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ABSTRACT

The current dynamics along the Tsitsikamma coast is described from a combination of

acoustic current measurements. satellite-tracked surface drifters and underwater

temperature recordings made between November 2006 and March 2008. The Tsitsikamma

coast is largely a Marine Protected Area (MPA) that protects a rich marine biodiversity. The

nearshore currents are important in the dispersal 01 eggs and larvae of many marine species.

including the paralarvae of the commercially caught chokka squid. LoNgo reynaudii. Changes

in the environment. including the currents. can affect the successful recruitment of chokka

squid, and can bring about large annual fluctuations in biomass that creates economic

uncertainty in the squid fishery. Results confirm the existence of a predominantly alongshore

current off the Tsitsikamma coast. At Middelbank eastward flow was slightly dominant, with a

percentage occurrence of 58% vs. 41% westward flow near the surface. The percentage

eastward flow decreased with depth, with 41% vs. 58% westward flow near the seabed. At

Thyspunt westward and eastward flow occurred at near equal percentages. but westward

flow was slightly dominant throughout the water column. The alongshore current was

strongest near the surface during eastward flow (maximum = 141 crn.s': average = 27 crn.s

'). while westward surface currents were weaker (maximum velocity = 78 cm.s': average =

19 crn.s'). Current speed generally decreased with depth and opposing surface and bottom

currents, associated with a thermal stratified water column, were occasionally recorded. The

nearshore flow regime was characterised by frequent barotropic alongshore reversals that

occurred year round. An increase in strong eastward episodes, and opposing surface and

bottom currents during spring and summer months have implications for the dispersal of

squid paralarvae during the summer and winter spawning seasons. In summer, the

combination of strong eastward pulses in the current and upwelling at the capes favoured

dispersal onto the midshelf of the Agulhas Bank. In winter, alongshore oscillations without

the offshore displacement associated with upwelling. restricted offshore dispersal which

caused surface particles to be retained inshore. Drifter trajectories show that both the

eastward and westward nearshore current can link the inshore spawning grounds with the

nursery grounds, offshore on the central Agulhas Bank; and that passive, neutrally buoyant

material in the surface layer can reach the vicinity of the cold ridge in as little as eight days.

The wind-driven processes of upwelling and coastal trapped waves (CTWs). and the

influence of the greater shelf circulation are discussed as possible driving forces of variability

in the currents off the Tsitsikamma coast. The occurrence of coastal trapped waves during

thermal stratification appears to drive the jet-like, eastward pulses in the current. and results

suggest that the propagation of CTWs may regulate and even enhance upwelling and

downwelling along the Tsitsikamma coast.
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DEDICATION

';The sea is ever~thing. It covers seven tenths ot the terrestrial globe. Its breath is pure

and health.'). It is an immense desert, where man is never lonel.'), for he feels life stirring on all

sides.')

-jules Veme) trom 20000 leagues under the sea-

"The weeks passed. "Ve 53\,,,' no sign either of a ship or ot drifting r-emains to show that

there were other people in the world. The whole sea was ours, and, with all the gates otthe

horizon open, real peace and Freedom were \'Ilatt-ed down trom the firmament itself. jt was as

though the fresh salt tang in the air, and all the blue purit.') that surrounded us had washed

and cleansed both bod.') and sou!' To us on the raft the great problems of civilized man

appeared false and illusor.') - I.ke perverted products of the human mind. Onl.') the

elements mattered. And the elements seemed to ignore the little raft. Or perhaps the.')

accepted it as a natural object. which did not break the harmonu of the sea but adapted
I ) . J J

itself to current and sea like bird and fish.jnstead otbeing a fearsome enem~lJ flinging itself

at us, the elements had become a reliable friend which steadil.') and surelq helped us

onward. \Vhile wind and waves pushed and propelled, the ocean current la.') under us and

pulled, straight toward our goa!."

-Thor He.')erdahl, from Kon-Tiki
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CHAPTER 1
GENERAL INTRODUCTION AND LITERATURE REVIEW

1.1 General introduction

1.1.1 Research problem

The Tsitsikarnma coast, situated on the South African south coast (Figure 1.1), is home to a

pristine marine ecosystem that has largely been protected from commercial and recreational

exploitation since the establishment of the Tsitsikamma National Park (TNP) in 1964. The

area is known for its breathtaking scenery that includes indigenous coastal forests, mountain

fynbos, coastal river gorges, estuarine and marine systems. The TNP protects a rich marine

biodiversity, including 202 fish species from 84 families (Buxton and Smale 1984, Wood et al.

2000). many of which are slow growing with a high degree of residency (Cowley et al. 2002,

Brouwer et al. 200.3). Chokka squid (Loligo reynaudif) , a fast growing and highly mobile

cephalopod, also spawns within the TNP (Sauer 1995) and, like most marine organisms,

have planktonic larvae that are distributed over great distances by the currents.

A narrow, jet current has been observed off the Tsitsikamma coast (Roberts and van den

Berg 2005). This current (from here on referred to as the Tsitsikamma current) is of interest

given its role in the transport of marine eggs and larvae from the TNP to surrounding areas.

The South African squid fishery is concentrated on the narrow eastern Agulhas Bank (Figure

1.1) where sexually mature individuals form large spawning aggregations in shallow « 60 m)

bays between Plettenberg Bay and Cape Padrone (Augustyn et al. 1994). Roberts (2005)

showed that this discrete spawning location has bottom temperature and bottom dissolved

oxygen ranges that favours the embryonic development of benthic squid eggs, and linked

annual fluctuations in chokka squid biomass to variability in the Agulhas Bank ecosystem.

The inshore spawning grounds of chokka squid are situated to the west of an oceanographic

feature known as the cold ridge (Figure 1.2). This body of cool water extends offshore across

the central and eastern Agulhas Bank and has been described as an intermittent upwelling

filament that originates at the Knysna-Tsitsikamma coast (Roberts 2005). It is more

prominent during summer months (Boyd and Shillington 1994) and is associated with

elevated copepod biomass (Verheye et aI. 1994). which is the preferred food of newly hatch

squid paralarvae (Augustyn 1994, Venter 1999) and considered essential to their early

survival and recruitment.

The main spawning ground for chokka squid, inshore on the eastern Agulhas Bank, and the

optimum feeding grounds for squid paralarvae, offshore on the central Agulhas Bank, are

therefore separated by a distance of about 200 km. This geographical mismatch led to the
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Figure 1.1: A map of the study area showing the coastal provinces of the Western and Eastern
Cape, Marine Protected Areas near the Tsitsikamma coast (insets) and the bathymetry of the
Agulhas Bank. The shelf break occurs between the 200 - 1000 m isobaths.
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Figure 1.2: The main oceanographic features of South Africa and the Agulhas Bank. Adapted
from Roberts (2005).
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formulation of the Western Transport Hypothesis (WTH) (Roberts 2005), which states that

newly hatched paralarvae improve their chances of survival by being transported westward

to the copepod maximum by the net barotropic flow over the mid-shelf (Boyd et aJ. 1992).

Further investigation by Roberts and van den Berg (2005) analysed 12 months of current

measurements made by an Acoustic Current Doppler Profiler (ADCP) moored in the TNP.

Their results showed the existence of a strong (> 1 rn.s"), intermittent current along the

Tsitsikamma coast that flows mainly eastwards. This finding complicates the WTH (Roberts

2005), because an eastward current carries passively drifting paralarvae away from the food

maxima at the cold ridge. Roberts and van den Berg (2005) subsequently revised the WTH

to only be relevant during westward flow along the Tsitsikamma coast. They proposed that

eastward flow moves squid paralarvae away from the optimum food source of the cold ridge,

either resulting in a lengthier circulation on the eastern Agulhas Bank or continued transport

towards Algoa Bay, from where paralarvae could be lost to the Agulhas Current.

1.1.2 Aims and objectives

This thesis continues the research of Roberts (2005) and Roberts and van den Berg (2005),

investigating in detail the dynamics of the Tsitsikamma current from a combination of

Eularian and Lagrangian current measurements. Three bottom-mounted ADCP moorings,

deployed off the Tsitsikamma coast, provided data on the dynamics of the Tsitsikarnma

current. The deployment of Lagrangian drifters provided data on actual displacement and

potential transport routes for squid paralarvae. Underwater temperature recorders (UTRs)

were used to measure vertical and horizontal temperature gradients in the nearshore

regions. These data allowed the dynamics of the Tsitsikamma current, including seasonality,

driving forces and larval transport potential to be examined.

1.1.3 Key questions

The key questions addressed in this thesis are:

• What area is affected by the Tsitsikamma current, i.e., what is the width of the

current, where does it start and where does it end?

• Is the Tsitsikamma current seasonal?

• What are the driving forces of the Tsitsikamma current?

• Does the Tsitsikamma current link the inshore spawning grounds with the offshore

nursery grounds in the vicinity of the cold ridge?

• How long does it take for passively drifting material to move from the Tsitsikamma

coast to the region of the cold ridge?

• What are the implications of the Tsitsikamma current for the transport of paralarvae

and the recruitment success of chokka squid on the eastern Agulhas Bank?

3



1.2 literature review

1.2.1 Boundary currents

The Agulhas Current flows poleward along the east coast of South Africa and forms the

western limb of the South Indian Ocean gyre. In the northern regions, the trajectory of the

Agulhas Current is stabilized by the abrupt bathymetry of the continental slope (de Ruijter et

et. 1999). Here the current is fast (> 2 rn.s') and the core is normally situated on the seaward

side of the shelf break, about 40 - 50 krn from shore (Schumann 1981). Occasionally, a

solitary meander, called a Natal Pulse, originates in the Durban Bight (Lutjeharms and

Roberts 1988) and moves downstream at approximately 20 km/day, displacing the current

core up to 200 km offshore (Harris et al. 1978, GrOndlingh 1979, GrOndlingh 1986). Past Port

Alfred, the continental shelf widens considerably and the southern Agulhas Current follows

the shelf break away from the coast. The southern part of the Agulhas Current is distinctly

different from the northern part and is characterised by a greater tendency to meander

(Lutjeharms 2006).' At the southern tip of the continental shelf the Agulhas Current

undergoes a dramatic retroflection, flowing eastwards into the South Indian Ocean

(Lutjeharms and van Ballegooyen 1988) as the Agulhas Return Current. At times the

Agulhas Current continues west, past the African continent, and into the South Atlantic

Ocean. Leakage of warm, saline Indian Ocean water into the cooler Atlantic Ocean occurs at

the Agulhas Current Retroflection, with the periodic shedding of Agulhas Rings (Lutjeharms

1981, Gordon 1985, Lutjeharms and van Ballegooyen 1988).

The west coast of South Africa, including the western Agulhas Bank, is part of the Benguela

upwelling system, one of the world's largest wind-driven upwelling systems (Parrish et al.

1983 cited by Boyd and Nelson 1998). In summer, strong air pressure gradients between the

South Atlantic High pressure cell and a heat induced low, over the interior, creates south

easterly winds that drive upwelling along the west coast. To the south, the Benguela Current

is fed by the South Atlantic Current (Shannon 2001) and by leakage from the Indian Ocean

through Agulhas Rings (Lutjeharms and van Ballegooyen 1988). The Benguela Current is

generally weak, with an average velocity of - 17 crn.s' (Shannon 1985). Northward flowing

jet currents (- 75 crn.s') develop in the frontal zones (Bang and Andrews 1974, Boyd et al.

1992) and increase the transport potential of the Benguela Current. A detailed overview of

the principle characteristics of the Benguela Upwelling System is given by Shannon and

Nelson (1996).

1.2.2 The Agulhas Bank

The Agulhas Bank is the large, triangular extension of the continental shelf where water from

the warm Indian Ocean and the cold Atlantic Ocean meet. It is a dynamic region, strongly

influenced by the proximity of the Agulhas Current. The Aqulhas Bank is part of South
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Africa's Exclusive Economic Zone (EEZ) and, besides its oil and gas fields, supports a high

marine biomass and species diversity (Hutchings 1994). It is the spawning ground for small

pelagics (Barange et aI. 1998, van der Lingen et aI. 2001, Armstrong et at. 1991) and the

centre of abundance for numerous warm temperate species, including several endemic

sparids (Hutchings et al. 2002). Chokka squid (Loligo reynaudil) is a key component in the

Agulhas Bank ecosystem (Lipinski 1992) and one a major generators of income for people of

the impoverished and drought stricken Eastem Cape.

1.2.2.1 Bathymetry

The Agulhas Bank is the broad (- 800 km), shallow « 200 m) part of the continental shelf

that extends away from the South African shoreline in a roughly triangular shape (Figure

1.1). The shelf break occurs at the 200 m isobath, from where the bathymetry drops steeply

to below 1000 m. The shallow Alphard Banks (21 "E) in the central region divides the

Agulhas Bank into a relatively steep and narrow western side, and a wider eastern side with

a more gradual shoreward gradient (Lutjeharms 2000). Approximately 60% of the Agulhas

Bank consists of hard substratum, and high profile reefs are found both close inshore and

extending offshore, south of Cape Agulhas (Hutchings 1994). At the eastern extremity of the

Agulhas Bank, near Port Alfred, the shelf break is only about 35 km offshore. The continental

shelf widens gradually in a westward direction and at its apex the shelf break is found

approximately 250 km south of Cape Infanta.

1.2.2.2 Oceanography of the central and eastern Agulhas Bank

The influence of the Agulhas Current is greatest on the eastern extremity of the Agulhas

Bank where the shelf is narrowest. A widening shelf leads the current away from the coast

(GrOndlingh 1983, Schumann 1987). Meanders, eddies and attendant warm water plumes

regularly form on the landward side of the southern Agulhas Current, because of the

horizontal shear between the swift moving current core and the water over the adjacent shelf

region (Lutjeharms 1981). These shear edge features often intrude onto the shelf along the

southeastern side of the Agulhas Bank. Lutjeharms et al. (1989) showed that meanders in

the Agulhas Current increase in size as they move downstream and that cyclonic eddies are

generally concentrated in the eastward facing Aqulhas Bight south of Mossel Bay.

Associated plumes of warm, saline Agulhas Current water are known to extend over large

parts of the Bank, even intruding into embayments on the south coast (Goschen and

Schumann 1994).

The divergence of the Agulhas Current from the coast, north of Port Alfred, induces a semi

permanent upwelling cell (Walker 1986, Lutjeharms et at. 2000). Cold water « 17 'C) from

this area can persist at the sea surtace for several weeks and may be advected westwards

over large parts of the Agulhas Bank (Walker 1986) and into adjacent bays (Beckley 1988,
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Shumann et et. 1988). Several of mechanisms have been proposed to account for shelf edge

upwelling that lifts cold bollom water onto the Agulhas Bank. These include upslope veering

of the bottom layer of the current due to sidewall friction (Hsueh and OBrien 1971 as cited by

Lutjeharms et al. 1989), cross current Ekman transport caused by sustained wind stress

(Swart and Largier 1987). and vertical advection in cyclonic border eddies (Lutjeharms et aJ.

t 989, Goschen and Schumann 1994).

The cold basal layer on the eastern Agulhas Bank slowly moves westward (Largier and

Swart 1987) along the 100 m isobath (Lutjeharms 2006). spreading nutrient rich water over

the Bank. At the same time warm Aqulhas Current intrusions continuously feed the surface

water on the shelf, creating a well mixed surface layer on top of the cold bottom layer.

Schumann and Beekman (1984) observed seasonal differences in the vertical temperature

structure over the Agulhas Bank with a deep, well mixed surface layer (0 - 80 m) and lillie

variation in temperature in winter, and in contrast, intense thermoclines in the upper 80 m

during summer months. The increased solar heating and a reduction in wind strength in

summer helps to intensify stratification and has implications for the vertical distribution of

phytoplankton (Carter 1987). With the onset of winterstorms, the thermocline is broken down

and a deep, well·mixed, surface layer returns.

Various authors including Lutjeharms et a/. (1981), Walker (1986). Largier and Swart (1987)

have noted the upward doming of the thermocline over the central Agulhas Bank and the

resultant occurrence of a subsurface ridge of cold water, associated with increased biological

production (Figure 1.3). Boyd and Shillington (1994) described this upwelling feature as an

intermittent, subsurface ridge of cool water of variable width, and suggested that it is forced

by the divergence of surface water related to the widening of the shelf between Port

Elizabeth and Knysna. Walker (1986) used satellite observations to analyse upwelling on the

south coast and found that abnormally high occurrence of easterly winds over the Agulhas

Bank resufted in the advection of cold water tongues westward and offshore along the 100 m

isobath. The link between cold ridge formation and wind-driven coastal upwelling was further

supported by Roberts (2005) who described the cold ridge as an upwelling filament

frequently found off Knysna. He showed that intense summer upwelling leads to greater cold

ridge stability.
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Figure 1.3: The co ld ridge can be ident if ied from satelli te imagery by an elongated tongu e of
elevated chlo rophyll on the central Agulhas Bank.
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Wind-driven coastal upwelling occurs at prominent capes and headlands on the cape south

coast, between Cape Seal at Plettenberg Bay and Cape Recife at Port Elizabeth (Schumann

1982). Upwelling occurs frequently during summer and autumn months when the percentage

of easterly component winds increase (Schumann and Martin 1991, Jury 1994, Tilney et al.

1996). Easterly winds act on the surface layer of the ocean, deflecting water offshore

because of Coriolis force - an apparent force that divert wind-driven currents to the left of

the wind in the southern hemisphere. The result is a net movement of surface water at right

angles to the direction of the wind, known as Ekman transport. Cold, dense, subsurface

water is lifted towards the coast, to compensate for the offshore loss of surface water during

Ekman transport. This newly upwelled water is rich in nutrients that drive primary productivity

along the coast.

The thermocline separates the warm surface water (offshore) from the cold upwelled water

(inshore). Longshore currents are generated at the frontal zone because of an offshore

pressure gradient, and a cold longshore current is generally associated with upwelling along

the south coast. Schumann (1982) explained how the difference in water depth between the

northern (bayside) and southern (seaward) side of prominent capes creates a zone of

divergence that enhances upwelling during easterly winds. Consequently, upwelling starts at

the capes and progresses westwards with the alongshore upwelling current (Schumann

1982).

1.2.2.3 Shelf currents

The circulation on the Agulhas Bank is determined by local wind forcing and by the Agulhas

Current (Schumann and Perrins 1983, Walker 1986). The mean flow over the greater part of

the Agulhas Bank is in a south-westward direction (Boyd et al. 1992), parallel to the

bathymetry and the trajectory of the southern Aqulhas Current. Meanders and border eddies

are regularly observed in the southern Aqulhas Current and are thought to be caused by

baroclinic instabilities (Wells et al. 2000). On the central and eastern Bank eastward flow

occurs in cyclonic border eddies on the shelf edge and their associated reverse plumes

(Lutjeharms et al. 1989, Boyd and Shillington 1994).

Currents on the central Bank are generally weak and there is evidence of cyclonic flow (Boyd

et at. 1992) around the subsurface ridge of cold water (Swart and Largier 1987), offshore

between Cape Agulhas and Mossel Bay, which retains and concentrates plankton in the

area. This cyclonic flow is most intense in summer when easterly winds dominate (Hutchings

1994) and the cold ridge becomes quasi-permanent (Roberts 2005). Early studies of the

circulation on the eastern Agulhas Bank suggest that there is a nearshore counter current

between Mosselbay and Cape St. Francis (Shannon 1970, Boyd et al. 1992, Hutchings 1994,

8



Roberts and van den Berg 2005). This current is not always present and is variable

throughout the year (Schumann 1987. Boyd and Shil1ington 1994).

1.2.3 Regional weather

1.2.3.1 Seasonal influences on South African weather patterns

South Africa is located in the subtropics and is influenced by atmospheric weather systems

both from the tropics. to the north and from the temperate latitudes, to the south (Preston

Whyte and Tyson 1988). Air heated in the tropics moves south and descends at about 30 'S

to form two semi-permanent high pressure cells, one on either side of the African continent.

These anticlockwise rotating air-masses are known as the South Atlantic Anticyclone and the

South Indian Anticyclone, respectively. Their centres have a seasonal latitudinal variation of

approximately 6° (Preston-Whyte and Tyson 1988) that results in marked differences

between summer and winter weather patterns over southern Africa (Figure 1.4). South of 30

'S. a band of low pressure cells. associated with cold fronts and strong westerly winds.

circulate the globe from west to east. The effect of the westerly storm belt on the South

African weather depends on the seasonal position of the South Atlantic Anticyclone and the

South Indian Anticyclone.

In summer, the position of the South Atlantic Anticyclone. south of the African continent,

(Figure 1.4a) creates a pressure gradient with the heat induced low over the interior of South

Africa. This pressure gradient drives strong south-easterly and easterly winds along the

South African seaboard. Occasional "bud-off" high pressure cells move eastward along the

south coast, causing strong easterly winds, east off Cape Agulhas (Walker 1986) that prevail

for periods of 3 - 5 days. When the high pressures systems and their associated easterly

winds weaken, cold fronts from the westerly storm belt occasionally reach the African

subcontinent, and travel eastwards along the south coast until they are deflected south by

the Indian Ocean Anticyclone. Localised coastal lows originate on the west coast and travel

from west to east around the coast ahead of these cold fronts. Both low pressure systems

produce warm north-westerly winds before the front arrives. and southwesterly winds as the

front passes. The southwesterly winds normally subside before the onset of an easterly wind.

associated with the formation of the next high pressure system.

In winter, the South Atlantic and the South Indian Anticyclones move north, thus allowing the

low pressure systems of the westerly storm belt to reach further into the interior of South

Africa (Figure 1.4b). Cold fronts accompanied by strong north-westerly to westerly winds and

rain move across South Africa from west to east. typically following a seven day weather

sequence (Preston-Whyte and Tyson 1988) in the Western Cape.
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Figure 1.4: Seasonal synoptic charts, showing the position of the South Atlantic and Indian
Ocean Anticyclones (a) during summer and (b) winter. (Adapted from Morgan 2010)

1.2.3.2 South coast climate

The Tsitsikarnrna coast is situated on the Cape south coast between two climatic regions: a

Mediterranean climate with winter rainfall in the west, and a subtropical climate with summer

rainfall in the east. The coast between these two regions has a temperate climate with warm

summers and mild winters. The mean monthly air temperature recorded at Storms River

Mouth over a 12 year period (1992 - 2003) ranged from a minimum of 10 - 18 'C and a

maximum of 19 - 25 'C (Tsitsikamma National Park management plan 2006). Humid sea

winds from the Indian Ocean bring rainfall on the weather side of the mountain slopes. An

annual rainfall of 1000 mm falls throughout the year, with a lower rainfall from April to August.

However, the region is currently experiencing the worst drought in more than 100 years

thought to be associated with long-term climate change and below-normal sea temperatures

on the Agulhas Bank (Jury and Levey 2006).

The wind along the south coast is predominantly alongshore. The principle axis is site

specific and influenced by coastline topography and the land-sea interface (Schumann and

Martin 1991). Westerly winds dominate throughout the year, while the occurrence of easterly

winds increases during summer and autumn months, when the band of maximum

anticyclonic activity has moved south (Taljaard 1972 cited by Schumann et al. 1982). Wind

variability on the south coast occurs at shorter periods than on the west coast. Schumann

(1999) found alongshore winds to fluctuate at periods ranging between two and six days on

the south coast, while on the west coast variability occurred at periods between six and ten

days. The greater variability along the south coast is attributed to smaller more localized

coastal lows that are not associated with the cyclonic belt south of the continent (Schumann

1989). This increased variability along the south coast has implications for primary

productivity associated with wind-driven, coastal upwelling (Schumann 1999).
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1.2.4 South African squid fishery

The South African squid jig fishery is based in the impoverished south-eastern Cape and is

one of the largest generators of employment and foreign revenue in the region (Augustyn

1990). Annual squid catches range between 2500 and 10 000 tons, with an annual catch

average of approximately 7000 tons (Marine and Coastal Management, Commercial Squid

Fisheries Data). The hand-line jig fishery is labour intensive and provides employment for

nearly 3 000 people, including land based personnel. The majority of the catch is exported

and the squid fishery generates about R180 million per year (DEAT Squid Policy 2005).

1.2.4.1 History

Until the mid-1980s almost all squid catches in South African waters were made by demersal

trawlers (Augustyn 1986) from Asia, to satisfy the growing demand for the seafood delicacy,

know as calamari. Foreign fishing activity was gradually phased out with the establishment of

South Africa's Exclusive Economic Zone (EEZ) and excluded completely in 1993.

Large scale, local exploitation of the resource started in 1983 with the establishment of the

lucrative hand-line jig industry in the Eastern Cape towns of SI. Francis Bay and Jeffery's

Bay. At first, fishing was done from ski boats and small deck boats. But bigger vessels with

onboard freezers ranging up to 30 m soon joined the fleet, increasing the quality of the catch

and the efficiency of the smaller boats (Augustyn 1986). In the early days, the fishery was

largely unregUlated and catches grew rapidly amongst fears that the resource could collapse

under the increasing fishing effort (Augustyn 1986). A permit system, which limited the

number of fishing vessels and crew operating in the fishery, was introduced in 1987, and in

1988 a comprehensive one month closed-season was introduced to protect female squid at

the height of the spawning season in November (Augustyn et al. 1992). More recently, large

fluctuations and a general decline in annual squid catches have led to additional closed

fishing seasons in March/April and July/August (Government Gazette 2008) in an attempt to

protect the spawning stock.

1.2.4.2 Biology and life cycle

Chokka squid (LoNgo reynaud/I) are distributed over most of the South African continental

shelf, between the Namibian border on the west coast and Port Alfred on the southeast coast

(Augustyn 1989). Most of the biomass is concentrated on the Agulhas Bank at depths

shallower than 200 m (Roberts and Sauer 1994). The main spawning grounds are situated

inshore on the south coast between Plettenberg Bay and Port Alfred (Augustyn 1990), where

large schools of mature males and females aggregate in shallow bays to reproduce and lay

benthic egg capsules. The squid jig fishery is also based here, with line fishermen targeting

the spawning aggregations to maximize their catch.
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Chokka is a short-lived species that completes its entire life cycle in less than 18 months

(Augustyn and Roel 1998). The life history of chokka squid on the Agulhas Bank (Figure 1.5)

is described in detail by Augustyn et al. (1992) and Augustyn et al. (1994). It includes a

benthic egg phase, a passive and active planktonic phase and maturity at the age of about

nine months (Roberts pers comms).

A summary of the life history of chokka squid is given below:

Eggs

The eggs of Loligo reynaudii are ovate (2.8 mm long and 2 mm wide) and yolky in

appearance (Augustyn et al. 1994). About 120 eggs are arranged in a spiral within a

gelatinous egg capsule (Augustyn 1989). These translucent egg capsules are soft, finger

shaped, and bright orange in colour (Figure 1.6a). Egg capsules are attached to the

substratum and individual capsules are joined to form larger clusters. These clusters, or egg

beds, can range in size from a few strands to more than 6 m in diameter (Augustyn et al.

1994). The preferred substrates for egg deposition appear to be low profile reef and fine

sandy areas between reefs (Sauer et al. 1992). The hatching time of eggs depend on the

water temperature. Laboratory experiments by Oosthuizen et al. (2002b) showed an

optimum temperature range for embryonic development between 12 'C and 17 'C, with

approximate hatching times of 50 days and 26 days respectively. Outside this optimal

temperature range abnormal embryonic development occurred with mortality. Oosthuizen et

at. (2002b) found that upwelling in the spawning areas has a negligible effect on the

successful development of squid eggs.

Paralarvae

Knowledge of the natural behaviour of paralarvae is limited and most existing information

comes from laboratory experiments (Vidal et al. 2002, Vidal et al. 2005, Oosthuizen et al.

2002a, Oosthuizen et al. 2002b, Martins in press). Newly hatched chokka squid or

paralarvae, are not completely developed (Figure 1.6b) and appear to have a passive,

planktonic existence (Augustyn et at. 1994). Starved hatchlings have enough internal yolk to

survive for up to six days at 16 'C (Vidal et al. 2005), with longer survival rates expected at

lower temperatures. Once the yolk is consumed their survival depends entirely on their ability

to catch appropriate food. Paralarvae feed on copepods, mysids and other crustaceans of

similar size (Augustyn et al. 1992).
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It is not known when young squid begin to swim. Augustyn et al. (1992) assumed that

horizontal movement is severely restricted during the first two months of existence. Squid

paralarvae are negatively buoyant (Martins et al. in press) and in quiescent water, have to jet

continuously to maintain their vertical position in the water column (Augustyn et al. 1992).

However, new hatchlings in a laboratory experiment swam near the surface for two to three

days before moving deeper (Vidal et al. 2005). It was thought that the initial buoyancy is

derived by the greater yolk weight to body weight ratio of new hatchlings (Vidal et al. 2002).

Chokka squid paralarvae are distributed over large areas of the South African continental

shelf, with the greatest concentrations near the upwelling zones at the coastal spawning

grounds in the main summer spawning season (Augustyn et al. 1994). Surviving the early life

stages depends on the prey catching ability and predator avoidance skills of squid

paralarvae.

Juvenile and adult squid

Juvenile squid of 20 - 80 mm mantle length (ML) are present throughout the year on the

south coast at depths between 30 m and 150 m (Augustyn et al. 1989). Juveniles feed on

larger crustaceans and fish larvae (Augustyn et al. 1994), and by the time they reach a

mantle length of 100 mm they feed almost exclusively on fish (Lipinski 1987). Size at maturity

is highly variable and depends on the geographic location and the time of year (Augustyn

1990). Males can be mature at mantle lengths as small as 90 mm, or immature at 250 mm.

In females the range is narrower at1 00 - 180 mm ML (Augustyn 1989).

Spawning

Mature squid migrate inshore in sexually discreet schools (Sauer et al. 1992) to reproduce.

On the spawning grounds, individuals pair up and move together to the substrate where the

females deposit their egg capsules. Males outnumber females by a ratio of 2:1 (Sauer 1991)

and lone sneaker males often intercept pairs moving to and from the communal egg bed.

Squid are serial spawners (Melo and Sauer 1999). Histological analysis (Sauer and Lipinski

1990) suggests that individuals may spawn over a period of weeks to months. Sporadic

spawning takes place throughout the year (Sauer 1991), but generally there are two peak

periods, one in spring/early summer and another in autumn/winter (Augustyn et al. 1994).
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CHAPTER 2
METHODS AND MATERIALS

2.1 Study area

The Tsitsikamma coast is located in the southern Cape, between Plettenberg Bay and Cape

SI. Francis (Figure 2.1). A large part of the coastline (c. 70 km) became protected in 1964

with the proclamation of the Tsitsikamma National Park (TNP), Africa's oldest and largest

marine reserve (Robinson and de Graaff 1994). The marine section of the TNP covers an

area of 340 km2
, extending from the high water mark up to three nautical miles (5.5 km)

offshore between Groot Rivier (east) at Nature's Valley and Groot River (west) at Oubos. The

relatively straight Tsitsikamma coastline is orientated in an east-west direction (primary axis

at 1000
- 280") for more than 100 km, and is exposed to strong wave action. Sheer cliffs rise

vertically to a height -ot about 180 m above sea level before the topography flattens onto a

ravine cut coastal plateau that extends for approximately 8 km to the base of the

Tsitsikamma Mountain Range (Toerien 1976). The sea cliffs continue below the water line

and inside the TNP a depth of 90 m is found less than four nautical miles from shore.

Below this, the water depth decreases more gradually towards the shelf break at 200 m

depth. The subtidal area of the TNP is a combination of soft bottom sediments (c. 79 'Yo) and

dispersed gravel platforms and rocky reefs (c. 21 'Yo) (Flemming et a/. 1986). In the east, at

Cape Seal, a depth of 100 m is found only 4 km from shore. The distance between the 100 m

isobath and the coastline gradually widens westward, to about 28 km at Knysna. Beyond the

100 m isobath, the water depth decreases more gradually towards the shelf break at 200 m.

The bathymetry is more gradual in the west at Plettenberg Bay, and between Groot River

(east) and the Tsitsikamma River. St Francis Bay is a shallow « 50 rn), log spiral bay

situated on the eastern side of Cape SI. Francis.

Middelbank (34002.72 S, 23052.51 E) is a prominent reef situated 3.7 km south of the

Storms River mouth. The seaward side of the reef drops steeply from a shallow point of 23 m

to 60 m, while the inshore side slopes more gradually to about 45 m (Roberts and van den

Berg 2005). An Acoustic Current Doppler Profiler (ADCP) and a vertical array of underwater

temperature recorders (UTRs) were deployed on the inshore side of the reef, at a depth of 36

rn, allowing for the safe deployment and recovery of the instruments by SCUBA divers.
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Figure 2.1: The study area on the eastern Agulhas Bank showing the driller release sites, ADCP deployment positions, weather stations, bathymetry and
the location 01 the Tsltsikamma National Park
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2.2 Wind measurements

Hourly measurements of wind speed and direction were obtained from the South African

Weather Service (SAWS) for three weather stations along the Tsitsikarnrna coast. The

accuracy of wind direction is given as 10 0 and wind speed as 0.1 rn.s'. The western most

station at Plettenberg Bay (34005.634 S; 23019.734 E) is positioned on the top of a sea cliff,

139 m above sea level. The weather station at Tsitsikamma (34 0 1.614 S; 23 054.516 E) is at

the foot of a sea cliff, 5 m above sea level, in an embayment created by the mouth of the

Storms River. Neither the elevated position of the weather station at Plettenberg Bay, nor the

sheltered position at Tsitsikamma is ideal, as the coastal topography may have influenced

the wind measurements made at these locations. The eastern most station at Cape St.

Francis (34 0 12.00 S; 24049.974 E) is situated near the lighthouse at Seal Point, 7 m above

sea level. It is the rnost exposed weather station of the three used in this study. Wind speeds

are given in rn.s' and expressed in terms of the Beaufort wind scale (Appendix D).

Wind data were pooled into spring (September, October, November), summer (December,

January, February), autumn (March, April, May) and winter (June, July, August) months to

establish seasonal differences among stations. The classed frequency of wind speed and

wind direction was graphed on stepped circular histograms (wind roses). Zero values for

wind speed were excluded, as the wind vane could have been pointing in any direction

during calm situations, and the associated direction is therefore meaningless.

Stick vectors were produced by plotting each measurement of wind speed and direction at

time (z) as a vector. Wind measurements were first converted to the oceanographic standard

by rotating the vectors 1800 clockwise. The wind data was filtered with a New Hampshire

Lanczos filter (97 weights and a 36 hour quarter power point) to remove high frequency

oscillations (Schumann 1999) and rotated 90 0 clockwise to highlight the principle east-west

component of the wind.

2.3 ADCP measurements

2.3.1 Principle of operation

An Acoustic Current Doppler Profiler (ADCP) is a type of sonar that measures water

velocities over a range of depths. It transmits sound bursts, called pings, into the water

column. Suspended particles, transported by the currents, produce echoes which are

returned to the ADCP. Current velocity is calculated from the Doppler shift of these particles

that undergoes a change in frequency as the particles move away or towards the ADCP. The

Teledyne ADCP has four acoustic beams that measure at 20 0 angles from a central axis.

The ADCP collects high-resolution time series of currents at user defined depths, called bins,
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throughout the vertical water column. The technology has been used since the 1980s and is

now considered an essential tool in the study of currents worldwide.

2.3.2 ADCP deployments

Three RDI Teledyne 600 kHz ADCPs were deployed along the Tsitsikamma coast, between

the drifter deployment sites at Storms River and SI. Francis Bay (Figure 2.1). The

instruments were configured to sample the vertical water column in 2 m bins at 30 minute

intervals using an ensemble size of 120 pings, with one ping per second. The quality of the

data in each bin was assessed. and only bins with> 75% good readings were included in the

analysis. This typically eliminates the first 5 m below the surface due to interference from

waves, tides and atmospheric processes.

ADCP-1 was moored in the centre of the Tsitsikamma National Park, on the shoreward side

of Middelbank (34° 02.72 S, 23° 52.51 E), in 36 m of water. The instrument recorded data for

the duration of the drifter study (November 2006 - March 2008) and was serviced twice a

year by SCUBA divers to retrieve the data and replace the batteries. ADCP-2 (referred to as

TNP-east in this study) was positioned inside the TNP, 5 km from the eastern boundary (34°

04.7955 S; 24° 08.190 E), at a depth of 61 m. ADCP-3 was positioned 56 km east of ADCP

2, at Thyspunt (34 0 13.653 S; 24° 42.637 E), in 68 m of water. The ADCPs at TNP-east and

at Thyspunt were deployed from the RS Algoa and recovered by means of an acoustic

release mechanism at three to four month intervals. Deployment duration at TNP-east

(ADCP-2) was from 10 March 2007 to 9 July 2007 (121 days) and from 8 December 2007 to

28 March 2008 (111 days) at Thyspunt (ADCP-3).

2.3.3 ADCP data processing and data products

Data from specific depth bins were selected to represent the current at the surface, mid

water and at the bottom. The bin selection depended on the depth of the mooring at each

ADCP deployment site. Additional bins were selected from TNP-east and Thyspunt to

compare the currents at corresponding depths between these sites. A summary of

deployment details and the selected bins at each mooring site is given in Table 2.1.

Current direction was calculated according to the circular co-ordinate system in which an

angle (9) is measured clockwise from the positive y-axis, which corresponds to north on a

compass rose. Magnetic deviation was corrected for by subtracting 25 0 from the recorded

direction, so that the positive y-axis indicates true north. The ADCP data were processed

with RDI Teledyne support software and locally developed software.
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The following data products were produced:

Polar histograms

At a specified depth, the occurrence of data (given as a percentage of the total) is divided

into 16 sectors for direction (each representing 22.5° of the total) and 10 bins for speed

(cm.s'). Speed bins, are presented on the radial axis and were selected to include maximum

velocities, while out of range velocities were excluded.

Stick vectors

Each measurement of current speed and direction at time (z) is represented by a vector.

Direction is given in the oceanographic sense and measured clockwise from the positive y

axis (true north), while the x-axis represents time. The stick vectors were rotated 90°

clockwise to highlight the principle east-west component of the current measurements.

U and v components

Each vector of speed and direction was divided into u- and v-components by calculating the

sine and cosine of the vector with basic trigonometric functions. The data were orientated to

align with the Tsitsikamma coastline (-10") so that the u-component corresponds to the

alongshore current, with positive values representing eastward flow and negative values

westward flow. Similarly, the v-component corresponds to cross-shelf currents with positive

values representing northward flow and negative values southward flow.

Spectral analysis

The rotary spectra of the Middelbank ADCP data were calculated to examine the frequencies

of variability in the current. The method decomposes a velocity vector into a clockwise and

anti-clockwise rotating component (Mooers 1973), and calculates the energy for each

rotating vector. Missing data were interpolated using a moving average. The dataset was

also visually checked to eliminate any obvious errors and to ensure a uniform sampling

frequency. Data from the surface (7 m) and bottom (31 m) bins were filtered to one-hour

values and to twelve-hour values to highlight variability at periods less than 24 hours, and

greater than 24 hours, respectively. The rotary analysis was done at a bandwidth of 0.001

cph (cycles per hour) with 42 cph degrees of freedom and a Nyquist Frequency of 0.041 cph.

Significant peaks in the spectral energy were calculated at the 95% confidence limits of

0.675 and 1.575 for the lower and upper intervals respectively.

19



Table 2.1: ADCP deployment details, including the depths selected for statistical analysis, at
three sites along the Tsitsikamma coast.

Start date
End date
Duration (days)
Latitude
Longitude
Mean water depth (m)
Max water depth (m)
Tidal range (m)
Depth of surface bin (m)
Depth of midwater bin (m)
Depth of bottom bin (rn)

Middelbank
1 Nov 2006

31 Mar 2008

517

34°02.72 S
23°52.51 E

34.8

36.2

2.6

7

19

31

20

TNP-east
10 Mar 2007

9 Jul2007

121

34° 04.79 S

24°08.19 E
54.9

55.9

1.9

7

31

51

Thyspunt
8 Dec 2007

28 Mar 2008

111

34° 13.65 S

24° 42.63 E
69.5

70.9

1.2

7

31

65



2.4 Surface drifters

2.4.1 Design

Satellite-tracked drifters were used to measure the near surface currents along the

Tsitsikamma coast. The drifters were manufactured locally, following guidelines from the

Global Drifter Program (Sybrandy and Niiler 1992; Sybrandy et al. 2005) that meet the

standards of the World Ocean Circulation Experiment (WOCE). The design has a drag area

ratio> 40, which improves its water following capability and minimizes wind induced slip

The drag area ratio of a drifter is defined as the ratio of the drag area of the drogue over the

drag of the non-drogue elements (Sybrandy et a/. 2005). Slip is the horizontal motion of a

drifter that differs from the lateral motion of currents averaged over the drogue depth. Slip is

largely caused by wind on the surface float; drag on the float and tether, and rectification of

surface waves (Niiler et al. 1987; Geyer 1989). Minimal tension between the surface float

and drogue and a large drag area ratio are the most important design characteristics that

minimize slip (Niiler et al. 1987). As long as the drogue remains attached to the drifter, the

downwind slip is estimated at 0.7 crn.s' per 10 rn.s' of wind speed (Niiler and Paduan

1995). If the drogue becomes detach form the surface float, it will slip downwind at a speed

of 8.6 crn.s' per 10 rn.s' of wind (Pazan and Niiler 2001).

A drifter is made up of three components (Figure 2.2):

(1) A spherical surface float (0 = 38 cm) provides buoyancy and houses the satellite

communicator and batteries, (2) a thin wire tether (length = 5 m) connects the surface float to

a sub-surface drogue and (3) a holey-sock drogue (0 = 90 cm) anchors the drifter to a layer

of water at the required depth. The drogue is a cylindrical tube of fray resistant material made

up of several segments (total length = 5.4 m). Paired holes are cut into each segment,

rotating at 90 0 between consecutive segments. The holes act like dimples on a golf ball by

disrupting the formation of organized lee vortices (Lumpkin and Pazoz 2006), thus optimizing

the drogue's water following capability. The drogue is held open by plastic rings. Weight is

added to the bottom ring to ensure rapid sinking upon deployment and to maintain the

drogue's vertical orientation in the water column. The drogue, centred at 8 m, effectively

integrates the currents between 5 - 10m below the surface.

2.4.2 Data accumulation and processing

A GPS device in the surface float transmits the drifter's position, together with a date and

time, via the Inmarsat Indian Ocean Region Satellite to a ground station from where the data

can be accessed over the internet. Each drifter time series was visually edited to remove bad

data before applying a piecewise polynomial interpolation (Sanders and Chrysikopoulos

2004) and then sampled at regular one hour intervals. A time series was separated into
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segments when communication was lost for more than 24 consecutive hours. The drifter

trajectories were terminated when drifters moved outside of the study area. Hourly drift

velocity was calculated from the interpolated time series. while u- and v- components were

derived to show the alongshore and on/offshore movement of drifters.

....
3
<lls..,

surface.
float ,

I
•

I
I,,
j

1

drogue

'Y

I

Figure 2.2: A drifter with holey sock drogue drawn to scale (Lumpkin and Pazos 2006). Most of
the tether length is excluded from the diagram.
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2.4.3 Drifter deployment

Fifteen satellite drifters were deployed along the Tsitsikamma coast between November

2006 and March 2008 (Table 2.2). Deployments were made year-round, but the majority

coincided with summer and winter months when fieldwork was conducted in the region.

Drifters were deployed in less than 100 m of water at Plettenberg Bay, Middelbank, and St

Francis Bay (Figure 2.1), either in groups or individually. The release of drifters was

restricted by the timing of fieldtrips, the availability of ships of opportunity and by weather

conditions. This allowed for two group deployments of three drifters (deployments 1 and 4)

and one group deployment of six drifters (deployment 3). The remaining three drifters were

released as single deployments (deployments 2, 4 and 6).

During group deployment 1 (November 2006) three drifters were released along a transect

perpendicular to the coast, off the Storms River mouth. A drifter was released directly above

the ADCP moored at Middelbank, and two more drifters, 1.9 km apart, further along the

transect. The deployments were made from an inflatable workboat, within 20 minutes of each

other.

Group deployment 3 was made up of six drifters, released at three sites along the

Tsitsikamma coast, over ten days in June 2007. Simultaneous deployments were made at

Plettenberg Bay and Middelbank and at St. Francis Bay and Middelbank to investigate

continuity in the currents. Single deployments were also made at Middelbank (n = 1), St.

Francis Bay (n = 1) and Plettenberg Bay (n = 2). Releases at St. Francis Bay and

Middelbank were done from the inflatable workboat, while a commercial whale watching

operator assisted with deployments in Plettenberg Bay.

Group deployment 4 was made in November 2007, with three deployments over two

consecutive days. Drifter 47 was released at Middelbank and drifter 48, four nautical miles

(7.4 km) further offshore, 20 minutes later. Drifter 41 was released in St. Francis Bay the

following day.

In March 2007, December 2007 and March 2008 single deployments were made at

Middelbank from vessels of opportunity, i.e. the RS Algoa and the RS Elen Kuswayo. The

details of the drifter deployments, along with lifespan and presumed reasons for failure are

summarized in Table 2.2.
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Table 2.2: Deployment and recovery details of drifters (n = 15) deployed along the Tsltslkamma coast between 2006 and 2008. Presumed failure types are
(1) beached and recovered, (2) beached not recovered, (3) drifted beyond study area and (4) unknown reason.

Deployment details Last report In study area
Deployment Drifter

Date/time Lat (5) Long (E) Area Date/time Lal (5) Long (E)
Days In Failure

no. no. study area type

1 27 22-Nov-06 12:55 -34.0448 23.8778 Middelbank 03-Dec-2006 18;59 -34.1366 24.4348 11 1

1 29 22-Nov-06 13:03 -34.0603 23.8692 Middelbank 25-Nov-200603:26 -34.1865 24.5373 3 1

1 31 22-Nov-0613:12 -34.0759 23.8619 Middelbank 30-Nov-2006 18:54 -34.1701 24.4842 8 1

2 32 04-Mar-07 09:55 -34.0468 23.8738 Middelbank 05-Mar-2007 23:21 -34.1541 24.4534 2 2

3 228 13-Jun-0709:41 -34.0445 23.8682 Middelbank 30-Jun-2007 19:00 -34.9584 22.1867 17 3

3 227 13-Jun-07 11:00 -34.1197 23.4622 Plettenberg Bay 05-Jul-200708:00 -34.9332 22.1776 22 3

3 36 14-Jun-07 09:05 -34.0451 23.8726 Middelbank 15-Jun-2007 17:56 -34.0045 23.7614 1 2

3 37 17-Jun-07 12:50 -34.1623 24.9769 St. Francis Bay 09-Jul-200703:12 -34.1094 24.3756 22 2

3 40 20-Jun-07 10:08 -34.1626 24.9765 51. Francis Bay 29-Jul-2007 14:45 -34.0778 24.2411 39 2

3 38 20-Jun-07 17:00 -34.0427 23.8633 Middelbank 18-Jul-200704:00 -34.9039 22.1729 27 3

4 47 17-Nov-0708:45 -34.0441 23.8737 Middelbank 29-Nov-2007 11:16 -34.541 22.9661 12 3

4 48 17-Nov-0709:06 -34.1108 23.8658 Middelbank 20-Nov-2007 19:33 -34.3842 23.3292 3 4

4 41 18-Nov-07 16:37 -34.1736 24.9089 51. Francis Bay 21-Nov-200700:33 -34.2325 24.6971 2 4

5 43 04-Dec-0715:47 -34.0456 23.8776 Middelbank 16-Dec-2007 11:09 -34.8684 22.0391 12 3

6 46 ll-Mar-08 16:00 -34.0441 23.8737 Middelbank 26-Mar-2008 23:07 -34.8264 22.175 15 3

24



2.5 Sea temperature

A vertical array of underwater temperature recorders (UTRs), moored in 36 m of water at

Middelbank (34 002.66 S; 23 0 52.60 E), provided data on the stratification of the water

column. The thermistor array recorded hourly water temperature at approximate depths of 12

m, 19 m, 27 m, and 35 m between November 2006 and March 2008. Two UTRs, positioned

in approximately 10m of water at Storms River Mouth (34 0 01.37 S; 23 0 53.98 E) and at

Mostert's Hoek (34 0 11.84 S; 24 0 46.46 E) monitored the nearshore water temperature, as

well as alongshore temperature gradients. All temperature measurements were made at one

hour intervals to an accuracy of 0.01 'C.
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CHAPTER 3
RESULTS

3.1 Wind analysis

During the study period the wind was predominantly westerly along the Tsitsikamma Coast.

There were, however, differences in the directional distribution between sites (Figure 3.1).

West-southwesterly (WSW) winds dominated at Cape St. Francis, with an occurrence of

nearly 25%. At the Tsitsikamma weather station southwesterly (SW) winds occurred most

frequently (19%); followed by north-northeasterly (NNW) winds (12%). This large on-offshore

component at Tsitsikamma can be attributed to the channelling of the land-sea breeze

through the Storms River gorge. The wind direction at Plettenberg Bay was more variable,

with west-southwesterly (WSW) winds slightly dominant (14%). Wind speeds greater than 12

rn.s' were only recorded at Cape St Francis, during both westerly and easterly conditions.

Changes in the alongshore wind direction at Plellenberg Bay, Tsitsikamma, and Cape St.

Francis were well correlated (Figure 3.2). There was however a lag in the change of wind

direction towards Cape St. Francis, with the westward movement of the wind systems.

Generally, the wind was strongest at Cape St Francis. Wind speeds at Tsitsikamma and

Plettenberg Bay were similar, with measurements at Plettenberg Bay slightly stronger.

The seasonal analysis of the wind field (Appendix A) shows an increase in easterly

component winds at all three weather stations during spring, summer and autumn months. At

Cape St. Francis and Tsitsikamma easterly winds had an offshore component, being mainly

from the direction east-northeast (ENE). At Plellenberg Bay easterly winds was slightly

onshore, from the direction east-southeast (ESE). The occurrence of easterly winds peaked

in summer, with frequencies of 33%, 30% and 38% of the total at Plettenberg Bay,

Tsitsikamma and Cape St. Francis respectively. However, westerly winds remained

dominant throughout the study period.

3.2 ADCP measured currents

3.2.1 Middelbank

The current at Middelbank was predominantly alongshore; either eastward or westward

(Figure 3.3), with the principal axis was aligned to the coast (100 0
- 280,. The basic statistics

of the velocity components at Middelbank (Table 3.1) shows that near the surface (7 m),

eastward flow occurred with a frequency of 58% and westward flow with a frequency of 41 %.

Midwater (19 m), eastward flow (54%) and westward flow (45%) were nearly equal. Near the
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seabed (31 m), eastward flow had a frequency of 41% and westward flow a frequency of

58%. Current velocity generally decreased with depth and a maximum surface velocity of

141 crn.s' was recorded during an eastward current on 11 February 2007. The maximum

surface velocity coincided with the maximum velocity mid-water (120 crn.s"), and near the

seabed (59 crn.s'), as shown in Appendix B1 and B2. Average alongshore velocities were

27 cm.s' (east) and 19 crn.s' (west) at the surface (7 m); and 9 crn.s' (east) and 11 crn.s

(west) near the seafloor (31 m).

Cross-shelf currents were less dominant than the alongshore currents (Figure 3.3). The

direction of surface (7 m) and bottom (31 m) flow differed (Table 3.1), with offshore flow

dominant (60%) to a depth of 19 rn, and onshore flow dominant near the seabed at 31 m

(62%). The onshore and offshore velocities were however similar. Maximum velocities were

recorded during onshore flow at the surface (39 crn.s') and at the bottom (26 crn.s'), and

during offshore flow midwater (36 crn.s'). The average cross-shelf velocities were 5 crn.s

(north) and 7 crn.s' (south) at the surface (7 m); and 3 crn.s' (north) and 2 crn.s' (south) at

the seabed (31 mi.

Table 3.1: Statistics of ADCP measured velocity components at Middelbank during the study
period (1 November 2006 and 31 March 2008). In the u-component positive values denote
eastward flow and negative values westward flow. In the v-component positive values denote
northward (onshore) flow and negative values southward (offshore) flow.

Middelbank

7m

19m

31m

Maximum + (crn.s")
Maximum - (crn.s")
Average + (cm.s")
Average - (cm.s")

Percentage + (%)

Percentage - (%)

Maximum + (em.s")
Maximum - (crn.s")
Average + (cm.s")

Average - (crn.s")

Percentage + (%)

Percentage - (%)

Maximum + (cm.s")
Maximum - (crn.s")

Average + (crn.s')
Average - (cm.s")

Percentage + (%)

Percentage - (%)
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u-component
141
78

26.9
19.2

58
41

119.5
61.9
20.9
16.8

54
45

58.6
50.7

9.1
11

41
58

v-component

39.3
36.3

5.1
6.4

39
60

24.8
35.6

3.4
4.2
39

60
25.9
21.9
2.7
2.3
62
37
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Seasonal histograms of the current direction at Middelbank (Figure 3.3) show surface and

bottom currents flowing in opposite directions in spring, summer and autumn. In spring and

autumn, eastward flow dominated over westward flow at the surface (7 m) and midwater (19

m). At the same time, bottom currents (31 m) were evenly divided between eastward and

westward flow. In summer, eastward flow dominated near the surface and midwater, and

westwards flow dominated near the bottom. In contrast the current was predominately

westward throughout the water column during winter months. Currents speeds greater than

100 cm.s' occurred mostly in summer and only during eastward flow (Figure 3.4). The 100

cm.s' threshold was exceeded once in spring (29 September 2007) and once in winter (27 

28 July 2007), both during eastward flow.

Displacement potential was greatest near the surface and generally decreased with depth.

The maximum total displacement distances were achieved near the surface during the

summer months (Figure 3.5a). Monthly net displacement distances in the alongshore and

cross-shelf components are given in Figure 3.5b and Figure 3.5c, respectively. The greatest

net displacement distances were attained at the surface during summer months (direction

east of Middelbank). The same months were associated with offshore (southward)

displacement at the surface and onshore (northward) displacement near the bottom. June,

August and September 2007 were the only months when net displacement at all three

depths were west of Middelbank. At the same time onshore displacement occurred at all

three depths, being greatest near the bottom (31 m). During July 2007, net displacement at

the surface only 17 km east of Middelbank, despite a large total displacement (722 km)

during the same time.

Spectral analysis of the current at Middelbank show significant peaks at a range of

frequencies. The M2 semi-diurnal frequency of 12.42 hours is prominent in the 1 hour filtered

time series, especially near the surface (Figure 3.6a) where the anti-clockwise rotation had

more energy. The energy-spectra near the bottom show the same peak (Figure 3.6b), but at

a slightly lower level. Significant peaks were not found at the inertial period of 21.4 hour at

either depth. The 12 hour-filtered series at 7 m (Figure 3.6c) and at 31 m (Figure 3.6d) show

significant energy at periods of 18 days, 8 days, 4 days and 3.3 days, with the peaks more

prominent at the greater depth.
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3.2.2 TNP-east

The ADCP at TNP-east measured a current that was similarly, predominantly alongshore

with the main flow direction towards the east, aligned with coast (Figure 3.7). The strongest

currents were recorded near the surface (7 rn), during eastward flow (maximum = 69 crn.s':

average = 16 cm.s'). Alongshore velocities decreased with depth (Table 3.2) and near the

seabed (51 m) peak velocity was recorded during eastward flow (max = 40 crn.s': average =

9 cm.s'). The occurrence of westward (opposed to eastward) flow increased from 39% at the

surface to 45% at the bottom.

Onshore (northward) and oHshore (southward) flow occurred at equal percentages, with an

average of 53% offshore flow throughout the water column. Cross-shelf velocity generally

decreased with depth and maximum velocities were recorded during oHshore flow at all

depths, except at the surface (Table 3.2), where onshore flow was strongest (maximum = 31

crn.s': average = s crn.s').

Polar histograms (Figure 3.7a and b), from concurrent measurements made at Middelbank

and TNP-east over a four month period, show diHerences in the distributions of the currents

at the two sites. At Middelbank the surface current (7 m) was stronger and westward flow

occurred more frequently than at TNP-east. The current direction at Middelbank was also

more concentrated along the main axis (100' - 280'), while at TNP-east the current was

weaker and oHshore flow occurred with greater frequency. At Middelbank, the bottom current

(31 m) was predominantly westwards (maximum = 48 crn.s'), while at TNP-east the bottom

current (51 m) was mostly eastward (max = 40 crn.s'). DiHerences in the u- and v

components between the two sites are summarised in Table 3.2.
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Table 3.2: Statistics of the alongshore (u) and cross-shelf (v) velocity measured at Middelbank
and at TNP-east between 10 March 2007 and 9 July 2007. In the u-component positive values
denote eastward flow and negative values westward flow. In the v-component positive values
denote northward (onshore) flow and negative values southward (offshore) flow.

u-component v-component

Middelbank TNP-east Middelbank TNP-east

Maximum + (cm.s") 81.9 68.5 28 31.1

Maximum -lem.s·') 56 51 35 30.7

Average + (cm.s') 20.5 15.9 5.05 6.1
7m

Average - (cm.s") 18.8 10.3 5.83 6.4

Percentage + (%) 51 61 45 47

Percentage - (%) 49 39 54 53

Maximum + (em.s') 60.7 58 22 17.3

Maximum - (crn.s") 51.7 42 20 35.5

Average + (cm.s") 17.3 13.3 3.3 3.9
19m

Average - (cm.s") 17.9 9.8 4.2 4.2

Percentage + (%) 52 60 43 44

Percentage - (%) 47 40 56 56

Maximum + (cm.s") 40.9 51.9 23 15.6

Maximum - (cm.s") 47.8 36 12 19

Average + (crn.s") 7.3 11.5 2.4 3
31m

Average - (em.s") 11.6 9.3 2 3.2

Percentage + (%) 38 53 60 49

Percentage - (%) 61 47 39 51

Maximum + (cm.s') 39.8 17.9

Maximum - (cm.s") 24 20.6

Average + (cm.s") 8.8 3.1
51m

Average - (cm.s") 6 3.5

Percentage + (%) 54 46

Percentage - (%) 45 54
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3.2.3 Thyspunt

At Thyspunt the current was mainly alongshore, with westward and eastward flow occurring

at nearly equal percentages (Table 3.3). At the surface (7 m), the principal axis (- 282") was

parallel to the coast (Figure 3.8a); while the current near the seafloor (65 m) was orientated

more towards the coast with the principal axis at 3030 (Figure 3.8b). The highest velocities

were recorded during westward flow at the surface (7 m) (maximum = 85.9 crn.s': average =

24.4 crn.s'), while eastward (surface) flow was somewhat slower (maximum = 78.0 crn.s":

average 17.1 crn.s'). Alongshore flow near the seafloor (65 m) reached maximum velocities

of 36.9 crn.s' (west) and 35.3 crn.s' (east) and average velocities of 12.7 crn.s' (west) and

9.7 cm.s'(east).

The cross-shelf current at Thyspunt was less dominant that the longshore component (Figure

3.8a, b). At the surface (7 m), onshore (northward) flow occurred more frequently and

attained higher velocities (maximum = 43.3 crn.s': average = 9.0 crn.s') than offshore flow

(maximum = 32.0 crn.s': average = 6.8 cm.s') (Table 3.3). Near the seabed (65 rn), onshore

(northward) velocities (maximum = 16.8 crn.s': average = 4.0 crn.s') and offshore

(southward) velocities (maximum = 18.4 cm.s': average = 3.0 crn.s") were similar.

Polar histograms from concurrent hourly measurements at Middelbank and at Thyspunt

show differences between the surface (Figure 3.8a) and bottom (Figure 3.8b) currents at the

two sites. The surface current at Middelbank was almost exclusively eastward, the direction

concentrated between 90 0 and 135o. At Thyspunt, the current flowed either east or west.

Westward flow was slightly dominant and eastward flow was directed onshore (between 45 0

and 90"), towards Seal Point at Cape St. Francis. The surface current (7 m) at Thyspunt

attained maximum velocity (85.9 crn.s') during westward flow on 15 January 2008, while

maximum surface velocity at Middelbank (104.3 crn.s') was recorded during eastward flow

on 27 February 2008.

Bottom currents at Middelbank (31 m) and at Thyspunt (65 m) were predominantly westward

(Figure 3.8b), but the current direction at Thyspunt was more variable. Circular concentration

(r) indicates the dispersion (or variability) of circular measurements. It ranges from zero,

when there is so much dispersion that a mean angle cannot be calculated, to one, when all

data are concentrated in the same direction. The circular concentration (r) for the bottom

current at Middelbank and Thyspunt was calculated at 0.86 and 0.46 respectively, giving

confirmation that the flow direction of the bottom current was more variable at Thyspunt than

at Middelbank. Statistics of the velocity components at Middelbank and at Thyspunt are

summarized in Table 3.3.
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Table 3.3: Statistics of the alongshore (u) and cross-shelf (v) velocity measured at Middelbank
and Thyspunt between 8 December 2007 and 28 March 2008. In the u-component positive
values denote eastward flow and negative values westward flow. In the v-component positive
values denote northward (onshore) flow and negative values southward (offshore) flow.

u-cornponent v-component

Middelbank Thyspunt Middelbank Thyspunt

Maximum + (cm.s") 104.3 78 23.8 43.3

Maximum - (cm.s") 53.6 85.9 36.3 32

Average + (crn.s") 31.9 17.1 4.2 9
7m

Average - (crn.s") 17.3 24.4 7.5 6.8

Percentage + (0/0) 70 45 25 62

Percentage - (0/0) 30 55 75 38

Maximum + (cm.s") 87.7 67.1 20 29

Maximum - (em.s") 47.9 73.6 20.3 26.7

Average + (cm.s') 20.8 17.7 3.1 6
19m

Average; (crn.s'') 13.5 22.2 4.7 5.1

Percentage + (0/0) 62 46 32 46

Percentage - (0/0) 38 54 67 54

Maximum + (crn.s") 35.8 57 13.2 16.2

Maximum - (cm.s") 47.9 53.5 10.4 30

Average + (cm.s') 6.9 14 2.7 4
31m

Average - (crn.s") 12.1 18.9 1.5 4.1

Percentage + (0/0) 32 43 78 55

Percentage - (0/0) 68 56 21 44

Maximum + (crn.s") 35.3 16.8

Maximum - (cm.s") 36.8 18.4

Average + (crn.s") 9.7 4
65m

Average - (crn.s") 12.7 3

Percentage + (0/0) 42 71

Percentage - (0/0) 58 28
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3.2.4 Currents during upwelling

Data from the ADCP and the thermistor array, moored at Middelbank, were used to assess

the currents during coastal upwelling events. The 13 upwelling episodes selected for the

analysis (Appendix C2) were associated with a relatively weak « 50 crn.s') and short-lived

westward current. Near the surface, westward flow generally persisted while cold water was

being upwelled, and eastward flow returned with the relaxation of the upwelling process

(Figure 3.9c). Typical progressive (surface) displacement distances during short period

upwelling (- 2 days) events ranged from 5 - 90 km west, and 1 -15 km south of Middelbank.

During the more substantial upwelling events recorded in April 2007, February 2008 and

March 2008, westward surface flow persisted at Middelbank for between six and nine days.

resulting in progressive displacement distances between 130 - 140 km west, and 10 - 25 km

south of Middelbank. Offshore, surface flow (Figure 3.9d) was brief and not only linked to the

westward upwelling current, but also to eastward flow that occurred before and alter

upwelling events. .

Bottom currents during upwelling at Middelbank were westward, as in the surface layer

(maximum velocities - 40 cm.s"; average velocities - 14 crn.s'). Westward flow generally

started at the onset of a decrease in bottom temperature and lasted until the peak of the

upwelling, when eastward flow returned (Figure 3.9c). Near-bottom progressive displacement

distances, west of Middelbank were between 30 and 60 km during short-period upwelling,

and between 90 and 200 km during longer period events. At Middelbank, cross-shelf flow

varied considerably, even when upwelling was in progress, and the onshore compensation

current could not be clearly defined (Figure 3.9d). Onshore flow was usually stronger

(maximum velocities - 10 crn.s': average velocities - 3 crn.s'), but on occasion, offshore

flow attained higher velocities. Typical progressive displacement distances were < 5 km north

of Middelbank, with maximum distances between 20 -25 km offshore during substantial

upwelling.

At Thyspunt the effect of upwelling on the surface current was similar, turning it west and

offshore. However, during upwelling, westward flow at Thyspunt was stronger than at

Middelbank (maximum velocities> 50 crn.s': average velocities> 20 crn.s') and generally

lasted longer. During the substantial upwelling event recorded on 12 February 2008

(Appendix C2) the westward surface current at Thyspunt persisted for thirteen days

(maximum velocity = 84 crn.s': average velocity = 31 crn.s"), resulting in progressive

displacement distances 330 km west, and 74 km south of Thyspunt.

The westward, upwelling current at Thyspunt did not always correspond to a westward

current at Middelbank (Appendix B1). At Thyspunt a westward bottom current was closely
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correlated with easterly winds and a decrease in sea surface temperature, inshore at

Mostert's Hoek, The current near the seabed normally turned west a few hours before the

cold water was recorded at the inshore location, and persisted until the peak of the upwelling

event (maximum velocities - 30 cm.s': average velocities - 13 crn.s'). Westward flow had a

strong onshore component (maximum velocities - 12 crn.s': average velocities - 5 cm.s'),

in compensation for upwelling, that lasted for the duration of the westward upwelling current

Theoretical displacement distances near the seabed were 10 - 35 km west and 5 - 15 km

north of Thyspunt, during upwelling events that lasted from one to four days, During bigger

events (five to nine days) distances between 65 -160 km west, and 25 -30 km north of

Thyspunt were possible,

During the upwelling event in March 2008 baroclinic currents persisted tor eight days at

Middelbank (Figure 3,20), The current was west in the water upper water column (7 - 30 m),

but east near the seabed (> 30 rn). At the same time, also during upwelling conditions, the

current at Thyspunt was mainly west in the upper water column (7 - 30 m) and onshore at

the bottom (30 - 60 rn).
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3.3 Drifter deployments

The seven drifter deployments were treated as case studies and the drifter trajectories are

described below in terms of the coastal wind conditions, ADCP measured currents, and

vertical and alongshore sea temperature gradients. Results from the drifter deployments are

given in chronological order.

3.3.1 Deployment 1

Three drifters were deployed on 22 November 2006, in a line perpendicular to the coast, off

the Storms River Mouth (Figure 3.10). Drifter 27 was released directly above the ADCP at

Middelbank, and drifter 29 and 31 one nautical mile apart, further offshore. The weather

station at Tsitsikamrna failed to record data during deployment 1 and data from the weather

station at Cape St. Francis was used instead. The drifters, deployed during gentle westerly

winds (Figure 3.12a) and downwelling conditions at Middelbank (Figure 3.12b), moved east

after deployment. Drifter 27, released above the Middelbank ADCP, attained the highest

average velocity during the first 24 hours, while average daily velocity decreased with

distance released offshore (Figure 3.11). Average (eastward) velocity during the first 24

hours was 45 crn.s', 33 crn.s' and 17 crn.s' respectively for drifters 27, 29 and 31.

Drifters 31 and 29 recorded onshore flow in the early hours of 23 November, and again on 24

November, during westerly winds (Figure 3.12a) and downwelling at Middelbank (Figure

3.12b). This onshore movement was strongest in the trajectory of drifter 31, released furthest

offshore (Figure 3.10). The drifters stayed parallel to the coast, apart from the onshore

movement, and eastward drift was interrupted by three short-lived westward reversals. The

alongshore components of hourly drift velocity and the wind velocity (Figure 3.11) show that

east-west variability were synchronized in all three drifter trajectories, and that a change in

wind direction generally preceded each alongshore change in drift direction.

The wind changed to fresh easterly on 25 November (Rgure 3.12a), before the start of the

first westward reversal (R1 in Figure 3.12). The three drifters were separated by - 43 km with

drifter 27, released inshore, positioned near Thyspunt, and drifter 31, released furthest

offshore, 9 km beyond the east boundary of the TNP (Figure 3.11). At the same time, drifter

29 washed ashore 8 km east of the Tsitsikamma River, near Tsitsikamma Point. From 25 

27 November the drifters (27 and 31) moved west along the coast during easterly winds. The

movement of drifter 27, located on the eastern side of the study area between the

Tsitsikamma River and Thyspunt, was exaggerated compared to drifter 29 (i.e. greater

velocities), but alongshore changes in direction were synchronised (Figure 3.11). Eastward

drift resumed on 27 November during a change in wind direction to westerly, and persisted
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until the allernoon of 28 November. Similarly, drillers 27 and 31 recorded another two

westward reversals during periods of easterly winds, from 28 - 30 November and from 1 - 3

December (R2 and R3 in Figure 3.12), before all three had washed ashore.

The ADCP at Middelbank recorded an above average, eastward current (maximum velocity =

49.6 crn.s') on 22 November (Figure 3.12 c - d), when the drillers were released off Storms

River. The surface current weakened but stayed eastward until 25 November (Figure 3.12c).

During the time of the east-west driller reversals (R1, R2, and R3 in Figure 3.12) the current

at Middelbank was weak « 20 crn.s') and was mostly westward. The ADCP measured

surface current turned west with each period of easterly wind (R1, R2, and R3 in Figure

3.12), and although weaker than the driller velocities, corresponded to westward

displacement in the driller trajectories.

The three drillers released during deployment 1 washed ashore east of Storms River within

11 days after deployment (Figure 3.10). The inshore drifter (27) travelled furthest, with a total

displacement of 247 km in 11 days. Drillers 29 and 31 travelled total distances of 66 km in 3

days and 102 km in 8 days, before washing ashore near the Tsitsikamma River. Net

displacement distances were similar, despite the differences in the total distance covered by

each driller. All three washed up within - 10 km of each other (52 km, 63 km and 59 km east

of Middelbank for driller 27,29 and 31 respectively).
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3.3 .2 Dep loyment 2

Drifter 32 was released at Middelbank on 4 March 2007 , during a period of strong westerly

winds (Figure 3.T4a) and isotherrnat cond itions (Figure 3.T4b). Drifter 32 moved east (Figure

3.13) in streng thening westerly winds , and attained a maximum hourly velocity of 72 crn.s'

before cross ing the eastern boundary of the TNP. The average drift velocity during the first

24 hour s was 53 crn.s'. and decreased to T6 cm.s ' during the last 12 hours of the

deploym ent (Figure 3.13). Subsequently, the drifte r washed ashore near the Tsits ikamma

River, 54 km east of Middelbank (Figure 3. 13), durin g moderating southwesterly winds

(Figure 3.13 inset i), having travelled a total distance of 55 km in 38 hours.

The Middelbank ADCP (Figure 3.14 c - d) conf irms a strong eastwa rd current (63.8 crn.s' )

at the time of the drifter deploym ent on 4 March. The eastward current pers isted until 7

March. when the current throu ghout the water column turned west. The change in current

direct ion was timed perfectly with a change in wind direction from weste rly to easterly (Figure

3.14). The easterly winds prevailed until 10 March and was asso ciated with a decrease in

water temperature at 35 m form 21 'C to 10 'C (Figure 3.1 4b) and an onshore current

com ponent (Figure 3.14c).
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Figure 3.13 : The trajectory o f drifter 32 released dUring deployment 2. Drifter movement is
away from the asteri sk and d rift velocity is colour coded accord ing to the legend. Black dots
indicate daily ticks. Inset (i) shows unfiltered stick vectors of the wind at Tsit sikamma during
the time of drifte r deployment 2.
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Fig ure 3.14: Data co llected during March 2007. (a) Filtered wi nd vect ors from the Ts its ikam ma
weather station, (b) sea temperature measurements from the thermistor string at Midde lbank,
(c) current direc tion and (d) curre nt magn itude measured by th e ADCP at Middelbank. The
dashed lines indicate the start and end of drifter deployment 2.
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3.3.3 Deployment 3

Drifter deployment 3 was made in June 2007 when eight drifters were released along the

Tsitsikamma coast over a ten day period. Simultaneous deployments took place at

Plettenberg Bay and Middelbank, and St. Francis Bay and Middelbank, to investigate

continuity in the Tsitsikamma current. Single deployments were made at Middelbank (n = 1),

St. Francis Bay (n = 1), and Plettenberg Bay (n = 2). Two drifters were excluded from the

analysis because of a technical malfunction (229) and bad data quality (33). The remaining

drifters (n = 6) were followed for a period of one month after deployment and their trajectories

separated into four weekly periods (Figure 3.15 a - d), starting from the date of release of the

first drifter (13 June).

During deployment 3 the water column at Middelbank was isothermal (Figure 3.16b) and the

drifters measured a predominantly westward current along the Tsitsikamma coast. From

Middelbank, drifters moved west along towards Cape Seal, staying parallel to the coast, and

inshore of the 100 m depth contour. Eastward reversals interrupted the westward current on

three occasions. These reversals occurred concurrently in several drifters, often resulting in

closed trajectories. Some drifters moved eastwards along the coast between Knysna and

Storms River Mouth. The drifters also measured clockwise and anti-clockwise circulation of

St. Francis Bay, and high east-west variability between Knysna and Cape Seal, and between

the Tsitsikamma River and Seal Point. Drifter deployment 3 is described in detail below with

emphasis on the synchronised reversals.

Week 1

Two drifters were released simultaneously, at Middelbank (228) and Plettenberg Bay (227)

on 13 June. At the time of deployment the wind was calm (Figure 3.16a) and the water

column at Middelbank isothermal (Figure 3.16b). Drifter 228 moved west of Middelbank,

staying parallel to the coast (Figure 3.15a). It reached a maximum hourly velocity (49 crn.s')

south of Cape Seal, on 16 June, during light westerly winds. Drifter (227) moved west of

Cape Seal, and then inshore towards Knysna, from where it performed two consecutive

cyclonic rotations. During the second rotation westward drift was characterised by offshore

displacement (16 June) and eastwards drift by onshore displacement (17 -18 June) resulting

in a closed trajectory (Figure 3.15a).

Drifter 36 was deployed on the morning of 14 June at Middelbank. Southwesterly winds

strengthened and reached a maximum speed of 6 rn.s' in the afternoon. Drifter 36 slowly

moved west « 30 cm.s') along the coast, against the wind. It washed ashore at the mouth of

the Elandsbos River, about 15 km west of Middelbank, on 15 June 2007 (Figure 3.15a),

during a gentle (3 - 6 rn.s') southwesterly winds.
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Drifter 37, deployed on 17 June in St. Francis Bay, slowly moved west, towards Cape St.

Francis (daily average speed = 10 cm.s"), while southwesterly winds gained strength (Figure

3.15a). The southwesterly wind reached gale force speeds (- 19 m.s') on the evening of 17

June and on 18 June. Drifter 37 changed direction from west to northeast after the onset of

this strong southwesterly wind, to align with the wind direction (Figure 3.15a). It (drifter 37)

recorded a maximum hourly velocity of 43 cm.s on 18 June, when southwesterly wind

speeds were still in excess of 10 m.s'. When the westerlies moderated, on 18 June, the

drifter changed direction to southwest, performing a complete anticlockwise circulation of St

Francis Bay in the process (Figure 3.15a). By the end of week one drifter 37 travelled a total

distance of - 51 km and was positioned just 5.5 km from where it was released three days

earlier, highlighting a semi-enclosed circulation in the area.

Drifters 228 and 227, positioned south of Knysna, and drifter 37, in St. Francis Bay,

experienced simultaneous eastward drift during the episode of strong to gale force

southwesterly winds on 17 - 18 June (Figure 3.15a), The Middelbank ADCP also recorded

an eastward current on 18 June (Figure 3.15 inset i and ii). Figure 3.16 c and d show that the

eastward current recorded on 18 June was barotropic, being present throughout the water

column, Maximum velocity recorded by the ADCP was 50 crn.s and 33 cm.s' at the surface

(7 m) and near the seabed (31 m), respectively.

Week 2

Five drifters were active across the study area during week two and moved west between 20

- 23 June. On 23 June, drifters 228, 227, and 38, located west of Knysna, changed direction

to eastward (Figure 3.15b), The reversal started in the west and progressed eastward, with

drifter 227 and 228 turning around first, followed by drifter 38. The Middelbank ADCP

recorded an eastward reversal in the current on 25 June (Figure 3.15 inset ii) that lasted for

60 hours. The reversal occurred throughout the water column (Figure 3,16c) and maximum

velocity at the surface and near the seabed were 67 crn.s and 41 crn.s respectively. At the

time of the eastward reversal the wind at Tsitsikamma changed to southwesterly (Figure 3,15

inset i), reaching light to moderate (1 - 5 rn.s') speeds, Each drifter's trajectory during week

2 is described in more detail below:

Drifters 40 and 37 moved west, from St. Francis Bay around Seal Point, between 20 - 24

June (Figure 3.15b). Both drifters (37 and 40) continued to travel west against moderate

(north) westerly winds and performed regular clockwise rotations. Drifter 37 experienced a

break in transmission that lasted for 36 hours and reported again on 27 June, east of St.

Francis Bay, Drifter 40 moved eastwards between 24 - 26 June,
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Drifter 38, released at Middelbank during gentle offshore winds, moved - 95 km west

towards Knysna (Figure 3.15b). It stayed parallel to the coast and reached a maximum a

velocity of 53 crn.s' soon after deployment an 20 June. The winds gained strength to

moderate offshore on 21 June, and the drifter continued west. Drift velocity decreased from

50 crn.s' on 22 June, to < 1 crn.s' an 23 June, during light and variable winds. Drifter 38,

positioned 13 km southwest of Knysna, turned east and fallowed the coastline towards

Storms River. The winds changed to moderate westerly between 25 - 27 June (Figure 3.15b

inset i). On 25 June, drifter 38 accelerated eastwards (61 crn.s') as it moved pass Cape

Seal, and on 27 June it was positioned only 1.5 km from its release site in the TNP, creating

a completely closed trajectory (Figure 3.15b). Drifter 38 travelled a distance of 190 km in

seven days, maintaining a daily average speed of 27 krn.day'.

The eastward reversal, described above, was also observed in the trajectories of drifters 228

and 227 (Figure 3:15b). On 23 June, drifter 227 was moving west about 15 km offshore,

between Mossel Bay and Plettenberg Bay. It turned east and accelerated to 60 crn.s' as it

drifted pass Cape Seal. At the same time, drifter 228 was moving southwest, about 40 km

offshore between Mossel Bay and Plettenberg Bay. Drifter 228 turned east between 23 -26

June, closely fallowing the 100 m isobath (SW - NE), and resumed south-westward drift an

27 June.

Week 3

The drifters resumed their westward drift during the third week of deployment 3 (Figure

3.15c). The reversal again happened from west to east across the study area, and started on

the last day of week 2 (June 26), when drifter 228 turned west on the midshelf region of the

Agulhas Bank (Figure 3.15b). Eighteen hours later, drifter 227, located directly east of Cape

Seal; and drifter 38, located near Middelbank, both turned west in light offshore winds (Figure

3.15c inset i). A westward current was confirmed by the Middelbank ADCP (Figure 3.15c

inset ii), which recorded the change in direction throughout the water column on 28 June

(Figure 3.16c).

After the reversal, drifters 228 and 227 continued southwest and offshore along the 100 m

depth contour (Rgure 3.16c), reaching maximum velocities of 47 cm.s and 68 crn.s'

respectively. Drifter 288 left the study area and moved further offshore, but remained on the

Agulhas Bank. It returned to the Tsitsikamma coast in mid-August without its drogue.

Drifter 38 moved west from Middelbank towards Knysna, staying parallel to the coast (Figure

3.15c). It then performed three clockwise rotations west of Cape Seal (Figure 3.15c), during

a period of altering easterly and westerly winds recorded at Plettenberg Bay.
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Drifter 40 remained in the area between Thyspunt and the Tsitsikamma River during week 3,

as its direction changed between eastward and westward (Figure 3.15c map inset). Current

measurements from the ADCP at TNP-east also indicate a surface current that fluctuated

between eastward and westward during this period (Appendix B1). Drifter 37, positioned on

the eastem side of St. Francis Bay, turned west on 28 June (Figure 3.15c) and moved about

170 kin west along the 100 m depth contour, reaching a maximum velocity of 88 crn.s'.

Communication with drifter 37 was lost for nearly two days, but drifter 40, located nearby,

gave confirmation of a westward current. Drifter 37 continued west and stayed inshore of the

100 m depth contour (Figure 3.15c), while its velocity decreased to just 5 crn.s' on 4 June.

Week 4

The third eastward reversal was recorded on 4 July by drifter 37 and drifter 40, during calm

wind conditions. Drifter 37 turned east and inshore (Figure 3.15d), increasing its hourly drift

velocity to a maximum of 36 crn.s' as it entered the TNP. Drifter 37 washed ashore near the

Tsitsikamma River on 9 July. The ADCP at Middelbank confirmed eastward flow throughout

the water column between 4 - 9 July (Figure 3.16c). Drifter 40 turned east, 16 hours before

drifter 37, in light offshore winds and continued moving east until 5 June (Figure 3.15d).

Subsequently, drifter 40 zigzagged from east to west near Thyspunt, progressing further

offshore with each change in direction (Figure 3.15d). The wind at Cape St. Francis was

predominantly westwards during week 4, with gale force conditions on 8 July.

Drifter 227 moved further offshore following the 100 m depth contour onto the Agulhas Bank.

Communication with drifter 227 was lost on 18 July, 35 days after deployment. Drifter 38

stayed inshore, southwest of Knysna (Figure 3.15d) until 13 July, when it moved offshore

along the 100 m depth contour. The last report from drifter 38 was received on 25 July, just

beyond the 200 m contour at the apex of the Agulhas Bank.
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3.3.4 Deployment 4

Three drifters were released in November 2007; two at Middelbank and one in St. Francis

Bay. Drifter 47 was deployed above the Middelbank ADCP on 17 November, and drifter 48,

7.4 km further offshore, fifteen minutes later. At the time of deployment, the wind was light (

2 rn.s') easterly (Figure 3.17), the water column above Middelbank was isothermal at 18 'C

(Figure 3.19b), and the ADCP at Middelbank recorded weak « 10 crn.s') and variable

currents (Figure 3.19 c and d). Drifter 41 was released in St. Francis Bay on 18 November,

during light (- 2 m.s') south-westerly winds (Figure 3.17).

Drifters 47 and 48 followed distinctly different trajectories, despite being deployed only 7.4

km apart (Figure 3.17). The inshore drifter (47), stayed within a 2 km radius of Middelbank

during the first 36 hours of its deployment, slowly moving west (average velocity < 5 cm.s').

At the same time, the offshore drifter (48) swiftly moved west and offshore (maximum

velocity = 45 cm.s') across the eastern Agulhas Bank (Figure 3.17). Drifter 48 stopped

reporting on 20 November, three days after deployment. Drifter 41, deployed in St Francis

Bay on 18 November, moved west around Cape 51. Francis (Figure 3.17) at an average daily

velocity of 36 crn.s', against light (- 3 rn.s') westerly winds (Figure 3.17 inset i). Drifter 41

stopped reporting on 19 November.

Drifter 47 changed direction to east and offshore on the afternoon of 20 November (Figure

3.17), during a period of gentle (4 - 7 crn.s') northeasterly winds. The wind moderated with

nightfall, and on 21 November the drifter turned onshore before resuming it's alongshore

trajectory. The drifter again turned offshore as it crossed the eastern boundary of the TNP,

on 23 November (Figure 3.17). The offshore movement coincided with moderate

southeasterly winds at Cape St. Francis and at Tsitsikarnrna. The drifter (47) turned west

when it reached the - 100 m isobath; at the same time accelerating to > 50 crn.s'. It

continued west along the 100 m isobath, and reached the area where the cold ridge is

normally located eight days after leaving the Tsitsikarnrna coast (Figure 3.17). The cold ridge

was not identifiable from satellite imagery during this period. Drifter 47 left the study area on

30 November (Figure 3.17), but remained on the central Agulhas Bank during December

2007. It moved inshore, and onto the western Agulhas Bank, from where it left the shelf on

17 January 2008, and moved into the Atlantic Ocean. The last position from drifter 47 was

received on 29 February 2008,315 km off the southern Namibian coast.
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3.3.5 Deployment 5

Drifter 43 was released at Middelbank on 4 December, during light (- 4 rn.s") southwesterly

winds (Figure 3.19a), and downwelling conditions at Middelbank (Figure 3.19b). The drifter

measured a strong (90 crn.s') eastward current, confirmed by the Middelbank ADCP data

(Figure 3.19 c and d).

The drifter stayed inshore, parallel to the coastline and maintained an hourly eastward

velocity> 70 cm.s', until it crossed the eastern boundary of the TNP (Figure 3.18), 12 hours

after deployment. The wind changed direction from southwesterly to easterly on the

afternoon of 5 December, and increased to fresh easterly by 7 December (Figure 3.18 inset

i). Eastward drift velocity gradually decreased during this period of strengthening easterly

winds, and the drifter tumed west and offshore on 6 December, near Thyspunt (Figure 3.18).

Drifter 43 moved west across the midshelf along the 100 m isobath (Figure 3.18), following a

similar path to drifter 47 in deployment 4 (Figure 3.17). Upwelling was recorded by the

inshore UTRs at Mostert's Hoek and Storms River Mouth on 7 and 8 December, respectively

(Appendix Cl). Drifter 43 left the study area on 15 December, 11 days after deployment at

Middelbank The last successful report was received on 16 December, - 80 km south of

Mossel Bay.
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3.3.6 Deployment 6

Drifter 46 was deployed at Middelbank, on 11 March 2008, during a period of light to fresh

southwesterly winds (Figure 3.20 inset i). The instruments at Middelbank recorded an

eastward current (Figure 3.21 c and d) and a lowering of the thermocline (Figure 3.20c) at

the time of deployment. Southwesterly winds strengthened to moderate gale force, with a

maximum speed of 14.9 rn.s' recorded on 12 March at Cape St. Francis. The drifter

behaved similarly to drifter 47 (Figure 3.17) and drifter 43 (Figure 3.18) in deployment 4 and

5, in that it rapidly moved east along the coast, crossing the eastern boundary of the TNP 16

hours after deployment. Drift velocity decreased with distance from Middelbank, and its daily

average velocity was 55 crn.s' and 22 crn.s' on 11 and 12 March respectively. The

southwesterly wind moderated on 13 March, and drifter 46, located near the Tsitsikamma

River, moved offshore (Figure 3.20).

The drifter remained in the area between the Tsitsikamma River and Thyspunt until 16

March, alternating between eastward and westward drift. Moderate to strong easterly winds

started on 15 March (Figure 3.20 inset i), and the drifter responded by turning west along the

100 m isobath. Upwelling started at Middelbank on 16 March and persisted for the duration

of March 2008 (Figure 3.21b). During this upwelling event cold water (-13 'C) was also

recorded at Mastert's Hoek and at Storms River Mouth on 18 and 19 March, respectively

(Appendix C2).

Drifter 46 continued in a south-westward direction across the eastern Agulhas bank and left

the study area 15 days after deployment. Drifter 46 remained on the Agulhas Bank for 84

days, moving as far west as Cape Agulhas, before turning east. The last report from drifter

46 was received on 3 June 2008, 28 km southeast of Knysna.
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CHAPTER 4
DISCUSSION

The circulation off the Tsitsikamma coast have been investigated using various methods,

including ship borne ADCPs (Boyd and Oberholster 1994, Boyd et a/. 1992), fixed current

meters (Tilney et a/. 1996, Roberts and van den Berg 2005) and radio-tracked drifters

(Attwood et al. 2002). The different methods have produced somewhat conflicting results, but

all authors agreedthat alongshore flow occurs inshore along the Tsitsikamma coast, and that

the currents are strong enough to transport neutrally buoyant material, including eggs and

larvae, beyond the boundaries of the TNP.

Tilney et al. (1996) measured only bottom currents (48 m) off the Elandsbos River and found

the cross-shelf component to be dominant over the longshore component. Their data showed

seasonal differences with alongshore barotropic oscillations in winter, and cross-shelf

baroclinic oscillations in spring and summer. They proposed three theoretical current closure

systems with the potential to transport eggs and larvae beyond the borders of the TNP. The

first, an alongshore, barotropic reversal, occur year round and is associated with eastward

moving weather systems that alter the sea level and generate barotropic coastal trapped

waves (C1W). The second and third scenarios describe the offshore/onshore movement of

surface water during small and large-scale upwelling and downwelling events, typical of

spring and summer. All three scenarios suggest a closed circulation system with the potential

to transport biotic material beyond the borders of the TNP, and the possibility of return to its

point of origin with the prevailing shoreward or alongshore current.

A drogue studyconducted by Attwood et al. (2002) showed the surface current to be mostly

alongshore and westwards, with minor onshore and offshore components indicative of

Ekman drift. They found no obvious seasonal trends and had difficulty differentiating between

the winter and summer patterns observed by Tilney et al. (1996). Attwood et al. (2002)

suggested that wind is not the primary driving force of the Tsitsikamma current and that

alongshore reversals were caused by C1W. The radio-tracked drifters produced Lagrangian

time series that were too short to test the current closure systems proposed by Tilney et a/.

(1996).

The analysis of 12 months of ADCP data from Middelbank (Roberts and van den Berg 2005),

firmly established the presence of an alongshore current off the Tsitsikamma coast, and the

dominance of eastward flow (68%) near the surface. In agreement with Tilney et al. (1996),

who measured only bottom currents, Roberts and van den Berg (2005) found seasonal

trends and transient current reversals. They also demonstrated how easterly winds and
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resultant upwelling can interrupt an eastward current and tum the surface layer offshore, thus

limiting eastward displacement near the surface. Roberts and van den Berg (2005)

concluded that paralarvae spawned inshore, and caught up in an eastward flowing

Tsitsikarnrna current, will be transported away from the copepod maximum at the cold ridge.

This unexpected result required the following modification to the westward transport

hypothesis (Roberts 2005): offshore displacement during upwelling implies that at least some

of the paralarvae spawned inshore will end up on the midshelf from where they can be swept

west, towards the cold ridge with the net flow (Boyd et al. 1992). Alternatively, onshore

(surface) movement during downwelling provides a corridor for paralarvae on the midshelf to

be returned inshore, thereby retarding eastward displacement and retaining paralarvae at the

base of the cold ridge.

In this study, new data from a combination of Eularian and Lagrangian measurements

provide the necessary spatial and temporal coverage to test the upwelling-driven current

closures (Tilney et al. 1996, Roberts and van den Berg 2005), and the Western Transport

Hypothesis, in its simple (Roberts 2005) and in its modified state (Roberts and van den Berg

2005). The dynamics of the Tsitsikamma current, includinq seasonality, drivinq forces and

potential larval transport routes are discussed in more detail below.

The ADCP results confirm a predominantly longshore surface current, inshore along the

Tsitsikamma Coast. Eastward flow was slightly dominant at Middelbank (58%) and at TNP

east (61%), while measurements at Thyspunt showed near-equal percentages of eastward

(45%) and westward (55%) flow. This result is similar to the findings of Roberts and van den

Berg (2005) who found 68% eastward flow near the surface at Middelbank in 1998/99. A

longer time series is needed to determine inter-annual variability in the circulation off the

Tsitsikamma Coast, and the influence of changes in the Southern Oscillation Index (ISO) that

bring about EI Nino and La Nina events.

The ADCP results show differences between surface and bottom currents in agreement with

Roberts and van den Berg (2005), with eastward flow less dominant near the seabed.

Longshore flow remained dominant near the seafloor at all three ADCP moorings sites, but

the bottom currents at Thyspunt had a distinct onshore component. Progressive bottom

displacement at Thyspunt was 192 km north in 111 days, compared to 167 km north at

Middelbank during the same period. The increase in the cross-shelf component at Thyspunt

supports the work of Tilney et al. (1996), who found onshore flow off the Elandsbos River

Mouth to be the dominant component near the seabed. They measured a displacement of

187 km in 198 days, whereas the ADCP data from Roberts and van den Berg (2005) show a

displacement of only 80 km for the same period at Middelbank. The discrepancies in bottom
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displacement, between this study and previous current meter work (Tilney et al. 1996,

Roberts and van den Berg 2005), can be attributed to seasonal and alongshore differences

in the current, as measurements were made at different times of the year and at different

locations. This result points to highly variable bottom currents off the Tsitsikarnma coast, and

the possibility of onshore feeder currents during upwelling as suggested by Tilney et al.

(1996).

Currents were strongest during eastward flow, in summer. Velocities> 100 cm.s' only

occurred during eastward flow and made up - 1% of the total measurements. Current

strength generally decreased with depth, and maximum surface velocity (141 crn.s')

coincided with the maximum velocity near the seafloor (59 crn.s'). Roberts and van den Berg

(2005) observed the same pattern, but recorded a lower maximum surface velocity of 115

crn.s'. while the maximum velocity near the seabed was somewhat higher, at 65 crn.s'.

Nevertheless, when averaged, velocities from this study and from Roberts and van den Berg

(2005) are similar, with 27 cm.s' vs. 24 crn.s' and 9 crn.s' vs. 10 crn.s' near the surface

and bottom at Middelbank, respectively.

The results further agree with Tilney et al. (1996) and Roberts and van den Berg (2005) in

that eastward flow was sustained for longer periods (- 4 weeks) than westward flow (- 2

weeks). Above average velocities continued for 9 and 10 days, in the eastward and in the

westward current respectively. In February 2008, velocities> 100 crn.s' persisted for 31

hours at Middelbank (Appendix B1). The net eastward displacement during this period, 120

km east of Middelbank, highlights the importance of these jet-like eastward events in larval

transport along the Tsitsikamma coast.

Results from the drifter study confirm the dominance of a longshore current off the

Tsitsikamma Coast, and agree that the highest velocities occur inside the TNP, during

eastward flow. Current velocity decreased east of the TNP and at Tsitsikamma Point several

drifters moved offshore and onto the midshelf. Roberts (in prep) speculated that the

Tsitsikamma current ends in a cyclonic lee eddy in the region off Tsitsikamma Point (Figure

4.2), but there was no evidence in this study to support this theory. The offshore movement

at Tsitsikamma Point is likely a combination of bottom steering by the sloping bathymetry and

wind-driven upwelling initiated at the capes, and is the apparent end of the main trajectory of

the Tsitsikamma current. Further east, at Thyspunt, the current again aligned with the east

west axis along the steep nearshore bathymetry.

A dominant feature of the Tsitsikamma current is the occurrence of regular alongshore

reversals (Tilney et al. 1996, Attwood et al. 2002, Roberts and van den Berg 2005). Attwood
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et et. (2002) used radio-tracked drifters to study the circulation inside the borders of the TNP

and observed that westward flow was mostly offshore and eastward flow mostly onshore.

They attributed these cross-shelf movements to Ekman drift, related to wind-driven upwelling

and downwelling. In this study, satellite tracking allowed the drifters to move beyond the

borders of the TNP, which showed that the observed frequency of current reversals

increased near the upwelling cells, west of Cape Seal and Seal Point. The drifters recorded

alongshore oscillations near both capes that corresponded to changes in the wind direction.

Westward and offshore drift occurred during upwelling favourable easterly winds; eastward

and onshore drift during westerly winds and downwelling. The current along the straight part

of the Tsitsikamma coast, between Cape Seal and Seal Point, was less affected by changes

in wind direction. In agreement with Attwood et sl. (2002), both eastward and westward

currents were sometimes against the direction of the wind.

The trajectories of drifters deployed together off the Storms River Mouth, at Middelbank and

further offshore, demonstrate that during eastward flow the Tsitsikamma current is a narrow

counter current, less than 10 km wide. In deployment 1 (Figure 3.10) the drifters, released 4

km apart during downwelling, recorded a horizontal velocity shear, with the inshore drifter

moving three times faster than the offshore drifter. In deployment 4 (Figure 3.17), the inshore

drifter recorded a slack current at Middelbank, while the offshore drifter rapidly moved west

and offshore. The exact width of the Tsitsikamma current could not be determined, as this

would require the use of ship borne ADCP surveys.

4.1 Seasonality

Current measurernents from Middelbank show seasonal trends, similar to those described by

Tilney et a/. (1996), and Roberts and van den Berg (2005). During spring, summer and

autumn, net monthly displacernent in the upper water column « 19 m) was rnostly eastward

and offshore, while net monthly displacement near the seabed (31 m) was mostly westward

and onshore (Figure 3.4). This baroclinic current structure is related to thermal stratification

typically present during the summer season on the Agulhas Bank (Schumann and Beekman

1994), and is associated with wind-driven, coastal upwelling (Schumann 1999). In agreement

with Roberts and van den Berg (2005), opposing surface and bottom currents were not

always present during a thermal stratified water column. However, during the large upwelling

event recorded in mid-March 2008 (Figure 3.21), baroclinic currents persisted for eight days

at Middelbank, which resulted in surface and bottom displacement in opposite directions,

with 223 km west and 45 km east of Middelbank respectively.

During summer upwelling, Ekman transport moves surface water west and offshore, while

onshore compensation drift occurs near the seabed (Schumann et al. 1982). Tilney et a/.
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(1996) attributed the dominance of onshore flow near the seabed at Elandsbos River to this

upwelling compensation current, and was uncertain whether it was a feeder current specific

to the mooring location, or if onshore flow near the seabed was characteristic of the whole

reserve area. The ADCP measurements collected in this study show that onshore (bottom)

flow was more important at Thyspunt (71%) and Middelbank (68%) than at TNP-east (46%),

suggesting that upwelling compensation currents along the Tsitsikamma coast are site

specific, while alongshore flow dominates along other parts of the coast, even when

upwelling is in progress.

During isothermal conditions typical of winter (Schumann and Beekman 1994), net monthly

displacement was in the same direction at all depths, being mainly westward and onshore. A

series of barotropic, alongshore reversals limited westward displacement in the current.

Current speeds were generally lower during winter and exceeded the 75 crn.s threshold

only on one occasion, during eastward flow near the surface (maximum = 107.0 cm.s'), In

the absence of upwelling in winter, offshore displacement at the capes was limited, and the

drifter data indicate that current reversals caused by CTWs favours retention in the

nearshore regions off the Tsitsikamma coast.

The dominance of westward flow during winter needs further investigation, as it could have

been the result of anomalous conditions on the Agulhas Bank during June and July 2007.

SST images from 13 - 29 June (Figure 4.1) show the presence of a large meander (A) on

the shoreward border of the southern Agulhas Current. Meander A moved downstream,

leaving behind a plume of warm water that turned towards the Agulhas Current to form a

cyclonic border eddy in the lee of the Agulhas Bight. On 29 June another meander (B),

possibly a Natal Pulse, can be seen southeast of Agloa Bay. Meander B moved onto the

Bank and formed a second, larger cyclonic eddy that persisted throughout July 2007. The

relationship between the circulation on the eastern Agulhas Bank and the Tsltsikarnrna

current is further discussed in section 4.2.3

4.2 DriVing forces of the Tsitsikamma current

4.2.1 Wind

Wind is not the primary drivinq force of the Tsitsikamma current (Attwood et aI. 2002,

Roberts and van den Berg 2005), but the Tsitsikamma current is affected by wind-driven

processes (Tilney et aI. 1996). Westerly winds generate CTWs throughout the year, but more

frequently in winter (Schumann and Brink 1990), while easterly winds cause coastal

upwelling, mainly in summer (Schumann et al. 1982). CTWs are sea level disturbances that

propagate anticlockwise around the South African coast (Jury et al. 1990), causing
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nearshore barotropic current reversals (Tilney et al. 1996). A condition of resonance between

westerly winds and the free-wave speed of the CTWs results in a consistent association

between the wind and CTWs (Schumann and Brink 1990). The passage of the peak of a

CTW (associated with westerly winds) turns the current eastwards, while the passage of the

trough of the CTW (associated with easterly winds) turns the current westwards (Schumann

and Brink 1990). Because of this association a certain degree of coherence can be expected

between changes in wind direction and current direction along the Tsitsikamma coast. On

several occasions in this study, an alongshore change in current direction was timed

perfectly with an alongshore change in wind direction (Figure 3.12, Figure 3.14, Figure 3.16,

Figure 3.19). Attwood et al. (2002) observed the same phenomenon and suggested that

these synchronised reversals were likely caused by the passage of CTWs, since surface

currents can not respond immediately to a change in wind direction.

On the south coast, upwelling is generally of short duration, as fluctuating alongshore winds

produce cold water events over a typical period of a day; few events last more than four days

(Schumann 1999). The upwelling process generates an alongshore current in the direction of

the wind, i.e. south-westwards, that interrupts eastward flow in the Tsitsikamma current,

thereby limiting displacement near the surface (Roberts and van den Berg 2005). Upwelling

also alters the barocJjnic structure of the water column (Tilney et al. 1996) and can cause

surface and bottom currents to flow in opposite directions (Roberts and van den Berg 2005)

as is demonstrated during the upwelling event recorded from 23 - 31 March 2008 (Figure

3.21).

At Middelbank, the westward upwelling current was relatively weak « 50 crn.s") and the

current did not have a strong cross-shelf component. In contrast, the measurements made at

Thyspunt showed stronger westward currents (> 50 crn.s') during upwelling, with definite

onshore compensation currents near the bottom. The same result can be expected in the

upwelling zone west of Cape Seal i.e. strong westward currents during upwelling, with

offshore flow near the surface and onshore flow near the seabed.

4.2.2 Coastal trapped waves, stratification and strong current events

Schumann and Brink (1990) showed the presence of large amplitude (- 90 cm) sea level

disturbances along the south coast, with current reversals during the peak of the wave. The

exact mechanism of CTW forcing on the south coast remains uncertain, but the authors

suggested that conditions of resonance or near-resonance, between coastal low pressure

systems and their associated westerly winds and eastward moving CTWs, can increase the

amplitude and the intensity of these waves. They found the propagating speed of CTW

between Port Elizabeth and Cape Town to range between 5 - 9 rn.s'. The large degree of
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scatter in the propagating speed is indicative of the complex response of coastal waters to

ClWs (Schumann and Brink 1990). Other factors that influence the propagation speeds of

ClWs include thermal stratification, wave mode and bottom friction (Chapman 1987,

Schumann and Brink 1990).

Measurements of sea level were not included in this study and the occurrence of ClWs at

specific times could not be inferred. However, rotary analysis of the current at Middelbank

(Figure 3.5) show significant peaks at 3.3 days and 4 days, which agree with the typical first

mode (ClW) period of 4 days on the south coast (Tllney et al. 1996). The peaks at 8 days

and 18 days are possibly related to longer period variations in the circulation on the eastern

Agulhas Bank. Moreover, autospectra of the sea level at Knysna and Port Elizabeth related

to the propagation of ClWs (Schumann and Brink 1990) show comparable peaks at 3.5

days, 5 days and 10 days.

The nearshore circulation on the south coast is influenced by ClWs (Schumann and Brink

1990, Tliney et et. 1996), which are associated with atmospheric low pressure systems that

propagate anticlockwise around the South African coastline (Jury et al. 1990). The systems

occur year round, but their frequency and intensity increase during winter months. In

contrast, the ADCP data show that the occurrence of strong current episodes (> 75 crn.s')

increased during summer months. Strong current events are identified by the abnormally

large velocity peaks that occur mostly during eastward flow (Appendix B1). Seven of the ten

strong current events identified during the study period occurred in summer. All strong

current events were found to be associated with a thermally stratified water column and,

specifically, with the relaxation of the upwelling process and westerly winds.

Holland and Webster (1994) demonstrated that vertical stratification increases the phase

speed of ClWs. There is also evidence that ClWs may be important in regulating the

upwelling and downwelling processes in coastal oceans (Middelton and Leth 2004).

Schumann (1999) suggested a consistent association between ClW and the wind, due to

the condition of resonance. He showed that the peaks of ClWs tend to occur during westerly

winds, and the troughs during easterly winds. Elevated sea levels at the coast during the

peak of a ClW should therefore cause a strengthening of the downwelling process. Similarly,

the passage of the trough of the ClW, which corresponds to easterly winds, should increase

the effect of wind-driven upwelling, because a lower sea level already exists at the coast.

Schumann et aJ. (1995) found that upwelling at the Tsitsikamma coast commenced and

proceeded rapidly, even during relatively low easterly wind speeds. This rapid response is

mainly a result of the steep bathymetry that allows cold bottom water to be present close to
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the coast (Schumann 1999), but also suggests that cms may be important in controlling

and enhancing the effects of upwelling and downwelling along the Tsitsikarnrna coast.

The data collected at Middelbank supports the theory that cms can regulate and amplify

the effects of coastal upwelling and downwelling off the Tsitsikamma coast, and helps to

explain the unusual cold water event recorded in July 2007. In the absence of data on sea

level pressure, and following Schumann and Brink (1990), strong westerly wind conditions

were used as a proxy for the passage of a cm. The following description refers to the

upwelling event recorded at Middelbank in July 2007 (Figure 3.16). Strong westerly winds

were recorded at Tsitsikamma on 12 July (Figure 3.16a). A change to light easterly winds

coincided with the onset of a strong westward current that persisted until 20 July (Figure 3.16

c and d). During this period of light easterly winds and strong westward flow, the thermocline

was lilled (Figure 3.16b), and 11 'C water was recorded near the seafloor at Middelbank.

The absence of strong easterly component winds suggests that the upwelling event was

driven by another force, possibly the occurrence of a cm, and more specifically the trough

of the cm. The upwelling event ended with the onset of strong westerly winds on 26 JUly.

The downwelling process coincided with strong westerly winds (Figure 3.16a), possibly

related to the peak of a cm, and a strong eastward current (Figure 3.16 c and d).

The above example shows an association between the peak of a cm, jet-like eastward

pulses in the current, and intense downwelling; and the association between the trough of a

cm, westward flow, and the enhancement of upwelling. The relationship between CTWs,

upwelling and the coastal currents deserve to be studied in more detail, given the importance

of upwelling on productivity in the region.

4.2.3 Influence of shelf circulation on the Tsitsikamma current

The circulation on the eastern Agulhas Bank appears to be primarily controlled by the

Agulhas Current that follows the nearby shelf break and, to a lesser extent, by local wind

forcing (Schumann and Perrins 1983). Statistics indicate that the net flow on the eastern

Agulhas Bank, between depths of 100 - 200 m, is in a south-westwards direction, parallel to

the bathymetry and the southern Agulhas Current (Swart and Largier 1987, Boyd and

Oberholster 1994).

Roberts (in prep) observed a cyclonic lee eddy and a localized sea level depression near the

mouth of the Tsitsikamma River, and suggested that strong westward flow on the shelf, at

Cape St. Francis, was responsible for removing water from the nearshore region, setting up

the cyclonic lee eddy in the process. A similar situation occurs in the Natal Bight on the east

coast where the Agulhas Current is responsible for creating the Durban cyclonic eddy
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(lutjeharms 2006). It is thought that this mechanism drives eastward flow in the Tsitsikarnma

current (Roberts pers comms). The cyclonic eddy was not observed during this study, but the

trajectories of drifters near the mouth of the Tsitsikamma River (Figure 3.11, Figure 3.15,

Figure 3.18 and Figure 3.20) may have been influenced by such a feature.

Variability in the circulation on the Agulhas Bank exists in the form of frontal instabilities on

the shoreward border of the southern Agulhas Current (lutjeharms 2000). These intrusions

of Agulhas Current water onto the Bank have a marked influence on the shelf currents

(Schumann and van Heerden 1988), and their presence is associated with eastward flow on

the shelf (lutjeharms et aI. 1989). Given this, the large meanders present on the Agulhas

Bank during the winter of 2007 (Figure 4.1) would have altered the flow of the shelf water to

eastwards.

If westward flow on the shelf drives eastward flow along the Tsitsikamma coast (Roberts in

prep), then how will eastward flow on the shelf influence the direction of the Tsitsikarnrna

current? It is interesting that the anomalous westward flow, inshore along the Tsitsikamma

coast, corresponded to the presence of two large cyclonic eddies on the eastern Agulhas

Bank (Figure 4.1). The relationship between the Tsitsikamma current and the shelf circulation

remains speculative, as it requires concurrent ADCP measurements across the width of the

eastern Agulhas Bank.
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4.3 Larval transport and connectivity to the cold ridge

Lagrangian drifters are designed to track two-dimensional flow in the oceans and are good

indicators of the passive dispersion of particles (Lumpkin and Pazoz 2006). Surface drifters

do not account for vertical migrations typical of many planktonic organisms, including chokka

squid paralarvae. Martins et al. (in press) showed that the dispersal of squid paralarvae is

affected by their biologically-mediated, vertical position in the water column. Such behaviour

complicates the advection of paralarvae, especially when opposing surface and bottom

currents exist. In this study, vertical migration could not be considered as the potential

transport of paralarvae was estimated from a combination of surface drifter and ADCP

measurements made along the Tsitsikamma coast.

The Western Transport Hypothesis (Roberts 2005) relies on a net westward shelf flow (Boyd

and Oberholster 1994) to transport squid paralarvae from the coastal spawning grounds to

the nursery area at cold ridge. The discovery of a predominantly eastward flowing

Tsitsikamma current led to the modified Western Transport Hypothesis (Roberts and van den

Berg 2005), which states that offshore flow during coastal upwelling moves particles onto the

midshelf and simultaneously westward, from where they can either be transported to the cold

ridge or returned to the coast, downstream of the eastward flowing Tsitsikamma current.

Roberts and van den Berg (2005) estimated monthly transport in the Tsitsikarnma current at

between 200 and 450 km east of Middelbank. They postulated that the eastward flowing

Tsitsikamma current transports squid paralarvae towards Algoa Bay, and as far east as Port

Alfred, from where paralarvae are likely entrained into the Agulhas Current (Goschen and

Schumann 19SS), and lost from the Agulhas Bank ecosystem. Roberts and van den Berg

(2002) suggested that currents might pose a similar threat to the survival of squid paralarvae,

and that shelf edge leakage could result in substantial losses of squid paralarvae from the

Agulhas Bank to the oligotrophic open oceans.

Roberts and Mullan (2010), used a first version of Lagrangian IBM (Individually-Based

Model) coupled to a ROMS (Regional Ocean Model System) model to show that the currents

on the eastern Agulhas Bank were strongly influenced by the semi-permanent cyclonic gyre

in the Agulhas Bight. Their simulations showed large losses of neutrally buoyant particles

(i.e. squid paralarvae) from the eastern and western Agulhas Bank, while few particles were

lost from the central Agulhas Bank. Data from the surface drifters support the findings of

Roberts and Mullan (2010), as several drifters were retained on the central Agulhas Bank,

even after they left the study area. Other trajectories highlight the possibility of shelf edge

leakage, specifically at the southern and western extremities of the Agulhas Bank (pers obs).
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A conceptual interpretation of potential surface transport off the Tsitsikamma coast derived

from the combination current measurements and SST data collected in this study is

presented in Figure 4.2. The daily displacement by drifters, 50 km east and 30 km west of

Middelbank, demonstrate that particles near the surface are rapidly transported beyond the

borders of the TNP. This confirms earlier findings by Tilney et al. (1996), Attwood et al.

(2002), and Roberts and den Berg (2005) that the Tsitsikamma current has the potential to

transport eggs and larvae to unprotected areas surrounding the TNP.

The drifter trajectories show that the progressive displacement estimates presented by

Roberts and van den Berg (2005) were unrealistic, and that eastward flow in the

Tsitsikamma current does not continue into Algoa Bay. Instead, drillers were either caught

up in short reversals between Tsitsikamma Point and Cape SI. Francis, or moved offshore

into the westward shelf current. From the midshelf, drillers generally followed the 100 m

isobath towards the cold ridge. This result strongly supports the Western Transport

Hypothesis in its modified state (Roberts and van den Berg 2005), although the presence of

the cold ridge could not be confirmed from satellite images during any of the drifter release

periods.

During westward flow off the Tsitsikamrna coast, when no counter current was present, the

drillers highlighted a direct route for paralarvae from the spawning grounds to the cold ridge.

In deployment 3 (Figure 3.15) several drifters followed the coast from Middelbank to Cape

Seal and southwestwards along the 100 m isobath. This result supports the WTH in its

simple state (Roberts 2005), even though the westward current was not associated with

upwelling or the presence of the cold ridge on the central Agulhas Bank.

During upwelling drifters moved offshore at the capes and west with the midshelf currents.

The return of drifters from the midshelf to the Tsitsikamma coast resulted in recirculation into

the eastward flowing Tsitsikamma current, east of Middelbank, which supports the current

closures proposed by Tilney et af. (1996) and Roberts and van den Berg (2005). However,

the current closures recorded by drifter 38 and 227 in deployment 3 (Figure 3.15) were not

associated with upwelling and was likely caused by the passage of a CTW or more remote

influences on the Agulhas Bank. The large scale, upwelling-driven current closures (Tilney et

al. 1996) could also not be confirmed as no drifters were deployed during the substantial

upwelling events that took place in April 2007 and March 2008 (Appendix C2). The

trajectories show that in winter, offshore displacement was limited and drifters were retained

inshore for up to one month after deployment. In contrast, in summer, the combination of

upwelling and CTWs favoured dispersion onto the Agulhas Bank.
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Results from the surface drifters therefore confirm that both eastward and westward currents

have the ability to transport neutrally buoyant surface particles from the Tsitsikamma coast to

the area of the cold ridge on the central Agulhas Bank. Drifters moved onto the midshelf, at

the lee sides of Cape Seal and Seal Point, from where they reached the cold ridge in as little

as eight days. Paralarvae of Loligo reynaudii can survive for 6 - 8 days without food at 16 'C

(Vidal et al. 2005), and longer at lower temperatures and, in theory, this puts the cold ridge

within reach for the successful recruitment of paralarvae spawned all the Tsitsikamma coast.

However, Martins et al. (in press), used an improved Lagrangian IBM (Individual-Based

Model) that included the specific gravity of particles, coupled to a ROMS (Regional Ocean

Modelling System) model, designed for the Agulhas Bank, and showed that the specific

gravity of squid paralarvae may be important in enhancing their survival and recruitment on

the AgUlhas Bank. Laboratory experiments (Martins et al. in press) show that chokka squid

paralarvae are always negatively buoyant, regardless of yolk content. The model results

(Martins et al. in press) compare well with the Lagrangian trajectories recorded by the drifters

in this study, and show that both neutrally and negatively buoyant particles released on the

spawning grounds are dispersed west, across the Agulhas Bank to the cold ridge. However,

the negative buoyancy of squid paralarvae was found (Martins et al. in press) to limit

transport distance. This not only decreased losses of paralarvae from the Agulhas Bank, but

also increased the time it took paralarvae to reach the cold ridge before starvation set in. The

drifter data essentially complements the IBM-ROMS as it reveals details about the coastal

circulation that is not yet possible in the model.
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CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

This work gives confirmation of a longshore and predominantly eastward current off the

Tsitsikamma coast. The Tsitsikamrna current is an intermittent current that starts west of

Cape Seal and follows the coastline towards Tsitsikamma Point, where the main trajectory

turns offshore and joins the circulation on the midshelf of the eastern Agulhas Bank. Some

flow continues east past Thyspunt and towards St. Francis Bay.

The flow regime showed seasonal trends, but a longer time-series is needed to confirm

seasonality in the Tsitsikamma current. During the summer upwelling season, the occurrence

of jet-like, eastward currents increased and differences between surface and bottom currents

were occasionally observed. In contrast, the current was weaker in winter months and flowed

mostly westward throughout the water column. Barotropic alongshore reversals occurred

frequently throughout the year and in the absence of upwelling, offshore flow was limited.

The Tsitsikamma current is influenced by wind-driven upwelling, CTWs and by the greater

shelf circulation, which is in turn affected by the Agulhas Current. Surface currents were west

and offshore during upwelling, while onshore compensation currents developed near the

seafloor. The westward upwelling current was generally weak « 40 cm.s') and short-lived (1

- 2 days), reflecting the nature of upwelling on the south coast (Schumann 1999). The

occurrence of CTWs seems to have a significant effect on the dynamics of the Tsitsikamma

current, causing nearshore barotropic oscillations with alongshore dimensions of up to 100

km. The results suggest that a combination of CTWs and thermal stratification drives jet-like,

eastward currents during the summer upwelling season, and that CTWs may be important in

regulating upwelling and downwelling off the Tsitsikarnma coast.

The dynamics of the Tsitsikamma current has important implications for the dispersal of

squid paralarvae hatched in the TNP and in embayments along the Tsitsikamrna coast. The

combination of upwelling and strong eastward currents, during the main summer spawning

season significantly increases transport potential. Paralarvae near the surface are likely

dispersed onto the midshelf, from where the cold ridge can be reached within seven days.

The position of paralarvae in the water column will ultimately determine their travel time from

the Tsitsikarnrna coast to the cold ridge, with increased periods at greater depths. However,

enhanced productivity during the post-upwelling period (Probyn et al. 1994) should increase

paralarval survival rates, and starvation en route should not limit recruitment when upwelling

occurs, in spring and summer. In winter, regular alongshore oscillations, without the offshore

flow associated with upwelling, limits the dispersal of paralarvae onto the midshelf, which
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suggests that paralarvae are retained inshore until they improve their swimming and their

prey catching abilities.

This work demonstrates how variability in the Tsitsikamma current can influence the passive

dispersal, and consequently, the recruitment of squid paralarvae. It is therefore important to

gain a better understanding of the mechanisms that drive variability in the current; be it

seasonal, long-term or anomalous. Future research should focus on the effect of CTWs on

the Tsitsikamma current, and the role of CTWs in regulating upwelling and downwelling off

the Tsitsikamma coast. In addition, the relationship between the shelf circulation and the

inshore counter current needs to be established. This can be done by deploying a line of

fixed ADCP moorings across width of the eastern Agulhas Bank, while ship-borne ADCP

transects can determine the width of the counter current. The exact influence of wind on the

Tsitsikarnrna current also needs to be established. Moreover, it is imperative to continue the

long-term monitoring of currents and sea temperatures off the Tsitsikamma coast, as it offers

a rare opportunity to examine the effects of climate change on this unique and productive

coastal environment.
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APPENDICES

Appendix A
Al : The w in d dis t rib utio n at three we ath er stat ions alo ng th e Tsit sikamm a coast during th e
months of spring (September, Oc tober, November). Direct io n is g iven in th e meteorol og ical
standa rd .
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A2 : The w ind dist ribut ion at three weather stat ion s alo ng the Tsitsikamma coast during
summer mon th s (December, January. February). Direction is given in the meteorologica l
standard.
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A3 : The w ind distribution at th ree weath er stat io ns alo ng the Ts its ikamma coast during autumn
months (March, April , May). Direct io n is given in the meteoro log ical standard .
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A4: The w ind dist rib ution at th ree weather sta tio ns alo ng the Ts its ikamma coast during wi nter
months (June, Jul y, August). Direc t io n is given in the meteoro logi cal standa rd .
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Append ix B
8 1: East-west vel ocity of the ADCP measured surface currents at Middelbank (black) . Groot
Rive r East (red) and Thyspunt (blue). Posit ive y·axi s valu es denote eastward fl ow and neg ative
values denot e westward flow. Average velocities are represented by th e do tted lines and
shaded areas indicate st ro n g eastwa rd pulse s in the current.
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8 2: East-west ve locity of the ADCP measured bottom currents at Midd elbank (black), Groo t
River East (red) and Thyspunt (blue). Posit ive y-axi s value s denote eastward fl ow and negative
va lue s den ot e w estward fl ow. Average velocit ies are represented by the dotted line s.
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83: North-south veloci ty of the ADCP measu red surface cu rrents at Middelbank (black), Groot
River East (red) and Thyspunt (bl ue). Positive y-axi s values deno te eastward fl ow and negative
values denote westward fl ow . Average vel ocities are represented by th e dotted lines.
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84: North-south velocity of th e ADCP measured bo ttom cu rrents at Middelbank (black), Groot
River East (red) and Thyspunt (blue). Positive y-axi s values denote eastward flow and negative
valu es de no te westward flow. Average velocities are represented by th e dotted li nes.
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Appendix C
C1: Sea surface temperatu re at (7 m) reco rded at Sto rms River Mouth (black) and Moster's
Hoek (red) between Nov ember 2006 and March 2008.
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C2: Vertical prof ile of the sea temperature recorded at Middelbank betw een Nov ember 2006 and
March 2008. App ro ximate depths of the measurements are 35 m (black), 27 m (grey), 19 m
(blue) and 12 m (red). Su rface and bott om currents were investi gated during the upwelling
events ind icated by the dashed lines.
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Appendix 0
01 : Beaufort wind scale

Beaufort Beaufort
number description

0 Calm

lighl air

2 light winds

3 Gonllo winds

4 Moderato winds

5 Frosh winds

6 Sirong winds

7 Moderato galo

8 Galo

9 Sirong Galo

10 Storm

11 Violent storm

12 Hurricane

Sea conditi ons

Soa like a mirror.

Ripplos without cresls.

Small wavelels. Crests 01glassy appearance, not breaking.

Large wavelets, Crests begin to break : seatiered whuecaps.

Small waves with broaking crests. Fairly frequent white horses.

Moderate waves, taking a moro pronounced long form. Many white horses. Small amount 01
spray.
Long waves begin 10 form. W hito loam crosts are very frequent. Some airborne spray is present.

Soa heaps up. Some foam from broaking wavos is blown into streaks along wind direction.
Moderate amounts of airborno spray.

Modorately higl1wavos with breaking crests forming spindrift. Well-markod streaks ot loom aro
blown along wind direction. Considorable airborne spray.

High waves whose cresls sometimes rollover. Donse loam is blown along wind diroction. Largo
amounts 01airborne spray may begin 10 reduce visibili ty.

Very high waves with overhanging crests. Largo patches 01foam from wave crests give Ihe sea
a white appearance. Considerable lumbling of waves with heavy impact. Large amounts of
airborne spray roduco visibilil y.

Excoptionally higll wavos. Very large patches of loam, driven bofore Iho wind, cover much 01the
soa surface. Very large amounts 01airborne spray severely reduce visibility.

Hugo waves. Sea is complelely white will ' loom and spray. Air is lillod with driving spray, greally
reducing visibility.
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wind speed
rn .s" kno ts

< 0.3 < 1

0.3 - 1.5 1 - 2

1.6 - 3.4 3 - 6

3.4 - 5.4 7 - 10

5.5 - 7.9 11 - 15

8.0 - 10.7 16 - 20

10 8 - 13 8 21 - 26

13.9 - 17.1 27 - 33

17.2 - 20.7 34 - 40

20 8 - 24.4 41 - 47

24.5 - 28.4 48 - 55

28 .5 - 32 6 56 - 63

> 32 .7 > 4
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