Ultrasound features of the Deep Infrapatellar Bursa

Dissertation submitted in fulfilment of the requirements for the degree Masters in Technology (M.Tech: Radiography) to the Department of Health Sciences in the Faculty of Science at the Bellville Campus of the Cape Peninsula University of Technology.

By

Merle Neethling-du Toit

195086236

Internal Supervisor Mrs M von Aulock

External Supervisor Dr RSVP de Villiers

<u>Research Faculty</u> Sports Science Radiology Sports Science Orthopaedic Clinic Sports Science Institute of South Africa Newlands

Date of completion: February 2006

Dissertation Contents

DECLARATION	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	v
LIST OF ABBREVIATIONS	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	xi
LIST OF TABLES	xii

Declaration

Ultrasound features of the Deep Infrapatellar Bursa

I, Merle Neethling-du Toit, hereby declare that the work on which this dissertation is based is my original work (except where acknowledgements indicate otherwise), and that neither the whole work nor any part of it has been, is being or is submitted for another degree at this or any other University or Technikon.

February 2006

MNeethling-dutat

Merle Neethling-du Toit

Acknowledgements

I would like to extend my heart-felt gratitude to the following persons who have inspired and assited me during this research.

God, who gave me the ability and motivation to complete this project.

Mrs Maryna von Aulock, my internal supervisor who greatly assisted me with her expertise, caring, motivational and constructive influence.

Dr Richard de Villiers, my external supervisor who helped consistently throughout.

Melissa Dagnin, my colleague and friend at the Radiology department at the Sports Science Orthopaedic clinic, for her neverending understanding and assistance.

The Sports Science Orthopaedic Clinic for making this research possible. Dr Willem van der Merwe for allowing me to perform the ultrasound examinations on his ultrasound machine. The staff at the Sports Science Orthopaedic clinic for their wholehearted support.

Kathy McQuaide, from the research department of the Sports Science Institute of South Africa, for her unbelieveable assistance during recruiting and advertising of my project. Lorenzo Himunchul, expert researcher and statistician at the Bellville campus, Cape Peninsula University of Technology, for his dedicated help and advise during data analysis and processing.

My loving husband, Charl, for all your understanding, love and support.

My parents, Dr & Mrs Neethling and Genl & Mrs du Toit, for their love and encouragement.

To those I have not personally mentioned thank you for the words of encouragement.

"No man is the lord of anything, Though in and of him there be much consisting, Till he communicates his parts to others." *-William Shakespeare*

Abstract

The knee is one of the most complicated joints in the body. The deep infrapatellar bursa being only a small water-pocket and forming a small part of the knee. The deep infrapatellar bursa can get inflamed and cause great discomfort, especially to professional sportsmen and -women. If such a inflammation is present, a common treament option are to inject a cortisone solution into the bursa for quick relieve and healing.

This study was performed to investigate the specific ultrasound features of a normal deep infrapatellar bursa. Thus enableing more specific and accurate diagnosis of deep infrapatellar bursitis or not, which in turn leads to quicker recovery of the patients.

A total of 280 males and females from various population groups were recruited for the study. Subjects were categorized into different subgroups depending on their gender, ethnicity, competitiveness in sport, sport type practised and previous knee problems. These subgroups enabled a more individual specific DIB measurement.

A high frequency ultrasound examination of both knees of all recruits were performed. The deep infrapatellar bursa was located by slightly flexing the knee and applying not to much pressure with the probe whilst scanning. Three measurements, antero-posterio (AP), cranio-caudal (CC) and width measurements, were recorded of each individuals left and right deep infrapatellar bursa (DIB). The results of the DIB measurements were compared to results from a ultrasound study performed in Germany and a favourable comparison could be made. MRI studies of the DIB performed in Turkey and Switzerland differed greatly from those of this study and Germany.

This study could serve as a valuable source of reference to sonographer, radiologist and orthopaedic surgeons when investigating the deep infrapatellar bursa. A statistical significant difference was shown for males having a larger DIB than female, for competitive sports people having a larger DIB than non-competitive sports people and also inactive people; and rugby players (as a sport type) have larger DIBs than cricketers, runners, soccer players and cyclists.

Another surprising factor was the amazing ultrasound detection rate of the deep infrapatellar bursa, which allows for future easy and confident assessing of the DIB by ultrasound.

Key words: deep infrapatellar bursa, competitive sport, gender, sport type.

List of Abbreviations

DIB	Deep Infrapatellar Bursa
AP	Antero-posterior
CC	Cranio-caudal
W	Width
mm	millimetres
VS	versus

Table of Contents

Chaj	oter 1: Introduction	1
1.1	An Introduction to the 'Deep Infrapatellar Bursa'	1
1.2	Definitions	2
1.3	Aim of the study	4
1.4	Problem Statement	4
1.5	Sub-problems	5
1.6	Delimitations	5
1.7	Assumptions	6
1.8	Research Objectives	6
1.9	Hypothesis	7
1.10	Ethical Considerations	8
1.11	Dissertation Plan	9
Chap	oter 2 : Literature Review	11
2.1	Anatomy of the Deep Infrapatellar Bursa	11
2.2	Ultrasound Examination Technique	15
2.3	Pathology of the Deep Infrapatellar Bursa	18
2.4	Deep Infrapatellar Bursitis	19
2.5	Types of Bursitis'	20
2.5.1	Acute Traumatic Bursitis	20
2.5.2	Chronic Traumatic Bursitis	23

Page

2.6	Treatment Options	25
2.7	Background Literature Review of the Deep Infrapatellar Bursa	26
2.8	Summary of Conclusions of Literature Review	28
Chaj	pter 3 : Research Design & Methodology	29
3.1	Hypothesis	29
3.2	Data Measurement Tools	29
3.3	Sample Design & Sampling Methods	31
3.4	Data Collection	32
3.5	Data Capturing & Editing	35
3.6	Data Analysis	35
3.7	Shortcomings & Sources of Error	36
Chaj	oter 4 : Results	38
4.1	Mean ultrasound size of the Deep Infrapatellar Bursa(DIB)	38
4.2	Mean DIB measurements for All Male and Female subjects	40
4.3	DIB measurement comparison between different population groups	44
4.4	DIB measurement comparisons between different levels of sport	60
	participation	
4.5	DIB measurement comparison between different types of sport	68
4.5.1	Rugby vs Soccer	70
4.5.2	Rugby vs Running	76
4.5.3	Rugby vs Cycling	78
4.5.4	Rugby vs Cricket	81

4.5.5	Soccer vs Running	84
4.5.6	Soccer vs Cycling	86
4.5.7	Soccer vs Cricket	87
4.5.8	Running vs Cycling	89
4.5.9	Running vs Cricket	89
4.5.10	Cycling vs Cricket	91
4.6	DIB measurement comparisons between different previous knee history	92
4.6.1	Knee pain vs No pain	92
4.6.2	Patellar Tendonitis vs No tendonitis	94
4.6.3	Previous Knee Operation vs No knee Operation	95
4.6.4	Previous knee arthroscopy vs No knee arthroscopy	97
4.6.5	Age Related DIB measurements	99
4.7	Eliminated data	100
4.8	Summary of Main Results	102
5.	Chapter 5 : Conclusion & Recommendations	105
5. 5.1	Chapter 5 : Conclusion & Recommendations Conclusion	105
	-	
5.1	Conclusion	105
5.1 5.2	Conclusion Recommendations Summary	105 107
5.15.25.3Refer	Conclusion Recommendations Summary	105 107 108
 5.1 5.2 5.3 Refer Appending 	Conclusion Recommendations Summary rences	105 107 108 110
 5.1 5.2 5.3 Refer Apper Appen 	Conclusion Recommendations Summary rences ndices	 105 107 108 110 114
 5.1 5.2 5.3 Refer Appen Appen 	Conclusion Recommendations Summary ences ndices adix 1 : Questionnaire	 105 107 108 110 114 114

List of Figures

Figure 2.1	The synovial membrane of the knee joint and the associated	13
	synovial bursae.	
Figure 2.2	The three anatomic bursae related to the anterior aspect of the	14
	knee.	
Figure 2.3	The Nemio2 ultrasound machine from Toshiba.	15
Figure 2.4	Patient demonstrating positioning during ultrasound	16
	examination.	
Figure 2.5	Slight flexion of the knee for measuring the DIB's AP and CC	17
	measurements.	
Figure 2.6	Demonstrating the same position, but for the Width measurement.	18
Figure 2.7	Frictional bursitis of the deep infrapatellar bursa.	21
Figure 2.8	An ultrasound example of chronic prepatellar bursitis.	24
Figure 2.9	Chronic bursitis of the deep infrapatellar bursa.	25
Figure 3.1	Picture of the Mitshibushi printer and thermal ultrasound	30
	paper brand.	
Figure 3.2	Example of the measurements of the right DIB taken.	30
Figure 3.3	Example of measurements of the left DIB taken.	31

List of Tables

Table 4.1	Mean ultrasound size of the Deep Infrapatellar Bursa(DIB)	39
Table 4.2	Mean DIB volumes for compering males and females	40
Table 4.3	Independent Samples Test – Males vs Females	40
Table 4.4	Mean DIB measurements for Males	42
Table 4.5	Mean DIB measurements for Females	43
Table 4.6	Comparison between White and Coloured population groups	44
Table 4.7	Independent Samples Test – White vs Coloured	45
Table 4.8	Mean DIB ultrasound measurements for White subjects	46
Table 4.9	Mean DIB ultrasound measurements for Coloured subjects	47
Table 4.10	Comparison between Coloured and Black population groups	48
Table 4.11	Independent Samples Test – Coloured vs Black	48
Table 4.12	Mean DIB ultrasound measurements for the Black population	49
	group	
Table 4.13	Comparison between Black and White population groups	50
Table 4.14	Independent Samples Test – Black vs White	50
Table 4.15	Comparison between the White and Black Males only	51
Table 4.16	Independent Samples Test – White vs Black Males	52
Table 4.17	Comparison between White and Coloured Males	53
Table 4.18	Independent Samples Test – White vs Coloured Males	53
Table 4.19	Comparison between Coloured and Black Males	54
Table 4.20	Independent Samples Test – Coloured vs Black Males	55

Table 4.21	Comparison between White and Black Females	56
Table 4.22	Independent Samples Test – White vs Black Females	56
Table 4.23	Comparison between White and Coloured Females	57
Table 4.24	Independent Samples Test - White vs Coloured Females	58
Table 4.25	Comparison between Coloured and Black Females	59
Table 4.26	Independent Samples Test – Coloured vs Black Females	59
Table 4.27	Comparison between subjects practising Competitive vs	61
	Non-competitive sport	
Table 4.28	Independent Samples Test – Competitive vs Non-competitive	61
	Sport	
Table 4.29	Mean DIB measurements for Competitive Sport Subjects	62
Table 4.30	Mean DIB measurements for non-competitive subjects	63
Table 4.31	Comparison between active and non-active subjects	64
Table 4.32	Independent Samples Test – Active vs Non-active	65
Table 4.33	Mean DIB measurements for Active subjects	66
Table 4.34	Mean DIB measurements for Non-active subjects	67
Table 4.35	"Other"-category for Competitive Sport Activities	68
Table 4.36	"Other"-category for Non-Competitive Sport Activities	69
Table 4.37	Comparison between Rugby and Soccer players	70
Table 4.38	Independent Samples Test – Rugby vs Soccer	71
Table 4.39	Mean DIB measurements for Rugby players	72
Table 4.40	Mean DIB measurements for Soccer players	73
Table 4.41	The average height, weight and BMI.	75

Table 4.42	Comparison between Rugby players and Runners	76
Table 4.43	Independent Samples Test – Rugby vs Running	76
Table 4.44	Mean DIB measurements for Runners	77
Table 4.45	Comparison between Rugby players and Cyclists	78
Table 4.46	Independent Samples Test – Rugby vs Cycling	79
Table 4.47	DIB measurements for Cyclists	80
Table 4.48	Comparison between Rugby players and Cricketers	81
Table 4.49	Independent Samples Test – Rugby vs Cricket	82
Table 4.50	DIB measurements for Cricketers	83
Table 4.51	Comparison between Soccer players and Runners	84
Table 4.52	Independent Samples Test – Soccer vs Running	85
Table 4.53	Comparison between Soccer players and Cyclists	86
Table 4.54	Independent Samples Test – Soccer vs Cycling	86
Table 4.55	Comparison between Soccer players and Cricketers	87
Table 4.56	Independent Samples Test – Soccer vs Cricket	88
Table 4.57	Comparison between Runners and Cricketers	89
Table 4.58	Independent Samples Test – Running vs Cricket	90
Table 4.59	Comparison between Cyclists and Cricketers	91
Table 4.60	Independent Samples Test – Cycling vs Cricket	91
Table 4.61	Comparison between 'knee pain' and 'no pain'	92
Table 4.62	Independent Samples Test – Knee pain vs No pain	93
Table 4.63	Comparison between 'patellar tendonitis' and 'no tendonitis'	94
Table 4.64	Independent Samples Test – Patellar Tendonitis vs No tendonitis	94

Table 4.65	Comparison between 'Previous knee operation' and 'no knee	95
	Operation'	
Table 4.66	Independent Samples Test – Previous operation vs No operation	96
Table 4.67	Comparison between 'previous knee arthroscopy' and ' no knee	97
	arthroscopy'	
Table 4.68	Independent Samples Test – Previous arthroscopy vs	98
	No arthroscopy	
Table 4.69	Age group 18-29 years	99
Table 4.70	Age group 30-39 years	99
Table 4.71	Age group 40-52 years	100
Table 4.72	Summary of the mean DIB measurements	104

CHAPTER 1

INTRODUCTION

1.1 An Introduction to the 'Deep Infrapatellar Bursa'

The knee is a well studied joint and in the sport orientated practice that I work in, it constitutes for approximately 80% of the workload done. Therefore 80% of the radiographic examinations performed for patients visiting the radiology department involves the knee. By choosing the knee as my body part to research was thus an easy, almost logical decision to make.

The idea to have a closer look at the deep infrapatellar bursa originated from discussions between Dr Richard de Villiers, my external supervisor and radiologist on site, and myself.

After further investigation into the topic I found that there were a need for more detailed information about the deep infrapatellar bursa. The need specifically for more individualized patient information about the deep infrapatellar bursa. Any extra information about the deep infrapatellar bursa would help the orthopaedic knee surgeon, by minimizing the amount of cortisone injections given for a suspected deep infrapatellar bursitis. Thus predicting a more accurate bursa size could help differentiate between a normal or an abnormal bursa – adversely indicating a bursitis or

1

not – concluding towards a cortisone injection or not. Thus if not a bursitis further investigation into the patient's problem can commence sooner.

The size of the deep infrapatellar bursa can give an indication if any pathologies are present. Depending on the clinical symptoms and suspected pathology, performing an ultrasound of the deep infrapatellar bursa of the knee, could determine possible treatment for the patient.

1.2 Definitions

bursa - a sac or saclike cavity filled with a viscid fluid and situated at places in the tissues at which friction would otherwise develop. (Dorlands Medical Dictionary, 2005)

tendon – Fibrous tissue that attaches muscles to bones. (Mark Lefers, 2004)A cord or band of inelastic tissue connecting a muscle with its bony attachment.(www.biology-online.org/dictionary)

infrapatellar - inferior to the patella

deep infrapatellar bursa - The deep infrapatellar bursa is a small "water pocket" in the knee joint, which can become bigger if inflamed. This bursa is situated between the inferior edge of the patellar tendon and the anterior aspect of the tibia. The infrapatellar fat pad separates the deep infrapatellar bursa from the synovial cavity of the knee joint. (Carr et al, 2001:536)

competitive sportsman – Professional sport player/practitioner, training for competitions in a specific sport. Person competing for and striving to be the best in their specific sport type, either individually or as a team.

non-competitive sport – A sport type being exercised by a person who participate for the fun and love of the game or sport modality. The sport is usually practised as a recreational activity.

bursitis – Inflammation of a bursa, patient presenting with redness, swelling and discomfort.

Knee arthroscopy – An invasive procedure of the knee joint, using a small scope (camera) to confirm specific diagnosis.

knee pain - any pain perceived in the knee, anytime during activity or rest.

Antero-posterior – from the anatomical front (anterior) to the back (posterior).

Cranio-caudal - from head towards the feet.

Width measurement - maximum measurement from side to side/ left to right.

<u>1.3</u> Aim of the study

The aim of this study is to determine the size of the deep infrapatellar bursa for each individual person, regardless of their characteristics. As many subjects as possible will be recruited for bilateral knee ultrasound examinations.

Anyone presenting with anterior knee pain, indicating suspected infrapatellar bursitis will benefit from this study. Ultrasound will be used as the radiographic examination tool to gather the relevant information/data. Ultrasound is an non-invasive examination, cheap to operate or use and painless for the patient with quick results.

Data collected will show either the size of the bursa or the absence of the bursa all together. Measuring three different diameters of the bursa will allow for the volume to be calculated, allowing for comparisons to be made. Thus testing the significance of the different comparisons.

<u>1.4 Problem statement</u>

The ultrasound size of the deep infrapatellar bursa differs depending on a normal or pathological bursa. The difference in size of the deep infrapatellar bursa for different variables are unknown. Therefore by individualising the size of a normal deep infrapatellar bursa, more accurate diagnosis can be made if a bursa is inflammed or whether a normal bigger variant of the infrapatellar bursa is present. The patient's treatment can thus be determined more accurately in a shorter timespan.

1.5 Sub-problems

1. The difference in the size of the deep infrapatellar bursa are unknown for:

- Males and females,
- Different population groups,
- Opposing knees, and
- People participating in different levels of and different types of sport.

2. The ultrasound detection rate of the deep infrapatellar bursa is currently unknown.

3. The effect on the size of the deep infrapatellar bursa for patients with previous knee injuries, previous knee operations and previous knee arthroscopies, and also patients with present knee pain and/or tendon inflammation are unknown.

<u>1.6</u> Delimitations

A minimum of 200 adult males and females (400 knees), will be recruited for the study. Inclusion criteria: Adults between 18 and 55 years.

Exclusion criteria: People aged <18 or >55 years.

People under 18 years of age are likely to have different values before epiphysial closer. (although this fact is not known, it has to be considered for a better result). Older people over 55 years of age may have different values due to the increasing prevalence of osteoarthritis.

1.7 Assumptions

After collection of numerical data of at least 400 ultrasound examinations, standard reference values for the deep infrapatellar bursa will be calculated. The assumption is being made that for every subgroup identified above, there could be a statistical significant difference between the groups. The ultrasound detection rate of the deep infrapatellar bursa would be higher than suspected in current literature.

By individualising the diameters of the deep infrapatellar bursa for every person, better diagnosis and thus treatment can be offered to patients.

<u>1.8 Research Objectives</u>

1. To investigate the normal size, volume and characteristics of the deep infrapatellar bursa that are presently known.

2. To compare the size of a normal deep infrapatellar bursa of the left and right knees; male and female knees; different population groups' knees; people practising different sport types and competing at different levels of sports' knees.

3. To make the necessary recommendations on the size of the bursa for each individual person being examined.

4. To determine the ultrasound detection rate of the deep infrapatellar bursa.

5. To determine if previous knee injuries, operations and arthroscopy, and present knee pain and/or inflammation have any effect on the size of the deep infrapatellar bursa.

1.9 Hypothesis

The size of the deep infrapatellar bursa would differ depending on a normal or pathological bursa. The diameters of a normal deep infrapatellar bursa for males and females, different population groups, opposing lower limbs and people participating in different levels of and different types of sport would probably include different measurements.

7

1.10 Ethical considerations

All patients will stay anonymous and patient personal details will be kept private and confidential. Written consent will be obtained from each individual participant. For participants who do not speak or understand English and/or Afrikaans, a translator will be present to explain the questionnaire and ultrasound examination.

In medicine there are sometimes different values for different anatomical structures and the incidence for different pathologies for different population groups may vary. Therefore some pathologies or anomalies may be considered high risk for some population groups, while the same pathology/anomaly may be considered as low risk for another population group. In order to be more individual specific regarding the size of the deep infrapatellar bursa, - different population groups will be specified in this research study. This will enable the researcher to determine if there are indeed any statistical difference in the size of the deep infrapatellar bursa for different population groups in this instance. This discovery may lead to better diagnosis and treatment of each individual patient.

Please note that for this study approval was granted for the study by the Sports Science Orthopaedic Clinic. Please see Appendices 3 and 4 for appropriate letters. All appropriate ethics approval forms were also submitted to the The Science Faculty Research Ethics Committee at Bellville Campus, Cape Peninsula University of Technology. The only response regarding approval from the university that I could

8

gather was, and I quote: "The ethics committee sort of stopped function due to a lack of interest/attendance...". Thus I rest my case in that regard.

1.11 Dissertation plan

Chapter 1 gave an overview of how the research topic came along, what the problem statement is, stated the planned objectives of the study and briefly what to expect from the study.

In Chapter 2 an indepth literature review follows – starting with an brief overview of the anatomy of the deep infrapatellar bursa, followed by the ultrasound examination technique for visualizing and measuring of the deep infraatellar bursa. Further the pathology of the deep infrapatellar bursa will be discussed, touching on different types of bursistis and treatmnt options for the physician. Concluding the chapter with a background literature review of the deep infrapatellar bursa.

In Chapter 3 the research design and methodology of the study will be explained. From the data measurement tools, sample design, sampling methods, data collection, data capturing and editing, data analysis to the shortcomings and source of error for the study.

In Chapter 4 the results will be discussed in detail. Stating the mean ultrasound size for the deep infrapatellar bursa. Comparing the DIB measurements of males and female, different population groups, different levels of sport participation (competitive, noncompetitive or non-active), and different sport types. Also comparing the DIB volumes of subjects with knee pain, patellar tendonitis, history of previous knee operation and history of previous knee arthroscopy. Eliminated data for the study will be stated and reasons for elimination will be discussed.

Chapter 5 will conclude the dissertation and recommendations for future research will be named.

CHAPTER 2

LITERATURE REVIEW

In this chapter the anatomic and pathologic characteristics of the deep infrapatellar bursa will be discussed, with cross reference to past and present literature. The ultrasound examination technique for visualizing and measuring the deep infrapatellar bursa will also be mentioned.

2.1 Anatomy of the Deep Infrapatellar Bursa

The fact that the knee joint consists of tendons, ligaments, menisci, a capsule, cartilage and more, makes it one of the most complicated joints of the body. Ultrasound has its limitations with the examination of the knee, but by using a high frequency transducer, it is an ideal tool for examining the deep infrapatellar bursa. (Monetti et al., 1995)

The Greek meaning for the word *bursa* is "wine skin". The analogy of the wine skin is quite appropriate, as both bursae and wine skins have their greatest dimensions in length and width. These dimensions provide a large surface area occupying little volume under normal circumstances. (Codman, 1931). When a bursa is situated between two structures, the configuration mentioned above, allows movement and gliding of one structure over the other. Bursae can develop almost anywhere in the body, if unusual pressure and friction are persistently produced in a specified area. (van Holsbeeck & Introcaso, 2001)

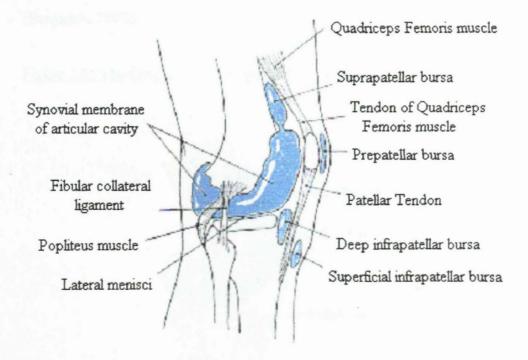
Some authors, being anatomists and physicians who perform bursography and bursoscopy, claim that bursae are fluid-filled sacs. Bursae actually contain a lubricant which consist only of a thin film of viscous fluid. The walls of the bursae are thus separated by a thin film of fluid approximately 1mm thick, and bursae are potential spaces becoming only distended fluid-filled sacs when pathological. (van Holsbeeck & Introcaso, 1989)

Bursae can be divided into two groups: (1) communicating and (2) noncommunicating. This depends on the bursa's relationship to a joint space. In humans non-communicating bursae are more common. Furthermore, bursae can be classified as subcutaneous or deep, depending on their location. (Canoso, 1981) Located between a bone and the overlying skin are subcutaneous bursae. While deep bursae are situated in different locations deep to the investing fascia; separating the joint capsule, tendons, ligaments and fascial planes. (van Holsbeeck & Introcaso, 2001)

Various bursae are located about the knee joint for purposes of decreasing friction over tendons and bones. See figure 2.1 below.

(1) The suprapatellar bursa is located between the deep surface of the quadriceps femoris muscle and the distal part of the femur. This bursa is in communication with the joint capsule of the knee.

(2) The prepatellar bursa is located between the superficial surface of the patella and the skin.

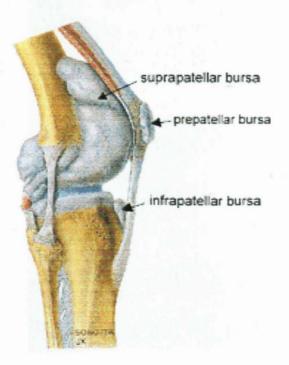

12

(3) A superficial infrapatellar bursa is located between the patellar ligament and the skin.

(4) The deep infrapatellar bursa is situated between the proximal tibia and the patellar ligament.

Other bursae about the knee joint decrease friction at the attachment sites of the gastrocnemius, gracilis, sartorius, semitendinosus, and semimembranosus muscles. (Jenkins, 1991)

Figure 2.1: The synovial membrane of the knee joint and the associated synovial bursae.

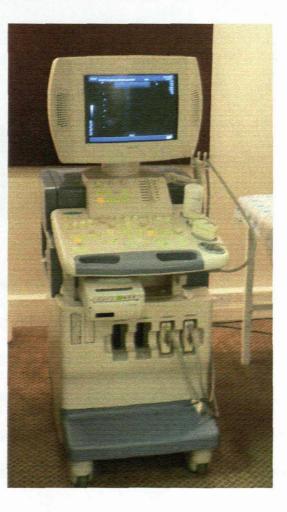


(Jenkins, 1991)

The infrapatellar bursa is located inferior to the patella of the knee, posterior to the patella ligament. It acts as a cushion between the patella ligament and the tibia. When swollen and inflamed, it is painful when kneeled upon and difficult to bend the knee fully. Although it does not limit extension of the knee. This bursa is often injured in conjunction with the quadriceps mechanism, above or below the patella. (Benjamin, 2003)

The causes for an inflamed and swollen bursa could range from subtle malalignments of the knee to impact trauma. Very little is known about why bursitis develops. Excessive movement, due to injured or torn medial and lateral collateral ligaments and anterior and posterior cruciate ligaments, could cause an irritated and inflamed bursa. (Benjamin, 2003)

Figure 2.2: The three anatomic bursae related to the anterior aspect of the knee..



(Benjamin, 2003)

2.2 Ultrasound Examination Technique

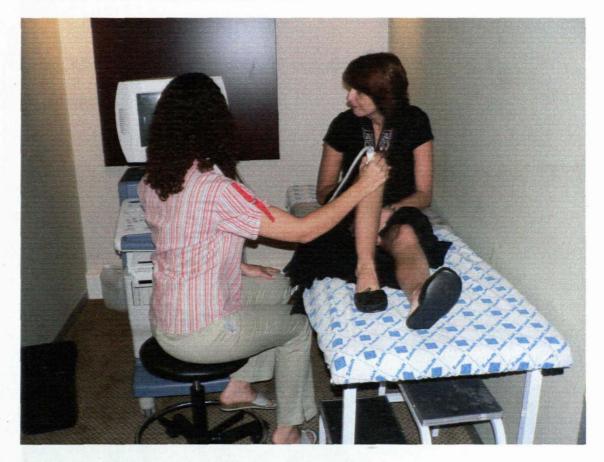
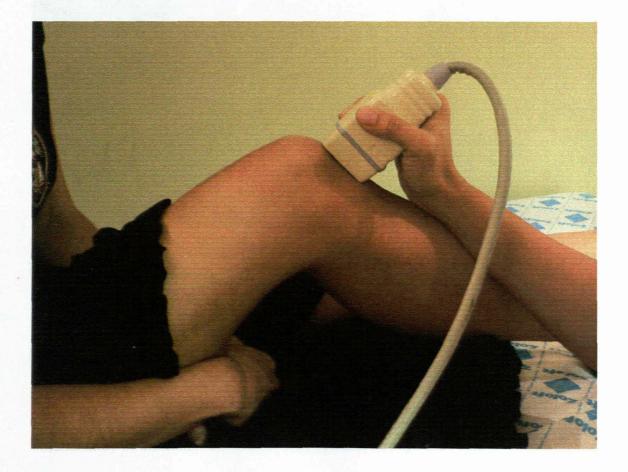

As the deep infrapatellar is located in the anterior aspect of the knee, it is easily located and accessible via ultrasound. The location enables the user to use a high frequency linear transducer with ease. For this study a 14MHz frequency was selected on a multifrequency transducer on a *Nemio 2* ultrasound machine from Toshiba. Even for the slightly more obese patients it was not necessary to select a lower frequency, as the deep infrapatellar bursa were easily seen in its fairly superficial location.

Figure 2.3 : The Nemio 2 ultrasound machine from Toshiba.

The subject/patient was scanned while sitting on the examination bed with legs straightened. The knee that was being scanned was positioned in slight flexion of approximately 20° to 30°, with the appropriate foot flat on the bed.


Figure 2.4 : Patient demonstrating position.

This slight flexion caused the patellar tendon to be extended and thus given an overall better image of the deep infrapatellar bursa. Care was taken not to apply to much pressure with the transducer head on the area of scanning, as this could cause any small bursa to be flattened and thus not visualised. The right knee was always scanned first – by correctly identifying the deep infrapatellar bursa and taking three different measurements of the bursa. The antero-posterior-(AP), cranio-caudal-(CC) and width

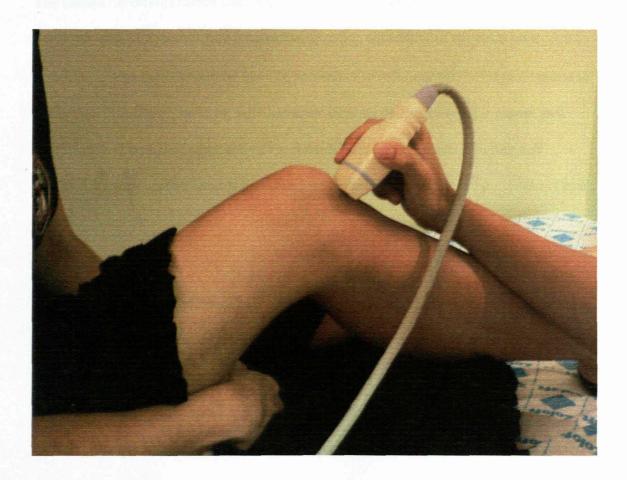

(left-to-right) measurements. The measurements were taken at the point where the bursa was maximally visualized – were it slightly inferior, superior, lateral or medial from where expected. The left knee deep infrapatellar bursa was identified and measured, in the same manner as the right side, next.

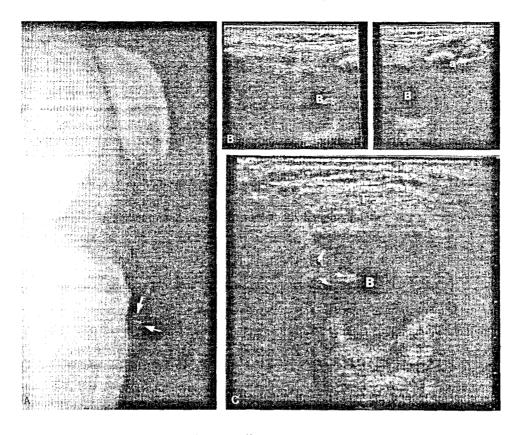
Figure 2.5: Slight flexion of the knee for measuring the DIB's AP and CC measurements.

17

Figure 2.6: Demonstrating the same position, but for the Width measurement.

2.3 Pathology of the Deep Infrapatellar Bursa

Pathology of the bursae around the knee can be a source of acute and chronic knee pain. Inflammation can result from chronic or acute trauma, haemorrhage, infection and inflammatory or infiltrative disorders. (Friedman&Chhem, 2005) The deep infrapatellar bursa do not communicate with the joint and thus any bursal effusion or swelling indicates a primary bursal process. (Chhem et al, 1999) Bursitis of the knee can involve inflammation of one or more bursae about the knee. The causes for inflammation can vary from repetitive compression forces (created by the flexor and extensor muscle mechanism groups), instability of the knee joint (due to torn/injured ligaments about the knee or secondary to osteoarthritis) or direct trauma to the bursa. Bursitis of the knee, whether acute or chronic, can clinically appear as a cystic mass. The most important fact to determine is the anatomical location of this'cystic mass', to then enable the examiner to diagnose bursitis or not. (Chhem et al, 1999)


2.4 Deep Infrapatellar Bursitis

Deep Infrapatellar Bursitis can be the result of a direct blow to the bursa or especially in professional sportsman due to repetitive strain to the distal patellar tendon area – resulting in repetitive strain to the deep infrapatellar bursa, just posterior to the patellar tendon. Bleeding into the bursa may occur with inflammatory disease. By applying pressure to the probe, after the bursa was located and whilst scanning over this bursa, pain will be a positive sign for the diagnosis of bursitis. However, keep in mind that excessive pressure will result in flattening of the bursa and could lead to a false negative result of a potentially inflamed bursa. (Chhem et al, 1999)

Deep Infrapatellar bursitis should really only be considered if the effusion is large and the bursa symptomatic, as a small amount of fluid in the bursa is physiologically normal. As stated above – pain elicited from recurrent pressure applied to the bursa by

19

Figure 2.7: Frictional bursitis of the deep infrapatellar bursa.

A - A conventional lateral knee radiograph. An irregular apophysis with a separate ossification centre is noted at the distal patellar tendon insertion (*arrows*). B - Longitudinal sonograms of the same patient. The left side of the split screen displays the patellar tendon stretched between the apex of the patella and the tibial tuberosity. A large, distended bursa (*B*) extends adjacent to the tuberosity and the tendon. The image on the right side of the split screen is a detail of the tibial tuberosity and the large bursa, which covers the bone just proximal to the fragmented apophysis(*a*). Fluid in frictional bursitis often appears anechoic.

C – Transverse sonogram of the same patient. Located deep to the patellar tendon (T), the anechoic fluid collection in the deep infrapatellar bursa (B) is indented by Hoffa's fat pad (*arrows*). (Van Holsbeeck & Introcaso, 2001)

This type of bursitis is very common in athletes whose sport requires repetitive motion, like runners, tennis players, and oarsmen. Bursae predisposed to the development of frictional bursitis are usually adjacent to joints with irregular edges and hypertrophic tendon insertions. Most common bursae of the knee to develop frictional bursitis are the prepatellar and deep infrapatellar bursae. (van Holsbeeck&Introcaso, 2001)

The pathophysiology is that of a typical acute inflammation. There is initially a short period of vasoconstriction followed by hyperaemia. The hyperaemia results from dilatation of arterioles, capillaries, and postcapillary venules. Transudation and exudation follows. (van Holsbeeck&Introcaso, 2001) The painful bursa becomes distended with a watery fluid, which is different from the fluid found within the bursa normally. It also differs from the thick gelatinous mucoid substance found in ganglia. (Nicholas &Hershman, 1986)

Ultrasound is a great way of examining the bursae and serves to primarily determine if the disease are limited to the bursa only. Surrounding structures can easily be examined, to determine if the bursitis developed secondary to pathology that originated from these surrounding tendons, ligaments or the joint space. (van Holsbeeck & Introcaso, 2001)

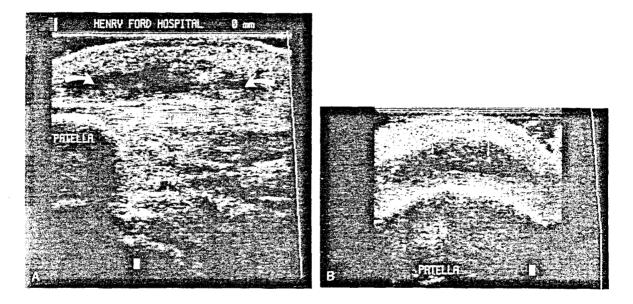
Frictional bursitis is easily identified by an increase in the volume of the bursa only. No other changes to the bursa structure is recognised. As always, comparison with the contra-lateral, asymptomatic side is of great value. The fluid within a bursa with acute

22

traumatic bursitis, characteristically appears anechoic or markedly hypoechoic compared with normal bursal fluid. Posterior acoustic enhancement can be seen deep to the inflamed bursa. The walls of the bursa appears unchanged, which is an important factor to take into account when differentiation between acute and chronic traumatic bursitis are needed. (van Holsbeeck& Introcaso, 2001)

2.5.2 Chronic Traumatic Bursitis

Inevitably if acute traumatic bursitis persists, it may become chronic. The synovial bursa walls will become thickened and filled with a fibrinous exudate. Calcifications can sometimes be seen within or surrounding the chronically inflamed bursa. In an area exposed to chronic frictional irritation, an adventitious bursa can sometimes form as a subtype of chronic traumatic bursitis. If this happens, the surrounding connective tissue becomes inflamed and forms a area of fibrinoid necrosis. (Gardner, 1965 & van Holsbeeck&Introcaso, 2001) A cystic structure filled with cellular debris, extracellular fluid, altered ground substance and inflammatory exudate results (Nicholas& Hershman, 1986). This process is the formation of a bursa de novo(van Holsbeeck & Introcaso, 2001)


As in acute traumatic bursitis, the bursa is distended with fluid – but with definite echoes within the bursa. The outline of the bursa appears irregular and the synovial walls are thickened. Calcifications can sometimes be present, and appears as hyperechoic foci, with or without shadowing – depending on the size of the calcification

23

and the frequency of the transducer. Surrounding bursae and tendons are frequently involved with chronic traumatic bursitis. The last to remember for chronic traumatic bursistis is that if the synovium of the effected bursa is adjacent to adipose tissue, local fatty hypertrophy can develop. (van Holsbeeck & Introcaso, 2001)

The sonographic features of chronic traumatic bursitis are demonstrated in the figures below.

Figure 2.8 : An example of chronic prepatellar bursitis.

A – longitudinal sonogram. The bursa (*curved arrows*) appears hypoechoic, with distinct internal echos. The synovial lining of the bursa is irregular. B – transverse sonogram with similar patholgy than in A. The flat, sac-like structure filled with fluid and debris. The distinct internal echos (*arrows*) are often seen in chronic bursitis.

(van Holsbeeck & Introcaso, 2001)

Figure 2.9: Chronic bursitis of the deep infrapatellar bursa.

A – longitudinal sonogram. The inflamed bursa (B) measures approximately 5cm long. The bursa appears essentially anechoic, but synovial wall thickening is observed (*arrows*). Abbreviations: patellar tendon (t) and tibial tuberosity. **B** – transverse sonogram. Again the bursa is hypoechoic with a rim of synovial thickening around the bursa. Abbreviation: tibia (Ti). (van Holsbeeck & Introcaso, 2001)

2.6 Treatment Options

Treatment options for bursitis are limited. If several months of rest do not eliminate the pain, anti-inflammatory injections are usually indicated and effective. (Benjamin, 2003) Aspiration followed by injection of an appropriate steriod preparation is usually the procedure. At the Sports Science Orthopaedic clinic 2ml Marcaine together with 1ml Cortisone are usually injected under ultrasound guidance.

When an acute bursitis fail to respond to non-surgical treatment, incision and drainage are the next route to follow. Excision of chronically infected and thickened bursa are the next step if still unresolved. Last resort is to remove any underlying bony promineces. (Duke Othropaedics : Wheeless'Textbook of Orthopaedics, 2005)

2.7 Background Literature Review of the Deep Infrapatellar Bursa

According to Carr et al, from America, "the deep infrapatellar bursa may be normally visible as a flattened 2- to 3mm anechoic fluid containing structure" on ultrasound (2001). According to other literature, it may be found that this bursa contains some synovial fluid in asymptomatic knees, but may also be collapsed. (Jansen et al, 1994; LaPrade, 1998) In a study where cadaver specimens were dissected, it is described that the bursa is 20mm in length and contains less than 0.5ml of fluid. (Klein, 1996)

In a fairly recent study from Turkey the deep infrapatellar bursa on sagittal T2-weighted Magnetic Resonance Imaging (MRI) images were 2.1mm-2.7mm (antero-posterior diameter) and 7.3mm-9.1mm (cranio-caudal diameter) respectively. Taking into account that of all the knees scanned, the deep infrapatellar bursa could only be visualized in 68% of the subjects from this study. (Aydingoz et al, 2004)

Tschirch et al, from Switzerland, only visualized 42 deep infrapatellar bursae in 102 asymptomatic knees (41%) examined with MRI. Their mean measurement of the deep infrapatellar bursa being 6x3x5mm (2003). The low prevalence of the deep

26

infrapatellar bursa with different MRI studies, may be due to different cut-off measurements used and also depends on the specific slice thickness used during the MRI examinations.

Joints with fluid-filled bursae are not uncommon ultrasound findings in healthy people. Schmidt et al (2004), from Germany, found the mean ultrasound value of the deep infrapatellar bursa to be 6.1x6.2x2.7mm. They could only detect 6% of the deep infrapatellar bursae in their study of 102 healthy volunteers. Stating that, it has to be said that they carried out their measurements at the same defined area and not necessarily at the area where the bursa appeared biggest or the area where the bursa could be visualised at all. There is thus a strong suspicion that the ultrasound detection rate of the deep infrapatellar bursae containing fluid are much higher than the 6% from Schmidt et al's study.

There has been no investigation of the possible difference in size of the deep infrapatellar bursa for different population groups as far as is known. Comparing different sexes, knees, sport types and different levels of competitiveness has been slightly reviewed, but not in depth. Schmidt et al found only a few relevant statistical significant correlations for different sexes, but do not state what anatomical area they were referring to. Taking into account that they were performing ultrasonography on 204 shoulders, elbows, hands, hips, knees and feet. Also due to there wide range of areas investigated they found several statistical significant values, unfortunately due to an α fault. (Schmidt et al, 2004)

27

No correlation was found for different sport activities by Schmidt et al (2004). Selected distances are different for athletes (Maffulli et al, 1987). The impact of different sport activities and different levels of sport competitiveness on the deep infrapatellar bursa has not been investigated before.

2.8 Summary of Conclusions of Literature Review

It is thus clear that the deep infrapatellar bursa as a structure on its own has not been investigated in depth with different comparisons between different variables before. I therefore aimed to try and investigate as much as possible about different variables specifically for this bursa.

The average measurement for the deep infrapatellar bursa differs between 2.1mm-2.7mm (antero-posterior diameter) and 7.3mm-9.1mm (cranio-caudal diameter); 6x3x5mm; to 6.1x6.2x2.7mm respectively, according to above mentioned authors.

Slight previous comparisons between men and women, different knees, different levels of and different types of sports and different population groups have not delivered very much information to date. Therefore an indepth study was conducted to try and determine more specific features or characteristics for the deep infrapatellar bursa.

CHAPTER 3

RESEARCH DESIGN & METHODOLOGY

In this chapter the design and methodology followed during my fieldwork will be discussed.

3.1 Hypothesis

The size of the deep infrapatellar bursa would differ depending on a normal or pathological bursa. The diameters of a normal deep infrapatellar bursa for males and females, different population groups, opposing lower limbs and people participating in different levels of and different types of sport would probably include different measurements.

3.2 Data Measurement Tools

The subject filled in a questionnaire form, rendering information about previous and present knee problems, operations or examinations, sports activities, level of sport participation, sport type, gender, ethnicticity, age, height and weight. (Please see appendix 1 for example of the questionnaire and appendix 2 for an example of the consent form.)

Using a *Nemio2* Toshiba ultrasound machine with a multi-frequency (5-14MHz) linear transducer, the deep infrapatellar bursa was identified and different diameters of the bursa was measured in millimetres, using the callipers on the ultrasound machine. The measurements were recorded on thermal Mitshibushi ultrasound film paper and each individuals' measurements were filled in on their questionnaire form.

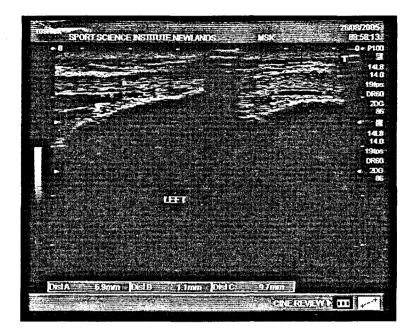

Figure 3.1 Picture of the Mitshibushi printer and thermal ultrasound paper brand.

Figure 3.2 Example of the measurements of the Right DIB taken.

Figure 3.3 Example of measurements of the Left DIB taken.

3.3 Sample Design & Sampling Methods

A prospective survey of a study population of people, randomly selected and between 18 and 55 years of age, were recruited. Numerical data were collected by measuring the different diameters of the deep infrapatellar bursa. Data collected shows either the size of the bursa or the absence of the bursa. No patient with possible and/or present deep infrapatellar bursitis were included in the study as this would obviously skew the average volume in a chosen group.

Measuring three different diameters of the bursa allowed for the volume to be calculated, which enabled me to statistically compare different variables. As there have not been any intensive research studies conducted on the deep infrapatellar bursa, no correction factor for the exact calculation of the volume of the deep infrapatellar bursa could be found in the literature. Hence the volume was calculated as mentioned above for comparing purposes of different entities of this research study.

A minimum of 200 adult males and females (400 knees), were to be recruited for the study. A total of 280 subjects (560 knees) were recruited for the study and included in the statistical analysis by the finishing date for data collection by 7 September 2005. The sample size had to be quite big to be able to make statistically significant comparisons.

Subjects aged <18 or >55 years were excluded from the study, as people under 18 years of age are likely to have different values before epiphysial closer and older people may have different values due to the increasing prevalence of osteoarthritis.

3.4 Data Collection

The idea of the study was to recruit as many subjects as possible to perform bilateral knee ultrasound examinations on. Subjects were recruited randomly by means of different internet websites (e.g. Health24 and vitality), local newspaper advertisements (*The Herold* from Newlands), asking people from the Sports Science Institute of South Africa's gym, staff members and students to participate, and like all good things via word of mouth the news spread that free knee ultrasounds were being performed at the

32

Orthopaedic Sports Science Clinic! All of this contributed to 280 people being recruited for the study!

The advertising on the websites, the local weekly Newlands' newspaper and the annoucement on local Cape Town Christian Radio was organised and orchestrated by a staff member of the Sports Science Institute of South Africa, Kathy McQuaide. She voluntarily orchestrated all this exposure to the study as she works in the research department of the Sports Science Institute of South Africa and does advertising/recruiting for research studies like this on a daily basis. She was an integral part of my subjects' recruitment!

Once the advertisement was read I usually received a phone call or email from an interested person concerning my study. The requirements and the examination to follow were explained and if the person was interested, an appointment was set up which suited the interested party's schedule and correlated with available time in the Sports Science Radiology department.

I was fortunate enough to have a lot of cooperation and support from my collegues at work, which enabled me to perform ultrasound examinations for my research on mostly Wednesday- and Friday afternoons at the Sports Science Othropaedic Clinic, but also on other days depending on the subjects' availability. Fifteen minutes were allowed for the actual examination to make sure enough time was allowed to complete each

33

examination peacefully, to ensure optimal accuracy in finding and measuring the deep infrapatellar bursa on both knees for each individual.

As the interested voluntary person arrived for their ultrasound examination at the Sports Science Orthopaedic Clinic, they were given a questionnaire to complete and after carefull explaining by myself, about what to expect and what would happen next, a consent form was signed by the subject. Most participants were english speaking, but when required afrikaans were spoken. The Xhosa speaking participants mostly understood english and did not have any objections about the language being spoken. All participants had a very good understanding about the study, what the study entailed and what were being expected from them. All questionnaires were completed correctly.

The first ultrasound examination was performed on 8 June 2005 and the last one was finished on 7 September 2005. Most examinations were performed as explained above by recruiting subjects via email or advertisement, but most professional sportspeople were recruited by phoning, faxing and discussions with the various coaches, physiotherapists, team doctors and trainers. These subjects included the members of the Western Province men's rugby squad, the Western Province women's rugby squad and Ajax Cape Town Soccer Club. For these subjects certain specific pre-oraganised dates and times were organised to ensure no disruption with training or matches.

3.5 Data Capturing & Editing

Data was captured onto my computer manually by myself. This took quite a while, but various cross checks and spot checks via random selection was conducted to ensure minimal errors occured. Data that was captured included the date of the examination; the subject number; the subject's age, ethniticity, gender, date of birth, knee pathology history, knee injury history, rehabilitation time (if appliccable), sport activities, sport competitiveness, sport(s) practiced, how many hours a week trained/exercised, how many kilometres a week cycled or ran (where appliccable), height, weight, body mass index (BMI), respective right and left knee ultrasound measurements.

SPSS 13.0 for Windows was used for editing and post-coding of data. By doing random statistical tests and checking the data correspondence with other statistical tests errors were further minimised.

3.6 Data Analysis

Data analysis was done by using the SPSS 13.0 for windows program which was installed onto my computer. Mr Lorenzo Himunchul, expert statitician and researcher, from the Cape Peninsula University of Technology's research department assisted me with the analysing and performing of various statistical tests. He also assissted me with cross checking and final editing of my data and statistical results. Mr Lorenzo Himunchul formed a very important link in enabling me to produce successful and accurate results.

The independent-samples T-test was used to compare means and check for statistical significance. Means were also calculated by using descriptive statistics and calculating frequency statistics.

The SPSS 13.0 program was chosen for data editing and analysis as it is a very useful, operator friendly program for producing optimal results.

3.7 Shortcomings & Sources of Error

It is never easy to admit that there were any shortcomings or errors within your data. In this study for certain variables the number of subjects were to little to produce a statistical significant result. Thus by enlarging the sample size for certain variables, beter results would be obtained. The specific variables referred to, will be listed and explained in more detail in chapter 4 where the results will be discussed in detail.

Eight subjects were excluded from the final data because either the right or left deep infrapatellar bursa ultrasound measurements were not taken for that subject. No data was noted as no bursa was visualized for either the left or right knees for these eight subjects. This resulted in the computer program listing some results as incomplete. These measurements could most probably still have been used as part as the final data used for analysis, but had to be excluded due to the computer program's limitations. These eight subjects' results will still be noted in chapter 4, as their would be looked into the reason(s) for not being able to see one of the bursae. Be the reason for this physiologically or pathologically.

The fact that I were the only person performing the ultrasound examinations could result in the measurements being slightly different for different operators. Every ultrasound operator has there own technique and thus resulting in different degrees of compressibility of the ultrasound probe onto the knees. This could result in the bursae being slightly compressed for some operators and thus appearing slightly smaller than for others. Also the fact that some bursae measurements were taken early morning and some late evening could possibly result in producing different results, but much more indepth research should be done to obtain answers to these biased questions.

All ultrasound examinations were done with the subjects being rested for at least an hour before the ultrasound examination, thus no fierce exercise or training was done before the ultrasound examination was performed. This concludes the third chapter stating the research design and methodology used in my study. In the next chapter we will look at the results obtained from all this data gathered.

CHAPTER 4 RESULTS

This chapter will document my results of my fieldwork. Altogether 280 subjects were recruited. Only 8 were eliminated due to incomplete data, thus 272 subjects' data were processed. The youngest subject was 18 years old and the oldest subject 52 years old. The average age for the study equally 30.67 years.

The different sport types were rugby, soccer, running, cycling, cricket and various individual activities listed under 'other'. The subjects mainly had a coloured, black or white ethnicticiity, and were listed where appropriate under each ethnic group. 120 subjects were female and 152 were male.

The different results for the DIB size are discussed and shown below.

4.1 Mean ultrasound size of the Deep Infrapatellar Bursa(DIB)

The mean ultrasound measurements of the deep infrapatellar bursa for this study is as follow:

							Left
		Right	Right	Right knee:	Left	Left	knee:
		knee: AP	knee: CC	Width	knee: AP	knee: CC	Width
N	Valid	272	272	272	272	272	272
	Missing	0	0	0	0	0	0
Mean		1.343mm	5.416mm	6.242mm	1.311mm	5.488mm	6.588mm
Std. I Mean	Error of	.0266	.1236	.1606	.0282	.1154	.1662
Medi	an	1.300	5.100	5.800	1.200	5.350	6.100
Std. Deviation		.4395	2.0382	2.6491	.4647	1.9038	2.7413
Minimum		.5	1.8	2.0	.4	1.5	2.0
Maxi	mum	3.2	13.2	15.7	2.8	13.0	17.0

Table 4.1 - Mean DIB measurements for all subjects

The mean measurements for the right knee are $1.3 \times 5.4 \times 6.2$ mm. The mean measurements for the left knee are $1.3 \times 5.5 \times 6.6$ mm. These measurements are normal measurements for the respective knees and the average for all participants of my study. Including all subjects with all the different variables for this study. The mean ultrasound measurements for different denominations or variables will be discussed later in this chapter.

4.2 Mean DIB measurements for All Male and Female subjects

The difference in measurements for males and females are showed in the next tables:

Table 4.2 –	Mean knee vol	lumes for compar	ring males and females
-------------	---------------	------------------	------------------------

	Sex	N	Mean	Std. Deviation	Std. Error Mean
Right knee volume	male	152	64.3210	67.79190	5.49865
	female	120	43.4445	37.82347	3.45279
Left knee volume	male	152	65.0961	57.30023	4.64766
	female	120	46.0788	47.01618	4.29197

Table 4.3 – Independent Samples Test – Males vs Females

			t-test for Equality of Means							
		F	Sig.	t	df	Sig. (2- tailed)	Mean Difference	Std. Error Difference	95% Co Interva Diffe	l of the
						,			Lower	Upper
Right knee volume	Equal variances assumed	12.394	.001	3.022	270	.003*	20.87641	6.90872	7.27461	34.4782
	Equal variances not assumed			3.215	245.185	.001*	20.87641	6.49284	8.08756	33.6652
Left knee volume	Equal variances assumed	1.094	.297	2.938	270	.004*	19.01725	6.47386	6.27159	31.7629
	Equal variances not assumed			3.006	269.583	.003*	19.01725	6.32628	6.56206	31.4724

*p < 0.05

There is a significant difference between the male and female measurements for the deep infrapatellar bursa. The men have a significantly bigger bursa. These results are including all subjects who participated in my study.

For comparisons to be made between different sub-groups, the deep infrapatellar bursa volume was calculated for each knee by simply multiplying the three ultrasound measurements obtained of each individual knee (AP x CC x Width = bursal volume). As no previous studies on the exact size and volume of the deep infrapatellar bursa has been done, no correction factor could be found in the literature for more accurate volume calculations. The mean knee volumes displayed in table 4.2(above) and all other tables to follow, thus include this simple calculation. This enabled me to compare the bursa size for different variables, by using one calculated variable only.

		Right	Right	Right knee:	Left	Left	Left knee:
		knee: AP	knee: CC	Width	knee: AP	knee: CC	Width
N	Valid	152	152	152	152	152	152
	Missing	0	0	0	0	0	0
Mean		1.361mm	5.813mm	6.608mm	1.389mm	5.791mm	7.083mm
Std. E Mean	rror of	.0376	.1821	.2260	.0393	.1477	.2259
Media	IN	1.300	5.400	6.300	1.300	5.700	6.700
Std. D	eviation	.4637	2.2449	2.7863	.4847	1.8206	2.7849
Varia	nce	.215	5.040	7.763	.235	3.314	7.756
Minin	num	.5	1.8	2.0	.4	2.2	2.1
Maxir	num	3.2	13.2	15.7	2.8	13.0	17.0

Table 4.4 - Mean DIB measurements for males

The mean AP, CC and width measurements for men are as per table 4.4. The mean measurements for the right knee is AP - 1.4mm, CC - 5.8mm and Width - 6.6mm. The mean measurements for the left knee is AP - 1.4mm, CC - 5.8mm and Width - 7.1mm.

The mean DIB measurements for males thus are 1.4 x 5.8 x 6.9mm.

		Right	Right	Right knee:	Left	Left	Left knee:
		knee: AP	knee: CC	Width	knee: AP	knee: CC	Width
N	Valid	120	120	120	120	120	120
	Missing	0	0	0	0	0	0
Mean		1.320mm	4.914mm	5.778mm	1.213mm	5.104mm	5.962mm
Std. Erro Mean	or of	.0372	.1475	.2188	.0383	.1775	.2339
Median		1.250	4.800	5.400	1.200	4.900	5.500
Std. Dev	Std. Deviation		1.6157	2.3964	.4198	1.9448	2.5619
Minimum		.5	1.8	2.0	.4	1.5	2.0
Maximu	m	2.5	9.2	14.4	2.5	11.5	14.6

The mean AP, CC and width ultrasound measurements for women are as per table 4.5. The mean measurments fot the right female knee are AP - 1.3mm, CC - 4.9mm and Width - 5.8mm. The mean measurements for the left female knee are AP - 1.2mm, CC - 5.1mm and Width - 5.9mm.

The mean DIB measurements for females are 1.3 x 5.0 x 5.9mm.

The difference for the mean ultrasound measurements of the deep infrapatellar bursa (DIB), between male and female thus are –

Right Knee : AP - 0.041mm CC - 0.899mm Width - 0.83mm Left Knee : AP – 0.176mm CC – 0.687mm Width – 1.121mm

The males having the above specified, slightly bigger bursae than the female. These measurements include competitive, non-competitive and people participating in no sport. These are thus average measurements not incorporating any other characteristics or variables. Thus the average male has a slightly bigger DIB than the average female.

4.3 DIB measurement comparison between different population

groups.

In the following table the differences between the different population groups will be showed. The main population groups participating in the study, being Black, Coloured or White, and mostly Cape Townian, South Africans.

white vs coloured	Ν	Mean	Std. Deviation	Std. Error Mean
white	160	56.4262	62.42346	4.93501
Coloured	71	48.2865	47.15411	5.59616
white	160	55.3119	55.37542	4.37781
Coloured	71	51.8444	52.84563	6.27162
	white Coloured white	white160Coloured71white160	white 160 56.4262 Coloured 71 48.2865 white 160 55.3119	white16056.426262.42346Coloured7148.286547.15411white16055.311955.37542

Table 4.6 - Comparison between White and Coloured population groups

-		Levene'	s Test		· · · ·							
		for Equa	lity of									
		Varia	nces		t-test for Equality of Means							
						Sig.			95% Confidence			
						(2-	Mean	Std. Error	Interva	l of the		
		F	Sig.	t	df	tailed)	Difference	Difference	Difference			
									Lower	Upper		
Right knee	Equal											
volume	variances	1.349	.247	.981	229	.328*	8.13975	8.29681	-8.20811	24.48760		
	assumed											
	Equal											
	variances			1 001	174 (05	0774	0 12075	5 4(122)	6 50 610	00.00000		
	not			1.091	174.695	.277*	8.13975	7.46132	-6.58619	22.86569		
	assumed											
Left knee	Equal											
volume	variances	.005	.942	.445	229	.657*	3.46749	7.78799	-11.8777	18.81277		
	assumed											
	Equal	<u> </u>			······		·····					
	variances			150	1 40 100			T < 10.10				
	not			.453	140.182	.651*	3.46749	7.64843	-11.6536	18.58868		
	assumed											
	·	<u> </u>	1			·	*p	>0.05		L		

Table 4.7 – Independent Samples Test – White vs Coloured

The sample size of the White population group studied, was much bigger than the sample size of the Coloured population group. There were no statistical significant difference between the two gouprs, but it seems that there might be a tendency for the white population group to have a slightly bigger DIB volume than the coloured population group. (Table 4.6 above) More testing with a bigger sample volume is needed for further evaluation.

		Right	Right knee:	Right knee:	Left knee:	Left knee:	Left knee:
		knee: AP	СС	Width	АР	СС	Width
N	Valid	161	161	161	161	161	161
	Missing	0	0	0	0	0	0
Mea	1 ID	1.340mm	5.447mm	6.186mm	1.307mm	5.306mm	6.592mm
Std. Mea	Error of n	.0352	.1634	.2146	.0356	.1433	.2143
Med	lian	1.200	5.100	5.700	1.200	5.000	6.200
Std.	Deviation	.4466	2.0734	2.7224	.4521	1.8186	2.7195
Minimum		.5	1.8	2.4	.4	1.7	2.0
Max	imum	2.5	13.2	15.7	2.8	11.5	15.8

Table 4.8 – Mean DIB ultrasound measurements for White subjects

The mean DIB ultrasound measurements for the right knee for the white population group are AP - 1.3mm, CC - 5.4mm and width - 6.2mm. The measurements for the left knee are AP - 1.3mm, CC - 5.3mm and width - 6.6mm.

The mean DIB measurements for White population group are 1.3 x 5.4 x 6.4mm.

		Right	Right	Right knee:	Left knee:	Left knee:	Left knee:
		knee: AP	knee: CC	Width	AP	СС	Width
N	Valid	71	71	71	71	71	71
	Missing	0	0	0	0	0	0
Mea		1.369mm	4.835mm	6.186mm	1.273mm	5.507mm	6.094mm
Std. Mea	Error of n	.0544	.2168	.3050	.0544	.2397	.3197
Med	lian	1.300	4.400	5.500	1.200	5.100	5.600
Std.	Deviation	.4581	1.8266	2.5697	.4582	2.0194	2.6938
Minimum		.5	2.0	2.0	.6	2.2	2.1
Max	imum	3.2	13.0	14.4	2.5	13.0	16.3

Table 4.9 - Mean DIB ultrasound measurements for Coloured subjects

The mean DIB ultrasound measurements for the right knee of the Coloured population are: AP - 1.4mm, CC - 4.8mm and width 6.2mm. The measurements for the left knee are: AP - 1.3mm, CC - 5.5mm and width - 6.1mm.

The mean DIB measurements for the Coloured population group are 1.4 x 5.2 x 6.2mm.

				Std.	Std. Error
	Coloured vs Black	N	Mean	Deviation	Mean
Right knee volume	coloured	71	48.2865	47.15411	5.59616
	black	36	65.2065	54.76498	9.12750
Left knee volume	coloured	71	51.8444	52.84563	6.27162
	black	36	71.8738	47.84796	7.97466

 Table 4.10 – Comparison between Coloured and Black population groups

Table 4.11 – Independent Samples Test – Coloured vs Black

		T Eq	evene's est for uality of uriances			t-	test for Equalit	y of Means		
		F	Sig.	t	df	Sig. (2- tailed)	Mean Difference	Std. Error Difference	Interv	onfidence al of the erence
									Lower	Upper
Right knee volume	Equal variances assumed	.551	.460	-1.660	105	.100*	-16.92001	10.19340	-37.1316	3.29161
	Equal variances not assumed			-1.580	61.887	.119*	-16.92001	10.70646	-38.3226	4.48268
Left knee volume	Equal variances assumed	.039	.845	-1.911	105	.059*	-20.02943	10.48260	-40.8144	.75564
	Equal variances not assumed		1	-1.974	76.963	.052*	-20.02943	10.14537	-40.2315	.17273 *p>0.05

There seem to be a definite tendency for the Black population group to have a bigger

DIB volume, than the Coloured population group. Again if the sample size of both

these population groups were bigger, the significance could probably be shown.

		Right	Right	Right knee:	Left knee:	Left knee:	Left knee:
		knee: AP	knee: CC	Width	АР	CC	Width
N	Valid	36	36	36	36	36	36
	Missing	0	0	0	0	0	0
Mea	an	1.300mm	6.461mm	6.636mm	1.403mm	6.311mm	7.308mm
Std. Mea	Error of	.0659	.3332	.4150	.0890	.3247	.3950
Med	lian	1.200	6.500	6.500	1.400	6.250	7.450
Std.	Deviation	.3957	1.9990	2.4902	.5337	1.9480	2.3697
Min	imum	.6	2.0	2.0	.5	1.5	2.3
Max	timum	2.2	9.7	12.9	2.7	10.9	12.0

Table 4.12 – Mean DIB ultrasound measurements for the Black population group

The average mean DIB ultrasound measurements for the right knee of the Black population are: AP - 1.3mm, CC - 6.5mm and Width - 6.6mm. The average mean DIB ultrasound measurements for the left knee of the black population are : AP - 1.4mm, CC 6.3mm and Width - 7.3mm.

The mean DIB measurements for the Black population group are 1.4 x 6.4 x 7.0mm.

4.91452
98 9.12750
73 4.35161
96 7.97466
57

Table 4.13 - Comparison between the Black and White population groups

Table 4.14 – Independent Samples Test – Black vs White	Table 4.14 -	Independent San	nples Test – Black v	s White
--	--------------	-----------------	----------------------	---------

		Levene's Equal						<u>. </u>		
		Varia				t-te	est for Equality	of Means		
						Sig.			95% Cont	fidence
						(2-	Mean	Std. Error	Interval	of the
		F	Sig.	, t	df	tailed)	Difference	Difference	Differe	ence
									Lower	Upper
Right	Equal									
knee	variances	.045	.832	808	195	.420*	-9.09759	11.25798	-31.3006	13.105
volume	assumed									
	Equal									
	variances not			878	57.184	.384*	-9.09759	10.36647	-29.8546	11.659
	assumed									
Left knee	Equal									
volume	variances	.026	.873	-1.674	195	.096*	-16.65863	9.94949	-36.2810	2.9637
	assumed									
	Equal									
	variances not			-1.834	57.825	.072*	-16.65863	9.08470	-34.8447	1.5275
	assumed									

*p>0.05

There seems to also be a tendency for the Black population group to have a slightly bigger DIB volume than the White population group. Unfortunately the Black population group sample size are most probably just to small to show the statistical significance.

male white&black	N	Mean	Std. Deviation	Std. Error Mean
white	79	66.9196	77.58078	8.72852
black	24	76.2400	58.07065	11.85362
white	79	64.7512	59.39892	6.68290
black	24	74.2314	47.98229	9.79434
	white black white	white79black24white79	white 79 66.9196 black 24 76.2400 white 79 64.7512	white 79 66.9196 77.58078 black 24 76.2400 58.07065 white 79 64.7512 59.39892

		Levene	's Test for							·····
		Equ	ality of							
		Var	iances	t-test for Equality of Means						
						Sig.			95% Con	fidence
						(2-	Mean	Std. Error	Interval	of the
		F	Sig.	t	df	tailed)	Difference	Difference	Differe	ence
									Lower	Upper
Right	Equal									
knee	variances	.666	.416	543	101	.588*	-9.32034	17.15309	-43.34746	24.70678
volume	assumed									
	Equal									
	variances			(22)	50.240	530±	0 2002 4	14 700 50	20.00254	20.04106
	not			633	50.340	.530*	-9.32034	14.72058	-38.88254	20.24186
	assumed									
Left knee	Equal									
volume	variances	.043	.836	714	101	.477*	-9.48016	13.28551	-35.83504	16.87472
	assumed									
··	Equal									
	variances			000	46 122	1004	0.4001.6	11.05500	22.241.01	
	not			800	46.433	.428*	-9.48016	11.85708	-33.34121	14.38089
	assumed									
	l				,	L		*p>0.05		

Table 4.16 – Independent Samples Test – White vs Black Males

It seems that the Black males have a bigger DIB volume than the White males. However, due to the small sample size of the Black population the significance of this

could not be shown.

				Std.	Std. Error
	male white&coloured	N	Mean	Deviation	Mean
Right knee volume	e white	79	66.9196	77.58078	8.72852
	Coloured	47	55.0952	54.45471	7.94304
Left knee volume	white	79	64.7512	59.39892	6.68290
	Coloured	47	59.9661	58.65417	8.55559

Table 4.18 – Independent Samples Test – White vs Coloured Males

		Levene								
		for Equa								
		Varia	nces			t-	test for Equalit	y of Means		
						Sig.			95% Con	fidence
						(2-	Mean	Std. Error	Interval	of the
		F	Sig.	t	df	tailed)	Difference	Difference	Differ	ence
									Lower	Upper
Right	Equal									
knee	variances	1.466	.228	.918	124	.360*	11.82439	12.87660	-13.66202	37.31079
volume	assumed									
	Equal								······································	
	variances not			1.002	120.525	.318*	11.82439	11.80165	-11.54102	35.18979
	assumed									
Left knee	Equal									
volume	variances	.062	.804	.439	124	.661*	4.78513	10.89142	-16.77205	26.34231
	assumed									
	Equal									
	variances not			.441	97.788	.660*	4.78513	10.85630	-16.75943	26.32969
	assumed									
	L	L	L			L	L	<u> </u>	L	L

*p>0.05

It seems that there could be a small tendency for the White males to have a bigger DIB volume than the Coloured male population, but once again a bigger sample size is needed to determine the significance.

red&black N		Mean	Std. Deviation	Std. Error Mean	
coloured	47	55.0952	54.45471	7.94304	
black	24	76.2400	58.07065	11.85362	
coloured	47	59.9661	58.65417	8.55559	
black	24	74.2314	47.98229	9.79434	
	coloured black coloured	coloured47black24coloured47	coloured 47 55.0952 black 24 76.2400 coloured 47 59.9661	coloured 47 55.0952 54.45471 black 24 76.2400 58.07065 coloured 47 59.9661 58.65417	

Table 4.19 - Comparison between Coloured and Black males

		Levene's	Test for						<u></u>			
		Equality of Variances										
				t-test for Equality of Means								
						Sig.			95% Con	fidence		
						(2-	Mean	Std. Error	Interval	of the		
		F	Sig.	t	df	tailed)	Difference	Difference	Differe	ence		
~									Lower	Upper		
Right	Equal											
knee	variances	.012	.912	-1.513	69	.135*	-21.14472	13.97081	-49.01573	6.72628		
volume	assumed											
	Equal											
	variances not			-1.482	43.870	.146*	-21.14472	14.26885	-49.90412	7.61467		
	assumed											
Left knee	Equal											
volume	variances	.175	.677	-1.028	69	.308*	-14.26529	13.88048	-41.95609	13.42551		
	assumed				1	1						
	Equal											
	variances not			-1.097	55.372	.277*	-14.26529	13.00489	-40.32375	11.79317		
	assumed				:							
<u></u> -		· · · · · · · · · · · · · · · · · · ·					·	*p>0	05			

Table 4.20 - Independent Samples Test - Coloured vs Black Males

*p>0.05

In the above tables it appears that the tendency is for the Black male population to have

a bigger DIB volume than the Coloured male population.

female v	vhite&black	N	Mean	Std. Deviation	Std. Error Mean	
Right knee volume		82	45.6937	40.76050	4.50124	
	black	12	43.1395	41.17192	11.88531	
Left knee volume		82	46.0280	49.50337	5.46673	
	black	12	67.1587	49.33822	14.24272	
	volume	olume white	volume white 82 black 12 olume white 82	volume white 82 45.6937 black 12 43.1395 olume white 82 46.0280	volume white 82 45.6937 40.76050 black 12 43.1395 41.17192 olume white 82 46.0280 49.50337	

Table 4.21 – Comparison between White and Black females

Table 4.22 – Independent Samples Test – White vs Black Females

		Levene's	Test for	, 1999 - A. B.				·····		*.* **		
		Equal	ity of									
		Variances		t-test for Equality of Means								
	<u></u>					Sig.			95% Con	fidence		
						(2-	Mean	Std. Error	Interval	of the		
		F	Sig.	t	df	tailed)	Difference	Difference	Differe	ence		
									Lower	Upper		
Right	Equal											
knee	variances	.007	.934	.202	92	.840*	2.55416	12.61340	-22.49713	27.60545		
volume	assumed											
	Equal											
	variances			.201	14.342	.844*	2.55416	12.70912	-24.64339	29.75170		
	not			.201	14.542	.844*	2.33410	12.70912	-24.04339	29.75170		
	assumed											
Left knee	Equal											
volume	variances	.786	.378	-1.382	92	.170*	-21.13064	15.29425	-51.50634	9.24505		
	assumed											
	Equal											
	variances			1 205	14 427	107	01 10055	15 0 5 5 5	-53.75839	11.071		
	not			-1.385	14.437	.187*	-21.13064	15.25582		11.49711		
	assumed								*p>0.05			

No significant difference between the Black and White females' DIB volumes. This may be due to the small sample size of the Black female population.

Table 4.23 - Comparison between White and Coloured Females

female white&colouredRight knee volumewhite		Ν	Mean Std. Deviation		Std. Error Mean	
		82	45.6937	40.76050	4.50124	
	Coloured	24	34.9526	23.58639	4.81455	
Left knee volume		82	46.0280	49.50337	5.46673	
	Coloured	24	35.9394	34.92878	7.12981	
	volume	volume white Coloured olume white	volume white 82 Coloured 24 olume white 82	volume white 82 45.6937 Coloured 24 34.9526 olume white 82 46.0280	volume white 82 45.6937 40.76050 Coloured 24 34.9526 23.58639 olume white 82 46.0280 49.50337	

		Levene's	s Test					<u></u>		
		for Equa	lity of							
		Variar	nces			t-	test for Equalit	y of Means		
						Sig.			95% Co	nfidence
						(2-	Mean	Std. Error	Interva	l of the
		F	Sig.	t	đf	tailed)	Difference	Difference	Diffe	rence
									Lower	Upper
Right	Equal									
knee	variances	2.598	.110	1.229	104	.222*	10.74103	8.73632	-6.58342	28.06548
volume	assumed									
	Equal								i	
	variances not			1.630	66.380	.108*	10.74103	6.59099	-2.41689	23.89896
	assumed									
Left knee	Equal						-			
volume	variances	2.089	.151	.931	104	.354*	10.08865	10.83211	-11.3918	31.56913
	assumed									
	Equal									
	variances not			1.123	52.810	.267*	10.08865	8.98439	-7.93328	28.11057
	assumed									
	<u> </u>	<u> </u>		·	l	L	L	*p>0	0.05	L

Table 4.24 – Independent Samples Test – White vs Coloured Females

In table 4.24 (above) there seem to be a difference in DIB volume for between the White and Coloured females' population. The White females tending to have a slightly bigger volume for both right and left knees. However, no statistical significance could be shown.

		- <u></u> , <u></u>			Std.	
	female coloured&black			Mean	Deviation	Std. Error Mean
Right knee volume		coloured	24	34.9526	23.58639	4.81455
	·····	black	12	43.1395	41.17192	11.88531
Left kne	e volume	coloured	24	35.9394	34.92878	7.12981
		black	12	67.1587	49.33822	14.24272

Table 4.25 – Comparison between Coloured and Black Females

Table 4.26 – Independent Samples Test – Coloured vs Black Females

		Levene's Equal								
		Varia	-			t-	test for Equalit	y of Means		
						Sig.			95% Co	nfidence
						(2-	Mean	Std. Error	Interva	l of the
		F	Sig.	t	df	tailed)	Difference	Difference	Diffe	rence
									Lower	Upper
Right	Equal									
knee	variances	1.588	.216	761	34	.452*	-8.18688	10.75149	-30.0365	13.66278
volume	assumed									
	Equal variances not			638	14.717	.533*	-8.18688	12.82343	-35.5652	19.19152
	assumed									
Left knee volume	Equal variances	5.984	.020	-2.199	34	.035*	-31.21929	14.19886	-60.0748	-2.36373
	assumed									
	Equal									
	variances not			-1.960	16.702	.067*	-31.21929	15.92762	-64.8693	2.43075
	assumed									
								*n>0	0.0	

*p>0.05

The samples size of the Coloured and Black females only amount to 24 Coloured and 12 Black ladies. Even so, there seem to be a significant difference for the left knee volume, with the Black females having a bigger DIB volume than the Coloured females. The right knee volume of the Black females appear much smaller than the left knee volume for some unknown reason, but there is still a tendency for the right knee volume to be bigger for Black females than for Coloured females. These big differences between right and left knee volumes can be as a result of the small sample size for these two female populations.

4.4 DIB measurement comparisons between different levels of sport participation.

The first comparisons are involving people involved in some sort of sport or recreational activity, be it competitive or non-competitive. The second set of comparisons will be between subjects practising some sort of sport (no matter the level of competitiveness) and subjects not involved in any type of sport or recreational activity – the no-sport subjects.

Table 4.27 - Comparison between subjects practising competitive vs non-

competitive sport

	Competitive			Std.	Std. Error
	sport	N	Mean	Deviation	Mean
Right knee volume	no	69	45.5375	43.47318	5.23356
, <u>, , , , , , , , , , , , , , , , , , </u>	yes	171	62.8672	64.22921	4.91173
Left knee volume	no	69	45.4351	36.51375	4.39574
	yes	171	64.6498	61.06568	4.66981

Table 4.28 – Independent Samples Test – Competitive vs Non-competitive Sport

		Levene'	s Test		<u>.</u>							
		for Equa	lity of									
		Variar	nces		t-test for Equality of Means							
					_	Sig.			95% Con	fidence		
						(2-	Mean	Std. Error	Interval	of the		
		F	Sig.	t	df	tailed)	Difference	Difference	Differe	ence		
									Lower	Upper		
Right knee	Equal											
volume	variances	3.756	.054	-2.058	238	.041*	-17.32969	8.42150	-33.91988	73949		
	assumed											
	Equal											
3	variances not			-2.414	183.575	.017*	-17.32969	7.17741	-31.49051	-3.16887		
	assumed											
Left knee	Equal	-										
volume	variances	8.882	.003	-2.442	238	.015*	-19.21469	7.86941	-34.71728	-3.71211		
	assumed											
	Equal											
	variances not			-2.996	204.109	.003*	-19.21469	6.41324	-31.85939	-6.57000		
	assumed							*D-0.0				

*P<0.05

These calculations show that there is a significant difference between the competitive sport and non-competitive sport groups. The competitive subjects had clearly bigger bursae than the non-competitive subjects.

		Right	Right	Right knee:	Left	Left	Left knee:
		knee: AP	knee: CC	Width	knee: AP	knee: CC	Width
N	Valid	171	171	171	171	171	171
	Missing	0	0	0	0	0	0
Mean		1.391mm	5.624mm	6.658mm	1.351mm	5.670mm	6.996mm
Std. Err	or of Mean	.0328	.1597	.2093	.0367	.1507	.2100
Median		1.300	5.400	6.200	1.200	5.400	6.600
Std. Dev	viation	.4284	2.0885	2.7375	.4804	1.9709	2.7461
Minimum		.5	1.8	2.0	.4	1.7	2.1
Maximum		2.5	13.2	15.7	2.8	13.0	16.3

Table 4.29 – Mean DIB measurements for competitive sport subjects

The mean AP, CC and width ultrasound measurements for competitive sport subjects are as per table 4.29 (above). The mean measurements for the right knee for competitive subjects are AP - 1.4mm, CC - 5.6mm and Width - 6.7mm. The mean measurements for the left knee are AP - 1.4mm, CC - 5.7mm and Width - 7.0mm.

The mean DIB measurements for Competitive sport people are 1.4 x 5.7 x 6.9mm.

		Right	Right	Right knee:	Left	Left	Left knee:
		knee: AP	knee: CC	Width	knee: AP	knee: CC	Width
N	Valid	69	69	69	69	69	69
	Missing	0	0	0	0	0	0
Mean		1.306mm	5.165mm	5.830mm	1.255mm	5.259mm	5.974mm
Std. Error of Mean		.0543	.2295	.2967	.0539	.2136	.3138
Median		1.200	4.900	5.300	1.200	5.000	5.500
Std. Deviation		.4508	1.9064	2.4644	.4480	1.7744	2.6069
Minimum		.7	2.0	2.3	.4	2.4	2.0
Maximum		3.2	11.3	13.6	2.5	10.9	17.0

Table 4.30 - Mean DIB measurements for non-competitive subjects

The mean ultrasound measurements for the DIB for non-competitive sport or no-sport subjects are as per table 4.30 (above). The mean measurements for the right knee are AP - 1.3mm, CC - 5.2mm and Width - 5.8mm. The mean measurements for the left knee are AP - 1.3mm, CC - 5.3mm and Width - 6.0mm.

The mean DIB measurements for Non-competitive sport people are 1.3 x 5.3 x 5.9mm.

These measurements clearly show that the competitive sport subjects have bigger DIB ultrasound measurements than the subjects practising non-competitive- or no sport. The competitive sport group's measurements are on average bigger as follow:

Right Knee : AP – 0.085mm

CC - 0.459 mm

Width - 0.828mm

Left Knee : AP - 0.096mm

CC – 0.411mm

Width – 1.022mm

Table 4.31 - Comparison between active and non-active subjects

Active vs Non-active in sport			Std. Deviation	Std. Error Mean	
non-active	32	34.3046	32.69158	5.77911	
active	239	58.0885	59.48727	3.84791	
non-active	32	38.5604	30.26664	5.35044	
active	239	59.2569	55.82667	3.61113	
	non-active active non-active	non-active32active239non-active32	non-active 32 34.3046 active 239 58.0885 non-active 32 38.5604	non-active 32 34.3046 32.69158 active 239 58.0885 59.48727 non-active 32 38.5604 30.26664	

In table 4.31 (above) there is a definite difference between the active and non-active subgroups' DIB volumes. The non-active subjects being people not practising any type of sport or physical activity. The active subjects being the people who practice or participate in some sort of sport type or physical activity – be it competitively or for pleasure/recreation.

In table 4.32 (below) the statistical difference are shown, with p<0.05. Therefor the active subjects had a definite bigger DIB volume than the non-active subjects. This is most probably due to the result of very little friction between tendon and tibia of the non-active subjects. Vice versa the active subjects' knees were exposed to more friction between the tendon and bone and thus resulting in a bigger DIB to minimize the direct friction between the distal patellar tendon and the proximal tibia.

<u></u>				
	t-test for Equal	lity of Means		
Sig.			95% Con	fidence
(2-	Mean	Std. Error	Interval	of the
tailed)	Difference	Difference	Differ	ence
			Lower	Upper
59 .028 *	-23.78384	10.73805	-44.92515	-2.64253
.001*	-23.78384	6.94295	-37.65835	-9.90932
.041*	-20.69657	10.07217	-40.52688	86626
.002*	-20.69657	6.45503	-33.59218	-7.80096
-				t= <0.05

Table 4.32 – Independent Samples Test – Active vs Non-active

*p<0.05

Table 4.33 – Mean DIB measurements for Active subjects

		Right knee:	Right knee:	Right knee:	Left knee:	Left knee:	Left knee:
		AP	СС	Width	AP	СС	Width
N	Valid	240	240	240	240	240	240
	Missing	0	0	0	0	0	0
Mean		1.366mm	5.492mm	6.420mm	1.323mm	5.552mm	6.702mm
Std. I	Error of Mean	.0281	.1320	.1732	.0305	.1241	.1769
Medi	an	1.300	5.300	5.900	1.200	5.400	6.200
Std. Deviation		.4357	2.0445	2.6831	.4724	1.9219	2.7409
Minimum		.5	1.8	2.0	.4	1.7	2.0
Maximum		3.2	13.2	15.7	2.8	13.0	17.0

(Competitive&Non-Competitve)

The mean DIB measurements for active subjects are as follow: Right Knee -

AP-1.4mm, CC-5.5mm and Width-6.4mm. Left Knee-AP-1.3mm, CC-

5.6mm and Width - 6.7mm.

The DIB measurements for active people are 1.4 x 5.6 x 6.6mm.

		Right knee:	Right knee:	Right knee:	Left knee:	Left knee:	Left knee:
		АР	СС	Width	AP	СС	Width
N	Valid	32	32	32	32	32	32
	Missing	0	0	0	0	0	0
Mean		1.169mm	4.847mm	4.906mm	1.219mm	5.009mm	5.734mm
Std.	Error of Mean	.0769	.3405	.3427	.0702	.3032	.4650
Mea	lian	1.200	4.500	4.900	1.200	5.100	5.350
Std.	Deviation	.4351	1.9262	1.9386	.3971	1.7149	2.6305
Min	imum	.5	2.0	2.0	.6	1.5	2.0
Max	cimum	2.5	10.3	8.7	2.8	8.2	15.0

Table 4.34 – Mean DIB measurements for Non-active subjects

When looking at table 4.34(above) it is clear to see the smaller values for the DIB for

non-active subjects. The mean DIB measurements for non-active people are as follow:

Right Knee – AP – 1.2mm, CC – 4.8mm and Width – 4.9mm;

Left Knee – AP – 1.2mm, CC – 5.0mm and Width – 5.7mm.

The mean DIB measurements for non-active people are 1.2 x 4.9 x 5.3mm.

4.5 DIB Measurement comparisons between different types of sport.

The different sport types were classified under the following headings: 1-rugby, 2soccer, 3-running, 4-cycling, 5-cricket and 6-other. The other category include a whole list of different sport types listed below.

ACTIVITY	N
Swimming	8
Squash	3
Clay pigeon shooting	1
Aerobics-gymnastics	1
Netball	2
Hockey	6
Volleyball	3
Adventure racing	3
Dancing	1
Waterpolo	2
Fencing	1
Capoeira	1
Tennis	2
Canoeing	1
Karate	1
Softball	4

 Table 4.35 – "Other"-category for Competitive Sport Activities.

On average the subjects in table 4.35 (above) train or practice 6.3hours a week.

ACTIVITY	N
Gym	38
Volleyball	2
Netball	2
Tae kwando	1
Tennis	6
Golf	11
Hiking	2
Squash	11
Belly dancing	1
Swimming	17
Rock climbing	2
Palates	1
Horseriding	2
Walking	5
Surfing	3
Lifesaving	1
Frisbee	1
Waveski	1
Motorcross	1
Aikido	1
Short circuit motorcycle racing	1
Yoga	2
Cricket	1
Basketball	2
Dancing	1
Weight training	2

 Table 4.36 – "Other"-category for Non-Competitive Sport Activities.

On average the subjects in table 4.36 (above) train or practice 3.15hours a week.

Gym was not taken as a sport type by itself, even though 38 subjects were listed under this heading, as gymming consists of too many different aspects to determine if the type of action or sport type would make a difference on the DIB measurements. Cricket was listed under the "other" category for the non-competitive sport activities, as there was only one subject playing recreational cricket.

Following next will be the comparison between the different sport types to determine any effect it will have on the DIB measurement.

4.5.1 Rugby vs Soccer

Table 4.37 – Comparison	between Rugby and Soccer	· players' DIB volumes
-------------------------	--------------------------	------------------------

				Std.	Std. Error
	Rugby vs Soccer	N	Mean	Deviation	Mean
Right knee volume	rugby	37	105.6822	100.03012	16.44485
	soccer	31	46.7220	39.25470	7.05035
Left knee volume	rugby	37	98.4500	78.52956	12.91018
	soccer	31	52.7878	36.57905	6.56979

		Levene'	}							
		Varia		t-test for Equality of Means						
		<u> </u>				Sig.			95% Co	nfidence
						(2-	Mean	Std. Error	Interva	l of the
		F	Sig.	t.	df	tailed)	Difference	Difference	Diffe	rence
									Lower	Upper
Right knee volume	Equal variances assumed	8.486	.005	3.086	66	.003*	58.96016	19.10740	20.81100	97.10931
	Equal variances not assumed			3.295	48.485	.002*	58.96016	17.89247	22.99422	94.92610
Left knee volume	Equal variances assumed	10.285	.002	2.976	66	.004*	45.66219	15.34528	15.02435	76.30003
	Equal variances not assumed			3.152	52.810	.003*	45.66219	14.48568	16.60515	74.71923

Table 4.38 – Independent Samples Test – Rugby vs Soccer

*p<0.05

In table 4.35 and table 4.36 (above) the comparison between rugby and soccer players' DIB's are shown. There is a distinct difference between the two subgroups, with the rugby players showing a statistically significant larger bursa volume than the soccer players.

		Right knee:	Right knee:	Right knee:	Left knee:	Left knee:	Left knee:
		АР	сс	Width	АР	сс	Width
N Valid		40	40	40	40	40	40
<u></u>	Missing	0	0	0	0	0	0
Mean		1.475mm	6.883mm	8.113mm	1.468mm	6.718mm	7.745mm
Std. E	rror of Mean	.0619	.3621	.5523	.0745	.3678	.4803
Media	n 1.450		6.700	7.200	1.400	6.750	7.650
Std. Deviation		.3914	2.2902	3.4928	.4714	2.3259	3.0375
Minimum		.7	2.7	2.0	.6	2.2	2.9
Maximum		2.3	13.2	15.7	2.8	13.0	14.6

Table 4.39 – Mean DIB measurements for Rugby players

The mean DIB measurements for rugby playing subjects are as follow:

Right Knee – AP – 1.5mm, CC – 6.9mm and Width – 8.1mm.

Left Knee – Ap – 1.5mm, CC – 6.7mm and Width – 7.8mm.

The mean DIB measurements for rugby players are 1.5 x 6.8 x 8.0mm.

		Right knee:	Right knee:	Right knee:	Left knee:	Left knee:	Left knee:
		AP	СС	Width	АР	CC	Width
N	Valid	36	36	36	36	36	36
	Missing	0	0	0	0	0	0
Mean		1.344mm	5.617mm	6.375mm	1.353mm	5.489mm	6.539mm
Std. E	rror of Mean	.0792	.3038	.3459	.0730	.2560	.3786
Media	an	1.200	5.400	6.200	1.200	5.450	6.200
Std. Deviation		.4754	1.8229	2.0755	.4378	1.5362	2.2717
Minimum		.7	3.2	3.7	.7	2.9	2.1
Maximum		3.2	9.6	11.7	2.7	9.4	10.9

Table 4.40 - Mean DIB measurements for Soccer players

The mean DIB measurements for soccer playing subjects are as follow:

Right Knee – AP – 1.3mm, CC – 5.6mm and Width – 6.4mm.

Left Knee – AP – 1.4mm, CC – 5.5mm and Width – 6.5mm.

The mean DIB measurements for soccer players are 1.4 x 5.6 x 6.5mm.

On average the rugby playing subjects train 9.95 hours a week. The soccer playing subjects train on average 4 hours a week. The big difference in training time for rugby and soccer playing subjects could have an effect on the outcome of DIB's size for the two subgroups. The training time reflects the time spent exercising and thus the indirect time of impact on the knee – patellar tendon – deep infrapatellar bursa.

Of the 36 soccer playing subjects, only 4 plays non-competitively. The remaining 32 soccer players are professional sportspeople. Of the 40 rugby playing subjects, only 2 plays non-competitive rugby for recreation. There are thus 38 professional rugby players amongst the subjects. Its seems as if professional rugby players train slightly harder on the field than professional soccer players. Time spent on the field can thus have a direct relation to the size of the deep infrapatellar bursa. Quite interesting!

Rugby is also considered as a more intense, high impact sport and the biomechanics of the subjects' knees are mostly different and can thus either contribute to a bigger DIB or not, depending on the sport type. This fact could also be explained by taking into account that rugby players do more strength training, while the soccer players concentrate more on fitness and suppleness. This however is quite a generilisation of professional sportspeoples' training, as both these sport types obviously concentrate on strength and fitness, but could it be that the one concentrate just slightly more on the one aspect than the other.

Another important factor to consider which could also propably influence the DIB size, is the difference in sheer size of an average rugby player compared to the average other speciality sport type in this study.

	Average	Average	Average BMI	Average
	Height	Weight		Age
Rugby players	1.76m	83.33kg	26.7	26.5years
Runners	1.73m	72.14kg	23.8	34.1 years
Cricketers	1.82m	80.17kg	23.9	22.8years
Cyclists	1.77m	77.08kg	24.6	33.8years
Soccer players	1.70m	66.69kg	23.1	22.8years

Table 4.41 - The average height, weight and BMI for this study are shown:

It appears that the rugby players are slightly heavier than the other sports people. The runners and soccer players are slightly lighter again. It has to be taken into account that the study included men and women in all the different sport types, which could influence the weight especially. The average age for different sport types differed, with the soccer players and cricketers being the youngest. These differences in height, weight and age do not seem to be that significantly different and further studies with bigger sample volumes are needed to compare these characteristics more accurately.

4.5.2 Rugby vs Running

Table 4.42 – Comparison between Rugby players and Runners

Rug	by vs Running	N	Mean	Std. Deviation	Std. Error Mean
ume	rugby	37	105.6822	100.03012	16.44485
	running	82	50.8668	41.39052	4.57082
me	rugby	37	98.4500	78.52956	12.91018
	running	82	59.1202	59.50211	6.57091
	ume	running me rugby	ume rugby 37 running 82 me rugby 37	ume rugby 37 105.6822 running 82 50.8668 me rugby 37 98.4500	ume rugby 37 105.6822 100.03012 running 82 50.8668 41.39052 me rugby 37 98.4500 78.52956

Table 4.43 – Independent Samples Test – Rugby vs Running

volume assume Equal varianc assume Left knee Equal volume varianc		.45 – Inuepo	Levene's				<u></u>				
knee varianc volume assume Equal varianc assume Left knee Equal volume varianc assume			for Equa	lity of							
knee varianc volume assume Equal varianc assume Left knee Equal volume varianc assume			Varian	ices			t-	test for Equalit	y of Means		
knee varianc volume assume Equal varianc assume Left knee Equal volume varianc assume		<u></u>					Sig.			95% Co	nfidence
knee varianc volume assume Equal varianc assume Left knee Equal volume varianc assume							(2-	Mean	Std. Error	Interva	l of the
knee varianc volume assume Equal varianc assume Left knee Equal volume varianc assume			F	Sig.	t	df	tailed)	Difference	Difference	Diffe	rence
knee varianc volume assume Equal varianc assume Left knee Equal volume varianc assume										Lower	Upper
varianc assume Left knee Equal volume varianc assume	knee	Equal variances assumed	16.487	.000	4.238	117	.000*	54.81537	12.93350	29.20125	80.42949
volume varianc assume		Equal variances not assumed			3.212	41.667	.003*	54.81537	17.06826	20.36206	89.26868
Equal		Equal variances assumed	3.979	.048	3.011	117	.003*	39.32977	13.05995	13.46522	65.19431
		Equal variances not assumed			2.715	55.415	.009*	39.32977	14.48619	10.30369	68.35585

*p<0.05

There is a statistically significant difference between the rugby players' and runners'

DIB volumes. The rugby players' DIB's being bigger than the runners'.

		Right knee:	Right knee:	Right knee:	Left knee:	Left knee:	Left knee:
		AP	CC	Width	АР	CC	Width
N Valid		85	85	85	85	85	85
	Missing	0	0	0	0	0	0
Mean		1.366mm	5.304mm	6.126mm	1.321mm	5.334mm	6.795mm
Std.	Error of Mean	.0488	.1930	.2582	.0550	.1930	.3411
Med	lian	an 1.300		5.700	1.200	5.300	6.200
Std. Deviation		.4497	1.7793	2.3808	.5071	1.7796	3.1448
Minimum		.7	1.8	2.6	.4	1.7	2.8
Maximum		2.5	10.3	14.4	2.5	10.5	17.0

Table 4..44 – Mean DIB measurements for Running subjects

The mean DIB measurements for the running subjects are as follow:

Right Knee – AP – 1.4mm, CC – 5.3mm and Width – 6.1mm.

Left Knee – AP - 1.3mm, CC – 5.3mm and Width – 6.8mm.

The mean DIB measurements for runners are 1.4 x 5.3 x 6.5mm.

If compared to the rugby subjects' mean measurements (1.5 x 6.8 x 8.0mm) the

difference in measurements between the two subgroups can be seen.

The biomechanics of runners' knees are also different from the rugby playing subjects'

and can result in some of the difference noted. Runners have a more consistent

repetitive impact on the knee – patellar tendon – deep infrapatellar bursa. Rugby players are more manoevreable in the sense that they perform different actions causing different impacts of varying degrees/stresses on the knee. The more 'complex' actions performed by rugby players compared to runners, can thus also result in the difference in size of the DIB as indicated in above tables.

On average the running subjects run 46.4km per week in 4.5hours, at a speed of approximately 10.3km/h. Of the 85 runners, 59 run competitively and 26 run for fun. If we devide them into there two subgroups: Competitive and Non-competitive runners, the 59 competitive runners run on average 56.5km per week in 5.4hours, at an approximate speed of 10.5km/h. The 26 non-competitive runners run 23.3km per week in 2.6h, at an approximate speed of 9km/h. Although there are quite a distinct difference between the two running subgroups, on average the runners as one group still train less hours a week, compared to the average of 9.95hours a week of the rugby players.

4.5.3 Rugby vs Cycling

Rugby vs Cycling	N	Mean	Std. Deviation	Std. Error Mean
rugby	33	109.1395	104.09325	18.12031
cycling	38	52.3453	43.02265	6.97919
rugby	33	100.9009	79.65316	13.86584
cycling	38	61.4088	50.61137	8.21025
	cycling rugby	e rugby 33 cycling 38 rugby 33	rugby 33 109.1395 cycling 38 52.3453 rugby 33 100.9009	c rugby 33 109.1395 104.09325 cycling 38 52.3453 43.02265 rugby 33 100.9009 79.65316

Table 4.45 - Comparison between Rugby players and Cyclists

		Levene'	s Test			. <u> </u>				
		for Equa	lity of							
		Variar	nces	- - 		1	t-test for Equal	ity of Means		
					[Sig.			95% Con	fidence
					(2- Mean Std. Error Interval of th				of the	
		F	Sig.	t	df	tailed)	Difference	Difference	Differe	ence
									Lower	Upper
Right	Equal									
knee	variances	9.104	.004	3.077	69	.003*	56.79422	18.45840	19.97073	93.61771
volume	assumed									
	Equal									
	variances			2.925	41.410	.006*	56.79422	19.41790	17 50070	05.00766
	not			2.923	41.410	.000*	30.79422	19.41790	17.59078	95.99766
	assumed									
Left knee	Equal									
volume	variances	4.613	.035	2.526	69	.014*	39.49210	15.63223	8.30664	70.67755
	assumed									
	Equal									
	variances			0.451	50 7/2					
	not			2.451	52.763	.018*	39.49210	16.11427	7.16758	71.81661
	assumed									
	L	I	I			_		*p<0.05		L

Tabe 4.46 – Independent Samples Test – Rugby vs Cycling

Again there are a statistically significant difference between the DIB's of the rugby players and the cyclists. The rugby players again having a bigger bursa.

[Right knee:	Right knee:	Right knee:	Left knee:	Left knee:	Left knee:
		АР	СС	Width	AP	CC	Width
N	Valid	38	38	38	38	38	38
	Missing	0	0	0	0	0	0
Mea	in	1.345m	5.295mm	6.311mm	1.350mm	5.545mm	7.203mm
Std.	Error of Mean	.0657	.2895	.3854	.0821	.2519	.3945
Med	lian	1.300	5.250	6.150	1.200	5.400	7.000
Std.	Deviation	.4052	1.7848	2.3759	.5060	1.5526	2.4317
Min	imum	.7	2.3	2.9	.4	2.5	3.3
Max	imum	2.5	10.3	13.0	2.4	9.5	13.2

Table 4.47 – DIB measurements for Cyclists

The mean DIB volume for the cyclists are as follow:

Right knee: AP - 1.3mm, CC - 5.3mm and Width - 6.3mm.

Left Knee: AP – 1.4mm, CC – 5.5mm and Width – 7.2mm.

The mean DIB measurements of the cyclists are 1.4 x 5.4 x 6.8mm.

If compared to the rugby subjects' mean measurements (1.5 x 6.8 x 8.0mm) the

difference in measurements between the two subgroups can again be seen.

Comparing cyclists to rugby players are similar than comparing the runners to the rugby players. The biomechanics of the knees differ greatly as cyclists mostly relay on their quadriceps and hamstrings to perform the right amount of strenght needed for cycling. Also the cycling action are a repetitive action rather than a compilation of varied actions like rugby players, and this could have an effect on the volume of the DIB.

On average the cyclists cycle 142.5km per week in 5hours, at an average speed of 28.5km/h. Of the 38 cyclists, 22 cycles competitively and 16 cycle for fun. The competitive cyclists cycle on average 211.4km per week in 6.9hours, at an avergae speed of 30.8km/h. The non-competitive cyclists cycle 47.8km per week in 2.4hours, at an average speed of 19.62km/h. The big difference in parameters between the two subgroups are obviously a determining factor, but on average the amount of training per week even for the competitive group are still less than the training hours for rugby players per week.

It also have to be taken into account that cycling as an activity, includes road cycling as well as mountain biking or off-road cycling. This could also play a contributing factor in the size of the DIB volume for cyclists. If a big enough sample group between the two subgroups can be recruited an interesting result could follow. May be something to keep in mind for the future.

4.5.4 Rugby vs Cricket

Table 4.48 – Comparison	between Rugby	players and	Cricketers
-------------------------	---------------	-------------	------------

Rugby vs Crickett knee volumerugby		N	Mean	Std. Deviation	Std. Error Mean 18.12031	
		33	109.1395	104.09325		
	cricket	18	64.3901	68.30433	16.09948	
ime	rugby	33	100.9009	79.65316	13.86584	
	Cricket	18	53.0949	44.30976	10.44391	
	lume	lume rugby cricket me rugby	lume rugby 33 cricket 18 me rugby 33	Iume rugby 33 109.1395 cricket 18 64.3901 ume rugby 33 100.9009	Iume rugby 33 109.1395 104.09325 cricket 18 64.3901 68.30433 ume rugby 33 100.9009 79.65316	

			s Test for llity of										
		Vari	ances		t-test for Equality of Means								
						Sig.			95% Con	fidence			
						(2-	Mean	Std. Error	Interval	of the			
		F	Sig.	t	df	tailed)	Difference	Difference	Differe	ence			
									Lower	Upper			
Right	Equal												
knee	variances	1.575	.215	1.638	49	.108 ¹	44.74943	27.32261	-10.15740	99.65626			
volume	assumed												
	Equal												
	variances not			1.846	47.153	.071 ¹	44.74943	24.23920	-4.00939	93.50825			
	assumed												
Left knee	Equal												
volume	variances	4.055	.050	2.349	49	.023*	47.80599	20.35271	6.90570	88.70629			
	assumed												
	Equal												
	variances not			2.754	48.951	.008*	47.80599	17.35905	12.92079	82.69120			
	assumed												

Table 4.49 - Independent Samples Test - Rugby vs Cricket

.

*p<0.05 'p>0.05

In the comparison between the rugby players and the cricketers it shows that the rugby players have a bigger DIB volume than the cricketers, but most probably due to a too small cricketer sample size the significance of the difference between the two groups are questionable. The left DIB volume being statictically significant, but not the right DIB volume.

		Right knee:	Right knee:	Right knee:	Left knee:	Left knee:	Left knee:	
		AP	СС	Width	AP	СС	Width	
N	Valid	18	18	18	18	18	18	
_	Missing	0	0	0	0	0	0	
Mean	L	1.372mm	5.356mm	6.911mm	1.244mm	5.561mm	6.639mm	
Std. Erro	or of Mean	.1084	.6505	.7274	.1164	.4213	.6185	
Median		1.400	4.450	6.950	1.150	5.450	6.000	
Std. Dev	viation	.4599	2.7596	3.0860	.4938	1.7873	2.6239	
Minimum		.5	2.4	2.9	.7	3.1	3.4	
Maximum		2.3	13.0	13.0	2.5	9.3	11.6	

Table 4.50 – DIB measurements for Cricketers

Comparing the mean DIB volume for the cricketers (Right - 1.4x5.4x7mm; Left -

1.2x5.7x6.6mm as in table 4.49 above) and the rubgy players (Right – 1.5x6.9x8.1mm; Left – 1.5x6.7x7.7mm as in table 4.39 above) the difference in measurements between the two subgroups can be seen. As explained above these results are most probably biased due to the small sample size.

The mean DIB measurements for cricketers are 1.3 x 5.6 x 6.8mm.

The cricketers trained an average of 22.9hours per week. This is quite a bit more than even the rugby players, but it can be explained. The cricketers participate in 1-day and 5-day matches, which considerably increases the training or field time. Also the 18 cricketers included in the study are either South African- or Western Province representitives. The rugby players include players from the South African team, Western Province team and various clubs from Cape Town and surroundings. Further the cricketers are not envolved in any contact during training or matches, to the extreme that rugby players are exposed to.

4.5.5 Soccer vs Running

Soccer vs Running			Std. Deviation	Std. Error Mean	
soccer	31	46.7220	39.25470	7.05035	
running	81	51.2444	41.50603	4.61178	
soccer	31	52.7878	36.57905	6.56979	
running	81	59.3862	59.82379	6.64709	
	soccer running soccer	soccer 31 running 81 soccer 31	soccer 31 46.7220 running 81 51.2444 soccer 31 52.7878	soccer 31 46.7220 39.25470 running 81 51.2444 41.50603 soccer 31 52.7878 36.57905	

	······	Levene's	s Test for							
		Equa	lity of							
		Vari	ances			t-	test for Equalit	y of Means		
						Sig.		· · · · · · · · · · · · · · · · · · ·	95% Co	nfidence
						(2-	Mean	Std. Error	Interva	l of the
		F	Sig.	t	df	tailed)	Difference	Difference	Diffe	rence
									Lower	Upper
Right knee	Equal									· · · · ·
volume	variances	.278	.599	523	110	.602*	-4.52240	8.63883	-21.6425	12.59773
	assumed									
	Equal									
	variances not			537	57.235	.593*	-4.52240	8.42473	-21.3911	12.34632
	assumed									
Left knee	Equal			-	· · · · -					
volume	variances	3.097	.081	574	110	.567*	-6.59835	11.50532	-29.3992	16.20249
	assumed									
	Equal									
	variances not			706	88.198	.482*	-6.59835	9.34590	-25.1707	11.97409
	assumed									
	l	<u> </u>	l		m		▲*p>0	.05	L	L

Table 4.52 – Independent Samples Test – Soccer vs Running

As seen in the above tables, the DIB volumes for the runners and soccer players are more or less the same. Thus no statistical difference noted.

4.5.6 Soccer vs Cycling

Table 4.53 - Comparison between Soccer players and Cyclists

Soccer v	s Cycling	N	Mean	Std. Deviation	Std. Error Mean	
Right knee volume	e volume soccer		46.7220	39.25470	7.05035	
	cycling	38	52.3453	43.02265	6.97919	
Left knee volume	soccer	31	52.7878	36.57905	6.56979	
	cycling	38	61.4088	50.61137	8.21025	

Table 4.54 – Independent Samples Test – Soccer vs Cycling

		Levene's Equal											
		Varia	inces		t-test for Equality of Means								
						Sig.			95% Co	nfidence			
						(2-	Mean	Std. Error	Interva	l of the			
		F	Sig.	t	df	tailed)	Difference	Difference	Diffe	rence			
									Lower	Upper			
Right knee volume	Equal variances assumed	.164	.687	562	67	.576*	-5.62323	10.01431	-25.6118	14.36541			
	Equal variances not assumed			567	66.122	.573*	-5.62323	9.92052	-25.4295	14.18304			
Left knee volume	Equal variances assumed	1.623	.207	794	67	.430*	-8.62104	10.86044	-30.2985	13.05649			
	Equal variances not assumed			820	66.119	.415*	-8.62104	10.51524	-29.6146	12.37262			

*p>0.05

The DIB volumes for the soccer players and cyclists are almost the same and thus also no statistical signifance between these two groups.

4.5.7 Soccer vs Cricket

Table 4.55 – Comparison between Soccer players and Cricketers

	Soccer vs	Cricket	N	Mean	Std. Deviation	Std. Error Mean	
Right knee volume		soccer	30	47.8798	39.38373	7.19045	
		cricket	17	66.5818	69.75099	16.91710	
Left knee	volume	soccer	30	54.0886	36.46784	6.65809	
		cricket	17	54.9462	44.95022	10.90203	

		Levene's for Equa									
		Variar	nces				t-test for Equal	ity of Means			
						Sig.			95% C	onfidence	
						(2-	Mean	Std. Error	Interv	al of the	
		F	Sig.	t	df	tailed)	Difference	Difference	Diff	erence	
									Lower	Upper	
Right knee volume	Equal variances assumed	2.944	.093	-1.179	45	.245*	-18.70199	15.85989	-50.6454	54 13.24146	
	Equal variances not assumed			-1.017	21.909	.320*	-18.70199	18.38181	-56.8327	19.42875	
Left knew volume	e Equal variances assumed	.376	.543	071	45	.944*	85758	12.04945	-25.1264	23.41125	
	Equal variances not assumed			067	28.011	.947*	85758	12.77436	-27.0242	25.30905	

Table 4.56 – Independent Samples Test – Soccer vs Cricket

*p≠ <0.05

As mentioned before the cricket sample size might be too small for accurate results.

4.5.8 Running vs Cycling

There were quite a few bi-athlone and triathlone athletes and thus trying to compare the runners and cyclists would not be very accurate as more than a third of the running subjects also cycle and the question is – do you include them in one or both the subgroups? Thus no accurate statistics could be produced.

4.5.9 Running vs Cricket

Table 4.57 - Comparison between Runners and Cricketers

Running	vs Cricket	N	Mean	Std. Deviation	Std. Error Mean
Right knee volume	running	81	50.5075	41.51952	4.61328
	cricket	18	64.3901	68.30433	16.09948
Left knee volume	running	81	57.3731	57.71757	6.41306
	cricket	18	53.0949	44.30976	10.44391

Table 4.58 – Independent Samples Test – Running vs Cricket

		Levene's for Equa									
		Variar	ices	t-test for Equality of Means							
-						Sig.			95% Co	nfidence	
						(2-	Mean	Std. Error	Interva	l of the	
		F	Sig.	t	df	tailed)	Difference	Difference	Diffe	rence	
									Lower	Upper	
l Right knee volume	Equal variances assumed	3.173	.078	-1.126	97	.263*	-13.88255	12.33121	-38.3565	10.59149	
	Equal variances not assumed			829	19.878	.417*	-13.88255	16.74741	-48.8308	21.06570	
Left knee volume	Equal variances assumed	.552	.459	.295	97	.768*	4.27813	14.48867	-24.4778	33.03413	
	Equal variances not assumed			.349	31.291	.729*	4.27813	12.25572	-20.7081	29.26440	
		<u> </u>		L	[*p>0.05		L		

Again the sample group of the cricket group are too small for accurate results.

Although it does appear that the runners and cricketers has fairly the same size of DIB volume.

4.5.10 Cycling vs Cricket

Table 4.59 – Comparison between Cyclists and Cricketers

vs Cricket	N	Mean	Std. Deviation	Std. Error Mean
e cycling	38	52.3453	43.02265	6.97919
cricket	18	64.3901	68.30433	16.09948
cycling	38	61.4088	50.61137	8.21025
cricket	18	53.0949	44.30976	10.44391
	cricket cycling	e cycling 38 cricket 18 cycling 38	e cycling 38 52.3453 cricket 18 64.3901 cycling 38 61.4088	e cycling 38 52.3453 43.02265 cricket 18 64.3901 68.30433 cycling 38 61.4088 50.61137

Table 4.60 - Independent Samples Test - Cycling vs Cricket

	 	Levene's					<u>,</u> ,			
		Variar	nces			t-	test for Equalit	y of Means		
	 					Sig.	· · · · · · · · · · · · · · · · · · ·		95% Co	nfidence
						(2-	Mean	Std. Error	Interva	l of the
		F	Sig.	t	df	tailed)	Difference	Difference	Diffe	rence
	 *								Lower	Upper
Right k	Equal variances assumed	2.059	.157	805	54	.425*	-12.04479	14.96938	-42.0565	17.96700
	Equal variances not assumed			686	23.607	.499*	-12.04479	17.54715	-48.2922	24.20270
Left kn volume	Equal variances assumed	.277	.601	.596	54	.553*	8.31390	13.93906	-19.6322	36.26002
	Equal variances not assumed			.626	37.861	.535*	8.31390	13.28471	-18.5828	35.21063

*p>0.05

No difference between the cyclists and cricketers noted, but again the small sample size of the cricketers could play a role in this fact.

4.6 DIB measurement comparisons between different previous knee

history.

The different types of previous knee history that were listed included: knee pain,

patellar tendinitis, knee arthroscopy and knee operation. All these were thought to have a possible effect on the DIB volume.

4.6.1 Knee pain vs No pain

	Table 4.61 -	Comparison	between	'knee	pain'	and	'no pain'	,
--	--------------	------------	---------	--------------	-------	-----	-----------	---

	Knee	pain	N	Mean	Std. Deviation	Std. Error Mean
Right knee vol	ume	no	191	56.4196	60.55687	4.38174
·		yes	81	52.0245	49.44338	5.49371
Left knee volu	me	no	191	53.4337	48.47868	3.50779
		yes	81	64.4225	64.19521	7.13280

		Levene's for Equa								
		Variar				t-te	est for Equality	of Means		
		F	Si-		df	Sig. (2-	Mean Difference	Std. Error Difference	95% Co Interva Diffe	l of the
	····	F	Sig.	t	d1	tailed)	Difference	Difference	Diffe	
									Lower	Upper
Right knee volume	Equal variances assumed	.998	.319	.577	270	.565*	4.39507	7.62264	-10.6123	19.40244
	Equal variances not assumed			.625	182.981	.532*	4.39507	7.02713	-9.46955	18.25968
Left knee volume	Equal variances assumed	7.772	.006	-1.546	270	.123*	-10.98872	7.10943	-24.9856	3.00825
	Equal variances not assumed			-1.382	120.410	.169*	-10.98872	7.94868	-26.7260	4.74856
	-l	1		_		I	,	*p>0	.05	

Table 4.62 – Independent Samples Test – Knee pain vs No pain

There do not seem to be any comparison to be made between subjects with knee pain and subjects with no knee pain. Statistically there are no significant difference.

The knee pain which were included were infrapatellar knee pain, anterior knee pain and knee pain generilized to the DIB. Of the 81 subjects with knee pain the distribution between left knee pain and right knee pain were as follow: 23 with left knee pain, 22 with right knee pain and 36 with pain in both knees. Surprisingly a fairly good distribution between right – and left knee pain.

4.6.2 Patellar tendonitis vs No tendonitis

Patellar Tendo	Patellar Tendonitis		Mean	Std. Deviation	Std. Error Mean	
Right knee volume	no	253	55.0934	56.90649	3.57768	
	yes	19	55.3424	65.55790	15.04001	
Left knee volume	no	253	56.6401	53.99608	3.39470	
	yes	19	57.5854	51.82442	11.88934	
		i .				

Table 4.63 - Comparison between 'patellar tendonitis' and 'no tendonitis'

Table 4.64 - Independent Samples Test - Patellar tendonitis vs No tendonitis

	<u> </u>		ne's Test							<u> </u>
	·		uality of iances			t-	test for Equalit	y of Means		
	<u> </u>	<u> </u>				Sig.			95% Co	nfidence
						(2-	Mean	Std. Error	Interva	l of the
		F	Sig.	t	df	tailed)	Difference	Difference	Difference	
	· · · · · · · · · · · ·								Lower	Upper
Right knee	Equal variances	.566	.452	018	270	.985*	24905	13.68342	-27.1888	26.69071
() and	assumed									
	Equal variances not assumed			016	20.090	.987*	24905	15.45968	-32.4881	31.99002
Left knee	Equal									
volume	variances assumed	.128	.721	074	270	.941*	94529	12.81048	-26.1664	24.27585
	Equal variances not			076	21.045	.940*	94529	12.36448	-26.6553	24.76474
	assumed									*p>0.05

No significant difference could be found between subjects with previous patellar tendonits and subjects with no previous patellar tendonitis. However, the patellar tendonitis subgroup's sample size are fairly small and comparison between these groups with a larger sample size could show different results.

The patellar tendonitis' left – and right knee distribution were as follow: 7 subjects with patellar tendonitis in the left knee, 6 subjects with patellar tendonitis in the right knee and 6 subjects with patellar tendonitis in both knees. The patellar tendonitis mentioned here includes infrapatellar tendonitis.

In the same breath it should be mentioned again that no subjects with deep infrapatellar bursitis were included in this study as this would obviously skew the average DIB volume in any chosen group.

4.6.3 Previous knee operation vs No knee operation

Table 4.65 – Comparison between 'previous knee operation' and 'no knee operation'

Previous knee operation		N	Mean	Std. Deviation	Std. Error Mean	
Right knee volume	no	246	55.2546	58.89811	3.75521	
	yes	26	53.7498	41.69926	8.17790	
Left knee volume	no	246	56.0368	53.86779	3.43449	
	yes	26	63.0390	53.29386	10.45178	

			e's Test uality of							
		Vari	iances			t-	test for Equalit	y of Means		
						Sig.			95% Confidence	
						(2-	Mean	Std. Error	Interva	l of the
		F	Sig.	t	df	tailed)	Difference	Difference	Diffe	rence
									Lower	Upper
Right knee	Equal									
volume	variances	.535	.465	.127	270	.899*	1.50481	11.86218	-21.8493	24.85895
	assumed									1
	Equal									
	variances not			.167	36.489	.868*	1.50481	8.99887	-16.7372	19.74687
	assumed									
Left knee	Equal									
volume	variances	.538	.464	631	270	.529*	-7.00218	11.09770	-28.8512	14.84685
	assumed									
	Equal								·	
	variances not			636	30.654	.529*	-7.00218	11.00161	-29.4503	15.44603
	assumed									

Table 4.66 - Independent Samples Test - Previous knee operation vs No operation

*p>0.05

No significant difference could be found between subjects with previous knee operation and subjects with no knee operation. Again a bigger sample size could most probably show different results. The right- and left knee distribution for the previous knee operation subgroup were as follow: 11 subjects with previous left knee operation, 11 subjects with previous right knee operations and 4 subjects with bilateral previous knee operations. Again quite amazing to see the random selection of subjects having such a perfect distribution.

4.6.4 Previous knee arthroscopy vs No knee arthroscopy

Table 4.67 – Comparison between	'previous knee arthroscopy'	and 'no knee
arthroscopy'		

Previous arthroscopy		N	Mean	Std. Deviation	Std. Error Mean	
Right knee volume	no	251	54.4971	56.99744	3.59765	
	yes	21	62.4454	63.25527	13.80343	
Left knee volume	no	251	56.4815	53.57437	3.38158	
	yes	21	59.3909	57.16977	12.47547	

Table 4.68 – Independent Samples Test – Previous knee arthroscopy vs No arthroscopy

		Levene's for Equa										
		Varian	ices		t-test for Equality of Means							
		F	Sig.	t	df	Sig. (2- tailed)	Mean Difference	Std. Error Difference	95% Co Interva Diffe			
									Lower	Upper		
Right knee volume	Equal variances assumed	.819	.366	609	270	.543*	-7.94826	13.05833	-33.6573	17.76083		
	Equal variances not assumed			557	22.801	.583*	-7.94826	14.26456	-37.4710	21.57449		
Left knee volume	Equal variances assumed	.942	.333	238	270	.812*	-2.90942	12.23249	-26.9926	21.17378		
	Equal variances not assumed			225	23.037	.824*	-2.90942	12.92565	-29.6457	23.82695		
		<u> </u>						*p>0	0.05	L		

No significant difference between these two subgroups, but there are a slight indication that the arthroscopy-subgroup have a larger DIB volume. Again with a larger sample group this could be proven statistically significant. However, in contrast in what was believed before the study commensed, there are a DIB visualised for patients following an arthroscopy.

4.6.5 Age related DIB measurements

		Right knee:	Right knee:	Right knee:	Left knee:	Left knee:	Left knee:
		AP	СС	Width	AP	CC	Width
N	Valid	143	143	143	143	143	143
	Missing	273	273	273	273	273	273
Mea	_i In	1.351mm	5.441mm	6.443mm	1.303mm	5.520mm	6.592mm
Std.	Error of Mean	.0372	.1742	.2413	.0384	.1609	.2268
Std.	Deviation	.4450	2.0827	2.8850	.4598	1.9238	2.7120
Min	imum	.5	2.0	2.0	.6	1.5	2.0
Max	kimum	3.2	13.2	15.7	2.8	13.0	17.0

Table 4.69 – Age group 18 – 29 years

Table 4.70 – Age group 30 – 39 years

		Right knee:	Right knee:	Right knee:	Left knee:	Left knee:	Left knee:
		AP	СС	Width	АР	СС	Width
N	Valid	75	75	75	75	75	75
	Missing	273	273	273	273	273	273
Mea		1.307mm	5.296mm	6.056mm	1.264mm	5.403mm	6.571mm
Std.	Error of Mean	.0482	.2280	.2663	.0514	.2241	.3015
Std.	Deviation	.4173	1.9748	2.3059	.4450	1.9405	2.6109
Min	imum	.6	1.8	2.4	.4	2.2	2.6
Max	imum	2.5	12.7	13.0	2.8	11.5	14.6

Table 4.71 – Age group 40-52 years

	·······	Right knee:	Right knee:	Right knee:	Left knee:	Left knee:	Left knee:
		АР	сс	Width	АР	сс	Width
N	Valid	54	54	54	54	54	54
	Missing	272	272	272	272	272	272
Mea	n	1.372mm	5.517mm	5.969mm	1.398mm	5.522mm	6.602mm
Std.	Deviation	.4595	2.0351	2.4341	.5004	1.8291	3.0330
Mini	mum	.5	1.8	2.6	.4	1.7	2.0
Maxi	imum	2.5	11.3	14.4	2.5	10.5	16.3

The mean DIB measurements for the youngest age group (18-29years) are 1.4mm x 5.5mm x 6.5mm. The mean DIB measurements for the '30-39' years group are 1.3mm x 5.4mm x 6.4mm. The mean DIB measurements for the oldest age group (40-52years) are 1.4mm x 5.5mm x 6.3mm. It seems that the age of the subject has no effect on the size of the DIB. No statistical significance could be determined.

4.7 Eliminated data

Eight subjects' records were eliminated because of incomplete data. This meaning that either the right- or left deep infrapatellar bursa could not be visualised by ultrasound at the time of scanning. Thus from the 280 subjects recruited for the study only 8 subjects' DIBs could not be detected by ultrasound. The ultrasound detection rate for this study equals an amazing 97.14%.

Of the eliminated subjects 5 had no readings for the right DIB and 3 had no left DIB detected:

1. Eliminated subject number 1 had previous right knee surgery, including an ACL reconstruction, cartilage debridement and arthroscopy. This subject also showed small osteophytes on ultrasound.

2. Eliminated subject number 2 had previous right knee surgery, including maltraction correction, screw removal and arthroscopy.

3. Eliminated subject number 3 had no right knee DIB measurement and were envolved in a previous quite serious motor vehicle accident, involving extensive operations to espescially her ankles and tibias&fibulas.

4. Eliminated subject number 4 showed clear signs of Osgood Schlatters' disease on the right knee.

5. Eliminated subject number 5 had a fairly recent right ACL reconstruction in 2004.

6. Eliminated subject number 6 had a previous glass cutting injury to the left infrapatellar tendon. Very little could be visualised through the scar tissue formed directly in the DIB vicinity.

7. Eliminated subject number 7 had extensive left knee operations, including 4 cartilage operations, 2 debridements and one complicated 'raised knee' operation. Also small osteophytes could be visualised with the ultrasound.

8. Eliminated subject number 8 had previous bilateral patellar tendinosis, is a South African cricketer and had no DIB measurement for the left knee.

101

All the above mentioned clinical history of the subjects listed had all fairly explainable reasons for not having a DIB measurement. They either had some invasive operation, injury or pathology (eg Osgood Schlatters' disease) in the DIB area, which obviously curropted the DIB area and thus visualisation of the bursa. Only the last subject (no8) had no easy explaination for not having a visible DIB, as there are no invasive procedure or injury, thus no explaination for not being able to visualize the DIB.

4.8 Summary of Main Results

Such a large amount of data is difficult to interpret as it presents as a monotomous list of tables. I will discuss the main results in the following paragraphs.

The mean DIB measurements for all subjects are 1.3mm x 5.4mm x 6.2mm for the right knee and 1.3mm x 5.5mm x 6.6mm for the left knee. The average mean DIB measurement equalling 1.3mm x 5.5mm x 6.4mm.

There is a statistically significant difference between the DIB measurements for males and females, with the males having larger DIB measurements than woman.

Competitive sports people have statistically significant larger DIB measurements than non-competitive sports people. There are also a statistically significant difference between active and non-active people, with active people having slightly larger DIB measurements.

No statistically significant difference between the different population groups could be shown, but a definite tendency for the black population group to possibly have larger DIB measurements than the white or coloured groups were observed.

Rugby, as a sporttype, have bigger DIB's than the other sport types included in this study. The DIB measurements for rugby players averaging 1.5mm x 6.8mm x 8.0mm. No real statistical difference could be found between the other sporttypes.

Subjects with knee pain, patellar tendonitis, previous knee operation and previous knee arthroscopy seem to have no effect on the size of the DIB, but taking into account the 8 eliminated subjects there might be a degree of interruption of the DIB with knee operations, arthroscopies and patellar tendonitis. This resulting in not visualisation the DIB with ultrasound. Bigger sample sizes might show other results.

For this study the ultrasound detection rate was an amazing 97.14%. The average subject age equaling 30.67 years. The age of the subjects did not seem to have an effect on the measurements of the DIB.

The above results answers all the research questions stated in chapter 1. The hypothesis was proven for the diameters of a normal DIB for males and females, people participating in different levels of and different types of sport having different DIB

103

measurements. The hypothesis could not be proven for the DIB measurements for different population groups or opposing knees. In stating this, it has to be taken into account that the sample size for the different population groups need to be bigger for more accurate results. The fact that the hypothesis could not be proven for the opposing knees' DIB measurements, are most probably due to the fact that God created us symmetrical and thus the biomechanics of our knees must be mainly the same.

	AP	CC	Width
Males	1.4mm	5.8mm	6.9mm
Females	1.3mm	5.0mm	5.9mm
White population	1.3mm	5.4mm	6.4mm
Coloured population	1.4mm	5.2mm	6.2mm
Black population	1.4mm	6.4mm	7.0mm
Competitive sport	1.4mm	5.7mm	6.9mm
Non-competitive sport	1.3mm	5.3mm	5.9mm
Active people	1.4mm	5.6mm	6.6mm
Non-Active people	1.2mm	4.9mm	5.3mm
Rugby players	1.5mm	6.8mm	8.0mm
Soccer players	1.4mm	5.6mm	6.5mm
Runners	1.4mm	5.3mm	6.5mm
Cyclists	1.4mm	5.4mm	6.8mm
Cricketers	1.3mm	5.6mm	6.8mm
18-29 years old	1.4mm	5.5mm	6.5mm
30-39 years old	1.3mm	5.4mm	6.4mm
40-52 years old	1.4mm	5.5mm	6.3mm
AVERAGE FOR ALL	1.3mm	5.5mm	6.4mm

Table 4.72 – Following below are a table summarizing the mean DIB measurements:

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The fact is that the knee is one of the most complicated joints of the body. Ultrasound examination of the knee are limited, but by using a high frequency transducer, it is an ideal tool for examining the deep infrapatellar bursa. (Monetti et al., 1995) This statement was shown to be so unbelieveably true in my study with an ultrasound detection rate of 97.14% of the deep infrapatellar bursa.

Comparing my results with the MRI studies from Turkey (Aydingoz et al, 2004) and Switzerland (Tschirch et al, 2003), the mean DIB measurements differ. My study producing slightly smaller values, but with a definite higher detection rate. This could most probably be because it is MRI vs ultrasound and different factors could enfluence the results. MRI slice thickness, patient positioning and measurement methods are some of these factors.

Schmidt et al (2004), from Germany's mean DIB ultrasound measurements were 6.1mm x 6.2mm x 2.7mm. The similarity can be seen to my study were the mean DIB ultrasound measurements equaled 1.3mm x 5.5mm x 6.4mm. These two ultrasound studies thus compare favourably.

Males have a larger DIB than females. Competitive sportspeople have a larger DIB than non-competitive sports people. Active people have a larger DIB than non-active people. The left and right DIB's seem to be the same size generally. Rugby players seem to be the one sport were the DIB measurement are larger. Being larger than runners, cyclists, cricketers and soccer players DIB measurements.

It is important to note that the rugby players were training as a group and are exposed to the same amount of fitness, strength training and matches played. The runners, cyclists and soccer players include people training either by themselves or at various clubs, at an intensity suitable per individual or club, and this could lead to different results for the same sport type. Thus the statement, 'selected distances are different for different atheletes' (Maffulli et al, 1987), definetly has to be taken into account.

The outcome of the study provided more definite parameters to individualize the deep infrapatellar bursa. It ensures a better diagnosis and thus a better and faster treament plan for each patient. With all the modern technology at our exposure, it is advisable to ultrasound the deep infrapatellar bursa before final diagnosis are considered, to confirm deep infrapatellar bursitis or not. If cortisone injection is the choice of treatment, an ultrasound guided injection at the same time are advisable for optimum results and thus a better prognostic recovery.

5.2 Recommendations

On completion of this study it can be recommended that further such studies should be done to compare ultrasound and MRI measurements of the deep infrapatellar bursa.

Care was taken not to apply to much pressure with the ultrasound transducer to the infrapatellar region, during the ultrasound examination, to be able to locate the deep infrapatellar bursa easier. Also the knee was placed in slight flexion during examination to enable visualization of the DIB better. It was found that the deep infrapatellar bursa was not always visualised centrally and anterior in the knee. For future studies it would be interesting to note if the DIB was located centrally, medially or laterally and slightly inferior or superior. It would also be a good idea to correlate the position of the DIB with the specific biomechanics of the knee itself. The width, muscle circumference and fat measurement of the knee, may be even include the degree of the Q-angle of the patella to femur on flexion.

For further future studies in this field it is advisable to enlarge the sample size of the population groups and to then compare similar amounts of different population groups to each other, for optimum results. There seem to be a tendency for the black population group to have a bigger DIB than the white and coloured population group, but it could not be proven statistically significant due to the small sample size of the black population group.

107

If there are any means in which athletes' training could be standardised for a specific sport type, like for instance the WP rugby players, it would be advisable for future studies to compare these athletes (practising the same sport) with one another for better results.

Lastly, this study should be seen as a basis for further investigations where more samples are measured.

5.3 Summary

The study had five main objectives: (1) to investigate the size of the deep infrapatellar bursa, (2) to compare the size of the DIB of the left and right knees, male and female knees, different population groups' knees, people practising different sport types and competing at different levels of sports' knees; (3) to make recommendations on the size of the DIB for each individual, (4) to determine the ultrasound detection rate and (5) to determine if previous knee injuries, operations and arthroscopies, and present knee pain or inflammation have any effect on the size of the bursa.

All the objectives have been successfully met as documented in chapter 4. A specific technique for optimum ultrasound visualisation of the deep infrapatellar bursa has been mastered. With this study it was concluded that the deep infrapatellar bursa ultrasound measurements are in line with international standards, but could still be improved.

In conclusion the study confirms the hypothesis that the size of the deep infrapatellar bursa differs for male and female, competitive- and non-competitive sports people, active- and non-active people, and different sport types. Unfortuantely further studies are necessary to confirm the hypothesis that different population groups have different deep infrapatellar bursa measurements.

As a last thought, care should be taken not to overdiagnose deep infrapatellar bursitis in competitive sportpeople, males and rugby players specifically.

REFERENCES

Aydingoz, U., Oguz, B., Aydingoz, O., Comert, R.B. & Akgun, I. 2004. The deep infrapatellar bursa: Prevalence and Morphology on routine Magnetic Resonance Imaging of the knee. Journal of Computer Assisted Tomography. **28**(4):557-561.

Benjamin,B. 2003. Injured Bursas in the Knee. <u>Massage Today</u>, (vol3)issue8: www.massagetoday.com.

Canoso, J.J. 1981. Bursae, tendons and ligaments. <u>Clinics in Rheumatologic Disease</u>, 7:189-221.

Carr, J.C., Hanly, S., Griffin, J. & Gibney, R. 2001. Sonography of the Patellar Tendon and Adjacent Structures in Paediatric and Adult Patients. <u>American Journal of</u> <u>Radiology.</u> 176:535-1539.

Chhem, R.K; Cardinal, E; Jaovisidha, S. and Ali, S.S. 1999. <u>Guidelines and Gamuts in</u> <u>Musculoskeletal Ultrasound – Chapter 6: Knee.</u> Edited by R.K.Chhem & E.Cardinal. Toronto : Wiley-Liss.

Codman, E.A. 1931. The shoulder: *Rupture of the Supraspinatus Tendon and Other* Lesions in or about the Subacromial Bursa. Boston : Thomas Todd Co Printers. Dorlands Medical Dictionary. 2005. www.merckmedicus.com

Gardner, D.L. 1965. <u>Pathology of the Connective Tissue Diseases</u>. London : Edward Arnold.

Jansen, U., Peterfy, C.G., Forbes, J.R., Tirman, P.F. & Genant, H.K. 1994. Cystic lesions around the knee joint : MR imaging findings. <u>American Journal of Radiology</u>. **163**:155-161.

Jenkins, D.B. 1991. <u>Hollinshead's Functional Anatomy of the limbs and Back</u>. (pp. 233-239). Philadelphia: Harcourt Brace & Company

Klein, W. 1996. Endoscopy of the deep infrapatellar bursa. <u>Arthroscopy</u>. **12**(1):127-131.

LaPrade, R.F. 1998. The Anatomy of the Deep Infrapatellar Bursa of the Knee. <u>The</u> <u>American Journal of Sports Medicine.</u> **26**(1):129-132.

Lefers, M. 2004. Holmgren Lab - Tendon Definition, www.biochem.northwestern.edu/holmgren/Glossary/Definitions.html. Maffulli, N., Regine, R., Angelillo, M., Capasso, G. & Filice, S. 1987. Ultrasound diagnosis of Achilles tendon pathology in runners. <u>British Journal of Sports Medicine</u>.
21:158-162.

Medical dictionary. 2005. http://www.biology-online.org/dictionary

Monetti, G; De Pra, L. & Balconi, G. 1995. <u>Ultrasound of Superficial structures</u> – Chapter 18: Joints. Edited by L. Solbiati & G.Rizzatto. Madrid : Churchill Livingstone.

Nicholas, J.A. and Hershman, E.B. 1986. <u>The Lower Extremity and Spine in Sports</u> <u>Medicine.</u> St Louis : CV Mosby.

Saunders. 2005. www.merckmedicus.com

Schmidt, W.A., Schmidt, H., Schicke, B. & Gromnica-Ihle, E. 2004 Standard reference values for musculoskeletal ultrasonography. <u>Annals of the Rheumatic Diseases.</u> 63:988-994.

Tschirch, F.T.C., Schmid, M.R., Pfirrmann, C.W.A., Romero, J., Hodler, J. & Zanetti, M. 2003. Prevalence and Size of Meniscal Cysts, Ganglionic Cysts, Synovial Cysts of the Popliteal Space, Fluid-Filled Bursae, and Other Fluid Collections in Asymptomatic knees. <u>American Journal of Radiology</u>. **180**(5):1431-1436. Van Holsbeeck, M.T. & Introcaso, J.H. 2001. Musculoskeletal Ultrasound, 2nd Ed. St. Louis : Mosby Inc.

Van Holsbeeck, M.T. & Introcaso, J.H. 1989. Sonography of the postoperative shoulder. <u>American Journal of Roentgenology</u>, **152**:202.

APPENDICES

APPENDIX 1 – Questioniare

Ultrasound features of the deep infrapatellar bursa.

<u>Questionnaire:</u> (please fill in and tick the appropriate)

<u>Name:</u>		•••••	Subject no:					
<u>Tel no:</u>	••••••		Da	ate:	••••••			
Address:		••••••	•••••					
<u>Email:</u>					•••••			
Ethnic origin :	origin : Black Coloured Indian							
Gender :	Fema	le]	Male				
Date of birth :]	Nationalit	<u>/:</u>				
Do you have any kne	<u>e pain?:</u>		Which kno	<u>ee:</u>				
Do you have bursitis/	tendonitis in the knee	<u>e area:</u>						
Previous knee arthose	<u>copy:</u>	••••••	•••••	•••••				
Previous knee operat	<u>ion:</u>			••••••	•••••			
Physio/Grucox/Stren	gthening exercises (h	ours/week):	•••••					
Competitive Sport ac	tivities:	• • • • • • • • • • • • • • • • • • • •		Iours/week:Gar	nes/year:			
Non-competitive spo	rt activities:			Hours/week: .	•••••			
Height:								
<u></u>		For Office			******			
Dight Irpon A D 4	***************************************							
Right knee : AP :			Left knee	: AP:				
CC:	CC: CC:							
Width:	;			Width :				

APPENDIX 2 – Consent Form

CONSENT TO PROCEDURE

I,

hereby consent to the performance of an ultrasound examination of my knees.

The above mentioned examination was explained to me by Merle Neethling – du Toit.

Signature

Date

APPENDIX 3 – Letter requesting approval for study at the Sport

Science Orthopaedic Clinic.

March 2005

Dear Dr D O'Cuinneagain,

APPROVAL FOR PROPOSED RESEARCH STUDY

I, Merle Neethling-du Toit, would like to conduct a project at the Sports Science Orthopaedic clinic. The project will cover the following topic: Ultrasound features of the Deep Infrapatellar Bursa.

The objectives of the study are (1) to investigate the size of the deep infrapatellar bursa, (2) to compare the size of the DIB of the left and right knees, male and female knees, different population groups' knees, people practising different sport types and competing at different levels of sports' knees; (3) to make recommendations on the size of the DIB for each individual, (4) to determine the ultrasound detection rate and (5) to determine if previous knee injuries, operations and arthroscopies, and present knee pain or infalmmation have any effect on the size of the bursa.

I will recruit approximately 200 subjects and will need to perform an ultrasound examination at the Sports Science Orthpaedic Clinic on each individuals knees. The ultrasound examination will take 15 minutes per patient. As you are well aware, ultrasound examinations as not harmful or hazardous.

All subjects will stay anonymous and patient personal details will be kept private and confidential. Written consent will be obtained from each individual participant. For participants who do not speak or understand English or Afrikaans, a translator will be present to explain the questionniare and ultrasound examination.

I you have any questions regarding my proposed project please do not hesitate to contact me. (Cell phone: 0726110252, Email: merleneethling@yahoo.co.uk)

I am awaiting your approval for the proposed project.

Yours Sincerely

Merle Neethling-du Toit Sonographer

APPENDIX 4 – Research Approval letter from Sports Science

Orthopaedic Clinic.

March 2005

Dear Merle,

APPROVAL FOR PROPOSED RESEARCH PROJECT

This is to confirm approval for your proposed research study: <u>Ultrasound features of</u> the Deep Infrapatellar Bursa, at the Sports Science Orthopaedic Clinic.

Please be advised that ultrasound examinations need to be performed during quieter times at the clinic and correspondence with the radiology department is essential. No patient/subject are allowed to participate without signing written consent.

We look forward to the results.

Kind Regards

Dr Dion O'Cuinneaggain Manager – Sports Science Orthopaedic Clinic