
DEVELOPMENT OF REAL-TIME ORBITAL PROPAGATOR SOFTWARE

FOR A CUBESAT’S ON-BOARD COMPUTER

by

THINAWANGA TSHILANDE

Thesis submitted in partial fulfillment of the requirements for the degree

Master of Technology: Electrical Engineering

in the Faculty of Engineering

at the Cape Peninsula University of Technology

Supervisor: Prof. B.D.L. Opperman

Co-supervisor: Prof. R.R. van Zyl

Bellville

February 2015

CPUT copyright information

The thesis may not be published either in part (in scholarly, scientific or technical jour-

nals), or as a whole (as a monograph), unless permission has been obtained from the

University.

DECLARATION

I, Thinawanga Tshilande, declare that the contents of this thesis represent my own unaided

work, and that the thesis has not previously been submitted for academic examination

towards any qualification. Furthermore, it represents my own opinions and not necessarily

those of the Cape Peninsula University of Technology.

Signed Date

i

ABSTRACT

A precise orbit propagator was developed for implementing on a CubeSat’s on-board com-

puter for real-time orbital position and velocity determination and prediction. Knowledge

of the accurate orbital position and velocity of a Low Earth Orbit (LEO) Cubesat is re-

quired for various applications such as antenna and imager pointing. Satellite motion is

governed by a number of forces other than Earth’s gravity alone. The inclusion of per-

turbation forces such as Earth’s aspheric gravity, third body attraction (e.g. Moon and

Sun), atmospheric drag and solar radiation pressure, is subsequently required to improve

the accuracy of an orbit propagator.

Precise orbit propagation is achieved by numerically integrating a set of coupled second

order differential equations derived from satellite’s perturbed equations of motion. For

the purpose of this study two numerical integrators were selected: RK4 - Fourth order

Runge Kutta method and RKF78 - results from embedding RK7 into RK8. The former is

a single-step integrator while the latter is a multi-step integrator. These integrators were

selected for their stability, high accuracy and computational efficiency.

An orbit propagation software tool is presented in this study. Considering the processing

power of Central Processing Unit (CPU) of CubeSat’s on-board computer and a trade-off

between precision and computational cost, the 10 × 10 and 20×20 gravity field models,

the Exponential atmospheric model and Jacchia 70 static atmospheric model, were im-

plemented. A 60× 60 gravity field model is also investigated for reference. For validation

purpose the developed software tool results were compared with results from Systems Tool

Kit (STK) and Satellite Laser Ranging (SLR) using SUNSAT satellite reference orbit.

Keywords: Orbit, Propagation, RKF78, RK4, Software, Perturbations

ACKNOWLEDGEMENTS

I wish to thank:

• Prof. Ben Opperman for his guidance, support, and for believing in me.

• Prof. Robert van Zyl for giving me an opportunity to be part of the F’SATI group.

• The South African National Space Agency for making me part of their amazing

team and allowing me to use their facilities to pursue my research.

• Singo Alpheous for his fatherly support throughout my academic life. May your

soul rest in eternal peace.

• Nigussie Giday, Thabang Matladi, Malan Ahoua, Matamba Tshimangadzo, Lifa

Mbuli, Vumile Tyalimpi, Amin Mahmud, Nicholas Ssessanga and Electdom Siziba

for their inputs, and wonderful support.

• Dr Fhumulani Nemulodi for overseeing the final execution of this document.

• Singo Cynthia, Tshilande Rendani and Christina, Marubini Florah and Divhani for

their support and tender parental care.

• Everyone who made a contribution to my work, be it guidance, academic or financial

support.

The financial assistance of the National Research Foundation towards this research is ac-

knowledged. Opinions expressed in this thesis and the conclusions arrived at, are those of

the author, and are not necessarily to be attributed to the National Research Foundation.

iii

Dedicated

to

Mampofu Catherine Singo

and
Tshinakaho Betty Tshilande

iv

Contents

Declaration i

Abstract ii

Acknowledgements iii

List of Figures viii

List of Tables x

Glossary xi

Physical Constants xiii

1 Introduction 1

1.1 Problem Statement . 1

1.2 Overview . 2

1.3 Research Objectives . 3

1.4 Research Questions . 3

1.5 Research Background . 3

1.5.1 Analytic Propagators . 4

1.5.1.1 PKEPLER . 4

1.5.1.2 Kozai’s Method . 4

1.5.1.3 Brouwer’s Method . 4

1.5.2 Semi-Analytical Propagators . 5

1.5.3 Numerical Propagators . 5

1.6 Methodology . 5

1.7 Research Delineation . 6

1.8 Summary of Chapters . 7

2 Literature Review 8

2.1 Introduction . 8

v

Contents vi

2.2 Satellites History . 8

2.2.1 South Africa’s Contribution to Satellite Technology 10

2.3 Historical Background of Equations of Motion 11

2.4 Keplerian Orbits . 13

2.4.1 General and Restricted Two-Body Problem 13

2.4.2 Classical Orbital Elements . 15

2.4.3 Orbital Parameters of a Satellite 15

2.5 The Trajectory Equation . 17

2.6 Analytical Solution to the Restricted Two-Body Problem 18

3 Perturbation Equations 21

3.1 Introduction . 21

3.2 Equation of Motion with Perturbations . 21

3.3 Perturbation Methods . 22

3.3.1 General Perturbation Techniques 22

3.3.1.1 Variation of Parameters 22

3.3.2 Special Perturbation Techniques . 23

3.3.2.1 Cowell’s Method . 23

3.3.2.2 Encke’s Method . 23

3.4 Perturbations due to Earth’s Oblateness 24

3.4.1 Gravity Field Models . 27

3.5 Atmospheric Drag . 28

3.5.1 Cross-Sectional Area . 31

3.6 Third-Body Perturbations . 31

3.7 Solar Radiation Pressure . 32

3.7.1 Shadow Analysis . 33

3.8 Precision Modelling . 34

3.9 Summary . 35

4 Time, Coordinate Systems and Transformations 36

4.1 Introduction . 36

4.2 Time Systems . 36

4.3 Coordinate systems . 38

4.3.1 Earth Centred Inertial (ECI) System 38

4.3.2 Earth Centred Earth Fixed (ECEF) System 39

4.3.3 Geographic Coordinate System . 40

4.3.4 Perifocal Coordinate System(PQW) 40

4.4 Coordinate Transformations . 41

4.4.1 Transformation between ECI and ECEF 41

4.4.2 Transformation from Classical Orbital Elements to ECI 42

4.5 Summary . 43

5 OBC Emulator and Software Considerations 44

5.1 Introduction . 44

Contents vii

5.2 On-Board Computer (OBC) . 44

5.2.1 Typical OBCs and their Processing Speeds 46

5.3 Programming Language . 47

5.4 Algorithm Description . 48

5.4.1 Orbit Dynamics Overview . 48

5.4.2 Initial Conditions . 48

5.4.3 Data Files . 49

5.4.4 Numerical Integration . 50

5.4.4.1 Runge-Kutta Methods . 50

5.4.4.2 Single-Step RK Methods 50

5.4.4.3 Multi-Step RK Methods 51

5.5 Software Structure . 53

5.6 Summary . 54

6 Results : Software Validation 57

6.1 Introduction . 57

6.2 Force Models Versus Processing Time . 57

6.3 Validation of PRECurSOr . 59

6.3.1 Two-body and Perturbation Forces 59

6.3.2 SUNSAT Orbit . 61

6.4 Analysis of Integrators . 62

6.5 Discussion . 63

7 Conclusions and Future Work 68

7.1 Conclusions . 68

7.2 Future Work . 69

A Vectors 70

B Mechanical Energy and Angular Momentum 73

C The Trajectory Equation 75

D Eccentric and True Anomaly Transformation 77

E Lunar and Solar Position 80

F C++ Source Code - PRECurSOr 84

Bibliography 109

List of Figures

2.1 South Africa’s first CubeSat, TshepisoSAT, originally known as
ZACUBE-1 . 11

2.2 Relative motion of two bodies (Bate et al., 1971 :13) 13

2.3 Classical Orbital elements (King-Hele, 1987) 15

2.4 Geometry of an ellipse (Opperman, 2003 :2-4) 16

2.5 Conic sections with equal semi-latus (p) rectum and different
eccentricities (e) (Montenbruck and Gill, 2001 :19) 18

2.6 Geometrical Relationship of ν and E (Montenbruck and Gill, 2001) 19

3.1 Classification of different types of spherical harmonics (Chobotov,
2002 :207) . 26

3.2 1996 Earth Gravity Model 15 minute geoid (Credit: Daniel Hanish) 28

3.3 Possible cross-sectional areas of a cubic satellite (Opperman, 2003) 31

4.1 Sidereal time (Vallado, 1997; Opperman, 2003 : 4-5) 38

4.2 Earth-centred inertial system (Chobotov, 2002) 39

4.3 Geographic coordinate system (Chobotov, 2002) 40

4.4 Perifocal coordinate system (Escobal, 1985 :77) 41

5.1 Model of the OBC subsystem (Catsoulis, 2005; Lumbwe, 2013) . 45

5.2 The Raspberry Pi computer used as OBC emulator in this study 47

5.3 PRECurSOr programme structure . 53

6.1 PRECurSOr processing time versus accuracy. 58

6.2 Absolute errors in position and velocity of two-body propagators
compared to SUNSAT SLR-derived data 59

6.3 Absolute errors in position and velocity of PRECurSOr and STK’s
HPOP with J2 perturbation and 20× 20 gravity field model 60

6.4 Absolute errors in position and velocity by PRECurSOr and STK
with the presence of drag . 60

6.5 SUNSAT ground track comparison of the measured SLR orbit
against predicted STK and PRECurSOr orbits 61

6.6 100 minutes measured and predicted SUNSAT orbit with the
position of the satellite after 24 hours as determined by SLR and
PRECurSOr . 61

viii

List of Figures ix

6.7 Absolute error in position and velocity of PRECurSOr compared
to SUNSAT SLR-derived orbit, using step sizes of 20, 30 and 60
seconds . 62

6.8 Step-size (h) changes in RKF78 with the error tolerance of 10−8,
over a one-day propagation period . 63

6.9 Step-size (h) changes in RKF78 with the error tolerance of 10−12,
over a one-day propagation period . 63

D.1 Geometry of Kepler’s Equation(Opperman (2003),Pp B-1) 77

List of Tables

2.1 Orbital parameters of a satellite in a conic section. 16

2.2 Classification of conic sections in terms of eccentricity. 18

5.1 Raspberry Pi computer specifications 47

5.2 Initial conditions of SUNSAT corresponding to the epoch of 06
February 2000 at 00:00:00 UTC . 49

5.3 PRECurSOr data files . 49

5.4 Functions used in PRECurSOr . 55

5.5 Parameters for the Embedded Runge-Kutta 7(8) Method. 56

6.1 One-day PRECurSOr force models versus processing time (tp)
evaluation using different integrators and SLR-derived orbit as
reference . 58

6.2 Position and velocity absolute errors of PRECurSOr (RK4, h =
60 sec) and STK (RK4, h = 60 sec) 65

6.3 Position and velocity absolute errors of PRECurSOr (RK4 (h =
30 sec) with a 10× 10 gravity field model and drag model) 66

6.4 Position and velocity absolute errors of PRECurSOr (RKF78,
with a 10× 10 gravity field model and drag model) 67

x

Glossary

Terms/Acronyms/ Definition/Explanation

Abbreviations

ADCS Attitude and Determination Control System

ASCII American Standard Code for Information Interchange

AU Astronomical Unit

C&DH Command and Data Handling

COSPAR COmmittee on SPAce Research

COTS Commercial-Off-The-Shelf

CPU Central Proccessing Unit

CPUT Cape Peninsula University of Technology

CubeSat Cube Satellite

DRAO Dominion Radio Astrophysical Observatory

ECEF Earth Centred Earth Fixed

ECI Earth Centred Inertial

EGM96 1996 Earth Gravity Model

FSATI French South African Institute of Technology

GEO Geosynchronous Earth Orbit

GPS Global Positioning System

GAST Greenwich Apparent Sidereal Time

GCC GNU Compiler Collection

GMST Greenwich Mean Sidereal Time

HPOP High Presicion Orbit Propagator

IC Integrated Circuit

xi

Glossary xii

IDE Integrated Development Environment

INPE Instituto Nacional de Pesquisas Espaciais

ISGI International Service of Geomagnetic Indices

JD Julian Date

LEO Low Earth Orbit

MEO Medium Earth Orbit

PCB Printed Circuit Board

PRECurSOr PRECise Satellite Orbit Propagator

RK Runge-Kutta

RKF Runge-Kutta-Fehlberg

SANSA South African National Space Agency

SAST South African Standard Time

SLR Satellite Laser Ranging

SPIDR Space Physics Interactive Data Resources

STK Systems Tool Kit

SUNSAT Stellenbosch UNiversity SATellite

TAI International Atomic Time

TT&C Telemetry Tracking and Command

US United States

UT Universal Time

Physical Constants

Earth’s gravity potential second degree term J2 = 0.0010826269

Eccentricity of Earth orbit e = 0.081819221456

Gravitational constant G = 6.672× 10−11m3kg−1s−2

Gravitational parameter (Earth) µ = 3.986 004 415× 1014 m3s−2

Gravitational parameter (Sun) µ� = 1.327 124× 1014 m3s−2

Gravitational parameter (Moon) µ$ = 4.902 799× 106 m3s−2

Radius of Earth R⊕ = 6378136.3 m

Rotation rate of Earth ω⊕ = 4.178 074 216× 10−3 ◦/s

Solar pressure PSR = 4.51× 10−6kg m−1s−2

xiii

Chapter 1

Introduction

1.1 Problem Statement

Satellites move at very high speeds when they orbit the Earth. They experience different

perturbation forces along their path, some of which pose complex challenges to the devel-

opment of a precise propagator. Commercial-off-the-shelf (COTS) software packages are

capable of delivering precise orbit propagation results, but come at a price. The source

code for software packages are however, not available and they cannot be customised.

This necessitates the development of in-house software for cases where an orbit propaga-

tor for a CubeSat on-board computer (OBC) is needed. The OBC carries out different

tasks depending on the mission objectives. The OBC Central Processing Unit (CPU)

processing and memory resources must subsequently be utilised wisely. Thus, a fairly

precise propagator was developed which uses less complex models for the sake of OBC

CPU resources whilst maintaining sufficient accuracy for operational applications.

This study focuses on the development of orbit propagator software, using the C++

programming language, for the OBC of a Low Earth Orbit (LEO) CubeSat. The orbit

propagator’s accuracy over time is tested, and a trade-off between the computational cost

and the complexity of the model is investigated.

1

Chapter 1. Introduction 2

1.2 Overview

Astrodynamics, the science that studies the motion of man-made objects in space, devel-

oped about 60 years ago. It was preceded by and developed on the basis of Astronomy,

which dates back to the time when the first human gazed at the sky. As human curiosity

and the urge to boldly go where no one had gone before grew, humans saw the need to

invent instruments and objects that would help them understand and study the heavens

in detail. This led to the invention of telescopes, sounding balloons, spacecraft and satel-

lites. Scientists began to appreciate the potential of space and are eager to explore it to

uncover its mysteries. The first artificial satellite was launched successfully on 4 October

1957 (Sputnik 1).

It is important that the real-time and future positions of satellites be predicted and

monitored precisely, such as is required for remote sensing satellites. Since it is not

always feasible to precisely track a satellite from the ground, precise orbit determination

software, which predict the position of a satellite within a few centimetres of errors, have

been developed. In this study we present an orbital propagator for a LEO (Low Earth

Orbit) CubeSat satellite which was developed using numerical integration. This was done

by modelling all the major forces that affect the propagation of a satellite.

As will be shown, the propagator yields sufficiently good results up to a certain epoch.

With the help of an on-board GPS (Global Positioning System) receiver, the initial condi-

tions of this propagator can be re-initialised when the errors observed in the state vector

become unacceptably large compared to the real-time state vector. The accuracy of the

PRECurSOr (Precise Satellite Orbit propagator), the software developed in this study,

was tested against precise satellite laser ranging measurements (SLR) of a micro satellite

and compared with the High-Precision Orbit Propagator (HPOP), a COTS package of

the Systems Tool Kit (STK).

Chapter 1. Introduction 3

1.3 Research Objectives

The general objective of this work was to develop software to predict the orbital propaga-

tion of a LEO CubeSat using the C++ programming language (procedural programming

only) and which can be used on a CubeSat OBC. The software runs on a real-time Linux

operating system known as PiBang Linux.

The orbit propagator is able to determine the real-time immediate and future state vector

of a LEO CubeSat.

1.4 Research Questions

The research addresses the following questions:

• How far in advance and with what accuracy does this software tool predict the

satellite’s state vector?

• Which factors affect the accuracy of the software tool?

• What is the trade-off between the complexity of the model and its accuracy?

1.5 Research Background

An orbit propagator can successfully predict a satellite’s position with great accuracy.

Some of the precision propagators that presently exist can predict a satellite’s position

within a few centimetres of error. Three categories of propagators exist. These are listed

below with examples of software for each category:

• Analytic Propagators

PPT2 (Position and Partials as functions of Time) (Brouwer, 1959) and

SGP (Simplified General Perturbations) (Kozai, 1962)

Chapter 1. Introduction 4

• Semi-Analytic Propagators

SALT (Semi-Analytic Liu Theory) (Liu, 1974) and

DSST (Draper Semi-Analytical Satellite Theory) (San-Juan et al., 2011)

• Numerical Propagators

Oblitz (Opperman, 2003) and

Picard-Chebyshev (Fukushima, 1997)

1.5.1 Analytic Propagators

Analytic propagators approximate the motion of a satellite by solving equations of motion

analytically. The future state vector or ephemeris depends on the forces that are modelled.

Vallado (1997) discussed three types of simplified analytical techniques:

1.5.1.1 PKEPLER

This technique determines the classical orbital elements, updates the elements during the

desired time and then reform the future state vector. It also takes into account the effects

of perturbations while updating the orbital elements.

1.5.1.2 Kozai’s Method

This technique uses Langrange’s Variations of Parameters(VOP) equations. It was the

first analytical technique to include the J2 to J5 Earth’s aspherical effects, but neglected

atmospheric drag effects which in turn, limited its accuracy.

1.5.1.3 Brouwer’s Method

When it was first proposed in 1959, this technique was not that accurate as the drag

effects were not included and it had limited forces. Since then the technique has been

improved and is now perceived as a superb analytical theory.

Chapter 1. Introduction 5

1.5.2 Semi-Analytical Propagators

The semi-analytical technique produces propagators with the best speed and accuracy.

Instead of making many approximations like the analytical theories do, it incorporates

numerical techniques. The technique is very accurate for long-term studies.

1.5.3 Numerical Propagators

Numerical propagators numerically integrate the equations of motion taking into account

all the necessary perturbation effects. Numerical techniques like Runge-Kutta (RK) meth-

ods are typically employed. The speed of a propagator is sacrificed for the sake of accuracy.

1.6 Methodology

The laws of Kepler and Newton form the basis of this research. By using relevant RK

methods to numerically integrate a system of coupled second-order differential equations

describing the perturbed acceleration of a satellite in an inertial frame, the orbit propa-

gator software for the OBC of a LEO CubeSat was developed. The C++ programming

language was used. A special perturbation technique known as Cowell’s method, was

used to numerically integrate two first-order differential equations which define a satel-

lite’s perturbed motion. The Classical Runge-Kutta (RK4) and Runge-Kutta-Fehlberg7(8)

(RKF78) numerical integration techniques were selected for numerical integration. The

RKF78 method combines the seventh-order Runge-Kutta (RK7) and eighth-order Runge-

Kutta (RK8) methods taking the solution of RK8 to update the state vector. The per-

turbed satellite motion can be described by coupled second-order non-linear differential

equations as:

ṙ = v

v̇ = − µ
r3

r + ap (1.1)

Chapter 1. Introduction 6

where ap
1 represents the sum of all the perturbation accelerations. The velocity and

positon vectors are represented by the symbols v and r respectively. The Earth’s gravi-

tational parameter is represented by µ. The forces which define acceleration of a satellite

in a perturbed orbit are as follows:

• Aspherical Earth : This perturbation effect results from the Earth not being a per-

fect spherical body. The gravitational force subsequently varies with geographic

location. This effect is modelled with spherical harmonics and gravitational con-

stants.

• Atmospheric Drag : This perturbation effect is caused by the drag that the atmo-

sphere exerts on a satellite and this force is opposite to the direction of satellite

movement. To accurately model this force, solar conditions and the geomagnetic

state need to be known in order to determine the atmospheric density.

• Third-Body Perturbations : This is caused by bodies other than the Earth exerting

gravitational attraction on the satellite. The bodies can be the Sun, planets or other

spacecraft. For a LEO satellite, the Earth dominates other bodies and their effects

are not significant for short orbit propagation periods.

• Solar Radiation Pressure : Solar radiation exerts pressure on the satellite. This

pressure causes a perturbation in the motion of a satellite. Similar to drag, solar

cycles and variations must be well understood to accurately model this effect.

1.7 Research Delineation

Very small perturbation forces that affect a satellite’s orbit, such as thrust and tides, are

not covered by this study. The research also does not cover hyperbolic and parabolic

types of satellite trajectories. Medium Earth Orbit (MEO) and Geostationary Earth

Orbit (GEO) satellites are also not considered.

1See Appendix A for vectors and their representations

Chapter 1. Introduction 7

1.8 Summary of Chapters

In Chapter 2 the literature that was reviewed for this dissertation are discussed. The

third chapter discusses orbit perturbations and their equations of motion. Time, coor-

dinate systems and transformation essential for the development of orbit propagator are

covered in the fourth chapter. The fifth chapter discusses considerations taken into ac-

count to develop the software and gives relevant background information on OBC. The

sixth chapter compares the software’s performance with other propagators. Finally, the

seventh chapter offers conclusions.

Chapter 2

Literature Review

2.1 Introduction

Johannes Kepler, with the help of Tycho Brahe’s data, laid the basic foundation of astro-

dynamics by his laws of planetary elliptical orbit motion around the Sun. Isaac Newton

formalized the laws of astrodynamics. This chapter covers the dawn of the space era, as

well as basic laws and equations that govern the motion of bodies in space.

2.2 Satellites History

The word ’satellite’ sounds familiar to most people today. It is a subject of interest not

only to engineers and scientists, but to everyone because of their application in vari-

ous areas of our everyday life. Satellite Applications are numerous and include television

broadcasting, intercontinental communication services, remote sensing, atmospheric mon-

itoring, space exploration, navigation, spying, etc. Arthur C. Clarke first proposed the

concept of geostationary communication satellites in his paper which was published in the

Wireless World magazine in October 1945 (Clarke, 1945).

Several experimental sounding rockets were launched in 1945-1955 followed by United

States (US) and Soviet Union plans to launch artificial satellites. The Soviet Union

8

Chapter 2. Literature Review 9

initiated the space age and the space race with the US by successfully launching their

first artificial satellite, Sputnik-1, on 4 October 1957. Sputnik-2 and Sputnik-3 followed

shortly thereafter.

The US then launched Explorer-1 successfully on 31 January 1958. Explorer-1 was the

first spacecraft to detect the Van Allen radiation belts (Maini and Agrawal, 2007). Fol-

lowing launch failures of Explorer-1 and Vanguard-1, the US launched Vanguard-1(TV-4)

successfully on 17 March 1958. It carried out geodetic studies and revealed that the Earth

was pear-shaped (Maini and Agrawal, 2007).

As the “Space Race” escalated, the two countries extended the use of satellites to areas

such as communication, weather forecasting, navigation, spying, etc. The first weather

satellite, TIROS-1, was launched on 1 April 1960. TIROS-1 was the first satellite to pro-

vide pictures of the Earth. The first experimental infrared surveillance satellite MIDAS-2,

the first experimental passive communications satellite Echo-1 and the active repeater

communications satellite Courier-1B were also launched in 1960. The first true commu-

nications satellite, which also happened to be commercially funded, was launched on 10

July 1962 and was dubbed Teslar-1. This was followed a year later by Teslar-2 on 7 May

1963.

The idea of Clarke (1945) became a reality when SYNCOM-2 (Synchronous Communi-

cation Satellite) became the first operational communications satellite in geosynchronous

orbit. It was followed by launches SYNCOM-3 and another series of communications

satellites known as INTELSAT (International Telecommunications Satellite Organiza-

tion). The Soviets replied to the space race by launching their Molniya series of com-

munications satellites, beginning April 1965. A Molniya orbit is a highly elliptical orbit

with an inclination of 63.4◦. This inclination minimizes the advance of the argument of

perigee due to the even zonal harmonic coefficients of the Earth’s gravity field, so that

the argument of perigee remains at -90◦.

Other countries including European countries, Indonesia, India, China, Saudi Arabia,

Brazil, Mexico and Japan followed with the launch of domestic communications satel-

lites. Satellites for other applications were also being developed and launched during the

Chapter 2. Literature Review 10

1960s. This includes satellites for meteorological studies, navigation, surveillance and

Earth observation.

CubeSats were introduced in 1999 as a university engineering development platform. The

idea was proposed by Prof. Jordi Puig-Suari of CalPoly and Bob Twiggs of Stanford

University. These CubeSats are about 10 cm×10 cm×10 cm in size, known as 1-Unit

(1U) CubeSats. A 1U CubeSat can be combined to form a 2U and 3U CubeSat (Auret,

2012). The first CubeSats were launched in June 2003 on a Russian commercial spacecraft,

Eurockot (Panajaya et al., 2003). Since the introduction of the CubeSat concept, a large

number of CubeSats, which have performed everything from remote sensing to studies of

the upper atmosphere, have been launched from the US, Asia, Europe and Latin America.

2.2.1 South Africa’s Contribution to Satellite Technology

South Africa is also a global contributor in satellite technology. On 23 February 1999,

SUNSAT (Stellenbosch University Satellite) was launched by NASA (National Aeronau-

tics and Space Administration) from Vandenberg Airforce Base on a Delta II rocket. This

first remote sensing and packet communications microsatellite was developed by gradu-

ate students at Stellenbosch University1 in South Africa (Mostert and Koekemoer, 1997).

SumbandilaSat was the next satellite to be developed in South Africa. This satellite was

manufactured at SunSpace & Information Systems, a company of the Stellenbosch Uni-

versity(Steyn, 2008). SumbandilaSat was launched on 17 September 2009 on a Soyuz-2

launch vehicle from the Baikonur Cosmodrome.

South Africa and Africa’s first CubeSat, TshepisoSAT (initially called ZACUBE-1), shown

in Figure 2.1, was launched from the Yasny launch base in Russia on 21 November 2013 at

09:10:11 SAST (South African Standard Time). TshepisoSAT was developed by graduate

students of Cape Peninsula University of Technology (CPUT)2 in Cape Town, South

Africa. TshepisoSAT is a collaboration between the French South African Institute of

Technology (F’SATI), CPUT’s CubeSat Programme and the Space Science Directorate

1See www.sun.ac.za
2See www.cput.ac.za

www.sun.ac.za
www.cput.ac.za

Chapter 2. Literature Review 11

of the South African National Space Agency (SANSA)3. The development of ZACUBE-2

is already underway. This will be a 3U CubeSat, developed by CPUT students.

Figure 2.1: South Africa’s first CubeSat, TshepisoSAT, originally known as
ZACUBE-1

2.3 Historical Background of Equations of Motion

Man’s interest in space began with understanding motions of celestial objects which later

led to time measurement and navigation. The earliest evidence of man’s interest in the

universe dates back to 1650 B.C. in Babylon and Egypt (Chobotov, 2002).

Aristotle first postulated the geocentric model of the universe in 350 B.C. He also postu-

lated that all heavenly bodies moved in circular motion (Chaisson and McMillan, 2008).

Although Aristarchus postulated the heliocentric model in 300 B.C., in which the Sun and

stars are fixed and the Earth orbits the Sun, it was the Aristotelian theory of a geocentric

universe that was to dominate for the next 2000 years (Opperman, 2003). Hipparchus

introduced the epicyclical motion of the planets in 130 B.C., to explain the retrogade mo-

tion of the planets beyond the Earth’s orbit, which was further elaborated on by Ptolemy

in A.D. 150 (Chobotov, 2002).

3See www.sansa.org.za

www.sansa.org.za

Chapter 2. Literature Review 12

The Aristotelian theory of a geocentric universe dominated until the time of Nicholas

Copernicus (1467-1543), who postulated the Sun at the center of the universe (Opperman,

2003). Planets were seen as moving in epicycles around the Sun, with the Moon orbiting

the Earth. He hypothesized that the stars lay on a sphere of very large radius (Chobotov,

2002). His theory was not well received in his day. Johannes Kepler (1571 - 1630) was one

of the few people who read Copernicus’ book, On the Revolutions of the Heavenly Spheres

(1543) (Opperman, 2003). In 1609, Kepler postulated his first 2 laws and the third one

followed in 1619:

First Law: The orbit of each planet is an ellipse, with the sun at focus.

Second Law: The line joining the planet to the sun sweeps out equal areas in equal times.

Third Law: The square of the period of a planet is proportional to the cube of its mean

distance from the sun.

Galileo Galilei (1546 - 1642) observed the four moons of Jupiter which led to acceptance

of the Copernican heliocentric (Chaisson and McMillan, 2008). Kepler’s laws were only

a description, not an explanation of planetary motion. Isaac Newton (1642 - 1727) for-

mulated the law of gravitation and the laws of motion, which form the foundation for

modern space flight. He also developed the fundamental concepts of differential calculus

in 1666. Newton’s work was published in 1687 as the Mathematical Principles of Natural

Philosophy, or, more simply, Principia, undoubtedly one of the supreme achievements

of human kind (Bate et al., 1971). The three laws of motion and the law of gravitation

state:

First Law: Every body continues in its state of rest or of uniform motion in a straight

line unless it is compelled to change that state by forces impressed upon it.

Second Law: The rate of change of momentum is proportional to the force impressed

and is in the same direction as that force.

This can be expressed mathematically (Bate et al., 1971 :4) as follows:

∑
F = mr̈

Third Law: To every action there is always opposed an equal reaction.

Chapter 2. Literature Review 13

Law of Universal Gravitation: Two bodies attract one another with a force propor-

tional to the product of their masses and inversely propotional to the square of the distance

between them.

This can be expressed mathematically (Bate et al., 1971 :4) as follows:

Fg = −GMm

r2

r

r

After Newton, Joseph Louis Lagrange (1736- 1813) showed the first solutions for the three-

body problem in Essai sur le probleme des trois corps in 1772 (Vallado, 1997). Numerous

other scientists contributed to creating the required mathematical tools needed to advance

astrodynamic thought and study.

2.4 Keplerian Orbits

2.4.1 General and Restricted Two-Body Problem

Consider a system of two bodies of masses M and m, with rM and rm as their position

vectors respectively in an initial frame as shown in Figure 2.2. For this case, M is the

Figure 2.2: Relative motion of two bodies (Bate et al., 1971 :13)

mass of the Earth and m is the mass of a satellite. From Newton’s second law and law of

Chapter 2. Literature Review 14

gravitation it can be shown that

r̈ = −G(M +m)

r3
r (2.1)

where

r̈ = the acceleration of body m relative to M ,

G = gravitational constant, 6.672× 10−11m3kg−1s−2, and

r = position of body m relative to M .

By assuming the satellite’s mass is significantly smaller than the mass of the Earth, the

satellite’s mass may be ignored andGM be replaced with µ (= 3.986 004 415×1014 m3s−2),

which is known as the Earth’s gravitational parameter. Equation (2.1) then becomes

r̈ +
µ

r3
r = 0 (2.2)

which is known as the restricted two-body equation of motion and it represents the motion

of a satellite (mass m) in a gravitational field of the Earth (mass M). The results of this

equation are valid subject to the following assumptions:

• The principal mass M is assumed to be fixed in inertial space, which implies that

m does not affect the motion of M (M � m).

• The coordinate system chosen for a particular problem is inertial.

• The bodies of the satellite and the Earth are spherically symmetrical, with uniform

density.

• Gravity is the only force acting on the system along the line joining the centres of

two bodies.

Chapter 2. Literature Review 15

Figure 2.3: Classical Orbital elements (King-Hele, 1987)

2.4.2 Classical Orbital Elements

Five parameters are used to describe the shape, size and orientation of an elliptic orbit.

The sixth orbital element defines the angular position of a satellite in its orbit. The semi-

major axis (a) and eccentricity (e) are used to define the size and shape of the orbit. The

true anomaly (ν) describes the location of a satellite in its orbit by the angular distance

it has travelled.

The two angles, namely the inclination (i) and the right ascension of the ascending node

Ω (RAAN) define the orbital plane’s orientation in space. The last element is called the

argument of perigee (ω), the angle between the RAAN and perigee. These orbital elements

are shown geometrically in Figure 2.3 below.

2.4.3 Orbital Parameters of a Satellite

With the help of Figure 2.4, satellite parameters in orbital plane together with their

equations are listed in Table 2.1.

Chapter 2. Literature Review 16

Figure 2.4: Geometry of an ellipse (Opperman, 2003 :2-4)

Table 2.1: Orbital parameters of a satellite in a conic section.

Parameter Description Equation

a Semi-major axis a = ra+rp
2

b Semi-minor axis b =
√
a2(1− e2)

e Eccentricity e = ra−rp
ra+rp

ra Apoapsis radius ra = a(1 + e)

rp Periapsis radius rp = a(1− e)

p Semi-latus rectum p = a(1− e2)

p = ra(1− e)

p = rp(1 + e)

γ Flight path angle γ = π/2− β

h Angular momentum h = rν cos γ

Continued on next page

Chapter 2. Literature Review 17

Table 2.1 – continued from previous page

Parameter Description Equation

vr Radial velocity component vr =
√

µ
p
e sin ν

vn Normal velocity component vn =
√

µ
p
(1 + e cos ν)

v Velocity at any position

- Ellipse v =
√
µ
(

2
r
− 1

a

)
- Circular orbit v =

√
µ/r

- Parabola v =
√

2vc

n Mean motion n =
√

µ
a3

P Orbital Period P = 2π/n

2.5 The Trajectory Equation

The solution of the equation of motion (Equation 2.2) which is called the trajectory

equation4 is represented by

r =
h2/µ

1 + (B/µ) cos ν
(2.3)

where h is the specific angular momentum5 and B is the magnitude of the vector inte-

gration constant. This equation tells us the size and shape of the orbit and is expressed

in this context in polar coordinates. The general equation which determines the kind of

curve Equation (2.3) represents, is written as:

r =
p

1 + e cos ν
(2.4)

4See Appendix C, for the derivation
5See Appendix B for equation

Chapter 2. Literature Review 18

This is called the polar equation of a conic section. The origin of a conic section (circle,

ellipse, hyperbola or parabola) is located at a focus and p is the semi-latus rectum, simply

called parameter, e is the eccentricity which determines the type of the conic section and

ν is the polar angle as shown in Figure 2.5. The classification of conic sections in terms

of their eccentricities is illustrated in Table 2.2.

Table 2.2: Classification of conic sections in terms of eccentricity.
Eccentricity Orbit
e = 0 Circle
0 < e < 1 Ellipse
e = 1 Parabola
e > 1 Hyperbola

Figure 2.5: Conic sections with equal semi-latus (p) rectum and different eccen-
tricities (e) (Montenbruck and Gill, 2001 :19)

2.6 Analytical Solution to the Restricted Two-Body

Problem

The geometrical form of satellite orbits is summarised by Equation (2.4). The problem of

determining the future (or past) state of a satellite in orbit at a specific time t, given the

state at some initial time t0, is known as Kepler’s Problem. This problem can be solved

by formulating an analytical solution. The position of a satellite at time t can be found by

determining its angular distance (ν) in orbit and determining (x,y) from Equation (2.4).

Note that other orbital elements do not change in Keplerian orbit (Chobotov, 2002).

The relationship between the true anomaly (ν) and its counterpart, called the eccentric

anomaly (E), is represented geometrically in Figure 2.6. The transformation between the

Chapter 2. Literature Review 19

Figure 2.6: Geometrical Relationship of ν and E (Montenbruck and Gill, 2001)

two angular distances (ν and E) is derived in detail in Appendix D. Just as the angular

distance ν in the ellipse changes in a non-uniform way, the motion of its image E in the

auxiliary circle is also non-uniform. The satellite’s position is defined by the following

relations (Montenbruck and Gill, 2001 :22)

x = r cos ν = a(cosE − e)

y = r sin ν = a
√

1− e2 sinE (2.5)

The relations for its velocity(ẋ and ẏ) can be found by direct differentiation,

ẋ = −
√
µ

p
sin ν = −aĖ sinE

ẏ =
µ

p
(e+ cos ν) = aĖ

√
1− e2 cosE (2.6)

Kepler’s equation is represented by

E − e sinE = n(t− T) (2.7)

where n is the mean motion6 and T is the time of perifocal passage. The mean anomaly M,

which defines uniform motion along another auxiliary circle, is defined by the expression

on the right of Equation (2.7)

M = n(t− T) (2.8)

In order to obtain the position of a satellite at time t, the time of periforcal passage and

the semi-major axis must be known to calculate M. The solution of Kepler’s equation is

6See Table 2.1 for the equation

Chapter 2. Literature Review 20

equivalent to finding the root of f(E) which is expressed by,

f(E) = E − e sinE −M (2.9)

Kepler’s equation can only be solved by iterative methods. If the starting value of E0 = M

is approximated, which is recommended for small eccentricities, or E0 = π, which is

recommended for high eccentricities, Kepler’s equation can be iterated using Newton-

Raphson iteration techniques as follows (Montenbruck and Gill, 2001)

Ei+1 = Ei −
Ei − e sinEi −M

1− e cosEi
(2.10)

Kepler orbits are not a complete reflection of real-life situations. Non-Keplerian influences

known as perturbative effects are discussed in the next chapter.

Chapter 3

Perturbation Equations

3.1 Introduction

Keplerian orbits are formed on the assumptions that the Earth or the main attracting

object is a perfect sphere, the masses of the attracting body and that of a satellite are

uniformly distributed and gravity is the only force acting on a satellite. Although this is

a good approximation of the actual satellite motion (position and velocity), the accuracy

decreases as the propagation time increases. These deviations are caused by non-Keplerian

influences such as the attracting body’s aspheric gravity, luni-solar and planetary effects,

atmospheric drag and solar radiation pressure. These effects are called orbit perturbations

and are discussed in the following section.

3.2 Equation of Motion with Perturbations

Since the propagation of the two-body motion result in increase of errors as the time of

propagation increases, it is better to replace the two-body equation, which is expressed

by Equation (2.2), with a new equation which includes all perturbation forces.

v̇ = − µ
r3

r + ap (3.1)

21

Chapter 3. Perturbation Equations 22

where ap is the sum of all perturbing accelerations. These can be classified as gravitational

(luni-solar and planetary attractions, and aspheric gravity) or non-gravitational (atmo-

spheric drag and solar pressure). These perturbations can also be grouped as conservative

or non-conservative. For conservative accelerations, ap is an explicit function of position

only, while for non-conservative accelerations, it is an explicit function of position and

velocity (Chobotov, 2002).

3.3 Perturbation Methods

Bate et al. (1971) describe a perturbation as a deviation from some normal or expected

motion. Two approaches to solving the equations of motion are offered: general pertur-

bation and special perturbation. The former involves an analytical integration of series

expansions of the perturbing accelerations and the latter uses step-by-step numerical in-

tegration of the equations of motion.

3.3.1 General Perturbation Techniques

The integration of series (which are expansions based on perturbation equations) ana-

lytically, term by term is the core of the general perturbation theory. The expansions

are obtained by means of methods of variation of parameters. The general perturbation

techniques won’t be covered in details in this study. For further reading see (Vallado,

1997 : 539-644).

3.3.1.1 Variation of Parameters

A two-body state vector allows us to determine orbital elements which remain constant

anywhere along this orbit. This allows the computation of the state vector of a satellite at

any time along the orbit. However, in the presence of perturbations the orbital elements

are not constant. The concept of variation of parameters is subsequently introduced. This

Chapter 3. Perturbation Equations 23

concept allows orbital elements to vary while the state vector is computed from a unique

set of two-body elements.

3.3.2 Special Perturbation Techniques

Two basic special perturbation techniques exist: Cowell’s method and Encke’s method.

3.3.2.1 Cowell’s Method

This method was developed by P.H. Cowell in the early 20th century. It’s been used to

predict the return of Halley’s Comet and to determine the orbit of the eighth satellite of

Jupiter (Bate et al., 1971). This is a very simple method compared to other perturbation

methods and is now used most frequently, since the power of computing is increasing.

Cowell’s method takes the equations and motion with all perturbations and then step-

wise integrates them numerically. This is achieved by splitting Equation (3.1) into two

coupled first-order non-linear differential equations

ṙ = v

v̇ = − µ
r3

r + ap (3.2)

where r and v are position vector and velocity of a satellite respectively. The advantages

of this method is that its very accurate and very easy to implement. Its disadvantages

are that it is slow and can be subject to instabilities in some situations. Cowell’s method

forms the backbone of this study and was selected for its simplicity and accuracy.

3.3.2.2 Encke’s Method

Encke’s method is a very complex method but its quicker than Cowell’s method. This

method integrates the differences between the reference and true orbit. The reference

orbit is the orbit that would results if there were no perturbations on the satellite at a

particular time. At that instant the two orbits coincide. When the reference orbit deviates

Chapter 3. Perturbation Equations 24

too far from the true orbit the process of rectification takes place. A new starting point

and epoch are chosen and the new reference orbit is calculated from the radius and velocity

of the true orbit. If we let r and ρ be the radius vectors of the true and reference orbit

respectively, we can represent the difference between the reference and true orbit δr̈ with

the following equation (Chobotov, 2002 :197)

δr̈ =
µ

ρ3
(fqr− δr) + ap (3.3)

This method was not used in this study and will not be discussed.

3.4 Perturbations due to Earth’s Oblateness

Contrary to the assumptions made in the formulation of the two-body equation of motion,

the Earth is not a perfect sphere with symmetrical mass distribution. Instead, the shape

of the rotating Earth is oblate with the bulge at the equator, flattened at the poles and

not symmetrical in terms of its mass distribution. The bulge at the equator results in the

radius of the Earth at the equator being larger by about 22 km than through the poles

(Sellers et al., 2004). A number of sources have been identified as causes of this oblateness,

but the main sources include the hydrostatic balance between the dominant gravitational

force and the centrifugal force due to Earth’s rotation, tides, atmosphere-ocean circulation,

earthquakes, post-glacial rebound and core flows (Chao, 2006). The gravity potential

function of the Earth is defined by the following formula (Vallado, 1997 :492):

Φ =
µ

r

[
1 +

∞∑
n=2

n∑
m=0

(
R⊕
r

)n
Pnm[sin(φsat)]{Cnm cos(mλsat) + Snm sin(mλsat)}

]
(3.4)

where

R⊕ = Radius of the Earth

φsat = Geocentric latitude of a satellite

λsat = Geographic longitude of a satellite

n = Degree of gravity model

m = Order of gravity model

Chapter 3. Perturbation Equations 25

Pnm = Associated Legendre functions

Cnm and Snm = The gravitational coefficients

For the origin of spherical coordinates to coincide with the centre of mass of the Earth,

C10 = C11 = S11 = 0 (Rim and Schutz, 2002).

The coefficients can be classified into the following groups of spherical harmonics, as

illustrated in Figure 3.1:

• Zonal harmonics (m = 0, −Cn,0 = Jn) represent bands along latitude. J2 is the

strongest perturbation and is almost a 1000 times larger than J3. For any Pn,0 there

are n circles of latitude along which Pn,0 is zero.

• Sectorial harmonics (n = m) represent bands along longitude. It focuses on the

mass distributed along the longitude. Legendre functions are only equal to zero at

the poles. This type of harmonics is used to compare the difference in density of

the ocean and continents.

• Tesseral harmonics (n 6= m 6= 0) divide the sphere up into a checkerboard array. The

number of curves along which these harmonics vanish are n−m parallels of latitude

and 2m meridians. They are a key to account for great terrestrial concentrations

like mountains.

The acceleration due to this oblateness effect can be obtained by finding the partial

derivative or gradient of the potential function

a =
δΦ

δx
î +

δΦ

δy
ĵ +

δΦ

δz
k̂ (3.5)

This results in the following acceleration expressions (Vallado, 1997 :497)

aI =

{
1

r

∂Φ

∂r
− rK

r2
√
r2
I + r2

J

∂Φ

∂φsat

}
rI −

{
1

r2
I + r2

J

∂Φ

∂λsat

}
rJ

aJ =

{
1

r

∂Φ

∂r
− rK

r2
√
r2
I + r2

J

∂Φ

∂φsat

}
rJ +

{
1

r2
I + r2

J

∂Φ

∂λsat

}
rI

aK =
1

r

∂Φ

∂r
rK +

√
r2
I + r2

J

r2

∂Φ

∂λsat
(3.6)

Chapter 3. Perturbation Equations 26

Figure 3.1: Classification of different types of spherical harmonics (Chobotov,
2002 :207)

where the three partials are given by

∂Φ

∂r
= − µ

r2

∞∑
n=2

n∑
m=0

(
R⊕
r

)
(n+ 1)P̄nm[sinφsat]{C̄nm cos(mλsat) + S̄nm sin(mλsat)}

∂Φ

∂φsat
=
µ

r

∞∑
n=2

n∑
m=0

(
R⊕
r

)
P̄n,m+1[sinφsat]−m tan(φsat)P̄nm[sinφsat]

× {C̄nm cos(mλsat) + S̄nm sin(mλsat)}

∂Φ

∂λsat
=
µ

r

∞∑
n=2

n∑
m=0

(
R⊕
r

)
mP̄nm[sinφsat]{S̄nm cos(mλsat)− C̄nm sin(mλsat)} (3.7)

The Legendre functions and the gravitational coefficients are now normalised. It is impor-

tant to normalise the Legendre functions when using normalised gravitational coefficients.

The normalisation is achieved using (Vallado, 1997 :493):

C̄nm =
Cnm
Πnm

S̄nm =
Snm
Πnm

P̄nm = ΠnmPnm (3.8)

where the overall transformation, Πnm is given by

Πnm =

√
(n+m)!

(n−m)!k(2n+ 1)
(3.9)

Chapter 3. Perturbation Equations 27

k =

1 if m = 0

2 if m 6= 0

The Legendre functions are computed by recursion

Pn,0[α] =
(2n− 1)αPn−1,0[α]− (n− 1)Pn−2,0[α]

n
, n ≥ 2

Pn,m[α] = Pn−2,m[α] + (2n− 1) cos(φsat)Pn−1,m−1[α] , 0 < m < n

Pn,n[α] = (2n− 1) cos(φsat)Pn−1,n−1[α] ,m 6= 0 (3.10)

where α = sin(φsat) and the starting values for Pnm[α] are

P0,0[α] = 1

P1,0[α] = α

P1,1[α] = cos(φsat)

The expressions for the longitude terms or the trigonometric functions are also computed

recursively.

sin(mλ) = 2 cos(λ) sin{(m− 1)λ} − sin{(m− 2)λ}

cos(mλ) = 2 cos(λ) cos{(m− 1)λ} − cos{(m− 2)λ} (3.11)

m tan(φsat) = (m− 1) tan(φsat) + tan(φsat)

3.4.1 Gravity Field Models

The internal mass distribution of the Earth is not well known. This makes it hard to de-

termine gravitational constants (Cnm and Snm) using their defining equations. A number

of gravity models have been developed since the launches of Sputnik I and Vanguard 1.

Ground-based satellite tracking such as radiometric Doppler tracking and Satellite Laser

Ranging (SLR) systems have improved the knowledge of the gravitational field. The 1996

Earth Gravity Model (EGM96) with a field of 20×20 was implemented in this study.

This field retains good accuracy. A 60×60 gravity model was implemented to evaluate

Chapter 3. Perturbation Equations 28

the trade-off between cost and accuracy when compared to the 20×20 gravity model.

The EGM96 model has a complete field of 360×360 degree and order of normalised coeffi-

cients. A representation of the geoid as determined by the EGM96 gravity model is shown

in Figure 3.2. Daniel Hanish 1 stated that, a 18×18 gravity field model has uncertainty of

Figure 3.2: 1996 Earth Gravity Model 15 minute geoid (Credit: Daniel Hanish)

around 3 - 4 metres, while a field of 360×360 will yield an uncertainty of 0.5 - 1.0 metres

in the geoid correction. Therefore, one can use a 20×20 gravity model and still retain

good results without implementing a full gravity model.

3.5 Atmospheric Drag

Another dominant force is the atmospheric drag. This force acts opposite to the velocity

of the satellite motion, and hence decelerates the satellite. It’s actually the main cause of

LEO satellites falling back to the Earth and the most dominant force during the final stages

of the lifetime of the satellite. Drag affects all satellites at all altitudes (Gaposchkin and

Coster, 1988). The main cause of drag in LEO is the Earth’s atmosphere which interacts

with solar particles and the geomagnetic field. Drag acceleration is a product of four

1See http://www.pha.jhu.edu/~hanish/EGM.html

http://www.pha.jhu.edu/~hanish/EGM.html

Chapter 3. Perturbation Equations 29

factors: Cd, A/m, ρ and vrel, and is defined by (Vallado, 1997 :498)

adrag = −1

2

CDA

m
ρv2

rel

vrel
vrel

(3.12)

The coefficient of drag is defined by the symbol, CD and is dimensionless. This coefficient

describes the interaction of the atmosphere and the surface material of a satellite. Its value

depends on the interaction on surface material of a spacecraft, the chemical composition of

the atmosphere, the molecular weight, and the temperature of the particles that interact

with a spacecraft (Montenbruck and Gill, 2001). The value CD = 2.2, which is appropriate

for a sphere or rotating cylinder and many other convex bodies was used in this study

(King-Hele, 1987).

The cross-sectional area perpendicular to the direction of the satellite motion is A. For

a spherical satellite, the area can be determined with ease. However, it is not a simple

task to determine the cross-sectional area of other shapes of satellites. If the satellite is

attitude-controlled, A and consequently the area-to-mass ratio can be calculated (King-

Hele, 1987). The mass of the satellite is m. A typical 1U CubeSat has a mass of 1.1 kg.

SUNSAT’s mass of 62 kg was used in this study.

The velocity of a satellite relative to the rotating atmosphere, vrel, is the vector sum

of the velocity of the satellite and that of the atmosphere. This is calculated with the

assumption that the atmosphere co-rotates with the Earth and is obtained using this

expression (Vallado, 1997 :499):

vrel =
dr

dt
− ω⊕ × r

=


dx
dt

+ ω⊕y

dy
dt
− ω⊕x
dz
dt

 (3.13)

The atmospheric density ρ, is the cause of drag. It is the most difficult variable to calcu-

late in drag evaluation. The atmospheric density changes due to atmospheric molecular

composition, geomagnetic variations and the solar flux. Thermospheric models for calcu-

lating atmospheric density have been derived since the launch of Sputnik I. Dynamic and

Chapter 3. Perturbation Equations 30

static thermospheric models exist. These models are complex and computationally inten-

sive, but they are often simplified to economise computer run time (Opperman, 2003).

Existing thermospheric models include:

• Jacchia models2: These models contain analytical expressions for determining ex-

ospheric temperature as a function of time, solar activity and geomagnetic activity.

The computed temperature is then used to empirically determine temperature pro-

files or the diffusion equation (Vallado, 1997). These models include Jacchia 70,

71 and 77, and Jacchia-Roberts. Most of these models use inputs such as geomag-

netic index (kp) and the F10.7 which is the solar flux of radiation at 2.800 MHz

(Gaposchkin and Coster, 1988). For the purpose of this study Jacchia 70 was used,

because it is well tested, relatively simple to implement and its source code is readily

available.

• Harris-Priester: This is a static model. It is computationally efficient and gives

fairly good results (Vallado, 1997). The Harris-Priester model is based on the prop-

erties of the upper atmosphere as determined by the solution of the heat conduction

equation and quasi-hydrostatic conditions (Montenbruck and Gill, 2001).

• Soviet Cosmos: This model uses an analytical method to obtain atmospheric

density in an aspherical upper atmosphere, using observations of Soviet Cosmos

satellites (Vallado, 1997). The Soviet Cosmos model is valid for satellites at altitudes

of 160-600 km (Vallado, 1997).

Other existing thermospheric models include the Mass Spectrometer and Incoherent Scat-

ter Model (MSIS), Exponential model, COSPAR International Reference Atmosphere

(CIRA), etc. (Vallado, 1997).

A drag calculation error could be the result of an error in the calculation of any of these

four factors (Gaposchkin and Coster, 1988). Gaposchkin and Coster (1988) computed the

time it took for drag to change a satellite’s position by 12 km and found 0.92 days for a

satellite at an altitude of 300 km, 22.8 days for a satellite at an altitude of 800 km and

38.9 days for a satellite at 2800 km, with the area-to-mass ratio of 0.01 m2/kg.

2See (Vallado, 1997 :843-854) for details of the formulas

Chapter 3. Perturbation Equations 31

3.5.1 Cross-Sectional Area

The cross sectional area of a satellite is calculated by considering the mean of three possible

maximum areas (Opperman, 2003). This is shown in Figure 3.3. The mean cross-sectional

Figure 3.3: Possible cross-sectional areas of a cubic satellite (Opperman, 2003)

area is calculated using (Opperman, 2003):

A =
1

3
(A1 + A2 + A3) (3.14)

=
1

3
(x2 + xy + 3z2 sin 60)m2

The equation yields the mean cross-sectional area of 0.27987 m2 for SUNSAT, with di-

mensions 45 cm × 45 cm × 45 cm, and 0.01382 m2 for a 1U CubeSat.

3.6 Third-Body Perturbations

Unlike restricted two-body attraction, a LEO satellite experiences gravitational attraction

from any large body in the solar system. The Moon and Sun are the main causes of

third body perturbations on LEO satellites, though planets may be included as well.

Chapter 3. Perturbation Equations 32

Perturbation effects by these two bodies become noticeable when drag begin to diminish

(Vallado, 1997), e.g. for very high orbit satellites. The basic equation for third-body

perturbations is given by (Vallado, 1997 :515)

a3body = −Gm⊕
r3
⊕sat

r⊕sat +Gm3

(
rsat3
r3
sat3

− r⊕3

r3
⊕3

)
(3.15)

The first term on the right hand side is from the two-body equation while the second

term indicates the addition of the third body which is represented by the subscript 3.

This equation can be numerically unstable in a case where the distance from the third

body, the Sun for instance, to the satellite and the distance from the Earth to the Sun are

almost equal. Vallado (1997) presented the final stable third-body equation, after some

manipulation of the Taylor series expansion and the Legendre functions as

a3body = −Gm⊕
r3
⊕sat

r⊕sat −
n∑
k=1

Gmk

r3
⊕k

(r⊕sat − βkrsatk) (3.16)

where,

βk = 3Bk + 3B2
k +B3

k

B =
∞∑
j=1

Pj[cos(ε)]hj (3.17)

h =
r⊕sat
r⊕3

.

The angle between the third body and satellite as seen from the Earth is represented by

ε and Pj[cos(ε)] are called Legendre polynomials of order j and are computed by the first

expression (Pn,0) in Equation (3.10).

3.7 Solar Radiation Pressure

Satellites in LEO experience a force from absorption or reflection of photons from the Sun.

This force always points in the direction away from the Sun just like comet tails. The

Chapter 3. Perturbation Equations 33

influence of this force depends on altitude and the solar activity. It is very important to

quantify the effect of solar radiation pressure during periods of intense solar storms as it

can dominate all other perturbation forces, especially at higher altitudes. The acceleration

due to solar radiation pressure depends on the mass and surface area of the satellite and

is defined by (Vallado, 1997 :520):

aSR = −PSRcRA�
m

r�sat
|r�sat|

(3.18)

where

PSR = 4.51× 10−6kg m−1s−2 is the solar pressure,

CR = the radiation pressure reflectivity coefficient.

The value of CR is always between 0.0 and 2.0 and it is hard to determine as it changes

over time. A value of 0.0 means that the satellite experiences no solar pressure as the

satellite permits all light to pass through. A value of 1.0 means that all the solar radiation

is absorbed, while a value of 2.0 means that all the solar radiation is reflected (Vallado,

1997). The difficulties in modelling solar-radiation pressure lie in determining the area

exposed to the Sun’s radiation, which is defined by A�. However, for the purpose of

calculating drag, this area is often assumed to be the maximum possible cross-sectional

area of the satellite (Du Toit, 1997). Solar radiation pressure interacts with satellites on

the Sun side. When the satellite is in the Earth’s shadow this force need not be considered.

To achieve that a switching function is used, which turns solar radiation pressure on or

off when it is necessary.

3.7.1 Shadow Analysis

A satellite in orbit experiences periodic eclipses behind the Earth. A function to control

the situation where a satellite goes in and out of the Earth’s shadow when computing

radiation pressure is necessary. The angular separation between the Sun and the satellite

is represented by their dot product (Vallado, 1997 :521)

cos(ϕ) =
r� · rsat
r�rsat

(3.19)

Chapter 3. Perturbation Equations 34

where ϕ is the angular separation between the Sun and satellite. Equation (3.19) can

be written in terms of the true anomaly to give precise information about the satellite’s

position in orbit for an accurate switching function

cos(ϕ) = β1 cos(ν) + β2 sin(ν) (3.20)

The shadow function3 is then found by squaring Equations (3.19) and (3.20) and using

Equation (2.4)

S = R2
⊕(1 + e cos(ν))2 + p2{β1 cos(ν) + β2 sin(ν)}2 − p2 (3.21)

This function vanishes only if

1−
(

R⊕
a(1− e)

)2

< β2
1 < 1−

(
R⊕

a(1 + e)

)2

3.8 Precision Modelling

The perturbation forces described above are sufficient for a precise satellite orbit. In cases

where higher precision of radial position of 10 cm or lower is required, other perturbation

forces such as the radiation pressure of the Earth, planetary attraction, tidal forces that

modify the Earth’s gravity field, as well as general relativistic deviations to the Newto-

nian equations of motion need to be taken into account (Montenbruck and Gill, 2001).

A spacecraft with an on-board thruster system may experience additional perturbation

forces due to this system, and should also be modelled for high-precision results. Finally,

for effects that cannot be described by physical models, empirical accelerations may be

introduced (Montenbruck and Gill, 2001).

3For derivation see (Escobal, 1985 :155-159) and (Vallado, 1997 :520-523)

Chapter 3. Perturbation Equations 35

3.9 Summary

The theory of Keplerian orbits alone cannot explain the motion of satellites. Non-

Keplerian orbits were introduced and discussed in this chapter. Perturbation methods

(general and special perturbations) were also discussed.

In Chapter 4, time, coordinate systems and transformations applicable in the development

of PRECurSOr are discussed.

Chapter 4

Time, Coordinate Systems and

Transformations

4.1 Introduction

An orbit is suitably defined using a frame of reference and time. This means an inertial

coordinate system must be found. Time on the other hand is used to define the moment

of a phenomenon with precision. This moment is referred to as the epoch (Vallado, 1997).

This chapter discusses the time systems, coordinate systems and the transformations

implemented in developing PRECurSOr.

4.2 Time Systems

The following time systems are of utmost necessity for developing an orbit propagator. A

brief introduction follows:

• International Atomic Time (TAI) is the most precise time standard. It is based

on the specific quantum transition of the electrons in a cesium-133 atom (Vallado,

1997).

36

Chapter 4. Time, Coordinate Systems and Transformations 37

• Coordinated Universal Time (UTC) is derived from atomic time and is the most

commonly used time system.

• Julian Date (JD) is defined as the continuous amount of time measured in days

from the epoch of January 1, 4713 B.C., 12:00 (Greenwich) (Vallado, 1997). One JD

is measured from noon to noon. Julian Date for any known date and time can be

calculated with the following general formula (Opperman, 2003; Vallado, 1997 :4-

4,68):

if month = 1 or 2, set year = year - 1 and month = month + 12

Set day = day + (hour + minutes/60 + seconds/3600)/24

Let

B = 2− INT
(year

100

)
+ INT

(
INT

(
year
100

)
4

)
Therefore,

JD = INT{365.25(year+ 4716)}+ INT{30.6001(month+ 1)}+ day+B − 1524.5

(4.1)

• Greenwich Mean Sidereal Time (θGMST) is the sidereal time associated with

the Greenwich meridian. It uses the vernal equinox as the reference point and the

following equation defines it (Vallado, 1997):

θGMST = θGST0 + ω⊕UT1 (4.2)

where

θGST0 = 100.4606184◦ + 36000.77005361TUT1 + 0.00038793T 2
UT1 − 2.6× 10−8T 3

UT1

ω⊕ = Earth’s mean angular rotation rate

TUT1 = Number of Julian centuries elapsed from epoch J2000 given by:

TUT1 =
JD0 − 2451545.0

36525

Chapter 4. Time, Coordinate Systems and Transformations 38

Figure 4.1: Sidereal time (Vallado, 1997; Opperman, 2003 : 4-5)

• Greenwich Apparent Sidereal Time (GAST) differs from GMST by the Equa-

tion of the Equinoxes due to nutation. It introduces programming complexity due

to the functions required in its computation.

• Local Sidereal Time(θLST) is the sidereal time at a particular longitude (λ) and

is related to θGMST at a particular longitude by (Vallado, 1997):

θLST = θGST + λ (4.3)

4.3 Coordinate systems

4.3.1 Earth Centred Inertial (ECI) System

This is a non-rotating geocentric-equatorial coordinate system with its origin at the centre

of Earth (Figure 4.2). Its fundamental plane is the equator. The positive X axis points in

the direction of the vernal equinox and the positive Z axis points in the direction of the

Chapter 4. Time, Coordinate Systems and Transformations 39

North Pole. Right ascension (α) and declination (δ) are used to define the location of a

satellite along some direction from the origin of the celestial sphere.

Right ascension refers to the angle measured eastward in the plane of the equator from

a fixed inertial axis in space (vernal equinox) to a plane of the equator (meridian) which

contains the object (0◦ ≤ α ≤ 360◦). Declination, on the other hand, refers to the angle

between the object and equatorial plane measured (positive above the equator) in the

meridional plane containing the object (−90◦ ≤ δ ≤ 90◦). A satellite’s position and

velocity vectors, denoted by r and v respectively, are also used in this inertial system.

The magnitude of vector r is defined as the radial distance between the origin of the

coordinate system and the satellite’s location.

Figure 4.2: Earth-centred inertial system (Chobotov, 2002)

4.3.2 Earth Centred Earth Fixed (ECEF) System

This coordinate system is the same as the ECI system except that the coordinate system

rotates with the Earth. In this system, the primary axis is always aligned with a particular

meridian.

Chapter 4. Time, Coordinate Systems and Transformations 40

4.3.3 Geographic Coordinate System

A satellite can be located relative to Earth by its longitude (λ), latitude (φ) and altitude

above the reference ellipsoid. The origin of this coordinate system is the Earth’s centre

(Figure 4.3). The fundamental plane is the equator. The Z axis points in the direction of

the North Pole. The principal axis (X axis) points toward the Greenwich meridian. The

latitude is defined as the angle measured perpendicular to the equatorial plane between

the equator and a ray connecting geocentre with a point on the Earth’s surface (−90◦ ≤

φ ≤ 90◦). The east longitude (λE) is defined as the angle measured eastward from the

prime meridian in the equatorial plane to the meridian containing the surface point (0◦ ≤

λE ≤ 360◦)

Figure 4.3: Geographic coordinate system (Chobotov, 2002)

4.3.4 Perifocal Coordinate System(PQW)

The fundamental plane of the perifocal coordinate system is the satellite’s orbit. The

origin is the centre of the Earth. The W-axis is normal to the orbit, p-axis points towards

perigee, and q-axis completes the orthogonal setup. This coordinate is not suited for

Chapter 4. Time, Coordinate Systems and Transformations 41

circular orbits. In presence of perturbations, this coordinate system is not inertial. The

coordinate system is shown in Figure 4.4.

Figure 4.4: Perifocal coordinate system (Escobal, 1985 :77)

4.4 Coordinate Transformations

When transforming one coordinate system to another, two concepts apply: corrections

for rotations within a system and translation between systems having different origins

(Vallado, 1997). Common transformations which are used in the process of developing an

orbital propagator are briefly discussed below.

4.4.1 Transformation between ECI and ECEF

Since the ECI and ECEF systems share the same z-axis and the fundamental plane, trans-

formation from one to the other only require rotation of an angle θGMST = θGMST,2000 +

ω⊕ × t, where θGMST is the Greenwich Mean Sidereal time, ω⊕ = 0.0000729212 rad/s is

the rotation rate of the Earth and t is the elapsed time since ECEF and ECI frames are

Chapter 4. Time, Coordinate Systems and Transformations 42

separated by an angle of θGMST,2000 = 1.7447672 rad, the value taken on 1 January 2000

at 00 : 00 : 00 (Ilyas, 2011). The conversion between these frames which neglects the

effects of precession, nutation and polar motion is given by:
x

y

z


ECI

=


cos(θGMST) − sin(θGMST) 0

sin(θGMST) cos(θGMST) 0

0 0 1



x

y

z


ECEF

(4.4)

The inverse transformation can be obtained by using the inverse of the rotation matrix

used above (Ilyas, 2011).

4.4.2 Transformation from Classical Orbital Elements to ECI

The transformation is successfully done by first transforming orbital elements to the PQW

frame, then transforming the PQW frame to the ECI frame (Chobotov, 2002 : 62-65).

The first transformation is accomplished by :

r = r cos νP̂ + r sin νQ̂ (4.5)

v =

√
µ

p
[(− sin ν)P̂ + (e+ cosν)Q̂]

Finally, transformation from PQW to ECI frame is given by:
x

y

z


ECI

= [R]


r cos ν

r sin ν

0


PQW

(4.6)

and 
vx

vy

vz


ECI

= [R]


−
√

µ
p

sin ν√
µ
p
(e+ cos ν)

0


PQW

(4.7)

Chapter 4. Time, Coordinate Systems and Transformations 43

where

[R] =


R11 R12 R13

R21 R22 R23

R31 R32 R33

 (4.8)

and

R11 = cos Ω cosω − sin Ω sinω cos i (4.9)

R12 = − cos Ω sinω − sin Ω cosω cos i

R13 = sin Ω sin i

R21 = sin Ω cosω + cos Ω sinω cos i

R22 = − sin Ω sinω + cos Ω cosω cos i

R23 = − cos Ω sin i

R31 = sinω sin i

R32 = cosω sin i

R33 = cos i

4.5 Summary

The time systems, coordinate systems and transformations used in the development of

PRECurSOr were covered in this chapter.

Chapter 5 details the considerations taken into account to develop the software and gives

relevant background information on OBC.

Chapter 5

OBC Emulator and Software

Considerations

5.1 Introduction

The process of software development requires careful considerations, since a small er-

ror may result in operational failure. Choosing the right programming language is very

important. Some programming languages are slower than others, depending on the prob-

lem being solved. This chapter details the considerations taken into account to develop

PRECurSOr - Precise Satellite Orbit propagator. To understand the limited processing

resources of an OBC, relevant background information is given.

5.2 On-Board Computer (OBC)

Lumbwe (2013) defines the OBC as an embedded computer dedicated to command and

data handling (C&DH) of the satellite. The OBC is part of five CubeSat subsystems. The

other four subsystems are the electrical power system, communication, ADCS (Attitude

and Determination Control System) and the payload subsystem.

44

Chapter 5. OBC Emulator and Software Considerations 45

The electrical power system is responsible for power distribution and control. The com-

munication subsystem, which is also referred to as the Telemetry Tracking and Command

(TT&C) subsystem, provides the communication link between the satellite and the ground

segment. The ADCS subsystem controls the attitude of the satellite. Finally, the payload

subsystem hosts the payload required for a specific CubeSat mission (Lumbwe, 2013).

The OBC is the heart of the satellite where the subsystems communicate via a serial bus

interface. The OBC hosts a memory subsystem for additional functions such as recording

housekeeping parameters (temperature and power consumption) and telemetry payload

data. These are collected at given timescales or coordinates, before initiation of the

transmission to the ground station during an overpass of the satellite (Lumbwe, 2013).

The OBC subsystem is composed of both hardware and software components as shown in

Figure 5.1. PRECurSOr runs under the application(s) software component of the OBC

subsystem.

Figure 5.1: Model of the OBC subsystem (Catsoulis, 2005; Lumbwe, 2013)

• The hardware component contains the physical electronic components that are

located on a printed circuit board (PCB). It consists essentially of a microcontroller

with various peripheral interfaces and supporting hardware with a memory module

Chapter 5. OBC Emulator and Software Considerations 46

to store programmes and data (Lumbwe, 2013). A microcontroller is defined as

a processor, memory and some Input/Output (I/O) devices all contained within

a single integrated circuit (IC), intended for use in embedded systems (Catsoulis,

2005). Microcontrollers are available as 8-bit, 16-bit and 32-bit, depending on the

manufacturer.

• The software component controls the operation and functionality of the com-

puter. It consists of three layers (application, operating system and firmware),

where each layer will only interact with the layers immediately above or below it

(Catsoulis, 2005). Firmware is software responsible for initializing other hardware

subsystems to a known state and for configuring the OBC for correct operation

when the computer first powers up. The operating system controls the operation of

the computer and the application software contains programmes that provide the

functionality of the OBC (Catsoulis, 2005).

5.2.1 Typical OBCs and their Processing Speeds

A Raspberry Pi1 computer, shown in Figure 5.2, was used as an OBC emulator to test

PRECurSOr ’s performance and memory usage. The first operating system of choice for

study was FreeRTOS, but PiBang Linux2 was used instead. FreeRTOS was ruled out due

to its present installation complexity on a Raspberry Pi computer. PiBang Linux presents

simplicity in installation because it is based on Raspbien, an operating system based on

Debian, which can be easily optimized for Raspberry hardware. The specifications of the

implemented Raspberry Pi are listed in Table 5.1.

An HDMI-to-HDMI lead connector was used for this study. Alternately, a standard RCA

composite video lead can be connected to the HDMI output. Raspberry Pi requires an

SD card with a minimum memory of 4GB to give the user at least 2GB free space to

install additional packages or to create programmes. An 8GB SD card was selected for

this study. Low-powered USB keyboards and mice must be used for a Raspberry Pi to

function normally. Ethernet cable was not not necessary for this study. A Raspberry Pi

1See http://www.raspberrypi.org
2See http://pibanglinux.org/

http://www.raspberrypi.org
http://pibanglinux.org/

Chapter 5. OBC Emulator and Software Considerations 47

Table 5.1: Raspberry Pi computer specifications
Manufacturer Raspberry Pi Foundation
Processor Broadcom 700 MHz
RAM 512 MB
Graphics Processor VideoCore IV
Peripherals 10/100 Ethernet port

2 × USB 2.0 jacks
HDMI port
Micro-USB port
SD card slot
Audio Jack
RCA video

Supply Line Voltage 5.0 V

requires a good micro-USB power supply that can provide at least 700mA at 5V. For the

purpose of this study a micro-USB power supply providing 1000mA at 5V was selected.

Figure 5.2: The Raspberry Pi computer used as OBC emulator in this study

5.3 Programming Language

Several aspects were considered in the selection of an appropriate programming language.

The availability of an Integrated Development Environment (IDE) at no cost, execution

Chapter 5. OBC Emulator and Software Considerations 48

speed and the ease of implementation were the major factors in this selection process.

Another aspect was the availability of source code for complex libraries such as calculating

atmospheric density (Opperman, 2003). All factors considered, led to the selection of

C++ as the programming language. The portability of the C++ language across different

platforms and operating systems makes it an appropriate language to use for this study.

It should see relative hassle-free implementation on the CubeSat OBC. Initially, the code

was written and compiled under the Linux operating system on a desktop PC (Personal

Computer) with a GCC (GNU Compiler Collection) compiler using a terminal. The

absence of a debugger, however, led to the selection of NetBeans IDE.

5.4 Algorithm Description

In the process of development of the orbit propagator, different algorithms were imple-

mented. This section and its subsections lists and discusses some vital concepts considered

in the development of PRECurSOr.

5.4.1 Orbit Dynamics Overview

As discussed in chapter 4, the following gravitational and non-gravitational perturbation

models were considered in the development of PRECurSOr.

• Gravitational perturbations: Aspheric gravity and luni-solar perturbations

• Non-gravitational perturbations: Solar radiation pressure and atmospheric drag

5.4.2 Initial Conditions

The orbit propagator was tested using a one-day section of SUNSAT’s SLR-derived pre-

cision orbit as reference, with the initial conditions for the position and velocity given in

the ECI coordinate system. The epoch of propagation was selected as 06 February 2000

at 00:00:00 UTC with the following initial conditions for the state vector:

Chapter 5. OBC Emulator and Software Considerations 49

Table 5.2: Initial conditions of SUNSAT corresponding to the epoch of 06 Febru-
ary 2000 at 00:00:00 UTC

Orbital parameters Position and Velocity
a(m) 7137884.390 X(m) -611359.693
e 0.014205 Y(m) 6818312.960
i(◦) 96.469 Z(m) 1885999.168
Ω(◦) 273.334 VX(m/s) 705.897
ω(◦) 233.749 VY (m/s) 1956.499
ν(◦) 290.747 VZ(m/s) -7218.130

5.4.3 Data Files

The software includes ASCII (American Standard Code for Information Interchange) data

files which were used in the aspheric gravity and drag models. The files and sources

are listed in Table 5.3 below. From the EMG963 gravity file, two multi-dimensional

Table 5.3: PRECurSOr data files
File name Description Source
egm96 to360.ascii EMG96 gravity file NASA

expmod.dat Exponential Atmospheric Model (Vallado, 1997 :510)
density computation file

flux mean.dat Stores the geomagnetic activity, INPE (Instituto Nacional de
the mean solar flux, observed Pesquisas Espaciais)
and adjusted daily flux values

arrays containing spherical harmonics coefficients (Cnm and Snm) of 20×20 field were

created for computational efficiency. The flux mean.dat4 data file is a product of a

compilation of daily solar flux data from the Dominion Radio Astrophysical Observatory

(DRAO) and geomagnetic activity data from the International Service of Geomagnetic

Indices (ISGI) provided by the Space Physics Interactive Data Resources (SPIDR). The

flux mean.dat file contains geomagnetic activity and solar flux data from 1958-1-1 to

2008-12-31, useful for calculating atmospheric drag. This file was expanded to incorporate

flux and geomagnetic data up to 2013-12-31, using algorithms provided on the INPE

website5. The expmod.dat file contains data on atmospheric parameters which enable

3See ftp://cddis.gsfc.nasa.gov/pub/egm96/general_info/egm96_to360.ascii
4See http://www2.dem.inpe.br/val/atmod/flux_mean.dat
5See http://www2.dem.inpe.br/val/atmod/default.html

ftp://cddis.gsfc.nasa.gov/pub/egm96/general_info/egm96_to360.ascii
http://www2.dem.inpe.br/val/atmod/flux_mean.dat
http://www2.dem.inpe.br/val/atmod/default.html

Chapter 5. OBC Emulator and Software Considerations 50

atmospheric density calculation using the following equation (Vallado, 1997):

ρ = ρ0EXP

(
−hellp − h0

H

)
(5.1)

where ρ0 is the reference density, hellp is the reference altitude, h0 is the satellite altitude

and H is the scale height.

5.4.4 Numerical Integration

Numerical methods can be used for computation of high precision orbits. A number of

numerical integrators have been developed and some of them have been applied in the field

of astrodynamics. The Runge-Kutta methods, Adams-Bashforth-Moulton, Gauss-Jackson

and many others are examples of numerical integrators. Most numerical integrators were

derived from the Taylor series given by (Vallado, 1997 :476)

y(t) = y(t0) + ẏ(t0)(t− t0) +
ÿ(t0)(t− t0)2

2!
+

...
y (t0)(t− t0)3

3!
+ ... (5.2)

Two types of numerical integration methods exist: single-step and multi-step methods.

Only the Runge-Kutta methods will be discussed, as they were used in this study.

5.4.4.1 Runge-Kutta Methods

The Runge-Kutta (RK) methods were originally developed by Carl Runge (1856-1927)

in 1895 and Wilhelm Kutta (1867 - 1944) in 1901 (Vallado, 1997). The methods were

later expanded to Runge-Kutta-Fehlberg (also called Embedded Runge-Kutta) by Erwin

Fehlberg.

5.4.4.2 Single-Step RK Methods

Single-step RK methods derive from the Euler method given by

yn+1 = yn + hf(xn, yn) (5.3)

Chapter 5. OBC Emulator and Software Considerations 51

The Euler method is also called RK1. The increment function f is an average of the

derivative dy/dx over time interval x to xn + h. Runge-Kutta schemes require the first

derivative f(xn, yn) only at the beginning of the interval. There are many orders of

RK methods. These orders reflect the accuracy to which the function f is computed,

compared to a Taylor series expansion (Curtis, 2010). The most widely used RK method

is the classical fourth-order Runge-Kutta method or RK4 which was used in this study to

verify results of the multi-step integrator. This is represented mathematically by (Press

et al., 2002 :711)

k1 = hf(xn, yn)

k2 = hf(xn +
h

2
, yn +

k1

2
)

k3 = hf(xn +
h

2
, yn +

k2

2
)

K4 = hf(xn + h, yn + k3) (5.4)

yn+1 = yn +
k1

6
+
k2

3
+
k3

3
+
k4

6
+O(h5)

This is a fourth order method since its error term is O(h5) = O(hn+1). The order is

represented by n.

5.4.4.3 Multi-Step RK Methods

Multi-step methods are sometimes called predictor-corrector methods. A number of multi-

step methods based on the embedded Runge-Kutta exist. These methods were originally

invented by Erwin Fehlberg. RK methods keep the step-size, h, constant which results in

waste of computation time and loss of accuracy in the intervals where the solution changes

rapidly. Runge-Kutta-Fehlberg (RKF) methods use adaptive step-size control to scale the

step-size according to the change in solution. In cases where the solution changes rapidly,

small step-sizes are required, while in cases where the solution changes slowly, large step-

sizes are required. This gives the RKF methods the advantage of taking larger steps

on average compared to other multi-step methods (Cash and Karp, 1990). In numerical

integration, the distance divided by the cost is important. Another advantage of RKF

methods is that of flexibility of the step-size selection (Cash and Karp, 1990).

Chapter 5. OBC Emulator and Software Considerations 52

The scaling of h is possibly achieved by combining two adjacent-order RK methods into

one and keeping the local truncation errors within some tolerance. The local truncation

errors are obtained from the difference between the two adjacent-order RK methods. If the

step is accepted, the solution of the higher order method is used for the next integration

step. An example of RKF method is the embedding of RK7 into RK8 to produce the

RKF7(8) method. The general form of function evaluations of RKF methods is

k1 = f(tn, yn)

k2 = f(tn + a2h, yn + b21k1)

k3 = f(tn + a3h, yn + b31k1 + b32k2)

...

ks = f(tn + ash, yn + bs1k1 + bs2k2 + ...+ bs,s−1ks−1)

where s = {4, 5..., 13} for the RKF7(8) method. Unlike the Runge-Kutta methods for

orders less than four, the number of function evaluations for higher order RKF methods

does not correspond to the order of the method. The formulas for the two adjacent-order

RK methods are

yn+1 = yn + h
s−2∑
i=1

ciki +O(hp+2)

and

y∗n+1 = yn + h

s∑
i=1

c∗i ki +O(hp+1) (5.5)

where p is the order of the higher RK method. The error estimate is

e =‖ yn+1 − y∗n+1 ‖=
s∑
i=1

(ci − c∗i)ki (5.6)

The values of the various constants are given in Table 5.5. The step-size is calculated

using

hnew = 0.8 ∗ hold
(
tol

e

) 1
p+1

(5.7)

Chapter 5. OBC Emulator and Software Considerations 53

The vector norm in e is due to the fact that y may be a vector. If that’s the case, then hnew

is rescaled according to the needs of the “worst-offender“ equation (Press et al., 2002).

5.5 Software Structure

Figure 5.3 outlines the programme structure of PRECurSOr followed by the list of func-

tions and their description in Table 5.4. Appendix F documents a few important functions.

Some of the functions, e.g. app sidereal time, nutation, obliquity, sfd70 and jsmade

were obtained from existing libraries. Although some of them were modified, the need

to create new functions serving the same operation serves no meaningful purpose, since

these functions are well-tried.

Figure 5.3: PRECurSOr programme structure

Chapter 5. OBC Emulator and Software Considerations 54

5.6 Summary

The initial conditions to validate the PRECurSOr and data files considered were described

in this chapter. The C++ programming language running on NetBeans IDE was selected

for the development of PRECurSOr. A Raspberry Pi was implemented as a representation

of an OBC.

Chapter 6 presents the results in the form of software validation to demonstrate the

performance of PRECurSOr as compared to other propagators.

Chapter 5. OBC Emulator and Software Considerations 55

T
ab

le
5.

4:
F
u

n
ct

io
n

s
u

se
d

in
P

R
E

C
u

rS
O

r
F

u
n
ct

io
n

D
es

cr
ip

ti
on

d
jm

C
al

cu
la

te
s

m
od

ifi
ed

J
u

li
an

da
te

fo
r

a
gi

ve
n

(G
re

go
ri

an
)

ca
le

n
de

r
da

te
an

d
ti

m
e

J
u

li
a
n

D
a
te

C
al

cu
la

te
s

J
u

li
an

da
te

fo
r

a
gi

ve
n

(G
re

go
ri

an
)

ca
le

n
de

r
da

te
an

d
ti

m
e

G
ra

v
co

n
st

R
ea

ds
an

d
u

n
n

or
m

al
is

e
gr

av
it

y
co

n
st

an
ts

o
e
2
e
ci

T
ra

n
sf

or
m

s
cl

as
si

ca
l

or
bi

ta
l

el
em

en
ts

to
E

C
I

co
or

di
n

at
e

sy
st

em
R

K
4

C
la

ss
ic

al
R

u
n

ge
-K

u
tt

a
m

et
ho

d
R

K
7
8

R
u

n
ge

-K
u

tt
a

7(
8)

m
et

ho
d

E
m

b
e
d
d
e
d

F
e
h

lb
e
rg

7
8

C
om

pu
te

s
th

e
F

eh
lb

er
g

co
effi

ci
en

ts
fo

r
R

K
78

D
X

D
T

C
om

pu
te

s
de

ri
va

ti
ve

s
of

th
e

eq
u

at
io

n
s

of
m

ot
io

n
M

O
O

N
C

om
pu

te
s

th
e

po
si

ti
on

ve
ct

or
of

th
e

m
oo

n
in

E
C

I
sy

st
em

S
U

N
C

om
pu

te
s

th
e

po
si

ti
on

ve
ct

or
of

th
e

S
u

n
in

E
C

I
sy

st
em

L
e
g
e
n
d
re

C
om

pu
te

s
L

eg
en

dr
e

an
d

as
so

ci
at

ed
L

eg
en

dr
e

fu
n

ct
io

n
s

tr
ig

fu
n
c

C
om

pu
te

s
la

ti
tu

de
an

d
lo

n
gi

tu
de

tr
ig

on
om

et
ri

c
te

rm
s

by
re

cu
rs

io
n

E
C

I
E

C
E

F
T

ra
n

sf
or

m
s

E
C

I
sy

st
em

to
E

C
E

F
fo

r
la

ti
tu

de
an

d
lo

n
gi

tu
de

co
m

pu
ta

ti
on

E
x
p

m
o
d
e
l

C
om

pu
te

s
at

m
os

ph
er

ic
de

n
si

ty
fo

r
al

ti
tu

de
s

be
tw

ee
n

90
-1

00
km

u
si

n
g

th
e

ex
po

n
en

ti
al

m
od

el
m

e
a
n

si
d
e
re

a
l

ti
m

e
C

om
pu

te
s

m
ea

n
si

de
re

al
ti

m
e

at
th

e
m

er
id

ia
n

of
G

re
en

w
ic

h
a
p
p

si
d
e
re

a
l

ti
m

e
C

om
pu

te
s

ap
pa

re
n

t
si

de
re

al
ti

m
e

at
th

e
m

er
id

ia
n

of
G

re
en

w
ic

h
n
u
ta

ti
o
n

C
om

pu
te

s
th

e
n

u
ta

ti
on

of
lo

n
gi

tu
de

an
d

n
u

ta
ti

on
of

ob
li

qu
it

y
of

th
e

ec
li

pt
ic

o
b

li
q
u

it
y

C
om

pu
te

s
th

e
m

ea
n

an
d

tr
u

e
ob

li
qu

it
y

of
th

e
ec

li
pt

ic
js

m
a
d

e
C

om
pu

te
s

at
m

os
ph

er
ic

de
n

si
ty

fo
r

he
ig

ht
s

fr
om

10
0

to
20

00
km

,
u

si
n

g
th

e
ja

cc
hi

a
70

st
at

ic
m

od
el

sf
d
j7

0
R

et
ri

ev
es

th
e

m
ea

n
so

la
r

fl
u

x
an

d
ge

o-
ph

ys
ic

al
da

ta
at

m
od

ifi
ed

J
D

T
W

O
B

O
D

Y
C

om
pu

te
s

th
e

C
ar

te
si

an
E

C
I

po
si

ti
on

of
th

e
in

it
ia

l
tw

o-
bo

dy
m

ot
io

n
G

R
A

V
P

C
om

pu
te

s
as

ph
er

ic
al

E
ar

th
pe

rt
u

rb
at

io
n

u
si

n
g

sp
he

ri
ca

l
ha

rm
on

ic
s

T
H

IR
D

B
O

D
Y

C
om

pu
te

s
lu

n
i-

so
la

r
th

ir
d

bo
dy

pe
rt

u
rb

at
io

n
s

A
D

R
A

G
C

om
pu

te
s

at
m

os
ph

er
ic

dr
ag

pe
rt

u
rb

at
io

n
S

R
P

C
om

pu
te

s
so

la
r

ra
di

at
io

n
pr

es
su

re
pe

rt
u

rb
at

io
n

Chapter 5. OBC Emulator and Software Considerations 56

T
ab

le
5.

5:
P

ar
am

et
er

s
fo

r
th

e
E

m
b

ed
d

ed
R

u
n

ge
-K

u
tt

a
7(

8)
M

et
h

o
d

.

a
k

b k
l

c k
c∗ k

l/
k

1
2

3
4

5
6

7
8

9
10

11
12

1
0

0
4
1

4
8
0

0

2
2 2
7

2 2
7

0
0

3
1 9

1 3
6

1 1
2

0
0

4
1 6

1 2
4

0
1 8

0
0

5
5 1
2

5 1
2

0
−

2
5

1
6

2
5

1
6

0
0

6
1 2

1 2
0

0
0

1 4
1 5

3
4

1
0
5

3
4

1
0
5

7
5 6
−

2
5

1
0
8

0
0

1
2
5

1
0
8

−
6
5

2
7

1
2
5

5
4

9 3
5

9 3
5

8
1 6

3
1

3
0
0

0
0

0
6
1

2
2
5

−
2 9

1
3

9
0
0

9 3
5

9 3
5

9
2 3

2
0

0
−

5
3 6

7
0
4

4
5

−
1
0
7

9
6
7

9
0

3
9

2
8
0

9
2
8
0

10
1 3
−

9
1

1
0
8

0
0

2
3

1
0
8

−
9
7
6

1
3
5

3
1
1

5
4

−
1
9

6
0

1
7 6

−
1 1
2

9
2
8
0

9
2
8
0

11
1

2
3
8
3

4
1
0
0

0
0

−
3
4
1

1
6
4

4
4
9
6

1
0
2
5
−

3
0
1

8
2

2
1
3
3

4
1
0
0

4
5

8
2

4
5

1
6
4

1
8

4
1

4
1

8
4
0

0

12
0

3
2
0
5

0
0

0
0

−
6 4
1
−

3
2
0
5
−

3 4
1

3 4
1

6 4
1

0
0

4
1

8
4
0

13
1
−

1
7
7
7

4
1
0
0

0
0

−
3
4
1

1
6
4

4
4
9
6

1
0
2
5
−

2
8
9

8
2

2
1
9
3

4
1
0
0

5
1

8
2

3
3

1
6
4

1
2

4
1

0
1

0
4
1

8
4
0

Chapter 6

Results : Software Validation

6.1 Introduction

The validation of software is important in ensuring the developed software correctly per-

forms its required tasks. This is achieved by comparing results produced by the propagator

with those of its counterparts. The results of the PRECurSOr software were validated

against HPOP (a package of STK) and SLR-derived reference orbit of SUNSAT. According

to Vallado (1997), modern laser-tracking systems e.g. SLR, permit very accurate analysis

of how a well propagation routine models the real world. The validation of PRECurSOr

is performed by considering the sequential addition of perturbation forces to the initial

two-body solution.

6.2 Force Models Versus Processing Time

Table 6.1 presents the trade-off between the model complexity and its accuracy. The

perturbation forces were added sequentially to the initial two-body equation of motion.

The ptrocessing time (tp) was recorded from PiBang Linux on its terminal window. The

position and velocity absolute errors are represented by ∆r and ∆v, respectively. These

57

Chapter 6. Results: Software Validation 58

are calculated using the SLR-derived orbit as reference. Figure 6.1 is the graphical repre-

sentation of the absolute errors in position compared to the processing time of Raspberry

Pi computer.

i

Table 6.1: One-day PRECurSOr force models versus processing time (tp) eval-
uation using different integrators and SLR-derived orbit as reference

RK4 (h = 60 sec) RK4 (h = 30 sec) RKF78
tp sec ∆r (m) ∆v (m/s) tp sec ∆r (m) ∆v (m/s) tp sec ∆r (m) ∆v (m/s)

TWOBODY 11.26 274985.31 286.22 12.15 276327.53 287.63 11.58 276376.91 287.68
MOON 11.26 274985.31 286.22 12.30 276327.53 287.63 11.69 276376.91 287.68
SUN 11.35 274985.31 286.22 12.65 276327.53 287.63 11.97 276376.91 287.68
DRAG 18.44 274929.33 286.16 27.76 276271.58 287.57 22.39 276320.97 287.62
J2 18.53 4584.23 5.21 27.91 3206.46 3.76 22.64 3155.75 3.70
10× 10 19.13 1331.11 1.41 29.01 56.14 0.05 23.16 105.67 105.6
20× 20 20.04 1117.32 1.17 31.60 266.82 0.29 24.38 317.43 0.34
60× 60 30.06 1008.25 1.06 51.18 375.04 0.40 40.21 426.15 0.45
SRP 30.73 1007.41 1.06 51.73 375.65 0.40 42.13 427.05 0.45

Figure 6.1: PRECurSOr processing time versus accuracy.

Chapter 6. Results: Software Validation 59

6.3 Validation of PRECurSOr

6.3.1 Two-body and Perturbation Forces

In Figure 6.2 PRECurSOr with a two-body solution is validated by comparing its ab-

solute errors in position and velocity with that of STK. This is a one-day propagation

by PRECurSOr (two-body) using the RK4 (h = 60 sec) integrator. Absolute errors are

obtained using SLR-derived orbit from processed data as reference.

Figure 6.3 presents results of absolute errors in position and velocity of PRECurSOr and

STK’s HPOP, using SLR-derived data as the reference orbit. Both propagators include

J2 perturbation and a 20×20 gravity field model to the initial two-body solution. Results

of PRECurSOr using a 60 × 60 gravity model are also shown. The RK4 (h = 60 sec)

integrator was used for this propagation.

Figure 6.2: Absolute errors in position and velocity of two-body propagators
compared to SUNSAT SLR-derived data

The results of atmospheric drag validation are shown in Figure 6.4. The Jacchia-Roberts

atmospheric model was used for density calculations in STK, while for PRECurSOr, the

Jacchia 70 static atmospheric model was used. In addition, results by PRECurSOr using

Chapter 6. Results: Software Validation 60

Figure 6.3: Absolute errors in position and velocity of PRECurSOr and STK’s
HPOP with J2 perturbation and 20× 20 gravity field model

10× 10 and 60× 60 gravity fields with drag are shown. A comparison of the state vectors

of the two propagators (using 20× 20 gravity models) is tabulated in Table 6.2.

Figure 6.4: Absolute errors in position and velocity by PRECurSOr and STK
with the presence of drag

Chapter 6. Results: Software Validation 61

6.3.2 SUNSAT Orbit

Figure 6.5 illustrates the ground track of one orbit of SUNSAT as determined by STK,

SLR and PRECurSOr. A 3D space orbit of SUNSAT as determined by SLR and PRECur-

SOr follows in Figure 6.6. The positions of SUNSAT after one day of propagation using

PRECurSOr compared to that obtained from the SLR-derived orbit are also marked on

the figure.

Figure 6.5: SUNSAT ground track comparison of the measured SLR orbit
against predicted STK and PRECurSOr orbits

Figure 6.6: 100 minutes measured and predicted SUNSAT orbit with the posi-
tion of the satellite after 24 hours as determined by SLR and PRECurSOr

Chapter 6. Results: Software Validation 62

6.4 Analysis of Integrators

The absolute errors in position and velocity of PRECurSOr after one day, using the RK4

(h = 30 sec), RK4 (h = 60 sec) and RKF78 integrators are shown graphically in Fig-

ure 6.7. The results of each integrator are plotted using perturbation forces returning

minimum absolute errors. Since RKF78 is a multi-step integrator, MATLAB spline inter-

polation function was used for off-line interpolation and plotting of RKF78 data. Figure

6.8 indicates how the RKF78 integrator step-size changes over a one-day propagation

period.

Figure 6.7: Absolute error in position and velocity of PRECurSOr compared to
SUNSAT SLR-derived orbit, using step sizes of 20, 30 and 60 seconds

Chapter 6. Results: Software Validation 63

Figure 6.8: Step-size (h) changes in RKF78 with the error tolerance of 10−8,
over a one-day propagation period

Figure 6.9: Step-size (h) changes in RKF78 with the error tolerance of 10−12,
over a one-day propagation period

6.5 Discussion

As shown in Table 6.1 and Figure 6.1, the RK4 (h = 60 sec) integrator processes the results

with all perturbation forces considered, in the shortest period compared to the RK4 (h =

30 sec) and RKF78 integrators. The RK4 (h = 30 sec) integrator yields better accuracy

Chapter 6. Results: Software Validation 64

(smaller absolute errors in position and velocity) in 29.01 seconds, with luni-solar, J2

and 10 × 10 perturbations considered. Luni-solar perturbations could subsequently be

ignored for a one-day propagation, due to the negligible improvement in accuracy and the

relatively high computational cost.

Propagation done by the RK4 (h = 30 sec) integrator with J2, 10 × 10 and SRP per-

turbations is ultimately the best option compared to the RKF78 and RK4 (h = 60 sec)

integrators, for this one-day test case, considering the propagator’s accuracy and com-

putation time. These results are tabulated in Table 6.3. However, if better accuracy is

required within the first 4 hours of propagation, the RK4 (h = 30 sec) integrator with a

20× 20 gravity field model and atmospheric drag may be used. This is because the errors

obtained by the RK4 (h = 30 sec) integrator with J2, 10 × 10 and SPR perturbations

don’t increase linearly as shown in Figure 6.7.

The adaptive step-size RKF78 integrator yields smaller absolute errors propagating with

step-sizes between 127 and 136 seconds, with the error tolerance of 10−8, as shown in

Figure 6.8. When the error tolerance is decreased to 10−12 it is found that the step-sizes

decrease to 32 - 37 seconds (Figure 6.9), but the solution’s accuracy does not significantly

improve. The step-size increases when the satellite’s orbital speed decreases (towards

apogee) and decreases towards perigee where the orbital speed is at a maximum. For the

given SUNSAT orbital period of about 100 minutes, the number of positive and negative

peaks in both figures correspond to the number of times SUNSAT orbits the Earth through

apogee and perigee respectively over the integration period of one day (i.e. about 14 times

per day each).

The introduction of a 60× 60 gravity field model using the RK4 (h = 30 sec) and RKF78

integrators does not improve the accuracy of PRECurSOr. This is due to the accumulation

of errors by integrators and the step-size selection in case of the RK4 integrator. It is

evident from this discrepancy that in numerical integration, for this test case and the

propagators used, higher order or smaller step-size does not necessarily render better

accuracy or performance for one-day propagation. The validation of PRECurSOr using

STK with SLR-derived orbit as reference indicates that PRECurSOr is more accurate

than STK’s HPOP.

Chapter 6. Results: Software Validation 65

Table 6.2: Position and velocity absolute errors of PRECurSOr (RK4, h = 60
sec) and STK (RK4, h = 60 sec)

Time Program X(m) Y(m) Z(m) Vx(m/s) Vy(m/s) Vz(m/s) ∆r(m) ∆v(m/s)
(EpochHr)
1 Hour SLR 73029.63066 -6656914.39 2798448.421 -933.056169 2779.862946 6777.740693

PCR 73027.12247 -6656911.54 2798450.423 -933.0565583 2779.868175 6777.740988 4.28914 0.00525
STK 73027.209 -6656907.012 2798456.893 -933.054901 2779.874611 6777.739729 11.4894 0.01177

2 Hours SLR 453429.1835 3738183.610 -5938731.48 830.5028808 -6401.54511 -3969.92157
PCR 453435.3635 3738168.526 -5938736.339 830.5053541 -6401.558493 -3969.906913 17.0095 0.02000
STK 453432.894 3738160.761 -5938741.209 830.502948 -6401.563476 -3969.898033 25.1095 0.02986

3 Hours SLR -833949.512 342335.4591 7155952.778 -387.961040 7361.554612 -463.959568
PCR -833959.8703 342373.0969 7155948.931 -387.9554048 7361.552923 -463.9966656 39.2262 0.03756
STK -833955.457 342390.663 7155947.904 -387.954619 7361.552108 -464.014139 55.7366 0.05500

4 Hours SLR 882458.4015 -4690605.05 -5270183.71 -210.585211 -5686.73168 4881.027073
PCR 882462.7803 -4690645.128 -5270136.978 -210.6019434 -5686.696316 4881.077731 61.7129 0.06401
STK 882457.954 -4690658.602 -5270123.952 -210.598659 -5686.683435 4881.095293 80.2369 0.08463

5 Hours SLR -627911.147 6820981.821 1865602.940 702.2448718 1937.867783 -7225.03629
PCR -627905.2444 6821000.783 1865530.213 702.2669666 1937.787937 -7225.05514 75.3900 0.08496
STK -627902.538 6821007.678 1865504.051 702.259904 1937.760661 -7225.063787 102.576 0.11161

6 Hours SLR 88987.01876 -6650580.02 2815144.524 -940.682367 2794.998693 6769.481014
PCR 88963.56969 -6650529.846 2815249.077 -940.6977952 2795.107585 6769.438509 118.315 0.11791
STK 88966.336 -6650516.193 2815277.160 -940.689020 2795.137223 6769.428643 148.639 0.14825

7 Hours SLR 445878.9457 3720185.794 -5950586.40 846.6741233 -6411.33533 -3950.54040
PCR 445908.2439 3720077.964 -5950643.044 846.6728863 -6411.413954 -3950.42521 125.277 0.13947
STK 445900.153 3720048.443 -5950662.823 846.665948 -6411.432538 -3950.393730 158.606 0.17615

8 Hours SLR -836177.037 358428.8881 7153804.333 -405.944999 7360.383301 -484.093557
PCR -836206.7621 358591.8599 7153791.924 -405.9198706 7360.372284 -484.2591822 166.124 0.16788
STK -836194.891 358633.005 7153789.619 -405.919391 7360.370880 -484.300833 205.424 0.20922

9 Hours SLR 895401.5684 -4705605.32 -5256659.08 -197.976076 -5671.28784 4897.062326
PCR 895408.623 -4705750.828 -5256511.917 -198.0210696 -5671.157556 4897.226179 207.076 0.21411
STK 895398.471 -4705781.707 -5256485.730 -198.012799 -5671.128003 4897.261417 247.333 0.25794

10 Hours SLR -644552.285 6823913.005 1842610.834 699.6225659 1916.995141 -7232.75563
PCR -644533.413 6823967.136 1842400.5 699.6705761 1916.76728 -7232.812615 218.006 0.23974
STK -644528.558 6823979.849 1842351.555 699.656230 1916.716248 -7232.828738 268.806 0.29028

11 Hours SLR 104847.6662 -6643350.13 2833744.264 -948.964750 2812.325319 6760.186593
PCR 104791.6852 -6643232.705 2834006.64 -948.994208 2812.593876 6760.073574 292.855 0.29285
STK 104797.668 -6643211.187 2834052.982 -948.978474 2812.643208 6760.056421 342.217 0.34378

12 Hours SLR 438663.3430 3699094.493 -5964326.49 862.7264156 -6422.89251 -3928.04697
PCR 438728.2933 3698826.314 -5964469.618 862.7168385 -6423.080826 -3927.766592 310.843 0.33789
STK 438714.195 3698778.186 -5964502.162 862.705824 -6423.110699 -3927.715889 365.370 0.39705

13 Hours SLR -838138.166 376386.5011 7151721.988 -423.637199 7358.866662 -506.161339
PCR -838190.8791 376750.5463 7151694.178 -423.5813118 7358.842969 -506.5357927 368.891 0.37934
STK -838171.504 376811.422 7151690.730 -423.581648 7358.841020 -506.597656 427.371 0.44058

14 Hours SLR 907736.7345 -4721806.41 -5242146.74 -185.138074 -5654.67849 4914.244797
PCR 907743.3574 -4722122.269 -5241843.704 -185.2250681 -5654.39187 4914.585718 437.767 0.45382
STK 907728.101 -4722167.413 -5241806.923 -185.211417 -5654.348336 4914.635346 495.854 0.51664

15 Hours SLR -661134.755 6826960.566 1820214.839 696.2149934 1896.250676 -7239.97616
PCR -661093.1141 6827070.066 1819775.588 696.2999314 1895.78054 -7240.098609 454.606 0.49319
STK -661086.450 6827087.457 1819707.761 696.278123 1895.709816 -7240.120906 524.942 0.56344

16 Hours SLR 120992.5493 -6636208.09 2851769.651 -956.606129 2828.857451 6751.294353
PCR 120897.6885 -6635988.719 2852272.316 -956.6481674 2829.373625 6751.071778 556.593 0.56369
STK 120907.185 -6635960.797 2852333.043 -956.625559 2829.438729 6751.048948 621.171 0.63126

17 Hours SLR 430790.6428 3680808.750 -5976571.19 879.0767519 -6432.57954 -3907.95884
PCR 430896.9636 3680300.862 -5976851.911 879.0548732 -6432.925604 -3907.426794 589.961 0.63507
STK 430876.739 3680237.698 -5976894.907 879.039958 -6432.964274 -3907.360641 662.043 0.71219

18 Hours SLR -840071.032 393089.6939 7149592.025 -442.016582 7357.399224 -526.634761
PCR -840153.3399 393746.9661 7149541.766 -441.9242889 7357.355478 -527.3103423 664.309 0.68326
STK -840126.451 393823.574 7149537.339 -441.925572 7357.353142 -527.388169 737.998 0.76028

19 Hours SLR 920599.0886 -4735524.35 -5229345.32 -172.263718 -5639.93041 4929.468963
PCR 920601.6978 -4736071.883 -5228828.178 -172.4027328 -5639.429378 4930.054303 753.152 0.78293
STK 920581.346 -4736128.154 -5228783.434 -172.383697 -5639.374711 4930.115052 824.993 0.86059

20 Hours SLR -677950.830 6829647.345 1798712.771 693.5216679 1876.595024 -7246.84054
PCR -677878.3837 6829837.012 1797963.21 693.6486873 1875.7948 -7247.045673 776.572 0.83581
STK -677869.929 6829858.020 1797880.433 693.619474 1875.708414 -7247.072913 862.389 0.92176

21 Hours SLR 136542.7592 -6629013.54 2869409.092 -965.110952 2845.048921 6742.506767
PCR 136395.2022 -6628660.053 2870217.796 -965.1680567 2845.88265 6742.14599 894.834 0.91023
STK 136408.135 -6628627.123 2870289.328 -965.138594 2845.959881 6742.118988 970.699 0.99045

22 Hours SLR 423912.5491 3660989.721 -5989106.17 895.3884566 -6443.22398 -3886.72854
PCR 424067.6255 3660188.095 -5989557.78 895.3454844 -6443.762163 -3885.88098 933.061 1.00491
STK 424041.251 3660113.212 -5989609.020 895.326682 -6443.807338 -3885.802964 1018.67 1.09582

23 Hours SLR -842667.618 410715.4574 7147333.001 -459.541019 7355.714865 -548.394316
PCR -842780.3469 411734.721 7147254.644 -459.4018379 7355.645641 -549.4386904 1028.47 1.05588
STK -842745.958 411823.196 7147249.416 -459.404102 7355.643074 -549.528430 1113.65 1.14460

24 Hours SLR 933315.9401 -4751747.19 -5214530.62 -160.155418 -5623.09584 4946.559678
PCR 933316.3829 -4752559.898 -5213765.086 -160.3545332 -5622.342443 4947.42957 1116.49 1.16789
STK 933291.017 -4752624.172 -5213715.048 -160.329975 -5622.279410 4947.498143 1197.86 1.25608

Chapter 6. Results: Software Validation 66

Table 6.3: Position and velocity absolute errors of PRECurSOr (RK4 (h = 30
sec) with a 10× 10 gravity field model and drag model)

Time Program X(m) Y(m) Z(m) Vx(m/s) Vy(m/s) Vz(m/s) ∆r(m) ∆v(m/s)
(EpochHr)
1 Hour SLR 73029.63066 -6656914.39 2798448.421 -933.056169 2779.862946 6777.740693

PCR 73019.63271 -6656916.876 2798438.664 -933.0581866 2779.857225 6777.744214 14.19 0.007015
2 Hours SLR 453429.1835 3738183.610 -5938731.48 830.5028808 -6401.54511 -3969.92157

PCR 453443.0839 3738173.731 -5938737.313 830.5124295 -6401.550187 -3969.911738 18.023 0.01462
3 Hours SLR -833949.512 342335.4591 7155952.778 -387.961040 7361.554612 -463.959568

PCR -833966.3568 342382.3784 7155945.76 -387.9621888 7361.554625 -464.0005261 50.343 0.04097
4 Hours SLR 882458.4015 -4690605.05 -5270183.71 -210.585211 -5686.73168 4881.027073

PCR 882473.1998 -4690625.756 -5270160.446 -210.6003845 -5686.710518 4881.051358 34.475 0.03561
5 Hours SLR -627911.147 6820981.821 1865602.940 702.2448718 1937.867783 -7225.03629

PCR -627909.8683 6820995.641 1865540.851 702.2683663 1937.811087 -7225.052703 63.622 0.06353
6 Hours SLR 88987.01876 -6650580.02 2815144.524 -940.682367 2794.998693 6769.481014

PCR 88980.06765 -6650554.774 2815196.441 -940.7036954 2795.062443 6769.456112 58.146 0.07169
7 Hours SLR 445878.9457 3720185.794 -5950586.40 846.6741233 -6411.33533 -3950.54040

PCR 445902.6618 3720112.606 -5950635.966 846.6850642 -6411.377057 -3950.459382 91.52 0.09179
8 Hours SLR -836177.037 358428.8881 7153804.333 -405.944999 7360.383301 -484.093557

PCR -836202.4037 358491.1572 7153786.44 -405.9434872 7360.390776 -484.1637445 69.578 0.0706
9 Hours SLR 895401.5684 -4705605.32 -5256659.08 -197.976076 -5671.28784 4897.062326

PCR 895420.675 -4705647.748 -5256630.453 -197.9939633 -5671.242226 4897.098442 54.635 0.06087
10 Hours SLR -644552.285 6823913.005 1842610.834 699.6225659 1916.995141 -7232.75563

PCR -644550.5666 6823932.127 1842502.779 699.6526297 1916.899099 -7232.788317 109.75 0.1058
11 Hours SLR 104847.6662 -6643350.13 2833744.264 -948.964750 2812.325319 6760.186593

PCR 104823.424 -6643318.407 2833820.557 -948.9859825 2812.415886 6760.147088 86.109 0.1011
12 Hours SLR 438663.3430 3699094.493 -5964326.49 862.7264156 -6422.89251 -3928.04697

PCR 438697.8955 3699024.803 -5964376.214 862.739926 -6422.935198 -3927.958858 92.318 0.09884
13 Hours SLR -838138.166 376386.5011 7151721.988 -423.637199 7358.866662 -506.161339

PCR -838180.9355 376511.3626 7151701.423 -423.6164591 7358.868534 -506.2791574 133.58 0.1196
14 Hours SLR 907736.7345 -4721806.41 -5242146.74 -185.138074 -5654.67849 4914.244797

PCR 907765.822 -4721833.843 -5242124.183 -185.1851355 -5654.6406 4914.275493 45.906 0.06777
15 Hours SLR -661134.755 6826960.566 1820214.839 696.2149934 1896.250676 -7239.97616

PCR -661134.8487 6826978.274 1820139.814 696.2831159 1896.184878 -7239.988038 77.087 0.09545
16 Hours SLR 120992.5493 -6636208.09 2851769.651 -956.606129 2828.857451 6751.294353

PCR 120960.2467 -6636189.598 2851789.573 -956.667192 2828.893217 6751.279448 42.219 0.07232
17 Hours SLR 430790.6428 3680808.750 -5976571.19 879.0767519 -6432.57954 -3907.95884

PCR 430847.7433 3680791.105 -5976588.151 879.0924413 -6432.592654 -3907.919377 62.123 0.04445
18 Hours SLR -840071.032 393089.6939 7149592.025 -442.016582 7357.399224 -526.634761

PCR -840127.0251 393164.6931 7149578.91 -442.0009215 7357.397907 -526.6986111 94.51 0.06576
19 Hours SLR 920599.0886 -4735524.35 -5229345.32 -172.263718 -5639.93041 4929.468963

PCR 920627.4786 -4735550.934 -5229301.538 -172.3000421 -5639.904109 4929.518366 58.564 0.06672
20 Hours SLR -677950.830 6829647.345 1798712.771 693.5216679 1876.595024 -7246.84054

PCR -677957.7026 6829676.013 1798654.703 693.5656879 1876.527993 -7246.838391 65.123 0.08022
21 Hours SLR 136542.7592 -6629013.54 2869409.092 -965.110952 2845.048921 6742.506767

PCR 136523.9387 -6628985.217 2869464.894 -965.1536716 2845.104483 6742.484576 65.347 0.07352
22 Hours SLR 423912.5491 3660989.721 -5989106.17 895.3884566 -6443.22398 -3886.72854

PCR 423940.9208 3660988.65 -5989116.154 895.4131527 -6443.22376 -3886.70794 30.095 0.03216
23 Hours SLR -842667.618 410715.4574 7147333.001 -459.541019 7355.714865 -548.394316

PCR -842713.7382 410753.1994 7147327.729 -459.5399664 7355.713136 -548.4199293 59.827 0.02569
24 Hours SLR 933315.9401 -4751747.19 -5214530.62 -160.155418 -5623.09584 4946.559678

PCR 933340.4851 -4751708.24 -5214562.742 -160.1803242 -5623.127237 4946.52371 56.136 0.05385

Chapter 6. Results: Software Validation 67

Table 6.4: Position and velocity absolute errors of PRECurSOr (RKF78, with
a 10× 10 gravity field model and drag model)

Time Program X(m) Y(m) Z(m) Vx(m/s) Vy(m/s) Vz(m/s) ∆r(m) ∆v(m/s)
(EpochHr)
1 Hour SLR 73029.63066 -6656914.39 2798448.421 -933.056169 2779.862946 6777.740693

PCR 73020.00023 -6656918.15 2798436.085 -933.0581234 2779.854436 6777.745102 16.09 0.00978
2 Hours SLR 453429.1835 3738183.610 -5938731.48 830.5028808 -6401.54511 -3969.92157

PCR 453442.9917 3738174.572 -5938736.939 830.5124907 -6401.549492 -3969.912645 17.382 0.01383
3 Hours SLR -833949.512 342335.4591 7155952.778 -387.961040 7361.554612 -463.959568

PCR -833966.1479 342378.5557 7155945.936 -387.9626126 7361.554564 -463.9967484 46.7 0.03721
4 Hours SLR 882458.4015 -4690605.05 -5270183.71 -210.585211 -5686.73168 4881.027073

PCR 882472.7922 -4690640.513 -5270149.01 -210.6028088 -5686.697847 4881.065979 51.654 0.05448
5 Hours SLR -627911.147 6820981.821 1865602.940 702.2448718 1937.867783 -7225.03629

PCR -627907.7064 6821001.908 1865518.459 702.270569 1937.787574 -7225.059485 86.905 0.08736
6 Hours SLR 88987.01876 -6650580.02 2815144.524 -940.682367 2794.998693 6769.481014

PCR 88985.37647 -6650571.111 2815158.529 -940.7031471 2795.022885 6769.472743 16.679 0.03295
7 Hours SLR 445878.9457 3720185.794 -5950586.40 846.6741233 -6411.33533 -3950.54040

PCR 445898.9998 3720140.434 -5950618.924 846.6872506 -6411.358207 -3950.488989 59.309 0.05778
8 Hours SLR -836177.037 358428.8881 7153804.333 -405.944999 7360.383301 -484.093557

PCR -836202.2951 358488.4912 7153786.955 -405.9437842 7360.391044 -484.1612501 67.026 0.06815
9 Hours SLR 895401.5684 -4705605.32 -5256659.08 -197.976076 -5671.28784 4897.062326

PCR 895420.6635 -4705648.923 -5256629.715 -197.9941018 -5671.240654 4897.098766 55.932 0.06228
10 Hours SLR -644552.285 6823913.005 1842610.834 699.6225659 1916.995141 -7232.75563

PCR -644554.9643 6823920.365 1842548.111 699.6481554 1916.94693 -7232.775747 63.21 0.05817
11 Hours SLR 104847.6662 -6643350.13 2833744.264 -948.964750 2812.325319 6760.186593

PCR 104828.5381 -6643334.362 2833784.545 -948.9853654 2812.378279 6760.162974 47.298 0.06154
12 Hours SLR 438663.3430 3699094.493 -5964326.49 862.7264156 -6422.89251 -3928.04697

PCR 438697.601 3699027.356 -5964375.06 862.7401043 -6422.933211 -3927.961601 89.664 0.09556
13 Hours SLR -838138.166 376386.5011 7151721.988 -423.637199 7358.866662 -506.161339

PCR -838179.9735 376493.1649 7151703.431 -423.6186423 7358.870045 -506.260741 116.06 0.1012
14 Hours SLR 907736.7345 -4721806.41 -5242146.74 -185.138074 -5654.67849 4914.244797

PCR 907766.3903 -4721818.985 -5242137.849 -185.1823894 -5654.654026 4914.259055 33.416 0.05259
15 Hours SLR -661134.755 6826960.566 1820214.839 696.2149934 1896.250676 -7239.97616

PCR -661139.5845 6826965.849 1820188.836 696.278173 1896.236653 -7239.974802 26.971 0.06473
16 Hours SLR 120992.5493 -6636208.09 2851769.651 -956.606129 2828.857451 6751.294353

PCR 120965.2439 -6636205.014 2851754.626 -956.6664401 2828.856693 6751.294447 31.318 0.06032
17 Hours SLR 430790.6428 3680808.750 -5976571.19 879.0767519 -6432.57954 -3907.95884

PCR 430844.4618 3680815.812 -5976573.943 879.0943195 -6432.576387 -3907.945695 54.35 0.02217
18 Hours SLR -840071.032 393089.6939 7149592.025 -442.016582 7357.399224 -526.634761

PCR -840126.3857 393153.8908 7149579.771 -442.0021552 7357.398329 -526.6879148 85.647 0.05508
19 Hours SLR 920599.0886 -4735524.35 -5229345.32 -172.263718 -5639.93041 4929.468963

PCR 920627.5547 -4735553.221 -5229300.877 -172.3002926 -5639.902025 4929.519247 60.16 0.06835
20 Hours SLR -677950.830 6829647.345 1798712.771 693.5216679 1876.595024 -7246.84054

PCR -677960.0999 6829669.001 1798680.156 693.5629842 1876.554982 -7246.831027 40.233 0.05832
21 Hours SLR 136542.7592 -6629013.54 2869409.092 -965.110952 2845.048921 6742.506767

PCR 136528.508 -6628999.578 2869433.433 -965.1529047 2845.07156 6742.498121 31.472 0.04845
22 Hours SLR 423912.5491 3660989.721 -5989106.17 895.3884566 -6443.22398 -3886.72854

PCR 423936.5609 3661020.681 -5989097.588 895.4155244 -6443.202563 -3886.742069 40.11 0.03707
23 Hours SLR -842667.618 410715.4574 7147333.001 -459.541019 7355.714865 -548.394316

PCR -842711.7766 410720.7335 7147330.747 -459.5438541 7355.715368 -548.3869699 44.53 0.00789
24 Hours SLR 933315.9401 -4751747.19 -5214530.62 -160.155418 -5623.09584 4946.559678

PCR 933341.7596 -4751670.049 -5214598.058 -160.1731281 -5623.162998 4946.482758 105.66 0.1036

Chapter 7

Conclusions and Future Work

7.1 Conclusions

A precise orbit propagator, PRECurSOr, was presented. The propagator was developed

using Cowell’s method of special perturbations for short-term precision orbit propagation.

PRECurSOr uses two integrators, the RK4 and RKF78, and includes an aspherical Earth,

atmospheric drag, luni-solar and solar radiation pressure perturbative effects.

Considering the effect of an aspherical Earth improves the accuracy of PRECurSOr sig-

nificantly, making it a very important perturbation to quantify. This significant improve-

ment of the accuracy is indicated in Table 6.1. Results in Table 6.1 indicate that luni-solar

perturbations have a negligible impact on the accuracy of the propagator and may be ne-

glected. In addition, solar radiation pressure only improves PRECurSOr ’s accuracy when

RK4 (h = 60 sec) integrator is used. Inclusion of atmospheric drag does not improve the

solution significantly over a one-day propagation and may also be neglected, except in the

case where the RK4 (h = 30 sec) integrator with a 10× 10 gravity model is used.

The worst of absolute errors in position by PRECurSOr for this test case at a chosen

epoch for a one-day propagation were 1331.11 m, which result in an angular separation

of 0.13◦ for a satellite like SUNSAT, with a perigee of about 600 km. Alternatively,

the smallest absolute errors in position were 56.14 m which correspond to an angular

68

Chapter 7. Conclusions and Future Work 69

separation of 0.005◦. This corresponds to a very small pointing error, which means that

position measurements by PRECurSOr are reliable for imaging.

It is recommended that for a one-day propagation, the RKF78 integrator with all per-

turbation forces included be used. However, if accurate position of a satellite is required

within the first 4 hours of propagation, the RK4 (h = 30 sec) with a 20× 20 gravity field

model or the RK4 (h = 60 sec) integrator with a 60 × 60 gravity field model is recom-

mended for precision propagation. With the help of an on-board GPS (Global Positioning

System) receiver, the initial conditions of this propagator can be re-initialised or uploaded

from ground station, when the errors observed in the state vector become unacceptably

large compared to the real-time state vector.

7.2 Future Work

PRECurSOr was developed under minimal number of perturbations forces enabling it to

retain sufficient accuracy. Perturbations such as the Earth’s radiation pressure, planetary

attraction (third body attraction other than the Moon and Sun), tidal forces and general

relativistic deviations to the Newtonian equation of motion could be incorporated into

this propagator. The dynamics of a thruster system could also be included. Instead of

using static atmospheric models for density calculations, dynamic atmospheric models

like Jacchia 70 and 71, Jacchia-Roberts and MSIS could be implemented to improve the

accuracy of the propagator. The 20×20 gravity field model could be extended to a full

gravity model. The performance of the propagator could be tested for satellites at other

orbit altitude regimes, such as MEO and GEO.

Appendix A

Vectors

The following is a summary of (Vallado, 1997 :855-856) and (Curtis, 2010 :2-9).

A vector is defined as a quantity with both magnitude and direction. We represent a

vector graphically by an arrow pointing to the direction of the vector, where the length

of the arrow signifies its magnitude. A vector can be denoted by a bold letter(e.g. A) or

just a plain letter with an arrow on top(e.g. ~a). The former will be used to denote vectors

in this study. Vectors come in different multiple dimensions but here we will use vectors

with three components only.

In this section we’ll only use three vectors r⊕, r� and rsat which will be used several times

in this study. These two vectors are represented in cartesian components as follows:

r⊕ = x⊕î + y⊕ĵ + z⊕k̂

and

r� = x�î + y�ĵ + z�k̂

where î, ĵ and k̂ are unit vectors.

70

Vectors 71

The magnitude of a vector, say r⊕ , which is denoted by |r⊕| or r⊕, is found by taking

the square root of the sum of the squares of each component.

|r⊕| = r⊕ =
√
x2
⊕ + y2

⊕ + z2
⊕

Addition of two vectors is performed by adding the corresponding components of the vec-

tors involved. Vector addition is commutative i.e. r⊕ + r� = r� + r⊕.

Similarly, vectors subtraction is also performed by subtracting the corresponding com-

ponents of the vectors involved. But, vector subtraction is not commutative. Therefore,

r⊕−r� = −(r�−r⊕). The vectors r⊕� and r�⊕ will represent subtraction of vectors r⊕ and

r� depending on which vector is getting subtracted from another vector: r⊕� = r� − r⊕

or r�⊕ = r⊕ − r�.

There are not set of defined rules for vector division and multiplication. However, there are

two binary operations on vectors which are closely related to division and multiplication

of vectors. The operations are the dot product and the cross product. The dot product

of two vectors is defined as follows:

r� · r⊕ = r�r⊕ cos θ

Where θ is the angle between the two vectors. The dot product of two vectors is a scalar

and is also commutative(i.e. r� · r⊕ = r⊕ · r�) Finally, the cross product of two vectors is

defined as follows:

r� × r⊕ = r�r⊕ sin θ

The cross product of two vectors is another vector. Commutativity does not apply in

cross product, thus, r� × r⊕ = −r⊕ × r�

Some important vector identities are listed below,

Vectors 72

rsat · (r⊕ × r�) = (rsat × r⊕) · r� (A.1)

rsat × (r⊕ × r�) = (rsat · r�)r⊕ − (rsat · r⊕)r� (A.2)

(rsat × r⊕)× r� = (rsat · r�)r⊕ − (r⊕ · r�)rsat (A.3)

Appendix B

Mechanical Energy and Angular

Momentum

Conservation of Mechanical Energy

The specific mechanical energy is found by dot-multiplying equation (2.2) by ṙ (Chobotov,

2002 :23-24):

ṙ · r̈ +
µ

r3
r · ṙ (B.1)

Knowing that r · r = r2 and d
dt

(1/r) = (−1/r2)dr
dr

we can further simplify this equation as

follows:

0 =
1

2

d

dt
(ṙ · ṙ) +

µ

r3
rṙ

=
1

2

d

dt
(v · v) +

µ

r2
ṙ

=
1

2

d

dt
(v2)− d

dt

µ

r
(B.2)

73

Mechanical Energy and Angular Momentum 74

(
v2

2
− µ

r

)
= ε (B.3)

Where (v2/2) is the specific kinetic energy per unit mass and (−µ/r) is the specific poten-

tial energy per unit mass. The specific potential energy is the same as the gravitational

potential per unit mass. The specific mechanical enegry(ε) always remains constant. This

means when a satellite is farthest from the Earth its kinetic enegry decreases while its

potential energy increases and when a satellite is closest to the Earth its kinetic energy

increases and its potential energy decreases.

Conservation of Angular Momentum

The specific angular momentum can be found by vector-multiplying equation (2.2) by r

(Chobotov, 2002 :24):

r× r̈ +
µ

r3
r× r = 0. (B.4)

The second term vanishes because r× r = 0, so that,

r× r̈ = 0. (B.5)

Using, d
dt

(r× ṙ) = ṙ× ṙ + r× r̈ = r× r̈ we end up with the following expression:

d

dt
(r× v) = 0, (B.6)

where the specific angular momentum is represented by r×v = h. The term d~h
dt

= 0 implies

that the specific angular momentum of a satellite remains constant along its orbit.

Appendix C

The Trajectory Equation

The following work presents the derivation of the trajectory equation as presented by

(Vallado, 1997 :110-111)

We start off by vector-multiplying Equation (2.2) by h:

r̈× h +
µ

r3
(r× h) = 0

The first term can be written as a derivative, d
dt

(ṙ×h) like we did in Section 2.4.3.However,

The second term can be simplified using a vector identity listed in A.3 as follows:

µ

r3
r× (r× v) =

µ

r3
((r · v)r− r2v)

This will further simplify to,

µ

r3
(r× h) =

µ

r2
ṙr− µ

r
v

= −µ d
dt

(r

r

)
(C.1)

Substituting the simplified expressions for both the first and second term yields,

75

The Trajectory Equation 76

d

dt
(ṙ× h)− µ d

dt

(r

r

)
= 0

Rewriting,
d

dt
(ṙ× h) = µ

d

dt

(r

r

)
Integrating both sides,

ṙ× h = µ
r

r
+ B

dot-multiplying by r,

r · (ṙ× h) = r ·
(
µ

r

r
+ B

)
The left-hand side can be simplified using Equation (A.1) as follows,

r · (ṙ× h) = (r× ṙ) · h = h · h = h2

Substituting we get,

h2 = µr + rB cos ν

Solving for the position yields the solution of the two-body equation:

r =
h2/µ

1 + (B/µ) cos ν

Appendix D

Eccentric and True Anomaly

Transformation

The following appendix covers the work of (Vallado, 1997 :210-215);(Opperman, 2003 :B1-

5)

Figure D.1: Geometry of Kepler’s Equation(Opperman (2003),Pp B-1)

From Figure D.1 we can directly obtain expressions relating E and ν, which are the

following

sinE =
r sin ν

a
√

1− e2
(D.1)

77

Eccentric and True Anomaly Transformation 78

cosE =
ae+ r cos ν

a
(D.2)

Substituting the trajectory equation in place of r and writing p as it is listed in Table 2.1

gives

sinE =
a(1− e2 sin ν)

a(1 + e cos ν)
√

1− e2

and

cosE = e+

a(1−e2)
(1+e cos ν)

cos ν

a

After simplifying we get

sinE =

√
1− e2 sin ν

1 + e cos ν

and

cosE =
e+ cos ν

1 + e cos ν

Solving for cos ν in Equation (D.2) yields

cos ν =
cosE − e

1− e cosE
(D.3)

Solving for r in Equation (D.2) and substituting for cos ν gives

r = a(1− e cosE) (D.4)

and solving for sin ν in Equation (D.1) and substituting the value of r yields

sin ν =

√
1− e2 sinE

1− e cosE
(D.5)

Dividing Equation (D.3) by Equation (D.5) and using tangent half-angle formula we

obtain a single equation for true anomaly

tan
(ν

2

)
=

√
1−e2 sinE
1−e cosE

cosE−e
1−e cosE

+ 1

tan
(ν

2

)
=

√
1− e2 sinE

cosE − e+ 1− e cosE

Eccentric and True Anomaly Transformation 79

The right-hand side denominator is the product of (1− e)(cosE + 1)

tan
(ν

2

)
=

√
1− e2 sinE

(1− e)(cosE + 1)

Using the tangent half-angle formula to reduce the terms containing E we get

tan
(ν

2

)
=

√
1 + e

1− e
tan

(
E

2

)

Which can finally be written as

tan

(
E

2

)
=

√
1− e
1 + e

tan
(ν

2

)

Appendix E

Lunar and Solar Position

Position of The Sun

The geocentric position of the Sun can be calculated by assuming a purely elliptical motion

of the Earth with a low accuracy of 0.01◦(Meeus, 1991). Given the Julian Day the time T

measured in Julian centuries of 36525 ephemeris days from the epoch J2000.0, is obtained

from

T =
JD − 2451545.0

36525
(E.1)

The position vector may be computed using the following (Meeus, 1991, :163-164):

r� =


r� cos(�)

r� cos(ε) sin(�)

r� sin(ε) sin(�)

 (AU) (E.2)

Where

• r� is the radial distance of the Sun from Earth in AU

r� =
1.000001018(1− e2)

1− e cos ν

80

Lunar and Solar Position 81

The eccentricity of the Earth’s orbit, e is

e = 0.016708634− 0.000042037T − 0.0000001267T 2

The Sun’s true anomaly ν is: ν = M + C

C is the Sun’s equation of the centre given by:

C = + (1.914602◦ − 0.004817◦T − 0.000014◦T 2) sin(M)

+ (0.019993◦ − 0.000101◦T) sin(2M) + 0.000289◦ sin(3M)

M , the mean anomaly of the Sun is

M = 357.52911◦ + 35999.05029◦T − 0.0001537◦T 2

• � is the Sun’s true longitude given by: � = L0 + C

L0 is the geometric mean longitude of the Sun referred to the mean equinox of

date and is given by:

L0 = 280.46646◦ + 36000.76983◦T + 0.0003032◦T 2

• ε is the mean obliquity of ecliptic given by

ε = 23.4392911◦ − 0.0130041◦T − 1.64× 10−7T 2 + 5.04× 10−7T 3

In addition, the Sun’s right ascension α and declination δ are obtained from:

tan(α) =
cos(ε) sin(�)

cos(�)
(E.3)

sin(δ) = sin(ε) sin(�) (E.4)

Lunar and Solar Position 82

Position of The Moon

The motion of the moon is very complex and to obtain the position vector using exact

formulas would require a lot of computations. Vallado (1997) presented shortened formulas

to compute the position of the Moon with a satisfactory accuracy to our problem. The

position vector is given by:

rmoon = rmoon


cos(φecliptic) cos(λecliptic)

cos(ε) cos(φecliptic) sin(λecliptic)− sin(ε) sin(φecliptic)

sin(ε) cos(φecliptic) sin(λecliptic) + cos(ε) sin(φecliptic)

 (E.5)

Where

• rmoon is the distance between the centres of the Earth and Moon in Earth radii(ER)

rmoon =
1

sin(ψ)

ψ is the equatorial horizontal parallax of the moon given by

ψ =0.9505◦ + 0.0518 cos(Mmoon) + 0.0095 cos(Mmoon − 2D�)

+ 0.0078 cos(2D�) + 0.0028 cos(2Mmoon)

Mmoon is the Moon’s mean anomaly(r = 360◦)

Mmoon =134.9629814◦ + (1325r + 198.8673981)T + 0.0086972T 2

+ 1.778× 10−5T 3

D� is the mean elongation of the Sun and is obtained from

D� =297.8503631◦ + (1236r + 307.111480)T − 0.00191417T 2

+ 5.28× 10−6T 3

Lunar and Solar Position 83

• φecliptic is the ecliptic latitude

φecliptic =5.13◦ sin(93.3 + 483202.03T) + 0.28 sin(228.2 + 960400.87T)

− 0.28 sin(318.3 + 6003.18T)− 0.17 sin(217.6− 407332.20T)

• λecliptic, ecliptic longitude is given by

λecliptic =218.32◦ + 481267.8813T + 6.29 sin(134.9 + 477198.85T)

− 1.27 sin(257.2− 413335.38T) + 0.66 sin(235.7 + 890534.23T)

+ 0.21 sin(269.9 + 954397.70T)− 0.19 sin(357.5 + 35999.05T)

− 0.11 sin(186.6 + 966404.05T)

The Moon’s right ascension(α) and declination(δ) are obtained from:

sin(α) =
− sin(φecliptic) sin(ε) + cos(φecliptic) cos(ε) sin(λecliptic)

cos(δ)
(E.6)

sin(δ) = sin(φecliptic) cos(ε) + cos(φecliptic) sin(ε) sin(λecliptic) (E.7)

Appendix F

C++ Source Code - PRECurSOr

/**

Name: DXDT.cpp

Description: The differential equation y’=f(x,y)

Input(s) ___

X[6] = 6-D current cartesian state X,Y,Z,XD,YD,ZD,(M,M/SEC)

t = Current time(s)

Output(s) __

DX = 6-D Derivatives of position and velocity

Date Last Modified: 24 July 2013

Author: Tshilande T

Reference: Opperman 2003

***/

void DXDT(double t, double X[], double DX[])

{

int im,in;

double r_sat[3],sa[3],P[61][61] = {0.0},CN[n+1],SN[n+1],TN[n+1];

double JD,Rij,SRij,R2,Dr,Dp,Dl,dPhi_dr,dPhi_dlambda,dPhi_dphi;

double idr,idphi,idlambda,C1,C2,C3;

double radius,r_cubed,r5;

double Lon, Lat,sphi;

84

C++ Source Code - PRECurSOr 85

double PCSR,rdrs,ratm,theta;

double r_satmoon[3],r_satsun[3];

double r_sun[3],r_moon[3],rs_unit[3],rss_unit[3],su[2],rad_sun,

rad_moon,mag_rsun,rm3,rsm,rsm3,rs3,rss,rss3;

double v_rel[3],omega,altitude,vr2,vr_mag;

static double an[6], wmol, rho;

static double sf[3], te[2];

/*...Create position vector*/

double r_x = X[0],

r_y = X[1],

r_z = X[2];

r_sat[0] = X[0],

r_sat[1] = X[1],

r_sat[2] = X[2];

/*...Compute the radial distance from Earth to Sat*/

R2 = r_x*r_x + r_y*r_y + r_z*r_z;

radius = sqrt(R2);

r_cubed = radius*R2;

/*...Transfer velocity from satellite state vector*/

DX[0] = X[3];

DX[1] = X[4];

DX[2] = X[5];

/*...initialize acceleration for this integration step*/

for(int i=3; i<=5; i++){

DX[i] = 0.0;

}

/*...Compute Julian date*/

JD = JulianDate(year,month,day,t);

//compute longitude, latitude and altitude

ECI_ECEF(JD,r_sat,sa);

C++ Source Code - PRECurSOr 86

Lon = sa[0];

Lat = sa[1];

sphi = sin(Lat);

if(GRAVP == 1){

if(n == 2 && m == 0){

//Compute J2

r5 = R2 * r_cubed;

C1 = -1.5*j2*R_earth*R_earth*mu/r5;

C2 = one- five*r_z*r_z/R2;

DX[3] = DX[3] + X[0]*C1*C2;

DX[4] = DX[4] + X[1]*C1*C2;

DX[5] = DX[5] + X[2]*C1*(C2+two);

}

else{

/*...Aspheric gravity computation*/

Rij = r_x*r_x + r_y*r_y;

SRij = sqrt(Rij);

/*...Compute Normalized legendre polynomials*/

legendre(n,sphi,P);

/*...Compute Cos[m],Sin[m] and Tan[m]*/

trigfunc(m,Lat,Lon,CN,SN,TN);

/*...Compute partials*/

C1 = R_earth/radius;

C2 = C1;

dPhi_dr = zero;

dPhi_dphi = zero;

dPhi_dlambda = zero;

for(int i = 2; i<=n ; i++){

idr = zero;

idphi = zero;

idlambda = zero;

C++ Source Code - PRECurSOr 87

in = i+1;

for(int j = 0; j <=i ; j++){

im = j+1;

C3 = C[i][j]*CN[j] + S[i][j]*SN[j];

idr = idr + C3*P[i][j];

if(im <= i){idphi = idphi + C3*(P[i][im]-TN[j]*P[i][j]);}

if(im > i){idphi = idphi - C3*TN[j]*P[i][j];}

if(j != 0){idlambda = idlambda + j*(S[i][j]*CN[j] -

C[i][j]*SN[j])*P[i][j];}

}

C2 = C2*C1;

dPhi_dr = dPhi_dr + C2*in*idr;

dPhi_dphi = dPhi_dphi + C2*idphi;

dPhi_dlambda = dPhi_dlambda + C2*idlambda;

}

C3 = mu/radius;

dPhi_dr = - dPhi_dr* C3/radius;

dPhi_dphi = dPhi_dphi*C3;

dPhi_dlambda = dPhi_dlambda*C3;

Dr = dPhi_dr/radius;

Dp = r_z/(R2*SRij)*dPhi_dphi;

Dl = dPhi_dlambda/ Rij;

DX[3] = DX[3] + (Dr - Dp)*r_x - (Dl*r_y);

DX[4] = DX[4] + (Dr - Dp)*r_y + (Dl*r_x);

DX[5] = DX[5] + Dr*r_z + SRij*dPhi_dphi/R2;

}

}

if(MOON == 1){

/*...Compute derivative due to the Moon*/

/*...Compute Moon’s position*/

Moon(JD,rad_moon,r_moon);

C++ Source Code - PRECurSOr 88

rm3 = rad_moon*rad_moon*rad_moon;

vminus(r_sat,r_moon,r_satmoon);

rsm = r_satmoon[0]*r_satmoon[0] + r_satmoon[1]*r_satmoon[1]

+ r_satmoon[2]*r_satmoon[2];

rsm = sqrt(rsm);

rsm3 = rsm*rsm*rsm;

for(int i = 0; i<=2; i++){

DX[i+3] = DX[i+3] - mu_moon*(r_satmoon[i]/rsm3 + r_moon[i]/rm3);}

}

if(SUN == 1){

/*...Compute derivative due to the Sun*/

/*...Compute Sun’s position*/

Sun(JD,rad_sun,r_sun,su);

rs3 = rad_sun*rad_sun*rad_sun;

vminus(r_sat,r_sun,r_satsun);

rss = r_satsun[0]*r_satsun[0] + r_satsun[1]*r_satsun[1]

+ r_satsun[2]*r_satsun[2];

rss = sqrt(rss);

rss3 = rss*rss*rss;

for(int i = 0; i<=2; i++){

DX[i+3] = DX[i+3] - mu_sun*(r_satsun[i]/rss3 + r_sun[i]/rs3);}

}

if(SRP == 1){

/*...Compute derivative due to SRP*/

PCSR = PSR*CR;

ratm = R_earth + 90000.;

mag_rsun = r_sun[0]*r_sun[0] + r_sun[1]*r_sun[1] + r_sun[2]*r_sun[2];

mag_rsun = sqrt(mag_rsun);

for(int i = 0; i<=2 ; i++){

rs_unit[i] = r_sun[i]/mag_rsun;

rss_unit[i] = r_satsun[i]/rss;

C++ Source Code - PRECurSOr 89

}

/*...check for shadow condition*/

rdrs = rs_unit[0]*X[0] + rs_unit[1]*X[1] + rs_unit[2]*X[2];

theta = acos(rdrs/radius);

if(rdrs >= 0.0){

for(int i= 0; i<=2; i++){

DX[i+3] = DX[i+3] - PCSR*(Area/mass)*rss_unit[i];}

}

else if(radius*sin(theta)< ratm){

//Satellite in Earth’s shadow

for(int i = 0; i<=2; i++){

DX[i+3] = DX[i+3] + 0;

}

}

}

if(ADRAG == 1){

/*...Compute derivative due to Drag*/

omega = rate * DtR;

/*...Compute atmospheric density*/

altitude = sa[2];

if(DENSMOD == 1){

rho = Exp_model(altitude);

}

if(DENSMOD == 2){

open_sfdf();

if(int(t)%10800 == 0){

sfdj70 (mjd, t, sf);

}

close_sfdf();

jsmade(altitude, sf, te, an, &wmol, &rho);

}

C++ Source Code - PRECurSOr 90

/*...Compute the velocity relative to the rotating atmosphere*/

v_rel[0] = X[3] + omega*X[1];

v_rel[1] = X[4] - omega*X[0];

v_rel[2] = X[5];

vr2 = v_rel[0]*v_rel[0] + v_rel[1]*v_rel[1] + v_rel[2]*v_rel[2];

vr_mag = sqrt(vr2);

//Note: vr2 * v_rel(unit vector) = vr_mag*v_rel

for(int i=0; i<=2 ; i++){

DX[i+3] = DX[i+3] - half*rho*(C_D*Area/mass)*vr_mag*v_rel[i];

}

}

/*...Compute Two-Body derivatives*/

for(int i = 0; i<=2; i++){

DX[i+3] = DX[i+3] - mu*X[i]/r_cubed;

}

}

/**

Name: RK4.cpp

Description: This routine uses the Classical Runge Kutta method

to approximate the solution of the differential

equation y’=f(x,y) with the initial condition y = y[0] at

x = x0.

Input(s) __

X[] = 6-D current cartesian state X,Y,Z,XD,YD,ZD,(M,M/SEC)

h = initial stepsize

x0 = current time

Output(s) __

*xout = pointer to the updated solutions of diff eqns

after each step size.

Calls: DXDT

C++ Source Code - PRECurSOr 91

Date Last Modified: 24 July 2013

Author: Tshilande T

References:

W.H. Press et.al "Numerical Recipes in C++ - The Art of

Scientific Computing",Second Edition,2002.

***/

void RK4(void (*derivs)(double,double[],double[]),int n,double X[],

double *xout,double t, double h)

{

int i;

double hh = h*half,

th = t+hh;

double y[n], k1[n], k2[n], k3[n], k4[n];

(*derivs)(t,X,k1); //first step

for (i=0; i < n; i++){

y[i] = X[i] + hh * k1[i];}

(*derivs)(th,y, k2); //second step

for (i=0; i < n; i++){

y[i] = X[i] + hh*k2[i];}

(*derivs)(th,y,k3); //third step

for (i=0; i < n; i++){

y[i] = X[i] + h*k3[i];}

(*derivs)(t+h,y,k4); //fourth step

for (i = 0; i < n; i++){

(xout+i) = X[i] + h(k1[i] + two * k2[i] + two * k3[i] + k4[i]) / six;}

return;

}

C++ Source Code - PRECurSOr 92

/***

Name: RK78.cpp

Description: This routine uses Fehlberg’s embedded 7th and 8th order

method to approximate the solution of the differential

equation y’=f(x,y) with the initial condition y = y[0] at

x = x0.

Input(s) __

Y[] = initial conditions at time x0

h = initial stepsize

x0 = initial time

Output(s) ___

*err = pointer to the error in diff eqns

*yout = pointer to the updated solutions of diff eqns

after each step size.

Date Last Modified: 24 July 2013

Author: Tshilande T

References: http://www.mymathlib.com/diffeq/embedded_runge_kutta/

W.H. Press et.al "Numerical Recipes in C++ - The Art of

Scientific Computing",Second Edition,2002.

**/

#include "RKF78.h"

void Runge_Kutta78(void (*f)(double,double[],double*),int n, double Y[],

double *err,double *yout,double x0,double h) {

int i;

double k1[n], k2[n], k3[n], k4[n], k5[n], k6[n], k7[n], k8[n], k9[n], k10[n],

k11[n], k12[n], k13[n];

double ytemp[n];

double h2_7 = a2 * h;

C++ Source Code - PRECurSOr 93

(*f)(x0, Y,k1); //first step

for(i=0; i<n; i++){

ytemp[i] = Y[i] + h2_7 * k1[i];}

(*f)(x0+h2_7,ytemp,k2); //second step

for(i=0; i<n; i++){

ytemp[i] = Y[i] + h * (b31*k1[i] + b32*k2[i]);}

(*f)(x0+a3*h,ytemp,k3); //third step

for(i=0; i<n; i++){

ytemp[i] = Y[i] + h * (b41*k1[i] + b43*k3[i]);}

(*f)(x0+a4*h,ytemp,k4); //fourth step

for(i=0; i<n; i++){

ytemp[i] = Y[i] + h * (b51*k1[i] + b53*k3[i] + b54*k4[i]);}

(*f)(x0+a5*h,ytemp,k5); //fifth step

for(i=0; i<n; i++){

ytemp[i] = Y[i] + h * (b61*k1[i] + b64*k4[i] + b65*k5[i]);}

(*f)(x0+a6*h,ytemp,k6); //sixth step

for(i=0; i<n; i++){

ytemp[i] = Y[i] + h * (b71*k1[i] + b74*k4[i] + b75*k5[i]

+ b76*k6[i]);}

(*f)(x0+a7*h,ytemp,k7); //seventh step

for(i=0; i<n; i++){

ytemp[i] = Y[i] + h * (b81*k1[i] + b85*k5[i] + b86*k6[i]

+ b87*k7[i]);}

(*f)(x0+a8*h,ytemp,k8); //eighth step

for(i=0; i<n; i++){

ytemp[i] = Y[i] + h * (b91*k1[i] + b94*k4[i] + b95*k5[i]

+ b96*k6[i] + b97*k7[i] + b98*k8[i]);}

(*f)(x0+a9*h,ytemp,k9); //nineth step

for(i=0; i<n; i++){

ytemp[i] = Y[i] + h * (b10_1*k1[i] + b10_4*k4[i] + b10_5*k5[i]

+ b10_6*k6[i] + b10_7*k7[i] + b10_8*k8[i]

C++ Source Code - PRECurSOr 94

+ b10_9*k9[i]);}

(*f)(x0+a10*h,ytemp,k10); //tenth step

for(i=0; i<n; i++){

ytemp[i] = Y[i] + h * (b11_1*k1[i] + b11_4*k4[i] + b11_5*k5[i]

+ b11_6*k6[i] + b11_7*k7[i] + b11_8*k8[i] + b11_9*k9[i]

+ b11_10 *k10[i]);}

(*f)(x0+h,ytemp,k11); //eleventh step

for(i=0; i<n; i++){

ytemp[i] = Y[i] + h * (b12_1*k1[i] + b12_6*k6[i] + b12_7*k7[i]

+ b12_8*k8[i] + b12_9*k9[i] + b12_10 * k10[i]);}

(*f)(x0,ytemp,k12); //twelveth step

for(i=0; i<n; i++){

ytemp[i] = Y[i] + h * (b13_1*k1[i] + b13_4*k4[i] + b13_5*k5[i]

+ b13_6*k6[i] + b13_7*k7[i] + b13_8*k8[i] + b13_9*k9[i]

+ b13_10*k10[i] + k12[i]);}

(*f)(x0+h,ytemp,k13); //thirteenth step

for(i=0; i<n; i++){

*(yout+i) = Y[i] + h * (c_1_11 * (k1[i] + k11[i]) + c6 * k6[i]

+ c_7_8 * (k7[i] + k8[i]) + c_9_10 * (k9[i] + k10[i]));}

for(i=0; i<n; i++){

*(err+i) = err_factor * (k1[i] + k11[i] - k12[i] - k13[i]);}

return;

}

/**

Name: Embedded_Fehlberg_7_8.cpp

Description: This function solves the differential equation y’=f(x,y)

with the initial condition y(x) = y[0].

Input(s) __

*f = Pointer to the differential equation DXDT

C++ Source Code - PRECurSOr 95

Y[] = initial state vector at x0

x = The initial time (sec).

h = Initial step size.

xmax = The final time (sec).

tolerance= The tolerance of Y(xmax), i.e. a solution is sought

so that the relative error < tolerance.

Output(s) ___

Y[] = State vector from time x to xmax

Date Last Modified: 24 July 2013

Author: Tshilande T

References: http://www.mymathlib.com/diffeq/embedded_runge_kutta/

**/

void Embedded_Fehlberg_7_8(void (*f)(double, double[],double*),int n,

double Y[],double x,double h, double xmax, double tolerance){

static const double err_exponent = 1.0 / 7.0;

double scale,errmax;

double err[n],y[n];

double yy;

int i;

int last_interval = 0;

// Insure that the step size h is not larger than the length of the //

// integration interval. //

if (h > (xmax - x)) { h = xmax - x; last_interval = 1;}

// Redefine the error tolerance to an error tolerance per unit //

// length of the integration interval. //

tolerance /= (xmax - x);

// Integrate the diff eq y’=f(x,y) from x=x to x=xmax trying to //

// maintain an error less than tolerance * (xmax-x) using an //

// initial step size of h and initial value: y = y[0] //

while (x < xmax) {

C++ Source Code - PRECurSOr 96

scale = 1.0;

Runge_Kutta78(f,n,Y,err,y, x, h);

yy = 0.0;

for(i=0; i<n; i++){yy = max(yy,fabs(Y[i]));}

yy = (yy == 0.0) ? tolerance : yy;

errmax = 0.0;

for(i=0; i<n; i++){errmax = max(errmax,fabs(err[i]));}

if (errmax == 0.0) { scale = MAX_SCALE_FACTOR;}

else{scale = 0.8 * pow(tolerance * yy / errmax , err_exponent);}

scale = min(max(scale,MIN_SCALE_FACTOR), MAX_SCALE_FACTOR);

if (errmax < (tolerance * yy)){

for(i=0; i<n;i++){Y[i] = y[i];}

x += h;

}

h *= scale;

if (x + h > xmax) { last_interval = 1; h = xmax - x; }

}

return;

}

/**

* Date last modified: 05 September 2012

* Name: trigfunc

* Purpose: Computes the trigonometric functions recursively.

* Input(s):

* m = Order of spherical harmonics

* lat = Geocentric latitude

* lon = Geographic longitude

* Output(s):

* CN = M-D array of Cos values

* SN = M-D array of Sin values

C++ Source Code - PRECurSOr 97

* TN = M-D array of Tan values

* Author: Tshilande T

* References: B. Opperman 2003, SUBROUTINE ANGLES(M,A,B,CN,SN,TN)

***/

void trigfunc(int m,double lat,double lon,double *CN, double *SN,

double *TN){

//if(m ==0)

*CN = one;

*SN = zero;

*TN = zero;

//if(m == 1)

*(CN+1) = cos(lon);

*(SN+1) = sin(lon);

*(TN+1) = tan(lat);

for(int i=2; i <= m ; i++)

{

*(CN+i) = two**(CN+1)**((CN+i)-1) - *((CN+i)-2);

*(SN+i) = two**(CN+1)**((SN+i)-1) - *((SN+i)-2);

*(TN+i) = *(TN+1) + *((TN+i)-1);

}

return;

}

/***

* Date last modified: 19 June 2012 *

* Name: legendre *

* Purpose: Computes legendre and associated legendre functions up *

* to degree n and order m. *

* Input(s): *

C++ Source Code - PRECurSOr 98

* n = Degree of spherical harmonics *

* m = Order of spherical harmonics *

* x = Sin(latitude) *

* Output(s): *

* p = 2-D legendre functions *

* Author: Tshilande T *

* Reference: Opperman 2003 *

***/

void legendre(int n,double x, double p[][61])

{

double y;

y =sqrt(one - x*x);

p[0][0] = one;

p[1][0] = x;

p[1][1] = y;

for(int i = 2; i<=n ; i++)

{

for(int j = 0; j <=i ; j++)

{

if(j == 0)

{

p[i][0] = ((2*i - 1)*x*p[i-1][0] - (i -1)*p[i-2][0])/i;

}

else if(i > j && j != 0)

{

p[i][j] = (2*i - 1)*y* p[i-1][j-1];

if(i-2 >= j)

{

p[i][j] += p[i-2][j];

}

}

C++ Source Code - PRECurSOr 99

else if(i == j && j != 0)

{

p[i][i] = (2*i - 1)*y*p[i-1][i-1];

}

}

}

return;

}

/**

* Name Sun.cpp

* Description: computes geocentric solar ephemeris

* Input:

* JD = Julian day

* Output:

* rad_sun = Sun’s distance magnitude (m)

* r_sun[3]= Sun’s position vector (m)

* su[0] = right ascension of the Sun(radians)

* (0 <= su[0] <= 2pi)

* su[1] = declination of the sun(radians)

* (-pi/2 <= su[1] <= pi/2)

* Author: Tshilande T

* Date last modified: 23 September 2013

* Reference: Meeus 1991 and Vallado 1997

**/

void Sun(double JD,double &rad_sun,double r_sun[],double su[])

{

double T_TDB,L_sun,M_sun,C,lambda_sun,e,ecc,v,isu;

/*...Compute Julian centuries*/

T_TDB = (JD - 2451545.0)/36525.0;

/*...Compute the Sun’s mean anomaly*/

C++ Source Code - PRECurSOr 100

M_sun = 357.52911 + 35999.05029*T_TDB - 0.0001537*T_TDB*T_TDB;

M_sun = quadrant(M_sun);

/*...Compute the Mean geometric longitude of the sun*/

L_sun = 280.46646 + 36000.76983*T_TDB + 0.0003032*T_TDB*T_TDB;

L_sun = quadrant(L_sun);

/*...Compute the centre*/

C = (1.914602-0.004817*T_TDB-0.000014*T_TDB*T_TDB)*sin(M_sun*PI/180.0)

+(0.019993-0.000101*T_TDB)*sin(two*M_sun*PI/180.0) +

0.000289*sin(three*M_sun*PI/180.0);

/*...Compute true geometric longitude*/

lambda_sun = L_sun + C;

/*...Compute the mean obliquity of the ecliptic*/

e = 23.439291 - 0.0130042*T_TDB - 1.64e-07*T_TDB*T_TDB

+ 5.04e-07*T_TDB*T_TDB*T_TDB;

/*...Compute the Eccentricty of Earth’s orbit*/

ecc = 0.016708634 - 0.000042037*T_TDB - 0.0000001267*T_TDB*T_TDB;

/*...Compute Sun’s true anomaly*/

v = M_sun + C;

/*...Compute radial distance from Earth to the Sun*/

rad_sun = 1.000001018*(1-ecc*ecc)/(1-ecc*cos(v*PI/180.0)); //in AU

/*...Compute position of the sun in ECI

r_sun[0] = rad_sun*cos(lambda_sun*PI/180.0);

r_sun[1] = rad_sun*cos(e*PI/180.0)*sin(lambda_sun*PI/180.0);

r_sun[2] = rad_sun*sin(e*PI/180.0)*sin(lambda_sun*PI/180.0);

rad_sun = rad_sun*AUtokm*kmtom; //in meters

for(int i=0; i<=2 ; i++){

r_sun[i] = r_sun[i]*AUtokm*kmtom;

}

/*...Compute the right ascension and declination*/

su[0] = atan2(cos(e*PI/180.0)*sin(lambda_sun*PI/180.0),

C++ Source Code - PRECurSOr 101

cos(lambda_sun*PI/180.));

isu = su[0];

su[0] = QuadRad(isu);

su[1] = asin(sin(e*PI/180.)*sin(lambda_sun*PI/180.));

return;

}

/***

Name Moon.cpp

Description: computes geocentric lunar ephemeris

Input:

JD = Julian day

Output:

rad_moon = Moon’s distance magnitude (m)

r_moon[3]= Moon’s position vector (m)

Date last modified: 06 June 2013

Author: Tshilande T

Reference: Meeus 1991 and Vallado 1997

**/

void Moon(double JD,double &rad_moon,double r_moon[])

{

double T_TDB,M_moon,lambda_moon,uM_moon,D_sun,

lambda_ecliptic,phi_ecliptic,e,parallax;

/*...Compute Julian centuries*/

T_TDB = (JD - 2451545.0)/36525.0;

/*...Compute Moon’s mean anomaly(k=360degrees)*/

M_moon = 134.9629814 + (1325.0*degrees+198.8673981)*T_TDB

+ 0.0086972*T_TDB*T_TDB + 1.778e-05*T_TDB*T_TDB*T_TDB;

C++ Source Code - PRECurSOr 102

/*...Compute Moon’s longitude*/

lambda_moon = 218.32 + 481267.8813*T_TDB;

/*...Compute Moon’s mean argument of latitude*/

uM_moon = 93.27191030 + (1342.0*degrees+82.0175381)*T_TDB

- 0.0036825*T_TDB*T_TDB + 3.06e-06*T_TDB*T_TDB*T_TDB;

/*...Compute the mean elongation of the Sun*/

D_sun = 297.8503631 + (1236.0*degrees+307.111480)*T_TDB

- 0.00191417*T_TDB*T_TDB + 5.28e-6*T_TDB*T_TDB*T_TDB;

/*...Compute the ecliptic longitude*/

lambda_ecliptic = lambda_moon + 6.29*sin(M_moon*PI/180.0) -

1.27*sin((M_moon-two*D_sun)*PI/180.0)

+0.66*sin(two*D_sun*PI/180.0)

+ 0.21*sin(two*M_moon*PI/180.0)

-0.19*sin(M_moon*PI/180.0)

- 0.11*sin(two*uM_moon*PI/180.0);

lambda_ecliptic = quadrant(lambda_ecliptic);

/*...Compute the ecliptic latitude*/

phi_ecliptic = 5.13*sin(uM_moon*PI/180.0)

+ 0.28*sin((M_moon + uM_moon)*PI/180.0)

-0.28*sin((uM_moon - M_moon)*PI/180.0)

- 0.17*sin((uM_moon - two*D_sun)*PI/180.0);

/*...Compute the mean obliquity of the ecliptic*/

e = 23.439291 - 0.0130042*T_TDB - 1.64e-07*T_TDB*T_TDB

+ 5.04e-07*T_TDB*T_TDB*T_TDB;

/*...Compute parallax*/

parallax = 0.9508 + 0.0518*cos(M_moon*PI/180.0)

+0.0095*cos((M_moon - two*D_sun)*PI/180.0) +

0.0078*cos(two*D_sun*PI/180.0)

+0.0028*cos(two*M_moon*PI/180.0);

/*...Compute radial distance from Earth to the Moon(in Earth radii)*/

rad_moon = one/sin(parallax*PI/180.0); //in ER

C++ Source Code - PRECurSOr 103

r_moon[0] = rad_moon*cos(phi_ecliptic*PI/180.0)

*cos(lambda_ecliptic*PI/180.0);

r_moon[1] = rad_moon*(cos(e*PI/180.0)*cos(phi_ecliptic*PI/180.0)

*sin(lambda_ecliptic*PI/180.0)

- sin(e*PI/180.0)*sin(phi_ecliptic*PI/180.0));

r_moon[2] = rad_moon*(sin(e*PI/180.0)*cos(phi_ecliptic*PI/180.0)

*sin(lambda_ecliptic*PI/180.0)

+ cos(e*PI/180.0)*sin(phi_ecliptic*PI/180.0));

rad_moon = rad_moon*R_earth; //in meters

r_moon[0] = r_moon[0]*R_earth;

r_moon[1] = r_moon[1]*R_earth;

r_moon[2] = r_moon[2]*R_earth;

return;

}

/**

Name: oe2eci.cpp

Description: Transforms classical orbital elements

to ECI.

Input(s) __

oe[] = Classical orbital elements

Output(s) ___

sv[] = ECI state vector X,Y,Z,XD,YD,ZD,(m,m/sec)

Date Last Modified: 17 September 2013

Author: Tshilande T

References: Chobotov 2002: pp 62-65

**/

void oe2eci(double oe[], double sv[]){

double p,R;

double a,e,i,w,raan,nu;

double csr,snr,csw,snw,csi,sni,mup;

C++ Source Code - PRECurSOr 104

double r00,r01,r02,r10,r11,r12,r20,r21,r22;

double r_PQW[3];

a = oe[0];

e = oe[1];

i = oe[2];

raan = oe[3];

w = oe[4];

nu = oe[5];

p = a*(1.0- e*e);

mup = sqrt(mu/p);

R = p/(1.0 + e*cos(nu));

//position in perifocal system(PQW)

r_PQW[0] = R*cos(nu);

r_PQW[1] = R*sin(nu);

r_PQW[2] = 0.0;

csr = cos(raan);

snr = sin(raan);

csw = cos(w);

snw = sin(w);

csi = cos(i);

sni = sin(i);

//Transformation matrix

r00 = csr*csw-snr*snw*csi;

r01 = -csr*snw-snr*csw*csi;

r02 = snr*sni;

r10 = snr*csw + csr*snw*csi;

r11 = -snr*snw + csr*csw*csi;

r12 = -csr*sni;

r20 = snw*sni;

r21 = csw*sni;

r22 = csi;

C++ Source Code - PRECurSOr 105

//transformation of position from PQW to IJK

sv[0] = r00*r_PQW[0]+ r01*r_PQW[1] + r02*r_PQW[2];

sv[1] = r10*r_PQW[0]+ r11*r_PQW[1] + r12*r_PQW[2];

sv[2] = r20*r_PQW[0]+ r21*r_PQW[1] + r22*r_PQW[2];

//velocity in perifocal system (PQW)

r_PQW[0] = -mup*sin(nu);

r_PQW[1] = mup*(e+cos(nu));

r_PQW[2] = 0.0;

//transformation of velocity from PQW to IJK

sv[3] = r00*r_PQW[0]+ r01*r_PQW[1] + r02*r_PQW[2];

sv[4] = r10*r_PQW[0]+ r11*r_PQW[1] + r12*r_PQW[2];

sv[5] = r20*r_PQW[0]+ r21*r_PQW[1] + r22*r_PQW[2];

return;

}

/**

Name: ECI_ECEF.cpp

Description: Transforms ECI state vector to ECEF then computes

Geographic longitude, latitude and altitude.

Input(s) __

JD = Current Julian date

R[] = ECI state vector X,Y,Z,XD,YD,ZD,(m,m/sec)

Output(s) ___

*sa = Pointer to an array containing:

Longitude (rad)

Latitude (rad)

Altitude (m)

Date Last Modified: 05 March 2014

Author: Tshilande T

**/

void ECI_ECEF(double JD, double R[],double *sa)

C++ Source Code - PRECurSOr 106

{

double gast,Range,Radius,sphi,x,y,z;

double R_ECEF[3];

//Compute GAST

gast = app_sidereal_time(JD);

gast = gast*DtR;

//Rotate ECI vector to ECEF frame

R_ECEF[0] = cos(gast)*R[0] + sin(gast)*R[1];

R_ECEF[1] = -sin(gast)*R[0] + cos(gast)*R[1];

R_ECEF[2] = R[2];

//calculate geocentric lon, lat in radians

x= R_ECEF[0]; y= R_ECEF[1]; z= R_ECEF[2];

Range= x*x+ y*y + z*z;

Radius = sqrt(Range);

*(sa+0) = atan2(y,x);//GeoLon

sphi = z/Radius;

*(sa+1) = asin(sphi);//GeoLat

//Altitude

//*(sa+2) = Radius - R_earth;

*(sa+2) = Radius -

sqrt(R_earth*R_earth*(1.-eccent*eccent)/(1.-pow(eccent*cos(*(sa+1)),2)));

return;

}

/**

Name: JulianDate.cpp

Description: Computes current julian date given year, month,

day and universal time in seconds

Input(s) __

UT = Current Julian time (sec)

day = day of the month.

C++ Source Code - PRECurSOr 107

month = month of the year.

year = year

Output(s) ___

JD = Current Julian date

Date Last Modified: 13 February 2014

Author: Tshilande T

**/

double JulianDate(int year, int month, int day, double UT){

double JD,C1,C2,C3;

C1 = 367. * year;

C2 = int((7*(year+int((month+9)/12)))*0.25);

C3 = int(275*month/9);

UT = UT/3600.;

JD = (C1-C2+C3)+ day + 1721013.5 + UT/24.;

return JD;

}

int djm (int day, int month, int year)

/*

Purpose:

The function djm furnishes the modified julian

date with reference to the day, month and year,

input real parameters at zero hours of the day.

Input:

day day of the month.

month month of the year.

year year

Output:

djm modified julian date in days, referred to

1950.0.

Remarks:

C++ Source Code - PRECurSOr 108

This function is optimized for the period between

the years 1900-2100.

Author:

Valdemir Carrara july 2005 (C version)

*/

{

return 367*year + day - 712269 + (int)floor(275*month/9.)

- (int)floor(7*(year + floor((month + 9)/12.))/4.);

} // djm

Bibliography

Auret, J. 2012. Design of an aerodynamic attitude control system for a CubeSat. Master’s

thesis, University of Stellenbosch.

Bate, R. R., Mueller, D. D. and White, J. E. 1971. Fundamentals of Astrodynamics.

Brouwer, D. 1959. Solution of the problem of artificial satellite theory without drag. The

Astronomical Journal, 64(1274): 378–397.

Cash, J. and Karp, A. H. 1990. A variable order runge-kutta method for initial value

problems with rapidly varying right-hand sides. ACM Transactions on Mathematical

Software, 16(3): 201–222.

Catsoulis, J. 2005. Designing Embedded Hardware. Second edn, O’Reilly.

Chaisson, E. and McMillan, S. 2008. Astronomy Today. 6th edn, Pearson Education (US).

Chao, B. F. 2006. Earth’s oblateness and its temporal variations. Comptes Rendus

Geoscience, 338(14–15): 1123–1129.

Chobotov, V. A. 2002. Orbital Mechanics. Third edn, Reston, Virginia, AIAA.

Clarke, A. C. 1945. Extra-terrestrial relays: Can rocket stations give world-wide radio

coverage? Wireless World, 11(10): 305–308.

Curtis, H. D. 2010. Orbital Mechanics for Engineering Students. Second edn, Elsevier.

Du Toit, D. N. 1997. Low Earth Orbit Satellite Constellation Control Using Atmosphere

Drag. PhD thesis, University of Stellenbosch.

109

Bibliography 110

Escobal, P. R. 1985. Methods of Orbit Determination. Malabar, Florida, Krieger Publish-

ing Company.

Fukushima, T. 1997. Vector integration of dynamical motions by the picard-chebyshev

method. The Astronomical Journal, 113(6): 2325–2328.

Gaposchkin, E. and Coster, A. 1988. Analysis of satellite drag. The Lincoln Laboratory,

1(2): 203–224.

Ilyas, D. 2011. Orbital propagation and formation flying of cubesats within QB50 con-

stellation. Master’s thesis, Lulea University of Technology.

King-Hele, D. 1987. Satellite Orbits in an Atmosphere: Theory and Applications. Blackie.

Kozai, Y. 1962. Mean values of cosine functions in elliptic motion. The Astronomical

Journal, 67(5): 311–312.

Liu, J. 1974. Satellite motion about an oblate earth. AIAA Journal, 12(11): 1511–1516.

Lumbwe, L. T. 2013. Development of an onboard computer(OBC) for a cubesat. Master’s

thesis, Cape Peninsula University of Technology.

Maini, A. K. and Agrawal, V. 2007. Satellite Technology, Principles and Applications.

John Wiley and Sons Ltd.

Meeus, J. 1991. Astronomical Algorithms. Second edn, Richmond, Virginia 23235,

Willmann-Bell.

Montenbruck, O. and Gill, E. 2001. Satellite Orbits: Models,Methods, and Applications.

Springer.

Mostert, S. and Koekemoer, J.-A. 1997. The science and engineering payloads and exper-

iments on SUNSAT. Acta Astronautica, 41(4-10): 401–411.

Opperman, B. D. 2003. Precision propagation and orbit decay prediction of low earth

orbit satellites. Master’s thesis, University of Stellenbosch.

Bibliography 111

Panajaya, F. M., Zee, R. E., Thomsen, P. L., Blanke, M., Wisniewski, R., Franklin, L. and

Puig-Suari, J. 2003. An affordable, low-risk approach to launching research spacecraft

as tertiary payloads, 17th Annual AIAA/USU Conference on Small Satellites.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. 2002. Numerical

Recipes in C++ : The Art of Scientific Computing. Second edn.

Rim, H. J. and Schutz, B. E. 2002. PRECISION ORBIT DETERMINATION (POD),

Technical report, The University of Texas, Austin.

San-Juan, J. F., Lara, M., Lopez, R., Lopez, L. M., Folcik, Z. J. and Cefola, P. J. 2011.

Using the DSST semi-analytic orbit propagator package via the nondy webtools/astro

webtools open science environment. IAC, 11(B5.2.9): 1–8.

Sellers, J. J., Astore, W. J., Giffen, R. B. and Larson, W. J. 2004. Understanding Space:

An introduction to Astronautics. McGraw-Hill.

Steyn, W. 2008. An attitude control system for SumbandilaSat - an earth observation

satellite, ESA 4S Symposium.

Vallado, D. A. 1997. Fundamentals of Astrodynamics and Applications. McGraw-Hill.

	Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Glossary
	Physical Constants
	1 Introduction
	1.1 Problem Statement
	1.2 Overview
	1.3 Research Objectives
	1.4 Research Questions
	1.5 Research Background
	1.5.1 Analytic Propagators
	1.5.1.1 PKEPLER
	1.5.1.2 Kozai's Method
	1.5.1.3 Brouwer's Method

	1.5.2 Semi-Analytical Propagators
	1.5.3 Numerical Propagators

	1.6 Methodology
	1.7 Research Delineation
	1.8 Summary of Chapters

	2 Literature Review
	2.1 Introduction
	2.2 Satellites History
	2.2.1 South Africa's Contribution to Satellite Technology

	2.3 Historical Background of Equations of Motion
	2.4 Keplerian Orbits
	2.4.1 General and Restricted Two-Body Problem
	2.4.2 Classical Orbital Elements
	2.4.3 Orbital Parameters of a Satellite

	2.5 The Trajectory Equation
	2.6 Analytical Solution to the Restricted Two-Body Problem

	3 Perturbation Equations
	3.1 Introduction
	3.2 Equation of Motion with Perturbations
	3.3 Perturbation Methods
	3.3.1 General Perturbation Techniques
	3.3.1.1 Variation of Parameters

	3.3.2 Special Perturbation Techniques
	3.3.2.1 Cowell's Method
	3.3.2.2 Encke's Method

	3.4 Perturbations due to Earth's Oblateness
	3.4.1 Gravity Field Models

	3.5 Atmospheric Drag
	3.5.1 Cross-Sectional Area

	3.6 Third-Body Perturbations
	3.7 Solar Radiation Pressure
	3.7.1 Shadow Analysis

	3.8 Precision Modelling
	3.9 Summary

	4 Time, Coordinate Systems and Transformations
	4.1 Introduction
	4.2 Time Systems
	4.3 Coordinate systems
	4.3.1 Earth Centred Inertial (ECI) System
	4.3.2 Earth Centred Earth Fixed (ECEF) System
	4.3.3 Geographic Coordinate System
	4.3.4 Perifocal Coordinate System(PQW)

	4.4 Coordinate Transformations
	4.4.1 Transformation between ECI and ECEF
	4.4.2 Transformation from Classical Orbital Elements to ECI

	4.5 Summary

	5 OBC Emulator and Software Considerations
	5.1 Introduction
	5.2 On-Board Computer (OBC)
	5.2.1 Typical OBCs and their Processing Speeds

	5.3 Programming Language
	5.4 Algorithm Description
	5.4.1 Orbit Dynamics Overview
	5.4.2 Initial Conditions
	5.4.3 Data Files
	5.4.4 Numerical Integration
	5.4.4.1 Runge-Kutta Methods
	5.4.4.2 Single-Step RK Methods
	5.4.4.3 Multi-Step RK Methods

	5.5 Software Structure
	5.6 Summary

	6 Results : Software Validation
	6.1 Introduction
	6.2 Force Models Versus Processing Time
	6.3 Validation of PRECurSOr
	6.3.1 Two-body and Perturbation Forces
	6.3.2 SUNSAT Orbit

	6.4 Analysis of Integrators
	6.5 Discussion

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	A Vectors
	B Mechanical Energy and Angular Momentum
	C The Trajectory Equation
	D Eccentric and True Anomaly Transformation
	E Lunar and Solar Position
	F C++ Source Code - PRECurSOr
	Bibliography

