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ABSTRACT 

 

The klipspringer (Oreotragus oreotragus subsp. oreotragus) population became extinct on the Cape 

Peninsula in 1930. Being re-introduced into Table Mountain National Park (TMNP) in 1999 it 

became one of the species of special conservation concern to monitor in the Park. Most klipspringer 

territories are known by Park management but the distribution of all potentially suitable habitats for 

this species in the Park is not known. The main aim of this study is to produce a distribution range 

map that is representative of all potentially suitable habitats for the klipspringer within TMNP, 

through the use of a species distribution modelling tool.  

 

Since only presence data were available for this study, a popular presence-only modelling tool 

namely maximum entropy (MaxEnt) was used. The use of MaxEnt in species distribution modelling 

has become popular as it has proven to provide robust predictions of a species’ geographic 

distribution. Klipspringer occurrence data and five environmental variables namely altitude, slope, 

aspect, vegetation, and distance to urban edge were used as model input. Occurrence data were 

sourced through existing databases and employing a stratified random sampling technique of 

dividing the Park into different habitat subtypes to survey the Park for more klipspringer 

occurrences. These habitat subtypes consisted of a variety of vegetation communities or vegetation 

types and altitudinal and slope ranges available in the Park. Grid size for all the raster layers used 

was 10x10 m. Spatial filtering of one point per 100 m² grid was used to eliminate clumping of points. 

Six models were run at different regularisation multiplier (RM) values namely 0.25, 0.5, default (1), 

2, 4 and 7. To assist in better understanding of the spatial extent of the occurrence data and the 

areas inhabited by the klipspringer, home range analyses were carried out. This was done through 

kernel density estimation in the Geospatial Modelling Environment (GME). All six bandwidth 

parameters in GME namely smoothed cross validation (SCV), biased cross-validation (BCV), a 

second BCV algorithm, plug-in estimator, least squares cross validation and the likelihood cross 

validation (CVh) were tested. 

 

The smoothed cross validation and likelihood cross validation bandwidth algorithms provided the 

best visual output of klipspringer home ranges and territories. Home range sizes from the SCV 

output ranged from about 3 – 11 ha across the study area, and home range size for the CVh output 

ranged from 0.6 – 2.5 ha. The output from the CVh algorithm was interpreted as territories rather 

than home ranges, as it is based on a univariate kernel unlike, the SCV algorithm that produces 

rotated bivariate kernels.  
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The default regularisation multiplier of 1 provided the best probability distribution output, whilst 

values lower than the default tended to underestimate the prediction and those values higher than 

the default were tending towards overestimations. Response curves for the default RM also gave 

the most ecologically meaningful responses of the klipspringer to each environmental variable. 

Model evaluation in the form of area under the receiver operating characteristic curve (ROC AUC) 

showed that all models performed well. Therefore, the choice of the “best” model was based on the 

ability to provide ecological interpretation, on the shape of the response curve and the probability 

distribution maps. Consequently, the default RM model was considered the best, with an AUC score 

of 0.903. Altitude and vegetation contributed the most to suitable habitat and therefore indicates that 

klipspringer in the Park do prefer high altitudinal areas with the right vegetation to feed on. Suitable 

altitudinal ranges are from 400 m.a.s.l. and higher and ericaceous fynbos is the most preferred 

vegetation community. Slope, aspect and distance to urban edge played a less important role in 

suitable klipspringer habitat.  

 

The probability map and an additional binary map produced at the 10 percentile training logistic 

presence threshold showed that suitable habitat for the klipspringer occurs in all three sections of 

the Park in different proportions. These maps can be used by Park management to prioritise 

conservation efforts and future re-introductions.  
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1. Terms/Definitions  

Area of distribution: The geographic range of a species i.e. areas in a landscape where a species is 
likely to occur (Brown et al., 1996).   

Ecological niche model: Fundamentally the same as a species distribution model (Elith & Leathwick, 
2009; Sillero, 2011). 

Environmental space: The combination of environmental predictor variables that define an area 
(Elith & Leathwick, 2009), as represented in a conceptual ecosystem. 

Geographical space: Represented by latitude and longitude to identify location, allowing one to link 
a location on a landscape to two-dimensional coordinates or in the form of a digital elevation model 
to distinguish geographical features (Elith & Leathwick, 2009). 

Habitat suitability map: The output of niche models and distribution models (those areas with the 
right environmental conditions for a species to survive).  

Niche: An area in an ecosystem where a species has found a combination of optimal environmental 
conditions to fulfil its needs to live in and reproduce, together with its effects on those environmental 
conditions (Chase & Leibold, 2003).   

Species distribution model: A statistical tool that combines GPS locality data with data on 
environmental variables, to produce predictions of a species’ geographic distribution (Guisan & 
Thuiller, 2005; Elith & Leathwick, 2009).   

Home range: That area an animal population would occupy and use for their daily activities like 
feeding and reproduction (Getz et al., 2007).   

Utilisation Distribution: A percentage of area an animal utilises e.g. a 50% area of core activity or 
95% area of general use, represented by isopleths/contours that demarcate those areas utilised by 
the individuals of a population (Getz et al., 2007).    

 
 
2. Acronyms 
 
AUC – Area under the receiving operating characteristic (ROC) curve. 

BAM diagram – Representation of biotic, abiotic, & movement characteristics in environmental 
space. 

BIOCLIM – Bioclimatic Envelope Algorithm  

BRT – Boosted Regression Trees 

CSV – Comma Separated Value  

DEM – Digital Elevation Model  

ENM – Ecological Niche Model/ling 

GAM – General Additive Model 
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GARP – Genetic Algorithm for Rule-set Prediction  

GBIF – Global Biodiversity Information Facility 

GIS – Geographic Information System. 

GLM – Generalised Linear Model 

GPS – Global Positioning System 

GME – Geospatial Modelling Environment 

GUI – Geographic User Interface 

KDE – Kernel Density Estimation 

MAR – Mean Annual Rainfall  

MaxEnt – Maximum Entropy  

RM – Regularisation Multiplier  

SANPARK – South African National Parks 

SDM – Species Distribution Model/ling  

TMNP – Table Mountain National Park  

UD – Utilisation Distribution  

 

 

3 – Terms used interchangeably  

Occurrence points, locality points, presence points – all referring to geo-referenced GPS points that 

indicate where the klipspringer was recorded in the study area. 

Probability of presence – probability of occurrence – probability of suitable habitat 

Presence – suitable  

Absence – unsuitable 

Isopleth – contour 

Training – calibration  

Vegetation community subtype – habitat subtype  
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CHAPTER ONE: GENERAL INTRODUCTION AND LITERATURE REVIEW 

1.1 Background and Introduction 

 

The klipspringer (Oreotragus oreotragus) population of the Cape Peninsula became extinct in about 

1930 (Skead, 2011). This extinction was rumoured to be the result of excessive hunting and the 

extensive habitat use by the Himalayan tahr (Hemitragus jemlahicus) (Skead, 2011). An effort to re-

establish a viable population of klipspringer on the Cape Peninsula mountains, of which the 

boundaries of Table Mountain National Park (TMNP) encompass this mountain range, was initiated 

in 1999 (Cheney pers. comm. 20121). A total number of 56 klipspringers were re-introduced in the 

Park in the period 1999 – 2005. Of these, five pairs were released in June 1999 (SANParks 

Scientific Services, 2010), nine individuals in July 1999 (SANParks Scientific Services, 2010), 25 

individuals in October 2004 (Marell, n.d.) and six pairs in October 2005 (Marell, n.d.). All these 

individuals were supplied by CapeNature (SANParks Scientific Services, 2010; Marell, n.d.).  

One of the agreements between South African National Parks (SANParks) and CapeNature was to 

report on the success of the re-introduction programme (Cheney pers. comm. 2012; Palmer pers. 

comm. 20132). Consequently, a postgraduate study was initiated in 2005 to determine the habitat 

availability and carrying capacity for the klipspringer in TMNP (Cheney pers. comm. 2012). This 

study was however abandoned in 2007, making the continuation of this research vital. This initial 

study was adapted in the current study and the focus shifted to habitat availability, which is in 

essence habitat suitability, and the distribution of this potential suitable habitat for the klipspringer in 

the Park. The completed research would provide Park management with crucial information on how 

the released animals dispersed, and what habitat is probably suitable for klipspringer. This 

knowledge in return can guide Park management in their management decision-making.  

Five of the introduced individuals were originally collared with global positioning system (GPS) 

collars to track their movement, however, some of them have died over the years and for others the 

operating machines of the collars have since stopped functioning (Cheney pers. comm. 2012). As a 

result, Park management have lost track of the movement of the collared individuals. Consequently, 

a follow-up study on where klipspringer individuals have established themselves was needed 

together with what their preferred habitat conditions are in TMNP, as well as an approximation of 

where those suitable habitat conditions exist in the Park. Such knowledge would be useful for the 

long-term conservation of klipspringers in the Park. By constructing a Geographic Information 

System (GIS) model which incorporates presence data and key environmental factors, it can be 

                                                
1 Mr Chad Cheney, Environmental Information Systems Officer – Table Mountain National Park.  
2 Mr Guy Palmer, Scientific Manager: Biodiversity – Cape Nature Scientific Services. 
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determined where these suitable habitats occur across the boundaries of the Park (Gross et al., 

2002; Rotenberry et al., 2006).  

Through the course of time since the re-introduction, most occupied territories of the klipspringers 

have become known to Park management, however not all suitable habitats across the Park have 

been identified through modelling and mapping. By employing species-specific habitat suitability 

models the potential distribution of suitable habitats for the klipspringers can be estimated. A 

popular tool for such modelling is the maximum entropy (MaxEnt) tool which will be used in this 

study (Phillips et al., 2006; Phillips & Dudik, 2008). Ultimately this modelling process will assist in 

understanding how klipspringers utilise their habitat and have adapted in a fynbos habitat, as no 

published research is available for klipspringers in fynbos. In addition, home range analysis can also 

be performed to provide further understanding of how the klipspringers in TMNP utilise their habitat 

(Worton, 1989). Therefore, this study used home range analyses to derive an estimate of the 

minimum and maximum home range size for the klipspringers of TMNP. Home range studies for 

klipspringers in the Fynbos Biome are also lacking, as no literature on such analyses could be found 

on scientific databases. Home range analysis, however, will not be the primary focus of this study 

but rather habitat suitability modelling.  

  

1.2 Klipspringer ecology 

1.2.1 General description and geographic distribution 

 

Klipspringer is an Afrikaans word that can be directly translated as “rock jumper”, although the 

English name is not in use. This common name is attributed to the general habitat klipspringers live 

in, namely rocky areas. Their hooves are specially adapted for great agility on rocky slopes (Skinner 

& Chimimba, 2005). 

Amongst African antelope, the klipspringer (Oreotragus oreotragus), is considered to have the 

widest geographical distribution which stretches from the southern Cape mountains of South Africa 

northwards to the highlands of Ethiopia (Norton, 1980). The specific subspecies under study is 

Oreotragus oreotragus subsp. oreotragus (Appendix A) which occurs in three provinces of South 

Africa namely Northern Cape, Western Cape and Eastern Cape (Skinner & Chimimba, 2005).  

O. oreotragus subsp. oreotragus has a yellow coat colour with brown speckles. Differences in coat 

colour amongst subspecies exist due to their area of origin (Skinner & Chimimba, 2005). A historical 

account of the early records published in Skead (2011), describe this animal’s elusive behaviour. 

The presence of this species has been observed on the Peninsula Mountains long before the 

establishment of European settlements on the lowlands of Cape Town. These historical records in 
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Skead (2011) make reference of the species being observed on Table Mountain, throughout 

Constantia and between Hout Bay and Cape Point.  

Klipspringers are territorial and each territory is commonly occupied by a breeding pair or family 

group of three (Skinner & Chimimba, 2005). Klipspringers generally form a long-lasting pair bond 

(Dunbar & Dunbar, 1980; Estes, 1991), and pairs are usually in close proximity to each other during 

their normal daily activities (Dunbar & Dunbar, 1980; Tilson, 1980). During the day a dominant male 

can often be seen standing on a vantage point within his territory (Skinner & Smithers, 1990). 

Furthermore, the boundaries of territories are often marked with dung heaps and the territory 

holding pair will do scent-marking within the territory as a means of informing intruders that the area 

is occupied (Skinner & Chimimba, 2005). The latter authors together with Druce et al. (2009), state 

that this species does not depend on water, and thus is adapted to live in arid conditions. It will 

however utilise water when it is readily available (Skinner & Smithers, 1990). 

Klipspringer family groups in Ethiopia were observed to have a territory size ranging from 6 – 8 ha 

(Dunbar & Dunbar, 1974). Locally, family groups in semi-arid Namaqualand and the medium rainfall 

southern Cape geographical areas, had a mean territory size of 49 ha and less than 15 ha 

respectively (Norton, 1980). This highlights the variation in territory size that can be found between 

different geographical areas of varying rainfall, and consequently varying availability of food. The 

present study considers the southern Cape as the closest approximation of TMNP and therefore it is 

assumed that territory sizes will also be less than 15 ha.  

 

1.2.2 Habitat preferences  

 

Klipspringers primarily inhabit open rocky terrain often in high mountainous areas (Norton, 1980; 

Estes, 1991; Skinner & Chimimba, 2005). Normally associated with such a terrain are low-growing 

shrubs, which serve as a food source and provide the klipspringer with clear views for spotting 

potential danger (Norton, 1980). Steep gorges and cliffs are mostly used to escape from predators 

(Norton, 1980), whilst the gentler rocky hill slopes are used for normal daytime activities like feeding 

(Dunbar & Dunbar, 1974). This species often moves to lower lying areas when food becomes 

scarce on the upper hills (Skinner & Chimimba, 2005), or in the case of individuals living in a desert 

canyon, they move to lower riverine areas to feed (Tilson, 1980). In summary, the distribution of the 

klipspringer in many areas that they occupy is patchy, because of their sparse and discontinuous 

habitat and specific habitat preferences for rocky areas (Skinner & Chimimba, 2005).  
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1.2.3 Feeding behaviour  

 

Klipspringers are selective feeders (Jarman, 1974), an ecological term given mostly to browsers 

(dicotyledonous plant material feeders or non-grass feeders) for being particular in the plant part 

they would feed on. Browsers would typically select the plant parts with the highest protein content 

(Zhaowen & Takatsuki, 1999) and least amount of fibre, thus the softer parts of a plant e.g. new 

foliage, flowers, and fruits (McNaughton & Goergiadis, 1986). Most small body sized antelope are 

categorised into a feeding style of being very selective of the plant parts they eat. This feeding 

behaviour results in them feeding on a wide range of plant species, and remaining in one vegetation 

type and in one small home range (Jarman, 1974). This author further describes the food items of 

animals with this feeding style as being scattered, small, distinct items separated by varying 

distances from the next similar specimen or acceptable item.  

The preference of klipspringers, and any other small herbivores, for high quality food, correlates with 

their physiology. They have a small gastro-intestinal system, thus have a shorter ingesta retention 

time, resulting in difficulty processing coarse vegetation (Van Soest, 1994; Hopcraft et al., 2009). 

Therefore, the limiting factor in a small herbivore’s diet is its gastro-intestinal size. Furthermore, 

small herbivores use and lose energy quicker than larger herbivores, and therefore should select the 

highest energy forage to fulfil their energy needs (Hopcraft et al., 2009).  

Norton (1984) found that klipspringers in the southern Cape and Namaqualand are almost 

exclusively browsers, as they feed on shoots, flowers and fruits of shrubs and herbs. Only one grass 

species was recorded in their diet, thus illustrating the insignificance of graze in this antelope’s diet 

at the two study areas. An earlier study where the stomach contents of a female klipspringer in 

Kenya were examined during the dry season, found that this individual also fed mostly on 

dicotyledonous plant species occurring within its area of occupancy, with only 1.5% of grasses in its 

diet (Qvortrup & Blankenship, 1974). However, Dunbar (1979) found that klipspringer in Ethiopia 

included grasses in their diet almost throughout the year with a higher percentage being consumed 

during the wet season. This author highlighted the behavioural changes of different individuals in 

different ecosystems. This occasional alteration in diet means that the klipspringer can be described 

as an adaptable mixed feeder as defined by Kay et al. (1980).  

The diet of the klipspringer includes a variety of shrubs from various fynbos genera, for example 

Osteospermum, Hermannia, Aspalathus, Muraltia, Cliffortia, Agathosma, Maytenus and Metalasia 

(Norton, 1984). Appendix B provides a detailed list of genera. These genera listed by the 

aforementioned author were highly favoured when in their growth phase of new young growing 

shoots and when in flower and bearing fruits (Skinner & Smithers, 1990; Skinner & Chimimba, 

2005). Mature leaves browsed on were those of species where the older leaves do not become hard 
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and leathery, whilst stems browsed on were only those that have a photosynthetic function as a 

result of reduced leaves e.g. Euphorbia species and Thesium species (Norton, 1984).  

Klipspringers rarely feed in one place or from one section of a plant. They prefer to move between 

preferred browsed species in proximity, taking bites all over a plant (Norton, 1984; Skinner & 

Smithers, 1990; Skinner & Chimimba, 2005). Klipspringers would spend longer periods of time 

feeding on flowers and fruits when these are available (Norton, 1984). Furthermore, according to the 

latter author, the amount of browse being consumed, i.e. number of species in a given period of 

time; varies depending on the vegetation type and territory size. Although a bigger territory might not 

necessarily have more palatable and preferred species, it however appeared in the Norton (1984) 

study that the bigger territory had a greater number of species being fed on. More studies over 

longer periods in the different seasons are needed however, before conclusive deductions can be 

drawn about the amount of species fed on at particular sites with different territory sizes.  

 

1.2.4 Activity patterns  

 

Klipspringers are diurnal species with feeding peaks early in the morning and late afternoon, with 

only brief feeding activity during the course of the day (Norton, 1981). Occasional klipspringer 

nocturnal activity is suspected (Skinner & Chimimba, 2005) as signs have been observed in the 

Cape Fold Belt Mountains (Palmer pers. comm. 2013). The klipspringer rests mostly during the day 

to escape day-time temperature highs (Skinner & Chimimba, 2005). Therefore, resting can be 

associated with non-feeding periods.  

In order to fulfil their high daily metabolic requirements as a species of small body size (Jarman, 

1974; Hopcraft et al., 2009), klipspringers would continue to feed even in extreme temperatures, 

whether hot or cold (Norton, 1980; 1981). A characteristic called “standing resting” often occurs 

throughout the course of the day but was predominantly recorded as occurring in the early morning 

and late afternoon (Norton, 1981), thus it relates positively to feeding.  

According to Norton (1981) females are often feeding for longer periods than males. This is 

associated with the increased energy requirements of females during times of gestation and 

lactation. In general klipspringer feed for fewer hours per day than most other antelope species. 

Furthermore, fluctuations in feeding times and activity patterns are positively correlated with the 

availability and distribution of preferred browse, and relates to each individual’s nutritional 

requirement (Norton, 1981). 
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1.3 Conservation status 

 

Klipspringers are ranked number nine on the “Species of Special Concern” list for the Cape 

Peninsula and Table Mountain National Park (Rebelo et al., 2010). Its global IUCN Red List status is 

however categorised as “Least Concern” (IUCN, 2014). This species’ extinction on the Peninsula 

mountain range and the consequent re-introduction onto the Cape Peninsula makes it an important 

species to monitor and study.  

 

1.4 Home range analysis  

 

Ecologists and protected area managers are often interested in knowing the home range of a 

species. Home range analysis assists in better understanding the spatial extent of the collected 

presence data and consequently the areas inhabited by a species (Keating & Cherry, 2009). A home 

range is defined as an area that an animal population would occupy and use for their daily activities 

like feeding and reproduction (Getz et al., 2007). It is often difficult to define the exact extent of the 

home range of an antelope species because of its mobility, but an estimate can be derived from 

known data. Particularly, presence data used in habitat suitability studies can be useful in deriving a 

density estimate of the distribution of a species, and consequently its home range and utilisation 

distribution (UD) (Getz & Wilmers, 2004). The utilisation distribution is the percentage of area an 

animal utilises, e.g. 50% area of core activity or 95% area of active use, represented by 

isopleths/contours that demarcate those areas (Getz et al., 2007).  

 

1.5 Niche concepts 

 

Three major niche concepts have been used by ecologists. With the developments in niche theory 

over the years, these niche concepts can be classified as traditional and modern niche concepts. 

This section will discuss these concepts from their earliest stage to their current status. Niche 

concepts will furthermore be discussed in terms of the biotic, abiotic movement (BAM) diagram and 

how these concepts pertain to the study (Figure 1).  

 



7 
 

1.5.1 Traditional niche concepts 

 

The earliest niche concepts used were the Grinellian niche, Eltonian niche and the Hutchsonian 

niche. The Grinellian niche (Grinnell, 1917) is interpreted as that part of the habitat with the right 

environmental conditions that would enable a species to survive and produce offspring. Its emphasis 

therefore is on the habitat of a species. The Eltonian niche refers to the specific role a species fulfils 

in an ecosystem and consequently in its community (Elton, 1927), which therefore relates this 

concept to an animal’s size and the food web it is part of. This niche is therefore essentially based 

on the food web. The Hutchinsonian niche concept (Hutchinson, 1957), defines a niche as those 

multi-dimensions of environmental gradients, including resources, that fulfil a species’ daily needs to 

live successfully. Therefore, like the Grinnellian niche, the Hutchinsonian niche also refers primarily 

to the habitat of a species. Furthermore, the Hutchinsonian niche concept is more encompassing, 

and is therefore the niche concept largely used in species distribution modelling (SDM) (Kearney & 

Porter, 2009). Species distribution modelling has been developed as a means to provide ecological 

insight into the space that a species uses, as well as to predict the distribution of this space across a 

landscape (Elith & Leathwick, 2009). This occupied and used space is equivalent to a species’ 

niche. Attempts for niche clarification, however, did not stop with the Hutchinsonian niche of 1957. 

Further definitions of a niche have been developed although these definitions do relate to the three 

major niche concepts mentioned above. 

  

1.5.2 Modern niche concepts 

 

Soberon & Nakamura (2009) provided a recent description of three types of niches, which builds on 

the work of Connell (1961). These are the fundamental niche, potential niche, and realised niche.  

Fundamental niche refers to that combination of abiotic conditions that exist at a particular place and 

time to allow a species to occupy that space, and permits positive population growth. Potential niche 

refers to a subset of the fundamental niche that the species would actually occupy. Lastly, the 

realised niche, being similar to the Eltonian niche, is a smaller section of the potential niche, as a 

consequence of biotic interactions.  

Connell (1961) illustrated how interspecific competition between two barnacle species can reduce 

one species’ fundamental niche and thereby give rise to its realised niche. Since a species needs a 

combination of abiotic and biotic factors (resources) to survive in a particular area, the aim would be 

to predict and map such an area where this overlap exists, i.e. the realised niche. The biotic, abiotic, 

movement diagram illustrates this overlap, which results in the realised niche (Figure 1).  
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In order to determine the extent and location of available niches, niche modellers develop models. 

The aim of the modelling process can be described as per the BAM diagram shown in Figure 1 

(Soberon & Peterson, 2005; Soberon & Nakamura, 2009). Circle A refers to the area where abiotic 

conditions (e.g. temperature and rainfall) are perfect for the species to survive (Soberon & Peterson, 

2005).  In geographic space it corresponds with the fundamental niche of a species (Soberon & 

Peterson, 2005; Peterson & Soberon, 2012). Circle B represents the area that has the correct biotic 

or interspecific conditions (e.g. resources, predators, disease) for the species’ existence. It must be 

noted that the negative factors in B, such as competitors, will be in moderation to still allow the 

species to have viable populations (Soberon & Peterson, 2005). The area where A and B overlaps, 

i.e. G (the sum of Go and Gi) is considered the realised niche in a geographic space (Soberon & 

Peterson, 2005).   

Circle M refers to the area in which movement of the species is not restrained and is accessible over 

periods of time (Peterson & Soberon, 2012), without barriers to movement and colonisation 

(Soberon & Peterson, 2005). The actual area of distribution, also known as the occupied geographic 

area or Go (Soberon & Nakamura, 2009; Peterson & Soberon, 2012), is the area of overlap 

between the three areas and therefore the area where individuals of a population can be viable. 

Therefore, Go corresponds to the geographical distribution of the species (Soberon & Peterson, 

2005), which is generally the area desired to model. Establishing which areas are Go is not always 

the ultimate goal of a modelling exercise. Any of the overlaps or niches from the BAM diagram can 

be used by the species distribution modeller to address the specific question/s raised in the study 

being conducted. The goal of this study was to determine the areas where the combination of abiotic 

and positive biotic factors (resources) exists in the Park without determining how accessible these 

potentially suitable areas are. Lastly the overlap denoted as Gi, is an area with the right biotic and 

abiotic conditions, that can be potentially occupied, but which is inaccessible to the species 

(Soberon & Nakamura, 2009; Peterson & Soberon, 2012).  
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Figure 1: The BAM diagram explaining the three major components in ecological niche modelling. Circle A = 
the right abiotic conditions, B = the right biotic conditions, M = the areas accessible to the species. Go = the 
occupied geographic area where occurrence of the species is expected; Gi = the area that can be potentially 
occupied provided it becomes accessible to the species in future (adapted from Soberon & Peterson, 2005). 

 

 

As a result of Go being the only area that can support a viable population, more absences than 

presences can be recorded in a geographical area. Figure 1 also shows some noteworthy 

absences: a1 – where the species is absent because that area is inaccessible; a2 – lack of biotic 

factors; a3 – the abiotic conditions are not favourable; and a4 – the correct abiotic and biotic 

conditions do not exist there (Sillero, 2011; Peterson & Soberon, 2012). Furthermore, absences can 

also exist within the predicted occupied area (Go), i.e. a species can occur partially although the 

conditions allow it to occupy any space within Go (Soberon & Nakamura, 2009; Peterson & 

Soberon, 2012).    

Often absence data are lacking in research as a result of the difficulty in obtaining absence data 

accurately (Hirzel et al., 2002). Three common reasons for absences are failure to detect individuals 

despite the fact that the animal was present; historical events that caused a species’ absence even 

though the habitat is suitable; and true habitat unsuitability (Hirzel et al., 2002). Soberon & 

Nakamura (2009) highlighted that all absences are informative and important to incorporate into the 

modelling process when the aim of the model is to determine an occupied area of distribution (Go).   

As circles A, B and M are essential to be included in a SDM, or where the goal is to estimate Go, the 

question to consider is how to obtain data for these areas. Data for abiotic variables e.g. climate, 
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temperature, topography etc. are the easiest to obtain (Soberon, 2010), as these are available on 

local government databases as well as from independent organizations, e.g. weather station data 

from the South African Weather Bureau Service database. Data for biotic variables are not easily 

available, as estimations of the specific parameters in B require large-scale observations over large 

spatial extents (Soberon, 2010) which can be time consuming and accompanied with high costs. M 

can be estimated by taking bio-geographical features into consideration, or alternatively by 

analysing models on the dispersal of individuals of a species (Soberon, 2010). Ultimately, an 

understanding of these niche concepts will assist in the improved interpretation of results obtained 

from species distribution modelling.  

 

1.6 Species distribution modelling  
 

There is no general consensus on the approach to niche modelling and distribution modelling 

concepts, as modelling is open to interpretation by the scientist and hence differ between studies 

(Jimenez-Valverde et al., 2008; Soberon & Nakamura, 2009; Peterson & Soberon, 2012). Sillero 

(2011) and Elith & Leathwick (2009) consider both SDM and ecological niche modelling (ENM) as 

one concept because definitions of SDM and ENM mostly overlap. This conclusion is further 

supported by Elith & Graham (2009) who define a species distribution model as a model that 

explains a species’ distribution through the use of environmental and geographic information. In 

addition, Soberon & Nakamura (2009), who define the usage of an ecological niche model as a tool 

to estimate the distribution of suitable areas for a species based on where the species was 

observed to occur (presences) or not occur (absences), also support this conclusion. Therefore, 

within this current study the specific modelling will be referred to as species distribution modelling 

instead of ecological niche modelling. Primary assumptions of species distribution modelling are that 

species are at equilibrium with their environment and that the relevant environmental gradients were 

sampled adequately (Elith & Graham, 2009; Sillero, 2011).   

A habitat suitability map (Figure 2) for the klipspringer in TMNP will be the outcome of this research. 

Habitat suitability maps are used to illustrate areas where the species is likely to occur. The 

occurrence of the species in an area is based on areas that are ecologically similar to those where 

the species was observed (Soberon & Peterson, 2005). The habitat suitability map prediction is the 

result of the occurrence records plus environmental variables, and the specific algorithm used 

(Figure 2).  

There are two types of models in SDM, namely correlative models and mechanistic models. 

Correlative models link environmental variables and species occurrence data to SDM’s through GIS 

and statistical tools (Kearney & Porter, 2009), to predict an environment suitable for the species. 
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Mechanistic models on the other hand use functional trait data of a species, together with 

environmental variables, to predict habitat suitability (Kearney & Porter, 2009). A correlative 

modelling approach will be followed in the current study. One such a correlative model is the 

maximum entropy (MaxEnt) species distribution model which will be used in this study. The use of 

MaxEnt in SDM has become popular over other machine learning methods, as it has proven to 

provide robust predictions of a species’ geographic distribution (Phillips et al., 2006; Wisz et al., 

2008; Elith & Graham, 2009; Merow et al., 2013). These other SDM methods include Generalised 

Linear Models (GLM) and General Additive Models (GAM) (Guisan et al., 2002); Bioclimatic 

Envelope Algorithm (BIOCLIM) (Beaumont et al., 2005); DOMAIN (Carpenter et al., 1993); BIOMOD 

(Thuiller et al., 2009); Genetic Algorithm for Rule-set Prediction (GARP) (Anderson et al., 2003) and 

Boosted Regression Trees (BRT) (Eskildsen et al., 2013) to mention a few.  

 

 
Figure 2: Species distribution modelling summary (Long, 2011). 

 

 

1.6.1 Maximum Entropy (MaxEnt) modelling of a species’ geographic distribution 

 

MaxEnt is a multi-purpose machine learning-tool (Phillips et al., 2006), that models a species’ 

geographic distribution based on geo-referenced points where the species has been observed to 

occur. These occurrence points together with environmental variables are used as input for MaxEnt. 

The choice of environmental variables is a guideline for habitat suitability as they provide insight into 

aspects that would likely influence suitability of a site for a species (Araujo & Guisan, 2006; Phillips 

et al., 2006; Pearson, 2007). The MaxEnt modelling tool is based on estimating the probability 

distribution with the maximum entropy which is the distribution that is most spread out, or closest to 

uniform (Phillips et al., 2006). MaxEnt modelling is known as a presence-only modelling technique 

as it uses occurrence points recorded via a GPS. In the current study the occurrence points were 
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obtained from individual klipspringer sightings or signs of its presence in an area. The probability 

distribution estimation is based on constraints and features, the latter being the environmental 

variables themselves or functions thereof. These environmental variables represent information that 

is known, and are therefore useful in the probability distribution modelling of the target distribution of 

suitable habitat. The constraints are the error bounds for the predicted probability distribution and 

are mathematically derived from the environmental variables (Phillips & Dudik, 2008).  

 

As mentioned above, the environmental variables used in MaxEnt, named “features”, can be the 

variable itself or a function of it. From these features, MaxEnt generates response curves. Six 

feature types exist in MaxEnt. These feature types, as described by Phillips & Dudik (2008), Elith et 

al. (2011), and Merow et al. (2013) are:  

1. Linear feature, referring to the variable itself and the constraint is the mean of a variable across 

the study area.  

2. Quadratic features are the square of the variable thus this variable is constrained by the variance.  

3. Product features use the product of two variables that is constrained by the covariance.  

4. With threshold and hinge features a threshold is applied with the constraint being that values 

above the threshold are close to the observed value. Threshold features (stepwise function) models 

an arbitrary stepwise response once the threshold is reached while hinge features (linear function) 

fits a forward or backward arbitrary hinge response once the threshold is reached.  

5. Discrete features refer to categorical environmental data, such as vegetation type used in the 

current study. With categorical features the variable is categorised into a specific number of 

categories that is present in the variable. A value of 1 is assigned where the specific category in that 

feature is present and a 0 where a specific category is absent. For example, the vegetation layer 

used in this study has 14 categories each representing a vegetation community or a vegetation type. 

When the model is run a value of 1 would be assigned for all the cells where e.g. ericaceous fynbos 

is present and 0 where ericaceous fynbos is absent and a probability distribution for this category 

will be calculated accordingly.  

 

For a positive prediction, the specific constraints applied should be satisfied, i.e. the mean, variance, 

covariance etc. of that environmental variable should be close to values where an occurrence point 

was recorded (Phillips & Dudik, 2008). It is important to note that the cell values of an environmental 

variable where the species is recorded are matched within error bounds of the constraints, i.e. it is 

matched approximately and not matched exactly (Merow et al., 2013). The number of occurrence 

points guides the choice of feature types used. If more than 80 occurrence points exist, the auto 

features option in MaxEnt (which automatically chooses feature types based on the sample size) will 

incorporate all the features (Phillips & Dudik, 2008). 
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Although MaxEnt only requires presence data, it can also process absence data making it a 

relatively flexible method (Phillips et al., 2006). MaxEnt also has the ability to use both continuous 

variables (derived from measured values) and categorical variables (derived from a limited number 

of distinct values). The importance of each variable, i.e. the extent to which a variable influences the 

outcome, can also be determined through MaxEnt’s jackknife tool (Phillips et al., 2006). In particular 

the jackknife tool’s outcome shows which variable has the highest gain (gain = a measure of 

goodness of fit) when used in isolation, therefore which variable contains the most useful 

information. In reverse it can also show which environmental variable reduces gain the most when 

being omitted, which in turn also reflects the contribution of each variable (Phillips, 2006). 

Furthermore, the regularisation parameter setting (a log-function) in MaxEnt minimises the chances 

of overfitting, i.e. when the predicted suitable habitats match the occurrence data too closely 

(Phillips et al., 2006; Phillips and Dudik, 2008; Elith et al., 2011). This is important since an overfitted 

model does not provide a good representation of other areas where the species can potentially 

occur, i.e. such a model does not provide much additional information. The regularisation parameter 

can be varied, and the most ecologically meaningful output can be visually inspected, as 

Radosavljevic & Anderson (2014) have done. 

  

The probability of presence at a site cannot be determined from presence data only; the algorithm 

requires the use of absence data as well (Elith et al., 2011; Merow et al., 2013). In studies such as 

the present study where no absence data are available, MaxEnt uses background data or pseudo 

absence data (Phillips et al., 2006). Background data are generated randomly by the MaxEnt model 

and the number of points is user specified. In essence this background data are raster cells or pixels 

that contain values representing the environmental conditions present in that pixel (since the 

environmental conditions present in the study area are represented as continuous raster layers of 

specified pixel or cell size). 

 

Maximum entropy is rooted in the second law of thermodynamics (Phillips et al., 2006) which 

specifies that in the absence of outside influences, processes moves towards maximum entropy. Its 

application to machine learning and specifically probability distribution estimation stems from the 

work of Jaynes (1957) and was further adapted by Phillips et al. (2004) to be applied to species 

distribution modelling. Maximum entropy can be interpreted as a means of getting the best 

probability distribution after all constraints were taken into consideration.  

 

As mentioned above, MaxEnt uses environmental data and occurrence data to determine the 

distribution of suitable habitat for a species within a specified area. All environmental data are in the 

form of raster layers which consist of pixels of a specified cell size. Each cell or pixel has a value 

assigned to it which represent the information for a specific variable at a specific location e.g. for a 
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variable rainfall, each cell will contain the amount of rainfall (in mm) that specific area (based on its 

position in the study area) receives. When the occurrence points are overlaid on the raster layers, 

one or more points will fall within a cell. MaxEnt then uses the cell value of each cell that has an 

occurrence point in it to calculate the mean (or one of the other five possible feature types) for that 

specific variable. This average value is what will be used to identify an area as suitable or not. 

Basically MaxEnt will use that average value to look for all other cells in the study area (those with 

occurrence points in it as well as those with no occurrence points in them) that has a value close to 

the average cell value within some specified constraints (Phillips & Dudik, 2008). This process is 

repeated for all environmental variables and a probability of occurrence map is created with a 

probability score between 0 and 1 given to each cell. This score indicates the probability that the 

study species can be present there based on the combination of suitable environmental conditions 

that exist within that specific cell (Figure 3). The cell values represented in the final map will be 

those of maximum entropy within the bounds of the constraints for each variable. Using MaxEnt’s 

logistic output, a presence site would have a probability score of 0.5 and higher (Phillips & Dudik, 

2008). A score closer to 1 indicates high occurrence probability and those lower than 0.5 indicate 

lower occurrence probability (Figure 3).   

 
 

 

Figure 3: Probability of occurrence map as produced in MaxEnt. Red indicates high occurrence probability 
and blue low occurrence probability. The training and test occurrence points used are shown in white and 
purple respectively (Phillips, 2006). 
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1.6.2 Environmental variables  

 

In species distribution modelling, multiple environmental variables can be included (Merow et al., 

2013). The choice of variables considered relates to the klipspringer’s ecology and are those closely 

associated with the observed presence of the species. These include topographic variables, climatic 

variables and vegetation type, amongst others (Table 1). Topographic variables include altitude, 

slope and aspect (Appendix C). Slope is important as daily activities may vary along a gradient. The 

higher and steeper slopes (including cliffs and gorges) are useful for escaping predators whilst 

feeding can take place along the entire gradient (Dunbar & Dunbar, 1974). The klipspringer’s 

general preference for open rocky and high mountainous areas makes elevation an important 

variable to include in the model training. Whether klipspringers prefer warmer north facing or cooler 

south facing slopes is currently unknown and therefore including aspect as a variable would be 

useful to identify if there is any correlation. Rainfall is linked to a klipspringer’s territory size (Norton, 

1980). Coupled with rainfall is the availability of their dietary plants as a result of the vegetation type 

that can establish and grow under the study area’s climatic and edaphic conditions. The distance 

from the urban edge becomes important when attempting to understand the influence of 

urbanisation on a species (Blank & Blaustein, 2012).   

 

The model will essentially identify areas in geographical space which have the same, or similar, 

combinations of environmental features as the existing klipspringer occurrence points. The 

environmental features used consist of a combination of continuous (e.g. altitude) and categorical 

variables (e.g. vegetation communities). GIS layers will be created for each environmental variable. 

Ultimately a species’ niche will be reconstructed with these environmental layers and species 

occurrence data (Soberon & Peterson, 2005).  
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Table 1: Environmental variables that potentially affect klipspringer distribution within TMNP. Some of the 
layers for these variables are in raster format (i.e. as an image and therefore pixel size is relevant) whilst 
others are shape files in vector format produced at a specific ratio/map scale. 

Variable Spatial resolution of layers Source Motivation 

Image/raster 
pixel size (m)  

Ratio 
scale 
(vector)  

Topographic variable: 
Elevation/Altitude  

10x10 m   City of Cape Town 
(CoCT) 10 m Digital 
Elevation Model (DEM) 

Species generally prefer high 
areas and therefore essential to 
know its preferred heights 
(Skinner & Chimimba, 2005). 

Topographic variable: 
Slope  

10x10 m    CoCT – derived from the 
DEM 

Steep vs. gentle slope activity.  
These are used differently for 
different purposes e.g. feeding 
and escaping predators. 

Topographic variable: 
Aspect  

10x10 m   CoCT – derived from the 
DEM 

Distinction between preference of 
warmer N-facing slopes or cooler 
S-facing slopes.  

Climatic variable: 
Mean Annual Rainfall  
(MAR) 

1x1 km  
 

 WordClim (Hijmans et 
al., 2005) 

Affects territory size. Availability of 
young shoots. Influence of 
droughts.  

Vegetation type 
(communities) 

 1: 10 000 TMNP vegetation 
community map based 
on the work of Cowling 
et al. (1996).  

Preferred food. Different 
vegetation communities and 
which microclimatic conditions of 
each vegetation community are 
preferred. 

Distance from   
urban edge 

 1: 10 000 TMNP – Use Zones 
Classification (TMNP 
Planning Department) 

Important to know what is the 
influence of urbanisation on the 
movement of individuals and the 
safest distance from the urban 
edge.  

 

 

1.6.3 Model evaluation  

 

Model evaluation is necessary to determine how well the chosen model performed (Elith & 

Leathwick, 2009; Merow et al., 2013). In MaxEnt a subset of the occurrence data are withheld from 

the training data and are used for model evaluation, known as the test data, which were not used in 

training the model (Phillips et al., 2004). This set of occurrence data comes from the same set of 

data that were used to calibrate the model, however, using a setting in MaxEnt, random test 

percentage, the total set of data are split into training data and test data depending on the 

percentage specified. The data split is user defined e.g. 70% training and 30% test (Phillips et al., 

2006) or 60% training and 40% test (Phillips & Dudik, 2008). Peterson et al. (2008) emphasised that 

probability distribution predictions involve two errors that can occur. The first is omission errors 

(presences/suitable areas that are not predicted correctly, also known as false negatives) and the 

second is commission errors (absences/unsuitable areas that are incorrectly predicted also known 
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as false positives).  

The area under the receiver operating characteristic curve (ROC AUC) is commonly used to 

measure performance of a machine learning modelling method (Bradley, 1997; Elith et al., 2006; 

Phillips & Dudik, 2008). This model evaluation tool is threshold independent and ranking based. It 

specifically measures the quality of a ranking of sites (Phillips & Dudik, 2008), which gives an 

account of a model’s ability to classify an area as suitable or unsuitable (Bradley, 1997). This 

calculation is normally done with absence data; however, in cases where absence data are lacking, 

background data or pseudo-absences can be used to calculate the AUC (Phillips & Dudik, 2008). 

Since MaxEnt is a presence-only modelling tool it uses background data, which represents 

environmental conditions present in the study area and chosen at random (Phillips & Dudik, 2008). 

During a MaxEnt model simulation, model evaluations will be carried out to test for omission and 

commission error. An omission error curve as well as a ROC AUC curve is produced as part of the 

output. The AUC score ranges from 0 to 1, with a score of 0.5 indicating the prediction equates to a 

random assumption and a value of 1 indicating a perfect prediction (Elith et al., 2006). According to 

these authors, any score below 0.5 indicates poor predictive performance, which is even worse than 

a random guess.  

The test data are chosen at random, similar to the background points. A good model will have low 

omission error on the test data (Anderson & Gonzalez, 2011) and is therefore able to correctly 

predict presence sites as present/suitable. In essence the AUC will allocate a higher ranking to 

randomly chosen presence sites compared to randomly chosen absence (background) sites 

(Phillips et al., 2006). Thus, the AUC is based on how well the model performed in distinguishing 

between presence points and background points.  
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1.7 Research question, aim and objectives of the current study 

 

Research Question 

Which parts of Table Mountain National Park are potentially suitable habitats for the klipspringer? 

 

Aim 

The main aim of this study is to produce a distribution range map that shows the potentially suitable 

habitats for the klipspringer, (Oreotragus oreotragus subsp. oreotragus) within TMNP, through the 

use of a species distribution modelling tool.  

 

Objectives 

- To collect and source occurrence data for the klipspringers in the Park.  

- To determine the home range extent of the klipspringer populations.  

- To identify environmental variables that can explain klipspringer distribution. 

- To produce environmental layers that can be used in a species distribution model.  

- To run a species distribution model using the maximum entropy modelling tool. 

- To determine the distribution of all suitable habitats for the klipspringer in TMNP.  
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CHAPTER TWO: MATERIALS AND METHODS  

1. Study area 

1.1 Location 

 

Table Mountain National Park is situated in the Western Cape Province of South Africa (Figure 4), 

within the Fynbos Biome. Its grid coordinates are 18° 18' 12" E, -33° 54' 40" S for the top left corner 

and 18° 30' 3" E, -34° 21' 33" S for the bottom right corner. The Park’s boundaries include the entire 

Cape Peninsula mountain range which stretches from Signal Hill in the north to Cape Point (south-

western most tip of Africa) in the south. It is divided into three sections, namely northern section, 

central section and southern section. For some instances when data needed to be in a projection, 

Transverse Mercator (Lo) 19 was used as some layers were already in this projection (central 

meridian: 19.00000000, scale factor: 1.00000000,  Cape datum). In other instances the WGS 1984 

UTM Zone 34 S projection was used.  

 

1.2 Geology  

 
The underlying geology of the Fynbos Biome varies in rock composition, consisting of sandstone, 

quartzite, granite, shale and limestone (Mucina & Rutherford, 2006). These rock types are all 

present on the Cape Peninsula with the most prominent being quartzitic sandstone and granite 

outcrops (personal observation). Geologically classified as Cape Supergroup rocks, the Table 

Mountain subdivision of the Cape Supergroup is present in the study area, and forms part of the 

Cape Fold Belt Mountains (Compton, 2004). Dominating within the Table Mountain Group is the 

Peninsula Formation which consists entirely of quartzite (Mucina & Rutherford, 2006).  

The Peninsula Formation supports the most dominant vegetation type in TMNP, namely Peninsula 

Sandstone Fynbos. This vegetation type grows on nutrient poor, acidic lithosol soils which originated 

from Ordovician sandstones of the Table Mountain Group (Mucina & Rutherford, 2006). In contrast, 

the northern-most section of TMNP, namely Lions Head and Signal Hill, is dominated by nutrient 

rich, clayey soils (Cowling et al., 1996) derived mostly from shale and granite. At Lions Head and 

Chapman’s Peak, the underlying granite within the study area is exposed.  
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Figure 4: Table Mountain National Park (TMNP) situated in the Fynbos Biome of South Africa. 
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1.3 Climate  

 
The study area is located in a winter rainfall region, and can be best described as Mediterranean 

with hot dry summers and cool wet winters (Goldblatt & Manning, 2002). Mean annual rainfall varies 

from 520 – 1690 mm per year, with the peak rainy season occurring between May and August. 

Temperatures vary between a mean daily maximum of 25°C in summer and mean daily minimum of 

7.2°C in winter (Mucina & Rutherford, 2006). According to these authors, the climate is largely 

influenced by the south easterly wind in the summer months which results in the well-known “table 

cloth”, and consequently results in rainfall at higher altitudes and southern and eastern slopes.  

 

1.4 Vegetation 

 

The vegetation of the study area is described as fynbos, as it falls within the Fynbos Biome. This 

Biome occupies most of the Cape Fold Mountain Belt (Mucina & Rutherford, 2006). Furthermore, it 

forms part of the Cape Floral Region. This floral region’s profusion of plant diversity led to its 

proclamation as a world heritage site in 2004 by the United Nations Educational, Scientific and 

Cultural Organisation (UNESCO, 2004). The fynbos vegetation type dominating the study area is 

Mountain Fynbos, specifically Peninsula Sandstone Fynbos. Renosterveld is present to a lesser 

extent as well as remnant pockets of Forest and Coastal Thicket (Cowling et al., 1996).  

 

1.4.1 Cape Peninsula vegetation types and communities 

 

Three major vegetation types occur on the Cape Peninsula, namely Cape Fynbos Shrubland being 

synonymous with Peninsula Sandstone Fynbos (92%), Renosterveld Shrublands and associated 

grasslands (>5%), and Forest and Thicket (±3%) (Cowling et al., 1996). Table 2 provides an 

account of the major vegetation communities of the Cape Peninsula as well as their structure and 

typical environment. Eleven fynbos vegetation communities exist within the study area namely dune 

asteraceous fynbos, coastal restioid fynbos, wet restioid fynbos, upland restioid fynbos, sandplain 

proteoid fynbos, mesic oligotrophic proteoid fynbos, mesic mesotrophic proteoid fynbos, wet 

oligotrophic proteoid fynbos, wet mesotrophic proteoid fynbos, ericaceous fynbos, and 

undifferentiated cliff communities (Table 2 & Figure 5). All the aforementioned vegetation 

communities form part of the Peninsula Sandstone Fynbos vegetation type. Additionally it would 

include wetlands and their associated wetland plant species.  

Renosterveld and its associated grasslands species occurs on nutrient rich clay-soils of shale and 

granite origin. Typical species include shrubs from the Asteraceae family, geophytes, as well as an 
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understory of grasses (Mucina & Rutherford, 2006). Forest and thicket species are largely broad-

leaved evergreen trees and shrubs. Furthermore these two vegetation types are considered to be 

species poor at both local and regional scales (Cowling et al., 1996). Plant species growing in forest 

and thicket have a preference for moist habitats and therefore occur on fire protected kloofs 

(ravines), scree slopes, stream banks and on the coastal Margin (Cowling et al., 1996; Mucina & 

Rutherford, 2006).   

 

1.4.2 Peninsula Sandstone Fynbos  

 

This vegetation type is largely confined to the Cape Peninsula of the Western Cape Province of 

South Africa. It predominantly stretches from Lions Head and Table Mountain in the north to Cape 

Point in the south and is found on altitudes of 20-1086 m.a.s.l. (Mucina & Rutherford, 2006). Its 

original extent is estimated to be 23 000 ha (Government Gazette, 2011).  

Peninsula Sandstone Fynbos is considered least threatened as 90% of it is statutorily conserved in 

TMNP (Mucina & Rutherford, 2006; Government Gazette, 2011). It is estimated that 91% of this veld 

type remains in its natural form and it supports about 140 endemic plant species and 66 Red Data 

List plant species (Government Gazette, 2011). Alien infestations pose a threat to the continual 

existence of this vegetation in its pristine state (Roura-Pascual et al., 2009; Foxcroft & McGeoch, 

2011). Factors cited as leading to this vegetation type’s transformation include urban sprawl and 

alien vegetation particularly pine plantations (Mucina & Rutherford, 2006).   

Structurally it is described as a medium dense, tall proteoid shrubland over a dense moderate tall, 

ericoid-leaved shrubland. Thus it consists of proteoid, ericaceous and restioid fynbos, together with 

asteraceous fynbos. It grows on gentle to steep slopes. The vegetation is well adapted to its nutrient 

poor, acidic substrate (Mucina & Rutherford, 2006). 
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Table 2: Major vegetation communities of the Cape Peninsula (adapted from Cowling et al., 1996). 

Vegetation 
community 

Structural 
characteristics 

Common species  Environment  

Dune 
asteraceous 
fynbos  

Low ericoid shrubland Metalsia muricata, Ischyrolepis 
eleocharis, Searsia glauca, Phylica 
ericoides, Euclea racemose, Passerina 
paleacea, Ficinia lateralis,  Helmuthia 
membranacea, Otholobium fruticans, 
Ehrharta villosa 

Recent calcareous coastal 
dune sands; MAR = 678 mm; 
mean slope = 17.0°; mean 
aspect = S 

Coastal scree 
asteraceous 
fynbos  

Low-medium ericoid and 
broad-leaved shrubland 

Coleonema album, Euclea racemosa, 
Tarchonanthus camphoratus, maytenus 
oleoides, Eriocephalus africanus, 
Pentachistis curviflora, Felicia fruticosa, 
Colpoon compressum, Cassine 
piragua, Olea europaea subsp. Africana 

Sandstone scree coastal 
slopes, subject to strong salt-
laden onshore winds; MAR = 
656 mm; mean slope = 30°; 
mean aspect = S 

Wet restioid 
fynbos  

Low restioid herbland Ischyrolepis cincinnata, Tetraria 
cuspidate, Elegia filacea, 
Thamnochortus lucens, Cliffortia 
subsetacea, Erica imbricata, 
Leucadendron laureolum, Pentachistis 
curviflora, Restio quinquefarius, Restio 
bifurcus  

Shallow seasonally 
waterlogged sands on 
sandstone at low altitudes; 
MAR = 634 mm; mean slope 
= 13°; mean aspect = WSW  

Upland restioid 
fynbos  

Low restioid herbland Thamnochortus nutans, 
Chondropetalum ebracteatum, Ursinia 
nudicaulis, Restion bifidus, Ehrharta 
setacea, Watsonia borbonica subsp. 
Borbonica, Penaea mucronata, 
Cliffortia ruscifolia, Erica hispidula, 
Chondropetalum mucronatum 

Shallow seasonally 
waterlogged sands on 
sandstone; MAR = 1404 mm; 
mean slope = 32°; mean 
aspect = SW 

Sandplain 
proteoid fynbos 

Medium-height proteoid 
shrubland with a low 
ericoid and restioid 
understorey 

Thamnochortus erectus, Metalasia 
muricata, Euclea racemosa, 
Carpobrotus edulis, Searsia laevigata, 
Leucadendron coniferum, Searsia 
glauca, Eriocephalus africanus, 
Agathosma imbricata, Diosma hirsute 

Old marine (deep and well-
drained) sands, occasionally 
on calcrete or limestone; 
MAR = 804 mm; mean slope 
= 16°; mean aspect = S   

Mesic oligotrophic 
proteoid fynbos  

Medium-height proteoid 
shrubland with a low 
ericoid and restioid 
understorey 

Thamnochortus lucens, Elegia 
stipularis, Metalasia muricata, Phylica 
imberbis, Elytropappus scaber, Salixis 
axillaris, Struthiola ciliata, Ischyrolepis 
cincinnata, Hypodiscus aristatus, 
Tetraria eximia  

Shallow, leached sands on 
sandstone; MAR = 765 mm; 
mean slope = 21°; mean 
aspect = SW 

Mesic 
mesotrophic 
proteoid fynbos 

Medium-height proteoid 
shrubland with an ericoid 
understorey 

Erica plukenetti, Penaea mucronata, 
Protea lepidocarpodendron, Cliffortia 
falcata, Elytropappus scaber, Searsia 
lucida, Phylica imberbis, Passerina 
vulgaris, Leucadendron salignum, 
Cliffortia stricta 

Mainly deep, sandy loams 
associated with colluvium or 
granites on lower mountain 
slopes; MAR = 947 mm; 
mean slope = 30°; mean 
aspect = SSW   

Wet oligotrophic 
proteoid fynbos 

Medium-height proteoid 
shrubland with an 
ericaceous and restioid 
understorey 

Anthospermum galioides, 
Leucadendron xanthoconus, Penaea 
mucronata, Elegia racemosa, Bobartia 
gladiata, Erica plukenetii, 
Leucadendron salignum, Searsia 
lucida, Otholobium fruticans, Myrsine 
Africana 

Shallow, leached sands on 
sandstone; MAR = 1168 mm; 
mean slope = 30°; mean 
aspect = SSW 

Wet mesotrophic 
proteoid fynbos 

Medium-height proteoid 
shrubland with an ericoid 
understorey 

Searsia tomentosa, Myrsine africana, 
Penaea mucronata, Widdringtonia 
nodiflora, Protea nitida, Searsia lucida, 
Leucadendron xanthoconus, Stoebe 
cinerea, Maytenus oleoides, Erica 
plukenetii 

Mainly deep, sandy loams 
associated  colluvium or 
granites on lower mountain 
slopes; MAR = 1136 mm; 
mean slope = 30°; mean 
aspect = SSE 

Ericaceous 
fynbos  

Low ericaceous and 
restioid shrubland 

Penaea mucronata, Hypodiscus 
aristatus, Erica hispidula, 
Leucadendron xanthoconus, 
Pseudopentameris macrantha, 
Corymbium glabrum, Erica plukenetii, 
Clutia polygonoides, Thamnochortus 
nutans, Tetraria cuspidate 

Shallow, leached, organic-
rich sands at high altitude 
subject to intermittent 
condensation from orographic 
cloud in summer; MAR = 
1197 mm; mean slope = 30°; 
mean aspect = SSW  
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Undifferentiated 
cliff communities  

Variable, mainly low and 
sparse ericoid shrubland  

Cliffortia ruscifolia, Helichrysum 
cymosum, Cullumia ciliaris, 
Lampranthus falciformis, Cliffortia 
odorata, Ehrharta ramosa subsp. 
Aphylla, Peucedanum galbanum, 
Anthospermum galioides, 
Anthospermum aethiopicum, 
Pelargonium cucullatum 

Steep to vertical sandstone 
cliffs; MAR = 1168 mm; mean 
slope = 47°; mean aspect = 
SSW 

Forest and 
Thicket  

Low-medium (thicket), or 
medium to tall (forests) 
closed-canopy, broad-
leaved formation with a 
sparse understorey 

Rapanea melanophloeos, Diospyros 
whyteana, Cassine peragua, 
Knowltonia capensis, Myrsiphyllum 
scandens, Kiggelaria Africana, Olea 
capensis, Olinia ventosa, Secomone 
alpine, Chionanthus foveolatus 

Colluvium or granite derived 
soils on wet slopes or fire 
protected kloofs (ravines) and 
coastal margins; MAR = 992 
mm; mean slope = 30.0°; 
mean aspect = SSW  

Renosterveld and 
associated 
grasslands 

Low grassland/low-
medium ericoid and 
broad-leaved shrubland 

Searsia lucida, Chrysocoma coma-
aurea, Helichrysum patulum, 
Anthospermum spathulatum, 
Helichrysum cymosum, Salvia africana-
caerulea, Hyparrhenia hirta, Mohria 
caffrorum, Searsia glauca, 
Merxmuellera stricta 

Sandy loams on clay subsoil, 
shale or granite derived; MAR 
= 826 mm; mean slope = 24°; 
mean aspect = SW  

Wetlands  Medium-height ericoid 
shrubland with an ericoid 
and restioid understorey  

Penaea mucronata, Berzellia 
abrotanoides, Platycaulos compressus, 
Leucadendron laureolum, Berzellia 
lanuginosa, Pentaschistis curviflora, 
Osmitopsis astericoides, Watsonia 
tabularis, Psoralea pinnata, Restio 
quinquefarius 

Seepage sites with shallow 
medium depth sandy soils 
with high organic matter over 
sandstone bedrock; MAR = 
779 mm; mean slope = 12°; 
mean aspect = SSW  
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Figure 5: Vegetation communities (adapted from Cowling et al., 1996) clipped to only the boundaries of Table 
Mountain National Park (TMNP,) as represented before some of these communities were transformed either 
by urbanisation, agriculture, and Pine plantations. 
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2. Data collection 

2.1 Occurrence data 

 
The first batch of klipspringer locality data was collected by Mr Emile Marell (former post graduate 

student at the Nelson Mandela Metropolitan University who first initiated this research) and his 

assistants during the years 2004 – 2007. The occurrence data were collected by intermittent patrols 

between November 2004 and September 2007. Collected data included that of dung middens, 

recognisable spoor or tracks, and visual observations. The first targeted areas that were previously 

surveyed for the species’ presence were the known territories. These are the territories established 

in the Cape of Good Hope section of TMNP (also referred to as Cape Point), those at the Swartberg 

Mountains above Simons Town, as well as those on the Back Table section of TMNP (Figure 4). 

Furthermore, information gained from hiker sightings were also used as a guide to the areas to be 

surveyed for signs of the species’ presence (Cheney pers. comm., 2013).  

 

In addition, other locality data were obtained from the collared klipspringers that had been 

reintroduced into TMNP in October 2005. The klipspringers, collared with Hawk 105 GPS satellite 

collars, were of both sexes as the aim was to release the individuals in breeding pairs (Marell, n.d.). 

GPS collars were used as they are useful devices for tracking and monitoring mountain antelopes 

(Haller et al., 2001). The GPS collar has a radio receiver which receives information from satellites 

from which an animal’s location (i.e. latitude and longitude) can be determined and downloaded onto 

another device or sent directly to the researcher (Mech & Barber, 2002). 

 

Occupancy was a key concept for collecting the second batch of presence data in this study. 

Occupancy describes a site in a landscape where individuals of a species are present (Mackenzie & 

Royle, 2005). According to these authors, one of the approaches to determine occupancy of a 

species is to apply stratified random sampling. Consequently, before sampling commenced, the 

study area was categorised according to vegetation communities and further stratified according to 

altitude and slope. The aforementioned stratification ensures that the sampling effort would extend 

beyond only sampling within the known territories. Within ESRI’s ArcMap (ArcGIS 10.1) the polygon 

layers for slope and altitude were classified into categories (Figure 6) to assist in the planning of the 

field survey. This was done to ensure that a variation of slope and altitude was surveyed for 

klipspringer occupancy as well as all the vegetation communities. These three layers were merged 

together as one layer from which vegetation community subtypes (or habitat subtypes) were created 

to guide the random stratified sampling. 

 

The established klipspringer population occurs permanently within the boundaries of TMNP. 

Therefore, the entire Park can be positively sampled for occupancy instead of just use. Use is 
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defined by Mackenzie (2005) as the animals only being present in the area of interest during a 

certain period of time in a season whilst occupancy refers to the species being permanently present 

in some portions of the study area over an entire season/-s. A general assumption of occupancy 

studies is that the system is closed to changes in species occupancy while repeated surveys are 

being conducted (Mackenzie & Royle, 2005). Therefore in cases where the species is not detected, 

it will either be a direct result of the sampling method, the sampling effort (Mackenzie, 2005) or the 

individuals having remained in their territories and therefore were not detected outside their 

territories.   

 

Other potential sources for klipspringer locality data were also explored. These included the Global 

Biodiversity Information Facility (GBIF) which is a global database for species distribution data.  No 

distribution data for the klipspringer in the study area was available in this database. A second 

exploration was the citizen scientist platform for uploading species sightings namely I-spot. Five 

sightings were found and the GPS coordinates of these sightings were provided by the creator of 

this platform, Dr Tony Rebelo from the South African National Biodiversity Institute. These sightings 

were added to existing presence records. Lastly seven locality records from a National Diploma: 

Nature Conservation student from the Cape Peninsula University of Technology, Heather Edwards, 

were included in the occurrence layer of klipspringer observations in the southern section of the 

Park. The latter locality points were obtained in 2010 as part of the former student’s unpublished 

Work Integrated Learning mini-research project that she carried out in the southern section of the 

Park.  

 

2.2 Survey routes  

 
Survey routes were designed within ArcMap (ArcGIS 10.1). Shapefile layers of the footpaths and 

roads in TMNP as well as the park boundary were used to overlay aerial images of the study area. 

The aerial images were used to study and inspect the terrain to ascertain information such as the 

ease of access to areas. It was also used to select survey routes that are a representative portion of 

the study area. In order to ensure surveys were carried out in all different habitats represented in the 

study area, a vegetation community subtypes layer had to be created.  

 

The vegetation shapefile representing the vegetation communities or vegetation types within Table 

Mountain National Park was used as the base for preparing the habitat subtypes layer. These 

subtypes are essentially all the vegetation communities at a variation of slope and altitudinal ranges. 

A 10x10 m Digital Elevation Model (DEM) raster file was used to determine altitude and slope. Slope 

was derived from the DEM using the Spatial Analyst tool of ArcGIS 10.1. This ensured a separate 

layer for the before mentioned attribute to be used in the preparation of the vegetation subtypes. 
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Altitude was calculated from the DEM layer. The raster layers for slope and altitude were converted 

to vector layers before they were joined with the vegetation community shapefile. These three layers 

(vegetation, altitude and slope) were then merged within ArcMap (Figure 6). Before the merge the 

slope layer was categorised into five categories (0-10; 11-20; 21-30; 31-40, and those greater than 

40 degrees). Altitude was categorised into five categories namely, below 0 (as a result of a water 

body recorded in the layer), 1-250; 251-500; 501-750; and 751-1084 m.a.s.l. 

 
 

 

Figure 6: The process of creating habitat subtypes, whereby three shapefiles namely vegetation communities 
(a), altitude (b) and slope (c) were merged to produce the habitat subtypes at a variation of slope and altitude. 

 

 

The merged layer was then clipped to the exact boundaries of TMNP. At this point a total of 65623 

habitat subtypes (i.e. combinations of altitude, slope and vegetation communities) existed. As it is 

impossible to sample such a vast amount of subtypes, steps had to be taken to reduce this number. 

In an effort to reduce the number of subtypes those smaller than one hectare were eliminated. This 

was done by creating a new layer of only the subtypes greater than one hectare which reduced the 

number significantly to only 2412. Following this was the elimination of the extreme steep slopes as 

they were considered inaccessible to climb by humans. Higgins et al. (1999) described steep slopes 

as those that had a slope greater than 40 degrees. Thus subtypes with slopes of 41 – 85 degrees 

were eliminated.  

  

The next step was to use a summarise function to determine how many polygons of each unique 

subtype existed within the entire study area. This was done using the dissolve tool of ArcGIS, which 

combines polygons with the same attributes. Consequently, the number of subtypes was reduced to 
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119 (Figure 7). The frequency tool was used afterwards to provide an improved summary of the 

vegetation community subtypes (Figure 8).  

 
 

 
Figure 7:  A number of vegetation community subtypes in the northern section of Table Mountain National 
Park. The first number shows the category or class for slope and the second number the class for altitude. 
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Figure 8: The frequency tool of ArcGIS, used to produce a frequency table of the number of unique habitat 
subtypes (119) after the dissolve tool of ArcGIS combined the polygons with the same attributes.  

 

 

With a more manageable number of subtypes left that can be potentially included for survey routes 

to intersect them; the next step was to decide how to go about sampling i.e. traversing the study 

area for klipspringer occurrences. To reduce trampling of vegetation it was decided to sample along 

existing footpaths (hiking trails). Thus, the footpaths layer played a vital part in the planning process. 
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A total of 13 survey routes were designed across all habitat subtypes, and based on what was 

deemed representative of the different habitats within the study area (Figure 9). Five routes were in 

the southern section, three in the central section, and another five in the northern section of TMNP 

(Figure 9 and Appendix D).  

 
 

 

Figure 9: The thirteen survey routes in Table Mountain National Park. 
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Using the editing tool within ArcMap, each survey route was split into different segments as it was 

observed that a single route was crossing many different subtypes (Figure 10). This was done to 

ascertain the exact extent of each habitat subtype being surveyed for klipspringer occurrences. After 

each survey route was split into its numerous segments, the habitat subtype and distance walked in 

each of them was recorded in an Excel spread sheet (Appendix E). Some segments crossed some 

of the eliminated polygons (those <1 ha, >40 degrees slope, or outside the park boundary) since the 

Park’s footpaths crossed many different types of areas (Figure 10). Thus, sampling the deleted 

polygons was inevitable; especially taking into consideration the numerous steps taken to get to the 

final 119 subtypes (described above). 

 
 

 

Figure 10: An example of a survey route in Table Mountain National Park crossing many different vegetation 
community subtypes as well as blank areas that were occupied by the deleted subtypes 

. 
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The segments were summarised using the pivot table tool in Microsoft Excel (Table 3). This 

summary provided the total distance walked in each vegetation community. Furthermore, the 

original vegetation community layer was used to determine the proportion of each of the 14 

vegetation communities or vegetation types within TMNP (Table 4). In order to establish whether 

sufficient sampling effort had been put into each vegetation community or type in relation to its size 

in the Park, a ratio was calculated by dividing the proportion of each vegetation community or type 

by the distance walked in each of them (Table 3). A ratio close to 1 would indicate sufficient 

sampling, therefore most vegetation communities received sufficient sampling except for ericaceous 

fynbos and wet oligotrophic proteoid fynbos. Ericaceous fynbos already had a high number of 

occurrence points recorded within it (i.e. dense cluster of points in the southern section) therefore no 

additional survey effort was added in this vegetation community. For wet oligotrophic proteoid 

fynbos on the other hand no additional survey effort was possible due to logistical constraints. 

 

Fourteen field surveys were carried out between 23 July 2014 and 24 November 2014. Thus, 

surveys largely occurred in the winter and spring seasons. Essential materials used included a 

Garmin eTrex 30 GPS device and a printed A3 map of each section of the study area, each 

containing a survey route (Appendix F). These maps were gridded with latitude-longitude 

coordinates to assist with navigation in the field and thereby ensuring the exact survey route was 

followed. Furthermore, these gridded maps also served to assist in pinpointing and marking a 

location where an individual was sighted a distance away from the observer and thereby an 

occurrence point could still be recorded. Locality points were recorded for individual sightings, 

recognisable spoor and dung middens or dung pellets (Appendix G). Where a number of spoor 

records were close to one another, the points recorded were spaced out according to the discretion 

of the researcher to what was deemed reasonable. All relevant data were recorded onto a field data 

sheet. This field work added a total of 57 additional occurrence records in eight vegetation 

communities (eleven habitat subtypes with some points within the deleted polygons, recorded in 

Table 5). Figure 11 shows the distribution of the aforementioned points together with the collar data 

and other data sourced either from Ispot, CPUT alumnus, or the manually collected points from the 

previous researcher.  
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Table 3: The total distance walked in each major vegetation community or vegetation type of Table Mountain 
National Park as well as the ratio that this distance walked represents for each vegetation community. 
 

Vegetation community or type Total length ( km) Ratio 

Mesic oligotrophic proteoid fynbos 34.77 0.80 

Mesic mesotrophic proteoid fynbos 12.27 1.74 

Wet restioid fynbos 6.61 1.86 

Sandplain proteoid fynbos 3.33 2.11 

Wet mesotrophic proteoid fynbos  6.89 0.84 

Dune asteraceous fynbos 3.52 1.60 

Ericaceous fynbos 8.77 0.46 

Forest and Thicket  0.7 5.63 

Wet oligotrophic proteoid fynbos 8.94 0.42 

Renosterveld and associated grasslands 1.88 1.77 

Undifferentiated cliff communities 1.93 1.41 

Wetlands 0.10 8.23 

Coastal scree asteraceous fynbos  0.15 5.38 

Upland restioid fynbos  0.41 1.45 

 
 

Table 4: The proportion of each vegetation community or vegetation type within Table Mountain National Park 
from largest to smallest. 

Vegetation community or type Area (ha) Area ( km²) Proportion in study area 
(%) 

Mesic oligotrophic proteoid fynbos 7064.128 70.641 27.8 

Mesic mesotrophic proteoid fynbos 5409.735 54.097 21.3 

Wet restioid fynbos 3121.441 31.214 12.3 

Sandplain proteoid fynbos 1785.895 17.859 7.0 

Wet mesotrophic proteoid fynbos  1470.84 14.708 5.8 

Dune asteraceous fynbos 1429.898 14.299 5.6 

Ericaceous fynbos 1028.094 10.281 4.0 

Forest and Thicket  1001.164 10.012 3.9 

Wet oligotrophic proteoid fynbos 948.674 9.487 3.7 

Renosterveld and associated grasslands 845.571 8.456 3.3 

Undifferentiated cliff communities 693.335 6.933 2.7 

Wetlands 213.283 2.133 0.8 

Coastal scree asteraceous fynbos  202.303 2.023 0.8 

Upland restioid fynbos  149.02 1.49 0.6 

Vlei (water bodies included as part of shapefile) 32.515 0.325 0.1 

Total 25395.9 253.958 100 
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Table 5: Number of occurrence points recorded in the different vegetation communities and habitat subtypes 

in the 2014 survey of klipspringer occurrence in Table Mountain National Park. 

Vegetation community or type Habitat subtype No. of points 

Coastal asteraceous fynbos Coastal asteraceous fynbos 1 2  1 (Marginal with  mesic 
oligotrophic proteoid fynbos) 

Ericaceous fynbos  Ericaceous fynbos 4 4 2 

Ericaceous fynbos Ericaceous fynbos (deleted polygons) 12 

Forest and Thicket  Forest and Thicket (deleted polygon) 1 (Marginal with ericaceous 
fynbos) 

Mesic oligotrophic proteoid fynbos Mesic oligotrophic proteoid fynbos 2 3  2 

Mesic oligotrophic proteoid fynbos Mesic oligotrophic proteoid fynbos 2 2  12  

Mesic oligotrophic proteoid fynbos Mesic oligotrophic proteoid fynbos 1 2  3  

Mesic oligotrophic proteoid fynbos Mesic oligotrophic proteoid fynbos 3 2  1  

Mesic oligotrophic proteoid fynbos Mesic oligotrophic proteoid fynbos 4 4  1  

Mesic oligotrophic proteoid fynbos Mesic oligotrophic proteoid fynbos (deleted 
polygons) 

5  

Mesic mesotrophic proteoid fynbos Mesic mesotrophic proteoid fynbos 2 2  2  

Mesic mesotrophic proteoid fynbos Mesic mesotrophic proteoid fynbos 3 3  1  

Mesic mesotrophic proteoid fynbos Mesic mesotrophic proteoid fynbos (deleted 
polygons) 

9  

Undifferentiated cliff communities Undifferentiated cliff communities (deleted 
polygon) 

1 (Marginal with ericaceous 
fynbos) 

Wet oligotrophic fynbos  Wet oligotrophic fynbos 1 4  3  

Wet restioid fynbos  Wet restioid fynbos 2 2  1 (Marginal with mesic 
oligotrophic proteoid fynbos) 

Total  16  57 
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Figure 11: All occurrence point data used in this study recorded in Table Mountain National Park. The Park 
boundary refers to the general outline of the Park, but does not show the exact portions within this general 
boundary that is actually protected land under Table Mountain National Park. 
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3. Data analysis 

3.1 Home range analysis 

 
The kernel density function of the Geospatial Modelling Environment (GME) software was used to 

determine the possible extent of the klipspringer’s home range. Kernel density estimation (KDE) was 

developed from the histogram, as a means of smoothing the frequency distribution (Figure 12) 

(Duong, 2001) KDE output presents a probability density surface as contours. This probability 

density estimate is largely dependent on the bandwidth (width of a kernel), also referred to as the 

smoothing parameter (Worton, 1989; Hemson et al., 2005), as well as on the two dimensional 

(latitude-longitude) occurrence points. Several ways of calculating the bandwidth size are available 

in GME, which are based on algorithms that calculate the density as well as incorporating error 

(Table 6).  These include the smoothed cross validation (SCV), biased cross-validation (BCV), a 

second BCV algorithm (BCV2), plug-in estimator (PLUGIN), least squares cross validation (LSCV) 

and the likelihood cross validation (CVh). All bandwidth algorithms in the GME are calculated as 

rotated bivariate kernels, except CVh which are computed as a univariate kernel (Rudeen, 2012). 

Horne & Garton (2006), recommended CVh as a good bandwidth estimator to use, taking into 

consideration its statistical properties which to some extent deal with autocorrelation, and location 

acquisition bias which ultimately results in better estimates of a species’ utilisation distribution. In 

GME, a fixed kernel algorithm is applied for all bandwidth algorithms, thus all occurrence points are 

weighted equally with the same smoothing parameter (Beyer, 2014). This approach contrasts with 

an adaptive kernel where bandwidths are varied based on the density of points (Worton, 1989).   

All six of the above mentioned bandwidth algorithms were tested on the klipspringer data in order to 

decide on the best algorithm to use (Beyer, 2014) (Figure 13). The SCV and CVh bandwidth 

provided the best output (i.e. not over generalised, Figure 13a and 13b) of the klipspringer’s home 

range, followed closely by PLUGIN (Figure 13c). The BCV, BCV2 and LSCV overestimated the 

home range (Figures 13d, e and f). The output raster cell size was tested for values of 0.5; 5 and 10 

m. The cell size was found to have no effect on the output based on visual inspection of how the 

output contours fit the location points (Figure 14). The output raster cell size was thus set at 10bm 

as this is the cell size of the DEM, and it matches the accuracy of the 1:10 000 layers too.  

GME has three kernel type options namely the Gaussian, quadratic, and uniform kernel. The default 

Gaussian kernel was used. Several isopleth runs were also conducted in GME to visualise the 

utilisation distribution (percentage area utilised) and decide on the optimal UD. These runs were 

conducted at the 50%, 60%, 70%, 75%, 80%, 85% and 95% contour level for the two bandwidth 

algorithms that gave best output. The optimal utilisation distribution was set at 50% for the bivariate 

kernel (SCV) and 80% for the univariate kernel (CVh). This decision was based on the contours that 

visually present the home ranges best.  
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Figure 12: An example of the conversion of the histogram to an optimally smoothed kernel density estimate. 
(Duong, 2001). 

 

 

Table 6: Bandwidth algorithms in GME and the type of kernel each of these were used as (adapted from 
Rudeen, 2012). 

Bandwidth 
algorithm 

Kernel 
type 1 

Kernel type 2 
(determines shape of 
kernel) 

Description of kernel type 2 

Smoothed cross 
validation (SCV) 

Gaussian Rotated bivariate Determined by the bandwidth of the X dimension, Y 
dimension and the covariance of XY. The rotated kernel 
is a result of the covariance of X and Y. 

Biased cross-
validation (BCV)  

Gaussian Rotated bivariate Determined by the bandwidth of the X dimension, Y 
dimension and the covariance of XY. The rotated kernel 
is a result of the covariance of X and Y.  

Second BCV 
algorithm (BCV2) 

Gaussian Rotated bivariate Determined by the bandwidth of the X dimension, Y 
dimension and the covariance of XY. The rotated kernel 
is a result of the covariance of X and Y. 

A plug-in estimator 
(PLUGIN) 

Gaussian Rotated bivariate Determined by the bandwidth of the X dimension, Y 
dimension and the covariance of XY. The rotated kernel 
is a result of the covariance of X and Y. 

Least squares cross 
validation (LSCV) 

Gaussian Rotated bivariate Determined by the bandwidth of the X dimension, Y 
dimension and the covariance of XY. The rotated kernel 
is a result of the covariance of X and Y. 

Likelihood cross 
validation (CVh) 

Gaussian Univariate Uses X dimension only. A circular kernel with the same 
dimension is created in all directions around each 
location.  
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Figure 13: Kernel Density Estimation (KDE) output for all six bandwidth algorithms of the Geospatial Modelling Environment (GME) tested on the same locality point 
data: SCV (a), CVh (b), PLUGIN (c), BCV (d), BCV2 (e) and LSCV (f). An increase in density is shown as the contours get darker (grey to black). 
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Figure 14: Kernel Density Estimation (KDE) output on three different cell sizes: 0.5x0.5 m (a), 5x5 m (b) and 
10x10 m (c) using the SCV bandwidth algorithm. Note that an increase in cell size does not result in any 
visible difference in the density estimation. 

 

 

GME is coded and runs simulations in the R programme language (R Core Team, 2013). Input is in 

the form of a point locality shapefile that has to be in the projected coordinate system for conducting 

a kernel density estimation. A kernel function (weighting function in the form of a normal curve) is 

placed over each locality point (Silverman, 1986; Worton, 1989) (Figure 12). The sum of all kernels 

at each locality point recorded gives an estimate of the density within the study area (Silverman, 

1986). The kernel density is produced as contour lines that give an indication of the total area in 

which the species possibly moves. Therefore, it gives an approximation of which areas the species 

might be occupying, although not observed at the time of data collection. It can be concluded that 

the KDE function provides a higher probability of occurrence. 

 

3.2 Data preparation for MaxEnt  

3.2.1 Occurrence data 

 

All occurrence points were recorded in an excel spreadsheet. A point layer file was created in 

ArcMap to visualise the distribution of locality points within the Park (Figure 15). This layer was also 

used for the home range analysis carried out. 

MaxEnt is sensitive to sampling bias (Phillips et al., 2009; Kramer-Schadt et al., 2013; Fourcade et 

al., 2014). In an attempt to reduce sample selection bias e.g. uneven sampling effort, a spatial 
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filtering approach was undertaken. The most noticeable bias in the occurrence points were in the 

collar data where a high number of points were recorded at the release sites before the species had 

spread out properly in their new area (Figure 15). The filtering approach applied entails reducing the 

number of points to one point per 10x10 m or 100 m² grid cell. This is similar to the one point per 

grid approach followed by Elith et al. (2010) to reduce dense clusters of points although they worked 

at a much larger scale. Thus all cells that had more than one occurrence point were highlighted and 

these extra points were deleted manually using the editing tool in ArcMap. This reduced the number 

of points from 845 to 608. Thereafter the point layer was converted to an Excel spread sheet.  Visual 

scrutiny of this Excel spread sheet revealed that some duplicate points existed, as a consequence 

of these points that would have been exactly on top of each other in ArcMap and therefore it would 

appear as one point per grid when in fact there are two. Existing duplicate points were deleted 

manually in Excel which further reduced the number of locality points to 591. To prepare the data for 

import into MaxEnt (version 3.3.3k), column headings in excel were set in the following order, in 

order for the MaxEnt Geographic User Interface (GUI) to read it: Species, Longitude, and Latitude. 

The spreadsheet was saved as a comma-delimited (comma separated value, csv) file.  
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Figure 15: All occurrence points (GPS collar and manually collected) within Table Mountain National Park.
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3.2.2 Environmental data 

 

All environmental variable raster layers have to be in the geographic coordinate system and be 

converted to ASCII files (.asc) in order to be used in MaxEnt. Furthermore, all layers need to have 

the same geographic extent as well as the same cell size. ArcMap (ArcGIS 10.1) was used to 

prepare all the necessary layers. As mentioned in Section 2.2 of this chapter, a 10x10 m DEM was 

used as the base for altitude and to derive slope as well as aspect from using the spatial analyst tool 

of ArcGIS (Appendix C). The original DEM layer was first clipped to the study area using the extent 

of an existing vector layer that represented the vegetation of the Cape Peninsula as created by 

Cowling et al. (1996) (Figure 16). Note that the vector layer that the DEM was clipped to, extend 

beyond the exact boundary of TMNP as this boundary is not one complete connected area, but 

rather consist of disjointed sections as shown in Figure 4.  

 

 

Figure 16: Clipping process of the Digital Elevation Model (DEM) to the general extent of the study area. A 
DEM (a) covering a greater area was clipped to the extent of a vegetation polygon layer (b) to produce a DEM 
for the study area (c).  

 

 

As the vegetation community layer was in polygon (vector) format, it had to be converted to a raster 

first before it was converted to an ASCII file. The majority rule was used when converting the 

vegetation community polygon layer into a 10x10 m raster. This is the only categorical variable and 

subsequently this has to be specified within the MaxEnt GUI. Average monthly rainfall data were 

sourced from the global climate database, WordClim (Hijmans et al., 2005), and prepared through 

masking and clipping it to the study area. The distance to urban edge layer was created using the 

euclidean distance tool in ArcGIS. A polygon layer representing the urban areas surrounding the 
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Park was used for this calculation (Appendix H). This layer had to be in a projection (used 

Transverse Mercator Lo (19)) for the euclidean distance to be calculated where after it was 

‘unprojected’ into ‘geographic projection’ for use in MaxEnt.  

Covariance among variables should be avoided in any statistical analysis (Field, 2005). MaxEnt is 

no exception (Kumar & Stohlgren, 2009; Boria et al., 2014), and when two variables are highly 

correlated with one another MaxEnt will use the one that is listed first and not incorporate the other 

variable to its fullest capacity in the model simulation. Thus variables were tested for spatial 

autocorrelation, specifically the relationship between the climatic variables and the topographical 

variables, as these were the variables most likely to be correlated. Spatial autocorrelation occurs in 

geographic space when environmental variables and geo-referenced locality points lack 

independence from one another (Legendre, 1993). A two tailed Pearson’s correlation (Field, 2005) 

was used in the statistics software, SPSS (IBM SPSS Statistics 22) to test for autocorrelation 

between all individual independent variables.  

Rainfall for each month showed over 50% correlation with altitude as well as with one another 

(Appendix I). With p<0.01 for the aforementioned variables (Appendix I), it indicates that there is a 

highly significant relationship between these variables. Altitude has a higher contribution to habitat 

suitability for klipspringers (Skinner & Chimimba, 2005) compared to rainfall and therefore rainfall 

was more likely to be excluded from the model. Before the final exclusion, however, a model was 

run with rainfall included and a second model without rainfall to test how model performance varies 

with rainfall included and excluded. Both these models were run at 1 km² as this is the resolution 

that the rainfall data was at and could therefore not be resampled into a smaller scale. AUC values, 

which indicates model performance, changed from 0.835 (when MaxEnt models were run with the 

monthly rainfall variables) to 0.751 (when MaxEnt models were run without the monthly rainfall 

variables). This further indicates that the model still performed well in predicting suitable habitat 

without the rainfall being included as a variable.  

 

3.2.3 Cell size/scale 

 

The grid cell size at which a species distribution model is run plays an important role, because when 

the cell size that environmental variable layers are prepared at, are too coarse, it might result in the 

loss of vital information, e.g. microclimatic conditions or specific topographical features and 

vegetation compositions. On the other hand, a grid cell size that is too fine might results in non-real 

patchiness (Francis & Klopatek, 2000). Model runs were carried out with four environmental 

variables at three different spatial scales to determine what the most appropriate cell size for this 

specific study should be. To do this the four environmental variables were prepared in ArcGIS at 
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three different cell sizes namely 10 m (initial cell size), 100 m and 1000 m using the raster 

resampling tool, which is based on the majority rule. The regularisation multiplier was kept at 

default; 1 and 10 replicate runs were carried out. From the MaxEnt output of AUC and omission 

rates, a cell size of 10 and 100 m gave better results (Figures 17 and 18). This was concluded from 

the lower AUC value at 1000 m (0.691) compared to the AUC value of the two smaller cell sizes 

which were both 0.893 (Figure 17). This is almost a 20% difference in model performance between 

the 10 m and 1000 m cell size as well as the 100 m and 1000 m cell size. The mean and standard 

deviation (red and blue line in Figure 17) for the 1000 m cell size moving closer to the random 

prediction (black line), indicates that this model performance is poorer than the other two models of 

smaller cell size.   

Omission error was also higher at 1000 m and departs from the predicted omission line (Figure 18). 

The 1000 m probability map also did not give the best visual output of the potential distribution of 

suitable areas, with almost no cells having a probability of greater than 70% and a larger 

questionable part of the Park appeared to be suitable or tending towards suitability from this output 

(Figure 19). The 10 m and 100 m cell size showed the suitable habitats in better detail; thus 

improving the ability to distinguish between areas with a high predicted probability of occurrence and 

those with a low predicted probability. Response curves for the two smaller cell sizes also showed in 

better detail which values of a particular variable, e.g. altitude, corresponds positively to a predicted 

presence and therefore suitable habitats (Figure 20). The 1000 m model’s altitude curve was over 

generalised thus showing underfitting and clear conclusions cannot be drawn on how the species 

responds to this variable.    

Additional considerations with regards to cell size, that will give sufficient information for the species 

under study, were done through incorporating the territory size of klipspringers. Norton (1980) 

studied the habitat and feeding ecology of klipspringer and recorded that territory size can be 

affected by the annual rainfall an area receives. For instance, in Norton’s Springbok study area, 

which is a semi-arid winter rainfall region receiving a mean annual rainfall (MAR) of about 160 mm, 

it was recorded that territory sizes can be up to 50 ha, whilst in Gamka (medium rainfall area with 

MAR of between 350 – 450 mm) the territory size was <15 ha. Therefore, for the Cape Peninsula, 

which receives a MAR of between 520 – 1690 mm, the territory size was reasoned to be smaller 

than 15 ha, about 10 ha and below. A simple calculation, using the 10 ha territory size, to determine 

the appropriate cell size that will capture all the environmental conditions in a Cape Peninsula 

klipspringer territory, was performed:  

10 000 m² x10 = 100 000 m²  

square root of 100 000 m² = 316 m; rounded off to 300 m.  
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A sufficient cell size would then be 300x300 m and below. Both the 10x10 m and 100x100 m cell 

sizes were tested and were shown to perform well. Consequently the cell size of 10x10 m was 

selected to match all environmental layers (rasters), as there was no clear impetus to generalise 

these data to 100x100 m for this modelling exercise. 
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Figure 17: The area under the receiving operating characteristic curve (ROC AUC) results for three models at cell size 10 m (a), 100 m (b) and 1000 m (c). These 
curves give a measure of a model’s ability to classify an area as suitable or not. Both AUC values for 10 m and 100 m were given as 0.893 (indicating good model 
performance) and 1000 m was given as 0.691, which is still better than random but not as good as the two smaller cell sizes. 
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Figure 18: Omission error for the three models at cell sizes 10 m (a), 100 m (b) and 1000 m (c).  An omission error close to the predicted omission (black line) reflects 
a good model. Clearly the 1000 m cell size had a higher omission error than what was predicted for that model and consequently was not such a good model.  
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Figure 19: Probability of occurrence maps for the 10 m (a) and 100 m (b) cell size were similar. In contrast the 1000 m (c) cell size over predicts the occurrence 
probability and therefore gives an incorrect display of suitable habitat.  
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Figure 20: The response curve for altitude at a cell size of 10 m (a) and 100 m (b) displayed the altitudinal range where a presence can occur more clear than what 
the 1000 m (c) cell size does which over-smoothed the response. 
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3.3 MaxEnt settings 

 
It is important to do more than one simulation on the MaxEnt model as the tool selects the points 

used for training and testing the model at random. Since each simulation generates different output 

results, the combined average of all the output results is used. The number of result replicates in 

MaxEnt has been limited to 10 as in Phillips (2006). The occurrence data was split into 70% training 

data and 30% testing data to evaluate the model. Background data was left at the default of 10000 

as in Phillips et al. (2006). Phillips & Dudik (2008) also found that this number of background points 

was sufficient for their occurrence points that ranged from two to 5822. Thus it is presumed that for 

the 591 occurrence points in this study, 10 000 background points would suffice as well. For the 

feature types, the auto features option was selected since more than 80 occurrence points are 

available and therefore the model will incorporate all features. In the study by Phillips & Dudik 

(2008) the default regularisation multiplier of 1 delivered good results on a number of presence data 

sets. A default regularisation value exists for each feature type, however, when choosing a value for 

the regularisation multiplier, that value is used instead of the default (Phillips et al., 2006; Warren & 

Seifert, 2011). To test the effect of different regularisation multiplier values this study ran six models 

at the following values: 0.25, 0.5, 1, 2, 4, and 7 at 10 replicate runs each. Results were inspected to 

decide which value presented the probability distribution best and are discussed in Chapter 4.  

 

Prevalence, the proportion of sites in which a positive observation of occurrence can be made 

(Phillips and Elith, 2013), was left at the default value of 0.5. A prevalence of 0.5 would mean that 

the species is likely to be found in 50% of the study area compared to not setting a prevalence 

value, which might indicate that the species can occur anywhere in the study area (Phillips and Elith, 

2013). Prevalence cannot be determined with occurrence data only (Phillips et al., 2006) and as a 

consequence only the probability distribution can be estimated. 

 

The MaxEnt parameter ‘threshold’ determines a value which allows a binary classification of suitable 

and not suitable habitat. Any value above the calculated threshold equates to suitable sites, and 

values below the threshold will indicate unsuitable habitat. MaxEnt model output provides threshold 

values in the “MaxEntResults.csv file” to select from. The two most common thresholds, namely 

minimum presence training logistic threshold and the 10 percentile training presence logistic 

threshold, was tested (Pearson et al., 2007; Escalante et al., 2013; Wakie et al., 2014). The former 

threshold is based on the lowest predicted value for any of the pixels with an occurrence record in it 

(Pearson, 2007). The latter threshold ensures that the predicted suitable habitat includes at least 

90% of the calibration data, i.e. 90% of the occurrence points has been correctly predicted as 

present and omission error does not exceed 10% (Young et al., 2011). 
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CHAPTER THREE: RESULTS AND DISCUSSION: HOME RANGE ANALYSIS 

 

The smoothed cross validation (SCV) and likelihood cross validation (CVh) bandwidth algorithm 

provided the best visual output for the specific set of occurrence data used and will be the only 

algorithms reported on in this chapter (Figures 21 and 22). Home range sizes from the SCV output 

ranged from about 3 km to 11 km across the study area. This equates to a 3 - 11 ha home range 

size. The univariate CVh bandwidth provided many smaller and more localised home ranges (Figure 

22). Home range size from the latter bandwidth algorithm ranged from 0.6 km to 2.5 km, which 

equates to a 0.6 - 2.5 ha home range size. These home ranges of less than 15 ha relates to the 

findings of Norton (1980) for a klipspringer home range in a similar habitat. Noticeable in the study 

by Norton (1980) was that the amount of rainfall an area received was directly related to a 

klipspringer’s territory size. For instance, in Norton’s Springbok study area, which is a semi-arid 

winter rainfall region receiving a mean annual rainfall of about 160 mm, it was recorded that territory 

sizes can be up to 50 ha, whilst in Gamka (medium rainfall with MAR of between 350 – 450 mm) the 

territory size was <15 ha. Therefore, for the Cape Peninsula, which receives a MAR of between 520 

– 1690 mm, the assumption is that the territory size will be much smaller than 15 ha. This makes the 

estimated home range and territory sizes in this study acceptable in the absence of other studies 

besides Norton (1980) to compare it with. Both SCV and CVh presented results which required 

visual inspection in order to establish the extents which were ecologically and biologically 

meaningful. 
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Figure 21: Estimated klipspringer home ranges from a kernel density estimation using the smoothed cross 
validation (SCV) bandwidth algorithm in the Geospatial Modelling Environment (GME). The contours reflect an 
increase in density distribution from light grey to black and have the typical shape as obtained from a rotated 
bivariate fixed kernel. 
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Figure 22: Estimated klipspringer home ranges from a kernel density estimation using the likelihood cross 
validation (CVh) bandwidth algorithm in the Geospatial Modelling Environment (GME). The contours reflect 
the shape obtained from a univariate fixed kernel.   
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After several isopleth runs on the SCV output, the 50% isopleth provided the most ecologically 

meaningful output results, although this still has to be interpreted with caution (Figure 23a). 

Isopleths greater than 50% included areas that visually would not be areas that klipspringers would 

roam into, namely the ocean and residential areas (Figure 23b). The 80% isopleth gave the best 

representation of the utilisation distribution when the CVh output was used (Figure 24b). Isopleths 

smaller than the 80% location density excluded some territories where klipspringer presences were 

confirmed in the 2014 survey, for example the territories on Elsies Peak above Fish Hoek (Figure 

24a). It is important to interpret these areas of core activity (50%) and active use (80%) as a guide 

to klipspringer utilisation rather than an absolute. 

 

 

 

Figure 23: Smoothed cross validation (SCV) bandwidth algorithm showing the 50% (a) and 80% (b) utilisation 
distributions. Note how the 80% contour extends, at places, beyond the Park boundary into residential areas 
and the ocean. 
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Figure 24: The KDE output using the likelihood cross validation (CVh) bandwidth presented results that can be interpreted as territories rather than home range 
extents, as shown by the 50% (a) and 80% (b) utilisation distributions. The 80% contours included more territories and thus gave a better representation of where 
klipspringers occur, unlike the 50% contour that excluded some known territories.  
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The kernel density tool estimates the probability of an animal occurring within an area based on the 

collected presence points (Worton, 1989; Seaman et al., 1999). Consequently, the number of points 

and the period of data collection play an important role in the output of any home range analysis. 

Thus, home range extents, using statistical software tools, are a direct reflection of the nature of the 

occurrence data.  

The smaller home ranges from the CVh output were interpreted as territories rather than home 

ranges and therefore useful to look at when interested in territories. For a more comprehensive 

picture of klipspringer home ranges the 50% utilisation distribution derived from the SCV can be 

used. Rudeen (2012) and Meck (2013) found that the CVh estimator produced the best ecologically 

meaningful home range estimates for their respective study species. Horne & Garton (2006) also 

found some promising output using CVh compared to the more common LSCV.  

A combination of abiotic and biotic conditions (food source in the form of dicotyledonous plants) 

exists at these 50% and 80% density distributions obtained from the home range analysis. 

Therefore, these areas can be described as the realised niche of the klipspringers (Soberon & 

Peterson, 2005; Soberon & Nakamura, 2009). It can also be assumed that predators (e.g. caracal 

(Caracal caracal)) would either be absent at some of these habitats or are found in small enough 

numbers for the klipspringer populations to still persist there.    

A drawback of GME is that it only has the option for fixed kernel methods. Worton (1989) highlights 

that the adaptive kernel with bandwidth algorithm LSCV is a better option to use when accuracy of 

the UD is important. However, Seaman & Powell (1996) found in their study that the adaptive kernel 

overestimates home ranges and consequently fixed kernels performed better. Similarly, Pebsworth 

et al. (2012) also found that a fixed kernel method performed well for their specific study whilst 

taking into consideration the ecology of their study species. Thus, the best KDE output is largely 

influenced by the specific set of data, the choice of bandwidth algorithm (smoothing parameter) as 

well as the biology and ecology of the species being studied.   

Deciding subjectively on the best smoothing parameter/-s after a number of analyses, is not 

uncommon in home range studies using KDE (Horne & Garton, 2006; Pebsworth et al., 2012). 

Statistical methods for calculating an optimum bandwidth is also given in Silverman (1986); Worton 

(1989); and Sheather (2004), but were not explored in this study because the home range analysis 

tool decided on, namely GME, comes with its own fixed options of bandwidths. Much emphasis is 

placed on the importance of choosing the most suitable bandwidth algorithm as this directly 

influences the probability density estimation (Seaman & Powell, 1996; Seaman et al., 1998; Hemson 

et al., 2005). Therefore within this current study all bandwidth algorithms in GME were explored. Cell 

size was found to have little effect on the output, except that a smaller cell size increases the 

running time.  
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Telemetry data are commonly used in home range analysis (Hemson et al., 2005; Getz et al., 2007; 

Pebsworth et al., 2012). This study used a combination of telemetry data and manually collected 

presence points. Of concern is that the collar data (three readings per day) from the five collared 

individuals were not collected for the same period of time: three weeks, one month, one month and 

two weeks, two months, and five and half months respectively. This was either as a result of death 

of an individual or battery failure. Consequently, some areas, e.g. the Swartberg Mountain chain 

above Simonstown to Smitswinkel Bay, had a higher concentration of points resulting from points 

being collected there for a longer period of time, which the KDE output reflected as an area of high 

utilisation even after the spatial filtering of one point per grid. Spatial filtering at a larger scale could 

probably have provided a better reflection of home ranges as it could have resulted in less clumping 

of points on the Swartberg Mountains. A second drawback is the lack of repeat sampling for the 

manually collected data. A “better” set of data for future use would be telemetry data collected in 

different seasons and for the same period of time in each season in order to give a better reflection 

of the home ranges of the Park’s klipspringer populations. 

Irrespective of the accuracy of the output, home range analysis is still a good way to represent 

occurrence data in geographical space. Home range analysis in return aids in understanding and 

interpreting the collected points and visualising the distribution of the focal species within their study 

areas. The use of home range analysis on the specific set of data also highlighted what should be 

done differently in a future study in order to obtain the best representation of the klipspringer home 

ranges in TMNP.  
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CHAPTER FOUR: RESULTS AND DISCUSSION: SPECIES DISTRIBUTION 

MODELLING  

 

The six models at different regularisation values (two below the default value of 1, and three above 

the default value) produced maps that broadly seem to resemble one another (Figures 25 and 26). 

However, closer visual inspection showed that as the regularisation value is increased (i.e. relaxing 

the constraints); the proportion of potentially suitable habitat also increased. This illustrates that 

lower RM values than the default can potentially underestimate the prediction and higher values can 

lead to an over prediction, as found by Radosavljevic & Anderson (2014), suggesting that the default 

RM is probably appropriate for this study. The two probability maps at lower RM than the default 

also show a strange model fit in the lower part of the southern section (Figure 25a and b), possibly 

due to the overfitting inclination that accompanies RM values lower than the default (Phillips et al., 

2006). Visual inspection of aerial images in that portion of the southern section could not reveal any 

particular topographical feature/-s that could be directly linked to the specific shape of that clear cut 

bands. From the default RM onwards (Figure 25c and Figure 26a – c) the possible tight overfit that 

created the strange bands in the lower part of the southern section started disappearing. This further 

supports that the lower RM values are not fitting for this study and the default RM onwards are 

better options to be considered for the best model after taking into consideration other factors. 

Figure 27 shows the response of klipspringers to altitude as an example with different RM values. 

When the RM values are set below the default, the response curves are complex and show detailed 

peaks and troughs that have no ecological meaning. As the RM values are set to values much 

larger than the default, the response curves over-smoothed the responses. The default RM value of 

1 would therefore suffice in this specific study. All response curves for all other variables showed 

similar response curves. The AUC values for all six models indicated good model performance 

(Table 7; Appendix J: Figures J1, J2 and J3), thus the choice of the “best” model could not be based 

on the AUC values, and is primarily based on the ability to provide ecological interpretation, on the 

shape of the response curve and the probability distribution maps. Using MaxEnt’s logistic output, 

the probability of presence of a species or habitat suitability is from 0.5 and higher (Phillips & Dudik, 

2008). These values are represented by the green, yellow, orange, and red colours (Figures 25 and 

26). The olive green to dark blue colour represents lower probabilities to complete absence (<0.5 – 

0) (Figures 25 and 26). A common trend was visible amongst these six maps on which areas had a 

probability of presence score of 0.6 and above, i.e. those indicated from yellow to red.
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Figure 25: The probability distribution of suitable habitat across the Park for the models at regularisation multiplier (RM) values of 0.25 (a), 0.5 (b), and default (1, c). 
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Figure 26: The probability distribution of suitable habitat across the Park for the models at regularisation multiplier (RM) values of 2 (a), 4 (b) and 7 (c).  
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Figure 27: Response curves for the six models showing the response of klipspringers to altitude at different regularisation multiplier (RM) values: RM 0.25 (a), RM 0.5 
(b), RM 1 (c), RM 2 (d), RM 4 e) and RM 7 (f).  Red indicates the mean response over 10 replicate runs and blue is the mean +/- one standard deviation.
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Table 7: AUC values for the six models at different regularisation multiplier values. 

Model   Regularisation 
multiplier 

Mean AUC on test data 
over 10 replicate runs 

Mean +/- one standard 
deviation on test data 
over 10 replicate runs 

1: All five variables  0.25 0.906 0.007 

2: All five variables 0.5 0.911 0.006 

3: All five variables  1 0.903 0.008 

4: All five variables  2 0.904 0.009 

5: All five variables 4 0.893 0.011 

6: All five variables 7 0.883 0.008 

 

 

The omission error (suitable areas not predicted by the model) was close to the predicted omission 

error (Figure 28). This indicates that the model performed well as there will be very little omission 

error (Phillips, 2006). Deviations higher and lower than the predicted omission would indicate the 

model could not effectively account for omission error. Most of the other models (using other RM 

values) also showed low omission error, although the RM values of 0.25 and 7 showed considerable 

deviation from the predicted omission line, and the omission errors for RM 0.5, 2 and 4 did not fit the 

omission line as tightly as the default RM value (Appendix J: Figures J4, J5 and J6). The ROC AUC 

which plots Sensitivity (presences correctly predicted) against 1 – Specificity or commission error 

(absences incorrectly predicted) showed exceptional model performance with its score of 0.903 

(Figure 29). This confirms that the model performed well at predicting presences thus suitable 

habitat.  
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Figure 28: The omission error (suitable areas not predicted correctly), thus an indication how well the model 
performed. The mean omission (orange and green line) is close to the predicted omission (straight black line 
which is not visible as the mean omission resembles it closely and therefore covers it completely) which 
indicates good model performance. 

 

 

 

Figure 29: Area under the receiver operating characteristic (ROC) curve (AUC) testing whether the model was 
able to rank presence sites higher than random background sites. The AUC score of 0.903 indicates 
exceptionally good model performance. 



65 
 

MaxEnt creates response curves to show how each variable responds in the model. The mean 

response from the 10 replicate runs is indicated in red and one standard deviation around the mean 

is indicated in blue (Figures 30 – 34). The range of values displayed on the x– axis reflects the 

information that is present in each layer. The response curve in essence reflects how the species 

responds to the specific range of environmental conditions that are present in the study area, and 

this response relates to where the occurrence points were collected (Baldwin, 2009). The response 

of klipspringers to altitude shows that the probability of klipspringer occurrence is from an elevation 

of about 400 m.a.s.l. (Figure 30). The peak of this response curve is at a probability of presence 

score of about 0.76 and an elevation of about 620 m.a.s.l. Thereafter two consecutive drops occur 

at 620-650 m.a.s.l. and 740-810 m.a.s.l. of which this second drop goes down to a probably of 

presence of 0.3. Inspecting aerial images of the study area and the altitude and slope layer revealed 

that these drops are resultant of steep cliffs, especially in the northern section of the Park. After the 

second drop another suitable elevation range is reached just after 1000 m.a.s.l. of which the final 

drop is a result of the elevation in the study area not exceeding 1084 m.a.s.l. The curve shows that 

although other authors found that klipspringers do descend into river valleys (Tilson, 1980) and low 

slopes under certain conditions (Skinner & Chimimba, 2005) in search of browse, this behaviour is 

seldom recorded in the current study area. The response to slope shows that klipspringers will 

occupy slopes from 15 to about 48 degrees, thereafter the slope becomes too steep (Figure 31). 

The highest peak for this curve was reached at a probability score of only 0.59 at a slope of between 

15-20 degrees. Note again the low probability of occurrence for klipspringer in this study area in 

flatter areas, which suggests they prefer steep rocky slopes and rarely use flat areas as Dunbar & 

Dunbar (1974) also found. 

For aspect the probability of presence was slightly higher than that of slope at about 0.63 with a 

general preference for south west (202.5 degrees to 247.5 degrees) to west facing (247.5 degrees 

to 292.5 degrees) slopes being shown (Figure 32). This can partly be attributed to the vegetation 

communities that the model has output as most preferred having a mean aspect of south west and 

south-south west (ericaceous fynbos and upland restioid fynbos respectively) (Figure 34 and Table 

2). A mean aspect of south, and south-west facing slope is also prevalent for most of the other 

vegetation communities (Table 2). Thus with more areas in the Park facing south, south-west and 

west, it is not surprising to find klipspringer occupying these slopes as well. North, north-east, east, 

and south-east facing slopes in the study area contain most steep cliffs, thus explaining the low 

probability of presence score between 0.35 and 0.45. Steep cliff faces are also present for south 

and west facing slopes although to a lesser extent. Many north-west facing slopes also contain 

steep cliffs and consequently the probability of presence drops below 0.5 (i.e. after 337.5 degrees).  

Although klipspringers do not occur right on the urban area boundary, it appears that urban areas do 

not affect where klipspringers would establish territories, as a probability of presence is predicted as 
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close as 2.5 km to 1.5 km to the nearest urban areas (Figure 33). It is only in the southern section 

(Cape of Good Hope) where there is Park land that is more than 3 km away from an urban area 

(Appendix H), thus only klipspringer individuals recorded in this section would contribute to a 

probability of presence above 0.5 scored after 3 km. As a result of fewer and fewer individuals being 

recorded after 3 km, the response curve continuously dropped, although a small peak occurred after 

5.5 km to 6 km (although still not significant). This is possibly attributed to the 10 occurrence points 

within this distance band of 5.5 km to 6 km (Appendix H).  

 

 

 

Figure 30: The response of klipspringers to altitude of which the probability of klipspringer occurrence is from 
an elevation of about 400 m.a.s.l. and above. This indicates the preference of klipspringers for high altitudinal 
areas. 

 

 



67 
 

 

Figure 31: The response curve of klipspringers to slope shows that klipspringers occupy slopes from 15 to 
about 48 degrees, thereafter it becomes too steep.  
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Figure 32: The response of klipspringers to aspect. South-west to west facing slopes shows a higher 
probability of occurrence than the other slopes. 

 

 

 

 

Figure 33: The response of klipspringers to distance to urban edge shows that the probability of presence is 
predicted as close as 2.5 km to 1.5 km from the nearest urban areas. 
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Figure 34: The response of klipspringers to vegetation communities shows that ericaceous fynbos is the most 
preferred vegetation community followed by upland restioid fynbos. 

 

 

The response of klipspringers to vegetation only showed two vegetation communities to have a high 

contribution to the probability distribution of suitable habitat (Figure 34), these being ericaceous 

fynbos with a probability of presence estimated at 0.77 and upland restioid fynbos at 0.53. All the 

other communities had probability values lower than 0.3 which indicates a low contribution of these 

vegetation communities to suitable habitats.  

MaxEnt’s output also includes an analysis of variable importance in two formats; as a table and in 

the form of jackknife graphs. Table 8 shows the percent contribution and the permutation 

importance of each variable. The percent contribution indicates how each variable contributed to the 

overall model gain. Permutation importance on the other hand shows how each variable contributed 

to the final model when the values of each variable were randomly permuted. If the percentage 

value in the permutation importance column is lower than the value displayed in the percent 

contribution column, it indicates that it is indeed an important variable (Kalle et al., 2013). This 

reduction in percentage value can be seen for vegetation and altitude which reflects their 

importance as a variable for klipspringers. Aspect decreased with 0.1 percent and thus this 

reduction is considered insignificant. Distance to urban edge and slope increased in percentage 

value and thus they do not play a large role in klipspringer habitat selection.  

 
 
 



70 
 

Table 8: Analysis of variable contribution. The percent contribution indicates how each variable contributed to 
the overall model gain whilst permutation importance shows how each variable contributed to the final model 
when the values of each variable were randomly permuted. A decrease in percentage value from the percent 
contribution indicates that it is indeed an important variable. 

Variable Percent contribution 
 

Permutation importance (%) 

Vegetation  58 37.1 

Altitude 25.3 15.5 

Distance to urban edge 12.6 37.7 

Slope 2.9 8.6 

Aspect 1.2 1.1 

 

 

The jackknife results confirmed the order of variable importance as listed in the table above (Figure 

35). Jackknife output shows which variable contributes the most to the prediction when used in 

isolation as well as how the model gain is affected when a variable is excluded. The dark blue line 

shows the amount of model gain when only one variable was used. The turquoise line gives an 

indication of model gain when a specific variable is excluded. The first jackknife figure (Figure 35a) 

is from the training data and the second one (Figure 35b) from the test data after 10 replicate runs. 

In both these jackknife figures vegetation had the highest gain when used in isolation. This indicates 

that the vegetation layer had more useful information compared to the other layers (Phillips, 2006). 

Thus vegetation is the most important variable followed closely by altitude. When vegetation was 

excluded it decreased the model gain the most, once again indicating the importance of the 

information present in this layer. Vegetation was also found to be the determining factor for habitat 

selection by klipspringers in the Kruger National Park in that it provides both shelter and food 

(Kruger, 2001). Both altitude and distance to urban areas had noteworthy contributions to the model 

prediction as well. The jackknife analysis on the test data showing similar results as the jackknife 

analysis on the training data ensured confidence in the order of variable importance. This same 

order was seen in the jackknife analysis on training and test data for the other models (Appendix J: 

Figure J7) as variables affecting klipspringer distribution, especially the true environmental 

variables. Slope and aspect did not contain as much important information as the other three 

variables and therefore contributed to less model gain when used in isolation and when excluded 

the model gain was not much reduced. 
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Figure 35: The jackknife output of variable contribution on regularised training gain (a, using the 
training/calibration data) and test gain (b, using the test data) shows that vegetation contributes the most to 
suitable habitat for klipspringers followed by altitude. Dark blue indicates model gain with only the variable, 
turquoise indicates model gain when the variable was excluded, and red indicates the total model gain. 

 

 

Testing different regularisation multiplier values was useful to confirm that the default was applicable 

to be used in this study in the same way that it was in Phillips & Dudik (2008). Visual inspection of 

probability maps confirmed that a RM higher than the default can potentially lead to a model that 

under fits the occurrence points and therefore overestimate suitability and lower than the default can 

potentially overfit occurrence points. Thus it was decided that the default RM is most appropriate to 

use since the “best” model were in the vicinity of the default RM.  

RM 7 had the lowest AUC score, 0.894. This, however, is still a good model evaluation score 

(Swets, 1988; Hosmer & Lemeshow, 2000) thus a definite conclusion cannot be reached that RM 7 

was not performing well. Although visually the areas with a probability score of 0.1 – 0.35 (light blue) 

and 0.35 – 0.5 (olive green) became more prominent as the RM value was increased it is still below 
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0.5 and thus those areas are not suitable when interpreting it from the logistic output maps (Figures 

25 and 26). This is based on a score for a typical presence site being 0.5 (Phillips & Dudik, 2008). In 

the study by Radosavljevic & Anderson (2014), a RM of 6 evidently over predicted some areas for 

the Caribbean spiny pocket mouse (Heteromys anomalus) from north-western South America and 

the RM of 0.25 and 1 were fitting the data too closely. A RM of 2 proved to show the probability 

distribution best in their study. Shcheglovitova & Anderson (2013) assessed optimal regularisation 

multiplier values in terms of omission rates and found that a higher RM value in both their data sets 

were associated with lower omission rates. Their highest and consequently optimal RM value was 2. 

This shows that it is useful to do such a test on the best RM for the specific study as the default 

would not always be the best choice. An understanding of the study species’ ecology and biology as 

well as good knowledge of the study area is also helpful in identifying when a model has completely 

over or under predicted suitability. In addition, sample size is another important aspect to keep in 

mind when determining and deciding on the best regularisation multiplier value for a specific study 

(Anderson & Gonzalez, 2011) together with the features used i.e. model complexity (Anderson & 

Gonzalez, 2011; Shcheglovitova & Anderson, 2013; Warren & Seifert, 2013). 

After a model run, MaxEnt provides possible threshold values that can be used if there is a need to 

create binary maps for the study. In an attempt to better distinguish between suitable and unsuitable 

habitats, such a binary map was produced to show exactly which areas are suitable and which 

areas are not suitable (Figure 36). The current study used the minimum training presence logistic 

threshold and the 10 percentile training presence logistic threshold to produce Figure 36a and b. 

Young et al. (2011) stated that if there is certainty in the quality of the presence data, then the 

minimum presence threshold can be used. Since the 2014 survey confirmed the klipspringers are 

still largely found in the same areas as from the data collected in 2004 to 2007, this provided more 

confidence in the quality of the presence data, suggesting the use of the minimum presence 

threshold. Using the minimum presence threshold of 0.0121 (Figure 36a), however, resulted in a 

map that clearly overestimated suitable habitat, compared to the 10 percentile threshold of 0.1614 

(Figure 36b) that gave a better representation of the suitable versus unsuitable habitat. This 

minimum presence threshold is based on the lowest predicted value for any of the pixels with an 

occurrence record in it (Pearson, 2007; Young et al., 2011), thus an overestimation of suitable 

habitat is a possibility. 

 

Similarly, Pearson et al. (2007) found that a smaller threshold resulted in an increase in the 

proportion of area predicted as present in their study area. They, however, interpreted the higher 

proportion of predicted suitable habitat as identifying additional regions of potentially suitable habitat 

for their species. Thus interpretation can differ depending on whether species distribution modelling 

is performed at a regional scale or a local scale. Hence, for this study the 10 percentile threshold 
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was the better option to present suitable and unsuitable habitat for klipspringers in TMNP as it 

captured many of the areas where occurrence points were recorded. The 10 percentile threshold 

binary map also captured those high altitudinal areas as potentially suitable habitat following from 

the jackknife output that indicated and confirmed altitude as an important variable. Escalante et al. 

(2010) tested four thresholds for their study and also found that the 10 percentile threshold gives the 

best binary output. This illustrates that with species distribution modelling there is no clear and 

precise way to represent suitable habitat of a species. The estimate of the probability of presence 

should therefore only be used as a guide to where a species of interest can potentially be found. 

Consequently, to best illustrate where in TMNP all the potentially suitable habitats for the 

klipspringer are, it is suggested that the default RM probability map and the 10 percentile training 

presence logistic threshold map should be used in conjunction with one another (Figures 36b, 37 

and 38). 

 
 

 

Figure 36: Binary maps showing suitable versus unsuitable habitat at the minimum training presence logistic 
threshold of 0.0121 (a) and the 10 percentile training presence logistic threshold of 0.1614 (b). The minimum 
presence threshold clearly overestimates suitable habitat and therefore not a good indication of suitable 
klipspringer habitat in TMNP.    
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Figure 37: The probability distribution map at the default regularisation multiplier of 1 showing the probability 
of presence and thus suitable habitat for the klipspringer in the northern and central section of the Park 
indicated with a score of 0.5 and above. 
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Figure 38: The probability distribution map at the default regularisation multiplier of 1 showing the probability 
of presence and thus suitable habitat for the klipspringer in the southern section of the Park indicated with a 
score of 0.5.and above. 
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The AUC value of 0.903 (RM1) indicates that the model performed well at predicting presences 

which translates to suitable habitat. This result indicates that the model could distinguish between 

suitable (presence) and unsuitable (absence) sites and consequently was able to assign a higher 

ranking to presence cells than absence ones (Phillips et al., 2006). ROC AUC results from the other 

five models also indicated good model performance, as can be seen from their high AUC values. 

Lobo et al. (2008) highlighted that AUC is not always a good measure of model performance, as 

models that overestimate or underestimate can also give a high AUC score and consequently 

indicate good model performance when it is in actual fact not such a good model. Yackulic et al. 

(2013) also questioned the heavy reliance on the AUC for presence-only modelling as an indicator 

of model performance. Their concern results from ROC AUC initially having been designed to 

classify presences against absences, whereas MaxEnt uses presence and background data, of 

which these background sites are selected randomly and thus include absence sites as well as 

presence sites. Using the default number of 10 000 background points can however ensure that 

sufficient pseudo-absence sites were included in the model evaluation since the study area is small. 

Model evaluation is important in any modelling exercise because if the model was relatively good at 

predicting the true occurrence sites as present then it can be inferred that it would have predicted 

areas with similar conditions to the occurrence sites as present as well.  

Reducing sampling bias is an important step in species distribution modelling. Therefore, applying a 

spatial filtering approach of one point per grid in this study as a means to dealing with the spatial 

clumping of points was essential. Kramer-Schadt et al. (2013) and Boria et al. (2014) found that their 

model trained with spatially filtered data performed better than those not trained with filtered data. In 

the current study, after the spatial filtering approach, the general clumped appearance of occurrence 

points on the Swartberg Mountain chain was however still evident (Figure 15). Clumped points 

almost always contribute to the environmental variables where these points are to explain much of 

the distribution, i.e. they contribute a lot to model gain (Segurado et al., 2006). This is evident in the 

model output of the most preferred vegetation community, namely ericaceous fynbos, where a high 

concentration of points was found even after reducing it to one point per 10 m grid. This is a case of 

occurrence points being autocorrelated with one another and with the environmental or predictor 

variable. Running models at 100x100 m and consequently filtering occurrence points to one point 

per 10000 m² grid could potentially have reduced this effect of clumped points. However, without 

spatial filtering applied and tested at this larger scale, no conclusions can be drawn that it would 

have resulted in a different scenario. Segurado et al. (2006) used a systematic subsampling 

approach to reduce occurrence points and consequently spatial autocorrelation. They found that this 

did not completely eliminate spatial autocorrelation. However, even with miniscule effects a filtering 

approach and other means of correcting for sampling bias is useful in species distribution modelling 

and therefore should be incorporated in a study when needed (Syfert et al., 2013; Fourcade et al., 

2014; Stolar & Nielsen, 2015).  
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As a consequence of more occurrence points in ericaceous fynbos, it contributed to the cells where 

this community is present to have high probability values. Almost all the areas indicated in yellow to 

red in the probability maps (Figures 25, 26, 37 and 38) are the exact outline of each pocket of this 

vegetation community. This vegetation community also occurs in the higher altitudinal classes i.e. 

classes 3 – 5 being from 250-1084 m.a.s.l. As a consequence of altitude being shown to play an 

important role in klipspringer habitat, it follows that klipspringers can be expected to roam in the 

vegetation communities associated with high elevation. Upland restioid fynbos having the second 

highest probability of presence score was unexpected, as not so many occurrences were recorded 

in this vegetation community compared to mesic oligotrophic proteoid fynbos and mesic 

mesotrophic proteoid fynbos. This vegetation does occur at a high altitude (class 5, 751-1084 

m.a.s.l.), and therefore high altitudinal conditions coinciding with upland restioid fynbos can possibly 

explain this result. Both ericaceous and upland restioid fynbos consist of a low vegetation structure 

(Cowling et al., 1996). Thus the animal’s vision will not be obstructed in these vegetation 

communities, which is important, as the klipspringer relies on flight to respond to predators instead 

of hiding (Tilson & Norton, 1981). Since all vegetation communities in the Park were surveyed it can 

be confirmed that klipspringers currently only occur in Peninsula Sandstone Fynbos. As expected 

Forest and Thicket areas are avoided except for one occurrence point that was recorded on the 

margin of this vegetation type that bordered with ericaceous fynbos. Renosterveld and associated 

grasslands are also avoided. This latter vegetation type is mostly on Signal Hill where there are 

frequent human activities (Table Mountain National Park, 2011).  

Accessibility to the predicted suitable areas was not incorporated in the modelling. Thus as a 

reference to the biotic, abiotic, movement diagram (Chapter 1, section 1.5) it would not be the 

occupied geographic area (Go) that has been predicted but rather areas of overlap between circle A 

(abiotic conditions) and circle B (biotic conditions, Soberon & Peterson, 2005). This is essentially the 

realised niche (Soberon & Nakamura, 2009). Also, not all biotic factors were included e.g. the effect 

of predators and diseases. Acquisition and incorporation of such biotic data could change the 

predicted distribution of suitable habitat for TMNP’s klipspringers as reviewed in Wisz et al. (2013) 

using several plant and animal species across the globe.  

Considering the 10 percentile binary map and the default RM probability map as shown in Figures 

36b and 37, those areas in the central section of the Park where habitat suitability is predicted is 

possibly the result of high altitudinal ranges that exist there. This section largely has not had 

klipspringer individuals establishing there, except for the recent individual/-s that established a 

territory on Elsies Peak, above Fish Hoek, which is roughly where the central section ends. The 

central section is largely classified as a remote area in TMNP’s conservation development 

framework report of visitor use zones (Table Mountain National Park, 2011). Thus, too frequent 

human activities are not the reason for klipspringers not establishing in most parts of this section. A 
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lack of sufficient corridors to reach areas in the central section or undiscovered corridors by this 

antelope might be a possible reason for non-occupancy in the greater portion of the central section 

at this stage.  

Model output will without a doubt be affected by the environmental variables used, as well as the 

modelling tool and scale (Elith & Leathwick, 2009). Spatial scale was tested at a resolution of 10x10 

m, 100x100 m and 1000x1000 m, of which the result led to the smallest resolution being used in this 

study. Other factors that can affect the model results include the degree of correlation amongst the 

predictor variables, spatial autocorrelation resulting from clumped occurrence points and sampling 

bias (Segurado et al., 2006; Boria et al., 2014; Fourcade et al., 2014). Consequently, spatial 

autocorrelation was tested between the climatic data and the topographical data. This led to the 

exclusion of the monthly rainfall variables from the model. The effects of clumped points were 

reduced through a spatial filtering approach of one point per 100 m² grids. Efforts were made in the 

sampling design of the 2014 field work to improve possible sampling bias and a stratified sampling 

approach was employed to this end. This ensured that areas other than only the known territories 

were sampled. Furthermore, it also ensured that sampling took place within all the vegetation 

communities or vegetation types present in the study area, at variable slope and altitudinal ranges. 

All these have to be taken into consideration when interpreting and reporting the model output for a 

specific study, although they were also all tested to some extent in this study.  
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CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS 

 
Home range analysis and species distribution modelling for klipspringers in South Africa, including 

Table Mountain National Park, is still a new field of research. Furthermore, producing home range 

estimates and suitable habitat predictions is not a clear cut exercise as was seen in this research. 

However, the results obtained for the afore-mentioned analyses can serve as a base line for future 

research to build on.  

 

Home range analyses provided useful results to visualise the distribution of klipspringer home 

ranges in the Park. The interpretation of the CVh output as territories also assisted in interpreting 

the output of a univariate fixed kernel. These estimated home range sizes and territories as well as 

the areas of core activity had to be interpreted with caution. The home range analyses showed that 

the distribution and density of the occurrence points together with the home range tool used largely 

affects the prediction.  

 

Species distribution modelling confirmed that altitude plays an important role in klipspringer habitat 

selection. It also showed that the vegetation communities accompanied by their moisture and 

structural conditions contribute to where klipspringers will establish a territory. Klipspringers are also 

not much affected by human settlements on the lower slopes of their territories. This is useful to 

know since TMNP is surrounded by an urban area and has a variety of human leisure activities 

occurring within the Park (Table Mountain National Park, 2011). The probability of occurrence map 

and to a certain extent the binary map is a useful map representation of suitable habitat for 

klipspringers. Thus Park management can incorporate these maps into their conservation efforts for 

the klipspringer species. These maps can also guide decision making for future release sites if more 

individuals are acquired from other protected areas. 

 

Future home range and distribution studies can be improved through GPS collaring of all territorial 

males and collecting data in summer and winter. This can contribute to a better understanding of the 

movement patterns of klipspringers in a fynbos environment and national park where different 

degrees of human activities take place (Table Mountain National Park, 2011). Sufficient funding for 

GPS collars and all logistical requirements would need to be secured though for such an operation. 

An alternative home range approach to the fixed kernel approach used in this study is the adaptive 

kernel approach which can be explored for future studies since it places a higher weight on sparsely 

distributed points and less weight on dense points. As with home range analyses tools, there will be 

drawbacks in the tool decided on. This also applies to species distribution modelling. Therefore, it is 

important to tune these tools according to the specific study species and the goals of the study 

(Anderson & Gonzales, 2011). 
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A commitment of Park management to implement a continual monitoring programme for this species 

would prove important for future studies. Monitoring can include park rangers using GPS devices 

during their patrols and other monitoring initiatives. In this way the true home range and territories of 

the klipspringers can be determined more accurately. Improved unbiased data would also mean 

more home range analyses tools can be explored and ultimately a better representation and 

understanding of home ranges and territories for the klipspringers of TMNP.  

 

Species distribution modelling or habitat suitability modelling fulfils a vital function in the field of 

conservation ecology (Guisan et al., 2013). It contributes to the long term survival and conservation 

of a species through identification of environmental requirements for a species over a large 

geographic space. It can lead to improved species management plans for rare species and species 

of special conservation concern. For the klipspringer species, which is a species of special 

conservation concern in TMNP (Rebelo et al., 2010), such a species management plan can be 

developed with the model, indicating that all three sections of the Park have suitable habitat 

available for this species. Some areas, especially in the central section, have potential suitable 

habitat that is unoccupied currently and can therefore be targeted as an area for possible future 

reintroductions.  

.   
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APPENDICES 

Appendix A: Male and female klipspringer. Sexual dimorphism exists in the form of 

males having horns. 

 

 

Figure A1: Male klipspringer (Marell, n.d.). 

 

 

Figure A2: Female klipspringer (Marell, n.d.). 
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Appendix B: Browse species recorded as part of the klipspringer diet in two study 

areas (Norton, 1984).  

 

Table B1:  Browse plant species recorded in the diet of klipspringers in Gamka and Springbok. 

Plant species browsed on in Gamka (southern Cape) Plant species browsed on in Springbok 
(Namaqualand) 

Manochlamys albicans Agathosma sp. 

Didelta spinosa Maytenus oleoides 

Berkheya spp. Aspalathus hirta 

Asparagus capensis Phylica purpurea 

Solanum burchellii Cineraria sp. 

Mesembryanthemum karroense Metalasia gnaphaloides 

Hebenstreitia crassifolia Eriocephalus ajricanus 

Asparagus asparagoides Chrysanthemoides monilifera 

Albuca altissima Montinia caryophyllacea 

Othonna spp. Solanum tomentosum 

Pteronia spp. Colpoon compressum 

Montinia caryophyllacea Berkheya angustifolia 

Lycium oxycarpum Elytropappus gnaphaloides 

Galenia ajricana Muraltia alopecuroides 

Veltheimia capensis Pelargonium spp. 

Nenax dregei Polygala fruticosa 

Hermannia spp. Thesium nigromontanum 

Antizoma miersiana Asparagus spp.  

Thesium lineatum Themeda triandra 

Pharnaceum spp. Leucadendron salignum 

Polymita albiflora Relhania squarrosa 

Pelargonium grandicalcaratum Searsia lucida 

Lotonis longiflora Pentzia dentata 

Crassula brevijolia Euphorbia sp. 

Amoebophyllum angustum Searsia tomentosa 

Eriocephalus ericoides Elytropappus adpressus 

Moquiniella rubra Carpobrotus sp. 

Drosanthemum albens Manochlamys albicans 
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Cineraria canescens Felicia filifolia 

Eriocephalus africanus Cliffortia ramosissima 

Dodonaea viscosa Cliffortia pulchella 

Diospyros ramulosa Muraltia ericaefolia 

Diospyros ramulosa Dioscorea elephantipus 

Arctotis revoluta Metalasia langebergensis 

Pelargonium dasyphyllum Dodonaea viscosa 

Pentzia incana Hermannia spp. 

Asparagus aspergillus Diospyros dichlorophylla 

Ruschia/Leipoldtia spp.  

Euphorbia decussata  

Osteospermum spp.  

Searsia undulata  

Tetragonia spp.  

Euphorbia mauritanica  

Indigofera spinescens  

Galenia fruticosa  

Zygophyllum spp.  
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Appendix C: Topographical variables used in this modelling exercise, namely 

altitude (a), slope (b) and aspect (c). The Digital Elevation Model (DEM) was used as 

the base for the topographical variables. 
 

 

Figure C1: Altitude layer for Table Mountain National Park.  

 

Figure C2: Slope layer for Table Mountain National Park. 
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Figure C3: Aspect layer for Table Mountain National Park. 
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Appendix D: Survey routes enlarged for the three sections of the TMNP, namely 

northern, central, and southern section. 

 

 

Figure D1: The five survey routes in the northern section of TMNP. 

 

 

 

Figure D2: The three survey routes in the central section of TMNP. 
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Figure D3: The five survey routes in the southern section of TMNP. 
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Appendix E: Extract from the Excel spread sheet showing an example of the process 

followed to summarise each segment of a survey route in order to determine the total length 

of a specific survey route passing through a specific vegetation community subtype.  

 

Table E1: Extract of the process followed to summarise the distance walked in each vegetation community 
subtype.  

Route 1: Southern section: Cape Maclear within CoGH to entrance gate of CoGH 

Segment number  Vegetation community + Slope + Altitude Distance 

1 Dune asteraceous fynbos 12 0.052 

2 Dune asteraceous fynbos 22 0.022 

3 Dune asteraceous fynbos 32 0.015 

4 Deleted polygon 0.077 

5 Dune asteraceous fynbos 32 0.019 

6 Deleted polygon 0.173 

7 Dune asteraceous fynbos 22 0.023 

8 Deleted polygon 0.116 

9 Dune asteraceous fynbos 22 0.086 

10 Dune asteraceous fynbos 12  0.138 

11 Deleted polygon 0.681 

12 Mesic mesotrophic proteoid fynbos 12 0.053 

13 Mesic mesotrophic proteoid fynbos 22 0.164 

14 Deleted polygon 0.225 

15 Mesic mesotrophic proteoid fynbos 22 0.042 

16 Deleted polygon 0.231 

17 Mesic mesotrophic proteoid fynbos 22 0.018 

18 Deleted polygon 0.063 
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Appendix F: An example of one of the gridded maps used in the 2014 survey.   

 

 

Figure F1: Example of a map gridded with latitude-longitude coordinates used to assist in the klipspringer 
surveys of 2014 in TMNP.  
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Appendix G: Klipspringer spoor and dung pellets recorded in TMNP.  

 

 

Figure G1: A GPS point was recorded when recognisable klipspringer dung pellets or spoor (tracks) were 
observed during a survey. 
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Appendix H: Distance to urban edge layer classified into 0.5 km distance bands. 

 

 

Figure H1: Distance to urban edge layer as produced from the polygon layer named “All_urban” using the 
euclidean distance tool and classifying it into distance bands of 0.5 km 



103 
 

Appendix I: Correlation test output using the Pearson’s two tailed correlations test.  

 

Table I1: Two tailed Pearson’s correlation test results. Highlighted blocks show the correlation of altitude with monthly rainfall, as well as the correlation of monthly 
rainfall with one another. [**. Correlation is significant at the 0.01 level (2-tailed), *. Correlation is significant at the 0.05 level (2-tailed)].  

  Aspect Altitude Slope June 
rainfall 

May 
rainfall 

April 
rainfall 

February 
rainfall 

March 
rainfall 

January 
rainfall 

December 
rainfall 

November 
rainfall 

October 
rainfall 

September 
rainfall 

August 
rainfall  

July 
rainfall 

Aspect Pearson 
Correlation 

1 .178** -.083* .211** .222** .223** .266** .194** .202** .231** .259** .240** .221** .202** .208** 

Sig. (2-
tailed) 

  .000 .016 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

N 845 845 845 845 845 845 845 845 845 845 845 845 845 845 845 

Altitude  Pearson 
Correlation 

.178** 1 .081* .532** .724** .602** .567** .696** .741** .751** .658** .571** .681** .587** .580** 

Sig. (2-
tailed) 

.000   .019 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

N 845 845 845 845 845 845 845 845 845 845 845 845 845 845 845 

Slope Pearson 
Correlation 

-.083* .081* 1 -.050 .000 -.022 -.040 -.005 -.001 .001 -.029 -.042 -.016 -.041 -.037 

Sig. (2-
tailed) 

.016 .019   .148 .989 .518 .240 .877 .966 .977 .405 .217 .633 .232 .281 

N 845 845 845 845 845 845 845 845 845 845 845 845 845 845 845 

June 
rainfall 

Pearson 
Correlation 

.211** .532** -.050 1 .957** .992** .987** .966** .943** .944** .978** .995** .976** .995** .998** 

Sig. (2-
tailed) 

.000 .000 .148   0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

N 845 845 845 845 845 845 845 845 845 845 845 845 845 845 845 

May 
rainfall 

Pearson 
Correlation 

.222** .724** .000 .957** 1 .981** .963** .995** .997** .998** .989** .970** .997** .975** .974** 

Sig. (2-
tailed) 

.000 .000 .989 0.000   0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

N 845 845 845 845 845 845 845 845 845 845 845 845 845 845 845 

April 
rainfall 

Pearson 
Correlation 

.223** .602** -.022 .992** .981** 1 .991** .984** .969** .972** .991** .996** .992** .993** .996** 

Sig. (2-
tailed) 

.000 .000 .518 0.000 0.000   0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

N 845 845 845 845 845 845 845 845 845 845 845 845 845 845 845 

February 
rainfall 

Pearson 
Correlation 

.266** .567** -.040 .987** .963** .991** 1 .959** .944** .954** .990** .997** .976** .981** .986** 

Sig. (2-
tailed) 

.000 .000 .240 0.000 0.000 0.000   0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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N 845 845 845 845 845 845 845 845 845 845 845 845 845 845 845 

March 
rainfall 

Pearson 
Correlation 

.194** .696** -.005 .966** .995** .984** .959** 1 .995** .991** .982** .970** .996** .983** .981** 

Sig. (2-
tailed) 

.000 .000 .877 0.000 0.000 0.000 0.000   0.000 0.000 0.000 0.000 0.000 0.000 0.000 

N 845 845 845 845 845 845 845 845 845 845 845 845 845 845 845 

January 
rainfall 

Pearson 
Correlation 

.202** .741** -.001 .943** .997** .969** .944** .995** 1 .996** .978** .954** .991** .967** .963** 

Sig. (2-
tailed) 

.000 .000 .966 0.000 0.000 0.000 0.000 0.000   0.000 0.000 0.000 0.000 0.000 0.000 

N 845 845 845 845 845 845 845 845 845 845 845 845 845 845 845 

December 
rainfall 

Pearson 
Correlation 

.231** .751** .001 .944** .998** .972** .954** .991** .996** 1 .985** .959** .993** .964** .963** 

Sig. (2-
tailed) 

.000 .000 .977 0.000 0.000 0.000 0.000 0.000 0.000   0.000 0.000 0.000 0.000 0.000 

N 845 845 845 845 845 845 845 845 845 845 845 845 845 845 845 

November 
rainfall 

Pearson 
Correlation 

.259** .658** -.029 .978** .989** .991** .990** .982** .978** .985** 1 .991** .994** .984** .986** 

Sig. (2-
tailed) 

.000 .000 .405 0.000 0.000 0.000 0.000 0.000 0.000 0.000   0.000 0.000 0.000 0.000 

N 845 845 845 845 845 845 845 845 845 845 845 845 845 845 845 

October 
rainfall 

Pearson 
Correlation 

.240** .571** -.042 .995** .970** .996** .997** .970** .954** .959** .991** 1 .984** .992** .995** 

Sig. (2-
tailed) 

.000 .000 .217 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000   0.000 0.000 0.000 

N 845 845 845 845 845 845 845 845 845 845 845 845 845 845 845 

September 
rainfall 

Pearson 
Correlation 

.221** .681** -.016 .976** .997** .992** .976** .996** .991** .993** .994** .984** 1 .988** .988** 

Sig. (2-
tailed) 

.000 .000 .633 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000   0.000 0.000 

N 845 845 845 845 845 845 845 845 845 845 845 845 845 845 845 

August 
rainfall 

Pearson 
Correlation 

.202** .587** -.041 .995** .975** .993** .981** .983** .967** .964** .984** .992** .988** 1 .998** 

Sig. (2-
tailed) 

.000 .000 .232 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000   0.000 

N 845 845 845 845 845 845 845 845 845 845 845 845 845 845 845 

July 
rainfall 

Pearson 
Correlation 

.208** .580** -.037 .998** .974** .996** .986** .981** .963** .963** .986** .995** .988** .998** 1 

Sig. (2-
tailed) 

.000 .000 .281 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000   

N 845 845 845 845 845 845 845 845 845 845 845 845 845 845 845 
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Appendix J: ROC AUC, omission error and jackknife output for the six models.  

 

 

Figure J1: ROC AUC model evaluation results for the models produced at RM 0.25 (a) and RM 0.5 (b).with an AUC score of 0.906 and 0.911 respectively. 
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Figure J2: ROC AUC model evaluation results for the models produced at RM 1 (a) and RM 2 (b) with an AUC score of 0.903 and 0.904 respectively.  
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Figure J3: ROC AUC model evaluation results for the models produced at RM 4 (a) and RM 7 (b).with an AUC score of 0.893 and 0.883 respectively.  
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Figure J4: Omission error results for the models produced at RM 0.25 (a) and RM 0.5 (b).   
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Figure J5: Omission error results for the models produced at RM 1 (a) and RM 2 (b).   
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Figure J6: Omission error results for the models produced at RM 4 (a) and RM 7 (b).   
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Jackknife of regularized training (a) and test gain (b) at  RM 0.25 Jackknife of regularized training (c) and test gain (d) at  RM 0.5 

 

a 

 

 

b 

 

c 

 

 
d 

Jackknife of regularized training (e) and test gain (f) at  RM 1 Jackknife of regularized training (g) and test gain (h) at    RM 2 
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e 

 

f 

 

g 

 

h 

Jackknife of regularized training (i) and test gain (j) at  RM 4 Jackknife of regularized training (k) and test gain (l) at  RM 7 

 

i 

 

k 



113 
 

 

j 

 

l 

 

Figure J7: Jackknife of variable importance on training and test data for the six models at RM 0.25 (a & b), RM 0.5 (c & d), RM 1 (e & f), RM 2 (g & h), RM 4 (i & j) 

and RM 7 (k & l). In all these models vegetation and altitude were predicted as the most important variables and aspect as the least important. 



114 
 

 


