viscous fluid model 

(1.1). In such materials, only a very short (infinitesimal) part of the history of the deformation 

gradient has an influence on the stress. More specifically, in an incompressible fluid of 

differential type, apart from a constitutively indeterminate pressure, the stress is just a function 

of the velocity gradient and some number of its higher time derivatives. With the instantaneous 

cessation of all local motion, the stress becomes a pure pressure. One consequence of this is 

that, while they can experience the phenomenon of creep, these materials do not exhibit the 

phenomenon of stress relaxation. Fluids of differential type fall into various grades depending on 

the constitutive structure of the fluid’s Cauchy stress. We omit the details here as the mechanics 

of fluids of differential type is a broad subject on its own. Suffice to say we have fluids of the 

differential type of grade 2, fluids of the differential type of grade 3, etc.  

1.1.4. Magnetohydrodynamics 

The study of flows in which the fluid is electrically conducting and moves in a magnetic field is 

known as magnetohydrodynamics (MHD) [11]. An example of an electrically conducting fluid is 

a liquid metal, for example, mercury or liquid sodium. According to Blanford and Thorne, [11], 

the major applications of MHD are in plasma physics. A plasma is a hot, ionized gas containing 

free electrons and ions. An example of an application of MHD is when strong magnetic fields 

are used to confine rings or columns of hot plasma that will be held in place long enough for 

thermonuclear fusion to occur resulting in power generation. Electricity is also generated when 

liquid metals are driven through a magnetic field. Other scientific and engineering applications 

are in spacecraft and ship propulsion, MHD pumps and generators, astrophysical plasmas, 

MHD flow control (reduction of turbulent drag), and in metallurgy (heating and flow control in 

metal processing). 

1.1.4.1. Basic equations of MHD 

The equations of MHD describe the motion of a conducting fluid in a magnetic field. Electric 

current is induced into a good conductor when it enters a magnetic field. The conductor creates 

its own magnetic field by Lenz’s law. This induced magnetic field tends to cancel the original 

externally supported field thereby in effect excluding the magnetic field lines from the conductor.  

A  Lorentz (or a b c) force will act on the conducting fluid and modify its motion. The motion 



6 

 

modifies the field and the field, in turn, reacts back and modifies the motion. The theory is thus 

highly non-linear [11]. 

The set of MHD equations is as summarised below, see [11,104].  

(Navier-Stokes equations with the Lorentz force) 

                        ( [dedf g Be ∙ iCe\ = 1ij g a b c g !�i-e g (k                          (1.3) 

(Continuity equation) 

                                              
dMdf g i ∙ (e = 0             (1.4) 

(Faraday’s Law) 

                                                       i b l = 1 dcdf         (1.5) 

(Ampere’s Law) 

                                                        i b c = !ma        (1.6) 

(Ohm’s law) 

                                                                a = #Bl g e b cC       (1.7) 

!� is the fluid dynamic viscosity, !m is the magnetic permeability, # fluid electrical conductivity, ( 

is the fluid density, e is the fluid velocity, l is the electric field intensity and c is the magnetic 

field intensity. Equations (1.5) and (1.6) are together called Maxwell’s equations and these are 

usually grouped together with equation (1.7) to give either a vector induction equation or a 

scalar equation for electric potential. Implicit in the five equations are the relations 

       i ∙ c = 0                    (1.8) 

                                                               i ∙ a = 0            (1.9) 

Associated with all these equations is the energy equation with Joule heating [104] 

                                            (�� [dFdf g Be ∙ iC�\ = �i-� g nop g q′′′      (1.10) 
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where  �  is temperature, �  is the thermal conductivity and q′′′ is the heat produced by the 

reaction. 

1.1.5. Porous medium 

A porous medium is a material consisting of a solid matrix with an interconnected void (pores). 

The solid matrix is usually rigid, but it can undergo small deformation. The interconnectedness 

of the void allows the flow of one or more fluids through the material. In the simplest situation of 

a single-phase flow, the void is saturated by a single fluid whereas in the case of a two-phase 

flow a liquid and a gas share the void space [80]. Examples of porous media are sand, 

sandstone, lungs, packed catalyst beds, bread, automobile oil and air filters.  

The mathematical description of the flow in porous media is extremely complex and involves 

many approximations [98]. The complexity arises from the irregular and tortuous nature of the 

pores.  It is often sufficient and more practical to average the physical properties over many 

pores inside different sections of the particular reservoir rather than to consider the behaviour at 

a particular pore.  

There are two important quantities describing the properties of a porous medium - the porosity s and the permeability �. The porosity of a porous medium is defined as [80]: 

s = jt��	ut"
.�.����<	ut"
.�, 
where the pore volume denotes the total volume of the pore space in the matrix and the matrix 

volume is the total volume of the particles or fibres and the pore space. Since the pore volume 

(volume of the pore space) is always less or equal to the matrix volume, it follows that  0 v ∅ v1 .  For simplicity, the porosity is often chosen as a constant for the whole medium. The 

permeability � describes the ability of the fluid to flow through the porous medium and it is a 

quantity that depends on the geometry of the medium only. Figure 1.2 is a typical porous 

medium that is described in this section. 
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Figure 1.2:  Porous medium: Aluminium foam  

1.1.6. First law of thermodynamics 

This law is a statement of conservation of energy. Energy can be changed from one form to 

another, but it cannot be created or destroyed. The Law states that the sum of work and heat 

added to a system will always equal to the increase of energy [12].  

1.1.7. Planck’s number 

Planck’s number, l , also called Planck’s constant, is a physical constant reflecting the sizes of 

quanta in quantum mechanics. It is named after Max Planck, one of the founders of quantum 

theory, who discovered it in 1899. The Planck constant was first described as the proportionality 

constant between the energy ( E ) of a photon and frequency of its associated electromagnetic 

wave (ν ). This relation between the energy and frequency is called the Planck relation or the 

Planck-Einstein equation νlE = . Since the frequency ν , wavelength λ , and speed of light c

are related by c=λν , the Planck relation can also be expressed as 
λ
lc

E =   [114]. 

1.1.8. Boltzmann constant 

The Boltzmann constant ( h ) is the physical constant relating energy at the individual particle 

level with temperature observed at the collective or bulk level. It is the universal gas constant  

divided by the Avogadro constant AN :
AN

R
h = . Boltzmann’s constant is a bridge between 
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macroscopic and microscopic physics. It has the same units as entropy and is named after the 

Austrian physicist Ludwig Boltzmann [43]. 

1.1.9. Frank-kamenetskii parameter 

The Frank-Kamenetskii parameter ( λ ) is a measure of how reactive the gases or reactants are, 

what the dimensions of the system involved, and the effect of ambient temperature on the 

system [37].  

1.1.10. Prandtl number 

The Prandtl number, Pr ,  is the ratio of momentum diffusivity (kinematic viscosity) to thermal 

diffusivity. It is named after the German physicist Ludwig Prandtl. Low Pr indicates strong 

conductive transfer whereas high Pr indicates strong convective transfer [17].  

1.1.11. Biot number 

The Biot number ( Bi ) is used in non-steady-state (or transient) heat transfer calculations. It is 

named after the French physicist Jean-Baptiste Biot (1774 – 1862), and gives a simple index of 

the ratio of the heat transfer resistances inside of and at the surface of a body. This ratio 

determines whether or not the temperatures inside a body will vary significantly in space, while 

the body heats or cools over time, from a thermal gradient applied to its surface. In general, 

problems involving small Biot numbers (much smaller than 1) are thermally simple, due to 

uniform temperature fields inside the body. Biot numbers much larger than 1 signal more 

complex problems due to non-uniformity of temperature fields within the object [29]. 

1.2. Applications 

Flow of reactive fluids in porous media not only presents a theoretically challenging problem but 

also has a wide range of scientific, technological and engineering applications. This type of flow 

system can be found in, among others, packed bed chemical reactors, geothermal energy 

reservoirs, petroleum reservoirs, material processing industries, automobile exhaust systems, 

drying of food, waste disposal systems, insulation of buildings, groundwater movement, oil and 

gas production, surface catalysis of chemical reactions, regenerative heat exchange and 

adsorption, electricity generation, aerospace and ship propulsions, pollution dispersal, etc. The 

list is obviously inexhaustible as the presence of fluids in technological machinery is ubiquitous 

[77]. In Figure 1.3 we illustrate some of the devices or systems where the flow of fluids in porous 

media is applied. 
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Propulsion force (Mitsubishi, 1991).      Packed-bed reactor 

                 

Petroleum Refinery, Saudi Arabia.        Heat exchanger 

Figure 1.3. Applications of fluid flow 

1.3. Literature review 

Theoretical consideration of fluid flow in porous media has received great attention in recent 

years, and the interest is motivated by a wide range of scientific, technological and engineering 

applications, as mentioned earlier. Makinde, for example, has conducted wide research in this 

area.  Some of his recent studies are found in [56 - 62, 71].  

Makinde and Mhone [72] investigated the effect of magnetic field intensity and the permeability 

of the porous medium on the flow of an incompressible fluid. Makinde [56] studied the thermal 

effects of a reactive viscous flow through a channel filled with porous medium and isothermal 

walls. Makinde and Ogulu [74] investigated the effect of temperature-dependent viscosity on the 
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free convection flow of an optimally thick viscous incompressible electrically conducting fluid 

from a vertical porous flat plate in the presence of a transversely imposed magnetic field and 

radiation effect. Makinde [62] investigated thermal stability of a reactive viscous combustible 

fluid flowing steadily through a channel filled with saturated porous medium. Makinde and 

Maserumule [71] and Makinde and Moitsheki [73] studied thermal effects in variable viscosity 

Couette flow and on natural convection past a vertical plate imbedded in saturated porous 

medium respectively. In Makinde [60], stability of fluid flow in porous media was investigated 

using the Chebyshev collocation spectral approach. The major task in the papers cited in this 

paragraph was the investigation of thermal stability criteria. Procedure(s) that accurately 

obtain(s) the steady state thermal ignition criticality conditions were obtained successfully. It 

was discovered that an increase in the magnetic field intensity and a decrease in the porous 

medium permeability have a stabilising effect on the fluid flow. Convective cooling on the 

system was observed to enhance stability and to facilitate a delay in the occurrence of thermal 

blow-up. 

Several other scholars have also done some work in the field of fluid flow through porous media. 

Parvazinia et al [84] investigated stability of laminar steady flow through a highly permeable 

porous media using multi-scale finite element modelling approach. Pathak and Ghiaasiaan [86] 

reported on simulations on understanding the solid-fluid heat transfer as well as thermal 

dispersion during laminar pulsating flow in generic porous media. It was revealed that the wall 

heat transfer rate and the thermal dispersion term were sensitive to porosity, Reynolds number, 

and pulsation frequency, and were significantly larger than their counterparts in steady flow. 

Sochi [98] presented a review of the single-phase flow of non-Newtonian fluids in porous media. 

The paper reviews the four main approaches for describing the flow through porous media in 

general, and such approaches mentioned are continuum models, bundle of tubes models, 

numerical methods and network modelling. Other recent works of Sochi are found in [96,97,99] 

where he studied pore-scale modelling of viscoelastic flow in porous media, flow of yield-stress 

fluids in porous media and computational techniques for modelling non-Newtonian flow in 

porous media respectively. 

Bakier et al [9], Seddeek et al [92], Pal and Chatterjee [83] and Cortel [25] studied heat and 

mass transfer in MHD flow through porous media. A major finding from [9] and [92] is that the 

rate of heat transfer at the plate surfaces increases with increasing radiation parameter, mixed 

convection parameter, mass transfer coefficient, variable viscosity and magnetic field. In [25], it 

was observed that the effect of destructive chemical reaction on the reactant species is to 
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diminish the concentration of the boundary layer. Kumaran et al [48] as well as Hayat et al [42] 

studied stagnation point flow in porous media and obtained an analytical approximate solution of 

the classical two dimensional stagnation point flow. Nonlinear flows and/or effects in porous 

media were studied in Fourar et al [34], Cheng et al [19], Liu and Masliyah [53] and Pascal and 

Pascal [85].  Flow through fractured porous media was investigated by Lucas et al [54] and 

Grillo et al [39]. Chen et al [18] studied the flow and displacement in porous media of fluids with 

yield stress exemplified by a Bingham plastic. Non-Newtonian fluid flow through porous media 

was studied by, among other researchers, Al-Nimr et al [4], Liu and Masliyah [52], Akshin et al 

[2] and Dholkawala et al [27]. Khan et al [46] conducted an analytic investigation of unsteady 

flows of a magnetohydrodynamic (MHD) second grade fluid filling a porous media. Joseph et al 

[45] presented a mathematical model of reservoir flow of foamy oil which depends on velocity 

through Darcy’s law, the pressure and the dispersed gas fraction. Chiem and Zhao [20] and 

Yang and Hwang [111] conducted numerical studies of steady/unsteady flow and heat transfer 

in porous media, and numerical simulation of turbulent flow and heat transfer characteristics in 

heat exchangers fitted with porous media respectively. The former revealed that altering some 

parametric values can have significant and interesting effects on both flow pattern as well as 

heat transfer characteristics, and the later found that introducing a porous medium into a fluid 

channel efficiently improves the heat transfer performance of fluid channels and heat transfer 

can be enhanced by using high thermal conductivity porous inserts. Teng and Zhao [103] 

studied an extension of Darcy’s law to non-Stokes flow in porous media and Chai et al [15] 

studied non-Darcy flow in disordered porous media. Discontinuous Galerkin approximation of 

multiphase flows in porous media was studied in Natvig and Lie [78] and Ern et al [31]. Su [102] 

presented the N-dimensional fractional Fokker-Planck equation and its solutions for anomalous 

radial two-phase flow in porous media. 

Nield [79] reported on the limitation of the Brinkman-Forchheimer equation in modelling flow in a 

saturated porous medium and at an interface. A lattice Boltzmann model for axisymmetric 

thermal flows through porous media was presented by Rong et al [89] and a lattice Boltzmann 

study of viscous coupling effects in immiscible two-phase flow in porous media was conducted 

by Yiotis et al [112]. Tyagi et al [107] presented a Lagrangian stochastic modelling framework 

for multi-phase flow in porous media. Other recent studies on porous media flow are found in [1, 

14, 40, 47, 81, 106].  

The interest by researchers on studies of fluid flow through porous media is evidently displayed 

by the enormous amount of recent studies in the area. It is reasonable to pin this interest on the 
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mathematical complexity of the studies as mentioned earlier and also on the abundance of 

crucial real-life applicable areas. 

Most of the research that has been done to date in respect of fluid flow through porous media is 

mainly on Newtonian fluids (the fluid deformation is directly proportional to the applied shear 

stress). This is despite the fact that there are manifestations of fluid behaviour which cannot be 

adequately explained on the basis of the classical, linearly viscous model [105]. Geological 

materials, liquid foams, polymeric fluids, slurries, drilling mud, clay coatings, elastomers, 

emulsions, hydrocarbon oils, grease, and food products are among the many substances that 

are capable of flowing but which are non-Newtonian.  ‘Non-Newtonian’ is a generic term that 

incorporates a variety of phenomena which are highly complex and require sophisticated 

mathematical modelling techniques for proper description [98].  The complications are worsened 

when considering flow through porous media [98].   

1.4. Problem statement 

Although, to a large extent, several studies involving heat and mass transfer in non-Newtonian 

fluids have been undertaken, most of these studies seem to lack a systematic and rational 

treatment of the thermodynamics of the problem with respect to the combined effects of porous 

media, unsteadiness, variable viscosity and asymmetric convective boundary conditions on the 

flow system. The flow of reactive viscous fluids in porous media gives rise to chemical reactions 

that are inherently exothermic. Studies of such thermal effects are important in handling reactive 

fluids as this ensures safety of property and life.  Stability analysis as well as understanding 

thermal effects enables efficient operation of machinery. Numerous scientific and technical 

applications of such flows exist abundantly. For instance, Sasol industries located in the Vaal 

region of Gauteng and Secunda, Mpumalanga in South Africa produces a wide range of 

hydrocarbon oils and lubricants from plant material. The chemical reactions that take place in 

the manufacture and handling of these non-Newtonian fluids are inevitably exothermic and the 

processes are prone to explosions that can be fatal. The same can be said with power stations 

where the flows of electrically conducting fluids have many a time resulted in explosions.  

So far no general methodology that can deal with all cases of non-Newtonian flow has been 

developed, and this situation is not expected to change in the foreseeable future, many 

challenges are still waiting to be overcome [98]. Thus, on a theoretical level this study will 

impact positively in pursuit of modelling strategies and techniques. 
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1.5. Aim and objective 

This project aims to study the unsteady flow of reactive variable viscosity non-Newtonian fluid 

through a channel filled with saturated porous media.  

The objective of this theoretical study is two-fold: 

(i).   to obtain and analyse a mathematical model for thermal effects of non-Newtonian fluid flow 

through a saturated porous media. 

(ii).   to determine the thermal stability criteria for non-Newtonian fluid flow through saturated 

porous media. 

1.6. Research methodology  

It is envisaged that both analytical techniques and numerical methods will be employed to tackle 

the nonlinear equations that will be derived from the law of conservation of mass, momentum 

and energy balance.  

1.6.1. Finite difference method 

The use of numerical methods to compute the solution for partial differential equations is 

necessitated by a geometry for which an analytical solution may not exist. Finite difference 

method is one of the many numerical methods for solving both ordinary and partial differential 

equations. Since this method will be employed to solve the nonlinear partial differential 

equations in this project, it is imperative that we give a description of the method. We follow [93]. 

1.6.1.1. Numerical differentiation of functions of a single variable  

Let x = xB<C and Δ< = $. Using the Taylor series expansion around a point < = <�, and ignoring 

higher order terms (since they vanish to 0), we obtain the following finite-difference 

approximations; 

- the forward-difference approximation 

                                                  x′z = �{ |xz}� 1 xz~ g �B$-C        (1.11) 

 

- the backward-difference approximation 
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                                                     x′z = �{ |xz 1 xzH�~ g �B$-C        (1.12) 

- the central difference approximation 

                                                x′z = �-{ |xz}� 1 xzH�~ g �B$�C        (1.13) 

- the second derivative 

                                                x′′z = �{o |xz}� 1 2xz g xzH�~ g �B$�C      (1.14) 

1.6.1.2. Functions of two variables  

Let 
 = 
B<, �C, where B<, �C belongs to some two-dimensional area. Expansions in Taylor series 

around a point B�, �C results in the following approximations; 

- the central-difference approximations for the two first order partial derivatives  

                                      B
�Cz,n = �-�� �
z}�,n 1 
zH�,n� g �BΔ<�C        (1.15) 

      B
fCz,n = �-�f �
z,n}� 1 
z,nH�� g �BΔ��C      (1.16) 

-  the approximations for the second-order partial derivatives  

                                       B
��Cz,n = ���o �
z}�,n 1 2
z,n g 
zH�,n� g �BΔ<�C     (1.17) 

                                       B
ffCz,n = ��fo �
z,n}� 1 2
z,n g 
z,nH�� g �BΔ��C     (1.18) 

1.6.2. Shooting method 

For most engineering and scientific applications numerical solutions are of particular interest 

due to the fact that exact solutions may not exist in closed form. Furthermore, numerical solution 

methods within the dsolve command in Maple, for instance, are applicable only to initial value 

problems. In view of this, Maple appears to be very limited in its ability to analyse the two-point 

(or more) boundary value problems that we wish to solve. The shooting method is a numerical 

technique that is utilised to solve two-point boundary value problems. It is an iterative algorithm 

that identifies appropriate initial conditions for a related initial value problem (IVP) that provides 

the solution to the original boundary value problem (BVP) [76]. 
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Meade et al [76] developed the shooting technique for implementation in Maple. Suppose it is 

desired to compute the solution of the two-point BVP 

     
WYWf = �B�, xB�CC   

                                                     xzB�C = �z		,					� = 1,2,⋯ ,.�                (1.19) 

xm�}nBKC = �n ,				� = 1,2,⋯ ,.- 

where the vector x  contains the �  unknown functions of the independent variable � . The 

unknown functions are ordered so that the first .�	B0 � .� � �C components of x have first kind 

boundary conditions at � = �, and the remaining .- ≔ � 1.� components of the solution have 

first kind boundary conditions specified at a second point, � = K. The shooting method works by 

identifying a vector of parameters � ∈ �mo so that the solution, denoted by xB�; �C, to the IVP 

                                                     			WYWf = �B�, xB�; �CC   

                                                     xzB�; �C = �z		,					� = 1,2,⋯ ,.�                (1.20) 

xm�}nB�; �C = �n ,				� = 1,2,⋯ ,.- 

is equal to the solution of the BVP (1.19).   

The translation of the simple shooting method into Maple programming language is enabled by 

a combination of Maple’s facilities for symbolic manipulation and numerical solution of IVPs. 

This procedure, called shoot, has syntax closely similar to dsolve. 

1.6.3.  Runge-Kutta Integration method 

The Runge-Kutta method for numerical solution of differential equations was developed by two 

German mathematicians Runge and Kutta [38]. Suppose we wish to find the numerical solution 

of the initial value problem 

                                                                 
WYW� = �B<, xC,			xB<�C = x�      (1.21) 

A simple second-order Runge-Kutta algorithm [38] for the solution of equation (1.21) is 

	x]}� = x] g 12 B�� g �-C 
                                                             �� = 	$�B<], x]C       
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�- = $�B<] g $, x] g ��C 
where the increment to x is taken as a weighted average of the two estimates of the increment 

which are denoted �� and �-.  

The fourth-order Runge-Kutta method is a vast improvement of the second-order in terms of the 

closeness of its solution to the exact solution of the differential equation.  Herewith the Runge-

Kutta 4th order algorithm [38]: 

x]}� = x] g 16 B�� g 2�- g 2�� g ��C, 
�� = 	$�B<], x]C, 

                                                          �- = $� [<] g �- $, x] g �- ��\,                                        
�� = $� �<] g 12$, x] g 12�-�, 
�� = $�B<] g $, x] g ��C, 

Higher order Runge-Kutta algorithms; fifth-order, sixth-order, etc, have been developed. 

The Runge-Kutta-Fehlberg method uses two Runge-Kutta methods of different orders. For 

example, it may use the fourth-order and the fifth-order to move from B<], x]C to B<]}�, x]}�C and 

compare the results for x]}� . The advantage of this process is that satisfactory results are 

achieved with fewer number of function evaluations. Algorithm for the Runge-Kutta-Fehlberg 

method is hereunder [38]; 

�� = 	$�B<] , x]C,           �- = $� [<] g ��$, x] g �� ��\, 

�� = $� [<] g �V$, x] g ��-�� g ��-�-\,  �� = $� [<] g �-��$, x] g ���--����� 1 �-��-����- g �-��-�����\’ 

�� = $� [<] g $, x] g ���-���� 1 8�- g ��V���� �� 1 V��������\,         

�� = $� [<] g {- , x] 1 V-��� g 2�- 1 ����-����� g �V�������� 1 ������\; 

x�]}� = x] g [ -�-���� g ���V-����� g -��������� 1 ����\ , 7��$	"tK�"	���t�	�B$�C; 
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x]}� = x] g [ ������� g �����-V-��� g -V���������� 1 ����� g -����\ , 7��$	"tK�"	���t�	�B$�C, 
Error, ' = ������ 1 �-V�-���� 1 -�����-���� g ����� g -����. 

The Runge-Kutta-Fehlberg Method is implemented in, among other programming languages, 

Maple (rkf45), Matlab (ode45, ode23) and Fortran (RKF45). In Maple it is used in conjunction 

with the shooting method to solve boundary value problems. In this project, we will rely on 

MAPLE to simulate solutions of the nonlinear partial differential equations governing our flow 

systems. It is for this reason that the shooting technique and the Runge-Kutta methods are 

summarised herein. Chapter 2 is devoted to the derivations of the fundamental equations 

governing the dynamics of fluid flow. 
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CHAPTER TWO 

DERIVATION OF THE BASIC EQUATIONS 

 

This chapter is devoted to the derivation of the continuity equation, the momentum equation and 

the energy equation. These are the three fundamental equations that govern the dynamics of 

fluid flow. The three equations are mathematical statements of the three physical principles, 

namely; conservation of mass, conservation of momentum (Newton’s second law of motion) and 

conservation of energy (the first law of thermodynamics). We proceed following [91] and [109]. 

2.1. The substantial derivative  

 Following [109], consider an infinitesimally small fluid element moving with the unsteady flow 

depicted in Figure 2.1.  

                         

 

 

 

 

Figure 2.1. Fluid element moving in the flow field – illustration for the substantial 

derivative. 

The velocity of the fluid element is 

e = 
� g ua g7�, 
where 
 = 
B<, x, �, �C, u = uB<, x, �, �C, 7 = 7B<, x. �, �C are the <, x, � components of the velocity 

respectively. At time � = �� the density of the fluid element is (�B<�, x�, ��, ��C and at time � = �- it 

is (-B<-, x-, �-, �-C. The Taylor series expansion of (B<, x, �, �C about the initial point is 

(- = (� g ��(�<�� B<- 1 <�C g ��(�x�� Bx- 1 x�C g ��(���� B�- 1 ��C g ��(���� B�- 1 ��C, 
where we have ignored higher order terms. In the limit as �- ⟶ ��, we have 

< 

x 

� 

� 
� 

a 

� = �- 
;- 

� = �� 

;� 
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limfo⟶f� �(- 1 (��- 1 �� � = ��(�<�� limfo⟶f� �<- 1 <��- 1 �� � g ��(�x�� limfo⟶f� �x- 1 x��- 1 �� � g ��(���� limfo⟶f� ��- 1 ���- 1 ��� g ��(���� 

Defining  

limfo⟶f� �(- 1 (��- 1 �� � = 9(9�, 
gives 

                                                   
 M f = 
 dMd� g u dMdY g 7 dMd¡ g dMdf          (2.1) 

  f is called the substantial derivative. In this way, 
 M f  is the rate of change of density of the fluid 

element as it moves through space. 
dMdf  is the rate of change of density at a fixed point. In 

general, therefore, we have from equation (2.1) an expression for the substantial derivative in 

Cartesian coordinates 

                                                
  f = 
 dd� g u ddY g7 dd¡ g ddf.        (2.2) 

Since i= � dd� g � ddY g � dd¡,  we rewrite equation (2.2) as 

    
  f = ddf g Be ∙ iC         (2.3) 

e ∙ i is called the convective derivative – the time rate of change due to the movement of the 

fluid element from one location to another in the flow field where the flow properties are spatially 

different. 
ddf is the local derivative. The substantial derivative applies to any flow field variable 

like temperature, static pressure, etc. For instance, the substantial derivative for temperature is  

                                                        
 F f = dFdf g Be ∙ iC       (2.4) 
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2.2. Continuity equation 

The continuity equation is one of the equations governing the behaviour of the fluid. It is an 

expression of a fundamental conservation principle, namely, mass conservation. We adopt the 

derivation in Wendt [109]. 

Assuming a finite control volume fixed in space, the fundamental physical principle that mass is 

conserved means  

¢���	.�££	�"t7	t
�t�	�t���t"	ut"
.��$�t
$	£
�����	�¤ = ¥��.�	����	t�	:�����£�	t�	.�££	��£�:�	�t���t"ut"
.� ¦ 
 

 

 

 

 

 

 Figure 2.2. Volume element §e 

In Figure 2.2, 	B<, x, �C is the centroid of the fluid element and the sides of the cube are fixed in 

space. Fluid can flow into and out of the volume element through the sides. Let the fluid density 

at 	B<, x, �C be (B<, x, �C and suppose that this density is uniform throughout :;. The total mass 

contained within this volume element is thus 

                     ¨ = ©(:; = ©(:<:x:�.							                                                                               (2.5) 

The rate at which mass enters or leaves through the surface :� is  
WªWf . A surface element :«  is 

given by 

:« = ¬:� 

where ¬  is a unit vector perpendicular to the surface. When :«  is a side of a volume element :;, ¬  is assumed to point out of the volume element (i.e., from inside to outside). The flux mass 

∎ 	B<, x, �C 
:� 

:< 

:x 
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(mass/unit area/unit time) passing through a surface is (e, where e is the fluid velocity. The 

mass per unit time flowing through :« is 

(e ∙ 	:« = (e ∙ 	¬:� 

and the total rate of flow of mass out of the volume :; is 

¯ (e ∙ 	:«°�±²³  

Thus,  

´(e ∙ 	:« = ´(e ∙ 	¬:�
«µ

 

where the integral is over the surface enclosing :;. In this way, we have 

::̈� = ::� ¶(:;
·

= 1´(e ∙ 	¬:�
µ

 

 The negative sign appears due to the fact that mass flow of the fluid is flowing out of the control 

volume. 

We thus have,  

¶�(�� :;·
= 1´(e ∙ 	¬:�

µ
 

Now, by Gauss’s theorem, namely “the normal surface integral of the function ¸  over the 

boundary of a closed region is equal to the volume (space) integral of the divergence of ¸	taken 

throughout the enclosed volume (space)”, we have 

´(e ∙ 	¬:�
µ

= ´i ∙ B(eC:;
·

 

Hence, 

¶^�(�� g i ∙ B(eC_
·

:; = 0. 
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This expression must hold for every arbitrarily shaped volume, and the only way it can be 

satisfied is if the integrand vanishes identically, or 

                                                                     
dMdf = 1i ∙ B(eC                  (2.6) 

Equation (2.6), called the continuity equation, expresses conservation of mass in the finite 

control volume fixed in space model [91]. 

Now, an alternative derivation [91] is to consider the volume element :; co-moving with the fluid 

and assume that every point on the surface and within the volume is moving with the local 

velocity e = W�Wf � g WYWf a g W¡Wf �.  Since each point on the boundary � moves with the fluid, no fluid 

can flow across the surface so that the total mass within the volume element is fixed in time. In 

this way we have 

::̈� = 0, 
and the mass is automatically conserved. However,  the density is time-dependent because the  

total volume of the moving fluid element can change as it distorts due to fluid motions. The 

statement of conservation of mass then becomes 

																																													::̈� = 0 = ::� ¶(B�C:<B�C:xB�C:�B�C
·

																																																																	B2.7C	 
The change in volume :; has to be accounted for. To do this, we rewrite equation (2.7) as 

::� ¶(B�C�<B�C�xB�C��B�C = 0
·

 

⟹ ¶^:(:� �<�x�� g ( ::� B�<�x��C_ = 0 

⟹ ¶»:(:� �<�x�� g ( ^:�<:� �x�� g �< :�x:� �� g �<�x :��:� _¼ = 0 

⟹ ¶^:(:� �<�x�� g (�<�x�� ��
�� g �u�� g �7�� �_ = 0 
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where we have used the fact that � and : are both infinitesimals along with 
W�Wf = 
, WYWf = u, W¡Wf =

7 to write 
WB½�CWf = � [W�Wf\ = �
,  

WB½YCWf = � [WYWf\ = �u, and 
WB½¡CWf = � [W¡Wf\ = �7. 

Now, substituting i ∙ e = ½X½f g ½¾½f g ½¿½f  and :; = �<�x��, results in 

¶^:(:� g (i ∙ e_ :; = 0 

and since this must hold for arbitrary volume elements, we require that 

                                                              
WMWf g (i ∙ e = 0.          (2.8) 

This is the expression for conservation of mass in this frame of reference. This equation must 

be consistent with equation (2.6) as they both express the law of conservation of mass. If we 

identify  

:(:� = �(�� g e ∙ i(, 
we can rewrite (2.6) as  

                              
dMdf g i ∙ B(eC = dMdf g 	e ∙ i( g (i ∙ e = 0           (2.9) 

which is consistent with (2.8). 

The differential equation for conservation of mass (continuity equation) in component form is 

                                           
dMdf g dBMXCd� g dBM¾CdY g dBM¿Cd¡ = 0			                                       (2.10) 

For incompressible flow (( = �t�£����), the continuity equation reduces to 

dXd� g d¾dY g d¿d¡ = i ∙ e = 0          (2.11) 

The velocity field eB<, x, �, �C for incompressible flow must satisfy    i ∙ e = 0.  For steady flow, all 

field properties are, by definition, independent of time [dMdf = 0\ and ( = (B<, x, �C . Thus, for 

steady flow, the continuity equation becomes 

dBMXCd� g dBM¾CdY g dBM¿Cd¡ = i ∙ B(ÀC = 0      (2.12) 
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For a two-dimensional incompressible flow in the <x 1plane, e = eB<, xC  and the continuity 

equation is 

dXd� g d¾dY = 0         (2.13) 

 2.3. Momentum equation  

The physical principle applied in deriving the momentum equation is Newton’s second law of 

motion which states that  

¸ = .S, 
where ¸ is force, . is the mass and S is acceleration. 

We assume the moving fluid element model as in Figure 2.3 and follow the derivation in [109]. 

                                   

 

 

 

 

 

Figure 2.3. Infinitesimally small, m oving fluid element. Only forces in the Á-direction shown. 

Newton’s 2nd law states that “the net force on the fluid element equals its mass times the 

acceleration of the element”. It is important to notice that this is a vector relation consisting of 

the <, x and � components.  The <-component of Newton’s 2nd law is thus 

                                                     Â� = .��         (2.14) 

Â� and �� are the force and acceleration components respectively in the <-direction. The force 

comprises of the body forces and the surface forces. Body forces, e.g. gravitational force, act 

directly on the volumetric mass of the fluid element. Surface forces act directly on the surface of 

the fluid element. These are the pressure distribution acting on the surface imposed by the 
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x 

� 

:� 

:< 
:x j:x:� ,��:x:� 

,¡�:<:x 

Ã,Y� g �,Y��x :xÄ:<:� 

�,�� g �,���< :<�:x:� 

�,¡� g �,¡��� :�� :<:x ,¡�:<:� 

�j g �j�< :<� :x:� 
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outside fluid surrounding the fluid element, and the shear and normal stress distributions acting 

on the surface imposed by the outside fluid pushing on the surface by means of friction. 

If we denote the body force per unit mass acting on the fluid element by Å, with ��  the < -

component of this force, we get the body force on the fluid element acting in the <-direction as 

(��:<:x:�, 
where, of course, :<:x:�  is the volume of the fluid element. The surface forces in the < -

direction exerted on the fluid element are shown in Figure 2.3. 

Æ ���	£
�����	�t�����	�$�	< 1 :������t�Ç = Èj 1 [j g d�d� :<\É :x:� g È[,�� g dÊËËd� :<\ 1 ,��É :x:� g È[,Y� g
dÊÌËdY :x\ 1 ,Y�É :<:� g È[,¡� g dÊÍËd¡ :�\ 1 ,¡�É :<:x                                         (2.15) 

Summing results in  

                       Â� = [1 d�d� g dÊËËd� g dÊÌËdY g dÊÍËd¡ \:<:x:� g 	(��:<:x:�    (2.16) 

Now,  

. = (:<:x:� 

and, recalling the substantial derivative,  

�� = 9
9� . 
In this way equation (2.14) becomes 

                                   (  X f = 1 d�d� g dÊËËd� g dÊÌËdY g dÊÍËd¡ g 	(��      (2.17) 

Applying the same process to the x- and �- components, we get 

                                  (  ¾ f = 1 d�dY g dÊËÌd� g dÊÌÌdY g dÊÍÌd¡ g 	(�Y      (2.18) 

                                   (  ¿ f = 1 d�d¡ g dÊËÍd� g dÊÌÍdY g dÊÍÍd¡ g 	(�¡      (2.19) 
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Equations (2.17) – (2.19) are the <1, x 1 and � 1components respectively of the momentum 

equation. Since the fluid element is moving with the flow, the equations are in non-conservation 

form.  These equations are called the Navier-Stokes equations. 

Now, rewriting the left hand side of equation (2.17) using the definition of the substantial 

derivative, equation (2.3); 

(9
9� = ( �
�� g (e ∙ i
 

Observe that  

�B(
C�� = ( �
�� g 
 �(�� ⟹ (�
�� = �B(
C�� 1 
 �(��  

and  

i ∙ B(
eC = 
i ∙ B(eC g B(eC ∙ i
 

or  

(e ∙ i
 = i ∙ B(
eC 1 
i ∙ B(eC. 
Consequently, 

(9
9� = �B(
C�� 1 
 �(�� 1 	
i ∙ B(eC g i ∙ B(
eC 
(9
9� = �B(
C�� 1 
 ^�(�� g i ∙ B(eC_ g i ∙ B(
eC 

and, from the continuity equation, 

 (  X f = dBMXCdf g i ∙ B(
eC. 
Equations (2.17), (2.18) and (2.19) therefore can be rewritten as 

                        
dBMXCdf g i ∙ B(
eC = 1 d�d� g dÊËËd� g dÊÌËdY g dÊÍËd¡ g 	(��    (2.20) 

                      
dBM¾Cdf g i ∙ B(ueC = 1 d�dY g dÊËÌd� g dÊÌÌdY g dÊÍÌd¡ g 	(�Y    (2.21) 
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dBM¿Cdf g i ∙ B(7eC = 1 d�d¡ g dÊËÍd� g dÊÌÍdY g dÊÍÍd¡ g 	(�¡    (2.22) 

Equations (2.20) – (2.22) are Navier-Stokes equations in conservation form. 

Assuming that the fluid in question is Newtonian, that is, the shear stresses in the fluid are 

proportional to the velocity gradients, we will rewrite the shear stresses as  

,�� = `i ∙ e g 2! �
�< ,				,YY = `i ∙ e g 2! �u�< 	, ,¡¡ = `i ∙ e g 2! �7�<  

,�Y = ,Y� = ! ��u�< g �
�x�,			,�¡ = ,¡� = ! ��
�� g �7�<�,				,Y¡ = ,¡Y = ! ��7�x g �u���, 
where !  is the molecular viscosity coefficient and ` = 1 -�!  is the bulk viscosity coefficient.  

These are substituted into equations (2.20) – (2.22) to obtain 

�B(
C�� g �B(
-C�< g �B(
uC�x g �B(
7C��
= 1�j�< g ��< �`i ∙ e g 2! �
�<� g ��x ^! ��u�< g �
�x�_ g ��� ^! ��
�� g �7�<�_ g (�� 			B2.23C 

�B(uC�� g �B(
uC�< g �B(u-C�x g �B(u7C��
= 1�j�x g ��< ^! ��u�< g �
�x�_ g ��x �`i ∙ e g 2! �u�<� g ��� ^! ��7�x g �u���_ g (�Y			B2.24C 

�B(7C�� g �B(
7C�< g �B(u7C�x g �B(7-C��
= 1�j�� g ��< ^! ��
�� g �7�<�_ g ��x ^! ��7�x g �u���_ g ��� �`i ∙ e g 2! �7�<� g (�¡			B2.25C 

 

2.4. Energy equation  

The physical principle that is used to derive the energy equation is that of conservation of 

energy (the first law of thermodynamics stated in section 1.1.6). Summarising the derivation 

given by Wendt [109], this principle applied to our fluid in Figure 2.3 becomes: 
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¢����	t�	�$���	t�����x	��£�:�	�$��"
�:	�"�.��� ¤ = ¥���	�"
<	t�$���	���t�$�	�"�.���¦ g ¢����	t�	7t����	:t��	t��$�	�"�.���	:
�	�t	Kt:x��:	£
�����	�t���£ ¤			 
The rate of work done by the body force acting on the fluid element moving at a velocity e is 

given by  (¸ ∙ e:; = (¸ ∙ e:<:x:�. 

From Figure 2.4, the net rate of work done by pressure and shear stresses in the <-direction 

add up to  ^1 dBX�Cd� g dBXÊËËCd� g dÐXÊÌËÑdY g dBXÊÍËCd¡ _ :<:x:�. Similar expressions are obtained for the 

x- and �-directions. The total, net rate of work done on the moving fluid element is thus 

^1 [dBX�Cd� g dB¾�CdY g dB¿�Cd¡ \ g dBXÊËËCd� g dÐXÊÌËÑdY g dBXÊÍËCd¡ g dÐ¾ÊËÌÑd� g dÐ¾ÊÌÌÑdY g dÐ¾ÊÍÌÑd¡ g dB¿ÊËÍCd� g
dÐ¿ÊÌÍÑdY g dB¿ÊÍÍCd¡ _ :<:x:� g 	(¸ ∙ e:<:x:�																																																																																																		B2.26C 
                               

 

 

 

 

 

 

Figure 2.4. Energy fluxes associated with an infinitesimally sm all, moving fluid element. Only the 

fluxes in the Á-direction are shown.  

The volumetric heating of the element is (qÒ:<:x:�, where qÒ  is the rate of volumetric heat 

addition per unit mass. The net heat transferred in the <-direction into the fluid element by 

thermal conduction is   Èq�Ò 1 [q�Ò g dÓËÒd� :<\É :x:� = 1 dÓËÒd� :<:x:� .  This is added to similar 

expressions for the x- and �-directions to give the total heat of the fluid element by thermal 

induction as  1[dÓËÒd� g dÓÌÒdY g dÓÍÒd¡ \:<:x:�. 

This, combined with volumetric heating of the fluid element, becomes 
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0���	�"
<	t�	$���	���t	�$�	�"�.���6 = Ô(qÒ 1 Ã�q�Ò�< g �qYÒ�x g �q¡Ò�� ÄÕ :<:x:�																																B2.27C 
Now, substituting  q�Ò = 1� dFd� ; 					qYÒ = 1� dFdY ; 							q¡Ò = 1� dFd¡  , where �  is the thermal 

conductivity, into equation (2.27) we obtain 

¥���	�"
<	t�$���	���t�$�	�"�.���¦ = ^(qÒ g ��< �� ���<� g ��x �� ���x� g ��� �� �����_ :<:x:�.																																															B2.28C 
0����	t�	�$���	t�	����x	��£�:�	�$�	�"
�:	�"�.���6 = ( 99� Ã' g ;-2 Ä:<:x:�, 

where ' is the internal energy per unit mass and 
·o
-  		B;- = 
- g u- g7-C is the kinetic energy 

per unit mass.  We now have the energy equation as 

( 99� Ã' g ;-2 Ä = 	(qÒ g ��< �� ���<� g ��x �� ���x� g ��� �� ����� 1 �B
jC�< 1 �BujC�x 1 �B7jC�� g �B
,��C�<
g �Ð
,Y�Ñ�x g �B
,¡�C�� g �Ðu,�YÑ�< g �Ðu,YYÑ�x g �Ðu,¡YÑ�� g �B7,�¡C�< g �Ð7,Y¡Ñ�x
g �B7,¡¡C�� g 	(¸ ∙ e																																																																																																											B2.29C 

The energy equation (2.29) can be written in various forms.  In particular we can rewrite the 

equation in a form that involves just the internal energy ' and replacing the viscous stress terms 

with their equivalent expressions in section 2.3.   

(9'9� = 	(qÒ g ��< �� ���<� g ��x �� ���x� g ��� �� ����� 1 j ��
�< g �u�x g �7��� g ` ��
�< g �u�x g �7�� �
-

g ! Ô2��
�<�
- g 2 ��u�x�

- g 2��7�� �
- g ��
�x g �u�<�

- g ��
�� g �7�<�
-

g ��u�� g �7�x�
-Õ																																																																																																																					B2.30C 

Equation (2.30) is the energy equation in terms of the flow field variables. The conservation form 

of the energy equation (2.30), written in terms of the internal energy is  
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dBMDCdf g i ∙ B('ÀC = 	(qÒ g dd� [� dFd�\ g ddY [� dFdY\ g dd¡ [� dFd¡\ 1 j [dXd� g d¾dY g d¿d¡\ g ` [dXd� g d¾dY g d¿d¡\- g
! ^2 [dXd�\- g 2[d¾dY\- g 2 [d¿d¡\- g [dXdY g d¾d�\- g [dXd¡ g d¿d�\- g [d¾d¡ g d¿dY\-_				                            (2.31) 

In this chapter we have derived the important equations that derive fluid dynamics. These 

equations will now be applied in the next chapters.  
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CHAPTER THREE 

UNSTEADY FLOW OF A REACTIVE VARIABLE VISCOSITY NON- NEWTONIAN FLUID 

THROUGH A POROUS SATURATED MEDIUM WITH ASYMMETRIC C ONVECTIVE 

BOUNDARY CONDITIONS 

 

In this chapter we examine the thermal effects in an unsteady flow of a pressure driven, 

reactive, variable viscosity, third grade fluid through a porous saturated medium with 

asymmetrical convective boundary conditions. We assume that exothermic chemical reactions 

take place within the flow system and that the asymmetric convective heat exchange with the 

ambient at the surfaces follows Newton’s law of cooling. The coupled nonlinear partial 

differential equations governing the problem are derived and solved numerically using a semi-

implicit finite difference scheme. Graphical results will be presented and discussed qualitatively 

and quantitatively with respect to various parameters embedded in the problem. 

 3.1. Introduction  

Flow of reactive fluids in porous media not only presents a theoretically challenging problem but 

also finds a wide range of technological and engineering applications [13]. This type of flow 

system can be, for example, found in packed bed chemical reactors, geothermal reservoirs, 

petroleum reservoirs, material processing industries, automobile exhaust systems, etc. 

Moreover, there are manifestations of fluid behaviour which cannot be adequately explained on 

the basis of the classical, linearly viscous model [105]. Geological materials, liquid foams, 

polymeric fluids, slurries, drilling mud, clay coatings, elastomers, many emulsions, hydrocarbon 

oils, grease, and food products are among the many substances which are capable of flowing 

but which exhibit flow characteristics that cannot be adequately described by the classical 

linearly viscous fluid model. In order to describe some of the departures from Newtonian 

behaviour evidenced by such materials, a number of idealized models have been suggested. 

Amongst these are fluids of the differential type of third grade [33, 88]. Meanwhile, the 

evaluation of thermal effects of a reactive non-Newtonian fluid in a porous medium is extremely 

important in order to ensure safety of life and property during handling and processing of such 

fluids [36, 100]. Al-Hadhrami et al [3] studied the thermal effects of steady flow of a Newtonian 

fluid in porous media across a range of permeability values. The pioneering papers by Aziz [8] 

and Makinde and Aziz [66] and the references therein introduced the idea of using the 
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convective boundary conditions in boundary layer flows. We adopt such boundary conditions in 

the current work. Makinde [55, 62] investigated the thermal effects of a reactive viscous flow 

through a channel filled with porous medium and with isothermal walls. Several studies involving 

heat and mass transfer in non-Newtonian third-grade fluids have been conducted [75, 94, 113 ], 

but most of these studies seem to lack a systematic and rational treatment of the 

thermodynamics of the problem with respect to the combined effects of porous media, 

unsteadiness, variable viscosity and asymmetric convective boundary conditions on the flow 

system. 

 

 

 

 

 

 

Figure 3.1: Geometry of the problem.  

The objective of the present work is to study the unsteady flow of a reactive variable viscosity 

third-grade fluid between two parallel plates filled with a porous medium. Both the lower and 

upper walls of the channel are subjected to asymmetric convective heat exchange with the 

ambient. The mathematical formulation of the problem is established in section 3.2. In section 

3.3 Graphical results are presented and discussed qualitatively and quantitatively with respect 

to various parameters in the system.  

3.2. The mathematical model 

Consider an unsteady flow of an incompressible, third-grade, variable viscosity, reactive fluid 

through a channel filled with a homogeneous and isotropic porous medium as illustrated in 

Figure 3.1. It is assumed that the plate surfaces are subjected to asymmetric convective heat 

exchange with the ambient due to unequal heat transfer coefficients and the fluid motion is 

induced by an applied axial pressure gradient. We choose the x -axis parallel to the channel 

and the y -axis normal to it. 

 

 

 

Combustible viscous material 
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Following [3, 13, 33, 36, 88, 100, 105], and the derivations in chapter 2, and neglecting the 

reacting viscous fluid consumption, the governing equations for the momentum and heat 

balance can be written as 

( dXdf̅ = 1 dØ�d�̅ g ddY� È!̅B�C dXdY�É g �� dÙXdY�odf̅ g 6�� doXdY�o [dXdY�\- 1 LÚBFCXMÛ       (3.1) 

(�� dFdf̅ = � doFdY�o g [dXdY�\- �!̅B�C g 2�� [dXdY�\-� g LÚBFCXo
Û g )��+[{FÜÝ\m �H Þßà.		  (3.2) 

 

The additional viscous dissipation term in equation (3.2) is due to [3] and is valid in the limit of 

very small and very large porous medium permeability. The appropriate initial and boundary 

conditions are 


Bx�, 0C = 0,					�Bx�, 0C = ��,      (3.3) 


B0, �̅C = 0,				 1 � dFdY� B0, �̅C = $�|�� 1 �B0, �̅C~,    (3.4) 


B�, �̅C = 0,				 1 � dFdY� B�, �̅C = $-|�B�, �̅C 1 ��~.    (3.5) 

� is the absolute temperature, ( is the density, �� is the specific heat at constant pressure, �̅  is 

the time, $� is the heat transfer coefficient at the lower plate, $- is the heat transfer coefficient at 

the upper plate, �� is the fluid initial temperature, �� is the ambient temperature, � is the thermal 

conductivity of the material, ) is the heat of reaction, + is the rate constant, ' is the activation 

energy, � is the universal gas constant, �� is the initial concentration of the reactant species, � 

is the channel width, "  is Planck’s number, $  is Boltzmann’s constant, *  is the vibration 

frequency, � is the porous medium permeability, �� and �� are the material coefficients, 	� is the 

modified pressure, and . is the numerical exponent such that . ∈ 012, 0, 0.56, where the three 

values represent numerical exponents for sensitized, Arrhenius and bimolecular kinetics 

respectively (see [36, 55, 62]).  

The temperature dependent viscosity B!̅C can be expressed as  

!̅B�C = !��HIBFHFJC,        (3.6) 
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as referred to in chapter 1, where K is a viscosity variation parameter and !� is the initial fluid 

dynamic viscosity at temperature  ��.  We introduce the following dimensionless variables into 

equations (3.1) to (3.6); 

x = x�� ,			� = K���-' ,			7 = 
(�!� , � = 'B� 1 ��C���- 	 , �� = 'B�� 1 ��C���- , 
� = ��!�(-�� ,				� = ��(�- , ��� = $��� 	, ��- = $-�� ,			9� = ��- , 	� = !���� , 

 = ���' ,			< = <̅� , 	 = 	�(�-!�- , 8 = 1�	��<̅ ,			�- = 19� , � = �̅!�(�-, 
																						! = LÚLJ ,																								& = [{FJÜÝ \m áDâ�oãJ²ä ÞßàFJoEå ,															Ω = [ ÜÝ{FJ\m LJÙæ

Þßà
Moáâ�çãJ        (3.7) 

and obtain the following dimensionless governing equations: 

d¿df = 8 1 �-7�Hèé g �Hèé do¿dYo 1 ��Hèé dédY d¿dY g � dÙ¿dYodf g 6� do¿dYo [d¿dY\-,        (3.8) 

	� dédf = doédYo g & »B1 g  �Cm�<j [ é�}êé\ g Ω ^�-7-�Hèé g [d¿dY\- ��Hèé g 2� [d¿dY\-�_¼,    (3.9) 

7Bx, 0C = 0,			�Bx, 0C = 0,                       (3.10) 

7B0, �C = 0,				 dédY B0, �C = 1���|�� 1 �B0, �C~,                     (3.11) 

7B1, �C = 0,				 dédY B1, �C = 1��-|�B1, �C 1 ��~,         (3.12) 

where & represent the Frank-Kamenetskii parameter, 	� is the Prandtl number, �� is the Biot 

number,   is the activation energy parameter, �  is the material parameter, �  is the non-

Newtonian parameter, 8 is the pressure gradient parameter, 9� is the Darcy number, � is the 

variable viscosity parameter, Ω is the viscous heating parameter, �� is the ambient temperature 

parameter, and � is the porous medium shape parameter.  

The other dimensionless quantities of interest are the skin friction Ð��Ñ and the wall heat transfer 

rate B�
C given as 

�� = 1 W¿WY B1, �C,					�
 = 1 WéWY B1, �C.         (3.13) 
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In the following section, equations (3.8) to (3.13) are solved numerically using a semi-implicit 

finite difference scheme. 

3.3. Numerical solution 

Our numerical algorithm is based on the semi-implicit finite difference scheme [21 - 23, 67, 68]. 

Implicit terms are taken at the intermediate time level B� g ëC  where 0 v ë v 1 . The 

discretization of the governing equations is based on a linear Cartesian mesh and uniform grid 

on which finite differences are taken. We approximate both the second and first spatial 

derivatives with second-order central differences. The equations corresponding to the first and 

last grid points are modified to incorporate the boundary conditions. The semi-implicit scheme 

for the velocity component is 

��� Ã7 1 � �-7�x-Ä = 8 1 �-�HèéBìC7Bí}îC g �HèéBìC �-�x- 7Bí}îC 

																																																											1 È��Hèé dédY d¿dYÉBíC g 6� [ ddY7BíC\- do
dYo 7Bí}îC    (3.14) 

                                                                      

 In equation (3.14), it is understood that � ⋕ ��G ≔ Ð⋕Bí}�C1⋕BíCÑ ∆�ñ . The equation for 7Bí}�C 
then becomes 

1��7nH�Bí}�C g �-7nH�Bí}�C 1 ��7n}�Bí}�C =  explicit terms,       (3.15)      

where    �� = �∆Yo �� g ëΔ�B! g 6��Ò-CBíC�,							�- = Ð1 g ëΔ��-!BíC g 2��Ñ, with  

! = exp	B1��C and �Ò = 7Y. The solution procedure for 7Bí}�C thus reduces to inversion of tri-

diagonal matrices, which is an advantage over a full implicit scheme. The semi-implicit 

integration scheme for the temperature equation is similar to that for the velocity component. 

Unmixed second partial derivatives of the temperature are treated implicitly: 

	� éBìõ�CHéBìC
�f = do

dYo �Bí}îC g & »ÈB1 g  �Cm�<j [ é�}êé\ÉBíC g Ω��-7-�Hèé g �Ò-Ð�Hèé g 2��Ò -Ñ�BíC¼.         

                     (3.16) 

The equation for �Bí}�C thus becomes 



37 

 

( ) ( ) ( ) ( ) =−++− +
+

++
−

1
1

11
1 2Pr N

j
N

j
N

j rrr θθθ   explicit terms,                 (3.17) 

where 2y
tr ∆

∆= ξ . The solution procedure again reduces to inversion of tri-diagonal matrices. 

The schemes (3.15) and (3.17) were checked for consistency. For 1=ξ , these are first order 

accurate in time but second-order accurate in space. The schemes in [21] have 
2

1=ξ  which 

improves the accuracy in time to second order. Following the work in [22, 23] we use 1=ξ  so 

that the choice of larger time steps is possible and still obtain convergence to the steady 

solutions. 

3.4. Results and discussion 

Unless otherwise stated, we employ the parameter values:

,1,1.0,1.0,1.0,1.0,5.0,1,1,1.0,1.0,1.0,10Pr,1 21 ===Ω========== SmBiBiG a γαελδθ
01.0,02.0 =∆=∆ ty  and .40=t  These will be the default values in this work and hence in any 

graph where any of these parameters is not explicitly mentioned, it will be understood that such 

parameters take on the default values. 

3.4.1. Transient and steady state flow profiles 

We display the transient solutions in Figure 3.2. The figures show a transient increase in both 

fluid velocity, Figure 3.2(a), and temperature, Figure 3.2(b), until a steady state is reached. 

(a) (b)  

Figure 3.2: Transient and steady state profiles.  



38 

 

3.4.1.1. Blow-up of solutions  

We need to point out early on that depending on certain parameter values in the problem, the 

steady temperature and velocity profiles such as those in Figure 3.2 may not be attainable. In 

particular, the reaction parameter λ  will need to be carefully controlled as “large” values can 

easily lead to blow-up of solutions as illustrated in Figure 3.3. 

As shown in Figure 3.3, larger values of λ  would lead to finite time temperature blow-up since 

the terms associated with λ  are strong heat sources. 

               

Figure 3.3: Blow-up of the fluid temperature for large λ . 

(a) (b) 

                                             
Figure 3.4: Effects of the porous medium parameter, S  
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Figure 3.5: Effects of the non-Newtonian parameter  ( γ ) on velocity. 

3.4.2. The parameter dependence of solutions  

The response of the velocity and temperature to varying values of the porous medium 

parameter ( S ) is illustrated in Figure 3.4. An increase in the porous medium parameter S leads 

to corresponding increases in damping properties in the flow due to reduced porosity. This 

results in increased resistance to flow and thus explains the reduction in fluid velocity with 

increasing porous medium parameter as shown in Figure 3.4 (a). The reduced velocity in turn 

decreases the viscous heating source terms in the temperature equation and hence 

correspondingly decreases the fluid temperature as shown in Figure 3.4 (b). 

The response of the velocity to varying values of the non-Newtonian parameter (γ ) is illustrated 

in Figure 3.5. An increase in the parameter γ  leads to corresponding increases in those non-

Newtonian properties of the fluid, say (visco)elasticity, that would result in increased resistance 

to flow and thus explain the slight reduction in fluid velocity with increasing non-Newtonian 

character as measured by the parameter γ ; see Figure 3.5. The reduced velocity in turn 

decreases the viscous heating source terms in the temperature equation and hence 

correspondingly decreases the fluid temperature. Since however the parameter γ only enters 

the temperature equation implicitly through the velocity field, the effects of γ on the fluid 

temperature are not as noticeable as those on the fluid velocity. 
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Figure 3.6: Effects of the variable viscosity parameter ( α ) on the velocity.  

 

Figure 3.7: Effects of the parameter m on the temperature. 

The influence of the variable viscosity parameter on the velocity profile is shown in Figure 3.6. 

Increasing the parameter α  reduces the fluid viscosity and hence correspondingly diminishes 

the fluid’s resistance to flow. This necessarily leads to increased fluid velocity as illustrated in 

Figure 3.6. The increased velocity in turn increases the viscous heating source terms in the 

temperature equation and hence correspondingly increases the fluid temperature. However, as 

with the non-Newtonian parameter, the viscous effects are more pronounced in the velocity 

equation than in the temperature equation and this explains why the effects of α on the fluid 

temperature are not as noticeable as in the fluid velocity. 
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The effects of the chemical kinetics exponent m on the temperature profile are shown in Figure 

3.7. Figure 3.7 shows that the internal heat generated in the fluid during a bimolecular type of 

exothermic chemical reaction ( 5.0=m ) is higher than that generated under reaction of either 

the Arrhenius ( 0=m ) or the sensitized ( 2−=m ) type. This is so since an increase in the 

parameter m leads to corresponding increases in the strengths of the chemical reaction source 

terms in the temperature equation. This leads to increased fluid temperatures as shown in 

Figure 3.7. The increased temperature in turn leads to a reduction in fluid viscosity and hence 

indirectly to increased fluid velocity. Since however the parameter m only enters the velocity 

equation implicitly through the temperature/viscosity coupling, the effects of m on the fluid 

velocity look at best marginal and are not as pronounced as on the fluid temperature. The 

effects of the activation energy parameter ε on the temperature profile are shown in Figure 3.8. 

The parameter ε plays a more-or-less similar role (both mathematically and physically) to the 

parameter m described earlier in Figure 3.7 and hence its effects are similarly explained. 

The graphs of Figure 3.8 correspond to the case of bimolecular reactions ( 5.0=m ). It should 

however be noted that in the cases sensitized and Arrhenius reactions (in which 0≤m ) both 

temperature and velocity are expected to decrease with increasing ε ; see Figure 3.9(a) and (b). 

This is due to the fact that the function  

                                                 ( ) 0,
1

exp1 ≤








+
+ mm

εθ
θεθ  

decreases as ε increases. Since this function represents source terms in the temperature 

equation, the fluid temperature, as expected, decreases with increasing ε , so the maximum 

temperature is recorded for  0=ε  as shown in Figure 3.9(a) and (b). 

 

Figure 3.8: Effects of the activation energy parameter ( ε ) on the temperature. 
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            (a)                                                                     ( b) 

      

Figure 3.9: Effects of the activation energy parameter ( ε ) on temperature, for 0=m and 2−=m . 

 

 

       Figure 3.10: Effects of the Biot number ( 2Bi ) on the temperature.  

The effects of the Biot number 2Bi  on the temperature profile are illustrated in Figure 3.10. As 

seen from the boundary condition (3.12), higher Biot numbers mean correspondingly higher 

degrees of convective cooling at the channel walls and hence lead to lower temperatures at the 

channel walls and also in the bulk fluid. The overall temperature profiles thus decrease with 

increasing Biot number as the bulk fluid continually adjusts to the lower wall temperatures. The 

reduced temperatures correspondingly decrease the fluid viscosity and hence also marginally 

decrease the fluid velocity through the viscosity coupling. As noted earlier, such a coupling 
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depending on other parameters as well (say α ) does not necessarily result in drastic changes 

in velocity profiles even though the temperature profiles show well pronounced changes. 

 

    Figure 3.11:  Effects of the Prandtl number ( Pr ) on the temperature.  

 

(a) (b)  

Figure 3.12: Effects of the reaction parameter, λ . 

The effects of the Prandtl number Pr on the temperature profile are illustrated in Figure 3.11. 

Larger values of the Prandtl number correspondingly decrease the strength of the source terms 

in the temperature equation and hence in turn reduce the overall fluid temperature, as clearly 

illustrated in Figure 3.11. As pointed out earlier, the reduced temperature results in decreased 

fluid viscosity and hence (implicitly) reduces the fluid velocity. The effects of the Prandtl number 

on the velocity are however, as expected and previously explained, quite marginal. 
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The effects of the reaction parameter λ  on the velocity and temperature profiles are illustrated 

in Figure 3.12. The reaction parameter λ  plays a roughly opposite role to the Prandtl number 

just described. Increased values of λ  lead to significant increases in the reaction and viscous 

heating source terms and hence significantly increase the fluid temperature as shown in Figure 

3.12 (b) and also in the blow-up Figure 3.3. The significant temperature rise in response to the 

increased λ  means that the viscosity coupling to the velocity is no longer weak and hence 

significant reductions in the viscosity lead to appreciable increases in the fluid velocity, as 

shown in Figure 3.12(a). 

The effects of the viscous heating parameter Ω  on the temperature profile are illustrated in 

Figure 3.13. The effects of Ω mirror those of λ , albeit on a smaller scale since Ω is not 

connected to the exponentially increasing reaction source terms but only to the viscous heating 

terms. The wall shear stress dependence on the reaction parameter λ  is illustrated in Figure 

3.14 (a) for varying values of the viscosity variation parameter α . Similarly, the wall heat 

transfer rate dependence on λ  is illustrated in Figure 3.14 (b) for varying values of α . Figure 

3.15 (a) shows the wall shear stress dependence on λ  for varying values of the non-Newtonian 

parameter γ and similarly, Figure 3.15 (b) shows the wall shear stress dependence on λ  for 

varying values of the porous medium parameter S . In general, parameters that decrease the 

fluid velocity correspondingly decrease the wall shear stress. On the other hand parameters that 

increase the fluid velocity also increase the wall shear stress. 

Both the wall heat transfer dependence on λ  for varying values of the non-Newtonian 

parameter γ and the wall heat transfer dependence on λ  for varying values of the porous 

medium parameter S  are similar to the behaviour illustrated in Figure 3.14 (b). As with the wall 

shear stress, parameters that decrease the fluid temperature correspondingly decrease the wall 

heat transfer. Those that increase the fluid temperature also increase the wall heat transfer rate. 

In fact, since both the parameters α and γ only marginally increase the temperature, their 

effects on the wall heat transfer are also similarly marginal. All the results for the wall shear 

stress and the wall heat transfer were obtained at time 5=t . 
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Figure 3.13: Effects of the viscous heating parameter ( Ω ) on the temperature. 

 

(a) ( b)  

Figure 3.14: Variation, with λ  and α , of (a) the wall shear stress and (b) the wall hea t transfer 
rate. 
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(a)  (b) 

        Figure 3.15: Variation of the wall shear stress with (a) λ and γ and (b) with λ and S . 

3.5. Conclusion  

We computationally investigated the transient flow of a reactive variable viscosity non-

Newtonian fluid through a porous saturated medium with asymmetric convective cooling. We 

observed that there is a transient increase in both fluid velocity and temperature with an 

increase in the reaction strength, viscous heating and fluid viscosity parameter (which 

decreases the viscosity). A transient decrease in both fluid velocity and temperature is observed 

with increase in the non-Newtonian character and porous medium parameter (which decreases 

the porosity in the flow). The possible finite time blow-up of solutions means that the reaction 

strength needs to be carefully controlled. We also noticed that due to the nature of the coupling 

of the source terms, the fluid velocity and temperature either both increase or both decrease, 

together. Parameters that increase the fluid velocity and temperature would also increase the 

skin friction and the wall heat transfer rate respectively, and similarly those parameters that 

decrease the said field properties would correspondingly decrease the skin friction and the wall 

heat transfer rate respectively. 
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CHAPTER FOUR 

EFFECTS OF SUCTION/INJECTION ON UNSTEADY REACTIVE V ARIABLE VISCOSITY 

NON-NEWTONIAN FLUID FLOW IN A CHANNEL FILLED WITH P OROUS MEDIUM AND 

CONVECTIVE BOUNDARY CONDITIONS 

 

A study on thermal effects of the suction/injection Reynolds number, in conjunction with other 

flow parameters, on an unsteady reactive temperature dependent viscosity third grade fluid in a 

porous channel filled with saturated porous medium is presented.  This is an extension of the 

problem in chapter 3. As in chapter 3, it is assumed that the channel walls are subjected to 

asymmetric convective heat exchange with the surrounding medium and that exothermic 

chemical reactions take place within the flow system. The heat exchange with the ambient at 

the surfaces is assumed to obey Newton’s law of cooling. The equations governing the flow 

system are expressed in non-dimensional form and a semi-implicit finite difference scheme is 

utilised to obtain the velocity and temperature profiles. The effects of the flow parameters on the 

temperature and velocity fields, the skin friction and the wall heat transfer rate are simulated and 

discussed. The suction/injection Reynolds number is observed to retard the velocity field. It is 

also observed that the suction/injection Reynolds number, the porous medium parameter, the 

Prandtl number and the Biot number have a retarding effect on the temperature field. The 

variable viscosity parameter and the suction injection Reynolds number increases the skin 

fiction while the porous medium parameter and the Prandtl number diminish it. It is also 

revealed that the suction injection Reynolds number, the porous medium parameter and the 

Prandtl number have a diminishing effect on the rate of heat transfer at the channel walls. 

4.1. Introduction   

The flow of viscous fluids in channels with porous walls filled with or without porous media have 

been investigated and studied by several scholars, e.g.,[6, 24, 32, 64, 65, 70, 108] for various 

physical situations. In such flow systems, consideration of thermal effects and thermal stability 

criteria ought to be a major part of the analysis. Diverse applications are found in geothermal 

energy extraction, drying of food, nuclear waste disposal, heat and fluid exchange inside human 

organs, insulation of buildings, groundwater movement, oil and gas production, surface catalysis 

of chemical reactions, regenerative heat exchange and adsorption, etc. In some of these 

physical systems, the fluids involved belong to the wide class of non-Newtonian fluids owing to 

their failure in obeying the classical linear viscosity model. The heuristics and mathematical 
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computations underlying the rheology of such fluids, in particular fluids of the differential type, 

are cumbersome and complex as to evoke the interest of many scholars. In an incompressible 

fluid of differential type, apart from a constitutively indeterminate pressure, the stress is just a 

function of the velocity gradient and a number of its higher time derivatives [33]. 

Beg and Makinde [10] presented a theoretical analysis of a two-dimensional steady, laminar 

flow of an incompressible, viscous elastic fluid with species diffusion in a parallel plate channel 

with porous walls containing a homogeneous, isotropic porous medium with high permeability. 

The Runge-Kutta integration scheme with a modified version of the Newton-Raphson shooting 

method imbedded in the MAPLE software was used to numerically solve the transformed 

similarity of the ordinary differential equations governing the system. Makinde and Chinyoka [24, 

70] analysed unsteady flow of a variable viscosity reactive fluid and heat transfer in a circular 

pipe with porous walls and in a slit with wall suction or injection respectively. Makinde and Ogulu 

[74] investigated the effects of thermal radiation on the heat and mass transfer flow of a variable 

viscosity fluid past a vertical porous plate permeated by a transverse magnetic field. Wang et al 

[108] conducted a theoretical investigation of the flow distribution and pressure drop in a 

channel with porous walls. Attia [6] studied the effect of suction and injection on the unsteady 

flow between parallel plates with variable viscosity and thermal conductivity. The effect of 

suction and injection on magnetohydrodynamic three dimensional couette flow and heat transfer 

through a porous medium was studied by Das [26].   

In this study we seek to conduct an in-depth succinct analysis whereby we outline longitudinal 

velocity and temperature profiles of an unsteady reactive temperature dependent viscosity third 

grade fluid flow between two permeable parallel plates filled with a saturated porous medium. 

The dependence of the velocity and temperature fields, the skin friction and the Nusselt number 

on the many flow parameters, in particular the suction/injection Reynolds number, is extensively 

analysed. The ultimate aim is to characterise thermal effects and thermal stability criteria of the 

flow regime as dictated by the underlying parameters. Such detailed thermodynamics 

investigation has far reaching implications on safety in the industries dealing with flow systems 

of this nature. 

 The organisation of the rest of the chapter is as follows: The physical problem is presented and 

formulated mathematically in section 4.2. The solution process, a semi-implicit finite difference 

scheme based on [21, 23], is implemented in section 4.3. Section 4.4 comprises of the 

simulations of the velocity and temperature profiles together with the discussion of the results.  
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4.2. Mathematical formulation  

We examine an unsteady flow of an incompressible variable viscosity, reactive non-Newtonian 

fluid through a channel filled with a homogeneous and isotropic porous medium. It is assumed 

that the channel walls are uniformly porous such that fluid injection and suction take place at the 

lower and upper walls respectively as illustrated in Figure 4.1. The plate surfaces are also 

subjected to asymmetric convective heat exchange with the ambient due to unequal heat 

transfer coefficients and the fluid motion is induced by an applied axial pressure gradient. We 

choose the x
v

-axis parallel to the channel and the y -axis normal to it. 

                       u = 0, v = V, [ ]aTtaThta
y

T
k −=

∂
∂− ),(),( 2            y  = a 

 

 

                                                                      

                                       u= 0,  v = V,  [ ]),0(),0( 1 tTTht
y

T
k a −=

∂
∂−         y  = 0       

                            Figure 4.1 . Schematic diagram of the problem . 

 

Following [3, 13, 33, 36, 88, 100, 105] and neglecting the reacting viscous fluid consumption, 

the governing equations for the momentum and heat balance can be written as; 
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The additional viscous dissipation term in equation (4.2) is valid in the limit of very small and 

very large porous medium permeability. The appropriate initial and boundary conditions are 

0)0,(              ,0)0,( TyTyu ==  ,     (4.3) 
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∂−= ),(),(              ,0),( 2 .   (4.5) 

; is the suction/injection velocity. The other symbols and parameters are as defined in chapter 

3. The temperature dependent viscosity ( )µ  is given by (3.6).  

We introduce the dimensionless variables (3.7), together with  

�� = ;�(!�  

into equations (4.1) – (4.5) and obtain the following dimensionless governing equations: 
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,0)0,(   ,0)0,( == yyw θ                         (4.8) 
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[ ],),1(),1(   ,0),1( 2 atBit
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tw θθθ −−=
∂
∂=                        (4.10) 

where Re is the Suction /Injection Reynolds number and the other parameters are as defined in 

chapter 3.  

The other dimensionless quantities of interest are the skin friction ( )fC  and the wall heat 

transfer rate ( )Nu  given by (3.13). 



51 

 

In the following section, equations (4.6) – (4.10) together with equations (3.6) and (3.13) are 

solved numerically using a semi-implicit finite difference scheme. 

 4.3. Numerical procedure  

We adopt the semi-implicit finite difference scheme given in [21, 23]. Implicit terms are taken at 

the intermediate time level )( ξ+N  where 10 ≤≤ ξ . The discretization of the governing 

equations is based on a linear Cartesian mesh and uniform grid on which finite differences are 

taken. Both the second and first spatial derivatives are approximated by second-order central 

differences. The equations corresponding to the first and last grid points are modified to 

incorporate the boundary conditions. We thus have the semi-implicit scheme for the velocity 

component as  

(4.11)                                                                                            6                           
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( )αθµ −= exp  and yw=
•
γ . The solution procedure for )1( +Nw  thus reduces to inversion of tri-

diagonal matrices, which is an advantage over a full implicit scheme. The semi-implicit 

integration scheme for the temperature equation is similar to that for the velocity component. 

Unmixed second partial derivatives of the temperature are treated implicitly: 



52 

 

 

( )














































+






+Ω+
















+
+

+
∂
∂−

∂
∂=

∆
−

•
−

•
−

+
+

)(
22

22

)(

)()(
2

2)()1(

2
1

exp1                       

RePrPr

NN
m

NN
NN

eewS

yyt

γγγ
εθ

θεθλ

θθθθ

αθαθ

ξ

                   (4.13) 

The equation for )1( +Nθ  thus becomes 
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where 2y
tr ∆

∆= ξ . The solution procedure again reduces to inversion of tri-diagonal matrices. 

The schemes (4.12) and (4.14) were checked for consistency. For 1=ξ , these are first order 

accurate in time but second-order accurate in space. The schemes in [21] have 
2

1=ξ which 

improves the accuracy in time to second order. Following the work in [23] we use ë = 1 so that 

the choice of larger time steps is possible and still obtain convergence to the steady solutions. 

4.4. Results and discussion  

 4.4.1. Transient and steady state profiles 

We will display all steady solutions at 40=t  although solutions were observed to have 

converged to steady state far earlier than this time. In the absence of suction/injection, i.e. if the 

channel walls are impermeable, we obtain parabolic velocity and temperature profiles as 

depicted by Figure 4.2. The 3 dimensional graphs in Figure 4.3 clearly reveal that maximum 

velocity is recorded at the centre of the channel whereas maximum temperature is recorded at 

the channel walls.  
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     Figure 4.2. Evolution of velocity  and temperature with no suction/injection . 

 

 

    Figure 4.3.  3 dimensional representation of veloci ty and temperature profiles, 0Re = . 
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Figure 4.4.  Effects of suction/injection Reynolds number on vel ocity and temperature.  

 

 

Figure 4.5. Response of velocity and temperature to  medium shape parameter, S . 

 

4.4.2. Parameter dependence of solutions  

In all the cases we consider, fluid is injected uniformly through the lower wall and corresponding 

suction out of the upper wall. The effect of this is that velocity and temperature profiles are 

shifted considerably towards the upper wall.  
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If the injection/suction Reynolds number is increased gradually, velocity and temperature 

profiles are both seen to decrease as a result, see Figure 4.4. The increased velocity near the 

upper plate causes increased rate of heat transfer out of the upper plate and this explains the 

drop in temperature. The response of velocity and temperature profiles to increasing porous 

medium shape parameter S , seen in Figure 4.5, follows a similar trend as that in Figure 4.4. An 

increase in S reduces permeability of the pore spaces in the matrix. As a result velocity 

decreases. The reduced velocity slows down the temperature through the reduction of viscous 

heating source terms in the temperature equation. 

 

 

Figure 4.6.  Effects of the variable viscosity parameter, α . 
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Figure 4.7.  Effects of the non-Newtonian parameter, γ . 

 

Figures 4.6 and 4.7 explain the effects of increasing the variable viscosity parameter, α  and the 

non-Newtonian parameter, γ . With all other parameters constant, increasing α  reduces fluid 

viscosity which in turn increases flow rate. On the other hand increasing γ  increases the non-

Newtonian properties of the fluid whose effects are to damp the flow. In both cases the effects 

on fluid temperature are marginal. 

 

Figure 4.8.  Effects of the reaction parameter, λ . 
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Figure 4.9.  Effects of the viscous heating parameter, Ω , on temperature. 

 

 

Figure 4.10.  Efffects of the Prandtl number on temperature, 3Re = . 



58 

 

 

Figure 4.11.  Effects of the Biot number, 2Bi , on temperature.  

Figure 4.8 shows flow quantities increasing with the reaction parameter, λ . This is not 

surprising at all because increasing the reaction parameter results in increased reaction rate. 

The same trend is seen in figure 4.9. In Figures 4.10 and 4.11, fluid temperature is seen to 

decrease with increasing Prandtl number and Biot number respectively. Generally the Prandtl 

number decreases the fluid thermal conductivity whereas higher Biot numbers mean higher 

degrees of convective cooling at the channel walls and this naturally leads to lower fluid 

temperatures at the channel walls and so is in the bulk of the fluid. 

The physical quantities of engineering significance are the wall shear stress (skin friction) and 

the wall heat transfer rate. We display variation of these quantities with the reaction parameter 

λ  and the suction/injection Reynolds number, the porous medium shape parameter, the 

variable viscosity parameter and the Prandtl number in Figures 4.12 and 4.13. The figures are 

plotted until the solution blow-up values of λ  are reached. The skin friction is seen to increase 

with increasing suction/injection Reynolds number Reas well as variable viscosity parameterα . 

On the contrary, the influence of the porous medium shape parameter and the Prandtl number 

on the skin friction is to decrease it.  
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Figure 4.12. Variation with λ  and Pr,,Re, αS  of the wall shear stress 

In Figure 4.13, it is observed that as the values of the suction/injection Reynolds number, the 

porous medium shape parameter and the Prandtl number are increased, the rate at which heat 

is transferred at the upper wall decreases. On the other hand, increasing the variable viscosity 

parameter marginally increases the rate of heat transfer at the wall. 

Table 4.1 lists computations of the thermal criticality values of λ  for various parameter 

variations. This is an exercise of crucial importance as, depending on other flow parameters, 

values of the reaction parameter above a certain threshold inevitably lead to blow up of 

solutions. It is thus important to know a priori the blow up values of the reaction parameter in 

relation to the behaviour of other parameters. It is particularly noted from the table that the 

thermal criticality values of λ  increase with increasing suction/injection Reynolds number and 

the Prandtl number. This trend is also revealed by Figure 4.14. 
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Figure 4.13. Variation with λ  and Pr,,Re, αS  of the wall heat transfer rate. 

 

Figure 4.14.   Blow up of solutions  
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Table 4.1. Thermal criticality values of ö for different parameter values 

÷ø « ù ú Rû ü c�ý Q þ � �� ö� 
0 1 0.1 0.1 7.2 0.1 1 0.5 0.1 1 1.009898 0.594012 

1 1 0.1 0.1 7.2 0.1 1 0.5 0.1 1 1.896763 2.128543 

5 1 0.1 0.1 7.2 0.1 1 0.5 0.1 1 2.541587 12.127745 

10 1 0.1 0.1 7.2 0.1 1 0.5 0.1 1 1.046734 18.810380 

1 3 0.1 0.1 7.2 0.1 1 0.5 0.1 1 1.585287 2.128543 

1 5 0.1 0.1 7.2 0.1 1 0.5 0.1 1 1.813598 2.178044 

1 10 0.1 0.1 7.2 0.1 1 0.5 0.1 1 1.694715 2.178044 

1 1 0.5 0.1 7.2 0.1 1 0.5 0.1 1 1.745310 2.079042 

1 1 0.8 0.1 7.2 0.1 1 0.5 0.1 1 1.612351 2.029541 

1 1 1 0.1 7.2 0.1 1 0.5 0.1 1 1.754748 2.029541 

1 1 0.1 0.5 7.2 0.1 1 0.5 0.1 1 1.871694 2.128543 

1 1 0.1 1 7.2 0.1 1 0.5 0.1 1 1.846684 2.128543 

1 1 0.1 0.1 1 0.1 1 0.5 0.1 1 0.743134 0.594012 

1 1 0.1 0.1 3 0.1 1 0.5 0.1 1 0.963442 0.891018 

1 1 0.1 0.1 7.2 0.5 1 0.5 0.1 1 2.048847 2.128543 

1 1 0.1 0.1 7.2 -0.5 1 0.5 0.1 1 1.771495 2.128543 

1 1 0.1 0.1 7.2 0.1 5 0.5 0.1 1 5.537611 2.128543 

1 1 0.1 0.1 7.2 0.1 10 0.5 0.1 1 7.452527 2.128543 

1 1 0.1 0.1 7.2 0.1 1 0 0.1 1 1.700805 2.227545 

1 1 0.1 0.1 7.2 0.1 1 -2 0.1 1 2.710665 3.069062 

1 1 0.1 0.1 7.2 0.1 1 0.5 0.3 1 3.369335 2.623553 

1 1 0.1 0.1 7.2 0.1 1 0.5 0.5 1 11.129398 4.257086 

1 1 0.1 0.1 7.2 0.1 1 0.5 0.1 1.5 1.740303 2.079042 

1 1 0.1 0.1 7.2 0.1 1 0.5 0.1 2 1.641712 2.029541 
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4.5. Conclusion  

Thermal effects of the suction/injection Reynolds number, in conjunction with other flow 

parameters, on an unsteady reactive temperature dependent viscosity third grade fluid in a 

porous channel filled with saturated porous medium and with asymmetric convective boundary 

conditions have been analysed. It is concluded that the velocity field is retarded by the increase 

in suction/injection Reynolds number. The porous medium parameter, the Prandtl number, the 

Biot number and the suction/injection Reynolds number have a retarding effect on the 

temperature field. The suction/injection Reynolds number and the variable viscosity parameter 

increase the wall shear stress, while the porous medium shape parameter and the Prandtl 

number have the opposite effect. The rate of heat transfer at the wall is diminished by 

increasing the suction/injection Reynolds number, the porous medium shape parameter and the 

Prandtl number. Values of the reaction parameter for which blow up of solutions occur are 

higher at larger suction/injection Reynolds numbers and Prandtl numbers. 
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CHAPTER FIVE 

ANALYSIS OF UNSTEADY MHD REACTIVE FLOW OF A NON-NEW TONIAN FLUID 

THROUGH A POROUS SATURATED MEDIUM WITH ASYMMETRIC C ONVECTIVE 

BOUNDARY CONDITIONS 

 

In this chapter we extend the problem in chapter 3 by analyzing thermal effects in an unsteady 

hydromagnetic flow of a pressure driven, reactive, variable viscosity, electrically conducting 

third-grade fluid through a porous saturated medium with asymmetrical convective boundary 

conditions. It is assumed that the chemical kinetics in the flow system are exothermic and that 

the asymmetric convective heat exchange with the surrounding medium at the surfaces follows 

Newton’s law of cooling. A semi-implicit finite difference scheme will again be used to 

numerically solve the underlying coupled nonlinear partial differential equations governing the 

flow and heat transfer.  

5.1. Introduction 

The current apparent surge in research interest in studies of phenomena connected with 

convective hydromagnetic fluid flow can be explained by its wide applications in science, 

engineering and technology. The flow of electrically conducting viscous fluid between two 

parallel plates in the presence of a transversely applied magnetic field has applications in many 

devices such as magnetohydrodynamic (MHD) power generators, MHD pumps, accelerators, 

aerodynamics heating, electrostatic precipitation, polymer technology, petroleum industry, 

cooling of nuclear reactors, geothermal energy extraction, metal purification, etc [7, 16, 61, 67, 

69]. Following the pioneering work of Hartmann [41], the rheological community has undertaken 

to investigate hydromagnetic fluid flow and heat transfer in different geometries under varied 

physical effects. Makinde and Mhone [72] investigated hydromagnetic instability of viscous 

incompressible fluid in a channel filled with saturated porous medium. Chamkha [16] studied 

mixed convection of hydromagnetic fully developed laminar flow in a vertical channel with 

symmetric and asymmetric wall heating conditions in the presence or absence of heat 

generation or absorption effects.  Convection flow of an electrically conducting fluid past a 

vertical porous plate in the presence of a transversely imposed magnetic field was studied in 

[61, 74]. Liu [50, 51] studied hydromagnetic flow over a stretching sheet subject to a transverse 

magnetic field. 
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              Figure 5.1: Problem schematics and coordinate system 

 As mentioned earlier, one particular dimension that has been of particular interest in recent 

years is the study of flow of fluids that exhibit non-Newtonian character. Prasad et al [87] 

explored the effects of thermal buoyancy on a non-Newtonian power law fluid flow past a 

vertical continuous stretching sheet, while Olajuwon [82] examined convection heat and mass 

transfer in a hydromagnetic flow of a second grade fluid past a semi-infinite stretching sheet in 

the presence of thermal radiation and thermal diffusion. Makinde and Chinyoka [69] studied 

unsteady hydromagnetic Generalized Couette flow and heat transfer characteristics of a 

reactive variable viscosity incompressible electrically conducting third grade fluid in a channel 

with asymmetric convective cooling at the walls in the presence of a uniform transverse 

magnetic field. Literature survey reveals that studies as in [69] have still not been widely 

exhausted, in particular the concept of reactive variable viscosity electrically conducting non-

Newtonian fluid as well as asymmetric convection as opposed to symmetric convection. 
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In section 5.2, mathematical model formulation is presented and the solution process is 

implemented in section 5.3. Numerical and graphical results as well as their discussion are 

presented in section 5.4. 

5.2. Mathematical model formulation  

An unsteady flow of an incompressible electrically conducting, third-grade, variable viscosity 

reactive fluid through a channel filled with a homogeneous and isotropic porous medium is 

considered. It is assumed that the flow is subjected to the influence of an externally applied 

homogeneous magnetic field as depicted in Figure 5.1. The fluid has small electrical 

conductivity so that the electromagnetic force produced has small magnitude. The plate 

surfaces are subjected to asymmetric convective heat exchange with the ambient due to 

unequal heat transfer coefficients and the fluid motion is induced by an applied axial pressure 

gradient. We choose the x -axis parallel to the channel and the y -axis normal to it. 

Under the above assumptions, and neglecting the reacting viscous fluid consumption, the 

governing equations for momentum and heat balance are formulated as in chapter 3, [3, 36, 58, 

59, 63, 75, 90], and can be written as 

( dXdf̅ = 1 dØ�d�̅ g ddY� È!̅B�C dXdY�É g �� dÙXdY�odf̅ g 6�� doXdY�o [dXdY�\- 1 LÚBFCXMÛ 1 #��-
      (5.1) 

(�� dFdf̅ = � doFdY�o g #��-
- g [dXdY�\- �!̅B�C g 2�� [dXdY�\-� g LÚBFCXo
Û g )��+[{FÜÝ\m �H Þßà.		  (5.2) 

The appropriate initial and boundary conditions are 


Bx�, 0C = 0,					�Bx�, 0C = ��,      (5.3) 


B0, �̅C = 0,				 1 � dFdY� B0, �̅C = $�|�� 1 �B0, �̅C~,    (5.4) 


B�, �̅C = 0,				 1 � dFdY� B�, �̅C = $-|�B�, �̅C 1 ��~.    (5.5) 

# is the fluid electrical conductivity and �� is the electromagnetic induction. The other symbols 

and parameters are as defined in chapter 3. The temperature dependent viscosity B!̅C is given 

by equation (3.6).  

We introduce the dimensionless variables in (3.7) together with 
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 ��- = p�Jo�o
LJ   

into equations (5.1)  to (5.5);      

and obtain the following dimensionless governing equations: 

d¿df = 8 1 ��-7 1 �-7�Hèé g �Hèé do¿dYo 1 ��Hèé dédY d¿dY g � dÙ¿dYodf g 6� do¿dYo [d¿dY\-,                 (5.6) 

	� dédf = doédYo g & »B1 g  �Cm�<j [ é�}êé\ g Ω ^��-7- g �-7-�Hèé g [d¿dY\- ��Hèé g 2� [d¿dY\-�_¼,                
               (5.7)  

7Bx, 0C = 0,			�Bx, 0C = 0,              (5.8) 

7B0, �C = 0,				 dédY B0, �C = 1���|�� 1 �B0, �C~,                       (5.9) 

7B1, �C = 0,				 dédY B1, �C = 1��-|�B1, �C 1 ��~,                     (5.10) 

where �� is the Hartmann number and all the other parameters are as defined in chapter 3.  

The other dimensionless quantities of interest are the skin friction Ð��Ñ and the wall heat transfer 

rate B�
C given by equations (3.13). 

In the following section, equations (5.6) to (5.10) together with equations (3.13) are solved 

numerically using a semi-implicit finite difference scheme. 

5.3. Numerical solution 

The semi-implicit finite difference scheme given in [21] is adopted. Following [22, 23], implicit 

terms are taken at the intermediate time level B� g ëC where 0 v ë v 1. The discretization of the 

governing equations is based on a linear Cartesian mesh and uniform grid on which finite 

differences are taken. Both the second and first spatial derivatives are approximated by second-

order central differences. The equations corresponding to the first and last grid points are 

modified to incorporate the boundary conditions. The semi-implicit scheme for the velocity 

component is 
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��� Ã7 1 � �-7�x-Ä = 8 1 �-�HèéBìC7Bí}îC 1 ��-7Bí}îC g �HèéBìC �-�x- 7Bí}îC 

																																																											1 È��Hèé dédY d¿dYÉBíC g 6� [ ddY7BíC\- do
dYo 7Bí}îC     (5.11) 

                                                                      

 In (5.11), it is understood that � ⋕ ��G ≔ Ð⋕Bí}�C1⋕BíCÑ ∆�ñ . The equation for 7Bí}�C  then 

becomes 

1��7nH�Bí}�C g �-7nH�Bí}�C 1 ��7n}�Bí}�C = ∆�8 g B7 g �7YYCBíC 1 �∆�Ð�Hèé�Y�ÒÑBíC 1 ∆��-�HèéBíCB1 1
ëC7BíC 1 Δ���-B1 1 ëC7BíC g Δ�B1 1 ëCÐ�Hèé g 6��Ò-ÑBíC7YYBíC  ,                

              (5.12)      

where    �� = �∆Yo �� g ëΔ�B! g 6��Ò-CBíC�,							�- = Ð1 g ëΔ��-!BíC g ëΔ���- g 2��Ñ, with  

! = exp	B1��C and �Ò = 7Y. The solution procedure for 7Bí}�C thus reduces to inversion of tri-

diagonal matrices, which is an advantage over a full implicit scheme. The semi-implicit 

integration scheme for the temperature equation is similar to that for the velocity component. 

Unmixed second partial derivatives of the temperature are treated implicitly: 

	� éBìõ�CHéBìC
�f = do

dYo �Bí}îC g & »ÈB1 g  �Cm�<j [ é�}êé\ÉBíC g Ω���-7- g �-7-�Hèé g
�Ò -Ð�Hèé g 2��Ò-Ñ�BíC¼.           (5.13) 

The equation for �Bí}�C thus becomes 

1��nH�Bí}�C g B	� g 2�C�nBí}�C 1 ��n}�Bí}�C = �BíC g Δ�B1 1 ëC�YYBíC g &Δ� ÈB1 g  �Cm�<j [ é�}êé\ÉBíC g
ΩΔ����-7- g �-7-�Hèé g �Ò -Ð�Hèé g 2��Ò-Ñ�BíC

,       (5.14) 

where � = ë Δ� Δx-G . The solution procedure again reduces to inversion of tri-diagonal matrices. 

The schemes (5.12) and (5.14) were checked for consistency. For ë = 1, these are first order 

accurate in time but second-order accurate in space. The schemes in [21] have ë = �- which 

improves the accuracy in time to second order. Following the work in [22, 23] we use ë = 1 so 
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that the choice of larger time steps is possible and still obtain convergence to the steady 

solutions. 

 

Figure 5.2: Transient and steady state velocity pro files. 

 

Figure 5.3: Transient and steady state temperature profiles. 
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5.4. Results and discussion  

Figure 5.2 and Figure 5.3 are plots of the steady state velocity and temperature profiles. 

Both graphs show transient increase until steady state is reached. 

As depicted by Figure 5.4, if the reaction parameter λ  is not carefully controlled, it may 

not be possible to attain steady state velocity and temperature profiles as in Figure 5.2 and 

Figure 5.3.  The terms associated with λ  are strong heat sources. It is clear from Figure 

5.4 that values of 3.0≥λ  lead to finite temperature blow up. 

 

Figure 5.4 : Blow up of fluid temperature for large λ . 

 

5.4.1. Parameter variation analysis  

Figure 5.5 to Figure 5.9 show the behaviour of fluid velocity in response to varying values of the 

Hartmann number ( Ha ), the porous medium shape parameter ( S ), the non-Newtonian 

parameter ( γ ), the variable viscosity parameter ( α ) and the reaction parameter ( λ ) 

respectively. Velocity is seen to decrease with an increase in the Hartmann number, the porous 

medium shape parameter as well as the non-Newtonian parameter. An increase in the 

Hartmann number means an increase in the damping properties of the magnetic field, and these 

damping forces result in increased resistance to flow and fluid velocity decreases as seen in 

Figure 5.5. An increase in the porous medium shape parameter S increases the complexity 
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(tortuosity) of the porous medium and the same effect as with the Hartmann number is observed 

(Figure 5.6). Increasing the non-Newtonian parameter γ means increasing the non-Newtonian 

properties of the fluid and these cause increased resistance to flow as well. As a result fluid 

velocity is also observed to decrease (Figure 5.7) with γ , albeit on a far much smaller scale 

when compared to the former two parameters. 

The other two diagrams, Figure 5.8 and Figure 5.9 show velocity profile increasing with the 

variable viscosity parameter α and the reaction parameter λ  respectively. The variable 

viscosity parameter reduces fluid viscosity which in turn leads to reduced resistance to flow 

resulting in increased velocity of the fluid. An increase in the parameter λ  leads to significant 

increase in the reaction rate and this increase the viscous heating source terms. Fluid 

temperature increases drastically as a result (see Figure 5.18) and this significant temperature 

rise renders the viscosity coupling to the velocity stronger and this reduces the viscosity 

significantly leading to significant increase in the fluid velocity as seen in Figure 5.9.     

 

Figure 5.5: Effects of Hartmann number ( Ha ) on velocity. 
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Figure 5.6: Effects of porous medium shape paramete r ( S ) on velocity. 

 

 

Figure 5.7: Effects of the non-Newtonian parameter (γ ) on velocity. 
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Figure 5.8: Effects of the variable viscosity param eter  ( α ) on velocity. 

 

Figure 5.9: Effects of the reaction parameter  ( λ ) on velocity. 

                             

Figures 5.10, 5.11, 5.12, 5.16 and 5.17 display fluid temperature profiles decreasing in response 

to increasing values of the Hartmann number ( Ha ), the porous medium shape parameter ( S ), 

the non-Newtonian parameter (γ ), the Biot number ( Bi ) and Prandtl number ( Pr ), respectively. 

The behaviour of the profiles in Figures 5.10, 5.11 and 5.12 is as a result of the coupling effect – 

as the velocity decreases, explained earlier, as a result of increasing Hartmann number, porous 

medium shape parameter and the non-Newtonian parameter it decreases the viscous heating 
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source terms in the temperature equation thereby causing a decrease in the fluid temperature. 

As for Figure 5.16, higher Biot numbers increase convective cooling at the channel walls and 

this extends to the bulk of the fluid as well resulting in overall temperature drop. The Prandtl 

number tends to decrease the contribution of the heating source terms in the temperature 

equation and hence in turn reduces the fluid temperature (see Figure 5.17). Boundary condition 

(5.10) explains the observed effect of the Biot number on the channel walls. In both cases the 

reduced temperature increases fluid viscosity which in turn reduces the velocity owing to 

viscosity coupling. However the effects on velocity are marginal and almost unnoticeable. It 

must be noted that the coupling is also affected by other parameters as well. Figures 5.13, 5.14, 

5.15, 5.18 and 5.19 show temperature profiles increasing directly with increasing variable 

viscosity parameter α , parameter m , the activation energy parameter ε ( 5.0=m ) the reaction 

parameterλ   and the viscous heating parameter Ω  respectively. The reaction parameter λ  has 

already been observed to drastically increase the rate of the reaction and this inevitably 

increases the fluid temperature. The same holds for the activation energy parameter ε  and the 

viscous heating parameter Ω . The effect of the variable viscosity parameter α  is as a result of 

the already explained coupling effect. In respect of Figure 5.14, an increase in the parameter m

leads to corresponding increases in the strengths of the chemical reaction source terms in the 

temperature equation. As a result, the internal heat generated in the fluid during a bimolecular 

type of exothermic chemical reaction ( 5.0=m )  is higher than that generated under reaction of 

either the Arrhenius ( 0=m ) or the sensitised ( 2−=m ) reaction types. In this way the 

temperature profile is seen to increase with the parameter m . 

 

Figure 5.10: Effects of the Hartmann number ( Ha ) on temperature. 
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Figure 5.11: Effects of the porous medium shape par ameter ( S ) on temperature. 

 

 

Figure 5.12: Effects of the non-Newtonian parameter  (γ ) on temperature. 
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Figure 5.13: Effects of the variable viscosity para meter ( α ) on temperature. 

 

 

Figure 5.14: Effects of the parameter m on temperature. 
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Figure 5.15: Effects of the activation energy param eter ( ε ) on temperature, 5.0=m  

 

 

Figure 5.16: Effects of the Biot number ( 2Bi ) on temperature. 
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Figure 5.17: Effects of the Prandtl number ( Pr ) on temperature. 

 

 

Figure 5.18: Effects of the reaction parameter ( λ ) on temperature. 
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Figure 5.19: Effects of the viscous heating paramet er ( Ω ) on temperature. 

 

    

 

Figure 5.20: Variation of temperature with 0: =mε .
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Figure 5.20 ( 0=m ) and Figure 5.21 ( 2−=m ), sensitised and Arrhenius reactions, both display 

fluid temperature behaviour that is exactly opposite to that of Figure 5.15 ( 5.0=m ), the 

bimolecular reactions. This, however, is not surprising as the temperature is expected to 

decrease with increasing ε  when 0≤m . In the temperature equation, the function  

( ) 0,
1

exp1 ≤








+
+ mm

εθ
θεθ  

which represents source terms clearly decreases as ε increases. The fluid temperature thus 

decreases with increasing ε . As both figures show, the maximum temperature is recorded for

0=ε . 

        

 

      Figure 5.21:  Variation of temperature with ε : 2−=m  
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Figure 5.22: Variation with λ and α of the wall shear stress fC . 

 

Figure 5.23: Variation with λ and γ of the wall shear stress fC . 
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Figure 5.24:  Variation with λ and S of the wall shear stress fC . 

 

Figure 5.25:  Variation with λ and Ha of the wall shear stress fC . 

 

5.4.2. Skin friction and Nusselt number 

The physical quantities of practical and engineering primary interest are the wall shear stress 

(skin friction) and the wall heat transfer rate (Nusselt number). Figures 5.22 to 5.25 show the 

skin friction dependence on the reaction parameter λ  for varying values of variable viscosity 
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parameter α , the non-Newtonian parameter γ , the porous medium parameter S and the 

Hartmann number Ha respectively. Figures 5.26 to 5.29 show the wall heat transfer rate 

dependence on λ  for varying values of the same parameters. The figures are plotted until the 

values of λ  are reached at which blow-up of solutions sets in. The trend that clearly stands out 

in the figures is that parameters that decrease the fluid velocity correspondingly decrease the 

wall shear stress respectively and parameters that decrease the fluid temperature 

correspondingly decrease the wall heat transfer. Similarly, the parameters that increase the fluid 

velocity and those that increase the fluid temperature also increase the skin friction and the wall 

heat transfer rate respectively. Table 5.1 and Table 5.2 are an attempt to clarify the trend in 

Figures 5.26 to 5.29 and to show that the thermal criticality values of the reaction parameter λ
increase with the Hartmann number and the porous medium parameter. We also note here that 

0=Ha and 0=S represent reactive flow with no magnetic field influence and reactive flow with 

no porous medium in the channel respectively. 

 

 

 

Figure 5.26: Variation with λ  and α of the wall heat transfer rate Nu . 
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Figure 5.27: Variation with λ  and γ of the wall heat transfer rate Nu . 

 

 

Figure 5.28:  Variation with λ  and Ha  of the wall heat transfer rate Nu . 
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       Figure 5.29:  Variation with λ  and S of the wall heat transfer rate Nu . 

 

Table 5.1:  Effects of magnetic field  ( Ha ) on the thermal criticality Values of λ . 

 

 

 

 

 

 

     Table 5.2.  Effects of the porous medium parameter ( S ) on the thermal criticality values of λ . 

 

 

 

 

 

 

 

 

S   Ha   criticalNu  criticalλ  

1 0 0.911744 0.299970 

  1 1 0.904420 0.301990 

1 2 0.894764 0.305110 

1 3 0.888717 0.306580 

Ha   S   criticalNu  criticalλ  

1 0 0.912912 0.300600 

1 1 0.910081 0.300610 

1 5 0.893731 0.304910 

1 10 0.891999 0.306500 
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 5.5. Conclusion 

We presented a computational investigation of the transient flow of a reactive, variable viscosity, 

electrically conducting third-grade fluid through a porous saturated medium with asymmetrical 

convective boundary conditions.  A transient increase in both fluid velocity and temperature with 

an increase in the reaction strength, viscous heating and fluid variable viscosity parameter 

(which decreases the viscosity) was observed. A transient decrease in both fluid velocity and 

temperature with the increased magnetic field, increased porous medium parameter (which 

decreases the porosity in the flow), increased Biot number, increased Prandtl number and 

increased non-Newtonian character was also observed. Due to the nature of the coupling 

source terms, the fluid velocity and temperature either both increase or both decrease, together. 

Parameters that increase the fluid velocity correspondingly increase the wall shear stress 

respectively and parameters that increase the fluid temperature correspondingly increase the 

wall heat transfer. The possible finite time blow-up of solutions means that the reaction strength 

must be monitored and carefully controlled in order to avoid damage to property and to save life.  

Blow up of solutions is reached far sooner than in the case of chapter 3 where there is no 

magnetic field influence. 
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CHAPTER SIX 

CONCLUSION AND FUTURE WORK  

 

In this thesis, we studied laminar flow of a reactive viscous non-Newtonian fluid through a 

channel filled with saturated porous medium. We investigated the effect of flow parameters on 

the velocity and temperature fields and analysed thermal effects and thermal stability criteria. 

In chapter 3, the unsteady laminar flow of a reactive temperature dependent viscosity third 

grade fluid in a channel filled with saturated porous medium and with asymmetric convective 

boundary conditions was computationally investigated. It was assumed that exothermic 

chemical reactions take place within the flow system and that the asymmetric convective heat 

exchange between the flow and the ambient at the channel surfaces obeys Newton’s law of 

cooling. We made use of a semi-implicit finite difference scheme to numerically solve the 

coupled nonlinear momentum and energy balance equations deriving the flow. The results were 

presented graphically and analysed with respect to the flow parameters. A transient increase in 

both fluid velocity and temperature with an increase in the reaction strength, viscous heating 

and fluid viscosity parameter (which decreases the viscosity) was observed. A transient 

decrease in both fluid velocity and temperature was observed with increase in the non-

Newtonian character, the porous medium parameter (which decreases the porosity of the flow), 

the Prandtl and the Biot numbers. It was noticed that if the reaction strength is not carefully 

controlled, there is an almost sure chance of finite time blow-up of solutions. Owing to the 

nature of the coupling source terms, the fluid velocity and temperature were noticed to either 

both increase or both decrease. 

Thermal effects of suction/injection on unsteady reactive variable viscosity third grade fluid flow 

in a channel filled with a saturated porous medium and with asymmetric convective boundary 

conditions was the subject of chapter 4. The effects of the flow parameters on the temperature 

and velocity fields, the skin friction and the wall heat transfer rate were simulated and 

discussed. The suction/injection Reynolds number was observed to retard the velocity field. It 

was also observed that the suction/injection Reynolds number, the porous medium parameter, 

the Prandtl number and the Biot number have a retarding effect on the temperature field. The 

variable viscosity parameter and the suction/injection Reynolds number increase the skin fiction 

while the porous medium parameter and the Prandtl number diminish it. It was also revealed 
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that the suction injection Reynolds number, the porous medium parameter and the Prandtl 

number have a diminishing effect on the rate of heat transfer at the channel walls. 

In chapter 5, by way of extending the studies in chapter 3, we carried out an analysis of an 

unsteady hydromagnetic flow of a pressure driven, reactive, temperature dependent viscosity, 

electrically conducting third grade fluid. The magnetic field, like the porous medium parameter, 

the Prandtl number, the non-Newtonian character and the Biot number, was observed to retard 

both the velocity and the temperature fields. In the case of MHD flow, possibility of finite 

temperature blow-up increased considerably. 

In all the cases that were considered, thermal stability can be achieved by knowing the effect of 

each flow parameter and thereby controlling it accordingly. 

6.1. Further work 

Future work that can be considered is to analyse similar type of flow in different geometries like 

cylindrical coordinates as well as considering Couette flow rather than Poiseuille flow. It will also 

be interesting to investigate the effect of Navier slip on the flow systems considered here. The 

other dimension is to consider two and three dimensional flow. Other methods of solution, like 

symmetry methods, will also constitute future work. 
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Appendix 

Articles already published or submitted for publica tion 

(1)  O.D. Makinde, T. Chinyoka, L. Rundora: Unsteady flow of a reactive variable 

viscosity non-Newtonian fluid through a porous saturated medium with 

asymmetric convective boundary conditions. Computers and Mathematics with 

Applications 62 (2011) 3343 – 3352 (Published). 

(2)  L. Rundora, O. D. Makinde: Analysis of unsteady MHD reactive flow of non-

Newtonian fluid through a porous saturated medium with asymmetric boundary 

conditions. Computational & Applied Mathematics – submitted 2012. This paper 

was presented at the 55th SAMS congress held at Stellenbosch University on 31 

October – 2 November 2012. 

(3)  L. Rundora, O.D. makinde: Effects of suction/injection on unsteady reactive 

variable viscosity non-Newtonian fluid flow in a channel filled with porous medium 

and convective boundary conditions. Journal of Petroleum Science and 

Engineering – submitted 2012. 
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