
Real-time loss-less data compression

by

Moegamat Zahir Toufie

(NHD Information Technology (Cape Technikon»)

Thesis/ dissertation submitted in fulfilment of the requirements for

the M. Tech, Information Technology in the School of Business

Informatics at the Cape Technikon.

2 February, 2000

Study Leader : Prof. P.J.5. Bruwer

Co-leader : Me E. Scatt

Acknowledgements

The financial assistance of the Centre for Science Dez'elopment, (HSRC, South Africa)

towards this research is hereby ackn01l'ledged. Opinions expressed and conclusions

arrived at, are those of the author and are not necessarily to be attributed to the Centre

for Science Development.

I also hereby state that the contents of the thesis/ dissertation represent my own

work and that the opinions contained herein are my own and not necessarily

those of the Cape Technikon.

Summary

Data stored on disks generally contain significant redundancy. A mechanism or algorithm that

recodes the data to lessen the data size could possibly double or triple the effective data that

could be stored on the media. One mechanism of doing this is by data compression.

Many compression algorithms currently exist, but each one has its own advantages as well as

disadvantages. The objective of this study', to formulate a new compression algorithm that

could be implemented in a real-time mode in any file system. The new compression algorithm

should also execute as fast as possible, so as not to cause a lag in the file systems performance.

This study focuses on binary data of any type, whereas previous articles such as (Huftnlan.

1952:1098), (Ziv & Lempel, 1977:337: 1978:530), (Storer & Szymanski. 1982:928) and

(Welch, 1984:8) have placed particular emphasis on text compre>sion in their discussions of

compression algorithms for computer data.

The resulting compressIOn algorithm that is formulated by this study is Lempel-Ziv-Toutlc

(LZT). LZT is basically an LZ77 (Ziv & Lempel, 1977:337) encoder with a buffer size equal in

size to that of the data block of the file system in questio". LZT does not make this distinction,

it discards the sliding buffer principle and uses each data bluck of the entire input stream. as

one big buffer on which compression can be performed. LZT also handles the encoding of a

match slightly different to that of LZ77. An LZT match is encoded by two bit streams, the l,rst

specifYing the position of the match and the other specifying the length of the match. This

combination is commonly referred to as a <position, length> pair.

11

To encode the position portion of the <position, length> pair, we make use of a sliding scale

method. The sliding scale method works as follows. Let the position in the input buffer, of the

current character to be compressed be held by inpos, where inpos is initially set to 3. It is then

only possible for a match to occur at position 1 or 2. Hence the position of a match will never

be greater than 2, and therefore the position portion can be encoded using only I bit. As inpos

is incremented as each character is encoded, the match position range increases and therefore

more bits will be required to encode the match position.

The reason why a decimal 2 can be encoded 'sing only I bit can be explained as follows. When

decimal values are converted to binary values, we get 010 ~ 0" 110 ~ I" 21" = I0" etc. As a

position of 0 will never be used, it is possible to develop a coding scheme where a decimal

value of 1 can be represented by a binary value of 0, and a decimal value of 2 can be

represented by binary value of I. Only I bit is therefore needed to encode match position I and

match position 2. In general. any decimal value n ca:) be represented by thc binary equivalent

for (n - 1). The number of bits needed to encode (n - 1), indicates the number of bits nccded to

encode the match position.

The length portion of the <position, length> pair is encoded using a variable length coding

(vlc) approach. The vie method performs its encoding by using binary blocks. The first binary

block is 3 bits long, where binary values 000 through 11 0 r~present decimal values I through 7.

Where binary value 0 represents decimal value I as previously explained when coding a match

position. This coding scheme is possible. since no match length of 0 \\ ill ever be encoded. The

maximum binary value of a binary block is used to specify whether another binary block

follows the current binary block. in which case it is called the block to follow flag (bff). In this

case binary III specifies that there should be another binary block following this one. Next a -I

III

bit binary block is appended to the existing 3 bit binary block, resulting in a 7 bit binary block,

where binary value III 0000 represents decimal value 8 and where the maximum binary value

of III 1111 is meant to act as a bff. By continuing in this way the next binary block of bits are

appended. Each consecutive binary block is I bit bigger in size than the previous binal}' block.

The binary block size continues to grow until it reaches a size of 8 bits. At this point no further

increase to the binary block size is made and all subsequent binary blocks will be 8 bits in size.

A distinction has to be made between a literal or compressed character in the output stream.

This is needed in order to inform the decompressor of whether the next character that it reads

has to be decompressed or not. Making use' f a match flag fulfils this requirement. The match

flags are encoded the same way as in LZ77 (Ziv & Lempel, 1977:337) where binary value 0

indicates that a literal character is encoded and binary value I indicates that a match pair is

encoded. Additionally any literal character that is encoded is encoded using static Huffman

(Section 2.3), where the frequency table is derived from the characters found in the current data

block.

The LZT algorithm is tested against various current compression algorithms using the full test

data set from the CalgarylCanterbury compression corpus. The CalgarylCanterbul}

compression corpus is a set of text and binary files. specifically selected for use by the Internet

and academic community to test the efficiency of compression algorithms. The resulting

average compression ratio on the test data is 3.249 bits per byte, with an average 180 kilobytes

per second compression speed. Th~ test machine is an Intd Pentium, runnmg a 150 MHz

processor with 96 MB RAM.

In conclusion, it can be derived from this study. that the LZT algorithm is more efficient for

implementation in a real-time environment than currently available compr~ssion algorithms

1\"

(Section 4.2). Since it has a higher compression ratio than that of currently available real-time

compression algorithms. It should also be noted that only 68 kilobytes of RAM is required by

the LZT program in order to execute successfully on a computer.

\

. 24

Table of contents

Page

ACKNOWLEDGEMENTS I

SUMMARy 11

CHAPTER I - INTRODUCTION AND PROBLEM STATEMENT I

1.1 Introduction 1

1.2 Problem statement 1

1.3 Research objectives 1

1.4 Forward 2

1.5 Algorithmic conventions 3

CHAPTER 2 - INTRODUCTION TO LOSS-LESS COMPRESSION 5

2.1 Run-length encoding 5

2.2 Overview of statistical encoders 8

2.3 Huffman encoding 12

2.4 Shannon-Fano encoding 16

2.5 Arithmetic encoding 19

2.6 Overview of substitutional encoders . 23

2.7 LZ77 encoding ..

2.8 LZ78!LZW encoding 29

CHAPTER 3 - THE LZT COMPRESSION ALGORITHM 32

3.1 Creating a new enhanced compression algorithm 3:2

3.2 Implementing LZT 39

CHAPTER 4 - BENCHMARKING LZT 42

4.1 The Calgary Corpus 42

4.2 Benchmarks 44

CHAPTER 5 - CONCLUSION 48

REFERENCES 50

GLOSSARY 53

APPENDIX A - LZT PARAMETER SETTINGS 54

APPENDIX B - LZT SOURCE LISTINGS 55

\1

Chapter 1 - Introduction and problem statement

1.1 Introduction

Data stored on disks generally contain significant redundancy. A mechanism or algorithm that

recodes the data to lessen the data size could possibly double or triple the effective data that

could be stored on the media. One technique of doing this is by data compression.

1.2 Problem statement

In the past two decades, many advances have been made in the field of data compression and

more so when implementing them to run in a real-time mode in file systems. Faster and more

productive compression algorithms have been produced, but with every advantage that a new

compression algorithm brings, there are also disadvantages. Be it in its spced of execution or in

the ratio of the resulting compressed data. Another problem that becomes evident is that all

these compression algorithms were implemented into file systems that were not originall~

designed to handle compression of its files. With this. a certain performance and compression

loss had to occur in order to achieve successful implementation of a compression algorithm into

existing file systems.

1.3 Research objectives

The objective of this study is to take what is currently known about data compression and file

systems, and to formulate a new compression algorithm that could be implemented in a

real-time mode in any file system. The new compression algorithm should also be as fast as

possible in its speed of execution so as not to cause a lag in the file systems perfonnance. The

intention is not to design a new file system, but merely to design a compression algorithm that

is universally adaptable into existing file systems. This study focuses on binary data of any

type, whereas previous articles such as (Huffman, 1952:1098), (Ziv & Lempel, 1977:337;

1978:530), (Starer & Szymanski, 1982:928) and (Welch, 1984:8) have placed particular

emphasis on text compression in their discussions of compression algorithms for computer data.

1.4 Forward

During the research many types of compres ion algorithms were found. Some of them being

run-length encoding (Welch, 1984:8), statistical encoding (Huffman, 1952: 1098), arithmetic

encoding (Connack & Horspool, 1987) and substitutional encoding (Ziv & Lempel, 1977:337:

1978:530)(Welch, 1984:8).

In the next chapter an introduction to data compression will be given. A detailed analysis of the

different types of algorithms together with their respective advantages and disadvanta!!cs will

be done. There are many more algorithms and derivatives in existence today. Howcver those

that are discussed, are the most commonly known algorithms and also the algorithms that will

later fonn a basis for the new algorithm. namely Lempel-Ziv-Toufie (LZT).

In chapter 3, a detailed description of the LZT algorithm as well as the engineering behind the

LZT algorithm will be given. Various implementations of the LZT al.gorithm will also be given.

The main reason behind giving more than one LZT implementation is to show the advantages

or disadvantages of certain mathematical coding techniques.

2

In chapter 4, a benchmarking data set namely The Calgary Corpus will be discussed. This

benchmarking data set will be used to compare the performance of the various LZT algorithm

implementations, against those existing data conpression algorithms as discussed in chapter 2.

It is necessary to note that only certain data compression algorithms that are covered in chapter

2 are used in the comparison. Most of the data compression algorithms given in the comparison

are also current derivatives of the basic data compression algorithms covered in chapter 2.

In chapter 5, a conclusion of the findings of the study is given as well as a section on future

trends and possibilities.

1.5 Algorithmic conventions

Algorithms are used in some sections to facilitate a better understanding of the examples given.

With these algorithms, certain conventions had to be used. Figure 1.1 lists some of the

conventions used, with the relevant syntax and the description of the syntax. Additionally

whenever an input file is read character by character. the last character that is read at the end of

the file will automatically set an end offile (EOF) flag to true. While the end of the file has not

yet been reached, the EOF flag will be set to false.

Certain data structures were used in order to identity the tyre of a variable as used within the

algorithms. These are character string variables that can contain one or more characters,

character variables that can contain only one character and numeric variables that can contain

any numerical value. Another data structures used is an array. This type identifies a table

containing more than one entry based on the before-mentioned variable types, e.g. a numeric

array a would be a table called a containing more than one entry of a numerical type.

3

An input strcam rcfers to an input source of somc kind. This can be a computer file or a portion

of a computer filc. Similarly, an output strcam rcfers to an output source of some kind. This can

also bc a computer file or a portion of a computer file.

Whcn using the syntax 3; with an array, reference is made to array 3 entry number i. When

using the syntax 3; with rcading an input stream, reference is made to reading the character at

position i within the input stream and storing its value into variable 3.

Syntax Descriolion

a ~b Where a is assigned the value of b.

e.g. If b = 3, th=n a ~ b would result in a = 3.

If b = "C" , then a ~ b would result in
a = "e".

a ~b + c Where a is assigned the value of the sum of b & c.

e.g. Ifb = 3 and c = 5, then a ~ b + c would
result in a = 8.

If b = \\ ell and c = \\ 0" , then a ~ b + c would
result in a = \\ CD" .

a ~ 0 Initialise numeric variable a to contain o.

f[] 0
Ini tialise each entry in the numeric array

~
variable f to contain o.

a ~ "" Initialise character string variable or character
variable a to contain the empty string.

Initialise each entry in the character string
f[] \\"

array variable or character array variable f to
contain the empty string.

Figure 1.1 - Algorithmic conventions.

4

Chapter 2 - Introduction to loss-less compression

2.1 Run-length encoding

Run-length encoding is achieved when sequences of identical characters are encoded as a count

field plus an identifier of the character that is repeated. Figure 2.1 shows how a sample string of

characters would be encoded using run-length encoding.

Sample text
aaabbbbaacccc

When compressed using run-length encoding
3a4b2a4c

Figure 2.1 - Run-length encoding example.

Sample text
aaa4444b22::1l

When compressed using run-length encoding
3a44b22c21

Figure 2.2 - Run-length encoding exampie. using single character suppression.

Distinguishing the count fields from nonnal characters is a problem with run-length encoding

for character sequences intennixed with other data. Figure 2.2 shows another run-length

encoding example that uses single character suppresc,i,)n. This is when a single chc.racter

occurrence is encoded without a count field. It is clear from the example that the compressor

encodes correctly. The decompressor however will have a problem decompressing as there is

no way of telling whether the b at position 5 is the count field for the 2 at position 6 or whether

5

the 2 at position 6 is the count field for the 2 at position 7. One possible solution would be to

use a special character to mark each run of characters.

Sample text
aaabbdccc

When compressed using run-length encoding
@3a@2b@d@3c

Figure 2.3 -Run-length encoding example, using character runs.

.Variahle descriotiolls:
0 : the current repeating character that is to be compressed.

c : the total number of occurrences oi o.
k : the current character read from the input stream..

i : the position of the character k, within the input stream.

T';;f;nl variable values:

c~O

i~ I
o~""

Alvorithm:
repeat

read k; from the input stream

if(k; = 0) or (0 = "") then
c~c+ 1
o~k;

else
write "@" into the output stream
if c > 1 then

write c into the output stream
write 0 into the output stream

o~k;

c~1

cnd if

i ~ i + 1
until EOF = true

Figure 2.4 - Run-length encoding algorithm, using character runs.

6

This procedure is sufficiently capable of handling normal text, but not arbitrary bit patterns as

those found in binary data. Figure 2.3 shows an example of an implementation using character

runs.

From Figure 2.3, it is clear that 2 or 3 characters are needed to mark each character run, hence

this type of encoding would not be used for runs of less than 4 characters, in order to achieve

compression. Figure 2.4 shows the actual algorithm for such a run-length encoding

implementation.

Run-length encoding is a very primitive way of compressing data and only yields significant

results in data files with long streams of recurring bit patterns. Suitable data files that might

benefit from this compression algorithm would be graphics files that contain long slreams of

recurring bits, which are usually associated with a certain colour pattern. Unfortunately. normal

data files such as word processor documents, database files or normal program binaries would

not yield significant results (Welch, 1984:8). and as ,uch. run-length encoding would nol be

suitable for use with a compressed file system.

7

2.2 Overview ofstatistical encoders

Statistical encoders use an algorithm which encodes or decodes a character with a number of

bits proportional to -log2(P), where p is the predicted probability. All statistical encoders have

this characteristic. It must be noted that statistical encoders may round the encoded number of

bits up or encode with extra bits. For example, let the input data consist of only three different

characters, namely a, b and c. Let the statistical encoder then be told by virtue of a hard coded

table that it is to expect that a occurs 50% of the time and that b as well as c occur 25% of the

time. With this we would want to code as follows:

I bit for character a as -log2(O,5) = I

2 bits for characters, b and c as -log2(O,25) =2

RAW Encoding
character code

a 0
b 10
c 11

RAW Encoding
character code

a 1
b 01
c 00

RAW Encoding
character code

a 0
b 11
c 10

RAW Encoding
character code

a 1
b 00
c 01 .-

Figure 2.5 - The basic set of binary codes for the three character alphabet.

The encoder could then use anyone of the four sets of binary codes as shown in Figure 2.5 The

most important factor is that the lengths of the binary codes conform to -log,(p).

Data files composed of characters found in a predefined table, can be encoded by a statistical

encoder by means of predicting each character with equal probability. An example of such a

8

table that ean be encoded using equal probabilities for each character is the ASCI] table. The

ASCII table contains 256 characters, each character of which uses one byte to uniquely

represent itself. The number of bits used by a byte can be obtained by assigning an equal

probability p, where p = J/]56 for any of the 256 characters, hence

number ofbits = -log2(J/25,)

=8

RAW I Encoding
character code
aa 1
ab 01
ba 001
bb 000

Figure 2.6 - A basie blocking set of binary codes.

Sample text
aaababbaaabb

When compressed using statistical encoding with blocking
101010011000

Figure 2.7 - Statistical encoding example, using blocking.

Another type of statistical encoder uses a fractional number of bits to represent a character. An

example of such an encoder is an arithmetic encoder, oetail of which can be found in

section 2.5.

Another example is a blocking encoder, which works as follows. First, a table is built

containing every two character combination that exists in the input stream. Using this table, a

set of prefix-free codes (Huffrnan, 1952: 1098) is ereated for each entry in the table, using the

Huffman algorithm (Huffrnan. 1952: I098) as explained in section 2.3 or the Shannon-Fano

9

(Shannon & Weaver, 1949) algorithm as explained in section 2.4. For example, if an input

stream consisted of aaababbaabb, and our prefix-free codes are as shown in Figure 2.6, then

the input stream after encoding would be as shown in Figure 2.7.

From Figure 2.6, it is stated that an aa combination is encoded with 1 bit. Thus each a in that

combination is encoded with 0.5 bit. The ba and bb combinations are encoded in 3 bits. Thus,

each character in those combinations is encoded with 1.5 bits. Hence, in this way a statistical

encoder is able to encode a single character using a fractional number of bits.

A statistical encoder creates a set of binary co,les by using an iterative or recursive algorithm as

described by (Huffman, 1952:1098) or (Shannon & Weaver, 1949). The resulting binary codes

are called prefix-codes. A prefix-code has the characteristic that no prefix-code is the prefix of

another prefix-code (Huffman, 1952: 1098). For example, let a, band c be the only input

characters. Figure 2.8 does not contain a prefix-free set of binary codes, since the decoder will

have two possible outputs of "aac" or "be" for the input stream of "1101". Figure 2.9 on the

other hand does contain a set of prefix-free binary codes as it will output the correct sequence

of "aab" for the input stream "1101".

RAW Encoding
character code

a 1
b 11
c 01

"';gure 2.8 - A non prefix-free set of prefix-codes.

RAW Encoding
character code

a 1
b 01
c 00

Figure 2.9 - A prefix-free set of prefix-codes.

10

In the following two sections, Huffinan encoding and Shannon-Fano encoding will be described

with emphasis on how they achieve the creation of a set of prefix-codes using a binary tree.

11

2.3 Hufjinan encoding

Huffrnan first dcvclopcd a classic binary tree used to generate a set of prefix-codes. The idea

behind Huffroan's algorithm is to use short bit strings to represcnt the most frequently used

characters and to use longer bit strings to reprcsent less frequently used characters. The

algorithm as shown in Figure 2.11, can bc cxplained as follows.

Create a tablc of frequencies containing each possible character found in the input stream as

well as the corrcsponding number of times that each character occurs in the input stream. For

example if the input stream is "ababaca" ther Figure 2.10 shows what the resulting frequency

table will look like.

RAW Frequency
cbaracter

a 4
b 2
c 1

Figure 2.10 - A basic frequency table.

The frequency table is a simple table listing each character in the input stream in non-increasing

order of how many times they have occurred. The values obtained from the frequency table are

then uscd to create a binary tree consisting of a root at the top and branches, which consists of

more branchcs or leaf nodes.

The Huffman algorithm creates a binary tree from bottom up. The two entries in the frequency

table with the smallest frequencies are combined into a binary tree as in Figure 2.12, resulting

in a ncw combincd frcquency.

12

Variabfe descliotion <-

s : the sum of two frequencies from f.
f : the array of frequencies (i.e. number ofoccurrences) of each character

or suh-string.
k : the current character read from the input stream.
i : the position of the character k, within the input stream.
j : the index of an element within a frequency table for a specific

character.
v : the vertex of a new binary tree.
x : the index of an element within a frequency table for a character that

has the smallest frequency.
y : the index of an element within a frequency table for a character that

has the second smallest frequency.

Initial variable values:
fll~O

i~ 1

Ahwrithm:
repeat

read k; from the input stream
j ~ index in f of element representing character k;
fj~fj+l

i~i+ 1
until EOF = true

repeat
x~ index in f of element with the smallest value
y ~ index in f of element with the second smallest value

s ~- f,+ fy

let the descendants ofv be the terminal vertices representing v, + vy

if f, = value of a vertex of an existing binary tree
join the vertex represented by f, to the terminal vertice representing v,

else
assign f, to the terminal vertiee representing v,

end if
if f

y
= value of a vertex of an existing binary tree

join the vertex represented by f,.to the terminal vertice representing vy

else
assign fy to the terminal vertice representing vy

end if

delete elements f, and fy from f
add a new element s into f

until f contains only I elements

Figure 2.11 _Huffman algorithm for creating a prefix-free binary tree.

The two entries that were combined are deleted from the frequency table and inserted in their

13

place in the frequency table is an entry for the new combined frequency. It is important to note

that the table stays sorted in non-increasing order of frequencies. The above process is repeated

until only one entry remains in the frequency table. The result is a Huffman prefix-free binary

tree as in Figure 2.13.

The input stream is encoded by traversing the binary tree from top, down. By either moving left

or right until the character that is being encoded is reached. Each time a left or right node is

reached, we encode a "0" or "1" bit respectively.

Figure 2.12 - The first binary tree section of a Huffman binary tree.

Figure 2.13 - Our completed Huffman binary tree.

Using the previous example, the resulting output bit stream would be "0100100110". where an

"a" is encoded with a "0" bit, a "b" is encoded with the bit string "10" and a "c" is encoded

with the bit string "11". This algorithm is referred to as a static Huffman algorithm. The static

14

Huffman algorithm yields a set of prefix-free binary codes, since no one prefix-code is the

prefix of another prefix-code.

In conclusion, it is found that at least two passes over the input data, is required in order to

encode it. The first would be to create the frequency table and the second would be to do the

actual compression. The following two disadvantages become evident:

• the speed of execution will suffer due to the two passes required, and

• the decoder must receive the original freouency table in order to perform the decompression.

An adaptive approach can be used to overcome both disadvantages. The adaptive approach

works as follows. Create an initial frequency table where all the characters found in the input

stream have a frequency of one. From this frequency table, a Huffman binary tree is created

while at the same time we preserve the initial frequency table. After inputting the first

character, the frequency of the inputted character is incremented by one in the initial frequency

table. The Huffman binary tree is then recreated from the updated initial frequency table. After

inputting the next character, the initial frequency table is again updated and the Huffman table

is again recreated. In this way, an adaptive Huffman binary tree is maintained.

The adaptive approach requires only one pass for compressirn as no detailed frequency table

has to be build before compression starts. In addition, no frequency table has to be sent to the

decoder, since the decoder builds its own frequency table as it goes along. Huffman's algorithm

is optimal in length as no other prefix-free binary tree will produce a better compression result

for the given input stream (Huffman, 1952: I098).

15

2.4 Shannon-Fano encoding

Shannon-Fano encoding (Shannon & Weaver, 1949) is similar to Huffman encoding in many

ways but differs in the way in which the binary tree is created. The Sbannon-Fano algorithm

however does not guarantee to create optimal prefix-codes, but approaches optimal behaviour

as the number of characters approaches inIlOity. The advantage of the Shannon-Fano algorithm

is the simplicity of the creation of its prefix-free binary tree as shown in Figure 2.14.

. lions: 0

f

k
i
j

pc

: the array of frequencies (i.e. number of occurrences) of each character
or sub-string.

: the current character read from the input stream.
: the position of the character k, within the input stream.
: the index of an element within a frequency table for a specific
character.

: the prefix-code of a character or sub-string.

Initial variablp ,;;'1,;0.'

fllrO
i r 1

.f,

repeat
read k; from the input stream
j r index in f of element representing character k;

fjrfj+1
i r i + 1

until EOF = true

convert each frequency in Ho a percentage based on the sum of all the
frequencies within f

repeat
divide the elements into two array's called f,l.." and f,I..,~, se that the

sum of the percentages of the latter two arrays are approximately equal

each element of the arrays f,l.." and f" ..,.also contains an additional

variable called pc

append a 0 bit to each pc field of f,I.."
append a I bit to each pc field of f,I..,.

until all the array's f" .. m and f,I..,. contain only 1 element

Figure 2.14 - Shannon-Fano algorithm.

16

Create a tablc of frequencies containing cach possible character found in the input stream. A

percentage bascd on the entire frequency table is calculated for each frcquency in the frequency

table. Each percentage in thc frcquency table servcs as the probability of each character

occurring in thc input strcam. For cxample if the input stream is "ababaca" then Figure 2.15

shows what the resulting probability table will look like. The probability table is a simple table

listing each character in thc input stream in non-increasing order of prohability. The

probabilities obtained from the probability table are then used to create a binary tree consisting

of a root at the top and branches, which consists of more branches or leaf nodes.

RAW I Probability
character

a 57%
b 29%
c 14%

Figure 2.15 - A basic probability table.

Prefix-free codes are created by dividing the probability table into two tables, in such a manner

that the sum of the probabilities of the resulting tables is nearly equal. Each entry in the

prefix-free code column of the first table receives a "0" bit and each entry in the second table

receives a "I" bit as the first bit for their prefix-codes, as shown in Figure 2.16. Each of these

tables is then divided again to the same criterion as before, again appending a "0" bit to each

entry in the first table and a "1" bit to each entry in the second table. The result can be seen in

Figure 2.17.

This process is repeated until no table contains more than one entry, resulting in the prefix-free

codes as shown in Figure 2.18. The resulting prefix-free codes are similar to the ones obtained

for the Huffman algorithm. The reason for this similarity is that the input stream is very short.

With a bigger input stream the resulting binary trees tend do differ.

17

'[bc cncoding of the input strcam is done exactly as in the Huffman algorithm. Whereby the

binary tree is traverscd from top, down, allocating a "0' or "1" bit as required. This static

Shannon-Fano algorithm has the same disadvantagcs as with the static Huffinan algorithm.

Hence, an adaptive approach can also be used here as a possible solution.

RAW --,- Probability ! PreflX-
character i free code

a I 57% I 0

~ I~~: 1....;~=----1
Figure 2.16 - Shannon-Fano codes after the fint division.

RAW -: Probability PreflX-
character i free code

b 129% 10

_--=c__ 1~1:24.:.%__--L.:ll:.,:l'--_

Figure 2.17 - Shannon-Fano codes after the second division.

RAW Probability Prefix-
character free code

a 57% 0
b 29% 10
c 14% 11

Figure 2.18 - Shannon-Fano prefIX-free codes on completion of the algorithm.

The Shannon-Fano algorithm might nor create an optimal prefix-free binary tree because the

length of the prefix-code is equal to -[ogz(P), where p is the predicted probability of a character.

In the cases where it is possible to half a table into exactly two tables of equal probability, the

prefIX-codes will be optimal. In all other cases, it may not be possible to obtain optimal codes.

18

2.5 Arithmetic encoding

From section 2.3 and section 2.4, it could appear that Huffman or Shannon-Fano encoding is

perfect for compressing a stream. However, this is not the case. Huffman and Shannon-Fano

encoding are only optimal if and only if the character probabilities are integral powers of I or 2,

which is almost never the case. Arithmetic encoding does not have this restriction. The original

concept of arithmetic coding was suggested by Elias (1975: 194).

Unlike Huffman and Shannon-Fano encoding, arithmetic encoding does not create prefix-codes

in order to encode characters. Instead, an input stream is encoded as an interval represented by

a real number r, where 0 2: r < I. After each character in the input stream is read, the value of

the real number needed to represent the resulting encoding is decreased, and the number of bits

needed to represent this real number is increased. Arithmetic encoding uses a probability table

containing input characters whose probabilities are then used to successively narrow the

interval used to represent the input stream. A high probability character narrows the interval

less than a low probability entry would. Hence high probability characters contribute fewer bits

to the encoding. The algorithm as shown in Figure 2.19 can be explained as follows.

Create a table of probabilities containing each possible character found in the input stream as

well as the probability of the number of times that each character occurs in the input stream, as

is done with Shannon-Fano encoding. For example if the input stream is ·'ababaca". Figure

2.20 shows what the resulting probability table will look like. The entries in the probability

table are then used to create a partitioned interval Lo, IJ as in Figure 2.21. Since each partition

has a lower and an upper limit, one of the two values must be included in the current partition.

For this study, the lower value will always be included in the current partition so that °/'00 falls

19

within the partition used for character "e", and so on for characters "b" and "a". Now since the

first character is an "a" the interval is shrunk to L43/""" iJ.

- ·on..:
f : the array of frequencies (i.e. number of occurrences) of each character

or sub-string.
k : the current character read from the input stream.
i : the position of the character k, within the input stream.
j : the index of an element within a frequency table for a specific

character.
r : an interval within Lo, IJ
rh : the maximum value of the interval r.
r, : the minimum value of the interval r.

Inilia/YQJ:iable.J!lJ!JJes·
flJ~O

i ~ I
rh I
r,~O

.AIIlarith1n:
repeat (read input stream for the I" time)

read k; from the input stream
j ~ index in f of element representing character k;

fj~f;+l

i ~ i + 1
until EOF =true

convert each frequency in flo a percentage based on the sum of all the
frequencies within f

i ~ I
repeat (read input stream for the 2"" time)

read k; from the input stream

r ~ interval within r representing the probability of l<;

if one or more leftmost bits of r, =one or more leftmost bits of r, then
write the corresponding leftrnost bits of r, into the output stream

j ~ j + 1
until EOF =true

Figure 2.19 - Arithmetic algorithm.

20

This process is repeated, by continually shrinking the resulting interval into a smaller interval

until the entire input stream is cncoded. In the above example, the arithmetic encoder is not

completely efficient, which is due to the short size of the input stream. With longer input

streams, the coding efficiency does indeed approach 100% as proven in Elias (1975: 194).

RAW Probability
character

a 57%
b 29%
c 14%

Figure 2.20 - A basic probability table.

"X'/100

a

43/._._- 100

b
14/100

C

a °/100

Figure 2.21 - Our initial partitioned interval La, IJ.

An issue left unresolved by the concept of arithmetic encoding is that it appears that the

encoding algorithm transmits nothing until the final interval .s determined. However, this delay

is not necessary. As the interval becomes narrower, the leading bits of the top and bottom

points become the same. Any leading bits that are the same may be transmitted immediately, as

they will not be affected by any funher processing.

21

The above algorithm is also static and presents us with the same disadvantages as the static

Huffman and Shannon-Fano algorithms. Hence, an adaptive approach as a possible solution can

be used as we11.

The static approach is converted into an adaptive one by adjusting the character probabilities

after each new character is encoded, allowing the model to track the data being transmitted.

This approach is however not a particularly good estimate of the true displacement of the

various characters in the input stream.

Inter character probabilities should also be tahn into account. Inter character probability is the

probability of one character following another in the input stream. For example, if an a is

inputted from the input stream, then the probability of a b being inputted next is the inter

character probability between a and b. One such arithmetic compression implementation that

takes inter character probabilities into account is Dynamic Markov Coding or DMC. which is

presented by Cormack and Horspool (1987).

One major disadvantage of arithmetic encoding is that the algorithm can consume rather large

amounts of memory, especially in the case of DMC. The arithmetic encoding process itself

involves a fair amount of number crunching, especially in the division of the interval. Hence

arithmetic encoding is currently unsuitable for any real-time implementations due to its slow

speed of execution and large memory requirements.

22

2.6 Overview ofsubstitutional encoders

Substitutional encoders use an algorithm in which the encoder replaces an occurrence of a

particular group of characters, with a reference to a previous occurrence of that group of

characters. All substitutional encoders have this one characteristic.

There are two classes of substitutional encoders, both of which were first proposed by Ziv and

Lempel (1977:337; 1978:530). They are commonly referred to as LZ77 and LZ78. A derivative

ofthe LZ78 method and proposed by Welch (1984:8) commonly referred to as LZW, is used in

real-time environments, such as disk drive controllers, modems and network routers.

One major advantage of a substitutional encoder is that it compresses an input stream very fast.

Because ofthe speed advantage most current compression programmes like the UNIX compress

command uses some derivative of LZ77 or LZ78. Another advantage is that it requires no prior

knowledge of the input stream. This means that only a single pass through the input stream is

required, since there is no need to build any probability or weight t2bie. This type of encoder is

usually used when a statistical test is either impossible or unreliable due to the length of the

input stream.

The compression ratio achieved by substitutional encoders outperforms that of most stalistically

based encoders. The compression ratjo can also be further increased when a substitutional

encoder incorporates some type of statistical algorithm as v,ell.

The following two sections describe the LZ77 and LZ78/LZW encoders in more detail.

23

2.7 LZ77 encoding

1he LZ77 algorithm is ODe of the simplest compression algorithms. The algorithm was first

proposed by Ziv and Lempel (1977:337). A slightly modified version was later proposed by

Storer and Szymanski (1982:928) and is commonly called LZSS. The LZSS derivative of the

LZ77 algorithm as shown in Figure 2.23 can be explained as follows:

The algorithm keeps track of the last D characters of data read. When a sub-string is

encountered that has already been read, it outputs a pair of values corresponding to the positioD

of the previous encounter as well as the leDgtb of the matched sub-string. The size of D is

determined beforehand and can be set to virtually any value. In effect the encoder moves a

fixed sized sliding buffer of size n over the input stream. The sliding buffer contains the current

inputted character as well as any previous inputted characters. The current inputted character is

contained in the first filled rightmost position within the sliding buffer noting that the sliding

buffer is filled from left to right.

Slid~9 b~er contents after reading the 1't character.
cdabcabccabce

after reading the 2nd character.
~il Icdabcabccabce

after reading the 3"' character.
~abcabccabce

after reading the 4th character.
~bcabccabce

after reading the 5th character.
a~cabccabce

Figure 2.22 - A sliding buffer in action.

For example, if an input stream was made up of the character string "abcdabcabccabce" and

24

the sliding buffer size was equal to 4, then Figure 2.22 shows what the sliding buffer would

contain after reading characters from the input stream from positions I through S.

b : the sliding buffer, an array of characters from the input stream.
k : the current character read from the input stream.
i : the position of the character k, within the input stream.
w : the sub-string to be compressed.
p : the position of a matching sub-string.
I : the length of a matching sub-string.
m : the minimum allowable length of a matching sub-string.

Initial v' .~nl"o.·

m~3

i~2

.Afio.ritJmz:
read k, from the input stream and place into leftmost element in b
w(-k,

repeat
read I<; from the input stream
w~w+1<;

if b has no empty elements then
shift the contents of b left by I element

insert k, into [list empty leftmost element in b

if w exists previously in b then
p ~ position of the matching sub-string w within b

else
I ~ (length ofw) - I
ifl >= m then

write a value 1 bit to the output stream to specify a match
write p to the output stream
write I to the output stream
w=1<;

else
write a value 0 bit to the output stream to specify a literal character
write leftmost characte' of w to the output stream
w ~ 2nd leftmost character from w
i ~ position of the character w, within the input stream

end if
end if

i ~ i + I
until EOF = true

Figure 2.23 - LZ77 algorithm.

2S

When encoding a match, the position portion of a <position, length> match pair refers to the

position of a matching sub-string within the sliding buffer. A match is therefore only possible if

the matching sub-string is within the sliding buffer. Any matching sub-strings that are no longer

within the sliding buffer are ignored.

The modified LZSS algorithm works in more or less the same way except that it also makes use

of a look ahead buffer, the contents in which it tries to find a match for in the sliding buffer.

The LZSS derivative of the LZ77 algorithm will be explained, since the LZSS algorithm yields

a better compression ratio than the original LZ77 algorithm.

To implement the LZSS algorithm, a fixed sized sliding buffer of a predefined size that is

initially empty must be created. The size of the sliding buffer is very important as it has a direct

relation to the size of the <position,length> match pair. For example, if the sliding buffer is of

size 4096 characters, then the match position can be encoded in 12 bits since 2" = 4096. If the

match length were to use 4 bits, then encoding matches of up to 2' or 16 characters would be

possible. A total of 16 bits or 2 bytes would then be required to encode a sub-string match.

Which would mean that we have to find a sub-string match of at least length m, where

m =length(position tag) + length(length tag) + 1, before compression ,,"ould be possible.

Initialise a sub-string w with the first character of the input stream. Once a suitable sliding

buffer size is decided on, one character at a time is read from the input stream and placed in the

first empty leftmost position of the sliding buffer.

After each character is read, a search is done from the left to the right of the buffer, for a match

corresponding to w. If no match is found, the leftmost character in w is written to the output

stream. The sub-string w is then set to contain only the second leftmost character of itself. The

26

input stream is then read again starting from the character after the one now held by w. The

next read character is then appended to sub-string w. For example if w ~ "abed" the "a" would

have been written to the output stream and w would be set to "b". The input stream would then

be read starting from character "e". After which a search would be perfonned through the

sliding buffer as before.

Once the sliding buffer is full, the contents of the sliding buffer are shifted one character to the

left. In doing so the leftmost character within the sliding buffer is discarded and an empty space

is created at the rightmost position of the sliding buffer.

If a match is found, then the match position is temporarily stored and no character is written to

the output stream. Note that it is possible to find more than one match in which case a table will

have to be kept to store all the possible match positions. The next character is then read and

appended to w. If after i inputs a match of length I is found, where I >~ m and m is the

minimum match length required, then a <position, length> match pair corresponding to the

position and length of the matched sub-string is outputted. If however the I < m, then it is

assumed that there is no match and the process is perfonned as above to handle a no match

situation.

Note that an extra bit must also be written to the output st-eam in order to indicate to the

decoder whether or not the next piece of data that it reads is a nonnal character or a <position,

length> match pair. Decompression is achieved by reading the input stream character by

character and whenever a <position, length> match pair is encountered, that match pair is

replaced by a copy of the input stream found at the indicated position in the bum" with a size

of length characters.

27

The sliding buffer implementation as described in the above example, automatically creates the

least recently used (LRU) effect, which as will become evident later, has to be done explicitly

in the LZ78 algorithms. Variants of the LZSS algorithm apply additional compression to the

output stream of the algorithm by using simple variable length codes or by using some form of

Huffinan or Shannon-Fano encoding, all of which result in a certain degree of improvement

over the basic compression algorithm.

28

2.8 LZ781LZWencoding

The LZ78 algorithm is also a very simple compression algorithm. The algorithm was first

proposed by Ziv and Lempel (1978:530). A slightly modified version was later proposed by

Welch (1984:8) and is commonly called LZW. The LZ78 algorithm works as follows.

Sub-strings of data previously seen are entered into a dictionary of size n. When a sub-string is

encountered that is in this dictionary, the dictionary index corresponding to the position in the

dictionary of the encountered sub-string is written to the output stream. The modified LZW

algorithm is similar to the LZ78 algorithm except that the LZ78 algorithm starts with an empty

dictionary. The LZW algorithm fills the first n positions with the full alphabet of current input

stream. So that if an 8 bits per character alphabet is used, LZW would fill the first 256 positions

in the dictionary with the actual 256 characters for that alphabet. The LZW algorithm yields a

better compression ratio than LZ78 proof of which can be found in Welch (1984:8). Hence. the

focus of the explanation of the LZ78 algorithm will be via the LZW derivative.

To implement the LZW algorithm, a dictionary of a predefined size n is kept, which is initially

filled with each character found in the input streams. The size of the dictionary influences the

size of the encoding bit stream. For example, if the dictionary is of size 4096, then the indices

could be encoded in 12 bits since 2" = 4096. Unlike the LZ77 algorithm and its LZSS

derivatives, a match of any size can be encoded and thus the algorithm is not limited to the

minimum length constraint where a match of length m must conform to

m >= length(position tag) + length (length tag) + I.

29

· Ip. 'ions:
k : the current character read from the input stream.
i : the position of the character k, within the input stream.
w : the sub-string to be comprcssed.
t : the dictionary, an array of sub-strings already inputted.
j : the index of an clement within t of a matching sub-string.

Initiol variable values:
w -(- 1111

i~ I
tu 0(- ""

Alf!orithm:
repeat
read k; from the input stream
w~w+k;

ifw = an entry within t then
j ~ index in t of element representinr the matching sub-string w

else
write j to the output stream
add a new clement w into t
w~k;

end if

i~ i + I
unti I EOF = true

write index in t of element representing w to the output stream

Figure 2.24 - The LZW compression algorithm.

The basic encoding algorithm can be outlined as in Figure 2.24. For example, if the input

stream is "abcdabcabccabce" and the alphabet consisted out of 5 characters, then the inputs,

outputs and dictionary entries will look similar to that of Figure 2.25.

The decompression of LZW works exactly like the compression. A new sub-string is added to

the dictionary when the next character read from the input stream. All it needs to do in addition

is to translate each incoming index into a string and write it to the output stream. Using the

above example, the decompression would look something like that of Figure 2.26. There is one

exception to the LZW algorithm on the compression side that cause some trouble on the

decompression side. If the decompressor inputs an index before it is actually in the dictionary,

30

it won't know what to do. Fortunately this is the only exception and can be resolved by hard

coding a handler to deal with this exception in an appropriate manner.

Character w Ootput I Newindex New
ioput.(kl index sub-strilU!

a a
b b a 256 ab
e e b 257 be
d d e 258 cd
a a d 259 da
b ab
e e 256 260 abe
a a e 261 ca
b ab
e abe
e e 260 262 abee
a ca
b b 261 263 cab
e be
e e 257 264 bee

e

Figure 2.25 - LZW compression.

Character w
1

Output Newiodex New
iuput (le) index sub-striOl!

a a a
b b b 256 ab
e e e 257 be
d d d 258 cd
256 a ab 259 da
e e e 260 abe
260 a abe 261 ca
261 ca 262 abee
257 be 263 ca"
e e

Figure 2.26 - LZW decompression.

Unlike LZ77 and its derivatives, the dictionary in LZW does not perform any LRU maintenance

on the dictionary indexes and sub-string. An implementation of LZW has to explicitly clear the

dictionary once full or implement some type of LRU method, so as to ensure that only (he most

recently or most frequently used sub-strings remain in (he dictionary.

31

Chapter 3 - The LZT compression algorithm

3.1 Creating a new enhanced compression algorithm

In a DOS based file system the drive is divided into a root sector which holds system specific

data and the boot loader, 2 file allocation tables or FAT and a root directory. The rest of the

drive is split into equal clusters, each cluster is made up of 1 or more sectors. These clusters are

the file systems data blocks, usually multiple; of 2 kilobytes (k), and ranging from 2k to 32k,

depending on the size of the drive in question. Other file systems data blocks might be of

different sizes. The Lempel Ziv Toufie (LZT) compression algorithm. which is derived from

this study, is a derivative of the LZ77 encoder with a fixed sized buffer equal in size to that of

the file systems data block.

An explanation of the basic LZT algorithm, of which Figure 3.4 shows the basic processing.

follows below. In section 2.7. it is shown that LZ77 uses a sliding buffer, which moves. over

the input stream. LZT does not make this distinction. it discards the sliding buffer principle and

uses each data block of the entire input stream, as one big buffer on which compression can be

performed. Therefore, if the input stream is n characters in length, and each data block is m

characters in length, in the case of x data blocks, n = m ' x. Then the buffer size on which

compression will be done is m characters large. The fact that the sliding buffer principle is

discarded invariably makes the algorithm much easier to implement, less resource hungry and

much faster to execute.

The compression algorithm LZ77 keeps track of the last n characters of data read, when a

sub-string is encountered that has already been seen, the algorithm outputs a pair of values

corresponding to the position of the previous en~ounter as well as the length of the matched

sub-string. LZT handles the <position, length> match pair exactly as LZ77 does. LZT however

uses some prediction, as explained below, on the actual size of the position portion of the

<position, length> match pair and it also uses a variable length coding (vie) method to encode

the length portion of the <position, length> match pair.

For example, if an LZ77 encoder used a fixed sized sliding buffer of size 16384 characters, the

match position could be encoded in 14 bits si"ce 2" = 16384. With LZT this changes. let the

position in the input buffer, of the current character to be compressed be held by inpos, where

inpos is initially set to 3. It is then only possible for a match to occur at position 1 or 2. Hence,

the position of a match for inpos will never be greater than 2, and therefore the match position

portion can be encoded using only I bit. As inpos is incremented as each character is encoded,

the match position range increases and therefore more bits will be required to encode the match

position. For this study, LZT uses a file system data block of 16k in size unless stated

otherwise. Figure 3.1 shows all the possible bit lengths required to encode the match position if

a maximum 16k file system data block size is used.

When decimal values are converted to binary values, we get 0 0= 0" I,D = 1,,2'0 = 10" etc. As

a position of 0 will never be used, it is possible to develop a coding scheme where a decimal

value of I can be represented by a binary value of 0, and a deCImal value of 2 can be

represented by binary value of I. Only 1 bit is therefore needed to encode match position I and

match position 2. In general, any decimal value n can be represented by the binary equivalent

for (0 - 1). The number of bits needed to encode (n - 1), indicates the number of bits needed to

encode the match position. This sliding scale position method achieves about a 0.1 bits per

33

byte (bpb) increase in compression ratio, over another method that uses a static Huffman

encoding schemc. Where static Huffman is meant to refer to the two-pass method originally

explained in section 2.3.

Position Position Bits
From To Reauired

1 2 1
3 4 2
5 8 3
9 16 4
17 32 5
33 64 6
65 128 7
129 256 8
257 512 9
513 1024 10
1025 2048 11
2049 4096 12
4097 8192 13
8193 16384 14

Figure 3.1 - Bits required for a sliding scale position pointer.

The LZT match length portion IS handled differently from that of the original LZ77

compression algorithm. In LZ77, a pre-determined amount of bits has to be reserved for the

match length, exactly as with the match position. This however is also found to be wasteful.

Two possible solutions were found by which the match length could be encoded more

efficiently. One is to use a static Huffman encoding scheme and the other is to use a method

called variable length coding or vlc, as explained below.

The static Huffman encoding scheme is the two-pass method originally explained in section

2.3. Where the frequency table is based on all the possible match length values that will be

needed to encode the input stream. Hence, when a match length needs to be encoded, a prefix-

free Huffinan code is used, instead of fixed bit encoding.

34

The vie method performs its encoding by using binary blocks. The first binary block is 3 bits

long, where binary values 000 through 110 represent decimal values 1 through 7. Wbere binary

value 0 represents decimal value I as previously ~xplained when coding a match position. This

coding scheme is possible, since no match length of 0 will ever be encoded. The maximum

binary value of a block is used to specifY whether another binary block follows the current

binary block, in which case it is called the block to follow flag (bff). In this case, binary III

specifies that there should be another binary block following this one.

Next a 4 bit binary block is appended to the existing 3 bit binary block, resulting in a 7 bit

binary block, where binary III 0000 repres :nts decimal value 8 and where the maximum

binary value of III 1111 is meant to act as a bff. Continuing in this way the next binary block

of bits are appended. Each consecutive binary block is I bit bigger in size than the previous

binary block. The binary block size continues to grow until it reaches a size of 8 bits. At this

point no further increases to the binary block size is made and all subsequent binary blocks will

be 8 bits in size.

Figure 3.2 lists some example matching sub-string lengths and what they would be encoded as

using vIc. The vie method has been compared to that of the static Huffman encoding scheme

and achieves nearly identical performance. The static Huffman encoding scheme however still

outperforms the vlc method on files with a uniform stream of characters as those found in

graphics files, which usually contain long streams of recurring bit patterns. The disadvantage of

the vlc method is that it reserves too long bit streams for the longer match length codes, which

decreases coding efficiency.

35

Len21b . VLC
1 000
2 001
7 110
8 111 0000
16 111 1000
22 111 1110
23 111 1111 00000
32 111 1111 01001
64 111 1111 11110 001010
128 111 1111 11111 111110 0001011
256 111 1111 11111 111111 1111110 00001100
512 111 1111 11111 111111 1111111 11111111 00001101

FIgure 3.2 - Examples of typical variable length codes.

As with the LZ77 algorithm, the LZT encoder needs to write one or more bits to the output

stream. This acts as an indication to the decoder whether the next bit stream that it reads is a

literal character or a <position, length> match pair. These extra bits are commonly referred to

as the match flags.

Code Descrintion
0 Both input sub strings are literal characters
10 First a literal character then a match pair
11 Only a <position, length> match pair

Figure 3.3 - Match flag codes, based on static Huffman prefix-rree codes.

The LZT algorithm was tested with match flags based on a predefined static Huffman encoding

scheme as shown in Figure 3.3. This method is said to improve compression (Bloom 1995).

However, the tests performed by this study indicated that this method yields no increase in

compression ratio. A simpler method, where binary value 0 indicates that a literal character

encoded and binary value I indicates that a match pair is encoded, was also tested. It was found

that both methods are equivalent in compression performance. LZT therefore uses the simpler

method, since it is found that this method yields a better performance in terms of speed of

execution over the predefmed static Huffman encoding scheme.

36

Vtuiable . tions:
he : the array of static Huffinan prefix-free codes crcatcd as per

Figure 2.11, based on all the literal characters in the data block
hi : the array of static Huffinan prefix-free codes created as per

Figure 2.11, based on all the possible match lengths in the data block
b : the sliding buffer, an array of characters from the input stream.
k : the current charactcr read from the input stream.
i : the position of the character k, within the input stream.
w : the sub-string to be compressed.
e : the leftmost character of the sub-string in w.
p : the position of a matching sub-string.
I : the length of a matching sub-string.
m : the minimum allowable length of a matching sub-string.
se : the no of bits used for the matching sub-string position obtained from

Figure 3.1 based on i.

Initial variable values:
m+-3
i +- 2

AIIlorithm:
read k, from the input stream and place into leftmost element in b
w+-k,

repeat
read k; from the input stream

w+-w+k;
if b has no empty elements then

shift the contents of b left by I element
insert k; into first empty leftmost element in b

ifw exists previously in b then
p +- position of the matching sub-string w within b

else
I +- (length of w) - I
ifl>= m then

write a value 1 bit to the output stream to specify a match
write (p - 1) using se bits to the output stream
write h~ to the output stream

w+-k;
else

write a value 0 bit to the output stream to specify a literal character

e +- leftmost character from w
write h~ to the output stream
w +- 200 leftmost character from w
i +- position of the character w, within the input stream

end if
cnd if
i+-i+1

until EOF = true

Figure 3.4 - The LZT algorithm.

37

The literal characters are also encoded using a static Huffman encoding scheme. Where the

frequency table is derived from the characters found in the current data block. See section 2.3

for a complete explanation of creating the stati~ Huffman binary tree. By using the static

Huffinan encoding scheme, a compression performance increase of 0.289 bits is achieved over

another encoding method that did not perform compression on its literal characters.

38

3.2 Implementing LZT

The LZT algorithm is derived by implementing different encoding methods into one algorithm.

Appendix A and Figure RIO lists the detail of each encoding method. More than one LZT

routine is used to provide some means of cross-referencing the results that is obtained in the

following chapter. Listed in no particular order, the LZT routines can explained as follows:

3.2.1 The base LZT routine

This is an LZT routine with no additional methods of encoding and can be explained as a LZ77

encoding process with hashing. This LZT routine executes faster than any of the other LZT

routines, as far as speed of execution is concerned. It however also has the lowest compression

ratio. For purposes of this study, this method of execution will be referred to as the base LZT

method of execution.

3.2.2 The base LZT routine with literal character encoding

This is the base LZT routine with an additional static Huffman encoding scheme used to encode

the literal characters of the output stream. Comparative to the base LZT routine. this routine

yields an average improvement in the compression ratio of 0.289 bpb over the test data set, as

per Chapter 4. For this reason alone, Huffman has become a big part of many compression

algorithms including LZT, in that it can significantly increase the compression ratio.

3.2.3 The base LZT routine with match flag encoding

This is the base LZT routine with an additional match flag blocking as per Figure 3.3. While

this study's findings did indicate that this added encoding method yields an average

improvement in the compression ratio of 0.003 bpb. It is regarded as negligible gIven the extra

execution time required to process the match flag blockings.

39

3.2.4 The base LZT routine with match position encoding

These are two base LZT routines each with additional encoding methods to compress the match

position portion of the <position, length> match pair. One of these two LZT routines

implements a sliding scale position pointer method to encode its match position. This method

yields an average improvement in compression ratio of 0.109 bpb.

The other LZT routine implements a static Huffman encoding scheme based on all the possible

match positions of the output stream. This method however, yields an average loss in

compression ratio of 0.351 bpb compared to the sliding scale position pointer method. The final

LZT routine therefore uses the sliding scal< position pointer encoding method, since this

method provides both faster speed of execution and compression ratio than the other routine

based on the Huffman encoding scheme.

3.2.5 The base LZT routine with match length encoding

These are two base LZT routines each wilh additional encoding methods to compress the match

length portion of the <position, length> match pair. One of these two LZT routines

implements the vie method to encode its match length. This method yields an average

improvement in compression ratio of U57 bpb.

The other LZT routine implements a static Huffman encoding scheme based on all the possible

match lengths of the output stream. This method yields an average improvement in compression

ratio of 1.275 bpb. The final LZT romine therefore uses the static Huffman encoding scheme,

since this method provides a better compression ratio than the other routine based on the vlc

encoding method.

It must be noted that the static Huffman encoding scheme which is used to eilcode the match

position and length portions of the <position, length> match pair, is inherently slow to

40

execute since excessive use of linked lists is made. With these, excessive linked lists, excessive

programming loops is used in order to process them and therefore such poor execution times for

both methods are recorded.

3.2.6 The fmal LZT routine

The final LZT routine as explained in section 3.1, is based on the base LZT routine with an

additional static Huffinan encoding scheme used to encode the literal characters, an additional

sliding scale position pointer method to encode its match position and an additional static

Huffman encoding scheme used to encode its match length. The result of which produces a

high performance compression algorithm with superior results in both speed of execution and

compression ratio.

41

Chapter 4 - Benchmarking LZT

4.1 The Calgary Corpus

The Calgary/Canterbury compression corpus is used to evaluate the compression performance

ofvarious compression schemes. Several other researchers are now using the corpus to evaluate

their compression schemes. For this reason, the corpus is chosen as the data set for the

benchmarking of this study.

The corpus comprises of these text files, namely:

bookl, book2, paperl, paper2, paper3, paper4, paperS, paper6, bib, news, progc, progL

progp, trans

The corpus also includes these binary files, namely:

objl, obj2, geo, pie,

To confirm that the performance of schemes is consistent for any given type, many of the types

have more than one representative. Normal English text, b"th fiction and non-fiction, are

represented by two books and several papers, called book I, book2, paper I, paper2, paper3,

paper4, paperS and paper6. More unusual styles of English text can b~ found in a bibliography,

called bib and a batch of unedited news articles, called news.

Three computer programs representing programming languages called progc, progl and progp,

are also included. A transcript of a terminal session, called Irans is included to indicate the

42

increase in speed that could be achieved by applying compression to a slow line to a computer

tenninal.

Two files of executable code, called obj I and obj2, some geophysical data called geo, and a

black and white bitmapped picture, called pic can be found. The file geo is particularly difficult

to compress because it contains a wide range of data values, while the file pic is highly

compressible because of large amounts of white space in the picture, represented by long runs

of zeros.

43

4.2 Benchmarks

Various compression algorithms and LZT encoding methods were used to draw up this

benchmark. The compression ratios in terms of bpb are reported on. Speed in kilobytes per

second (kbps) is also reported on, and is measured, rounded to the nearest kilobyte. The speed

is also measured with all disk accesses. The hardware used for the benchmarking is an Intel

Pentium, running a 150 MHz processor with 96Mb RAM. No disk or memory caches were

used, in order to determine a uniform result. All tests were performed using executable code

running under Microsoft DOS 6.22.

Figure 4.1 and Figure 4.2 list the compression results for the various algorithms. The list is in

order of total average compression ratio from left to right, in decreasing order. Figure 4.3 shows

the average compression ratio and speed per compression algorithm.

It was found by this study that when the throughput of data to and from a file system drops to

below 150 kbps, the file system suffers from lag, which will mean a loss in speed in the file

system processing. Such a loss will not outweigh the benefits of an actual saving in disk space.

Many users would rather have less disk space than less speed. It is therefore concluded that a

compression algorithm will have to average at least a 150 kbps throughput on the benchmarking

hardware, in order to have a negligible effect on the file system in question. From Figure 4.2

one can clearly see that PKZip, developed by PKWare USA, still has the highest compression

ratio, but unfortunately, it has a low 115 kbps throughput.

The LZS algorithm, produced by STAC Electronics is currently the most well known file

system, real-time compression algorithm. This algorithm is used in the famous Stacker Double­

Disk software and in the new Microsoft Double-Space software. As one can see in Figure 4.2, it

44

performs poorly with regard to compression ratio in comparison with some of the LZT

encoding methods. The LZRWI algorithm (Williams, 1987) improves over LZS, but it too does

not achicve quite the compression ratio of the LZT algorithm. LZP (Bloom, 1995), which is an

as yet unpublished algorithm, is also included in the benchmarking.

File LZT4 LZ77 LZn LZT3 LZTl LZTS LZT6
bib 5.273 5.004 5.020 4.898 4.671 3.758 3.712
bookl 6.679 6.384 6.442 6.250 5.925 4.566 4.390
book2 5.778 5.482 5.525 5.363 5.104 4.015 3.905
geo 6.300 6.288 6.117 6.176 6.204 6.162 4.790
news 5.868 5.536 5.525 5.440 5.080 4.180 4.175
objl 5.309 5.103 4.948 5.024 5.110 4.209 4.294
obi2 4.543 4.274 4.202 4.195 4.204 3.441 3.357
paper! 5.672 5.380 5.410 5.252 5.013 3.965 3.912
paper2 5.982 5.707 5.763 5.583 5.327 4.107 3.995
paper3 6.224 5.906 5.955 5.773 5.488 4.277 4.157
paper4 6.101 5.806 5.843 5.650 5.391 4.243 4.154
paper5 6.051 5.684 5.694 5.527 5.247 4.296 4.229
paper6 5.527 5.264 5.291 5.136 4.907 3.913 3.849
pic 1.347 1.319 1.299 1.291 1.269 1.066 1.084
progc 5.274 5.017 5.031 4.895 4.686 3.753 3.741

, progl 3.759 3.579 3.607 3.486 3.349 2.665 2.667
progp 3.643 3.443 3.459 3.369 3.244 2.586 2.619
trans 3.832 3.628 3.621 3.545 3.388 2.791 2.828

Ratio (bpb) 5.176 4.934 4.931 4.825 4.645 3.777 3.659
Speed (kbps) 180 345 200 185 300 180 10

Figure 4.1- Various Calgary Corpus compression results.

Various encoding methods implemented in LZT were included in order to demonstrate the

efficiency or lack thereof, of the various encoding methods. For example, where encoding

method 4 is the fastest but least efficient in term of compression ratio whereas encoding method

6 is the slowest but has the most efficient compression ratio. From the results, it can be deduced

that by combining encoding methods I, 3 and 6 into one algorithm, a high performance

compression algorithm with superior results in both speed of execution and compression ratio

would be produced. See Appendix A for a full lists the exact nature of each encoding method

implemented in LZT.

45

The LZT algorithm was developed using the Pascal, programming language, which is not

optimal in performance as opposed to the assembler, programming language. If one were to

redevelop it in a low-level language such as assembler, one would get an even better

performance in terms of kbps.

Fjle LZS LZRWl LZP LZT PKZip
bib 5.247 4.753 4.146 3.264 3.096
book1 5.849 5.434 5.718 3.781 3.683
book2 5. 117 4.717 4.563 3.395 3.150

I I!eo 6.810 6.754 6.799 4.573 5.475
news 5.170 4.907 4.777 3.609 3.426
obil 4.556 4.931 4.861 4.214 3.864
obi2 3.982 4.100 3.765 3.196 2.889

loaoerl 5.117 4.627 4.526 3.406 3.114
oaoer2 5.391 4.880 4.890 3.473 3.246
oaoer3 5.817 4.756 4.658 3.595 3.369
paper4 5.155 4.525 4.723 3.562 3.317
oaoer5 5.874 4.575 4.238 3.628 3.321
paper6 5.175 4.763 4.713 3.353 3.043
oic 1.585 2.045 1.397 0.999 0.856
orOI!C 4.533 4.368 4.147 3.274 2.931
progl 3.618 3.496 2.956 2.335 2.004
progp 3.473 3.426 2.859 2.326 1.989
trans 3.972 3.687 2.639 2.497 2.23 I

Ratio (bob) 4.802 4.486 4.243 3.249 3.056
Soeed (kbos) 280 550 630 180 115

Figure 4.2 - Various Calgary Corpus compression results.

A test was also done using a disk cache with the LZT algorithm and it is found that a 100% to

110% increase in performance could be accomplished on the test hardware. Running a disk

cache with PKZip yielded more or less the same results. This would mean that the PKZip

algorithm would be more suitable to the research objectives. It is however concluded that the

LZT algorithm is a better choice, since no! all file systems would be using a disk cache.

46

Average Compression Ratio

T I I I

I I

, I I I I I I

, I , I I I I

,
I

,

I r,

I

I I

I , I I

I I I I I ITTTT

· . . , .

ITTTTI

I

LZT-3
~

LZT-2

LZ77

LZT-4

,

LZT.o

LZT-5

UP
~

LZRW1

LZT-1

LZS

E
5
-g
Cl
;;:
C
o
u;.,
I!!
Co

~
(J

o 1 2 3 4 5

Compression Ratio (bpb)

Average Compression Speed

LZP
~ I I I I I I I

LZRW1
T I I I I I

LZ77
TT

E LZT-1
; Ti
~ LZS
Cl I I
;;: LZT-2
5 -. -.
~ LZT-3
~ .[-\,-\ ,
Co LZT-4

~ .[1::':Ij'=~rlrl!1
(J LZT

~ "LZT-5
~

PKZip

LZT.o.1 I I I
o 50 100 150 200 250 300 350 400 450 500 550 600 650

Compression Speed (kbps)

Figure 4.3 - Average Compression Ratio and Speed per Compression Algorithm.

47

Chapter 5 - Conclusion

The research objective was to formulate a new compression algorithm that would yield a better

compression ratio than the currently available methods. The new compression algorithm would

also need to achieve a compression speed, so as to make itself transparent to a user. The third

problem faced was that not all file systems are created equally. Therefore, the new algorithm

should be easily adaptable for use with any file system.

With the LZT algorithm it is believed that all three objectives of the study has been accomplish.

It has been proven in section 4.2 that the LZT algorithm outperforms most currently available

compression algorithms in terms of compression ratio. Not even the world famous LZS

algorithm yields results comparable to that of LZT algorithm. It has also been proven that LZT

executes faster than the minimum required speed of 150 kbps. LZT in its Pascal form produces

an executable program, which is less than 60 kilobytes and can therefore by easily implemented

as a device driver or operating system extension without any extreme memory overhead. The

static Huffman used to encode the literal characters of LZT users less than 8 kilobytes at any

one time. Therefore, a total of 68 kilobytes should be sufficient to implement and execute the

LZT algorithm.

Thus, it can be concluded that the LZT compression algorithm satisfies all the research

objectives in that it provides adequate solutions to all the problems originally stated.

During this study, it has been noted that arithmetic compression holds lots of potential in that it

is currently the cutting-edge as far as data compression goes. The disadvantage however of this

algorithm is that it uses excessive amounts of CPU power and system resources in order to

perform the actual compression. However with the increase in speed of current dav

48

microprocessors, it might soon be possible to produce an arithmetic compression algorithm for

use in a real-time environment. The resulting algorithm most probably would have a

performance better than that of the LZT algorithm.

49

References

[1] Arimura, M. Yamamoto, H. 1998. The asymptotic optimality of the block sorting data

compression algorithm.IEICE Transactions on Fundamentals, E81-A(l0), 2117-2122.

[2] Bloom, C. 1995. LZP, A new data compression algorithm. Unpublished paper.

[3] Balakrishnan, V. K. 199!. Introduction to Discrete mathematics. Prentice-Hall

International Editions. ISBN 0-13-478678-5.

[4] Cormack, G. V. Horspool, R. N. 1987. Data Compression using Dynamic Markov

Modelling. Computer Journal. (12).

[5] Deutsch, P, 1996. DEFLATE Compressed Data Format Specifications version 1.3.

Network Working Group, RFC 1951, 1-16.

[6] Elias, P. 1975. Universal Codeword Sets and Representations of the Integers. IEEE

Transactions on Information Theory. 21(2).194-203.

[7] Elias, P. 1987. Interval and Recency Rank Source Coding. IEEE Transactions on

Information Theory. 33(1), 3-10.

[8] Fano, R. M. 1949. Transmission oflnformation. Cambridge. :'>j.I.T. Press.

[9] Hankerson, D. Harris, G. A. Johnson Jnr, P. D. 1997. Introduction to Information

Theory and Data Compression. ISBN 0-8493-3985-5.

[10] Huffman, D. A. 1952. A Method for the Construction of Minimum-Redundancy

Codes. Procedures of the IRE. 40(9), 1098-110!.

[11] Johnsonbaugh, R. Discrete Math.,matics (3'· edition). MacMiIlan Publishing Company.

ISBN 0-02-360721-!.

[12] Khalid, S. 1996. Introduction to Data Compression. Morgan Kaufmann Publishers.

ISBN 1-55860-346-8.

[13] Lannore, L. L. Hirshberg, D. S. 1990. A fast Algorithm for Optimal Length-Limited

Huffman Codes. Journal of the ACM. 37(3), 464-473.

50

[14] Lelewer, D. A. Hirshberg, D. S. 1990. Efficient Decoding of prefix Codes.

Communications of the ACM. 33(4), 449-458.

[15] Gailly, J.L. Nelson, M. R. 1995. The Data Compression Book. M&T Books. ISBN 1­

55851-434-1.

[16] Matias, Y. Rajppot, N. Sahinalp, S. C. 1999. The effect of Flexible parsing for

dynamic dictionary based data compression. IEEE Data Compression Conference.

[17] Nelson, M. R. 1996. Priority Queues and the STL. Dr Dobb's Journal. 243(1),18-26,

96.

[18] Salomon, D. 1997. Data Compression: The Complete Reference. ISBN 0-387-98280­

9.

[19] Shannon, C. E. Weaver, W. 1949. The Mathematical Theory of Communication.

Urbana, Ill, University Of Illinois Press.

[20] Schindlers, M. 1997. A Fast Block Sorting Algorithm for Lossless Data Compression.

IEEE Data Compression Conference.

[21] Storer, J. A. Szymanski, T. G. 1982. Data Compression via textual Substitution.

Journal of the ACM. 29(4), 928-951.

[22] Schwartz, E. S. Kallick, B. 1964. Generating a Canonical Prefix Encoding.

Communications of the ACM. 7(3),166-169.

[23] Welch, T. A. 1984. A Technique for High-Performance Data Compression. IEEE

Computer. 17(6),8-19.

[24] Yokoo, H. 1992. Improved Variations Relating the Ziv-Lempel and Welch-Type

Algorithms for Sequential Data-Compression. IEEE Trar.,actions on Information

Theory. 38(I), 73-81.

[25] Yu, T. L. 1996. Dynamic Markov Compression. Dr Dobb's Journal. 243(1), 30-32. 96­

lOO.

51

[26] Ziv, J. Lempel, A. 1977. A Universal Algorithm for Sequential Data Compression.

IEEE Transactions on Information Theory. 23(3), 337-343.

[27] Ziv, J. Lempel, A. 1978. Compression of Individual Sequences via Variable-Rate

Coding. IEEE Transactions on Information Theory. 24(5), 530-536.

[28] http://www.fags.org/fags/compression-fag/index.htmllntemet Data Compression FAQ.

[29] htto://www.internz.com/compression-pointers.htmIA list of links to data compression

sites and documents.

52

Glossary

Algorithm: Pseudo code used to represent the workings of an infonnation processing process.

bpb: Bits per byte. A byte usually contains 8 bits.

File system: A logical entity used to store computer files in which is usually implemented on a

computers disk drive.

k: Kilobyte, where 1024 bytes makeup a kilobyte

kbps: Kilobytes per second. Equal to 1024 bytes per second.

Loss-less: No infonnation loss occurs. We merely represent the data in less space.

Real-time: A process whereby events take place without any delay.

53

Appendix A - LZT parameter settings

Method I 2 3 4 5 6 LZT
Flag

Buffman
Literals .; .;

Match
Flag .;

Bloekine
Growing
Coding .; .;

Position
Hnlfman
Position .;

Variable
Coding .;

Length
Blllfman
Length .; .;

Figure A.I - The different settings for the LZT compression algorithms.

54

Appendix B - LZT source listings

The source code used for the various LZT implementations is given below. The source code is

compiled with a Turbo Pascal 7.0 compiler under Windows NT 4.0 with service pack 4

installed. The hardware used is an Intel Pentium, running alSO MHz processor with 96Mb

RAM. Note that there is not much documentation explaining the source code. However care has

been taken in order to make it easily understandable. The Basic Unit as shown in Figure B.l,

contains all those miscellaneous variables and routines used by the LZT program. Figure B.2

lists the Clock Unit, which is used to measure compression performance of the LZT program.

Unit Basic;

Interface

'Uses Dos;

Const
HCMethod : Bool an ~ False:
MFBMethod : Boo ean = Fals~;

GCPMethod : Boo ean = Fa~se;

HPMethod : Boolean = False;
VCLMethod : Boolean = False;
HLMethod : Boolean = False;

T8BitDic
T14BitDic

255;
16383;

InBufferLen.
OutBufferLen

16384;
(In8uffer~e~ ~:" ~i + ~~3~:fe.:::"'e~;

Pow

!);

Array [0 .. 14J Of Word
(1, 2, 4, S, 16, 32, c4, :28, 255, 52.2, 1::'24, 2C'48, ~;S~, 3:::"2, :"~334

:Var
SingleFreq : Boolear.:
RunType : Char;

InBuffer : Array [1 .. =~3~::e::e~: c: 3y~e;

OutBuffe: : Array [: .. C'..:.~B:.;.::er:"'e::J ::::::: 3j':e;

InPos, OULPos, OULSize : :...::::::::;=~~;

OULBitsUsed, Pass : BiLe;

MatchPos, ~aLch?osBits : ~~~~;

MatchFound : B081ea~;

MatchLen, !'lirJ-!a ,:c;".Len, !.!" c..::-.::"e:"'.3':':.s, ::::::.::-,::-:"'ec:
LiteralCha~ Word;
LiteralBits : Byte;

"'::..::::i i

F'.J.nctiorr Powe:2X (X : Ir:.Lege.:,

55

Implementation

Function Power2X{X
Begin
Power2X Pow [X] ;
End;

End.

Integer) LongInt;

Figure B.I - The Basic Unit.

!unit Clock;

Interface

:Uses Dos;

;Type
TTime Record

H, M, S, I
End;

Word;

~Var
STime, CTime : TTime;
SClock, CC lock : Real;
L : Longlnt;
EClock : Real;

Procedure StartClock;
Procedure WriteClock;

Implementation

{ Start the timers clo:~

,Procedure StartClocK;
Begin

:GetTime(STime.H, STime !'"":, STi::'Le.S, ST':':T,,=.II;
:L := STirne.H;
!SClock := (L * 3600) + (S':'':'':ne.!·; " .:;; ..,. ST:'::,,=:.3 - '57:'::-.e.: / :G,rJ ,;
End;

:::::"C::.-: :

: i Wri tes the ela.psed t:'::-.e
-Procedure WriteClccK;
_Begi~

:GetTime (CTime.H, CTi:!',e.tv :, :-:':"::,.e. S, =:':"::','2. ~ i;

.L := CTime.H;
'CClock := (L ... 360C) + :-::':"::-.e.;·: ... E:, -:T:::-.e.S ­
:EClock := CC~ock - SC1:c~;

:If EClock = J Tte~

EClock := 0.001;
-{Writ.eLr.{ 'Elapsed time
E:1d;

·End.

Figure B.2 - The Clock Unit.

56

The Compress Unit as shown in Figure B.3 is used to manage the whole compression execution

as selected via the command-line flags from the LZT program,

Unit Compress;

Interface

Uses Basic, Clock, 10, Hash, Huffman, VLC, Flag;

Var
LiteralsHuf : TLitRecArrayPtr;
LiteralsFreq : TFreqRecArrayPtr;

PosHuf : THufRecArrayPtr:
PosFreq : TFreqRecArrayPtr;

LenHuf : THufRecArrayPtr;
LenFreq TFreqRecArrayPtr;

MaxFreq Word;

Procedure CornpressBlock;

iImplementation
,
ipro~edure ResetVars:
iBegln
iMatchFound := False;
iMatchPos 0:
!MatchLen := 0;,

Ord(InBu:fer[I~PssJ; ;
8;

;1£ HCMethod Then
Begin
Litera!Char :=
Li teralBi ts : ==
End

;Else
I Begin
! Li teralChar

LiteralBits
End;

LiteralsHuf'" [O::::-d (I;-;8;.;.:[er: ::l?cs ~ i] • C>::1":o:
Litera15Huf~[Ord!I~B~f~er::n?0s: I: .Le~;

If GCPMethod Then
Begin
If InPos > Power2X(Match?cs3i:s, ~~Cr

Inc(MatchPosBits) ;
End

:Else
MatchPosBiLS :~ 14;

!If Not(VCh~ethod) Then
Begin
MaLchLenBits :~ 14;
MiDJ.'1atchLen Match?os3i:s - !·~2.::::-.:e:'_5i:.s - 2;
End;

'End;

:Procedure Sea~chBu~fe~;

:Var
S : HashSty;
P, PI, P2, W
L ; Longlnt;

:3egir_

Wor:d;

57

ResetVarsi
{ Ignore the last 2 input bytes as it is no use compressing them, so just
{ write them out as normal literals
If InPos >= InFileSize - 1 Then
Exit;

:For P
S [PJ

1 To HashLen Do
:= InBuffer[InPos + P - 1];

;{ Don't do any searches if we at input position 1 as no hashes has been
: { setup yet
;I f InPos 1 Then

Begin
If Pass 1 Then
AddHash(S, InPos);

Exit:
End:

P := FindFirstHash(S):
{ If we at the 3rd last byte then ouput immediately as the match length
{ will not get bigger than 3 for obvious reasons
If InPos InFileSize - 2 Then
Begin
If P <> 0 Then
Begin
MatchFound := True;
MatchPos Pi
MatchLen := HashLeni
End:

End
IElse
I While (P <> 0) And (P < Inpos) Do
i Begin

I., := HashLeni
Pl P;
P2 := InPos:

While (TnBuffer[Pl + L] = ::::-.Bt::f~.::-[?2

((P2 + L) < InFileSize! c:::
Inc (L);

If InBuffer[Pl + ~]

Inc (L);

If VCLMethod Then
Begin
MatchLenBits := GetV~C~e~ ~i:

MinMatchLen := Match?osB:~S - ~a~s~:e~3i~s ~ 2:
End;

If (L > MatchLen) k~d

Begin
MatchFound := ~r~e;

MatchPos := P;
MatchLen L;
End;

P := FindNexLHash;
End:

;Tf Pass = 1 Then
AddHash(S, TnPos);

"End;

,Procedure Encode;
Begin
Tnc (Pass);

,Searchldx : = 1;

'~f G~PMethod Then

58

MatehPosBits := 1·
Repeat

SearehBuffer;
CornpLen := MatehLen;

If MatehFound Then
Begin
If HPMethod Then
Begin
MatchPosBits := PosHufA[MatchPos - 1J .Len;
MatchPos := PosHufA[MatchPos - 1] .Code;
End;

If HLMethod Then
Begin
MatchLenBits := LenHufA[MatchLen - 1J .LeD;
MatehLen := LenHufA[MatchLen - 1] .Code;
End;

End;

OutputFlagResult
Until lnPos > InFileSize;

!End;
:
!Proeedure CreatePosHufi

ivar
P : Word;

: MaxPosWeight

Begin
Inc(Pass) ;

'New (PosFreq);

Longlnt;

;MaxPosWeight := 0;

For P := 0 To 16383 Do
PosFreqA[PJ .Weight 0;

'Repeat
SearchBuffer;

If MatchFound Then
Begin
Ine(PosFreqA[MatchPos - 1J .~eight ;

If PosFreqA[MatchPos - IJ .Weight > l-iaxPo.s'ii'eigr.t 'Iter.
MaxPosWeight := posFreqA[~atchPos - l~ .Weig~:;

InPos := lnPos + MatchLeu;
End

Else
Ine (InPos) ;

until lnPos > InFileSize;

.{ Scale frequency CO'.1nts :0 _~ ... ~:-_e [.'..:ff::-,,::.:,. :::.des _~ :E bi:s

.MaxPosWeight := (~axPosWe:gh: :i, 255; ~ :;

For? := 0 To 16383 Do
Begin
If ((PosFreqA[P].Weight

(PcsFreqA[P] .Weig~t

PosFreqA[p] .We~ght

Else
PosFreqA[pl.Weight

Div ~ax?0she:~~ti

<> C) :'[_E:-,

?CS?::eqA . _ . J':"-.'

J..:.j

{ Initialize ~eight tacle }
. If posFreqA[p] .Weigh: = 0 ~je~

PosFreqA[pl.Weight ;= $F???
Else

59

MaxFreq := P:
End:

PosHuf := CreateHuffArray(PosFreq, ~axFreq):

Dispose(PosFreq):
OutputHufDic(PosHuf, MaxFreq):

InPos : = 1:
End:

Procedure CreateLenHuf:

Var
P : Word:
MaxLenWeight

Begin
Inc(Pass) :
New (LenFreq) :

Longlnt:

MaxLenWeight := 0:

jFOr P :~ 0 To 16383 Do
1 LenFreqh[P] .Weight .- 0:
,

]Repeat
! SearchBuffer:

If MatchFound Then
Begin
Inc(LenFreqA[MatchLen - 1] .Weight):

If LenFreqA[MatchLen - 1J .Weight > MaxLenWeight Then
MaxLenWeight := LenFreqA[MatchLen - 1] .Weight:

InPos := InPos + MatchLen;
End

Else
Inc(InPos) ;

Until InPos > InFileSize:

{ Scale frequency councs t8 :i~i~

MaxLenWeight := (MaxLen~eig~t :;:"
'::-.e

"For P := 0 To 16383 Do
Begin
If ((LenFreqA[PJ .Weight Viv Max~e;~eigtt: Cl r~d

(LenFreqA[PJ .Weight <> 0) The~

LenFreqAIP] .Weight .- l
Else

LenFreqAIP] .Weight := Le!"'.?r:eqA[?; .·...eiq:;.~ :;:.;- 1~ax=-e,",:;,;e:.c;:-.t;

:{ Initialize weight tab~e }
If LenFreqA[P].Weight = 07hen

LenFreqA[P] .Weight := SF???
Else

MaxFreq : = P:
End:

LenHJf := CreateHuffArray(~e~Fr:eq, ~ax?~e~;

Dispose(LenFreq);
OutputHufDic(LenHuf, MaxFr:eqi:

InPos 1:
End;

Procedure COTpress3lock;
Begin
InitializeIO;

'Tni tHash;
:rass := 0;

60

If HCMethod Then
Begin
New(LiteralsFreq);
CreateInBufFreqArray(LiteralsFreq, MaxFreq};
LiteralsHuf := CreateHuffArray(LiteralsFreq, MaxFreq);
Dispose(LiteralsFreq);
OutputHufDic(LiteralsHuf, MaxFreq);
End;

If HPMethod Then
CreatePosHuf;

If HLMethod Then
CreateLenHuf;

If Not (SingleFreq) Then
Encode;

If HCMethod Then
DisposeHuffArray(LiteralsHuf, T8BitD~c);

If HPMethod Then
DisposeHuffArray{PosHuf, T14BitDic);

If HLMethod Then
DisposeHuffArray(LenHuf, T14BjtDic);

DisposeHash;
End;

End.

Figure B.3 - The Compress Unit.

The Flag Unit as shown in Figure BA is used to implement the match flag binary coding routine

as described with Figure 3.3. Figure B.5 lists the Hash Unit. This unit does the fast dictionary

searches. It achieves overwhelming performance by implementing a three dimensional

dictionary. In the last dimension, it implements a two character dictionary.

.-------------- ----

!Unit Flag;

:Interface

:Uses Dos, Basic, IO, VLC;

Type
. TMatchRec

Var
SearchRes
SearchIdx

Record
Match?os, ~atc~?os3~~s,

Ma~chLen, Mat=i~e~~~:s h0~j;

LiteralChar Word;
LiteralBi~s 3y:e;
End;

Array [1 .. 2] Of T~atc~Rec;

Byte;

61

Procedure OutputFlagResult;

Implementation

Procedure OutputFlagResult;
Begin
If MatchFound Then
Begin
If MFBMethod Then
Begin
SearchRes[SearchIdx] .MatchPos ;= MatchPos;
SearchRes[Searchldx] .MatchPosBits ;= MaLchPosBits;
SearchRes[SearchIdxl.MatchLen ;= MatchLen;
SearchRes[Searchldx] .MatchLenBits ;= Ma~chLenBits;

SearchRes[SearchIdx] .LiteralChar := 0;
SearchRes[SearchIdx] .LiteralBits 0;
End

Else
Begin
OutputSingleBit(lj;
OutputBits(MatchPos, MatchPosBits);
OutputBlts(MatchLen, MatchLenBits);
End;

InPos .- InPos + CompLen;
i End

j
Else

Begin
I If MFBMethod Then
i Begin

SearchRes[Searchldx] .MatchPos := 0;
SearchRes[Searchldx] .Ma~chPosB:ts :~ G;
SearchRes[Searchldx] .MatchLen := 0;
SearchRes[Searchldx] .MatchLenBits := 0;
SearchRes[Searchldx] .LiteralChar := LiteralChar;
SearchRes[Searchldx] .LiteralBits := LiteralBits;
End

Else
Begin
OutputSingleBit(O) ;
OutputBits(LiteralChar, Lite=a:3:ts.
End;

Inc(InPos);
End;

!If {MFBMethod} Then
Begin
Inc(Searchldx);

If (Searchldx = 3) Then
If (SearchRes[l] .LiteralChar <> 0) F~d

(SearchRes[2] .LiteralChar <> ~ ~he~

Begin
OutputSingleBit(O);
OutputBitSlSearc~Res[l].L:te~~:C~ar, Sear=~~es::;.L~~eral3::s;

OutputBits{SearchRes[2 J .L~~eralc~ar, Searc~Res[2j .~i:e~~:3:~s!

SearchIdx 1;
End

Else
If (SearchRes[l] .LiLera~c~ar <> Ci ~~d

(SearchRes[2j .Licera:Cha~ = J .. ~e~

Begin
OutputBits(2, 2);
OutputBitsISearchRes[l] .Li~eraiChar, Searc~Res::' .L~ce~a:3::s:

OutputBits (SearchRes [2] .~a:ch?cs, Searc~?es[2:.Mat:h?:s3~ts;;

If Searc~Res{2].~atchLe~3:ts <> C ~~e~

OutputBi:s!Sea=chRes[2: .~a~=h~e~, Sea=ctRes:2] .MaL=~Le~5_:s;

Else

62

OutputVLC(SearchRes[2j .MatchLen);

Searchldx 1:
End

Else
Begin
OutputBits(3, 2);
OutputBits(SearchRes[lj .MatchPos, SearchRes[l] .MatchPosBits):

If SearchRes[l].MatchLenBits <> 0 Then
OutputBits (SearchRes [lj .MatchLen, SearchRes[l] .MatchLenBits)

Else
OutputVLC(SearchRes[l] .MatchLen);

:= SearchRes[2j .MatchPos;
SearchRes[2] .MaLchPosB:LS;

:= SearchRes[2] .MatchLen;
SearchRes[2] .MatchLenBits;
SearchRes[2] .LiteralChar:
SearchResf2] .LiteralBits;

SearchRes[l] .MatchPos
SearchRes[l] .MatchPosBi~s

SearchRes[ll.MatchLen
SearchRes[ll.MatchLenBits .­
SearchRes[l] . LiteralChar
SearchRes[l] .LiteralBits
SearchIdx : = 2:
End;

End;
lEnd;

Figure B.4 - The Flag Unit.

,Unit Hash:

Interface

Uses Basic:

Const
HashLen 3;

"Type
THashSearchRecPtr = ATHashSe~~~~?~c;

THashSearchRec = Record
Ch : Bi't~:

Positlon : ~ord;

Next : THashSea~chRecP~~;

End:

THashLevelRecPtr = ATHashLe~e:Rec:

THashLevelRec = Record
Next~e7e~ Array :: .. ~e3~:J:~ ef ?~i~~e=;

E!1d:

HashStr = Array[l .. Eas~~e~: Of 3y:e;

;Procedure Ini~Hash:

P~ocedure AddHash(NewEas~

Procedure DisposeHash;

:unctior. Find:irstHas~(=i~d~as~

,Fu~ction FindNextHash : Word:

·lmplementat:of.

Var
Root.Hash Array [O .. 78Bit~ic: 2f ?0:~te~;

63

SecondLevelHash, NewLevelHash
CurrentHash : HashStr;

THashLevelRecPtr;

CCol, CRow: Byte;
SHashPtr, CHashptr, NHashPtr, CRowHash

{ Initialize the hashing system }
Procedure InitHash;
Begin
New (NewLevelHash) ;
For CCol := 0 To T8BitDic Do
Begin
RootHash[CCol] := Nil;
NewLevelHashA.NextLevel[CCol] Nil;
End;

End;

TEashSearchRecPtr;

{ Add a new hash to the current list }
Procedure AddHash(NewHash : HashStr; HashPos Word);
Begin
CCol := NewHash[lJ;
If RootHash[CCol] = Nil Then
Begin
New(SecondLevelHash);
RootHash [CCol] : = SecondLevelHash;
SecondLevelHashA.NextLevel .- NewLevelHashA.NextLevel;
End

Else
SecondLevelHash RootHash[CCol];

,New (NHashPtr) ;
:NHashPtrA.Ch := NewHash[3];
:NHashPtrA.Position ;= HashPos;
jNHashPtrA.Next := Nil;

iCROW := NewHash[2];
!If SecondLevelHashA.NextLevel[CRo~;= N~~ T~e~

I SecondLevelHash A. NextLeve 1 [CRow] NHashP'":..r
!Else

Begin
SHashPtr ;= SecondLeve!HashA.Next~e~e~~C?~~:;

CHashPtr ;= SHashPt~;

While CHashPtrA.Next <> :;i: =0
CHashPtr := CHashFt~A.~ex:.;

CHashPtrA.Next := NHashPtr;
End;

iEnd;

,Procedure DisposeHash;
,Begin
'For CRow := 0 To T8BitDic Co

If RootHash[CRow] <> ~i: ~~e~

Begin
SecondLevelHash := Roo~Eas~[CF~~:;

For CCol := 0 To T8Bi~Dic Dc
Begin
SHashPtr := Second~eve~~ashA.~ex~~e"e~:~:~~;;

While SHashPtr <> ~i~ Do
Begin
CHashPtr := SHashPty;
SHashPtr := SHashPtr~.~ex~;

Dispose(CHashPtr; ;
End;

End;

Dispose(SecondLevelHas~;

64

End;

Dispose (NewLevelHash) ;
End;

{ Find the first position using the current hash}
Function FindFirstHash(FindHash : HashStr) : Word;
Begin
CurrentHash := FindHash;

If RootHash[CurrentHash[l]]
Begin
FindFirstHash := 0;
Exit;
End;

Nil Then

SecondLevelHash := RootHash[CurrentHash[l}];
CCol := CurrentHash[2];
CRowHash ;= SecondLevelHashA.NextLevel[CCol];

If CRowHash = Nil Then
FindFirstHash 0

Else
FindFirstHash ;= CRowHashA,Position;

End;

{ Find the next position using the current hash }
Function FindNextHash : Word;

!Begin
tCRowHash := CRowHashA.Next;

Nil Then
;= 0 { We are at the end of a r~w }

:1£ CRowHash
i FindNextHash
iElse
! FindNextHash :=
lEnd;

CRowHashA.Position;

'End.

Figure B.5 - The Hash Unit.

The Huffinan Unit as shown in Figure B.6 is used to implement the various routines associated

with the creation ofthe Huffman binary trees.

----- --- - - - ---

Uni t Huffman;

.Interface

:Uses Dos, Basic r IO;

'Const
DicOPad4
DicOPad8
DicXPad4
DicXPad8

15;
3 1 .- ,
47;
63;

bi:1ar
bi::ar
binar
b:'nar

MaxFreqRecs
MaxCanonRecs

16383;
16;

65

iType
THufRec Record

Code : Word;

Len : Byte;
End;

TLitRecArrayPtr = ATHufRecArray;
TLitRecArray = Array [0 .. 255] Of THufRec;

THufRecArrayPtr = ATHufRecArray;
THufRecArray = Array [O .. MaxFreqRecs] Of THufRec;

TPtrRec = Record
Next Word;
End;

TPtrRecArrayPtr = ATPtrRecArray;
TPtrRecArray = Array [O .. MaxFreqRecsJ Of TPtrRec;

TFreqRec = Record
Weight
End;

Word;

TFreqRecArrayPtr = ATFreqRecArray;
TFreqRecArray = Array [0 .. MaxFreqRecsJ Of TFreqRec;

TCanonRec = Record
LenCount, NextCode
End;

Word;

TCanonRecArrayPtr = ATCanonRecArray;
TCanonRecArray = Array [l .. MaxCano~?ecs: Of Tta~o~?~~;

I
I Procedure CreatelnBufFreqArray (Va;: ?"req T?"reqRecAr YajF'~ r; 'la Y :-:dX?": c~':!

:Word) ;
!Function CreateHuffArray(Freq : TF-eq?ecArrajP:r; Size: Word; ?sl~:~r;

'Procedure OutputHufDic(P : Pointer; Size : Wor~i;

:Procedure DisposeHuffArray(P : Pointer; H~fS~z~ : ~or~);

:Implementation
I

'{ Create frequency table of the 2.:',:era':"s ir: t~,1O: ::-.V.1': t'jf:~r !

'Procedure CreateInBufFreq.t..rray',"';a:: ?"::,:q :?::e,=!~ec.t.r:a/F:::; '.'a: >1axE""r<::q

Word) ;

Var
P : Word;
MaxWeight, Freqs Long:int;

:Begin
:{ Initialize Frequency pointers
.For P := 0 To T8BitDic Do

Freq'[P].Weight :~ 0;

!{ Count frequencies or
:Maxweight := 0;

2 b::"t ",,-.;:.:-abe:

:For ? := 1 To InFileSize Do
Begin
Inc(FreqA[InBuffer[?J J .'o'i'eig:-.t',

If FreqA [InBuffer [?J J . ;';e'::;[,:: > ~·~ay.·"';e:g:-_:. ::-.e:-,
MaxWeight := FreqA[InBuf:er[?]] .~eig~t;

End;

,{ Scale freQuency cou~ts to ~i~::' :.te h~=:~a~ ~~des

~Maxweight :; (MaxWeight Di~ 255) T 1;
Freqs := 0;

1;:; b::s

66

For P := 0 To T8BitDic Do
Begin
If ((FreqA[PJ.Weight Div MaxWeight)
Freq'[P] .Weight 1

0) And (Freq'[PJ.Weight <> 0) Then

Else
FreqA[P].Weight := FreqA[PJ.Weight Div MaxWeight;

{ Initialize weight table }
If FreqA[p] .Weight = 0 Then
Freq'[p] .Weight $FFFF

Else
Begin
MaxFreq : = P;
Inc (Freqs) ;
End;

) End;
,
iIf Freqs = 1 Then
i SingleFreq := True
IElse
i SingleFreq := False;
[End;,
I{ Create canonical huffman codes for an alphabet}
!Function CreateHuffArray(Freq : TFreqRecArrayPtr; Size

:Var
HufBig : THufRecArrayPtr;
HufSmall : TLitRecArrayPtr P~solute HufBig;
Huf : THufRecArrayPtr Absolute HufBig;
Canon: TCanonRecArrayPtr;
P, PrevLen : Word;
Bl, B2, Lowl, Low2, PrevCanon Lo~gInt;

I FreqPtr : TPtrRecArrayPtr;

!Begin
If Size> T8BitDic Then

i New (HufBig)
IElse
: New(HufSmalll;

t";ordi ?ointe.:::;

,{ In cases where only one freq~e~2Y ~as =e~srjed, he ~~e~ :~ ~s t~:5

{ ie. The same characater was repea:ed ~c.::: ~he hhJle c~ss~

If SingleFreq Then
Begin
Inc(HufA[Size] .Len};
HufA[Size].Code 0;
CreateHuffArray Huf;
Exit;
End;

;{ Create and Initialize h~f:~a~ ~ci~~ers

'New (Canon) ;
iFor P :~ 1 To MaxCanonRecs Do

Begin
CanonA[PJ.LenCount := 0;
CanonA[Pl.NextCode := 0;
End;

"New (FreqPtr);
:For ? := 0 To Size Dc

Begin
FreqPtrA[Pj .Nex~ := $=FF:;
HufA[P] .Code :~ 0;
HufA[Pl.Len := 0;
End;

Repeat
Low! :==- -1;

67

Low2 := -1;

For P := 0 To Size Do
If FreqA[P].Weight <> $FFFF Then
If Low1 = -1 Then

Lowl := P
Else
If Low2 -1 Then

Low2 := P
Else
If FreqA[P].Weighc < FreqA[Low1] .Weight Then

Low1 := P
Else
If FreqA[p] .Weight < Freq A[Low2] .Weight Then

Low2 := P;

! If Low2 <> -1 Then
Begin
B1 := Low1;
Repeat
If Huf A[B1] .Len <> 0 Then

Dec(Canon A[Huf A[B1j.Len].LenCounc);

Inc (Huf' [B1J .Len),
Inc (CanonA[Huf A[Bl] .Len] .Le~Count);

B2 :~ B1,
Bl := FreqPtr A[B1j .Next;

Until B1 = $FFFF,
FreqPtrA[B2] .Next := Low2;

B1 := Low2;
Repeat
If Huf'[BlJ .Len <> 0 Then

Dec(CanonA[HufA[Bl] .Len] .LenCountj;

Inc(Huf'[BlJ.Len),
Inc(CanonA[HufA[Bl] .Len] .LenCountJ;
Bl :"" FreqPtr A[Bl] .Next;

Until B1 = $FFFF,

FreqA [Low1J .Weight := Freq" ~:'o''';: ~ . ·...;.;;i']r-,': -.- Fr>o:q" :~-:";L: . ',;"".::.]:-.-:.;
FreqA [Low2] .Weight := SFFFF;

End;
Until Low2 == -1;

;PrevLen := 0;
:PrevCanon :== -1;
;For P : = 1 To MaxCa!1onRecs So

If CanonA[P}.LenCount <> 0 :hen
Begin
CanonA[Pl.Nextcocte := (PrevCa~on _, S~l I~ - ?~~7:'e~;

PrevCanon := PrevCanc~ ~ Ca~o~~ ~?: .~e~~~~~:;

PrevLen : == p;
!'..rla;

:{ Create and Initialize r.~ff~a~ poi~te~s

For P := 0 To Size Do
If ~UfA[P] .Len <> 0 Then
Begin
HufA[P] . Code := Cano::~[E',;.f"[F:.~E::--,: .::ex:.:':-:.::<::;
Inc(Canon~[Huf"[?] .Le~] .~ext:sde,

End;

Dispose(FreqPtr) ;
Dispose (Canon);

:CreateHuffArray := EL:f;
·End;

68

{ Outputs the hUffrnan code lengths for the alphabeL
Procedure OutputHufDic(P : Pointer; Size: Word);

Var
HufPtr : THufRecArrayPtr Absolute P;
W, CodeLen, Same : Word;

Procedure OutputCleanChar;
Begin
If CodeLen = 14 Then
OutputBits(CodeLen, 5)

Else
OutputBits(CodeLen, 4);

Inc (W) ;
End;

Begin
{ In cases where only one frequency was recorded, we r.eed to do ~his

{ ie. The same characater was repeated for the whole block
If SingleFreq Then
Begin
OutputSingleBit(l) ;
OutputBits(Size, 14);
Exit;
End

Else
Begin
OutputSingleBit(O) ;
OutputBits(Size, 14);
End;

W := 0;
Repeat

CodeLen HufPtr"[WJ .Ler.;;

If (W = 0) Or (W > (Size - 2J i -:::,nr:r.
OutputCleanChar

Else
Begin
Same := 1;
While (Same < 256) P~d ;W + Sa~~ < s:z~ + n~j

{HufPtr" [W ..- Same] ,:'e:: = C:-=-::ie:'~f'., J'='

Inc (Same);

If Same < 3 The:l.
:)utputCleanCha~

Else
If CodeLen = 0 The~

If Same < 19 Then
Begin
OutputBitsCDicOPad4, 6 1 ;

OutputBits(Same, 4;;
Inc (N, Same);
End

Else
Begin
OutputBits(DicOPad8, C,;
OutputBits(Same, 8);
Inc (W, Same);
End

Else
If S&~e < 19 T~e~

Begin
OutputBits(DicX?ad~, 6;
OutputBits(S~~e, 4,;
OutputCleanChar;
Dec(W);
Inc (W, Sarr.e);
End

69

Else
Begin
OutputBits{OicXPad8, 6);
OutputBits(Same, 8);
OutputCleanChar;
Dec(W);
Inc (W, Same);

End;
End;

Until W > Size;
End;

{ Disposes of a huffrnan array }
Procedure OisposeHuffArray(P : Pointer; HufSize Word! ;

Var
Litptr
HufPtr

TLitRecArrayPtr Absolute P;
THufRecArrayPtr Absolute P;

Begin
Case HufSize
T8BitDic
Tl4BitOic
End;

End;

End.

Of
Dispose(LitPtr);
Dispose (HufPtr) ;

Figure 8.6 - The Huffman Unit.

Figure B.7 lists the 10 Unit, which implements all the disk 10 routines. It also does the statistics

for measuring the compression performance of the LZT program.

Unit IQ;

Interface

Uses Dos, Basic, Clo=k;

,Var
InFile : File;
InFileSize : Word;

OutFile : File;

"Proced'.;.re
i Proc:edure
Pro.::edure

Initialize::O;
OutpuLBiLs{~Stre~~ : ~~~~~~:;

O~tputSi~gleBi~(3i: 3y:e;

,Implementat.ion

:{ Initializes the 10 s1s:e~ var:ab:es
!Procedure InitializeIO;
'Begin
:lnPos := 1;

{ Make sure OutBuffer starts ~ff ~:eQ~

FillChar(OutBuffer, Size:): .2"..::3"_::-2:- , ;<-~,

70

{ Reserve the next 6 bits of the output buffer so we know how/which
{ methods was used to do the compression with. Matches the flag entered
{ on the command line
OutBitsUsed := 6;
OutPos := 1;
End;

{ Outputs bit stream to the output buffer}
Procedure OutputBits(LStrearn : LongInt: Len

Var
I : Word;
LPtr : ALonglnti

Begin
LStream := LStrearn shl OULBitsUsed;

LPtr := @OutBuffer[OutPosJi
LPtr A := (LPtr A Or LStream);

Word) ;

{ Recalc the new output position in the OutPUL buffer
I := Len + OutBitsUsed;
OutPos := OutPos + (T Div 8);

{ Recale how many bit's are lefL at th~ cur~ent output pGsiti0~ i
OutBitsUsed := I Mod 8;
End:

{ Outputs a single bit to the outp~t buffe~

Procedure OutputSingleBit(Bit : Byte);
Begin
Bit := Bit shl OutBitsUsed;

OutBuffer[OutPos] (OutBuf:er[OutPos] Or Bitl;

Inc(OutBitsUsed) ;
If OutBitsUsed = 8 Then
Begin
OutBitsUsed := 0;
Tnc(OutPos);
End;

End;

.End.

Figure B.7 - The 10 Unit.

The VLC Unit as shown in Figure B.8 is used to implement ,he variable length coding routine

as described with Figure 3.2.

___________________ 0 __

iuni t VLe;

Interface

Uses 10;

Function GetVLCLen{Len : A~~dj ~~~di

Procedure OutputVLC{Len : W8~dJi

71

Implementation

Var
i BTF, VLCBits : Byte;
i VLCValue, VLCLen : Word;
i
iFunetion GetvLCLen(Len : Word)
!Segin
i
iBTF : = 7;
)VLCvalue := BTF;
IVLCLen := 3;
;VLCBits := 3;

!While Len > VLCValue Do
Begin
If BTF <> 255 Then
Begin
BTF :~ BTF sh1 1,
Inc(BTF);
Ine (VLCBi ts) ;
End;

Inc(VLCValue, BTF):
Inc(VLCLen, VLCBits);
End;

Word;

'GetVLCLen
lEnd;,

VLCLen;

!Procedure OutputVLC(Len
[Begin
iBTF : ~ 7;
~VLCvalue BTF:
:VLCBits : ~ 3,

:While Len > VLCValue Do
Begin
OutputBits(BTF, VLCBits);

If BTF <> 255 Then
Begin
BTF := BTF shl 1:
Inc (BTF) ;
Ine (VLCBits);
End;

Inc(VLCValue, BTF);
End;

OutPutBits(O, VLCBi:si;
End;

End.

Figure 8.8 - The VLC Unit.

Word) ;

Figure B.9 lists the LZT front end executable, This executable takes as one of its inputs. a six

bit flag where each bit represents the required state of an algorithm found within the LZT

program. Figure B.I 0 shows the help screen of the LZT executable. which lists the required

input parameters and there descriptions. The LZT executable performs some pre-processing

before the actual compression is done. One of these pre-processing events is to break the input

file into smaller sector size chunks. This is done because the LZT algorithm is designed to work

with data blocks that are less than or equal to a disk sector.

Note that the Decode routine is not implemented and does nothing. It is included merely to

show were such a routine would be placed. The internal workings of the Decode routine were

not required for the study and as such, it is not implemented.

{$A-,B-,D+,E-,F-,G+,I+,L+,N+,O-,P+,Q+,R+,S+,T-,V-,Y.+,Y+)
{SM 4096, 0, 5242BB}

Program Lempel Ziv_Toufl€:

Uses ert, Dos, Basic, Clock, 10, Compress;

Const
FileCount : Longlnt 0:
2mptyStr ':

:Var
8 : Byte:
Totalbpb, Averagebpb : Real;
Totalkbps, Averagekbps : Real;
TotalB!ocks, CurrenLBlock : ~~ng=~~;

Name: String[12];

CompFile : S€archRec;
LZTFile : String[12]:
InFile, OutFile : File;

'Procedure Copyright:
iBegin
;WriteLn('LZT Real-Time Loss-Less Co:::p:-e5si0~ !..;rilit.::' ...·:...2.2. :"r. f~l:~::~,e,.:

:of') ;
:Wri teLn ('my Masters Thesis, comp.ie~ed ae: :.:-.e ::6.pe :'ecr.:;.': 1-:.':):-., ''::ape :'~'..;:,., Z.=-.. ,

:1998.');
WriteLn('Copyright (C) 1995-1998 Zahi~ To~fie. A:: R~gh~s ?eser7ed.'
WriteLn;
End;

:::.e

rals e~=oje~.·';

l~=K.ing ens:.::er.';
ng ?oslticn en~oder.');

~ :'::::': e:".coder·);

ei::"e.::: .),

: ie _ E

base L277 E~f:~a~ ~i,:

base L277 Yat:::: :2.ag
base L277 ~ Growing Coo
base L277 ~ H:.:ffr:".a::. Pas

LZT [optic~sJ sc~~~e' ;

Procedure Usage;
Begin
Wri':eLn ('Usage:
:Wri teLn;
:WriteLn(IC#o#####
:be') ;
Wri teLn (I

.to') ;
·Wri teLn (,
flags:');
Writ-etn (' 1
Wri-::eLn(' 2
WriteLn(' 3
.Wril:eLn(' 4

73

- decompress infile. '};

Note: flags 3/4 and 5/6 are mutually exclusive. ');

5 base LZ77 + Variable Coding Length encoder. ');
6 base LZ77 + Huffman Length encoder. '):

I
jWriteLn ('
IWriteLn ('
IWriteLn;
jwriteLn ('
IWriteLn;
!WriteLn('e
!
;Halt (0);
lEnd;

(Procedure Error (E String);
Begin
WriteLn;
WriteLn (E);
IHalt(O);

lEnd;

j

'Procecture Initialize;

VarIs: String;
i I, B, Status Integer;
I
IBegin
ICopyright;
I
IIf (ParamCount <> 2) Or (Length(ParamSt~(l)) <> 7) T~en
! Usage;,
i
iFindFirst(ParamStr(2}, Archive, CompFilel;
IIf DosError <> 0 Then
I Error('Fatal error: Source file(s) not fou-r:.d, nathing t'J COf:lP:::'?ss~ ,:

!S := PararnStr(l);
:5 :~ UpCaseIS[l]);
!If Not(S[l] In ['C', 'E']) Ther::.
! Usage:
RunType :~ 5[11;

:For I := 2 To 7 Do
Begin
Val(S[Ij, E, Status);

If {B < 0) Or (B > 1) O~ '3:a.:''':5 <> Ji

Usage;

boolean(Bj;
boolear.!.B) ;
boolean{B) ;

:= boolear:~3;;

boclean (E):
boolean(B} ;

Case I Of
2 HCMethod
3 MFBMethod
4 GCPMethod
5 HPMethod
6 VCLMethod:~

7 HLMethod
End;

End;

{ Flags 3/4 or mutua~ly ex=l~s:~e }
If (GCPMethod) ~~d (HP~e:h~j; ~~e~

Usage;

'{ Flags 5/6 or mutua:ly exc:~s:Je !
If (VCLMechod) ~_~d (HL~e:~~dl -~~­

Usage;

:WriteLn{'Compressi!:9 files'si :..:.s':::-,g: ta.se I..Z'; e::-,::o::':::-.:;' ,
:If HCMethod Then

WriteLn(' ~:..:.::~a~ ~':te~a:s ~~::~j:~g'

·If MFBMethod The~

Wri. teLn (, - ?~a: c:-, :.1..a~ b:::::%:'::;J' e:,.:::),j::-.~' i ;

·If GCPMethod Then

74

WriteLn(,
If HPMethad Then
WriteLn ('

If VCLMethad Then
Wri teLn (,

If HLMethad Then
WriteLn(,

WriteLn;
End;

+ Growing Coding Position encoding');

+ Huffman Position encoding');

+ Variable Coding Length encoding');

+ Huffman Length encoding');

Procedure WriteIODetails;
Begin
Averagekbps := (CampFile.Size / EClock) / 1024;
Averagebpb := (OutSize * 8) / CompFile.Size;

GotoXY(lS, WhereY);
Write(TatalBlocks:2, , blocks, Speed: " Averagekbps:7:3, , kbps, ');
WriteLn('Ratio: " Averagebpb:S:3, , bpb');
End;

Begin
Initialize;

:Repeat
Inc (FileCount);
TotalBlocks := CampFile.Size Div InBufferLen;
If (CompFile.Size Mod InBufferLen) > 0 TheD
Inc(TotalBlocks);

CurrentBlock : = 1;
OutSize := 0;

Name :-:= CompFile.Name + Copy(EmptyStr, 1, {12 - LengthICorr.pFil<;:.:;a:-:",e, ,;
Wri te (Name, ., block 1 of " TotalBlocks);
Assign{InFile, CampFile.Name);
Reset (InFile, 1);
If (DosErrar <> 0) or (IOResult ~> 0; TheD
Error('Fatal error: Cannot open file' .,. CO"1pF.l.':'e.!;or'.<::,

B := Pas ('.', CampFile.Name) i

If B = 0 Then
B := Length(CompFile.Name);

LZTFile := Copy(CornpFile.Name, 1, DJ ... '.:z:.';
Assign (OutFile, LZTFile);
Rewrite {OutFile, 1);
If DosError <> 0 Then
Error('Fatal error: Cannot create :i:e • .,. LZT?ile,;

BlockRead(InFile, Ir;.Buffer, Si.zeOf :=:-.3..:::<:::-', :::Fi.leS::.ze
StartClock;

While Not (EOF(InFile)) Do
Begin
CompressBlock;
OutSize := OutSize + Out?os;
BlackRead(InFile, InB'J.ffer, ~':":o:eOf;~:;'3:.:.ffer!, :,.:'::eS':ze,

GotoXY(21, WhereYJ;
I~c(CurrentBlcck);
Write (Currenr.Block, :>f '?-::::,:::.:S::::':::s,;
End;

CompressBlock;
OutSize := Ou~Size + Out?cs;

'N"ri teClock;
WriteIODetails;
Totalbpb :~ Totalbpb ~ Averagebpb;
Totalkbps := Totalkbps + A~erage~bps;

Cl'Jse(InFile) ;

75

Close (OutFilel;

FindNext (CompFile) ;
Until DosError <> 0;

Averagebpb := Totalbpb I FileCount;
Averagekbps := Totalkbps / FileCount;
WriteLn;

WriteLn(' 1 block ~ 16k (16384 bytes) ');
Wri te (FileCount: 3, , fi les processed, Avg Speed:
I) ;

WriteLn('Ratio: " Averagebpb:5:3, I bpb');
,End.

Figure B.9 - The LZT executable.

----- ----,,- ,

Averagekbps:7:3, • kbps,

LZT Real-Time loss-less Compression Utility vl.2.2.
, In fullfilment of my Masters Thesis, completed at the cape Technikon, Cape Town, ZA, 1998.

Copyright (e) 1995-1998Zahir Toufie. All Rights Reserved.

, Usage: LZT [options] source

: c###### - compress infile using a base U77 encoder, where # can be either 0,
, meaning On, or 1 meaning Off. Each # from left to right (ie 1-...6),

represents one of the follOWing flags:
1 = base l.Z77 + Huffman literals encoder.
2 = base l.Z77 + Match Flag blocking encoder.
3 = base l.Z77 + Growing Coding position encoder,
4 = base l.Z77 + Huffman Position encoder
5 = base l.Z77 + Variable Coding length encoder.
6 =base l.Z77 + Huffman length encoder.

Note: flags 3/4and5/6are mutuallyexdusive.

Figure B,IO - The LZT executable help screen.

76

	Acknowledgements

	Summary

	Table of contents

	Chapter 1. Introduction and problem statement

	Chapter 2. Introduction to loss-less compression
	Chapter 3. The LZT compression algorithm

	Chapter 4. Benchmarking LZT
	Chapter 5. Conclusion

	References

	Glossary

	Appendix A - LZT parameter settings

	Appendix B - LZT source listings

