Cape Peninsula University of Technology Digital Knowledge

CPUT Theses & Dissertations

Theses & Dissertations

1-1-2008

Investigation into the metal contamination of three rivers in the Western Cape and the subsequent application of a bioreactor system as remediation technology

Vanessa Angela Jackson Cape Peninsula University of Technology, jacksonva@cput.ac.za

Recommended Citation

Jackson, Vanessa Angela, "Investigation into the metal contamination of three rivers in the Western Cape and the subsequent application of a bioreactor system as remediation technology" (2008). *CPUT Theses & Dissertations*. Paper 24. http://dk.cput.ac.za/td_cput/24

This Text is brought to you for free and open access by the Theses & Dissertations at Digital Knowledge. It has been accepted for inclusion in CPUT Theses & Dissertations by an authorized administrator of Digital Knowledge. For more information, please contact barendsc@cput.ac.za.

INVESTIGATION INTO THE METAL CONTAMINATION OF THREE RIVERS IN THE WESTERN CAPE AND THE SUBSEQUENT APPLICATION OF A BIOREACTOR SYSTEM AS REMEDIATION TECHNOLOGY

by

VANESSA ANGELA JACKSON

Thesis submitted in fulfilment of the requirements for the degree

Doctor of Technology: Biomedical Technology

in the Faculty of Health and Wellness Sciences

at the Cape Peninsula University of Technology

Supervisor: AProf. Wesaal Khan Co-supervisor: Dr. James Odendaal

Bellville

DECLARATION

I, Vanessa Angela Jackson, declare that the contents of this thesis represent my own unaided work, and that the thesis has not previously been submitted for academic examination towards any qualification. Furthermore, it represents my own opinions and not necessarily those of the Cape Peninsula University of Technology.

Signed

Date

ABSTRACT

River systems can become contaminated with micro-organisms and metals and the routine monitoring of these rivers is essential to control the occurrence of these contaminants in water bodies. This study was aimed at investigating the metal contamination levels in the Berg-, Plankenburg- and Diep Rivers in the Western Cape, South Africa, followed by the remediation of these rivers, using bioreactor systems.

Sampling sites were identified and samples [water, sediment and biofilm (leaves, rocks and glass, etc.)] were collected along the Berg- and Plankenburg Rivers from May 2004 to May 2005 and for the Diep River, from February 2005 to November 2005. The concentrations of aluminium (Al), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn) were determined using the nitric acid digestion method and analysed by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES).

For the Berg River, the highest concentrations in water samples were recorded for Al, Mn and Fe at the agricultural area (Site A – chapter 2). In the sediment and biofilm samples, the highest metal concentrations were once again recorded for Al and Fe. The concentrations of Al and Fe were significantly higher (p < 0.05) than than Cu, Zn, Pb, Ni and Mn in water, sediment and biofilm samples, and were mostly higher than the quality guidelines recommended by the Department of Water Affairs and Forestry (DWAF, 1996) and the Canadian Council for the Ministers of the Environment (CCME, 2001). Possible sources of contamination in the Berg River could be due to the leaching or improper discarding of household waste from the informal- and established residential areas, as well as the improper discarding of pesticides at the agricultural area.

For both the Plankenburg and Diep Rivers the Al and Fe concentrations were higher than all the other metals analysed for in sediment and water samples. The highest concentrations recorded in the Plankenburg River was 13.6 mg.l⁻¹ (water - Week 18, Site B) and 15 018 mg.kg⁻¹ (sediment - Week 1, Site C) for Al and 48 mg.l⁻¹ (water - Week 43, Site A) and 14 363.8 mg.kg⁻¹ (sediment - Week 1, Site A) for Fe. The highest concentrations recorded in the Diep River was 4 mg.l⁻¹ (water - Week 1, Site A) and 19 179 mg.kg⁻¹ (sediment - Week 1, Site C) for Al and 513 mg.l⁻¹ (water - Week 27, Site A) and 106 379.5 mg.kg⁻¹ (sediment - Week 9, Site C) for Fe. For most of the metals analysed the concentrations were higher than the recommended water quality

iii

guidelines as stipulated by the Department of Water Affairs and Forestry (DWAF, 1996b), the Canadian Council for the Ministers of the Environment (CCME, 2001) and the 'World average' (Martin and Windom, 1991). Point sources of pollution could not conclusively be identified, but the industrial and residential areas could have influenced the increased concentrations. Metal concentrations should be routinely monitored and the guidelines should be updated and revised based on the current state of the rivers and pollution influences.

Micro-organisms isolated from flow cells after exposure to varying metal concentrations were investigated for possible metal-tolerance. A site where high metal concentrations were recorded along the Plankenburg River was investigated. The micro-organisms isolated from the flow cells were cultured and identified using the Polymerase Chain Reaction (PCR) technique, in conjunction with universal 16SrRNA primers. The phylogeny of the representative organisms in GenBank, were analysed using the Neighbour-joining algorithm in Clustal X. After exposure, the channels were stained with the LIVE/DEAD BacLightTM viability probe and visualised using Epifluorescence Microscopy. The results revealed that when exposed to the highest concentrations of AI (900 mg. l^{-1}), Fe (1000 mg. l^{-1}), Cu (10 mg. l^{-1}) and Mn (80 mg. l^{-1}), the percentage of dead cells increased, and when exposed to the lowest concentrations of Al (10 mg. l^{-1}), Cu (0.5 mg. l^{-1}), Mn (1.5 mg. l^{-1}) and Zn (0.5 mg. l^{-1}), no significant differences could be distinguished between live an dead cells. When exposed to the highest concentrations of Zn (40 mg.l⁻¹) and Ni (20 mg.l⁻¹), no significant differences between the live and dead cell percentages, were observed. The phylogenetic tree showed that a diverse group of organisms were isolated from the flow cells and that some of the isolates exhibited multiple metal resistance (Stenotrophomonas maltophilia strain 776, Bacillus sp. ZH6, Staphylococcus sp. MOLA:313, Pseudomonas sp. and Delftia tsuruhatensis strain A90 exhibited tolerance to Zn, Ni, Cu, Al, Fe), while other isolates were resistant to specific metals (Comamonas testosteroni WDL7, Microbacterium sp. PAO-12 and Sphingomonas sp. 8b-1 exhibited tolerance to Cu, Ni and Zn, respectively, while Kocuria kristinae strain 6J-5b and Micrococcus sp. TPR14 exhibited tolerance to Mn).

The efficiency of two laboratory-scale and one on-site bioreactor system was evaluated to determine their ability to reduce metal concentrations in river water samples. The laboratory-scale bioreactors were run for a two-week and a three-week

iv

period and the on-site bioreactor for a period of ten weeks. Water (all three bioreactors) and bioballs (bioreactor two and on-site bioreactor) were collected, digested with 55% nitric acid and analysed using ICP-AES. The final concentrations for AI, Ni and Zn (bioreactor one) and Mn (bioreactor two), decreased to below their recommended concentrations in water samples. In the on-site, six-tank bioreactor system, the concentrations for Fe, Cu, Mn and Ni decreased, but still exceeded the recommended concentrations. The concentrations recorded in the biofilm suspensions removed from the bioballs collected from bioreactor two and the on-site bioreactor, revealed concentrations higher than those recorded in the corresponding water samples for all the metals analysed, except Fe. The bioballs were shown to be efficient for biofilm attachment and subsequent metal accumulation. The species diversity of the organisms isolated from the bioreactor (bioreactor two) experiment after three days (initial) differed from the organisms isolated after 15 days (final). Hydrogenophaga sp., Ochrobactrum sp, Corynebacterium sp., Chelatobater sp. and Brevundimonas sp. were present only at the start of the bioreactor experiment. The surviving populations present both in the beginning and at the end of the bioreactor experiment belonged predominantly to the genera, *Pseudomonas* and *Bacillus*. Metal-tolerant organisms, such as Bacillus, Pseudomonas, Micrococcus and Stenotrophomonas, amongst others, could possibly be utilised to increase the efficiency of the bioreactors. The bioreactor system should however, be optimised further to improve its efficacy.

ACKNOWLEDGEMENTS

I wish to sincerely extend my heartfelt thanks to the following people:

FIRST AND FOREMOST, I would like to give praise to the Lord, my God, for the many blessings He has bestowed on me.

APROF. WESAAL KHAN, my supervisor and friend, for her guidance and support, which has been invaluable.

APROF. SEHAAM KHAN, for her friendship and guidance.

DR JAMES ODENDAAL is thanked for his assistance and guidance.

THE BLAAUWBERG NATURE CONSERVATION GROUP and MUNICIPALITY, PAARL and STELLENBOSCH MUNICIPALITIES, for their assistance.

SOUTH AFRICAN WEATHER BUREAU is thanked for their assistance.

ARNELIA PAULSE for her friendship, support and guidance, and for always being there.

MICHAEL TOBIN is thanked for his technical assistance.

LAB COLLEAGUES, past and present, for any assistance afforded.

MY MOTHER, SISTER AND BROTHER, for all their support, love and encouragement.

MY DEARLY DEPARTED FATHER, for his unconditional love and his contribution in shaping my life and character.

The financial assistance of the **NATIONAL RESEARCH FOUNDATION** and **THE CAPE PENINSULA UNIVERSITY OF TECHNOLOGY** towards this research is acknowledged. Opinions expressed in this thesis and the conclusions arrived at, are those of the author, and are not necessarily to be attributed to the National Research Foundation.

BIOGRAPHICAL SKETCH

Vanessa Angela Jackson was born in Cape Town, South Africa, on the 6th April 1976. She attended Ridgeville Primary School and matriculated at Cedar High School in 1993. She enrolled at the University of the Western Cape in 1994 and obtained a B.Sc. degree in Microbiology and Biochemistry in 1997. In 1999 she completed a B.Sc. (Hons.) degree in Microbiology at the same university. Vanessa enrolled at the University of Stellenbosch in 2000 and obtained her M.Sc. degree in Microbiology in 2004. She is presently employed in a contract position at the Cape Peninsula University of Technology in the capacity of lecturer.

DEDICATION

This thesis is dedicated to my family for their unwavering support, love and understanding during trying times

TABLE OF CONTENTS

Declaration	ii
Abstract	iii
Acknowledgements	vi
Biographical Sketch	vii
Dedication	viii
Table of Contents	ix
List of Figures	xvi
List of Tables	xxii
Appendices	xxiv
Glossary	xxvi
List of Reference Maps	xxix

CHAPTER ONE: LITERATURE REVIEW

1

1.1	INTRODUCTION	1
	1.1.1 Water Distribution and water cycle	1
1.2	SOURCES OF CONTAMINATION	6
	1.2.1. Microbial Contamination and Waterborne diseases	6
	1.2.2. Xenobiotics	9
	1.2.3. Polycyclic Aromatic Hydrocarbons (PAHs)	10
	1.2.4. Metal Contamination	11
	1.2.5. Metal Accumulation in Sediment and Water	12
	1.2.6. Bioindicators	14
	1.2.7. Metal Contaminants	17
1.3. B	IOREMEDIATION	19
	1.3.1. Wetland systems	20
	1.3.2. Bioreactor Systems	24

1.3.2.1. Aerobic Bioreactors	25
1.3.2.2. Anaerobic Bioreactors	28
1.4. TECHNIQUES FOR STUDYING METALS IN THE ENVIRONMENTAL	
SAMPLES	30
1.4.1. Single-element analysis techniques	31
1.4.2. Multi-element analysis techniques	32
1.5. IDENTIFICATION OF METAL TOLERANT MICROORGANISMS	34
1.5.1. Viability Probes and Microscopy	34
1.5.2. Flow cell cultivation	35
1.5.3. Molecular Typing	36
1.6. AIMS OF STUDY	38

CHAPTER TWO: INVESTIGATION INTO METAL CONTAMINATION IN THE BERG RIVER, WESTERN CAPE, SOUTH AFRICA AS PUBLISHED IN THE SCIENTIFIC JOURNAL, WATER SA. 40

1.1.	Abstract	41
1.2.	Introduction	42
1.3.	Materials and Methods	44
	1.3.1. Site Description	44
	1.3.2. Sampling	45
	1.3.3. Sonication of Collected Biofilm Samples	45
	1.3.4. Metal Concentrations in Sediment, Biofilm and Water samples	46
	1.3.5. Statistical Analysis	46
1.4.	Results and Discussion	47

١.	,	
7	٢	

	1.4.1. Metals in Water	47
	1.4.2. Metals in Sediment	48
	1.4.3. Metals in Biofilms	51
1.5.	Conclusions	54
1.6.	Acknowledgements	55
1.7.	References	55

CHAPTER THREE: INVESTIGATION INTO METAL CONTAMINATION OF THEPLANKENBURG- AND DIEP RIVERS, WESTERN CAPE, SOUTH AFRICA,ACCEPTED FOR PUBLICATION BY WATER SA.72

1.1.	Abstract	73
1.2.	Introduction	74
1.3.	Materials and Methods	78
	1.3.1. Sampling sites	78
	1.3.2. Sampling for metal concentration determination	79
	1.3.3. Metal Concentration Determination in Water and Sediment Sample	S
		80
	1.3.4. Statistical Analysis	80
1.4.	Results	81
	1.4.1. Metal Concentrations in Water Samples	81
	1.4.2. Plankenburg River	81
	1.4.3. Diep River	83
	1.4.4. Metal Concentrations in Sediment Samples	85
	1.4.5. Plankenburg River	85

	1.4.6. Diep River	86
	Discussion 1.4.7. Metal Concentrations in Water Samples	88 88
	1.4.8. Metal Concentrations in Sediment samples	90
1.5.	Conclusions	95
1.6.	Acknowledgements	97
1.7.	References	97

CHAPTER FOUR: IDENTIFICATION OF METAL-TOLERANT ORGANISMS FROM THE PLANKENBURG RIVER, WESTERN CAPE, SOUTH AFRICA, SUBMITTED TO THE CANADIAN JOURNAL OF MICROBIOLOGY. 119

1.1.	Abstract	120
1.2.	Introduction	121
1.3.	Materials and Methods	123
	1.3.1. Site description	123
	1.3.2. Metal concentrations in river water	123
	1.3.3. Flow Cell Technique	124
	1.3.4. Exposure to the Baclight [™] viability probe	125
	1.3.5. Microscopy and Image Analysis	125
	1.3.6. DNA Extraction and Agarose Gel Electrophoresis	126
	1.3.7. Polymerase Chain Reaction (PCR)	126
	1.3.8. Sequencing of 16S rRNA	127
	1.3.9. Phylogenetic Analysis	127

BIOD	EGRADATION.	159
PUBL	ICATION BY INTERNATIONAL BIODETERIORATION	AND
PLAN	IKENBURG RIVER, WESTERN CAPE, SOUTH AFRICA, ACCEPTE	D FOR
СНА	PTER FIVE: BIOREMEDIATION OF METAL CONTAMINATION	IN THE
1.6.	References	138
1.5.	Acknowledgements	137
1.4.	Results and Discussion	128

1.1.	Abstract	160
1.2.	Introduction	161
1.3.	Materials and Methods	162
	1.3.1. Site description	162
	1.3.2. Laboratory-scale bioreactor set up	162
	1.3.3. Sampling of laboratory-scale bioreactors	163
	1.3.4. On-site bioreactor	163
	1.3.5. Sampling of on-site bioreactor	163
	1.3.6. Sonication of collected biofilm samples	163
	1.3.7. Metal concentrations in water and biofilm samples	163
	1.3.8. Statistical analysis	164
	1.3.9. DNA extraction and Agarose Gel Electrophoresis	164
	1.3.10. Polymerase Chain Reaction (PCR)	164
	1.3.11. Sequencing of 16S rRNA	164
	1.3.12. Phylogenetic Analysis	165
1.4.	Results and Discussion	165
	1.4.1. Laboratory-scale Bioreactors	165

	1.4.2. Laboratory-scale Bioreactor one	165
	1.4.3. Laboratory-scale Bioreactor two	166
	1.4.4. On-Site Bioreactor	167
	1.4.5. Identification of organisms isolated from bioballs in Bioreactor two	168
1.5.	Acknowledgements	170
1.6.	References	170

The conclusions resulting from research completed for this thesis can be located on the following pages:

Chapter Two (6.1): Investigation into metal contamination in the Berg River, 54, 184, Western Cape, South Africa as published in the Scientific Journal, Water SA 202

Chapter Three (6.2): Investigation into the metal contamination of the 95, 187, Plankenburg- and Diep Rivers, Western Cape, South Africa, accepted for 202 publication by Water SA.

Chapter Four (6.3): Identification of metal-tolerant organisms isolated from 194, 204 the Plankenburg River, Western Cape, South Africa, submitted to the Canadian Journal of Microbiology.

Chapter Five (6.4): Bioremediation of metal contamination in the 197, 205 Plankenburg River, Western Cape, South Africa, accepted for publication by Interntational Biodeterioration and Biodegradation.

Recommendations

CHAPTER SEVEN: REFERENCES

208

184

206

LIST OF FIGURES

Figure 1.1: Water distribution on earth (US Department of the Interior, 2006).	1
Figure 1.2: Water cycle (The Green Lane [™] , 2004).	2
Figure 1.3: Water availability per capita South Africa (Department of nvironmental Affairs and Tourism, South Africa, 1999).	3
Figure 1.4: Primary water storage catchments of South Africa (Environment and Tourism, 2007).	4
Figure 1.5: Water distribution in South Africa (Mack et al., 2004).	5
Figure 1.6: Biofilm Formation (Biofilms Online Manual – American society for microbiology, 2007)	14
Figure 1.7: Distribution of wetlands in the nine provinces of South Africa (Department of Environmental Affairs and Tourism, South Africa, 1999).	21
Figure 2.1: Map of the Berg River indicating the different sampling points: Site A, indicates the agricultural farming area; Site B, indicates Plot 8000, close to the informal settlement of Mbekweni; and Site C, the Newton Pumping Station.	62
Figure 2.2A: Mean metal concentrations of AI, Fe and Mn in water samples from the Berg River.	63
Figure 2.2B: Mean metal concentrations of Cu, Ni and Zn in water samples	64

from the Berg River.

Figure 2.3: Mean Al and Fe concentrations in sediment samples from the66Berg River.

Figure 2.4: Mean Al and Fe concentrations in biofilm samples from the69Berg River.

Figure 3.1: Map of the Plankenburg River indicating the different sampling 106 points: Site A - agricultural farming and residential areas; Site B - close to the informal settlement of Kayamandi; Site C – Substation in the industrial area and Site D - industrial area at Adam Tas Bridge.

Figure 3.2: Map of the Diep River indicating the different sampling points: 107 Site A - Zoarvlei Nature Reserve (industrial as well as residential areas); Site B - Theo Marais Sportsclub (Industrial and residential area); Site C – Potsdam Wastewater Treatment Works (close to an Oil Refinery and residential areas of Milnerton) and Site D - the Rietvlei Boating Club and Nature Reserve.

Figure 3.3: Metal concentrations $(mg \cdot kg^{-1})$ (Al and Fe) in sediment samples 108 obtained from 4 sites (A to D) in the Plankenburg River.

Figure 3.4. Metal concentrations $(mg \cdot kg^{-1})$ (Mn and Zn) in sediment 109 samples obtained from 4 sites (A to D) in the Plankenburg River.

Figure 3.5. Metal concentrations $(mg \cdot kg^{-1})$ (Cu, Ni and Pb) in sediment 110 samples obtained from 4 sites (A to D) in the Plankenburg River.

Figure 3.6. Metal concentrations (mg·kg⁻¹) (Al and Fe) in sediment samples 111 obtained from 4 sites (A to D) in the Diep River.

Figure 3.7. Metal concentrations $(mg \cdot kg^{-1})$ (Mn and Zn) in sediment 112 samples obtained from 4 sites (A to D) in the Diep River.

xvii

Figure 3.8. Metal concentrations $(mg \cdot kg^{-1})$ (Cu, Pb and Ni) in sediment 113 samples obtained from 4 sites (A to D) in the Diep River.

Figure 4.1. Map of the Plankenburg River indicating the different sampling150points: Site A – Agricultural Farming and Residential Areas; Site B – Closestpoint to Informal Settlement; Site C – Substation in Industrial Area and SiteD – Industrial Area at Adam Tas Bridge.

Figure 4.2. Multi-channel flow cell system to isolate metal-tolerant 151 organisms. A – untreated control (channels 1 & 2), B – highest concentration (channels 3 & 4), C – second lowest concentration (channels 5 & 6) and D – lowest concentration (channels 7 & 8).

Figure 4.3A.Represents the percentages of living and dead organisms in152response to exposure to various Al concentrations

Figure 4.3B. Epifluorescent images of biofilm exposed to (i) Control, (ii) 152 900 mg.l⁻¹Al, (iii) 500 mg.l⁻¹ Al and (iv) 10 mg.l⁻¹ Al.

Figure 4.4A.Represents the percentages of living and dead organisms in153response to exposure to various Cu concentrations.

Figure 4.4B. Epifluorescent images of biofilm exposed to (A) Control, (B) 153 $10 \text{ mg.l}^{-1} \text{ Cu}$, (C) 2.5 mg.l⁻¹ Cu and (D) 0.5 mg.l⁻¹ Cu.

Figure 4.5A. Represents the percentages of living and dead organisms in 154 response to exposure to various Fe concentrations.

Figure 4.5B. Epifluorescent images of biofilm exposed to (A) Control, (B) 154 1000 mg.l^{-1} Fe, (C) 500 mg.l⁻¹ Fe and (D) 10 mg.l⁻¹ Fe.

Figure 4.6A. Represents the percentages of living and dead organisms in 155 response to exposure to various Mn concentrations.

Figure 4.6B. Epifluorescent images of biofilm exposed to (A) Control, (B) 155 80 mg.l⁻¹ Mn, (C) 15 mg.l⁻¹ Mn and (D) 1.5 mg.l⁻¹ Mn.

Figure 4.7A. Represents the percentages of living and dead organisms in156response to exposure to various Ni concentrations.

Figure 4.7B. Epifluorescent images of biofilm exposed to (A) Control, (B) 156 20 mg.l⁻¹ Ni, (C) 1 mg.l⁻¹ Ni and (D) 0.5 mg.l⁻¹ Ni.

Figure 4.8A. Represents the percentages of living and dead organisms in157response to exposure to various Zn concentrations.

Figure 4.8B. Epifluorescent images of biofilm exposed to (A) Control, (B) 157 40 mg. I^{-1} Zn, (C) 1 mg. I^{-1} Zn and (D) .05 mg. I^{-1} Zn.

Figure 4.9. Agarose gel electrophoresis photograph of the PCR products 158 obtained with 16SrRNA universal forward and reverse primers (fDD2 and rPP2) of organisms isolated from flow cells after exposure to varying metal concentrations. Lane one represents the marker (lambda DNA/HindIII), lane two, the negative control and lanes three to 20, represent the selected isolates showing the 1200 bp amplicons.

Figure 4.10. An unrooted phylogenetic tree of organisms isolated from flow158cells after exposure to varying metal concentrations. The tree of 13 isolateswaswas Neighbour-joining algorithm of Clustal X. Bootstrap values areconstructed using the shown at the nodes.

xix

Figure 5.1. Map of the Plankenburg River indicating the different sampling 173 points: Site A – agricultural farming and residential areas; Site B – close to the informal settlement of Kayamandi; Site C – Substation in the industrial area and Site D – industrial area at Adam Tas Bridge.

Figure 5.2. Laboratory-scale batch system bioreactor, containing 174 Bioballs[™], which is composed of acrylonitrile, butadiene and styrene (ABS).

Figure 5.3. (A) On-site large-scale bioreactor established at Site C and (B) 175 bioballs in bioreactor during treatment.

Figure 5.4. Metal concentrations (mg.l⁻¹) recorded in water samples 176 collected from the first laboratory-scale bioreactor (Plankenburg River).

Figure 5.5. Metal concentrations (mg.l⁻¹) (Cu, Mn and Ni) recorded in water 177 samples collected from the second laboratory-scale bioreactor (Plankenburg River).

Figure 5.6. Metal concentrations (mg.l⁻¹) (Al, Cu, Mn and Ni) recorded in 178 water samples collected from the on-site bioreactor (Plankenburg River).

Figure 5.7a. Representative result of agarose gel electrophoresis of 179 organisms isolated from bioballs at the start of bioreactor three. Lane one represents the marker (Lambda DNA/HINDIII), lane two, the negative control, and lanes three to 20, represent the Purified PCR products.

Figure 5.7b. Representative result of agarose gel electrophoresis of 179 organisms isolated from bioballs at the end of bioreactor three. Lane one represents the marker (Lambda DNA/HINDIII), lane two, the negative control, and lanes three to 20, represent the Purified PCR products.

хх

Figure 5.8.An unrooted phylogenetic tree of organisms isolated from180bioballs at the start of bioreactor three.A tree of 20 isolates wasconstructed using the Neighbour-joining algorithm of ClustalX.Bootstrapvalues are shown at the nodes.A tree of 20 isolates

Figure 5.9. An unrooted phylogenetic tree of organisms isolated from 181 bioballs during the course of the three-week bioreactor experiment. A tree of 45 isolates was constructed using the Neighbour-joining algorithm of ClustalX. Bootstrap values are shown at the nodes.

LIST OF TABLES

Table 1.1: Recommended safe metal concentrations as stipulated by the12Department of Water Affairs and Forestry (1996) and the Canadian Council0fOf Ministers of the Environment Quality Guidelines (2001) in aquaticsamples.

Table 1.2: The uses and health effects of the metal contaminants most17commonly associated with water.

Table 2.1: Concentrations obtained in water of the Berg River compared to65recommended safe concentrations as stipulated by the Department ofWater Affairs and Forestry (1996) and the Canadian Council of the Ministersof the Environment Quality Guidelines (2001).

Table 2.2: Mean metal concentrations of Cu, Mn and Ni recorded in67sediment samples for the different sampling weeks.

Table 2.3. Mean metal concentrations of Pb and Zn recorded in sediment68samples for the different sampling weeks.

Table 2.4: Mean metal concentrations of Cu, Mn and Ni recorded in biofilm70samples for the different sampling weeks.

Table 2.5. Mean metal concentrations of Pb and Zn recorded in biofilm71samples for the different sampling weeks.

Table 3.1. Metal concentrations $(mg.l^{-1})$ (±SD*) in water samples obtained114from the Plankenburg River (Sites A and B).

Table 3.2. Metal concentrations $(mg.l^{-1})$ (±SD*) in water samples obtained115from the Plankenburg River (Sites C and D).

xxii

Table 3.3. Metal concentrations $(mg.l^{-1})$ (±SD*) in water samples obtained116from the Diep River (Sites A and B).

Table 3.4. Metal concentrations $(mg.l^{-1})$ (±SD*) in water samples obtained117from the Diep River (Sites C and D).

Table 3.5. Concentrations obtained in water of the Plankenburg and118DiepRivers compared to recommended safe concentrations as stipulated by
the Department of Water Affairs and Forestry (1996b), the Canadian
Council of Ministers of the Environment Quality Guidelines (2001), the
'World average' (Martin and Windom, 1991) and the Australian and New
Zealand Environment and Conservation Council (ANZECC, 2000).

Table 4.1. Representation of the different concentrations of metals (Al, Cu,148Fe, Mn, Ni and Zn) to which the six respective flow cells channels wereexposed.

Table 4.2 Metal concentrations obtained in water of the Plankenburg River148compared to recommended safe concentrations as stipulated by DWAF(1996) and the CCME (2001).

Table 4.3Table of 13 isolates, their names presented on the149phylogenetic tree and accession numbers.

Table 4.4Isolated organisms and the metals to which they were149exposed.

Table 5.1. Table of 20 isolates, their names presented on the tree and182accession numbers.

Table 5.2. Table of 45 isolates, their names presented on the tree and182accession numbers.

APPENDICES

- **APPENDIX A:** The application of bioremediation: reduction of metal 237 concentrations in river water and COD in distillery effluent. Jackson, V. A., Paulse, A. N., Bester, A. A., Neethling, J. H., Du Plessis, K. R. and W. Khan. 2007. Wat. Sci. Technol. 55:183-186. **APPENDIX B1:** Agarose gel electrophoresis results of organisms 242 isolated from the muli-channelled flow cells. **APPENDIX B2:** Alignment of the amino acid sequences of 13 isolates 245 obtained after exposure to metal. The alignment was carried out by the multiple alignment of Clustal X (1.81). Genedoc software was used for homology shading. The conserved regions are indicated with Roman numerals. The abbreviations of the isolates are given in the text. Gaps introduced into the alignment are indicated with dashes. Four shading levels were set.
- APPENDIX C1: Agarose gel electrophoresis results of organisms 251 isolated from the biofilm samples three days after start-up.
- APPENDIX C2: Alignment of the amino acid sequences of isolates 253 obtained from bioballs three days into the setup of the bioreactor. The alignment was carried out by the multiple alignment of Clustal X (1.81). Genedoc software was used for homology shading. The conserved regions are indicated with Roman numerals. The abbreviations of the isolates are given in the text. Gaps introduced into the alignment are indicated with dashes. Four shading levels were set.
- **APPENDIX C3:** Agarose gel electrophoresis results of organisms 262 isolated from the biofilm samples after 15 days.
- **APPENDIX C4:** Alignment of the amino acid sequences of 45 isolates 266

obtained from bioballs during the course of the bioreactor run. The alignment was carried out by the multiple alignment of Clustal X (1.81). Genedoc software was used for homology shading. The conserved regions are indicated with Roman numerals. The abbreviations of the isolates are given in the text. Gaps introduced into the alignment are indicated with dashes. Four shading levels were set.

GLOSSARY

ASBR	Anaerobic Sequencing Batch Reactor	
AI	Aluminium	
AAS	Atomic Absorption Spectrometry	
AES	Atomic Emission Spectrometry	
BOD	biochemical oxygen demand	
CLSM	confocal laser scanning microscopy	
CDSC	Campylobacter Sentinel Surveillance Scheme	
COD	Chemical Oxygen Demand	
Cu	Copper	
RDX	Cyclotrimethylenetrinitramine	
HMX	cyclotetramethylene-tetranitramine	
DGT	diffuse gradients in thin films	
DO	dissolved oxygen	
DDT	dichlorodiphenyl-trichloroethane	
DGGE	denaturing gradient gel electrophoresis	
EPS	extracellular polymeric substances	
EPEC	Enteropathogenic Escherichia coli's	
EC	Electrical Conductivity	
EFM	epifluorescence microscopy	
FAAS	Flame atomic absorption spectrometry	
FWS	free-water surface	
GC/MS	Gas Chromatography/Mass Spectrometry	
GFAAS	Graphite Furnace Atomic Absorption Spectrometry	
ICP-AES	Inductively Coupled Plasma Atomic Emission	
	Spectrometry	
ICP-MS	Inductively Coupled Plasma Mass Spectrometry	
INAA	Instrumental Neutron Activation Analysis	
Fe	Iron	
kg COD/m3	Kilogram chemical oxygen demand per cubic metre	
kg COD m⁻³kg⁻¹	Kilogram chemical oxygen demand per cubic metre	
	per kilogram	

Pb	Lead
Mn	Manganese
MMT	methylcyclopentadienyl manganese tricarbonyl
mg.l ⁻¹	Milligrams per litre
mg.kg ⁻¹	Milligrams per kilogram
m ³ kg ⁻¹ COD d ⁻¹	Kilogram per cubic metre chemical oxygen demand
	per day
ng.g ⁻¹	Nannograms per gram
nM	nannometres
NRR	neutral red retention time assay
Ni	Nickel
Ni-DOC	Nickel-Dissolved Organic Carbon
ng.m ⁻³	Nannograms per cubic metre
NTA	nitrilotriacetic acid
OSHA	Occupational Safety and Health Administration
SIRAN	open-pore sintered glass beads
OCPs	organochlorine pesticides
Ppb	Parts per billion
ppm	Parts per million
PICT	pollution-induced community tolerance concept
PCB's	polychlorinated biphenyls
PCR	Polymerase Chain Reaction
PCR-DGGE	Polymerase Chain Reaction-Denaturing Gradient
	Gel Electrophoresis
PAHs	Polycyclic Aromatic Hydrocarbons
PFGE	Pulse Field Gel Electrophoresis
RBC	rotating biological contactor
SSF	subsurface flow
TDS	Total Dissolved Solids
TNT	trinitrotoluene
TXRF	Total Reflection X-ray Fluorescence Spectrometric
TPE-LSM	Two Photon Excitation Laser Scanning Microscopy

2,4-DCP	2,4-dichlorophenol
μg/decilitre	Micrograms per decilitre
µg.g⁻¹	Micrograms per gram
ųg.l⁻¹	Micrograms per litre
ųm	micrometre
UAFF	Upflow Anaerobic Fixed Film
UASB	Upflow Anaerobic Sludge Blanket
USFF	Upflow Stationary Fixed Film
VBNC	Viable but Non Culturable
XRF	X-Ray Fluorescence Spectrometry
Zn	Zinc

LIST OF REFERENCE MAPS

Berg River map:		62
Site A –	An agricultural farming area	
Site B –	At the informal settlement of Mbekweni (Plot 8000)	
Site C –	Newton pumping station	
Plankenburg River		106,
map:		150,
Site A –	Agricultural Farming and Residential Areas	173
Site B –	Informal Settlement of Kayamandi	
Site C –	Substation in Industrial Area	
Site D –	Industrial Area at Adam Tas Bridge	
Diep River map:		107
Site A –	Zoarvlei Nature Reserve - Industrial as well as	
	Residential Areas	
Site B –	Theo Marais Sportsclub - Industrial and Residential	
	Area	
Site C –	Potsdam Wastewater Treatment Works	
Site D –	Rietvlei Boating Club and Nature Reserve	

LITERATURE REVIEW

1.1 INTRODUCTION

1.1.1 Water Distribution and the Water Cycle

Life on earth is significantly linked to the quality and distribution of the essential element, water. This collective mass of water covers 71% of the planet, which is essentially divided into saltwater, namely oceans, and freshwater, namely rivers, lakes, groundwater and glaciers, amongst others (**Figure 1.1**). Only 3% of the water content is composed of fresh water or water suitable for drinking purposes, while the remaining 97% is made up of saltwater. Glaciers, ice caps and snow makes up the majority of freshwater on earth (68.7%), with groundwater making up 31.3% of the available freshwater (3%) (US Department of the Interior, 2006).

Figure 1.1. Water distribution on earth (US Department of the Interior, 2006).

The majority of available water is temporarily stored in oceans, lakes, ice caps and underground aquifers, rather than in motion in the water cycle, which is a key process in the earth's hydrosphere (**Figure 1.2**). The water cycle is generally defined as the movement of water on, in and above the earth's atmosphere, that is from the ocean to the atmosphere, back to the land and then subsequently back to the ocean (United States Geological Report, 2000; Richardson *et al.*, 2001). It includes the water in rocks (lithosphere), in plants and animals

(biosphere), in the atmosphere (precipitation, water vapour, clouds), as well as water covering the earth's surface and that beneath it.

Figure 1.2. Water cycle (The Green Lane[™], 2004).

The sun heats the water in the oceans, where some of the water, along with the water in the soil, and that which transpires from plants, evaporates back into the atmosphere. As the vapour rises into the air, the cooler temperatures causes it to condense into clouds. The water in the clouds precipitates, with a portion falling to the earth as snow, and accumulating as ice caps and glaciers. Most of the precipitation however, falls into the oceans or onto land, in the form of rain, where, due to gravity, it flows over the surface of the earth (United States Geological Report, 2000; Richardson *et al.*, 2001).

Surface- and groundwater serve as the two main freshwater sources, with most of the water in rivers directly resulting in runoff from the land surface. This surface runoff or the percentage of runoff entering rivers, lakes, oceans, etc. is dependent on various factors, such as land topography, human activities and meteorology (e.g. rainfall activities). Approximately, a third of the runoff enters rivers and streams, which eventually flows into the ocean, while the remaining two thirds evaporates, transpires and seeps into the ground. Groundwater is found in aquifers, where all the pores, cracks and spaces between the rocks and particles are saturated with water. It is generally situated a few kilometres below the earth's surface, which is referred to as the zone of saturation (Hoyle, 2005).

South Africa, which is located at the Southern-most tip of the African continent, generally collects it's water resources in dams or water abstraction schemes, in order to supply industry, agriculture and domestic users. Uneven distribution of rainfall and available water per capita in

South Africa (**Figure 1.3**) exists between the western and eastern parts of the country. These higher evaporation rates and lower conversion of rainfall to runoff in the eastern regions could result in water shortages in this area (Webster, 2001). The country's urban and industrialised areas (Cape Town, Port Elizabeth, East London, Pietermaritzburg, Bloemfontein, Pietersburg, and Gauteng) are the most water stressed, and will become more so as the population and the demand for water in the urban and domestic sectors increases (Department of Environmental Affairs and Tourism, 1999a).

Figure 1.3. Water availability per capita in South Africa (Department of Environmental Affairs and Tourism, 1999a).

The spatial variability of water resources and the scarcity of water throughout the country implies that in many catchment schemes the demand exceeds the supply of water (**Figure 1.4**). In 1996 the water requirements in the Vaal, Lower Orange, Sundays, Great Fish, Olifants (Mpumalanga) and Crocodile/Limpopo Rivers, exceeded the amount of available water. By 2030, it is expected that the Breede/Berg basin will be added to the list of water-scarce catchments as discrepancies exist between water requirements and water availability (Department of Environmental Affairs and Tourism, 1999a).

Figure 1.4. Primary water storage catchments of South Africa (Environment and Tourism, 2007).

Surface water serves as the main water resource in South Africa (Webster, 2001), and is primarily used for agricultural activities (52%), industry, mining and power generation (12.5%) and domestic and municipal uses (12%), with a further 15% needed to maintain estuaries and rivers (Schutte & Pretorius, 1997; Holtzhausen, 2002; Mack *et al.*, 2004) (**Figure 1.5**). In the North-West province of South Africa, more than 80% of rural communities depend on groundwater as their sole source, where according to the Department of Water Affairs and Forestry (DWAF, 2001), 7% of the groundwater resource was used for domestic purposes and 78% for irrigational purposes.

Figure 1.5. Water distribution in South Africa (Mack et al., 2004).

Population increases in South Africa are expected to lead to an increase in agricultural development, which will in turn lead to an increased demand for irrigation water. Agriculture is also a major contributor to the economy of the country, where the net income of the farming sector increased from 6.5 billion rand in 2000 to 9.6 billion rand in 2001 (South Africa Online, 2007). A major factor limiting agricultural activity is however, the availability of water resources. Water scarcity in South Africa, is further exacerbated by the pollution of surface- and groundwater resources. Typical pollutants of freshwater aquatic environments include industrial effluents, domestic and commercial sewage, acid mine drainage, agricultural runoff and litter. High concentrations of metals, oils, and other toxic substances, could also contribute to the overall decrease in water quality (Pegram *et al.*, 1999). Of concern to water resource managers is the diffuse sources of pollution which are difficult to quantify. These sources can be clustered into two major groups, e.g. point source pollution (such as microbiological contamination and domestic sewage discharges) and nonpoint source pollution (runoff from herbicides and pesticides) (Hills *et al.*, 1998; Ho *et al.*, 2003).

In agriculture, groundwater pollution could result from fertiliser application, pesticide use and groundwater over-abstraction. In the coal and gold mining industries, however, the potential sources of pollution are stockpiling, slimes disposal and underground, or opencast mining areas. In the urban sector, pollution is caused by sewage effluent, leaking sewers and the lack of proper on-site sanitation at informal housing schemes. Industrial pollution arises from industrial effluent, bulk storage of chemicals, waste irrigation and air pollution. However, the increase in informal settlements, with inadequate sanitation and waste removal facilities, may become one of the greatest localised pressures on water quality in South Africa (Department of Environmental Affairs and Tourism, 1996).

1.2 SOURCES OF CONTAMINATION

1.2.1 Microbial Contamination and Waterborne Diseases

Micro-organisms are ubiquitous in the environment, where their diverse characteristics allow them to proliferate and survive in a vast number of habitats. They have been studied for centuries and have primarily been described on a morphological, physiological, biochemical and molecular level (Singh *et al.*, 2006). This opportunistic group of organisms are capable of flourishing under adverse conditions, allowing them to contaminate a broad range of fundamental resources such as water and food. Epidemics linked to waterborne pathogens occur frequently throughout the world, leading to an increase in the incidence of illnesses and even death.

As early as the 19th century, the contamination of water with *Vibrio cholerae (V. cholerae)* was investigated by John Snow. This infamous 'Broad Street Pump' cholera outbreak was the first disease occurrence to make known the dangers of a single source of polluted water, and linked the communicable, diarrhoeal disease to its causative agent, *V. cholerae* (Bailey *et al.*, 2005; Fleming *et al.*, 2006). Microbial contamination of water by organisms, such as *Campylobacter* spp., *Legionella* spp. and *V. cholerae*, amongst others, can however, be directly correlated to a lack of hygienic practices and water treatment. Drinking water can also become contaminated with bacteria, viruses and the protozoan parasites, *Giardia* and *Cryptosporidium*, when human waste is directly deposited into the water source (Karanis *et al.*, 2006).

The Viable-but-Non-Culturable (VBNC) state of micro-organisms causes public concern, as these organisms have resuscitation abilities and can proliferate when the required nutrients are available (Lin *et al.*, 2003). Smith *et al.* (1994) evaluated the survival, sublethal injury, and recoverability of *Escherichia coli* (*E. coli*), *Enterococcus* faecalis (*E. faecalis*), *Salmonella typhimurium* (*S. typhimurium*) and *Yersinia enterocolitica* (*Y. enterocolitica*), after exposure to polar marine environments at McMurdo Station, Antarctica. Temperatures below 1.8 °C were typically recorded at the station. The plate count, direct viable count and respiratory activity were determined for the different species. Upon exposure to the polar environment, all the bacteria displayed declining recoverability and increasing sublethal injury, but sublethal injury was more evident in the indicator organisms than in pathogens. All the tests showed increases in viable-but-non-culturable cells in *E. coli*, *S. typhimurium* and *Y. enterocolitica* after 58
exposure days, and resulted in an inability of these organisms to form colonies at 37 °C. After the addition of nutrients, respiring cultures of *E. coli* and *S. typhimurium* increased significantly.

In Delmas, Mpumalanga, South Africa (2005), at least 18 people were admitted to hospitals with suspected typhoid fever. Up to 380 people may have been infected through the ingestion of contaminated water from the Delmas water-purification works. The disease was spread through the ingestion of the bacillus, *S. typhimurium*, as well as through direct contact with substances that were in contact with the water (Travel Doctor, 2005). Torpdahl *et al.* (2006) typed isolates of *S. typhimurium* using pulse-field gel electrophoresis (PFGE). In 2005, an outbreak with 26 cases of *S. typhimurium* infection was identified by multiple locus variable number of tandem repeats analysis (MLVA). The authors found that the discriminatory ability of PFGE for certain phage types was not high enough. The results showed that an isolate obtained from a pig herd, corresponded to an isolate from a human sample, located in the same region. The authors then concluded that the pig herd was the source of the human infections.

In 2003 the World Health Organisation estimated that over 1.1 billion people did not have access to a potable water source and that over 2.4 billion people had no access to basic sanitation (African Medical and Research Foundation, 2007). This includes 42% of the population in sub-Saharan Africa. This problem will only be amplified, as the world's population is expected to increase every year by 74.8 million people between 2002 and 2015. Natural disasters, such as flooding and droughts, along with inadequate sanitary facilities and the lack of potable drinking water, increases the potential risk of a wide range of potential waterborne diseases, such as cholera, malaria, bilharzias yellow fever, amongst others (African Medical and Research Foundation, 2007). In Kwazulu-Natal, South Africa, the Mhlathuze catchment area supports a rapidly growing industrial and agricultural community, where 78.5% of the population live in rural areas and where 34.8% of the population are without sanitation services (Lin *et al.*, 2003). In 1996, the Department of Water Affairs and Forestry found that the bacteriological quality of the Mhlathuze River, which is utilised by the community for household and other purposes, was posing an increased risk of infectious disease transmission.

In addition, inadequate domestic and industrial wastewater treatment contributes to the lack of hygiene and sanitation. Only about 15% of collected wastewater undergoes treatment in Latin America, and in Venezuela, 97% of the country's sewage is discharged into the environment without treatment. In developing countries, water utilities, that is, supply and treatment is also grossly inadequate, due to a lack of funds, operational deficiency, the lack of staff and inadequate enforcement of environmental quality standards (World Health Organisation, 2003).

In 2003, the South African Department of Health reported a cholera outbreak in the Mpumalanga Province of South Africa. The outbreak included 27 areas bordering Swaziland

and Mozambique. The cumulative number of suspected and confirmed cholera cases was 174, with three deaths reported. In February 2004, another cholera outbreak was reported in the Nkomazi area, Mpumalanga Province, South Africa. The cumulative number of cholera cases reached 179, with five deaths recorded (World Health Organisation, 2004). In 2005, 49 cases and five deaths were reported in Niger by the Nigerian Ministry of Health, where laboratory testing led to the confirmation of the causative agent, Vibrio cholerae O1 (World Health Organisation, 2005). Angola reported 46758 cases of cholera in 2005, where 1896 deaths were recorded and 14 of the 18 provinces were affected. The most highly affected areas were Luanda (49%) and the Benguela provinces (17%). Although the spread of the disease in most of the provinces declined, a daily incidence of around 125 cases was still reported (World Health Organisation, 2006). In Sudan, in 2006, the Federal Ministry of Health reported a total of 2007 cholera cases, including 77 deaths as a result of acute watery diarrhoea. Of these cases, 35.3% occurred in Khartoum state, while 26% occurred in the North Kordofan state. V. cholera 01 Inaba was confirmed in 70 out of 139 stool samples (50%) by the national public health laboratory (World Health Organisation, 2007). South Africa also experienced major cholera outbreaks during 1980 to 1984, when over 22 000 people were infected in Kwazulu-Natal, and then again later, from August 2000 to February 2002, where 113 966 people were infected and 259 died in the same province (Cottle & Deedat, 2002).

Campylobacter jejuni (*C. jejuni*), *Campylobacter coli* (*C. coli*) and *Campylobacter enteritis* (*C. enteritis*) are major causes of acute enterocolitis and infective diarrhoea in most developed countries (Konkel *et al.*, 2003). It is also a known fact that surface water that has been contaminated with faecal human waste has the potential to contain *C. jejuni* (Bates & Phillips, 2005). This is not surprising since many domestic animals and waterfowl shed this pathogen in their faeces, contributing to the microbiological degradation of recreational waters (Bates & Phillips, 2005). The Campylobacter Sentinel Surveillance Scheme (CDSC) of England and Wales reported 7360 laboratory confirmed cases of campylobacteriosis in the year that it was established in May 2000. Of the 7360 confirmed cases, 3% directly consumed untreated river, stream- or spring water. Affected individuals were ill for a total of 11 days, while 732 patients required admission to hospital for at least five days (CDSC, 2000).

The two protozoan gastrointestinal disease-causing pathogens, *Giardia* and *Cryptosporidium* have been identified as the causative agents for the vast majority of outbreaks associated with water (Karanis & Kourenti, 2004). Karanis *et al.* (2006) investigated the water supplies (surface-, tap-, bottled-, well-, spring- and wastewater) in Russia and Bulgaria for the presence of *Giardia* and *Cryptosporidium* and found both parasites present in tap-, well-, surface- and wastewater samples. *Giardia* cysts were also detected in bottled water. Hsu *et al.* (2007) used the immunofluorescence- and enzyme-linked immunosorbent assay to detect

Giardia cysts. Out of the 107 collected samples, *Giardia* was present in eight samples, with these results confirmed in six of the samples by immunofluorescent microscopic examination, and four of the samples by the polymerase chain reaction method.

1.2.2 Xenobiotics

Xenobiotics are large-moleculed, man-made compounds believed to be resistant to environmental degradation (Chong, 2005). Human exposure to these compounds occurs via the ingestion of contaminated food and water, which leads to their bioaccumulation in food webs, resulting in the increased risk of environmental contamination and deterioration in human health (Belgiorno *et al.*, 2007). Examples of these contaminants include polycyclic aromatic hydrocarbons (PAHs), alkylphenols (APs), organotins (OTs) and brominated flame retardants (Stasinakis et al., 2005). Xenobiotics have also been linked to alterations in endocrine functions hormonal and multiple systems in experimental animals. humans and wildlife (Desantis et al., 2005). Sources include hydrocarbons, insecticides, polychlorinated biphenyls (Otitoloju, 2003), herbicides (Dorigo et al., 2004), agricultural fertilisers and pesticides, heavy metals and organic synthetic compounds from industry and shipping (Quintaneiro et al., 2006).

Research has shown that herbicides and pesticides negatively affect the quality of the natural environment they leach into. Dorigo et al. (2004) investigated the impact of atrazine and isoproturon on periphyton and phytoplankton samples in the river Ozanne (France) and its tributaries. The sampling sites were reported to be contaminated with varying levels of atrazine and isoproturon. Microalgal communities inhabiting the contaminated area as well as those inhabiting pristine stations were investigated. A greater tolerance to atrazine and isoproturon was observed in the microalgal community inhabiting the contaminated area. In addition, the phytoplankton and the periphyton communities both complied with the pollution-induced community tolerance concept (PICT) as described by Blanck et al. (1988). The PICT concept establishes a cause-effect relationship between a toxicant and microbial communities (Schmitt et al., 2005). The phytoplankton and periphyton communities shifted their composition towards diatom-domination due to the continuous presence of atrazine and isoproturon. Achnanthes lanceolata and Nitzschia palea were nearly always present at the sampling sites. This result was corroborated by a previous study by Kasai (1999), where he proved that these algae were highly resistant to atrazine. The phytoplankton and periphyton communities displayed increased tolerance to the PICT studies. In PICT studies the increased tolerance of the total community to the introduced toxicant is investigated making them an effective tool in ecotoxicology due to their high sensitivity and specificity to the effects of toxic substances (Boivin et al., 2002).

Weston et al. (2001) and Kolpin et al. (2002) identified the occurrence of multiple pharmaceuticals, such as fluoxetine in surface waters, while other studies recorded the occurrence of estrogenicity steroid therapeutics in municipal effluents (Foran et al., 2003; Huggett et al., 2003). Brooks et al. (2003) showed that fluoxetine reduced the growth of the green algae, Pseudokirchneriella subcapitata (P. subcapitata). Fluoxetine was added to three flasks containing P. subcapitata at concentrations of 0 (control), 43.6, 87.3 and 174.4 nM. Algal growth was evaluated by enumeration, using a haemocytometer and a compound microscope. and turbidity measurements were done by absorbance readings at 750 nm. Cell deformities were observed and cell sizes appeared smaller at 87.3 and 174.4 nM treatment levels, where cells appeared shrivelled and on occasion were not crescent shaped, which is a normal characteristic of *P. subcapitata*. Although cell deformities and biovolumes were not quantified in this study, this effect of fluoxetine on algal cells warrants further investigation. Richards et al. (2004) also evaluated the effects of fluoxetine, ibuprofen and ciprofloxacin mixtures on a bacterial community in aquatic microcosms. The three compounds were used in combination to provide a high exposure scenario for future risk assessment. The sampled zooplankton and phytoplankton communities showed decreases in the number of certain organisms, while other organisms flourished. Lemna gibba and Myriophyllum spp. showed increased mortality when exposed to high concentrations of the mixture, whereas the bacterial community did not change at all.

1.2.3 Polycyclic Aromatic Hydrocarbons (PAHs)

Contamination of aquatic environments with polycyclic aromatic hydrocarbons (PAHs), a ubiquitous group of organic pollutants, is a matter of great environmental concern. Polycyclic Aromatic Hydrocarbons (PAHs) enter the environment via the atmosphere and adsorb onto particulate matter. Their affinity for organic fractions in sediment, soil and biota is high and PAHs accummulate in organisms, water, sediments and in their nutrient source. They enter the organisms by absorption, through the pulmonary tract, the skin and the gastrointestinal tract (Coman *et al.*, 2006).

Polycyclic Aromatic Hydrocarbons have carcinogenic and mutagenic properties (Watson *et al.*, 2004) and are used as intermediates in the production of polyvinylchloride and plasticisers (naphthalene), pigments (acenaphthalene, pyrene), dyes (anthracene, fluoranthene) and pesticides (phenanthrene) (National Pollutant Inventory Substance Profile, 2004). They have been known to leach from electrochemical industries, such as aluminium, iron and steel production implants and foundries (Wiles, 2004). Forest fires also contribute to the release of PAHs into the atmosphere, while the majority of the contamination originates from the discharge

of effluent from settling ponds (Watson *et al.*, 2004). Other sources of PAH contamination include fossil fuel-burning, oil refineries, motor vehicle emissions, waste incineration, coke and asphalt production industries and aluminium production plants, amongst others (Srogi, 2007). Polycyclic Aromatic Hydrocarbons also result from cigarette smoke and some of these compounds are highly carcinogenic or mutagenic (Sakai *et al.*, 2002).

The relationship between sediment contamination and toxicity in San Francisco Bay, USA, a highly industrialised and urbanised estuary composed of many connected bays, was evaluated by Thompson *et al.* (1999). Collected sediment samples were digested using aqua regia (Flegal *et al.*, 1994) and analysed with atomic absorption spectrometry, with PAHs and chlorinated hydrocarbons evaluated using gas chromatography. The results indicated that toxicity was widespread in the Bay and that it fluctuated over time in the areas located close to harbours, closed military bases and superfund sites, containing highly toxic sediments. The results obtained correlated with a study performed by Swartz *et al.* (1994) in which highly toxic sediment samples were also evaluated for metal contamination. Sediment samples evaluated at the respective sites consisted of varying combinations of contaminants. The sediment elutriate bioassay and the bulk sediment assay, were performed to determine the toxic effects of the sediment. Results showed that sediment samples at the Redwood Creek site, proved to be most toxic.

1.2.4 Metal Contamination

Metal contamination occurs due to the accumulation of herbicides, pesticides, petroleum byproducts (Dorigo *et al.*, 2004; Mowat & Bundy, 2001) and urban- and industrial runoff (Ohe *et al.*, 2004) in the environment. The overall natural occurrence of certain metals in the soil, atmospheric deposits (Radenac *et al.*, 2001) and corrosion of building materials (Maanan *et. al.*, 2004) also contributes to the increase of metals in the environment.

Domestic and household sources of contamination occur as a result of corrosion of metal plumbing fittings, galvanised roofs and wire fences [(zinc (Zn), cadmium (Cd)] and healthcare products, such as Zn- or selenium (Se) containing shampoos and Zn-containing baby creams (Alloway, 1995b). Silver paint containing aluminum (Al), Al-coated roofs, saucepans and other household utensils containing metals are also possible sources of contamination (Friberg *et al.*, 1986).

The metals most commonly associated with river water are lead (Pb), copper (Cu), iron (Fe), Cd, Al, mercury (Hg), arsenic (As) and manganese (Mn). Many aquatic organisms live in water bodies and increased concentrations of these pollutants could be detrimental to the aquatic environment, thereby directly contaminating the food web, and also higher animals, such

as humans. Metal pollutants also have a detrimental effect on human health, where exposure is mainly due to the ingestion of contaminated food and water (Wright & Welbourne, 2002). The leaching of metals into groundwater can result in the further contamination of drinking water and can, due to this toxicity, be detrimental to human health (Piver, 1992). **Table 1.1** represents the recommended safe metal concentrations in aquatic ecosystems as stipulated by the Department of Water Affairs and Forestry (DWAF, 1996) and the Canadian Council of Ministers of the Environment Quality Guidelines (CCME, 2001). It is important to adhere to the stipulated guidelines for metal concentrations in aquatic samples in order to determine whether the water is safe for utilisation.

Table 1.1 Recommended safe metal concentrations as stipulated by the Department of Water Affairs and Forestry (1996) and the Canadian Council of Ministers of the Environment Quality Guidelines (2001) in aguatic samples.

Metals	Recommended safe concentrations as stipulated by DWAF (1996) (mg.l ⁻¹)	Environmental quality guidelines as stipulated by CCME (2001) (mg.l ⁻¹)
Al	0.1 – 0.15	0.005 – 0.1
Cu	0.002 - 0.012	0.002 - 0.004
Fe	N/A	0.3
Mn	1.3	N/A
Ni	N/A	0.025 – 0.15
Pb	N/A	0.001 - 0.007
Zn	0.036	0.03

1.2.5 Metal Accumulation in Sediment and Water

The deposition of solid particles on the bed or bottom of a body of water or other liquid is known as sedimentation. This suspended material (sediment) is essentially fragmented organic or inorganic material derived from the weathering of soil, alluvial and rock materials. It is removed by erosion and can be transported by fluid flow to settle on different locations at the bottom of the river (Ebner *et al.*, 1999). In aquatic environments, high concentrations of metals are usually integrated in surface sediments (Prange & Dennison, 2000; Marchand *et al.*, 2006). The highest metal concentration is stored between the sediment-water interface (Maanan *et al.*, 2004), as according to Peijnenburg *et al.* (2005), sediment acts as sinks for suspended material in surface water.

Increased levels of heavy metals were reported in the Mooi River sediment in South Africa (Wade *et al.*, 2000). The release of mine water into a tributary of the Mooi River from a nearby goldmine apparently resulted in the increased levels of potentially toxic metals in both the water and sediment. Mzimela *et al.* (2003) conducted a study on sediment, water and fish samples collected on a quarterly basis from the Mhlathuze Estuary, South Africa, to investigate seasonal bioaccumulation patterns of selected metals. The highest metal concentrations (AI, Fe

and Mn) in water and sediment were recorded in December, coinciding with extremely high freshwater inflow from the Mhlathuze River. Metal concentrations were generally lower during April, which coincides with the reduced riverine runoff from the catchment of the estuary. Iron was found in the greatest concentrations in the fish tissue, followed by Al, Zn, Mn, chromium (Cr), Cu and lastly Pb.

The primary sources of heavy metals in the environment are waste discharge, stack emissions from industrial sources and coal power production (McComb & Gesser, 1999). Common environmental pollutants such as Zn, Cd and Hg are accumulated in aquatic environments through the weathering of minerals and soils (Merian, 1991; Kļaviņš *et al.*, 2000), coal combustion, refuse incineration and Fe metal industries (Merian, 1991). This in turn, results in the contamination of freshwater sources and the alarming increase in metal accumulation in aquatic systems. The subsequent poisoning of the human food chain then increases the need for further studies to monitor metals in all water bodies (McComb & Gesser, 1999).

The Arges River (Romania) was analysed by Stoica (1999), for the presence of various metals using Atomic Absorption Spectrometry (AAS) and Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The River was chosen because it flows past treated industrial-, and domestic wastewater and other waste material. Using these techniques, it was found that concentrations of Cu and Pb did not exceed the recommended Romanian standards in natural waters, while the concentrations of Cd and Zn did exceed the recommended concentrations for metals in the river water. The authors however, concluded that the river was relatively free of metal pollutants.

Macklin *et al.* (2003) monitored the cyanide and metal contamination into tributaries of the Tisa River, which is a major tributary of the Danube River, to record the effects of a release of 200 000 m³ of contaminated water and 40 000 tonnes of tailings into the tributaries. Sixty-five water, 65 river- and 45 floodplain sediment samples were collected and analysed for Pb, Zn, Cu and Cd. The concentrations decreased downstream as water flowed away from the mines and tailings ponds, and generally fell below European Community (EC) concentrations. In contrast, Zn, Cu and Cd concentrations in river sediments approached or exceeded recommended concentrations close to the Romanian border.

The concentrations of Cd, Hg and Zn in the Umtata, Buffalo, Keiskamma, and Tyume Rivers and in the Sandile and Umtata Dams were determined by Fatoki & Awofolu (2003). These catchments support rapidly growing populations and concerns arose regarding the quality of the surface waters. Cadmium levels in the Umtata River and the Umtata Dam were normal but in the Keiskamma-, Buffalo- and Tyume Rivers elevated Cd levels were recorded. These elevated Cd levels may affect the health of the rural communities who use the river water before the water is treated. The levels for Hg and Zn appeared to be normal in the river and did not exceed the recommended concentrations of metals in water as stipulated by DWAF (1996).

1.2.6 Bioindicators

Microbial organisms growing in a biofilm community are capable of adapting to and surviving in nature, due to the protection offered by the surrounding matrix, especially during stressful situations (Decho, 2000). The close and beneficial relationships among organisms within the biofilm, accelerates xenobiotic usage as well as the subsequent immobilisation and degradation of pollutants (Singh *et al.*, 2006).

A biofilm can be defined as a collection of microbial cells organised within extracellular matrices, which are mostly associated with flowing systems, but can also occur as aggregates, occurring at interfaces such as solid/air-, inert solid/liquid-, and solid nutrient/liquid (Gilbert & Allison, 1993). The development of the biofilm can broadly be divided into a reversible and irreversible stage. Lawrence & Caldwell (1987) and Marshall (1988) proved that cells initially become attached to a surface, using a portion of their flagella during the reversible attachment stage, after which they either may become detached or irreversibly attached. Their research showed that cells chemically gauge their compatibility with potential binding sites before the irreversible attachment stage. Once irreversibly attached, cells will proliferate into a mature biofilm. In 1989, Lawrence *et al.* stated that irreversibly attached micro-organisms could, however, slough off because of adverse environmental factors, and could then reattach at another section of the material surface (**Figure 1.6**).

Figure 1.6. Biofilm formation (Biofilms: Online Manual – American Society for Microbiology, 2007).

Bacteria produce extracellular polymeric substances (EPS), within the biofilm matrix, which assist in improving their survival rate. This EPS assists in biofilm development by

providing a substrate for other micro-organisms and toxic molecules to adhere to (Costerton *et al.*, 1978). It also has a high metal absorption capacity (Marín-Guirao *et al.*, 2005). It is due to this binding capacity of EPS that microbial biofilms are amongst the most common treatment for the removal of metals from metal-contaminated waters (Roane & Pepper, 2000).

Resistance of micro-organisms to metal pollution depends on the developmental stage of the organism as well as the taxonomic group to which the organism belongs (Wright & Welbourne, 2002). The concentrations of metals in aguatic systems are also dependent on fluctuations in environmental conditions as well as the interactions between environmental factors such as dissolved oxygen (DO) levels, water hardness, conductivity, temperature and pH. Variations in these conditions then also contribute to the release of metals back into the flowing water. Due to a resistance build-up, certain microbial species are also more effective in the removal of particular metals from the system, e.g. *Citrobacter* spp. biofilms are used for the removal of uranium, Arthrobacter spp. biofilms are used in the recovery of Pb, Cu, Cr, Zn and Cd, while Bacillus spp. effectively binds Cd, Cu, Hg, Cr and Ni (Roane & Pepper, 2000). The important biofilm-producing organisms in domestic wastewater treatment include, Klebsiella, Zoogloea and Pseudomonas spp. (Roane & Pepper, 2000). Pseudomonas aeruginosa biofilms were shown to cause the precipitation of lanthanum (Langley & Beveridge, 1999), while mercury-reducing Pseudomonas putida biofilms showed elemental mercury accumulation on the exterior of the biofilms (Wagner-Döbler et al., 2000). Burkholderia cepacia biofilms were found to sequester Pb²⁺ at concentrations higher than 1 µm (Templeton et al., 2001), while a study by Suh et al. (1999) found that the EPS was responsible for more than 90% of Pb²⁺ accumulation of the total Pb dissolved. Kröpfl et al. (2003) studied Pb and nickel (Ni) contaminated biofilms by evaluating their accumulation and their effect on biomass production. Results revealed that the total biomass production decreased by 14%, in comparison to the control, in the presence of increased Ni concentrations. This indicated that the bacteria exhibited a lower tolerance to Ni than to Pb.

Metal-resistant organisms such as *Rhizopus arrhizus* are generally used in continuous systems over an extended time period, due to their capacity to self-replicate and their ability to proliferate in the presence of metals (Donmez *et al.*, 1999). Prat *et al.* (1999) analysed metal accumulation in biofilms from nine different stations in the Guidamar River, Spain. Metal accumulation was 15 times higher in the stations affected by metal discharge than in the unaffected stations, especially in the case of Zn, Pb, As and thallium (TI). As mentioned above, the binding capacity of EPS depends on the state of the polymeric layer (EPS) but as was shown in the above-mentioned study, also on the pH of the water (Kröpfl *et al.*, 2003).

Research has shown that the behaviour of a particular organism or animal could serve as an indication of chemically induced stress and would make the particular animal beneficial as a biomarker (Petrauskiené, 2003). Ecotoxicological biomarkers based on molecular and cellular level responses of an organism to adverse conditions represent the earliest signals of environmental disturbances (Lowe *et al.*, 1995).

Petrauskiené (2003) assessed the behavioural responses of medicinal leeches to the effect of exposure to water from the Drukshiai Lake, to sediments of the Nemunas River, and to a solution of heavy metals. The mobility, avoidance response, changes in body shape and the feeding activity of the medicinal leeches were investigated. Avoidance response, which is defined as the amount of individuals escaping the tested water or sediment as well as mobility change, were recorded during the first hour of exposure to the tested samples and could be used as a marker for water and sediment pollution. After one to three weeks their feeding activity was reduced, indicating their usefulness in assessing the chronic toxicity of pollution, and making the medicinal leech effective as a biomarker in ecotoxicological studies.

Nigro *et al.* (2006) investigated genotoxicity and lysosomal alterations in the Mediterranean mussel (*Mytilus galloprovincialis*) from an estuary of the Cecina River. This river is subject to chemical impact mainly associated with industrial activities and untreated urban wastewater discharge. Native and transplanted mussels, which were transferred to the affected area and left for four weeks, were used for this study to compare metal accumulation and the degree of pollution. Metal concentrations in the digestive glands of the transplanted mussels were similar to those of the native mussels. Transplanted mussels could therefore be implemented as a model biomonitoring tool (Regoli & Orlando, 1994) as they rapidly equilibrate their tissue metal levels according to the metal bioavailabilty of the surrounding environment.

The snail, *Helix aspersa*, was used as a biomarker to determine whether copper oxychloride exposure induced stress (Snyman *et al.*, 2002). Snails collected from vineyards treated with copper oxychloride were compared to those from an untreated vineyard. Using the neutral red retention (NRR) time assay, it was found that after only one week of exposure to copper oxychloride, the snails from the test site showed significantly shorter NRR times and significantly higher whole body copper concentrations. These results indicated that the NRR time assay is effective as an indication of copper oxychloride-induced stress.

1.2.7. Metal Contaminants

The metal contaminants most commonly associated with water include Al, Cu, Fe, Mn, Ni, Pb and Zn (Wright and Welbourne, 2002). **Table 1.2.** summarises the uses and health effects of the different metal contaminants.

Metals	Uses	Health Effects	References
AI	Pressed into sheets	Poison neurotoxin ^c .	History of Aluminium,
	or foil ^a .	Overexposure has been linked	2006 ^a
	Pesticides and	Alzheimer's disease ^d and could be	Seachem, 2006 ^b
	algicides ^b .	associated with contaminated drinking	Miu <i>et al.</i> , 2004 ^c
		water ^{e,f,g,h}	Kawahara, 2005 ^d
		Memory loss, depression and long-term	Gardner & Gunn, 1991 ^e
		muscular weakness ⁱ .	Doll, 1993 ^f
		Damage to all tissue types ^j .	Werbach, 2003 ^g
			Werbach, 2007 ^h
			Sears, 2008 ⁱ
			Exley, 1996 ^j
Cu	Building industry ^k .	Micronutrient for all aerobic life forms.	Copper Facts, 2006 ^k
	Animal feeds and	Development and performance of the	Mineral and
	fertilisers ^l .	human nervous- and cardiovascular	Information Institute,
		systems, as well as the skin, bone,	2006 ^I .
		immune and reproductive systems.	Copper and Human
		Inhibits the growth of certain microbes.	Health, 2006 ^m .
		Low Cu - heart and circulatory problems,	Saleh <i>et al</i> ., 2001 ⁿ
		bone abnormalities and complications in	Medina <i>et al</i> ., 2005°
		the immune system ^m .	Stauber <i>et al</i> ., 2005 ^p
		Increased concentrations -	
		gastrointestinal distress, as well as	
		kidney- or liver damage ⁿ	
		Decrease in biological diversity ^{o,p} .	
Fe	Alloys ^q	Associated with several chronic diseases,	Webelements - Fe
	Component of	such as heart disease, cancer and	Periodic Table, 2006 ^q .
	haemoglobin ^r	diabetes ^{t,u,v}	Powell <i>et al.</i> , 1994 ^r .
	Transportation,		Minerals Education -

 Table 1.2
 The uses and health effects of the metal contaminants most commonly associated with water.

	construction,		Fe, 2008 ^s .
	machinery		Stevens <i>et al</i> ., 1988 ^t
	manufacture, cans		Tuomainen <i>et al</i> .,
	and containers and in		1997 ^u
	the oil and gas		Klipstein-
	industries ^s		Grobusch <i>et al</i> ., 1999 ^v
Mn	Pesticides and oil	Strong yet flexible bones	Acrobat [®] , 2005 ^w .
	additives ^{w,x} .	Aids the body's absorption of Vitamin B1	Vermeulen <i>et al</i> .,
		Enzyme activator	2001 [×] .
		Excess of Mn in the water supply -	ToxFaqs for
		Parkinson's disease ^{y,z}	Manganese, 2006 ^y
		Shortages - obesity, glucose intolerance,	Wright & Welbourne,
		blood clotting, skin problems, lowered	2002 ^z
		cholesterol levels, skeletal disorders, birth	Lenntech - Mn, 20061
		defects and neurological symptoms ¹ .	
		Swelling of cell walls, withering of leaves,	
		and brown spots on leaves ¹ .	
Ni	Fair conductor of	Skin effects or allergic reactions.	Webelements Periodic
	heat and electricity ² .	Asthma attacks, chronic bronchitis and	Table - Ni, 2006 ² .
	Stainless steel,	lung infections.	ToxFaqs for Nickel,
	jewellery, coins and	Stomach cramps and damage to the	2006 ³ .
	items such as valves	kidneys ³ .	Agency for Toxic
	and heat exchangers.	Increased concentrations - cancer ⁴ .	Substances and
	In certain batteries, to	Spontaneous abortions and structural	Disease Registry,
	colour ceramics and	malformations, especially cardiovascular	2005 ⁴ .
	for nickel plating ³ .	and musculoskeletal defects in newborn	Chaschschin <i>et al</i> .,
		babies ⁵ .	1994 ⁵ .
		High concentrations - inhibit algal growth ⁶ .	Mandal <i>et al</i> ., 2002 ⁶ .
Pb	Plumbing materials	Decrease in intelligence scores,	Lead – Safewater,
	and water services,	concentration spans, reading and	2006′.
	Pb paint chips'.	language, anaemia, hearing loss, and	Goyer, 1993°.
		abnormal development of tissues and	Wright & Welbourne,
		organs, such as the kidneys, heart and	2002 ⁹
		brain.	Bogden <i>et al.</i> , 1997 ¹⁰
		Extremely high levels - ataxia, cerebral	National Lead
		oedema, paralysis, coma and death may	Information Centre,

		reault ⁸	000011
		result [*] .	2006 .
		Hyperactivity, poor attention span, IQ	
		defects ⁹ and palsy, or wrist drop ¹⁰	
		Pb-contaminated drinking water -	
		increase in blood pressure, kidney	
		problems.	
		Difficulties during pregnancy,	
		reproductive, digestive and memory	
		problems, nervous disorders ⁸ .	
		Pb smelting plants - elevated blood-lead	
		levels ¹¹ .	
Zn	Conductor of	Essential element in plant and animal	Webelements Periodic
	electricity.	growth ¹⁴ .	Table - Zn, 2006 ¹² .
	Galvanising ¹² .	Deficiency - hair loss, skin lesions,	Zinc, 2006 ¹³ .
	Deodorants, wood	diarrhoea, wasting of body tissues and	Zinc and the
	preservative, suntan	eventually death, brain development is	Environment, 2007 ¹⁴ .
	lotion, topical cream	stunted <i>in utero</i> and in infancy ¹³ ,	
	to prevent nappy	malfunctions in cerebral activity, as well	
	rash ¹³ .	as negatively affecting eyesight, taste,	
		smell and memory ¹³ .	
		Elevated concentrations - suppress Cu	
		and Eq. absorption	

1.3 BIOREMEDIATION

Bioremediation systems are gaining increased interest, as they are more economically viable and require less maintenance than more traditional treatment systems. The principle of bioremediation is to utilise microbial degradation processes in technical and controlled treatment systems (Langwaldt & Puhakka, 2000). Eccles (1999) stated that biological systems were gaining increased interest due to the fact that they are as effective as other more physical techniques, are cost-effective and environmentally friendly, which is why they are referred to as green technologies (Mack *et al.*, 2004).

Bioremediation is used to reduce or eliminate contaminants by encouraging bacterial growth through the addition of nutrients to the contaminated area. The organisms then degrade organic matter into simpler compounds such as water, methane, inorganic salts and carbon dioxide (Farhadian *et al.*, 2008). Specific bacteria can also be introduced into a system to

metabolise a particular contaminant in a process known as engineered bioremediation, where the bioremediation process is artificially enhanced (Scow & Hicks, 2005). Ideally, indigenous microbes will degrade organic contaminants (Röling & Verseveld, 2002) if a supply of nutrients is available for their metabolism (Parales & Haddock, 2004; Scow & Hicks, 2005). Bioremediation can therefore be defined as treatment technology which uses living organisms, i.e. biofilms (Singh *et al.*, 2006), to reduce the concentration or toxicity of contaminants in soil (Law & Aitken, 2003), water (White, 1995) and wastewater (Kargi & Eker, 2005). The two most important processes involved in metal removal from contaminated sites are biosorption and bioaccumulation. In these processes the metals are removed from the system by binding to specific functional groups on the outer surface of the biomass (Volesky, 1990).

The objective when choosing a bioremediation system is to find the most efficient, as well as the most cost-effective system for treatment (Liu *et al.*, 2001). The process of bioremediation can thus contribute to cost-efficiency (Adriaens *et al.*, 2006) by treating contamination in place, meaning that nutrients can be delivered to contaminated soil, without removal-disposal costs, using natural microbial processes to break down pollutants, including metals (Park *et al.*, 2008), and by reducing environmental stress, by minimising site disturbances. Bioremediation systems can be divided into natural bioremediation systems such as wetlands, and artificial systems such as bioreactors.

1.3.1 Wetland Systems

The use of wetlands is an emerging, reliable technology used primarily for the tertiary treatment of contaminated effluents. They are defined as terrestrial and aquatic systems which have the water table at, near, or above the land surface. They are also widely distributed throughout the world where low lying lands meet water. Water moves very slowly through the wetland areas and the wetland soils remain water-logged (soil that contains so much water that there is no room for oxygen). Marshes, swamps, bogs, wet meadows, sloughs, potholes, river overflow lands, and tide flats are all examples of wetlands. Wetlands consist of waterlogged, or water loving plants, known as hydrophytes, which can grow without much oxygen from hydric ponded) soils. which hydrophytic (saturated, flooded. or supports vegetation (Sheoran & Sheoran, 2006). The soil can be either organic or mineral, where organic soils are characterised by a continuously accumulating deep layer of decaying plant matter at the soil surface. The properties of hydric soils especially the lack of oxygen, retards the decomposition of the dead plants. In the water table, which is the point below the land surface where the earth is saturated with water, the mineral layer can sometimes be either wet or dry, depending on Fe seasonal changes, which causes elements like and Mn to be reduced

(Woulds & Ngwenya, 2004). Small inland wetlands, usually less than 20 hectares, are used by farmers in Southern and Eastern Africa, to grow vegetables and other crops vital to household nutrition and incomes. The wetland allows the resource-poor farmers to farm throughout the entire year, because of the moisture-rich wetland environment. This allows for a year-round food supply and source of income (International Water Management Institute, 2007).

Constructed wetlands are as functional as natural wetlands, and are also comprised of plant-, microbial-, soil-, and animal components, and have been successfully employed in the removal of pollutants from river water (Hammer, 1989). The utilisation of wetlands as successful remediation systems is based on the microbial adsorption of metals, metal bioaccumulation in plants, bacterial metal oxidation, and sulphate reduction (Roane & Pepper, 2000). Metal sulphide precipitation has also been found to be useful in the operation of natural and constructed wetlands (White *et al.*, 1997). Collins *et al.* (2004) and Murray-Gulde *et al.* (2005) showed that sulphide precipitation was the dominant process for the removal of metals from wetlands. Kadlec & Knight (1996) stated that a wetland system would be ideal for treatment of water systems, as it is environmentally safe as well as cost-effective. **Figure 1.7** outlines the distribution of wetlands in South Africa.

Figure 1.7. Distribution of wetlands in the nine provinces of South Africa (Department of Environmental Affairs and Tourism, 1999b).

There are many different types of wetlands which include emergent-, aquatic-, forested-, scrub/shrub-, free-water surface-, and subsurface flow wetlands, constructed for the removal of specific pollutants.

An emergent wetland is characterised by swaying grassy plants, which have parts of their soft stems and roots embedded in the wet soil. The grassy plants, cattails, bulrushes and reed canary grass are found in marshes and sedges, while grasses and willow grow on peat in fens, which have slow moving water which rinses acid from the soil. This wetland system is home to ducks, geese, migrating birds and muskrats, amongst others (Wetlands, 1999). Bulrushes and Cattails have been successfully used to reduce the total amounts of Cyclotrimethylenetrinitramine (RDX) trinitrotoluene (TNT), and cyclotetramethylenetetranitramine (HMX) from explosives-contaminated wastewater (Qazi & Kanaras, 1999). Emergent wetlands in coastal systems, protect the shoreline from erosion, filter pollutants, enhance water quality and promote primary production (US Fish and Wildlife Service, 2007). A wetland was constructed consisting of various layers, such as a clay layer, a layer consisting of typical emergent wetland plants (Typha latifolia, Typha angustifolia, Phragmites communis, Scirpus lacustris and Juncus spp.), various types of algae and different heterotrophic and autotrophic micro-organisms, including different oil-degrading bacteria and fungi and manure, which provided the essential nutrients required for vegetative growth (Groudeva et al., 2001). Results revealed that the highest concentrations of pollutants, such as PAHs and heavy metals (Cd, Cu, Pb and, to a lesser extent, Fe) were found in the roots of the plants, as well as adsorbed to some of the algal and bacterial species.

In an aquatic wetland, not all of the plants are submerged and grow underwater. Some of the wetland plants or their leaves float on top of the water. Waterlily, duckweed and pondweed grow in water that may be three to six feet deep. Aquatic beds are generally found near the edges of lakes or streams (Wetlands, 1999). Duckweed has been used to accumulate metals, such as Pb, Cd, Cu and Zn (McIntyre, 2003). *Lemna perpusilla* or Duckweed plants were collected from a heavy ash settling basin to determine its ability to accumulate Cd, Cu, Fe, Mn, Zn, Cr, Pb and Ni, which are metals that are expected with heavy ash. The Duckweed plants accumulated higher concentrations of the metals analysed for than was recorded in the water or coal ash sediment samples collected (Clark *et al.*, 1981).

Bog or Forested wetlands have very acidic soil, which allows the growth of only acidresistant plants, such as both evergreen and deciduous trees. Due to the acid-rich and oxygendeprived soil, dead plants do not decay and become a mat of rotting plants. Deer, raccoons, rabbits, hawks and owls make this wetland system their home (Wetlands, 1999). The deciduous plant, White birch, has been used to remove methyl bromide from the atmosphere (Jeffers & Liddy, 2003).

Swamp or Shrub wetlands are characterised by small trees and bushes. The water is close to the surface and next to rivers, lakes and streams. Willows, Spirea and common rush are well suited to this wetland type as these plants have more than one flexible stem. The willow

(*Salix* spp.) has been used to phytoextract Cd, Zn, Hg, Cr, Se and Cu from contaminated water (McCutcheon & Schnoor, 2003). The open water of a shrub wetland is used by wood ducks and song birds, while Herons, muskrats and deer are also at home in these wetlands (Wetlands, 1999). Dos Santos Utmazian *et al.* (2007) reported that willows accumulated high amounts of Zn and Cd from a contaminated site in Arnoldstein (Austria), and De Dousa *et al.* (1999) showed that metal uptake could be enhanced as a result of the presence of certain bacteria. Kuffner *et al.* (2008) evaluated the metal uptake of willows (*Salix* sp.) at a lead mining area. Four pot experiments with the soil collected from the polluted area (Zn/Cd/Pb polluted) were inoculated with Zn resistant bacteria isolated from the mined area after the bacteria had been grown up overnight in media amended with 1 mM ZnSO₄. After exposure to the contaminated soil, the predominant strain isolated was *Streptomyces* AR17, which was thought to be responsible for enhancing Zn and Cd uptake by the *Salix* sp.

Free-water surface wetlands are wetlands that have the water surface above the wetland bed or substrate. They are also referred to as surface flow, free surface or open water surface wetlands (Merz, 2000). Subsurface flow wetlands are designed so that the flow moves through a soil or gravel matrix which is planted with macrophytes, large macroscopic plants which are able to be seen with the naked eye (Merz, 2000). Subsurface-flow wetlands move effluent (agricultural or mining runoff, tannery or meat processing wastes, wastewater from sewage drains), through gravel or sand on which plants are rooted. Surface-flow moves effluent above the soil in a planted marsh or swamp (Kadlec & Knight, 1996). They have also been used to remove Cu, Pb and Zn from wastewater and stormwater (Nelson *et al.*, 2004).

Pilot wetland units were set up in the United States in 2001, to upgrade an existing facility. The aim was to remove petroleum hydrocarbons and salts from the Naval Petroleum Reserve. Wetland pilot units, the free-water surface (FWS) and subsurface flow (SSF), were set up outdoors and followed up for three months. Dissolved Oxygen (DO), pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Chemical Oxygen Demand (COD) and temperature were measured. The biological activity of certain types of bacteria was also determined for the soil and water samples collected. The temperatures averaged between 37°C to 39°C, where the warmer water supported good plant growth in each wetland. The dissolved oxygen (DO), ranged from 1.2 to 7.2 mg.l⁻¹, which was a bit low for the pilot wetlands, and increased the microbial community's demand for DO. Both pilot wetlands were well buffered with pH levels from 6.5 to 8.5, supporting microbial activity and plant growth. The water and sediment columns evaluated for microbial activity, showed variations in microbial species, capable of metabolising organic and inorganic compounds throughout the FWS pilot wetland system, with the most abundant bacteria, being heterotrophic and sulphur-reducing bacteria. The presence of heterotrophic bacteria indicated that the wetland soils and water contained

sufficient energy for the aerobic degradation of organic compounds. It was ultimately found that both pilot wetland systems were efficient and capable of improving the overall water quality (Jackson & Myers, 2002).

Metal retention by wetlands have been used to reduce the levels of Zn, Cu, Ni, Pb, and other metals in runoff and drainage from mining regions (Mays & Edwards, 2001). Nelson et al. (2004) studied the efficiency of a constructed wetland system to remove metals from the Savannah River Site, which receives wastewater discharges and stormwater runoff. The wetland consisted of four pairs of one acre wetland cells with water flowing from one cell to the next and then on to the discharge point. The soils in the wetland were modified by adding organic matter, fertiliser and gypsum as well as giant bulrushes (Schoenoplectus californicus). This provided a continuous source of organic material to the sediment, allowing for the decomposition of plants by bacteria and fungi. The anoxic conditions were also maintained in the hydric soil, thereby allowing for the capture and immobilisation of metals in the soil. A total of 11 water samples were collected monthly and analysed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and ion chromatography. Results for the samples collected during the fourth year of running the wetland system, validated the efficiency of the system, in that copper and mercury removal efficiencies were still very high (in excess of 80% removal from water after passage through the wetland). Lead removal from the water was 83%, Zn removal was 60% and Ni concentrations were unaffected. Dissolved organic carbon in the water column increased as a result of the anaerobic conditions in the wetland system, which then in turn reduced the toxicity of the effluent.

Wetland efficiency depends on the type of plants utilised and the potential loss of the plant community due to a lack of nutrients. It takes a longer time to remediate, as evidenced by the study performed by Jackson & Myers (2002), where their pilot study was performed over a three year period. Over the remediation period, long-term performance problems, like plugging of the porous media, maintenance of plant communities and the release of nutrients and accumulated metals during warm periods (McCutcheon & Schnoor, 2003), were identified as potential problems associated with the use of wetlands.

1.3.2 Bioreactor Systems

Wastewater treatment generally involves physical, chemical and biological processes, to remove contaminants from the affected systems. These impurities must be collected, handled and disposed of in a manner which is not detrimental to the surrounding environment or human health.

A bioreactor can broadly be defined as a tank in which cells, cell extracts or enzymes carry out a biological reaction. The efficiency of bioreactors is based on the ability of bacteria to grow at interfaces, making microbial biofilms the most effective mechanism in the removal or uptake of contaminants from the environment. This is collaborated by research, which shows that biofilms are the most common treatment for the removal of metals from metal-contaminated waters (Roane & Pepper, 2000).

Furthermore, bioreactors are advantageous as they can function under both aerobic and anaerobic conditions (Langwaldt & Puhakka, 2000), which increases their efficacy. They are easy to use and to maintain (Evangelho *et al.*, 2001), and require very little energy (Laopaiboon *et al.*, 2006). Fluidised bed reactors also require low retention time to generate high biomass (Sokół & Korpal, 2004). Biofilms grow on submerged inert packing, such as granular activated carbon, which allows for maximum microbial growth, and improves the bioreactors contaminant removal potential (Bouwer & McCarty, 1982).

1.3.2.1 Aerobic Bioreactors

Aerobic bioreactors fall into the category of secondary treatment. Secondary treatment utilises aerobic micro-organisms in biological reactors to remove or reduce organic matter, and are designed in a way which substantially degrades human and food waste, soaps and detergents (United Nations, 2003). These reactors require oxygen for the degradation of organic material, such as sugars, fats, organic short-chain carbon molecules, etc. by microbial organisms (Mack *et al.*, 2004).

The efficiency of the bioreactor relies heavily on the substrate utilised for microbial growth and attachment. The ideal substratum material should be highly durable, have a low cost, should not clog easily and should have a high surface area for maximum microbial adsorption (Metcalf & Eddy, 1991). In Thailand, Polyvinyl Chloride (PVC) was used as an attachment surface to cultivate micro-organisms from recycled sludge from a pulp and paper company (Laopaiboon *et al.*, 2006).

The trickling filter bioreactor evolved from the early bioreactor experiments conducted by Alexander Mueller in 1865. It is one of the most commonly used fixed-film bioreactors, and is aerated from the bottom by natural draughts, or air blowers (Langwaldt & Puhakka, 2000). In this bioreactor, micro-organisms attach to a solid substratum, where their concentrations can flourish. This system has been shown to be suitable for treating wastewaters, as it is simple to use, easy to operate and has low energy requirements (Evangelho *et al.*, 2001). Evangelho *et al.* (2001) used a trickling filter bioreactor, to determine the influence of recirculation ratio (which is the fraction of water that is returned through the pumping station and

media filters) vs. the fraction that goes on to other treatment and the role and characteristics of a biomass in cyanide removal. The authors varied the recirculation ratio from between 0, 0.24, 0.43 and 0.75. Two reactors, one with (biotic) and one without biomass (abiotic), were set up, using polypropylene Pall rings as the support media. The reactors were fed with a mixture of synthetic gold milling effluent and sewage, with the treatment efficiency evaluated by monitoring chemical oxygen demand (COD). Free cyanide, thiocyanate, Cu, Zn and Fe concentrations, were also analysed using HNO₃/HCIO₄ digestion and atomic absorption analysis. The results showed the removal of more than 90% of the free cyanide, thiocyanate, Cu and Zn, at the start of the experiment, without recirculation (0). Recirculation decreased pH and lowered the efficiency in the removal of Zn. It was found that thiocyanate degradation and Cu removal could be attributed to microbial activity. In the reactor without the biomass, cyanide removal was low and decreased further with recirculation. These results confirm the importance of biomass in pollutant degradation.

The rotating biological contactor (RBC) was patented in 1900 by Weigand and has been used in Germany since the 1920's. The RBC is similar to a trickling filter reactor, as they are both fixed-film reactors. Unlike a trickling filter, the media is supported horizontally across a tank of wastewater. Rotating biological contactor bioreactors consume very little energy, are simple and inexpensive to design. They are therefore recommended for wastewater treatment (Laopaiboon *et al.*, 2006). The reactor is made up of discs, which allow for biofilm development as they are partially in contact with the air and approximately 40% of the discs are in contact with the surrounding water (Langwaldt & Puhakka, 2000). The micro-organisms in the biofilm then break down and stabilise organic pollutants within the reactor. Protozoan and metazoan species are primarily involved in this process, as they reduce dissolved organic matter and the majority of dispersed bacteria in wastewater (Martín-Cereceda *et al.*, 2001).

Whitlock (1990) used the rotating biological contactor to treat gold milling effluents at the Homestake Treatment Plant (Dakota, United States of America). The process was carried out using 48 RBCs, allowing for maximum biomass immobilisation, chemical adsorption and precipitation. The results yielded a reduction of 95 to 98% cyanide, thiocyanate and heavy metal concentrations in the gold milling effluent.

The resistance of micro-organisms to a biocide and their effects on biocide degradation when it is used as a sole carbon source were evaluated in a RBC bioreactor by Laopaiboon *et al.* (2006). An inoculum of recycled sludge from the phoenix pulp and paper company in Thailand was used to cultivate microbial biofilms in a three unit bioreactor, using PVC as its growth surface. The biofilms were exposed to 0 to 180 ppm of the biocide (gluteraldehyde) and biofilm formation on the RBC was observed. Upon the re-establishment of the biofilm, the chemical oxygen demand (COD) and gluteraldehyde concentrations, as well as

the enumeration of viable populations of biofilm and planktonic bacteria, and population changes of higher organisms, were determined. At the end of the experiment, single colonies of bacterial cells in the biofilm were isolated, plated and tentatively identified, via the API 20 strip test. These results showed that the biofilms became resistant to gluteraldehyde and could eventually degrade it. The higher the biocide concentration, the longer it took for the micro-organisms to develop resistance to gluteraldehyde. The resistant species were tentatively identified as *Burkholderia cepacia*, *Aeromonas hydrophila* and *Aeromonas salmonicida*. The bacterial cells in the biofilm were also less susceptible to gluteraldehyde than their planktonic counterparts.

Fluidised-bed reactors are useful in groundwater remediation (Massol-Deyá *et al.*, 1997), as they are easy to set up, maintain and operate (Tsezos & Deutschmann, 1990). A fluidised bed reactor is capable of treating effluents in a lower retention time because of the high biomass concentrations achieved in the reactor (Sokół & Korpal, 2004). The low retention time is efficient because the particles in the beds are small, offering greater surface area for biofilm growth (Sokół & Korpal, 2006). They are based on the dilution of the influent to reduce the toxicity of the contaminants, making it easier for the biofilm organisms to remove or reduce pollutants in the reactor. As with the upflow-bed reactor, granular activated carbon is used as the surface for biofilm attachment (Sutton & Mishra, 1994).

Ochieng *et al.* (2002) evaluated the phase hold up, phase mixing, aspect ratio and superficial gas velocity of a three phase fluidised bed reactor in order to reduce the chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in brewery wastewater. The bioreactor was set up and a low-density support particle with an internal interstice was employed, to enable cost-efficiency at a relatively low gas superficial velocity. The results revealed that biodegradation increased when particle loading was at its maximum and then decreased thereafter.

Activated sludge bioreactors are generally not effective in the removal of contaminants from polluted groundwater, as shown by Ettala *et al.* (1992), where trace organic removal and optimisation by the reactor was low. The reactor essentially works by removing the sludge from the effluent (Langwaldt & Puhakka, 2000). The activated sludge bioreactor was used by Gonçalves *et al.* (1998) to evaluate the biological degradation of cyanides. They observed desorption of copper, and concluded that the mechanism responsible for the removal of copper was the adsorption of the anionic complexes formed between copper and cyanide within the biomass.

Uysal & Türkman (2005) evaluated the efficiency of a biosurfactant, rhamnolipid, on 2,4dichlorophenol (2,4-DCP) biodegradation using an activated sludge bioreactor. Two reactors were set up, one containing both 2,4-DCP and rhamnolipid, with a control reactor, containing only 2,4-DCP. Rhamnolipid was added to the test reactor once the DCP concentrations ranged between 30 and 100 mg.l⁻¹. In comparison to the control, in which no rhamnolipid was added, the test reactor only recorded a small increase in DCP biodegradation. Dichlorophenol removal for control and test reactor ranged between 97.4% to 97.7% and 99.7% to 99.8%, respectively. This verified that biosurfactants can be used to potentially degrade hydrophobic organic compounds in contaminated environments. No toxic effects on biomass, was observed with the application of rhamnolipid, and in fact, the presence of the biosurfactant stimulated bacterial growth.

An immobilised non-viable yeast biomass (*Saccharomyces cervisiae*) was used in a continuous-flow stirred bioreactor, to remove or reduce the metal concentrations of Cu, Cd, Cr, Ni and Zn from electroplating effluent (Stoll & Duncan, 1997). The authors evaluated the efficacy of two separate bioreactors; one with two tanks (dual bioreactor system) and the other with three tanks (triple bioreactor system). From the results, it was concluded that the dual bioreactor system was sufficient for the reduction of Cu, Cd and Cr from the effluent, with an average of 18% of the initial Zn and 17% of the initial Cd remaining in the effluent in tank two.

1.3.2.2. Anaerobic Bioreactors

The advantages of an anaerobic reactor includes low energy consumption, low excess sludge production, enclosure of odiferous compounds (Shink, 2002), high organic loadings and short hydraulic retention time (Najafpour *et al.*, 2006). The reactor can thus be used to generate alternative fuel sources, such as methane, while assisting in waste disposal (Patel & Madamwar, 2002). As with any bioreactor, support materials are important for microbial attachment, and examples used in anaerobic bioreactors are charcoal, gravel, brick pieces, PVC and pumice stones (Patel *et al.*, 1995).

Upflow fixed-film bioreactors can be both aerobic and anaerobic, with the aerobic version widely used for contaminant cleanup in groundwater (Langwaldt & Puhakka, 2000). Van der Hoek *et al.* (1989) showed that the upflow fixed-film bioreactor was efficient for the removal of PAH's and phenols. The upflow anaerobic fixed-film bioreactor has been reported by Ahring *et al.* (2002) and Seckler *et al.* (1996) to be effective in the treatment of hazardous waste with inhibitory or recalcitrant compositions. The Upflow Anaerobic Fixed Film (UAFF) reactor combines the recovery of usable energy with good process efficiency in a stable system. In addition, the fixed film reactor is capable of retaining active biomass in the system without the need for biomass recirculation.

Perez *et al.* (2006) evaluated the anaerobic biodegradation of a mixed feed composed of wine vinasses and cutting oil wastewater (COW), in a laboratory upflow anaerobic fixed-film reactor loaded with open-pore sintered glass beads (SIRAN). The experimental procedure was

designed to examine the effect of increasing the percentage of cutting oil wastewater in the feed after the first initial feed. Wine vinasses were initially fed through the bioreactor. At steady-state conditions, the chemical oxygen demand (COD) decreased by 87% and total organic carbon (TOC) decreased by 94.6% in wine vinasses after loading 22.3 kg COD/m³ per day. The biological activity also decreased dramatically once the COW was added. Experimentally, the UAFF bioreactor, achieved more than 85.8% COD reduction and 58.1% TOC at a COD loading of 16.7 kg COD/m³ per day and hydraulic retention time (HRT) of 0.15 days. Therefore, it can be concluded that COW can be removed, if not degraded, by the anaerobic treatment in the presence of a biodegradable co-substrate, such as wine vinasses.

The anaerobic upflow fixed-film bioreactor has been used effectively to remove Pentachlorophenol (PCP), ethylene, ethane and phenol from contaminated systems (Hendriksen *et al.*, 1991; Juteau *et al.*, 1995). Treatment of contaminated groundwater has not yet been reported, as the reactor operates at high temperatures and high organic carbon supplementation (Langwaldt & Puhakka, 2000).

Different support materials, such as charcoal, gravel, brick, PVC pieces and pumice stones were evaluated to determine which material performed best at stabilising and recovering energy from cheese whey (Patel *et al.*, 1995). Twenty anaerobic upflow fixed film reactors were used in this study. Each reactor consisted of a glass column packed with one of the five materials and biofilms were allowed to develop naturally. Gas was collected and measured from the displacement of the acidified saturated salt solution and analysed using gas chromatography. The charcoal packed reactor obtained the highest total digested gas, as well as the highest methane content, presumably due to improved surface area for the attachment of methanogens and other anaerobic bacteria, and good biofilm formation. The lowest total gas and methane content was recorded for the pumice stone reactor. Chemical oxygen demand removal was also highest (76.6%) in the charcoal reactor, followed by the gravel, brick, PVC pieces and pumice stones. The anaerobic fixed film reactor with the charcoal bed was the most efficient and it was concluded that this system could be used for high-strength dairy waste management and energy recovery at relatively short hydraulic retention time.

Patel & Madamwar (2002) undertook a study to maximise methane generation from low pH petrochemical industrial wastewater, by optimising temperature and the organic loading rate in an upflow anaerobic fixed-film bioreactor (UAFF). A laboratory-scale UAFF reactor was set up with bone charcoal as a support material. Acidic petrochemical wastewater was used as a substrate and the biofilm was allowed to develop. The reactor was run at 25 °C, 37 °C, 45 °C and 55 °C, respectively. The organic loading rate for each temperature varied from 3.6 to 21.7 kg COD m⁻³ kg⁻¹. At 37 °C, when 21.7 kg COD m⁻³ kg⁻¹ was added to the system, COD and BOD reduction amounted to 90 to 95%, respectively, and 0.450 m³ kg⁻¹ COD d⁻¹ as a methane

yield. At 55 °C, the highest methane yield of 0.666 m³ kg⁻¹ COD d⁻¹ was recorded which also decreased as the organic loading rate was increased. At 45 °C, the highest methane yield was 0.416 m³ kg⁻¹ COD d⁻¹ added, which also decreased as the organic loading rate increased. From the results obtained, it could be concluded that the best performance was observed in the reactor run at 37 °C, which was the optimum temperature for methanogen growth.

The Upflow Anaerobic Sludge Blanket (UASB) reactor has become a viable technology in the treatment of industrial wastewaters (Fang *et al.*, 1996). Granular sludge formation is the main distinguishing characteristics of UASB reactors compared to other anaerobic technologies. It does, however, take a while for anaerobic sludge granules to develop (Liu & Tay, 2004).

The biodegradation of tech-hexachlorocyclohexane was evaluated using an upflow anaerobic sludge blanket (UASB) reactor under a continuous mode of operation (Bhat *et al.*, 2006). More than 85% removal of tech-HCH was recorded. Parawira *et al.* (2006) compared the COD reduction potential when treating potato waste leachate of a UASB to an anaerobic packed-bed reactor. The COD removal efficiencies of both reactors were greater than 90% in the leachate effluent.

Jin *et al.* (2008) compared the efficiency of the UASB, Upflow Stationary Fixed Film (USFF) and an Anaerobic Sequencing Batch Reactor (ASBR) in performing the ANAMMOX process. The ANAMMOX process is a novel and promising alternative to conventional denitrification removal of nitrogenous compounds at lower cost (Dong & Tollner, 2003). The three reactors were run in upflow mode, with the influent pumped in from below. ANAMMOX sludge was prepared by enriching nitrifying sludge. The UASB, USFF and ASBR reactors were filled with 0.8 L inoculum and the nitrifying bacteria were cultivated with synthetic wastewater containing ammonium, according to the method used by Zheng *et al.* (2004). The tolerance of the bioreactors to hydraulic and substrate concentration shock was evaluated. From the results obtained, it could be concluded that all three reactors were more tolerant to hydraulic shock than to substrate concentration shock. The UASB reactor was found to be more stable to increases in substrate concentration, than the USFF and ASBR reactors, while for flow rate shock the results showed that the ASBR reactor was the most stable, followed by the UASB.

1.4 TECHNIQUES FOR DETERMINING METAL CONCENTRATIONS IN ENVIRONMENTAL SAMPLES

An increase in pollution, industrial areas and environmental degradation has resulted in a corresponding increased concentration of heavy metals and Polycyclic Aromatic Hydrocarbons (PAHs) in water, sediment and the environment (Herbes & Schwall, 1978; Van Schooten *et al.*, 1995). Research has shown that the presence of organochlorine pesticides

(OCPs), such as dichlorodiphenyl-trichloroethane (DDT), chlordane, hexachlorbenzene (Awofulu & Fatoki, 2003) and PAHs, such as naphthalene and benz anthracene (Herbes & Schwall, 1978) have increased in the environment. There has also been an increase in the occurrence of pharmaceutically active compounds, such as carbamazepine, in aquatic environments (Jos *et al.*, 2003). Contamination of riverine systems has also been shown by Prat *et al.* (1999), to be due to the continuous dumping of mining wastes, resulting in adverse effects of heavy metals on aquatic organisms at both individual and community levels (Leslie *et al.*, 1999). It is thus essential that the degree of contamination be evaluated in order to apply appropriate control or remediation strategies.

The metal concentrations in environmental samples may be determined using different analytical techniques. These techniques can be divided into single element analysis, using Atomic Absorption Spectrometry (AAS), Flame Atomic Absorption Spectrometry (FAAS) and multi-element analysis, using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-Ray Fluorescence Spectrometry (XRF), Atomic Emission Spectrometry (AES) and Instrumental Neutron Activation Analysis (INAA).

1.4.1 Single-element Analysis Techniques

Atomic Absorption Spectrometry (AAS) is currently widely used for the analysis of most metals, metalloids and for some non-metals, as well. The technique works by identifying the free atom of a particular element, which then absorbs light at the wavelength characteristic to that element. An AAS requires a light source, an energy source, i.e. a flame to decompose the sample into its constituent atoms, a monochromator, which would then isolate the particular wavelength, a photomultiplier detector and a readout device. The light source is usually a hollow cathode discharge lamp, composed of the element to be determined (Ure, 1995).

The AAS technique was used by Lin *et al.* (2003) to conduct a study on the water quality of the Mhlathuze River, servicing rural areas in Kwazulu-Natal, South Africa. Their results revealed high metal concentrations in the water samples from the Richard's Bay estuary and Felixton. In comparison to the other metals analysed, the AI concentration was particularly high, which probably resulted from runoff from the nearby aluminium smelters and fertiliser manufacturing factories. Kelly *et al.* (2004) also used AAS to determine the efficiency of a bioluminescent bacterium (Shk 1) in the removal of metals from an activated sludge wastewater treatment system. By using the Shk 1, the authors were able to detect the adsorption abilities of the different metals to the activated sludge. The bacterium showed greater sensitivity to Cu adsorption, followed by Cd and then Zn.

Flame atomic absorption spectrometry (FAAS), is a rapid, sample handling, measurement technique. The higher the temperature of the flame, the greater the ionisation of the elements, which will then decrease interference problems associated with incomplete dissociation. The biggest drawback in using FAAS is when chemical interference effects occur due to the low energy of the flame atomisers (Ure, 1995).

1.4.2 Multi-element Analysis Techniques

Knowledge of the extent of pollution by contaminants in environmental samples is essential in the maintenance of environmental health. It is also essential to know the concentrations of elements which are acceptable in different environments, in order to rapidly identify and prevent any pollution episodes. The techniques used to identify one or more elements/metals simultaneously, are called multi-element analysis techniques (Ure, 1995).

Atomic Emission Spectrometry (AES) consists of an exciting source and a monochromator/detector, which may be capable of wavelength scanning for rapid sequential multi-element analysis. A polychromator with a number of fixed exit slits and detectors for simultaneous multi-element analysis may also be used. Atomic Emission spectrometry differs from atomic absorption spectrometry, in that it can readily provide simultaneous or very rapid sequential, multi-elemental analysis of a sample solution.

X-ray Fluorescence Spectrometry (XRF) can detect all elements over the atomic number eight. Although XRF has successfully been employed in the detection of the major constituents of soil samples, it is less sensitive in the detection of minor and trace elements. A homogeneous sample is usually prepared for quantitative analysis by fusion with a borate flux, as particle size, composition and element form affect analysis (Ure, 1995). Kröpfl *et al.* (2003) developed a Total Reflection X-ray Fluorescence Spectrometric (TXRF) method for elemental analysis of lead and nickel contaminated natural biofilms, grown on polycarbonate substrates. When comparing the results obtained for metals in the biofilm samples with the plankton reference material (biofilms have a similar matrix to the plankton and no reference for biofilms exists), deviations from the certified concentration values were found to be less than three percent. They therefore concluded that the TXRF method is a powerful tool for studying metal accumulation in biofilms, due to its low sample demand and the multi-elemental capability of the technique.

Instrumental Neutron Activation Analysis (INAA) is a multi-element, solid sample technique for the analysis of soils, plants and biological material. It makes use of γ -irradiation, to determine the concentrations of trace elements in the sample (Ure, 1995; Freitas *et al.*, 2007). Although this technique has proved successful as an analytical tool for metal content in the

analytes, access to a neutron source, usually a nuclear reactor, restricts the use of this analytical technique for routine analysis.

Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) principally uses the emission of flame-like plasma formed on a guartz torch by coupling a radiofrequency electromagnetic field to the electrons, on ionised Argon plasma. At these high temperatures, atomisation of the sample is virtually complete for most of the elements and strong atomic and ionic line emission can occur. Two types of spectrometers, namely a single-channel scanning monochromator and a multi-channel fixed-wavelength polychromator, can be used. The monochromator is more flexible, has higher resolution, background correction can easily be made and is less expensive to operate than the polychromator. The multi-channel fixedwavelength polychromator type is usually preferred for the routine analysis of large numbers of samples and where the range of elements is known in advance (Ure, 1995). The multielemental nature of ICP-AES (Saleh et al., 2000) has made it a powerful technique in the analysis of soil and environmental samples, as a wide range of elements as well as ion exchange resin extracts in soil can be determined simultaneously. Vermeiren et al. (1990) used ICP-AES to determine the presence of the metals Cd, Pb, Cu and Zn in natural waters. In order to evaluate ICP-AES as an accurate method for metal concentration determination, a portion of the samples were enriched with known concentrations of the metals, while other samples were left uninoculated and were thus designated as controls. Upon comparison of the ICP-AES analysed results for the enriched and control samples, the authors concluded that the technique accurately determined the metal concentrations. Mowat & Bundy (2001) studied the difference in metal concentrations between the highly polluted, Bayous Trepagnier (BTP) and the less polluted, Bayou St. John (BSJ), in Louisianna, USA. The authors used ICP-AES and found that in sediment samples, the metal concentrations recorded from the BTP samples were over one order of magnitude higher than in the samples from the BSJ site. The calibration of reference materials for X-ray fluorescence was done by Swagten et al. (2006), using Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and NAA, as no commercially available polyethylene reference material for the calibration of X-ray spectrometry existed. The reported concentrations measured by ICP-AES and NAA were accurate enough to be used as an input for the certification of the XRF reference material.

Inductively Coupled Plasma Atomic Mass Spectrometry (ICP-MS), like ICP-AES, provides comprehensive element coverage and is highly sensitive. It is however, not economically feasible for soil trace analysis. Freitas *et al.* (2007) evaluated the efficacy of INAA and ICP-MS in providing accurate concentrations of metals in *Lichen thalli, Parmelia caperata* (*P. caperata*) and tree bark *Petunia hybrida* (*P. hybrida*). These samples were transferred from a clean area (low pollution area) and exposed for different time periods at testing facilities in

three coastal cities in Portugal (Viana do Castelo, Lisboa and Sines). The results were compared to reference materials to assess the quality of the methods in the determination of different metals. Compared to the reference material the results obtained for Bromide (Br), Cu and Sodium (Na) using INAA were statistically lower. In contrast, the results recorded for ICP-MS were generally found to be statistically accurate when compared to the reference material.

1.5 IDENTIFICATION OF METAL TOLERANT MICRO-ORGANISMS

1.5.1 Viability Probes and Microscopy

Microscopic techniques can be used in conjunction with a singular fluorescent probe or dye to provide cell counts using images based on the relative abundance of micro-organisms (Boulos *et al.*, 1999; Quéric *et al.*, 2004). Fluorescent probes, allows for the distinction between live and dead cells, based on the physical integrity of the micro-organism (Ramirez *et al.*, 2000). The LIVE/DEAD Baclight[™] viability probe consists of two components, SYTO9, which is a green fluorescent stain, able to penetrate both the membrane and the cytoplasm of both intact and damaged cells and a red fluorescent stain, propidium iodide, which only penetrates the cell when there is a loss of membrane integrity. SYTO 9 bound to DNA, is excited at 480 nm and propidium iodide at 540 nm (Haugland, 2002). To examine the mechanisms by which biofilm organisms aggregate and respond to external stress, Epifluorescence Microscopy (EFM) and Confocal Laser Scanning Microscopy (CLSM) is used to study the spatial distribution of bacteria (Hope & Wilson, 2003), microbial aggregates and activated sludge flocs and epifluorescence microscopy is used to study overall morphology and the abundance of micro-organisms (Zilles *et al.*, 2002).

Membrane integrity of marine bacterioplankton collected from various sites in the western Seto Inland Sea of Japan was studied by Decamp & Rajendran (1998). The collected samples were mounted on a glass slide and viewed under an epifluorescence microscope. A higher concentration of viable cells (65.2% to 86.4%) was recorded in the winter months, where oxygen concentration was highest. In contrast, during the summer months, where temperatures of 23 °C to 26 °C were recorded (Decamp & Rajendran, 1998), viability decreased. The authors suspected that temperature and the concentration of the dissolved oxygen might influence viability.

Activated sludge samples (sample one to three) were stained with the Baclight[™] viability probe, after collection from three different sites (Illinois, United States of America). Epifluorescence Microscopy, Confocal Laser Scanning Microscopy (CLSM) and Two Photon Excitation Laser Scanning Microscopy (TPE-LSM) were used to visualise the number of living

cells in the sludge. This was then compared to the number of nonviable cells in the sludge after an aerobic starvation period. The fresh cells contained 95% viable cells, while after biomass starvation, epifluorescence analysis showed a decrease in viability in sample 1 from 80% to 56% (activated sludge). Results showed that the selection of the most appropriate microscopic technique depended on the type of activated sludge sample. Epifluorescence Microscopy was found to be adequate for the analysis of conventional activated sludge with low-density flocs and both Epifluorescence and CLSM proved to be ineffective in visualising and thus quantifying the more dense activated sludge flocs. Two Photon Epifluorescence Laser Scanning Microscopy images revealed the internal floc structure, allowing for more accurate quantification of sludge blankets. The TPE-LSM microscopic technique is however, costly and the availability of equipment makes it difficult to use as a standard tool to monitor changes in activated sludge viability and structure (Lopez *et al.*, 2005).

1.5.2 Flow Cell Cultivation

Microbial biofilms are a collection of microbial cells organised within extracellular matrices. Their growth pattern increases their chances of adaptation and survival in nature, due to protection offered by the surrounding matrix, especially during stressful situations (Decho, 2000). For effective biological treatment, degradation of organic compounds must be optimised. One way to stimulate degradation would be through increased knowledge of genetic information of the organic compounds, allowing for the optimisation of techniques, to control or remove pollutants (Christensen *et al.*, 1998). The cells can also be used to identify metal-tolerant micro-organisms through exposure to varying metal concentrations.

Flow cells are used to cultivate and study microbial biofilms in vivo (Wolfaardt *et al.*, 1994; Caldwell *et al.*, 2002). They are multi-channelled to allow for experimental replication and simplified handling, and are usually made of Perspex. Wolfaardt *et al.* (1994) constructed continuous-flow culture chambers, or flow cells, to observe the adaptive strategies of degradative biofilms. A microscope glass coverslip was mounted on the Plexiglass flow chambers, which measured 1 mm deep, 3 mm wide and 42 mm long. The glass slide was kept in place with an adhesive. The coverslip served as the attachment surface for biofilm development and was also the surface used to view the microbial community microscopically.

Christensen *et al.* (1998) used a biofilm community to degrade benzyl alcohol. The community consisted of three organisms, *Pseudomonas putida*, *Acinetobacter* sp. Strain C6 and an unidentified isolate, D8. Mixtures of the three strains were cultured for two days in Luria Bertani (LB) broth, followed by inoculation into two- and four chamber flow cells. Benzyl alcohol

was used as the sole carbon source for microbial growth, and after seven days, 16S ribosomal DNA fluorescent probes were used to target the three species within the biofilm. Image analysis was performed using CLSM. Analysis revealed that *P. putida* RI was the most common in the upper layers and *Acinetobacter* dominated the layers near the substratum, where most of the overall biomass was observed.

The flow cell biofilm culture technique was used by Teitzel & Parsek (2003) to visualise biofilm degradation after exposure to 1 mM Cu and 64 mM Zn over different time periods, using CLSM. Their results revealed that in the untreated control, the majority of cells were alive, compared to the Cu and Zn-treated channels, where the outer layer of cells were found to be dead while the inner layer contained viable cells.

1.5.3 Molecular Typing

Only approximately 1% of bacteria can be grown in pure cultures (Petit *et al.*, 1999). Existing analytical techniques have been found to be time-consuming, laborious and generally do not provide information on bacterial viability (Yu & McFeters, 1994; Touron *et al.*, 2005). Some of these techniques include plating onto selective media, followed by three to four days of incubation and then finally analysis by standard microbiological techniques. An additional difficulty with the existing analytical techniques lies in the fact that bacteria have the ability to persist in aquatic environments in a viable-but-non-culturable state (VBNC) (Touron *et al.*, 2005), such as the gastroenterolitic bacteria, *Campylobacter jejuni, Yersinia enterolytica* and *Vibrio cholerae* (Alexandrino *et al.*, 2003). Advances in molecular biology have been of great value in the study of microbial populations in the environment (Petit *et al.*, 1999). The need for rapid detection methods for waterborne pathogens and other non-culturable micro-organisms are also essential for early detection and treatment of disease outbreaks. Molecular techniques, such as nucleic acid extraction and polymerase chain reaction analysis (PCR) can be employed to eliminate the process of prior culture isolation techniques (Ritchie *et al.*, 2000).

The Polymerase Chain Reaction (PCR) technique can also be used for studying unculturable organisms. It is a rapid and relatively simple technique and can amplify minute quantities of DNA available from a particular source into billions of copies of a designated genesized fragment. This ensures that sufficient quantities of the starting template are available for sequencing. It is a three step process, generally repeated for 30 to 40 cycles in an automated cycler. The sequences of the forward and reverse primers do not necessarily have to match the sequences to which they anneal exactly, as some level of mismatching is expected in nature (Viljoen *et al.*, 2005). Sequencing of rRNAs also provides the best descriptions of microbial diversity. Sequence divergence among the different species (5S, 16S and 23S rRNAs) assisted

in defining primary evolutionary lines, providing a framework for microbial classification (Owen, 2008). The first step in all these molecular methods is DNA extraction. Once whole genomic DNA has been extracted, the 16S rDNA region is amplified using the polymerase chain reaction (PCR) technique. This molecular approach based on 16S rDNA is useful for the detection of bacterial community composition changes, since these genes are conserved (Kozdrój & Van Elsas, 2001). The technique includes the denaturing of the double-stranded DNA region of interest (16S rDNA), the attachment of primers to each strand, followed by the synthesis of a new DNA strand behind the primers on each template strand (Rawlings, 1995). In order to amplify a particular gene, specific primers, unique to that gene, are used.

Navia *et al.* (2005) used Pulse Field Gel Electrophoresis (PFGE) to describe the genetic diversity of *Shigella* species from different intercontinental sources. Of the 7023 patients attending the Tropical Medicine Unit from 1995 to 2000, about 19% presented with travellers' dysentery, and from 9% of cases, stool samples with *Shigella* isolates were recovered. Out of a total of 124 *Shigella* spp. isolates collected from nine different geographical zones, 58 were identified as *Shigella sonnei*, 54 as *Shigella flexneri*, two as *Shigella dysenteriae* and one as *Shigella boydii*.

Petit *et al.* (1999) developed a DNA extraction protocol suitable for estuarine water, allowing for the simultaneous extraction of RNA from viruses. The detection of *Salmonella* in the estuary water was performed using both PCR and standard culture techniques. Five samples containing *Salmonella* were studied, and culture techniques detected *Salmonella* in four of them. In contrast, the PCR analysis of the same samples showed *Salmonella* in all five samples, suggesting that the bacteria were probably in a VBNC state.

An alternative 16S rDNA-based fingerprinting method is denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA fragment (Becker *et al.*, 2006). It is especially useful for determining the microbial community structure, where diversity is lower in contaminated soil (Ferris *et al.*, 2003). Microbial diversity in polluted soil was studied using Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) (Rasmussen *et al.*, 2000). The authors used the technique to detect the bioavailable fraction of mercury in polluted soil from a garden farm in Kingston (USA). Two different soil types were spiked with 2.5 μ g.g⁻¹ Hg in microcosms and the bacterial diversity in response to mercury exposure, was evaluated by the number of bands visualised in DGGE gels after electrophoresis of the PCR amplified products. The initial concentration of bioavailable Hg (estimated to be 40 ng.g⁻¹) was recorded in agricultural soil. The technique showed that the concentration stayed the same during the first three days, coinciding with increased degrees of resistance and a decrease in diversity. Kozdrój & Van Elsas (2001) used PCR-DGGE for structural diversity determination of dominating populations in situ in heavy metal contaminated soil. Total DNA was extracted from

the soil samples and amplified using eubacterial primers, with the PCR products analysed using DGGE. Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis analysis showed significant differences in microbial community structure between the soils studied and the contamination levels.

1.6 AIMS OF THE STUDY

The continued provision of safe, potable drinking water is of major international concern, due to increases in urbanisation and the growing third-world population. This results in increased pollution from anthropogenic sources, be it human or industrial, leaching into river systems and resulting in elevated concentrations of metals and xenobiotics in the environment. This current study was undertaken to determine the presence of metal contaminants in the rivers of the Western Cape, South Africa. River water could serve as a possible alternative source of potable and domestic water, but because of severe contamination due to industrial- as well as human activities, the rivers in South Africa are highly polluted with micro-organisms and metals, amongst others. The aims of the study were as follows:

- 1.6.1 Identifying and sampling at three points along the Plankenburg- (Stellenbosch), Berg-(Paarl) and Diep Rivers, as well as the Rietvlei (Oil Refinery) on a monthly basis from May 2004 to May 2005 (Berg- and Plankenburg Rivers). Sampling of the Diep River sites started in March 2005 and continued until November 2005.
- 1.6.2. Determine the presence and concentrations of metals (Al, Cu, Fe, Mn, Ni, Pb and Zn) in the river water, sediment and biofilm samples, using nitric acid digestion and Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES).
 Article one (chapter two Jackson, V.A., Paulse, A.N., Van Stormbroek, T., Odendaal, J.P. & Khan, W. 2007. Investigation into metal contamination of the Berg River, Western Cape, South Africa. *Water SA*., 33: 175-182).
 Article two (chapter three Jackson, V.A., Paulse, A.N., Odendaal, J.P. & Khan, W. 2008. Investigation into the metal contamination of the Plankenburg- and Diep Rivers, Western Cape, South Africa. Accepted for publication by Water SA).
- 1.6.3. Determine LIVE/DEAD ratios of micro-organisms when exposed to varying concentrations of metals, through the use of flow cells and the Baclight[™] viability probe, and identify metal-tolerant micro-organisms, through DNA extraction, PCR and sequencing.

Article three (chapter four - Jackson, V.A., Paulse, A.N., Khan, S., Odendaal, J.P. & Khan, W. 2008. Identification of Metal-tolerant Organisms Isolated from the Plankenburg River, Western Cape, South Africa. Submitted to the Canadian J. Microbiol.).

1.6.4. Develop and optimise a laboratory-scale bioreactor system to reduce the concentrations of metals in river water.
Appendix A (Jackson, V.A., Paulse, A.N., Bester, A.A., Neethling, J.H., Du Plessis, K.R. & Khan, W. 2007. The application of bioremediation: reduction of metal concentrations in

k Khan, W. 2007. The application of bioremediation: reduction of metal concentrations in river water and COD in distillery effluent. *Wat. Sci. Technol.*, 55: 183-186).

1.6.5. Establish an on-site large-scale bioreactor system along the Plankenburg River. Article four (chapter five - Jackson, V.A., Paulse, A.N., Bester, A.A., Neethling, J.H., Khan, S. & Khan, W. 2008. Bioremediation of Metal Contamination in the Plankenburg River, Western Cape, South Africa. Accepted for publication by International Biodeterioration and Biodegradation).

Investigation into metal contamination of the Berg River, Western Cape, South Africa

VA Jackson¹, AN Paulse¹, T Van Stormbroek², JP Odendaal² and W Khan³* ¹Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa ²Department of Environmental and Occupational Studies, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town 8000, South Africa ³Department of Agricultural and Food Sciences, Faculty of Applied Science, Cape Peninsula University of Technology, Cape Town 8000, South Africa

* To whom all correspondence should be addressed.

Tel.: +27-21-460 3175; Fax: +27-21-460 3193; e-mail: khanw@cput.ac.za

Abstract

A recent decline in water quality of the Berg River, Western Cape, South Africa, has lead to the investigation into the degree of metal pollution in the river system. This study was conducted over a period of one year, from May 2004 to May 2005. The nitric acid digestion technique was used to extract metals from water, sediment and biofilm samples collected at various points (Site A - agricultural area, Site B - informal settlement and Site C – Newton pumping station) along the Berg River. Metal concentrations were obtained using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The highest mean metal concentrations recorded were as follows; water samples, 6 mg. t^{-1} for Al, 14.6 mg. t^{-1} for Fe and 18.8 mg. t^{-1} for Mn; sediment samples, 17448.8 mg.kg⁻¹ for Al and 26473.3 mg.kg⁻¹ for Fe; biofilm samples, 876.8 mg. t^{-1} for Al and 1017.5 mg. t^{-1} for Fe. The increased availability, or noteworthy incidence of Al and Fe, could be due to the leaching of metals into the river water from waste and household products associated with the informal settlement and the subsequent settling on sediment. The highest recorded concentrations in water were recorded for site C (agricultural area). Recorded concentrations fluctuated throughout the study period for most of the metals analysed, but Al and Fe were consistently above the recommended guidelines as stipulated by the Department of Water Affairs and Forestry and the Canadian Council of Ministers of the Environment.

Keywords: metals, river systems, sediment, biofilm, inductively coupled plasma atomic emission spectrometry (ICP-AES)

Introduction

Metals occur in less than 1% of the earth's crust, with trace amounts generally found in the environment (Alloway, 1995a). When these concentrations exceed a stipulated limit (South African Bureau of Standards, 2001; World Health Organisation, 1991), they may become toxic to the surrounding environment. Sources of metal contamination include industrial and medical waste (Dorigo et al., 2004), pesticides, petroleum by-products (Mowat and Bundy, 2001), household products, as well as urban and pharmaceutical waste (Brooks et al., 2003). Domestic and household sources of metal contamination generally occur as a result of corrosion of metal plumbing fittings, galvanized roofs and wire fences [zinc (Zn), cadmium (Cd)], and healthcare products, such as Zn- or selenium (Se) containing shampoos and Zn-containing baby creams (Alloway, 1995b). Silver paint containing Aluminum (Al), Al-coated roofs, saucepans and utensils (Friberg et al., 1986), are also possible sources of contamination.

Natural watercourses can also be contaminated with microorganisms, which inhabit the natural environment in the form of planktonic organisms and sessile biofilms. Under favourable conditions, microorganisms will generally form a biofilm on any surface exposed to an aqueous environment. These biofilms can be defined as a community of attached microbial cells organized within extracellular polymer matrices (EPS). This EPS assists in the bacterial survival by providing protection against metals, predation and environmental fluctuations, and also provide increased resistance against antimicrobial agents (Decho, 1990). Biofilms are advantageous in that they encapsulate toxic molecules, such as metals (Costerton et al., 1978), by providing a substrate for them to adhere to, thereby limiting the diffusion of biocides and other toxic molecules
across the EPS (De Beer et al., 1994; Huang et al., 1995). This implies that the attached biofilm communities may then be employed in the removal of toxins from aqueous systems, as the biofilms are able to concentrate and bind ions from the passing water (Neu et al., 1992).

The presence of metals in biofilms isolated from the Elbe River in Germany was determined in a study by Friese et al. (1997). They found fractions of several elements from stones and plates incubated in the river. These elements included potassium (K), calcium (Ca), chromium (Cr), manganese (Mn), lead (Pb), nickel (Ni), copper (Cu), zinc (Zn) and iron (Fe). Factors contributing to microbial biodiversity and the tolerance of certain organisms to metals depend on the type of attachment material (e.g. glass, stones, leaves, rocks) the biofilm is isolated from, the age of the biofilm and the concentration of the EPS. In addition, research has indicated that the predominant metals present in streams and lakes are Zn, Pb, Cu, Fe and Mn (Geesey et al., 1992; Nelson et al., 1996).

Metal concentrations in environmental samples, may be determined using different analytical techniques. These techniques can be divided into single element analysis, using Atomic Absorption Spectrometry (AAS) and simultaneous multi-element analysis, using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) and X-ray Fluorescence spectrometry (XRF). Vermeiren et al. (1990) investigated ICP-AES as a method of determining the presence of the metals Cd, Pb, Cu and Zn in natural waters. Certain samples were enriched with specific concentrations of the metals, while others were not. Comparison of the results obtained for the enriched and non-enriched river water samples indicated that the technique is accurate in the determination of metal concentrations.

An increase in urbanisation has led to an upsurge in informal settlements in the Western Cape, South Africa, where the inhabitants of these settlements experience a distinct lack of resources. Inadequate sanitation behaviour and a lack of adequate sewage disposal facilities may lead to the leaching of potentially harmful substances, from waste, household products, etc. into the environment. The Berg River was specifically selected due to the increased incidence of pollution recorded within the area in recent times. This increased pollution is of great concern, as the Berg River serves as a water source to towns, cities, rural communities, farms and recreational users in the area (River Health Programme, 2004). The objective of this study was to identify the predominant metals, which occur within the river water, sediment and the biofilm samples isolated from the Berg River (Paarl) in the Western Cape, South Africa.

Materials and Methods

Site Description

Sampling commenced in May 2004 and was conducted over a period of one year until May 2005. Experimental work entailed collecting samples along the Berg River (Western Cape) after 1, 5, 9, 17, 21, 25, 33, 37, 41, 45 and 49 weeks from the commencement of the study (Figure 2.1). As indicated on Figure 2.1, the samples were collected from Site A (agricultural farming area) and Site B, known as Plot 8000 (at the informal settlement of Mbekweni). Storm water drainage pipes from the communities in the settlement enter the river at Site B. A third site, Site C (the Newton pumping

station), serves as an inlet of storm drainage water and wastewater into the river from the residential area of Newton as well as certain areas of Mbekweni.

Sampling

Water samples (200 ml were collected in sterile 250 ml narrow mouth square polypropylene bottles (Cole-Palmer Instrument Company). The sediment samples were collected in 250 ml plastic containers and consisted of a combination of five different subsamples (±15 cm deep) collected at different locations in a defined perimeter. The biofilm samples were obtained by collecting various materials, such as glass, leaves, stones, rocks, etc. (~100 g) along each of the different sampling points and storing them in sterile whirlpack bags. The samples were stored at 4°C during transport.

Sonication of collected biofilm samples

Bacterial suspensions were removed from rocks, leaves, glass and stones collected from each representative site, by sonication. Collected material samples (~100 g) were sonicated for 10 minutes in 30 mł sterile distilled water in a UMC5 sonication bath (Instrulab, Inc.). The procedure was repeated at least twice, with fresh sterile $d.H_20$ added after each sonication step. The sonicated samples were combined to result in a total of 60 mł bacterial suspension. The biofilm suspension obtained was used for further analysis.

Metal concentrations in sediment, biofilm and water samples

To determine the concentrations of Al, Zn, Cu, Fe, Pb, Ni and Mn, sediment samples (0.500 - 0.600 g; dry mass), biofilm suspensions $(5 \text{ m}\ell)$ and water samples $(5 \text{ m}\ell)$ were digested with 10 ml 55% Nitric acid at 40°C for 60 minutes and then at 120°C for 180 minutes, using a Grant dry-block heater. A blank (control) of 10 ml 55% nitric acid was analysed along with the collected samples, to check for possible contamination. The samples were cooled to room temperature, filtered with Whatman filter paper No 6 into 20 ml volumetric flasks, made up to a volume of 20 ml with distilled water and subsequently filtered for a second time using 0.45 μ m cellulose nitrate ultrafiltration membrane filters (Whatman). Metal concentrations were determined using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) analysis according to the procedure outlined in Saleh et al. (2000).

Statistical analysis

The results presented are the averages of five repeats for each particular sampling point at the different sampling sites. For statistical analysis, the dry masses (0.500 – 0.600 g) and volumes (5 mℓ) were taken into consideration for the calculation of the final metal concentrations in a given sample. Repeated measures ANOVA (RMA) was performed on all data obtained as outlined in Dunn and Clark (1987), using StatisticaTM. In each RMA, the residuals were analysed to determine if they were normally distributed. In all hypothesis tests a significant level of 5% were used as standards.

Results and Discussion

Metals in Water

Comparisons of the mean metal concentrations in water are represented in Figures 2.2A and B. The highest mean metal concentrations were recorded for Mn (18.8 mg. ℓ^{-1}). Fe $(14.6 \text{ mg}.\ell^{-1})$ and Al (6 mg. ℓ^{-1}) during weeks 25, 45 and 49, respectively, at Site A. The concentrations of AI and Fe were significantly higher than the recommended guidelines of AI and Fe in freshwater systems as stipulated by the Department of Water Affairs and Forestry (DWAF, 1996) and the Canadian Council of Ministers of the Environment (CCME, 2001) (Table 2.1). Overall the mean concentrations; for Al ranged from 0.4 mg. ℓ^{-1} during week 1 at site B to 6 mg. ℓ^{-1} during week 49 at site A, and for Fe from 1.7 mg. ℓ^{-1} during week 1 at site C to 14.6 mg. ℓ^{-1} during week 45 at site A (Table 2.1). The particular agricultural area, situated near the Berg River in the Western Cape utilises the following pesticides and insecticides for the treatment of their crops: Acrobat[®] MZ, Copperflo, Cosavet, Folpan, Karathane, MancozebTM, PhosguardTM, Richter and Stroby. The increased concentrations of Al could be due to the use of Phosguard[™], of which AI oxide is a component (Seachem, 2006). Phosguard[™] is an algicide, which is used to control algae growth in this particular agricultural area.

Manganese concentrations fell within the recommended quality guideline range for most of the sampling period with the exception of weeks 25, 45 and 49, where increased concentrations ranging from 3.6 mg. ℓ^{-1} to 18.8 mg. ℓ^{-1} at Sites C and A (Figure 2.2), respectively, were recorded. Manganese is a major component of pesticides such as MancozebTM and Maneb. MancozebTM, then in turn, makes up 60% of the fungicide, Acrobat® MZ, which is used to manage early and late blight in potatoes (Acrobat[®], 2005). Mancozeb, or manganese-zinc ethylene bis (dithiocarbamate), is a fungicide used for the treatment of plant diseases in the Western Cape. Its usage in agriculture amounts to 1343 x 10³ kg/a (Vermeulen et al., 2001). Contamination of the water could be due to excessive use or improper discarding of these pesticides into the river (Agency for Toxic Substances and Disease Registry) (ATSDR, 2000). As previously mentioned, Site A (Figure 2.1) is situated in an agricultural area and is the site at which the highest concentrations of metals were recorded. Runoff from a nearby farm enters the river at this site, which could account for the increase in Mn concentrations.

The recorded concentrations of Cu, Ni and Zn in water samples varied throughout the study period (Table 2.1). Lead could not be detected in any of the analysed samples. The concentrations of Cu, Ni and Zn fluctuated above and below the recommended guidelines of DWAF (1996) and the CCME (2001). The mean concentrations recorded for Ni were higher than the recommended concentrations during weeks 17, 21, 25, 33, 37, 45 and 49. The recorded mean Cu and Zn concentrations fell within the recommended guidelines for week 41 only (Table 2.1). The increases in Zn could also be as a result of Mancozeb[™] use, as Zn is a component of this pesticide. The increased metal concentrations could also possibly be due to recurring anthropogenic episodes associated with the Berg River during the sampling period (Barnes, 2003).

Metals in Sediment

Comparisons of the mean concentrations for AI and Fe are presented in Figure 2.3. Results for Cu, Mn, Ni, Pb, and Zn are presented in Tables 2.2 and 2.3. No recommended sediment quality guidelines for Al, Fe, Mn, Pb, Ni, Cu and Zn were available from DWAF (1996) and guidelines for Cu and Zn only were available from the Canadian Council of Ministers of the Environment (CCME, 2001). Significant differences (p < 0.05) in the concentrations for Al and Fe were observed for the sediment samples. The highest mean concentration (mg.kg⁻¹) of 17448.8 mg.kg⁻¹ was recorded for Al during week 1 at Site B (Figure 2.3). In comparison to the results obtained for week 1, no significant differences in concentrations (p > 0.05) of Al were recorded from weeks 5 to 49, where mean concentrations ranged from 353.2 mg.kg⁻¹ at Site A to 2687.7 mg.kg⁻¹ at Site C, both during week 5. The highest mean concentrations of 21035 mg.kg⁻¹ and 26473.3 mg.kg⁻¹ were recorded for Fe in weeks 1 and 5, at Sites B and C, respectively. In comparison to the results obtained for weeks 9 to 49, where the mean concentrations of Fe were recorded for weeks 9 to 49, where the mean concentrations ranged from 700 mg.kg⁻¹ to 7014.9 mg.kg⁻¹, during weeks 33 and 45, at Sites A and C, respectively.

The Agency for Toxic Substances and Disease Registry (ATSDR, 1995) reported that AI composes 8% of the earth's crust, with dissolved AI and Fe primarily derived from soils (Neal et al., 1997). In addition, AI forms complexes with organic matter in soil, which could contribute to elevated concentrations (Tipping et al., 1991).

Effluent from a nearby stormwater drain enters the river at site B, where the highest concentration of AI was recorded in week 1. The high concentrations of AI and Fe in the sediment samples could partly be due to the leaching of metals from housing materials and household products, utilised by inhabitants of the informal settlements, into the river. In addition, the galvanised sheeting used to build informal dwellings is primarily composed of Fe. When pure iron reacts readily with oxygen and moisture in the environment, a red or brown ferric oxide coating is formed, which destructively

corrodes the galvanised sheeting. Excess Fe in aqueous environments can be the cause of chronic and acute health effects, but according to the Department of Water Affairs and Forestry, accidental Fe poisoning is rare (DWAF, 1996).

Tables 2.2 and 2.3 represent the mean concentrations for Cu, Mn, Ni, Pb and Zn. Manganese, Ni and Pb concentrations were significantly low throughout the study period with the highest mean metal concentrations for Mn, Ni and Pb recorded at: 70 mg.kg⁻¹ in week 5 at Site C; 44 mg.kg⁻¹ in week 1 at site B and 23 mg.kg⁻¹ in week 45 at Site B (Tables 2.2 and 2.3), respectively. No recommended sediment quality guidelines for Pb, Mn and Ni were available from DWAF (1996) and the CCME (2001).

The highest mean Cu concentration of 74 mg.kg⁻¹ was recorded at Site B, during the first sampling week (Table 2.2). This result for Cu was higher than the recommended environmental quality guideline of 35.7 mg.kg⁻¹ in freshwater sediment as specified by the CCME (2001). Thereafter, during weeks 5 to 49, concentrations for Cu decreased significantly (p < 0.05), to levels lower than the guideline (CCME, 2001).

The highest mean Zn concentration of 395 mg.kg⁻¹ was recorded at Site B, during week 1 (Table 2.3). This result was higher than the recommended Canadian sediment quality guidelines of 123 mg.kg⁻¹ (CCME, 2001). During the subsequent sampling weeks the mean Zn concentrations ranged from 4 to 36 mg.kg⁻¹ (Table 3), which falls within the accepted CCME guidelines. During week 1 of sampling the region experienced very low rainfall (6 mm). In the following weeks, the recorded rainfall ranged from 52.2 mm to 154 mm. The lower rainfall could imply that the metals were not readily available in the water column, impeding metal transportation from site to site and increasing metal accumulation in sediment.

Metals in Biofilms

No recommended biofilm quality guidelines were available from DWAF (1996) and the Canadian Council of Ministers of the Environment (CCME, 2001). Biofilms are layers of organisms, organic matter and inorganic material, organised within extracellular polymeric substances (EPS) (Decho, 1990). These organisms attach and develop on biologically active or non-active surfaces (Stickler, 1999).

Comparisons of the mean concentrations for AI and Fe are presented in Figure 2.4. Results for Cu, Mn, Ni, Pb, and Zn are represented in Tables 2.4 and 2.5. The highest metal concentrations recorded in the biofilm samples (mg. ℓ^{-1}), were for AI and Fe, as in the case of sediment. Throughout the entire study period, Fe was consistently present in elevated concentrations in water, sediment and biofilm samples when compared to the other metals analysed for. The recorded results for Fe and AI fluctuated throughout the entire study period. The mean concentrations recorded for AI ranged from 14.1 mg. ℓ^{-1} during week 33 to 876.8 mg. ℓ^{-1} , during week 37, both at Site A (Figure 2.4). In addition, the mean Fe concentrations in biofilm samples ranged from 18 mg. ℓ^{-1} during week 33 to 1017.5 mg. ℓ^{-1} during week 37, again both at Site A (Figure 2.4).

As indicated above, an increase in the concentrations of AI and Fe in the biofilm samples was observed at site A in week 37. For the same time period, a corresponding study investigating microbial contamination of the river revealed a microbial count in sessile samples of 3.9×10^7 organisms/ml. This increased number of microorganisms could have facilitated the AI and Fe accumulation in the biofilm. It is well recognised that microorganisms have developed unique means of resistance to specific metals (Roanne and Pepper, 2000), the mechanisms of which are not yet fully understood. Extracellular

Polymeric Substances contains various constituents such as polysaccharides, proteins, nucleic acids, lipids or humic substances (Mayer et al., 1999). Decho (1990) showed that the EPS assists in the bacterial survival by providing protection against predation and environmental fluctuations.

Tables 2.4 and 2.5, represents the metal concentrations recorded in biofilm samples for Cu, Mn, Ni, Pb and Zn. These metal concentrations were consistently lower than the concentrations recorded for Al and Fe. The highest mean metal concentrations for Cu, Mn, Ni, Pb and Zn were recorded at: 2 mg. ℓ^{-1} in weeks 1 and 37 at sites C and A; 71 mg. ℓ^{-1} in week 25 at Site A; 19 mg. ℓ^{-1} in week 17 at site A; 1.6 mg. ℓ^{-1} in week 5 at site C and 8.4 mg. ℓ^{-1} in week 25 at site A, respectively (Tables 2.4 and 2.5).

Kröpfl et al. (2006) studied metal accumulation by biofilms in the Tisza River, Hungary. The authors utilised different substrates to cultivate biofilms, with the aim of investigating the applicability of biofilms as biomonitors. The different substrates used were andesite, polished granite, Plexi-glass, granite and polycarbonate. The biofilms were cultivated for 6 weeks, after which, the samples were analysed using Total Reflection X-Ray fluorescence (TXRF) for elemental analysis. The concentrations of essential elements and heavy metal pollutants (Cu, Ni, Pb and Zn) were highest in biofilms on polished granite or granite (rocks and stones) (Kröpfl et al., 2006). In the present study, various substrates such as rocks, leaves, glass and stones were collected as representative biofilm samples form the Berg River. Biofilms are currently being studied as biomonitors in ecological research, but it is important to note that as yet no guidelines exist for biofilms in aquatic systems.

Research has shown that the EPS layer also exhibits a high metal absorption capacity. A study by Suh et al. (1999) investigated the accumulation of Pb²⁺ into the EPS layer of pure species *Aureobasidium pullulans* biofilms using Transmission Electron

Microscopy (TEM). The results of the study showed that the EPS was responsible for more than 90% of Pb^{2+} accumulation of the total Pb dissolved. The TEM microphotographs showed that the Pb^{2+} penetrated the cell wall, cell membrane and even into the inner cellular parts of the cell.

Prat et al. (1999) studied the recovery of an aquatic ecosystem after toxic mining waste was dumped into the Guadiamar River Basin, Sevilla, Spain in April 1998. Nine sites were sampled, three of which were unaffected and designated as the control or reference sites. Sampling was carried out over a period of five months, in the form of plankton and particulate material, naturally occurring biofilms and macroinvertebrates obtained from water, riffles (stones), introduced artificial substrates (large tiles), vegetation and sediment. These samples were analysed for water guality and for arsenic (As), cadmium (Cd), antimony (Sb), thallium (TI), Cu, Pb and Zn concentrations, as these were the most abundant heavy metals in the mine spill. Compared to the reference stations, the concentrations of metals were higher in the polluted sites, with As, Cu, Pb and Zn, being the most abundant. Except for Cd, Cu and Sb, all the other metals in biofilms from the polluted sites were found to be more than 15 times higher than in the reference stations (Prat et al., 1999). In addition, the metal concentrations recorded in the biofilm samples were five to 20 times higher than the recorded values in macroinvertebrates (Prat et al., 1999). This study proved that biofilms are effective in the accumulation of metals from the environment.

Conclusions

The conclusions of this study were as follows:

- Al and Fe were recorded at consistently higher concentrations than all the other metals analysed for in water, sediment and biofilm samples.
- In both the sediment and biofilm samples, the concentrations of AI and Fe were significantly higher (p < 0.05) than Cu, Zn, Pb, Ni, and Mn.
- On average, the results generated for water for AI and Fe, were higher than the quality guidelines recommended by DWAF (1996) and the CCME (2001).
- The results for Cu and Zn were higher than the recommended quality guidelines in freshwater sediment (CCME, 2001). No guidelines for AI, Fe, Mn, Pb and Ni were available in sediment.
- The highest metal concentrations were obtained in the sediment and biofilm samples, yet no freshwater guidelines for metals in sediment were available from DWAF and no guidelines for metal concentrations in biofilms were available from either DWAF or the CCME.

Future research

Future research would include the setting up of parameters or guidelines for acceptable metal concentrations in rivers. Research at the Cape Peninsula University of Technology is currently being conducted on the Lourens-, the Diep-, the Kuils- and the Plankenbrug Rivers, as well as the Berg River, as discussed in this article.

Acknowledgements

The authors wish to thank the Paarl Municipality for their assistance in sample collection and the National Research Foundation for financial support.

References

- ACROBAT® MZ (2005) Fungicide for use on potatoes and flue cured tobacco. Cited online at > URL file://E:\pesticide\ACROBAT MZ.htm
- AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY (ATSDR) (1995) Aluminium, Material Safety Data Sheet, Atlanta, Georgia, USA.
- AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY (ATSDR) (2000). Toxicological Profile for Manganese. U.S. Department of Health and Human Services, Public Health Service. Atlanta, Georgia, USA.
- ALLOWAY BJ (1995a) Soil processes and the behaviour of metals. In: ALLOWAY BJ (ed.)
 Heavy metals in soils (2nd edn). Blackie Academic and Professional, London, England.
 6-37.
- ALLOWAY BJ (1995b) The origins of heavy metals in soils. In: ALLOWAY BJ (ed.) *Heavy metals in soil* (2nd edn). Blackie Academic and Professional, London, England. 38-57.

- BARNES JM (2003) The impact of water pollution from formal and informal urban developments along the Plankenbrug River on water quality and health risk. PhD Dissertation, Department of Community Health, University of Stellenbosch, South Africa.
- BROOKS BW, FORAN CM, RICHARDS SM, WESTON J, TURNER PK, STANLEY JK, SOLOMON KR, SLATTERY M and LA PONT TW (2003) Aquatic ecotoxicology of fluoxetine. *Toxicol. Lett.* **142** 169-183.

CANADIAN COUNCIL OF MINISTERS OF THE ENVIRONMENT (CCME) (2001) Canadian sediment quaility guidelines for the protection of aquatic life: Summary tables. Updated in: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg, Canada.

- COSTERTON JW, GEESEY GG and CHENG KJ (1978) How bacteria stick. *Sci Amer.* **238** 86-95.
- DE BEER D, SRINIVASAN R and STEWARD PS (1994) Direct measurement of chlorine penetration into biofilms during disinfection. *Appl. Environ. Microbiol.* **60** 4339-4344.
- DECHO AW (1990) Microbial exopolymer secretions in ocean environments: Their role(s) in food webs and marine processes. *Oceanogr. Mar. Biol. Annu. Rev.* **28** 73-153.
- DEPARTMENT OF WATER AFFAIRS and FORESTRY (DWAF) (1996) South African Water Quality Guidelines, Aquatic Ecosystems. Vol.7. Government printer, Pretoria, South Africa.

- DORIGO U, BOURRAIN X, BERARD A and LEBOULANGER C (2004) Seasonal changes in the sensitivity of river microalgae to atrazine and isoproturon along a contamination gradient. *Sci. Tot. Environ.* **318** 101-114.
- DUNN OJ and CLARK VA (1987) *Applied statistics: Analysis of variance and regression,* 2nd edn. John Wiley and sons, London, England.
- FRIBERG L, NORDBERG GF, KESSLER E and VOUK VB (1986) Handbook of the Toxicology of metals. In: Friberg L, Nordberg GF, Kessler E and. Vouk VB (eds.) *Handbook of the toxicology of metals* (2nd edn), **vols 1 and 2**. Elsevier Science, Amsterdam Publishers, Amsterdam, Netherlands. 6.
- FRIESE K, MAGES M, WENDT-POTTHOFF K. and NUE T (1997) Determination of heavy metals in biofilms of the Elbe River by total reflection x-ray fluorescence spectrometry. *Spectrochim. Acta.* **5** 1019-1025.
- GEESEY GG, BREMER PJ, SMITH JJ, MUEGGE M and JANG LK (1992) Two-phase model for describing the interactions between copper ions and exopolymers from *Alteromonas atlantica. Can. J. Microbiol.* **38** 785-793.
- HUANG C, YU FP, MCFETERS GA and STEWART PS (1995) Non-uniform spatial patterns of respiratory activity within biofilms during disinfection. *Appl. Environ. Microbiol.* **6** 2252-2256.

- KRÖPFL K, VLADÁR P, SZABO K, ÁCS É, BORSODI A, SZIKORA S, CAROLI S and ZÁRAY G (2006) Chemical and biological characterisation of biofilms formed on different substrata in Tisza River, Hungary. *Environ. Pollut.* **144** 626-631.
- MAYER C, MORITZ R, KIRSCHNER C, BORCHAND W, MAIBAUM R, WINGENDER J and FLEMMING H-C (1999) The role of intermolecular interactions: studies on molecular systems for bacterial biofilms. *Intern. J. Biol. Macromol.* **26** 3-16.
- MOWAT FS and BUNDY KJ (2001) Correlation of field-measured toxicity with chemical concentration and pollutant availability. *Environ. Intern.* **27** 479-489.
- NEAL C, ROBSON AJ, HARROW M, HILL L, WICKHAM H, BHARDWAJ CL, TINDALL CI, RYLAND GP, LEACH DV, JOHNSON RC, BRONSDON RK and CRANSTON M (1997) Major, minor, trace element and suspended sediment variations in the River Tweed: results from the LOIS core monitoring programme. *Sci. Tot. Environ.* **194**/**195** 193-205.
- NELSON YM, LION LW, SHULER ML and GHIORSE WC (1996) Modelling oligotrophic biofilm formation and lead adsorption to biofilm components. *Environ. Sci. Technol.* **30** 2027-2035.
- NEU TR (1992) Polysaccharide in biofilm. In: Prave P, Schlingmann M, Esser K, Thauer R and Wagner F (eds.) *Jahrbuch. Biotechnologie*. Vol. 4. Carl Hanser, Munich, Germany. 73.

- PRAT N, TOJA J, SOLA C, BURGOS MD, PLANS M and RIERADEVALL M (1999) Effect of dumping and cleaning activities on the aquatic ecosystems of the Guadiamar River following a toxic flood. *Sci. Tot. Environ.* **242** 231-248.
- RIVER HEALTH PROGRAMME (2004) State-of-Rivers Report: Berg River System. Department of Water Affairs and Forestry, Pretoria.
- ROANE TM and PEPPER IL (2000) Microorganisms and metal pollutants. In: Maier RM, Pepper IL and Gerba CP (eds.) *Environmental Microbiology.* Academic Press, Elsevier, San Diego, USA. 403.
- SALEH MA, EWANE E, JONES J and WILSON BL (2000) Monitoring Wadi El Raiyan lakes of the Egyptian desert for inorganic pollutants by Ion-selective electrodes, Ion chromatography and Inductively Coupled Plasma Spectroscopy. *Ecotoxicol. Environ. Saf.* **45** 310-316.
- SEACHEM (2006) PhosguardTM Support. Cited online at > URL <u>file://E:\pesticide\Phosguard</u> <u>FAQ.htm</u>.
- SOUTH AFRICAN BUREAU OF STANDARDS (2001) South African Bureau of Standards specification for Drinking Water, SABS 241 (5th edn).

STICKLER D (1999) Biofilms. Curr. Op. Microbiol. 2 270-275.

- SUH JH, YUN JW, KIM DS (1999) Effect of extracellular polymeric substances (EPS) on Pb²⁺ accumulation by *Aureobasidium pullulans*. *Bioprocess Engin* **21**1-4.
- TIPPING E, WOOF C and HURLEY MA (1991) Humic substances in acid surface waters; modelling aluminium binding, contribution to ionic charge-balance, and control of pH. *Wat. Res.* **25** 425-435.
- VERMEIREN K, VANDECASTEELE C and DAMS R (1990) Determination of trace amounts of cadmium, lead, copper and zinc in natural waters by Inductively Coupled Plasma Emission Spectrometry with thermospray nebulisation, after enrichment on chelex-100. *Analyst* **115** 17-22.
- VERMEULEN LA, REINECKE AJ and REINECKE SA (2001) Evaluation of the fungicide manganese-zinc ethylene bis(dithiocarbamate) (Mancozeb) for sublethal and acute toxicity to Eisenia fetida (Oligochaeta). Ecotox. Environ. Saf. 48 183-189.
- WORLD HEALTH ORGANISATION (1991) Inorganic Mercury (Environmental Health Criteria), International Program on Chemical Safety Vol. 118, Geneva.

List of figures and tables

Figure 2.1. Map of the Berg River indicating the different sampling points: Site A, indicates the agricultural farming area; Site B, indicates Plot 8000, close to the informal settlement of Mbekweni; and Site C, the Newton Pumping station

Figure 2.2A. Mean metal concentrations of AI, Fe and Mn in water samples from the Berg River

Figure 2.2B. Mean metal concentrations of Cu, Ni and Zn in water samples from the Berg River

Table 2.1. Concentrations obtained in water of the Berg River compared to recommended safe concentrations as stipulated by the Department of Water affairs and Forestry (1996) and the Canadian Council of Ministers of the Environment Quality Guidelines (2001)

Figure 2.3. Mean Aluminium and Iron concentrations in sediment samples from the Berg River

 Table
 2.2.
 Mean metal concentrations of Cu, Mn and Ni recorded in sediment samples for the different sampling weeks

Table 2.3. Mean metal concentrations of Pb and Zn recorded in sediment samples for the different sampling weeks

Figure 2.4. Mean Aluminium and Iron concentrations in biofilm samples from the Berg River

 Table
 2.4.
 Mean metal concentrations of Cu, Mn and Ni recorded in biofilm samples for the different sampling weeks

 Table 2.5.
 Mean metal concentrations of Pb and Zn recorded in biofilm samples for the different sampling weeks

Map of the Berg River indicating the different sampling points: Site A, indicates the agricultural farming area; Site B, indicates Plot 8000, close to the informal settlement of Mbekweni; and Site C, the Newton Pumping station

CHAPTER TWO: ARTICLE PUBLISHED IN WATER SA

Mean metal concentrations of AI, Fe and Mn in water samples from the Berg River

CHAPTER TWO: ARTICLE PUBLISHED IN WATER SA

Figure 2.2B Mean metal concentrations of Cu, Ni and Zn in water samples from the Berg River

64

Table 2.1.	Concentrations obtained in water	of the Berg River con	npared to recommended s	safe concentrations a	s stipulated by	the Department of
	Water Affairs and Forestry (199	6) and the Canadian	Council of Ministers of the	e Environment Quality	/ Guidelines (20	01)

Metal	Recommended safe concentrations as	Environmental quality guidelines as	Mean meal concentrations
	stipulated by DWAF (1996) (mg. l^{-1})	stipulated by CCME (2001) (mg. l^{-1})	obtained in water (mg. l^{-1})
AI	0.1 – 0.15	0.005 – 0.1	0.4 - 6
Cu	0.002 – 0.012	0.002 - 0.004	0– 2.2
Fe	N/A	0.3	1.4 – 14.6
Mn	1.3	N/A	0 – 18.8
Ni	N/A	0.025 – 0.15	0 – 0.5
Pb	N/A	0.001 – 0.007	0 - 0
Zn	0.036	0.03	0.01 – 2.1

N/A = Data not available

Figure 2.3

Mean Aluminium and Iron concentrations in sediment samples from the Berg River

Metals (mg.kg ⁻¹)										
Time	Cu				Mn			Ni		
(weeks)										
Sites	A	В	С	А	В	С	А	В	С	
1	5.0±4.5	74.0±0	8.2±2.1	3.0±0.5	11.0±0	11.0±0.9	5.0±0.2	44.0±0	5.0±0.1	
5	4.0±1.6	3.8±1.8	12.0±2.9	5.0±0.6	7.5±0.8	70.0±5.8	5.0±0.3	5.0±0.4	5.0±0.1	
9	2.0±0.9	3.2±1.8	4.4±2.2	3.0±0.5	8.4±1.1	12.0±3.4	4.0±0.4	5.0±0.5	8.0±0.3	
17	2.0±0.1	5.9±2.5	9.9±2.1	7.0±0.6	9.4±0.6	12.0±0.7	5.0±0.1	5.0±0.2	5.0±0.4	
21	3.0±0.6	3.3±0.4	2.9±0.4	5.0±1.3	8.6±0.5	13.0±2.5	0.0±0.0	0.0±0.0	6.0±0.5	
25	1.0±1.7	12.0±1.9	11.0±3	8.0±0.4	3.9±0.3	13.0±0.9	0.0±0.0	0.4±0.0	0.0±0.0	
33	5.0±1.3	4.9±0.9	6.7±2.2	3.0±0.2	4.1±0.4	5.9±0.4	2.0±0.3	2.0±0.4	1.0±0.3	
37	7.0±0.9	6.3±0.8	7.4±1.2	7.0±0.9	5.1±0.5	15.0±2.3	2.0±0.4	2.0±0.3	3.0±0.2	
41	5.0±0.8	4.9±1.3	4.5±0.2	9.0±0.7	4.4±0.4	19.0±1.4	0.0±0.0	0.0±0.0	3.0±0.3	
45	7.0±0.9	6.7±1.6	6.9±0.4	11.0±0.6	16.0±3.8	43.0±7.2	4.0±0.6	5.0±0.5	1.0±0.7	
49	4.0±0.7	2.9±0.7	7.8±4.9	7.0±0.2	12.0±1.4	44.0±1.4	4.0±0.4	4.0±0.3	5.0±0.4	

Table 2.2. Mean metal concentrations of Cu, Mn and Ni recorded in sediment samples for the different sampling weeks

Metals (mg.kg ⁻¹)									
Time (weeks)	Pb			Zn					
Sites	А	В	С	А	В	С			
1	0.0±0.0	2.0±0.3	2.1±0.3	7.6±1.4	395.0±0.0	11.0±0.5			
5	2.0±1.3	2.0±0.6	11.0±1.7	6.5±0.7	12.0±2.3	22.0±2.3			
9	1.0±0.8	2.0±1.9	3.0±0.4	7.0±1.4	11.0±2.3	11.0±1.4			
17	3.0±2.2	2.0±0.2	3.0±0.4	8.5±0.5	9.5±0.5	9.0±1.4			
21	1.0±0.3	3.0±0.4	4.2±0.7	4.3±0.8	9.2±0.8	7.3±0.9			
25	3.0±0.4	2.0±0.2	4.2±0.3	13.0±1.4	9.2±0.5	11.0±0.9			
33	2.0±0.5	2.0±0.3	2.9±0.6	4.0±2.1	3.8±0.4	6.2±0.7			
37	3.0±0.6	3.0±0.5	4.9±0.3	8.6±0.5	10.0±0.7	11.0±1.3			
41	4.0±0.6	3.0±0.3	4.6±2.6	13.0±1.0	12.0±0.9	14.0±2.3			
45	5.0±1.5	23±34	8.9±6.8	19.0±2.5	23.0±7.9	16.0±1.3			
49	2.0±0.4	6.0±2.9	5.1±0.6	12.0±1.0	27.0±6.7	36.0±41.0			

Table 2.3. Mean metal concentrations of Pb and Zn recorded in sediment samples for the different sampling weeks

Figure 2.4

Mean Aluminium and Iron concentrations in biofilm samples from the Berg River

Metals ($\mathbf{mg}.\ell^{-1}$)										
Time	Cu				Mn			Ni		
(weeks)										
Sites	A	В	С	A	В	С	A	В	С	
1	1.0±0.2	1.7±0.2	2.0±0.5	2.6±0.9	1.4±0.1	9.0±0.8	0.4±0.1	0.3±0.0	0.3±0.0	
5	1.0±0.1	0.2±0.0	1.0±0.1	2.2±0.2	1.1±0.1	11.0±0.3	0.5±0.0	0.4±0.0	0.7±0.0	
9	1.0±0.1	0.7±0.2	1.0±0.2	4.9±0.3	2.0±0.1	32.0±1.4	0.6±0.0	0.6±0.0	0.9±0.0	
17	1.5±0.2	0.8±0.1	1.0±0.1	17.0±3.1	8.4±1.3	9.0±1.2	19.0±41.0	0.6±0.0	0.7±0.1	
21	0.0±0.0	0.5±0.1	0.0±0.0	1.4±0.4	4.6±0.8	8.0±0.5	0.0±0.0	0.0±0.0	0.0±0.0	
25	1.0±0.1	0.7±0.1	1.0±0.2	71.0±17.0	1.7±0.2	6.0±0.4	1.0±0.1	0.4±0.0	0.5±0.0	
33	0.3±0.0	0.4±0.1	0.0±0.0	0.7±0.0	1.4±0.2	3.0±0.3	0.0±0.0	3.0±5.8	0.0±0.0	
37	2.0±0.2	0.4±0.0	1.0±0.1	13.0±1.5	2.2±0.5	9.0±1.2	0.5±0.0	0.0±0.0	0.1±0.0	
41	1.0±0.0	0.4±0.1	0.0±0.1	3.4±0.4	1.6±0.2	4.0±0.2	0.0±0.0	0.0±0.0	0.0±0.0	
45	1.0±0.1	0.6±0.1	0.0±0.1	1.2±0.1	1.8±0.4	5.0±0.8	0.7±0.0	1.0±0.1	0.4±0.0	
49	1.0±0.1	0.7±0.0	0.0±0.1	0.8±0.0	1.3±0.2	4.8±0.1	0.6±0.1	0.4±0.0	0.3±0.0	

Table2.4. Mean metal concentrations of Cu, Mn and Ni recorded in biofilm samples for the different sampling weeks

Metals (mg.ℓ ⁻¹)									
Time (weeks)		Pb		Zn					
Sites	А	В	С	A	В	С			
1	0.4±0.1	0.0±0.0	0.2±0.0	2.0±0.5	2.0±0.2	1.0±0.1			
5	0.4±0.0	0.2±0.0	1.61±0.1	2.0±0.2	2.0±0.1	5.0±0.2			
9	1.3±0.2	0.6±0.0	1.2±0.1	2.0±0.1	3.0±0.2	6.0±0.3			
17	0.3±0.0	0.9±0.1	0.5±0.1	5.6±1.0	3.0±0.5	2.0±0.3			
21	1.3±0.2	0.7±0.1	0.4±0.1	0.0±0.0	2.0±0.4	1.0±0.2			
25	0.0±0.0	0.2±0.0	0.3±0.1	8.4±1.0	1.0±0.1	2.0±0.2			
33	0.2±0.1	0.3±0.0	0.2±0.0	0.5±0.0	1.0±0.2	1.0±0.1			
37	0.7±0.1	0.2±0.0	0.7±0.1	8.0±0.1	1.0±0.1	2.0±0.3			
41	0.7±0.1	0.0±0.0	0.2±0.0	3.0±0.7	1.0±0.2	1.0±0.3			
45	0.9±0.1	0.6±0.1	0.1±0.1	5.0±0.6	3.0±0.5	1.0±0.1			
49	1.4±0.4	0.5±0.0	0.0±0.0	6.0±1.4	3.0±0.2	1.0±0.1			

Table 2.5. Mean metal concentrations of Pb and Zn recorded in biofilm samples for the different sampling weeks

Investigation into the metal contamination of the Plankenburg and

Diep Rivers, Western Cape, South Africa

VA Jackson¹, AN Paulse¹, JP Odendaal² and W Khan^{3*}

¹Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa

²Department of Environmental and Occupational Studies, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town 8000, South Africa

³Department of Agricultural and Food Sciences, Faculty of Applied Science, Cape Peninsula University of Technology, Cape Town 8000, South Africa

* To whom all correspondence should be addressed.

Tel: +27 21 460 3175, Fax: +27 21 460 3193; e-mail: khanw@cput.ac.za

Abstract

Metal contamination in the Plankenburg and Diep Rivers (Western Cape) was investigated over a 12 and 9 month period, respectively. Aluminium (Al), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), nickel (Ni) and zinc (Zn) concentrations were determined using the nitric acid digestion method and analysed by inductively coupled plasma atomic emission spectrometry (ICP-AES). For both rivers the AI and Fe concentrations were higher than all the other metals analysed for in sediment and water samples. The highest concentrations recorded in the Plankenburg River was 13.6 mg ℓ^1 (water - Week 18, Site B) and 15 018 mg·kg⁻¹ (sediment - Week 1, Site C) for AI and 48 mg·ℓ⁻¹ (water - Week 43, Site A) and 14 363.8 mg kg⁻¹ (sediment - Week 1, Site A) for Fe. The highest concentrations recorded in the Diep River was 4 mg ℓ^{-1} (water - Week 1, Site A) and 19 179 mg kg⁻¹ (sediment - Week 1, Site C) for AI and 513 mg l⁻¹ (water - Week 27, Site A) and 106 379.5 mg kg⁻¹ (sediment - Week 9, Site C) for Fe. For most of the metals analysed the concentrations were higher than the recommended water quality guidelines as stipulated by the Department of Water Affairs and Forestry (DWAF, 1996b), the Canadian Council for the Ministers of the Environment (CCME, 2001) and the 'World average' (Martin and Windom, 1991). Point sources of pollution could not conclusively be identified, but the industrial and residential areas could have influenced the increased concentrations. Metal concentrations should be routinely monitored and the guidelines should be updated and revised based on the current state of the rivers and pollution influences.

Keywords: ICP-AES, metal contamination, river water; sediment, water and sediment quality guidelines

Introduction

South Africa's major water sources are primarily used for agricultural activities (52%), industry, mining and power generation (12.5%) and domestic and municipal uses (12%), with a further 15% needed to maintain estuaries and rivers (Schutte and Pretorius, 1997; Holtzhausen, 2002). The quality of the water resources is, however, steadily declining due to an increase in urbanisation and industrialisation, with the major sources of pollution including industrial and agricultural effluents and domestic and commercial sewage [Department of Water Affairs and Forestry – chapter 2 (DWAF, 2004)]. In addition, population increases in South Africa are expected to lead to an increase in agricultural development, which will in turn lead to an increased demand for irrigation water (Natural Resources Management and Environment Department, 2007).

Point- and non-point source pollution contributes to a decline in the quality of the water when leaching occurs into the surrounding environment (Hills et al., 1998; Ho et al., 2003). Agricultural contamination was also shown by the Agency for Toxic Substances and Disease Registry (2000) to be due to the discharging of pesticides into rivers. In addition, pollutants such as micro-organisms, metals, oils and other toxic substances contribute to the decrease in water quality (Pegram et al., 1999).

Metals are present in the environment at trace amounts and certain metals, like iron (Fe), copper (Cu) and zinc (Zn) are essential for a variety of functions in organisms. It is important though, to ensure that these metals do not exceed normal concentrations, as they may have detrimental long-term effects on human health (Wright and Welbourne, 2002). Excessive consumption of cadmium (Cd) and lead (Pb) could result in neurological, bone and cardiovascular diseases, renal dysfunction, and various cancers, even at relatively low levels (Calderon, 2000; Jarup, 2002). The short-term effects of high Cd concentrations also include diarrhoea, nausea, vomiting, renal failure, muscle cramps, salivation, sensory disturbances, convulsions, shock and liver injury (Hazards Centre and People's Science Institute, 2005). Short-term exposure to Cu fumes causes irritation of the eyes, nose and throat, and a flu-like illness called metal fume fever. Symptoms of metal fume fever include, fever, muscle aches, nausea, chills, dry throat and cough (US Department of Health and Human Services, 1978). Iron is an essential element, but ingestion of Fe concentrations above the permissible concentrations, may cause many gastrointestinal disturbances, including vomiting, diarrhoea and abdominal pain. The prolonged intake of high dose of Fe can result in liver damage and kidney failure (Hazards Centre and People's Science Institute, 2005).

High concentrations of metals usually deposit on and integrate in river sediment, which are organic or inorganic materials removed by erosion and transported by fluid flow to different locations (Prange and Dennison, 2000; Marchand et al., 2006). The highest metal content available for transport between sites is stored in the sediment-water interfaces (Maanan et al., 2004). Increased levels of heavy metals were reported in Mooi River sediment, South Africa (Wade et al., 2000). The release of mine water from a nearby goldmine into a tributary of the Mooi River presumably resulted in the increased levels of toxic metals in both the water and sediment. The results obtained did not change appreciably when compared to a previous study conducted by Witmann and Förstner (1977), where concentrations for water and sediment was recorded for Cu (5.4 mg· ℓ^{-1} and 484 mg·kg⁻¹) and Zn (26.0 mg· ℓ^{-1} and 6440 mg·kg⁻¹). The authors concluded that the high concentrations could be due to the fact that the slime dams receive discharges of high acidity from the mines.

A study investigating the aluminium (Al), Fe, Mn, Zn, chromium (Cr), Cu, Pb, Cd and mercury (Hg) bioaccumulation patterns in sediment, water and fish samples collected on a quarterly basis from the Mhlathuze Estuary, South Africa, was conducted by Mzimela et al. (2003). The highest concentrations for AI (26 200 mg· ℓ^{-1} and 13 928.6 mg·kg⁻¹), Fe (23 500 mg· ℓ^{-1} and 16 035.71 mg·kg⁻¹) and Mn (266 mg· ℓ^{-1} and 182.8 mg·kg⁻¹) were recorded in water and sediment, respectively, in December, which coincided with an extremely high freshwater inflow from the Mhlathuze River. Metal concentrations were generally lower during April, which coincided with the reduced riverine runoff from the catchment of the estuary. In the fish tissue, Fe and AI were recorded in concentrations ranging from 450 and 3000 µg·g⁻¹.

Jackson et al. (2007) investigated the degree of metal pollution (AI, Cu, Fe, Mn, Ni, Pb and Zn) at 4 different sampling points along the Berg River, as a recent decline in water quality has been reported. Inductively coupled plasma atomic emission spectrometry (ICP-AES) analysis of water, sediment and biofilm samples revealed that the highest mean metal concentrations recorded were for AI (6 mg· ℓ^1 , 17 448.8 mg·kg⁻¹ and 876.8 mg· ℓ^1) and for Fe (14.6 mg· ℓ^1 , 26 473.3 mg·kg⁻¹ and 1 017.5 mg· ℓ^1). The increased concentrations of AI and Fe in comparison to the other metals analysed for, could be due to the leaching of metals into the river water from waste and household products associated with the informal settlement and the subsequent settling on sediment.

Cadmium, Hg and Zn concentrations in the Umtata, Buffalo, Keiskamma, and Tyume Rivers and in the Sandile and Umtata Dam were determined by Fatoki and Awofolu (2003). These catchments support rapidly growing populations and concerns arose regarding the quality of the surface waters. Cadmium levels in the Umtata River and the Umtata Dam were normal, but in the Keiskamma, Buffalo and Tyume rivers elevated Cd concentrations of 0.007 mg· ℓ^1 to 0.009 mg· ℓ^1 , 0.008 mg· ℓ^1 to 0.01 mg· ℓ^1 and 0.008 mg· ℓ^1 to 0.017 mg· ℓ^1 , were recorded in the respective rivers. These levels

exceeded the South African guideline of 0.005 mg·*t*⁻¹ for Cd (DWAF, 1996a). According to the authors, use of river water with elevated Cd levels may have affected the health of the rural communities who use the river water prior to treatment, as Cd is extremely toxic and could cause adverse health effects (Friberg et al., 1986). Cadmium has been found to be toxic to fish and other aquatic organisms (Fianko et al., 2007). In humans, Cd can result in bone demineralisation, either through direct bone damage or indirectly as a result of renal dysfunction (Bernard, 2008). The recorded levels of Hg and Zn were normal in these rivers and did not exceed the recommended concentrations of metals in water as stipulated by the Department of Water Affairs and Forestry (DWAF, 1996b).

The Plankenburg River is 10 km long, and originates from a mountainous area in the Boland region, South Africa. It flows downstream through Stellenbosch and services various industrial and agricultural activities. The river also flows through the informal settlement of Kayamandi, where the population size in the settlement is roughly estimated to be about 22 000. Twenty percent of Kayamandi's inhabitants live in brick houses with in-house water connections and flush toilets. The remaining 80% of the inhabitants live in shacks that are densely populated and utilise portable toilets (DWAF, 2001). Service delivery to the settlement is inadequate and skips provided by the local municipality for refuse are not frequently emptied or removed. Farmers up- and downstream from this settlement utilise the river water for the irrigation of vineyards, as well as other crops. In addition, the river flows through Stellenbosch's industrial area, which includes amongst others a clothing factory, a well-known cheese factory, spray painting and mechanical workshops and yoghurt and dairy producing plants.

The Diep River is 65 km long, originates from the Riebeek-Kasteel Mountains, flows south-westerly, through Malmesbury and drains into Table Bay. Land in the upper catchment area is dominated by agricultural activities, while in the lower part of the

catchment land use is largely reserved for urban development, which includes formal and informal settlements, as well as industrial establishments, such as spray painting, chemical and clothing manufacturers, a wastewater treatment works and an oil refinery. The Diep River-Rietvlei system has silted up significantly over the past few years which has resulted from extensive erosion (Grindley and Dudley, 1988). It can therefore be regarded as a storage area for sediment-rich water during floods. The sedimentation rate is enhanced by vegetation in the vlei, especially where treated sewage water is being released.

The aim of this study was to investigate the spatial and temporal variation in the metal contamination in the Plankenburg and Diep Rivers in the Western Cape, South Africa. Metal concentrations in water and sediment samples were analysed using the nitric acid digestion method followed by inductively coupled plasma atomic emission spectrometry (ICP-AES) (Saleh et al., 2000). The two rivers selected borders industrial areas, residential areas, agricultural areas and informal settlements. Increased metal pollutants also have a detrimental effect on human health (Wright & Welbourne, 2002), where exposure is mainly due to the ingestion of food and water contaminated with metals leaching into groundwater (Piver, 1992).

Materials and Methods

Sampling Sites

Four sampling sites were identified for the Plankenburg River (Stellenbosch) location: Site A (agricultural farming and residential areas); Site B (informal settlement of Kayamandi); Site C (substation in industrial area) and Site D (industrial area at Adam
Tas Bridge) (Fig. 3.1). Sampling of sites along the Plankenburg River started in May 2004 and continued for a period of one year until May 2005. Sites for the Diep River (Milnerton) location: Site A (Zoarvlei nature reserve - industrial as well as residential areas); Site B (Theo Marais sportsclub - industrial and residential area); Site C (Potsdam wastewater treatment works) and Site D (Rietvlei boating club and nature reserve) (Fig. 3.2). Sampling of these sites started in March 2005 and continued for a period of nine months until November 2005. Sampling at the Diep River initially started in May 2004, but due to adverse weather conditions, one of the original sampling points dried up and another site had to be selected to replace it. Site C was selected as effluent from a nearby oil refinery flows directly into a stormwater drain at the wastewater works. Results for the period before March 2005, was thus not reported on.

Sampling for metal concentration determination

Water samples were collected in sterile 250 ml narrow mouth square polypropylene bottles (Cole-Palmer Instrument Company). The sediment samples consisted of a combination of five different sub-samples collected from various points (±15 cm deep) in 250 ml plastic containers. The samples were stored at 4°C during transport. The temperature and pH was determined at each site using a YSI pH 100 portable pH millivolts and temperature instrument (YSI Environmental).

Metal concentration determination in water and sediment samples

The collected sediment samples were dried in an oven for three days and weighed using a fine analytical balance (RADWAG[®]). In order to determine the concentrations of Al, Zn, Cu, Fe, Pb, Ni and Mn (total metals), water (5 ml) and sediment samples (0.500 -0.600 g; dry mass) were digested with 10 ml 55% Nitric acid at 40°C for 60 minutes and then at 120°C for 180 minutes, using a Grant dry-block heater. A blank (control) of 10 ml 55% nitric acid was analysed along with the collected samples to check for possible contamination. The samples were cooled to room temperature, filtered with Whatman No. 6 filter paper into 20 ml volumetric flasks, made up to a volume of 20 ml with distilled water and subsequently filtered for a second time using 0.45 µm cellulose nitrate ultrafiltration membrane filters (Whatman) (Odendaal and Reinecke, 1999). Metal concentrations were determined using inductively coupled plasma atomic emission spectrometry (ICP-AES) analysis according to the procedure outlined in Saleh et al. (2000). Analytical efficiency was checked using standard reference material (100 g contaminated soil std). Metal concentrations are expressed in $mg \cdot l^{-1}$ (water) and mg kg⁻¹ (sediment). Recovery rates measured were between 91 and 102% for the metals analysed in accordance with confidence limits of published values for the reference materials.

Statistical analysis

Repeated measures ANOVA (RMA) was performed on all data obtained as outlined in Dunn and Clark (1987), using StatisticaTM. In each RMA, the residuals were analysed to determine if they were normally distributed. In all hypothesis tests, a significant level of

5% was used as standards. The results presented are the averages of five repeats for each particular sampling point at the different sampling sites for both water and sediment samples. For statistical analysis, the volumes (5 ml) and mass (0.500 – 0.600 g; dry mass) were taken into consideration for the calculation of the final metal concentrations in a given sample.

Results

Metal concentrations in water samples

Plankenburg River

Comparisons of the mean metal concentrations in water samples collected at Sites A, B, C and D along the Plankenburg River over time are presented in Tables 3.1, 3.2 and 3.5. The recorded Al and Fe concentrations were higher than all the other metals analysed for. The concentrations of Al ranged from 0.3 mg· ℓ^1 (Week 1, Site A) to 13.6 mg· ℓ^1 (Week 18, Site B), while for Fe the concentrations ranged from 0.3 mg· ℓ^1 (Week 39, Site B) to 48 mg· ℓ^1 (Week 43, Site A). Throughout the entire study period, the recorded concentrations for Al in water were higher than the recommended concentrations for Al of 0.1 mg· ℓ^1 to 0.15 mg· ℓ^1 (DWAF, 1996b) and 0.005 mg· ℓ^1 to 0.1 mg· ℓ^1 [Canadian Council of Ministers of the Environment (CCME, 2001)] (Table 3.5). The Fe concentrations also exceeded the guidelines of 0.3 mg· ℓ^1 (CCME, 2001) and the 'World average' of 0.04 mg· ℓ^1 (Martin and Windom, 1991). No Al guidelines were available for the 'World average' and no Al and Fe guidelines were available for the

Australian and New Zealand Environment and Conservation Council (ANZECC, 2000). No guidelines for Fe in river water samples were available from DWAF.

The mean metal concentrations recorded for Cu. Mn. Ni and Zn in the Plankenburg River are presented in Tables 3.1, 3.2 and 3.5. Lead was not detected in any of the analysed samples for the Plankenburg River. The concentrations of Cu, Ni and Zn in the Plankenburg River water samples varied throughout the study period. The Cu concentrations ranged from 0.3 $mg \cdot l^{-1}$ (Weeks 27 and 52, Site D) to 2.2 $mg \cdot l^{-1}$ (Week 1, Site A) (Tables 3.1, 3.2 and 3.5). The Cu concentrations were higher than the recommended concentrations of 0.002 - 0.012 mg· ℓ^{-1} , 0.002 - 0.004 mg· ℓ^{-1} , 0.0015 mg· ℓ^{-1} and 0.0001 – 0.00015 mg· ℓ^{-1} as stipulated by DWAF (1996b), the CCME (2001), Martin and Windom (1991) and ANZECC (2000), respectively (Table 3.5). Mean Mn concentrations ranged from values below the detection limit to 0.4 mg $\cdot l^{-1}$ (Site C) (Tables 3.1 and 3.2) at different weeks during the sampling period and always fell within the recommended quality quideline of 1.3 mg· ℓ^{-1} as stipulated by DWAF (1996b) (Table 3.5). The recorded concentrations, were however higher than the 'World average' of 0.0015 mg· ℓ^{-1} (Martin and Windom, 1991) (Table 3.5). No environmental quality guideline for Mn was available from the CCME (2001) or ANZECC (2000). The mean metal concentrations for Ni recorded throughout the study period ranged from 0.1 mg ℓ^{-1} (Sites B, C and D) to 0.5 $\operatorname{mg} \cdot \ell^{-1}$ (Site A) and were generally above the recommended concentrations of $0.025 - 0.15 \text{ mg} \cdot l^{-1}$, as stipulated by the CCME (2001), with the exception of weeks 27, 36, 43 and 52, where concentrations of 0.1 mg ℓ^{-1} were recorded at sites B, C and D, respectively (Tables 3.1 and 3.2). The concentrations for Ni were significantly higher (p < 0.05) than the 'World average' guideline of 0.0005 mg ℓ^{-1} (Martin and Windom, 1991) and the ANZECC (2000) guideline of 0.0001 – 0.0005 mg ℓ^1 (Table 3.5). No environmental guality guideline for Ni was available from DWAF (1996b). The mean metal concentrations recorded for Zn ranged from below the detection limit to $1.1 \text{ mg} \cdot \ell^{-1}$ (Tables 3.1, 3.2 and 3.5). Zinc concentrations fell within the recommended quality guideline of 0.03 mg $\cdot \ell^{-1}$, 0.036 mg $\cdot \ell^{-1}$, 0.0006 mg $\cdot \ell^{-1}$ and 0.0009 mg $\cdot \ell^{-1}$, as stipulated by the CCME (2001), DWAF (1996b), Martin and Windom (1991) and ANZECC (2000), respectively (Table 3.5), only once during the sampling period, when a concentration below the detection limit was recorded (Week 1, at Site B). During the subsequent sampling weeks, the recorded concentrations all exceeded the recommended range (Table 3.1 and 3.2).

Diep River

Comparisons of the mean metal concentrations in water samples collected at Sites A, B, C and D along the Diep River over time are presented in Tables 3.3, 3.4 and 3.5. At many sites the recorded AI, Zn and Fe concentrations were higher than all the other metals analysed for. The concentrations for AI ranged from below the detection limit during Week 9 at Site C to 4 mg· ℓ^1 during Week 1 at Site A (Table 3.5). The concentrations of Zn ranged from 0.1 mg· ℓ^- to 4.4 mg· ℓ^- (Weeks 9 and 27, respectively, Site A) (Table 3.3 and 3.5). The concentrations for Fe ranged from 0.1 mg· ℓ^- to 513 mg· ℓ^- (Weeks 9 and 27, respectively, Site A) (Table 3.3 and 3.5). The concentrations for AI were mostly higher than the recommended concentrations of 0.1 mg· ℓ^- to 0.15 mg· ℓ^- (DWAF, 1996b) and 0.005 mg· ℓ^- to 0.1 mg· ℓ^- (CCME, 2001) (Table 3.5). The overall concentrations recorded throughout the study period for Zn were mostly higher than the recommended concentrations of 0.03 mg· ℓ^- (CCME, 2001), 0.036 mg· ℓ^- (DWAF, 1996b), 0.0006 mg· ℓ^- (Martin and Windom, 1991) and 0.0009 mg· ℓ^- (ANZECC, 2000) (Table 3.5). The

recommended concentrations of $0.3 \text{ mg} \cdot \ell^{-1}$ (CCME, 2001) and the 'World average' of $0.04 \text{ mg} \cdot \ell^{-1}$ (Martin and Windom, 1991) for Fe, were mostly higher than the overall concentrations recorded during the entire study period (Table 3.5). No Al guidelines were available for the 'World average' and no Al and Fe guidelines were available for the Australian and New Zealand Environment and Conservation Council (ANZECC, 2000). No guidelines for Fe in river water samples were available from DWAF.

The mean metal concentrations recorded for Cu. Mn and Ni in water samples in the Diep River are represented in Tables 3.3, 3.4 and 3.5. Lead was not detected in any of the samples analysed for in the Diep River. The recorded concentrations for Cu ranged from 0.1 mg· ℓ^{-1} during Weeks 1 and 36, at Sites C and D, respectively, to $0.8 \text{ mg} \cdot l^{-1}$ during Week 32 at Site D (Table 3.4). These concentrations for Cu were higher than the recommended concentrations of $0.002 - 0.012 \text{ mg} \cdot l^{-1}$, 0.002 - 0.004 $mg \cdot l^{-1}$, 0.0015 $mg \cdot l^{-1}$ and 0.0001 - 0.00015 $mg \cdot l^{-1}$ as stipulated by DWAF (1996b), the CCME (2001), Martin and Windom (1991) and ANZECC (2000), respectively (Table 3.5). Similar to the result obtained for Mn in the Plankenburg River, Mn concentrations recorded in the Diep River, always fell within the recommended concentrations of 1.3 mg· ℓ^1 (DWAF, 1996b) (Table 3.5), with the highest mean Mn concentration of 1.3 mg· ℓ^1 recorded during Week 27 at Site A (Table 3.3). The Mn concentrations however mostly exceeded the 'World average' of 0.0015 $mg \cdot l^{-1}$ (Martin and Windom, 1991) (Table 3.5). The mean metal concentrations recorded for Ni fluctuated throughout the entire study period, ranging from values below the detection limit to 0.4 mg ℓ^{-1} during Weeks 23 and 32 at Sites D and C, respectively. The recorded concentrations exceeded the recommended concentration of $0.025 - 0.15 \text{ mg} \cdot \ell^{-1}$ (CCME, 2001), $0.0005 \text{ mg} \cdot l^{-1}$ (Martin and Windom, 1991) and the Australian and New Zealand guidelines of 0.0001- 0.00015 mg· ℓ^{-1} (ANZECC, 2000) during Weeks 5, 14, 18, 23, 27 and 32 at various sampling sites.

Metal concentrations in sediment samples

Plankenburg River

Comparisons of the mean metal concentrations for AI, Fe, Mn, Zn, Cu, Ni and Pb are presented in Figs. 3.3, 3.4 and 3.5, for sediment samples collected from various sites along the Plankenburg River. No recommended sediment quality guidelines for AI, Fe, Mn, Pb, Ni, Cu and Zn were available from DWAF (1996b) and the 'World average' (Martin and Windom, 1991), and only guidelines for Cu and Zn were available from the CCME (2001). Guidelines for Cu, Pb, Ni and Zn were available from ANZECC (2000). The highest Al concentration of 15 018 mg·kg⁻¹ was recorded during Week 1 at Site C (Fig. 3.3). The lowest mean Al concentration of 1 609 mg·kg⁻¹ was recorded during the entire study period ranged from 3 763 mg·kg⁻¹ recorded at site D, during Week 52 to 19 179 mg·kg⁻¹ recorded during Week 1 at Site C (Fig. 3.3).

The highest Mn concentration of 225 mg·kg⁻¹ was recorded during Week 5 at Site A, while the lowest Mn concentration of 15.93 mg·kg⁻¹ was recorded during Week 22 at Site B in the Plankenburg River (Fig. 3.4). The highest Zn concentration recorded in the Plankenburg River was 269.5 mg·kg⁻¹ during Week 1 at Site B (Fig. 3.4). The highest recorded concentration was significantly higher (p < 0.05) than the recommended environmental quality guideline of 123 mg·kg⁻¹ in freshwater sediment as stipulated by

the CCME (2001) and 200 mg·kg⁻¹ as stipulated by ANZECC (2000). The mean metal concentrations recorded for Zn fluctuated throughout the study period, exceeding the recommended concentrations intermittently, with the exception of Site A, where all the concentrations fell below the recommended concentrations of the CCME (2001) and ANZECC (2000).

The highest Pb concentration in the Plankenburg River was recorded at 275 mg·kg⁻¹ during Week 9 at Site C, with the lowest concentration of 7.38 mg·kg⁻¹ recorded during Week 52 at Site C (Fig. 3.5). The highest Pb concentration exceeded the Australian and New Zealand quality guideline of 50 mg·kg⁻¹ (ANZECC, 2000). The highest (11.7 mg·kg⁻¹) and lowest (0.62 mg·kg⁻¹) Ni concentrations were recorded during Weeks 1 and 52 at Sites C and D, respectively (Fig. 3.5). The highest Ni concentration was lower than the quality guideline as stipulated by ANZECC (2000).

The highest Cu concentration of 251.8 mg·kg⁻¹ was recorded during Week 9 at Site C (Fig. 3.5). This concentration was significantly higher (p < 0.05) than the recommended environmental quality guideline of 35.7 mg·kg⁻¹ in freshwater sediment as stipulated by the CCME (2001) and the Australian and New Zealand quality guideline of 65 mg·kg⁻¹ (ANZECC, 2000). The Cu concentrations fluctuated throughout the entire study period. At Sites A, B and D of the Plankenburg River, concentrations were generally lower than the recommended guidelines, while Cu concentrations recorded at Site C were in most cases higher than the recommended guidelines (Fig. 3.5).

Diep River

Comparisons of the mean metal concentrations for Al and Fe, Mn and Zn and Cu, Ni and Pb are presented in Figs. 3.6, 3.7 and 3.8, respectively, for sediment samples

collected from various sites along the Diep River. No quality guidelines for Al, Cu, Fe, Mn, Ni, Pb and Zn were available from DWAF and the 'World average' (Martin and Windom, 1991) and guidelines for only Cu and Zn were available from the CCME (2001). Guidelines for Cu, Ni, Pb and Zn were available from ANZECC (2000). The highest mean Al concentration of 14 363.8 mg·kg⁻¹ was recorded during Week 1 at Site A in the Diep River (Fig. 3.6). The lowest mean Al concentration was recorded at 175.5 mg·kg⁻¹ during Week 1 at Site D (Fig. 3.6). The mean metal concentrations recorded for Fe ranged from 299.3 mg·kg⁻¹ during Week 14 at Site B to 106 379.5 mg·kg⁻¹ during Week 9 at Site C (Fig. 3.6).

The highest mean concentrations for Mn and Zn, were 1 353.5 mg·kg⁻¹ and 1 081.2 mg·kg⁻¹ during Week 1 at Sites C and A, respectively (Fig. 3.7). The highest mean Zn concentration of 1 081.2 mg·kg⁻¹ was significantly (p < 0.05) higher than the recommended Canadian sediment quality guidelines of 123 mg·kg⁻¹ (CCME, 2001) and the Australian and New Zealand guideline of 200 mg·kg⁻¹ (ANZECC, 2000). The mean metal concentrations recorded for Zn fluctuated above and below the recommended concentration for most of the sampling sites, except for Site D at the Diep River, where all the concentrations fell below the recommended concentration.

The highest mean metal concentration of 643.06 mg·kg⁻¹ recorded for Pb during Week 1 at Site A was higher than the recommended concentration of 50 mg·kg⁻¹ as stipulated by ANZECC (2000). For Ni, the highest mean concentration of 15.81 mg·kg⁻¹, recorded during Week 9, at Site C (Fig. 3.8), was lower than the ANZECC guideline of 21 mg·kg⁻¹ (ANZECC, 2000). The highest Cu concentration recorded in the Diep River was 370.5 mg·kg⁻¹ during Week 1 at Site B (Fig. 3.8). This concentration was significantly higher (p < 0.05) than the recommended Canadian environmental quality guideline of 35.7 mg·kg⁻¹ in freshwater sediment as stipulated by the CCME (2001) and

65 mg·kg⁻¹, as stipulated by ANZECC (2000). The Cu concentrations also fluctuated above and below the recommended guideline at Sites A, B and C. Copper concentrations did not exceed the recommended guideline at Site D (Fig. 3.8).

Discussion

Metal concentrations in water samples

For all the sites investigated along the Plankenburg River, the results for metal concentrations fluctuated throughout the study period and no specific point sources of pollution could be identified. The different sites were situated close to agricultural areas and residential areas (Site A), the informal settlement of Kayamandi (Site B), the substation in the industrial area of Stellenbosch (Site C) and the industrial area at the Adam Tas Bridge (Site D). In a previous investigation into the metal contamination of the Berg River, Western Cape, Jackson et al. (2007) showed that Mn, Al and Fe were recorded at higher concentrations at an agricultural area situated along this river system. Correspondingly, the agricultural area (Site A) situated along the Plankenburg River was found to be one of the possible sources of Cu, Zn, Ni and Fe pollution, as elevated concentrations of these metals were recorded at this particular site. Similar to farmers in the Paarl/Wellington area for the Berg River, the farmers in Stellenbosch use the same pesticides, such as Mancozeb[™] and Copperflo, among others, to treat their crops. Copper is a major component of Copperflo, while Mancozeb[™] is composed of 60% Mn and Zn (Acrobat[®]MZ, 2005). Vermeulen et al. (2001) stated that 1343 x 10³ kg Mancozeb[™] per annum is utilised in agricultural areas in the Western Cape. The Fisheries and Aguaculture Department (Botswana) compiled a review in 2007, on heavy metals in aquatic systems, where they identified the major sources of pollution and most commonly documented pollutants in aquatic systems. They found that fertilisers and biocides, which include pesticides and herbicides, are a major source of Cd, Hg, Pb, Al, arsenic (As), chromium (Cr), Cu, Mn, Ni, Zn and tin (Sn) pollution.

A stormwater drain flowing directly from the informal settlement of Kayamandi enters the river at Site B. Effluent from household products and waste could leach into the river via this stormwater drain and influence the metal concentrations at this site. Site C is situated close to the industrial area which includes amongst others spraypainters, panel-beaters and yoghurt manufacturers. All the metals analysed were found at elevated concentrations at Site C and effluent or waste from the surrounding areas may enter the river due to the leaching of waste from the surrounding factories into the river system. The increased and continued pollution of the Plankenburg River can adversely affect the primary uses of the river water, such as supplying water for irrigation. The concentrations recorded during the study generally fell within the guidelines for irrigation water for DWAF (1996c) and ANZECC (2000) for all the metals analysed, except for Fe, where the highest concentrations of 48 mg ℓ^{1} exceeded the recommended guidelines of 20 mg ℓ^1 (DWAF, 1996c) and 10 mg ℓ^1 (ANZECC, 2000). The increased Fe concentration could result in a deposition of an Fe coating on plants, which can interfere with photosynthesis, leading to plant damage and death. This can in turn negatively impact the export of fruits and wine due to the production of below par products, which could influence South Africa's economy (DWAF, 2001).

As with the results for the Plankenburg River, the point sources of pollution at the Diep River could not be conclusively identified. The different sites were situated close to the Zoarvlei Nature Reserve - industrial and residential areas (Site A), the Theo Marais Sportsclub – industrial and residential areas (Site B), the Potsdam Wastewater treatment

works (Site C) and the Rietvlei Boating club and Nature Reserve (Site D). No direct correlation between rainfall, pH or temperature could be drawn at both rivers, as the concentrations recorded in the water samples fluctuated throughout the study period. From the results it was concluded that Sites A and B contributed to the Al, Fe and Zn pollution in the Diep River, especially during Weeks 1 and 27. According to the Fisheries and Aquaculture Department (2007) of Botswana, industrial waste, such as pigments, paints, alloys, solders and batteries, are the primary sources of Pb, Zn, Mn, Al, Cu and Fe in the environment. In the Diep River, the pollution incidences at the various sites could have been influenced by the leaching of industrial effluent from the surrounding industries into the river. These industries include numerous panel-beaters, Al works, chemical manufacturers (cleaning materials), petrol stations and cold storage facilities. As with the Plankenburg River, pollution could possibly be attributed to improper waste discharge and the leaching of effluent and waste products into the river.

Metal concentrations in sediment samples

Comparison of the overall results obtained at the various sites, showed that the point sources of pollution at the Plankenburg River could not conclusively be identified as concentrations at the various sites fluctuated throughout the entire study period. The increased concentrations for Al and Fe at the different sites, relative to the other metals analysed for, could be ascribed to elevated Al and Fe pollution at the different sampling times. For both Al and Fe, the highest mean metal concentrations were recorded at Site C of the Plankenburg River, which is situated close to the industrial area in Stellenbosch. At Site A (located in the agricultural area), the sources of Al, Mn and Fe contamination of the Plankenburg River, could be due to the leaching of pesticides, fertilisers and

algicides, utilised in the surrounding farming areas, into the river (Jackson et al., 2007). The concentrations recorded for Cu and Zn at the agricultural area fell within the recommended guidelines of the CCME (2001) and ANZECC (2000). The concentrations of Fe and Al were however, recorded in significantly high (p < 0.05) concentrations. Iron and AI are also two of the most abundant naturally occurring elements in the environment [Agency for Toxic Substances and Disease Registry (ATSDR), 1995]. Iron is the most abundant element in the Earth's crust (35%) with AI as the third most abundant element, constituting 7.3%. At Site B (the informal settlement), Fe, Zn and Pb could have leached into the river via a nearby stormwater drain, through which waste from the settlement is discarded. The galvanised sheeting used in housing materials in the informal settlement is composed of Fe coated with Zn, to provide resistance to abrasion (Surfacequery, 2007). These results were similar to that obtained from a report compiled by the Nairobi River Basin Programme Phase II Pollution Monitoring Stakeholders in 2003. The water and sediment guality of the Moitoine- and Ngong Rivers was monitored and results showed that Fe and Zn concentrations were high at the site situated in the Kibera informal settlement. The authors attributed this to the use of Fe sheets galvanised with Zn as roofing and building materials in the settlement. The industrial area situated along the banks of the Plankenburg River, houses different industries, which include amongst others spray painters, a cheese factory and panelbeaters, from which effluent could be discharged into the river, accounting for the increased concentrations of metals.

A comparison of the overall results obtained at the various sites along the Diep River could not conclusively identify any definite point source of metal contamination. As with results obtained at the Plankenburg River the elevated metal concentrations at specific sites during the sampling period could be attributed to pollution incidences. No direct correlation between rainfall, pH or temperature could be drawn at both rivers, as concentrations recorded in the sediment samples fluctuated throughout the study period. Increased concentrations could be due to the leaching of industrial waste into the river at Sites A and B, which are situated close to the industrial area. These industries include amongst others spray painting, paint manufacturers, a pharmaceutical company, chemical manufacturing companies and concrete manufacturers. The highest mean concentrations recorded for Al along the Diep River, were at Sites A and C, which is situated close to the industrial area and the oil refinery, respectively. The highest mean concentrations for Fe recorded along the Diep River were at Site C (Potsdam Wastewater Treatment Works), which is situated close to an oil refinery.

Aluminium products are also used in production equipment and as containers for chemicals and food beverage products in the area. Corrosion of Al is a result of the combination of sulphur dioxide, chlorides, phosphates, nitrates and other industrial emissions with precipitation or dew, resulting in increased Al concentrations in the sediment samples as Al could leach into the surrounding environment. The surrounding industrial activities could all have a significant impact on the water source and the surrounding environment. Waste from a nearby oil refinery could also enter the river via stormwater drains at Site C, the Potsdam Wastewater Treatment Works.

According to the Fisheries and Aquaculture Department (2007) the metals associated with oil refinery discharge are Fe, Ni, Pb, Mn and Zn. Mwamburi (2003) found increased concentrations of Fe, Mn, Zn, Cr and Al in sediment samples of the Kasat River, Kenya. The increases in metal concentrations in comparison with unpolluted sites could be correlated to the direct waste input into the Kasat River from municipal and industrial sources. Singh et al. (2005) studied the concentrations of Cd, Cr, Cu, Fe, Pb, Mn, Ni and Zn in water and bed sediments of the Gomti River (India). Water and sediment samples were collected from 10 different locations and analysed using ICP-AES. The heavy metal concentrations found in the river water were 0.0001 to 0.0005 mg· ℓ^{-1} (Cd), 0.0015 to 0.0688 mg· ℓ^{-1} (Cr), 0.0013 to 0.0.0043 mg· ℓ^{-1} (Cu), 0.0791 to 0.3190 mg· ℓ^{-1} (Fe), 0.0038 to 0.0.0973 mg· ℓ^{-1} (Mn), 0.0066 to 0.011 mg· ℓ^{-1} (Ni), 0.0158 to 0.0276 mg· ℓ^{-1} (Pb) and 0.0144 to 0.0298 mg· ℓ^{-1} (Zn). In the sediment samples, the concentrations were 0.7 to 7.9 μ g·g⁻¹ (Cd), 6.1 to 0.60 μ g·g⁻¹ (Cr), 3.7 to 35.7 μ g·g⁻¹ (Cu), 5051.5 to 8291.5 μ g·g⁻¹ (Fe), 134.9 to 320.5 μ g·g⁻¹ (Mn), 13.9 to 37.4 μ g·g⁻¹ (Ni), 21.3 to 92.2 μ g·g⁻¹ (Pb) and 15.7 to 99.4 μ g·g⁻¹ (Zn). The authors concluded that the high concentrations were due to a discharge of industrial effluent from various sources, including municipal waste, untreated sewage and agrochemical runoff from nearby cities and villages into the river water. Based on the geoaccumulation indices, the Gomti River sediments from Neemsar to Jaunpur was polluted with Pb (moderately), Cd (moderately polluted to highly polluted) and Ni (sediment was highly polluted).

Davies et al. (2006) evaluated the accumulation of Cr, Cd and Pb in water, sediment and periwinkle (*Tympanotonus fuscatus var radula*; shell and soft tissues) from 4 stations along Elechi Creek (Nigeria), which receive effluent from heavily industrialised and highly populated settlements. Chromium, Cd and Pb concentrations in sediment, water and periwinkles was determined using Buck Scientific Atomic Absorption/ Emission Spectrophotometry. The results showed that the concentrations of Cr were highest in both the sediment and water samples at all the sampling sites, where concentrations of 0.01 mg·kg⁻¹ were recorded. The concentrations of these metals were higher in the periwinkles, which is consumed by the surrounding human population. The authors concluded that for future use, the metal concentrations in sediment must be monitored on a regular basis. As with the results recorded in the present study, the concentrations recorded in the sediment samples exceeded the concentrations recorded in the water samples.

The effect of anthropogenic inputs on the accumulation of metals in sediment at the Hugli River (India), were studied by Sarkar et al. (2004). Of the 8 stations studied, all the elements (AI, Fe, Mn, Zn, Cr, Pb, Ni, Sn, gallium (Ga), vanadium (V), bismuth (Bi), cerium (Ce) and As) analysed for, displayed elevated concentrations at the Gangasagar site (mouth of the river). This was presumably due to the metal-containing effluent or discharge from upstream located oil refineries, fertilisers, pesticides, a sulphuric acid plant, a battery manufacturing plant, tanneries and thermal power plants. In the present study, the exact point sources of pollution could also not conclusively be identified. The industrial and residential areas, waterworks and oil refinery could all have contributed to the metal contamination of the river. The elevated levels of metals could therefore be attributed to anthropogenic sources. In the present study, the recorded concentrations for metals in sediment samples for Cu and Zn at both rivers exceeded the recommended concentrations of the CCME (2001), ANZECC (2000) and Micó et al. (2007), while the Pb concentration exceeded the recommended guidelines of ANZECC (2000) and the baseline values determined by Micó et al. (2007).

Baseline values for heavy metals were proposed by Micó et al. (2007) to identify soil contamination in Alicante, Spain. Cadmium, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn concentrations were determined using atomic absorption spectrometry. The baseline values identified were 0.7 mg·kg⁻¹, 11 mg·kg⁻¹, 36 mg·kg⁻¹, 28 mg·kg⁻¹, 19,822 mg·kg⁻¹, 402 mg·kg⁻¹, 31 mg·kg⁻¹, 28 mg·kg⁻¹ and 83 mg·kg⁻¹ for Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn, respectively. The authors concluded that the baseline concentrations would be beneficial to compare the concentrations of metals for which there are no recommended guality guidelines, such as Al, Fe and Mn. The values could also provide a basis to identify contaminated sites. The concentration of Fe in the soil recorded by Micó et al. (2007) was comparable to the concentrations of Fe recorded in the Plankenburg River, but lower than the concentration for Fe recorded in the Diep River. The Mn concentrations recorded at the Plankenburg River was lower than the Micó et al. (2007) results, but the Diep River result exceeded to baseline concentration recorded by Micó et al. (2007). The highest Cu, Pb and Zn concentrations recorded at both rivers were significantly higher (p < 0.05) than the baseline concentration stipulated by Micó et al. (2007), while for Ni, the recorded concentrations at both rivers were below the baseline concentrations of Micó et al. (2007). Results from the present study show that the metal concentrations in the river systems should routinely be analysed. The national guidelines should be updated or revised to accurately reflect the current state of the rivers and pollution influences.

Conclusions

The major conclusions of the study include the following:

- Aluminium and Fe concentrations were higher than all the other metals analysed for in the water samples collected from the Plankenburg River, which exceeded the guidelines stipulated by DWAF and the CCME (Al and Fe) and the 'World average' (Fe).
- Concentrations of Cu and Zn (with the exception of Week 1, Site B) in the Plankenburg River water samples exceeded the guidelines stipulated by the CCME, DWAF, ANZECC and the 'World average'.
- Concentrations of Mn fell within the DWAF guidelines, as well as the 'World average'. No guidelines for Mn were available from the CCME.

- No Pb could be detected in any of the Plankenburg and Diep River water samples.
- The highest mean metal concentrations in sediment samples were recorded for Al and Fe at Site C (substation in the industrial area) in the Plankenburg River.
- The highest mean metal concentrations in water samples were recorded for Al, Fe and Zn at Site A (industrial area) in the Diep River, which exceeded the guidelines stipulated by DWAF, the CCME, ANZECC and the 'World average', and for Fe and Zn, the baseline values of Micó et al. (2007).
- Concentrations for Cu in water samples from the Diep River exceeded the recommended concentrations for ANZECC, DWAF, the 'World average' and the CCME, while Ni concentrations fluctuated above and below the recommended guidelines at Sites A, B, C and D. Manganese concentrations fell below the recommended guideline during the sampling period, with the exception of Week 27, where the Mn concentration was 1.3 mg·ℓ⁻¹, at Site A.
- The highest mean Al concentration in sediment samples from the Diep River was recorded at Site A (industrial area) and the highest mean Fe concentration was recorded at Site C (wastewater treatment works). The highest Fe concentration was significantly higher (p < 0.05) than the baseline value obtained by Mico et al. (2007).
- Possible sources of contamination of the Plankenburg River could be ascribed to the leaching of household waste into the river water from the informal- and formal residential settlements, as well as the leaching of industrial effluent from the industries situated close to the river.

- In addition, contamination of the Plankenburg River could also have been due to the excessive use of pesticides and insecticides on farms bordering the river system and the discarding of these pesticides into the rivers.
- Possible sources of contamination of the Diep River could have been the leaching of industrial waste from various industries into the sampled sites along the banks of the river, as well as waste from the nearby oil refinery.
- Metal concentration analysis should be routinely performed to ensure an accurate assessment of the current state of the rivers, and based on these results quality guidelines should be adapted accordingly.

Acknowledgements

The National Research Foundation (NRF) and Cape Peninsula University of Technology (CPUT) are thanked for financial support. Shirley Clark and Koos Retief (Blaauwberg Nature Conservation Group) are thanked for their assistance.

References

ACROBAT® MZ (2005) Fungicide for use on potatoes and flue cured tobacco. Cited online at > URL file://E:\pesticide\ACROBAT MZ.htm

AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY (ATSDR) (1995) Aluminium, Material Safety Data Sheet, Atlanta, Georgia, USA.

- AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY (ATSDR) (2000) Toxicological Profile for Manganese. U.S. Department of Health and Human Services, Public Health Service. Atlanta, Georgia, USA.
- AUSTRALIAN AND NEW ZEALAND ENVIRONMENT AND CONSERVATION COUNCIL (ANZECC & ARMCANZ) (2000). Australian and New Zealand guidelines for fresh and marine water quality. National Water Quality Management Strategy Paper No 4, Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand, Canberra, Australia.
- BERNARD A (2008) Cadmium & its adverse effects on human health. *Indian J. Med. Res.* **128** 557-564.
- CALDERON RL (2000) The epidemiology of chemical contaminants of drinking water. *Food Chem. Toxicol.* **38** S13-S20.
- CANADIAN COUNCIL OF MINISTERS OF THE ENVIRONMENT (CCME) (2001) Canadian Sediment Quality guidelines for the Protection of Aquatic Life: Summary tables. Updated in: *Canadian environmental quality guidelines,* 1999 Canadian Council of Ministers of the Environment, Winnipeg, Canada.
- DAVIES OA, ALLISON ME and UYI HS. (2006) Bioaccumulation of heavy metals in water, sediment and periwinkle (*Tympanotonus fuscatus var radula*) from the Elechi Creek, Niger Delta. *African J. Biotechnol.* **5** (10) 968-973.

DEPARTMENT OF WATER AFFAIRS AND FORESTRY (DWAF) (1996a) Water Quality Guidelines, Domestic use (2nd edn.). **Vol. 1**. DWAF, Pretoria, South Africa.

- DEPARTMENT OF WATER AFFAIRS AND FORESTRY (DWAF) (1996b) South African Water Quality Guidelines, Aquatic Ecosystems. **Vol.7.** Government printer, Pretoria, South Africa.
- DEPARTMENT OF WATER AFFAIRS AND FORESTRY (DWAF) (1996c) South African Agricultural Water Use, Irrigation (2nd edn.). **Vol.4.** DWAF, Pretoria, South Africa.
- DEPARTMENT OF WATER AFFAIRS AND FORESTRY (2001) Managing the Water Quality Effects of Settlements : Managing the Water Quality Impacts of Pollution in two Towns. Technical Supporting Document. DWAF, Pretoria, South Africa, pp. 21-27.
- DEPARTMENT OF WATER AFFAIRS AND FORESTRY (2004) National Water Resource Strategy (Chapter 2) - South Africa's Water Situation and strategies to balance supply and demand (1st edn.). pp. 15-54.
- DUNN OJ and CLARK VA (1987) *Applied statistics: Analysis of Variance and Regression* (2nd edn.). John Wiley and Sons, London, England.
- FATOKI OS and AWOFULU R (2003) Levels of Cd, Hg and Zn in some surface waters from the Eastern Cape Province, South Africa. *Water SA* **29** (4) 375-380.

- FIANKO JR, OSAE S, ADOMAKO D, ADOTEY DK and SERFOR-ARMAH Y (2007) Assessment of Heavy Metal Pollution of the Iture Estuary in the Central Region of Ghana. *Environ. Monit. Assess.* **131** 467-473.
- FISHERIES AND AQUACULTURE DEPARTMENT (2007) Review of Heavy Metals. Cited online at > URL <u>file://F:\Report (No 22) on the ninth Steering Committee Meeting,</u> <u>Gaborone, Botswana.</u>
- FRIBERG L, ELINDER CG, KJELLSTROEM T and NORDBERG GF (eds.) (1986) Cadmium and Health: A Toxicological and Epidemiological Appraisal. Vol 11, Effects and Response. CRC Press, Boca Raton, Florida.
- GRINDLEY JR and DUDLEY S (1988) Estuaries of the Cape, Part II: Synopses of available information on individual systems. Report No. 28 Rietvlei/Diep CW 24/25.

HAZARDS CENTRE and PEOPLE'S SCIENCE INSTITUTE (2005) Effects on Human Health.

HILLS P, ZHANG L and LIU JH (1998) Transboundary pollution between Guangdong Province and Hong Kong: threats to water quality in the Pearl River Estuary and their implications for environmental policy and planning. *J. Environ. Plan. Manage* **41** (3) 375-396.

- HO KC, CHOW YL and YAU JTS (2003) Chemical and microbiological qualities of the East River (Dongjiang) water, with particular reference to drinking water supply in Hong Kong. *Chemos.* **52** 1441-1450.
- HOLTZHAUSEN L (2002) The war for water. Fighting the battle for the last drop. WASE 22 29-29.
- JACKSON VA, PAULSE AN, VAN STORMBROEK T, ODENDAAL JP and KHAN W (2007) Investigation into metal contamination of the Berg River, Western Cape, South Africa. *Water SA* **33** 175-182.

JARUP L (2002) Cadmium overload and toxicity. Nephrol. Dial. Transpl. 17(Suppl.2) 35-39.

- MAANAN M, ZOURARAH B, CARRUESCO C, AAJJANE A and NAUD J (2004) The distribution of heavy metals in the Sidi Moussa lagoon sediments (Atlantic Moroccan Coast). *J. Afr. Earth Sci.* **39** 473-483.
- MARCHAND C, LALLIER-VERÈGS E, BALTZER F, ALBÉRIC P, COSSA D and BAILLIF P (2006) Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. *Mar. Chem.* **98** 1-17.
- MARTIN JM and WINDOM HL (1991) Present and future roles of ocean margins in regulating marine biogeochemical cycles of trace elements. In: Mantoura RFC, Martin JM and Wollast R (eds.) *Ocean Margin Processes in Global Change*. John Wiley & Sons Ltd., New Jersey, USA.

- MICÓ C, PERIS M, RECATALÁ L, SÁNCHEZ J (2007) Baseline values for heavy metals in agricultural soils in an European Mediterranean region. *Sci. Tot. Environ.* **378** 13-17.
- MWAMBURI J (2003) Variations in trace elements in bottom sediments of major rivers in Lake Victoria's basin, Kenya. *Lakes & Reservoirs: Res. Manage.* **8** 5-13.
- MZIMELA HM, WEPENER V and CYRUS DP (2003) Seasonal variation of selected metals in sediments, water and tissues of the groovy mullet *Liza dumerelii* (Mugilidae) from the Mhlathuze Estuary, South Africa. *Mar. Poll. Bull.* **46** (5) 659-664.
- NAIROBI RIVER BASIN PROGRAMME PHASE II POLLUTION MONITORING STAKEHOLDERS (2003) NRBP – PhaseII (UoN/UNEP project Feb – Nov. 2003) Final Report pp. 1 – 74.
- NATURAL RESOURCES MANAGEMENT AND ENVIRONMENT DEPARTMENT (2007) Unlocking the Water potential of agriculture. Cited online at > URL <u>http://www.fao.org/docrep/006/y4525e/y4525e05.htm</u> (20 February 2008).
- ODENDAAL JP and REINECKE AJ (1999) The sublethal effects and accumulation of cadmium in the terrestrial isopod, *Porcellio laevis* Latr. (Crustacea, Isopoda). *Arch. Environ. Contam. Toxicol.* **36** 64-69.
- PEGRAM GC, QUIBELL G and HINSCH M (1999) The nonpoint source impacts of peri-urban settlements in South Africa: implications for their management. *Water Sci. Technol.* 39 283-290.

PRANGE JA and DENNISON WC (2000) Physiological responses of five seagrass species to trace metals. *Mar. Pollut. Bull.* **41** 327-336.

- SALEH MA, EWANE E, JONES J and WILSON BL (2000) Monitoring Wadi El Raiyan lakes of the Egyptian desert for inorganic pollutants by Ion-selective electrodes, Ion chromatography and Inductively Coupled Plasma Spectroscopy. *Ecotoxicol. Environ. Saf.* **45** 310-316.
- SARKAR KS, FRANČIŠKOVIĆ-BILINSKI, BHATTACHARYA A, SAHA M and BILINSKI H (2004) Levels of elements in the surficial estuarine sediments of the Hugli River, northeast India and their environmental implications. *Environ. Intern.* **30** 1089-1098.
- SCHUTTE CF and PRETORIUS WA (1997) Water demand and population growth. *Water SA* **24** 265-268.
- SINGH VK, SINGH KP and MOHAN D (2005) Status of heavy metals in water and bed sediments of River Gomti- a tributary of the Ganga River, India. *Environ. Monit. Assess.* 105 43-67.
- SURFACEQUERY.COM (2007) Galvanised Fe sheets. Cited online at > URL <u>http://surface.com/search/index.php</u> (14 January 2008).

- US DEPARTMENT of HEALTH and HUMAN SERVICES (1978) Centres for Disease Control National Institute for Occupational Safety and Health. Occupational Health Guideline for Copper Fume.
- VERMEULEN LA, REINECKE AJ and REINECKE SA (2001) Evaluation of the fungicide manganese-zinc ethylene bis(dithiocarbamate) (Mancozeb) for sublethal and acute toxicity to *Eisenia fetida* (Oligochaeta). *Ecotox. Environ. Saf.* 48 183-189.
- WADE PC, WOODBORNE S, MORRIS WM, VOS P and JARVIS NV (2000) Tier 1 Risk Assessment of Selected Radionuclides in Sediment of the Mooi River Catchment. WCR Report No. K5/1059. Water Research Commission, Pretoria, South Africa.
- WITMANN GTW and FÖRSTNER U (1977) Heavy metal enrichment in mine drainage: III The Klerksdorp, West Wits and Evander Goldfields. *S. Afr. J. Sci.* **73** 53-57.
- WRIGHT D and WELBOURNE P (2002) Environmental Toxicology. Factors affecting toxicology. Cambridge environmental chemistry series 11. Cambridge University Press.

List of figures and tables

Figure 3.1. Map of the Plankenburg River indicating the different sampling points: Site A - agricultural farming and residential areas; Site B - close to the informal settlement of Kayamandi; Site C – Substation in the industrial area and Site D - industrial area at Adam Tas Bridge.

Figure 3.2. Map of the Diep River indicating the different sampling points: Site A - Zoarvlei Nature Reserve (industrial as well as residential areas); Site B - Theo Marais Sportsclub (Industrial and residential area); Site C – Potsdam Wastewater Treatment Works (close to an Oil Refinery and residential areas of Milnerton) and Site D - the Rietvlei Boating Club and Nature Reserve.

Figure 3.3. Metal concentrations (mg·kg⁻¹) (Al and Fe) in sediment samples obtained from 4 sites (A to D) in the Plankenburg River

Figure 3.4. Metal concentrations $(mg \cdot kg^{-1})$ (Mn and Zn) in sediment samples obtained from 4 sites (A to D) in the Plankenburg River

Figure 3.5. Metal concentrations (mg·kg⁻¹) (Cu, Ni and Pb) in sediment samples obtained from 4 sites (A to D) in the Plankenburg River.

Figure 3.6. Metal concentrations (mg·kg⁻¹) (Al and Fe) in sediment samples obtained from 4 sites (A to D) in the Diep River.

Figure 3.7. Metal concentrations $(mg \cdot kg^{-1})$ (Mn and Zn) in sediment samples obtained from 4 sites (A to D) in the Diep River.

Figure 3.8. Metal concentrations (mg·kg⁻¹) (Cu, Pb and Ni) in sediment samples obtained from 4 sites (A to D) in the Diep River.

Table 3.1. Metal concentrations $(mg \cdot l^{-1})$ (±SD) in water samples obtained from the Plankenburg River (Sites A and B).

Table 3.2. Metal concentrations $(mg \cdot \ell^{-1})$ (±SD) in water samples obtained from the Plankenburg River (Sites C and D)

Table 3.3. Metal concentrations $(mg \cdot \ell^{-1})$ (±SD) in water samples obtained from the Diep River (Sites A and B)

Table 3.4. Metal concentrations (mg· ℓ^{-1}) (±SD) in water samples obtained from the Diep River (Sites C and D)

Table 3.5. Concentrations obtained in water of the Plankenburg and Diep Rivers compared to recommended safe concentrations as stipulated by the Department of Water Affairs and Forestry (1996b), the Canadian Council of Ministers of the Environment Quality Guidelines (2001), the 'World Average' (Martin and Windom, 1991) and the Australian and New Zealand Environment and Conservation Council (ANZECC, 2000)

Figure 3.1

Map of the Plankenburg River indicating the different sampling points: Site A - agricultural farming and residential areas; Site B - close to the informal settlement of Kayamandi; Site C – Substation in the industrial area and Site D - industrial area at Adam Tas Bridge.

Figure 3.2

Map of the Diep River indicating the different sampling points: Site A - Zoarvlei Nature Reserve (industrial as well as residential areas); Site B - Theo Marais Sportsclub (Industrial and residential area); Site C – Potsdam Wastewater Treatment Works (close to an Oil Refinery and residential areas of Milnerton) and Site D - the Rietvlei Boating Club and Nature Reserve.

Metal concentrations (mg·kg⁻¹) (AI and Fe) in sediment samples obtained from 4 sites (A to D) in the Plankenburg River

Metal concentrations ($mg \cdot kg^{-1}$) (Mn and Zn) in sediment samples obtained from 4 sites (A to D) in the Plankenburg River

Metal concentrations (mg·kg⁻¹) (Cu, Ni and Pb) in sediment samples obtained from 4 sites (A to D) in the Plankenburg River

Metal concentrations (mg·kg⁻¹) (AI and Fe) in sediment samples obtained from 4 sites (A to D) in the Diep River

Metal concentrations (mg·kg⁻¹) (Mn and Zn) in sediment samples obtained from 4 sites (A to D) in the Diep River

Metal concentrations (mg·kg⁻¹) (Cu, Pb and Ni) in sediment samples obtained from 4 sites (A to D) in the Diep River

	Site A						Site B					
Weeks	[Cu]	[Mn]	[Ni]	[Zn]	[AI]	[Fe]	[Cu]	[Mn]	[Ni]	[Zn]	[AI]	[Fe]
1	1.1±0	0.2±0	0.5±0	0.3±0	0.3±0.1	5.1±0.2	1.7±1	°0±0	0.2±0	^a 0±0	0.5±0.3	4.4±0.7
5	0.8±0	0.2±0	0.2±0	0.3±0	0.5±0.1	15.3±6	0.6±0	0.1±0	0.2±0	0.1±0	0.6±0.1	9.7±1.9
9	0.8±0	0.1±0	0.2±0	0.4±0	0.8±0.1	26.5±5.4	0.6±0	0.1±0	0.2±0	0.4±0	1±0.1	25.8±6.8
18	0.4±0	0.1±0	0.3±0	0.2±0	0.8±0.1	10.9±3.3	0.5±0	0.2±0	0.2±0	0.4±0	13.6±4.2	0.5±0
22	0.5±0	0.02±0	0.2±0	0.4±0	0.9±0	12.13.6	0.5±0	0.04±0	0.3±0	0.1±0	1.4±0.2	5.1±0.6
27	0.4±0	0.1±0	0.2±0	0.2±0	0.6±0.1	5.8±1.7	0.4±0	0.1±0	0.1±0	0.2±0	0.3±0.1	4.9±1.2
36	0.5±0	0.1±0	0.3±0	0.4±0	0.7±0.1	29.8±14.9	0.5±0	^a 0±0	0.2±0	0.2±0	0.7±0.2	0.5±0.2
39	0.4±0	0.3±0	0.3±0	0.1±0	0.7±0.1	5±1.1	0.3±0	0.2±0	0.3±0	0.1±0	0.6±0.2	0.3±0.1
43	0.4±0	0.3±0	0.2±0	0.6±0	1.6±0.3	48±8.8	0.8±0	0.2±0	0.2±0	1±0	1.1±0.3	0.8±0.3
48	0.6±0	°0±0	0.3±0	0.1±0	0.4±0	10.44.8	0.4±0	^a 0±0	0.3±0	0.1±0	0.7±0.2	8.5±4.7
52	0.4±0	0.3±0	0.2±0	0.3±0	0.6±0.1	18.8±5.5	0.4±0	0.2±0	0.2±0	0.2±0	0.8±0.2	19.3±5.4

Metal concentrations (mg· ℓ^{-1}) (±SD*) in water samples obtained from the Plankenburg River (Sites A and B) Table 3.1

* standard deviation (SD) ^a = values below the detection limit
| | | | Si | te C | | | | | Site | e D | | |
|-------|-------|------------------|-------|-------|---------|-----------|-------|------------------|-------|-------|---------|-----------|
| Weeks | [Cu] | [Mn] | [Ni] | [Zn] | [AI] | [Fe] | [Cu] | [Mn] | [Ni] | [Zn] | [AI] | [Fe] |
| 1 | 2.2±1 | 0.2±0 | 0.5±0 | 0.3±0 | 0.6±0.3 | 5.1±0.3 | 1±0 | 0.1±0 | 0.4±0 | 0.3±0 | 0.5±0.1 | 5±0.2 |
| 5 | 0.5±0 | 0.1±0 | 0.2±0 | 0.3±0 | 0.7±0.2 | 19.2±2 | 0.6±0 | 0.1±0 | 0.3±0 | 0.3±0 | 0.6±0.4 | 15.9±1.4 |
| 9 | 0.6±0 | 0.2±0 | 0.2±0 | 0.4±0 | 1±0.1 | 20.6±3.6 | 0.6±0 | 0.1±0 | 0.2±0 | 0.4±0 | 0.8±0.1 | 17.1±3.8 |
| 18 | 0.4±0 | 0.1±0 | 0.3±0 | 0.2±0 | 0.8±0.1 | 10.2±2 | 0.4±0 | ^a 0±0 | 0.2±0 | 0.1±0 | 1±0.1 | 0.4±0.1 |
| 22 | 0.6±0 | 0.1±0 | 0.2±0 | 0.2±0 | 1.1±0.1 | 5.2±0.5 | 0.5±0 | ^a 0±0 | 0.2±0 | 0.1±0 | 0.9±0 | 4.4±0.8 |
| 27 | 1.1±2 | 0.4±1 | 0.1±2 | 1±1 | 1.6±2.5 | 25.7±12.6 | 0.3±0 | 0.1±0 | 0.1±0 | 0.3±0 | 0.4±0.1 | 10.1±7.5 |
| 36 | 0.5±0 | ^a 0±0 | 0.1±0 | 0.2±0 | 1±0.1 | 0.5±0.1 | 0.4±0 | ^a 0±0 | 0.2±0 | 0.2±0 | 6.8±0.7 | 0.4±0 |
| 39 | 0.6±0 | 0.4±0 | 0.3±0 | 1.1±0 | 0.9±0.1 | 0.6±0.2 | 0.7±0 | 0.1±0 | 0.2±0 | 0.5±0 | 2.1±0.2 | 31.3±13.7 |
| 43 | 0.5±0 | 0.3±0 | 0.2±0 | 0.5±0 | 0.8±0.1 | 0.5±0.1 | 0.6±0 | ^a 0±0 | 0.1±0 | 0.3±0 | 1.2±0.1 | 25.1±4.7 |
| 48 | 0.5±0 | °0±0 | 0.2±0 | 0.1±0 | 0.7±0.1 | 8.1±2 | 0.6±0 | ^a 0±0 | 0.2±0 | 0.2±0 | 0.6±0 | 6.6±1.2 |
| 52 | 0.4±0 | 0.1±0 | 0.2±0 | 0.2±0 | 0.4±0.2 | 12.6±6.2 | 0.3±0 | 0.1±0 | 0.1±0 | 0.2±0 | 0.4±0 | 4.6±0.5 |

Metal concentrations (mg· ℓ^{-1}) (±SD*) in water samples obtained from the Plankenburg River (Sites C and D) Table 3.2

* standard deviation (SD) ^a = values below the detection limit

			0.1	- •								
			SIT	e A						Site B		
Weeks	[Cu]	[Mn]	[Ni]	[Zn]	[AI]	[Fe]	[Cu]	[Mn]	[Ni]	[Zn]	[AI]	[Fe]
1	0.5±0.1	°0±0	0.1±0.1	1.8±0.1	4±0.9	72±12.7	0.2±0	°0±0	°0±0	0.7±0.3	0.8±0.3	13.2±4.4
5	0.5±0.1	0.2±0	0.3±0.1	0.5±0	3.5±0.5	19.9±3	0.4±0.2	^a 0±0	0.2±0.1	0.2±0	0.7±0.4	11.1±4.9
9	0.4±0.1	^a 0±0	^a 0±0	0.1±0.1	0.5±0	0.1±0.2	0.3±0	0.1±0	^a 0±0	0.5±0.5	0.3±0.4	7.3±2.9
14	0.5±0	0.3±0	0.1±0.1	1±0.2	1.1±0.6	99.9±16	0.6±0.1	0.3±0.1	^a 0±0	1.1±0.2	1.8±0.3	105.9±23.4
18	0.4±0.1	0.1±0.1	0.2±0.1	0.6±0.2	0.7±0.2	69±32.8	0.6±0	^a 0±0	^a 0±0	0.3±0.1	1.3±0.2	5.4±2.6
23	0.5±0.1	^a 0±0	0.2±0.1	0.3±0.1	1.1±0.2	4.7±0.8	0.4±0	0.3±0.2	^a 0±0	1.1±0.5	1.7±0.2	113.6±57.1
27	0.3±0	1.3±0.5	0.2±0.2	4.4±1.6	1±0.3	513±204.1	0.3±0.1	0.8±0.4	0.2±0.1	2.6±0.9	0.9±0.1	317.1±148
32	0.4±0.2	^a 0±0	0.1±0.1	0.4±0.1	0.5±0.3	12.8±8.4	0.4±0.1	°0±0	°0±0	0.5±0.1	0.3±0.1	11.1±2.3
36	0.5±0.1	^a 0±0	^a 0±0	0.4±0.1	0.7±0.2	0.7±0.4	0.1±0.1	0.1±0	^a 0±0	0.3±0.1	0.5±0.1	12±2

Table 3.3	Metal concentrations (mg·l	 (±SD*) in water samples obtained 	from the Diep River (Sites A and B)
-----------	----------------------------	--	-------------------------------------

* standard deviation (SD)
 a = values below the detection limit

		Site C					Site D					
Weeks	[Cu]	[Mn]	[Ni]	[Zn]	[AI]	[Fe]	[Cu]	[Mn]	[Ni]	[Zn]	[AI]	[Fe]
1	0.1±0	0±0.1	0.1±0.2	0.6±0.4	0.6±0.1	15.4±16.9	0.1±0	^a 0±0	^a 0±0	0.4±0.2	1±0.1	9.4±4.1
5	0.5±0.3	^a 0±0	0.2±0.1	0.2±0	0.6±0.4	11±9.4	0.6±0.1	^a 0±0	0.1±0.1	0.2±0	0.9±0.2	3.9±0.7
9	0.3±0.1	0.1±0	^a 0±0	0.2±0	^a 0±0	3.9±1.2	0.7±0	^a 0±0	^a 0±0	0.4±0.1	0.6±0.1	2.6±2.6
14	0.5±0.1	0.2±0.1	0.2±0.2	1±0.4	1.1±0.2	89.9±31.9	0.4±0	0.2±0.1	°0±0	0.9±0.1	1.2±0.2	98.9±13.1
18	0.6±0.1	^a 0±0	0.3±0.3	0.5±0.1	1.1±0.2	4.4±1.2	0.5±0.1	^a 0±0	°0±0	0.4±0.1	1.2±0.1	4.2±2.1
23	0.4±0	0.2±0.1	0.2±0.2	0.9±0.4	1.3±0.2	82.6±46.5	0.2±0	°0±0	0.4±0.1	0.5±0.1	1.3±0.2	10.5±5.3
27	0.6±0.3	a0±0	0.1±0.1	2.5±4.4	0.3±0.2	11±2.3	0.4±0.2	^a 0±0	0.1±0.1	0.5±0	0.4±0.2	16.2±3.4
32	0.3±0.1	^a 0±0	0.4±0.2	0.6±0.2	0.3±0.1	12.1±8	0.8±0.2	^a 0±0	0.2±0.2	0.6±0.1	0.5±0.1	6.4±1.6
36	0.1±0	0.1±0	^a 0±0	0.4±0.1	0.4±0	0.2±0.5	0.1±0.1	0.1±0	^a 0±0	0.8±0.2	1.1±1.1	23.9±10.9

Table 3.4	Metal concentrations (mg·l	¹) (±SD*) in water samples ob	otained from the Diep River	(Sites C and D)
-----------	----------------------------	---	-----------------------------	-----------------

* standard deviation (SD)
 a = values below the detection limit

Table 3.5 Concentrations obtained in water of the Plankenburg and Diep Rivers compared to recommended safe concentrations as stipulated by the Department of Water Affairs and Forestry (1996b), the Canadian Council of Ministers of the Environment Quality Guidelines (2001), the 'World average' (Martin and Windom, 1991) and the Australian and New Zealand Environment and Conservation Council (ANZECC, 2000)

Metal	Recommended	Environmental quality	'World average' for	Water quality	Mean metal	Mean metal
	safe concentrations	guidelines as	metal	guidelines as	concentrations	concentrations
	as stipulated by	stipulated by CCME	concentrations in	stipulated	obtained	obtained
	DWAF (1996b)	(2001) (mg·ℓ⁻¹)	freshwater by	ANZECC (2000)	in water (mg·ℓ⁻¹)	in water (mg·ℓ⁻¹)
	(mg•ℓ⁻¹)		Martin and Windom	(mg·ℓ ⁻¹)	(Plankenburg	(Diep River)
			(1991) (mg·ℓ ⁻¹)		River)	
AI	0.1 – 0.15	0.005 - 0.1	N/A	N/A	0.3 – 13.6	^a 0 – 4
Cu	0.002 - 0.012	0.002 - 0.004	0.0015	0.0001 - 0.00015	0.3 – 2.2	0.1 – 0.8
Fe	N/A	0.3	0.04	N/A	0.3 – 48	0.1 – 513
Mn	1.3	N/A	0.0015	N/A	^a 0 – 0.4	^a 0 – 1.3
Ni	N/A	0.025 – 0.15	0.0005	0.0001 - 0.00015	0.1 – 0.5	^a 0 – 0.4
Pb	N/A	0.001 – 0.007	N/A	N/A	^a 0 – ^a 0	^a 0 – 0
Zn	0.036	0.03	0.0006	0.0009	^a 0 – 1.1	0.1 – 4.4

N/A = Data not available

= values below the detection limit

1	Identification of Metal-tolerant Organisms Isolated from the
2	Plankenburg River, Western Cape, South Africa.
3	
4	Vanessa A. Jackson ¹ , Arnelia N. Paulse ¹ , Sehaam Khan ¹ , James P. Odendaal ³ ,
5	and Wesaal Khan ² *
6	¹ Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula
7	University of Technology, Bellville 7535, South Africa
8	^{2*} Department of Agricultural and Food Sciences, Faculty of Applied Science, Cape Peninsula
9	University of Technology, Cape Town 8000, South Africa
10	³ Department of Environmental Health and Occupational Studies, Faculty of Applied Science, Cape
11	Peninsula University of Technology, Cape Town 8000, South Africa
12	
13	
1/	
14	
15	
16	
17	
18	
19	
20	
- ° 01	
21	
22	
23	
24 25	
23 26	Tolue 27 21 460 2175. For every 27 21 460 2102 a meile therew@ervit as to
∠0	TEL +27 21 400 3173, Fax. +27 21 400 3193, E-Mail. <u>Khanwwcpul.ac.2a</u>

27 Abstract

28

29 The ability of biofilms to resist pollutants make them advantageous for use in bioremediation. The 30 objective of this investigation was to isolate metal-tolerant micro-organisms from a site along the 31 Plankenburg River. Microbial biofilms cultivated in multi-channelled flow cells were exposed to varying 32 concentrations of aluminium (AI), iron (Fe), copper (Cu), manganese (Mn), nickel (Ni) and zinc (Zn), stained with the BacLightTM viability probe, visualised using Epifluorescence Microscopy and analysed 33 34 using ScionImage. Exposure to the highest AI, Fe, Cu and Mn concentrations increased the 35 percentages of dead cells. A difference in live and dead cells exposed to the varying Zn and Ni 36 concentrations was not evident. When exposed to the lowest concentrations, no notable could be 37 detected in comparison with the untreated control. Possible metal-tolerant micro-organisms were 38 identified from the exposed flow cells using Polymerase Chain Reaction (PCR) and Deoxyribonucleic 39 Acid (DNA) sequencing, followed by Clustal X alignment and phylogenetic analysis. Phylogenetic 40 analysis identified a variety of organisms, including Bacillus sp., Pseudomonas sp., Delftia 41 tsuruhatensis strain A90, Kocuria kristinae strain 6J-5b, Comamonas testosteroni WDL7, 42 Stenotrophomonas maltophilia strain 776, Staphylococcus sp. MOLA:313, Micrococcus sp. TPR14, 43 Sphingomonas sp. 8b-1 and Microbacterium sp. PAO-12. Two major clusters could be distinguished 44 based on their Gram-reactions. 45 46 47 48 49 50

- Keywords: biofilms, Deoxyribonucleic Acid (DNA) sequencing, Epifluorescent Microscopy, flow cells,
 Polymerase Chain Reaction (PCR)
- 53
- 54

55 Introduction

56

57 Population growth and urbanisation, results in increased water resource utilisation. 58 Continued deposition of point- and non-point source pollutants, including industrial 59 effluents, agricultural runoff, leaking sewers, on-site sanitation at informal housing 60 and waste irrigation (Department of Environmental Affairs and Tourism 1996), 61 amongst others, adversely affects the surrounding environment.

Metal contamination in the environment can also be attributed to the natural occurrence of metals in soil, atmospheric deposits (Radenac et al. 2001) and the corrosion of building materials (Maanan et al. 2004). The metals most commonly associated with most river water systems are lead (Pb), copper (Cu), iron (Fe), cadmium (Cd), aluminium (Al), mercury (Hg), arsenic (As) and manganese (Mn) (Wright and Welbourne, 2002, Jackson et al. 2007).

Zinc (Zn), nickel (Ni), As, Hg, cobalt (Co) and Mn concentrations were studied in water and fish samples isolated from the Aba River, Nigeria, into which waste from various industries are discharged. Atomic Absorption Spectrometry (AAS) analysis, revealed elevated concentrations of Zn, Mn and As in fresh fish and elevated Ni and Hg concentrations in frozen fish found in a nearby market (Allinnor 2005).

In water and the environment, micro-organisms exist mostly as biofilm communities attached to surfaces (Teitzel and Parsek, 2003). Microbial biofilms exhibit high affinities for contaminants due to the ability of the exopolymers to bind and sequester antimicrobial agents from the surrounding environment (Hunt 1986). Biofilms have been shown by Roane and Pepper (2000) to be one of the most effective treatments for the removal of metals from metal-contaminated water Flow cell systems have been used to cultivate microbial biofilms *in vivo* (Caldwell et al. 2002). They are multi-channelled to allow for experimental replication and simplified handling. Teitzel and Parsek (2003) used a flow cell system to visualise the behaviour of biofilm-bound micro-organisms in response to Cu and Zn. The CLSM analysis revealed that the majority of cells in the outer layers were dead, in comparison to the untreated control, where the majority of cells were alive.

Microbial composition can be determined genetically (Christensen et al. 1998), through the amplification of the 16S or 23S rRNA region of the genomic DNA, using specific primers (Amann et al. 1995). The diversity of tolerant micro-organisms depends on nucleotide sequences variations (Martin 2002), ranging from 20% to 80% G+C (Ochman et al. 2005) among individual species sharing common ancestry. This genetic variation can then be visualised with phylogenetic trees (Martin 2002).

Chien et al. (2007) studied the microbial diversity in soil contaminated with effluent from a chemical industrial factory, using 16S rDNA. The organisms isolated were *Polyangium* spp., *Sphingomonas* spp., *Variovorax* spp., *Hafina* spp., *Clostridia*, *Acidobacteria*, the enterics and some uncultured strains. *Acinetobacter, Enterobacter and Stenotrophomonas* spp. also exhibited the ability to tolerate high concentrations of Cd.

97 The objective of this investigation was to isolate metal-tolerant micro-98 organisms from a metal contaminated site along the Plankenburg River. The micro-99 organisms were cultured and isolated in flow cell systems after exposure to varying 100 metal concentrations and identified using the Polymerase Chain Reaction (PCR) 101 technique and analysed phylogenetically.

103 Materials and Methods

104

105 Site description

106 A previous study identified four sampling sites along the Plankenburg River (Fig. 4.1) 107 (Jackson et al. 2008). These sites included Site A (Agricultural Farming and 108 Residential Areas); Site B (Closest point to Informal Settlement); Site C (Substation in 109 Industrial Area) and Site D (Industrial Area at Adam Tas Bridge). Results from this 110 study showed that the highest concentrations of metals were recorded at Site C 111 (Substation in the industrial area), which explains why the particular site was selected 112 to investigate the efficiency of the bioreactor systems to reduce metal concentrations 113 in the river water. Ten litres of river water was then collected from Site C (Fig. 4.1) in one ten litre plastic container and transported at 4°C. 114

115

116 Metal concentrations in river water

117 To determine the concentrations of AI, Cu, Fe, Mn, Ni and Zn in water (5 ml), samples were digested with 10 ml 55% nitric acid at 40°C for 60 minutes and then at 120°C for 118 119 180 minutes, using a Grant dry-block heater. A blank (control) of 10 ml 55% nitric acid 120 was analysed along with the collected samples to check for possible contamination. 121 The samples were cooled to room temperature, filtered with Whatman No. 6 filter 122 paper into 20 ml volumetric flasks, made up to a volume of 20 ml with distilled water 123 and subsequently filtered for a second time using 0.45 µm cellulose nitrate ultrafiltration membrane filters (Whatman) (Odendaal and Reinecke, 1999). 124 Metal 125 concentrations were determined using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) analysis according to the procedure outlined inSaleh et al. (2000).

128

129 Flow Cell Technique

130 Six multi-channelled (eight channels) flow cells were constructed from Perspex, a glass coverslip and silicone tubing. The flow channels were 5 mm wide, 30 mm long, 131 132 3 mm deep and were 4 mm in distance from the next channel. The glass coverslip 133 (50 mm x 75 mm) was kept in place on top of the flow cell with marine silicone glue 134 and provided an attachment surface for the microbial growth. Silicone tubing 135 (1.6 mm) was used for the flow through the respective channels from the reservoirs 136 (influent - collected river water) to the outlet (effluent). After construction, the flow cells were sterilised with a solution of sodium hypochlorite and flushed with distilled 137 138 water (Fig. 4.2). The collected river water was pumped through the flow cell systems, 139 using a Watson Marlow peristaltic pump (205S) (Watson Marlow Limited, Cornwall, 140 England), to ensure a constant flow rate at 2 rpms (revolutions per minute). After a three-week period, which allowed for maximum biofilm growth, the channels were 141 142 exposed to varying metal concentrations. Each flow cell was exposed to different 143 concentrations of AI, Fe, Cu, Mn, Ni and Zn (Table 4.1), based on concentrations 144 recorded during a previous study (Jackson et al. 2008). The first two channels of 145 each flow cell were not exposed to any metals and served as the controls. Each flow 146 cell channel was exposed to the respective metal concentrations for six hours, while 147 the peristaltic pump was switched off and the tubing was clamped.

148

150 **Exposure to the Baclight[™] viability probe**

151 After the six hour metal exposure period, one of each channel spiked with the 152 respective metal concentrations, as well as one of the unexposed control channels were stained with the multifluor LIVE/DEAD Baclight[™] fluorescent viability probe 153 (invitrogen – Molecular Probes[™], Oregan, USA). The stain was prepared by mixing 154 4μ l of the green fluorescing probe (SYTO 9) with 4μ l of the red fluorescing probe 155 (propidium iodide) and 1 ml of distilled water. The probe was allowed to attach to the 156 157 cell surfaces of the biofilm organisms for a period of 20 minutes. After the attachment 158 period, the pump was switched on to remove any excess dye. The channels not 159 exposed to the probe, were flushed by turning the pump up to its maximum flow rate 160 of 90 rpms in order to dislodge the attached biofilm growth. This microbial 161 suspension was collected into individual 50 ml Schott bottles.

162

163 Microscopy and Image Analysis

Epifluorescence microscopy was used in conjunction with the LIVE/DEAD BacLight[™] 164 probe (invitrogen – Molecular Probes[™], Oregan, USA) in order to provide total cell 165 166 counts, using images based on the relative abundance of micro-organisms 167 (Boulos et al. 1999). The images were visualised and captured using The Zeiss 168 Axiovert 200 motorised fluorescence microscope, which contains the Dapi, Alexa, 169 Cy3, GFP and Cy5 laser lines. It is also equipped with a monochrome Zeiss Axiocam 170 HR digital camera. The 100X, 1.4 NA oil immersion objective was used to visualise 171 the biofilm, along with an argon laser exciting the fluorophores. Ten randomly captured images along the surfaces of the attached coverslip were obtained from 172 173 each of the exposed channels using the Axiovision 4.6 Software Programme (Zeiss imaging systems), which were further used for viewing and simple image processing.
Ten images were randomly captured along the surfaces of the coverslips and the
percentage area covered by living and non-living biomass was determined using
ScionImage Analysis (Scioncorp.com). These techniques were performed in
duplicate and the results obtained were the averages of the replicates.

179

180 DNA Extraction and Agarose Gel Electrophoresis

181 The flushed material obtained from the unstained flow cell channels for each 182 respective metal, was spread plated onto nutrient agar plates and incubated at 37°C 183 for two days. Single colonies were then selected in order to isolate pure cultures and 184 DNA was extracted using the High pure PCR template preparation kit, as per manufacturer's instructions (Roche Diagnostics GmbH, Mannheim, Germany). Ten 185 186 microlitres of the extracted DNA samples were electrophoretically analysed on a 0.8% 187 molecular grade agarose gel containing 12 μ l of 0.5 μ g/ml ethidiumbromide (EtBr), 188 using 1 x Tris-acetate- ethylenediamine tetraacetic acid (TAE) electrophoresis buffer 189 at 90 volts for one hour.

190

191 **Polymerase Chain Reaction (PCR)**

192 Amplification of target DNA by PCR was performed in a total reaction volume of 50 µl 193 containing 10 mM dNTP Mix (1 µl), 25 mM MgCl₂ (3 µl), 10X Taq Buffer with 194 $(NH_4)_2SO_4$ (5 μl), 10 μM forward (fDD2 195 CCGGATCCGTCGACAGAGTTTGATCITGGCTCAG) (5 µl), 10 µM reverse (rPP2 -196 CCAAGCTTCTAGACGGITACCTTGTTACGACTT) (5 µl) (Rawlings 1995), Tag DNA 197 polymerase (1 µl) (5u/5 µl) (Fermentas Life Sciences, EU), 1 µl of a concentrated

DNA sample and 29 μ l sterile distilled. The amplification process included an initial denaturation step of 94 °C for 2 minutes, followed by 30 cycles of amplification (1 minute at 94 °C, one minute at 57 °C and two minutes at 72 °C). This was followed by a final extension step of 72 °C for 10 minutes. Ten microlitres of the subsequent PCR amplicons were then electrophoretically analysed on a 0.8% molecular grade agarose gel containing 12 μ l of 0.5 μ g/ml EtBr, using 1 x TAE electrophoresis buffer at 100 volts for one hour, to determine whether amplification was successful.

205

206 Sequencing of 16S rRNA

207 The amplified PCR products (1200 bp) were purified using a High Pure PCR product 208 purification kit, as per manufacturer's instructions (Roche Diagnostics GmbH, 209 Mannheim, Germany). The concentrations of the DNA samples were determined using 210 spectrophotometry and 15 µl of concentrated DNA (50 to 100 ng/µl depending on the 211 length) samples were loaded onto 96-well microtitre plates, dried in a speed vac, with 212 medium heat for 30 to 60 minutes (depending on the volumes), and sent for 213 sequencing. The sequencing lab used the Applied Biosystems Big Dye Terminator 214 v3.1.

215

216 **Phylogenetic Analysis**

The resultant sequences were identified with a similarity search using Blastn from the National Centre for Biotechnology Information (NCBI) (Altschul et al. 1997). Contiguous sequences were formed for the forward and reverse sequences of a particular organism, using the CAP3 Sequence Assembly Programme (Huang and Madan 1999). The contiguous sequences were aligned with Clustal X (1.81) (Higgins 222 and Sharpe 1988) using default parameters and the BLOSUM matrix, which corrects 223 for multiple base changes. There were 37 organisms isolated overall, but many of the 224 isolates were identical, therefore the 13 representative organisms on the tree were 225 used for phylogenetic analyses. An unrooted tree was constructed using the neighbour-joining program of Saitou and Nei (1987). Phylogenetic analysis was 226 conducted using Molecular Evolutionary Genetics Analysis, Version 3.1 (MEGA 227 228 version 3.1) (Kumar et al. 2004). To estimate the node reliability, bootstrap values 229 were obtained from 1000 randomly generated trees. Trees were visualised using MEGA version 3.1 (Felsenstein 1985, Efron et al. 1996, Kumar et al. 2004). 230

231

232 **Results and Discussion**

233

234 Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) was used to determine the initial concentrations of metals in the collected river water prior to the 235 flow cell set-up. These concentrations were compared to the Department of Water 236 237 Affairs and Forestry (DWAF 1996) and the Canadian Council of the Ministers of the 238 Environment (CCME 2001) recommended guidelines (Table 4.2). The Al, Cu, Fe, Ni and Zn concentrations were 11.56 mg. l^{-1} , 0.06 mg. l^{-1} , 12.2 mg. l^{-1} , 0.17 mg. l^{-1} and 239 0.4 mg.l^{-1} , respectively (Table 4.2). 240 These concentrations were above the recommended concentrations as stipulated by DWAF (1996) and the CCME (2001). 241 The Mn concentration of 0.29 mg.l⁻¹, was below the recommended concentration of 242 1.3 mg.l⁻¹ (DWAF 1996). 243

Figures 4.3A, 4.4A, 4.5A, 4.6A, 4.7A and 4.8A represent the percentages of live and dead organisms (epifluorescence microscopy in conjunction with the ScionImage statistical programme) within the biofilm cultivated in the flow cells. In the graphs, the letter G (green) indicates the live cells and the letter R (red), the dead cells. Figures 4.3B, 4.4B, 4.5B, 4.6B, 4.7B and 4.8B are images captured (untreated control and images captured after exposure to the respective metal concentrations) with epifluorescence microscopy. The results recorded in the control channels (which were left unexposed), showed that the initial percentages of live cells, for all the metals analysed, were higher than that of the dead cells.

The following percentages were recorded for the channels exposed to Al concentrations; the control channels [48.12% alive (G), 43.21% dead (R)], the highest concentration of 900 mg.l⁻¹ [40.63% (G) and 47.68% (R)], for 500 mg.l⁻¹ [42.31% (G) and 44.52% (R)] and when exposed to 10 mg.l⁻¹ [43.38% (G) and 42.59% (R)] (Figs. 4.3A and 4.3B).

The percentages recorded for live and dead cells exposed to varying concentrations of Cu were; 44.02% (G) and 40.96% (R) in the control channel, 41.85% (G) and 44.67% (R) for the highest concentration of 10 mg.l⁻¹, 40.86% (G) and 41.14% (R) for 1 mg.l⁻¹ and when exposed to the lowest concentration of 0.5 mg.l⁻¹, the percentages were 41.66% (G) and 41.04% (R) (Figs. 4.4A and 4B).

For Fe, the ratio of live and dead cells in the untreated control was 46% live (G) and 40.88% dead (R), respectively. The percentages obtained when the channels were exposed to the highest Fe concentration of 1000 mg.l⁻¹ was 41.66% (G) and 44.47% (R), when exposed to 500 mg.l⁻¹, the percentages were 42.96% (G) and 44.25% (R), and when exposed to the lowest concentration of 10 mg.l⁻¹, the percentages recorded were 43.32% (G) and 42.40% (R) (Figs. 4.5A and 4.5B). The percentages of live and dead cells recorded after exposure to Mn in the untreated control were 43% (G) and 41.07% (R), respectively. Upon exposure to the highest concentration (80 mg.l⁻¹), the number of live cells were 44.04% (G) and the number of dead cells were 50.23% (R). When exposed to the two lower concentrations of 15 mg.l⁻¹ and 1.5 mg.l⁻¹, the percentages of live and dead cells were 42.94% (G) and 43.39% (R) and 41.99% (G) and 41.18% (R), respectively (Figs. 4.6A and 4.6B).

The percentage of cells in the untreated flow cell control channels used to evaluate the various Ni concentrations, were 47.34% (G) and 44.27% (R), ratio of live and dead cells, respectively. The percentages recorded in the channels exposed to the highest Ni concentration of 20 mg.l⁻¹, was 43.68% (G) and 43.75% (R), while the percentages recorded when exposed to 1 mg.l⁻¹, were 44.91% (G) and 42.89% (R) and when exposed to 0.5 mg.l⁻¹, 41.49% of the cells were alive (G) and 40.95% of the cells were dead (R) (Figs. 4.7A and 4.7B).

The channels exposed to the varying Zn concentrations yielded the following results in the untreated control channel; 45.06% live cells (G) and 41.32% dead cells (R). The percentages recorded in the flow cell channels exposed to the highest Zn concentrations (40 mg.l⁻¹) was 41.27% (G) and 41.82% (R), while the percentages recorded when exposed to 1 mg.l⁻¹, was 41.37% (G) and 41.44% (R). The percentages recorded when exposed to 0.5 mg.l⁻¹, was 42.58% (G) and 41.15% (R), respectively (Figs. 4.8A and 4.8B).

When compared to the untreated controls, the percentages obtained in the channels of the flow cells exposed to the highest concentrations of Al (900 mg.l⁻¹), Cu (10 mg.l⁻¹), Fe (1000 mg.l⁻¹) and Mn (80 mg.l⁻¹) (Figs. 4.3A, 4.4A, 4.5A, 4.6A), showed 293 an increase in the number of dead cells of 4.47%, 3.71%, 3.59% and 9.16%, respectively. When the channels were exposed to the lowest concentrations of 294 10 mg. I^{-1} (Al), 0.5 mg. I^{-1} (Cu), 1.5 mg. I^{-1} (Mn) and 0.5 mg. I^{-1} (Zn), the ratio of live to 295 dead cells was similar to that of the untreated control. When exposed to the highest 296 concentrations of Zn (40 mg.l⁻¹) and Ni (20 mg.l⁻¹), no significant differences between 297 298 the live and dead cell percentages, were observed as the percentages of dead cells 299 only decreased by 0.52% and 0.5%, respectively (Figs. 4.7A and 4.8A). In a previous 300 study, conducted by Bhadra et al. (2007), the effect of high concentrations of metals 301 (Zn and Ni) in the river water affected the numbers of Zn and Ni resistant bacteria, 302 therefore, the higher metal concentrations resulted in an increase in resistance 303 mechanisms of the isolates. Table 4.2 represents the metal concentrations recorded in the water samples, and showed that the initial Zn concentration in the river water 304 prior to treatment was 0.4 mg. l^{-1} , which was significantly higher (p < 0.05) than the 305 recommended guideline of 0.036 mg.l⁻¹ (DWAF 1996) and 0.03 mg.l⁻¹ (CCME 2001). 306 The initial Ni concentration in the river water prior to treatment was 0.17 mg.l⁻¹, which 307 was significantly higher (p < 0.05) than the recommended guideline of 0.025 mg.l⁻¹ to 308 0.15 mg.l⁻¹ (CCME 2001). 309

Results show that flow cells are ideal to provide results instantaneously while providing multiple replications and also allow for the comparison of untreated controls and treated channels (Nancharaiah et al. 2005). In the case of exposure of the respective flow cell channels to the highest Al and Fe concentrations, Figs. 4.3B and 4.5B showed that the organisms tended to clump together in response to the metal exposure. The ability of extracellular polymeric substances to bind metals and pollutants also contribute to the clumping of cells (McLean et al. 1990). Metals can 317 alter the number, biochemical activity, diversity and community structure of micro-318 organisms in many different ways (Ellis et al. 2003). The resistance of micro-319 organisms to the metals could be attributed to many factors, including, lateral gene 320 (Sobecky al. 1998), co-contamination transfer et with organic material 321 (Toes et al. 2008) and trace elements in cells, inhibiting normal physiological functions 322 (Hultberg et al. 1997). Metals, such as Mn, Fe, Cu, Ni, Zn and cobalt (Co) can cause 323 direct and indirect oxidative stress, which result in the accumulation of reactive oxygen 324 species (Salzano et al. 2007). Previous research performed by Teitzel and Parsek 325 (2003) showed that cells at the biofilm-bulk liquid interface were exposed to the high 326 concentrations of various metals. The two fluorophores used (SYTO 9 and Propidium 327 lodide) stains the living cells green and the dead cells red, respectively. When the 328 cells fluoresce yellow, it means that the two images are superimposed and it is 329 impossible to distinguish live cells from dead cells (Figs. 4.3B to 4.8B). Teitzel and 330 Parsek (2003) also reported that in minimal media with short exposure times, biofilms have a demonstrable resistance to the heavy metals Cu^{2+} , Zn^{2+} and Pb^{2+} . 331

Table 4.3 represents the names of organisms isolated from the flow cells after 332 333 exposure to varying metal concentrations. An agarose gel electrophoresis 334 photograph showing selective results of the PCR fragments (1200 bp) is presented in 335 Fig. 4.9. Figure 4.9 clearly shows that the 1200 bp PCR amplicon was routinely 336 Overall 37 organisms were isolated, but many of the isolates were amplified. 337 identical, therefore only 13 organisms were used in the construction of the 338 phylogenetic tree. The phylogeny of the 13 representative organisms in GenBank: www.ncbi.nlm.nih/gov/Genban/submit.html, were analysed using the Neighbour-339

joining algorithm in Clustal X (Fig. 4.10). The tree was aligned to determine
 evolutionary relatedness between the various isolates.

342 Most of the isolates from all the channels were identified as *Staphylococcus* sp. MOLA:313, Delftia tsuruhatensis strain A90, Pseudomonas fluorescens isolate 343 344 TC222, *Pseudomonas beteli* strain RRLJ SMAR, *Bacillus* sp. ZH6 and 345 Stenotrophomonas maltophilia strain 776. Two major clusters could be distinguished 346 from the tree (Fig. 4.10) based on their Gram-reaction. From the phylogenetic tree it 347 could be seen that the Gram-negative organisms, Proteobacteria (Pseudomonas sp., 348 and Stenotrophomonas sp.) clustered together, whereas the Gram-positive 349 organisms, low and high G + C Gram-positives (*Bacillus* sp., *Micrococcus* sp. and 350 *Microbacterium* sp.) clustered together. In the first cluster, two clades could clearly 351 be distinguished; the first clade consisted of *Pseudomonas* sp. and the second clade, of a Pseudomonas sp. and a Stenotrophomonas sp. 352 The isolates, Delftia 353 tsuruhatensis st. A90 and Sphingomonas sp. 8b-1 were rooted to clades one and two, 354 but judging by the length of the nodes, did not seem to belong to any of the groups. 355 In the second cluster, two distinct clades could be distinguished. The first clade 356 consisted WDL7 Comamonas testosterone, ZH6 Bacillus of sp. and 357 MOLA 313 Staphylococcus sp. The second clade consisted of TPR1 Micrococcus 358 sp., 6J-5b Kocuria kristinae st and PAO-12 Microbacterium sp.

In previous research it was shown that several Gram-positive (*Arthrobacter* sp. and *Corynebacterium* sp.) and Gram-negative (*Alcaligenes* sp.) organisms were shown to be resistant to Pb, Hg, Cd, Cu, Co and Zn (Trajanovska et al. 1997), which could be correlated to the results obtained in the present study. The major difference between the two clusters, was that the Gram-positive organisms, *Staphylococcus* 364 MOLA:313, *Micrococcus* sp. TPR1 and *Kocuria kristinae* st. 6J-5b were resistant to Mn 365 (Fig. 4.10 and Table 4.4), and that the clade consisting of the *Pseudomonas* sp. all 366 exhibited tolerance to Ni exposure. Table 4.4 represents the organisms isolated from 367 the different flow cells after exposure to the varying metal concentrations. The 368 organisms in the table below were present after exposure to AI, Cu, Fe, Mn, Ni and Zn 369 concentrations and were presumed to be metal-tolerant organisms. Organisms such 370 as Comamonas testosteroni WDL7, Microbacterium sp. PAO-12, Sphingomonas sp. 371 8b-1, Kocuria kristinae strain 6J-5b and Micrococcus sp. TPR14 exhibited tolerance to 372 specific metals, which included Cu, Ni, Zn and Mn, respectively (Table 4.4). The other 373 isolates showed resistance to a range of different metals.

374 In a previous study by Bhadra et al. (2007), Pseudomonas, Bacillus, Moraxella, Enterobacter, Serratia, Morganella and Acinetobacter species were used to study Ni 375 376 and Zn resistance, as these organisms possess inducible Ni or Zn resistance genetic 377 systems. Their results indicated that the Ni and Zn resistance was induced at concentrations as low as 5 µm Zn²⁺ (325 ppb) for Ni resistance in *Pseudomonas* sp. 378 and Zn resistance were inducible by a concentration as low as 4 μ m Zn²⁺. Hussein et 379 380 al. (2004) showed that Cd and Ni could be bounded to their Pseudomonas species isolated from wastewater by as much as 0.5 and 0.56 mg.kg⁻¹ biomass, respectively, 381 while Cu and Cr uptake values ranged between 0.01 to 0.24 mg.kg⁻¹ biomass. In the 382 383 present study, it was shown that *Pseudomomas* sp. was isolated from the flow cell 384 channels exposed to Ni and Zn (Table 4.4).

The clusters also contained more Gram-negative than Gram-positive organisms (Fig. 4.10). Duxbury and Bicknell (1983) and Drancourt et al. (2000), amongst others, suggested that Gram-negative organisms predominated in metal-polluted environments, and also showed that it was reasonable to expect a certain degree of
overlap between Gram-positive and Gram-negative bacteria, as some of these
species are resistant to the same metals. Possible metal-tolerance mechanisms of
organisms could be that Gram-positive bacteria possess a high metal absorption
capacity Yilmaz (2003).

393 After the metals bind to the organism, it must either cross the cell wall of the 394 Gram-positive organism or the outer membrane of the Gram-negative organism. The 395 Gram-positive bacteria have no receptor molecules to block or hinder the transport of 396 pollutants across the membrane and are therefore less resistant to attack (Cloete 397 2003). The Gram-negative organisms have developed a means of resistance to more 398 specific pollutants because of the narrow porin channels, which slow down the 399 penetration of substances, contributing to the resistance of Gram-negative organisms 400 to pollutants (Nikaido 1996). The efficiency of metal ions depend on their ability to 401 bind to proteins and prevent replication of the bacterial cells (Kar et al. 1992). Studies 402 on Cu, Cd, Zn, Cr, Ni and As resistant bacteria have identified metal resistance genes 403 to be located on the plasmid (Trajanovska et al. 1997) and can be inducible in the 404 presence of the particular metal (Cloete 2003). The Staphylococcus sp. were shown 405 to carry genes for Hg, Cd, As, Pb and Zn resistance (Nakahara et al. 1977). In their 406 studies, they also found that most of the metal-resistant isolates were multiply metal 407 resistant and also multiply drug resistant (Nakahara et al. 1977), as micro-organisms 408 usually contain a cluster of genes involved in both metal and antibiotic resistance 409 (Alonso et al. 2000). The high degree of antibiotic resistance may also be associated 410 with higher levels of tolerance to various heavy metals (Hassen et al. 1998).

411 Cloete (2003) showed that the presence of some metals might induce resistance to a412 broader spectrum of metals.

413 Bacillus, Pseudomonas, Xanthomonas, Stenotrophomonas, Sphingomonas sp. 414 and Janthinobacterium lividum, were shown to display resistance to Zn, Bacillus sp. 415 was shown to be resistant to Cu, while Variovorax sp. were shown to be resistant to 416 silver (Ag), Zn and Cu (Piotrowska-Seget et al. 2005, Kuffner et al. 2008). In the 417 present study, isolates, such as *Comamonas testosteroni* WDL7 showed resistance to 418 Cu, Kocuria kristinae strain 6J-5b showed resistance to Mn, and Bacillus sp. ZH6, 419 Stenotrophomonas maltophilia strain 776 and Staphylococcus sp. MOLA:313 all 420 showed resistance to AI, Fe and Zn (Table 4.4).

421 Piotrowska-Seget et al. (2005) studied metal-tolerant bacteria occurring in heavily polluted soil and mine spoil in Katowice, Poland. The authors performed minimum 422 423 inhibitory concentration studies to determine the resistance mechanisms of the 424 different bacterial isolates. They found that *Pseudomonas gladioli*, was resistant to Zn 425 and Cu concentrations of 10 mM and 5 mM, respectively. In the present study, the isolate, *Pseudomonas beteli* str. RRLJSMAR, showed resistance to Cu concentrations. 426 427 Another study conducted by Chien et al. (2007) evaluated the bacterial diversity in soil in order to determine bacterial response to media amended with Cd, Cr, Ni, Zn, Pb, 428 429 and Cu. Stenotrophomonas sp., isolated from a site contaminated with high 430 concentrations of Cd (3 mg.kg⁻¹) and Cr (115 mg.kg⁻¹), was able to grow on media 431 containing Cd concentrations of up to 4 mM, and was also able to remove up to 80% 432 dissolved ions upon completion of the stationary growth phase. In addition it was also able to resist other metals, such as, Cu, Cr, Ni, Pb and Zn at levels of more than 2 mM 433 434 (Chien et al. 2007).

Three *Bacillus* isolates (*B. cereus, B. megaterium and B. sphaericus*), recovered from a uranium waste pile in Germany, were evaluated for their ability to accumulate metals, including AI, Cd, Cu, Fe, Mn, Ni, Pb, and Zn, amongst others. Results revealed that the *Bacillus* sp. were able to accumulate large amounts of Pb, Cd, Cu, AI, Mn, Ni and Zn (Selenska-Pobell et al. 2006).

440 Yilmaz (2003) showed that Bacillus circulans could tolerate high concentrations of Cu, Mn, Ni, Zn, Co and Cd, and that the increased metal resistance resulted in a 441 442 decrease in bacterial growth. *Pseudomonas* sp. was shown to be resistant to Cu, Cd, 443 Cr, Pb, Ni and vanadium (V) (Muraleedharan et al. 1991, Raja et al. 2006, Shirdam 444 2006). The present study showed that different micro-organisms with the ability to 445 resist varying concentrations of metals were isolated from the treated flow cells 446 following metal exposure. Isolates, such as *Pseudomonas* sp., *Bacillus* sp. and 447 Staphylococcus sp., were shown to be tolerant to a wider range of metals (Cu, Mn, Ni, 448 Zn, Al and Fe), while others, such as Comamonas testosteroni WDL7 and Kocuria 449 kristinae strain 6J-5b showed resistance to only Cu and Mn, respectively. These 450 organisms can thus potentially be employed for future use in remediation processes.

451

452 Acknowledgements

453

454 The National Research Foundation (NRF) and Cape Peninsula University of 455 Technology (CPUT) are thanked for financial support.

456

457

459 References 460 461 Allinnor, I.J. 2005. Assessment of elemental contaminants in water and fish samples 462 from Aba River. Environ. Monit. Asses. 2(1-3): 15-25. 463 Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and 464 Lipman, D.J. 1997. "Gapped BLAST and PSI-BLAST: a new generation of protein 465 466 database search programs". Nucleic Acid Res. 25: 3389-3402. 467 468 Alonso, A., Sanchez, P., and Martinez, J.L. 2000. Stenotrophomonas maltophilia 469 D457R contains a cluster of genes from Gram-positive bacteria involved in antibiotic 470 and heavy metal resistance. Antimicrob. Agents Chemother. 44: 1778-1782. 471 472 Amann, R.I., Ludwig, W., and Schleifer, K.H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Revs. 59: 143-473 474 169. 475 476 Bhadra, B., Nanda, A.K., and Chakraborty, R. 2007. Fluctuation in recoverable nickel 477 and zinc resistant copiotrophic bacteria explained by the varying zinc ion content of 478 Torsa River in different months. Arch. Microbiol. 188: 215-224. 479 480 Boulos, L., Prévost, M., Barbeau, B., Coallier, J., and Desjardins, R. 1999. LIVE/DEAD® BacLight[™]: application of a new rapid staining method for direct 481

- 482 enumeration of viable and total bacteria in drinking water. J. Microbiol. Meths. **37**: 77483 86.
- 484
- 485 Caldwell, D.E., Wolfaardt, G.M., Korber, D.R., Karthikeyan, S., and Lawrence, J.R.
- 486 2002. Cultivation of microbial communities. *In* Manual for Environmental Microbiology.
- 487 *Edited by* C.J. Hurst, R.L. Crawford, G.R. Knudsen, M.J. McInerney and L.D.
 488 Stetzenbach. ASM Press. pp. 92-100.
- 489
- 490 Canadian Council of The Ministers Of The Environment (CCME) 2001. Canadian
 491 sediment quality guidelines for the protection of aquatic life: Summary tables. Updated
 492 in: Canadian environmental guality guidelines.
- 493
- 494 Chien, C.C., Hung, C.W., and Han, C.T. 2007. Removal of cadmium ions during 495 stationary growth phase by an extremely cadmium resistant strain of 496 *Stenotrophomonas* sp. Environ. Toxicol. Chem. **26**: 664–668.
- 497
- Christensen, B.B., Sternberg, C., Andersen, J.B., Eberl, L., Møller, S., Givskov, M.,
 and Molin, S. 1998. Establishment of new genetic traits in a microbial biofilm
 community. Appl. Environ. Microbiol. 64: 2247-2255.
- 501
- 502 Cloete, T.E. 2003. Resistance mechanisms of bacteria to antimicrobial compounds.
 503 Intern. Biodeter. Biodeg. 51: 277-282.

505	Department	of	Environmental	Affairs	and	Tourism.	1996.
506	http://www.envir	onment	t.gov.za/nwmsi/back	ground/plar	nning_leg	review-starterd	loc.pdf.
507	[12 March 2007]						
508							
509	Department of	Water	Affairs and Fore	stry. 1996.	South	African Water	Quality
510	Guidelines for	Fresh	Water 2 nd Edition	n, Domesti	c Water	Use. Pretoria	a: CSIR
511	Environmental S	Service	s 1 : 77-87.				
512							
513	Drancourt, M., E	Bollet, C	C., Carlioz, A., Mart	elin, R., Ga	yral, J-P,	and Raoult, D	. 2000.
514	16S Ribosomal	DNA S	equence Analysis c	of a Large C	ollection	of Environmer	ital and
515	Clinical Unidenti	fiable E	Bacterial Isolates. J.	Clin. Microb	oiol. 38 (10): 3623–3630.	
516							
517	Duxbury, T., and	d Bickr	nell, B. 1983. Metal-	tolerant bad	cterial pop	oulations from	natural
518	and metal-pollut	ed soils	s. Soil Biol. Biochem	. 15 (3): 243	-250.		
519							
520	Efron, B., Halle	oran, I	E., and Holmes, S	S. 1996. B	ootstrap	confidence le	evels for
521	phylogenetic tree	es. Pro	c. Nat. Acad. Sci. O	nline (<i>US</i>) 9	3 : 13429-	13434.	
522							
523	Ellis, R.J., Morg	jan, P.,	Weightman, A.J.,	and Fry, J.C	C. 2003.	Cultivation-dep	pendent
524	approaches for o	determi	ning bacterial divers	sity in heavy	-metal co	ntaminated so	il. Appl.
525	Environ. Microbi	ol. 69 : 3	3223-3230.				
526							
527	Felsenstein, J. 1	985. C	onfidence limits on	phylogenies	: an appr	oach using bo	otstrap.
528	Evolution 39: 78	3-791.					

529	Hassen, A., Saidi, N., Cherif, A., and Baudabous, A. 1998. Resistance of
530	environmental bacteria to heavy metals. Biores. Technol. 64: 7-15.
531	
532	Higgins, D.G., and Sharpe, P.M. 1988. CLUSTAL: a package for performing multiple
533	sequence alignment on a microcomputer. Gene 73: 237-244.
534	
535	Huang, X., and Madan, A. 1999. CAP3: A DNA sequence assembly program. Genome
536	Res. 9 : 868-877.
537	
538	Hultberg, B., Andersson, A., and Isaksson A. 1997. Copper ions differ from other
539	thiol reactive metals ions in their effects on the concentration and redox status
540	of thiols in HeLa cell cultures. Toxicol. 117 :89-97.
541	
542	Hunt, S. 1986. Diversity of biopolymer structure and its potential for ion-binding
543	applications. In Immobilisation of ions by bio-sorption Edited by H. Eccles and S.
544	Hunt. Ellis Horwood Ltd., West Sussex, United Kingdom. pp. 15-46.
545	
546	Hussein, H., Ibrahim, S.F., and Kandeel, K. 2004. Biosorption of heavy metals from
547	wastewater using <i>Pseudomonas</i> sp. Elec. J. Biotechnol. 7 (1): 24-29.
548	
549	Jackson V.A., Paulse A.N., Van Stormbroek T., Odendaal J.P., and Khan W. 2007.
550	Investigation into metal contamination of the Berg River, Western Cape, South Africa.
551	Water SA 33 : 175-182.
552	

553	Jackson, V.A., Paulse, A.N., Odendaal, J.P., and Khan, W. 2008. Investigation into the
554	metal contamination of the Plankenburg- and Diep Rivers, Western Cape, South
555	Africa. Accepted for publication by Water SA.
556	
557	Kar, R.N., Sahoo, B.N., and Sukla, C.B. 1992. Removal of heavy metals from pure
558	water using sulphate-reducing bacteria (SRB). Pollut. Res. 11: 1-13.
559	
560	Kuffner, M., Puschenreiter, M., Wieshammer, G., Gorfer, M., and Sessitsch, A. 2008.
561	Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating
562	willows. Plant Soil 304 : 35-44.
563	
564	Kumar, S., Tamura, K., and Nei, M. 2004. MEGA3: Integrated software for Molecular
565	Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinform. 5:
566	150-163.
567	
568	Maanan, M., Zourarah, B., Carruesco, C., Aajjane, A., and Naud, J. 2004. The
569	distribution of heavy metals in the Sidi Moussa lagoon sediments (Atlantic Moroccan
570	Coast). J. African Earth Sci. 39 : 473-483.
571	
572	Martin, A.P. 2002. Phylogenetic Approaches for Describing and Comparing the
573	Diversity of Microbial Communities. Appl. Environ. Microbiol. 68(8): 3673-3682.
574	

575	McLean, R.J., Beauchemin, D., Clapham, L., and Beveridge, T.J. 1990. Metal-binding
576	characteristics of the gamma-glutamyl capsular polymer of Bacillus licheniformis ATCC
577	9945. Appl. Environ. Microbiol. 56: 3671-3677.

578

579 Muraleedharan, T.R., Iyengar, L., and Venkobachar, C. 1991. Biosorption: an 580 attractive alternative for metal removal and recovery. Curr. Sci. **61**: 379-385.

581

- 582 Nakahara, H., Ishikawa, T., Sarai, Y., Kondo, I., Kozukue, H., and Silver, S. 1977. 583 Linkage of mercury, cadmium and arsenate and drug resistance in clinical isolates of
- 584 *Pseudomonas aeruginosa*. Appl. Environ. Microbiol. **33**(4): 975-976.

585

Nancharaiah, Y.V., Venugopalan, V.P., Wuertz, S., Wilderer, P.A., and Hausner, M.
2005. Compatibility of the green fluorescent protein and a general nucleic acid stain
for quantitative description of a *Pseudomonas putida* biofilm. J. Microbiol. Meths.
60(2): 179-187.

590

591 Nikaido, H. 1996. Multidrug efflux pumps of Gram-negative bacteria. J. Bacteriol.
592 **178**(20): 5853-5859.

593

594 Ochman, H., Lerat, E., and Daubin, V. 2005. Examining bacterial species under the 595 spectre of gene transfer and exchange. Proc. Nat. Acad. Sci. **102**(1): 6595-6599. 596

597	Odendaal, J.P., and Reinecke, A.J. 1999. The sublethal effects and accumulation of
598	cadmium in the terrestrial isopod, Porcellio laevis Latr. (Crustacea, Isopoda). Arch.
599	Environ. Contam. Toxicol. 36: 64-69.
600	
601	Piotrowska-Seget, Z., Cycon, M., and Kozdroj, J. 2005. Metal-tolerant bacteria
602	occurring in heavily polluted soil and mine spoil. Appl. Soil Ecol. 28: 237–246.
603	
604	Radenac, G., Fichet, D., and Miramand, P. 2001. Bioaccumulation and toxicity of four
605	dissolved metals in Paracentrotus lividus sea-urchin embryo. Mar. Environ. Res. 51:
606	151–166.
607	
608	Raja, C.E., Kolandaswamy, A., and Selvam, G.S. 2006. Isolation and characterization
609	of a metal-resistant Pseudomonas aeruginosa strain. World J. Microbiol. Biotechnol.
610	22 : 577-585.
611	
612	Rawlings, D.E. 1995. Restriction enzyme analysis of 16SrRNA genes for the rapid
613	identification of Thiobacillus feroxidans, Thiobacillus thiooxidans, Leptospirillum
614	ferooxidans strains in leaching environments. In Biohydrometallurgical Processing.
615	Edited by C.A. Jerez, T. Vargas, H. Toledo, and J.V. Wiertz. pp. 9-17.
616	
617	Roane, T.M., and Pepper, I.L. 2000. Microorganisms and metal pollutants. In
618	Environmental Microbiology. Edited by R.M. Maier, I.L. Pepper, and C.P. Gerba.
619	Academic Press. San Diego, USA. pp 403-423.
620	

621	Saitou, N., and Nei, M. 1987. The neighbour-joining method: a new method for
622	reconstructing phylogenetic trees. Mol. Biol. Evolut. 4: 406-425.
623	
624	Saleh, M.A., Ewane, E., Jones, J., and Wilson, B.L 2000. Monitoring Wadi El Rayan
625	lakes of the Egyptian Desert for inorganic pollutants by Ion-Selective Electrodes, Ion
626	Chromatography, and Inductively Coupled Plasma Spectroscopy. Ecotoxicol. Environ.
627	Saf. 45 : 310-316.
628	
629	Salzano, A.M., Febbraio, F., Farias, T., Cetrangolo, G.P., Nucci, R., Scaloni, A., and
630	Manco, G. 2007. Redox stress proteins are involved in adaptation response of the
631	hyperthermoacidophilic archaeon, Sulfolobus solfataricus to nickel challenge.

632 633

634 Selenska-Pobell, S., Panak, P., Miteva, V., Boudakov, I., Bernhard, G., and Nitsche,

H. 2006. Selective accumulation of heavy metals by three indigenous *Bacillus strains*,

636 *B. cereus*, *B. megaterium* and *B. sphaericus*, from drain waters of a uranium waste

637 pile. FEMS Microbiol. Ecol. (1): 59-67.

Microbial Cell Factories 6(25): 1-11.

638

639 Shirdam, R., Khanafari, A., and Tabatabaee, A. 2006. Cadmium, nickel and vanadium

accumulation by three strains of marine bacteria. Iranian J. Biotechnol. **4**(3): 180-187.

541 Singh, R., Paul, D., and Jain, R.K. 2006. Biofilms: implications in bioremediation.

642 Trends in Microbiol. **14**(9): 389-397.

Sobecky, P.A., Mincer, T.J., Chang, M.C., Toukdarian, A., and Helinski, D.R. 1998.
Isolation of broad-host-range replicons from marine sediment bacteria. Appl. Environ.
Microbiol. 64: 2822–2830.

647

Teitzel G.M., and Parsek M.R. 2003. Heavy metal resistance of biofilm and
planktonic *Pseudomonas aeruginosa*. Appl. Environ. Microbiol. **69**: 2313-2320.

650

Toes, A.M., Finke, N., Kuenen, J.G., and Muyzer, G. 2008. Effects of deposition of
 heavy-metal-polluted harbour mud on microbial diversity and metal resistance in sandy
 marine sediments. Arch. Environ. Contam. Toxicol. In Press.

654

Trajanovska, S., Britz, M.L., and Bhave, M. 1997. Detection of heavy metal ion
resistance genes in Gram-positive and Gram-negative bacteria isolated from a leadcontaminated site. Biodeg. 8: 113-124.

658

Wright, D., and Welbourne, P. 2002. Environmental Toxicology. Factors affecting
toxicology. Cambridge environmental chemistry series 11. Cambridge University
Press. Cambridge.

662

Yilmaz, E.I. 2004. Metal tolerance and biosorption capacity of *Bacillus circulans* strain
EB1. Res. Microbiol. **154**: 409–415.

665

666

668	List of figures
669 670 671 672	Table 4.1. Representation of the different concentrations of metals (AI, Cu, Fe, Mn, Ni and Zn) to which the six respective flow cells channels were exposed.
673 674 675	Table 4.2. Metal concentrations obtained in water of the Plankenburg River compared to recommended safe concentrations as stipulated by DWAF (1996) and the CCME (2001).
676 677	Table 4.3 Table of 13 isolates, their names presented on the phylogenetic tree and accession numbers.
679 680	Table 4.3 Table of 13 isolates, their names presented on the phylogenetic tree and accession numbers.
681 682 683	Figure 4.1. Farming and Residential Areas; Site B – Closest point to Informal Settlement; Site C – Substation in Industrial Area and Site D – Industrial Area at Adam Tas Bridge.
684 685 686 687 688	Figure 4.2. Multi-channel flow cell system to isolate metal-tolerant organisms. A – untreated control (channels 1 and 2), B – highest concentration (channels 3 and 4), C – second lowest concentration (channels 5 and 6) and D – lowest concentration (channels 7 and 8).
689 690	Figure 4.3A. Represents the percentages of living and dead organisms in response to exposure to various Al concentrations.
691 692 693 694	Figure 4.3B . Epifluorescent images of biofilm exposed to (i) Control, (ii) 900 mg.l ⁻¹ Al, (iii) 500 mg.l ⁻¹ Al and (iv) 10 mg.l ⁻¹ Al.
695 696 697	Figure 4.4A. Represents the percentages of living and dead organisms in response to exposure to various Cu concentrations.
698 699 700	Figure 4.4B . Epifluorescent images of biofilm exposed to (i) Control, (ii) 10 mg.l ⁻¹ Cu, (iii) 2.5 mg.l ⁻¹ Cu and (iv) 0.5 mg.l ⁻¹ Cu.
700 701 702 702	Figure 4.5A. Represents the percentages of living and dead organisms in response to exposure to various Fe concentrations.
703 704 705 706	Figure 4.5B. Epifluorescent images of biofilm exposed to (i) Control, (ii) 1000 mg. I^{-1} Fe, (iii) 500 mg. I^{-1} Fe and (iv) 10 mg. I^{-1} Fe.
700 707 708 700	Figure 4.6A. Represents the percentages of living and dead organisms in response to exposure to various Mn concentrations.
710 710 711 712	Figure 4.6B . Epifluorescent images of biofilm exposed to (i) Control, (ii) 80 mg.l ⁻¹ Mn, (iii) 15 mg.l ⁻¹ Mn and (iv) 1.5 mg.l ⁻¹ Mn.
712 713 714 715	Figure 4.7A. Represents the percentages of living and dead organisms in response to exposure to various Ni concentrations.
715 716 717 719	Figure 4.7B . Epifluorescent images of biofilm exposed to (i) Control, (ii) 20 mg.l ⁻¹ Ni, (iii) 1 mg.l ⁻¹ Ni and (iv) 0.5 mg.l ⁻¹ Ni.
718 719 720	Figure 4.8A. Represents the percentages of living and dead organisms in response to exposure to various Zn concentrations.
721 722 723	Figure 4.8B. Epifluorescent images of biofilm exposed to (i) Control, (ii) 40 mg.l ⁻¹ Zn, (iii) 1 mg.l ⁻¹ Zn and (iv) .05 mg.l ⁻¹ Zn.

Figure 4.9. Agarose gel electrophoresis photograph of the PCR products obtained with 16SrRNA universal forward and reverse primers (fDD2 and rPP2) of organisms isolated from flow cells after exposure to varying metal concentrations. Lane one represents the marker (lambda DNA/HindIII), lane two, the negative control and lanes three to 20, represent the selected isolates showing the 1200 bp amplicons.

Figure 4.10. An unrooted phylogenetic tree of organisms isolated from flow cells after exposure to varying
 metal concentrations. The tree of 13 isolates was constructed using the Neighbour-joining algorithm of
 Clustal X. Bootstrap values are constructed using the shown at the nodes.

- 733
- 734

Table 4.1 Representation of the different concentrations of metals (Al, Cu, Fe, Mn, Ni and Zn)
 to which the six respective flow cells channels were exposed.

737

Metals	Flow cell channels one and two	Flow cell channels three and four	Flow cell channels five and six	Flow cell channels seven and eight
Al	Untreated control	900 mg.l ⁻¹	500 mg.l ⁻¹	10 mg.l ⁻¹
Cu	Untreated control	10 mg.l ⁻¹	2.5 mg.l ⁻¹	0.5 mg.l ⁻¹
Fe	Untreated control	1000 mg.l ⁻¹	500 mg.l ⁻¹	10 mg.l⁻¹
Mn	Untreated control	80 mg.l ⁻¹	15 mg.l ⁻¹	1.5 mg.l ⁻¹
Ni	Untreated control	20 mg.l ⁻¹	1 mg.l ⁻¹	0.5 mg.l ⁻¹
Zn	Untreated control	40 mg.l⁻¹	1 mg.l ⁻¹	0.5 mg.l ⁻¹

738

739**Table 4.2** Metal concentrations obtained in water of the Plankenburg River compared to740recommended safe concentrations as stipulated by DWAF (1996) and the CCME (2001).

Metal	Recommended safe	Environmental quality	Mean meal concentrations obtained		
	concentrations as	guidelines as stipulated			
	stipulated by DWAF	by CCME (2001) (mg.l ⁻¹)	in water (mg.l ⁻¹)		
	(1996) (mg.l ⁻¹)		(Plankenburg River)		
Al	0.1 – 0.15	0.005 – 0.1	11.56		
Cu	0.002 - 0.012	0.002 - 0.004	0.06		
Fe	N/A	0.3	12.2		
Mn	1.3	N/A	0.29		
Ni	N/A	0.025 – 0.15	0.17		
Pb	N/A	0.001 – 0.007	0		
Zn	0.036	0.03	0.4		

744	Table 4.3	Table of	13	isolates,	their	names	presented	on	the	phylogenetic	tree	and
745	accession nu	umbers.										

Name presented on tree	Organism	Accession #
12A 10 Pseudomonas sp.	Pseudomonas sp. 12A_10	gb AY689075.1
TC222 P. fluorescens isolate	Pseudomonas fluorescens isolate TC222	<u>dbj AB238774.1</u>
12A Pseudomonas sp.	Pseudomonas sp. 12A	gb AY689075.1
A90 D. tsuruhatensis st	Delftia tsuruhatensis strain A90	gb EF421404.1
RRLJSMAR P. beteli st	Pseudomonas beteli strain RRLJ SMAR	gb DQ299947.1
776 S. maltophilia st	Stenotrophomonas maltophilia strain 776	gb EU430096.1]
8b-1 Sphingomonas sp.	Sphingomonas sp. 8b-1	gb DQ378211.1
WDL7 C. testosteroni	Comamonas testosteroni WDL7	AF538929
ZH6 <i>Bacillus</i> sp.	<i>Bacillus</i> sp. ZH6	gb EU236752.1]
MOLA 313 Staphylococcus sp.	Staphylococcus sp. MOLA:313	emb AM945546.1
PAO-12 Microbacterium sp.	Microbacterium sp. PAO-12	gb EF514877.1
TPR1 Micrococcus sp.	Micrococcus sp. TPR14	gb EU373424.1
6J-5b K. kristinae st	Kocuria kristinae strain 6J-5b	gb EU379300.1

Table 4.4Isolated organisms and the metals to which they were exposed.

Microorganisms	Metals
Comamonas testosteroni WDL7	Cu
Microbacterium sp. PAO-12	Ni
Sphingomonas sp. 8b-1	Zn
Kocuria kristinae strain 6J-5b	Mn
Micrococcus sp. TPR14	Mn
Pseudomonas beteli strain RRLJ SMAR,	Cu, Ni
Pseudomonas sp. 12A, Pseudomonas	
fluorescens isolate TC222, Pseudomonas	
sp. 12A_10	
Delftia tsuruhatensis strain A90	Ni, Cu
<i>Bacillus</i> sp. ZH6	Zn, Ni, Al, Fe
Staphylococcus sp. MOLA:313	Zn, Mn, Al, Fe
Stenotrophomonas maltophilia strain 776	Zn. Ni. Cu. Al. Fe

Figure 4.1. Map of the Plankenburg River indicating the different sampling points: Site A – Agricultural
 Farming and Residential Areas; Site B – Closest point to Informal Settlement; Site C – Substation in
 Industrial Area and Site D – Industrial Area at Adam Tas Bridge.

Figure 4.3B. Epifluorescent images of biofilm exposed to (i) Control, (ii) 900 mg.l⁻¹Al, (iii) 500 mg.l⁻¹ Al and (iv) 10 mg.l⁻¹ Al.

Figure 4.5A. Represents the percentages of living and dead organisms in response to exposure to various Fe concentrations.

876

877 Figure 4.10. An unrooted phylogenetic tree of organisms isolated from flow cells after exposure to varying 878 metal concentrations. The tree of 13 isolates was Neighbour-joining algorithm of Clustal X. Bootstrap 879 values are constructed using the shown at the nodes.

100

0.02

PAO-12 Microbacterium sp.

-6J-5b K. kristinae st

- TPR1 Micrococcus sp.

Bioremediation of Metal Contamination in the Plankenburg River, Western Cape, South Africa

V.A. Jackson^a, A.N. Paulse^a, A.A. Bester^c, J.H. Neethling^a, S. Khan^a, W. Khan^{b,*}

^aDepartment of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa ^bDepartment of Agricultural and Food Sciences, Faculty of Applied Science, Cape Peninsula University of Technology, Cape Town 8000, South Africa ^cDepartment of Chemical Engineering, Faculty of Engineering, Cape Peninsula University of Technology, Cape Town 8000, South Africa

As most of South Africa's water resources are stored in dams, rivers and abstraction schemes, the bioremediation of river water could serve as a possible alternative to the growing dilemma of water shortages. Two laboratory-scale and one on-site bioreactor system was developed to decrease the metal concentrations in the river The final concentrations for Al, Ni and Zn (bioreactor one) and Mn water. (bioreactor two), decreased to below their recommended concentrations in water samples, as stipulated by the Department of Water Affairs and Forestry (DWAF) and the Canadian Council for the Ministers of the Environment (CCME). The metal concentrations recorded in biofilm suspensions removed from bioreactor two and the on-site bioreactor, revealed concentrations higher than those recorded in the corresponding water samples, except for Fe. The metal-tolerant organisms isolated from the bioballs collected from laboratory-scale bioreactor two (Bacillus, Pseudomonas, Micrococcus and Stenotrophomonas, amongst others), could possibly be utilised for bioremediation purposes. The bioreactor system will however be optimised to improve its efficiency.

Abstract

Three bioreactors (two laboratory-scale and one on-site) were evaluated for their efficiency to reduce metal concentrations in water collected from the Plankenburg River, South Africa. Water (bioreactors one, two and on-site) and bioballs (bioreactors two and on-site) collected throughout the study periods, were digested and analysed using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). Aluminium (Al), nickel (Ni), and zinc (Zn) concentrations decreased from 0.41 mg.l⁻¹ to 0.06 mg.l⁻¹ (85%), 0.2 mg.l⁻¹ to 0.07 mg.l⁻¹ (65%) and 75 mg.l⁻¹ to 0.02 mg.l⁻¹ (97%), respectively (bioreactor one). Aluminium [(1.55 mg.l⁻¹ to 0.38 mg.l⁻¹ (75%)], copper (Cu) [57% (from 0.33 mg.l⁻¹ to 0.04 mg.l⁻¹)], iron (Fe) [71.99 mg.l⁻¹ to 40.4 mg.l⁻¹ (44%)] and manganese (Mn) [57% (0.07 mg.l⁻¹ to 0.03 mg.l⁻¹)] concentrations also decreased in the water samples from bioreactor two. In the on-site, six-tank bioreactor system, concentrations for Fe, Cu, Mn and Ni decreased, while Zn and Al concentrations increased. The concentrations recorded in biofilm samples were higher than the corresponding water samples. The bioballs employed in the bioreactor were thus shown to be efficient attachment surfaces for biofilm development and subsequent metal accumulation. Potentially metal-tolerant organisms (*Pseudomonas* sp., *Sphingomonas* sp., and *Bacillus* sp.) were also identified using phylogeny.

Keywords: bioreactor, Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), metals, phylogeny, river water

1. Introduction

The quality and quantity of the essential element water, is important for the continued sustenance of not only the world's human population, but also for its application in industrial and agricultural sectors, amongst others. In South Africa, water resources are generally collected in dams or water abstraction schemes. These water sources are then primarily used for agricultural activities, industry, mining and power generation, domestic and municipal uses, with 15% of the available water resources required to maintain estuaries and rivers (Langwaldt and Puhakka, 2000).

Pollution, by metals and microbes (Pegram et al., 1999), amongst others, greatly influences the quality of the water sources, and leads to the continued search for new and improved methods to not only clean up contaminated systems, but also to achieve this aim in an environmentally friendly and cost-effective manner.

The ubiquitous nature of biofilms allows these viable and metabolically active microorganisms (Ehrlich, 1998) to survive and proliferate in a variety of different environments, due to its protective polysaccharide coating. Biofilms have a high metal-binding capacity as toxicants are absorbed by cell surface polymers, or extracellular polymeric substances (EPS), which have been shown to be responsible for the interaction of toxicants with the biofilm community (Henriques and Love, 2007). Biofilms are thus applied in the effective remediation or removal of pollutants such as metals, from contaminated areas (Roane and Pepper, 2000).

Bioremediation is a process by which microbial degradation processes are used in technical and controlled treatment systems (Langwaldt and Puhakka, 2000). Bioremediation can also be applied as green technologies, due to its negligible effects on the environment, and its proven cost-efficiency (Adriaens et al., 2006). Bioreactors, which can be applied in bioremediation strategies, are basically tanks in which living organisms carry out biological reactions. Their efficiency is based on the ability of bacteria to attach to inert packing, such as granular activated carbon, at interfaces to generate high biomass (Bouwer and McCarty, 1982; Teitzel and Parsek, 2003). The reactor should also be easy to maintain and operate (Evangelho et al., 2001; Teitzel and Parsek, 2003), and should be able to function under aerobic and anaerobic conditions (Langwaldt and Puhakka, 2000).

Bioreactors have been utilised in many studies to remove or reduce metal concentrations in wastewater and various types of effluent. A mixture of sewage and synthetic gold milling effluent was treated using a trickling filter bioreactor (Evangelho et al., 2001). More than 90% of the free cyanide, thiocyanate, copper (Cu) and zinc (Zn) was removed post-treatment, after analysis with nitric acid digestion and Atomic Absorption Spectrometry (AAS). A rotating-disk biofilm reactor was also used to determine the heavy metal toxicities for biofilms and planktonic cells after exposure to metal concentrations of 0.015 mM to 225 mM Cu, lead (Pb) and Zn, respectively (Teitzel and Parsek, 2003). When comparing the results obtained for resistance of planktonic to biofilm cells, the authors found that the biofilm cells exhibited a two-fold and 600-fold increase in resistance to Pb and Cu, respectively.

The structure and distribution of microorganisms in the contaminated area, as well as possible tolerance, is dependent on the types of pollutants in the specific areas (Marín-Guirao et al., 2005). Organisms that have been isolated from

contaminated sites can also be identified and used in bioreactor systems to improve the removal efficiency of the contaminants.

Amann et al. (1995) showed that specific microorganisms can be identified genetically through the amplification of the 16S or 23S rRNA region of the genomic DNA, using primers to identify the organisms. Toes et al. (2008) investigated the effects of heavy metal pollution (Cd and Cu) on the microbial diversity in muddy- and sandy sediments, using Denaturing Gradient Gel Electrophoresis (DGGE) profiles of bacterial 16S rRNA genes and phylogenetic analyses. Phylogenetic trees showed an abundance of members of the *Flavobacteriaceae* and the a- and c-*Proteobacteria* in the sediments.

The objective of this investigation was to assess the efficiency of a bioreactor system to remove, or decrease the concentrations of metal contaminants at a site along the Plankenburg River, Western Cape, South Africa. Potential metal-tolerant microorganisms were also isolated from the attachment material.

2. Materials and methods

2.1. Site description

A previous study identified four sampling sites along the Plankenburg River, Stellenbosch, South Africa (Fig. 5.1) (Jackson et al., 2008a). These sites included Site A (Agricultural Farming and Residential Areas); Site B (Closest point to Informal Settlement); Site C (Substation in Industrial Area) and Site D (Industrial Area at Adam Tas Bridge). Results from this study showed that the highest concentrations of metals were recorded at Site C (Substation in Industrial Area), which explains why the particular site was selected to investigate the efficiency of the bioreactor systems to reduce metal concentrations in the river water.

2.2. Laboratory-scale bioreactor set up

River water (200 L) was collected from Site C at the Plankenburg River (preliminary results identified this site as a source of metal pollution). Laboratoryscale bioremediation systems were then evaluated to reduce the concentrations of metals in water collected from this site (Jackson et al., 2008a). One bioreactor system was established in the laboratory (two-week period) to minimise the influence of environmental factors. The running time for a second bioreactor was extended to three weeks and it was moved outside to determine the effect of environmental factors on the bioremediation system. The river water was fed through the horizontal bioreactors (35 cm x 30 cm x 100 cm) (Fig. 5.2A) at a flow rate of 1000 L/h, using an Ecopool 6 pump, at a retention time of three minutes. Each of the three compartments of the bioreactor was filled with Bioballs[™] (Fig. 5.2B), which is composed of acrylonitrile, butadiene and styrene (ABS). These Bioballs[™] serve as attachment material for microbial organisms to adhere to. Each Bioball[™] has a surface area of 20 cm³ and were compactly packed in the different sections of the reactor.

2.3. Sampling of laboratory-scale bioreactors

Sixty millilitres of water was collected in two 50 ml Greiner bio-one tubes (Cellstar®) on a daily basis from the effluent line (Fig. 5.2). Three Bioballs[™], were also collected, from each of the three different compartments from reactor two, and stored in sterile whirl-pack bags. The collected samples were stored at 4°C until further use.

2.4. On-site bioreactor

A large-scale on-site reactor was then established at Site C along the Plankenburg River (Fig. 5.3). The system consisted of six 500 L tanks stacked next to each other, with river water flowing from one tank to another along a gradient. The river water was pumped at a flow rate of 1000 L/h and a retention time of 120 minutes. Each of the six tanks were compactly packed with BioballsTM to maximise the biofilm attachment area (Fig. 5.2B). The bioreactor is still in operation, however results for the first two months only, are presented.

2.5. Sampling of on-site bioreactor

Sixty millilitres of water was collected in two 50 ml Greiner bio-one tubes (Cellstar®), from the effluent line twice a week. Six Bioballs[™] from each of the six tanks were also collected and stored in sterile whirl-pack bags. The collected samples were stored at 4°C during transport and until further use.

2.6. Sonication of collected biofilm samples

Bacterial growth was removed from the representative bioballs collected from each container, by sonication. Collected material samples (~100 g) were sonicated for 10 min in 30 ml sterile water in a Branson 5510 sonication bath (Bransonic® Ultrasonic Cleaner). The procedure was repeated at least twice, with fresh sterile d.H₂O added after each sonication step. The sonicated samples were combined resulting in a total of 60 ml bacterial suspension. The biofilm suspension obtained was used for further analysis.

2.7. Metal concentrations in water and biofilm samples

To determine the concentrations of Al, Zn, Cu, Fe, Pb, Ni and Mn in water (5 ml) and biofilm (5 ml) samples were digested with 10 ml 55% nitric acid at 40°C for 60 minutes and then at 120°C for 180 minutes, using a Grant dry-block heater. A blank (control) of 10 ml 55% nitric acid was analysed along with the collected samples to check for possible contamination. The samples were cooled to room temperature, filtered with Whatman No. 6 filter paper into 20 ml volumetric flasks, made up to a volume of 20 ml with distilled water and subsequently filtered for a second time using 0.45 μ m cellulose nitrate ultrafiltration membrane filters (Whatman). Metal concentrations were determined using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) analysis according to the procedure outlined in Saleh et al. (2000).

Repeated measures ANOVA (RMA) was performed on all data obtained as outlined in (Dunn and Clark, 1987), using StatisticaTM. In each RMA, the residuals were analysed to determine if they were normally distributed. In all hypothesis tests, a significant level of 5% was used as standards. The results presented are the averages of five repeats for each particular sampling point at the different sampling sites. For statistical analysis, the volumes (5 ml) were taken into consideration for the calculation of the final metal concentrations in a given sample.

2.9. DNA extraction and Agarose Gel Electrophoresis

One hundred microlitres of the sonicated biofilm samples were spread plated onto nutrient agar plates and incubated at 37°C for two to three days, to isolate pure bacterial cultures. This procedure was performed in duplicate. Single colonies were then selected on the basis of their morphological differences and DNA was extracted using the High pure PCR template preparation kit as per manufacturer's instructions (Roche Diagnostics). Ten microlitres of the extracted DNA samples were electrophoretically analysed on a 0.8% molecular grade agarose gel containing 12 μ l of 0.5 μ g/ml ethidiumbromide (EtBr), using 1 x Tris-acetate-ethylenediamine tetraacetic acid (TAE) electrophoresis buffer at 90 volts for one hour.

2.10. Polymerase Chain Reaction (PCR)

Amplification of target DNA by PCR was performed in a total reaction volume of 50 µl containing 10 mM dNTP Mix (1 µl), 25 mM MgCl₂ (3 µl), 10X Tag Buffer with $(NH_4)_2SO_4$ 10 forward (fDD2 (5 μl), μM CCGGATCCGTCGACAGAGTTTGATCITGGCTCAG) (5 µl), 10 µM reverse (rPP2 -CCAAGCTTCTAGACGGITACCTTGTTACGACTT) (5 µl) (Rawlings, 1995), Tag DNA polymerase (1 µl) (5u/5 µl) (Fermentas Life Sciences, EU), 1 µl of a concentrated DNA sample and 29 µl sterile distilled. The amplification process included an initial denaturation step of 94 °C for 2 minutes, followed by 30 cycles of amplification (1 minute at 94 $^{\circ}$ C, one minute at 57 $^{\circ}$ C and two minutes at 72 $^{\circ}$ C). This was followed by a final extension step of 72 °C for 10 minutes. Ten microlitres of the subsequent PCR amplicons were then electrophoretically analysed on a 0.8% molecular grade agarose gel containing 12 µl of 0.5 µg/ml EtBr, using 1 x TAE electrophoresis buffer at 100 volts for one hour, to determine whether amplification was successful.

2.11. Sequencing of 16S rRNA

The amplified PCR products (1200 bp) were purified using a High Pure PCR product purification kit, as per manufacturer's instructions (Roche Diagnostics). The concentrations of the DNA samples were determined using spectrophotometry and 15 μ l of concentrated DNA (50 to 100 ng/ μ l) samples were loaded onto 96-well microtitre plates, dried in a speedy vac, with medium heat for 30 to 60 minutes (depending on the volumes), and sent for sequencing. The sequencing lab used the Applied Biosystems Big Dye Terminator v3.1.

The resultant sequences were identified with a similarity search using Blastn from the National Centre for Biotechnology Information (NCBI) (Altschul et al., 1997). Contiguous sequences were formed for the forward and reverse sequences of a particular organism, using the CAP3 Sequence Assembly Programme (Huang and Madan, 1999). The contiguous sequences were aligned with Clustal X (1.81) (Higgins and Sharpe, 1988) using default parameters and the BLOSUM matrix, which corrects for multiple base changes. The 20 isolates (Fig. 5.8) and 45 isolates (Fig. 5.9) were representative of the organisms isolated overall. An unrooted tree was constructed using the neighbour-joining program of Saitou and Nei (1987). Phylogenetic analysis was conducted using Molecular Evolutionary Genetics Analysis, Version 3.1 (MEGA version 3.1) (Kumar et al., 2004). To estimate the node reliability, bootstrap values were obtained from 1000 randomly generated trees. Trees were visualised using MEGA version 3.1 (Kumar et al., 2004).

3. Results and Discussion

3.1. Laboratory-scale Bioreactors

Figures 5.4 (bioreactor one), 5.5 (bioreactor two) and 5.6 (on-site bioreactor) represent the mean metal concentrations for AI, Cu, Fe, Mn, Ni and Zn recorded over the respective study periods.

3.2. Laboratory-scale bioreactor one

In laboratory-scale bioreactor one, the final concentrations $(mg.l^{-1})$ on day 15 for AI, Ni and Zn were lower (p < 0.05) than the initial concentrations recorded (Fig. 5.4). Concentrations for AI decreased, from 0.41 mg.l⁻¹ to 0.06 mg.l⁻¹ (85%). The post-treatment AI concentration of 0.06 mg.l⁻¹ was lower than the recommended concentrations of 0.1 mg.l⁻¹ to 0.15 mg.l⁻¹ (DWAF, 1996) and 0.005 mg.l⁻¹ to 0.1 mg.l⁻¹ (CCME, 2001). The recorded concentrations for Ni, decreased from 0.2 mg.l⁻¹ to 0.07 mg.l⁻¹ (65%), and also fell within the recommended concentrations of 0.025 mg.l⁻¹ to 0.15 mg.l⁻¹ (CCME, 2001). Zinc concentrations decreased from 0.75 mg.l⁻¹ to 0.02 mg.l⁻¹ (DWAF, 1996) and 0.03 mg.l⁻¹ (CCME, 2001).

The final concentrations for Cu (Fig. 5.4) and Fe (results not presented) on day 15 increased in comparison to the concentrations recorded in the initial sample. The metal concentrations for Cu increased from 0.15 mg.l⁻¹ to 0.21 mg.l⁻¹, and was significantly higher (p < 0.05) than the recommended concentration of 0.002 mg.l⁻¹ to 0.012 mg.l⁻¹ (DWAF, 1996) and 0.002 mg.l⁻¹ to 0.004 mg.l⁻¹ (CCME, 2001). The concentration for Fe increased from 4.98 mg.l⁻¹ to 7.06 mg.l⁻¹, and was also significantly higher (p < 0.05) than the recommended concentration of 0.3 mg.l⁻¹ (CCME, 2001). No Mn concentrations were recorded in any of the bioreactor one samples throughout the study period. Comparison of the initial and final water sample concentrations indicated that there were reductions in the concentrations of 97% reduction) decreased to below their recommended concentrations, whereas the

concentrations recorded for Cu and Fe increased and were significantly higher (p < 0.05) than the recommended guidelines (CCME, 2001; DWAF, 1996). In a previous study by Jackson et al. (2007b), the authors evaluated the efficiency of a laboratory-scale bioreactor, with particular emphasis on Chemical Oxygen Demand (COD) reduction in winery effluent as well as metal reduction in the Plankenburg River. The authors reported a reduction in the concentrations of Al (0.75 mg.l⁻¹ to 0.18 mg.l⁻¹) and Ni (0.19 mg.l⁻¹ to 0.06 mg.l⁻¹), while the result for Fe was similar to the result obtained in the present study. The final Al concentrations were, however still higher than the recommended concentrations.

3.3. Laboratory-scale bioreactor two

The recorded concentrations for Cu, Mn (Fig. 5.5), Fe and Al (results not shown), decreased (p < 0.05) after the three-week experimental procedure. Concentrations for Al decreased from 1.55 mg.l⁻¹ to 0.38 mg.l⁻¹ (75%), which was higher than the recommended concentrations for Al (CCME, 2001; DWAF, 1996). For Cu, the concentrations decreased by 58% (from 0.33 mg.l⁻¹ to 0.14 mg.l⁻¹), which also exceeded the stipulated guidelines for Cu (CCME, 2001; DWAF, 1996). The metal concentrations for Fe decreased from 71.99 mg.l⁻¹ to 40.4 mg.l⁻¹ (44%) and was significantly higher (p < 0.05) than the recommended concentration of 0.3 mg.l⁻¹ to 0.03 mg.l⁻¹. The initial concentrations for Al, Cu and Fe in bioreactor two were however significantly higher (p < 0.05) than the initial concentrations recorded in bioreactor one. Manganese concentrations decreased by 57% (0.07 mg.l⁻¹ to 0.03 mg.l⁻¹). The Mn concentrations recorded before and after treatment, were however, lower than the recommended guideline, which is 1.3 mg.l⁻¹ (DWAF, 1996).

Negligible increases in Ni and Zn concentrations were observed. Nickel concentrations increased from below the detection limit to 0.03 mg.l⁻¹, and was lower than the recommended concentrations of 0.025 mg.l⁻¹ to 0.15 mg.l⁻¹ (CCME, 2001), while recorded Zn concentrations increased from 0.62 mg.l⁻¹ to 0.64 mg.l⁻¹, and was significantly higher (p < 0.05) than the recommended concentrations of 0.036 mg.l⁻¹ (DWAF, 1996) and 0.03 mg.l⁻¹ (CCME, 2001).

The results recorded in the biofilm samples (results not shown) revealed a negligible increase in the mean metal concentrations for AI, Cu, Fe and Mn from compartments (i) to (iii) (Fig. 5.2). The AI, Cu, Fe and Mn concentrations in the biofilm increased from 2.2 mg.l⁻¹ to 2.9 mg.l⁻¹, 0.23 mg.l⁻¹ to 0.36 mg.l⁻¹, 5.43 mg.l⁻¹ to 6.59 mg.l⁻¹ and 0.08 mg.l⁻¹ to 0.10 mg.l⁻¹, respectively. Nickel and Zn concentrations from compartments (i) to (iii) decreased from 0.21 mg.l⁻¹ to 0.17 mg.l⁻¹ and 1.01 mg.l⁻¹ to 0.78 mg.l⁻¹, respectively (results not shown). Although the concentration of Fe in the bioballs was lower than that of the water samples, the concentration recorded in the biofilm samples increased during the course of the study period.

Shirdam et al. (2006) showed that metal accumulation was two to three times higher in immobilised cells than in free-floating cells. Jackson et al. (2007a) studied metal accumulation in water, biofilm and sediment samples collected from the Berg River. On average metal concentrations of 6 mg.l⁻¹ (Al) and 14.6 mg.l⁻¹ (Fe) were recorded in water samples, compared to 876.8 mg.l⁻¹ for Al and 1017.5 mg.l⁻¹ for Fe in biofilm samples. Research has shown that the extracellular polymeric substances (EPS) exhibits a high metal absorption capacity (Suh et al., 1999).

The recorded concentrations for Al. Cu. Mn and Ni in river water are presented in Fig. 5.6. The concentrations for Cu ranged from 0.16 mg.1⁻¹ (initial) to 0.01 mg.1⁻¹ (final) (94%), with the final concentrations falling within the recommended concentrations according to DWAF (1996). The initial Mn concentration of 0.12 mg.l decreased to 0.01 mg.¹ (92%). Both the initial (day one) and the final (day 67) concentrations fell within the recommended concentration of 1.3 mg.l⁻¹ (DWAF, 1996). Nickel concentrations decreased from 0.1 mg.l⁻¹ to 0.01 mg.l⁻¹ (90%), and fell within the recommended concentrations (CCME, 2001; DWAF, 1996). Iron concentrations decreased from 4.2 mg.l⁻¹ to 0.5 mg.l⁻¹ (88%) (result not shown), which was still higher (p < 0.05) than the recommended concentration (DWAF, 1996). In contrast the concentrations for Al increased from 0.42 mg.⁻¹ to 0.66 mg.⁻¹. Both the initial and final concentrations exceeded the recommended concentrations as stipulated by DWAF (1996) and the CCME (2001). The only other metal, besides Al, that showed an increase in the concentration post-treatment, was Zn, which increased from 0.66 mg.l⁻¹ to 0.8 mg.l⁻¹ (result not shown). Both the initial and final Zn concentrations exceeded the stipulated guidelines (CCME, 2001; DWAF, 1996).

The mean metal concentrations recorded for Al. Cu. Fe and Zn in the biofilm suspension removed from the bioballs for the on-site bioreactor (Fig. 5.3) were higher (p < 0.05) in tank A in comparison to the mean metal concentrations recorded in tank F over the entire study period. The concentrations for AI, Cu, Fe and Zn, recorded in tanks A and F, were; 47 mg.l⁻¹ to 9 mg.l⁻¹, 0.8 mg.l⁻¹ to 0.09 mg.l⁻¹, 83 mg.l⁻¹ to 52 mg.l⁻¹ and 3 mg.l⁻¹ to 2 mg.l⁻¹, respectively (results not shown). The concentrations of Mn in tank A and F, increased from 0.5 mg.l⁻¹ to 0.7 mg.l⁻¹ over the study period, while Ni concentrations remained the same at 0.1 mg.l⁻¹ (results not shown). The increased metal concentration in tank A and in the biofilm samples could indicate the efficiency of the bioballs to remove metals from the river water, which could also explain the decreased metal concentrations in bioballs collected from tank F. The concentrations recorded in the biofilm suspension removed from the bioballs collected from the compartments in bioreactor two, as well as the biofilm suspension collected from the six-tank, on-site bioreactor, revealed concentrations higher than those recorded in the corresponding water samples (AI, Cu, Mn, Ni and Zn), except for Fe in bioreactor two, where the concentration of Fe in the water was higher. Cylindrical bioreactors were used to determine the efficiency of a yeast biomass (Saccharomyces cervisiae) to remove, or reduce the concentrations of Ni, Zn, Cu, Cd and chromium (Cr) from electroplating effluent (Stoll and Duncan, 1997). The results showed that for all the metals analysed, the two-tank system efficiently reduced the metal concentrations between 17% and 18%. Costley and Wallis (2001) investigated the efficiency of a rotating biological contactor bioreactor to reduce Cu, Cd and Zn from heavy metal contaminated industrial wastewater, using three-week old biofilm material in a batch reactor. The system was able to reduce Cd, Cu and Zn concentrations by 30.4%, 81.1% and 49.6%, respectively. In the present study, an on-site six-tank bioreactor system was evaluated for its ability to remove metals from river water. The on-site bioreactor system was able to reduce Cu, Fe, Mn and Ni concentrations in the water samples by 88% to 94%. Overall, the removal efficiency of metals from the river water in the on-site bioreactor proved to be high.

3.5. Identification of organisms isolated from bioballs in Bioreactor two

Figures 5.7a and 5.7b are representatives of the agarose gel electrophoresis photos captured after PCR amplification. The size of the PCR product (1200 bp) in comparison with the Lambda DNA/Hind III marker can clearly be seen.

The phylogeny of the representative organisms in GenBank, were analysed using the Neighbour-joining algorithm in Clustal X (Figs. 5.8 and 5.9). The organisms used to construct the phylogenetic trees were representative of the isolated organisms of which many were identical. Tables 5.1 and 5.2 represent organism names and accession numbers for Figs. 5.8 and 5.9. These figures also represent the micro-organisms isolated from the biofilm suspension removed from the bioballs collected from the bioreactor three days (to allow for biofilm attachment) after it was started (Fig. 5.8) and the organisms isolated from the bioballs collected during the bioreactor run (Fig. 5.9), up until the final day of sample collection.

When comparing the isolates in Fig. 5.9 to the isolates originally present in Fig. 5.8, organisms such as *Aeromonas* sp., *Acinetobacter* sp., *Janthinobacter* sp., *Burkholderiaceae* sp., *Leptothrix* sp., *Luteococcus* sp., *Brevibacillus* sp., *Sphingomonas* sp., *Microbacterium* sp., *Delftia* sp., *Brachybacterium* sp., *Kocuria* sp., amongst others, were present in Fig. 5.9 (after 15 days), but absent in Fig. 5.8 (after 3 days). Species, such as *Hydrogenophaga* sp., *Chelatobacter* sp., *Corynebacterium* sp., *Ochrobactrum* anthropi strain W-7 and *Crocebacterium* sp. were present in the sample collected after 3 days, but were absent at the end of the bioreactor run. Bacterium PTO3, *Pseudomonas* sp., *Variovorax* sp., *Bacillus* sp., *Sphingomonas* sp. and *Brevundimonas* sp. were present throughout the bioreactor run (Figs. 5.8 and 5.9).

In Figs.5.8 and 5.9, the Gram-negative (such as *Pseudomonas, Variovorax, Acinetobacter,* and *Burkholderia,* amongst others) organisms exceeded the Grampositive (such as *Micrococcus, Bacillus* and *Staphylococcus,* amongst others) organisms and tended to cluster together in both Figs. 5.8 and 5.9. This result was similar to the study by Duxbury and Bicknell (1983), who showed that Gram-negative organisms predominated in metal-polluted areas, such as the river water used in the current study, where high concentrations of metals were recorded. Eusébio et al. (2007) also showed a predominance of Gram-negative bacteria to Gram-positive bacteria, recorded at 87% and 13%, respectively. Out of a total of 331 aerobic heterotrophic bacterial strains, only 20 were Gram-positive, while the rest of the samples were dominated by Gram-negative bacteria, such as *Burkholderia* sp., *Pedobacter* sp., *Janthinobacter* sp., *Duganella* sp., and *Sphingomonas* isolates exhibited strong inhibition against certain Gram-positive species.

Hydrogenophaga sp. along with *Acidovorax* sp. belong to the "Knallgas" goup of hydrogen-oxidising organisms (Aragno and Schlegel, 1992). The *Hydrogenophaga* sp. have been shown to be quite common in activated sludge, preceding wastewater treatment and they, along with *Comamonas* isolates, may dominate the biofilm in the early stages of development and during periods of nutrient limitation, such as methanol, but tend not to be present at later stages in the reactor runs (Lemmer et al., 1997). In a study by Xia et al. (2008), *Ochrobactrum* sp. were involved in the fouling of membranes and also played a major role in the development of the mature biofilm. A lack of nitrogen or ammonia as a nitrogen source, necessary for the growth of nitrate-reducing organisms could have contributed to the loss of the above-

CHAPTER FIVE: ARTICLE ACCEPTED FOR PUBLICATION BY INTERNATIONAL BIODETERIORATION AND BIODEGRADATION

mentioned bacteria in the later stages of the bioreactor run. Similarly, in the present study, species such as *Hydrogenophaga* sp. and *Ochrobactrum anthropi* strain W-7 were present in the sample collected after 3 days, but were not present in the samples collected at the end of the bioreactor run. The surviving populations present both in the beginning and at the end of the bioreactor run belonged predominantly to the genera, *Pseudomonas* and *Bacillus*. In previous studies, the organisms predominantly isolated were *Pseudomonas* and *Bacillus* spp., presumably because of their ability to survive under both aerobic and anaerobic conditions and utilise nitrogen as an alternative electron acceptor if necessary (Eusébio et al., 2007).

Stenotrophomonas sp. was shown by Chien et al. (2007) to be resistant to high concentrations of Cd, and to some extent to Cr, Cu, Pb, Ni and Zn. Kim et al. (2007) showed that *Bacillus* sp. exhibited a high uptake capacity for Pb, Cd, Cu, Ni, Co, Mn, Cr and Zn and that a mixture of heavy metals, as opposed to exposure to a single metal, is more toxic to bacterial growth. *Stenotrophomonas, Pseudomonas, Bacillus, Micrococcus* (Yilmaz, 2004) and *Acinetobacter* sp. (Boswell, 2001), amongst others, have been shown to exhibit heavy metal-tolerance in previous studies, as well as in the current study. They could be applied in bioremediation strategies in different pollution sources, due to their high tolerance to various metals (Malik, 2004).

According to Leung et al. (2000) *Pseudomonas, Bacillus, Klebsiella, Aeromonas, Xanthomonas, Kocuria* and *Micrococcus* sp., amongst others were isolated from activated sludge treating industrial wastewater. The authors studied the metal resistance of *Pseudomonas pseudoalcaligenes* and *Micrococcus luteus* to heavy metals. Their results indicated that Cu uptake by *Micrococcus luteus* increased by 61% and that the *Micrococcus* sp. also showed an ability to increase Pb uptake.

Arthrobacter sp. resistance to metals could be due to novel mechanisms of the genome of the species. Research has shown that Arthrobacter resistance to AI and Cr could be due to the production of extracellular soluble substances (Benyehuda et al., 2003). In a previous study, where the metal tolerance of micro-organisms isolated from river water using flow cells was determined, the authors isolated PAO-12 *Microbacterium, Pseudomonas* sp., *Delftia* sp., *Sphingomonas* sp., *Bacillus* sp. and *Kocuria* sp. from flow cells after exposure to the varying metal concentrations (Jackson et al., 2008b). The present study showed the efficiency of an on-site bioreactor system in the removal of metals from river water through the sequestering of metals from the system by means of biofilms. The diversity and number of micro-organisms isolated from bioreactor two could be beneficial in the remediation process due to their ability to resist metal pollutants. The bioreactor system should however be optimised to increase it's efficacy.

Acknowledgements

The National Research Foundation (NRF) and Cape Peninsula University of Technology (CPUT) are thanked for financial support.

References

- Adriaens, P., Li, M., Michalak, A.M., 2006. Review Scaling Methods of Sediment Bioremediation Processes and Applications. Engineering in Life Sciences 6(3), 217-227.
- Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., 1997. "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs". Nucleic Acid Research 25, 3389-3402.
- Amann, R.I., Ludwig, W., Schleifer, K.H., 1995. Phylogenetic identification and *in situ* detection of individual microbial cells without cultivation. Microbiological Reviews 59, 143-169.
- Aragno, M., Schlegel, H.G., 1992. The mesophilic hydrogen-oxidising (Knallgas) bacteria. In: Balows, A., Trűper, H.G., Dworkin, M., Harder, W., Schleifer, K.H. (Eds.), The prokaryotes. Springer Verlag, New York, pp. 344-384.
- Benyehuda, G., Coombs, J., Ward, P.L., Balkwill, D., Barklay, T., 2003. Metal resistance among aerobic chemoheterotrophic bacteria from the deep terrestrial subsurface. Canadian Journal of Microbiology 49,151-156.
- Boswell, C.D., Dick, R.E., Eccles, H., Macaskie, L.E., 2001. Phosphate uptake and release by *Acinetobacter johnsonii* in continuous culture and coupling of phosphate release to heavy metal accumulation. Journal of Industrial Microbiology and Biotechnology 26, 333-340.
- Bouwer, E.J., McCarty, P.L., 1982. Removal of trace chlorinated organic compounds by activated carbon and fixed-film bacteria. Environmental Science and Technology 16, 836-843.
- CCME (Canadian Council of The Ministers Of The Environment), 2001. Canadian sediment quality guidelines for the protection of aquatic life: Summary tables. Updated in: Canadian environmental quality guidelines.
- Chien, C-C., Hung, C-W., Han, C.T., 2007. Removal of cadmium ions during stationary growth phase by an extremely cadmium-resistant strain of *Stenotrophomonas* sp. Environmental Toxicology and Chemistry 26(4), 664–668.
- Costley, S.C., Wallis, F.M., 2001. Bioremediation of heavy metals in a synthetic wastewater using a rotating biological contactor. Water Research 35(15), 3715-3723.
- Department of Water Affairs and Foresty (DWAF) (1996) South African Water Quality Guidelines, Aquatic Ecosystems. Vol.7. Government printer, Pretoria, South Africa.
- Dunn, O.J., Clark, V.A., 1987. Applied Statistics: Analysis of variance and regression (2nd Ed.), John Wiley & Sons, London.
- Duxbury, T., Bicknell, B., 1983. Metal-tolerant bacterial populations from natural and metal-polluted soils. Soil Biology and Biochemistry 15(3), 243-250.
- Ehrlich, H., 1998. Geomicrobiology: its significance for geology. Earth-Science Reviews 45, 45-60.

- Eusébio, A., Mateus, A., Baeta-Hall, L., Sàágua, M.C., Tenreiro, R., Almeida-Vara, E., Duarte, J.C., 2007. Characterisation of the microbial communities in jet-loop (JACTO) reactors during aerobic olive oil wastewater treatment. International Biodeterioration and Biodegradation 59(3), 226-233.
- Evangelho, M.R., Gonçalves, M.M.M., Sant'Anna Jr., G.L., Villas Bôas, R.C., 2001. A trickling filter application for the treatment of a gold milling effluent. International Journal of Mineral Processing 62, 279-292.
- Henriques, I.D.S., Love, N.G., 2007. The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins. Water Research 41(18), 4177-4185.
- Higgins, D.G., Sharpe, P.M., 1988. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 3, 237-244.
- Huang, X., Madan, A., 1999. CAP3: A DNA sequence assembly program. Genome Research 9, 868-877.
- Jackson, V.A., Paulse, A.N., Van Stormbroek, T., Odendaal, J.P., Khan, W., 2007a. Investigation into metal contamination of the Berg River, Western Cape, South Africa. Water SA 33, 175-182.
- Jackson, V.A., Paulse, A.N., Bester, A.A., Neethling, J.H., Du Plessis, K.R., Khan, W., 2007b. The application of bioremediation: reduction of metal concentrations in river water and COD in distillery effluent. Water Science and Technology 55, 183-186.
- Jackson, V.A., Paulse, A.N., Odendaal, J.P., Khan, W., 2008a. Investigation into the metal contamination of the Plankenburg- and Diep Rivers, Western Cape, South Africa. Accepted for publication by Water SA.
- Jackson, V.A., Paulse, A.N., Khan, S., Odendaal, J.P., Khan, W., 2008b. Identification of Metal-tolerant Organisms Isolated from the Plankenburg River, Western Cape, South Africa. Submitted to the Canadian Journal of Microbiology.
- Kim, S.U., Cheong, Y.H., Seo, D.C., Hur, J.S., Heo, J.S., Cho, J.S., 2007. Characterisation of heavy metal tolerance and biosorption capacity of bacterium strain CPB4 (*Bacillus* spp.). Water Science and Technology 55(1-2),105-111.
- Kumar, S., Tamura, K., Nei, M., 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5, 150-163.
- Langwaldt, J.H., Puhakka, J.A., 2000. On-site biological remediation of contaminated groundwater: a review. Environmental Pollution 107, 187-197.
- Lemmer, H., Zaglauer, A., Neef, A., Meier, H., Amann, R., 1997. Denitrification in methanol-fed fixed-bed reactor. Part2: composition and ecology of the bacterial community in the biofilm. Water Research 31(8), 1903-1908.
- Leung, W.C., Wong, M-F., Chua, H., Lo, W., Yu, P.H.F., Leung, C.K., 2000. Removal and recovery of heavy metals by bacteria isolated from activated sludge treating industrial effluents and municipal wastewater. Water Science and Technology 41(12), 233-240.
- Malik, A., 2004. Metal bioremediation through growing cells. Environment International 30(2), 261-278.
- Männistö, M.K., Salkinoja-Salonen, M.S., Puhakka, J.A., 2001. In situ polychlorophenol bioremediation potential of the indigenous bacterial community of boreal groundwater. Water Research 35, 2496–2504.

- Marín-Guirao, L., Cesar, A., Marín, A., Vita, R., 2005. Assessment of sediment metal contamination in the Mar Menor coastal lagoon (SE Spain): Metal distribution, toxicity, bioaccumulation and benthic community structure. Ciencias Marinas 31(2), 413–428.
- Pegram, G.C., Quibell, G., Hinsch, M., 1999. The nonpoint source impacts of periurban settlements in South Africa: implications for their management. Water Science and Technology 39, 283-290.
- Rawlings, D.E., 1995. Restriction enzyme analysis of 16SrRNA genes for the rapid identification of *Thiobacillus feroxidans, Thiobacillus thiooxidans, Leptospirillum ferooxidans* strains in leaching environments. In: Jerez, C.A., Vargas, T., Toledo, H., Wiertz, J.V., (Eds.), Biohydrometallurgical Processing, pp. 9-17.
- Roane, T.M., Pepper, I.L., 2000. Microorganisms and metal pollutants. In: Maier, R.M., Pepper, I.L., Gerba, C.P., (Eds.), Environmental Microbiology. Academic Press, San Diego, pp. 403-423.
- Saitou, N., Nei, M., 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406-425.
- Saleh M.A., Ewane, E., Jones, J., Wilson, B.L., 2000. Monitoring Wadi El Rayan lakes of the Egyptian Desert for inorganic pollutants by Ion-Selective Electrodes, Ion Chromatography, and Inductively Coupled Plasma Spectroscopy. Ecotoxicology and Environmental Safety 45, 310-316.
- Shirdam, R., Khanafari, A., Tabatabaee, A., 2006. Cadmium, Nickel and Vanadium accumulation by three strains of marine bacteria. Iranian Journal of Biotechnology 4(3), 180-187.
- Stoll, A., Duncan, J.R., 1997. Implementation of a continuous-flow stirred bioreactor system in the bioremediation of heavy metals from industrial waste water. Environmental Pollution 97(3), 247-251.
- Suh, J.H., Kim, D.S., Yun, J.W., Song, S.K. 1999. Process of Pb(II) accumulation in *Saccharomyces cerevisiae*. Biotechnology Letters 20, 153-156.
- Teitzel, G.M., Parsek, M.R., 2003. Heavy metal resistance of biofilm and planktonic *Pseudomonas aeruginosa*. Applied and Environmental Microbiology 69, 2313-2320.
- Toes, A.C., Finke, N., Kuenen, J.G., Muyzer, G., 2008. Effects of Deposition of Heavy-Metal-Polluted Harbor Mud on Microbial Diversity and Metal Resistance in Sandy Marine Sediments. Archives Environ Contam Toxicol. In Press.
- Xia, S., Guo, J., Wang, R., 2008. Performance of a pilot-scale submerged membrane bioreactor (MBR) in treating bathing wastewater. Biores Technol. 99, 6834– 6843.
- Yilmaz, E.I., 2004. Metal tolerance and biosorption capacity of *Bacillus circulans* strain EB1. Research in Microbiology 154, 409–415.

Fig. 5.1. Map of the Plankenburg River indicating the different sampling points: Site A – agricultural farming and residential areas; Site B – close to the informal settlement; Site C – Substation in the industrial area and Site D – industrial area at Adam Tas Bridge.

Fig. 5.2. Laboratory-scale batch system bioreactor, containing Bioballs[™], which is composed of acrylonitrile, butadiene and styrene (ABS).

В

А

Fig. 5.4. Metal concentrations (mg.l⁻¹) recorded in water samples collected from the first laboratory-scale bioreactor (Plankenburg River).

Fig. 5.5. Metal concentrations (mg.l⁻¹) (Cu, Mn and Ni) recorded in water samples collected from the second laboratory-scale bioreactor (Plankenburg River).

Fig. 5.6. Metal concentrations (mg.I⁻¹) (AI, Cu, Mn and Ni) recorded in water samples collected from the on-site bioreactor (Plankenburg River).

2027 bp

2

3 4

5

6

7

8 9

10 11 12 13 14 15 16 17 18 19 20

Fig. 5.7a. Representative result of agarose gel electrophoresis of organisms isolated from bioballs at the start of bioreactor three. Lane one represents the marker (Lambda DNA/HINDIII), lane two, the negative control, and lanes three to 20, represent the Purified PCR products.

Fig. 5.7b. Representative result of agarose gel electrophoresis of organisms isolated from bioballs at the end of bioreactor three. Lane one represents the marker (Lambda DNA/HINDIII), lane two, the negative control, and lanes three to 20, represent the Purified PCR products.

Fig. 5.8. An unrooted phylogenetic tree of organisms isolated from bioballs at the start of bioreactor three. A tree of 20 isolates was constructed using the Neighbour-joining algorithm of ClustalX. Bootstrap values are shown at the nodes.

CHAPTER FIVE: ARTICLE ACCEPTED FOR PUBLICATION BY INTERNATIONAL BIODETERIORATION AND BIODEGRADATION

0.02

18 Table 5.1

19 Table of 20 isolates, their names presented on the tree and accession numbers.

Name presented on tree	Organism	Accession #
EP37 Pseudomonas sp.	Pseudomonas sp. EP37	AM403728.1
CAI-4 P reactans sp.	Pseudomonas reactans strain CAI-4	DQ257418.1
PTO3 Bacterium	Bacterium PT03	DQ136048.2
R-20805 Pseudomonas sp. iso	Pseudomonas sp. isolate R-20805	<u>AM114534.1</u>
776 S maltophilia st.	Stenotrophomonas maltophilia strain 776	EU430096.1
V paradox	Variovorax paradoxus	AF532868.1
Esa.33 Hydrogenophaga sp.	Hydrogenophaga sp. Esa.33	<u>AY569978.1</u>
BAC108 Hydrogenophaga sp.	Hydrogenophaga sp. BAC108	EU130958.1
Sulf-946 H lleronii iso.	Hydrogenophaga palleronii isolate Sulf-946	<u>AM922191.1</u>
BAC306 Hydrogenophaga sp.	Hydrogenophaga sp. BAC306	EU130968.1
BBCT20 Sphingomonas sp.	Sphingomonas sp. BBCT20	DQ337548.1
DS-18 B lenta st.	Brevundimonas lenta strain DS-18	EF363713.1
435 C. heintzii	Chelatobacter heintzii 435	<u>AF250406.1</u>
W-70 O. anthropi	Ochrobactrum anthropi strain W-7	EU187487.1
KBAB4 weihenstephanensis	Bacillus weihenstephanensis KBAB4	<u>CP000903.1</u>
megabacterium Bacillus	Bacillus megaterium	DQ105968.1
C. xerosis	Corynebacterium xerosis	<u>AF145257.1</u>
EHFS1 SO1 Hd M. luteus st.	Micrococcus luteus strain EHFS1_S01Hd	EU071591.1
T202 C. ilecola st.	Crocebacterium ilecola strain T202	DQ826511.1
PF-G Brevibacillus sp.	Brevibacillus sp. PF-G	DQ207364.1

20 21

22 Table 5.2

23 Table of 45 isolates, their names presented on the tree and accession numbers.

Name presented on tree	Organism	Accession #
TDIW13 Acinetobacter sp.	Acinetobacter sp. TDIW13	EU000454.1
A449 A. salmonicida	Aeromonas salmonicida subsp. salmonicida A449	CP000644.1
92-0600 Arthrobacter sp.	Arthrobacter sp. 92-0600	EU086811.1
CICCHL JQ9 B. cereus st3	Bacillus cereus strain CICCHLJ Q93	EF528295.1
XJU-1 <i>B.cereus</i> st	Bacillus cereus strain XJU-1	EF185296.1
760 <i>B.pumilus</i> st	Bacillus pumilus strain 760	EU430090.1
PR35-2-1 Bacillus sp.	Bacillus sp. PR35-2-1	EU057855.1
PT03 Bacterium	Bacterium PT03	DQ136048.2
rJ6 Bacterium	Bacterium rJ6	AB021324.1
Lact 5.2 B. arcticum st	Brachybacterium arcticum strain Lact 5.2	AF434185.1
V4.BO.05 Brevundimonas sp.	Brevundimonas sp. V4.BO.05	AJ244704.1
KVD-unk-80 Burkholderiaceae	Burkholderiaceae bacterium KVD-unk-80	DQ490281.1
549 Chryseobacterium sp.	Chryseobacterium sp. 549	EF565935.1
MT2.2 Dermacoccus sp.	Dermacoccus sp. MT2.2	AY894329.1
J. lividum	Janthinobacterium lividum	Y08846.1
5N-4 K. palustris st.	Kocuria palustris strain 5N-4	EU379291.1
L. japonicus	Luteococcus japonicus	<u>Z78208.1</u>
L. ginsengisoli	Leptothrix ginsengisoli	<u>AB271046.1</u>
sp 7 4K Microbacterium	Microbacterium sp. 7_4K	EF540477.1
PAO-12 Microbacterium sp.	Microbacterium sp. PAO-12	EF514877.1
4RS-9a <i>M. luteus</i> st	Micrococcus luteus strain 4RS-9a	EU379286.1
ATCC 17527 P. putida st	Pseudomonas putida strain ATCC 17527	AF094743.1
PC16 P. putida st	Pseudomonas putida strain PC16	<u>AY918067.1</u>
ML0004 R. opacus st	Rhodococcus opacus strain ML0004	DQ474758.1
BIR2-rlima Sphingomonas sp.	Sphingomonas sp. BIR2-rlima	EF153191.1
MP20 Sphingomonas sp.	Sphingomonas sp. MP20	AY521015.2
1/4 C7 32 Sphingopyxis sp.	Sphingopyxis sp. 1/4_C7_32	EF540469.1
S. succinus	Staphylococcus succinus	AF004219.1
88 17 clone Uncult Acinetobact	Uncultured Acinetobacter sp. clone 88_17	AF467302.1
211c A. veronii st	Aeromonas veronii strain 211c	AY987746.1

CHAPTER FIVE: ARTICLE ACCEPTED FOR PUBLICATION BY INTERNATIONAL BIODETERIORATION AND BIODEGRADATION

6 clone Uncult bact	Uncultured bacterium clone 6	AY682678.1
300C-C03 clone Uncult bact	Uncultured bacterium clone 300C-C03	AY662023.1
AKIW820 clone Uncult bact	Uncultured bacterium clone AKIW820	DQ129610.1
BY14 Clone Uncult bact	Uncultured bacterium clone BY14	<u>DQ494790.1</u>
PB93 <i>P. kribbensis</i> st	Pedobacter kribbensis strain PB93	EF660752.1
D. acidovorans	Delftia acidovorans	<u>AB020186.1</u>
ST7 Clone Uncult bact	Uncultured bacterium clone ST7	DQ347893.1
WBI100 Clone Uncult bact	Uncultured bacterium clone WBI100	EU024391.1
DSSF72 Uncult bact	Uncultured bacterium DSSF72	<u>AY328694.1</u>
6C 13 Variovorax sp.	Variovorax sp. 6C_13	<u>AY689053.1</u>
Acinetobacter sp. anoxic	Acinetobacter sp. 'anoxic'	<u>AY055373.1</u>
ctg CGOF257 Clone Uncult org	Uncultured organism clone ctg_CGOF257	DQ395648.1
wged11 Leifsonia sp.	Leifsonia sp. wged11	DQ473536.1
Amico6 Variovorax sp.	Variovorax sp. Amico6	AY512635.1
ENV481 X. flavus st	Xanthobacter flavus strain ENV481	<u>EF592179.1</u>

GENERAL CONCLUSIONS

6.1. INVESTIGATION INTO METAL CONTAMINATION IN THE BERG RIVER, WESTERN CAPE, SOUTH AFRICA

Natural watercourses, such as rivers, can be contaminated with metals and micro-organisms. When the concentrations of naturally occurring metals exceed a stipulated limit (South African Bureau of Standards, 2001; World Health Organisation, 1991), they may become toxic to the surrounding environment. Sources of metal contamination include industrial and medical waste (Dorigo et al., 2004), pesticides, petroleum by-products (Mowat & Bundy, 2001), household products. as well as urban and pharmaceutical waste (Brooks et al., 2003). Domestic and household sources of metal contamination generally occur as a result of corrosion of metal plumbing fittings, galvanised roofs and wire fences and metal-containing products, such as sunblocks, shampoos, amongst others (Alloway, 1995b).

Micro-organisms inhabit the natural environment in the form of planktonic organisms and sessile biofilms. These biofilms can be defined as a community of attached microbial cells organised within extracellular polymer matrices (EPS). This EPS assists in the bacterial survival by providing protection against metals, predation and environmental fluctuations, and also provides increased resistance against antimicrobial agents (Decho, 1990). Biofilms are advantageous in that they encapsulate toxic molecules, such as metals (Costerton *et al.*, 1978), by providing a substrate for them to adhere to, thereby limiting the diffusion of biocides and other toxic molecules across the EPS (De Beer *et al.*, 1994; Huang *et al.*, 1995).

The Berg River flows through many different areas, which include a wastewater works, an agricultural area and an informal settlement. It also serves as a source of water for towns, cities, and recreational users (River Health Programme, 2004). In recent years, the Berg River has experienced incidences of increased pollution. The objective of this study was to investigate the concentration of the following metals: aluminium (Al), zinc (Zn), copper (Cu), iron

(Fe), lead (Pb), nickel (Ni) and manganese (Mn), which occur within the river water, sediment and the biofilm samples collected from different sites along the Berg River (Paarl) in the Western Cape, South Africa. The figures and tables discussed are presented in article one (chapter two). As indicated on **Figure 2.1**, the samples were collected from site A (agricultural farming area), site B (Plot 8000), where storm water drainage pipes from the communities in a nearby settlement enter the river at site B, and site C (the Newton pumping station), which serves as an inlet of storm drainage water and wastewater into the river from the residential area of Newton as well as certain areas of Mbekweni.

Results obtained from the nitric acid digestion method, in conjunction with Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), revealed that the highest mean metal concentrations were recorded for AI (6 mg.l⁻¹), Fe (14.6 mg.l^{-1}) and Mn (18.8 mg.l^{-1}) in water samples (**Figure 2.2A**). The concentrations of AI and Fe were significantly higher than the recommended guidelines for AI (0.1 to 0.15 mg. l^{-1} and 0.005 to 0.1 mg. l^{-1}) and Fe (0.3 mg. l^{-1}) in freshwater systems as stipulated by the Department of Water Affairs and Forestry (DWAF, 1996) and the Canadian Council of Ministers of the Environment (CCME, 2001). Manganese concentrations fell within the recommended quality guideline range of 1.3 mg.1⁻¹ (DWAF, 1996) for most of the sampling period with the exception of weeks 25, 45 and 49, where increased concentrations ranging from 3.6 mg.l⁻¹ to 18.8 mg.l⁻¹ at sites C and A (Figure 2.2A) respectively, were recorded. The recorded concentrations of Cu, Ni and Zn in water samples varied throughout the study period and fluctuated above and below the recommended auidelines of 0.002 ma, l^{-1} to 0.012 ma, l^{-1} (DWAF, 1996) and 0.002 mg.l⁻¹ to 0.004 mg.l⁻¹ (CCME, 2001), 0.025 mg.l⁻¹ to 0.15 mg.l⁻¹ (CCME, 2001) and 0.036 mg.l⁻¹ (DWAF, 1996) and 0.03 mg.l⁻¹ (CCME, 2001), respectively (Table 2.1 & Figure 2.2B). Lead could not be detected in any of the analysed samples.

In the sediment samples (**Figure 2.3**), the highest concentrations were recorded at 17448.8 mg.kg⁻¹ for AI and 26473.3 mg.kg⁻¹ for Fe. No recommended sediment quality guidelines for AI, Fe, Pb, Mn and Ni were available from DWAF (1996) and the CCME (2001). **Tables 2.2 & 2.3** represent

the mean concentrations for Cu, Mn, Ni, Pb and Zn in sediment samples. Manganese, Ni and Pb concentrations were significantly low throughout the study period in sediment samples, with the highest mean metal concentrations for Mn, Ni and Pb recorded at: 70 mg.kg⁻¹ (week 5, site C); 44 mg.kg⁻¹ (week 1, site B) and 23 mg.kg⁻¹ (week 45, site B) (**Tables 2.2 & 2.3**), respectively. The highest mean Cu concentration of 74 mg.kg⁻¹ (week 1, site B) (**Table 2.2**) was higher than the recommended environmental quality guideline of 35.7 mg.kg⁻¹ in freshwater sediment as specified by the CCME (2001). Thereafter, during weeks 5 to 49, concentrations for Cu decreased significantly (p < 0.05), to levels lower than the guideline (CCME, 2001). The highest mean Zn concentration of 395 mg.kg⁻¹ (week 1, site B) (**Table 2.3**), was higher than the recommended Canadian sediment quality guidelines of 123 mg.kg⁻¹ (CCME, 2001). Thereafter the mean Zn concentrations ranged from 4 mg.kg⁻¹ to 36 mg.kg⁻¹ (**Table 2.3**), which fell within the accepted CCME guidelines.

The recorded results for Fe and AI in biofilm samples fluctuated throughout the entire study period. The mean concentrations recorded for AI and Fe ranged from 14.1 mg.l⁻¹ (week 33) to 876.8 mg.l⁻¹ (week 37), and from 18 mg.l⁻¹ (week 33) to 1017.5 mg.l⁻¹ (week 37), at site A, respectively (**Figure 2.4**). The highest mean metal concentrations in biofilm samples for Cu, Mn, Ni, Pb and Zn were recorded at: 2 mg.l⁻¹ (week 1 and 37, sites C and A); 71 mg.l⁻¹ (week 25, site A); 19 mg.l⁻¹ (week 17, site A); 1.6 mg.l⁻¹ (week 5, site C) and 8.4 mg.l⁻¹ (week 25, site A), respectively (**Tables 2.4 and 2.5**).

The highest concentrations of metals in water was recorded at the agricultural area (site A), where pesticides, such as MancozebTM and PhosguardTM, amongst others, are utilised. Aluminium is a component of PhosguardTM (Seachem), and Mn composes 60% of MancozebTM, which is a fungicide used for the treatment of plant diseases in the Western Cape. Vermeulen *et al.* (2001) reported that MancozebTM usage in the Western Cape amounts to 1343 x 10³ kg/annum. The highest AI (week one) and Fe (weeks one and five) concentrations in sediment samples were recorded at site A for AI and at sites A and B (Informal settlement) for Fe. It was concluded that the high concentrations in the informal settlement could have been due to the leaching of
Al and Fe from household products and galvanised roofing and building materials into the river. The high concentrations of Al and Fe in the biofilm samples, especially during week 37, could be correlated with a corresponding increase in microbial counts in the biofilm sample $(3.9 \times 10^7 \text{ organisms.ml}^{-1})$ (Paulse *et al.*, 2008), collected during that particular sampling time period. The increase in the number of micro-organisms could have facilitated the Al and Fe accumulation in the biofilm, as it has been shown in previous studies that microorganisms have developed unique means of resistance to specific metals (Roane & Pepper, 2000), largely due to it's ability to develop a strong extracellular polymeric layer (EPS) (Mayer *et al.*, 1999).

6.2. INVESTIGATION INTO THE METAL CONTAMINATION OF THE PLANKENBURG- AND DIEP RIVERS, WESTERN CAPE, SOUTH AFRICA

Point- and non-point source pollution contributes to a decline in the quality of the water when leaching occurs into the surrounding environment (DWAF, 2004). Agricultural contamination was also shown by the Agency for Toxic Substances and Disease Registry (2000), to be due to the discharging of pesticides into rivers. In addition, pollutants such as micro-organisms, metals, oils and other toxic substances contribute to the decrease in water quality (Pegram *et al.*, 1999). High concentrations of metals usually deposit on and integrate in river sediment, which are either organic or inorganic materials, removed by erosion and transported by fluid flow to different locations (Prange & Dennison, 2000; Marchand *et al.*, 2006), where the highest metal content available for transport between sites is stored in the sediment-water interfaces (Maanan *et al.*, 2004).

The Plankenburg River flows downstream through Stellenbosch's industrial area, which includes amongst others a clothing factory, a well-known cheese factory, spray painting and mechanical workshops and yoghurt and dairy producing plants. The river also flows through an informal settlement. Farmers up- and downstream from the settlement utilise the river water for the irrigation of

vineyards, as well as other crops. In the Diep River catchment, land in the upper catchment area is dominated by agricultural activities. In the lower part of the catchment, land use is largely reserved for urban development, which includes formal and informal settlements, industrial establishments, such as spray painting, chemical and clothing manufacturers, a wastewater treatment works and an oil refinery. It also serves as a storage area for sediment-rich water during floods.

The aim of this study was to investigate the spatial and temporal variation in the metal contamination in the Plankenburg and Diep Rivers in the Western Cape, South Africa. Metal concentrations in water and sediment samples were analysed using the nitric acid digestion method followed by inductively coupled plasma atomic emission spectrometry (ICP-AES) (Saleh et al., 2000). The two rivers selected borders industrial areas, residential areas, agricultural areas and informal settlements. Increased metal pollutants also have a detrimental effect on human health (Wright & Welbourne, 2002), where exposure is mainly due to the ingestion of food and water contaminated with metals leaching into groundwater (Piver, 1992). The figures and tables discussed are presented in article two (chapter three).

Metal concentrations in sediment and water samples were determined at different sites (**Figures 3.1 & 3.2**) along the rivers, using the nitric acid digestion technique in conjunction with Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The sampling sites for the Plankenburg River were: site A (Agricultural Farming and Residential Areas); site B (Informal Settlement of Kayamandi); site C (Substation in Industrial Area) and site D (Industrial Area at Adam Tas Bridge) (**Figure 3.1**). The sampling sites for the Diep River were: site A (Zoarvlei Nature Reserve - Industrial as well as Residential Areas); site C (Potsdam Wastewater Treatment Works) and site D (Rietvlei Boating Club and Nature Reserve) (**Figure 3.2**).

The recorded AI and Fe concentrations were mostly higher than all the other metals analysed. Metal concentrations recorded for AI and Fe in water samples collected at the Plankenburg River ranged from 0.3 mg.l⁻¹ (week 1, site

A) to 13.6 mg. l^{-1} (week 18, site B) and 0.3 mg. l^{-1} (week 39, site B) to 48 mg. l^{-1} (week 43, site A), respectively (Tables 3.1, 3.2 and 3.5). The Al concentrations mostly exceeded the recommended concentrations of 0.1 mg.l⁻¹ to 0.15 mg.l⁻¹ (DWAF, 1996) and 0.005 mg.l⁻¹ to 0.1 mg.l⁻¹ (CCME, 2001). The Fe concentrations also exceeded the guidelines of 0.3 mg.l⁻¹ (CCME, 2001) and the 'World average' of 0.04 mg.l⁻¹ (Martin and Windom, 1991). No Al guidelines were available for the 'World average' and no AI and Fe guidelines were available for the Australian and New Zealand Environment and Conservation Council (ANZECC, 2000). Lead (Pb) was not detected in any of the analysed samples from the Plankenburg River. The mean metal concentrations recorded for copper (Cu), manganese (Mn), nickel (Ni) and zinc (Zn) in the Plankenburg River water samples, are presented in Tables 3.1 & 3.2. The concentrations of Cu, Ni and Zn recorded in water samples from the Plankenburg River varied throughout the study period. The Cu concentrations ranged from 0.3 mg.l⁻¹ (weeks 27 and 52. site D) to 2.2 mg.l⁻¹ (week 1, site A) (**Tables 3.1, 3.2 & 3.5**). Throughout the study period, the recorded Cu concentrations were higher than the recommended concentrations of $0.002 - 0.012 \text{ mg.l}^{-1}$, $0.002 - 0.004 \text{ mg.l}^{-1}$, 0.0015 mg.l^{-1} and $0.0001 - 0.00015 \text{ mg.l}^{-1}$ as stipulated by DWAF (1996b), the CCME (2001), Martin and Windom (1991) and ANZECC (2000), respectively (Table 3.5). Mean Mn concentrations ranged from below the detection limit (sites A, B, C and D) to 0.4 mg.l⁻¹ (site C) (**Tables 3.1 & 3.2**) at different weeks during the sampling period, and always fell within the recommended quality guideline of 1.3 mg.l⁻¹ (DWAF, 1996) for the Plankenburg River. The recorded concentrations, were however higher than the 'World average' of 0.0015 mg.l⁻¹ (Martin and Windom. 1991) (Table 3.5). The mean metal concentrations for Ni recorded throughout the study period ranged from 0.1 mg.1⁻¹ (sites B, C and D) to 0.5 mg.1⁻¹ (site A) for the Plankenburg River. The recorded values generally exceeded the recommended concentrations of 0.025 mg.l⁻¹ to 0.15 mg.l⁻¹ (CCME, 2001), with the exception of weeks 27, 36, 43 and 52 (Tables 3.1 & 3.2), where the Ni concentration was recorded at 0.1 mg.l⁻¹. The concentrations for Ni were significantly higher (p < 0.05) than the 'World average' guideline of 0.0005 mg.l⁻¹ (Martin and Windom, 1991) and the ANZECC (2000) guideline of 0.0001 - 0.0005 mg.l⁻¹ (**Table 3.5**). No environmental quality guideline for Ni was available from DWAF (1996b). Throughout the entire study period, the overall concentrations for Zn in the water samples were mostly higher than the recommended concentrations of 0.03 mg.l⁻¹, 0.036 mg.l⁻¹, 0.0006 mg.l⁻¹ and 0.0009 mg.l⁻¹, as stipulated by the CCME (2001), DWAF (1996b), Martin and Windom (1991) and ANZECC (2000), respectively (**Table 3.5**).

The concentrations of AI and Fe recorded in water from the Diep River. ranged from below the detection limit to 4 mg.l⁻¹ (week 1, site A) and from 0.1 mg.l⁻¹ (week 9, site A) to 513 mg.l⁻¹ (week 27, site A), respectively (**Tables**) **3.3. 3.4 and 3.5**). No Al guidelines were available for the 'World average' and no Al and Fe guidelines were available for the Australian and New Zealand Environment and Conservation Council (ANZECC, 2000). No guidelines for Fe in river water samples were available from DWAF. Lead (Pb) was not detected in any of the analysed samples from the Diep Rivers. The concentrations of Cu, Ni and Zn in the Diep River water samples varied throughout the study period. The Cu concentrations ranged from 0.1 mg.l⁻¹ (weeks 1 and 36, sites C and D, respectively) to 0.8 mg.l⁻¹ (week 32, site D, respectively) (**Table 3.4**). Throughout the study period, the recorded concentrations for Cu were higher than the recommended concentrations of $0.002 - 0.012 \text{ mg.l}^{-1}$, $0.002 - 0.004 \text{ mg.l}^{-1}$, 0.0015 mg.l^{-1} and $0.0001 - 0.00015 \text{ mg.l}^{-1}$ as stipulated by DWAF (1996b), the CCME (2001), Martin and Windom (1991) and ANZECC (2000), respectively (Table 3.5). The highest Mn concentration recorded for the Diep River was 1.3 mg.l⁻¹ (week 27, site A) (**Table 3.3**), which is the maximum limit as stipulated by DWAF (1996) (Table 3.5). The Mn concentrations however mostly exceeded the 'World average' of 0.0015 mg.l⁻¹ (Martin and Windom, 1991) (**Table 3.5**). The mean metal concentrations for Ni recorded throughout the study period ranged from below the detection limit to 0.4 mg.l⁻¹ (weeks 23 and 32, sites D and C, respectively) for the Diep River. The recorded concentrations exceeded the recommended concentration of 0.025 - 0.15 mg.l⁻¹ (CCME, 2001), 0.0005 mg.l⁻¹ (Martin and Windom, 1991) and the Australian and New Zealand guidelines of 0.0001- 0.00015 mg.l⁻¹ (ANZECC, 2000) during Weeks 5, 14, 18, 23, 27 and 32 at various sampling sites. The overall concentrations recorded throughout the study period for Zn were mostly higher than the recommended concentrations of 0.03 mg.l⁻¹ (CCME, 2001), 0.036 mg.l⁻¹ (DWAF, 1996b), 0.0006 mg.l⁻¹ (Martin and Windom, 1991) and 0.0009 mg.l⁻¹ (ANZECC, 2000) (**Table 3.5**).

No sediment quality guidelines for Al, Cu, Fe, Mn, Ni, Pb and Zn were available from DWAF and the 'World average' (Martin and Windom, 1991) and guidelines for only Cu and Zn were available from the CCME (2001). Guidelines for Cu, Ni, Pb and Zn were available from ANZECC (2000). Results for metal concentrations in sediment samples in the Plankenburg River were as follows: Al [1609 mg.kg⁻¹ (week 52, site D) to 15018 mg.kg⁻¹ (week 1, site C)] and for Fe $[3763 \text{ mg.kg}^{-1} \text{ (week 52, site D) to } 19179 \text{ mg.kg}^{-1} \text{ (week 1, site C)}]$ (**Figure 3.3**). The Mn concentrations ranged from 15.93 mg.kg⁻¹ (week 22, site B) to 225 mg.kg⁻¹ (week 5, site A) in the Plankenburg River (**Figure 3.4**). The Pb concentrations in the Plankenburg River ranged from 7.38 mg.kg⁻¹ (week 52, site C) (**Figure 3.5**) to 275 mg.kg⁻¹ (week 9, site C). The highest Pb concentration exceeded the Australian and New Zealand quality quideline of 50 mg·kg⁻¹ (ANZECC, 2000). The concentrations recorded for Ni in the Plankenburg River, ranged from 0.62 mg.kg⁻¹ (week 1, site C) to 11.7 mg.kg⁻¹ (week 52, site D) (Figure 3.5). The highest Ni concentration was lower than the quality guideline as stipulated by ANZECC (2000). The highest Cu concentrations recorded for the Plankenburg River was recorded at 251.8 mg.kg⁻¹ (week 9, site C). This concentration was significantly higher (p < 0.05) than the recommended environmental quality quideline of 35.7 mg·kg⁻¹ in freshwater sediment as stipulated by the CCME (2001) and the Australian and New Zealand quality auideline of 65 ma.ka⁻¹ (ANZECC, 2000). The highest Zn concentration recorded in the Plankenburg River was 269.5 mg kg⁻¹ during Week 1 at Site B (Figure **3.4**). The highest recorded concentration was significantly higher (p < 0.05) than the recommended environmental guality guideline of 123 mg.kg⁻¹ in freshwater sediment as stipulated by the CCME (2001) and 200 mg.kg⁻¹ as stipulated by ANZECC (2000).

No sediment quality guidelines for AI, Cu, Fe, Mn, Ni, Pb and Zn were available from DWAF and the 'World average' (Martin and Windom, 1991) and guidelines for only Cu and Zn were available from the CCME (2001). Guidelines for Cu, Ni, Pb and Zn were available from ANZECC (2000). The results for Al and Fe in the sediment samples collected from the Diep River revealed the following: 175.5 mg.kg⁻¹ (week 1, site D) to 14363.8 mg.kg⁻¹ (week 1, site A) and from 299.3 mg.kg⁻¹ (week 14, site B) to 106379.5 mg.kg⁻¹ (week 9, site C) (**Figure 3.6**), respectively. The highest Mn concentration in the Diep River was recorded at 1353.5 mg.kg⁻¹ (week 1, site C). The highest mean metal concentration for Pb in the Diep River was 643.06 mg.kg⁻¹ (week 1, site A). The highest Pb concentration exceeded the Australian and New Zealand quality guideline of 50 mg.kg⁻¹ (ANZECC, 2000). For the Diep River, the highest Ni concentration was recorded at 15.81 mg.kg⁻¹ (week 9, site C) (Figure 3.8). The highest Ni concentration was lower than the quality guideline as stipulated by ANZECC (2000). The highest Cu concentrations recorded for the Diep River was recorded at 370.5 mg.kg⁻¹ (week 1, site B) and was significantly higher (p < 0.05) than the recommended environmental quality guideline of 35.7 mg kg⁻¹ in freshwater sediment as stipulated by the CCME (2001) and the Australian and New Zealand auality auideline of 65 mg.kg⁻¹ (ANZECC, 2000). The highest Zn concentrations recorded for the Diep River was 1081.2 mg.kg⁻¹ and was significantly higher (p < 0.05) than the recommended environmental guality guideline of 123 mg.kg⁻¹ in freshwater sediment as stipulated by the CCME (2001) and 200 mg.kg⁻¹ as stipulated by ANZECC (2000).

Comparison of the overall results obtained at the various sites, showed that the point sources of pollution at the Plankenburg and Diep Rivers could not conclusively be identified as concentrations at the various sites fluctuated throughout the entire study period. The increased concentrations of Al and Fe at the various sites could be due to the fact that they are the two most abundant metals in the environment [Agency for Toxic Substances and Disease Registry (ATSDR), 1995]. The sources of Al, Mn and Fe contamination could be due to the leaching and the inadequate disposal of pesticides and fertilisers into the river (ATSDR, 2000; Jackson *et al.*, 2007).

The increased concentrations of Fe, Zn and Pb in the informal settlement of the Plankenburg River, was similar to results obtained by the Nairobi River Basin Programme Phase II Pollution Monitoring Stakeholders in 2003, where the authors attributed the high Fe and Zn concentrations to the use of Fe sheets galvanised with Zn. Similarly, the informal settlement situated along the banks of the Plankenburg River, also use the same materials in the construction of their informal housing.

Contamination at the industrial sites of both rivers could have been due to the leaching of waste products from the surrounding industrial activities. The increased concentrations recorded from the waste products leaching into the river from a stormwater drain coming from the oil refinery close to the Diep River, correlates with results obtained in studies conducted by Mwamburi (2003), where increased concentrations of Fe, Mn, Zn, Cr and Al in sediment samples, were recorded in the Kasat River (Kenya), where the direct input of waste from municipal and industrial sources could have contributed to the increased concentrations.

Davies *et al.* (2006) evaluated the accumulation of Cr, Cd and Pb in water, sediment and periwinkle (*Tympanotonus fuscatus var radula*; shell and soft tissues). The results showed that the concentrations of Cr were highest in both the sediment and water samples at all the sampling sites, where concentrations of 0.01 mg.kg⁻¹ were recorded. The authors found that effluent from heavily industrialised and highly populated settlements contributed to the metal accumulation at the affected sites. The authors concluded that for future use, the metal concentrations in sediment must be monitored on a regular basis. As with the results recorded in the present study, the concentrations recorded in the sediment samples.

The recorded concentrations were compared to the baseline values obtained by Micó et al. (2007). Baseline values for heavy metals were proposed by Micó et al. (2007) to identify soil contamination in Alicante, Spain. Cadmium, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn concentrations were determined using atomic absorption spectrometry. The baseline values identified were 0.7 mg.kg⁻¹, 11 mg.kg⁻¹, 36 mg.kg⁻¹, 28 mg.kg⁻¹, 19,822 mg.kg⁻¹, 402 mg.kg⁻¹, 31 mg.kg⁻¹, 28 mg.kg⁻¹ and 83 mg.kg⁻¹ for Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn, respectively. The authors concluded that the baseline concentrations would be beneficial to compare the concentrations of metals for which there are no

recommended quality guidelines, such as Al, Fe and Mn. The values could also provide a basis to identify contaminated sites. The concentration of Fe in the soil recorded by Micó et al. (2007) was comparable to the concentrations of Fe recorded in the Plankenburg River, but lower than the concentration for Fe recorded in the Diep River. The Mn concentrations recorded at the Plankenburg River was lower than the Micó et al. (2007) results, but the Diep River result exceeded to baseline concentration recorded by Micó et al. (2007). The highest Cu, Pb and Zn concentrations recorded at both rivers were significantly higher (p < 0.05) than the baseline concentration stipulated by Micó et al. (2007), while for Ni, the recorded concentrations at both rivers were below the baseline concentrations of Micó et al. (2007). Results from the present study show that the metal concentrations in the river systems should routinely be analysed. The national guidelines should be updated or revised to accurately reflect the current state of the rivers and pollution influences.

6.3. IDENTIFICATION OF METAL-TOLERANT ORGANISMS ISOLATED FROM THE PLANKENBURG RIVER, WESTERN CAPE, SOUTH AFRICA

In water and the environment, micro-organisms exist mostly as biofilm communities attached to surfaces (Teitzel & Parsek, 2003). Microbial biofilms exhibit high affinities for contaminants due to the ability of the exopolymers produced by the biofilm to bind and sequester antimicrobial agents from the surrounding environment (Hunt, 1986). Studies performed by various researchers have highlighted the ability of certain micro-organisms to resist metal contamination (Roanne & Pepper, 2000). Research by Geesey *et al.* (1989) showed that extracellular polymeric substances (EPS) could serve as potential agents for the concentration and deposition of fine-grained minerals. Biofilms have also been shown by Roane & Pepper (2000) to be one of the most effective treatments for the removal of metals from metal-contaminated water. These authors also showed that because of the resistance build-up of the different micro-organisms within the biofilm, certain micro-organisms are more effective in

the removal of different metals from the contaminated environment (Roane & Pepper, 2000). Factors contributing to the increased resistance of microorganisms to metal pollution include the taxonomic groups of the different microorganisms within the biofilm matrix, as well as the age and size of the biofilm exposed to the contaminants (Wright & Welbourne, 2002). These factors accelerate and improve the immobilisation and degradation of pollutants (Singh *et al.*, 2006).

Devices developed to assist in the treatment of contaminated water bodies, such as flow cell systems, have been used to cultivate microbial biofilms in vivo (Caldwell et al., 2002). They are multi-channelled to allow for experimental replication and simplified handling, and are made of Perspex. They can also be used to identify potential metal-tolerant micro-organisms in situ, through exposure to varying metal concentrations. The adverse effect of metals on micro-organisms can be evidenced by various factors, such as reductions in microbial diversity and number, and alterations in community structure (Ellis et al., 2003). The composition of the micro-organisms can be determined genetically (Christensen et al., 1998), through the amplification of the 16S or 23S rRNA region of the genomic DNA, using specific primers to identify organisms (Amann et al., 1995). The objective of this investigation was to isolate metaltolerant micro-organisms from a site where high metal concentrations were recorded along the Plankenburg River (Jackson et al., 2008). The figures and tables discussed are presented in article three (chapter four). The microorganisms were cultured and isolated in flow cell systems (Figure 4.2) after exposure to varving metal [aluminium (Al) (10 mg. l^{-1} , 500 mg. l^{-1} and 900 mg. l^{-1}). iron (Fe) (10 mg.l⁻¹, 500 mg.l⁻¹ and 1000 mg.l⁻¹), copper (Cu) (0.5 mg.l⁻¹, 2.5 mg. l^{-1} and 10 mg. l^{-1}), manganese (Mn) (1.5 mg. l^{-1} , 15 mg. l^{-1} and 80 mg. l^{-1}), nickel (Ni) (0.5 mg. l^{-1} , 1 mg. l^{-1} and 20 mg. l^{-1}) and zinc (Zn) (0.5 mg. l^{-1} , 1 mg. l^{-1} and 40 mg.^{[-1})] concentrations (**Table 4.1**). They were then identified using the Polymerase Chain Reaction (PCR) technique to amplify the 16S rRNA region. The phylogeny of the representative organisms in GenBank, were analysed using the Neighbour-joining algorithm in Clustal X.

The results for the determination of metal-tolerance, revealed an increase in the number of dead cells (4.47% increase) when the biofilm was exposed to 900 mg.I⁻¹ AI, in comparison to the untreated control (**Figures 4.3A & 4.3B**). For Cu, exposure to 10 mg.I⁻¹ resulted in an increase in the number of dead cells by 3.71% in comparison to the untreated control (**Figure 4.4A & 4.4B**). Exposure of the biofilms to 1000 mg.I⁻¹ Fe and 80 mg.I⁻¹ Mn showed an increase in the number of dead cells by 3.59% and 9.16%, respectively, in comparison with the untreated controls (**Figures 4.5A, B & Figures 4.6A, B**). A difference in live and dead cells exposed to the varying Ni and Zn concentrations was not evident (**Figures 4.7A, B & Figures 4.8A, B**). When exposed to the lowest concentrations of 10 mg.I⁻¹ (AI), 0.5 mg.I⁻¹ (Cu), 10 mg.I⁻¹ (Fe), 1.5 mg.I⁻¹ (Mn), 0.5 mg.I⁻¹ (Ni) and 0.5 mg.I⁻¹ (Zn), no notable differences in the obtained percentages could be detected in comparison with the untreated control, for any of the metals analysed for.

Exposure of the respective flow cell channels to the highest AI and Fe concentrations (Figures 4.3B and 4.5B) showed that the organisms tended to clump together in response to the metal exposure. The ability of extracellular polymeric substances to bind metals and pollutants also contribute to the clumping of cells (McLean *et al.*, 1990). Metals can alter the number, biochemical activity, diversity and community structure of micro-organisms in many different ways (Ellis *et al.*, 2003). Previous research performed by Teitzel & Parsek (2003) has shown that cells at the biofilm-bulk liquid interface were exposed to the highest concentrations of the pollutants. The two fluorophores used (SYTO 9 and Propidium Iodide) stains the living cells green and the dead cells red, respectively. When the cells fluoresce yellow, it means that the two images are superimposed and is impossible to distinguish live cells from dead cells (Figs. 3B to 8B). Teitzel & Parsek (2003) also reported that in minimal media with short exposure times, biofilms have a demonstrable resistance to the heavy metals Cu^{2+} , Zn^{2+} and Pb^{2+}

Phylogenetic analysis showed that a variety of organisms, which included *Bacillus* sp., *Pseudomonas* sp., *Delftia tsuruhatensis* strain A90, *Kocuria kristinae* strain 6J-5b, *Comamonas testosteroni* WDL7, *Stenotrophomonas maltophilia*

strain 776, *Staphylococcus* sp. MOLA:313, *Micrococcus* sp. TPR14, *Sphingomonas* sp. 8b-1 and *Microbacterium* sp. PAO-12, were isolated from the flow cells after exposure to the various metal concentrations. Two major clusters could also be distinguished based on their Gram-reactions (**Figure 4.10**).

In previous research it was shown that several Gram-positive and Gramnegative organisms were shown to be resistant to Pb, Hg, Cd, Cu, Co and Zn (Trajanovska et al., 1997), which could be correlated to the results obtained in the present study (Table 4.4). The major difference between the two clusters, was that the Gram-positive organisms, Staphylococcus MOLA:313, Micrococcus sp. TPR1 and Kocuria kristinae st. 6J-5b were resistant to Mn (Figure 4.10 & Table 4.4), and that the clade consisting of the *Pseudomonas* sp. all exhibited tolerance to Ni exposure. The clusters also contained more Gram-negative than Gram-positive organisms (Figure 4.10). Duxbury & Bicknell (1983), amongst others, suggested that Gram-negative organisms predominated in metal-polluted environments, and also showed that it was reasonable to expect a certain degree of overlap between Gram-positive and Gram-negative bacteria, as some of these species are resistant to the same metals. Isolates such as Stenotrophomonas maltophilia strain 776, Bacillus sp. ZH6 and Staphylococcus sp. MOLA:313 displayed resistance to multiple metals (Zn, Ni, Cu, Al and Fe), as well as *Pseudomonas* sp. and *Delftia tsuruhatensis* strain A90 (Cu and Ni resistance) to a lesser extent. The other isolated organisms did not exhibit multiple metal resistance (Table 4.4).

6.4. BIOREMEDIATION OF METAL CONTAMINATION IN THE PLANKENBURG RIVER, WESTERN CAPE, SOUTH AFRICA

Bioremediation is a process by which microbial degradation processes are used in technical and controlled treatment systems (Langwaldt & Puhakka, 2000). Bioremediation can also be applied as green technologies, due to its negligible effects on the environment, and its proven cost-efficiency (Adriaens *et al.*, 2006). The attached organisms (biofilms) then aid in effectively reducing the toxicity in the contaminated area. Bioreactors which can be applied in bioremediation strategies are basically tanks in which living organisms carry out biological reactions. Their efficiency is based on the ability of bacteria to attach to inert packing, such as granular activated carbon, at interfaces to generate high biomass (Bouwer & McCarty, 1982; Teitzel & Parsek, 2003). The reactor should also be easy to maintain and operate (Evangelho *et al.*, 2001; Teitzel & Parsek, 2003), and should be able to function under aerobic and anaerobic conditions (Langwaldt & Puhakka, 2000).

Bioreactors have been utilised in many studies to remove or reduce metal concentrations in wastewater and various types of effluent. It is also essential to obtain information on the structure and distribution of micro-organisms in the contaminated area, as tolerant micro-organisms become dependant on the types of pollutants in specific areas (Marín-Guirao *et al.*, 2005). Organisms that have been isolated from contaminated sites can also be identified and used in bioreactor systems to improve the removal efficiency of the contaminants.

The objective of this investigation was to assess the efficiency of a bioreactor system to remove, or decrease the concentrations of metal contaminants at a site along the Plankenburg River, Western Cape, South Africa. Potential metal-tolerant micro-organisms were also isolated from the attachment material.

The figures and tables discussed are presented in article four (chapter five). Two laboratory-scale bioreactors were developed (**Figure 5.2**) and the effect of different parameters, such as time and environmental conditions, were evaluated. The bioreactor system was optimised and a six-tank large-scale on-site bioreactor (**Figure 5.3**) was constructed at the most polluted area along the Plankenburg River, which was identified as the site located closest to the industrial area. Successful operation of the bioreactor system, could lead to the utilisation of the system in other settings, such as wastewater treatment works and effluent clean-up or removal. It is also essential to identify organisms isolated from the contaminated sites, for possible future use in bioreactor systems to improve the contaminant removal efficiency.

Metal concentrations in the laboratory-scale bioreactors were analysed by nitric acid digestion and Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). Aluminium (AI), nickel (Ni) and zinc (Zn) concentrations in water samples from bioreactor one decreased from 0.41 mg.l⁻¹ to 0.06 mg.l⁻¹, 0.2 mg.l⁻¹ to 0.07 mg.l⁻¹ and 75 mg.l⁻¹ to 0.02 mg.l⁻¹, respectively (**Figure 5.4**). Copper (Cu) and iron (Fe) concentrations increased from 0.15 mg.l⁻¹ to 0.21 mg.l⁻¹ (**Figure 5.4**) and 4.98 mg.l⁻¹ to 7.06 mg.l⁻¹ (result not shown), respectively.

The recorded concentrations for AI, Cu, Fe and manganese (Mn) decreased after completion of the three-week (bioreactor two) experimental procedure. These decreases were recorded at 1.55 mg. l^{-1} to 0.38 mg. l^{-1} (75%) for AI (results not shown), 0.33 mg. l^{-1} to 0.14 mg. l^{-1} (57%) for Cu, 0.07 mg. l^{-1} to 0.03 mg.l⁻¹ (57%) for Mn (**Figure 5.5**) and 71.99 mg.l⁻¹ to 40.4 mg.l⁻¹ (44%) for Fe (results not shown). The results recorded in the biofilm samples revealed a negligible increase in the mean metal concentrations for AI, Cu, Fe and Mn from compartments i to iii. The AI, Cu, Fe and Mn concentrations in the biofilm suspension removed from the bioballs collected from compartments i to iii, increased from 2.2 mg.l⁻¹ to 2.9 mg.l⁻¹, 0.23 mg.l⁻¹ to 0.36 mg.l⁻¹, 5.43 mg.l⁻¹ to 6.59 mg.l⁻¹ and 0.08 mg.l⁻¹ to 0.10 mg.l⁻¹, respectively. Nickel and Zn concentrations from tanks i to iii decreased from 0.21 mg.l⁻¹ to 0.17 mg.l⁻¹ and 1.01 mg.l⁻¹ to 0.78 mg.l⁻¹, respectively (results not shown). Comparison of the metal concentrations in water and biofilm samples showed that the Al. Mn and Ni concentrations in the biofilm samples were higher than that of the corresponding water samples. Although the concentration of Fe in the bioballs was lower than that of the water samples, the concentration recorded in the biofilm samples increased during the course of the study period.

Results recorded for Cu, Mn, Ni and Fe decreased in the on-site bioreactor from initial (tank A) to final (tank F) concentrations and ranged from: 0.16 mg.l⁻¹ to 0.01 mg.l⁻¹, 0.12 mg.l⁻¹ to 0.01 mg.l⁻¹, 0.1 mg.l⁻¹ to 0.01 mg.l⁻¹ (**Figure 5.6**) and 4.2 mg.l⁻¹ to 0.5 mg.l⁻¹, respectively. The concentrations for Zn (0.66 mg.l⁻¹ to 0.8 mg.l⁻¹) and Al (0.42 mg.l⁻¹ to 0.66 mg.l⁻¹) (results not shown) increased from tanks A to F. The concentrations of metals recorded in

the biofilm suspension removed from bioballs collected from the on-site bioreactor (results not shown) exceeded the concentrations recorded in the corresponding water samples. The concentrations recorded in the biofilm suspension from tanks A to F for AI (47 mg.l⁻¹ to 9 mg.l⁻¹), Cu (0.8 mg.l⁻¹ to 0.09 mg.l^{-1}), Fe (83 mg.l⁻¹ to 52 mg.l⁻¹) and Zn (3 mg.l⁻¹ to 2 mg.l⁻¹) decreased throughout the study period (results not shown). The concentrations of Mn increased from 0.5 mg.l^{-1} to 0.7 mg.l^{-1} over the study period, while Ni concentrations stayed constant at 0.1 mg.l^{-1} (results not shown). The decreases in metal concentration, between tanks A and F, indicated the efficiency of the bioballs to remove metals from the river water. This then could explain the decreased metal concentrations in the biofilm suspension collected from tank F, as there may not have been a high degree of available metals to be sequestered by the bioballs.

In a previous study by Jackson *et al.* (2007a) the authors reported a reduction in the concentrations of AI (0.75 mg.l⁻¹ to 0.18 mg.l⁻¹) and Ni (0.19 mg.l⁻¹ to 0.06 mg.l⁻¹). Aluminium concentrations were, however still higher than the recommended concentrations. In contrast, the final concentrations in the optimised bioreactor (one) were lower than the recommended concentration that the optimised bioreactor was more efficient at removing metals from the system. The starting concentrations for laboratory-scale bioreactor two, however, was higher that the initial concentrations for most of the metals decreased, they still exceeded the recommended guidelines (CCME, 2001 & DWAF, 1996).

The on-site, six-tank bioreactor system was able to reduce Cu, Fe, Mn and Ni concentrations in the water samples by 88% to 94%. In a previous study by Costley & Wallis (2001) the efficiency of a rotating biological contactor bioreactor to reduce Cu, Cd and Zn from heavy metal contaminated industrial wastewater was evaluated. The system was able to reduce Cd, Cu and Zn concentrations by 30.4%, 81.1% and 49.6%, respectively. The on-site bioreactor system was able to reduce Cu, Fe, Mn and Ni concentrations in the

water samples by 88% to 94%. Overall, the removal efficiency of metals from the river water in the on-site bioreactor proved to be high.

Results from a study by Shirdam *et al.* (2006) showed that metal accumulation was two to three times higher in immobilised cells. The superiority of metal uptake by immobilised cells could have accounted for the increased concentrations of AI, Cu and Fe in biofilm samples recorded in bioreactor two and where increased Mn concentrations were recorded in bioreactor two and the on-site bioreactor.

Phylogenetic analysis (Figures 5.8 & 5.9) of potentially metal-tolerant organisms, such as *Pseudomonas* sp., *Delftia* sp., *Sphingomonas* sp., *Bacillus* sp. and Kocuria sp. (Bhadra et al., 2007; Piotrowska-Seget et al., 2005; Kuffner et al., 2008; Selenska-Pobell et al., 2006; Leung et al., 2000) showed that most of the organisms isolated were similar to those found in a previous study by Jackson et al. (2008a), which implies that these organisms could possibly be utilised for bioremediation purposes, to increase efficiency of the bioreactors. The number of Gram-negative organisms exceeded the number of Grampositive organisms in Figures 5.8 & 5.9. A study by Duxbury & Bicknell (1983) also showed the predominance of Gram-negative organisms in metal-polluted areas such as the river water. Certain organisms, such as Hydrogenophaga sp., Ochrobactrum sp., Chelatobacter sp., amongst others were present at the start (three days) of the reactor run, but not at the end (15 days) of the reactor run. The Hydrogenophaga sp. and Ochrobactrum sp. have been shown to be guite common in activated sludge, preceding wastewater treatment and in the case of Ochrobactrum sp. contributing to the fouling of membranes and contribute to biofilm development (Xia et al., 2008). The development of the biofilm results in a lack of nitrogen sources, necessary for the growth of nitratereducing organisms, which could have contributed to the loss of the abovementioned bacteria in the later stages of the bioreactor run. The surviving populations present both in the beginning and at the end of the bioreactor run belonged predominantly to the genera, *Pseudomonas* and *Bacillus*, which have been shown in previous studies, to have the ability to survive under both aerobic and anaerobic conditions and utilise nitrogen as an alternative electron acceptor if necessary (Eusébio et al., 2007). Männistö *et al.* (2001) also showed that the presence of many *Pseudomonas* isolates exhibited strong inhibition against certain Gram-positive species. Metal-tolerant organisms, *Bacillus, Pseudomonas, Micrococcus* and *Stenotrophomonas*, amongst others, could possibly be utilised for bioremediation purposes. The bioreactor system will however be optimised further to improve its efficacy.

6.5. MAJOR FINDINGS OF THE STUDY

The significant results of this study were as follows:

- 6.5.1.1. Aluminium (AI) and Fe were recorded at consistently higher concentrations than all the other metals analysed for in water, sediment and biofilm samples.
- 6.5.1.2. In both the sediment and biofilm samples, the concentrations of Al and Fe were significantly higher (p < 0.05) than Cu, Zn, Pb, Ni, and Mn.
- 6.5.1.3. The results for Cu and Zn were higher than the recommended quality guidelines in freshwater sediment (CCME, 2001).
- 6.5.1.4. The highest metal concentrations were obtained in the sediment and biofilm samples, yet no freshwater guidelines for metals in sediment were available from DWAF and no guidelines for metal concentrations in biofilms were available from either DWAF or the CCME.
- 6.5.2.1. Aluminium and Fe concentrations were higher than all the other metals analysed for in the water samples collected from the Plankenburg River, which exceeded the guidelines stipulated by DWAF and the CCME (Al and Fe) and the 'World average' (Fe).
- 6.5.2.2. Concentrations of Cu and Zn (with the exception of Week 1, Site B) in the Plankenburg River water samples exceeded the guidelines stipulated by the CCME, DWAF, ANZECC and the 'World average'.
- 6.5.2.3. Concentrations of Mn fell within the DWAF guidelines, as well as the 'World average'. No guidelines for Mn were available from the CCME.

- 6.5.2.4. No Pb could be detected in any of the Plankenburg and Diep River water samples.
- 6.5.2.5. The highest mean metal concentrations in sediment samples were recorded for AI and Fe at Site C (substation in the industrial area) in the Plankenburg River.
- 6.5.2.6. The highest mean metal concentrations in water samples were recorded for AI, Fe and Zn at Site A (industrial area) in the Diep River, which exceeded the guidelines stipulated by DWAF, the CCME, ANZECC and the 'World average', and for Fe and Zn, the baseline values of Micó et al. (2007).
- 6.5.2.7. Concentrations for Cu in water samples from the Diep River exceeded the recommended concentrations for ANZECC, DWAF, the 'World average' and the CCME, while Ni concentrations fluctuated above and below the recommended guidelines at Sites A, B, C and D.
- 6.5.2.8. Manganese concentrations fell below the recommended guideline during the sampling period, with the exception of Week 27, where the Mn concentration was 1.3 mg.l⁻¹, at Site A.
- 6.5.2.9. The highest mean AI concentration in sediment samples from the Diep River was recorded at Site A (industrial area) and the highest mean Fe concentration was recorded at Site C (wastewater treatment works). The highest Fe concentration was significantly higher (p < 0.05) than the baseline value obtained by Mico et al. (2007).
- 6.5.2.10. Possible sources of contamination of the Plankenburg River could be ascribed to the leaching of household waste into the river water from the informal- and formal residential settlements, as well as the leaching of industrial effluent from the industries situated close to the river.
- 6.5.2.11. In addition, contamination of the Plankenburg River could also have been due to the excessive use of pesticides and insecticides on farms bordering the river system and the discarding of these pesticides into the rivers.
- 6.5.2.12. Possible sources of contamination of the Diep River could have been the leaching of industrial waste from various industries into the

sampled sites along the banks of the river, as well as waste from the nearby oil refinery.

- 6.5.2.13. Metal concentration analysis should be routinely performed to ensure an accurate assessment of the current state of the rivers, and based on these results quality guidelines should be adapted accordingly.
- 6.5.3.1. Exposure of the flow cell channels to the highest concentrations of Al (900 mg.l⁻¹), Fe (1000 mg.l⁻¹), Cu (10 mg.l⁻¹) and Mn (80 mg.l⁻¹) increased the percentage of dead cells.
- 6.5.3.2. When the channels were exposed to the lowest concentrations of 10 mg.I⁻¹ (AI), 0.5 mg.I⁻¹ (Cu), 1.5 mg.I⁻¹ (Mn) and 0.5 mg.I⁻¹ (Zn), no significant differences between the live and dead cells could be distinguished.
- 6.5.3.3. The percentages of dead cells when exposed to the highest concentrations of Zn (40 mg.l⁻¹) and Ni (20 mg.l⁻¹) did not show any significant differences between the live and dead cells.
- 6.5.3.4. Phylogenetic analysis showed that the organisms isolated from the flow cell experiment were diverse and some of the isolates exhibited multiple metal resistance, while others only exhibited resistance to specific metals.
- 6.5.3.5. Stenotrophomonas maltophilia strain 776 exhibited tolerance to Zn, Ni, Cu, Al, Fe, while Bacillus sp. ZH6 exhibited tolerance to Zn, Ni, Al and Fe and Staphylococcus sp. MOLA:313 exhibited tolerance to Zn, Mn, Al and Fe exposure. Pseudomonas sp. and Delftia tsuruhatensis strain A90 were resistant to Cu and Ni exposure.
- 6.5.3.6. Comamonas testosteroni WDL7, Microbacterium sp. PAO-12 and Sphingomonas sp. 8b-1 exhibited tolerance to Cu, Ni and Zn, respectively, while Kocuria kristinae strain 6J-5b and Micrococcus sp. TPR14 exhibited tolerance to Mn.
- 6.5.3.7. The major metal-resistant organisms, *Bacillus* sp. and *Pseudomonas* sp., both displayed resistance to Ni. *Bacillus* sp., however exhibited

resistance to Zn, Al and Fe, while *Pseudomonas* sp. also exhibited resistance to Cu.

- 6.5.4.1. The final concentrations for AI, Ni and Zn (bioreactor one) and Mn (bioreactor two), decreased to below their recommended concentrations in water samples, as stipulated by DWAF (1996) and the CCME (2001).
- 6.5.4.2. Although a decrease in the final concentrations recorded in the water samples collected from bioreactor two was observed for most of the metals analysed, these concentrations were, however still higher than the recommended concentrations (CCME, 2001; DWAF, 1996), as a result of the high initial concentrations recorded.
- 6.5.4.3. In the on-site, six-tank bioreactor system, the concentrations for Fe, Cu, Mn and Ni decreased, but still exceeded the recommended concentrations (DWAF, 1996; CCME, 2001).
- 6.5.4.4. The concentrations recorded in the biofilm suspensions removed from the bioballs collected from bioreactor two and the on-site bioreactor, revealed concentrations higher than those recorded in the corresponding water samples for all the metals analysed, except Fe.
- 6.5.4.5. The bioballs were thus shown to be efficient for biofilm attachment and subsequent metal accumulation.
- 6.5.4.6. The species diversity of the organisms isolated from the bioreactor experiment after three days (initial) differed from the organisms isolated after 15 days (final).
- 6.5.4.7. Phylogenetic analysis showed that the Gram-negative and the Grampositive species clustered together.
- 6.5.4.8. Hydrogenophaga sp., Ochrobactrum sp, Corynebacterium sp., Chelatobater sp. and Brevundimonas sp. were present in tree one (three days of biofilm growth), but absent in tree two (15 days of biofilm growth).

- 6.5.4.9. The surviving populations present both in the beginning and at the end of the bioreactor experiment belonged predominantly to the genera, *Pseudomonas* and *Bacillus*.
- 6.5.4.10. Microbacterium PAO-12, Pseudomonas sp., Delftia sp., Sphingomonas sp., Bacillus sp. and Kocuria sp. were isolated, as in a previous study performed by the same authors, where metal-tolerant organisms were isolated (Jackson et al., 2008b).
- 6.5.4.11. Metal-tolerant organisms, *Bacillus*, *Pseudomonas*, *Micrococcus* and *Stenotrophomonas*, amongst others, could possibly be utilised for bioremediation purposes. The bioreactor system will however be optimised further to improve its efficacy.

6.6. RECOMMENDATIONS

Without adequate control measures to monitor pollution input/influx into the rivers from the various anthropogenic sources, the surrounding ecosystems could be further contaminated. The existing guidelines were drawn up in 1996 and 2001 for DWAF and the CCME, respectively, and from the results obtained in the study, it is suggested that the guidelines should be updated on a regular basis to incorporate the changing environmental conditions. Future research also includes the setting up of parameters or guidelines for acceptable metal concentrations in South African river water and sediment, as well as biofilms, as metals accumulate in these attached organisms. No recommended quality guidelines for metals in biofilms could be found. Also, especially for the informal settlements situated along the banks of the Plankenburg- and Berg Rivers, educational campaigns should be implemented, to inform the inhabitants of proper sanitation behaviour and the municipal responsibility of waste disposal.

The efficiency of the bioreactor to reduce metal concentrations in the Plankenburg River shows potential for future studies, where the bioreactor will be optimised further for use in other settings, such as in wastewater works, winery effluents and industrial wastes, amongst others. The increased metal

concentrations recorded in the biofilm suspensions sonicated from the bioballs over the metal concentrations recorded in the corresponding water samples, is a clear indication as to the efficacy of the bioballs utilised to reduce metal concentrations in the river water. The numerous microbial species isolated from both the flow cells and the bioballs demonstrate the species diversity accumulating within the biofilm samples. Upon identification of the aforementioned organisms, the particular resistance mechanisms with which these isolates protects themselves from predation and chemical attack must be further elucidated, as well as their specificity identification, i.e., the particular organism's ability to resist, or to proliferate in the presence of a particular metal contaminant. The toxicity of metals should also be investigated to further understand which metals compliment each other and which metals prevent the modes of action of others. Previous research has also shown that most metals are resistant to not only one, but many different organisms, presumably due to the presence of a cluster of genes, which confer not only metal-resistance, but antibiotic resistance as well. The genes conferring resistance must be studied further to possibly improve their removal capacity. These specific modified organisms can then be introduced into a particular environment to which they are genetically predisposed. The individual species isolated from the laboratory-scale bioreactor system, should also be further investigated to determine which organisms are the most effective in reducing metal concentrations.

REFERENCES

Acrobat®, MZ. 2005. Fungicide for use on potatoes and flue cured tobacco. <u>file://E:\pesticide\ACROBAT MZ.htm.</u> [11 December 2006].

Adriaens, P., Li, M. & Michalak, A.M. 2006. Review - Scaling Methods of Sediment Bioremediation Processes and Applications. *Engin. in Life Sci.*, 6(3): 217-227.

African Medical and Research Foundation – Safe Water and Basic Sanitation. 2007. <u>http://www.amref.org/index.asp?PageID=50&PiaID=6</u>. [15 September 2007].

Agency for Toxic Substances and Disease Registry (ATSDR). 1995. *Aluminium, Material Safety Data Sheet.* Atlanta, Georgia, USA.

Agency for Toxic Substances and Disease Registry (ATSDR). 2000. Toxicological Profile for Manganese. U.S. Department of Health and Human Services, Public Health Service. Atlanta, Georgia, USA.

Agency for Toxic Substances and Disease Registry (ATSDR). 2005. Toxicological Profile For Nickel. <u>http://www.atsdr.cdc.gov/toxprofiles/tp15.html#bookmark06.</u> [25 July 2008].

Ahring, B.K., Mladenovska, Z., Iranpour, R. & Westermann, P. 2002. State of the art and future perspectives thermophilic anaerobic digestion. *Water Sci. Technol.*, 45: 293-298.

Alexandrino, M., Grohmann, E. & Szewzyk, U. 2003. Optimisation of PCR-based methods for rapid detection of *Campylobacter jejuni*, *Campylobacter coli* and *Yersinia enterocolitica* serovar 0:3 in wastewater samples. Water Res., 1-7.

Allinnor, I.J. 2005. Assessment of elemental contaminants in water and fish samples from Aba river. *Environ. Monitor. Asses.*, 102(1-3): 15-25.

Alloway, B.J. 1995a. Soil processes and the behaviour of metals. In: Alloway B.J. (ed). *Heavy metals in soils* (2nd edn). Blackie Academic and Professional, London, England. 6-37.

Alloway, B.J. 1995b. The origins of heavy metals in soils. In Alloway B.J. (ed). *Heavy Metals in Soil* (2nd edn.). London, England: Blackie Academic and Professional: 38-57.

Alonso, A., Sanchez, P. & Martinez, J.L. 2000. *Stenotrophomonas maltophilia* D457R contains a cluster of genes from Gram-positive bacteria involved in antibiotic and heavy metal resistance. *Antimicrob. Agents Chemother.*, 44: 1778-1782.

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. 1997. "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs". *Nucleic Acids Res.*, 25: 3389-3402.

Amann, R.I., Ludwig, W. & Schleifer, K.H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. *Microbiol. Rev.*, 59: 143-169.

Aragno, M. & Schlegel, H.G. 1992. The mesophilic hydrogen-oxidising (Knallgas) bacteria. In Balows, A., Trűper, H.G., Dworkin, M., Harder, W. & Schleifer, K.H. (eds). *The prokaryotes*. New York, USA: Springer Verlag: 344-384.

Australian and New Zealand Environment and Conservation Council (ANZECC & ARMCANZ) (2000). Australian and New Zealand guidelines for fresh and marine water quality. National Water Quality Management Strategy Paper No 4, Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand, Canberra, Australia.

Awofulu, R.O. & Fatoki, O.S. 2003. Persistant organochlorine pesticide residues in freshwater systems and sediments from the Eastern Cape, South Africa. *Water SA.*, 29(3): 323-330.

Bailey, L.B., Vardulaki, K., Langham, J. & Chandramohan, D. 2005. Basic concepts and applications. In IntrBlack, N. & Raine, R. (eds). *Introduction to Epidemiology*. New York: McGraw-Hill House: 3-18.

Barnes, J.M. 2003. The impact of water pollution from formal and informal urban developments along the Plankenburg River on water quality and health risk. PhD Dissertation, Department of Community Health, University of Stellenbosch, South Africa.

Bates, P. & Phillips, C.A. 2005. Agricultural practices as a source of *Campylobacter* spp. in river water. *J.Environ. Health Res.*, 4(1): 17-23.

Becker, J.M., Parkin, T., Nakatsu, C.H., Wilbur, J.D. & Konopka, A. 2006. Bacterial Activity, Community Structure, and Centimeter-Scale Spatial Heterogeneity in Contaminated Soil. *Microb. Ecol.*, 51: 220–231.

Belgiorno, V., Rizzo, L., Fatta, D., Rocca, C.D., Lofrano, G., Nikolaou, A., Naddeo, V. & Meric, S. 2007. Review on endocrine disrupting-emerging compounds in urban wastewater: occurrence and removal by photocatalysis and ultrasonic irradiation for wastewater reuse. *Desal.*, 215: 166–176.

Benyehuda, G., Coombs, J., Ward, P.L., Balkwill, D. & Barklay, T. 2003. Metal resistance among aerobic chemoheterotrophic bacteria from the deep terrestrial subsurface. *Can. J. Microbiol.* 49: 151-156.

Bernard, D.A. 2008. Cadmium and its adverse effects on human health. *Indian J. Med. Res.* 128: 557-564.

Bhadra, B., Nanda, A.K. & Chakraborty, R. 2007. Fluctuation in recoverable nickel and zinc resistant copiotrophic bacteria explained by the varying zinc ion content of Torsa River in different months. *Arch. Microbiol.*, 188: 215-224.

Bhat, P., Kumar, M.S., Mudliar, S.N. & Chakrabarti, T. 2006. Biodegradation of techhexachlorocyclohexane in a upflow anaerobic sludge blanket (UASB) reactor. *Biores. Technol.*, 97: 824-830.

Biofilms: Online Manual – American Society for Microbiology. 2007. <u>http://www.personal.psu.edu/faculty/j/e/jel5/biofilms/</u> [1 July 2008].

Blanck, H., Wänkberg, S-Å. & Mølander, S. 1988. Pollution-induced community tolerance – a new ecotoxicological tool. In Cairns Jr., J. & Pratt, J.R. (eds). *Functional testing of aquatic biota for estimating hazards of chemicals*. Philadelphia: ASTM STP: 988: 219-230.

Bogden, J.D., Oleske, J.M., Louria, D.B. 1997. Lead poisoning - one approach to a problem that won't go away. *Environ Health Perspect.*, 105(12):1284-1287.

Boivin, M.E., Breure, A.M., Posthuma, L. & Rutgers, M. 2002. Determination of field effects of contaminants – significance of pollution-induced community tolerance. *Human. Ecol. Risk. Assessment.*, 8: 1035-1055.

Boswell, C.D., Dick, R.E., Eccles, H. & Macaskie, L.E. 2001. Phosphate uptake and release by *Acinetobacter johnsonii* in continuous culture and coupling of phosphate release to heavy metal accumulation. *J. Ind. Microbiol. Biotechnol.*, 26: 333-340.

Boulos, L., Prévost, M., Barbeau, B., Coallier, J. & Desjardins, R. 1999. LIVE/DEAD[®] BacLightTM: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. *J. Microbiol. Methods*, 37: 77-86.

Bouwer, E.J. & McCarty, P.L. 1982. Removal of trace chlorinated organic compounds by activated carbon and fixed-film bacteria. *Environ. Sci. Technol.*, 16: 836-843.

Brooks, B.W., Turner, P.K., Stanley, J.K., Weston, J.J., Glidewell, E.A., Foran, C.M., Slattery, M., La Point, T.W. & Huggett, D.B. 2003. Waterborne and sediment toxicity of fluoxetine to select organisms. *Chemosphere*, 52: 135–142.

Calderon, R.L. 2000. The epidemiology of chemical contaminants of drinking water. *Food Chem. Toxicol.* 38: S13-S20.

Caldwell, D.E., Wolfaardt, G.M., Korber, D.R., Karthikeyan, S., & Lawrence, J.R. 2002. Cultivation of microbial communities. In Hurst, C.J., Crawford, R.L., Knudsen, G.R., McInerney, M.J. & Stetzenbach, L.D. (eds). *Manual for Environmental Microbiology*. ASM Press: 92-100.

Campylobacter Sentinel Surveillance Scheme (CDSC). 2000. Sentinel surveillance of *Campylobacter* in England and Wales. *Communicable Diseases Report Weekly*, 10(19): 169-172.

Canadian Council Of Ministers Of The Environment (CCME). 2001. *Canadian sediment quaility guidelines for the protection of aquatic life: Summary tables.* Updated in: Canadian environmental quality guidelines.

Chaschschin, V.P., Artunina, G.P. & Norseth, T. 1994. Congenital defects, abortion and other health effects in nickel refinery workers. *Sci. Tot. Environ.*, 148: 287-291.

Chien, C.C., Hung, C.W. & Han, C.T. 2007. Removal of cadmium ions during stationary growth phase by an extremely cadmium resistant strain of *Stenotrophomonas* sp. *Environ. Toxicol. Chem.*, 26: 664–668.

Chong, N.M. 2005. Development of a tool for measuring the degradation capacity of microorganisms for a xenobiotic. *Enzyme Microb. Technol.*, 37: 467-471.

Christensen, B.B., Sternberg, C., Andersen, J.B., Eberl, L., Møller, S., Givskov, M. & Molin, S. 1998. Establishment of new genetic traits in a microbial biofilm community. *Appl. Environ. Microbiol.*, 64: 2247-2255.

Clark, J.R., VanHassel, J.H., Nicholson, R.B., Cherry, D.S. & Cairns Jr., J. 1981. Accumulation and Depuration of Metals by Duckweed (*Lemna Perpusilla*). Ecotoxicol. Environ. Saf., 5: 87-96.

Cloete, T.E. 2003. Resistance mechanisms of bacteria to antimicrobial compounds. *Intern. Biodeter. Biodeg.* 51: 277-282.

Collins, B., McArthur, J.V. & Sharitz, R.R. 2004. Plant effects on microbial assemblages and remediation of acidic coal pile runoff in mesocosm treatment wetlands. *Ecolog. Engin.*, 23(2): 107–115.

Coman, G., Draghici, C., Chirila, E. & Sica, M. 2006. Pollutants Effects on Human Body – Toxicological Approach. In Simeonov, L. & Chirila, E. (eds). *Chemicals as Intentional and Accidental Global Environmental Threats*. Netherlands: Springer: 255-256.

Copper and Human Health. 2006. <u>http://www.saanendoah.com/cuhumans2.html</u>. [21 April 2007].

Copper Facts. 2006. Production and Consumption. <u>http://www.copper.org/education/c-facts/homepage.html</u> [21 April 2007].

Costerton, J.W., Geesey, G.G. & Cheng, K.J. 1978. How bacteria stick. *Sci. Amer.*, 238: 86.

Costley, S.C. & Wallis, F.M. 2001. Bioremediation of heavy metals in a synthetic wastewater using a rotating biological contactor. *Water Res.*, 35(15): 3715-3723.

Cottle, E. & Deedat, H. 2002. The cholera outbreak: a 2000-2002 case study of the source of the outbreak in the Madlebe Tribal Authority areas, uThungulu region, Kwazulu-Natal. Health Systems trust, <u>http://www.hst.org.za</u>.

Davies, O.A., Allison, M.E. & Uyi, H.S. 2006. Bioaccumulation of heavy metals in water, sediment and periwinkle (*Tympanotonus fuscatus var radula*) from the Elechi Creek, Niger Delta. *African J. Biotechnol.*, 5(10): 968-973.

De Beer, D., Srinivasan, R. & Steward, P.S. 1994. Direct measurement of chlorine penetration into biofilms during disinfection. *Appl. Environ. Microbiol.*, 60: 4339-4344.

Decamp, O. & Rajendran, N. 1998. Assessment of bacterioplankton viability by membrane integrity. *Mar. Poll. Bull.*, 36: 739-741.

Decho, A.W. 2000. Microbial exopolymer secretions in ocean environments: Their role(s) in food webs and marine processes. *Oceanogr. Mar. Biol. Annu. Rev.*, 28: 73-153.

Department of Environmental Affairs and Tourism. 1996. <u>http://www.environment.gov.za/nwmsi/background/planning legreview-starterdoc.pdf</u> [12 March 2007].

Department of Environmental Affairs and Tourism. 1999a. Freshwater systems and resources – Water availability per capita. <u>http://www.deat.gov.za/Enviro-Info/sote/nsoer/issues/water/pressure.htm</u> [25 June 2008].

Department of Environmental Affairs and Tourism. 1999b. Freshwater systems and resources – Wetlands. <u>www.ngo.grida.no/.../issues/water/state.htm</u> [25 June 2008].

Department of Water Affairs and Forestry 1996a. South African Water Quality Guidelines for Domestic use (2nd edn.), Domestic Water Use. Pretoria: CSIR Environmental Services 1, 77-87.

Department of Water Affairs and Forestry (DWAF). 1996b. South African Water Quality Guidelines, Aquatic Ecosystems, Vol. 7, Government printer, Pretoria, South Africa.

Department of Water Affairs and Forestry (DWAF) (1996c) South African Agricultural Water Use, Irrigation (2nd edn.), Vol.4. DWAF, Pretoria, South Africa.

Department of Water Affairs and Forestry. 2001. Managing the Water Quality Effects of Settlements: Managing the Water Quality Impacts of Pollution in two Towns. Technical Supporting Document, 21-27.

Department of Water Affairs and Forestry. 2004. National Water Resource Strategy. Chapter 2 - South Africa's Water Situation and strategies to balance supply and demand, 1st Ed. 15-54.

Desantis, S., Corriero, A., Cirillo, F., Deflorio, M., Brill, R., Griffiths, M., Lopata, A.L., De La Serna, J.M., Bridges, C.R., Kime, D.E. & De Metrio, G. 2005. Immunohistochemical localisation of CYP1A, vitellogenin and Zona radiate proteins in the liver of swordfish (*Xiphias gladius* L.) taken from the Mediterranean Sea, South Atlantic, South Western Indian and Central North Pacific Oceans. *Aqua. Toxicol.*, 71: 1-12.

De Dousa, M.O., Chu, D., Zhao, M., Zayed, A.M., Ruzin, S.E., Schichnes, D. & Terry, N. 1999. Rhizosphere bacteria enhance selenium accumulation and volatilisation by Indian Mustard. *Plant. Physiol.*, 199: 565-573.

Doll, R. 1993. Review: Alzheimer's disease and environmental aluminium. Age Ageing., 22: 138-153.

Dong, W. & Tollner, E.W. 2003. Evaluation of Anammox and denitrification during anaerobic digestion of poultry manure. *Biores. Technol.*, 86: 139-145.

Donmez, G.Ç., Aksu, Z., Özturk, A. & Kutsal, T. 1999. A comparative study on heavy metal biosorption characteristics of some algae. *Process Biochem.*, 34: 885.

Dorigo, U., Bourrain, X., Bérard, A. & Leboulanger, C. 2004. Seasonal changes in the sensitivity of river microalgae to atrazine and isoproturon along a contamination gradient. *Sci. Tot. Environ.*, 318: 101-114.

Dos Santos Utmazian, M.N. & Wenzel, W.W. 2007. Cadmium and zinc accumulation in willow and poplar species grown on polluted soils. *J. Plant. Nutr. Soil Sci.*, 170: 265-272.

Drancourt, M., Bollet, C., Carlioz, A., Martelin, R., Gayral, J-P & Raoult, D. 2000. 16S Ribosomal DNA Sequence Analysis of a Large Collection of Environmental and Clinical Unidentifiable Bacterial Isolates. *J. Clin. Microbiol.* 38(10): 3623–3630.

Dunn, O.J. & Clark, V.A. 1987. Applied Statistics: Analysis of variance and regression (2nd Ed.). London, United Kingdom: John Wiley & Sons.

Duxbury, T. & Bicknell, B. 1983. Metal-tolerant bacterial populations from natural and metal-polluted soils. *Soil Biol. Biochem.*. 15(3): 243-250.

Ebner, D.B., Cherry, D.S. & Currie, R.J. 1999. Water and streambed sediment quality, and ecotoxicology of a stream along the Blue Ridge Parkway, adjacent to a closed landfill, near Roanoke, Virginia. U.S Geological Survey, Water-Resources Investigations Report 03-4116.

Eccles, H. 1999. Treatment of metal-contaminated wastes: Why select a biological process? *TIBTech.*, 17: 462-465.

Efron, B., Halloran, E. & Holmes, S. 1996. Bootstrap confidence levels for phylogenetic trees. *Proc. Natl. Acad. Sci. USA*, 93: 13429-13434.

Ehrlich, H. 1998. Geomicrobiology: its significance for geology. *Earth-Science Revs.*, 45: 45-60.

Ellis, R.J., Morgan, P., Weightman, A.J. & Fry, J.C. 2003. Cultivation-dependent approaches for determining bacterial diversity in heavy-metal contaminated soil. *Appl. Environ. Microbiol.*, 69: 3223-3230.

Environment and Tourism: Maps and Mapping. 2007. <u>http://www.environment.gov.za/Maps/PublishMaps/downloads/National/A4/Primary c atchments.gif.</u> [30 June 2008].

Ettala, M., Koskela, J. & Kiesilä, A. 1992. Removal of chlorophenols in a municipal sewage treatment plant using activated sludge. *Water Res.*, 26: 797-804.

Eusébio, A., Mateus, A., Baeta-Hall, L., Sàágua, M.C., Tenreiro, R., Almeida-Vara, E. & Duarte, J.C. 2007. Characterisation of the microbial communities in jet-loop (JACTO) reactors during aerobic olive oil wastewater treatment. *Intern. Biodeter. Biodegrad.*, 59(3): 226-233.

Evangelho, M.R., Gonçalves, M.M.M., Sant'Anna Jr., G.L. & Villas Bôas, R.C. 2001. A trickling filter application for the treatment of a gold milling effluent. *Int. J. Miner. Process.*, 62:, 279-292.

Exley, C. 1996. Aluminium in the brain and heart of the rainbow trout. *J. Fish Biol.* 48: 706–713.

Fang, H.H.P., Chen, T., Li, Y. & Chui, H. 1996. Degradation of phenol in wastewater in an upflow anaerobic sludge blanket reactor. *Water Res.*, 30(6): 1353-1360.

Farhadian, M., Vachelard, C., Duchez, D. & Larroche, C. 2008. In situ bioremediation of monoaromatic pollutants in groundwater: A review. *Biores. Technol.*, 99: 5296–5308.

Fatoki, O.S. & Awofolu, R. 2003. Levels of Cd, Hg and Zn in some surface waters from the Eastern Cape Province, South Africa. *Water SA*. 29 (4): 375-380.

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using bootstrap. *Evolut.*, 39: 783-791.

Ferris, K., Ramsey, P., Frazar, C., Moore, J.N., Gannon, J.E. & Holben, W.E. 2003. Differences in hyporheic-zone microbial community structure along a heavy-metal contamination gradient. *Appl. Environ. Microbiol.*, 69: 5563–5573.

Fianko, J.R., Osae, S., Adomako, D., Adotey, D.K. & Serfor-Armah, Y. 2007. Assessment of Heavy Metal Pollution of the Iture Estuary in the Central Region of Ghana. *Environ. Monit. Assess.* 131: 467-473.

Fisheries and Aquaculture Department. 2007. Review of Heavy Metals. <u>file://F:\Report (No 22) on the ninth Steering Committee Meeting, Gaborone,</u><u>Botswana.</u> [19 December 2007].

Flegal, A.R., Risebrough, R.W., Anderson, B., Hunt, J., Anderson, S., Oliver, J., Stephenson, M. & Packard, R. 1994. San Francisco estuary pilot regional monitoring program: sediment studies. Oakland, CA: San Francisco Bay Regional Water Quality Control Board.

Fleming, G., Van Der Merwe, M. & McFerren, G. 2006. Fuzzy expert systems and GIS for cholera health risk prediction in Southern Africa. *Environ. Model. Software.*, 22: 442.

Foran, C.M., Peterson, B.N. & Benson, W.H. 2003. Transgenerational and developmental exposure of Japanese medaka (*Oryzias latipes*) to ethinylestradiol results in endocrine and reproductive differences in the response to ethinylestradiol as adults. *Toxicol. Sci.*, 68: 389–402.

Freitas, M.C., Pacheco, A.M.G., Dionísio, I., Sarmento, S., Baptista, M.S., Vasconcelos, M.T.S.D. & Cabral, J.P. 2007. Instrumental neutron activation analysis and inductively coupled plasma mass spectrometry on atmospheric biomonitors. *J. Radioanal. Nucl. Chem.*, 273: 705-711.

Friberg, L., Nordberg, G.F., Kessler, E. & Vouk, V.B. 1986. Handbook of the Toxicology of metals. In Friberg, L., Nordberg, G.F., Kessler, E. & Vouk, V.B. (eds). *Handbook of the Toxicology of Metals* (2nd edn. Vols. 1 and 2). Amsterdam, Netherlands: Elsevier Science: 6.

Friese, K., Mages, M., Wendt-Potthoff, K. & Nue, T. 1997. Determination of heavy metals in biofilms of the Elbe River by total reflection x-ray fluorescence spectrometry. *Spectrochim. Acta.*, 5: 1019-1025.

Gardner, M.J. & Gunn, A.M. 1991. Bioavailability of aluminium from food and drinking water. In Lord Walton of Detchant (ed). Alzheimer Disease and the Environment Round Table Series 26. Royal Society of Medicine Services, London.

Geesey, G.G., Bremer, P.J., Smith, J.J., Muegge, M. & Jang, L.K. 1992. Two-phase model for describing the interactions between copper ions and exopolymers from *Alteromonas atlantica. Can. J. Microbiol.*, 38: 785-793.

Gilbert, P. & Allison, D.G. 1993. Laboratory methods for biofilm production. In Denyer, S. P., Gorman, S. P. & Sussman, M. (eds). Society for Applied Bacteriology. Technical Series, 30. London: Blackwell Scientific Publications: 29-49.

Gonçalves, M.M.M., Pinto, A.F. & Granato, M. 1998. Biodegradation of free cyanide, thiocyanate and metal complexed cyanides in solutions with different compositions. *Environ. Technol.*, 19: 133-142.

Goyer, R.A. 1993. Lead toxicity: current concerns. *Environ Health Perspect*. 100: 177-87.

Grindley J.R. & Dudley S. 1988. Estuaries of the Cape, Part II: Synopses of available information on individual systems. Rep. no. 28 Rietvlei/Diep CW 24/25.

Groudeva, V.I., Groudev, S.N. & Doycheva, A.S. 2001. Bioremediation of waters contaminated with crude oil and toxic heavy metals. *Int. J. Miner. Process.*, 62: 293–299.

Hammer, D.A. (ed.) 1989. Constructed wetlands for wastewater treatment: municipal, industrial and agricultural. Chelsea, MI: Lewis Publishers Inc.

Hassen, A., Saidi, N., Cherif, A. & Baudabous, A. 1998. Resistance of environmental bacteria to heavy metals. *Biores. Technol.*, 64: 7-15.

Haugland, R.P. 2002. Handbook of fluorescent probes and research products, In: Molecular Probes, 9th edition, volume 1, J. Gregory & M.T.Z. Spentz (eds.), Eugene.

Hazards Centre and People's Science Institute. 2005. Effects on Human Health.

Hendriksen, H.V., Larsen, S. & Ahring, B.K. 1991. Anaerobic degradation of PCP and phenol in fixed-film reactors: the influence of an additional substrate. *Wat. Sci. Technol.*, 24(3/4): 431-436.

Henriques, I.D.S. & Love, N.G. 2007. The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins. *Wat. Res.*, 41(18): 4177-4185.

Herbes, S.E. & Schwall, L.R. 1978. Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments. *Appl. Environ. Microbiol.*, 35: 306-316.

Higgins, D.G. & Sharpe, P.M. 1988. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. *Gene*, 73: 237-244.

Hills, P., Zhang, L. & Liu, J.H. 1998. Transboundary pollution between Guangdong Province and Hong Kong: threats to water quality in the Pearl River Estuary and their implications for environmental policy and planning. *J. Environ. Plan. Manag.*, 41(3): 375-396.

History of Aluminium. 2006. <u>http://ezinearticles.com/?Aluminium---The-History-Behind-The-Metal&id=331640</u> [21 April 2007].

Ho, K.C., Chow,,Y.L. & Yau, J.T.S. 2003. Chemical and microbiological qualities of the East River (Dongjiang) water, with particular reference to drinking water supply in Hong Kong. *Chemos*, *5*2: 1441-1450.

Holtzhausen, L. 2002. The war for water. Fighting the battle for the last drop. *WASE*., 22: 29-29.

Hope, C.K. & Wilson, M. 2003. Measuring the thickness of an outer layer of viable bacteria in an oral biofilm by viability mapping. *J. Microbiol. Methods*, 54(3): 403-410.

Hoyle, B. 2005. Groundwater. In Lerner, K., Lerner, B & Baker, L (eds). *Encyclopaedia of Water Science*. Detroit, USA: 411-414.

Hsu, B.M., Wun, H.Y. & Hsu, P.C. 2007. Prevalence and genotyping of *Giardia* in husbandry systems in Taiwan. *Parasitol. Res.*, 101: 275–280.

Huang, C., Yu, F.P., McFeters, G.A. & Stewart, P.S. 1995. Non-uniform spatial patterns of respiratory activity within biofilms during disinfection. *Appl. Environ. Microbiol.*, 6: 2252-2256.

Huang, X. & Madan, A. 1999. CAP3: A DNA sequence assembly program. *Genome Res.*, 9: 868-877.

Huggett, D.B., Foran, C.M., Brooks, B.W., Weston, J.J., Peterson, B., Marsh, E., La Point, T.W. & Schlenk, D. 2003. Comparison of *in vitro* and *in vivo* bioassays for estrogenicity in fractionated effluent from North American wastewater effluent. *Toxicol. Sci.*, 72: 77–83.

Hultberg, B., Andersson, A. & Isaksson A. 1997. Copper ions differ from other thiol reactive metals ions in their effects on the concentration and redox status of thiols in HeLa cell cultures. *Toxicol.*, 117: 89-97.

Hunt, S. 1986. Diversity of biopolymer structure and its potential for ion-binding applications. In Eccles, H. & Hunt, S. (eds). *Immobilisation of ions by bio-sorption*. West Sussex, United Kingdom: Ellis Horwood Ltd.: 15-46.

Hussein, H., Ibrahim, S.F. & Kandeel, K. 2004. Biosorption of heavy metals from wastewater using *Pseudomonas* sp. *Electronic J. Biotechnol.*, 7(1); 24-29.

International Water Management Institute. 2007. Reversing the flow: agricultural water management pathways for poverty reduction http://www.iwmi.cgiar.org/assessment/Water%20for%20Food%20Water%20for%20Li fe/Chapters/Chapter%204%20Poverty.pdf. [21 June 2007].

Jackson, L.M. & Myers, J.E. 2002. Evaluation of Subsurface Flow Wetlands vs. Freewater Surface Wetlands Treating NPR-3 Produced Water – Year No.2. United States Department of Energy/Rocky Mountain Oilfield Testing Centre (RMOTC) CRADA No. 2001-001.

Jackson, V.A., Paulse, A.N., Van Stormbroek, T., Odendaal, J.P. & Khan, W. 2007a. Investigation into metal contamination of the Berg River, Western Cape, South Africa. *Water SA.*, 33: 175-182.

Jackson, V.A., Paulse, A.N., Bester, A.A., Neethling, J.H., Du Plessis, K.R. & Khan, W. 2007b. The application of bioremediation: reduction of metal concentrations in river water and COD in distillery effluent. *Wat. Sci. Technol.*, 55: 183-186.

Jackson, V.A., Paulse, A.N., Odendaal, J.P. & Khan, W. 2008a. Investigation into the metal contamination of the Plankenburg- and Diep Rivers, Western Cape, South Africa. Accepted for publication by *Water SA*.

Jackson, V.A., Paulse, A.N., Khan, S., Odendaal, J.P. & Khan, W. 2008b. Identification of Metal-tolerant Organisms Isolated from the Plankenburg River, Western Cape, South Africa. Submitted to the *Canadian J. Microbiol*.

Jackson, V.A., Paulse, A.N., Bester, A.A., Neethling, J.H., Khan, S. & Khan, W. 2008c. Bioremediation of Metal Contamination in the Plankenburg River, Western Cape, South Africa. Article accepted for publication by *Intern. Biodeter. Biodeg.*

Jarup, L. 2002. Cadmium overload and toxicity. *Nephrol. Dial. Transpl.*, 17(Suppl.2): 35-39.

Jeffers, P.M. & Liddy, C.D. 2003. Treatment of atmospheric halogenated hydrocarbons by plants and fungi. In McCutcheon, S.C. & Schoor, J.L (eds). *Phytoremediation – Transformation and control of contaminants*. New Jersey, USA: John Wiley and Sons: 787-804.

Jin, R., Hu, B., Zheng, P., Qaisar, M., Hu, A. & Islam, E. 2008. Quantitative comparison of stability of ANAMMOX process in different reactor configurations. *Biores. Technol.*, 99(6): 1603-1609.

Jos, A., Repetto, G., Rios, J.C., Hazen, M.J., Molero, M.L., Del Peso, A., Salguero, M., Fernández-Freire, P., Pérez-Martín, J.M. & Cameán, A. 2003. Ecotoxicological evaluation of carbamazepine using six different model systems with eighteen endpoints. *Toxicol. in Vitro.*, 17: 525-532.

Juteau, P., Beaudet, R., McSween, G., Lépine, F., Milot, S. & Bisaillon, J.G. 1995. Anaerobic biodegradation of pentachlorophenol by a methanogenic consortium. *Appl. Microbiol. Biotech.*, 44: 218-224.

Kadlec, R.H. & Knight, R.L. 1996. Treatment Wetlands. Boca Raton, FL:.Lewis Publishers.

Kar, R.N., Sahoo, B.N. & Sukla, C.B. 1992. Removal of heavy metals from pure water using sulphate-reducing bacteria (SRB). *Pollut. Res.*, 11: 1-13.

Karanis, P. & Kourenti, C. 2004. Waterborne transmission of protozoan parasites: a review of worldwide outbreaks. In Fourth International *Giardia* Conference and First Combined *Giardia-Cryptosporidium* Meeting, 20-24 September 2004, Amsterdam, The Netherlands.

Karanis, P., Sotiriadou, I., Kartashev, V., Kourenti, C., Tsvetkova, N. & Stojanova, K. 2006. Occurrence of *Giardia* and *Cryptosporidium* in water supplies of Russia and Bulgaria. *Environ. Res.*, 102: 260-271.

Kargi, F. & Eker, S. 2005. Removal of 2,4-dichlorophenol and toxicity from synthetic wastewater in a rotating perforated tube biofilm reactor. *Process Biochem.* 40: 2105–2111.

Kasai, F. 1999. Shifts in herbicide tolerance in paddy field periphyton following herbicide application. *Chemosphere.*, 38: 919.

Kawahara, M. 2005. Effects of aluminium on the nervous system and its possible link with neurodegenerative diseases. *J. Alzheimers Dis.*, 8: 171–82.

Kelly, C.J., Tumsaroj, N. & Lajoie, C.A. 2004. Assessing wastewater metal toxicity with bacterial bioluminescence in a bench-scale wastewater treatment system. *Water Res.*, 38: 423-431.

Kim, S.U., Cheong, Y.H., Seo, D.C., Hur, J.S., Heo, J.S. & Cho, J.S. 2007. Characterisation of heavy metal tolerance and biosorption capacity of bacterium strain CPB4 (*Bacillus* spp.). *Water Sci. Technol.* 55(1-2): 105-111.

Kļaviņš, M., Briede, A., Rodinov, V., Kokorite, I., Parele, E. & Klavina, E. 2000. Heavy metals in rivers of Latvia. *Sci. Tot. Environ.*, 262(1-2): 175-184.

Klipstein-Grobusch, K., Koster, J.F., Grobbee, D.E., Lindemans, J., Boeing, H., Hofman, A. & Witteman, J.C.M. 1999. Serum ferritin and risk of myocardial infarction in the elderly: the Rotterdam Study. *Am. J. Clin. Nutr.*, 69: 1231-1236.

Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B. & Buxton, H.T. 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999.

Konkel, M.E., Monteville, M.R., Klena, J.D. & Joens, L.A. 2003. In Vitro and In Vivo models used to study Campylobacter jejuni virulence properties. In Torrence, M.E. & Isaacson, M.E. (eds). *Microbial Food Safety in Animal Agriculture: Current Topics.* Iowa, USA: Iowa State Press: 195-198.

Kozdrój, J. & Van Elsas, J.D. 2001. Structural diversity of microbial communities in arable soils of a heavily industrialised area determined by PCR-DGGE fingerprinting and FAME profiling. *Appl. Soil Ecol.*, 17: 31-42.

Kröpfl, K., Záray, G. & Ács, É. 2003. Investigation of lead and nickel contaminated natural biofilms. *Spectrochim. Acta. Part B.*, 58: 2177-2181.

Kröpfl, K., Vladár, P., Szabo, K., Ács, É., Borsodi, A., Szikora, S., Caroli, S. & Záray, G. 2006. Chemical and biological characterisation of biofilms formed on different substrata in Tisza River, Hungary. *Environ. Pollut.*, 144: 626-631.

Kuffner, M., Puschenreiter, M., Wieshammer, G., Gorfer, M. & Sessitch, A. 2008. Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. *Plant Soil.*, 304: 35-44.

Kumar, S., Tamura, K & Nei, M. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. *Briefings in Bioinformatics.*, 5: 150-163.

Langley, S. & Beveridge, T.J. 1999. Metal binding by *Pseudomonas aeruginosa* PAO1 is influenced by growth of the cells as a biofilm. *Can. J. Microbiol.*, 45: 616-622.

Langwaldt, J.H. & Puhakka, J.A. 2000. On-site biological remediation of contaminated groundwater: a review. *Environ. Poll.*, 107: 187-197.

Laopaiboon, L., Phukoetphim, N. & Laopaiboon, P. 2006. Effect of glutaraldehyde biocide on laboratory-scale rotating biological contactors and biocide efficacy. *Elec. J. Biotechnol.*, 9: 358-368.

Law, A.M.J. & Aitken, M.D. 2003. Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid. *Appl. Environ. Microbiol.*, 69: 5968–5973.

Lawrence, J.R. & Caldwell, D.E. 1987. Behaviour of bacterial stream populations within the hydrodynamic boundary layers of surface microenvironments. *Microb. Ecol.*, 14: 15-27.

Lawrence, J.R., Korber, D.R. & Caldwell, D.E. 1989. Computer-enhanced darkfield microscopy for the quantitative analysis of bacterial growth and behaviour on surfaces. *J. Microbiol. Methods.*, 10: 123-138.

Lead – Safewater. 2006. <u>http://www.epa.gov/OGWDW/lead/index.html</u> [21 April 2006].

Lemmer, H., Zaglauer, A., Neef, A., Meier, H. & Amann, R. 1997. Denitrification in methanol-fed fixed-bed reactor. Part2: composition and ecology of the bacterial community in the biofilm. *Wat. Res.*, 31(8): 1903-1908.

Lenntech - Mn. 2006. Manganese – Mn. <u>http://www.lenntech.com/Periodic-chart-elements/mn-en.htm</u>. [22 April 2006].

Leung, W.C., Wong, M-F., Chua, H., Lo, W., Yu, P.H. F. & Leung, C.K. 2000. Removal and recovery of heavy metals by bacteria isolated from activated sludge treating industrial effluents and municipal wastewater. *Water Sci. Technol.*, 41(12): 233-240.

Leslie, H.A., Pavluk, T.I., Bij de Vaaste, A. & Kraak, M.H.S. 1999. Triad assessment of the impact of chromium pollution on benthic macroinvertebrates in the Chusovaya River (Urals, Russia). *Arch. Environ. Contam. Toxicol.*, 37: 182-189.

Lin, J., Biyela, P.T., Puckree, T. & Bezuidenhout, C.C. 2003. A study of the water quality of the Mhlathuze River, Kwazulu-Natal (RSA): Microbial and physico-chemical factors. *Water SA*, 30(1): 17-22.

Liu, W., Howell, J.A., Arnot, T.C. & Scott, J.A. 2001. A novel extractive membrane bioreactor for treating biorefractory organic pollutants in the presence of high concentrations of inorganics: application to a synthetic acidic effluent containing high concentrations of chlorophenol and salt. *J. Membr. Sci.*, 181: 127-140.

Liu, Y. & Tay, J.H. 2004. State of the art of biogranulation technology for wastewater treatment, *Biotechnol Adv.*, 22: 533–563.

Lopez, C., Pons, M.N. & Morgenroth, E. 2005. Evaluation of microscopic techniques (epifluorescence microscopy, CLSM, TPE-LSM) as a basis for the quantitative image analysis of activated sludge. *Water Res.*, 39: 456-468.

Lowe, D.M., Soverchia, C. & Moore, M.N. 1995. Lysosomal membrane responses in the blood and digestive cells of mussels experimentally exposed to fluoranthene. *Aquat. Toxicol.*, 33: 105-112.

Maanan, M., Zourarah, B., Carruesco, C., Aajjane, A., & Naud, J. 2004. The distribution of heavy metals in the Sidi Moussa lagoon sediments (Atlantic Moroccan Coast). *J. African Earth Sci.*, 39: 473-483.

Mack, C., Burgess, J.E. & Duncan, J.R. 2004. Membrane bioreactors for metal recovery from wastewater: A review. *Water SA*., 30: 521-531.

Macklin, M.G., Brewer, P.A., Balteanu, D., Coulthard, T.J., Driga, B., Howard, A.J. & Zaharia, S. 2003. The long term fate and environmental significance of contaminant metals released by the January and March 2000 mining tailings dam failures in Maramureş County, upper Tisa Basin, Romania. *Appl. Geochem.*, 18: 241–257.

Malik, A. 2004. Metal bioremediation through growing cells. *Environ. Int.* 30(2): 261-278.

Mandal, R., Hassan, N.M., Murimboh, J., Chakrabarti, C.L., Back, M.H., Rahayu, U. & Lean, D.R.S. 2002. Chemical speciation and toxicity of nickel species in natural waters from the Sudbury Area (Canada). *Environ. Sci. Technol.*, 36: 1477-1484.

Männistö, M.K., Salkinoja-Salonen, M.S. & Puhakka, J.A. 2001. In situ polychlorophenol bioremediation potential of the indigenous bacterial community of boreal groundwater. *Water Res.*, 35: 2496–2504.

Marchand, C., Lallier-Verègs, E., Baltzer, F., Albéric, P., Cossa, D., & Baillif, P. 2006. Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. *Mar. Chem.*, 98: 1-17.

Marín-Guirao, L., Cesar, A., Marín, A. & Vita, R. 2005. Assessment of sediment metal contamination in the Mar Menor coastal lagoon (SE Spain): Metal distribution, toxicity, bioaccumulation and benthic community structure. *Cienc. Mar.* 31(2): 413–428.

Marshall, K.C. 1988. Adhesion and growth of bacteria at surfaces in oligotrophic habitats. *Can. J. Microbiol.*, 34: 503-506.

Martin, J.M. & Windom, H.L. 1991. Present and future roles of ocean margins in regulating marine biogeochemical cycles of trace elements. In Mantoura, R.F.C., Martin, J.M. & Wollast, R. (eds.). *Ocean Margin Processes in Global Change*. New Jersey, USA: John Wiley & Sons Ltd.

Martin, A.P. 2002. Phylogenetic Approaches for Describing and Comparing the Diversity of Microbial Communities. *Appl. Environ. Microbiol.*, 68(8): 3673-3682.
Martín-Cereceda, M., Serrano, S. & Guinea, A. 2001. Biofilm communities and operational monitoring of a rotating biological contactor system. *Water Air Soil Poll.*, 126: 193-206.

Massol-Deyá, A., Weller, R., Rios-Hernández, L., Zhou, J.Z., Hickey, R.F. & Tiedje, J.M. 1997. Succession and convergence of biofilm communities in fixed-film reactors treating aromatic hydrocarbons in groundwater. *Appl. Environ. Mircobiol.*, 63(1): 270–276.

Mayer, C., Moritz, R., Kirschner, C., Borchand, W., Maibaum, R., Wingender, J. & Flemming, H-C. 1999. The role of intermolecular interactions: studies on molecular systems for bacterial biofilms. *Intern. J. Biol. Macromol.*, 26: 3-16.

Mays, P.A. & Edwards, G.S. 1991. Comparison of Heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage. *Ecolog. Engin.*, 16: 487-500.

McComb, M.E. & Gesser, H.D. 1999. Analysis of trace metals in water by in-situ sample pre-concentration combined with wavelength dispersive X-ray fluorescence spectroscopy and inductively coupled plasma-optical emission spectroscopy. *Talanta*, 49(4): 869-879.

McCutcheon, S.C. & Schnoor, J.L. 2003. Overview of phytotransformation and control of wastes. In McCutcheon, S.C. & Schoor, J.L. (eds). *Phytoremediation – Transformation and control of contaminants*. New Jersey, USA: John Wiley and Sons: 3-58.

McIntyre, T.C. 2003. Databases and protocol for plant and micro-organisms selection: hydrocarbons and metals. In McCutcheon, S.C. & Schoor, J.L. (eds). *Phytoremediation – Transformation and control of contaminant*. New Jersey, USA: John Wiley and Sons: 887-904.

McLean, R.J., Beauchemin, D., Clapham, L. & Beveridge, T.J. 1990. Metal-binding characteristics of the gamma-glutamyl capsular polymer of *Bacillus licheniformis* ATCC 9945. *Appl. Environ. Microbiol.* 56: 3671-3677.

Medina, M., Andrade, S., Faugeron, S., Lagos, N., Mella, D. & Correa, J.A. 2005. Biodiversity of rocky intertidal benthic communities associated with copper mine tainling discharges in northern Chile. *Mar. Poll. Bull.*, 50: 396-409.

Merian, E. (ed). 1991. Occurrence analysis and biological relevance. *Metals and their compounds in the environment*. New York: UCH.

Merz, S.K. 2000. Guidelines for Using Free Water Surface Constructed Wetlands to Treat Municipal Sewage. Queensland Government, Department of Natural resources. Brisbane: 1-16.

Metcalf, G. & Eddy, F. 1991. Wastewater Engineering: Treatment disposal Reuse. 3rd edn. McGraw-Hill, New York.

Micó, C., Peris, M., Recatalá, L. & Sánchez, J. 2007. Baseline values for heavy metals in agricultural soils in an European Mediterranean region. *Sci. Tot. Environ.* 378: 13-17.

Mineral and Information Institute. 2006. <u>http://www.mii.org/Minerals/photocopper.html</u> [21 April 2006].

Minerals Education – Fe. 2008. http://www.minerals.org.au/education/secondary/secondary resources/factsheets/iro n. [21 April 2006].

Miu, A., Olteanu, A.I. & Miclea, M. 2004. A behavioural and ultrastructural dissection of the interference of aluminium with aging. *J. Alzheimers Dis.*, 6(3): 315-328.

Mowat, F.S. & Bundy, K.J. 2001. Correlation of field-measured toxicity with chemical concentration and pollutant availability. *Environ. Inter.*, 27:479-489.

Muraleedharan, T.R., Iyengar, L. & Venkobachar, C. 1991. Biosorption: an attractive alternative for metal removal and recovery. *Curr. Sci.* 61: 379-385.

Murray-Gulde, C.L., Bearr, J. & John, H.R. 2005. Evaluation of a constructed wetland treatment system specifically designed to decrease bioavailable copper in a wastestream, *Ecotoxicol. Environ. Saf.*, 61(1): 60–73.

Mwamburi, J. 2003. Variations in trace elements in bottom sediments of major rivers in Lake Victoria's basin, Kenya. *Lakes & Reservoirs: Research and Management.*, 8: 5-13.

Mzimela, H.M., Wepener, V. & Cyrus, D.P. 2003. Seasonal variation of selected metals in sediments, water and tissues of the groovy mullet, *Liza dumerelii* (Mugilidae) from the Mhlathuze Estuary, South Africa. *Mar. Poll. Bull.*, 46: 659-664.

Nairobi River Basin Programme Phase II Pollution Monitoring Stakeholders. 2003. NRBP – PhaseII (UoN/UNEP project Feb – Nov. 2003) Final Report, 1 – 74.

Najafpour, G.D., Zinatizadeh, A.A.L., Mohamed, A.R., Hasnain, Isa, M. & Nasrollahzadeh, H. 2006. High-rate anaerobic digestion of palm oil mill effluent in an upflow anaerobic sludge-fixed film bioreactor. *Process. Biochem.*, 41: 370-379.

Nakahara, H., Ishikawa, T., Sarai, Y., Kondo, I., Kozukue, H. & Silver, S. 1977. Linkage of mercury, cadmium and arsenate and drug resistance in clinical isolates of *Pseudomonas aeruginosa. Appl. Environ. Microbiol.* 33(4): 975-976.

Nancharaiah, Y.V., Venugopalan, V.P., Wuertz, S., Wilderer, P.A. & Hausner, M. 2005. Compatibility of the green fluorescent protein and a general nucleic acid stain for quantitative description of a *Pseudomonas putida* biofilm. *J. Microbiol. Meths.* 60(2): 179-187.

National Lead Information Centre (NLIC). 2006. <u>http://www.epa.gov/lead/pubs/nlic.htm</u>. [21 April 2006].

National Pollutant Inventory Substance Profile – Polycyclic Aromatic Hydrocarbons. 2004. <u>http://www.npi.gov.au/database/substance-info/profiles/74.html</u> [20 February 2008].

Natural Resources Management and Environment Department. 2007. Unlocking the Water potential of agriculture. <u>http://www.fao.org/docrep/006/y4525e/y4525e05.htm</u> [20 February 2008].

Navia, M.M., Gascón, J. & Vila, J. 2005. Genetic diversity of *Shigella* species from different intercontinental sources. *Infect. Genet. Evol.*, 5: 349-353.

Neal, C., Robson, A.J., Harrow, M., Hill, L., Wickham, H., Bhardwaj, C.L., Tindall, C.I., Ryland, G.P., Leach, D.V., Johnson, R.C., Brondson, R.K. & Cranston, M. 1997. Major, minor, trace element and suspended sediment variations in the River Tweed: results from the LOIS core monitoring programme. *Sci. Tot. Environ.*, 194/195: 193-205.

Nelson, Y.M., Lion, L.W., Shuler, M.L. & Ghiorse, W.C. 1996. Modelling oligotrophic biofilm formation and lead adsorption to biofilm components. *Environ. Sci. Technol.*, 30: 2027-2035.

Nelson, E.A., Specht, W.L. & Knox, A.S. 2004. Metal removal from process and stormwater discharges by constructed treatment wetlands. United States Department of Energy contract DE-AC09-96SR18500.

Neu, T.R. 1992. Polysaccharide in biofilm. In Prave, P., Schlingmann, M., Esser, K., Thauer, R. & Wagner, F. (eds). *Jahrbuch. Biotechnologie*. (Vol. 4). Munich, Germany: Carl Hanser: 73.

Nikaido, H. 1996. Multidrug efflux pumps of Gram-negative bacteria. *J. Bacteriol.* 178(20): 5853-5859.

Nigro, M., Falleni, A., Del Barga, I., Scarcelli, V., Lucchesi, P., Regoli, F. & Frenzilli, G. 2006. Cellular biomarkers for monitoring estuarine environments: Transplanted versus native mussels. *Aquat. Toxicol.*, 77(4): 339-347.

Ochieng, A., Ogada, T., Sisenda, W. & Wambua, P. 2002. Brewery wastewater treatment in a fluidised bed bioreactor. *J. Hazard. Mat. B.*, 90: 311-321.

Ochman, H., Lerat, E. & Daubin, V. 2005. Examining bacterial species under the spectre of gene transfer and exchange. *PNAS*., 102(1): 6595-6599.

Odendaal, J.P. & Reinecke, A.J. 1999. The sublethal effects and accumulation of cadmium in the terrestrial isopod, *Porcellio laevis* Latr. (Crustacea, Isopoda). *Arch. Environ. Contam. Toxicol.* 36: 64-69.

Ohe, T., Watanabe, T. & Wakabayashi, K. 2004. Mutagens in surface waters: a review. *Mutation Res.*, 567: 109–149.

Otitoloju, A.A. 2003. Relevance of joint toxicity evaluations in setting realistic environmental safe limits of heavy metals. *J. Environ. Manage.*, 67: 121-128.

Owen, R.J. 2008. Methods in Molecular Biology. In Neil Woodford, N. & Johnson, A.P. (eds). Genomics, Proteomics, and Clinical Bacteriology Methods and Reviews. (Vol 266). Netherlands: Humana Press: 353-383.

Parales, R.E. & Haddock, J.D. 2004. Biocatalytic degradation of pollutants. *Curr. Opin. Biotechnol.*, 15: 374–379.

Parawira W., Murto M., Zvauya R. & Mattiasson B. 2006. Comparative performance of a UASB reactor and an aerobic packed-bed reactor when treating potato waste leachate. *Renew. Energy.*, 31, 893-903.

Park, Y.J., Ko, J.J., Yun, S.L., Lee, E.Y., Kim, S.J., Kang, S.W., Lee, B.C. & Kim, S.K. 2008. Enhancement of bioremediation by *Ralstonia* sp. HM-1 in sediment polluted by Cd and Zn. *Biores. Technol.*, 99, 7458–7463.

Patel H. & Madamwar D. 2002. Effects of temperatures and organic loading rates on biomethanation of acidic petrochemical wastewater using an anaerobic upflow fixed-film reactor. *Biores. Technol.*, 82, 65-71.

Patel P., Desai M. & Madamwar D. 1995. Biomethanation of cheese whey using anaerobic upflow fixed film reactor. *J. Ferment. Bioengin.*, 79, 398-399.

Paulse, A.N. 2009. Investigation into the bacterial pollution in three Western Cape Rivers, South Africa and the application of bioremediation strategies as clean-up technologies. DTech Thesis, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, South Africa. Pegram, G.C., Quibell, G., & Hinsch, M. 1999. The nonpoint source impacts of periurban settlements in South Africa: implications for their management. *Wat. Sci. Technol.*, 39: 283-290.

Peijnenburg, W., De Groot, A., Jager, T. & Posthuma, L. 2005. Short-term ecological risks of depositing contaminated sediment on arable soil. Ecotoxicol. Environ. Saf., 60(1): 1-14.

Perez M., Rodriguez-Cano R., Romero L.I. & Sales D. 2006. Anaerobic thermophilic digestion of cutting oil wastewater: Effect of co-substrate. *Biochem. Engin. J.*, 29, 250-257.

Petit, F., Craquelin, S., Guespin-Michel, J. & Buffet-Janvresse, C. 1999. Nucleic acid extraction from polluted estuarine water for detection of viruses and bacteria by PCR and RT-PCR analysis. *Res. Microbiol.*, 150: 143-151.

Petrauskiené, L. 2003. Water and sediment toxicity assessment by use of behavioural responses to medicinal leeches. *Environ. Intern.*, 28(8): 729-736.

Piotrowska-Seget, Z., Cycon, M. & Kozdroj, J. 2005. Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. *Appl. Soil Ecol.*, 28: 237–246.

Piver, W.T. 1992. Contamination and restoration of groundwater aquifers. *Environ. Health. Perspect.*, 100: 237-247.

Powell, L.W., Jazwinska, E., Halliday, J.W. 1994. Primary iron overload. In Brock, J.H., Halliday, J.W., Pippard, M.J. & Powell, L.W. (eds). *Iron metabolism in health and disease*. London, England: W.B. Saunders Co. Ltd.: 227-270.

Prange, J.A. & Dennison, W.C. 2000. Physiological responses of five seagrass species to trace metals. *Mar. Pollut. Bull.*, 41: 327-336.

Prat, N., Toja, J., Solá, C., Burgos, M.D., Plans, M. & Rieradevall, M. 1999. Effect of dumping and cleaning activities on the aquatic ecosystems of the Guidiamar River following a toxic flood. *Sci. Tot. Environ.*, 242:231-248.

Qazi & Kanaras. 1999. *Phytoremediation – Transformation and control of contaminants*. In McCutcheon, S.C. & Schoor, J.L. (eds). New Jersey, USA: John Wiley and Sons: 225-245.

Quéric, N.V., Soltwedel, T. & Arntz, W.E. 2004. Application of a rapid direct viable count method to deep-sea sediment bacteria. *J. Microbiol. Meths.*, 57: 351–367.

Radenac, G., Fichet, D. & Miramand, P. 2001. Bioaccumulation and toxicity of four dissolved metals in *Paracentrotus lividus* sea-urchin embryo. *Mar. Environ. Res.*, 51: 151–166.

Raja, C.E., Kolandaswamy, A. & Selvam, G.S. 2006. Isolation and characterization of a metal-resistant Pseudomonas aeruginosa strain. World J. Microbiol. Biotechnol., 22: 577-585.

Ramirez G.W., Alonso J.L., Villanueva A., Guardino R., Basiero J.A., Bernecer I. & Morenillo J.J. 2000. A rapid, direct method for assessing chlorine effect on filamentous bacteria in activated sludge. *Water Res.*, 34, 3894-3898.

Rasmussen L.D., Sorensen S.J., Turner R.R. & Barkay T. 2000. Application of a mer-lux biosensor for estimating bioavailable mercury in soil. *Soil. Biol. Biochem.*, 32, 639-646.

Rawlings, D.E. 1995. Restriction enzyme analysis of 16SrRNA genes for the rapid identification of *Thiobacillus feroxidans, Thiobacillus thiooxidans, Leptospirillum ferooxidans* strains in leaching environments. In Jerez, C.A., Vargas, T., Toledo, H. & Wiertz, J.V. (eds). Biohydrometallurgical Processing: 9-17.

Regoli, F. & Orlando, E. 1994. Seasonal variation of trace metal concentrations in the digestive gland of the Mediterranean mussel *Mytilus galloprovincialis*: comparison between a polluted and a non-polluted site. *Arch. Environ. Contam. Toxicol.*, 27: 36–43.

Richards, S.M. 2004. Effects of pharmaceutical mixtures in aquatic microcosms. *Environ. Toxicol. Chem.*, 23: 1035-1042.

Richardson, J.L., Arndt, J.L. & Montgomery, J.A. 2001. Hydrology of wetland and related soils. In Richardson, J.L. & Vepraskas, M.J. (eds). *Wetland Soils – Genesis, hydrology, landscapes and classification*. London: Lewis Publishers: 35-84.

Ritchie, N.J., Schutter, M.E., Dick, R.P., & Myrold, D.D. 2000. Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. *Appl. Environ. Microbiol.*, 66: 1668-1675.

River Health Programme. 2004. State-of-Rivers Report: Berg River System. Department of Water Affairs and Forestry, Pretoria.

Roane, T.M. & Pepper, I.L. 2000. Microorganisms and metal pollutants. In Maier, R. M., Pepper, I.L. & Gerba, C.P. (eds). Environmental Microbiology. San Diego, USA: Academic Press: 403-423.

Röling, W.F.M. & Verseveld, H.W.V. 2002. Natural attenuation: what does the subsurface have in store? *Biodeg.*, 13: 53–64.

Saitou, N. & Nei, M. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. *Mol. Biol. Evol.*, 4: 406-425.

Sakai, R., Siegmann, H.C., Sato, H., Voorhees, A.S. 2002. Particulate matter and particle-attached polycyclic aromatic hydrocarbons in the indoor and outdoor air of Tokyo measured with personal monitors. *Environ. Res. Sec A.*, 89: 66–71.

Saleh M.A., Ewane E., Jones J. & Wilson B.L. 2000. Monitoring Wadi El Rayan lakes of the Egyptian Desert for inorganic pollutants by Ion-Selective Electrodes, Ion Chromatography, and Inductively Coupled Plasma Spectroscopy. *Ecotoxicol. Environ. Saf.* 45, 310-316.

Saleh, M.A., Ewane, E., Jones, J. & Wilson, B.L. 2001. Chemical evaluation of commercial bottled drinking water from Egypt. *J. Food Comp. Anal.*, 14: 127-152.

Salzano, A.M., Febbraio, F., Farias, T., Cetrangolo, G.P., Nucci, R., Scaloni, A. & Manco, G. 2007. Redox stress proteins are involved in adaptation response of the hyperthermoacidophilic archaeon Sulfolobus solfataricus to nickel challenge. *Microbial Cell Factories*, 6(25): 1-11.

Sarkar, K.S., Frančišković-Bilinski, S., Bhattacharya, A., Saha, M. & Bilinski, H. 2004. Levels of elements in the surficial estuarine sediments of the Hugli River, northeast India and their environmental implications. *Environ. Intern.*, 30: 1089-1098.

Schmitt H., Haapakangas H. & Van Beelen P. 2005. Effects of antibiotics on soil microorganisms: time and nutrients influence pollution-induced community tolerance. *Soil Biol. Biotech.*, 37, 1882-1892.

Schutte, C.F. & Pretorius, W.A. 1997. Water demand and population growth. *Water SA*., 24: 265-268.

Scow, K.M. & Hicks, K.A. 2005. Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. *Curr. Opin. Biotechnol.*, 16: 246–253.

Seachem. 2006. Phosguard[™] Support. <u>File://E:\pesticide\Phosguard FAQ.htm</u> [11 December 2006].

Sears, R.W. 2008. Is Aluminum the New Thimerosal? In Sears, R.W. (ed). *The Vaccine Book: Making the Right Decision for Your Child. New York*, NY: Little, Brown and Company.

Seckler M.M., Van Leeuwen M.L.J., Bruinsma O.S.L. & Van Rosmalen G.M. 1996. Phosphate removal in a fluidised bed. Process optimisation. *Water Res.*, 30: 1589-1596.

Selenska-Pobell, S., Panak, P., Miteva, V., Boudakov, I., Bernhard, G. & Nitsche, H. 2006. Selective accumulation of heavy metals by three indigenous *Bacillus strains, B. cereus, B. megaterium* and *B. sphaericus*, from drain waters of a uranium waste pile. *FEMS Microbiol. Ecol.*, (1): 59-67.

Sheoran, A.S. & Sheoran, V. 2006. Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. *Minerals Engin.*, 19: 105–116.

Shink B. 2002. Anaerobic digestion: concepts, limits and perspectives. *Water Sci. Technol.*, 45: 1-8.

Shirdam, R., Khanafari, A. & Tabatabaee, A. 2006. Cadmium, nickel and vanadium accumulation by three strains of marine bacteria. *Iranian J. Biotechnol.*, 4(3): 180-187.

Singh, V.K., Singh, K.P. & Mohan, D. 2005. Status of heavy metals in water and bed sediments of River Gomti- a tributary of the Ganga River, India. *Environ. Monit. Assess.*, 105: 43-67.

Singh, R., Paul, D. & Jain, R.K. 2006. Biofilms: implications in bioremediation. *Trends Microbiol.*, 14(9): 389-397.

Smith, J.J, Howington, J.P. & McFeters, G.A. 1994. Survival, Physiological Response, and Recovery of Enteric Bacteria exposed to a Polar Marine Environment. *Appl. Environ. Microbiol.*, 60(8): 2977-2984.

Snyman, R.G., Reinecke, A.J. & Reinecke, S.A. 2002. Field Application of a Lysosomal Assay as Biomarker of Copper Oxychloride Exposure, in the Snail *Helix* aspersa. *Bull. Environ. Contam. Toxicol.*, 69: 117-122.

Sobecky, P.A., Mincer, T.J., Chang, M.C., Toukdarian, A., Helinski, D.R. 1998. Isolation of broad-host-range replicons from marine sediment bacteria. *Appl. Environ. Microbiol.*, 64: 2822–2830.

Sokół W. & Korpal W. 2004. Determination of optimal operational parameters for a three-phase fluidised bed bioreactor with a light biomass support when used in treatment of phenolic wastewaters. *Biochem. Engin. J.*, 20: 49-56.

Sokół W. & Korpal W. 2006. Aerobic treatment of wastewaters in the inverse fluidised bed biofilm reactor. *Chem. Engin. J.*, 118: 199-205.

South African Bureau of Standards. 2001. *South African Bureau of Standards Specification for Drinking Water* (5th edn.) SABS 241. Pretoria, South Africa.

South African Department of Health. 2003. <u>http://www.doh.gov.za/docs/reports/2003/cholera/mpumalanga.html.</u> [30 June 2008].

South Africa Online. 2007. About SA > Agriculture. http://www.southafrica.co.za/agriculture 29.html. [25 October 2007].

Srogi, K. 2007. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. *Environ. Chem. Lett.*, 5: 169–195.

Stasinakis, A.S., Thomaidis, N.S., Nikolaou, A. & Kantifes, A. 2005. Aerobic biodegradation of organotin compounds in activated sludge batch reactors. *Environ. Pollut.*, 134: 431–438.

Stauber, J.L., Andrade, S., Ramirez, M., Adams, M. & Correa, J.A. 2005. Copper bioavailability in a coastal environment of Northern Chile: Comparison of bioassay and analytical speciation approaches. *Mar. Poll. Bull.*, 50: 1363-1372.

Stevens, R.G., Jones, D.Y., Micozzi, M.S., Taylor, P.R. 1988. Body iron stores and the risk of cancer. *N. Engl. J. Med.*, 319:1047-1042.

Stickler, D. 1999. Biofilms. Curr. Op. Microbiol., 2: 270-275.

Stoica, A-I. 1999. Analytical studies on the pollution of Arges River. *Crit. Revs. Anal. Chem.*, 29: 243-247.

Stoll, A. & Duncan, J.R. 1997. Implementation of a continuous-flow stirred bioreactor system in the bioremediation of heavy metals from industrial waste water. *Environ. Poll.*, 97(3): 247-251.

Suh, J.H., Kim, D.S., Yun, J.W. & Song, S.K. 1999. Process of Pb(II) accumulation in Saccharomyces cerevisiae. *Biotechnol. Lett.*, 20:153-156.

Surfacequery.com. 2007. Galvanised Fe sheets. <u>http://surface.com/search//index.php</u>. [14 January 2008].

Sutton P.M. & Mishra P.N. 1994. Fluidised bed biological wastewater treatment: effects of scale-up on system performance. *Water Sci. Technol.*, 22: 419-426.

Swagten, J., Bossus, D. & Vanwersch, H. 2006. The calibration of XRF polyethylene reference materials with k_o -NAA and ICP-AES. *Nucl. Instrum. Methods Phys. Res.*, Sect. A, 564(2): 761–765.

Swartz, R.C., Cole, F.A., Lamberson, J.O., Ferraro, S.P., Schults, D.W., DeBen, W.A., Lee II, H. & Ozretich, R.J. 1994. Sediment toxicity, contamination, and amphipod abundance at a DDT- and dieldrin-contaminated site in San Francisco bay. *Environ. Toxicol. Chem.*, 13: 949-962.

Teitzel G.M. & Parsek M.R. 2003. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. *Appl. Environ. Microbiol.* 69: 2313-2320.

Templeton, A.S., Trainor, T.P., Traina, S.J., Spormann, A.M. & Brown Jr., G.E. 2001. Pb(II) distributions at biofilm-metal oxide interfaces. *Proc. Natl. Acad. Sci.* USA, 98:11897-11901.

The Green Lane[™], Environment Canada's World Wide Web site. 2004. The Hydrologic Cycle <u>http://www.ec.gc.ca/Water/en/nature/prop/e cycle.htm</u> [18 April 2008].

Thompson, B., Anderson, B., Hunt, J., Taberski, K. & Phillips, B. 1999. Relationships between sediment contamination and toxicity in San Francisco Bay. *Mar. Environ. Res.*, 48: 285-309.

Tipping, E., Woof, C. & Hurley, M.A. 1991. Humic substances in acid surface waters; modelling aluminium binding, contribution to ionic charge-balance, and control of pH. *Water Res.*, 25: 425-435.

Toes, A.M., Finke, N., Kuenen, J.G. & Muyzer, G. 2008. Effects of deposition of heavy-metal-polluted harbour mud on microbial diversity and metal resistance in sandy marine sediments. *Arch Environ. Contam. Toxicol.* In Press.

Torpdahl, M., Sorensen, G., Ethelberg, S., Sandø, G., Gammelgård, K. & Porsbo, LJ. 2006. A regional outbreak of S. Typhimurium in Denmark and identification of the source using MLVA typing. *Euro. Surveill.*, 11(5): 134-136.

Touron, A., Berthe, T., Pawlak, B. & Petit, F. 2005. Detection of *Salmonella* in environmental water and sediment by a nested-multiplex polymerase chain reaction assay. *Res. Microbiol.*, 156: 541–553.

ToxFaqs for Manganese. 2006. Agency for Toxic Substances and Disease Registry. <u>http://www.atsdr.cdc.gov/tfacts151.html.</u> [24 May 2006].

ToxFaqs for Nickel. 2006. Agency for Toxic Substances and Disease Registry <u>http://www.atsdr.cdc.gov/tfacts15.html.</u> [24 May 2006].

Trajanovska, S., Britz, M.L. & Bhave, M. 1997. Detection of heavy metal ion resistance genes in Gram-positive and Gram-negative bacteria isolated from a lead-contaminated site. *Biodegrad.*, 8: 113-124.

Travel Doctor. 2005. Travel Bugs. <u>http://www.traveldoctor.co.za/illnesses.asp?ID=04</u>. [14 September 2007].

Tuomainen, T.P., Nyyssonen, K., Salonen, R., Tervahauta, A., Korpela, H., Lakka, T., Kaplan, G.A. & Salonen, J.T. 1997. Body iron stores are associated with serum insulin and blood glucose concentrations. Population study in 1,013 eastern Finnish men. *Diabetes Care*, 20: 426-428.

Tsezos, M. & Deutschmann, A.A. 1990. An investigation of engineering parameters for the use of immobilized biomass particles in biosorption. *J. Chem. Technol. Biotechnol.*, 48: 29–39.

United Nations. 2003. Wastewater Treatment Technologies: A General Review. <u>http://www.escwa.un.org/information/publications/edit/upload/sdpd-03-6.pdf.</u> [20 April 2007].

United States Geological Report. 2000. <u>http://ga.water.usgs.gov/edu/wusw.html. [5</u> November 2007].

US Department of Health and Human Services. 1978. Centres for Disease Control National Institute for Occupational Safety and Health. Occupational Health Guideline for Copper Fume.

US Department of the Interior. 2006. United States Geological Survey. <u>http://ga.water.usgs.gov/edu/waterdistribution.html.</u> [28 August 2006].

US Fish and Wildlife Service. 2007. National Wetlands Inventory. <u>http://www.fws.gov/nwi/</u> [25 May 2007].

Ure, A.M. 1995. Methods of analysis for heavy metals in soils. In Alloway, B.J. (ed). *Heavy Metals in Soil*. London, England: Blackie Academic and Professional: 58-94.

Uysal A. & Türkman A. 2005. Effect of biosurfactant on 2,4-dichlorophenol biodegradation in an activated sludge bioreactor. *Process. Biochem.*, 40: 2745-2749.

Van der Hoek, J.P., Urlings, L.G.C.M. & Grobben, C.M. 1989. Biological removal of polycyclic aromatic hydrocarbons, benzene, toluene, ethylbenzene, xylene and phenolic compounds from heavily contaminated groundwater and soil. *Environ. Technol. Lett.*, 10: 185-194.

Van Schooten, F.J., Maas, L.M., Moonen, E.J.C., Kleinjans, J.C.S. & Van der Oost, R. 1995. DNA dosimetry in biological indicator species living on PAH-contaminated soils and sediments. *Ecotox. Environ. Saf.*, 30: 171-179.

Vermeiren, K., Vandecasteele, C. & Dams, R. 1990. Determination of trace amounts of cadmium, lead, copper and zinc in natural waters by Inductively Coupled Plasma Atomic Emission Spectrometry with thermospray nebulisation, after enrichment on chelex-100. *Analyst*, 115:17-22.

Vermeulen, L.A., Reinecke, A.J. & Reinecke, S.A. 2001. Evaluation of the fungicide manganese-zinc ethylene bis(dithiocarbamate) (Mancozeb) for sub-lethal and acute toxicity to *Eisenia fetida* (Oligochaeta). *Ecotox. Environ. Saf.*, 48: 183-189.

Viljoen, G.J., Nel, L.H. & Crowther, J.R. 2005. PCR-The Basic Reaction. In Viljoen, G.J., Nel, L.H. & Crowther, J.R. (eds). *Molecular Diagnostic PCR Handbook*. Netherlands: Springer: 20-49.

Volesky, B. 1990. Biosorption and biosorbents. In Volesky, B (ed). *Biosorption of Heavy Metals*. Boca Raton, Florida, USA: CRC Press: 3-5.

Wade, P.C., Woodborne, S., Morris, W.M., Vos, P. & Jarvis, N. V. 2000. Tier 1 Risk Assessment of Selected Radionuclides in Sediment of the Mooi River Catchment. WCR Project number K5/1059.

Wagner-Döbler, I., Lünsdorf, H., Lünsdorf, T., Von Canstein, H.F. & Li, Y. 2000. Structure and species composition of mercury-reducing biofilms. *Appl. Environ. Microbiol.*, 66: 4559-4563.

Watson, G.M., Andersen, O.K., Depledge, M.H. & Galloway, T.S. 2004. Detecting a field gradient of PAH exposure in decapod crustacean using a novel urinary biomarker. *Mar. Environ. Res.*, 58: 257-261.

WebelementsPeriodicTable-Fe.2006.http://www.webelements.com/webelements/elements/text/Fe/key.html[22April2006].

Webelements Periodic Table - Ni. 2006. <u>http://www.webelements.com/webelements/elements/text/Ni/key.html</u>. [22 April 2006].

Webelements Periodic Table - Zn. 2006. <u>http://www.webelements.com/webelements/elements/text/Zn/key.html</u>. [22 April 2006].

Webster, E. 2001. Water reuse to solve SA water shortage. *Water Sewage and Effluent.*, 21: 12.

Weigand in Höchst, P. 1900. Verfahren zur biologischen Reinigung von Abwassern (Process for biological treatment of wastewater). German Patent No. 135755.

Werbach, M.R. 2003. Can Aluminium cause Alzheimers disease? *Foundations of Nutritional Medicine: Common nutritional deficiencies*. Tarzana, California: Third Line Press.

Werbach, M.R. 2007. Aluminium and Alzheimers disease. <u>http://ailingamerica.blogspot.com/2007/03/it-is-estimated-that-one-in-ten-people.html.</u> [21 April 2008].

Weston, J.J., Huggett, D.B., Rimoldi, J., Foran, C.M. & Stattery, M. 2001. Determination of fluoxetine (ProzacTM) and norfluoxetine in the aquatic environment. Annual Meeting of the Society of Environmental Toxicology and Chemistry, Baltimore, MD.

Wetlands. 1999. <u>http://www.botany.uwc.ac.za/envFacts/facts/wetlands.htm.</u> [15 October 2007].

White, G.F. 1995. Multiple interactions in riverine biofilms — surfactant adsorption, bacterial attachment and biodegradation. *Water Sci. Technol.*, 31(1): 61-70.

White, C., Sayer, J.A. & Gadd, G.M. 1997. Microbial solubilisation and immobilisation of toxic metals: Key biogeochemical processes for treatment of contamination. *FEMS Microbiol. Rev.*, 20: 503-516.

Whitlock, J.L. 1990. Biological detoxification of precious metal processing wastewaters. *Geomicrobiol. J.*, 8: 241–249.

Wiles, M.A. 2004. Chemical and Biological methods for the analysis and remediation of environmental contaminants frequently identified at superfund sites. PhD dissertation, Department of Toxicology, Texas A & M University, USA.

Witmann, G.T.W. & Forstner, U. 1977. Heavy metal enrichment in mine drainage: III The Klerksdorp, West Wits and Evander Goldfields. *S. Afr. J. Sci.*, 73: 53-57.

Wolfaardt, G.M., Lawrence, J.R., Robarts, R.D. & Caldwell, D.E. 1994. The role of interactions, sessile growth and nutrient amendments on the degradative efficiency of a microbial consortium. *Can. J. Microbiol.*, 40: 331-340.

World Health Organisation (WHO). 1991. Inorganic Mercury (Environmental Health Criteria), International Program on Chemical Safety (Vol. 118) Geneva.

World Health Organisation (WHO). 2003. Water Sanitation and Health (WSH). <u>http://www.who.int/water sanitation health/publications/facts2004/en/index.html</u>. [15 September 2007].

World Health Organisation (WHO). 2004. Weekly epidemiological record. Outbreak News. 79 (9): 85-92.

World Health Organisation (WHO). 2005. Cholera in Niger. <u>http://www.who.int/csr/don/2005_07_29b/en/print.html.</u> [8 June 2007].

World Health Organisation (WHO). 2006. Cholera in Angola. <u>http://www.who.int/csr/don/2006_06_21/en/index.html.</u> [8 June 2007].

World Health Organisation (WHO). 2007. Cholera in Sudan. <u>http://www.who.int/csr/don/2006_06_21a/en/index.html.</u> [8 June 2007].

Woulds, C. & Ngwenya, B.T. 2004. Geochemical processes governing the performance of a constructed wetland treating acid mine drainage, Central Scotland. *Applied Geochem.*, 19(11): 1773–1783.

Wright, D. & Welbourne, P. 2002. Environmental Toxicology. Factors affecting toxicology. Cambridge environmental chemistry series 11. Cambridge University Press.

Xia, S., Guo, J. & Wang, R. 2008. Performance of a pilot-scale submerged membrane bioreactor (MBR) in treating bathing wastewater. *Biores. Technol.*, 99: 6834–6843.

Yilmaz, E.I. 2004. Metal tolerance and biosorption capacity of *Bacillus circulans* strain EB1. *Res. Microbiol.*, 154: 409–415.

Yu, F.P. & McFeters, G.A. 1994. Rapid *in situ* assessment of physiological activities in bacterial biofilms using fluorescent probes. *J. Microbiol. Methods*, 20: 1–10.

Zheng, P., Lin, F.M., Hu, B.L. & Chen, J.S. 2004. Start-up of anaerobic ammonia oxidation bioreactor with nitrifying activated sludge. *J. Environ. Sci.*, 16: 13-16.

Zinc. 2006. Applications. http://en.wikipedia.org/wiki/Zinc. [25 April 2006].

Zinc and the Environment. 2007. <u>http://www.galvanizeit.org/showContent,296,340.cfm</u>. [25 April 2006].

Zilles, J.L., Peccia, J., Kim, M.W., Hung, C.H. & Noguera, D.R. 2002. Involvement of Rhodocyclus-related organisms in phosphorous removal in full-scale wastewater treatment plants. *Appl. Environ. Microbiol.*, 68(6): 2763-2769.

APPENDIX A

The article published in Water Science and Technology was aimed at developing a bioreactor system to reduce or remove metal pollutants from river water.

The application of bioremediation: Reduction of metal concentrations in river water and COD in distillery effluent.

V. A. Jackson¹, A. N. Paulse¹, A. A. Bester², J. H. Neethling¹, K. R. Du Plessis³ and W. Khan¹

¹ Department of Health Sciences, Faculty of Applied Science, Cape Peninsula University of Technology, P.O. Box 652, Cape Town, 8000, South Africa, Tel: +27 21 460 3175, Fax: +27 21 460 3193, (E-mail: <u>204219590@cput.ac.za</u>; <u>neethlingh@cput.ac.za</u>; <u>khanw@cput.ac.za</u>) ² Department of Chamical Engineering Engineering Engineering

² Department of Chemical Engineering, Faculty of Applied Science, Cape Peninsula University of Technology, P.O. Box 652, Cape Town, 8000, South Africa, Tel: +27 21 460 3418, Fax: +27 21 460 3193 (E-mail:*besteraa@cput.ac.za*)

³ Soil Science Department, ARC-Infruitec/Nietvoorbij, Private bag X5026, Stellenbosch, 7599, South Africa, (E-mail: <u>dplessisk@arc.agric.za</u>)

Abstract

The major aim of this study was to evaluate and develop artificial bioremediation systems to reduce or remove metal pollutants from contaminated river water and to decrease the chemical oxygen demand (COD) in distillery effluent. Metals were extracted using the nitric acid digestion method, and the concentrations determined using Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). A decrease in metal concentrations was observed for most of the metals analysed in the river water after being pumped through the bioreactor system for approximately two weeks, e.g. Al concentration decreased from 0.75 mg.1⁻¹ to 0.18 mg.1⁻¹ and for Ni, from 0.19 mg.1⁻¹ to 0 mg.1⁻¹. In addition, the COD counts decreased from 2255 mg.1⁻¹ to a final value of < 150mg.1⁻¹ in the distillery effluent. It could thus be concluded that the bioreactor system decreased the COD and metal concentrations in the distillery effluent as well as the river water, respectively. A bioreactor has been constructed on-site at a wine cellar to reduce COD and will be constructed at a site along the Plankenbrug River.

Keywords Bioremediation; distillery effluent; inductively coupled plasma atomic emission spectrometry; metals; pollution; rivers

INTRODUCTION

Bioremediation is defined as treatment technology that uses living organisms (plants, microbes, etc.) to reduce the concentration or toxicity of contaminants in soil, water and wastewater (Evangelho *et al.*, 2001). Numerous applications of biofilms in bioremediation exists as these microbial communities are inexpensive labourers capable of cleaning up pollutants such as, metal contaminants, chlorinated solvents, crude oil, sewage water, etc. (Langwaldt and Puhakka, 2000), with the ideal bioremediation system being time-efficient, as well as cost-effective (Liu *et al.*, 2001).

The trickling filter, which is one of the most commonly used fixed-film bioreactors, consists of a solid substratum to which microorganisms (biofilm) attach. The ideal substratum material should be highly durable, have a low cost, should not clog easily and should have a high surface area for maximum microbial adsorption (Metcalf and Eddy, 1991; Evangelho *et al.*, 2001).

The current research project focuses on the development and the application of a bioremediation system to reduce or remove metal pollutants from contaminated river water and to decrease the chemical oxygen demand (COD) in distillery effluent.

METHODS

Sampling

Distillery effluent from a settling pond, and river water from a site located near the informal settlement of Khayamandi (Stellenbosch), was evaluated in two bioreactor systems. A volume of 200 L of distillery effluent and river water respectively, was fed through the bioreactors using an Ecopool 6 pump for a period of approximately two weeks. Initial samples were collected and subsequent effluent samples collected every day from the outlet system.

Development of Trickling filter bioreactor

The distillery effluent was pumped through a continuous reactor system with the dimensions 30 cm x 30 cm x 100 cm at a flow rate of 1000 L/hour at room temperature with a retention time of 2 minutes. Polyvinylchloride (PVC) sheeting was used as the attachment surface within the reactor. Based on these results, a bioreactor system (Figure 1), with the dimensions of 35 cm x 30 cm x 100 cm, a flow rate of 1000 L/h and a retention time of 3 minutes, was constructed for the removal of metals from river water. Different materials, such as, BioballsTM and AlphagrogTM, were used to create an increased surface area for maximum metal removal efficiency.

EFFLUENT SAMPLE

Metal concentration and Chemical oxygen demand (COD) determination

The nitric acid digestion method was used to analyse for Aluminium (Al), Copper (Cu), Nickel (Ni) Manganese (Mn) and Iron (Fe) in the effluent samples of the reactor with the concentrations measured using ICP-AES (Saleh *et al*, 2000). For comparison, a blank (control) of 10 ml 55% nitric acid was analysed along with the collected samples. Chemical Oxygen Demand (COD) measurements on the

distillery effluent samples (vertical reactor) were performed using the COD Cell Test Kit, Method photometric (15000 mg/L).

RESULTS AND DISCUSSION

Mean metal concentration in river water:

The metal concentrations at four sampling sites along the Plankenbrug River, Stellenbosch were analysed for a period of one year. Based on these results, river water was collected from the site with the highest metal concentrations.

Metal concentrations recorded from the bioreactor

The recorded concentrations in the effluent samples after being fed through the bioreactor system for a period of two weeks were lower than in the initial samples (Figure 2). The decrease in metal concentrations were as follows: Al, 0.75 mg.l⁻¹ to 0.18 mg.l⁻¹, Cu, from 0.10 mg.l⁻¹ to 0.06 mg.l⁻¹, Mn, from 0.10 mg.l⁻¹ to 0 mg.l⁻¹, Ni, from 0.19 mg.l⁻¹ to 0.06 mg.l⁻¹, and Fe from 4.9 mg.l⁻¹ to 4.8 mg.l⁻¹ (results for Fe not shown). The bioreactor effluent concentrations for Al, Cu and Fe were however still significantly higher than the recommended safe concentrations as stipulated by the Department of Water Affairs and Forestry (DWAF) and the Canadian Council of Ministers of the Environment (CCME) in their guidelines published in 1996 and 2001, respectively.

Figure 2. Mean Metal concentrations $(mg.l^{-1})$ in effluent samples over the three sampling times

COD results using a trickling filter bioreactor

Results obtained from the COD Cell Test Kit, Method photometric (15000 mg/L) for distillery effluent, revealed a significant (p < 0.05) decrease in COD concentration. Chemical oxygen demand concentrations decreased from an initial value of 2255 mg/L to a final value of <150mg/L as shown by the graphical representation in Figure 3. A severe limitation of this method is that the COD could only be measured up to a concentration of 15000 mg/L and the exact initial concentration could thus not be

determined.

Figure 3. Graphical representation of reduction in COD (mg/l^{-1}) for samples obtained from the 3rd settling dam.

CONCLUSIONS

The bioreactor system used for the remediation of the river water sample, proved to be effective in decreasing the metal concentrations. In addition, results show a significant decrease (p < 0.05) in the COD concentrations of the distillery effluent pumped through the bioreactor. This system is currently being evaluated on a large-scale for winery effluent and will be constructed on-site at the most contaminated location along the Plankenbrug River.

REFERENCES

Canadian Council of Ministers of the Environment (CCME). (2001). Canadian sediment quality guidelines for the protection of aquatic life: Summary tables. Updated in: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg, Canada.

Department of Water Affairs and Forestry (DWAF). (1996). South African Water Quality Guidelines, Aquatic Ecosystems, Vol. 7, Government printer, Pretoria, South Africa.

Evangelho M. R., Gonçalves M. M. M., Sant'Anna Jr. G. L. and Villas Bôas R. C. (2001). A trickling filter application for the treatment of a gold milling effluent. *Int. J. Miner. Process.*, **62**, 279-292.

Langwaldt J. H. and Puhakka J. A. (2000). On-site biological remediation of contaminated groundwater: a review. *Environ. Poll.*, **107**, 187-197.

Liu W., Howell J. A., Arnot T. C. and Scott J. A. (2001). A novel extractive membrane bioreactor for treating biorefractory organic pollutants in the presence of high concentrations of inorganics: application to a synthetic acidic effluent containing high concentrations of chlorophenol and salt. *J. Membr. Sci.*, **181**, 127-140.

Metcalf G. and Eddy F. (1991). Wastewater Engineering: Treatment Disposal Reuse. 3rd ed. McGraw-Hill, New York.

Saleh M. A., Ewane E., Jones J. and Wilson B. L. (2000). Monitoring Wadi El Raiyan lakes of the Egyptian desert for inorganic pollutants by Ion-selective electrodes, Ion chromatography and Inductively coupled plasma spectroscopy. *Ecotoxicol. Environ. Safety*, **45**, 310-316.

APPENDIX B1

The figures below represent the agarose gel electrophoresis results of amplified PCR products of the organisms isolated from the multi-channelled flow cells after exposure to varying metal [aluminium (Al), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn)] concentrations.

2027	bp
1200	bp

1

2

3 4 5

6

7

LANE 1 – Marker (Lambda DNA/HIND III)	LANE 2 – Negative Control	LANE 3 – V1
LANE 4 – V2	LANE 5 – V3	LANE 6 – V4
LANE 7 – V5	LANE 8 – V6	LANE 9 – V7
LANE 10 – V8	LANE 11 – V9	LANE 12 – V10
LANE 13 – V11	LANE 14 – V12	LANE 15 – V13
LANE 16 – V14	LANE 17 – V15	LANE 18 – V16
LANE 19 – V17	LANE 20 – V18	

LANE 1 – Marker (Lambda DNA/HIND III)	LANE 2 – Negative Control
LANE 4 – V20	LANE 5 – V21
LANE 7 – V23	LANE 8 – V24
LANE 10 – V26	LANE 11 – V27
LANE 13 – V29	LANE 14 – V30
LANE 16 – V32	LANE 17 – V33

LANE 20 - V36

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
---	---	---	---	---	---	---	---	---	----	----	----	----	----	----	----	----	----	----	----

2027 bp 1200 bp LANE 19 – V35

LANE 1 – Marker (Lambda DNA/HIND III)	LANE 2 – Negative Control	LANE 3 – V37
LANE 4 – V38	LANE 5 – V39	LANE 6 – V40
LANE 7 – V41	LANE 8 – V42	LANE 9 – V43
LANE 10 – V44	LANE 11 – V45	LANE 12 – V46
LANE 13 – V47	LANE 14 – V48	LANE 15 – V49
LANE 16 – V50	LANE 17 – V51	LANE 18 – V52
LANE 19 – V53	LANE 20 – V54	

LANE 3 – V19

LANE 6 – V22

LANE 9 – V25

LANE 12 - V28

LANE 15 - V31

LANE 18 - V34

LANE 4 – V56

LANE 7 – V59

APPENDIX B2

ATtAGcTaGTTGGtg GgTAA gGC cACCAAGgCgaCGAt gTA C Gg CTGAGAGG tGA C GcCACA

		*	1400	*		1420		*	1440	1	*	1460		
12A_10_Pse	:	ACACCGC	CCGTCA <mark>CAC</mark> C	ATGGGAGTG	GGI	TGCACC	AGAAGI	AGCT	AGTCTAAC	CTTCG	GGAGGAC	GGTTNCCC	:	1419
12A_Pseudo	:	ACACCGC	CCGTCA <mark>CAC</mark> C	ATGGGAGTG	GGT	TGCACC	AGAAGI	AGCT	AGTCTAAC	CTTCG	GGAGGAC	GGTTNCCC	:	1412
TC222_Pf	:	ACACCGC	CCGTCA <mark>CAC</mark> C	ATGGGAGTG	GGT	TGCACC	AGAAGI	AGCT	AGTCTAAC	CTTCG	GGAGGAC	GGTTNCCA	:	1429
RRLJSMAR_P	:	ACACCGC	CCGTCA <mark>CAC</mark> C	ATGGGAGTT	IGI	TGCACC	AGAAG	CAGGT	AGC-TAAC	CTTCG	GGAGGGC	GCTGCCAC	:	1420
776_Smal	:												:	-
A90_Dtsu	:	ACACCGC	CCGTCA <mark>CAC</mark> C	GTGGGAGCG	GGT	CTCGCC	GAAG	AGGT	AGCCTAAC	CGCAA	GGAGGGC	GCTACCNC	:	1411
8b-1_Sphin	:												:	-
WDL7_Cte	:	ACACCGC	CCGTCA <mark>CAC</mark> C	GCG <mark>AG</mark> AGTT	ΓGΤŻ	AACACC	GAAGI	CGGT	GGGTAAC	CTTT-	GGACCCG	CCGCTAAG	:	1431
ZH6_Bacill	:	ACACCGC	CCGTCA <mark>CAC</mark> C	ACG <mark>AG</mark> AGTT	Γ – Τż	AACACC	GAAGI	CGGT	GGGTAAC	CTTTT	GGACCCA	CCCGCCTA	:	1432
MOLA_313_S	:	ACACCGC	CCGTCA <mark>CAC</mark> C	CCG <mark>AG</mark> AGTT	$\Gamma - T I$	AACACC	GAAG	CGGGG	GAGACC-C	CTTAG	GGAGCAG	CCGTCAAG	:	1433
TPR1_Micro	:	ACACCGC	CCGTCA <mark>AGT</mark> C	ACGAAAGTT	GGT	AACACC	GAAG	CCGG-0	GCCTAC	CT	GGGGGGGGG	CCTCAAGG	:	1403
6J-5b_Kk	:	ac <mark>c</mark> ccgc	CCGTCA <mark>AGT</mark> C	CCGAAAGTC	GGT	AACCCCC	GAAG	CCGG-0	GCCCAAC	CCTTT	GGCGGAG	CCTCCAAG	:	1411
PAO-12_Mic	:	ACACCGC	CCGTCA <mark>AGT</mark> C	ATGAAAGTC	GGT	AACACC	GAAG	CGG-0	GCCTAAC	CCTTT	GGAGGAG	CCTCAAGG	:	1412
		acaccgc	ccgtca c	: g agt	t	C CC	gaag	g	g ac	C	gg			
			* 1	.480										
12A_10_Pse	:	CGGGTGT	CATGACGGGG	GGGGGGGNN	N :	1446								
12A_Pseudo	:	CGGGTGT	CATGACGGGG	GGGGGGGGNN.	N :	1439								
TC222_Pf	:	CGGGTGT	TCTGAGGGGG	GGGGGGNNN-	- :	1454								
RRLJSMAR_P	:	GGTGCCA	GCGGNNNNNN		- :	1437								
//6_Smal	:				- :	-								
A90_Dtsu	:	GGCGGIC	GAGGGIIIM-		- :	1427								
8D-1_Spnin	:				- :	1 4 4 5								
WDL/_Cte	:	IGICGGC	GGAAAAN		- :	1445								
ZH6_BaC111	:	AGGGGGGC	AAIAIGGGGG	GCCNNN	- :	1455								
MOLA_SIS_S	:	GGUUCAA	AGAIGGIGII		- :	1404								
IPRI_MICIO	:	GGCCCCG	COTOCOTOCO		- :	1420								
DAO_12 Mic	•	CC-TCT		CTTNN		1432 1432								
FAU-12_MIC	·	ICI	CAIAGCICCE	C T T IN IN	·	1472								
		У												

Alignment of the amino acid sequences of 13 isolates obtained after exposure to metal. The alignment was carried out by the multiple alignment of Clustal X (1.81). Genedoc software was used for homology shading. The conserved regions are indicated with Roman numerals. The abbreviations of the isolates are given in the text. Gaps introduced into the alignment are indicated with dashes. Four shading levels were set.

APPENDIX C1

The figures below represent the agarose gel electrophoresis results of purified PCR products of the organisms isolated from the biofilm samples (obtained from the bioballs) collected from the three compartments of the three-week, laboratory-scale bioreactor system, three days after start-up. The code for the organisms names are BI – Bioreactor Initial (after three days).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LANE 1 – Marker (Lambda DNA/HIND III)	LANE 2 – Negative Control	LANE 3 – BI1
LANE 4 – BI2	LANE 5 – BI3	LANE 6 – BI4
LANE 7 – BI5	LANE 8 – BI6	LANE 9 – BI7
LANE 10 – BI8	LANE 11 – BI9	LANE12 – BI10
LANE 13 – BI11	LANE 14 – BI12	LANE 15 – BI13
LANE 16 – BI14	LANE 17 – BI15	LANE 18 – BI16
LANE 19 – BI17	LANE 20 – BI18	

6

5

2

3 4

1

2027 bp 1200 bp

LANE 1 – Marker (Lambda DNA/HIND III)	LANE 2 – Negative Control	LANE 3 – EMPTY
LANE 4 – BI19	LANE 5 – BI20	LANE 6 – BI21
LANE 7 – BI22	LANE 8 – BI23	LANE 9 – BI24
LANE 10 – BI25	LANE 11 – BI26	LANE 12 – BI27
LANE 13 – BI28	LANE 14 – BI29	LANE 15 – BI30
LANE 16 – BI31	LANE 17 – BI32	LANE 18 – BI33
LANE 19 – BI34	LANE 20 – BI35	

1 2 3 4 5 6 7 8 9 10 11 12

LANE 1 – Marker (Lambda DNA/HIND III)	LANE 2 – BI36	LANE 3 – BI37
LANE 4 – BI38	LANE 5 – BI39	LANE 6 – BI40
LANE 7 – BI41	LANE 8 – BI42	LANE 9 – BI43
LANE 10 – BI44	LANE 11 – BI45	LANE 12 – BI46

7 8 9 10 11 12 13 14 15 16 17 18 19 20

* 20 * 40 * EHFS1_S0IH : -NNCCGCGTAGTACCGTAGAG TT GACAACGATGAAGCCAGG - CTGC - TGGGT : T202_Ci1 : -NNCCGCGAGCACCTTAGA TT GACAACGATGAAGCTGGGT CTTGCACCTGGT : Cxerosis : NNNCCGCGTAGACGTTCANA CT GGANNCCCCCANGGCCCGG CTTGC - CAGGTT : 435_Chei :	51 56 40 41 52 55 51 51 51 52 55 41
EHFS1_S01H : -NNCCGCGTAGTACCGTAGAGGTTGGACNAN-ATGAAGCCCAGTTGCTGGGT : T202_Ci1 : -NNCCGCCGAGCACGCTTAGAGTTGGACACGATGAAGCTGGGTGTTCCACCTGGT : Cxerosis : NNNCCGCGCTAGACGTTAGAGTTGGACACGATGAAGCCTGGGTGTTCCACCTGGT : 435_Chei :	51 56 40 41 39 52 559 511 512 551 551 551 552 55 41
T202_Cil: -NNCCGCCGAGCACGCTTAGACTTCGACACGATGAACCATGAAGCTGGTCTTCACCTGGT: Cxerosis: NNNCCGCCCTACACGTTCANACTTCGACACCTGGAACCACCCACGCCCGCGCTTGC-CAGGTT: 435_Chei:	56 56 40 41 52 55 51 51 51 51 51 55 41
Cxerosis : NNNCCGCGCTAGACCTTCANACTCGGANNCCCCCANGGCCCCGCTTGC-CAGGTT : 435_chei :	56 43 40 41 39 51 49 52 55 49 51 51 52 55 41
435_Chei :GTTGGGCGGCAGCACCACTACAATGCAAGGTCGACGCCCGCA : W-70_Can :NNNGGCAGGCACCTACATGCAGCGCCCCGCAA : DS-18_Bl :NNNGGCAAGGCCCTACACCTACATGCAGCGCCCCTCGG- : BBCT20_Sph :NNNGCCAGCGCCACCCCCACGCCTACAGCGCCCTACAGCGCCCACTCGG- : EP37_Pseud :NNNCCGAGCCCAGCTACATCCACTCCAGCGGTAGAGAAACCTTGCTTCTC : CAI-4_Pr :NNNCCGAGCGCAGCTACATCCACTCCAGCGGTAGAGAAACCTTGCTTCTC : PT03_Bacte : -NNNCCGAGCGCAGCTACATCCACTCCAGCGGTAGAGAAACCTTGCTTCTC : 776_Smal :NNNGCGGAGGCGCACCTCCATCCACTCCACGCCACGGAGAGAACTTGCTTCTC : BAC108_Hyd :NNCCCGAGCGCGCTCTCATCTGCTCAACGCTA-CAGGCCGCAAGGTGCTG : BAC108_Hyd : NNNCCGCGAGCGCGCTCTCATCTGCTCCAAGGTA-CAGGCCGCAAGGTGCTG : Sulf-946_H : NNNCCGCGAGCGCGCTCTCATCTGCTCCAAGGTA-CAGGCCGCAAGGTGCTG : BAC306_Hyd : -NNCCCGCGGCGCTCTCATCTGCTCCAAGGTA-CAGGCCGCAAGGTGCTG : Vparadox : -NNCCCGCAGGCGCTCTTCATCTGGTCCAAGGTA-CAGGCCGCAAGGTGCTG : KBAB4_Bw :NCCCGAGCGCCGCTTTCATCTGGTCCACGCCAGGCGCCGGGACATCCTGGCG : WNNCGCGAGCCCGCCTATATCATCCACTCCA-GCGACGGATAAGACTTGCTCTATG : PF-G_Brevi :NNNCCGCAGCCGCCTATATCACTCCA-GCGACGGCTAAGGTACTGGCG : G g g g g g g c 60 * 80 * 100 * EHFS1_S01H : -GGATTANTGCCAAGCGCGGCGTAATCCACGCACGGCAAGCTGCCCTTATG : BC10	43 40 41 39 51 49 52 55 52 55 51 51 51 52 53 55 41
W-70_Can : NNNGGGCAGGCCACCTACCATGCAG-TCGACGCCCCGCAA DS-18_B1 : NNGGCAGGCCCCCCCCCACAGATG-TTGGAGACCGACCCTTCGG BBCT20_Sph : NNCGCAGGCCCCCCCCCCCCCCCCCCCCCC	40 41 39 51 49 52 55 52 55 51 51 51 52 53 55 41
DS-18_B1 :NNNGGCGTAGTCACCGTAGATG-TTGGAGACGACCGACCCTTCGG : BBCT20_Sph :NNNGGCAGCGCCTACCACGCCTATCAGCTTGGAGACAAACCTTCTG : EP37_Pseud :NNNCCGAGCGCAGCTACATCAGTCGAGCGGTAGAGAGAACCTTGCTTCTC : CAI-4_Pr :NNNGCCGAGCGCAGCTACATCACTCACTCGAGCGGTAGAGAGAACCTTGCTTCTC : PT03_Bacte : -NNNCCGCGAGCGCAGCTACATCACTCACTCACGCGGTAGAGAGAACCTTGCTTCTC : R-20805_Ps : -NNNCCCGAGCGCAGCTACATCACTCACTCACGCGGTAGAGAGAACCTTGCTTCTG- : PT05_S_mal :NNNCCGAGCGCGCTCTCATCACTCACTCACGCACAGGAGAGAGCTTGCTT	41 39 51 49 52 55 49 51 51 51 52 53 55 41
BBCT20_Sph :	39 51 49 52 55 49 51 51 51 52 53 55 41
EP37_Pseud :NNNCCGAGCGCAGCTACATCCAGTCGAGCGGTAGAGAGAAGCTTGCTTCTC : CAI-4_P.r :NNNCCGGAGTGGCGCTACATCCACTCGAGCGGTAGAGAGAAGCTTGCTTCTC : PT03_Bacte : -NNNCCCGAGCGCAGCTACATCCACTCCAGCGGTAGAGAGAAGCTTGCTTCTC : R-20805_Ps : -NNNCCCGAGCGCAGCTACATCCACTCCACGCAGCAGCAGCAGGAGAGCTTGCTT	51 49 52 55 49 51 51 52 53 55 41
CAI-4_Pr :NNCCGCGATGGCGCTACCACCACTCGAGCGG-AGAGAGAA-CTTGCTTCTC : PT03_Bacte : -NNNCCCGAGCGCAGCTACATCCACTCGAGCGGTAGAGAGAGCTTGCTTCTC : R-20805_Ps : -NNNCCCGAGCGCAGCTACATCCACTCGAGCGGTAGAGAGAGCTTGCTTCTC : 776_Smal :NNCCCGAGCGCGCTCTCATCGGTCGACGGCACCAGGAGAGCTTGCTT	49 52 55 49 51 51 52 53 55 41
PT03_Bacte : -NNNGCCGAGCGCAGCTACATCCATCCAGCGGTAGAGAGAGCTTGCTTCTC R-20805_Ps : -NNNGGCGAGGAGCTACATCCAGTCGAGCGGTAGAGAGAGCTTGCTTCTC : : -NNNGGCGAGGAGCTACATCCAGTCGACGGCAGCACAGGAGAGCTTGCTCTCTGG : : -NNCCCGAGCGCGCTCTCATCTGCTCAACGGTA-CAGCCCCCAAGGTGCTG : : -NNCCCGGAGCGCGCTCTCATCTGGTCCAAGGTA-CAGCCCCCAAGGTGCTG : : : : NNNCCGCGAGCGCGCTCTCATCTGGTCCAAGGTA-CAGCCCCCAAGGTGCTG : : : <	52 55 49 51 52 53 52 53 55 41
R-20805_Ps : -NNNCCCGAGCGCAGCTACATCCACTCCAGCGGTAGAGAGAGAGTTGCTTCTC : 776_Smal :NNNGGCGAGAGCTACATCCACTCCACGGCAGCACAGGAGAGTTGCTCTCTGG : Esa.33_Hyd : -NNCCCGAGCGCGCTCTCATCTGGTCAACGGTA-CAGGCCGCAAGGTGCTG : BAC108_Hyd : NNNCCGCGAGCGCGCTCTCATCTGGTCCAAGGTA-CAGGCCGCAAGGTGCTG : BAC306_Hyd : -NNCCGCGAGCGCGTCTTCATCTGGTCCAAGGTA-CAGGCCGCAAGGTGCTG : BAC306_Hyd : -NNCCGCGAGCGCGTCTTCATCTGGTCCAAGGTA-CAGGCCGCAAGGTGCTG : BAC306_Hyd : -NNCCGCGAGCGCGTCTTCATCTGGTCCACGGCAGCGGGAGCATCTGGCG : BAC306_Hyd : -NNCCGCGAGCGCGTCTTCATCTGGTCCACGGCAGCGGGAGCATCTGGCG : BAC306_Hyd : -NNCCGCGAGCGCGTCTCAGTGGGTCCACGGCAGCGCGGAGCATCTGGCG : BAC306_Hyd : -NNCCGCGAGCGCGCTTTAATCTACTCGAGGCGAGGGCGGAGCATCTGGCG : BAC306_Hyd : -NNCCGCGAGCGCGCTTTAATCTACTCGAGGCGAGGGCACAGGGTCTG : BAC306_Hyd : -NNCCGCGAGCGCGCTATATCACTCGAGCGCAGGGCACAGGGTGCTG : BAC306_Hyd : -NNCCGCGAGCGCGCTATATCACTCGAGCGCGGCGGGGAGGGCACAATG : BC306_C_CGGCCGCGCGCGCTATATCCACTCCACGCGCGGAGGGGCACAATG :	52 55 49 51 51 52 53 55 41
776_Smal :NNNGGCGAGGAGCTACATCCACTCGACGGCAGCACAGGAGACCTTGCTCTCTGG : Esa.33_Hyd :NNCCCGAGCGCGCTCTCATCTGGTCAACGTA-CAGGCCGCAAGGTGCTG : BAC108_Hyd : NNNCCGCGAGCGCGCTCTCATCTGGTCGAAGGTA-CAGGCCGCAAGGTGCTG : BAC306_Hyd : -NNCCGCGAGGCGCTCTCATCTGGTCGAAGGTA-CAGGCCGCAAGGTGCTG : BAC306_Hyd : -NNCCGCGAGGCGCTCTTCATGTGGTCGAAGGTACAGGCCGCAAGGTGCTG : Vparadox : -NNCCGCGAGGCGCTCTTCAGTGGGTCCACGGCAGGCGCGGGAGGATCCTGGCG : KBAB4_Bw :NCCCGGAGCGCCGCTATATCAGTGGGTCCACGGCAGCGCGGGAGGATCCTGGCG : Megaterium : -NNNGGCGAGCGCGGCTAATCCACTCCA-GCGATGGATTAAGAGCTTGCTCTTATG : PF-G_Brevi :NNNCCGCATGCCATGCCCTATATGCAGGCGAA-GGGCACAATG : g g g g g g g g g 60 * 80 * 100 * EHFS1_S01H : -GGATTANTGGCCAACGGCTGAC-TAACACGTGGCCATACCTCGCCCTTAACCTGGCGA : 1 T202_Ci1 : -GGATTATGGCCAACGGCTGAC-TAACACGTGGCCAATCTGCCCTTGGCA : 1 Cxerosis : -GCGCCANTGCCAACGCCTGAC-TAACACGTGGCTGACCTGCCCGGACTTCGGGA : 1 435_Chei :GGGCACGCCGCAGACGCCTGAC-TAACCACGTGGCTACTCTACGGCCAA : 1	55 49 51 51 52 53 55 41
Esa.33_Hyd :NNCCCGAGCCGCTCTCATGTGCTCAACGGTA-CAGGCCGCAAGGTGCTG : BAC108_Hyd : NNNCCGCGAGCGCGCTCTCATGTGGTCCAAGGTA-CAGGCCGCAAGGTGCTG : Sulf-946_H : NNNCCGCGAGCGCGTCTTCATGTGGTCCAAGGTA-CAGGCCGCAAGGTGCTG : BAC306_Hyd : -NNCCGCGAGGCGCTTTATGTCCAAGGTCCAAGGTA-CAGGCCGCAAGGTGCTG : Vparadox : -NNCCGCGAGGCGCTTTCAGTGGGTCCACGGCAGGCGGGGAGCATCCTGGCG : KBAB4_Bw :NCCCGGAGCGCCGCTATATCCAGTGCA-GCGATGGATTAAGAGCTTGCTCTATG : : megaterium : -NNNGGCGAGCGCGGCTAATCCAGTCCA-GCGATGGATTAAGAGCTTGCTCTATG : : PF-G_Brevi :NNNCCGCATGCCCTATATCCAGTCGA-GCGACGGCGAAGGGCACAATG : g g g g g g g g 60 * 80 * 100 * EHFS1_S01H : -GGATTANTGGCCAACGGCTGAC-TAACACGTGGCTATACCTCGCCCTTAACTCTGGCA : 1 T202_Ci1 : -GGATTANTGGCCAACGGCTGAC-TAACACGTGGCCAATCTGCCCTTGACTCTGGGA : 1 Cxerosis : -GCGCCANTGCCAACGCCTGAC-TAACACGTGGCTGACCTGCCCGGACTTCGGGA : 1 435_Chei :GGGCACGCCAGCGCTGAC-TAACGCGCGCGCAATCTCCCGGCTTACGGCA : 1	49 51 51 52 53 55 41
BAC108_Hyd : NNNCCGCGAGCCGCTCTCATTGGTCGAAGGTA-CAGGCCGCAAGGTGCTG : Sulf-946_H : NNNCCGCGAGCGCGTCTCATTGGTCGAAGGTA-CAGGCCGCAAGGTGCTG : BAC306_Hyd : -NNCCGCGAGACGCGTTTAATGTGTCGAAGGTA-CAGGCCGCAAGGTGCTG : Vparadox : -NNCCCGCAGGCGCTCTTCAGTGGGTCCACGGCAGGCAGGGACGATCCTGGCG : KBAB4_Bw :NCCCGGAGCGCGCGCTATATCAGTCGA-GCGATGGATTAAGAGCTTGCTCTTATG : : megaterium : -NNNGGCGAGCGCGGCTATATCAGTCGA-GCGATGGATTAAGAGCTTGCTCTTATG : : PF-G_Brevi :NNNCGCGATGGCCTATATCAGTCGA-GCGACTGATTAGAAGCTTGCTTCTATG : : g g g g g g g g 60 * 80 * 100 * EHFS1_S01H : -GGATTANTGGCCAACGGCTGAC-TAACACGTGGCTAACCTCGCCCTTAACTCTGGCA : 1 T202_Ci1 : -GGATTACTGCCCAACGGCTGAC-TAACACGTGGCTGACCATCTCGCCCTTGACTCTGGGA : 1 Cxerosis : -GCGCCANTGCCAACGCCTGAC-TAACACGTGGCTGACCTCCCGGCCTTCGGGA : 1 435_Chei :GGGCACGCCGAACGCCTGAC-TAACCCGCGCTGACTCTGCGCCTTACGGCA : 1	51 51 52 53 55 41
Sulf-946_H : NNNCCGCGAGCGCGTCTTCATTGGTCCAAGGTA-CAGGCCGCAAGGTGCTG BAC306_Hyd <td: -nnccgcgagcgcgtttaatctactccaaggtacaggccgcaaggtgctg<="" td=""> Vparadox : -NNCCCCGCAGCGCGCTTTAATCTACTCCAAGGTACAGGCCGCAAGGTGCTGGC KBAB4_Bw :NCCCGAGCGCCGCTATATCACTCCA-GCGATGGATTAAGACCTTGCTCTTATG megaterium : -NNNGGCGAGCGCGGCTAAATCCACTCCA-GCGACTGATTAAGACCTTGCTTCTATG PF-G_Brevi :NNNCCGCCATCGCCCTATAATGCAGGCGAACGGGCAAAGGGCACAATG g g g g g g Cacerosis : -GGATTAATGCCCAACGCCTGAC-TAACACGTGACTAACCTCGCCCTTAACTCTGGCA : 1 Cxerosis : -GGCCCANTGCCAACGCCTGAC-TAACACGTGGCTGACCTTCCCCCGGACTTCGGCA : 1 435_Chei :GGGCACCGCCAGACGCCTGAC-TAACGCGCTGCCAACGCTCCCCGGCCTTACGGCA : 1</td:>	51 51 52 53 55 41
BAC306_Hyd : -NNCCGCGAGAGCGCTTTAATTAATTAATGAGGTAACAGGCCCGAAGGTGG: Vparadox : -NNCCCCGCAGCGCGTTTAATGAGGTCCACGCAGCGCGGAGCATCGGGGG: KBAB4_Bw :NCCCGAGGCGCGCTATATCAATCCACTCA-GCGATGAGTTAAGACTTGCTCTTATG : megaterium : -NNNGGCGAGCGCGGCTAATCCACTCA-GCGACTGATTAGAACTTGCTTCTATG : PF-G_Brevi :NNNCCGCCATCGCCTATATGCAGGCGAACGGGCAAAGGGCACAATG :	51 52 53 55 41
Vparadox : -NNCCCCGCAGCGTCTTCAGTGGTCCACGGCAGCGCGGGAGCATCCTGGCG : KBAB4_Bw :NCCCGAGCGCCGCTATATCAGTCCA-GCGATGAGTTAGAGCTTCCTCTAG : megaterium : -NNNGGCGAGCGCGGCTAAATCCACTCCA-GCGACTGATTAGAACTTGCTTCTAG : PF-G_Brevi :NNNCGCCATGCCTATATGCAGGCGAA GGGCACAATG : g g g g g gc 60 * 80 * 100 * EHFS1_S01H : -GGATTANTGCCCAACGCTGAC-TAACACGTGACTAACCTCCCCTTAACTCTGCA : 1 T202_Ci1 : -GGATTANTGCCCAACGCTGAC-TAACACGTGACCAATCTGCCCTTGACTCTGGCA : 1 Cxerosis : -GCGCCANTGCCAACGCCTGAC-TAACACGTGCCTGACCTCGCCACTCGGCA : 1 435_Chei :GGGCACGGCAGACGCCTGAC-TAACGCGTCGCAACCGCTCCCCGGCTCTACGCAA : 9	52 53 55 41
KBAB4_BW :NCCCGAGCGCGCGCTATATICCACCCGC-GCGATGGATTAGAGCTTGCTCTATG : megaterium : -NNNGGCGAGCGCGGCTAAATCCACTCGA-GCGACTGATTAGAAGCTTGCTTCTATG : PF-G_Brevi :NNNCCGCATCGCCTATAATGCAGGCGAACGGGCAAATG : g g g gc 60 * 80 * 100 * EHFS1_S01H : -GGATTANTGCCCAACGGCTGAC-TAACACGTGACTAACCTGCCCTTAAATCCGGGA : 1 T202_Ci1 : -GGATTACTGCCCAACGGCTGAC-TAACACGTGACCAATCTCGCCCTGACTCTGGGA : 1 Cxerosis : -GCGCCANTGGCCAACGCCTGAC-TAACACGTGCCTGACCTCGCCCCGCACTTCGGGA : 1 435_Chei :GGGACGCCGAGCGCGTGAC-TAACGCGTGGC-TAACGCGGCTGACCTCCCGGACTTCGGGA : 1	53 55 41
<pre>megaterium : -NNNGGCGAGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGG</pre>	41
pr-g_brevi :	41
g g g g g g gc 60 * 80 * 100 * EHFS1_S01H : -GGATTANTGGCCAACGGCTGAC-TAACACGTGACTAACCTGCCCTTAACTCTGGCA : 1 T202_Cil : -GGATTACTGCCCAACGGCTGAC-TAACACGTGACCAATCTGCCCTTGACTCTGGGA : 1 Cxerosis : -GCGCCANTGGCCAACGCCTGAC-TAACACGTGGCTGACCTGCCCGGCACTTCGGGA : 1 435_Chei :GGGCACGCCAGACGCCTGAC-TAACGCGTGGC-AATCTACCCGGCTCTACGGAA : 1 435_Chei :GGGCACGCCAGACGCCTGAC-TAACGCGTGGC-AATCTACCGGGCTCTACGGAA : 1	
60 * 80 * 100 * EHFS1_S01H : -GGATTANTGGCCAACGCCTGAC-TAACACGTGACTAACCTGCCCTTAACTCTGGCA : 1 T202_Ci1 : -GGATTACTGCCCAACGGCTGAC-TAACACGTGACCAATCTGCCCTTGACTCTGGCA : 1 Cxerosis : -GCGCCANTGGCCAACGCCTGAC-TAACACGTGGCTGACCTGCCCGGCCTTCGGGA : 1 435_Chei :GGGCACGCCGGAGACGCCTGAC-TAACGCGTGGC-AATCTACCGGGCTCTACGGAA : 1	
EHFS1_S01H : -GGATTANTGCCCAACGCTGAC-TAACACGTGACTAACCTCCCCTTAACTCTGGCA : 1 T202_Ci1 : -GGATTACTGCCCAACGGCTGAC-TAACACGTGACCAATCTGCCCTTGACTCTGGCA : 1 Cxerosis : -GCGCCANTGCCCAACGCCTGAC-TAACACGTCGCTGACTCCCCCCGCACTTCGGCA : 1 435_Chei :GGGCACGCCGGCAGACGCCTGAC-TAACGCGTCGC-TAACTACCCGGCTCTACGGCA : 1	
T202_Cil : -GGATTAGTGGCCAACGGGTGAG-TAACACGTGACCAATCTGCCCTTGACTCTGGGA : 1 Cxerosis : -GCGCCANTGGCCAACGCCTGAG-TAACACGTGGGTGACCTGCCCCGCACTTCGGGA : 1 435_Chei :GGGCACCGCCAGACGCGGGGGAG-TAACGCGTGGG-AATCTACCCGGCTCTACGGAA : 4	106
Cxerosis : -GCGCCANTGGCCAACGCCTGAG-TAACACGTGGCTGACCTCCCCCGCACTTCGGGA : 1 435_Chei :GGGGACGGCGAGACGGGTGAG-TAACGCGTGGG-AATCTACCCGGCTCTACGGAA : 4	111
435_Chei :GGGGACCGCCAGACGGCTGAG-TAACGCGTGGG-AATCTACCCGGCTCTACGGAA :	111
	96
	93
DS-18 B. 1 :GGTTACTGCCGGACGCCTGAG-TAACACGTGCG-AACGTGCCTTTAGGTTCCGAA :	94
BBCT20_sph :GTCTACTGCCCCACGCGTCCC-IAACCCCTGCC-AATCTGCCCTTGGGTTCCGAA :	92
EP37_Pseud : -TTGACACCGCCGACGCCTCAC-TAATGCCTAGG-AATCTGCCTGGTAGTGGGGGA : 1	L05
CAI-4_Pr : -TTGACACCGGCGGACGGCTGAG-TAATGCCTAGG-AATCTGCCTGGTAGTGGGGGA : 1	L03
PT03_Bacte : -TTGACACCGGCGGACGGGTGAG-TAATGCCTAGG-AATCTGCCTGGTAGTGGGGGA : 1	L06
R-20805_Ps : -TTGAGAGCGGCGGACGGGTGAG-TAATGCCTAGG-AATCTGCCTAGTGGTGGGGGGA : 1	L06
776_Smal : GTGGCCACTGCCGGACGGGTGAG-GAATACATCGCG-AATCTACTCTGTCGTGGGGGA : 1	L10
Esa.33_Hyd :ACCACTGCCGAACGGCTGAG-TAATGCATCGC-AACGTGCCCAGTCGTGGGGGA : 1	L01
BAC108_Hyd :ACCACTGCCAACGGCTGACCTAATGCATCGC-AACGTGCCCAGTCGTGGGGGA : 1	L04
Sulf-946_H :ACGACTGGGGGAACGGGTGAG-TAATGGATCGG-AACGTGGCCAGTCGTGGGGGA : 1	L03
BAC306_Hyd :ACGACTGGGCGAACGGGTGAG-TAATGTATGGG-AACGTGGCCAGTCGTGGGGGGA : 1	103
Vparadox :GCCACTGGCCAACGGCTGACTATACATCGC-AACGTGCCCAATCGTGGGGGCA : 1	103
KBAB4_Bw : -AAGTTAGCGGCGGACGGGTGAG-TAACAGGTGGGGTAACCTACCGATAAGACTGGGA : 1	108
megaterium : -ACGTTACCGGCGGACGCGTGAG-TAACACGTGGCCAACCTGCOTGTAAGACTGGCA : 1	L10
PF-G_Brevi :TCACICICICICCACCCCCCCCCCCCCCCCCCCCCC	0.2
Ag GgCg ACGggTGag taA c T gg aA T Cc t GGgA	55
	رو
FUESI SOLU - TALOCATA ANTICATATA COCATA CACCOTA_ COCATACA - 1	20
T202 C il TA CONTROLA ACCANACACITATA TOCCATACACICCIACUGAIGG : 1.	55
C voresis - TA CONTRACA CALCETATA COCONTRACA COLOGOA GAILE : 1	156
435 c boi · TA COLOCAMA INGENIATI COURT COCATOCA	L56
	L56 L61 L57
	55 L56 L61 L57 L44
W-70_Can : TAACTCAGCGAAACTTGTGCTAATACCGTATGTCCCCTTCGCGGGGAAA : 1	L56 L61 L57 L44 L41
W-70_Can : TAACTCAGCGAAACTTGTGCTAATACCGTATGTCCCCTTCGCGGGGAAA : 1 DS-18_B1 : TAGCTCCTCGAAACGGGTCGTAATGCCCGAATGTCCCCTTCGCGGGGAAA : 1 BBCT20 Sph : TAACAGTTAGAAATGACTGCTAATACCCGATGATGTCGTAAGACCAAA : 1	L56 L61 L57 L44 L41 L42 L42

		120	*	140	*	160	*		
EHFS1_S01H	:	TAAGCCTGG <mark>G</mark> A	AACTGGGT	CTAATACCG <mark>G</mark>	ATAGGAGCGCCT.	A0	CCGCATGG	:	156
T202_Cil	:	TAAGCGTTG <mark>G</mark> A	AACGACGT	CTAATACCG <mark>G</mark>	ATACGACCTCG	G2	AGGCATCT	:	161
Cxerosis	:	TAAGCCTGGGA	AACTGGGT	CTAATACCG <mark>G</mark>	ATAGGACCGCAC		CGTGA	:	157
435_Chei	:	TAACTCAGG <mark>GA</mark>	AACTTGTG	CTAATACCGT	ATACGTCCGAT-	à	AGGAGAAA	:	144
W-70_Can	:	TAACTCAGG <mark>GA</mark>	AACTTGTG	CTAATACCGT	ATGTGCCCTTC-	(GGGGAAA	:	141
DS-18_B1	:	TAGCTCCTGGA	AACGGGTG	G <mark>TAAT</mark> GCCGA	ATGTGCCCTTC-	(GGGGAAA	:	142
BBCT20_Sph	:	TAACAGTTA <mark>G</mark> A	AATGACTG	CTAATACCG <mark>G</mark>	ATGATGTCGTA-		AGACCAAA	:	140
EP37_Pseud	:	TAACGTTCG <mark>GA</mark>	AACGGACG	CTAATACCG <mark>C</mark> A	ATACGTCCTAC-	(GGAGAAA	:	153
CAI-4_Pr	:	TAACGTTCG <mark>GA</mark>	AACGGACG	CTAATACCG <mark>C</mark>	ATACGTCCTAC-	(GGAGAAA	:	151
PT03_Bacte	:	TAACGTTCG <mark>GA</mark>	AA <mark>CGGAC</mark> G	CTAATACCG <mark>C</mark>	ATACGTCCTAC-	(GGAGAAA	:	154
R-20805_Ps	:	TAACGTTCGGA	AACGGACG	CTAATACCG <mark>C</mark>	ATACGTCCTAC-	(GGGAGAAA	:	154
776_Smal	:	TAACGTAGG	AACTTACG	CTAATACCG <mark>C</mark>	ATACGACCTAC-	(GGGTGAAA	:	158
Esa.33_Hyd	:	TAACGCAGCGA	AAGCTGCG	CTAATACCG <mark>C</mark>	ATACGATCTAT-	(GGATGAAA	:	149
BAC108_Hyd	:	TAACGCAGCGA	AAGCTGCG	CTAATACCG <mark>C</mark>	ATACGATCTAT-	(GGATGAAA	:	152
Sulf-946_H	:	TAACGCAGCGA	AAGCTGCG	CTAATACCGC	ATACGATCTAT-	(GGATGAAA	:	151
BAC306_Hyd	:	TAACGCAGCGA	AAGCTGCG	CTAATACCG <mark>C</mark>	ATACGATCTAT-	(GGATGAAA	:	151
Vparadox	:	TAACGCAGCGA	AAGCTGTG	CTAATACCG <mark>C</mark>	ATACGATCTAC-	(GGATGAAA	:	151
KBAB4_Bw	:	TAACTCCGGGA	AACCGGGG	CTAATACCG <mark>G</mark> A	ATAATATTTTGA.	ACTGCATA	GTTCGAAA	:	165
megaterium	:	TAACTTCGGGA	AACCGAAG	CTAATACCG <mark>G</mark>	ATAGGATCTTCT	CCTTCATG	GGAGATGA	:	167
PF-G_Brevi	:	TAGCCCGGGGA	AACCCGGA'	TAATACCGC	ATAAAACAGGGG	CA	CCGCATGG	:	144
		TAac GA	AA g	CTAATaCCG A	ATa g c		g a		

		180		*	200		*	220			
EHFS1_S01H T202_Cil	:	TG-GGTGTTGC CCTGGGGGGTGC	GAAAGATT GAAAGAAT	TATCG T-TTG	GTTTTG GTCAAG	GATGGAC GATGAGC	TCGCGG TCGCGG	CCTATCA CCTATCA	GCTTGTTG GCTTGTTG	: :	212 217
Cxerosis 435_Chei	:	GGGTGTGGTGC G	GAAA <mark>G</mark> TTT ATT	T-TCG TATCG	GTGTGG GAGTTG	GATGGGC GATGAGC	CCGCGG CCGCGT	CCT <mark>ATC</mark> A(TGGATTA(GCT <mark>T</mark> GTTG GCTAGTTG	: :	213 187
W-70_Can DS-18_B1	:	G G	ATT ATT	TATCG TATCG	GCAAAG CCTTTA	GATCGGC GA <mark>GCGGC</mark>	CCGCGT CCGCGT	TGG <mark>ATTA</mark> CTGATTA	GCTAGTTG GCTAGTTG	:	184 185
BBCT20_Sph EP37 Pseud	:	G	ATT	TATCG TTGCG	CCCAAG CTATCA	GATGAGC GATGAGC	CCGCGT.	AGGATTA CGGATTA	GCTAGTTG GCTAGTTG	:	183 210
CAI-4_Pr	:	GCAGGGGGACCI	TCGGGCC	TGCG	CTATCA	GATGAGC	CTAGGT		GCTAGTTG	:	208
R-20805_Ps	:	GCGGGGGGGACCI	TCGGGCC		CCATTA	GATGAGC	CTAGGT		GCTAGTTG	:	211
Esa.33_Hyd	:	GCGGGGGGGACCO	TAAGGCC		CGATIG	GAGCGGC	CGATGT	CAGATTA	GGTAGTTG	:	215
Sulf-946_H	:	GCGGGGGGGACCO	GTAAGGCC	TCGCG TCGCG	CGAIIG CGATTG	GAGCGGC	CGAIGI	CAGATTA CAGATTA	GTAGTIG	:	209
BAC306_Hyd Vparadox	:	GCGGGGGGGGCCC	GTAAGGCC GCAA <mark>G</mark> ACC	TCGCG TTGCG	CGATTG CGAATG	GAGCGGC G <mark>A</mark> GC <mark>GG</mark> C	CGATAT CGATGG	CAGATTA(CAGATTA(GGTAGTTG G <mark>G</mark> TAGTTG	:	208 208
KBAB4_Bw megaterium	: :	TTGAAAGGCGC TTGAAAGATGC	GCTTCGGC GTTTCGGC	TGTCA TATCA	CTTATG CTTACA	GATGGAC GATGGGC	CCGCGT CCGCGG	CGCATTA(TGCATTA(GCTAGTTG GCTAGTTG	: :	222 224
PF-G_Brevi	:	TGATATTTGTI	'AAA <mark>G</mark> ATT	TATTG T cg	GTGATA	GATGGGC gA gC	ATGC <mark>GT</mark> C g	TC <mark>G</mark> ATTA ATtA	GC <mark>TA</mark> GTTG G TaGTTG	:	201
		* 24		*		260	*		280		0.00
T202_Cil	:	GIGAGGIAAIC GIGAGGIAAIC	GCTCACC	AAGGC AAG <mark>G</mark> C	GACGAC GACGAC	GGGTAGC	CGGCCT	GAGAGGG GAGAGGG	IGACOGGC IGACOGGC	:	269
435_Chei	:	GTGGGGTAAT(GTG <mark>GGGTAA</mark> A(GCCTACC GCCTACC	AAGGC AAG <mark>G</mark> C	G <mark>GCGA</mark> C GACGAT	GGGTAGC CCATAGC	TGGTCT	GAGAGG GAGAGGA	I'GGACGGC I'GATCAGC	:	270
W-70_Can DS-18_B1	:	GTGAGGTAAAC GTG <mark>A</mark> GGTAATC	GCTCACC GCTCACC	AAGGC AAG <mark>G</mark> C	GACGAT GA <mark>CGA</mark> T	CCATAGC CA <mark>G</mark> TAGC	TGGTCT TGGTCT	GAGAGG <mark>A"</mark> GAGAGG <mark>A</mark> "	IGATCAGC I <mark>G</mark> ACCAGC	:	241 242
BBCT20_Sph EP37_Pseud	:	GTGAGGTAAAA GTG <mark>A</mark> GGTAAT	GCTCACC GCTCACC	AAGGC AAG <mark>G</mark> C	GACGAT GA <mark>CGA</mark> T	CCTTAGC CCGTA <mark>A</mark> C	TGGTCT TGGTCT	GAGAGG <mark>A"</mark> GAGAGG <mark>A</mark> "	IGATCAGC IGATCAGT	: :	240 267
CAI-4_Pr PT03_Bacte	:	GTG <mark>A</mark> GGTAATC GTG <mark>A</mark> GGTAATC	GCTCACC GCTCACC	AAG <mark>G</mark> C AAG <mark>G</mark> C	GA <mark>CGA</mark> T GA <mark>CGA</mark> T	CCG <mark>TA</mark> AC CCG <mark>TA</mark> AC	TGGTCT TGGT <mark>C</mark> T	GAGAGG <mark>A</mark> GAGAGG <mark>A</mark>	IGAT <mark>C</mark> AGT IGAT <mark>C</mark> AGT	:	265 268
R-20805_Ps 776_Smal	:	GTGAGGTAATC G <mark>CG</mark> GGGTAAA	GCTCACC GC <mark>C</mark> CACC	AAG <mark>G</mark> C AAG <mark>G</mark> C	GACGAT GACGAT	CCG <mark>TA</mark> AC CCGTAGC	TGGTCT TGGTCT	GAGAGG <mark>A</mark> GAGAGG <mark>A</mark>	IGATCAGT IGATCAGC	:	268 272
Esa.33_Hyd BAC108_Hyd	:	GTG <mark>GGGTAA</mark> AC GTGGGGTAA <mark>A</mark> C	GCTCACC GCTCACC	AAGCC AAGCC	A <mark>ACGA</mark> T GACGAT	CTGTAGC CTGTAGC	TGGTCT TGGTCT	GAGAGG <mark>A</mark> G GAGAGG <mark>A</mark> G	C <mark>GACC</mark> AGC CGACCAGC	:	263 266
Sulf-946_H BAC306 Hyd	:	GTG <mark>GGGTAA</mark> AC GTGGGGTAAA	GCTCACC	AAGCC AAGCC	AACGAT AACGAT	CTG <mark>TA</mark> GC CTGTAGC	TGGTCT TGGTCT	GAGAGG <mark>A</mark> G GAGAGGA	CGACCAGC CGACCAGC	:	265 265
Vparadox KBAB4 B. w	:	GTG <mark>AGGTAA</mark> AC GTGAGGTAAC	GCTCACC	AAG <mark>C</mark> C	TTCGAT GACGAT	CTGTAGC GCGTAGC	TGGTCT	GAGAGG <mark>A</mark> G	C <mark>GACC</mark> AGC	:	265 279
megaterium PF-G Brevi	:	GTGAGGTAAC	GCTCACC	AAGGC	AACGAT GACGAT	GCATAGC CGATAGC	CGACCT	GAGAGG	IGATOGGC	:	281 258
		Gtg GgTAA o	GCtcACC	AAG C	aCGAt	TAge	Gg CT	GAGAGG	Ga C gc		
EHFS1_S01H	:	* CACACTGGGAC	300 CTGAGAC <mark>A</mark>	CGGCC	* CAG <mark>ACT</mark>	320 CCTACGG	GAGGCA	* GCAGT <mark>G</mark> G	340 GGAAT <mark>A</mark> TT	:	326
T202_Cil Cxerosis	:	CACACT <mark>GG</mark> GAC CACATTGG <mark>G</mark> AC	CTGAGACA CTGAGACA	.cgg <mark>c</mark> c .cgg <mark>c</mark> c	CAGACT CAGACT	CCTACGG CCTACGG	GAGGCA	GCAGTGG GCAGTGG	GGAAT <mark>A</mark> TT GGAAT <mark>A</mark> TT	:	331 327
435_Chei W-70_Can	:	CACACTGG <mark>G</mark> AC CACACTGG <mark>G</mark> AC	CTGAGACA CTGAGACA	.CGG <mark>C</mark> C	CAGACT CAGACT	CCTACGG CCTACGG	GAGGCA	GCAGTGG GCAGTGG	GGAAT <mark>A</mark> TT GGAAT <mark>A</mark> TT	:	301 298
DS-18_B1 BBCT20 Sph	:	CACATTGG <mark>G</mark> AC CACACTGG G AC	TGAGACA	.cgg <mark>c</mark> c .cggcc	CA <mark>A</mark> ACT CAGACT	CCTACGG CCTACGG	GAGGCA	GCAGTGG GCAGTGG	GGAAT <mark>C</mark> TT GGAATATT	:	299 297
EP37_Pseud	:				CAGACT	CCTACGG	GAGGCA	GCAGTGG	GGAAT <mark>A</mark> TT	:	324
PT03_Bacte	:		TGAGACA		CAGACT	CCTACGG	GAGGCA	GCAGTGG	GGAATATT	:	325
776_Smal	:	CACACTGGAAC	CTGAGACA		CAGACT	CCTACGG	GAGGCA	GCAGTGG	GGAATATT	:	329
BAC108_Hyd	:		TGAGACA		CAGACI	CCTACGG	GAGGCA	GCAGTGG	GGAATTTT	:	323
BAC306_Hyd	:	CACACIGGGAC	CTGAGACA		CAGACT CAGACT	CCTACGG	GAGGCA	GCAGIGG	GGAATTTT	:	322
vparadox KBAB4_Bw	:	CACACTGGGAC CACACTGGGAC	TGAGACA	leggece leggece	CAGACT CAGACT	CCTACGG	GAGGCA	GCAGTGG(GCAGT <mark>A</mark> G(GAATITT GGAATCTT	:	322
megaterium PF-G_Brevi	:	CACACTGGGAC CACACGGGCAC	CTGAGACA CTGAGA <mark>T</mark> A	.CGGCC .CGG <mark>G</mark> C	CAGACT C <mark>C</mark> GACT	CCTÀCGG CCTÀCGG	GAGGCA	GCAGTAG(GCAGT <mark>A</mark> G(GGAATCTT GGAAT <mark>A</mark> TT	: :	338 315
		CACActGG AC	JIGAGAcA	.CGG C	CaqACT	CCTACGG	GAGGCA	GCAGTqG	JGAAT TT		

	*	360	*	380	*	40	
EHFS1 S01H :	GCACAATGGG	GAAAGCCTGAT	GCAGCGACGC	CGCGTGAGGGA	TGACGGCCTTC-	GG :	382
T202 C. il :	GCACAATGGG	GAAAGCCTGAT	GCAGCAACGC	CGCGTGAGGGA	TGACGGCCTTC-	-GG :	387
C. xerosis :	GCACAATGGG	GGAAGCCTGAT	GCAGCGACGC	CGCGTGGGGGA	TGACGGCCTTC-	GG :	383
435 C. hei :	GGACAATGGG	GCAAGCCTGAT	CCAGCCATGC	CGCGTG <mark>AGTGA</mark>	TGAAGGCCCTA-	GG :	357
W-70 C. an :	GGACAATGGG	GCAAGCCTGAT	CCAGCCATGC	CGCGTGAGTGA	TGAAGGCCCTA-	GG :	354
DS-18 B. 1 :	GCGCAATGGG	GAAAGCCTGAC	GCAGCCATGC	CGCGTG <mark>GAT</mark> GA	TGAAGGTCTTA-	GG :	355
BBCT20 Sph :	GGACAATGGG	GAAAGCCTGAT	CCAGCAATGC	CGCGTGAGTGA	TGAAGGCCTTA-	GG :	353
EP37 Pseud :	GGACAATGGG	G <mark>A</mark> AAGCCTGAT	CCAGCCATGC	CGCGTG <mark>TGT</mark> GA	AGAAGGTCTTC-	GG :	380
CAI-4 P. r :	GGACAATGGG	G <mark>A</mark> AAGCCTGAT	CCAGCCATGC	CGCGTGTGTGA	AGAAGGTCTTC-	GG :	378
PT03 Bacte :	GGACAATGGG	G <mark>A</mark> AAGCCTGAT	CCAGCCATGC	CGCGTG <mark>TGT</mark> GA	AGAAGGTCTTC-	GG :	381
R-20805 Ps :	GGACAATGGG	G <mark>A</mark> AAGCCTGAT	CCAGCCATGC	CGCGTG <mark>TGT</mark> GA	AGAAGGTCTTC-	GG :	381
776_Smal :	GGACAATGGG	C <mark>C</mark> AAGCCTGAT	CCAGCCATAC	CGCGTG <mark>GGT</mark> GA	AGAAGG <mark>C</mark> CTTC-	GG :	385
Esa.33_Hyd :	GGACAATGGG	CGCAAGCCTGAT	CCAGCAATGC	CGCGTG <mark>CAG</mark> GA	AGAAGGCCTTC-	GG :	376
BAC108_Hyd :	GGACAATGGG	C <mark>C</mark> AAGCCTGAT	CCAGCAATGC	CGCGTG <mark>CAG</mark> GA	AGAAGGCCTTC-	GG :	379
Sulf-946_H :	GGACAATGGG	C <mark>C</mark> AAGCCTGAT	CCAGCAATGC	CGCGTG <mark>CAG</mark> GA	A <mark>GAAGG</mark> CCTTC-	GG :	378
BAC306_Hyd :	GGACAATGGG	C <mark>C</mark> AAGCCTGAT	CCAGCAATGC	CGCGTG <mark>CAG</mark> GA	AGAAGGCCTTC-	GG :	378
Vparadox :	GGACAATGGG	C <mark>C</mark> AAGCCTGAT	CCAGCCATGC	CGCGTG <mark>CAG</mark> GA	TGAAGGCCTTC-	GG :	378
KBAB4_Bw :	CCGCAATGGA	GAAAGTCTGAC	GGAGCAACGC	CGCGTG <mark>AGT</mark> GA	TGAAGGCTTTC-	GG :	392
megaterium :	CCGCAATGGA	GAAAGTCTGAC	GGAGCAACGC	CGCGTG <mark>AGT</mark> GA	TGAAGGCTTTC-	GG :	394
PF-G_Brevi :	GGGCAATGGA	GCAAGTCTGAC	CCAGCCATGC	CGCGTG <mark>CCG</mark> GA	TGAAGGCCCTCA	AGG :	372
	g aCAATGGgo	G AAGcCTGAt	cAGC A gC	CGCGTG GA	GAaGG ctTc	GG	
	0	420	*	440	*		
EHFS1_S01H :	GTTGTAAACC	T <mark>CTTT</mark> CAGTAGG	G <mark>A</mark> AGAA		GCGAAA	AGT :	418
T202_Cil :	GTTGTAAACC?	CTTTTAGTAGG	G <mark>A</mark> AGAA		GCGAAA	AGT :	423
Cxerosis :	GTTGTAAACT(CTITCACCATC	G <mark>ACGA</mark> A		GGTTTI	IC <mark>I :</mark>	419
435_Chei :	G TIGTAAA GC	TCTTTCACCGGT	G <mark>AAGA</mark>		T <i>I</i>	AAT :	388
W-70_Can :	GTIGTAAAGC	TCTTTCACCGGT	G <mark>AAGA</mark>		T <i>I</i>	AAT :	385
DS-18_Bl :	ATTGTAAAAT(CTITCACCGGT	G <mark>A</mark> AGA		TA	AAT :	386
BBCT20_Sph :	GTTGTAAAGC	[CTTTTACCCGG	G <mark>ATGA</mark>		TA	AAT :	384
EP37_Pseud :	ATTGTAAAGC2	A <mark>CTTT</mark> AAGTTGG	G <mark>A</mark> GGAA-GGG	ITGTAGATTAA	TACTCTGCAATI	ITT :	436
CAI-4_Pr :	ATIGTAAAGCA	ACTTTAAGTTGG	G <mark>A</mark> GGAA-GGG'	ITGTAGATTAA	TACTCTGCAATI	FTT :	434
PT03_Bacte :	ATIGTAAAGCA	ACTTTAAGTTGG	GAGGAA-GGG	CAGTTACCTAA	TACGTGATTGTI	FTT :	437
R-20805_Ps :	ATTGTAAAGC	ACTTTAAGTTGG	GAGGAA-GGG	TAGTAACTTAA	TACGTTGCTACI	ITT :	437
776_Smal :	GTTGTAAAGC	CTTTTGTTGGG	AAAGAA-ATC	CAGCCGGCTAA	TACCTGGTTGGG	GAT :	441
Esa.33_Hyd :	GTTGTAAACT(GCTTTTGTACGG	AACGAA-AAG	GCTCTGGTTAA	TACCTGGGGCAC	CAI :	432
BAC108_Hyd :	GTTGTAAACT	GCTTTTGTACGG	AACGAA-ACG	GTCCTGGTTAA	TACCTGGGGCTA	AAT :	435
Sulf-946_H :	GTIGTAAACT(GCTTTTGTACGG	AACGAA-AAG	GCTCTGGTTAA	TACCTGGGGCAI	'AI :	434
BAC306_Hyd :	GTIGTAAACT(GCTTTTGTACGG	AACGAA-ACG	GTCCTGGTTAA	TACCTGGGGCTA	AAI :	434
Vparadox :	GTIGTAAACT	GCTITTGTACGG	AACGAA-ACG	GCCTTTTCTAA	TAAAGAGGGCTA	AAI :	434
KBAB4_Bw :	GTCGTAAAAC	TCTGTTGTTAGG	GAAGAACAAG	IGCTAGTTGAA	TAAGCTGGCACC	CTT :	449
megaterium :	GTCGTAAAAC:	ICTGTTGTTAGG	GAAGAACAAG	TACAAGAGTAA	CT-GCTTGTACC	CTT :	450
PF-G_Brevi :	GTIGTAAACG	GEN TATTCEG	GAAGAA	GAGCAGGG	ATGCGTCCTTGI	rg i :	422
	ITGTAAA	CITI gg	A GAa			Т	
	460	* л	80	* 50	0 *		
FHFS1 S014 .			CCCCCTAACT		GCCGCGGTAATZ		475
T202 C il ·	GACGGTACCT		CCGCCTAACT	ACGTGCCACCA	GCCGCGGTAATA		480
C. xerosis ·	GACGGTAGAT	GAGAAGAAGCA	CCGGCTAACT	ACGTGCCAGCA	GCCGCGGTAATA		476
·	Gran Gran		00000111101	100100010011	000000011111		1,0

		460	*	4	80	*	500	*		
EHFS1_S01H	:	GACGGTACCTG	CAGAAC	AAGCA	CCGGCTAAC	ΓAC	GTGCCAGCAGCCGCG	GTAATACG	:	475
T202_Cil	:	GACGGTACCTG	CAGAAA	AAGCA	CCGGCTAAC	ΓAC	GTGCCAGCAGCCGCG	GTAATACG	:	480
Cxerosis	:	GACGGTAGATG	GAG <mark>A</mark> AC	GAAGCA	CCGGCTAAC	[AC	GTGCCAGCAGCCGCG	GTAATACG	:	476
435_Chei	:	GACGGTAACCG	GAG <mark>A</mark> AC	GAAGCC	CCGGCTAAC	ГТC	GTGCCAGCAGCCGCG	GTAATACG	:	445
W-70_Can	:	GACGGTAACCG	GAG <mark>A</mark> AC	GAAGCC	CCGGCTAAC	ГТC	GTGCCAGCAGCCGCG	GTAATACG	:	442
DS-18_B1	:	GACTGTAGCCG	GAG <mark>A</mark> AC	AAGCC	CCGGCTAAC	ГТC	GTGCCAGCAGCCGCGC	GTAATACG	:	443
BBCT20_Sph	:	GACAGTACCGG	G <mark>aga</mark> at	AAGCT	CCGGCTAAC	ΓTC	GTGCCAGCAGCCGCGC	GTAATACG	:	441
EP37_Pseud	:	GACGTTACCGA	C <mark>aga</mark> at	AAGCA	CCGGCTAAC	ГCТ	GTGCCAGCAGCCGCGC	gtaatac <mark>a</mark>	:	493
CAI-4_Pr	:	GACGTTACCGA	C <mark>aga</mark> at	AAGCA	CCGGCTAAC	ГCТ	GTGCCAGCAGCCGCGC	gtaatac <mark>a</mark>	:	491
PT03_Bacte	:	GACGTTACCGA	C <mark>aga</mark> at	AAGCA	CCGGCTAAC	ГCТ	GTGCCAGCAGCCGCG	GTAATACA	:	494
R-20805_Ps	:	GACGTTACCGA	C <mark>aga</mark> at	AAGCA	CCGGCTAAC	ГТC	GTGCCAGCAGCCGCGC	GTAATACG	:	494
776_Smal	:	GACGGTACCCA	AAG <mark>A</mark> AT	AAGCA	CCGGCTAAC	ГТC	GTGCCAGCAGCCGCG	GTAATACG	:	498
Esa.33_Hyd	:	GACGGTACCGI	'AAG <mark>A</mark> AI	AAGCA	CCGGCTAAC	I AC	GTGCCAGCAGCCGCG	GTAATACG	:	489
BAC108_Hyd	:	GACGGTACCGI	'AAG <mark>a</mark> at	AAGCA	CCGGCTAAC	[AC	GTGCCAGCAGCCGCG	GTAATACG	:	492
Sulf-946_H	:	GACGGTACCGI	'AAG <mark>A</mark> AI	AAGCA	CCGGCTAAC	I AC	GTGCCAGCAGCCGCG	GTAATACG	:	491
BAC306_Hyd	:	GACGGTACCGI	'AAG <mark>a</mark> at	AAGCA	CCGGCTAAC	[AC	GTGCCAGCAGCCGCG	GTAATACG	:	491
Vparadox	:	GACGGTACCGI	'AAG <mark>a</mark> at	AAGCA	CCGGCTAAC	[AC	GTGCCAGCAGCCGCG	GTAATACG	:	491
KBAB4_Bw	:	GACGGTACCTA	.ACC <mark>A</mark> GA	AAGCC	ACGGCTAAC	[AC	GTGCCAGCAGCCGCG	GTAATACG	:	506
megaterium	:	GACGGTACCTA	.acc <mark>a</mark> ga	AAGCC	ACGGCTAAC	[AC	GTGCCAGCAGCCGCG	GTAATACG	:	507
PF-G_Brevi	:	GACGGTACCGA	ATG <mark>A</mark> AT	AAGCA	CCGGCTAAC	ГCС	GTGCCAGCAGCCGCG	GTAATACG	:	479
		GACggTAcc	agAa	AAGC	CCGGCTAAC	Гc	GTGCCAGCAGCCGCG	JTAATACg		

	520	*	540	*	560	*	
EHFS1 S01H :	TAGGGTGCGAGCG	TTATCCGGA/	ATTATTGGGC	GTAAAG <mark>AGC</mark> I	CGTAGGCGG	TTTGTC	: 532
T202 C. il :	TAGGGTGCAAGCG	TTGTCCGGA	ATTATTGGGC	GTAAAG <mark>AG</mark> CT	CGTAGGCGG	TTTGTC	: 537
C. xerosis :	TAGGGTGCGAGCG	TTGTCCGGA	ATTACTGGGC	GTAAAG <mark>AG</mark> CT	CGTAGGTGG	TTTGTC	: 533
435 C. hei :	AAGGGGGCTAGCG	TTGTTCGGA	ATTACTGGGC	GTAAAGCGCA	ACGTAGGCGG	ATTGTT	: 502
W-70 C. an :	AAGGGGGCTAGCC	TTGTTCGGA	TTACTGGGC	GTAAAGCGCZ		ACTTTT	: 499
DS-18 B. 1 :	AAGGGGGCTAGCC	TTGCTCGGA	ATTACTGGGC	GTAAAGGGAC	CGTAGGCGG	ACATTT	: 500
BBCT20 Sph ·	AGGGGAGCTAGCG	TTATTCGGA		STAAAGCGCZ	ACGTAGGCGG	CTTTGT	· 498
EP37 Pseud ·	GAGGETGCAAGCC	TTAATCGGA			CGTAGGTGG	TTTGTT	• 550
CAT-4 P r	GAGGGTGGAAGCG				CGTAGGTGG	TTTGTT	• 548
PT03 Bacte ·	GAGGETGCAAGCO	TTAATCGGA			CGTAGGTGG	TTTGTT	• 551
R-20805 Ps ·	AAGGGTGCAAGCG	TTAATCGGA		STAAAGCGCC	CGTAGGTGG	TTCAGT	• 551
776 S mal .	AAGGGTGCAAGCG	TTACTCCCA			CGTAGGTGG	TCGTTT	• 555
Fea 33 Hvd .	TAGGETGCAAGCO					TTTTCT	• 546
BAC108 Hvd ·	TAGGGTGCAAGCG	TTAATCGGA		STAAAGCGTC		TTTTGT	• 549
Sulf_0/6 H ·	TACCTCCAACCC	TTAATCCCA				TTTTCT	• 5/8
BAC306 Hyd .	TAGGGIGCAAGCG	TTATCGGA				TTTTCT	· 5/8
V paradox :	TAGGGIGCAAGCG	TTATCGGA				TAATCT	· 5/8
Vparadox .	TAGGGIGCAAGCG	TTATCCCCA	ATTACIGGGC			TTTCTT	. 563
mogatorium .	TAGGIGGCARGCG	TTATCCCCA	ATTATIGGGC				. 561
DE C Provi .		TTCTCCCCA	TTATIGGGC				. 526
FF-G_DIEVI .	CAGGEIGCGAGCC	TT CCCA	TTAIIGGGI	TAAAGGGIQ			. 550
	aggy GC Aged	II CGGA	ATTA IGGGC	JIAAAG G	CG AGG GG	LL L	
	580	*	600	*	620		
EHFS1 S01H :	GCGTCTGTCGTGA	AAGTCCGGG	GCTTAACCCC	GGATCIG <mark>C</mark> GO	GTGGGTACG	gca-ga	: 588
T202 C. il :	GCGTCTGCTGTGA	AATCTGGGG	GCTCAACCCC	CAGCCTGCAC	GTGGGTACGG	GCA-GA	: 593
C. xerosis :	GCGTCGTCTGTGA	AATTCC <mark>G</mark> GG	GCTTAACTCC	GGGCGTGCAC	GCGATACGG	GCATAA	: 590
435 C. hei :	AAGTTAGGGGTGA	AATCCCAGG	GCTCAACCCT	GGAACTG <mark>C</mark> CI	TTAATACIG	GCA-AT	: 558
W-70 C. an :	AAGTCAGGGGGTGA	AATCCCGGGG	GCTCAACCCC	ggaactg <mark>c</mark> ci	TTGAT <mark>AC</mark> TG	GAA-GT	: 555
DS-18 B. 1 :	AAGTCAGGGGTGA	AATCCCGGA	GCTCAACTTC	ggaactg <mark>c</mark> t	TTGAT <mark>AC</mark> TG	GAT-GT	: 556
BBCT20_Sph :	AAGTTAGAGGTGA	AAGCCCGGGG	GCTCAACTCC	GGAATTG <mark>C</mark> CT	TTAAG <mark>AC</mark> TG	CAT-CG	: 554
EP37 Pseud :	AAGTTGGATGTGA	AATCCCCGGG	GCTCAACCTG	ggaactg <mark>c</mark> at	ГТСААА <mark>АС</mark> ТС	ACT-GA	: 606
CAI-4_Pr :	AA <mark>G</mark> TTGG <mark>ATGTGA</mark>	AATCCCCGGG	GCTCAACCTG	gga <mark>ac</mark> tg <mark>c</mark> at	TTCAAA <mark>ACTG</mark>	ACT-GA	: 604
PT03_Bacte :	AA <mark>G</mark> TTGGATGTGA	AA <mark>TCCC</mark> GG	GCTCAACCTG	GGAACTG <mark>C</mark> AI	ГТСААА <mark>АС</mark> Т <mark></mark>	AAC-GA	: 607
R-20805_Ps :	AA <mark>G</mark> TTGGAA <mark>GTGA</mark>	AA <mark>TCCC</mark> GG	GCTCAACCTG	GGA <mark>AC</mark> TG <mark>C</mark> TI	ГТСААА <mark>АС</mark> Т <mark>С</mark>	CTG-AG	: 607
776_Smal :	AA <mark>G</mark> TCCGTT <mark>GTGA</mark>	AA <mark>G</mark> CCC <mark>T</mark> GG	GCTCAACCTG	gga <mark>ac</mark> tg <mark>c</mark> ac	GTGGAT <mark>AC</mark> TG	ggc-ga	: 611
Esa.33_Hyd :	AA <mark>G</mark> ACAGGC <mark>GTGA</mark>	AA <mark>T</mark> CCC <mark>C</mark> GG	GCT <mark>TAAC</mark> CTG	GGA <mark>AT</mark> TG <mark>C</mark> GI	ITTGTG <mark>AC</mark> TG	CAA-GG	: 602
BAC108_Hyd :	AA <mark>G</mark> ACAGGC <mark>GTGA</mark>	AA <mark>TCCC</mark> GG	GCTTAACCTG	gga <mark>at</mark> tg <mark>c</mark> gc	CTTGTG <mark>AC</mark> TG	CAA-GG	: 605
Sulf-946_H :	AA <mark>G</mark> ACAGGC <mark>GTGA</mark>	AA <mark>TCCC</mark> GG	GCTCAACCTG	GGA <mark>AT</mark> TG <mark>C</mark> GC	CTTGTG <mark>AC</mark> TG	CAA-GG	: 604
BAC306_Hyd :	AA <mark>G</mark> ACAGGC <mark>GTGA</mark>	AA <mark>T</mark> CCC <mark>C</mark> GG	GCTTAACCTG	GGA <mark>ATG</mark> G <mark>C</mark> GC	CTTGTG <mark>AC</mark> TG	CAA-AG	: 604
Vparadox :	AA <mark>G</mark> ACAGTT <mark>GTGA</mark>	AA <mark>T</mark> CCC <mark>C</mark> GG	GCTCAACCTG	GGAACTG <mark>C</mark> AT	ICTGTG <mark>AC</mark> TG	CAT-TG	: 604
KBAB4_Bw :	AA <mark>G</mark> TCTGAT <mark>GTGA</mark>	AA <mark>G</mark> CCC <mark>AC</mark> G	GCTCAACCGT	GGA <mark>GGGT<mark>C</mark>AT</mark>	[TGGAA <mark>AC</mark> TG	gga-ga	: 619
megaterium :	AA <mark>G</mark> TCTG <mark>ATGTGA</mark>	AA <mark>G</mark> CCC <mark>AC</mark> G	GCTCAACCGT	gga <mark>gggt<mark>c</mark>at</mark>	ГТ <mark>GGAA</mark> ACТ <mark>G</mark>	GGG-AA	: 620
PF-G_Brevi :	AA <mark>G</mark> TCAGTG <mark>GTGA</mark>	AATACGGTT(GCTC <mark>AAC</mark> AAT	CGA <mark>GG</mark> TG <mark>C</mark> CA	ATTGAT <mark>AC</mark> G	CAA–AG	: 592
	aaG g GTGA	AA ccc gg(GCT AACc	gga tgC	t ACtG		
DUDC1 C01U .	* 640		66 6677 TTOOT		* 6	80	
ERFSI_SUIH :		GGGGAGA-C		GIGIGIA-GCC	GIGGAA-IG	CCCAGA	: 642
1202_011 :		GGGGAGA-I.		GGIGIA-GCC	GIGGAA-IG		: 647
Lxerosis :		GGGGGGAGA-C.	IGGAAIICCI IGCAATTCCCI	GGIGIA-GCC	GIGAAAAIG	CGCAGA	: 645 . 612
435_Cner :		GAGGIGA-G.	IGGAAIICCG.	AGIGIA-GAC	GIGAAA-II CTCAAA TT	CGIAGA	. 600
W=/0_Call :	CIIGAGIAIGGIA	GAGGIGA-G.		AGIGIA-GAC	GIGAAA-II CTCAAA TT	CGIAGA	· 609
DS-IO_BI :	CTIGAGIGIGAGA	GAGGIAI-G.	IGGAACICCG	AGIGIA-GAC	GIGAAA-II CTCAAA TT	CGIAGA	. 600
ED27 Decyd .		GAGGIGA-G.	IGGAAIICCGI	AGIGIA-GAC	GIGAAA-II CTCAAA TC	CGIAGA	. 660
CAT 4 D m		GAGGGIG-G.	IGGAAIIICC IGCAATTTCC'	IGGGIA-GCC	GIGAAA-IG	CGIAGA	: 000 . CEO
DTO2 Docto		GAGGGIG-G.	IGGAAIIICC IGCAATTTCC'	IGIGIA-GCC	GIGAAA-IG	CGIAGA	: 000 . 661
PIUS_BACLE :	ATAGAGTATGGAA	GAGGGIG-G.	IGGAAIIICC CCAATTTCC'	IGIGIA-GCC	GIGAAA-IG	CGIAGA	. 661
776 g mal			CCAATTCCT	CTCTA CO	GIGAAA-1G	CGIAGA	. 001 . 665
770_3Mai .		GAGGGGIA-GC	ICCAATTCCI	GGIGIA-GCP	GIGAAA-IG	CGIAGA	. 00J
влс109 чтд .		GACCCCC A		CCTCTA CC7	CTCAAA-1G	CGIAGA	. 000
Sulf_0/6 U ·	CTCCACTCCCCCA	CACCCCC_A		CCTCTA-CC7	GTGAAA-TC	CCTACA	· 650
BAC306 Hvd ·	CTGGAGTGCGGCA	GAGGGGG-A			GTGAAA-CC	CGTAGA	. 050 . 659
V. paradox ·	CTGGAGTACCCCA	GAGGGGGGA			GTGAAA-TG	CGTAAA	• 660
KBAB4 B W ·	CTTGAGTGCACAA	GAGGAAA-C		TGTGTA-GCC	GTGAAA-TC	CGTAGA	: 673
megaterium ·	CTTGAGTGCAGAA	GAGAAAA-CO	GGAATTCCA	CGTGTA-CCC	GTGAAA-TG	CGTAGA	: 674
PF-G Brevi :	CTTGAAATAATTC	GA <mark>G</mark> GCTG-CO	GGAATGGAT	GGTGTA-GCC	GTGAAA-TG	CATAGA	: 646
					000 000		

ct GAgt g agaGg

GTGAAA GTGAAA tGgAAtt c gtGTA Gc GTGaAA tgCgtAgA

		*	700		*	720	C	*	740		
EHFS1_S01H	:	T-ATCAGGA	GG <mark>AACA</mark> C	GATGC	CGAAGG	CAGGTCT	CTGG <mark>G</mark> C	TGTAAC	TGACGCTGAC	:	698
T202 C. il	:	T-ATCAGGA	ggaacac	CGATGG	GAAGG	AGATCT	CTGG <mark>G</mark> C	CGTAAC	TGACGCTGAG	:	703
C. xerosis	•	T-ATCAGGA	GGAACAC	GGTGG	GAAGG	GGGTCT	TGGGC	AGTAAC	GGACGCTGAG	•	701
435 C hei	:		GGAACAC			GGCTCA		CCCTAC			668
W 70 C ap	:		CCAACAC			ACCCTCA			TCACCTCAC	:	665
N=/0_Call	:	TATICGAA	GGAACAC			RGGCICA		CALLAC	TCACGCIGAC	:	005
DS-18_B1	:	T-ATICGGA	AGAACAC		GAAGG	GACATA		CATTAC	TGACGCIGAG	:	666
BBC120_Spn	:	T-ATTCGGA	AGAACAC	CAGIGGC	GAAGG	GGCTCA	J T GG <mark>A</mark> C	TGGTAI	TGACGCTGAG	:	664
EP37_Pseud	:	T- <mark>AT</mark> AGGAA	g <mark>a</mark> aacac	C <mark>AG</mark> TGG	CGAAGG	GACCAC	C T GG <mark>A</mark> C	C TAAT AC	TAACACTGAC	:	716
CAI-4_Pr	:	T- <mark>AT</mark> AGGAA	gg <mark>aaca</mark> c	C <mark>AG</mark> TGG	CGAAGG	GACCAC	CTGG <mark>A</mark> C	CTAAT <mark>AC</mark>	:TGAC <mark>ACTG</mark> AG	:	714
PT03_Bacte	:	T- <mark>AT</mark> AGGAA	GG <mark>AACA</mark> C	C <mark>AG</mark> TGG	CGAAGG	GACCAC	C <mark>T</mark> GAAC	TGAT <mark>AC</mark>	TGACACTGAC	:	717
R-20805_Ps	:	T-ATAGGAA	GGAACAC	C <mark>AG</mark> TGG	GAAGG	GACCAC	CTGGAC	TGATAC	TGACACTGAC	:	717
776 S. mal	:	G-ATCAGGA	GGAACAT	CCATGG	GAAGG	AGCTAC	CTGGAC	CAACAC	TGACACTGAC	:	721
Esa.33 Hvd	:	T-ATGCGGA	GGAACAC	GATGG	GAAGG	CAATCCC	TGG <mark>G</mark> C	CTGCAC	TGACGCTCAT		712
BAC108 Hvd		T-ATGCCCA	GGAACAC	GATGG	GAAGG	AATCCC	TGGGC	CTGCAC	TGACCCTCAT		715
Sulf_0/6 H	:		GGAACAC	CGATCC					TCAACCTCAT		71/
DAC206 Und	:	TATCCCCA							TCACCTCAT		716
БАСЗОО_ПУЦ	•	I-AIGCGGA	GGAACAC		GAAGG	AAICCCC		GIGCAC	TGACGCICAI	•	715
vparadox	:	I-AIGCGGA	GGAACAC	GAGGGG	GAAGG	AAICCCC		CIGIAC	IGACGCICAI	; :	/16
KBAB4_Bw	:	G-ATATGGA	GGAACAC	CAGTGGC	GAAGG	GACTTT	JIGGIC	OTGTAAC	TGACACTGAC	:	729
megaterium	:	GGATGTGGA	GGAACAC	C <mark>AG</mark> TGGC	CGAAGG	GGCTTTI	ITGGTC	C TGTA AC	TGACGCTGAC	:	731
PF-G_Brevi	:	T-ATCATCC	AGAACAC	CGATTGC	CGAAGG	AGGTGG	TACGA	TTGGTT	TGACA <mark>CTGA</mark> G	:	702
		t AT ga	ggAACAc	C tggC	GAAGG	c (cTgg c	e ac	tgAc CT A		
		*		760		*	780		* 8		
EHES1 SOIH	:	G-AGCGAAA	GCATGGG	GAGCGAZ	CAGGA	TTAGATA	CCCTG	TAGTCC	ATGCCGTAAA	:	754
T202 C il			CCATCCC	GAGCGAZ	CAGGA	гтасатас	сста	TAGTCC	атессетааа		759
C vorosis	:		CONTREC	TACCCAZ		TTACATAC		TACTCC	ATCCCCTAAA	:	757
ASE C hai	:										724
435_Cnet	•	G-IGCGAAA	GCGIGGG	GAGCAAF					ACGCCGIAAA	•	724
w-/0_can	:	G-IGOGAAA	GCGIGGG	GAGCAAA	ACAGGA	IIAGAIAC	JCCIGO	JAGICC	ACGCCGIAAA	:	/21
DS-18_B1	:	G-CTOGAAA	GCGTGGG	GAGCAAA	ACAGGA	ITAGATAC	CCTGG	FIAGICC	ACGCCGTAAA	:	122
BBCT20_Sph	:	G-TGCGAAA	GCGTGGG	GAGCAA <i>F</i>	ACAGGA	ITAGATAC	CCCTGG	STAGTCC	ACGCCGTAAA	:	720
EP37_Pseud	:	G-TGCGAAA	GCGTGGG	GAGCAAA	ACAGGA	ITA <mark>G</mark> ATA(CCCTG	TAGTCC	CACGCCG <mark>TAAA</mark>	:	772
CAI-4_Pr	:	G-TGCGAAA	GCGTGGG	GAGCAAA	ACAGGA	ITA <mark>G</mark> ATAC	CCCTG	GTAGTCC	CACGCC <mark>G</mark> TAAA	:	770
PT03_Bacte	:	G-TGCGAAA	GCGTGGG	GAGCAAA	ACAGGA	ITAGATAC	CCCTG	GTAGTCC	ACGCCGTAAA	:	773
R-20805_Ps	:	G-TGCGAAA	GCGTGGG	GAGCAAA	ACAGGA	TTAGATAC	CCCTG	TAGTCC	ACGCC <mark>G</mark> TAAA	:	773
776 S. mal	:	G-CAAGAAA	GCGTGGG	GAGCAAZ	CAGGA	TTAGATAC	ссста	TAGTCC	acgecetaaa	:	777
Esa 33 Hvd		G-CACGAAA	GCGTGGG	GAGCAAZ	CAGGA	TTAAATAC	сстас	CAGTCC	ACGCCCTAAA		768
DACIOS Hud	:	C CACCAAA								1	771
Swlf 046 U	:	G-CACGAAA		GAGCAAF		TTAGATAC			ACGCCCTAAA		770
SUII-940_H	•	G-CACGAAA	GCGAGGG	GAGCAAF					ACGCCCTAAA	•	770
ВАСЗО6_Нуа	:	G-CACGAAA	GCGTGGG	GAGCAAA	ACAGGA	ITAGATAC	CCTGC	FIAGTCC	ACGCCCTAAA	:	//1
Vparadox	:	GGCACGAAA	GCGTGGG	GAGCAA <i>F</i>	ACAGGA	ITAGATAC	CCCTGG	STAGTCC	ACGCCC <mark>TAAA</mark>	:	773
KBAB4_Bw	:	G-CGCGAAA	GCGTGGG	GAGCAA <i>F</i>	ACAGGA	ITAGATAC	CCCTGG	GTAGTCC	CACGCCGTAAA	:	785
megaterium	:	G-CGCGAAA	GCGTGGG	GAGCAAA	ACAGGA	ITA <mark>G</mark> ATA(CCCTG	TAGTCC	CACGCC <mark>G</mark> TAAA	:	787
PF-G_Brevi	:	G-CACGAAA	GCATGGG	GAGCAAA	ACAGGA	TTAGATA(CCCTGC	TAGTCC	ATGCTGTAAA	:	758
		G cGAAA	GCgtGGG	gAGCaAA	ACAGGA	TTAgATA	CCCtg	GtAGTCC	ACGCC TAAA		
		00	*	820		*	84	0	*		
EHFS1 SO1H	:	CGTTCGGCA	CTAGGTG	TGGGGAC	CATTCO	CACGGTTT	rccece	CCGCAC	CTAACGCATT	:	811
T202 C il	•	CGTTCGGAA	CTACATC	GGCCA	CATTC	CACGATCI	TCCCAZ	GCCCAC	CTAACGCATT		816
C verneie	:	CCCTCCCCC	CTACCTC	TACCCC				CCCTAC	CTAACCCATT		813
135 C boj	:	CTATCACAC				ACT TCT				:	770
435_Cnet	•	CIAIGAGAG	TAGCC-	GICGGCF	AGIII	ACI-IGI-				•	770
W-70_Can	:	CGAIGAAIG	TIAGCC-	GIIGGGG	JAGIII	ACI-CII-		GCGCAC		:	//5
DS-18_B1	:	CGATGATTG	CTAGTT-	GICGGGG	SAGCTT	GCT-CTT-	-CGGTC	JACCCAG	GCTAACGCATTI	:	//6
BBCT20_Sph	:	CGATGATAA	CTAGCT-	GTCCGG	GCACTT	GGTGCTT-	-GGGTC	GCGCAC	;ctaacgcatt	:	775
EP37_Pseud	:	CGATGTCAA	CTAGCC-	GTTGGAA	AGCC-T	IGAGCTTI	[TAGTO	6 <mark>6</mark> 666	GCTAACGCATT	:	827
CAI-4_Pr	:	CGATG TCAA	CTAGCC-	GTTGGA <i>A</i>	AGCC-T	IGAGCTTI	FTAGT	GCG <mark>CA</mark> C	CTAACGCATT	:	825
PT03_Bacte	:	CGATGTCAA	CTAGCC-	GT TG G <mark>G</mark> A	AGCC-T	IGAGCTCI	TTAGT	GCGCAG	CTAACG <mark>C</mark> ATI	:	828
R-20805_Ps	:	CGA <mark>TG</mark> TCAA	CTAGCC-	GTTGGGA	AGTC-T	IGAACTCI	TAGTO	GCGCAC	CTAACG <mark>C</mark> ATT	:	828
776 S. mal	:	CGATCCGAA	CTGGAT-	GTTGGGT	GCAAT	TTGGCAC	GCAGTA	TCGAAC	CTAACGCGTT	:	833
Esa.33 Hvd	:	CCATECCAA	CTGCTT-	GTTGGGT	CTCTT	CTGACTC-	AGTA	ACGAAG	CTAACGCGTC		822
BAC108 Hvd		CGATCTCAA	CTGCTT-	GTTGGGT		TGACTC-		ACGAAC	CTAACCCCTC		825
Sulf_Q/A U	:	CCATCTCAA	CTCCTTA	GTTCCCT		TGACTC			CTAACCCC		825 825
DAC306 111	:	CCATCTCAA	CTCCTT	CTTCCCT		CIGNOIC-				•	020
БАСЗОО_ПУО	:	COATGICAA		CTTCCC		SIGACIC-	AGIA	ACGARG		•	020
vparadox	:	GGAIGICAA		GIIGGGA	ALICA					:	0 4 1
NBAB4_BW	:	GGATGAGTG	CHAAGI-	GIIAAAG			LIACIO			:	041
megaterium	:	CGAIGAGTG	CTAAGT-	GITAGAG	-GGTTTT(JUGUUCTI	LIAGIO			:	84J
₽£'-G_Brevi	:	G GA TG AGGA	CICGTT-	GITTIGAC	GG.L	AAOGTI	IGAGCO	ACT TAC	GGAAACOGTT	:	810
		CgaTG	cT g	gt g		С	gt	cg Ag	rctAAcgC T		

		860	*	880	*	900	*					
EHFS1_S01H	:	AAGTGCCCCGCCT	GGGGAGTAC	CGG-CCGC <i>I</i>	AGGCTAAAA	ACTCAAAGGA	ATTGACGGG	:	867			
T202_Cil	:	AAGTTCCCCGCCI	GGGGAGTAC	CGGGCCGCA	AGGC <mark>T</mark> AAAA	actcaaa <mark>g</mark> ga	AT <mark>G</mark> GACGGG	:	873			
Cxerosis	:	AAGCGCCCCCCCC	GGGGAGTAC	CGG-CCGCZ	AGGC <mark>TAAAA</mark>	ACTCAAA <mark>G</mark> GA	ATTGACGGG	:	869			
435_Chei	:	AAGCTCTCCGCCI	GGGGAGTAC	CGG-TCGCA	AGATTAAAA	ACTCAAAGGA	ATTGACGGG	:	834			
W-70_Can	:	aa <mark>acattccccct</mark>	GGGGAGTAC	CGG-TCGCA	AGATTAAAA	ACTCAAAGGA	ATTGACGGG	:	831			
DS-18_B1	:	AAGCAATCCCCCI	GGGGAGTAC	CGG-TCGCA	AGATTAAAA	ACTCAAAGGA	ATTGACGGG	:	832			
BBCT20_Sph	:	AAGTTATCCGCCI	GGGGAGTAC	CGG-TCGCA	AGATTAAAA	ACTCAAAGGA	attgac <mark>c</mark> gg	:	831			
EP37_Pseud	:	AAGTTGACCGCCI	GGGGAGTAC	CGG-CCGC <i>P</i>	AGGTTAAAA	ACTCAAATGA	ATTGACGGG	:	883			
CA1-4_Pr	:	AAGTTGACCGCCI	GGGGAGTAC		AGGTTAAAA	ACTCAAATGA	ATTGACGGG	:	881			
PIU3_Bacte	:	AAGIIGACCGCCI	GGGGGAGIAC		AGGIIAAAA	ACICAAAIGA	ATTGACGGG	:	884			
R-20805_PS	:	AAGIIGACCGCCI	GGGGGAGIAC	CC TCCC	AGGIIAAAA	ACICAAAIGA	ATTGACGGG	:	004			
Fsa 33 Hvd	:	AAGTICGCCGCCI	GGGGGAGIAC		AGACIGAAA	CTCAAAGGA	ATTGACGGG	:	878			
BAC108 Hvd	÷	AAGTTGACCGCCT	GGGGAGTAC		AGGTTGAAZ	CTCAAAGGA	ATTGACGGG	;	881			
Sulf-946 H	÷	AAGTTGACCGCCI	GGGGGAGTAC		AGGTTGAAA	ACTCAAAGGA	ATTGACGGG	:	881			
BAC306 Hyd	:	AAGTTGACCGCCI	GGGGAGTAC	CGG-CCGCA	AGGTTGAAA	ACTCAAAGGA	ATTGACGGG	:	881			
V. paradox	:	AAGTTGACCGCCI	GGGGAGTAC	CGG-CCGCA	AGGTTGAAA	ACTCAAAGGA	ATTGACGGG	:	883			
KBAB4_Bw	:	AAGCACTCCGCCT	GGGGAGTAC	CGG-CCGCA	AGGCTGAAA	ACTCAAAGGA	ATTGACGGG	:	897			
megaterium	:	AAGCACTCCGCCT	GGGGAGTAC	CGG-TCGCA	AGACTGAAA	ACTCAAAGGA	ATTGACGGG	:	899			
PF-G_Brevi	:	AAGTCCT <mark>CC</mark> ACCI	GGGGAGTAC	CGC-CGGCA	ACGGTGAAA	ACTCAAA <mark>G</mark> GA	ATTGACGGG	:	866			
		AAg CCgCCI	GGGGAGTAC	CGg cGCA	AAg T AAA	ACTCAAAgGA	ATtGACgGG					
		000	.t.	0.4.0	<u>ب</u> د	0.00						
EHES1 SOIH	•	920 GGCCCGCACAAGC		940 TCCCCAT		960 CAACGCGAA	GAACCTTAC	•	924			
T202 C. il	:	GCCCGCACAAGC	GGCGGAGC	ATGCGGATI	AATTCGAT	CAACGCGAA	GAACCTTAC	:	930			
Cxerosis	:	GCCCGCACAAGC	GGCGGAGCZ	ATGTGGATT	AATTCGAT	GCAACGCGAA	GAACCTTAC	:	926			
435_Chei	:	GCCCGCACAAGC	GGTGGAGC	ATGTGGTTI	AATTCGAA	GCAACGCG <mark>C</mark> A	GAACCTTAC	:	891			
W-70_Can	:	GCCCGCACAAGC	GGTGGA <mark>GC</mark>	ATGTGGTTI	AATTCGAA	CAACGCG <mark>C</mark> A	G <mark>AACCTTAC</mark>	:	888			
DS-18_B1	:	GCCCGCACAAGC	GGTGGA <mark>GC</mark>	ATGTGGTTI	aattcga <mark>a</mark>	GCAACGCG <mark>C</mark> A	G <mark>AACCTTAC</mark>	:	889			
BBCT20_Sph	:	G <mark>GCCT</mark> GCACAAGC	GGT <mark>GGA</mark> GC	ATGTGGTTI	TAATTCGA <mark>A</mark> C	GCA <mark>ACGCG</mark> A	G <mark>AACCTTAC</mark>	:	888			
EP37_Pseud	:	GCCCGCACAAGC	GGTGGA <mark>GC</mark> A	ATGTGGTTI	TAATTCGAAC	GCAACGCGAA	GAACCTTAC	:	940			
CAI-4_Pr	:	GCCCGCACAAGC	GGTGGAGCA	ATGTGGTTT	AATTCGAAG	GCAACGCGAA	GAACCTTAC	:	938			
PIU3_Bacte	:	GGCCCGCACAAGC	GGIGGAGCA	AIGIGGIII ATCTCCTT		CAACGCGAA	GAACCIIAC	:	941			
R-20000_PS	:	GGCCCGCACAAGC	GGIGGAGCE	AIGIGGIII ATCTCCTTI			GAACCIIAC	:	941			
Fea 33 Hud	:	GACCCGCACAAGC	GGIGGAGIA	AIGIGGIII ATCTCCTTI	TAATICGAIG		AACCIIAC	:	940			
BAC108 Hvd	:	GACCCGCACAAGC	GGTGGATG	ATGTGGTT1	TAATTCGATC		AAACCIIAC	:	938			
Sulf-946 H	;	GACCCGCACAAGC	GGTGGATG	ATGTGGTT1	TAATTCGATC	CAACGCGAA	AAACCTTAC		938			
BAC306 Hvd	:	GACCCGCACAAGC	GGTGGATG	ATGTGGTTI	AATTCGAT	CAACGCGAA	AAACCTTAC	:	938			
V. paradox	:	GACCCGCACAAGC	GGTGGATG	ATGTGGTTI	CAATTCGATC	GCAACGCGAA	AAACCTTAC	:	940			
KBAB4_Bw	:	GGCCCGCACAAGC	GGTGGA <mark>GC</mark>	ATGTGGTTI	AATTCGAA	CAACGCGAA	GAACCTTAC	:	954			
megaterium	:	G <mark>GCCCGCACAAGC</mark>	GGTGGAGC	ATGTGGTTI	CAATTCGAA	GCAACGCGAA	G <mark>AACCTTAC</mark>	:	956			
PF-G_Brevi	:	GGTCCGCACAAGC	GGTGGA <mark>GC</mark> Z	ATGTGGTTI	TAATTCGAT	GATACGCGAG	G <mark>AACCTTAC</mark>	:	923			
		G cCcGCACAAGC	GGtGGA A	ATGtGGtTI	CAATTCGA G	GcaACGCGaa	AACCTTAC					
		* 980	*	100	10	* 1	020					
EHFS1 S01H	:	CAAGGCTTGACAT	GTTCTCGAT	C-GCCGT	GAGATACGO	TTTCCCCTT	TGGGG	:	976			
T202_Cil	:	CAAGACTTGACAT	ATACGAGA	AC-GGGCC	AGAAATGO	STCAACTCTT	TGGACA	:	981			
Cxerosis	:	C <mark>TGGGC</mark> TTG <mark>A</mark> CAT	ATACGGGAC	CC-GGGCC <mark>A</mark>	AGAGATGO	STCCTTCCCT	TGTGG	:	976			
435_Chei	:	C <mark>agccc</mark> ttg <mark>a</mark> cat	CCCGGTCGC	CGGTTTCC	AGAGAT <mark>GG</mark> AT	TCCTTCAGT	TCGGCTGGA	:	948			
W-70_Can	:	CAGCCC <mark>T</mark> TG <mark>A</mark> CAT	ACCGGTCGC	CGGACAC- <mark>P</mark>	AGAGATGTGI	-CTTTCAGT	TCGGCTGGA	:	943			
DS-18_B1	:	CACCTTTTGACAT	GCCCGG-AC	CCGCCAC-A	AGAGATGTGO	GCT-TTCCCT	TCGGGGA	:	941			
BBCT20_Sph	:	CAGCGTTTGACAT	GTCCGG-AC	CGATTTOC	AGAGATGGAT	CTCITCCCT	TCGGGGA	:	942			
EP37_Pseud	:	CAGGCCTTGACAT	CCAATGAAC		AGAGATAGA'I	TGGTGCCTT	CGG-GAA	:	992			
CAI-4_Pr	:	CAGGCCTTGACAT	CCAATGAAC		AGAGATAGA1	TGGTGCCTT	CGG-GAA	:	990			
PLUS_BACTE	:	CAGGCCI IGACAI	CCAAIGAA(GAGATAGA1	TGGIGCOIT	CGG-GAA	:	993 902			
776 S mal	:	CTGGCCTTCACAT	GTCGAGAA		GAGATGGAT	TGGTGCCII	CCG-GAA	:	272 992			
Esa. 33 Hvd	;	CCACCTTTGACAT	GTACCCAA		GAGATGGCI	TAGTGOTCG	AAACA-GAG	;	980			
BAC108 Hvd	:	CCACCTTTGACAT	GTACGGAAT		GAGATGGCI	TAGTGOTCG	AAAGA-GAG	:	992			
Sulf-946 H	:	CCACCTTTGACAT	GTACGGAAT	TTGOC	GAGATGGCI	TAGTGOTCG	AAAGA-GAG	:	992			
BAC306_Hyd	:	CCACCTTTGACAT	GTACGGAA	TTGCC	GAGATGGCI	TAGTGCTCG	AAAGA-GAG	:	992			
Vparadox	:	CCACCTTTGACAT	GTACGGAAT	TCGCC	GAGATGGCI	TAGTGCTCG	AAAGA-GAA	:	994			
KBAB4_Bw	:	CAGGTCTTGACAT	CCTCTGAA	AACTCT	GAGATAGAG	GC-TICTCCT	TCGGG-AG-	:	1006			
megaterium	:	CAGGTCTTGACAI	CCTCTGACA	AACTCT	AGAGATAGAC	GCGTTCCCCT	TCG <mark>GG-GGA</mark>	:	1010			
PF-G_Brevi	:	CTGGGCTAAATCA	CAGAGGAA	[TATGC	IGAAATGTGI	AAGCTAGCA	ATAGT	:	974			
		C TtgAcat	g a	c P	AGAgAT	tc	g					
		*	1040		*	1060		*	1	080		
------------	---	---------------------------------	---------------------------	---------	--------------------	--------------------------	-------------------	------------------	------------------------------------	-----------------------	---	-------
EHFS1_S01H	:	CGGGTTC	ACAGGTGGT	GCATGG	TGT	CGTCAGCT	CGTGTC	GTGAGA	TGTTG	GGTTAA	:	1033
T202_Cil	:	CTCGTAA	ACAGGTG <mark>G</mark> T(GCATGG	TGT	CGTCAGCT	CGTGTC	GTGAGA	TGTTG	GGTTAA	:	1038
Cxerosis	:	CTCGTAT	ACAGGTG <mark>G</mark> T(GCATGG	TGT	CGTCAGCT	CGTGTC	GTGAGA	TGTTG	GGTTAA	:	1033
435_Chei	:	CCGG-TG	ACAGGTG <mark>C</mark> T(GCATGG	CTGT(CGTCAGCT	CGTGTC	GTGAGA	TGTTG	GGTTAA	:	1004
W-70_Can	:	CCGG-AT	ACAGGTG <mark>C</mark> T(GCATGG	TGT	CGTCAGCT	CGTGTC	GTGAGA	TGTTG	GGTTAA	:	999
DS-18_B1	:	CTGGGAC	ACAGGTG <mark>C</mark> T(GCATGG	CTGT(CGTCAGCT	CGTGTC	GTGAGA	TGTTG	GGTTAA	:	998
BBCT20_Sph	:	CTGGAAC	ACAGGTG <mark>C</mark> T(GCATGG	CTGT(CGTCAGCT	CGTGTC	GTGAGA	TGTTG	GGTTAA	:	999
EP37_Pseud	:	CATTGAG	ACAGGTG <mark>C</mark> T(GCATGG	CTGT	CGTCAGCT	CGTGTC	GTGAGA	TGTTG	GGTTAA	:	1049
CAI-4_Pr	:	CATTGAGA	ACAGGTG <mark>C</mark> T(GCATGG	CTGT	CGTCAGCT	CGTGTC	GTGAGA	TGTTG	GGTTAA	:	1047
PT03_Bacte	:	CATTGAG	ACAGGTGCT	GCATGG	CTGT	CGTCAGCT	CGTGTC	GTGAGA	TGTTG	GGTTAA	:	1050
R-20805_Ps	:	CTCAGAC	ACAGGTGCT	GCATGG	CTGT	CGTCAGCT	CGTGTC	GTGAGA	TGTTG	GGTTAA	:	1050
776_Smal	:	CTCGAAC	ACAGGTGCT	GCATGG	TGT	CGTCAGCT	CGTGTC	GTGAGA	TGTTG	GGTTAA	:	1055
Esa.33_Hyd	:	CCGTAACA	ACAGGTGCT	GCATGG		CGTCAGCT	CGTGTC	GTGAGA	TGTTG	GGTTAA	:	1046
BACIUS_Hyd	:	CCGIAACA	ACAGGIGCIC	JCAIGG				JIGAGA	TGIIG	GGIIAA	:	1049
DAC206 Und	:	CCGIAACE	ACAGGIGCIC	JCAIGG				JIGAGA	TGIIG	GGIIAA	:	1049
BACSU6_Hyu	:	CCGIAACE	ACAGGIGCIC	CAIGG		CTCAGCI		JI GAGA	TCTTC	GGIIAA CCTTAA	:	1049
Vparauox	:	CACACTC	ACAGGIGCIC	CAIGG		CTCAGCI		SI GAGA	TOTTO	GGIIAA CCTTNN	:	1063
mogatorium	:	CAGAGIGA	ACAGGIGGIG	CAIGG.		CAGCIC	CGIGICO	SI GAGA	TGIIG	GGIIAA CCTTAA	:	1067
PF-G Browi	:	CTCTCTC		CATCO	TGT	CATCAGCI	CGIGICO	SIGAGA STGAGA	TGTTG	CCTTAA	:	1030
II O_DICVI	•	C 7	ACAGGTG TO	CATGG	TGT	CGTCAGCT	CGTGTC	STGAGA	TGTTG	GGTTAA	•	1000
		0 1	10110010 10	5011100	101	0010/1001	001010	01011011	10110	00111111		
		*	1100	C		* 11	120		*	1140		
EHFS1_S01H	:	GTCCCGC	AACGAGCGCA	AACCCT	GTT	CCAT <mark>GTT</mark> G	CAGCA	CGTAGT	G <mark>G</mark> T <mark>GG</mark>	GGACTC	:	1090
T202_Cil	:	GTCCCGCA	AACGAGCGCA	AACCCT	GTC	CTAT <mark>GTT</mark> G	CAGCA	CGTAAT	GGTGG	GAACTC	:	1095
Cxerosis	:	GTCCCGC	AACGAGCGC	AACCCT	IGTC	ГТАТ <mark>GTT</mark> GO	CAGCA	CGTAAT	G <mark>G</mark> T <mark>GG</mark>	GGACTC	:	1090
435_Chei	:	GTCCCGC	AACGAGCGCA	AACCTT	CGCC	CTTA <mark>GTT</mark> G	CATCA	ITAA	GTTGG	g <mark>c</mark> actc	:	1059
W-70_Can	:	GTCCCGC	AACGAGCGCA	AACCCT	CGCC	CTTA <mark>GTT</mark> G	CAGCA	ITTA	GTTGG	g <mark>c</mark> actc	:	1054
DS-18_B1	:	GTCCCGC	AACGAGCGCA	AACCCT	CGCC	ATTA <mark>GTT</mark> G	CCATCA	ITCA	GTTGG	GAACTC	:	1053
BBCT20_Sph	:	GTCCCGC	AACGAGCGCA	AACCCT	GCC	ITTAGTTA	CATCA	ITTA	GTTGG	GTACTC	:	1054
EP37_Pseud	:	GTCCCGT	AACGAGCGCA	AACCCT	IGTC	CTTAGTTA	CCAGCA	CGTAAT	GGTGG	GCACTC	:	1106
CAI-4_Pr	:	GTCCCGT	AACGAGCGCA	AACCCT.	IGTC	CTTAGTTAC	CAGCA	CGTAAT	GGTGG	GCACTC	:	1104
PT03_Bacte	:	GTCCCGT	AACGAGCGCA	AACCCT.	IGIC			CGTAAT	GGTGG	GCACTC	:	1107
R-20805_Ps	:	GICCCGIA	AACGAGCGCA	AACCCI.				CGIAAI	GGIGG	GAACIC	:	1110/
776_Smal	:	GICCCGCA	AACGAGCGCA	AACCCI.	IGICO FOTO			CGIAAI	GGIGG	GAACIC	:	1000
DACIOS Hud	:	GICCCGC	ACGAGCGCA	ACCCT.		AI IAGI IGO		 	AAAGG AAAGG	GCACIC	:	1090
Sulf 046 U	:	GICCCGC	ACGAGCGCA	ACCCT.		ATTAGIIG(AAAGG	CCACIC	:	1099
BAC306 Hvd	:	GTCCCGC	ACGAGCGC	ACCCT	IGIC	ATTAGTIG			AAAGG	GCACIC	:	1099
V paradox	:	GTCCCGCZ	ACGAGCGCZ	AACCCT		ATTAGTTG		TATTCA		GCACTC	:	1105
KBAB4 B. W		GTCCCGC	ACGAGCGC	AACCCT		TTAGTTG	CATCA	ТТАА	GTTGG	GCACTC	÷	1118
megaterium		GTCCCGC	ACGAGCGC	AACCCT	TGAT		CAGCA	TTTA	GTTGG	GCACTC	÷	1122
PF-G_Brevi	:	GTCCCGC	AACGAGCGC	AACCCC	TATG	GTTAGTTG	CAGCA	CGTAAT	GGTGG	GGACTC	:	1087
_		GTCCCGcA	AACGAGCGCA	AACCct	gс	ttaGTT (C A		g tGG	G ACTC		
			*	1160		*	1180		*	1		
EHFS1_S01H	:	ATGGGAG	ACTGCCGGG	gtcaac:	rcg-o	GAGGAAGG	TGAGGA	CGACGT	CAAAT	CATCAT	:	1146
T202_Cil	:	ATGGGAT	ACTGCCGGG	GTCAAC:	rcg-o	GAGGAAGG	TGGGGA	IGACGT	CAAAT	CATCAT	:	1151
Cxerosis	:	GTGAGAA	ACTGCCGG <mark>G</mark> C	GTCAAC.	ICG-0	GAGGAAGG	I'GGGGA'	I GACGT	CAAAT	CATCAT	:	1146
435_Chei	:	TAAGGGG	ACTGCCGGT	GATAAG(JAGGAAGG	TGAAGAT	TGACGT	CAAGT	CCTCAT	:	1111
W-70_Can	:		ACIGCCGGIC	JATAAGU		JAGGAAGG	IGGGGA.	IGACGI	CAAGI	COTCAL	:	
DS-I8_BI	:	TAAIGGG	ACIGCCGGI	JULAAGU		JAGGAAGG.	IGGGGA. TCCCCA	IGACGI	CAAGI	CCTCAT	:	11109
ED37 Droud	:	TAAAGGAA	ACCGCCGGI	JATAAGU		CAGGAAGG	TCCCCA	TCACGI	CAAGI	CATCAT	:	1162
CAT_/ P r	:	TAAGGAGA	ACTGCCGGT			SAGGAAGG	TCCCCA	TGACGI	CAAGI	CATCAT	:	1160
PT03 Bacto	:	TAAGGAG				CAGGAAGG	TCCCCA	TGACGI	CAACT	CATCAT	:	1163
R-20805 Pg	:	TAAGGAG	ACTGCCGGT	GACAAA	CCG-	GAGGAAGG	IGGGGA	IGACGT	CAAGT	CATCAT	:	1163
776 S. mal	:	TAAGGAG	ACCGCCGGT	GACAAA	CCG-	GAGGAAGG	IGGGGA	IGACGT	CAAGT	CATCAT	:	1168
Esa.33 Hvd	:	TAATGAG	ACTGCCGGT	GACAAA	CCG-	GAGGAAGG	TGGGGA	IGACGT	CAAGT	CCTCAT	:	1152
BAC108_Hyd	:	TAATGAG	ACTGCCGGT	GACAAA	CCG-	GAGGAAGG	TGGGGA	IGACGT	CAAGT	CCTCAT	:	1155
Sulf-946_H	:	TAATGAG	ACTGCCGGT	GACAAA	CC <mark>G-</mark>	GAGGAAGG	TGGGGA	IGACGT	CAAGT	CCTCAT	:	1155
BAC306_Hyd	:	TAATGAG	ACTGCCGGT	GACAAA	CC <mark>G-</mark>	GAGGAAGG	IGGGGA	IGACGT	CAAGT	CCTCAT	:	1155
Vparadox	:	TAATGAG	ACTGCCGGT	GACAAA	CCG-	GAGGAAGG	TGGGGA	IGACGT	CAA <mark>G</mark> T	CCTCAT	:	1161
KBAB4_Bw	:	TAA <mark>G</mark> GTG <i>I</i>	ACTGCCGGT	GACAAA	CCG-0	GAGGAAGG	TGGGGA	IGACGT	CAAAT	CATCAT	:	1174
megaterium	:	TAA <mark>G</mark> GTG <i>I</i>	ACTGCCGGT	GACAAA	CCG-0	GAGGAAGG	IGGGGA	IGACGT	CAAAT	CATCAT	:	1178
PF-G_Brevi	:	TAGCCAG	ACTGCCTGT	G-CAAA	AGA	GAGGAAGG	AGGGGA	GACGT	CAAGT	CATCAT	:	1143

taa g gACtGCCgGtG cAA ccG GAGGAAGGtGggGAtGACGTCAA TC TCAT

CTCGac c tGAAGt GGAatCGcTAGTAATCG

ATCAG at G CGGtGaA

		*	1380		*	1400		*	1420		
EHFS1 S01H	:	TACGTT	CCCGGGC	C TT <mark>G</mark> TAC	ACACCG	CCCGTCA	AGTCAG-	GGAATTO	CGGCCGGACC		1373
T202 C. il	:	TACGTT	CCCGGGC	CTTGTAC	ACACCG	CCCGTCA	AGTCAG-	GGGAGTC	GGTCCACCC		1378
C. xerosis	:	TACGTT	CCCGGGC		ACCTCC	CCCGGTT	ATAAAG-	GGGGATC	CCCCCGGATC		1373
435 C. hei	:	TACGTT	CCCGGGC	CTTGTAC	ACACCG	CCCGTCA	CACCAGT	GGGAGTT	GGTTTTA-C		1341
W-70 C. an	:	TACGTT	CCCGGGC	CTTGTAC	ACACCG	CCCGTCA	CACC <mark>GG</mark> -	GGGAGT	GGTTTTA-C		1335
DS-18 B. 1	:	TACGTT	CCCGGGC	CTTGTAC	ACACCG	CCCGTCA	CACCAT-	GGAGTI	GGTTCTATC		1313
BBCT20 Sph	:	TACGTT	CCCAGGC	CTTGTAC	ACACCG	CCCGTCA	CAGAAG-	GGGAGTI	GGCCCCACC		1335
EP37 Pseud	:	TACGTT	CCCGGGC	CTTGTAC	ACACCG	CCCGTCA	CACCA-T	GGAGTO	GGTTGCA-C		1387
CAI-4 P. r	:	TACGTT	CCCGGGC	CTTGTAC	ACACCG	CCCGTCA	CACCA-T	GGAGT	GGTTGCA-C		1385
PT03 Bacte	:	TACGTT	CCCGGGC	CTTGTAC	ACACCG	CCCGTCA	CACCA-T	GGAGT	GGTTGCA-C		1388
R-20805 Ps	:	TACGTT	CCCGGGC	CTTGTAC	ACACCG	CCCGTCA	CACC <mark>G-</mark> T	GGAGT	GGTTGCA-C		1388
776 S. mal	:	TACGTT	CCCGGGC	CTTGTAC	ACACCG	CCCGTCA	CACCA-T	GGAGT	TGT-GCA-C		1393
Esa.33 Hvd	:	TACGTT	CCCGGGT	CTTGTAC	ACACCG	CCCGTCA	CACCAT-	GGAGC	GGTCTCG-C		1377
BAC108 Hvd	:	TACGTT	CCCGGGT	CTTGTAC	ACACCG	CCCGTCA	CACCA <mark>G</mark> -	GGAGCC	GGTCTCG-C		1380
Sulf-946 H	:	TACGTT	CCCGGGT	CTTGTAC	ACACCG	CCCGTCA	CACCAGT	GGAGCO	GGTCTCG-C		: 1381
BAC306 Hvd	:	TACGTT	CCCGGGT	CTTGTAC	ACACCG	CCCGTCA	CACCAGT	GGAGCO	GGTCTCG-C		: 1381
Vparadox	:	TACGTT	CCCGGGT	CTTGTAC	ACACCG	CCCGTCA	CACCA <mark>G</mark> T	GGAGC	GGTTCTG-C	: :	: 1387
KBAB4 B. w	:	TACGTT	CCCGGGC	CTTGTAC	ACACCG	CCCGTCA	CACCA <mark>G</mark> C	GAGAGTI	TGTAACA-C		: 1400
megaterium	:	TACGTT	CCCGGGC	CTTGTAC	ACACCG	CCCGTCA	CACCA <mark>-C</mark>	GAGAGTI	TGTAACA-C	: :	: 1403
PF-G_Brevi	:	TACGTT	CCCGGAC	CTTGTAC	ACACCG	CCCGTCA	AGCCAGT	GGACTO	CGGGGAGA	: :	: 1369
_		TACGTT	CCCqGq	CttGtaC	ACacCg	CCCGtcad	cacca	Gggag	ggt c	2	
		*	14	40	*	146	50	*	1480		
EHFS1_S01H	:	GTAGAC	AGGGTTT	TATACCG	TTCACG	CCAGAGT	CCTACAC	GA-CGTC	CACCGAAA	:	1426
T202_Cil	:	AC-GCC2	AGGGCTT.	AACCCCT	TTCGCC	GAT(CCTCAAC	GA-GTTC	CACGGAAAA-	:	1427
Cxerosis	:	GTTGAC	AGGGTTT	TICCCGG	TTC-CG	CCGGAGT	CCTCCAC	GATCTTI	GCCAAGGN-	:	1427
435_Chei	:	CGAAGG	CACTGTG	CTAACCG	CAAG-A	C-GCAG-(CGACCAC	GAGTCG	GACCNNNN	:	1392
W-70_Can	:	CGAAGG	CGCTGTG	CTAACCG	CAAGGA	G-GCAGG	CGACCAC	GAGTCCA	ATGGNN	:	1386
DS-18_B1	:	CGAAGG	IGGIGCG	-TAACCG	CAAG-G	C-GCAGT(CCTCACG	TAGTACO	CACCGGNN	:	1364
BBCT20_Sph	:	CATGGA	CAGGGTT	-TTTTCG	CATA-A	C-CCAGT	CGTCACA	GACTGC-	-GCCGAAA	:	1385
EP37_Pseud	:	AGAAGTI	AGCTAGT	CTACCTT	CGGA	GGACG	GTACCAC	GGTGTCA	ATGAGGNNNN	:	1439
CAI-4_Pr	:	AGAAGTZ	AGCTAGT	CTACCTT	CGGG	GGACG-	-TACCAC	AGTTTCA	AGCGTGGNN-	:	1435
PT03_Bacte	:	AGAAGTZ	AGCTAGT	CTACCCT	CGGA	GGACG	GTACC-C	CGTGTCA	AGCGAAANN-	:	1438
R-20805_Ps	:	AGAAGTZ	AGCTAGT	CTAACCG	CAAGGG	GGACG	GTACC-C	CGTTTCA	ATAGGN	:	1437
776_Smal	:	AGAAGCI	AGGTAGC	TTACCTT	CG–GGA	GGGCG	CTGCC-C	CGTGCCI	GCGGNNNN-	:	1444
Esa.33_Hyd	:	AGAAGTZ	AGTTAGC	CTA-CCG	CAAGGC	C-GGGT-0	CTACCAC	GAGTTCA	AGGNN	:	1426
BAC108_Hyd	:	AGAAGTI	AGTTAGC	CTAACCG	CAAGGC	C-GG-T-C	CTATCAC	GAGTTCI	GGGN	:	1428
Sulf-946_H	:	AGAAGTZ	AGTTAGC	CTAACCG	CAAGGA	C-GGGCG	CTACCC	GAGGTAC	CGACCGNNN-	:	1435
BAC306_Hyd	:	AGAAGTZ	AGTTAGC	CTAACCG	CAAGG-	GGGCGI	ATACCAC	GAGTGTC	CACGGGGGN	:	1434
Vparadox	:	AGAAGTZ	AGTTAGC	TTAACCG	CAAGGA	G-GGGA	-TACCAC	GCAGTCO	GACGGNNN	:	1438
KBAB4_Bw	:	CGAAGT	CGGTGGG	GTAACCT	TTAGGA	CCCGC	CGCCAAC	GTGTCGC	CAGGNNNN	:	1452
megaterium	:	CGAAGT	CGGTGGA	GTAACCG	TAAGGA	GCAGC	CGCCAA-	GTGTC	-AAATTNN	:	1452
PF-G_Brevi	:	TTGAAT	CGGTATC	TACCGAC	TCCGTA	GCTAGTG	CGACTAA	GGN		:	1412
		aag	qt	t c	q		C C	!			

Alignment of the amino acid sequences of isolates obtained from bioballs three days into the setup of the bioreactor. The alignment was carried out by the multiple alignment of Clustal X (1.81). Genedoc software was used for homology shading. The conserved regions are indicated with Roman numerals. The abbreviations of the isolates are given in the text. Gaps introduced into the alignment are indicated with dashes. Four shading levels were set.

APPENDIX C3

The figures below represent the agarose gel electrophoresis results of purified PCR products of the organisms isolated from the biofilm samples (obtained from the bioballs) collected from the three compartments of the three-week, laboratory-scale bioreactor system, fifteen days after start-up. The code for the organisms names are BF – Bioreactor Final (after 15 days).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LANE 1 – Marker (Lambda DNA/HIND III)	LANE 2 – Negative Control	LANE 3 – BF1
LANE 4 – BF2	LANE 5 – BF3	LANE 6 – BF4
LANE 7 – BF5	LANE 8 – BF6	LANE 9 – BF7
LANE 10 – BF8	LANE 11 – BF9	LANE 12 – BF10
LANE 13 – BF11	LANE 14 – BF12	LANE 15 – BF13
LANE 16 – BF14	LANE 17 – BF15	LANE 18 – BF16
LANE 19 – BF17	LANE 20 – BF18	

LANE 1 – Marker (Lambda DNA/HIND III)	LANE 2 – Negative Control	LANE 3 – BF19
LANE 4 – BF20	LANE 5 – BF21	LANE 6 – BF22
LANE 7 – BF23	LANE 8 – BF24	LANE 9 – BF25
LANE 10 – BF26	LANE 11 – BF27	LANE 12 – BF28
LANE 13 – BF29	LANE 14 – BF30	LANE 15 – BF31
LANE 16 – BF32	LANE 17 – BF33	LANE 18 – BF34
LANE 19 – BF35	LANE 20 – EMPTY	

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LAN (Lar	IE 1 – Marker mbda DNA/HIND III)	LANE	2 – Negative Control	LANE 3 – BF36
LAN	IE 4 – BF37	LANE 5	5 – BF38	LANE 6 – BF39
LAN	IE 7 – BF40	LANE 8	8 – BF41	LANE 9 –BF42

LANE 10 – BF43	LANE 11 – BF44	LANE 12 – BF45
LANE 13 – BF46	LANE 14 – BF47	LANE 15 – BF48
LANE 16 – BF49	LANE 17 – BF50	LANE 18 – BF51
LANE 19 – BF52	LANE 20 – BF53	

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LANE 1 – Marker (Lambda DNA/HIND III)	LANE 2 – Negative Control	LANE 3 – BF54
LANE 4 – BF55	LANE 5 – BF56	LANE 6 – BF57
LANE 7 – BF58	LANE 8 – BF59	LANE 9 – BF60
LANE 10 – BF61	LANE 11 – BF62	LANE 12 – BF63
LANE 13 – BF64	LANE 14 – EMPTY	LANE 15 – EMPTY
LANE 16 – BF65	LANE 17 – BF66	LANE 18 – BF67
LANE 19 – BF68	LANE 20 – BF69	

264

1200 bp

LANE 1 – Marker (Lambda DNA/HIND III)	LANE 2 – Negative Control	LANE 3 – EMPTY
LANE 4 – BF70 LANE 7 – BF73	LANE 5 – BF71 LANE 8 – BF74	LANE 6 – BF72 LANE 9 – EMPTY
LANE 10 – EMPTY	LANE 11 – BF75	LANE 12 – BF76
LANE 13 – BF77	LANE 14 –BF78	LANE 15 – BF79
LANE 16 – BF80	LANE 17 – BF81	LANE 18 – BF82
LANE 19 – BF83	LANE 20 – EMPTY	

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2027 bp 1200 bp LANE 1 - Marker LANE 2 – Negative Control LANE 3 - BF84 (Lambda DNA/HIND III) LANE 6 – BF87 LANE 4 – BF85 LANE 5 - BF86 LANE 7 – BF88 LANE 8 - BF89 LANE 9 - EMPTY LANE 10 - BF90 LANE 11 - BF91 LANE 12 - BF92 LANE 13 - BF93 LANE 14 - EMPTY LANE 15 – BF94 LANE 16 – EMPTY LANE 17 – BF95 LANE 18 – BF96 LANE 19 – BF97 LANE 20 - BF98

APPENDIX C4

		* 20		*	40		*			
92-0600_Ar	:	GTTNTNCAGTC	G-AA	ACG	ATGATCCG-GI	GCTTGC	ACCGGGGA-	A	:	41
5N-4_Kpa	:	NNNNCCGGTTACTCAGTC	G-A-	CG	CTGAGCAC-CA	GCTTGC	TGGTGTGG-	A	:	47
4RS-9a_M	:	NNNNCCGGTAAGC	A-G-	TG	ACGAGAGC-CC	GCTTGC	TG-GGTGG-	A	:	41
Amico6_Var	:	NNCCCGGCAATC	A-N-	TG	ACGAGAGC-CC	GCTTGC	TG-GGTGG-	A	:	40
MT2.2_Derm	:	NNTTTAGTAAGC	A-G-	TG	ACGAGAGCGCC	GCTTGC	TGGTGTGG-	A	:	42
Lact5.2_B.	:	NNNNCCGGCTCTGCAGTC	G-A-	CG	ATGATGGTGGI	GCTTGC	CTCCCTG	A	:	47
rJ6_Bacter	:	NTNTGCAGTG	A-N-	G	GTGAAGCC-CA	GCTTGC	TGGGTGG	A	:	37
PAO-12_Mic	:	NNCCCCGGTAAGCAGTC	G-A-	G	GTGAC-CG-GA	GCTTGC	TCTGTGGG-	A	:	44
sp.7_4K_Mi	:	NNNGGGCTAATGCAGTC	G-AA	ACG	GTGGAAGA-GA	GCTTGC	TCTCTGG	A	:	46
wged11_Lei	:	NNNNCCCGGTTACTCAGTC	G-A-	CG	GTGAGCAG-GA	GCTTGC	TCTTGTGG-	A	:	48
Ljaponic	:	TTTTTCCGGCT	A-AI	CA	GTCGACGGTAG	GCCCTT	CGGGGTAC-	A	:	42
ML0004_R	:	NNNNNCGGCT	A-AI	GCAG	TCGAGCGGTAG	GCCCTT	CGGGGTAC-	A	:	44
6 Clone Un	:	NNNNNTCCGTC	T-AI	G-CA	GTCGACGGTAC	GCGGGG	CACCTGGCG	FΑ	:	44
CICCHL_JQ9	:	NNNCCGGC-A-AGCAGTC	AG	GCG	ATGGATA-AGA	GCTTGC	TCTTATGAA	G	:	46
XJU-1 B. c	:	NNNGGCCGGC-ACAGCAGTG	AG	GCG	ATGGATT-AGA	GCTTGC	TCTTATGAA	G	:	49
PR35-2-1 B	:	NNNCCGAGC-TACGCAGTC	G-AG	GCG	ATGGATTGAGA	GCTTGC	TCTCAAGAA	G	:	50
760 B. pum	:	NNNNTTTCGGGCTACTGCAGTC	G-AG	GCG	GAAGAAG-GGA	GCTTGC	TCCCG-GAT	G	:	52
S. succinu	:	NNNNCCGGCAAGCAGTC	G0	GCG	ACGGATA-GGA	GCTTGC	TCCTTTGAA	G	:	47
ST7 Clone	:	RNNGGCGGCAAGC	AG	GTG	ACGAGAG-CCA	GCTTGC	TGGGTGGA-		:	41
88 17 clon	:	NNNNNCCGCTAA-GCAGTC	G-GC	CGGA-	-GA-AGGTAGC	TTGCTA	CTGAACTTA	-	:	48
Acinetobac	:	NNNNNCCGGCTAATGCAGTC	GAGC	CGGA-	-GAGAGGTAGC	TTGCTA	CTGAACTTA	-	:	52
TDIW13 Aci	:	NNNNNCCGGCTAATGCAGTC	GAGC	CGGA-	-GCGAGGGTGC	TTGCAC	CTTAGCTTA	-	:	52
A449 A. sa	:	RCGCTAT-GCAGTC	A-GC	CGGAG	CGGGAAGTAGC	TTGCTA	CTTTTGCCG	G	:	47
211c_Ave	:	NNGGGCAA-GCAGTG	A-GC	CGGA-	CGGGAAGTAGC	TTGCTA	CTTTTGCCG	GG	:	47
ATCC 17527	:	RNNCGGCAC-GCAGTG	A-GO	G	AGAGGGG	CTGCTC	TCTGATTC-	-	:	40
PC16 P. pu	:	NNNCCGGCAA-GCAGTC	N-GC	CGGA-	TGAGAGAGC	TTGCTC	TCTGATTCA	-	:	46
PT03 Bacte	:	NNGGGCTAA-GCAGTC	G-GC	CGG	TGAGAGAGC	TTGCTT	CTCTTGAGA	-	:	44
KVD-unk-80	:	NNNGGGCG-CTAAGCAGTC	G-AC	CGGC-	AGCACGGAC	TTCGGT	CTGGTGGCG	;-	:	48
J. lividum	:	NNNNNCCGTCTATGCAGTC	G-AC	CGGC-	AGCACGGAG	CTTGCT	CTGGTGGCG	;-	:	49
L. ginseng	:	NNNTTTCGGCTTATGCAGTC	G-AC	CGGT-	A-CGCGGG-	GCAC	CTGGCGACG	;-	:	46
6C 13 Vari	:	NNNCCGCTCA-GCAGTC	G-AC	CGGC-	G-CGCGGGA	GCAATC	CTGGCGGCG	;-	:	45
D. acidovo	:	NNNNNCGGCCTATGCAGTC	G-AC	CGGT-	A-ACGGTCI	TCGG	ACGCTGACG	;-	:	46
300C-C03 C	:	NNNNNCCCGTCAATGCAGTC	G-AC	CGA		CCC	TTCGGGGT-		:	36
ctg CGOF25	:	NNNNCCGGCTAATGCAGTC	G-AC	CGA		CCC	TTCGGGGT-		:	35
BY14 Clone	:	NNNGGGCTAAGCAGTC	G-AC	CGA		ACC	TT-GGGGT-		:	31
BIR2-r lim	:	NNNCCGCAAGCAGTG	A-GA	AGA		TCT	TGGAT-		:	28
MP20 Sphin	:	NNNNCCCGTCAATGCAGTC	G-AC	CGAG-		ATCC	TTCGGGGTC	;-	:	38
DSSF72 Unc	:	NNNNNCCGTCAA-GCAGTC	G-AC	CGAG-		ATCT	TCGGATC	!-	:	35
1/4 C7 32	•	NNNGGGCAAGCAGTG	A-GA	GA		CT	TCGGT-		•	27
AKTW820 Cl		NNNNGGCCGTCAATGCAGTC	G-AC	GAG-		ACCT	TCGGGTC	-	•	37
WBT100 Clo		NNNNCCGCTAAGCAGTC	G-AC	CGGG-		CACT	TCGGTGCT-		•	3.5
ENV481 X			A-GT	GAG-		GCC	AGCATGGG-	_	•	27
V4.B0 05 B		NNNNCGGCTAAGCAGTC	G-AC	GAC-		тст	TCGGAGTT-	_	•	34
549 Chrvse		NNNNGCGCCAC		CAGCT	GAGCGGTAGAG	TCTCTT	CGGAGACTT	G	•	46
PR93 P kr	:			GAC-	-GATGATACAC	CTTGCT	TTTATC	'G		41
- D))_E • KI	•	TTTTGGGCAAGC	4.7. GT	- onc-	ONIONIAGAG	CTIGCI	- I I I I I I I I I I I I I I I I I I I	, U	•	ч⊥

gcagtc

		60		*		80			*		1	0.0			*		
92-0600 Ar		TTAC	TGGCGA	ACGGG	TGAC	TAAC	ACG	GAC	ТАА	сстс		Τ Τ ΑΑ(тот	GGG	ATAAG		97
5N-4 K na	:	TGAG		ACGGG				GAC	TAA			TTGAC			ATAAG	:	103
4RS-92 M	:	TTAC		ACCCN	GTGAC							TTAAC				÷	98
Amico6 Var	:			ACCCC					$T \Lambda \Lambda$			TTAAC				:	96
MT2 2 Dorm	:	TTAG		ACGGG	TCAC		ACGI	GAC				CCTAC			ATAAG	:	90
MIZ.Z_Derm	•	TTAG.	TGGCGA	ACGGG	TGAG		ACGI	GAG							ATAAG	•	102
LaCLD.Z_B.	:	TIAG.		ACGGG			ACGI	GAU								:	103
rJo_Bacter	:	TCAG.	IGGCGA	ACGGG			ACCI								ATAAG	:	100
PAO-12_Mic	:	TCAG	IGGCGA	ACGGG	-TGAG		ACGI	GAG		CCIG		CIGAC		GGG	ATAAG	:	100
sp./_4K_Mi	:	TCAG	IGGCGA	ACGGG	-TGAG		ACCI	GAG		TCIG		CIGAC		GGG	АТААС	:	102
wgedll_Lei	:	TCAG	IGGCGA	ACGGG	-TGAC	TAAC	ACGI	GAC	TAA	CCIG	CCC	CTGAC	CICT	GGG	ATAAG	:	104
Ljaponic	:	CGAG	IGGCGA	ACGGG	-TGAG	TAAC	ACG	GAG	TAA	CCIG	ccc	CAGTO	CICT	GGG	ATAAC	:	98
ML0004_R	:	CGAG	CGGCGA	ACGGG	-TGAC	TAAC	ACGI	GGG	TGA	TCTG	CCC	TGCAC	CITC	GGG	ATAAG	:	100
6_Clone_Un	:	CGAG	IGGCGA	ACGGG	-TGAC	TAAT	GCAI	CGC)–AA	CGIG	CCC	AGAAC	GIGG	GGG	ATAGC	:	99
CICCHL_JQ9	:	TTAG	CGGCGG	ACGGG	-TGAC	TC-C	ACGI	GGG	TAA	CCIG	CCC	АТААС	GACT	GGG	ATAAC	:	101
XJU-1_Bc	:	TTAG	C <mark>GGC</mark> GG	ACGGG	-TGAC	TAAC	ACGI	GGC	TAA	CCTG	CCC	ATAAC	GACT	GGG	ATAAC	:	105
PR35-2-1_B	:	TTAG	C <mark>GGC</mark> GG	ACGGG	-TGAC	TC-C	ACGI	GGC	TAA	CCTG	CCC	ATAAC	GACT	GGG	ATAAC	:	105
760_Bpum	:	TTAG	C <mark>GGC</mark> GG	ACGGG	-TG <mark>A</mark> C	TAAC	ACGI	GGG	TAA	CCIG	ССТ	GTAAC	GACT	GGG	ATAAC	:	108
Ssuccinu	:	TTAG	C <mark>GGC</mark> GG	ACGGG	-TG <mark>A</mark> G	TAAC	ACGI	GGC	TAA	CCTA	ССТ	ATAAC	GACT	GGA	ATAAC	:	103
ST7_Clone_	:	TTAG	T <mark>GGC</mark> GA	ACGGG	-TGA	TAAC	ACGI	GAC	TAA	CCTG	CCC	TTAAC	CICT	GGG	ATAAG	:	97
88_17_clon	:	G	C <mark>GGC</mark> GG	ACGGG	-TGAG	TAAT	GCTT	AGC	-AA	TCTG	ССТ	GTTAC	GIGG	GGG	ACAAC	:	100
Acinetobac	:	G	C <mark>GGC</mark> GG	ACGGG	-TGAG	TAAT	GCTT	AG	-AA	TCTG	CCT	ATTA	SIGG	GGG	ACAAC	:	104
TDIW13_Aci	:	G	C <mark>GGC</mark> GG	ACGGG	-TGAG	TAAT	GCTT	AG	-AA	TCTG	CCT	ATTA	SIGG	GGG	ACAAC	:	104
A449_Asa	:	CGAG	C <mark>GGC</mark> GG	ACGGG	-TGAG	TAAT	GCCI	GGC	-GA	TCTG	CCC	AGTC	AGG	GGG	ATAAC	:	102
211c A. ve	:	CGAG	C <mark>GGC</mark> GG	ACGGG	-TGAG	TAAT	GCCI	GGG	-AA	ATTG	CCC	AGTC	GAGG	GGG	ATAAC	:	102
ATCC 17527	:	G	CGGCGG	ACGGG	-TGAC	TAAT	GCCT	AGC	-AA	TCTG	ССТ	GGTA	GIGG	GGG	ACAAC	:	92
PC16 P. pu	:	G	CGGCGG	ACGGG	-TGAG	TAAT	GCCT	AGC	-AA	TCTG	ССТ	GGTA	SIGG	GGG	ACAAC	:	98
PT03 Bacte	:	G	CGGCGG	ACGGG	-TGAC	TAAT	GCCT	AGC	-AA	TCTG	ССТ	GGTA	STGG	GGG	ATAAC	:	96
KVD-unk-80	:	AG	IGGCGA	ACGGG	-TGAC	TAAT	ACAT	CGC	-AA	CGIG	CCC	TGTC	STGG	GGG	ATAAC	:	101
J. lividum	:	AG	TGGCGA	ACNGG	GTGAC	ТААТ	АТА	CGC	-AA	CGTA	CCC	TGGAC	TGG	GGG	АТААС	:	103
L. ginseng	•	AG	TGGCGA	ACGGG	-TGAC	TAAT	GCAT	CGC	-AA	CGTG	CCC	AGAAC	ЗТGG	GGG	ATAGC	•	99
6C 13 Vari		AG	TGGCGA	ACGGG	-TGAC	TAAT	ACAT	CGC	-AA	CGTG	CCC	AATGO	TGG	GGG	ATAAC		98
D acidovo		AG	TGGCGA	ACGGG	TGAC	TAAT		CGC	-AA	CGTG	CCC	AGTCO	TGG	GGG	АТААС		99
300C-C03 C	:	-TAG	TGGCGC	ACGGG		TAAC	GCGT	GGC	-AA	тстс		TTTG	TTC	GGA		:	90
cta CGOE25	:	-TAC	TGGCGC	ACGGG			GCGT	GGG	- A A	тстс		TTTG		GGA	ΑΤΑΑΟ	:	89
BV14 Clope	:	-T-C								тстс						÷	84
BIR2_r lim	:	-CTC										TTCCC				:	82
MP20 Sphin	:			ACCCC						TCTC		TTCCC				:	92
Dece72 line	:			ACGGG	TCCC											:	92
1/1 07 22	:			ACGGG	TCCC							TTCCC		CCA		:	0 0 1
1/4_C/_JZ_	•			ACGGG								TCACC		GGA CCA	ATAAC	•	01
MDT100 Clo	•	-IAG		ACGGG								TGAGC		GGA CCA	ATAAC	•	91 07
WBIIUU_CIU	•	AG			TGAG		ACGI							GGA CC⊅		•	0 /
LINV401_X.	:	AG										CAIGO		GGA CC7	АТААС АТААС	:	00
V4.BU.U5_B	:			ACGGG			ACGI					I I AGC		GGA	ATAAC	:	δ/ 100
549_Cnryse	:	AGAG		ACGGG		GAAC	ACGI	GIC					AGG		ATAGC	:	TUZ
гвэз_Ркг	:	AAAG	TRACEC	ACGGG		TAAC	JUUU	ATC			CCT GG	TAATC	-AGG	GGG	ALAGC	:	97
		aG	GGCg	ACGGG	TG (таа	сí		∍ aA	cīg	CC		τ	GG .	AtAa		

		120	C	÷		1	40		*		1	60	*		
92-0600_Ar	:	CCTGG	GAAA	CTGGGT	TAAT	ACCG	GAT	ATG-	-ACTGA	TCATC	GCZ	TGG	TG-GTTGGTG	:	152
5N-4_Kpa	:	CCCGG	GAAA	CTGGGT	TAAT	ACTG	GAT	GCT-	ACATG	TCACC	GCZ	TGG	TG-GTGTGTG	:	158
4RS-9a M.	:	CCTGG	GAAA	CTGGGT	TAAT	ACCG	GAT	AGG-	AGCGC	CCACC	GC	TGG	TG-GGTGTTG	:	153
Amico6_Var	:	CCTGG	GAAA	CTGGGT	TAAT	ACCG	GAT	AGG-	-AGCGT	CCACC	GCZ	TGG	TG-GGTGTTG	:	151
MT2.2 Derm	:	CCTGG	GAAA	CTGGGT	TAAT	ACTG	GAT	ATG-	-accaa	TCACT	GCZ	TGG	TGTGTTGGTG	:	154
Lact5.2 B.	:	CTCGG	GAAA	TCGTGG	TAAT	ACCG	GAT	ATG-	-AACTT	CTACC	GCZ	TGG	TG-GTCGTTG	:	158
rJ6 Bacter	:	CGCTG	GAAA	CGGCGT	TAAT	ACTG	GAT	ACN-	-AGCTG	CGATC	GC	TGG	TCAGTAGCTG	:	149
PAO-12 Mic	:	CGCTG	GAAA	CGGCGT	TAAT	ACTG	GAT	ATG-	-TGACG	TGACC	GCZ	TGG	TCTGCGTCTG	:	156
sp.7 4K Mi	:	AGTTG	GAAA	CAGCTG	TAAT	ACCG	GAT	ACG-	AGCTT	CGAAG	GCZ	тст	TCAGAAGCTG	:	158
wqed11 Lei	:	CGTTG	GAAA	CGACGT	TAAT	ACTG	GAT	ATG-	ACAAC	CGATG	GCZ	TCG	TCTGGTTGTG	:	160
Ljaponic	:	CGCCG	GAAA	CGGCGG	TAAT	ACTG	GAT	ATTO	CAGCGT	CTGCC	GCZ	TGG	TG-GGTGTTG	:	154
ML0004 R.	:	CCTGG	GAAA	CTGGGT	TAAT	ACCG	GAT	ATG-	-ACCAA	AGGCT	GCZ	TGG	TT-TTTGGTG	:	155
6_Clone_Un	:	CCGGC	GAAA	GCCGGAT	TAAT	ACCG	CAT	GAG-	-ACCTG	AGGGT	G-Z	AAG	CG-GGGGATC	:	153
CICCHL JQ9	:	TCCGG	GAAA	CCGGGGG	TAAT	ACCG	GAT	AAT-	-ATTTT	GAACT	GCZ	TGG	TTCGAAATTG	:	157
XJU-1_Bc	:	TCCGG	GAAA	CCGGGGG	TAAT	ACCG	GAT	AAT-	-ATTTT	GAACT	GCZ	TGG	TTCGAAATTG	:	161
PR35-2-1_B	:	TCCGG	GAAA	CCGGGGG	TAAT	ACCG	GAT	AAC-	-ATTTT	GAACT	GCZ	TGG	TTCGAAATTG	:	161
760 B. pum	:	TCCGG	GAAA	CCGGAG	TAAT	ACCG	GAT	AGT-	-TCCTT	GAACC	GCZ	TGG	TTCAAGGATG	:	164
Ssuccinu	:	TTCGG	GAAA	CCGGAG	TAAT	GCCG	GAT	AAC-	-ATATA	GAACC	GCZ	TGG	TTCTATAGTG	:	159
ST7_Clone_	:	CCTGG	GAAA	CTGGGT	TAAT	ACCG	GAT	AGG-	-AGCGT	CCACC	GCZ	TGG	TGGGTGTTGG	:	153
88_17_clon	:	ATTCC	GAAA	GGAATG	TAAT	ACCG	CAT	ACG-	-СССТА	CGGGG	G-Z	AAG	CAGGGGATCT	:	155
Acinetobac	:	ATTCC	GAAA	GGAATG	TAAT	ACCG	CAT	ACG-	-ссста	CGGGG	G-Z	AAG	CAGGGGATCT	:	159
TDIW13_Aci	:	ATTCC	GAAA	GGAATGO	TAAT	ACCG	CAT	ACG-	-ссста	CGGGG	G-Z	AAG	CAGGGGATCT	:	159
A449_Asa	:	AGTTG	GAAA	CGACTG	TAAT	ACCG	CAT	ACG-	-ссста	CGGGG	G-Z	AAG	GAGGGGACCT	:	157
211c_Ave	:	AGTTG	GAAA	CGACTG	TAAT	ACCG	CAT	ACG-	-ссста	CGGGG	G-Z	AAG	CAGGGGACCT	:	157
ATCC_17527	:	GTCTC	GAAA	GGGACG	TAAT	ACCG	CAT	ACG-	-ТССТА	CGGGA	G-Z	AAG	CAGGGGACCT	:	147
PC16_Ppu	:	GTCTC	GAAA	GGGACG	TAAT	A <mark>C</mark> CG	CAT	ACG-	-TCCTA	CGGGA	G-I	AAG	CAGGGGACCT	:	153
PT03_Bacte	:	GTTCG	GAAA	CGGACG	TAAT	ACCG	CAT	ACG-	-ТССТА	CGGGA	G-I	AAG	CAGGGGACCT	:	151
KVD-unk-80	:	TAGTC	GAAA	GATTAG	TAAT	A <mark>C</mark> CG	CAT	ACG-	-ACCTG	AGGGT	G-I	AAG	CGGGGGGACCG	:	156
Jlividum	:	GTAGC	GAAA	GTTACG	TAAT	A <mark>C</mark> CG	CAT	ACG-	-АТСТА	CGGAT	G-I	AAG	TGGGGGGATCG	:	158
Lginseng	:	CCGGC	GAAA	GCCGGAI	TAAT	A <mark>C</mark> CG	CAT	GAG-	-ACCTG	AGGGT	G–I	AAG	CGGGGGGATCG	:	154
6C_13_Vari	:	GCAGC	GAAA	GCTGTG	TAAT	A <mark>C</mark> CG	CAT	AAG-	-ATCCA	AGGAT	G-I	AAG	CAGGGGACCG	:	153
Dacidovo	:	TACTC	GAAA	GAGTAG	TAAT	A <mark>C</mark> CG	CAT	ACG-	-ATCTG	AGGAT	G-I	AAG	CGGGGGGACCT	:	154
300C-C03_C	:	AGTTA	GAAA	TGACTG	TAAT	A <mark>C</mark> CG	GAT	GAT-	-GTCTT	CGGAC	C- <mark>/</mark>	AAG	}	:	135
ctg_CGOF25	:	AGTTA	GAAA	TGACTG	TAAT	A <mark>C</mark> CG	GAT	GAT-	-GTCTT	CGGAC	C-Z	AAG		:	134
BY14_Clone	:	AGTTA	GAAA	TGACTG	TAAT	A <mark>C</mark> CG	GAT	GAT-	-GACTT	CGGTC	C-Z	AAG		:	129
BIR2-r_lim	:	AGTGA	GAAA	TTACTG	TAAT	A <mark>C</mark> CG	GAT	GAT-	-GTCTT	CGGAC	C-Z	AAG		:	127
MP20_Sphin	:	AGTTA	GAAA	TGACTG	TAAT	A <mark>C</mark> CG	GAT	GAT-	-GACGA	.AAGTC	C-Z	AAG		:	137
DSSF72_Unc	:	AGCGA	GAAA	TTGCTG	TAAT	A <mark>C</mark> CG	GAT	GAT-	-GACGT	AAGTC	C-I	AAG		:	134
1/4_C7_32_	:	TCAGA	GAAA	TTTGTG	TAAT	A <mark>C</mark> CG	ΓAΊ	AAT-	-GTCTT	CGGAC	C-I	AAG		:	126
AKIW820_Cl	:	TCCCC	GAAA	GGGGTG	TAAT	A <mark>C</mark> CG	GAT	AAT-	-GTCTT	CGGAC	C-I	AAG		:	136
WBI100_Clo	:	CCAGG	GAAA	CTTGGA	TAAT	ACCG	GAT	ACG-	-CCCTT	CGGGG	G-7	AAG		:	132
ENV481_X	:	CCAGG	GAAA	CTTGGAI	TAAT	ACCG	ΓAΊ	GTG-	-CCCTT	CGGGG	G-Z	AAG		:	125
V4.B0.05_B	:	TCAGG	GAAA	CTTGTGC	TAAT	ACCG	AAT	GTG-	-CCCTT	CGGGG	G-Z	AAG		:	132
549_Chryse	:	CTTTC	GAAA	GGAAGAI	TAAT	ACCC	CAT	AAT <i>i</i>	Α-ΤΑΤΑ	GAGTG	GC	TCA	CTTTATATTG	:	158
PB93_Pkr	:	CCGAA	GAAA	TTCGGAI	TAAC	ACCG	CAT	AAAA	ACACA	GAGTA	GC7	TTA	CTCAATGTTC	:	154
		(GAAA		TAAt	aCcg	ΑI				g P	A g	ſ		

		180	7	*	200	*	220			
92-0600_Ar	:	GAAAGCTT	TTTGI	IGGTTTTG	GATG <mark>GA</mark> C	TCGCGGCCI	ATCAGCT	T <mark>GTTGG</mark> TG	:	203
5N-4_Kpa	:	GAAAGGG1	TTACT	IGGTCTTG	GATG <mark>GG</mark> C	TCACGGCCI	ATCAGCT	TGTTGGTG	:	209
4RS-9a_M	:	GAAAGA1	TAT	CGGTTTTG	GATG <mark>G</mark> AC	TCGCGGCCI	ATCAGCT	TGTTGGTG	:	203
Amico6_Var	:	GAAAGA1	TAT	CGGTTTTG	GATGGAC	TCGCGGCCI	ATCAGCT	TGTTGGTG	:	201
MT2.2_Derm	:	GAAAGA1	TTTTT	IGGTGGGG	GATGGAC	TCGCGGCCI	ATCAGCT	TGTTGGTG	:	204
Lact5.2_B.	:	GAAAGA1	TAT	CGGTGAGG	GATGGAC	TCGCGGCCI	ATCAGTT	TGTTGGTG	:	208
rJ6_Bacter	:	GAAAGA1	TTTTT	IGGTCAGG	GATG <mark>AG</mark> C	TCGCGGCCI	ATCAGCT	TGTTGGTG	:	199
PAO-12_Mic	:	GAAAGAA	TTTC-	-GGTTGGG	GATG <mark>GG</mark> C	TCGCGGCCI	ATCAGCT	TGTTGGTG	:	205
sp.7_4K_Mi	:	GAAAGAA	CTTC-	-GGTCAGG	GATG <mark>AG</mark> C	TCGCGGCCI	ATCAGCT	A <mark>GTTGG</mark> TG	:	207
wged11_Lei	:	GAAAGA1	TTTTT	IG <mark>GTTGG</mark> G	GATG <mark>G</mark> AC	TCGCGGCCI	ATCAGCT	T <mark>GTTGG</mark> TG	:	210
Ljaponic	:	GAAAGCT	CCGG	CGGATTGG	GATG <mark>GG</mark> C	TCGCGGCCI	ATCAGCT	TGTTGGTG	:	204
ML0004_R	:	GAAAGG1	TIACI	IGGTGCAG	GATG <mark>GG</mark> C	CCGCGGCCI	ATCAGCT	TGTTGGTG	:	205
6_Clone_Un	:	GCAAGAC	CICG	CGCTTTTG	GA <mark>GC</mark> GG <mark>C</mark>	CGATGTCAG	GATTAGCT	A <mark>GTTGG</mark> TG	:	203
CICCHL_JQ9	:	AAAGGCGGCTTCGG	GCIGT	CACTTATG	GATGGAC	CCGCGTCGC	ATTAGCT	A <mark>GTTGG</mark> TG	:	214
XJU-1_Bc	:	AAAGGCGGCTTCGG	GCIGT	CACTTATG	GATG <mark>G</mark> AC	CCGCGTCGC	CATTAGCT	A <mark>gttgg</mark> tg	:	218
PR35-2-1_B	:	AAAGGCGGCTTCGG	GCIGIC	CACTTATG	GATG <mark>G</mark> AC	CCGCGTCGC	CATTAGCT	A <mark>gttgg</mark> tg	:	218
760_Bpum	:	AAAGACGGTTTCGG	GCIGIC	CACTTACA	GATG <mark>GA</mark> C	CCGCGGCGC	CATTAGCT	A <mark>gttgg</mark> tg	:	221
Ssuccinu	:	AAAGATGGTTTTG-	-CTAT	CACTTATA	GATG <mark>G</mark> AC	CCGCGCCGI	ATTAGCT	AGTTGGTA	:	215
ST7_Clone_	:	AAAGAT	TTAT	CGGTTTTG	GATG <mark>GA</mark> C	TCGCGGCCI	ATCAGCT	TGTTGGTG	:	202
88_17_clon	:	TCGGAC	-CTTGC	CGCTAATA	GATG <mark>AG</mark> C	CTAAGTCGG	GATTAGCT	A <mark>gttgg</mark> tg	:	204
Acinetobac	:	TCGGAC	-CTTGC	CGCTAATA	GATG <mark>AG</mark> C	CTAAGTCGG	GATTAGCT	A <mark>gttgg</mark> tg	:	208
TDIW13_Aci	:	TCGGAC	-CTTGC	CGCTAATA	GATG <mark>AG</mark> C	CTAAGTCGC	GATTAGCT	A <mark>gttgg</mark> tg	:	208
A449_Asa	:	TCGGGC	-CTTTC	CGCGATTG	gatg <mark>aa</mark> c	CCAGGTGGG	GATTAGCT	A <mark>gttgg</mark> tg	:	206
211c_Ave	:	TCGGGC	-CTTG	CGCGATTG	GATATGC	CCAGGTGGG	GATTAGCT	T <mark>GTTGG</mark> TG	:	206
ATCC_17527	:	TCGGGC	-CTTG	CGCTATCA	GATG <mark>AG</mark> C	CTAGGTCGG	GATTAGCT	A <mark>gttgg</mark> tg	:	196
PC16_Ppu	:	TCGGGC	-CTTGC	CGCTATCA	GATG <mark>AG</mark> C	CTAGGTCGG	GATTAGCT	A <mark>gttgg</mark> tg	:	202
PT03_Bacte	:	TCGGGC	-CTTG(CGCTATCA	GATG <mark>AG</mark> C	CTAGGTCGG	GATTAGCT	A <mark>GTTGG</mark> TG	:	200
KVD-unk-80	:	TAAGGC	-CTCG	CGCGATAG	GA <mark>GC</mark> GG <mark>C</mark>	CGATGTCTO	GATTAGCT	A <mark>GTTGG</mark> TG	:	205
Jlividum	:	CAAGAC	-CTCA1	IGCTCGTG	GA <mark>GCGG</mark> C	CGATATCTO	GATTAGCT	AGTTGGTA	:	207
Lginseng	:	CAAGAC	-CTCG	CGCTTTTG	GA <mark>GCGG</mark> C	CGATGTCAG	GATTAGCT	A <mark>GTTGG</mark> TG	:	203
6C_13_Vari	:	CAAGGC	-CTTG(CGCGATTG	GA <mark>GCGG</mark> C	CGATGGCAG	GATTAGGT	A <mark>GTTGG</mark> TG	:	202
Dacidovo	:	TCGGGC	-CTCG	CGCGATTG	GA <mark>GC</mark> GGC	CGATGGCAG	GATTAGGT	AGTTGGTG	:	203
300C-C03_C	:	AT	TTAT	CGGCAAGG	GATGAGC	CCGCGTAGG	GATTAGGT	AGTTGGTG	:	180
ctg_CGOF25	:	AT	TTAT	CGGCAAAG	GATGAGC	CCGCGTAGG	GATTAGGT	AGTTGGTG	:	179
BY14_Clone	:	AT	-TTAT(CGCCAGAG	GATGAGC	CCGCGTAGG	GATTAGGT	AGTTGGTG	:	174
BIR2-r_lim	:	AT	-TTAT(CGCCCAAG	GATGAGC	CCGCGTAGG	GATTAGGT	AGTTGGTG	:	172
MP20_Sphin	:	AT	-TTAT(CGCCCAAG	GATGAGC	CCGCGTAAG	GATTAGCT	AGTTGGTG	:	182
DSSF72_Unc	:	AT	TTAT	CGCCCAGG	GATGAGC	CCGCGTAGG	GATTAGGT	AGTTGGTG	:	179
1/4_C7_32_	:	AT	TTAT	CGCCCAAG	GATG <mark>AG</mark> C	CCGCGTAAG	GATTAGCT	TGTTGGTG	:	171
AKIW820_Cl	:	AT	-TTAT(CGCCTTTA	GATGGGC	CCGCGTTGG	GATTAGCT	AGTTGGTG	:	181
WBI100_Clo	:	AT	-TTAT(CGCCGAAA	GATCGGC	CCGCGTCTC	GATTAGCT	AGTTGGTG	:	177
ENV481_X	:	AT	-TATC	CGCCATTG	GATGAAC	CCGCGTCGC	GATTAGCT	AGTTGGTG	:	170
V4.B0.05_B	:	AT	TIAT	CGCCTTTA	GAGCGGC	CCGCGTCTC	GATTAGCT	AGTTGGTG	:	177
549_Chryse	:	AAAAC'I'	-GAGG]	IGGATAAA	GATGGGC	ACGCGCAAC	FATTAGAT	AGTIGGIG	:	207
PB93_Pkr	:	AAATAT	- T I A T 7	AGGATTAA	GATGGGC	ATGCGTGTC	ATTAGCT	AGTTGGCG	:	203
			t	g (jatg C	g	AT AGCT	GTTGGtg		

		*		240)	*	2	60		*		280			
92-0600_Ar	:	AC	GTAAT	G <mark>GC</mark> T1	ACCAAGG	CGACG	ACGGGT	AGCC	GGCC	TGAGAG	GGTGA	CCGC	GCCAC	:	260
5N-4_Kpa	:	AG	GTAAT	GGCTC	ACCAAGG	CGACG	ACGGGT	AGCC	GGCC	TGAGAG	GGTGA	CCGC	GCAC	:	266
4RS-9a M.	:	AC	GTAAT	GGCTO	ACCAAGG	CGACG	ACGGGT	AGCC	GGCC	TGAGAG	GGTGA	CCGC	GCCAC	:	260
Amico6 Var	:	AG	GTAAT	GGCTO	ACCAAGG	CGACGZ	CGGGT	AGCC	GGCC	TGAGAG	GGTGA	CCGC	GCCAC	:	258
MT2.2 Derm	:	GC	GTAAT	GGCCT	ACCAAGG	CGACG	ACGGGT	AGCC	GGCC	TGAGAG	GGCGA	CCGC	GCCAC	:	261
Lact 5.2 B.		AG	GTAAT	GGCTC	ACCAAGA	CGATG	ACGGGT	AGCC	GGCC	TGAGAG	GGCGA	CCGC	CCAC	•	265
rJ6 Bacter	:	AC	GTAAT	GGCTC	ACCAAGG	NGTCG	ACGGGT	AGCC	GGCC	TGAGAG	GGTGA	CCGC	GCCAC	:	256
PAO-12 Mic	:	AC	GTAAT	GGCTO	ACCAAGG	CGTCG	ACGGGT	AGCC	GGCC	TGAGAG	GGTGA	CCGC	GCCAC	:	262
sp.7 4K Mi	:	AC	GTAAT	GGCTC	ACCAAGG	CGTCG	ACGGGT	AGCC	GGCC	TGAGAG	GGTGA	CCGC	CCAC	:	264
waed11 Lei	:	AC	GTAAT	GGCTC	ACCAAGG	CGACG	ACGGGT	AGCC	GGCC	TGAGAG	GGTGA	CCGC	GCCAC	:	267
L. japonic	:	AC	GTAGT	GGCTC	ACCAAGG	CTTCG	ACGGGT	AGCC	GGCC	TGAGAG	GGCGA	CCGC	GCCAC	:	261
ML0004 R.	:	GC	GTAAT		ACCAAGG	CGACG	ACGGGT	AGCC	GACC	TGAGAG	GGTGA	CCGC	GCCAC		262
6 Clone Un	:	GC	GTAAA	GGCCI	ACCAAGG	CGACG	TCTGT	AGCT	GGTC	TGAGAG	GACGA	CCAC	GCCAC		260
CICCHL JO9		AG	GTAAC	GGCTC	ACCAAGG	CAACG	ATGCGT	AGCC	GACC	TGAGAG	GGTGA	TCG	CCAC	•	271
XJU-1 B. C	:	AC	GTAAC	GGCTC	ACCAAGG	CAACG	ATGCGT	AGCC	GACC	TGAGAG	GGTGA	TCG	GCCAC		275
PR35-2-1 B		AC	GTAAC	GGCTC	ACCAAGG	CAACG	ATGCGT	AGCC	GACC	TGAGAG	GGTGA	TCG	CCAC	•	275
760 B. pum		GC	GTAAT	GGCTC	ACCAAGG	CGACG	ATGCGT	AGCC	GACC	TGAGAG	GGTGA	TCG	GCAC		278
S succinu		AC	GTAAT	GGCTT	ACCAAGG	CGACG	ATACGT	AGCC	GACC	TGAGAG	GGTGA	TCG	CCAC		272
ST7 Clone		AG	GTAAT	GGCTC	ACCAAGG	CGACG	ACGGGT	AGCC	GGCC	TGAGAG	GGTGA	CCGC	GCAC		2.59
88 17 clon	:	GC	GTAAA		ACCAAGG	CGACG	TCTGT	AGCG	GGTC	TGAGAG	GATGA	TCC	GCCAC		261
Acinetobac	:	GC	GTAAA	GGCCT	ACCAAGG	CGACG	ATCTGT	AGCG	GGTC	TGAGAG	GATGA	TCCC	GCCAC	:	265
TDIW13 Aci	:	GC	GTAAA	GGCCT	ACCAAGG	CGACG	ATCTGT	AGCG	GGTC	TGAGAG	GATGA	TCCC	GCCAC	:	265
A449 A. sa	:	GC	GTAAT	GGCTC	ACCAAGG	CGACG	ATCCCT	AGCT	GGTC	TGAGAG	GATGA	TCAC	CCAC	:	263
211c A. ve	:	AC	GTAAT	GGCTC	ACCAAGG	CGACG	ATCCCT	AGCT	GGTC	TGAGAG	GATGA	TCAC	GCCAC	:	263
ATCC 17527	:	AC	GTAAT	GGCTO	ACCAAGG	CGACG	ATCCGT	AACT	GGTC	TGAGAG	GATGA	TCAC	TCAC	:	253
PC16 P. pu	:	AG	GTAAT	GGCTO	ACCAAGG	CGACG	ATCCGT	AACT	GGTC	TGAGAG	GATGA	TCAC	TCAC	:	259
PT03 Bacte	:	AG	GTAAT	GGCTO	ACCAAGG	CGACG	ATCCGT	AACT	GGTC	TGAGAG	GATGA	TCAC	TCAC	:	257
KVD-unk-80	:	GG	GTAAA	GGCC	ACCAAGG	CGACG	ATCAGT	AGCT	GGTC	TGAGAG	GACGA	TCAC	GCCAC	:	262
J. lividum	:	GC	GTAAA	AGCCT	ACCAAGG	CATCG	ATCAGT	AGCT	GGTC	TGAGAG	GACGA	CCAC	GCCAC	:	264
L. ginseng	:	GG	GTAAA	GGCCI	ACCAAGG	CGACG	ATCTGT	AGCT	GGTC	TGAGAG	GACGA	CCAC	GCCAC	:	260
6C_13_Vari	:	AG	GTAAA	GGCTC	ACCAAGC	CGTCG	ATCTGT	AGCT	GGTC	TGAGAG	GACGA	CCAC	GCCAC	:	259
Dacidovo	:	GG		AGCT1	ACCAAGC	CGACG	ATCTGT	AGCT	GGTC	TGAGAG	GACGA	CCAC	GCCAC	:	260
300C-C03 C	:	GC	GTAAA	GGCCI	ACCAAGC	CGACG	ATCCTT	AGCT	GGTC	TGAGAG	GATGA	TCAC	GCCAC	:	237
ctq_CGOF25	:	GG	GTAAA	GGCCI	ACCAAGC	CGACG	ATCCTT	AGCT	GGTC	TGAGAG	GATGA	TCAC	GCCAC	:	236
BY14 Clone	:	GC	GTAAA	GGCC1	ACCAAGC	CGACG	ATCCTT	AGCT	GGTC	TGAGAG	GATGA	TCAC	GCCAC	:	231
BIR2-r_lim	:	GG	GTAAT	GGCC1	ACCAAG	CGACG	ATCCTT	AGCT	GGTC	TGAGAG	GATGA	TCAC	GCAC	:	229
MP20_Sphin	:	AG	GTAAA	GGCTC	ACCAAGG	CTACG	ATCTT	AGCT	GGTC	TGAGAG	GATGA	TCAC	GCCAC	:	239
DSSF72 Unc	:	ΤG	GTAAA	GGCGC	ACCAAG	CTACG	ATCCTT	AGCT	GGTC	TGAGAG	GATGA	TCAC	GCAC	:	236
1/4_C7_32_	:	AC	GTAAA	AGCTO	ACCAAGG	CGACG	ATCTT	AGCT	GGTC	TGAGAG	GATGA	TCAC	GCCAC	:	228
AKIW820_Cl	:	GG	GTAAA	G <mark>GC</mark> CI	ACCAAGG	CGACG	ATCCAT	AGCT	GGTC	TGAGAG	GATGA	TCAC	GCCAC	:	238
WBI100_Clo	:	AC	GTAAA	GGCTC	ACCAAGG	CGACG	ATCAGT	AGCT	GGTC	TGAGAG	GATGA	TCAC	GCAC	:	234
ENV481_X	:	AC	GTAAA	GGCTC	ACCAAGG	CGACG	ATCCGT	AGCT	GGTC	TGAGAG	GATGA	TCAC	GCCAC	:	227
V4.B0.05_B	:	AC	GTAAA	G <mark>GC</mark> TC	ACCAAGG	CGACG	ATCAGT	AGCT	GGTC	TGAGAG	GATGA	TCAC	GCCAC	:	234
549_Chryse	:	AC	GTAAC	G <mark>GC</mark> TC	ACCAAGT	CGATG	ATCTT	AGGG	GGCC	TGAGAG	GGTGA	TCCC	CCAC	:	264
PB93_Pkr	:	GC	GTAAC	G <mark>GC</mark> C	ACCAAGG	CGACG	ATGACT	AGGG	GATC	TGAGAG	GATGA	CCCC	CCAC	:	260
		G	gTAa 🛛	gGC	ACCAAGg	CgacG	A T	Agc	Gg C	TGAGAG	G tGA	C	JCCAC		

		*	300	*	320	*	340		
92-0600_Ar	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA <i>I</i>	ATATTGCA	:	317
5N-4_Kpa	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATATTGCA	:	323
4RS-9a_M	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATATTGCA	:	317
Amico6_Var	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATATTGCA	:	315
MT2.2_Derm	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATATTGCA	:	318
Lact5.2_B.	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATATTGCA	:	322
rJ6_Bacter	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATATTGCA	:	313
PAO-12_Mic	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATATTGCA	:	319
sp.7_4K_Mi	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGT <mark>GG</mark> GGA <i>I</i>	ATATTGCA	:	321
wged11_Lei	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGT <mark>GG</mark> GGA <i>I</i>	ATATTGCA	:	324
Ljaponic	:	ATTGGGA	CTGAGA <mark>T</mark> ACGO	СССА <mark>А</mark> АСТССТА	CGGGAGGCAG	CAGT <mark>GG</mark> GGA <i>I</i>	ATATTGCA	:	318
ML0004_R	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGT <mark>GG</mark> GGA <i>I</i>	ATATTGCA	:	319
6_Clone_Un	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGT <mark>G</mark> GGA <i>I</i>	ATTTTGGA	:	317
CICCHL_JQ9	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGT <mark>A</mark> GGGA <i>I</i>	ATCTTCCG	:	328
XJU-1_Bc	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGT <mark>A</mark> GGGA <i>I</i>	ATCTTCCG	:	332
PR35-2-1_B	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGT <mark>A</mark> GGGA <i>I</i>	ATCTTCCG	:	332
760_Bpum	:	actggga	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGT <mark>A</mark> GGGA	ATCTTCCG	:	335
Ssuccinu	:	actgg <mark>a</mark> a	CTGAGACACGO	T <mark>CCAG</mark> ACTCCTA	CGGGAGGCAG	CAGT <mark>A</mark> GGGA	ATCTTCCG	:	329
ST7_Clone_	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA <i>I</i>	ATATTGCA	:	316
88_17_clon	:	actggga	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA <i>I</i>	ATATTGGA	:	318
Acinetobac	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA <i>I</i>	ATATTGGA	:	322
TDIW13_Aci	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATATTGGA	:	322
A449_Asa	:	ACTGG <mark>A</mark> A	CTGAGACACGO	TCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA <i>I</i>	ATATTGCA	:	320
211c_Ave	:	ACTGG <mark>A</mark> A	CTGAGACACGO	STCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATATTGCA	:	320
ATCC_17527	:	actggaa	CTGAGACACGO	GTCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATATTGGA	:	310
PC16_Ppu	:	ACTGG <mark>A</mark> A	CTGAGACACGO	STCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATATTGGA	:	316
PT03_Bacte	:	ACTGG <mark>A</mark> A	CTGAGACACGO	G <mark>T</mark> CCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATATTGGA	:	314
KVD-unk-80	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATTTTGGA	:	319
Jlividum	:	actgg <mark>a</mark> a	CTGAGACACGO	S <mark>T</mark> CCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATTTTGGA	:	321
Lginseng	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATTTTGGA	:	317
6C_13_Vari	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATTTTGGA	:	316
Dacidovo	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATTTTGGA	:	317
300C-C03_C	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATATTGGA	:	294
ctg_CGOF25	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATATTGGA	:	293
BY14_Clone	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATATTGGA	:	288
BIR2-r_lim	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATATTGGA	:	286
MP20_Sphin	:	ACTGGGA	CTGAGACACGC	GCCCAGACTCCTA	CGGGAGGCAG	CAGTAGGGAA	ATATIGGA	:	296
DSSF72_Unc	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATATTGGA	:	293
1/4_C7_32_	:	ACTGGGA	CTGAGACACGG	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGAA	ATATIGGA	:	285
AKIW820_CI	:	ACTGGGA	CTGAGACACGG	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATATIGGA	:	295
MRIION_CTO	:	ATTGGGA	CIGAGACACGO	GCCCAAACTCCTA	CGGGAGGCAG	CAGIGGGGA	ATATTGGA	:	291
ENV481_X	:	ACTGGGA	CTGAGACACGO	GCCCAGACTCCTA	CGGGAGGCAG	CAGTGGGGA	ATATTGGA	:	284
V4.BU.U5_B	:	ATTGGGA	CIGAGACACGO	CCCAAACTCCTA			ATCTIGCG	:	291
549_Chryse	:	ACTGGTA	CIGAGACACG(ACCAGACTCCTA			ATATIGGA	:	321
FRA3_5kr	:	ACTGGTA	CIGAGACACGC	ACCAGACICCIA		CAGIIAA <mark>GGA</mark> A	ATATIGGT	:	317
		ACTGGGA	CIGAGACACGO	JCCCAGACTCCTA	CGGGAGGCAG	CAGIGGGGA	ar Tiga		

		*	360)	*	3	80	*	40		
92-0600_Ar	:	CAATGGGCG <mark>C</mark>	AAGC <mark>CTG</mark>	ATGCAGC	GACG	CCGCGTG <mark>A</mark>	G <mark>GGA</mark> TG.	A <mark>C</mark> GGCCTT-	CGGGTT	:	373
5N-4_Kpa	:	CAATGGGCG <mark>A</mark> Z	AAGC <mark>CTG</mark>	ATGCAGC	GACG	CCGCGTG <mark>A</mark>	G <mark>GGA</mark> TG.	A <mark>C</mark> G <mark>G</mark> CCTT-	-CG <mark>G</mark> GTT	:	379
4RS-9a_M	:	CAATGGGCG <mark>C</mark> Z	AAGC <mark>CTG</mark>	ATGCAGC	GACG	CCGCGTG <mark>A</mark>	G <mark>GGA</mark> TG.	ACG <mark>G</mark> CCT T -	•CG <mark>G</mark> GTT	:	373
Amico6_Var	:	CAATGGGCG <mark>A</mark> Z	AAGC <mark>CTG</mark> A	ATGCAGC	GACG	CCGCGTG <mark>A</mark>	.G <mark>GGA</mark> TG.	ACG <mark>G</mark> CCT T -	•CG <mark>G</mark> GTT	:	371
MT2.2_Derm	:	CAATGGGCG <mark>A</mark> Z	AAGC <mark>CTG</mark> A	ATGCAGC	G <mark>a</mark> cg	CCGCGTG <mark>A</mark>	.G <mark>GGA</mark> TG.	a <mark>c</mark> ggcctt-	•CG <mark>G</mark> G T T	:	374
Lact5.2_B.	:	CAATGGGCG <mark>A</mark> Z	AAGC <mark>CTG</mark> A	ATGCAGC	GACG	CCGCGTG <mark></mark> G	G <mark>G</mark> GATG.	A <mark>C</mark> GGCCTT-	-CG <mark>G</mark> GTT	:	378
rJ6_Bacter	:	CAATGGGCG <mark>C</mark> Z	AAGC <mark>CTG</mark> A	ATGCAGC	A <mark>A</mark> CG	CCGCGTG <mark>A</mark>	G <mark>GGA</mark> TG.	a <mark>cggcctt</mark> -	-CNGGTT	:	369
PAO-12_Mic	:	CAATGGGCG <mark>C</mark> I	AAGC <mark>CTG</mark> A	ATGCAGC <i>I</i>	A <mark>A</mark> CG	CCGCGTG <mark>A</mark>	.G <mark>GGA</mark> CG.	ACG <mark>G</mark> CCT T -	-CG <mark>G</mark> G T T	:	375
sp.7_4K_Mi	:	CAATGGGCG <mark>C</mark> Z	AAGC <mark>CTG</mark> A	ATGCAGC	A <mark>A</mark> CG	CCGCGTG <mark>A</mark>	.GG <mark>GA</mark> CG.	a <mark>cggcctt</mark> -	•CG <mark>G</mark> GTT	:	377
wged11_Lei	:	CAATGGGCG <mark>C</mark> A	AAGC <mark>CTG</mark>	ATGCAGC	ACG	CCGCGTG <mark>A</mark>	G <mark>GGA</mark> TG.	a <mark>cggcctt</mark> -	-CG <mark>G</mark> GTT	:	380
Ljaponic	:	CAATGGGCG <mark>G</mark>	AAGC <mark>CTG</mark>	ATGCAGC	ACG	CCGCGTG <mark>C</mark>	G <mark>G</mark> GATG.	a <mark>cggcctt</mark> -	•CG <mark>G</mark> GTT	:	374
ML0004_R	:	CAATGGGCG <mark>A</mark> I	AAGC <mark>CTG</mark>	ATGCAGC	GACG	CCGCGTG <mark>A</mark>	.G <mark>GGA</mark> TG.	A <mark>C</mark> GGCCTT-	CGGGTT	:	375
6_Clone_Un	:	CAATGGGCG <mark>C</mark>	AAGCCTGE	ATCCAGC	CATG	CCGCGTG <mark>C</mark>	GG <mark>GA</mark> AG.	AAGGCCTT-	CGGGTT	:	373
CICCHL_JQ9	:	CAATGG <mark>A</mark> CGA	AAG <mark>T</mark> CTG <i>I</i>	ACGGAGC	ACG	CCGCGTG <mark>A</mark>	GTGATG.	AAGGCTTT-	CGGGTC	:	384
XJU-1_Bc	:	CAATGG <mark>A</mark> CGA	AAG <mark>T</mark> CTG <i>I</i>	ACGGAGCA	ACG	CCGCGTG <mark>A</mark>	GTGATG.	AAGGCTTT-	CGGGTC	:	388
PR35-2-1_B	:	CAATGG <mark>A</mark> CGA	AAG <mark>T</mark> CTG <i>I</i>	ACGGAGCA	ACG	CCGCGTG <mark>A</mark>	GTGATG.	AAGGCTTT-	-CGGGTC	:	388
760_Bpum	:	CAATGG <mark>A</mark> CGA	AAG <mark>T</mark> CTG <i>I</i>	ACGGAGC	ACG	CCGCGTG <mark>A</mark>	GTGATG.	AAGGTTTT-	-CGGATC	:	391
Ssuccinu	:	CAATGGGCG <mark>A</mark> Z	AAGCCTGA	ACGGAGC <i>I</i>	ACG	CCGCGTG <mark>A</mark>	GTGATG.	AAGGTTTT-	CGGATC	:	385
ST7_Clone_	:	CAATGGGCG <mark>C</mark> Z	AAGCCTGA	ATGCAGC	GACG	CCGCGTG <mark>A</mark>	GGGATG.	a <mark>c</mark> ggcctt-	CGGGTT	:	372
88_17_clon	:	CAATGGGCG <mark>C</mark> Z	AAGCCTGA	ATCCAGC	CATG	CCGCGTGT	GTGAAG.	AAGGCCTT-	CTGGTT	:	374
Acinetobac	:	CAATGGGCGC	AAGCCTGA	ATCCAGC	CATG	CCGCGTGT	GTGAAG.	AAGGCCTT-	TTGGTT	:	378
TDIW13_Aci	:	CAATGGGGGG	AACCCTGZ	ATCCAGC	CATG	CCGCGTGT	GTGAAG.	AAGGCCTT-	TTGGTT	:	378
A449_Asa	:	CAATGGGGGA	AACCCTGA	ATGCAGC	CATG	CCGCGTGT	GTGAAG.	AAGGCCTT-	CGGGTT	:	376
211c_Ave	:	CAATGGGGGAA	AA <mark>C</mark> CCTG <i>I</i>	ATGCAGC(CATG	CCGCGTGT	GTGAAG.	AAGGCCTT-	CGGGTT	:	376
ATCC_1/52/	:	CAATGGGCGAA	AAGCCTGA	ATCCAGCO	ATG	CCGCGTGT	GTGAAG.	AAGGTCTT-		:	366
PC16_Ppu	:	CAATGGGCGAA	AAGCCTGA	ATCCAGC	C A TG	CCGCGTGT	GTGAAG.	AAGGTCTT-	CGGAIT	:	372
PT03_Bacte	:	CAATGGGCGAA	AAGCCTGA	ATCCAGC	CATG	CCGCGTGT	GTGAAG.	AAGGTCTT-	CGGATT	:	370
KVD-unk-80	:	CAATGGGGGCA	AA <mark>C</mark> CCTG <i>I</i>	ATCCAGC <i>I</i>	ATG	CCGCGTGT	GTGAAG.	AAGGCCTT-	CGGGTT	:	3/5
Jlividum	:		AAGCCTGA	ATCCAGC <i>I</i>	ATG	CCGCGTGA	GTGAAG.	AAGGCCTT-	CGGGII	:	3//
Lginseng	:		AAGCCTGA	ATCCAGCO	ATG		GGGAAG.	AAGGCCTT-	CGGGTT	:	3/3
6C_I3_Vari	:		AAGCCTGA	ATCCAGCO	AIG		AGGATG.	AAGGCCTT-	CGGGII	:	372
Dacidovo	:		AAGCCIGA	ATCCAGC <i>E</i>	AIG		AGGAIG.	AAGGUUII-		:	3/3
3000-003_0	:		AAGCCTGA	ATCCAGC <i>P</i>	ATG	CCGCGTGA	GTGATG.	AAGGCCTT-		:	350
Ctg_CGUE25	:		AGICIGE	ATCCAGC <i>E</i>	AIG	CCGCGIGA	GIGAIG.	AAGGUUII-	AGGGII	:	349
BIL4_CLONE	:		AGCCIGE	ATCCAGC <i>F</i>	AIG	CCGCGIGA	GIGAIG.	AAGGUUII-		:	344
BIRZ-r_IIII	:		AGCCIGE		AIG	CCGCGIGA	GIGAIG.	AAGGCCII-	AGGGII	:	342
MPZU_Sphin	:		AACCUIGE		AIG	CCGCGIGA	GIGAIG.	AAGGCCII-	AGGGII	:	222
DSSF / Z_UNC	:	CAAIGGGCGAA	AGCCIGE	ATCCAGC <i>F</i>	AIG	CCGCGIGA	GIGAIG.	AAGGUUII-	AGGGII	:	349
1/4_C/_3Z_	:		AGCCIGA		AIG	CCGCGIGA	GIGAIG.	AAGGUUII-	AGGGII	:	341 251
MRINOZU_UL	•		AGUUIGA			CCCCCTCA	GIGAIG.	AAGGUUII-	AGGGII	:	217
WDIIUU_CIO	•		AGCCIGA			CCCCCTCA	CTCATC	AAGGCUII-	AGGGII	•	34/ 310
$\Delta WV401_A.$	•		AGCCIGA		AIG	CCCCCTCA	ATCATC	AAGGUUII-	AGGGII	•	34U 317
5/9 Chruce	•	CAAIGGGCGAA				CCCCCTCA	ALGAIG		TCCCTT	•	34/ 370
DB03 D P~	:	CANTCEACEC				CCCCCCTC			TCCCTT	:	270 271
rbys_rkr	•	CAAIGGAGGC	ACTCICICE ACCTCI	ACCAGC		CCGCGIGC CCCCCTC		A aGaat T		•	514
		CARIGGYCG a	agueig	AL CAGU	л д	CCGCGIG	y GA G.	A YGCCLI	yuyıt		

		0	*	420	* 4	40 *		
92-0600_Ar	:	GTAAA	CCTCTTT	CAGTAGGGA	AGAAGCGA	AAGTG-A	:	408
5N-4 K. pa	:	GTAAA	CCTCTTT	CAGCAGGGA	AGAAGCCAC	AAGTG-A	:	415
4RS-9a M.	:	GTAAA	CCTCTTT	CAGTAGGGA	AGAAGCGA	AAGTG-A	:	408
Amico6 Var	:	GTAAA	CCTCTTT	CAGTAGGGA	AGAAGCGA	AAGTG-A	:	406
MT2.2 Derm	:	GTAAA	CCTCTTT	CACCAGGGA	GAAGCTA	ACGTG-A	:	409
Lact5.2 B.	:	GTAAA	CCTCTTT	CAGTAGGGA	GAAGCGA	AAGTG-A	:	413
rJ6 Bacter	:	GTAAA	CCTCTTT	TAGCAGGGA	GAAGCGA	AAGTG-A	:	404
PAO-12 Mic	:	GTAAA	CCTCTTT	TAGCAGGGA	GAAGCGA	AAGTG-A	:	410
sp.7 4K Mi	:	GTAAA	CCTCTTT	TAGCAGGGA	GAAGCGA	AAGTG-A	:	412
wqedll Lei	:	GTAAA	CCTCTTT	TAGTAGGGA	AGAAGCGT	AAGTG-A	:	415
L. japonic	:	GTAAA	CCGCTTT	CAACGCAGA	CGAAGCGA	AAGTG-A	:	409
ML0004_R	:	GTAAA	CCTCTTT	CAGCAGGGA	CGAAGCGA	AAGTG-A	:	410
6 Clone Un	:	GTAAA	CCGCTTT	TGTCAGGGA	GAAACGCTCTGGGTTAA	TAC-CCTGGGGTAATG-A	:	428
CICCHL JQ9	:	GTAAA	ACTCTGT	TGTTAGGGA	AGAACAAGTGCTAGTTGA	ATAAGCTGGCACCTTG-A	:	440
XJU-1 B. c	:	GTAAA	ACTCTGT	TGTTAGGGA	AGAACAAGTGCTAGTTGA	ATAAGCTGGCACCTTG-A	:	444
PR35-2-1_B	:	GTAAA	ACTCTGT	TGTTAGGGA	AGAACAAGTGCTAGTTGA	ATAAGCTGGCACCTTG-A	:	444
760_Bpum	:	GTAAA	GCTCTGT	TGTTAGGGA	AGAACAAGTGCGAGAGTA	ACT-GCTCGCACCTTG-A	:	446
Ssuccinu	:	GTAAA	ACTCTGT	TATTAGGGA	AGAACAAATGCGTAAGTA	ACT-GTGCGCATCTTG-A	:	440
ST7_Clone_	:	GTAAA	CCTCTT	CAGTAGGGA	AGAAGCGAAAG	TG-A	:	407
88_17_clon	:	GTAAA	GCACTTT	AAGCGAGGA	GAGGCTACTTGAATTAA	TAC-TCCAGGATAGTGGA	:	430
Acinetobac	:	GTAAA	GCACTTT	AAGCGAGGA	GAGGCTACTTGGATTAA	TAC-TCCAGGATAGTGGA	:	434
TDIW13_Aci	:	GTAAA	GCACTTT	AAGCGAGGA	GAGGCTACTAGTATTAA	TAC-TACTGGATAGTGGA	:	434
A449_Asa	:	GTAAA	GCACTTT	CAGCGAGGA	GAAAGGTTGGCGCCTAA	TAC-GTGTCAACTGTG-A	:	431
211c_Ave	:	GTAAA	GCACTTT	CAGCGAGGA	GAAAGGCTGATGCCTAA	TAC-GCATCAGCTGTG- <mark>A</mark>	:	431
ATCC_17527	:	GTAAA	GCACTTT	AAGTTGGGA	GAAGGGCAGTAACTTAA	TAC-TTTGCTGTTTTG- <mark>A</mark>	:	421
PC16_Ppu	:	GTAAA	GCACTTT	AAGTTGGGA	GAAGGGTTGTAGATTAA	TAC-TCTGCAATTTTG-A	:	427
PT03_Bacte	:	GTAAA	GCACTTT	AAGTTGGGA	GAAGGGCAGTTACCTAA	TAC-GTGATTGTTT ^{TG-A}	:	425
KVD-unk-80	:	GTAAA	GCACTTT	TGTCCGGAA	GAAATCCCCTGCTCTAA	TAC-AGCGGGGGGATG- <mark>A</mark>	:	430
Jlividum	:	GTAAA	GCTCTTT	TGTCAGGGA	AG <mark>A</mark> AACGGTGAGAGCTAA'	TAT-CTCTTGCTAATG- <mark>A</mark>	:	432
Lginseng	:	GTAAA	CCGCTTT	TGTC <mark>A</mark> GGGA	AGAAACGCTCTGGGTTAA'	TAC-CCTGGGGTAATG- <mark>A</mark>	:	428
6C_13_Vari	:	GTAAA	CTG <mark>CT</mark> TT	TGTACGGAA	G <mark>A</mark> AACGGTCTCTTCTAA	TAA-AGGGGGCTAATG- <mark>A</mark>	:	427
Dacidovo	:	GTAAA	CTG <mark>CT</mark> TT	TGTACGG <mark>A</mark> AC	CG <mark>A</mark> AAAAGCTTCTCCTAA	TAC-GAGAGGCCCATG-A	:	428
300C-C03_C	:	GTAAA	GCTCTTT	TACCAGGGA	G <mark>A</mark>	TAATG- <mark>A</mark>	:	380
ctg_CGOF25	:	GTAAA	GCTCTTT	TACCAGGGA	G <mark>A</mark>	TAATG- <mark>A</mark>	:	379
BY14_Clone	:	GTAAA	GCTCTTT	TACCCGGGA	G <mark>A</mark>	TAATG- <mark>A</mark>	:	374
BIR2-r_lim	:	GTAAA	GCTCTTT	TACCAGGGA	G <mark>A</mark>	TAATG- <mark>A</mark>	:	372
MP20_Sphin	:	GTAAA	GCTCTTT	TACCCGAGA	G <mark>A</mark>	TAATG- <mark>A</mark>	:	382
DSSF72_Unc	:	GTAAA	GCTCTTT	TACCCGGGA	G <mark>A</mark>	TAATG- <mark>A</mark>	:	379
1/4_C7_32_	:	GTAAA	GCTCTTT	TACCCGGGA	G <mark>A</mark>	TAATG-A	:	371
AKIW820_Cl	:	GTAAA	GCTCTT	TACCAGGGA	GA	TAATG- <mark>A</mark>	:	381
WBI100_Clo	:	GTAAA	GCTCTT	TGTCCGGGA	GA	TAATG- <mark>A</mark>	:	377
ENV481_X	:	GTAAA	GCTCTTT	CGCCGGTGA	GA	TAATG- <mark>A</mark>	:	370
V4.B0.05_B	:	GTAAA	ATT <mark>CT</mark> T	CACCGGGGA	GA	TAATG-A	:	377
549_Chryse	:	GTAAA	CTT <mark>CT</mark> TT	TGTACAGGG	AT <mark>A</mark> AACCTATTTACGTGT.	AAATAGCTG <mark>A</mark>	:	427
PB93_Pkr	:	GTAAA	CTG <mark>CT</mark> TT	TATCTGGGA	AT <mark>A</mark> AACCTTTCTACGTGT.	AGAGAGCTG <mark>A</mark>	:	423
		GTAAA	c CTtT	ggga	gA	tg A		

	460	*	480	*	500	*		
92-0600_Ar :	CGGTAC	CTGCAGAA <mark>G</mark> A	AGC <mark>G</mark> CCGGCI	AACTACGTGCC	AGCAGCCGCG	GTAATACG <mark>T</mark> A	:	465
5N-4_Kpa	CGGTAC	C <mark>TGC</mark> AG <mark>A</mark> AGA	AGC <mark>G</mark> CCGGCI	AACTACGTGCC	AGCAGCCGCG	GTAATACG <mark>T</mark> A	:	472
4RS-9a_M :	CGGTAC	C <mark>TGC</mark> AG <mark>AAG</mark> A	AGC <mark>ACCGGC</mark> I	AACTACGTGCC	AGCAGCCGCG	GTAATACG <mark>T</mark> A	:	465
Amico6_Var :	CGGTAC	C <mark>TGC</mark> AG <mark>A</mark> AGA	AGC <mark>ACCGGC</mark> I	AACTACGTGCC	AGCAGCCGCG	GTAATACG <mark>T</mark> A	:	463
MT2.2_Derm :	CGGTAC	C <mark>TGG</mark> AG <mark>A</mark> AG <mark>A</mark>	agc <mark>accggc</mark> i	AACTACGTGCC	AGCAGCCGCG	GTAATACG <mark>T</mark> A	:	466
Lact5.2_B.	CGGTAC	CTGCAGAA <mark>G</mark> A	AGC <mark>G</mark> CCGGCI	AACTACGTGCC	AGCAGCCGCG	GTAATACG <mark>T</mark> A	:	470
rJ6_Bacter :	CGGTAC	C <mark>TGC</mark> AG <mark>A</mark> AA	AGC <mark>G</mark> CCGGCI	AACTACGTGCC	AGCAGCCGCG	GTAATACG <mark>T</mark> A	:	461
PAO-12_Mic :	CGGTAC	C <mark>TGC</mark> AG <mark>A</mark> AA	AGC <mark>G</mark> CCGGCI	AACTACGTGCC	AGCAGCCGCG	GTAATACG <mark>T</mark> A	:	467
sp.7_4K_Mi :	: CGGTAC	C <mark>TGC</mark> AG <mark>A</mark> AA	AGC <mark>G</mark> C <mark>CGGC</mark> I	AACTACGTGCC	AGCAGCCGCG	GTAATACG <mark>T</mark> A	:	469
wged11_Lei :	: CGGTAC	C <mark>TGC</mark> AG <mark>A</mark> AA	agc <mark>a</mark> c <mark>cggc</mark> i	AACTACGTGCC	AGCAGCCGCG	GTAATACG <mark>T</mark> A	:	472
Ljaponic :	: CGG <mark>TA</mark> T	GCGTAG <mark>A</mark> AG <mark>A</mark>	agc <mark>ac<mark>cggc</mark>c</mark>	CAACTACGTGCC	AGCAGCCGCG	GT <mark>G</mark> ATACGTA	:	466
ML0004_R :	: CGGTAC	C <mark>TGC</mark> AG <mark>A</mark> A <mark>G</mark> A	agc <mark>accggc</mark> c	CAACT <mark>AC</mark> GTGCC2	AGCAGCCGCG	GTAATACG <mark>T</mark> A	:	467
6_Clone_Un :	: CGGTAC	C <mark>TGA</mark> AG <mark>A</mark> ATA	AGC <mark>A</mark> CCGGCI	AACT <mark>ACGTGCC</mark>	AGCAGCCGCG	GTAATACG <mark>T</mark> A	:	485
CICCHL_JQ9 :	: CGGTAC	CTAACC <mark>A</mark> GA <mark>A</mark>	agc <mark>ca</mark> cggci	AACTACGTGCC	AGCAGCCGCG	GTAATACG <mark>T</mark> A	:	497
XJU-1_Bc	: CGGTAC	CTAACC <mark>A</mark> GA <mark>A</mark>	agc <mark>ca</mark> cggci	AACTACGTGCC	AGCAGCCGCG	GTAATACG <mark>T</mark> A	:	501
PR35-2-1_B :	: CGGTAC	CTAACC <mark>A</mark> GA <mark>A</mark>	agc <mark>cacggc</mark> i	AACTACGTGCC2	AGCAGCCGCG	GTAATACGTA	:	501
760_Bpum :	: CGGTAC	CTAACC <mark>A</mark> GA <mark>A</mark>	agc <mark>cacggc</mark> i	AACTACGTGCC	AGCAGCCGCG	GTAATACGTA	:	503
Ssuccinu	: CGGTAC	CTAATC <mark>A</mark> GAA	agc <mark>ca</mark> cggci	AACTACGTGCC	AGCAGCCGCG	GTAATACGTA	:	497
ST7_Clone_	CGGTAC	CTGCAGAAGA	agcaccggci	AACTACGTGCC	AGCAGCCGCG	GTAATACGTA	:	464
88_17_clon :	: CGTTAC	TCGCA <mark>A</mark> AATA	A <mark>C</mark> CACCGGCI	AACTCTGTGCC	ACCAGCCGCG(GAAATACAAA	:	487
Acinetobac :	CGTTAC	TCGCAGAATA	AGCACCGGCI	AACTCTGTGCC	AGCAGCCGCG	GTAATACAGA	:	491
TDIW13_Aci :	CGTTAC	TCGCAGAATA	AGCACCGGC1	AACTCTGTGCC	AGCAGCCGCG	GTAATAC <mark>AG</mark> A	:	491
A449_Asa :	CGTTAC	TCGCAGAAGA.	AGCACCGGCI	AACTCCGTGCC	AGCAGCCGCG	JTAATACGGA	:	488
ZIIC_Ave :	CGTIAC	TCGCAGAAGA	AGCACCGGCI	AACICUGIGCC	AGCAGCCGCGC	JIAAIACGGA	:	488
AICC_1/52/ :	CGIIAC	CGACAGAAIA.	AGCACCGGCI	AACICIGIGCC		JIAAIACAGA STAATACAGA	:	4/8
PCI6_Ppu	CGIIAC	CGACAGAAIA.	AGCACCGGCI	AACICIGIGCC		JIAAIACAGA STAATACAGA	:	484
FIUS_BACLE		CCCAACAGAATA CCCAACAATA		AACICIGIGCC		JIAAIACAGA	•	402
T lividum		CTCAACAATA				TAATACGTA	:	120
L ginsong	CGGTAC					CTAATACCTA	:	485
6C 13 Vari	CGGTAC	CGTAAGAATA				STAATACGTA	:	484
D. acidovo	CGGTAC	CGTAAGAATA	AGCACCGGCI	AACTACGTGCC		GTAATACGTA	:	485
300C-C03 C		CTGGAGAATA	AGCTCCGGCT	AACTCCGTGCC	AGCAGCCGCG	GTAATACGGA		437
cta CGOF25		CTGGAGAATA	AGCTCCGGCT	AACTCCGTGCC	AGCAGCCGCG	GTAATACGGA		436
BY14 Clone	CAGTAC	CGGGAGAATA	AGCTCCGGCI	AACTCCGTGCC	AGCAGCCGCG	GTAATACGGA	:	431
BIR2-r lim	CAGTAC	C TGG AG <mark>A</mark> ATA	AGCTCCGGCI	AACTCCGTGCC	AGCAGCCGCG	GTAATACG <mark>G</mark> A	:	429
MP20_Sphin :	CAGTAT	C <mark>ggg</mark> ag <mark>a</mark> ata	AGCTCCGGCI	AACTCCGTGCC	AGCAGCCGCG	GTAATACG <mark>G</mark> A	:	439
DSSF72_Unc :	CAGTAC	C <mark>ggg</mark> ag <mark>aata</mark>	AGC <mark>TCCGGC</mark> I	AACTCCGTGCC	AGCAGCCGCG	GTAATACG <mark>G</mark> A	:	436
1/4_C7_32_ :	CAGTAC	C <mark>ggg</mark> ag <mark>aat</mark> a	AGC <mark>T</mark> CCGGCI	AACTCCGTGCC	AGCAGCCGCG	GTAATACG <mark>G</mark> A	:	428
AKIW820_C1	CAGTAC	C <mark>TGG</mark> AG <mark>AAT</mark> A	AGC <mark>T</mark> CCGGCI	AACTCCGTGCC	AGCAGCCGCG	GTAATACG <mark>G</mark> A	:	438
WBI100_Clo :	CTGTAC	C <mark>GGA</mark> AG <mark>A</mark> AT <mark>A</mark>	AGC <mark>C</mark> C <mark>CGGC</mark> I	AACTTCGTGCC	AGCAGCCGCG	GTAATACG <mark>A</mark> A	:	434
ENV481_X :	CGGTAA	C <mark>CGG</mark> AG <mark>A</mark> AG	AGC <mark>C</mark> C <mark>CGGC</mark> I	AACTTCGTGCC	AGCAGCCGCG	GTAATACG <mark>A</mark> A	:	427
V4.B0.05_B	CGGTAC	C <mark>CGG</mark> AG <mark>A</mark> AG <mark>A</mark>	AGC <mark>CCCGGC</mark> I	AACTTCGTGCC	AGCAGCCGCG	GTAATACG <mark>A</mark> A	:	434
549_Chryse	: AGG <mark>TA</mark> C	TGTACGAAT <mark>A</mark>	AGC <mark>ACCGGC</mark> I	AACTCCGTGCC2	AGCAGCCGCG	GTAATACG <mark>G</mark> A	:	484
PB93_Pkr	: ATGTAC	CAGAAGAATA	AGGAT <mark>CGG</mark> CI	AACTCCGTGCC	AGCAGCCGCG	GTAATACG <mark>G</mark> A	:	480
	c gTAc	с адАаА	Agc cCGGCt	AACT CGTGCCA	AgCAGCCGCG	GtaATACg A		

		520	;	*	54	40	*	r	560	*		
92-0600_Ar	:	GGGCGCAA	GCGTTATC	CG <mark>GA</mark> AT	TAT	IGGGCG	TAAAG <mark>A</mark>	GCTCGI	AGGCGG	ITTGTCGC	:	522
5N-4_Kpa	:	GGGCGCAA	GCGTTGTC	CGGAAT	TAT	IGGGCG	TAAAG <mark>A</mark>	GCTCGI	AGGCGG	TTTGTCGC	:	529
4RS-9a_M	:	GGGTGCGA	GCGTTATC	CGGAAT	TAT	IGGGCG	TAAAG <mark>A</mark>	GCTCGI	AGGCGG	TTTGTCGC	:	522
Amico6_Var	:	GGGTGCGA	GCGTTATC	CGGAAT	TAT	IGGGCG	TAAAG <mark>A</mark>	GCTCGI	AGGCGG	TTGTCGC	:	520
MT2.2_Derm	:	GGGTGCGA	GCGTTGTC	CGGAAT	TAT	IGGGCG	TAAAG <mark>A</mark>	GCTTGI	AGGCGG	TTGTCGC	:	523
Lact5.2_B.	:	GGGCGCAA	GCGTTGTC	CGGAAI	TAT	IGGGCG	TAAAG <mark>A</mark>	GCTCGI	AGGTGG	CTTGTCGC	:	527
rJ6_Bacter	:	NGGCGCAA	GCGTTATC	CGGAAT	TAT	IGGG <mark>N</mark> G	TAAAG <mark>A</mark>	GCTCGI	AGGCGG	TTGTCGC	:	518
PAO-12_Mic	:	GGGCGCAA	GCGTTATC	CGGAAI	TAT	IGGGCG	TAAAG <mark>A</mark>	GCTCGI	AGGCGG	TTTGTCGC	:	524
sp.7_4K_Mi	:	GGGCGCAA	GCGTTATC	CGGAAT	TAT	IGGGCG	TAAAG <mark>A</mark>	GCTCGI	AGGCGG	TTGTCGC	:	526
wged11_Lei	:	GGGTGCAA	.GCGTTGTC	CGGAAT	TAT	IGGGCG	TAAAG <mark>A</mark>	GCTCGI	AGGCGG	ITTGTCGC	:	529
Ljaponic	:	GGGTGCGA	GCGTTGTC	CG <mark>GA</mark> AT	TAT	IGGGCG	TAAAG <mark>A</mark>	GCTTGI	AGGCGG	TTGTTGC	:	523
ML0004_R	:	GGGTGCAA	.GCGTTGTC	CGGAAT	TAC	IGGGCG	TAAAG <mark>A</mark>	GCTCGI	AGGCGG	ITTGTCGC	:	524
6_Clone_Un	:	GGGTGCAA	GCGTT <mark>AAT</mark>	CGGAAT	TAC	IGGGCG	TAAAG	GTGCGC	AGGCGG	[TATGCAA	:	542
CICCHL_JQ9	:	GGTGGCAA	GCGTTATC	CG <mark>GA</mark> AT	TAT	IGGGCG	TAAAG	GCGCGC	AGGTGG	ITTCTTAA	:	554
XJU-1_Bc	:	GGTGGCAA	GCGTTATC	CGGAAT	TAT	IGGGCG	TAAAG	GCGCGC	AGGTGG	ITTCTTAA	:	558
PR35-2-1_B	:	GGTGGCAA	.GCGTT <mark>ATC</mark>	CGGAAT	TAT	IGGGCG	TAAAG	GCGCGC	AGGTGG	ITTCTTAA	:	558
760_Bpum	:	GGTGGCAA	.GCGTTGTC	CGGAAT	TAT	IGGGCG	TAAAG	GCTCGC	AGGCGG	ITTCTTAA	:	560
Ssuccinu	:	GGTGGCAA	GCGTTATC	CG <mark>GA</mark> AT	TAT	IGGGCG	TAAAG	GCGCGI	AGGCGG	ITTCTTAA	:	554
ST7_Clone_	:	GGGTGCGA	.GCGTTATC	CGGAAI	TAT	IGGG <mark>C</mark> G	TAAAG <mark>A</mark>	GCTCGI	AGGCGG	ITTGTCGC	:	521
88_17_clon	:	GGGGGCGA	.GCGTT <mark>AAT</mark>	CG <mark>AA</mark> TT	TAC	IGGG <mark>C</mark> G	TAAAG	GTGCGI	AGGCGG	CIGATTAA	:	544
Acinetobac	:	GGGTGCGA	.GCGTT <mark>AAT</mark>	CGGATI	TAC	IGGG <mark>CG</mark>	TAAAG	C <mark>G</mark> TGC <mark>G</mark> I	AGGCGG	CIGATTAA	:	548
TDIW13_Aci	:	GGGTGCGA	.GCGTT <mark>AAT</mark>	CG <mark>GA</mark> TT	TAC	IGGG <mark>C</mark> G	TAAAG	GTGCGI	AGGCGG	CIGATTAA	:	548
A449_Asa	:	GGGTGCAA	.GCGTT <mark>AAT</mark>	CGGAAT	TAC	IGGG <mark>C</mark> G	TAAAG	CACG	AGGCGG	FTGGATAA	:	545
211c_Ave	:	GGGTGCAA	.GCGTT <mark>AAT</mark>	CGGAAI	TAC	IGGG <mark>C</mark> G	TAAAG	CACG	AGGCGG	ΓΤ <mark>GGATAA</mark>	:	545
ATCC_17527	:	GGGTGCAA	.GCGTTAAT	CGGAAI	TAC	IGGG <mark>C</mark> G	TAAAG	CGCGCGI	AGGTGG	ITTGTTAA	:	535
PC16_Ppu	:	GGGTGCAA	.GCGTT <mark>AAT</mark>	CGGAAI	TAC	IGGG <mark>C</mark> G	TAAAG	CGCGCGI	AGGTGG	ITTGTTAA	:	541
PT03_Bacte	:	GGGTGCAA	GCGTTAAT	CGGAAI	TAC	IGGG <mark>C</mark> G	TAAAG	CGCGCGI	AGG ^T GG	ITTGTTAA	:	539
KVD-unk-80	:	GGGTGCGA	.GCGTT <mark>AAT</mark>	CGGAAI	TAC	IGGG <mark>C</mark> G	TAAAG	GTGCGC	AGGCGG	ITTTGTAA	:	544
Jlividum	:	GGGTGCAA	.GCGTT <mark>AAT</mark> (CGGAAI	TAC	IGGGCG	TAAAG ^C	CGTGCGC	CAGGCGG	ITTTGTAA	:	546
Lginseng	:	GGGTGCAA	.GCGTT <mark>AAT</mark> (CGGAAI	TAC	IGGGCG	TAAAG	CGTGCGC	CAGGCGG	ITATGCAA	:	542
6C_13_Vari	:	GGGTGCGA	.GCGTTAAT	CGGAAI	TAC	IGGGCG	TAAAG	GTGCGC	CAGGCGG	fTATGTAA	:	541
Dacidovo	:	GGGTGCGA	.GCGTTAAT	CGGAAI	TAC	IGGGCG	TAAAG	GTGCGC	CAGGCGG	ftatgtaa	:	542
300C-C03_C	:	GGGAGCTA	.GCGTTGTT(CGGAAI	TAC	IGGGCG	TAAAG	CGCGCGI	AGGCGG	CGACACAA	:	494
ctg_CGOF25	:	GGGAGCTA	GCGTTGTT	CGGAAI	TAC	IGGGCG	TAAAG	CACGI	AGGCGG	ΓΙΑCΤCAA	:	493
BY14_Clone	:	GGGAGCTA	.GCGTTGTT(CGGAAI	TAC	IGGGCG	TAAAG	CGCACGI	AGGCGG	CTATTCAA	:	488
BIR2-r_lim	:	GGGAGCTA	.GCGTTGTT(CGGAAI	TAC	IGGGCG	TAAAG	GCGCGI	AGGCGG	ITACTCAA	:	486
MP20_Sphin	:	GGGAGCTA	GCGTTGTT	CGGAAT	TAC	IGGGCG	TAAAG	GCACGI	AGGCGG	ΓΙΑΤΤΤΑΑ	:	496
DSSF72_Unc	:	GGGAGCTA	.GCGTTATT(CGGAAI	TAC	IGGGCG	TAAAG	CACGI	AGGCGG	CITTGTAA	:	493
1/4_C7_32_	:	GGGAGCTA	GCGTTGTT	CGGAAI	TAC	IGGGCG	TAAAG	GCGCGI	AGGCGG	TTTTTTAA	:	485
AKIW820_Cl	:	GGGAGCTA	GCGTTGTT	CGGAAI	TAC	IGGGCG	TAAAG	GCACGI	AGGCGG	CGATTCAA	:	495
WBI100_Clo	:	GGGGGCTA	GCGTTGCT	CGGAAI	CAC	rgggcg	TAAAG	GCGCGI	AGGCGG	ACTTTTAA	:	491
ENV481_X	:	GGGGGCTA	GCGTTGCT	CGGAAI	CAC	r <mark>ggg</mark> cg	TAAAG	GCACGI	AGGCGG	ALCGTTAA	:	484
V4.BO.05_B	:	GGGGGCTA	GCGTTGCT	CGGAAT	TAC	rgggcg	TAAAG	GAGCGI	AGGCGG	ACATTTAA	:	491
549_Chryse	:	GGGTGCAA	GCGTTATC	CGGATI	TAT	IGGGTT	TAAAG	GTCCGI	AGGCGG	ALCTGTAA	:	541
PB93_Pkr	:	GGATCCAA	GCGTTATC	CGGATI	TAT	IGGG TT	TAAAG	GTGCGT	AGGCGG	CCTGTTAA	:	537
		GGg gC A	GCGTT (CGgAaI	'tA '	ĽGGGcg	TAAAG	G cG	AGGcGG	t		

			580		*		600		*		6	20			
92-0600_Ar	: GT	CTGCC	GTGAAA	GTCCGG	GGGCT	CAAC	TCCGC	GATCTO	G <mark>C</mark> GG I	GGGI	ACG	GGCA	GA <mark>CT</mark> A	:	579
5N-4_Kpa	: GT	CTGCI	GTGAAA	GCCCGG	GGGCT	TAAC	CCCGC	GTGTC	G <mark>C</mark> AG I	GGGI	ACG	GGCA	GA <mark>CT</mark> A	:	586
4RS-9a_M	: GT	CTGTC	GTGAAA	GTCCGC	GGGCT	TAAC	CCCGC	GATCTO	G <mark>C</mark> GG	GGGI	ACG	GGCA	GA <mark>CT</mark> A	:	579
Amico6_Var	: GT	CTGTC	GTGAAA	GTCCGG	GGGCT	TAAC	CCCGC	GATCTO	G <mark>C</mark> GG I	GGGI	ACG	GGCA	GA <mark>CT</mark> A	:	577
MT2.2_Derm	: GT	CTGCI	GTGAAA	GACCGG	G GCT	TAAC	TCCGC	TTC TC	G <mark>C</mark> AGI	GGGI	ACG	GGCA	ga <mark>ct</mark> a	:	580
Lact5.2_B.	: GT	CTGCC	GTGAAA	ACCCGA	GGCT	CAAC	CTCGO	GCGTO	G <mark>C</mark> GG	GGGT	ACG	GGCA	gg <mark>ct</mark> a	:	584
rJ6_Bacter	: GT	CTGCI	GTGAAA	TCCC <mark>GA</mark>	GGCT	CAAC	CTCGO	GTCTC	G <mark>C</mark> AGI	GGGI	ACG	GGCA	ga <mark>ct</mark> a	:	575
PAO-12_Mic	: GT	CTGCI	GTGAAA	TCC <mark>GGA</mark>	GGCT	CAAC	стсс	GCCTO	G <mark>C</mark> AGI	GGGT	ACG	GGCA	ga <mark>ct</mark> a	:	581
sp.7_4K_Mi	: GT	CTGCI	GTGAAA	ACTGGA	GGCT	CAAC	CTCCZ	AGCCTO	G <mark>C</mark> AGI	GGGI	ACG	GGCA	ga <mark>ct</mark> a	:	583
wged11_Lei	: GT	CTGCI	GTGAAA	ACTGGA	GGCT	CAAC	CTCCA	AGCCTO	G <mark>C</mark> AGT	GGGI	ACG	GGCA	ga <mark>ct</mark> a	:	586
Ljaponic	: GT	CAGAA	GTGAAA	TCTCAG	TGCT	TAAC	ACTG	AGCGT	G <mark>C</mark> TTC	TGAI	ACG	GGCA	GA <mark>CT</mark> A	:	580
ML0004_R	: GT	CGTCI	GTGAAA	ACTCGA	GGCT	CAAC	CTCGA	AGCTT	G <mark>C</mark> AGG	CGA1	ACG	GGCA	GA <mark>CT</mark> T	:	581
6_Clone_Un	: GA	CAGAI	GTGAAA	TCCCC	GGGCT	CAAC	CTGGC	GAACTO	G <mark>C</mark> ATI	TGTO	ACT	GCAT	gg <mark>ct</mark> a	:	599
CICCHL_JQ9	: GT	CTGAI	GTGAAA	GCCCAC	GGCT	CAAC	CGTGC	AGGGI	Г <mark>С</mark> АТ І	GGAA	ACT	GGGA	GA <mark>CT</mark> T	:	611
XJU-1_Bc	: GT	CTGAI	GTGAAA	GCCCAC	GGCT	CAAC	CGTGC	AGGGI	Г <mark>С</mark> АТ І	GGAA	ACT	GGGA	GA <mark>CT</mark> T	:	615
PR35-2-1_B	: GT	CTGAI	GTGAAA	GCCCAC	GGCT	CAAC	CGTGC	AGGGI	Г <mark>С</mark> АТ І	GGAA	ACT	GGGA	GA <mark>CT</mark> T	:	615
760_Bpum	: GT	CTGAI	GTGAAA	GCCCCC	GGCT	CAAC	CGGGG	AGGGI	Г <mark>С</mark> АТ І	GGAA	ACT	GGAA.	AA <mark>CT</mark> T	:	617
Ssuccinu	: GT	CTGAI	GTGAAA	GCCCAC	GGCT	CAAC	CGTGC	AGGGI	Г <mark>С</mark> АТ І	GGAA	ACT	GGGA.	AA <mark>CT</mark> T	:	611
ST7_Clone_	: GT	CTGTC	GTGAAA	GTCCGG	GGGCT	TAAC	CCCGC	GATCTO	G <mark>C</mark> GG1	GGGI	ACG	GGCA	GA <mark>CT</mark> A	:	578
88_17_clon	: TT	CGAAI	GTGAAA	TCCCTG	agct	TACC	TGAGO	GAATTO	G <mark>C</mark> AT I	CGAI	ACT	GGTC.	AC <mark>CT</mark> A	:	601
Acinetobac	: GT	C <mark>G</mark> GAI	GTGAAA	TCCCTG	6 <mark>a</mark> gct	TAAC	TTAGO	GAATTO	G <mark>C</mark> ATI	CGAI	ACT	GGTC.	AG <mark>CT</mark> A	:	605
TDIW13_Aci	: GT	C <mark>G</mark> GAI	GTGAAA	TCCCTG	GAGCT	TAAC	ttago	GAATTO	G <mark>C</mark> ATI	CGAI	ACT	GGTC.	AG <mark>CT</mark> A	:	605
A449_Asa	: GT	TAGAI	GTGAAA	GCCC <mark>C</mark> G	GGGCT	CAAC	CTGGG	G <mark>aat</mark> to	G <mark>C</mark> ATI	TAAA	ACT	GTCC.	AG <mark>CT</mark> A	:	602
211c_Ave	: GT	TAGAI	GTGAAA	GCCC <mark>C</mark> G	GGGCT	CAAC	CTGGG	G <mark>aat</mark> to	G <mark>C</mark> ATI	TAAA	ACT	GTCC.	AG <mark>CT</mark> A	:	602
ATCC_17527	: GT	TGGAI	GTGAAA	GCCCCC	GGGCT	CAAC	CTGGG	G <mark>AAC</mark> TO	G <mark>C</mark> ATI	CAAA	ACT	GACA.	AG <mark>CT</mark> A	:	592
PC16_Ppu	: GT	TGGAI	GTGAAA	GCCCCC	GGGCT	CAAC	CTGGG	G <mark>AAC</mark> TO	G <mark>C</mark> ATI	CAAA	ACT	GACA.	AG <mark>CT</mark> A	:	598
PT03_Bacte	: GT	TGGAI	GTGAAA	TCCCCC	GGCT	CAAC	CTGGG	G <mark>AAC</mark> T(G <mark>C</mark> AT I	CAAA	ACT	GACT	GA <mark>CT</mark> A	:	596
KVD-unk-80	: GA	C <mark>AG</mark> GC	GTGAAA	TCCCCC	agct	CAAC	TTGGC	AATG	G <mark>C</mark> GC	TGTO	5 <mark>ac</mark> t	GCAA	GG <mark>CT</mark> A	:	601
Jlividum	: GT	CTGAI	GTGAAA	TCCCCC	66 <mark>6</mark> 67	CAAC	CTGGG	GAATTO	G <mark>C</mark> ATI	GGAG	SAC T	GCAA	GG <mark>CT</mark> A	:	603
Lginseng	: GA	CAGAI	GTGAAA	TCCCCC	GGGCT	CAAC	CTGGG	GAAC T (G <mark>C</mark> ATI	TGTO	GACT	GCAT	GG <mark>CT</mark> A	:	599
6C_13_Vari	: GA	CAGTI	GTGAAA	TCCCCC	66 <mark>6</mark> CT	CAAC	CTGGG	GAACTO	CATC	TGTO	AC T	GCAT.	AG <mark>CT</mark> A	:	598
Dacidovo	: GA	CAGAI	GTGAAA	TCCCCC	GGCT	CAAC	CTGGG	GAACTO	GCAT I	TGTO	GACT	GCAT	GG <mark>CT</mark> A	:	599
300C-C03_C	: GT	CAGAG	GTGAAA	GCCCGG	GGCT	CAAC	CCCGG	GAACTO	GCTI	TGAP	ACT	AGGT	TG <mark>CT</mark> A	:	551
ctg_CGOF25	: GT	CAGAG	GTGAAA	GCCCGG	GGCT	CAAC	CCCGG	GAACTO	GCTI	TGAF	ACT	AGGT.	AACTA	:	550
BY14_Clone	: GT	CAGAG	GTGAAA	GCCCGG	GGCT	CAAC	CCCGC	GAACTO	GCT1	TGAP	ACT	AGAT	GG <mark>CT</mark> A	:	545
BIR2-r_lim	: GT	CAGAG	GTGAAA	GCCCGG	GGCT	CAAC	CCCGC	GAACTO	GCCT1	TGAF	ACT	AGGT	GACTA	:	543
MP20_Sphin	: GT	CAGAG	GTGAAA	GCCCGG	GGCT	CAAC	CCCGC	GAATA	GCTI	TGAG	GACT	GGAT.	AACTT	:	553
DSSF72_Unc	: GT	AAGAG	GTGAAA	GCCTGG	TGCT	CAAC	ACCA	GAACTO	GCCT1	TTAG	SACT	GCAT	CGCTG	:	550
1/4_C7_32_	: GT	CAGAG	GTGAAA	GCCCAG	TGCT	CAAC	ACTGO	GAACIC	GCCT1	TGAF	ACT	GGAA.	AACIT	:	542
AKIW820_Cl	: GT	CAGAC	GTGAAA	GCCCGC	GGCT	CAAC		GAACTO	-CCTI	TGAF	ACT	AGAT	TGCTA	:	552
MRII00_CTO	: GT	CGGAC	GTGAAA	GCCCAC	GGCT	CAAC	CCTGC	JAATT(JCCT I	CGAI	ACT	GGGA	GTCT T	:	548
ENV481_X	: GT	CAGGG	GTGAAA	TCCTGC	AGCT		TCCA	FAACT(TGAI	ACT	GGCG.	ATCIC	:	541
V4.BU.U5_B	: GT	CAGGG	GTGAAA	TCCCGG	GGCT		CTCGC	AATT(JCCTI	TGAI	ACT	GGGT	GICII	:	548
549_Chryse	: GT	CAGTO	GIGAAA		AGCT	TAAC	TGTGA	AACTO	JCCAI	TGAI	ACT	GCAG	GICII	:	598
⊦RA3_bkL	: GT	CAGAC	GIGAAA	GACGGI	AGCT		TATC	CAGI		TGAI	ACT	GATG	GG <mark>CII</mark> T	:	594
	gt	сg	GIGAAA	CCC	GCT	AaC	go	y to	gc t	g	AC	g	CT		

		*		640		*		660		*	6	80		
92-0600_Ar	:	G <mark>A</mark> GTG	ATGT	AG <mark>G</mark> GG	AGAC	IGG <mark>-</mark> A	ATTCC	IG <mark>GT</mark> GT	AGCG	gtg <mark>a</mark> aat	GCGCAG	ATATC2	• •	635
5N-4_Kpa	:	G <mark>A</mark> GTG	CAGT	AG <mark>G</mark> GG	AGAC	IGG <mark>-</mark> A	ATTCC	[GGT <mark>G</mark>]	AGCG	GTG <mark>G</mark> AAT	GCGCAG	ATATC <i>I</i>	• •	642
4RS-9a_M	:	GAGTG	CAGT	AGGGA	AGAC	ΓG <mark>A-</mark> Α	ATTCC	IGGT <mark>G</mark> I	AGCG	gtg <mark>g</mark> aat	GCGCAG	ATATC	A :	635
Amico6_Var	:	GAGTG	CAGT	AGGGG	AGAC	ΓG <mark>G−</mark> Α	ATTCC	IGGT <mark>G</mark> I	AGCG	gtg <mark>g</mark> aat	GCGCAG	ATATC	A :	633
MT2.2_Derm	:	G <mark>A</mark> GTA	TGGT	AG <mark>G</mark> GG	AGAC	IGG <mark>-</mark> A	ATTCC	[GGT <mark>G</mark>]	AGCG	GTG <mark>A</mark> AAT	GCGCAG	ATATC <i>I</i>	• •	636
Lact5.2_B.	:	G <mark>A</mark> GTG	TGGT	AG <mark>G</mark> GG	AGAC	rgg <mark>−</mark> A	A <mark>C</mark> TCC	'G <mark>gt</mark> G	AGCG	GTGAAAT	GCGCAG	ATATC	• :	640
rJ6_Bacter	:	G <mark>A</mark> GTG	CGGT	AG <mark>G</mark> GG	AGAT	igg <mark>-</mark> a	ATTCC	IG <mark>GT</mark> GT	AGCG	GTG <mark>G</mark> AAT	GCGCAC	ATATC	• •	631
PAO-12_Mic	:	G <mark>A</mark> GTG	CGGT	AG <mark>G</mark> GG	AGAT	igg <mark>-</mark> a	ATTCC	IG <mark>GT</mark> GT	AGCG	GTG <mark>G</mark> AAT	GCGCAG	ATATCZ	• •	637
sp.7_4K_Mi	:	G <mark>A</mark> GTG	CGGT	AG <mark>G</mark> GG	AGAT	rgg <mark>−</mark> a	ATTCC <mark>1</mark>	IG <mark>GT</mark> GT	AGCG	GTG <mark>G</mark> AAT	GCGCAG	ATATCZ	A :	639
wged11_Lei	:	G <mark>A</mark> GTG	CGGT	AG <mark>G</mark> GG	AGAT	GGA- <mark>A</mark>	ATTCC <mark>1</mark>	IG <mark>GT</mark> GI	AG <mark>C</mark> G	GTG <mark>G</mark> AAT	GCGCAG	ATATC <i>i</i>	A :	642
Ljaponic	:	GAGGA	AGTT	AG <mark>G</mark> GG	AGAA	CGA- <mark>A</mark>	ATTCC	IGG <mark>G</mark> G	GAGCG	GTG <mark>G</mark> AAT	G <mark>C</mark> G <mark>C</mark> AG	ATATC	A :	636
ML0004_R	:	G <mark>A</mark> GTA	CTGC	AG <mark>G</mark> GG	AGAC	IGG <mark>-</mark> A	ATTCC <mark>C</mark>	CG <mark>GT</mark> G	AGCG	GTG <mark>A</mark> AAT	GCGCAG	ATATC <i>i</i>	A :	637
6_Clone_Un	:	G <mark>A</mark> GTG	CGGC	AGAGG	GGGA	IGG <mark>-</mark> A	ATTCC <mark>C</mark>	GCGT <mark>G</mark> T	AGCA	GTG <mark>A</mark> AAT	GCGC <mark>A</mark> G	ATATC <i>i</i>	A :	655
CICCHL_JQ9	:	G <mark>A</mark> GTG	CAGA	AGAGG	AAAG	IGG <mark>-</mark> A	ATTCC <mark>A</mark>	ATGT <mark>G</mark> I	AG <mark>C</mark> G	GTG <mark>A</mark> AAT	GCGTAG	AGATA:	Г:	667
XJU-1_Bc	:	G <mark>A</mark> GTG	CAGA	AGAGG	AAAG	IGG <mark>-</mark> A	ATTCC <mark>A</mark>	ATGT <mark>G</mark> I	AGCG	GTG <mark>A</mark> AAT	GCGTAG	AGATA:	Г:	671
PR35-2-1_B	:	G <mark>A</mark> GTG	CAGA	a <mark>ga</mark> go	AAAG	IGG <mark>-</mark> A	ATTCC <mark>A</mark>	ATGT <mark>G</mark> I	AGCG	GTG <mark>A</mark> AAT	GCGTAG	AGATA:	Г:	671
760_Bpum	:	G <mark>A</mark> GTG	CAGA	A <mark>A</mark> AGO	AGAG	IGG <mark>-</mark> A	ATTCC <mark>A</mark>	AC <mark>GT</mark> GI	AG <mark>C</mark> G	GTG <mark>A</mark> AAT	GCGTAG	AGATG:	r :	673
Ssuccinu	:	G <mark>A</mark> GTG	CAGA	AGAGO	AAAG	IGG <mark>-</mark> A	ATTCC <mark>A</mark>	ATGT <mark>G</mark> I	AGCG	GTG <mark>A</mark> AAT	GCGCAG	AGATA (r :	667
ST7_Clone_	:	G <mark>A</mark> GTG	CAGA	a <mark>ga</mark> go	AAAC	ΓGG <mark>−</mark> Α	ATTCC <mark>A</mark>	AGGT <mark>G</mark> I	AG <mark>C</mark> G	GTG <mark>A</mark> AAT	GCGCAG	AGATA <i>I</i>	A :	634
88_17_clon	:	AAGTA	TGGA	A <mark>A</mark> AGO	AGGG	GAA- <mark>A</mark>	ATTCC <mark>A</mark>	AG <mark>gt</mark> GI	T <mark>A</mark> CCG	GTG <mark>A</mark> AAT	GCGTAA	AGATC	r :	657
Acinetobac	:	G <mark>A</mark> GTA	TGGG	AG <mark>A</mark> GG	ATGG	rag-a	ATTCC <mark>A</mark>	AGGT <mark>G</mark> I	AG <mark>C</mark> G	GTG <mark>AAA</mark> T	GCGTAG	AGATC:	Г:	661
TDIW13_Aci	:	G <mark>A</mark> GTA	TGGG	AGAGO	ATGG	rag-a	ATTCC <mark>A</mark>	AGGT <mark>G</mark> I	AG <mark>C</mark> G	GTGAAAT	GCGTAG	AGATC	Г:	661
A449_Asa	:	GAGTC	TTGT.	AG <mark>A</mark> GG	GGGG	rag-a	ATTCC <mark>A</mark>	AGGT <mark>G</mark> I	AG <mark>C</mark> G	GTG <mark>AAA</mark> T	GCGTAG	AGATC:	Г:	658
211c_Ave	:	GAGTC	TTGT.	AGAGO	GGGG	rag-a	ATTCC	AGGT <mark>G</mark> I	[AGCG(GTGAAAT	GCGTAG	AGATC	Г:	658
ATCC_17527	:	G <mark>A</mark> GTA	TGGT	AGAGO	GTGG	IGG <mark>-</mark> A	ATTTC	CTGT <mark>G</mark> I	AG <mark>C</mark> G	GTGAAAT	GCGTAG	ATATA	G :	648
PC16_Ppu	:	G <mark>A</mark> GTA	TGGT	AGAGG	GTGG	IGG <mark>-</mark> A	ATTTC	CTGT <mark>G</mark> I	T <mark>A</mark> GCG(GTGAAAT	GCGTAG	ATATA(G :	654
PT03_Bacte	:	G <mark>A</mark> GTA	TGGT	AGAGO	GTGG	IGG - A	ATTTC	CTGT <mark>G</mark> I	AGCG	GTGAAAT	GCGTAG	ATATA	G :	652
KVD-unk-80	:	G <mark>a</mark> gta	TGTC	AGAGO	GGGG	rag-a	ATTCC <mark>A</mark>	ACGT <mark>G</mark> I	AGCA	GTGAAAT	GCGTAG	AGATG:	Г:	657
Jlividum	:	GAATC	TGGC	AGAGO	GGGG	rag–a	ATTCC	ACGT <mark>G</mark> I	AGCA	GTGAAAT	GCGTAG	ATATG	r :	659
Lginseng	:	GAGTG	CGGC	AGAGO	GGGA	IGG <mark>-</mark> A	ATTCC	GCGTGT	AGCA	GTGAAAT	GCGTAG	ATATG	: :	655
6C_13_Vari	:	GAGTA	CGGT	AGAGO	GGGA	GGG-A	ATCCCC	GCGTGI	AGCA	GTGAAAT	GCGTAG	ATATG	: :	654
Dacidovo	:	GAGTA	CGGT	AGAGO	GGGA	IGG <mark>-</mark> A	ATTCC	GCGTGI	AGCA	GTGAAAT	GCGTAG	ATATG	: :	655
300C-C03_C	:	GAATC	TTGG	AGAGC	TCAG	IGG <mark>-</mark> A	ATTCC	GAGTGI	AGAG	GTGAAAT	TCGTAC	ATATT	: :	607
ctg_CGOF25	:	GAATC	CTGG	AGAGG	TGAG	rgg–A	ATTCC	5AGTGI	AGAG	GTGAAAT	TCGTAG	ATATT	: :	606
BY14_Clone	:	GAATC	TTGG	AGAGC	TCAG	ΓG <mark>A-</mark> Α	ATTCC	GAGTGI	AGAG	GTGAAAT	TCGTAC	ATATT	: :	601
BIR2-r_lim	:	GAATC	TTGG	AGAGO	TCAG	IGG-A	ATTCC	GAGTGI	AGAG	GTGAAAT	TCGTAG	ATATT(: 2	599
MP20_Sphin	:	GAACC	CAGG	AGAGC	TGAG	IGG-A	ATTCC	GAGTGI	AGAG	GTGAAAT	TCGTAC	ATATT	: 2	609
DSSF72_Unc	:	AAAIC	CAGG	AGAGO	TGAG.	I G G <mark>G</mark> A	ATCCCC	GAGTGI	AGAG	GTGAAAT	TCGTAG	ATATT(: 2	607
1/4_C7_32_	:	GAATC	TTGG	AGAGO	TCAG	ľGG–A	ATTCCC	GAGTGI	.AGAG(GTGAAAT	TCGTAG	ATATC	::	598
AKIW820_CL	:	GAATC	CTGG	AGAGO	TGAG	GGG-A	ATTCC	GAGTGI	AGAG	GTGAAAT	TCGTAG	ATATT(: 2	608
MRIIO0_CTO	:	GAGIT	CGCA	AGAGO	TTGG	rgg–A	ACTGCO	AGIGI	AGAA	GTGAAA'I	TCGTAG	ΑΤΑΤΓ	::	604
ENV481_X	:	GAGIT	CGAG	AGAGO	TTGG	rgg–A	ACTCC	FAGIGI	AGAG	GTGAAA'I	TCGTAG	ATATT(::	597
V4.BU.U5_B	:	GAGIA	TGAG	AGAGO	TGTG	IGG - A	ACTCCC	AGIGI	AGAG	GTGAAA'I	TCGTAG	ATATT(::	604
549_Chryse	:	GAGIA	AGGT	AGAAC	TGGC	rGG - A	ATAAG1			GTGAAA'I	GCATAC	ΑΤΑΤΓΛ	- · ·	654
PBA3_5.~kt	:	GAIA	ААС'Г	agage	TAGG	GG-A	ALGAGZ	ACAA <mark>G</mark> I	AGCG	GTGAAA'I	GCATAC	ATATG:	L :	650
		gA t	g.	ag gg	g 1	cgg A	ATTCC	gtGt	ag g	JIGAAT	ug Ag	A AT		

		*	700	*	720	*	740		
92-0600_Ar	:	gga <mark>g</mark> gaac	ACC <mark>GA</mark> TG <mark>GC</mark> GAA	GGC <mark>AGGTC</mark> T	CTGG <mark>G</mark> CATTA	ACTGACGCTGA	AGG <mark>AG</mark> CGA	:	692
5N-4_Kpa	:	gga <mark>g</mark> g <mark>aa</mark> c	ACC <mark>GA</mark> TGGCGAA	GGC <mark>AGG</mark> TCT	CTGG <mark>G</mark> CTGTT	ACTGACGCTGA	AGG <mark>AG</mark> CGA	:	699
4RS-9a_M	:	gga <mark>ga</mark> aac	ACC <mark>GA</mark> TGGCGAA(GGC <mark>AGGTC</mark> T	CTGG <mark>G</mark> CTGTA	ACTGACGCTGA	AGG <mark>AG</mark> CGA	:	692
Amico6_Var	:	gga <mark>g</mark> gaac	ACC <mark>GA</mark> TGGCGAA(GGC <mark>AGGTC</mark> T	CTGG <mark>G</mark> CTGTA	ACTGACGCTGA	AGG <mark>AG</mark> CGA	:	690
MT2.2_Derm	:	gga <mark>g</mark> gaac	ACC <mark>GA</mark> TGGCGAA(GGC <mark>AGGTC</mark> T	CTGG <mark>G</mark> CCATT	ACTGACGCTGA	AGAAGCGA	:	693
Lact5.2_B.	:	gga <mark>a</mark> gaac	ACC <mark>GA</mark> TGGCGAA	GGC <mark>AGGTCT</mark>	CTGG <mark>G</mark> CCATT	actgac <mark>a</mark> ctga	AGGAGCGA	:	697
rJ6_Bacter	:	gga <mark>g</mark> gaac	ACC <mark>GA</mark> TG <mark>GC</mark> GAA	GGC <mark>AGATC</mark> T	CTGG <mark>G</mark> CCGTA	ACTGACGCTGA	AGG <mark>AG</mark> CGA	:	688
PAO-12_Mic	:	gga <mark>g</mark> gaac	ACC <mark>GA</mark> TGGCGAA(GGC <mark>AGATC</mark> T	CTGG <mark>G</mark> CCGTA	ACTGACGCTGA	AGG <mark>AG</mark> CGA	:	694
sp.7_4K_Mi	:	gga <mark>g</mark> gaac	ACC <mark>GA</mark> TG <mark>GC</mark> GAA	GGC <mark>AGATC</mark> T	CTGG <mark>G</mark> CCGTA	ACTGACGCTGA	AGG <mark>AG</mark> CGA	:	696
wged11_Lei	:	gga <mark>g</mark> g <mark>aa</mark> c	ACC <mark>GA</mark> TG <mark>GC</mark> GAA	GGC <mark>AGATC</mark> T	CTGG <mark>G</mark> CCGTA	ACTGACGCTGA	AGG <mark>AG</mark> CGA	:	699
Ljaponic	:	gga <mark>g</mark> gaac	ACC <mark>GGG</mark> GGCGAA	GGCGGTCCT	CTGG <mark>GACTT</mark> T	CCTGACGCTG	AG <mark>AAG</mark> CGA	:	693
ML0004_R	:	gga <mark>g</mark> g <mark>aa</mark> c	ACC <mark>GG</mark> TGGCGAA	GGC GGGTCT	CTGG <mark>G</mark> CAGTA	ACTGACGCTGA	AGG <mark>AGC</mark> GA	:	694
6_Clone_Un	:	gga <mark>g</mark> gaac	ACC <mark>GA</mark> TG <mark>GC</mark> GAA	GGCAAGCCC	CTGG <mark>G</mark> CATGA	ACTGACGCT <mark>C</mark> A	AGG <mark>AA</mark> CGA	:	712
CICCHL_JQ9	:	gga <mark>g</mark> gaac	ACC <mark>AG</mark> TG <mark>GC</mark> GAA	GGCGACTTT	CTGGTCTGTA	ACTGACACTGA	AGG <mark>CG</mark> CGA	:	724
XJU-1_Bc	:	gga <mark>g</mark> gaac	ACC <mark>AG</mark> TGGCGAA(GGCGACTTT	CTGGTCTGTA	ACTGAC <mark>A</mark> CTGA	AGG <mark>CG</mark> CGA	:	728
PR35-2-1_B	:	gga <mark>g</mark> gaac	ACC <mark>AG</mark> TG <mark>GC</mark> GAA	GGC GACTTT	CTGGTCTGTA	ACTGACACTGA	AGG <mark>CG</mark> CGA	:	728
760_Bpum	:	gga <mark>g</mark> g <mark>aa</mark> c	ACC <mark>AG</mark> TGGCGAA(GGC GACTCT	CTGGTCTGTA	ACTGACGCTGA	AGG <mark>AG</mark> CGA	:	730
Ssuccinu	:	gga <mark>g</mark> g <mark>aa</mark> c	ACC <mark>AG</mark> TGGCGAA(GGC GACTTT	CTGGTCTGTA	ACTGACGCTG	ATGTGCGA	:	724
ST7_Clone_	:	gga <mark>g</mark> gaac	ACC <mark>AA</mark> TGGCGAA0	GGC <mark>AACTCT</mark>	CTGG <mark>G</mark> CTGTA	ACTGAC <mark>A</mark> CTG <i>A</i>	AGG <mark>AG</mark> CGA	:	691
88_17_clon	:	gga <mark>gaaa</mark> t	ACC <mark>GA</mark> TG <mark>GC</mark> AAA0	GGC <mark>AGCCA</mark> T	CTGG <mark>C</mark> CTAAT	AC <mark>TGAC</mark> CTG <i>I</i>	AGG <mark>GAC</mark> AA	:	714
Acinetobac	:	gga <mark>g</mark> gaat	ACC <mark>GA</mark> TGGCGAA0	ggc <mark>ag</mark> ccat	CTGG <mark>C</mark> CTAAT	ACTGACGCTGA	AGGTA <mark>C</mark> GA	:	718
TDIW13_Aci	:	gga <mark>g</mark> g <mark>aa</mark> t	ACC <mark>GA</mark> TGGCGAA(ggc <mark>agccat</mark>	CTGG <mark>C</mark> CTAAT	ACTGACGCTGA	AGGTA <mark>C</mark> GA	:	718
A449_Asa	:	GGA <mark>G</mark> GAAT	ACC <mark>GG</mark> TGGCGAA(GGCGGCCCC	CT GG <mark>A</mark> CAAAG	ACTGACGCT <mark>C</mark> A	AGG <mark>TG</mark> CGA	:	715
211c_Ave	:	gga <mark>g</mark> gaat	ACC <mark>GG</mark> TGGCGAA(GGCGGCCCC	CT GG <mark>A</mark> CAAAG	AC <mark>TGACGCT</mark> C	AGG <mark>TG</mark> CGA	:	715
ATCC_17527	:	G <mark>a</mark> aggaac	ACC <mark>AG</mark> TG <mark>GC</mark> GAA(GGC GACCAC	CT GG <mark>a</mark> c tgat	ACTGACACTGA	AGG <mark>TG</mark> CGA	:	705
PC16_Ppu	:	G <mark>a</mark> aggaac	ACC <mark>AG</mark> TG <mark>GC</mark> GAA(GGC GACCAC	CTGG <mark>A</mark> CTGAT	ACTGAC <mark>A</mark> CTGA	AGG <mark>TG</mark> CGA	:	711
PT03_Bacte	:	G <mark>a</mark> aggaaa	ACC <mark>AG</mark> TG <mark>GC</mark> GAA(GGC GACCAC	CTGG <mark>AC</mark> TGAT	ACTGAC <mark>A</mark> CTGA	AGG <mark>TG</mark> CGA	:	709
KVD-unk-80	:	GGA <mark>G</mark> G <mark>AA</mark> T	ACC <mark>GA</mark> TG <mark>GCG</mark> AA0	GGC <mark>AGCCCC</mark>	CTGGGACGTC	AC <mark>TGAC</mark> GCTC	ATGCACGA	:	714
Jlividum	:	GGA <mark>G</mark> G <mark>AA</mark> C	ACC <mark>GA</mark> TGGCGAA(GGCAGCCCC	CTGG <mark>GTCAAG</mark>	ATTGACGCTC <i>P</i>	ATGCACGA	:	716
Lginseng	:	GGA <mark>G</mark> GAAC	ACC <mark>GA</mark> TGGCGAA0	ggc <mark>aatcc</mark> c	CTGGGCCTGC	CACTGACGCTC	ATGCACGA	:	712
6C_13_Vari	:	GGA <mark>G</mark> GAAC	ACC <mark>GA</mark> TGGCGAA0	ggcaatccc	CTGGACCTGI	actgacgctc <i>p</i>	ATGCACGA	:	711
Dacidovo	:	gga <mark>g</mark> gaac	ACC <mark>GA</mark> TGGCGAA(ggcaatccc	CTGGACCTGT	actgacgct <mark>c</mark>	ATGCACGA	:	712
300C-C03_C	:	GGA <mark>A</mark> GAAC	ACC <mark>AG</mark> TGGCGAA(GGCGACTGA	CTGGACAAGT	ATTGACGCTGA	AGGTGCGA	:	664
ctg_CGOF25	:	GGA <mark>A</mark> GAAC	ACC <mark>AG</mark> TGGCGAA(GGCGGCTCA	CTGGACAGGI	ATTGACGCTGA	AGGTGCGA	:	663
BY14_Clone	:	GGA <mark>A</mark> GAAC	ACC <mark>AG</mark> TGGCGAA(GGCGACTGA	CTGGACAAGT	ATTGACGCTG	AGGTGCGA	:	658
BIR2-r_lim	:	GGA <mark>A</mark> GAAC	ACC <mark>AG</mark> TGGCGAA(GGCGACTGA	CTGGACAAGI	ATTGACGCTGA	AGG TGC GA	:	656
MP20_Sphin	:	GGA <mark>A</mark> GAAC	ACC <mark>AG</mark> TGGCGAA0	GGC GGCTCA	CTGGACTGGI	ATTGACGCTGA	AGG TGC GA	:	666
DSSF72_Unc	:	GGAAGAAC	ACCAGTGGCGAA	GGCGGCTCA	CTGGACTGGI	ATTGACGCTGA	AGGTGCGA	:	664
1/4_C7_32_	:	GGAAGAAC	ACCAGTGGCGAA	GGC GACTGA	CI GGACAAG'I	ATTGACGCTGA	AGGTGCGA	:	655
AKIW820_CI	:	GGAAGAAC	ACCAGTGGCGAA	GGC GACTCA	CI GGACAGG'I	ACTGACGCTGA	AGGTGCGA	:	665
MRII00_CTO	:	GCAAGAAC		GGCGGCCAA	CIGGIQCGAI	ACTGACGCTGA	AGGCGCGA	:	661
ENV481_X	:	GGAAGAAC	ACCAGTGGCGAA(GGCGGCCAA	CIGGCTCGAT	ACTGACGCTGA	AGGTGCGA	:	654
V4.BU.U5_B	:	GGAAGAAC		GCGACACA	CIGGCTCATI			:	661 711
549_Cnryse	:	CTTAGAAC		JGCAGGTCA	CIATGTCTTA	ACTGACGCTGA		:	/11
FRA3 F. kr	:	CTCAGAAC	ACCGATTGCGAA	gge agettTa	CTATGGTI'I'I	AIIGACGCIG		:	/0/
		gga gAAc	AUU EGGGGAAG	3GC (cidd c	actGACgCTgA	agg CgA		

			*		760		*	780		*	8		
92-0600 Ar	:	AAGC	TGGG	GAGC	GAACAGG	ATTAGATA	CCCTGGT	AGTCCATG	CCG	гааас	T TG GG	:	749
5N-4 K. pa	:	AAGC	ATGGG	GAGC	GAACAGG	ATTAGATA	ACCCTGGT	AGTCCATG	CCG	ГАААС	GTTGGG	:	756
4RS-9a M.	•	AAGC	TGGG	GAGC	GAACAGG	ATTAGATA	CCCTGGT	AGTCCATG	CCG	гааас	TTGGG		749
Amico6 Var		AAGC	ATGGG	GAGC	GAACAGG	ATTAGATA	CCCTGGT	AGTCCATG	CCG	ГАААС	TTGGG		747
MT2.2 Derm		AAGC	ATGGG	GAGC	GAACAGG	ATTAGATA	CCCTGGT	AGTCCATG	CCG	ГАААС	TTGGG		750
Lact5 2 B		AAGC	TGGG	TAGC	GAACAGG	ATTAGATZ	CCCTGGT	AGTCCATG			GTTGGG		754
rJ6 Bacter	:	AAGG	TGGG	GAGC	AAACAGG	CTTAGATZ	CCCTGGT	AGTCCACC			TTGGC	:	745
PAO=12 Mic	:	AAGG	ETGGG	GAGC	AAACAGG	CTTAGATZ	CCCTGGT	AGTCCACC				:	751
r = 7.4 Mi	:		TCCC		AAACACC	CTTAGATZ	CCCTCCT	AGICCACC				:	753
woodll Loi	:		TCCC			ATTAGATZ	CCCTCCT	AGTCCACC				:	756
Mycuii_Dei	:			CACC	AACACC	CTTACATZ	CCCTCCT	AGICCACC				:	750
	:		TCCC	AACC		ATTAGAT	CCCTGGT	AGICCACG				:	751
MLUUU4_K	:	AAGCO		AAGC	GAACAGG	ATTAGATA		AGICCACG				:	751
	•	AAGC		GAGC	AAACAGG	ATTAGATA		AGICCACG				•	709
CICCHL_JQ9	:			GAGC		AIIAGAIA		AGICCACG			JAIGAG	:	701
XJU-I_BC	:	AAGCO	GIGGG	GAGC	AAACAGG	ATTAGATA		AGICCACG	CCG.		JATGAG	:	785
PR35-2-1_B	:	AAGCO	FTGGG	GAGC	AAACAGG	ATTAGATA	ACCCTGGT.	AGTCCACG	CCG	TAAAC	-ATGAG	:	/85
760_Bpum	:	AAGCO	GTGGG	GAGC	GAACAGG	ATTAGATA	ACCCTGGT.	AGTCCACG	CCG:	l'AAAC(GATGAG	:	787
Ssuccinu	:	AAGCO	GTGGG	GATC	AAACAGG	ATTAGATI	ACCCTGGT.	AGTCCACG	CCG	raaac	GATGAG	:	781
ST7_Clone_	:	AAGC	ATGGG	GAGC	AAACAGG	ATTAGAT <i>I</i>	ACCCTGGT.	AGTCCACG	CCG	FAAAC	GA TG AG	:	748
88_17_clon	:	AAGC/	ATGGG	GAGC	AAACAGG	ATTAGAT <i>I</i>	ACCCTGGT	AGTCCA <mark>T</mark> G	CCG	ГАААС <mark>/</mark>	AA <mark>TG</mark> TC	:	771
Acinetobac	:	AAGC <i>I</i>	ATGGG	GAGC	A <mark>AACAGG</mark>	ATTAGAT <i>I</i>	ACCCTGGT	AGTCCA <mark>T</mark> G	CCG	[AAAC	GA <mark>TG</mark> TC	:	775
TDIW13_Aci	:	AAGC/	ATGGG	GAGC	A <mark>AACAGG</mark>	ATTAGAT <i>I</i>	ACCCTGGT	AGTCCA <mark>T</mark> G	CCG	raaac <mark>(</mark>	GA <mark>TG</mark> TC	:	775
A449_Asa	:	AAGC	GTGGG	GAGC	AAACAGG	ATTAGAT <i>I</i>	ACCCTGGT	AGTCCACG	CCG	ГАААС	GA <mark>TG</mark> TC	:	772
211c_Ave	:	AAGC	GTGGG	GAGC	AAACAGG	ATTAGAT <i>I</i>	ACCCTGGT	AGTCCACG	CCG	ГАААС	GA <mark>TG</mark> TC	:	772
ATCC_17527	:	AAGC	G <mark>TGGG</mark>	GAGC	AACAGG	ATTAGATA	ACCCTGGT	agtccacg	CCG	ГАААС	GA <mark>TG</mark> TC	:	762
PC16_Ppu	:	AAGC	GTGGG	GAGC	AAACAGG	ATTAGATA	ACCCTGGT	AGTCCACG	CCG	ГАААС	GA <mark>TG</mark> TC	:	768
PT03_Bacte	:	AAGC	GTGGG	GAGC	AAACAGG	ATTAGATA	ACCCTGGT	AGTCCACG	CCG	ГАААС	GA <mark>TG</mark> TC	:	766
KVD-unk-80	:	AAGC	GTGGG	GAGC	AACAGG	ATTAGATA	ACCCTGGT.	AGTCCACG	CCC	ГАААС	GATGTC	:	771
Jlividum	:	AAGC	GTGGG	GAGC	AAACAGG	ATTAGATA	ACCCTGGT.	AGTCCACG	CCC	ГАААС	GATGTC	:	773
L. ginseng	:	AAGC	GTGGG	GAGC	AAACAGG	ATTAGAT	ACCCTGGT.	AGTCCACG	CCC	гааас	GA TG TC	:	769
6C 13 Vari	:	AAGCO	GTGGG	GAGC	AAACAGG	ATTAGATA	CCCTGGT	AGTCCACG	CCC	ГАААС	GATGTC	:	768
D. acidovo	:	AAGCO	GTGGG	GAGC	AAACAGG	ATTAGATA	CCCTGGT	AGTCCACG	CCC	ГАААС	GATGTC	:	769
300C-C03 C	•	AAGC	TGGG	GAGC	AAACAGG	ATTAGATA	CCCTGGT	AGTCCACG	CCG	гааас	ATGAT		721
cta CGOF25	:	AAGC	GTGGG	GAGC	AAACAGG	ATTAGATZ	CCCTGGT	AGTCCACG			CATGAT	:	720
BY14 Clone	:	AAGCO	ETGGG	GAGC	AAACAGG	ATTAGATZ	CCCTGGT	AGTCCACG			CATCAT	:	715
BIR2_r lim	:		TCCC		AAACACC	ATTACATZ	CCCTCCT	AGICCACC			ATCAT	:	713
MP20 Sphin	:		TCCC	GAGC	AAACAGG	ATTACATZ	CCCTCCT	AGICCACC				:	723
DCCE72 Una	:			CACC		ATTAGAI		AGICCACG				:	723
DSSE / Z_011C	•	AAGCO		GAGC	AAACAGG	ATTAGATA		AGICCACG			SAIGAI	•	710
1/4_U/_JZ_	:	AAGCO		GAGC		ATTAGALA		AGICCACG				:	712
ANIWOZU_CI	:	AAGCO		GAGC	AAACAGG	ATIAGATA		AGICCACG	CCG.		GALGAG	:	710
MRIINOT CTO	:	AAGCO	JGGG	GAGC	AAACAGG	ALIAGATA		AGICCACG	CCG.	LAAAC(GAIGAA	:	118
ENV481_X	:	AAGCO	JIGGG	GAGC	AAACAGG	ATTAGATA	ACCCTGGT.	AGTCCACG	CCG.	TAAAC	GAIGGA	:	/11
V4.B0.05_B	:	AAGCO	JIGGG	GAGC	AAACAGG	ATTAGATA	ACCCTGGT	AGTCCACG	CCG:	TAAAC	JATG AT	:	718
549_Chryse	:	AAGCO	GTGGG	GAGC	GAACAGG	ATTAGATA	ACCCTGGT	AGTCCACG	CTG:	TAAAC	GATGCT	:	768
PB93_Pkr	:	AAGCO	GIGGG	GATC	AACAGG	ATTAGATA	ACCCTGGT	AGTCCACG	CCC	raaac	GA <mark>TG</mark> AA	:	764
		AAGc	TGGG	gAgC	AACAGG	aTTAGATA	ACCCTGGT	AGTCCAcg	Ccg	raaac	g TG		

		00	*	8	320	*		840		*		
92-0600_Ar	:	CACI	AG <mark>GT</mark> GT <mark>GG</mark>	GGACAT	CCACGTTT	TCCGCG	GCCGTA	gct <mark>aa</mark> c	gc <mark>a</mark> tt <mark>a</mark>	AGTC	3 :	804
5N-4_Kpa	:	CACI	AG <mark>GT</mark> GT <mark>GG</mark>	GGACAT	CCACGTTT	TCCGCG	GCCGTA	gct <mark>aa</mark> c	gc <mark>a</mark> tt <mark>a</mark>	AGTC	5 :	811
4RS-9a_M	:	CACI	AG <mark>GT</mark> GT <mark>GG</mark>	GACCAT	CCACGGTT	TCCGCG	GCGCA	gct <mark>aa</mark> c	gc <mark>a</mark> tt <mark>a</mark>	AGTC	5 :	804
Amico6_Var	:	CACI	AG <mark>GT</mark> GT <mark>GG</mark>	GACCAT	CCACGGTT	TCCGCG	GCGCA	gct <mark>aa</mark> c	gc <mark>a</mark> tt <mark>a</mark>	AGTC	5 :	802
MT2.2_Derm	:	CGCI	AG <mark>GT</mark> GT <mark>GG</mark>	GCTCAT	CCACGAGT	TCCGTG	GCGCA	gct <mark>aa</mark> c	gc <mark>a</mark> tt <mark>a</mark>	AGCC	5 :	805
Lact5.2_B.	:	CACI	AG <mark>AT</mark> GT <mark>GG</mark>	GGACAT	CCACGTT	TCCGCG	GTCGT <mark>A</mark>	gct <mark>aa</mark> c	gc <mark>a</mark> tt <mark>a</mark>	AGTC	3 :	809
rJ6_Bacter	:	AACI	AG <mark>TT</mark> GT <mark>GG</mark>	GACCAT	CCACGGAT	TCCGTG	GACGCA	gct <mark>aa</mark> c	gc <mark>a</mark> tt <mark>a</mark>	AGATT(: :	802
PAO-12_Mic	:	AACI	AG <mark>TT</mark> GT <mark>GG</mark>	GTCCAT	CCACGGAT	TCCGTG	GACGCA	gct <mark>aa</mark> c	gc <mark>a</mark> tt <mark>a</mark>	AGTI	:	806
sp.7_4K_Mi	:	AACI	AG <mark>TT</mark> GT <mark>GG</mark>	GTCCAT	ICCACGGAT	ICCGTG	G <mark>acgc</mark> a	gct <mark>aa</mark> c	gc <mark>a</mark> tt <mark>a</mark>	AGTI	:	808
wged11_Lei	:	AACI	`AG <mark>AT</mark> GT <mark>GG</mark>	GGCCAT	CCACGGTC	ICCGTG	GTCG <mark>C</mark> A	gct <mark>aa</mark> c	GC <mark>A</mark> TT <mark>A</mark>	AGTI	:	811
Ljaponic	:	TACI	AG <mark>GT</mark> GT <mark>GG</mark>	TCACAT	CCACGTGA	ICCGTG	G <mark>C</mark> CG <mark>C</mark> A	gct <mark>aa</mark> c	gc <mark>a</mark> tt <mark>a</mark>	AGT <i>P</i>	. :	805
ML0004_R	:	CGCI	`AG <mark>GT</mark> GT <mark>GG</mark>	GTTTCCT:	CCACGGGA	ICCGIG	G <mark>C</mark> CGT <mark>A</mark>	gct <mark>aa</mark> c	GC <mark>A</mark> TT <mark>A</mark>	AGCO	3 :	806
6_Clone_Un	:	CACI	AG <mark>GT</mark> GT <mark>GG</mark>	GGACAT:	CCACGTTT	ICCGCG	G <mark>CCGT</mark> A	g <u>c</u> taac	GC <mark>A</mark> TT <mark>A</mark>	AGTC	3 :	824
CICCHL_JQ9	:	TGCI	A <mark>AGT</mark> GT TA	AGGGTT:	CCGC-CCT	TAGTO	CTGA <mark>A</mark>	G <mark>T</mark> TAAC	GC <mark>A</mark> TT <mark>A</mark>	AGCA	. :	835
XJU-1_Bc	:	TGCI	A <mark>AGT</mark> GT TA	AGGGT TI	CCGC-CCT	TAGTO	CTG <mark>A</mark> A	G <mark>T</mark> TAAC	GC <mark>A</mark> TT <mark>A</mark>	AGCA	. :	839
PR35-2-1_B	:	TGCI	AGTGTTA	AGGGT TI	ICCGC-CCT	TTAGTO	CTG <mark>A</mark> A	G <mark>T</mark> TAAC	GC <mark>A</mark> TTA	AGCA	. :	839
760_Bpum	:	TGCI	"AAGTGTTA	GGGGTT	ICCGC-CCC	TACTO	GCTGCA	GCTAAC	GCATTA	AGCA	7 :	841
Ssuccinu	:	TGCI	'AAGTGTTA	GGGGGTI	CCGC-CCC	TAGTO	CTGCA	GCTAAC	GCATTA	AGCA	. :	835
ST/_Clone_	:	TGCI	TA <mark>AGT</mark> GT TA	AGGGTII	ICCGC-CCT	TAGTO	GCTGAA	G T TAAC	GCATTA	AGCA	1 :	802
88_17_clon	:	TACI	ACCCGTTG	AGCCTI	GACGCT	TAGTO	GCGCA	CCTAAC	CCGATA	AGTA	1 :	824
Acinetobac	:	TACI	AGCCGTTG	GGCCTT.	IGAGGCT	TTAGTO	GCGCA	GCTAAC	GCGATA	AGTA	7 :	828
TDIWI3_ACI	:	TACI		GGCCTT.	GAGGCI			GCTAAC	GC <mark>GA</mark> TA	AG - TF	7 :	828
A449_Asa	:	GATI	TGGAGGCT	TGTCCI.	GAGACG	IGGCII		GCTAAC	GCGTTA	AA TC		825
ZIIC_Ave	:	GAIL			GAGACG			GUIAAU	GCGIIA	AAIC		823 015
AICC_1/52/	:	AACI			GAGCIC			COTAAC	GCALIA	AGII	. :	0.01
PCI6_Ppu	:	AACI			GAGCIC			COTAAC	GCALIA	AGII	. :	010
PIUS_BACLE	:	AACI			GAGCIC			CCTAAC	GCATTA CCCTC7	AGII		013
KVD-UIK-80	:	TACT		GGAIIC	ATTCAC	TCAGIA		CCTAAC	CCCTCA	AGII		023 025
	•	ACT	COTTOTO		AAIIGAC			CCTAAC	CCCTCA	AGIF		020
6C 13 Vari	:	AACI	GGIIGIIG	-GAGGG.				CCTAAC	CCGTCA			820
D acidovo	:	AACT	GGTIGIIG		ACIGAC			CCTAAC	CCGTCA			821
300C-C03 C	:	AACT	ACTGTCC	CCCACA	GGTGTT			CCTAAC				774
cta CGOF 25	:	AACT	AGCTGTCC	GGTTCA	GGAATT			CCTAAC	CCATTA	AGTI		773
BY14 Clone	:	AACT	AGCTGTCC	GGCACT	GGTGCT	TGGGTC		GCTAAC	GCATTA	AGT1		768
BIR2-r lim		AACT	AGCTGTCC	GGCACT	GGTGCT	TGGGTC	GCGCA	GCTAAC	GCATTA	AGTI		766
MP20 Sphin	:	AACT	AGCTGTCT	GGCACA	GGTGCT	TAGGTO	GCGCA	GCTAAC	GCATTA	AGT1		776
DSSF72 Unc	:	AACT	AGCTGTCG	GGTTCA	AGAACT	TCGGTG	GCGCA	GCTAAC	GCATTA	AGT1		774
1/4 C7 32	:	AACT	ATCTGTCC	GGCTCA	AGAGCT	IGGGTG	GAGCA	GCTAAC	GCATTA	AGT1		765
AKIW820 C1	:	AACT	AGCCGTCC	GCAACT	GACGCG	ICGGTC	GCGCA	GCTAAC	GCATTA	AGC1	:	775
WBI100_Clo	:	TGCC	AGCCGTTG	GGAGCT	GCTCT	TCAGTO	GCGCA	GCTAAC	GCTTTA	AGCA	. :	770
ENV481_X.	:	TGCI	AGCCGTTG	GGGGTT	АССТС	TCAGTO	GCGCA	GCTAAC	GC <mark>CTT</mark> A	AGCA	. :	763
V4.B0.05_B	:	TGCI	AGTTGTCG	GATGCA	GCATT	ICGGT	ACGCA	GCTAAC	GCATTA	AGCA	: .	770
549_Chryse	:	AACI	CGTTTTTG	GTTTTC	GGAT	TCAGAG	ACTAA	gc <mark>gaa</mark> a	G <mark>TGA</mark> TA	AGTI	:	818
PB93_Pkr	:	TACI	CGCTGTTA	CGATATA	ACAG	TAGCO	GCTAA	GC <mark>G</mark> AAA	GC <mark>G</mark> TT <mark>A</mark>	AGT <i>I</i>	. :	814
		ct	ag gt (G Īt	:	T gtg	ıcg A	gctAAc	gc ttA	Ag		

		860) *		880	*	900	*		
92-0600_Ar	:	CCCC	GCCTGGGGGAGTAC	CGC <mark>C</mark> C	GCAAGGC	Т <mark>А</mark> АААСТСААА	GAATTG2	ACGGGG <mark>G</mark> CCC	:	861
5N-4_Kpa	:	CCCC	CCTGGGGAGTAC	GG <mark>CC</mark> -	GCAAGGC	Т <mark>А</mark> АААСТСААА	GAATTG2	ACGGGG <mark>G</mark> CCC	:	867
4RS-9a_M	:	CCCC	CCTGGGGAGTAC	GG <mark>C</mark> C-	GCAAGGC	Т <mark>А</mark> АААСТСААА	GAATTG2	ACGGGG <mark>G</mark> CCC	:	860
Amico6_Var	:	CCCC	CCTGGGGAGTAC	GG <mark>C</mark> C-	GCAAGGC	Т <mark>А</mark> АААСТСААА	GAATTG2	ACGGGG <mark>G</mark> CCC	:	858
MT2.2_Derm	:	CCCC	GCCTGGGGGAGTAC	gg <mark>c</mark> -	GCAAGGC	Т <mark>А</mark> АААСТСААА	GAATTG2	ACGGGG <mark>G</mark> CCC	:	861
Lact5.2_B.	:	CCCC	SCCTGGGGAGTAC	GG <mark>C</mark> C-	GCAAGGC	ТААААСТСААА	GAATTG2	ACGGGG <mark>G</mark> CCC	:	865
rJ6_Bacter	:	CCCC	CCTGGGGAGTAC	GG <mark>C</mark> C-	GCAAGGC	Т <mark>А</mark> АААСТСААА	AGAATTG	ACGGGG <mark>A</mark> CCC	:	858
PAO-12_Mic	:	CCCC	SCCTGGGGAGTAC	GG <mark>C</mark> C-	GCAAGGC	ТААААСТСААА	GAATTG	ACGGGG <mark>A</mark> CCC	:	862
sp.7_4K_Mi	:	CCCC	GCCTGGGGGAGTAC	gg <mark>c</mark> -	GCAAGGC	Т <mark>А</mark> АААСТСААА	GAATTG2	ACGGGG <mark>A</mark> CCC	:	864
wged11_Lei	:	CCCCC	GCCTGGGGAGTAC	GG <mark>C</mark> -	GCAAGGC	Т <mark>А</mark> АААСТСААА	GAATTG2	ACGGGG <mark>G</mark> CCC	:	867
Ljaponic	:	CCCC	GCCTGGGGGAGTAC	GG <mark>C</mark> -	GCAAGGC	Т <mark>А</mark> АААСТСААА	GAATTG2	ACGGGG <mark>C</mark> CCC	:	861
ML0004_R	:	CCCCC	GCCTGGGGAGTAC	GG <mark>C</mark> -	GCAAGGC	Т <mark>А</mark> АААСТСААА	GAATTG2	ACGGGG <mark>G</mark> CCC	:	862
6_Clone_Un	:	CCCCC	GCCTGGGGAGTAC	GG <mark>C</mark> -	GCAAGGC	Т <mark>А</mark> АААСТСААА	GAATTG2	ACGGGG <mark>G</mark> CCC	:	880
CICCHL_JQ9	:	CTCC	GCCTGGGGAGTAC	GG <mark>C</mark> C-	-GCAAGGC	T <mark>G</mark> AAACTCAAA	GAATTG2	ACGGGG <mark>G</mark> CCC	:	891
XJU-1_Bc	:	CTCC	GCCTGGGGAGTAC	GG <mark>C</mark> C-	-GCAAGGC	T <mark>G</mark> AAACTCAAA	GAATTG2	ACGGGG <mark>G</mark> CCC	:	895
PR35-2-1_B	:	CTCC	GCCTGGGGAGTAC	GG <mark>C</mark> C-	GCAAGGC	T <mark>G</mark> AAACTCAAA	GAATTG2	ACGGGG <mark>G</mark> CCC	:	895
760_Bpum	:	CTCC	GCCTGGGGGAGTAC	GG <mark>T</mark> C-	GCAAGAC	T <mark>G</mark> AAACTCAAA	GAATTG2	ACGGGG <mark>G</mark> CCC	:	897
Ssuccinu	:	CTCC	GCCTGGGGGAGTAC	G <mark>AC</mark> C-	-GCAAG <mark>G</mark> T	T <mark>G</mark> AAACTCAAA	GAATTG2	ACGGGG <mark>A</mark> CCC	:	891
ST7_Clone_	:	CTCC	GCCTGGGGGAGTAC	GG <mark>C</mark> -	-GCAAG <mark></mark> GC	T <mark>G</mark> AAACTCAAA	GGAATTG2	ACGGGG <mark>G</mark> CCC	:	858
88_17_clon	:	AACC	GCCTGGGGGAGTAC	GG <mark>C</mark> -	GCAAGAC	T <mark>A</mark> AAACTCAAA	TGAATTG2	ACGGGG <mark>G</mark> CCC	:	880
Acinetobac	:	GACC	GCCTGGGGGAGTAC	GG <mark>T</mark> C-	-GCAAGAC	T <mark>a</mark> aaactcaaa	I GAATTG2	ACGGGG <mark>G</mark> CCC	:	884
TDIW13_Aci	:	GACC	GCCTGGGGGAGTAC	GGT <mark>C</mark> -	-GCAAG <mark></mark> AC	T <mark>a</mark> aaactcaaa	IGAATTGA	ACGGGG <mark>G</mark> CCC	:	884
A449_Asa	:	GACC	GCCTGGGGGAGTAC	GG <mark>C</mark> C-	-GCAAGGT	T <mark>a</mark> aaactcaaa	I GAATTG2	ACGGGG <mark>G</mark> CCC	:	881
211c_Ave	:	GACC	GCCTGGGGGAGTAC	GG <mark>C</mark> C-	-GCAAGGT	T <mark>a</mark> aaactcaaa	IGAATTGA	ACGGGG <mark>G</mark> CCC	:	881
ATCC_17527	:	GACC	GCCTGGGGAGTAC	GG <mark>C</mark> C-	-GCAAGGT	T <mark>A</mark> AAACTCAAA	IGAATTGA	ACGGGG <mark>G</mark> CCC	:	871
PC16_Ppu	:	GACC	GCCTGGGGAGTAC	GG <mark>C</mark> C-	-GCAAGGT	T <mark>A</mark> AAACTCAAA	IGAATTGA	ACGGGG <mark>G</mark> CCC	:	877
PT03_Bacte	:	GACC	GCCTGGGGAGTAC	GG <mark>C</mark> C-	-GCAAG <mark>G</mark> T	TAAAACTCAAA	IGAATTGA	ACGGGG <mark>G</mark> CCC	:	875
KVD-unk-80	:	GACC	CCTGGGGAGTAC	GGTC-	-GCAAGAT	TAAAACTCAAA	GGAATTGZ	ACGGGG <mark>A</mark> CCC	:	879
Jlividum	:	GACC	GCCTGGGGGAGTAC	GGT <mark>C</mark> -	-GCAAGA'I'	TAAAACTCAAA	GGAATTG <i>I</i>	ACGGGGGACCC	:	881
Lginseng	:	GACC	GCCTGGGGGAGTAC	GGCC-	-GCAAGGT	TGAAACTCAAA	GGAATTG/	ACGGGGGACCC	:	877
6C_13_Vari	:	GACC	JCCTGGGGAGTAC	GGCC-	-GCAAGGT	TGAAACTCAAA(GAATTG/	ACGGGGGACCC	:	8/6
Dacidovo	:	GACCU		GGCC-	-GCAAGGT	ТСАААСТСААА	GAATTG/	ACGGGGGACCC	:	8//
300C-C03_C	:	AICCO		GGIC-	GCAAGAI		GAAIIG/	ACGGGGGGCCI	:	830
Ctg_CGOFZ5	:	AICCO		GGIC-	GCAAGAI		GAAIIG/		•	829
BII4_CLONE	:	ATCC	GCTCCCCA CTAC	GGIC-	GCAAGAI		GAAIIGA	ACGGGGGGCCI	:	024 022
MD20 Sphin	•	ATCC	CCTCCCCACTAC	GGIC-	-GCAAGAI		GAAIIGZ	ACGGGGGGCCI	•	022
MPZU_Spiili	•	ATCCC	CCIGGGGAGIAC		GCAAGAI		JGAAIIG CAATTCI	ACGGGGGGCCI	•	034
1/4 C7 32	•	ATCC	CCTCCCCACTAC		-GCAAGGI			ACGGGGGGCCI	•	000
1/4_C/_JZ_	:	ATCC	CCTCCCCACTAC	GGIC-	GCAAGAI	TAAAACICAAA	GGAAIIGZ		:	021
WRI100 Clo	:	TTCCC	CCTCCCCAGIAC	GGIC-	GCAAGAI	TAAAACICAAA	GAAIIG		:	826
FNV/281 V	:	TCCC	CCTCCCCACTAC		CCAAGAI		CANTTC		:	020 810
VA BO OS B	:	ATCC			-CCAACAT		GAATTG		:	826
549 Chrvse	:	AGCCZ	CCTGGGGGGGGTAC	GAAC-	-GCAAGTT	ТСАААСТСААА	GGAATTG		:	874
PB93 P kr		TTCCZ	ACCTGGGGGAGTAC	GCTC-	GCAAGAG	TGAAACTCAAA	GGAATTG		•	870
	•		CCTGGGGAGTAC	aa C	GCAAG	Т АААСТСААА	GAATTG		•	0,0
				ר כר						

		920	*	94()	*		960		
92-0600 Ar	:	GCACAAGCGG	GGAGCATGC	GATTAAT	TCGAT	GCAACGCG	AAGA	ACCTTACCAAGG	:	918
5N-4 K. pa	:	GCACAAGCGG	GGAGCATGCG	GATTAAT	TCGATC	CAACGCG	AAGA	ACCTTACCAAGG	:	924
4RS-9a M.	:	GCACAAGCGG	GGAGCATGC	GATTAAT	TCGATC	GCAACGCG	AAGA	ACCTTACCAAGG	:	917
Amico6 Var	:	GCACAAGCGG	GGAGCATGCG	GATTAAT	TCGATC	CAACGCG	AAGA	ACCTTACCAAGG	:	915
MT2.2 Derm	:	GCACAAGCGG	GGAGCATGCG	GATTAAT	TCGATO	GCAACGCG	AAGA	ACCTTACCAAGG	:	918
Lact5.2 B.	:	GCACAAGCGG	GGAGCATGCT	GATTAAT	TCGAT	GCAACGCG	AAGA	ACCTTACCAAGG	:	922
rJ6 Bacter	:	GCACAAGCGG	GGAGCATGCG	GATTAAI	TCGAT	GCAACGCG	AAGA	ACCTTACCAAGG	:	915
PAO-12 Mic	:	GCACAAGCGG	GGAGCATGCG	GATTAAI	TCGATO	GCAACGCG	AAGA	ACCTTACCAAGG	:	919
sp.7_4K_Mi	:	GCACAAGCGG	GGAGCATGCG	GATTAAI	TCGAT	GCAACGCG	AAGA	ACCTTACCAAGG	:	921
wged11_Lei	:	GCACAAGCGG	C <mark>GGA</mark> GC <mark>ATG</mark> C	GATTAAI	TCGAT	GCAACGCG	AAGA	ACCTTACCAAGG	:	924
Ljaponic	:	GCACAAGCGG	GGAGCATGC	G <mark>a</mark> ttaat	TCGAT	CAACGCG	AAGA	ACCTTACCTGGG	:	918
ML0004_R	:	GCACAAGCGG	GGAGCATGTG	GATTAAI	TCGAT	GCAACGCG	AAGA	ACCTTACCTGGG	:	919
6_Clone_Un	:	GCACAAGCGG	CGGAGCATGCG	G <mark>a</mark> ttaat	TCGAT	GCAACGCG	AAGA	ACCTTACCAAGG	:	937
CICCHL_JQ9	:	GCACAAGCGG	IGGAGCATGTG	GTTTAAI	TCGAA	GCAACGCG	AAGA	ACCTTACCAGGT	:	948
XJU-1_Bc	:	GCACAAGCGG	GGAGCATGTG	GTTTAAI	TCGAAG	GCAACGCG	AAGA	ACCTTACCAGGT	:	952
PR35-2-1_B	:	GCACAAGCGG	IGGAGCATGTG	GTTTAAI	TNGAA	GCAACGCG	AAGA	ACCTTACCAGGT	:	952
760_Bpum	:	GCACAAGCGG	IGGAGCATG <mark>T</mark> G	GTTTAAI	TCGAA	GCAACGCG	AAGA	ACCTTACCAGGT	:	954
Ssuccinu	:	GCACAAGCGG	IGGAGCATGTG	GTTTAAI	TCGAA	GCAACGCG	AAGA	ACCTTACCAAAT	:	948
ST7_Clone_	:	GCACAAGCGG	IGGAGCATG <mark>T</mark> G	GTTTAAI	TCGAA	GCAACGCG	AAGA	ACCTTACCAGGT	:	915
88_17_clon	:	GCACAAGCGG	IGGAGCATG <mark>T</mark> G	GTTTAAI	TCGAT	GCAACGCG	AAGA	ACCTTACCTGGT	:	937
Acinetobac	:	GCACAAGCGG	IGGAGCATG <mark>T</mark> G	GTTTAAI	TCGAT	GCAACGCG	aaga	ACCTTACCTGGT	:	941
TDIW13_Aci	:	GCACAAGCGG	I <mark>GGA</mark> GCATG <mark>T</mark> G	GTTTAAT	TCGAT	GCAACGCG	aaga	ACCTTACCTGGT	:	941
A449_Asa	:	GCACAAGCGG	I <mark>GGA</mark> GCATG <mark>T</mark> G	G <mark>T</mark> TTAAI	TCGAT	GCAACGCG	aaga	ACCTTACCTGGC	:	938
211c_Ave	:	GCACAAGCGG	I <mark>GGA</mark> GCATG <mark>T</mark> G	GTTTAAT	TCGAT	GCAACGCG	aaga	ACCTTACCTGGC	:	938
ATCC_17527	:	GCACAAGCGG	I <mark>GGA</mark> GCATG <mark>T</mark> G	G <mark>T</mark> TTAAI	TCGAA	GCAACGCG	aaga	ACCTTACCAGGC	:	928
PC16_Ppu	:	GCACAAGCGG	I <mark>GGA</mark> GC <mark>ATG</mark> TG	G <mark>T</mark> TTAAI	TCGA <mark>A</mark> C	GCAACGCG	aag <mark>a</mark>	ACCTTACCAGGC	:	934
PT03_Bacte	:	GCACAAGCGG	I <mark>GGA</mark> GCATG <mark>T</mark> G	G <mark>T</mark> TTAAI	TCGAA	GCAACGCG	aaga	ACCTTACCAGGC	:	932
KVD-unk-80	:	GCACAAGCGG	I <mark>GGA</mark> TG <mark>ATG</mark> TG	G <mark>a</mark> ttaat	TCGAT	GCAACGCG	AA <mark>A</mark> A	ACCTTACCTACC	:	936
Jlividum	:	GCACAAGCGG	I <mark>GGA</mark> TG <mark>ATG</mark> TG	G <mark>a</mark> ttaai	TCGAT	GCAACGCG	AA <mark>A</mark> A	ACCTTACCTACC	:	938
Lginseng	:	GCACAAGCGG	I <mark>GGA</mark> TG <mark>ATG</mark> TG	GTTTAAI	TCGAT	GCAACGCG	AA <mark>A</mark> A	ACCTTACCTACC	:	934
6C_13_Vari	:	GCACAAGCGG	I <mark>GGA</mark> TG <mark>ATG</mark> TG	G <mark>T</mark> TTAAI	TCGAT	GCAACGCG	AA <mark>A</mark> A	ACCTTACCCACC	:	933
Dacidovo	:	GCACAAGCGG	I <mark>GGA</mark> TG <mark>ATG</mark> TG	G <mark>T</mark> TTAAI	TCGAT	GCAACGCG	AA <mark>A</mark> A	ACCTTACCCACC	:	934
300C-C03_C	:	GCACAAGCGG	T <mark>GGA</mark> GCATG <mark>T</mark> G	G <mark>T</mark> TTAAI	TCGA <mark>A</mark> C	GCAACGCG	CAGA	ACCTTACCAGCG	:	887
ctg_CGOF25	:	GCACAAGCGG	I <mark>GGA</mark> GCATG <mark>T</mark> G	G <mark>T</mark> TTAAI	'TCGA <mark>A</mark> C	GCAACGCG	CAG <mark>A</mark>	ACCTTACCAGCG	:	886
BY14_Clone	:	GCACAAGCGG	T <mark>GGA</mark> GCATG <mark>T</mark> G	G <mark>T</mark> TTAAI	TT <mark>GA</mark> AC	GCAACGCG	CAGA	ACCTTACCAGCG	:	881
BIR2-r_lim	:	GCACAAGCGG	I <mark>GGA</mark> GCATG <mark>T</mark> G	G <mark>T</mark> TTAAT	TCGA <mark>A</mark> G	GCAACGCG	CAGA	ACCTTACCAGCG	:	879
MP20_Sphin	:	GCACAAGCGG	IGGAGCATGTG	GTTTAAI	TCGA <mark>A</mark> C	GCAACGCG	CAGA	ACCTTACCAGCG	:	889
DSSF72_Unc	:	GCACAAGCGG	I <mark>GGA</mark> GCATG <mark>T</mark> G	G <mark>T</mark> TTAAT	TCGA <mark>A</mark> G	GCAACGCG	CAGA	ACCTTACCAGCG	:	887
1/4_C7_32_	:	GCACAAGCGG	IGGAGCATGTG	GTTTAAI	TCGA <mark>A</mark> C	GCAACGCG	CAGA	ACCTTACCAGCG	:	878
AKIW820_Cl	:	GCACAAGCGG	I <mark>GGA</mark> GCATGTG	GTTTAAT	TCGAAG	GCAACGCG	CAGA	ACCTTACCAGCC	:	888
WBI100_Clo	:	GCACAAGCGG	I <mark>GGA</mark> GCATGTG	GTTTAAI	TCGAAC	GCAACGCG	CAGA	ACCTTACCAGCT	:	883
ENV481_X	:	GCACAAGCGG	I <mark>GGA</mark> GCATGTC	GTTTAAI	TCGAAC	GCAACGCG	CAGA	ACCTTACCAGCC	:	876
V4.B0.05_B	:	GCACAAGCGG	IGGAGCATGTG	GTTTAAI	TCGAAC	GCAACGCG	CAGA	ACCTTACCACCT	:	883
549_Chryse	:	GCACAAGCGG	IGGATTATGTG	GTTTAAI	TCGATO	GATACGCG	AGGA	ACCTTACCAAGG	:	931
PB93_Pkr	:	GCACAAGCGG	AGGAGCATGTG	GTTTAAT	TCGAT	GATACGCG	AGGA	ACCTTACCCGGG	:	927

GCACAAGCGG GGAgcATG gG TTAATTcGA GcaACGCG agAACCTTACC

		*	980	*	100	00	*	1020		
92-0600_Ar	:	CTTGA	ACAT <mark>GAACCGGA</mark> A	A-AGACCT	G <mark>GA</mark> AA	CAGGTG-	-CCCCGC1	T-GCGGTCGG	т:	969
5N-4_Kpa	:	CTTGA	ACAT <mark>ATACCGG</mark> AT	-CGTTCC	AGAGA.	GGTTC-	-TTCCCC1	TTGGGGTCG	т:	976
4RS-9a_M	:	CTTGA	ACAT <mark>GTTCTCG</mark> AT	-CGCCGT	AGAGA	ACGGT-	-TTCCCC1	TTGGGGCGGG	т:	969
Amico6_Var	:	CTTGA	ACAT <mark>GTTCTCG</mark> AT	-CGCCGT	AGAGA.	ACGGT-	-TTCCCC1	TTGGGGCGGG	т:	967
MT2.2_Derm	:	CTTGA	CAT <mark>ACACCGG</mark> A	A-TCATGC	AGAGA:	GTGTG-	CGTC	CTTCGGACTG	т:	967
Lact5.2_B.	:	CTTGA	CAT <mark>GCACCGGG</mark> C	C-GACTGC	AGAGA.	GTGGT-	TTTC	CTTCGGACTGG	т:	971
rJ6_Bacter	:	CTTGA	CAT <mark>ACACCAG</mark> A	A-CACCGT	aga <mark>a</mark> a:	ACGGG-	-A-CTCT1	TGGACACTG	т:	966
PAO-12_Mic	:	CTTGA	ACAT <mark>ATACGAG</mark> A	A-CGGGCC	aga <mark>a</mark> a:	IGGTCA-	-A-CTCTT	TGGACACTCC	т:	970
sp.7_4K_Mi	:	CTTGA	CAT <mark>ATACGAG</mark> A	A-CGGGCC	aga <mark>a</mark> a'	IGGTCA-	-A-CTCTT	TGGACACTCC	т:	972
wged11_Lei	:	CTTGA	ACAT <mark>ACACGAG</mark> AA	A-CGCTGC	AGA <mark>A</mark> A	GTAGT-	-T-CTCTT	TGGACACTC	т:	975
Ljaponic	:	TTTGA	ACAT <mark>ATGCCGGA</mark> A	A-ACATTC	AGAGA'	IGGATG-	CCCC1	TTTTGGTCGG	т:	968
ML0004_R	:	TTTGA	ACAT <mark>ATACCGGA</mark> A	A-AGCCGT	AGAGA	ACGGC-	ccccc	CTTGTGGTCGG	т:	969
6_Clone_Un	:	CTTGA	ACAT <mark>GGGCCGGA</mark> C	C-CGGGCT	G <mark>GA</mark> AA	CAGTCC-	-TTCCCC1	TTGGGGCCGG	т:	989
CICCHL_JQ9	:	CTTG	ACAT <mark>CCTCT-GA</mark> A	A-AACCCT	AGAGA.	IAGGGC-	-TTCTCC1	TCGGGAG-CAGA	G :	1000
XJU-1_Bc	:	CTTGA	ACAT <mark>CCTCT-GA</mark> A	A-AACCCT	AGAGA	AGGGC-	-TTCTCC1	TCGGGAG-CAGA	G:	1004
PR35-2-1_B	:	CTTG	ACAT <mark>CCTCT-GA</mark> A	A-AACCCT	AGAGA.	IAGGGC-	-TTCTCC1	TCGGGAG-CAGA	G :	1004
760_Bpum	:	CTTGA	ACATCCTCT-GAC	C-AACCCT	AGAGA.	IAGGGC-	-TTTCCC1	TCGGGGA-CAGA	G :	1006
Ssuccinu	:	CTTGA	ACAT <mark>CCTTT-GA</mark> A	A-AACTCT	AGAGA.	IAGAGCC	-TTCCCC1	TCGGGGGACAAA	G:	1002
ST7_Clone_	:	CTTGA	ACATCCTCT-GAA	A-AACCCT	AGAGA"	TAGGGC-	-TTCTCC	TCGGGAG-CAGA	G:	967
88_17_clon	:	CTTGA	CATAGTAAGAAC	CTTTCC	AGAGA"	I-GGATT	GGTGCCTI	Cgggaactta	C :	989
Acinetobac	:	CTTGA	ACATAGTAAGAAC	CTTTCC	AGAGA.	-GGATT	GGTGCCTI	CGGGAACTTA	.C :	993
TDIW13_Aci	:	CTTGA	ACATAGTAAGAAC	CTTTCC	AGAGA:	-GGATT	GGTGCCTI	CGGGAACTTA	AC :	993
A449_Asa	:	CIIGA	ACATGTCTGGAAT	rcctgt	AGAGA'.	-ACGGG	AGTGCCTT	CGGGAATCAG	A :	990
211c_Ave	:	CTTGA	CATGTCTGGAAT	rccrgc	AGAGA'	-GCGGG.	AGTGCCT	CGGGAATCAG	A :	990
ATCC_1/52/	:	CIIGA			AGAGA.	-GGATT	GGTGCCT	CGGGAACATI	G:	980
PCI6_Ppu	:	CIIGA			AGAGA.	-GGATT	GGTGCCT	CGGGAACATI	G:	986
PTU3_Bacte	:	CIIGA			AGAGA.	-AGATT	GGTGCCT	CGGGAACATI	G	984
KVD-UIK-80	:		CATGCCACTAAC	GAAGC	AGAGA.	TCCCC	ACTCCTC	JAAAGGGAAAGIG	ю: т	991
	•		CATGGCIGGAAI		AGAGA.	TTTCCC	AGIGCICC	JAAAGAGAACCAG	1 I I	992
6C 13 Vari	•		CATGICIGGAA	T TTCCC	AGAGA.	CCCTT	AGIGCICO	TAAGAGAGCCAG		900 007
D acidovo	:		CATGCACGAAC	CTTTCC	AGAGA.		CGTGCTCC	CAAAGAGAGCCG1	A.	907
300C-C03 C	:	TTTCZ		TATTACC	ACACA	CC-TAA	GTTCCCT			939
cta CGOF25	:	TTTG	CATCCCGCGC	TATCACC	AGAGA	GG-TGA	GTTCCCT	CGGGGACGCC	G.	938
BY14 Clone	:	TTTG	CATCCCGCGC	TATCCAG	AGAGA	TT-GGA	GTTCCCT		G ·	933
BIR2-r lim	:	TTTG	CATCCTCATCG	GATTTCC	AGAGA	GGATTT	CTTCAGT	CGGCTGGATG-A	G ·	935
MP20 Sphin	:	TTTGA	CATCCTCATCG	GATTTCC	AGAGA	GGATTT	CTTCAGT	CGGCTGGATG-A	G :	945
DSSF72 Unc	:	TTTGA	CATGCCTAGTAT	TATTTTCC	AGAGA	GGATTA	TTTCAGT	CGGCTGGCTA-C	т:	943
1/4 C7 32	:	TTTG	CATCCTGATCGC	CGGATTAG	AGAGA	CTTTTC	CTTCAGT	CGGCTGGATC-A	G:	934
AKTW820 Cl	:	CTTG	CATCCCGGTCGC	CGGTCTCT	GGAGA	CAGAGAC	TTTCAGT	CGGCTGGACC-C	G :	944
WBI100 Clo	:	TTTGA	CATGTCCGGTTT	GATCGGC	AGAGA	GCCTTT	TTTCAGT	CGG-CTGGCCGC	A :	939
ENV481 X.	:	TTTGA	CATGGCAGGAC-	-GACTTCC	GGAGA	CGGATTT	CTTCCAG-	CAA-TGGACCTC	с:	930
V4.B0.05_B	:	TTTG	CATGCCTGG	ACCGCC	AGAGA	GATCTGG	CTTTCCCI	TCG-GGGACTAC	G:	935
549_Chryse	:	CTTA	ATGGGAATTGAT	-CGGTTT	AGAAA	AGACC-	TTCC	CTTCGGGCAATTI	т:	982
PB93_Pkr	:	CTTGA	AAGTTAGTGAAT	T-TA-TTC	AGAGA	GAATA-	AGTC	GAGCAATCACAC	А:	977
		TTgA	Acat		aGAgAt	5				

		*	ł.	1040	*	1060)	*	1080		
92-0600_Ar	:	TTAC	AGGTG	GTGCATGG	TGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 2	1026
5N-4_Kpa	:	ATAC	AGGTG	GTGCATGG	TTGTCGTCAG	CTCGTGT	CGTGAGA	TGTT	GGTTAAGTCC	: :	1033
4RS-9a_M	:	TCAC	AGGTG	GTGCATGG	TGTCGTCAG	CTCGTGT	CGTGAGA	TGTT	GGTTAAGTCC	: 2	1026
Amico6_Var	:	TCAC	AGGTG	GTGCATGG	ITGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 2	1024
MT2.2_Derm	:	GTAC	AGGTG	GTGCATGG	ITGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 2	1024
Lact5.2 B.	:	GCAC	AGGTG	GTGCATGG	TGTCGTCAG	CTCGTGT	CGTGAGA	TGTT	GGTTAAGTCC	: :	1028
rJ6_Bacter	:	GAAC	AGGTG	GTGCATGG	ITGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 2	1023
PAO-12_Mic	:	AAAC	AGGTG	GTGCATGG	TGTCGTCAG	CTCGTGT	CGTGAGA	TGTT	GGTTAAGTCC	: :	1027
sp.7_4K_Mi	:	AAAC	AGGTG	GTGCATGG	TTGTCGTCAG	CTCGTGT	CGTGAGA	TGTT	GGTTAAGTCC	: 2	1029
wged11_Lei	:	GAAC	AGGTG	GTGCATGG	TTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: :	1032
Ljaponic	:	ATAC	AGGTG	GTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: :	1025
ML0004_R	:	ATAC	AGGTG	GTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: :	1026
6_Clone_Un	:	TCAC	AGGTG	GTGCATGG	TTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: :	1046
CICCHL_JQ9	:	TGAC	AGGTG	GTGCATGG	TTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: כ	1057
XJU-1_Bc	:	TGAC	AGGTG	GTGCATGG	TTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: :	1061
PR35-2-1_B	:	TGAC	CAGGTG	GTGCATGG	TTGTCGTCAG	CTCGTGT	CGTGAGA	TGTT	GGTTAAGTCC	: 1	1061
760_Bpum	:	TGAC	CAGGTG	GTGCATGG	TTGTCGTCAG	CTCGTGT	CGTGAGA	TGTT	GGTTAAGTCC	: 1	1063
Ssuccinu	:	TGAC	AGGTG	GTGCATGG	TTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: כ	1059
ST7_Clone_	:	TGAC	CAGGTG	GTGCATGG	TTGTCGTCAG	CTCGTGT	CGTGAGA	TGTT	GGTTAAGTCC	: 1	1024
88_17_clon	:	ATAC	CAGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGT	CGTGAGA	TGTT	GGTTAAGTCC	: 1	1046
Acinetobac	:	ATAC	CAGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGT	CGTGAGA	TGTT	GGTTAAGTCC	: 1	1050
TDIW13_Aci	:	ATAC	AGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 2	1050
A449_Asa	:	ACAC	AGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 1	1047
211c_Ave	:	ACAC	AGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 2	1047
ATCC_17527	:	AGAC	CAGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 2	1037
PC16_Ppu	:	AGAC	CAGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 2	1043
PT03_Bacte	:	AGAC	CAGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 2	1041
KVD-unk-80	:	ACAC	AGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 2	1048
Jlividum	:	ACAC	CAGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 1	1049
Lginseng	:	ACAC	CAGGTG	CTGCATGG	C <mark>C</mark> GTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 1	1045
6C_13_Vari	:	ACAC	CAGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 2	1044
Dacidovo	:	ACAC	CAGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 1	1045
300C-C03_C	:	TGAC	CAGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 1	996
ctg_CGOF25	:	TGAC	CAGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 1	995
BY14_Clone	:	TGAC	CAGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 1	990
BIR2-r_lim	:	TGAC	CAGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 1	992
MP20_Sphin	:	TGAC	AGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 1	1002
DSSF72_Unc	:	GCAC	AGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 1	1000
1/4_C7_32_	:	TGAC	AGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 1	991
AKIW820_Cl	:	TGAC	AGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 1	1001
WBI100_Clo	:	ACAC	AGGTG	CTGCATGG	CIGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	:	996
ENV481_X	:	ACAC	AGGTG	CTGCATGG	CTGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 1	987
V4.B0.05_B	:	ACAC	AGGTG	CTGCATGG	CIGTCGTCAG	CTCGTGI	CGTGAGA	TGTT	GGTTAAGTCC	: 1	992
549_Chryse	:	CA	AGGTG	CTGCATGG	TIGTCGTCAG	CTCGTGC	CGTGAGG	TGTT	AGGTTAAGTCC	: 1	1037
PB93_Pkr	:	AACI	AGGTG	CTGCATGG	CIGTCGTCAG	CTCGTGC	CGTGAGG	TGTT	GGTTAAGTCC	:	1034

acAGGTG TGCATGG tGTCGTCAGCTCGTGtCGTGAGaTGTTgGGTTAAGTCCc

		*	1100		*	1120	*	1140)	
92-0600_Ar	:	GCAACGAG	CGCAACCCT	CGTTCTAT	GTTG	CAGCACGTGA	TGGT <mark>G</mark> G	GACTCATAGO	:	1083
5N-4_Kpa	:	GCAACGAG	CGCAACCCT	CGTTCCAT	GTTG	CAGCACGTGA	TGGTGGG	GACTCATGGO	:	1090
4RS-9a_M	:	GCAACGAG	CGCAACCCT	CGTTCCAT	GTTG	CAGCACGTAG	TGGTGGG	G <mark>ACT</mark> CATGGO	:	1083
Amico6_Var	:	GCAACGAG	CGCAACCCT	CGTTCCAT	GTTG	CAGCACGTAG	TGGTGGG	G <mark>ACT</mark> CATGGO	:	1081
MT2.2_Derm	:	GCAACGAG	CGCAACCCT	CGTTCCAT	GTTG	CAGCACGTCA	TGGT <mark>G</mark> GG	G <mark>ACT</mark> CATGGO	:	1081
Lact5.2_B.	:	GCAACGAG	CGCAACCCT	CGTTCTAT	GTTG	CAGCACGTCA	TGGTGGG	GACTCATAGO	:	1085
rJ6_Bacter	:	GCAACGAG	CGCAACCCT	CGTTTTAT	GTTG	CAGCACGTAA	TGGT <mark>G</mark> GG	A <mark>ACT</mark> CATGGO	:	1080
PAO-12_Mic	:	GCAACGAG	CGCAACCCT	CGTTCTAT	GTTG	CAGCACGTAA	TGGT <mark>G</mark> GG	A <mark>ACT</mark> CATGGO	:	1084
sp.7_4K_Mi	:	GCAACGAG	CGCAACCCT	CGTTCTAT	GTTG	CAGCACGTAA	TGGT <mark>G</mark> G	A <mark>ACT</mark> CATGGG	:	1086
wged11_Lei	:	GCAACGAG	CGCAACCCT	CGTTCTAT	GTTG	CA <mark>GCAC</mark> GTGA	TGGT <mark>G</mark> GG	A <mark>ACT</mark> CATAGO	:	1089
Ljaponic	:	GCAACGAG	CGCAACCCT	CGTCCAAT	GTTG	CA <mark>GCAC</mark> GTAA	TGGT <mark>G</mark> GG	G <mark>ACT</mark> CATTGG	:	1082
ML0004_R	:	GCAACGAG	CGCAACCCT	TGTCTTAT	GTTG	CA <mark>GCAC</mark> GTAA	TGGT <mark>G</mark> GG	G <mark>ACT</mark> CGTAAG	:	1083
6_Clone_Un	:	GCAACGAG	CGCAACCCT	CGTTCCAT	GTTG	CA <mark>GCG</mark> CGTAA	TGGC <mark>G</mark> GG	G <mark>ACT</mark> CATGGO	:	1103
CICCHL_JQ9	:	GCAACGAG	CGCAACCCT	TGATCTTAC	GTTG	CA <mark>TCA</mark> TTAAG	TTGGG	C <mark>ACT</mark> CTAAG	:	1112
XJU-1_Bc	:	GCAACGAG	CGCAACCCT	TGATCTTA	GTTG	CATCATTAAG	TTGGG	C <mark>ACT</mark> CTAAG	:	1116
PR35-2-1_B	:	GCAACGAG	CGCAACCCT	TGATCTTA	GTTG	CA <mark>TCA</mark> TTAAG	TTGGG	C <mark>ACT</mark> CTAAG	:	1116
760_Bpum	:	GCAACGAG	CGCAACCCT	TGATCTTA	GTTG	CA <mark>GCA</mark> TTCAG	TTGGG	C <mark>ACT</mark> CTAAG	:	1118
Ssuccinu	:	GCAACGAG	CGCAACCCT	TAAGCTTA	GTTG	CA <mark>TCA</mark> TTAAG	TTGGG	C <mark>act</mark> ttagg1	:	1114
ST7_Clone_	:	GCAACGAG	CGCAACCCT	TGATCTTA	GTTG	CATCATTAAG	TTGGG	C <mark>ACT</mark> CTAAG	:	1079
88_17_clon	:	GCAACGAG	CGCAACCCT	TTTCCTTAI	TTG	CAGCACTTCG	-GGT <mark>G</mark> GG	A <mark>ACT</mark> TTAAG	:	1102
Acinetobac	:	GCAACGAG	CGCAACCCT	TTTCCTTAI	TTG	CAGCACTTCG	-GGT <mark>G</mark> GG	A <mark>ACT</mark> TTAAG	:	1106
TDIW13_Aci	:	GCAACGAG	CGCAACCCT	TTTCCTTAI	TTG	CAGCACTTCG	-GGTGGG	A <mark>ACT</mark> TTAAG	:	1106
A449_Asa	:	GCAACGAG	CGCAACCC	TGTCCTTT	GTTG	CAGCACGTAA	.TGGT <mark>G</mark> GG	A <mark>ACT</mark> CAAGGG	:	1104
211c_Ave	:	GCAACGAG	CGCAACCC	TGTCCTTT	GTTG	CAGCACGTAA	.TGGTGGG	A <mark>ACT</mark> CAAGGO	:	1104
ATCC_17527	:	GTAACGAG	CGCAACCCT	TGTCCTTAC	STTA	CAGCACGTAA	TGGTGGG	CACTCTAAG@	:	1094
PC16_Ppu	:	GTAACGAG	CGCAACCCT	TGTCCTTAG	STTA	CAGCACGTTA	TGGTGGG	CACTCTAAG@	:	1100
PT03_Bacte	:	GTAACGAG	CGCAACCCT	TGTCCTTAC	JTTA(<u>CA</u> GCACGTAA	TGGIGGG	CACTCTAAGC	:	1098
KVD-unk-80	:	GCAACGAG	CGCAACCCT	TGTCTTTAG	FTTG(TAC	GCAAGAG	CACTCTAGAG	:	1098
Jlividum	:	GCAACGAG	CGCAACCCT	TGTCATTAC	FTTG(TAC	GAAAGGG	CACTOTAATO	:	1099
Lginseng	:	GCAACGAG	CGCAACCCT	TGTCATTAG	FTTG(ТАС	GAAAGGG	CACTOTAATO	:	1095
6C_13_vari	:	GCAACGAG	CGCAACCCI	TGICALIAG		IACAIII	GGIIGGG	CACICIAAIG		1098
Dacidovo	:	GCAACGAG	CGCAACCCI	IGICALIAG		IACAIII	AGIIGGG	CACICIAAIG	÷	1099
$3000-003_0$	•	GCAACGAG	CCCAACCCT	CGICCIIAG		CAICAIIC	AGIIGGG	CACICIAAGG		1051
PV14 Clope	:	GCAACGAG	CCCAACCCT	CGICCIIAG		CAICATIA	AGIIGGG	CACICIAAGO		1045
BIL4_CIONE BIR2_r lim	:	GCAACGAG	CGCAACCCI	CETCETTA		CAICAIIG	AGIIGGG	CACICIAAGO		1045
MP20 Sphin	:	GCAACGAG	CGCAACCCT	CCCCTTTAC		CA-GCATTG	AGTTGGG	TACTCTAAAC	:	1057
DSSE72 Unc	:		CGCAACCCT	CGTCTTTAC		CA-TCATTT	AGTTGGG			1055
1/4 C7 32	:		CGCAACCCT	CATCCCTA		CA-TCATTC	AGTTGGG	CACTCTATGO	:	1046
TAKIM850 CI	:		CGCAACCCT	CCCCCTA		CA-TCATTC	AGTTGGG	CACTCTAGGG		1056
WBT100 Clo		GCAACGAG	CGCAACCCT	CCCCCTA	TTG	CATCATTC	AGTTGGG	AACTCTAGGG	:	1051
ENV481 X.	:	GCAACGAG	CGCAACCCT	CCCTCTA	GTTG	CATCATTC	AGTTGGG	CACTCTAGAC		1042
V4.B0.05 B	:	GCAACGAG	CGCAACCCT	CGCCATTA	GTTG	CATCATTT	AGTTGGG	AACTCTAATC	:	1047
549 Chryse	:	GCAACGAG	CGCAACCCC	TGTTACTAC	GTTG	TACCATTAAG	TIGAG	GACTCTAGTA	. :	1092
PB93_P. kr	:	GCAACGAG	CGCAACCCC	TATGTTTA	GTTG	CAGCATGTAA	TGATGGG	GACTCTAAAC	::	1091
		GcAACGAG	CGCAACCCt	g g	gTTg	Cca c	tGgG	ACTC 9	ſ	

		*	11	.60	*		1180	*	1		
92-0600_Ar	:	AG <mark>ACTGCCGGG</mark> GT	CAACT	CG	GAGGAAGGT	GGGGA	GACGTCA	A <mark>ATCA</mark> TCAT	GCCCC	:	1139
5N-4 K. pa	:	AG <mark>ACTGCC</mark> GG <mark>G</mark> T	CAACT	CG	GAGGAAGGT	GGGGA	IGACGTCA	AATCATCAT	GCCCC	:	1146
4RS-9a M.	:	AG <mark>ACTGCC</mark> GG <mark>G</mark> T	CAACT	CG	-GAGGAAGGT	GAGGA	GACGTCA	AATCATCAT	GCCCC	:	1139
Amico6 Var	:	AG <mark>ACTGCC</mark> GG <mark>G</mark> T	CAACT	CG	-GAGGAAGGT	GAGGA	GACGTCA	AATCATCAT	GCCCC	:	1137
MT2.2_Derm	:	AG <mark>ACTGCC</mark> GG <mark>G</mark> T	CAACT	CG	GAGGAAGGT	GGGGA	IGACGTCA	A <mark>ATCA</mark> TCA	GCCCC	:	1137
Lact5.2 B.	:	AG <mark>ACTGCC</mark> GG <mark>G</mark> T	CAACT	CG	GAGGAAGGT	GGGGA	GACGTCA	A <mark>ATCA</mark> TCA	GCCCC	:	1141
rJ6_Bacter	:	ATACTGCCGGGGT	СААСТ	CG	GAGGAAGGT	GGGGA	GACGTCA	A <mark>ATCA</mark> TCAI	GCCCC	:	1136
PAO-12_Mic	:	ATACTGCCGGGGT	CAACT	CG	GAGGAAGGT	GGGGA	GACGTCA	A <mark>ATCA</mark> TCAI	GCCCC	:	1140
sp.7_4K_Mi	:	ATACTGCCGGGGT	СААСТ	CG	GAGGAAGGT	GGGGA	GACGTCA	A <mark>ATCA</mark> TCAI	GCCCC	:	1142
wged11_Lei	:	AG <mark>ACTGCC</mark> GG <mark>G</mark> T	CAACT	CG	GAGGAAGGT	GGGGA	GACGTCA	A <mark>ATCA</mark> TCAT	GCCCC	:	1145
Ljaponic	:	AG <mark>AC</mark> CGCCGGGG	CAACT	CG	GAGGAAGGT	GGGGA	GACGTCA	A <mark>G</mark> TC <mark>A</mark> TCAT	GCCCC	:	1138
ML0004_R	:	AG <mark>ACTGCC</mark> GG <mark>G</mark> T	CAACT	CG	GAGGAAGGT	GGGGA	GACGTCA	A <mark>GTC</mark> ATCAT	GCCCC	:	1139
6_Clone_Un	:	AG <mark>ACTGCC</mark> GG <mark>G</mark> T	CAACT	CG	GAGGAAGGT	GGGGA	GACGTCA	A <mark>ATCA</mark> TCAT	GCCCC	:	1159
CICCHL_JQ9	:	TG <mark>ACTGCC</mark> GG <mark>TG</mark> A	CAAAC	CG	GAGGAAGGT	GGGGA	GACGTCA	A <mark>ATCA</mark> TCAT	GCCCC	:	1168
XJU-1_Bc	:	TG <mark>ACTGCC</mark> GGT <mark>G</mark> A	.C <mark>AA</mark> AC	CG	GAGGAAGGT	GGGGA	GACGTCA	A <mark>ATCA</mark> TCAT	GCCCC	:	1172
PR35-2-1_B	:	TG <mark>ACTGCC</mark> GGT <mark>G</mark> A	.C <mark>AA</mark> AC	CG	GAGGAAGGT	GGGGA	GACGTCA	A <mark>ATCA</mark> TCAI	GCCCC	:	1172
760_Bpum	:	TG <mark>ACTGCC</mark> GGT <mark>G</mark> A	.C <mark>AA</mark> AC	CG	GAGGAAGGT	GGGGA	I <mark>GACGTCA</mark>	A <mark>ATCA</mark> TCAI	GCCCC	:	1174
Ssuccinu	:	TG <mark>ACTGCC</mark> GGT <mark>G</mark> A	C <mark>AA</mark> AC	CG	GAGGAAGGT	GGGGA	I GACGTCA	A <mark>ATCA</mark> TCAI	GCCCC	:	1170
ST7_Clone_	:	TG <mark>ACTGCC</mark> GGT <mark>G</mark> A	.C <mark>AA</mark> AC	CG	GAGGAAGGT	GGGGA	r <mark>gacgtca</mark> i	A <mark>ATCA</mark> TCAT	GCCCC	:	1135
88_17_clon	:	ATACTGCCAGTGA	.C <mark>AA</mark> AC	ΓG	-GAGGAAGG ^C	GGGGA	GACGTCA	AG <mark>TC</mark> ATCAT	GGCCC	:	1158
Acinetobac	:	AT <mark>ACTGCC</mark> AGT <mark>G</mark> A	.C <mark>AA</mark> AC	ΣTG	-GAGGAAGG ^C	GGGGA	GACGTCA	A <mark>GTC</mark> ATCAI	GGCCC	:	1162
TDIW13_Aci	:	ATACTGCCAGTGA	.C <mark>AA</mark> AC	ΣTG	-GAGGAAGG ^C	GGGGA	GACGTCA	A <mark>gtca</mark> tcat	GGCCC	:	1162
A449_Asa	:	AG <mark>ACTGCC</mark> GGT <mark>G</mark> A	T <mark>AA</mark> AC	CG	GAGGAAGGT	GGGGA	[GACGTCA	A <mark>gtca</mark> tcat	GGCCC	:	1160
211c_Ave	:	AG <mark>ACTGCC</mark> GGT <mark>G</mark> A	T <mark>AA</mark> AC	CG	-GAGGAAGGT	GGGGA	I <mark>GACGTCA</mark>	A <mark>GTC</mark> ATCAT	GGCCC	:	1160
ATCC_17527	:	AG <mark>ACTGCC</mark> GGT <mark>G</mark> A	.C <mark>AA</mark> AC	CG	-GAGGAAGGT	GGGGA	GACGTCA	A <mark>GTCA</mark> TCAT	GGCCC	:	1150
PC16_Ppu	:	AG <mark>ACTGCC</mark> GGT <mark>G</mark> A	.C <mark>AA</mark> AC	CG	-GAGGAAGGT	GGGGA	I <mark>GACGTCA</mark>	A <mark>GTC</mark> ATCAT	GGCCC	:	1156
PT03_Bacte	:	AG <mark>ACTGCC</mark> GGT <mark>G</mark> A	.C <mark>AA</mark> AC	CG	-GAGGAAGGT	GGGGA	I <mark>GACGTCA</mark>	A <mark>GTCA</mark> TCAT	GGCCC	:	1154
KVD-unk-80	:	AG <mark>ACTGCC</mark> GGT <mark>G</mark> A	.C <mark>AA</mark> AC	CCG	-GAGGAAGGT	GGGGA:	I GACGTCA	AG <mark>TCC</mark> TCAI	GGCCC	:	1154
Jlividum	:	AG <mark>ACTGCC</mark> GGT <mark>G</mark> A	.C <mark>AA</mark> AC	CG	-GAGGAAGGT	GGGGA :	IGACGTCA	AGTCCTCAI	GGCCC	:	1155
Lginseng	:	AG <mark>ACTGCC</mark> GGT <mark>G</mark> A	.C <mark>AA</mark> AC	CCG	-GAGGAAGGT	GGGGA:	IGACGTCA	GGTCCTCAI	GGCCC	:	1151
6C_13_Vari	:	AG <mark>ACTGCC</mark> GGT <mark>G</mark> A	.C <mark>AA</mark> AC	CG	-GAGGAAGGT	GGGGA	IGACGTCA	AGTCCTCAI	GGCCC	:	1154
Dacidovo	:	AG <mark>ACTGCC</mark> GGTGA	.CAAAC	CG	-GAGGAAGGT	GGGGA	IGACGTCA	AGTCCTCAI	GGCCC	:	1155
300C-C03_C	:	AAACCGCCGGTGA	TAAGC	CG	-GAGGAAGGT	GGGGA	IGACGTCA	AGTCCTCAI	GGCCC	:	1107
ctg_CGOF25	:	AAACCGCCGGTGA	TAAGC	CG	-GAGGAAGGT	GGGGA	IGACGTCA	AGTCCTCAI	GGCCC	:	1106
BY14_Clone	:	AAACCGCCGGTGA	TAAGC	CG	-GAGGAAGGT	GGGGA.	IGACGTCA	AGTCCTCAI	GGCCC	:	1101
BIR2-r_lim	:	AAACTGCCGGTGA	TAAGC	CG	-GAGGAAGGT	GGGGA	IGACGTCA	AGTCCTCAI	GGCCC	:	1103
MP20_Sphin	:	GAACCGCCGGTGA	TAAGC	CG	-GAGGAAGG'I	GGGGA'	I'GACG'I'CA/	AGTCCTCAT	GGCCC	:	1113
DSSF72_Unc	:	AAACCGCCGGTGA	TAAGC	CG	-GAGGAAGGT	GGGGA	IGACGTCA	AGTCCTCAI	GGCCC	:	1111
1/4_C7_32_	:	AAACTGCCGGTGA	TAAGC	CG	GAGGAAGGT	GGGGA'	I'GACG'I'CA/	AGTCCTCAT	GGCCC	:	1102
AKIW820_CI	:	GGACTGCCGGTGA	TAAGC	CG.	AGAGGAAGGT	GGGGA'	I'GACG'I'CA	AGTCCTCAT	GGCCC	:	1113
MRIIOO_CTO	:	GGACIGCCGGIGA	TAAGC	CG	GAGGAAGGT	GGGGA.	IGACGTCA	AGICCICAI	GGCCC	:	1000
ENV481_X	:	GGACIGCCGGTGA	TAAGC	CG.	AGAGGAAGGT	GGGGA.	IGACGTCA	AGTCCTCAT	GGCCC	:	1099
V4.BU.U5_B	:	GGACIGCCGGIGC	TAAGC	CG:	-GAGGAAGGT	GGGGA	IGACGTCA/	AGICCICAI	GGCCC	:	1140
549_Chryse	:	AGACIGCCTACG-	CAAGI	AG	AGAGGAAGGT	GGGGA.	IGACGICA		GGCCC	:	1148
FRA3_5.~kL	:	AGACIGCOTGIG-	CAAAC	AG.	A <mark>GAGGAAGG</mark> A	GGGGA	GACGICA	AGICAICAI	GGCCC	:	1147
		ACTGCCgg G	AA	сG	GAGGAAGGt	GGGGA	GACGTCA	a TC TCAt	G CCC		

200

*

	1	.22	0				*			1	24	10					ł	ł				
С	GC	A	GC	[AC	AAT	GG	СС	GG	ΤA	CA	AZ	١G	GG	ΤI	GC	G	\T <i>I</i>	AC	ГG	Т	:	1196
С	GC	AT	GC	rac.	AAT	GG	СС	GG	ΤA	CA	AA	١G	GG	Τſ	GC	Gi	ΔTΖ	AC.	ГG	Т	:	1203
С	GC	AT	GC	rac.	AAT	GG	СС	GG	ΤA	CA	ΑΊ	Ġ	GG	Τſ	GC	Gi	ΔTΖ	AC.	ГG	Т	:	1196
С	GC	AT	GC	rac.	AAT	GG	СС	GG	ΤA	CA	АI	Ġ	GG	Τſ	GC	Gi	ΔTΖ	AC.	ГG	Т	:	1194
С	GC	AT	GC	rac.	AAT	GG	СС	GG	ΤA	сA	GF	١G	GG	Τſ	GC	CGZ	١A	AC.	ΓG	Т	:	1194
A	GC	AT	GC	rac.	AAT	GG	ΤС	GG	ΤA	CA	ΑĪ	Ġ	GG	Τſ	GC	Gi	۸ <i>A</i>	AC.	ГG	Т	:	1198
С	GC	AT	GC	rac.	AAT	GG	СС	GG	ΤA	сA	AP	١G	GG	СЛ	GC	CA7	ΔT <i>Γ</i>	ACO	CG	Т	:	1193
С	GC	AT	GC	rac.	AAT	GG	СС	GG	ΤA	CA	AA	١G	GG	СЭ	GC	A	ΔT	ACO	CG	С	:	1197
С	GC	AT	GC	rac.	AAT	GG	СС	GG	ΤA	сA	AP	٩G	GG	СЭ	GC	CA7	ΔT <i>Γ</i>	ACO	CG	С	:	1199
С	GC	AT	GC	[AC	ААТ	GG	СС	GG	ΤA	CA	AP	٩G	GG	СЛ	GC	CGZ	ΔT <i>Γ</i>	ACO	CG	Т	:	1202
С	GC	AT	GC	rac.	AAT	GG	СС	GG	ΤA	сA	AP	٩G	GG	СЭ	GC	CGZ	AA	CC	ΓG	С	:	1195
С	AC	AT	GC	[AC	ААТ	GG	СС	GG	ΤA	CA	GF	٩G	GG	СЛ	GC	CGZ	ΔT <i>Γ</i>	ACO	CG	Т	:	1196
С	GC	AT	GC	rac.	AAT	GG	СС	GG	ΤA	сA	AP	٩G	GG	Τī	GC	CGZ	ΔT <i>Γ</i>	AC.	ΓG	Т	:	1216
C	AC	GT	GC	[AC	ААТ	GG	AC	GG	ΤA	CA	AP	١G	AG	СЛ	GC	CA/	١GZ	ACO	CG	С	:	1225
C	AC	GT	GC	rac.	AAT	GG	AC	GG	ΤA	сA	AP	١G	AG	СЭ	GC	CA7	١GZ	ACO	CG	С	:	1229
C	AC	GT	GC	rac.	AAT	GG	AC	GG	ΤA	CA	AP	١G	AG	СЭ	GC	CA7	١GZ	ACO	CG	С	:	1229
С	AC	GT	GC	[AC	ААТ	GG	AC	AG.	AA	CA	AP	٩G	GG	СЛ	GC	CA/	١GZ	ACO	CG	С	:	1231
C	AC	GT	GC	rac.	AAT	GG	AC	AA	ΤA	CA	AP	٩G	GG	CZ	AGC	CΤΖ	١A	ACO	CG	G	:	1227
С	AC	GT	GC	rac.	AAT	'GG	AC	GG	ΤA	CA	AP	١G	AG	СЭ	GC) Ai	١GZ	ACO	CG	С	:	1192
С	AC	GT	GC	rac.	AAT	'GG	ΤС	GG	ΤA	CA	AP	١G	GG	Τī	GC	CΤΖ	7CC	CTZ	٩G	С	:	1215
\sim	AC	G	GC	TAC	ΔДЧ	'GG	TC	GG	ТΔ	CA	ΔZ	AG	GG	Τ٦	G	T		TT7		C		1219

	200	*	1220	*	1240	*		
92-0600 Ar :	TTATGTCT	TGGGCTTC	AC <mark>G</mark> CATGCTA	CAATGGCCGGI	ACAAAGGG	TTGCGATACTGT	:	1196
5N-4 K. pa :	TTATGTCI	TGGGCTTC	ac <mark>gc</mark> atgcta	CAATGGCCGGT	ACAAAGGG	TTGCGATACTGT	:	1203
4RS-9a M. :	TTATGTCI	TGGGCTTC	AC <mark>GC</mark> ATGCTA	CAATGGCCGGI	ACAATGGG	TTGCGATACTGT	:	1196
Amico6 Var :	TTATGTCT	TGGGCTTC	ACGCATGCTA	CAATGGCCGGT	ACAATGGG	TTGCGATACTGT	:	1194
MT2.2 Derm :	TTATGTCT	TGGGCTTC	ACGCATGCTA	CAATGGCCGGT	ACAGAGGG	TTGCGAAACTGT	•	1194
Lact 5 2 B ·	TTATGTCT	TGGGCTTC	AAGCATGCTA	CAATGGTCGGT	ACAATGGG	TTGCGAAACTGT		1198
rJ6 Bacter :	TTATGTCT	TGGGCTTC	ACGCATGCTA	CAATGGCCGGT		CTGCAATACCGT	:	1193
PA0-12 Mic :	TTATCTCT	TGGGCTTC	ACCATCCTA			CTGCAATACCGC	:	1197
sp 7 4K Mi ·	TTATCTCT	TGGGCTTC	ACCATCCTA			CTGCAATACCGC	:	1199
wordll Lei ·	TTATCTCT	TGGGCTTC	ACCCATCCTAC			CTCCCATACCCT	:	1202
L japonic .	TTATCTCC	AGGGCTTC	ACCATCCTA			CTGCGAACCTGC	:	1195
	TTATCTCC	AGGCCTTC	ACACATECTA			CTCCCATACCCT	:	1196
6 Clone Un :	TTATCTCT	TCCCTTC	ACCATCCIA			TTCCCATACTCT	:	1216
CICCHI 100 ·	TTATCACC		ACACCTCCTA			CTCCAACACCCC	:	1225
	TTATCACC	TCCCCTAC	ACACGIGCIA			CIGCAAGACCGC	:	1220
DD35 2 1 D .	TTATGACC	TGGGCIAC.	ACACGIGCIAC			CIGCAAGACCGC	:	1229
760 P num .	TTATGACC	TGGGCIAC.	ACACGIGCIAC			CIGCAAGACCGC	:	1229
C cuccipul .	TTAIGACC	TGGGCIAC.	ACACGIGCIAC			CIGCAAGACCGC	:	1007
SSuccinu :	TTAIGAII	TGGGCTAC.	ACACGIGCIAC				•	1102
SI/_CIONE_ :	TTAIGACC	IGGGCIAC.	ACACGIGCIA				•	1015
loo_1/_CIUN :	TTACGACC	AGGGCIAC.	ACACGIGCIAC			TIGCIACCIAGC	•	1210
ACINELODAC :	TTACGACC	AGGGCIAC.	ACACGIGCIAC			TIGCIACCIAGC	•	1219
IDIWIS_ACI :	TTACGACC	AGGGCIAC.	ACACGIGCIA				•	1219
A449_ASa :	TTACGGCC	AGGGCIAC.	ACACGIGCIAC				:	1017
ZIIC_AVe :	TTACGGCC	AGGGCIAC.	ACACGIGCIAC				•	1217
AICC_1/52/ :	TTACGGCC	TGGGCTAC.	ACACGIGCIAC				:	1207
PCI6_Ppu :	TTACGGCC	TGGGCIAC.	ACACGIGCIAC				:	1213
PIU3_Bacte :	TTACGGCC	IGGGCIAC.	ACACGIGCIAC				:	1211
KVD-unk-80 :	TIAIGGGI	AGGGCIIC	ACACGICAIAC				:	1211
Jlividum :	TIAIGGGI	AGGGCIIC	ACACGICAIAC				:	1212
Lginseng :	TIAIGGGI	AGGGCIAC.	ACACGICATAC				:	1208
6C_I3_Vari :	TTATAGGI	GGGGGTAC.	ACACGICATAC			TTGCCAACCCGC	:	1211
Dacidovo :	TIAIAGGI	GGGGCIAC.	ACACGICAIAC			TIGCCAACCCGC	:	
3000-003_0 :	TTACACGC	TGGGCTAC.	ACACGIGCIAC		ACAGIGGG		:	1164
ctg_CGOF25 :	TTACACGC	TGGGCTAC.	ACACGIGCIA		ACAGIGGG	CAGOGACCICGC	:	1163
BY14_Clone :	TTACACGC	TGGGCTAC.	ACACGTGCTA	CAATGGCGGTG	ACAGTGGG		:	1158
BIR2-r_lim :	TTACACGC	TGGGCTAC.	ACACGTGCTA	CAATGGCGGTG	ACAGTGGG	CAGCAAGCACGC	:	1160
MP20_Sphin :	TTACGCGC	TGGGCTAC.	ACACGTGCTA(CAATGGCGAC1	ACAGTGGG	CAGCAACTCTGC	:	1170
DSSF72_Unc :	TTACGCGC	TGGGCTAC.	ACACGTGCTA(CAATGGCGGTC	ACAGTGGG	CAGCAATCCCGC	:	1168
$1/4_C7_32_$:	TTACACGC	TGGGCTAC	ACACGTGCTA(CAATGGCAAC I	ACAGTGGG	CAGCAACCTCGC	:	1159
AKIW820_Cl :	TTACGGGC	T ggg cta <mark>c</mark>	ACACGTGCTAC	CAATGGTGGTC	ACAGTGGC	CAGCGAGACCGC	:	1170
WBI100_Clo :	TTACAGGC	T GGG CTAC	ACACGTGCTA0	CAATGGCGGTG	ACAATGGC	CAGCGAAAGGGC	:	1165
ENV481_X :	TTACGGGC	T <mark>ggg</mark> cta <mark>c</mark>	ACACGTGCTAC	CAATGGCGGTG	ACAGTGGG	ATGCGAACCCGC	:	1156
V4.B0.05_B :	TTACAGGO	T GGG CTA <mark>C</mark>	ACACGTGCTAC	CAATGGCGAC I	ACAGAGGG		:	1148
549_Chryse :	TTACGCCI	T <mark>GGG</mark> CCAC	ACACGTAATA0	CAATGG <mark>CC</mark> GGI	ACAGAGGC	CAGCTACACAGC	:	1205
PB93_Pkr :	TTACGTCC	CG <mark>GGG</mark> CTA <mark>C</mark>	ACAC <mark>GT</mark> GCTAC	CAATGG <mark>AT</mark> GGI	ACAGAGG	CAGCTAGCTAGC	:	1204
	TTA g	GGGct C	Ac C TgcTA	CAATGG g t	ACA GgG	gca g		

		1260)		*		1280)			*	13	00		*			
92-0600_Ar	:	GAGGTO	G AGC	TAATC	CCA.	AAA	GCC	GTC	тс <mark>а</mark>	GTI	CGGAT	T <mark>G</mark> GC	GTC	TGCAA	CTCG	А:	1	253
5N-4_Kpa	:	GAGGTO	G AGC	TAATC	CCA.	AAA	GCCG	GTC	тс <mark>а</mark>	GTI	CGGAT	Τ <mark>G</mark> AG	GTC	TGCAA	CTCG	А:	1	260
4RS-9a M.	:	GAGGTO	GAGC	TAATC	CCA.	AAAA	GCCG	GTC	TCA	GTI	CGGAT	T <mark>G</mark> GG	GTC	TGCAA	CTCG	A :	1	253
Amico6_Var	:	GAGGTO	GAGC	TAATC	CCA.	AAAA	GCCG	GTC	TCA	GTI	CGGAT	T <mark>G</mark> GG	GTC	TGCAA	CTCG	A :	1	251
MT2.2_Derm	:	GAGGTO	GAGC	TAATC	CCA.	AAAA	ACCO	GTC	TCA	GTI	CGGAT	T <mark>G</mark> GG	GTC	TGCAA	CTCG	A :	1	251
Lact5.2 B.	:	GAGGTO	GAGC	GAATC	CCA.	AAAA	GCCG	GCC	TCA	GTI	CGGAT	TGGG	GTC	TGCAA	CTCG	Α :	1	.255
rJ6 Bacter	:	GAGGTO	GAGC	GAATC	CCA.	AAAA	GCCG	GTC	CCA	GTI	CGGAT	TGAG	GTC	TGCAA	CTCG	А:	1	250
PAO-12 Mic	:	GAGGTO	GAGC	GAATC	CCA.	AAAA	GCCG	GTC	CCA	GTI	CGGAT	Τ <mark>G</mark> AG	GTC	TGCAA	CTCG	Α :	1	.254
sp.7 4K Mi	:	AAGGTO	GAGC	GAATC	CCA.	AAA	GCCG	GTC	CCA	GTI	CGGAT	TGAG	GTC	TGCAA	CTCG	A :	1	256
wqedll Lei	:	AAGGTO	GAGC	GAATC	CCA.	AAAA	GCCG	GTC	TCA	GTI	CGGAT	TGAG	GTC	TGCAA	CTCG	А:	1	.259
L. japonic	:	AAGGGI	GAGC	GAATC	CCA.	AAAA	GCCG	GTC	TCA	GTI	CGGAT	TGGG	GTT	TGCAA	CTCG	Α :	1	252
ML0004 R.	:	GAGGT	GAGC	GAATC	CCT	TAAA	GCCG	GTC	TCA	GTI	CGGAT	C <mark>G</mark> GC	GTC	TGCAA	CTCG	A :	1	.253
6 Clone Un	:	GAGGTO	GAGC	TAATC	CCA.	AAA	GCCG	GTC	TCA	GTI	CGGAT	TGGG	GTC	TGCAA	CTCG	A :	1	273
CICCHL JO9	:	GAGGTO	GAGC	TAATC	TCA	ТААА	ACCO	TTC	TCA	GTI	CGGAT	TGTA	GGC	TGCAA	CTCG	с:	1	282
XJU-1 B. C	:	GAGGTO	GAGC	ТААТС	TCA	тааа	ACCO	TTC	TCA	GTT	CGGAT	т <mark>с</mark> та	GGC	TGCAA	CTCG	с:	1	2.86
PR35-2-1 B	:	GAGGTO	GAGC	TAATC	TCA	TAAA	ACCO	TTC	TCA	GTI	CGGAT	TGTA	GGC	TGCAA	CTCG	с:	1	286
760 B. pum	:	AAGGTI	TAGC	CAATC	CCA	TAAA	TCTC	TTC	TCA	GTI	CGGAT	CGCA	GTT	TGCAA	CTCG	Α :	1	288
S. succinu	:	GAGGTO	ATGC	AAATC	CCA	ТААА	GTTC	TTC	TCA	GTT	CGGAT	ТGТА	GTT	TGCAA	CTCG	A :	1	2.84
ST7 Clone	:	GAGGTO	GAGC	TAATC	TCA	ТААА	ACCO	TTC	TCA	GTT	CGGAT	төта	GGC	TGCAA	CTCG	. :	1	2.4.9
88 17 clon	:	GATAGO	ATGC	ТААТС	TCA	AAA	GCCC	ATC	GTA	GTC	CGGAT	TGGA	GTT	TGCAA	CTGG	A :	1	2.72
Acinetobac	:	GATAGO	ATGC	TAATC	TCA	AAA	GCCG	ATC	GTA	GTC	CGGAT	TGGA	GTT	TGCAA	CTGG	Α :	1	276
TDIW13 Aci	:	GATAGO	ATGC	TAATC	TCA.	AAAA	GCCC	ATC	GTA	GTC	CGGAT	TGGA	GTC	TGCAA	CTCG	A :	1	276
A449 A. sa	:	GATAGI	GAGC	GAATC	CCA.	AAA	GCGC	GTC	GTA	GTC	CGGAT	C <mark>G</mark> GA	GTC	TGCAA	CTCG	A :	1	274
211c A. ve	:	GATAGI	GAGC	GAATC	CCA.	AAA	GCGC	GTC	GTA	GTC	CGGAT	CGGA	GTC	TGCAA	CTCG	Α :	1	274
ATCC 17527	:	GAGGT	GAGC	TAATC	CCA	CAAA	ACCO	ATC	GTA	GTC	CGGAT	CGCA	GTC	TGCAA	CTCG	A :	1	264
PC16 P. pu	:	GAGGTO	GAGC	TAATC	CCA	ТААА	ACCO	ATC	GTA	GTC	CGGAT	CGCA	GTC	TGCAA	CTCG	Α :	1	270
PT03 Bacte	:	GAGGTO	GAGC	TAATC	CCA	GAAA	ACCO	ATC	GTA	GTC	CGGAT	CGCA	GTC	TGCAA	CTCG	A :	1	268
KVD-unk-80	:	GAGGG	GAGC	TAATC	CCA	GAAA	ACGC	CATC	GTA	GTC	CGGAT	CGTA	GTC	TGCAA	CTCG	A :	1	268
J. lividum	:	GAGGG	GAGC	TAATC	GCA	GAAA	GTGI	ATC	GTA	GTC	CGGAT	TGTA	GTC	TGCAA	CTCG	A :	1	269
L. ginseng	:	GAGGGG	GAGC	CAATC	CCA	GAAA	ACCO	GTC	GTA	GTC	CGGAT	CGCA	GTC	TGCAA	CTCG	А:	1	.265
6C 13 Vari	:	GAGGGG	GAGC	TAATC	CCA	TAAA	ACCA	GTC	GTA	GTC	CGGAT	CGCA	GTT	TGCAA	CTTG	А:	1	268
D. acidovo	:	GAGGGG	GAGC	TAATC	CCA	TAAA	ACCA	GTC	GTA	GTC	CGGAT	CGCA	GTC	TGCAA	CTCG	А:	1	.269
300C-C03 C	:	GAGTGI	GAGC	TAATC	TCC.	AAA	GCC-	GTC	TCA	GTI	CGGAT	IGTI	CTC	TGCAA	CTCG	А:	1	.220
ctq_CGOF25	:	GAG <mark>GG</mark> G	TAGC	TAATC	TCC.	AAA	GCC-	GTC	TCA	GTI	CGGAT	ΤGΤΊ	CTC	TGCAA	CTCG	А:	1	.219
BY14_Clone	:	GAG <mark>CG</mark> T	GAGC	TAATC	TCC	AAA	GCC-	GTC	TCA	GTI	CGGAT	ΤGΤΊ	CIT	TGCAA	CTCG	А:	1	214
BIR2-r_lim	:	GAGTGI	GAGC	TAATC	TCC.	AAAA	GCC-	GTC	TCA	GTI	CGGAT	CGTI	CTC	TGCAA	CTCG	А:	1	216
MP20_Sphin	:	GAGGGG	AAGC	TAATC	TCC.	AAA	GTC-	GTC	тс <mark>а</mark>	GTI	CGGAT	Ι <mark>G</mark> TΊ	CTC	TGCAA	CTCG	А:	1	226
DSSF72_Unc	:	AAGGGI	' <mark>G</mark> AGC	TAATC	TCC.	AAA	GCC-	GTC	тс <mark>а</mark>	GTI	CGGAT	Τ <mark>G</mark> TΊ	CTC	TGCAA	CTCG	A :	1	224
1/4_C7_32_	:	GAGGGG	TAGC	TAATC	TCC.	AAA	GTT-	GTC	тс <mark>а</mark>	GTI	CGGAT	Τ <mark>G</mark> TΊ	CTC	TGCAA	CTCG	A :	1	215
AKIW820_Cl	:	GAGGTC	C <mark>G</mark> AGC	TAATC	TCC	AAAA	GCC-	ATC	TCA	GTI	CGGAT	TGCA	CTC	TGCAA	CTCG	А:	1	226
WBI100_Clo	:	GACCTO	GAGC	TAATC	CCA.	AAA	GCC-	GTC	TCA	GTI	CAGAT	TGCA	CTC	TGCAA	CTCG	A :	1	221
ENV481_X.	:	GAGGGT	AAGC	AAATC	TCC.	AAA	GCC-	GTC	TCA	GTI	CGGAT	TGCA	CTC	TGCAA	CTCG	A :	1	212
V4.B0.05_B	:		T	TAATC	CTT.	AAA	GTC-	GTC	TCA	GTI	CGGAT	TGTO	стс	TGCAA	CTCG.	A	1	.195
549_Chryse	:	GATGT	ATG <u>C</u>	AAATC	TCG	AAA	GCCC	GTC	TCA	GTI	CGGAT	TGGA	GTC	TGCAA	CTCG.	A	1	261
PB93_Pkr	:	AATAGI	ATGC	GAATC	TCA	CAAA	GCCA	TTC	ACA	GTI	CGGAT	TGGG	GTC	TGCAA	CTCG	A :	1	261
		gag	agc	AATC	С	AAA	СС	tC	A	GΤ	CgGAT	G	tc	TGCAA	CTcG	a		
			2								-							

		1320		* 1340	*	1360		
92-0600_Ar	:	CCCCATGAAGTCO	GAGTC	GCTAG <mark>TAATCG</mark> C <mark>A</mark> GAT	ICAGCA <mark>AC</mark> GC	TGCGGTGAATACGT	:	1310
5N-4_Kpa	:	CCTCATGAAGTCG	G <mark>ag</mark> tco	GCTAG <mark>TAATCG</mark> C <mark>A</mark> GAT	ICAGCA <mark>AC</mark> GC	TGCGG <mark>G</mark> GAATACGT	:	1317
4RS-9a_M	:	CCCCATGAAGTCG	GAGTC	GCTAG <mark>TAATCG</mark> C <mark>A</mark> GAT	ICAGCA <mark>AC</mark> GC	TGCGGTGAATACGT	:	1310
Amico6_Var	:	CCCCATGAAGTCG	GAGTC	GCTAG <mark>TAATCG</mark> C <mark>A</mark> GAT	ICAGCA <mark>AC</mark> GC	TGCGGTGAATACGT	:	1308
MT2.2_Derm	:	CCCCATGAAGTCG	GAGTC	GCTAG <mark>TAATCG</mark> C <mark>A</mark> GAT	ICAGCA <mark>AC</mark> GC	TGCGGTGAATACGT	:	1308
Lact5.2 B.	:	CCCCATGAAGTCO	GAGTC	GCTAG <mark>TAATCG</mark> C <mark>A</mark> GAT	ICAGCA <mark>AC</mark> GC	TGCGGTGAATACGT	:	1312
rJ6_Bacter	:	CCTCAT <mark>GA</mark> AGTCO	GAGTC	GCTAGTAATCGC <mark>A</mark> GAT	ICAGCA <mark>AC</mark> GC	TGCGG <mark>G</mark> GAATACGT	:	1307
PAO-12 Mic	:	CCTCATGAAGTCO	GAGTC	GCTAG <mark>TAATCG</mark> C <mark>A</mark> GAT	ICAGCA <mark>AC</mark> GC	TGCGGTGAATACGT	:	1311
sp.7_4K_Mi	:	CCTCATGAAGTCO	GAGTC	GCTAG <mark>TAATCG</mark> C <mark>A</mark> GAT	ICAGCA <mark>AC</mark> GC	TGCGGTGAATACGT	:	1313
wged11_Lei	:	CCTCATGAAGTCG	GAGTC	GCTAG <mark>TAATCG</mark> TGAAT	ICAGCA <mark>AC</mark> GT	C <mark>A</mark> CGG <mark>G</mark> GAATACGT	:	1316
Ljaponic	:	CCCCAT <mark>GA</mark> AGTCO	GAGTC	GCTAG <mark>TAATCG</mark> C <mark>A</mark> GAT	ICAGCA <mark>AC</mark> GC	TGCGG <mark>G</mark> GAATACGT	:	1309
ML0004_R	:	CCCCGTGAAGTCG	GAGTC	GCTAG <mark>TAATCG</mark> C <mark>A</mark> GAT	ICAGCA <mark>AC</mark> GC	TGCGGTGAATACGT	:	1310
6 Clone Un	:	CCCCATGAAGTCO	GAGTC	GCTAG <mark>TAATCG</mark> C <mark>A</mark> GAT	ICAGCA <mark>AC</mark> GC	TGCGGTGAATACGT	:	1330
CICCHL_JQ9	:	CTACAT GAAGCT	GAATC	GCTAG <mark>TAATCG</mark> C <mark>G</mark> GAT	ICAGCA-T <mark>G</mark> C	CGCGGTGAATACGT	:	1338
XJU-1_Bc	:	CTACATGAAGCTO	GAATC	GCTAG <mark>TAATCG</mark> C <mark>G</mark> GAT	ICAGCA-TGC	CGCGGTGAATACGT	:	1342
PR35-2-1_B	:	CTACAT <mark>GA</mark> AGCTO	GAATC	GCTAG <mark>TAATCG</mark> C <mark>G</mark> GAT	ICAGCA-TGC	CGCGGTGAATACGT	:	1342
760_Bpum	:	CTGCGTGAAGCTG	GAATC	GCTAG <mark>TAATCG</mark> C <mark>G</mark> GAT	ICAGCA-TGC	CGCGGTGAATACGT	:	1344
Ssuccinu	:	CTACATGAAGCTO	GAATC	GCTAG <mark>TAATCG</mark> TAGAT	ICAGCA-TGC	TACGG <mark>G</mark> GAATACGT	:	1340
ST7_Clone_	:	CTACAT GAAGCTO	GAATC	GCTAG <mark>TAATCG</mark> C <mark>G</mark> GAT	ICAGCA-TGC	CGCGGTGAATACGT	:	1305
88_17_clon	:	CTCCATGAAGTC	GAATC	GCTAG <mark>TAATCG</mark> C <mark>G</mark> GAT	ICAG <mark>AA-TG</mark> C	CGCGGTGAATACGT	:	1328
Acinetobac	:	CTCCAT <mark>GA</mark> AGTCG	GAATC	GCTAG <mark>TAATCG</mark> C <mark>G</mark> GAT	ICAG <mark>AA-TG</mark> C	CGCGGTGAATACGT	:	1332
TDIW13_Aci	:	CTCCAT <mark>GA</mark> AGTCG	GAATC	GCTAG <mark>TAATCG</mark> C <mark>G</mark> GAT	ICAG <mark>AA-TG</mark> C	CGCGGTGAATACGT	:	1332
A449_Asa	:	CTCCGTGAAGTCG	G <mark>aa</mark> tco	GCTAG <mark>TAATCG</mark> C <mark>GA</mark> AT	ICAG <mark>AA-TG</mark> T	CGCGGTGAATACGT	:	1330
211c_Ave	:	CTCCGTGAAGTCG	G <mark>aatc</mark>	GCTAG <mark>TAATCG</mark> C <mark>AA</mark> AT	ICAG <mark>AA-TG</mark> T	TGCGGTGAATACGT	:	1330
ATCC_17527	:	CTGCGT <mark>GA</mark> AGTCG	G <mark>aa</mark> tco	GCTAG <mark>TAATCG</mark> C <mark>GA</mark> AT	ГСА <mark>Б</mark> АА-Т <mark>Б</mark> Т	CGCGGTGAATACGT	:	1320
PC16_Ppu	:	CTGCGT <mark>GA</mark> AGTCG	G <mark>aa</mark> tco	GCTAG <mark>TAATCG</mark> C <mark>GA</mark> AT	ICAG <mark>AA-TG</mark> T	CGCGGTGAATACGT	:	1326
PT03_Bacte	:	CTGCGT <mark>GA</mark> AGTCG	G <mark>aatc</mark>	GCTAG <mark>TAATCG</mark> C <mark>GA</mark> AT	ГСА <mark>Б</mark> АА-Т <mark>Б</mark> Т	CGCGGTGAATACGT	:	1324
KVD-unk-80	:	CTACGTGAAGCTG	G <mark>aatc</mark>	GCTAG <mark>TAATCG</mark> C <mark>G</mark> GAT	ICAGCA-T <mark>G</mark> C	CGCGGTGAATACGT	:	1324
Jlividum	:	CTGCATGAAGTTG	G <mark>aa</mark> tco	GCTAG <mark>TAATCG</mark> C <mark>G</mark> GAT	ICAGCA-T <mark>G</mark> T	CGCGGTGAATACGT	:	1325
Lginseng	:	CTGCGT <mark>GA</mark> AGTCG	G <mark>aa</mark> tco	GCTAG <mark>TAATCG</mark> CGGA	ICAGCT-TGC	CGCGGTGAATACGT	:	1321
6C_13_Vari	:	TTTCCGGATCTGI	GGACA	GAGTT <mark>TG</mark> ATCGTGGC	ICAG <mark>A</mark> A-TGT	CACGG <mark>G</mark> GAATACGT	:	1324
Dacidovo	:	CTGCGTGAAGTCG	GAATC(GCTAG TAATCGCG GAT	ICAGCA-TGC	CGCGGTGAATACGT	:	1325
300C-C03_C	:	GAGCATGAAGGCG	GAATCO	GCTAG TAATCG CGGAT	ICAGCA-TGC	CGCGGTGAATACGT	:	1276
ctg_CGOF25	:	GAGCATGAAGGCG	GAATCO	GCTAGTAATCGCGGAT	ICAGCA-TGC	CGCGGTGAATACGT	:	1275
BY14_Clone	:	GAGCATGAAGGCO	GAATCO	GCTAGTAATCGCGGAI	ICAGCA-TGC	CGCGGTGAATACGT	:	1270
BIR2-r_lim	:	GAGCGTGAAGGCC	GAATCO	GCTAGTAATCGCGGAI	ICAGCA-TGC	CGCGGTGAATACGT	:	1272
MP20_Sphin	:	GAGCATGAAGGCG	GAATCO	GCTAGTAATCGCGGAI	ICAGCA-IGC	CGCGGTGAATACGT	:	1282
DSSF72_Unc	:	GAGCATGAAGGCO	GAATCO	GCTAGTAATCGCGGAI	ICAGCA-TGC	CGCGGTGAATACGT	:	1280
1/4_C7_32_	:	GAGCATGAAGGCG	GAATCO	GCTAGTAATCGC <mark>G</mark> GAI	ICAGCA-TGC	CGCGG <mark>G</mark> GAATACGT	:	1271
AKIW820_Cl	:	GTGCATGAAGTT	GAATCO	GCTAGTAATCGC <mark>A</mark> GAT	ICAGCA-TGC	TGCGGTGAATACGT	:	1282
WBI100_Clo	:	GTGCAT GA AG <mark>GT</mark> G	GAATCO	GCTAGTAATCGTGGA	ICAGCA-TGC	CACGGIGAATACGT	:	1277
ENV481_X	:	GTGCATGAAGTTO	GAATC	GCTAGTAATCG <mark>T</mark> GGA	ICAGCA-TGC	CACGGIGAATACGT	:	1268
V4.B0.05_B	:	GGGCATGAAGTTG	GAATCO	GCTAGTAATCGCGGA.	ICAGCA-TGC	CGCGGTGAATACGT	:	1251
549_Chryse	:	CTCTATGAAGCTC	GAATCO	GCTAGTAATCGCGCA.	ICAGOCATGG	CGCGGTGAATACGT	:	1318
PB93_Pkr	:	CCCCATGAAGTTG	GATICO	GCTAGTAATCGCGTA	ICAGCAATGA	CGCGGTGAATACGT	:	1318
		c tGAag g	gGa tc	GCTAGTAATCGC gal	rcagca G	gcggtgaaTaCGT		

		*	1380	*	140	0		*	1420)		
92-0600_Ar	:	TCCCGGG	CCTTG-AC	CACACCGCCC	GTCAAGT	CAC <mark>G</mark> AA	AAGTT	GGTAAC	ACCCG	GAAGCC	:	1366
5N-4_Kpa	:	TCCCGGG	CCTTGTAC	CACCCCCCCC	GTCAAGT	CCC <mark>G</mark> AA	AAGTC	GGTAAC	CCCC	AAGCC	:	1374
4RS-9a_M	:	TCCCGGG	CCTTGTAC	CACACCGCCC	GTCAAGT	CAC <mark>G</mark> A <i>F</i>	AAGTT	GGTAAC	ACCCO	GAAGCC	:	1367
Amico6_Var	:	TCCCGGG	CCTTGTAC	CACACCGCCC	GTCAAGT	CAC <mark>G</mark> AA	AAGTC	GGTAAC	ACCCG	GAAGCC	:	1365
MT2.2_Derm	:	TCCCGGG	CCTTGTAC	CACACCGCCC	GTCAAGT	CAC <mark>G</mark> A <i>F</i>	A <mark>a</mark> gtt(GGTAAC	ACCCG	GAAGCC	:	1365
Lact5.2_B.	:	TCCCGGG	CCTTGTAC	CACCCCCCCC	GTCAAGT	CAC <mark>G</mark> AA	AAGTC	GGTGAC	CCCC	AAGCC	:	1369
rJ6_Bacter	:	TCCCGGG	TCTTGTAC	CACACCGCCC	GTCAAGT	CAT <mark>G</mark> A <i>f</i>	AAGTC	GGTAAC	CCCG	AAACC	:	1364
PAO-12_Mic	:	TCCCGGG	TCTTGTAC	CACACCGCCC	GTCAAGT	CAT <mark>G</mark> AA	AAGTC	GGTAAC	ACCTO	AAGCC	:	1368
sp.7_4K_Mi	:	TCCCGGG	TCTTGTAC	CACACCGCCC	GTCAAGT	CAT <mark>G</mark> AA	A <mark>A</mark> GTC(GGTAAC	CCTC	GAAGCC	:	1370
wged11_Lei	:	TCCCGGG	CCTTGTAC	CACACCGCCC	GTCAAGT	CAT <mark>G</mark> AA	A <mark>A</mark> GTC(GGTAAC.	ACCCC	6 <mark>AA</mark> GCC	:	1373
Ljaponic	:	TCCCGGG	GCTTGTAC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GTCAAGT	CAT <mark>G</mark> AA	A <mark>A</mark> GTC(GCCCAC	ACCCC	GAAGCC	:	1366
ML0004_R	:	TCCCGGG	CCTTGTAC	CACACCGCCC	GTCACGT	CAT <mark>G</mark> AA	AAGTC	GGTAAC.	ACCCG	GAAGCC	:	1367
6_Clone_Un	:	TCCCGGG	CCTTGTAC	CACACCGCCC	GTCAAGT	CAC <mark>G</mark> AF	A <mark>A</mark> GTT(GGTAAC.	ACCCG	GAAGCC	:	1387
CICCHL_JQ9	:	TCCCGGG	CCTTGTAC	CACACCGCCC	GTCACAC	CAC <mark>G</mark> AC	G <mark>a</mark> gtt:	I–TAAC	ACCCG	GAAGTC	:	1394
XJU-1_Bc	:	TCCCGGG	CCTTGTAC	CACACCGCCC	GTCACAC	CAC <mark>G</mark> AC	G <mark>a</mark> gtt:	I-TAAC	ACCCG	GAAGTC	:	1398
PR35-2-1_B	:	TCCCGGG	CCTTGTAC	CACACCGCCC	GTCACAC	CCCGAC	G <mark>a</mark> gtt:	IGTAAC	ACCCG	GAAGTC	:	1399
760_Bpum	:	TCCCGGG	CCTTGTAC	CACACCGCCC	GTCACAC	CACGAC	GAGTT	IGCAAC.	ACCCG	GAAGTC	:	1401
Ssuccinu	:	TCCCGGG	TTTTGTAC	CACACCGCCC	GTCACAC	CCCGAC	GAGTT	I-TAAC	ACCCG	GAAGCC	:	1396
ST7_Clone_	:	TCCCGGG	CCTTGTAC	CACACCGCCC	GTCACAC	CACGAC	GAGTT	I-TAAC	ACCCG	GAAGTC	:	1361
88_17_clon	:	TCCCGGG	CCTTGTAC	CACCCCGCCC	GTCCCCC	CATGGC	GATIT	IGTTCC	CCAC	GAAGTA	:	1385
Acinetobac	:	TCCCGGG	CCTTGTAC	CACCCCGCCC	GTCCCCC	CATGGO	GATTT:	IGTTCC	CCCAC	SAAGTA	:	1389
TDIW13_Aci	:	TCCCGGG	CCTTGTAC	CACACCGCCC	GTCACAC	CATGGO	GAGTT:	IGTTGC	CCCAC	SAAGTA	:	1389
A449_Asa	:	TCCCGGG	CCTTGTAC	CACACCGCCC	GTCACCC	CATGGO	GAGTG	GGTTGC	CCCAG	GAAGTA	:	1387
211c_Ave	:	TCCCGGG	COTIGIAC		GTCACCC	CATGG(FAGIG(GGTTGC		GAAGTA	:	1387
ATCC_1/52/	:	TCCCGGG	COTTGTAC		FICACACO	CATGGO	AGIG	GTTGC.		GAAGTA	:	13//
PCI6_Ppu	:	TCCCGGG	COTTGTAC		FICACACO	CATGGO	AGIG	GTTGC.		GAAGTA	:	1383
PT03_Bacte	:	TCCCGGG			FICACACO	CATGGC	AGIG	GTTGC		GAAGTA	:	1381
KVD-unk-80	:	TCCCGGG	TCTTGTAC		JTCACACO	CATGGO	AGIG	GTTTT	GCCAC	AAGTA	:	1381
JLividum	:	TCCCGGG	TCTIGIAC		JICACCCO	CATGGC	AGCG	GGTTT-		AAGTA	:	1381
Lginseng	:	TCCCGGG	TTTTGTAC		JICACACO	CATGGO	AGCG	GITCI	GCCAG	AAGTA	:	13/8
D paidara	:	TCCCGGG	TOTIGIAC		JICACACO STCACACO			CTCTC	GCCAC	AAGIA	:	1201
	•	TCCCGGG	COTTOTAC		JICACACO STODODO				JCCAC	AAGIA	•	1222
$3000-003_0$	•	TCCCAGG	COTIGIAC		STCACACO CTCACACO	CATCCC		CATTC	ACCCC		•	1333
PV14 Clope	:	TCCCAGG	COTIGIAC		STCACAC	CATOCO		CTTTC			:	1322
BII4_CIONE BIP2_r lim	:	TCCCAGG	COTTGIAC		STCACACO STCACACO	CATCCO			ACCCC		:	1320
MP20 Sphin	:		CCTTGTAC		TCACAC	CATCCO		CATIC			:	1339
DSSE72 Unc	:	TCCCACC			CACACAC						:	1337
1/4 C7 32	:		CCTTGTAC		TCACAC	CATCCO		CATTC			:	1328
7X1M850 C1	:	TCCCCCC			TCACCC						:	1339
WBT100 Clo	:	TCCCGGG	CCTTGTAC		STCACAC	CATGGO	AGTT	GGTTT		AAGGG	:	1334
ENV481 X	:	TCCCCCC			STCACAC	CATCC	AGTT			AACCC	:	1325
V4.B0.05 B	:	TCCCGGG	CCTTGTAC		GTCACAC	CATCCC	AGTT	GTTCT		AACGC		1308
549 Chrvse		TCCCGGG	COTTGTAC		STCAAGC	CATGGA	AGTC	TGGGGT		AAGTC	:	1375
PB93 P. kr	:	TCCCGGG	CCTTG-AC		GTCAAGC	CATEGA	AGTT	GGGGT	ACCTZ	AAGTA	;	1374
····	-	TCCCaGG	cTTGtA	CaCaCCGCCC	GTCa	Ca G	Aqt	q	Ccc	AAa		1
						-	<u> </u>	2				

		*	1440	*	140	50	*	1480		
92-0600_Ar	:	GG-GGCCTAAC	CCC-TTTC	GGCGGATC	TTCAAG	AGGGTTC	TCGATGC	TTCGCCTTNN	:	1421
5N-4_Kpa	:	GG-GGCCCAAC	CCT-TT	-GGCGGAGC	CTCCAA	GGGGTCT(CCGTGGC	TGGGCCNN	:	1425
4RS-9a_M	:	GG-GGCCTA	CCC-TGG	GGGGG	CCTCAA	GGGGC-C	CCGTGCT	ATTNNNNNN	:	1415
Amico6_Var	:	GG-GGCCTAAC	CCT-TGG	GGGGGGAGC	CTCCAA	GGGGCTC(CCATGCT	CTTCTTNN	:	1418
MT2.2_Derm	:	GG-GGCCTAAC	CCT-TT	-GGGGGAGC	CTCCAA	GGGGGTT	CCGTGCT	GGTGTTTNN-	:	1417
Lact5.2_B.	:	AGTGGC	CCC-CCT	GACGGATC	TTCAAG	GGTT	CCGTGCT	GACTCCN	:	1414
rJ6_Bacter	:	GG-GGCCCAAC	CT-TT-C	G-AGGGACC	CTCA	AGGGGTT	ICTTCGT	CTCCN	:	1410
PAO-12_Mic	:	GG-GGCCTAAC	CCT-TT-C	G-GAGGAGC	CTCA	AGGGGTC	TCATAGC	TCCGCTTNN-	:	1418
sp.7_4K_Mi	:	GG-GGCCCAAC	CT-TT-C	GAG <mark>G</mark> AGC	CGTCAA	AGG <mark>GGGC</mark>	TCTCAGT	AGCGTGGCGC	:	1424
wged11_Lei	:	GG-GGCCTAAC	CT-TG-C	GAGGAGC	CTCA	AGG <mark>GG</mark> TC(CTATGAT	GTCCNN	:	1419
Ljaponic	:	AG-AGTTCCAC	CTG-TTTC	CGCCGAGTC	TCTCAC	AAGGACC'	TCTCTGT	TGCTGATGGG	:	1421
ML0004_R	:	GG-GGCCTAAC	CCC-TCG	GAGGACC	CTCCAA	GGGTGTC	CCGTGAC	TGCCTTN	:	1419
6_Clone_Un	:	GG-GGCCAACC	CT-TT	-GGAGGAGC	TTC-AA	GGGGACT (CCATGAT	CGGNNNNNCC	:	1439
CICCHL_JQ9	:	G <mark>GTGGGGG</mark> TAAC	CTT-T-TC	GACCCACC	CGCCTA	AGG <mark>GG</mark> (GCAATAT	GGGGGGCCNN	:	1447
XJU-1_Bc	:	G <mark>GTGGGGG</mark> TAAC	CTT-T-TC	GACCCACC	CGCCTA	AGG <mark>GG</mark> (GCAATAT	GGGGGGCCNN	:	1451
PR35-2-1_B	:	G <mark>GTGGGGG</mark> TAAC	CTT-T-TC	GACCCACC	CGCCTA	AGG <mark>G</mark> ATC	ACATGAT	GGAGGGAANN	:	1454
760_Bpum	:	GGTGAGGTAAC	CTT-TAT	GGAGCCACC	CCCCCG	AAG <mark>GTGG</mark>	GTCACAT	ATTGGGCGGG	:	1457
Ssuccinu	:	GGGGAGAC	CC-TTAC	GGAGCAGC	CGTC2	AAGGGCC	CAAAGAT	GGTGTTAANN	:	1447
ST7_Clone_	:	G <mark>GTGGGGG</mark> TAAC	CTT-T-TC	GACCCACC	CGCCTA	AGG <mark>GG</mark> (GCAATAT	GGGGGGCCNN	:	1414
88_17_clon	:	GGTAGTCTAAC	CGTAA	GAGG <mark>CCGC</mark>	TTCCCA	CGG <mark>-G</mark> GG	CCGAGAC	TGGTGTGGGG	:	1439
Acinetobac	:	GGTAGTCTAAC	CGTAAC	GGAGG <mark>CCGC</mark>	TTCCCA	CGG <mark>-</mark> GGG	CCGAGAC	TGGTGTGGGG	:	1443
TDIW13_Aci	:	GGTAGTCTAAC	CGTAA	GGAGGACGC	TTTCCCC	CGG-GGG	CCGAGAC	GGGGGGGGGG	:	1443
A449_Asa	:	GATAGCTTAAC	CTTCG	GGAGGGCGT	TTCCCC	GGT-GTT	ITCTGAC	GGTGGGCCCN	:	1441
211c_Ave	:	GATAGCTTAAC	CTTCG	GGAGGGCGT	TACCAC	CGG-GTG	ITCAGAC	GGTGGGGGGN	:	1441
ATCC_17527	:	GCTAGTCTAAC	CTTCG	GGAGGACGG	TTNCCC	CGG-GTG	ICATGAC	GGGGGGGGGG	:	1431
PC16_Ppu	:	GCTAGTCTAAC	CTTCG	GGAGGACGG	TTNCCA	CGG-GTG	ITCTGAG	GGGGGGGGGN	:	1437
PT03_Bacte	:	GCTAGTCTAAC	CCTCG	GGAGGGCGG	TTTCCC	CGG <mark>-</mark> GTG	TACTGTC	GGTGGGCCCN	:	1435
KVD-unk-80	:	GTTAGCCTAAC	CGCAA	GGAGGGCG-	TTACCA	CGGCAGG	GTCAGAG	TGGGCGGGGN	:	1435
Jlividum	:	GGTAGCTTAAC	CGCAA	GGAGGGCG-	CTTCCC	CCGTAGG	ATCTGGC	GGGGCGGGNN	:	1435
Lginseng	:	GTTAGCCCAAC	CGCAAC	GGAGGGCGA	TTTCCA	CGGCAGG	ITCTGGC	GGGGGGGGGG	:	1433
6C_13_Vari	:	GTTTGCTTA-C	CGCAAC	GGAGGGCGA	TTNCCA	CGGCAGG	ITCTGTC	GGGGCGGCTN	:	1435
Dacidovo	:	GGTAGCCTAAC	GCAA	GAGGGCGC	TTTTCCA	CGGCGGG	TTCGGTT	GGGCTGGNNN	:	1437
300C-C03_C	:	GTTGCGCTAAC	TC-CAAGA	AGAGG-AGG	CGACC-0	CGGGG-T	IGCGGGG	GGGGGGGNN	:	1384
ctg_CGOF25	:	GT-GAGCTAAC	CCGTAAG	GAGGCAGG	CGACCA	CAGGG-T	TAGCGCT	GGTGTGCCNN	:	1387
BY14_Clone	:	AGTGCGCTAAC	CGCAAC	GAGGCAGC	TGTOCA		CAGCGCC	GGGGGGGGNN	:	1382
BIR2-r_lim	:	GT-GAGCTACI	GCAGA	AGAGGCAGG	CGTCCCC	CAGGG-G	TAGCGCC	GGGGCGGGNN	:	1382
MP20_Sphin	:	GCTGCGCTAAC	TCGCAAGA		CGACCA	GGGGG-T	TAGCG		:	1386
DSSF/2_Unc	:	AGTGCGCTAAC	-CGCAAG-	GAGGCAGC	TGNCCCC	GGGGG-T		GGGGGGGGNN	:	1391
1/4_C/_32_	:	AGIGCICIAAC		JGAGGAAGC	TACCCA		CAGCGGC	GGGCGGGGGN	:	1385
AKIWSZU_CI	:	GGIGCGCTAAC		JGGGGGCAGG	CGICCA	COTOCT		GGIGGGGCCN	:	1200
WEITON CTO	:	GIUGUGUTAAC		JGGGGGCAGG	CGAUCA	GGIGGIG		GGGGGGGGCN	:	1200
LINV481_X.	:	GUIGUGGTAAC		GAGGCAGG	CGAUCA	COTACOT	CACCUTT	GGICGGGGGGN	:	1201
V4.BU.U5_B	:	GCIGCGCIGAC	CCT AA	JGAGGCAGG	CCCTAC	CAAGGI	CAUGAUG	TTTCTTTNV	:	1400
	•	TC TAAC			TCC AC		JAACAGC	CCTCCNN	•	141C
rbys_rKr	÷	a taba		AGGAGC		JAAAACU	AACGGI	GGICCININ	•	1410
		y ladi		уу	C	99				

Alignment of the amino acid sequences of 45 isolates obtained from bioballs during the course of the bioreactor run. The alignment was carried out by the multiple alignment of Clustal X (1.81). Genedoc software was used for homology shading. The conserved regions are indicated with Roman numerals. The abbreviations of the isolates are given in the text. Gaps introduced into the alignment are indicated with dashes. Four shading levels were set.