
 
 

 

Software Developer Competency Framework 
 
 

by 
 
 
DAVID MUHANGWA MINANI 
 
 
Thesis submitted in fulfilment of the requirements for the degree 
 
 
 
Master of Technology: Information Technology 
 
 
in the Faculty of Informatics and Design 
 
 
 
at the Cape Peninsula University of Technology 
 
 
Supervisor: Mr Temuso Makhurane 
 
 
Co-supervisor: Prof Retha de la Harpe 
 
 
 
Cape Town 
 
 
November 2013 
 
 

 
CPUT copyright information 

The dissertation/thesis may not be published either in part (in scholarly, scientific or technical 
journals), or as a whole (as a monograph), unless permission has been obtained from the 
University 
 

 

 

 



 
 

 

                                                                             

ii  

DECLARATION 

 
I, David Muhangwa Minani, declare that the contents of this thesis represent my own 

unaided work, and that the thesis has not previously been submitted for academic 

examination towards any qualification. Furthermore, it represents my own opinions 

and not necessarily those of the Cape Peninsula University of Technology. 

 
 
 
                  07 November 2013 

   
Signed       Date



 
 

 

                                                                             

iii  

KEY WORDS 

 
 Competency Framework 

 
 Computer Programmer 

 
 Computer Programming 

 
 Developer 

 
 Information Technology 

 
 Programmer 

 
 Software 

 
 Software Architect 

 
 Software Architecture 

 
 Software Developer 

 
 Software Development 

 
 Software Engineer 

 
 Software Engineering 

 
 Software Framework 

 
 Software Programmer 

 
 Software Skills 

 
 Software Technology 

 
 Software Tools 

 
 System Developer 

 
 Systems Architect 

 
 Systems Consultant 

 
 Systems Designer 

 
 Web Designer 

 
 Web Developer 

 
 Webmaster 

 

 



 
 

 

                                                                             

iv  

ABSTRACT 

 
The application of software systems in business organizations continue to increase 

as the Internet technology grows. Business processes that previously required 

manual interventions are becoming automated using software systems. The use of 

software systems is fundamental to electronic processing of business transactions. 

More business organizations, large and small, are utilizing information technology in 

order to have competitive advantage in the business arena. Software is ubiquitous. 

Among areas where software plays core roles are e-Banking where software 

systems are used to process banking transactions, e-Health where software systems 

are used to facilitate activities in the health sector, e-Commerce where software 

systems are used to facilitate online business transactions, e-Government where 

software system are used to facilitate government activities and e-Learning where 

software systems are used to facilitate the teaching and learning process.  

 

Nevertheless, the large number of failing software projects and the increase in 

software security problems coupled with shortage of skilled software developers are 

still major obstacles in the software development industry. Among others, the solution 

can be achieved by improving the competency of software developers so that 

software systems developed are of good quality, safe, robust, and support business 

objectives. Software companies and business organizations stand a big chance to 

increase their return on investment (ROI), if competencies of software developers are 

improved. A software developer plays critical roles in software development projects. 

A software developer, however, requires specific skills and knowledge in order to 

develop software systems that solve problems and deliver solutions.  

 

This research is about competencies of software developers. The research focuses 

on software development activities performed by software companies and business 

organizations within the Western Cape Province. The unit of analysis is software 

developers. Data pertaining to tasks performed by software developers, tools used 

by software developers and skills required were collected, examined and analysed. 

The objective of the research is to develop a competency framework for software 

developers. It can be used by institutions and the industry to provide better 

education. Most importantly, the industry will have access to competent software 

developers who can perform their job well. As justified in this research, knowledge of 

a competency framework for software developers is extremely essential. 



 
 

 

                                                                             

v  

ACKNOWLEDGEMENTS 

 
I would like to thank everyone who has encouraged or helped me along the way. 

Without you, my journey of research project to produce this master’s thesis would not 

have been possible. 

 
A special thanks goes out to: 

 
 Prof Retha de la Harpe for encouragement, guidance, advice and support. 

 Mr Temuso Makhurane for guidance and advice. 

 Prof Richard T. Turley of Colorado State University in USA for advice. 

 Prof James Bieman of Colorado State University in USA for advice. 

 Mr Raymond Bernardo for promoting the research. 

 Dr Andre de la Harpe for advice. 

 Mr John Nongalaza for encouragement and advice. 

 Mr Swedi Ramadhani for encouragement. 

 Mr Roger Norton of Silicon Cape for promoting awareness of the research. 

 Ms Jenny McKinnell of Cape Information Technology Initiative (CITI) for 

promoting awareness of the research. 

 Ms Bridgetti Lim Banda for promoting awareness of the research. 

 Ms Corrie Uys for advice during statistics data analysis. 

 Dr Stuart Warden for initial contribution towards this research. 

 My beloved family: parents, brothers and sisters for motivation: 

Mr David Tibanywana, Ms Christina Kamulenzi, Mr Muganyizi,  

Ms Gladness, Ms Kokubelwa, Ms Kemilembe, Mr Innocent and Mr Allen for 

motivation, support and encouragement. 

 CPUT RISC Library staff for their support. 

 Survey Gizmo team for online support towards data collection and analysis. 

 All software developers who voluntarily availed themselves for this research. 

 All friends and colleagues who in one way or the other contributed towards 

the success of this research project. 

 Lastly but not the least, the Almighty God for blessings and strength. 

 
 
The financial assistance of the Cape Peninsula University of Technology towards this 

research is acknowledged. Opinions expressed in this thesis and the conclusions 

arrived at, are those of the author, and are not necessarily to be attributed to the 

Cape Peninsula University of Technology. 



 
 

 

                                                                             

vi  

DEDICATION 

 
 

 

 

 

 

To the memory of my wonderful mother, Christina Kamulenzi Tibanywana; 

Mama, I cannot thank you enough, I love you and I miss you dearly; 

To the memory of my beloved grandmother Kamarole Tibanywana, and  

my beloved grandfather Julius Tibanywana;  

 I love you and  I miss you. 

You all will indeed be missed. 

May the spirit of our Lord, The Almighty God be with you forever. 

Rest In Peace. 

 



 
 

 

                                                                             

vii  

TABLE OF CONTENTS 

DECLARATION ....................................................................................................... ii 

KEY WORDS ......................................................................................................... iii 

ABSTRACT ............................................................................................................ iv 

ACKNOWLEDGEMENTS ........................................................................................ v 

DEDICATION ......................................................................................................... vi 

LIST OF FIGURES ................................................................................................ xii 

LIST OF TABLES ................................................................................................. xiii 

APPENDICES ...................................................................................................... xiii 

GLOSSARY ......................................................................................................... xiv 

CHAPTER ONE: RESEARCH INTRODUCTION .................................................... 1 

1.1 Introduction ................................................................................................ 1 

1.2 Background to the research problem ......................................................... 2 

1.3 Statement of the research problem ............................................................ 8 

1.4 Research question, sub-question and objectives ....................................... 9 

1.5 Literature survey ........................................................................................ 9 

1.5.1 The environment of a software developer ................................................ 10 

1.5.1.1 Inputs ....................................................................................................... 10 

1.5.1.2 Output ...................................................................................................... 11 

1.5.1.3 Hardware ................................................................................................. 11 

1.5.1.4 Software .................................................................................................. 11 

1.5.1.5 Data ......................................................................................................... 12 

1.5.1.6 Business procedure ................................................................................. 12 

1.5.1.7 People ..................................................................................................... 12 

1.5.2 Software Development Life Cycle ............................................................ 13 

1.5.2.1 Phase 1: Requirement analysis ............................................................... 14 

1.5.2.2 Phase 2: System and software design ..................................................... 15 

1.5.2.3 Phase 3: Implementation and unit testing ................................................ 15 

1.5.2.4 Phase 4: Integration and system testing .................................................. 16 

1.5.2.5 Phase 5: Operation and maintenance ...................................................... 16 

1.5.3 Challenges of a software developer ......................................................... 16 

1.5.4 Software developer and software reuse ................................................... 17 

1.5.5 Software project management ................................................................. 17 

1.6 Research design ...................................................................................... 18 

1.7 Delineation of the research ...................................................................... 20 

1.8 Contribution of the research ..................................................................... 20 



 
 

 

                                                                             

viii  

1.9 Chapter summary .................................................................................... 22 

1.10 Thesis structure ....................................................................................... 22 

1.11 Conclusion ............................................................................................... 24 

CHAPTER TWO: LITERATURE REVIEW ............................................................ 25 

2.1 Introduction .............................................................................................. 25 

2.2 General situation of software projects ...................................................... 25 

2.2.2 Software project characteristics ............................................................... 26 

2.2.3 Complexity of software projects ............................................................... 28 

2.2.4 Project management of software projects ................................................ 30 

2.3 Recent studies on competencies ............................................................. 31 

2.4 Software development process ................................................................ 34 

2.4.1 Requirements analysis ............................................................................. 35 

2.4.1.1 Types of software requirements ............................................................... 37 

2.4.1.2 Requirements life cycle ............................................................................ 39 

2.4.1.3 Techniques used during requirements analysis ....................................... 40 

2.4.1.4 Skills required during requirement analysis .............................................. 41 

2.4.2 System and software design .................................................................... 41 

2.4.2.1 Advantages of software architecture ........................................................ 42 

2.4.2.2 Categories of design ................................................................................ 43 

2.4.2.3 Service oriented architecture ................................................................... 45 

2.4.3 Implementation and software testing ........................................................ 56 

2.4.3 Integration and system testing ................................................................. 58 

2.4.4 Operation and maintenance ..................................................................... 60 

2.5 Chapter summary .................................................................................... 63 

2.6 Conclusion ............................................................................................... 63 

CHAPTER THREE: RESEARCH METHODOLOGY ............................................. 65 

3.1 Introduction .............................................................................................. 65 

3.2 Categories of research paradigm ............................................................. 65 

3.3 Research methodology ............................................................................ 68 

3.4 Typical research techniques used in requirement analysis....................... 69 

3.5 Research design for this study ................................................................. 71 

3.5.1 Survey questionnaire ............................................................................... 72 

3.5.2 Interviews ................................................................................................ 75 

3.6 Research population and sampling .......................................................... 76 

3.7 Reliability and validity of research methodology ....................................... 77 

3.8 Ethics, Consent and Confidentiality .......................................................... 79 

3.9 Chapter Summary .................................................................................... 79 



 
 

 

                                                                             

ix  

3.10 Conclusion ............................................................................................... 79 

CHAPTER FOUR: DATA ANALYSIS AND PRESENTATION ............................... 80 

4.1 Introduction .............................................................................................. 80 

4.2 Quantitative data analysis ........................................................................ 80 

4.2.1 Profile of software developer .................................................................... 81 

4.2.1.1 Gender of respondents ............................................................................ 82 

4.2.1.2 Age of respondents .................................................................................. 82 

4.2.1.3 Race of respondents ................................................................................ 83 

4.2.1.4 Citizenship of software developer respondents ........................................ 84 

4.2.1.5 Work experience of software developer respondents ............................... 85 

4.2.1.6 Time taken to become self-dependent software developer ...................... 86 

4.2.1.7 Software development certification status ................................................ 87 

4.2.1.8 Education background of respondents ..................................................... 88 

4.2.1.9 Current position of respondents ............................................................... 89 

4.2.1.10 Province of respondents ...................................................................... 90 

4.2.2 Software development technologies ........................................................ 91 

4.2.2.1 Software development environment tools ................................................ 91 

4.2.2.2 Programming technologies ...................................................................... 93 

4.2.2.3 Database Management Systems ............................................................. 95 

4.2.2.4 Code version control tools........................................................................ 97 

4.2.2.5 Application servers................................................................................... 98 

4.2.2.6 Software installation environment ............................................................ 99 

4.2.3 Tasks performed by software developers ............................................... 100 

4.2.4 Skills of software developers .................................................................. 101 

4.3 Qualitative data analysis ........................................................................ 105 

4.3.1 Open-ended question (Other skills of software developers) ................... 107 

4.3.2 Data analysis of interviews ..................................................................... 112 

4.3.2.1 First Company ....................................................................................... 114 

4.3.2.2 Second Company .................................................................................. 117 

4.3.2.3 Third Company ...................................................................................... 119 

4.3.2.4 Fourth Company .................................................................................... 124 

4.3.2.5 Fifth Company ....................................................................................... 126 

4.3.2.6 Sixth Company ...................................................................................... 127 

4.4 Chapter Summary .................................................................................. 129 

4.5 Conclusion ............................................................................................. 129 

CHAPTER FIVE: RESEARCH DISCUSSION ..................................................... 130 

5.1 Introduction ............................................................................................ 130 



 
 

 

                                                                             

x  

5.2 Discussion on results of quantitative data analysis ................................ 130 

5.2.1 Profile of software developers ................................................................ 130 

5.2.1.1 Gender of respondents .......................................................................... 130 

5.2.1.2 Age of respondents ................................................................................ 131 

5.2.1.3 Race of respondents .............................................................................. 131 

5.2.1.4 Citizenship of respondents ..................................................................... 132 

5.2.1.5 Work experience of respondents............................................................ 133 

5.2.1.6 Time taken to become self-dependent software developer .................... 133 

5.2.1.7 Software development certification status .............................................. 133 

5.2.1.8 Education background of respondents ................................................... 134 

5.2.1.9 Current position of respondents ............................................................. 134 

5.2.1.10 Province of respondents .................................................................... 134 

5.2.2 Software development technologies ...................................................... 135 

5.2.2.1 Software development environment (IDE) tools ..................................... 135 

5.2.2.2 Programming technologies .................................................................... 135 

5.2.2.3 Database Management System (DBMS) ............................................... 135 

5.2.2.4 Code version control tools...................................................................... 136 

5.2.2.5 Application servers................................................................................. 136 

5.2.2.6 Software installation environment .......................................................... 136 

5.2.3 Tasks performed by software developers ............................................... 137 

5.3 Discussion on results of qualitative data analysis ................................... 137 

5.3.1 Skills of software developers (Open-ended question of questionnaires) . 138 

5.3.2 Discussion on interviews ........................................................................ 138 

5.3.2.1 Major skills of a software developer ....................................................... 139 

5.3.2.2 Technical ability of new software developers ......................................... 139 

5.3.2.3 Skills regarding software development for mobile devices ..................... 140 

5.3.2.4 Software applications developed by most of companies ........................ 140 

5.4 Chapter Summary .................................................................................. 141 

5.5 Conclusion ............................................................................................. 141 

CHAPTER SIX: RECOMMENDATIONS AND CONCLUSION ............................ 142 

6.1 Introduction ............................................................................................ 142 

6.2 Research summary ................................................................................ 142 

6.3 Recommended SDCF revealed and explained ...................................... 144 

6.4 Recommendations ................................................................................. 149 

6.5 Message to institutions and the industry ................................................ 154 

6.6 Limitations of the study .......................................................................... 157 

6.7 Future studies ........................................................................................ 158 



 
 

 

                                                                             

xi  

6.8 Conclusion ............................................................................................. 158 

LIST OF REFERENCES .................................................................................... 161 

Appendix A: Questionnaire ................................................................................. 169 

Appendix B: Introductory letter to the industry .................................................... 177 

Appendix C: Letter to CPUT internship coordinators .......................................... 178 

Appendix D: Email to software developers ......................................................... 179 

Appendix E: List of companies requested to participate in this research ............. 180 



 
 

 

 

xii  

LIST OF FIGURES 
 

Figure 1.1: Importance of Competency Framework for Software Developers ............ 5 

Figure 1.2: Components of information systems  ..................................................... 10 

Figure 1.3: The waterfall model  .............................................................................. 14 

Figure 1.4: Thesis structure ..................................................................................... 23 

Figure 2.1: Requirements in the V-model  ............................................................... 38 

Figure 2.2: Requirements engineering process  ...................................................... 39 

Figure 2.3: The three-tier architecture . ................................................................... 45 

Figure 2.4: Four layers of web service architecture  ................................................ 49 

Figure 2.5: Web service objects and operations  ..................................................... 51 

Figure 2.6: V-model showing test plans  .................................................................. 59 

Figure 2.7: Software installation strategies  ............................................................. 62 

Figure 3.1: Four paradigms of social research  ........................................................ 66 

Figure 3. 2: Competencies of software developers under investigation ................... 72 

Figure 4.1: Response status of questionnaire ......................................................... 81 

Figure 4.2: Gender of respondents  ......................................................................... 82 

Figure 4.3: Age in years  ......................................................................................... 83 

Figure 4.4: Race of respondents  ............................................................................ 84 

Figure 4.5: Citizenship of respondents  ................................................................... 85 

Figure 4.6: Years of work experience  ..................................................................... 86 

Figure 4.7: Time taken to become self-dependent  .................................................. 87 

Figure 4.8: Software development certification status  ............................................. 88 

Figure 4.9: Education background of respondents  ................................................. 89 

Figure 4.10: Current position of software developer  ............................................... 90 

Figure 4.11: Province of respondents  ..................................................................... 91 

Figure 4.12: Software development tools  ............................................................... 92 

Figure 4.13: Programming technologies  ................................................................. 95 

Figure 4.14: Database management system  .......................................................... 96 

Figure 4.15: Figure 4.15: Code version control tool  ................................................ 98 

Figure 4.16: Application server  ............................................................................... 99 

Figure 4.17: Software installation environment  ..................................................... 100 

Figure 4.18: Software development tasks  ............................................................. 101 

Figure 4.19: Skills of software developers – Agree  ............................................... 103 

Figure 4.20: Skills of software developers – Don’t know  ....................................... 104 

Figure 4.21: Skills of software developers – Disagree  .......................................... 105 

Figure 4.22: Other skills of software developers  ................................................... 108 



 
 

 

 

xiii  

Figure 4.23: Technologies used by interviewed the software developers .............. 113 

Figure 6.1: Software developer competency framework (SDCF) ........................... 143 

Figure 6.2: Competency Cycle .............................................................................. 155 

 

LIST OF TABLES 

Table 4.1: Response status of questionnaire  .......................................................... 80 

Table 4.2: Gender  .................................................................................................. 82 

Table 4.3: Age in years  .......................................................................................... 83 

Table 4.4: Race of software developer respondents  ............................................... 84 

Table 4.5: Citizenship of respondents  .................................................................... 85 

Table 4.6: Work experience in years  ...................................................................... 86 

Table 4.7: Time taken to become self-dependent  ................................................... 87 

Table 4.8: Time taken to become self-dependent  ................................................... 87 

Table 4.9: Education background of respondents  ................................................... 88 

Table 4.10: Current level as a software developer  .................................................. 89 

Table 4.11:  Province of respondents  ..................................................................... 90 

Table 4.12: Software development IDE  .................................................................. 92 

Table 4.13: Programming technologies  .................................................................. 94 

Table 4.14: Database management systems .......................................................... 96 

Table 4.15: Code version control tool  ..................................................................... 97 

Table 4.16: Application server  ................................................................................ 99 

Table 4.17: Software installation environment  ...................................................... 100 

Table 4.18: Software development tasks  .............................................................. 101 

Table 4.19: Skills of software developers - Agree  ................................................. 102 

Table 4.20:  Skills of software developers – Don’t know  ....................................... 103 

Table 4.21:  Skills of software developers – Disagree  .......................................... 104 

Table 4.22:  Other skills of software developers  ................................................... 107 

 

APPENDICES 

Appendix A: Questionnaire ................................................................................. 169 

Appendix B: Introductory letter to the industry .................................................... 177 

Appendix C: Letter to CPUT internship coordinators .......................................... 178 

Appendix D: Email to software developers ......................................................... 179 

Appendix E: List of companies requested to participate in this research ............. 180 



xiv 

 

 
 

GLOSSARY 
 

  Acronym       Explanation 

 

 

  AMS American Medical System 
  API Application Programming Interfaces 
  B2B business-to-business 
  B2C business-to-consumer 
  C# C sharp (programming language) 
  C++ C plus plus (programming language) 
  CIO Chief Information Officer 
  CITI Cape Information Technology Initiative 
  CMM Capability Maturity Model 
  COBOL Common Business Oriented Language 
  CORBA Common Object Request Broker Architecture 
  CPU central processing unit 
  CSS Cascading Style Sheet 
  DB2 Database two 
  DBMS Database Management System 
  DCOM Distributed Component Object Model 
  EJB Enterprise Java Beans 
  FORTRAN Formula Translation (programming language) 
  GABEK Ganzheitliche Bewaltigung Sprachlich Erfasster Komplexitat 
  HCI Human Computer Interface 
  HTML HyperText Markup Language 
  HTTP HyperText Transfer Protocol 
  ICT Information and Communication Technology  
  IDE Integrated Development Environment 
  JQuery JavaScript Library 
  JSON JavaScript Object Notation 
  MVC Model View Controller 
  NIH Not Invented Here (syndrome) 
  OOP Object Oriented Programming 
  ORM Object Relation Mapping 
  PASW Software package used for quantitative data analysis 
  P-CMM people Capability Maturity Model 
  PHP Hypertext Pre-processor (programming language) 
  RAM Random Access Memory 
  RCPSC Royal College of Physicians and Surgeons of Canada 
  ROI Return On Investment 
  SDCF Software Developer Competency Framework 
  SDLC Software Development Life Cycle 
  SEI Engineering Institute 
  SOA Service oriented architecture 
  SOAP Simple Object Access Protocol 
  SQL Structured Query Language 
  SRS software requirements specification 
  TFS Team Foundation Server 
  UDDI Universal Description, Discovery and Integration 
  UML Unified Modelling Language 
  URI Uniform Resource Identifier 
  V&V verification and validation 
  W3C World Wide Web Consortium 
  WCF Windows Communication Foundation 
  WS-BPEL Web Services Business Process Execution Language 
  WSDL Web Services Description Language 
  WWW World Wide Web 
  XML eXtensible Markup Language 



Chapter One: Research Introduction                                                                      1 
 

 

 

CHAPTER ONE: RESEARCH INTRODUCTION 

“If debugging is the process of removing bugs, then programming must be the process of putting 

them in.”  

 (Edsger W. Dijkstra) 

------------------------------------ 

1.1 Introduction 

Following the expansion of Information and Communication Technology (ICT), software 

systems are part and parcel of most of activities performed by human beings. Many 

activities that used to be conducted and performed manually are becoming automated 

by using software systems (Bosch, 2009:192; Ruxwana, Herselman & Conradie, 

2010:17; Cloete, 2011:17). Typical examples are evident in e-Banking where software 

systems are used to facilitate banking services, in e-Health to facilitate healthcare 

services, in e-Commerce to facilitate online business transactions, in e-Government to 

facilitate government services and in e-Learning to facilitate the teaching and learning 

process. Software developers develop software systems for both small and large 

business organizations. The developed software systems however must satisfy user 

needs in order for business objectives to be met. While many software projects are 

conducted, it appears that only a few are successful (Galorath, 2009). Furthermore, the 

shortage of skilled software developers continues to impact the ability of the software 

industry to deliver (Roodt & Paterson, 2009:195-196). 

 

With the need of using ICT to conduct business activities, software developers have 

important roles to play to ensure that good quality, robust, secure, safe, and user friendly 

software systems are developed. This research is about competencies of software 

developers. In section 1.2, the background to the research problem is discussed 

followed by statement of the research problem and research question, sub-questions 

and objectives in section 1.3 and section 1.4 respectively. Literature survey is introduced 

in section 1.5 and discussed in detail in chapter two. Research design is introduced in 

section 1.6 and discussed in detail in chapter three. Section 1.7 indicates the delineation 

of research while section 1.8 shows contribution of the research. The chapter ends with 

chapter summary in section 1.9, thesis structure in section 1.10 and conclusion in 

section 1.11. 



Chapter One: Research Introduction                                                                      2 
 

 

 

1.2 Background to the research problem 

Software can be defined as a program that accepts inputs and converts those inputs into 

outputs, by using a specific algorithm in order to solve a particular problem. However, in 

the real world software is more complex than just a program. According to Sommerville 

(2007:5), software is not only the computer program but also includes all associated 

documentation and configuration data required in order for the program to function 

correctly. Satzinger, Jackson and Burd (2004:36) emphasize that the program comes 

much later in the development process. It is important for software developers to view 

software as more than just a program. System documentation to describe the structure 

of the system and user documentation to provide information to users as how to use the 

program are part and parcel of software. A software developer requires outstanding 

competency, skills and knowledge to develop software that addresses real world 

problems. 

 

Software projects can be categorized into three major groups: successful, challenged 

and impaired projects (Yeo, 2002:241). Similarly, Stepanek (2005) classifies software 

projects into three categories namely: successful, challenged and failed projects. 

Successful projects are completed on time, within budget limits and deliver customer 

needs at the required quality. Challenged projects are completed but are over budget, 

over the estimated project duration or provide only some of the required functionalities. 

Failed projects are never completed; instead they are abandoned or closed down. While 

a project may be completed on time, within budget and delivering quality functionalities 

as per the set out requirements, they may not be accepted by users, which hamper the 

usability and productivity of the software products (Yeo, 2002:241). The  usage of 

software does not necessarily suggest the acceptability of the system, however, it could 

be due to the fact that users have no alternative hence are forced by the circumstances 

to accept the product (Yeo, 2002:242).  

 

While many software projects are conducted, only a few are rated as being successful. 

The Standish Group (2001) reports about the studies on software projects, which 

indicate that only 28 percent of software projects were considered as successful, while 

49 percent were challenged, and 23 percent failed. The number of challenged and failed 

projects continues to outweigh the number of successful projects (Agarwal & Rathod, 



Chapter One: Research Introduction                                                                      3 
 

 

 

2006). In a study comprised of 250 software projects, Jones (2004b:5) reports that only 

25 were categorized as successful; met their schedule, cost and quality objectives, 50 

were delayed and 175 experienced major delays or were terminated without completion. 

Furthermore, Franco (2012) reports that in a survey on software development in South 

Africa with 186 respondents, only 48.30 percent of respondents indicated that their 

software development projects were successful. This implies that more than half of 

respondents consider their projects as a failure. Software development continues to be a 

challenging field where more efforts are still required in order to bring about success in 

software projects.   

 

According to Nieman and Bennett (2006:285), the advent of Internet technology has 

contributed to the increase in the use of software systems, especially in the business 

world. Software is not only ubiquitous but also part and parcel of both small and large 

business organizations. However, poorly developed software is a major contributing 

factor to the increase of security threats on the Internet (Viega & McGraw, 2002:3). 

According to Hook (2000:14), security threats such as denial-of-service attacks, viruses, 

worms and Trojan horses are major concerns that businesses have to deal with 

regularly. Hook (2000:15) further report that many companies, including Microsoft 

Corporation spend millions of dollars a year for testing systems in order to discover and 

address software vulnerabilities that can be prone to attacks. Microsoft, for instance, has 

a specialized team of software engineers whose main job is to investigate attack 

techniques used by hackers. The team investigates hacking techniques to accumulate 

hacking knowledge that can be used by software developers to avoid vulnerabilities in 

order to prevent future system attacks (Hook, 2000).  

 

According to Viega and McGraw (2002:11) software security is considered as a separate 

feature within the software development life cycle. This results into production of 

software with holes and vulnerable to attacks. Shreyas (2002) mentions that current 

software development processes incorporate security in the system once all functional 

requirements have been addressed. Furthermore, Shreyas (2002) mentions that the 

focus of software developers tends to be on functional requirements and meeting 

deadlines within budget. Security tends not to be a priority for software developers even 

in cases where security threats are easily noticeable.  This has led to production of 

poorly written software with many security vulnerabilities, which is a great opportunity for 



Chapter One: Research Introduction                                                                      4 
 

 

 

malicious hackers and crackers. McGraw (2002) argues that security is an emergent 

property and not a feature that can be pasted onto the system. Implementing security 

features once software has been developed requires enormous architectural and coding 

changes. The process of incorporating changes can be a hundred times more expensive 

than if security is built into the software during the software development process 

(Gegick & Williams, 2007:381). Many changes can introduce more security flaws 

resulting in the increase of software vulnerabilities. Therefore, software developers have 

great roles to play to ensure production of safe, secure, robust and vulnerability free 

software systems. 

 

Lucia and Lepsinger (1999:5) describe competency as a tool that can be used to identify 

skills, knowledge, personal characteristics and behaviour associated with efficient 

performance of a given career. This is required to effectively execute a role in an 

organization in order for the business to meet its strategic goals. Mirabile (1997:21) 

defines competency as knowledge, skills, ability or characteristics that can be associated 

with high performance on a given job. Gangani, McLean and Braden (2004:1111) define 

competency as a description of skills, knowledge, behaviours, personal characteristics 

and motivations associated with success in a job. Turley and Bieman (1995), mention 

that job competency is a contributing factor to the success of a given job. Turley and 

Bieman (1995:25) further define job competency as any attribute that contributes to 

doing a specific job well such as knowledge, ability, interest and motivation. In this 

research a Software Developer Competency Framework (SDCF) is defined as a 

structure comprised of tasks, tools, skills, knowledge and attributes that are essential for 

the effective performance and success of software development activities. 

 

With reference to Satzinger et al. (2004:13), many job titles are used interchangeably to 

describe a person dealing with production and development of software. While there are 

different specialities in software projects many experts share common tasks. Depending 

on the organization structure, job titles such as system developer, systems architect, 

webmaster, software engineer, systems consultant, software developer, software 

programmer, web developer, systems designer and many others are used 

interchangeably to refer to similar job titles with similar responsibilities. In this research, 

however, the title software developer is used to refer to any individual whose main job is 

to engineer and develop software systems. 



Chapter One: Research Introduction                                                                      5 
 

 

 

 

A software developer requires specific skills and knowledge in order to develop software 

that solves problems in order to deliver intended solutions. This is a challenge to 

education institutions, as providers of software developers, whose main responsibility is 

to inculcate required skills and knowledge in order for students to become qualified and 

competent software developers. Likewise, an individual, who is passionate about 

software development as a career, should be familiar with skills and knowledge that are 

required in order to function effectively as a competent software developer. A person can 

then work on required areas of skills and knowledge in order to develop essential 

competencies to become a competent software developer. With reference to Figure 1.1, 

the primary objective of this research is to develop a competency framework for software 

developers. 
 

  

Industry

School

Person

C
o

m
p

e
te

n
c
ie

s
 fo

r S
o

ftw
a

re

D
e

v
e

lo
p

e
r

needs

needs

needs

has

Software

developer

 

Figure 1.1: Importance of Competency Framework for Software Developers 

 

A software competency framework is not only important to education institutions but also 

to the industry as the employer of software developers. As it is the goal of institutions to 

provide better education, it is in the best interest of software and business companies to 

employ competent software developers who can do their job well. 



Chapter One: Research Introduction                                                                      6 
 

 

 

 

Nieman and Bennett (2006:246) mention that one of the main duties of human resource 

departments is to perform job analysis in order to determine substance, demands and 

responsibilities of a job. This is done by collecting relevant information about the job; 

prepare a job description, which consists of job requirements and matching the job 

description to job specification. Skills, knowledge and ability are the main ingredients of a 

job description. Hence, a competency framework for software developers can assist 

human resources management to determine the suitability of an employee as a 

competent software developer.  

 

The Software Engineering Institute (SEI) developed several frameworks such as P-CMM 

(People Capability Maturity Model) and CMM (Capability Maturity Model). P-CMM is 

about improving ways the organization can manage its human resources. P-CMM 

focuses on improving the management of people since it provides a framework for 

motivating, recognizing, standardising and improving good practice (Sommerville, 

2007:609).  CMM is a framework for assessing the capabilities of contractors who 

develop software for other organizations (Sommerville, 2007:680). SEI was established 

to improve the capabilities of the USA software industry and it focuses on large projects 

for large organizations. Sommerville (2007:668) reports that large projects spend more 

time on integration, project management and communication in order to understand 

many parts of the software system than on developing activities. Nevertheless, small 

projects spend more time on designing and programming of software systems. While 

CMM and P-CMM are useful guides to improve production of high quality software, these 

models are designed for large organizations rather than for small organizations. In 

addition, the complete application of these models is very expensive and unnecessary to 

most organizations (Sommerville, 2007:609). Therefore, the practical applications of P-

CMM and CMM are very limited in the South African context where most of software 

development is done by small organizations. 

 

It is not uncommon for business organizations to use competency frameworks. Roles of 

medical experts evolve at a quick pace following continuous changes in biological, social 

and clinical sciences (Frank, 2005). In order to address constantly changing demands for 

medical professions, Frank (2005), reports about a project initiated by the Royal College 

of Physicians and Surgeons of Canada (RCPSC). The purpose of the project was to 



Chapter One: Research Introduction                                                                      7 
 

 

 

identify competencies of medical professions including physicians and surgeons which 

resulted in the creation of a competency framework for medical experts. Frank (2005) 

mentions that a competency framework is being used by practicing physicians as a 

resource for professional development such as self-assessment and evaluation to 

ensure highest standards and highest quality of health care. Furthermore, Frank (2005) 

finds that a competency framework is being used by educators and teachers as a 

standard for education delivery to ensure that physicians are equipped with essential 

competencies for effective medical practice and health care. 

 

With reference to the Standish Group (2001), lack of competent staff is among the 

recurring factors depicted in most reports about failure of software projects. According to 

Galorath (2009), the Standish Group report of 2009 on software projects indicates that 

only 32 percent of software projects were successful while 44 percent are challenged 

and 24 percent failed. According to Serpell and Ferrada (2007:587), developing 

countries suffer from inadequate number of trained workers in a large scale. Calldo 

(2008) and Calitz (2011) report about business organizations in South Africa struggling 

to find professionals with the required ICT1 skills sets. Furthermore Roodt and Paterson 

(2009:195-196) report of skills shortage for computer professionals, predominantly 

systems analysts and programmers also known as software developers, as a problem  

that will continue to be experienced, in South Africa, if graduate output does not 

increase.  

 

While there are many categories of staff involved in software projects, the key staff who 

ensure the engineering and development of the software are software developers. 

According to Turley and Bieman (1995:1), the attributes of software developers are the 

most important factors determining the success of software development. The quality of 

software reflects attributes, skills and knowledge of software developers involved in the 

engineering and development processes of the software. Colomo-Palacios, Casado-

Lumbreras, Soto-Acosta, García-Peñalvo and Tovar-Caro (2013:456) agree that the 

quality of software products depend on knowledge and ability of software developers.  

 

                                                 

 
1
 ICT: Information and Communication Technology 



Chapter One: Research Introduction                                                                      8 
 

 

 

A competency framework for software developers can help to determine and identify 

essential attributes and skills of competent software developers. 

1.3 Statement of the research problem 

As reflected in the background section it is revealed that most software projects fail and 

that the increase in software security problems is largely due to poorly developed 

software. Knowledge and information technology are key factors for survival in the 

competitive business world (Ahn & McLean, 2008:542). Business organizations need to 

utilize the best and the most information technology can offer in order to have a 

competitive advantage in the business world. The large number of failing software 

projects and the increase in software security problems are the major obstacles in the 

software development industry. Among others, the solution can be achieved by 

improving the competency of software developers so that software developed are of 

good quality, safe, robust and support business objectives. Therefore determining the 

essential competencies of software developers is vital, if an enterprise has to have 

suitable and competent employees as software developers and if education institutions 

are to produce suitable and competent candidates for software development activities. 

Hence the purpose of this research which is to identify and determine essential 

competencies of a software developer in order to develop a Software Developer 

Competency Framework (SDCF). 



Chapter One: Research Introduction                                                                      9 
 

 

 

1.4 Research question, sub-question and objectives 

Research Problem 

 

The large number of failing software projects and the 

increase in software security problems are the major 

problems in the software development industry. As 

such, there is shortage of skilled software developers. 

Among others, the solution can be achieved by 

improving the competency of software developers so 

that software developed are of good quality, safe, 

robust and support business objectives. However, the 

challenge is to determine essential competencies of a 

software developer. 

Research Question 

 

What are the fundamental competencies of a software 

developer? 

 

Research sub-question Research methods Objectives 

How is software 

developed? 

Literature study, 

survey and 

interviews  

Understand which steps are 

involved in the software 

development process in order to 

determine tasks performed by 

software developers. 

What technologies and 

tools are used to develop 

software? 

Literature study, 

survey and  

interviews  

Understand which technologies 

and tools are used to develop 

software systems. 

What are essential skills 

required in order to 

develop software? 

Literature study, 

survey and 

interviews 

Determine skills and knowledge 

required by software developers 

1.5 Literature survey 

In this section, the work environment of a software developer is explored. This is in order 

to determine which software components regularly interact with software developers. As 

such, the Software Development Life Cycle (SDLC) is briefly examined to determine 



Chapter One: Research Introduction                                                                      10 
 

 

 

tasks performed by software developers. In conclusion, challenges of a software 

developer, software reuse and software project management are briefly discussed. 

1.5.1 The environment of a software developer 

The need for software emanates from the need to solve a particular business problem in 

order to achieve specific business objectives. Satzinger et al. (2004:4) mention that one 

of the major goals of a software developer is to solve business problems. The 

environment of a software developer in the business world is complex. With reference to 

Figure 1.2, Satzinger et al. (2004:7) describe interacting components of information 

systems as inputs, output, hardware, software, data, procedures and people.  

 

Data
Procedure

C++ Jave C# Cobol

Software

Inputs

Hardware

People

Inputs
such as information

 systems requires
inputs to perform
specific processing.

Outputs

 

Figure 1.2: Components of information systems (adapted from: Satzinger et al., 2004:7) 

 

These components constitute the work environment of a software developer. The 

competency of a software developer can therefore be investigated by examining 

components of information systems in order to determine activities performed by a 

software developer. 

1.5.1.1 Inputs 

Software for information systems requires inputs to perform specific processing. Inputs 

are usually channelled to the system by actors; users or other external systems. The 

point of contact is required in order for the system to accept inputs. This is commonly 

known as an interface (Bennett, McRobb & Farmer, 2006:440).  The interface can be 



Chapter One: Research Introduction                                                                      11 
 

 

 

between users and the system, which is known as human-computer interface (HCI), or 

between one system and another which is called system interface. A software developer 

has responsibilities to ensure that the system has interface to be able to interact with 

actors. It is thus important to understand competencies required by a software developer 

in order to develop input-to-system interface. 

1.5.1.2 Output 

Once inputs have been processed, outputs are normally produced. Outputs could be 

stored, delivered to another system, displayed to users or even used as inputs for further 

processing in order to produce other outputs (Klein & Ralya, 1990:5-7). Depending on 

the purpose of the system processing, a software developer has responsibilities as far as 

system outputs are concerned. Hence, it becomes paramount to establish what 

techniques and tools are required when modelling and developing system outputs. 

1.5.1.3 Hardware 

According to Malik (2004:3), major hardware components are central processing unit 

(CPU), random access memory (RAM) and input/output devices such as keyboard, 

mouse, screen and printer. In simplicity, hardware could refer to any part of the system 

that is physical and tangible. It is important to establish skills and knowledge required 

for a software developer to effectively utilize hardware involved in the software 

development process. 

1.5.1.4 Software 

This section refers to software as computer programs; which is the core of software 

development. According to Malik (2004:6) software are programs written to perform 

specific tasks. Malik (2004:6) further mentions that there are two types of programs 

namely system programs and application programs. System programs such as the 

operating system control the computer while application programs such as word 

processors perform specific tasks. Nevertheless all programs: desktop applications, 

internet applications, mobile applications and operating systems, are written by software 

developers using programming languages. Hence, it is important to establish the 



Chapter One: Research Introduction                                                                      12 
 

 

 

competencies required by a software developer in order to write software (computer 

programs).  

1.5.1.5 Data 

According to Rob and Coronel (2004:7), data is raw information that has to be processed 

in order to provide information that can be used by users. Data are inputs to computer 

programs and data can be received from users, files, XML (eXtensible Markup 

Language) documents and databases. Morrison and Morrison (2003:633) mention that 

databases are essential for dynamic websites such as e-commerce applications. 

Computer programs and data are inseparable. Hence, it is important to establish skills 

and knowledge required for a software developer to deal with data used in a software 

program. 

1.5.1.6 Business procedure 

Business procedures determine business policies, regulations or constraints that must 

be adhered to during the execution of business operations (Leymann & Altenhuber, 

1994). Business procedures describe how an enterprise will achieve its business goals. 

User requirements, which translate into system requirements, are sources of business 

procedures that must be implemented by software. According to Van Vliet (2007), 

software must support users effectively. Violation of business procedures can be 

disastrous to an enterprise by changing its business goals. Leymann and Altenhuber 

(1994) explained that information technologies used by an enterprise must support its 

business procedures. It is imperative therefore to establish skills and knowledge required 

by software developers to translate correctly business procedures into software.  

1.5.1.7 People 

Olson (2004:12) mentions that poor user involvement is among the top reasons for 

failure of software projects. Sommerville (2007:363) recommends that users need to be 

involved in the software design process for the software system to achieve its full 

potential. Real world projects are complex and require teamwork where each team 

member has roles to play. Olson (2004:12) mentions that top management support is 

also among top reasons for failure of software projects. Due to competition for scarce 



Chapter One: Research Introduction                                                                      13 
 

 

 

resources among projects, a software developer should be able to convince 

management for resources. Users, team members and management are key elements 

for the success of a project. It is therefore essential to establish skills required by 

software developers in order to effectively deal with people involved in the software 

project. 

1.5.2 Software Development Life Cycle 

According to Satzinger et al. (2004:36), a software development process is divided into 

different phases that form a software development life cycle (SDLC). There are many 

methodologies, approaches or processes used to execute phases of software 

development life cycle during a software project. These methodologies range from the 

primitive waterfall methodology to the advanced incremental and iterative methodologies 

to software development (Hughes & Cotterell, 2006:75-89). Each methodology has its 

advantages and disadvantages. The selection of a methodology however, depends on 

the nature and complexity of the software project. For instance due to the risky, 

uncertain and complex nature of large software projects, the iterative, prototyping and 

incremental methodologies are preferred to primitive methodologies such as the waterfall 

methodology (Hughes & Cotterell, 2006:75-89). Iterative approach is ideal for dealing 

with risks while prototyping is suitable for addressing uncertain situations in a software 

project, such as unclear user requirements.  

 

The waterfall methodology divides software development activities into distinct tasks or 

phases where one phase continues after one phase has finished. For example, design 

of the system only begins once the user requirement phase is completely done and 

closed. The waterfall methodology is thus structured but not appropriate for large 

projects. However, it is this structured organization of waterfall that makes it ideal for 

learning purposes in order to understand distinct activities involved in each phase of a 

software project. With reference to Figure 1.3, the waterfall model is divided into five 

phases namely: requirement analysis, system and software design, implementation and 

unit testing, integration and system testing as well as operation and maintenance 

(Sommerville, 2007:66). While there are many methodologies, fundamental activities as 

indicate by the waterfall methodology, are common to all other methodologies. This 

research therefore utilizes the waterfall methodology as a generic model to determine 



Chapter One: Research Introduction                                                                      14 
 

 

 

activities performed by software developers in each phase of a software development life 

cycle.  

 

Requirement

Analysis

System and
software design

Implementation
and unit testing

Operation and
maintenance

Integration and
system testing

 

Figure 1.3: The waterfall model (adapted from: Sommerville, 2007:66) 

1.5.2.1 Phase 1: Requirement analysis  

The goal of an information system is to satisfy specific user needs (Satzinger et al., 

2004:6). A software developer should develop software that satisfies user requirements. 

Hence the objective of the requirement analysis phase which is to understand and 

establish user requirements. According to Sommerville (2007:118), the process of 

finding out, analysing and documenting user needs is called requirement engineering. 

Some of techniques that a software developer might use to determine user requirements 

include gathering information by interviewing users, defining system requirements and 

building prototypes in order to discover user needs. During this phase, a software 

developer has to work closely with stakeholders: people who will be using or affected by 

the system to be developed. A software developer must understand the overall 

objectives of the business and what users want to achieve in their jobs (Bennett et al., 

2006:129). 

 

According to Sommerville (2007:119-127) information gathered during the requirement 

phase falls into three categories namely: functional requirements, non-functional 

requirements and domain requirements. Functional requirements describe what the 

system is expected to do in order for users to do their jobs. Non-functional requirements 



Chapter One: Research Introduction                                                                      15 
 

 

 

refer to how well the system performs what is supposed to do. This includes system 

characteristics such as system performance, reliability, usability, availability, security and 

others. These are emergent properties of a system since they can be determined once 

the system is completed. Domain requirements are system requirements pertaining to 

the application domain of the system to be developed. Domain requirements are 

business specific, for instance a standard user interface for all applications in a particular 

domain. Poor requirements are among the major contributors of failure in software 

projects (Hofmann & Lehner, 2001). Users are very important during requirements 

analysis hence software developers must work intensively with users in order to 

understand what users want the system to perform. 

1.5.2.2 Phase 2: System and software design  

After determining user needs, a software developer must establish how those user 

needs will be achieved by the system to be developed. Instead of immediately starting 

developing the system, a software developer must design a system. Bennett et al. 

(2006:372) describes design as a process of developing a system without building it. 

According to Bennett et al. (2006:371), during design phase, a software developer is 

concerned with how the system will address user needs. Bennett et al. (2006:376), 

further describes two levels of design namely: system design and detailed design. 

System design is about the construction or architecture of the overall system such as the 

human-computer interface. On the other hand, detailed design is concerned with 

designing individual components of the system. Although not on a large scale as in 

analysis phase, users must be involved and informed of the developments in the design 

phase. For instance, user’s feedback regarding the design of the human-computer 

interface is vital to the usability and acceptability of the system by users (Sommerville, 

2007:378-385). Some of the major activities that take place during design phase include 

design of the system architecture, design of user interfaces, design and integration of 

database and prototype for design details (Satzinger et al., 2004:39). 

1.5.2.3 Phase 3: Implementation and unit testing 

In this phase, the actual components of the system are built. Each component is tested 

to verify that it meets its specification. According to Sommerville (2007:547), unit testing 

is a process of testing individual components in the system. This process is crucial in 



Chapter One: Research Introduction                                                                      16 
 

 

 

order to expose defects, flaws and faults within built system components. Satzinger et al. 

(2004:40) mentioned that construction of software components, unit testing and 

verification are some of major activities performed during this phase. 

1.5.2.4 Phase 4: Integration and system testing  

During this phase, individual developed components of the system are integrated in 

order to work together (Sommerville, 2007:540).  In addition, the software system is 

tested as a whole to ensure that software requirements have been met. System testing 

can lead to acceptance testing where customers are involved to ensure that user 

requirements are met (Sommerville, 2007:541).   

1.5.2.5 Phase 5: Operation and maintenance  

According to Sommerville (2007:67), operation and maintenance phase is the longest 

phase. It is during this stage when a system is installed and put into practical use. Some 

of activities during this phase are correcting errors, which were not discovered during 

earlier phases, improving the implementation of system units, and enhancements to 

system services as new requirements materialize. Satzinger et al. (2004:41) referred to 

this phase as a support phase. Satzinger et al. (2004:41) further mentioned that system 

maintenance, system enhancement and supporting system users are critical elements 

during support phase. 

1.5.3 Challenges of a software developer 

Hughes and Cotterell (2006:4) report that software is intangible, invisible, and complex. 

Project management for software project is like to make the invisible to be visible 

(Hughes & Cotterell, 2006:4). Software developers have to conform to user 

requirements, which are not necessarily consistent. Hence, software development is a 

challenging undertaking. It is therefore important to identify common challenges facing 

software developers in order to establish essential skills required to address, manage 

and control software development challenges. 



Chapter One: Research Introduction                                                                      17 
 

 

 

1.5.4 Software developer and software reuse 

Software reuse is the process of creating software systems from existing software rather 

than building software systems from scratch (Krueger, 1992:131). Bennett et al. 

(2006:223-225) cite that software developers do not utilize the benefits associated with 

software reuse. Bennett et al. (2006:224), is of the opinion that some of reasons that 

software reuse has not been successful as promised is due to the NIH (Not Invented 

Here) syndrome. With such altitude, software developers tend not to trust other people’s 

codes and the fact that software reuse is difficult to manage. Software developers 

therefore prefer to re-invent the wheel by developing software from scratch. It is thus 

imperative to establish competencies essential to support and promote software reuse in 

order for software developers to speed up software development without compromising 

software quality. 

1.5.5 Software project management 

Coordination of activities during different phases of software development life cycle can 

be challenging. According to Hughes and Cotterell (2006:4), software projects are 

complex in nature. It is the nature of the complexity that makes coordination and 

management of software projects cumbersome. However, there are tools and 

techniques available to facilitate the management process of software projects in order 

to achieve the envisaged project objectives. Olson (2004:5-6) reports that time, budget 

and quality are the main competing project dimensions. Hence, these project dimensions 

should be monitored closely during the software development process. 

 

 According to Olson (2004:2), a project is an endeavour or any new initiative performed 

in order to achieve specific goals within budget and within a given period. Hence, 

software development process is a project. While a software developer is responsible for 

executing different tasks during the development process, the challenge can be the 

coordination and management of tasks without interrupting the project objectives. It is 

thus critical for a software developer to be aware of tools and techniques available to 

ensure smooth execution of a software project. It is important to establish critical 

sections of software project that can be managed by a software developer in order to 

make project management easier. The aim is to determine skills required by software 



Chapter One: Research Introduction                                                                      18 
 

 

 

developers to perform software development activities without affecting business 

objectives as well as project objectives such as project deadlines and project budgets. 

1.6 Research design 

According to Welman, Kruger and Mitchell (2005: 6-9) research methodologies can be 

categorized into two paradigms; namely qualitative and quantitative research. Qualitative 

research involves research methods where qualitative data such as descriptions of 

social life as observed by a researcher, unstructured interviews and data obtained from 

written sources are employed while quantitative research deals with quantitative data; 

which are numerical and hence measured and expressed in form of numbers such as a 

survey (Jones, 2004a). Welman et al. (2005:8) mention that the purpose of quantitative 

research is to evaluate objective data consisting of numbers whilst qualitative research 

deals with subjective data that are produced by the minds of respondents or 

interviewees, which is represented in language instead of numbers.   

 

According to Welman et al. (2005:166), unstructured interviews offer a greater wealth of 

information than other methods of collecting data. Welman et al. (2005:166) also 

mention that unstructured interviews are usually used in explorative research because of 

their qualitative nature. Furthermore, Welman et al. (2005:166) report that unstructured 

interviews methodology is ideal for a research whose objective is to understand the 

experiences of individuals in their life-world and identify important variables in a 

particular research area.  

 

Krauss (2005:758) reports that the term epistemology originates from a Greek word 

“episteme” which mean knowledge and hence defined epistemology as the philosophy of 

knowledge. Krauss (2005:764) further reports that qualitative epistemology involves 

face-to-face interviews in order to tap into the mind of subjects to have a depth 

understanding of a phenomenon. The best way to understand a phenomenon is to 

immerse in that phenomenon, for example, by moving into the culture or organization 

being researched and experience to be part of the phenomenon (Krauss, 2005:760). 

According to Bowen (2005:211) the most popular methods for qualitative epistemology 

are interviews, observation and document studies. Bowen (2005:209) and Mumford 



Chapter One: Research Introduction                                                                      19 
 

 

 

(2006:384) state that the deep and detailed understanding of a phenomenon and lived 

experiences is best achieved via qualitative epistemological research.  

 

Turley and Bieman (1995:3) during phase one of their research on competencies of 

software engineers; they used interviews to identify essential competencies of software 

engineers in a software development company in United States of America (USA). In 

phase two, Turley and Bieman (1995:11) used survey questionnaires to cover larger 

samples in order to validate their research. Ahn and McClean (2008:545) used 

interviews to identify competencies required for port and logistics personnel in Busan, 

South Korea. Thereafter, Ahn and McClean (2008:547) had to use survey 

questionnaires to cover large samples in order to validate their research on larger 

samples. This implies that interviews and survey are often used together to complement 

competency studies. 

 

 According to Le Deist and Winterton (2005:31), competency framework is a result of 

observing successful and effective job performers and determining what makes these 

individuals to differ from less successful performers. Frank (2005) reports about 

intensive steps involved to identify competencies of physicians and medical doctors. 

Frank (2005) mentions that methodologies applied to identify and determine 

competencies of physicians and doctors included consultation among many medical 

specialties such as physicians and surgeons as well as among doctors and patients. The 

research was however complemented by surveys to test the validity of the competency 

framework.  

 

Based on the above mentioned, it is clear that social science studies tend to use both 

qualitative and quantitative methodologies together; the process known as triangulation 

(De Vos, Strydom, Fouche & Delport, 2002:341-342). Yin (2003) defines triangulation 

as a process where both qualitative and quantitative methods are used to facilitate the 

research process for a given research study. Olsen (2004) defines triangulation as the 

mixing of data or methods in order to allow diverse viewpoints or standpoint to cast light 

upon a given topic. Olsen (2004) further sub-divides triangulation into two categories; 

namely data triangulation (mixing data types) and methodological triangulation (mixing 

methodologies). The effectiveness of triangulation is based on the premise that 

weaknesses in one method are compensated by strengths of another method (Jick, 



Chapter One: Research Introduction                                                                      20 
 

 

 

1979:604). Jick (1979:602) explains that qualitative and quantitative methods are 

complementary and not rival methods. Furthermore, Olsen (2004) reports that mixing 

methodologies such as the use of survey and interviews is a more profound form of 

triangulation. As such, this research uses survey questionnaires (Appendix A) and 

interviews. Both survey questionnaires and interviews aim at obtaining information 

pertaining to tasks performed by software developers, tools used and skills required to 

become a competent software developer. Therefore this study is accomplished via both 

quantitative and qualitative epistemological methodologies. 

1.7 Delineation of the research 

This research focuses on software development activities performed by software 

companies and business organizations within the Western Cape Province. While there 

are many categories of software developers such as developers for scientific 

applications, robotics applications, embedded systems and many others, this research 

deals specifically with software developers involved with the development of business 

applications to solve common business problems. However, the research can be 

applicable to any software development process, since according to Sommerville 

(2007:64), all software processes have common fundamental activities. 

1.8 Contribution of the research 

The contribution of this research emanates from the fact that very little has been done 

regarding research on competencies of software developers particularly in South Africa. 

The researcher could not find any research that deals with a competency framework 

specific to software developers in South Africa. Turley and Bieman (1995:1) researched 

competencies for software engineers for a software development company in the United 

States of America (USA). Another study was carried out in USA on master’s students of 

computer science who were assigned software development tasks (Rivera-

Ibarra,Rodriquez-Jacobo,Fernandez-zepeda & Serrano-Vargas,2010:35). Nevertheless, 

no research has been done on software developer competencies to address business 

needs specific to the South African context. Moreover the above mentioned studies are 

not specific to software developers as they include other professionals involved in the 

software engineering process of a given software system. Hence, the main objective of 



Chapter One: Research Introduction                                                                      21 
 

 

 

this research is to develop a competency framework specific for software developers 

from the South African business perspective.  

 

A competency framework as an analysis tool can be used to identify performance gaps 

within employees and suggest measures to improve employees’ performance. 

Competency frameworks can be used to develop training plans for an enterprise in order 

to improve performance of less productive employees. Serpell and Ferrada (2007:585) 

report on the effectiveness of a competency framework for training, developing and 

certifying supervisors in the building and construction sector in Chile, Southern America. 

According to Serpell and Ferrada (2007:599), competency frameworks can be effective 

by helping human resources achieve skills and knowledge required to perform specific 

functions. Competency framework can be useful in developing countries where the 

number of inadequately trained workers is large (Serpell & Ferrada, 2007:587). 

Competency frameworks can be used by human resource management for selection of 

suitable candidates and staffing of competent employees. According to Gangani et al. 

(2004:1112-1113) the American Medical System (AMS), a company developing, 

manufacturing and marketing medical technologies, used a competency-based 

framework to improve the performance of its human capital. Ahn and McLean (2008:544) 

report that a competency framework is a tool that can help to manage and improve 

personnel performances. The framework can be used by business organizations to 

determine competency and suitability of an employee to work as a software developer. 

According to Brooks (1987), using great designers is a positive step to improve software 

development productivity and Boehm (1983) recommends that better and fewer people 

are suitable for software projects.  

 

According to Frank (2005) roles of medical experts evolve at a quick pace following 

continuous changes in biological, social and clinical sciences. In order to address 

constantly changing demands for medical professions, Frank (2005), reports on a project 

initiated by the Royal College of Physicians and Surgeons of Canada (RCPSC). The 

purpose of the project was to identify competencies of medical professions including 

physicians and surgeons which resulted into a creation of a competency framework for 

medical experts. Frank (2005) reports that the competency framework is used by 

practising physicians as a resource for professional development and for self-

assessment and evaluation so as to ensure highest standard and quality of health care. 



Chapter One: Research Introduction                                                                      22 
 

 

 

Frank (2005) also reports that the competency framework is used by educators and 

teachers as a standard for education delivery to ensure that physicians and medical 

doctors are equipped with essential competencies for effective medical practice and 

health care. Therefore, a software developer competency framework can be used by 

education institutions to prepare a curriculum relevant to the industry requirements. 

Candidates can use the framework to determine their competencies and identify areas 

that require improvement to become competent with software development activities. 

Furthermore, competency framework can be used to develop software tools that can be 

used to increase productivity of both novice and experienced software developers. In 

addition, the contribution of this research includes the expansion of the body of 

knowledge regarding competencies of software developers. 

1.9 Chapter summary 

This chapter discussed the background to research, the research problem, research 

question and sub-questions and introduced literature review pertaining to software 

development and competency studies. The objective of the research and research 

design are explained. The chapter ended by indicating delineation to the research and 

contribution of the research. 

1.10 Thesis structure 

Figure 1.4 in the following section, illustrates the structure of this thesis which is divided 

into six logical chapters as follows: 

i. Chapter One: Research Introduction  

Introduces the research, discusses problem statement and research objectives. 

ii. Chapter Two: Literature Review  

Discusses literature review on software development and competency studies. 

iii. Chapter Three: Research Methodology 

 Discusses research methodology followed during this study. 

iv. Chapter Four: Data analysis and Presentation 

 Presents results of data analysis performed during this study.  

v. Chapter Five: Research Discussion 

 Discusses results of data analysis and research findings. 



Chapter One: Research Introduction                                                                      23 
 

 

 

vi. Chapter Six : Recommendations and Conclusion 

 Provides recommendations and conclusion reached during the research. 

Research Introduction

CHAPTER ONE

Research Methodology

CHAPTER THREE

Literature Review

CHAPTER TWO

Data Analysis and 
Presentation

CHAPTER FOUR

Research Discussion

CHAPTER FIVE

Recommendations and 
Conclusion

CHAPTER SIX

 

Figure 1.4: Thesis structure 



Chapter One: Research Introduction                                                                      24 
 

 

 

1.11 Conclusion 

Knowledge about Software Developer Competency Framework (SDCF) is essential if 

education institutions have to train learners to become future competent software 

developers. Similarly, it is paramount for the industry to employ software developers who 

can do their job well in order to address business challenges. Moreover people who 

would like to have a carrier as a software developer should be able to understand the 

level and kind of competencies required to become a software developer.  Following the 

astonishing rate of failure in software projects and shortage of skilled software 

developers in South Africa, it is critical that essential competencies of software 

developers are identified and inculcated among software developers. Hence the 

objective of this research which is to develop a Software Developer Competency 

Framework (SDCF). 

 

The following chapter two discusses literature review. 

 



Chapter Two:  Literature Review                                                                        25 
 

 

 

CHAPTER TWO: LITERATURE REVIEW 

“Life can only be understood backwards; but it must be lived forwards”  

(Soren Kierkegaard) 

------------------------------------ 

2.1 Introduction 

In this chapter, literature related to competencies in software projects is discussed. 

 

The chapter explores software projects, recent studies on competencies and the 

software development process of software systems. This is an attempt to understand 

skills applicable to software developers in the software development field in order to 

establish essential competencies required by software developers to perform their 

tasks well. According to Bennett et al. (2006:141), successes of system development 

projects, among others depend on skills of analysts, designers and programmers; 

referred to as software developers in this research. Turley and Bieman (1995:1) 

report that competencies of software developers are important factors determining 

success of software development projects. Furthermore, Colomo-Palacios et al. 

(2013:456) agree that the quality of software products depend on knowledge and 

ability of software developers. 

 

The chapter commences with an investigation on general situation of software 

projects in section 2.2. In section 2.3 recent studies on competencies is explored 

followed by a discussion on the software development process in section 2.4. Finally, 

the chapter ends with chapter summary and conclusion in section 2.5 and section 2.6 

respectively. 

2.2 General situation of software projects 

Software projects can be categorized into three major groups: successful, challenged 

and impaired projects (Yeo, 2002:241). Similarly, Stepanek (2005) classifies software 

projects into three categories namely: successful, challenged and failed projects. 

Successful projects are completed in time, within budget limits and deliver customer 

needs at the required quality. Challenged projects are completed but are over 

budget, over the estimated project duration or provide only some of the required 

functionalities. Failed projects are never completed instead they are abandoned or 

closed down. While a project may be completed on time, within budget and delivering 



Chapter Two:  Literature Review                                                                        26 
 

 

 

quality functionalities as per the set out requirements, they may not be accepted by 

users, which hamper the usability and productivity of the software products (Yeo, 

2002:241). The  usage of software does not necessarily suggest the acceptability of 

the system, however, it could be due to the fact that users have no alternative hence 

are forced by the circumstances to accept the product (Yeo, 2002:242). 

 

The Standish Group (2001) reports that 23 percent of software projects failed, 49 

percent were challenged and only 28 percent were considered as successful. Lack of 

competent staff is among the recurring factors depicted in most of reports about 

failure of software projects (Standish Group, 2001). According to Galorath (2009), the 

Standish Group report of 2009 on software projects indicates that only 32 percent of 

software projects were successful while 44 percent are challenged and 24 percent 

failed. The number of challenged and failed projects continues to outweigh the 

number of successful projects (Agarwal & Rathod, 2006).  

 

According to Serpell and Ferrada (2007:587), developing countries suffers from 

inadequate number of trained workers in a large scale. Calldo (2008) and Calitz 

(2011) reports about business organizations in South Africa struggling to find 

professionals with the required ICT skills sets. Furthermore, Roodt and Paterson 

(2009:195-196) report of skills shortage for computer professionals, predominantly 

systems analysts and programmers, as a problem  that will continue to be 

experienced in South Africa, if graduate output does not increase. 

 

In order to determine roles that a software developer can play to ensure success in 

software projects, this section explores about software project characteristics, 

complexity of software projects and project management of software projects. Since 

software developers form a critical component of software projects, it is important to 

understand competencies required by software developers to effectively and 

efficiently participate and execute software projects. 

2.2.2 Software project characteristics 

According to Olson (2004), software projects are identified by large degree of 

uncertain and risk. Uncertainty and risky nature of software projects can be attributed 

by the fact that during a project life cycle, stakeholders can hardly guarantee what 

will happen as the project progress. The Standish Group (2001) reports about project 

size, project duration, team size and project cost as complex elements of software 



Chapter Two:  Literature Review                                                                        27 
 

 

 

projects. Most of software projects in the business world are typically large and are 

comprised of more than 10,000 function point in size, which is equivalent to 

1,250,000 lines of codes in the C programming language (Jones, 2004b).  

 

Among other roles, project management is essential for the planning, leading, 

organizing, controlling, monitoring and coordination of project activities (Standish 

Group, 2001). In order to provide functionalities required by users, a software project 

success is determined and characterized by time, budget and quality (Olson, 2004). 

Time refers to the duration required to complete a project while budget implies cost 

estimates for running project activities until completion of the project. Quality is about 

system functionalities and it measures the extent by which user objectives are met by 

system functionalities.  

 

Software projects are comprised of a combination of computer hardware, 

communication technology and software in order to handle business processes (Yeo, 

2002). Software projects thus demand resources in order to function; resources that 

tend to be scarce depending on project size. Software projects are said to be 

temporary in nature, only exist when activities have to be executed and expires once 

activities are completed (Olson, 2004). This involves formation of project team every 

time when a project is to be undertaken. A set of temporary activities is the primary 

characteristic of software projects. Because of this temporary nature, project 

members normally do not know each other very well. In addition, project teams tend 

to be comprised of different people, with different skills and interests (Olson, 2004). 

 

According to Hughes and Cotterell (2006), products of software projects have 

peculiar characteristics that differ from products of other traditional projects. While 

working on bridge construction project, eventually the constructed bridge will be 

noticed and the progress is visible and tangible. On the contrary, developing a 

software system is not immediate. Hughes and Cotterell (2006) thus mention that 

software project management is like making the invisible to be visible. Hughes and 

Cotterell (2006) further report that software projects deal with developing software 

products that conform to requirement of human clients while other traditional projects 

conform to physical laws that are consistent.  As a result software developers are 

presented with challenges to conform to user needs which due to human errors, 

ignorance or miscommunication, may be inconsistent, illogical and difficult to 

implement (Hughes & Cotterell, 2006). 



Chapter Two:  Literature Review                                                                        28 
 

 

 

2.2.3 Complexity of software projects 

Hughes and Cotterell (2006) posit that software products are more complex than 

other engineered artefacts. As far as the number of people is concerned, software 

projects may require many people with diverse skills. The greater the number of 

people involved, the more demanding and complex is the management and 

coordination of project activities (Yeo, 2002). In addition, uncertainty is another 

complex nature of software projects. Uncertainty makes it difficult to determine time 

required to complete a particular first time undertaking of a software project. As such, 

most of software projects take longer than expected. 

 

The field of software development lacks reliable models to estimate project costs and 

time with precision (Agarwal & Rathod, 2006). As such, cost estimates tend to be 

complex depending on the size and nature of the software project. 

 

The manifestation of software complexity also appears in determining the success of 

a particular project. While a project may be complete in time, within budget and 

providing quality and functionalities as per requirements, the same project may not 

be accepted by users which would hamper the usability and productivity of the 

software product produced (Yeo, 2002). As already mentioned, the heavy usage of 

software produced does not necessarily suggest the acceptability of the system; 

however it could be due to the fact that users have no alternative and hence have to 

accept the product (Yeo, 2002). 

 

The final product of a software project is a software system that will be used for 

running business processes. However, software is intangible as opposite to tangible 

products such as buildings, roads and bridges. Software projects deals with the 

production of soft and intangible products, which are more complex and more difficult 

to measure than tangible products (Stepanek, 2005). Stepanek (2005) mentioned 

about software complexity, software abstraction, rapid technology changes and 

incomplete user requirements as sources of difficulties associated with software 

projects. As far as software complexity is concerned, Stepanek (2005) reported that 

even minor software program tends to accumulate frightening complexity. A small 

program can require tens of thousands of lines of codes in order to function. The 

increases in the number of lines of codes and the increase in the interactions 



Chapter Two:  Literature Review                                                                        29 
 

 

 

between the lines of codes, increases the complexity associated with software 

projects. 

 

Other artefact projects deal with development of tangible structures such as 

construction of a bridge or a building while software projects are dealing with 

development of intangible products such as information systems. Intangible products 

are difficult to measure with precision as such they depend on estimations; costs and 

benefits of software projects can only be estimated (Olson, 2004). The abstract 

nature of software demands the use of visualization and estimation in order to 

establish software project measurements such as project costs, project duration, 

project quality and software functionalities (Stepanek, 2005). While it could be 

manageable to visualize and estimate behaviours of a small software project in order 

to produce lines of code required, it is more difficult for larger software projects that 

would require tens of thousands or tens of millions of lines of code in order to 

function. 

 

Software projects are usually commissioned to address the needs of customers. 

While customers can be experts in their own business roles, they tend not to have 

technical skills as software developers. Software developers have technical skills to 

turn the abstraction and complexity of user needs into software programs. The need 

for user requirements to be understood by developers is important, however, this can 

be challenging and it requires users and developers to work together to refine the 

requirements of the software to be produced, the process that could be repeated 

several times before the software product is developed (Stepanek, 2005). According 

to the Standish Group (2001), problems relating to user requirements and 

specifications were the top factor for challenged software projects; user requirements 

problems were reported to be the most significant factors for 42 percent of software 

projects. 

 

According to Stepanek (2005), computers double in speed about every two years, 

which opens more opportunities to software developers. Following rapid 

technological changes, software changes quickly and the impact of those changes 

cannot be predicated with precision. For example, technological changes could result 

into making the software outdated and no longer catering for initial user needs. Rapid 

change in technology can limit the usefulness of previous accumulated experiences, 

which demands that software developers continue to update their software 



Chapter Two:  Literature Review                                                                        30 
 

 

 

development knowledge. Stepanek (2005) further reports that following rapid 

technology changes, every significant new piece of software is written by software 

developers who are novices to the task, because whatever a software developer was 

working in several years ago is unlikely to be of any direct use today; for instance 20 

years of experience on software development using COBOL2, has little if not nothing 

to offer to a new software project to be developed using object oriented programming 

languages such as Java or C-sharp (C#). According to Olson (2004), there are many 

excellent applications for computer technology to support business; however, the 

problem is the highly dynamic nature of technology. Olson (2004) reports about 

information systems that took years to implement which resulted into installation of a 

new system after it is out-dated by newer technology. The changing nature of 

technology makes software projects challenging. Software products are prone and 

subject to high degree of change. For instance, whenever a software system 

interfaces with any physical or organization system, the software system will have to 

be changed in order to accommodate other components (Hughes & Cotterell, 2006).  

 

The uncertainty and risky nature of software projects coupled with the complexity 

related to estimation of time, cost and quality objectives, makes the development of 

software systems difficult. Nonetheless, Olson (2004) reports that client involvement, 

top management support and clear project objectives are the most consistent factor 

among successful projects. Therefore, software developers, while designing and 

developing software systems should put into consideration factors that determine 

successful software projects. 

2.2.4 Project management of software projects 

Considering complexity nature of software projects, software projects demand for 

professional level of management. The role of project management runs throughout 

the entire project life cycle (Jones, 2004b). According to Jones (2004b), in a study on 

comparison of large software projects that successfully achieved cost and schedule 

estimates against those that ran late, were over budget, or were cancelled without 

completion, the role of project management appears to be critical.  In his study, 

Jones (2004b) reports that out of 250 software projects analysed, 175 project 

experienced major delays and overruns or were terminated without completion, 50 

projects had delays or overruns below 35 percent and only 25 were considered 

                                                 

 
2
 COBOL: programming language previously widely used for developing business applications 



Chapter Two:  Literature Review                                                                        31 
 

 

 

successful in that they achieved, their schedule, cost and quality objectives.  The 

successful projects were attributed to project management skills and experience. 

Jones (2004b) further mentions about the six essential project management roles as 

project planning, cost estimation, project measurement, milestone tracking, change 

control and quality control. Successful software projects do planning very well, on the 

contrary, challenged and failed projects are reported to have poor planning.  

 

Many problems can be expected during the execution of software projects. Hughes 

and Cotterell (2006:152) report on Boehm’s list of top risk items in software projects. 

Among others, the top risk items includes personnel shortfalls, developing the wrong 

software functions, developing the wrong user-interface, late changes to 

requirements and development technically too difficult. Olson (2004) mentions that 

actions should be taken throughout the project in order to monitor and ensure that 

project risks do not get out of control. Risk management therefore is an important 

area that software developers should be aware of and regularly observe. Standish 

Group (2001) reports that software projects would be less prone to failure and more 

likely to succeed with the help of competent and experienced staff. Since software 

developers form a critical portion of software project staff, software developers have 

essential roles to play for software projects to become successful. 

2.3 Recent studies on competencies 

As indicated in chapter one, Lucia and Lepsinger (1999:5) describe competency as a 

tool that can be used to identify skills, knowledge, personal characteristics and 

behaviour. This is required to effectively and efficiently execute a particular role in an 

organization for a business organization to meet its strategic goals. Mirabile (1997: 

21) defines competency as knowledge, skills, ability or characteristics that can be 

associated with high performance on a given job. Gangani et al. (2004:1111) defines 

competency as a description of skills, knowledge, behaviours, personal 

characteristics and motivations associated with success in a job. Turley and Bieman 

(1995), mention that job competency is a contributing factor to the success of a given 

job. Turley and Bieman (1995:25) further define job competency as any attribute that 

contributes to doing a specific job well such as knowledge, ability, interest and 

motivation. A software developer competency framework can therefore be viewed as 

a structure or a tool comprised of skills, knowledge and attributes that are essential 

for effective, efficient and successful performance in executing software development 

activities. 



Chapter Two:  Literature Review                                                                        32 
 

 

 

However the field of software engineering continues to be chaotic where most of 

software projects are considered challenged, failed and short of skilled workers 

(Standish, 2001; Jones, 2004b:5; Olson, 2004:8; Agarwal & Rathod, 2006; Serpell & 

Ferrada, 2007:587; Galorath, 2009). Furthermore software security threats due to 

poorly developed software systems, remain a major concern among the online 

communities; business organizations and Internet users (Viega & McGraw, 2002:2; 

Hook, 2000:14).  

 
While many studies on competencies have been conducted, very little has been done 

regarding research on competencies of software developers. Turley and Bieman 

(1995:1) conducted a research on competencies for software engineers for a 

software development company in the United States of America (USA). Another 

study was carried out in  USA on master’s students of computer science who were 

assigned software development tasks (Rivera-Ibarra et al., 2010:35). Nevertheless, 

no research has been done on software developer competencies to address 

business needs specific to companies in South Africa.  

 

As briefly indicated in chapter one, application of competency frameworks to improve 

the functioning of business organizations is not uncommon. Roles of medical experts 

evolve at a quick pace following continuous changes in biological, social and clinical 

sciences (Frank, 2005). In order to address constantly changing demands for 

medical professions, Frank (2005), reports on a project initiated by the Royal College 

of Physicians and Surgeons of Canada (RCPSC). The purpose of the project was to 

identify competencies of medical practitioners including physicians and surgeons that 

resulted into a creation of a competency framework for medical experts. Frank (2005) 

mentions that a competency framework is being used by practicing physicians as a 

resource for professional development such as self-assessment and evaluation to 

ensure highest standards and highest quality of health care services. Furthermore, 

Frank (2005) reports that a competency framework is being used by educators and 

teachers as a standard for education delivery to ensure that physicians are equipped 

with essential competencies for effective medical practice and health care services. 

Therefore a software developer competency framework can be used as a resource 

for education, professional development, assessment and evaluation among 

software developers 

 

In terms of objectives, the main goal of competency studies centre around 

improvement of job performance among employees. A competency framework as an 



Chapter Two:  Literature Review                                                                        33 
 

 

 

analysis tool can be used to identify performance gaps within employees and 

suggest measures to improve employees’ performance. A competency framework 

can be used to develop training plans for an enterprise in order to improve 

performance of less productive employees. Serpell and Ferrada (2007:585) report on 

the effectiveness of a competency framework for training, developing and certifying 

supervisors in the building and construction sector in Chile, Southern America. 

According to Serpell and Ferrada (2007:599), a competency framework can be 

effective by helping human resources achieve skills and knowledge required to 

perform specific functions well.  

 

A competency framework can be useful in developing countries where the number of 

inadequately trained workers is large (Serpell & Ferrada, 2007:587). A competency 

framework can be used by human resource management for selection of suitable 

candidates and staffing of competent employees. According to Gangani et al. 

(2004:1112-1113) the American Medical System (AMS), a company developing, 

manufacturing and marketing medical technologies, used a competency-based 

framework to improve the performance of its human capital. Ahn and McLean 

(2008:544) report that a competency framework is a tool that can help to manage 

and improve personnel performances. The framework can be used by business 

organizations to determine competency and suitability of an employee to work as a 

software developer. Boehm (1983) recommends that better and fewer people are 

suitable for success in software projects. Brooks (1987) agree that using great 

designers is a positive step to improve software development productivity.  

 

It is therefore correct to mention that despite the differences in areas under research, 

objectives of competency studies are geared towards improving job performance of 

workers in a given field. This research hence targets the job performance of software 

developers where the main objective is to develop a competency framework for 

software developers. As indicated in chapter one, Software Developer Competency 

Framework (SDCF) can be used by education institutions to prepare curriculum 

relevant to the industry requirements and addresses business needs. Most 

importantly, the industry can use the SDCF to prepare software developers who can 

address business needs. Candidates can use SDCF to determine their competencies 

and identify areas that require improvement to become competent with software 

development activities. Lastly but not the least, SDCF can be used to develop 



Chapter Two:  Literature Review                                                                        34 
 

 

 

software tools that can be used to increase productivity of both novice and 

experienced software developers.  

Furthermore, the contribution of this research includes the expansion of body of 

knowledge regarding competencies in the software engineering field. 

 

Software developers are engineers who design and manufacture software systems 

(Sommerville, 2007:7). Software developers have essential and critical roles to play 

during the software development process in all phases of software development life 

cycle. Understanding competencies required by software developers can play 

important roles in resolving challenges facing the software engineering field as far as 

success of software projects are concerned. Knowledge of competencies of software 

developers have the potential to change knowledge of software development in order 

to improve quality of software systems developed.  

 

Software engineering principles are key elements underpinning this research. Solid 

knowledge of principles of software development is paramount if one has to 

understanding competencies related to software development. In order to understand 

essential competencies required by software developers, the following section 

discusses the software development process.   

2.4 Software development process 

There are several software development processes such as waterfall methodology, 

incremental and iterative processes, prototyping and the spiral model (Hughes & 

Cotterell, 2006:74 – 89; Dorfman, 1999). Incremental and iterative approaches are 

often regarded as agile methodologies. Agile methodologies are preferred and 

largely implemented in big software projects. The reasoning behind agile approaches 

is based on the premise of discovering risks, uncertainties, understand the 

complexity of user requirements and address dynamic changes in user requirements. 

In agile methodologies, software systems are developed in continuous iterative 

manner where each iteration results into the release of functional software 

components deployed for clients to use immediately. This is contrary to the waterfall 

methodology which is typically used in small projects where user requirements are 

clearly defined and understood. In this case, a project is divided into distinct phases 

where one phase is completely done and closed before proceeding with the next 

phase. 

 



Chapter Two:  Literature Review                                                                        35 
 

 

 

The use and choice of the development process depends on the nature of the 

software project to be undertaken. It is however recognized that all software 

development processes have lots in common. In order to understand tasks 

performed by software developers, it is important to examine phases of the software 

development process or software development life cycle (SDLC). With reference to 

Sommerville (2007:65), waterfall methodology is structured into distinct phases that 

give a good structure or framework for theoretical understanding of tasks 

encompassing software development processes.  

 

According to Satzinger et al. (2004) and Sommerville (2007:66) phases of a software 

development process can be categorized as, requirement analysis, system and 

software design, implementation and unit testing, integration and system testing as 

well as operation and maintenance. The following section examined each phase to 

identify tasks performed by software developers, techniques and tools used as well 

as skills required to perform identified software development tasks. This is an attempt 

to gather answers regarding competencies required by software developers to 

effectively and efficiently develop robust, safe, secure and good quality software 

systems. 

2.4.1 Requirements analysis 

There are many versions of definitions regarding requirements. Nevertheless all 

definitions of requirements are geared towards understanding of needs, demands or 

conditions that have to be satisfied in order for a given process to proceed and bring 

about expected changes in a system or society. Jonasson (2008) define a 

requirement as follows: 

i. A condition or capability needed by a stakeholder to solve a problem or 

achieve an objective. 

ii. A condition or capability that must be met or possessed by a system or 

system component to satisfy a contract, standard, specification, or other 

formally imposed document. 

iii. A documented representation of a condition or capability as in (I) or (II). 

 

According to Kujala et al. (2001), user requirements refer to functions, constraints or 

other properties that must be met in order to satisfy user needs. The process of 

identifying, determining and documenting user needs is called requirement 

engineering or requirement analysis. Sommerville (2007:143) posits that the goal of 



Chapter Two:  Literature Review                                                                        36 
 

 

 

requirement engineering is to create and maintain a system requirements document. 

Requirement engineering is the process of establishing services required by users 

from a system and the constraints under which the system is developed and 

operates (Sommerville, 2007:143-167; Sommerville & Sawyer, 1997). The essence 

of requirement engineering is to determine and document what users need the 

system to achieve. 

 

Poor requirements are the biggest cause of failure in software projects (Hofmann & 

Lehner, 2001). Users are very important during requirements engineering process 

hence software developers must work intensively with users in order to understand 

what users want the system to perform. According to Rouibah and Al-Rafee (2009) 

costs for correcting user requirements is lower than costs incurred to correct errors 

during later stages of software development. Rouibah and Al-Rafee (2009) suggest 

that it is important to pay more attention to user requirements analysis in order to 

develop successful information systems. Requirement engineering is the most critical 

phase of system development (Rouibah & Al-Rafee, 2009). 

 

Once a business opportunity has been identified, an organization embarks on 

determining business requirements in order to invest in the opportunity for profit gain. 

According to Rouibah and Al-Rafee (2009), assessment of end-users needs is one of 

critical determinants of success in an information system project. Dorfman (1999) 

reports that value of good software requirements and the need to do them well, 

increases as the software size and complexity increases. However, the challenge is 

to identify software requirements and determine how they can be met. Rouibah and 

Al-Rafee (2009) report about failure of software projects in Kuwait primarily due to 

wrong, incomplete or misunderstood user requirements. Hofmann and Lehner 

(2001:58) posit that the biggest cause of failure in software projects is due to 

deficient requirements. According to Dorfman (1999), deficiencies in requirements 

are among the prime contributors to problems related to failure in software projects. 

Similarly, Jiang, Eberlein, Far and Mousavi (2008:303) report that the quality of a 

software product is determined by the requirements engineering process involved. 

Therefore requirement analysis of a software project; which is a process of identifying 

and determining requirements to be supported by a software system to be 

developed, is critical for the success of a given software projects. 

  



Chapter Two:  Literature Review                                                                        37 
 

 

 

Requirement analysis is performed by identifying, determining and establishing user 

needs for the organization to meet its business objectives. According to Hofmann 

and Lehner (2001:59), requirements engineering is a process of specifying, analysing 

and refining requirements by studying stakeholders’ needs. Stakeholders refers to 

people, such as customers, managers and end-users,  who have interest in a given 

project and who in one way or the other will be affected by a software system to be 

developed (Hughes & Cotterell, 2006:13). Hofmann and Lehner (2001: 58) give 

examples of stakeholders as customers, end users, project managers, analysts, 

software developers, senior management and quality assurance staff. Furthermore, 

in their research, Hofmann and Lehner (2001:65) report that the most successful 

software project teams always involved customers and users during requirements 

engineering process and maintained a good relationship with stakeholders. Stary 

(2002:425) mentions that tasks performed by users and user characteristics are key 

elements during the development of a software system. Moreover, Stary (2002:425) 

states that analysis phase aims towards acquisition and elicitation of requirements 

from users and the organization to which a software system is to be developed for. 

2.4.1.1 Types of software requirements 

According to Bosch and Molin (1999), software requirements can be categorised as 

functional requirements and non-functional requirements. Bosch and Molin (1999) 

explain that functional requirements are those requirements related to the domain 

functionality of the application. Moreover, Bosch and Molin (1999) further divide non-

functional requirements into development non-functional requirements and 

operational non-functional requirements. Development non-functional requirements 

refer to qualities of the system relevant to software engineering such as reusability, 

flexibility and maintainability while operational non-functional requirements refer to 

qualities of the system in operation such as performance, reliability, robustness and 

fault-tolerance. Non-functional requirements are also known as quality requirements. 

 

Sommerville (2007:119) posits that software requirements can be classified into three 

groups: functional requirements, non-functional requirements and domain 

requirements. Functional requirements describe what the system is expected to do in 

order for users to execute their tasks. Non-functional requirements refer to how well 

the system performs what is supposed to do. This includes system characteristics 

such as system performance, reliability, usability, availability, security and others. 

These are emergent properties of a system since they can be determined once the 



Chapter Two:  Literature Review                                                                        38 
 

 

 

system is completed. Domain requirements are system requirements pertaining to 

the application domain of the system to be developed. Domain requirement are 

business specific, for instance a standard user interface in a particular domain. 
 

Figure 2.1: Requirements in the V-model (adapted from: Hull et al, 2005) 

 

With reference to figure 2.1, Hull, Jackson and Dick (2005) use the V-model to 

categorize four layers of requirements as stakeholder requirements, system 

requirements, subsystem requirements and component requirements. This is rather 

the perspective or levels through which requirements can be examined, tested and 

confirmed. Stakeholder requirements refer to a high level of requirements where 

users or stakeholders are mainly concerned with needs to accomplish business 

tasks. System requirements refer to a level where stakeholder requirements are 

translated into needs that the system must facilitate for users to achieving business 

goals. Sub-system requirements refers to requirements that should be achieved by a 

sub-system while component requirements is a lower level of requirements where 

concerns are on what a particular component can achieve in order for the system to 

perform its tasks.  

 

Requirements can be verified and validated to have been met during testing phase. 

Hull et al (2005) mentioned that the V-model can be used to test and verify whether 

requirements were met. This can be done by performing component test, integration 

test, system test and user acceptance test versus component requirements, sub-

Component

Test

Integration Test

System Test

Acceptance

Test

Stakeholder

requirements

Sub-system

requirements

System

requirements

Component

requirements

Testing is with

respect to

requirements

 



Chapter Two:  Literature Review                                                                        39 
 

 

 

system requirements, system requirements and stakeholder requirements 

respectively (figure 2.1). 

2.4.1.2 Requirements life cycle 

According to Hofmann and Lehner (2001:59) requirements engineering includes four 

separate but related activities: elicitation, modelling, validation and verification. Jiang 

et al. (2008) categorize requirements engineering process into requirements 

elicitation, requirements analysis and negotiation, requirements documentation and 

requirements validation. With reference to Figure 2.2, Sommerville (2007:143) 

reports that requirements engineering can be divided into four high-level sub-

processes: feasibility study, requirements elicitation and analysis, requirements 

specification and requirements validation as follows:- 

 

 

Feasibility study
Requirements

elicitation and analysis

Requirements

specification

Requirements

validation

Software requirements

document

 

Figure 2.2: Requirements engineering process (adapted from: Sommerville, 2007:143) 

 

i. Feasibility study is concerned with determining the business case of the 

system; whether the system to be developed will be useful and will enable the 

organization achieve its business objectives. 

 

ii. Requirements elicitation and analysis involves processes that will facilitate the 

discovery of requirements for the system to be developed. 

 

iii. Requirement specification refers to the process of converting discovered 

requirements into some standard forms or documents. A document produced 

during this process is called software requirements specification (SRS).  



Chapter Two:  Literature Review                                                                        40 
 

 

 

According to Sommerville (2007:136), it is the SRS document that software 

developers should implement during software development activities. 

 

iv. Requirements validation is concerned with checking to ensure that user 

requirements reflect what customers want in order for the system to perform 

what is expected for the organization to achieve its business goals.  

 

Elicitation, specification and validation processes of requirements are iterative in 

nature. This is due to the fact that requirement engineering is a discovery process 

where more and more requirements appear and becomes clear as the software 

development process continues. With reference to Figure 2.2, requirements 

discovered during elicitation should be documented during specification process. The 

documented requirements will then be validated during the validation process. 

However during validation other new requirements can lead to the discovery of other 

requirements. Also during specification process new requirements can be discovered 

hence leading to the iterative nature of execution where some requirements lead to 

the discovery of other requirements as indicated by arrows in Figure 2.2.  

2.4.1.3 Techniques used during requirements analysis 

There are many techniques and tools that traditionally have been used to facilitate 

the requirements analysis process. Stary (2002:437) reports that, while performing 

requirement analysis, interacting with users in their actual work environment is vital to 

designing usable software products. Furthermore, Stary (2002:437) mentions that 

user and task analysis is an analysis technique that can facilitate the design of a 

product that can change the culture observed among users. This is especially 

important if cultures observed makes users less productive while performing their 

tasks. Sommerville (2007:152-158) and Jiang et al. (2008:326) describe about 

interviews, use cases, prototype and ethnography3 as techniques used to facilitate 

requirements analysis. Olson (2004:93) reports about meetings, interviews and 

brainstorming as other techniques used to elicit user requirements. 

                                                 

 
3
 Ethnography is an observational technique used to understand social and organisational 

requirements where an analyst observes the day-to-day work and notes made of the actual 
tasks in which participants are involved (Sommerville (2007:157) 



Chapter Two:  Literature Review                                                                        41 
 

 

 

2.4.1.4 Skills required during requirement analysis 

All techniques used during requirements analysis involve meeting among software 

development team-members and stakeholders. According to Hofmann and Lehner 

(2001:65), the most successful project teams involve customers and users and 

maintain good relationship with stakeholders. Hence understanding user 

requirements require that software developers and stakeholders continuously work 

together, starting from early stages of a software project. 

 

To be proficient in requirement analysis one should be a good communicator, good 

listener and negotiator (Hughes & Cotterell, 2006:13). According to Olson (2004:29), 

good communication is a major factor for successful software projects. The 

requirements analysis phase requires intensive communications and frequent 

interactions among software developers and customers. Hence, communication skills 

are vital during requirement analysis. 

2.4.2 System and software design 

According to Bennett et al. (2006:50) an information system involves hardware, 

software and people as main components. Sommerville (2007:67) reports that 

system design is concerned with determining and grouping requirements into 

requirements that can be addressed by hardware and requirements that can be 

addressed by software. Bosch and Molin (1999) define system requirements as a 

top-level requirement set composed of software, hardware and mechanical 

requirements. System design aims at establishing the overall system architecture, 

which includes hardware, software and people. On the other hand, software design, 

according to Sommerville (2007:67), involves identifying and describing the 

fundamental software system abstractions and their relationships. Sommerville 

(2007:242) mentions that architectural design involves identifying sub-systems, 

establishing a framework for sub-system control and the communication process 

among sub-systems. 

 

Stary (2002:425) reports that the objective of design is to specify the structure and 

behaviour of the software as it should be implemented. Bennett et al. (2006:340) 

define software architecture as the organization of a system in terms of system 

components or sub-systems and the manner in which those components or sub-



Chapter Two:  Literature Review                                                                        42 
 

 

 

systems communicate to each other. Bosch and Molin (1999) mention about 

functionality-based architecture design whose main objective is to identify the core 

abstractions, model abstractions as objects and determine interactions among the 

identified system abstractions or objects.  

 

The goal of software design is therefore to establish software architecture which is a 

blueprint depicting the software to be developed and implemented by software 

developers. Software developers are more involved with software design activities 

while system architects are more involved with system design activities. According to 

Malan and Bredemeyer (2002:11), good software architecture should have three 

major characteristics; namely good, right and successful, as mentioned below:  

 Good: it is technically sound and clearly represented 

 Right: it  meets the need and objectives of key stakeholders 

 Successful: it is actually used in developing systems that deliver strategic 

advantage 

 

As such, it is the responsibility of software developers to ensure the design of good, 

right and successful software architecture. It remains important to recognize that the 

goal of software design is therefore to identify system components that make up the 

system and establish how those components will communicate or interact to one 

another. 

2.4.2.1 Advantages of software architecture 

According to Sommerville (2007:242), software architecture can be used as a means 

of communication among stakeholders. With reference to Malan and Bredemeyer 

(2002:10), software architecture is a central thinking and communicating tool for 

architects and the development team.  End-users, software developers and 

management have to communicate to one another in order to ensure that functional 

and non-functional requirements of a software system are met. 

 

Stary (2002:426) reports about a design concept called “user-centred design” in 

which knowledge and involvement of users is critical during the designing process 

hence the need for extensive communication among users and software developers. 

However, the nature of information to be communicated differs from technical to non-

technical information. While technical information is understood and well accepted by 

software developers, it may create confusion among end-users and managers. 



Chapter Two:  Literature Review                                                                        43 
 

 

 

Hence designed system components and the software architecture as a whole can 

facilitate communication among both technical and non-technical stakeholders.  

 

Due to the complexity nature of software systems, software architecture makes a 

complex software system more understandable and intellectually manageable (Malan 

& Bredemeyer, 2002:2). This is enforced by the design of system abstractions, which 

hide unnecessary details and decompose complex system into smaller and 

manageable components; commonly known as the principle of divide and conquer 

(Malan & Bredemeyer, 2002:4-5). 

 

Bosch and Molin (1999) mention about the risk of wasting resources; where 

resources are put on developing a system, and only to realize that the system does 

not meet user requirements; the situation that can make a software system not 

usable and hence abandoned by users. Software architecture can be used to 

determine whether critical requirements will be met. 

 

According to Reeves (1992), programming is not about building software; 

programming is about designing software. The main of objective of software design is 

to ensure that user requirements both functional and non-functional requirements are 

met by the system to be developed. Software design can thus suggest early changes 

to the system before the system is developed. According Hughes and Cotterell 

(2006), late changes to software are more expensive than early changes. Hence, 

software design makes it cheaper to develop software in terms of time, budget and 

the limited resources. 

 

Moreover, Sommerville (2007:242) reports that system components designed during 

software design can be re-used to develop software systems to address similar user 

requirements. Software design supports software re-use and therefore it can speed 

up the software development process. 

2.4.2.2 Categories of design 

Design as a process of converting user requirements into a blueprint that will be used 

to develop a software system, can be viewed as either general design or specific 

design. Bennett et al. (2006:376) posit that design can be grouped into two levels; 

system design and detail design. Bennett et al. (2006:376) describe system design 

as a design concerned with the overall and high-level architecture of the system 



Chapter Two:  Literature Review                                                                        44 
 

 

 

while detailed design is concerned with designing of low level and detailed individual 

software components. Good software design is required at all levels of design. 

Sommerville (2007:247) refers to system design as system organization, which is a 

strategy used to structure the overall system.  

 

Sommerville (2007:247-252) describes common types of system design as follows:  

 

i. The repository model: refers to a structure where components involved 

communicate to one another by sharing information. The shared information is 

usually stored in the centralized database hence the name repository. However, 

each component can store its data and only pass that data when required by 

another component. 

 

ii. The client-server model: refer to the design structure where components are 

grouped into client and server components. Client components include those 

components that use services while server components are those components 

that provide services. The essence of client-server model is based on grouping 

component into sets of services and determining components that deliver 

services and components that access and consume services. 

 

iii. The layered model: refers to system design where system services are grouped 

into sets of services and each set of services is provided by a particular layer. 

The essence of this model is determining services to be provided by the 

system, determining number of layers required and allocating services to 

appropriate layers. According to Sommerville (2007:251), the layered approach 

supports the incremental approach to system development. Hence, services of 

developed layers can be made available to users immediately.  

 

Bennett et al. (2006:350-356) explain that on the layered architecture of software 

systems, applications are developed as separate layers of services. With reference 

to Figure 2.3, the most common layered architecture used for software development 

is a three-tier architecture, which is comprised of presentation layer, logic layer and 

data layer (Bennett et al., 2006:353).  

 



Chapter Two:  Literature Review                                                                        45 
 

 

 

Presentation

layer
Logic layer

Data

Layer

User request

Formatted

response

Information

request

Unformatted

response

Data access

request

Data access

response

 

Figure 2.3: The three-tier architecture (adapted from Satzinger et al., 2004:334). 

 

Presentation layer deals with how the user will interact with the system, view data 

and how the program will present data to the user. Logic layer is concerned with the 

business rules that should be implemented in order for system to achieve its 

functions and for users to be able to use the system and achieve their business 

goals. Data layer deals with data management and data storage.  

 

Among others, the main advantage of the layered architecture is that it makes the 

system manageable and maintainable. This is important because most of the 

software development work is maintenance (Sommerville, 2007:67; Hughes & 

Cotterell, 2006:7). Therefore, it is vital that software systems are developed with 

future maintenance in mind and the layered architecture is engineered to support 

maintenance, reusability, reliability, flexibility, and other quality requirements. 

 

Sommerville (2007:744-767) reports on another software design architecture; Service 

Oriented Architecture (SOA) which is a software design that makes development of 

large and complex software systems manageable. SOA is a significant development 

in the field of software development. Thus, the following section discusses SOA; a 

promising design architecture for software systems. 

2.4.2.3 Service oriented architecture  

One of many challenges in software development is to deal with volatile and dynamic 

nature of user requirements. Following the dynamic nature of business requirements 

and complexity nature of software development, a software product may take longer 

to develop and by the time the product reaches the customer, business requirements 

may have changed (Beck, 2005). This situation can lead to a software system being 

abandoned by its users since it is no longer usable and hence serve little or no 

purpose from the user perspective. Software developers must have the ability to deal 

with volatility and dynamic nature of business requirements in order to ensure that 

users’ objectives are always satisfied. Service Oriented Architecture (SOA) is a type 



Chapter Two:  Literature Review                                                                        46 
 

 

 

of software design geared towards addressing volatility and dynamic nature of user 

requirements. According to Lowy (2007), Service-orientation is the correct way to 

build maintainable, robust, and secure software applications. 

 

SOA is a software design architecture, which considers business applications as 

collections of various functions or services that provide and support particular user 

requirements (Ort, 2005). Instead of developing a software system from scratch, 

SOA advocates software reusability by integrating services that already have been 

developed. SOA is an information technology strategy of making use of services 

available in a network such as the Internet. SOA is an agile alternative to address 

and respond to ever-changing business needs for customer satisfaction (Bennett et 

al., 2000). Services are made to interact and communicate to one another in order to 

exchange information and serve specific user requirements (Ort, 2005). A software 

component that provides a particular related group of functions can be referred to as 

a service.  

 

Web services is a service oriented architecture (SOA) that provide means to speed 

up the software development process and building systems that are adaptable. 

According to Sotomayor (2005), web services are platform independent and 

language independent because they use standard eXtensible Markup Languages 

(XML). A client program can be developed in a particular programming language and 

be deployed in a particular platform different to a web service‘s programming 

language and deployment environment. For instance, a client program can be 

developed using C-sharp (C#) as a programming language and be deployed in 

Windows platform. However, the web service that provides services to the client 

program can be developed using Java as a programming language and can be 

deployed in Linux platform.  

 

The following section explores about the web service architecture; an important area 

in the field of software development. Web service technology is increasingly applied 

in addressing ever-changing user requirements and development of large and 

complex business applications (Sommerville, 2007:744). Knowledge of web services 

is critical among software developers. Attention is given to the fundamental 

characteristics and main building blocks of web services. The mechanism as to how 

web services operate in order to provide services to client programs is explained and 

advantages and disadvantages of using web services are discussed.  



Chapter Two:  Literature Review                                                                        47 
 

 

 

2.4.2.3.1 Web services 

The web technology is expanding and growing in order to enable more sophisticated 

forms of interactions between client4 applications and server5 applications. The web 

is a giant distributed content library (Curbera, Nagy & Weerawarana, 2001).The 

evolution of the web has resulted into web services; the technology that enhances 

complex business-to-business (B2B) interactions. In this kind of interactions a 

program communicate to another program (program-to-program interaction) through 

a well-defined interface. In order to enable interaction, integration and interoperability 

between applications, web services support the dynamic nature of the web by 

supporting just-in-time application integration.  

 

A web service is a container and is composed of a collection of operations or 

functions. These functions can be accessed on the network through the exchange of 

XML formatted messages or JavaScript Object Notation (JSON) formatted messages 

between a client application and a server application. Pras and Flatin (2007) report 

about two groups of web services as fine-grained web services and coarse-grained 

web services. Fine-grained web services are web services specialized to perform a 

specific task while coarse-grained web services are web services that perform a 

specific group of related tasks.  

 

Web services support component-oriented software development where applications 

are encapsulated and only interact through well-defined interfaces. Hence web 

services are called “gray box” components because they are encapsulated programs 

that are described by their description files (Curbera et al, 2001). The description file 

is the interface with which applications use in order to communicate to one another. 

Web services obey the loosely coupled interaction model, which allows scalability in 

applications, since applications are independent on one another; change in one 

application should not necessarily require changes to other applications. This is 

essential because Web services are fundamentally language-free and platform-free 

(Sotomayor, 2005). Web services allow for flexible integration and the level of 

integration can be extended to the level supported by common and efficient protocol 

(Curbera et al, 2001). Web services use message and document format as a basis 

                                                 

 
4
 Client: an application that request services 

5
 Server: an application that provide services 



Chapter Two:  Literature Review                                                                        48 
 

 

 

for describing services and for industry standard instead of Application Programming 

Interfaces (API) in order to ensure service interoperability (Curbera et al, 2001) 

 

According to Beznosov, Flinn, Kawamoto and Hartman (2005), a web service is a 

distributed computing oriented technology build on the foundation of other previous 

distributed computing technologies such as Distributed Component Object Model 

(DCOM), Common Object Request Broker Architecture (CORBA) and Enterprise 

Java Beans (EJB). While these technologies have important roles to play, their 

interoperability is the most difficult part; applications developed in different 

environments can hardly communicate and interact to one another. Software 

applications developed by such technologies are language dependent and platform 

dependent. On the contrary, web services are language independent and platform 

independent; web services technology aims at making distributed computing easier 

and enhancing system interactions, integration and interoperability. 

  

Gottschalk, Graham, Kreger and Snell (2002) report about business-to-consumer 

(B2C) interactions and business-to-business (B2B) interactions as the two major 

categories of software interactions on the Internet. Web services support and 

facilitate B2B interactions where programs communicate to each other. Just like 

websites are being used to publish information understandable by humans, web 

services are used to publish information that is comprehensible to other software 

systems (Sotomayor, 2005). According to Srivastava and Koehler (2003), a web 

service is an independent application logic that provides services or business 

functionalities to other applications through the Internet technology. In order to 

develop software that are language-free and platform-free, the building blocks of web 

services conform to World Wide Web (WWW) standard. 

 

With reference to Figure 2.4, in order to enforce the interoperability values offered by 

web services, Sotomayor (2005) describes a four-layered architecture of web 

services, which consists of processes layer, description layer, invocation layer and 

transport layer.  These four layers are described in the following section. 

 

http://www.research.ibm.com/journal/sj/412/gottsaut.html#gottschalk
http://www.research.ibm.com/journal/sj/412/gottsaut.html#graham
http://www.research.ibm.com/journal/sj/412/gottsaut.html#kreger
http://www.research.ibm.com/journal/sj/412/gottsaut.html#snell


Chapter Two:  Literature Review                                                                        49 
 

 

 

Processes Layer

Description Layer

Invocation Layer

Transport Layer

Discovery, aggregation, choreography, etc

WSDL: Web Services Description Language

The most popular invocation protocol is SOAP,

but other protocols may be used

The most popular transport is HTTP,

but other protocols may be used

 

Figure 2.4: Four layers of web service architecture (adapted from Sotomayor, 2005) 

i. Processes layer: 

The processes layer facilitates discovery of web services so that client 

applications can find and locate web services with easy. The main technology 

used to locate web services is Universal Description, Discovery and 

Integration (UDDI). UDDI is a mechanism used in order to discover locations 

where specific web services are provided and gives information about the 

web service provider. 

ii. Description layer: 

In order for client applications to use operations provided by the web services, 

clients should know which operations are available and how to invoke those 

operations. The description layer allows the web service to describe itself in 

order to indicate operations supported and how those operations can be 

utilized or invoked by client applications. The main technology used to 

support self-description and easy invocation of web services is the Web 

Service Description Language (WSDL). 

iii. Invocation layer: 

The invocation of operations provided by a web service, involves back and 

forth exchange of messages between a client application and a server where 

a web service is located. However the messages communicated should be in 

a format understandable to both client and server. Hence the function of the 

invocation layer, which is to format messages prior transfer between client 

and server. The main technology used to format messages is called Simple 

Object Access Protocol (SOAP). 



Chapter Two:  Literature Review                                                                        50 
 

 

 

iv. Transport layer:  

Once in the required format, messages will be transmitted between the server 

and client. Hence the Transport layer, which is a layer responsible for 

transmitting messages between client and server. The most used protocol to 

ensure message transfer in web services is called HyperText Transfer 

Protocol (HTTP).  

With reference to figure 2.5, the three basic building blocks of web services are 

Simple Object Access Protocol (SOAP), Universal Description, Discovery and 

Integration (UDDI) and Web Services Description Language (WSDL). These building 

blocks of web services are defined using eXtensible Markup Language (XML) and 

other Internet protocols such as HyperText Transfer Protocol (HTTP). The standard 

of web service architecture is specified by World Wide Web Consortium (W3C), 

which is also responsible for the standard of eXtensible Mark Language (XML), 

HyperText Markup Language (HTML), Cascading Style Sheet (CSS) and other web 

related technologies (Sotomayor, 2005).  

2.4.2.3.2 Communication mechanism in web services 

With reference to figure 2.5, the communication process of web services involves two 

key role players; a service provider (server application) and a service requestor 

(client application). There are two parts involved in the communication process; 

service creation part and service consumption part. In the service creation part, a 

service provider designs and develops web services using WSDL and makes web 

service operations available to the service requestor. In order to makes the 

operations of web services available, the service provider have to publish the 

address of web services, also known as Uniform Resource Identifier (URI), to a 

service registry by using the UDDI technology (Gottschalk et al., 2002). Once the URI 

has been published, the service is available and can be consumed by authorized 

service requestors.  

 



Chapter Two:  Literature Review                                                                        51 
 

 

 

Service

Description

Service

Service

Description

Service

Registry

Service

Requester

Service

Provider

Publish

WSDL + UDDI

Bind

Find

WSDL + UDDI

 

Figure 2.5: Web service objects and operations (adapted from Gottschalk et al., 2002) 

 
During service consumption, service requestor utilizes services provided by the 

service provider. In order to use a web service, the service requestor has to find the 

URI of the web service offering the requested services in the service registry. The 

service requestor then uses the URI to retrieve and attach itself to the web service in 

order to use the required web service operations. The process of attaching a service 

requestor to a web service is called binding (Sotomayor, 2005). When the service 

requestor discovers the location of a web service, it creates a request message in a 

special format using SOAP or JSON. Then the request message is transmitted 

through the Internet protocol, mostly HTTP, to the appropriate web service. The web 

service executes its operations, which results into a response message. Then the 

response message will be formatted using SOAP or JSON and transferred back to 

the appropriate service requestor via HTTP protocol. The service requestor does not 

directly interact with the web service, the communication and interaction between 

service requestor and web service is made possible through a proxy class (Wang, 

Huang, Qu & Xie, 2004). Once the service requestor receives response from the 

service provider, the communication process ends. The interaction between service 

requestor and service provider disbands and the communication process stops. 

 

Complex business processes require multiple communication processes to be 

performed by several web services. This is achieved by specific invocations and 

interactions of multiple web services through a coordinated process called 

orchestration or choreography (McGibbon, 2007). This orchestration process is 

achieved by using an XML-based language called Web Services Business Process 

Execution Language (WS-BPEL).  

 



Chapter Two:  Literature Review                                                                        52 
 

 

 

2.4.2.3.3 The importance of web services in business 

The dynamic nature of business requirements is a challenge to software 

development. This challenge can be addressed by using business applications 

developed at a fly to meet immediate and ever changing business needs (Wang et 

al., 2004). The web services architecture promises to address this problem of 

constantly changing business requirements. Hence, the web service is ideal for e-

Commerce where business requirements are dynamic and volatile.  Web services 

capabilities of supporting interoperability among applications, scalability, flexibility, 

loose coupling, reusability, language independence and platform independence 

makes it ideal for ever-changing business requirements (McGibbon, 2007). 

Web services allow business organizations to utilize the Internet as a common 

platform for communication, interaction and exchange of data in order to carry out 

business activities and provide valuable services. Web services can facilitate both 

business-to-consumer (B2C) and business-to-business (B2B) interactions among 

business organizations. Despite concerns about security and trust issues related to 

using Web services from external service providers, merits of using web services by 

far outweigh demerits. Knight (2005) reports that service oriented architecture (SOA) 

will dominate design and development of new software products. Therefore, 

competency in developing services oriented software products is critical to software 

developers. This is because many business organizations are increasingly utilizing 

web services to conduct their business transactions.  

 

The following section discusses user interface design as a critical phase during 

system and software design phase. 

2.4.2.3.4 User interface design  

Software systems are increasingly becoming part of human life and social activities 

(Kofman, 2006). Software users issue instructions and receive feedback from 

computerized programs via the interface also known as Human Computer Interface 

(HCI). Good communication and interaction among users and software systems can 

be determined by HCI. The design of user-friendly HCI is critical for usable and 

dependable software systems (Sommerville, 2007:363). According to Sommerville 

(2007), software developers often develop user interfaces that are inappropriate and 

difficult to use by the intended audience. In order to address this problem Bennett et 

al. (2006), among others, recommend the use of “the user-centred approach” where 



Chapter Two:  Literature Review                                                                        53 
 

 

 

users are involved in every aspect of interface design. It is by involving users, that 

software developers will be able to design and develop attractive, appropriate, 

friendly, usable and dependable software applications. 

 

According to Bennett et al. (2006), the altitude of users towards using the system can 

be influenced by their experience with the user interface of a given system. Users will 

opt to using programs that are user friendly, intuitive and simple to follow (Bennett et 

al., 2006). It is therefore important that software developers think about users and 

apply the user-centred approach in order to produce usable software systems.  

 

The following section 2.3.2.5 discusses about object orientation as a critical phase 

during system and software design phase. 

2.4.2.3.5 Object Oriented Programming 

The concept of Object Oriented Programming (OOP) is based on the premise that 

people view their environment as a collection of objects (Satzinger et al., 2004).  

According to Kendal (2011:20), the perception of software system as a collection of 

objects interacting together to achieve a particular goal, is a more natural way of  

looking at a software system to be developed. Kendal (2011:113-122) further 

suggests that users think in terms of objects as such their requirements can be 

correctly captured if viewed as collection of objects interacting one another. In order 

to undertake software development activities, it is suggested that things involved in 

the software development requirements be categorized into groups or abstractions. 

The grouping should be done in such a way that things of similar characteristics are 

grouped together. Hence the term “class” which literally refers to a blue print which 

can be used to create instances of classes, also known as objects (Bennett et al., 

2006).  The aim of designing classes is to analyse and identify objects needed by the 

software system to execute its activities. 

 

A class has particular characteristics that distinguishes it from other classes and 

supports methods or operations that could be used to access its characteristics 

(Malik, 2002).  A class is said to be self-contained; it has data and operations 

encapsulated in one container. Different sets of classes are used by the software 

system to created different sets of objects required by the system, the process known 

as instantiation of objects (Bennett et al., 2006:71).  

 



Chapter Two:  Literature Review                                                                        54 
 

 

 

Programming codes proven to perform effectively and efficiently can be encapsulated 

into classes and reused in other similar software projects. This is software reusability. 

Software reusability is a powerful technique because if used appropriately, it can 

speed up the software development process. In addition, software reusability can 

prevent a software problem of “inventing the wheel” where all programming codes 

are developed from the scratch and hence reduce production costs (Sajeev, 

1994:1161).  

 

Most of software developer’s tasks are maintenance of previous software codes. 

Maintenance can be difficult and tedious work in large and complex systems. 

Classes however make maintenance work manageable. Classes alleviate the 

problem of writing same piece of code in different areas of the software. In large 

software systems, it can be tedious to manually modify codes in all areas affected by 

changes of a given functionality. Nevertheless, classes comes to rescue because 

modifications of codes can be performed in one specific area of a class and changes 

propagated to other classes via inheritance and composition, as explained below.  

 

Inheritance refers to characteristics of one category of things being passed to all 

things that belong to the same category. This is data abstraction where common 

characteristics of things are grouped together and passed to other things of the same 

category. This prevents duplication of codes because things with similar 

characteristics are grouped in one category and those characteristics can be passed 

to other things that require similar properties by a process called inheritance 

(Satzinger et al., (2004:183). Inheritance involves a super-class; a class that contains 

all common characteristics and sub-class; a class that inherits all properties from 

super-class. It is also known as generalization6 and specialization7 of classes and it 

caters for “is a “relationship” (Bennett et al., 2006). For instance, a student is a 

person and a teacher is a person. This implies that a person is a super-class with all 

characteristics that describes a person. On the other hand, a student and a teacher 

are sub-classes and inherit all properties of a person. 

 

Composition and aggregation describe another form of relationships among objects 

interacting in the software system. This is the “has a” relationship.  For instance, a 

                                                 

 
6
 Generation is hierarchical relationship from sub-class to super-class  

7
 Specialization is hierarchical relationship from super-class to sub-class 

(Deitel & Deitel, 2006: 549) 



Chapter Two:  Literature Review                                                                        55 
 

 

 

computer has a keyboard and mouse; however, neither a keyboard nor a mouse is a 

computer.  The distinction between composition and aggregation is based on the 

degree of dependency relationship between two interacting objects; composition 

represent stronger dependency relationship while aggregation implies weaker 

dependency relationship (Bennett et al., 2006).  For instance, a computer can exist 

without a mouse but cannot exist without a RAM (Random Access Memory). 

Therefore, computer has a composition relationship with RAM and aggregation 

relationship with a mouse. 

 

Another unique concept related to the OOP approach is “information hiding”. This 

refers to the ability of objects to have data and operations self-contained (data 

encapsulation) which results into an object knowing only about itself. An object is not 

concerned about how other objects perform their functions. According to Wirfs-Brock 

(2009:11), hiding implementation details preserves design flexibility. Details of the 

mechanisms and processes required to perform a particular work in one object, are 

hidden from other objects. If one object requires a particular function to be carried out 

by another object; it does so by sending a message to another object; how the 

operations are done is not a concern of the object but of the other object receiving 

the message (Malik, 2002).  

 

The OOP approach addresses complexity associated with the development of 

software systems. This includes maintenance of software products, scalability of 

systems and reusability of software components. Knowledge of OOP is significant in 

the software development industry. 

2.4.2.3.6 Techniques used during software design 

Bennett et al. (2006:415-437) explain that design patterns are recurring solutions to 

software design problems. A typical design problem is component mismatch when 

designed components of a system do not fit to allow thorough components 

interactions. Garlan et al. (2009:68) report that design patterns such as wrappers, 

façade, adapters, mediators and bridge can resolve component mismatch problems. 

As such, knowledge of design patterns is critical in resolving software design 

problems.   

 

A modelling language called UML (Unified Modelling Language) is commonly used to 

design models of software systems.  According to Bennett et al. (2006:103-126), 



Chapter Two:  Literature Review                                                                        56 
 

 

 

UML is particularly used to design models such as  sequence diagrams, interaction 

diagrams and activity diagrams, in order to illustrate the interactions of objects in a 

given business scenario. Among others UML is also used to model use case 

diagrams in order to demonstrate interactions between users and a given software 

system. Knowledge of UML and object orientation is significant during the design of 

large and complex software systems. 

 

While designing a software product, a software developer has to correctly interpret 

specifications and convert those specifications into design models. In the structured 

paradigm of programming; where a software program is viewed as a collection of 

functions, software developers use techniques such as system flow charts, structure 

charts and pseudo-code (Satzinger et al., 2004:348-367). On the other hand, in the 

OOP approach where a software program is viewed as a collection of interacting 

objects, software developers utilize use case diagrams to identify and determine 

required functionalities of a system (Bennett et al., 2006:145-154). 

 

 According to Sommerville (2007:326-335) techniques used during software design 

include class diagrams, communication diagrams, sequence diagrams and state 

diagrams. Bennett et al. (2006:397-412) explain that a class diagram is composed of 

a collection of classes and their relationships. Bennett et al. (2006:252-277) indicate 

that sequence diagrams and communication diagrams are important techniques for 

modelling interactions among objects in a given system. Furthermore, according to 

Sommerville (2007:329) state machine diagrams are useful in showing how individual 

objects change their state in response to events. 

2.4.3 Implementation and software testing 

During implementation and software testing, software design is converted into sets of 

program units (Sommerville, 2007:67). These program units include executable 

programming codes such as classes and functions. During this phase, software 

design components are converted into programming codes. In order to ensure that 

user requirements are met, testing is performed for each component developed. This 

process is known as unit testing where each piece of code written is individually 

tested to ensure that it respond appropriately to test cases and functional 

requirements (Sommerville, 2007:547). 

 



Chapter Two:  Literature Review                                                                        57 
 

 

 

 According to Godefroid, Halleux, Nori, Rajamani, Schulte, Tillmann and Levin   

(2008:30), unit testing is a popular way to ensure early and frequent testing while 

developing software components. Unit testing is primarily performed by software 

developers since software developers are familiar with components that are being 

developed. Software developers can easily pinpoint errors and correct software 

defects, also known as bugs (Sommerville, 2007:547). Tillmann and Schulte 

(2006:38) report about software projects at Microsoft where software developers 

wrote more lines of code for unit testing than for the implementation being tested. 

When software developers know that they are required to test their specification and 

code, they design their code for testability which makes hard-to-test features testable 

(Talby, Hazzan, Dubinsky & Keren, 2006:32). 

 

According to Sommerville (2007:547), the main objective of unit testing is to expose 

faults, defects or bugs in software components. Bugs are bad codes that affect the 

normal functioning of software systems. Bugs can cause security vulnerabilities such 

as buffer overflows and memory leak, which can be exploited by malicious attackers 

(Godefroid et al., 2008:32). This leads to the debugging process, which is a process 

of removing bugs from software components.  According to Hailpern and Santhanam 

(2002:5), the purpose of debugging is to locate and fix the offending code 

responsible for violating known specifications. 

 

The ultimate product of implementation and software testing phase is defect-free 

executable software components that integrate to form a software system. According 

to Hailpern and Santhanam (2002:4), testing is a very expensive process that can 

cost from 50 percent to 75 percent of total development costs. In addition, Bertolino 

(2007) agrees that testing can consume 50 percent or more of total development 

costs. Nevertheless, it is very important that implementation and unit testing is 

performed thoroughly because the price of poor testing is costly and can be 

detrimental especially to safety and critical software systems. 

 

Techniques and skills used during implementation and software testing are explained 

below. 

 

There are tools that can assist software developers with generating and testing 

codes, however, writing and testing codes is performed by software developers. 

Bennett et al. (2006:563) mention about two categories of testing techniques as white 



Chapter Two:  Literature Review                                                                        58 
 

 

 

box testing and black box testing. White box testing refers to a process of examining 

specifications and programming codes in order to determine defects to be corrected. 

This includes stepping through codes line by line for each piece of code. White box is 

also known as structural testing since it involves checking the structure of 

specifications and programming codes (Sommerville, 2007:557). On the contrary 

black box testing requires no knowledge of programming codes; inputs and outputs 

of test cases are prepared, a program is executed with inputs and then a check is 

performed to assert that only expected outputs are produced.  According to Hailpern 

and Santhanam (2002:7) black box testing is based on external specifications and 

does not involve the understanding of the detailed code implementations.  

 

Since the implementation and testing phase focuses on writing and testing 

executable programs, proficiency in appropriate programming languages is critical. 

Common mainstream programming languages used to write software codes are 

Java, PHP, C-Sharp, C++, Perl and Python. 

 

According to Satzinger et al. (2004:487-524) many software systems require data to 

be created, stored, retrieve, modified and deleted. As such knowledge of database 

management system (DBMS) such as Oracle, DB2, Microsoft SQL server and 

MySQL is vital. DBMS manipulate data by executing programming codes or 

statements written using structured query languages (SQL). Therefore thorough 

knowledge of SQL is important especially in data driven software systems. 

 

Experience in debugging techniques play important roles to ensure that bugs are 

limited since eliminating all bugs is practically not feasible (Hailpern & Santhanam, 

2002:9). Fowler (1999:53) reports about a technique called “Refactoring” where 

software components are changed internally without changing the external behaviour 

of codes. Refactoring is a code optimization technique performed in order to improve 

quality properties of software such as performance, security and scalability. 

According to Fowler (1999:56) refactoring can help software developers to write 

codes that are easy to understand and easy to debug. 

2.4.4 Integration and system testing 

This phase focuses on integrating software components into sub-systems and then 

integrating sub-systems to form a complete software system. According to Copeland 

and Haemer (2000:42), integration should be performed frequently as a normal part 



Chapter Two:  Literature Review                                                                        59 
 

 

 

of every software developer’s daily work; the process called continuous integration. 

With reference to the V-model on Figure 2.6, all testing are performed according to 

various testing plans where testing plans act as links between development and 

testing (Sommerville, 2007:520). Once unit testing is complete, software components 

are integrated together and sub-system integration test is conducted according to the 

sub-system integration test plan. Thereafter different sub-systems are integrated and 

system integration test is conducted according to system integration test plan. 

Finally, prior to making the system operational, acceptance testing which involve 

customers is conducted according to the acceptance test plan.  

 

Requirements

specification

System

specification

System

design

Detailed

design

Module and

unit code

and test

Sub-system

integration

test

System

integration

test

Acceptance

test

Acceptance

test plan

System

Integration

test plan

Sub-system

integration

test plan

Service

 

Figure 2.6: V-model showing test plans (adapted from Sommerville, 2007:520) 

 

Integration testing is concerned with identifying defects in the system and ensuring 

that software components work together (Sommerville, 2007:540-541). Since 

integrating components could introduce new bugs or expose unidentified bugs, it is 

essential that software testing be conducted as components are integrated. This 

goes hand in hand with verification and validation (V&V) whose objective is to ensure 

that requirements specification and customers’ expectations are met (Sommerville, 

2007:516-520). With regard to requirements specification, the system developed 

should meet both functional and non-functional requirements. Moreover, with regard 

to meeting customers’ expectation, the system should cater for business needs as 

expected by stakeholders. This leads to system testing where the system as a whole 

is tested to ensure that both functional and non-functional requirements are met. 

According to Hailpern and Santhanam (2002:7) system testing targets key aspects of 

software products, such as recovery, security, stress, performance, hardware 

configurations and software configurations.    Before the system is made operational, 



Chapter Two:  Literature Review                                                                        60 
 

 

 

acceptance testing is conducted, where customers are involved in order to ensure 

that customers’ expectations are met (Olson, 2004:245). 

 

Techniques and skills used during system testing are explained below. 

 

White box testing can be implemented during integration and system testing to 

examine codes that have been used to integrate components. However, black box 

testing is largely preferred since the objective is to understand how the system 

behaves and responds to user inputs, without checking the details of the 

implementation codes. Hailpern and Santhanam (2002:10) report that regression 

testing is commonly performed where testing is repeatedly done to ensure that 

changes made to a system after integrating components do not introduce bugs. This 

ensures that a software system continues to meet requirement specifications and 

delivers customers’ expectations. Furthermore Juristo, Moreno, Vegas and Solari   

(2006:78) mention that regression-testing techniques are widely used for selecting 

test cases from an existing set. 

 

Sommerville (2007:81) explains about alpha testing, beta testing and acceptance 

testing. Alpha testing is used where a particular single client is involved in the testing 

process as the system is being integrated and tested. Thereafter beta testing can be 

employed where software is released to multiple clients and exposed to the actual 

work environment using actual data. As the software is being used, reports are 

gathered and used to resolve defects reported by clients. Beta testing is similar to 

acceptance testing where users take part during testing and the system is exposed to 

actual work environment using actual data. 

 

Integration and system testing involves two categories of stakeholders; technical and 

non-technical people. Technical skills such as proficiency in programming languages 

and SQL are critical. In large software companies, there are specialized teams 

dedicated to testing software systems, nevertheless, it is still the responsibility of 

software developers to test software systems. 

2.4.5 Operation and maintenance 

Sommerville, (2007:493) describes three types of software maintenance as 

maintenance to repair software faults, maintenance to adapt the software to a 

different operating environment and maintenance to add or modify the system’s 



Chapter Two:  Literature Review                                                                        61 
 

 

 

functionality. Satzinger et al. (2004:660) describe software maintenance as 

modification of a software product after delivery to correct faults, improve 

performance or other attributes or adapt the product to a changed environment. 

Maintenance is the longest phase since it continues if the business organization is to 

address the ever-changing business needs. 

 

Once acceptance testing is successful, the system is installed to users’ work 

environment also known as deployment. Users start using the new system to 

accomplish their business tasks. At this stage, it is expected that the system provide 

all if not most of functional and non-functional requirements, as per requirements 

specification. However, following reasons such as continuous changes in business 

requirements to address changing business needs, maintenance will continue during 

the lifetime of business. Now that the system is exposed to the actual work 

environment where the workload may be high, new bugs could emerge. Moreover, 

hidden bugs that were not detected during previous project phases could materialize. 

Hence, the need for continuous maintenance where software developers continue to 

monitor the system, perform necessary adjustments and add more software 

functionalities as the business grows.  

 

The actual development process might officially cease after deployment of the 

system, nevertheless, there are software developers who continue with the 

maintenance work. Most business organizations have software developers referred 

to as support team, available to assist users and perform necessary software 

maintenance.  

 

Moreover since the system is new to users, training sessions are normally performed 

to users (Olson, 2004:244). When users understand how to effectively and efficiently 

utilize the new system, the system becomes usable. It serves no purpose if the 

system has all functionalities while users do not know how to utilize the system to 

perform their tasks. As such during maintenance phase, users receive necessary 

training regarding the functionalities of the new the system.  

 

Techniques and skills used during operation and software maintenance are 

explained in the following section. 

 



Chapter Two:  Literature Review                                                                        62 
 

 

 

There are several techniques employed when the system is deployed to users.  

These techniques have different merits and demerits. Hence it depends on the 

nature of a software system, financial position of the business organization, work 

experience of users and the risks that a business organization is prepared to take. 

Olson (2004:245) mentions about parallel installation, the pilot operation approach 

and cold-turkey approach as common deployment techniques. Parallel installation 

refers to the software implementation process where both new and old systems are 

made operational at the same time. While this is reported to be a safer technique, it 

is costly since the organization has to run two systems hence there is an increase in 

the consumption of resources to support both systems. The pilot operation approach 

involves running the new system on limited basis. While this can help with identifying 

problems associated with the new system, workload related problem cannot be 

detected since the new system will be partially exposed to the work environment. 

Cold-turkey approach refers to the installation process where a new system is 

installed and an old system is completely removed from operation. The cold-turkey 

approach is sometimes known as the big bang approach. This approach can be risky 

since if something goes wrong with the new system, there is nothing to support 

business operations. 

 

According to Bennett et al. (2006:568), there are four software installation strategies, 

namely, direct changeover which is equivalent to cold-turkey, parallel running, 

phased changeover and pilot project (Figure 2.7).  

 

Old system

New system

Old system

New system

             Old system

New system - phase 1

New system - phase 2

New system - phase 3

Time

Direct changeover

Parallel running

Phased changeover

 

Figure 2.7: Software installation strategies (adapted from Bennett et al., 2006:568) 

 



Chapter Two:  Literature Review                                                                        63 
 

 

 

The phased changeover approach refers to a technique where installation of a new 

system is performed not in one go but in phases. Another common technique is 

known as the geographical installation approach.  This approach is useful when an 

organization is scattered in different geographical locations and hence installation of 

a new system is perform in one geographical location after another. 

 

Software maintenance is also technical because it involves adding, modifying and 

remove programming codes in order to address business changes (Satzinger et al., 

2004:660). Thus proficiency in appropriate programming languages and SQL is 

important. Since hidden bugs could be discovered and exposed as the system is put 

to work, it is important that software developers have experience in debugging 

techniques. This is because one of major roles during operation and maintenance is 

fixing bugs (Sommerville, 2007:493).  

 

Finally, logical thinking and attention to details remain important skills during the 

operation and maintenance phase. Furthermore, a solid understanding of the whole 

software development life cycle from requirement specifications to operation and 

maintenance is critical. This is because from time to time software developers may 

have to re-visit previous phases in order to backward trace and understand sources 

of defects in a system in order to fix bugs. 

2.5 Chapter summary 

This chapter explored literature related to competencies in the software development 

field. The chapter commenced with an investigation on software projects followed by 

investigation of recent research pertaining to competencies. Finally, the chapter 

ended by a detailed discussion on the software development process. 

2.6 Conclusion 

Competencies for a given field are understood if and only if the philosophy and 

principles underpinning that field are understood. As such, the theoretical and 

practical understanding of the software development process is important in order to 

understand a software developer competency framework. After exploring literature on 

software projects, having investigated recent studies on competencies and the 

software development process, it is justifiable that knowledge of a software developer 

competency framework can improve competencies of software developers. 



Chapter Two:  Literature Review                                                                        64 
 

 

 

Therefore, a software developer competency framework is paramount for the 

success of software projects.  

 

The following chapter three focuses on the research methodology.  
 



Chapter Three: Research Methodology 
 

 

 

65 

CHAPTER THREE: RESEARCH METHODOLOGY 

“Any fool can write code that a computer can understand. Good programmers write code that 

human can understand” 

(Martin Fowler) 

------------------------------------ 

3.1 Introduction 

This chapter discusses research methodology followed during this study. In 

particular, the theoretical framework underpinning this research is explained. 

 

Research methodology for this study is geared towards understanding competencies 

required by software developers to perform their job as per the industry 

requirements. The chapter explores common research methodologies and typical 

research methodologies applicable in competency studies. The chapter further 

discusses about a research design followed in order to develop a Software 

Developer Competency Framework (SDCF).  

  

The chapter commences with an investigation of categories of research paradigms in 

section 3.2. Section 3.3 discusses research methodology while section 3.4 discusses 

typical research methodologies used in recent studies on competencies. The 

research design for this research is described in section 3.5, followed by research 

population and sampling in section 3.6. Reliability and validity matters are discussed 

in section 3.7. Ethics, consent and confidentiality issues are discussed in section 3.8. 

The chapter concludes with chapter summary in section 3.9 and conclusion in 

section 3.10.  

3.2 Categories of research paradigm 

A study about a given phenomenon can be approached and attained from different 

perspectives commonly known as research paradigms. According to Mackenzie and 

Knipe (2006), a research paradigm is a theoretical framework that underpins a given 

research and influences the way knowledge is studied and interpreted. A research 

paradigm for a particular study is based on the ontological and epistemological views 

of the researcher. Ontology refers to the philosophical assumptions on how one view 

reality and being while epistemology refers to philosophical assumptions of how one 



Chapter Three: Research Methodology 
 

 

 

66 

acquires knowledge (Mack, 2010:5).  Ontology informs about epistemology, which 

then informs about methodology appropriate for a given study.  

 

Bhattacherjee (2012:18-20) reports about four paradigms of social science research 

as functionalism, interpretivism, radical structuralism and radical humanism. These 

four categories of research paradigms, also known as four quadrants in research 

paradigms are based on the work of Burrell and Morgan (1979) regarding 

sociological paradigms and organisational analysis (Figure 3.1).  

 
 

Radical

Structuralism

Radical

Humanism

Functionalism Interpretivism

Social order

Radical change

SubjectivismObjectivism

 

Figure 3.1: Four paradigms of social research (adapted from: Burrell & Morgan, 1979) 

 

The difference of one paradigm to another is based on the ontological and 

epistemological assumptions or stance employed while conducting a research. 

Functionalists and interpretivists view the world as consisting of mostly social order 

and seek to study patterns of ordered events or behaviours. However, a functionalist 

believes that the best way to study the world is via objective approach while an 

interpretivist prefers subjective approach to study the world. On the other hand, 

radical structuralism and radical humanism are employed when researchers view the 

world as consisting of radical change and seek to understand or enact change. 

Radical structuralists prefer objective approach to study the world while radical 

humanists utilize subjective approach to perform their studies. 

 

It is hereby argued that a single paradigm does not suffice in scientific social 

researches. This is because most of social researches deals with complex 



Chapter Three: Research Methodology 
 

 

 

67 

phenomena and hence requires multiple paradigms to fully understand a given social 

phenomenon. Hence the need for multiple paradigms to study a given phenomenon 

in order to have an holistic and complete understanding of the phenomenon which 

can be achieved via the multi-paradigmatic approach to research. Ardalan (2010:34) 

agrees that insights generated by a single paradigm are partial and incomplete and 

hence the need to utilize multiple paradigms in order to complement a given study.  

Similarly, Bhattacherjee (2012:18) agrees that following complex nature of social 

phenomenon there are possibilities that a single research paradigm is partially 

correct and incomplete. This is in agreement with Ardalan (2010:35-36) who posits 

that researchers can gain much by exploiting new perspectives coming from other 

paradigms. Therefore the application of multiple paradigms leads to a better 

understanding of the multi-faceted nature of a given phenomenon.  

 

Gravetter and Forzano (2009:147) state that the primary distinction between 

quantitative and qualitative research is the type of data they produce. Quantitative 

research produces numerical scores, such as durations, counts of incidents, ratings 

and scales. These are objective data. On the other hand, qualitative research is 

concerned with collection and analysing information in non-numeric form to produce 

narrative reports or written discussions of the observation. These are subjective data. 

Best and Khan (1989:89-90) agrees that qualitative and quantitative methods are not 

mutually exclusive and both can be mixed and used in one study of a given 

phenomenon. Moreover, Jick (1979:602) agrees that researchers can improve the 

accuracy of their judgments by collecting different kinds of data bearing on the same 

phenomenon, which leads to a concept known as triangulation. Olsen (2004) defines 

triangulation as the mixing of methods or data in order to allow diverse viewpoints to 

cast light upon a given topic. 

 

Based on the fact that triangulation improves accuracy of judgments by considering 

diverse viewpoints from multi-paradigms, this study follows the triangulation 

approach. The theoretical framework of this research is underpinned and informed by 

the ontology and epistemology of both functionalism and interpretivism paradigms. 

The researcher’s construct of reality and knowledge is not confined by one single 

paradigm but multi-paradigms. There are both strengths and weaknesses in each 

research paradigm (Figure 3.1). Hence, this study capitalizes on the strengths of a 

multi-paradigmatic approach where research paradigms complement one another in 

order to minimize the effects of weaknesses of a single paradigm. 



Chapter Three: Research Methodology 
 

 

 

68 

3.3 Research methodology 

Research methodology is about the logic behind methods used during research and 

techniques used in carrying that research (Welman et al., 2005:2). According to 

Babbie and Mouton (2001), research methodology refers to a systematic, methodical 

and accurate execution of a research plan. Research methodology explains methods 

and techniques that a researcher use to attain knowledge about a given research 

problem in order to provide or suggest appropriate solutions regarding the research 

problem. Research methodology therefore explains how a researcher conducted a 

research. 

 

Welman et al. (2005:6) explains that there are two approaches to research; the 

positivist approach and the anti-positivist approach. Welman et al. (2005:6) 

elaborates that the positivist approach is based on a philosophical assumption known 

as logical positivism where natural scientific methods are applied. The positivist 

approach suggests that a research must be limited to what is observed and 

measured objectively. Hence, what is observed and measured must exist 

independent of the feelings and opinions of individuals. According to Charmarz 

(2006:188), the positivism approach subscribes to scientific methods consisting of 

objective systematic observation and experimentation in an external world. On the 

other hand, the anti-positivist approach argues if natural-scientific methods are the 

norms in social science studies. Anti-positivists argue that it is inappropriate to follow 

strict natural-scientific methods when collecting and interpreting data (Welman et al., 

2005:6). The anti-positivists approach focuses on the experiences of human 

behaviour. 

 

Welman et al. (2005:6-9) further clarifies that research methodologies can be 

categorized into two major categories; namely qualitative and quantitative research. 

Qualitative research involves research methods where qualitative data such as 

descriptions of social life as observed by a researcher, unstructured interviews and 

data obtained from written sources are employed while quantitative research deals 

with quantitative data; which are numerical and hence measured and expressed in 

form of numbers (Jones, 2004a). Welman et al. (2005:8) mention that the purpose of 

quantitative research is to evaluate objective data consisting of numbers whilst 

qualitative research deals with subjective data produced by the minds of respondents 

or interviewees, mostly represented in language instead of numbers.  Neuman 

(1997) mentions that qualitative data can be expressed as words, objects and 



Chapter Three: Research Methodology 
 

 

 

69 

pictures while Babbie and Mouton (2001) states that quantitative data involves 

variables that are used to measure against the research problem. Therefore this 

study utilizes both qualitative and quantitative epistemological methodologies using 

interviews and survey respectively. As mentioned above, this is triangulation. 

 

The following section elaborates on techniques used in requirement analysis as an 

attempt to indicate typical research techniques that could be incorporated in the 

research design of this study. 

3.4 Typical research techniques used in requirement analysis 

According to Sommerville (2007:153), an effective interviewer should be open-

minded and a good listener who is willing to listen to stakeholders in order to 

understand user requirements. Furthermore, according to Sommerville (2007:153) an 

interviewer should be able to prompt and lead interviewees into giving specific 

information as opposed to leaving interviewees with general information. Sommerville 

(2007:152-158) and Jiang et al. (2008:326) further describe about interviews, use 

cases, prototype and ethnography as techniques used to facilitate requirements 

analysis. Olson (2004:93) reports about meetings, interviews and brainstorming as 

some of techniques used to elicit user requirements. These techniques can be stated 

as follows: 

 

i. Interviews refers to a two way instant communication or meeting where one 

party called interviewer poses questions to another party called interviewee, 

who answers the asked questions. Interviewers can for instance be researchers 

while interviewees can be software developers and stakeholders such as end 

users and managers. 

 

ii. Use cases, according to Bennett et al (2006: 145), refers to descriptions of 

functionality of the system from the users’ perspective. Use cases identify users 

or actors and the type of interactions between users and the system. Use cases 

are mostly used in a modelling language called UML (Unified Modelling 

Language) to identify actors (users) and to show how actors interact with the 

software system. 

 

iii. Prototype refers to a partially developed system whose purpose is to provide 

users with means to identify user requirements. According to Hughes and 



Chapter Three: Research Methodology 
 

 

 

70 

Cotterell (2006:78-80) prototype is ideal for discovery of user requirements 

where the degree of uncertainty is high. Users can test, explore and understand 

different ideas using prototypes.  

 

iv. Ethnography is a technique where an individual observe employees at their 

work (Hughes & Cotterell, 2006:453). For instance, a software developer could 

visit employees and observe their behaviour at work and how they actually work 

in order to identify user needs that can be satisfied by a software system. 

 

v. Brainstorming refers to a process where individuals generate ideas with the 

intent to seek to understand the situation at hand (Olson, 2004:98). The 

purpose is to understand the situation in order to implement appropriate 

solutions to identified problems. According to Olson (2004:98), brainstorming 

allows the generation of better ideas than individual thoughts. When done 

correctly in a climate of free association, brainstorming taps into the mind of 

more people, which results into better ideas. Hence, brainstorming is the idea 

generation process. 

 

vi. Task and user analysis involves and focuses on deep understanding of how 

users perform their tasks (Stary, 2002:437). This understanding includes users’ 

goals, personal, social and cultural characteristics, influence of environment, 

previous experience and knowledge as well as what users value as being 

important to make execution of tasks a delightful experience. 

 

Studies on competencies have a lot in common in terms of methodology and 

objectives. Ahn and McClean (2008:545) used interviews to identify competencies 

required for port and logistics personnel in Busan, South Korea. Thereafter, Ahn and 

McClean (2008:547) had to use survey questionnaires to cover large samples in 

order to validate their research on larger population.  

 

According to Le Deist and Winterton (2005:31), competency framework is a result of 

observing successful and effective job performers and determining what makes these 

individuals to differ from less successful performers. Frank (2005) reports about 

intensive steps involved to identify competencies of physicians and medical doctors. 

Frank (2005) mentions that methodologies applied to identify and determine 

competencies of physicians and doctors include consultation among medical 



Chapter Three: Research Methodology 
 

 

 

71 

specialties such as physicians and surgeons as well as among doctors and patients. 

These are basically meetings and interviews among physicians and the society. The 

research was however complemented by surveys to test the validity of the 

competency framework (Frank, 2005).  

 

As mentioned in chapter one, the study on master’s students of computer science 

who were assigned software development tasks utilized ethnography as the 

methodology (Rivera-Ibarra, Rodriquez-Jacobo, Fernandez-zepeda & Serrano-

Vargas, 2010:35). According to Turley and Bieman (1995:3), during phase one of 

their research on competencies of software engineers, they used interviews to 

identify essential competencies of software engineers in a software development 

company in United States of America (USA). Interviews with software engineers were 

recorded and transcripts were made. Thereafter Turley and Bieman (1995) applied 

content analysis to analyse information collected from software engineers. During 

phase two, Turley and Bieman (1995:11) had to use survey questionnaires to cover 

larger population of software engineers; also known as software developers.  

 

The following section describes  research design for this study. 

3.5 Research design for this study 

Based on the above, it is clear that social science studies tend to use both qualitative 

and quantitative methodologies together; the process known as triangulation (De Vos 

et al., 2002:341-342). Yin (2003) defines triangulation as a process where both 

qualitative and quantitative methods are used to facilitate the research process for a 

given research study. Olsen (2004) defines triangulation as the mixing of data or 

methods in order to allow diverse viewpoints to cast light upon a given topic. Olsen 

(2004) further sub-divides triangulation into two categories; data triangulation (mixing 

data types) and methodological triangulation (mixing methodologies). 

 

The effectiveness of triangulation is based on the premise that weaknesses in one 

method are compensated by strengths of another method (Jick, 1979:604). Jick 

(1979:602) explains that qualitative and quantitative methods are complementary and 

not rival methods. Furthermore, Olsen (2004) reports that mixing methodologies such 

as the use of survey and interviews is a more profound form of triangulation. Internet-

based surveys are popular because they are economical in terms of time and costs. 

In addition, Internet-based surveys facilitate access to large research populations 



Chapter Three: Research Methodology 
 

 

 

72 

and samples (Burns & Burns: 2008:495). On the other hand, interviews help in 

obtaining in depth and specific understanding of a given phenomenon (Welman et 

al., 2005:166). 

 

As such, this research employs the triangulation approach using survey 

questionnaires and interviews to accomplish its objectives. Both survey 

questionnaires and interviews aim at obtaining information pertaining to tasks 

performed by software developers, tools used and skills required to become a 

competent software developer, as indicated in figure 3.2 in the following section.  

As illustrated in the section below, this study is accomplished via both quantitative 

and qualitative methodologies via survey questionnaires and interviews. 
 

 

Competencies

of

Software developer

Tools Skills Tasks

Programming
Languages

Databases

IDEs Technical Skills

Soft Skills

Code Solutions

Test Solutions

Deploy Solutions

Analyse Problems

Design Solutions

 

Figure 3.23: Competencies of software developers under investigation 

3.5.1 Survey questionnaire 

The purpose of this research is to provide answers to the research question “What 

are fundamental competencies of a software developer?” In order to answer this 

question, the question was divided into three sub-questions as follows: 

i. How is software developed? 

ii. What technologies and tools are used to develop software? 



Chapter Three: Research Methodology 
 

 

 

73 

iii. What are essential skills required in order to develop software? 

 

Based on the research question, the researcher designed a questionnaire composed 

of twenty one questions; twenty closed-ended questions and one open-ended 

question. Closed-ended questions search for answers regarding all necessary 

statistical data required to understand the research population such as gender, years 

of experience in software development, level of skills and programming languages 

mostly used. Moreover, closed-ended questions seek to find answers about the 

software development process, technologies and tools used to develop software, 

tasks performed by software developers and important skills required by software 

developers.  Questions on skills were also addressed by another open-ended 

question. This question was set in such a manner as to gives freedom to research 

participants to provide as much rich information as possible without being limited. 

 

A survey questionnaire was uploaded on a website managed by Survey Gizmo; a 

well-known online survey services provider. Then a link to the research survey was 

distributed among software developers via emails. The Silicon Cape, a Western 

Cape based online community whose main responsibility is to promote Information 

Technology in South Africa, collaborated with the researcher and participated in 

reaching out and distributing the survey link among software developers.  

 

The CITI (Cape Information Technology Initiative) an organization whose main 

mandate is to promote Information Technology in the Western Cape Province 

collaborated with the researcher and participated in distributing the link to survey 

among software companies and business organizations within the Western Cape 

Province. 

 

The co-operation office in the department of Information Technology at Cape 

Peninsula University of Technology collaborated with the researcher and participated 

in distributing the survey link to software companies and business organizations 

running internship programmes via the Cape Peninsula University of Technology. 

The co-operation office has long history of assisting students with internship 

programmes and permanent employment as software developers. Hence, the 

researcher utilized the good work relationship between the co-operation office and 

the industry in order to reach more software developers in the industry.  

 



Chapter Three: Research Methodology 
 

 

 

74 

Some recruitment agencies whose main function is to find employment for software 

developers were contacted and involved in distributing the survey link among 

companies employing software developers. 

 

Part time students from the Cape Peninsula University of Technology who are 

working as software developers participated in the research. In collaboration with the 

researcher, these software developers also distributed the survey link among other 

software developers in their respective work places.  

 

The Chief Information Officer (CIO) forum, post-graduate initiative headed by the 

Cape Peninsula of Technology and comprised of members occupying senior 

positions in business organization and software companies in the Western Cape, 

participated in promoting the research and distributing the survey link among 

software developers. 

 

Identifiable sponsors, well-designed instruments, financial incentives and repeated 

contacts are among the steps that can be used to improve results of data collection 

from Internet surveys (Fowler, 2009:61). Using identifiable contact people from the 

industry, the researcher performed several follow-ups and sent several remainders 

via telephone and emails to the research population. As indicated on Appendix E, the 

researcher contacted several software companies and business organizations to 

promote awareness of the research and requesting participation of software 

developers to the research, the initiative that was welcomed by most of business 

organizations and software companies. Moreover, the researcher utilised Twitter and 

Facebook, well-known social sites, to target software developers on the online 

community. 

 

Ultimately, a link to access the survey questionnaire was distributed and made 

available to software developers. The survey was made accessible for the duration of 

six months; from 07 September 2010 to 07 March 2011. Data were collected and 

analysed using PASW8 Statistics 18 and Excel 2010. 

                                                 

 
8
 PASW: software package used for quantitative data analysis 



Chapter Three: Research Methodology 
 

 

 

75 

3.5.2 Interviews 

In order to complement the study, unstructured interviews were performed. Twelve 

software developers were interviewed during the months of March, April and May of 

2012. The interviews were performed on one to one basis where a researcher 

interviewed one individual after another. All interviewees were software developers 

with working experience from five years, working as senior software developers. 

Each interview session took an average of one hour depending on the availability of 

an interviewee. The interviews were unstructured and hence interviewees were open 

to discuss and share anything related to competencies of software developers. 

However, following time limitations the scope of interviews was based on the 

following three questions: 

i. As a software developer, what kind of software projects are you involved in? 

ii. As a software developer, what technology do you use in your company? 

iii. As a software developer, what skills do you have in order to perform your 

tasks in your software projects? 

 

The above questions aim at identifying and understanding competencies of software 

developers in the Western Cape Province. 

 

Six companies participated in the interviews and two interviewees were taken from 

each company. Companies participated are four software companies and two 

business companies. In this study, a software company is any company whose major 

business activities are to develop software systems as commercial products. These 

companies make profit primarily by selling software products and by providing 

software consulting and supporting services. Such software companies are 

characterized by having varieties of software projects and normally tend to have 

different project teams undertaking different software projects in a given time. 

Referring to companies interviewed the number of software developers in a project 

team ranged from five to fifteen.  

 

On the other hand, business companies that participated in this research are those 

companies that use software solutions to execute their business activities. These 

companies do not sell software products as a business rather they utilize software 

technology to execute most of their business activities. Software projects for these 

companies are mostly small and managed by small project teams. Most of tasks are 



Chapter Three: Research Methodology 
 

 

 

76 

performed individually and there are no structured project teams. In this case, 

software developers normally focus on maintenance and addition of new small 

features to existing software systems. Often whenever business companies have 

business requirements that require a big software project, they tend to utilize services 

and expertise offered by consulting software companies. 

 

Data collected during interviews was analysed using the content analysis technique. 

The researcher had to read text of data collected to identify patterns and themes. 

Content analysis as a data analysis technique is described in details in chapter four. 

3.6 Research population and sampling 

Mouton (1996:134) refers to population as a collection of objects, events or 

individuals sharing common characteristics or behaviour that need to be studied by a 

researcher. According to Welman et al. (2005:53), and Babbie and Mouton 

(2001:100) a population is a group of potential participants to whom a researcher 

wants to generalise the results of a study or wishes to make specific conclusions. 

Welman et al. (2005:55) also mention that it is impractical and uneconomical to 

include all members of the population in a research project. Hence, the need for 

population sampling where a representative portion of the population is selected and 

used for study to generalize conclusions on the research population.  

 

Sampling refers to a process of selecting a particular set of elements from a 

population to be studied in order to achieve research aims and draw conclusions 

about the whole population (Babbie & Mouton, 2001; Kumar, 2005). Welman et al. 

(2005:53) mention that a sample selected to represent a particular research 

population is also known as a “unit of analysis”. According to Welman et al. 

(2005:56), there are two categories of sampling; probability and non-probability 

sampling. With probability sampling, it is possible to ascertain that any member of the 

population have equal chance of being included in the study. This is possible if the 

number of the research population is specifically known. On the other hand, non-

probability sampling is based on the selection of unknown or not readily identifiable 

research participants for a given population (Singleton & Straits, 2005). 

 

The population under this research is all software developers in the Western Cape 

Province. Since the number of software developers in the whole Western Cape 



Chapter Three: Research Methodology 
 

 

 

77 

Province is not known and cannot be easily quantified, non-probability sampling was 

employed during this research. Specifically, convenience sampling, which is a non-

probability sampling that deals with selecting readily available research subjects, 

according to Welman et al. (2005:69), was used in this research. The objective is to 

learn from experienced software developers on what are competencies of software 

developers. The survey questionnaire that was distributed among software 

developers was structured in such a way that it was possible to establish if a 

research participant was experienced in terms of executing software development 

tasks. All levels of software developers namely; junior, middle and senior level, were 

issued questionnaires indiscriminately. While inputs were gathered from all software 

developers, answers pertaining to skills of software developers were primarily 

obtained from experienced software developers. Turley and Bieman (1995:121) 

report that software engineers who exhibited exceptional performance had extensive 

work experience while non-exceptional software engineer were said to be 

inexperienced. Therefore, there is a correlation between skills and work experience. 

3.7 Reliability and validity of research methodology 

Findings of a given research on a specific unit of analysis ultimately need to be 

applied to the entire research population. Hence, the need of reliability and validity of 

research methods and instruments used to perform a given research. A research 

instrument is anything, for instance a questionnaire that a researcher can use in 

order to undertake a research (Hofstee, 2006:115). Sarantakos (1998) refers to 

reliability as how dependable or consistent are the instruments used during research. 

According to Welman et al. (2005:145) reliability is the extent to which scores 

obtained during a particular measurement may be generalised to different measuring 

occasions, measurements/tests forms and measurement/test administrators. For 

reliable measurements, scores that are assigned to individuals should therefore be 

consistent irrespective of the time of measurements, the test used, and the person 

administering the test (Welman et al., 2005:145). However, reliability is more 

applicable in experimental research were taking measurements is a common 

procedure during data collection.  

 

Validity is the extent to which the research findings accurately represent what is 

really happening in the research population (Welman et al., 2005:142). Furthermore 

Welman et al. (2005:106-131) report on internal validity and external validity. Internal 

validity has something to do with whether changes in a dependent variable are due to 



Chapter Three: Research Methodology 
 

 

 

78 

changes on independent variable and not something else. Welman et al. (2005:125-

128) further divide external validity into ecological validity and population validity. 

Ecological validity refers to the generalisation to a relevant universe of conditions and 

is more critical in experimental researches. On the other hand, population validity 

refers to the degree to which the findings obtained for a sample may be generalised 

to the total population to which the research hypothesis applies (Welman et al., 

2005:125). Hence, population validity is of critical importance in this research. 

 

Prior to constructing a questionnaire for this research, the researcher performed a 

considerable research on software development and on previous competency 

studies. While competency studies are different, their main objective is to determine 

competencies in a given field of speciality. For instance, studies on competencies of 

software engineers in the USA, competencies of medical professions in Canada, 

competencies for supervisors in the building and construction sector in Chile and 

competencies for employees for American Medical System company (Turley & 

Bieman, 1995; Frank, 2005; Serpell & Ferrada, 2007; Gangani et al., 2004). This is to 

ensure that this study conforms to standards of competency studies performed by 

other researchers. This is in order to improve population validity such that research 

findings for this study can be generalised to all software developers in the Western 

Cape Province.  

 

Questions in the survey questionnaire were geared to find answers to research sub-

questions as specified on section 3.4.1 above. Moreover the questionnaire was 

based on previous researches that have been validated. However, the researcher 

performed adjustments in order to ensure that questions depicted the context of the 

research population in the Western Cape Province. The questionnaire was 

distributed among software developers and hence answers to survey were provided 

by software developers developing software systems in the Western Cape Province.  

 

In order to reinforce and ensure validity and reliability of the questionnaire, the first 

draft of questionnaire was issued to ten randomly selected software developers from 

five randomly selected business companies. This was to ensure that the content of 

questionnaire is understood among software developers and that it measures what is 

expected to be measuring. The selected ten software developers were contacted for 

their feedback with regards to the content of questions on the survey. All feedback 

were investigated by the researcher and incorporated into the research to prepare a 



Chapter Three: Research Methodology 
 

 

 

79 

final questionnaire. Lastly the final questionnaire was uploaded on the website 

managed by Survey Gizmo, well-known online survey service providers. Ultimately 

the survey link was made accessible among software developers in the Western 

Cape Province.  

3.8 Ethics, Consent and Confidentiality 

Before the survey was distributed and interviews performed, approval from the Post 

Graduates Ethics Committee of the Cape Peninsula University of Technology was 

obtained. All research participants were informed of their rights as far as this 

research is concerned. This included answering all questions or only questions 

where the research participant sees fit and the right to unconditional withdrawal from 

the research. Since participation in this research was voluntary, research participants 

had rights to decide to participate or not to participate. Furthermore, it is 

acknowledged that information provided by research participants is for the sole 

purpose to enable the researcher to complete the fulfilments required to obtain the 

master’s degree in information technology. Data collected will not be provided to the 

public or any external party for other purposes. All information including identifying 

information such as name, telephone and email addresses will be kept confidential 

and research participants will remain anonymous. 

3.9 Chapter Summary 

This chapter introduced research paradigms, explained on categories of research 

methodologies and briefly discussed about typical research design followed by 

previous studies on competencies. The research design followed during this research 

was discussed. Population and sampling techniques were elaborated. Furthermore, 

ethics, consent and confidentiality matters were discussed. 

3.10 Conclusion 

This research took advantage of triangulation using survey questionnaire to measure 

quantitative data and interviews to obtain qualitative data.  Interviews were performed 

among selected software developers. In addition, survey questionnaire was uploaded 

on a website and a website link to access the survey was distributed among software 

developers. Both quantitative and qualitative methodologies were employed. 

 

The following chapter four discusses data analysis.



Chapter Four: Data Analysis and Presentation 
 

 

 

80 

 

CHAPTER FOUR: DATA ANALYSIS AND PRESENTATION 

“It is a capital mistake to theorize before one has data”  

(Arthur Conan Doyle) 

------------------------------------ 

4.1 Introduction 

This chapter presents data collected during the research. Data were collected using 

survey questionnaires and interviews. Quantitative data collected via questionnaires 

were analysed using Excel 2010 and PASW software while qualitative data of open-

ended questions and interviews were analysed using the content analysis technique.  

 

The chapter presents quantitative data analysis in section 4.2 and qualitative data 

analysis in section 4.3. The chapter concludes with chapter summary in section 4.4 

and conclusion in section 4.5.  

4.2 Quantitative data analysis 

With reference to Table 4.1 and Figure 4.1 below, a total of 263 survey responses 

were collected from software companies and business organizations. Fifty-seven (57) 

responses were incomplete because respondents did not answer all compulsory 

questions or they were not software developers from the region under study. For 

instance, there were a few responses from Asia and Europe. Those incomplete 

responses were excluded from this study. As a result a total of two hundred and six 

questionnaire responses (n=206) were eligible for data analysis; these were 

complete questionnaires because respondents answered all compulsory questions 

and belong to the population under study.  

 

Table 4.1: Response status of questionnaire (n=263) 

 Number of respondents Percentage 
Complete 206 78.3% 

Incomplete 57 21.7% 

Total 263 100.0% 

 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

81 

 

Complete

78.3%

Incomplete

21.7%

 

Figure 4.1: Response status of questionnaire (n=263) 

 

Data analysis was performed using Microsoft Office Excel 2010 and PASW Statistics 

18. Analysed data is represented by using tables and figures. A table indicates 

analysed data in the form of numbers while a figure translate collected data to give a 

generic pictorial view of data. While a table and a figure may achieve one purpose, 

they tend to give different views regarding same data. Therefore, in this study, data 

for each question are presented by both a table and a figure. A table is comprised of 

three columns where the first column represents a variable to be measured. A 

variable is a characteristic or an attribute of the study object (Welman et al., 

2005:16). The second column represents frequency or number of counts for the 

variable. The third column uses percentage to indicate to what extent does the 

frequency in second column form part of the whole community of 206 software 

developers who participated in this research. Regarding figures, depending on the 

question, either a pie chart or bar chart is used to present the generic pictorial view of 

data analysis.  

4.2.1 Profile of software developer 

This section presents demographical data collected in order to understand the profile 

of software developers who participated in this study. Data collected are related to 

gender, age, race, citizenship, work experience, education background and 

respondent’s technical level in software development. This data is mutually exclusive 

and hence a respondent could provide only one answer per question. 



Chapter Four: Data Analysis and Presentation 
 

 

 

82 

 

4.2.1.1 Gender of respondents  

Question: What is your gender? 

 

With reference to Table 4.2 and Figure 4.2, the majority 80.6 percent of respondents 

are male and only 19.4 percent of respondents are female. 

Table 4.2: Gender (n=206) 

 Number of respondents Percentage 

Male 166 80.6% 

Female 40 19.4% 

Total 206 100.0% 

 

 

Female

19.4%Male

80.6%

 

Figure 4.2: Gender of respondents (n=206) 

4.2.1.2 Age of respondents  

Question: What is your age? 

 

With reference to Table 4.3 and Figure 4.3 in the following section, the majority 68.9 

percent of respondents are between 21 years to 34 years. The second major age 

group is 35 years to 49 years, which constitutes 24.8 percent of respondents. 4.9 

percent of respondents are between 50 years to 65 years. One percent of 

respondents are under 21 years and only 0.5 percent of respondents are over 65 

years. 



Chapter Four: Data Analysis and Presentation 
 

 

 

83 

 

Table 4.3: Age in years (n=206) 

 Number of respondents Percentage 

Under 21 2 1.0% 

21 – 34 142 68.9% 

35 – 49 51 24.8% 

50 – 65 10 4.9% 

Over 65 1 0.5% 

Total 206 100.0% 

 

 

1.0%

68.9%

24.8%

4.9%
0.5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Under 21 21 - 34 35 - 49 50 - 65 Over 65

 

Figure 4.3: Age in years (n=206)  

4.2.1.3 Race of respondents  

Question: What is your race? 

 

South Africa population is divided into four major races; black, white, coloured and 

Indian (Bornman, 2006:387). With reference to Table 4.4 and Figure 4.4 in the 

following section, the majority 65 percent of respondents are white followed by black 

at 14.1 percent and coloured at 11.2 percent. Indian constitutes 7.8 percent and only 

1.9 percent of respondents classify themselves as other races rather than the above-

mentioned four races. 



Chapter Four: Data Analysis and Presentation 
 

 

 

84 

 

Table 4.4: Race of software developer respondents (n=206) 

 Number of respondents Percentage 

White 134 65.0% 

Black 29 14.1% 

Coloured 23 11.2% 

Indian 16 7.8% 

Other 4 1.9% 

Total 206 100.0% 

 

 

65.0%

14.1%
11.2%

7.8%

1.9%

0%

10%

20%

30%

40%

50%

60%

70%

White Black Coloured Indian Other

 

Figure 4.4: Race of respondents (n=206) 

 

4.2.1.4 Citizenship of software developer respondents  

Question: What is your citizenship? 

 

With reference to Table 4.5 and Figure 4.5 in the following section, the majority 88.8 

percent of respondents are South Africans followed by 5.3 percent as Asian people. 

Europe and other Africa countries have a tie of 2.9 percent each. According to data 

collected, there are neither North Americans nor South Americans who participated 

in this research. 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

85 

 

Table 4.5: Citizenship of respondents (n=206) 

 Number of respondents Percentage 

South Africa 183 88.8% 

Asia 11 5.3% 

Europe 6 2.9% 

Other African countries 6 2.9% 

North America  0 0.0% 

South America  0 0.0% 

Total 206 100.0% 

 

 

88.8%

5.3% 2.9% 2.9% 0.0% 0.0%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

South African Asia Europe Other African

countries

North America South America

 

Figure 4.5: Citizenship of respondents (n=206) 

 

4.2.1.5 Work experience of software developer respondents  

Question: What is your work experience as a software developer? 

 

With reference to Table 4.6 and Figure 4.6 in the following section, the majority 30.6 

percent of respondents have been working as software developers for over 10 years. 

Thirty (30.1) percent report to have worked for not more than 3 years. Twenty-two 

(22.3) percent have work experience of between 4 years to 6 years. The least group 

constitutes 17 percent of respondents who report to have work experience of 

between 7 years to 10 years. 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

86 

 

Table 4.6: Work experience in years (n=206) 

 Number of respondents Percentage 

0 – 3 years 62 30.1% 

4 – 6 years 46 22.3% 

7 – 10 years 35 17.0% 

Over 10 years 63 30.6% 

Total 206 100.0% 

 

 

30.1%

22.3%

17.0%

30.6%

0%

5%

10%

15%

20%

25%

30%

35%

0 – 3 years 4 – 6 years 7 – 10 years Over 10 years

 

Figure 4.6: Years of work experience (n=206) 

 

4.2.1.6 Time taken to become self-dependent software developer 

Question: How long did it take you to become a software developer who performs 

tasks with minimal assistance from other software developers? 

 

With reference to Table 4.7 and Figure 4.7 in the following section, the majority 37.9 

percent of respondents indicate that it took them a maximum of 6 months to become 

proficient with software development tasks. The second major group constitutes 30.1 

percent of respondents and reports to have taken between 7 months to 12 months to 

become proficient software developers. 15.5 percent of respondents indicate to have 

taken between 13 months to 18 months. Seven (7.3) percent indicate to have taken 

19 months to 24 months. 6.3 percent took between 2 years to 3 years while 2.9 

percent took over 3 years. 

  



Chapter Four: Data Analysis and Presentation 
 

 

 

87 

 

Table 4.7: Time taken to become self-dependent (n=206) 

  Number of respondents Percentage 

0 - 6 months 78 37.9% 

7 - 12 months 62 30.1% 

13 - 18 months 32 15.5% 

19 - 24 months 15 7.3% 

over 2 years - 3 years 13 6.3% 

over 3 years 6 2.9% 

Total 206 100.0% 

 

 

37.9%

30.1%

15.5%

7.3% 6.3%

2.9%

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 - 6 months 7 - 12 months 13 - 18 months 19 - 24 months over 2 years -

3 years

over 3 years

 

Figure 4.7: Time taken to become self-dependent (n=206) 

 

4.2.1.7 Software development certification status 

Question: Are you a certified software developer, certified with software training 

authorities like Microsoft, Oracle or Sun? 

 

With reference to Table 4.8 and Figure 4.8, the majority 71.4 percent of respondents 

are not certified software developers while only 28.6 percent of respondents report to 

be certified software developers. 

Table 4.8: Time taken to become self-dependent (n=206) 

 Number of respondents Percentage 

Yes 59 28.6% 

No 147 71.4% 

Total 206 100.0% 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

88 

 

Certified, 28.6%

Not certified, 71.4%

 

Figure 4.8: Software development certification status (n=206) 

4.2.1.8 Education background of respondents  

Question: What is your highest education qualification? 

 

With reference to Table 4.9 and Figure 4.9, the majority 37.9 percent of respondents 

have a bachelor degree. Thirty-five (35) percent have diploma followed by 13.1 

percent who have certificates. 7.3 percent of respondents report to have master’s 

degree while only 1 percent indicates to have PHD. However, 5.8 percent of 

respondents indicate to have been software developer without formal education. 

 

Table 4.9: Education background of respondents (n=206) 

 Number of respondents Percentage 

Certificate 27 13.1% 

Diploma 72 35.0% 

Bachelor degree 78 37.9% 

Master’s degree 15 7.3% 

PHD 2 1.0% 

Other 12 5.8% 

Total 206 100.0% 

 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

89 

 

13.1%

35.0%

37.9%

7.3%

1.0%

5.8%

0%

5%

10%

15%

20%

25%

30%

35%

40%

Certificate Diploma Bachelor

degree

Masters

degree

PHD Other

 

Figure 4.9: Education background of respondents (n=206) 

 

4.2.1.9 Current position of respondents  

Question: What is your current technical level (position) as a software developer? 

 

With reference to Table 4.10 and Figure 4.10, the majority 52.9 percent of 

respondents indicate to be senior software developers. 25.7 percent have reached 

middle level position while 21.4 percent report to be junior software developers.  

 

Table 4.10: Current level as a software developer (n=206) 

 Number of respondents Percentage 

Junior 44 21.4% 

Middle 53 25.7% 

Senior 109 52.9% 

Total 206 100.0% 

 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

90 

 

Junior, 21.4%

Middle, 25.7%

Senior, 52.9%

 

Figure 4.10: Current position of software developer (n=206) 

 

4.2.1.10 Province of respondents  

Question: In which province are you coming from? 

 

With reference to Table 4.11 and Figure 4.11, the majority 80.6 percent of 

respondents are coming from the Western Cape Province. This was the unit of 

analysis for this research. However, 14.1 percent of respondents indicate that they 

are coming from Gauteng while 2.4 percent of respondents are from KwaZulu Natal. 

Eastern Cape and Limpopo have a tie of 1 percent each. Moreover, Free State and 

North West have a tie of 0.5 percent each.  

 

Table 4.11:  Provinces of respondents (n=206) 

  Number of respondents Percentage 

Western Cape 166 80.6% 

Gauteng 29 14.1% 

KwaZulu Natal 5 2.4% 

Eastern Cape 2 1.0% 

Limpopo 2 1.0% 

Free state 1 0.5% 

North West 1 0.5% 

Total 206 100.0% 

 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

91 

 

80.6%

14.1%

2.4% 1.0% 1.0% 0.5% 0.5%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Western

Cape

Gauteng KwaZulu

Natal

Eastern

Cape

Limpopo Free state North West

 

Figure 4.11: Provinces of respondents (n=206) 

 

4.2.2 Software development technologies 

This section presents software development technologies used by respondents while 

performing their tasks as software developers. Six questions were used to investigate 

and address software development technologies. The questions covered integrated 

development environment (IDE) tools, programming languages, database 

management systems (DBMS), code version control tools, application servers and 

software deployment environments. Data regarding technologies is not mutually 

exclusive since a software developer may use more than one technology or tool to 

perform a particular task. Therefore, a research respondent may provide more than 

one answer per question. 

4.2.2.1 Software development environment tools 

Question: What among these Software Development Environment (IDE) tools, do 

you use most of the time? 

 

Ten commonly used IDE tools were identified and respondents were asked to 

indicate whether these tools are being used while performing their tasks as software 

developers. With reference to Table 4.12 and Figure 4.12 in the following section, 

there are five IDE tools where each IDE tool is used by more than 10 percent of 

respondents.  

 



Chapter Four: Data Analysis and Presentation 
 

 

 

92 

 

The most used top five IDE tools are: 

i. Microsoft visual studio used by 52.9 percent of respondents 

ii. Notepad used by 31.6 percent of respondents 

iii. Net beans used by 18 percent of respondents 

iv. Eclipse used by 16.5 percent of respondents 

v. Dream weaver used by 15 percent of respondents. 

 

However, 46.6 percent of respondents indicate to use other tools. This could be in-

house tools, which are specific to companies and used in conjunction with other 

tools. Each of the following five tools: Microsoft SharePoint, ActiveState Komodo, 

Jcreator, Xcode and PhpED is used by less than 10 percent of respondents where 

PhpED is the least used IDE, used by 2.4 percent of respondents. 

 

Table 4.12: Software development IDE (n=206) 

IDE tool Number of responses Percentage 

Microsoft visual studio 109 52.9% 

Other 96 46.6% 

Notepad 65 31.6% 

Net beans 37 18.0% 

Eclipse 34 16.5% 

Dreamweaver 31 15.0% 

Microsoft share point 20 9.7% 

Activestate komodo 7 3.4% 

Jcreator 6 2.9% 

Xcode 5 2.4% 

PhpED 5 2.4% 

 

52.9%

46.6%

31.6%

18.0% 16.5% 15.0%

9.7%

3.4% 2.9% 2.4% 2.4%

0%

10%

20%

30%

40%

50%

60%

Microsoft

visual studio

Other Notepad Net beans Eclipse Dreamweaver Microsoft

share point

Activestate

komodo

Jcreator Xcode PhpED

 

Figure 4.12: Software development tools (n=206) 



Chapter Four: Data Analysis and Presentation 
 

 

 

93 

 

4.2.2.2 Programming technologies 

Question: What among these programming technologies, do you use most of the 

time? 

 

Twenty-two mainstream programming technologies were identified. In this study, a 

programming technology refers to any software technology used to write computer 

instructions, in the form of codes, that when processed form part of software system. 

This includes programming languages and other client side and server side 

programming technologies. Client side refers to technologies used primarily for the 

design and functioning of user interfaces while server side technologies refer to 

programming of processes to be executed by the server machines. With reference to 

Table 4.13 and Figure 4.13 in the following section, there are twelve programming 

technologies where each technology is used by more than 10 percent of 

respondents. The most used top twelve programming technologies are: 

i. HTML used by 55.8 percent of respondents,  

ii. Java script used by 46.6 percent of respondents,  

iii. CSS used by 46.1 percent of respondents,  

iv. XML used by 43.7 percent of respondents,  

v. C#  used by 42.7 percent of respondents,  

vi. PHP used by 31.6 percent of respondents,  

vii. ASP.NET used by 29.1 percent of respondents, 

viii. Ajax used by 28.6 percent of respondents,  

ix. Java used by 20.4 percent of respondents,  

x. Visual basic used by 17 percent of respondents,  

xi. UML used by 11.7 percent of respondents  

xii. VB script used by 10.7 percent of respondents.  

 

However, 33.5 percent of respondents indicate to use other programming 

technologies. Each of the following ten programming languages: COBOL, Ruby, 

C++, Python, Perl, Delphi, Assembler, Pascal, C and FORTRAN is used by less than 

10 percent of respondents where FORTRAN is the least used programming 

language, used by 0.5 percent of respondents. 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

94 

 

Table 4.13: Programming technologies (n=206) 

 Number of responses Percentage 

HTML 115 55.8% 

Java script 96 46.6% 

CSS 95 46.1% 

XML 90 43.7% 

C# 88 42.7% 

Other 69 33.5% 

PHP 65 31.6% 

ASP.NET 60 29.1% 

Ajax 59 28.6% 

Java 42 20.4% 

Visual basic 35 17.0% 

UML 24 11.7% 

VB script 22 10.7% 

COBOL 18 8.7% 

Ruby 13 6.3% 

C++ 11 5.3% 

Python 10 4.9% 

Perl 8 3.9% 

Delphi 6 2.9% 

Assembler 5 2.4% 

Pascal 4 1.9% 

C 3 1.5% 

FORTRAN 1 0.5% 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

95 

 

0.5%

1.5%

1.9%

2.4%

2.9%

3.9%

4.9%

5.3%

6.3%

8.7%

10.7%

11.7%

17.0%

20.4%

28.6%

29.1%

31.6%

33.5%

42.7%

43.7%

46.1%

46.6%

55.8%

0% 10% 20% 30% 40% 50% 60%

FORTRAN

C

Pascal

Assembler

Delphi

Perl

Python

C++

Ruby

COBOL

VB script

UML

Visual basic

Java

Ajax

ASP.NET

PHP

Other

C#

XML

CSS

Java script

HTML

 

Figure 4.13: Programming technologies (n=206) 

 

4.2.2.3 Database Management Systems 

Question: What among these database management systems (DBMS) do you use 

most of the time? 

 

Eight mainstream DBMS were identified and respondents were asked to indicate 

which DBMS are used while performing their tasks as software developers. With 

reference to Table 4.14 and Figure 4.14, there are five DBMS where each DBMS is 

used by more than 10 percent of respondents.  



Chapter Four: Data Analysis and Presentation 
 

 

 

96 

 

The most used top five DBMS are: 

i. Microsoft SQL server used by 53.9 percent of respondents 

ii. MySQL used by 48.1 percent of respondents  

iii. Oracle used by 22.3 percent of respondents  

iv. DB2 used by 12.1 percent of respondents 

v. Microsoft access used by 11.2 percent  

 

However, 15 percent of respondents indicate to use other types of DBMS. These 

could be in-house specific DBMS and legacy flat files. Each of the following three 

DBMS:  PostgreSQL, Sybase and Informix are used by less than 10 percent of 

respondents where Informix is the least used DBMS, used by 0.5 percent of 

respondents.  

 

Table 4.14: Database management systems (n=206) 

 Number of responses Percentage 

Microsoft SQL server 111 53.9% 

MySQL 99 48.1% 

Oracle 46 22.3% 

Other 31 15.0% 

DB2 25 12.1% 

Microsoft access 23 11.2% 

PostgreSQL 20 9.7% 

Sybase 8 3.9% 

Informix 1 0.5% 

 

 

53.9%

48.1%

22.3%

15.0%
12.1% 11.2% 9.7%

3.9%
0.5%

0%

10%

20%

30%

40%

50%

60%

Microsoft

SQL server

MySQL Oracle Other DB2 Microsoft

access

PostgresSQL Sybase Informix

 

Figure 4.14: Database management system (n=206) 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

97 

 

4.2.2.4 Code version control tools 

Question: What among these code version control tools do you use most of the 

time? 

 

Seven mainstream code version control tools were identified and respondents were 

asked to indicate which tools are being used while performing their tasks as software 

developers. With reference to Table 4.15 and Figure 4.15, there are three code 

version control tools where each tool is used by more than 10 percent of 

respondents. The most used top three code version control tools are: 

i. Subversion used by 35.9 percent of respondents  

ii. Visual studio team system used by 23.8 percent of respondents 

iii. Visual source safe used by 18.9 percent of respondents 

 

However, 23.8 percent of respondents report not to use any code version control tool 

and 23.3 percent report to use other tools. Each of the following four code version 

control tools: Concurrent version system, Vault, Star Team and Perforce is used by 

less than 10 percent of respondents where Perforce is the least used tool, used by 

0.5 percent of respondents. 

 

Table 4.15: Code version control tool (n=206) 

 Number of responses Percentage 

Subversion 74 35.9% 

Visual studio team system 49 23.8% 

None 49 23.8% 

Other 48 23.3% 

Visual source safe 39 18.9% 

Concurrent version system 19 9.2% 

Vault 4 1.9% 

Star Team 3 1.5% 

Perforce 1 0.5% 

 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

98 

 

35.9%

23.8% 23.8% 23.3%

18.9%

9.2%

1.9% 1.5% 0.5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

Subversion Visual

studio team

system

None Other Visual

source safe

Concurrent

version

system

Vault Star Team Perforce

 

Figure 4.15: Figure 4.15: Code version control tool (n=206) 

 

4.2.2.5 Application servers 

Question: What among these application servers, do you use most of the time? 

 

Nine mainstream application servers were identified and respondents were asked to 

indicate which application servers are mostly used at their respective work places. 

With reference to Table 4.16 and Figure 4.16 in the following section, there are two 

application servers where each application server is used by more than 40 percent of 

respondents. The most used top two application servers are:  

i. Microsoft server products used by 46.1 percent of respondents 

ii. Apache used by 42.7 percent of respondents  

 

However, 10.2 percent of respondents indicate not to use any application server 

while 15.5 percent report to use other application servers. Each of the following 

seven application servers: Websphere, Glassfish, Jboss, OracleOC4J, WebLogic, 

SAP Netweaver and JRun is used by less than 10 percent of respondents where 

JRun is the least used server, used by 1 percent of respondents. 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

99 

 

Table 4.16: Application server (n=206) 

 Number of responses Percentage 

Microsoft server products 95 46.1% 

Apache 88 42.7% 

Other 32 15.5% 

None 21 10.2% 

Websphere 12 5.8% 

Glassfish 9 4.4% 

JBoss 9 4.4% 

OracleOC4J 8 3.9% 

WebLogic 6 2.9% 

SAP Netweaver 5 2.4% 

JRun 2 1.0% 

 

 

46.1%
42.7%

15.5%

10.2%

5.8% 4.4% 4.4% 3.9% 2.9% 2.4% 1.0%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Microsoft

server

products

Apache Other None Websphere Glassfish JBoss OracleOC4J WebLogic SAP

Netweaver

JRun

 

Figure 4.16: Application server (n=206) 

4.2.2.6 Software installation environment 

Question: Among these environments, your software products are installed or 

running in which environment? 

 

Three common software installation environments were identified and respondents 

were asked to indicate software environments where their software products are 

deployed. With reference to Table 4.17 and Figure 4.17 in the following section, 

majority 79.1 percent of respondents develop software systems for windows, 40.8 

percent develop software systems for Linux and 7.5 percent develop software 

systems for Unix. Nevertheless, 13.1 percent report to develop software system for 

other deployment environment. 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

100 

 

Table 4.17: Software installation environment (n=206) 

 Number of responses Percentage 

Windows 163 79.1% 

Linux 84 40.8% 

Unix 36 17.5% 

Other 27 13.1% 

 

 

Windows, 79.1%

Linux, 40.8%

Unix, 17.5%

Other, 13.1%

 

Figure 4.17: Software installation environment (n=206) 

 

4.2.3 Tasks performed by software developers 

This section presents tasks performed by software developers. Six common 

categories of tasks performed by software developers were identified. These 

categories of tasks cover the entire software development life cycle. 

 

Question: Among these software development tasks, your software development 

tasks fall in which groups? 

 

Respondents were asked to indicate categories of their tasks as software 

developers. With reference to Table 4.18 and Figure 4.18 in the following section, 

more than half of respondents perform all categories of tasks in the software 

development life cycle. Most of respondents, 88.8 percent, write codes for software 

systems. Eighty-two (82.5) percent perform tasks related to design of software 

solutions. 76.2 percent perform tests for software solutions. 72.8 percent perform 



Chapter Four: Data Analysis and Presentation 
 

 

 

101 

 

software maintenance. 68.9 percent analyse user requirements and 68 percent 

deploy software solutions. 

 

Table 4.18: Software development tasks (n=206) 

 Number of responses Percentage 

Analyse user requirements 142 68.9% 

Design software solution 170 82.5% 

Code software solution 183 88.8% 

Test software solution 157 76.2% 

Deploy software solution 140 68.0% 

Perform software maintenance 150 72.8% 

 

 

68.9%

82.5%
88.8%

76.2%

68.0%
72.8%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Analyse user

requirements

Design

software

solution

Code software

solution

Test software

solution

Deploy

software

solution

Perform

software

maintenance

 

 Figure 4.18: Software development tasks (n=206) 

 

4.2.4 Skills of software developers  

This section presents data related to fundamental skills required by software 

developers to develop software products. Two questions, 5-point likert scale question 

and an open-ended question were used to collect data regarding skills of software 

developers.  

 

Question: While performing your tasks as a software developer, how well do you 

agree that the following skills are important for you to perform your tasks? 

 

This question had ten 5-point likert scale sub-questions to address fundamental skills 

required by software developers. Respondents were asked to indicate how well they 



Chapter Four: Data Analysis and Presentation 
 

 

 

102 

 

agree with particular skills. For each sub-question, each respondent had to choose 

one of the given five choices: strongly agree, agree, don’t know, strongly disagree 

and disagree. During data analysis, nevertheless, statistics for strongly agree and 

agree where combined together to form one “agree” group and data for strongly 

disagree and disagree were combined to form one “disagree” group. Hence, data 

collected were categorised into three groups namely agree, don’t know and disagree. 

 

With reference to Table 4.19 and Figure 4.19, three top most skills agreed to be 

important among software developers are: 

i. Analytical and thinking skills; agreed by 96.6 percent of respondents 

ii. Communication skills; agreed by 94.7 percent of respondents 

iii. Ability to do self-study and research; agreed by 93.7 percent of respondents. 

 

Other skills that are agreed by more than 80 percent of respondents are: “Focus on 

customer needs” agreed by 91.7 percent, “Innovative while dealing with problems” 

agreed by 91.7 percent, “Team work” agreed by 88.8 percent, “Reuse of code”  

agreed by 86.4 percent and “Experience from previous work” agreed by 84.5 percent. 

The use of prototype is agreed by 66.5 percent while the least agreed skills are “Lack 

of ego” which is agreed by 65.5 percent of respondents. 

 

Table 4.19: Skills of software developers - Agree (n=206) 

 Agree 
Count             Percent 

Analytical and thinking skills 199 96.60% 

Communication skills 195 94.70% 

Ability to do self-study and research 193 93.70% 

Focus on customer needs 189 91.70% 

Innovative while dealing with problems 189 91.70% 

Team work 183 88.80% 

Reuse of code 178 86.40% 

Experience from previous work 174 84.50% 

Use of prototype 137 66.50% 

Lack of ego 135 65.50% 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

103 

 

96.6% 94.7% 93.7% 91.7% 91.7% 88.8% 86.4% 84.5%

66.5% 65.5%

0%

20%

40%

60%

80%

100%

120%

Analytical and

thinking skills

Communication

skills

Ability to do

self study and

research

Focus on

customer

needs

Innovative

while dealing

with problems

Team work Reuse of code Experience

from previous

work

Use of

prototype

Lack of ego

 

Figure 4.19: Skills of software developers – Agree (n=206) 

 

With reference to Table 4.20 and Figure 4.20, two top most skills that are not known 

to be important among software developers are: 

i. Use of prototype; not known by 22.8 percent of respondents. 

ii. Lack of ego; not know by 18 percent of respondents. 

 

For other skills, only less than 10 percent of respondents indicated not to know if 

those skills were important among software developers. 

 

Table 4.20:  Skills of software developers – Don’t know (n=206) 

 Don't know 
Count            Percent 

Use of prototype 47 22.80% 

Lack of ego 37 18.00% 

Experience from previous work 19 9.20% 

Team work 13 6.30% 

Reuse of code 13 6.30% 

Focus on customer needs 11 5.30% 

Innovative while dealing with problems 9 4.40% 

Ability to do self-study and research 6 2.90% 

Communication skills 5 2.40% 

Analytical and thinking skills 4 1.90% 

 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

104 

 

22.8%

18.0%

9.2%

6.3% 6.3%
5.3%

4.4%
2.9% 2.4% 1.9%

0%

5%

10%

15%

20%

25%

Use of

prototype

Lack of ego Experience

from previous

work

Team work Reuse of code Focus on

customer

needs

Innovative while

dealing with

problems

Ability to do

self study and

research

Communication

skills

Analytical and

thinking skills

 

Figure 4.20: Skills of software developers – Don’t know (n=206) 

 

With reference to Table 4.21 and Figure 4.21, two top most skills disagreed by 

respondents are: 

i. lack of ego disagreed by 16.5 percent of respondents 

ii. use of prototype disagreed by 10.7 percent of respondents 

 

For other skills, less than 10 percent of respondents indicated to disagree that those 

skills were important among software developers. 

 

Table 4.21:  Skills of software developers – Disagree (n=206) 

 Disagree 
Count              Percent 

Lack of ego 34 16.50% 

Use of prototype 22 10.70% 

Reuse of code 15 7.30% 

Experience from previous work 13 6.30% 

Team work 10 4.90% 

Innovative while dealing with problems 8 3.90% 

Ability to do self-study and research 7 3.40% 

Communication skills 6 2.90% 

Focus on customer needs 6 2.90% 

Analytical and thinking skills 3 1.50% 

 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

105 

 

16.5%

10.7%

7.3%
6.3%

4.9%
3.9% 3.4% 2.9% 2.9%

1.5%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

Lack of ego Use of

prototype

Reuse of code Experience

from previous

work

Team work Innovative while

dealing with

problems

Ability to do

self study and

research

Communication

skills

Focus on

customer

needs

Analytical and

thinking skills

 

Figure 4.21: Skills of software developers – Disagree (n=206) 

 

4.3 Qualitative data analysis 

Qualitative data analysis was performed by using a content analysis technique. 

Content analysis, according to Berelson (1954:489), is a research technique for the 

objective, systematic and qualitative description of the manifest content of 

communication. Content analysis plays important roles when a researcher seeks to 

understand the content of a given series of text. According to Welman et al. 

(2005:221-222), content analysis can be described as a quantitative analysis of 

qualitative data.  Qualitative data is a distinctive form of data namely language and 

texts (Gibbs, 2002:1). Welman et al. (2005:221) explains that basic techniques 

employed during content analysis involves counting of frequencies and sequencing 

of particular words, phrases or concepts in order to identify keywords, themes and 

patterns. Content analysis can be used to analyse personal documents, mass media 

material, open-ended questions of survey and unstructured interviews. 

  

Turley and Bieman (1995) applied content analysis to analyse the text of interviews 

collected from software engineers. Brandt (2006:54) used content analysis during the 

study on perspective of IT9 teachers on the possible cost-effective means of 

networking computer facilities for schools in Grahamstown, in the Eastern Cape. 

                                                 

 
9
 IT: Information Technology 



Chapter Four: Data Analysis and Presentation 
 

 

 

106 

 

Similarly Mlitwa (2009) used content analysis in his study on the factors affecting the 

usage and non-usage of learning management systems at tertiary institutions in the 

Western Cape. Content analysis is a quantitative data analysis of qualitative data 

(Welman et al., 2005:221).  

 

According to Weitzman and Miles (1995), there are several computerized software 

programs, which can be used to execute content data analysis. Such software 

programs include Atlasi and NUD-1st. In addition, Zelger and Oberprantacher (2002) 

describe about GABEK (Ganzheitliche Bewaltigung Sprachlich Erfasster Komplexitat) 

as a computer-aided methodology that can be used for the content analysis of 

unstructured textual qualitative data from open-ended questions. Software packages 

such as Atlas.ti, N4 Classis, N5, N-Vivo and WinMax can be used to support content 

analysis of literature review (Di Gregorio, 2000:2). Content analysis can be 

performed by using N-Vivo, which is a tool for qualitative research data analysis 

(Welman et al, 2005:224). According to Andrew et al. (2008:36), the use of N-Vivo 

not only has proved to be beneficial for the synthesis and analysis of mixed methods 

data but also N-Vivo enriches research findings. Ozkan (2004:594) reports that N-

Vivo is a powerful tool that can facilitate sophisticated data coding, data searching, 

exploration of coded text and exploration of complex ideas. N-Vivo software provides 

facilities for data management, for coding and retrieving text and for theory testing 

(Crowley, Harré & Tagg, 2002:194).  

 

While several computerized tools could have been used, following the fact that the 

amount of data collected could be managed with the use of advanced spreadsheet 

software, Excel 2010 was deemed suffices and used for qualitative data analysis 

during this research. Data from the open-ended question and interviews were 

collected then content analysis was performed manually by carefully reading text of 

data collected in order to identify patterns and themes. Therefore interviews were 

analysed using the content analysis technique as described above. 

 

The following section present data analysis of open-ended questions of survey 

questionnaires and interviews performed. 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

107 

 

4.3.1 Open-ended question (Other skills of software developers) 

Question: What other skills do you possess that help you perform and accomplish 

your software development tasks? 

 

This was an open-ended question where respondents were encouraged to provide 

as much information regarding other skills that they deem important to them as 

software developers. Data collected was analysed using content analysis technique.  

The researcher had to read all collected textual information in order to identify 

themes and patterns. Using Excel 2010 software, the researcher categorized 

collected information into patterns of skills where information related to one pattern of 

skills is placed into one group. The number of patterns of skills was calculated to 

determine frequency and percentage of all identified skills. With reference to Table 

2.22 and Figure 4.22, eleven patterns of skills, some of which already appeared in 

the previous section, were identified as indicated in the following section. 

Table 4.22:  Other skills of software developers (n=154) 

 Count Percent 

Technical skills 28 18.18% 

Management skills 23 14.94% 

Thinking skills 22 14.29% 

Personal skills 19 12.34% 

Users oriented 17 11.04% 

Business skills 15 9.74% 

Hard working 12 7.79% 

Research skills 10 6.49% 

Experience 4 2.60% 

Communication skills 3 1.95% 

Team work 1 0.65% 

Total 154 100.00% 

 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

108 

 

0.65%

1.95%

2.60%

6.49%

7.79%

9.74%

11.04%

12.34%

14.29%

14.94%

18.18%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

Team work

Communication skills

Experience

Research skills

Hard working

Business skills

Users oriented

Personal skills

Thinking skills

Management skills

Technical skills

 

Figure 4.22: Other skills of software developers (n=154) 

 

Patterns of skills reported by research respondents are: 

i. Technical skills  

Technical skills are rated the highest with 18.18 percent. Some of respondents 

reported about knowledge of software development frameworks such as MVC (Model 

View Controller) as critical to developing scalable, maintainable and testable software 

systems. ASP.NET MVC was cited as the common used framework for web 

applications. Other respondents mentioned about the use of design patterns and 

knowledge of web services as vital in their respective work places. Technical 

knowledge on developing service-oriented applications (SOA) was reported. In 

particular, knowledge of WCF (Windows Communication Foundation) was identified 

as critical for developing and deploying software services on the windows platform. 

Some of respondents reported that the management of source code in large software 

projects which normally have diverse and different teams in different geographical 

locations, could be challenging. Respondents reported that, in such collaborative 

software development projects, Team Foundation Server (TFS) is used for source 

control, data collection, reporting and project tracking. Hence, technical knowledge of 

TFS is critical while performing their tasks as software developers. 



Chapter Four: Data Analysis and Presentation 
 

 

 

109 

 

 

Other technical areas reported by respondents were knowledge of database design, 

sound understanding of relational databases and strong SQL background. This was 

deemed critical because most of software systems developed require some kind of 

database for data storage. According to Satzinger et al. (2004:487-524) many 

software systems require data to be created, stored, retrieve, modified and deleted, 

hence knowledge of database management systems is paramount. Respondents 

mentioned about Oracle, SQL server and MySQL as important database 

management systems. It was also mentioned that, according to software 

development best practice, software systems do not interact directly with database 

but via Object Relational Mapping (ORM) tools such as NHibernate, Hibernate, and 

Linq to SQL or Entity Framework. As such, some of respondents emphasized that 

knowledge of ORM is compulsory among software developers. Data synchronization 

between local applications and remote applications was mentioned. Respondents 

reported that knowledge of data synchronization technologies such RDA and merge 

replication is important especially in mobile applications.  

 

 Furthermore, respondents mentioned about HTML, CSS, JavaScript and jQuery.  

One of the respondent mentioned “jQuery and JavaScript are the blood of web 

applications particularly for better user experience, this is a must know for software 

developers”. Some of respondents reported about knowledge of XML and JSON as 

critical in developing web applications. This is because most of software systems 

developed are web applications; deployed and accessed via the Internet. Technical 

skills related to integration of software were mentioned. Respondents spoke about 

scenarios where one system had to exchange data with other systems and where 

new systems had to interact and communicate with legacy systems. The ability to be 

proficient and knowledgeable about several programming languages was also 

mentioned. Some respondents said that experience in using Object Oriented 

Programming (OOP) language such as C#, Java and C++ was important while other 

respondents reported that knowledge of Unix and Linux was critical to perform tasks 

in their respective software projects. 

 

However, other respondents reported that working in large software projects demand 

more people skills than technical skills. Respondents explained that people skills 

imply skills that would enable a group of people to work together as a team. This 

includes teamwork, communication skills, negotiation skills and conflict resolution 



Chapter Four: Data Analysis and Presentation 
 

 

 

110 

 

techniques. One respondent, for example, reported that a software developer with 

fair technical skills and good people skills would be beneficial to large scaled 

software projects than a software developer with strong technical skills but poor 

people skills. This is because the success of large software projects depends on 

large interactions and collaborations of many and diverse categories of people such 

as users, managers and other software developers. The respondent, nonetheless, 

stressed that there is no substitute for technical skills; hence, a software developer 

with a good combination of technical skills and people skills would be ideal for large 

software projects.  

 

ii. Management skills 

Management skills were rated second highest with 14.94 percent. Respondents 

reported that the nature of their work is stressful, with tight deadlines and lots of 

pressure. One respondent said, “A software developer must be able to perform well 

under pressure”. Some of respondents mentioned about time management, planning 

and being proactive as critical to be able to handle pressure related to software 

projects.  

 

iii. Thinking skills 

Thinking skills were 14.29 percent were respondents reported that most of their tasks 

required critical thinking capability. Some of phrases used by respondents were 

creative thinking, logical thinking, excellent memory, analytical thinking, strong 

problem-solving skills and pattern thinking. For instance, one respondent said, “Life is 

made up of patterns, if you have the ability to find the patterns in things; it is a huge 

advantage as a software developer”.  

 

iv. Personal skills 

Personal skills were 12.34 percent. This group encompasses personal attributes that 

one needed in order to perform tasks as software developer. Respondents reported 

about health life style as critical to their tasks. Sports, martial arts and gym were cited 

by respondents. Other respondents reported about sense of humour, determination, 

pride, discipline and good altitude as important elements of software developers. One 

respondent said that “good altitude = gold”. Other respondents used phrases like 

“being awesome”, being social, being out going, being easy going and drinking coffee 

as important in order to work as a team in software projects.  

 



Chapter Four: Data Analysis and Presentation 
 

 

 

111 

 

v. Users oriented 

User oriented skills were 11.04 percent where respondents indicated that users are 

very important to the success of software projects. As such, respondent mentioned 

that software developers must bear users in their minds in order to understand users’ 

needs. Some of respondents mentioned about patience, tolerance of frustration with 

users, conflict management with users, persistence and perseverance. One 

respondent said, “It is important to keep users happy and never to give up”. 

 

vi. Business skills 

 Business skills were 9.74 percent where respondents used phrases like understand 

business environment, business analysis, business knowledge, understand business 

processes, problem solving skills and understanding business requirements. One 

respondent said, “A software developer is a business problem solver”.  

 

vii. Hard working 

Hard working skills were 7.79 percent. Respondents used phrases like being hard 

worker, working even after normal work hours. One respondent said, “The ability to 

sit on my backside for extended period of time and putting in the inevitable overtime 

with a smile on my face is important”. Other respondents said that software 

developers must be responsible, must have dedication towards work, must have 

commitment to quality of work and must have passion and interest in work. 

 

viii. Research skills 

Research skills were 6.49 percent where respondents reported that knowledge of 

using the Internet to search for solutions is critical. Google was mentioned as the 

most commonly search engine used by software developers. Some respondents 

reported to do research outside work hours. Some respondents reported to search 

for community forums and blogs in order to keep up to date with technology and 

share experiences. Blogs are web applications hosted on the website that allows 

users to post information, read information and add comments to posted information. 

According to respondents, the use of blogs has positive effects in bringing together 

people of similar interests. The same is reported by Pereira and Parker (2009:109) 

where blogs are used as an interactive means of communication by communities in 

the Western Cape Province. Other respondents reported about the need to learn new 

technologies regularly and learn fast. One respondent said, “Research skills to 

extract necessary information from loads of information in timely manner are critical”. 



Chapter Four: Data Analysis and Presentation 
 

 

 

112 

 

One respondent mentioned, “Research skills are not copy and paste altitude 

practised by some of software developers”. The respondent discourages copy and 

paste altitude where software developers copy and paste codes for a quick fix of a 

given problem. The respondent said that one could not establish issues that would be 

introduced into the system by copying and pasting codes. The respondent hence 

encourages research skills where one has to find out about information that one does 

not know to obtain a solution, understand the solution and then implement an 

appropriate solution. According to one respondent, “most of business problems are 

similar and today’s problem might have been resolved yesterday”. “In order to avoid 

re-inventing the wheel, research skills are critical among software developers”, the 

respondent concluded. 

 

ix. Experience 

Experience was 2.6 percent. Some respondents reported that many years in 

software development projects played big roles in their present tasks. Some 

respondents reported experience comes with time but it can be enhanced with 

practice. One respondent said, “Students must interact with software development 

communities, while still at school, in order to gain a test of practical experience of real 

life software projects”. 

 

x. Communication skills 

 Communication skills are 1.95 percent. Some of respondents reported about verbal 

and written communication skills being important to software developers. For 

instance, one respondent said that “the ability to communicate with ignorant (not 

stupid….ignorant in IT matters) without getting impatient” was critical.  

 

xi. Team work 

Lastly but not the least, it is teamwork with 0.65 percent where one respondent 

mentioned, “Knowledge sharing among team members in a given project is 

important”. It was also mentioned that most of software companies use wiki as 

source of depository for information sharing and technical assistance. 

4.3.2 Data analysis of interviews  

As indicated in chapter three, unstructured interviews were performed. Twelve 

software developers from six companies were interviewed. The interviews were 

performed on one to one basis where a researcher interviewed one individual after 



Chapter Four: Data Analysis and Presentation 
 

 

 

113 

 

another. All interviewees were software developers with working experience from five 

years, working as senior software developers. Each interview session took an 

average of one hour depending on the availability of interviewees. Figure 4.23 is a 

generic software solution indicating common technologies and tools used by 

interviewed software developers. Data collected during interviews is presented in the 

following section. 

 

Figure 4.23: Technologies used by interviewed the software developers 

 

Generic Software 
Solution

Client Layer Business Layer Data Layer

Web 

Mobile

Desktop

Logic
Unit 
Tests

Services

ORM

NHibernate

DBMS

Mocks

Stub

Frameworks

Design 
Patterns

Frameworks

Entity 
Framework

Hibernate

Tables

Views

Stored 
Procedures

Triggers

OOP

Client Layer Technology Business Layer Technology Data Layer Technology

XAML

HTML

Silverlight

CSS

JQuery 
Mobile

Javascript

Ajax

JQuery WCFC#

WPFJava

MEFPHP

Spring

Unity

Eclipse

MS 
studio

T-SQL PL/SQL

mySQL
SQL 

profiler

Nhibernate

Hibernate

Entity 
Framework

MVC

UML

IOC/DI

 



Chapter Four: Data Analysis and Presentation 
 

 

 

114 

 

4.3.2.1 First Company  

At the time of interviews, the first company had seven software developers. 

According to interviewees, this small company can develop any software system 

requested by clients. The company has developed several desktop applications, web 

applications and mobile applications. The focus of the company is to develop sales 

force automation software and business intelligence applications running on mobile 

devices. During the interviews, it was also reported that the company has plans to 

launch a new project for developing mobile POS (Point Of Sale) software application 

primarily to be used by waiters for processing food orders in restaurants. 

Nonetheless, it was reported that there are limited resources of software developers 

with experience in software development for mobile devices.  

 

The company is using Microsoft SQL server for data management. Programming 

languages used are C-Sharp (C#) and Java. According to interviewees, knowledge of 

C#, Java, T-SQL10, HTML, XML, JavaScript, JQuery and ASP.NET is critical for all 

web applications developed by this company. Most of Web applications were 

developed on ASP.NET platform using web forms. Nevertheless, it was reported that 

for new web projects, the company would be using ASP.NET MVC platform. It is 

because of advantages that ASP.NET MVC offers as opposed to ASP.NET web 

forms. Such advantages include support for development of testable, maintainable 

and scalable web applications. Hence, ASP.NET MVC is recommended for 

especially large software projects, software developers reported. 

 

The company is developing mobile applications referred to as occasionally 

connected applications (OCA). Mobile devices host client applications, which 

continually request services via the Internet. However, if the internet connection goes 

off or if internet is not accessible, the client software in the mobile device has 

mechanism to tolerate poor Internet connection and continue to render critical 

services; hence the term “Occasionally Connected Applications”. It was reported that 

knowledge of developing software systems using services is critical to this company. 

All of software systems developed by this company utilize SOA (Services Oriented 

Architecture) using WCF (Windows Communication Foundation) framework to 

develop services oriented software components. Knowledge of WCF services was 

                                                 

 
10

 T-SQL : Transact SQL; Structured Query Language for Microsoft SQL server database system 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

115 

 

thus rated as compulsory for any software development work for this company. 

Software developers use SQLCE11 and SQLite12 for data management for mobile 

applications. The targeted deployment platforms for mobile applications are windows 

mobile, windows phone 7 and android. Therefore, software developers for this 

company need to be familiar with windows mobile, windows phone 7 and android 

operating systems. Data synchronization between client mobile applications and 

remote servers is critical in OCA mobile applications. Software developers reported 

that knowledge of data synchronization technologies such RDA (Remote Data 

Access) and merge replication are important skills. The company uses two IDEs; 

Visual Studio 2008 and Eclipse Helios. The company uses Subversion as code 

version control software. 

 

Software developers reported that research skills are crucial for a software 

developer. One interviewee particularly reiterated the difference between research 

skills and copy and paste altitude practised by some of software developers. The 

interviewee discourages copy and paste altitude where software developers copy 

and paste software codes to fix the current problem while introducing other problems. 

He explained that with copy and paste altitude meaning that the software developer 

might have understood the problem but does not understand the solution. Hence, 

one cannot establish issues that would be introduced into the system by copying and 

pasting codes. Software developers encouraged research skills where one has to 

find out about information that one does not know and then obtain solution, 

understand the solution and then implement a correct solution appropriately.  

 

According to interviewees, most of business problems are similar and hence present 

problem might have been resolved already, hence knowledge of software 

development patterns. In order to avoid re-inventing the wheel, research skill is 

critical among software developers, one interviewee emphasized. It was also 

mentioned that the more code one has to write, the more chances of introducing 

bugs in the software system. Hence, the approach of writing less code is preferred. 

This could be achieved by doing research on what has been done and is readily 

available to re-use instead of re-inventing the wheel and consequently introduce 

other software flaws. Google was reported to be the prefer choice of search engine 

                                                 

 
11

 SQLCE : Compact edition of structured query language used in mobile devices 

 
12

 SQLite :  Light version of structured query language used in mobile devices 



Chapter Four: Data Analysis and Presentation 
 

 

 

116 

 

and Mozilla Firefox was the preferred browser since it has built-in plugins such as fire 

bug, which is a built in tool used for debugging web applications. In particular, 

software developers reported to using Firebug plugin and chrome browser for 

debugging JavaScript, jQuery, CSS and inspecting the HTML/DOM13. 

 

Software developers mentioned that, according to their tasks, they see and recognize 

two categories of skills; compulsory and subsidiary skills. They indicated that 

technical skills and research skills are compulsory for software developers to do their 

tasks. On the other hand, communication skills and business skills were considered 

important but subsidiary. They reported that those subsidiary skills are specific to 

company and hence given stronger technical background and research skills, a 

software developer can acquire business skills along the way. Nevertheless, they 

indicated that a good software developer should not only have technical skills and 

research skills but also business skills and communication skills. 

 

It was also reported that a software developer should be someone with passion for 

software development. Time and skilled workers being scarce resources, the working 

environment of a software developer can be demanding and challenging especially 

for small software companies. Occasionally software developers have to put more 

time in their work. It was mentioned that there are times when interviewees work 

during weekends and often work from home after office hours. This is in order to 

meet project deadlines. As such, passion for software becomes the main driving 

force for software developers to work independently and without supervision in such 

time constrained working environment. 

 

Teamwork was recognized as a key factor for project success. The company 

encourages team knowledge sharing where each software developer is given 

opportunity to present a topic on specific software technology of interest. 

Occasionally all software developers do participate in outdoor events such as a 

dinning together in restaurants and discuss vision and mission of the company as 

team. It was mentioned that teamwork is not practised at the expected degree as 

such the company is working on active team building strategies that will be executed 

regularly to promote the team spirit. 

 

                                                 

 
13

 DOM : Document Object Model which explain how HTML elements fit together in web pages 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

117 

 

In this company, all software developers perform all tasks from analysis of the 

problem to design of solution, coding the solution, testing and deployment of the 

solution. Therefore, it is required that software developers be fully versed with the 

Software Development Life Cycle (SDLC). 

4.3.2.2 Second Company 

The second company is a USA software company with software development team 

based in Cape Town. The Company is specializing in developing software products 

to process financial banking transactions. The company have clients worldwide. Most 

of clients are financial institutions, such as banks, co-operatives, retail business and 

insurance companies. Software projects executed by the company include 

developing software products to facilitate ATM (Automated Teller Machine) banking, 

Internet banking, mobile banking and point of sale systems (POS) financial 

transactions. 

 

Most of software products are developed using Java using the OOP (Object Oriented 

Programming) approach to software development. Knowledge of solid concept of 

OOP such a class, interface, generics, composition, inheritance and aggregation 

were reported as fundamental to software developers for this company. In addition, 

some of software products are developed in Python. A software developer who is 

proficient in both Java and Python would be ideal for that company. The company 

use SQL server and DB2 as database management systems. Hence, knowledge of 

SQL and XML is essential technical skills. The company uses Eclipse Helios as the 

main IDE and Perforce as code version control software.  

 

It was reported that the company embrace Test Driven Development (TDD) where 

every piece of code written must have unit tests and test cases to test all possible 

scenarios of a given unit of code. During maintenance, unit tests are executed and all 

tests must successfully pass prior maintenance. After maintenance, tests are 

executed again to ensure all tests pass successfully. This is because fixing one 

problem could introduce other software flaws commonly known as bugs. This has 

been the case especially to large software systems when TDD is not enforced. As 

such TDD comes to rescue where software developers using test harness and test 

cases are able to confirm that the software system is still behaving as expected and 

no bugs where introduced to the system during maintenance. 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

118 

 

All software projects are big and hence are developed and supported by a group of 

skilled software developers. There are about five teams where each team has ten to 

fifteen software developers. Working in such an environment demands not only 

technical skills but also people skills. This is because there are lot of communications 

and interactions among software developers in teams of large magnitude. Such 

meetings include software sprint planning sessions. It was also indicated that a 

software developer with fair technical skills and good people skills would be 

beneficial to such a company than a software developer with strong technical skills 

but poor people skills. It was also mentioned that there is no substitute to technical 

skills. Hence, a software developer with good combination of technical skills and 

people skills would be ideal for such a company. Software developers explained that 

people skills implies any skills that would enable a group of people to work together 

as a team. This includes teamwork, communication skills, negotiation skills and 

conflict resolution techniques.  

 

Some of software developers mentioned that technical skills are critical to software 

developers at a junior level. This is because tasks assigned to junior developers are 

clearly defined and hence junior developers would concentrate on developing and 

writing codes to provide the already identified solution. This gives junior developers 

an opportunity to strengthen their technical skills while acquiring people skills. Hence, 

junior developers have less interaction with people since mostly they are limited to 

interacting with individuals in the same project team. On the other hand, senior 

developers are expected to interact with diverse categories of people including users, 

managers and other software developers. Senior developers have some kind of 

management role to play hence people skills becomes critical. One software 

developer mentioned that people skills come with lots of experience; hence, a 

software developer with strong technical skills, with guidance, could develop people 

skills. It was identified that software developers consider technical skills as a priority 

to people skills.  

 

However, while both technical and people skills are considered critical skills among 

software developers, the company gives priority to technical skills and recognizes 

that an individual with strong technical background is suitable for a software 

development job than a person with poor technical skills but strong people skills. 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

119 

 

This company recognize teamwork as a key success factor in software projects. 

Interviewees reported that collaboration with other software developers within a team 

is essential. This is because success of a project is regarded as an output of team 

efforts. As such, the company has regular team building sessions where software 

developers from all teams took part and actively participate in sport events such as 

bowling ball and paintball. In addition, there is a weekly session geared at bring all 

software developers together. During this session, the company provides food and 

drinks for all software developers to eat together in the same canteen and share 

ideas on work and none-work related matters.  This is an attempt to promote the 

culture of knowledge sharing and team spirit. 

 

In this company, software developers perform all tasks from analysis of the problem 

to design of solution, coding the solution, testing and deployment of the solution. The 

company demand that all software developers be fully versed with the Software 

Development Life Cycle (SDLC). 

 

Interviewees, however, indicated their dissatisfaction towards work performance of 

new employees who had qualifications from tertiary institutions but failed to execute 

basic tasks as software developers. It was indicated that most of these new 

employees have to learn lots of technologies and concepts from the scratch. This 

makes their learning curve steep and long; hence costly to the company. Some of 

them voluntarily resigned their jobs as software developers because they could not 

handle pressure following limited technical background. 

4.3.2.3 Third Company 

This is a software company whose focus is to provide consulting services and 

custom software development in the Western Cape Province. The company is mainly 

involved in custom development of web applications, mobile applications and 

desktop applications. Most of its clients are insurance companies, health and fitness 

institutions, financial institutions and retail business companies. Software projects 

executed by the company include developing software products to facilitate time 

management, data management for health institutions, software to process banking 

transactions and software for data management of fitness centres.  

 

Most of software products developed target the windows platform. Hence, the 

company focus on utilizing Microsoft technologies to develop software systems. In 



Chapter Four: Data Analysis and Presentation 
 

 

 

120 

 

order to cater for clients who use Microsoft technologies, C# and SQL server are the 

main programming technologies utilized by the company. A software developer who 

is proficient in C# programming language and T-SQL is an ideal candidate to work for 

this company. The company embrace OOP approach to software development. As 

such, solid knowledge of OOP such as class, interface, inheritance, composition, 

aggregation is essential. 

 

Interviewees indicated that knowledge of technical skills is critical while performing 

their tasks as software developers. They said, after all, their major task is to write 

codes in order to solve business problems. It was found that technical skills for 

software developers for this company are proficient in C# programming language 

using OOP approach, T-SQL, JavaScript, jQuery, HTML, XAML, and CSS. Software 

systems developed by this company are based on SOA using WCF services 

framework. The company uses NHibernate and Entity Framework (EF) as the major 

Object Relational Mapping tools. It was emphasized that knowledge of design 

patterns and testing frameworks were essential. In order to improve performance of 

software, software developers mentioned about SQL profiler and NH profiler as 

important tools used to analyse and understand codes executed by the database 

engine. Using these tool one is able to identify performance issues and take 

necessary precautions to improve software performance. The company uses Visual 

studio 2010 as the main IDE and TFS (Team Foundation Server) as code version 

control tool.  

 

Most of web applications developed by this company employ memcache; a high-

performance distributed memory object caching system, as a caching mechanism in 

order to improve software performance. This caching mechanism is implemented 

such that when users send new request, response is fetched from database and 

stored in a memory object such that when the same request is executed, the 

response is retrieved from memory, which is faster and hence improved user 

experiences. Hence, knowledge of memcache is important in this company. 

 

Pattern thinking as problem solving skills was recognized by interviewees. It was 

reported that software developers should be able to identify patterns and use 

patterns to solve problems. Patterns are identified as best practice knowledge that 

could solve most of re-occurring business problems. It was reported that knowledge 

of patterns enables software developer to write pieces of codes that are 



Chapter Four: Data Analysis and Presentation 
 

 

 

121 

 

maintainable, scalable, testable and extendable. Interviewees reported that some of 

basic design patterns commonly used by this company are singleton, factory, façade, 

mediator, adapter, decorator, event aggregator, service locator, publish-subscribe 

pattern and Inversion of Control (IoC) pattern. Therefore, knowledge of patterns is 

fundamental to software development in this company.  

 

Interviewees reported that by considering patterns and implementing design patterns 

appropriately, it does enforce the five critical OOP principles as indicated by the 

famous acronym “S.O.L.I.D” principles (Martin & Martin, 2006). These five principles 

are essential to writing good quality, maintainable, testable and extendable pieces of 

software components. Each letter in the S.O.L.I.D acronym refers to another 

acronym representing key principles of OOP as elaborated below: 

 

i. SRP: Single Responsibility Principle 

This refers to a situation where any class or unit of code should focus on 

doing one thing or have one responsibility only and hence one reason to 

change. 

 

ii. OCP: Open Closed Principle 

This refers to a situation where any class or unit of code should be open 

for extension but closed for modification. Therefore, one should be able to 

extend class behaviour without modifying the class. This could be 

achieved primarily by using inheritance and composition. 

 

iii. LSP: Liskov Substitution Principle 

This refers to a situation where Subtypes must be substitutable for their 

base types. Hence subclasses should behave nicely when used in place 

of their base class. 

 

iv. ISP: Interface Segregation Principle 

This refers to a situation that clients should not be forced to depend upon 

interfaces that they do not use. It advocates that software developers 

should develop fine-grained interfaces that are client specific, instead of 

fat interfaces that are not cohesive. 



Chapter Four: Data Analysis and Presentation 
 

 

 

122 

 

v. DIP:  Dependency Inversion Principle 

a. High-level modules should not depend on low-level modules. Both 

should depend on abstractions. 

b. Abstractions should not depend upon details. Details should depend 

upon abstractions. 

This suggests that one should use lots of interfaces and abstractions to 

decouple dependency among software entities. 

 

 While some of web applications are written on ASP.NET web forms platform, it was 

indicated that all new web application are developed based on MVC framework. It 

was found that the company employs the MVC architecture, in particular ASP.NET 

MVC framework, to develop new software systems. It was reported that knowledge of 

MVC is important for software developers working for this company.  

 

The company is also involved in development of mobi-sites which are websites 

accessed via mobile devices using mobile browsers. It was reported that jQuery 

mobile which is a client side technology for design of user interface and its behaviour 

and HTML5 are critical. Moreover, the company embraces Test Driven Development 

(TDD) as such software developers are required to write unit tests for every unit of 

code written. It is mentioned that an individual versed with TDD has greater chance 

of working for this company. 

 

For desktop and standalone applications, software developers utilize WPF (Windows 

Presentation Framework), which is a unified programming model for developing 

standalone rich client user experiences, engineered by Microsoft Company. The 

framework employs XAML14, which is XML based programming technology for 

designing user interfaces. Software developers use MVVM (Model View ViewModel) 

as a programming pattern for WPF applications. Knowledge of Managed Extensibility 

Framework (MEF) was identified as important for software developers working for 

projects that require high degree of scalability and extensibility. MEF technology is a 

framework that allows software developers to develop different software components 

and plug then together at run time a technique referred to as composition. The 

framework makes software system easily extendable and scalable in order to include 

other independent functionalities, one interviewee reported. 

                                                 

 
14

 XAML : Extensible Application Markup Language 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

123 

 

Software developers mentioned of communication skills as being important while 

executing their tasks. This is because all software developers are required to 

communicate among each other within a team and often they are required to 

participate in project planning, carry out Proof of Concept (POC) sessions and 

perform project demonstrations to clients, management and other team members. 

 

In addition, the company embraces agile methodology of software development, as 

such; each project team was reported to have a daily meeting at 10 AM for fifteen to 

twenty five minutes. This is known as “stand-up” simply because the meeting is 

executed while all members are standing up as opposed to sitting down in order to 

discourage prolonged and unnecessary discussions. This is a brief meeting to ensure 

that every member in the team has something to do. It is during this meeting where 

every software developer briefly explains to the team on what is currently working on 

and possibly report on problems, if any. This is a typical scenario where 

communication skills play important roles. 

 

Teamwork was recognized as key for project success. This is because success of a 

software project is regarded as an output of team efforts. As such, the company has 

regular team building sessions where software developers from all project teams took 

part and actively participate in sport events such as bowling ball, karting, cricket and 

paintball. In addition, the company has a monthly event geared at bringing all 

employees together. During this event, the company provides food, drinks and sport 

facilities for all employees to participate. During this event, new employees are 

introduced, officially welcomed and encouraged to be part of the team. More over 

individuals who went extra mile in performing their tasks for the sake of the team are 

nominated and recognized. Then one of the nominated employees is issued 

certificate of recognition as the employee of the month and rewarded a cash voucher 

and material presents. This is in order to encourage and promote the team spirit 

based on the premise that each individual would like to be the employee of the 

month, nevertheless to be an employee of the month one needs to exhibit extra 

efforts in performing tasks for the success of the team. 

 

According to software developers of this company, technical skills and 

communication skills were reported as being critical while executing their tasks for 

the success of their software projects. 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

124 

 

It was found that all software developers perform all tasks; from analysis of the 

problem to design of solution, coding the solution, testing and deployment of the 

solution. The company enforce that all software developers be fully versed with all 

tasks performed in the Software Development Life Cycle (SDLC). 

 

It is worth to mention that interviewees from this company reported about technical 

weakness in most of new software developers recruited in recent years. Interviewees 

said that their company have long relationships with tertiary institutions. As such, the 

company provides internship programme and employs many new candidates directly 

from tertiary institutions. “Nevertheless there is a big difference in technical ability 

between recently employed software developers and those of olden days (say prior 

2008), software developers employed prior 2008 had reasonable technical 

knowledge to work as software developers but new software developers; employed 

after 2008, have very limited technical skills to function as software developers”, one 

interviewee mentioned. It was reported that most of new software developers failed 

to handle very basic tasks that an individual with a three years diploma in software 

development is expected to do. They have long learning curve and it takes long time 

before they become productive to the company. This is because most of them have 

to learn most of software technologies from the scratch. This is contrary to olden 

ages where after internship; interns would be ready to embark on software projects 

with confidence, one interviewee concluded. 

 

Furthermore, it was reported that there are few local software developers with 

experience in developing software applications for mobile devices. Interviewees 

indicated that the company has vision to invest in mobile software projects; 

nevertheless, there is lack of experienced software developers with technical skills 

pertaining to android software development and iPhone software development. In 

general, there are limited skills on software development for mobile devices. 

4.3.2.4 Fourth Company 

The fourth company is a business organization specializing in online media. The 

company has several websites used for hosting media related matters such as daily 

news and online magazines. The main software project for this company focuses on 

using Web technologies to develop and support websites used for hosting media 

related matters and online magazines. Other software development work performed 

is developing software tools used internally to support the company business. This 



Chapter Four: Data Analysis and Presentation 
 

 

 

125 

 

includes software tools used to upload, download and manage data for websites and 

other online portals. The company has its own software developers whose main task 

is to support and maintain current websites. However, for big projects the company 

utilizes services offered by other software consulting agencies.  The consulted 

software developers normally work for the duration of the project after which they 

would go back to their respective companies when projects are completed. 

 

Technologies used by this company could be categorized into client side and server 

side technologies. Client technology refers to any technology that functions on the 

browser such as rendering and animations of web pages. Software developers 

reported that knowledge of HTML, JavaScript, JQuery and CSS were essential. With 

regard to server side technology which is technology that function on the server 

machine, it was reported that proficient in C# programming language is critical. In 

order to be productive a software developer must have solid background of OOP 

(Object Oriented Programming) and design patterns. The company use SQL server 

2008 as a database management system hence knowledge of T-SQL is important. It 

was also identified that the data layer of systems developed utilizes NHibernate as 

the ORM tool. It was also indicated that knowledge of NHibernate is important. The 

company uses Visual studio 2010 as the main IDEs and TFS (Team Foundation 

Server) as code version control software. 

 

Teamwork was mentioned. Software developers reported that collaboration with 

other software developers within a team is essential. Again, it is because success of 

a project is regarded as an output of team efforts. As such, the company has regular 

team building sessions where software developers from all teams took part and 

actively participate in sport events such as bowling ball, karting, paintball and cricket. 

The company also has other social events aiming at bringing all software developers 

of a given team together. During these events, all software developers are offered a 

compulsory invitation to meet, eat and drink together as a team.   Again, this is an 

attempt to encourage the culture of knowledge sharing and team spirit. 

 

Mostly software developers work in team of about ten people. Software developers 

are required to attend meetings with business owners, perform demonstrations and 

report to project managers. It was therefore reported that communication skills is 

important to software developers working for this company.  

 



Chapter Four: Data Analysis and Presentation 
 

 

 

126 

 

The major task performed by software developers is maintenance of previous work 

and integrating new features requested by clients. Software developers mostly 

perform tasks related to coding and testing software solutions. 

4.3.2.5 Fifth Company 

The fifth company is a business organization also specializing in online media. The 

company however specialized on developing interactive social website and software 

focusing on tourism centred information. This is an attempt to address the problem of  

inconsistency of information provided by tour guides as it is reported that often there 

seem to be inconsistency in information provided by tour guides where people gives 

information as they know it which is not necessarily correct. Thus, the company is 

exploring this opportunity by using software systems as virtual tour guides.  In order 

to utilize the social website, one needs to be registered as a member. Once 

registered the software grants members rights and privileges to upload and download 

data and share it among members. The company develop software that alert tourists 

to the point of interest close to them as they drive in a particular area. The software is 

installed in a specific device and plugged into the car. As the car drives, the software 

picks up signals of point of interests and using a voice detection tool, the software 

instructs and informs tourists of what is happening in the area. The software acts as 

a virtual tour guide informing tourists of point of interest in the area such as game 

reserves, mountains, museums, archives, monuments, art centres to mention but a 

few. The company also provide mobile version of the above-mentioned social 

website for all major version of mobile device; android, mobile windows 7, Blackberry 

and iPhone. 

 

Technologies used for software development are HTML, JavaScript, JQuery, CSS, 

C# and Java. For database management system, the company use SQL server 2008 

and Oracle. It was reported that knowledge C# and Java is critical for software 

systems developed by this company. The company uses two IDEs; Visual Studio 

2008 and Eclipse Helios. 

 

It was identified that the critical skills required by this company are technical skills. 

Software developers must be proficient particularly in C# and Java. The company 

tends to outsource software developers from India and Ukraine. According to 

interviewees, the company had to resort to outsourcing software developers from 

abroad, simply because, local software developers have limited technical knowledge 



Chapter Four: Data Analysis and Presentation 
 

 

 

127 

 

of software development for mobile devices and those few with expertise are very 

expensive.  It was also reported that a few local software developers resigned their 

job because they could not handle their software development tasks following limited 

technical background on software development for mobile devices.  

 

The company has software developers working in diverse team across geographical 

borders. There are regular contacts between software developers in one country to 

another country, via telephone and Skype technologies. Software developers are 

required to perform demonstrations and report to project managers. As such, 

communication skills were identified as important for software developers working for 

this company. 

 

The major task performed by software developers is maintenance of previous work 

and integrating new features requested by clients. Software developers mostly 

perform tasks related to coding and testing the software solutions. 

4.3.2.6 Sixth Company 

This is the last software company to participate in interviews during this research. 

The company focuses on providing software consulting services and custom 

software development. The company provides its services in South Africa, Europe 

and partly in Asia.  The company is mainly involved in custom development of web 

applications, mobile applications and desktop applications. Most of its clients are 

insurance companies, health institutions, financial institutions and retail business 

companies. Most of software products developed target Microsoft technologies 

(.NET) and Java EE platform. Hence, the major programming languages utilized by 

the company are C# and Java. A software developer who is proficient in C# and Java 

is an ideal candidate to work for that company. The company uses Visual studio 

2010 and Eclipse Helios as the main IDEs. TFS (Team Foundation Server) and 

Subversion are the main code version control software.  

 

In this company, it was indicated that knowledge of technical skills is critical for 

software developers to perform their tasks. Software developers indicated that their 

major task is to design software and write codes in order to solve business problems. 

It was found that technical skills for software developers for this company are 



Chapter Four: Data Analysis and Presentation 
 

 

 

128 

 

proficient in C#, Java, T-SQL, PL-SQL15, JavaScript, JQuery, HTML, XAML, and 

CSS. The company uses NHibernate and Hibernate as the major Object Relational 

Mapping tools. Interviewees mentioned that knowledge of design patterns and testing 

frameworks are essential. For performance, knowledge of SQL profiler and NH 

profiler were mentioned. Using these tool one is able to identify performance issues 

and take necessary precautions to improve software performance. It was also found 

that the company employs the MVC architecture to develop software systems. It was 

reported that knowledge of MVC is important for software developers working for this 

company. Moreover, the company embraces Test Driven Development (TDD) where 

software developers are required to write unit tests for every unit of code written. 

 

For desktop and standalone applications, software developers utilize WPF (Windows 

Presentation Framework). As already mentioned, this is a unified programming 

model for the development of standalone software that has rich client user 

experiences. In order to benefit from this programming model, it was reported that 

software developers must understand XAML and the implementation of MVVM 

(Model View ViewModel) as a programming pattern for the WPF framework. 

 

Software developers mentioned of communication skills as being important while 

executing their tasks. The company employs agile methodology for software 

development. As far as communication is concerned, there is a daily stand-up 

meeting where each software developer briefly report to the team on the status of 

tasks being performed. This is a brief meeting of fifteen to twenty five minutes 

performed while all members are standing-up as opposed to sitting down. It is during 

this session where each software developer is allocated new tasks. Hence, 

communication skills are important since there are always interactions of software 

developers within and outside project teams. Software developers are required to 

communicate among each other within and outside a team and often they are 

required to perform project demonstrations to clients, management and other team 

members. According to interviewees from this company, technical skills and 

communication skills were reported as being critical while executing their tasks.  

 

Teamwork was recognized as critical for project success. Software developers 

reported that collaboration with other software developers within a team is essential. 

                                                 

 
15

 PL/SQL : Structured Query Language for Oracle Relational Database 

 



Chapter Four: Data Analysis and Presentation 
 

 

 

129 

 

This is based on grounds that success of a software project is deeply rooted on team 

efforts. As such, the company has regular team building events where software 

developers from all project teams took part and actively participate in sports event 

such as bowling ball, karting, and paintball. Again, this is an attempt to encourage the 

culture of working together as a team. 

 

Software developers perform all tasks from analysis of the problem to design of 

solution, coding the solution, testing and deployment of the solution. All software 

developers are required and expected to be proficient and fully versed with the 

Software Development Life Cycle (SDLC). 

4.4 Chapter Summary 

This chapter presented data analysis of research data collected via survey 

questionnaires and interviews. Data presented is about the profile of software 

developers, software development tools, tasks performed by software developers 

and skills required by software developers to perform their tasks well. 

4.5 Conclusion 

Seventy eight percent of questionnaires (Table 4.1) were thoroughly completed and 

thus used for this study. Coupled with data collected via interviews, the triangulation 

methodology was successful and appropriate for the study. Based on data presented 

in this chapter, knowledge of software development tools, tasks performed by 

software developers and skills required by software developers remain critical for the 

success of software projects.  

 

The following chapter five focuses on research discussion. 

 



Chapter Five: Research Discussion 
 

 

 

130 

 

CHAPTER FIVE: RESEARCH DISCUSSION 

“Always code as if the guy who ends up maintaining your code will be a violent psychopath 

who knows where you live” 

(Martin Golding) 

------------------------------------ 

5.1 Introduction 

This chapter discusses data collected during the research. The discussion is based 

on results of quantitative data analysis and qualitative data analysis as presented in 

chapter four. Most importantly, the chapter leads to recommendations provided in 

chapter six geared towards improving competencies of software developers.  

 

Discussion on results of quantitative data analysis and qualitative data analysis is 

presented in section 5.2 and section 5.3 respectively. This discussion is based on 

analysis of data collected via survey questionnaires and interviews. The chapter 

concludes with chapter summary in section 5.4 and conclusion in section 5.5. 

 

5.2 Discussion on results of quantitative data analysis 

As indicated in chapter four, quantitative data analysis was performed on closed-

ended questions of survey questionnaires. This section discusses results of data 

collected via closed-ended questions of questionnaires. This data reflects the profile 

of software developers who participated in this research. This data also reveals 

software development tools, tasks performed by software developers and skills 

required by software developers. 

5.2.1 Profile of software developers 

5.2.1.1 Gender of respondents 

In a democratic country were gender equality is considered as human right, it leaves 

a lot to be desired if the software development industry continues to be male-

dominated. Both the industry and institutions have a role to play to boost up the 

number of female software developers. This is in order to resolve gender imbalances 

within the software development industry. With reference to Table 4.2, the majority 

80.6 percent of respondents are male and only 19.4 percent of respondents are 

female. The ratio of males to females is 4-to-1. The ratio is close to findings reported 



Chapter Five: Research Discussion 
 

 

 

131 

 

by Turley and Bieman (1995:21) in their study on competencies of software 

Engineers in the USA were the male to female ratio was reported to be 3-to-1. It is 

thus recommended that institutions increase the intake of female learners to 

undertake software development studies. Similarly, the industry should encourage 

females with appropriate skills to assume different positions as software developers. 

5.2.1.2 Age of respondents 

As the Internet and information technology advance the need of software developers 

will continue to increase following the proliferation of software projects. With 

reference to Table 4.3, the current work force for software development is between 

21 years to 49 years. This group makes 93.7 percent (68.9 plus 24.8) of total 

respondents. While most of respondent acquired software development skills at 

tertiary education, software development studies should be introduced in high 

schools. This will bring awareness among our communities and encourage learners 

to study software development during their tertiary education. The industry could also 

contribute by visiting high schools and speaking to high school learners about 

software development and carrier path. By doing so the Western Cape Province will 

always have a pool of young software developers available to successfully execute 

software projects.  

5.2.1.3 Race of respondents 

South Africa population is divided into four major races; black, white, coloured and 

Indian (Bornman, 2006:387). In a democratic country where racial imbalances are 

discouraged, the current race ratio of software developers deserves attention. With 

reference to table 4.4, the majority 65 percent of respondents are white, 14.1 percent 

are black, 11.2 percent are coloured and 7.8 percent are Indian.  This indicates that 

the software development industry in the Western Cape Province is white dominated. 

While there are many factors that could be attributed to the lower number of software 

developers of other races, the challenge is to the industry and institutions to bring 

about racial equilibrium in the software development industry. Institutions should 

encourage learners from other races to undertake software development studies. 

Likewise, the industry should ensure that people of other races who have appropriate 

skills assume positions as software developers. 



Chapter Five: Research Discussion 
 

 

 

132 

 

5.2.1.4 Citizenship of respondents 

With reference to Table 4.5, the majority 88.8 percent of respondents are South 

Africans. However, for non-south African respondents the majority 5.3 percent of 

respondents are from Asia. This indicates that software developers from Asia are 

preferred than those from other African countries and other continents. This could be 

attributed to the fact that software developers from Asia have required skills and 

hence on demand. 

 

Nonetheless, knowing that the current digital divide affecting the African continent is 

fundamentally rooted from poor education and lack of ICT infrastructure, the industry 

has role to play in combating the digital divide in Africa. While South African 

institutions accept and allow foreign students from other African countries to study 

software development courses, the industry should consider providing practical 

experience to these students from other African countries. The industry should at 

least accept foreign students for internship programmes and temporary employment 

in order to share knowledge and practical experience for the betterment of Africa as a 

continent. This is very much important because, during the research, it was found 

that most of companies have the policy of not accepting students from other African 

countries for internship and temporary employment. This is due to perception that 

foreign students are viewed as a negative resource; would leave the country and 

hence add no value to South African companies. Nonetheless, considering the 

proliferation of Internet technology and the expansion of the digital village, ICT goes 

beyond geographical borders. Likewise, the benefit of software developers goes 

beyond geographical borders. For instance, it was found that some of South African 

business companies have software developers based in Czech Republic, Germany 

and India. Moreover there are South African business companies in other African 

countries. Hence, geographical borders should not be used against future software 

developers for Africa as one continent. Accepting African foreign students for 

internship and employment will increase the number of knowledgeable and skilled 

software developers available to undertake software projects in Africa, the continent 

where digital divide is rampant. 



Chapter Five: Research Discussion 
 

 

 

133 

 

5.2.1.5 Work experience of respondents 

Western Cape Province has a pool of knowledgeable and experienced software 

developers. With reference to Table 4.6, respondents with work experience between 

four years to over ten years are 69.9 percent (22.3 plus 17 plus 30.6). Knowledge 

and experience from these experienced software developers should be preserved 

and disseminated among the software development industry and community at large. 

Institutions should connect with these experienced software developers and allow 

them to be part of the curriculum development for software development studies. 

This will enable institutions to offer education that address industry needs. The 

industry has role to play in providing practical experience to institutions. The industry 

should therefore allow experienced software developers to regularly visit institutions 

and speak to learners about real life software projects and share their practical 

experiences. The researcher does suggest the need of localized software 

development forums and online communities where students and experience 

software developers could share practical experiences regarding software projects. 

5.2.1.6 Time taken to become self-dependent software developer 

Some institutions do offer internship programmes where learners are given 

opportunity to work in the industry and gain practical experience. With reference to 

Table 4.7, 68 percent (37.9 plus 30.1) of respondents indicate that it took them 

between six to twelve months to be able to perform their tasks independently as 

software developers. Therefore, six month to one year could be considered as ideal 

for a novice software developer to become experienced with software development 

activities. It is thus encouraged that learners participate in internship programmes for 

a minimum of six months. However, it is the responsibility of both the institution and 

the industry to ensure that the internship programme is well utilized for learners to 

acquire solid practical experience and be able to work with minimum assistance from 

other software developers. 

5.2.1.7 Software development certification status 

With reference to Table 4.8, only 28.6 percent of respondents are certified software 

developers, the majority 71.4 percent are not certified. This could be attributed to the 

fact that certification training is not compulsory if a software developer has basic 

education pertaining to software development. Nonetheless, certification courses 



Chapter Five: Research Discussion 
 

 

 

134 

 

remain an integral part of software development education. Most of software 

companies encourage software developers to undertake certification courses. Hence, 

institutions should work together with certification centres in order to provide better 

education required to meet the industry demands. 

5.2.1.8 Education background of respondents  

With reference to Table 4.9, the majority 72.9 percent (35 plus 37.9) indicates to 

have diploma and bachelor degree. Thus, diploma and bachelor degree certificates 

form the basic education foundation of software developers in the Western Cape 

Province. However, most of software companies consider first degree as the 

minimum requirement for a software developer to qualify for employment. Therefore 

institutions has role to play in order to ensure that learners qualify with at least first 

degree certificates. Most importantly, institutions and the industry must work together 

in this respect to ensure that the degree programmes offered cater for the industry 

demands and not just another qualification. 

5.2.1.9 Current position of respondents  

With reference to Table 4.10, middle level and senior level software developers form 

88.6 percent (25.7 plus 52.9) of respondents. This indicates that the Western Cape 

Province has a large pool of knowledgeable and experienced software developers. 

Knowledge and experience from these software developers must be preserved and 

utilized to expand the body of knowledge of software development in the Western 

Cape Province. Education institutions and the industry must work together. This will 

allow software developers to share their practical experiences with learners. The 

need to establish localized forums where students and software developers share 

practical experiences is paramount. 

5.2.1.10 Province of respondents  

With reference to Table 4.11, the majority 80.6 percent of respondents are coming 

from the Western Cape Province. This is because the unit of analysis for this study is 

software developers based in the Western Cape Province. However, this suggests a 

need of similar studies for other provinces in order to understand the status quo of 

skills of software developers in South Africa as whole. One can further expand this 

study to cover the entire African continent in order to establish where Africa stands in 

the field of software development. 



Chapter Five: Research Discussion 
 

 

 

135 

 

5.2.2 Software development technologies 

5.2.2.1 Software development environment (IDE) tools 

With reference to Table 4.12, the majority 52.9 percent of respondents use Microsoft 

Visual Studio as a software development tool. This indicates that, despite the fact 

that a company could have several IDEs, Microsoft Visual Studio is an integral part of 

software development activities for many software companies. Mastering Microsoft 

Visual Studio is critical for individuals looking for software development employment 

in the Western Cape Province. As it stands, it is clear that Microsoft Visual Studio is a 

basic tool that most of software developers utilize to perform their tasks. Institutions 

have a role to ensure that learners are capable of utilizing Microsoft Visual Studio as 

the main software development tool. Other important IDEs are Net Beans, Eclipse 

and Dreamweaver used by 49.5 percent (18 plus 16.5 plus 15) of respondents. 

 

5.2.2.2 Programming technologies 

With reference to Table 4.13, most of respondents are involved in developing web 

applications. Thus knowledge of programming technologies for web applications 

such as HTML, Java script, jQuery, CSS, XML, C#, PHP, ASP.NET, Ajax and Java is 

critical among software developers in the Western Cape Province. HTML, Java 

script, jQuery and CSS are critical client side technologies while C#, PHP and Java 

are critical server side technologies. The above-mentioned technologies should form 

the foundation of software development studies. The industry should regularly 

provide institutions with information regarding programming technologies required. 

This will ensure that institutions provide training that prepares learners to work as 

competent software developers in real life software projects. 

5.2.2.3 Database Management System (DBMS) 

With reference to Table 4.14, Microsoft SQL server is the database management 

system used by the majority 53.9 percent of respondents followed by MySQL used 

by 48.1 percent of respondents. Therefore, it is clear that Microsoft SQL server and 

MySQL should form the foundation knowledge of DBMS taught by institutions. 

Another important database management system is Oracle, which is used by 22.3 

percent of respondents. 



Chapter Five: Research Discussion 
 

 

 

136 

 

5.2.2.4 Code version control tools 

As the software company grows, the number of clients increase and the number of 

software projects increase hence the need to have some means of storing, managing 

and controlling source codes. With reference to Table 4.15, the majority 35.9 percent 

of respondents use Subversion as their preferred source code version control 

software. This indicates that knowledge of Subversion is paramount for software 

developers. Another important source code control tool is Visual studio team system 

used by 23.8 percent of respondents. Despite the fact that 23.8 percent do not use 

source code control tools, knowledge of using the tool remains important especially 

in large software projects. In addition, it was reported that Team Foundation Server 

(TFS) is being used for source code control, data collection, reporting, and project 

tracking and task allocation among project members in a given software project. TFS 

is thus important in big and collaborative software development projects. 

5.2.2.5 Application servers 

With reference to Table 4.16, Microsoft server products are used by 46.1 percent of 

respondents followed by Apache servers used by 42.7 percent. Thus, knowledge of 

Microsoft server products and Apache servers is paramount for software developers. 

Institutions should work together with the industry in order to ascertain important 

servers that should form the foundation of learners. Experienced software developers 

should visit institutions, share work experiences regarding application servers and 

possibly demonstrate to learners the role application servers play during the 

execution of real life software projects. 

5.2.2.6 Software installation environment 

Most of institutions focus on teaching software development for the windows 

environment. With reference to Table 4.17, 79.1 percent of respondents target 

windows as their deployment environment. However, 40.8 percent of respondents 

develop software systems for the Linux environment and 17.5 percent develops for 

Unix environment. With advancement of open source software, the proliferation of 

software systems based on open source is inevitable. Thus, it is important for 

institutions to realize that knowledge of both Windows environment and Linux 

environment is critical among software developers. Linux is particularly used for 

servers as the operating system. 



Chapter Five: Research Discussion 
 

 

 

137 

 

5.2.3 Tasks performed by software developers 

Some of respondents do specialize and perform specific software development tasks 

for specific phases of Software Development Life Cycle (SDLC). For instance, there 

are software developers who focus on analysis of user requirements, developers who 

focus on software testing, developers who focus on software deployment and those 

who focus on software maintenance and support. With reference to Table 4.18, 82.5 

percent of respondents deal with the design of software solution, the majority 88.8 

percent of respondents deal with coding of a software solution and 76.2 percent of 

respondents deal with test of software solution. Thus the top three tasks performed 

by software developers in descending order are: 

i. Coding of software solution 

ii. Design of software solution 

iii. Test software solution 

  

While there are specialization areas in software development, it is paramount for 

software developers to have a thorough and grounded knowledge of tasks performed 

during all phases of SDLC. SDLC is a compass to software developers because it 

provides directions to be followed during the execution of a software project. SDLC is 

the foundation of software development. While there are many text books on SDLC, 

institutions should work with the industry in order to convey the practical experience 

of real life project to learners and compliment knowledge gained from textbooks. As 

far as SDLC is concerned, software project managers and experienced software 

developers should be allowed to visit institutions and talk to learners on current real 

life software projects. This will help institutions understand to what extend learners 

need to know SDLC and tasks performed during SDLC. It is recommended that 

SDLC form the foundation of internship programmes for learners wanting to work as 

software developers. 

5.3 Discussion on results of qualitative data analysis 

As indicated in chapter four, qualitative data analysis was performed on open-ended 

questions of the survey questionnaires and interviews. This section discusses results 

of data collected via open-ended questions of questionnaires and interviews. This 

data reveals software development tools, tasks performed by software developers 

and skills required by software developers. 



Chapter Five: Research Discussion 
 

 

 

138 

 

5.3.1 Skills of software developers (Open-ended question of questionnaires) 

Software development is a more practical field than a theoretical field. Institutions 

should ensure that both theoretical principles and practical elements of software 

development are understood by learners. Students should know and be able to do. It 

is the practical elements that differentiate software development from other careers. 

Software developers should be capable of practically performing tasks such as 

writing codes. Hence there is a need for the industry to share work experiences with 

learners via specific skills development programmes.  

 

A skills development programme such as internship can provide learners with 

essential practical experience to undertake future real life software projects. The 

theoretical understanding of skills is one and the practical understanding is another. It 

goes without saying that both theoretical approach and practical approach to 

teaching software development are important and complement each other. With 

reference to Table 4.19, Table 4.20, Table 4.21 and Table 4.22, critical skills of 

software developers are: 

i. Technical skills: ability to apply technology in solving problems 

ii. Analytical and thinking skills: ability to understand and solve problems 

iii. Communication skills: ability to communicate messages correctly, accurately 

and appropriately 

iv. Research skills: ability to search for information in order to get solutions 

timeously 

v. Focus on customer needs: ability to bear customer needs in mind all the time 

while designing and developing software solutions 

vi. Innovative: ability to be creative and proactive while solving problems 

vii. Team work: ability to work within a team without compromising self-identity 

viii. Reuse of code: ability to use what is already available, whenever possible 

instead of inventing the wheel 

ix. Experience: ability to apply previous experience appropriately while solving 

business problems  

x. Management skills: ability to plan and work according to plan 

5.3.2 Discussion on interviews 

With reference to data analysis of interviews in chapter four, software developers 

raised four critical points of interests as discussed in the following section. 



Chapter Five: Research Discussion 
 

 

 

139 

 

5.3.2.1 Major skills of a software developer 

All interviewees indicate that the most critical skill of any software developer is 

technical skills. This is because a software developer is a problem solver who uses 

software technologies to solve business problems. A software developer must have 

the ability to write codes in order to address business requirements. A software 

developer should know how to write codes to solve business problems. A software 

developer uses code to solve business problems.  

 

As such until one is capable of writing codes in order to solve business problems, 

he/she is not a software developer. Thus if one wants to become a software 

developer, one has to learn and master the science or art of writing codes that solves 

business problems, which means mastering specific programming technologies. A 

software developer is a master of programming technologies. However, these 

programming technologies are of value if relevant to requirements of the industry and 

address the needs of the industry. 

 

Based on the premise that a software developer has a responsibility of writing codes, 

a software developer is a technical person and a practical individual. Institutions 

should train learners to write codes instead of focusing on theory of software 

development. Institutions should train learners to become technical and practical 

individuals as opposed to individuals who know lots about theory but little on 

practical. Institutions should ensure that learners understand theories of software 

development but most importantly understand how to apply that theory at a practical 

level. The software industry view software developers as people who can do as 

opposed to individuals who understand theory. However in order to do one needs to 

understand what to do and how to do which is a challenge to be address by both 

institutions and the industry. 

5.3.2.2 Technical ability of new software developers 

Interviewees indicate that newly recruited software developers who mostly have 

tertiary qualifications are still unable to perform basic tasks of software developers. It 

was reported that new recruits have very limited practical knowledge on technologies 

used to develop software systems. They have to learn most of technologies from the 

scratch while in the industry. This creates a steep learning curve and is costly. It 

takes long time before new recruits become useful and productive in software 



Chapter Five: Research Discussion 
 

 

 

140 

 

projects. This can be attributed to the fact that the industry uses software 

technologies that are either not taught at a required standard or not taught at all by 

tertiary institutions. This confirms a gap between technologies taught by institutions 

and technologies used by the industry. Institutions and the industry must work 

together in order to bridge this gap of knowledge. This will avoid institutions from 

teaching out-dated software technologies that are no longer used by the industry and 

focus on teaching technologies required by the industry. 

5.3.2.3 Skills regarding software development for mobile devices 

Business companies see opportunities in investing in software projects targeting 

mobile devices. Nevertheless, as indicated by some of interviewees, there is lack of 

software developers with experience in developing software for mobile devices. One 

company of the six companies interviewed, reported to use software developers from 

India and Ukraine since it is difficult to find local software developers with relevant 

technical experience for mobile devices. 

 

This lack of software developers for mobile devices can be addressed if tertiary 

institutions provide courses specific for software development for mobile devices. 

Such course could focus on some of mainstream mobile technologies such as 

android, iPhone and windows 7 platforms. With the proliferation of mobile devices in 

the African continent, one envisages the need of technical skills to develop software 

for mobile devices. Hence the need for tertiary institutions to offer programmes 

specific to software development for mobile devices. 

5.3.2.4 Software applications developed by most of companies  

As indicated by data analysis of interviews in chapter four, development of web 

applications constitutes major part of software projects performed in the Western 

Cape Province. This is also confirmed by data on technologies used by software 

developers in chapter four where technologies for developing web applications 

constitute large percentage. This is an indication that demand for technical skills for 

developing web applications is high and hence technical knowledge of developing 

web applications is fundamental to software developers.  

 

Therefore, it is recommended that institutions offer programmes that will enable 

learners acquire maximum technical knowledge of developing web applications. 



Chapter Five: Research Discussion 
 

 

 

141 

 

While there are many Internet technologies to learn, institutions should identify web 

technologies used by most of business and software companies to be the core of 

software courses offered. For instance, chapter four reveals technologies used by 

most of software developers in the Western Cape Province. It thus makes lots of 

sense for institutions to offer programmes to address technologies used by the 

majority of software developers. Since software technology is dynamic, institutions 

should work with the industry in order to ensure that institutions offer relevant 

software technologies to address present business needs. This will ensure that 

education offered is always in sync with skills required. 

 

5.4 Chapter Summary 

This chapter discussed research data collected during the research and provided 

brief recommendations to both institutions and the industry. The discussion focused 

on the profile of software developers, software development tools, tasks performed 

by software developers and skills required by software developers. 

5.5 Conclusion 

Having discussed results of data analysis, it is clear that there is a wide gap between 

knowledge provided by institutions and that required by software developers to 

execute their software development tasks. Knowledge of technologies required by 

software developers, tasks performed by software developers and skills required by 

software developers is critical if the gap is to be bridged and consequently eliminated 

for the sake of success in software projects.  

 

The following final chapter provides detailed recommendations going forward. This is 

in order to improve competencies of software developers and consequently address 

the shortage of skilled software developers. 

 



 
Chapter Six: Recommendations and Conclusion 
 

 

 

142 

CHAPTER SIX: RECOMMENDATIONS AND CONCLUSION 

“If you give people tools, and they use their natural ability and their curiosity, they will develop 

things in ways that will surprise you very much beyond what you might have expected” 

(Bill Gates) 

------------------------------------ 

6.1 Introduction 

This final chapter presents research summary, recommendations and conclusion. 

Summary of this research is indicated in section 6.2 and SDCF (Software Developer 

Competency Framework) is revealed in section 6.3. Recommendations are 

discussed in section 6.4, followed by message to institutions and the industry in 

section 6.5. Limitations of the study and future studies are discussed in section 6.6 

and section 6.7 respectively. Finally, the chapter ends with conclusion in section 6.8. 

6.2 Research summary 

The research was conducted in the Western Cape Province and the unit of analysis 

was software developers. The study employed both quantitative and qualitative 

methodologies in order to attain the benefit of methodology triangulation. As such, an 

online survey questionnaire was prepared and the survey link was distributed among 

software developers. Questions on the survey questionnaire aimed at collecting data 

pertaining to software tools used by software developers, tasks performed by 

software developers and skills required by software developers. The collected data 

were analysed using PASW Statistics 18 and Excel 2010. Moreover, in order to 

complement this study, interviews were performed. Both quantitative and qualitative 

data analysis were performed and the detailed result of data analysis is presented in 

chapter four and discussed in chapter five. 

 

The objective of this study is to develop a competency framework that could be used 

by both institutions and the industry to improve competency of software developers, 

hence the name Software Developer Competency Framework (SDCF). SDCF brings 

about the realization of relevant competencies of software developers required by the 

software industry. As indicated in the recommendations section below, knowledge of 

SDCF is critical for the betterment and success of software projects. The developed 

SDCF is revealed in the following section (Figure 6.1) and explained thereafter. 



 
Chapter Six: Recommendations and Conclusion 
 

 

 

143 

 

 

Software
People

Hardware

Requirement
analysis

System and 
software design

Implementation 
and unit tests

Integration 
and

System testing

Operation 
and

maintenance

Communication skills

Teamwork

Time 
management

Project management

Attention to 
details

Database

Programming 
technologies

IDEs

Framework

Design
patterns

Source code

Software documentation

Software components

Test 
cases

Database

Web application

Mobile App

Desktop applicationLayer L1: Environment of a software developer

Layer L2: Software development life cycle
Layer L3: Non-technical skills
Layer L4: Tools and Technical skills
Layer L5: Key deliverables
Layer L6: Finished software products

LEGENDS

Analytical 
skills

Research skills

Innovative 
skills

Business skills

Experience

C#

PHP

Java

TSQL

PL/SQL

MySQL

MicroSoft Visual 
Studio

Eclipse

Net beans

ORM

MVC

IOC/DI

Mocks
OOP

Structural 
Patterns

WCF

WPF

HTMLCSS

JQuery

JavaScript

XAML

JQuery 
Mobile

Creational 
Patterns

Behavioral 
patterns

Mobisite

Web Services

 

Figure 6.1: Software developer competency framework (SDCF) 



 
Chapter Six: Recommendations and Conclusion 
 

 

 

144 

6.3 Recommended SDCF revealed and explained 

Based on literature review, surveys, interviews and findings of both quantitative and 

qualitative data analysis performed during this study, Software Developer 

Competency Framework (SDCF) is hereby revealed and explained. 

 

Data collected from intensive literature review on software projects, data collected via 

survey questionnaires and data collected during interviews underwent analysis. The 

comprehensive data analysis manifested identifiable patterns that resulted into the 

formation of Software Developer Competency Framework (SDCF), illustrated in 

Figure 6.1 above. SDCF encompasses knowledge based on empirical and factual 

data. Competencies required by software developers to develop software systems 

can easily be identified by carefully investigating components or layers of SDCF. 

SDCF is the essence and purpose of this research. Because it is composed of tasks, 

tools and skills of software developers, SDCF is a cornerstone of success in software 

development projects. It is hereby advised and recommended that SDCF form the 

foundation of the curriculum for all software development studies offered by tertiary 

institutions. 

 

With reference to Figure 6.1 above, SDCF is composed of six layers (L1 to L6) as 

indicated below. 

i. Layer L1: Environment of a software developer 

ii. Layer L2: Software development life cycle 

iii. Layer L3: Non-technical skills 

iv. Layer L4: Tools and technical skills 

v. Layer L5: Key deliverables 

vi. Layer L6: Finished software products 

 

Competencies required by software developers are rooted within layers of SDCF. 

Each layer is composed of logical partitions or units to represent the must-know 

elements of software developers. In addition, each layer is indicated with unique 

colour for identification purposes. Layer L1, with red colour, is the innermost layer 

while layer L6, with brown colour, is the outermost layer. Knowledge embodied in 

SDCF grows outwards from layer L1 towards layer L6 hence indicated by arrows 

pointing outwards. While some layers can be interchanged, the inner layer forms the 

foundation of the next outer layer. 



 
Chapter Six: Recommendations and Conclusion 
 

 

 

145 

The following section describes all six layers in details. 

6.3.1 Layer L1 with red colour: Environment of a software developer 

The environment of a software developer is composed of three main components; 

software, hardware and people. The extent to which one component affects a 

software developer depends on the nature, complexity and size of a software project. 

Predominantly the software component takes big portion of this layer. However 

following the user-centred approach to software development where users are 

involved from the beginning to the end of a given software project, the people 

component is critical. This is because in big software projects, usually there is 

continuous communication and feedback between software developers, 

management and users. During this study, some of interviewees indicated that when 

working on big software projects, they have continuous interactions with other 

software developers, management and users, hence the people component. 

 

 Regarding hardware, software runs on hardware hence software developers are 

exposed to different kind of hardware such as computers, mobile devices and many 

other devices. 

 

Recognizing these components prepares individuals to understand their environment 

in which they will spend most of their time as software developers. It goes without 

saying that an individual with passion in software, hardware and people can make a 

great software developer. 

 

6.3.2 Layer L2 with yellow colour: Software development life cycle 

The software development life cycle (SDLC) used in a given software project 

depends on the nature, complexity and size of a software project. There are primitive 

and ancient traditional methodologies such as waterfall, typically used in small 

projects where user requirements are clearly defined and understood. In this case, a 

project is divided into distinct phases where one phase is completely done and 

closed before proceeding with the next phase. Then there are agile methodologies 

that involve incremental and iterative approaches. Agile methodologies are preferred 

and largely implemented in big software projects. The reasoning behind agile 

approaches is based on the premise of discovering risks, uncertainties, understand 



 
Chapter Six: Recommendations and Conclusion 
 

 

 

146 

the complexity of user requirements and address dynamic changes in user 

requirements. In agile methodologies, software systems are developed in continuous 

iterative manner where each iteration results into the release of functional software 

components deployed for clients to use immediately. During this study interviewees 

indicated to prefer agile methodologies. Some of interviewees mentioned that agile 

methodologies cater for the “learn as you go” mentality to allow discovery of unknown 

during the software development process.  

 

As indicated in chapter four (Figure 4.18), during the survey, when asked to indicate 

categories of their tasks as software developers, more than half of respondents 

indicated to perform all categories of tasks in the software development life cycle. In 

spite of differences between primitive and agile methodologies, as indicated by layer 

L2, any software development life cycle has five main phases as described below: 

i. Requirement analysis:  

During this phase, the objective is to understand the problem in order 

to solve that problem. 

 

ii. System and software design: 

In this phase, feasible solution to address the problem is designed. 

 

iii. Implementation and unit tests: 

In this phase, software components are developed and unit tested to 

ensure that software components perform as expected. 

 

iv. Integration and system testing 

Software component are integrated into the system and the entire 

system is tested to ensure that user requirements are met. 

 

v. Operation and Maintenance:  

Software solution is deployed to clients and maintenance continues to 

address problems or bugs and streamline software features. 

 

All tasks performed by software developers falls into the above-mentioned phases 

and are critical to the success of any software project. An aspiring software 

developer should aim at understanding the theory and practical behind the above-



 
Chapter Six: Recommendations and Conclusion 
 

 

 

147 

mentioned components of Layer L2. As indicated in survey and interviews conducted 

during this study, most of software companies require that software developers be 

fully versed in SDLC. SDLC translates into tasks performed by software developers. 

Tasks refer to software development activities performed by software developers. 

Therefore this layer L2 is a must know to all software developers. 

6.3.3 Layer L3 with green colour: Non-technical skills 

Because people constitute a significant portion of Layer L1, software developers 

need skills that will enhance their tasks indicated in Layer L2. These skills tend to be 

applicable to most of careers where people are involved and where there is a 

constant need to understanding new insights of a given field. These skills are 

sometimes known as soft-skills, people skills or non-technical skills. These skills refer 

to attributes that enhance job performance of software developers and determine 

how well a software developer executes software development tasks. 

In this study, these skills are referred to as non-technical skills as they are not 

technology specific. According to survey and interviews conducted for this study, 

critical non-technical skills are teamwork, communication skills, analytical or thinking 

skills, attention to details, research skills and project management skills. 

As indicate in chapter four (Figure 4.19), the survey reveals that top three non-

technical skills are: 

i. Analytical and thinking skills; agreed by 96.6 percent of respondents 

ii. Communication skills; agreed by 94.7 percent of respondents 

iii. Ability to do self-study and research; agreed by 93.7 percent of respondents 

6.3.4 Layer L4 with blue colour: Tools and technical skills 

As indicated in Layer L1, software, hardware and people form significant components 

of the environment of software developers. As such in order to execute tasks 

indicated in Layer L2 software developers require skills to deal with software and 

hardware. These skills are technology dependent as they require the understanding 

and ability to apply technology using specific tools to perform specific tasks of Layer 

L2. Tools refer to any software that a software developer utilize in order to develop 

other software systems. The skills of using tools are known as technical skills hence 



 
Chapter Six: Recommendations and Conclusion 
 

 

 

148 

technical skills refers to know-how of using software tools to perform software 

development tasks. 

This layer of technical skills is dynamic and hence demands software developers to 

keep on updating their technical skills. This layer reflects relevant software 

technologies used by the industry. This layer L4 must be carefully observed by 

institutions and continuously updated by the software industry in order to prevent 

discrepancies of knowledge provide by institutions and that required by the industry. 

According to this study technical skills demand proficient in understanding and 

mastering of IDEs, programming technologies, databases, software frameworks, 

design patterns and OOP concepts. Research skills play critical part in understanding 

technical skills required by software developers. According to survey and interviews 

performed this layer L4 is considered as the most important and critical determinant 

of the software development career. All software companies initially employ software 

developers based on their technical ability indicated by Layer L4. 

6.3.5 Layer L5 with orange colour: Key deliverables 

Using non-technical skills and technical skills indicated in Layer L3 and Layer L4 

respectively, in order to perform tasks indicated in Layer L2, software developers 

have key deliverables to accomplish. According to survey and interviews performed 

in this study, key deliverables of individual software developers are source code, 

working software components, test cases and documentation. It is important that this 

layer be recognized by software developers because this layer L5 determines what 

deliverables are expected when tasks are assigned to software developers. It is 

worth knowing that when one is aware of key deliverables expected, one can aim at 

achieving delivery of the required deliverables. 

6.3.6 Layer L6 with brown colour: Finished software products 

The final layer of SDCF is Layer L6 which constitutes of finished software products 

developed by software developers in a given software project. According to this 

study, final products of software projects are web applications, desktop applications 

and mobile applications. With reference to data analysis of survey and interviews 

conducted during this study, web applications constitute a significant portion in the 

finished software products developed in the Western Cape Province. This layer L6 



 
Chapter Six: Recommendations and Conclusion 
 

 

 

149 

clearly communicates a message that skills related to development of web 

applications is in demand in the Western Cape Province. As such to avoid shortage 

of skilled software developers for web applications, institutions must produce more 

software developers who can thoroughly develop web applications. Moreover, with 

reference to interviews performed, knowing that already there is lack of skilled 

software developers for mobile applications, institutions must establish software 

development courses related to development of software for mobile devices in order 

to address lack of skilled software developers for mobile devices. 

6.4 Recommendations 

Based on merits attributed to SDCF, the researcher hereby recommends and 

submits that SDCF be adopted as a foundation for curriculum of software 

development courses offered by all tertiary institutions. 

 

SDCF encompasses both technical and non-technical elements required by an 

individual to function as a competent software developer. This framework is an 

attempt to bridge the gap between institutions and the industry such that software 

programmes offered by institutions are relevant to industry needs. Many merits can 

be accomplished if SDCF is used as a foundation of policy document for software 

development programmes offered by institutions. Likewise, there will be many 

demerits haunting the software development industry, if SDCF is ignored and not 

used as a base of software development studies. The following section outlines 

possible merits that can be triggered by the adoption of SDCF to address 

competencies of software developers. 

6.4.1 Bridge of tertiary institutions and the industry 

Primarily SDCF is a bridge that links institutions and the industry. By focusing on 

components of SDCF, institutions will be able to offer relevant software studies to 

address skills shortage of software developers. In addition, software developers 

produced by institutions will have quality knowledge of both technical and non-

technical skills essential to work as competent software developers. It is worth to 

mention that institutions will be able to offer software programmes relevant to the 

industry requirements. Unless this gap is bridged the degree of discrepancy of 

knowledge of software studies offered by institutions and relevant software skills 



 
Chapter Six: Recommendations and Conclusion 
 

 

 

150 

required by the industry will continue to widen and definitely affect the software 

industry and businesses at large. The more the gap increases the more the shortage 

of skilled software developers increases. The SDCF developed during this study has 

the potential of bridging the knowledge gap between institutions and the industry as 

far as software development is concerned. 

6.4.2 Smooth learning curve to newly recruited software developers 

This study acknowledges that software development field is a dynamic environment 

and requires software developers to continue learning new technologies while 

working. Nevertheless, learning curve among new software developers can be 

smoothened and shortened if institutions offer courses that are relevant and in sync 

with requirements of the industry. This study reveals that there are software 

developers who had to resign their job because they could not cope with the steep 

learning curve to learn technologies in order to work as software developers. Also it 

was found that, despite having tertiary qualifications, most of new recruited software 

developers are considered as negative resources to companies. This is because new 

software developers have to undergo lengthy and intense training in order to bring 

their skills to a level that they could perform tasks and become useful in software 

projects. The lengthy and steep learning curve is costly to companies because it 

takes long time before individuals become productive.  For that reason, if 

implemented, SDCF will reduce the amount of learning required after employment 

because new software developers will be already exposed to the relevant 

technologies used by the industry. 

6.4.3 Employable software developers 

Following the need of businesses to explore and invest in the application of 

information technology in order to attain maximum profit, software developers 

continue to be a scarce resource. Therefore an individual with relevant competencies 

as a software developer has a greater chance of being employed by business 

organizations and software companies. Such an individual has knowledge of most of 

relevant technologies used by the industry and is useful in software projects almost 

immediately. Such a software developer is definitely employable. Long steep learning 

curve and costs incurred before an employee becomes productive to the company 

are reduced and kept to a minimum level, if the employee is technically 



 
Chapter Six: Recommendations and Conclusion 
 

 

 

151 

knowledgeable. The guaranteed way of getting a job as a software developer and 

making a software developer easily employable is to master technologies used for 

software development in a given industry. This is only possible if SDCF is used as a 

point of reference for software development studies offered by all institutions. SDCF 

will make a person with tertiary qualification in software development to be in 

demand and market-sought both locally and internationally. 

6.4.4 Production of software development experts 

It is expected that institutions are places to learn and acquire knowledge that can be 

applied in the industry. Likewise, one expects that the industry is a place to apply 

acquired knowledge in order to execute tasks. Nevertheless, according to this study, 

most of software developers learn relevant technologies once employed in the 

industry. This is because knowledge acquired from institutions does not suffice and 

misses lots of critical ingredients required by software developers to confront real life 

software projects. Using SDCF as a point of reference and benchmark will produce 

software developers who are experts in their field of software development. This will 

also encourage employees to come back to institutions in order to upgrade and 

update their software development skills. Institutions will be places to learn and the 

industry will be a place to work and apply acquired knowledge from institutions.  

6.4.5 Reputation of institutions regarding software programmes 

Following the fact that SDCF encompasses relevant skills, institutions offering 

relevant skills required by the industry will have competitive advantage over other 

institutions. This will increase the reputation of tertiary institutions towards 

acceptance by the industry. It is in the best interest of institutions to have a good 

reputation towards academic excellence. This could be achieved by using SDCF as a 

standard for software development programmes offered by tertiary institutions. 

6.4.6 Alleviation of unemployment in communities 

The research reveals that some of companies opt to outsourcing software developers 

from countries such as India and Ukraine. This was predominantly in skills pertaining 

to software development for mobile devices. SDCF depicts relevant skills required by 

the industry. Therefore if SDCF is used as a lens or compass to guide software 

development courses, competent software developers will be produced locally and 



 
Chapter Six: Recommendations and Conclusion 
 

 

 

152 

the need to outsource skills will diminish. This will make local people more 

employable as opposed to relying on foreign supply of software developers. In the 

long run this will boost up employment and reduce unemployment rate affecting 

tertiary education graduates. Knowing that the alleviation of unemployment has 

positive effects to the development of our communities, adoption of SDCF is 

paramount.  

6.4.7 Confidence in software programmes offered by institutions 

Institutions will become centres of excellence in software development studies where 

advanced technical and practical skills are natured and acquired. Often people from 

the industry will be coming back to institutions in order to acquire practical skills on 

solving business problems using recent and advanced software technologies. This is 

possible if and only if institutions offer programmes that are relevant to address 

current industry needs. These are programmes that add great value immediately to 

the industry. SDCF will encourage the industry to utilize institutions in order to 

achieve that unique knowledge with value; knowledge embodied in SDCF and 

conveyed via software development programmes offered by institutions. It will make 

the industry to have confidence in software programmes offered by institutions. More 

can be achieved if SDCF is used as a standard for software development courses 

offered by tertiary institutions. 

6.4.8 Technical and practical value on software programmes offered  

Traditionally institutions are renowned for providing academic knowledge via 

teaching materials primarily based on text books. The benchmark of success is then 

gauged based on the extent to which an individual understood material learned from 

text books. The traditional means of benchmarking are examinations and tests where 

individuals are asked questions based on materials learned from those text books. 

As far as software development is concerned, this approach is limited and hence 

requires to be complimented by a practical approach to learning. It is the technical 

and practical elements that make software developers experts in the field of software 

development. Experts in software development are individuals who can think out of 

the box and take software technology to the extreme in order to address business 

problems. These are individuals who have solid technical ability to use software 

technologies to address business problems for the betterment of our communities at 



 
Chapter Six: Recommendations and Conclusion 
 

 

 

153 

large. Individuals of such a technical calibre, no sooner than they graduate from 

tertiary institutions, they will be employed or self-employed almost immediately. This 

is because there are lots of gaps particularly in Africa following the big digital divide 

as compared to the developed world. When an individual is equipped with technical 

and practical knowledge, that person has the power of thinking out of the box; the 

thinking is not limited to shallow knowledge based on text books only. As indicated in 

Franco (2012), software development is a highly technical and specific discipline. 

The advanced level of mastering technical skills can be achieved via implementing 

SDCF to address relevant technical skills required by software developers.  

6.4.9 Poverty alleviation in communities 

Poverty in most of African communities is an indication of opportunities not yet 

realized. These opportunities can be exploited using software technologies. Basic 

things like bringing community services close to community members can be 

achieved via software technologies. Nevertheless, it requires solid practical and 

technical knowledge of software development to be able to perform software projects 

that can alleviate the suffering of poor communities. Having good ideas is one thing 

but putting those ideas into action is another. It is important to recognise that action 

speaks louder. However actions can be executed if one has technical and practical 

ability to undertake the execution of ideas. As far as software development is 

concerned, one must have technical ability to bring about changes in our 

impoverished communities via software technologies. It is not uncommon for tertiary 

education graduates to be unemployed. Nevertheless, it does not make sense when 

an individual graduates from tertiary institutions with a major in software development 

studies and remain unemployed despite all opportunities in our impoverished 

communities that can be addressed by developing software systems. SDCF can 

ensure that software developers have knowledge to address current business needs 

and community problems. SDCF can play a role in alleviation of poverty in our 

communities. 

6.4.10 Centre of technical and practical excellence for software studies 

More can be achieved if SDCF is used as a standard for software development 

courses offered by tertiary institutions. As already mentioned, it is expected that 

institutions are places to learn while the industry is a place to do and apply 



 
Chapter Six: Recommendations and Conclusion 
 

 

 

154 

knowledge acquired from institutions. Nevertheless, this research indicates that most 

of software development graduates are not capable of performing their tasks as 

expected as such they have to learn most of technologies from the scratch while in 

the industry. This must change so that institutions become centres for learning and 

acquiring technical and practical excellence. This is especially important to software 

development studies where graduating from tertiary institutions should, on its own, be 

an indication that a graduate has a solid technical background on software 

technologies relevant to the industry needs. Graduates should be able to 

demonstrate practical and technical ability of applying advanced software 

technologies to address business challenges and community problems. This can be 

achieved via offering software courses based on SDCF. 

 

Unless institutions provided relevant skills for software development, institutions will 

cease to be useful in bringing software development skills to addressing business 

challenges facing the industry and communities at large. SDCF is geared towards 

ensuring that institutions offer programmes that are relevant to address problems in 

our communities in terms of providing technical, practical and sustainable solutions. 

SDCF will add value to the quality of education required by software developers to 

address business needs and confront challenges affecting our communities. SDCF 

has the potential of revolutionizing the status quo of unemployment rate and brings 

about positive impact to our impoverished communities. SDCF will bring the industry 

and institutions together. As a result institutions will become centres of technical and 

practical excellence where individuals from the industry will be coming back to 

institutions in order to upgrade their software development knowledge. 

6.5 Message to institutions and the industry 

While SDCF is a tool that has the potential to revolutionize the software industry for 

better, it does require a conducive and supportive environment in order to flourish. 

Both institutions and the industry have key roles to play to make SDCF a reality in the 

realm of software development. This section thus provides advice on how to make 

SDCF a reality for the betterment of the software industry and business as a whole. 

  

There is direct dependency between SDCF and business challenges which are 

dynamic in nature. In order to achieve the primary goal of SDCF which is to ensure 



 
Chapter Six: Recommendations and Conclusion 
 

 

 

155 

maximum level of competency among software developers, information on the 

competency framework must be consistent, correct and relevant to industry needs.  

 

 

 

Competency Framework

IndustryEducation Institutions

Software Developer

 

Figure 6.2: Competency Cycle 

 

Consistency, correctness and relevancy of SDCF can be achieved if a strong 

communication link among institutions and the industry is established, strengthened 

and maintained. This will allow smooth back and forth flow of information among 

institutions and the industry With reference to figure 6.2, SDCF should be executed in 

a two way round robin fashion referred to as “competency cycle” where both 

institutions and the industry take responsibility in updating SDCF.  This will ensure 

that SDCF is up-to-date and hence consistent, correct and relevant to industry 

requirements. 

  

The primary goal of any institution is to inculcate knowledge of a given discipline to 

learners. Nevertheless, knowledge becomes wisdom if it is consistent, correct and 

relevant to circumstances; hence can be applied to solve problems. It is 

acknowledged that the content of SDCF will continue to change as information 

technology advances. Therefore, institutions and the industry should ensure that 

SDCF has updated and researched information. Then Institutions should process the 

SDCF and use it as a basis for curriculum offered to learners who are the future 

software developers. SDCF is a critical tool for the success of software projects in the 



 
Chapter Six: Recommendations and Conclusion 
 

 

 

156 

Western Cape Province. This is because SDCF will ensure that learners have solid 

foundation of relevant skills to become competent software developers.  

 

The researcher further proposes the need for every software company or business 

organization to have an identifiable contact person whose main job includes liaising 

and regularly communicating with institutions all information regarding the industry 

needs as far as SDCF is concerned. On the other hand institutions need to have an 

office whose main task will be dedicated to processing information received from the 

industry in order to update SDCF and share information with lecturers. This will 

ensure that the industry needs are in sync with education offered by institutions and 

hence relevancy, consistency and correctness of skills offer via SDCF. 

 

It was found that many software companies and business organizations do not 

participate in internship programs consequently many students are not given 

opportunity for exposure to real life software projects in the industry. While 

traditionally it has been the discretion of the companies to participate in the internship 

programs, it is hereby proposed the need to make participation in internship 

programmes compulsory to all software companies and business organizations in the 

Western Cape Province. By so doing all students undertaking software development 

studies will have the opportunity for exposure to real life software projects. This will 

enhance their skills as competent software developers. 

 

The participation of the community members has potential to change the community 

at large. Minani and Parker (2009:92) report about a community initiative group 

known as “The Impact Team” that plays key roles in combating drugs and 

gangsterism in the Cape Flats area, in the Western Cape Province. Similar 

community initiatives that focus particularly on software projects could assist in 

bringing the software development community together. This can create a platform 

where experience software developers, novices and learners share software 

development technologies, knowledge and experiences. This kind of community 

participation will greatly improve and enrich the body of knowledge pertaining to 

critical competencies of software developers in the Western Cape Province. As such, 

the researcher hereby challenges the industry and education institutions to pioneer 

community initiative groups focusing on software development initiatives. 

 



 
Chapter Six: Recommendations and Conclusion 
 

 

 

157 

Despite of all merits attributed with the use of SDCF in institutions, it is important to 

be mindful of the fact that there are stakeholders, particular lecturers, who may not 

reciprocate their feelings towards supporting the use of SDCF as a standard for 

software development courses offered by institutions. This is because SDCF will 

change the way to deliver software development studies. The use of SDCF may 

translate to more workload to lecturers in order to teach skills that may not be familiar 

to lecturers. SDCF will require some of stakeholders, for instance, to research and 

continue learning in order to be updated with current and relevant software 

development technologies in the market. This is opposed to the traditional way of 

teaching using textbooks only where same textbook is taught after every year 

resulting into delivery of irrelevant and inconsistent software development skills. 

Teaching same text book over and over again is definitely very easy than teaching 

new and relevant skills every time. Hence, it is to be anticipated that some of 

stakeholders, particularly lecturers, may not support the use of SDCF. However, 

following many merits associated with utilizing SDCF as a point of reference for 

software development studies, it is hereby submitted and recommended that this 

research be used as a foundation for the policy document used by institutions for 

software development studies. No sooner than SDCF is adopted as foundation for 

software development studies, institutions will be obliged to offer software 

development programmes that are relevant to the industry requirements and address 

community challenges. SDCF will greatly address shortage of competent software 

developers in the South Africa and Africa as a whole. 

 

Lastly but not the least, the researcher submit that the industry be made part and 

parcel of institutions were experienced software developers from the industry 

regularly visit tertiary institutions to speak to students, share knowledge  and 

experiences about the nature of real life software projects as per SDCF. Not only will 

this motivated students to participate in software development projects but it will 

create an impact on the quality and standard of future software developers. 

Eventually, this will reduce initial training costs incurred by most of software 

companies and business organizations in terms of training and time.  

6.6 Limitations of the study 

Although many software companies and business organizations participated in this 

research, there is poor cooperation and weak relationships between the industry and 



 
Chapter Six: Recommendations and Conclusion 
 

 

 

158 

education institutions. Various companies partake in internship programmes while 

other companies do not participate in internship programmes at all. During this study 

it was found that the wide communication gap among institutions and the industry is 

the main limiting factor. This communication gap affects the flow of information 

among institutions, software companies and business organizations. Some of 

companies, for instance, did not participate in this research because they have no 

formal relationships with institutions. As such there is limited awareness regarding 

roles that institutions and the industry could play together for the betterment of the 

software development industry in the Western Cape Province. Cooperation and 

relationships among institutions and the industry can be strengthened by 

dissemination of information regarding roles that institutions and the industry can play 

in order to improve competencies of software developers. Dissemination of 

information will promote awareness of the importance of SDCF among institutions, 

software companies and business organizations.  

6.7 Future studies 

The focal point for this research was the Western Cape Province. As such, other 

provinces were beyond the scope of this study. Nevertheless, the researcher 

proposes that similar studies be undertaken in other provinces of South Africa. In 

addition, a comparative study among countries regarded as top and advanced in the 

field of software development should be performed. For instance, India, Japan, 

Finland and USA are regarded as being advanced as far as software technology is 

concerned. It will be beneficial to understand and learn from masters and 

powerhouses of information technology. 

6.8 Conclusion 

Soren Kierkegaard, The Danish philosopher once said, “Life can only be understood 

backwards but it must be lived forwards” (Nosotro, 2003). SDCF is a product of a 

research based on the past and present status quo of the software development 

projects. Information from an intensive literature review on software development 

projects and analysis of data collected via interviews and survey questionnaires 

resulted into the formation of SDCF. SDCF encompasses knowledge based on 

empirical and factual data. This conforms to Arthur Conan Doyle, The British 

philosopher who once said, “It is a capital mistake to theorize before one has data” 

(Doyle, 1887). Based on the evidence that most of work performed by software 



 
Chapter Six: Recommendations and Conclusion 
 

 

 

159 

developers is maintenance of software systems, software developers should write 

software codes that are easily understandable by other software developers. SDCF 

equips software developers with knowledge to writing readable and maintainable 

software codes. This echoes the famous saying by Martin Fowler, author and 

international speaker on software development, who once said, “Any fool can write 

code that a computer can understand. Good programmers write code that human 

can understand” (Fowler, 1999:17). Similarly, Martin Golding, the computer scientist, 

once said, “always code as if the guy who ends up maintaining your code will be a 

violent psychopath who knows where you live” (Mathew, 2012). SDCF equips 

software developer with skills to write maintainable software codes.  

 

In addition, debugging of software goes hand in hand with maintenance work. Since 

debugging is the process of removing bugs from a software system, one expects that 

writing software codes should not be the process of introducing bugs to software 

systems. However based on current status quo of software projects, programming is 

like a process of putting bugs into software systems, which resonates with the late 

Edsger Wybe Dijkstra, the computer scientist, who once said “if debugging is the 

process of removing bugs, then programming must be the process of putting them in” 

(Abbot, 2003:113). SDCF intends to change this mind-set so that the introduction of 

bugs into software system is minimal and hence minimize the debugging process of 

software codes. As highlighted by Dijkstra (1972), effective programmers should not 

waste time with debugging; they should not introduce bugs in the first place. SDCF 

will equip software developers with skills required to write bug-free software codes.  

 

Most importantly, SDCF is a cornerstone of software development. SDCF is a tool 

and a solid foundation of competent software developers. If utilized well, SDCF can 

equip software developers with knowledge to master the art or science of software 

development. The World Bank (2008) has it that innovations have tremendous 

positive impact towards the economic growth of a given country. And SDCF is a 

catalyst capable to revolutionize technological innovations in the software industry. 

Coupled with their natural ability and curiosity, software developers will be able to 

write quality software systems, bugs will be minimal and success in software 

development projects will improve tremendously. This agrees with the idea of Bill 

Gates, The Co-founder of Microsoft (the largest software company in the world), who 

once said “If you give people tools, and they use their natural ability and their 



 
Chapter Six: Recommendations and Conclusion 
 

 

 

160 

curiosity, they will develop things in ways that will surprise you very much beyond 

what you might have expected” (Kory, Chasser & Fingerhut, 2006). If applied 

appropriately, the adoption of SDCF by both institutions and the industry has the 

potential to greatly improve knowledge, skills, quality and standard of competencies 

of software developers. It goes without saying that knowledge of SDCF is critical 

among both institutions and the industry. Based on the above-mentioned merits of 

SDCF, the researcher submits that SDCF be adopted as a foundation of curriculum 

of software development programmes offered by tertiary institutions. 

 

In conclusion, SDCF is paramount in ensuring that software developers are 

competent enough to deal with dynamic business challenges. SDCF can ensure that 

education offered by institutions is relevant to industry needs. Institutions will produce 

competent software developers if education offered is consistent and relevant to 

business requirements. Software companies and business organizations stand a big 

chance to increase their return on investment (ROI), if competencies of software 

developers are improved. This can be achieved by the use of SDCF which enforces 

the must know elements of software developers. SDCF is a depository of software 

development knowledge. SDCF is a central point that link institutions and the industry 

together. While institutions can provide solid knowledge about software development, 

only the industry can provide that practical experience of real life software projects. 

Therefore, in order to ensure maximum competency in software development, 

industry and institutions must work together towards adoption of SDCF. 

 



APPENDICES 

 
 

 

161 

 

LIST OF REFERENCES 

 

Abbott, D. 2003. Linux for Embedded and Real-time Applications. 1st ed. Oxford: Elsevier 
Science 
 
Agarwal, N & Rathod, U. 2006. Defining 'success' for software projects: An exploratory 
revelation. International Journal of Project Management, 24(2006):358-370. 
 
Ahn, Y. S., & McLean, G. N. 2008. Competencies for port and logistics personnel: An 
application of regional human resource development. Asia Pacific Education Review, 9(4): 542 
– 551. 
 
Andrew, S., Salamonson, Y. & Halcomb, E.J. 2008. Integrating Mixed Methods Data Analysis: 
An Example Examining Attrition and Persistence of Nursing Students.  
International Journal of Multiple Research Approaches, 2: 36-43. 
 
Ardalan, K. 2010. Globalization and Global Governance: Four Paradigmatic Views. 
American Review of Political Economy, 8(1): 6 - 43. 
 
Babbie, E. & Mouton, J. 2001. The practice of social research – South African edition, Cape 
Town: Oxford University. 
 
Beck, K. 2005. Extreme Programming Explained. London: Addison-Wesley. 
 
Bennett, K., Layzell, P., Budgen, D., Brereton, P., Macaulay, L. & Munro, M. 2000. Service-
Based Software: The Future for Flexible Software. Seventh Asia-Pacific Software Engineering 
Conference APSEC'00: 214 – 221 
 
Bennett, S., McRobb, S. & Farmer, R. 2006. Object-Oriented Systems Analysis And Design. 
3rd ed. Berkshire: McGraw-Hill. 
 
Berelson, B.1954. Content analysis in communication research. Glencoe III: Free Press. 
 
Bertolino, A. 2007. Software testing research: Achievements, challenges, dreams. Future of 
software engineering, IEEE Computer society:85-103 
 
Best, J. & Khan, J. 1989. Research in Education, Englewood Cliffs.  New Jersey: Pearson 
Prentice Hall. 
 
Beznosov, K., Flinn, D. J., Kawamoto, S & Hartman, B. 2005. Introduction to Web services and 
their security. Information Security Technical Report, 10(1): 2 – 14 
 
Bhattacherjee, A. 2012. Social Science Research:Principles, Methods, and Practices. 2nd  ed. 
Florida: University of South Florida, ISBN-13: 978-1475146127 and ISBN-10: 1475146124 
 
Boehm, B. 1983. Seven basic principles of software engineering. The Journal of Systems and 
Software, 3(1):3-24. 
 
Bornman, E. 2006. National symbols and nation-building in the post-apartheid South Africa. 
International Journal of Intercultural relations, 30(2006): 383-399.  
 



APPENDICES 

 
 

 

162 

Bosch, J. & Molin, P. 1999.  Software Architecture Design: Evaluation and Transformation. In 
Proceedings of IEEE Engineering of Computer Based Systems Symposium, IEEE Computer 
Society Press, Los Alamitos, CA, pp. 4-10.  
 
Bosch, T. E. (2009). Using online social networking for teaching and learning: Facebook use at 
the University of Cape Town. Communicatio: South African Journal for Communication Theory 
and Research, 35(2), 185-200. 
 
Bowen, G. A. 2005. Preparing a qualitative research-based dissertation: Lessons learned. The 
Qualitative Report, 10(2):208-222. 
 
Brandt, I.G. 2006. Models of Internet connectivity for secondary schools in the Grahamstown 
circuit. Masters Thesis, Rhodes University. Grahamstown.  January 2006. 
 
Brooks, F. P. 1987. No silver bullet: Essence and accidents of software engineering. IEEE 
Computer, 20(4):10-19. 
 
Burns, R. B. & Burns, R. A. 2008. Business Research Methods and Statistics Using SPSS.  
London: SAGE Publications. 
 
Burrell, G. and Morgan, G. 1979. Sociological Paradigms and Organizational Analysis. London, 
and Exeter, NH: Heinemann. 
 
Calitz, A. 2011. Averting an ICT Crisis 
http://mg.co.za/article/2011-07-11-averting-an-ict-crisis-101 [08 October 2011] 
 
Calldo, F. 2008. Skills Shortange in South Africa 
http://www.solidarityresearch.co.za/wp-content/uploads/2010/07/16-Skills-Shortage-in-South-
Africa-Summary-facts-FJC-ET.pdf [ 22 April 2010] 
 
Charmaz, K. 2006. Constructing Grounded Theory: A practical guide through qualitative 
analysis. London: Sage. 
 
Cloete, F. 2011. Seven: e-GOVERNMENT LESSONS FROM SOUTH AFRICA 2001–2011: 
INSTITUTIONS, STATE OF PROGRESS AND MEASUREMENT. The African Journal of 
Information and Communication, 2001.  1- 170. 
 
Colomo-Palacios, R., Casado-Lumbreras, C., Soto-Acosta, P., García-Peñalvo, F. J., & Tovar-
Caro, E. 2013. Competence gaps in software personnel: A multi-organizational study. 
Computers in Human Behavior, 29(2), 456-461. 
 
Copeland, J. & Haemer, J.S. 2000. The art of software testing. Server workstation expert, 
11(8): 42-45. 
 
Crowley, C., Harré, R. & Tagg, C. 2002. Qualitative research and computing: Methodological 
issues and practices in using QSR NVivo and NUD*IST. International Journal of Social 
Research Methodology 5(3):193-197. 
 
Curbera, F., Nagy, W. A & Weerawarana, S. 2001. Web services: Why and how 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.4565&rep=rep1&type=pdf  
[18 August 2008] 
 
De Vos, A., Strydom, H., Fouche, C. B. & Delport, C. S. L. 2002. Research at Grass Roots. 2nd  
ed. Pretoria: Van Schaik Publishers. 

http://mg.co.za/article/2011-07-11-averting-an-ict-crisis-101
http://www.solidarityresearch.co.za/wp-content/uploads/2010/07/16-Skills-Shortage-in-South-Africa-Summary-facts-FJC-ET.pdf
http://www.solidarityresearch.co.za/wp-content/uploads/2010/07/16-Skills-Shortage-in-South-Africa-Summary-facts-FJC-ET.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.4565&rep=rep1&type=pdf


APPENDICES 

 
 

 

163 

 
Deitel, H. M. & Deitel, P. J. 2006. Visual C# 2005: How to Program. 2nd ed. New Jersey: 
Pearson Prentice Hall  
 
Di Gregorio, S. 2000. Using Nvivo for your literature review. Strategies in Qualitative Research: 
Issues and Results from Analysis using QSR Nvivo and Nud*ist, London, 29-30 September, 
Institute of Education. 
 
Dijkstra, E. W. 1972. The Humble Programmer. 
http://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html [16 March 2012]. 
 
Dorfman, M. 1999. Requirements Engineering, SEI Interactive  
http://www.dimap.ufrn.br/~jair/ES/reqengback.pdf  [20 June 2009]. 
 
Doyle, A. C. 1887. A Study In Scarlet.  
http://www.gutenberg.org/files/244/244-h/244-h.htm#link2H_4_0001 [07 May 2010] 
 
Fowler, F.J. 2009. Survey Research Methods. 4th ed. USA: Sage Publications 
 
Fowler, M. 1999. Refactoring: Improving the Design of Existing Code. London: Addison-Wesley 
 
Franco, S. 2012. Process key to successful software development 
http://www.itweb.co.za/index.php?option=com_content&view=article&id=60414:Process-key-to-
successful-software-development&catid=107 [08 November 2012] 
 
Frank J. 2005. The CanMEDS 2005 Physician Competency Framework. Better standards. 
Better physicians. Better care. Ottawa: The Royal College of Physicians and Surgeons of 
Canada. http://meds.queensu.ca/medicine/obgyn/pdf/CanMEDS2005.booklet.pdf  
[25 May 2009]. 
 

Galorath, D. 2009. 2009 Standish Chaos Report… Software Going Downhill 
http://www.galorath.com/wp/2009-standish-chaos-report-software-going-downhill.php 
[27 April 2010] 
 
Gangani, N. T., McLean, G. N. & Braden, R. A. 2004. Competency-based human resources 
development strategy, Academy of Human Resource Development Annual Conference, Austin, 
TX, 4-7 March, in: Proceedings, Vol 2: 1111 – 1118. 
 
Garlan, D., Allen, R. & Ockerbloom, J. 2009. Architectural Mismatch: Why Reuse Is Still So 
Hard. IEEE Software, 26(4):66-69. 
 
Gegick, M. & Williams, L. 2007. On the design of more secure software-intensive systems by 
use of attack patterns. Information and Software Technology, 49(4): 381 – 397. 
 
Gibbs, G. R. 2002. Qualitative Data Analysis: Explorations with NVivo. Buckingham: Open 
University Press,  ISBN 9780335200849 
 
Godefroid, P., Halleux, P., Nori, A. V., Rajamani, S. K., Schulte, W., Tillmann, N. & Levin, M. Y. 
2008. Automating software testing using program analysis. IEEE Software, 25(5):30-37. 
 
Gottschalk, K., Graham, S, Kreger, H. & Snell, J. 2002. Introduction to Web services 
architecture. IBM Systems Journal, 41(2): 170 - 177 
 

http://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html
http://www.gutenberg.org/files/244/244-h/244-h.htm#link2H_4_0001
http://www.itweb.co.za/index.php?option=com_content&view=article&id=60414:Process-key-to-successful-software-development&catid=107
http://www.itweb.co.za/index.php?option=com_content&view=article&id=60414:Process-key-to-successful-software-development&catid=107
http://meds.queensu.ca/medicine/obgyn/pdf/CanMEDS2005.booklet.pdf
http://www.galorath.com/wp/2009-standish-chaos-report-software-going-downhill.php
http://www.research.ibm.com/journal/sj/412/gottsaut.html#gottschalk
http://www.research.ibm.com/journal/sj/412/gottsaut.html#graham
http://www.research.ibm.com/journal/sj/412/gottsaut.html#kreger
http://www.research.ibm.com/journal/sj/412/gottsaut.html#snell


APPENDICES 

 
 

 

164 

Gravetter, F.J. & Forzano, L. B. 2009. Research methods for the behavioral sciences. 3rd ed. 
California: Cengage Learning. 
 
Hailpern, B. & Santhanam, P. 2002. Software debugging, testing and verification. IBM Systems 
Journal, 41(1):4-12. 
 
Hofmann, H. F & Lehner, F. 2001. Requirements engineering as a success factor in software 
projects. IEEE Software, 18(4): 58 – 66. 
 
Hofstee, E. 2006. Constructing a Good Dissertation: A practical guide to finishing a 
Master’s, MBA or PhD on schedule. Johannesburg, South Africa: EPE. 
 
Hook, P. 2000. Training for Cyber-War. Computer Fraud & Security, 2000(10): 14 – 15 
 
Hughes, B. & Cotterell, M. 2006. Software Project Management. 4th ed. Berkshire: McGraw-
Hill. 
 
Hull, E. Jackson, K. & Dick, J. 2005. Requirements Engineering, 2nd ed. Springer. Books24x7: 
Apress.  http://common.books24x7.com/book/id_16286/book.asp [10 June 2009]. 
 
Jiang, L., Eberlein, A., Far, B.H & Mousavi, M. 2008. A Methodology for the selection of 
requirements engineering techniques, Software and Systems Modelling 7(4): 303 – 328. 
 
Jick, T.D. 1979. Mixing Qualitative and Quantitative Methods: Triangulation in Action. 
Administrative Science Quarterly, 24(4): 602-611. 
 
Jonasson, H. 2008. Determining Project Requirements. Auerbach Publications. Books24x7: 
Apress. http://common.books24x7.com/book/id_26418/book.asp [18 June 2009] 
 

Jones, C. 2004a. Quantitative and qualitative research: conflicting paradigms or perfect 
partners? In Proceedings of Networked Learning 2004. Lancaster, UK, 5-7 April. 
 
Jones, C. 2004b. Software Project Management Practices: Failure versus Success. 
CROSSTALK The Journal of Defense Software Engineering, 2004:5-9. 
 
Juristo, N., Moreno, A.M., Vegas, S. & Solari, M. 2006. In search of what we experimentally 
know about unit testing. IEEE Software, 23(6):72-80. 
 
Kendal, S. 2011. Object Oriented Programming using C#. Simon Kendal & Ventus Publishing. 
ISBN 978-87-7681-814-2 
 
Klein, M.  & Ralya, T. 1990. Analysis of Input/Output Paradigms for Real-Time Systems, An 
(Technical Report CMU/SEI-90-TR-019). Pittsburgh: Software Engineering Institute, Carnegie 
Mellon University. http://www.sei.cmu.edu/library/abstracts/reports/90tr019.cfm [July 18, 2010]. 
 
Knight, W. 2005. Security — built-in or bolted-on to the SOA? Infosecurity Today, 2(2): 38 – 40. 
 
Kofman, S. 2006. Effects of Virtual Communities on Young Adults 
http://www.eden.rutgers.edu/~skofman/myspace.doc [28 October 2008] 
 
Kory, D., Chasser, A. & Fingerhut, E. 2006. Full circle: A Report On Technology Transfer In 
Ohio. http://www.ipo.uc.edu/file_PDF/TTOCfy06.pdf [25 March 2011] 
 
 

http://common.books24x7.com/book/id_16286/book.asp
http://common.books24x7.com/book/id_26418/book.asp
http://www.sei.cmu.edu/library/abstracts/reports/90tr019.cfm
http://www.eden.rutgers.edu/~skofman/myspace.doc
http://www.ipo.uc.edu/file_PDF/TTOCfy06.pdf


APPENDICES 

 
 

 

165 

Krauss, S. E. 2005. Research paradigms and meaning making: A primer. The Qualitative 
Report, 10(4):758-770. 
 
Krueger, C. W. 1992. Software reuse. ACM Computing Surveys (CSUR), 24(2), 131-183. 
 
Kujala, S., Kauppinen, M., & Rekola, S. 2001. Bridging the gap between user needs and user 
requirements. In Proceedings of PC-HCI 2001 Conference. Patras, Greece, 
7-9 December. 
 
Kumar, R. 2005. Research methodology – a step-by-step guide for beginners. 2nd ed. 
California: Sage. 
 
Le Deist, F. & Winterton, J. 2005. What is competence? Human Resource Development 
International, 8(1): 27-46. 
 
Leymann, F. & Altenhuber, W. 1994.  Managing business processes as an information 
resource, IBM Systems Journal, 33(2):326-48. 
 
Lowy, J. 2007. Programming WCF Services. California: O'Reilly Media Inc. 
 
Lucia, A. D. & Lepsinger, R. 1999. The art and science of competency models: Pinpointing 
critical success factors in an organization. San Francisco, CA: Jossey-Bass. 
 
Mack, L. 2010. The Philosophical Underpinnings of Educational Research. Polyglossia,  
19: 5– 1 
 
Mackenzie N and Knipe S, 2006, Research dilemmas: Paradigms, Methods and Methodology, 
Issues In Educational Research, Vol 16, http://www.iier.org.au/iier 6/mackenzie.html 
 [June 12, 2010]. 
 
Malan, R & Bredemeyer, D. 2002. Software Architecture: Central Concerns, Key Decisions. 
http://www.bredemeyer.com/pdf_files/ArchitectureDefinition.PDF  
[01 November 2009]. 
 

Malan, R. & Bredemeyer, D. 2009. Software Architecture and Related Concerns. 
http://www.bredemeyer.com/whatis.htm [01 November 2009] 
 
Malik, D. S., 2002. C++ Programming: From Problem Analysis To Program Design. 
Massachusetts: Thomson Learning 
 
Malik, D.S. 2004. C++ Programming: From problem analysis to program design 2nd ed. 
Massachusetts: Course Technology, Thomson Leaning Inc. 
 
Martin, C. R. & Martin, M. 2006. Agile Principles, Patterns and Practices in C#. New Jersey: 
Prentice Hall 
 
Mathew, V. 2012. Code Cleanup.  
http://oi.vettukal.com/2012/07/week-6-report-code-cleanup-and-delete.html [07 October 2012] 
 
McGibbon, S. 2007. Service Oriented Architectures and Web Services – Interoperability by 
Design.Baltic IT&T Review, 37:39-42. 
 
McGraw, G. 2002. Building secure software: Better than protecting bad Software. IEEE 
Software, 19(6):57-59. 

http://www.iier.org.au/iier%206/mackenzie.html
http://www.bredemeyer.com/pdf_files/ArchitectureDefinition.PDF
http://www.bredemeyer.com/whatis.htm
http://oi.vettukal.com/2012/07/week-6-report-code-cleanup-and-delete.html


APPENDICES 

 
 

 

166 

 
Minani, D. & Parker, M. B. 2009. The use of Facebook for social networking within a 
community on the Cape Flats. Cape Town: Cape Peninsula University of Technology, 91- 105. 
ISBN 978-0-620-44199-5. 
 
Mirabile, R.L.1997. Implementation planning: Key to successful competency strategies. Human 
Resource Professional, 10(4), 19-23. 
 
Mlitwa, N. 2009. Investigation of Integration and use of ICT for Teaching and 
Learning in South African Higher Education Institutions; PhD Thesis, University of Cape Town. 
Cape Town. 
 
Morrison, M. & Morrison, J. 2003. Database-driven web Sites. 2nd ed. Boston: Thomson. 
 
Mouton, J. 1996: Understanding social research. Pretoria: Van Schaik. 
 
Mumford, E. 2006. Researching people problems: some advice to a student. Info Systems, 
16(2006):383-389. 
 
Neuman, W.L. 1997. Social research methods: qualitative and quantitative approaches. 4th ed. 
USA: Viacom. 
 
Nieman, G & Bennett, A. 2006. Business management: A value chain approach. 2nd ed. 
Pretoria: Van Schaik. 
 
Nosotro, R. 2003. Soren Kierkegaard: Danish Philosopher and Theologian. 
http://www.hyperhistory.net/apwh/bios/b2kierkegaard-soren.htm [15 July 2011] 
 
Olsen, W. 2004. Triangulation in Social Research: Qualitative and Quantitative Methods Can 
Really be Mixed. http://www.ccsr.ac.uk/staff/triangulation.pdf [10 March, 2010] 
 
Olson, D. L. 2004. Introduction to Information Systems Project Management. 2nd ed. New 
York: McGraw-Hill. 
 
Ort, E. 2005. Service-Oriented Architecture and Web Services: Concepts, Technologies, and 
Tools. http://java.sun.com/developer/technicalArticles/WebServices/soa2/ [18 August, 2008] 
 
Ozkan, B. C. 2004. Using NVivo to Analyze Qualitative Classroom Data on Constructivist 
Learning Environments. The Qualitative Report, 9(4): 589-603. 
 
 Pereira, J. P. & Parker, M. B. 2009. An alternative approach to empower citizens in 
communities with tension.  Cape Town: Cape Peninsula University of Technology, 105-120. 
ISBN 978-0-620-44199-5. 
 
Pras, A. & Martin-Flatin, J.P. 2007. What Can Web Services Bring To Integrated Management?  
Handbook of Network and System Administration: Amsterdam: Elsevier. 
 
Reeves, J.W., 1992. What is Software Design? C++ Journal, 2(2) 
 
Rivera-Ibarra, J.G., Rodriquez-Jacobo, R., Fernandez-zepeda, J.A. & Serrano-Vargas, M.A. 
2010. Competency Framework for Software Engineers. Proceedings of the 23rd IEEE 
Conference on Software Engineering Education and Training, 9-12 March 2010, Pittsburgh, 
PA; pp 33-40. 
 

http://www.hyperhistory.net/apwh/bios/b2kierkegaard-soren.htm
http://www.ccsr.ac.uk/staff/triangulation.pdf
http://java.sun.com/developer/technicalArticles/WebServices/soa2/


APPENDICES 

 
 

 

167 

Rob, P. & Coronel, C. 2004. Database systems: design, implementation & management.  6th 
ed. Boston: Thomson. 
 
Roodt, J & Paterson, A. 2009. Skills Shortages in South Africa: Case Studies of Key 
Proffesions. Cape Town: HSRC Press, ISBN 978-0-7969-2273-1 
 
Rouibah, K, & Al-Rafee, S. 2009. Requirement Engineering Elicitation Methods: A Kuwait 
Empirical Study about familiarity, usage and perceived value. Information Management & 
Computer Security, 17(3): 192–217. 
 
Ruxwana, N. L., Herselman, M. E., & Conradie, D. P. (2010). ICT applications as e-health 
solutions in rural healthcare in the Eastern Cape Province of South Africa. Health information 
management journal, 39(1), 17-26. 
Sajeev, A. S. M. 1994. Some Reusability Exercises in Persistent C*. International Conference 
on Computing and Information Proc. ICCI’94: 1160 - 1175  
 
Sarantakos, S. (1998). Social Research. 2nd edition. Palgrave Macmillan, New York. USA. 
 
Satzinger, J.W, Jackson, R. B & Burd, S. D. 2004. Systems analysis & design: In a changing 
world. 3rd ed. Boston: Thomson Course Technology. 
 
Serpell, A. &  Ferrada, X. 2007 A competency-based model for construction supervisors in 
developing countries. Personnel Review, 36(4): 585-602. 
 
Shreyas, D. 2002. Software Engineering for Security: Towards Architecting Secure Software. 
http://www.dsc.ufcg.edu.br/~jacques/cursos/map/recursos/SoftwareEngineeringandSecurity.pdf  
[12 May 2009]. 
 
Singleton, R. A. Jr. & Straits, B.C. 2005. Approaches to social research. 4th ed. Oxford: Oxford 
University Press. 
 
Sommerville, I.  & Sawyer, P. 1997. A Good Practice Guide. New York: John Wiley. 
 
Sommerville, I. 2007. Software Engineering. 8th ed. England: Addison-Wesley. 
 
Sotomayor, B. 2005. A short introduction to Web Services 
http://gdp.globus.org/gt4-tutorial/multiplehtml/ch01s02.html#id2564226 [13 August 2008] 
 

Srivastava, B & Koehler, J. 2003. Web Service Composition – Current Solutions and Open 
Problems. http://www.zurich.ibm.com/pdf/ebizz/icaps-ws.pdf [21 August 2008]. 
 
Standish Group International. 2001. Extreme chaos. 
http://www.scribd.com/doc/10167963/Chaos-Report-2001 [20 May 2009]. 
 
Stary, C. 2002. Shifting knowledge from analysis to design: requirements for contextual user 
interface development. Behaviour & Information Technology, 21(6):425-440. 
 
Stepanek, G. 2005. Software project secrets: Why software projects fail.  Books24x7: Apress.  
http://common.books24x7.com/book/id_12530/book.asp [June 12, 2009]. 
 

Talby, D., Hazzan, O., Dubinsky, Y. & Keren, A. 2006. Agile software testing in a large-scale 
project. IEEE Software, 23(4):30-37. 
 

http://www.dsc.ufcg.edu.br/~jacques/cursos/map/recursos/SoftwareEngineeringandSecurity.pdf
http://gdp.globus.org/gt4-tutorial/multiplehtml/ch01s02.html#id2564226
http://www.zurich.ibm.com/pdf/ebizz/icaps-ws.pdf
http://www.scribd.com/doc/10167963/Chaos-Report-2001
http://common.books24x7.com/book/id_12530/book.asp


APPENDICES 

 
 

 

168 

Tillmann, N. & Schulte, W. 2006. Unit tests reloaded: Parameterized unit testing with symbolic 
execution. IEEE Software, 23(4):38-47. 
 
Turley, R.T & Bieman, J.M. 1995. Competencies of exceptional and non-exceptional software 
engineers. Journal of Systems and Software, 1995(28): 19-38. 
 
Van Vliet, H. 2007. Software engineering: Principles and practice. Chichester, UK: John Wiley. 
 
Viega, J. & McGraw, G. 2002. Building secure software: How to avoid security problems the 
right way. Addison-Wesley. 
 
Wang, H., Huang, J. Z., Qu, Y & Xie, J. 2004. Web services: problems and future directions. 
Web Semantics: Science, Services and Agents on the World Wide Web, 1(3) 309 -320. 
 
Weitzman, E., Miles, M.B. (1995), Computer Programs for Qualitative Data Analysis, Sage, 
London. 
 
Welman, C., Kruger, F. & Mitchell, B. 2005. Research methodology. 3rd ed. Cape Town: 
Oxford University Press. 
 
Wirfs-Brock, R. J. 2009. Principles in Practice. IEEE Software, 26(4):11-12. 
 
World Bank. 2008. Facts and figures from the world development indicators 2008. 
http://siteresources.worldbank.org/DATASTATISTICS/Resources/reg_wdi.pdf  
[27 May 2010]. 
 
Yeo, K. T. 2002. Critical failure factors in information system projects. International Journal of 
Project Management, 20(3):241-246. 
 
Yin, R.K. 2003. Case study research: design and methods. 3rd ed. California: Sage. 
 
Zelger, J. & Oberprantacher, A. 2002. Processing of Verbal Data and Knowledge 
Representation by GABEK-WinRelan. Qualitative social Research, 3(2). 
 

http://siteresources.worldbank.org/DATASTATISTICS/Resources/reg_wdi.pdf


APPENDICES 

 
 

 

169 

Appendix A: Questionnaire 

 
A software developer competency framework  

 

Dear Software Developer, 

While some of the following questions require one answer, other questions 

may require multiple answers. 

Please tick (V) or check on appropriate answers accordingly. 

1.) Report and feedback regarding this research will be provided to all software 

developers who will participate in this research. 

Would you like to receive reports and feedback regarding this research? 

( ) Yes (If yes, please provide your contact details in the next question) 

( ) No 

 

General information 

2.) (OPTIONAL) If you would like feedback and report please fill in your contact 

details in the text boxes below. 

Otherwise, proceed with the next question. 

 
Contact 

details 

Email 

address 

___  

Your 

company 

___  

Job title ___  

Name ___  

 

General information 

3.) What is your gender? 

( ) Male 

( ) Female 

 

General information 

4.) What is your age? 

( ) Under 21 years 

( ) 21 to 34 years 



APPENDICES 

 
 

 

170 

( ) 35 to 49 years 

( ) 50 to 64 years 

( ) 65 years or older 

 

General information 

5.) What is your race? 

( ) Black 

( ) Coloured 

( ) White 

( ) Indian 

( ) Other 

 

General information 

6.) What is your citizenship? 

( ) South African 

( ) Other African countries 

( ) European 

( ) Asian 

( ) North American 

( ) South American 

( ) Australia and Oceania 

 

General information 

7.) What is your work experience as a software developer? 

( ) 0 to 3 years 

( ) 4 to 6 years 

( ) 7 to 10 years 

( ) over 10 years 

 

General information 

8.) How long did it take you to become a software developer who performs his/her 

duties with minimal assistance from other developers? 

( ) 0 to 6 months 

( ) 7 to 12 months 

( ) 13 to 18 months 

( ) 19 to 24 months 



APPENDICES 

 
 

 

171 

( ) over 2 years to 3 years 

( ) over 3 years 

 

General information 

9.) Are you are a certified software developer, certified with software training 

authorities like Microsoft, Oracle and Sun? 

( ) No 

( ) Yes 

 

10.) What is your highest education qualification? 

( ) Certificate 

( ) National Diploma 

( ) BTech/Bachelor Degree 

( ) MTech/Master’s Degree 

( ) DTech/PHD 

( ) Other 

 

General information 

11.) What is your current level (position) as a software developer? 

( ) Junior developer 

( ) Middle level developer 

( ) Senior developer 

 

12.) In which province are you coming from? 

( ) Western Cape 

( ) Eastern Cape 

( ) Free State 

( ) Gauteng 

( ) KwaZulu Natal 

( ) Limpopo 

( ) Mpumalanga 

( ) North West 

( ) Northern Cape 

 



APPENDICES 

 
 

 

172 

Software development tools 

13.) What among these tools (IDE) do you use most of the time? 

Please scroll further down for more options 

[ ] Microsoft Visual studio 

[ ] Microsoft Share point 

[ ] Net beans 

[ ] Eclipse 

[ ] Dreamweaver 

[ ] WinDev 

[ ] Xcode. 

[ ] ActiveState Komodo 

[ ] JCreator 

[ ] PhpED 

[ ] Notepad 

[ ] MPLAB 

[ ] Other 

 

Software development tools 

14.) What among these programming technologies do you use most of the time? 

Please scroll further down for more options 

[ ] C# 

[ ] C++ 

[ ] C 

[ ] Ruby 

[ ] Pascal 

[ ] Delphi 

[ ] Visual Basic 

[ ] Java 

[ ] PHP 

[ ] COBOL 

[ ] Assembler 

[ ] Python 

[ ] FORTRAN 

[ ] Perl 

[ ] Cold fusion 

[ ] Java script 



APPENDICES 

 
 

 

173 

[ ] VB script 

[ ] Ajax 

[ ] ASP.NET 

[ ] HTML 

[ ] XML 

[ ] UML 

[ ] CSS 

[ ] Other 

 

Software development tools 

15.) What among these database management systems (DBMS) do you use most of 

the time? 

Please scroll further down for more options 

[ ] Microsoft SQL server 

[ ] DB2 

[ ] Oracle 

[ ] Sybase 

[ ] PostgreSQL 

[ ] Informix 

[ ] NonStop SQL 

[ ] Microsoft Access 

[ ] MySQL 

[ ] Teradata 

[ ] Ingres 

[ ] Other 

 

Software development tools 

16.) What among these code version control tools do you use most of the time? 

Please scroll further down for more options 

[ ] Subversion 

[ ] Perforce 

[ ] Visual Studio Team System 

[ ] Visual SourceSafe 

[ ] StarTeam 

[ ] Vault 

[ ] Concurrent Versions System (CVS) 



APPENDICES 

 
 

 

174 

[ ] JediVCS 

[ ] Other 

[ ] None (if you do not use any code version control tool) 

 

Software development tools 

17.) What among these application servers do you use most of the time? 

Please scroll further down for more options 

[ ] Microsoft server products 

[ ] WebSphere 

[ ] Apache 

[ ] Glassfish 

[ ] JBoss 

[ ] Jetty 

[ ] JRun 

[ ] Oracle OC4J 

[ ] WebLogic 

[ ] SAP Netweaver 

[ ] Other 

[ ] None (if you do not use any application server) 

 

Software development tools 

18.) Your software products are installed or running in which environment? 

[ ] Windows 

[ ] Linux 

[ ] Unix 

[ ] Other 

 

Software development tasks 

19.) Among these software development tasks your duties fall in which groups? 

[ ] Analyse user requirements/system requirements 

[ ] Design software solution 

[ ] Code or implement software solution 

[ ] Test software solution 

[ ] Deploy or install software solution 

[ ] Perform software maintenance 

 



APPENDICES 

 
 

 

175 

Software development skills 

20.) While performing you tasks as a software developer, how well do you agree that 

the following skills are important for you to perform your tasks? 

Please scroll further down for more options 

 
Strongly 

agree 
Agree 

Don't 

know 
Disagree 

Strongly 

disagree 

Communication 

skills 

( )  ( )  ( )  ( )  ( )  

Ability to do 

self-study and 

research 

( )  ( )  ( )  ( )  ( )  

Team work ( )  ( )  ( )  ( )  ( )  

Lack of ego ( )  ( )  ( )  ( )  ( )  

Reuse of code ( )  ( )  ( )  ( )  ( )  

Experience 

with previous 

work 

( )  ( )  ( )  ( )  ( )  

Analytical and 

thinking skills 

( )  ( )  ( )  ( )  ( )  

Use of 

prototype 

( )  ( )  ( )  ( )  ( )  

Focus on 

customer 

needs 

( )  ( )  ( )  ( )  ( )  

Innovative 

while dealing 

with problems 

( )  ( )  ( )  ( )  ( )  

 



APPENDICES 

 
 

 

176 

Software development skills 

21.) What other skills do you possess that helps you perform and accomplish your 

software development tasks? 

____________________________________________  

____________________________________________  

____________________________________________  

____________________________________________  

 

Thank You! 

Thank you for taking our survey. 

Please forward the questionnaire link to other software developers 

----------------- 

Department of Information Technology 

Cape Peninsula University of Technology 

Website: www.cput.ac.za 

 
 

 

http://www.cput.ac.za/


APPENDICES 

 
 

 

177 

Appendix B: Introductory letter to the industry 

 
ATTN: Managers, Project managers, Team leaders, Software developers 

Date: 07 September 2010 

RE: Research on competencies of software developers 
 
Dear Sir/Madam, 
  
A research project is currently underway in the Department of Information 
Technology at Cape Peninsula University of Technology. The research is on 
competencies of software developers. The purpose of this research is to establish 
essential competencies for software developers. Once such competencies have 
been identified and analysed, they could be used by both industry and educational 
institutions. This would help to prepare software developers and enable them to 
develop good quality software systems to meet business demands and challenges. 
 

Your company has been selected to participate in this research because you are 
directly or indirectly involved with software projects. This research will be conducted 
by using questionnaires. A website link to access the questionnaire will be given to 
you soon. On behalf of the Cape Peninsula University of Technology, we would like 
to request for your assistance to ensure that the link to questionnaire is distributed 
among your software developers and that the questionnaires are filled. The 
questionnaire will take a maximum of 10 minutes to complete online. The 
questionnaire has questions about software development tools, tasks and skills. All 
questions have a list of options and your software developers will be required to 
select options from a given list of choices. 
 
Rest reassured that as a participant in this research, you have the following rights: 

I.Your participation is entirely voluntary 
II.The information provided by your software developers will be kept strictly 

confidential. 
III.While information provided by your software developers may be included in 

the research report, under no circumstances will names or any identifying 
information be included in the report. 

IV.The research report will be made available to you upon your request. 
 
Please feel free to contact us should you require more information or any clarification 
regarding this research. 
 
Lastly, in order to make this research successful, please forward this email to other 
business companies or organizations in the Western Cape Province. 
 
Thank you for your willingness to participate in this research. 
  

 
David Minani 
Research Student, Dept of IT 
Faculty of Informatics and Design 
Cape Peninsula University of Technology 
Phone: 072 554 9008 
Email: dminani@gmail.com 

 
Temuso Makhurane 
Research Supervisor, Dept of IT 
Faculty of Informatics and Design 
Cape Peninsula University of Technology 
Phone: 021 469 1136         
Email: makhuranet@cput.ac.za 

 

mailto:dminani@gmail.com
mailto:makhuranet@cput.ac.za


APPENDICES 

 
 

 

178 

Appendix C: Letter to CPUT internship coordinators 

 
TO:  Internship/Co-operative coordinator 
Attn: Mr. Bernardo 
Attn: Mr. Bronwyn 
Date: 07 September 2010 

RE: Research on competencies of software developers 
 
Dear Internship/Cooperative Coordinator, 
  
A research project is currently underway in the Department of Information 
Technology at Cape Peninsula University of Technology. The research is on 
competencies of software developers. The purpose of this research is to establish 
essential competencies for software developers. Once such competencies have 
been identified and analysed, they could be used by both industry and educational 
institutions. This would help to prepare software developers and enable them to 
develop good quality software systems to meet business demands and challenges. 
 
This research will be conducted by using questionnaires. We are in a process to 
finalize the questionnaire. Since we have good relationship with the industry, we 
would like all companies that accept our students for internship to be involved in this 
research. The research is on software developers, we would like all companies that 
are directly or indirectly involved with software projects to take part in this research 
project.  
 

We would like you to do the following: 

1) An introductory letter will be sent to you soon, please forward this letter to any 
business company or organization that is directly or indirectly involved with 
software projects. This includes all companies involved with the internship 
programmes with CPUT.  

2) A website link to access the questionnaire will be given to you soon. Please 
forward this link to all companies for distribution among software developers. 
The questionnaire will take a maximum of 10 minutes to complete 
online.  

3) Please forward the above mentioned to any IT company that you feel should 
participate in this research. 

 
Feel free to contact us should you require more information or any clarification 
regarding this research. 
 
Your assistance is highly appreciated for the success of this research project. 
 
Regards, 
 

 
David Minani 
Research Student, Dept of IT 
Faculty of Informatics and Design 
Cape Peninsula University of Technology 
Phone: 072 554 9008 
Email: dminani@gmail.com 

 
Temuso Makhurane 
Research Supervisor, Dept of IT 
Faculty of Informatics and Design 
Cape Peninsula University of Technology 
Phone: 021 469 1136         
Email: makhuranet@cput.ac.za 

 

mailto:87software@gmail.com
mailto:makhuranet@cput.ac.za


APPENDICES 

 
 

 

179 

Appendix D: Email to software developers 

 
TO:  Business organizations and IT companies 
Attn: Software developers 
Date: 07 September 2010 

RE: Research on competencies of software developers 
 
Dear Software developer, 
  
A research project is currently underway in the Department of Information 
Technology at Cape Peninsula University of Technology. The research is on 
competencies of software developers. The purpose of this research is to establish 
essential competencies for software developers. Once such competencies have 
been identified and analysed, they could be used by both industry and educational 
institutions. This would help to prepare software developers and enable them to 
develop good quality software systems to meet business demands and challenges. 
This research is conducted by using questionnaires. The questionnaire will take a 
maximum of 10 minutes to complete online. 
 
Please do the following: 

1. Click on this link: http://www.surveygizmo.com/s3/357491/A-software-
developer-competency-framework to respond to the questionnaire. 

2. Then forward this link to other software developers so that they may also 
participate in this research. 

 
Feel free to contact us should you require more information or any clarification 
regarding this research. 
 
Your assistance is highly appreciated for the success of this research project. 
 
Thank you, 
 

 

David Minani 
Research Student, Dept of IT 
Faculty of Informatics and Design 
Cape Peninsula University of Technology 
Phone: 072 554 9008 
Email: dminani@gmail.com 

Temuso Makhurane 
Research Supervisor, Dept of IT 
Faculty of Informatics and Design 
Cape Peninsula University of Technology 
Phone: 021 469 1136         
Email: makhuranet@cput.ac.za 

http://www.surveygizmo.com/s3/357491/A-software-developer-competency-framework
http://www.surveygizmo.com/s3/357491/A-software-developer-competency-framework
mailto:dminani@gmail.com
mailto:makhuranet@cput.ac.za


APPENDICES 

 
 

 

180 

Appendix E: List of companies requested to participate in this research 

 
NO: COMPANY 

1 24.com 
2 4cit Software Solutions 
3 ABSA Bank 
4 Ackermans 
5 Actaris 
6 Adept 
7 Airborne Consulting 
8 Alchemy Software 
9 Altech ISIS 
10 Ananzi 
11 APL Cartons 
12 Application Frameworks 
13 ASHTECH 
14 ATIO 
15 BP 
16 BSG 
17 Business Connexion 
18 Buzz-IT 
19 Capitec Bank 
20 City of Cape Town 
21 Clicks 
22 Clicks Group 
23 CPUT 
24 dataX 
25 DVT 
26 e-globe Technologies 
27 Elemental 
28 Entelligence 
29 Eskom 
30 Fontera 
31 Foschini 
32 Fuzzy Logic 
33 GE 
34 Health Focus 
35 Hetzner 
36 HubIT 
37 ICG 
38 iDRIVE 
39 idu Software 
40 IMMIX Solutions 
41 Imperatech Solutions 
42 Imperative Informatics 
43 Infosense 
44 Intec Telecom Systems 
45 Iplex Technologies 
46 iTouch 
47 Keerapa Consulting Services 
48 Khanyisa Real Systems 
49 Lemon Zest Consulting 



APPENDICES 

 
 

 

181 

NO: COMPANY 
50 Lianolink 
51 Liquid Thought 
52 Maxxor 
53 MCS Computer Services 
54 Media24 
55 Metropolitan 
56 Metropolitan Health Group 
57 MWEB 
58 Nebula 
59 Nedbank 
60 Neotel 
61 Net1 Group 
62 NHA 
63 Old Mutual 
64 Open box software 
65 Paracon 
66 Paradigm Solutions 
67 Pennypinchers 
68 Peralex 
69 Pick n pay 
70 Pioneer Foods 
71 PSG Treasury Outsourcing 
72 Risk Methods & Solutions 
73 ROI Media 
74 S1 Corporation 
75 Samo Consulting 
76 Sanlam 
77 Shell 
78 Shoprite 
79 Silicon Overdrive 
80 Silverminute 
81 Software Futures 
82 SPI Group 
83 Synergy Nine 
84 Telkom 
85 TF Design 
86 Traderoot 
87 Truworths 
88 UCS Software 
89 Vodacom 
90 Webafrica 
91 WineMS 
92 Woolworths 
93 WorkPool 

 

 



 

 

 

 

David M. Minani 

November 2013 


