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ABSTRACT 

 

Since the first uses of hollow-fiber membrane bioreactors (MBR’s) to immobilize whole cells 

were reported in the early 1970’s, this technology has been used in as wide ranging applications 

as enzyme production to bone tissue engineering. The potential of these devices in industrial 

applications is often diminished by the large diffusional resistances of the membranes. Currently, 

there are no analytical studies on the performance of the MBR which account for both 

convective and diffusive transport. The purpose of this study was to quantify the efficiency of a 

biocatalytic membrane reactor used for the production of enzymes. This was done by developing 

exact solutions of the concentration and velocity profiles in the different regions of the membrane 

bioreactor (MBR). The emphasis of this study was on the influence of radial convective flows, 

which have generally been neglected in previous analytical studies. The efficiency of the MBR 

was measured by means of the effectiveness factor. 

 

An analytical model for substrate concentration profiles in the lumen of the MBR was developed. 

The model was based on the solution of the Navier-Stokes equations and Darcy’s law for 

velocity profiles, and the convective-diffusion equation for the solute concentration profiles. The 

model allowed for the evaluation of the influence of both hydrodynamic and mass transfer 

operating parameters on the performance of the MBR. These parameters include the fraction 

retentate, the transmembrane pressure, the membrane hydraulic permeability, the Reynolds 

number, the axial and radial Peclet numbers, and the dimensions of the MBR. The significant 

findings on the hydrodynamic studies were on the influence of the fraction retentate. In the dead-

end mode it was found that there was increased radial convective flow, and hence more solute 

contact with the enzymes/biofilm immobilised on the surface of the membrane. The improved 

solute-biofilm contact however was only limited to the entrance half of the MBR. In the closed 

shell mode there was uniform distribution of solute, however, radial convective flows were 

significantly reduced. The developed model therefore allowed for the evaluation of an optimum 

fraction retentate value, where both the distribution of solutes and radial convective flows could 

be maximised.  

 

Recent designs of MBRs seek to overcome diffusional limitations inherent in these devices by 

exploiting radial convective flows. The developed model from the current study allowed for the 

evaluation of the influence of axial diffusion, membrane resistance and radial convective flows 

on the solute concentration profiles in the MBR.   
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A numerical scheme was developed for the second-order elliptic differential balance equation, 

with non-linear kinetics, for concentration profiles in the MBR. The numerical scheme was 

executed using the Newton-Raphson algorithm, and was shown to be unconditionally stable for 

different step sizes. The significant findings from the FDM scheme was that the uniform solute 

distribution, in the open-shell mode, was more favourable for microbial growth than the dead-end 

mode. This result was consistent with the findings from the analytical solution.  

 

The effectiveness factor for the MBR was calculated as a function of the Thiele modulus (), the 

Sherwood number, the Peclet number and dimensions of the MBR. Effectiveness factor plots 

and their asymptotes were developed and compared to experimental data. Three regions of  

were defined from the plots, corresponding with: kinetic control ( < 0.01), internal-diffusion 

control (0.01 <  < 0.1), and external mass transfer limitation ( > 0.1). It was shown that 

operation of the MBR at low Thiele moduli was not optimal since substrate conversion at these 

values was minimal. Conversely, at high Thiele moduli solute transport was limited by diffusion 

through the membrane. The developed model provides a basis for parametric optimisation 

studies.  

 

The theoretical model developed for the effectiveness factor confirmed previous experimental 

studies and numerical analysis, on the importance of radial convective flows on the performance 

of the MBR. The more significant finding from the current study was that radial convective flows 

improve bioreactor performance in a limited range of Thiele moduli, and this range was found to 

coincide with the region of internal diffusion limitation (0.01 <  < 0.1). Outside this range, the 

effectiveness factor was shown to be improved only by increased Sherwood numbers. The 

maximum relative increase in the effectiveness factor was observed to be in the transitional 

region from kinetic to internal-diffusional control (  0.01), and minimal in the boundary region 

between internal-diffusional control and external mass transfer limitation. The production of lignin 

peroxidase and manganese peroxidase from the fungus Phanerochaete chrysosporium, in a 

membrane gradostat reactor, was used to validate the developed models 

 

 

Keywords: Convection-diffusion equation; Effectiveness factor; Mass transfer with reaction; Membrane 

bioreactor; Monod kinetics; Regular perturbation; Substrate transport; Thiele modulus; Peclet number; 

Sherwood number. 
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PREFACE 

 

 

Figure 0: Road map of the thesis. 

 

The potential of membrane bioreactors (MBRs) as an alternative to traditional reaction (and 

separation) technology, in enzyme production, is often diminished by the large diffusional 

resistances of the membranes. The concept of overcoming these diffusional limitations by 

introducing convective flows has been experimentally validated by a number of researchers. 

However, a precise mathematical analysis of this phenomenon is not available in literature. The 

current thesis presents analytical solutions of the convection-diffusion equation with reaction, 

with the intention of developing a functional relation between the convective flows and bioreactor 

performance. The bioreactor performance is measured by means of the effectiveness factor. 
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The emphasis of this thesis is on the mathematical solutions and the historical development of 

MBRs is kept to a minimum. The thesis is written in article format, consisting of 6 chapters. 

Chapters 1, 2, and 6 are written according to the CPUT thesis guidelines, and Chapters 3, 4, 

and 5 following the writing and reference style of the specific journals in which they were 

published. The appendices have been removed from the respective chapters and included as 

separate auxiliary chapters at the end of the thesis. Chapters not published in research journals 

follow the Harvard method of referencing.  

 

A road map of the thesis is given in Figure 0. Chapter 1 provides an introduction to the thesis 

where the research problem and the research objectives are outlined. The relevant theory of 

simultaneous convection, diffusion and reaction in an MBR is provided. Chapter 2 provides a 

literature review of microbial kinetics, beginning with the elementary unstructured and distributed 

models and a brief overview of the more complex structured and segregated models. The theory 

from this chapter was utilized in Chapters 3 and 4 where simultaneous diffusion, convection and 

reaction differential balance equations were solved for the transport of the rate limiting solute 

inside the lumen of the MBR. Chapter 3 presents an analytical approach for solving the mass 

balance equation with and without reaction. The resulting non-linear elliptic equation is only 

amenable to an analytical solution when assuming zero-order or first-order kinetics. This 

restriction limits the range of applicability of the model. Hence in Chapter 4 a finite difference 

scheme was presented for the lumen concentration profile when the reaction kinetics were non-

linear. This chapter also serves to validate the perturbation technique employed in Chapter 3. 

Chapter 5 extends the analysis to include the membrane matrix, where the actual conversion of 

solutes takes place. This chapter also includes a theoretical analysis of the effectiveness factor 

of the bioreactor. The influence of operating parameters, particularly radial convective flow, on 

the performance of the MBR was examined. Chapter 6 presents a summary of the findings and 

prospects from the current study. 

 

The mathematical architecture and solution techniques employed in solving the governing 

differential equations in the lumen and matrix regions of the MBR are presented in Appendix A 

and B, respectively. Appendix C provides a description of the materials and methods that were 

used to validate the theoretical models developed. The numerical code used in MATLAB in 

Chapter 4 has not been included, and will be made available on request. 
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1. INTRODUCTION 

1.1 Membrane bioreactors 

 

A membrane bioreactor (MBR) is broadly defined as a flow reactor within which membranes are 

used to separate cells or enzymes from the feed or product streams of a process (Salmon & 

Robertson, 1994). The membranes can either be tubular (e.g. hollow fibers) or in the form of flat-

sheets, the former being the most common geometry (Nagy, 2012). A common characteristic of 

most MBR’s is that feed streams are delivered continuously. Products may also be removed 

continuously or harvested intermittently, or at the end of the run. Hollow-fiber MBR’s are 

characterized by high packing cell densities of the fibers. A conventional hollow-fiber MBR is 

considered in this study, and is shown in Figure 1.1. The application of MBR’s as an emerging 

technology is globally gaining popularity in a wide range of industries including industrial and 

municipal wastewater treatment (Cicek, 2003; Sartor et al., 2008; De Jager, 2013); artificial 

organ devices (Moussy, 2003; Ye et al., 2006; De Napoli et al., 2014); the production of 

enzymes (Ntwampe & Sheldon, 2006; Sheldon, 2008; Godongwana et al., 2009) and 

biotherapeutics (Taylor et al., 1994; van Reis & Zydney, 2007). 

 

 

Figure 1.1: A schematic of a membrane bioreactor (MBR). 

  
This technology emerged in the 1970’s as an integration of the two disciplines of membrane 

technology and biotechnology. The first successful uses of MBR’s to immobilize enzymes and 

whole cells were reported by Rony (1971) and Knazek and co-workers (1972). Since then a 

number of studies have been conducted which have indicated the effectiveness of these devices 

relative to traditional unit operations (e.g. chemostat reactors). Some of the advantages are: 

increased surface areas per unit reactor volume; protection of cells (or biofilm) from shear 

stresses; higher volumetric productivities; higher cell densities; and the possibility of 
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simultaneous reaction and separation (Montgomery, 2004; Curcio et al., 2006; Nagy et al., 

2012). MBR’s are favoured by recent trends towards environmentally-friendly technologies, 

particularly because MBR’s do not require additives, function at moderate operating conditions, 

and reduce by-product formation (Giorno & Drioli, 2000).  

 

The performance of an MBR is determined in large by the transport rate of the key nutrients, 

through the membranes, to the immobilised biomass (Curcio et al., 2006; Godongwana et al., 

2007; Nagy, 2012). The carbon, nitrogen, and oxygen sources are of particular importance 

because of their high demand by the cells (Salmon & Robertson, 1994; Doran, 2013). The 

diffusional resistance offered by the membrane can adversely affect the transport of these 

nutrients in an MBR, and remain a major challenge in the use of these devices. A number of 

experimental and theoretical investigations have been dedicated to the problem of diffusional 

limitations in hollow-fiber MBR’s (Catapano et al., 1990; Kelsey et al., 1990; Brotherton & Chau, 

1995; Labecki et al., 2001; Moussy, 2003; Curcio et al., 2006; Godongwana et al., 2007; 

Abdullah et al., 2009; Nagy, 2009; Nagy et al., 2012; De Napoli et al., 2014; Nagy et al., 2015). 

The majority of these studies have demonstrated the substantive role of convective transport in 

overcoming diffusive mass transfer limitations of nutrients. Consequently hollow fiber MBR’s 

have been designed to exploit radial convective flows (Leukes, 1999; Sheldon, 2008; De Napoli 

et al., 2014).  

 

1.2 Solute transport theory 

 

The performance of an MBR is analyzed by first developing concentration profiles in the different 

regions of the MBR. This entails performing a differential material balance of the form 

(Godongwana et al., 2010):  

 𝜕𝑐

𝜕𝜏
= ∇2𝑐 − 𝑃𝑒(𝒗 ∙ ∇𝑐) − 𝜙2𝑓(𝑐) (1.1) 

 

where c is a dimensionless solute concentration,  is a dimensionless time,  is the velocity 

vector, Pe is the Peclet number,  is the Thiele modulus, and f(c) is the dimensionless rate of 

solute consumption. The functional forms of f(c) are explicated in Chapter 2 of this thesis, with 

the majority of experimental data for single substrate limited kinetics fitting the empirical relation 

(Truskey et al., 2009): 

 𝑓(𝑐) =
𝑐

𝐾𝑀 + 𝑐
 (1.2) 
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where KM is the dimensionless Michaelis (or Monod constant). The Thiele modulus  in Eq. (1.1) 

represents the relative rates of reaction and diffusion, and is defined as: 

 

 

𝜙 = √
𝑉𝑀𝑅2

𝑐0𝐷𝐴𝐵
 (1.3) 

 

where VM is the maximum rate of reaction, DAB is the effective diffusivity, and R is a 

characteristic length (generally taken as the radius of the membrane). When  >> 1, the 

transport is diffusion-limited since the rate of reaction is much faster than the rate of diffusion. 

Ideally, an MBR should operate in a reaction-limited regime rather than a diffusion-limited regime 

(Giorno & Drioli, 2000). The Peclet number represents the relative rates of convection and 

diffusion, and for radial convective flows is defined as: 

 
 

𝑃𝑒 =
𝑣0𝑅

𝐷𝐴𝐵
 (1.4) 

 

where 0 is the permeation velocity through the membrane of the MBR governed by Darcy’s law 

(Nagy, 2012): 

 
𝑣0 = −

𝑘

𝜇

∆𝑝

𝑙
 (1.5) 

  

where k is the membrane hydraulic permeability,  is the dynamic viscosity of the fluid, and p/Ɩ 

is the pressure gradient across the membrane of thickness l. Membranes used in MBRs are 

usually made of polymers (Chang & Furusaki, 1991) but other materials, particularly ceramics, 

have also been used (Sheldon & Small, 2005). The hydraulic permeability k of both polymeric 

and ceramic membranes is much smaller than unity, generally of the order of magnitude 10-17 m2 

(Koska et al., 1997; Godongwana et al., 2009; Nagy & Kulcsar, 2009).The magnitude of k is an 

important consideration in the solution of Eq. (1.1), especially when perturbation methods are 

employed, as will be done in the current study. When k is sufficiently small, the solution of 

Eq. (1.1) can be represented by asymptotic expansions in terms of k.    

 

The velocity vector  in Eq. (1.1) is evaluated from the dimensionless Navier-Stokes equation 

(Bird et al., 2002; Godongwana et al., 2010): 

 
 𝜕𝒗

𝜕𝜏
+ 𝑅𝑒(𝒗 ∙ ∇𝒗) = ∇2𝒗 − ∇𝑝 +

𝑅𝑒

𝐹𝑟
 (1.6) 
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Table 1.1: Limiting forms of the convective-diffusion equation, Eq. (1.1). 

Assumptions Simplification  Comments References 

1. Steady-state 𝜕𝑐

𝜕𝜏
= 0 

This assumption is generally 

valid, except during start-up. 

Calabro et al. (2002); 

Ye et al. (2006); Nagy  

et al. (2015). 

2. Constant    

velocities 

𝑢 = 𝑢0;    𝑣 = 𝑣0 This assumption is not valid 

when large pressure gradients 

exist in the MBR. 

Heath & Belfort (1987); 

Nagy (2012). 

3. Radial convection-

limited transport 

[𝒗 ∙ ∇𝑐]𝑟 = 0 At large radial Peclet numbers 

(Pe >> 1) this assumption is 

not valid. 

Willaert et al (1999); Li 

& Tan (2001); Ye et al. 

(2006). 

4. Axial diffusion-

limited transport 

[∇2𝑐]𝑧 = 0 At low axial Peclet numbers 

(Pe << 1) this assumption is 

not valid. 

Dall-Bauman et al. 

(1990); Cabrera et al. 

(2001); Calabro et al. 

(2002). 

5. Zero-order 

kinetics 

𝑓(𝑐) = 𝑐0 = 1 This assumes the rate of 

reaction is maximal. 

Webster et al. (1979) 

Willaert et al. (1999); 

Nagy et al. (2012). 

6. First-order kinetics  𝑓(𝑐) = 𝑐1 = 𝑐 This assumes the rate of 

reaction is much less than the 

maximum rate. 

Jayaraman (1992) 

Willaert et al. (1999); 

Nagy et al. (2012). 

 

where Fr and Re are the Froude and Reynolds number, respectively given by: 

 

 
𝐹𝑟 =

𝑣0
2

𝒈𝑅
 

𝑅𝑒 =
𝜌𝑣0𝑅

𝜇
 

(1.7) 

 

Equation (1.1) is a second-order (elliptic) nonlinear partial differential equation with variable 

coefficients, and is the most general form of the differential balance equation for solute transport 

in a catalytic reactor. This equation is generally solved by numerical techniques, however in a 

few special cases analytical solutions may be obtained. These solutions are generally based on 

perturbation theory, and make use of one or more of the assumptions listed in Table 1.1. 

 

The solution of Eq. (1.1) in the membrane region is subject to either the Dirichlet boundary 

condition (B.C.) or the Robin-type boundary condition. The Dirichlet B.C. assumes negligible 
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external mass transfer resistance, and is the most often used because of its simplicity. Strictly 

speaking, however, this B.C. should only be applied at low Thiele moduli (Aris, 1975; Webster et 

al., 1979). The Robin B.C. accounts for external mass transfer limitations, and is the most 

general of the two boundary condition types. Once the solute concentration profiles have been 

established, the effectiveness factor (η) is evaluated from the following equation (Lee & Kim, 

2006; Truskey et al., 2009): 

 
𝜂 = ∫ 𝑐(𝑟)𝑑𝑟
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The effectiveness factor is defined as the ratio of the observed rate of reaction to the 

hypothetical rate in the absence of mass transfer limitations, and is generally used to evaluate 

the performance of a catalytic reactor. 

 

1.3 Problem statement 

 
The assumption of negligible axial diffusion and radial convection, in solving Eqs. (1.1) and (1.8), 

is common in the majority of analytical models currently in use for the evaluation of MBR 

performance. Radial convective flows have been shown, both experimentally and by numerical 

analysis, to significantly improve MBR efficiency as discussed in Section 1.1. In the dead-end 

ultrafiltration mode, particularly, the assumption of negligible radial convective flow is not 

justifiable. At axial Peclet numbers (Pe) smaller than unity large concentration gradients exist in 

the membrane lumen and ignoring axial diffusion is also not justified. To the author’s knowledge, 

there are currently no analytical (or closed-form) solutions to Eqs. (1.1) and (1.8) which account 

for both diffusive and convective mass transfer inside a biocatalytic MBR.  

  

1.3.1  Hypothesis  

 
The rate of nutrient (or solute) transport through the membrane is the primary determinant of 

biofilm-attached MBR efficiency, and this transport phenomenon is significantly improved by 

convective flows. The dependence of the performance of an MBR on convective flows can be 

simulated by defining an effective factor for the MBR.  

 

1.3.2 Research questions  

 

The following questions were addressed in this study:  

 Is the growth of biofilm (P. chrysosporium) limited by one or more than one substrate?  
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 Which single or multiple-substrate-limited model is best suitable to quantify the growth 

kinetics?   

 Are the coupled momentum and mass transfer differential balance equations amenable 

to analytical evaluation in the different regions of the MBR? If not, which numerical 

scheme would work best to achieve this?  

 What is the nature of the dependence of the MBR effectiveness on convective mass and 

momentum transfer?   

 Which parameters are to be used to quantify bioreactor efficiency? 

 

1.4 Research objectives 

 

The aim of this study was to quantify, from basic principles, the efficiency of a biocatalytic 

membrane reactor used for the production of enzymes. The production of lignin peroxidase and 

manganese peroxidase from the fungus Phanerochaete chrysosporium, in a membrane 

gradostat reactor, was used to validate the developed models. The specific objectives were to: 

     

 Estimate velocity profiles for the different regions of the MBR from the Navier-Stokes 

equation, with the hydraulic permeability of the capillary membrane as a process variable. 

 Estimate concentration profiles from differential material balances and the appropriate kinetic 

model of substrate consumption. 

 Compare the analytical models developed (with the assumptions of zero-order and first-order 

kinetics) to a finite-difference solution of the general kinetics problem.   

 Generate effectiveness factor versus Thiele modulus plots, and from these identify the 

optimum operating conditions of the MBR, with specific reference to the effect of radial 

convective flows. 

 Validate the developed model with experimental data.  

 

1.5 Delineation of the study 

 

This study did not investigate oxygen mass transfer characterisation; biofilm morphology; 

membrane fouling and concentration polarisation; optimisation of enzyme production and 

purification of enzymes. The theoretical models accounted for the different modes of operation 

and different orientations of MBR’s but the verification of these models was restricted to the 

dead-end mode of a vertically orientated MGR. Parametric optimisation will not be considered. 
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Nomenclature 

 
c   dimensionless substrate concentration  

c0   substrate feed concentration (g dm-3) 

DAB   substrate diffusivity (m2 s-1) 

Fr = u0
2/gR  Froude number 

g   gravitational acceleration (m s-2) 

k   membrane hydraulic permeability (m2) 

KM   dimensionless Monod constant 

Ɩ   membrane thickness (m) 

p   fluid pressure (Pa) 

Peu = u0R/DAB  axial Peclet number 

Pev = v0R/DAB  radial Peclet number 

r   dimensionless radial spatial coordinate 

R   membrane lumen radius (m) 

Re = u0R/  Reynolds number 

u0   feed axial velocity (m s-1) 

   dimensionless velocity vector 

v0    permeation velocity (m s-1) 

VM   maximum rate of reaction (g dm-3 s-1) 

z   dimensionless axial spatial coordinate 

 

Greek letters 

 

η   effectiveness factor for general kinetics 

   solution dynamic viscosity (Pa s) 

   solution density (kg m-3) 

   Thiele modulus 

   dimensionless time 
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2. MICROBIAL GROWTH AND SUBSTRATE UPTAKE 

KINETICS 

2.1 Introduction 

 

The mathematical modelling of microbial processes in biological reactors is broadly divided into 

two aspects of consideration, i.e., microbial growth kinetics and bioreactor performance, as 

illustrated in Figure 2.1. Bioreactor performance is governed by the transport of the key 

substrates through the bioreactor to the microorganisms. Microbial growth kinetics on the other 

hand is concerned with the mathematical descriptions of the rate of consumption of these 

substrates by the microorganisms, and the mechanisms of growth. This chapter considers 

kinetic models currently in use in microbial growth studies from the elementary unstructured and 

distributed models and a brief overview of the more complex structured and segregated models. 

Mass and momentum transfer models will be considered in Chapters 3 - 5. 

 

 

Figure 2.1: Classification of mathematical models of microbial processes (adapted from Ramkrishna, 1979; 
Nielsen & Villadsen, 1992). 

 

Cell growth processes are characterised by an overwhelming complexity and variety, and 

mathematical models intended to describe these processes should reflect these characteristics. 

Over the past 50 years numerous efforts have been made to develop growth kinetic models that 

are representative of this dynamic and complex nature of microbial processes (Eakman et al., 

1966; Ramkrishna, 1979; Liou et al., 1997; Godin et al., 1999; Bizukojc & Ledakowicz, 2003; 

Sheldon et al., 2008). These models have been developed to account for the intracellular 
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reactions in the various compartments of the cell (so-called structured models); as well as the 

variations in metabolic activity from cell to cell within a matrix of cells (referred to as segregated 

models). Despite these advancements, there still exist difficulties in their application for 

modelling cell growth. Firstly, this is due to the fact that physiological properties (e.g. growth 

rate, cell division probability, and partitioning probability), which are input variables, are unknown 

for most microbial systems (Blanch, 1981; Mantzaris et al., 1999). Secondly, these models are 

characterised by considerable mathematical complexity. The level of detail required in a model is 

dictated by what is being described, and the objective is to always choose the simplest model 

that can describe the system within a tolerable variance.           

 

2.2 Unstructured distributed models 

 

The earliest models of microbial growth kinetics were all unstructured, distributed models. 

Unstructured means that they assume fixed cell composition, which is similar to assuming all cell 

components grow at the same rate. This assumption is only valid in single-stage, steady-state, 

continuous cultures and the exponential phase of batch cultures. It is invalid during any transient 

condition. In these models the biomass development is a function of one state variable, as 

opposed to the two or more components in structured models. The unstructured model is based 

on the following observations concerning microbial growth processes: (1) that the rate of cell 

mass production is proportional to biomass concentration; (2) that there is a saturation limit for 

growth rate on each substrate; and (3) that the cells need substrate and may synthesize 

products even when they do not grow (Nielsen, 2006; Shuler & Kargi, 2014).  

 

Distributed (or non-corpuscular) models are those that assume that there are no variations from 

cell to cell in a population, and that the cell can be viewed as a lumped biomass. This 

assumption is satisfactory under many circumstances, exceptions being in their inability to 

predict a lag phase in batch growth (Tsuchiya et al., 1966) and the growth responses of plasmid-

containing cultures (Shuler & Kargi, 2014).   

 

2.2.1 Single-substrate limited growth 

 

The most basic of unstructured microbial growth kinetic models is that of single-substrate limited 

growth. In this model it is assumed that a single chemical specie, i, is growth-rate limiting, and 

that the kinetics of microbial growth can be expressed in terms of this substrate alone. The 

specific growth rate, , which characterises microbial growth is therefore a function of the 

concentration of this specie, ci:   
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 𝜇 = 𝑓(𝑐𝑖) (2.1) 

 

The microbial growth rate, dx/dt, is a linear function of the specific growth rate (Biazar et al., 

2003; Doran, 2013): 

 𝑑𝑥

𝑑𝑡
= 𝜇𝑥 − 𝑌𝑥/𝑐𝑖

𝑚𝑥𝑥 (2.2) 

 

Where x is the microbial concentration (or density); t is time; 𝑌𝑥/𝑐𝑖
 is the maximum yield of cells 

per unit substrate, i, consumed; and mx is the maintenance coefficient. The maintenance 

coefficient is defined as the rate of substrate consumption for cellular maintenance (i.e. 

production of cell mass, oxygen consumption, and product formation). The simplest and most 

used model for the nature of the dependence of the specific growth rate, , on the substrate 

concentration, ci, in Equation (2.1) is that proposed by Monod (1949): 

  

 𝜇 =
𝜇𝑚𝑎𝑥𝑐𝑖

𝐾𝑠 + 𝑐𝑖
 (2.3) 

 

where max is the maximum specific growth rate and KS is the saturation constant (or half velocity 

constant), equal to the concentration of the rate-limiting substrate when the specific growth rate 

is equal to one-half of the maximum. Other models have been proposed for the dependence of 

Equation (2.1), and can be generally described by a single differential equation (Shuler & Kargi, 

2014): 

 𝑑𝜐

𝑑𝑐𝑖
= 𝐾𝜐𝑎(1 − 𝜐)𝑏 (2.4) 

 

where a, b, and K are constants, and  is the dimensionless specific growth rate equal to /max. 

Equation (2.4) reduces to Tessier’s (1942) equation when a = 0, b = 1, and K = 1/KS: 

 

 𝜇 = 𝜇𝑚𝑎𝑥(1 − 𝑒−𝑐𝑖 𝐾𝑠⁄ ) (2.5) 

 

Moser’s (1958) equation when a = 1 – 1/n, b = 1 + 1/n, and 𝐾 = 1 𝐾𝑠
1/𝑛⁄ : 

 
 

𝜇 =
𝜇𝑚𝑎𝑥𝑐𝑖

𝑛

𝐾𝑠 + 𝑐𝑖
𝑛
 

(2.6) 

 

Contois’s (1959) equation when a = 0, b = 2, K = 1/Ksx: 
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 𝜇 =
𝜇𝑚𝑎𝑥𝑐𝑖

𝐾𝑠𝑥𝑥 + 𝑐𝑖
 (2.7) 

 

Equations (2.3) to (2.7) do not account for the inhibition of microbial growth which occurs at high 

concentrations of the limiting substrate or a metabolic product formed. This is often accounted 

for by extending these equations with additional terms. Thus, for inhibition by high 

concentrations of the limiting substrate, the Monod equation becomes (Truskey et al., 2009; 

Shuler & Kargi, 2014):  

 𝜇 =
𝜇𝑚𝑎𝑥𝑐𝑖

𝐾𝑠 + 𝑐𝑖 +
𝑐𝑖

2

𝐾𝑖

 
(2.8) 

  

and inhibition by a metabolic product is given by (Truskey et al., 2009; Shuler & Kargi, 2014): 

 

 𝜇 =
𝜇𝑚𝑎𝑥𝑐𝑖

𝑐𝑖 + 𝐾𝑠 (1 +
𝑝
𝐾𝑝

)
 

(2.9) 

 

where p is the concentration of the product; Ki and Kp are the substrate and product inhibition 

coefficients, respectively. The choice of the most suitable equation to use in a given microbial 

growth process is dependent on the shape of the specific growth rate versus limiting-substrate 

concentration curve. 

 

2.2.2 Multiple-substrate limited growth 

 

Microorganisms exhibit nutritional preferences. When presented with a mixture of substrates, 

those that are in the main metabolic pathways are generally consumed first, the rest are 

consumed later after the common substrates are depleted (Bungay et al., 1998; Sheldon et al., 

2008). When the substrates concerned are carbon sources, this behaviour is referred to as 

diauxic growth, and is illustrated in Figure 2.2 by the cell mass growth curve. Diauxic growth 

curves exhibit an intermediary growth plateau (diauxic lag) between exhaustion of one substrate, 

exemplified by glucose in Figure 2.2, and commencement of utilization of the next (lactose in 

Figure 2.2). During this lag period, the enzymes needed for the uncommon substrate are 

synthesized. These enzymes are not produced during consumption of the first substrate 

because the enzymes required for the utilisation of the primary substrate show catabolic 

inhibition for the second substrate (Bungay et al., 1998; Sheldon, 2008; Sheldon et al., 2008). 
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Figure 2.2: A computer simulation of diauxic growth (Bungay et al., 1998). 

 

Substrates in a mixture may also be consumed simultaneously (i.e., exhibit non-competitive 

behaviour) as opposed to the competitive diauxic growth behaviour. In certain instances 

substrates may even show very weak to no interaction with each other (Narang & Pilyugin, 

2007). The modelling of multiple substrate limited growth kinetics is generally based on one of 

the assumptions: (1) competitive interaction; (2) non-competitive interaction; or (3) non-

interaction of substrates. 

 

The specific growth rate for competitive inhibition of the utilization of one substrate by the other 

(sequential utilization) is given by: 

 
𝜇 = ∑𝜔𝑖𝑓(𝑐𝑖)

𝑁

𝑖=1

 (2.10) 

 

Where 𝜔𝑖 is a weighted average of the growth rates under individual nutrient limitations; the 

function f(ci) can take the form of any of the equations derived from Equation (2.4). As an 

illustration, in the case of dual-substrate limitation, assuming Monod kinetics, Equation (2.10) 

reduces to (Merchuk & Asenjo, 1994; Okpokwasili & Nweke, 2005; Sheldon, 2008): 

 

 𝜇 = 𝜇𝑚𝑎𝑥 [𝜔1

𝑐1

𝐾1 + 𝑐1
+ 𝜔2

𝑐2

𝐾2 + 𝑐2
] (2.11) 

 

Equation (2.10) is often referred to as the additive model for multiple-substrate limited growth. 

The specific growth rate for non-competitive (simultaneous) utilization of substrates is given by: 
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𝜇 = ∏𝑓(𝑐𝑖)

𝑁

𝑖=1

 (2.12) 

 

Where   is the product operator. For dual-substrate limitation, assuming Monod kinetics, 

Equation (2.12) becomes (Merchuk & Asenjo, 1994; Okpokwasili & Nweke, 2005):   

  

 𝜇 = 𝜇𝑚𝑎𝑥 [
𝑐1

𝐾1 + 𝑐1
∙

𝑐2

𝐾2 + 𝑐2
] (2.13) 

  

Equation (2.12) is the so-called multiplicative model for multiple-substrate limited growth. In non-

interactive models the growth rate of the microorganism is assumed to be equal to the lowest 

growth rate that would be predictable from the separate single substrate models (Sonmezisik et 

al., Lewandowski & Beyenal, 2007):  

 

 𝜇 = 𝑓(𝑐1) 𝑜𝑟 𝑓(𝑐2) 𝑜𝑟 𝑓(𝑐𝑁) (2.14) 

 

There is no reason to prefer non-competitive kinetics to competitive, but most experimental data 

has been fitted to the non-competitive models (Blanch, 1981; Sonmezisik et al., 1998). It is 

important to note that multiple-substrate limited growth is best described by structured models 

and, in general, the unstructured (or black box) models of Section 2.2 should be used for single-

substrate limited growth only (Nielsen, 2006).  

 

2.3 Structured models 

 

The unstructured models, described previously, constitute the majority of available literature 

models on fermentation processes. These models are normally restricted to one reactor type 

and to one mode of operation, and do not apply to transient operations. Structured models are 

not subject to these restrictions, and may be used in steady-state as well as transient 

operations. Although the mathematical formalism of structured models is quite complex, this is 

often outweighed by the amount of detail and degree of realism obtained from these models. 

There are various interpretations of structured microbial models, Nielsen and Villadsen (1992) 

have presented a general framework of these models, and a summary thereof is presented in 

this section.   

 



 

MICROBIAL GROWTH AND SUBSTRATE UPTAKE KINETICS 15 

Generally, there are two types of structured models applicable to microbial growth processes: (1) 

intracellularly structured models, and (2) morphologically structured models (Bizukojc & 

Ledakowicz, 2003). In the former models, kinetic expressions for the intracellular reactions of 

basic metabolic pathways are formulated, whereas in the latter models biomass is divided into 

subsections or compartments of various function and biochemical properties (Bizukojc & 

Ledakowicz, 2003). Morphologically structured models are mainly used to describe the growth of 

filamentous fungi (Nielsen, 1992; Bizukojc & Ledakowicz, 2003). 

 

 

Figure 2.3: Reactions involved in cellular growth. 

 

In developing a structured model the intention is to represent the kinetics in terms of species 

which are present only inside the cells, i.e., the microbial and reactor kinetics are decoupled. 

This is done by introducing the intracellular components Ci and Pi which are in pseudo-steady-

state equilibrium with the extracellular substrates and products, ci and pi, respectively. 

Considering a system where the microorganism grows on N different substrates and M 

metabolic products are formed, as shown in Figure 2.3. A stoichiometric equation for each 

extracellular substrate, ci, becomes (Nielsen et al., 1991; Nielsen & Villadsen, 1992):  

    

 
∑𝛼𝑐,𝑖𝑗𝐶𝑗

𝑁

𝑗=1

+ ∑𝛾𝑐,𝑖𝑗𝑋𝑗

𝐿

𝑗=1

+ ∑𝛽𝑐,𝑖𝑗𝑃𝑗

𝑀

𝑗=1

− 𝑐𝑖 = 0; 𝑖 = 1,2, … ,𝑁 (2.15) 

 

Where c,ij, c,ij, and c,ij are stoichiometric coefficients which may be positive, zero, or negative 

(positive if there is a net production of species i in the jth reaction); C and P are vectors of the 

intracellular concentrations of substrates and products; X is the vector of intracellular 

concentrations of the L biomass components.  In most cases, however, the influence of the M 

metabolic products on the substrate uptake reactions is negligible (i.e. c,ij = 0). The uptake of 

each of the ith substrate is often independent of the intracellular concentrations of the other 

substrates, and hence, c,ij = 0 for i ≠ j. Also, the transport of substrates across the membrane is 
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normally carried out without loss of mass, i.e. c,jj = 1. Considering the above conditions, 

Equation (2.15) reduces to (Nielsen et al., 1991; Nielsen & Villadsen, 1992):  

 

 
𝐶𝑖 + ∑𝛾𝑐,𝑖𝑗𝑋𝑗

𝐿

𝑗=1

− 𝑐𝑖 = 0; 𝑖 = 1,2, … ,𝑁 (2.16) 

 

For most microorganisms very little is known of the mechanisms involved in the substrate 

uptake, and empirical expressions are used to relate Ci to ci and other environmental variables 

(e.g. temperature and pH). After uptake of substrate the formation of biomass and metabolic 

products is described by J reactions (Nielsen et al., 1991; Nielsen & Villadsen, 1992): 

 

 
∑𝛼𝑖𝑗𝐶𝑗

𝑁

𝑗=1

+ ∑𝛽𝑖𝑗𝑃𝑗

𝑀

𝑗=1

+ ∑𝛾𝑖𝑗𝑋𝑗

𝐿

𝑗=1

= 0; 𝑖 = 1,2, … , 𝐽 (2.17) 

 

For unstructured models L = 1 in Equations (2.15) - (2.17), since the biomass is assumed to be 

made-up of only one component. For structured models L > 1, and the chemical composition (Xi) 

must be known if stoichiometry is to be applied. The M metabolic products formed in the 

intracellular reactions are transported across the cellular membrane according to the 

stoichiometric equation (Nielsen et al., 1991; Nielsen & Villadsen, 1992):  

 

 
∑𝛼𝑝,𝑖𝑗𝐶𝑗

𝑁

𝑗=1

+ ∑𝛾𝑝,𝑖𝑗𝑋𝑗

𝐿

𝑗=1

+ ∑𝛽𝑝,𝑖𝑗𝑃𝑗

𝑀

𝑗=1

+ 𝑝𝑖 = 0; 𝑖 = 1,2,… ,𝑀 (2.18) 

 

Considering the same arguments used in the simplification of Equation (2.15), Equation (2.18) 

can be reduced to:  

 
∑𝛾𝑝,𝑖𝑗𝑋𝑗

𝐿

𝑗=1

− 𝑃𝑖 + 𝑝𝑖 = 0; 𝑖 = 1,2, … ,𝑀 (2.19) 

 

The rate of change of the intracellular substrate concentrations, when considering the 

aforementioned quasi-steady-state assumption, is given by (Nielsen et al., 1991; Nielsen & 

Villadsen, 1992): 

 𝑑𝑪

𝑑𝑡
= 𝑨𝑇𝒓 + 𝑨𝑐

𝑇𝒓𝑐 + 𝑨𝑝
𝑻𝒓𝑝 − 𝜇𝑪 = 0 (2.20) 
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Where rc is the rate of substrate uptake for the N substrates across the cellular membrane, 

equal to the specific substrate utilization vector for the N extracellular substrates; rp is the 

specific product excretion vector for the M products; r is the rate vector for the J intracellular 

reactions. The first term on the right hand side of Equation (2.20) is the net substrate formation in 

the J intracellular reactions. The second and third terms represent net substrate formation in the 

substrate uptake and product excretion reactions, respectively; the last term accounts for dilution 

of C due to growth.  

 

In the reaction scheme described in this section the specific growth rate of the biomass is 

calculated as a sum of the net specific formation rates for each component in the intracellular 

reactions:  

 

 

𝜇 = ∑∑𝛾𝑖𝑗𝑟𝑖

𝐽

𝑖=1

𝐿

𝑗=1

 (2.21) 

 

Where jirj specifies the net specific formation of the jth component in the ith reaction. 

 

2.4 Segregated models 

 

Segregated models are those that view the population as segregated into individual cells that 

are different from one another with respect to some distinguishable traits (Ramkrishna, 1979). 

The selection of the basis for this distinguishing trait is experimentally difficult, due primarily to 

the small size of bacterial, yeast and most fungal cells. Cell age and cell mass have often been 

proposed as a means of characterising cells, but without any experimental means of verifying 

the predictions of these models (Tsuchiya et al., 1966; Blanch, 1981). Advances in flow 

microfluorimetry coupled with light scattering, cytometry and automatic image analysis now 

allows monitoring of individual cell content (Liou et al., 1997; Mantzaris et al., 1999).    

 

Segregation is based on the presumption that growth is a manifestation of physiological activity 

of the cell. The extent of the physiological activity of the cell is a function of the physiological 

state and the constitution of the cell’s environment. The physiological state of the cell can be 

determined by the quantitative amounts of one or more of the cellular constituents (Ramkrishna, 

1979). The most commonly used segregated, structured population balance model is that 

developed by Eakman et al. (1966) for a well-stirred continuous bioreactor, using cell mass as 

the single index of the physiological state: 
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 𝜕𝑊(𝑡,𝑚)

𝜕𝑡
+

𝜕[𝑟(𝑚, 𝑐𝑖)𝑊(𝑡,𝑚)]

𝜕𝑚

= 2 ∫ Γ′(𝑚′, 𝑐𝑖)𝑊(𝑡,𝑚′)𝑝(𝑚,𝑚′)𝑑𝑚

∞

𝑚

− [
1

𝜃
+ Γ′(𝑚, 𝑐𝑖) + Θ(𝑚, 𝑐𝑖)]𝑊(𝑡,𝑚) 

(2.22) 

 

Where W(t,m) is the cell mass distribution function, representative of a number of cells per 

volume at time t with a mass between m and m + dm; r(m, ci) is the single cell growth rate of a 

cell of mass m, growing in a medium with a limiting substrate concentration ci; ’(m’, ci) is the 

transition probability function; p(m,m’) is the distribution of mass into daughter cells from mother 

cell; (m,ci) is the specific probability of death;  is the holding time; ci is the limiting substrate 

concentration.  

 

The partial integro-differential Equation (2.22) is extremely difficult to solve analytically, and only 

amenable to such solutions after restrictive assumptions. A number of numerical solutions have 

been developed to overcome these restrictions. However, the majority of these models used cell 

age as the index of physiological state. Cell age implies the time elapsed since the cell has 

visibly detached from its mother, and has very limited practical value due to difficulties in its 

measurement (Liou et al., 1997; Mantzaris et al., 1999). Current research is focused on 

numerical solutions of mass-structured population balances, mass being a general term for any 

cell property which obeys the conservation law (Mantzaris et al., 1999).  

 

2.5 Empirical models 

 

Transport equations for biological reactor systems give rise to a set of partial differential 

equations which are quite complex and difficult to solve (Mitchell et al., 2004, Godongwana et 

al., 2010). Coupling these equations with the structured and segregated kinetic models of 

Sections 2.3 and 2.4 gives the most general and accurate account of bioreactor performance. 

The solution of such a model, however, would require a lot of computational power, even for the 

simplest of microbial systems. This is typically avoided by using empirical kinetic models, instead 

of the growth kinetic models of Section 2.2 - 2.4 (Mitchell et al., 2004).     

 

Generally, there are four types of empirical correlations for solid-state fermentations, namely: the 

linear, exponential, logistic, and the two-phase model (Mitchell et al., 2004), and these are 

presented in Table 2.1 These equations are fitted to experimental growth profiles by non-linear 
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Table 2.1: Differentiated and integrated forms of the empirical correlations of growth (Mitchell et 
al., 2004). 

 Differentiated form  Integrated form  

Linear 

 

𝑑𝑋

𝑑𝑡
= 𝐾 (2.23) 

𝑋 = 𝐾𝑡 + 𝑋0 (2.24) 

Exponential 𝑑𝑋

𝑑𝑡
= 𝜇𝑋 (2.25) 

𝑋 = 𝑋0𝑒
𝜇𝑡 (2.26) 

Logistic 𝑑𝑋

𝑑𝑡
= 𝜇𝑋 (1 −

𝑋

𝑋𝑚
) (2.27) 𝑋 =

𝑋𝑚

1 + (
𝑋𝑚
𝑋0

− 1) 𝑒−𝜇𝑡
 

(2.28) 

Two phase 𝑑𝑋

𝑑𝑡
= 𝜇𝑋, 𝑡 < 𝑡𝑎 

𝑑𝑋

𝑑𝑡
= [𝜇𝐿𝑒−𝑘(𝑡−𝑡𝑎)]𝑋, 𝑡 ≥ 𝑡𝑎 

(2.29) 

𝑋 = 𝑋0𝑒
𝜇𝑡, 𝑡 < 𝑡𝑎 

𝑋 = 𝑋0𝑒𝑥𝑝 [
𝜇𝐿

𝑘
(1 − 𝑒−𝑘(𝑡−𝑡𝑎))]𝑋, 𝑡 ≥ 𝑡𝑎 

(2.30) 

 

Where X is microbial biomass, t is time, K is the linear growth rate,  is the specific growth rate, X0 is the 

initial biomass, Xm is the maximum microbial biomass, L is the ratio of the specific growth rate at the start of 

the deceleration phase to the specific growth rate during the previous exponential phase, k is a first-order 

rate constant describing the deceleration phase, and ta is the time at which the switch from exponential to 

deceleration phase occurs. 

 

regression, and the model that most closely resembles the experimental profiles is chosen as 

the model for growth. The logistic equation is the most commonly used of the four models, since 

it simulates the characteristic S-shape curve of population growth dynamics. This model is also 

favoured over the two-phase model because of its simplicity; the rate constant, k, and the 

specific growth rate ratio, L, of the two-phase model are difficult parameters to measure (Mitchell 

et al., 2004). A disadvantage of these empirical models is that they do not include the effect of 

environmental conditions (e.g. nutrient concentration) on growth, which can make their usage 

questionable (Blanch, 1981; Mitchell et al., 2004; Shuler & Kargi, 2014).  

  

2.6 Summary  

 

This section of the thesis presents a literature review of microbial kinetics, beginning with the 

elementary unstructured and distributed models and a brief overview of the more complex 

structured and segregated models. The theory from this chapter was utilized in Chapters 3 and 4 

where simultaneous diffusion, convection and reaction differential balance equations were 

solved for the transport of the rate limiting solute inside the lumen of the MBR. 
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Nomenclature 

 
a constant in the generalized specific rate equation, Eq. (2.4) 

A stoichiometric matrix for the substrates 

b constant in the generalized specific rate equation, Eq. (2.4) 

c extracellular substrate concentration vector  

C intracellular substrate concentration vector 

J number of intracellular reactions  

K constant in the generalized specific rate equation, Eq. (2.4) 

L number of intracellular components 

m mass of cells 

mx maintenance coefficient 

M number of metabolic products  

N number of substrates 

p extracellular product concentration vector 

P intracellular product concentration vector 

r rate vector for the intracellular reactions 

ri rate of the ith reaction 

rp specific product formation rate vector 

rc specific substrate utilization rate vector 

t time  

W(t,m) cell mass distribution function 

x biomass concentration  

X state vector for the biotic phase  

𝑌𝑥/𝑐𝑖
 maximum yield of cells per unit substrate, i, consumed 

 

Greek symbols 

 

ij stoichiometric coefficient for the ith substrate in the jth reaction 

ij stoichiometric coefficient for the ith metabolic product in the jth reaction 

ij stoichiometric coefficient for the ith element in the biotic phase in the jth reaction 

 specific growth rate for the biomass 

 dimensionless specific growth rate  

 weighted average of the growth rate of the biomass 

 holding time 
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3. SOLUTE TRANSPORT THROUGH THE LUMEN OF A 

MEMBRANE BIOREACTOR 

Abstract 

 

This paper presents an analytical model of substrate mass transfer through the lumen of a 

membrane bioreactor. The model is a solution of the convective-diffusion equation in two 

dimensions using a regular perturbation technique. The analysis accounts for radial-convective 

flow as well as axial-diffusion of the substrate specie. The model is applicable to the different 

modes of operation of membrane bioreactor (MBR) systems (e.g. dead-end, open-shell, or 

closed-shell mode), as well as the vertical or horizontal orientation. The first-order limit of the 

Michaelis-Menten equation for substrate consumption was used to test the developed model 

against available analytical results. The results obtained from the application of this model, along 

with a biofilm growth kinetic model, will be useful in the derivation of an efficiency expression for 

enzyme production in an MBR.     

 

Keywords: Convection-diffusion equation; Laplace transform; Mass transfer with reaction; Membrane 

bioreactor; Regular perturbation; Substrate transport. 
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3.1 Introduction 

 
Since the first uses of hollow-fiber membrane bioreactors (MBR’s) to immobilize whole cells 

were reported in the early 1970’s, this technology has been used in as wide ranging applications 

as enzyme production to bone tissue engineering. One of the current research areas of interest 

into biofilm-attached membrane bioreactors (MBR’s) is the development of cost effective and 

environmentally friendly methods of producing various primary and secondary metabolites from 

bacterial, fungal, and yeast cells. These include: manganese and lignin peroxidase, secreted by 

the fungus Phanerochaete chrysosporium [1,2]; actinorhodin, a non-commercial antibiotic 

produced by the filamentous bacterium Streptomyces coelicolor [3]; glutamic acid, an ingredient 

in flavour enhancers of meats and vegetables, secreted by the bacterium Corynebacterium 

glutamicum [4]; ethanol, extracted from the yeast Saccharomyces cerevisiae [5]; and many 

others. With the exception of ethanol, these bioproducts are generally classified as products of 

intermediate value [6]. It has been reported that bioreactor productivity, in the production of 

these types of products, greatly impacts on the product cost [7].   

 

The productivity of biofilm-attached MBR’s is determined in large by the biomass growth, and 

one of the most important factors that influence biomass growth is the availability and transport 

of nutrients through the bioreactor [8,9]. The momentum transfer of solutes through MBR’s has 

been thoroughly studied, from a theoretical and experimental perspective, for a number of 

configurations [10-15]. Similarly, the mass transfer has received considerable attention [8,9,16-

22]. With the exception of the models developed by Heath and Belfort [17]; Li and Tan [19]; 

Willaert et al. [22], the mass transfer models were solved using numerical procedures such as 

finite difference schemes and control volumes. A difficulty in implementing such schemes is the 

choice of the appropriate technique for a specific MBR system [21], and these techniques are 

subject to discretization errors and stringent stability criterion. In the models presented by Heath 

and Belfort [17]; Willaert et al. [22]; Li and Tan [19], the convective-diffusion equation governing 

mass transfer was solved analytically. These authors, however, neglected the effects of axial 

diffusion and radial convective flow in their models. Both these assumptions may not be justified 

in all cases. A number of theoretical and experimental investigations have demonstrated the 

significance of radial convective flows in improving MBR efficiencies [9,15,21]. In the dead-end 

ultrafiltration mode, particularly, the assumption of negligible radial convective flow is not 

justifiable. At axial Peclet numbers (Peu) smaller than unity large concentration gradients exist, 

and under these circumstances ignoring axial diffusion is also not justified.  
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The current study presents an analytical solution of the convective-diffusion equation, for solute 

transport trough a single fiber isotropic capillary membrane, in two dimensions. This study will 

not include the growth kinetics of the microorganism, as conversion is assumed to take place in 

the shell-side of the MBR; the current analysis is restricted to the lumen-side. The developed 

model, however, is easily adjustable to account for solute consumption. For comparison with 

literature models, the first-order limit of the Michaelis-Menten equation will be superimposed on 

the developed model in the results section.    

 

3.2 Model development 

 
3.2.1 The membrane gradostat reactor 

 

 

Figure 3.1: A schematic diagram of the single capillary membrane gradostat reactor (MGR). 

 

The models developed in this study are applicable to a hollow-fiber MBR system, consisting of 

either a single fibre or a bundle of fibres; with nutrient flowing on the lumen-side of the 

membrane and the micro-organism immobilised either on the lumen-side or on the shell-side. 
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The notation used, however, is specifically for a single hollow-fiber membrane gradostat reactor 

(MGR). The construction of the MGR, as patented by Edwards et al. [23], is illustrated 

schematically in Figure 3.1. It consists of a single hollow-fibre, made of surface modified 

polysulphone, encased in a glass bioreactor. The membranes are asymmetric and characterized 

by an internally skinned and externally un-skinned region of microvoids; approximately 0.15mm 

long and 0.015mm thick. These membranes have inner and outer diameters of approximately 

1.395mm and 1.925mm, respectively. The nutrient solution permeates from the lumen-side to 

the shell-side of the MGR due to the transmembrane pressure gradient. The micro-organism is 

immobilised on the shell-side of the MGR. Humidified air is supplied on the shell-side, and two 

pressure transducers are fitted at the inlet and outlet of the MGR as shown in Figure 3.1. A 

detailed description of the set-up and operation of the MGR is provided in Appendix C.  

 

3.2.2 Model assumptions 

 

The theoretical models to be developed will be based on the following conditions of operation 

and assumptions: (1) the system is isothermal, meaning the energy equation has been 

decoupled from the mass and momentum transfer; (2) the flow regime within the membrane 

lumen is fully developed, laminar, and homogeneous; (3) the physical and transport parameters 

(e.g. density, viscosity and diffusivity) are constant; (4) in the dense and spongy layers of the 

membrane matrix the flow is only one dimensional (that is, there are no axial components of the 

velocity profiles in the membrane matrix); (5) the aspect ratio of the membrane is much smaller 

than unity. The aspect ratio, , is the ratio of the membrane inner radius to the effective 

membrane length (i.e. RL/L), and if it is much smaller than unity then normal stress effects are 

negligible in the momentum transfer analysis.  

 

3.3 Mathematical formulation 

 

The starting point of the analysis is the convective-diffusion equation [24]:  

 

 𝐷𝑐

𝐷𝑡
= 𝐷𝐴𝐵∇2𝑐 + 𝑟𝐴 (3.1) 

 

where c is the local substrate concentration; t is time; DAB is the substrate diffusivity, assumed to 

be constant; and rA is the rate of substrate production (or consumption), which is a function of 

the local biofilm density. Eq. (3.1), for steady-state, two-dimensional flow, without reaction, in 

cylindrical co-ordinates may be written as: 
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𝑢

𝜕𝑐

𝜕𝑧
− 𝐷𝐴𝐵

𝜕2𝑐

𝜕𝑧2
=

𝐷𝐴𝐵

𝑟
(
𝜕𝑐

𝜕𝑟
+ 𝑟

𝜕2𝑐

𝜕𝑟2) − 𝑣
𝜕𝑐

𝜕𝑟
 (3.2) 

 

It is convenient to express this equation in dimensionless form by introducing the following 

dimensionless variables: 

 

 
𝑈 =

𝑢

𝑢0
;    𝑉 =

𝑣

𝑣0
;    𝐶 =

𝑐

𝑐0
;     𝑍 =

𝑧

𝐿
;    𝑅 =  

𝑟

𝑅1
;     𝜑 =

𝑅1

𝐿
 

(3.3) 

 

The expressions of u and v in Eqn. (3.2) are obtained from the momentum transfer analysis 

given in Appendix A (Section A.1). Substituting the dimensionless variables in Eq. (3.3) into Eq. 

(3.2) results in: 

 

 
𝜑𝑃𝑒𝑢𝑈

𝜕𝐶

𝜕𝑍
− 𝜑2

𝜕2𝐶

𝜕𝑍2
=

1

𝑅
(
𝜕𝐶

𝜕𝑅
+ 𝑅

𝜕2𝐶

𝜕𝑅2) − 𝑃𝑒𝑣𝑉
𝜕𝐶

𝜕𝑅
 (3.4) 

 

where the axial and radial Peclet numbers (Peu,v) are defined as:  

 

 
𝑃𝑒𝑢 =

𝑢0𝑅1

𝐷𝐴𝐵
;     𝑃𝑒𝑣 =

𝑣0𝑅1

𝐷𝐴𝐵
 (3.5) 

 

The boundary conditions which match the imposed operating conditions of the MBR system are 

presented in Table 3.1. Boundary condition 1 (B.C.1) corresponds to a uniform inlet substrate 

concentration; B.C.2 and B.C. 5 corresponds to cylindrical symmetry at the centre of the 

membrane lumen; B.C.3 corresponds to continuity of the substrate flux at the lumen-matrix 

interface [17]. The boundary conditions B.C.4-8 are employed in the solution of the velocity 

profiles given in Appendix A. A cross-section of the MGR illustrating the three regions of the 

reactor, with the notation used in the model development, is shown in Figure 3.2. 

 

If U in Eq. (3.4) is radially-averaged, to become Uav, then the L.H.S. of Eq. (3.4) is only a function 

of Z and the R.H.S. only a function of R. This can only be true if both the L.H.S and R.H.S. are 

independent of the variables R and Z. Eq. (3.4) may therefore be solved by separation of 

variables to give a solution of the form: 

 

 𝐶 = 𝐹(𝑍)𝑇(𝑅) (3.6) 
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Table 3.1: The boundary conditions of the MBR
1
.  

 

1
The boundary conditions presented in Godongwana et al. (2010) are revised. 

 
 

 

Figure 3.2: A cross-section of the single fibre MGR. 

 
 
Substituting Eq. (3.6) into (3.4) gives: 

 

 𝜑𝑃𝑒𝑢𝑈𝑎𝑣

𝐹

𝑑𝐹

𝑑𝑍
−

𝜑2

𝐹

𝑑2𝐹

𝑑𝑍2
=

1

𝑅𝑇
(
𝑑𝑇

𝑑𝑅
+ 𝑅

𝑑2𝑇

𝑑𝑅2) −
𝑃𝑒𝑣𝑉

𝑇

𝑑𝑇

𝑑𝑅
= −𝜆2 (3.8) 

 

B.C. R,Z C, U, V, P Equation 

B.C. 1 Z = 0 𝐶 = 1 (3.7a) 

B.C. 2 R = 0 
  
𝜕𝐶

𝜕𝑅
= 0 (𝑜𝑟 𝐶 = 𝑓𝑖𝑛𝑖𝑡𝑒)  (3.7b) 

B.C. 3 R = 1 𝜕𝐶

𝜕𝑍
=

2

𝜑𝑃𝑒𝑢

𝜕𝐶

𝜕𝑅
 (3.7c) 

B.C. 4 R = 1 U = 0 (3.7d) 

B.C. 5 R = 0 
  
𝜕𝑈

𝜕𝑅
= 0 (𝑜𝑟 𝑈 = 𝑓𝑖𝑛𝑖𝑡𝑒)  (3.7e) 

B.C. 6 R = 0 V = 0 (3.7f) 

B.C. 7 R = 1 V = VM (3.7g) 

B.C. 8 Z = 0 𝑃 = 𝑃0; 𝑃
′ = 𝜑𝑎 (3.7h) 
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The equating of the two ordinary differential equations to the arbitrary constant -2 in Eq. (3.8) is 

due to the fact that the two ODEs are independent of the variables R and Z. 

 

3.3.1 Solution of the axial concentration function F(Z) 

 

To solve for the axial function F(Z) of the substrate concentration profile the ODE on the L.H.S. 

of Eq. (3.8) is considered: 

 𝑑2𝐹

𝑑𝑍2
−

𝑃𝑒𝑢𝑈𝑎𝑣

𝜑

𝑑𝐹

𝑑𝑍
−

𝜆2

𝜑2
𝐹 = 0 (3.9) 

 

The radially-averaged axial velocity Uav in Eq. (3.9) is defined as: 

 

 

𝑈𝑎𝑣 = 2∫𝑈𝑅𝑑𝑅

1

0

= −
1

8
(
𝑑𝑃

𝑑𝑍
−

𝑅𝑒

𝐹𝑟
) (3.10) 

 

where Fr and Re are the Froude and Reynolds number, respectively given by: 

 

 
𝐹𝑟 =

𝑢0
2

𝑔𝑅1
 

𝑅𝑒 =
𝜌𝑢0𝑅1

𝜇
 

(3.11) 

 

where g is the gravitational acceleration;  is the solution density; and  the solution dynamic 

viscosity. The solution of the axial velocity U in Eq. (3.10) is given in Appendix A as: 

 

 
𝑈 = −

1

4
(1 − 𝑅2) (

𝑑𝑃

𝑑𝑍
−

𝑅𝑒

𝐹𝑟
) (3.12) 

 

with the axial pressure gradient given by:  

 

 𝑑𝑃

𝑑𝑍
= 4√𝜑−1𝜅𝛽𝑠𝑖𝑛ℎ (4√𝜑−1𝜅)𝑍 + 𝜑𝑎𝑐𝑜𝑠ℎ (4√𝜑−1𝜅)𝑍 (3.13) 

 

where P is the dimensionless fluid pressure;  is the dimensionless transmembrane pressure; a 

is the dimensionless entrance pressure drop; and  is the dimensionless membrane hydraulic 

permeability. The entrance pressure drop a in Eq. (3.13) is given by: 
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𝑎 =
4√𝜑−1𝜅𝛽𝑠𝑖𝑛ℎ(4√𝜑−1𝜅) − 𝑅𝑒𝐹𝑟−1(1 − 𝑓)

𝜑 [𝑓 − 𝑐𝑜𝑠ℎ(4√𝜑−1𝜅)]
 (3.14) 

 

where f is the fraction retentate (f = 0 for the dead-end mode and f = 1 for the closed-shell 

mode). The membrane hydraulic permeability  in Eq. (3.13) is much smaller than unity (<<1), 

therefore this equation can be approximated by the following expression: 

 

 𝑑𝑃

𝑑𝑍
≈ 𝜑𝑎 + 16𝛽𝜑−1𝜅𝑍 (3.15) 

 

This approximation makes Eq. (3.9) a confluent hypergeometric type differential equation. This is 

more evident if the following sequential substitutions are made: 

 

Substitution 1 

 
𝜉 = −

𝑃𝑒𝑢

8𝜑
(𝑎𝜑 +

16𝛽𝜅𝑍

𝜑
−

𝑅𝑒

𝐹𝑟
) (3.16) 

 

The substitution in Eq. (3.16) transforms Eq. (3.9) to: 

 

 𝑑2𝐹

𝑑𝜉2
− 𝐴𝜉

𝑑𝐹

𝑑𝜉
−

𝐴2𝜆2

𝜑2
𝐹 = 0 (3.17) 

where 

 𝐴 = −𝜑2(2𝑃𝑒𝑢𝛽𝜅)−1 (3.18) 

Substitution 2 

 
𝜃 =

1

2
𝐴𝜉2 (3.19) 

Transforming Eq. (3.17) to: 

 
𝜃

𝑑2𝐹

𝑑𝜃2
+ (

1

2
− 𝜃)

𝑑𝐹

𝑑𝜃
−

𝐴𝜆2

2𝜑2
𝐹 = 0 (3.20) 

 

Eq. (3.20) is the standard Kummer hypergeometric equation and has two solutions, the Kummer 

function of the first kind   ,,M  and the Tricomi function   ,, , respectively [25]: 

 

 
𝑀(𝛼, 𝛾, 𝜃) = 1 +

𝛼

𝛾
𝜃 +

(𝛼)2

(𝛾)22!
𝜃2 + ⋯+

(𝛼)𝑛

(𝛾)𝑛𝑛!
𝜃𝑛 (3.21) 
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where 

 (𝛼)𝑛 = 𝛼(𝛼 + 1)(𝛼 + 2) + ⋯(𝛼 + 𝑛 − 1), (𝛼)0 = 1  

and 

 
Φ(𝛼, 𝛾, 𝜃) =

𝜋

𝑠𝑖𝑛𝜋𝛾
{

𝑀(𝛼, 𝛾, 𝜃)

Γ(1 + 𝛼 − 𝛾)Γ(𝛾)
− 𝜃1−𝛾

𝑀(1 + 𝛼 − 𝛾, 2 − 𝛾, 𝜃)

Γ(𝛼)Γ(2 − 𝛾)
} (3.22) 

 

where (n) is the gamma function. Therefore, the solution of Eq. (3.20) becomes: 

 

 
𝐹(𝜃) = 𝐹0𝑀 (

𝐴𝜆2

2𝜑2
,
1

2
, 𝜃) + 𝐹1Φ(

𝐴𝜆2

2𝜑2
,
1

2
, 𝜃) (3.23) 

  

where F0 and F1 are constant coefficients. The Tricomi function approaches infinity as values of 

θ approach zero [26], therefore, the coefficient F1 in Eq. (3.23) must be zero for this equation to 

satisfy Eq. (3.7a). The coefficient F0 can be arbitrarily put equal to unity without loss of generality. 

The solution of the axial function of the dimensionless concentration profile, F(θ), is therefore: 

 

 
𝐹(𝜃) = 𝑀 (

𝐴𝜆2

2𝜑2
,
1

2
, 𝜃) (3.24) 

 

3.3.2 Solution of the radial concentration function T(R) 

3.3.2.1 Zero-order approximation 

 

To solve for the radial function T(R) of the substrate concentration profile, the ODE on the 

R.H.S. of Eq. (3.8) is solved: 

 𝑑2𝑇

𝑑𝑅2
+ (

1

𝑅
− 𝑃𝑒𝑣𝑉)

𝑑𝑇

𝑑𝑅
+ 𝜆2𝑇 = 0 (3.25) 

 

The radial velocity V in Eq. (3.25) is given in Appendix A as: 

 

 
𝑉 = 𝜑 (

𝑢0

𝑣0
) [

𝑅

8
(1 −

𝑅2

2
)]

𝑑2𝑃

𝑑𝑍2
 (3.26) 

 

From the approximation in Eq. (3.15): 

 𝑑2𝑃

𝑑𝑍2
≈ 16𝛽𝜑−1𝜅, 𝜅 ≪ 1 (3.27) 
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Eq. (3.25) is solved by a regular perturbation technique: 

 

 
𝑇(𝑅) = ∑ 𝜅𝑛𝑇𝑛

∞

𝑛=0

 (3.28) 

 

The magnitude of the membrane hydraulic permeability  is very small; hence validity of the 

perturbation method is assured. The equations to solve for the zero-order approximation, T0, of 

Eq. (3.25) are: 

 𝑑2𝑇0

𝑑𝑅2
+

1

𝑅

𝑑𝑇0

𝑑𝑅
+ 𝜆2𝑇0 = 0 (3.29) 

and,  

 
𝑇0(0) − 𝐵1 = 0;

𝑑𝑇0(0)

𝑑𝑅
− 𝐵2 = 0 (3.30) 

 

Eq. (3.29) is the Bessel equation, and has a standard solution of the form: 

 

 𝑇0(𝑅) = 𝐵1𝐽0(𝜆𝑅) + 𝐵2𝑌0(𝜆𝑅) (3.31) 

 

As R approaches zero in Eq. (3.31), the Webber function Y0 tends to minus infinity; and 

therefore, B2 must be zero for the equation to satisfy B.C.2 at R is equal to zero. Thus,  

 

 𝑇0(𝑅) = 𝐵1𝐽0(𝜆𝑅) (3.32) 

 

There are many positive values of  that satisfy B.C.3 when the axial function F() and radial 

function T(R) are returned for C(R,Z) in Eq. (3.6). This means there are many functions T0(R) 

that satisfy Eq. (3.25). The sum of these functions is the most general result: 

  

 
𝑇0(𝑅) = ∑ 𝐵1𝑚𝐽0(𝜆𝑚𝑅)

∞

𝑚=1

 (3.33) 

 

The solution for the coefficient B1m in Eq. (3.33) is given in Appendix A (Section A.2); the 

eigenvalues m are derived from B.C.3 and are presented in Table 4.1 (Chapter 4) and for 

brevity will not be repeated here.  
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3.3.2.2 First-order and second order approximations  

 

The equations to solve for the first-order approximation, T1, of Eq. (3.25) are: 

 

 𝑑2𝑇1

𝑑𝑅2
+

1

𝑅

𝑑𝑇1

𝑑𝑅
+ 𝜆𝑚

2 𝑇1 = 𝛿 [𝑅 (1 −
𝑅2

2
)]

𝑑𝐽0(𝜆𝑚𝑅)

𝑑𝑅
 (3.34) 

and,  

 
𝑇1(0) = 0;

𝑑𝑇1(0)

𝑑𝑅
= 0 (3.35) 

 

where 

 
𝛿 = 2𝑃𝑒𝑢𝛽 ∑ 𝐵1𝑚

∞

𝑚=1

 (3.36) 

 

Eq. (3.34) is evaluated by making use of the following identity of Bessel functions [25]: 

 

 𝑑𝐽0(𝜆𝑚𝑅)

𝑑𝑅
= −𝜆𝑚𝐽1(𝜆𝑚𝑅) (3.37) 

 

Substituting Eq. (3.37) into Eq. (3.34) results in the following inhomogeneous O.D.E: 

 

 𝑑2𝑇1

𝑑𝑅2
+

1

𝑅

𝑑𝑇1

𝑑𝑅
+ 𝜆𝑚

2 𝑇1 = −𝛿𝜆𝑚 [𝑅 (1 −
𝑅2

2
)] 𝐽1(𝜆𝑚𝑅) (3.38) 

 

Eq. (3.38) is further simplified by making use of the following substitution:  

 

 𝑥 = 𝜆𝑚𝑅 (3.39) 

This substitution simplifies Eq. (3.38) to: 

 

 
𝑥

𝑑2𝑇1

𝑑𝑥2
+

𝑑𝑇1

𝑑𝑥
+ 𝑥𝑇1 = −

𝛿𝑥2

𝜆𝑚
2 (1 −

𝑥2

2𝜆𝑚
2 ) 𝐽1(𝑥) (3.40) 

 

Some mathematical architecture is required to solve Eq. (3.40) and this is described in 

Appendix A (Section A.3). The solution of this equation is given in Section A.4 as: 
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𝑇1(𝑥) = 𝑖3 [

𝑥2𝐽2(𝑥)

3‼
+ 𝑖1

𝑥3𝐽3(𝑥)

5‼
+ 𝑖2

𝑥4𝐽4(𝑥)

7‼
] (3.41) 

where 

 
𝑖1 = −

20

3𝜆𝑚
2 , 𝑖2 =

35

4𝜆𝑚
2 , 𝑖3 = −

3𝛿

4𝜆𝑚
2  (3.42) 

 

The differential equations to solve for the second-order approximation, T2, of Eq. (3.25) are: 

 

 
𝑥

𝑑2𝑇2

𝑑𝑥2
+

𝑑𝑇2

𝑑𝑥
+ 𝑥𝑇2 = −

𝛿𝑥2

𝜆𝑚
2 (1 −

𝑥2

2𝜆𝑚
2 )𝑇1

′(𝑥) (3.43) 

and,  

 
𝑇2(0) = 0;

𝑑𝑇2(0)

𝑑𝑥
= 0 (3.44) 

 

The mathematical architecture required for the solution of these equations is also given in 

Section A.3, and the solution is given in Section A.5: 

 

𝑇2(𝑥) =
3𝛿2

2𝜆𝑚
6 {

20

3
𝜆𝑚

2
𝑥3𝐽3(𝑥)

5‼
− [105 −

7

3
𝜆𝑚

2 (6𝑖1 − 5)]
𝑥4𝐽4(𝑥)

7‼

+
9

10
[7(60 − 48𝑖1) + 2𝜆𝑚

2 (8𝑖2 − 7𝑖1)]
𝑥5𝐽5(𝑥)

9‼

−
9 ∙ 11

12
[(35 − 112𝑖1 + 80𝑖2) + 2𝜆𝑚

2 𝑖2]
𝑥6𝐽6(𝑥)

11‼

−
9 ∙ 11 ∙ 13

14
(7𝑖1 − 20𝑖2)

𝑥7𝐽7(𝑥)

13‼
−

9 ∙ 11 ∙ 13 ∙ 15

16
𝑖2

𝑥8𝐽8(𝑥)

15‼
} 

(3.45) 

 

Substituting Eqs. (3.24) and (3.28) into Eq. (3.6), the solution of the dimensionless luminal 

concentration profile is therefore: 

 
𝐶(𝜃, 𝑥) = ∑ ∑ 𝐹𝑚(𝜃)𝑇𝑛(𝑥)𝜅𝑛

𝑁

𝑛=0

∞

𝑚=1

 (3.46) 

 

The perturbation solution is only extended up to second-order approximation; therefore Eq. 

(3.46) reduces to: 

 
𝐶(𝜃, 𝑅) = ∑ 𝐹𝑚(𝜃)[𝑇0(𝜆𝑚𝑅)𝜅0 + 𝑇1(𝜆𝑚𝑅)𝜅1 + 𝑇2(𝜆𝑚𝑅)𝜅2]

∞

𝑚=1

 (3.47) 
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3.4 Results 

 

The small diameters of the capillary membranes used in the construction of the MBR’s render it 

a very difficult task to validate the accuracy of the developed models experimentally, and thus 

the predictive power of the models will be compared to currently available results for similar 

MBR systems; in particular the model developed by Heath and Belfort [17]. The approach used 

by these authors in solving the convective-diffusion equation was to assume a constant cross 

sectional concentration profile in the membrane lumen and matrix regions, and negligible 

membrane resistance to mass transfer. The lumen side axial concentration profile was then 

correlated to the shell (or annulus) by a mass flux balance. This approach is equivalent to 

assuming that the substrate consumption takes place in the lumen-side of the MBR; in which 

case the convective-diffusion equation given in Eq. (3.1) becomes:  

 

 
𝑢

𝜕𝑐

𝜕𝑧
− 𝐷𝐴𝐵

𝜕2𝑐

𝜕𝑧2
=

𝐷𝐴𝐵

𝑟
(
𝜕𝑐

𝜕𝑟
+ 𝑟

𝜕2𝑐

𝜕𝑟2) − 𝑣
𝜕𝑐

𝜕𝑟
−

𝑉𝑀𝑐

𝐾𝑚 + 𝑐
 (3.48) 

 

where VM is the maximum rate of reaction and Km is the Michaelis constant. This equation is 

made dimensionless by introducing the variables in Eqs. (3.3) and (3.5), and two additional 

variables the Thiele modulus  and the dimensionless Michaelis constant 
mK , respectively: 

 

 

𝜙 = √
𝑉𝑀𝑅1

2

𝑐0𝐷𝐴𝐵
, 𝐾𝑚

∗ =
𝐾𝑚

𝑐0

 (3.49) 

 

Eq. (3.48) then becomes: 

 
𝜑𝑃𝑒𝑢𝑈

𝜕𝐶

𝜕𝑍
− 𝜑2

𝜕2𝐶

𝜕𝑍2
=

1

𝑅
(
𝜕𝐶

𝜕𝑅
+ 𝑅

𝜕2𝐶

𝜕𝑅2) − 𝑃𝑒𝑣𝑉
𝜕𝐶

𝜕𝑅
−

𝜙2𝐶

𝐾𝑚
∗ + 𝐶

 (3.50) 

 

Assuming the first-order limit of the Michaelis-Menten equation (i.e. CKm 
) the solution of 

Eq. (3.50) takes the same general approach as that of Eq. (3.4). The solution of this equation is 

identical to Eq. (3.47) with an adjustment of the axial function Fm() and the coefficient of the 

perturbation solution B1m to account for the reaction rate: 

 

 
𝐶(𝜃, 𝑅) = ∑ 𝐹̃𝑚(𝜃)[𝑇0(𝜆𝑚𝑅)𝜅0 + 𝑇1(𝜆𝑚𝑅)𝜅1 + 𝑇2(𝜆𝑚𝑅)𝜅2]

∞

𝑚=1

 (3.51) 
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Table 3.2: Parameter values used to determine the concentration profile [17].
 

Model parameter Symbol Unit Basic measured value 

Membrane hydraulic permeability
a
 km m/Pas

 
3.82 x 10

-11
 

Fraction retentate
a
 f  0.80 

Membrane inner radius RL m 1.30 x 10
-4 

Annulus radius r3 m 4.08 x 10
-4 

Effective membrane length L m 5.7 x 10
-2 

Lumen-side entrance axial velocity u0 m s
-1

 1.67 x 10
-3

 

Permeation velocity v0 m s
-1

 3.82 x 10
-7

 

Lumen-side inlet fluid pressure
a
 p0 Pa 106 325 

Shell-side fluid pressure
a
 pS Pa 101 325 

Glucose diffusivity DAB m
2
 s 1.0 x 10

-10 

solution density
a
   kg m

-3
 998 

solution viscosity
a
  Pas 9.7 x 10

-4
 

Glucose inlet concentration c0 g dm
-3 

2.00 

Kinetic constants VM/Km s
-1

 1.00 

a
 Typical operational values are used  

 

where 

 
𝐹̃𝑚(𝜃) = 𝑀 {

𝐴(𝜆𝑚
2 𝐾𝑚

∗ + 𝜙2)

2𝜑2𝐾𝑚
∗ ,

1

2
, 𝜃} (3.52) 

and  

 
𝐵̃𝑚 =

2

𝜆𝑚𝑀 [
𝐴(𝜆𝑚

2 𝐾𝑚
∗ + 𝜙2)

2𝜑2𝐾𝑚
∗ ,

1
2 , 𝜃0]

[
𝐽1(𝜆𝑚)

𝐽0
2(𝜆𝑚) + 𝐽1

2(𝜆𝑚)
] 

(3.53) 

 

The input variables used in validating Eq. (3.51) are obtained from Heath and Belfort [17] and are 

given in Table 3.2. The values of the membrane hydraulic permeability (km), the fraction 

retentate (f), the lumen-side inlet fluid pressure (p0), the shell-side fluid pressure (pS), the 

solution density () and viscosity () are not specified by these authors; therefore, typical 

operational values of these parameters will be used. A transmembrane (TMP) pressure of 5kPa 

is assumed across the MBR, and the solution properties are assumed to be those of water at 

30C. 
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Figure 3.3: A comparison of the concentration profiles resulting from Eq. (3.51) with Heath and 
Belfort [17] assuming a first-order limit for substrate consumption (at R = 0). 

 

 

Figure 3.4: Substrate concentration profiles assuming a first-order limit for substrate consumption 
at different radial positions. 

 

In Figure 3.3 it can be seen that Eq. (3.51) compares satisfactorily with the model of Heath and 

Belfort [17] for the parameter values listed in Table 3.2, with a standard deviation of 0.048. The 

significant difference is that the axial concentration gradient is a function of the radial position in 

Eq. (3.51), while in the model of Heath and Belfort [17] the gradient is not influenced by radial 

position. At the centre of the MBR (R = 0) Eq. (3.51) predicts a 66% decrease in the axial 

concentration when the applied TMP is 5kPa, and a 76% decrease at the membrane wall (R = 1) 

as shown in Figure 3.4. The model of Heath and Belfort [17] predicts a 56% decrease for all 
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values of R for the corresponding conditions. It is important to note, however, that only the 

resulting trends from the two models can be compared, since Eq. (3.51) requires a more detailed 

description of the MBR system than that required for the model of Heath and Belfort [17]. 

 

3.5 Conclusion 

 
A thorough analytical mathematical model for substrate concentration profiles in the lumen of a 

hollow fiber MBR was developed. The model was based on the solution of the convective-

diffusion equation in dimensionless form. The model allows evaluation of the influence of the 

general operating parameters of a MBR on the concentration profiles. These parameters are the 

fraction retentate (f); the membrane hydraulic permeability (κ); the axial and radial Peclet 

numbers (Peu,v); the Thiele modulus (); the fluid properties; and the dimensions of the MBR. 

The developed model can be further used to evaluate reactor performance from basic principles, 

since it allows analytical evaluation of performance parameters (e.g the performance index and 

the effectiveness factor).     

 

3.6 Summary 

 

In this chapter an analytical approach for solving the mass balance equation with and without 

reaction was presented. The underlying philosophy was to transform the non-linear partial 

differential equations into standard forms with known solutions. Applying this principle, the 

differential mass balance in the lumen was separated into the Bessel equation and the confluent 

hypergeometric equation (Kummer equation). Both these equations have known solutions. The 

non-linear elliptic equation was shown to be only amenable to analytical evaluation when 

assuming zero-order or first-order kinetics. This restriction greatly limited the range of 

applicability of the model, hence in Chapter 4 a finite difference scheme was presented for the 

lumen concentration profile when the reaction kinetics were non-linear. 

 

The concentration profiles developed from this chapter were used as a basis for the analysis of 

bioreactor performance in Chapter 5. 
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Nomenclature 

 

a   dimensionless entrance pressure drop 

Bn   constants of integration of Bessel’s equation, n = 1, 2 

c   substrate concentration (g dm-3) 

c0   substrate feed concentration (g dm-3) 

C = c/c0  dimensionless substrate concentration 

DAB   substrate diffusivity (m2 s-1) 

f = u1/u0  fraction retentate 

Fn coefficients of the solution of Kummer’s confluent hypergeometric 

equation, n = 1, 2 

Fr = u0
2/(gRL)  Froude number 

F(Z)   dimensionless axial concentration function 

g   gravitational acceleration (m s-2) 

g(s)   Laplace transform of the first-order approximation of the function T(x) 

h(s)   Laplace transform of the second-order approximation of the function T(x) 

in   constants in the first and second-order approximations of the function  

   T(x) , n = 1, 2, 3 

Jn()   Bessel function of order n of the first kind 

ka   mass transfer coefficient (m s-1) 

km   membrane hydraulic permeability (m Pa-1 s-1) 

Km   Michaelis constant (g dm-3) 



mK =Km/c0  dimensionless Michaelis constant 

L   membrane effective length (m) 

M(,,)  Kummer function of the first kind    

p   fluid pressure (Pa) 

P = pRL
2/(u0L) dimensionless fluid pressure 

Peu = u0RL/DAB axial Peclet number 

Pev = v0RL/DAB  radial Peclet number 

rA   rate of substrate production/consumption (g dm-3 s-1) 

r   radial spatial coordinate (m) 

R = r/RL  dimensionless radial spatial coordinate 

RL   membrane lumen radius (m) 

Re = u0RL/  Reynolds number 

t   time (s) 
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T(R)   dimensionless radial concentration function 

u   axial velocity (m s-1) 

u0   feed axial velocity (m s-1) 

U = u/u0  dimensionless axial velocity 

v   radial velocity (m s-1) 

v0 = km(p0 - pS)  permeation velocity (m s-1) 

V  = v/v0  dimensionless radial velocity 

VM   maximum rate of reaction (g dm-3 s-1) 

x = mR  substitution variable 

Yn()   Bessel function of order n of the second kind  

z   axial spatial coordinate (m)  

Z = z/L   dimensionless axial spatial coordinate 

 

Greek letters 

 

   first parameter in the Kummer functions of the first and second kind 

 = P0 – PS  dimensionless transmembrane pressure 

    lumped parameter in Eq. (41) 

ε   membrane porosity 

   Thiele modulus 

(,,)  Tricomi function/Kummer function of the second kind    

   second parameter in the Kummer functions of the first and second kind 

(n)   gamma function, n = 1, 2, …  

 = RL/L  aspect ratio 

 = kmL/RL
2  dimensionless membrane hydraulic permeability 

m   eigen values, m = 1, 2, … 

   solution dynamic viscosity (Pa s) 

   substitution variable 

   solution density (kg m-3) 

 = tu0/RL  dimensionless time 

   axial gradient/driving force of substrate concentration profile 
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Subscripts 

 

0   membrane entrance 

1   membrane exit 

S   shell-side of the MBR  
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4. SOLUTE TRANSPORT THROUGH A MEMBRANE 

BIOREACTOR (WITH NON-LINEAR KINETICS) 

Abstract 

 

The current paper presents a theoretical analysis of the transport of solutes through a fixed-film 

membrane bioreactor (MBR), immobilised with an active biocatalyst. The dimensionless 

convection-diffusion equation with variable coefficients was solved analytically and numerically, 

for concentration profiles of the solutes through the MBR. The analytical solution makes use of 

regular perturbation, and accounts for radial-convective flow as well as axial diffusion of the 

substrate specie. The Michaelis-Menten (or Monod) rate equation was assumed for the sink 

term, and the perturbation was extended up to second-order. In the analytical solution only the 

first-order limit of the Michaelis-Menten equation was considered, hence the linearized equation 

was solved. In the numerical solution, however, this restriction was lifted. The solution of the 

non-linear, elliptic, partial differential equation was based on an implicit finite-difference method 

(FDM). An upwind scheme was employed for numerical stability. The resulting algebraic 

equations were solved simultaneously using the multi-variate Newton-Raphson iteration method. 

The solution allows for the evaluation of the effect on the concentration profiles of (i) the radial 

and axial convective velocity, (ii) the convective mass transfer rates, (iii) the reaction rates, (iv) 

the fraction retentate, and (v) the aspect ratio.    

 

Keywords: Membrane bioreactor; Convection-diffusion equation; Implicit finite-difference; Upwind 

scheme; Multivariate Newton-Raphson; Regular perturbation. 
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4.1 Introduction 

 
Membrane bioreactors (MBRs) are finding increasing use in the production of primary and 

secondary metabolites such as amino acids, antibiotics, anticancer drugs, tissue cells etc. [1]–

[3]. This technology is favoured by recent trends towards environmentally-friendly technologies, 

particularly because MBRs do not require additives, function at moderate operating conditions, 

and reduce by-product formation [1]. The efficiency of MBRs is dependent mainly on the 

transport of solutes through the bioreactor, and this is influenced by biochemical, geometric, and 

hydrodynamic parameters [2], [4]. This paper considers the numerical solution of the convection-

diffusion equation, for solute transport through a fixed-film MBR. This analysis is important for 

simulation of the performance (i.e. efficiency and effectiveness) of the bioreactor. The governing 

equation for mass transport of solutes through the bioreactor is the convection-diffusion 

equation, with Monod kinetics [5]: 

 

 
𝑢

𝜕𝑐

𝜕𝑧
+ 𝑣

𝜕𝑐

𝜕𝑟
= 𝐷𝐴𝐵 [

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑐

𝜕𝑟
) +

𝜕2𝑐

𝜕𝑧2
] −

𝑉𝑀𝑐

𝐾𝑚 + 𝑐
 (4.1) 

 

where c is the local substrate concentration, u and v are the axial and radial velocity components 

respectively, DAB is the substrate diffusion coefficient, VM is the maximum rate of reaction, and 

Km is the saturation (or Michaelis) constant. Eq. (4.1) is made dimensionless by introducing the 

following variables: 

 

𝑈 =
𝑢

𝑢0
;    𝑉 =

𝑣

𝑣0
;    𝐶 =

𝑐

𝑐0
;     𝜙 =  √

𝑉𝑀𝑅1
2

𝑐0𝐷𝐴𝐵
 

𝐾𝑚
∗ =

𝐾𝑚

𝑐0
;     𝑍 =

𝑧

𝐿
;    𝑅 =  

𝑟

𝑅1
;     𝜑 =

𝑅1

𝐿
 

(4.2) 

Eq. (4.1) then becomes: 

 
𝜑𝑃𝑒𝑢𝑈

𝜕𝐶

𝜕𝑍
+ 𝑃𝑒𝑣𝑉

𝜕𝐶

𝜕𝑅
= [

1

𝑅

𝜕

𝜕𝑅
(𝑅

𝜕𝐶

𝜕𝑅
) + 𝜑2

𝜕2𝐶

𝜕𝑍2
] −

𝜙2𝐶

𝐾𝑚
∗ + 𝐶

 (4.3) 

 

Where the axial and radial Peclet numbers (𝑃𝑒𝑢,𝑣) are respectively defined as: 

 

 
𝑃𝑒𝑢 =

𝑢0𝑅1

𝐷𝐴𝐵
;     𝑃𝑒𝑣 =

𝑣0𝑅1

𝐷𝐴𝐵
 (4.4) 
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The velocity profiles, U and V, in Eq. (4.3) are solutions of the z and r-components of the Navier-

Stokes equations, respectively [6]: 

 
𝑈 = −

1

4
(1 − 𝑅2)

𝑑𝑃

𝑑𝑍
 

(4.5) 

and    

 
𝑉 = 𝜑 (

𝑢0

𝑣0
) [

𝑅

8
(1 −

𝑅2

2
)]

𝑑2𝑃

𝑑𝑍2
 (4.6) 

 

Where P is the dimensionless fluid pressure, which is a function of the membrane hydraulic 

permeability . When the membrane hydraulic permeability  is much smaller than unity, Eq (4.3) 

reduces to: 

 

 
𝑈∗

𝜕𝐶

𝜕𝑍
+ 𝑃𝑒𝑢𝜅𝛽(2𝑅 − 𝑅3)

𝜕𝐶

𝜕𝑅
= [

1

𝑅

𝜕

𝜕𝑅
(𝑅

𝜕𝐶

𝜕𝑅
) + 𝜑2

𝜕2𝐶

𝜕𝑍2
] −

𝜙2𝐶

𝐾𝑚
∗ + 𝐶

 (4.7) 

Where  

 
𝑈∗ = −4𝑃𝑒𝑢𝜅𝛽 [

1

(𝑓 − 1)
+ 𝑍] (1 − 𝑅2)  , 𝑓 ≠ 1 (4.8) 

 

The fraction retentate, f, is defined as the ratio of the outlet to the inlet axial velocity (f = 0 for the 

dead-end mode and f ~ 1 for the closed-shell mode), β is the dimensionless transmembrane 

pressure. The corresponding boundary conditions are: 

 

 𝐵. 𝐶. 1   𝑎𝑡  𝑍 = 0   ∀𝑅     𝐶 = 1 

𝐵. 𝐶. 2   𝑎𝑡  𝑅 = 0   ∀𝑍     
𝜕𝐶

𝜕𝑅
= 0 

𝐵. 𝐶. 3   𝑎𝑡  𝑅 = 1   ∀𝑍     
𝜕𝐶

𝜕𝑍
=

2

𝜑𝑃𝑒𝑢

𝜕𝐶

𝜕𝑅
 

(4.9) 

 

Boundary condition 1 (B.C.1) corresponds to a uniform inlet substrate concentration; B.C.2 

corresponds to cylindrical symmetry at the center of the membrane lumen; B.C. 3 corresponds 

to continuity of the substrate flux at the lumen-matrix interface [7]. The solution of Eq. (4.7) is 

based on the following general assumptions: (i) the system is isothermal; (ii) the flow regime is 

laminar and fully developed; (iii) the fluid is Newtonian, homogenous, and has constant physical 

and transport properties (iv) the membrane hydraulic permeability is constant.  
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4.2 Analytical Models 

 

The Graetz Problem [8] is one of the oldest forced-convection problems, describing the steady-

temperature distribution and rate of heat transfer in tube flow. The evaluation of Eq. (4.7) for 

concentration profiles in a tubular reactor is mathematical analogous to the Graetz problem [5], 

[9]. In the original Graetz problem however there is no reaction (or source) term, axial diffusion 

and radial convection is ignored. The assumption of negligible axial diffusion and radial 

convection is common in the majority of analytical models currently in use [7], [10]–[12]. Radial 

convective flows have been shown to significantly improve MBR efficiency [4], [13]–[15]. In the 

dead-end ultrafiltration mode, particularly, the assumption of negligible radial convective flow is 

not justifiable. Nagy [15] investigated the effect of radial convective flows (Pev) on the mass 

transfer rates of solutes through a biocatalytic membrane layer. Analytical solutions of Eq. (4.7) 

for the zero-order and first-order limits of the Monod equation were provided. This analysis, 

however, was restricted to the matrix/fiber region of the membrane and hence the radial velocity 

was assumed constant, and axial convective and diffusive flows were ignored. At axial Peclet 

numbers (Peu) smaller than unity large concentration gradients exist in the membrane lumen, 

and ignoring axial diffusion is also not justified [6], [7].  

 

The model proposed by Godongwana et al.[6] follows the approach suggested by Davis [9], i.e. 

writing the solution of Eq. (4.7) in terms of known functions. The model accounts for radial 

convective flow and axial diffusion, for the limiting case of first-order kinetics. In that model, 

Eq. (4.7) was solved by separation of variables and regular perturbation, resulting in the 

asymptotic expansion:  

 
𝐶(𝜃, 𝑥) = ∑ ∑ 𝐵𝑚𝐹𝑚(𝜃)𝑇𝑛(𝑥)𝜅𝑛

𝑁

𝑛=0

∞

𝑚=1

 (4.10) 

 

Making use of the following change of variables:  

 

 
𝜉 = −

2𝑃𝑒𝑢𝜅𝛽

𝜑2 [
1

(𝑓 − 1)
+ 𝑍] (4.11) 

 
𝜃 = −(

𝜑2

4𝑃𝑒𝑢𝜅𝛽
)𝜉2 (4.12) 

 𝑥 = 𝜆𝑚𝑅 (4.13) 

 

Where F() in Eq. (4.10) is represented by the Kummer function [16]: 
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𝐹𝑚(𝜃) = 𝑀 [

−(𝜆𝑚
2 + 𝜙2 𝐾𝑚

∗⁄ )

4𝑃𝑒𝑢𝜅𝛽
,
1

2
, 𝜃] (4.14) 

 

The zero-order and first-order approximations of T(x) in Eq. (4.10) are, respectively:  

 

 𝑇0(𝑥) = 𝐽0(𝑥) (4.15) 

and    

 
𝑇1(𝑥) = 𝜎1 [

(𝑥)2𝐽2(𝑥)

3‼
+ 𝜎2

(𝑥)3𝐽3(𝑥)

5‼
+ 𝜎3

(𝑥)4𝐽4(𝑥)

7‼
] (4.16) 

 

where m are the eigenvalues, Jn is the Bessel function of the first kind of order n [16].  

 

 
𝜎1 = −

3𝑃𝑒𝑢𝛽

2𝜆𝑚
2 ,     𝜎2 = −

20

3𝜆𝑚
2 ,     𝑎𝑛𝑑     𝜎3 =

35

4𝜆𝑚
2  (4.17) 

 

The eigenvalues are obtained from B.C.3 of Eq. (4.9), and are roots of the equation: 

 

 𝜑𝜉

2𝜅𝛽
(𝜆𝑚

2 + 𝜙2 𝐾𝑚
∗⁄ )𝑀 [

−(𝜆𝑚
2 + 𝜙2 𝐾𝑚

∗⁄ )

4𝑃𝑒𝑢𝜅𝛽
+ 1,

3

2
, 𝜃]

= 2𝜆𝑚

𝐽1(𝜆)

𝐽0(𝜆)
𝑀 [

−(𝜆𝑚
2 + 𝜙2 𝐾𝑚

∗⁄ )

4𝑃𝑒𝑢𝜅𝛽
,
1

2
, 𝜃] 

(4.18) 

 

Table 4.1: Positive roots of Eq.(4.18), f = 0. 

 
Z = 0 Z = 0.2 Z = 0.4 Z = 0.6 Z = 0.8 Z = 1.0 

1 2.142 2.191 2.242 2.294 2.349 3.832 

2 4.968 5.060 5.162 5.273 5.394 7.016 

3 7.891 8.000 8.131 8.285 8.462 10.173 

4 10.885 10.997 11.140 11.320 11.541 13.324 

5 13.929 14.037 14.181 14.376 14.630 16.471 

6 17.004 17.107 17.249 17.450 17.728 19.616 

7 20.101 20.198 20.337 20.541 20.835 22.760 

8 23.211 23.305 23.440 23.644 23.949 25.904 

9 26.331 26.422 26.554 26.757 27.070 29.047 

10 29.458 29.547 29.677 29.88 30.197 32.190 
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Table 4.2: Positive roots of Eq.(4.18), f = 0.8. 

 
Z = 0 Z = 0.2 Z = 0.4 Z = 0.6 Z = 0.8 Z = 1.0 

 1.518 1.538 1.559 1.581 1.604 1.628 

 4.234 4.248 4.264 4.280 4.298 4.318 

 7.256 7.265 7.275 7.286 7.299 7.312 

 10.347 10.354 10.362 10.370 10.379 10.389 

 13.463 13.468 13.475 13.481 13.489 13.497 

 16.589 16.594 16.599 16.605 16.611 16.618 

 19.721 19.726 19.730 19.736 19.741 19.748 

 22.857 22.861 22.865 22.870 22.875 22.881 

 25.995 25.999 26.003 26.007 26.012 26.017 

 29.134 29.138 29.142 29.146 29.151 29.156 

 

The first ten eigenvalues at different axial positions are listed in Table 4.1 and Table 4.2 for f = 0 

and f = 0.8, respectively. The coefficient Bm is obtained by imposing the inlet condition B.C.1 of 

Eq. (4.9) and employing Lommel integrals to give [6]: 

 
𝐵𝑚 =

2

𝜆𝑚𝑀 [
−(𝜆𝑚

2 + 𝜙2 𝐾𝑚
∗⁄ )

4𝑃𝑒𝑢𝜅𝛽
,
1
2

, 𝜃0]

[
𝐽1(𝜆𝑚)

𝐽0
2(𝜆𝑚) + 𝐽1

2(𝜆𝑚)
] (4.19) 

 

The assumption of first order-kinetics (𝐾𝑚
∗ ≫ 𝐶), used in the above analysis allows for analytical 

evaluation of Eq. (4.7); however it limits the range of inlet substrate concentrations. The 

complete non-linear form of Eq. (4.7) is not amenable to analytical evaluation, and hence was 

solved using a finite-difference scheme described in Section 4.3. 

 

4.3 Finite-Difference Scheme 

 

A finite-difference representation of Eq. (4.7) is obtained by employing first-order upwind 

difference quotients for the derivatives on the LHS:  

 

 
(
𝜕𝐶

𝜕𝑅
)
𝑖,𝑗

=
𝐶𝑖,𝑗 − 𝐶𝑖−1,𝑗

ℎ
+ 𝑂(ℎ) (4.20) 

 
(
𝜕𝐶

𝜕𝑍
)
𝑖,𝑗

=
𝐶𝑖,𝑗 − 𝐶𝑖,𝑗−1

𝑘
+ 𝑂(𝑘) (4.21) 

 

And second-order central-differences for the derivatives on the RHS of Eq.(4.7): 
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(
𝜕2𝐶

𝜕𝑅2)
𝑖,𝑗

=
𝐶𝑖+1,𝑗 − 2𝐶𝑖,𝑗 + 𝐶𝑖−1,𝑗

ℎ2
+ 𝑂(ℎ)2 (4.22) 

 
(
𝜕2𝐶

𝜕𝑍2)
𝑖,𝑗

=
𝐶𝑖,𝑗+1 − 2𝐶𝑖,𝑗 + 𝐶𝑖,𝑗−1

𝑘2
+ 𝑂(𝑘)2 (4.23) 

 

Resulting in the general difference equation: 

 

 
𝛼1𝐶𝑖−1,𝑗 + (𝛼2 +

𝛼3

𝐾𝑚
∗ + 𝐶𝑖.𝑗

)𝐶𝑖,𝑗 + 𝛼4𝐶𝑖+1,𝑗 + 𝛼5𝐶𝑖,𝑗−1 + 𝛼6𝐶𝑖,𝑗+1 = 0 (4.24) 

Where 

  
𝛼1 = −[ℎ𝑃𝑒𝑢𝜅𝛽(2𝑅 − 𝑅3) + 1 −

ℎ

𝑅
] (4.25) 

 
𝛼2 = (

ℎ2

𝑘
)𝑈∗ + ℎ𝑃𝑒𝑢𝜅𝛽(2𝑅 − 𝑅3) + 2𝜑2 (

ℎ2

𝑘2) + 2 −
ℎ

𝑅
 (4.26) 

 𝛼3 = ℎ2𝜙2 (4.27) 

 𝛼4 = −1 (4.28) 

 
𝛼5 = −ℎ2 (

𝑈∗

𝑘
+

𝜑2

𝑘2) (4.29) 

 
𝛼6 = −𝜑2 (

ℎ2

𝑘2) (4.30) 

 

The corresponding difference quotients of the boundary conditions in Eq. (4.9) are: 

 

 𝐵. 𝐶. 1   𝑎𝑡 𝑗 = 1    ∀𝑖     𝐶𝑖,𝑗 = 𝑒−𝑃𝑒𝑣𝑉𝑅 

(4.31) 

 
𝐵. 𝐶. 2   𝑎𝑡 𝑖 = 1    ∀𝑗     

𝐶𝑖,𝑗 − 𝐶𝑖−1,𝑗

ℎ
= 0 

 
𝐵. 𝐶. 3   𝑎𝑡 𝑖 = 𝑚    ∀𝑗     

𝐶𝑖+1,𝑗 − 𝐶𝑖,𝑗

ℎ
=

𝜑𝑃𝑒𝑢

2

𝐶𝑖,𝑗 − 𝐶𝑖,𝑗−1

𝑘
 

 
𝐵. 𝐶. 4   𝑎𝑡 𝑗 = 𝑛    ∀𝑖     

𝐶𝑖,𝑗 − 𝐶𝑖,𝑗−1

𝑘
= 0 

 

Boundary condition 1 is an approximation of the inlet condition in Eq (4.9), and is obtained by 

assuming the net diffusive and convective flux in the radial direction is negligible at the 

membrane entrance. Boundary condition 4 implies there is no diffusive transport at the 

membrane exit. The solution domain is a regular 2-dimensional grid, and is sub-divided into m-

intervals (of size h) in the r-dimension and n-intervals (of size k) in the z-dimension. The 
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difference equation (4.24), including the boundary conditions of Eq. (4.31), is solved by making 

use of the multivariate Newton-Rapshon iteration scheme: 

 

 
𝑪(𝑛+1) = 𝑪𝑛 −

𝑭(𝑪𝒏)

𝑱𝑛
 (4.32) 

 

Where F(C) is the residual Eq. (4.24), and J is the tridiagonal Jacobian matrix: 

 

 

𝑱 =

[
 
 
 
 
 
 
𝐷
𝐸
0

𝐵
𝐷
𝐸

0
𝐵
𝐷

⋯
0
0
0

0
0
0

0
0
0

⋮ ⋱ ⋮
0
0
0

0
0
0

0
0
0

⋯
𝐷
𝐸
0

𝐵
𝐷
𝐸

0
𝐵
𝐷]

 
 
 
 
 
 

 (4.33) 

 

The matrix elements B, D, and E are, respectively: 

 

 

 
𝐵 = 𝛼4 + 𝛼5 (4.34) 

 
𝐷 = 𝛼2 + 𝛼3 [

1

𝐾𝑚
∗ + 𝐶𝑖.𝑗

+
𝐶𝑖.𝑗

(𝐾𝑚
∗ + 𝐶𝑖.𝑗)

2] (4.35) 

 𝐸 = 𝛼1 + 𝛼6 (4.36) 

 

The Newton-Raphson iteration scheme was implemented on MATLAB R2014a and the 

procedure is shown in Figure 4.1. The algorithm begins with an initial guess of the solute 

concentration at each grid point; an initial guess of zero was used. Based on this guess, the 

residual column vector and the Jacobian matrix can be evaluated. The magnitude (Euclidean 

norm) of the quotient of the residual vector and Jacobian matrix, dC, is evaluated. The iteration 

is repeated with new solute concentration guess values until the Euclidean norm is less than the 

prescribed tolerance.     
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Figure 4.1: The Newton-Raphson Algorithm for solving Eq. (4.24). 

 

4.4 Results 

 

4.4.1 Numerical solution  

 

The implicit finite-difference scheme was shown to be unconditionally stable for the different 

values of h and k listed in Table 4.3. The results are shown in Figure 4.2 and Figure 4.3 for the 

parameter values listed in Table 4.4. The computing times listed in Table 4.3 were obtained on a 

Lenovo M93P (3.2 GHz) 8GB Ram computer. Figures 4.2 and 4.3 illustrate the effect of the 

fraction retentate f on the solute concentration profiles. In the dead-end mode (f = 0) there is 

increased radial convective flow as shown by the streamlines in Figure 4.2. This increased radial 

flow allows for more solute contact with the biofilm, and hence improved conversion, resulting in 

higher MBR efficiency. In this mode however the solute is limited to only the entrance-half of the 

Input physical parameters 

Guess values of C for the m x n 
nodes 

Loop through the nodes 

Build the Residual column 
vector F(C) from Eq (4.24)  

Build the Jacobian matrix J from 
Eq. (4.33) – (4.36)  

𝑑𝑪 = 𝑭(𝑪) 𝑱⁄  

Find the Euclidean norm (or l2 
norm) of dC, where 

  

Solve for C from Eq. 
(4.32) 

dC ≤ 0.0001 

Yes 

Final results 

No 

B.C., Eq. (4.31) 
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MBR as shown in Figure 4.2. Increasing the fraction retentate to f = 0.8 allows for a uniform 

distribution of the solute (Figure 4.3), however radial convective flow is significantly reduced. 

This result implies that an optimum f value should be sought for enhanced MBR efficiency. The 

concentration profiles are consistent with the numerical results of Ye et al. [17], with the solute 

concentration decreasing linearly in the axial direction while exhibiting a flat profile in the radial 

direction, as indicated by the colour coded concentrations in Figure 4.2 and Figure 4.3. 

 

The developed finite-difference scheme also allows for the evaluation of the effect on the 

concentration profiles of the radial and axial convective velocity, the convective mass transfer 

rates, the reaction rates, and the aspect ratio. The sensitivity analysis of these parameters 

however has been omitted in the current paper.  

 

Table 4.3: Computation times for different sizes of h and k. 

Simulation Number of radial 
nodes (m) 

Number of axial 
nodes (n)  

Total number of 
solution nodes  

Total iteration 
time (s) 

1. 32 32 1,024 13.302 

2. 64 64 4,096 55.130 

3. 128 128 16,384 505.108 

 
 

 

Figure 4.2: Solute concentration profiles for m = n = 64 when f = 0. 
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Figure 4.3: Solute concentration profiles for m = n = 64 when f = 0.8. 

 
 

 

Figure 4.4: Solute concentration profiles from the Finite Difference Method (FDM) for different 
saturation constants Km, when f = 0.8. 

 

Figure 4.4 is a plot of the solute concentration profile, from the FDM scheme, for different 

dimensionless saturation constants when f = 0.8. At a low 𝐾𝑚
∗  value of 0.009 the dimensionless 

outlet solute concentration is 0.472, whereas increasing 𝐾𝑚
∗  to 0.9 reduces the outlet 

concentration to only 0.853. This result is expected since a lower 𝐾𝑚
∗  value is consistent with a 
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higher biofilm/enzyme affinity for the substrate [18]. This result also illustrates the significance of 

the appropriate choice of substrate on bioreactor design.      

  

4.4.2 Comparison with analytical solution  

 

In Figure 4.5 the FDM scheme is compared with the analytical model presented in Section 4.2 

for the open-shell mode (f = 0.8). The analytical model predicts a linear decrease in the solute 

concentration inside the membrane lumen to 47% of the original concentration. This result is 

consistent, qualitatively, with the result of Heath and Belfort [7,17] for the parameter values listed 

in Table 4.4. The FDM scheme predicts the same outlet concentration; however the decrease is 

gradual close to the entrance and rises with increasing length. The discrepancies between the 

two profiles arise from the assumption of first-order kinetics, assumed in developing the 

analytical solution. These two profiles suggest the open-mode is suitable for microbial growth 

since the substrate is not depleted inside the lumen.  

 

 

Figure 4.5: A comparison of the analytical versus the FDM solution for solute concentration 
profiles when f  =  0.8. 
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Figure 4.6: A comparison of the analytical versus the FDM solution for solute concentration 
profiles when f = 0. 

 

Table 4.4: Parameter values used to determine the concentration profile [6].
 

Model parameter Symbol Unit Basic measured value 

Membrane hydraulic permeability km m/Pas
 

3.82 x 10
-11

 

Membrane inner radius R1 m 1.30 x 10
-4 

Effective membrane length L m 5.7 x 10
-2 

Lumen-side entrance axial velocity u0 m s
-1

 1.67 x 10
-3

 

Permeation velocity v0 m s
-1

 1.91 x 10
-7

 

Lumen-side inlet fluid pressure p0 Pa 106 325 

Shell-side fluid pressure pS Pa 101 325 

Glucose diffusivity DAB m
2
 s 1.0 x 10

-10 

solution density  kg m
-3

 998.0 

solution viscosity  Pas 9.7 x 10
-4

 

Glucose inlet concentration c0 g dm
-3 

2.00 

Kinetic constants VM/Km s
-1

 1.00 

 

The rapid decline in the solute concentration in Figure 4.6 is due to increased radial convective 

flow in the dead-end mode. This results in non-uniform microbial growth/tapering as observed by 

Godongwana et al. [19] for the bacterium Streptomyces coelicolor on a ceramic membrane. This 
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phenomenon can be reduced either by increasing the solute flowrate or increasing the fraction 

retentate f. The numerical scheme matches the analytical model approximately on a small 

interval close to the origin. The divergence again is attributed to the assumption of first-order 

kinetics.   

 

4.5 Conclusion 

 

A numerical solution of the dimensionless convection-diffusion equation, with non-linear kinetics, 

was developed. The numerical scheme was performed using the Newton-Raphson method, and 

was shown to be unconditionally stable for different step-sizes (h and k). The analysis provides 

for evaluation of concentration profiles of solutes through a membrane bioreactor. The numerical 

solution was compared to a regular perturbation solution for two modes of operation, i.e. the 

dead-end mode and open-shell mode. In the dead-end mode the numerical results closely 

matched the perturbation solution. The assumption of linear kinetics, commonly used in literature 

models, was shown to result in inaccuracies in the open-shell mode. The numerical solution 

allows for the evaluation of the influence of the general operating parameters of a MBR on the 

concentration profiles. The fraction retentate (f) was shown to be an important optimisation 

parameter for improved MBR efficiency. 

 

4.6 Summary 

 

This chapter of the thesis served to validate the analytic solutions developed in Chapter 3, 

particularly the first-order limit of the Monod equation. An analytical solution of the differential 

mass balance equation was only plausible when zero-order or first-order kinetics was assumed. 

The use of these assumptions in developing the model limited the range of concentrations in the 

MBR. The significance of the numerical analysis, therefore, was in the identification of the range 

of applicability of the analytical model developed in Chapter 3.  
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Nomenclature 

 

c   substrate concentration (g dm-3) 

c0   substrate feed concentration (g dm-3) 

C = c/c0  dimensionless substrate concentration 

DAB   substrate diffusivity (m2 s-1) 

f = u1/u0  fraction retentate 

h   step-size in the r-dimension (m) 

i   grid point index in the r-dimension 

j   grid point index in the z-dimension 

Jn()   Bessel function of order n of the first kind 

k   step-size in the z-dimension (m)  

Km   saturation (or Michaelis) constant (g dm-3) 


mK    dimensionless Michaelis constant 

L   membrane effective length (m) 

M(a,b ,)  Kummer function of the first kind    

Peu = u0R1/DAB axial Peclet number 

Pev = v0R1/DAB  radial Peclet number 

r   radial spatial coordinate (m) 

R = r/R1  dimensionless radial spatial coordinate 

R1   membrane lumen radius (m) 

u   axial velocity (m s-1) 

u0   feed axial velocity (m s-1) 

U = u/u0  dimensionless axial velocity 

v   radial velocity (m s-1) 

V  = v/v0  dimensionless radial velocity 

VM   maximum rate of reaction (g dm-3 s-1) 

z   axial spatial coordinate (m)  

Z = z/L   dimensionless axial spatial coordinate 

 

Greek letters 

 

   coefficients of finite difference scheme, defined in text 

 = P0 – P2  dimensionless transmembrane pressure 

   dimensinless membrane hydraulic permeability  
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   Thiele modulus 

 = R1/L  aspect ratio 

m   eigen values, m = 1, 2, … 
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5. ANALYSIS OF BIOREACTOR PERFORMANCE 

Abstract 

 

Analytical expressions of the effectiveness factor of a biocatalytic membrane reactor, and its 

asymptote as the Thiele modulus becomes large, are presented. The evaluation of the 

effectiveness factor is based on the solution of the governing equations for solute transport in 

the two regions of the reactor, i.e. the lumen and the matrix (immobilised with biofilm). The 

lumen solution accounts for both axial diffusion and radial convective flow, while the matrix 

solution is based on Robin-type boundary conditions. The effectiveness factor is shown to be a 

function of the Thiele modulus, the partition coefficient, the Sherwood number, the Peclet 

number, and membrane thickness. Three regions of Thiele moduli are defined in the 

effectiveness factor graphs. These correspond with reaction rate limited, internal-diffusion 

limited, and external mass transfer limited solute transport. Radial convective flows were shown 

to only improve the effectiveness factor in the region of internal diffusion limitation. The 

assumption of first order kinetics is shown to be applicable only in the Thiele modulus regions of 

internal and external mass transfer limitation. An iteration scheme is also presented for 

estimating the effectiveness factor when the solute fractional conversion is known. The model is 

validated with experimental data from a membrane gradostat reactor immobilised with 

Phanerochaete chrysosporium for the production of lignin and manganese peroxidases. The 

developed model and experimental data allow for the determination of the Thiele modulus at 

which the effectiveness factor and fractional conversion are optimal.     

 

Keywords: Biocatalysis; Effectiveness factor; Mass transfer; Substrate transport; Regular perturbation; 

Thiele modulus. 
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5.1 Introduction 

 

Membrane bioreactors (MBR’s) offer a number of advantages over traditional bioreactors and 

their use for various bioconversions have been extensively reported [1-3]. The main challenge in 

the use of MBR’s remains the diffusional resistance of the membrane which adversely affects 

their performance [4,5]. The effectiveness factor (η), defined as the ratio of the observed rate of 

reaction to the hypothetical rate in the absence of mass transfer limitations [6], is generally used 

to evaluate the performance of a catalytic reactor. A thorough review of mathematical methods 

employed in evaluating exact solutions of this parameter was given by Aris [6]. This study 

presented effectiveness factors for single and multiple reactions taking place in various shapes 

of porous catalysts. Webster and co-workers [7,8] presented analytical models for a membrane 

bioreactor immobilized with whole cells, based on both Robin-type and Dirichlet-type boundary 

conditions. The former boundary type accounts for external mass transfer limitations, while the 

latter assumes the concentration at the membrane wall is known. Willaert et al. [9] obtained 

identical effectiveness factor expressions to Webster and Shuler [7] based on Dirichlet boundary 

conditions. In these studies, as well as in the majority of available exact solutions [10-12], axial 

diffusion and radial convective flows are neglected and the kinetics are generally considered 

linear. These assumptions are not always justified [13] and are imposed with the intention of 

attaining closed-form expression of the transport equation. The analytical solution of the mass 

balance equation is not always feasible, and a number of numerical schemes have been 

developed for this purpose [14-20]. Analytical models however are preferred for their simplicity. 

 

 

Figure 5.1: A cross-section of the membrane bioreactor. 

 

The current analysis is aimed at developing expressions of the effectiveness factor for an MBR 

immobilized with biofilm, based on the model developed by Godongwana et al. [13]. 
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The asymptotic behaviour as the Thiele-modulus becomes large will be considered. The models 

are based on the MBR system shown in Figure 5.1, and the following conditions of operation are 

assumed: (1) the system is isothermal; (2) the flow regime within the membrane lumen is fully 

developed, laminar, and homogeneous; (3) the physical and transport parameters are constant; 

(4) in the membrane matrix the flow is only one dimensional (i.e. there are no axial components 

of the velocity in the membrane matrix due to the morphology of the membrane wall). 

 

5.2 Mathematical formulation 

5.2.1 Governing equations 

 

The governing equations for solute transport in the lumen and matrix of the MBR are 

respectively:  

 
𝑢1

𝜕𝑐1

𝜕𝑧
+ 𝑣1

𝜕𝑐1

𝜕𝑟
= 𝐷1 [

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑐1

𝜕𝑟
) +

𝜕2𝑐1

𝜕𝑧2
] (5.1) 

 
𝑣2

𝜕𝑐2

𝜕𝑟
+

𝐷2

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑐2

𝜕𝑟
) =

𝑉𝑀𝑐2

𝐾𝑚 + 𝑐2
 (5.2) 

 

The associated boundary conditions are: 

 

 𝐵. 𝐶. 1   𝑎𝑡  𝑧 = 0   ∀𝑟     𝑐1 = 𝑐0 (5.3a) 

 
𝐵. 𝐶. 2   𝑎𝑡  𝑟 = 0   ∀𝑧     

𝜕𝑐1

𝜕𝑟
= 0 (5.3b) 

 
𝐵. 𝐶. 3   𝑎𝑡  𝑟 = 𝑅1   ∀𝑧     

𝜕𝑐1

𝜕𝑧
=

2𝐷1

𝑢1𝑅1

𝜕𝑐1

𝜕𝑟
 (5.3c) 

 
𝐵. 𝐶. 4   𝑎𝑡  𝑟 = 𝑅1   ∀𝑧     𝑘𝑎(𝑐1𝑏 − 𝑐1𝐸) = −𝐷2

𝜕𝑐2

𝜕𝑟
 (5.3d) 

 
𝐵. 𝐶. 5   𝑎𝑡  𝑟 = 𝑅2   ∀𝑧     

𝜕𝑐2

𝜕𝑟
= 0 (5.3e) 

 

where u and v are the axial and radial velocity components, respectively; c1 and c2 are the local 

substrate concentrations in the lumen and fiber matrix, respectively; c1b is the bulk lumen 

concentration; c1E is the concentration on the internal surface of the membrane; D1 and D2 are 

the substrate diffusion coefficients in the lumen and matrix, respectively; ka is the mass transfer 

coefficient; Km is the saturation constant; and VM is the maximum rate of reaction.  

 

Boundary condition 1 (B.C.1) corresponds to a uniform inlet substrate concentration; B.C.2 

corresponds to cylindrical symmetry at the centre of the membrane lumen; B.C.3 and B.C.4 
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corresponds to continuity of the substrate flux at the lumen-matrix interface; and B.C.5 implies 

there is no diffusion across the matrix-shell interface. In single-substrate limited biofilms, VM in 

Eq. (5.2) is given by [21]:  

 
𝑉𝑀 =

𝜇𝑚𝑎𝑥𝑋

𝑌𝑋/𝑆 
 (5.4) 

 

where X is the average biofilm density, max is the maximum specific growth rate, and Yx/s is the 

yield of biofilm per unit substrate.  

 

5.2.2 MBR lumen (Region 1) 

 

In the lumen-side of the MBR, Eq. (5.1) in dimensionless form becomes: 

 

 
𝜑𝑃𝑒𝑢𝑈1

𝜕𝐶1

𝜕𝑍
− 𝜑2

𝜕2𝐶1

𝜕𝑍2
=

1

𝑅
(
𝜕𝐶1

𝜕𝑅
+ 𝑅

𝜕2𝐶1

𝜕𝑅2 ) − 𝑃𝑒𝑣𝑉1

𝜕𝐶1

𝜕𝑅
 (5.5) 

where: 

 
𝑈 =

𝑢

𝑢0
;   𝑉 =

𝑣

𝑣0
;   𝐶 =

𝑐

𝑐0
;   𝑍 =

𝑧

𝐿
;   𝑅 =

𝑟

𝑅1
;   𝜑 =

𝑅1

𝐿
 

𝑃𝑒𝑢 =
𝑢0𝑅1

𝐷1
;   𝑃𝑒𝑣 =

𝑣0𝑅1

𝐷1
 

(5.6) 

 

The solution of Eq. (5.5) was given by Godongwana et al. [13] as an asymptotic expansion in 

terms of the membrane hydraulic permeability : 

 

 
𝐶1(𝜃, 𝑥) = ∑ ∑ 𝐵𝑚𝐹𝑚(𝜃)𝑇𝑛(𝑥)𝜅𝑛

𝑁

𝑛=0

∞

𝑚=1

 (5.7) 

Where  

 
𝜃 = −(

𝜑2

4𝑃𝑒𝑢𝜅𝛽
)𝜉2; 𝜉 = −

2𝑃𝑒𝑢𝜅𝛽

𝜑2 [
1

(𝑓 − 1)
+ 𝑍] ; and    𝑥 = 𝜆𝑚𝑅 (5.8) 

 

and Fm() in Eq. (5.7) is the Kummer function: 

 

 
𝐹𝑚(𝜃) = 𝑀 (−

𝜆𝑚
2

4𝑃𝑒𝑢𝜅𝛽
,
1

2
, 𝜃) (5.9) 
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The zero-order and first-order approximations of Tn(x) in Eq. (5.7) are, respectively:  

 

 𝑇0(𝑥) = 𝐽0(𝑥) (5.10) 

and    

 
𝑇1(𝑥) = 𝜎1 [

(𝑥)2𝐽2(𝑥)

3‼
+ 𝜎2

(𝑥)3𝐽3(𝑥)

5‼
+ 𝜎3

(𝑥)4𝐽4(𝑥)

7‼
] (5.11) 

 

where m are the eigenvalues, Jn is the Bessel function of the first kind of order n. 

  

 
𝜎1 = −

3𝑃𝑒𝑢𝛽

2𝜆𝑚
2 ,     𝜎2 = −

20

3𝜆𝑚
2 ,     𝑎𝑛𝑑     𝜎3 =

35

4𝜆𝑚
2  (5.12) 

 

The eigenvalues are obtained from B.C.3 in Eq. (5.3c), and are roots of the equation [20]: 

 

 𝜆𝑚𝜑𝜉

𝜅𝛽
𝑀 (−

𝜆𝑚
2

4𝑃𝑒𝑢𝜅𝛽
+ 1,

3

2
, 𝜃) = 4

𝐽1(𝜆𝑚)

𝐽0(𝜆𝑚)
𝑀 (

−𝜆𝑚
2

4𝑃𝑒𝑢𝜅𝛽
,
1

2
, 𝜃) (5.13) 

 

The coefficient Bm is obtained by imposing the inlet condition B.C.1 of Eq.(5.3a): 

 

 
𝐵𝑚 =

2

𝜆𝑚𝑀 (−
𝜆𝑚

2

4𝑃𝑒𝑢𝜅𝛽
,
1
2
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𝐽1(𝜆𝑚)

𝐽0
2(𝜆𝑚) + 𝐽1

2(𝜆𝑚)
] (5.14) 

 

5.2.3 MBR Matrix (Region 2) 

5.2.3.1 First-order Kinetics  

 

The rate of solute consumption inside the membrane matrix is governed by Monod kinetics. 

Assuming the first-order limit, i.e. Km >> c, Eq. (5.2) for the matrix in dimensionless form 

becomes: 

 𝑑2𝐶2

𝑑𝑅2
+ (

1

𝑅
− 𝑃𝑒𝑣𝑉2)

𝑑𝐶2

𝑑𝑅
− 𝜙2𝐶2 = 0 (5.15) 

 

where the first-order Thiele modulus  is defined as: 

 

𝜙 = √
𝑉𝑀𝑅1

2

𝐾𝑚𝐷2
 (5.16) 
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Eq. (5.15) is amenable to an analytical solution by regular perturbation only when the hydraulic 

permeability is much smaller than unity  << 1. For brevity only the zero-order approximation will 

be considered here, the first order perturbation approximation is given in Appendix B (B.1 – B.2) 

following the procedure of Godongwana et al [13]. Equation (5.15) then reduces to: 

 

 𝑑2𝐶2

𝑑𝑅2
+

1

𝑅

𝑑𝐶2

𝑑𝑅
− 𝜙2𝐶2 = 0 (5.17) 

 

Equation (5.17) is evaluated subject to B.C.4, which in dimensionless form becomes: 

 

 
𝑆ℎ (𝐶𝑏 −

𝐶2
𝛾⁄ ) = −

𝑑𝐶2

𝑑𝑅
|
𝑅=1

 (5.18) 

 

Where  is the partition coefficient and Sh is the Sherwood number. A good estimate of Sh for 

hollow fiber membranes is given by Wickramasinghe et al. [22]:  

 

 𝑆ℎ = 1.11𝑅𝑒0.47𝑆𝑐0.33 (5.19) 

 

where 𝑆𝑐 = 𝜇 𝜌𝐷𝐴𝐵⁄  is the Schmidt number and 𝑅𝑒 = 𝜌𝑣𝑅1 𝜇⁄  is the Reynolds number. The 

dimensionless bulk lumen concentration is defined as:  

 

 
𝐶𝑏 = 2∫ 𝐶1(𝜃, 𝑥)𝑅𝑑𝑅

1

0

= 2 ∑
𝐵𝑚

𝜆𝑚
∙ 𝑀 (−

𝜆𝑚
2

4𝑃𝑒𝑢𝜅𝛽
,
1

2
, 𝜃1) ∙ 𝐽1(𝜆𝑚)

∞

𝑚=1

 (5.20) 

 

Equation (5.17) is the modified Bessel equation and has a solution of the form [23]: 

 

 𝐶2 = 𝐵1𝐼0(𝜙𝑅) + 𝐵2𝐾0(𝜙𝑅) (5.21) 

 

where I0 and K0 are the modified Bessel functions of the first kind and second kind, respectively. 

The constants B1 and B2 are obtained with the use of B.C.4 and B.C.5 as:  

 

 
𝐵1 =

𝐾1(𝜙𝑅2) ∙ 𝛾𝐶𝑏

[𝐾0(𝜙) ∙ 𝐼1(𝜙𝑅2) + 𝐼0(𝜙) ∙ 𝐾1(𝜙𝑅2)] + 𝜓
 

(5.22) 

and   

 
𝐵2 =

𝐼1(𝜙𝑅2) ∙ 𝛾𝐶𝑏

[𝐾0(𝜙) ∙ 𝐼1(𝜙𝑅2) + 𝐼0(𝜙) ∙ 𝐾1(𝜙𝑅2)] + 𝜓
 (5.23) 
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where  

 
𝜓 =

𝛾𝜙

𝑆ℎ
[𝐾1(𝜙) ∙ 𝐼1(𝜙𝑅2) + 𝐼1(𝜙) ∙ 𝐾1(𝜙𝑅2)] (5.24) 

 

The effectiveness, , factor is defined as: 

 

𝜂 =

−2𝜋𝑟1𝐿𝐷2
𝜕𝑐2
𝜕𝑟

|
𝑟=𝑟1

𝜋𝐿(𝑟2
2 − 𝑟1

2)
𝑉𝑀𝑐𝑏

𝐾𝑚 + 𝑐𝑏

 (5.25) 

In dimensionless form: 

 
𝜂 =

−2(𝛿 + 1)

𝜙0
2(𝑅2

2 − 1)

𝜕𝐶2

𝜕𝑅
|
𝑅=1

 (5.26) 

 

where 𝛿 =
𝐾𝑚

∗

𝐶𝑏
 and 0 is the zero-order Thiele modulus defined as: 

 

𝜙0 = √
𝑉𝑀𝑅1

2

𝑐0𝐷2
 (5.27) 

 

Assuming first-order kinetics ( >> 1) Eq. (5.26) reduces to: 

 

 
𝜂1 =

−2

𝜙2(𝑅2
2 − 1)𝐶𝑏

𝜕𝐶2

𝜕𝑅
|
𝑅=1

 (5.28) 

 

Substituting Eqs. (5.20)- (5.24) into Eq (5.28) gives: 

 

 
𝜂1 =

2𝛾[𝐾1(𝜙) ∙ 𝐼1(𝜙𝑅2) − 𝐼1(𝜙) ∙ 𝐾1(𝜙𝑅2)]

𝜙(𝑅2
2 − 1){[𝐾0(𝜙) ∙ 𝐼1(𝜙𝑅2) + 𝐼0(𝜙) ∙ 𝐾1(𝜙𝑅2)] + 𝜓}

 (5.29) 

 

The reciprocal of the effectiveness factor is generally considered a mass transfer resistance 

[6,8,24]. Thus, the reciprocal of Eq. (5.29) is the sum of the internal resistance and the external 

resistance () to mass transfer. This is explicit in the asymptotic form of Eq. (5.29) given in 

Appendix B:  

 1

𝜂1
~

𝜙(𝑅2
2 − 1)

2
{
𝜙

𝑆ℎ
+

1

𝛾
𝑐𝑜𝑡ℎ[𝜙(𝑅2 − 1)]} , 𝑎𝑠 𝜙 → ∞ (5.30) 

 

The first and second terms inside the curly brackets in Eq. (5.30) represent the external 

resistance and internal resistance to mass transfer, respectively. The series-of-resistances 
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nature of Eqs. (5.29) and (5.30) is a result of using the Robin-type boundary condition, B.C.4, in 

the evaluation of Eq. (5.17). In both equations the parameters with the greatest influence on the 

effectiveness factor are: the Thiele modulus, partition coefficient, Sherwood number, and 

membrane thickness. The influence of the Peclet (Peu) number on the effectiveness factor is 

presented in Appendix B (B.2). By definition  = 1 when the Thiele modulus, , becomes zero 

since this value of the Thiele modulus corresponds with a reaction rate-controlled transfer with 

no mass transfer limitations. 

  

5.2.3.2 Zero-order Kinetics 

 

Assuming the zero-order limit, i.e. Km << c, the dimensionless form of Eq. (5.2) becomes: 

 

 𝑑2𝐶2

𝑑𝑅2
+

1

𝑅

𝑑𝐶2

𝑑𝑅
− 𝜙0

2 = 0 (5.31) 

 

Equation (5.31), subject to B.C. 4 and B.C.5, has a solution of the form: 

 

 
𝐶2 =

𝜙0
2

4
{(𝑅2 − 1) − 2 [𝑅2

2𝑙𝑛𝑅 +
𝛾

𝑆ℎ
(𝑅2

2 − 1)]} + 𝛾𝐶𝑏 (5.32) 

 

The dimensionless zero-order effectiveness factor from Eq. (5.26) is:  

 

 
𝜂0 = −

2

𝜙0
2(𝑅2

2 − 1)

𝜕𝐶2

𝜕𝑅
|
𝑅=1

= 1 (5.33) 

 

5.2.3.3 Non-linear Kinetics  

 
The effectiveness factor allows for the determination of the overall reaction rate in terms of the 

Thiele modulus. However, when the reaction kinetics are non-linear as was assumed in the 

previous sections Eq. (5.26) is not amenable to an analytical solution. A practical measure of 

evaluating the effectiveness factor is attained by making the following approximation: 

 

 𝑑𝐶2

𝑑𝑅
|
𝑅=1

=
𝐶2|𝑅=𝑅2

− 𝐶2|𝑅=1

(𝑅2 − 1)
, (𝑅2 − 1) ≪ 1 (5.34) 

 

Substituting Eq. (5.34) into Eq. (5.26) gives: 
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Υ = 1 − [𝐶2|𝑅=1 −

𝜂𝜙0
2(𝑅2

2 − 1)(𝑅2 − 1)

2(𝛿 + 1)
] , (𝑅2 − 1) ≪ 1 (5.35) 

 

where 𝛶 is the fractional conversion. Equation (5.35) allows for empirical determination of the 

effectiveness factor when the fractional conversion is known, from the following procedure: 

(i) guess the wall concentration (𝐶2|𝑅=𝑅1
) and obtain the concentration gradient from 

Eq. (5.34), (ii) substitute the concentration gradient  
𝑑𝐶2

𝑑𝑅
|
𝑅=1

 into Eq. (5.26) to obtain the 

effectiveness factor, (iii) substitute the effectiveness factor  into Eq. (5.35) and compare the 

experimental conversion to the attained value, and (iv) repeat the procedure until the 

experimental conversion is equal to the value obtained from the iteration.  

 

5.3 Results 

 

Figure 5.2 is a plot of effectiveness factors and corresponding asymptotes, from Eq. (5.29) and 

(5.30) respectively, as functions of the normalized Thiele modulus  for different values of the 

Sherwood number. The normalized modulus is defined as: 

 

 

 
Φ =

𝜙

2
(𝑅2

2 − 1) (5.36) 

 

Equation (5.30) provides a simple mathematical approximation to Eq. (5.29) and for  > 1 gives 

exact values for the effectiveness factor, as shown in Figure 5.2. Three regions of Thiele moduli 

may be defined from Figure 5.2, as characterised by the effectiveness factor. In the first region 

( < 0.01) the effectiveness factor is unity, and the rate of solute transport in the MBR is 

controlled by the rate of reaction. When the MBR is operated in this region the diffusional 

resistance offered by the membrane is negligible. In the second region (0.01 <  < 0.1) the rate 

of solute transport is limited only by internal diffusion through the membrane, and hence the 

effectiveness factor is not a function of the Sherwood number. In the third region ( > 0.1) 

external mass transfer limitations control the rate of solute transport through the MBR, and the 

effectiveness factor is greatly influenced by the Sherwood number. This result is consistent with 

the Robin-type boundary condition. 
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Table 5.1: Parameter values used to determine the effectiveness factor in Figure 5.3 [25]
 

Model parameter Symbol Unit Basic measured value 

Membrane inner radius R1 m 6.98 x 10
-4 

Membrane outer radius R2 m 9.63 x 10
-4

 

Effective membrane length L m 0.230
 

Lumen-side entrance velocity u0 ms
-1

 3.04 x 10
-4

 

Permeation velocity v0 m s
-1

 8.82 x 10
-6

 

Glucose diffusivity DAB m
2
 s 1.59 x 10

-9 

Glucose inlet concentration c0 g dm
-3 

10.00 

Maximum specific growth rate max h
-1

 0.035 

Saturation constant Km g dm
-3

 9.350 

Yield of biofilm per substrate Yx/s g/g 0.202 

 
 

 

Figure 5.2: Effectiveness factors () and asymptotes (---) vs Thiele modulus at different Sherwood 
numbers. 

 

Figure 5.2 may suggest operating the MBR at low values of the Thiele modulus for high 

effectiveness factors, however substrate conversion at these low values is minimal as can be 

seen in Figure 5.3. This figure presents experimental values of conversion and the effectiveness 

factor for an MBR used for the production of Lignin and Manganese Peroxidases from 

Phanerochaete chrysosporium. The operating parameters of the MBR and kinetic constants of 
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Figure 5.3: Effectiveness factor and glucose conversion vs normalized Thiele modulus. 

 

 

Figure 5.4: Relative increase in effectiveness factor vs normalized Thiele modulus at different 

Peclet numbers. 

 

the biofilm are listed in Table 5.1. The operation of the MBR is detailed in Appendix C. Figure 5.3 

provides a basis for performing rigour optimisation studies of an operating Thiele modulus at 

which both substrate conversion and the effectiveness factor are optimal. This point corresponds 

with low effectiveness factors when the objective is to maximise solute conversion [19].  

However, parametric optimisation was not part of the current study, and therefore the optimal 

Thiele modulus was not defined for the current MBR.  
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The experimental effectiveness factor in Figure 5.3 is obtained from Eq. (5.35) and is plotted 

against the first-order model of Eq. (5.29). The two plots exhibit the same trend, with the model 

underestimating the effectiveness factor at values of  < 0.5. This is because at low values of 

the Thiele modulus solute transport is reaction rate controlled and the first-order kinetics premise 

assumes a lower rate of reaction than the maximum. At higher values of the Thiele modulus 

solute transport is limited by internal and external diffusion, and the first-order model 

approximately matches the experimental effectiveness factor. 

 

In the region of internal diffusional limitation (0.01 <  < 0.1) radial convective flows can 

significantly improve the effectiveness factor, as illustrated in Figure 5.4. In this figure the relative 

increases in the effectiveness factor (
𝜂

𝜂𝑃𝑒=0
⁄ ) are plotted against normalised Thiele moduli for 

different values of the radial Peclet number. The effectiveness factors in Figure 5.4 are obtained 

from Eq. (B.10) in Appendix B. The increase in  with Pev is only restricted to the region of 

internal diffusional limitation. The maximum relative increase in the effectiveness factor is 

obtained in the transitional region from kinetic to internal-diffusional control (  0.01), and 

minimal in the boundary region between internal-diffusional control and external mass transfer 

limitation. Increasing Pev outside this region may drastically reduce the contact time between the 

substrate and the biocatalyst, and hence lead to reduced substrate conversions as was shown 

by Calabro et al. [17]. In this region ( > 0.1), as previously discussed the effectiveness factor 

can be improved by increased Sherwood numbers.     

 

5.4 Conclusion 

 

Mathematical models have been developed for solute concentration profiles and effectiveness 

factors in an MBR, assuming the zero-order and first-order limits of the Michaelis-Menten (or 

Monod) equation. The first-order kinetic model was shown to be applicable only when the MBR 

is operated at high Thiele moduli. Experimental results show that the effectiveness factor 

decreases with increasing Thiele modulus, while the fractional conversion increases with an 

increase in this parameter. The developed model allows for the determination of the operating 

point at which both the conversion and effectiveness factor are optimal. It was also shown that 

the radial Peclet number can significantly improve the performance of an MBR operating under 

internal diffusional limitations.    
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5.5 Summary  

 

This chapter addressed the main objective of the thesis, i.e. to evaluate the nature of the 

dependence of the MBR effectiveness on convective mass and momentum transfer. A novel 

mathematical solution of the effectiveness factor as a function of the Thiele modulus, the 

partition coefficient, the Sherwood number, and the Peclet number was presented. Prior to this 

study, there were no analytical (or closed-form) solutions of the effectiveness factor which 

accounted for both diffusive and convective mass transfer in a biocatalytic MBR. The most 

significant finding from the application of the developed model was that radial convective flows 

only improved bioreactor performance under internal-diffusional limitations. This result has 

significant implications in the future design and operation of MBRs. Prospective studies 

emanating from the current work are summarised in Chapter 6. 
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Nomenclature 

 

Bm   constants of integration of Bessel’s equation, m = 1, 2 

c   substrate concentration (g dm-3) 

cb   bulk lumen concentration (g dm-3) 

c0   substrate feed concentration (g dm-3) 

C = c/c0  dimensionless substrate concentration 

DAB   substrate diffusivity (m2 s-1) 

f = u1/u0  fraction retentate 

Jn()   Bessel function of order n of the first kind 

ka   mass transfer coefficient (m s-1) 

km   membrane hydraulic permeability (m Pa-1s-1) 

Km   saturation (or Monod constant) (g dm-3) 

𝐾𝑚
∗ = 𝐾𝑚 𝑐0⁄   dimensionless Monod constant 

L   membrane effective length (m) 

M(a,b,)  Kummer function of the first kind    

Peu = u0R1/DAB axial Peclet number 

Pev = v0R1/DAB  radial Peclet number 

r   radial spatial coordinate (m) 

R = r/R1  dimensionless radial spatial coordinate 

R1   membrane lumen radius (m) 

Re = u0R1/  Reynolds number 

Sc = /DAB  Schmidt number 

Sh = kaR1/DAB  Sherwood number 

u   axial velocity (m s-1) 

u0   feed axial velocity (m s-1) 

U = u/u0  dimensionless axial velocity 

v   radial velocity (m s-1) 

v0 = km(p0 - pS)  permeation velocity (m s-1) 

V  = v/v0  dimensionless radial velocity 

VM   maximum rate of reaction (g dm-3 s-1) 

X   average biofilm density (g dm-3) 

Yx/s   yield of biofim per unit substrate 

z   axial spatial coordinate (m)  

Z = z/L   dimensionless axial spatial coordinate 
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Greek letters 

 

   dimensionless transmembrane pressure 

   membrane partition coefficient  

𝛿 = 𝐾𝑚/𝑐0𝐶𝑏  modified dimensionless Monod constant  

𝜖 =
1

𝜙
   substitution variable  

η   effectiveness factor for general kinetics 

η0   effectiveness factor for zero-order kinetics 

η1   effectiveness factor for first-order kinetics 

   substitution variable 

𝜅 = 𝜇𝑘𝑚𝐿 𝑅1
2⁄   dimensionless membrane hydraulic permeability 

m   eigen values, m = 1, 2, … 

   solution dynamic viscosity (Pa s) 

max   maximum specific growth rate (s-1) 

   solution density (kg m-3) 

𝜑 = 𝑅1 𝐿⁄   aspect ratio 

   Thiele modulus 

   normalized Thiele modulus 

   external resistance to mass transfer  

Υ   fractional conversion  
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6. GENERAL CONCLUSIONS AND PROSPECTS  

6.1 Summary 

 

The purpose of this study was to quantify the efficiency of a biocatalytic membrane reactor used 

for the production of enzymes. This was done by developing exact solutions of the concentration 

and velocity profiles in the different regions of the membrane bioreactor (MBR). The emphasis of 

this study was on the influence of radial convective flows, which have generally been neglected 

in previous analytical studies (Jayaraman, 1992; Willaert et al., 1999; Cabrera et al., 2001; Ye et 

al, 2006). The efficiency of the MBR was measured by means of the effectiveness factor. 

 

In the first section of results, Chapter 3, an analytical model for substrate concentration profiles 

in the lumen of the MBR was developed. The model was based on the solution of the Navier-

Stokes equations and Darcy’s law for velocity profiles, and the convective-diffusion equation for 

the solute concentration profiles. The model allowed for the evaluation of the influence of both 

hydrodynamic and mass transfer operating parameters on the performance of the MBR. These 

parameters include the fraction retentate (f), the transmembrane pressure (), the membrane 

hydraulic permeability (), the Reynolds number, the axial and radial Peclet numbers, and the 

dimensions of the MBR. The significant findings on the hydrodynamic studies were on the 

influence of the fraction retentate, defined as the ratio of the retentate (exit) and feed flowrates. 

This parameter defines the mode of operation of the MBR (f = 0 for the dead end mode, and f 

= 1 for the closed shell). In the dead-end mode it was found that there was increased radial 

convective flow, and hence more solute contact with the enzymes/biofilm immobilised on the 

surface of the membrane. The improved solute-biofilm contact however was only limited to the 

entrance half of the MBR. In the closed shell mode there was uniform distribution of solute, 

however, radial convective flows were significantly reduced. The developed model therefore 

allowed for the evaluation of an optimum f value, where both the distribution of solutes and radial 

convective flows could be maximised.  

 

The concentration profiles developed from the analytical model were compared to the results of 

Heath and Belfort (Ye et al., 2006). The model of Heath and Belfort was representative of the 

common assumptions made in developing concentration profiles in hollow fiber MBRs; and 

these include: (i) negligible axial diffusion, (ii) negligible membrane resistance to mass transfer, 

and (iii) negligible radial convective flows in the MBR. While there was good agreement between 

the two models, the abovementioned assumptions were shown to severely limit the applicability 
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of the latter model. As previously discussed, recent designs of MBRs seek to overcome 

diffusional limitations inherent in these devices by exploiting radial convective flows. The 

developed model from the current study allowed for the evaluation of the influence of axial 

diffusion, membrane resistance and radial convective flows on the solute concentration profiles 

in the MBR.   

 

In Chapter 4 the second-order elliptic differential balance equation, with non-linear kinetics, was 

solved for concentration profiles in the MBR. The numerical scheme was executed using the 

Newton-Raphson algorithm, and was shown to be unconditionally stable for different step sizes. 

The significant findings from the FDM scheme was that the uniform solute distribution, in the 

open-shell mode, was more favourable for microbial growth than the dead-end mode. This result 

was consistent with the findings from the analytical solution (developed in Chapter 3), and also 

confirmed the tapering biofilm phenomenon observed by Godongwana et al. (2009). The 

numerical scheme of Chapter 4 served to validate the perturbation technique employed in 

Chapter 3, which was also the basis for the analysis in Chapter 5.  

 

In Chapter 5 an exact solution of the effectiveness factor () for the MBR was presented as a 

function of the Thiele modulus (), the Sherwood number (Sh), the Peclet number (Pe) and 

dimensions of the MBR. Effectiveness factor plots and their asymptotes were developed and 

compared to experimental data. Three regions of Thiele moduli were defined from the plots, 

corresponding with: kinetic control ( < 0.01), internal-diffusion control (0.01 <  < 0.1), and 

external mass transfer limitation ( > 0.1). It was shown that operation of the MBR at low Thiele 

moduli was not optimal since substrate conversion at these values was minimal. Conversely, at 

high Thiele moduli solute transport was limited by diffusion through the membrane. The 

developed model therefore allowed for the determination of the optimal Thiele modulus, at which 

both substrate conversion and the effectiveness factor were optimal.  

 

The theoretical model developed for the effectiveness factor confirmed previous experimental 

studies, and a recent numerical analysis (Nagy et al, 2015), on the importance of radial 

convective flows on the performance of the MBR. The more significant finding from the current 

study was that radial convective flows improve bioreactor performance in a limited range of 

Thiele moduli, and this range was found to coincide with the region of internal diffusion limitation 

(0.01 <  < 0.1). Outside this range, the effectiveness factor was shown to be improved only by 

increased Sherwood numbers (or reduced “boundary layer” thickness). The maximum relative 

increase in the effectiveness factor (
𝜂

𝜂𝑃𝑒=0
⁄ ) was observed to be in the transitional region from 
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kinetic to internal-diffusional control (  0.01), and minimal in the boundary region between 

internal-diffusional control and external mass transfer limitation.  

 

6.2 Prospects 

 

 Mass transfer in MBRs is governed by the flow behavior (or fluid dynamics) of the 

nutrient feed, and this is greatly dependent on the mode of operation. In the dead-end 

mode it was shown that radial convective flows are improved, while non-uniform (or 

channeling) flows were also observed. The closed shell mode on the other hand was 

shown to produce more distributed flows, however radial convection was reduced in this 

mode. This result necessitates an optimisation study on the best mode of operation for 

improved distribution of solutes and radial convective flows. 

 

 As previously discussed, an MBR should ideally operate in a reaction-limited regime 

rather than a diffusion-limited regime. However, it was shown in the current study that the 

reaction-limited regime is characterised by low substrate conversions. This result 

highlights the existence of an optimal Thiele modulus at which both substrate conversion 

and effectiveness factors are improved. Currently such optimisation studies are not 

available. 

 

 The current study presented a novel mathematical analysis of the influence of convective 

flows on the performance of a catalytic membrane reactor, measured by the 

effectiveness factor. The differential balance (convective-diffusion) equations were 

solved analytically for the zero-order and first-order limiting forms of the Michaelis-

Menten (or Monod) equation. The resulting concentration profiles were compared to 

results from an FDM numerical scheme based on non-linear kinetics. These results 

showed that at low Thiele moduli ( < 0.5), the first-order kinetics assumption 

underestimates the effectiveness factor. Currently there are no analytical expressions of 

the effectiveness factor, when non-linear kinetics are assumed in the rate of consumption 

of solutes. Such solutions will provide for more efficient designs of MBRs, and form the 

basis for rigor optimization studies.   

 

 Finally, in the solutions of both momentum and mass transfer differential balance 

equations transient states and angular variations were ignored. Extending the current 
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analysis to include both these effects may be important in designing process control 

mechanism during start-up, and for studying systems of non-cylindrical symmetry.     
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APPENDIX A 

A.1 Momentum transfer analysis 

 

The z-component of the non-conservative form of the Navier-Stokes equation in cylindrical 

coordinates is made dimensionless by introducing the variables in Eq. (3.3) and the following 

additional variables: 

 

 
𝑃 =

𝑝𝑅1
2

𝜇𝑢0𝐿
;    𝜏 =

𝜇𝑡

𝜌𝑅1
2 ;   𝐹𝑟 =

𝑢0
2

𝑔𝑅1
  

(A.1) 

 

where p and P are the fluid pressure and dimensionless fluid pressure, respectively; t and  are 

the time and dimensionless time, respectively;  is the solution dynamic viscosity; and Fr is the 

Froude number. The dimensionless form of the Navier-Stokes thus becomes: 

 

 𝜕𝑈

𝜕𝜏
= [

1

𝑅

𝜕

𝜕𝑅
(𝑅

𝜕𝑈

𝜕𝑅
) + 𝜑2

𝜕2𝑈

𝜕𝑍2
] −

𝑑𝑃

𝑑𝑍
+

𝑅𝑒

𝐹𝑟
  

(A.2) 

 

and the continuity equation: 

 1

𝑅

𝜕(𝑅𝑉)

𝜕𝑅
= −𝜑 (

𝑢0

𝑣0
)
𝜕𝑈

𝜕𝑍
  

(A.3) 

 

Ignoring normal stresses 
𝜕2𝑈

𝜕𝑍2
  and considering steady-state conditions, the solution of Eq. (A.2) 

is obtained by integrating twice and making use of the boundary conditions listed in Table 3.1 

(B.C.4 and B.C.5) to obtain: 

 
𝑈 = −

1

4
(1 − 𝑅2) (

𝑑𝑃

𝑑𝑍
−

𝑅𝑒

𝐹𝑟
)  

(A.4) 

 

The dimensionless radial velocity profile V is obtained by substituting Eq. (A.4) into Eq. (A.3) and 

imposing B.C. 6 (Table 3.1): 

 
𝑉 = 𝜑 (

𝑢0

𝑣0
) [

𝑅

8
 (1 −

𝑅2

2
)]

𝑑2𝑃

𝑑𝑍2
  

(A.5) 

 

The dimensionless pressure profile P is obtained by imposing B.C.7, where the matrix velocity 

VM is governed by Darcy’s law: 
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 𝑉𝑀 = −(
𝑢0

𝑣0
)𝜅(𝑃𝑆 − 𝑃0)  

(A.6) 

 

where the dimensionless membrane hydraulic permeability  is given by: 

 

 
𝜅 =

𝜇𝑘𝑚𝐿

𝑅1
2   

(A.7) 

 

Substituting Eq. (A.5) and (A.6) into Eq. (3.7g) results in: 

 

 𝜑

16

𝑑2𝑃

𝑑𝑍2
 = −𝜅(𝑃𝑆 − 𝑃0) 

(A.8) 

 

Eq. (A.8) is solved by applying B.C.8 to give: 

 

 𝑃 = 𝛽𝑐𝑜𝑠ℎ (4√𝜑−1𝜅)𝑍 +
𝜑𝑎

4√𝜑−1𝜅
𝑠𝑖𝑛ℎ (4√𝜑−1𝜅)𝑍 + 𝑃𝑆 (A.9) 

 

where the dimensionless entrance pressure drop a in Eq. (A.9) is obtained by defining a fraction 

retentate, f, as the ratio of the exit to the inlet velocity, i.e. f = U1/U0: 

 

 

𝑎 =
4√𝜑−1𝜅𝛽𝑠𝑖𝑛ℎ(4√𝜑−1𝜅) − 𝑅𝑒𝐹𝑟−1(1 − 𝑓)

𝜑 [𝑓 − 𝑐𝑜𝑠ℎ(4√𝜑−1𝜅)]
 (A.10) 

 

A.2 Solution of the coefficient B1m 

 

Imposing the inlet condition Eq. (3.7a) into Eq. (3.46) gives:  

 

 
𝐶(𝜃0, 𝑥) = ∑ ∑ 𝐹𝑚(𝜃0)𝑇𝑛(𝑥)𝜅𝑛 = 1,

𝑁

𝑛=0

∞

𝑚=1

𝑎𝑡 𝑍 = 0 (A.11) 

 

For the zero-order approximation of the radial function T(R), Eq. (A.11) becomes: 

 

 
∑ 𝑀 (

𝐴𝜆𝑚
2

2𝜑2
,
1

2
, 𝜃0)𝐵1𝑚𝐽0(𝜆𝑚𝑅)

∞

𝑚=1

= 1, 𝑎𝑡 𝑍 = 0 (A.12) 
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Equation (3.29) is a Sturm-Liouville type differential equation, thus the eigenfuctions of Eq. (3.29) 

are orthogonal. This property allows for the solution of B1n in Eq. (A.12) by multiplying both the 

L.H.S. and the R.H.S. by J0(mxR)R and integrating with respect to R over the interval 0 – 1. 

 

∫ 𝐽0(𝜆𝑚𝑥𝑅)𝑅 {∑ 𝑀 (
𝐴𝜆𝑚

2

2𝜑2
,
1

2
, 𝜃0)𝐵1𝑚𝐽0(𝜆𝑚𝑅)

∞

𝑚=1

} 𝑑𝑅
1

0

= ∫ 𝐽0(𝜆𝑚𝑥𝑅)𝑅𝑑𝑅
1

0

 (A.13) 

 

The R.H.S. of Eq. (A.13) is evaluated by making use of the following property of Bessel functions: 

 

 
∫ 𝑟𝑣𝐽𝑣−1(𝑟)𝑑𝑟

𝑧

0

= 𝑧𝑣𝐽𝑣(𝑧) (A.14) 

 

The R.H.S of Eq. (A.13) then becomes: 

 
𝑅. 𝐻. 𝑆. =

𝐽1(𝜆𝑚𝑥)

𝜆𝑚𝑥
 (A.15) 

 

The L.H.S of Eq. (A.13) may be evaluated by making use of Lommel integrals: 

 

 
∫ 𝐽𝑛(𝛼𝑘𝑟)𝐽𝑛(𝛼𝑚𝑟)𝑟𝑑𝑟

𝑥

0

= 0 (𝑘 ≠ 𝑚) (A.16) 

 
∫ 𝑟𝐽𝑛

2(𝛼𝑚𝑟)𝑑𝑟
𝑥

0

=
𝑥2

2
[𝐽𝑛

′ (𝛼𝑚𝑥)2 + (1 −
𝑛2

𝛼𝑚
2 𝑥2

) 𝐽𝑛
2(𝛼𝑚𝑥)] (A.17) 

 

To give the following equation: 

 

 
𝐿. 𝐻. 𝑆. =

𝐵1𝑚

2
𝑀 (

𝐴𝜆𝑚
2

2𝜑2
,
1

2
, 𝜃0) [𝐽0

2(𝜆𝑚) + 𝐽1
2(𝜆𝑚)] (A.18) 

 

Substituting Eqs. (A.15) and (A.18) back into the R.H.S. and L.H.S. of Eq. (A.13), respectively: 

 

 
𝐵1𝑚 =

2

𝜆𝑚𝑀(
𝐴𝜆𝑚

2

2𝜑2 ,
1
2 , 𝜃0)

[
𝐽1(𝜆𝑚)

𝐽0
2(𝜆𝑚) + 𝐽1

2(𝜆𝑚)
] 

(A.19) 
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A.3 Mathematical architecture for the solution of T(x) 

 

We define a parameter p in Laplace space as: 

  

 
𝑝 =

1

√1 + 𝑠2
 (A.20) 

 

Such that the Laplace transform of the function we are evaluating, e.g. Jn(x), can be expressed 

in terms of this parameter. The properties of the parameter p can easily be extrapolated. The 

following properties of p are all noteworthy, differentiation: 

 

 𝑝′ = −𝑠𝑝3 (A.21) 

Integration: 

 
∫𝑝𝑛𝑠𝑑𝑠 =

𝑝𝑛−2

2 − 𝑛
, 𝑛 ≠ 2 (A.22) 

 

Inverse Laplace Transform: 

 ℒ−1{𝑝} = 𝐽0(𝑥) 
 

(A.23) 
 

ℒ−1{𝑝2𝑛+1} =
𝑥𝑛𝐽𝑛(𝑥)

(2𝑛 − 1)‼
 

 

Laplace Transforms involving the first-order Bessel function: 

 

 ℒ−1{𝐽1(𝑥)} = 1 − 𝑠𝑝 (A.24) 

More relations involving p: 

 𝑠2 = 𝑝−2 − 1 (A.25) 

 𝑑

𝑑𝑠
[1 − 𝑠𝑝] = −𝑝3, 𝑎𝑛𝑑 

𝑑2

𝑑𝑠2
[1 − 𝑠𝑝] = 3𝑠𝑝5 

 

(A.26) 
 𝑑3

𝑑𝑠3
[1 − 𝑠𝑝] = 15𝑝7 − 12𝑝5, 𝑎𝑛𝑑 

𝑑4

𝑑𝑠4
[1 − 𝑠𝑝] = 60𝑠𝑝7 − 105𝑠𝑝9 

 

We also define the following polynomial in p, which is significant for the first and second-order  

approximations of T(x) in Sections A.4 and A.5, respectively:  

 

 𝑢(𝑝) = 𝑝5 + 𝑖1𝑝
7 + 𝑖2𝑝

9 (A.27) 
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Then it is easy to show that the second derivative of the product su(p) with respect to the 

Laplace variable s is: 

 

 𝑑2

𝑑𝑠2
[𝑠𝑢(𝑝)] = 𝑠[20𝑝7 + 7(6𝑖1 − 5)𝑝9 + 9(8𝑖2 − 7𝑖1)𝑝

11 + 99𝑖2𝑝
13] (A.28) 

 

The fourth derivative of the product su(p) with respect to the Laplace variable s is: 

 

𝑑4

𝑑𝑠4
[𝑠𝑢(𝑝)] = 𝑠[840𝑝9 − 63(60 − 48𝑖1)𝑝

11 + 9 ∙ 11(35 − 112𝑖1 + 80𝑖2)𝑝
13 −     9 ∙ 11

∙ 13(20𝑖2 − 7𝑖1)𝑝
15 + 9 ∙ 11 ∙ 13 ∙ 15𝑖2𝑝

17] 

(A.29) 

 

Both Eqs. (A.28) and (A.29) will become important in Section A.5. 

 

A.4 Solution of the first-order approximation function, T1(x), in Eq. (3.40) 

 

If the function g(s) is taken as the Laplace transform of the function T1(x), i.e.     sgxT 1L , 

then the Laplace transform of Eq. (3.40) yields: 

 

 
−𝑠2

𝑑

𝑑𝑠
𝑔(𝑠) − 𝑠𝑔(𝑠) −

𝑑

𝑑𝑠
𝑔(𝑠) =

𝛿

2𝜆𝑚
4

{ℒ[𝑥4𝐽1(𝑥)] − 2𝜆𝑚
2 ℒ[𝑥2𝐽1(𝑥)]} (A.30) 

 

 In terms of the parameter p, defined in Section A.3, this equation may be written as: 

 

 
𝑝−2

𝑑

𝑑𝑠
𝑔(𝑠) + 𝑠𝑔(𝑠) = −

𝛿

2𝜆𝑚
4 {

𝑑4

𝑑𝑠4
(1 − 𝑠𝑝) − 2𝜆𝑚

2
𝑑2

𝑑𝑠2
(1 − 𝑠𝑝)} (A.31) 

 

The right-hand side of Eq. (A.31) is evaluated from the relations involving p in Section A.3 (A.26). 

Multiplying through by p Eq. (A.31) becomes: 

 𝑑

𝑑𝑠
[𝑝−1𝑔(𝑠)] = −

𝛿

2𝜆𝑚
4

{−60𝑠𝑝8 + 105𝑠𝑝10 + 6𝜆𝑚
2 𝑠𝑝6} (A.32) 

 

Integrating Eq. (A.32) with respect to s, to find the Laplace space solution: 

 

 
𝑔(𝑠) = −

3𝛿

4𝜆𝑚
2 (𝑝5 −

20

3𝜆𝑚
2 𝑝7 +

35

4𝜆𝑚
2 𝑝9) (A.33) 
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For convenience of expressing the solutions of the first and second-order approximations, T1(x) 

and T2(x) respectively, the following constants and function are defined: 

 

 𝑔(𝑠) = 𝑖3𝑢(𝑝) (A.34) 

 
𝑖1 = −

20

3𝜆𝑚
2 , 𝑖2 =

35

4𝜆𝑚
2 , 𝑖3 = −

3𝛿

4𝜆𝑚
2  (A.35) 

 

The polynomial u(p) in Eq. (A.34) was defined in Eq. (A.27). The inverse Laplace transform of the 

function g(s) in Eq. (A.33) is the solution of T1(x): 

 

𝑇1(𝑥) = ℒ−1{𝑔(𝑠)} = 𝑖3ℒ
−1{𝑝5 − 𝑖1𝑝

7 + 𝑖2𝑝
9} = 𝑖3 [

𝑥2𝐽2(𝑥)

3‼
+ 𝑖1

𝑥3𝐽3(𝑥)

5‼
+ 𝑖2

𝑥4𝐽4(𝑥)

7‼
] (A.36) 

 

A.5 Solution of the second-order approximation function, T2(x), in Eq. (3.43) 

 
Similar to the first-order approximation, the Laplace transform of the second-order 

approximation, for     shxT 2L , yields: 

 

 
−𝑠2

𝑑

𝑑𝑠
ℎ(𝑠) − 𝑠ℎ(𝑠) −

𝑑

𝑑𝑠
ℎ(𝑠) =

𝛿

2𝜆𝑚
4

{ℒ[𝑥4𝑇1
′(𝑥)] − 2𝜆𝑚

2 ℒ[𝑥2𝑇1
′(𝑥)]} (A.37) 

 

In terms of the parameter p, defined in Section A.3, this equation may be written as: 

 

 
𝑝−2

𝑑

𝑑𝑠
ℎ(𝑠) + 𝑠ℎ(𝑠) = −

2𝑖3
2

3𝜆𝑚
2 {

𝑑4

𝑑𝑠4
𝑠𝑢 − 2𝜆𝑚

2
𝑑2

𝑑𝑠2
𝑠𝑢} (A.38) 

 

The expressions for the second and fourth derivatives of su(p) are given in Section A.3 (A.28-

A.29). The first order differential equation in h(s) has an integrating factor p-1, so again Eq. (A.38) 

is multiplied by p to obtain:  

 

𝑑

𝑑𝑠
[𝑝−1ℎ(𝑠)] =

2𝑖3
2𝑠

3𝜆𝑚
4

{[840𝑝10 − 63(60 − 48𝑖1)𝑝
12 + 99(35 − 112𝑖1 + 80𝑖2)𝑝

14 + 9 ∙ 11

∙ 13(7𝑖1 − 20𝑖2)𝑝
16 + 9 ∙ 11 ∙ 13 ∙ 15𝑖2𝑝

18]

− 2𝜆𝑚
2 [20𝑝8 + 7(6𝑖1 − 5)𝑝10 + 9(8𝑖2 − 7𝑖1)𝑝

12 − 99𝑖2𝑝
14]} 

(A.39) 
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The integral of Eq. (A.39), after simplifying by grouping terms with like powers of p, is: 

   

𝑝−1ℎ(𝑠) =
2𝑖3

2

3𝜆𝑚
2 {

20

3
𝜆𝑚

2 𝑝6 − [105 −
7

3
𝜆𝑚

2 (6𝑖1 − 5)] 𝑝8

+
9

10
[7(60 − 48𝑖1) + 2𝜆𝑚

2 (8𝑖2 − 7𝑖1)]𝑝
10

−
9 ∙ 11

12
[(35 − 112𝑖1 + 80𝑖2) + 2𝜆𝑚

2 𝑖2]𝑝
12 −

9 ∙ 11 ∙ 13

14
(7𝑖1 − 20𝑖2)𝑝

14

−
9 ∙ 11 ∙ 13 ∙ 15

16
𝑖2𝑝

16} 

(A.40) 

  

Recalling that     shxT 2L  , the second order approximation of Eq. (3.25) is simply the 

inverse Laplace transform of Eq. (A.40):  

 

𝑇2(𝑥) =
3𝛿2

2𝜆𝑚
6 {

20

3
𝜆𝑚

2
𝑥3𝐽3(𝑥)

5‼
− [105 −

7

3
𝜆𝑚

2 (6𝑖1 − 5)]
𝑥4𝐽4(𝑥)

7‼

+
9

10
[7(60 − 48𝑖1) + 2𝜆𝑚

2 (8𝑖2 − 7𝑖1)]
𝑥5𝐽5(𝑥)

9‼

−
9 ∙ 11

12
[(35 − 112𝑖1 + 80𝑖2) + 2𝜆𝑚

2 𝑖2]
𝑥6𝐽6(𝑥)

11‼

−
9 ∙ 11 ∙ 13

14
(7𝑖1 − 20𝑖2)

𝑥7𝐽7(𝑥)

13‼
−

9 ∙ 11 ∙ 13 ∙ 15

16
𝑖2

𝑥8𝐽8(𝑥)

15‼
} 

(A.41) 
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APPENDIX B 

B.1 Architecture for the solution 

 

The solution of the solute concentration profile through the membrane matrix follows the same 

procedure given in Appendix A (A.3 – A.5) for the lumen. However, Eq. (5.17) is the modified 

Bessel equation instead of the Bessel equation described in Appendix A. We now define the 

parameter p as: 

  
𝑝 =

1

√𝑠2 − 1
 (B.1) 

 

With the following inverse Laplace transform properties: 

 

 ℒ−1{𝑝} = 𝐼0(𝑥) 
 

(B.2) 
 

ℒ−1{𝑝2𝑛+1} =
√𝜋

Γ(𝑛 + 1 2⁄ )
(
𝑥

2
)
𝑛

𝐼𝑛(𝑥) 

 

B.2 Biocatalytic membrane concentration profile 

 

The solution of Eq. (5.15) may be approximated by an asymptotic expansion: 

 
 𝐶2 = 𝐶2

(0)
+ 𝜅𝐶2

(1)
+ 𝜅2𝐶2

(2)
+ ⋯𝜅𝑛𝐶𝑛

(𝑛)
 (B.3) 

 

The zero-order approximation 𝐶2
(0)

  was given in Section 5.2.3 as: 

 

 𝐶2
(0)

= 𝐵1𝐼0(𝜙𝑅) + 𝐵2𝐾0(𝜙𝑅) (B.4) 

 

The first-order approximation 𝐶2
(1)

 is a solution of the equation: 

 

 𝑑2𝐶2
(1)

𝑑𝑅2
+

1

𝑅

𝑑𝐶2
(1)

𝑑𝑅
+ 𝜙2𝐶2

(1)
= 2𝑃𝑒𝑢𝛽 [𝑅 (1 −

𝑅2

2
)]

𝑑𝐶2
(0)

𝑑𝑅
 (B.5) 

 

The modified Bessel function Kv(x) tends to zero as x   for all values of v. The contribution of 

this function in Eq. (B.5) is therefore only significant as x  0. In this region the limiting form of 

Kv(x) is (Olver et al., 2010): 



APPENDIX B 104 

 
𝐾𝑣(𝑥)~

1

2
Γ(𝑣) (

1

2
𝑥)

−𝑣

(𝑣 > 0) (B.6) 

    

where (n) is the Gamma function. Making use of the architecture in Section B.1 and following 

the procedure in Appendix A, the first-order approximation is given by:    
 

 

 
𝐶2

(1)
=

𝑃𝑒𝑢𝛽𝜅

𝜙2 {
3√𝜋𝐵1

2
[
(𝜙𝑅)2𝐼2(𝜙𝑅)

22Γ(21
2)

+ 𝛼1

(𝜙𝑅)3𝐼3(𝜙𝑅)

23Γ(31
2)

+ 𝛼2

(𝜙𝑅)4𝐼4(𝜙𝑅)

24Γ(41
2)

]

−
𝐵2

𝜙2
[(𝜙𝑅)2 − 2𝜙2 + 4]} 

(B.7) 

 
where   

 
𝛼1 = −

20

3𝜙2
,     and     𝛼2 = −

35

4𝜙2
 

(B.8) 

 

The effectiveness factor is obtained by substituting the derivatives of Eqs. (B.4) and (B.7) into 

Eq. (5.28), making use of the following property of Bessel functions (Olver et al., 2010): 

 

 
(
1

𝑧

𝑑

𝑑𝑧
)
𝑘

{𝑧𝑣𝐼𝑣(𝑧)} = 𝑧𝑣−𝑘𝐼𝑣−𝑘(𝑧) 
(B.9) 

This gives: 

 
𝜂 =

2𝛾[𝐾1(𝜙) ∙ 𝐼1(𝜙𝑅2) − 𝐼1(𝜙) ∙ 𝐾1(𝜙𝑅2) − 𝜉]

𝜙(𝑅2
2 − 1){[𝐾0(𝜙) ∙ 𝐼1(𝜙𝑅2) + 𝐼0(𝜙) ∙ 𝐾1(𝜙𝑅2)] + 𝜓}

 (B.10) 

 

where  
 

𝜉 = 𝑃𝑒𝑢𝛽𝜅 {
3√𝜋 ∙ 𝐾1(𝜙𝑅2)

8
[
𝐼1(𝜙)

Γ(21
2)

+ 𝛼1

𝜙𝐼2(𝜙)

2Γ(31
2)

+ 𝛼2

𝜙2𝐼3(𝜙)

4Γ(41
2)

] −
2𝐼1(𝜙𝑅2)

𝜙3 } (B.11) 

 

B.3 Asymptotic solution of the Effectiveness factor (𝝓 → ∞)  

 

Eq. (5.17) may be written as:  

 

 𝜖2

𝑅

𝑑

𝑑𝑅
(𝑅

𝑑𝐶2

𝑑𝑅
) − 𝐶2 = 0 (B.12) 

where:  

 
𝜖 =

1

𝜙
 (B.13) 
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The solution of Eq. (5.17) may be approximated by an asymptotic expansion when 𝜖 ≪ 1 as:   

  

 
𝐶2 = ∑ 𝜖𝑛𝑏𝑛

𝑁

𝑛=0

 (B.14) 

 

In order to keep the second-order derivative in the solution of the coefficient b0 in Eq. (B.14), the 

following variable is defined: 

 
𝜔 =

1 − 𝑅

𝜖
 (B.15) 

Eq. (B.12) then becomes: 

 𝑑2𝐶2

𝑑𝜔2
−

𝜖

(1 − 𝜖𝜔)

𝑑𝐶2

𝑑𝜔
− 𝐶2 = 0 (B.16) 

 

The leading order term sub-problem is: 

 

 𝑑2𝑏0

𝑑𝜔2
− 𝑏0 = 0 (B.17) 

   

The corresponding boundary conditions are B.C.4 and B.C.5 of Eq. (5.3):  

 

 𝑑𝑏0

𝑑𝜔
|
𝜔=0

= 𝜖𝑆ℎ [𝐶𝑏 −
𝑏0(0)

𝛾
] (B.18a) 

and  

 𝑑𝑏0

𝑑𝜔
|
𝜔=(1−𝑅2) 𝜖⁄

= 0 (B.18b) 

 

The solution of Eq. (B.17), subject to the boundary conditions of Eq. (B.18) is:  

 

 𝑏0 = Λ1𝑒
𝜔 + Λ2𝑒

−𝜔 (B.19) 

where  

 

Λ1 =
1

𝜙 (1 +
𝑆ℎ
𝜙𝛾)

{
(1 −

𝑆ℎ
𝜙𝛾) 𝑆ℎ𝐶𝑏𝑒

−[𝜙(𝑅2−1)]

𝑠𝑖𝑛ℎ[𝜙(𝑅2 − 1)] +
𝑆ℎ
𝜙𝛾 𝑐𝑜𝑠ℎ[𝜙(𝑅2 − 1)]

+ 𝑆ℎ𝐶𝑏} 
(B.20) 

and 
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Λ2 =
1

𝜙
{

𝑆ℎ𝐶𝑏𝑒
−[𝜙(𝑅2−1)]

𝑠𝑖𝑛ℎ[𝜙(𝑅2 − 1)] +
𝑆ℎ
𝜙𝛾 𝑐𝑜𝑠ℎ[𝜙(𝑅2 − 1)]

} 
(B.21) 

 

The effectiveness factor is obtained by taking the derivative of Eq. (B.19) and substituting into 

Eq. (5.28) to obtain: 

    

 1

𝜂1
~

𝜙(𝑅2
2 − 1)

2
{
𝜙

𝑆ℎ
+

1

𝛾
𝑐𝑜𝑡ℎ[𝜙(𝑅2 − 1)]} (B.22) 
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APPENDIX C 

C.1 Introduction 

 

This section provides a description of the materials and methods that were used to validate the 

theoretical models developed in Chapters 3 - 5. A summary of the procedures that were used to 

prepare the reagents and the fungus will be given. The experimental procedure that were 

followed to cultivate P. chrysosporium for continuous enzyme production, in a single fibre 

capillary membrane bioreactor (MBR), was previously explained by Leukes (1999); Sheldon and 

Small (2005); Ntwampe and Sheldon (2006); Godongwana et al. (2007).  

 

C.2 Description of materials 

 
C.2.1 Microorganism  

 

The WRF, P. chrysosporium strain BKM-F-1767 (ATCC 24725), was used in all the experiments. 

Cultures of the fungus were maintained on supplemented malt agar slants, and were grown on 

petri plates containing growth medium at 37ºC, according to Tien and Kirk (1988). The resulting 

mycelia was homogenised with sterile distilled water, to form a spore-mycelia mixture, which 

was then filtered to obtain a pure spore solution. The pure spore solution was freeze-dried to a 

temperature of -70ºC and stored at 4ºC. For an experimental run the freeze-dried spores were 

homogenised, with sterile distilled water, to make up the required spore solution concentration. 

For each biofilm growth experimental run 3×106 spores were prepared and inoculated onto the 

external skin of the capillary polysulphone membrane using reverse filtration.  

 

C.2.2 Nutrient medium 

 
A nutrient medium was used to provide the fungus with low-molecular mass nutrient sources, 

such as carbon and nitrogen, and was also the standard medium as described by Tien and Kirk 

(1988). The nutrient medium contained (in 1 liter): 100ml Basal medium, 100ml of 10% glucose 

stock solution, 100ml of 0.1M 2,2-dimethylsuccinate, 10ml thiamin, 25ml ammonium tartrate, 

100ml of 0.02M veratryl alcohol, 60ml trace elements, and 505ml of sterile distilled water. The 

nutrient medium was supplied through the membrane lumen to the fungus, immobilized on the 

external skin of the capillary membrane, at a flow rate of 6.20 ml/hr using a Watson Marlow 

505S perilstatic pump (Dune Engineering, RSA). 

 



 

MATERIALS AND METHODS 109 

C.2.3 Polysulphone capillary membrane 

 

The MBR used in this study consisted of a single capillary, made of surface modified 

polysulphone, encased in a glass bioreactor. The capillary membranes were produced and 

supplied by the Institute of Polymer Science at the University of Stellenbosch (RSA). The 

membranes are characterized by an internally skinned and externally un-skinned region of 

microvoids, approximately 0.15mm long and 0.015mm thick, as shown by the scanning electron 

microscope (SEM) image in Figure C.1. These membranes have inner diameters of 

approximately 1.395mm and outer diameters of 1.925mm.  

 

 

Figure C.1: An SEM image of the capillary membrane (Godongwana et al. 2007). 

 

C.2.4 Air pump 

 

A Hailea ACO 9220 diaphragm air pump was used to supply humidified air to the shell of the 

MBR at a throughput 240 L/hr. The air supplied by the pump was filter-sterilised, using a 0.22m 

Cameo filter, before being fed to the humidifier.  

 

C.2.5 Humidifier 

 

A 500ml Schott bottle, half-filled with sterile distilled water, was used as a humidifier. The 

humidifier was connected to the MBR and the diaphragm air pump by silicone tubing (ID = 3cm; 

OD = 5cm). The air from the diaphragm pump was first filter-sterilised and humidified before 

being fed to the shell side of the MBR.  
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C.2.6 Pressure transducers 

 
The MBR was fitted with two Vega (United Kingdom) pressure transducers (model: 

BAR14.X1CA1GV1), which were connected to a computer for online pressure readings. The two 

pressure transducers were connected at the inlet and outlet of the MBR, as previously shown in 

Figure 3.1. LabView® was utilised for acquiring, transforming and displaying the data from the 

pressure transducers. The shell side pressure of the MBR, pS, was at atmospheric pressure 

(101.325 kPa) for both the control and biofilm growth experiments. 

  

C.3 Description of experiments 

 
C.3.1 Control experiments 

 

Before performing the biofilm growth experimental runs, experiments with no biofilm growth were 

undertaken to serve as a control. The control experiments also involved validation of the 

properties of both the nutrient solution and polysulphone capillary membrane.   

 

Table C.1: The dimensions of the single fibre capillary membrane bioreactor. 

Membrane inner radius R1 m 6.98 × 10
-04

 

Membrane outer radius R2 m 9.10 ×10
-04

 

Extra capillary space radius R3 m 5.91 ×10
-03

 

Glass manifold inner radius R4 m 10.91 ×10
-03

 

Effective membrane length L m 0.230 

 

The dimensions of the MBR are indicated in Table C.1. The capillary membrane, described in 

Section C.2.3, was fixed to the centre of the glass reactor using epoxy glue, one side at a time, 

and left over night to dry. Silicone tubing (ID = 3cm; OD = 5cm) was connected and used to feed 

the bioreactor with distilled water. The one end of the bioreactor was clamped, to force the 

distilled water through the membrane (i.e. dead-end filtration). The tubing to and from the 

bioreactor was fitted with a splitter to allow pressure transducers to be connected. Distilled water 

was pumped at varying flowrates from a 500ml bottle to the bioreactor using a Watson Marlow 

505S peristaltic pump. The system was allowed to run for about an hour for all the tubing to be 

filled with water, before the inlet and outlet pressure readings were taken. Pressure readings 

were taken until the system reached steady-state.  
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The inlet and outlet pressure readings were used in the developed hydrodynamic models 

(Chapter 3) to firstly validate the accuracy of the developed model, and secondly, to predict 

various model parameters such as membrane hydraulic permeability; the pressure and velocity 

profiles along the length of the membrane.         

 

C.3.2 Biofilm growth experiments  

 

When carrying out the biofilm growth experiments precautionary sterilisation measures had to be 

taken in all the preparation steps, to prevent contamination. It was important that the membranes 

were handled gently and with the minimum amount of distortion. All the tubing, glassware and 

bioreactors that were used were autoclaved for 20min at 120 ºC. A 4% formaldehyde solution 

was used to chemically sterilize the lumen side of the capillary membranes. The formaldehyde 

solution was run for 6 hours through the system, and thereafter the bioreactor was rinsed with 

autoclaved distilled water for 12hr to remove all the traces of formaldehyde. 

 

  

Figure C.2: A pictorial view of the single-fibre capillary membrane bioreactor 

 

After the sterilization and rinsing process, the membrane was inoculated with 3.0×106 

P. chrysosporium spores. Inoculation was achieved by forcing the spore solution from the shell 
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side of the membrane, through the membrane, to the lumen side (reverse filtration). Immediately 

after the inoculation process, the system was fed with nutrients, supplied at a flow rate of 

6.20 ml/hr on the lumen side of the membrane. When more than one MBR system was running, 

as shown in Figure C.2, individual nutrient feeds were used so as to minimise the risk of 

contamination. The nutrient solution was allowed to fill-up the membrane lumen, before the 

pump was stopped and the system was left for 24hr for the spores to germinate and acclimatise 

to their new environment (referred to as the lag phase).  

 

Following the 24hr lag-period, the nutrient supply was continued, and the system was allowed to 

run with as little disturbance as possible. The mode of operation was dead-end; the nutrient was 

forced to permeate through the walls of the membrane, to the fungus immobilized on the 

external skin of the membrane. Permeate was collected daily using 50ml bottles. The pH and 

redox potential of the permeate solution was monitored daily, using a Hanna HI 8314 pH meter 

in order to check whether the reactors were biochemically similar. A redox potential of above 

200mV was used as an indicator of LiP and MnP activity (Leukes, 1999). An experimental run 

consisted of 10 reactors connected to individual nutrient feeds as shown in Figure C.2. 

 

C.3.3 Scanning electron microscope preparation 

 

After biofilm growth was visible in all the bioreactors, one bioreactor was stopped every 24hr and 

prepared for SEM imaging. Samples of the membrane, with biofilm growth, were cut with a 

sterile blade and placed into a 10% gluteraldehyde solution to preserve the biofilm. The samples 

were then taken through an alcohol dehydration series. This involved placing the samples in 

different concentrations of alcohol for at least 10 minutes each. Once the samples were in 100% 

alcohol they were taken to the Electron Microscopic Unit (EMU) at the University of Cape Town, 

where they were critical point dried and sputter coated with gold/palladium for examination with 

the SEM. The SEM that was used was a fully analytical Leo S440 SEM. The SEM images were 

used to determine the biofilm thicknesses over time. 

 

C.3.4 Hydraulic permeability 

 

Two batches of membranes were used for all the experiments covered in this thesis, and the 

hydraulic permeability of each batch was determined experimentally. The hydraulic 

permeabilities were obtained by running distilled water through the lumen side of the MBR at five 

different flowrates of 1.72, 3.19, 4.86, 6.18 and 13.56 ml/hr; and measuring the pressures at the 
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inlet and outlet of the MBR operated in the dead-end mode at 20C, as explained in 

Section C.2.6. 

 

An investigation of the effect of temperature on the hydraulic permeability of the membranes was 

also performed. The hydraulic permeability of membranes at two differing temperatures of 20C 

and 37C was compared. For the bioreactor operated at 37C the flowrates used were: 6.90, 

13.56, 20.28, 26.94 and 33.66 ml/hr. 

 

C.4 Results  

 

The dry biofilm density from the MBR was determined using a helium pycnometer (Accupyc, 

1330). The calibration of the pycnometer was done by using a steel sphere with a known volume 

before taking measurements on a series of biofilm samples. The results listed in Table C.2 were 

obtained for the average biofilm density and substrate conversion, for an inlet glucose 

concentration of 10 g/dm3 (Ntwampe and Sheldon, 2006). These results were used in validating 

the developed theoretical models presented in Chapter 3 – 5. 

 

Table C.2: Experimental results used to validate the effectiveness factor correlations.
 

Time (hr) Biofilm density (g/dm
3
) Substrate conversion 

72 410 0.149 

120 700 0.149 

168 900 0.237 

216 1000 0.237 

264 1190 0.354 

 

The kinetic constants were listed in Table 5.1 and will not be repeated here.  
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MISCELLANEOUS NOTATION 

 

𝐷

𝐷𝑡
  substantial or total derivative 

𝜕

𝜕𝑥
  partial derivative 

  integral 

n!  factorial 

n!!  double factorial (e.g. 6!! = 642) 

  overall summation 

  overall product 


n  Laplacian operator, where n = 0, 1, 2, 3… 

  approximately equal 

  asymptotically equal 

<, >,   inequality, inclusion 

  unequal 

>>, <<  much larger than, much smaller than 

 

 

 

 

 


