
Nonlinear Smoothers for Digital Image Processing

by

Eric Cloete

Submitted in partial fulfilment of the requirements
for the degree

D.Tech

in the
School of Business Informatics

Cape Technikon
Cape Town

December 1997

11

This thesis is my own original work.

iii

Acknowledgements

I am grateful to the following people and institutions for assistance, guidance and
constructive criticism. Without their help this research would not have been possible.

Dr. CH. Rohwer - external project leader

Prof. D.J. van Schalkwyk - internal project leader

Cape Technikon

Freie Universitiit Berlin

FRD Foundation

My parents for their continual support and faith in my career.

IV

Abstract

Modem applications in computer graphics and telecommunications command high
performance filtering and smoothing to be implemented. The recent development of a
new class of max-min selectors for digital image processing is investigated with special
emphasis on the practical implications for hardware and software design.

v

Contents

Title page.

Preface.

Acknowledgements.

Abstract.

Contents.

Chapter one. Introduction.

Chapter two. Digital image processing.

Chapter three. One-dimensional LULU smoothers.

Chapter four. Two-dimensional LULU smoothers.

Chapter five. Mathematical verification of LULU structures.

Chapter six Programming considerations.

Chapter seven. Practical application of LULU operators.

Chapter eight. Conclusion.

References.

Appendices.

11

111

IV

V

1

4

21

42

62

75

102

122

125

CHAPTER ONE

Introduction

Computer visualisation can loosely be defined as an interface between computers and

humans with the aim of simplifying understanding of complex problems. Many important

scientific problems can only be solved satisfactorily if some form of cognitive human

recognition takes place to identifY problems which are embedded in larger systems.

Visualisation should therefore be seen as a method to transform the symbolic into the

geometric domain. This is the key to productivity and puts emphasis on computer

applications for most computationally complex problems. It is therefore not surprising

that this field is one of the most rapidly expanding disciplines of computer science with a

promising future for hardware and software development.

Image processing deals with the display and modification of existing pictures. such as

digitised photographs, X-rays or television scans [38,79] I. It should not be confused with

the related field, computer graphics. Although there is a fair amount of overlapping

between these two topics, computer graphics is the term normally used to create a

computer picture [83]. Image processing and computer graphics should thus be seen as

sub-sections of computer visualisation. People like to interpret the final product of

scientific processes. If weather prediction is selected as an example, few persons would

think about the intricate numerical processes that had to be devised to arrive at the

weather chart. Once this final product is available, it serves as an easy tool for

interpretation and communication and it is seldom necessarv for the end-user to revert to

the underlying data of the image. Note that weather prediction is a fine example where

both methods. image processing (satellite images) and computer graphics (graphics

Footnotes are presented in superscript form. \vhile references are always in square brackets.

2

effects and symbols added to the template), are employed to visualise the computer

simulation.

Image enhancement plays an important role in acquiring and modifYing a picture [54,77].

Enhancement processes are well known analogue processes, such as tuning a television

set or modifYing a photograph for visual improvement. Typical examples are those of

contrast or brightness manipulation which are illustrated in chapter two.

Most computer images are created by point sampling of the image space and then

reconstructed digitally from the sampled data. During the process of digitising an image,

unwanted signals, often random in nature, may appear due to physical phenomena or

defects in electronic circuits used in the process. Many procedures exist to reduce or even

eliminate the visible noise spots in such a picture, but they are often costly due to extra

processing and tend to reduce the original picture quality.

The aim of this research is to illustrate new digital methods for noise reduction and to

compare them \\1th some state-of-the-art procedures. The relative success that was

obtained recently with a new class of one-dimensional smaathers1
, the so-called LULU2

selectors, prompted an in-depth research effort to discover and analyse similar tools for

two-dimensional application. The objective was to write application programs for

personal computers to assist with visualisation methods for these new techniques.

Eventually a number of filters and smoothers were selected as candidates to illustrate

noise reduction and image enhancement in a programming environment. Although the

programming is mainly aimed at binary and grey-scale examples for modelling reasons,

colour graphics and speed-up techniques are also discussed where relevant. The

programs were validated on synthesised as well as real images to elucidate topics in

image processing, mathematical smoothing and programming. The results are primarily

A term used for non-linear 'filtering' of image noise. Also see chapter three and four for detailed
definitions. In the later chapters a distinction between the tenns smoother andfilrer wi!! be made.
lULU is an acronym for an 'upper-Iow'er' limit class ofalgorimms. Refer to §3.4 for a first
definiTion.

3

intended to give technical computer science students with limited engineering and

mathematical background insight into graphics programming for scientific and

commercial purposes. The tools developed should also prove useful for research in the

mathematical verification of filters and smoothers.

It was unavoidable that many interesting topics from image processing had to be excluded

from this publication due to the vastness of the subject. A brief overview of an image

processing environment is however described in chapter two, while chapter three deals

with an overview of one-dimensional smoothing and introduces the LULU concepts.

The modification of one-dimensional algorithms for the two-dimensional domain is

argued in chapter four and the existence of a large number of related new smoothers of

the LULU class is pointed out. Chapter five summarises the mathematical implications

of LULU smoothers, while the programming concepts are discussed in chapter six.

Chapter seven deals with the practical application of some filters and the newly

developed smoothers of this thesis. In the last chapter, chapter eight, some questions on

the future use and viability of LULU smoothers in hardware and software are considered

and further related research areas are pointed out.

CHAPTER TWO

Digital image processing

2.1 Computer images

During the past few decades, computer images changed from crude ASCII I pictures to

sophisticated colour images with full photo-realism (see images 2.1.1 and 2.1.2). This

reflects the rapid growth in computer hardware and software technology. Sophisticated

computer processes can now be observed, often in real-time, with images to assist

operators with control procedures [47]. A typical example of such an application is a

space shuttle launch. It is unimaginable to think of space exploration without computer

images and the related technology [27, 84].

H:IHHU:f:Un
nrt'l!"t. t:' £Uttttt,

iH££fU.iUUt(!UUU
tPf ,tu· .PfHttUttUt rtre ..

I"Unn(UTtJ,:ua:u[[UUUJ:~

; (ffHH Et lU£tlf[UU:U'£H~"

ttU:.r:ltltttttUUtcttttttnUUtr
.Et" CllHU£ H [i H [[ECUE£H!£ [[Ht
t.unt:tt~Utfnuucttcnuu:uuur
f:('" ttt ,t~U'u.tettrrlC'ltrt't"t"rru~
Itrt"B-£n-.URtU:ntucuns·uutu:UU

::t nu El tUUt Uftttt;Uruu:,£"p'C tute
ct"ttU"ttu.tttr..ttnartrII.clrtUnucv.:tl

• t'" U:"U~tUUln[ltf['!1n!l:£lUEtt.U[[!
r.t€ut'tu'fnUEttu·tt,.....UU&Uf:fCfIlUC
'~""'HtCrr C,rf,tC(.ctctf."! £...·££t£t(

EUllU[CU:i:I:,.·tf:.![['fU.E•••Ut:If£(
(t·t#('[(CfU.· ••• Ut [(C"!£(ct:".U:~[[[

t ..E[g:us:rrttt...... • 'f .•••tl.HU
~·;~ ..i:£[l"t[t;r....... .[! ••••EU~!t

~'t:.tetetttttt.tt.·.. • ... tt'a: ··I't,i'UCI
' .. r~,.~,.~c'lir(..(t _..... ...il"if.~·(!:£...
iU:~"tI"U£U£1'.... U[H'£HE· ·.£-££t U£l!"·.
N'~"n!:ry'I.~·.. t.r"~Ut ."!ftl!(~u ...
~tttr.ttCttt.t:r'".~· ••• •• !."".c:ec: ~ttli:I·.
<;,rru«t:ut((r·.~· •• n:t.[(£(r!:HE£H
1!!t.~nt!J-~ u.. ~tt...u~ ~~,lUt

!,.r~t.tto:«:I(t«tI: utr.;l !.i:~ UIn:!:[H~

~n:££.uu-I:U:~-&P_· i-i: ·£I'EiUiUt
':i.tt~!'tU:"i't,t, ~f.f........... ·f!.f..tttr '.1
~ttJ:&nU n~·.. ".· -E. ...£U~ Ei
;..- rrr!£ 1.(£P.·.·· ··~i'fJ'f..·f~ t
........~ ,. ~ £

Image 2.1.1 Image 2.1.2

American Standard Code for Infonnation Interchange.

5

Humans are largely dependant on vision for analysis of information. This is why image

processing and graphical representation became so important in software design.

Computer aided engineering depends very much on the quality and reliability of 3D

graphical and surface representations. Many images, such as those generated from

microscopes and telescopes, are only understood by human interaction after extensive

computer enhancement has taken place [28]. This can include procedures ofillurnination,

contrast or edge detection to emphasise detail for human understanding. It is important to

note that human vision is comparative rather than qualitative and imagery should assist

the operator in this respect.

2.2 Acquiring digital images

Digital image processing (DIP) can be loosely defmed as a set of computer processes that

interact with a digital image to transform the original image into a new one. A digital

image is basically a dataset that describes to each pixel in the graphics domain what the

position, intensity and colour should be. Colour look-up tables (CLUT's) are imperative

for fast image loading. A SVGA1 CLUT for a PC with 256 colours usually stores 18 bit

values: 6 bits for red, 6 bits for green and 6 bits for blue, hence the usual RGS2 reference

to DIP pictures. This results in 262144 colour possibilities. Although the prints in this

thesis are all mostly 256 shades of grey, some colour representations are included in the

file of images. Screendump 2.2.2 is an example of such a digital picture3
.

Digital images can be formed by either digitising an existing picture (scanning) or by

taking a digital photograph. This can be done using a digital camera, where the

conventional film is replaced by solid-state sensors which act as photon counters.

Depending on the memory size of the camera, a number of digital photographs can be

taken and later dmvnloaded to a computer.

Super video graphics adapter.
Red, green and blue.
The database of files (appendix A) has the 256 colour version of screendurnp 2.2.2.

6

Screendump 2.2.2 256 shades ofgrey.

Another common procedure is to use a video camera or CCD (charge coupled device)

connected to a 'video grabber' device in a computer. Video images can be frozen in real

time and downloaded as images of a specified format. This method is particularly

popular due to the relative inexpensive hardware requirements as well as the quality of

imagery attainable.

2.3 Neighbourhood ranking

A definite advantage of a digital picture in comparison with an ordinary photograph is the

fact that the DIP can be manipulated to suit the operator. This is normally achieved by

some convolution technique, whereby a central (nucleus) pixel is transformed to some

7

other value by taking the neighbouring pixel values into consideration. Figure 2.3.1

indicates some common kernel designs as used in practice. In linear processes all the

kernel values as defined will contribute to the new central value of the nuclues of the

kernel.

An easy application would be to define a process whereby the an original image
l
, 0, is

transformed into a new image, P, according to the following set of rules:

• Use a five-point 3X3 kernel (figure 2.3.1).

• Each nuclues2 from the new matrix IS computed as the average of the four

surrounding pixe1 values (NWES3 values):

T]ij = (0(north)+O(south)+O(west)+o(east»)/4

b

It

c

It

d

It

e

Figure 2.3.1 Some common kernel designs [13].

The following notation will be used throughout this thesis: 0 for original image and P
for final picture, i.e. the picture of the matrix, P, after image processing has taken place. Note that
in this thesis an image will be capitalised and bold. while the matrix representing the image will be
in normal print.

The centre pixel of a sweeping window is often referred to as the nucleus, 11, of the transformation
kerneL
Direction of surrounding pixels, north, '\-'est, east, south of the image 0 with relation to the
nucleus.

8

In this example the effect of the convolution is to give each pixel a blurred effect, due to

the interaction of the neighbouring pixel values. Image 2.3.2 has some white spot noise

present. When it is modified with this pixel averaging algorithm the result is clearly

visible in image 2.3.3. Instead of getting rid of the noise the resultant image is 'smeared'

and the noise is still clearly visible.

Screendump 2.3.2 'Before' Screendump 2.3.3 'After'

• If 0 is the original input image of size nxn and the sweeping window is of size 3X3,

P, the final picture, would be ofdimension (n-2)'.

Numerous other kernel designs can be applied for

special effects. Local equalisation [I3,22] can be

achieved by using a circular or elliptic area of

pixels around the nucleus. Figure 2.3.4 is an

example with 74 surrounding pixels having an

effect on the replacement of the nucleus [59].

Figure 2.3.4 Circular designs

9

Depending on what result is required from the transformation, weighing techniques could

be employed. This would mean that pixels further from the nucleus do not affect the

replacement pixel as much as those nearer to the centre. The effect of this method is to

highlight detail in uniform areas of an image and also to show border areas clearer by

pixel spreading [32].

2.4 Image enhancement techniques

It is not the purpose of this chapter to fully document image processing possibilities.

That would be impossible due to the vast nature of the subject. It is however necessary to

understand the underlying methods of convolution and transformation of an image before

the image processing techniques of later chapters can be explained.

Some of the most common DIP functions are explained and illustrated in the examples to

follow.

2.4.1 Image brightness

Look-up tables (LUT's) can be read and manipulated extremely quick with modem

computer hardware and software and are used extensively to manipulate computer

images. Instead oftuning an image with the brightness button of the computer screen, the

same effect can be achieved \\ith software manipulation. \\Then the LUT values are read

by the computer, a brightness offset can be added, (figure 2.4.1.1) and the resultant

image displayed.

Screendump 2.4.1.2 illustrates the result of this easy routine.

10

pixel brightness

60

after

~ ------~~- --------30 - -- _.-- _ ...~ .'-_._-

~ before

0 256

pixel number

Figure 2.4.1.1 Brightness adjustment

Image 2.4.1.2 Brightness enhancement

The sweeping window of 2.4.1.3 indicates a convolution kernel that would achieve pixel

emphasis.

11

0.0 -1.0 0.0

-1.0 5.0 -1.0

0.0 -1.0 0.0

The basic idea of this transformation is to have kernel weight

values symmetrical around the nucleus such that the sums of

the weights are greater than zero.

Figure 2.4.1.3

This can be achieved by setting the nucleus weight positive and the values on the

rectangular axes negative and symmetrical around the kernel. It is common programming

practice to build these enhancement effects into software modules so that the image can

be tuned interactively with a pointing device.

Image characteristics can be illustrated quite efficiently with a histogram I which reflects

the brightness levels of pixels. Screendump 2.4.1.4 shows the histogram of a digital

picture.

Screendump 2.4.1.4 Image histogram

Early work on local area histogram modification and pixel amplitude re-scaling was done

by Ketcham [54], while vast research was published on procedures which involves

Image histograms are sometimes referred to as luminance histograms [75).

12

exponential and hyperbolic shaped histograms by Castleman (1979) and Pratt (1978). For

most applications in this research, histogram equalisation is used as a tool for comparing

and analysing the effect of noise removal' .

2.4.2 Contrast enhancement

One of the common defects of electronic images is due to poor contrast being displayed

when brightness is reduced. Most of the pixels then have luminance levels lower than the

average and therefore the histogram of such an image will be skew toward the darker

levels. A similar procedure than the one mentioned in §2.4.1 can be used to set the

contrast of an image. Instead of adding a constant to the LUT to effect brightness, the

values are now multiplied by a constant. Note that the midpoint of the brightness curve

needs to be fixed for scaling purposes [45]. Figure 2.4.2.1 indicates this effect

graphically, while figure 2.4.2.2 demonstrates what happens to the resulting histograms.

pixel brightness

601--------------------------,

after

------~---

30 --------

o

Figure 2.4.2.1

before

pixel number

256

Image contrast, CLUT values

Reduction in me case of images which are over-infecred with noise speckles.

13

Brightness and contrast are the two effects

of display units that are most often used,

because it allows the image to be 'tuned'

to suit individual needs.

Figure 2.4.2.2

2.43 Blurring a digital image

There are several techniques available to blur an image, other than the method shown in

screendump 2.3.2. A typical example is to apply a low-pass filter [50] on the image. Low

spatial frequency pixel values will be passed through the filter, while high spatial

components will be blocked. This effect is also known as pixel spreading.

0.05 0.15 0.05

0.15 0.2 0.15

0.05 0.15 0.05

An example of a 3X3 convolution kernel for pixel spreading is

shown in figure 2.4.3.1 Note that the sum of the kernel weights

should equal 1.0 and that the kernel weights are again set

symmetrical around the nuclei.

Figure 2.43.1

Screendump 2.4.3.2 illustrates this effect on an image. The degree of blurring can be set

by adjusting the kernel values or by increasing the kernel size.

14

Screendump 2.4.3.2

2.4.4 RGB to grey-scale conversion

Blurring an image

There are many different methods to convert a colour image to grey-scale and vice versa,

especially if dithering is allowed. The most straightforward way is to use the average

value of the RGB values for each index for the new LVT.

Although most discussions in this thesis apply to grey-scale images, colour images can be

handled in a similar fashion by repeating the averaging function three times, for the RGB

values. A more detailed discussion on programming for colour graphics is presented in

chapter six.

2.4.5 Edge detection

If the brightness kernel in figure 2.4.1.3 is tuned until the sum of the kernel weights

equals zero, then a high-pass filter will come in effect and all low-pass elements of the

image will be blocked out. The effect of this convolution is shown in screendump 2.4.5.

IS

Screendump 2.4.5 Edge detection

One of the numerous applications for this image processing feature is satellite

photography for GIS '. Contours and edges of maps can be scaled and fitted with relative

ease, using electronic maps. This can be accomplished by START2 modules which

extracts digital features from linear images [75]. Although such satellite photographs are

of high density, they are quite often contaminated with noise that has to be removed by

some other procedure. This relates to most of the work reported on in the later chapters

of this thesis.

Another example is locally adaptive binarization methods which are used III OCR3

techniques where low contrast backgrounds and noise are present [78).

2.4.6 Reducing the size of an image

An easy way to reduce the size of an image is to discard some pixels according to some

chosen formula and only display the rest. If every tenth pixel is used, a picture, one tenth

the size of the original will be displayed. This method will not always give satisfactory

Geographic infonnation systems.
Segment cracing and rotation transfonnation.
Optical character recognition.

16

results due to raggedness and aliasing side effects the final picture. These side-affects can

be overcome to some degree by resampling techniques (71].

If for instance, the image is reduced five times and the resampling is planned row-wise,

the average of every five pixels can be used as a new estimate for a new pixel. This way

little information is discarded and a smoothed reduction is obtained. See screendump

2.4.6 for an example of this technique.

Further enhancement of the reduced image can be obtained if a convolution kernel is used

rather than line resampling.

Screendump 2.4.6

2.4.7 Image enlargement

Size reduction

100 250 150

200 300 350

130 400 460

A similar technique to the one discussed in 2.4.6 can be used to

increase the size of an image. In this case one obviously needs

some replication of pixels.

Figure 2.4.7.1

100 100 100 100 250 250 250 250 150

100 100 100 100 250 250 250 250 150

100 100 100 100 250 250 250 250 150

100 100 100 100 250 250 250 250 150

200 200 200 200 300 300 300 300 350

200 200 200 200 300 300 300 300 350

200 200 200 200 300 300 300 300 350

200 200 200 200 300 300 300 300 350

130 130 130 130 400 400 400 400 460

Figure 2.4.7.2

17

Figure 2.4.7.1 shows a small patch ofpixels

that are to be enlarged by a factor four. The

result of this process is shown in figure

2.4.7.2.

Although this method effectively increases

the picture size, the block matrices are

clearly visible, especially as the enlargement

factor grows.

100 138 175 215 250 225 200 175 150

125 160 194 230 263 247 232 216 200

150 182 213 245 275 269 263 257 250

175 204 232 260 288 291 294 298 300

200 225 250 275 300 313 325 338 350

183 219 254 290 325 339 352 365 378

165 212 258 304 350 364 378 392 405

148 205 262 319 375 390 404 419 434

130 198 265 333 400 415 430 445 460

Figure 2.4.7.3

18

A more acceptable method is to interpolate between pixels to preserve the smoothness of

the image. Figure 2.4.7.3 shows the result of such an interpolation process on the current

example, while screendump 2.4.7.4 shows the 'smoothed' enlargement.

Screendump 2.4.7.4

2.5 Three-dimensional images

Image enlargement

In many image processing applications volumetric information is required to work with

and the display of a single picture is not sufficient [60].

19

In medical applications, like the well-known

CAT I scans, it is required to have a vast set

of images available to enable the specialist to

form a complete picture to diagnose. This is

usually accomplished by means of a large

number of parallel images, which, when

combined, form

a three-dimensional image. One such X-ray

slice from a brain scan is shown in

screendump 2.5 .1.

Screendump 2.5.1

A vast field of computer research exist in the medical disciplines for refining imagery,

combining data from separate sources into a single image, and evaluating image quality

[30]. It is necessary to be able to stretch, squeeze, and rearrange images to compare and

correlate damaged tissue with the corresponding normal cases. The role of computer

imagery is of cardinal importance for such applications. Image processing may also be

used to improve images by comparing constraints based on known features and by

eliminating noise. The importance of reliable methods of high integrity is evident,

because no significant information should disappear in the process [32, 50].

Figure 2.5.2 illustrates how voxeli are created to form compound images with multiple

picture planes [18].

Another application worth mentioning, is that of voxelization in IFSAR3 applications.

Image registration is needed to extract the correct phase difference between two received

2
Computer assisted tomography.
Three-dimensional pixels are sometimes referred to as volume pixels, i.e. voxels [82].
Interferometric synthetic apenure radar.

20

signals. Processing parameters must be computed very rapidly, based on the relation

between spectral shift and linear stretch of the images involved.

Figure 2.5.2 The construction of volume pixels (voxels)

Due to the vast amount of processing required in these applications, it is an obvious

candidate for parallel processing. Each individual papro' will need basically the same

processing power and will operate independently on its slice of data (16,33]. Many other

applications of volumetric images can be found in the literature [18,47].

Papro is the abbreviation used by some authors for a single processing element in a parallel computer.

CHAPTER THREE

One-dimensional LULU Smoothers

3.1 Experimental data

It is a well-known fact of sampling experimental data that roughness or noise exists in

original data due to equipment errors or other related factors. In acoustic data the

difference between a clear signal and a noisy signal can be illustrated when comparing

music from compact disc and alternatively an old fashioned needle record player. The

CD player uses digital technology to produce a sound which is crisp and clear, while

the analogue methods of record players allow noise to seep through due to dust on the

record or a blunt pick-up needle.

In the laboratory, audio noise can easily be demonstrated by comparing analogue and

digital methods of saving data. If an audio cassette is used to copy music, say twenty

times, the deterioration of the final copy can be heard when compared with the original

track. The difference in digital and analogue methods can further be illustrated if a

sound sampler is available. The graphs of the original track and the final track can be

overlaid and the introduced noise will be clearly visible. If the same original digitised

wave is copied by computer, it does not matter how many times the copy process is

repeated. The wave will remain the same and virtually no noise "'ill be introduced.

22

As a more sophisticated example, with consequently much more emphasis on

accuracy, a missile tracking process could be analysed. Testing a missile involves the

capturing of a large amount of data from various instruments. A "Best Estimate

Trajectory" (BET) is defined in space by weighing data originating from various data

input channels. This process often involves real-time prediction and data filtering

putting the emphasis on speed and quality of the algorithms used [53,64].

If the observation matrix, H, is of dimension nxm, the estimation problem can be

described as:

x=H0+v

o represents the parameter to be estimated at time t

v represents the random measurement error at time t

x is the measurement at time t

If typical errors like random noise (statistical) and systematic errors are removed from

the data, a solution can be found by minimising the error function [52].

Obtaining solutions can involve standard methods like sampled mean, maxImum

likelihood or least squares for instance [I]. The speed and efficiency of adaptive

filtering [4] demand that all possible a priori knowledge of the trajectory should be

taken into account. It also can be pointed out that there exists no "unique" solution.

Each solution depends on a different set of criteria. It can however happen that some

of these distinct solutions may coincide [14, 48].

In our approach to correcting one or two-dimensional experimental data, we shall

largely omit stochastic correcting methods and rather concentrate a new class of

23

deterministic methods to eliminate pop noise I Figure 3.1.1 shows noise in the one

dimensional case, while screendump 3.1.2 illustrates a noisy computer image. Note

that two-dimensional noise appears as discrete isolated pixel variations that are not

spatially correlated. Screendump 3.1.3 illustrates this fact with an enlargement of the

randomly distributed noise of screendump 3.1.2.

Figure 3.1.1 Noisy ID data Screendump 3.1.2 Noisy 2D data

°1 Os °1

°2 It °6

°3 °4 Os

Figure 3.1.4

Screendump 3.1.3 Zoom function.

An automatic check for such data errors can easily be included in software. If a

conventional 3X3 window (figure 3.1.4) is used to manipulate and calculate new

Pop noise are pi.xels in the two-dimensional domain that are markedly different to their immediate
neighbours. The similar tenn commonly used for a one-<!imensional high energy peak is
oUlShoorer.

24

nucleus values for 2D data, a simple check can be built into software to identifY and

replace pops according to a predetermined fonnula. In the simple case below, the

nuclei, 1]ij , are replaced with the average value of the surrounding pixels if a pre

defined tolerance is exceeded.

> ~ then 11··<; , ~J

3.2 ID Filters and smoothers

In most signal processmg applications it is common practice to have some filter

(smoother) built into algorithms to eliminate or reduce the detrimental effects of

noise. These smoothers can either be linear or non-linear of nature [44,58]. Linear

system theory is a well-developed field used to describe the behaviour of physical

phenomena, such as electrical circuits and optical systems. It also provides a finn

mathematical background for the study of sampling, spatial resolution and filtering.

Linear filters are widely used in engineering and other applications because they obey

superposition principles and are shift invariant [43].

y- fIx)

I

Figure 3.2.1 f(x;) is replaced by the new nucleus value, 1]1

For the sake of unifonnity, we shall refer to the linear case as a filter and to the non

linear case as a smoother [58].

25

An easy application of a linear filter is where the value Xi in a series, i = 1, 2, ..n is

replaced with the (weighted) average of its neighbouring data. The two-dimensional

sweeping window as proposed in chapter two will now be replaced by a 'tangent'

window, Wi of size three. The value of the nucleus, l]i = Xi, can then be computed from

the neighbouring data values. Figure 3.2.1 shows a graphical illustration of such a one

dimensional sweeping window, at point Xi. The nucleus value at every function value

f(Xi) , i = 1, 2,..n is replaced with the value

Screendump 3.2.2 shows the effect of a linear filter of window size three on a section of

an oscillating function.

Screendump 3.2.2 Average filter, with window size = 3

n screendump 3.2.2 it is obvious that the filter follows the original function quite

~fficiently as long as there is some degree of stability (monoticity) in the data it operates

m. Sudden extremities or directional changes in a function cannot be handled efficientlv

md the situation worsens with larger window sizes as shown in screendump 3.2.3.

26

Screendump 3.2.3 Average filter, with window size = 7

In figure 3.2.3 the window size is changed to seven and the original flow of data is
clearly lost.

There are many instances where a linear filter would do more harm than good. A linear

filter (or low-pass filter) will normally work quite well on data which has high frequency

noise, while the basic function is changing slowly. If the wave was contaminated with

erratic noise, i.e. energy surges like the indicated portion of the example in figure 3.1, a

non-linear smoother would be a better option to use. The smoother will eliminate noise

as far as possible, while the filter would have a smearingl effect which could drastically

effect the quality of the original data.

Smoothers are therefore designed to protect original data, while removing outshooters

and still preserving sharp discontinuities in the waveform. lt is common practice to first

sweep the original data with a smoother before any linear filters are applied. Obviously

tests must be built into the algorithms to check for optimality of the data quality, because

it is a known fact that repetitive smoothing or filtering may do more harm than good to

the original data [55,69].

See §4.1 for smearing in images.

27

3.3 ID Median smoothers

Many authoritative papers were published over the years on the theory of median

smoothers. It is worth while to mention the work of Mallows [58] which still forms

the basis of many non-linear applications today.

Median smoothers are popular due to their relatively simplistic and efficient

operation. Consider a quantified signal oflength n, x = {Xl, Xl, , Xn } I, and a

conventional moving window, Wi= {Xi-k, Xi-k+I, ,Xi,.... ,Xi+k-l, Xi+k}, which is moved

over the original Xi values to produce the output sequence, where k is a measure used

to adjust window size:

Yj = (Mx)j, j = k+l,k+2,.., n-k.

Our notation will refer to the subset:

x(b,e) = {Xb, Xit>b ..., Xe·b Xe}

x(b,e) c x

The median, M(i-k,i+k), at the point XI will hence refer to the 2k+ I points in the

window, Wi.

If k = 1, for instance, a moving window of size three will determine the new Yi

values;

each Yi = (Mx)i, i = 1, 2,..n and

(Mx)j = med{Xj..b Xj, Xj+l}, j = 2, 3,...,n-2, n-l.

Note that vectors are indicated as bold, smallleners, while operators are presented as bold, upper
case letters.

28

The above data points can also be presented as:

y"'M[xT,~Yistheoutput sequence and M is the median smoothing

functionoperating.onx.

y =; {SI,)'2> •••••,)'n}

The following four definitions are often encountered in signal processing and will be

used throughout this chapter [31]:

Definition 3.3.1

A constant neighbourhood is at least k+1 consecutive identical points such

that the constant neighbourhoods and edge together is monotone. (See figure

3.3.1 for an example of a monotone increasing function.)

Definition 3.3.2

An edge is a monotonic region between two constant neighbourhoods.

Definition 3.3.3

An impulse is a constant neighbourhood followed by at least one, but not more

than k points which are then followed by another constant neighbourhood

having the same value as the first neighbourhood.

Definition 3.3.4

An oscillation is a sequence of points which IS not part of a constant

neighbourhood, an edge. or an impulse.

29

Figure 3.3.1 A monotone increasingfunction.

Figure 3.3.2 A single outshooter.

Figure 3.3.2 shows the effect of a median smoother of width three on a single spike

acting on a constant function, while figure 3.3.2 shows the effect on a monotonically

increasing function.

30

Figure 3.3.3 A single outshooter on a slope.

Note that the median filter of width three does not succeed to fully remove the spike. A

LULU algorithm, as defmed in §3.4, effectively removes the spike and restores a valid

point.

Figures 3.3.4 and 3.3.5 indicates the results of median filtering with window sizes of

varying width. If the binary data in figure 3.3.4 is sweeped with a median filter with

window width three, there will be no change in the output data. If a window width is set

to five, the result will be as in figure 3.3.5. Dummy values or 'padding' are added at the

beginning and the end of the original sequence to allow for the smoothing of end points.

Normally padding has little effect on the output due to the vast stream of points under

observation.

31

Figure 3.3.4 Original data

Figure33.S Median smoother using a window of width five.

32

The smoothing function M is a typical rank-based selector jUnction, because the

smoothed value at each output point Yi is selected purely on rank order [44] of the

values in the window Wj.

Figure 33.6 Original signal

Figures 3.3.6 - 3.3.9 shows the result of repeated median smoothing.

'igure33.7

• --'

Signal after one median sweep.

33

Figure 3.3.8

- Cl. •

__ I

Signal after two median sweeps.

Figure 3.3.9 Final median sweep arrives at root.

34

The idea behind repeated filtering with a running window of a fixed size, is to arrive at

the root ofthe sequence. At this stage the signal is invariant to successive smoothing, i.e.

any filtering after this stage would not change the resultant data.

It is also interesting to note that the roots of x, when data is smoothed repeatedly with

different window sizes, are not necessarily the same [76,88].

Figure 3.3.10 shows the comparison of a median smoother and a average filter, with a

running window of width five.

Although median smoothing is so widely used, it suffers from some deficiencies, as

shown in [21] and [82]. The median is an attractive smoother to use due to the ease of its

statistical interpretation, but its behaviour becomes complex when repeatedly applied to
. Ian 1Illage .

In addition to these problems, the median tends to converge to suboptimal solutions in

certain cases and global convergence need not be achieved, even with repeated

application [72]. The reason for this observation is that the algorithm place the

impulse at one of the endpoints of the selection interval, and then selects the middle

value as the new smoothed value, which might not be the optimal value. It is therefore

not surprising that intensive research was conducted in this area which eventually

produced a novel set of algorithms based on partial ordering of the operators in a

lattice [80].

Chapter five illustrates some mathematical consequences, \vhile chapter seven shows the
deterioration of an image with repetitive mediall smoothing.

35

Figure 3.3.10

3.4 lD LULU algorithms

Comparison of a linear filter and a median smoother.

The LULU class of non-linear smoothers introduces new variations III non-linear

smoothing which can in some instances be shO\vn to improve situations where the

median smoother falters [81].

36

Consider, as before:

y = Sex) , where x is the input sequence and y is ,the output sequence and S represents

the smoothing function.

As an alternative to using median operators in the active window, a running minimum l

can be employed to remove upward pop's in a monotonically increasing function

[80,82]. Note that this procedure will widen a downward pulse, as shown in figure

3.4.1.

Figure 3.4.1 The effect of a minimum sweep on the original data.

A running minimwn operator is defined by a rank-order selector which selects the smallest (lowest
ranked) element from the running window.

37

Figure 3.4.2

sweep.

A running minimum, followed by a running maximum

It should further be pointed out that a running minimum, followed by a running

maximum operator, will restore monotonically increasing (decreasing) parts of a

function to its original state. Naturally this depends on the size of the window, Wj as

illustrated in figure 3.4.2. Unless stated differently, a window size of three l will be

used in the remainder of this chapter.

The basic pair ofunsymmetric operators, U and L are defmed as follows [80]:

(Lx). = {max{min x(i-k,i), '" , min x(i,i+k)}}, where x(s,t) = {Xi; iE[s,tJ} and XiEL

Similarly,

(Ux). = {min{max x(i-k,i), ... , max x(i,i+k)}}

where Xj is the centre point of the running window, Wj.

1<=1

38

U will hence have the effect of removing downward pulses, leaving upward pulses as

is. It will further retain upward/downward trends as shown in figure 3.4.3.

Figure 3.4.3 A minimum, followed by a maximum, followed by a maximum

Note that the complet/ algorithm in effect means a minimum sweep, followed by a

maximum, followed by another maximum and fmally a minimum sweep. Also note that

the process can be made more efficient by replacing the two maximum sweeps of

window width n+ I by a single maximum sweep of window size 2n+ I [62].

The complete algorithm is defined by a sequence ofsmoothers in a specific order to obtain the
desired results.

39

Figure 3.4.4 minzmaxz maxi mini sweep (UL)

Composition of smoothers was used in §3.3, where the median smoother M was

repeatedly used on output series of a previous median smoother. A similar operation

can be constructed by letting V operate on the output of L and vice versa. This

overcomes the deficiencies of the V and L operators on their own.

The smoothers UL and LV can be constructed to remove both upward and downward

pop's. UL will hence be a running minimum operator, followed by a running

maximum operator, followed by a second maximum operator and fmally followed by a

minimum operator, i.e. UL = V(LX)i' LV can be constructed similarly as shown in

[80].

Note that an optimal window size can be designed such that k is chosen as at least the

maximum number ofexpected outliers [62].

40

If the correct window size is used, it can be shown that U(LX)i - 0 < Xi < L(UX)i + 0,

i.e. valid data is contained in confidence bounds where 0 is an appropriate tolerance

[61,81]. UL therefore gives an upper bound to the reliability of the data series, while

LU gives the lower bound. An easy and appropriate non-linear smoother can hence be

constructed by using the average values between these bounds: Xi is replaced by

(U(LX)i + L(UX)i)/2 if Xi is not a valid value in the sequence to be smoothed. We shall

refer to this algorithm as the LULU_ID smoother.

The LULU algorithm can be shown to be similar to the median algorithm in the way it

removes noisy data and in some applications even perform better. The removal of a

single spike is a good example of this fact, as is illustrated in figure 3.3.3. The

median algorithm suppresses the energy of a flyer, while the LULU_ID smoother

actually removes the flyer due to the specific order L and U is used.

It is sufficient to sununanse some of the most important characteristics of these

th· Ioperators at IS stage .

3.4.1 Smoothers can be compared (ordered) by checking the output against the

input series. The normal = < , = , > relations applies as shown in articles [79J and

[80].

It can for instance be shown that L ~ M ~ U 2

3.4.2

2

L an U can shown to be idempotent [81]. This is a very desirable factor,

because ifthe smoother is repeated on its own output, nothing changes:

LL=L2 =L andUU=U2 =U.

Fonnal mathematical proofs are presented in chapter five and further practical tests are reported in
chapter seven.
See the references and chapter five for a summary.

41

Unlike some other computationally efficient smoothers, where repetitive runs are

needed, the LULU algorithm will find a consistent solution to the smoothing problem

in a predictable number of steps in a single application.

3.4.3 UL and LU can also shown to be idempotent.

3.4.4 LU and UL can be processed in a single array process by noting that

LU(X) = -UL(-X).

The idempotency feature l and the relatively simple structure ofLULU algorithms makes

it a excellent candidate for various parallel algorithms. This is further investigated in

chapter eight. Experimental results achieved with these smoothers are reported in [62].

Chapter four has some practical examples of this phenomenon, while chapter five illustrates the
mathematical consequences.

CHAPTER FOUR

Two-dimensional LULU smoothers

4.1 Simple two-dimensional linear fIlters

Two-dimensional linear filters are popular for many applications in signal

processing. They can vary from simple neighbourhood convolutions as shown in chapter

two, to advanced methods such as Fourier analysis and Kalman Filters [19,44].

X i-l,j

xi,i-l~~j:! X i,j+1 I
;l:i+l,j

Figure 4.1.1 Five-point window

Depending on the data, linear smoothers (low-pass

filters) can be used when the image is not

contaminated with high-frequency energy, such as

the noise described in §3.1. This is usually the case

when the noise is Gaussian and the Central Limit

Theorem is applicable.

For some applications linear filters will do more harm than good because of the digital

nature of the input data. In practice, noisy data can clearly be seen on a television image

43

as spots l when an electrical appliance starts or when a car with faulty ignition suppression

passes nearby.

If a conventional two-dimensional five-point sweeping window is chosen, as illustrated in

figure 4.1.1, only the pixe1s nearest to the central nucleus, TJ = Xij, are used. To

illustrate how two very basic linear filters can be formulated, each nucleus pixe1, Xij , is

replaced with the values of its surrounding pixels according to one of the following

formulae:

4.l.2 .. Xi,j/<F .().25*(X;4J+Xi+lJ+XiJ-1 +Xij+l)

Let Xij refer to a pixel at the position, row i, column j, of the two-dimensional nxrn

matrix image, X 2. In the first example, the nucleus pixel is replaced with the average of

the surrounding four pixels from the five-point window (directions north, east, south and

west), ignoring the nucleus 3. The advantage of the averaging method 4.1.2 above 4.1.3 is

that noise energy in the nucleus is avoided at the [ij] position. The surrounding pixels

will however still show the effect of the outshooter. The set of LULU programs, as

demonstrated in chapter six, has formula 4.1.3 included as an example to show what

happens when high energy noise is filtered with a method which is not suitable.

Screendump 4.1.4 has an image on the left (X indicating the original input image to be

filtered) which was speckled with random black dots. The right-hand side of the

screendump, P, shows the result of the linear process, 11>, as formulated in 4.1.3.

Screendump 4.1.5 shows an enlarged section of the original image, clearly indicating two

2

Another common noise type often seen on television screens, is a single noise line or cluster of
lines, displayed horizontal or diagonally.
Note that the image, '" presented by a matrix, X, is always printed in capitalized bold letters,
while the matrix self is presented in ordinary print.
If the linear process is <1>, the input image is X and the output image is Y, the filtering
operation can be described as: Y<l> = <I>(X). In the non-linear case, the original image, 0, will be
smoothed to a final picture, P: Ps = SeD). Note that 0, X and Y are the matrices from which the
images 0, X and Y are generated.

44

pop/ and the corresponding result on the right-hand side after the linear algorithm was

applied. It is clear that this linear process suppresses the noise, but actually smears the

resultant picture. A high energy pop will be averaged to itself and its four sUITO\Ulding

neighbours. This result is also clearly visible when the Windows Paintbrush@ VIEW

function is applied on such a filtered image.

Screendump 4.1.4 A five-point average filter applied on a very famous woman.

Screendump 4.1.5 Zoom results x

A linear filter is therefore not a good candidate for the removal of spot noise and non

linear methods will have to be investigated for this purpose. To overcome the problems

experienced with linear methods, it is imperative to employ non-linear pre-filters to

remove spot noise before any other enhancement is done to the image.

'Pops' refers to noise speckles in 2D data

45

Once the robustness and usefulness of the LULU_ID algorithm was properly proven and

tested, it was necessary to extend and investigate this class of smoothers for two

dimensional applications with the aim of eliminating noise with minimal damage to the

original image.

The following sections summarise the evolution of a new class of non-linear two

dimensional smoothers which were developed. As an initial point of departure the

LULU_ID algorithm, as described in chapter three, was investigated for two dimensional

application. The fundamental question was to prove that horizontal LULU_ID sweeps,

followed by vertical LULU_ID sweeps give similar results as sweeping vertically fIrst

and then horizontally. Intuitively success is guaranteed because an image can be viewed

as a set of horizontal (or vertical) scan-lines. Unfortunately, as with many scientifIc

problems (and Nature itself), experimentation soon showed that although these

algorithms work well for many practical examples, they are not computationally and

mathematically as consistent as algorithms that were designed from the outset for two

dimensions. These algorithms are however included in the set of LULU_2D programs

and have shown to be an improvement to even the median applications for some specifIc

applications1

A more promising method to pursue was to look at neighbourhood regions, as described

in chapter two. This led to the discovery of new classes of two-dimensional LULU

algorithms [80].

4.2 Morphological systems

Mathemathical morphology is a set-theoretically based methodology for geometrical

analysis of image processing. The class of non-linear morphological systems is widely

See chapter seven for practical examples.

46

used in many computer vision applications, particularly to represent and extract shape in

multidimensional systems. Although some of the first work on morphology was done in

the sixties, Nakagawa and Rosenfield [69] presented the first studies where max-min

operators were used on gray-level images for noise reduction.

The basic idea is to use a disk-like window to sweep a binary image, replacing each pixel

with the logical AND (shrinking) of its immediate neighbours [59, 69]. The opposite of

this process involves the OR operand and is referred to as the 'expanding operation' in

the literature. Ifthese basic operators are replaced with maximum or minimum footprints

of a sweeping window on a gray-scale image, the so-called'erosion' or 'dilation' effects

are achieved [59].

If the one-dimensional LULU structures are to be investigated for two-dimensional

application, it would naturally require extensive refmement of the morphological systems

as described in the literature. A novel way of presenting a two-dimensional LULU

smoothing method is to correlate the theory of LULU_ID with the ideas presented in

§4.1.

4.3 LULU 2D_SW design principles

Let 0 be an rum input matrix (image) to be smoothed. We can define a 3x3 sweeping

window similar to the one used in 4.1.2:

where OiJ is the nucleus to be processed within the sweeping window,wiJ ' at the matrix

position [ij].

Afloor LULU_2D operator can now be defmed as:

47

4.3.2 (po)y = max(min(ojj, Ojj_I), min(oij, oij+ I),

min(oij, Oi-I), min(oij, 0i +I,j»

A ceiling LULU_2D operator can be defined similarly as:

4.3.3 (CoN -min(max(Ojj, Ojj -I), max(oij, Ojj+ I),

maX{Oij, Oi-lj), max(Oij, Oi+ Ij))

The image can now be smoothed, in succesive horizontal l scanline sweeps as indicated in

the program listings §6.6.6. The notation used for a floor sweep is F. A similar notation

is used for the ceiling sweeps, C. The effect of F is to remove upward impulses2
, whilst

C does the opposite. It therefore seems logical that a complete smoother must therefore

include both the floor and ceiling processes to remove noise as effective as possible.

Rohwer [81] describes the mathematical implications of this new approach for two

dimensional smoothing in his article, 'LULU-operators for two-dimensional data'.

Idempotence of the F and C operators can be proven (§5.2) and a true LULU structure

has been defmed.

A complete two-dimensional filtering process will hence require a total of n-2 horizontal

F sweeps of the image followed by the same number of C sweeps before the picture is

cleaned of spot noise.

At this stage it is interesting to thoroughly test the effect of idempotency for two

dimensional smoothing. In practice this implies the smoothing of a vast number of

images with basic geometrical features, all contaminated with erratic noise. A

LULU_2D/SW algorithm3 can be defined according to the formulae 4.3.4 or 4.3.5:

Because the operators F and C have a rotational invariance of 90°, it does not matter whether the
sweeps are performed horizontally or vertically for all practical reasons. Also note that the term
sweep is often used instead ofscanline sweep.
Assume the sweeping window to move on the plane of the two-dimensional function.
LULU_2D/SW indicates a LULU algorithm based on a five-point two-dimensional sweeping
window as illustrated in fig.4.I.I.

48

4.3.4 P=FC(O) and

4.3.5 P - CF(O), where the resulting dimension of Pis (n-2l

As 0 was already defined as the DXD input matrix, contaminated with noise, P will always

refer to the final picture after the smoothing process. 4.3.4 defines an algorithm where

the image is first smoothed with the ceiling smoother, C (as defmed in 4.3.3), and the

resultant (intermediate) picture, P, = CCO), is then smoothed with algorithm 4.3.2 to

achieve the final output P = F(P,) = FCCO). It can be shown that P = CF and P = FC

produces a similar result if the noise levels are within reasonable bounds for erratic noise

as described in §3.1.

As an example to show this process, a binary image, 0, was constructed as a binary

image with the bottom (black) part being zero and the rectangular top part set to one

(screendump 4.3.6). The image was then sprinkled with random noise ('salt and pepper

noise '). Note that the flyers are of opposite magnitude to the area where it was

positioned. The rectangular section is thus constructed from pixels of value one with

superimposed noise, shown as the black spots. Screendump 4.3.7 shows the result after a

C sweep with a five point window was performed on the full matrix. The original

features of the image remains unaltered, but most of the impulsive noise in the

rectangular (ceiling) section is eliminated. Obviously noise will remain, depending on

the noise intensity, or where noise pixels are next to each other and the window size is not

adequate. This fact is observed in figure 4.3.7. Finally P, is smoothed with afloor sweep

to eliminate the noise in the remaining part of this intermediate picture and the result is

illustrated in screendump 4.3.8.

Note that, as with other non-linear smoothers, the boundary between floor and ceiling

involves the ambigious nature of the smoothing process [31]. The positive feature of

49

LULU smoothers is the fact that the boundary is left unaltered, no edge shift [36,74]

occurs, thus preserving the original image.

Screendump 4.3.6 o Screendump 4.3.7

The effectiveness of any smoother naturally depends on the density of the noise spots, as

well as nature and distribution of noise present in O. The noise remaining after a pre

smoother has been applied can be treated with some applicable process, such that the

image is restored as accurately as possible I.

Screendumps 4.3.8 and 4.3.9 visually displays the results of algorithms 4.3.4 and 4.3.5.

See chapter seven for practical illusrrations.

50

Screendump 4.3.8 P=FC(O) Screendump 4.3.9 P=CF(O)

Screendump 4.3.1 0 shows a blank image

scattered with random noise. The interesting

fact is that this image only needs an F sweep,

because there is no binary clustered feature

necessitating a ceiling sweep.

Screendump 4.3.10 Pr=F(O)

A C sweep will therefore not change the image and Pc = C(O) = O.

Screendump 4.3.11 Original image, 0 Screendump 4.3.12 Pc=C(O)

51

As a final example, screendump 4.3.11 has the same original image as 4.1.4, but it is

contaminated with random noise scattered in all 256 grey levels of the image. Note that

C again remove.d the dowl'TWard spikes from the position of the sweeping window in the

hyperplane. 1bis explains the fact that only the whiter shade outshooters remain in

screendump 4.3.12.

Screendump 4.3.12 Pc = C(O) Screendump 4.3.13 P=FC(O)

If image 4.3.11 is smoothed again with F, the final picture P = F(pc) = FC(O), yields the

completely smoothed picture in screendump 4.3.13.

Screendump 4.3.14 The results of LULU_2D/SW with oversaturated noise.

52

The usefulness of the LULU_2D/SW algorithm has been illustrated for practical

application and it is quite clear by analysing the resultant picture that the quality of the

original image has been retained.

Screendump 4.3.14 shows the effect of this smoother when too many noise pixels were

present in the original image. Remaining noise will thus always be in the direction of the

NWES1 axes, relative to the nucleus pixels.

4.4 LULU_2D/9W design

In this case the nine-point sweeping window is the set of bordering pixels;

4.4.1 wij = { I}ij, I} ij-l, 0 ij+ 1,0 i-lj ,0 i+ Ij, 0 i-Ij-l, 0 i-lj+ 1,0 i+ Ij-I. Oi+ lj+ I},

0 <' '<-IJ_n

oi-1,j.1 0 i-1,j 0i-1,j +1

O~j-1 O~j+1

o i+1,j-1 0i+l,j 0i+l,j+l

Figure 4.4.2

Graphically this window is similar to the one in

§4.4, but with the four diagonal pixels are

included as shown in figure 4.4.2. The eight

pixels bordering the nucleus, will now have the

45° rotational axes included.

LULU_2D/9W operators can now be defined as;

4.4.3 (Fo)ij =max(min(oij, 0ij+l,Oi-lj+ 1,°i-Ij), min(o ij,O ij-I, 0 i·lj-I,° ij-l),

min(o ij ,° ij-I,° i+lj·l, 0 i+ Ij), min(o ij, 0 ij+ I,° i+ Ij+l,° i+lj))

In the same sense as north, west, east and south pixels. as defined in chapter three.

53

4.4.4 . (Co)ij =min(max{o ij .0 ij+1 :·0 i-tj+ 1,0 i-lj) , max(o ij, 0 ij -I, Oi -Ij _1,0 ij-I) ,

max(o ij ,0 i j--l, 0 i+lj-l, 0 i+ Ij) , max(o i;j, 0 i j+ 1,0 i+lj+ 1,0 i+lj»

The characterisation of the nine point LULU operator is similar to the five point operator

in the way which it eliminates spot noise. The fact that the operators now does a

selection on four sub-matrices, rather than on four pixel values, has important

significance, as can be seen in screendump 4.4.5. Due to the construction of this filter,

the nucleus value is now compared with three pixels in each of the four surrounding

surface elements. If the same image, with the same noise distribution in as §3.4 is nsed,

this smoother is obviously superior to the five-point algorithm as far as its noise-cleaning

power is concerned.

Screendump 4.4.5 The results of LULU_2D/9W

Screendump 4.4.5 illustrates an original image with grey scale noise distributed randomly

in all 256 grey shades, cleaned by the LULU..2D/9W algorithm. Screendump 4.4.6

shows the resultant noise which can be expected to remain after this algorithm was used

in a picture where the original image was oversaturated with noise.

S4

Screendump 4.4.6 The results of LULU_2DJ9W with oversaturated noise.

4.5 Other LULU 2D structures

The fact that an image seems to be somewhat embossei after being smoothed with

LULU_2D/9W, opens the following questions:

• do there exist any other useful LULU structures?

• can hybri<f LULU methods be constructed?

• if so, can they be proven to be idempotent?

• can a 'best' smoother be found for a particular noise distribution?

Although some of the answers to these questions are given in chapters five to eight, it is

appropriate to investigate some other interesting algorithms at this stage. The emphasis

will be on practical algorithms which can contribute in some pre-defined manner to the

problem of noise-reduction.

2

Larger window sizes tends to replace neighbouring nuclei wilb lbe same digital value, reducing lbe
crispness ofan image to a cenain extent.
A hybrid smoolbing algoritbm is constructed when a smoolber is preceded or followed byanolber
filterlsmoolber.

55

Paragraph 4.1 introduced the idea of sweeping the two-dimensional image with

LULU_ID scan lines in horizontal and vertical directions. TIlls idea will now be

investigated further by

Screendump 4.5.1.1 Original image, 0 Resultant picture, P =Ph

applying LULU_ID sweeps to O. Using the convention as defmed before,

LULU_2DNH defmes an algorithm where the image is fustly sweeped with horizontal

LULU_IDIH scan lines and the resultant picture, Ph, is then sweeped vertically with the

similar LULU_IDN algorithm to yield the fmal picture, P = Pvh. Screendump 4.5.1.1

shows the original image, as used before, on the left, while the right-hand side shows the

resultant picture, Ph, the image after LULU_lDIH was applied. It is clear to see that the

previous problem concerning the edges of the image is solved with this method. A fmal

vertical sweep concludes the process and the original image is restored, as shown in

screendump 4.5.1.2.

56

Screendump 4.5.1.2 Intermediate Ph Final smoothed picture, P = Pvh

Note that this smoother seems to be considerably more powerful than LULU_2D/5W

because the same image, (figure 4.5.6), was completely restored in this case. The power

of this smoother comes at a cost, because it is numerically more complex. Not only does

the algorithm involve more floating point operations, but it is actually a hybrid because it

involves an average calculation between the upper and lower bounds. Comparisons

between the different algorithms are left for discussion and analysis in chapter five.

It can be verified that a similar result as in §4.5.l would have been attained if the LULU

sweeps were switched around. (See screendump 4.5.1.2(a) in the appendices). From the

results shown in this chapter is seems as if LULU sweeps can be arbitrarily switched

around I and still give a similar end result. This is not necessarily true and the opposite

can easily be shown by using a different example. Screendumps 4.5.2.1 and 4.5.2.2

illustrates that LULU~DNH does not yield the same results as LULU_2DIHV for the

same original image, 0, which is oversaturated "With random noise.

Also for F and C.

57

Screendump 4.5.2.1 Original image, 0 Resultant picture, P = Pvh

The mathematical and practical implications of this phenomenon is explained in detail in

chapter five.

Screendump 4.5.2.2 Original image, 0 Resultant picture, P = Phv

The different two-dimensional methods, as developed III this chapter, can now be

summarised in notational format.

58

4.5.3 2D LULU notation

• LULU_2D/SW An image, 0, is converted to a final picture, P, after five-point

ceiling and floor sweeps have been performed on it. We can refer to the resultant

picture as P =PLS•

• LULU_2D/9W An image, 0, is converted to a final picture, P, after nine-point

LULU ceiling and floor sweeps have been performed on it. We can refer to the

resultant picture as P = PL9.

• MEDIAN 2D/SW An image, 0, is converted to a fmal picture, P, after five-point

median sweeps have been performed on it. We can refer to the resultant picture as

P=PMS •

• MEDIAN_2D/9W An image, 0, is converted to a fmal picture, P, after nine-point

median sweeps have been performed on it. We can refer to the resultant picture as

P=PM9.

• LULU 2DIHV An image, 0, is converted to a final picture, P, after one-

dimensional LULU sweeps have been performed on it in the order, HV. We can refer

to the resultant picture as P = Phv.

• LULU 2DNH An image, 0, is converted to a fmal picture, P, after one-

dimensional LULU sweeps have been performed on it in the order, VH. We can refer

to the resultant picture as P = Pvh.

• LULU_2DN This algorithm refers to LULU_ID sweeps, applied only vertically

on a two-dimensional image. We can refer to the resultant picture as P = Pv.

• LULU 2DIH This algorithm refers to LULU_ID sweeps, applied only

horizontally on a two-dimensional image. We can refer to the resultant picture as

P=Ph•

59

4.5.4 Hybrid algorithms

It is possible to combine algorithms such as those mentioned in this chapter with linear or

non-linear methods to form hybrid methods.

Screendump 4.5.4.1 o

As mentioned already, the LULU_2DfHV and LULU_2DNH algorithms are implicit

examples of hybrid algorithms. Numerous other hybrids can be formed by using

smoothers, filters and other enhancement techniques in combination. LULU smoothers

are designed primarily to serve as pre-filters and therefore most of the investigation in this

project did not go beyond the testing and verification up to the stage where post-filtering

should start.

If the example in screendump 4.5.4.1 is smoothed using LULU_2DN, the right-hand

side of screendump 4.5.4.2 shows the result, PvL5.

60

Screendump 4.5.4.2 PvL5

It is clear that if LULU_ID is now applied horizontally, the image will be completely

corrected. In this example it is immaterial in which order the LULU_ID algorithm was

applied, because the remaining noise intensity is low. TIlls application clearly indicates

the superiority of LULU algorithms to the median, especially in steep border regions.

Screendump 4.5.4.3 shows that a five-point median algorithm operating on the five-point

LULU output could not clean the image completely of noise.

Screendump 4.5.4.3 PL5 PM5L5

61

In the search for optimal correction of a noisy image many options are available to

measure images for quality. Numerous image processing software packages for

enhancement are commercially available and a great number of algorithms exist in the

literature. If the quality of a single picture is to be improved, an operator will usually

attempt to clean noise first by some pre-fiIter or -smoother of his choice and then try to

enhance the image with further processes. Many tools to compare the quality of the input

image to that of the final picture exist, but it is normally the human eye that makes a

conclusive decision due to the subjectivity of visual display.

When streams of images have to be improved, normally at real-time, human intervention

is out of the question and automatic procedures have to be devised [5,24,35]. Depending

on available a priori information the system will usually determine whether pre-filtering

with some smoother is necessary. If the noise type is not known, or is of alternating

nature, the smoothing process can become extremely complicated. The speed at which

these enhancements must occur is also a limiting factor. Smoothers and filters for digital

sound application need to operate in the order of llkE/s. A I024X768 image in 24-bit

colour, used in digital video at 25 frames per second, requires 2,4Mb of data to be

processed every second [8}.

The fact that digital video display is barely possible on current hardware and the quality is

not yet comparable to that of the conventional analogue methods, is an indication that

new DIP methods must be developed, most probably for more advanced hardware. Some

of these methods for parallel structures are discussed in §6.7.2.

CHAPTER FIVE

Mathematical verification of2D LULU smoothers.

5.1 Mathematics for image processing and graphics

Computer graphics makes use of a wide range of mathematical concepts to achieve the

aims of various programming tasks. For an image processing assignment, such as the

objective of this project, the first task is to set a reference frame for pixel identification.

Although the image processing for LULU is mapped against a normal Cartesian co

ordinate system, other systems, such as spherical, cylindrical or polar co-ordinates can be

useful for specific programming environments. A solid knowledge of analytic geometry,

linear algebra, vector analysis, tensor analysis, complex numbers and numerous other

areas from numerical analysis is advantageous [32,83] for image processing students.

The well-known Fourier transform and variants thereof provide a spectral decomposition

of an image into components that isolate and enhance image features. These methods are

extremely useful for linear image processing applications and are excellent tools for noise

reduction when low-frequency noise is present. If '3(u,v) is the discrete two-dimensional

transform of a sampled image f(j,k), the transform pairs can be presented as [76,83]:

5.1.1 If 3(u,v) = L L fij,k) A(j,k;u,v)
j=(l1<=O

n-l n-l

5.1.2 and fij,k)=LL 3(u,v)B(j,k;u,v)
j=(l1<=O

where A(j,k;u,v) is the forward transform kernel and B(j,k;u,v) is the backward kernel.

63

For non-linear applications, like the LULU smoothing theory, results are attained

through discrete matrix transforms using a sweeping window as the device to effect

convolution. NaturaIly other effects can be implemented by elementary matrix

operations, such as matrix addition, subtraction or multiplication [41, 50].

5.2 Mathematical observations considering LULU ID formulae

The concept of grouping local maximum and minimum operators into shrinking or

expanding routines for thresholding in binary images is not new. Nakagawa and

Rosenfield published a paper in 1978 reporting on the noise suppression capabilities of

such max-rnin operators for two-dimensional application [69]. A new approach

developed by analysing max-min operators for one-dimensional theory and thereafter

applying this knowledge to design two-dimensional algorithms. Dr. C.H. Rohwer from

the Department of Mathematics, Stellenbosch University, has been the major force behind

the development and analysis of LULU structures in general. This chapter is a short

overview of some of his work. The serious mathematically minded reader is advised to

refer to the literature for more detailed information. It must also be pointed out that non

linear smoothers are deceivingly intricate in nature and not all crucial proofs are

necessarily proved by algebraic means. The purpose of this chapter is therefore more

explanatory and indicates the logical basis of the physical phenomena that has been

recorded in chapters three and four.

The one-dimensional LULU smoothing concept was described in chapter 3, while the

application of the LULU_ID algorithm in two dimensions was introduced in §4.4.

Although the LULU_HV and LULU_VH algorithms proved to be quite powerful and

useful for certain noise patterns, it lacked idempotency and are therefore not formally

investigated. Another option for the formulation of the one-dimensional operators, is:

64

5.2.1 (Lx); = max(min(Xi-l , x;) , min(x; , xt+l» ,

5.2.2 (Ux); = min(max(Xi-I , Xi) , max(x; , Xi+l»,

for real sequences.

5.2.1 and 5.2.2 provided the idea to construct two-dimensional LULU operators

similarly.

In order to fully understand the two-dimensional LULU structure, it might be worthwhile

to give some further consideration to the construction of a multiplication table for the

one-dimensional semi-group [79]:

5 2 3 L ~ I $; U, where I is the identity operator,

5.2.4 LL '" L2 = L and similarly VU '" U, (idempotency ofthe basic operators),

5.2.5 LUL '"UL ~ LU '" ULU.

U LU
From 5.2.3 - 5.2.5, the multiplication table

I L UL
I I L U LU UL 5.2.6 can be constructed. Idempotance of UL

L L L LU LU UL and LU can now be proven from 5.2.5 using
U U ULU LU UL

associativity, idempotence and syntoneness of
LU LU UL LU LU UL
UL UL UL LU LU UL Land U [79,80,81].

Table 5.2.6

Note that it is possible to extend this table for combinations like LUL and ULU, but is

this not of significance for the comparison between one-and two-dimensional smoothers

at this stage. The UL and LU combinations are sufficient for the construction of

efficient one-dimensional smoothing algorithms and the intention is to try to prove a

similar structure for the two-dimensional domain.

65

5.3 Local selectors for a five-point support window in two dimensions

Ifwe assume that sample data is stored in a two-dimensional grid of equidistant intervals

where each pixel is reflected as a sampled measurement Xij, the image can be defined as:

x "'{Xi,j:(ij)ECD '" [l,Njc;:[I,M)},where nl denotes the set ofdotlble indexed

integers.

It is acceptable to initially consider the most straight-forward two-dimensional five-point

sweeping window (as defmed in §4.1.1) and formulate the accompanying two

dimensional LULU operators as:

5.3.1 (FSX)i,j""IIl3X(min(Xi,j, xi,j-d, min(Xi,j,XLj + 1),min(Xij, Xi-I,;), min(Xij, Xi + Ij»

5.3.2 (C5X)i,j -min(max(xi,j, xi,j. I), max(xij, xi,j + I),max(Xij, Xi· Ij), max(Xi,j, Xi + Ij»

Let F '" F5 indicate a five-point floor operator acting on the entire picture data and C '" Cs

the corresponding five-point ceiling operator for the rest of this section, unless stated

differently.

It can easily be verified that F removes a single upward impulse and that C removes a

downward impulse due to the comparisons between the nucleus, Xij , and its four nearest

neighbours, The following theorem can thus be derived [80]:

Theorem 5.3.3 F 51 5 C , where I is the identity operator.

Proof: Removing an element from a set cannot increase the maximum value of

the set. Therefore,

(Cx)ij = min(max(xij, Xij .1), max(xij, Xij + I),max(xij, Xi _Ij), max(XiJ' Xi + I,j»

2: min(max(Xij), max(Xij),max(Xij), max(XiJ » = Xij

sinIilarly,

Note that vector and acTa)" data are presented as small letters in bold, \\'hile matrices are capitalised and nor
bold. V¥'hen a matrix is used to represent an image it will be shol,l;TI in bold, the same as for operators and
selectors.

66

~ max(min(Xij), min(Xij),rnin(Xij), min(Xij)) = Xij, 'if x··IJ

This basic, but very important identity can be checked visually by computing examples of

the following nature:

(a) Binary example of a single pop on the null matrix:

o. O. O. O. O.
O. 0 0 0 O.
o. 0 1 0 O.
O. 0 0 0 O.
O. O. O. O. O.

Original matrix
o

o. O. o. O. O.
O. 0 0 0 o.
O. 0 1 0 O.
O. 0 0 0 O.
O. O. O. O. O.

After ceiling
C(O)

o. O. O. O. O.
O. 0 0 0 O.
O. 0 0 0 O.
O. 0 0 0 O.
O. O. O. O. o.

After floor
F(O)

Note that 'dummy' zero's (0.) are used to pad the edges of the 3X3 original sub-matrix,

(0).

As predicted, the pop is removed by the floor algorithm, while the ceiling algorithm

leaves 0 unaltered.

(b) A 'downwards' pop:

O. O. O. O. O. 0, O. 0, o. O. O. O. O. O. O.
O. 1 1 1 O. O. 1 1 1 O. O. 1 1 1 O.
O. 1 0 1 O. O. 1 1 1 O. O. 1 0 1 O.
O. 1 1 1 O. O. 1 1 1 O. O. 1 1 1 O.
O. O. O. O. O. O. O. O. O. O. O. O. O. O. O.

Original matrix After ceiling After floor
0 C(O) F(O)

If another binary example is constructed where a pop is in a downward direction, the

ceiling algorithm removes the downward pop, while the floor algorithm leaves 0

unaltered and the relation 5.3.3 is verified. The behaviour of these operators is also

:learly illustrated in screendurnps 4.2.6 , 4.2.7 and 4.2.10.

67

The next important question to answer, is what happens when a two-dimensional LULU

operator acts on itself. This question was intuitively answered by checking pixel counts

from test runs as shown in chapter four. In order to prove idempotency of a complete

smoother, we have to consider syntoneness [80] of an operator, r

Definition S.3A Anopetatorr is syntoneifx~w implies that rx ~ rw.

It can be verified if r A and B are all syntone and 1 ~ A,

the relations rn ~ rB and Bl ~ r A are true.

The following theorem can thus be proven:

Theorem 5.3.5 F' =<1< and (:2 = C (ldempotency)

Proof: C ~ I , therefore C2 ~ C due to syntoneness.

If vlJ = C(Xij), assume C2(XIJ) > C(xiJ)and thus

max(Vij , Vij+l) > Vij , max(vij , Vij-l) > Vij ,

max(vij , Vi_lj) > Vij, max(vij, Vi+lj) > Vij .

If this is true, each set S ={ Vjj+1 , Vjj_1 , Vj+lj , Vi-Ij } has a maximum larger

than ViJ'

Take V,.lj as an example. Since Vij = C(Xij), either Xi-Ij >Vij or each of

{ xlJ ' Xi-2j , Xi-lj_1 , Xi-lj+1 } is larger than Vij . If this argument is repeated

for each set S, then either or all of { XIJ+I , Xij-I , Xi+lj , Xi_lj } is larger

than Vij· This leads to a contradiction, because C(xlJ) > Vij.

Therefore C2 = C and P =F can be proved similarly.

This result proves that idempotency holds for the basic two-dimensional smoothing

Dperators and that the theory has the desired correspondence with one-dimensional

68

LULU theory. The practical implication of idempotency of the basic five-point operators

can easily be illustrated with a binary example (l20Xl20) in screendump 5.3.5.

''
,

~ ~

.~
,
~

,

Screendump 5.3.6 o After a floor sweep: F(O)

The floor sweep, F(O), removes upward noise in the original image, 0, as predicted in

the theory and leaves the rest of the image unaltered. FF(O) = F2(0) = F(O), and

therefore no further floor sweep would affect the resultant picture, P = F(O).

...

.. '

,

Screendump 5.3.7

.'

o

."
. .'

....
•

..

After a ceiling sweep: C(O)

69

The ceiling sweep removes the noise pixels l in upper geometric structure and leaves the

rest of the original image intact. Note that the triangular section, which had no noise in

0, was unaffected by C, thus preserving original features. Repeated application of C

will again have no further effect on the resultant picture as proved in 5.3.5.

In chapter four the usefulness of a ceiling sweep, followed by a floor sweep is illustrated

as a complete algorithm2 to remove ceiling and floor noise in a binary image.

Screendump 5.3.8 show the results of the complete smoothers.

Screendump 5.3.8 Pr,= F(C(O))

It is interesting to note that in this particular example, the original matrix IS not

oversaturated with random noise and both P,rand Pr, are effectively cleaned of impulsive

noise. Although the image is successfully smoothed by the smoothers FC and CF there is

no guarantee that Fe will be the similar as CF when the image noise is not in acceptable

bounds (also see §3.l). It seems, at this stage anyhow, that the smoother pairs in

screendump 5.3.8, are successful in removing impulsive noise from a binary picture. The

question should now be asked: does idempotency features of these composite pairs exist?

It seems a reasonable question to ask, from the knowledge gained in the one-dimensional

2
'Down' pops.
A complete smoother refers to a LULU algorithm which does not need any follow-up
operation to remove noise.

70

case and because we have already shown that there will be no change in the resultant

picture if any of the smoothers, F or C, are used repetitively.

Theorem 5.3.9 FC and CF are idempotent

Proof: (FC)2 = FCFC ~ FFFC = FC, (from C ~ F), and similarly,

(FC)2 = FCFC s FCCC = FC,

Thus (FCY = FC and idempotence is proved.

It similarly follows that CF is also idempotent.

From the multiplication table, 5.3.13, the following interesting extensions of combined

operations can also be proved:

The effectiveness of these combined five-point smoothers for high-resolution grey-scale

smoothing are illustrated in screendumps 4.2.11 - 4.2.14.

Definition 5.3.10

A matrix is I-monotone if it is I-monotone in both indexes at (i,j) [80], iff. the sequences

x
j
= { x(; X(= Zij, lEZ}.

Definition 5.3.11

The matrix with data Z = [z,j] is called weakly I-monotone at (i,j) if the set

A = { Zij+l. z'J. zij-d is monotone in the index j; or B = { Zi-1JZijZi+lj} is monotone in the

index I; or the sets A and B are both not convex; or both not concave in the indexes j and

i respectively. A matrix is I-monotone if it is I-monotone everywhere.

Theorem 5.3.12 FCF:o;CFC.

71

Proof: (FCF)' = FCFFCF :0; ICFFCI = CFC, (from I ~ F).

The relation between CF and FC can only be proven after a thorough investigation of the

monoticity of the combined structures. Rohwer [80], indicates that FCF(x) is weakly 1

monotone, so that C maps on itself and FC = CFC is proved.

Theorem 5.3.13

Proof: CF = FCF:o; CFC = FC.

Theorem 5.3.14 FCF and CFC are idempotent

Proof: (FCF)' = FCFFCF ~ FFFFCF = FCF,

similarly,

(from C ~ F), and

(FCF)2 =FCFFCF :0; FCCCCF =FCF, therefore

(FCF)2 = FCF and idempotency is once again proved.

F C FC CF

F F FC FC CF
C CF C FC CF
FC CF FC FC CF
CF CF FC FC CF

Table 5.3.15

This last proof completes the missing link in

order to compose a similar multiplication

table, table 5.3.15, for a semi-group of the

five-point C and F operators.

72

Note that the identity operato/ is not included as was the case with the one-dimensional

table. The reason for this is that I is not comparable with the smoothers FC or CF.

5.4 Local selectors for a nine-point support window in two dimensions

It has been pointed out in the previous chapters of this thesis that numerous other LULU

operators, other than the five-point structure can be formulated. LULU_2D/HV and

LULU_2D/9W_12 are typical examples ofsmoothers which are presented and tested in

practice, but due to their weaker3 structure are not formally examined mathematically.

Rohwer [80] further defines a class ofLULU operators, based on the five-point window:

5.4~1 (F"'x)ij = max(min(xij, xij +1, Xi+IJ), min(Xij, Xij+I,Xi_lj),min(Xij, Xi.j_I,Xi.lj),

min(xi.j, Xi j-h Xi+lj»

5.4.2 (C"'x)ij = min(max(xij, Xij +1. Xi+lj), max(Xij, Xij+I,Xi-Ij),max(Xij, Xi.j_I,Xi_lj),

max(Xij, Xi j-h Xi+lj»

Intuitively one senses that this structure fits in somewhere between the five-point

structure of §5.4 and nine-point LULU structure as defmed in §4.3. This fact is

illustrated by the next theorem.

1

The identity operator I can be defined as the operator which will leave a picture unaltered if
applied: P ~ I(P)
Referto §4.4.1, §4.4.2 and §4.4.3.
FCF '" CF. Refer to [80] for further information on the mathematical relation between operators
(strength and weakness).

73

Theorem 5.4.3

Proof: Ifone element is removed from each of the four element sets of F*, we get

the definition ofFs. The minima ofF* could therefore not have increased

and subsequently the maxima of these minimums could also not have

increased, thus:

F* S; Fs. A similar argument holds for C* ~ Cs.

An even tighter l LULU structure can now be assembled from a nine-point sweeping

window:

5.4.4 (F9Xhj =max(min(xij ,xij+l ,Xi-Ij+ I,X i-Ij), min(x ij,x ij-I,X i_Ij_I,X i.j-I),

min(x ij ;Xij_I,X i+lj-I,X i+lj), min(x ij,x ij+ I,X i+lj+I,X i+lj}

5.4..5 (Csx)i,j = min(max(x ij , Xij+l , Xi-Ij+ I , X i-Ij) , max(x i,j, Xi j -I, X i -Ij -I, x i,i-I),

max(x ij,X ij-I,X i+lj-I,X i+ Ij), max(x ij,X ij+ I,X i+lj+ I,X i+lj)

The following theorems regarding the LULU_2D/9W can be derived similarly to the

LULU_2D/SW identities, as proven in §5.4:

Theorem 5.4.6 (a)

(b)

(c)

(d)

(e)

F9 S; I S; C9

(F9)2 = F9 and (C9)' = C9

F9CJ9 S; C9F9C9

F9C9 andC~9 are idernpotent

F9C~9and· C~9C9 are idempotent

Due to syntoneness and idempotence it follows that F9 S; F9C9 S; C9 and F9 S; C9F9 S; C9.

The nine-point structure is still an incomplete structure because the relation between F9C9

and C9F9 can not yet be proven formally and the multiplication table is thus incomplete.

In the same sense as stronger. In practical terms it means more noise will be removed than with a
weaker operarof.

74

5.5 The relation ofthe median to LULU operators

It can be shown that any outshooter in the one-dimensional case which is removed by a

median smoother, will also be removed by a similar LULU_ID smoother. To be more

precise, L s M S U, and the behaviour of the median is thus restricted to the upper and

lower bounds of LULU_lD [79].

As before, the logical question arises about the comparison between the median operator

in two-dimensional space, M, and the LULU_2D operators F and C. Due to the

significant destructiveness of the nine-point median smoother, only the

MEDIAN_2D/5W algorithm will be compared with F9 and C9.

Theorem 5.5.1

Proof: (C9x)iJ = min(max(x iJ ' x iJ +1 , Xi-IJ +1 ,x I-IJ) , max(x IJ, Xi J -I, Xi -IJ -I, x iJ-I) ,

max(x iJ ,x iJ -I, Xi +IJ -I, Xi + IJ) , max(x IJ, Xi j + I, X1+ Ij +I ,X H-IJ))

2: median(xiJ, XiJ -I, Xij +], Xi _IJ, Xi + I,j), since the median is the

minimum ofthe maxima ofall four-element subsets of the five-point

window, A similar argument holds for the relation F9 S Ms,

Although median smoothers have received a lot of attention in the literature, it is also

known for some defects and inconsistencies. This is more noticeable for larger window

sizes, such as the MEDIAN_2D/9W algorithm [21,78]. The practical implications of

these deficiencies are illustrated ",ith examples in chapter seven.

CHAPTER SIX

Programming considerations

6.1 Programming LULU algorithms in C and C++

At the start of this project it was decided to program the routines on easily accessible

computers in a language, such as C or C++ [45, 51J, to make the programs reasonably

transportable to other architectures. With yearly improvements and obtainability of

computer hardware the programs were tested on a range of desktop machines. The initial

binary testing was done on a basic 386 PC and the image processing later on a Pentium

computer. Obviously programming on 386 machines, especially in student laboratories,

had some memory restrictions due to the 32 bit nature of the programs. 2Mb of RAM

was necessary to run the programs, but loading and processing of large images needed

more RAM. The program supports up to 32 Mb of memory. If a program runs out of

memory, a temporary swap file will be created. This is used to simulate RAM, using

virtual memory options.

The initial programs were written in ANSI C and later refined and written entirely in

C++. The Watcom 32 bit C/C++ optimising compiler was chosen for the final

programming, using the 32 bit DOS4GIW extender from Rational Systems. The

WATCOM graphics library is used which supports VESA and most popular SVGA

chipsets (ET4000, S3, TRIDENT, CIRRUS LOGIC, PARADISE and OAK). The

graphics interface is handled by the graph object in GRAPH.C. This controls all graphics

and interface routines; including windov.ing, list and file loading.

76

The programs support three 256 colour video modes 1024x768, 800x600 and 640x480.

Obviously the highest resolution mode is recommended for image clarity [75].

Most of the algorithms reqwre floating point calculation, thus a mathematical co

processer (FPU) is highly recommended. Without one the program does emulate

floating point processing but speed will sacrificed.

For the best results on a PC, it is recommended to use at least a 16 Mb pentium PC with a

1024 Mb VGA graphics accelerator card [3].

6.2 The LULU primitives

As discussed in chapter five, the initial research of two-dimensional LULU structures

required test routines for verification of mathematical conclusions. The most obvious

method was to look at the smallest possible geometric two-dimensional clusters of binary

pixels [36]. A sound smoother should leave the cluster unchanged when no noise is

introduced. When spot noise is added to the picture, the smoother should attempt to

remove the noise, but still try to conserve the original image.

6.2.1 Manual tests

An easy, but cumbersome, manual method is to apply this process with a pen and paper

method. For instance, a 'thick' straight line (in binary format) with one noise pixel added

in the image domain is shown in figure 6.2.1. If LULU_2DJ5W is applied, with a

window size of three, the results of the ceiling and floor processes can clearly be verified.

The line structure is retained in both processes. P, and Pf, while the noise pixel is

removed in only the floor process. As sho"vn before, CF and FC will ensure the same

77

end result and from the theory in chapter five we know that CF ~ FC. Naturally this

method takes too much time for larger images, especially where random noise is present.

xx.

xx.

. xx.

xx.

x.

xx.

. xx.

. xx.

xx.

xx.

. xx.

xx .

. xx.

x .

Figure 6.2.1 o Pf=F(O)

The next evolutionary step in the practical verification of LULU structures was to create

programs which would illustrate the underlying LULU principles in a much faster and

elegant fashion.

6.2.2 The MATRIX (Version 0.1) programs

The MATRIX set of programs (screendump 6.2.2) were developed, mostly as

programming exercises for second year computer science students, to study small clusters

of low-resolution pixels of general geometric shapes to test the behaviour of different

LULU algorithms.

White low-resolution pixels are 'dropped and dragged' to form the 5X5 sub-matrices

when a specific algorithm is activated. Note that for the sake of visibility the bordering

matrix values are set to black, so that the behaviour of the algorithm is only tested on the

image as shown. The resultant picture is then displayed in the empty block next to the

original image.

78

The main objective of these programs is to verify that a LULU structure does what is

predicted mathematically when it operates on specified geometric clusters of pixels.

Idempotancy can also be checked visually.

MATRIX "0.1
DIGITAL IMAGE PRIMITIVES

[Sol id Block] [Enpty Block] (Triang le]

11 ..-11
[Cross] [X-Cross] [Block]

+ ---- Cl-.- -.
[GOd 1 Posts] (Diagonal) 12]

H - Z--.-
Screendump 6.2.2 Screendump of the MATRIX

set of programs

Although these programs were quite useful in the initial stages of research, it was soon

necessary to test algorithms on larger binary images.

79

6,2.3 Binary display images

The next set ofprograms were developed for studying 120Xl20 blocks of binary pixels in

low-resolution. It is often difficult to detect the disappearance of a single pixel or a thin

line of pixels in a high-resolution image. A typical example is the case where the tips of

triangles disappears after the application of LULU_2D/5W (screendump 6.2.2). The

MATRIX vI.I programs proved to be extremely useful in this regard and a large number

of geometrical configurations were tested with the different smoothers and filters.

Randomly seeded noise of various distributions were added to check the effectiveness of

different algorithms. All the low-resolution screendumps ofchapters three and four were

also generated with these programs.

...... ..

..... "

" .'

., .
.. " .., ,

.. .. to ..

"

"

. .

.".
~

." ".

•

. "
, . -.

.. :

.. . ".. " ..
.. .r "" ,...

" .
• I

I : .
, '., ..

"
.'.

" .
. '

Screendump 6.2,2 o Resultant picture, Phv

Another check to ensure that the output pixels corresponded to what was predicted, was

by adding a count routine for pixels displayed. This provided a much more reliable and

faster check for idempotancy, for instance, than visual checks.

The final proof of applicability of the LULU algorithms, was to test them in high

resolution images. Three sets of programs were developed for this purpose:

80

• FILTER

• LULU

• ANALYSIS

As most of the programming for this project went into the development of these prototype

programs, important sections of the programs will be discussed fairly in detail in the

sections to follow.

6.3 The FILTER program

The FILTER program contained the first grouped set of LULU algorithms for high

resolution images. These programs were designed to give visual insight into what

happened when sub-programs (like F and C) were to operate independently on image

data.

Screendump 6.3 shows a typical work page ofthis program.

81

O=W5F, 1=W5C, 2=W9F, 3=W9C, 4=2DH, 5=2DV, 6=MEDlAN, 7=H1ST

Screendump 6.3 The title page of the FILTER program.

Although the program was written in a user-friendly manner, its capabilities will be

described as follows:

6.3.1 The file is first specified. Note that the full file description (with path) is required.

6.3.2 The filter or smoother program is chosen:

oand 1 select the LULU_ID/SW jloor and ceiling algorithms;

2 and 3 select LULU_2DI9Wjloor and ceiling algorithms;

4 selects theLULU BY algorithm;
..... '--.

5 selects the LULU 2VH algorithm;

6 selects the MEDIAN_ID/SW smoother and

7 draws the HISTOGRAM ofthe input file.

82

6.3.3 ADD NOISE requires a response of YES or NO. If NO is selected the image can

be processed without added noise pixels1
• This is the case when an algorithm is

tested on an image to see whether the original image changes when operated on.

This is also the case when a reaP image is tested. If only the histogram of an

image is required, the NO option will also be selected.

6.3.4 If YES was selected in 6.3.3, the intensity of the noise pixels can be regulated

from 0-32767. It is necessary to have some control over the density of artificial

noise distribution for several reasons. Firstly, if an already contaminated image is

loaded, it would not be necessary to add further noise before filtering or

smoothing is commenced. Another reason is more experimental of nature. The

strength of a smoother can be compared against another one by increasing the

noise intensity.

.
: ,-'
. , '.0: '. ~ ..t. '", "

~ -..... '--.'".... :" ..."

. : .
: -.
. ~.

~ ",,:- -....
'.'

." J •

In the example shown in screendump

6.3.4, one thousand black noise pixels

are scattered in a uniformly random

fashion over the total image.

Screendump 6.3.4 Random noise.

6.3.5 NOISE TYPE sets the noise pixels to the following formats:

o white noise pixels added to the image

,
Erratic pixel behaviour is artificially simulated by assigning certain (random) numeric values to
valid image pixels.
This tenn is used for practical images, already contaminated with noise, that have to be smoothed.

83

1 black noise pixels added to the image

2 white and black noise pixels added t(l the image

randomly scattered pixels ofall shades ofgrey added to the

image (0-255)

6.3.6 RANDOMSEED controls the seed for the random number generator (0-32767). It

may be noted that for a large number of tests it was necessary to keep the seed

fixed as to compare what happens when different algorithms were applied to the

same input image. The effectiveness of a specific filter can thus easily be

monitored as shown in the throughput diagram, figure 6.3.6.

Figure 6.3.6 Number ofpixels remaining after

a five-point LULU sweep

The results illustrated in figure 6.3.6 were obtained when the noise was increased

over the acceptable limits for a 120Xl20 low-resolution blank image. In this case

a five-point LULU filter was employed. Although the algorithm operated on

over-saturated noise levels, the resultant throughput curve remained smooth due

84

to the statistical behaviour of the noise remaining in the image. Similar results

can be attained with all the LULU_2D smoothing algorithms for comparison

purposes. The real proof of efficiency is however only visible when a real image

with a specific noise distribution is tested. This was done with a large database of

images and it was often evident that the theoretically strongestl smoother was not

the always the 'best' algorithm for a specific application.

6.3.7 The next two options allow the saving of files before and after smoothing. If an

image has to be smoothed successively, this option can be used. If Pl.TIF is

mentioned as the input file and also as the AFTER file, recursive smoothing can

be implemented in batch format, because the letters in the title screen remains

resident.

If'S' is pressed, a screendump with both images displayed on the screen will be

saved. This feature was used extensively in the illustrations in this thesis, because

the right-hand image is usually the smoothed product of the left-hand image.

Feature comparisons can be made much easier if both images are displayed

simultaneously, rather than flipping screen pages.

6.4 The LULU program

The FILTER program was the prototype for the set ofLULU programs.

The opposite to the term weakest, as defmed by Rohwer [80].

85

O=A5W, I=A9W, 2=M5F, 3=M9W, 4=L5W, 5=L9W, 6=2DV, 7=HIST

SCREENDUMP 6.4 The title page ofthe LULU program.

The difference between the FILTER and LULU programs is that the LULU programs

had algorithms designed to compute complete images. The floor and ceiling composites

are now not transparent to the user and only the final image is displayed after smoothing.

Three useful linear algorithms are also added to the menu ofprograms.

Screendump 6.4 shows the work page of this program. Note that only the menu is

different to FILTER and can be summarised as follows:

oand 1 select the five-point and nine-point averaging filters,

2 and 3 select the five-point and nine-point median algorithms;

4 and 5 select the five-point lIl1d nine-point LULU algorithms,

6 selects the LULU_2VH algorithm, Le. one dimensional horizontal

LULU sweeps, followed by vertical sweeps!.

Only the fastest one-dimensional hybrid method is included in LULU. See also §6.6.6.

86

6.5 The ANALYSIS program

The ANALYSIS tool has been developed to obtain some statistical information of the

image data, before and after smoothing and filtering. Screendump 6.5.l shows the front

page of this program. The program only requires two images to compare, OI.TIF and

02.TIF as in the example. The menu is built into a HELP function, FI, in an effort to

simplifY the operation of the program.

ANALVSIS vD.l I

RESPONSE: Y or N

Screendump 6.5.1 The cover page ofthe ANALYSIS program.

The following menu summarises the contents of this help function:

Ft Calls the HELP function.

D Displays both images on the screen.

H Recalculate and display both histograms ofthe two images (see

screendump 6.5.2). Note that the histogram on the left clearly shows the

rippling effect of image noise in the original image Ol.tif.

87

o This function performs an overlay of the two histograms (on both sides) so

that differences in data between the input and output file can be

visualised. Screendump 6.5.3 illustrates this effect

Screendump 6.5.2 Histogram screendump.

Screendump 6.5.3 Histogram overlays.

This function subtracts the datain the histograms and displays the

resultant graph (screendump 6.5.4).

88

Screendump 6.5.4 Graph of difference of two histograms.

= This function subtracts the images so that the noise that has been removed by

smoothing can be observed in a resultant image (screendump 6.5.5).

Screendump 6.5.5 The difference between a 'noisy' image and the com-

89

pletely cleaned (smoothed) one, gives the noise that existed in the original image.

1

2

S

ALTl

ALD

ESC

Displays the histogram ofimage 1 full screen.

Displays the histogram ofimage 2 full screen.

Saves a screen dump ofthe full screento a disc file.

Saves the histogram data of image 1 to file.

Saves the histogram data of image 2 to file.

Exit program.

Interesting experiments can be conducted by smoothing remaining noise clusters. It can

be shown that if an image is severely contaminated with noise, and the noise remaining

after smoothing is smoothed again, some of the original features of 0 can be observed.

This is due to noise pixels adhering to the edges of the original image during the

smoothing process.

6.6 Programming code

The C code for some of the kernel algorithms in the set of LULU programs are listed in

this section. A complete listing of the LULU program can be found in the appendices.

6.6.1 A two-dimensional filter

The five-point filter program, as defined in §4.1, will have the following C code

embedded in the algorithm:

for (x = 1; x <1F_ImageWidth-l; x++) {

tval=prev_array[x] + next_array[x];

tval+= curr_array[x-l] + curr_array[x+l] +curr_array[x];

90

tval/=5;

The data will be written to a VESA screen configuration, using the following command

[3,57]:

Note that for a nine-point sweeping window, the body of the loop will be:

tval=preLarray[x] + prev_array[x-l]+ prev_array[x+l];

tval+=next_array[x] + next_array[x-l] + next_array[x+l];

tval +=cUIT_array[x-l] + cUIT_array[x+l] + cUIT_array[x];

tvall=9;

6.6.2 Image enhancement

The sub-program for linear image enhancement (sharpening), as defined in §2.4.2, is

listed below [73]:

void apply-sharpen(void)

{

floatlMP_Kemel[9];

int iJ,m,n,bf kem,index,width,heigbt,pixel,xl,y1,x2,y2;

unsigned char array[72,69];

float tpix;

91

IMP_Kemel{O]= 0.0;

IMP~KemeI[I] ='-0.5;

IMP Keme1[2] = M;_., : -., - .

IMP_KemeI[3] = -0.5;

IMP_Keme1[4] = 3.0;

IMP_Kemel[5] = -0.5;

IMP_KemeI[6] = 0.0;

IMP_Kemel[7J =-0.5;

IMP_Kemel[8] = 0.0;

xl = (int)(TF_ImageWidth-I);

yl = (int)(TF_ImageLength-I);

x2 = 1000unsigned)TF_ImageWidth;

y2=0;

width = xl+l-,

height = yl+l;

hCkem=312;

for (j=O;j < height; j++) {

for (i =0; i < 3; i++) {

index = MAXVAt(j+i-hf_kern, 0);

index =MlNVAt(index, yl);

vsa~eUaster_line(0, xl, index, array+i*width);

}

for (i =O;i <width; i++) {

f...pix =0.0;

for (n =0; n < 3; n++)

for (m= O;m < 3;m++) {

92

fJlix +=((float)anay[index]) *' lMP_Kemel[m+n*3];

}

pixel =(unsigned char) MINVAL(fJlix, 255.0);

vsa_seU:olor(pixel);

vsa_setJlixel(i+x2, j+y2);

}

}

}

6.6.3 Two dimensional median code

The simplicity and relative power of the median techniques for one-dimensional

smoothing can be expanded for applications in .- 1. Instead of using elements from a

one-dimensional string, the median is obtained from the nucleus and the north, east, south

and west pixels in a five-point sweeping algorithm (see §3.3 and §4.1).

Median smoothers are often combined with alpha-trimmed filters to fonn hybrid algorithms,
[21,56].

2 Weighing techniques are useful when larger sweeping windows are used and the weight of the
pi.xels nearet to the nucleus are loaded for better localised support, [44].

93

The C declarations for this code are:

north, south, nucleus);

Similarly, code for the nine-point median smoother could be written as:

for(x= 1; x < TF3mageWidth4; x++) {

0IltLarray[xl=MEDIAN9(cUIT_arraYlx-I], cUIT_array[x],

cwr~arraylx+I],

prev_array[x-l], prey_array[x], prey_array[x+1],

next_array[x-I], next_array[x], next_arraylx+l]);

}

Although the class of two-dimensional median algorithms appears to be very strong in

their smoothing capabilities, they suffer from the same drawbacks but more severe as

mentioned for the one-dimensional case in §3.3. What is most significant in comparing a

LULU algorithm with the corresponding median algorithm in practice, is that the LULU

method clearly has better edge-preserving qualities, requires less computations and is

idempotent [15,81 J. The examples of chapter seven also clearly demonstrates this fact.

6.6.4 The LULU_2D/5W program

The floor part (§4.2) of the LULU_2D/SW algorithm can be coded as:

cun1x+l], cun1xJ),

94

MINVAL(neXt[x], curr[x]));

while the ceiling section is:

for(j(= l;x< TF ImagcWidth-1; x++) {

dest[xl=MIN4(MAXVAL(curr(x-1}, curr[x}),

MAXVAL(curr(x+1}, curr[x}),

MAXVAL(prev[x], curr[x]),

MAXVAL(next[x}, curr[x}));

}

The code is straightforward and simple to program. As in the previous algorithms of this

nature, MAXVAL, MINVAL, MAX4 AND MIN4 are user-defined functions which are

called in the LULU algorithms.

6.6.5 The LULU_2D/9W program

The code in §6.6.4 can be modified for the nine-pointjloor algorithm (§4.3.1):

for (x = 1; x <1F_ImageWidth-1; x++) {

new_array[x} =MAX8{MINVAL(curr_array[x-1}, curr_array[x]),

95

MINVAL(CUIr_array[X+l], CUIr_array[X]),

MINVAL(prev...:.anay[x], CUIr_array[x]),

MINVAL(prev_array[x-1], curr_array[x]),

MINVAL(prev_array[x+1], cUIr_arrayLX]),

MINVAL(neJrt_array[x], cUIr_array[x]),

MINVAL(next_array[x-1], curr_array[x]),

MINVAL(next_array[x+l], cUIr_array[x]»;

}

Similarly the ceiling code will be:

for (x = 1; x < TF_ImageWidth~1; x++) {

new_array[x]= MIN8(MAXVAL(CUlT_array[x-l], CUlT_array[x

MAXVAL(cUlT_array[x+l], cUIr_array[x]),

MAXVAL(prev_array[x], CUIr_array[x]),

MAXVAL(prey_array[x-l], cUlT_array[x]),

MAXVAL(prev_anay[x+1], cUIr_array[x]),

MAXVAL(next_array[x], curr_array[x]),

MAXVAL(next_array[x-1], cUlT_anay[x]),

MAXVAL(next_anay[x+l], cUlT_anay[x]»;

}

6.6.6 The LULU_2DIHV and LULU_2DNH programs

Screendump 4.4.1.1 shows the effect of one-dimensional LULU sweeps on a two

dimensional picture. In practical PC programming, as highlighted above, it is evident that

the one-dimensional horizontal sweeps will be much slower than the vertical sweeps

96

when performed on the entire image. This due to the fact that the pixel elements in the

horizontal case must be addressed one by one, while the whole raster vector can be

processed in the vertical sweep application.

Due to the relative simplicity of the LULU_HV algorithm, the verification of code for

this program is omitted.

6.7 Graphics programming

Programming for graphics involves much more than merely developing code in a graphic

environment. It becomes a lifestyle of continuously collecting images, ideas and writing

code segments. Computing has come a long way from the days where humans had to

communicate with machines using punch cards and long lists of incomprehensible data.

Visual communication using graphic display made the computer industry much more

productive in virtually all applications where human interaction is required. Most of the

successful general purpose software packages of today have graphics included in one

form another. As the power of compact computers increase, graphics becomes more

accessible to the man in the street, whether it be for the display of graphs only or for

watching real-time television [6, 25].

A logical future expansion of the LULU set of programs is hence to collect and organise

all related image enhancement software in an object oriented bundle for Windows

application, preferably with colour options [66,63].

6.7.1 Colour graphics

Another logical extension of the programming of LULU algorithms, is to re-develop the

programs for colour smoothing. A quick-and-fast technique might seem to select a colour

97

model for C programming and to repeat the smoothing in batches for red, blue and green.

Although this method works, it was decided not to include colour smoothing as part of

this thesis and rather look at this topic as a completely separate research field that has to

be a thorough undertaking in all its research and development stages. A grey-scale image

primarily presents a picture, where a colour image is much more complex in the ways it

represents the display of light within the electromagnetic spectrum. To repeat the work

ofthis thesis to include colour would therefore firstly involve an investigation ofdifferent

colour models for efficient colour display on the hardware used. It also has to be kept in

mind that colour representation on a visual display unit and a hard copy device is often

largely different. Although colour printing has recently become quite inexpensive, high

quality wax printing is still not within the reach of most budgets. Once a suitable colour

model is chosen, smoothers and filters can be tested for visual efficiency and a set of

colour algorithms for noise reduction can be formulated [19,92].

6.7.2 Acceleration techniques

Fast display of large digital images plays a significant role in image processing. Images

from satellites. for example, are normally improved in one or other way before released.

Interference or picture noise has to be removed before results can be published. The

quality of an image can be seen in direct proportion to the amount of processing it will

require for display and manipulation. This is particularly of importance for public

broadcasters. medical applications and the military where high photographic precision is

of crucial importance. In the past most of these methods of improving the quality of

images were time-consuming. costly and often had to be sacrificed for speed.

The computer industry has for decades had an insatiable need for speed enhancement

and this will continue in the future. Even with the best sequential hardware and software

developments, applications that require more processing power will remain. Dedicated

graphics engines frequently make use of parallel processing [46.56,79] and YLSI [9.74]

98

techniques and it is thus also logical to encourage further research for similar parallel

LULU structures.

6.8 The decomposition of the two-dimensional problem for parallel processing

It is a well-knovm fact that smoothing, when utilised as a part of image enhancement,

should be a fast and cost effective process [30,90]. If images are to be cleaned ofnoise in

a real-time situation, like live television, high resolution picture frames have to be

cleaned in the order of twenty to fifty frames per second, which is really beyond the

computing power of conventional hardware without sacrificing quality. Various look

ahead schemes have been advocated in the literature [64,93] to try and spread the work

load to enable digital filtering to take place before an image is displayed. Although

viable, these methods are known sometimes to lead to the introduction of stability

problems.

Another alternative is to investigate the natural granularityl of a smoother process and to

search for a suitable parallel programming framework. One of the first decisions to be

taken in this process is to determine whether a synchronous (SIMd) or an asynchronous

method (MIMD) should be opted for [16,86]. If the problem is reduced to merely

parallelising the smoothing problem for the best speed-u/ on available hardware, some

of the optimality of a solution may well be lost and one would have to take the ejficiencl

of the solution into account

The intention is not to formulate new parallel algorithms in this section, but rather to give

the interested reader some indication of how a LULU smoother could be programmed to

be significantly faster than on most sequential computers. From a theoretical view-point

I
Each process is associated with a separate process and controlled by its own software [29].
SIMD: single-instruction multiple data, MIMD: multiple-instruction mUltiple data.
The ratio oftime taken to solve a problem on a parallel computer versus the time taken to solve
the same problem on a sequential computer [39, 83].
Efficiency is normally described as the ratio between speed-up and the number of processors
utilised to solve a given problem [39,67].

99

the assumption can be made that ample processing power is available in compact,

efficient parallel processing units, with very little communication delay between the

processors. This type of hardware is realisable in VLSI configurations for low-latency

pipe-lined configurations [64, 74]. The problem thus reduces to the most efficient

implementation of parallel processes; in this case the application of a suitable parallel

decomposition for the class of LULU two-dimensional smoothers. From the numerous

smoothing possibilities, a single example, namely the LULU_2D/SW smoother will be

selected and analysed for parallel implementation.

6.8.1 The complexity of LULU_2D/SW

If an mm input matrix, X, is used to display the (n-2)x(n-2) image, X, it can be shown that

the floor operation of the five-point window, WiJ at position (i,j), takes 10 comparisons.

This has to be repeated n-2 times for a row sweep, for the n-2 rows. The total number of

operations for the floor sweep is therefore 1O(n-2)2 comparisons for X. The ceiling sweep

will take the same number of operations, giving a resulting complexity of 20(n-2)2

operations for the complete smoothing process.

6.8.2 Computing sub-matrices in paraDel

A logical subdivision ofthe matrix X would be for synchronous operation on a number of

parallel processors. A logical way of planning a parallel process is to divide the main

problem into sub-problems for parallel computing. Consider the four sub-matrices of X,

each dedicated to the four identical processors, Pi, i=1,2,3,4.

100

Figure 6.8.2 illustrates the matrix X, with the data

area for P4 highlighted. The computational time

for such an arrangement can usually be broken

down into three basic parts, namely initialisation

of data (T j), computational time (Tc) and finally

the communication and display (Td) ofthe

resultant data.

Figure 6.8.2

The initialisation of data will include setting up each processor with its own data. Other

complications can arise: for instance, border data might be required from two adjacent

matrices for the calculation of a smoothed sub-matrix. For example, P4, will require a

row from P2 and a column from the dataset in P3. It is obvious that the objective of this

exercise is to cut computing time to approximately 25% of the time1 it would take a

single processor of the same strength to compute the complete algorithm. This can only

be achieved in a near optimal situation where the processors are finely synchronised and

communication times are virtually negligible.

Definition 6.8.3 The speed-up ofa parallel process, using n papro's, can be defined

as Sn = TJ[p , where Is is the time taken on an equivalent serial

processor to solve the same problem which is solved in I p, the

parallel time using a parallel processor.

The speed-up can be shown to be 84 ", 1/ 0.25 = 4, if the times T; and Tc are ignored. If

the problem is decomposed to sixteen sub-matrices and the same assumptions hold, the

execution time will be approximately sixteen times faster than the serial time.

A speed-up offour.

101

It can be pointed out that if the matrix is large and enough parallel processors are

available, a situation arises where S,", = Ln__(TIfn), which leads to complications,

because Tn ~ 0 as n becomes very large. In the literature, the well-known Amdahl's law

[29,20] addresses this topic.

It is not unrealistic to think of pixelputers' to solve problems of this nature. If such a

parallel processing configuration is available, with the usual assumptions about

processing speed and inter-cornmunication times between individual papro's, an

algorithm can be devised based on the smallest sub-matrices to house the sweeping five

point LULU windows. Figure 6.8.4 illustrates such a scheme, with Pij the processor

element at the matrix position (iJ).

...~
········0················ -; i

It is not difficult to see that this parallel arrangement

only needs a total computational time for the twenty

comparisons for each pixel if interlocking or data

clashes [49,87] can be avoided.

j

Figure 6.8.4

In conclusion, it might be pointed out that many interesting alternatives to the

parallelisation of LULU algorithms can be designed. It might be worthwhile to mention

that theoretical speedup of logarithmic nature is possible with certain array processing

architectures, but in practice it might fail due to unrealistic start-up times for data

preparation [65,87].

A tenn decided on by the author in the absence of a suitable name for an image processing
computer where each pixel is basically driven by its own processor. The 2m-processor of Cray
Research is a SIMD example of such a machine [67].

CHAPTER SEVEN

The Practical Application of LULU Operators

7.1 The one-dimensional problem

The problem of removing impulsive noise from a valid signal sequence in one dimension

was described in chapters' three and five. A typical application of one-dimensional

LULU smoothing arises when an acoustic wave has to be cleaned of impulsive noise [19,

78]. The resulting signal must be as distortion free as possible, while retaining the

original wave trends. Research of the one-dimensional LULU structures has shown that

U, L and some predictable unsymmetric pairs of these operators, will leave a monotonic

increasing or decreasing signal unaltered if no noise is present [62,82]. This is the first

and most desirable characteristic expected of a good non-linear smoother. Spot noise has

to be removed and the original sequence corrected as accurately as possible. The

advantage of this type of smoothing to other well-known smoothers, like the median and

its variants, is described in chapter three and also referred to in [80].

As an example to finally illustrate the effect ofLULU_lD a function was constructed to

simulate a portion of a typical sound wave. Let x be the sequence as expected in practice:

x=t; +Sg +Ss

103

For experimental purposes a

known sequence, c:; has low

frequency noise, Eg , as well as

high-frequency noise, es added.

The original wave, x, is illustrated

in figure 7.1.1.

Figure 7.1.1 The original wave, L

For the sake ofcomparison, two basic procedures are tested in addition to the LULU_ID

algorithm.

Let l1> be a linear process

(averaging) as defined in §3.2.

The window-size is restricted to

the smallest frame that will allow

the median, i.e. Wj = 3. The effect

of this filter is shown in figure

7.1.2. The smearing that occurs

at the two large outshooters is

clearly visible in the graph.

Figure 7.1.2 Y<l> = l1>(x)

For the sake of comparison, the window size of the running window will be fixed in these

examples. If, however, a larger window size was used for averaging, the smearing at the

outshooters would have spread out over a wider region [15,62]. In practice the window

size is chosen to suit the !)'pe of noise which is expected. If no a priori knowledge about

the noise is available, it is recommended to use the smallest possible window size as not

to change the original data unduly.

104

Let M represent the median

algorithm, with Wi = 3. The

result ofYM = M(x) is shown in

figure 7.1.3. The effectiveness of

a small median sweeping window

is illustrated by the fact that both

outshooters are eliminated

successfully.

Figure 7.1.3 YM=M(x)

If1\ is the LULU-ID process,

with Wj = 3, then the result of the

algorithm is shown in figure 7.1.4.

The power of the non-linear

smoothers M and 1\ are clearly

illustrated in the graphs 7.1.3-4.

Figure 7.1.4 Y\ = 1\(x)

For further comparison between the filter and the smoothers of this example, it is

interesting to investigate the following norms:

Let L" be the maximum norm and L2 the Euclidean norm ofthe differences between the
sequences :x and y.

105

n

7.1.5 Loo=(L (maxlxi-yd))/n

7.1.6 L2 =

n

(L (Xi -yd In) y,

i=l

Similarly,
Let Loo' be the maximum norm and~. the Euclitlean norm between the sequences I; and
y, V I E S, the set of single subscripts.

n

7.1.7 La:J* = (L (max ISi -Yi I))/n
i=J

n

7.1.8 • (L)2; Y,L z = (Si -Yi n)
1=1

The fact that the original noise-free function, i; , is known, allows the measurement of the

error between S and x. Even if a priori knowledge existed on the noise present in x, it

would be advisable to first remove spot noise and then pay attention to Gaussian noise. In

this simulated example the same procedure will be followed and an estimate of the error

introduced by the addition of spot noise is obtained by first smoothing to the function x

and then comparing it with i; and x.

Table 7. 1.8 shows a summary of these calculations where the output of the smoothers and

the filter is compared with the input sequence:

L'z

133.6

3.3

Table 7.1.8

106

Y<I> : x

123.2

3.2

65.7

2.7

YM: x

112.2

2.4

24.6

1.6

YA : x

110.7

2.7

28.7

1.8

Comparison oferrors.

In the first column L" and Lz is found between the sequences L; and x. This measurement

gives some indication of the error introduced with the addition of Gaussian noise, Eg • and

impulsive noise, Es. Although this is an artificial example, it supplies some information

of what will happen in practice where information about the noise type is available. In

the case where only impulsive noise is present, the function will be freed of the noise and

reconstructed as good as possible by LULU_ID [80]. If the presence of low-frequency

noise is suspected, it would be advisable to follow the smoothing process with a filter.

From the above test the superiority of the smoothers is obvious for the removal of

impulsive noise. Further demonstrations and particularly the performance of LULU ID

algorithms in comparison with the median is reported in the literature [61,80,82].

107

7.2 LULU_2D in practice

Many two-dimensional test examples that were corrupted by adding artificial noise and

hence cleaned have been illustrated in this thesis. That includes simple oxd, low

resolution binary examples and high-resolution images. The following two examples are

selected to further illustrate the difference between smoothing and filtering in the two

dimensional case.

7.2.1 An overexposed image

In the process of trying to improve an image, caution must be taken to select the best

method for the noise type.

Screendump 7.2.1.1 o

As a counter-example to show the effect of a non-linear smoother that did more harm

than good, an original image2
, 0, was created by subjecting it to brightness enhancement

until the image started deteriorating and showing spot noise. A LULU_2D/9W sweep

2
Binary sub-matrices with empty cells set to zero (0) and the 'on' cells set to X.
Image taken from [72!.

108

was performed on the image as shown in screendump 7.2.1.1 and the results compared

with that obtained after a FILTER 2D/SW algorithm was applied to the same original

image. It is easily observed that the linear algorithm restored the image to a certain

extent, while the non-linear algorithm caused the image to deteriorate.

The fact that better results were obtained with the linear process of screendump 7.2.1.2

can be attributed to the smaller window size used in the filter and the Gaussian nature of

the noise. In most smoothing applications in practice no or little a priori information will

be available and care must be taken to select the correct procedure for each class of

smoothing applications. To illustrate the effect of the smoothers of this thesis on an

example that is severely affected by noise, an image was captured from a very weak

television signal and tested with different combinations of smoothers and filters.

Screendump 7.2.1.2 o

109

7.2.2 A weak television signal

The original image, 0, was a weather chart broadcasted on 24 February 1996 in the Cape

Town area, South Africa No other infonnation about the signal was available. By

conducting a number of stand-alone tests, it was noted that better results can be obtained

by combining non-linear methods (hybrids) in some cases. This can be attributed to the

fact that due to oversaturation of impulsive noise, a root solution could not be achieved.

By applying further linear filters the visual appearance of the final image can still be

improved.

The image, 0, of screendump 7.2.2.1 was severely affected by spot noise in all levels of

grey; very similar to the synthesised examples of chapter four and those in §6.3.5. At a

first glance it seemed hardly possible to expect any feasible results by using non-linear

pre-fiiters as was the case with isolated spot noise.

Screendump 7.2.2.1 o

In this case a five-point average filter is tried again, but a significant part of the border

line have disappeared and the crispness of the image was affected. Further enhancement

will only amplify the quality loss due to changes that have taken place and the filter is not

lID

recommended as a pre-filter. The borders between the countries on the map are dithered

and the border line of Madagascar has virtually disappeared. If larger window sizes are to

be used, boundary detail will completely disappear. LULU_2D/SW (screendump

7.2.2.2) used on the original matrix, gives much better results. Although a fair amount of

noise remains, the border lines are preserved and a suitable linear process should enhance

the finaJ display to an acceptable standard.

Screendump 7.2.2.2 o

Screendnmp 7.2.2.3 o

A similar result is obtained with the five-point median (screendump 7.2.2.3), although it

seems that the grain of the resulting pixel display of PM5w has a smoother techture.

III

In an effort to suppress the noise intensity, a bigger window size can be used for the

median and the LULU algorithms.

Screendump 7.2.2.4 o

Screeudumps 7.2.2.4-7.2.2.6 illustrates the effect of three nine-point smoothers on the

original image. The design of these smoothers cause less noise to remain after the

smoothers have been applied, but the aggressiveness of the smoothing can effect picture

quality in some instances. An exception to this rule is the weaker l nine-point smoother,

LULU_2D/9W_1. Due to the open nature of the selectors of this smoother, virtually no

difference can be detected between the original image and the smoothed one.

Screendump 7.2.2.5 o

A term introduced by Rohwer [80] to compare non-linear smoothers.

112

Depending on which criteria is important for final enhancement of the image, a number of

smoothers could have been selected for the pre-filter process. A good proposition would

be to use the LULU 2D/SW due to the preservation of the border lines and also

Screendump 7.2.2.6 o

because idempotency exists. Any of the two median algorithms could be used next as

another pre-filter sweeps to soften the appearance of remaining noise. The order of such a

hybrid computation is important and exhibits the underlying differences in operation of

median and max-min algorithms [36].

The process of deciding a suitable smoother for a specific task remains a complex one if

no prior information is available. If images are to be smoothed in batches and the noise is

predictable, an optimal procedure can be defmed and implemented. If images, like video

frames, have to be smoothed, the problem becomes more demanding and automation of

the process becomes even more complex..

Screendump 7.2.2.7 shows the result of LULU when one-dimensional vertical sweeps are

followed by horizontal sweeps. Spot noise is removed quite successfully, but vertical thin

lines deteriorated. This amplifies an important aspect of smoothing: to what extent

should thin lines be retained or should their deterioration be regarded as unimportant?

113

Paragraph 7.4 pays attention to this problem, while the removal of spot noise in real

applications is illustrated in the next section.

Screendump 7.2.2.7 o PLhv

73 Two-dimensional images with spot noise

If the nOIse distribution in an image is sparse, most of the non-linear algorithms

researched in this thesis will remove the noise spots, without changing the original image

unduly. The test results in §7.2 suggest that a smoother should be selected as a suitable

pre-filter before any other enhancement to the image is done. It was also pointed out that

it would normally be unwise to use a large window for smoothing if a smaller window

can remove noise effectively. Smoothers with idempotency features have a definite

advantage to smoothers that have to be repeated to obtain the required results [17,26].

The five point LULU algorithm has two distinct advantages in this regard:

7.3.1 The fact that the LULU smoother is idempotent, means that no improvement will

result from further smoothing with the same smoother and the process will be completed

in a predictable and economic number of steps.

114

7.3.2 By repeating a five point median smoother the final picture will deteriorate with

each run of the program due to the composition of the rank based selectors. Screendump

7.3.3 serves as a good example. After only a few repeated applications of the median the

definition of the trees started deteriorating and the gloss on the car reduced.

Screendump 7.3.3

Figure 7.3.4

o

Figure 7.3.4 is a graph of the difference

between the histograms of the two images

in screendump 7.3.3. This indicates that

the image was affected over the full

spectrum of grey levels.

This is not the case when the LVLU_2D/SW smoother is employed. Screendump 7.3.5

shows the result of an image that was smoothed with the five point LULU algorithm,

PLSw.

1\5

Screendump 7.3.5

Even though the image was slightly oversaturated with impulsive noise and some noise

remained after the smoothing process, the original features of the image did not

deteriorate with further sweeps of the LULU_2D/SW algorithm. To illustrate how a

hybrid pre-filter can be constructed, the LULU sweep was followed by a five point

median sweep to remove the remaining noise and still retain good image quality.

Screendump 7.3.6 o

Screendump 7.3.6 shows the same original noisy image that was used to produce the left

hand picture in screendump 7.3.5. If this image is smoothed with a conventional nine

point median smoother, the noise is removed, as can be observed in the right-hand side of

the screendump. Although the algorithm did a fine job in removing the noise, it was even

more destructive than its five-point equivalent. Fine detail, like the tree trunks, were

virtually annihilated. Features on the car also seems much duller than in the original

116

image. It is therefore clear that the hybrid algorithm used in screendump 7.3.5 is superior

to the MEDIAN_2D/9W.

The preceding tests prompted further investigation of the smoothing of images where thin

lines are present l
. In the initial stages of the research effort, one of the key issues in the

design criteria of new two-dimensional smoothers, was to observe what happens if a thin

line is encountered. In a binary picture thin lines have much more significance than in a

compound, high-resolution image. This is be practically illustrated in the next section.

7.4 Thin lines in low-resolution images

Often, during video playback, thin noise linei are visible on a television screen. These

lines could be in any direction, but is commonly observed horizontally due to the

movement of the audio-visual tape over the machine heads. The question is obvious:

could the interaction of smoothers eliminate or reduce such noise?

(a) o (b) PLSw (c)

Figure 7.4

It might be worthwhile to first examine the effect of the smoothers on a binary example,

such as the one in figure 7.4 (a), with thin lines present. Figure 7.4 (b) illustrates the

action of LULU_2D/SW on the original image. Note that everything remains intact,

,
Much research has been conducted in the fields ofedge-preservation and corner-detection, [38,73,
77].
A thin noise line consists out of single pixels forming a line formation.

117

except for the slanted line that disappears. This was expected, because it was shown in

chapter four that the five-point LULU operators will treat the pixels of a skew line as

noise due to the construction of the window. A thick! noise line of minimum thickness is

constructed when two or more parallel thin noise lines are positioned immediately next to

each other. It can quickly be verified that the five-point LULU algorithm will have no

effect on such a line. Figure 7.4 (c) shows the effect of the five-point median on thin

lines. The result seems to be similar to that in figure 7.4 (b) at a first glance, but the

experienced eye will notice the decay that occurred after only one application of the

median algorithm. The open tips of the lines, as well as the tips of the triangular part

disappeared. Although this seems harmless enough, the image will deteriorate after each

application of the median, especially as far as thin lines are concerned. Nine-point

median sweeps will cause much more damage and the image will decay even faster with

repeated application of the algorithm. If images are encountered where thin lines are

important to preserve, another smoother should be used, such as the LULU 9W 1- -
algorithm, as defined in §4.4.5.

7.5 Noise lines in the original image

Screendump 7.5.1 shows an image of a video still with typical noise originating from

video playback. Most of the geometrical borders in the image have noise lines, but the

vertical poles are most severely effected. The poles have effectively doubled in thickness

due to the shifted pixel lines.

A thick noise line is formed by two or more thin noise lines adjacent to each other.

118

Screendump 7.5.1 ° Screendump 7.5.2 PAMO)

The original image, 0, is fIrstly tested with the nine-point average fIlter, but without

much visual gain, as shown in screendump 7.5.2. Except for sections of the display, like

the hair and ear which seems to improve visually, the noise lines on the poles only

became 'blurred' and no acceptable improvement has occurred.

Screendump 7.53 Screendump 7.5.4

119

Screendump 7.5.5 Screendump 7.5.6 Pixelline noise.

Screendump 7.5.3 shows the result after a vertical LULU algorithm has been applied to

remove the horizontal noise. Although the image has been smoothed and all thin noise

disappeared, the poles appear to be thicker (due to smearing effects). Screendump 7.5.4

has the results of the five-point median. The outline of the man's facial features

improved, but the noise on the poles could not be reduced or improved. The same holds

for the five-point LULU algorithm, as indicated in screendump 7.5.5.

It seems conclusive !hat the smaller smoothing windows cannot improve the image due to

the nature of the noise lines (screendump 7.5.6). The MEDIAN_2D/9W algorithm,

screendump 7.5.7, has an interesting effect on the image. Most noise has been removed,

except for some single lines remaining on the vertical poles. This method also had the

capability of smoothing to the correct pole diameter.

120

Screendump 7.5.7 Screendump 7.5.8

If PM9w is smoothed again with a vertical LULU smoother, the image has no noise lines

left (screendump 7.5.8) and the poles are back to the correct dimensions. This example

further points out the typical difficulties of working with unknown noise types. It is often

difficult to predict which method is 'best' for a specific situation. It might be that other

hybrid methods would have obtained the same final result, but which method is optimal?

To complicate matters, this question wiU most probably have to be answered without

human interaction during machine processes. This topic is discussed more generally in

the next section.

7.6 Practical smoothing in hardware and software

Filtering and smoothing devices are essential in the electronics industry. One

dimensional noise-suppression is an integral part of sound reproduction and amplification

and is commonly used in hardware and software applications for speech recognition,

speech synthesis and pitch detection [19J. The two-dimensional application has similar

utilisation to provide noise-free and crisp digital display. A prospective buyer of video

equipment, such as a camera or player, will nowadays inquire about the comparability of

121

image quality between certain makes, thus indicating the importance of data stability,

even to the man in the street. In big organisations the collection of digital data can be

very expensive, depending on the application and the sampling methods. The emphasis is

therefore often to analyse and treat raw data in-house, rather than to pay dearly for data

which was enhanced by collecting and distributing agencies. This is a sure way of

protecting not only the quality of data, but also the integrity of the original signal.

From the many applications of two-dimensional smoothing, one very important

application will be discussed briefly, namely television display. Even though this media

form has become one of the most important techniques of communication of modem

times, it still suffers from defects such as data corruption. On the best and most

expensive digital television display, various distributions of spot noise can still be

noticed, depending on the physical geographical position, atmospheric conditions and

size of the receiving antenna, to name but a few factors. It is therefore quite logical to ask

the following question: can super-fast smoothers, such as a parallel LULU algorithm,

imbedded in a hardware chip, be used for real-time television noise suppression?

This research has indicated that the LULU class of non-linear smoothers are capable of

eliminating spot noise, similar to the noise often seen on television screens due to

electromagnetic interference, within acceptable bounds. The fact that the smoothers are

easily programmable and computationally fast is commendable. The inherent parallelism

of the operators make them ideal for acceleration techniques by manipulating parallel

programming and VLSI technology. The software application of some LULU smoothers

has been shown to be stable due to the idempotency feature and they can be successfully

combined with other smoothers or filters.

CHAPTER EIGHT

Conclusion

8.1 Results

The development of a new theory for one-dirnensional smoothing, usmg max-mm

selectors, prompted this research in two-dimensional smoothing. The primary goal was

to search for, and test a new class of nearest-neighbour algorithms as they emerged for

two-dimensional noise attenuation in practice. Initially there was no guarantee that

LULU algorithms could be constructed to compete with generally accepted smoothers,

such as the widely acclaimed two-dimensional median smoother, but with good faith that

the one-dimensional theory could be extended and a lot of endeavour, success was

attainable. Although new theories in image enhancement are continually developed for

research and academic purposes, the results of such studies only become evident when

the theory can be proven explicitely, and, possibly most important, can be illustrated

visually. This is what happened with the programming of LULU algorithms. In the

search for optimal and efficient smoothers, various new two-dimensional non-linear

algorithms were designed and tested against noise reduction algorithms. In addition to

the five-point and nine-point LULU algorithms, as introduced by Rohwer [81],

interesting variations were found in the LULU 2DIHV, LULU 2D/9W 1 and other- --
hybrid methods.

The power of idempotency in LULU smoothing was pointed out throughout the thesis

and the breakdoViTI of some smoothers, when repeated, were shown clearly by practical

means. This helped to give insight into some of the most intricate concepts of non

linear mathematical ideas and verified the hierarchy of smoothers in two dimensions.

One of the pleasant surprises of designing new two-dimensional smoothers \\ith the

123

hindsight of a very complete one-dimensional theory, was the simplicity and cost

effectiveness of the new class of smoothers. The speed with which a high-density image

can be cleaned of spot noise was appreciated by most people who observed

demonstrations of the LULU smoothers on personal computers. This was particularly

evident where the basic (five-point) LULU smoother was compared with the

corresponding median smoother. The fact that LULU_2D/SW is faster than the

MEDIAN_2D/SW when applied on a similar input image was a pleasant bonus in the

development stages. Another indirect advantage, which only could be appreciated after

testing real images, was the crispness of resultant pictures after smoothing. This can be

attributed to the robustness and edge preserving qualities of the max-min operators.

Smoothing becomes optimal when a non-linear algorithm completely eliminates

impulses of high energy (if they are sufficiently separated) without damaging the original

image. Some of the LULU smoothers in this thesis are candidates for optimal smoothing

algorithms and have been tested successfully on binary, as well as real images. For

different noise distributions, whether it be simulated or from real examples, it was

adequate to illustrate how the strength of a LULU smoother could be increased by using

a larger window size, or by concatenating it with another smoother or filter. The

practical implications (negative, as well as positive) of hybrid smoothers were shown in

chapter seven.

8.2 Future expectations

The promising results attained by applying LULU algorithms in a preliminary image

processing environment guarantees interesting research and development to follow.

Secondary benefits of this project are the viability of low-cost graphics programming and

image processing laboratories for schools, technical institutions and universities. The

educational value of a programming task often has very little to do \Vith the subsequent

124

output of a program. Many textbooks are filled with pages of short routines that are

never really integrated into a workable project. Graphics progranuning offers scope to

the entrepreneurial student to leam a considerable amount of progranuning, while

constructing valuable and interesting interfaces between his routines and the end-user.

This topic deserves further attention, particularly with the importance of graphics

progranuning in mind for educational, technical and scientific projects. Traditionally,

image processing was a topic that could not be managed without the use of high-powered

computer hardware and a solid budget. That concept has changed with the availability of

inexpensive, high-powered desk-top computers that can handle some of the most

complex progranuning assignments efficiently. The subsequent impact of graphics

modules in commercial software is a sign of things to come and should be seriously

considered as an integral part of syllabi in information technologies.

The fact that LULU smoothing is typical of software that can be imbedded in hardware

applications, also exemplifies the practicality of this theory for engineering utilisation.

The blending of traditional low-current engineering filter theory with related software

demonstrates the logical extension for non-linear applications. Further research is

already on the way for speed-up techniques using parallel processing principles for

LULU algorithms. This will without doubt lead to applications in VLSI implementation,

neural networks and related fields for real-time smoothing of high volumes of images.

It is only natural to expect that further successful research areas for the expansion of

LULU theory are to be found in higher dimension smoothing windows, such as three

dimensional smoothing. Although the complexity of the research domain increases with

each expansion of dimension, the robustness of the underlying LULU structure IS

predictable if the results achieved in the first two dimensions are taken into account.

Bibliography

1. Acton, F.S. 1959. Analysis of Straight-line Data. New York, Wiley.

2. Almasi, G. & Gotlieb, A. 1994. Highly Parallel Computing. Redwood City,
Benjarnin/Cumming.

3. AngeII, La. & Tsoubelis, D. 1992. Advanced Graphics on VGA and XGA Cards
Using Borland C++. London, Macmillan.

4. Ataman, E. et a!. 1980. A Fast Method for Real-Time Median Filtering. IEEE
Trans. on Acoustics, Speech an Signal Processing, 28(4), 415-421.

5. BaneIjee, U. et al. 1993. Automatic Program Parallelization. IEEE Trans on
Parallel and Distributed Systems, 81(2),211-243.

6. Barron, J. 1995. Optical-Computing Power Comes to Light. Byte, 18, 40-41.

7. Baskett, F. & Hennessy, J.1. 1995. Microprocessors: From Desktops to
Supercomputers. Science, 261, 864-871.

8. Bedford, M. 1995. Processed Ease. Computer Shopper, 12(2),43-49.

9. Bowen, BA & Brown, W.R. 1982. VLSI Systems Design for Digital Signal
Processing. Vo!. 1. Englewood Cliffs. Prentice-Hall.

10. Bransky, D. 1995. Improved DSP. Electronic Design, 41, 69-70.

11. Burrus, C. et al. 1994 Computer-based Exercises fir Signal Processing using
Mathlab. Englewood Cliffs, Prentice-Hall.

12. Butz, A.R. 1986. A Class of Rank Order Smoothers. IEEE Transactions on
Acoustics, Speech and Signal Processing, 34(1), 157-165.

13. Castleman. K.R. 1979. Digital Image Processing. London. Prentice-Hal!.

14. Cloete, E. 1992. Parallel Processing. Baantyd, Overberg Toetsbaan.

15. Cloete, E. 1995. The Design of a 2D Non-linear Filter for Digital Image
Processing. SAICSIT-95,75-79.

126

16. Cloete, E. 1984. The Solution of Systems of Linear Equations on an MIMD
Parallel Processor. M.Sc. thesis, University ofNatal.

17. Cloete, E. & Rohwer, C.H., (to be published). The Design of Non-linear Smoothers
for Image Processing.

18. Cohen, D. & Kaufman, A. 1995. Fundamentals of Surface Voxelization.
Graphical Models and Image Processing, 57,453-461.

19. Creasey, D.J. (Ed.). 1985. Advanced Signal Processing. London, Perigrinus.

20. Comero, N & Gelernter, D. 1992. How to Write Parallel Programs. London, MIT
Press.

21. Davies, E.R. 1991. Accurate Filter for Removing Impulse Noise from One- or
Two-Dimensional Data. IEE Proc.- E., 139(2), 111-116.

22. Dudgeon, D.E. & Mersereau, R.M. 1984. Multidimensional Digital Signal
Processing. Englewood Cliffs, Prentice-Hall.

23. Due, O. & Taxt, T. 1995 Evaluation of Binarization Methods for Document
Images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 17,312-315.

24. Do, V. & Barry, A.O. 1993. A Real-Time Model of the Synchronous Machine
Based on Digital Signal processors. IEEE Trans. on Power Systems, 23. 660-666.

25. Dufaux, F. & Moscheni, F. 1995. Motion Estimate Techniques for Digital TV: A
Review and a New Contribution. IEEE Trans. on Circuits and Systems, 83, 874
875.

26. Edmonson, W.W. & Alexander, W. 1995. Transient Suppression at the Boundary
for 2-D Digital Systems. IEEE Trans. on Circuits and Systems, 82, 716-717.

27. Eggers, D.D. & Ackerman, E. 1993. High Speed Image Rotation in Embedded
Systems. Computer Vision and Image Understanding, 61. 270-277.

28. Fomaro, G. & Franceschetti, G. 1995. Image Registration in Interferometric SAR
Processing. IEE Proc. on Radar, Sonar and Navigation. 142, 313-320.

29. Fox, G. et al. 1988. Solving Problems on Concurrent Processors. Englewood
Cliffs, Prentice-Hall.

127

30. Fuchs, H. et al. 1989. Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics
System using Process Enhanced Memories. Chapel Hill, University ofNorth
Carolina Press, 79-88.

31. Gallagher, N.C 1981. A Theoretical Analysis of the Properties of Median Filters.
IEEE Trans. on Acoustics, Speech and Signal Proc., 29(6), 1136-1141.

32. Gallagher, R.S. 1995. Computer Visualization: Graphics Techniques for
Scientific and Engineering Analysis. New York, CRC Press.

33. Gelenbe, E. 1989. Multiprocessor Performance. London, Wiley.

34. Gerald, CF. & Wheatley, P.O. 1982 Applied Numerical Analysis. Reading,
Addison-Wesley.

35. Gerogiannis, D. & Orphanoudakis, C 1993. Load Balancing Requirements in
Parallel Implementations oflmage Feature Extraction Tasks. IEEE Trans. on
Parallel and Distributed Systems, 4, 994-1013.

36. Gil, 1. & Werman, M. 1993. Computing 2-D Min, Median and Max Filters. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 15(5),504-507.

37. Gill, P.E. & Murray, W. 1978. Algorithms for the Solution of the Non-linear
Least-squares Problem. SIAM J. Number Anal., 15(5),977-993.

38. Glanz, J. 1995. Computer Processing gives Imaging a Sharper View. Science,
269, 1338-1348.

39. Golub, G. 1993. Scientific Computing: An Introduction with Parallel
Programming. London. Academic Press.

40. Goosen, H.. et al. 1994. Chiron Parallel Program Performance Visualization
System. Computer Aided Design. 26(12). 899-906.

41. Grassmann, W.K. & Trernblay, 1. 1996. Logic and Discrete Mathematics.
Englewood Cliffs, Prentice-Hall.

42. Hall, ItW. 1995. Optimally Small Operator Supports for Fully Parallel
Thinning Algorithms. IEEE Trans. on Pattern i\nalysis and Machine Intelligence,
15,828-833.

43. Hamming, R.W. 1973. Numerical Methods for Scientists and Engineers. New
York, McGraw-Hill.

44. Hamming, R. W. 1983. Digital Filters. Englewood Cliffs. Prentice-Hall.

128

45. Heam, D. & Baker, M.P. 1994. Computer Graphics. Englewood Cliffs, Prentice

Hall.

46. Hoang, P.D. & Rabaey, Jan M. 1993. Scheduling ofDSP Programs onto

Multiprocessors for Maximum Throughput. IEEE Trans. on Signal Processing,

41(6),2225-2235.

47. Huntley, J.M. & Goldrein, H.T. and Benckert, L.R. 1993. Parallel Processing

System for Rapid Analysis of Speckle-Photography and Particle-Image

Velocimetry Data. Applied Optics, 32, 3152-3155.

48. Hultquist, P.F. 1988. Numerical Methods for Engineers and Computer

Scientists. Reading, Benjarnin/Curnmings.

49. Hussein, A.O. & Fahmy, M.M. 1991. Design of 2-D Linear Phase Variable

Recursive Digital Filters for Parallel Form Implementation. lEE Proceedings-G,

138(3), 335-340.

50. Jenkins, I.E. 1987. Optimal Sensing Techniques and Signal Processing.

Englewood Cliffs, Prentice-Hall.

51. Johnsonbaugh, R. & Kalin, M. 1993. Applications Programming in ANSI C:

Second Edition. New York, MacmiIlan.

52. Kay, S.M. 1993. Fundamentals of Statistical Signal Processing: Estimation

Theory. Englewood Cliffs, Prentice-HalI.

129

53. Kerr, T.H. 1991. Comments on 'Federated Square Root Filter for Decentralized

Parallel Processes'. IEEE Trans. on Aerospace and Electronic Systems., 27(6), 946

956.

54. Ketcham, DJ. 1976. Real Time Image Enhancement Technique. Proceedings

SPlEIOSA Conference on Image Processing, Pacific Grove, California, 74, 120-125.

55. Lee, M.E. & Redner, R.A. 1990. A Note on the Use of Nonlinear Filtering in

Computer Graphics. Amaco Production Company, Tulas Research Centre, 23-29.

56. Lee, C. et al. 1994. A Parallel Bit-level Maximum-Minimum Selector for Digital

and Video Signal Processing. IEEE Trans. on Circuits and Systems, 41, 693-695.

57. Luse, M. 1993. Bitmapped Graphics Programming in C++. New York, Addison

Wesley.

58. Mallows, c.L. 1980. Some Theory of Nonlinear Smoothers. The Annals of

Statistics, 8(4), 695-715.

59. Maragos, P. & Schafer, KW. 1990. Morphological Systems for Multidimensional

Signal Processing. Proc. of IEEE, 78(4), 690-710.

60. Marshall, R. et al. 1990. Visualisation Methods and Simulation Steering for a 3D

Turbulance Model of Lake Erie. The Ohio SupercompUler Centre, 89-97.

61. Marquardt, D.W. 1963. An Algorithm for Least Squares Estimation of Nonlinear

Parameters. 1. Soc. Indust. Appl. Math., 1l(2), 431-441.

130

62. Marquardt, A.E., Toerien, L.M. & Terblanche, E. 1991. Applying Nonlinear

Smoothers to Remove Impulsive Noise from Experimentally Sample Data. R&D

Journal, 7(1),15-18.

63. McConnick, B.H. et al. 1987. Visualization in Scientific Computing. Computer

Graphics, ACM SIGGRAPH.

64. McQuillan, S.E. & McCanny, J.V. 1995. A Systematic Methodology for the
Design of High Performance Recursive Digital Filters. IEEE Trans. on Comp.,
44(8), 971-982.

65. Meinhart, C.D., Prasad, A.K. & Adrian, RJ. 1993. A Parallel Digital processor
System for Particle Image Velocimetry. Measurement Science & Technology, 4,
619-626.

66. Meyer, F. 1995. Object-Based Systems do Windows Better. InTech, 40, 39-41.

67. Miola, A.M. (Ed.). 1990. Computing Tools for Scientific Problem Solving.
Rome, Academic Press.

68. Murray, c.J. 1993. Cray Introduces Massively Parallel Computer. Design News,
48(9), 30-1.

69. Nakagawa, Y. & Rosenfeld, A. 1978. A Note on the Use of Local min and max
Operations in Digital Picture Processing. IEEE Trans. on Systems, Man, and
Cybernetics, 8(8), 632-635.

70. Nakarnura, S. 1993. Applied Numerical Methods in C. London, Prentice-Hall.

71. Ngo, C. 1996 Image Resizing and Enhanced Digital Video Compression. EDN,
41,145-148.

72. Nobakht, R.A. 1993. Adaptive Filtering Of Nonlinear Systems with Memory by
Quantized Mean Field Annealing. IEEE Trans. on Signal Proc., 41(2), 913-925.

73. Oliver, D., et al. 1993. Tricks of the Graphics Guru's. New-York, SAMS.

74. Papananos, Y. & Anastassiou, D. 1991. Analysis and VLSI Architecture of a
NonIinear Edge-Preserving Noise Smoothing Filter. lEE Proceedings-G, 138(4),
433-440.

131

75. PourneIle, J. 1995 Digital Models. Byte, 20, 257-261

76. Pratt, W.K. 1978. DigitalImage Processing. New York, Wi1ey.

77. Rabiner, L.R et al. 1975. Applications of a Nonlinear Smoothing Algorithm to
Speech Processing. IEEE Trans. on Acoustics, Speech and Signal Processing, 23(6),
552-557.

78. Raghaven, V., et al. 1995. Automatic Lineament Extraction from Digital Images
Using a Segment Tracing and Rotation Transformation Approach. Computers
and Geosciences, 21, 555-59 I.

79. Raghurarnireddy, D. & Ubehauen, R. 1992. A New Realization for Multiprocessor
Implementation of 2-D Denominator-Separable Digital Filters for Real-Time
Processing. IEEE Trans. on Signal Processing, 40(9), 2349-2353.

80. Rohwer, C.H. 1986. Idempotent One-Sided Approximation of Median
Smoothers. Institute of Maritime Technology, Simon's Town, South-Africa. 151
163.

81. Rohwer, C.H. (To be published). LULU-operators for Two-dimensional Data.

82. Rohwer, C.H. & Toerien, L.M. 1991. Locally Monotone Robust Approximation
Sequences. Journal of Computational and Applied Mathematics, 36, 399-408.

83. Russ, le. 1995. The Image Processing Handbook. Boca Raton (Florida). CRC
Press.

84. Schendel, U. & Schyska, M. 1984. Parallel Algorithmen in der Nichtlinearen
Optimierung. Freie Universitat Berlin. 1-41.

85. Silver, S. 1995 Steve Silver on: Image Processing. Computer Design, 34,137-140.

86. Smith, J.R. 1993 The Design and Analysis of Parallel Algorithms. New York,
Oxford University Press.

87. Sung, W. et al. 1992. Multiprocessor Implementation of Digital Filtering
Algorithms Using a Parallel Block Processing Method. IEEE Trans. on Parallel
and Distributed Systems. 3(1),110-120.

88. Truss, J.K. 1991. Discrete Mathematics for Computer Scientists. London,
Addison-Wesley.

89. Tukey, l W. 1974. Non-linear methods for smoothing data. Cof. Ref.. Eascon.

132

90. Vainio, 0., Yin, L. & Neuvo, Y. 1991. Parallelism in Generalized Median
Operators. From Pixels to Features II, Amsterdam, North-Holland.

91. Vassi1iadis, S., PhilIips, J. & Blaner, B. 1995. Interlock Collapsing ALU's. IEEE
Trans. on Computers, 42, 825-839.

92. Wyszecki, G. & Styles, W.S. 1982 Color Science. New York, Wiley & Sons.

93. Zadeh, L.A. 1965. Fuzzy Sets. Inform. Contr., 8, 338-353.

Appendices

A-I Image fIles

All screendumps, images and graphs were converted to PCX format for publication

purposes. It is recommended to use a standard image viewer (DOS or Windows) to view

the images supplied with the text of this thesis. Although the printing was done with a

HP5L laserjet with 600 dpi resolution, much more detail can be observed on the screen

than on the hard copy. The images are numbered according to the numbers in the

chapters to assist in this process. If an image SCREENDUMP 4.3.2.1 needs to be

looked up, it will be found as 4_3_2_1.PCX on the disk.

A-2 List of tables and graphical illustrations

Image 2.1.1
Image 2.1.1
Image 2.1.1
Figure 2.3.1
Screendump 2.3.2
Figure 2.3.3
Figure 2.4.1.1
Screendump 2.4.1.2
Figure 2.4.1.3
Screendump 2.4.1.4
Figure 2.4.2.1
Screendump 2.4.2.2
Figure 2.4.3.1
Screendump 2.4.3.2
Screendump 2.4.4.5
Screendump 2.4.1.6

ASCII picture.
High-resolution image.
256 shades of Grey.
Some common kernel designs.
Pixel averaging.
Circular kernel designs.
Brightness adjustment.
Brightness enhancement.
Brightness convolution kernel.
Histogram of image.
Contrast CLUT values.
Contrast histogram.
Blurring convolution kernel.
Blurring ofan image.
Edge detection.
Image reduction.

Figure 2.4.7.1
Figure 2.4.7.2
Screendump 2.4.7.3
Screendump 2.5.1
Figure 2.5.2

Figure 3.1.1
Screendump 3.1.2
Screendump 3.1.3
Figure 3.1.4
Figure 3.2.1
Screendump 3.2.2
Screendump 3.2.3
Screendump 3.3.1
Screendump 3.3.2
Screendump 3.3.3
Screendump 3.3.4
Screendump 3.3.5
Screendump 3.3.6
Screendump 3.3.7
Screendump 3.3.8
Screendump 3.3.9
Screendump 3.3.10
Screendump 3.4.1
Screendump 3.4.2
Screendump 3.4.3
Screendump 3.4.4

Figure 4.1.1
Screendump 4.1.4
Screendump 4.1.5
Screendump 4.2.6
Screendump 4.2.7
Screendump 4.2.8
Screendump 4.2.9
Screendump 4.2.10
Screendump 4.2.11
Screendump 4.2.12
Screendump 4.2.12
Screendump 4.2.13
Screendump 4.2.14
Figure 4.3.2
Screendump 4.3.5

134

Pixel cluster.
Image enhancement.
Interpolation for enlargement.
CAT scan.
Construction of voxels.

Noisy ID data.
Noisy 2D data.
Zoom function.
Nine-point sweeping window.
ID sweeping window.
Average filter (window size, three).
Average filter (window size, seven).
A monotone increasing function.
Energy spike.
Energy spike in a monotonic increasing function.
Original binary data.
Binary data after one median sweep.
Original binary data.
Binary data after one median sweep.
Binary data after two median sweeps.
Root function.
Comparison oflinear and non-linear ID smoothing.
Minimum sweep.
Minimum sweep, followed by a maximum sweep.
max(max(min(x))).
min(max(max(min(x))).

A five point sweeping window.
A five point average filter.
Zoom results.
A binary picture.
After a ceiling sweep.
After a floor sweep.
A ceiling sweep following a floor sweep.
A floor sweep acting on a blank screen 'with noise.
An original 256 level grey-scale image.
After a ceiling sweep.
After a ceiling sweep.
A floor sweep following a ceiling sweep.
The results ofLULU 2D/5W.
A nine point sweeping window.
The results of LULU_2D/9W.

Screendump 4.3.6
Screendump 4.4.1.1
Screendump 4.4.1.2
Screendump 4.4.2.1
Screendump 4.4.2.2
Screendump 4.4.4.1
Screendump 4.4.4.2
Screendump 4.4.43

Table 5.2.6
Screendump 5.3.6
Screendump 5.3.7
Screendump 5.3.8
Table 5.3.13

Figure 6.2.1
Screendump 6.2.2
Screendump 6.2.3
Screendump 6.3
Screendump 6.3.4
Screendump 6.3.6
Screendump 6.4
Screendump 6.5.1
Screendump 6.5.2
Screendump 6.53
Screendump 6.5.4
Screendump 6.5.5
Figure 7.1.1
Figure 7.1.2
Figure 7.13
Figure 7.1.4
Screendump 7.2.1.1
Screendump 7.2.1.2
Screendump 7.2.2.1
Screendump 7.2.2.2
Screendump 7.2.2.3
Screendump 7.2.2.4
Screendump 7.2.2.5
Screendump 7.2.2.6
Screendump 7.2.2.7
Screendump 7.33
Screendump 7.3.4
Screendump 7.3.5

135

The results ofLULU 2D/9W
The results of LULU_2D/H.
The results of LULU_2DNH.
The results ofLULU_2DNH on a binary picture.
The results ofLULU_2DIHV on a binary picture.
The results ofL ULU_2D/SW on a binary picture.
The results of LULU_2DN on 4.4.4.1.
The results of MEDIAN_2D/5W on 4.4.4.1.

Multiplication table for U and L operators.
After a floor sweep.
After a ceiling sweep.
Pc! and Pre.
Multiplication table for C and F operators.

OXO diagram.
A screendump of the U4TRL¥programs front page.
A LULU_HV smoother operating on a binary example.
The title page of the FILTER program.
An example of randomly distributed black noise pixels.
Pixels remaining after a LULU_2D/5W sweep.
The title page of the LULU program.
The title page of the ANALYSIS program.
A histogram screendump.
Histogram overlays.
Difference between histograms.
Resultant noise.
The original function. x.
Filtering a function. x.
Smoothing a function. x, with a median smoother.
Smoothing a function. x, with a LULU smoother.
A non-linear smoother applied to the original image.
A linear filter applied to the original image.
FILTER_2D/5W applied to a noisy image.
LULU_2D/5W applied to a noisy image.
MEDIAN_2D/5W applied to a noisy image.
LULU_2D/9W applied to a noisy image.
MEDIAN_2D/5W applied to a noisy image.
LULU_2D/9W_I applied to a noisy image.
LULU_2DIHV applied to a noisy image.
Repeated median applications.
Histogram difference graph.
A hybrid application.

Screendump 7.3.6
Figure 7.4.1
Screendump 7.5.1
Screendump 7.5.2
Screendump 7.5.3
Screendump 7.5.4
Screendump 7.5.5
Screendump 7.5.6
Screendump 7.5.7
Screendump 7.5.2

136

MEDIAN_2D/9W applied to a noisy image.
Thin lines in low-resolution images.
An original noisy image.
FILTER_2D/9W applied to a noisy image.
LULU_2DN applied to a noisy image.
MEDIAN_2D/5W applied to a noisy image.
LULU_2D/5W applied to a noisy image.
Pixe! noise lines.
MEDIAN_2D/9W applied to a noisy image.
A hybrid algorithm applied to a noisy image.

A-3 Symbols often used in this thesis

Oij

Wi

Wi,j

AG,k;uv)
BG,k;uv)
C
C(P)
C5

Cg
C*
D
F
F(P)
F;
Fg

F*
f(j,k)
I
L 2

Loo
L
M
M5

Mg

O(n)

Element of the original matrix, 0 I, at matrix position ij.
Sweeping window at scan-line position i.
Sweeping window at matrix position (ij).
Forward Fourier transform kernel.
Backward Fourier transform kernel.
Ceiling operator in 20.
Ceiling operator acting on an image P.
Ceiling operator in 2D, using a five-point operatoring window.
Ceiling operator in 20, using a nine-point operatoring window.
Special ceiling operator.
The set of double-indexed integers.
Floor operator in 20.
Floor operator acting on an image P.
Floor operator in 2D, using a five-point operatoring window.
Floor operator in 2D, using a nine-point operatoring window.
Special floor operator.
Sampled data for a Fourier transform.
Identity operator.
Euclidean norm.
Maximum norm.
Lower limit, smoothing operator.
Median operator.
The median operator, using a five-point window.
The median operator. using a nine-point window.
Order n, as in speed-up.

Note that the image, P, presented by a matrix, is always printed in capitalized bold letters,
while the matrix, P, is itself presented in ordinary print.

o
P
Pt
PfS
Pc
PcS

PAS
PA9

PLf
PLc
Ptc

Per

Pv

Ph

Pvh

Phv
PSt

PSc

Ps

P9w1

PMS

PM9

PMShv

S
U

)

cLl

137

Image ofan input matrix, 0; original matrix.
Image ofan output matrix, P; output picture.
Picture after a floor operator was applied.
Picture after a floor operator was applied, using a five-point window..
Picture after a ceiling operator was applied.
Picture after a ceiling operator was applied, using a five-point window.
The resultant picture after a five-point average operator was applied.
The resultant picture after a nine-point average operator was applied.
Same as Pr. the symbol L indicates a LULU operator.
Same as pc. the symbol L indicates a LULU operator.
The resulting image after the application of a ceiling sweep I, followed by
a floor sweep.
The resulting image after the application of a floor sweep, followed by a
ceiling sweep.
Apply LULU_2DN on an image P.
Apply LULU_2DIH on an image P.
Apply LULU_2DNH on an image P.
Apply LULU_2DfHVon an image P.
Apply a five-point floor algorithm on an image P.
Apply a five-point ceiling algorithm on an image P.
Apply a complete five-point LULU algorithm, LULU_2D/SW, on an
image P.
Apply a nine-point floor algorithm on an image P.
Apply a nine-point ceiling algorithm on an image P.
Apply a complete nine-point LULU algorithm. LULV_2D/9W, on an
image P.
Apply a complete nine-point LULU algorithm. LULU_2D/9W_I. on an
image P.
Apply a five-point median algorithm on an image P.
Apply a nine-point median algorithm on an image P.
Apply a five-point median algorithm after LULU_2DIHV.
The set of single-indexed integers.
Upper limit, smoothing operator.

All elements of a set.
Tolerance interval.
Error interval.
Gaussian noise.
Spot noise.
Fourier transform.

One-dimensional space.

'Sweep' in the sense of scanl!ne sv.-"eeps.

138

12 Two-dimensional space.

llij Nucleus of sweeping window, at the matrix position (i,j).
cI> Linear filter operator.
r General purpose smoother notation.
r n Applying a smoother applied n times.
A A complete LULU process.
/; Error free function.

A-4 List of commonly used abbreviations

ID
2D
3D
ASCII
BET
CATscan
ccd
CLUT
GIS
DIP
dpi
IP
LULU
LUT
Mb
NWES
OCR
OXO
papro
pel
pixel
PC
PCX
RGB
START
SVGA
rIFF
VGA
loxel

One-dimensional.
Two-dimensional.
Three-dimensional.
American Standard Code for Information Interchange.
Best estimate interval.
Computer assisted tomography.
Charge coupled device.
Colour look-up table.
Geological information system.
Digital image processing.
Dots per inch.
Image processing.
Lower-upper bound algorithms.
Look-up table.
Megabyte.
North, west, east and south directions.
Optical character recognition.
A binary diagram consisting 0 f zero's and x's.
Parallel processor unit.
Same as pixel.
Smallest image element.
Personal computer.
PC Paintbrush format.
Red, blue and green, colour display.
Segment tracing and rotation transformation.
Super video graphics adapter.
Tagged information file format.
Video graphics adapter.
Volume pixel.

139

A-5 Listing oflulu.c

In addition to the program sections of chapter six, the complete listing of the LULU and

ANALYSIS set of programs is included for reference purposes. The programs can be

compiled using a Borland compiler with the memory model set as LARGE. For the

VESA display and the TIFF original images the following libraries are necessary:

VSA256BC.Lill and

TIFF BCL.Lill.

~~%%%%%%%%%%%%%%%%%%%%%%o/~~%%%o/~~~o/~#~%%%o/~~%o/~~%%o/~%%%%%

%%%O/oO/OO/Oo/O%o/O%o/G%%W6o/00/o% 0/o% 0/o0/o%o/cWo

#include <io.h>
#include <stdio.h>
#include <conio.h>
#include <fcntl.h>
#include <math.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <ctype.h>
#include <dir.h>
#include <mem.h>
#include <dos.h>
#include "tiffh"
#include "vsa.h"
#include "screen.h"

I/%O/ol%%O/o%%%o/O~'/o~/Oo/Oo/O%%%%%%~o%~/o%%%~''O%%%%%% J~/O~%~'O~,Q~"O%o.'o~/o~%%%%%o.o%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%

#define MINVAL(x,y) ((x)«y)?(x):(y))
#define MAXVAL(x,y) «x»(y)?(x):(y))

/"/O%I%O/o%%%o/O%~/Oo/Oo/O%%%o/Oo/O%%%%o.-o%%%%%%~,'O%~/O~-o~-O°,fo%%lo.·'O%lo.'Oo.'O%%%)%%%~-Q~'oo./o%~/o

%%%%%%%%%%%%%%%%%%%%%%%%
I1 ConfiglOptions input before processing can begin

typedef struet {

char name[MAXPATH];
char noise: II yes I no
char filter, // yes no

139

A-S Listing oflulu.c

In addition to the program sections of chapter six, the complete listing of the LULU and

ANALYSIS set of programs is included for reference purposes. The programs can be

compiled using a Borland compiler with the memory model set as LARGE. For the

VESA display and the TIFF original images the following libraries are necessary:

VSA256BC.LID and

TIFF BCL-LID.

a%%o/~~%%%%%%%%%%o/~~%%%o/~~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

0/0-0/00/0% 0/00/0% %0/00/0%.%%0/00/00/00/00/00/00/00/00/0%0/0

#include <io.h>
#include <stdio.h>
#include <conio.h>
#include <fcmLh>
#include <math.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <ctype.h>
#include <dir.h>
#include <mem.h>
#include <dos.h>
#include "tiff.h"
#include "Ysa.h"
#include "screen.h"

IfO.Io%%%%%%%%%%%%%%°;Q%O/oO/o%~'o%%·~,-n~,oo'oO/o~/o%~/o~'o~fo~/o~/o%%(~/a~'O~/o~/o~'O%~o%%%%%%%%

%%%%%%%%%%%%%%o/~~%o/~~%%o/~~%

#define MlNVAL(x,y) «x)«y)?(x):(y))
#define MAXVAL(x,y) «x»(y)?(x):(y))

/(O;O~!Oo/O%~/O%,%%,%O/O%O/o%Wo~!o~/o~o~/o%'%~'o%%%%%%~;O%%~'O~'O%%%I%~'O%%O''O~''O%%%%%%%%%%

O/l)o/'O'%o/Oo/O%'O/OO/OO/OO/o~/OO/o%WOo/Oo/O%o/l{%~'O~/O~'O~'-0%

if Config/Options input before processing can begin

:ypedef struet {

char name[MAXPATH]:
char noise; /1 yes / no
char filter, 'j yes i no

140

char noise_type;
unsigned int seed;
unsigned int intensity;
char save_before;
char name_hefore[MAXPATH];
char save_after;
char name_after[MAXPATH];
int vesa-!'lode;

} filter_cfg;

a%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/~~o/~~%%o/~~o/~~~o/~~~o/~~

%%%%%%%%%%%%%%%%%%%%%%%%

extern unsigned _stklen ~ 15000U;

1/%)OlOo/OOlOo/O'Vo%%%%%%%%O/o%O/o%O/o%%,%%%%o/o%%%%%%~/o%%%%%tW%%%o/(l%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%

unsigned char Jar TF_Byte_Buf14096];
unsigned long TF_ImageWidth, TF_ImageLength;
unsigned Jar TF_BitsPerSample[3 j,TF_Num_lfd;
unsigned TF_ResolutionUnit,TF_SarnplesPerPixel;
unsigned TF_PhotometricInterpretation;
unsigned long TF_XResolution_int,TF_XResolution_frac;
unsigned long TF_YResolution_int,TF_YResolution_frac;
unsigned TF_8Iack,TF_Red,TF_Orange,TF_Yellow,TF_Green;
unsigned TF_Aqua,TF_Blue,TF_Violet,TF_White;
unsigned XResolution, YResolution, XCharResolution, YCharResolution;
unsigned char XCharSize, YCharSize;
unsigned char BitsPerPixel;

//%%o/O%o/O%%%%I%%%%%%%%%%~'O~/O%I%%~/O%%O/O%?·'O%%O/O%~'O~'o%%%%%%%%%%%%~'oJ%~'o

%s%Wo%~O/oo/o%o/o~/Qo/\)~/o%,%~/oo/o%%.~/o?ro%~··o%~/o%

void load_tit!(char' filename, unsigned x);
void filter_exit(void);
void image_stats(char' name);

// Image processing functions
void apply_average_5W(void);
void apply_average_9W(void);
void apply_median_5W(void);
void apply_median_9W(void);
void apply_sharpen(void);

'oid applLlulu_w5f(void);
'oid applLlulu_w5c(void);
Did applLlulu_'",9f(void);
oid apply_Iulu_w9c(void);

141

void copyr21(void);

void hist_teste void);
void zoom_box(void);

void add_noise(filter_ cfg • cfg, int offset);
void get_config(filter_cfg' cfg);

int MIN3(int a, int b, int c);
int MAX3(int a, int b, int c);
int MIN4(int a, int b, int c, int d);
int MAX4(int a, int b, int c, int d);
int M1N8(int nI, int 02, int 03, int n4, int n5, int n6, int n7, int n8);
in! MAX8(int nI, int 02, int n3, int n4, int n5, inr n6, int n7, int n8);
int MEDIAN5(int a, int b, int c, int d, int e);
int MEDIAN9(int a, int b, int c, int d, int e, int f, int g, int h, int i);

void save_config(filter_cfg • fcfg);
void load_config(filter_cfg • fcfg);
char exists(char' name);

~Io%%%%%%%%%%%%%%%%%%%%%%%%%o/~~%o/~~%%o/~~o/~~%o/~~o/~~%o/~~~ %%%o/~~

%%%%%%%%%%%%%%%%%%%%%%%%

char· version = "vO. 13.";
char error_string[160] = "\0";

unsigned char prev_ array[I024];
Ull5igned char curr_array[I024];
unsigned char next_array[I024];
unsigned char new_array[1024];
unsigned char y[1024];
unsigned char u[1024];
unsigned char v[1024];
unsigned char 1[1024J;

l,fOlo%%%%%%%%%%%%%%%%%~'o~/ol%'}'o%%,%%~/o%~··~%~%(%%~/o~'o~o%J%%%%%(%%%%%%%%%

%%%%%~o%%%%%%%%%%%%%~>'OI%~/Oo/O%

int main(int argc. char •• argv)
{

filter_efg cfg~

int error~ out_x;
iD[i, key;
char narne[20];

if(!init_texr(» (
pUIS("Son)' you must be in 80 column text mode to run FILTER.");
return 1;

)

142

teXl_screen(SAVE);
atexit(filter_exit);

setrnem(&efg, sizeof\ filter_efg), 0);
efg.noise ~ TRUE;

load_eonfig(&efg);
get_config(&cfg);

if(arge ~2)
efg.vesa_mode = atoi(argv[1]);

else
efg.vesa_mode ~ OxIOI;

error = vsa_init(efg.vesa_mode);
if(error) (

sprintf\ error_smng, "Error initialising VESA mode %Xhln", cfg.vesa_mode);
switeh (error) {

ease I : streat(error_string, "Did You Load Correet VESA Driver (TSR) 0");
break;

ease 2: streat(error_string, "VESA BIOS Extensions (Driver) Not Loaded");
break;

ease 3 : streat(error_string, "Requested Video Mode Not Supported by this Card");
break;

ease 4: streat(error_string, "Mode Not an SVGA Mode Supported by this Card");
break;

ease 5: streat(error_string, "VESA Driver Not Returning Mode Information");
break;

ease 6 : streat(error_string, "TextllO Not Supported by your VESA BIOS TSR");
break;

}
return 1;

}

s!rupr(cfg.name);
load_tift(cfg.name, 0);

// image_stats(efg.name);
if(efg.noise) add_noise(&efg. 0);

switch (efg.filter) {
case 0: apply_average_5W();

break;
case I: apply_new_9W_eeiIO;

eopyr210;
apply-new_9W_floor();
load_tiff(efg.name. 0);
if (efg.noise) add_noise(&efg, 0);
break;

case 2 : apply-median_5W();
break;

case 3: apply_median_9W();
break;

case 4 : applyJulu_w5e():

143

eopyr210;
apply_lulu_w5f();
load_tiff(efg.name, 0);
if{cfg.noise) add_noise{ &efg, 0);
break;

ease 5 : apply_Iulu_wgeO;
eopyr210;
apply_lulu_w9f();
load_tiff(efg.name, 0);
if{efg.noise) add_noise{ &efg, 0);
break;

ease 6: applLlulu_2dvO;
break;

case 7 : applLsharpenO;
break;

ease 8 : hist_testO;
break;

key =toupper{ getehO);
switch (key) {

case'S' : for (i = 0; i < \000; i++) {
sprinrf(name, "DUMP%03d.TIF", i);
if (' exists(name)) break;

}
tf_save_file(0, 0, XResolution-l, YResolution-l, name);
sound{ 1000); delay{ 70);
sound{ 400); delay(25);
nosoundO;
if (!geteh()) getehO;
break;

ease 'Z' : zoom_boxO;
break;

}

while (kbhitO) getch{);

if (efg.save_before)
tf_save_file{ 0, 0, (unsigned)TF_Image Width- I. (unsigned)TF_fmageLength- I. efg.name_before);

if{ efg.save_after} {
out_x = XResolution» I;
tf_save_fiIe(out_x. 0, out_x+(unsigned)TF_ImageWidth-I. (unsigned)TF_lmageLength-I,

:fg.name_after);

l

save_eonfig(&efg);

return 0:

%%%%%~'o%%%~'o~·o%~'o~'o~-~%%~'O~'·OO/o%~-o%~/ot?.'o~/o~/oo"o?/O%~'Q%I~/O~-O%%%~-o%%~'-o%%~-'o%%~-o~o%~-o ~-o

WOO/Oo/OI%~O%o/O%)~/o~'o~'-O~'-Ol%~'O%~'o~/o~JO~'O%I%%~--'O

144

#define WX I 10
#define WY I 6
#define WX2 69
#define WY2 18

//%%%~'O° 10%%

%%%%%%%%%%%%%%%%%%%%%%%%

void get_config(filter_cfg • cfg)
{

int i;
chat ok = FALSE, pos = 0;
chat buffer[160];
chat' heading[] = { { " INPUT FILE :" },

{ " FILTER I PROCESS :" },
{ " ADD NOISE :" },
{" NOISE INTENSITY:" },
{ " NOISE TYPE :" },
{ " RANDOM SEED :" },
{ "SAVE 'BEFORE' IMAGE: FILENAME:"},
{ " SAVE 'AFTER' IMAGE: FILENAME:" j,
{" IS THIS CORRECT :" } };

chat • noise_str[] = { { "WHITE " }.
{"BLACK "}.
{ "WHITE & BLACK" },
{"ALL LEVELS "}};

char' filt_str[] = { { "AVERAGE 5W " },
{"NEW 9W "}.
{ "MEDIAN 5W ' }.
{ "MEDIAN 9W " }.
{ "LULU SW "},
{ "LULU 9W "},
{ "2D VERTICAL" }.
{"SHARPEN "},
{ "HISTOGRAM " } };

char' help_str[] ~ { ("TIF IMAGE TO LOAD"),
{ "O=A5W I=N9W 2=M5W 3=M9W 4=L5W 5~L9W 6~2DV 7=SHARP 8=HIST" }.
{ "Y/N" },
{ "0..32767" },
{ "0 = WHITE, 1 = BLACK, 2 = WHITE & BLACK. 3 = ALL LEVELS" }.
{ "0..32767" }.
{ "YiW }.
{ "OUTPUT TIF NAME" }.
{ "Y/N" }.
{ "OUTPUT TlF NAME" }.
{ "YiN" } };

block_fill(0, 0,79, 24,177, OxIF);
block_fill(0, 0,79, 0, 32, OxlF);
block_fill(0, 24, 79, 24, 32, OxlF);
block_clear(WXI, WYI, WX2, WY2);
box_draw(WXI, WYI, WX2, WY2, DBL_SrN);

for (i = 0; i < 8; i++)
outstringxy(WXl+3, WYI+I+i, heading[i]);

outstringxy(WX1+3, WY I+2+i, heading[i]);
sprintft: buffer, "LULU %s ' Non-Linear Filters", version);
outstringxy(2, 0, buffer);

do {
for (pos = 0; pos < 11; pos++) {

sprintft: buffer, "RESPONSE' %-65s", hetp_str[pos]);
outstringxy(1,24, buffer);
setmem(buffer, 160, 0);

switch (pos) {
case 0: string(WXI+25, WYI+pos+l, cfg->name, 33);

break;

case 1 : buffer[O] = cfg->filter+48;
do {

string(WXI+25, WYI+pos-l, buffer. I);
cfg->filter = buffer[0]-48;

) while (cfg->filter < 0 I1 cfg->filter > 8);
outstringxy(WX I +27, WYI+pos+l. filt_str[cfg->filter]);
break;

case 2 : if (cfg->noise) strcpy(buffer. "Y");
else strcpy(buffer. "N");

do {
string(WXI~25. WYI+pos-1, buffer. I);

} while (buffer[O] ,= 'V' && buffer[O] '= 'N');
if(buffer[O] = 'Y') cfg->noise ~ TRUE;

else {
cfg->noise = FALSE;
pos+=2;

}
break:

case 3: itoa(cfg->intensiry, buffer. 10):
do {

string(WX I+25, WYI+pos-l, buffer. 5);
cfg->intensiry = atoi(buffer);

} while (cfg->seed > 32767);
break;

case 4: buffer[O] = cfg->noise_rype-48;
do {

string(WXI~25. WYI-pos-I, buffer. I);

146

cfg->noise_type ~ buffer[O]-48;
I while (cfg->noise_type < 011 cfg->noise_type > 3);
outstringxy(WX I+27, WY I+pos+ I, noise_str[cfg->noise_type]);
break;

case 5 : ilOa(cfg->seed, buffer, 10);
do {

string(WXI+25, WYI+pos+I, buffer, 5);
cfg->seed ~ aloi(buffer);

} while (cfg->seed > 32767);
break;

case 6: if(cfg->save_before) strcpy(buffer, "Y");
else strcpy(buffer, "N");

do {
string(WX I+25, WY J+pos+ I, buffer, J);

) while (buffer[O] != 'Y' && buffer[O] != 'N');
if(buffer[O] = 'Y') cfg->save_before ~ TRUE;

else {
cfg->save_before = FALSE;
pos++;

I
break;

case 7: string(WXI+38, WYJ~pos. cfg->name_before. 20):
break;

case 8: if(cfg->save_after) strcpy(buffer, "Y");
else strcpy(buffer, "N");

do {
string(WX1+25, WYJ+pos. buffer, J);

I while (buffer[O] I~ 'Y' && buffer[O] !~ 'N'):
if (buffer[O] = 'V') cfg->save_after = TRUE:

else {
cfg->save_after ~ FALSE;
pos+--:-;

}
break:

case 9 : string(WX I-i"38. WY I-pos-1. cfg->name_after. 20):
break:

case 10: buffer[O] = 'N';
do {

string(WXl-i"25. WYH'pos, buffer. I);
I while (buffer[O] != 'V' && buffer[O] != 'N'):
if (buffer[Oj = 'Y') ok ~ TRUE:
break:,

1

)
} while ('ok);

147

~~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/~~%o/~~%%o/~~%o/~~%%%

%%%%%%%%%%%%%%%%%%%%%%%%

void copyr21(void)
{

inty,outy;

out_x = XResolution» I;

for (y ~ 0; y < IT_ ImageLength; yH) {
vsa~eu-asteUine(outy, (unsigned)(outy+TF_lmageWidth-I), y, u);
vsa_raster_Iine(O, (unsigned)(TF_lmageWidth-I), y, u);

}

}

~~%%%o/~~%%%

%%%%%%%%%%%%%%%%%%%%%%%%

void photo_negative(void)
{

unsigned char array[l024];
int x, Y. out_x;

out_x = XResolution» I;

for (y = 0; y <: TF_lmageLength; y++) {
vsa~et_raster_line(O, (unsigned)(TF_ImageWidth-l), y, array);

for (x ~ 0; x < TF_Image Width; x++)
array[x] = 255 - array[x];

vsa_rasterJine(outJ, (unsigned)(outy-TF_lmageWidth-I), y. array);
}

YO%%%%%%%%%%~'O%%%%O/G~'G%%l~iG%IO!Q~/O~iO~/O%%)~;O%%%(l/o~'o~iO~'O%~iO%%%%%~o%%%~/o%%%

\o/Go/Go/oo/GI:ljoo/o%%%%%%~'o%%%~/o%%%%%%

,id add_noise(filter_cfg • cfg, int offset)

msigned int i, max~
nax = cfg->intensity;

mod(cfg->seed);
witch (cfg->noise_type) (
case 0 ; vsa_set_calor{ TF_White);

break;
case I ; ysa_set_color{ TF_Black);

break;
case 1 : vsa_set_calor(TF_White);

max »= I;

148

for (i = 0; i < ma:<; i++)
vsa_setyixel((unsigned) offset+(randO % (TF_lmageWidth-I), (unsigned) (randO %

(TF_ImageLength-I»);
vsa_set_color(TF_Black);
break;

case 3 : for (i = 0; i < ma:<; i++) (
vsa_set_color(randO % 255);
vsa_setyixel((unsigned) offset+(randO % (TF_ImageWidth-I)), (unsigned) (randO %

(TF_ ImageLength-I»);
}
return;

}
for (i = 0; i < max; i++)

vsa_setyixel((unsigned) (offset+(rand() % (TF_ImageWidth-1 »), (unsigned) (randO %
(TF_lmageLength-I»);

I

V%%%%%%%%%%%%%%%%%%%%%%%%o/~~%%%%%%%%%%%%%%%%%%o/~~%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%

voidapply_average_5W(void)
{

intx, y, out_x, tva!;

ouex = XResolution» I;

for (y = I; Y< TF_ImageLength-l; y++) {
vsa..,get_rasterJine(O, (unsigned)(TF_ImageWidth-I), y-I, prey_array);
vsa..,get_raster_line(O, (unsigned)(TF_ImageWidth-I), y, curr_array);
vsa..,get_raster_Iine(O, (unsigned)(TF_lmageWidth-I), y+l, next_array);

for (x = I; x < TF_ImageWidth-I; x--) (
!Val = prev_array[x] + next_array[x];
!Val-= curr_array[x-I] ~ curr_array[x-l] - curr_array[x];
tval/=5;
new_array[x] = tval;

I

Vo%%O/o%~'O%%%%%%%)%%%%°;Q%%~'Q.%)~'O%.o/o%WoO/OO/oOIo%~/O~'O%I~'O%%l%%%%%%%%%%%o/G~'o

~'o%%%%%%~'cl%%%%~/o%%%%%%~''O%%1

e = nucleas of9 point window
abc A = MAX(a, b, d, e):
def C = MAX(b, c, e_ f);
ghi G = MAX(d, e, g, h);

I = MAX(e, f, h, i):

%%%q'Q%%~-h~_/O%~iGO'~~iO%O·'O~'o~,.OO/Q~OO/O%~'O~'O~'O~-o:'-oooO'o%%?-o~-o%~-ao'G~/o~'-o~/o'!-o%'!/o~-DPio%'?o~/o~/o~'Q~?o%

'~Q%%~>o%%l%~-o~/o%{%%~-Q~/Go/;;o"uo/C~'()OiQ%~-O

149

void apply_new_9W_ceil(void)
{

int x, y, outJ, IVal;
int a, b. c, ~ e, f, g, h. i;
int A, C, G, 1;

out_x = XResolution» 1;

for (y = 1; Y < TF_ImageLength-l; y++) (
vsa-.J:etJaster_line(O, (unsigned)(TF_ImageWidth-I), y-I, prey_array);
vS3-.J:etJaster_Iine(O, (unsigned)(TF_lmageWidth-I), y, curr_array);
vsa-.J:etJaster_line(O, (unsigned)(TF_ ImageWidth-I), y+ I, nexl_array);

for (x = I; x < TF_ImageWidth-l; x++) (
A ~ MIN4(prev_array[x-I], prev_array[x], cUIT_array[x-I], curr_array[x]);
C ~ MIN4(prey_array[x], prey_array[x+ I], CUIT_array[x], CUIT_array[xT I]);
G = MIN4(cUIT_array[x-I], curr_array[x], next_array[x-l], next_array[x]);
1= MIN4(cUIT_array[x], curr_array[x+I], nexl_array[X], nexl_array[x+l]);
new_array[x] = MAX4(A, C, G. I);

}

vsaJasterJine(out_x, (unsigned)(outJ+TF_ImageWidth-I), y, new_array);
}

I

~~%%%%%%%o/~~%%%o/~~%%o/~~%o/~~~~~%%%%%%o/~~~%%%%%%%%%%%%%%%%%%

%%%%%%%o/a%%%~%O/G~'G%o/oo/o%%%%(%%%

void applLnew_9W_floor(void)
{

int x, y, out_x, IVa!;
int a, b, c, d, e. f, g, h, i;
int A, C, G, I;

out_x ~ XResolulion» L

for (y ~ 1; y <TF_lmageLength-l; y++) {
vsa-.J:et_raslerJine(O, (unsigned)(TF_lmageWidth-I), y-I. prey_array);
Ysa....,get_raster_line(O, (unsigned)(TF_Image Width-I). y, CUIT_array);
vsa-.J:elJaster_line(O, (unsigned)(TF_Image Width-l), y-I, next_array);

for (x = I; x < TF_ImageWidth-l; x--) (
A = MAX4(prey_array[x-I], preY_array[x]. CUIT_array[x-I], CUIT_array[x]);
C = MAX4(prey_array[x]. prev_array[x-l], curr_array[x]. cUIT_array[xT i]);
G = MAX4(cUIT_array[x-I]. cUIT_array[x]. next_array[x-I]. neXl_array[x]);
1= MAX4(cuIT_array[x]. curr_array[x-l]. next_array[x]. nexl_array[x_l]);
new_array[x] = MIN4(A, C. G. I):

I

DU

V%%%
%%%%%%%%%%%%%%%%%%%%%%%%

void apply_average_9W(void)
{

int x, Y. out_x, tval~

out_x = XResolution» I;

for (y ~ I; Y< TF_ImageLength-l; yh) {
vsa~etJaster_line(O, (unsigned)(TF_lmageWidth- I), y- I, prev_array);
vsa_get_raster_line(O, (unsigned)(TF_lmageWidth- I), y, curr_array);
vsa~et_raster_line(O, (unsigned)(TF_ImageWidth-l), y+ I, next_array);

for (x = 1; x <TF_lmageWidth-l; x++) {
tval ~ prey_array(x] + prey_array(x- I] + prey_array(x+ I];
tval- next_array[x] + next_array[x-I] + next_array[x+I];
tval +~ curr_array(x-l] + curr_array[x+l] + curr_array[x];
tval/= 9;
new_array[x] = tval;

}

vsa_raster_line(out_x, (unsigned)(ollt_x+TF_ImageWidth-I), y, new_array);
}

}

1;r%%%%%%%%~!Q%o/O~/O%%~'Gl%(%%IO/O~/O~/\}O/GO/o~/Cr~iC%~/OO/o%%~/o~?o(%%~/o<;"o%%Wo~'o%~/o%Q/O(~/O~/o%~/O~/ool00/0

%%%%%%%%%%%%%%%%%%%%%%%%

void apply_sharpen(void)
{

float IMP_Kernel[9];
int ij,m,n,hf_kern, index, "idth,height.pixel,x l,y I ,x2,y2:
unsigned char array [71 68];
float f-'pix;

IMP_Kernel[O] = 0,0:
IMP_Kernel[l] = -0,5;
IMP_Kernel [2] = 0,0;
IMP_Kernel[3] = -05;
IMP_Kemel[4] = 3,0;
IMP_Kemel[5] ~ -05;
IMP_Kemel[6] ~ 0,0:
IMP Kernel[?] = -05;
IMP_Kernel[8] ~ 0,0;

xl = (int)(TF_ImageWidth-I);
yl = (int)(TF_ImageLength-I):
xl = lO--(unsigned)TF_ImageWidth:
y2 =0;

height ~ yl+l;

hCkern ~3/2;

for (j=(); j < height; jH) {
for (i = 0; i < 3; i++) {

index = MAXVAL(j+i-hCkern, 0);
index = MINVAL(index, y I);
vsa~et_raster_line(0, xl, index, array+i*width);

}

for (i = 0; i < width; i++) {
fyix~O.O;

for (n ~ 0; n < 3; n++)
for (m ~ 0; m < 3; m++) {

index ~ MAXVAL(i+m-hf_kem,O);
index ~ MINVAL(index,width-I);
index = index +n * width:
fyix +~ «tloat)array[index)) * IMP_Kemel[m-n*3];

}
fyix ~ MAXVAL(fyix, 0.0);
pixel ~ (unsigned char) MINVAL(fyix. 255.0);

vsa_set_color(pixel);
vsa_setyixel(i+x2, j+y2);

}
}

}

!jOlo%%o/O%(%I%%O/O~/OI%%~/O%O/O~''O%%~/O%~/O%%%~''O~O%%%%%~·'O~·o%%~/o%%Oio~·Q%%~·'O%~·o%%%%I%~/o

%%%%%%%%%%%%%%%%%%%(Vo%%%%

void apply_Iulu_w5f(void)
{

out_x = XResolution » I;

for (y = I; Y< TF_lmageLength-l; y-~) {
vsa~et_raster_line(O. (unsigned)(TF_lmageWidth-l). y-I. pre"_aITay):
vsa~et_raster_line(O, (unsigned)(TF_ImageWidth-I). y. CUIT_aITay):
vsa~et_raster _line(O, (unsigned)(TF_ImageWidth-I), y- I. next_array):
memcpy(new_array, cUIT_array, 1024):

for (x ~ I; x < TF_lmageWidth-l: x~~) {
new_array[x] ~ MAX4(MINVAl(cUIT_array[x-I], cUIT_array[x] i.

MINVAL(cUIT_array[x-l], cUIT_array[x]),
MINVAl(prev_array[x], cUIT_array[x]),
MINVAl(next_array[x], cUIT_array[x]»):

vsa_raster_linerout_x. (unsigned)(out_x~TF_Image Width-I), y. new_array):
}

152

}

fi%%%
%%%%%%%%%%%%%%%%%%%%%%%%

void applLlulu_w5c(void)
{

OUl_X = XResolution» I;

for (y ~ I; y < TF_ImageLength-l ; y++) {
vsa-lletJasteUine(O, (unsigned)(TF_ImageWidth-I), y-I, prev_array);
vsa-lletJaster_line(O, (unsigned)(TF_ImageWidth-I), y, CUIT_array);
vsa-lletJaster_line(O, (unsigned)(TF_ImageWidth-I), y+ I, next_array);
memcpy(new_array, cUIT_array, 1024);

for (x ~ I; x < TF_ImageWidth-l; x++) {
new_array[x] = MIN4(MAXVAL(cUIT_array[x-l], cUIT_array[x]),

MAXVAL(CUIT_array[xT I], CUIT_array[x]),
MAXVAL(prev_array[x], cUIT_aITay[x]),
MAXVAL(next_array[x], cUIT_aITay[x]»;

vsaJaster_line(out_x, (unsigned)(out_x+TF_ImageWidth-I), y, new_aITay);

l

/1%%%%%~/o%%%%%~'o%%%%%~'o%~to%%%~-'O~/o%%O/o~o~/o%%%~'O%~'O%~/O~/O~'o%%%%%~/o%%%%%

%%%%0/0%0/0%%%%0/0%'%%%%%'%%%'%%%

void applyJulu_w9f(void)
{

OU!_X == XResolution» 1:

for(y= I;y <TF_lmageLength-l; yT-) {
vsa-lletJaster_line(O, (unsigned)(TF_lmageWidth-I), y-1. prev_array);
vsa-lletJaster_line(O, (unsigned)(TF_ImageWidth-I), y, CUIT_array):
vsa-lletJaster_line(O, (unsigned)(TF_ImageWidth-I), y-I, next_array):
memcpy(new_array, cUIT_array, 1024);

for (x ~ I: x < TF_lmageWidth-1; XT+) {
new_array[x] ~ MAX8(MINVAL(cUIT_array[x-I], cUIT_array[x]),

MINVAL(cUIT_array[x-I], cUIT_array[x]),
MINVAL(prev_array[x], cUIT_array[x]),
MINVAL(prev_array[x-I], cUIT_array[x]),
MINVAL(prev_array[x-I], cUIT_array[x]),
MINVAL(next_array[x], cUIT_array[x]),
MINVAL(next_array[x-I], cUIT_array[x]),
MI1\VAL(next_array[x-Ij, cUIT_array[x] »:

vsa_raster_line(oUI_x, (unsigned)(out_x+TF_ImageWidth-I), y, new_array);
}

}

V%%%
%%%%%%%%%%%%%%%%%%%%%%%%

voidapply_lulu_w9c(void)
{

OUI_X = XResolution» I;

for (y ~ I; Y < TF_ImageLength-l ; y++) {
vsa~et_raster_liner0, (unsigned)(TF_ImageWidth-I), y-I, prey_array);
vsa~et_raster_line(O, (unsigned)(TF_ImageWidth-I), y, CUIT_array);
vsa~et_raster_line(O, (unsigned)(TF_ImageWidth-I), y+ I, nexl_array);
memcpy(new_array, cUIT_array, 1024);

for (x = I; x < TF_lmageWidth-l; x++) {
new_array[x] = MIN8(MAXYAL(cUIT_array[x-I], cUIT_array[x]),

MAXYAL(cUIT_aITay[x~l]. cUIT_array[x]),
MAXYAL(prev_array[x]. CUIT_array[x]),
MAXYAL(prev_array[x-l], cUIT_array[x]),
MAXYAL(prev_aITay[x+ I], CUIT_array[x]),
MAXY AL(nexl_array[x], CUIT_array[x]),
MAXYAL(next_array[x-I], cUIT_array[x]),
MAXYAL(next_array[x~IJ, cUIT_array[x]);

)

vsaJaster_line(out_x, (unsigned)(out_x-TF_lmageWidth-I). y, new_array):
}

}

/jf%o/O%%%o/O%%o/O%o/O%~/O%%%%%%~/OO_O%%O:/O~(O%%~·O%%~-'O%%%O-o~o%~o~-'o%%%%%~-'O%%~/G%~/o%

%%%%%lo/O%%%%%o/O%I~"O%~'O%%I%%q'O%I%~-O

void appILmedian_5W(void)
{

int x, Y. out_x;
in! west, east north. south. nucleus:

out_x = XResolution » I:

for(y= l;y<TF_ImageLength-I-l:y--) {
vsa~et_rasterJineiO. (unsigned)(TF_ImageWidth- I), y-I. prev_array):
vsa~etJaster_Iine(O. (unsigned)(TF_lmageWidth-l), y. CUIT arra)):
vsa~et_raster_line(O. (unsigned)(TF_Image Width- I). y-l, n~xt_array);

154

for (x ~ I; x < TF~lmageWidth-l; x++) {
west ~ cUTT_array[x-l];
east ~ cUTT_array[x+l];
north ~ prey_array[x];
south ~ next_array[x];
nucleus = cUTT_array[x];
new_array[x] = MEDlAN5(west, east, north, south, nucleus);

}

vsaJaster~line(out~x, (unsigned)(out_x~TF_ImageWidth-l)-1, y, new_array);
}

}

V%%%
%%%%%%%%%%%%%%%%%%%%%%%%

void apply-median~9W(void)
{

out_x = XResolution » I:

for (y = I; Y < TF_lmageLength-l-l; y++) {
vsa~etJaster~line(O, (unsigned)(TF~lmageWidth-I), y-l, preY_array);
vsa~etJaster~line(O, (unsigned)(TF_lmageWidth-I), y, cUTT_array);
vsa~etJaster_line(O, (unsigned)(TF_lmageWidth-I), y+ J, next_array);

for (x ~ J; x < TF_lmageWidth-l; x++) {
new_array[x] ~ MEDlAN9(cUTT_aTTay[x-I], cUTT_array[x], cUTT_array[xTl],

prey~array[x-I], prey~array[x], prey_aTTay[x~ 1],
next_array[x-l], next_array[x], next~array[x+ I]);

}

vsaJaster_Iine(out_x, (unsigned)(out~x-TF~lmageWidth- J)-1, y, new_array);
}

}

ljO/Oo/Oo/O%%%O/Oo/O%C!'OI%o/O~'O~/OO'O%%I%%~-OO-O%%~/Oc;-O~/o~-o(%c;/oc;'oc;/o%JO/Oc;/O%%%(%%%%%%%c;·"O%c;'O%%c;'O%

%%%%%%%%%%%%%c;'-oC;/oC;/oC;/oC;-o%c;·o%.%%c;·o

void hist_test(void)
{

unsigned char rline[1 024];
int map[256];
int x, y, out_x, max:
double scale~vat
char buffer[60];

out_x = XResolution » I;

setrnem(map, 256*sizeof(in!), 0);

for (y = 0; y < TF~lmageLength; y~)
vsa_getJaster_line(0, (unsigned) (TF~lmageWidth-I), y, rline);

155

for (x ~ 0; x < TF_ImageWidth; x++)
map(rline(x]]++;

}

// Gel max val
for (x ~ 0, max ~ -I ; x < 256; x++)

if(map[x] > max) max ~ map[x];
scale_val ~ (double)(YResolulion-170)/(double)max;

vsa_sel_color(TF_Black);
vsa_move_lo(outJ, 0);
vsaJecl_fill((unsigned) (out_x+TF_Image Width), (unsigned) YResolution);

y ~ (unsigned) (TF_ImageLength - (long)«tloal)map[O]*scale_val));
vsa_sel_color(TF_White);
vsa_move_to{ outJ, y - 20);
for(x= l;x<256;x++) {

y ~ (unsigned) (TF_ImageLength - (Iong)«tloat)map[x]*scale_val));
vsa_line_lo(out_x + x, Y- 20);

}

for (x = 0; x < 256; x++) {
vsa_sel_color(x);
vsa_v_Iine(out_x + x, (unsigned) TF_lmageLength - 15, (unsigned) (TF_ImageLength + 15));

sprinrt(buffer, "SCALE FACTOR: %02.05f', scale_val);
vsa_wrile_string(27, out_xl8. TF_White. buffer);

}

//O/OO/O%%~/O%%%%~/O%~/O~'O%OO%%%%%I~/OO/O%IO/O%%,}~"O~/o~'o~'O%~,'O(%%~'o~o%o/'O~lo%%~/o%%~'O%~O%II%%%

%%%%~%%?--o~'D?-'D~/O<!'O%%~/O~'O%I%%%'?"o%~"O~fO~'-o

void apply_Iulu_2dv(void!
{

int max_x, max_y, out_x. count.j;
unsigned char y[1024J;
unsigned char u[1024J;
unsigned char v[1 024J;
unsigned char 1(1024]:

OUI_X ~ XResolution» I;
max_v ~ (int) TF_ImageLength;
max_x ~ (int) TF_ImageWidth;

for (j ~ 0; j < max-,,'; j--) {
vsa~etJaster-'ine(O. (unsigned)(TF_Image Width-I), j, y!:

/*

Calculate the lower bound. I(x)
for a \~=3 for the vector y[l.i

156

for (count = 0; count <~ max_x; count~+)
u[count] = MIN3(y[count-l], y[count], y[count+ I]);

for (count = 0; count <~ maxJ; count+-;-)
v[count] = MAX3(u[count-I], u[count], u[count+l]);

for (count = 0; count <~ max_x; count++)
u[count] = MAX3(v[count-I],v[count],v[count+ 1]);

for (count ~ 0; count <= max_x; count~+)
l[count] = MIN3(u[count-I], u[count], u[count+l));

/*
END OF LOWER BOUND
*/

/*
3. Calculate the upper bound, v[]
for a w=3 for the vector y[]
*/

for (count ~ 0; count <~ max_x; count~-)
u[count] =MAX3(y[count-I], y[count], y[count~I]);

for (count = 0; count <~ max_x; count--)
v[count] = MIN3(u[count-I], u[count], u[count+I]);

for (count = 0; count <= max_x; count-+)
u[count] = MlN3(v[count-I], v[count], v[count-I]);

for (count = 0; count <~ max_x; count~+)
v[count] = MAX3(u[count-I]. u[count]. u[count-I]);

;*
END OF UPPER BOUND
*/

/.

5. Compute the mean m(i)~avg{I(i).v(i)}

*/

for (count = 0: count <= rnax_x: CQunt--)
y[count] ~ (I[count] ~ v[count])>> I;

vsa_raster_line(out_x, out_x"'-max_x,j. y):
}

}

!jO!O%~-'O%%I%%~/o%~-'O%I~'O%~/O~/O%I~"O%I~--O~'O%%%~/O%~-'"O(%%~:0~/~%%,~/n~-'Q~/o%%~/r/~icWo~/oO;(o~!ol%OA}%~'o'%%'Yo%

%%%%%%%%~iO~/O~/o~-'o~oO;o%%O;"o~'o?oO;'oO;/o%%%

157

V%%%%%%%%%%o/~~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%

void zoom_box(void)
{

char quit ~ FALSE, left ~ FALSE;
byte key, inc ~ I;
intx, y, width, height, i, xl, yl, zoom_x, zoomy;
int min_x, max_x, min...Y, max3;
char save[II][ll];
char zsave[lOl][lOI];

min_x ~ 0; miny ~ 0;
max_x ~ (int)TF_ImageWidth-I ;
maxy ~ (int)TF_ImageLength-l;

x ~ 0; y~ 0;
height ~ 10; width ~ 10;

zoom_x ~ (int)«XResolution» I) ~ (TF_lmageWidth» I) - 50);
zoomy ~ (int)«TF_ImageLength» I) - 50);

for (i ~ 0; i < 101; i+~)
vsa-lietJaster_liner zoomJ, zoom_x+' 00, zoomy+i, (b}1e*)zsave[i]);

do {
for (i ~ 0; i < 1I; i++)

vsa-lietJaster_line(x, x+width, y+i, (byte*)save[i]);

for(yl ~O;yl <height;yl++)
for (xl ~O; xl < width; xl++) {

vsa_set_color(save[y I][x IJ);
vsa_move_to(zoomJ-xl*IO, zoom_v-yl*IO);
vsaJect_fill(zoom_x-(xl~l)*lO,zoom_v-(yl-I)*IO);

}

vsa_move_to(x, l');
vsa_set_color(TF_White);
vsaJect(x+width, y~height);

key ~ (byte) getchO:

for (i ~ 0; i < 11: i~-)
vsa_raster_line(x, x-width, 1'-i, (b,te*)save[i]):

if('key) {
key ~ (byte) getchO:
switch (key) {

case UP : y-~inc:
break;

case DN : y..:,...=inc:
break:

case LT : x-=inc:

158

break:
case RT : x+=inc;

break:
}

if(y < miny)y = miny;
if (Y+ height> maxy) y = maxy - height:
jf(x < min_x)x ~ minJ;
if(x + width> max_x) x = max_x - width;

} else (
switch (toupper(key)) (

case 9 : if (left) left = 0;
else left = I:

for (i = 0: i < 101: i++)
vsa_raster_Iine(zoom_x, zoom_x+100, zoomy+i, (byte*)zsave[i]);

switch (left) (
case 0: minJ = 0; miny = 0;

max_x = (int)TF_lmageWidth-l;
maxy = (int)TF_lmageLength-l;
zoom_x = (int)«XReso!ution» !) + (TF_ImageWidth » I) - 50);
zoomy = (im)«TF~lmageLength» I) - 50):
x -= (XResolution» I);
break;

case I : min_x = (XResolurion » I); miny = 0;
max~x = (int) (min_x+TF_lmageWidth-I);
maxy = (int)TF~lmageLength-l;
zoom_x = (intX(TF_lmageWidth» I) - 50):
zoomy =(im)((TF_lmageLength» I) - 50):
x -= (XResolution » I):
break:

}
for (i = 0: i < 101: i-+)

ysa get_rascer_line(loom_x. zoom_X-i-100. zoom..J'+i. (byte·)zsave(i]):
case '+' :
case '=' : inc-;.-;..:

if(inc > 10) inc ~ 10:
break:

case '.' : inc-~

if(inc < I) inc = I:
break:

case 27 :
case 'Q':
case 'X' : quit = TRUE:

break:
}

}

} while (!quit):

//~Io%l%%~"O~/o~'at??ooo~,o~,oa'O~O~"a~'o~'o~'o%~'-O~'o~.-6~/O~'O%~-'o~-o'?"o~o~--o~'o~-o%%%~/o~'oo·o~-o'?/o~o~/O~'O%i%<!/O%'?'o~'o~%'?"o'%

%%%~/o~/o~/o~/o%Oo%~-o~-o~-'oo·-a~'a%%~/o~/o~6~··o°.'o(%0:'0

159

void load_tiff(char' filename, unsigned x)
{

if(teopen_file(filename) = -1) (
sprintf(error_string, "Error loading TIF image %5", filename);
exit(255);

}

if(tf-.lleUile_info() = I) (
strepy(error_string, "Not a valid TIF image");
exit(255);

}

if{ tfJead_ifdO = I) {
tf_close_fileO;
strcpy(error_string, "This TIF format not supported");
exit(255);

}

tf_display_image(x, 0);
tf_set-'prime_colorsO;
tf_close_fiIeO;

}

~~%%

%%%%%%%%%%%%%%%%o/~~%%%%%%

void filter_exit(void)
(

vsa_set_svga_mode(Ox3);
text_screen(RESTORE):
printf("LULU %s,n", version);

if(error_string[O]) (
puts("A fatal error has occurred,"):
puts(error_string);

}

!r%%o/O~O%l~O~/O%%%~'Oo/O%%%)%%)%%%I%%o/O%%I%)~/O~/O%~'O%)%~"'Q%%~'OI%%~'O~'o%o/O%o/O%%I%%%I%%

%%%%%%%%%%o/O%~/o?''O%%%%%%)~/D~'o%~'O

void image_stats(char' name)
{

char textfl 00J;
char • cmyrr.
int bpp, y, x;

bpp = TF_BitsPerSample[O]:
switch (TF_Photometriclnterpretation)

case 0 :

160

case I : cmytr = "Silevel i Greyscale";
break;

case 2 ; cmytr = "True Calor"; bpp ~ 24;
break;

case 3: cmytr = "Palette";
break;

default; cmytr ~ "Unknown";
break;

}

y ~ (int) «TF_ImageLength »2) I YCharSize) + 1;
x ~ (int)(XResolution» 1) I XCharSize) + I;

ysa_write_string(y++, x, TF_White, "TIF INFORMATION");
sprintf(text, "TIF name : %s", name);
vsa_write_string(y++, x, TF_White, text);
sprint[(text, "Width : %d", TF_ImageWidth);
vsa_write_string(y++, x, TF_White, text);
sprint[(text, "Length : %d ", TF_lmageLength);
vsa_write_string(y++, x, TF_White, text);
sprintf(text, "Calor model: %s", cmytr);
vsa_write_string(y++, x, TF_White, text);
sprint[(text, "Sitslpixel : o/od", bpp);
ysa_write_string(y++, x, TF_White, text);
vsa_write_string(++y, x, TF_White, "Press a key to process image .. ");

}

~~%%

%%%o/~~%%%%%%%%%%%%%%%%%%%

int MIN3(int a, int b, int c)
{

if(MINVAL(a,b) < c) return MINVAL(a.b);
return c;

}

int MAX3(int a, int b. int C)

{
if (MAXVAL(a,b) > c) return MAXVAL(a.b);
return c;

}

int MIN4(int a, int b, int C, int d)
{

if(MINVAL(a,b) < MINVAL(c.d» return MINVAL(a,b):
return MINVAL(c,d);

}

int MAX4(int a, int b, int C. int d)
{

if (MAXVAL(a.b) > MAXVAl(c,d) return MAXVAL(a.b):
return MAXVAl(c.d);

}

161

int MIN8(int nI, int 02, int n3, int n4, int n5, int n6, int n7, int n8)
{

int temp I, temp2;

if(MINVAL(nl,n2) < MINVAL(n3,n4)) templ ~ MINVAL(nI,n2);
else temp1 = MINVAL(n3,n4);

if (MINVAL(n5,n6) < MINVAL(n7,n8)) temp2 = MINVAL(n5,n6);
else temp2 = MINVAL(n7,n8);

return MINVAL(temp I, temp2);
}

int MAX8(int nI, int 02, int n3, iot n4, iot n5, iot n6, iot n7, int n8)
{

int temp I, temp2;

if(MAXVAL(nI,n2) > MAXVAL(n3,n4)) temp I ~ MAXVAL(nl,n2);
else temp I = MAXVAL(n3,n4);

if (MAXVAL(n5,n6) > MAXVAL(n7,n8)) temp2 = MAXVAL(n5,n6);
else temp2 = MAXVAL(n7,n8);

return MAXVAL(temp I, temp2);
}

1;%%%%%%%%%~'O~/O%%%~'O%%~·-o%%%%%%%~/o%~/o%%%%~~%%~'Ol%~O%%%%%O/O%%o/O%%%%

%%%%%%%%C%%%%%%%~'o%%%%(Vo~'o%%

int MEDlAN5(iot a. iot b. iot c, iot d. iot e)
{

int source[5];
int dest[5];
int i,j, s, s_nd';

5Ource[O] = a; source[I] = b;
5Ource[2] = c; source[3] = d;
source[4] = e;

for (i = 0; i < 5; i~) {

forG = 0, s= 999;j < 5;j~) {
if (source(j]'= -I) {

if(source(j] < s) {
s = source(j];
s_ndx = j;

}
}

}

dest[i] = s;
5Ource[s_ndx] ~ -I;

162

}

return dest[2]; II the median
}

~~%%

%%%%%%%%%%%%%%%%%%%%%%%%

int MEDlAN9(int a, int b, int e, int d, int e, int f, int g, int h, int i)
{

int soucee[9J;
int dest[9];
int k, j, s, s_n<lx;

souree[OJ = a; souree[l] =b;
souceef2J = e; soureef3J =d;
souree[4J = e; souree[5] = f;
soureef6J = g; souree[?] = h;
souree[8J = i;

for (k = 0; k < 9; k++) (

for U= 0, s ~ 999; j < 9; j++) {
if(source(j] != - I) {

if (source[j] < s) {
s = souree[j];
s_ndx~j;

}

dest[k] = s;
souree[s_ndx] ~ -I;

I

return dest[4]; the median

I

/!'%%%%o/Do/O%%o,'O%~/O%o,ll)~'O%)%?'O?''O?''O~'O~/Q?/O?'D%)?'O%o.·o~'o%)o,'oo.ooD~'Oo'O~iQo,/o%o,-~%o,-'Oo,--oo,/o~/()%%l%%%?/00,.10%

%%%o/O%%o,/O%o/O%O/o%%%o,'o%%%o,-oo,/OI%o,/O~'O%1

void save_eonfig(filter~efg • fefg)
{

F1LE • stream;

stream ~ fopen("FILTER.CfG", "wb");
if(stream = NUll) (

strcpy(error_string, "Error creating FllTER.CFG");
exit(I);

I

&Tire(fefg, sizeot(filter_efg). 1. stream }:

163

fclose(stream);
}

fi%%%%%%%%%%%%%%%%%%%o/~~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%o/~~%%

void load_config(filter_cfg • fefg)
{

FILE • stream;

stream = fopen("FILTER.CFG", "rb");
if(stream = NULL) return; II Not there so return

fread(fefg, sizeof(filter_efg), I, stream);

fclose(stream);
}

1!'%°,lo%%'%o/()%%%%%%O/o%%%%O/O%%~/O%%%%%%%%%%I%%%%%o/O%%%%%0/00/00/0%%%%%%

%%%%%%%%%%%%%%%%%~1J?'~%%%?/a%

char exists(char' name)
{

FILE • stream;
stream = fopen(name, "rh");
if (stream = NULL) return FALSE;
fclose(stream);
return TRUE;

}

Ijf%o/O%I%O/Oo/Oo/O%O;()%?/O~/O%~'O~/O~/o%%~/o~'o~/o%O/o(%~'o~"o%%~/o%~/o~'o%~/o~'o%~··'O%%q'o~/o%·%%)·%%q'O~/Of%~'o%

%%%%%%o/O~/O%%I%)O/O~/OI%?''O~/O%%I?!O~'·o%~·OO·oqio

A-6 Listing of analysis.c

/jOIO%%%%O/Oo/O%%~iO%I~/O?/O~'O?'-O%~/OO-Ot?-oq/OO-O?'OO/o~6%O_'oO-o?o~--o%%~-oq-o%~,oQ-O(%O/OO-O%%%I%o/O~/O%%%%%%

~o%O/o~'O?/oO/o%%~~~o~o~'O?/o~~qo~~?~~o~~~o~oooooo~

#include <io.h>
#include <stdio.h>
#include <conio.h>
#include <feml.h>
#include <math.h>
#include <Iimits.h>
#include <stdlib.h>
#include <string.h>
#include qime.h>
#include <etype.h>
#include <diLh>

164

#include <rnern.h>
#include <dos.h>
#include "tiff.h"
#include "vsa.h"
#include uscreen.h"

~~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%~~%%%%%%%W~%%%

%%%%%%%%%%%%%%%%%%%%%%%%

#define MINVAL(x,y) «x)«y)?(x):(y))
#define MAXVAL(x.y) «x»(y)?(x):(y»

fi%%%
%%%o/~~%%%%%%%%%%%%%%%%%%%

If ConfiglOptions input before processing can begin

typedef struct {
char file_l [MAXPATH];
char file_2[MAXPATH];
int vesa_mode;
analysis_efg;

/r%%%%%%%%%%O;O%%%%%%O/O%~'O%I%O/O%%)%O/O%~'O%~/O%%%~/0%%%1%%%%%0/0%%%%%%0/0

%%%%%%%%%%%%%%%%%%'%%~/o(%%~/o

extern unsigned _stklen ~ 15000U:

//%%o/O%%%~/Oo/O%%l'lO%o/O%~''O%%o/O%%%%%%%~/O%~''O%%~iO~/OI%%%~/o%~!o%%)%%%I%%(%%%%%%

%~o%%%%%%%%~o~/o%%%%~'o%~o~'o~/O~'O%I%

unsigned char Jar TF_B}1e_Bufj4096];
unsigned long TF_ImageWidth. TF_lrnageLenglh;
unsigned Jar TF_BitsPerSarnple[3].TF_NumJ fd:
unsigned TF_ResolutionUnit.TF_SarnplesPerPixeJ:
unsigned TF_PholOmerricInterpretation:
unsigned long IT_XResolution_int.TF_X Resolution_frac:
unsigned long TF_ YResolution_int.TF_YResolution_frac;
unsigned TF_Black.TF_Red.TF_Orange,TF_Yellow.TF_Green;
unsigned IT_Aqua.TF_Blue,TF_ Violet.TF_ White:
unsigned XResolution. YResolution. XCharResolution. YCharResolution:
unsigned char XCharSize. YCharSize:
unsigned char BitsPerPixel:

/l%%%%%%~/o%~/o%~/o%~/o~''O~/o~-'oO/o~-'o~-o~'oO,o%~'O~-Q~'O~iO%~OOO~'o~-oO'o%~-o~--o%~/O~'-OI%%%~iO~'O%~-o%~/o%%~/o%

%%%%%%~'o%%~-o%O-o%%lO/O~iO%O/O%~Jo~-'oO,oo,-oo,-o

void load_riff(char' filenarne. unsigned x):
void analysis_exil(void):
void image_stats(char * name);

void histogram_l(int out_x. long' map):
void histogram_2(int out~x. long· map);
void histogram_1_[s(long" map);

165

void get_config(analysis_cfg * cfg);

void save_config(analysis_efg * fefg);
void load_config(analysis_cfg * fcfg);
char exists(char * name);

void subtract_histos(void);
void overlay_histos(void);

void clear_screen(void);
void beeeeeep(void);
void display_help(void);

void write_map(char * name, long' map);

void subtract_images(void);

~~%%

%%%%%%%%%%%%%%%%%%%%%%%%

char error_string[160] = "10";
long map_I [256];
long map_2[256];
double scale_val;
char * version = "vO.l ";

11%%%O/o%%%%%%~/o(%O/O%~/O%~·-o%%~i~%~/OO/O%%~/O~/O~/O~/o%%~(o%%%%%~·'O%%(%%%%%%%%%%%

%%%%%%%~/o~·'O%%%%%%%%%~'o%o/Q~/o%'%

int main(int argc, char ** argv)
{

analysis_efg efg;
int error;
byte key, quit = FALSE:
char buffer[80];
int i:

if(linit_textO) {
puts("SoO}' you must be in 80 column text mode to run ANALYSIS.");
return I:

l

text_screen(SAVE);
atexit(analysis_exit):

seonem(&cfg, sizeof{ analysis_cfg). 0):

10ad_config(&cfg);
get_config(&cfg):

if(argc=2)
cfg.vesa_mode = atoi(argv[I]):

166

else
cfg.vesa_mode ~ OxIOI;

error = vsa_init(efg.vesa_mode);
if(error) {

sprintf(error_string, "Error initialising VESA mode %Xhln", efg.vesa_mode);
switch (error) {

case 1 : streat(error_string, "Did You Load Correct VESA Driver (TSR) ?");
break;

case 2 : streat(error_string, "VESA BIOS Extensions (Driver) Not Loaded");
break;

case 3: strcat(error_string, "Requested Video Mode Not Supported by this Card");
break;

case 4 : streat(error_string, "Mode Not an SVGA Mode Supported by this Card");
break:

case 5: strcat(error_string, "VESA Driver Not Returning Mode Information");
break:

case 6 : strcat(error_string, "Text 1/0 Not Supported by your VESA BIOS TSR");
break;

I
return I;

I

strupr(efg.file_I):
Strllpr(efg.file_2);
ungeteh('H');

do {
key ~ (byte) getehO;
if(!key) {

key ~ (b)1e) getehO; 1* Clear KBD buffer *
switch (key) {

case 120:
write_map(efg.file_1. map_l):
beeeeeepO:
break:

case 121 :
write_map(efg.file_2. map_2):
beeeeeepO:
break:

case FI
displaLhelpO:
break:

I
I else {

switch (key) {
case 'I' :

histograrn_2Js(map_1):
break:

case '1' :
histogram_2Js(map_2):
break:

case 'd' :

167

case'D' :
clear_sereenO;
load_tiff(efg.tile_I. 0);
load_tiff(efg.tile_2, XResolution» I);
break;

case 'h' :
case 'H' :

clear_sereenO;
load_tiff(efg.tile_l, 0);
load_tiff(efg.file_2, XResolution» I);
histogram_2(0, map_I);
histogram_2(XResolution» I, map_2);
break;

case '=':
clear_sereenO;
load_tiff(cfg.tile_l, 0);
load_tiff(efg.file_2, XResolution»!);
subtraet_imagesO;
break;

case '-' :
subtraet_histosO;
break;

case '0':

case '0':
overlay-histosO;
break;

case's' :
case '5':

for (i = 0; i < 1000; in-) {
sprintf(buffer, "DUMPO/003d.TI F", i);
if ('exists(buffer)) break;

I
tf_save_file(O. 0, XResolurion-l. YResolution-l, buffer);
beeeeeepO;
break;

case 27 :
quit = TRUE;
break;

)
)

} while ('quit);

save_eonfig(&efg);

return 0;
)

!/o/O%o/O%%%%)~'OO''O~/O~/O%~''O%%~'O%~/O~'O~'O~'O%%)O,-,O%%%~'o~iD%%~"o~'o%~'o%~/o~'o%%%~/o%~'o~'o%%%%%%

%~/o%%%%~'o~'D%%'~'o~'o%%~/o%%~'o~"Q%%~/o~'o%,

void subtraet_images(void)
{

char IUine[1024]. rt_line[1024]. nJine[1024];

168

int x,y,out_x = XResolution» I;

for (y = 0; y < TF_ImageLength; y++) {
vsa-.J\euasterJine(0, TF_ImageWidth-I, (unsigned)y, lUine);
vsa-.J\etJaster_line(out_x, out_x+TF_ImageWidth-I, (unsigned)y, rtJine);
for (x ~ 0; x < TF_ImageLength; x++)

n_Iine[x] ~ rt_Iine[x]-IUine[x];
vsa_raster_liner out_x, out_x+TF_ImageWidth-I, (unsigned)y, n_line);

)
}

V%%%
%%%%%%%%%%%%%%%%%%%%%%%%

void overlay_histos(void)
{

int x, y;
long max;
char buffer[80];

clear_screenO;
strcpy(buffer, "OVERLAY HISTOGRAMS");
vsa_write_string(0, 1, TF_White, buffer);

f' GET MAXIMUM VALUE 'f
for (x ~ 0, max ~ -I ; x < 256; x++) {

if(map_l [x] > ma,) max ~ map_l[x];
if(map_2[x] > ma,) ma, ~ map_2[x];

}

scale_val ~ (double)(YResolution-170),(double)max:

f' MAP I ./
vsa_set_color(TF WhIte),
for (x ~ 0: x < 256: X~T) {

Y~ (unsigned) (TF_ImageLength - (Iong)((float)map_I [x]'scale_val));
vsa_move_to(x, (im)(TF_lmageLength-I»;
vsa_line_to(x, y);

}

1* MAP 2 */
vsa_set_color(64);
for (x ~ 0; x < 256; x++) {

y = (unsigned) (TF_lmageLength - (Iong)«float)map_2[x]*scale_val)):
vsa_move_to(x, (im)(TF_lmageLength-I):
vsa_line_to(x, y):

}

I'MAP2"
vsa_set_color(64);
for (x = 0: x < 256: x~) {

y ~ (unsigned) (TF_lmageLength - (Iong)«float)map_2[xJ'scale_val)):

169

vsa_move_toe x+(XResolution» I), (int)(TF_ImageLength-I));
vsa_Iine_to(x+(XResolution»I), y);

}

j* MAP I */
vsa_set_color(TF_White);
for (x ~ 0; x < 256; x++) {

Y= (unsigned) (TF_lmageLength - (long)«float)map_I [x]*scale_val));
vsa_move_toe x+(XResolution» I), (int)(TF_ImageLength-I));
vsa_Iine_to(x+(XResolution»I), y);

}

sprintf(buffer, "SCALE FACTOR: %02.05f', scale_val);
vsa_write_string(27, 3, TF_White, buffer);

}

~~%%

%%%%%%%%%%%%%%%%%%%%%%%%

void subtract_histos(void)
{

int i, x, y;
long result[256];
int out_x = 30;
long int max, min;
float scale_min, scale~max;
char buffer[80];

strcpy(buffer, "SUBTRACT HISTOGRAMS"):
vsa_write_string(0, I, TF_White, buffer);

vsa_set_color(64):
vsa_move_toe outJ, (YResolution» I)~ 1):
vsa_Iine_to(out_x"'512, (YResolution» 1)-1);

setrnem(result, 256*sizeof(int), 0):

j* CALCULATE RESULT *
max~999999L:

min~ 999999L;
for (i ~ 0; i < 256; i.,..,.) {

result[i] ~ map_I [i] - map_2[i];
if(result[i] > max) max ~ result[i];
if(result[i] < min) min ~ result[i];

}

if(max != 0)
scale_max ~ «float)YResolution2.25)!(floar)fabs(max);

else
scale_max ~ 0:

170

if(min !~O)

scale_min ~ «float)YResolutioni2.25)i(float)fabs(min);
else

scale_min ~ 0;

if (scale min < scale_max)
scale_val ~ scale_min;

else
scale_vaI = scale_max;

y ~ (unsigned) «YResolution» 1) + (Iong)(result[O]*scale_val));
vsa_set_color(TF_White);
vsa_move_to(out_x, y);
for(x~ I;x<256;x++) {

y ~ (unsigned) «YResolution» 1)+ (Iong)(resuIt[x]*scale_val));
vsa_line_to(outJ + (x«I), y);

}

sprintf(buffer. "SCALE FACTOR: %02.051". scale_val);
vsa_write_s!ring(27. 2. TF_While. buffer);

}

IjO/o%%%%%%%%%%%%%%%%~'"O%%%%%%%~/o%%%%%%%%%%%%%%%%%%%%%%~o%%

%%%%%%%%%~/o%%~/o%%%%%%~/o%%%%

#defme WX I 10
#define WY I 9
#define WX2 69
#define WY2 14

l/o/a%%%%%%%%%%'%%%%%%%%o/O%%%~iOo/O~'o~'ot%O/o%~/O%o/O%o/ o%%%%%%%%%%%%%%%~/o

%%%%%%t}"o%%(%O;/o%O;'o%O;/o%JO;''O~/Q~/OO'OO;'O%O;/O~''O

void get_config(analysis~efg * efg)
{

int i;
char ok ~ FALSE. pos ~ 0;
char buffer[80];
char * heading[] ~ { { " TIFF FILE I :" }.

{ " TIFF FILE 2 ;" l.
{" IS THIS CORRECT:" } l;

char * help_str[] ~ { { "TIF IMAGE I TO ANALYZE" :.
{ "TIF IMAGE 2 TO ANALYZE" f.
{ "YN" } }:

block_fill(O. 0.79. 24,177. OxlF):
block_fill(O. 0.79. O. 32. Ox IF);
block_fill(O. 24. 79. 24. 32. OxIF);
block_clear(WX I. \I/Y I. WX2. WY2);
box_draw(WXI. WYI. V/X2. WY2. DBl_SIN l:

1/1

for (i =0; i < 2; i++)
outstringxy(WX1+3, WYl+l+i, heading[i]);

outstringxy(WXI+3, WYI+2+i, heading[i]);
sprintf(buffer, "ANALYSIS 0/05 ''', version);
outstringxy(2, 0, buffer);

do {
for (pos ~ 0; pos < 3; pos++) {

sprintf(buffer, "RESPONSE' %-65s", help_srr[pos]);
outsrringxy(1,24, buffer);
setmem(buffer, 80, 0);
switch (pos) {

case 0: srring(WXI+25, WY1+pos+1. cfg->file_l, 33);
break;

case I : srring(WXI+25, WYl+pos+I. cfg->file_2, 33);
break;

case 2 : buffer[O] = 'N';
do {

srring(WX1+25, WYl+pos+2, buffer. 1);
} while (buffer[O] I~ '¥' && buffer[O] I~ 'N');
if (buffer[O] = 'Y') ok ~ TRUE:
break;

}
}

} while (!ok);

}

1;C%%%%%%%%%%~to~'O%%%%%%~/O%~'O%~"O~'O%O·oO/o~/o~/0%%%%%'%%%%%0/0%0/0%0/00/0%%%%%0/0

%%%%%%~''O~o~/o%O/OO/Oo/OI%%%%~'o%%(%%~'o~'o

void histogram_1 (in! out_x, long * map)
{

unsigned char rline[1024];
intx. y;

setrnem(map, 256*sizeol\ in!), 0):

for (y ~ 0; y < TF_lmageLength; y-~) {
vsa~etJaster_line((unsigned)out_x, (unsigned) (out_x-TF_ImageWidth-I), (unsigned)y, rline);
for(x ~ 0: x < TF_ImageWidth: x-~)

map[r1ine[x]]~;

vsa_set_color(IT_Black);
vsa_move_to(out_x, 0);
vsaJect_fill((unsigned) (out_x~TF_lmageWidth), (unsigned) TF_ImageLength);

y ~ (unsigned) (TF_lmageLength - (long)(map[OJ81 i:
vsa_set_color(TF_White);

172

vsa_move_lo(OUI_X, Y - 20);
for (x = 1; x < 256; x++) {

y = (unsigned) (TF_ImageLength - (long)(map[x]/8));
vsa_line_lo(out_x + X, Y- 20);

}

for (x = 0; x < 256; x++) {
vsa_sel_coIor(x);
vsa_v_Iine(oUI_x + x, (unsigned) TF_ImageLength - 19, (unsigned) (TF_ImageLength + 19));

1
1

V%%%o/~~

%%%%%%%%%%%%%%%%%%%%%%%%

void hislogram_2(int out_x, long' map)
{

unsigned char rline[l 024];
int x, y;
long max;
char buffer[80];

setmem(map, 256'sizeof(int), 0);

sprintf(buffer, "CALCULATING... ", scale_val);
vsa_write_string(26, out_xl8+ 12, TF_White, buffer);

vsa_sel_color(80);
vsa_move_to((int)(oul_X+(TF_ImageWidth» I)-1 00), (int)TF_ImageLenglh+30);
vsa_reel_fill((int)(out_x+(TF_ImageWidth» I)+99). (int)TF_lmageLength-60);

scale_val = (double)200.0iTF_ImageLength;
vsa_set_color(TF_White);
for (y = 0; y < TF_ImageLength; y--) {

vsa.lletJaster_Iine((unsigned)out_x. (unsigned) (out_x+TF_Image Width-I). (unsigned)y, rline);
for (x ~ 0: x < TF_ImageWidth: x--)

map[r1ine[xJl-+;
vsa_move_tot (int)(out_x-(TF_ImageWidth» I)-! OO)-y'scale_val. (int)TF_lmageLength+30);
vsa_line_to((int)(outJ-{TF_Image Width» I)-i 00)-y'scaie_vai, (int)TF_ImageLength+60);

1

/* GET MAXIMUM VALUE 'f

for (x ~ 0, max ~ -1 ; x < 256: x~)
if(map[x] > max) max = map[x];

scale_val ~ (double)(YResolution-170)!(double)max:

vsa_set_color(TF_Black);
vsa_move_to(out_x. 0);
vsa_reet_fiIl((unsigned) (out_x-TF_Image\\·idth). (unsigned) YResolution);

y = (unsigned) (TF_lmageLength - (long)«float)map[O]'scale_val»):
vsa_set_color(TF_White !;

173

vsa_move_to(out_x, y - 20);
for (x = I; x < 256; x+-r) {

Y= (unsigned) (TF_ImageLength - (Iong)«float)map[x]*scale_val));
vsa_line_to(OUlJ + x, y - 20);

}

for (x = 0; x < 256; x+-r) {
vsa_set_color(x);
vsa_v_line(out_x ~ x, (unsigned) TF_lmageLength - IS, (unsigned) (TF_lmageLength + 15));

}

sprintf(buffer, "SCALE FACTOR: %02,05f', scale_val);
vsa_write_string(27, out_xl8, TF_ Vihite, buffer);

}

/1%%%%%%%%%%%%%o,'O%%%~/og/O%%(%%%%~/OOfO%%%%%%~/O%o,'O%%%%%%%%%%%%%%0/0

%%%%%%%%%~'O%%%%%%%%%%(Voq~o%%

void histogram_2_fs(long * map)
{

in! x, y;
long max~

char buffer[80];
char our_x = 45:

clear_screen();
vsa_write_srring(0, L TF_White, "FULL SCREEN HISTOGRA\1"):

/* GET MAXIMUM VALUE *;
for (x = 0, max = -I : x < 256: x--)

if(map[x] > max) max = map[x];

scale_val = (doubleJI(float) YResolutioni I .-1);(daub le)mox:

y ~ (unsigned) (YResolution - (Iang)(map[O]'scale_va1' - 30);
vsa_set_calor(TF_White);
vsa~move_to(out_x. y):
for (x = 1: x < 256: x---,...) ;

y = (unsigned) (YResolution - (Iong)(map[xJ"scaie_\ 31) - 30 I:

vsa_line_to(out_x - (x«l), y):

YSa_ffiOVe_W(our_x-2. YResolution-5 7 j:

ysa_rect(out_x-2-512. YRcsolution-33 1:

for (x = 0: x < 256: x-) {
vsa_set_colort x):
vsa_v_linel our_x - (x«!). (unsigned) YResoiurion - 55. (unsigned) YResolution - 35):
vsa_vJine(out_x - (x« 1)- L {unsigned) YResolU[jon - 55. (unsigned) YResolution - 35):

sprintf(buffer, "SCALE FACTOR 'd)2.05f', scak_,ai I:

174

}

~~%%

%%%%%%%%%%%%%%%%%%%%%%%%

void load_tifl\ char' filename, unsigned x)
(

if(tCopen_file(filename) ~ -I) (
sprintf(error_string, "Error loading TIF image 0/05". tilename);
exit(255);

}

if(tf~et_file_infoO= I) {
strcpy(error_string, "Not a valid TIF image");
exit(255):

}

tf set_defaultsO;

if\ tfJead_ifdO = I) {
tf_close_fileO;
strcpy(error_string, "This T1F format not supported"):
exit(255);

tf_display_image(x, 0);
tf_setyrime_colorsO;
tf_close_fileO;

}

//%%o/O~/O%%I%()/O~'O~'O~/O~/O~'O%%~'O%%O'OOQ')/O%~"O%%r)',>'J")~'Q%%%%o;,}~/O%%%%IO;'O%I%%%%~/o%%(%%%%

%%%(%%%~/O~iO'%~/O%%%O'oJ"Q%~/o~/oO/o~Q~'o%O,oo/o

void analysis_exit(void)
{

vsa_set_svga_mode(Ox3):
text_screen(RESTORE);

if(error_string[O]) (
puts("A fatal error has occurred. r
puts(error_string):

} else
printf("Thanks for using A:"JALYSIS °os". version ,_

Ij~/O%\Yol%%O/O%~'O()i(.Q'OQ'O~/!J':;O~Jo%~fo~ro~'6~,'o~/o%~'o%~)o~/o')'a')',Ji)'o%%Oo'%O'Oo'Qo'o%%~'o%%o/O%I% %~'o~/o%%%I%~iO

%%%%%%~/o%%O'o°tjo'o~/o?"o(J,OO'o%O,o%o-oo,o~'o')oOo

void image_srars(char'" name)
{

char rexr[I00]:
char· cm---'pIT;

175

int bpp, y, x;

bpp ~ TF_BilSPerSample[O];
switch (TF_Photometriclnterpretarion) {

caseO:
case I : cmJllr ~ "Bilevel / Greyscale";

break;
case 2 : crnJllr ~ "True Color"; bpp ~ 24;

break;
case 3 : cm--.ptr = "Palerre";

break;
default: cmJllr ~ "Unknown";

break;
}

y ~ (int) «TF_fmageLength» 2) / YCharSize) - I.
x ~ (im) «XResolurion» I) / XCharSize) ~ I;

vsa_write_string(yTr. x. TF_White, "TIF INFOR:vIATION");
sprintf(text. "TIF name : %s", name);
vsa_write_string(y-.:.+, x, TF_White, text);
sprintf\ text, "Width : %d", TF_ImageWidrh);
vsa_write_string(y-'-+, x, TF_White. text);
sprintf\ text, "Length : o/od ", TF_ImageLength):
vsa_write_string(y~. x, TF_White, text);
sprintf(text. "Color model: %s", cmJllr);
vsa_write_srring(y~, x. IT~White. texr);
sprintf(text. "Bits/pixeI : %d", bpp);
vsa_write_string(y~, x, TF_White. text);
vsa_wTite_string(~y. x. TF_White. "Press a key w analyze image. ");

/!o/O%%%%%%O/OOOO'O~/O%%C/r,~-'OO/O%%%~'QO"O%~O%%-?'0')(IO/O%~'O~'(I?'-o~'o%o,'o%%%%%%~'o~fO~'O%I%%~/O%%)~/o

%%~/O%%%~'o%~'o%?"o%%O'o(Joo"o~/o%%'~/o%(%'lo')'o

void save_config(analysls_efg '" fefg)
(

FILE' stream;

stream ~ fopen("ANALYSIS.CFG". "wb");
if (stream~ NULL) (

strepy(errot_String, "Error creating ANALYSIS.CFG");
exit(I);

fWrite{ fefg, slzeot1, analysis_efg). 1. stream ,:

fclose(stream);

i/%%%%~,o%~·oo'oO'o?,)oo»'oo'oO'O!)O%?,-Q()-OOoO-o'.)--o~G()-o'%a__J:} :}') r;1J-o~-o~-o~o'J-Q~-O'~--o%o'oa-ao'o~-Oa_-Ql)o~'o%~-o%O-o%%IO·O~-O~-o

(%%%%%%%%%Ooo.')o'oo'iJ%a_ooJ-oQ-r;~·oOo(l_,o~oO,oo-ooo

176

void load_eonfig(analysis_efg • fefg)
(

FILE '" stream;

srrearn = fopen("ANALYSIS.CFG", "rb"):
if(srrearn~ NULL) rerum: il Not there so rerum

fread(fefg, sizeof(analysi~_efg), I, srrearn J:

fclose(srream);
}

//%%%%%%%%%I%%%%%%%%%%%%%%%%%%~'O%%%%~/O%'%%%%%'%%%%%%%%%%%%

%%%%%%%%%%%%%%%%~.'O%%%?/o%%%

ehar exists(char' name)
(

FILE • srrearn:
srream ~ fopen(name, "rb");
if(stream~ NL1.L) return FALSE:
fclose(srrearn);
rerum TRUE;

}

//%%%%%%%%%%%~·'O%'%:J/O%I%C1'-'lrj'O%·~/'l%'J/()%~/i))·]'~''1-1;O%'l'a1/r")'J'O%~'Q%%%;%%o-q%~/(}~/o~/o%,O.'O~/O~/O(%%I~/o

~~~o~o:~%~'O~~~'O~'O~'O~~~'O~'O~'O~'O~'O~'O~~~~~~~~?~~~?'O

void clear_screenf void)
{

Ysa_set_colorf IT_Black
vsa_move_~o(O. I) );

vsa_rect_fiil( {unsigned) (XR-.;solurion.'. I'unsignec; Y~esoiutlor1 :;

i'i~/O~'O%%'Yo%%?/O %?'o%%%1'0':'0%0'0°(, ""0J:;"'0) 'Q 'J'o]'1 ~ '0!) ),} J,_, 1,')1''1,1 '" 1'0]'0 ')'0?'? 'J~'l ']'0%?'o% ~'a °'0%%%11',)1'0%'J/o1/0%
%~/o%%%%%1 ~';'~/!J'J,o0/'.)%% ~'6],0:)'o%O,:)J·oJ 'o')'(l ::1'0 '))) '0

void beeeeeep( void)
f,

sound( 300 ):
de!ay( SO ):
sound( I !00 ):
deiay{:5 }:
nosoundt):

'/%~/Q%~/O%~'olJ-,o%~'o l,:)? ''J%%o~Qco'%~iO%.] '0 )"6 0 'o'J·'o :'0:-'a ']''l 'l'" J;) )'0?o'~'oJ,o0'0')'0~'a%%il/o%~'o%'J'C/l '0 ~'<) ~'oo'o']'o~a %:'0 'J'a%
%%%%%l%%~,';,(l-'a'J'o%%%)i~~/o~'Sc'J/I)'J'oo-o-)'o%?'a')':)-~/'J

void display_helpl '.cid j



177

char' helpO ~ { { " F I \ODisplay this help screen" },
{ " 0 \ODisplay the 2 TIFF images being analysed" },
{" H \ORecalculate and display TIFF image histograms" },
{" 0 \OOverlay resulting histograms" J.
{ " - \OSubrract resulting histograms" }.
{" ~ \OSubtract images" },
{" I \ODisplay histogram I full screen" }.
{" 2 \ODisplay histogram 2 full screen" }.
{ " S \OSave current screen as a TIFF image" },
{ "ALT I\ODump histogram I data to a Rle"},
{"ALT 2\ODump histogram 2 data to a tile" },
{ " ESC \OExit from ANALYSIS" } };

char i;

clear_screenO;
vsa_write_srring( 3, 32, TF_White, "HELP SCREE"i");
for(i~O;i< 12;i~) {

vsa_write_string( 5~i, IS, IT_White, help[i] );
vsa_write_string( 5~i, 23, TF_White. help[i]~6 ):

}

/I%%%%%%%%%%%~/()%%%%%%~"o%~'-O%%~'O~-O::; ,.Q-o'J/o%~_·oo;o~/o~fO%%%I~/a%%%~/a%%%(%%%%%%%

%%%%%%%%%%%%%%%l~/O%%O/OO/O%l~/OO-O~'o

void write_map( char" name. long >i< map)
{

FILE' srream;
char fname[80];
char buffer[80];
char ~ per:
int i;

strcpy( mame. name ):
ptr = srrstr( fname. ".TIF" ;:
if( ptr~ NULL) :

sprintft:' error_string. "Invalid filename aos ". fname
exit( I );

'prr ~ 0;
streat( mame. ".OAT' I;
sITeam = fopen( fname. "vlt" );

if ( stream = "iL:LL ) {
sprinm error_string, "Error creating file o'os", mamt: I:
exit( I );

}

for ( j = 0: i < 256: j--) :

sprinm buffer. "0 o03d u608lc n", i. map[i] ,I:

fu.Tire( buffer, srrleni buffer ). ). '3[ream .I:



178

fclose( stream );

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0/0
%%%%%%%%%%%%%%%%%%%%%%%%


	Title page
	Preface
	Acknowledgements
	Abstract
	Contents
	Chapter 1. Introductions
	Chapter 2. Digital image processing
	Chapter 3. One-dimensional LULU smoothers
	Chapter 4. Two-dimensional LULU smoothers
	Chapter 5. Mathematical verification of LULU structures
	Chapter 6. Programming considerations
	Chapter 7. Practical application of LULU operators
	Chapter 8. Conclusions
	References
	Appendices

