
 Page 1

INSTRUCTIONAL TECHNOLOGY FOR THE TEACHING OF
NOVICE PROGRAMMERS AT A UNIVERSITY OF

TECHNOLOGY

Dissertation submitted in fulfilment
of the requirements for the degree of

Master of Information Technology

RESEARCHER

Mr. Godfrey Rudolph
185026494

Department of Information Technology
Faculty of Informatics and Design

Cape Peninsula University of Technology

Supervisor:
 Professor Retha de la Harpe

Co-Supervisor:
Dr Ernest Pineteh

Department of Information Technology

Faculty of Informatics and Design
Cape Peninsula University of Technology

 Page 2

DECLARATION

I declare that this dissertation is a presentation of my original research work and that it

has not been submitted for a similar degree at any other university. The research was

conducted under the supervision of Professor Retha de la Harpe and Dr Ernest Pineteh

at the Cape Peninsula University of Technology, Cape Town campus. It is submitted in

fulfilment of the requirements for the degree of Master in Information Technology

(MTech IT) in the Department of Information Technology, Faculty of Informatics and

Design.

GODFREY RUDOLPH
June 2015

 Page 3

ACKNOWLEDGEMENTS

This dissertation is the result of the collective efforts of many people who, knowingly or

unknowingly, had an influence on my life and contributed to the completion of my

dissertation.

I would like to express my sincere and immense gratitude to:

 My late father and late mother, Fredderick and Martha for always believing in me

and supporting me from the inception of my studies.

 My two children Kendyl & Dean, and Lynette for making me believe that I have

the ability to soar from strength to strength. Without your unwavering support and

continuous words of encouragement, I doubt I would have been able to achieve

what I did.

 My biological brothers and sisters, and their respective families for their

encouragement and support.

 My promoters, Professor Retha de la Harpe, Dr Ernest Pineteh and research

mentors Professor Bennet Alexander & Izak van Zyl, for their invaluable

guidance, immense encouragement, dedication and support.

 My spiritual leader, Priest Welkom, spiritual sister Rochelle, colleagues and

friends, who are too numerous to mention, for your prayers, encouragement,

assistance, understanding and patience.

 My colleague and friend, Alvino Moses and mentor Moegamat Alexander, for the

invaluable insight into this dissertation.

 Page 4

ABSTRACT

Learning computer programming can be fun, challenging and improve problem solving

which is a useful ability in general. A teaching-learning environment with a strong

emphasis on problem solving promotes social behaviour and discloses the personal

benefits that individuals working in almost any Information Technology position can get

from programming knowledge. This research project is looking at the challenges

experienced by novice programmers and the negative effect it has on the student and

the university. This study will address the knowledge and skills needs of programming

students and the challenges for students and educators to evolve from traditional to

technology-supported teaching and learning.

Computer programming is a cognitively challenging subject and good instructional

strategies are important in providing the student with optimal learner support. Novice

programmers often struggle to understand how a computer executes a program, which

impacts negatively on the delivery of the subject and throughput rates. The majority of

first year Information Technology students at Cape Peninsula University of Technology

are novice programmers and lack strong logic and reasoning as well as other

Information Technology skills that can facilitate their interpretation and application of key

concepts in programming.

These challenges and negative impact on the academic development of programming

students have therefore forced the researcher to investigate innovative teaching

strategies and/or instructional technologies that can facilitate novice programmers in

learning the basic programming concepts. The purpose of this on-going study is to

enhance the traditional method of teaching and the understanding of the problems

experienced by novice programmers. This study attempts to respond to the question of

what the tentative design principles of instructional technology are that can be used to

facilitate novice programmers’ understanding of programming concepts.

A mix methodology was considered but at the end a qualitative approach was

employed. Multiple sources of data gathering, which include participant observations,

 Page 5

video recording, a questionnaire, and document analysis, were used as research

instruments.

The findings, relative to providing a basis for finding a mechanism to help our first year

students to cope with the abstract concepts of programming, reflected the literature

review. Other key findings included:

 Students have little or no prior computer or programming experience

 Student population is diverse in terms of computer skills and programming

knowledge

 Visualization will help reduce the difficulties in writing programs

The overall outcomes of this study suggest that:

 Good programming examples that include games should be used

 Students must be given the opportunity to be more active in their learning.

 Computerized assistants should be provided for novice programmers

 A visualization tool similar to Scratch should be considered

 A basic background in Mathematics is recommended

 Page 6

Table of Contents
DECLARATION .. 2

ACKNOWLEDGEMENTS ... 3

ABSTRACT ... 4

LIST OF FIGURES ... 11

LIST OF TABLES ... 12

DEFINITION OF TERMS .. 13

LIST OF ABBREVIATIONS .. 14

CHAPTER 1 INTRODUCTION ... 15

1.1 INTRODUCTION AND BACKGROUND .. 15

1.2 PROBLEM STATEMENT ... 16

1.3 RESEARCH QUESTIONS ... 16

1.3.1 SUB-QUESTIONS ... 17

1.4 AIMS AND OBJECTIVES ... 17

1.5 DELINEATION OF THE RESEARCH .. 17

1.6 RESEARCH APPROACH .. 18

1.7 OUTCOMES AND OUTPUT .. 18

1.8 SIGNIFICANCE OF STUDY .. 19

1.9 ETHICAL CONSIDERATIONS .. 19

CHAPTER 2 LITERATURE REVIEW .. 21

2.1 INTRODUCTION ... 21

2.2 LEARNING AND TEACHING PROGRAMMING .. 22

2.2.1 TEACHING STRATEGIES.. 23

2.2.2 RESOURCES AND TOOLS TO AID WITH LEARNING AND TEACHING 24

2.2.2.1 PROGRAM VISUALIZATION .. 28

2.2.2.2 PROGRAM / ALGORITHM ANIMATIONS .. 33

 Page 7

2.2.2.3 INTERACTIVE ANIMATIONS AND GAMES PROGRAMMING 34

2.3 DIFFICULTIES OF LEARNING PROGRAMMING ... 37

2.4 FIRST PROGRAMMING LANGUAGE ... 41

2.5 NOVICES VS EXPERT PROGRAMMERS ... 42

2.5.1 ATTRIBUTES OF A GOOD PROGRAMMER ... 42

2.5.2 CHARACTERISTICS OF NOVICE PROGRAMMERS ... 43

2.6 HOW NOVICES LEARN TO PROGRAM .. 45

2.7 SCAFFOLDING ... 49

CHAPTER 3 RESEARCH METHODOLOGY ... 52

3.1 INTRODUCTION ... 52

3.2 RESEARCH APPROACH .. 52

3.2.1 DESIGN RESEARCH .. 55

3.2.2 RESEARCH SETTING .. 55

3.2.3 RESEARCH METHODS ... 56

3.3 RESEARCH METHODOLOGY FOR THIS STUDY ... 56

3.4 SELECTION CRITERIA AND PROCESS ... 60

3.4.1 PROFILING ... 61

3.5 RESEARCH INSTRUMENTS FOR DATA COLLECTION .. 62

3.5.1 WORKSHOPS .. 62

3.5.2 PARTICIPANT OBSERVATION .. 63

3.5.3 VIDEO .. 64

3.5.4 QUESTIONNAIRE ... 64

3.5.4.1 QUESTIONNAIRE ITEMS ... 65

3.6 DATA ANALYSIS ... 65

3.7 INTERPRETATION ... 67

 Page 8

3.8 ROLE OF THE RESEARCHER .. 68

3.9 CHAPTER SUMMARY ... 68

CHAPTER 4 DATA ANALYSIS AND FINDINGS ... 69

4.1 INTRODUCTION ... 69

4.2 BACKGROUND ... 69

4.3 WORKSHOPS DESIGN ... 71

4.3.1 WORKSHOP OBJECTIVES ... 72

4.3.2 AGENDA .. 72

4.3.3 PARTICIPATION PROCESS ... 72

4.4 DEMOGRAPHICS OF PARTICIPANTS .. 74

4.5 ACADEMIC PERFORMANCE ... 75

4.6 WORKSHOPS ... 78

4.6.1 WORKSHOP 1 ... 78

4.6.1.1 TARGET GROUP ... 78

4.6.1.2 RESPONSES .. 78

4.6.1.3 KEY THEMES ... 83

4.6.2 WORKSHOP 2 ... 84

4.6.2.1 TARGET GROUP ... 84

4.6.2.2 RESPONSES .. 85

4.6.2.3 KEY THEMES ... 89

4.6.3 WORKSHOP 3 ... 90

4.6.3.1 TARGET GROUP ... 90

4.6.3.2 RESPONSES .. 91

4.6.3.3 KEY THEMES ... 94

4.7 CHAPTER SUMMARY ... 95

 Page 9

CHAPTER 5 DISCUSSIONS OF FINDINGS ... 96

5.1 INTRODUCTION ... 96

5.2 COMPARISON OF PARTICIPANTS RESPONSES .. 96

5.2.1 LEARNING OF PROGRAMMING CONCEPTS .. 98

5.2.2 VISIBILITY, NAVIGATION AND INTERFACE ... 100

5.2.3 ELIMINATION OF COMPILATION STEP .. 100

5.2.4 HELP SCREENS AND DEFAULT PARAMETERS .. 101

5.2.5 VISUAL FEEDBACK .. 101

5.2.6 RUNNING OF INCORRECT PROGRAMS .. 102

5.2.7 VARIABLES AS CONCRETE OBJECTS ... 102

5.2.8 IDEAS TO HELP FIRST YEARS ... 102

5.2.9 SCRATCH AS AN INSTRUCTIONAL TOOL ... 104

5.3. PROBLEM SOLVING SKILLS .. 104

5.4 MOTIVATIONAL FACTORS .. 105

5.5 ATTITUDE .. 105

5.6 DIVERSE STUDENT BACKGROUNDS .. 107

5.7 PRIOR KNOWLEDGE .. 108

5.8 TEACHING APPROACH .. 109

5.9 KEY FINDINGS FROM THE STUDY ... 109

5.10 CHAPTER SUMMARY ... 114

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS ... 115

6.1 INTRODUCTION ... 115

6.2 SUMMARY OF CHAPTERS .. 115

6.3 SUMMARY OF FINDINGS ... 117

6.4 RESEARCHED QUESTIONS REVISED ... 118

 Page 10

6.5 VALIDITY OF RESEARCH .. 119

6.6 RECOMMENDATIONS .. 120

6.7 FURTHER RESEARCH.. 122

6.8 CONCLUSION ... 123

REFERENCES ... 125

BIBLIOGRAPHY OF ADDITIONAL REFERENCES ... 134

APPENDICES ... 139

Appendix A: Invitation Letter to Participate .. 139

Appendix B: Clock Project Worksheet .. 140

Appendix C: Questionnaire ... 147

 Page 11

LIST OF FIGURES

Figure 2.1 Conceptual framework of concepts

Figure 3.1 Design research methodology

Figure 3.2 Framework of the research study

Figure 3.3 Structure of a thematic network

Figure 4.1 Student enrolments by population at CPUT (2012)

Figure 4.2 Ethnic profile of participants

Figure 4.3 Gender profile of participants

Figure 4.4 Screenshots of Scratch user-interface

Figure 5.1 Screenshot of Visual Studio integrated development environment

Figure 5.2 Screenshot of a C++ runtime environment

 Page 12

LIST OF TABLES

Table 3.1 Four stages of case study methodology

Table 3.2 Admission rating for matriculants (2008) onwards

Table 3.3 Admission rating for matriculants before (2008)

Table 4.1 First year performance and acceptance

Table 4.2 Summary of Workshop 1 results

Table 4.3 Summary of Workshop 2 results

Table 4.4 Summary of Workshop 3 results

Table 5.1 Comparison of participant responses

Table 6.1 Summary of workshops findings

Table 6.2 Research questions revisited

 Page 13

DEFINITION OF TERMS

Novice – a beginner; one who is not very familiar or experienced in a particular subject

Programmer - a person who designs, writes and tests computer programs

Instructional technology - the process of using technologies such as multimedia,

computers, audio-visual aids, interactive media and teleconferencing as tools to

improve teaching and learning.

Web 2.0 a second generation of World Wide Web which focuses on the ability for

people to collaborate and share information online.

E-learning –the network-enabled transfer of skills and knowledge

Virtual –it distinguishes something that is merely conceptual from something that has

physical reality.

Constructivism –a psychological theory of knowledge which argues that humans

generate knowledge and meaning from their experiences.

Mobile device - a pocket-sized technological device tool such as cell phone, laptop and

palmtop

Mobile learning - Any sort of learning that happens when the learner is not at a fixed,

predetermined location by making use of mobile devices.

Social software – a type of software which allows people to communicate and

collaborate while using the application

Social presence – the ability of participants to project themselves socially and

emotionally, through a medium of communication.

Podcasting –Podcasting allows subscribers to use a set of feeds to view syndicated

Web content. With podcasting however, you have a set of subscriptions that are

checked regularly for updates and instead of reading the feeds on your computer

screen, you listen to the new content on your iPod or any other audio device. It is similar

to RSS

file:///E:/Documents%20and%20Settings/PinetehE/Local%20Settings/Temp/Local%20Settings/PinetehE/Local%20Settings/Temp/XPgrpwise/World_Wide_Web.html
file:///E:/Documents%20and%20Settings/PinetehE/Local%20Settings/Temp/Local%20Settings/PinetehE/Local%20Settings/Temp/XPgrpwise/physical.html
file:///E:/Documents%20and%20Settings/PinetehE/Local%20Settings/Temp/Local%20Settings/PinetehE/Local%20Settings/Temp/XPgrpwise/software.html
file:///E:/Documents%20and%20Settings/PinetehE/Local%20Settings/Temp/Local%20Settings/PinetehE/Local%20Settings/Temp/XPgrpwise/iPod.html

 Page 14

LIST OF ABBREVIATIONS

CPUT Cape Peninsula University of Technology

UKZN University of KwaZulu-Natal

DS1 Development Software 1

DIT Department of Information Technology

FID Faculty of Informatics and Design

SA South Africa (n)

SMS Short Message Services

HE Higher Education

UNISA University of South Africa

LMS Learner Management System

NDIPIT National Diploma Information Technology

DoE Department of Education

UoT University of Technology

DS2 Development Software 2

SDLC Software Development Life Cycle

 Page 15

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION AND BACKGROUND

Computer programming is a cognitively challenging subject and good instructional

strategies are important in providing the student with optimal learner support (Chan

Mow, 2008). Novice programmers often struggle to understand how a computer

executes a program (Guo, 2006). This impacts negatively on the delivery of the subject

and on throughput rates because lecturers spend valuable time dealing with final year

students who are not able to undertake some of the simplest programming tasks

(Jenkins and Davy, 2000).

Research shows that only 38% of first year computer programming students can write a

simple program for calculating the average of a set of numbers. Interestingly, this is one

of the tasks that a student with one semester of programming knowledge is expected to

handle adequately (Clear et al., 2008). Students’ inability to handle some of the basic

programming tasks confirms recurring claims that programming courses are difficult,

and often have the highest dropout rates. Moreover, the high dropout rate reinforces the

perception that, it takes ten years of experience to develop a novice into an expert

programmer (Guo, 2006). These challenges have forced programming lecturers to

innovate teaching strategies and/or instructional technologies that can facilitate

increased understanding of programming concepts.

The Cape Peninsula University of Technology (CPUT) currently uses Learner

Management System (LMS) software also known as Blackboard to create and host

courses including programming on the Internet. Courses supported by this software can

be operated independently as online courses or as supplementary to traditional

classroom courses. In general this system has impacted positively on teaching and

learning, motivating the institution to offer an effective solution beyond traditional course

management (Reeves et al., 2002). To this end, face-to-face interaction combined with

computer mediated instruction can provide realistic practical opportunities for students

 Page 16

and teachers to make learning independent, useful and ever growing. The above

examples illustrate how digital technology can enhance teaching and learning

(Patalong, 2003) as well as the impact of newer instructional technology solutions such

as social media on the delivery of Information Technology (IT) courses at CPUT.

Although the first year programming subject Development Software 1 (DS1) is also

hosted on Blackboard, it is not clear whether the software has enhanced the delivery of

key programming concepts to novice programmers at CPUT. This is perhaps because

the technology does not cater for the teaching and learning needs of individual subjects.

To address this concern, exploring alternative strategies for teaching novice

programmers at CPUT need to be considered.

CPUT has a strong focus on career education to prepare students for the proper

application of skills in the workplace. The Department of Information Technology (DIT)

is one of the academic departments in the Faculty Informatics and Design (FID) at

CPUT. The DIT offers certificates, diplomas and Bachelor, Masters and Doctor of

Technology Degrees in IT according to the needs of the respective student population.

The IT course prepares students for professional careers opportunities in Business

Applications, Communications Networks, Software Development and Multimedia

Technology.

1.2 PROBLEM STATEMENT

The majority of first year IT students at CPUT are novice programmers and find it

difficult to interpret and apply the key programming concepts.

1.3 RESEARCH QUESTIONS

 What are the tentative design principles of appropriate instructional technology

that can be used to facilitate novice programmers’ understanding of programming

concepts?

 Page 17

1.3.1 SUB-QUESTIONS

 What are the challenges of technology-supported teaching of programming

concepts?

 What are the contextual aspects that need to be considered for the design of an

instructional technology intervention?

 How do novice programmers interact with instructional technologies during the

programming process?

 How can instructional technology be used to engage students in learning and

acquisition of programming skills?

1.4 AIMS AND OBJECTIVES

The aim of this study is to explore the aspects that influence the novice programmers’

ability to master the programming concepts. The following objectives are aligned to the

research problem and questions:

 To assess the skills and knowledge that a novice programmer requires in order

to master programming concepts.

 To investigate how instructional technology can be used to address the skills gap

of students learning programming concepts.

 To identify existing technology solutions and how they have contributed to the

teaching of programming.

 To identify other possible technology solutions that can be used to teach

programming concepts to novice programmers.

1.5 DELINEATION OF THE RESEARCH

The result of the research was aimed at a focused group as opposed to generalization.

The primary group was the first year DS1 students of CPUT. This study does not

consider the educational aspects of teaching programming concepts and the use of

instructional technology per se. The focus is only on the role of instructional technology

as used by the lecturer as a teaching strategy to explain the programming concepts to

the students. Mobility of students and the use of instructional technology outside the

classroom is also not considered in this study.

 Page 18

1.6 RESEARCH APPROACH

The majority of the first year IT students at CPUT struggle to interpret and apply the

basic abstract concepts of programming. According to Plomp (2009), design research is

the study of educational interventions that will show the way to solutions for complex

problems in educational practice in a real-world setting. The researcher therefore found

it appropriate to engage in an educational design research methodology to consider the

development of an intervention and to explore alternative methods to teach

programming at CPUT. It was decided to follow an exploratory towards an intervention

design research approach that will provide insights and contributions to enhance the

teaching and learning of abstract programming concepts to novice programmers at

CPUT.

1.7 OUTCOMES AND OUTPUT

Design research has two outcomes: design principles which represent the knowledge

that was generated during the design process, and the different designs or models

produced during the design process. In this study the principles that need to be

considered for the design of an appropriate instructional technology tool as an

intervention will be produced in the form of recommendations. The outcome of this

study will be improved understanding of the challenges experienced by novice

programmers when learning programming concepts, and how they respond to an

example instructional technology.

The output of this study is:

 guidelines for the use of technology to enhance teaching and learning

 findings that suggest how students interact with technology as part of their

learning process

 research papers and a thesis.

 Page 19

1.8 SIGNIFICANCE OF STUDY

 The outcome provides a basis for recommendations to support the development of

learning materials and approaches for basic programming courses. The research

project also has the potential to complement the ongoing vision of CPUT in preparing

students to be critical thinkers and knowledgeable professionals through technology

education and innovation.

The use of technology in teaching and learning will enhance group collaboration for both

students and instructors. Mobile learning will bring new technology into the classroom. It

will be a useful add-on tool for students regardless of their different learning style

capabilities. Students taking advantage of the learning opportunities offered by mobile

devices will effectively support the learning process rather than just being integral to it

(Savill-Smith et al., 2006).

1.9 ETHICAL CONSIDERATIONS

Ethics clearance to conduct the study was obtained from the Ethics Committee of

CPUT. Permission to conduct the study was also obtained from students who were

directly involved in the study. Both verbal and written (Appendix A) consent was

obtained prior to the study. The purpose of the study was explained and the expected

roles of the participants prior to the research were clarified. To comply with

internationally accepted ethical standards, no names of individuals were recorded on

research instruments. No individual was linked to a particular completed research

instrument, ensuring anonymity. No compensation was paid to any respondent for

participation in the study. No respondent or participant was harmed physically,

emotionally or otherwise. As with other studies, quality assurance was done with

respect to:

 The correctness and completeness of open ended questions;

 All participants understanding the nature and consequences of their participation

in the study;

 The quality of data capturing done by encoders; and

 Placing all results in the public domain as soon as available.

 Page 20

The following chapter focusses on the literature review concerning the challenges

experienced by novice programmers and the knowledge and skills needs of

programming students.

 Page 21

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

Programmers must have comprehensive problem solving skills and be able to think of a

suitable solution when presented with a problem. Technologies are available to aid

novice programmers in learning to program. This research is an on-going project

looking at the challenges experienced by novice programmers and the negative effect it

has on the student and the university. This study addresses the knowledge and skills

needs of programming students and the challenges for students and educators to

evolve from traditional to technology-supported teaching and learning.

This chapter reviews literature relative to skills and knowledge required to master

programming concepts and identify existing and other technology solutions to contribute

to the teaching of students. The emphasis is on novice programmers that are beginning

their programming studies at CPUT. The researcher wants to find out what has been

done in his field of study by reviewing existing scholarships and how other scholars

have investigated the research problem that the researcher is interested in. The

researcher also wants to learn from other scholars: how they have theorized and

conceptualized on the issues, what they have found empirically and the instruments

they have used and to what effect.

The literature was reviewed to establish the current status of issues relevant to novice

programmers’ ability to master programming. The outcome of the literature analysis is

presented as follows: firstly, the aspects of learning and teaching programming;

followed by the identification of difficulties experienced by novice programmer and

specifically during the use of their first programming language. This is followed with a

discussion about how novice programmers learn programming and the difference

between novice and expert programmers. The literature analysis is concluded with

suggestions for scaffolding to support the teaching and learning process of

programming languages to novice programmers. A proposed conceptual framework

 Page 22

based on the literature reviewed is proposed at the end of the chapter to indicate the

concepts and relationships considered in this study.

2.2 LEARNING AND TEACHING PROGRAMMING

Universities offering IT degrees are expected to teach programming languages that are

close to those used in the industry. It is therefore rarely possible to select an approach

for an introductory programming course based only on pedagogical reasons (Ala-Mutka,

2004). Learning to program involves constructing knowledge in the following four

phases of the Software Development Life Cycle (SDLC):

 Phase 1: Analyze the problem

 Phase 2: Design and develop a solution algorithm

 Phase 3: Implement the algorithm

 Phase 4: Test and revise the algorithm

Analyzing the problem means to read and understand what is required. It helps with the

initial analyses. In the second phase the problem is broken down into smaller tasks in

order to establish a solution outline. The solution outline is then expanded into an

algorithm which consists of a set of precise steps that will describe the tasks to be

performed. The fourth phase is one of the most important steps in software

development, and is often ignored. The objective of this step, as described by Li

(1990), is to identify major errors in software and to see if this software does what it is

supposed to do and also whether it malfunctions.

All of the software development lifecycle phases need to be mastered by novice

programmers and the activities of each phase can be considered as learning activities

(Garner, 2003). Students must learn to systematically attack problems before translating

them into a working computer program. Three basic problems have been identified

when using a text-based language to teach introductory programming (Greyling et al.,

2006). Firstly, extensive focus is placed on syntax, forcing students to first get the

syntax correct. This leads to the misconception that programming is about writing

syntactically correct code. Secondly, limited emphasis is placed on problem solving,

 Page 23

leaving little or no time to focus on other phases of the SDLC. Thirdly, the lack of

support for experiencing program execution, resulting in students writing programs that

contain correct statements but in the incorrect logical order (Greyling et al., 2006).

2.2.1 TEACHING STRATEGIES

Programming is defined by Saeli et al. (2011) as “a process of writing, testing,

troubleshooting, and maintaining the source of code of computer programs”. According

to the authors, the level of programming understanding is low even after two years of

tuition, due to the difficulty of learning programming skills. However, students will be

able to master the learning of programming skills with the support of suitable teaching

strategies and tools. Ala-Mutka (2004) states that learning programming is a complex

task and advised that teachers should design their teaching approaches carefully. In the

traditional approach, teaching the concepts first, is common and is found to be effective.

However, different other approaches may also be followed.

The biggest problem with novice programmers is that they do not seem to understand

the basic concepts and learning to apply them. Therefore Robins et al. (2003) suggest

that teachers focus more on the combination and use of features especially underlying

issues of basic program design. For example, building visualized examples of the basic

structure and their combinations in different situations to promote students’

understanding of the different programming strategies and help build a mental “library”

of different solution schemas for program design.

In this study, the researcher would like to investigate how, by applying different teaching

strategies in class, lecturers will meet the learning needs of individual students and

recognize the fact that students have different abilities to grasp the programming

concepts. Using a lecture method can result in the teachers being active and students

being passive. However, students may be kept attentive in class by making use of

quizzes. Achieving instructional objectives depends on the teaching method applied.

With the aid of visualization, content and concepts can be represented structurally.

 Page 24

According to Greyling et al. (2006), the higher incidence of under-prepared students at

South African education institutions, has an actual impact on introductory courses which

rely on the use of technological tools as a pedagogical concern. They further argue that

novice programmers experience difficulties in problem solving, the use of traditional

programming environments and misconceptions concerning programming language

constructs. Students are introduced to programming by starting with simple

programming statements. This “bottom-up” approach does not give students the

opportunity to develop the essential problem-solving skills that are highly important for

effective program development. It is therefore suggested that the programming

language must be seen as the tool used to implement the solution to a problem.

Students should be introduced to the “top-down” approach where the logical processes

involved should first be identified in developing a solution.

The above points are relevant to this study and indicate that different students have

different learning styles. Hence, educators need to focus on the individual student and

be attentive of both their knowledge and preferred learning style. To overcome the

barriers of learning to program, good programming examples, including games, should

be used for practicing with the aim of enhancing problem solving abilities. Effective

support by educators can help restore the confidence of students in their abilities to

program. Scaffolding as a teaching method is suggested to allow students to complete a

given task whilst providing feedback and assessment. Scaffolding, to support the

teaching of programing concepts, will be discussed in Sub section 2.7 in this chapter.

2.2.2 RESOURCES AND TOOLS TO AID WITH LEARNING AND TEACHING

Teaching in an interactive way is likely to motivate students’ participation in classes and

the use of dynamic means, showing step-by-step changes in both computer memory

and in objects' state, will benefit students in creating a clearer mental model of program

execution (Guo, 2006). The proposed research hopes to explore the introduction of

other instructional technologies in the classroom and how it can drive this quality of

interactivity at the first year level at CPUT.

 Page 25

According to Van den Berg and Aucamp (2007), the first main digital initiative

implemented in South Africa was the MobilED project, an international research and

innovation partnership that aims to develop a teaching model in mobile technology to

enhance diverse teaching and learning methods. The first phase of this project was

piloted at one private and one public school in the Pretoria area in South Africa (SA)

using only voice and Short Message Service (SMS) technology. The two schools

selected for the pilot project were Cornwall Hill College and Irene Middle School.

Cornwall Hill College is a private school and Irene Middle School is a public school

comprised mainly of children from previously disadvantaged communities. The three-

year pilot project was funded by the government Department of Science and

Technology, and Nokia contributed the mobile phones.

The MobilED project was supported by evidence based research outputs to develop

sustainable models, processes and practice (Van den Berg and Aucamp, 2007). The

project amplified the design of a teaching and learning environment enhanced with

mobile technology services. Mobile technologies that support audio playback can

therefore be used inside and outside the classroom context to provide user generated

audio annotations and information on topics. Since this project was only piloted in

schools and not at tertiary level, SA universities such as CPUT can draw on the lessons

of the pilot project and introduce a similar model for teaching and learning but at the

same time consider the level of study.

Furthermore, Higher Education (HE) promotes lifelong learning and the development of

learner skills, which can stimulate creativity and innovation. The development of

courses suitable for delivery via the internet, are increasing rapidly at SA schools and

universities (Jung, 2005: 94-101). The University of South Africa (UNISA) is one of the

ten largest distance education institutions in the world (Wolff, 2002). The university has

been the forerunner of digital teaching and learning environments. It has infrastructure

with the capacity to integrate online, distance and face-to-face learning. However, it is

still unclear how its programming students have benefited from these initiatives

 Page 26

especially in terms of mastering the concepts required by the programming subjects

(University of South Africa, n.d.).

Also, the University of KwaZulu-Natal (UKZN) has introduced podcasting as an

educational tool on its Westville campus. Lectures podcasting on audio and video files

can now be published and accessed by students on their PC’s via the internet and their

mobile devices. This significant R1 million development for both staff and students was

realized through a partnership between UKZN Innovation, UKZN’s School of Information

Systems (IS&T), the University Research Office and the Core group (University of

Kwazulu Natal, n.d.). Again, this model is holistic in that it focuses on the pedagogical

concerns of the university rather than the needs of a specific subject like Programming.

This research hopes to draw on this landmark projects to conceptualise and test

instructional technology which addresses the specific needs of novice programmers at

CPUT.

The use of the internet as a tool to aid teaching and learning, allows for dialogue and

“near instant” feedback. Despite the challenges faced by instructors on the use of web-

based teaching and learning tools, the internet adds value to student learning (Wu,

2005). Greyling and Wentzel (2007) agree that technology assisted learning is not only

about conveying content; it is also a medium for promoting social relationships. Social

presence forms the foundation for teaching and learning and serves as a building block

for a successful learning environment. However, it is difficult to create social presence in

large classes.

Available educational technology can serve as an instrument of control to enhance

social dimension of online learning (Greyling and Wentzel, 2007). They suggest that

students intimidated by face-to-face teaching environments, can be empowered in a

virtual world. Social presence is developed through virtual participation of students and

by participating in on-line discussions students are more motivated and positive towards

their learning. According to Greyling and Wentzel (2007), students become part of

growing social relationships enhanced by social presence. This means technology can

 Page 27

be used to encourage online learning and influencing student satisfaction by facilitating

online social presence without replacing the lecturer. They further concluded that

socialization is an important tool to drive peer learning and an instructional technology

for the teaching and learning programming concepts can stimulate interactivity between

novice programmers.

The evolving digital age brings about changes in the way instructors structure course

layouts. Educators need to give students the opportunity to be more active in their

learning. Students should be encouraged to collaborate with other students in forming

what they called learning communities. The physical venue, where teaching and

learning take place, will become less important. Teachers and students will not be

bound to their classrooms. With technology, learning can be transformed into a lifelong

experience. Students become actively involved in creating effective learning spaces.

They have the opportunity to collaborate and share ideas and thoughts on common

issues (Kluge and Riley, 2008).

One of the objectives of virtual learning environments, according to Piccoli et al. (2001),

is to promote the interaction between students and teachers. In virtual learning spaces,

the internet overcomes the issue of distance to provide limitless knowledge and

information. Long distance learning is characterised by the mode of education delivery

regardless of the physical classroom. Welsh et al. (2003) define e-learning as the use of

computer network technology over an intranet or through the internet to deliver

information and instruction. In other words it is a modality of education where the

teacher is established to the physical and temporary distance and is mediated by

technology. Learning Management Systems (LMS) support communication, interaction

and availability of content (Reeves et al., 2002). Students and teachers are allowed to

communicate through forums that are available on the internet or intranet.

Communication through these virtual spaces promotes a spirit of loyalty amongst

students (Dos Reis & Martins, 2008).

 Page 28

As indicated above, social interactivity and peer learning are essential for the

development of students’ logic and critical skills and this researcher hopes to use this

body of knowledge as the conceptual framework of this project. One way to assist

novice programmers is to provide computerized assistants created specifically for them.

One class assistant is software visualization tools. Software visualization uses

interactive computer graphics, graphic design and animations to enhance the interface

between computer programmers and their programs (Price et al., 1983). Several low-

level program visualization tools have been designed explicitly for novice programmers

and have enthusiastically been embraced by students. However, there is little empirical

evidence regarding their efficacy (Smith and Webb, 2000). This is confirmed by Sorva et

al. (2013) who found that program visualisation systems for beginners are often short-

lived research prototypes but that research to date is inclusive regarding the use of

visualisation tools to the learner engagement of novice programmers.

Innovative technologies can be integrated into the classroom to enhance teaching and

learning. Instructors will be able to take advantage of technology to enrich the

educational experience of their students. The basic concepts that underline all

programming languages include sequence, iteration and selection.

2.2.2.1 PROGRAM VISUALIZATION

Visualizations have been used for a long time in computer science education because

they could contribute towards to improved understanding and be useful for learning

abstract and complex concepts in this field. A group working on improving the

Educational Impact of Algorithm Visualization studied the use of visualizations in

computer science education with three surveys and an extensive literature review and

the results of the work have been published in Naps et al. (2002). According to the

surveys, all respondents were confident that visualizations help students’ understanding

and learning of concepts (Ala-Mutka, 2004). For respondents, basic programming

concepts include program structure, flow control, conditional testing, variables,

expressions and looping constructs.

 Page 29

The National Center for Women and Information Technology study (NCWIT), according

to Utting et al. (2013), discovered that Scratch, an interactive animation and games

programming setting, “uses hands-on, active learning; it is visually appealing; it allows

users to express their own creativity and to build on their own experiences; it gives

immediate, understandable feedback; and it allows users to avoid syntax errors without

focusing on minutiae, freeing them to focus on processes and concepts”. Similarly to

Scratch, Alice, an innovative 3D programming environment, is very visual and students

can do directly map instructions to the result to what they see onscreen. Utting et al.

(2013) further acknowledge the importance of program visualization and the need for

students to be active as the author, rather than a passive observer of the instructor’s

animation.

According to Lattu et al. (2000), visualization offers more transparency to the program

and their execution, compared to traditional programming environment. Students are

encouraged to approach debugging in a more analytic way. In a learning situation,

visualization makes it possible to grasp algorithms without understanding the actual

code. Lattu et al. (2000) further state that a fundamental cognitive structure is created

for students through visualization, in the orienting phase of the learning.

Tekdal (2013) discovered that students have difficulty in understanding what is

happening in memory and what a computer is actually doing during the execution of a

program. The author claims that program visualization and animation tools help

students to better understand program codes, presenting the execution of program lines

using graphical effects.

Ala-Mutka (2004), states that visual learning helps students to gain a clearer

understanding of the programming principles. It effectively provides students with an

insight into the computer system. Effective visualization could be achieved by using

animated PowerPoint slides which include dynamically displayed pictures, graphical

diagrams, and line-by-line explanations of what is happening in memory at each stage

in the execution of a program fragment. According to Guo (2006), lecturers using these

 Page 30

clearly presented and easy to follow slides, will engage students in active thinking which

is often driven by questions from instructors.

According to Smith and Webb (2000), program visualization tools are programming

language dependent. They are used to animate low-level features of a program for

example source code and change of variable states. These tools should be able to

automatically handle all possible programs that can be written in the target language.

Smith and Webb (2000) further state that program visualization tools might be a

promising aid for novice programmers learning to program. Students benefit by having a

greater understanding of the programming concepts and to assimilate the new

concepts. The use of a visual programming language will provide students with a visual

vocabulary which they can grasp and apply instantaneously (Goosen et al., 2007).

The Tampere University of Technology, Finland, is participating in the international

Codewitz project, which is a study for developing visualizations (Ala-Mutka, 2004). The

goal of the project is to study computer-aided teaching of programming with the aid of

illustration, animation and visualization. According to Ala-Mutka (2004), visualization

has been used for a long time in computer science education and is considered

beneficial in the understanding and learning of abstract and complex concepts. It is

further stated that most approaches concentrate on algorithm animation with less

emphasis on visualizing the basic structure of the program and execution.

Naps et al. (2002) state that “visualization technologies, no matter how well it is

designed, are of little educational value, unless it engages learners in an active learning

activity”. Ala-Mutka (2004) suggests that teachers must always remember that technical

tools and visualizations are just learning aids and materials. Teachers need to still

thoroughly design an instructional approach to issues on the course and how aiding

materials can be incorporated into the education.

 Page 31

Linden and Lederman (2011) identified two main approaches to visualization in support

of teaching:

 algorithm animation which is largely programming language independent and its

purpose is to show how an algorithm works

 program visualization where the emphasis is on animation source code execution

showing changes in the variable states, which is programming language

dependent.

Next, a few examples of visualization programs are discussed.

BRADMAN
A “Glass Box Interpreter” called Bradman was used in an experiment conducted by

Smith and Web (2000) to test the efficacy of tool in assisting novice programmers learn

programming concepts. Tekdal (2013) describes it as a low-level Program Visualization

tool. Bradman was developed to assist novice programmers in learning the C

programming language. The interpreter makes visible the aspects of the programming

process that is normally hidden from the user. The motivating factor for introducing

Bradman was to produce an assistant that will provide a useful conceptual model for the

students when they assimilate new knowledge about programming. The experiment

attempted to evaluate whether access to the “Glass Box Interpreter” will assist the user

in developing a better understanding of the execution of a program. According to Tekdal

(2013), the results of the experiment by Smith and Web (2000) indicate that students

who studied with this tool have a better understanding of some programming concepts

than those with no access to it. Bradman was enthusiastically accepted by the students.

The result was that students seem to know more about how programs work.

JELIOT3
Moreno et al. (2004) present a program visualization tool, Jeliot3 that was designed and

programmed at the University of Joensuu, Finland, to aid novice students learning

procedural and object oriented programming. The key feature of Jelliot3 is the fully or

semi-automatic visualization of the data and control flows. According to Moreno et al.,

(2004), the idea of Jeliot3 is to involve students in the construction of their own

 Page 32

programs and at the same time to examine the visual representation of the program

execution. Students are engaged with the tool and are learning by doing.

According to Moreno et al. (2004), one of the reasons why Jeliot3 was developed is

because visualization of object oriented concepts, for example objects and inheritance,

are important and these concepts are not easily grasped by novice programmers. The

development of the Jeliot family started when the first system Eliot was developed to

help in the production of algorithm animations. Jeliot3 helps to provide clear semantics

resulting in students engaging more in the learning process. They further state that

teachers and students are able to share graphical and verbal vocabulary which eases

the discussion of programming concepts.

Tekdal (2013) reports that another experiment was conducted by Moreno and Joy

(2007) using the Jeliot3 animation tool. The study found that, although Jeliot3

animations are difficult for novice students, it helped them to debug their programs and

that using the program was easy. According to Tekdal (2013), findings of another

qualitative study with Jeliot 3 noted by Sivula (2005) showed that animation programs

may increase the motivation of students and helps them to learn programming basics.

In additional research on Jeliot3 being used as a learning tool carried out by

Hongwarittorrn and Krairit (2010), it was discovered that Jeliot3 may help to improve the

learning performance of students in Java programming, compared to those who do not

use the tool. However, it was also found that the use of the tool did not make an impact

on the students’ long-term attitudes toward programming.

JIVE
Tekdal (2013) describes JIVE as an interactive execution environment and provides a

rich visualization of the execution of Java programs. According to Tekdal (2013) JIVE

can be used for attaining a better insight into the behaviour of correct programs and to

fix incorrect programs. It is also helpful as an educational tool for teaching object

oriented programming in graduate and undergraduate programming courses.

 Page 33

EduVisor
According to Tekdal (2013), EduVisor is a program visualization tool developed by

(Moons and Backer, 2009) and is based on the four high-level design principles from

theories of learning and the theory of perception. Findings of the experiment by Moons

and Backer (2012) show that the students and teachers regard the environment and the

way it is used as instrumental to their education which can help with the understanding

of programming concepts.

ViLLE

Rajala et al. (2008) developed a dynamic program visualization tool called ViLLE, for

teaching programming to novice programmers. The tool can be used both in a teaching

environment to demonstrate the dynamic behaviour of program execution and for

independent learning over the web. It aims at providing a more abstract view of

programming and is language independent. The tool has a built-in syntax editor with

which syntaxes of built-in languages can be modified.

Rajala et al. (2008) conclude that that program visualization, in particular the ViLLE tool,

enhances students’ learning regardless of previous programming experience. In

addition, according to the authors, the tool seems to benefit novice learners more than

students with some previous experience.

2.2.2.2 PROGRAM / ALGORITHM ANIMATIONS

Price et al. (1983) define algorithm animation as a tool that gives a graphical

representation of the algorithm that is needed to implement a program. These tools are

to a large extent program language independent. It gives students a visual

representation of how the algorithm works. Each animation must be created individually.

Lattu et al. (2000) state that algorithm animation could be one way to help novices

understand the logic of algorithms. A program visualization and animation tool

according to Tekdal (2013), allows the execution of program lines to be presented using

 Page 34

graphical effects. This tool shows the execution of a program and helps students to

better understand program codes.

Next, examples of program / algorithm animations are discussed.

VINCE
According to Ala-Mutka (2004), a web-based tool called VINCE was developed by

Rowe and Thorburn (2000), to help students understand the execution of C programs.

VINCE was written completely in Java therefore it is accessible in the form of an applet

on a Web page with similar features as that of BRADMAN, including a memory map

where the variable content can be easily inspected (Garner, 2003). The tool visualizes

the workings of a C program step by step showing the contents of the computer

memory and provides an explanation in each step to the users. Studies indicate that

VINCE had a positive effect on student learning and is considered a good supplement

for an introduction to programming course (Ala-Mutka, 2004; Linden and Lederman,

2011; Tekdal, 2013).

2.2.2.3 INTERACTIVE ANIMATIONS AND GAMES PROGRAMMING

Amory et al. (1999) found that students are motivated to use games as a useful learning

tool and that play could influence the development of visualization, experimentation and

creativity. “Games could support the development of communities of practice that

include reflective activities, interest, understanding and epistemologies” (Amory, 2010:

810). Two examples of interactive animations and games programming are discussed

next, namely, ALICE and SCRATCH.

ALICE

Alice is a free, open-source programming language that uses an innovative three

dimensional (3D) programming environment to create animations or games. Cooper et

al. (2000) define Alice as a three dimensional virtual world that teaches 3D graphics to

novice programmers. Developed at the Carnegie-Mellon University, the tool allows you

to create virtual worlds with a series of 3D objects that includes for example people,

animals and chairs. The Alice interface can be used to place the objects into the virtual

 Page 35

world. With the drag and drop feature, the user can then program a series of parallel or

serial actions with the objects in the virtual environment. The sequence of time-based

events can be played at any point in time in an animated environment.

According to Daly (2011), the Alice environment makes it easy for students to create

animations and/or games by eliminating the frustration and focus on the syntax of the

language. With Alice, students can focus on the concepts while creating code, without

worrying about semicolons, curly braces, etc. Daly (2011) further states that the

software allows students to immerse into a programming rich multimedia environment,

enforcing the object oriented concepts needed by students who are considering taking

their programming to the next level. Alice, which is programmed in Java, gives students

the opportunity to experiment with objects, classes, inheritance, expressions,

conditions, loops, variables, arrays, events, recursion, and data structures. Animations

and interactive games can be created by dragging and dropping graphical segments of

code onto the editing area.

Daly (2011) concludes by supporting the claims that Alice has proved to be enjoyable,

promotes positive attitude toward programming, raises motivation and improves

retention. In addition, students’ confidence levels toward programming concepts are

improved by the comfortable programming environment provided by Alice.

Kelleher and Pausch (2007) found that presenting computer programming as a means

to the end with storytelling motivates middle school girls (age 11 to 15) to learn

programming. According to them storytelling with Alice is based on an existing

programming environment called Alice 2.0, which allows novice programmers to create

interactive 3D virtual worlds. Programs in Alice 2.0 are constructed by dragging and

dropping code elements, eliminating the likelihood of making syntax errors. Users of

animation programs in Alice are able to see their mistakes as they occur. Students have

the opportunity to gain experience with programming concepts that include looping,

conditionals, methods, parameters, variables, arrays, and recursion.

 Page 36

Cooper et al. (2000) found that Alice is a suitable programming language for novice

programmers. The executions of animated programs are immediately transparent to the

students. The highly visual feedback leads to an understanding of the actual functioning

of different programming language constructs.

SCRATCH
Nam et al. (2010) describe Scratch as a multimedia programming setting that is

appropriate for novice programmers because it is easy and interesting to learn and

facilitates the development of problem solving skills. Problem solving skills is referred to

as one of the primary mechanisms needed to solve new problems and the learning of

new knowledge by applying existing knowledge (Gijselaers, 1996). Problem solving

skills thus affect the way of thinking in our professional and personal lives.

Scratch is defined by Harvey and Monig (2010) as a programming language for children

where no keyboard skills are required, because the primitive program elements are

available with a graphical drag-and-drop user interface. The object oriented

programming concepts are illustrated in the form of multiple animated sprites. These

sprites are taken from the Scratch library or imported from any picture file with each

sprite having its own script area and its own local variables.

Computer programming requires computer equipment to automate the abstract thinking

process in the quest for problem solving, therefore the experience of the computer

programming process leads to more reinforced abstract thinking (Nam et al., 2010).

Scratch is further described as an educational programming language and teaching-

learning tool that piles up graphic building blocks whose commands are all different

according to colour and form on objects called sprites. The educational programming

language has many benefits, is easy to understand and learn and can make insightful

programming possible.

 Page 37

2.3 DIFFICULTIES OF LEARNING PROGRAMMING

For Robins et al. (2003), acquiring and developing knowledge about programming is a

highly complex process. It involves a variety of cognitive activities, and mental

representations related to program design, program understanding, modifying,

debugging and documenting. At the level of computer literacy, it requires construction of

conceptual knowledge, and the structuring of basic operations such as loops and

conditional statements into schemas and plans. It also requires developing strategies

flexible enough to derive benefits from programming aids (programming environment,

programming methods).

The central issue evident from these discussions are students’ lack of meta-cognitive

skills to critically unlock key programming concepts (Ismail et al., 2010). Although this is

not uncommon with first year students at most universities in SA, the situation at CPUT

is critical because the bulk of its students come from poor schooling background (Scott

et al., 2011:446). As stated previously, this gap could have strong implications for the

teaching and learning of programming at CPUT and exploring alternative teaching and

learning methods can be a useful intervention.

Novice programmers experience a wide range of difficulties and deficits. Programming

is generally difficult and has high dropout rates, (Robins et al. 2003). Butler and Morgan

(2007) present the results of a survey given to students enrolled in an introductory

programming course at Monash University in Melbourne, Australia. Some of their

findings indicate that first year introductory programming courses have a relatively high

fail rate and that most first year students perceived programming as the most difficult

and least interesting subject. Students may then often find themselves in a discipline in

which they may not have had any prior knowledge of programming when commencing

tertiary education for the first time after completing secondary study. They further state

that a basic background in Mathematics and English is normally required to commence

a study in many IT courses. Introductory programming courses and computing

fundamentals can therefore become a learning challenge to students.

 Page 38

Learning how to program, as stated by Vogts et al. (2010), is complex and includes

learning the syntax of a programming language and the use of a program development

environment to construct, debug and execute programs. Novice programmers spend

extensive time attempting to successfully compile and execute a program resulting in

novices thinking that programming is all about getting the syntax right. It is further stated

that a need exists for specialized program development environments to be developed

while keeping the pedagogical aims in mind.

The findings of a study conducted at the Nelson Mandela Metropolitan University, South

Africa by Vogts et al. (2010), indicate that many tertiary institutions make use of

professional program development environments in introductory programming courses.

They conclude that this is often the result of external pressure to teach programming in

a development environment that is popular in industry and that the use of pedagogical

program development environments has proven to be successful for novices learning to

program.

Another study conducted at two SA tertiary institutions, namely, University of KwaZulu-

Natal and Mangosuthu Technikon, by Pillay and Jugoo (2005) reveals the following

main causes: learning difficulties and errors made by students in the examination; poor

planning and problem solving abilities; a lack of understanding of programming

constructs; a lack of knowledge and understanding of the programming knowledge; and

insufficient conceptualization of the execution of the program. Other problems identified

by the study include the incorrect transfer of knowledge and difficulties with

modularization and iteration programming concepts. The knowledge that the students

have attained from previous programming examples are incorrectly applied to current

problems.

Rogerson and Scott (2010) suggest that a mathematical background with the focus on

logic and problem solving is highly important. A positive relationship should therefore

exist between mathematical ability and successful student programmers.

 Page 39

With the comparison of novice and expert programmers, Robins et al. (2003: 138)

asked the following two questions: “what are the properties of expert programmers?”

and “what are the resources and processes involved in creating or understanding

programming?” In relation to these questions, Salleh et al. (2013) identify the three

main components in programming as: the program, programming tools and the

programming language. According to Salleh at al. (2013), programming tools are a key

element in programming since they play an important role in programming development

and implementation. The software or environment provided by programming tools allow

programmers to give instructions, test and then implement the program. The ability and

skills needed to use programming tools are considered equally important to skills in

syntax and logic. Programming tools are considered as one of the key elements in

teaching and learning of programming which relates to issues such as pedagogy,

curriculum and programming languages.

According to Winslow (1996), novice programmers are limited to surface and

superficially organized knowledge and that they lack the detailed mental models. He

further stated that novices fail to apply relevant knowledge and approach programming

line by line rather than breaking it up in meaningful structures.

Mayer et al. (1989) and Byrne and Lyons (2001) both state that the personal properties

of the students affect their performance. General intelligence and mathematical science

abilities seem to be related to success in learning to program. Different student

behaviours in confronting a problematic situation can be recognized. Robins et al.

(2003) believe that the main source of difficulty is not the syntax and the understanding

of concepts but rather the planning of a basic program. Students can explain and

understand programming concepts of individual concepts like pointers, but fail to apply it

in their programming or combine it into valid programs. Robins et al. (2003), further

suggest that another issue that complicates the learning of programming is the

distinction between the model of the program as intended and the model of the actual

program.

 Page 40

The difficulties of learning programming are categorised by Kanaparan et al. (2013) into

two broad categories: demanding cognitive load, and the behavioural traits of the

student. According to the authors these difficulties occur irrespective of programming

environment or the type of programming language used in an introductory programming

course. As stated by the authors, research into the difficulties of learning programming

has proposed numerous solutions which include using educational technologies for

learning programming, improving the course content and identifying predictors of

programming success. It has been reported that these solutions have had insignificant

influence on the students. However, a strong relationship has been found between

behavioural traits of students and their learning and performance in programming.

Cooper et al. (2000) argue that the real difficulty for novice programmers is that it is

required of students to learn why and how a program solves the problem when learning

to write, test and debug programs. Many students struggle to visualize the execution

steps of the program, making it difficult for them to figure out what went wrong when the

program is not working. Cooper at al. (2000) concludes that students have difficulty in

applying problem solving techniques by developing algorithms, when learning to

program.

According to Yacob and Saman (2012) programming students struggle to master the

required competencies and skills, resulting in a high failure rate in introductory

programming courses. Yacob and Saman (2012) suggest that students should be

motivated and do substantial practice to develop good programming skills.

It is further reported by Yacob and Saman (2012) that some of the reasons stated by

students to dislike the programming subject are: programming is a boring subject; they

do not understand the lecturer’s explanation; the teaching method is not interesting;

there are not enough exercises or practices during class lesson; they do not finish

course material and then copy from friends without trying to answer questions.

 Page 41

Derus and Ali (2012) identify computing background; level of computing experience;

difficulties experienced while learning programming; and factors that lead to poor

performance in programming course as the factors that lead to difficulty in students

learning programming. Memory related concepts relating to creating a clear mental

model of memory movement during program execution were found to be the most

difficult topic faced by students. Derus and Ali (2012) further state that one of the factors

of students’ difficulty in learning programming is their inability to visualize the program

state during code execution.

According to Salleh et al. (2013), students need to understand the syntax of a

programming language to learn how to develop a program. Frustration and lack of

motivation to learn programming are often a result of the complexity of programming

and the difficulty to comprehend program logic. These factors lead to high dropout rates

in programming courses at most universities.

The ability to compile and coordinate the different components of a program is some of

the greatest impediments for novice programmers. It is expected of students to identify

and fix problems within their own programs. Goosen et al. (2007) suggest that the

programming environment should contain compilers that display easily understandable

error messages and offer effective tools to debug errors.

2.4 FIRST PROGRAMMING LANGUAGE

As stated by Goosen et al. (2007), it has been identified in the SA context that the

language used should be a general-purpose programming language and not one that

has been developed for a certain setting. It is therefore stated by the Department of

Education (DoE) as recorded in Ali and Kohun (2005) cited by Goosen et al. (2007), that

the purpose of the IT subject serves as a problem solving discipline and a tool for

thinking and reasoning with the focus on the development of solutions to problems.

Hence, the focal point should rather be on the introduction of general problem solving

concepts than on teaching the syntax of a specific programming language. The

language used in a first programming course should prepare the students to have a

 Page 42

solid foundation in good programming practices and facilitate the use of the meta-

cognitive components of problem solving (Goosen et al., 2007).

An empirical study, with all the role players in the curriculum process of IT in all

provinces of SA as participants, was conducted by Goosen et al. (2007) to choose a

first programming language. The respondents agreed that the language of choice

should provide an instructional environment where skills in higher order thinking and

problem solving are developed. According to Goosen et al. (2007) it is of high

importance that novice programmers develop a good theoretical understanding of

programming in general, in order to equip them with the necessary programming skills

to learn future languages and environments.

Rajala et al. (2008) suggest a term called programming language independency

paradigm where they argue that learning how the different programming concepts work

is more relevant than focussing on the syntactical issues of a specific program

language.

According to Pears at al. (2007) after they had conducted, surveys, they found that C,

Java and C++ were the most widely used programming languages used both in industry

and education. However, there has been much discussion on the suitability of these

languages when introducing programming to novices. Pears et al. (2007) argue that, in

contrast to languages that have been designed with a specific purpose for education

(e.g., Python, Logo, Eiffel, Pascal), languages such as Java, C and C++ have not been

designed with this specific purpose in mind.

2.5 NOVICES VS EXPERT PROGRAMMERS

2.5.1 ATTRIBUTES OF A GOOD PROGRAMMER

Wiedenbeck (1985) found that expert programmers are much more accurate and faster

than novices when it comes to performing low-level programming tasks for example

finding syntax errors and understanding code functionality. Wiedenbeck (1985) and Fix

et al. (1993) found that there is a link between programming experience and

 Page 43

characteristics in their mental representations for example the mapping of code to goals

and recognition of recurring patterns. Agno-Balabat and Rojo (2013) also found that to

become an expert in programming involves a lot of practice and requires the aptitude

and capabilities to understand the execution of a computer program in order to form a

valid mental presentation of the problem to be solved by the program.

2.5.2 CHARACTERISTICS OF NOVICE PROGRAMMERS

Novice programmers are defined by Ala-Mutka (2004) as programmers that lack the

knowledge and skills of programming experts. Novices often fail to apply the knowledge

they have obtained correctly. It is further stated that Novice programmers lack the

knowledge and skills to easily grasp and apply programming concepts. Their skills and

knowledge are limited to surface knowledge of programs and they generally approach

programming “line by line” rather than at the level of bigger program structures.

According to Goosen et al. (2007) the needs, knowledge and abilities of novice

programmers are considerably differently from those of expert programmers. Agno-

Balabat and Rojo (2013) therefore proposed program visualization as an educational

tool that integrates programming tasks with visualizations of program execution to help

novices locate programming errors. The authors conclude that visualization as a helpful

tool for novices would assist novices’ practice in writing code and visually tracing it to

debug software, making it easier to shift from novice to expert programmer.

Novices spend little time in planning and testing code, and when necessary, try to

correct their programs with small local fixes instead of more thoroughly reformulating

them. Also, the knowledge of novice programmers tends to be context specific rather

than general and they often fail to apply the knowledge they have obtained correctly. In

fact, an average student does not usually make much progress in an introductory

programming course (Ala-Mutka, 2004). Atachiants et al. (2014) identify testing and

debugging as the two very complex areas for novice programmers and reported that

some researchers found programming tools that support source-level debugging with

data visualization to be more effective. The authors agree that planning is common

amongst novice programmers and that the absence of good planning might result in

more bugs. The incremental running and iteratively testing of code while new code is

 Page 44

being written, have been found to be an effective debugging strategy for both novice

and expert programmers

According to Smith and Webb (2000), novice programmers have difficulties in

developing, comprehending and debugging of a computer program. Each individual

student therefore brings into the learning experience a unique blend of knowledge,

beliefs and fears. Students use their own metaphors to try and make sense of their

learning. Furthermore, novices lack the necessary analytical skills resulting in the

learning of programming to be highly complex for them. Experiences allow problem

representation to be conceptualized. They further state that the meaning and

importance students attach to original experiences and action taken by them is

influenced by the different styles of learning by students. The pre-existing knowledge

can then prevent students to see the programming problem as a problem. On the

behavioural differences between expert and novice programmers, the findings of Loh

and Sheng (2013) indicate that there exists a trend in novices to follow rules “blindly”

when solving problems as they still need to acquire the context in which those rules

operate. They will learn to apply the right rules with the right conditions as they develop

in proficiency to solve the problems. However, expert programmers have a tendency to

solve problems based on their instinct and ignore or sometimes even freely break the

rules.

A group of novices learning to program will typically contain a huge range of different

backgrounds, abilities and levels of motivation and it results typically in a huge range of

unsuccessful to successful outcomes (Robins et al., 2003). They further found from a

survey (covering background, intended major, expected workload, etc.) of students in

an introductory programming paper that the most reliable predictor of success was the

grade that the student is expected to receive. They indicated that students in general

have a reasonable accurate sense of how they would do in the first two weeks of their

course. Campbell (2013) also identified motivation to be the major factor affecting

novice programming performance and that it is positively associated with student grade.

Intrinsic motivation was found to be higher for students with some experience. However,

 Page 45

in relation to self-efficacy in particular, it has been reported that no evidence was found

that prior programming experience affected success.

In this study, the researcher wants to investigate whether students can develop their

skills and willingness to learn the programming concepts without emphasising ethnic

and educational backgrounds.

2.6 HOW NOVICES LEARN TO PROGRAM

Soloway and Spohrer (1989), outline deficits in novices’ understanding of various

specific programming language constructs such as variables, loops, arrays and

recursion., note shortcomings in their planning and testing of code, explore more

general issues relating to the use of program plans, show how prior knowledge can be a

source of errors, and more. Novices are very local and concrete in their comprehension

of programs (Robins et al., 2003). Novice programmers spend very little time planning

and testing code but rather tend to attempt small “local” fixes rather than significantly

reformulating the programs, (Linn and Dalbey, 1989). Novices have a poor grasp of the

basic sequential nature of program execution. Winslow (1996) concludes that novice

programmers know the syntax and semantics of individual statements but do not know

how to combine these features into valid programs. Novice programmers have trouble

translating a solution by hand into an equivalent computer program.

Dehnadi (2009) agrees that novices find it difficult to understand the syntax and

underlying semantics of a programming language with no comprehension on the

capabilities of the computer. The author further states that since novices are at the

beginning of their mental model development, they lack the mechanical understanding

and therefore build a poor mental model which does not satisfactorily meet their

learning requirements. In the case of recursion and iteration in programming, students

with poor mental models of the mechanical process result in them adopting poor

learning strategies.

Despite some evidence that a well-designed programming environment can assist

students learning to program, McIver (2002) argues that there have been few, if any,

 Page 46

direct evaluations on whether the choice or design of programming development

environment has a real impact on learning.

Utting et al. (2013) describe today’s students as belonging to the Net generation, who

are active experiential learners dependent on technology for accessing information and

interacting with others. Compared to previous generations, these students may not

willingly engage with instructional resources, such as text books. According to Utting et

al. (2013), the expectation of “always on” access to the internet as they code is likely to

influence the strategies which students adopt in attempting to solve programming

problems.

Accordig to Sorva et al. (2013), instead of seeing particular programming concepts

(e.g., objects, recursion) as active components of a dynamic process that occurs at

runtime, novices see these concepts merely as pieces of code. Sorva et al. (2013)

further states that learning to program is sometimes perceived primarily by novices as

learning to write code in a particular language, rather than learning to design behaviours

to be executed by computers. The way novices’ reason about programs and the way

they practice programming is transformed by their learning to relate program code to the

dynamics of program execution (Sorva 2010).

Yacob and Saman (2012) argue that, although confidence is not in itself a reliable

predictor of success, it plays a significant role in the successful outcome of students

learning to program Motivation was found as one of the major reasons for students to

drop out IT courses. It is further stated by Yacob and Saman (2012) that students will

learn to know programming if they are interested or motivated. Teachers must be able

to tune into the motivation of the class, further encouraging students to attach some sort

of value to learn.

According to Derus and Ali (2012), the majority of students agreed that, apart from

having discussions with their lecturers and their peers the practical or laboratory

activities could help them to learn fundamental programming more effectively. Because

 Page 47

of its dynamic concept, learning to program needs to involve practical activities and

intensive training. Through active learning strategies in laboratory activities, the

students’ understanding of difficult terminology in programming as well as stimulating

their interest in the field of programming will be addressed.

It is further argued by Derus and Ali (2012) that, in order to succeed, novices need a set

of learning strategies to help them to cope with their process of programming. The

absence of the ability to visualize the program state during code execution is one of the

factors that lead to novices experiencing difficulty in learning to program. Linden and

Lederman (2011) suggest that students who play an active role in constructing

knowledge will have both greater retention and greater learning enjoyment than

students involved in passive pedagogical teaching approaches.

The different kinds of characteristic behaviour are evident when observing novices in

the process of writing programs. Perkins et al. (1989) distinguish between two main

types: “stoppers” and “movers”. When confronted with a problem, stoppers simply stop,

abandoning all hope of solving the problem on their own. Students’ attitudes to mistakes

or errors are important. Those who are frustrated or have a negative emotional reaction

to errors are likely to be the stoppers. According to the authors, movers are students

who keep trying, experimenting and modifying their code. Movers use feedback about

errors effectively and have the potential to solve the current problem and progress.

Rodrigo et al. (2009) indicate that the negative affect and behaviours have a strong

influence on how novices learn. When confronted with errors in their programs, students

respond by either disengaging from the task by giving up or they will try fixing the bugs

by guessing. When students are given a programming problem, one group of students

will stop trying to solve the problem when they run into difficulties. This group will then

wait for the answer to be given or immediately ask for assistance. The other group

however, will keep on trying to solve the problem by using the error messages displayed

or start over from the beginning. Robins et al. (2003) indicate two types of novices: an

 Page 48

effective and ineffective novice that is students who learn without excessive effort and

those who do not learn without inordinate personal attention.

In a study done by Vogts et al. (2010) at a SA university the following factors such as

self-belief and motivation of novices learning to program are important and should not

be ignored. It was found that a pedagogical program development environment will

have a positive effect on the perceptions of novice programmers learning to program,

specifically the feelings of achievement and learning. These positive perceptions could

help alleviate some of the difficulties experienced during the learning process.

According to Rogerson and Scott (2010), the students’ experiences with learning to

program are affected by a lack of confidence or apprehension regarding their ability to

write a program. It is therefore suggested that programming students must overcome

their barriers to learning programming through self-efficacy by believing in themselves

and their abilities. Students need to have self-confidence, courage and self-esteem and

must be willing to take responsibility for their own learning (Rogerson and Scott, 2010).

Butler and Morgan (2007) suggest that the level of conceptual difficulty in programming

as a subject is an important consideration in the delivery of the learning material.

Domain issues such as syntax operate at a low level of conceptual difficulty. A concept

like loop or decision may be considered as mid-level. Novice programmers may find the

leap between understanding the concept to implementing them, very difficult. The

biggest challenge therefore does not appear to be the understanding of basic

programming concepts but the ability to apply them. In the context of CPUT, DS1 is one

of four subjects that new students undertake in their first year of study for the National

Diploma Information Technology (NDIPIT). The aim of this core subject is to provide

these new students, most of whom have no prior programming experience, with the

fundamentals of problem solving, program design and implementation in the context of

the C++ programming language. Since this subject is considered introductory, the

curriculum spans from low to mid-levels of conceptual complexity.

 Page 49

2.7 SCAFFOLDING

Scaffolding is defined by Van Arsdale (2010) as tasks given to students to carry out

under the guidance of a teacher or more skilled peers, in order to achieve knowledge

through collaborative talk and shared understanding. Scaffolding can therefore be seen

as supportive behaviours by experts to support the development and progress of

students. The term scaffolding, which was introduced by Wood et al. (1976), refers to

providing temporary help for students to learn successfully in a teaching-learning

process. “Scaffolding can be applied to peer interactions when learning a computer

program like Scratch” (Van Arsdale, 2010). Resnick, one of the developers of Scratch,

believes that traditional education does not teach students to be creative thinkers and

problem solvers. Resnick deems creative thinking to be the key to success and

satisfaction, both professionally and personally. Scratch allows users to collaboratively

create rich media projects which include animations and video games, using their

computer and mathematical skills (Van Arsdale, 2010).

Nam et al. (2010) state that programming is difficult and time consuming to learn and

that the use of Scratch is the best way to show how to easily approach programming

education, together with the supply of scaffolding. One of the goals of Scratch is to

foster creative thinking which influences students’ motivation, concentration and

achievement through constructionist learning.

 Page 50

The following conceptual framework (see Figure 2.1) depicts the concepts and the

relationships between them relevant to this study.

Figure 2.1 Conceptual framework of concepts

The aim of this study is to investigate how the use of instructional technology can be

used as a teaching strategy to explain abstract programming concepts to novice

programmers. The conceptual framework was derived from the literature to indicate the

different concepts and their relationships relevant to this study according to the aim and

depicted as Figure 2.1. The main concepts are: the student as novice programmer and

lecturer as the humans and then teaching strategy, programming concept and

instructional technology as the non-human concepts. Students will interact with

technology as part of their learning process to internalise and apply programming

concepts. Scratch, as an example of instructional technology, will be introduced as an

intervention to improve the understanding and learning of these concepts. Technology

will enhance the interaction and collaboration between students and instructors. The

conceptual framework will guide the research in exploring alternative teaching methods

and support the development of learning materials to teach programming to guide the

empirical investigation.

 Page 51

The next chapter focusses on the overall process of collecting data and the

methodology that was applied to conduct the research activity.

 Page 52

CHAPTER 3

RESEARCH METHODOLOGY

3.1 INTRODUCTION

Research methodology refers to the overall process of collecting information and data in

order to find out the result of a given research problem. It defines how the research

activity was conducted, how to proceed and measure progress made. This chapter

gives an overview of the methodology that was used and how the research problem

was identified.

The research protocol outlines a detailed set of instructions and procedures that was

followed in conducting the intended study and the collection of data. Yin (1994) asserted

that a research protocol allows the researcher to detail in advance procedures and

requirements to be followed during data collection. This has provided direction for

research, which helped to improve the reliability of the research findings.

This chapter focuses on how the research problem was investigated. It provides a

theoretical overview of the methodology that was used.

3.2 RESEARCH APPROACH

The research approach was dependent on the nature of the research problem which in

this case is: the majority of first year IT students at CPUT are novice programmers and

lack strong logic and reasoning as well as other IT skills that can facilitate their

interpretation and application of key concepts in programming.

This research study deals with a complex problem that is highly contextual. Not only is

the educational field complex but this study specifically considers it in an IT domain.

Designing and developing software solutions in the IT field require specific skills and the

factors that influence the acquiring of the necessary software development skills are

also complex. According to Ala-Mutka (2004), programming includes problem solving

skills and knowledge of programming languages with their tools. It is further stated that

 Page 53

the common approach to teaching programming skills to software developers is to first

teach them the basics of a programming language. Programmers have to deal with

abstract concepts as they translate their understanding of the anticipated solution and

how to use the programming language into a software program. The syntax of the

programming language is usually also new to the novice programmers and often difficult

to learn. It is therefore important to first have a good understanding about the problems

that novice programmers face when learning the programming concepts and to use a

programming language to translate these concepts into programming constructs before

any intervention can be designed. Part of this exploration was to use an existing

intervention to establish how the novice programmers respond to this example of an

instructional technology.

The philosophical assumption for this study was influenced by how the novice

programmers socially construct their understanding of the programming concepts. Their

translation processes result into programming constructs which are subjective. It is

assumed that novice programmers construct their own realities based on their

understanding of the programming process that will be influenced by their

environments, backgrounds and previous experiences. The research approach was

therefore inductive and meanings were derived from the different observations of novice

programmers in a practical setting.

There is still too little understanding of the novice programmers’ internalization of the

programming concepts to already design an intervention. Based on the complexities it

was decided to rather focus on the problem and regards this study as a step towards an

intervention. The actual intervention will be designed in further research based on the

findings. This study therefore focused more on the novice programmers’ interactions

with an example instructional technology tool during the programming process as they

try to make sense of how they should use the programming concepts to develop a

software solution for a given problem. The emphasis was on the researcher “standing

back” and allowing the novice programmers’ voices to be heard and their actions to be

observed.

 Page 54

Although the research is envisaged as two parts, it was decided to follow a design

research methodology where the first two phases form part of this study. Design

research has the following main phases: 1) problem identification; 2) identification of

tentative products and design principles; prototyping and assessment of the preliminary

products and theories (Plomp, 2009). The outcome after phases one and two is

tentative products and theories and after the third phase, the problem resolution and

advancing theories. The design research methodology is illustrated in Figure 3.1. This

study only focused on phases one and two. As part of the first phase, the author

conducted an experimental case study under his control. Case study research is a good

research strategy for research problems in real-life settings, where “how” questions are

typically posed (Rowley, 2002). For example, “How do novice programmers respond to

an instructional technology to use programming concepts?”

Figure 3.1 Design research methodology (Plomp, 2009:14)

During the second phase, a focused literature review was done to establish the current

status of the research and to develop the theoretical conceptual framework. The

analyzing part was done by using a specific instructional technology tool to establish the

novice programmers’ responses to using this tool. Analyzing of the practical context part

was done with three workshops where the novice programmers were working with the

example instructional technology tool in a practical setting.

Insights gained from the empirical data collected in this study may be used to enhance

teaching and learning of abstract programming concepts at CPUT and other institutions

 Page 55

of higher learning. The key focus of this research approach was to enhance the

understanding of challenges in teaching programming concepts and contributing to the

body of knowledge on the problems experienced by novice programmers. In this study,

design research was found as the suitable approach

3.2.1 DESIGN RESEARCH

The researcher found it appropriate to engage in design research as a suitable

approach. Design research is summarized by Plomp (2009:13) as “the systematic

study of designing, developing and evaluating educational interventions as solutions for

complex problems in educational practice, which also aims at advancing our knowledge

about the characteristics of these interventions and the processes of designing and

developing them”.

By doing educational design research the researcher aimed to provide insights and

contributions for generating mechanisms to address the problem of grasping and

understanding abstract programming concepts. Design research as a research

approach or strategy facilitates the development of an intervention to explore alternative

methods for teaching and learning programming at CPUT. According to Plomp (2009:

31) design research is conducted in real world settings because it addresses complex

problems in educational practice. This research therefore aimed at designing an

intervention in a real world setting using the successful DS1 students of the previous

year, current first year and repeating DS1 students as the participants.

3.2.2 RESEARCH SETTING

The study was conducted at CPUT using the first year level DS1 students as a pilot

group because the researcher has unfettered access to this cohort of students. An in-

depth investigation was done on all the first year level DS1 students taught by the

researcher at CPUT. The researcher used purposive sampling which is popular in

qualitative research (Patton, 1990), as opposed to random sampling. Because the

emphasis was to be on quality rather than quantity, the objective was not to maximize

numbers but to become “saturated” with information on the topic (Padgett as cited in

Bowen, 2005: 217).

 Page 56

3.2.3 RESEARCH METHODS

The qualitative and quantitative methods were used to collect empirical data for this

research study. Although a mixed method approach was not specifically used in this

research project, the combination of quantitative and qualitative empirical data provides

to some extent the possibility of triangulation. The integrative methodological approach

by combining quantitative and qualitative methods employed by the same study is

referred to as triangulation (Bryman, 2006).

Kelle (1995) as cited in Fielding and Schreier (2001) distinguishes three meanings or

models of triangulation:

 triangulation as the mutual validation of results obtained on the basis of different

methods (the validity model)

 triangulation as a means toward obtaining a larger, more complete picture of the

phenomenon under study (the complementarily model)and

 triangulation in its original trigonometrically sense, indicating that a combination

of methods is necessary in order to gain any (not necessarily a fuller) picture of

the relevant phenomenon at all (the trigonometry model).

The triangulation model used for this study is to obtain a larger, more complete picture

of how novice programmers use programming concepts with the use of a software tool

for a specific problem.

3.3 RESEARCH METHODOLOGY FOR THIS STUDY

Only once a better understanding is gained about the challenges that novice

programmers experience in practice will it be possible to design an appropriate

intervention. Ultimately the aim will be to design an intervention that will assist novice

programmers to master the programming concepts but falls outside the scope of this

study.

 The study was conducted at a single institution – CPUT - and it focused on a single

issue, namely the learning of programming concepts with the use of an instructional

technology - for novice programmers. A qualitative mode of enquiry ensured an in-depth

 Page 57

discussion to questions given to the subjects. The questions addressed the knowledge

and skills needs of programming learners and the challenges for students and

educators to evolve from traditional to technology-supported teaching and learning.

Although a design research strategy is followed, the stages of case study research,

recommended by Yin (1994), were used as a broad outline for conducting his study.

The following four stages are given in table 3.1:

Table 3.1 Four stages of case study methodology (Yin, 1994)

Design the case

Conduct the case

Analyze the case evidence, and

Develop the conclusions, recommendations and implications

The research was an exploratory qualitative pilot study of instructional technology as a

tool for enhancing the traditional method of teaching structured programming and

design techniques. The focus group for the pilot study was students at the institution,

both successful and repeating, who had just completed their first year. The study

population for the actual research included all the current first year DS1 students of

CPUT. The purpose of the exploratory qualitative approach was to enhance the

understanding of the problems experienced by novice programmers and to generate

mechanisms to address these problems. The insights gained from the pilot study will be

used to design and implement a technological solution to enhance teaching and

learning of programming concepts. Study participants were included or excluded based

on their willingness to participate.

 Page 58

The research was conducted as follows:

 Conduct a thorough literature review to establish the concepts relevant for the

study.

 Interact with students who have just completed their first year (both successful

and repeating students) and invite them to suggest possible technology solutions

that they think could have helped them to master the programming concepts.

This is done in the form of workshops

 Analyse the findings of the literature and ideas generated by students

 Analyse and interpret the results.

Yin (1994) suggests that the case study investigator must be able to operate as a senior

investigator during the data collection and needs to know the following aspects:

 Reason for conducting the study

 Type of evidence being sought

 Variations that might be expected

The behaviours and interactions of the research subjects were carefully observed and

respondents were encouraged to give credible responses which were converted into

useful qualitative data. A qualitative approach advocated for more diversity in response

and capacity to adapt to new developments or issues during the research process.

 Page 59

Figure 3.2 provides a diagrammatic representation of the research approach.

Figure 3.2 Framework of the research study

 Page 60

3.4 SELECTION CRITERIA AND PROCESS

An internal admission rating process is conducted by the DIT to determine student

acceptance of the programme for a NDIPIT, a three year higher education qualification.

For applicants who matriculated from 2008 onwards, points scored will equal the best

five scores for their final year of secondary education subjects of which one of the

subjects must include the Mathematics or Mathematics Literacy rating. To be

considered for admission to the NDIPIT, an applicant must obtain a minimum score of

20 with Mathematics or a score of 22 with Mathematics Literacy. In addition to the

institutions admission requirements, all applicants for the NDIPIT must obtain the

following minimum rating: Home (first) Language 4, Second Language 3, Mathematics 3

and Mathematics Literacy 5. The rating codes are given in Table 3.2:

Table 3.2 Admission rating for matriculants from (2008) onwards

2008 – 2011 Matriculants

Rating

Code

Rating Marks

%

7 Outstanding

Achievement

80 –

100

6 Meritorious

Achievement

70 – 79

5 Substantial

Achievement

60 – 69

4 Adequate Achievement 50 – 59

3 Moderate Achievement 40 – 49

2 Elementary

Achievement

30 – 39

1 Not Achieved 0 – 29

For applicants who matriculated before 2008, points scored will equal the best five

scores. To be considered for admission to the NDIPIT, an applicant must obtain a

minimum score of 25.

 Page 61

Table 3.3 Admission rating for matriculants before (2008)

Matriculated Before 2008

Mathematics

HG SG

English

1st 2nd Other

Symbol Matric HG Matric SG

A 8 6

B 7 5

C 6 4

D 5 3

E 4 2

F 3 1

DS1 is one of two major subjects in NDIPIT and requires a minimum final mark of 50%

to pass. Hence, should a student fail this subject, it will have to be repeated in the part-

time programme of the following year. However, if students fail both their major

subjects, they may be excluded from returning to the NDIPIT the following year.

3.4.1 PROFILING

Participants were randomly selected and were contacted in advance in writing

(Appendix A) to inform them about the research project and to obtain their permission to

contact them on their mobile telephone numbers. It was planned that each target group

per workshop would contain at least thirty DS1 students, although this was not possible

in the eventual practice. The potential respondents for these focus groups were

purposefully selected according to a matrix to include a variety of students representing

different groups. Participants were selected according to gender and ethnic groups.

There was also an attempt to include students with varying marks, e.g. to include

students with good, average and low marks. Study participants were included

depending on their willingness to participate; therefore a list with possible substitutes

was also compiled. The focus groups were organised outside formal class times,

usually during academic registration, university vacation periods or over lunch breaks.

 Page 62

Participants were selected from a list of students who had successfully completed the

DS1 subject the previous year, unsuccessful students who were repeating the subject

and new students. Successful and repeating students were randomly selected based on

their final mark scored in the previous year. New students were selected based on their

points scored during the selection process for admission into the IT programme.

3.5 RESEARCH INSTRUMENTS FOR DATA COLLECTION

The data collection process was aligned with the principles of social constructivism,

which views learning as a social construction of knowledge from shared meanings. The

data collection took in consideration various aspects of participants involved in the

process. This included their characteristic novice behaviour and attitude towards the

use of technology. To develop trust and to comply with internationally accepted ethical

standards, the researcher offered anonymity by not linking any name of individuals to a

completed research instrument.

Multiple sources of data gathering, which includes participant observations, video

recording, a questionnaire, and document analysis, were used as research instruments.

The use of observation and document analysis as complement data gathering sources

is widely accepted as a method of enhancing validity (Kirk & Miller, 1986 cited in Parry

1998:96). The researcher used video as a way of representing insights based on his

observation.

3.5.1 WORKSHOPS

A total of three workshops were conducted, each one following the exact same format.

The target groups for the workshops were successful DS1 students of the previous year

(2011), the current first years (2012) and the repeaters (2012) who failed DS1 in 2011

but satisfied the policy for exclusion from study at CPUT. All three workshops were an

interactive and participatory exercise.

At the start of the workshops the objectives and processes were discussed with the

participants. Scratch, an innovative and well-researched tool that offers a visual

programming environment was introduced. Participants were given a task to design a

 Page 63

new clock using the Scratch tool. After completion of the clock project, each participant

was given the task to design their own game or animation, allowing them to engage in

exploratory self-directed learning. At the end of the workshop each participant answered

a self-completed questionnaire of their own experiences and how the tool helped them

to better understand the abstract concepts in programming. These responses were then

converted into useful qualitative data.

During the workshops, the researcher acted as a “participant observer” and he played

both roles: as a participant (a lecturer performing his teaching duties) and as an

observer witnessing learning taking place during the process. As a ‘participant’ the

researcher was not doing what those being observed did, but interacted with them, to

varying degrees, while they used Scratch to do the given tasks. The data collection

workshops were well planned and constructed and included the DS1 students of the IT

Department. Consequently, the instruments that were used resulted in a high degree of

reliability, validity and findings of the research. Also the use of field notes and memos

helped the researcher to determine if the validity of the findings had been affected in

any way.

The observer paid attention to key issues such as:

 Familiarization with the use of instructional technology tools

 The level of digital divide that exists amongst students from cross-cultural

backgrounds.

 Student access to a PC and the internet, and

 Instructors integrating technology into their teaching

3.5.2 PARTICIPANT OBSERVATION

Field-notes and video recordings were used as a data collection method based on

participating and observing. Laurier (2010) states that participant observation involves

spending time working with people or communities in order to understand them and

further suggests that participant observers should keep written field-notes or video

notes of their research. Participant observation should not be regarded as an approach

which can be effectively used in isolation from other research procedures Jackson

 Page 64

(1983). The aim of the researcher therefore was to stay as close as possible to the

observable facts being studied and therefore tried to be a part of the things being

observed.

3.5.3 VIDEO

Video recording was used to capture the live user experiences and participant activities

that would take place in the actual workshops. The researcher did not spend too much

time on pondering whether participants would be acting natural with the presence of the

video camera because this was an alternative data collection method in a traditional

lecturing setup. The video material was analysed for its relevance for the design task.

This media gave the researcher the opportunity to witness the nonverbal expression of

feelings, collaboration and discussions of participants. According to (Ylirisku and Buur,

2007), videos can be used for data collection, interpretation and evaluation. Video is

used as a sense-making tool which focuses the attention onto specific aspects of the

data without losing the emphatic qualities of the data.

3.5.4 QUESTIONNAIRE

At the end of the workshop participants were asked to provide feedback on an open-

ended self-completed questionnaire from their own experiences. Participants were

reminded that responses should not be about the Scratch tool but the ability of the tool

to help them to better understand the abstract programming concepts. These responses

were then converted into useful qualitative data. A questionnaire (Appendix C) was

used as a data gathering instrument to collect responses from the participants. The

questionnaire was aimed at a focus group, using the successful DS1 students of the

previous year, current first year and repeating DS1 students of CPUT, as the study

participants. After the workshops, participants were asked to carefully think of an

alternative idea that could be more relevant to our teaching and learning which the

researcher could explore.

In the first part of the questionnaire, participants had to explain their experiences of

learning and understanding programming concepts at the beginning of their first year.

The second part of the questionnaire was about their experiences with the tool (Scratch)

which includes: navigation, visibility, ease of use and single-window user interface or

 Page 65

multi-purpose design; elimination of the compilation step; help screens, default

parameters and illuminating demonstrations for commands; visual feedback during code

execution and troubleshooting; ability of an incorrect program still running by eliminating

syntax and runtime errors; and variables as concrete or visible objects.

Participants had to give their personal opinions on how these functionalities of the tool

(Scratch) would influence or assist new students with the learning of programming

concepts. In the final part of the questionnaire, participants had to suggest any possible

ideas that could help new first year DS1 students to master programming concepts.

They also had to give their opinion about the suitability of Scratch as an instructional

tool to assist novice programmers with the learning of new programming concepts,

keeping in mind the diversity of students at CPUT.

3.5.4.1 QUESTIONNAIRE ITEMS

The questions on the evaluation form supported the objective of the session and were

encouraging them to rather elaborate than giving brief answers.

The instrument consisted of four sections, namely:

 own experience of learning and understanding programming concepts

 experiences with the Scratch tool

 possible ideas that may help DS1 students to master programming concepts

 suitability of Scratch as an instructional tool to assist new programmers

3.6 DATA ANALYSIS

The analysis of data was carried out considering both the qualitative and quantitative

data collected. Data was organized in tables and sorted by respondent, question and

time returned. The data was coded to then identify the different themes based on the

codes as part of the data analysis. The themes identified during the analysis of the data

were presented in different tables. Codes were created for the occurrence of

fundamental but previously uncovered issues and connections. Data was reduced into

smaller groups by means of coding to gain an understanding of the enquiring issues.

 Page 66

Coding allowed the researcher to see the relationship between categories and patterns.

Codes were applied and reapplied to the qualitative data by grouping and regrouping

data in order to consolidate meaning and explanation. A process called codifying was

carried out by the researcher whereby the codes were applied and reapplied to the

qualitative data, grouping and regrouping the data in order to consolidate meaning and

explanation. The identified themes, based on the analysed empirical data, were

compared to the themes identified in the literature.

The analysis of questionnaire responses and observations was based on an inductive

approach geared to identifying patterns in the data by means of thematic codes. This

process was carried out in a systematic way that resulted in credible answers to the

research questions and objectives embedded within the study. Bernard (2006 as cited

by Jameson, 2008) states that “analysis is the search for patterns in data and for ideas

that help explain why those patterns are there in the first place”.

Thematic networks are described by (Attride-Stirling, 2001) as “a way of organizing a

thematic analysis of qualitative data. Thematic analyses seek to unearth the themes

salient in a text at different levels, and thematic networks aim to facilitate the structuring

and depiction of these themes. Thematic networks systematize the extraction of: (i)

lowest-order premises evident in the text (Basic Themes); (ii) categories of basic

themes grouped together to summarize more abstract principles (Organizing Themes);

and (iii) super-ordinate themes encapsulating the principal metaphors in the text as a

whole (Global Themes). These are then represented as web-like maps depicting the

salient themes at each of the three levels, and illustrating the relationships between

them”. See the structure of a thematic network in Figure 3.3

 Page 67

Figure 3.3 Structure of a thematic network. (Source: Attride-Stirling, 2001)

Content analysis was applied to analyse the questionnaire and target group in the

relation to the research questions and sub-questions. The analysis of questionnaire

responses and observations was based on an inductive approach geared to identifying

patterns in the data by means of thematic codes. This process was carried out in a

systematic way that would result in credible answers to the research questions and

objectives embedded within the study. The final themes apparent from the data were

then presented as a pattern.

3.7 INTERPRETATION

The video recordings were fully studied and the observations together with the field

notes and questionnaire responses formed the raw data for further analysis. The

process of data collection and data analysis was continuous and iterative. Content

analysis was conducted to look for categories, patterns and trends with the use of

thematic data analysis. The findings derived from the analysed data were used to attach

meaning to the findings as part of the interpretation process.

 Page 68

3.8 ROLE OF THE RESEARCHER

The researcher played the role of participant observer to observe the learning taking

place during the process and to interact with the participants. According to Laurier

(2010) participant observation, which has no predetermined formal steps to doing it,

involves spending time working with people or communities in order to understand

them. Hence, the method based on participating and observing was found appropriate

since the researcher had free access to the cohort of DS1 students at CPUT and as a

qualitative researcher, felt very personally involved in every step of the research

process. The researcher participated in the workshops both as researcher and lecturer.

The students already knew him as lecturer and his role in the workshop was therefore

perceived as something already familiar to them.

With respect to anonymity, Fink (2000) argues that respondents in a qualitative study

will not be anonymous to the researcher as they will be in a quantitative study, therefore

the researcher will feel obliged to protect the data that was collected to strengthen the

researchers’ loyalty towards the respondents. However, no names of respondents were

recorded on research instruments that were used for data collection by the researcher.

Before, during and after the workshops the researcher took field-notes as a supplement

to video recordings, as methods of data collection which allowed the researcher to stay

as close to the observable facts being studied as possible. Notes were written by hand

and some were later typed and stored as text files. Note-taking helped the researcher

recall sufficient details of the workshops which were described and analysed.

3.9 CHAPTER SUMMARY
This chapter provided an overview of the methodology employed for this study. It

presented a detailed description of the research design, the research instruments for

data collection and the selection criteria and process used to randomly select the

participants. It also detailed the data analysis process and how the empirical data was

interpreted.

The following chapter focuses on the results obtained after analysis of the data.

 Page 69

CHAPTER 4

DATA ANALYSIS AND FINDINGS

4.1 INTRODUCTION

This chapter presents the analysis of the data gathered to achieve the objectives of this

study. Additionally, the analysis and findings are only based on the items in this chapter.

The analysis of the statements will be presented in Chapter 5.

Furthermore, this chapter will present how data, gathered from three workshops

including observations of the researcher, was collected and processed in response to

the problems identified in Chapter One. The workshops were conducted with current

first year as well as successful and repeating DS1 students of the previous year. The

expected outcome of the workshops was to provide a basis for recommendations to

support the developing of learning materials and approaches for basic programming

courses and find a mechanism to help our first year students to cope with the abstract

concepts of programming. The analysis of the qualitative data proceeded into the

findings of the research.

4.2 BACKGROUND

CPUT is one of four universities but the only University of Technology (UoT) in the

Western Cape province of SA with a current enrolment of over 33,000 students (Cape

Peninsula University of Technology Active Web, n.d.). The current student population is

very diverse in population group (Figure 4.1). Consequently, diversity in student

population has resulted in diversity in terms of educational standard and computer

expertise. Four population groups (African, Coloured, Indian and White) were

represented in the sample population. African students had the highest percentage of

enrolment for 2012 (56%), followed by Coloured (29%), White (14%) and Indian (1%).

The need to profile students in population groups is a requirement from the national

government for political reasons. In this study no distinction is made between the

different population groups.

 Page 70

Figure 4.1 Student Enrolment by population at CPUT (2012)

CPUT consists of six faculties: Applied Science, Business, Education and Social

Sciences, Engineering, Health and Wellness Sciences, and Informatics and Design.

The IT Department, one of twelve departments within the Faculty of Informatics and

Design, offers a course in IT with programme options that present career opportunities

in Business Applications, Communications Networks and Software Development.

Software Development students are prepared for careers in computer programming,

systems analysis and design, and database administration. DS1 is the first of three

parts of the Development Software pillar to cover the three years of the national diploma

in IT. The other major subject is Information Systems. Business Applications students

are prepared for careers in IT business solutions with less emphasis on programming

and Communication Network students are prepared for careers in network development

and administration and systems administration.

In the context of CPUT, the greater part of the first-time entry student population comes

with mediocre or inadequate problem solving skills. This situation has strong

implications for the teaching and learning of programming at the university. Most of the

students have little or no prior programming experience and are therefore at risk for not

succeeding in their first year programming subject. Factors contributing to this situation

include a lack of prior computer experience, limited and poor mathematics preparation,

56%29%

1% 14%

Population Group

African Coloured Indian White

 Page 71

poor self-efficacy and the adjustment from secondary to university study. This impacts

negatively on the delivery of the introductory programming subject and throughput rates

of the university. In addition to the institution’s admission requirements, all applicants for

the National Diploma Information Technology (NDIPIT) at CPUT must have obtained in

matric a minimum of moderate achievement (40 – 49%) in Mathematics or a minimum

substantial achievement (60 – 69%) in Math Literacy.

4.3 WORKSHOPS DESIGN

Each workshop had the same objectives, agenda, participation process, materials and

supplies. These were discussed first after which each workshop was discussed as they

were conducted in practice.

All three workshops followed the exact format. Participants were given the task to create

a new project called Clock and experiment with importing backgrounds that are not part

of the standard set that comes with Scratch and also experimented with editing the size

of Sprites (objects). A worksheet (Appendix B) with detailed instructions on how to

create the Clock project including visual screenshots of the different phases of

development and the image of a clock was made available on the desktops of all

computers in the lab. The Clock project was a relatively easy challenge but was useful

for participants who were new to Scratch, to encourage them in representing their

knowledge and ideas after seeing the ability of the tool.

After completion of the Clock project, participants were instructed to create their own

game project with Scratch and were encouraged to look at existing projects in the

Scripts Library of the tool to see how those games were coded. Participants were

presented scaffolded projects to design a game or create an animation which allowed

them to engage in exploratory, self-directed learning. It was expected of participants to

include in their project a conditional statement, variables, coordination and

synchronization, sequencing and iteration (looping) programming concepts and skills

supported in Scratch. These concepts are also covered in the first year of the IT

Diploma. The idea of the exercise was for participants to use their own experiences

and to establish how this tool could help them to work out the solution and consider

 Page 72

Scratch as an aid to help them better understand the programming concepts.

Participants were required to make a presentation in order to demonstrate their work in

front of their peers and the workshop facilitator. Each participant duly completed

questionnaires at the end of the workshops, based from their own experiences.

4.3.1 WORKSHOP OBJECTIVES

 Identify some of the challenges faced by novice programmers.

 Identify possible skills gaps of students learning programming concepts

 Explore how students respond to a technology solution

 Observe students’ use of instructional technology in practice

 Obtain students’ feedback on the use of Scratch as an example of instructional

technology

 Obtain feedback and observations from different groups to establish whether

there are any differences

4.3.2 AGENDA

1. Workshop objectives and process (15 min)

2. Introduction of Scratch tool (30 min)

3. Work session creating a new clock project using Scratch (15 min)

4. Creating a new game using Scratch (90 min)

5. Demonstration of actual game (30 min)

6. Completion of questionnaires (30 min)

4.3.3 PARTICIPATION PROCESS

Participants were given the option of working in pairs or as individuals with one

presenter facilitating the entire workshop. The workshop sessions were interactive with

each participant given the task to design a new clock project using the Scratch tool.

After completion of the Clock project, participants were instructed to create their own

game project.

4.3.3.1 MATERIALS AND SUPPLIES

An innovative learning tool called Scratch was used in the three workshops because it is

a suitable programming language that offers a visual programming environment,

allowing users to create interactive, media rich projects and is freely available at

 Page 73

http://scratch.mit.edu. Programming in Scratch is done by snapping together colourful

command blocks representing statements, expressions and control structures, to control

2-D graphical objects called sprites moving on a background called the stage. Since

Scratch encapsulates state (variables) and behaviour (scripts) although with neither

class nor inheritance, it is an object-based language but not an object-oriented one.

The researcher decided to use Scratch as an example of an instructional technology

given that it was available and has already been used for similar purposes as it was

designed to contribute to the understanding of basic programming concepts such as

event handling, sequential, and conditional statement. A participant was supplied with

an electronic copy of detailed hand-outs, including a worksheet (Appendix B) that was

used in the workshops. The worksheet contained detailed instructions on how to create

the Clock project including visual screenshots of the different phases of development

and the image of a clock. Each participant was supplied with a personal computer with

Scratch installed on each of them.

4.3.3.2 ACTUAL WORKSHOP

The practical part of the workshop was an exercise with challenges to be solved.

The Clock project was to encourage participants in representing their knowledge and

ideas after seeing the ability of the tool. Participants were also given the task to design

a game or create an animation which allowed them to engage in exploratory, self-

directed learning. The new projects had to include programming concepts such as

conditional statement, variables, coordination and synchronization, sequencing and

iteration (looping). Participants had to use their own experiences and establish how the

Scratch tool could help them finding a solution to the problem presented. Each

participant had to demonstrate their new game or animation.

Participants were asked to place themselves in the role of the “teacher” for new

students, throughout the workshop. The workshop was video recorded by a senior

student of the Film and Video department in the FID of CPUT. During the workshop, the

researcher was acting as a “participant observer” and played both roles: as a participant

(a lecturer performing his teaching duties) and as an observer witnessing nonverbal

 Page 74

expression of feelings, collaboration and discussions, learning taking place during the

process, paying attention to key issues such as the use of the Scratch software tool. By

participating and observing, the researcher made use of field-notes and video

recordings as methods of data collection.

For the purposes of clarity, the findings (observed patterns) will be presented as they

occurred in separate workshops.

4.4 DEMOGRAPHICS OF PARTICIPANTS

Biographical data of participants was required in order to determine the demographic

profile of the participant groups only to ensure a balanced group of participants.

Demographic details, including gender and ethnic groups, were obtained for 50 students

from the CPUT database. Four population groups (African, Coloured, Indian and White)

were represented in the sample population. African students had the highest

percentage of participation in this exploratory study (72%), followed by Coloured (20%),

White (6%) and Indian (2%).

Figure 4.2 Ethnic Profile of Participants

A total of 50 students participated in this exploratory study: 19 in workshop 1 (15 male

and 4 female), 15 in workshop 2 (10 male and 5 female), and 16 in workshop 3 (9 male

72%

20%

2% 6%

Ethnic Group

African Coloured Indian White

 Page 75

and 7 female). In all three workshops, the male participants (68%) were found to be

dominant in total over the female participants (32%). This is in line with the typical

cohort of IT students where there are more male than female students.

Figure 4.3: Gender Profile of Participants

The current first year IT student population at CPUT is very diverse which has resulted

in diversities in terms of educational standard and computer skills background. The

reason for the diversity is that they are from different social, cultural, geographical and

language backgrounds. For most of the students English is their second or even third

language and yet this is the official instructional language. It is recognised that these

different backgrounds could contribute to the problems experienced by novice

programmers but these were not specifically considered in this study. The majority of

the participants in workshop 2 and workshop 3 had little or no prior experience of

programming on their first day of arriving at CPUT.

4.5 ACADEMIC PERFORMANCE

DS1, a programming subject, is one of two major subjects in the first year of the

NDIPIT. Four subjects in the first year form a common first year for further specialization

during the second and third years of the qualification. This subject provides a basis for

all the other programming subjects in further years. This subject is a pre-requisite for not

only Development Software 2 (DS2) but also for Technical Programming in the second

68%

32%

Gender

Male Female

 Page 76

year of the diploma. Basic principles and fundamentals of good programming are taught

in this subject with a focus on programming proficiency. This will lay the foundation for

the following two years of studies and further. DS1 is taught on a weekly basis which

consists of six periods (45 minutes per period), namely two theory periods, two lab or

practical periods, and two tutorial periods. During the practical periods students are

expected to implement the work that was covered in the theory classes. There are

approximately a total of 280 students in the first year who are divided into 8 groups with

between 30 and 35 students per group. The group size is deliberately small to provide a

better opportunity for the lecturer to engage in a more hands-on manner.

The content of the subject aim to teach students to:

i. solve problems using structured design techniques

ii. design program solutions using modern design techniques

iii. develop a solution algorithm using pseudocode

iv. use a general, modern program language to implement the solution algorithm

Problem solving, program design, C++ syntax and C++ implementation is covered in the

first year subject.

This subject has three theory assessments, two practical assessments, and various

class tests and class exercises. Each of the theory assessments consists of a written

test that takes place during the official departmental test week towards the end of every

term. One practical assessment is a practical test that will be written in the beginning of

the fourth term – the students do this in a lab working on a specific problem that they

must solve using a computer. The other practical assessment is a group project done in

October, the final month of the same academic year, wherein groups of two or three

students will design and program a small software system.

This software system is demonstrated to the lecturer and part of the assessment is to

establish whether the system works for a set of test data. Throughout the year, at least

once a month, small class tests or practical programs will be given to students and

 Page 77

evaluated in practice. DS1 is a continuous assessment subject; therefore every mark

obtained throughout the year will count towards the final mark. A minimum mark of 50%

is required to pass this subject. Below is a summary of the average marks for the

different groups. These marks were extracted from the system and the averages were

calculated for the specific group of participants.

Table 4.1: First year performance and acceptance

 Performance and Acceptance

` Workshop 1

(successful)

Workshop 2

(new)

Workshop 3

(repeating)

Average Acceptance Score 25 points

(2012)

Average Performance Marks

Semester 1

65 %

(2011)

42 %

(2012)

35 %

(2011)

39 %

(2012)

Semester 2 89 %

(2011)

62 %

(2012)

37 %

(2011)

75 %

(2012)

Figure 4.4 Screenshot of the Scratch user interface

 Page 78

4.6 WORKSHOPS

4.6.1 WORKSHOP 1

4.6.1.1 TARGET GROUP

A group of sixteen second year IT students participated in workshop 1. Participants,

randomly selected based on their final marks, had successfully completed their first year

and were at the beginning of their second year of their NDIPIT, when the workshop was

conducted. One can therefore assume that they had mastered the programming

concepts.

4.6.1.2 RESPONSES

The researcher lectured some of the respondents in their first year. Since this was the

first workshop a senior researcher, a social anthropologist in the Information

Technology department, helped to facilitate the pilot workshop.

4.6.1.2.1 OBSERVATIONS

The researcher conducted a number of participant observations during the pilot

workshop. After a brief tutorial on the Scratch tool, participants were seen to be inspired

by showing eagerness to start exploring with the tool. They immediately started to

experiment with the backgrounds, pictures and command blocks. The presence of the

camera appeared not to be distracting to the participants for the reason that they stayed

focused and relaxed. All participants in this workshop engaged passionately and

enthusiastically with their practical exercise.

Only four of the participants used pen and paper to design the algorithm solution for the

problem while the rest of participants jumped straight into creating their projects on the

Scratch tool. It was observed that participants actively engaged, shared and

collaborated effectively in groups. Participants appeared to apply their prior

programming knowledge from their first year and easily and comfortably used the

Scratch software.

It was clear to the researcher, based on the observations, that participants had the

ability to grasp programming concepts immediately and with ease. Most of the

 Page 79

participants had no experience with Scratch. However, they were comfortable in

experimenting with the different effects after an hour of being exposed to the tool. It was

noticeable in the new games and animations of participants in the pilot workshop, that

participants had innovative and creative thinking skills. Participants appeared eager to

demonstrate their new projects.

4.6.1.2.2 VIDEO

During the interviews with participants, video recorded, learning interests amongst

participants were observed. One of the participants responded that they were analysing

coding instructions of existing game programs in order to apply similar programming

styles. Peer support was evident amongst participants.

Students in workshop 1 were asked to demonstrate their working programs. Participants

stated that, although they were struggling with certain programming concepts, they

managed to apply their prior knowledge and worked independently to complete their

projects. Participants appeared very confident while busy working on their tasks.

4.6.1.2.3 QUESTIONNAIRE

Some of the participants of workshop 1 indicated that they were already well prepared

at the beginning of their first year. They further stated that they understood

programming concepts, due to having Java as a subject at school.

“I have done programming at high school so when starting my first year it was

more or less revision” (Respondent 1.3).

Participants were of the opinion that the best way to learn and understand programming

concepts in order to construct a working program, was by regular practising.

“Without practice it is difficult to construct a working program” (Respondent 1.2).

Participants stated that the amount of detail covered by the lecturer, together with the

many class exercise handouts and sufficient computer laboratory equipment,

contributed constructively to their learning process.

 Page 80

“Dedicating most of our lessons in theory were far more depressing”

(Respondent 1.7). “Learning and understanding took lots of hard work and

dedication” (Respondent 1.9).

Some participants indicated that they have found it hard to adapt to the single-user

interface of the Scratch tool compared to the interface of Visual Studio that they were

used to. However, the majority seem to find the visibility and graphics interesting and

the interface easy to navigate with.

“It has an easy-to-navigate user interface” (Respondent 1.5).

The tool offers too little control to the user and it would have been a lot better if there

were more options available (Respondent 1.6). However, participants found the

navigation and visibility of the tool to be simple, user-friendly and straightforward.

”The navigation and visibility of the tool has much more simplicity and is easy on

the eye” (Respondent 1.4). “It teaches basic programming structures in a very

user friendly way” (Respondent 1.6).

According to participants the elimination of the compilation step might appear to be very

valuable. However, the students will need to learn how to compile eventually

(Respondent 1.9).

It was therefore strongly suggested by participants that the compilation step not be

eliminated as this will negatively influence the ability of the student to learn the concepts

and that students will not know where mistakes were made. Students will be unable to

determine whether their program is working or not.

“It will stop you from seeing where your problem is” (Respondent 1.3).

Respondent 1.10 argues that with the elimination of the compilation step, novice

programmers will gain more confidence. Respondent 1.6, 1.7 and 1.8 agree that

confidence levels would greatly increase if the student sees her/his program working the

first time with no bugs or vague error messages.

 Page 81

“It will eliminate stress on the student, knowing that you will not get stuck the

whole day with the coding of your program.”

In terms of learning the programming concepts, participants state that help screens,

default parameters and illuminating demonstrating for commands is useful to the novice

programmer, making it easier for them to understand the programming concepts.

“You learn easier with a visual concept of what you are learning” (Respondent

1.10).

In contrast, some participants argue that help screens and default parameters are not

useful because the students will not understand what they are doing.

“Help screens should guide you in the right direction and not give you the correct

answer or solution to the problem” (Respondent 1.1).

Visual feedback during code or script executing and troubleshooting was found by

participants to be very useful as you can see the progress you have made in your

program.

“For a novice it is helpful to see each step of your code executed” (Respondent

1.3).

“With visual feedback it is very easy when you know where the problem is or

what you are doing right” Respondent 1.8).

“With debugging, visual feedback is useful to pinpoint all mistakes and to know

exactly what was done wrong” (Respondent 1.2).

According to participants, the ability of an incorrect program to still run by eliminating

syntax or runtime errors will have a negative impact on the development of students and

their understanding of the programming language.

“Students would learn to ignore syntax rules and will not learn proper coding

ways and habits which will take them longer to becoming an expert programmer”

(Respondent 1.9). “It will negatively influence their understanding of syntax

 Page 82

because Scratch does all the coding for you. Users do not actually write any

code so they don’t learn that part of programming” (Respondent 1.2)

Respondent 1.6 states that users will be unaware of their errors and that logic errors

need to be pointed out to users so that they can learn from their mistakes.

“Programmers will keep making the same mistakes” (Respondent 1.1).

Having variables as concrete or visible objects can help the student have an idea of

what their program is doing (Respondent 1.1). Some students have a better grasp with

visual feed, therefore it is quite useful as programming concepts are very abstract and

understanding how variables are passed in a program can sometimes be a problem

(Respondent 1.3). It was also pointed out by participants that variables as visible

objects make it easier to understand the background work of a program.

“Learning would be faster and easier in understanding the concepts of variables”

(Respondent 1.8).

In order to master programming concepts, it was suggested by participants that first

year students enrolling for DS1 should have a passion for the subject. Students must be

able to conceptualize problems in a new, innovative way and need to think out of the

box (Respondent 1.5).

“Reading and practicing is essential” (Respondent 1.1).

“It will be a good idea to have video clips which students can watch repeatedly”

(Respondent 1.3).

It was further suggested by participants that Java instead of C++, should be taught as

an introductory programming language for students to master programming concepts in

their first year of computer studies. Respondents 1.7 and 1.9 recommended a visual

tool like Scratch for novice programmers or Alice, which in their opinion is similar to

Scratch but easier to use.

 Page 83

According to participants Scratch as an instructional tool to assist new programmers will

help students better understand the programming concepts. However, the visual tool

may be challenging for students with no prior access to computers.

“Scratch allows students to learn new programming concepts and is a great

confidence builder. However, the fact that they are not writing or learning any

code, might negatively affect their learning” (Respondent 1.10).

“For first time programmers, Scratch requires a lot of explanation” (Respondent

1.8). “Scratch includes a fun and educational side at the same time” (Respondent

1.5).

4.6.1.3 KEY THEMES

The following key themes emerged from participant responses in the pilot workshop:

 prior programming experience will enhance the preparedness of students

 software development and programming languages pre-acquaintance are useful

 practice is crucial to understand and apply programming concepts

 interface adaptation to single-user interface of Scratch is challenging.

Visualization is important for understanding and learning abstract and complex

programming concepts. Knowing how to compile a program makes you a better

programmer and helps to identify syntax errors. Syntax or run-time errors should never

be ignored as it will hinder students in their development and understanding of the

programming language. Students should have a strong passion for programming in

order to solve challenging technical problems.

Variables as visible objects will help students understand the abstract concepts of

programming Java should be considered the language of choice to teach students how

to program. Similarly, a visual programming language like Scratch or Alice that uses an

innovative 3D programming environment to create animations and games was

suggested as the tool to assist novices.

 Page 84

Table 4.2: Summary of Workshop 1 results

 Workshop 1

Demographics Males 79%

 Females 21%

Indian 5%

White 16%

African 37%

Coloured 42%

Academic Performance

 Average Marks

 Semester 1 65%
(2011)

 Semester 2 89%
(2011)

Key Themes

 Prior programming
experience will enhance the
preparedness of students

 Software development and
programming languages
pre-acquaintance are useful

 Practice is crucial to
understand and apply
programming concepts

 Interface adaption to single-
user interface of Scratch is
challenging

4.6.2 WORKSHOP 2

The second workshop followed the exact same format as that of the pilot workshop

conducted with 2nd year DS2 students. However, during the second workshop, the

researcher was acting as a “participant observer” and fulfilled the role of workshop

facilitator.

4.6.2.1 TARGET GROUP

Sixteen first year DS1 students participated in the second workshop. Participants were

first entry students, randomly selected based on the points they scored during the

admission rating process conducted internally by the DIT

 Page 85

4.6.2.2 RESPONSES

4.6.2.2.1 OBSERVATIONS

Participants appeared excited and enthusiastic from the beginning of the second

workshop and showed great eagerness to learn independently. All participants were

consulted about the video recording of the workshop and indicated that they were not

distracted in any way by the presence of the video camera. Participants appeared

comfortable in following and grasping the concepts of the Scratch tool presented in the

introduction section of the workshop and demonstration of the program conducted by

the facilitator. Although all the participants were unfamiliar with Scratch, some of them

were able to assist their peers who needed assistance.

It appears that students wanted to find solutions to the problem presented to them, on

their own first, rather than depending on each other. Participants experimented with the

importing of backgrounds that were not part of the standard set that comes with Scratch

and also with editing the sizes of Sprites. Students appeared relaxed while engaging in

the given task. The majority of participants successfully completed the clock project in

the time allocated and appeared eager to assist their peers who had difficulties with the

task.

Participants were given the choice to form groups but preferred to work on their own.

Only two of the sixteen participants made changes on existing games in the Scripts

library whilst the rest of the students designed their own games and animations. During

the design stage, two of the participants asked for help with the usage of conditional

statements in Scratch. After some assistance from the workshop facilitator, the students

appeared to grasp and apply the concepts. Throughout the design and development of

their new games and animations, participants appeared focused, quiet and had

minimum interaction or collaboration with each other. No visible signs of nervousness or

frustration by participants were observed.

Three participants volunteered to demonstrate their games and animations and

entertained their peers with their creative designs of animations and a quiz game. The

 Page 86

presentations were observed to have more innovation than that of the participants in the

first workshop, bringing a different creative element to the workshop. A question and

answer session was allowed for the three volunteers to answer questions related to

their designs. Participants were fascinated by the “prompt and accept” feature in the

quiz game. Despite their challenges experienced with applying the timing and

synchronization concepts using the Scratch tool, participants appeared excited and

confident in the demonstration of their creative work.

4.6.2.2.2 VIDEO

Participants in workshop 2 exposed signs of uncertainty but at the same time

excitement about the given tasks to create either a new game or make changes to

existing programs. Despite the observed uncertainties, participants displayed eagerness

to work on their projects and appeared very participative. Participants articulated

dedication in that they were willing to demonstrate to the group their completed tasks.

During the demonstrations, the eagerness to experiment and the creativity of

participants could be observed.

It was perceived that animation programming was of great interest to the participants.

One of the participants who demonstrated his project called “The Animated Comic

Book” stated that he managed to complete the task despite his struggle with certain

concepts. Participants expressed interest in the completed projects of their peers by

asking questions on how certain tasks were accomplished.

4.6.2.2.3 QUESTIONNAIRE

Participants stated that the understanding of programming concepts became easier with

practice.

“I have learned that programming needs time, practice and dedication in order to

learn and understand it” (Respondent 2.12).

According to Respondent 2.2, being keen to know and allowing you to think logical is

what helps to understand the programming concepts at the beginning of the first year of

study.

 Page 87

“I have learned that in programming you need to be more creative” (Respondent

2.10, 2.15)

It was also stated by participants that one needs to be keen to learn and should have

logical thinking skills. (Respondent 2.13) argues that “programming has many rules and

it is hard to know all of those rules in time. Programming styles of lecturers and that in

the text books are different and confuses students”.

“If you never had access to a computer, it is hard to understand how it works”

(Respondent 2.13)

Responses from participants reveal that their experience about the visibility, ease of use

and single-window interface of Scratch, is that the tool is fun, interesting and user

friendly.

“Single-window interface with four main panes, allocates everything just a click

away and simplifies programming for me” (Respondent 2.2).

(Respondent 2.9) experiences the functionality of the tool to be easy to use and very

interesting when creating new games.

“Scratch is a more fun, more interactive, less complex approach to programming”

(Respondent 2.5).

However, Respondent 2.10 argues that “it is not that simple to use Scratch especially if

you are not familiar with it”.

Respondent 2.13 states that students will spend less time coding with the elimination of

the compilation step. However, other participants argue that students will not be able to

identify their mistakes or syntax errors, which may cause confusion and negatively

influence the ability of the student to learn programming concepts. As a result, students

will be struggling with programming in their second year of the course (Respondent 2.7).

“The negative part about it is that students won’t have to understand

programming languages anymore” (Respondent 2.5)

 Page 88

“Programming will be made easy and students will lack creativity and design

skills” (Respondent 2.9)

The opinion of participants with regards to help screens default parameters and

illuminating demonstrations for commands is that it will be helpful for novices to better

learn and understand the programming concepts. According to Respondents 2.7 and

2.8, it helps a lot if you are not familiar with the program and is also useful when

creating games. However, (Respondent 2.12) argues that “help screens are not always

helpful as they may seem. In order to create a successful program, programmers need

to know exactly what they are doing”.

Participants state that with visual feedback during code execution and troubleshooting,

students will know immediately where mistakes were made and that it will aid in the

fixing of program errors.

“With visual feedback you can see where your program is incorrect” (Respondent

2.3).

According to (Respondent 2.6), the ability of the program to still run even if it is

incorrect, “will make a student not know if the program is correct or not. The student will

always repeat the same mistake”. It is also stated that eliminating syntax or runtime

errors will confuse students, limit their programming skills and problem-solving ability

and therefore negatively influence their learning of programming concepts.

“The outcome of programs will not meet its required specifications” (Respondent

2.8).

“Learning of concepts will be negatively influenced as students will not be able to

understand the problem and how to solve it” (Respondent 2.13)

Participants stated that having variables as concrete or visible objects helped students

to use them correctly and could reduce the difficulty of writing programs.

 Page 89

It is recommended by participants that lecturers do more practical work in class to help

first year DS1 students master the programming concepts. It is further suggested that

students must practice more every day and “apply the mind-set of a programmer”

(Respondent 2.2).

“Students must know their programming languages” (Respondent 2.5).

“Students must familiarize themselves with more than one programming

language” (Respondent 2.14)

A suggestion was made by participants that a visual and fun tool similar to Scratch be

installed in all computer labs at the University. This will greatly assist students in

mastering the programming concepts.

On the question of the suitability of Scratch as an instructional tool to assist new

programmers, Respondent 2.8 stated that “Scratch is a very useful and informative tool

that can assist and improve first year programming development”.

(Respondent 2.14) argues that “Scratch only allows you to do limited things compared

to other advance software tools”.

4.6.2.3 KEY THEMES

The following key themes emerged from the responses in Workshop two:

 practice is essential to learn and understand concepts

 compilation step not to be eliminated

 help screens and default parameters very helpful

 visual feedback during execution very helpful

 incorrect program should not run

 variables should be presented as concrete or visual objects

 Page 90

Table 4.3: Summary of Workshop 2 results

 Workshop 2

Demographics Males 67%

 Females 33%

Indian -

White -

African 93%

Coloured 7%

Academic Performance

 Average Marks

 Semester 1 42%
(2012)

 Semester 2 62%
(2012)

Key Themes

 Practice is essential to learn
and understand concepts

 Compilation step not to be
eliminated

 Help screens and default
parameters very helpful

 Visual feedback during
execution very helpful

 Incorrect program should not
run

 Variables should be
presented as concrete or
visual objects

4.6.3 WORKSHOP 3

The third workshop followed the exact format as that of workshops one and two. As

with the second workshop, the researcher was acting as a “participant observer” and

fulfilled the role of workshop facilitator.

4.6.3.1 TARGET GROUP

Participants in the third workshops were students who failed DS1 the previous year and

are repeating the subject. The repeaters were randomly selected based on their final

mark for DS1 in their previous year of study. Names of randomly selected participants

were published on the student notice boards.

 Page 91

4.6.3.2 RESPONSES

4.6.3.2.1 OBSERVATIONS

A number of participant observations were perceived by the researcher in the third and

final workshop. The twenty-one participants appeared to be very energetic, excited and

conversational on arrival at the workshop venue. Participants were given the option of

working in groups of two, but they preferred to work individually. The video recording of

the workshop was not in any way indicated as a distraction by the participants. During

the Scratch introduction section, participants were supporting their peers who were

falling behind. This was due to the fact that students were exploring Scratch instead of

paying full attention or stayed focused on the introductory presentation. The facilitator

also had to provide individual support and attention in some cases.

Participants appeared to be impatient in completing their given tasks without careful

planning and thought. Hence, they decided to make changes to existing games and

animations instead of creating their own. It was observed that participants in this

workshop became more confident and started to enjoy the programming environment of

Scratch tool as the workshop progressed. Even though participants in the third

workshop were repeating the DS1 subject, they appeared to be unable to coordinate

prior knowledge in grasping and applying concepts. None of the participants in this

workshop were willing to demonstrate their projects.

4.6.3.2.2 VIDEO

During the interview video recorded in workshop 3, one of the participants indicated that

the Scratch tool is fun, easy and simple to use. The participant expressed satisfaction

for the fact that he did not have to do a lot of coding. A second participant that was

interviewed expressed his view on the Scratch tool to be interesting as it does not

acquire a lot of thinking on his part. Participants were of the opinion that Scratch tool

would have helped them during their first year of study. Participants in workshop 3

acknowledge the Scratch tool as easy to use and that the tool just needed some focus

to appreciate it completely.

 Page 92

It was further suggested by participants that the Scratch tool should be introduced to

students during their first year of study because it would assist them with basic

programming. It was observed that participants collaboratively engaged with their peers

and appeared very enthusiastic and excited about the Scratch tool. One of the

participants stated that the tool is a great aid during the design phase of programming.

4.6.3.2.3 QUESTIONNAIRE

Participants of the third workshop agree with participants of the first and second

workshops that learning and understanding programming concepts requires a lot of

practice.

“Programming was hard in the beginning but become more exciting with practice”

(Respondent 3.5).

“Programming is something that needs to be practised regularly” (Respondent

3.6).

Responses from participants show that the lack of prior programming knowledge before

studying at CPUT made it difficult to understand the programming concepts, despite the

fact that they are repeating the DS1 subject.

“I had to adapt to something that was foreign to me” (Respondent 3.1).

“It was difficult because I did not have any programming experience”

(Respondent 3.3).

“For a person who never did programming it was very confusing” (Respondent

3.6).

“Understanding the concepts of the programming language was very difficult”

(Respondent 3.9)

However, Respondent 3.14 stated: “I am repeating programming for a second time and

now I understand it”.

According to participants the navigation, visibility, ease of use and the single-window

interface makes the tool easy to use and programming interesting. Respondent 3.12

states that ‘it is easy to develop your own game”.

“There is no coding involved, making it easier to accomplish a task” (Respondent

3.6).

 Page 93

“Navigation and visibility is not that bad as you can see clearly what the object on

screen looks like” (Respondent 3.12).

Respondent 3.11 argues that “everything is found on one screen but I wish that the

window that we use to design our programs can be enlarged”

The elimination of the compilation step was perceived by participants as making life

easy for the student and leads to time efficiency. However it may also result in apathetic

programmers, reluctant to develop their problem solving skills and enhance their ability

of learning programming concepts.

Respondents 3.8, 3.12, 3.15, 3.10 are of the opinion that help screens, default

parameters and illuminating demonstrations for commands will improve the

programming skills of novices, help create interest in programming, and make it easy to

learn programming concepts.

“They give me an interest to learn from my mistakes and get more knowledge”

(Respondent 3.11)

Participants state that visual feedback during execution and troubleshooting makes it

easy to see where mistakes were made. According to Respondents 3.13, 3.15 it

improves their ability to code more accurately and also hone their programming skills.

“I can see right away when I have made a mistake” (Respondent 3.7).

“It is very useful because it helps you to be able to see your mistakes and also be

able to fix them” (Respondent 3.8).

Visual feedback is useful as it teaches you to learn from your mistakes and make

corrections rapidly. It also allows you to see if the program is executing logically

according to the desired specifications (Respondents 3.2, 3.12).

Participants are of the opinion that the ability of the program to run even if it is not

correct will create confusion and encourage students to ignore the coding rules. The

elimination of syntax or runtime errors will have a negative impact on the learning of

 Page 94

programming concepts and cause students not to be familiar with the language and

rules of programming (Respondents 3.3, 3.7).

“It might create the false impression that the program has no errors”

(Respondents 3.13, 3.11)

It was suggested by participants that students should practice programming on a daily

basis and consider using the Scratch tool at university and also at home to master the

programming concepts. Students should consider watching or listening to programming

tutorials on a video-sharing website like YouTube (Respondent 3.13). Students will

master the programming concepts through hard work and must continuously try to

improve on their thinking capability (Respondent 3.3). It was further suggested by

Respondent 3.15 that students should consider working together collaboratively and

also form study groups amongst each other.

Scratch is viewed by participants as an instructional tool to assist novice programmers

learning new programming concepts, since it will be fun, helps students understand

programming concepts better and also strengthen their programming skills. Respondent

3.1 affirms that it is easy to adapt to the Scratch tool.

“Scratch helps a lot to improve the knowledge and understanding of

programming” (Respondent 3.15).

4.6.3.3 KEY THEMES

The following key themes emerged from the responses in the third and final workshop.

 programming becomes easier with practice

 prior programming knowledge essential

 elimination of compilation step very helpful

 help screens and default parameters improve programming skills

 visual feedback assist with troubleshooting

 incorrect program still running creates confusion

 Page 95

Table 4.4: Summary of Workshop 3 results

 Workshop 3

Demographics Males 56%

 Females 44%

Indian -

White -

African 94%

Coloured 6%

Academic Performance

 Average Marks

 Semester 1 35% 39%
(2011) (2012)

 Semester 2 37% 75%
(2011) (2012)

Key Themes

 Programming becomes
easier with practice

 Prior programming
knowledge essential

 Elimination of compilation
step very helpful

 Help screens and default
parameters improve
programming skills

 Visual feedback assist with
troubleshooting

 Incorrect program still
running creates confusion

4.7 CHAPTER SUMMARY

This chapter presented the responses of the research instruments. The findings of the

items suggest that in the three workshops the respondents had different views. The

analysis indicates that the successful group in the first workshop was well prepared for

programming at the beginning of their first year.

The next chapter will discuss and interpret the findings and link it to the reviewed

literature.

 Page 96

CHAPTER 5

DISCUSSIONS OF FINDINGS

5.1 INTRODUCTION

Chapter four represented the analysis of data gathered to achieve the objectives of this

exploratory study. Chapter five draws the conclusion on these findings which includes

the analysis on these findings. This chapter therefore discusses the findings relative to

the aims and objectives of this study and literature.

5.2 COMPARISON OF PARTICIPANTS RESPONSES

Table 5.1 reflects the comparison that was drawn from participant responses in the

three different workshops.

There were a total of 50 research objects in this study. The participants were

undergraduate IT students at CPUT. From the exploratory study it was observed by the

researcher that a tool similar to Scratch would help students improve their programming

learning performance. All of the participants in this study did not have equal

backgrounds in computer and programming skills when they entered the university for

the first time.

 Page 97

Table 5.1 Comparison of participant responses

 Workshop 1
(Successful)

Workshop 2
(New)

Workshop 3
(Repeating)

Learning and
understanding
programming
concepts at
beginning of 1st year

More or less revision of last
year; practice is essential

Practice and dedication
is important; creative
skills are needed; prior
access to computers is
essential

Programming requires regular
programming; lack of prior
programming knowledge
makes programming difficult;
very confusing and difficult for
novice programmers

Experience with tool
(Scratch), visibility,
navigation &
interface

Graphics interesting and
interface easy to navigate;
easy and straightforward; user-
friendly

Interface is fun,
interesting and user-
friendly; less complex
approach to
programming

Navigation, visibility and
interface easy to use; no
coding makes programming
easy

Elimination of
compilation step

Negative influence on ability to
learn; will boost confidence of
novice programmers

Less time spent on
coding; unable to
identify mistakes or
syntax errors; may result
in lack of creativity and
design skills

Makes life easy; may result in
lazy programmers

Help screens and
default parameters

Useful to novice programmers;
makes understanding of
programming concepts easier

Helpful for novice
programmers to
understand
programming concepts;
useful when creating
games

Improves programming skills
of novice programming;
allows users to learn from
mistakes and get more
knowledge

Visual feedback
during code/script
execution

Helps with debugging and
identifying mistakes

Helps to identify
mistakes and errors

Helps to identify mistakes;
helps develop programming
skills; allows user to learn
from mistakes

Program still runs
even if not correct

Negative influence on
understanding of programming
language; may result in
students ignoring syntax rules;
students unable to identify
mistakes

User will not know if
program is correct; may
limit programming skills
and problem solving
ability

Creates confusion and may
encourage user not to know
rules of programming rules;
negative impact on the
learning of concepts; can be
very misleading

Variables as
concrete (visible)
objects

Useful; helps understands
background workings of
program; helps understand
function of variables

Helps using variables
more correctly; makes
programming easier

No response

Ideas to help 1st year
Development
Software students

Passion for subject is
essential; problem solving
skills, reading and practice is
essential; Java or Alice as first
year programming language

More practical work
daily; must think like a
programmer; must learn
more than one
programming language

Practice daily and using
Scratch tool; hard work and
improving on the ability to
think; should form study
groups

Suitability of Scratch
as instructional tool

Helps better understand
programming concepts; maybe
challenging to first year with no
prior computer knowledge; no
coding might negatively
influence learning

Tool is very useful and
informative; tool has
very limited functionality

Helps understand
programming concepts better
and strengthen programming
skills; improves knowledge
and understanding of
programming

 Page 98

Questionnaires were distributed to all participants for them to fill in before they left the

workshop venues; therefore the response rate was 100%. Out of the fifty students who

answered the questionnaires, 32% were female, 68% were male. Ages of the

participants ranged from nineteen to twenty eight years old. Workshop one was

facilitated a qualified Social Scientist and Anthropologist. Workshops two and three

were facilitated by the researcher, who presented the workshop outline, program

explanation and demonstration of the Scratch tool to participants.

5.2.1 LEARNING OF PROGRAMMING CONCEPTS

The responses from participants in the three workshops were similar in that the

understanding and learning of programming concepts became easier with practice.

Participants in workshop one indicated that they were well prepared in their first year as

they already had Java as a subject at school. “I have done programming at high school

so when starting my first year it was more or less revision” (Respondent 1.3). This is

different to responses from participants in workshop three that found it difficult to

understand the programming concepts due to a lack of prior programming knowledge,

despite the fact that they were repeating the DS1 subject. “It was difficult because I did

not have any programming experience” (Respondent 3.3).

From the empirical data it appears that having prior programming knowledge is

essential for the learning and understanding of abstract concepts. This is similar to

Greyling et al. (2006) and Derus and Ali (2012) stating that the under-preparedness of

students has an impact on introductory courses that rely on technological tools as a

pedagogical concern. A lack in computing background is therefore identified as one of

the factors that leads to the difficulty in students learning programming. However, in

relation to self-efficacy, Campbell (2013) differs by reporting that no evidence was found

that prior programming experience affected success.

From the literature analysis it is evident that there is a great concern that novices spend

too little time in the planning of a basic program. This is similar to the findings of Linn

and Dalbey’s (1989) and Dehnadi (2009) that novices fail to apply syntaxes and basic

concepts in their programs. As a result, novices lack the mechanical understanding and

 Page 99

therefore build a poor mental model causing them to adopt poor learning strategies.

With relation to understanding the difficulties that students experience while learning to

program, Jenkins (2002) came to the conclusion that there was nothing inherently

difficult in a programming subject and that some students simply had no aptitude.

Programming can be an enjoyable and creative activity when students are allowed to

work on assignments that inspire them. Kanaparan et al. (2013) have found that there

exists a strong relationship between the behavioural traits of students and their learning

and performance in programming.

In the context of CPUT the researcher has observed that students might understand the

syntaxes and concepts but fail to apply them in solving a problem. In most cases the

students will then confuse their syntax handling difficulties with problem solving

difficulties. Some of the students will become frustrated, believe that they cannot do

programming and then transfer to another course or discipline of study. Ala-Mutka’s

(2004) discussion on the characteristics of a novice programmer reiterated some of the

programming challenges at CPUT discussed in the foregoing literature review.

“Admission and retention rates to computer science university courses are falling and

enrolment is male dominated. There is a need to both foster the development of

computational thinking in young students and to motivate them to study computing

subjects by improving the perception of computing, especially for girls” (Romeroet al.,

2007). The authors suggest that there are three issues that conspire to make computing

concepts difficult to learn:

i. context: problems and scenarios to which concepts are applied are often

not very motivating

ii. abstraction: some of the concepts are presented in a too abstract fashion

iii. great attention to detail is needed to make something appealing work

 Page 100

5.2.2 VISIBILITY, NAVIGATION AND INTERFACE

Some participants in workshop one was of the opinion that it was difficult to adapt to

single-user interface of the Scratch tool compared to the interface of Visual Studio. This

is different to responses of participants in workshop three that found single-window

interface easy to use. However, the responses of the majority of participants in

workshop one is similar to that of workshop two and three who refer to the visibility,

navigation and functionality of the Scratch tool to be fun, interesting and easy to use. It

therefore seems that Scratch is a suitable instructional technology to use when teaching

programming concepts and that the students adapt well to it. Scratch appears to be very

accessible as a tool that enables the user to do many creative things very quickly.

This is similar to Price et al. (1983), stating that interactive graphics and animations of

software visualizations will enhance the interface between the programming tool and the

programmer. The interaction with Scratch seems to be a positive experience for the

students regardless of their level of experience. This is similar to Nam et al. (2010) and

Utting et al. (2013) who describe Scratch as an appropriate tool for novice programmers

as it is easy and interesting to learn and aids in the development of problem solving

skills. Scratch as an interactive animation and games programming setting, promotes

active learning and is visually appealing.

5.2.3 ELIMINATION OF COMPILATION STEP

Responses from participants in the three workshops indicated that the elimination of the

compilation step might appear to be helpful and that students will spend less time with

their coding. However, from the empirical data it is recommended that the compilation

step not be eliminated as it will negatively affect the student’s ability to learn the

programming concepts. With the result, students will be unable to identify their mistakes

or syntax errors which may slow down the development of their problem solving skills.

On the other hand, the responses of Respondents 1.6, 1.7, 1.8 and 1.10 are different in

that they believe that the outcome of eliminating the compilation step will enhance the

confidence level of students when they witness their program executing at the outset

without any bugs or vague error messages.

 Page 101

It seems that it is essential for students to learn how to compile a program. A program

needs to be tested, debugged and corrected. Eliminating the compilation step will limit

the student’s development of problem solving skills. This is similar to Salleh et al.

(2013) stating that one of the greatest impediments for the novice programmers is the

ability to compile and coordinate the different components of a program. Understanding

the syntax of a programming language will teach them how to develop a program.

5.2.4 HELP SCREENS AND DEFAULT PARAMETERS

The responses from respondents in the three workshops are similar in that the help

screens, default parameters and illuminating demonstrations will be helpful for students

to learn and better understand the programming concepts. As a result, the programming

skills of novice programmers will be enhanced. It may also assist students with

understanding a program that is unfamiliar to them and even be helpful with games

programming. In contrast, some of the responses from respondents in workshop one

indicate that help screens and default parameters not useful as students will have no

understanding on what they are doing. “Help screens should guide you in the right

direction and not give you the correct answer or solution to the problem” (Respondent

1.1).

5.2.5 VISUAL FEEDBACK

The responses on visual feedback during code or script executing and troubleshooting

are all similar from all three workshops as it points out immediately where mistakes

were made. This will aid in the fixing of programming errors and allow students to the

progress that was made in their programs. Students are given the opportunity to learn

from their mistakes and are able to observe whether the program is executing logically

according to the desired specifications. It therefore seems that visual feedback is very

useful because students are able to see their progress and are able to better

understand the abstract and complex concepts in programming. Using a visualization

tool similar to Scratch enhances the students’ comprehension of program execution.

With the aid of the graphical form presented by the tool, users will be able to identify

logical errors in their programs. It is similar to (Ala-Mutka, 2004) and Utting et al. (2013),

stating visualization helps students to understand the learning of concepts. Program

 Page 102

visualization allows the student to be active as the author, rather than the passive

observer of the instructor’s animation

5.2.6 RUNNING OF INCORRECT PROGRAMS

Responses from all three workshops on the ability of incorrect program to still run

despite the syntax or runtime errors are all similar in that it will have a negative influence

on the development of student’s understanding of the programming language. This will

create confusion amongst students and may encourage students to ignore the rules of

programming. With the result, it will limit the enhancement of their programming and

problem solving skills. Students will be unaware of the logical errors in their code and

will be unable to learn from their mistakes. From the empirical data it seems that

incorrect programs should not run as students will not be able to troubleshoot and fix

errors and will repeatedly make the same mistakes. This is different from Utting et al.

(2013), stating that avoiding syntax errors with an instructional tool like Scratch, will free

the user to focus on processes and concepts rather than focussing on details.

5.2.7 VARIABLES AS CONCRETE OBJECTS

For the reason that programming concepts are abstract in nature, respondents in

workshop one indicated that it will be helpful having variables as concrete or visible

objects. Variables as visible objects will enhance the student’s comprehension on how

variables are passed in a program, making it easier to understand the background work

of a program. This is similar to responses in workshop two, indicating that variables as

visible or concrete objects will assist students in using them correctly which will reduce

the difficulty of writing programs. It appears that students will have a better grasp on

understanding the workings of variables that are visible. This will result in accelerating

their learning and understanding of abstract concepts.

5.2.8 IDEAS TO HELP FIRST YEARS

The empirical data from responses in workshops one and two recommends that a visual

tool similar to Scratch or Alice be introduced to first year programming. This will greatly

assist students in mastering the programming concepts. This is similar to Cooper et al.

(2000) and Daly (2011) who found Alice to be a suitable programming language for

novice programmers. The Alice environment eliminates the frustration and the focus on

 Page 103

the language syntax, and has proved to be enjoyable, promoting a positive attitude

towards programming and improves the retention of programming students. As an

introductory programming language for first year students of computing studies at

universities, responses from participants in workshop one suggest that a language such

as Java be introduced to novices as a first year programming language. This is different

to Jenkins (2002) who states that the purpose of an introductory to programming course

is to teach students how to program and not to teach them a particular programming

language, for example Java. Respondents in workshops two and three are of the

opinion that students should practise programming on a daily basis and be able to apply

the mind-set of a programmer. Responses from participants suggested that more

practical lab sessions be made available in the first year programming course.

From the participant responses it became clear that learning programming is a practice-

based process. Respondents in workshop three were of the opinion that the forming of

study groups will aid first year programming students in mastering the abstract concepts

in programming. It seems that students should be encouraged to form learning

communities by working in collaboration with their peers. The sharing of ideas and

thoughts on programming concepts may result in making learning a lifelong experience.

The empirical data further suggests that a visual programming language will greatly

contribute in novice programmers grasping the abstract programming concepts. This is

similar to Lattu et al. (2000) and Agno-Balabat and Rojo (2013) proposing program

visualization as an educational tool. Visualization as a helpful tool to novice

programmers offers more transparency to the program and their execution. It will enable

the possibility for students to grasp the logic of algorithms without understanding the

actual code. Regular practise is also identified as being vital to enhance the

programming and problem solving skills of students. This is similar to Yacob and Saman

(2012) and Agno-Balabat and Rojo (2013) who suggest that students do a lot of practise

in order to accelerate their development of good programming skills. This will help

novice programmers to become experts in programming.

 Page 104

5.2.9 SCRATCH AS AN INSTRUCTIONAL TOOL

Responses from participants in all three workshops are similar in that Scratch as an

instructional tool will assist novice programmers to better understand the programming

concepts. The informative and fun nature of the tool will improve first year programming

development and strengthen their program writing skills. Respondents in workshop

three affirm that it is easy to adapt to the Scratch, which is dissimilar to responses in

workshop one indicating that the visual tool may be challenging for students with prior

access to computers. “For first time programmers, Scratch requires a lot of explanation”

(Respondent 1.8).

It seems that Scratch is interactive and informative and it will enhance the problem

solving skills of novice programmers. The tool allows students to be actively involved in

the construction of their creative designs. Students with no prior knowledge of

computers will be able to easily familiarise them with the tool. This is similar to Tangney

et al. (2010), Nam et al. (2010) and Agno-Balabat and Rojo (2013), describing the

Scratch tool as a highly potential first language for novice programmers and that it

facilitates the development of problem solving skills. Using a visualization tool like

Scratch will enhance the students’ understanding of program execution. It would also

assist novice programmers in writing code and visually tracing it during troubleshooting.

The Scratch tool introduces users to the use of objects (sprites) in programming and

helped students to better understand looping conditions.

The following aspects came out strong in the literature analysis although were not

specifically identified by the thematic analysis.

5.3. PROBLEM SOLVING SKILLS

An experienced programmer draws on many skills and much experience. Some of the

required skills include problem solving ability and some mathematics underlying the

process. “Research literature and practical experience of subject experts indicate that

teaching programming to novices has proven challenging for both student and lecturer”

 Page 105

(Costello et al. ,2007). Problem solving skills are therefore fundamental in solving new

problems.

It has been found that in order for programmers to develop competency, they need to

have good problem solving skills and knowledge of a programming language. However,

many first-time entry students come to university with mediocre or inadequate problem

solving skills. According to Costello et al. (2007), research supports the fact that novices

lack the meta-cognitive skills needed to become life-long learners and proficient

programmers.

5.4 MOTIVATIONAL FACTORS

Students approach computing degrees with a variety of motivations. Some may have a

genuine interest in the subject (intrinsic motivation). This is similar to Campbell (2013),

stating that motivation is the major factor affecting the performance of novice

programmers. Intrinsic motivation was found to be high for students with some

experience. Students who struggle in programming see their degree as a means

towards a lucrative career (extrinsic motivation). A third form of motivation is when

students try to please their parents or family (social motivation).

The reason for many students to study computing is the possibility of gainful

employment after their graduation. However, personal interest in the subject is on the

other hand an important motivating factor (Tangney et al., 2010). The structure of

engagement and a student-directed setting over an extended unstructured period,

accessible after school, provides a strong context for changes in the perception of

computing.

5.5 ATTITUDE

In the context of CPUT, first year DS1 students at the beginning of the 2011 academic

year, feared that they would not be able to master the programming subject. A group of

five students in the classroom expressed their concern that they had never been

exposed to computers before arriving at university. They therefore requested that the

 Page 106

researcher, who was also their lecturer at that time, provide them with all the support

necessary to successfully master the first year programming subject.

The negative attitude towards the programming subject was in the mind of students

before studies even commenced. Students indicated that some of their peers who were

repeating DS1 informed that the subject is very difficult to master. This is in line with

Jenkins (2002) who states that programming acquires the reputation of being difficult

because of the view that is passed on to new students by their predecessors. As a

result students approach a course with an expectation that it will be difficult and are

therefore not motivated to succeed.

IT lecturers at CPUT are currently teaching C++ as an introductory programming

language to first year IT students. Visual Studio, an integrated development

environment (IDE) from Microsoft (Figure 5.1 and Figure 5.2) is used to develop console

applications.

 Page 107

Figure 5.1 Screenshot of Visual Studio integrated development environment

Figure 5.2 Screenshot of C++ runtime environment

5.6 DIVERSE STUDENT BACKGROUNDS

Some students may find it difficult to adapt to a life of study at university. First time entry

students at institutions of higher learning must learn how to take ownership of their own

education. They may need the necessary guidance and support already at secondary

school to help develop them into self-motivated and self-sufficient problem solvers.

In their discussion of teaching delivery issues and problems (Carter & Boyle, 2002)

conclude that it is crucial that the expectations of first time entry students be aligned to

that of a university at an early stage. Students arrive at university from a diverse range

of backgrounds, with different expectations regarding their higher education. The

situation at CPUT is critical because the bulk of its students come from poor and

disadvantaged backgrounds which have strong implications for the teaching and

learning of programming.

 Page 108

For most students university experience is new irrespective of prior experience.

“Student expectations upon arrival at university and their level of preparedness for

formal and logical reasoning cannot be ignored; also their ability to connect the practical

skill of the subject to the abstract theory behind it must be developed” (Carter & Boyle,

2002).

Four different population groups (African, Coloured, Indian and White) were represented

in the sample population for this study. Student participants were from different social,

cultural, geographical and language backgrounds with the male participants (68%)

dominant in total over female participants (32%). The diversity was evident in terms of

educational standard and computer background. However, the differences were not

specifically considered in this study and did not influence the findings in any way.

5.7 PRIOR KNOWLEDGE

There should be connection between subjects at secondary school and those offered to

students in their first year of study at university level. During an educational research

project, Moskal et al., (2000), observed in classrooms that students who have little or no

prior programming experience are at risk for not succeeding in their first year

programming course. It was also discovered that the majority of students leave

computer science at the end of their first year. Factors contributing to this situation

include a lack of prior computer experience, limited and poor mathematics preparation,

poor self-efficacy and the new university environment.

”Students with no prior programming experience are disadvantaged in successfully

completing their computer science degree” (Moskal et al., 2000). This result is

correlated to the fact that universities are shifting from imperative programming

languages similar to C and Pascal for novice programmers, to object-oriented

languages like C++ and Java. Students now have to learn additional concepts which

include class, object, information hiding, inheritance and polymorphism.

 Page 109

In the context of CPUT, the prior knowledge of programming and previous backgrounds

in computers enables students to better perform low-level programming tasks,

understanding code functionality and locating syntax errors faster. However, it was also

evident that students with prior programming from school were lacking certain

programming principles and concepts which include the struct data type, arrays and I/O

operations on external data files.

5.8 TEACHING APPROACH

It is suggested by Tangney et al., (2010) that an innovative pedagogical approach

needs to be explored for teaching programming to students in secondary schools. In

appropriate scaffolding settings, pupils can be facilitated to learn where much of the

learning is student initiated with peers and mentors being the sources of help.

5.9 KEY FINDINGS FROM THE STUDY

Responses to the research questions are provided, namely:

What are the tentative design principles of appropriate instructional technology that can

be used to facilitate novice programmers’ understanding of programming concepts?

 What are the challenges of technology-supported teaching of programming

concepts?

 What are the contextual aspects that need to be considered for the design of an

instructional technology intervention?

 How do novice programmers interact with instructional technologies during the

programming process?

 How can instructional technology be used to engage students in learning and

acquisition of programming skills?

5.9.1 What are the challenges of technology-supported teaching of programming

concepts?

The biggest challenge for novice programmers is that they fail to understand the basic

concepts in programming and then learning to apply them. The literature of Greyling et

 Page 110

al. (2006) revealed that the high incidence of unprepared students at higher education

institutions in SA has an impact on introductory programming courses that rely on

technological tools as a pedagogic concern. Acquiring and developing knowledge and

skills about programming is a highly complex process which involves a variety of

cognitive activities, and mental representations related to program design, program

understanding, modifying and debugging.

Novices lack the necessary analytical skills resulting in the learning of programming to

be highly complex for them. The situation at CPUT is critical because of students’ lack

of meta-cognitive skills to unlock key programming concepts. In the context of CPUT,

students are at risk of not succeeding in their first year programming subject. This is due

to little or no prior computer or programming experience, limited and poor mathematics

preparation, poor self-efficacy and the adjustment from secondary school to university

study.

Furthermore, the literature of Winslow (1996) suggests that the main source of difficulty

is not the syntax and understanding of concepts but rather the planning of a basic

program. Students are able to explain individual concepts, know the syntax and

semantics of individual statements, but fail to apply it in their program or combine it into

valid programs in solving a problem. In most cases students will confuse their syntax

handling difficulties with problem solving difficulties which result in them getting

frustrated and making them believe that they cannot do programming. In the context of

CPUT, the researcher has noticed that when first year programming students are given

a programming problem, they immediately try and write the language source code on

the computer. Novice programmers spend little time in planning and testing code and

often fail to apply the knowledge they have obtained correctly. The biggest challenge

therefore does not appear the understanding of basic programming concepts but the

ability to apply them correctly and the ability to organize structure and plan their

thoughts.

 Page 111

5.9.2 What are the contextual aspects that need to be considered for the design of

an instructional technology intervention?

The bulk of first-time entry students at CPUT come with mediocre or inadequate

problem solving skills from poor schooling and disadvantaged backgrounds. This gap

has had strong implications for the teaching and learning of programming at CPUT and

throughput rates of the university. As mentioned in the problem statement, the majority

of first-year IT students at CPUT are novice programmers and lack strong logic and

reasoning skills that can facilitate their interpretation and applications of key

programming concepts.

Currently, the student population at CPUT is very diverse, resulting in diversity in terms

of computer skills and programming knowledge. The categories represented in the

sample student population are African, Coloured, White and Indian. Students of the

African demographic group had the highest percentage of enrolment for 2012 followed

by Coloured, White and Indian. Overall, male participants succeeded in percentage,

over the female participants in all three workshops.

As an IT lecturer at CPUT, the researcher has concluded that some first year students

may find it difficult to adapt to a life of study at university. For most students university

experience is new irrespective of prior experience. The reviewed literature emphasized

the importance that the expectations of first time entry students be aligned to that of

university at an early stage. Students arrive at university from a diverse range of

backgrounds with different expectations regarding their higher education. Furthermore,

the literature was suggestive that student expectations on arrival at university and their

level of preparedness for logical reasoning should not be ignored; and that their ability

to connect the practical skill of programming to the abstract theory behind it must be

developed.

 Page 112

5.9.3 How do novice programmers interact with instructional technologies during

the programming process?

The literature review revealed that students will be able to master the learning of

programming skills with the support of suitable teaching strategies and tools. It was

further highlighted by the literature that one way to assist novice programmers is to

provide computerized assistants, for example software visualization tools that use

interactive computer graphics, graphic design and animations to enhance the interface

between computer programmers and their programs. The reviewed literature suggested

that innovative technologies can be integrated into the classroom to enhance teaching

and learning. Instructors will be able to take advantage of technology to enrich the

educational experience of their students.

A well-researched and innovative learning tool called Scratch, that offers a visual

programming environment, was used in this study. Scratch was used as an example of

instructional technology as it was designed to contribute to the understanding of basic

programming concepts. The findings of this study found the visibility and graphics of

the tool to be interesting and the interface easy to navigate with. Furthermore, the ease

of use and single-window interface makes the tool easy to use and programming

interesting.

The study findings strongly suggested that the compilation step not be eliminated as it

will negatively influence the ability of the student to learn the concepts and to identify

their mistakes and syntax errors. In terms of help screens, default parameters, and

illuminating demonstrations for commands, the findings have shown that it will be

helpful for novices to better learn and understand the programming concepts. Moreover,

it will improve the programming skills of students and help create an interest in the

programming.

The reviewed literature emphasized the importance of the use of visualizations in

computer science education because they are important for understanding and learning

abstract and complex concepts in this field. The literature further states that program

 Page 113

visualization tools might be a promising aid for novice programmers learning to

program. Students benefit by having a greater understanding of the programming

concepts and to assimilate the new concepts. The use of a visual programming

language will provide students with a visual vocabulary which they can grasp and apply

instantaneously. The findings of this study found visual feedback during code or script

executing and troubleshooting to be very useful because the student will be able to see

the progress made in the program. Visual feedback allows the student to see if a

program is executing logically according to the desired specifications. Students will

know immediately where mistakes were made, allowing them to learn from their

mistakes and make corrections rapidly.

According to the findings of this study, the ability of an incorrect program to still run by

eliminating syntax or runtime errors will have a negative impact on the development of

students. It will limit their programming skills and problem-solving ability and encourage

students to ignore the coding rules of the programming language. The findings of this

study also suggested that having variables as concrete or visible objects is quite useful.

Programming concepts are mostly abstract and understanding how variables are

passed in a program can sometimes be a problem. Visual feed will help students to use

variables correctly and also reduce the difficulty of writing programs.

5.9.4 How can instructional technology be used to engage students in learning

and acquisition of programming skills?

The researcher found it appropriate to engage in an educational design research

methodology to facilitate the development of an intervention to engage students in

learning and acquisition of programming skills. Design research as a research strategy

facilitates the development of an intervention to explore alternative pedagogies for

teaching and learning programming at CPUT. Insights and contributions were provided

by the approach to enhance the teaching and learning of abstract programming

concepts to novice programmers at CPUT. The recommendations produced by this

study highlight the principles that need to be considered for the design of an appropriate

instructional technology tool as an intervention.

 Page 114

Designing and developing software solutions in the IT field require specific skills. It is

important to understand the problems that novice programmers face when learning

programming concepts, before an intervention can be designed. Therefore the

researcher in his exploratory study used an existing intervention to establish how novice

programmers respond to this example of instructional technology. This study presented

to the researcher an improved understanding of the challenges experienced by novice

programmers when learning programming concepts. The educational design research

approach applied by the researcher, provided insights to aid in generating mechanisms

in addressing the problem of grasping and understanding abstract programming

concepts

5.10 CHAPTER SUMMARY

This chapter discussed the findings of the study relative to the literature review and the

objectives of the study. The discussion highlighted areas where the findings aligned with

related literature and where they did not. Areas that required future research were

identified.

The next chapter will discuss the overall conclusions of the study and provide

recommendations and potential areas for future research.

 Page 115

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 INTRODUCTION

This chapter concludes the study, highlights limitations, and makes recommendations

for potential future research. The conclusions for this study are drawn from the overall

response statements as presented in Chapter five.

6.2 SUMMARY OF CHAPTERS

The dissertation is structured as follows:

Chapter One: Introduction

This chapter outlines the research problem and sets out the objectives of the research.

Chapter Two: Literature review

In this chapter the literature is reviewed relating to skills and knowledge required to

master programming concepts and identifies existing and other technology solutions to

contribute to the teaching of students. The aim of the reviewed literature is to reveal

what has been done in this field of study by reviewing existing scholarship. This chapter

also explores how other scholars have theorized and conceptualized on the issues,

what they have found empirically and the instruments that they used and to what effect.

Chapter Three: Research methodology

This chapter discusses the tools and methods used in gathering meaningful data and

provide an overview on the methodology of the study. Given the literature review

presented, the focus is on how the objectives of the study will be achieved and what

research methods are best suited for the study. A detailed description of research

design and questionnaire design is presented and why it was necessary to employ

sampling selection and techniques to respond to the research questions. The research

 Page 116

protocol outlines a detail set of instructions and procedures that will be followed in

conducting the study and the collection of data.

Chapter Four: Data analysis and findings

This chapter outlines the analysis of data that was gathered including observations of

the researcher. The focus is on the results obtained after the analysis of the data in

response to the problems identified in Chapter One. The responses from research

instruments are presented. The analysis of the qualitative data proceeded into the

findings of the research.

Chapter Five: Discussions of findings

Findings relative to the objectives of the study and related literature are discussed and

interpreted and linked to the reviewed literature. The discussions highlight the areas

where the findings are aligned to the related literature and where it is not. Chapter Five

draws the conclusion on these findings which includes the analysis on these findings.

Chapter Six: Conclusions and recommendations

The conclusions and recommendations are drawn based upon data analysed linking it

to objectives of the subject under investigation.

 Page 117

6.3 SUMMARY OF FINDINGS

A summary of findings relative to the aims and objectives of this study is found in Table
6.1.

Table 6.1 Summary of Workshop findings (copied from Chapter 4)

 Workshop 1 Workshop 2 Workshop 3

Demographic
s

Males 79% 67% 56%

 Females 21% 33% 44%

Indian 5% - -

White 16% - -

African 37% 93% 94%

Coloured 42% 7% 6%

Academic Performance Average Marks

 Semeste
r 1

65%
(2011)

42%
(2012)

35% 39%
(2011) (2012)

 Semeste
r 2

89%
(2011)

62%
(2012)

37% 75%
(2011) (2012)

Key Themes

 Prior
programmin
g
experience
will enhance
the
preparednes
s of
students

 Software
developmen
t and
programmin
g languages
pre-
acquaintanc
e are useful

 Practice is
crucial to
understand
and apply
programmin
g concepts

 Interface
adaption to
single-user
interface of
Scratch is
challenging

 Practice is
essential to
learn and
understand
concepts

 Compilation
step not to be
eliminated

 Help screens
and default
parameters
very helpful

 Visual
feedback
during
execution very
helpful

 Incorrect
program should
not run

 Variables
should be
presented as
concrete or
visual objects

 Programming
becomes easier
with practice

 Prior
programming
knowledge
essential

 Elimination of
compilation step
very helpful

 Help screens
and default
parameters
improve
programming
skills

 Visual feedback
assist with
troubleshooting

 Incorrect
program still
running creates
confusion

 Page 118

Student demographic details, including gender and ethnicity were extracted from the

CPUT student database. The diverse student population group consisting of Indian,

White, African and Coloured are represented in the sample population with African

student having the highest percentage (72%) of participation. In total, male participants

(68%) were found to be dominant in this exploratory study.

Majority of the workshop one participants had prior programming experience or Java as

a subject at high school level, compared to participants of workshops two and three with

little or no prior knowledge. Hence, the noticeable difference in academic performance

of the programming subject DS1, in their first year of study at university. Academic

performance of participants in workshop three had significantly increased in semester

two of 2012 (75%) compared to their semester two results of 2011 (37%), after

repeating DS1 for a second time.

The researcher has identified certain key themes that emerged from the responses of

participants in the three workshops. Having prior programming knowledge is essential

as it will enhance the preparedness of students in their first year of study at university.

Practice is crucial and will improve the ability of the student to better understand and

apply programming concepts. Visualization was identified as being helpful as it

advances the learning of abstract and complex concepts and assists with

troubleshooting.

6.4 RESEARCHED QUESTIONS REVISED

One research question and four sub-questions motivated and guided the exploratory

study. The study responded to the research questions listed in Table 6.2 which defined

the whole research process and gave guidance to the arguments and inquiries of the

researcher.

 Page 119

Table 6.2 Research questions revisited

Research Question

What are the tentative design principles of appropriate instructional technology that can be used to

facilitate novice programmers’ understanding of programming concepts?

Research Sub-Questions Objectives Findings

What are the challenges of

technology-supported teaching of

programming concepts?

Identify the challenges experienced

by novice programmers to learn the

programming concepts

Novice programmers fail to

apply syntaxes and basic

concepts in solving

problems; spend too little

time planning

What are the contextual aspects

that need to be considered for the

design of an instructional

technology intervention?

Profile the novice programmer for a

specific context; methods

Students from diverse

backgrounds and different

expectations; expectations

of first years to be aligned to

that of university

How do novice programmers

interact with instructional

technologies during the

programming process?

Establish the novice programmers’

responses to the instructional

technology during the programming

process

Instructional technology

experienced as to be very

accessible and enabling

creative things; visualization

enhances student

comprehension of program

execution

How can instructional technology

be used to engage students in

learning and acquisition of

programming skills?

Develop the tentative design

principles of an instructional

technology intervention

Visual programming tool

allows students to be more

active in learning; students

actively involved in

construction of their creative

designs

6.5 VALIDITY OF RESEARCH

Yin (1994) suggests that a high quality case study is characterized by rigorous thinking,

sufficient presentation of evidence to reach appropriate conclusions and careful

considerations of alternative explanation of evidence. It is further suggested that

multiple sources of evidence will ensure constant validity. The data collection

workshops were well planned and constructed and included DS1 students of the IT

 Page 120

Department. Instruments that were used resulted in a high degree of reliability, validity

and findings of the research. The use of field notes and memos helped the researcher

to determine if the validity of the findings has been affected in any way.

6.6 RECOMMENDATIONS

The primary goal of the study was to investigate how instructional technology can be

used to teach programming to novices at a UoT. This study found that students must

learn to understand the full SDLC in order to systematically attack problems before even

translating their solution into a working program. In order to master the learning of

programming skills, suitable teaching strategies and tools must be available to support

the learning process. Learning programming can be a complex task; therefore

educators have to carefully design their teaching approaches. Good programming

examples that include games should be used to practice programming with the aim of

enhancing problem solving abilities. Research has found that students are motivated

using games as a useful learning tool. Play could influence the development of

visualization, experimentation and creativity.

The effective support provided to students by educators will help restore the confidence

of students in their abilities to program. Educators also need to give students the

opportunity to be more active in their learning. Students should be encouraged to

collaborate with other students and form learning communities. The sharing of ideas

and thoughts will aid first year programming students in mastering the abstract concepts

of programming and may result in making learning a lifelong experience. Novice

programmers can also be assisted by providing computerized assistants created for

them. The engagement of students in active thinking is often driven by questions from

instructors. From the exploratory study it was observed that a tool similar to Scratch

should be considered to improve the programming learning performance of students.

This coincides with reviewed literature that using a visualized tool in the classroom is

appropriate for novice programmers and will facilitate the development of problem

solving skills.

 Page 121

The reviewed literature suggests that educators should focus more on the combination

and use of features underlying the issues of basic program design. An instructional

approach must be thoroughly designed to issues on the programming course, and how

aiding materials can be introduced into education. Lecturers must recognize the fact

that students have individual learning needs and that different teaching strategies need

to be investigated and applied in the classroom. In the traditional lecture method

educators are active while students remain passive. Students may be kept attentive by

making use of quizzes. Innovative technologies can be integrated into the classroom to

enhance the teaching and learning process. Instructors will be able to take advantage of

technology to enrich the educational experience of the students. The expectations of

first time entry programming students should be aligned to that of the university at a

early stage. Hence, their level of preparedness for formal and logical reasoning cannot

be ignored

The aid of visualization will allow programming content and concepts to be represented

structurally. Software visualizations use interactive computer graphics, graphic design

and animations that will enhance the interface between computer programmers and the

program. Visualization technology will be of little educational value unless it engages

students in active learning activities. Reviewed literature states that program

visualization tools might be a promising aid for novices learning to program. Students

will enjoy the benefit of having a greater understanding of programming concepts and to

better assimilate new concepts. A visual programming language will provide students

with a visual vocabulary which they can grasp and apply instantaneously.

A programming language must be seen as a tool used to implement a solution. The

need exists for specialized program development environments to be developed. The

language of choice for the first programming language should provide an instructional

environment for the student to develop skills in higher order thinking and problem

solving. Access to technology should be given to students at a level that will benefit

them. Students will be able to develop their skills and willingness to participate

irrespective of their ethnic and educational background. Research has found that a

 Page 122

pedagogical program development environment will have a positive effect on the

perceptions of novice programmers learning to program. Positive perceptions, including

feelings of achievement and learning, could alleviate some difficulties experienced

during the learning process.

A basic background in mathematics and the English language is recommended before

students commence on a study in IT. Reviewed literature states that a mathematics

background puts the focus on logic and problem solving. A positive relationship should

therefore exist between mathematical ability and successful student programmers. It is

further stated in the reviewed literature that the general intelligence and mathematics

science abilities seems to be related to success when it comes to learning to program.

Prior programming experience is also highly important for the reason that the higher

incidence of under prepared students rely on the use of technological tools a

pedagogical concern. A connection should exist between subjects at secondary school

and those offered in their first year of study at a university. The reviewed literature

suggests that an innovative pedagogical approach needs to be explored to teach

programming at high school level. It is further recommended that a technology solution

be designed and implemented to enhance the teaching and learning of programming.

6.7 FURTHER RESEARCH

The insights gained from this research study will be used to design and implement a

technological solution to enhance teaching and learning of programming concepts. A

thorough literature review will be conducted to establish the concepts relevant for further

research. The findings of this research will be used to develop a concept solution that

can be used to teach programming concepts to novice programmers.

The new programming concept will be taught to the new first year IT students and their

comprehension of the model will be assessed and analysed. Students will be introduced

to the concept technology solution and their comprehension of the programming

concepts will be observed after having used the solution. Feedback will be obtained

from first year IT lecturers and students. The concept solution will be refined and

 Page 123

reintroduced to lecturers and students after which the results will be analysed and

interpreted. The final results and proposed technology solution will be presented.

6.8 CONCLUSION

In summary there are many factors that contribute to the challenges experienced by

novice programmers which include the lack of prior computer or programming

knowledge, poor mathematics and problem solving skills, and the difficulty to adapt to

university life. The biggest challenge is not merely in the understanding of the basic

programming concepts but in the ability to apply it when constructing a complete

working program.

The outcomes of the study indicate that unprepared students have a negative impact on

the delivery of programming courses offered at university. Many first-time entry

students come to the university with mediocre or inadequate problem solving skills.

Students with little or no prior programming experience and poor mathematics

preparation are at risk of failing their first year of programming. The reviewed literature

concludes that students with no prior programming experience are disadvantaged in

successfully completing their IT qualification. It was established that novice

programmers lack analytical skills whereas experienced programmers draw on their

skills which include problem solving ability and mathematics. Problem solving skills

were therefore found to be fundamental in solving new problems.

The study also revealed that students might not have difficulty in understanding the

syntaxes of the programming language but merely fail to perform proper planning. Due

to little time spent on planning, students jump straight into coding and therefore fail to

apply their knowledge. Prior knowledge of programming and previous background in

computers enables students to better perform low-level programming tasks. Access to

computers is essential in learning programming concepts in the first year of study.

The study also established that suitable strategies and tools are needed to master

abstract concepts. Innovative technologies in the classroom will enhance the teaching

 Page 124

and learning of programming. Novice programmers show more interest in programming

when they are using a tool with a visual environment that offers user-friendly graphics

and visibility. With visual feedback students have a better understanding and are able to

see how a program executes logically. It was further established that visualization

enhances the students’ comprehension of program execution. Interactive graphics and

animations of software visualizations enhance the interface between the tool and the

programmer. From the study it was observed that the use of a self-explanatory aid

similar to Scratch, supported by a strong visual environment, is sufficient to introduce

programming to those with no previous programming experience. However, the tool

does not provide the opportunity to experience errors such as mismatched braces and

missing semicolons.

In conclusion, it emerged from the exploratory study that prior programming knowledge

and access to computers is essential for novice programmers to learn and understand

programming concepts. Further research is necessary to design and implement a

technological solution to enhance the teaching and learning of abstract programming

concepts.

As a researcher it was observed that students with prior programming experience had

the ability to grasp programming concepts immediately and with ease. This was despite

the fact that they had no experience with the instructional tool Scratch. As discovered in

the literacy review and findings, prior programming experience will enhance the

preparedness of students in their first year of IT studies at a university. An interactive

visualization software tool similar to Scratch should be considered as it will enhance the

learning performance and comprehension of abstract programming concepts by

students.

 Page 125

REFERENCES

Agno-Balabat, A. C. G., & Rojo, J. N. N. 2013. A Program Visualization Approach in
Developing an Interactive Simulation of Java Programs for Novice Programmers.
Mindanao Journal of Science and Technology, 10(1).

Ala-Mutka, K. 2004. Problems in learning and teaching programming-a literature study
for developing visualizations in the Codewitz-Minerva project.
http://www.cs.tut.fi/~edge/literature_study.pdf. [Accessed on June 23, 2014]

Amory, A. 2010. Learning to play games or playing games to learn? A health education
case study with Soweto teenagers. Australasian Journal of Educational Technology,
26(6):810-829.

Amory, A., Naicker, K., Vincent, J. & Adams, C. 1999. The use of computer games as
an educational tool: 1. Identification of appropriate game types and game elements.
British Journal of Educational Technology, 30:311-322.

Atachiants, R., Gregg, D., Jarvis, K., & Doherty, G. 2014, April. Design considerations
for parallel performance tools. In Proceedings of the 32nd annual ACM conference on
Human factors in computing systems (pp. 2501-2510). ACM.

Attride-Stirling, J. 2001. Thematic networks: an analytic tool for qualitative research.
Qualitative research, 1(3):385-405.

Bowen, G. A. 2005. Preparing a qualitative research-based dissertation: Lessons
learned.The Qualitative Report, 10(2):208-222. Retrieved from
http://www.nova.edu/ssss/QR/QR10-2/bowen.pdf [Accessed on August 21, 2013]

.Bryman, A. 2006. Integrating quantitative and qualitative research: how is it done?
Qualitative research, 6(1):97-113.

Butler, M., & Morgan, M. 2007. Learning challenges faced by novice programming
students studying high level and low feedback concepts. In Proceedings of Ascilite (pp.
99-107). Singapore, 2-5 December 2007.

Byrne, P. & Lyons, G. 2001. The effect of student attributes on success in programming.
Proceedings of the 6th annual conference on Innovation and technology in computer
science education. Canterbury, Kent, United Kingdom, June 25-27, 2001

Campbell, V. 2013. A model for systematically investigating relationships between
variables that affect the performance of novice programmers.

Cape Peninsula University of Technology. 2013. IATUL Conference 2013.
http://active.cput.ac.za/IATUL2013/ . Cape Town, South Africa, 14-18 April 2013

http://www.cs.tut.fi/~edge/literature_study.pdf
http://www.nova.edu/ssss/QR/QR10-2/bowen.pdf
http://active.cput.ac.za/IATUL2013/

 Page 126

Carter, J., & Boyle, R. 2002. Teaching delivery issues: Lessons from computer science.
Journal of Information Technology Education, 1(2):65-90.

Chan Mow I. T. 2008 Issues and difficulties in teaching Novice computer programming.
Proceedings of CISSE 2007. International Joint Conferences
on Computer, Information, and Systems Sciences, and Engineering. University of
Bridgeport. December 3-12, 2007

Clear, T., Edwards, J., Lister, R., Simon, B., Thompson,E. &Whalley, J. 2008. The
teaching of novice computer programmers: bringing the scholarly-research approach to
Australia.Proceedings of the Tenth Australasian Computing Education Conference
(ACE 2008). Wollongong, Australia, Jan 22-25, 2008

Cooper, S., Dann, W., & Pausch, R. 2000. Alice: a 3-D tool for introductory
programming concepts. Journal of Computing Sciences in Colleges, 15(5):107-116).

Costelloe, E., Sherry, E., & Magee, P. 2007. Determining Areas of Weakness in
Introductory Programming as a Foundation for Reusable Learning Objects. Electronic
Journal of e-Learning, 5(1):21-30.

Daly,T. 2011. Minimizing to maximize: an initial attempt at teaching introductory
programming using Alice. Journal of Computing Sciences in Colleges. 26(5):23-30

Dehnadi, S. 2009. A cognitive study of learning to program in introductory programming
courses (Doctoral dissertation, Middlesex University).

Derus, S. R. M., & Ali, A. Z. M. 2012. Difficulties in learning Programming: Views of
students, 74-78. In 1st International Conference on Current Issues in Education
(ICCIE2012). Yogyakarta, Indonesia, September 15 – 16, 2012.

Dos Reis F.L. & Martins, A. E. 2008. E-Learning Methodology: The debate forums.

Fielding, N. & Schreier, M. 2001. Introduction: On the Compatibility between Qualitative
and Quantitative Research Methods. Forum Qualitative Sozialforschung / Forum:
Qualitative Social Research, 2(1), Art. 4.

Fink, A. S. 2000. The role of the researcher in the qualitative research process. A
potential barrier to archiving qualitative data. In Forum Qualitative
Sozialforschung/Forum: Qualitative Social Research, 1(3).

Fix, V., Wiedenbeck, S., & Scholtz, J. 1993. Mental representations of programs by
novices and experts. In Proceedings of the INTERACT'93 and CHI'93 conference on
Human factors in computing systems (pp. 74-79). ACM.

http://www.mendeley.com/research/difficulties-learning-programming-views-students/
http://www.mendeley.com/research/difficulties-learning-programming-views-students/
http://www.allconferences.com/search/index/Venue__country:Indonesia/Venue__city:Yogyakarta
http://www.allconferences.com/search/index/Venue__country:Indonesia

 Page 127

Garner, S. 2003. Learning Resources and Tools to Aid Novices Learn Programming.
Informing Science & Information Technology Education Joint Conference (INSITE).
Pori, Finland, 24-27 June 2003.

Gijselaers, W. H. 1996. Connecting problem‐based practices with educational theory. In
Bringing Problem-based Learning to Higher Education: Theory and Practice. R.J.
Menges and M.D. Svinicki (Eds), 68:13-21.

Goosen, L., Mentz, E., & Nieuwoudt, H. 2007. Choosing the “Best” Programming
Language?!. Computer Science and IT Education Conference (CSITEd 2007).
November 16-18, 2007, Mauritius. Informing Science Press:269-282.

Greyling F.C &Wentzel A. 2007. Humanising education through technology: creating
social presence in large classes. South African Journal of Higher Education, 22(4):654-
667.

Greyling, J. H., Cilliers, C. B., & Calitz, A. P. 2006. B#: The Development and
Assessment of an Iconic Programming Tool for Novice Programmers. In Information
Technology Based Higher Education and Training, 2006. ITHET'06. 7th International
Conference on (pp. 367-375). IEEE. July 10-13, 2006. Ultimo, New South Wales.

Guo, H. 2006. Visual Material and Learning Aids in Teaching Object Oriented
Programming, In Proceedings of the 7th Annual ICS HE Academy Conference, Dublin,
Ireland. August 29-31, 2006:64-69.

Harvey, B. & Mönig, J. 2010. Bringing “No ceiling” to scratch: Can one language serve
kids and computer scientists. Proceedings of Constructionism 2010 Conference. pp. 1-
10. Paris, France: Constructionism, August 16 – 21, 2010.

Hongwarittorrn, N. & Krairit, D. 2010. Effects of program visualization (Jeliot3) on
students' performance and attitudes towards Java programming. Paper presented at
the spring 8th International conference on Computing, Communication and Control
Technologies, Orlando, Florida, USA. Retrieved from
http://www.iiis.org/CDs2010/CD2010IMC/CCCT_2010/PapersPdf/TA750PM.pdf
[Accessed on April 23, 2010]

Ismail, M. N., Azilah, N. G. A. H., Naufal, U. M. A. R., & Kelantan, U. T. M. C. 2010.
Instructional strategy in the teaching of computer programming: a need assessment
analyses. The Turkish Online Journal of Educational Technology (TOJET), 9(2):569–
571.

Jackson, P. 1983. Principles and problems of participant observation. Geografiska
Annaler. Series B. Human Geography, 65(1):39-46.

Jameson, T. L. 2008. Gods and knickknacks: the American adoption of Asian religious
items. (Doctoral Dissertation)

http://www.eecs.berkeley.edu/~bh/BYOB.pdf
http://www.eecs.berkeley.edu/~bh/BYOB.pdf

 Page 128

Jenkins, T. 2002. On the difficulty of learning to program. In Proceedings of the 3rd
Annual Conference of the LTSN Centre for Information and Computer Sciences 4:53-
58, August 2002. Loughborough, United Kingdom.

Jenkins, T., & Davy, J., 2000. Dealing with diversity in introductory programming, LTSN-
ICS 1st Annual Conference, Heriot-Watt University, Edinburgh. August 23-25, 2000.

Jung, I. 2005. ICT-pedagogy integration in teacher training: Application cases
worldwide. Educational Technology & Society, 8(2):94-101.

Kanaparan, G., Cullen, R., & Mason, D. 2013. Self-Efficacy and Engagement as
Predictors of Student Programming Performance. In Proceedings of 17th Pacific Asia
Conference on Information Systems PACIS, pp. 282-282. Jeju Island, Korea, June 18-
22, 2013.

Kelleher, C., & Pausch, R. 2007. Using storytelling to motivate programming.
Communications of the ACM, 50(7):58-64.

Kluge S. & Riley L. 2008. Teaching in virtual worlds: Opportunities and challenges.
Setting Knowledge Free: The Journal of Issues in Informing Science and Information
Technology, 5:127-135.

Lattu, M., Tarhio, J. & Meisalo, V. 2000. How a visualization tool can be used –
evaluating a tool in a research and development project. 12th Workshop of the
Psychology of Programming Interest Group, Cozenza, Italy.

Laurier, E. 2010. Participant Observation. In N Clifford, S French & G Valentine (eds),
Key Methods in Geography. 2nd edn, Sage Publications, London: 116-130.

Li, E. Y. 1990. Software testing in a system development process: A life cycle
perspective. Journal of Systems Management, 41(8):23-31.

Linden, T. & Lederman, R. 2011. Creating visualizations from Multimedia building
blocks: A simple approach to teaching programming concepts. Proceedings of the
Information Systems Educators Conference (ISECON), November 3-6, 2011.
Wilmington, USA.

Linn, M.C., & Dalbey, J. 1989. Cognitive consequences of programming instruction. In
E. Soloway & J.C. Spohrer (eds.), Studying the Novice Programmer. Hillsdale, NJ:
Erlbaum.

Loh, C. S., & Sheng, Y. 2013. Measuring the (dis-) similarity between expert and novice
behaviors as serious games analytics. Education and Information Technologies, 1-15.

 Page 129

McIver, L. 2002 Evaluating languages and environments for novice programmers. J.
Kujis, L. Baldwin & R Scoble (eds). Fourteenth Annual Workshop of the Psychology of
Programming Interest Group (PPIG 2002), Brunel University, Middlesex, UK. 2002.
June 18-21, 2002:100-110.

Moons, J., & Backer C. D. 2009. Rationale behind the design of the EduVisor software
visualization component. Electronic Notes in Theoretical Computer Science, 224, 57-65

Moons, J., & Backer C. D. 2012. The design and pilot evaluation of an interactive
learning environment for introductory programming influenced by cognitive load theory
and constructivism. Computers & Education, 60(1), 368–384.

Moreno, A., & Joy, M. S. 2007. Jeliot 3 in a demanding educational setting. Electronic
Notes in Theoretical Computer Science, 178, 51-59.

Moreno, A., Myller, N., Sutinen, E. & Ben-Ari, M. 2004. Visualizing programs with
Jeliot3: Proceedings of the International Working Conference on Advanced Visual
Interfaces AVI, Gallipoli (Lecce), Italy, ACM Press. May 25-28, 2004.

Moskal, B., Lurie, D., & Cooper, S. 2004. Evaluating the effectiveness of a new
instructional approach. In ACM SIGCSE Bulletin 36(1):75-79.

Nam, D., Kim, Y., & Lee, T. 2010. The effects of scaffolding-based courseware for the
Scratch programming learning on student problem solving skill. 18th International
Conference on Computers in Education, ICCE 2010. Putrajaya, Malaysia. November 29
- December 3, 2010.

Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., &
Velázquez-Iturbide, J. Á. 2002. Exploring the role of visualization and engagement in
computer science education. In ACM SIGCSE Bulletin 35(2):131-152.
Oliver, R., & Herrington, J. 2003. Exploring technology-mediated learning from a
pedagogical perspective. Interactive Learning Environments, 11(2):111-126.

Parry, K. W. 1998. Grounded theory and social process: A new direction for leadership
research. The Leadership Quarterly, 9(1):85-105.

Patalong, S. 2003. Using the virtual learning environment WebCT to enhance
information skills teaching at Coventry University. Library review, 52(3):103-110.

Patton, M. Q. 1990. Qualitative evaluation and research methods (2nd ed.). Newbury
Park, CA: Sage Publications.

Pears, A., Seidman, S. Mlmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M. &
Paterson, J. 2007, A survey of literature on the teaching of introductory programming.
Proceeding of the ITiCSE-WGR '07 Working group reports on ITiCSE on Innovation and
technology in computer science education. New York, USA. December 4, 2007:204-223

 Page 130

Perkins, D.N., Hancock, C., Hobbs, R., Martin, F. & Simmons, R. 1989. Conditions of
learning in novice programmers. Journal of Educational Computing Research, 2(1):37-
55.

Piccoli, G., Ahmad, R., & Ives, B. 2001. Web-based virtual learning environments: A
research framework and a preliminary assessment of effectiveness in basic IT skills
training. MIS quarterly, 25(4):401-426.

Pillay, N., & Jugoo, V. R. 2005. An investigation into student characteristics affecting
novice programming performance. ACM SIGCSE Bulletin, 37(4):107-110.

Plomp, T. 2009. Educational design research: An introduction. An introduction to
educational design research, 9-35.

Price, B.A., Small, I.S. & Baecker, R.M. 1983. A Principled Taxonomy of Software
Visualisation. Journal of Visual Languages and Computing. 211-266

Rajala, T., Laakso, M., Kaila, E. & Salakoski, T. 2008. Effectiveness of program
visualization: A case study with the ViLLE Tool. Journal of Information Technology
Education: Innovation in Practice, 7:15-32.

Reeves, T., Baxter, P., & Jordan, C. 2002. Teaching computing courses-computer
literacy, business microcomputer applications, and introduction to programming online
utilizing WebCT. Journal of Computing Sciences in Colleges, 18(1):290-300.

Robins A., Rountree J.& Rountree N. 2003 Learning and Teaching Programming: A
Review and Discussion. Computer Science Education, 3(2):137-172.

Rodrigo, M. M. T., Baker, R. S., Jadud, M. C., Amarra, A. C. M., Dy, T., Espejo-Lahoz,
M. B. V., & Tabanao, E. S. 2009. Affective and behavioral predictors of novice
programmer achievement. ACM SIGCSE Bulletin, 41(3):156-160.

Rogerson, C., & Scott, E. 2010. The fear factor: How it affects students learning to
program in a tertiary environment. Journal of Information Technology Education, 9:147-
171.

Romero, P., Good, J., Robertson, J., du Boulay, B., Reid, H., & Howland, K. 2007.
Embodied interaction in authoring environments. In Second International Workshop on
Physicality (p. 43). University of Lancaster, UK, September 3 – 7, 2007

Rowe, G. & Thorburn, G., 2000, VINCE – An on-line tutorial tool for teaching
introductory programming. British Journal of Educational Technology, 31(4):359-369.

Rowley, J. 2002. Using case studies in research. Management research news,
25(1):16-27.

 Page 131

Saeli, M., Perrenet, J., Jochems, W. M., & Zwaneveld, B. 2011. Teaching programming
in secondary school: a pedagogical content knowledge perspective. Informatics in
Education - An International Journal, Volume 10, No 1, 73-88.

Salleh, S.M., Shukur, Z. & Judi, H.M. 2013. Analysis of Research in Programming
Teaching Tools: An Initial Review. Proceedings of the 13th International Educational
Technology Conference IETC-2013, Kuala Lumpur, Maleysia, 13-15 May 2013:141-
148.

Savill-Smith, C., Attewell, J., & Stead, G. 2006. Mobile Learning in Practice: Piloting a
Mobile Learning Teacher's Toolkit in Further Education Colleges. Learning and Skills
Network (Great Britain), 2006

Scott, E., Weimann, P., & van der Merwe, N. 2011. Reflections on the Role of the
Lecturer as Teacher, Researcher and Mentor in a Project-Based Approach for IS/IT
Majors at Three Different Academic Institutions. In Proceedings of the 5th European
Conference on Information Management and Evaluation, Universitā Dell'Insubria,
Como, Italy, 8-9 September 2011 (p. 446). Academic Conferences Limited.

Sivula, K. 2005. A qualitative case study on the use of Jeliot 3. (Unpublished master’s
thesis). University of Joensuu, Department of Computer Science, Finland. Retrieved
from ftp.cs.joensuu.fi/pub/Theses/2005_MSc_Sivula_Kimmo.pdf [Accessed on May 13,
2010]

Smith, P. A., & Webb, G. I. 2000. The efficacy of a low-level program visualization tool
for teaching programming concepts to novice C programmers. Journal of Educational
Computing Research, 22(2):187-216.

Soloway, E., & Spohrer, J.C. (Eds.). 1989. Studying the novice programmer. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Sorva, J. 2010. Reflections on threshold concepts in computer programming and
beyond. In Proceedings of the 10th Koli Calling International Conference on Computing
Education Research (pp. 21-30). ACM.

Sorva, J., Karavirta, V. & Malmi, L. 2013. A review of generic program visualization
systems for introductory programming education. ACM Transactions on Computing
Education (TOCE). Volume 13. Issue 2. New York, USA. June 2013

Tangney, B., Oldham, E., Conneely, C., Barrett, S., & Lawlor, J. 2010. Pedagogy and
processes for a computer programming outreach workshop—The bridge to college
model. IEEE Transactions on Education,Volume 53, No. 1, pp. 53-60. February 2010

Tekdal, M. 2013. The Effect of an Example-Based Dynamic Program Visualization
Environment on Students’ Programming Skills. Educational Technology & Society,
16(3):400–410.

ftp://ftp.cs.joensuu.fi/pub/Theses/2005_MSc_Sivula_Kimmo.pdf

 Page 132

University of Kwazulu Natal. n.d. UKZNOnline. http://www/ukzn.ac.za/ukznonline/.
[Accessed on May 01, 2014].

University of South Africa. n.d. http://www.unisa.ac.za. [Accessed on September 23,
2013].

Utting, I., Tew, A.E., McCracken, M., Thomas, L. & Bouvier, D. 2013. A fresh look at
novice programmers' performance and their teachers' expectations. Proceedings of the
ITiCSE working group reports conference on Innovation and technology in computer
science education-working group reports. Innovation and Technology in Computer
Science Education conference, 2013. Canterbury, United Kingdom, July 01-03, 2013.

Van Arsdale, J. 2010. Technology, peer collaboration, and ZPD in the dual language
classroom (Loyola University Chicago)

Van den Berg M. & Aucamp F. 2007. A practical look at results from two mobile learning
pilots in South Africa. IST Africa Conference, Maputo, Mozambique, May 9-11, 2007,
pp. 12.

Vogts, D., Calitz, A. P., & Greyling, J. H. 2010. The effects of professional and
pedagogical program development environments on novice programmer perceptions.
South African Computer Journal, 45:53-58.

Welsh, E. T., Wanberg, C. R., Brown, K. G., & Simmering, M. J. 2003. E‐learning:
emerging uses, empirical results and future directions. International Journal of Training
and Development, 7(4):245-258.

Wiedenbeck, S. 1985. Novice/expert differences in programming skills. International
Journal of Man-Machine Studies, 23(4), 383-390.

Winslow, L.E. 1996. Programming pedagogy - A psychological overview. SIGCSE
Bulletin 28:17-22.

Wolff, L. 2002. The African Virtual University: the challenge of higher education
development in sub-Saharan Africa. TechKnowLogia, International Journal of
Technologies for the Advancement of Knowledge and Learning, Volume 4, Issue 2.

Wood, D., Bruner, J. S., & Ross, G. 1976. The role of tutoring in problem solving*.
Journal of child psychology and psychiatry, 17(2):89-100.

Wu, W. 2005. Web based English learning and teaching in Taiwan: Possibilities and
Chalenges. In First Hsiang-shan area Intercollegiate International Conference on
English language teaching. Taipei: Crane Publishing, pp. 215-226. Hsinchu, Taiwan.
May 2005.

http://www/ukzn.ac.za/ukznonline/
http://www.unisa.ac.za/

 Page 133

Yacob, A. & Saman, M.Y. 2012, Assessing level of motivation in learning programming
among engineering students. The International Conference on Informatics and
Applications (ICIA2012). Malaysia. June 3 – 5, 2012.

Yin, R. 1994. Case study research: Design and methods (2nd ed.). Thousand Oaks,
CA: Sage Publishing.

Ylirisku, S., & Buur, J. 2007. Designing with Video: Focusing the user-centred design
process. Springer.

http://sdiwc.net/conferences/2012/icia2012/
http://sdiwc.net/conferences/2012/icia2012/

 Page 134

BIBLIOGRAPHY OF ADDITIONAL REFERENCES

This section lists all references reviewed but not included in this thesis.

Amiel, T., & Reeves, T. C. 2008. Design-based research and educational technology:
Rethinking technology and the research agenda. Educational Technology & Society,
11(4):29-40.

Amory, A. 2007. Game object model version II: a theoretical framework for educational
game development. Educational Technology Research and Development, 55(1):51-77.

Basit, T. 2003. Manual or electronic? The role of coding in qualitative data analysis.
Educational Research, 45(2):143-154.

Blignaut A.S. &Lillejord S. 2005. Lessons from cross-cultural online learning community.
South African Journal of Higher Education. 19:1350-1367.

Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A. & Miller, P. 1997. Mini-
languages: A way to learn programming principles. Education and Information
Technologies, 2:65-83

Čisar, S.M., Radosav, D., Pinter, R. & Čisar, P. 2011. Effectiveness of program
visualization in learning Java: A case study with Jeliot 3. International Journal of
Computers, Communications & Control. VI: 669-682

Corney, M., Teague, D., & Thomas, R. N. 2010. Engaging students in programming. In
Proceedings of the Twelfth Australasian Conference on Computing Education-Volume
103:63-72. Brisbane, Australia, January 18-22, 2010

Costello, E. 2004. The Use of a Software Enabled Scaffolding Environment to aid
Novice Programmers. Department of Computer Science, Trinity College Dublin,
Unpublished Master's Thesis, 1-156.

Coull, N. J. 2008. SNOOPIE: development of a learning support tool for novice
programmers within a conceptual framework (Doctoral dissertation, University of St
Andrews).

Crews, T., & Butterfield, J. 2002. Using technology to bring abstract concepts into focus:
A programming case study. Journal of Computing in Higher Education, 13(2):25-50.

Cronjé, J. C., & Brittz, B. 2005. Programming in the real world. Education as Change,
9(2):131-161.

Crook C. & Harrison C., 2008. Web 2.0 technologies for learning at key stages 3 and 4:
Summary report.

 Page 135

De Raadt, M. 2008. Teaching programming strategies explicitly to novice programmers
(Doctoral dissertation, University of Southern Queensland).

Denzin, N. K., & Lincoln Y. S. 1994. Entering the field of qualitative research. In N. K.
Denzin& Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 1-17).

Donmez, O. & Inceoglu, M.M. 2008. A web based tool for novice programmers:
Interaction in use. In Proceeding of the international conference on Computational
Science and Its Applications, Part I (ICCSA '08), Osvaldo Gervasi, Beniamino
Murgante, Antonio Laganà, David Taniar, Youngsong Mun, and Marina L. Gavrilova
(Eds.). Springer-Verlag, Berlin, Heidelberg.

Egan, M.H. & McDonald, C. 2014. Program visualization and explanation for novice C
programmers. Proceedings of the sixteenth Australasian Computing in Education
Conference (ACE2014). Auckland, New Zealand. January 2014.

Fleischer, R. & Kucera, L. 2001. Algorithm animation for teaching. Software
Visualization, State-of-the-Art Survey, Stephan Diehl (ed.). Springer LNCS 2269, pp.
113-128. International Seminar, Volume 2269. Dagstuhl Castle, Germany, May 20-25,
2001.

Gomes, A., & Mendes, A. J. 2007. Learning to program-difficulties and solutions. In
International Conference on Engineering Education–ICEE (Vol. 2007). University of
Comimbra – Portugal, September 3-7, 2007.

Hadjerrouit, S. 2008. Towards a Blended Learning Model for Teaching and Learning
Computer Programming: A Case Study. Institute of Mathematics and Informatics,
Vilnius, Information in Education, 7(2):181-210.

Jenkins, T. 1998. A participative approach to teaching programming, integrating
technology into computer science education, Dublin City University, 1998, ACM Press,
125-129.

Jenkins, T. 2001. Teaching programming - A journey from teacher to motivator, LTSN-
ICS 2nd Annual Conference 2001, University of North London.

Karavirta, V. Korhonen, A. & Malmi, L. 2006. Taxonomy of algoritm animation
languages. Proceedings of the 2006 ACM symposium on Software Visualization. 77-85.
New York, USA.

Kelle, U. 2001. Sociological Explanations between Micro and Macro and the Integration
of Qualitative and Quantitative Methods. Forum Qualitative Sozialforschung / Forum:
Qualitative Social Research, 2(1):95-117.

http://www.tcs.fudan.edu.cn/rudolf/Paper/anim.ps
http://www.springer.de/comp/lncs/index.html
http://link.springer.de/link/service/series/0558/tocs/t2269.htm

 Page 136

Kelleher, C., & Pausch, R. 2005. Lowering the barriers to programming: A taxonomy of
programming environments and languages for novice p rogrammers. ACM Computing
Surveys (CSUR), 37(2):83-137.

Kessler, C. & Anderson, J. 1989. Learning flow of control: recursive and iterative
procedures. In Soloway&Spohrer: Studying the Novice Programmer, Human-Computer
Interaction: 229-260.

Kölling, M. & Rosenberg, J. 1996. Blue - A language for teaching object-oriented
programming, Proceedings.of the 27th SIGCSE Technical Symposium on Computer
Science Education. Philadelphia, USA. February 15-17, 1996, pp. 190-194

Korhonen, A., Malmi, L., McNally, M., Rodgers, S. & Velázquez-Iturbide, J.Á. 2003.
Exploring the role of visualization and engagement in computer science education.
ACM SIGCSE Bulletin, 35(2):131–152.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. 2005. A study of the difficulties of novice
programmers. In ACM SIGCSE Bulletin, 37(3):14-18

Marshall M.N. 1998. Qualitative study of educational interaction between general
practitioners and specialists. British Medical Journal. 316:442-445.

Mashile E.O & Pretorius F.J. 2003. Challenges of online education in a developing
country. South African Journal of Higher Education. 17(1).

Matthíasdóttir, Á. 2006. How to teach programming languages to novice students?
Lecturing or not. In Proceedings of the International Conference on Computer Systems
and Technologies-CompSysTech. Veliko Tarnovo, Bulgaria, June 15-16, 2006.

Mayer, R., Dyck, J. & Vilberg, W. 1986. Learning to program and learning to think:
what's the connection? In E. Soloway & J.C. Spohrer (eds.): Studying the Novice
Programmer. Communications of the ACM, 29(7):605-610.

McGill, T. J., & Volet, S. E. 1997. A conceptual framework for analysing students'
knowledge of programming. Journal of Research on Computing in Education,
29(3):276-297.

Milne, I. & Rowe, G. 2002. Difficulties in Learning and teaching Programming - Views of
Students and Tutors. Education and Information Technologies, 7(1):55-66.

Milne, I. & Rowe, G. 2004. OGRE: Three-dimensional program visualization for novice
programmers. Education and Information Technologies, 9(3): 219-237.

Milner, W. W. 2011. Concept development in novice programmers learning Java
(Doctoral dissertation, University of Birmingham).

 Page 137

Munoz C.L. & Towner T.L. 2009. Opening Facebook: How to use Facebook in the
College classroom. In I. Gibson et al. (Eds.), Proceedings of Society for Information
Technology & Teacher Education International Conference 2009 (pp. 2623-2627).
Chesapeake, VA: AACE.

Myller, N., Bednarik, R., & Moreno, A. 2007. Integrating dynamic program visualization
into BlueJ: The Jeliot 3 extension. In Seventh IEEE International Conference on
Advanced Learning Technologies, 2007. ICALT 2007: 505-506. IEEE. July 18-20, 2007,
Niigata, Japan.

Postle G., Sturman A., Mangubhai, F., Cronk, P., Carmichael A., McDonald J., Reushle
S., Richardson L. & Vickery B. 2003. Online teaching and learning in higher education:
A case study. EIP Project Report, Canberra: DEST.

Powers, K.Gross, P., Cooper, S., McNally, M.F., Goldman, K.J., Proulx, V.K. & Carlisle,

M.C. 2006. Tools for teaching introductory programming: what works? In proceedings of

the 39th SIGCSE Technical Symposium on Computer Science Education, SIGCSE

2006, Houston, Texas, USA, March 3-5, 2006.

Randall B., Gilliver R.S. & Ming P.Y. 2000. Rewiring learning on the Web – Shaping
education in cyberspace. 15th BILETA Conference: Electronic Datasets and Access to
Legal Information. University of Warwick, Coventry, England. April, 14, 2000.

Reiss, S. P. 1987. A conceptual programming environment. In Proceedings of the 9th
international conference on Software Engineering (pp. 225-235). IEEE Computer
Society Press. California, USA, March 30 - April 2, 1987.

Rogalski, J. &Samurçay, R. 1990. Acquisition of programming knowledge and skills. In
J.M. Hoc, T.R.G. Green, R. Samurçay, & D.J. Gillmore (Eds.), Psychology of
programming, 157–174). London: Academic Press.

Rountree, N., Rountree, J., Robins, A. 2002. Identifying the danger zones: Predictors of
success and failures in a CS1 class. Special Interest Group on Computer Science
Education (SIGCSE) Bulletin, 34(4):121-124.

Ryan P. 2008. A small experiment in online learning. SA Journal of Higher Education.
Volume 22(4), pp. 877-888.

Santos, Á., Gomes, A. & Mendes, J. 2010. Integrating new technologies and existing
tools to promote programming learning. Algorithms, 3:183-196.

Sensalire, M., Ogao, P., & Telea, A. 2009. Evaluation of software visualization tools:
Lessons learned. In Visualizing Software for Understanding and Analysis, 2009.
VISSOFT 2009. 5th IEEE International Workshop on Visualizing Software TECHNICAL
PROGRAM, (pp. 19-26). September 25 – 26, 2009.

http://www.sigcse.org/
http://www.sigcse.org/
http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=F414D23E98BE6B12C30C73D4ABD69F31?search=&q=in%3A%22SIGCSE+Bulletin%22

 Page 138

Simelane S, Blignaut S. & van Ryneveld L. 2007. Preparing lecturers to integrate
educational technology into their teaching and learning practices. South African Journal
of Higher Education. 21(7).

Smith, P. & Webb, G. I. 1998. Overview of a low-level program visualisation tool for
novice c programmers. In Proceedings of the Sixth International Conference on
Computers in Education (ICCE'98). Beijing, China. Oct 14-17, 1998, pp. 213-216.
Springer-Verlag.

Smith, P., & Webb, G. I. 1999. Evaluation of Low-Level Program Visualisation for
Teaching Novice C Programmers. In G. Cumming, T. Okamoto, & L. Gomez (Eds.),
Proceedings of the Seventh International Conference on Computers in Education
(ICCE'99) 2:385-392. IOS Press, 1999. Chiba, Japan.

Tatcher A. 2007. Using the World Wide Web to support classroom lectures in a
psychology course. South African Journal of Psychology. 37 (2):348–353.

Taylor-Powell, E., & Renner, M. 2003. Analyzing qualitative data. University of
Wisconsin--Extension, Cooperative Extension.

Tshibalo A.E. 2007. The potential impact of computer aided assessment technology in
higher education. South African Journal of Higher Education, 21(6).

Utting, I., Cooper, S., Kölling, M., Maloney, J., & Resnick, M. 2010. Alice, Greenfoot,
and Scratch--a discussion. ACM Transactions on Computing Education (TOCE) Volume
10, Issue 4. November 2010.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S.& Corritore, C.L. 1999. A comparison
of the comprehension of object-oriented and procedural programs by novice
programmers. Interacting with Computers, 11:255–282.

Xiaohui, H. 2006. Improving teaching in Computer Programming by adopting student-
centred learning strategies. The China Papers, 47 – 48, November 2006.

Yin, R. K. 1981. The case study crisis: some answers. Administrative science quarterly,
26(1), 58-65.

Zuckerman, O., Blau, I., & Monroy-Hernández, A. 2009. Children’s participation patterns
in online communities: An analysis of Israeli learners in the Scratch online community.
Interdisciplinary Journal of E-Learning and Learning Objects, 5:263-274.

 Page 139

APPENDICES

Appendix A: Invitation Letter to Participate

PARTICIPATION IN MASTERS DEGREE RESEARCH

Instructional Technology for the teaching of novice programmers

at a University of Technology

Dear Student

You are asked to participate in a research study conducted by Mr. G Rudolph

(researcher), Prof R de la Harpe (research supervisor), Dr E Pineteh (research co-

supervisor) and Mr. I Van Zyl (social scientist and workshop facilitator), from the Faculty

Informatics & Design: Department of Information Technology at the Cape Peninsula

University of Technology.

The pilot study will be conducted in the form of a workshop on the 2nd Floor (dance

floor) of the CPUT Barc Building, Roeland Street, Cape Town on Friday 27th January

2012 from 09h00 until 12h30, registration for the workshop taking place as from 08h30.

The purpose of the study is:

 To investigate how instructional technology can be used to address the skills gap

of students learning programming concepts.

 To identify existing technology solutions and how they have contributed to the

teaching of programming.

Every effort will be made to ensure confidentiality of any identifying information that is

obtained in connection with this study.

SIGNATURE OF RESEARCH PARTICIPANT

I give my full consent to participate in this study and give permission to Mr G

Rudolph to contact me on my mobile number:_________________________

or email address _______________________

 Page 140

Appendix B: Clock Project Worksheet

In this project you will experiment with importing backgrounds that are not part of the
standard set that comes with scratch and also experiment with editing the size of
Sprites.

Start a new project

Click on the scissors and select the cat sprite to delete it

 Page 141

Double click the stage button

Select the centre tab entitled backgrounds

 Page 142

Click the import button and browse for the clock face (note that this isn’t part of the
standard files supplied with Scratch and so you may have to browse away from the files
initially presented – you can import any background file in jpeg format)

 Page 143

Click the centre button below the stage in order to import a new sprite

Select the Things folder

Select the clock hand and click OK

 Page 144

Note that the script automatically centres the hand on the page when you run the script
Note the time on the clock had is set to 6.
This roughly corresponds to the speed of a second hand on a clock.

Import two other clock hands
Rename all the hands as Hour, Minute and Second so that you don’t get them mixed up

 Page 145

Set the speed of the other hands to 0.1 and 0.0017 (these speeds roughly correspond
to the speeds of minute and hour hands on a clock)

Edit the size of the hands

 Page 146

You have made a clock!!

 Page 147

Appendix C: Questionnaire

INSTRUCTIONAL TECHNOLOGY FOR THE TEACHING OF NOVICE

PROGRAMMERS AT A UNIVERSITY OF TECHNOLOGY

Evaluation Form

NAME (will be kept anonymous):
Please supply the relevant answer below each question. Avoid brief answers if
possible; use as much space as you need.

1. Briefly explain your experience of learning and understanding

programming concepts at the beginning of your 1st year.

2. How did you experience this tool (Scratch)? You may want to say

something about the navigation and visibility; ease of use; using a single-

window user interface / multi-purpose design? *(Scratch uses a single-

window user interface which has four main panes)

3. How could the elimination of the compilation step influence the ability of

the learner to learn programming concepts?

4. What is your opinion on help screens, default parameters and illuminating

demonstrations for commands in terms of learning the programming

concepts?

5. How useful is visual feedback during code/script execution and during

troubleshooting?

6. How will the ability of the program that still runs even if it is not correct by

eliminating syntax or run time errors influence the learning of programming

concepts?

7. What is your opinion on having variables as concrete (visible) objects to

assist with learning programming concepts?

8. Please suggest any possible ideas that you think can help 1st year

Development Software students to master the programming concepts

 Page 148

you’ve used today. Please consider any kind of possible instructional

tools, even non-technological ones.

9. What is your opinion about the suitability of Scratch as an instructional

tool to assist new programmers with the learning of new programming

concepts? Please also comment on its suitability for our context, keeping

in mind the diversity of our students.

