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Summary

Data stored on disks generally contain significant redundancy. A mechanism or algorithm that
recodes the data to lessen the data size could possibly double or triple the effective data that

could be stored on the media. One mechanism of doing this is by data compression.

Many compression algorithms currently exist, but each one has its own advantages as well as
disadvantages. The objective of this study ‘s to formulate a new compression algorithm that
could be implemented in a real-time mode in any file system. The new compression algorithm

should also execute as fast as possible, so as not to cause a lag in the file systems performance.

This study focuses on binary data of any type, whereas previous articles such as (Hutfman.

1952:1098), (Ziv & Lempel, 1977:337. 1978:530), (Storer & Szymanski, 1982:928) and

(Welch, 1984:8) have placed particular emphasis on text compression in their discussions of

compression algorithms for computer data.

The resulting compression algorithm that is formulated by this study is Lempel-Ziv-Toufie
(LZT). LZT is basically an LZ77 (Ziv & Lempel, 1977:337) encoder with a buffer size equal in
size to that of the data block of the file system in questior. LZT does not make this distinction,
it discards the sliding buffer principle and uses each data block of the entire input stream. as
one big buffer on which compression can be performed. LZT also handles the encoding of a
match slightly different to that of LZ77. An LZT match is encoded by two bit streams, the first
specifving the position of the match and the other specifving the length of the match. This

combination is commonly referred to as a <position, length> pair.




To encode the position portion of the <position, length> pair, we make use of a sliding scale
method. The sliding scale method works as follows. Let the position in the input buffer, of the
current character to be compressed be held by inpes, where inpos is initially set to 3. It is then
only possible for a match to occur at position I or 2. Hence the position of a match will never
be greater than 2, and therefore the position portion can be encoded using only 1 bit. As inpos
is incremented as each character is encoded, the match position range increases and therefore

more bits will be required to encode the match position.

The reason why a decimal 2 can be encoded »sing only 1 bit can be explained as follows. When
decimal values are converted to binary values, we get 0y, = O, 1o = 1o, 2y, = 105, etc. As a
position of 0 will never be used, it is possible to develop a coding scheme where a decimal
value of 1 can be represented by a binary value of 0, and a decimal value of 2 can be
represented by binary value of 1. Only 1 bit is therefore needed to encode match position 1 and
match position 2. In general, any decimal value n can be represented by the binary equivalent
for (n — 1). The number of bits needed to encode (n - 1), indicates the number of bits needed to

encode the match position.

The length portion of the <pesition, length> pair is encoded using a variable length coding
(vlc) approach. The vic method performs its encoding by using binary blocks. The first binary
block is 3 bits long, where binary values 000 through 110 represent decimal values 1 through 7.
Where binary value 0 represents decimal value | as previously explained when coding a match
position. This coding scheme is possible. since no match length of 0 will ever be encoded. The
maximum binary value of a binary block is used to specify whether another binary block
follows the current binary block. in which case it is called the block to follow flag (bft). In this

case binary 111 speciftes that there should be another binary block following this one. Nexr a +




bit binary block is appended to the existing 3 bit binary block, resulting in a 7 bit binary block,
where binary value 111 0000 represents decimal value 8 and where the maximum binary value
of 111 1111 is meant to act as a bff. By continuing in this way the next binary block of bits are
appended. Each consecutive binary block is 1 bit bigger in size than the previous binary block.
The binary block size continues to grow until it reaches a size of 8 bits. At this point no further

increase to the binary block size is made and all subsequent binary blocks will be 8 bits in size.

A distinction has io be made between a literal or compressed character in the output stream.
This is needed in order to inform the decompressor of whether the next character that it reads
has to be decompressed or not. Making use « f a match flag fulfils this requirement. The match
flags are encoded the same way as in LZ77 (Ziv & Lempel, 1977:337) where binary value 0
indicates that a literal character is encoded and binary value | indicates that a match pair is
encoded. Additionally any literal character that is encoded is encoded using static Huffman

{Section 2.3), where the frequency table is derived from the characters found in the current data

block.

The LZT algorithm is tested against various current compression algorithms using the full test
data set from the Calgary/Canterbury compression corpus. The Calgary/Canterbury
compression corpus is a set of text and binary files. specifically selected for use by the Internet
and academic community to test the efficiency of compression algorithms. The resulting
average compression ratio on the test data is 3.249 bits per byte, with an average 180 kilobytes
per second compression speed. The test machine is an Intel Pentium, running a 150 MHz

processor with 96 MB RAM.

In conclusion, it can be derived from this study. that the LZT algorithm is more efficient for

implementation in a real-time environment than currently available compression algorithms




(Section 4.2). Since it has a higher compression ratio than that of currently available real-time
compression algorithms. It should also be noted that only 68 kilobytes of RAM is required by

the LZT program in order to execute successfully on a computer.
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Chapter 1 - Introduction and problem statement

1.1 Introduction

Data stored on disks generally contain significant redundancy. A mechanism or algorithm that
recodes the data to lessen the data size could possibly double or triple the effective data that

could be stored on the media. One technique of doing this is by data compression.

1.2 Problem statement

In the past two decades, many advances have been made in the field of data compression and
more so when implementing them to run in a real-time mode in file systems. Faster and more
productive compression algorithms have been produced, but with every advantage that a new
compression algorithm brings, there are also disadvantages. Be it in its speed of execution or in
the ratio of the resulting compressed data. Another problem that becomes evident is that all
these compression algorithms were implemented into file systems that were not originally
designed to handle compression of its files. With this. a certain performance and compression

loss had to occur in order to achieve successful implementation of a compression algorithm into

existing file systems.

1.3 Research objectives

The objective of this study is to take what is currently known about data compression and file
systems, and to formulate a new compression algorithm that could be implemented in a

real-lime mode in any file system. The new compression algorithm should also be as fast as




possible in its speed of execution so as not to cause a lag in the file systems performance. The
intention is not to design a new file system, but merely to design a compression algorithm that
is universally adaptable into existing file systems. This study focuses on binary data of any
type, whereas previous articles such as (Huffman, 1952:1098), (Ziv & Lempel, 1977:337;
1978:530), (Storer & Szymanski, 1982:928) and (Welch, 1984:8) have placed particular

emphasis on text compression in their discussions of compression algorithms for computer data.

1.4 Forward

During the research many types of compres ion algorithms were found. Some of them being
run-length encoding (Welch, 1984:8), statistical encoding (Huffiman, 1952:1098), arithmetic
encoding (Cormack & Horspool, 1987) and substitutional encoding (Ziv & Lempel, 1977:337:

1978:530) (Welch, 1984:8).

In the next chapter an introduction to data compression will be given. A detailed analysis of the
different types of algorithms together with their respective advantages and disadvantages will
be done. There are many more algorithms and derivatives in existence today. However those
that are discussed, are the most commonly known algorithms and also the algorithms that witl

later form a basis for the new algorithm, namely Lempel-Ziv-Toufie (LZT).

In chapter 3, a detailed description of the LZT algorithm as well as the engineering behind the
LZT algorithm will be given. Various implementations of the LZT algorithm will also be given.
The main reason behind giving more than one LZT implementation is to show the advantages

or disadvantages of certain mathematical coding techniques.
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In chapter 4, a benchmarking data set namely The Calgary Corpus will be discussed. This
benchmarking data set will be used to compare the performance of the various LZT algorithm
implementations, against those existing data cormpression algorithms as discussed in chapter 2.
It is necessary to note that only certain data compression algorithms that are covered in chapter
2 are used in the comparison. Most of the data compression algorithms given in the comparison

are also current derivatives of the basic data compression algorithms covered in chapter 2.

In chapter 5, a conclusion of the findings of the study is given as well as a section on future

trends and possibilities.

1.5 Algorithmic conventions

Algorithms are used in some sections to facilitate a better understanding of the examples given.
With these algorithms, certain conventions had to be used. Figure 1.1 lists some of the
conventions used, with the relevant syntax and the description of the syntax. Additionally
whenever an input file is read character by character. the last character that is read at the end of
the file will automatically set an end of file (EOF) flag to true. While the end of the file has not

yet been reached, the EOF flag will be set to false.

Certain data structures were used in order to identify the type of a variable as used within the
algorithms. These are character string variables that can contain one or more characters.
character variables that can contain onfy one character and numerie variables that can contain
any numerical value. Another data structures used 1s an array. This type identifies a table
containing more than one entry based on the before-mentioned variable types, e.g. a numeric

array a would be a table called a containing more than one entry of a numerical type.

(8]



An input stream refers to an input source of some kind. This can be a computer file or a portion
of a computer file. Similarly, an output stream refers to an output source of some kind. This can

also be a computer file or a portion of a computer file.

When using the syntax a; with an array, reference is made to array a entry number i. When
using the syntax a; with reading an input stream, reference is made to reading the character at

position i within the input stream and storing its value into variable a.

A &= | Wwhere a is assigned the value of b.
e.g. If b = 3, then a « b would result in a = 3.
If b ="%“C”", then a « b would result in

a="C".
Where a is assigned the value of the sum of b & c.
e.g. If b =3 and e = 5, then a « b + c would
result in a = 8.
If b="C" and ¢ = “D”, then a « b + ¢ would
result in a = “CD”.
Initialise numeric variable a to contain 0.

a<« b +c

a« 0
£ < 0 Initialise each entry in the numeric array
H variable £ to contain 0.
a « " Initialise character string variable or character
variable a to contain the empty string.
£ < wr Initialise each entry in the character string
“ array variable or character array variable £ to

contain the empty string.

Figure 1.1 - Algorithmic conventions.




Chapter 2 - Introduction to loss-less compression

2.1 Run-length encoding

Run-length encoding is achieved when sequences of identical characters are encoded as a count
field plus an identifier of the character that is repeated. Figure 2.1 shows how a sample string of

characters would be encoded using run-length encoding.

Sample text
azaabbbbaacccce

When compressed using run-length encoding
Jadb2adc

Figure 2.1 - Run-length encoding example.

| Sample text
| 2aaddddblZcll
I

1
H

When compressed using run-length encoding
3ad4p22c2l

Figure 2.2 - Run-length encoding exampie. using single character suppression.

Distinguishing the count fields from normal characters is a problem with run-length encoding
for character sequences intermixed with other data. Figure 2.2 shows another run-length
encoding example that uses single character suppression. This is when a single cheracter
occurrence is encoded without a count field. It is clear from the example that the compressor
encodes correctly. The decompressor however will have a problem decompressing as there is

no way of telling whether the b at position 5 is the count field for the 2 ar position 6 or whether




the 2 at position 6 is the count field for the 2 at position 7. One possible solution would be to

use a special character to mark each run of characters.

Sample text
aaabbdccc

When compressed using run-length encoding
€3a@2bEde3c

Figure 2.3 - Run-length encoding example, using character runs.

o :the current repeating character that is to be compressed.
¢ :the total number of occurrences oi 0.

k :the current character read from the input stream..

i :the position of the character k, within the input stream.

c«0
i1

0 <«

repeat

read k; from the input stream

if (k; = 0) or (o="") then
ce—c+1
o<k

else
write “@” into the output stream
if ¢> | then

write ¢ into the output stream

write o into the output stream

o<k
c«1
end if

ie—itl
until EOF = true

Figure 2.4 - Run-length encoding algorithm, using character runs.




This procedure is sufficiently capable of handling normal text, but not arbitrary bit patterns as
those found in binary data. Figure 2.3 shows an example of an implementation using character

runs.

From Figure 2.3, it is clear that 2 or 3 characters are needed to mark each character run, hence
this type of encoding would not be used for runs of less than 4 characters, in order to achieve
compression. Figure 2.4 shows the actual algorithm for such a run-length encoding

implementation.

Run-length encoding is a very primitive way of compressing data and only yields significant
results in data files with long streams of recurring bit patterns. Suitable data files that might
benefit from this compression algorithm would be graphics files that comain long streams of
recurring bits, which are usually associated with a certain colour pattern. Unfortunately, normal
data files such as word processor documents, database files or normal program binaries would
not yield significant results (Welch, 1984:8), and as such. run-length encoding would not be

suitable for use with a compressed fiie system.




2.2 Overview of statistical encoders

Statistical encoders use an algorithm which encodes or decodes a character with a number of
bits proportional to -log.(p), where p is the predicted probability. All statistical encoders have
this characteristic. It must be noted that statistical encoders may round the encoded number of
bits up or encode with extra bits. For example, let the input data consist of only three different
characters, namely a, b and c. Let the statistical encoder then be told by virtue of a hard coded
table that it is to expect that @ occurs 50% of the time and that b as well as ¢ occur 25% of the

time. With this we would want to code as follows:

1 bit for character a as -log:(0,5) = 1

2 bits for characters, b and ¢ as -log:(0,25) =2

oo |gee

a 1
b 01 00
[2- 00 c 01

Figure 2.5 - The basic set of binary codes for the three character alphabet.

The encoder could then use any one of the four sets of binary codes as shown in Figure 2.5 The

most important factor is that the lengths of the binary codes conform to -log:(p).

Data files composed of characters found in a predefined table, can be encoded by a statistical

encoder by means of predicting each character with equal probability. An example of such a




table that can be encoded using equal probabilities for each character is the ASCII table. The
ASCII table contains 256 characters, each character of which uses one byte to uniquely
represent itself. The number of bits used by a byte can be obtained by assigning an equal

probability p, where p = 1/,5¢ for any of the 256 characters, hence

number of bits = -Iogz('/gsd

aa 11

ab o
ba 001
bb 000

Figure 2.6 - A basic blocking set of binary codes.

Sample text
aaababbaaabb

When compressed using statistical encoding with blocking
101010011000

Figure 2.7 - Statistical encoding example, using blocking.

Another type of statistical encoder uses a fractional number of bits to represent a character. An

example of such an encoder is an arithmetic encoder, uetail of which can be found in

section 2.5.

Another example is a blocking encoder, which works as follows. First, a table is built
containing every two character combination that exists in the input stream. Using this table, a
set of prefix-free codes (Huffman, 1952:1098) is created for each entry in the table, using the

Huffman algorithm (Huffman, 1952:1098) as explained in section 2.3 or the Shannon-Fano




(Shannon & Weaver, 1949) algorithm as explained in section 2.4. For example, if an input
stream consisted of aaababbaabb, and our prefix-free codes are as shown in Figure 2.6, then

the input stream after encoding would be as shown in Figure 2.7.

From Figure 2.6, it is stated that an aa combination is encoded with 1 bit. Thus each a in that
combination is encoded with 0.5 bit. The ba and bb combinations are encoded in 3 bits. Thus,
each character in those combinations is encoded with 1.5 bits. Hence, in this way a statistical

encoder is able to encode a single character using a fractional number of bits.

A statistical encoder creates a set of binary codes by using an iterative or recursive algorithm as
described by (Huffman, 1952:1098) or (Shannon & Weaver, 1949). The resulting binary codes
are called prefix-codes. A prefix-code has the characteristic that no prefix-code is the prefix of
another prefix-code (Huffman, 1952:1098). For example, let @, b and ¢ be the only input
characters. Figure 2.8 does not contain a prefix-free set of binary codes, since the decoder will
have two possible outputs of “aac” or “be” for the input stream of “1101”. Figure 2.9 on the
other hand does contain a set of prefix-free binary codes as it will output the correct sequence

of “aab” for the input stream “11017.

a EN

b i
c 01

Figure 2.8 - A non prefix-free set of prefix-codes.

b 01
c 00

Figure 2.9 - A prefix-free set of prefix-codes.
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In the following two sections, Huffman encoding and Shannon-Fano encoding will be described

with emphasis on how they achieve the creation of a set of prefix-codes using a binary tree.

11



2.3 Huffman encoding

Huffman first developed a classic binary tree usad to generate a set of prefix-codes. The idea
behind Huffman’s algorithm is to use short bit strings to represent the most frequently used
characters and to use longer bit strings to represent less frequently used characters. The

algorithm as shown in Figure 2.11, can be explained as follows.

Create a table of frequencies containing each possible character found in the input stream as
well as the corresponding number of times that each character occurs in the input stream. For
example if the input stream is “ababaca” ther. Figure 2.10 shows what the resulting frequency

table will look like.

Figure 2.10 - A basic frequency table.

The frequency table is a simple table listing each character in the input stream in non-increasing
order of how many times they have occurred. The values obtained from the frequency table are

then used to create a binary tree consisting of a root at the top and branches, which consists of

more branches or leaf nodes.

The Huffman algorithm creates a binary tree from bottom up. The two entries in the frequency

table with the smallest frequencies are combined into a binary tree as in Figure 2.12, resulting

in a new combined frequency.

12



s :the sum of two frequencies from f.

f  :the array of frequencies (i.e. number of occurrences) of each character
or sub-string.

k  :the current character read from the input stream.

: the position of the character k, within the input stream.

j  :the index of an element within a frequency table for a specific
character.

v :the vertex of a new binary tree.

x :the index of an element within a frequency table for a character that
has the smallest frequency.

y  :the index of an element within a frequency table for a character that

has the second smallest frequency.

repeat
read k; from the input stream
j < index in f of element representing character k;
fef+1
i—itl
until EOF = true

repeat
x « index in f of element with the smallest value
y <« index in f of element with the second smallest value

s+ 1,
let the descendants of v be the terminal vertices representing v, + v,

if f,= value of a vertex of an existing binary tree

join the vertex represented by f;to the terminal vertice representing v,
else

assign f, to the terminal vertice representing vx
end if
if f,= value of a vertex of an existing binary tree

join the vertex represented by f, to the terminal vertice representing v,
else

assign f, to the terminal vertice representing vy
end if

delete elements f, and f, from
add a new element s into f
until f contains only 1 elements

Figure 2.11 - Huffman algorithm for creating a prefix-free binary tree.

The two entries that were combined are deleted from the frequency table and inserted in their




place in the frequency table is an entry for the new combined frequency. It is important to note
that the table stays sorted in non-increasing order of frequencies. The above process is repeated
until only one entry remains in the frequency table. The result is a Huffman prefix-free binary

tree as in Figure 2.13.

The input stream is encoded by traversing the binary tree from top, down. By either moving left
or right until the character that is being encoded is reached. Each time a left or right node is

reached, we encode a “0” or “1” bit respectively.

b c

o

Figure 2.12 - The first binary tree section of a Huffman binary tree.

7
/N,
VAN

T

Figure 2.13 - Our completed Huffman binary tree.

Using the previous example, the resulting output bit stream would be 01001001107, where an
“q7 is encoded with a *0” bit, a “b” is encoded with the bit string “10” and a “¢” is encoded

with the bit string “117. This algorithm is referred to as a static Huffman algorithm. The static

14



Huffman algorithm yields a set of prefix-free binary codes, since no one prefix-code is the

prefix of another prefix-code.

In conclusion, it is found that at least two passes over the input data, is required in order to
encode it. The first would be to create the frequency table and the second would be to do the

actual compression. The following two disadvantages become evident:

e the speed of execution will suffer due to the two passes required, and

» the decoder must receive the original freauency table in order to perform the decompression.

An adaptive approach can be used to overcome both disadvantages. The adaptive approach
works as follows. Create an initial frequency table where all the characters found in the nput
siream have a frequency of one. From this frequency table, a Huffman binary tree is created
while at the same time we preserve the initial frequency table. After inputting the first
character, the frequency of the inputted character is incremented by one in the initial frequency
table. The Huffman binary tree is then recreated from the updated initial frequency table. After
inputting the next character, the initial frequency table is again updated and the Huffman table

is again recreated. In this way, an adaptive Huffman binary tree is maintained.

The adaptive approach requires only one pass for compressicn as no detailed frequency table
has to be build before compression starts. In addition, no frequency table has to be sent to the
decoder, since the decoder builds its own frequency table as it goes along. Huffman’s algorithm
is optimal in length as no other prefix-free binary tree will produce a better compression result

for the given input stream (Huffman, 1952:1098).

5



2.4 Shannon-Fano encoding

Shannon-Fano encoding (Shannon & Weaver, 1949) is similar to Huffman encoding in many
ways but differs in the way in which the binary tree is created. The Shannon-Fano algorithm
however does not guarantee to create optimal prefix-codes, but approaches optimal behaviour
as the number of characters approaches infinity. The advantage of the Shannon-Fano algorithm

is the simplicity of the creation of its prefix-free binary tree as shown in Figure 2.14.

f  :the array of frequencies (i.e. number of occurrences) of each character

or sub-string.

k :the current character read from the input stream.

i  :the position of the character k, within the input stream.

j  :the index of an element within a frequency table for a specific
character.

pe : the prefix-code of a character or sub-string.

fn(-—O
i1

repeat
read k; from the input stream
j « index in f of element representing character k;
fiefi+1
iei+l
until EOF = true

convert each frequency in f to a percentage based on the sum of all the
frequencies within f

repeat
divide the elements into two array’s called fy; 1, and fy;_y,. so that the

sum of the percentages of the latter two arrays are approximately equal

each element of the arrays fy s, and .y, also contains an additional
variable called pec

append a 0 bit to each pe field of f1 s
append a 1 bit to each pe field of £y yn
until all the array’s fi; x and fy1.ya contain only 1 element

Figure 2.14 - Shannon-Fano algorithm.

16



Create a table of frequencies containing each possible character found in the input stream. A
percentage based on the entire frequency table is calculated for each frequency in the frequency
table. Each percentage in the frequency table serves as the probability of each character
occurring in the input stream. For example if the input stream is “ababaca” then Figure 2.15
shows what the resulting probability table will look like. The probability table is a simple table
listing each character in the input stream in non-increasing order of probability. The
probabilities obtained from the probability table are then used to create a binary tree consisting

of a root at the top and branches, which consists of more branches or leaf nodes.

Figure 2.15 - A basic probability table.

Prefix-free codes are created by dividing the probability table into two tables, in such a manner
that the sum of the probabilities of the resulting tables is nearly equal. Each entry in the
prefix-free code column of the first table receives a “0” bit and each entry in the second table
receives a “1” bit as the first bit for their prefix-codes, as shown in Figure 2.16. Each of these
tables is then divided again to the same criterion as before, again appending a “0” bit to each

entry in the first table and a “1” bit to each entry in the second table. The result can be seen in

Figure 2.17.

This process is repeated until no table contains more than one entry, resulting in the prefix-free
codes as shown in Figure 2.18. The resulting prefix-free codes are similar to the ones obtained
for the Huffman algorithm. The reason for this similarity is that the input stream is very short.

With a bigger input stream the resulting binary trees tend do differ.

17



The encoding of the input stream is done exactly as in the Huffman algorithm. Whereby the
binary tree is traversed from top, down, allocating a “0* or “1” bit as required. This static
Shannon-Fano algorithm has the same disadvantages as with the static Huffman algorithm.

Hence, an adaptive approach can also be used here as a possible solution.

a 57% 0
b 29% 1
c 14% 1 !

Figure 2.16 - Shannon-Fano codes after the first division.

b 29% 10
| c [ 14% | 11 |

Figure 2.17 — Shannon-Fano codes after the second division.

57% 0

a
b 29% 10
(= 14% 17

Figure 2.18 - Shannon-Fano prefix-free codes on completion of the algorithm.

The Shannon-Fano algorithm might not create an optimal prefix-free binary tree because the
length of the prefix-code is equal to -logz(p), where p is the predicted probability of a character.
In the cases where it is possible to half a table into exactly two tables of equal probability, the

prefix-codes will be optimal. In all other cases, it may not be possible to obtain optimal codes.
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2.5 Arithmetic encoding

From section 2.3 and section 2.4, it could appear that Huffman or Shannon-Fano encoding is
perfect for compressing a stream. However, this is not the case. Huffman and Shannon-Fano
encoding are only optimal if and only if the character probabilities are integral powers of | or 2,
which is almost never the case. Arithmetic encoding does not have this restriction. The original

concept of arithmetic coding was suggested by Elias (1975:194).

Unlike Huffman and Shannon-Fano encoding, arithmetic encoding does not create prefix-codes
in order to encode characters. Instead, an input stream is encoded as an interval represented by
a real number r, where 0 > r < 1. Afier each character in the input stream is read, the value of
the real number needed to represent the resulting encoding is decreased, and the number of bits
needed to represent this real number is increased. Arithmetic encoding uses a probability table
containing input characters whose probabilities are then used to successively narrow the
interval used to represent the input stream. A high probability character narrows the interval
less than a low probability entry would. Hence high probability characters contribute fewer bits

to the encoding. The algorithm as shown in Figure 2.19 can be explained as follows.

Create a table of probabilities containing each possible character found in the input stream as
well as the probability of the number of times that each character occurs in the input stream, as
is done with Shannon-Fano encoding. For example if the input stream is “ababaca”. Figure
2.20 shows what the resulting probability table will lock like. The entries in the probability
table arc then used to create a partitioned interval |0, 1} as in Figure 2.21. Since each partition
has a lower and an upper limit, one of the two values must be included in the current partition,

For this study, the lower value will always be included in the current partition so that */100 falls
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within the partition used for character “c”, and so on for characters “b” and “a”. Now since the

first character is an “a” the interval is shrunk to | **/ il

f :the array of frequencies (i.e. number of occurrences) of each character

or sub-string.

k  :the current character read from the input stream.

i :the position of the character k, within the input stream.

j  :the index of an element within a frequency table for a specific
character.

r :aninterval within|0, 1]

ry :the maximum value of the interval r.

r; :the minimum value of the interval r.

fy<0
i1

I’h(—I
n<0

repeat (read input stream for the 1 time)
read k; from the input stream
j « index in f of element representing character k;
fi—fi+1
i—itl
until EOF = true

convert each frequency in f to a percentage based on the sum of all the
frequencies within f

i1
repeat (read input stream for the 2™ time)
read k; from the input stream

r « interval within r representing the probability of k;

if one or more leftmost bits of r; = one or more leftmost bits of r; then
write the corresponding leftmost bits of r; into the output stream

i—i+1

until EOF = true

Figure 2.19 - Arithmetic algorithm.
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This process is repeated, by continually shrinking the resulting interval into a smaller interval
until the entire input stream is encoded. In the above example, the arithmetic encoder is not
completely efficient, which is due to the short size of the input stream. With longer input

streams, the coding efficiency does indeed approach 100% as proven in Elias (1975:194).

a 57%
b 29%
c 14%

Figure 2.20 - A basic probability table.

l 100/100
a
43‘{'00
b 4
/100
£ 0
0 /100

Figure 2.21 - Our initial partitioned interval [0, 1.

An issue left unresolved by the concept of arithmetic encoding is that it appears that the
encoding algorithm transmits nothing until the final interval is determined. However, this delay
is not necessary. As the interval becomes narrower, the leading bits of the top and bottom

points become the same. Any leading bits that are the sanie may be transmitted immediately, as

they will not be affected by any further processing.
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The above algorithm is also static and presents us with the same disadvantages as the static
Huffman and Shannon-Fano algorithms. Hence, an adaptive approach as a possible solution can

be used as well.

The static approach is converted into an adaptive one by adjusting the character probabilities
after each new character is encoded, allowing the model to track the data being transmitted.
This approach is however not a particularly good estimate of the true displacement of the

various characters in the input stream.

Inter character probabilities should also be tak=n into account. Inter character probability is the
probability of one character following another in the input stream. For example, if an a is
inputted from the input stream, then the probability of a b being inputted next is the inter
character probability between a and b. One such arithmetic compression implementation that
takes inter character probabilities into account is Dynamic Markov Coding or DMC, which is

presented by Cormack and Herspool (1987).

One major disadvantage of arithmetic encoding is that the algorithm can consume rather large
amounts of memory, especially in the case of DMC. The arithmetic encoding process itself
involves a fair amount of number crunching, especially in the division of the interval. Hence
arithmetic encoding is currently unsuitable for any real-time implementations due to its slow

speed of execution and large memory requirements.




2.6 Overview of substitutional encoders

Substitutional encoders use an algorithm in which the encoder replaces an occurrence of a
particular group of characters, with a reference to a previous occurrence of that group of

characters. All substitutional encoders have this one characteristic.

There are two classes of substitutional encoders, both of which were first proposed by Ziv and
Lempel (1977:337; 1978:530). They are commonly referred to as LZ77 and LZ78. A derivative
of the LZ78 method and proposed by Welch (1984:8) commonly referred to as LZW, is used in

real-time environments, such as disk drive controllers, modems and network routers.

One major advantage of a substitutional encoder is that it compresses an input stream very fast.
Because of the speed advantage most current compression programmes like the UNIX compress
command uses some derivative of LZ77 or LZ78. Another advantage is that it requires no prior
knowledge of the input stream. This means that only a single pass through the input stream is
required, since there is no need to build any probability or weight tabie. This type of encoder is

usually used when a statistical test is either impossible or unreliable due to the length of the

input stream.

The compression ratio achieved by substitutional encoders outperforms that of most statistically

based encoders. The compression ratio can also be further increased when a substitutional

encoder incorporates some type of statistical algorithm as well.

The following two sections describe the LZ77 and 1.Z78/LZW encoders in more detail.




2.7 LZ77 encoding

The LZ77 algorithm is one of the simplest compression algorithms. The algorithm was first
proposed by Ziv and Lempel (1977:337). A slightly modified version was later proposed by
Storer and Szymanski (1982:928) and is commonly called LZSS. The LZSS derivative of the

LZ77 algorithm as shown in Figure 2.23 can be explained as follows:

The algorithm keeps track of the last m characters of data read. When a sub-string is
encountered that has already been read, it outputs a pair of values corresponding to the position
of the previous encounter as well as the length of the matched sub-string. The size of n is
determined beforehand and can be set to virtually any value. In effect the encoder moves a
fixed sized sliding buffer of size n over the input stream. The sliding buffer contains the current
inputted character as well as any previous inputted characters. The current inputted character is
contained in the first filled rightmost position within the sliding buffer noting that the sliding

buffer is filled from left to right.

Sliding buffer contents after reading the 1*' character.
f[lbcdabcabccabce

after reading the 2™ character.
cdabcabccabce

after reading the 3™ character.
abcabccabce

after reading the 4™ character.
bcabccabce

after reading the 5 character.
cabccabce

Figure 2.22 — A sliding buffer in action.

For example, if an input stream was made up of the character string “abedabcabecabee” and




the sliding buffer size was equal to 4, then Figure 2.22 shows what the sliding buffer would

contain after reading characters from the input stream from positions 1 through 5.

b :the sliding buffer, an array of characters from the input stream.

k :the current character read from the input stream.

i  :the position of the character k, within the input stream. .
w : the sub-string to be compressed.

p :the position of a matching sub-string.

1  :the length of a matching sub-string.

m : the minimum allowable length of a matching sub-string.

m<«3
ie2

read k, from the input stream and place into leftmost element in b
w <+« k;

repeat
read k; from the input stream
wewtk

if b has no empty elements then
shift the contents of b left by 1 element
insert k; into first empty leftmost element in b

if w exists previously in b then
p < position of the matching sub-string w within b
else
1 < (length of w)- 1
if 1>= m then
write a value 1 bit to the output stream to specify a match
write p to the output stream
write 1 to the output stream
w=k
else
write a value 0 bit to the output stream to specify a literal character
write leftmost character of w to the output stream
w < 2" [eftmost character from w
i <« position of the character w, within the input stream
end if
end if

=11
until EOF = true

Figure 2.23 - LZ77 algorithm.




When encoding a match, the position portion of a <pesition, length> match pair refers to the
position of a matching sub-string within the sliding buffer. A match is therefore only possible if
the matching sub-string is within the sliding buffer. Any matching sub-strings that are no longer

within the sliding buffer are ignored.

The modified LZSS algorithm works in more or less the same way except that it also makes use
of a look ahead buffer, the contents in which it tries to find a match for in the sliding buffer.
The LZSS derivative of the [.Z77 algorithm will be explained, since the LZSS algorithm yields

a better compression ratio than the original LZ77 algorithm.

To implement the LZSS algorithm, a fixed sized sliding buffer of a predefined size that is
initially empty must be created. The size of the sliding buffer 1s very important as it has a direct
relation to the size of the <position, length> match pair. For example, if the sliding buffer is of
size 4096 characters, then the match position can be encoded in 12 bits since 2'% = 4096. If the
match length were to use 4 bits, then encoding matches of up to 2* or 16 characters would be
possible. A total of 16 bits or 2 bytes would then be required to encode a sub-string match.
Which would mean that we have to find a sub-string match of at least length m, where

m = lengthfposition tag) + length(length tag) + 1, before compression would be possible.

Initialise a sub-string w with the first character of the input stream. Once a suitable sliding
buffer size is decided on, one character at a time is read from the input stream and placed in the

first empty leftmost position of the sliding buffer.

After each character is read, a search is done from the left to the right of the buffer, for a match
corresponding to w. If no match is found, the leftmost character in w is written to the output

stream. The sub-string w is then set to contain only the second leftmost character of itself. The




input stream is then read again starting from the character after the one now held by w. The
next read character is then appended to sub-string w. For example if w = “abed” the “a” would
have been written to the output stream and w would be set to “b”. The input stream would then
be read starting from character “¢”. After which a search would be performed through the

sliding buffer as before.

Once the sliding buffer is full, the contents of the sliding buffer are shifted one character to the
left. In doing so the leftmost character within the sliding buffer is discarded and an empty space

is created at the rightmost position of the sliding buffer.

If a match is found, then the match position is temporarily stored and no character is written to
the output stream. Note that it is possible to find more than one match in which case a table will
have to be kept to store all the possible match positions. The next character is then read and
appended to w. If after / inputs a match of length / is found, where I >= m and m is the
minimum match length required, then a <pesition, length> match pair corresponding to the
position and length of the matched sub-string is outputted. If however the / < m, then it is
assumed that there is no match and the process is performed as above to handle a no match

situation.

Note that an extra bit must also be written to the output st-eam in order to indicate to the
decoder whether or not the next piece of data that it reads is a normal character or a <position,
length> match pair. Decompression is achieved by reading the input stream character by
character and whenever a <position, length> match pair is encountered, that match pair is

replaced by a copy of the input stream found at the indicated position in the bufter with a size

of length characters.




The sliding buffer implementation as described in the above example, automatically creates the
least recently used (LLRU) effect, which as will become evident later, has to be done explicitly
in the LZ78 algorithms. Variants of the LZSS algorithm apply additional compression to the
output stream of the algorithm by using simple variable length codes or by using some form of
Huffman or Shannon-Fano encoding, all of which result in a certain degree of improvement

aver the basic compression algorithm,




2.8 LZ78/LZW encoding

The 1.Z78 algorithm is also a very simple compression algorithm. The algorithm was first
proposed by Ziv and Lempel (1978:530). A slightly modified version was later proposed by

Welch (1984:8) and is commonly called LZW. The LZ78 algorithm works as follows.

Sub-strings of data previously seen are entered into a dictionary of size #. When a sub-string is
encountered that is in this dictionary, the dictionary index corresponding to the position in the
dictionary of the encountered sub-string is written to the output stream. The modified LZW
algorithm is similar to the LZ78 algorithm except that the L. Z78 algorithm starts with an empty
dictionary. The LZW algorithm fills the first # positions with the full alphabet of current input
stream. So that if an 8 bits per character alphabet is used, LZW would fill the first 256 positions
in the dictionary with the actual 256 characters for that alphabet. The LZW algorithm yields a
better compression ratio than LZ78 proofl of which can be found in Welch (1984:8). Hence, the

focus of the explanation of the LZ78 algorithm will be via the LZW derivative.

To implement the LZW algorithm, a dictionary of a predefined size n is kept, which is initially
filled with each character found in the input streams. The size of the dictionary influences the
size of the encoding bit stream. For example, if the dictionary is of size 4096, then the indices
could be encoded in 12 bits since 2'* = 4096. Unlike the LZ77 algorithm and its LZSS
derivatives, a match of any size can be encoded and thus the algorithm is not limited 10 the

minimum length constraint where a match of length m must conform 1o

m >= length(position tag) + length(length tag) + 1.
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: the current character read from the input stream.
: the position of the character k, within the input stream.
: the sub-string to be compressed.
: the dictionary, an array of sub-strings already inputted.
: the index of an element within t of a matching sub-string.

i
w
t
i

w{_'ﬂ!l
ie1
tH(_""

repeat
read k; from the input stream
wewtk

if w = an entry within t then

j « index in t of element representing the matching sub-string w
else

write j to the output stream

add a new element w into t

w« k

end if

i+l
until EOF = true

write index in t of element representing w to the output stream

Figure 2.24 - The LZW compression algorithm.

The basic encoding algorithm can be outlined as in Figure 2.24. For example, if the input
stream is “abedabeabecabee” and the alphabet consisted out of 5 characters, then the inputs,

outputs and dictionary entries will look similar to that of Figure 2.25.

The decompression of LZW works exactly like the compression. A new sub-string is added to
the dictionary when the next character read from the input stream. All it needs to do in addition
is to translate each incoming index into a string and write it to the output stream. Using the
above example, the decompression would look something like that of Figure 2.26. There is one
exception to the LZW algorithm on the compression side that cause some trouble on the

decompression side. If the decompressor inputs an index before it is actually in the dictionary,

30



it won’t know what to do. Fortunately this is the only exception and can be resolved by hard

coding a handler to deal with this exception in an appropriate manner.

a a

b b a 256 ab

&) C b 257 bc

d d c 258 cd

a a d 259 da

b ab

(o @ 256 260 abc

a a c 261 ca

b ab

c abc

c c 260 262 abcc

a ca

b b 261 263 cab

c bc

e - 257 264 bce
e

Figure 2.25 - LZW compression.

a a a
b b b 256 ab

€ c c 257 bc

d d d 258 cd
256 a ab 259 da

o c c 260 abc
260 a abc 261 ca
261 ca 262 abcc
257 bc 263 calt
= B

Figure 2.26 - LZW decompression.

Unlike L.Z77 and its derivatives, the dictionary in LZW does not perform any LRU maintenance
on the dictionary indexes and sub-string. An implementation of LZW has to explicitly clear the
dictionary once full or implement some type of LRU method, so as to ensure that only the most

recently or most frequently used sub-strings remain in the dictionary.
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Chapter 3 - The LZT compression algorithm

3.1 Creating a new enhanced compression algorithm

In a DOS based file system the drive is divided into a root sector which holds system specific
data and the boot loader, 2 file allocation tables or FAT and a root directory. The rest of the
drive is split into equal clusters, each cluster is made up of 1 or more sectors. These clusters are
the file systems data blocks, usually multiples of 2 kilobytes (k), and ranging from 2k to 32k,
depending on the size of the drive in question. Other file systems data blocks might be of
different sizes. The Lempel Ziv Toufie (LZT) compression algorithm, which is derived from
this study, is a derivative of the LZ77 encoder with a fixed sized buffer equal in size to that of

the file systems data block.

An explanation of the basic LZT algorithm, of which Figure 3.4 shows the basic processing.
follows below. In section 2.7, it is shown that LZ77 uses a sliding buffer, which moves, over
the input stream. LZT does not make this distinction, it discards the sliding buffer principle and
uses each data block of the entire input stream, as one big buffer on which compression can be
performed. Therefore, if the input stream is n characters in length, and each data block is m
characters in length, in the case of x data blocks, » = m * x. Then the buffer size on which
compression will be done is m characters large. The fact that the sliding buffer principle is
discarded invariably makes the algorithm much easier to implement, less resource hungry and

much faster to execute.

[E
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The compression algorithm LZ77 keeps track of the last m characters of data read, when a
sub-string is encountered that has already been seen, the algorithm outputs a pair of values
corresponding to the position of the previous encounter as well as the length of the matched
sub-string. LZT handles the <position, length> match pair exactly as LZ77 does. LZT however
uses some prediction, as explained below, on the actual size of the position portion of the
<position, length> match pair and it also uses a variable length coding (vlc) methed to encode

the length portion of the <position, length> match pair.

For example, if an LZ77 encoder used a fixed sized sliding buffer of size 16384 characters, the
match position could be encoded in 14 bits siuce 2" = 16384. With LZT this changes, let the
position in the input buffer, of the current character to be compressed be held by inpos, where
inpos is initially set to 3. It is then only possible for a match to occur at position £ or 2. Hence,
the position of a match for inpos will never be greater than 2, and therefore the match position
portion can be encoded using only 1 bit, As inpos is incremented as each character is encoded,
the match position range increases and therefore more bits will be required to encode the match
position. For this study, LZT uses a file system data block of 16k in size unless stated
otherwise. Figure 3.1 shows all the possible bit lengths required to encode the match position if

a maximum 16k file system data block size s used.

When decimal values are converted to binary values, we get 0 o= 0y, 119= 15, 215 = 102, etc. As
a position of 0 will never be used, it is possible to develop a coding scheme where a decimal
value of 1 can be represented by a binary value of 0, and a decimal value of 2 can be
represented by binary value of 1. Only 1 bit is therefore needed to encode match position [ and
match position 2. In general, any decimal value n can be represented by the binary equivalent
for (n — 1). The number of bits needed to encode (n — 1), indicates the number of bits needed to

encode the match position. This sliding scale position method achieves about a 0.1 bits per

ad
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byte (bpb) increase in compression ratio, over another method that uses a static Huffman

encoding scheme. Where static Huffman is meant to refer to the two-pass method originally

explained in section 2.3.

[l
ro

i
3 4 2
5 8 3
9 16 4
17 32 5
33 64 ]
65 128 7
129 256 8
257 512 9
513 1024 10
1025 2048 11
2049 4096 12
4097 8192 13
8193 16384 14

Figure 3.1 - Bits required for a sliding scale position pointer.

The LZT match length portion is handled differently from that of the original LZ77
compression algorithm. In LZ77, a pre-determined amount of bits has to be reserved for the
match length, exactly as with the match position. This however is also found to be wasteful.
Two possible solutions were found by which the match length could be encoded more

efficiently. One is to use a static Huffman encoding scheme and the other is to use a method

called variable length coding or vic, as explained below.

The static Huffman encoding scheme is the two-pass method originally explained in section
2.3. Where the frequency table is based on all the possible match length values that will be
needed to encode the input stream. Hence, when a match length needs to be encoded, a prefix-

free Huffman code is used, instead of fixed bit encoding.

34



The vlc method performs its encoding by using binary blocks. The first binary block is 3 bits
long, where binary values 000 through 110 represent decimal values 1 through 7. Where binary
value 0 represents decimal value | as previously explained when coding a match position. This
coding scheme is possible, since no match length of 0 will ever be encoded. The maximum
binary value of a block is used to specify whether another binary block follows the current
binary block, in which case it is called the block to follow flag (bff). In this case, binary 111

specifies that there should be another binary block following this one.

Next a 4 bit binary block is appended to the existing 3 bit binary block, resulting in a 7 bit
binary block, where binary 111 0000 repres:nts decimal value 8 and where the maximum
binary value of 111 1111 is meant to act as a bff. Continuing in this way the next binary block
of bits are appended. Each consecutive binary block is 1 bit bigger in size than the previous
binary block. The binary block size continues to grow until it reaches a size of 8 bits. At this

point no further increases to the binary block size is made and all subsequent binary blocks will

be 8 bits in size.

Figure 3.2 lists some example matching sub-string lengths and what they would be encoded as
using vic. The vlc method has been compared to that of the static Huffman encoding scheme
and achieves nearly identical performance. The static Huffman encoding scheme however still
outperforms the vic method on files with a uniform stream of characters as those found in
graphics files, which usually contain long streams of recurring bit patterns. The disadvantage of
the vic method is that it reserves too long bit streams for the longer match length codes, which

decreases coding efficiency.




i & 000

2 001

7 110

8 111 0000

16 111 1000

22 111 111.0

23 111 1111 00000

32 131 13131 01001

64 111 1111 11110 001010

128 111 13111 11111 111110 0001011

256 111 1111 11111 111111 1111110 00001100
512 111 11311 11111 111111 1111111 11113111 00001101

Figure 3.2 - Examples of typical variable length codes.

As with the LZ77 algorithm, the LZT encoder needs to write one or more bits to the output
stream. This acts as an indication to the decoder whether the next bit stream that it reads is a
literal character or a <position, length> match pair. These extra bits are commonly referred to

as the match flags.

0 Both input sub-strings are literal characters
10 First a literal character then a match pair
11 Only a <position, length> match pair

Figure 3.3 — Match flag codes, based on static Huffman prefix-free codes.

The LZT algorithm was tested with match flags based on a predefined static Huffman encoding
scheme as shown in Figure 3.3. This method is said to improve compression (Bloom 1995).
However, the tests performed by this study indicated that this method yields no increase in
compression ratio. A simpler method, where binary value 0 indicates that a literal character
encoded and binary value 1 indicates that a match pair is encoded, was also tested. It was found
that both methods are equivalent in compression performance. LZT therefore uses the simpler
method, since it is found that this method yields a better performance in terms of speed of

execution over the predefined static Huffman encoding scheme.
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he : the array of static Huffman prefix-free codes created as per
Figure 2.11, based on all the literal characters in the data block

hl : the array of static Huffman prefix-free codes created as per
Figure 2.11, based on all the possible match lengths in the data block
b :the sliding buffer, an array of characters from the input stream.
k :the current character read from the input stream.
i :the position of the character k, within the input stream.
w : the sub-string to be compressed.
¢ :the leftmost character of the sub-string in w.
p :the position of a matching sub-string.
1  : the length of a matching sub-string.
m : the minimum allowable length of a matching sub-string.
s¢ : the no of bits used for the matching sub-string position obtained from

Figure 3.1 based onii.

m«3
ie2

read k, from the input stream and place into leftmost element in b
W k;

repeat
read k; from the input stream
wewtk
if b has no empty elements then
shift the contents of b left by 1 element
insert k; into first empty leftmost element in b

if w exists previously in b then
p <« position of the matching sub-string w within b
else
1 « (length of w)—1
if 1>=m then
write a value 1 bit to the output stream to specify a match
write (p — 1) using se bits to the output stream
write hl, to the output stream
we k
else
write a value 0 bit to the output stream to specify a literal character
¢ « leftmost character from w
write he, to the output stream
w « 2" leftmost character from w
i « position of the character w, within the input stream
end if
end if
i—itl

until EOF = true

Figure 3.4 — The LZT algorithm.
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The literal characters are also encoded using a static Huffman encoding scheme. Where the
frequency table is derived from the characters found in the current data block. See section 2.3
for a complete explanation of creating the statiz Huffman binary tree. By using the static
Huffman encoding scheme, 2 compression performance increase of 0.289 bits is achieved over

another encoding method that did not perform compression on its literal characters.




3.2 Implementing LZT

The LZT algorithm is derived by implementing different encoding methods into one algorithm.
Appendix A and Figure B.]0 lists the detail of each encoding method. More than one LZT
routine is used to provide some means of cross-referencing the results that is obtained in the

following chapter. Listed in no particular order, the LZT routines can explained as follows:

3.2.1 The base LZT routine

This is an LZT routine with no additional methods of encoding and can be explained as a 1.Z77
encoding process with hashing. This LZT routine executes faster than any of the other LZT
routines, as far as speed of execution is concerned. It however also has the lowest compression

ratio. For purposes of this study, this method of execution will be referred to as the base LZT

method of execution.

3.2.2 The base LZT routine with literal character encoding

This is the base LZT routine with an additional static Huffman encoding scheme used to encode
the literal characters of the output stream. Comparative to the base LZT routine, this routine
yields an average improvement in the compression ratio of 0.289 bpb over the test data set, as
per Chapter 4. For this reason alone, Huffman has become a big part of many compression

algorithms including LZT, in that it can significantly increase the compression ratio.

3.2.3 The base LZT routine with match flag encoding

This is the base LZT routine with an additional match flag blocking as per Figure 3.3, While
this study’s findings did indicate that this added encoding method yields an average
improvement in the compression ratio of 0.003 bpb. It is regarded as negligible given the extra

execution time required to process the match tlag blockings.




3.2.4 The base LZT routine with match position encoding

These are two base LZT routines each with additional encoding methods to compress the match
position portion of the <position, length> match pair. One of these two LZT routines
implements a sliding scale position pointer method to encode its match position. This method

yields an average improvement in compression ratio of 0.109 bpb.

The other LZT routine implements a static Huffman encoding scheme based on all the possible
match positions of the output stream. This method however, yields an average loss in
compression ratio of 0.351 bpb compared to the sliding scale position pointer method. The final
LZT routine therefore uses the sliding scale position pointer encoding method, since this
method provides both faster speed of execution and compression ratio than the other routine

based on the Huffman encoding scheme.

3.2.5 The base LZT routine with match length encoding

These are two base LZT routines each wiih additional encoding methods to compress the match
length portion of the <position, length> match pair. One of these two LZT routines
implements the vic method to encode its match length. This method yields an average

improvement in compression ratio of 1.157 bpb.

The other LZT routine implements a static Huffman encoding scheme based on all the possible
match lengths of the output stream. This method yields an average improvement in compression
ratio of 1.275 bpb. The final LZT rovtine therefore uses the static Huffman encoding scheme,

since this method provides a better compression ratio than the other routine based on the vic

encoding method.

It must be noted that the static Huffman encoding scheme which is used to encode the maich

position and length portions of the <position, length> match pair, is inherently slow to
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execute since excessive use of linked lists is made. With these, excessive linked lists, excessive
programming loops is used in order to process them and therefore such poor execution times for

both methods are recorded.

3.2.6 The final LZT routine

The final L.ZT routine as explained in section 3.1, is based on the base LZT routine with an
additional static Huffman encoding scheme used to encode the literal characters, an additional
sliding scale position pointer method to encode its match position and an additional static
Huffiman encoding scheme used to encode its match length. The result of which produces a
high performance compression algorithm with superior results in both speed of execution and

compression ratio.
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Chapter 4 - Benchmarking LZT

4.1 The Calgary Corpus

The Calgary/Canterbury compression corpus is used to evaluate the compression performance
of various compression schemes. Several other researchers are now using the corpus to evaluate
their compression schemes. For this reason, the corpus is chosen as the data set for the

benchmarking of this study.

The corpus comprises of these text files, namely:
bookl, book2, paperl, paper2, paper3, paperd, paperS, paper6, bib, news, proge, progl.

progp, trans

The corpus also includes these binary files, namely:

objl, obj2, geo, pic,

To confirm that the performance of schemes is consistent for any given type, many of the types
have more than one representative. Normal English text, both fiction and non-fiction, are
represented by two books and several papers, called book!, book2, paperl, paper2, paper3,
paper4, paper5 and paper6. More unusual styles of English text can be found in a bibliography,

called bib and a batch of unedited news articles, called news.

Three computer programs representing programming languages called progc, progl and progp,

are also included. A transcript of a terminal session, called trans is included to indicate the




increase in speed that could be achieved by applying compression to a slow line to a computer

terminal.

Two files of executable code, called objl and obj2, some geophysical data called geo, and a
black and white bitmapped picture, called pic can be found. The file geo is particularly difficult
to compress because it contains a wide range of data values, while the file pic is highly
compressible because of large amounts of white space in the picture, represented by long runs

of zeros.




4.2 Benchmarks

Various compression algorithms and LZT encoding methods were used to draw up this
benchmark. The compressicn ratios in terms of bpb are reported on. Speed in kilobytes per
second (kbps) is also reported on, and is measured, rounded to the nearest kilobyte. The speed
is also measured with all disk accesses. The hardware used for the benchmarking is an Intel
Pentium, running a 150 MHz processor with 96Mb RAM. No disk or memory caches were
used, in order to determine a uniform result. All tests were performed using executable code

running under Microsoft DOS 6.22.

Figure 4.1 and Figure 4.2 list the compression results for the various algorithms. The list is in
order of total average compression ratio from left to right, in decreasing order. Figure 4.3 shows

the average compression ratio and speed per compression algorithm.

It was found by this study that when the throughput of data to and from a file system drops to
below 150 kbps, the file systemn suffers from lag, which will mean a loss in speed in the file
system processing. Such a loss will not outweigh the benefits of an actual saving in disk space.
Many users would rather have less disk space than less speed. It is therefore concluded that a
compression algorithm will have to average at least a 150 kbps throughput on the benchmarking
hardware, in order to have a negligible effect on the file system in question. From Figure 4.2
one can clearly see that PKZip, developed by PKWare USA, still has the highest compression

ratio, but unfortunately, it hasa low 115 kbps throughput.

The L.ZS algorithm, produced by STAC Electronics is currently the most well known file
system, real-time compression algorithm. This algorithm is used in the famous Stacker Double-

Disk software and in the new Microsoft Double-Space software. As one can see in Figure 4.2, it
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performs poorly with regard to compression ratio in comparison with some of the LZT
encoding methods. The LZRW1 algorithm (Williams, 1987) improves over LZS, but it too does
not achieve quite the compression ratio of the LZT algorithm. LZP (Bloom, 1995), which is an

as yet unpublished algorithm, is also included in the benchmarking.

5.004 4671 | 3.758 | 3.712

bib 5.273 5.020 | 4.898
book1 6.679 | 6384 | 6.442 | 6250 | 5925 | 4.566 | 4.390
book2 5778 | 5482 | 5.525 | 5363 | 5.104 | 4.015 | 3.905
geo 6.300 | 6.288 | 6.117 | 6.176 | 6.204 | 6.162 | 4.790
news 5.868 | 5.536 | 5.525 | 5.440 | 5.080 | 4.180 | 4.175
objl 5309 | 5.103 | 4.948 | 5.024 | 5.110 | 4.209 | 4.294
obj2 4.543 | 4274 | 4202 | 4.195 | 4.204 | 3.441 | 3.357
paperl 5672 | 5380 | 5410 | 5252 | 5.013 | 3.965 | 3.912
paper2 5982 | 5.707 | 5.763 | 5.583 | 5.327 | 4.107 | 3.995
paper3 6.224 | 5906 | 5.955 | 5.773 | 5488 | 4.277 | 4.157
paper4 6.101 | 5.806 | 5.843 | 5.650 | 5391 | 4243 | 4.154
aper5 6.051 | 5.684 | 5.694 | 5.527 | 5.247 | 4296 | 4.229
paper6 5.527 | 5.264 | 5.291 | 5.136 | 4.907 | 3913 | 3.849
pic 1.347 | 1.319 | 1.299 | 1291 | 1.269 | 1.066 | 1.084
progc 5274 | 5.017 | 5.031 | 4.895 | 4.686 | 3.753 | 3.741
rogl 3.759 | 3.579 | 3.607 | 3.486 | 3.349 | 2.665 | 2.667
progp 3.643 | 3.443 | 3.459 | 3.369 | 3.244 | 2.586 | 2.619
trans 3.832 | 3.628 | 3.621 | 3.545 | 3.388 | 2.791 | 2.828
Ratio (bpb) | 5.176 | 4.934 | 4.931 | 4.825 | 4.645 | 3.777 | 3.659
Speed (kbps) | 180 345 200 185 300 180 10

Figure 4.1 - Various Calgary Corpus compression results.

Various encoding methods implemented in LZT were included in order to demonstrate the
efficiency or lack thereof, of the various encoding methods. For example, where encoding
method 4 is the fastest but least efficient in term of compression ratio whereas encoding method
6 is the slowest but has the most efficient compression ratio. From the results, it can be deduced
that by combining encoding methods 1, 3 and 6 into one algorithm, a high performance
compression algorithm with superior results in both speed of execution and compression ratio
would be produced. See Appendix A for a full lists the exact nature of each encoding method

implemented in LZT.
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The LZT algorithm was developed using the Pascal, programming language, which is not
optimal in performance as opposed to the assembler, programming language. If one were to
redevelop it in a low-level language such as assembler, one would get an even better

performance in terms of kbps.

bib 5.247 4.753 4.146 | 3.264 | 3.09

book1 5.849 | 5.434 5.718 | 3.781 | 3.683
book2 5.117 | 4717 4.563 | 3.395 | 3.150
| geo 6.810 | 6.754 6.799 | 4.573 | 5475
news 5.170 | 4.907 4777 | 3.609 | 3.426
objl 4.556 | 4.931 4861 | 4214 | 3.864
obj2 3.982 | 4.100 3.765 | 3.196 | 2.889
paper | S.117 | 4.627 4526 | 3.406 | 3.114
paper2 5.391 4.880 4890 | 3473 | 3.246
paper3 5.817 | 4.756 4.658 | 3.595 | 3.369
paper4 5.155 4.525 4.723 | 3.562 | 3.317
paper5 5.874 | 4.575 4238 | 3.628 | 3.32]
paper6 5.175 | 4.763 4.713 | 3.353 | 3.043

1585 | 2.045 | 1397 | 0.999 | 0.856
4533 | 4368 | 4.147 | 3274 | 2931
3618 | 3.496 | 2956 | 2.335 | 2.004
3473 | 3426 | 2.859 | 2326 | 1.989
3972 | 3.687 | 2.639 | 2497 | 2231
Ratio (bpb) | 4.802 | 4.486 | 4.243 [ 3.249 | 3.056
Speed (kbps) | 280 550 630 | 180 | 115

Figure 4.2 - Various Calgary Corpus compression results.

T

A test was also done using a disk cache with the LZT algorithm and it is found that a 100% to
110% increase in performance could be accomplished on the test hardware. Running a disk
cache with PKZip yielded more or less the same results. This would mean that the PKZip
algorithm would be more suitable to the research objectives. It is however concluded that the

LZT algorithm is a better choice, since not all file systems would be using a disk cache.
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Average Compression Ratio

Compression Algorithm

Compression Ratio (bpb)

Average Compression Speed

Compression Algorithm

0 50 100 150 200 250 300 350 400 450 500 550 600
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650

Figure 4.3 - Average Compression Ratio and Speed per Compression Algorithm.
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Chapter 5 - Conclusion

The research objective was to formulate a new compression algorithm that would yield a better
compression ratio than the currently available methods. The new compression algorithm would
also need to achieve a compression speed, so as to make itself transparent to a user. The third
problem faced was that not all file systems are created equally. Therefore, the new algorithm

should be easily adaptable for use with any file system.

With the LZT algorithm it is believed that all three objectives of the study has been accomplish.
It has been proven in section 4.2 that the LZT algorithm outperforms most currently available
compression algorithms in terms of compression ratio. Not even the world famous LZS
algorithm yields results comparable to that of LZT algorithm. It has also been proven that LZT
executes faster than the minimum required speed of 150 kbps. LZT in its Pascal form produces
an executable program, which is less than 60 kilobytes and can therefore by easily implemented
as a device driver or operating system extension without any extreme memory overhead. The
static Huffman used to encode the literal characters of LZT users less than 8 kilobytes at any
one time. Therefore, a total of 68 kilobytes should be sufficient to implement and execute the

LZT algorithm.

Thus, it can be concluded that the LZT compression algorithm satisfies all the research

objectives in that it provides adequate sclutions to all the problems originally stated.

During this study, it has been noted that arithmetic compression holds lots of potential in that it
is currently the cutting-edge as far as data compression goes. The disadvantage however of this
algorithm is that it uses excessive amounts of CPU power and system resources in order to

perform the actual compression. However with the increase in speed of current day

18



microprocessors, it might soon be possible to produce an arithmetic compression algorithm for
use in a real-tim¢ environment. The resulting algorithm most probably would have a

performance better than that of the LZT algorithm.
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Glossary

Algorithm: Pseudo code used to represent the workings of an information processing process.
bpb: Bits per byte. A byte usually contains 8 bits.

File system: A logical entity used to store computer files in which is usually implemented on a
computers disk drive.

k: Kilobyte, where 1024 bytes makeup a kilobyte

kbps: Kilobytes per second. Equal to 1024 bytes per second.

Loss-less: No information loss occurs. We merely represent the data in less space.

Real-time: A process whereby events take place without any delay.




Appendix A - LZT parameter settings

Figure A.1 - The different settings for the LZT compression algorithms.
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Appendix B - LZT source listings

The source code used for the various LZT implementations is given below. The source code is
compiled with a Turbo Pascal 7.0 compiler under Windows NT 4.0 with service pack 4
installed. The hardware used is an Intel Pentium, running a 150 MHz processor with 96Mb
RAM. Note that there is not much documentation explaining the source code. However care has
been taken in order to make it easily understandable. The Basic Unit as shown in Figure B.1,
contains all those miscellaneous variables and routines used by the LZT program. Figure B.2

lists the Clock Unit, which is used to measure compression performance of the LZT program.

nit Basic;

1}
EInterface

‘Uses Dos;

‘Const

| HCMethod : Boolean = False;
' MFBMethod : Boolean = False;
! gCpMethod : Boclean = False:;
! HPMethod : Boclean = False;
| vCIMethod : Boolean = False;
HLMethod : Boclean = False;

255;
16383;

T8BitDic
T14BitDic

: InBufferlen 163847
" outBufferlen = (InBufferlen Div 4, + In3uliferlern;

H
[
1

Pow : Array [0..14] Cf Wo
(1, 2, 4, 8, 1e, 32, €4, 125, 2I6, Sl2, 1324, 20C4a8, 27

W
&3
(Wil
b3
W
[
-
y-
A
[N
(28]
18

b;

Var
. SingleFreqg : Boolean;
. RunType : Char;

InBuffer : Array [1..
OutBuffer : Array [Z..

_ InPos, Qutbos, CutSize : Longlnt;
_ QutBitsUsed, Pass : Byrte;

. MatchPos, MatchPosBits @ word;
MatchFound : Boclearn;
MatchlLen, MinMatchnlen, Matchlen3licts,
LiteralCrar : word;
LiteralBits : Bytre;

‘Function Power2X (¥ : Integer, : Longlnt;

ih
h



EImplementation

gFunction Power2X(X

Integer) LengInt;
iBegin
{Power2X := Pow[X];
EEnd;
gEnd.

Figure B.1 - The Basic Unit.

iUnit Clock:

éInterface
;

‘Uses Dos;

‘Type

TTime = Record
H, M, 3, I : Word;
End;

EVar
8Time, CTime : TTime;
SClock, CClock : Real;
i L : LongInt;
i EClock : Real;

jProcedure StartClock;
Procedure WriteClock;

Implementation
{ Start the timers clo:zk

Procedure StartClocx;
Begin

.GetTime (STime.H, STime.M, 5Time.S5, $Time.I,;

‘L 1= STime.H;

i§Clock := (L ™ 3600} + {(3Times.M = &%, = 3Tirm
‘End:

i{ Writes the elapsed tims

"Procedure WriteClcck;

Begin

‘GetTime (CTime.H, CTime,M, ZTime.S, CTime.T,;

L = CTime.H;

‘CClock := (L * 266C) + ‘CTime.¥ = €7, -~ ZTirs.S -

‘EClock := CClock - SClecak;
JIf EClock = 3 Then

. EClock := 0.001;
[Writeln('Elapsed time - ', ECflcTsiTil,
End;

End.

Figure B.2 - The Clock Unit.




The Compress Unit as shown in Figure B.3 is used to manage the whole compression execution

as selected via the command-line flags from the LZT program.

%Unit Compress;

%Interface

i
i

%Uses Basic, Clock, 10, Hash, Huffman, VLC, Flag;

i

i
iVar
| LiteralsHuf : TLitRecArrayPtr;

, LiteralsFreq : TFregRecArrayPtr;
PosHuf : THufRecArrayPtr;
PosFreq : TFregRecArrayPtr;

1
[
| LenHuf : THufRecArrayPtr;

| LenFreq : TFregRecArrayPtr;
|

MaxFreq : Word;

Procedure CompressBlock:

éImplementation

i

iProcedure Resetvars;
gBegin
|MatchFound :=
{MatchPos := 0;
gMatchLen = 05
‘Tf HCMethod Then
' Begin

; LiteralChar
|

|

|

LiteralsHuf" [Ord!InBuifer!
LiteralsHuf” [Qrd{InBuffer

&)
‘U
Q
w0
t

LIRS
Al

LiteralBits
End
‘Else
! Begin
€ LiteralChar
| LiteralBits
- End;

"If GCPMethod Then

i Begin

If InPos > PowerZ2¥{MatcnPcs2its, Then
" Inc(MatchPosBits):

- End

Else

{ MatchPosBits := 14;

Ord (InBufferiInPzs);:
8;

!

iIf Not (VCLMethod) Then

! Begin

. MatchLenBits := 14;

" MinMatchLen := MatchPos3its - MatchlenZits - 25
Enag;

‘End;

‘Procedure SearchBuffer;

Var

S : HasnhStr;
i B, PL, B2, W : Word:;
L : LongiInrt:;

1

‘Begin




[ResetVars;

{{ Ignore the last 2 input bytes as it is no use

!{ write them out as ncormal literals
If InPos »= InFileSize - 1 Then
" Exit:

= 1 To Hashlen Do

‘For P
: InBuffer[InPes + P —

S[P]

1];

.{ Don't do any searches if we at input peosition 1

I{ setup yet

iIf InPos = 1 Then

: Begin

i If Pass = 1 Then
AddHash (S, InPos);

© Exit;

{ End;

P := FindFirstHash(S):

E{ If we at the 3rd last byte then ouput immediately as the match length

compressing them,

as no hashes has been

i{ will not get bigger than 3 for obvious reasons

'If InPos = InFileSize - 2 Then
- Begin
i If P <> 0 Then

Begin

MatchFound := True;

MatchPos := P;

MatchlLen := Hashlen:;

End;
End
Else
While

Begin

L := HashLen;
i Pl := P;
i P2 := InPos:

(P <> 0) And (P < Inpos} Do

While (InBuffer[Pl + L] = InBu
{((P2 + L) < InFileSize)

Inc{L});

2 rh

If InBuffer[Pl InBuffexr F2Z

Inc(L};

+ 1] =

If vCLMethod Then
Begin
MatchlenBits :=
MinMatchlen :=
£nd;

T .
PR

GetVLCLen!
MatcnPosBits -~ M

If {L > Matchlenj
Begin
MatchFound :=

! MatchPos := P;
{  Matchlen L
End;

Traey

I3

P := FindNextHash;
End;

EIf Pass = 1 Then
. AddHash (S, InPos};
:End:

Procedure Encode;
‘Begin

.Inc({Pass;;
SearchIdx := 1;

Tf GCPMethod Then

= MinMz--rlen

WG -
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i
]
| MatchPosBits := 1;
i

[Repeat
| SearchBuffer;
Compien := Matchlen;

If MatchFound Then
Begin
If HPMethod Then
Begin
MatchPosBits := PosHuf"[MatchPos - 1].Len;
i MatchPos := PosHuf*[MatchPcs - 1].Code;
é End:

If HLMethod Then
Begin
: MatchlenBits := LenHuf”[MatchLen - 1].Len;
g MatchLen := LenHuf”{MatchLen - 1].Code;
End;
'\ End;
§ OutputFlagResult
| Until InPos > InFileSize;
End;

éProcedure CreatePosHuf;

EVar
P : Word;
i MaxPosWeight : Longlnt;

:Begin
Inc{Pass):
'‘New (PosFreq) ;

‘MaxPosWeight := O;

‘For P := 0 To 16383 Do
PosFreg~[P] .Weight := 0:
‘Repeat
SearchBuffer;

I1f MatchFound Then

Begin
Inc (PosFreg”[MatchPos - 1].Weight!;

MaxPosWeight := PosFreg”[MatchPos - il Weight;

InPos := InPos + MatchlLen;
© End
~ Else

Inc{InPos);
Until InPos » InFileSize;

{ Scale freguency counts ¢ 1Iimi
MaxPosWeight := (MaxPosWeight Ii

For » := 0 To 16383 Do

Begin

N
I

If ((PosFreg”[Pl.Weight Div MaxPosWe:ghti = I
{PosFreqg” [P} .Weight <> G} Tren
PosFreq”{P].Weight := .
Else
PosFreq” {P}.Welght := PosFreq” [F).wWeight Div MaxFesWelghy;

[¥N

{ Initialize weight tatle }

If PosFreg”[P}.Weight = 0
! PosFreq”[P].Weight := $F
- Else




MaxFreq := P;
End;
PosHuf := CreateHuffArray(PosFreq, MaxFreq):
Dispose (PosFreqg) ;
CutputHufDic (PosHuf, MaxFreq);

InPos := 1;:
End;

Procedure CreatelLenHuf;

vVar
P : Word;
MaxLenWeight : Longlnt;

Begin
Inc (Pass);
‘New (LenFreq) ;

‘MaxLenWeight := 0;

:For P := 0 To 16383 Do
LenFreg~ [Pl .Weight := 0;

SearchBuffer;

If MatchFound Then
Begin
Inc(LenFreg” [MatchLen - 1i.Weight);

. 1f LenFreq”[Matchlen - 1}.Weight > MaxLlenWelght Then
! MaxLenWeight := LenFreg”[Matchlen - 1].Weight;

InPos := InPos + Matchlen;
End
Else

Inc{InPos);
Until InPos > InFileSize;

[Nal

la}
+

{ Scale freqguency counts %
MaxlLenWeight := (MaxLenwel

0
Goe

‘For P := 0 To 16383 Do
. Begin

If ({(LenFreg"([P).Weight Div Maxlerwelight: = () Ard
{(LenFreg” [P} .Weight <> 0} Then

LenFreq” [P].Weight := 1

. Else

LenFreq” [P].Weight := Lenfreg™[F].Welght Iiv MaxlenWerghy;

‘{ Initialize weight tabls !

If LenFreg”[P].Weight = C

LenFreg” [P].Weight := §F

. Else

MaxFreqg := P;

End;
‘LenHaf := CreateHuffArray(lenFreg, MazFreg;;
Dispose{LenFreg);
CutputHufDic (LenHuf, Max

InPos := 1;

‘End;

Procedure CompressBlock;
Begin

InitializelQ;

:InitHash;

‘Pass := 0;

4]
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'If HCMethod Then

! Begin

| New(LiteralsFreq):

i CreatelInBufFregArray{LiteralsFreg, MaxFregq):
LiteralsHuf := CreateHuffArray(LiteralsFreqg, MaxFreq):
Dispose (LiteralsFreq);

OutputHufDic{LiteralsHuf, MaxFreg):;

End;

Tf HPMethod Then
CreatePosHuf;

If HLMethod Then
CreatelLenHuf;

!If Not(S5ingleFreq) Then
: Encode;

If HCMethod Then
DisposeHuffArray{LiteralsHuf, T8BitDic};

1
]

If HPMethod Then
DispeseHuffArray {PosHuf, T14BitDic);

i
i
i

If HLMethod Then
DisposeHuffArray{LenHuf, T14BitDic);

DisposeHash;
End;

End.

Figure B.3 - The Compress Unit.

The Flag Unit as shown in Figure B.4 is used to implement the match flag binary coding routine
as described with Figure 3.3. Figure B.5 lists the Hash Unit. This unit does the fast dictionary
searches. It achieves overwhelming performance by implementing a three dimensional

dictionary. In the last dimension, it implements a two character dictionary.

Unit Flag:
iInterface
‘Uses Dos, Basic, I0Q, VLC;

Type

; TMatchRec = Record _

: MatchPos, MatchPos3its,
MatcnLen, MatzhlenBios @ Wordy
LiteralChar : Word;
Literalsizs : Bvte;
End;

Var ‘
_ SearchRes : Array [1..2} Of THatchieo;
SearchIdx : Byte;
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éProcedure QutputFlagResult;
%Implementation

iProcedure QutputFlagResult;
iBegin
{Tf MatchFound Then
Begin

If MFBMethod Then

Begin

SearchRes [Searchldx] .MatchPos := MatchPos;
SearchRes[SearchTdx] .MatchPosBits := MatchPosBits;
SearchRes [SearchIdx] -Matchlen := Matchlen;
SearchRes [Searchldx] .MatchLenBits := MatchLenBits;
|  SearchRes[SearchIdx].LiteralChar 0;:
i SearchRes[Searchldx].LiteralBits := 0;
; End
% Else
| Begin
i QutputSingleBit (1);
. OutputBits{MatchPos, MatchPosBits);
i QutputBits(Matchlen, MatchLenBits});

’

! End:
InPos := InPos + Complen;
| End
Else
Begin
If MFBMethod Then
Begin
SearchRes{Searchldx].MatcnPos := 0;
SearchRes[Searchldx].MatchPosBits = 07
SearchRes{SearchIdx) .Matchien := 0;

]
]

]
SearchRes[SearchTdx] .MatchLenBits := 0;
)

)

SearchRes[SearchIdx).LiteralChar := LiteralChar;
SearchRes[SearchIds).LiteralBits := LiteralBits;
End

i Else

! Begin

OutputSingleBit (0} ;
QutputBits{LiteralChar, LiteralBits.;
End;

; Inc(InPos);
i End;

If (MFBMethod) Then
: Begin
i Inc{SearchlIdx);

If {SearchIdx = 3) Then
If {(SearchRes{l].LiteralChar <> 0§} And

{SearchRes[2].LiteralChar <> 7% TI
Begin
OoutputSingleBit (0);
CutputBits(SearchRes([1}.Litera Char, Searchfes l].lLiteralBits,;
CutputBits(SearchRes{Z].Liveras’Char, SearchResiZ].literz.Bits:;
SearchIdx := 1;
£nd
Else
If (SearchRes|[l].LiteraiChar <> C; And
' {(SearchResf2].LiteralChar = 7, Ther
' Begin
OutputBits(2, 2};
QutputBits(SearchRes|[l].Litera:lhar, EearchRes!l).Literal3izs);
QutputBits (SearchRes[2] .MatchPos, SesrchResiZ) . MatchPrsBits;;

If SearchRes{2].MatchlenBits <> ( Thern
QutputBizsiSearchRes 2] . Matchiern, SearchRes[2
Else




OutputVic{SearchRes[2].Matchlen);

SearchIdx := 1;
End
Else
, Begin
; CutputBits {3, 2):
QutputBits (SearchRes|l].MatchPos, SearchRes[1l].MatchPosBits);

If SearchRes[1].MatchlLenBits <> 0 Then

OutputBits (SearchRes[l] .MatchlLen, SearchRes[l].MatchLenBits)
Else

QutputVLC (SearchRes[1]}.Matchlen);

SearchRes([1] .MatchPos := SearchRes|2].MatchPos;
SearchRes[1l].MatchPosBits := SearchRes|Z].MatchPosBits;
SearchRes[1] .MatchLen := SearchRes{Z2].Matchlen;
SearchRes[l] .MatchLenBits := SearchRes|[2].MatchlenBits;
: SearchRes[1].LiteralChar := SearchRes{Z].LiteralChar;
: SearchRes[1].LiteralBits := SearchRes[2).LiteralBits;
SearchlIdx := 2;
End;
End;
‘End;
jEnd.
Figure B.4 - The Flag Unit.
Unit Hashjy
:Interface
‘Uses Basic;
‘Const
- Hashlen = 3;
‘Type
THashSearchRecPtr = “THashSearchPec;
. THashSearchRec = Record
Ch : Byte;
Position @ word;
Next : THashSearchRecPLr;
End;
' THashlevelRecPtr = ~THashleve Rec;
. THashLevelRec = Record
i Nextievel : Array .2..T8Bi1:zliz! Cf Polnter;
End;

EashStr = Arrayl[l..HashLen. 0I Byze;

‘Procedure InitHash;
‘Procedure AddHash (NewHash : Hash3tr; HasnPos @ Word,:
;Procedure DisposeHash;

H

Function FindFirstHashi{Find
JFunction FindNextHash : Wor

‘Implementation

var
' RootHash : Arrav [0..7T8Bitfic. Cf Pointer;




SecondLevelHzash, NewlLevelHash : THashlLevelRecPtr;
CurrentHash : HashStr;

CCol, CRow : Byte;
SHashFtr, CHashPtr, NHashPtr, CRowHash : THashSearchRecPtr;

{ Tnitialize the hashing system |}
Procedure InitHash:

Begin

New (NewLevelHash) ;

iFor CCcl := 0 To TBBitDic Do

! Begin
RootHash[CCeol) := Nil;
NewLevelHash”™.Nextlevel[CCol] := Nil:
End;

End;

{{ Add & new hash to the current list }
‘Procedure AddHash (NewHash : Hash3tr; HashPocs : Word);
iBegin
ECCol := NewHash[1l}];

;If RootHash[CCol] = Nil Then

{ Begin

i New{SecondLevelHash);

! RootHash[CCol] := SecondLevelHash;
SecondLevelHash”.NextLevel := NewLevelHash” _ Nextlevel:

! End

‘Else

! SecondLevelHash := RootEash([CColl:

i
:New (NHashPtr);

‘NHashPtz~.Ch := NewHash[3]:
iNHashPtr~.Position := HashPos;
éNHashPtr“.Next = Nils

{CRow := NewHash[2];

iIf SecondLevelHash”.Nextlevel [CRow! = Nil Then
| SecondLevelHash~.NextLevel [CRow] := NHashPtr
iElse
. Begin

SHashPtr := SecondLevelBHash”.Nextlevel [CFow);

' CHashPtr := SHashPtr;

While CHashPtr~.Next <> Nil1 o
" CHashPtr := CHashFtzr”.Next;

; CHashPtr~.Next := NiashPtr;

% End;

‘End;

Procedure DisposeHash;

:Begin

‘For CRow := 0 To T8BitDic Do

: If RootHash[CRow] <> Nil Then

¢ Begin

° SecondLevelHash := RootHashiCFzw!;
For CCol := 0 To TEBitlic Do
Begin

e~

, SHashPtr := SecondlevelZasnhn”.Nextlevel TTcl};

While SHashPrr <> Nil Do

Begin
CHashPtr := SHashPtr;
SHashPtr := SHashPtr~ . Next;
Dispose!CHasnPtrr,:
End;

End;

Dispose {SecendlevelHash!;
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Dispose {(NewlLevelHash) ;
End;

;{ Find the first position using the current hash }

‘Punction FindFirstHash(FindHash : HashStr} : Word;
Begin
CurrentHash := FindHash;

If RootHash[CurrentHash([1l]] = Nil Then

Begin

FindFirstHash := 0;

Exit;

End;
iSecondLevelHash := RootHash[CurrentHashi{lll:
CCol := CurrentHash[2]:;

CRowHash := SecondLevelHash”.NextlLevel[CCol]:

\If CRowHash - Nil Then

! FindFirstHash := 0
iElse

FindFirstHash := CRowHash”.Position;
End;

{ Find the next position using the current hash }
'Function FindNextHash : Word;

1Begin

{CRowHash := CRowHash”™.Next;

EIf CRowHash = Nil Then

! FindNextHash := 0 { We are at the end of a row }
iElse

{ FindNextHash := CRowHash”.Position;

‘End;

EEnd.

Figure B.5 - The Hash Unit.

The Huffman Unit as shown in Figure B.6 is used to implement the various routines associated

with the creation of the Huffman binary trees.

‘Unit Huffman;
%Interface
‘Uses Dos, Basic, IO:

fConst

. DicQPad4 = 15; ( binary 20 1111
DicOPadg = 31; { binary 21 1111 »

~ DicXPadd = 47; | binary 1T 1111

© DicXPad8 = 63; { binary 11 1:ill ;

. MaxFreqRecs = 16383;

: MaxCanconRecs = 16;




i
Type
THufRec = Record

Code : Word;

Len : Bytes
End:

TLitRecArrayPtr = "THufRecArray;
TLitRecArray = Array [0..255] Of THufRec;

THufRecArrayPtr = ~“THufRecArray;
THufRecArray = Array [0..MaxFreqRecs] Of THufRec;

TPtrRec = Record
: Next : Word;
! End;

TPtrRecArrayPtr = "TPLrRecArray;
TPtrRechArray = Array [0..MaxFreqRecs] Of TPtrRec;

TFreqRec = Record
Weight : Word;
End;

f TFregqRecArrayPtr = "“TEFregRecArray;
| TFreqRecArray = Array [0..MaxFreqRecs] Of TFregRec;

LenCount, NextCode ; Word;

i
1
1
| TCanonRec = Record
! End;
i

! TCanonRecArrayPtr = “TCanonRecArray;
. TCanonRecArray = Array [1..MaxCanonRecs! Of TCanonPerzi

i -
'Procedure CreatelInBufFreghrray(Var Ffreq : TFregRechrraybir: TJar YarnFredg

\Wword) ;
{Function CreateHuffArray(Freq : TF-egRecirrayPrr; Size : Word, : Pointer;

'Procedure QutputHufDic(F : Peinter; Size : Word;;
'‘Procedure DisposeHuffArray(P : Pointer; HufSlze : Word,:

@Implementation

[
f{ Create frequency table of the lirzerals i tha Irnpun buffer
‘Procedure CreateInBuffreghrray.Var Fr=zqg : TiregRechrrayriri ‘ar Maxfreg
Word) ;
Var
¢ P : Word:;
. MaxWeight, Fregs : Longint:
‘Begin
‘{ Initialize Frequency polnters :
.Fer P := 0 To T8BitDic Do
Freq~{P].Weight := 0;
F{ Count freguencies of an € bit =.rhabet
‘MaxWeight := 0;
For 7 := 1 To InFileSize Do
. Begin _
Inc{Freg” [InBuffer{?]].Weighti;
If Freq~[(InBuffer([?]].Welight > MaxWelight Then
MaxWeight := Freqg®[InBuffer{2]].Welght;
End;

t
tt
O
b
M
ty

‘{ Scale freguency coOuns
‘MaxWeight := (MaxWeigh
Fregs := 0;

rt o
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'For P := 0 To T8BitDic Do

i Begin

i If (({Freg™[P].Weight Div MaxWeight) = 0) And (Freqg™[P].Weight <> 0} Then
Freg~{P].Weight =1

i Else
. Freqg”[P].Weight := Freq”[P].Weight Div MaxWeight;

i{ Initialize weight table }
{ If Freg™[P].Weight = 0 Then
, Freq” [P].Weight := $FFFF
: Else
{ Begin
MaxFreqg := P;
Inc{Freqgs):
End;
; End;
Elf Fregs = 1 Then
E SingleFreq := True

;Else

{ SingleFreq := False;

1End;

E{ Create canonical huffman codes for an alphabet }

:Function CreateHuffArray(Freq :@: TFregRechrrayPtr; Size : Word; : Pointer;
SVar

{ HufBig : THufRecArrayPur;

3 HufSmall : TLitRecArrayPtr Absclute HufBig;
Huf : THufRecArrayFtr Absolute HufBlig;

i Cancn ; TCancnRecArrayPtr;

I'P, Prevlen : Word;

| Bl, B2, Lowl, LowZ, PrevCanon : LonglInt;

; FreqPtr : TPtrRecArrayPtr;

‘Begin

‘Tf Size > T8BitDic Then

{ New(HufBig)

iElse

i New({HufSmall);

‘{ In cases where only one freguenzy was
{{ ie. The same characater was regeated f
{If SingleFreqg Then

3 Begin

i Inc(Huf~[Sizel.Len);

. Huf~[Size].Code := 0;

: CreateHuffArray := Huf;

i

CExit;

"~ End:

-{ Create and Initialize huffran poinuters

‘New {Canon} ;

iFor P := 1 To MaxCanonRecs Do

! Begin

: Canon”™{P].LenCount := 0;

. Canon” [P} .NextCode := 0;

. End;

‘New (FregPrr);

‘For P := O To Size Do

- Begiln

. FreqPtr~[P].Next := SFFEE;

. Huf~ [P].Code := 0;
Huf~[P}.Len := 0;

! Eng;

iRepeat

PLowl = -1;




Low2 := -1;

For P := 0 To Size Do
If Freg™[P].Weight <> SFFFF Then
If Lowl = -1 Then

Lowl := P

H Else

§ If Low2 = -1 Then

: Low2 := P

! Else

i If Freq”{P|.Weight < Freg”{Lowl].Weight Then

i Lowl := P

: Else

If Freq™[P].Weight < Freg”[LowZ].Weight Then
Low2 := P;

If Low2 <> -1 Then
Begin
Bl := Lowl;
Repeat
If Huf"[Bl].Len <> 0 Then
Dec {Canon” [Huf~ [Bl].Len].LenCcunt; ;

Inc (Huf~[Bl].Len);

Inc {Canon~[Huf~[Bl].Len].LenCount);
B2 := Bl;

| Bl := FregPtr"[Blj.Next;

i Until Bl = SFFFF;

FregPtr™ {B2] .Next := LowZ;

Bl := Low2;
Repeat
If Huf~{Bl].Len <> 0 Then
Dec (Canon” fHuf~ [Bl].Len].LenCount;;

Inc(Huf”{Bl].Lenj:

Inc(Canon” [Huf~{Bl].LlLen].LenCount);
Bl := FreqPtr~[Bl].Next;
Until Bl = $FFFF;

Freg” [Lowl].Weight Freg’ (Lowi!.weight - Freg® L-owe,.w=ljg
Freg” [Low2] .Weight := SFIFF;

" End:

Until Low2 = -1;

‘PrevLen := 0;
‘PrevCanon := -1;
For P := 1 To MaxCanonRecs Do
If Canon”[P].LenCount <> 0 Then

Begin
Canon” [P] .NextCode := (PrevCanon - - Troavien.i
PrevCanon := PrevCancrn + Canon”iP..
Prevlen := P;
End;
-{ Create and Initialize hufimar polrnters
For P := 0 To Size Do
If Huf"(P].Len <> O Then
Begin
Huf~[P].Code := Canon” [Buf~{Pl.Len .Nextloue;
Inc(Canon”[Huf~[F].Ler] . .Nextlcde, ;
End:
Dispose (FreqPtr);
Dispose (Canon) ;
‘CreateHuffArray := Hui;

End;
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i

{ Outputs the huffman code lengths for the alphabet }
Procedure QutputHufDic (P : Pointer; Size : Word);

Var
HufPtr : THufRecArrayPtr Absolute P;
W, Codelen, Same : Word;

iProcedure CutputCleanChar;
Begin

If Codelen = 14 Then

© QutputBits{Codelen, 5)
iElse

. QutputBits(Codelen, 4):
Inc (W) ;

End;

Begin

{ In cases where only one frequency was recorded, we
{ ie. The same characater was repeated for the whole
If SingleFreq Then

Begin

QutputSingleBit (1);

QutputBits (Size, 14}:

Exit;

{ End

% lse

i Begln
|

]

I

QutputSingleBit (0);
QutputBits(Size, 14):

i End;

W o= 0;

%Repeat

- Codelen := HufPtr~(W].Len;;

If (W= 0) Or (W > (Size - 21, Th=an
., OutputCleanChar
; Else
Begin
Same := 1;
While (Same < 256} And (W - Same < S:ize + 1, And
(HufPtr"[W + Sams].Len = Tcdelen, Do
Inc{Same);

If Same < 3 Then
JutputCleanChar
Else
If Cocdelen = 0 Then
If Same < 19 Then
Begin
CurputBits{DicOPad4, &.;
OutputBits(Same, 4;;
Inc (W, Same):
End
Else
Begin
CurputBics (DicCPads, &
QurputBits (Same, 8);
Inc (W, Same};
End
Else
If Same < 1% Thern
Begin
OurputBits (DicXPads, &:;
OutputBitsiSame, 4./
OutputCleanChar;
Dec (W) ;
Inc (W, Same):
End

need to do this
block

b

3
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! Else

: Begin
CutputBits{DicXPad8, 6):

i QutputBits(Same, 8}:

i OutputCleanChar;

: Dec (W) ;

i Inc (W, Same);

j End;

i End;

. Until W > Size;

lEnd;

5{ Disposes of a huffman array }
Procedure DisposeHuffArray(P : Pointer; HufSize : Word);

Var
LitPtr : TLitRecArrayPtr Absclute P;
HufPtr : THufRecArrayPtr Bbsclute ¥?;

Begin

Case HufSize Of

TBBitDic : Dispose(LitPtr};
T14BitDic : Dispose(Hufptr}:
End;

End;

End.

Figure B.6 - The Huffman Unit.

Figure B.7 lists the IO Unit, which implements ail the disk 1O routines. It also does the statistics

for measuring the compression performance of the LZT program.

‘Unit 10;
Interface
'Uses Dos, Basic, Clock;
Var
InFile : File;
InFileSize : Word;
~ QutFile : File;
‘Procedure InitializeIQ;

iProcedure OQutputBits{iStream : L
‘Procedure OutpurS8ingleBit {31t

5]

s =820 1 no

‘Implementation

‘{ Initializes the IC system variables
‘Procedure InitializeIO;

‘Begin

SInPos i= 1

i{ Make sure QJutBu
FillChar (CutBuffe

ffer sta
r, Sizeli:
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{ Reserve the next 6 bits of the output buffer so we know how/which H
{ methods was used to do the compression with. Matches the flag entered }

:{ on the command line }
OutBitsUsed := 6;

QutPos := 1;

End;

{ Outputs bit stream to the ocutput buffer }
Procedure QutputBits(LStream : LongInt; Len : Word);

Var
i I : Word;
{ LPtr : “LongInt;

Begin
'LStream := LStream shl CutBitsUsed;

‘LPtr := @OoutBuffer[QutPos];

LPtr~ := (LPtr® Or LStream);

i

i{{ Recalc the new output position in the output buffer }
iI := Len + QutBitsUsed;

!CutPos := QutPos + (I Div 8);

%{ Recalc how many bit's are left at th. current output position i
1OutBitsUsed := I Mod 8;
%End;

l{ Qutputs a single bit to the output buffer }
[Procedure OutputSingleBit (Bit : Bytej:

iBegin

{Bit := Bit shl OutBitsUsed;

§OutBuffer[OutPos] 1= (QutBuffer[GutPos] Cr Bit);

‘Inc (QutBitsUsed);

;If QutBitsUsed = 8 Then
' Begin

¢ OutBitsUsed := 0;

i Inc(OutPos);

" End;

‘End;

End.

Figure B.7 - The IO Unit.

The VLC Unit as shown in Figure B.8 is used to implement the variable length coding routine

as described with Figure 3.2.

jUnit VLC;

‘Interface
‘

'Uses I0;

‘Function GetVLCLen{Len : Wor
-Procedure CQutputVLC(Lan : %o
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EImplementation

lvar
: BTF, VLCBits : Byte;

i VLCValue, VLCLen : Word;
Function GetVLCLen{(Len : Word) : Word;
Begin
BTF := 7;
VLCValue := BTF;
VLCLen := 3;
iVLCBits 1= 3;
'While Len > VLCValue Do
! Begin
i If BTF <> 255 Then
{ Begin
{ BTF := BTF shl 1;
i Inc(BTF);
i Inc{VLCBits);
End;

{ Inc(VLCValue, BTFj;
¢ Inc{VLCLen, VLCBits):
i End;

fGetVLCLen := VLCLen;
End;

‘Procedure OutputVLC(Len : Word};
|Begin

EBTF = 7;
‘VLCValue := BTF;

1

EVLCBits 1= 3;

€While Len > VLCValue Do
Begin
~ QutputBits (BTE, VLCBits);

If BTF <> 2855 Then
Begin

BTF := BTF shl 1;
Inc {(BTF);
Inc{VLCBits):
End;

Inc{VLCValue, BTEF);
End;

‘QutPutBits (0, VLCBits):
End;

‘End.

Figure B.8 - The VLC Unit.

Figure B.9 lists the LZT front end executable. This executable takes as one of its inputs, a six
bit flag where each bit represents the required state of an algorithm found within the LZT

program. Figure B.10 shows the help screen of the LZT executable, which lists the required




input parameters and there descriptions. The LZT executable performs some pre-processing
before the actual compression is done. One of these pre-processing events is to break the input
file into smaller sector size chunks. This is done because the LZT algorithm is designed to work

with data blocks that are less than or equal to a disk sector.

Note that the Decode routine is not impiemented and does nothing. It is included merely to
show were such a routine would be placed. The internal workings of the Decode routine were

not required for the study and as such, it is not implemented.

i e, S ey

i{$A“;B’:D+1E_;F-;G+;l+tL+rN+rO_rP+1Q*'R+JS+1T—Jv_rX+rY*)
i{sM 4096, 0, 524288}

5Program Lenmpel Ziv_Toufie;

i
i
iUses Crt, Dos, Basic, Cleck, 10, Compress;
ECOnst

FileCount : LongInt = 0O;

EmptyStr = * '

var
B : Byte;
Totalbpb, Averagebpb : Real;
Totalkbps, Averagekbps : Real:;
_ TotalBlocks, CurrentBlock : Longint;
' Name : String{l2];

CompFile : SearchRec;
LZTFile : Stringl[l2};
InFile, OutfFile : File;

"Procedure Copyright;

;Begin

‘WriteLn('LZT Real-Time Loss-Less Compression Unility wl.2.2. In fullfilment
0fT);

Writeln('my Masters Thesis, compieted at the Cape
:1998.");

WriteLn('Cepyright (C) 1995-199% Zanir Toufle. RLL Rights Peserved.'.;
WritelLn;

End;

Procedure Usage;

Begin

Writeln{'Usage: LZT [options] source'!)

Writeln;

‘Writeln('c##$s$4 - compress infile using & pase 1Z77 ernccder, where = zan
‘be');

‘Writeln(' either

te');
‘Writeln ('
flags: ')
Wrizeln!’
Writelni{'
Writeln ('
WrirteLn('

= base
base
= base
= base

2 Ll RO e
I




(WriteLn(' 5 = base LZ77 + Variable Cecding Length encoder.');
WriteLn (' 6 = base LZ77 + Huffman Length encoder.');
Writeln;

WriteLn ("' Note: flags 3/4 and 5/6 are mutually exclusive.');
Writeln;

Writeln('e - decompress infile.’):

Halt (0} ;

End;

Procedure Error (E : String);
Begin

Writeln;

WriteLn(E);

Halt (0} ;

End;

Procedure Initialize:
Var
§ : String:

I, B, Status : Integer;

Begin
lCopyright;

'1f (ParamCount <> 2) Or {Length(ParamStr{l)) <> 7 Then
Usage;

FindFirst {ParamStr(2}, Archive, CompFile);
If DosError <> 0 Then

Error{'Fatal error: Source file(s) nct found, nothing U2 compress!';;
?S = ParamStr{l):
S := UpCase(S[1]);
If Not(S[1] In ['C', *E']} Then
i Usage;
‘RunType := S[1};
iFor I := 2 To 7 Do
. Begin
| val{S[I], B, Status};
i If (B < 0) Or (B » 1) Or ‘3:tatus <> I, Thern
© Usage;
. Case 1 Of
i 2 : HCMethod := booleani3;;
3 : MFBMetheod := booleaniB};
4 : GCPMethod := poolean(Z};
5 : HPMethod = boolean(3;;
€ : VClLMethod := boclean(Bj;
;7 : HLMethod := boolean(3;;
' End;
" End;
{ Flags 3/4 or mutually sxclusive |
If {GCPMethod) And (HPMethcd; Then
Usage;
'{ Flags 5/6 or mutually exclusize |
iIf (VCLMethod} And (HIMethod, Then
Usage;
WriteLn{'Compressing files's; using: base LI®? enczoding'.;
‘If HCMethod Then
i WriteLn(® + Hufiman Literals encading'
-If MEBMethod Then
WritelLn("' - Match Tlag tlocking encoding's:

-If GCPMethod Then




| WriteLn({"' + Growing Coding Position encoding’);
i1f HPMethod Then

! WriteLn (' + Huffman Position encoding’);

If VCLMethod Then

WriteLn(' + Variable Coding Length encoding');
If HIMethod Then

Writeln({’ Huffman Length encoding'j);

4

Writeln;
End;

Procedure WriteIODetails;

Begin

Averagekbps := {CompFile.Size / EClock}) / 1024;
Averagebpb := (QutSize =* 8) / CompFile.Size;

GotoXY (15, WhereY):
Write(TotalBlocks:2, ' blocks, Speed: ', Averagekbps:7:3, ' kbps, ');

'WriteLn('Ratio: ', Averagebpb:5:3, ' bpb');
{End;

Begin
Initialize;

i

|

;Repeat

i Inc(FileCount);

* TotalBRlocks := CompFile.Size Div InBufferlen;

If (CompFile.Size Mod InBufferlLen) > 0 Then
Inc (TotalBlocks) ;

. CurrentBlock := 1;

: OutSize = 0;

" Name := CompFile.Name + Copy(EmptyStr, {12 - LengthiCompFile.lame.,,;

11
Write(Name, ', block 1 of ', TotalBlocks);
. Assign{InFile, CompFile.Name);
Reset (InFile, 1);
If (DosError <> 0) or (IOResult <> 0; Then

Error{'Fatal error: Cannot open file ' + CompFile.hare.;
B := Pos('.', CompFile.Name};

If B = 0 Then

B := Length{CompFiie.Name); ) .

L2TFile := Copy(CompFile.Name, 1, b} - ".lzl'j

, Assign{QutFile, LZITFile);
. Rewrite{QutFile, 1}:
If DosError <> 0 Then ‘
Error{’'Fatal error: Cannot create Iile

BlockRead {InFile, InBuffer, Size0f !InBaffer!, InFlledize ;
StartClock;

: While Not (EOF(InFile)} 5o

* Begin
CompressBiock:
OutSize := OQutSize + OutPos; _
BlockRead {InFile, InBuffer, S zeCf In3uffer,, InFileSlze.;

GotoXY (21, WhereY);
Inc{CurrentBlcck;;

Write{CurrentBlock, ' of ', ToTalBlIIXs,;
End;
CompressBlock;
Outsize := QurSize + Cut®cs;

: WriteClock;

WriteIODetails; o
Totalbpb := Totalbpb ~ Averageldpli
Toralkbps := Totalkbps + Averajextps;

Close!{InFile);




E Close (QutFile);

E FindNext (CompFile) :

! Until DosError <> 0;

§Averagebpb := Totalbpb / FileCount;
{Averagekbps := Totalkbps / FileCount;
§WriteLn;

Writeln{' 1 block = 16k {16384 bytes}'):

‘Write(FileCount:2, ' files processed, Avg Speed: ', Averagekbps:7:3, ' kbps,
iy ;

'Writeln{'Ratic: ', Averagebpb:5:3, ' bpb'};

End.

Figure B.9 - The LZT executable.

LZT Real-Time Loss-Less Compression Utility v1.2.2.
- In fullfilment of my Masters Thesis, completed at the Cape Technikon, Cape Town, ZA, 1998.
. Copyright (C) 1995-1998 Zahir Toufie. All Rights Reserved.

Usage: LZT [options] source

| cH#B### - compress infile using a base LZ77 encoder, where # can be either 0,
meaning On, or 1 meaning Off. Each # from left to right (ie 1....6),
represents one of the following flags:

1 = base LZ77 + Huffman Literals encoder.

2 = base LZ77 + Match Flag blocking encoder.

3 = base LZ77 + Growing Coding Position encoder,

4 = base L.Z77 + Huffman Position encoder

5 = base LZ77 + Variable Coding Length encoder.

6 = base LZ77 + Huffman Length encoder.

Note: flags 3/4 and 5/6 are mutually exclusive.

Figure B.10 - The LZT executable help screen.
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