
;

IEC 61850-9-2 BASED SAMPLED VALUES AND IEC 61850-8-1 GOOSE
MESSAGES MAPPING ON AN FPGA PLATFORM

by

ALEXANDER MANDLENKOSI NCUBE

Thesis submitted in fulfilment of the requirements for the degree

Master of Engineering: Electrical Engineering

in the Faculty of Engineering

at the Cape Peninsula University of Technology

Supervisor: Mr C Kriger

Co-supervisors: Prof P Petev

Bellville Campus

Date submitted: June 2016.

 ii

DECLARATION

I, Alexander Mandlenkosi Ncube, declare that the contents of this thesis represent my own

unaided work, and that the dissertation/thesis has not previously been submitted for

academic examination towards any qualification. Furthermore, it represents my own opinions

and not necessarily those of the Cape Peninsula University of Technology.

Signed Date

 iii

ABSTRACT

Electricity substation monitoring and control systems have evolved over the years from

simple systems capable of achieving minimalistic functions to autonomous, self-healing

smart grid schemes (Farhangi, 2010). The migration of technology to networked smart grid

systems was driven by the need for standardisation of communication networks, system

configuration and also the reduction of system implementation costs and engineering time.

Before the introduction of a uniform communication standard, legacy (non-standardised)

communication protocols, for example, the Distributed Network Protocol (DNP3) were used

by Remote Terminal Units (RTUs) for information exchange (Luwaca, 2014). These

communication protocols could not provide a standard naming convention or data semantics

since the data/information was accessed using an address-based system. The

implementation of automation systems based on legacy protocols and RTUs was expensive

because of parallel copper wiring required to connect instrument transformers and circuit

breakers to multiple RTUs for protection and monitoring functions (Iloh et al., 2014).

Legacy systems refer to Supervisory Control and Data Acquisition (SCADA) systems

implemented using RTUs and legacy communication protocols. Legacy systems tended to

be vendor specific because devices from different vendors did not support the same

communication protocol. These issues led to the introduction of the IEC 61850 standard. The

IEC 61850 standard for “communication networks and systems in a substation” provides

standardised naming convention, data semantics, standardised device configuration and also

device interoperability and interchangeability in some instances. The IEC 61850 standard

provides a solution to expensive parallel copper wiring and standardisation issues

experienced with legacy protocols.

In as much as the introduction of the IEC 61850 standard addresses problems experienced

with legacy system there is still a need to provide inexpensive access to IEC 61850-

compliant devices and effective knowledge transfer to facilitate implementation of automation

systems based on this standard. The development of an IEC 61850-compliant device

requires a specialised skillset and financial investment for research and industrialisation

therefore only a few vendors manufacture these devices resulting in an increase in

production and manufacturing costs.

For this reason this research project develops VHDL modules for mapping IEC 61850-9-2

Sampled Value (SV) messages and IEC 61850-8-1 Generic Object Oriented Substation

 iv

Event (GOOSE) messages on a Field Programmable Gate Array (FPGA) platform. Sampled

values are used for transmitting current and voltage transformer (CT and VT) measurements

to protection devices while GOOSE messages exchange information/commands between

primary equipment (CT, VT and circuit breaker) and protection devices over an Ethernet

network known as the process bus.

The VHDL modules developed in this research project for mapping SV and GOOSE

messages on an FPGA platform combined with an analogue signal interface device will

produce an inexpensive Merging Unit prototype (MU) and GOOSE enabled remote

monitoring node that can be used in substation automation systems. This research project

provides laboratory test procedures for evaluating the developed MU prototype and GOOSE-

enabled remote node and also discusses the obtained results. The structure of the sampled

value messages published by the MU is evaluated using SVScout and Wireshark software

applications and the results validate the implemented mapping VHDL module.

The accuracy of the sampled values from the developed MU under fault/abnormal conditions

is investigated by making use of four case studies where faults are simulated using the CMC

256plus test set and injected into the developed MU. The sampled value messages are then

captured using SVScout and the waveforms compared to the injected signals’ waveform. The

four case studies reported are the voltage-sag, voltage-swell, frequency variations and

harmonic disturbances. The results show that the MU prototype publishes accurate signals

even under fault conditions.

The GOOSE messages published by the GOOSE message-mapping VHDL module are

evaluated using IEDScout and Wireshark software applications and the results obtained

validate the implemented mapping VHDL module. The GOOSE client state machine

implemented in the GOOSE message mapping VHDL module is evaluated to determine

whether it follows the one defined in the IEC 61850-8-1 standard. A voltage-sag fault case

study is conducted to evaluate the accuracy of the injected signal’s root mean square value

calculation implemented by the GOOSE message mapping VHDL module. The results show

that this research project presents successful development of the GOOSE and the SV

message mapping VHDL modules which meet the requirements of the IEC 61850 standard.

This thesis document contains an extensive literature review, design flow charts, VHDL code

snippets, hardware interface diagrams for the development and evaluation of the IEC 61850-

9-2 SV and IEC 61850-8-1 GOOSE message mapping VHDL modules.

 v

Key words: GOOSE messages, Sampled Value messages, IEC 61850 standard, FPGA,

CSAEMS, VHDL modules Substation Automation Systems, Merging Unit, legacy protocols,

instrument transformers.

 vi

ACKNOWLEDGEMENTS

I am indeed grateful to Mr C. Kriger, Prof. R. Tzoneva and Adj. Prof P Petev for providing

great technical and administrative support.

I am grateful to Adeyemi Adewole, Marcus Mthunzi, Tafadzwa Shamu, Nontobeko Gulu and

all my friends for their support throughout my study.

To those I have left out unknowingly please accept my gratitude and know that your

assistance pushed me closer and closer towards the finish line.

The financial assistance of the National Research Foundation towards this research is

acknowledged. Opinions expressed in this thesis and the conclusions arrived at, are those of

the author, and are not necessarily to be attributed to the National Research Foundation.

Alexander Mandlenkosi Ncube

Bellville, June 2016

 vii

DEDICATION

To my Father who taught me how to dream.

 viii

TABLE OF CONTENTS

DECLARATION ii

ABSTRACT iii

ACKNOWLEDGEMENTS vi

DEDICATION vii

TABLE OF CONTENTS viii

LIST OF FIGURES xi

LIST OF TABLES xv

LIST OF ABBREVIATIONS xvii

CHAPTER ONE: INTRODUCTION 1

1.1 Introduction 1
1.2 Problem definition 3
1.3 Research aim and objectives 5
1.3.1 Research aim 5
1.3.2 Research objectives 5
1.4 Project assumptions and delimitation 6
1.4.1 Project assumptions 6
1.4.2 Project delimitations 7
1.5 Research methodology and technique 8
1.5.1 Literature review 8
1.5.2 VHDL development and hardware integration 8
1.5.3 Experimental evaluation 8
1.6 Significance of the study 9
1.7 Thesis organisation 9
1.8 Conclusion 10

CHAPTER TWO: LITERATURE REVIEW 11

2.1 Introduction 11
2.2 Review of related literature 11
2.2.1 Communication technology in the substation and the introduction of the

IEC 61850 standard 13
2.2.2 The IEC 61850 process bus 17
2.3 Application, performance evaluation and development of IEDs capable of

publishing IEC 61850-8-1 GOOSE messages 18
2.3.1 Application of GOOSE messages in substation automation systems 21
2.3.2 GOOSE message performance evaluation 24
2.3.3 GOOSE message-mapping on embedded platforms 28
2.4 Application, performance evaluation and development of IEDs capable of

publishing IEC 61850-9-2 Sampled Value (SV) messages 33
2.4.1 IEC 61850-9-2 Merging Unit testing, performance and evaluation 35
2.4.2 Sampled Value (SV) messages mapping on embedded platforms 40

 ix

2.5 Conclusion 49

CHAPTER THREE: OVERVIEW OF THE IEC 61850 STANDARD 51

3.1 Introduction 51
3.2 Introduction of the IEC 61850 standard 51
3.3 Overview of the IEC 61850 standard 53
3.3.1 Part 1 and Part 2 53
3.3.2 Part 3 and Part 4 54
3.3.3 Part 5 54
3.3.4 Part 6 55
3.3.5 Part 7 56
3.3.5.1 Abstract Communication Services 56
3.3.5.2 Data modelling 58
3.3.5.3 The IEC 61850 standard naming convention 62
3.3.6 Part 8-1 63
3.3.7 Part 9-1 and 9-2 64
3.3.8 Part 10 65
3.4 Application of the IEC 61850 standard in a Substation Automation System

 66
3.4.1 IEC 61850-8-1 standard GOOSE Messages 67
3.4.1.1 GOOSE Message Structure. 70
3.4.2 IEC 61850-9-2 SV messages according to IEC 61850-9-2LE 75
3.4.2.1 IEC 61850-9-2LE data model 78
3.5 Conclusion 81

CHAPTER FOUR: DESIGN AND IMPLEMENTATION OF GOOSE AND SV
MESSAGE MAPPING HARDWARE USING THE XILINX SPARTAN 6 FPGA
 84

4.1 Introduction 84
4.2 Research project scope in the context of the IEC 61850 standard 84
4.2.1 The design scope for GOOSE message-mapping 86
4.2.2 The design scope for Sampled Value (SV) message-mapping 87
4.3 Hardware platform 89
4.3.1 Nexys 3 development board 91
4.3.2 Analogue Front-End (AFE) device 93
4.4 VHDL Hardware Development 99
4.4.1 VHDL module design process 99
4.4.1.1 GOOSE message mapping VHDL module 100
4.4.1.1.1 Analogue GOOSE modelling using the MMXN LN 106
4.4.1.1.2 Binary GOOSE modelling using the XCBR LN 110
4.4.1.2 Sampled Value (SV) message-mapping VHDL module design 115
4.5 Conclusion 123

CHAPTER FIVE: EVALUATION OF THE GOOSE AND SV MESSAGE MAPPING
HARDWARE DESIGNS 125

5.1 Introduction 125
5.2 Outline of Evaluation 127
5.3 GOOSE monitoring node laboratory evaluation 131

 x

5.3.1 GOOSE message structure evaluation 132
5.3.2 GOOSE client state machine evaluation 134
5.3.3 Voltage-swell injection 136
5.3.4 Voltage-sag injection 137
5.3.5 GOOSE monitoring node interoperability test 139
5.4 Limited-function Merging Unit prototype laboratory evaluation 145
5.4.1 Evaluation of Sampled Value message structure 146
5.4.2 Sampled Value accuracy evaluation 148
5.4.3 Merging Unit prototype response evaluation 151
5.4.3.1 Voltage-sag fault performance evaluation 151
5.4.3.2 Voltage-swell fault performance evaluation 154
5.4.3.3 Frequency variations tests 157
5.4.3.4 Evaluation of sample accuracy during Harmonic distortions 161
5.4.4 Merging Unit prototype interoperability test 165
5.5 Conclusion 169

CHAPTER SIX: CONCLUSION AND FUTURE WORK 171

6.1 Introduction 171
6.2 Aims and objectives 172
6.3 Thesis deliverables 173
6.3.1 Literature review 174
6.3.2 Overview of the IEC 61850 standard 174
6.3.3 Development of VHDL modules for mapping SV and GOOSE messages 175
6.3.3.1 Development of VHDL code for publishing IEC 61850-8-1 GOOSE messages

 175
6.3.3.2 Development of VHDL code for publishing IEC 61850-9-2LE SV messages

 175
6.3.3.3 Integration of the Analogue Front-End (AFE) to the GOOSE and SV

message mapping VHDL modules 176
6.3.4 Evaluation of the limited-function MU and GOOSE monitoring node

prototypes 176
6.4 Challenges encountered 177
6.5 Application of results 178
6.6 Future research work 178

REFERENCES 180

 xi

LIST OF FIGURES

Figure 1.1: Communication networks in conventional substation automation systems 2

Figure 1.2: Communication hierarchy in an IEC 61850 standard-based SAS 4

Figure 2.1: Communication interfaces between components in an IEC 61850-based

SAS 15

Figure 2.2: IEDs typically found in different levels of the IEC 61850 substation 17

Figure 2.3: Transformer voltage regulation using GOOSE messages 19

Figure 2.4: Number of papers reviewed on the development of embedded GOOSE-

enabled IEDs 31

Figure 2.5: Application of the IEC 61850-9-1 standard-based Merging Unit 34

Figure 2.6: Typical IEC 61850-9-2LE-compliant Merging Unit 34

Figure 2.7: ARM processor-based Merging Unit 41

Figure 2.8: Merging Unit design block diagram 44

Figure 2.9: Supported standards in the developed MU prototypes 48

Figure 2.10: Platforms used for developing Merging Units 48

Figure 3.1: The IEC 61850 standard suite 53

Figure 3.2: IEC 61850 standard message types and performance class 54

Figure 3.3: ASCI services for device/distributed function communication 57

Figure 3.4: Data modelling through virtualization 58

Figure 3.5: Illustration of the data model structure using XCBR logical node 60

Figure 3.6: Data model layers defined in the IEC 61850 standard 60

Figure 3.7: UML class diagram of the IEC 61850 data model 61

Figure 3.8: Naming convention defined in the IEC 61850 standard 62

Figure 3.9: Mapping of data models and information to SCSM 63

Figure 3.10: Hierarchy within a Substation Automation System 66

Figure 3.11: Repetitive transmission of GOOSE messages 68

Figure 3.12: GOOSE client state machine 70

Figure 3.13: GOOSE PDU as defined in the IEC 61850-8-1 standard 71

Figure 3.14: Operation of sqNum and stNum 74

Figure 3.15: Structure of an IEC 61850-9-2 SV message 75

Figure 3.16: BER TLV triplets 76

Figure 3.17: ASN.1 encoded SV APDU 77

Figure 3.18: IEC 61850-9-2LE data model 81

Figure 4.1: Process level Intelligent Electronic Devices (IED) 85

Figure 4.2: Mapping GOOSE messages on an FPGA platform 87

Figure 4.3. Mapping Sampled Value (SV) messages on an FPGA 89

 xii

Figure 4.4: Nexys 3 development board block diagram 92

Figure 4.5: CT and VT analogue signal interface 93

Figure 4.6: Communication between the AFE and the SV/GOOSE message-mapping

VHDL modules 96

Figure 4.7: Reading ADC conversion data using SPI when pin goes LOW 98

Figure 4.8: GOOSE message-mapping VHDL module finite state model 100

Figure 4.9: ASN.1 BER encoded GOOSE APDU in VHDL 102

Figure 4.10: Copying the GOOSE PDU from the VHDL record into the Ethernet frame

before transmission 103

Figure 4.11: GOOSE client state machine implemented in the Idle state 104

Figure 4.12: GOOSE client state machine logic implemented in VHDL 105

Figure 4.13: Data Model for analogue value transmission (MMXN1MXVol$mag) 107

Figure 4.14: VHDL calculation routine for MMXNMXVol$mag value 109

Figure 4.15: Relationship between instantaneous magnitude (instMag), magnitude

(mag) and deadband (db) value for MV objects 109

Figure 4.16: VHDL implementation of MMXN1MXVol$mag deadband exceed

detection 110

Figure 4.17: Data model for binary value (XCBR1STPos$stVal) transmission 111

Figure 4.18: Data model for the IEC 61850-8-1 standard GOOSE message-mapping

VHDL module 111

Figure 4.19: GOOSE dataset published by the GOOSE message-mapping VHDL

module 112

Figure 4.20: SW2 (XCBR1STPos$stVal) position change detection process 112

Figure 4.21: Adding dataset objects into the GOOSE frame for transmission 114

Figure 4.22: Sampled Value message mapping VHDL module finite state model 115

Figure 4.23: sampled value APDU generated using a VHDL record 117

Figure 4.24: Building sampled value APDU using a VHDL record 119

Figure 4.25: Instantaneous sample voltage and current calculation 121

Figure 4.26: MAC implementation in VHDL for ISO 8802-3 Ethernet frame transmission

 122

Figure 5.1: Laboratory connection block diagram for evaluating the DUT 128

Figure 5.2: Setup of equipment in the laboratory 129

Figure 5.3: Connection between the CMC 256plus test set and the AFE through the

step-down transformers 130

Figure 5.4: Captured GOOSE message 133

Figure 5.5: Comparison between the GOOSE PDU published by the DUT and that

defined in the IEC 61850-8-1 standard 133

 xiii

Figure 5.6: Transition of stNum and sqNum in GOOSE messages published by the

DUT 135

Figure 5.7: Waveform of voltage signal generated by the CMC 256plus test set 136

Figure 5.8: sqNum and stNum transition during voltage-swell injection 137

Figure 5.9: Voltage-sag simulation using the Ramping module and the CMC 256plus

test set 138

Figure 5.10: MMXN1MXVol$mag value published by the DUT 139

Figure 5.11: FPGA-based GOOSE monitoring node interoperability test 140

Figure 5.12: Creating a new system in MiCOM S1 Studio 141

Figure 5.13: Connecting to the MiCOM P546 IED using the Quick Connect command

 141

Figure 5.14: PSL configuration for updating status of LED1 using the Virtual Input 1

status 142

Figure 5.15: Configuring the MiCOM P546 IED to subscribe to GOOSE messages

published by the DUT 142

Figure 5.16: Dataset containing the status of the LED1 143

Figure 5.17: Downloading settings to the MiCOM P546 IED 144

Figure 5.18: Transition of the MiCOM P546 IED’s Virtual Output 1 during the

interoperability test 144

Figure 5.19: Structure of sampled value message published by the developed MU 146

Figure 5.20: Comparing between SV PDU published by MU prototype to that defined in

the IEC 61850-9-2LE 147

Figure 5.21: SV messages published by the developed MU prototype 149

Figure 5.22: Phasors of sampled values published by the CMC 256plus test set 149

Figure 5.23: Phasors of sampled values published by the developed MU prototype 150

Figure 5.24: Illustration of a voltage-sag fault on a power system 152

Figure 5.25: Voltage-sag simulation using the CMC 256plus test set and the Test

Universe 153

Figure 5.26: Current and voltage RMS values measured by the MU prototype during a

voltage-sag simulation 153

Figure 5.27: Waveforms extracted from SV messages published by the MU prototype

during voltage-sag injection test 154

Figure 5.28: Illustration of a voltage-swell disturbance 155

Figure 5.29: Voltage-swell simulation using the CMC 256plus test set and the Omicron

Test Universe 155

Figure 5.30: Voltage and current RMS values measured by the MU prototype during a

voltage-swell simulation 156

 xiv

Figure 5.31: Voltage and current sampled values published by the MU prototype

during a voltage-swell injection test 157

Figure 5.32: Sampled value messages at 10 Hz system frequency 158

Figure 5.33: Sampled values published at 50 Hz (nominal) system frequency 159

Figure 5.34: Sampled value messages published at 100 Hz system frequency 159

Figure 5.35: Sampled value plot of voltage and current signals generated at different

frequencies 160

Figure 5.36: Harmonics in an electrical signal 161

Figure 5.37: Voltage and current RMS values of signals generated by the CMC 256plus

test set during harmonic disturbance injection test 162

Figure 5.38: Harmonic distorted signals generated by the CMC 256plus test set 163

Figure 5.39: RMS values extracted from sampled values published by the MU

prototype during the Harmonic injection test 164

Figure 5.40: Harmonic distortion in published sampled value messages 164

Figure 5.41: FPGA-based Merging Unit prototype interoperability test 166

Figure 5.42: Creating a new system in MiCOM S1 Studio 166

Figure 5.43: Connecting to the MiCOM P444 IED using the Quick Connect command

 167

Figure 5.44: Configuration of the NCIT settings for SV subscription 167

Figure 5.45: Downloading settings to the MiCOM P444 IED 168

Figure 5.46: Phase A and B voltage and current magnitude values extracted from SV

messages published by the DUT 168

Figure_Appendix H.1: Test Universe modules used for testing the developed MU and

GOOSE publisher VHDL modules 263

Figure_Appendix H.2: Setting device under test parameters 264

Figure_Appendix H.3: QuickCMC configuration for generating nominal voltage and

current signals 265

Figure_Appendix H.4: CMC 256plus IEC 61850 sampled value module 266

Figure_Appendix H.5: Control Centre configuration for QuickCMC and SV

configuration multi-function test 266

Figure_Appendix H.6: Voltage-sag fault emulation using the CMC 256plus test set 267

Figure_Appendix H.7: Voltage/current swell simulation using the CMC 256plus test set

 268

Figure_Appendix H.8: Power system frequency variation using the QuickCMC module

 268

Figure_Appendix H.9: Harmonics module setup for 2nd and 3rd order harmonic

injection 269

 xv

LIST OF TABLES

Table 2.1: Application of GOOSE messages in an IEC 61850 based SAS 23

Table 2.2: Comparison of performance evaluation of GOOSE messages 27

Table 2.3: Comparing GOOSE-enabled embedded devices 32

Table 2.4: SV message performance review 38

Table 2.5: Comparison of different SV message-mapping algorithms and Merging Unit

designs 45

Table 3.1: Logical Node groups in the IEC 61850-7-1 standard 59

Table 3.2: IEC 61850-8-1 GOOSE Control Block (GoCB) class 69

Table 3.3: Structure of the IEEE 802.1Q Tag header 71

Table 3.4: Structure of the Timestamp field 72

Table 3.5: IEC 61850-8-1 standard TimeQuality definition 73

Table 3.6: SAV common data class defined in IEC 61850-9-2LE 79

Table 3.7: Quality attribute of the SAV CDC 79

Table 3.8: detailQual identifiers of the Quality attribute 80

Table 4.1: Comparing FPGA, microcontroller and PC platforms 91

Table 4.2: Relationship between step-down transformer primary and secondary

voltage measurements 94

Table 4.3: Relationship between injected current signals and step-down transformer

voltage outputs 94

Table 4.4: Relationship between CMC 256plus generated voltage and ADC input 95

Table 4.5: Relationship between CMC 256plus generated current and ADC input 95

Table 4.6: Relationship between the ADC output code and the input voltage 97

Table 4.7: ISO 8802-3 frame values according to the IEC 61850-8-1 standard 101

Table 4.8: Values assigned to GOOSE PDU fields 102

Table 4.9: Interpretation of the status of the circuit breaker using stVal values 111

Table 4.10: GOOSE data value encoding using MMS tags 113

Table 4.11: SV frame fields 116

Table 4.12: SV APDU fields and their values 118

Table 5.1: 2nd and 3rd order harmonic component simulation setup using the

Harmonics Module 162

Table 6.1: Developed VHDL modules for mapping and publishing IEC 61850-8-1

GOOSE messages on the Xilinx Spartan 6 FPGA 175

Table 6.2: Developed VHDL modules for mapping and publishing IEC 61850-9-2LE SV

messages on the Xilinx Spartan 6 FPGA 176

 xvi

APPENDICIES

APPENDIX A. IEC 61850-9-2LE dataset 188
APPENDIX B. Contents of an ISO 8802-3 Ethernet frame 189
APPENDIX C. Logical Node Classes 190
Appendix C.1 MMXN Logical Node 190
Appendix C.2 XCBR Logical Node 191
Appendix C.3 TVTR Logical Node 192
Appendix C.4 TCTR Logical Node 193
APPENDIX D. Common Data Classes 194
Appendix D.1 Double Point Controllable (DPC) class 194
Appendix D.2 Measured Value (MV) class 194
APPENDIX E. IEC 61850-8-1 GOOSE message-mapping VHDL module 195
Appendix E.1 goose_frame.vhd 195
Appendix E.2 MAC2PHY4IR.vhd 216
Appendix E.3 publishSigGen.vhd 219
Appendix E.4 sigSynchronizer.vhd 222
Appendix E.5 utcTime.vhd 223
Appendix E.6 btn_deb.vhd 223
Appendix E.7 ethernet_frame.vhd 224
Appendix E.8 Calculations.vhd 227
Appendix E.9 ethcrc32.vhd 229
APPENDIX F. IEC 61850-9-2LE SV message mapping VHDL module 232
Appendix F.1 hello_eth.vhd 232
Appendix F.2 MAC2PHY4IR.vhd 248
Appendix F.3 sigSynchronizer.vhd 251
Appendix F.4 ethernet_frame.vhd 253
Appendix F.5 ethcrc32.vhd 255
APPENDIX G. FPGA-based GOOSE-enabled remote monitoring node CID file 257
APPENDIX H. CMC 256plus test set configuration 262
Appendix H.1 Nominal signals injection 265
Appendix H.2 CMC 256plus test set sampled values publisher 265
Appendix H.3 Voltage-sag fault simulation 267
Appendix H.4 Voltage-swell fault simulation 267
Appendix H.5 Power system frequency variation simulation 268
Appendix H.6 Harmonics distortion simulation 268

 xvii

LIST OF ABBREVIATIONS

1PPS One Pulse Per Second

ACSI Abstract Communication Service Interface

ADC Analogue to Digital Converter

AFE Analogue Front-End

APDU Application Protocol Data Unit

APPID Application ID

ASDU Application Service Data Unit

ASN.1 Abstract Syntax Notation One

CDC Common Data Class

CID Configured IED Description

CSAEMS Centre for Substation Automation and Energy Management Systems

CT Current Transformer

DC Direct Current

DUT Device under Test

FC Functional Constraint

FPGA Field Programmable Gate Array

GOCB GOOSE Control Block

GOOSE Generic Object Oriented Substation Event

GPS Global Positioning System

HMI Human Machine Interface

ICD IED Capability Description

IEC International Electrotechnical Commission

IED Intelligent Electronic Device

IEEE Institute of Electrical and Electronic Engineers

LAN Local Area Network

LD Logical Device

LN Logical Node

MAC Media Access Controller

MII Media Independent Interface

ms Milli-Second(s)

MSB Most Significant Bit

MU Merging Unit

MV Medium Voltage

OLTC On-Load Tap Changer

OSI Open System Interconnect

 xviii

PC Personal Computer

PD Physical Device

PDU Protocol Data Unit

PMOD Peripheral Module Connector

PSL Programmable Scheme Logic

RMS Root Mean Square

RTDS Real Time Digital Simulator

RTU Remote Terminal Unit

s Second(s)

SAS Substation Automation System

SCADA Supervisory Control and Data Acquisition

SCL Substation Configuration Language

SCSM Specific Communication Service Mapping

SPI Serial Peripheral Interface

SV Sampled Value(s)

SVCB Sampled Value Control Block

svID Sampled Value Identification

UCAIug Utility Communications Architecture International Users Group

UML Unified Mark-up Language

VLAN Virtual Local Area Network

VT Voltage Transformer

XML eXtensible Mark-up Language

 1

 CHAPTER ONE

INTRODUCTION

1.1 Introduction

Substation monitoring and control is vital to ensure the provision of quality

electricity to consumers and protection of infrastructure in case faults occur, to this

end, Supervisory Control and Data Acquisition (SCADA) systems were introduced.

SCADA systems introduced in the early 1990s used Remote Terminal Units (RTUs)

and legacy communication protocols for information exchange and control (Luwaca,

2014). This information was exchanged between RTUs in the same sub-station or

between a station controller and the control centre. Distributed Network Protocol

(DNP3), MODBUS and the IEC 60870-5-101 are some of the non-standardised

legacy protocols used for communication (Luwaca, 2014).

Legacy protocols were byte-based and the information was accessed using an

address or tag, this meant that there were no semantics attached to a

value/information transmitted. Legacy protocols lacked a standard naming

convention of devices, functions and data. These legacy protocols were also based

on physical communication media (RS-232/RS-485) only capable of exchanging

less than 1 Mbps of information and this had an effect on data access and

command execution time. The use of these protocols resulted in reliable

communication networks only if all communicating devices supported the same

protocol, this architecture often lead to costly single-vendor proprietary solutions

which had zero to minimal interoperability and interchangeability prospects.

Since legacy communication protocols could not provide data semantics or a

standardised naming convention, devices supporting different protocols, for

example, IEC 60870-5-101 or DNP3 could not communicate with each other

without a protocol translator. A protocol translator is a device which translates

messages from one protocol to another to facilitate communication between

devices supporting different protocols. The use of protocol translators increased the

complexity and implementation costs of the SCADA system.

 2

Another shortfall of conventional automation systems was the use of expensive

parallel copper wiring between primary plant equipment and the protection relays

as illustrated in Figure 1.1. Following this communication architecture, legacy

SCADA systems tended to be complex and expensive to implement and maintain.

Therefore, there was a need for a standard for communication networks and

systems in substations for protection, monitoring, control and automation purposes

thus the introduction of the IEC 61850 standard (Mackiewicz, 2011).

Serial communication- station bus (DNP3 / IEC 60870-5-101)

Conventional Instrument

transformers (CTs and VTs)

Conventional

Switchegear

Parallel copper wiring

Bay

Level

Relay

X1

Control Centre

Gateway

Station Controller

(HMI)

Relay

X2
Relay

X3

Primary Plant

Equipment

Figure 1.1: Communication networks in conventional substation automation systems

(Adapted from Iloh et al., 2014)

The first edition of the IEC 61850 standard was introduced in 2002 and has been

designed to offer interoperability, standard naming convention, data semantics,

standard design process, system setup procedures and interchangeability

prospects. The IEC 61850 standard provides protocols for communication between

different levels in the substation from process (primary plant equipment), bay level

(protection relays) and station level devices.

 3

The first edition of the IEC 61850 standard defines a communication interface

between process equipment (circuit breakers, current and voltage transformers)

and bay level Intelligent Electronic Devices (IEDs) known as the process bus. The

IEC 61850 process bus presents a better way of exchanging primary plant

information using new devices capable of making this information available over an

Ethernet network. An example of such a device is the Merging Unit (MU) which

serves as an interface between instrument transformers and bay-level IEDs thereby

eliminating parallel copper wiring and reducing system implementation costs.

This research project centres on the development of two methods and VHDL

modules for mapping sampled value and GOOSE messages conforming to the

IEC 61850-9-2 and the IEC 61850-8-1 standards. The SV and GOOSE message-

mapping VHDL modules are developed for the Xilinx Spartan 6 FPGA. This

research project produces a cost-effective limited-function Merging Unit and

GOOSE monitoring node prototypes.

The current research project is developed under the Centre for Substation

Automation and Energy Management Systems (CSAEMS) at the Cape Peninsula

University of Technology (CPUT).

1.2 Problem definition

The IEC 61850 standard was introduced to solve problems experienced with the

use of legacy communication protocols in conventional substation automation

systems. These problems include the lack of data semantics, standardised naming

convention, interoperability between devices (IEDs) from different vendors and the

use of expensive parallel copper wiring between primary plant equipment and the

protection relays. According to Iloh et al., (2014), the IEC 61850 standard has

received substantial patronage from vendors and electrical supply utility operators

over the years because of these technical capabilities.

According to the IEC 61850 standard, communication networks within a substation

are composed of three layers; the station, bay and process levels (International

Electrotechnical Commission, 2003-2004). Data is transmitted between devices

residing in these layers through communication interfaces numbered 1 to 10 in

Figure 1.2.

 4

Figure 1.2: Communication hierarchy in an IEC 61850 standard-based SAS

(Adapted from International Electrotechnical Commission, 2003-2004)

In Figure 1.2, interfaces 4 and 5 constitute the IEC 61850 process bus; these

interfaces are used for the exchange of Sampled Values (SV) and Generic Object

Oriented Substation Event (GOOSE) messages respectively. This process bus

allows current, voltage, breaker status and other measured variables to be

transmitted in real-time over an Ethernet network to bay level IEDs. These status

and sampled values are made available on the process bus by Actuators and

Merging Unit as shown in Figure 1.2.

Most actuators and Merging Units developed by different vendors are expensive

because of the specialised skillset, monetary and time investments required when

designing these IEC 61850 standard-compliant devices. Many utilities especially in

less developed countries are still reluctant or unable to implement IEC 61850-

based automation systems due to the lack of expertise or the high cost of IEC

61850 standard-compliant IEDs. Most academic institutions do not possess the

expertise to train engineers who are able to design IEC 61850 standard-compliant

devices or implement substation automation systems based on this standard

(Luwaca, 2014; Retonda-Modiya, 2012).

 5

This research project provides theory on the application of specific communication

service mapping of substation data/information to GOOSE and SV messages, this

thesis can be used for academic purposes or the development of certified IEC

61850 standard-compliant IEDs. This research project produces a low-cost GOOSE

monitoring node and a limited-function Merging Unit prototype. These prototypes

can be industrialised for use in IEC 61850 standard-based automation systems.

1.3 Research aim and objectives

1.3.1 Research aim

This research project aims to develop VHDL modules for mapping and publishing

IEC 61850-9-2 SV and IEC 61850-8-1 GOOSE messages on an FPGA platform.

These developed VHDL modules implemented on an FPGA will be combined with

an Analogue Front-End (AFE) to produce a limited-function FPGA-based Merging

Unit (MU) and a GOOSE monitoring node prototype. The developed MU and

GOOSE monitoring node prototypes will be tested in the laboratory to validate their

conformance to the IEC 61850-9-2 implementation guideline and the first edition of

the IEC 61850-8-1 standard.

1.3.2 Research objectives

In order to achieve the aims of this research project the following objectives will be

conducted:

 Literature review: History of substation automation systems and the

introduction of the IEC 61850 standard.

 Literature review: To analyse the IEC 61850 standard data modeling

techniques and communication service mapping for GOOSE and SV

messages.

 To conduct a review of literature on software algorithms and VHDL models

for mapping and publishing IEC 61850-9-1/IEC 61850-9-2 and IEC 61850-8-

1 standard-based SV and GOOSE messages on embedded platforms.

 Methodology: To conduct a comparative analysis of different embedded

platforms for mapping and publishing GOOSE and SV messages.

 Methodology: To design VHDL modules for mapping and publishing

GOOSE and SV messages as specified in the IEC 61850-8-1 standard and

 6

the Utility Communications Architecture International users group (UCAIug)

IEC 61850-9-2 implementation guideline (IEC 61850-9-2LE) respectively.

 Methodology: To integrate the AFE with the GOOSE and SV message-

mapping VHDL modules to produce a GOOSE monitoring node and a

limited-function Merging Unit prototype.

 Evaluation: To develop laboratory test benches for evaluating the developed

GOOSE monitoring node and Merging Unit prototype.

 Evaluation: To validate the structure of SV messages published by the

developed MU prototype against that defined in the IEC 61850-9-2LE using

Wireshark and SVScout software applications.

 Evaluation: To conduct an interoperability test between the developed

limited-function Merging Unit prototype with an IEC 61850-compliant IED.

 Evaluation: To conduct an interoperability test between the developed

GOOSE monitoring node prototype with an IEC 61850-compliant IED

 Evaluation: To validate the structure of GOOSE messages published by the

developed GOOSE monitoring node against that defined in the IEC 61850-

8-1 standard using Wireshark and IEDScout software applications

 Evaluation: To evaluate the accuracy of sampled values published by the

MU prototype using the CMC 256plus test set to simulate five case studies

covering power system normal and fault conditions.

 Evaluation: To validate the GOOSE client state machine implemented in the

GOOSE message mapping VHDL module against that defined in IEC

61850-8-1 standard.

 Evaluation: To evaluate the accuracy of the root mean square calculation of

the voltage injected into the GOOSE monitoring node by the CMC 256plus

test set.

 Conclusion: To analyse the results from the conducted case studies and

provide a conclusion of this research project.

1.4 Project assumptions and delimitation

1.4.1 Project assumptions

The following assumptions are made before embarking on the research project:

 7

 The Omicron CMC 256plus test set and the Test Universe software can be

used to validate the functionality of the SV and GOOSE message-mapping

VHDL modules.

 The CSAEMS at the Cape Peninsula University of Technology will provide

an Analogue Front-End (AFE) device that generates time synchronized

digital samples from the instrument transformers.

 The ratio between the primary and secondary current/voltage magnitudes is

100:1.

 Interoperability between devices from different manufacturers is possible.

 Interchangeability between devices from different vendors is possible.

 The Xilinx Spartan 6 FPGA contains sufficient resources for implementing a

GOOSE and SV messages publisher.

 The Ethernet switch used in the substation will be under moderate load

conditions and there are no packet delays.

1.4.2 Project delimitations

The following tasks fall outside the scope of this research:

i. For SV message-mapping this research project will not:

 Develop the current and voltage transformer (CT and VT) sampling and

synchronisation module but will receive ADC codes of the input voltages

and currents from an AFE provided by the CSAEMS.

 SV messages will be published at a fixed rate of 80 samples per cycle

using the PhsMeas1 dataset defined in the IEC 61850-9-2LE.

ii. For GOOSE message publishing the following tasks fall outside the scope

of this research:

 The GOOSE monitoring node developed in this research project will only

report the status of a circuit breaker and the root mean square voltage

injected by the CMC 256plus test set.

 The GOOSE messaging device will not be used as an actuator.

 The transfer time will not be evaluated for messages published by the

GOOSE message-mapping VHDL module.

 Remote control and data access using the Manufacturing Message

Specification (MMS) will not be supported.

 8

1.5 Research methodology and technique

This research project focuses on the design and development of VHDL modules for

mapping and publishing IEC 61850 SV and GOOSE message on an FPGA

platform. To achieve this goal, three major steps will be conducted and these are

the literature review, software development and experimental evaluation.

1.5.1 Literature review

In order to design an IEC 61850-compliant device it is imperative that a clear

understanding of the IEC 61850 standard be acquired and this information will be

gained from past research papers and projects from different institutions. The

literature review will also serve as an initial design step by comparing the different

designs of GOOSE and SV message publishers. This literature review process will

also discuss communication hierarchy and components defined in the IEC 61850

standard.

1.5.2 VHDL development and hardware integration

Once the information models and communication service mappings to GOOSE and

SV messages have been identified the next step will be to develop VHDL modules

to achieve this functionality. These VHDL modules will use state machine modeling

techniques to define the behaviour of an SV and GOOSE message publishing

device. State machines are useful for defining functionality of devices which have

clearly defined states when operational.

This part of the research project will also focus on integrating the AFE provided by

the CSAEMS and the developed GOOSE and SV message-mapping VHDL

modules. The integration of these two entities (AFE and GOOSE/SV message-

mapping VHDL modules) will produce a limited-function GOOSE monitoring node

and a Merging Unit prototype. The GOOSE and SV message-mapping VHDL

modules will then use the ADC codes from the AFE to calculate the power system

voltages and currents.

1.5.3 Experimental evaluation

In this step, the developed limited-function Merging Unit and GOOSE monitoring

node will be evaluated in the laboratory to validate their conformance to the IEC

61850-9-2LE and the IEC 61850-8-1 standard respectively. These tests will also

 9

evaluate the accuracy of the published sampled values during normal and

abnormal power system conditions. These power system conditions (normal and

fault conditions) will be simulated using the CMC 256plus test set.

1.6 Significance of the study

This research is aimed at the process bus implementation in substations for IEC

61850 standard-based automation systems. This process bus implementation was

introduced by the IEC 61850 standard to cater for data communication between the

primary substation equipment and bay controllers. This research project also aims

at providing information on the implementation of this process-bus to assist utilities

in the paradigm shift from hardwired and legacy communication protocols to IEC

61850 standard-based communication architectures. This research project will

provide effective knowledge transfer to facilitate the development of IEC 61850-

compliant devices, test methods for evaluating these devices and a greater

understanding of the IEC 61850 standard.

This research project also highlights the advantages of using the IEC 61850

process bus over legacy protocols and traditional hardwired communication

architectures.

1.7 Thesis organisation

This thesis comprises of six chapters stated below:

Chapter One introduces the trends in communication networks in substation

automation systems and presents the problem statement. This chapter also

highlights the aims and objectives of this research project in terms of providing a

solution to the problems encountered.

Chapter Two provides a literature review of the application of GOOSE and SV

messages in substation automation systems (SAS). This section also reviews past

research projects on the design of Personal Computer (PC) based or embedded

GOOSE and SV message publishers.

Chapter Three discusses the ten-part IEC 61850 standard with the main focus on

part 8-1 and part 9-2 for mapping and publishing GOOSE and SV messages

 10

respectively. This chapter discusses the IEC 61850 standard’s data modelling

techniques, data semantics, communication interfaces and the communication

service mappings of substation information for transmission.

Chapter Four discusses the VHDL code design and implementation of the GOOSE

and SV message-mapping VHDL modules conforming to the IEC 61850-8-1

standard and the IEC 61850-9-2LE. This chapter provides state machine models,

VHDL code snippets, equations and block diagrams used to implement functional

VHDL modules for mapping and publishing SV and GOOSE messages.

Chapter Five details test procedures conducted in the CSAEMS laboratory at CPUT

for evaluating the developed GOOSE and SV messages mapping VHDL modules.

The laboratory tests are conducted using IEC 61850-compliant software packages

and an Omicron test set.

Chapter Six provides a conclusion to this research project and mentions challenges

encountered and possible future work for improving and industrializing the

developed GOOSE monitoring node and Merging Unit prototype. References used

and appendices are presented immediately after Chapter Six.

1.8 Conclusion

This chapter presented the awareness of the need for the development and

application of GOOSE-enabled IEDs and Merging Units in substation automation

systems. The questions, aims and objectives, deliverables, methodology and

contributions of this research project have been presented in this chapter. This

section has also provided an outline of the chapters of this thesis.

Chapter Two presents an extensive literature review of research projects conducted

on the development of embedded IEDs and PC-based software algorithms capable

of publishing GOOSE and SV messages. This literature review chapter also

discusses the introduction of the IEC 61850 standard, the IEC 61850 process bus

and its application in substation automation systems to serve as theoretical

background.

11

 CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Substation Automation Systems (SAS) have evolved over the decades from simple

bang-bang control mechanisms to fully automated systems relying on the exchange

of high priority information between components in a distributed manner. This

evolution was and is still driven by the need for a high quality electricity supply,

safety considerations for the field workers/consumers and also the reduction of the

overall industry (electricity generation) carbon footprint.

This chapter is organised as follows: section 2.2 provides the bulk of the literature

review and the conclusion is drawn in section 2.5. Section 2.2 is sub-divided into

sections 2.2.1 and 2.2.2, section 2.2.1 provides a brief history on old

communication technologies which were employed in substations and the

introduction of the IEC 61850 standard. This section also presents a review of

literature related to the application of the IEC 61850 process-bus in substations, the

design and the evaluation of IEC 61850-compliant devices.

Section 2.3 and 2.4 focus on IEC 61850-8-1 Generic Object Oriented Substation

Event (GOOSE) and IEC 61850-9-2 Sampled Value (SV) messages respectively.

These sections, sections 2.3 and 2.4 conduct a comparative review of literature

pertaining to the mapping, publishing, evaluation and application of GOOSE and

SV messages in a Substation Automation System (SAS) respectively. These two

sections also compare and analyse hardware designs and software algorithms if

any applied in the construction of GOOSE or SV messages enabled devices.

2.2 Review of related literature

This research project focuses on the design and development of two separate

VHDL modules for mapping GOOSE and SV messages on a Field Programmable

Gate Array (FPGA). This GOOSE and SV message-enabled FPGA device is then

combined with an Analogue Front-End (AFE) module to produce a limited-function

GOOSE monitoring node and Merging Unit (MU) prototypes respectively. In order

to develop an IEC 61850-compliant device which satisfies the aims and objectives

12

of this research project established in Chapter One, a number of research topics

are considered and are listed below:

 Evolution of device technology used in substation automation systems.

 Evolution of communication protocols and standards in substation

communication networks.

 Understanding of the IEC 61850 standard, and its impact on substation

device (IED) design, evaluation and conformance certification.

 Review of research theses and papers on the application of the IEC 61850

process bus.

 Review of research papers on the development of GOOSE and SV

message-mapping algorithms on embedded or PC platforms.

 Review of literature on the mapping, application and benefits of using IEC

61850 GOOSE and SV messages in a SAS.

The literature review provided in this thesis is discussed in the sections listed

below:

 Communication technology in the substation and the introduction of the IEC

61850 standard.

 The implementation and benefits of using the IEC 61850 process-bus over

hardwired and legacy communication techniques.

 The application and performance evaluation of IEC 61850 GOOSE

messages.

 Review of research projects on the development of GOOSE-enabled

devices.

 The application and performance evaluation of IEC 61850 SV messages

 Review of literature on the development of MUs or computer algorithms for

mapping SV messages.

The next section discusses communication techniques used in Supervisory Control

and Data Acquisition (SCADA) systems and their shortfalls which led to the

introduction of the IEC 61850 standard.

13

2.2.1 Communication technology in the substation and the introduction of the

IEC 61850 standard

Communication networks are vital components in substation automation systems

(SAS) with telephone networks being used to report status and provide controls for

a few digital points in early control and protection schemes (Sun et al., 2012). In the

years that followed, digital communications became possible and protection

engineers introduced Data Acquisition Systems (DASs) in substations to monitor

and control points. At that stage, communication systems only offered limited

bandwidth therefore the communication protocols used were optimised for low

bandwidth channels (Luwaca, 2014; Retonda-Modiya, 2012; Sun et al., 2012).

Over the years that followed, research was conducted to improve the reliability of

DASs by improving the communication channel bandwidth. Following the

development in communication channel bandwidth, microprocessors were needed

to improve control and data acquisition from the substation. This in turn led to rapid

development of present day software-configurable microprocessor-based relays

known as Intelligent Electronic Devices (IEDs) (Sun et al., 2012).

These IEDs combine monitoring, protection, control and logging capabilities in one

logical device. Microprocessor-based IEDs present the protection engineer with an

opportunity to integrate multiple functions in one device thereby reducing

automation system implementation cost and engineering time. With IEDs it is

possible to modify the SAS without the need to re-design the device’s hardware.

Legacy communication protocols used in old data acquisition systems prior to the

introduction of the IEC 61850 standard and the microprocessor IED specified the

byte-order for message transmission between communicating devices. This

communication architecture introduced interoperability issues between devices and

no interchangeability prospects. This is due to the fact that there was no standard

used for data presentation, information modelling and device behaviour within the

communication network.

This lack of interoperability and standardised data presentation coupled with

manufacturers using proprietary communication protocols led to an estimated

US$82 billion being channelled into the development of complicated protocol

14

translators and integration costs in 1998 (Sidhu & Gangadharan, 2005). Therefore

it was important that an international standard be introduced to cater for integration

issues, standardisation of communication and provide interoperability between

devices from different vendors (Sun et al., 2012).

Efficient electricity distribution and energy conservation with the aim of reducing the

overall industry carbon footprint had to be addressed which led to the introduction

of smart grid systems (Farhangi, 2010). According to Konka et al.,(2011), smart grid

systems are fully inter-operable; communications-enabled electrical systems which

aim at revolutionising traditional power systems through the use of condition

monitoring and intelligence.

One such standard, which was introduced tackle interoperability issues

experienced with legacy protocols in substation communications and has since

been adopted to ensure a future with smart grid systems is the IEC 61850

standard. The IEC 61850 standard edition one was introduced in 2002 by Working

Group 10 (WG 10) of the International Electrotechnical Commission (IEC) Number

57 (IEC TC 57). The function of the IEC TC 57 is to develop and maintain

international standards for power system automation functions. Power system

automation functions include distribution automation, teleprotection, remote control

and data exchange of real and non-real time information.

The IEC 61850 standard introduces communication interfaces between

functions/components which replace hardwired communication links which

simplifies substation design and integration. This communication architecture

improves the automation system’s expandability and reduces implementation and

maintenance costs (Apostolov, 2010). These interfaces divide the substation

communication system into three layers; the station, bay and process levels as

illustrated in Figure 2.1 (International Electrotechnical Commission, 2003-2004).

15

Figure 2.1: Communication interfaces between components in an IEC 61850-based SAS

(Adapted from International Electrotechnical Commission, 2003-2004)

The numbered interfaces 1 through to 10 in Figure 2.1 represents the type of data

and how this data is communicated between functions/devices as discussed below:

 IF1: protection data exchange between the bay and station level

functions/IEDs.

 IF2: protection data exchanged between bay level IEDs and remote

protections system

 IF3: inter-bay data exchange

 IF4: Voltage and current sampled values published by Merging Units

directed towards bay-level IEDs/functions (Sampled Value messages).

 IF5: measurement, status or control data exchange between process level

actuators and bay IEDs (GOOSE messages)

 IF6: this interface is for the exchange of control information between bay

and station level devices.

 IF7: information exchange between an engineering platform and the station

level devices.

 IF8: fast real-time data exchange between bays for real-time functions

(GOOSE messages).

 IF9: station level information exchange.

 IF10: this interface is for data exchange between station level device and a

remote control center.

4,5 4,5

16

Seamless data communication between devices in three substation levels (station,

bay and process levels) is made possible by making use of these communication

interfaces. Some of these interfaces do not fall within the scope of the first edition

of the IEC 61850 standard. For instance, communication interfaces IF7 and IF10

are for communicating with remote control functions and control station

respectively.

Bay level IEDs communicate with the station level devices through a specific

communication service mapping to the Manufacturing Message Specification

(MMS) in which one device is the master and the other is a slave. This

communication interface is used for configuration purposes and remote access to

retrieve data from bay level devices.

Peer-to-peer communication between bay level and process level devices for real-

time applications and transmission of voltage and current samples from process

devices (Merging Units) are the two main focus areas of this research project. The

exchange of information between process and bay level IEDs using communication

interfaces IF4 and IF5 is known as the IEC 61850 process bus. These

communication interfaces are achieved by making use of specific communication

service mapping of information models and data to an ISO 8802-3 Ethernet frame

resulting in GOOSE and SV messages.

With reference to the communication level abstraction of the IEC 61850 standard

shown in Figure 2.1; IEDs fall into three categories: the station, bay and process

level IEDs. Station-level IEDs reside in the station level of the substation

communication hierarchy and they act as Human Machine Interfaces (HMIs)

allowing users to execute functions and/or view status of the underlying bay and/or

process levels. This IED is capable of communicating with a control centre and/or

station level IED in another substation (inter-substation communication). Bay-level

IED(s) perform protection, control and measurement functions and exchange real-

time information amongst themselves using GOOSE messages represented by

interface IF8 as shown in Figure 2.1. These IEDs communicate with process level

IEDs through the process bus (communication interface IF4 and IF5).

17

Process-level IEDs are simpler in design and function compared to bay and station

level IEDs. These IEDs use the process bus (GOOSE and SV messages) to

transmit sampled values of voltage and current measurements and digital status

from primary plant equipment (current and voltage transformers and circuit

breakers). Figure 2.2 shows IEDs typically found in different levels of the IEC

61850 substation communication hierarchy.

CT VT Circuit

breaker

Process Bus

Process Level

Station

Level

Bay Level

Station Bus

Protection IEDs Meters
Voltage

Regulatin

g Relays

Protection Engineer

Test
System monitoring

Interface

Fault Recorder

Operator

Workstation

Remote Host

Merging

Unit
Actuator

Figure 2.2: IEDs typically found in different levels of the IEC 61850 substation

(Adapted from Luwaca, 2014)

The following section reviews literature on the IEC 61850-8-1 GOOSE and IEC

61850-9-2 SV messages, their application in automation systems and the

development of IEDs capable of publishing these messages.

2.2.2 The IEC 61850 process bus

The IEC 61850 process bus is a data communication interface between process

and bay level devices. This interface was introduced in the IEC 61850-8-1 and IEC

61850-9-2 standards and is represented by communication interfaces IF5 and IF4

in the illustration in Figure 2.1 respectively. This high speed communication

interface is based on the ISO 8802-3 Ethernet frame for the transmission of voltage

and current sampled values and also digital signals e.g. circuit breaker status.

18

The IEC 61850 process bus is highly advantageous compared to hardwired

communication techniques because it:

 Reduces parallel copper wiring between devices thereby reducing the

implementation cost of an automation system

 Eliminates current transformer saturation by reducing the lead resistance.

The lead resistance is small because Merging Units (MUs) have very small

input impedance.

 Improves the reliability of a system by eliminating open current circuit

conditions (Apostolov, 2010).

The IEC 61850 process bus consists of both GOOSE and SV messages, for this

reason GOOSE and SV messages are referred to as process bus protocols.

Analogue and digital data can be transmitted using GOOSE messages, for

example, circuit breaker status and root mean square voltages for a 3-phase power

system. The following section (section 2.3), will be dedicated to reviewing literature

on the application of GOOSE messages in automation systems, performance

evaluation of GOOSE-enabled devices and the development of IEDs capable of

publishing these GOOSE messages. Section 2.4 is dedicated to a comparative

review of literature related to the application of SV messages and the development

of Merging Units.

2.3 Application, performance evaluation and development of IEDs capable of

publishing IEC 61850-8-1 GOOSE messages

The IEC 61850 standard introduces a number of interfaces to facilitate

communication between IEDs in different levels and components within a

substation automation system. One such communication interface represented by

IF5 and IF8 in Figure 2.1 is the Generic Object Oriented Substation Event

(GOOSE) message. This interface (GOOSE messaging) maps information models

and data objects into an ISO 8802-3 Ethernet frame (Retonda-Modiya, 2012).

GOOSE messages are fast real-time, peer-to-peer messages transmitted regularly

or when there is a change of status/value of any of the objects in the dataset.

GOOSE messages can be used for reporting analogue and or binary information to

any subscriber device. Implementing an automation system using GOOSE

19

messages can reduce wiring and engineering costs because the information

(binary and/or analogue data) is readily available on the Ethernet network (process

bus) (Sidhu & Gangadharan, 2005). GOOSE messages are highly advantageous

because they allow substation automation systems to expand without major

redesigns of the existing architecture or infrastructure.

GOOSE messages can be used for exchanging information/commands between

functions (inter-bay communication) or between primary plant equipment (CTs, VTs

and circuit breakers) and bay level IEDs (International Electrotechnical

Commission, 2003-2004). Analogue measurements required by protection

applications can be transmitted using GOOSE messages to the bay level IEDs; for

instance, current and voltage measurements from the CTs and VTs to the Voltage

Regulating Relays (VRRs) as illustrated in Figure 2.3 (Bowe, 2014).

Figure 2.3: Transformer voltage regulation using GOOSE messages

(Adapted from Bowe, 2014)

GOOSE messages are classified into two types -Type 1A and Type 1B, Type 1A is

for GOOSE trip messages whereas type 1B is for the GOOSE Block message

(International Electrotechnical Commission, 2003-07). GOOSE trip messages fall

into two performance classes and these are P1 and P2/P3. For P1 class the total

transmission time of 10 ms is defined and for performance class P2/P3 the total

transmission time of 3 ms is defined in the IEC 61850-5 standard (International

Electrotechnical Commission, 2003-07; Ito & Ohashi, 2008).

GOOSE messages are mapped directly to layer 2 of the Open Systems

Interconnect (OSI) stack to reduce protocol overhead thereby guaranteeing fast

transmission times. GOOSE messaging supports multicasting so that all subscriber

20

IEDs can receive information published by a device in the network. The IEC 61850-

8-1 GOOSE messaging scheme does not require receipt acknowledgments to be

sent to the publisher once the subscriber receives a message, this communication

scheme guarantees fast peer-to-peer message transmission (Ali, 2012).

There are many advantages of using GOOSE messages over legacy protocols;

these advantages listed below make this protocol flexible and ideal for high speed

communications:

i. They reduce point-to-point copper wiring of signals from IED to the next

thereby reducing the system engineering time and commissioning costs

(Fernandes et al., 2014).

ii. They are used to achieve fully integrated distributed substation automation

systems by exchanging IED information in real-time (Ali, 2012).

iii. GOOSE messages can be multicast to multiple subscriber IEDs on the

process bus network by making use of the multicast address defined in the

IEC 61850-8-1 standard (Mackiewicz, 2011).

iv. The GOOSE protocol does not support acknowledgements for any

messages received and this greatly reduces the amount of traffic in the

network and guarantees high delivery rates (Ali, 2012).

v. The GOOSE messaging scheme allows the transmission of multiple data

objects in a dataset. The use of datasets reduces the protocol overhead in

each message and thus provides high message transmission rates and

proper communication bandwidth utilisation.

vi. GOOSE messages implement a retransmission algorithm which allows the

information to be published after a certain time interval such that all the

IEDs in the SAS are updated of the other IED’s status. These messages

can also be used as heartbeat message to diagnose communication

problems in a network (International Electrotechnical Commission, 2004-

2005).

vii. They support VLAN tagging according to IEEE 802.1Q to separate time

critical messages from less time constrained station configuration data and

thus increasing delivery rate and reliability (Fernandes et al., 2014).

As can be seen from the points listed above, IEC 61850 GOOSE messages are

ideal for implementing communication systems for substation automation purposes.

21

The following section discusses different case studies that show how GOOSE

messaging is used in substation automation systems.

2.3.1 Application of GOOSE messages in substation automation systems

GOOSE messages are used for communications in substation automation systems.

One such application of GOOSE messages is presented in a research paper by

Gajic et al., (2014) where On Load Tap Changer (OLTC) of parallel transformers is

implemented using these messages. OLTC is implemented to regulate the

electricity network voltage in case it drops when the supplied load increases. In

their paper, Gajic et al., (2014) configures the test system such that the measured

voltage and current values are exchanged between two IEDs using GOOSE

messages. The authors conclude that GOOSE messages can be used to achieve

this functionality by taking advantage of IEC 61850 data models and information

exchange (Gajic et al., 2014).

Similarly to the research paper by Gajic et al., (2014), Bowe, (2014) presents a

GOOSE message-based parallel transformer switch mode using A.Eberle REG-DA

voltage regulating relays. In this application, two incoming transformers are

controlled by A.Eberle REG-DAs; these REG-DAs receive incoming feeder and bus

section circuit breaker and voltage measurements from three Siemens SIPROTEC

IEDs. This paper demonstrates the versatility of GOOSE messages by using this

protocol for the exchange of analogue and binary information thereby eliminating

the use of parallel copper wiring in a substation.

The GOOSE messaging communication interface can also be used in load

shedding schemes, in which the system continuously calculates the generation

reserve and the shed-able load in real-time by making use of power measurements

transmitted via this interface. The Fast Load Shedding Scheme (FLSC) conducted

in a paper by Wester et al., (2014) takes advantage of GOOSE message

mechanism like VLAN tagging to ensure high message delivery rates by separating

low priority traffic from time-critical messages.

The FLSC scheme also relies on data retransmission attribute of GOOSE

messages to ensure that all the aggregators within this scheme receives

commands from the master controller. The authors conclude that the FLSC

22

proposed will be reliable and will prevent total system failure should the generation

reserve fail to meet the load requirements (Wester et al., 2014).

Similarly to the papers published by Gajic et al., (2014) and Wester et al., (2014),

Cabrera et al., (2012) illustrates the use of IEC 61850-8-1 GOOSE messages in

protection schemes within a substation. An arc-flash protection scheme is

implemented in case of current flashover from one conductor to another due to

insulation breakdown and poor maintenance. Arc-flash detectors detect this fault

and are connected to protection relays which initiate circuit breaker tripping. Bus-

bar protection is initiated when arcing is detected which trips the bus (Cabrera et

al., 2012).

The implemented solution comprises of arc-flash detectors installed in the breaker,

current transformer and bus bar chambers of the different feeders. These detectors

are connected to an IED dedicated to the feeder bay and these IEDs exchange arc

detection status using multicast GOOSE messages. The results show that GOOSE

messaging can be used to provide for reliable and interoperable cost effective

methods for bus protection (Cabrera, et al., 2012).

IEC 61850 GOOSE messages can be used for a variety of applications and the

examples discussed in this section are some of the common applications of

GOOSE messages within IEC 61850 standard-based SAS. Table 2.1 catalogues

papers found in literature discussing the application of the GOOSE communication

protocol in an IEC 61850 standard-based substation automation system.

23

Table 2.1: Application of GOOSE messages in an IEC 61850 based SAS

Paper Application Method/Simulation Type of

Data

Evaluation and Comments

Bowe,
(2014).

Voltage
regulation.

Two transformers are controlled in a parallel switch mode
using two A.Eberle REG-DA with three Siemens
SIPROTEC IEDs which publish the voltage measurements
and circuit breakers statuses at the incoming feeders and
bus section

Analogue
and Digital

Transformer parallel switch mode can be
achieved using GOOSE messages with great
reduction in complex wiring and improving system
flexibility.

Cabrera et
al., (2012).

Bus protection
using Arc flash
detection in four
bays.

The system is made up of multiple arc flash detectors in the
CT, breaker and bus bar chamber connected to the
dedicated IEDs. The IEDs exchange the arc flash detector
status and implement bus protection scheme.

Analogue
and Binary

The protection scheme was tested in a real power
station and the results prove that IEC 61850
GOOSE SCSM can be used for real-time
protection schemes.

Wester et
al., (2014).

Fast Load
Shedding
Scheme (FLSS).

The system is made up of a single controller and one or
more aggregators which inform the main controller of the
current system power flows. The controller and the
aggregators communicate via GOOSE messages. The
main controller decides which load(s) to shed depending on
the measurands received from the aggregators.

Analogue
and Binary

GOOSE messages can be delivered reliably by
making use of VLAN tags. This proposed Load
shedding scheme is reliable and can prevent
system failures because of the real-time nature of
the GOOSE protocol.

Gajic et al.,
(2014).

On Load Tap
Changer Control
(OLTC).

The system consists of two transformers and each
transformer has a dedicated IED for protection and control.
The transformer data is modelled using the YLTC and the
ATCC logical node classes and is exchanged using
GOOSE messages between these two IEDs. The
circulating current method is used which relies on a
circulating current flowing if two parallel transformers are
out of step.

Analogue
and Binary

GOOSE messages can be delivered reliably by
making use of VLAN tagging and periodical
retransmission. Using GOOSE messages
ensures system flexibility and interoperability.

24

2.3.2 GOOSE message performance evaluation

Part 5 of the IEC 61850 standard defines message transmission times for different

types and classes of messages (International Electrotechnical Commission, 2003-

07). GOOSE messages are classified as type 1 and 1A messages and the

standard defines a transmission time of 3 ms for performance P2/P3 messages

(Mackiewicz, 2012).

All devices claiming conformance to the IEC 61850 standard must be able to send

messages of distinct types/classes which are supported according the transmission

times defined in Part 5 of the standard. The IEC 61850 standard is still in the

implementation phase and practical experimentation is required to detect efficiency

and applicability problems experienced so that efficient solutions can be proposed.

To this end, research into the efficiency of GOOSE messages has been conducted

and is reviewed in this section.

Netto et al., (2012) investigates the effect of Denial of Service (DoS) overloading of

an IED bandwidth on the GOOSE transfer time. In this test, two time-synchronised

IEDs are setup wherein IED1 is the publisher and IED2 is the subscriber. The

published and subscribed messages are time-stamped and recorded using the

State Events Recorder (SER). IED2’s bandwidth was flooded with UDP packets

generated by the DoS. The transfer time is calculated as the time difference

between subscriber time-stamped SER and publisher SER.

The results show that the GOOSE transfer time is not violated for up to 15% DoS

overload and all GOOSE messages were delivered. For 15%-95% DoS overload

the GOOSE mean transfer time ranges from 4.43 ms to 103.01 ms and 46.95% of

GOOSE message published by IED1 were not delivered to IED2.

When designing IEC 61850-8-1 GOOSE-compliant devices, it is important that the

message transmission time be less than 3 ms as defined in the IEC 61850-5

standard (International Electrotechnical Commission, 2003-07). Gonzalez-Redondo

et al., (2013) discusses methods for measuring the GOOSE message transfer time

for device in the development stage to ensure that they adhere to the timing

requirements for the transmission of IEC 61850-8-1 messages.

25

There are three time measurement methods and these are the round-trip, ping-

pong test and rally test. Round trip time defined in the IEC 61850-10 standard can

be used to determine how fast the transmitting device is; in this case the

subscribed message is retransmitted back to the publisher. The second method is

the ping-pong test where one device, the Device under Test (DUT) publishes a

message to a subscriber device. When the subscribing device receives the

message it transmits a GOOSE message that is subscribed to by the DUT. The

third test is a rally test where both devices publish GOOSE messages which are

subscribed to by the other device. Upon receiving a message the device publishes

its own message subscribed to by the other device therefore both devices are in a

continuous excitation state.

Experimental test benches are implemented in a laboratory environment using two

DK60 development boards from Beck IPC with a built–in IEC 61850 stack. In this

setup one device is the server and the other a client. The results of this

experimental setup show that the maximum round time trip for a GOOSE message

is 1.536 ms which is less than the 3 ms required for the transmission time

(Gonzalez-Redondo et al., 2013).

Fernandes et al., (2014) presents two methods for measuring the transfer and

round trip times of GOOSE messages published by an IED in an automation

system. These test methods comprises of two IEDs, network switch, configurator

PC and the Omicron CMC test set. For measuring the round trip time, the publisher

IED transmits a dataset containing the binary input (BI1) information using the

GGIO logical node to the subscriber IED2 which then maps this data to user binary

output (BO2) connected to the CMC test set. A GOOSE message is transmitted

automatically once the CMC test set injects a voltage into the binary input of IED1.

The state sequencer tool calculates the time between voltage injection into IED1

and voltage detected from BO2 of IED2.

The GOOSE transfer time is calculated by setting up one IED as the publisher, the

Omicron CMC test set as the voltage source and GOOSE message subscriber. The

IED publishes GOOSE messages once the voltage on binary input (BI1) connected

to the Omicron CMC test set AUX output changes. The Omicron test set calculates

26

transfer time as the time from voltage injection to GOOSE message reception from

the IED.

The round-trip time and the publisher time are measured to be 18.50 ms and 6.20

ms which include the input debounce, IED operation time and the binary input

sensing time Fernandes et al., (2014). According to Fernandes et al., (2014) the

number of objects published in the dataset is directly proportional to the GOOSE

transfer time, the fewer the objects in the dataset the faster the transmission time.

Daboul et al., (2015) presents the performance and timing performance of GOOSE

messages over hardwired communication techniques in a substation automation

system. In this evaluation, two IEDs were configured to communicate via GOOSE

messages and hardwired signals exchange; the results show that the GOOSE

round-trip time is approximately 2.5 ms whereas it took 20 ms for the same data to

be exchanged via hardwired signals. This paper proves that GOOSE messaging

can be used in substation automation systems for information exchange without

degrading the performance of the system.

Table 2.2 shows a catalogue of reviewed papers on the measurement of the

GOOSE transfer and round-trip times. This catalogue also highlights the factors

affecting the GOOSE message transfer and round-trip times.

27

Table 2.2: Comparison of performance evaluation of GOOSE messages

Paper Type of diagnosis Test

setup

Test Equipment Comments/ Outcomes

Netto et al.,

(2012)
Effect of DOS overload on the
GOOSE transfer time

Yes GOOSE transfer
time measurement

GOOSE transfer time is affected by network traffic, for less than 15%
DoS overload all GOOSE messages published are delivered to the
subscriber and the 3 ms transfer time is honoured. For more than 15%
overload the transfer time is violated.

Gonzalez-
Redondo et
al., (2013)

Measuring GOOSE transfer time
using the Round trip time, Ping pong
and the rally test. One of the
development boards is the client
whilst the other is the server.

Yes two DK60
development
boards

There are some factors to be considered when measuring the time.
Is the time measured within the application code before the API function?
(Efficiency of the stack to be considered).
Measurement of time after the stack which reflects the network time
And lastly time measurement when an event occurs e.g. change in
breaker status.

Fernandes
et al., (2014)

Measurement of the GOOSE transfer
time and round-trip time using two
IEDs and the Omicron CMC test set.

Yes Two IEDs

 Omicron CMC
test set

 Industrial
switch

The GOOSE transfer time is directly proportional to the number of data
objects in the dataset.
The GOOSE publisher time measured in these experiments was more
than the 3 ms defined in the standard because it included the input
debounce and relay function time.

Daboul et
al., (2015)

Measurement of the IEC 61850-8-1
standard GOOSE round trip time.

Yes Two ABB REF
615 IEDs

 Configuration
PC

 Ethernet switch

This test shows that GOOSE messages are faster and more flexible
compared to conventional hardwired communication techniques

28

These past research projects prove that GOOSE messages can be used for

communicating time-critical messages using an Ethernet network with relatively low

traffic of up to 15%. The DK60 board used by Gonzalez-Redondo et al., (2013) is

based on an FPGA and embedded Beck-IPC web controller, this test shows that it

is possible to map and publish GOOSE messages conforming to the timing

requirements of the IEC 61850 standard using an embedded platform.

The next section presents a review of literature on the design and development

embedded device for mapping and publishing GOOSE messages.

2.3.3 GOOSE message-mapping on embedded platforms

There are a number of factors to be considered when developing IEC 61850

standard-compliant devices for GOOSE messaging. These factors depend mostly

on the application of the device in a substation automation system and also the

timing constraints defined in the IEC 61850-5 standard. Some of the factors to be

considered are:

i. Does the device need analogue inputs?

ii. Does the device require digital inputs?

iii. How much processing power and memory does the device require?

iv. What are the effects of the environment on the operation of the device?

v. Should the device implement the MMS stack?

This section discusses previous research projects on designing GOOSE-compliant

devices. The findings are catalogued in chronological order and compared

according to application in Table 2.3.

Fan et al., (2011) details the design of a device to measure the steady, transient

and dynamic states of a power system. This device outputs phasor, power and

frequency measurements from the substation to a higher degree of accuracy with a

percentage error of 0.2%. This device also records the system parameters for fault

analysis. In this paper the authors highlight the advantages of using FPGAs in

designing IEC 61850 standard-compliant devices; these advantages include high

precision for time-keeping and synchronisation (Fan et al., 2011).

29

This device presented in the paper by Fan et al., (2011) is a multi-function device

and possesses time synchronisation capabilities, analogue inputs for system

voltages and currents from the instrument transformers. This device publishes and

subscribes to GOOSE messages for locking functions and the results prove that it

is possible to design a multi-functional IEC 61850 standard-compliant device using

a high speed microprocessor and an FPGA.

MingCai et al., (2012) presents the design of a device to control high voltage SF6

circuit breakers in a 126 kV substation using an STM32F103ZET6 processor and

an Altera Cyclone II EP2C8Q208C8 FPGA. The terminal device receives

commands from a secondary IED and sends actuating signals to the breaker. This

device also transmits all circuit breaker status, alarms and analogue values using

GOOSE messages.

The design is based on an Advanced RISC (Reduced Instruction Set Computers)

Machines (ARM) and an FPGA, the processor is responsible for data processing

and GOOSE transmission while the FPGA is used for extended decoding and

processing functions because of its high speed input/output, high processing speed

and the multi-threading capabilities (MingCai et al., 2012). The results show that

the design can meet the real-time requirements of the IEC 61850 standard even

though it was not tested using IEC 61850 standard-compliant equipment to verify

its compliance and interoperability.

Retonda-Modiya, (2012) outlines the design of an IEC 61850-8-1 standard

compliant circuit breaker actuator. This actuator also publishes the circuit breaker

status to subscribing IEDs using GOOSE messages (Retonda-Modiya, 2012). This

GOOSE monitoring node presented by Retonda-Modiya, (2012) opens/closes the

circuit breaker once it receives actuating commands mapped onto the MMS

according to the IEC 61850-8-1 standard from a server device.

This actuator is based on the DK60 platform which has a built-in Ethernet controller

from Beck-IPC running an IEC 61850 communication stack for mapping GOOSE

and MMS messages. This actuator is tested in a laboratory setup using an Omicron

CMC 256plus injection test set and a Siemens IED to implement an overcurrent

protection scheme. The CMC 256plus injection test set is configured to generate

30

and inject voltage and current signals emulating an overcurrent fault into the

Siemens IED. Once the fault is detected the Siemens IED publishes a command

instructing the actuator to close the circuit breaker.

After a number of experimental overcurrent injection tests, the average GOOSE

transfer time is measured to be 0.95 ms which is less than 3 ms defined for Type

1A performance class P2/P3 messages. This proves that IEC 61850-compliant

devices can be developed using the DK60 development platform.

Gonzalez-Redondo et al., (2013) developed two GOOSE-enabled devices based

on the DK60 development board similarly to the one used by Retonda-Modiya,

(2012). These devices were used for evaluating the methods for measuring the

GOOSE message transfer time for devices in the development stage to ensure

their conformance to the timing requirements defined in the IEC 61850-5 standard.

Device testing especially time and performance measurement are important in IEC

61850 standard-compliant device design. Retonda-Modiya, (2012) uses a variation

of the round-trip test to evaluate the developed GOOSE actuator’s transfer time.

Fan et al., (2011) and MingCai et al., (2012) outline the advantages of using

FPGAs for designing IEC 61850 standard-compliant devices so as to meet the

timing constraints for type 1A messages. In these two papers, the authors use a

processor for communication and data processing and an FPGA for timing and

data I/O because the FPGA has fast I/O ports.

The development of an IEC 61850-8-1 standard GOOSE message-mapping VHDL

module conducted in this research project will use an FPGA for data I/O,

processing and communication as opposed to projects presented by Fan et al.,

(2011), MingCai et al., (2012), Retonda-Modiya, (2012) and Gonzalez-Redondo et

al., (2013). The FPGA is capable of performing these tasks without the assistance

of a processor because it contains a vast number of logic blocks which can be used

for any logical functions executed in parallel.

Figure 2.4 shows the number of research papers on the development of embedded

IEDs capable of communicating via GOOSE messages.

31

Figure 2.4: Number of papers reviewed on the development of embedded GOOSE-
enabled IEDs

Table 2.3 shows a comparative analysis of embedded IEC 61850-8-1 standard

GOOSE message-enabled devices found in literature. This catalogue shows the

intended application of the devices, performance evaluation and the development

platforms used.

0

1

2

3

2011 2012 2013

Development of embedded GOOSE-enabled IEDs

Number of
Papers

32

Table 2.3: Comparing GOOSE-enabled embedded devices

Paper Research Objectives Device

Application

Target Platform Performance

and Evaluation

Outcomes

Fan et al.,

(2011).
Development of an IEC 61850-
compliant device for steady-state,
transient and dynamic state
system measurement using
phasor and instantaneous
measurements.

Phasor
measurement,
GOOSE publisher
and system
recording.

 POWERPC

 FPGA

 PNM module for
mapping GOOSE and
IEC 61850-9-2 SV
messages

N/A Highlights the advantages of
using an FPGA for timing
synchronisation and sampling
owed to its parallel
processing capabilities, high
operating frequency and fast
input/output ports.

MingCai et
al., (2012).

Design and development of an
actuator to control the high
voltage SF6 circuit breaker using
MMS commands. This actuator
publishes breaker status and
other analogue measurements
from the breaker using GOOSE
messages.

High voltage SF6
actuator.

 ARM processor
(STM32F103ZET6)

 FPGA (Altera Cyclone II
EP2C8Q208C8)

 Ethernet MAC and PHY
(DM9000AE)

Yes This paper highlights the
advantages of using an
FPGA in applications with
stringent time constraints.

Retonda-
Modiya,
(2012).

Design of a low cost IEC 61850-
compliant circuit breaker actuator
using GOOSE and MMS
messaging.

Circuit breaker
actuator.

 DK60 development
board with a Beck IPC
web controller chip
(SC143-IEC-LF)

Yes GOOSE delivery time of
0.975ms was achieved which
meets the requirements of
IEC 61850 P1 class
messages.

Gonzalez-
Redondo et
al., (2013)

Development of methods for
evaluating the GOOSE message
transfer time for devices in the
development stage.

GOOSE transfer
time evaluation.

 DK60 development
board with a Beck IPC
web controller chip
(SC143-IEC-LF)

Yes The traffic on the Ethernet
network and programming
APIs affect the GOOSE
message transfer time.

33

The following section conducts a review of literature on the application of SV

messages in an automation system, performance evaluation of SV-based

automation systems and lastly the development of IEC 61850-9-2 SV-compliant

devices.

2.4 Application, performance evaluation and development of IEDs capable of

publishing IEC 61850-9-2 Sampled Value (SV) messages

The Merging Unit is defined in the IEC 60044-7 and IEC 60044-8 technical

documents on Electronic Voltage Transformers (EVTs) and Electronic Current

Transformers (ECTs) respectively. The MU is also mentioned in the IEC 61850-9-1

and IEC 61850-9-2 standard for the transmission of current and voltage samples

from the primary plant equipment. IEC 61850-9-1 standard and IEC 61850-9-2

standard Merging Units transmit SV messages to bay level IEDs through the serial

link and the Ethernet process bus respectively.

These SV messages contain instantaneous voltage and current samples of the

power system sampled by the MU at a specific rate. Sampled value messages

received by the bay-level IEDs are used for metering and for implementing various

protection functions. Bay-level IEDs subscribe to the these published SV messages

using the abstract communication services defined in the IEC 61850-7-2 and IEC

61850-9-2 standards (International Electrotechnical Commission, 2002-2007;

International Electrotechnical Commission, 2004).

The MU illustrated in Figure 2.5 accepts analogue input signals from CTs and VTs

through an Analogue to Digital Converter (ADC) and binary inputs from primary

plant equipment. This information is mapped onto an IEC 60044-8 standard or IEC

61850-9-1 standard SV frame and published to bay controllers using a serial

unidirectional multi-drop point-to-point link.

34

Multiple

Ports

Ethernet

Controller

Merging Unit

Ethernet

Controller

Line Protection

Ethernet

Controller

Bay Protection

Binary Inputs

Proprietary

Links

Synchronization, monitoring

test and configuration

interface

Serial uni-directional

multi-drop point to point

link

Figure 2.5: Application of the IEC 61850-9-1 standard-based Merging Unit

(Adapted from Baigent et al., 2004)

The illustration in Figure 2.5 shows a MU which is capable of publishing sampled

value messages containing digital information from digital inputs as per the IEC

61850-9-1 standard. This research project focuses only on sampled value

messages published as per the Utility Communications Architecture International

Users Group (UCAIug) implementation guideline of the IEC 61850-9-2 standard

known as the IEC 61850-9-2LE (Light Edition). Figure 2.6 shows an internal block

diagram and analogue connections of a typical IEC 61850-9-2LE Merging Unit.

Figure 2.6: Typical IEC 61850-9-2LE-compliant Merging Unit

35

Figure 2.6 shows a typical IEC 61850-9-2LE Merging Unit, this MU receives current

and voltage signals from CTs and VTs which are modelled using TCTR and TVTR

logical node classes respectively. The difference between the two MU designs

shown in Figure 2.5 and Figure 2.6 is that the latter does not support the mapping

of digital inputs to the sampled value messages. The IEC 61850-9-2LE defines a

dataset known as PhsMeas1 containing a total of eight instantaneous sampled

values: four current and four voltage samples published at either 80 or 256 samples

per cycle for protection or metering functions respectively.

The IEC 61850-9-2LE was published in 2004 to eliminate implementation ambiguity

of MUs that is to reduce design and implementation complexity of IEC 61850-9-2

standard-based Merging Units (Luwaca, 2014). This is because the IEC 61850-9-2

standard is broad and extensive (Apostolov, 2010). The IEC 61850-9-2LE defines

two standard control blocks which define how and when the sampled values are

published to the bay level IEDs.

2.4.1 IEC 61850-9-2 Merging Unit testing, performance and evaluation

Performance, reliability, availability and timing characteristics of the IEC 61850-9-2

standard process bus in a substation automation system must be evaluated since it

is set to be the backbone of all communications between the process and the bay

level devices.

Haude, (2010) proposes a method for evaluating sampled value messages

transmission under different power system conditions. This test procedure focuses

on the sample count, accuracy of samples and completeness of samples by using

an Omicron CMC test set as a reference. Haude, (2010) also compares the

sampled value transmission and accuracy between Non-Conventional Instrument

Transformers (NCIT) namely the Rogowski coils and conventional instrument

transformers.

In the proposed test setup, two MUs from different vendors are used; one MU has a

Rogowski Coil and the other a conventional current transformer and they are

connected to the same master time source with the CMC test set. The CMC

injection set was then configured to inject current signals into these MUs and also

publish sampled value messages. The sampled value messages published by

36

these three devices (two MUs and the CMC test set) were then compared to check

for completeness of samples and accuracy.

Starck et al., (2013) investigates the effects of using IEC 61850-9-2 standard and

IEC 61850-8-1 standard communication service mappings on the availability,

performance and reliability of a substation automation system. Additionally, Starck

et al., (2013) compares the availability, reliability and performance factors between

a non-conventional and conventional instrument transformers-based single bus bar

configuration distribution substation. Each section of the bus bar contains one

incoming feeder and eight outgoing feeders with the measuring equipment on the

cable side. From the calculated Mean Time to Failure (MTTF) values, Starck et al.,

(2013) established that protection systems based on the conventional

measurement techniques are costly to implement, less reliable and less flexible

compared to IEC 61850-9-2 and NCIT-based protection systems. IEC 61850-9-2

standard-based protection systems exhibit high availability and reliability compared

to conventional systems because the IEC 61850 standard specifies a network

redundancy scheme based on the Parallel Redundancy Protocol (PRP) and High

availability Seamless Redundancy Protocol (HSRP).

Adewole and Tzoneva, (2014) evaluate the impact of the SV process bus on

operating performance of protection IEDs. The factors investigated included the

speed, dependability and security capabilities of the concerned sampled value

process bus. Furthermore, Adewole & Tzoneva, (2014) considered the

performance of two IEDs in a distance protection scheme by comparing a

hardware-in-the-loop implementation to a conventional-hardwired setup. The

hardware-in-the-loop SV protection scheme was configured using a Real Time

Digital Simulator (RTDS), an IED, GPS clock and an industrial network switch. To

measure the performance, the protection system was subjected to various fault

locations, fault resistance and fault inceptions with different Source Impedance

Ratios (SIR). The IEC 61850-9-2 standard process bus communication network

was subjected to random noise/delay so as to evaluate its security and

dependability characteristics (Adewole & Tzoneva, 2014).

The results of the tests conducted in the laboratory prove that the IEC 61850-9-2

standard process bus can be used instead of the conventional hardwired

37

communication techniques between protection IEDs and instrument transformers

because both communication techniques have similar response and tripping times.

The advantage that the SV process bus has over hardwired systems is the

reduction of parallel copper wires between CTs, VTs and the protection IEDs since

sample values are published onto the Ethernet network by the RTDS. The IEC

61850 process bus has also proven to be dependable and secure as witnessed by

successful protection scheme demonstrations. Test conducted by Adewole &

Tzoneva, (2014) demonstrates that the IEC 61850 process bus can be used

instead of conventional protection schemes without affecting the security and

functionality of the system.

To facilitate the verification of SV messages published by a MU, Sumec, (2014)

developed a software application that monitors traffic on the process bus to detect

SV messages. This application is capable of decoding the SV frame, plotting the

received information on a real-time graph and exporting the sample values to a

Comma Separated Values (CSV) file for further analysis. This software is able to

decode messages from an arbitrarily configured MU using a Substation

Configuration language (SCL) file.

This software is capable of detecting up to 20 errors in the received SV messages

including invalid sample count, message length and ASN.1 Tag errors. Sumec,

(2014) evaluated the decoding algorithm by publishing sampled value messages

from a CMC 256plus test set and from a MU then comparing the decoded signals

on a plot within the developed software application.

Table 2.4 shows a comparative analysis of research projects in evaluating the

performance of SV messages for use in substation automation systems.

38

Table 2.4: SV message performance review

Paper Investigation Test Equipment Method Physical

Test

Bench

Comments

Haude,
(2010)

Sampled value
message transmission
under different network
condition

 Merging Unit

 NCIT

 conventional
instrument
transformer

Comparing time behaviour data transmission,
completeness of samples, sample counter and
accuracy of samples between SV messages
published by NCIT connected MU, CMC test set
and Merging Unit connected to conventional
instrument transformers.

Yes The resolution of the test set is not
high enough to evaluate the sample
tolerance of 4 µs.

Starck et al.,
(2013)

Effects of IEC 61850-9-
2 sampled values and
Non-Conventional
measurements on
availability performance
of an IEC 61850 based
SAS.

ABB UniGear ZS1 in
single bus-bar
configuration with two
bus sections each with
one incomer and eight
outgoing feeders.

Comparing availability, reliability and
performance attributes of protection systems
based on conventional instrument transformers
and NCIT with IEC 61850-9-2 process bus.

No Protection systems based on NCIT
(Non-conventional instrument
transformers) on a redundant
Ethernet network have a higher
availability compared to their
conventional counter-parts.

Adewole &
Tzoneva,
(2014)

The main objective of
this research was to
compare performance,
speed, security and
dependability of an IEC
61850-9-2 process bus-
based distance
protection system with a
hardwired protection
systems.

 RTDS with a
GTAO card and
GTNET-SV cards.

 Conventional
instrument
transformers

 Circuit breaker

Conventional System
Connected to a circuit breaker and to the
instrument transformer through the RTDS GTA0
card.
IEC 61850-9-2 SV system.
Connected to a circuit breaker and to the
instrument transformer through the RTDS’s
GTNET-SV card

Yes The tests verify that the protection
system is not affected due to the
noise/delay of up to 3 sample
period. The research paper also
proves that IEC 61850-9-2 sampled
value process bus can be used in
protection schemes without
affecting the overall performance,
speed and reliability but greatly
reduces the amount copper wiring
required for implementation.

39

Paper Investigation Test Equipment Method Physical

Test

Bench

Comments

(Sumec,
2014

Verification of Sampled
value messages
published by MU.

 CMC 256plus test

set

 Merging Unit

The CMC 256plus test set is configured to

generate analogue signals and publish
Sampled value messages. The signals
generated by the CMC 256plus test set are
injected into a MU. The SV streams published
by both the CMC 256plus test set and the MU
are captured using the SV verification software
and compared.

Yes The captured signals plotted by the
SV verification software are not
compared to signals captured and
plotted by any other software tool
e.g. SVScout.

40

2.4.2 Sampled Value (SV) messages mapping on embedded platforms

This section provides a review of literature on sampled value message-mapping

algorithms and MU designs. This review section focuses on MU designs and SV

message-mapping algorithms as specified in the IEC 61850-9-1 and IEC 61850-9-2

standards so as to provide a solid background into hardware designs and mapping

techniques.

Yin & Liu, (2004) highlight the importance of MUs by listing the disadvantages of

using conventional instruments transformers and highlighting the advantages of

Electronic Instrument transformers (ECTs and EVTs). Contrary to conventional

instrument transformers, ECTs and EVTs have a wide dynamic range and a linear

output (Yin & Liu, 2004). Yin & Liu, (2004) mention the IEC 60044-8 and the IEC

61850-9-1 standards.

In their research, Yin & Liu, (2004) used the 1 Pulse per Second (1PPS) pulse from

a Global Positioning System (GPS) for the FPGA-based MU. The multi-channel

analogue signals from the electronic instrument transformer are sampled

synchronously by the ADC and the sampled value messages are then transmitted

using the universal dataset defined in IEC 61850-9-1 standard.

The sampled value control block is preconfigured to publish 80 samples per

nominal period so therefore on a 50 Hz network, 4000 sampled value messages

are published. Yin & Liu, (2004) conclude by stating that it is possible to design a

merging unit to interface electronic instrument transformers with bay level IEDs

using an FPGA and still conform to the IEC 61850-9-1 standard.

In 2007, Liu et al., (2007) utilised a 32-bit ARM processor with a 10/100 Mbps

Ethernet Media Access Controller (MAC) to develop a Merging Unit. The solution

uses a 1PPS synchronisation signal from a GPS master clock and its accuracy is

tested using the processor’s timer input capture method. The MU uses a multi-

channel ADC which samples the analogue signals from the CTs and VTs and

sends the data to the processor via a Serial Peripheral Interface (SPI) port. The use

of the multi-channel ADC is innovative because only one ADC is used compared to

41

using an ADC for each channel and the SPI port reduces the number of connection

tracks between the ARM processor and the ADC.

Figure 2.7 shows a block diagram of hardware components which make up the MU

developed by Liu et al., (2007).

Figure 2.7: ARM processor-based Merging Unit

(Adapted from Liu et al., 2007)

This developed MU transmits both the Manchester encoded FT3 frame and the SV

packets specified in the IEC 60044-8 and the IEC 61850-9-1 standards respectively

(Liu et al., 2007).

The PHY controller is a transceiver chip representing the physical layer of the OSI

stack and is responsible for analogue data transmission and reception of Ethernet

frames (Liu et al., 2007). The PHY used is the HFBR 5908E which is a high

performance transceiver for optical fibre communications systems (Liu et al., 2007).

Liu et al., (2007) used the Microcontroller Operating system II (µC/OS-II) kernel as

the core operating system and the MU applications are implemented as tasks.

These tasks are assigned execution priorities from 0-63. In this design there were

three mains tasks, for receiving multi-channel data from the ADC, packing the SV

packet and lastly sending the data onto the Ethernet network. In the implementation

of the MU by Liu et al., (2007), time synchronisation is interrupt-based and does not

run off the main OS kernel. The results from the conducted test procedures prove

42

that the developed microcontroller-based MU can be used in IEC 61850 substation

automation systems (Liu et al., 2007).

Lee et al., (2008) published a research paper detailing the required technique for

designing a Merging Unit based an embedded processor and a real-time Linux

kernel. Contrary to the design by Liu et al., (2007), the MU design produced by Lee

et al., (2008), uses the IRIG-B protocol for synchronising the ADC sampling.

Lee et al., (2008) summarises that MUs have the following functions:

 Processing of signals from all sensors.

 Time synchronisation of measurements.

 Providing an interface between conventional/non-conventional instrument

transformers and bay level IEDs.

 Transmission of SV frames to bay level controllers.

According to Lee et al., (2008), the MU sends data to SV subscribers using the SV

multi-cast service, which is called the SendMSVMessage. The frames are captured

and analysed using the MMS Ethereal software and the results prove that

designing a MU using an embedded processor and the Linux real-time kernel is

feasible and also conforms to the requirements of IEC 61850 standard.

Wei-ming et al., (2011) conducted research into the design and development of a

MU based on the Altera Cyclone III EPC 3C25Q240C8 FPGA. The code for the

FPGA was written using the hardware description language for very-high speed

integrated circuits (VHSIC-HDL). The developed Merging Unit has three functional

modules; the time synchronisation, sampled value processing and the data frame

transmission modules similar to the design by Yin & Liu, (2004).

Similarly to the approach by Yin & Liu, (2004) and Liu et al., (2007); Wei-ming et

al., (2011) developed an FPGA-based MU synchronised using a 1PPS pulse from a

GPS clock. The SV messages are framed and published as specified in the IEC

61850-9-2LE using the MSVCB01 control block that defines a publishing sample

rate of 80 samples per cycle and a dataset that contains four voltage and four

current samples Wei-ming et al., (2011).

43

The FPGA drives the LAN9215 PHY controller connected to an RJ-45 port and

publishes SV packets at 100 Mbps full duplex mode (Wei-ming et al., 2011). This

MU design also has a fibre optic port controlled by the FPGA through the ICS 1889

PHY and HFBR 5103 fibre transceiver. According to Wei-ming et al., (2011) the

MMS Ethereal software is used to analyse the captured data frames and the results

show that by taking advantage of the speed and modularisation of the FPGA a

reliable IEC 61850-9-2 Merging Unit can be realised.

Weiss et al., (2011) discuss the advantages of making conventional instrument

transformer signals available on the process bus by making use of an IEC 61850-9-

2 Merging Unit. The MU discussed in this paper generates and publishes SV

messages as specified in the IEC 61850-9-2LE. Similarly to the research project by

Wei-ming et al., (2011), the MU detailed in the paper by Weiss et al., (2011)

publishes SV messages using the MSVCB01 control block but it can also generate

and publish messages using MSVCB02 control block.

According to Weiss et al., (2011), a MU solves the predefined loading characteristic

problems experienced with conventional current transformers. Loading

characteristics of a particular sensor means that only a limited number of IEDs can

be connected to it without compromising its accuracy. This problem is solved by

using Merging Units in an automation system because current and voltage samples

are made available to any number of IEDs through the process bus with a burden

of less than 1 VA applied to the instrument transformer (Weiss et al., 2011).

Weiss et al., (2011) suggest a number of recommendations which include the

implementation of IEEE 1588 for time synchronisation instead of 1PPS because in

the latter method (1PPS) an extra fibre cable is required to connect the master

clock to the Merging Unit. Redundancy in a network is suggested where the

network is ring-configured such that data can be sent in both directions. This setup

guarantees a higher degree of confidence that SV messages will reach a

subscriber IED even if one of the two communication links break. Lastly, Weiss et

al., (2011) recommend the development of Gigabit networks to reduce data loading

on the process bus and increase transmission speeds.

44

A feasibility study was conducted by Jing et al., (2011) into the application of MUs

in intelligent distribution substations. This study was based on a hardware device

designed to conform to the IEC 61850-9-1 standard. This research led to the

design of a MU which interfaces to both conventional and electronic instrument

transformers. The hardware platform for this Merging Unit is founded on an M4

Cortex-based 32 bit microprocessor from the STMicroelectronics STM32 family.

The Merging Unit designed presented in the paper by Jing et al., (2011) uses the

1PPS signal from a GPS clock for synchronisation similar to the design by Yin &

Liu, (2004), Liu et al., (2014), Wei-ming et al., (2011) and Weiss et al., (2011).

Figure 2.8: Merging Unit design block diagram

(Adapted from Jing et al., 2011)

Figure 2.8 shows a block diagram of the Merging Unit developed by Jing et al.,

(2011). Table 2.5 provides a catalogue of research projects found in literature of the

development of IEC 61850-9-1 and IEC 61850-9-2 Merging Units.

Power

Modules

FPGA time

Synchronization

Filter

Circuit
ADC

Data

Processing

Module

Ethernet

Control

Module

Converter Synchronous

Signal

Electronic Transformer

Sampled Value Input

IEC 61850-9-1

Communication

GOOSE Message

Receiving

GPS 1PPS Pulse

12 Channel

analog signal

Binary Switch

Input

45

Table 2.5: Comparison of different SV message-mapping algorithms and Merging Unit designs

Paper Summary Standard

Conformance

Advantages/Disadvantages Development

Platform

Yin & Liu, (2004). Uses an FPGA platform to design a
Merging Unit based on the IEC
61850-9-1 and the IEC 60044-8
standard to interface ECTs and

EVTs with protection IEDs.

IEC 61850-9-1
IEC 60044-8

Reduction of complicated and parallel wiring used for
connecting conventional CTs and VTs to the protection IEDs.
Use of ECTs and EVTs compared to conventional instrument
transformers.

FPGA

Liu et al., (2007). In this paper a Merging Unit based
on an ARM processor (LPC2368
MCU) is designed to interface ECTs
and EVTs with protection IEDs

IEC 61850-9-1
IEC 60044-8

Advantages:

 ECTs and EVTs are better than conventional CTs and
VTs the latter device have magnetic saturation and
insulation problems.

 Reduction of parallel wiring between the bay level and the
process level.

 Compared to conventional instrument transformers, ECTs
and EVTs have a wide dynamic range, are smaller in size
and can be adapted easily to digital systems.

LPC 2368 ARM-
based MCU

Xiaobin et al.,
(2008).

Sampled value communication
service mapping on a serial point-to-
point link defined in IEC 61850-9-1
and IEC 60044-8 is analysed in this
paper. Conventional instrument
transformers are used.

IEC 60044-8
IEC 61850-9-1

Outcomes of the research:

 This paper proposes the use of a Merging Unit to sample
and transmit process information from the instrument
transformers simultaneously.

 The Merging Unit will reduce cabling costs in the
substation and improve system reliability.

 This Merging Unit provides remote control of equipment
and also transmits digital status.

N/A

Schmid & Kunde (
2009).

This paper investigates the use of
Electronic instrument transformers in
high voltage equipment. This paper
also reviews communication
standards defined for interfacing
primary plant equipment with bay
levels.

IEC 61850-9-1
IEC 60044-8

Advantage of using new Electronic Transformers:

 Higher accuracy of 0.1% compared to their counterparts.

 They can measure the transient short circuit current

 Reduction in parallel copper wires between process and
bay level.

 They have a wider linearity and small core sections-thus
smaller footprint.

N/A

46

Paper Summary Standard

Conformance

Advantages/Disadvantages Development

Platform

Wei-ming et al.,
(2011).

This paper analyses the structures
of MUs and develops a merging unit
capable publishing 1PPS time
synchronized IEC 61850-9-2
sampled value messages from an
FPGA.

IEC 61850-9-2 Advantages:

 Use of electronic instrument transformers achieves better
system performance compared to conventional instrument
transformers in high voltage networks.

Altera Cyclone III
EP3C25Q240C8
FPGA

Jing et al., (2011). This research focuses on the
introduction of the IEC 61850
standard to improve data
communication between the process
level and the bay level. The authors
design a Merging Unit which
samples analogue signals from the
instrument transformer and transmits
them to bay level equipment as per
the IEC 61850-9-1 and the IEC
60044-8 standards.

IEC 61850-9-1
IEC 60044-8

Advantages of using a merging unit for process level data
communication are:

 SV packets can be used for development of advanced
functions for condition monitoring and protection functions.

 Disconnection fault detection of conventional instrument
transformer disconnection can be guaranteed.

STM32F103ZET6
MCU

Weiss et al., (2011). This paper discusses the
advantages of using Merging Units
for sending digital voltage and
current samples to bay level IEDs.

IEC 61850-9-2 Advantages of using Merging Units:

 Reduced wiring complexity for connecting instrument
transformers to the IEDs because the data is available on
the process bus network.

 Increase in the number of IEDs to the same instrument
transformers since there are maximum load issues.

N/A

Konka et al., (2011). In this research the authors focus on
developing software that is used in
the IEC 61850 standard-based
measurement and testing product
development.

IEC 61850-9-2 Advantages of this software:

 Quickens product development and testing.

 Reduces implementation time during commissioning by
allowing engineers to use flexible software for defining
different data models and acquisition techniques.

N/A

Zhengyang et al.,
(2011).

In this paper the authors design a
Merging Unit using an Altera FPGA
with three main parts signal
sampling, analysis of signal
synchronisation and adjustable
analogue sampling frequency.

IEC 60044-8
IEC 61850-9-1

Outcomes:

 Advantages of using an FPGA for real-time design include
high speed I/O and parallel threading capabilities.

Altera
EP1C3T144
FPGA

47

Paper Summary Standard

Conformance

Advantages/Disadvantages Development

Platform

Zhao, (2012). This paper discusses the use of the
process bus in a substation for
transferring current and voltage
samples from the CTs and VTs.

IEC 61850-9-2 Advantages of the SV message mapping:

 Reduced complexity of wiring from instrument
transformers to the control IEDs.

 Reduces system engineering and configuration time.

Linux PC.

(Baranov et al.,
(2013).

In this paper software for emulating
SV packets according to IEC 61850-
9-2 and IEC 61850-9-2LE is
designed. This software transmits
SV packets at 80 and 256 samples
per cycle.

IEC 61850-9-2. Advantages of emulating software:

 Used to test equipment for development and
commissioning purposes.

 Provides insight into the IEC 61850-9-2 communication
service mapping.

PC platform.

Luwaca, (2014) Development of virtual sensor
publishing IEC 61850-9-2LE SV
message using Scapy

IEC 61850-9-2 Disadvantages:

 The virtual sensor node does not have an analogue front-
end for connection to a real-power system therefore the
sampled values are simulated.

Linux PC

48

Figure 2.9 shows the number of research papers found in literature detailing the

development of a Merging Unit as specified in both the IEC 61850-9-1 and the IEC

61850-9-2 standard for a period between 2004 and 2015. In this chart it can been

seen that most developments were for Merging Units supporting the IEC 61850-9-1

standard and after 2012 all papers reviewed were on MUs supporting the IEC

61850-9-2LE.

Figure 2.9: Supported standards in the developed MU prototypes

Form literature reviewed in the previous sections it was found out that before 2008

most Merging Units were based on the FPGA platform followed by microcontroller

based units. This information is plotted in the chart in Figure 2.10.

Figure 2.10: Platforms used for developing Merging Units

0

1

2

3

4

2004-2007 2008-2011 2012-2015

Merging Units designs suppporting either the
IEC 61850-9-1 or the IEC 61850-9-2LE.

IEC 61850-9-1 IEC 61850-9-2LE

0

1

2

3

4

2004-2007 2008-2012 2013-2016

Development of MUs and PC software
algorithms for mapping SV messages.

FPGA MCU PC Virtual Node

49

With reference to Figure 2.9 and Table 2.5, most MU designs found in literature

supported the IEC 61850-9-1 standard which is less popular and is not supported

by most protection IEDs compared to the IEC 61850-9-2 standard. Therefore unlike

the research projects conducted by Yin & Liu, (2004), Liu et al., (2007), Xiaobin et

al., (2008), Jing et al., (2011) and Zhengyang et al., (2011), this research project

will develop a VHDL module for mapping sampled value messages as specified in

the IEC 61850-9-2LE.

MUs developed in the past research projects were not tested for interoperaility with

other IEC 61850-9-2-compliant IEDs but were tested using software applications.

Therefore this research project will evaluate whether the SV messages published

by the developed SV message mapping VHDL module can be subscribed to by the

MiCOM P444 IED. This interoperability test will demonstrate the developed SV

message mapping VHDL module is compliant to the IEC 61850-9-2LE.

This section has completed a comparative study of Merging Unit designs found in

literature highlighting the different standards to which the MU generated and

published the SV messages, different embedded platforms used and the test

procedures conducted to evaluate the accuracy of samples or conformance to the

referenced standard.

2.5 Conclusion

This literature review section has provided theoretical background information into

this research project on the development of VHDL modules for mapping and

publishing GOOSE and SV messages on an FPGA. This review section also

looked at the application of the IEC 61850 process bus for the communication of

data between entities in an automation system. This literature review chapter also

highlighted advantages that the IEC 61850 process bus has over legacy protocols

and/or hardwired communication architectures which include reduced system

engineering costs and time.

According to Retonda-Modiya, (2012) and Luwaca, (2014) there are some

electricity supply utilities in less developed countries whose substation automation

systems are based on legacy protocols and hardwired communication

50

architectures. This literature review has provided benefits that these utilities can

take advtange of should they shift to the IEC 61850 process bus paradigm.

IEC 61850 standard-compliant IEDs are available off the shelf from different

vendors and can be integrated into any substation automation system but

developing such a device requires in-depth knowledge of this standard. The

development of an embedded IED which can map and publish GOOSE and SV

messages also requires knowledge of software development lifecycles, integrated

development environments (IDEs) and IEC 61850 standard testing procedures for

conformity checks.

From the literature reviewed, there are a number of research projects on the

application of GOOSE and SV messages in substation automation systems

compared to those on the development of IEDs capable of mapping and publishing

these messages. With reference to Figure 2.4 and Figure 2.10, only four and nine

research projects were conducted on the development of embedded GOOSE-

enabled IEDs and SV message publishers respectively. Of the nine research

projects on the development of SV message publishers, four of these projects were

PC-based publishers capable of only publishing simulated sampled values and not

real world values from the process equipment. Therefore this thesis will contribute

towards the effective dissemination of information on the IEC 61850 standard and

also on the design of embedded IEDs capable of publishing IEC 61850-9-2 SV and

IEC 61850-8-1 GOOSE messages.

Chapter Three of this thesis discusses the IEC 61850 standard in great detail

focusing on the communication service mapping of information into GOOSE and

SV messages.

51

 CHAPTER THREE

OVERVIEW OF THE IEC 61850 STANDARD

3.1 Introduction

The IEC 61850 standard was introduced in a bid to standardise communications in

Substation Automation Systems (SAS) (Konka et al., 2011), and this standard has

been extended for communications targeted at smart grid systems (Von Dollen,

2009). According to Zhao, (2012), the IEC 61850 standard has many advantages

over hardwired and legacy communication techniques which include reduced

system engineering time, standard data modelling providing data semantics and

reduced implementation costs (Netto et al., 2012).

In order to design a Sampled Value (SV) message sand Generic Object Oriented

Substation Event (GOOSE) message mapping VHDL modules on a Field

Programmable Gate Array (FPGA) platform, in-depth knowledge of the IEC 61850

standard is required. This chapter provides an overview of the IEC 61850 standard

suite with extensive focus on data modelling techniques and communication

service mappings. This chapter will also focus on the application of the IEC 61850

standard in an SAS specifically for GOOSE and Sampled Value messaging.

This chapter is broken down into the following sections; section 3.2 provides a

history of communication techniques used in legacy Supervisory Control and Data

Acquisition (SCADA) systems and the advent of the IEC 61850 standard. Section

3.3 provides an overview of the ten parts of the IEC 61850 standard. Section 3.4

discusses the application of the IEC 61850 process bus and also the

communication service mapping of data to SV and GOOSE messages. Section 3.5

concludes this chapter by highlighting the advantages of using the IEC 61850

standard in SAS over legacy communication protocols and hardwired techniques.

3.2 Introduction of the IEC 61850 standard

The IEC 61850 standard is a product of various initiatives initiated by players in the

industry towards providing standardised communication systems in substations for

52

automation purposes. Non-standardised communication techniques have been

used in SCADA systems from the early 1990s’ but they lacked interoperability and

interchangeability between devices/RTUs. This lack of interoperability was due to

the fact that different RTUs from different vendors did not support the same

protocol. With such communication systems, the RTUs were single function devices

which made it hard to implement distributed functions.

With legacy SCADA systems, expensive protocol translators were required to

facilitate communications between RTUs supporting different protocols. The most

commonly used protocols in substations towards the end of the 20th century were

DNP3 and IEC 60870-5-101 (Luwaca, 2014). Another shortfall of hardwired

communications and legacy protocols was that process equipment (circuit breakers

and instrument transformers) were connected to multiple RTUs using copper wires.

This resulted in expensive parallel copper wiring between RTUs and equipment

(control relays and primary equipment) which led to high system engineering costs

and time. Therefore there was a need to introduce a new standardised

communication platform for devices used in the automation system.

The first edition of the IEC 61850 standard was then introduced in 2002 to cater for

communication networks in substations. The IEC 61850 standard is an object

oriented standard which resulted from a profile of recommended protocols for

various layers of the International Standards Organisation (ISO) and the Open

Systems Interconnect (OSI) communication models (Sun et al., 2012). IEC 61850

standard-based automation systems are easily configurable and expandable (Netto

et al., 2012).

The IEC 61850 standard for “Communication networks and systems in substations”

provides:

 Standard naming convention,

 Standard meaning of data (semantics),

 Standard abstract services,

 Standard device behaviour models,

 Standard device configuration language and

 Mapping of data/information to various protocols using specific

communication services (Mackiewicz, 2011).

53

Therefore the IEC 61850 standard provides device interoperability and simpler

integration of power system functions in a distributed and cooperative manner

(Mackiewicz, 2011). The following section discusses the ten parts of the IEC 61850

standard drawing attention to parts 8-1 and 9-2 related to GOOSE and SV

messages respectively.

3.3 Overview of the IEC 61850 standard

The IEC 61850 standard suite has ten major parts which define different

communication aspects, nomenclature, data models and timing requirements for

data exchange in a substation automation system as illustrated in Figure 3.1.

Figure 3.1: The IEC 61850 standard suite

(Adapted from Mackiewicz, 2012)

The ten parts of the IEC 61850 standard are discussed in the following sections

from section 3.3.1 to section 3.3.8.

3.3.1 Part 1 and Part 2

Part 1 and part 2 introduces nomenclature used throughout the rest of the standard

and provides an overview of the IEC 61850 standard.

54

3.3.2 Part 3 and Part 4

These two parts of the IEC 61850 standard define specific function requirements

directed to system integrators and protection engineers for communications in a

substation automation system. These requirements include application profiles and

the underlying lower level protocols.

3.3.3 Part 5

Part 5 of the IEC 61850 standard defines performance classes for the different

types of messages used for mapping information (data objects and attributes) to

specific protocols. Five communication profiles are defined in this standard of which

three of these profiles are for time-critical messages known as link-layer

communication services (Layer 2 of the OSI stack). These communication profiles

are shown in Figure 3.2.

SV

(Type 4)
GSSE

(Type 1, 1A)
MMS Protocol Suite

(Type 2, 3, 5)

TimeSync

(SNTP

(Type 6)

GOOSE

(Type 1, 1A)

ISO/IEC 8802-3

ISO/IEC 8802-3 EtherType

UDP
TCP/IP

T-Profile

ISO CO

T-Profile

GSSE

T-Profile

ISO/IEC 8802-2 LLC

Sampled

Values

(Multicast)

Generic

Object

Oriented

Substation

Event

Time

Sync

Core

ACSI

Services

Generic

Substation

Status

Event

Figure 3.2: IEC 61850 standard message types and performance class

(Adapted from Konka et al., 2011)

The three time-critical communication services highlighted in red blocks in Figure

3.2 are the GOOSE, Generic Substation State Event (GSSE) and Sampled Value

(SV) messages. These communication services are mapped directly to the data-link

layer to reduce protocol overhead and therefore increase performance (Zhao,

2012). The remaining two communication profiles defined in this standard are the

device time synchronisation messages (Time Sync) based on the Simple Network

55

Time Protocol (SNTP) and the Manufacturing Message Specification (MMS) profile

for management of substation devices.

Of particular interest to this research project are the Type 1, Type 1A and Type 4

time-critical messages which are mapped to a specific EtherType registered to the

Institute of Electrical and Electronic Engineers (IEEE). The IEC 61850-5 standard

defines delivery times for different types of messages, all IEDs capable of

publishing either one or multiple types of messages as defined in this standard

should adhere to the defined delivery times.

Test procedures are provided in part 10 of this standard for evaluating the delivery

times according to message type and performance class for the development of

IEC 61850-compliant devices. The next section provides a summary of part 6 of the

IEC 61850 standard.

3.3.4 Part 6

This part of the IEC 61850 standard introduces and discusses the Substation

Configuration Language (SCL). The SCL is an eXtensible Markup Language (XML)

based configuration language which allows system engineers to define abstract

models of primary and secondary substation equipment, communication

mechanisms between equipment and their relationship (Apostolov, 2010). The

Unified Modelling Language (UML) is the base modelling platform used by this

configuration language.

This configuration language allows IED configuration and settings to be passed to a

system configuration tool or another IED. Four types of files are defined in the IEC

61850-6 standard for system engineering and these are the: System Specific

Description (SSD), IED Capability Description (ICD), Station Configuration

Description (SCD) and the Configured IED Description (CID) documents

(International Electrotechnical Commission, 2003-2004; Mackiewicz, 2011; Sun et

al., 2012).

The SSD file describes the single line diagram of the distribution substation and

contains logical nodes which define the functional model of the SAS. Functional

models define the behaviour of the automation systems in carrying out a function

56

e.g. protection, automation or control functions. The ICD file defines the default

capability of the IED before configuration of its name and address while the CID file

represents a configured IED. The difference between ICD and CID files is that the

IED has been assigned a specific name and address. The SCD file represents a

fully configured communication section for entity (IED) or sub-system interaction.

This file contains all the IEDs available in the distribution substation which make up

the automation system (Apostolov, 2010).

The next section summaries the four sub-parts of the IEC 61850-7 standard.

3.3.5 Part 7

This part of the IEC 61850 standard is sub-divided into four parts and these are 7-

1, 7-2, 7-3 and 7-4. Part 7-1 provides the basic models and principles of

communication between substation equipment in an IEC 61850 standard-based

automation system. Part 7-2 discusses how data is exchanged between entities

using abstract communication service interfaces. Part 7-3 defines structures for

describing common data attributes for a specific data object; these structures are

known as Common Data Classes (CDCs) (Mackiewicz, 2011).

Part 7-4 defines logical node classes with their compatible common data classes

that can be mapped to a specific communication service mapping for information

exchange between entities. Section 3.3.5.1 to 3.3.5.3 discuss the different aspects

of part 7 of the IEC 61850 standard under the subheadings abstract communication

services, data modelling and the IEC 61850 standard naming convention.

3.3.5.1 Abstract Communication Services

Part 7-2 of the IEC 61850 standard defines the Abstract Communication Service

Interface (ACSI). The ACSI defines how data/information is communicated between

devices within a substation automation system, for example, how the voltage and

current samples are published by a Merging Unit (Wei-ming et al., 2011). The ACSI

is divided into two parts which define two communication models and these are the

client-server and the peer-to-peer models. The information/data exchanged using

these communication services is modelled following the data modelling techniques

defined in part 7-3 and part 7-4 of this standard.

57

In a peer-to-peer communication model, one device is a publisher (transmits data)

and the other a subscriber (listens for information); this model allows information

transmitted by the publisher to be received by one subscriber using a unicast

address or multiple subscribers using a multicast address. The client-server model

is used mostly for device configuration and remote access while the peer-to-peer

model is used for the exchange of time-critical messages. Figure 3.3 illustrates the

two different communication models between devices/functions.

Figure 3.3: ASCI services for device/distributed function communication

(Adapted from International Electrotechnical Commission, 2003-2007)

The modelled information/data is mapped to well-known communication protocols

like TCP/IP, MMS and ISO 8802-3 Ethernet frame using Specific Communication

Service Mappings (SCSMs). SCSMs define the underlying communication

protocols and standards used for the exchange of application data between devices

in either a client-server or peer-to-peer communication model. An example of a

SCSM is defined in part 9-2 of the IEC 61850 standard; this definition is for the

transmission of sampled value messages using an ISO 8802-3 Ethernet frame.

The next section discusses the data modelling of substation information using

logical nodes and common data classes.

58

3.3.5.2 Data modelling

Data models used in the IEC 61850 standard are representations of real analogue

power system equipment, these data models are developed through a process of

virtualization. Virtualization is a process of providing a view of the aspects of a real

device that are of interest to the automation system. For example, the position and

command block status of the circuit breaker are some of the important attributes

that are needed in the implementation of a circuit breaker monitoring and control

scheme. Figure 3.4 shows an illustration of a circuit breaker virtualization process.

Figure 3.4: Data modelling through virtualization

(Adapted from International Electrotechnical Commission, 2003-2004)

Through this virtualization process, standard logical nodes are defined (e.g. XCBR)

representing power system equipment (e.g. circuit breaker) and the corresponding

data objects (e.g. circuit breaker position).

As illustrated in Figure 3.4, the IEC 61850 standard allows for modularisation of

application functions into LNs and then using them to facilitate communication

between devices. Logical nodes consist of Data Objects (DOs) which are instances

of Common Data Classes (CDCs) which in turn consists of Data Attributes (DA).

Logical Nodes (LNs) allows an IEC 61850 standard-based automation system to

support distributed protection and communication functions (International

Electrotechnical Commission, 2003-2004).

59

The IEC 61850 standard defines ready to use LNs for common functions, for

example, circuit breaker control and measurement functions. Data modelling

methods coupled with standardised communication techniques offer interoperability

between devices from different manufactures with the prospect of

interchangeability. Thirteen LN groups are defined in the standard that extends

over ninety-two logical node classes and these groups are shown in Table 3.1.

Table 3.1: Logical Node groups in the IEC 61850-7-1 standard

(Adapted from International Electrotechnical Commission, 2003-05)

Logic Node groups Number of Logic Nodes
System Logic Nodes 3

Protection Function 28

Protection related function 10

Supervisory control 5

Generic references 3

Interfacing and archiving 4

Automatic control 4

Metering and measurement 8

Sensor and monitoring 4

Switchgear 2

Instrument transformer 2

Power transformer 4

Further power system equipment 15

Total number of logical nodes 92

Using the example of the circuit breaker virtualization, the XCBR logical node

contains the Pos and BlkOpn data objects which represent the position and

operation block flag respectively of the power plant circuit breaker.

Figure 3.5 shows the data modelling of a circuit breaker as defined in the IEC

61850 standard.

60

Figure 3.5: Illustration of the data model structure using XCBR logical node

(Adapted from International Electrotechnical Commission, 2003-2007)

The Pos and BlkOpn data objects in the XCBR LN are instances of the Controllable

Double Point (DPC) and Controllable Single Point (SPC) common data classes

defined in IEC 61850-7-3 standard.

The data model can be further explained using Figure 3.6, this illustration shows an

object oriented view of the IEC 61850 standard data modelling technique. With

reference to Figure 3.6, a physical network addressable device contains a logical

device which in turn contains multiple logical nodes for different functions and in

this case, circuit breaker monitoring/control and single phase current measurement.

Physical Device

(network address)

Logical Device (IED1)

stVal

LN1

(XCBR)

Pos

LN2

(MMXU)

PhA

A

Data Attribute

Data Object

Logical Node

(1 to n)

Logical Device

(1 to n)

Physical Device

Figure 3.6: Data model layers defined in the IEC 61850 standard

(Adapted from Sun et al., 2012)

61

In Figure 3.6 the data model is layered with standardised names; the layers are

described as follows:

 Physical Device: identifies the actual network addressable device (IED) in

an automation system.

 Logical Device: groups of related Logical Nodes within a physical device.

 Logical Node: This refers to a grouping of related data and associated

services to produce some power system function e.g. circuit breaker

monitoring and control represented by the XCBR logical node.

 Data Object: this is the actual data that is being measured, monitored or

controlled in an automation system; this object is an instance of the

common data class (CDC) or a user defined class.

 Data Attribute: this refers to a characteristic of the data object being

monitored or measured for instance, the status value (stVal) indicating the

position of Pos data object of the XCBR logical node.

The IEC 61850 standard follows an object-oriented modelling approach based on

the Unified Modelling Language (UML). Once a class or function has been defined,

the user does not need to redefine the object or function but can create an instance

of that class, an object. Figure 3.7 shows the UML class diagram of the IEC 61850

data model.

Figure 3.7: UML class diagram of the IEC 61850 data model

(Adapted from International Electrotechnical Commission, 2003-05)

62

The IEC 61850 standard is not a rigid as it allows for expansion of existing data

classes by following the naming conventions and the virtualization process. This

research project will use standard logical nodes and these are the TCTR, TVTR,

XCBR and the MMXN for current transformers, voltage transformers, circuit

breakers and single phase measurements respectively.

The next section defines the naming convention introduced by the IEC 61850

standard for identifying devices and data.

3.3.5.3 The IEC 61850 standard naming convention

Another important factor introduced by the IEC 61850 standard is the standard

naming convention for devices, logical nodes, objects and data attributes. The

naming convention eliminates ambiguity of named devices and/or objects within a

system. For instance, using the example discussed before of the XCBR logical

node, the attribute stVal of the Pos data object can be referenced as shown in

Figure 3.8.

Figure 3.8: Naming convention defined in the IEC 61850 standard

(Adapted from Retonda-Modiya, 2012)

The name of the Logical Device (LD) is not defined within the IEC 61850 standard

so therefore it can be assigned locally by the user. Functional Constraints (FCs) are

used to group objects according to function and in the example in Figure 3.8 the

constraint is MX which means that the data attribute is a measured value.

In conclusion, Part 7 of the IEC 61850 standard defines information models,

communication services and data classes for data/information communication

between devices in an IEC 61850 standard-based system. The next section

Data Attribute

Data Object

Functional Constraint

FPGA/IED1/MMXN1MXVol$mag

Physical Device

Logical Device

Logical Node

63

discusses part 8-1 of the IEC 61850 standard; this part defines the specific

communication service mapping of application data to Manufacturing Message

Specification (MMS) and ISO 8802-3 GOOSE messages.

3.3.6 Part 8-1

This section of the IEC 61850 standard defines the specific communication service

mapping (SCSM) of the ACSI and the information models to a specific protocol.

Part 8-1 focuses on mapping data objects and ACSI to MMS (ISO 9506-1 and ISO

5906-2) and also to an ISO 8802-3 Ethernet frame (International Electrotechnical

Commission, 2004-2005). The mapping of ACSI and application data to ISO 8802-

3 frame results in a time-critical peer-to-peer transmission service called Generic

Object Oriented Substation Event (GOOSE) messages.

Figure 3.9 shows how the application data modelled in part 7 of the IEC 61850

standard is exchanged using specific communication service mappings defined in

parts 8-1, 9-1 and 9-2. The mapping of data and information to MMS covers the

seven layers of the OSI stack while on the ISO 8802-3 frame the data is mapped

directly to the OSI link-layer (Ethernet). Figure 3.9 shows the relationship between

the specific communication service mappings, underlying protocols and the data

models in terms of the IEC 61850 standard.

Figure 3.9: Mapping of data models and information to SCSM

(Adapted from International Electrotechnical Commission, 2003-05)

64

GOOSE messages are mapped directly to the data link layer to reduce protocol

overhead and message delivery times. GOOSE messages mapped to the ISO

8802-3 frame use a specific EtherType registered to the Institute of Electrical and

Electronic Engineers (IEEE). The structure and application of GOOSE message will

be discussed in detail in section 3.4.1.

The next section introduces the mapping of application for the transmission of

current and voltage samples from primary plant equipment.

3.3.7 Part 9-1 and 9-2

This section of the IEC 61850 standard defines specific communication service

mapping (SCSM) for transmitting current and voltage samples over a serial point-

to-point link or over an Ethernet process bus to bay level IEDs. Part 9 is sub-

divided into two parts, part 9-1 and 9-2; part 9-1 defines mapping of information

over a serial uni-directional multi-drop point to point link while part 9-2 defines

mapping onto an ISO 8802-3 Ethernet frame. The mapping process of the

information model is similar to that defined in part 8-1 of the standard illustrated in

Figure 3.9.

Similar to GOOSE messages, mapping of voltage and current samples to the ISO

8802-3 Ethernet frame results in a time-critical peer-to-peer transmission service

called Sampled Value messages (SV).

Part 9-1 of the IEC 61850 standard differs from part 9-2 of the same standard not

only in the underlying interface but also in the information exchanged. Part 9-1

encapsulates both digital inputs and voltage/current measurements in the same

frame. Part 9-2 only allows measured voltage and current samples in the published

frame because GOOSE messages are already made available for digital status

communication. These two parts of the IEC 61850-9 standard introduce a process

level device known as the Merging Unit (MU), this MU measures and transmits

voltage and current samples from the voltage and current transformers to bay level

devices.

The dataset specified in the IEC 60044-8 is adopted as the preconfigured dataset

in an IEC 61850-9-1 standard-based Merging Unit, this dataset contains three

65

phase voltage samples, the bus voltage, the neutral voltage, two status words (16

binary inputs), three phase currents for protection purposes and also three phase

current samples for measurement (International Electrotechnical Commission,

2002-07).

Part 9-2 of the IEC 61850 standard is restricted to the transmission of sampled

value (SV) packets without binary inputs statuses contrary to Part 9-1. In the

context of the IEC 6180-9-2 standard, the dataset is configurable using the SCL

defined in part 6 of the standard (International Electrotechnical Commission, 2004;

Sun et al., 2012). Due to the complexity and ambiguity of the IEC 61850-9-2

standard, the UCAIug implementation guideline was created by major vendors in

industry to reduce the implementation ambiguity and time to market of MUs by

defining the sample rates, VLAN tag priority, sampled value control blocks and the

dataset etc. This implementation guideline is known as the IEC 61850 Light-Edition

(IEC 61850-9-2LE) (Ingram et al., 2012).

This research project will only focus on sampled value message-mapping as

defined in IEC 61850-9-2LE. The VHDL module developed in this research will

publish IEC 61850-9-2LE SV messages because most IEDs can subscribe to these

messages. The concept of the Merging Unit, IEC 61850-9-2LE sampled value

message structure, mapping and transmission will be discussed in section 3.4.2

The following section gives a brief overview of part 10 of the IEC 61850 standard.

3.3.8 Part 10

This section of the IEC 61850 standard defines testing methods to determine

device conformance to numerous protocol definitions and timing constraints. The

evaluation techniques defined in this part will allows for proper use and easy

integration of IEDs into substation automation applications as intended

(International Electrotechnical Commission, 2005-05).

The next section introduces the application of the IEC 61850 standard in an

automation system focusing on process bus communication.

66

3.4 Application of the IEC 61850 standard in a Substation Automation System

The IEC 61850 standard has been introduced to standardise communication

systems in a distribution substation automation system. This research project

focuses on the application of the IEC 61850 standard in substation automation

systems and in particular the process bus. As discussed in Chapter Two, the

process bus is made up of two peer-to-peer protocols for real-time data

transmission and these are the GOOSE and the Sampled Value (SV) messages

defined in Part 8-1 and Part 9-2.

According to the IEC 61850 standard, an SAS is split into three distinct levels that

is the station, bay and the process levels as illustrated in Figure 3.10.

Merging

 Unit

Function A
Station Level

Function B

Bay 1 Bay 2 Bay 3 Bay Level

Actuator

IEC 61850-8-1 GOOSE (Station Bus)

IEC 61850-9-2

IEC 61850-8-1

Process Level

Switch

Figure 3.10: Hierarchy within a Substation Automation System

(Adapted from Zhao, 2012)

In legacy systems, expensive parallel copper wiring was required to connect

primary plant equipment to multiple RTUs for protection and measurement

functions; this setup was costly to implement, unreliable and rigid. Wiring analogue

signals from the primary plant equipment was also an issue because some

constraints had to be considered for example the maximum length of the copper

wire before the signal is attenuated, size of the burden in case of instrument

transformers and the noise level in the environment.

67

The IEC 61850 process bus allows primary plant equipment measurements and

status to be transmitted to bay level IEDs via an Ethernet network. The Ethernet

technology has been developed from the older CSMA/CD (Carrier Sense Multiple

Access with Collision Detection) paradigm to a native switched-base mechanism

suitable for real-time data transmission. This native switched-base mechanism is

almost collision free and can be used with deterministic transmission times (Sun et

al., 2012).

The IEC 61850 process bus also minimises the calibration of devices and system

maintenance costs by reducing the complex wiring and in turn reducing the system

engineering time; this process bus makes the automation system more reliable,

flexible and easily expandable. With this process bus, analogue measurements can

be transmitted long distances using SV messages without worrying about signal

attenuation.

The following sections, section 3.4.1 and section 3.4.2 discuss the GOOSE and the

SV messages structure and transmission procedures in detail.

3.4.1 IEC 61850-8-1 standard GOOSE Messages

Generic Object Oriented Substation Event (GOOSE) messages are exchanged

between IEDs using a peer-to-peer communication model; these messages can be

multicast to multiple IEDs or directed to a specific IED using a unicast address.

GOOSE messages report the instantaneous status/value of data objects monitored

or measured by an IED. These GOOSE messages can be used to relay digital

and/or analogue information between sub-systems/functions, for example, in a

protection scheme the circuit breaker status and voltage measurements are

exchanged between functions.

GOOSE messages are transmitted continuously by a GOOSE client after a specific

interval, MaxTime. MaxTime is a period configured in the client device (IED) which

prompts the goose control block (GoCB) to publish messages when this period

expires, this message retransmission scheme acts as a heartbeat message for

subscriber IEDs. When a substation event occurs, that is a change in the

68

status/value of one or more data objects in the GOOSE dataset, a GOOSE

message is published and the retransmission time is reduced to its minimum

(MinTime). GOOSE messages are retransmitted when the interval time (MinTime)

expires; the interval time (MinTime) is gradually increased until MaxTime is reached

or another event occurs. This repetitive process is illustrated in Figure 3.11.

Figure 3.11: Repetitive transmission of GOOSE messages

(Adapted from International Electrotechnical Commission, 2004-2005)

The MaxTime and MinTime values are not defined in the IEC 61850-8-1 standard

which means that they can be defined locally by the user or manufacturer. The IEC

61850-8-1 standard caps the maximum value of MaxTime to 60 seconds

(International Electrotechnical Commission, 2004-2005). With reference to Figure

3.11, MaxTime and MinTime are represented by the times T0 and T1 respectively.

GOOSE message services and datasets are controlled by the GOOSE Control

Block. Control blocks define the rate at which data is communicated and also how it

is communicated between IEDs using abstract communication services.

T1 T2 T1 T3 T0

T0 retransmission in stable conditions (MaxTime)

(T0) retransmission in stable conditions may be shortened by an event

T1 shortest retransmission time after the event (MinTime)

T2, T3 retransmission times until achieving the stable conditions time

T0

Time of Transmission

(T0)

event

69

The GOOSE Control Block (GoCB) defines a reference to a dataset that contains

data objects to be transmitted; this GOOSE Control Block (GoCB) class is shown in

Table 3.2.

Table 3.2: IEC 61850-8-1 GOOSE Control Block (GoCB) class

(Adapted from International Electrotechnical Commission, 2003-05)

GoCB Class

Attribute

name

Attribute type FC TrgOp Value/Value range

GoCBName ObjectName GO
- Instance name of an instance of

GoCB

GoCBRef ObjectReference GO - Path-name of an instance of GoCB

GoEna BOOLEAN GO dchg Enabled (TRUE) | disabled (FALSE)

AppID VISIBLE STRING65 GO - System wide identification

DatSet ObjectReference GO dchg

ConfRev INT32U GO dchg

NdsCom BOOLEAN GO dchg

Services

SendGOOSEMessage

GetGoReference

GetGOOSEElementNumber

GetGoCBValues

SetGoCBValues

The DatSet attribute in the GOOSE control block references a combination of data

objects grouped together into a dataset whose values or status are published after

an interval or when they change. The ACSI services defined for GOOSE

messaging are mapped to the Specific Communication Service (SCSM) for MMS

stack or ISO 8802-3 Ethernet frame. Of particular interest to this research project is

the SendGOOSEMessage service which is mapped onto the ISO 8802-3 frame.

The SendGOOSEMessage service publishes the data in an unsolicited manner

once the GOOSE control block is enabled by setting the GoEna attribute to TRUE

(International Electrotechnical Commission, 2004-2005).

GOOSE messaging is a reliable multicasting messaging scheme which does not

require data acknowledgements from the receiver (International Electrotechnical

Commission, 2004-2005). The GOOSE publisher/client maintains a finite state

machine which controls the transition of the state number (stNum) and sequence

number (sqNum) of the GOOSE messages.

70

This GOOSE publisher/client state machine is shown in Figure 3.12.

Figure 3.12: GOOSE client state machine

(Adapted from Mackiewicz, 2011)

The next section discusses the structure of GOOSE messages as defined in IEC

61850-8-1 standard.

3.4.1.1 GOOSE Message Structure.

GOOSE message are mapped onto the ISO 8802-3 Ethernet frame and the

Protocol Data Unit (PDU) is embedded onto data payload section of this Ethernet

frame, the structure of the ISO 8802-3 Ethernet frame used is shown in APPENDIX

B. The ISO 8802-3 frame contains fields discussed in the following list:

 MAC Destination address: This is the MAC address of the destination

device. In multicast addressing, this value should range from 01-0C-CD-01-

00-00 to 01-0C-CD-01-01-FF. The first 3 bytes are assigned by IEEE and

the fourth byte, 01 is set aside for GOOSE message transmission

(Mackiewicz, 2012).

 MAC Source Address: this is the MAC address of the GOOSE

publisher/client.

 VLAN Tag: GOOSE frames are tagged using the IEEE 802.1Q to separate

time critical messages from low priority data. The Tag Protocol Identifier

(TPID) is set 0x8100 for identifying IEEE 802.1Q tagged frames from normal

frames. Similar to SV messages, GOOSE messages are assigned a default

71

priority of 4 and a VLAN ID (VID) of 0. The structure of the tag header is

defined in Table 3.3.

Table 3.3: Structure of the IEEE 802.1Q Tag header

Adapted from (International Electrotechnical Commission, 2004-2005)

Octets 8 7 6 5 4 3 2 1

0 TPID

0x8100

1

2
TCI

User priority CFI VID

3 VID

 EtherType information: The EtherType for GOOSE messages is 0x88B8

and the APPID by default is 0x0000. The Application ID (APPID) is used to

distinguish between Ethernet frames containing SV, GOOSE, GSSE and

other messages. According to the IEC 61850-8-1 standard the GOOSE

APPID can be any value between 0x0000 to 0x3FFF (International

Electrotechnical Commission, 2004-2005).

The IEC 61850-8-1 standard defines a GOOSE PDU which contains message

identifiers and the dataset embedded onto the payload section of the ISO 8802-3

frame. Similarly to the SV APDU, the GOOSE message PDU is encoded using the

basic rules of the ASN.1 standard, this PDU is illustrated in Figure 3.13

Figure 3.13: GOOSE PDU as defined in the IEC 61850-8-1 standard

(Adapted from International Electrotechnical Commission, 2004-2005)

These GOOSE PDU fields are described in the following paragraphs:

72

i. gocbRef

This is a visible string identifier which contains a reference to the GOOSE

control block controlling the publication of these GOOSE messages.

ii. timeAllowedtoLive (TAL)

For every GOOSE message published, the timeAllowedtoLive contains the

time in milliseconds for which the subscribing device has to wait for the next

GOOSE message. If a message hasn’t been received after this time has

elapsed then the subscriber assumes that the publisher association has

been lost (International Electrotechnical Commission, 2004-2005).

iii. t

This field was mapped from EntryTime field in the IEC 61850-7-2 GOOSE

message field to Timestamp field in the IEC 61850-8-1 GOOSE message.

This field contains the Universal Co-ordinated Time (UTC) encoded

according to RFC-1305 of the time the GOOSE message was generated.

The structure of the Timestamp field is illustrated in Table 3.4.

Table 3.4: Structure of the Timestamp field

(Adapted from International Electrotechnical Commission, 2003-05)

TimeStamp type definition

Attribute Name
Attribute

type
Value/value range/explanation

M/O

SecondsSinceEpoch INT32 (0 … MAX) M

FractionOfSecond INT24U
Value = SUM from i=0 to 23 of bi*2**-
(i+1);
Order = b0, b1, b2, b3, …

M

TimeQuality TimeQuality M

The SecondsSinceEpoch is a 32 bit integer representing the number of

complete whole seconds since Epoch (1st of January 1970 at 00:00:00) and

the FractionOfSecond field is a 24 bit field which represents the fractions of a

second that have elapsed since the last whole second. The maximum

resolution of the FractionOfSecond field is calculated using Equation 3.1.

 ()

Equation 3.1

73

Even if the FractionOfSecond field allows for resolutions of up to 60 ns the

resolution of the GOOSE publisher’s timestamp relies solely on the device

manufacturer and is outside the scope of the IEC 61850-7-2 and IEC 61850-

8-1 standards (International Electrotechnical Commission, 2003-2005;

International Electrotechnical Commission, 2004-05).

Lastly, the Timestamp field contains the TimeQuality field that reports the

publisher IED’s time source as shown in Table 3.5.

Table 3.5: IEC 61850-8-1 standard TimeQuality definition

(Adapted from International Electrotechnical Commission, 2003-05)

TimeQuality definition

Attribute Name Attribute type Value/value range/explanation M/O

PACKED LIST

LeapSecondsKnown BOOLEAN M

ClockFailure BOOLEAN M

ClockNotSynchronised BOOLEAN O

TimeAccuracy CODED ENUM
Number of significant bits in

FractionOfSecond

M

iv. stNum

This integer variable represents the state number of the client’s state

machine. This value is incremented every time an event occurs.

v. sqNum

This integer value represents the sequence number for message

retransmission after the occurrence of an event. After an event has occurred,

this value is incremented until the next event occurs or until the

retransmission time equals the stable retransmission time. Transition of

stNum and sqNum is illustrated in Figure 3.14.

74

Figure 3.14: Operation of sqNum and stNum

(Adapted from Mackiewicz, 2012)

vi. Simulation/Test

This is a BOOLEAN flag which represents whether the messages published

are from a valid application or they are generated from a test operation. This

flag informs subscribers not to use these GOOSE messages for any

functions.

vii. confRev

This value refers to the configuration revision number of the GOOSE control

block at the time of GOOSE message transmission (International

Electrotechnical Commission, 2004-2005; Mackiewicz, 2011). This value will

be incremented when the data elements within the dataset are re-ordered,

removed or added.

viii. ndsComm

This flag indicates whether the GOOSE client/publisher requires

commissioning or not.

ix. numDataSetEntries

This is the number of data object entries in the dataset to be mapped into the

GOOSE message.

x. DataSet

Datasets are organised grouping of data objects or data attributes called

dataset members. This grouping of data or data attributes into dataset is for

convenience of the publisher because all the dataset elements can be

transmitted in one message thus efficiently utilising the communication

bandwidth.

75

The next section discusses the SV message structure and transmission procedures

defined in the IEC 61850-9-2 standard.

3.4.2 IEC 61850-9-2 SV messages according to IEC 61850-9-2LE

Part 9-2 of the IEC 61850 standard defines a user configurable SV message frame;

this frame can be configured using the substation configuration language. The

UCAIug implementation guideline, commonly referred to as the IEC 61850-9-2

Light Edition simplifies the implementation of the IEC 61850-9-2 communication

service mapping by defining datasets, ASCI, physical connections and sample

rates (Ingram et al., 2013).

This research project focuses on sampled value message-mapping and

transmission procedures as specified in the IEC 61850-9-2LE. IEC 61850-9-2LE

SV messages are mapped to an ISO 8802-3 Ethernet frame which consists of a

header and the SV Application Protocol Data Unit (APDU) as illustrated in Figure

3.15.

Figure 3.15: Structure of an IEC 61850-9-2 SV message

(Adapted from Konka et al., 2011)

The Ethernet frame header comprises of the information listed below:

 MAC destination address: IEC 61850-9-2 performs Media Access Controller

(MAC) filtering to meet the time demands of SV messages. In multicast mode

the destination address should range from 01-0C-CD-04-00-00 to 01-0C-CD-

04-01-FF. The first three bytes are assigned by IEEE and 04 is set aside for

76

Sample Value message transmission (International Electrotechnical

Commission, 2004; UCA International Users Group, 2004).

 MAC source address: this is the source device’s MAC address.

 VLAN Tag: SV frames are tagged according to IEEE 802.1Q to separate time

critical messages from low priority data. The Tag Protocol Identifier (TPID)

should be set to 0x8100 for identifying IEEE 802.1Q tagged Ethernet frames.

Sampled values messages are assigned a default priority of 4 and a VLAN ID

(VID) of 0. The structure of the VLAN tag is shown in Table 3.3.

 EtherType information: this refers to an IEEE registered Ethernet frame

reserved for SV messages. The EtherType for IEC 61850-9-2 SV packets is

0x88BA. Application IDs (APPIDs) are used to distinguish between Ethernet

frames containing SV, GOOSE, GSSE messages and other frames. For SV

frames, the APPID must range from 0x4000 to 0x7FFF of which a default value

of 0x4000 is defined if the APPID is not configured.

 SV APDU: This is the sampled value APDU which contains the application data

packed using Basic Encoding Rules (BER) of the Abstract Syntax Notation One

(ASN.1). The BER syntax consists of TLV (Tag, Length and Value) triplets

where all fields are series of octets. It is possible that the value field in a TLV

triplet encapsulate another TLV triplet.

The Tag-Length-Value triplets of the basic encoding rules are illustrated in Figure

3.16.

Figure 3.16: BER TLV triplets

(Adapted from International Electrotechnical Commission, 2004)

Figure 3.17 shows an example of a sampled value APDU encoded using the basic

encoding rules of the ASN.1 standard.

77

Figure 3.17: ASN.1 encoded SV APDU

(Adapted from International Electrotechnical Commission, 2004)

The sampled values APDU in Figure 3.17 shows a list of Application Service Data

Unit (ASDU) attributes for identification and to provide specific information to the

subscriber. These attributes/fields are the svID, smpCnt, confRev, smpSynch and

the sequence of data. Given below is a list and a summary of each attribute/field in

the ASDU:

i. svID

This attribute is of data type VISIBLE STRING made up of up to 35 ASCII

characters and is a unique identification of the sampled value buffer.

ii. smpCnt

This is a counter which increments every time a new sample is acquired

from the instrument transformer. This count value starts from 0 and rolls

over at a maximum number according to application. The maximum sample

count (smpCnt) is equal to the number of SV messages published per cycle.

The maximum sample count (smpCnt) is related to the power system

frequency, sample rate (smpRate) and the number of ASDUs concatenated

into a single APDU according to Equation 3.2.

Equation 3.2

78

iii. confRev

This integer number is the number of times the SV control block

configurations were edited. These editions include addition of datasets, re-

ordering of members etc., with reference to the IEC 61850-9-2LE, the

confRev number must always be 1 (UCA International Users Group, 2004).

iv. smpSynch

This BOOLEAN flag indicates whether the sampled values are synchronised

to any clock source by setting it either TRUE of FALSE.

v. Sequence of data and dataset

This field contains the dataset to be transmitted in the SV packet, this

dataset can be configured using SCL according to the IEC 61850-9-2

standard but for simplicity reasons the dataset is preconfigured in the IEC

61850-9-2LE to consist of four voltage and four current measurements with

quality flags. The IEC 61850-9-2LE data model is discussed in detail in

section 3.4.2.1.

The IEC 61850-9-2LE defines two optional attributes the refresh time and the

sample-rate flags which when set to TRUE means that the SV buffer contains the

RefrTm (refresh time) and the smpRate (sample rate) values.

The next section discussed the IEC 61850-9-2LE data model.

3.4.2.1 IEC 61850-9-2LE data model

The IEC 61850-9-2LE provides a pre-defined data model and dataset for the

transmission of current and voltage samples. This data model contains four TVTR

and four TCTR logical nodes representing voltage and current transformers

respectively, these logical nodes are shown in Appendix C.3 and Appendix C.4.

The TVTR and the TCTR logical node classes contain the Vol and Amp data

objects for the voltage and current samples respectively. These data objects are

instances of the sampled value (SAV) common data class defined in IEC 61850-7-3

standard.

The IEC 61850-9-2LE uses an instance of the SAV common data class supporting

only the attributes with the MX (measurement) functional constraint to reduce

implementation complexity. The resulting common data class used for the

transmission of the current and voltage samples is shown in Table 3.6.

79

Table 3.6: SAV common data class defined in IEC 61850-9-2LE

(Adapted from UCA International Users Group, 2004)

Attribute Name Attribute type Comment

instMag.i INT32

q Quality Sampled value quality

sVC.scaleFactor FLOAT32 0.001 for current; 0.01 for voltage

sVC.offset FLOAT32 Always 0

Each sampled value published in an IEC 61850-9-2LE sampled value message

contains the instantaneous magnitude (instMag.i) value and the quality flags (q)

discussed below:

 instMag.i: this is the mandatory instantaneous magnitude value of the

analogue voltage/current (International Electrotechnical Commission, 2003-

2005). This instantaneous magnitude value is represented using the integer

data type.

 q: this is the quality attribute of the sampled value, this quality attribute contains

flags which are set by the source to inform the receiving device/function about

the validity and other quality related issues of the sample. The structure of the

quality attribute is shown in Table 3.7.

Table 3.7: Quality attribute of the SAV CDC

(Adapted from International Electrotechnical Commission, 2003-2005)

Quality Type Definition

Attribute Name Attribute Type Value/ Value Range M/O/C

 PACKED LIST

validity CODED ENUM good | invalid

reserved | questionable

M

detailQual PACKED LIST M

 overflow BOOLEAN M

outOfRange BOOLEAN M

badReference BOOLEAN M

oscillatory BOOLEAN M

failure BOOLEAN M

oldData BOOLEAN M

inconsistent BOOLEAN M

inaccurate BOOLEAN M

source CODED ENUM process | substituted

DEFAULT PROCESS

M

test BOOLEAN DEFAULT FALSE M

operatorBlocked BOOLEAN DEFAULT FALSE M

80

The identifiers in the sampled value/data quality attribute are discussed below:

i. Validity: The data can be marked as good, invalid, reserved or

questionable; data is marked good if there are no abnormalities detected,

questionable if a supervision function detects an abnormal behaviour and

invalid if an abnormal event has occurred.

ii. detailQual: data attributes marked questionable and invalid are described

using the identifiers under the detailQual flags as illustrated in Table 3.8.

Table 3.8: detailQual identifiers of the Quality attribute

(Adapted from International Electrotechnical Commission, 2003-2005)

DetailQual Invalid Questionable

Overflow X

Out of Range X X

Bad Reference X X

Oscillatory X X

Failure X

Old Data X

Inconsistent X

Inaccurate X

iii. Source – this flag can be set to process or substituted, process data is

measured while substituted data is calculated.

iv. Test: this identifier is used to notify the client/subscriber that the received

information is test data and must not be used for operational purposes.

v. operatorBlocked: This identifier is used to signify that the data will not be

updated because it was stopped by an operator.

The resulting data model for IEC 61850-9-2LE sampled value messages is shown

in Figure 3.18.

81

Physical Device

Logical Device (xxxxMUnn)

instMag.i q

InnATCTR1

Amp

instMag.i q

InnBTCTR2

Amp

instMag.i q

InnCTCTR3

Amp

instMag.i q

InnNTCTR4

Amp

instMag.i q

UnnATVTR1

Vol

instMag.i q

UnnBTVTR2

Vol

instMag.i q

UnnCTVTR3

Vol

instMag.i q

UnnNTVTR4

Vol

Figure 3.18: IEC 61850-9-2LE data model

This data model shows a total of eight logical node instances four of which are

instances of the TCTR LN class and the rest are instances of the TVTR class.

APPENDIX A shows the dataset defined in the IEC 61850-9-2LE for the

transmission of SV messages.

The next section concludes this chapter by highlighting the advantages of using the

IEC 61850 standard for communication networks over legacy protocols and

hardwired communication systems.

3.5 Conclusion

After discussing the modelling techniques and the application of the IEC 61850

standard in substation automation system it can be concluded that the suite

presents a number of advantages over legacy and hardwired systems. These

advantages make the IEC 61850 standard an ideal choice when considering

communications networks within systems. The advantages are:

i. VLAN tagging: the use of VLAN tagging is an ingenious mechanism for

ensuring an intelligent and efficient use of Ethernet switches. Priority tagging

allows Ethernet switches to send time-critical messages to the intended

destination with minimal delays.

ii. Virtualization: this allows the standard to use the data models (logical nodes,

common data classes, device behaviour and abstract service) to represent

real power system equipment.

82

iii. Standard naming convention: the IEC 61850 standard offers standardised

naming of data by using descriptive strings. This standardised naming system

makes it easy for systems engineers to identify components of the power

system without the need to identify index locations and registers as it was

with legacy communication protocols in SCADA systems.

iv. Self-descriptive devices: with the IEC 61850 standard-based application,

connected devices are able to obtain a description of data supported by the

other device therefore eliminating manual configuration and reducing system

engineering time. This allows for easy expansion of the SAS and reduces

system rigidity.

v. Substation Configuration Language (SCL): this language enables substation

devices to be configured using a language based on XML. The use of SCL

eliminates purchase of the wrong equipment because the engineer can be

able to identify required device functionality using the ICD document.

vi. Lower installation and integration costs: the IEC 61850 standard enables

seamless integration of devices within an SAS through the GOOSE and SV

process bus interface. This implementation reduces wiring cost by utilising

the Ethernet bandwidth for signals instead of traditional wiring, ducting,

trenching and installing conduits for different wires from the multiple

transducers.

vii. Reduced engineering time: through the SCL, manual configuration of

substation automation systems is drastically reduced thereby reducing

configuration errors and improving system efficiency.

viii. Interchangeability: in an IEC 61850 based automation system, different

devices from different vendors can be interchanged with none to minimal

configuration changes because of the virtualization process of real power

system devices and a standard naming convention.

ix. Interoperability: the IEC 61850 standard allows seamless integration of

devices from multiple vendors through standard naming conventions,

configuration language and specific communication service mappings of data.

x. Distributed functionality: The IEC 61850 standard allows the design and

implementation of a decentralised SAS architecture by allowing functions in

different physical devices to perform functions and communicate to achieve a

single function.

83

The first edition of the IEC 61850 standard is limited to communication within a

substation and covers information modelling, communication service mapping for

the transmission of data, testing and evaluation procedures for IEDs. This chapter

serves as the information base for the development of the IEC 61850-8-1 GOOSE

and IEC 61850-9-2 SV messages-mapping VHDL modules.

The development of the proposed VHDL modules for mapping GOOSE and SV

messages will be based on the IEC 61850-8-1 standard and the IEC 61850-9-2LE

guideline respectively. The IEC 61850-8-1 standard and the UCAIug IEC 61850-9-2

implementation guideline defined the communication service mapping of

data/information to the ISO 8802-3 Ethernet frame for GOOSE and SV messaging

respectively.

The mapping and publishing of GOOSE and SV messages as defined in the IEC

61850-8-1 standard and IEC 61850-9-2LE specific communication service

mappings (SCSM) will refer to the four-part IEC 61850-7 standard (IEC 61850-7-1

to IEC 61850-7-4 standards). The four-part IEC 61850-7 standard defines the data

modelling and communication services to be employed for data transmission. The

mapping of the GOOSE and SV messages will use control blocks, instances of

common data classes and logical nodes defined in the IEC 61850-7-2, IEC 61850-

7-2 and IEC 61850-7-4 standards.

The next chapter, Chapter Four discusses the design and implementation of VHDL

modules for mapping and publishing GOOSE and SV messages as specified in the

IEC 61850-8-1 standard and the IEC 61850-9-2 standard in conjunction with the

UCAIug IEC 61850-9-2 implementation guideline respectively. Chapter Four also

provides finite state machine models, VHDL code snippets, equations and block

diagrams used to implement functional VHDL modules for publishing SV and

GOOSE messages. Hardware design using VHDL and integration methods are

also presented in Chapter Four for combining the developed GOOSE and SV

messages mapping VHDL modules with the Analogue-Front End (AFE) to produce

a GOOSE monitoring node and limited-function Merging Unit prototype

respectively.

84

 CHAPTER FOUR

DESIGN AND IMPLEMENTATION OF GOOSE AND SV MESSAGE MAPPING

HARDWARE USING THE XILINX SPARTAN 6 FPGA

4.1 Introduction

This chapter presents the design of VHDL modules and hardware integration method for

mapping IEC 61850-8-1 Generic Object Oriented Substation Event (GOOSE) messages

and IEC 61850-9-2LE Sampled Value (SV) messages in VHSIC-Hardware Description

Language (VHDL) on a Field Programmable Gate Array (FPGA).

This chapter is subdivided into sections 4.2 to 4.5. Section 4.2 consists of two sub-

sections, section 4.2.1 and 4.2.2 which provide the design scope of the GOOSE and SV

messages-mapping VHDL modules respectively. Section 4.3 provides a comparative

analysis of FPGAs, microcontrollers and PCs for the selection of an ideal platform for

mapping and publishing GOOSE and SV messages. Furthermore, it provides a brief

overview of the Analogue Front-End (AFE) module, the integration of this AFE with the

GOOSE and SV message-mapping VHDL modules implemented on the FPGA to

produce a GOOSE monitoring node and Merging Unit prototypes respectively.

Section 4.4 details the development of VHDL modules for mapping and publishing

GOOSE and SV messages on an FPGA platform through flow charts, state diagrams

and VHDL code snippets. Section 4.5 concludes this chapter and highlights the

challenges encountered during the development of VHDL code for mapping GOOSE and

SV messages on an FPGA.

4.2 Research project scope in the context of the IEC 61850 standard

This research project focuses on the development of two separate VHDL modules for

mapping and publishing SV and GOOSE messages as defined by the IEC 61850

standard on an FPGA platform. In the context of the first edition of the IEC 61850

standard, process level IEDs act as interfaces between the primary plant equipment

(instrument transformers and circuit breakers) and bay level IEDs. These process IEDs

monitor, control and measure variables in the power system and communicates this

information to bay level IEDs through the process bus.

85

G
O

O
S

E
 m

essag
es

S
V

 m
essag

es

Figure 4.1: Process level Intelligent Electronic Devices (IED)

In the illustration shown in Figure 4.1, the breaker IED uses GOOSE messages to

transmit circuit breaker information modeled using the XCBR logical node to bay level

IEDs. In the same illustration in Figure 4.1, the Merging Unit (MU) uses SV messages to

transmit voltage and current samples modeled using the TVTR and the TCTR logical

nodes respectively to bay level IEDs. These two devices (breaker IED and MU) are

known as process level IEDs and the messages published by these devices (GOOSE

and SV messages) make up the IEC 61850 process bus.

In order to design an IED, the designer must have a clear understanding of the device’s

intended operations/functions so that a fitting hardware platform is used. Once the

hardware platform has been selected, the next step is to develop methods/algorithms to

achieve these functions. After that, software must be developed to implement this

algorithm following a set language supported by the hardware platform. The last step of

any design process is to evaluate the final prototype in order to ascertain whether it

meets all the design criteria.

The design evaluation documented in Chapter Five of this thesis will determine whether

the developed VHDL modules for publishing GOOSE and SV messages meets the

requirements of the IEC 61850-8-1 standard and the IEC 61850-9-2LE respectively.

Commercial software applications like Wireshark, TransView, IEDScout and SVScout will

be used to validate the structure and accuracy of the published GOOSE and SV

messages against the requirements of the referenced standards. If the developed VHDL

modules fail to meet the requirements of the referenced standards, the VHDL code will

be edited and re-evaluated in a repetitive manner until the requirements are satisfied.

86

The following sections, section 4.2.1 and 4.2.2 discusses the design and implementation

scope for GOOSE and SV messages mapping VHDL modules.

4.2.1 The design scope for GOOSE message-mapping

Real-time data communication between different functions and/or devices is vital in any

automation system; the IEC 61850 standard defines a real-time, object oriented

communication protocol known as GOOSE messages. With reference to Figure 2.1,

GOOSE messages are used for peer-to-peer communication between bay-level IED

(interface IF8) or between process level actuators/devices and bay IEDs (interface IF5).

Process equipment use this communication interface (IF5) to relay primary plant

information to bay-level IEDs, for example, GOOSE messages on the process bus are

used for transmitting instantaneous voltages to voltage regulating relays for on-load tap

changing.

This research project will demonstrate the concept of communicating via GOOSE

messages by developing a VHDL module which will enable an FPGA to publish

analogue and binary values using the GOOSE protocol defined in the IEC 61850-8-1

standard. The VHDL module to be developed in this research project will publish

GOOSE messages containing the status of a circuit breaker (XCBRSTPos$stVal) and

the measured root mean square voltage (MMXNMXVol$mag). The circuit breaker

status will be derived from the position of a switch on the Nexys 3 development board

while the magnitude of the voltage will be injected into the developed GOOSE monitoring

node prototype through the AFE using the CMC 256plus test set.

This research project demonstrates how GOOSE messaging can be used as an

alternative to copper wiring for communicating digital status and analogue values in a

substation automation system. GOOSE messages can be multicast to multiple devices

connected to the process bus thereby reducing parallel copper wires and implementation

costs compared to hardwired and legacy communication protocol-based systems.

87

Figure 4.2 shows hardware components and logical nodes that will be used in the

implementation of the IEC 61850-8-1 GOOSE message-mapping VHDL module on an

FPGA.

VT

ADS13108

ADC

LLN0

Calculate

MMXNVolmag

Dual Port Memory

MAC

ASN.1 Tagging

LAN8710

PHY Chip

GOOSE Client state machine

Generate sqNum, stNum,

timeAllowdtoLive

CB

XCBR

MMXN

Detect

XCBRPosstVal

RJ-45

FPGA

(i)

(ii)

(iii)

(iv)

(v)

Figure 4.2: Mapping GOOSE messages on an FPGA platform

In Figure 4.2, the red block represents the FPGA device and the numbered blocks inside

represents hardware modules implemented in VHDL for:

i. calculating the RMS value of the injected voltage (MMXNMXVol$mag.i),
ii. detecting the status change of the emulated circuit breaker

(XCBRSTPos$stVal object),
iii. implementing the GOOSE client state machine as defined in the IEC 61850-8-1

standard,
iv. generating an ASN.1 tagged GOOSE message and
v. sending the GOOSE message to the PHY for transmission through the MAC.

The next section discusses the design scope for the IEC 61850-9-2LE sampled value

message-mapping VHDL module.

4.2.2 The design scope for Sampled Value (SV) message-mapping

Sampled value messages contain instantaneous current and voltage samples from

current and voltage transformers (CTs and VTs). Merging Units periodically publish

sampled value messages onto an Ethernet network (process bus) to subscriber IEDs. In

88

this research project, the developed VHDL module must be able to map and publish

sampled value messages following the rules and requirements defined in the UCAIug

implementation guideline commonly known as the IEC 61850-9-2LE (Light Edition).

The Analogue Front-End (AFE) module developed at the Center for Substation

Automation and Energy Management (CSAEMS) at the Cape Peninsula University of

Technology (CPUT) samples voltage and currents signals from CTs and VTs. This AFE

consists of an eight-channel Analogue to Digital Converter (ADC) and an FPGA module

connected through a Serial Peripheral Interface (SPI) bus. This FPGA module

synchronises the ADC samples to a 1PPS pulse and also reads the output codes for the

eight channels. The AFE’s internal structure and communication interface is discussed in

detail in section 4.3.2 on page 93.

The IEC 61850-9-2LE defines two control blocks and a dataset for the transmission of

sampled values as discussed in section 3.4.2 in Chapter Three. In this research project,

the MSVCB01 control block and the PhsMeas1 dataset are supported which means that

the developed VHDL module will enable the FPGA to publish SV messages at 80

samples per cycle. The PhsMeas1 dataset contains four TCTR and four TVTR logical

node instances for current and voltage transformer measurements respectively.

Figure 4.3 shows a block diagram of hardware components, functional modules and

logical nodes required for mapping and publishing SV messages from an FPGA platform.

89

ADS131E08 dev

TCTRB

TVTRA

TCTRA

TVTRN

TVTRC

TVTRB

TCTRC

TCTRN

LLN0 MAC

ASN.1 Tagging

Calculate

InnXTCTR1.instMag

UnnXTVTR1.instMag

1PPS

Modules

LAN8710

PHY Chip

A

B

C

N

3 Phase

Power System

Voltage

Transformers

 FPGA

Control

Module
AFE

RJ 45

Figure 4.3. Mapping Sampled Value (SV) messages on an FPGA

Figure 4.3 shows the AFE as an orange block consisting of an ADC development board

(ADS131E08 EVM) and the VHDL modules implemented in the FPGA for synchronising

and reading the ADC output codes. In Figure 4.3, besides the AFE, the FPGA is

represented by the red block while the calculation and SV message-mapping functional

modules are shown as blocks inside the FPGA.

The next section compares hardware platforms found in literature that were used in the

design of GOOSE enabled devices and Merging Units.

4.3 Hardware platform

The limited-function process level IED prototypes to be developed in this research

project (for publishing GOOSE and SV messages) have to meet the functionality

described in sections 4.2.1 and 4.2.2 respectively. The functionality described in the

referenced sections is useful in the VHDL hardware module design phase and partly for

hardware platform selection. To select the proper hardware to support the required

functions a number of design questions are presented below:

 How much processing power is required by the device?

 Which platform is suitable for this design between a Windows PC, microcontroller

and an FPGA?

 Is there need to use an IEC 61850 communication stack from a vendor?

90

 Which communication interface is required by the process level IED?

 How will the IED connect to the primary plant equipment?

Process level IEDs capable of publishing GOOSE and/or SV messages must be able to

perform high-speed calculations, processing and communication to meet the

requirements of the IEC 61850 standard in terms of the message performance class and

delivery times. A Windows/Linux PC platform using Scapy or NS3 open source network

simulator or LabVIEW is capable of generating SV and/or GOOSE messages adhering

to the timing constraints defined in the IEC 61850-5 standard.

The down side with Windows/Linux PCs is that they are expensive compared to

microcontrollers and FPGA platforms and they require an AFE module to interface with

primary plant equipment. Another disadvantage of implementing limited-function

process-level IED on Windows/Linux PC platforms is that high-end graphic and storage

resources will be under-utilised.

Another option is to use a microcontroller or an FPGA platform for mapping and

publishing GOOSE and SV messages. These two platforms are on average cheaper and

smaller than industrialised PCs. Microcontrollers which possess the processing, Ethernet

communications and timing capabilities for mapping GOOSE and SV messages are on

average 5 to 10 times cheaper than an FPGA module with same capabilities.

With microcontroller-based platforms, IEC 61850 standard-communication libraries are

available to quicken the development process unlike with FPGA-based platforms. For

example, Beck-IPC controllers use an IEC 61850 library developed by SystemCorp, this

stack supports GOOSE messaging and MMS (Retonda-Modiya, 2012). The

openIEC61850 and the libIEC61850 stacks are example of libraries based on Java and

C available for microprocessor-based (PCs) and microcontroller-based platforms.

FPGAs are inherently faster than microcontrollers even though the clock frequency of

any general purpose microcontroller is normally up to twenty times more than that of

FPGAs. FPGAs are faster because of the memory data streaming technique, reduced

instructions and also the overlap of control (Guo et al., 2004). The FPGA’s memory data

streaming technique allows for faster memory read cycles thereby improving device

efficiency.

91

The iteration parallelism of an FPGA is more than twice that of a microcontroller, this

factor together with control overlapping and data streaming from memory accounts for an

efficiency factor, which can be more than 6 to 47 times more than that of a

microcontroller (Guo et al., 2004). Moreover, the iteration parallelism of FPGAs allows

the device to execute different processes in parallel other than sequentially.

VHDL is a full-bodied language for FPGA-based systems development which allows

electrical signal attributes to be described so as to mimic exact timing characteristics

which any other language cannot do. This feature makes VHDL the ideal language for

developing application for real-time status or value change detection. Table 4.1 shows

the differences between FPGA, microcontroller and PC based platforms.

Table 4.1: Comparing FPGA, microcontroller and PC platforms

Factor FPGA Microcontroller Windows/Linux PC
System clock speed Fast Fast Very Fast

Multi-threading No No Yes

Parallel computing Yes No No

Reduced instruction set Yes Yes Yes

IEC 61850 library support No Yes Yes

Price per unit Moderate Cheap Expensive

With reference to the differences listed in the previous paragraphs the FPGA is ideal

because it is inherently faster than the microcontroller/processor platforms and it is

moderately expensive. For this research project, the Xilinx Spartan-6 XL16 FPGA is

used. The following sections discuss the features of this FPGA and the Nexys 3

development board.

4.3.1 Nexys 3 development board

The Nexys 3 development board is a ready to use design platform for digital circuits

based on the Xilinx Spartan-6 XL16 FPGA. In addition to the Xilinx FPGA, the Nexys 3

development board offers a collection of peripherals including non-volatile RAM, 10/100

Ethernet PHY controller, 16 MB of cellular RAM and a USB to UART port (Digilent Inc,

2013).

The Xilinx Spartan-6 XL16 FPGA features 2278 slices each with 6 Look-Up Tables

(LUTs), 576 Kbits of Random Access Memory (RAM), a Digital Clock Management

(DCM) block and Phase Locked Loop (PLL). The DCM and the PLL allow the FPGA

clock to run at 500 MHz or more, which accounts to a cycle time of 2 ns.

92

The FPGA has a multitude of digital I/O pins that can be used as simple general Input

/Outputs (I/O) ports, or to function as specialised peripherals. For this design, some

digital I/O pins of the Xilinx FPGA will be used as an SPI port and a Media Independent

Interface (MII) port for communicating with the AFE and the PHY chip respectively.

Figure 4.4 shows a block diagram and interconnections between the Xilinx FPGA and

the components/peripherals on the Nexys 3 development board.

Figure 4.4: Nexys 3 development board block diagram

(Adapted from Digilent Inc, 2013)

The Nexys 3 development board includes the LAN 8710 chip from Microchip which is a

10/100 Base TX PHY controller (Digilent Inc, 2013). This PHY chip is responsible for

encoding and decoding messages transmitted and received from the physical medium

(copper wires). The LAN 8710 PHY controller connects to the FPGA through the Media

Independent Interface (MII). The MII bus consists of four receive and four transmit

connections between the Media Access Controller (MAC) and the PHY clocked at the 25

MHz to achieve 100 Mbps Ethernet speed. The Xilinx FPGA does not have a dedicated

MAC so therefore a custom MAC will be implemented in VHDL.

This Nexys 3 development board has eight slide-switches, five pushbuttons, eight LEDs

and four Peripheral Module (PMOD) connectors connected to the FPGA I/O pins. The

PMOD connectors are designed by Digilent Incorporated which allows data acquisition,

93

input/output or communication modules to be connected to the Nexys development

boards (Digilent Inc, 2013). Two PMOD connectors will be used to communicate with the

Analogue Front-End module (AFE) and the slide-switch (SW2) will be used to simulate

the status of a circuit breaker.

The next section discusses the AFE module developed by the CSAEMS for sampling the

analogue signals from CTs and VTs and how it is integrated to the Nexys 3 development

board.

4.3.2 Analogue Front-End (AFE) device

The AFE consists of a VHDL module implemented in the Xilinx FPGA (main processing

unit), eight step-down transformers and the ADS131E08 EVM Rev A ADC development

kit as shown in Figure 4.6. The ADS131E08 EVM Rev A development kit is

manufactured by Texas Instrument for developing industrialised power system

monitoring and measurement applications based on the ADS131E08 Analogue to Digital

Converter (ADC) (Texas Instruments, 2012-2013).

Figure 4.5 shows how current and voltage signals from CTs and VTs are connected to

the eight-channel ADC through the step-down transformers. In this figure (Figure 4.5),

the red transformers step-down the CT and VT analogue output signals to voltages

within the specified ADC input range.

R5

R4 R6

R2

R1 R3

R8

R7 R9

R11

R10 R12

CH5

CH6

CH7

CH8

R15
R16

R13
R14

R17
R18

R19
R20

CH1

CH2

CH3

CH4

A

B

C

N

3 Phase

Power

System

Current

Transformers

Voltage

Transformers

Figure 4.5: CT and VT analogue signal interface

94

The AFE step-down transformers turns ratio was not known so therefore it was

determined empirically using the CMC 256plus test set. Voltage and current signals were

injected into to the primary side of the step-down transformers and the output measured

on the ADC input marked CH1 to CH8 in Figure 4.5 above. Table 4.2 shows the

relationship between step-down transformer primary and the ADC input voltage.

Table 4.2: Relationship between step-down transformer primary and secondary voltage
measurements

Voltage Injection

(VRMS)

Step-down transformer

output (mV)

Comment

1 28.567113

33 1334 Nominal Input

84.0126897 2400 VMAX

The AFE’s maximum voltage input is limited by the ADC’s maximum voltage input equal

to 2.4 V, so therefore according to Table 4.2 the maximum voltage that can be injected

without damaging the ADC is approximately 84.01 VRMS.

Table 4.3 shows the relationship between the step-down transformer’s primary current

injection and its secondary voltage measurements. The AFE’s maximum current injection

is limited by the ADC’s maximum input voltage equal to 2.4 V, so therefore according to

Table 4.3, the maximum current that can be injected without damaging the ADC is

approximately 16.48 ARMS.

Table 4.3: Relationship between injected current signals and step-down transformer
voltage outputs

Current Injection

(ARMS)

Step-down transformer

output (mV)

Comment

0 0

1 145.664 Nominal input

16.47627417 2400 IMAX

VTs and CTs step-down power-system voltage and current signals to 110 V and 1 A/5 A

respectively under nominal conditions (Khuraam, 2012). In this research project the CMC

256plus test set is used as a voltage and current source instead of VTs and CTs in a

controlled environment in the laboratory.

95

The relationship between CT/VT primary and secondary current and voltage signals is

based on Equation 4.1.

Equation 4.1

In Equation 4.1, the subscripts P and S refer to the primary and secondary sides of the

instrument transformer and the N symbol represents the number of turns in the

transformer windings. In order to calculate the primary voltage and current

measurements the value of the CT/VT turns ratio must be known. In this research

project, the GOOSE/SV message-mapping VHDL modules will be evaluated in the

laboratory using the CMC 256plus test set so therefore for calculation purposes the VT

and CT primary to secondary turns ratio is chosen to be 100:1.

Table 4.4 and Table 4.5 show the relationship between primary power system

voltage/current measurements and the ADS131E08 ADC input voltages. The values

were calculated using the CT/VT ratio of 100:1 and the scaling factors of the step-down

transformers in the AFE presented in Table 4.2 and Table 4.3.

Table 4.4: Relationship between CMC 256plus generated voltage and ADC input

Primary Voltage

(VRMS)

CMC 256plus output

(VRMS)

ADC Input (mV) Comment

0 0 0

100 1 28.567113

3300 33 1334 Nominal Voltage

8401.26897 84.0126897 2400 VMAX

Table 4.5: Relationship between CMC 256plus generated current and ADC input

Primary Current

(ARMS)

CMC 256plus output

(ARMS)

ADC input (mV) Comment

0 0 0

100 1 145.664 Nominal Current

1647.63 16.4763 2400 IMAX

In this research project, the nominal line-to-neutral voltage and current measurements

are assumed to be 3.3 kVRMS and 100 ARMS respectively equal to secondary voltage and

current measurements of 33 VRMS and 1 ARMS respectively. These two values, VMAX and

96

IMAX will be used in the calculation of the instantaneous voltage and currents in section

4.4 respectively.

The output voltages of the AFE step-down transformers are then connected to the eight

channels of the ADS131E08 ADC. The ADS131E08 is a 24 bit delta-sigma (ΔƩ), eight

channel simultaneous sampling ADC. This ADC has an adjustable gain and sampling

rate configurable through the serial peripheral interface. The ADS131E08 ADC is

connected to the Xilinx FPGA through the PMOD connector serial peripheral interface for

configuration and ADC output code retrieval. The data is written to and read from the

ADC by the AFE VHDL module at 12.5 Mbps (Megabits per second).

Figure 4.6 shows the AFE block diagram with main emphasis on the connections

between the ADS13108 evaluation kit and the AFE VHDL module in the Xilinx FPGA.

FPGA

Block RAM

SPI

1PPS

Signal

MAC

AFE processing

unit

A
B

LAN 8710

PHY Chip

CH7

CH8
ADC

Registers

CH6

CH5

CH3

CH4

CH2

CH1

SCLK
DIN

DOUT

DRDY

ADC_SYNC

SPI and

Control

ADS 13108EVM

Analogue Front End (AFE)

RJ 45

MII

Logic and

Mapping

GOOSE/SV

message-mappingCS

Figure 4.6: Communication between the AFE and the SV/GOOSE message-mapping VHDL
modules

With reference to Figure 4.6, the Xilinx FPGA is represented by the red block and the

blue-shaded area shows the components which make up the AFE excluding the step

down transformers shown in Figure 4.5.

The AFE’s processing unit is a VHDL top-module implemented in the Xilinx FPGA for

configuring, synchronising and reading conversion data from ADS13108 ADC. The

FPGA synchronises the ADC using an internally generated 1PPS signal. This internally

generated 1PPS signal will suffice for evaluating the performance and accuracy of the

97

SV message-mapping VHDL module but this means that the developed limited-function

MU prototype will not be synchronised to the CMC 256plus test set.

On startup, the AFE processing unit configures the ADS131E08 ADC to sample the eight

analogue channels at 4 kSPS (4000 samples per second). The ADS131E08 ADC is also

configured to use an internally generated reference voltage (VREF) of 2.4 V to produce

conversion data (output codes) for the eight channels. The ADC output codes are in

binary twos’ complement format, the ADC outputs 0x7FFFFF and 0x800000 for positive

and negative full-scale deflections (±VREF).

Table 4.6 shows the relationship between the ADC’s output codes and the input voltage.

Table 4.6: Relationship between the ADC output code and the input voltage

(Adapted from Texas Instruments, 2012-2013)

Input Signal, VIN Ideal Output Code

≥VREF 0x7FFFFF

+VREF/(2
23

-1) 0x000001

0 0x000000

-VREF/(2
23

-1) 0xFFFFFF

≤-VREF(2
23

/2
23

-1) 0x800000

The ratio of the input voltage to the reference voltage (VREF) can be expressed using

Equation 4.2.

Equation 4.2

Substituting the value of VREF and re-arranging Equation 4.2 results in Equation 4.3 for

calculating the input voltage from the ADC output code.

 ()

Equation 4.3

The ADC is fixed into continuous-read mode, in this mode, the eight channels are

sampled simultaneously every 250 µs (4000 samples per second) and it uses an active-

low output pin to indicate the availability of output codes (conversion data). Once

98

the ̅̅ ̅̅ ̅̅ ̅̅ output pin has been set LOW, the processing unit reads the ADC codes and

writes them to the dual-port RAM to be accessed by the GOOSE/SV message-mapping

VHDL modules.

The read process is illustrated in Figure 4.7 showing the transitions of the ̅̅ ̅̅ ̅̅ ̅̅ , SCLK,

 ̅̅ ̅ and the DOUT pins.

Figure 4.7: Reading ADC conversion data using SPI when pin goes LOW

(Adapted from Texas Instruments, 2012-2013)

A total number of 216 bits consisting of a 24 bit status-word plus 24 bits per channel for

the eight channels (192 bits) are read from the ADC once ̅̅ ̅̅ ̅̅ ̅̅ pin is activated. Data is

read starting with the Most Significant Bit (MSB) of ADC status word then channel one to

channel eight output codes in sequential order. The AFE processing module appends a

sample count (smpCnt) value to the output codes read from the ADC before the data is

stored in the dual-port RAM. The dual-port RAM is an ideal storage facility implemented

in VHDL for storing information that has to be accessed by two separate applications.

This RAM allows the AFE to store the ADC output codes using port A and the

GOOSE/SV message-mapping VHDL modules to read these ADC codes using port B as

shown in Figure 4.6. These two ports are independent of each other meaning that data

can be written or read from whichever port irregardless of any operation on the other

port.

The next section (section 4.4) discusses the development of VHDL code for mapping

IEC 61850-9-2LE-based SV and IEC 61850-8-1 standard-based GOOSE messages on

the Xilinx Spartan 6 FPGA.

99

4.4 VHDL Hardware Development

VHSIC-HDL is a hardware description language developed in the mid-1980s by the

USA’s Department of Defense and the Institute of Electrical and Electronic Engineers

(IEEE) for the development of very-high-speed integrated circuits (Van der Spiegel,

2001). VHDL is a full-featured language suitable for describing the behavior of electronic

components or even systems ranging from simple logical gates to custom chips e.g.

Media Access Controllers (MAC) for Ethernet communications (Altium, 2008). Different

electrical signal attributes can be descried using VHDL, for example, pulse rise/fall times

and signal delays.

VHDL is a parallel programming paradigm whereby the system behavior is expressed in

parallel format unlike in sequential programming languages e.g. C, C++ in which

functions execute one-after-the-other. VHDL process statements are executed in a

parallel manner as soon as the value of the input in the sensitivity-list changes; this is

similar to logic gates whereby the output changes as soon as one or more inputs

change. Due to this fact, VHDL-based digital systems are inherently faster than

microcontroller-based systems. The Xilinx ISE design suite was used to generate VHDL

designs and programming files for Xilinx Spartan 6 FPGA.

4.4.1 VHDL module design process

The design and development of the GOOSE message and the SV message-mapping

VHDL modules is based on the agile software development life cycle which breaks-up

the development process into small build increments provided in iteration. The Agile

software development model combines iterative and incremental processes focusing on

meeting design requirements and rapid delivery of working software products. The

iterative method of the agile development model ensures that working software is

delivered after each build before the new build increment commences. The build tasks

are assigned completion time frames and the developed software is tested before

moving on to the next task.

The design and development of VHDL code for mapping GOOSE and SV messages is a

repetitive process executed until valid messages conforming to the IEC 61850-8-1

standard and the IEC 61850-9-2LE are published by the FPGA respectively. It is worth

noting that even though the structure and transmission procedures for GOOSE and SV

messages are different, the VHDL hardware designs will share common digital circuits

e.g. MAC and dual-port RAM. Sections 4.4.1.1 and section 4.4.1.2 discuss the

100

developed VHDL modules for mapping and publishing GOOSE and SV messages using

a Xilinx Spartan 6 FPGA respectively.

The following section details the development of a VHDL hardware module which will

enable the Xilinx Spartan 6 FPGA to publish GOOSE messages as defined in the IEC

61850-8-1 standard.

4.4.1.1 GOOSE message mapping VHDL module

The proposed GOOSE message-mapping VHDL module is based on a finite state

machine, this finite state machine allows a system with distinct states to be modeled

using a state diagram to clearly show state transitions and trigger events. The finite state

model for the IEC 61850-8-1 standard-based GOOSE message-mapping VHDL module

is shown in Figure 4.8.

GOOSECONTROLBLOCK

Build ISO 8802-3 frame

Entry/ goEnable = TRUE

transmit ISO 8802-3 frame

(GOOSE message)

setup_complete

1 ms interrupt

Entry/ publish = 1

Exit/ transmit = 1

If(CurrTime >= TimeAllowedtoLive) sqNum++

transmit = 1

Idle

Transmission

setup

readGOCB

Calculation of

MMXN1MXVol$mag

Analogue Process

newSample

If(abs(Vol$mag - prev(Vol$mag)) > db

sqNum = 0

stNum++

MinTime = 100 ms

exit/ XCBR1PosstVal = SW2SW2 /= prev(SW2)

SW2 == prev (SW2)

Digital Process

DRDY = 1

Substation Event detection

CurrTime++

1 ms Timer

wait

Client state machine

Publish

trans_done

ControlBlock_GOOSE = b”1011"

on_startup

Figure 4.8: GOOSE message-mapping VHDL module finite state model

101

The finite state model shown in Figure 4.8 consists of four main states connected by

trigger events and these are the setup, readGOCB, Idle and Transmission states. The

VHDL entities for mapping GOOSE messages are implemented as sub-modules in the

AFE’s processor unit’s VHDL model. This hierarchical approach in VHDL reduces code

complexity and produces an easily maintainable design. The GOOSE message-mapping

VHDL module also follows a hierarchical approach by implementing a top module with

multiple sub-modules for different functions.

On power cycle, finite state machine of the GOOSE message-mapping VHDL module

commences at the setup state where it creates a byte array to hold the GOOSE ISO

8802-3 Ethernet frame. In the setup state, the VHDL model assigns values to the

Ethernet frame header fields which remain static until device reconfiguration. The fields

which remain static for the remainder of the device operation include the source and

destination MAC addresses, VLAN tags, EtherType and the APPID. These fields are

assigned to the ISO 8802-3 frame (byte array) using the default values defined in the

IEC 61850-8-1 standard. Table 4.7 shows the value assigned to the frame as defined in

the standard.

Table 4.7: ISO 8802-3 frame values according to the IEC 61850-8-1 standard

Parameter Value Comments

Destination MAC

Address.

01:0C:CD:01:00:00 Multi-cast address for all destination subscribers.

VLAN Tag. 0x8100 VLAN tags are used to separate high priority

information data based on IEEE 802.1Q.

VID 0 VLAN ID not used

Priority 4 Default priority of GOOSE messages

EtherType. 0x88B8 IEEE registered EtherType for GOOSE messages.

APPID. 0x0000 Default application ID for GOOSE messages.

A VHDL record is used for generating the GOOSE message PDU because this PDU is a

composite data entity consisting of multiple fields as shown in Figure 3.13 on page 71.

This GOOSE PDU consists of Tag-Length-Value triplets and using this VHDL record the

tag and length fields are assigned as shown Table 4.8.

102

In Table 4.8, the values of the gocbRef, datSet and allData attributes of the GOOSE

PDU are extracted from the Configured IED Description (CID) file and the data model

discussed in sections 4.4.1.1.1 and 4.4.1.1.2.

Table 4.8: Values assigned to GOOSE PDU fields

PDU Attribute Tag Value

gocbRef 0x80 FPGA/IED1/LLN0GOGSE_CB_GOOSE

timeAllowedtoLive 0x81 MinTime – MaxTime

datSet 0x82 FPGA/IED1/LLN0$GOOSE_Eval.

goID 0x83 GOOSEID

t 0x84 UTC time

stNum 0x85 0-2
32

sqNum 0x86 0-2
32

test 0x87 TRUE/FALSE

confRev 0x88 1

ndsComm 0x89 FALSE

numDataSetEntries 0x8A 2

allData 0xAB MMXN1MXVol$mag.i

XCBR1STPos$stVal

Figure 4.9 shows how an ASN.1 encoded GOOSE message PDU is generated and

stored in a VHDL record before it is copied into the ISO 8802-3 Ethernet frame (byte

array) for transmission.

Figure 4.9: ASN.1 BER encoded GOOSE APDU in VHDL

After assigning values to the ISO 8802-3 frame header fields and creating the VHDL

record for the GOOSE PDU, the GOOSE message-mapping finite state machine

transitions to the readGOCB as shown in Figure 4.8. Once in the readGOCB state the

--this is the GOOSE Control Block

goosePdu.gocbRef(0) <= x"80"; -- Goose ControlBlock - TAG 0 -

conv_int := std_logic_vector(to_signed(GOOSE_REF'right, 32));

goosePdu.gocbRef(1) <= conv_int(24 to 31); -- Lenght of gocbRef

for i in 1 to GOOSE_REF'right loop

 goosePdu.gocbRef(1 + i) <= GOOSE_REF(i);

end loop;

--Tag 1-

-- this is the timeAlllowedtoLive for a message sent

goosePdu.timeAllowedtoLive(1) <= x"81";

goosePdu.timeAllowedtoLive(2) <= x"04"; -- Number of bytes

--Tag 2 -

-- Goose Data set

goosePdu.datSet(0) <= x"82";

conv_int := std_logic_vector(to_signed(len_datSet, 32)); -- length of GOOSE

goosePdu.datSet(1) <= conv_int(24 to 31); -- length of dataset

for i in 1 to GOOSE_DATASET'right loop

 goosePdu.datSet(1 + i) <= GOOSE_DATASET(i); --

end loop;

103

VHDL record containing the GOOSE PDU is then copied to the Ethernet frame (byte

array). Figure 4.10 shows a snippet of the VHDL code for copying data from the VHDL

record into the Ethernet frame (byte array).

Figure 4.10: Copying the GOOSE PDU from the VHDL record into the Ethernet frame before
transmission

According to the IEC 61850-8-1 standard, GOOSE messages are published once the

GOOSE control block is enabled by setting the goEnable flag TRUE. Before exiting the

readGOCB state, the mapping VHDL module enables the GOOSE control block by

setting this aforementioned flag. Once GOOSE message transmission is enabled, the

finite state machine transitions to the Idle state. In the Idle state the VHDL module is on

standby waiting for status/value change (substation event) or retransmission time to

occur according to the GOOSE client state machine defined in the IEC 61850-8-1

standard.

The Idle state implements the GOOSE client logic for transmitting GOOSE messages as

defined in the IEC 61850-8-1 standard. In this state, GOOSE messages are transmitted

every time the status or value of any of the objects in the dataset changes (substation

event) or when the message retransmission time occurs. When this event occurs, new

object values are copied into the pre-configured Ethernet frame (byte array) together with

the timeAllowedtoLive, stNum, sqNum and the timestamp (T). The values of the stNum

-- datSet --

when b"0010" =>

 goPDUattr <= b"0010";

 if byteCnt < len_DATSET + 2 then

 gooseframe(index) <= goosePdu.datSet(byteCnt);

 byteCnt <= byteCnt + 1; -- count number of bytes

 count <= count + 1;

 else

 byteCnt <= 0;

 goPDUattr <= b"0011"; -- handle next attribute

 end if;

-- goID --

when b"0011" =>

 goPDUattr <= b"0011"; -- stay

 if byteCnt < len_GOID + 2 then

 gooseframe(index) <= goosePdu.goID(byteCnt);

 byteCnt <= byteCnt + 1; -- count number of bytes

 count <= count + 1;

 else

 byteCnt <= 0;

 goPDUattr <= b"0100";

 end if;

104

and sqNum attributes are calculated using the GOOSE client state machine shown in

Figure 3.12 in page 70.

The developed Idle state logic is shown in the flowchart in Figure 4.11.

New Sample from
AFE

Initialize Variables
MaxTime = 1000ms
MinTime = 100ms
stNum = 0
sqNum = 0
timeAllowedtoLive = MaxTime
Timeout = MaxTime
Timer = 0

Pulse Generator

Generate pulse
every 1ms

Timer++

NO

Transmit
GOOSE
Message

stNum++
Timeout = MinTim
startSeqCounter = true

StartSeqCounter =
TRUE

StartSeqCounter = FALSE
Timeout = MaxTime

Timer > Timeout

YES

Timer = 0
sqNum++
Timeout = Timeout
+ 200ms

YES

NO

Timer = 0
sqNum++
Timeout = MaxTime

Timeout >
MaxTime

YES

(SW2) Status
Change

XCBRPosstVal = 01/10

NO

Calculate
MMXNVolmag

If deadband
exceeded

NO

NO

Figure 4.11: GOOSE client state machine implemented in the Idle state

The flowchart in Figure 4.11 shows how the GOOSE client state machine defined in the

IEC 61850-8-1 standard is implemented in the GOOSE message-mapping VHDL

module. This flowchart highlights how the GOOSE message state and sequence

numbers (stNum and sqNum) are calculated every time a substation event or message

retransmission time occurs.

105

Figure 4.12 shows a VHDL process in the developed publishSigGen.vhd module which

implements the GOOSE client state machine as described in the flow chart in Figure

4.11.

Figure 4.12: GOOSE client state machine logic implemented in VHDL

The normal retransmission time (MaxTime) and the fast retransmission time (MinTime)

of GOOSE messages are specified as manufacturer local issues in the IEC 61850-8-1

standard. As such, the MaxTime and MinTime values are set to 1000 ms and 100 ms in

this VHDL module respectively. Also, the fast retransmission time increment (MinTime

increment) is not defined in the IEC 61850-8-1 standard so for this research project the

-- Process : PUBLISH

-- Publishes GOOSE messages after after MaxTime has expired or after MinTime has

expired before or after an event respectively

PUBLISH : process (clk, goEnable, msPulse, TriggerEvent)

variable timeCount : integer := 0;

variable currPubRate : integer := 0;

begin

-- reset stNum and sqNum

 if clk'event and clk = '1' then -- if there is a rising edge on the clock

 publishSig <= '0';

 if TriggerEvent = '1' then -- SET --

 publishSig <= '1'; -- publish new value immediately

 afterEvent <= '1'; -- set Flag after value of data set changed

 currPubRate := MinTime; -- start at the minimum time

 timeCount := 0;

 stNum <= stNum + 1;

 sqNum <= 0;

 else

 if goEnable = '1' then -- is goEnable ?

 if msPulse = '1' then -- after 1ms --

 timeCount := timeCount + 1;

 if afterEvent = '1' then

 if timeCount >= currPubRate then

 timeCount := 0;

 sqNum <= sqNum + 1; -- sqNum

 currPubRate := currPubRate + 200;

 publishSig <= '1'; -- publish

 if currPubRate >= MaxTime then

 afterEvent <= '0';

 end if;

 end if;

 else

 if timeCount >= MaxTime then

 sqNum <= sqNum + 1;

 currPubRate := MaxTime; -- make timeAllowedtoLive

 timeCount := 0;

 publishSig <= '1';

 end if;

 end if;

 end if;

 end if;

 end if;

 timeAllowedtoLive <= std_logic_vector(to_unsigned(currPubRate, 32));

-- convert the time allowed to live and send it with the GOOSE Message

 end if;

end process PUBLISH;

106

MinTime is incremented by 200 ms until the normal retransmission time (MaxTime) is

reached or exceeded as shown in Figure 4.12.

The GOOSE messages published by the developed VHDL module contain an analogue

value measured through the AFE and the emulated circuit breaker status. This dataset

contains an instance of the MMXN and XCBR logical nodes for analogue measurements

and circuit breaker control respectively. These two logical nodes will suffice for

demonstrating the capabilities of GOOSE messaging in replacing hardwiring in a

substation automation system.

The following sections (section 4.4.1.1.1 and section 4.4.1.1.2) discus the data modeling

for the analogue and digital information published in the GOOSE message dataset.

4.4.1.1.1 Analogue GOOSE modelling using the MMXN LN

The MMXN logical node (LN) is used for the calculation of the voltage, frequency, current

and other attributes of single-phase systems. The structure of the MMXN logical node is

shown in Appendix C.1, this LN consists of a number of instances of different common

data classes but of particular interest are the measured values (MV) objects specifically

the Vol data object. Data objects in the MMXN logical node are optional and are selected

depending on the device’s application in an automation system. For the purposes of this

research project, the Vol object will be used to report the Root Mean Square (RMS)

value calculated from the input voltage measured by the voltage transformer (VT).

The Vol object is an instance of the Measured Value (MV) common data class, this class

is shown in Appendix D.2. In this class, there are three mandatory data attributes and

these are the mag (measured value), q (quality) and t (timestamp) which should be

available in all instances of this object. In this research project, only the mag attribute will

be mapped to the dataset for transmission.

The mag data attribute in the Vol object referenced as the MMXNVolmag is the

calculated RMS voltage of the injected voltage; this mag attribute is an instance of the

AnalogueValue data type defined in the IEC 61850 standard. With the mag attribute, the

measured or calculated value can be represented as an integer (i) or floating point value

(f). According to the IEC 61850 standard, integer and floating point values are

represented by data types INTEGER and FLOAT32 respectively (International

Electrotechnical Commission, 2003-2005). For the purposes of this research project the

107

calculated RMS voltage will be transmitted as an integer value referenced as the

MMXN1MXVol$mag.i.

The resulting data model for the analogue data measurements is shown in Figure 4.13.

Physical Device(FPGA)

Logical Device(IED1)

MMXN1

mag.i

Vol

Data Attribute

Data Object

Logical Node

Figure 4.13: Data Model for analogue value transmission (MMXN1MXVol$mag)

Using the standard naming convention of the IEC 61850 standard the RMS voltage

published by the FPGA-based GOOSE monitoring node is referenced as

FPGA/IED1/MMXN1MXVol$mag. The RMS value of an alternating current (AC) signal

is defined as the square root of the mean (average) of the squared function of the

instantaneous values. The root mean square value is calculated using Equation 4.4.

 √

∑ ()

Equation 4.4

In Equation 4.4, n represents the number of mid-ordinates used in the RMS calculation;

the higher the number of ordinates used to more accurate the resultant RMS value

(Basic Electronics Tutorials, 2016). Equation 4.5 below is normally used in theoretical

calculations of the root mean square value of an AC signal; this formula is correct for

purely sinusoidal waveforms but incorrect for distorted sinusoidal signals. The RMS

voltage for the MMXN1MXVol$mag object will be calculated using Equation 4.4.

√

Equation 4.5

108

The instantaneous voltages are calculated using the ADC output code of the single

phase voltages injected into channel 1 of the AFE’s analogue digital converter. The

instantaneous primary voltage is calculated using the ADC maximum deflection

(0x7FFFFF) and the maximum primary input voltage (VMAX) using Equation 4.6. The

value of VMAX used in Equation 4.6 is equal to 8.401 kVRMS and provided in Table 4.4.

 ()

Equation 4.6

Substituting Equation 4.6 into Equation 4.4, the resulting formula for calculating the RMS

value of the injected single phase voltage is shown in Equation 4.7.

 √

∑ (

)

Equation 4.7

The RMS value of the injected voltage (MMXN1MXVol$mag attribute) is calculated

over one complete cycle, for this calculation the sample count (smpCnt) value appended

to the ADC output code is used. The RMS calculation VHDL module calculates the

instantaneous voltage using Equation 4.6 as soon as new ADC output code is available

on the dual-port RAM. The calculated instantaneous voltages are used as mid-ordinates

in the summation shown in Equation 4.7.

The SQ_VOLT_CALC and RET_RMS VHDL processes shown in Figure 4.14 are used

for calculating the RMS value of the injected voltage. The SQ_VOLT_CALC process in

Figure 4.14 executes every 250 µs when new ADC conversion data is available, in this

process (SQ_VOLT_CALC) the instantaneous magnitude is calculated and summated.

The RMS value is evaluated after 3999 mid-ordinates and returned in integer format.

109

The VHDL module for calculating the RMS of the injected voltage signal

(Calculation.vhd) is shown in Figure 4.14.

Figure 4.14: VHDL calculation routine for MMXNMXVol$mag value

For magnitude measurement, the value of MMXN1MXVol$mag is updated to the

calculated instantaneous RMS voltage only when the deadband parameter is exceeded

as illustrated in Figure 4.15.

Figure 4.15: Relationship between instantaneous magnitude (instMag), magnitude (mag) and
deadband (db) value for MV objects

(Adapted from International Electrotechnical Commission, 2003-05)

-- calculate the mean square voltage using ADC code over a full cycle

SQ_VOLT_CALC : process(clk, newSample, VinA, SampleCount)

 variable ordinates, Vin_sq : unsigned(31 downto 0) := x"00000000";

 variable Sum_VinSq : unsigned(47 downto 0) := x"000000000000";

 begin

 if clk = '1' and clk'event then

 newRMS <= '0';

 if newSample = '1' then

 ordinates := ordinates + 1;

 Vin_sq := Calc_VOLTS(VinA);

 Sum_VinSq := Sum_VinSq + Vin_sq;

 if ordinates = x"00000F9F" then

 newRMS <= '1';

 VRMS <= Sum_VinSq/ordinates;

 Sum_VinSq := x"000000000000";

 ordinates := x"00000000";

 end if;

 end if;

 end if;

 end process;

 --

 -- Calculate the square root of the mean square value

 --

RET_RMS : process(clk, newRMS, VRMS)

 variable tempVal : unsigned(15 downto 0);

 begin

 if clk = '1' and clk'event then

 ValueChange <= '0';

 if newRMS = '1' then

 tempVal := unsigned_sqrt(VRMS(31 downto 0));

 Root <= std_logic_vector(tempVal);

 ValueChange <= '1';

 end if;

 end if;

 end process;

110

Figure 4.16 shows a VHDL process (ANALOG_CHANGE) used for determining whether

the deadband parameter was exceeded between successive RMS calculations. In this

snippet the deadband (db) parameter is hardcoded to 10 VRMS. The deadband calculation

process runs every time the instantaneous RMS value is available.

Figure 4.16: VHDL implementation of MMXN1MXVol$mag deadband exceed detection

If the deadband parameter is exceeded the fast re-transmission procedure of the

GOOSE client is executed is illustrated in the flowchart in Figure 4.11. The following

section discusses the modeling and implementation of the XCBR1STPos$stVal object

in the GOOSE message mapping VHDL module.

4.4.1.1.2 Binary GOOSE modelling using the XCBR LN

In this research project the XCBR logical node is used to report the status of an

emulated circuit breaker, this logical node class is shown Appendix C.2. The XCBR class

consists of multiple mandatory and optional data objects; from these, the Pos, BlkOpn

and the BlkCls objects are required for any instance of this logical node class. This

research project only maps Pos object for the status of the circuit breaker while the

BlkOpn and BlkCls objects will be supported in future developments.

The Pos object represents the position of a substation switch/circuit breaker and it is an

instance of Double Point Controllable (DPC) shown in Appendix D.1. This DPC class

contains multiple mandatory attributes including the stVal (status), q (quality) and t

(timestamp) but for the purposes of this research project only the stVal attribute will be

ANALOG_CHANGE : process(clk, ValueChange, Root)

 variable db : signed(15 downto 0);

 variable diff : signed(15 downto 0);

 variable vrms : signed(15 downto 0);

 begin

 if clk = '1' and clk'event then

 AnaChange <= '0';

 if ValueChange = '1' then

 db := x"000A"; -- set deadband to 500V

 vrms := signed(Root);

 prevVRMS <= vrms;

 diff := abs(vrms - prevVRMS);

 if diff > db then -- dead band violated

 AnaChange <= '1'; -- change in the Analogue signal

 VArms(15 downto 0) <= Root(15 downto 0);

 end if;

 end if;

 end if;

 end process;

111

mapped to the dataset for transmission. According to the IEC 61850-8-1 standard, the

stVal attribute is a CODED ENUM data type which is represented by a two-bit bit-string.

This two-bit bit-string symbolises the status of the circuit breaker as shown in Table 4.9.

Table 4.9: Interpretation of the status of the circuit breaker using stVal values

stVal bit-string Interpretation of status

00 Intermediate state

01 Off / Open state

10 On / Close state

11 Invalid State

The resulting data model for reporting the status of the circuit breaker is shown in Figure

4.17.

Physical Device (FPGA)

Logical Device(IED1)

stVal

XCBR1

Pos

Data Attribute

Data Object

Logical Node

Figure 4.17: Data model for binary value (XCBR1STPos$stVal) transmission

The resulting GOOSE data model for the GOOSE message-mapping VHDL module is

shown in Figure 4.18.

Physical Device (FPGA)

Logical Device (IED1)

stVal

XCBR1

Pos

MMXN1

mag

Vol

Figure 4.18: Data model for the IEC 61850-8-1 standard GOOSE message-mapping VHDL
module

112

Figure 4.19 shows in the red rectangle the dataset containing the XCBR1STPos$stVal

and the MMXN1MXVol$mag data attributes published by the GOOSE message-

mapping VHDL module as configured in the Configured IED Description (CID) given in

APPENDIX G.

Figure 4.19: GOOSE dataset published by the GOOSE message-mapping VHDL module

The references to the dataset and the GOOSE control block for this GOOSE message-

mapping algorithm are FPGA/IED1/LLN0$GOOSE_Eval and

FPGA/IED1/LLN0$GO_GSE_CB_GOOSE.

Figure 4.20 shows the VHDL code snippet implementing the EVENT_TRIG_BOOL

process. The EVENT_TRIG_BOOL process detects the change in position of SW2 on

the Nexys 3 development board which emulates a circuit breaker. In this figure (Figure

4.20), the Boolin signal is the position of SW2 after de-bouncing.

Figure 4.20: SW2 (XCBR1STPos$stVal) position change detection process

 -- check whether the BOOLEAN state has changed

 EVENT_TRIG_BOOL : process(Boolin, clk)

 begin

 if RST = '1' then

 BoolChange <= '0';

 prevDigitalState <= '0';

 elsif clk = '1' and clk'event then

 prevDigitalState <= Boolin;

 BoolChange <= '1'; -- change in

 if Boolin = prevDigitalState then -- static

 BoolChange <= '0';

 end if;

 end if;

 end process EVENT_TRIG_BOOL;

113

Once the position of SW2 changes or the deadband of the calculated RMS value is

exceeded (substation event) or the GOOSE message retransmission time occurs, the

dataset elements (MMXN1MXVol$mag and XCBR1$STPosstVal) are inserted into

the protocol data unit for transmission.

For GOOSE message transmission, the values in the dataset are encoded into the PDU

using the MMS data value encoding rules (Retonda-Modiya, 2012). The MMS data

encoding rules defines tags which should be used for encoding different values of

different data types as shown in Table 4.10.

Table 4.10: GOOSE data value encoding using MMS tags

(Adapted from Retonda-Modiya, 2012)

The MMS data value encoding shown in Table 4.10 follows the Tag-Length-Value triplet

rule. This encoding rule contains a Tag which identifies the type of data, the Length

which is the number of bytes that make up the data and the Value which is the actual

data. According to the MMS encoding rules, bit-string information is padded so that the

value forms a complete octet(s) as shown in Table 4.10. With reference to the bit-string

encoding example shown in Table 4.10, the value “A0” consists of the bit-string “1010”

with the four least significant bits padded with zeros.

The integer and bit-string tags are used for mapping IEC 61850 standard values of data

types INTEGER and CODED ENUM respectively. The calculated RMS voltage

(MMXN1MXVol$mag) of type INTEGER is mapped using the integer tag and the

MMS Data Value Encoding

Data Type
MMS Tag

(HEX)
Example Value

Encoding (HEX)

array 81 int[2] = {0, 1} 81 06 85 01 00 85 01 01

structure 82

Struct{

int 0,

Bool TRUE

}

82 06 85 01 00 83 01 01

boolean 83 TRUE 83 01 01

bit-string 84 10102 84 02 04 A0

integer 85 255 85 04 00 00 00 FF

unsigned 86 255 86 01 FF

floating point 87 1.0 87 05 08 3F 80 00 00 (IEEE)

octet string 89 01 02 89 02 01 02

visible String 8A “ab” 8A 02 61 62

timeofday 8C 1:00:05 8C 04

bcd 8D 09 09 09 8D 02 03 E7

boolean array 8E 1010 8E 02 04 A0

Value

Padding

114

circuit breaker status (XCBR1STPos$stVal) of type CODED ENUM is mapped using

the bit-string types.

Figure 4.21 shows a VHDL process (ALLDATA) which copies the calculated RMS value

of the injected voltage into the ISO 8802-3 Ethernet frame. This process also sets the

value of XCBR1STPos$stVal to 0x80 and 0x40 if the emulated circuit breaker (SW2)

is on and off respectively. The values 0x40 and 0x80 are derived from the bit strings

values “01” and “10” which represent the XCBRSTPos$stVal off and on positions

respectively. The encoded values 0x40 and 0x80 are equal to bit strings “01” and “10”

with the six least significant bits padded with zeros.

Figure 4.21: Adding dataset objects into the GOOSE frame for transmission

The state machine transitions to the Transmission state in which the MAC shifts data out

to the PHY chip for transmission onto the Ethernet network. Once the GOOSE message

has been transmitted, the finite state machine of the GOOSE message-mapping VHDL

module transitions back to the Idle state and waits for a substation event or message

retransmission time to occur. The state machine runs continuously following the

procedure defined until the device is powered off.

-- Runs when the value of Vrms or the state of the boolean changes

ALLDATA : process (TriggerEvent, clk, publish)

begin

 if RST = '1' then

 element(0 to 11) <= (others=>x"00");

 elsif clk = '1' and clk'event then

 if publish = '1' then -- if there is a status change in one

of the elements in the dataset then

 element(0) <= x"AB";

 element(1) <= x"0A"; -- length of list

 element(2) <= x"85"; -- Analogue Value using the MMXU LN

 element(3) <= x"04" -- INT32 value with 4 bytes

 element(4) <= VArms(31 downto 24);

 element(5) <= VArms(23 downto 16);

 element(6) <= VArms(15 downto 8);

 element(7) <= VArms(7 downto 0);

 -- start the bit string for breaker position

 element(8) <= x"84";

 element(9) <= x"02";

 element(10) <= x"06"; -- padding

 if Boolin = '1' then

 element(11) <= x"80"; -- ON

 else

 element(11) <= x"40"; -- OFF

 end if;

 end if;

 end if;

end process ALLDATA;

115

The implementation of the Ethernet MAC is given in APPENDIX E (VHDL source). The

following section provides the VHDL code design and development for mapping SV

messages on an FPGA platform.

4.4.1.2 Sampled Value (SV) message-mapping VHDL module design

The proposed Sampled Value (SV) message-mapping VHDL module is modeled using

the finite state model. The finite state model is conceived from a machine that can only

be in a specific state at a particular point in time and it transitions between states when

trigger events occur. Figure 4.22 shows a finite state model for the mapping sampled

value messages on the Xilinx FPGA.

SVCONTROLBLOCK
Build ISO 8802-3 frame

Entry/ svEnable = TRUE

transmit ISO 8802-3

frame

(SV message)

enter_rise

Entry/ publish = 1

Exit/ transmit = 1

transmit = 1

sampling

Transmission

setup
readSVCB

Wait for new samples

AFE

DRDY = 0

Entry/ Calculation of:

UnnATVTR1VolinstMag.i – phase A voltage

UnnBTVTR2VolinstMag.i – phase B voltage

InnATCTR1AmpinstMag.i – phase A current

InnBTCTR2AmpinstMag.i – phase B current

Calculation of samples

DRDY = 1

Publish

trans_done

asdu_attr = b”110"

on_startup

Figure 4.22: Sampled Value message mapping VHDL module finite state model

The finite state model shown in Figure 4.22 consists of four main states the setup,

readSVCB, sampling and transmission states. This finite state model in Figure 4.22 is

116

translated into a hardware description language (HDL) for the Xilinx Spartan 6 FPGA.

The VHDL modules for mapping and publishing SV messages is implemented as a sub-

module inside the analogue front-end device’s VHDL processing unit’s VHDL model.

The SV message-mapping VHDL module begins at the setup state were the ISO 8802-3

Ethernet frame header fields are assigned. These fields are the destination and source

MAC addresses, VLAN tag, frame length, ASN.1 savPDU tag and frame length. Default

values defined in the IEC 61850-9-2LE are assigned to the header except for the source

MAC address. Table 4.11 shows the default values assigned to the ISO 8802-3 Ethernet

frame header fields.

Table 4.11: SV frame fields

Parameter Value Comments

Destination MAC

Address

01:0C:CD:04:00:01 Multi-cast address for all destination subscribers.

VLAN Tag 0x8100 VLAN tags are used to separate high priority information

data based on IEEE 802.1Q
VID 0 Not used

Priority 4 Default priority 4 defined in the IEC 61850-9-2LE

EtherType 0x88BA IEEE registered EtherType for sampled value messages
APPID 0x4000 Default APPID according to IEC 61850-9-2LE
Length m + 8 m represents the length SV APDU

The length of the SV Ethernet frame depends on the length of the SV APDU which in

turn depends on the length of the fields encapsulated within. The length of some fields of

the SV PDU are fixed, for example, the PhsMeas1 dataset is 64 bytes long as defined in

the IEC 61850-9-2LE and the svID for this sampled value stream is hardcoded to

“Ncube_MUcput0001”. The length of the SV PDU and the Ethernet frame are calculated

using Equation 4.8 to Equation 4.11.

Equation 4.8

Equation 4.9

Equation 4.10

117

Equation 4.11

With reference to Equation 4.8 to Equation 4.11, the constants refer to the fixed number

of bytes of the tag and value fields encapsulated in the parent field. For example, using

Figure 3.17 on page 77 and Equation 4.10, the value of is equal to ,

the constant (5) is the number of bytes which make up the noASDU field (3 bytes), the

sequence of ASDU tag and length (2 bytes).

After the header fields of the ISO 8802-3 Ethernet frame are set, the finite state machine

transitions to the readSVCB state. In this state, the sampled value APDU is configured

by making use of a VHDL record. Records are powerful VHDL constructs for instantiating

composite packages containing variables of different data types similar to the struct

construct in the C language. The VHDL record generates a package containing all the

SV APDU fields as illustrated in Figure 4.23.

Figure 4.23: sampled value APDU generated using a VHDL record

The sampled value PDU is encoded using the Basic Encoding Rules (BER) of the ASN.1

standard. In this readSVCB state the BER tags of the SV PDU attributes are assigned

using the values defined in the IEC 61850-9-2LE. The lengths of the attributes are

assigned using the hardcoded length in case of the smpCnt, confRev, smpSynch and the

seqData attributes while the lengths of the other fields were calculated using Equation

4.8 to Equation 4.11.

--Sampled value APDU record

type ASDU is

 record

 seqASDU : byte_array(integer range 0 to 1); -- Sequence

 svID : byte_array (integer range 0 to 20); -- TAG |

 smpCnt : byte_array (integer range 0 to 3); -- 4 byte

 confRev : byte_array (integer range 0 to 5); -- 6 byte field

 smpSynch :byte_array (integer range 0 to 2); -- 3 byte field

 seqData : byte_array (integer range 0 to 1); -- 2 byte -

 end record ASDU;

 type APDU is

 record

 savAPDU : byte_array (integer range 0 to 3); -- 4 byte

 noASDU : byte_array (integer range 0 to 2); -- 3 byte

 seqofASDU : byte_array (integer range 0 to 3); -- 4 byte

 asdu : ASDU;

 end record APDU;

118

Table 4.12 shows the default and calculated values assigned to the sampled value

APDU.

Table 4.12: SV APDU fields and their values

Parameter Tag Length Value
savPDU 0x60 Contains TLV triplets

noASDU 0x80 1 1

Sequence of ASDUs 0xA2 Contains TLV triplets

Sequence of ASDU1 0x30 Contains TLV triplets

svID 0x80 16 Ncube_MUcput0001

smpCnt 0x82 4 0-3999

confRev 0x83 4 1

smpSynch 0x85 1 TRUE

Sequence of Data 0x87 64 InnATCTR1.Amp.instMag.i

InnATCTR1.Amp.q

InnBTCTR2.Amp.instMag.i

InnBTCTR2.Amp.q

InnCTCTR3.Amp.instMag.i

InnCTCTR3.Amp.q

InnNTCTR4.Amp.instMag.i

InnNTCTR4.Amp.q

UnnATVTR1.Vol.instMag.i

UnnATVTR1.Vol.q

UnnBTVTR2.Vol.instMag.i

UnnBTVTR2.Vol.q

UnnCTVTR3.Vol.instMag.i

UnnCTVTR3.Vol.q

UnnNTVTR4.Vol.instMag.i

UnnNTVTR4.Vol.q

In Table 4.12, the values of lseqASDU1, lseqASDUs and lsavPDU are calculated using Equation

4.8 to Equation 4.10 respectively.

Figure 4.24 shows a snippet of VHDL code for assigning values for the SV APDU fields

in the instantiated record.

119

Figure 4.24: Building sampled value APDU using a VHDL record

Once the sampled value APDU is generated using a VHDL record and the data

assigned, this data is copied from this record onto the Ethernet frame (byte array) and

then the state machine transitions to the sampling state. In this state, the state machine

remains idle, waiting for time synchronised digital samples of the eight analogue inputs

from the AFE. As stated previously the AFE reads the ADC output every 250 µs and

appends a sample counter (smpCnt) value before storing this information in a block RAM

in the FPGA. The mapping VHDL module reads the stored data and uses it to calculate

the voltage and current samples.

The instantaneous primary voltage and current values are calculated using the ADC

output code for the specific channel, the maximum primary voltage/current (VMAX/IMAX)

and the ADC output code corresponding to the reference voltage (VREF) using Equation

4.12 and Equation 4.13. The ADC output code corresponding to the reference voltage

(VREF) is equal 0x7FFFFF and the values of VMAX and IMAX are given Table 4.4 and Table

4.5 respectively.

apdu.asdu.seqASDU(0)<=x"30"; -- sequence of ASDU tag 0x30

conv_int := std_logic_vector(to_signed(len_seqASDUn, 32)); -

-

-- length of seqASDU(n)

apdu.asdu.seqASDU(1) <= x"62"; -- length of sequence of ASDUs

apdu.asdu.svID(0) <= x"80"; -- svID tag 0x80

conv_int := std_logic_vector(to_signed(SV_ID'right + 1, 32)); --

apdu.asdu.svID(1) <= conv_int(24 to 31); -- assign

for i in 0 to SV_ID'right loop

apdu.asdu.svID(i + 2) <= SV_ID(i); -- copy the

end loop;

apdu.asdu.smpCnt(0) <= x"82";

apdu.asdu.smpCnt(1) <= x"02";

apdu.asdu.smpCnt(2) <= x"00";

apdu.asdu.smpCnt(3) <= x"00";

apdu.asdu.confRev(0) <= x"83";

apdu.asdu.confRev(1) <= x"04";

apdu.asdu.confRev(2) <= x"00";

apdu.asdu.confRev(3) <= x"00";

apdu.asdu.confRev(4) <= x"01";

apdu.asdu.confRev(5) <= x"01";

apdu.asdu.smpSynch(0) <= x"85";

apdu.asdu.smpSynch(1) <= x"01";

apdu.asdu.smpSynch(2) <= x"00";

apdu.asdu.seqData(0) <= x"87";

apdu.asdu.seqData(1) <= x"40";

setup_Complete <= '1';

120

 ()

Equation 4.12

 ()

Equation 4.13

The IEC 61850-9-2LE guideline defines the sVC.scaleFactor of 0.001 and 0.01 for

current and voltage measurements, this therefore means that the current and voltage

measurements published by an IEC 61850-9-2LE MU must be factored by 1000 and 100

respectively. To meet the sVC.scaleFactor requirement, the measured current and

voltage samples are factored by 1000 and 100 respectively as shown in Equation 4.12

and Equation 4.13.

The instantaneous voltage and current measurements in the sampled value message

dataset are represented as integer values as defined in the IEC 61850-9-2LE but for

calculation purposes a floating-point library is required. Floating-point libraries are not

available in VHDL-93 so therefore library files designed for VHDL-2008 have been used.

Even though these file are designed for the VHDL-2008, a VHDL package compatible

with VHDL-93 is available at the VHDL site (VHDL, 2015). Compared to fixed-point

arithmetic, floating point arithmetic take up to three times the hardware occupied by the

former but maintains the accuracy of results to a wider range (Bishop, 2006).

For the purposes of evaluating the accuracy and functionality of the developed SV

message mapping VHDL module, the 32-bit fields of each of the quality flags of the eight

voltage and current sampled values is hardcoded to 0x00000000. With reference to

Table 3.7 in Chapter Three and APPENDIX A, this value (0x00000000) means that the

sampled values are good (no errors) and are measured from the process and not

substituted.

121

Figure 4.25 shows an extraction of the VHDL code for calculating the instantaneous

voltage and current samples using Equation 4.12 and Equation 4.13 respectively.

Figure 4.25: Instantaneous sample voltage and current calculation

After calculating the voltage and current samples, the SV message-mapping VHDL

module copies these samples into the ISO 8802-3 Ethernet frame and transitions to the

transmission state. In this transmission state, The SV frame bytes are shifted out to the

PHY chip at 100 Mbps using a limited-function MAC implementation shown in Figure

4.26.

-- Calculate Amps sample value using 24 bit input, Ref (Maximum

Deflection), input current

 --

function Calc_AMPS (signal Sample : in std_logic_vector(23 downto 0))

return std_logic_vector is

 variable TCTR : std_logic_vector(31 downto 0) := x"00000000";

 variable signedVal : signed(23 downto 0) := x"000000";

 variable Ref, tctr_mag,inTCTR : float(8 downto -23) := x"00000000";

 begin

 signedVal := signed(Sample);

 inTCTR := to_float(signedVal, Ref);

 Ref := to_float(0.282989445, Ref);

 tctr_mag := inTCTR * Ref;

 TCTR(31 downto 0) := std_logic_vector(to_signed(tctr_mag, 32));

 return TCTR;

 end Calc_AMPS;

 --

 -- Calculate Volts sample value using 24 bit input, Ref (Maximum

Deflection), input current

 --

function Calc_VOLTS (signal Sample : in std_logic_vector(23 downto 0))

return std_logic_vector is

 variable TVTR : std_logic_vector(31 downto 0);

 variable signedVal : signed(23 downto 0);

 variable Ref, tvtr_mag,inTVTR : float(8 downto -23);

 begin

 signedVal := signed(Sample);

 inTVTR := to_float(signedVal, Ref);

 Ref := to_float(0.146151345, Ref); --

 tvtr_mag := inTVTR * Ref; -

 TVTR(31 downto 0) := std_logic_vector(to_signed(tvtr_mag, 32));

 return TVTR;

 end Calc_VOLTS;

122

Figure 4.26: MAC implementation in VHDL for ISO 8802-3 Ethernet frame transmission

when Transmitting => -- Frame transmission state

 if crc_clk = '1' then

 if byte_num < 7 then -- Send preamble

 m2p_TDATA<=x"AA";

 end if;

 if byte_num = 7 then -- Send SFD

 m2p_TDATA<=x"AB";

 end if;

 if byte_num >= PREAMBLE_SOF_LEN and byte_num <= len_svpacket + PREAMBLE_SOF_LEN then -- Send Data LSB first

 if byte_num >= SampleIndex + PREAMBLE_SOF_LEN and byte_num < byte_num + SAV_CDC_SIZE + PREAMBLE_SOF_LEN then

 for I in 0 to 7 loop

 m2p_TDATA(I) <= cdcSamples(byte_num -(SampleIndex + PREAMBLE_SOF_LEN))(7-I);

 end loop;

 else

 for I in 0 to 7 loop

 m2p_TDATA(I) <= sv_frame(byte_num - 8)(7-I);

 end loop;

 end if;

 end if;

 if byte_num > len_svpacket+8 and byte_num < len_svpacket+13 then --send CRC MSB first

 m2p_TDATA <= not crc(byte_num - len_svpacket-9);

 end if;

 -- Manage CRC computation

 if byte_num > 2 and byte_num < 7 then

 crc_en <= '1';

 crc_is_msb <= '1';

 crc_data_in <= not sv_frame(byte_num-3);

 end if;

 if byte_num > 6 and byte_num < len_svpacket + 4 then

 crc_en <= '1';

 crc_is_msb <= '1';

 if byte_num >= SampleIndex + PREAMBLE_SOF_LEN and byte_num < byte_num + SAV_CDC_SIZE + PREAMBLE_SOF_LEN then

 crc_data_in <= cdcSamples(byte_num -(SampleIndex + PREAMBLE_SOF_LEN));

 else

 crc_data_in <= sv_frame(byte_num-3);

 end if;

 crc_clk<=not crc_clk;

end case;

123

The finites state machine is designed to return to the sampling state after

transmitting the SV message. This calculation and transmission process executes

continuously until the device is power cycled. The sampled value messages

published by the developed mapping VHDL module were checked using SVScout

and Wireshark and no errors were detected. The resulting MU prototype was tested

in the laboratory to determine the accuracy of the published sampled values and its

conformance to the IEC 61850-9-2LE.

The next section concludes this chapter and highlights challenges encountered

during the VHDL module development and hardware integration for mapping and

GOOSE and SV messages on the Xilinx Spartan 6 FPGA platform.

4.5 Conclusion

This chapter presented the design scope for mapping GOOSE and SV messages

according to the IEC 61850-8-1 standard and IEC 61850-9-2LE on an FPGA. The

Xilinx Spartan 6 FPGA has been selected as the platform for implementing the

mapping VHDL modules because of its data streamlining and parallel processing

capabilities. The data models and datasets of the information published in the

GOOSE and SV messages were presented in thesis document.

This chapter also discussed the AFE module provided by the CSAEMS at the

CPUT to facilitate the sampling of analogue signals from the instrument

transformers. The VHDL code developed for mapping GOOSE and SV messages

was discussed and is also made available in APPENDIX E and APPENDIX F.

The Xilinx Spartan 6 FPGA does not have sufficient primitive 18 Kb dual-port block

random access memory (RAMB16BWER) for calculating and storing the primary

voltage and current samples for the four voltage and four current phases. Due to

the inadequacy of the Xilinx Spartan 6 FPGA, the developed MU prototype only

calculates phase A and B voltage and current samples while phase C and N

sampled values are set to zero. The step-down transformers in the AFE device

introduced a 180º phase shift between the injected analogue signals and published

sampled values.

124

The combination of the IEC 61850 process bus message-mapping VHDL modules

with the AFE produces a limited-function GOOSE monitoring node and a Merging

Unit prototype. These two limited-function process level IED prototypes were

evaluated in the laboratory in order to determine their performance and accuracy

characteristics. IEC 61850 standard-compliant software programs (SVScout,

IEDScout and Wireshark) and the CMC 256plus test sets were used in the

validation and evaluation processes.

Chapter Five presents laboratory tests conducted to evaluate the GOOSE

monitoring node and limited-function MU prototypes resulting from the combination

of the AFE and the developed GOOSE and SV message mapping VHDL modules

respectively. Chapter Five details the conformance test of the GOOSE monitoring

node and limited-function MU prototype to the IEC 61850-8-1 standard and IEC

61850-9-2LE respectively. Chapter Five also details tests conducted in the

laboratory using the CMC 256plus test, Wireshark, IEDScout and SVScout software

applications for evaluating the accuracy of the measured and calculated values

published by the MU prototype and GOOSE monitoring node under nominal and

fault conditions of the power system.

125

 CHAPTER FIVE

EVALUATION OF THE GOOSE AND SV MESSAGE MAPPING HARDWARE

DESIGNS

5.1 Introduction

The first edition of the IEC 61850 standard defines communication interfaces for

data exchange between devices and/or functions in a substation automation

system (SAS) as illustrated in Figure 1.2 on page 4. This standard also introduces

a process bus to facilitate communication between primary plant equipment and

bay level IEDs. This process bus consists of both GOOSE and Sampled Values

(SV) messages defined in parts 8-1 and 9-2 of the IEC 61850 standard

respectively.

This research project focused on the development of two process level IEDs

namely the GOOSE monitoring node and the limited-function Merging Unit (MU)

prototype. Chapter Four of this thesis discussed the development of VHDL modules

for mapping and publishing GOOSE and SV messages on an FPGA platform.

Chapter Four also presented the integration of the Analogue Front-End (AFE) to

the GOOSE/SV message-mapping FPGA-based VHDL modules to produce the

limited-function GOOSE monitoring node and Merging Unit prototype.

This chapter details the test procedures conducted in the laboratory using the Test

Universe software, CMC 256plus test set, IEDScout and SVScout to determine the

accuracy and performance characteristics of the developed GOOSE monitoring

node and limited-function MU prototype. Wireshark software was used to validate

the structure of the GOOSE and SV messages published by the GOOSE

monitoring node and MU prototype against that defined in the IEC 61850-8-1

standard and in the IEC 61850-9-2LE respectively.

Section 5.3 presents test procedures conducted in the laboratory for evaluating the

accuracy and performance characteristics of the developed GOOSE monitoring

node. The first test conducted in section 5.3.1 compares the structure of the

126

GOOSE messages published by the developed GOOSE monitoring node against

that defined in the IEC 61850-8-1 standard.

The next test validates the GOOSE client state machine implemented by the

GOOSE message-mapping VHDL module against that defined in the IEC 61850-8-

1 standard. For this test, the client state machine is validated by observing the

transition of the GOOSE message state and sequence numbers (stNum and

sqNum) during a simulated a voltage-swell fault.

Section 5.3.4 evaluates the profile of the calculated RMS voltage published by the

GOOSE monitoring node when a voltage-sag fault is simulated using the CMC

256plus test set. The profile of the RMS voltage published by the GOOSE

monitoring node will be compared to that of the analogue voltage injected by the

CMC 256plus test set. Section 5.3.5 presents a laboratory interoperability test in

which GOOSE messages published by the GOOSE monitoring node are

subscribed to by the MiCOM P546 IED. This test will validate whether messages

published by the developed GOOSE monitoring node can be used by any IEC

61850 standard-compliant IED.

On the other hand, section 5.4 details tests procedures conducted to evaluate

Sampled Value (SV) messages published by the developed limited-function MU

prototype using Wireshark and SVScout. In this section, the structure of SV

messages published by the developed FPGA-based MU prototype is validated

against that defined in the UCAIug implementation guideline of the IEC 61850-9-2

standard (IEC 61850-9-2LE).

Section 5.4 also presents performance and accuracy tests conducted by injecting

distorted current and voltage signals to emulate common power system

disturbances. These tests are crucial because the power grid is prone to

disturbances/faults caused by natural elements, earth faults and or harmonics.

Section 5.4.2 assesses the accuracy of the sampled values published by the

developed limited-function MU prototype by comparing these samples to those

published by the CMC 256plus test set.

127

Section 5.4.4 provides an interoperability test conducted in the laboratory using a

MiCOM P444 IED to determine whether the SV messages published by the MU

prototype can be subscribed to by any IEC 61850-9-2LE-compliant IED.

5.2 Outline of Evaluation

To facilitate this research project, an Analogue Front-End (AFE) device was

provided by the Centre for Substation Automation and Energy Management

Systems (CSAEMS). The AFE handles the synchronisation and sampling of the

analogue signals from the instrument transformers (CTs and VTs). Combining this

AFE and the FPGA-based SV and GOOSE message-mapping VHDL modules as

discussed in Chapter Four produces two limited-function process levels IEDs; these

are the GOOSE monitoring node and the MU prototypes.

For the following laboratory tests, the CMC 256plus test set was used as a voltage

and current source instead of voltage and current transformers (VTs and CTs)

connected to a real power system. The CMC 256plus test set is an advanced IEC

61850 IED tester and calibration tool that can function as both a current/voltage

signal source and a sampled value message publisher (Rudigier & Steinhauser,

2015).

The CMC 256plus test set was configured using the Omicron Test Universe

package, this package contains function-oriented test modules for generating

different waveforms through the CMC 256plus test set. The software modules

under the Test Universe package used for evaluation purposes include the

QuickCMC, Ramping, Harmonics and Control Center modules.

The test bench for evaluating the GOOSE monitoring node and Merging Unit

prototypes is similar except that for the former, the CMC 256plus test set is

configured to generate single phase voltages and three phase signals (current and

voltage) for the latter.

Figure 5.1 shows a connection block diagram for evaluating the GOOSE monitoring

node and MU prototype using the CMC 256plus, Ruggedcom industrial Ethernet

switch and two configuration PCs. Figure 5.1 shows two computers, one for running

128

the Test Universe package for configuring the CMC 256plus test set and the other

computer for capturing the published GOOSE and SV messages.

Figure 5.1: Laboratory connection block diagram for evaluating the DUT

In Figure 5.1, the Device Under Test (DUT) refers to the Nexys 3 development

board implemented as the GOOSE message mapping hardware (GOOSE

monitoring node) or SV message mapping hardware (Merging Unit prototype). The

evaluation procedures are detailed in either sections 5.3 or section 5.4 for the

GOOSE monitoring node and MU prototype respectively. In Figure 5.1, PC1 is

utilized for analysing the captured COMTRADE files using the Omicron TransView

module. PC2 runs the Wireshark, IEDScout and the SVScout software applications

for capturing and analysing the structure of the published GOOSE/SV message.

129

Figure 5.2 shows the laboratory setup of the test equipment and the DUT according

to the block diagram shown in Figure 5.1.

Figure 5.2: Setup of equipment in the laboratory

Figure 5.3 shows how the voltage and current signals generated by the CMC

256plus test are connected to the step-down transformers of the AFE. This figure

also shows the serial peripheral interface between the Nexys 3 development board

and the ADS131E08 ADC development board.

130

Figure 5.3: Connection between the CMC 256plus test set and the AFE through
the step-down transformers

As stated previously in Chapter Four, the nominal power system line to neutral

voltages and currents are chosen to be equal to 3.3 kVRMS and 100 ARMS. Using the

primary to secondary signal ratio of 100:1, under nominal conditions the CMC

256plus generates line to neutral voltages and currents equal to 33 VRMS and 1

ARMS. For all the tests conducted in this chapter, the phase angle between the three

phases is 120º equivalent to that of balanced power systems.

All voltage and current signals generated using by CMC 256plus test set to emulate

power system faults are arbitrarily chosen to evaluate the performance and

accuracy of the GOOSE monitoring node and MU prototype under such conditions.

The power system faults emulated using the CMC 256plus test set are the voltage-

sag, voltage-swell, frequency variation and harmonic distortion using the Ramping,

QuickCMC and Harmonics modules of the Test Universe software.

131

The following section discusses the test procedures conducted to evaluate the

accuracy and performance characteristics of the developed GOOSE monitoring

node.

5.3 GOOSE monitoring node laboratory evaluation

This section details the test procedures for evaluating the developed FPGA-based

GOOSE monitoring node. This first test procedure in section 5.3.1 validates the

structure of GOOSE messages published by the mapping VHDL module against

that defined in the IEC 61850-8-1 standard.

The FPGA/IED1/LLN0$GOOSE_Eval dataset published by the GOOSE monitoring

node contains the IED1/XCBR1STPos$stVal and the

IED1/MMXN1MXVol$mag data attributes to represent digital and analogue

information respectively as discussed in Chapter Four. The Configured IED

Description (CID) file for the limited-function GOOSE monitoring node is given in

APPENDIX G.

In order to evaluate the GOOSE message-mapping VHDL module implemented on

an FPGA platform, the AFE is used to provide ADC samples of the analogue signal

injected by the CMC 256plus for the MMXN1MXVol$mag attribute. The circuit

breaker status (XCBR1STPos$stVal) was emulated using SW2 switch on the

Nexys 3 development board. The GOOSE monitoring node will be referred to as

the Device under Test (DUT) in this section and the underlying sub-sections.

GOOSE messages published by the DUT were captured using IEDScout and the

information exported to a COMTRADE file for analysis. The exported COMTRADE

file contains the published dataset, state and sequence numbers (stNum and

sqNum). The exported COMTRADE file was then used to validate the GOOSE

client state machine against that defined in the IEC 61850-8-1 standard

Power networks are prone to disturbances caused by types of loads, configuration

of control equipment and natural events; it is therefore important to monitor the

value of the MMXN1MXVol$mag when distorted signals are injected. This

research project in sections 5.3.3 and 5.3.4 analyses the magnitude profile of the

RMS voltage published by the DUT during a voltage-swell and voltage-sag fault

132

simulation respectively. This is analysis is conducted by comparing the profile of the

analogue signals generated by the CMC 256plus test set to that of RMS values

(MMXN1MXVol$mag attribute) published by the DUT.

Sections 5.3.1 to 5.3.5 details the tests conducted in the laboratory for evaluating

the developed FPGA-based GOOSE message publisher.

5.3.1 GOOSE message structure evaluation

Wireshark was used for capturing and analysing the GOOSE messages published

by the DUT. Omicron’s IEDScout software was used to monitor GOOSE traffic

generated by the DUT. IEDScout is a powerful tool used to simulate a GOOSE

subscriber IED using the publisher IED’s CID file or by sniffing GOOSE messages

from the Ethernet network. IEDScout also allows the GOOSE message attributes

(dataset, stNum and sqNum) to be exported to a COMTRADE file for further

analysis.

Figure 5.4 below shows a Wireshark capture of a GOOSE message published by

the DUT. The GOOSE message shown in Figure 5.4 is based on an ISO 8802-3

Ethernet frame that consists of two sections, the Ethernet header and the GOOSE

PDU. The captured GOOSE message in Figure 5.4, shows that the destination

MAC address is set to 01:0C:CD:01:00:01 which is the multicast address for

publishing messages to multiple subscribers. The APPID and the VLAN tags are

set to their default values defined in the IEC 61850-8-1 standard and discussed in

section 4.4.1.1.

133

Figure 5.4: Captured GOOSE message

The PDU encapsulated in the GOOSE message published by the DUT is shown on

the left side (a) of Figure 5.5 and the right side (b) shows the PDU defined in the

IEC 61850-8-1 standard.

Figure 5.5: Comparison between the GOOSE PDU published by the DUT and that
defined in the IEC 61850-8-1 standard

(a) (b)

134

From this illustration (Figure 5.5), it can be noted that the captured frame

encapsulates a GOOSE PDU that matches the one defined in the IEC 61850-8-1

standard. This test proves that the structure of GOOSE messages published by the

DUT conforms to the IEC 61850-8-1 standard.

The CMC 256plus test set was configured to inject 33 VRMS into the GOOSE

monitoring node and with reference to Figure 5.5, the calculated RMS voltage

modeled as the IED1/MMXN1MXVol$mag is equal to 3.305 kVRMS. The

calculated RMS voltage has a percentage error of 0.15% with respect to the 3.3

kVRMS expected from the voltage injected. This measurement and calculation

accuracy will suffice for protection and metering functions.

With reference to Figure 5.5, the emulated circuit breaker position (SW2) mapped

to the IED1/XCBR1STPos$stVal is equal to 0x80. This MMS encoded value

0x80 represents the IED1/XCBR1STPos$stVal bit-string value “10” encoded

using the MMS rules as described in section 4.4.1.1.2 in Chapter Four. The status

of the circuit breaker is 0x80 and 0x40 when SW2 is toggled between ON and OFF

positions as expected.

The following section details experiments conducted in the laboratory for evaluating

the GOOSE client state machine. This procedure focuses on the transition of the

state and sequence numbers (stNum and sqNum) of the published GOOSE

messages.

5.3.2 GOOSE client state machine evaluation

The IEC 61850-8-1 standard defines a state machine which controls the functions

of a GOOSE client IED. This client state machine defines the transitions of state

and sequence numbers (stNum and sqNum) when the status/value of object(s) in

the referenced dataset changes. The GOOSE client state machine is illustrated in

Figure 3.12 in page 70.

This section evaluates the client state machine implemented by the GOOSE

monitoring node against that defined in the IEC 61850-8-1 standard. In order to

evaluate the client state machine, the CMC 256plus test set was configured to

generate and inject a single phase voltage-swell into the DUT. The dataset, state

135

and sequence numbers (stNum and sqNum) in the GOOSE message published by

the DUT were then captured and recorded into a COMTRADE file.

Figure 5.6 shows the transition of stNum and sqNum attributes in the captured

GOOSE messages when the injected voltage increased from nominal (33 VRMS) to

peak at 49.5 VRMS equating to primary voltages of 3.3 kVRMS and 4.95 kVRMS

respectively.

Figure 5.6: Transition of stNum and sqNum in GOOSE messages published by the DUT

With reference to the chart in Figure 5.6, the point number 1 on graph (c) shows the

corresponding stNum and sqNum of a GOOSE message published before the

occurrence of a substation event in graphs (a) and (b) respectively. This substation

event stimulated by the value of MMXN1MXVol$mag exceeding the deadband

marked as point number 2 causes the value of sqNum (green graph) to be set to

zero and that of stNum (yellow graph) to be incremented to 92. Referring to Figure

5.6, the value of stNum remains constant at 92 after the substation event and that

(a)

(b)

(c)

136

of sqNum increments from zero up until the measured RMS value

(MMXN1MXVol$mag) exceeds the deadband parameter.

It can also be noted that after the occurrence of the substation event, marker

number 2 in Figure 5.6, the GOOSE message retransmission time starts from 100

ms and increments by 200 ms with every consecutive transmission. The transition

of stNum and sqNum follows this suite during and after the next substation event.

This test shows that the client state machine implemented in the GOOSE

monitoring node conforms to the definition in the IEC 61850-8-1 standard as

illustrated in Figure 3.11 on page 68. The next section analyses the profile of the

calculated RMS values published by the DUT during a voltage-swell simulation.

5.3.3 Voltage-swell injection

Voltage-swell faults are common phenomena in power systems which may be

caused by switching off of heavy loads. The procedure detailed in this section

compares the calculated RMS voltage published by the DUT against the analogue

signals generated by the CMC 256plus test. For this test, the injected voltage was

ramped from nominal (33 VRMS) to peak at 49.5 VRMS using the Test Universe’s

Ramping module. These voltages injected by the CMC 256plus test set

corresponds to the primary values equal to 3.3 kVRMS and 4.95 kVRMS according to

the primary to secondary ration of 100:1. Figure 5.7 shows the voltage-swell fault

as simulated by the CMC 256plus test set expressed as primary values.

2.0

1.0

Y-
Ax

is

Time (t/s)
5 10 150

3.3

5.0

kV
R

M
S

End of

Simulation
Start of

Simulation

4.95 kVRMS

Figure 5.7: Waveform of voltage signal generated by the CMC 256plus test set

137

Figure 5.8 shows the transition of stNum and sqNum and the calculated RMS

voltage (MMXN1MXVol$mag) during the voltage-swell fault injection in graphs

(a), (b) and (c) respectively.

Figure 5.8: sqNum and stNum transition during voltage-swell injection

With reference to Figure 5.8, it can be noted that the magnitude-time profile of the

MMXN1MXVol$mag follows that of the analogue signal injected into the DUT.

From Figure 5.8, the nominal and peak voltages published by the DUT before and

during the voltage-swell fault injection are equal to 3.305 kVRMS and 4.96kVRMS

respectively. The calculated RMS voltage (MMXN1MXVol$mag) is 99.85%

accurate.

The next section evaluates the RMS voltage (MMXN1MXVol$mag) published by

the DUT during a simulated voltage-sag fault.

5.3.4 Voltage-sag injection

Voltage-sag faults are common phenomena in power systems and they may be

caused by phase to ground faults or switching on of heavy load. The procedure

detailed in this section compares the calculated RMS voltage published by the DUT

(a)

(b)

(c)

138

against the analogue signals generated by the CMC 256plus test. Using the Test

Universe’s Ramping module, the CMC 256plus test set was configured to generate

a single phase voltage with a magnitude of 33 VRMS and after 5 seconds the voltage

was dropped to 16.5 VRMS for 10 seconds as shown in Figure 5.7. In Figure 5.7 the

voltage magnitudes are expressed as primary values using the 100:1 primary to

secondary voltage ratio.

kV
R

M
S

2.0

Y
-A

xi
s

Time (t/s)
5 10 150

3.3

1.65

End of

Simulation

Start of

Simulation

Time (t/s)

Figure 5.9: Voltage-sag simulation using the Ramping module and the CMC 256plus test
set

The voltage signals injected into the DUT are sampled and the calculated root

mean square value is published as the MMXN1MXVol$mag object. Graphs (a),

(b) and (c) in Figure 5.10 show the transition of stNum, sqNum and the calculated

RMS voltage respectively.

In Figure 5.10, graph (c) show the magnitude of the MMXN1MXVol$mag object

(RMS voltage) published by the DUT during the simulation of the voltage-sag fault.

This graph is similar to that of the analogue voltage injected into the AFE by the

CMC 256plus test set shown in Figure 5.9.

139

Figure 5.10: MMXN1MXVol$mag value published by the DUT

Figure 5.10 also shows the transition of sqNum and stNum against the value of

MMXN1MXVol$mag object, as expected from the client state machine stNum

increments on occurrence of a substation event (change in MMXN1STVol$mag)

while sqNum increments on GOOSE message-retransmission. The RMS voltage

before and during the voltage-sag fault was calculated to 0.15% error.

This test also shows that the developed FPGA-based GOOSE monitoring node can

be used in protection schemes of real power systems affected by voltage-sag and

swell faults. The next section provides the results of an interoperability test of the

developed GOOSE monitoring node with an IEC 61850-compliant IED.

5.3.5 GOOSE monitoring node interoperability test

The IEC 61850 standard (Edition one) allows for interoperability between devices

from different vendors and for this reason an interoperability test between the

developed GOOSE monitoring node and an IEC 61850 certified IED was

conducted. For this evaluation, the MiCOM P546 IED was configured to subscribe

to GOOSE messages published by the DUT as shown in Figure 5.11.

(a)

(b)

(c)

140

Figure 5.11: FPGA-based GOOSE monitoring node interoperability test

In this experiment, the MiCOM P546 IED was configured to display the Boolean

status of a virtual input on its status LED (LED1) and at the same time publish the

status of this LED using another GOOSE message. The Boolean status of this

virtual input (Virtual Input 1) was derived from the FPGA-based GOOSE monitoring

node circuit breaker status (FPGA/IED1/XCBR1STPos$stVal). The GOOSE

messages published by the MiCOM P546 were then subscribed to and recorded

onto a COMTRADE file by IEDScout. This test setup is a variation of the ping-pong

test whereby device A (DUT) publishes messages subscribed to by device B

(MiCOM P546 IED) which in turn publishes messages subscribed to by IEDScout.

This experiment will prove that the DUT can publish GOOSE messages that can be

subscribed to by an IEC 61850-compliant IED. The MiCOM P546 IED is configured

as follows:

1. Create a new system in MiCOM S1 Studio (Schneider Electric, 2016).

141

Figure 5.12: Creating a new system in MiCOM S1 Studio

2. Creating devices in the system using the Quick Connect command which
connects to the IED attached via a serial cable. After a successful
connection, the Quick Connect command retrieves the IED type, model,
serial number and software reference as shown in Figure 5.43.

Figure 5.13: Connecting to the MiCOM P546 IED using the Quick Connect command

3. Configuring the Programmable Scheme Logic (PSL) of the MiCOM P546
IED to update the status of IED1 using the status of the Virtual Input 1
derived from the FPGA based GOOSE monitoring node circuit breaker
status.

142

Figure 5.14: PSL configuration for updating status of LED1 using the Virtual Input 1
status

4. Configuring the MiCOM P546 IED to subscribe to GOOSE messages
published by the developed GOOSE monitoring node and map the
FPGA/IED1/XCBR1STPos$stVal to Virtual Input 1 by importing the DUT’s
IID file.

Figure 5.15: Configuring the MiCOM P546 IED to subscribe to GOOSE messages
published by the DUT

With reference to Figure 5.15, the status of Virtual Input 1 of the MiCOM
P546 IED is by default set to false and is only set to true when the
subscribed FPGA/IED1/XCBR1STPos$stVal attribute (circuit breaker
status) is ON.

5. Creating a dataset containing the status of LED1 mapped to Virtual Output 1
as shown in the PSL in Figure 5.14. The status of LED1 is mapped to the
System/GosGGIO2STInd1$stVal Boolean data attribute.

143

Figure 5.16: Dataset containing the status of the LED1

6. Configure the MiCOM P546 to publish GOOSE messages containing the
dataset configured in step 5.

7. Downloading the settings to the IED.

144

Figure 5.17: Downloading settings to the MiCOM P546 IED

With reference to the PSL and GOOSE message subscription configuration of the

MiCOM P546 IED shown in Figure 5.14 and Figure 5.15, the boolean status of

Virtual Input 1 is false by default and only true when the subscribed

FPGA/IED1/XCBR1STPos$stVal data attribute is ON. The IED’s LED1 is

expected to be ON when Virtual Input 1 is true and OFF otherwise.

Figure 5.18 shows the transition of the status of the MiCOM P546 Virtual Output 1

(System/GosGGIO2STInd1$stVal) between true (orange blocks) and false states

during the interoperability test. In this test, SW2 on the Nexys 3 development board

was toggled between ON and OFF positions. In Figure 5.18, the status of Virtual

Output 1 is true (orange block) when the position of SW2

(FPGA/IED1/XCBR1STPos$stVal) is ON.

Figure 5.18: Transition of the MiCOM P546 IED’s Virtual Output 1 during the
interoperability test

145

As expected from the PSL configuration of the MiCOM P546 IED, LED1 is ON

when the status of the circuit breaker (FPGA/IED1/XCBR1STPos$stVal) is ON

and OFF when the circuit breaker is on the OFF position. This evaluation procedure

proves that the developed FPGA-based GOOSE monitoring node publishes

GOOSE messages which can be subscribed to by any IEC 61850-compliant IED to

implement any automation system.

The next section evaluates the developed limited Merging Unit prototype.

5.4 Limited-function Merging Unit prototype laboratory evaluation

This section provides details of laboratory tests conducted to validate and evaluate

the accuracy and performance characteristics of the developed limited-function MU

prototype. In section 5.4.1, the structure of SV messages published by the

developed MU prototype is compared to that defined in the IEC 61850-9-2LE. The

structure of the sampled value messages is captured and analysed using

Wireshark and SVScout software applications. Wireshark is a Windows and UNIX

systems network analysis software based on the “pcap” libraries.

In section 5.4.2 the accuracy of sampled values published by the developed MU

prototype is determined by comparing the extracted phasors to those extracted

from SV messages published by the Omicron CMC 256plus test set. For this test,

the CMC 256plus test set was configured to generate and inject analogue signals

into the developed MU prototype while simultaneously publishing SV messages

containing samples of the generated signals.

Test three detailed in section 5.4.3 investigates the accuracy of samples published

by the MU prototype when distorted signals are injected. For power system

fault/disturbance simulation, the Harmonics, Ramping and QuickCMC modules of

the Test Universe package were used to configure the CMC 256plus test set.

APPENDIX H on page 262 provides a detailed configuration manual for setting up

the CMC 256plus test set through the Test Universe software. In this section and

also including the underlying sub-sections, in some instances, the developed MU

prototype will be referred to as the Device under Test (DUT).

146

5.4.1 Evaluation of Sampled Value message structure

This section validates the structure of sampled value messages published by the

developed MU prototype against that defined in IEC 61850-9-2LE. Figure 5.19

shows a Wireshark capture of a sampled value message published by the

developed MU prototype when nominal voltage and current signals are injected.

Figure 5.19: Structure of sampled value message published by the developed MU

This sampled value message shown in Figure 5.19 consists of two main parts, the

Ethernet header and the Protocol Data Unit (PDU) in the blue block. The Ethernet

header fields in this message are set to default values as defined in the IEC 61850-

9-2LE except for the source MAC address which is manufacturer specific. Referring

to Figure 5.19, the destination MAC address is set to the multicast address

01:0C:CD:04:00:01 registered to the IEEE and the VLAN ID is set to default value

0. The captured SV message’s APPID field is set to 0x4000 as defined in the IEC

61850-9-2LE.

147

Figure 5.20 shows the comparison between the captured SV PDU published by the

DUT and the one defined in the IEC 61850-9-2LE guideline.

Figure 5.20: Comparing between SV PDU published by MU prototype to that
defined in the IEC 61850-9-2LE

The protocol data unit shown in Figure 5.20 consists of one ASDU which in turn

encapsulates the svID, smpCnt, confRev smpSynch and the dataset (sequence of

data) fields. The smpSynch flag in the APDU is set to FALSE because the AFE

uses an internally generated 1PPS clock instead of using a 1PPS signal from an

external GPS clock.

The seqData field in Figure 5.20 is the “PhsMeas1” dataset which contains the

instantaneous current and voltage samples of the analogue signals injected by the

CMC 256plus test set. With reference to Figure 5.20, it can be noted that the

structure of the SV messages published by the developed MU prototype matches

that defined in the IEC 61850-9-2LE guideline.

The following section assesses the accuracy of MU prototype’s sample calculation

VHDL module by comparing the root mean square values extracted from the

148

sampled value messages published by the developed MU prototype to those

published by the CMC 256plus test set.

5.4.2 Sampled Value accuracy evaluation

Merging Units (MUs) are important devices used IEC 61850 process bus-based

protection schemes. These MUs should be tested to ensure that they publish

accurate current and voltage samples under nominal and abnormal/fault conditions.

For this test procedure, the CMC 256plus test set was configured to generate

current and voltage signals and also publish sampled value messages containing

samples of the generated signals. These analogue signals were then injected into

the developed MU prototype. The sampled value messages published by the CMC

256plus and the MU prototype were captured using SVScout and the exported to a

COMTRADE file. The magnitudes of the voltage and current signal generated by

the CMC 256plus device are equal to 33 VRMS and 1 ARMS equating to primary line

to neutral magnitudes of 3.3 kVRMS and 100 ARMS respectively.

The sampled value messages published by the developed MU prototype and the

Omicron CMC 256plus test set were captured using SVScout. SVScout subscribes

to the sampled value message streams published by both devices (CMC 256plus

test set and MU prototype) and plots the voltage and current samples in an

oscilloscope view and extracts the phasors for the different phases (OMICRON,

2014).

Figure 5.21 shows an SVScout sinusoidal plot of phase A and B voltage and

current sampled values published by the developed MU prototype under nominal

conditions (3.3 kVRMS and 100 ARMS).

149

Figure 5.21: SV messages published by the developed MU prototype

Figure 5.22 and Figure 5.23 shows the phasors of sampled values published by the

CMC 256plus test set and the developed MU prototype respectively.

Figure 5.22: Phasors of sampled values published by the CMC 256plus test set

With reference to Figure 5.22 above, the line to neutral voltage and current

samples published by the CMC 256plus test set for phases A and B are equal to

3.3 kVRMS∠-45.22º, 3.3 kVRMS∠-165.22º and 99.997 ARMS∠-45.22º, 99.997 ARMS∠-

165.22º respectively. The angle between phase A and B phasors is equal to 120º

as expected.

150

Figure 5.23: Phasors of sampled values published by the developed MU prototype

Figure 5.23 shows phasors of sampled values published by the developed MU

prototype; the phase to neutral voltage and current samples for phases A and B are

equal to 3.274 kVRMS∠-64.91º, 3.28 kVRMS∠-53.81º and 98.880 ARMS∠-65.33º,

98.917 ARMS∠-53.43º respectively. The angles between the phase A and B samples

of the injected voltages and currents is equal to 118.72º and 118.76º and

respectively.

Therefore from Figure 5.22 and Figure 5.23, the voltage and current magnitude

percentage error of sampled values published by the developed MU prototype is

0.61% and 1.11% respectively. The percentage phase angle error between the A

and B phases for the voltage and current sampled values is 1.07% and 1.03% and

respectively. The developed MU prototype’s voltage and current magnitude

measurement percentage error is reasonable since most IEC 61850 standard-

compliant IEDs have a typical percentage error of ±1% (Alstom, 2013; Alstom,

2014; Schneider Electric, 2010). These results show that the developed Merging

Unit prototype can publish accurate samples of the injected analogue voltages and

current under nominal conditions.

The next section assesses the response and sampled value accuracy of the MU

prototype when subjected to laboratory simulated power system

disturbances/signal distortions.

151

5.4.3 Merging Unit prototype response evaluation

The electrical power system is prone to disturbances which affect the quality of the

supplied electricity. These disturbances are caused by a variety of factors including

weather conditions (lightning strikes, strong winds), equipment failure, non-linear

loads, over-loaded wiring and large load swing (We Energies, 2015), (D & B Power

Associates, 2015), (Seymour, 2011).

According to Seymour, (2011), the seven most common disturbances experienced

in power systems are transients, interruptions, sag/under-voltage, swell/over-

voltage, waveform distortion, voltage fluctuations and frequency variations. The

Merging Unit being the primary measuring device in an IEC 61850 standard

process bus-based protection scheme must tested in order to ascertain its sample

accuracy and response to distorted current and voltage injections.

For the following simulations, the CMC 256plus test set was configured through the

Test Universe modules to inject distorted current and voltage signals into the

developed MU prototype emulating four types of disturbances. The response and

sample accuracy of the developed MU prototype was evaluated for the voltage-sag,

voltage-swell, waveform distortions and frequency variation disturbances. For

waveform distortion, the Harmonics module of the Test Universe package was used

for generating voltage and current signals superimposed with harmonic

components.

The analogue signals generated by the CMC 256plus test set were compared to

the sampled values published by the developed MU prototype. The MU publishes

primary values calculated from the secondary voltage and current signals injected

by the CMC 256plus test set using the 100:1 (primary to secondary) ratio. For

disambiguation purposes, graphs of voltage and current signals generated by the

CMC 256plus test set will be quoted in primary values, that is, actual CMC 256plus

analogue output factored by 100. The following sections, (section 5.4.3.1 to section

5.4.3.4) detail and discuss the disturbance simulations and the results thereof.

5.4.3.1 Voltage-sag fault performance evaluation

A voltage-sag is a short duration (half cycle to 3 seconds) decrease in system

voltage, these voltage-sag faults are usually caused by system faults e.g., phase to

152

ground faults or switching on of equipment with heavy start-up currents (Seymour,

2011). Voltage-sag faults can cause electronic equipment damage or data loss.

Figure 5.24 shows an illustration of a voltage-sag fault.

Figure 5.24: Illustration of a voltage-sag fault on a power system

(Adapted from Seymour, 2011)

For simulating a voltage-sag disturbance, the CMC 256plus test set was configured

using the Ramping module of the Test Universe software. The test set generated

voltage and current signals simulating a voltage-sag fault by appending five ramp

signals as shown in Figure 5.25. In this simulation, the analogue voltage and

currents outputs of the CMC 256plus test set begins at 33 VRMS and 1 ARMS before

dipping to 16.5 VRMS and 0.5 ARMS. Time graphs (a) and (b) in Figure 5.25 shows

the voltage and current signals injected into the MU prototype by the CMC 256plus

quoted as primary values.

Phase B voltage and current magnitudes remain steady at 33 VRMS (3.3 kVRMS)

during this voltage-sag fault simulation as shown in Figure 5.25.

153

k
V

R
M

S

2.0

Y
-A

xi
s

Time (t/s)
0.100

3.3

1.65

End of

Simulation

Time (t/s)0.20 0.30

A
R

M
SY

-A
xi

s

Time (t/s)
0.100

100

50

End of

SimulationIB

Time (t/s)0.20 0.30

(a) Voltage (b) Current

IA

VB

VA

Figure 5.25: Voltage-sag simulation using the CMC 256plus test set and the Test
Universe

Figure 5.26 shows a graphical representation of current and voltage root mean

square values extracted from sampled value messages published by the developed

MU prototype during this voltage-sag fault simulation.

Figure 5.26: Current and voltage RMS values measured by the MU prototype during a
voltage-sag simulation

154

With reference to Figure 5.26, the pre-fault and post-fault line to neutral voltages

and currents measured on phases A and B are approximately 3.306 kVRMS and

99.9 ARMS as expected from the injection shown in Figure 5.25. In Figure 5.26, 1.65

kVRMS and 49.9 ARMS phase A voltage and currents are measured by the developed

MU prototype during the voltage-sag simulation as expected from the generated

signals illustrated in Figure 5.25.

Figure 5.27 shows waveforms of current and voltage signals extracted from

sampled value messages published by the developed MU prototype during the

voltage-sag injection test.

Figure 5.27: Waveforms extracted from SV messages published by the MU
prototype during voltage-sag injection test

The voltage and current magnitude pattern of the injected signals shown in Figure

5.25 and that of sampled values published by the MU prototype shown in Figure

5.26 match. These two graphs (Figure 5.25 and Figure 5.26) prove that the

developed MU prototype can be used in a real power system and can produce

accurate measurement even under voltage-sag conditions.

5.4.3.2 Voltage-swell fault performance evaluation

A voltage-swell disturbance is characterised by a voltage increase from the nominal

value for a short period usually half a cycle to 3 seconds. Voltage-swells are

caused by sudden disconnection of large loads or phase-to-phase faults in three

155

phase systems. This disturbance may cause electronic component damage,

degradation of insulation and electrical contacts. Voltage swells are common in

power grids with incorrectly configured tap changer transformer which causes the

voltage to swell whenever a load is disconnected (We Energies, 2015).

Figure 5.28 shows as illustration of a voltage-swell fault in power systems.

Figure 5.28: Illustration of a voltage-swell disturbance

(Adapted from Seymour, 2011)

The CMC 256plus test set was configured using the Test Universe Ramping

module to generate voltage and current signal emulating a voltage-swell condition.

Using the Ramping module, the CMC 256plus test set’s phase A analogue output

voltage and current signals were ramped from nominal values of 33 VRMS and 1

ARMS to peak at 49.5 VRMS and 1.5 ARMS respectively. Time graphs (a) and (b) in

Figure 5.29 shows the voltage and current signals injected into the MU prototype by

the CMC 256plus quoted as primary values.

k
V

R
M

S

3.3

Y
-A

x
is

Time (t/s)
0.100

5.0

1.0

End of

Simulation

Time (t/s)0.20 0.30

A
R

M
S
Y

-A
x
is

Time (t/s)
0.100

100

150

End of

Simulation
IB

Time (t/s)0.20 0.30

(a) Voltage (b) Current

IA

VB

VA

Figure 5.29: Voltage-swell simulation using the CMC 256plus test set and the Omicron
Test Universe

156

The phase B voltage and current magnitudes remain steady at 33 VRMS (3.3 kVRMS)

as shown in Figure 5.29. The injected signals are sampled by the MU prototype

and published to the process bus; the oscillographic information of the sampled

values was exported into a COMTRADE file using SVScout.

Figure 5.30 shows a graphical representation of current and voltage root mean

square values published by the MU prototype during the voltage-swell simulation.

Figure 5.30: Voltage and current RMS values measured by the MU prototype during a
voltage-swell simulation

Figure 5.31 shows a waveform of sampled values published by the developed MU

prototype during a voltage-swell injection test.

157

Figure 5.31: Voltage and current sampled values published by the MU prototype
during a voltage-swell injection test

With reference to Figure 5.30 and Figure 5.31, the phase A and B voltage and

current samples published by the developed MU prototype begin at nominal values

of approximately 3.306 kVRMS and 99.8 ARMS. During the voltage-swell simulation,

phase A voltage and current samples rise to peak at 4.96 kVRMS and 150 ARMS.

Comparing the injected signals (Figure 5.29) and the published sampled values

(Figure 5.30 and Figure 5.31) it can be seen that the magnitude profile of the

published sampled values and that of the generated signals match. The peak

voltage and current magnitudes published by the developed MU prototype are 150

ARMS and 4.96 kVRMS as expected from the injected signals. This section proves that

the developed MU prototype is capable of publishing accurate sampled value even

under voltage-swell faults.

The next section discusses the sample accuracy evaluation and the results thereof

of the MU prototype power system frequency variation test.

5.4.3.3 Frequency variations tests

In electrical power networks, the measured frequency deviates from the rated

system frequency due to in-balances between the generated power and the load.

As such, the frequency measurement accuracy and range of the developed MU

prototype was evaluated using the CMC 256plus test set. For this test, the

magnitude of the generated voltages and currents were set to the nominal values

158

equal to 33 VRMS and 1 ARMS respectively while the frequency was varied between

10 Hz, 50 Hz and 100 Hz.

In this test, the current and voltages signal generated by the CMC 256plus test set

were sampled and published by the MU prototype. Similar to the previous

simulations, SVScout was used for capturing the sampled value messages and

exporting the oscillographic information to a COMTRADE file for further analysis.

The power system variation tests were conducted by injecting signals generated at

10 Hz, 50 Hz (nominal) and 100 Hz as shown in Figure 5.32 to Figure 5.34.

Figure 5.32: Sampled value messages at 10 Hz system frequency

Figure 5.32 above shows voltage and current waveforms extracted from sampled

value messages published by the MU prototype when the CMC 256plus test set

was configured to generate signals at 10 Hz system frequency. The waveforms

displayed in Figure 5.32 are sinusoidal with a period of 0.1 s corresponding to a

frequency of 10 Hz as expected.

159

Figure 5.33: Sampled values published at 50 Hz (nominal) system frequency

Figure 5.33 above shows voltage and current waveforms extracted from sampled

value messages published by the MU prototype when the CMC 256plus test set

was configured to generate signals with a 50 Hz system frequency. The period of

the sinusoidal waveforms in Figure 5.33 is 0.02 seconds corresponding to a

frequency of 50 Hz.

Figure 5.34: Sampled value messages published at 100 Hz system frequency

Figure 5.34 shows voltage and current waveforms extracted from sampled value

messages published by the MU for an injection test at 100 Hz system frequency.

With reference to Figure 5.34, the captured waveform is sinusoidal with one cycle

spanning over 0.01 s as expected for a system frequency of 100 Hz.

160

In Figure 5.35, two plot areas (a) and (b) are shown which contain sampled value

line graphs of current and voltage injections, respectively, generated at 10 Hz, 50

Hz and 100 Hz by the CMC 256plus test set. Chart (a) in Figure 5.35 shows

sampled values line graphs of phase A current signals generated at 10 Hz, 50 Hz

and 100 Hz represented by the orange, red and green plots respectively. Similarly

to chart (a), chart (b) in the same figure (Figure 5.35) shows the sampled value line

graphs of phase A voltage signals generated at 10 Hz, 50 Hz and 100 Hz

represented by the orange, red and green plots respectively.

Figure 5.35 shows the relationship between signals generated at different

frequencies with the same magnitude.

(a)

(b)

Figure 5.35: Sampled value plot of voltage and current signals generated at different
frequencies

With reference to Figure 5.32 to Figure 5.34, the developed MU prototype has a

wide dynamic input frequency range as witnessed by its ability to accurately

measure the injected analogue signals with varying system frequencies. The

frequencies calculated from the sampled value plots correspond to those of the

analogue signals injected by the CMC 256plus test set.

161

5.4.3.4 Evaluation of sample accuracy during Harmonic distortions

This section of the research project assesses the effects of harmonic distortion on

the accuracy of the sampled values published by the developed MU prototype.

Harmonics in alternating current signals are sinusoidal components whose

frequencies are multiples of the fundamental frequency (Csanyi, 2015). Harmonics

are caused by non-linear loads on the power grid drawing non-sinusoidal current

from a voltage source.

The resulting signal is a sum of a number of super-imposed harmonics as

illustrated in Figure 5.36.

Figure 5.36: Harmonics in an electrical signal

(Adapted from Csanyi, 2015)

Harmonic disturbances can cause heating of transformer and capacitor banks and

in some cases cause mal-operation of electronic equipment (Ellis, 2001). The CMC

256plus was configured to generate voltage and current signals containing 2nd and

3rd order harmonic components. The fundamental voltage and current signals

generated by the CMC 256plus test set were set to 33 VRMS and 1 ARMS

respectively. The 2nd and 3rd order harmonic components have a magnitude of 30%

and 15% of the fundamental signal respectively and are in phase with their

respective fundamental signals. The magnitude and phase values of the 2nd and 3rd

order harmonic components are arbitrarily chosen for evaluation purposes.

The Harmonics module setup is shown in Table 5.1.

162

Table 5.1: 2
nd

 and 3
rd

 order harmonic component simulation setup using the
Harmonics Module

Chart (a) and (b) in Figure 5.37 shows RMS current and voltage magnitude-time

graphs respectively. These graphs were exported from the Harmonics module of

the Test Universe software into a COMTRADE file. The orange and blue line

graphs in charts (a) and (b) represents sampled values of phases A and B current

and voltage injections respectively. In Figure 5.37 and Figure 5.38, the current and

voltage magnitudes of analogue signals generated by the CMC 256plus test set are

quoted as primary values.

Figure 5.37: Voltage and current RMS values of signals generated by the CMC 256plus
test set during harmonic disturbance injection test

Chart (a) and (b) in Figure 5.38 shows amplitude-time graphs of current and

voltage analogue signals generated by the CMC 256plus test set during the

harmonic disturbance injection respectively.

 VL1-E, IL1 VL2-E, IL2 VL3-E, IL3

Order Mag Phase Mag Phase Mag Phase

2 30% 0º 30% -120º 30% 120º

3 15% 0º 15% -120º 15% 120º

(a)

(b)

163

Figure 5.38: Harmonic distorted signals generated by the CMC 256plus test set

The SV messages published by the developed MU prototype were captured using

SVScout and the oscillographic data exported to a COMTRADE file. Chart (a) and

(b) in Figure 5.39 shows RMS magnitude-time graphs of currents and voltages

extracted from sampled values published by the MU prototype during the harmonic

distortion simulation respectively.

In this Figure 5.39, the voltages and current RMS magnitude-time plots for phases

A and B are represented by the orange and blue line charts respectively.

(a)

(b)

164

Figure 5.39: RMS values extracted from sampled values published by the MU prototype
during the Harmonic injection test

Chart (a) and (b) in Figure 5.40 shows the voltage and current magnitude-time

waveforms extracted from SV messages published by the MU prototype during the

harmonic distortion simulation.

Figure 5.40: Harmonic distortion in published sampled value messages

By comparison, the RMS voltage and current magnitudes published by the

developed MU prototype shown in Figure 5.39 are equal to the RMS magnitudes of

(a)

(b)

(a)

(b)

165

analogue signals generated by the CMC 256plus test set shown Figure 5.37. The

magnitude-time waveforms of signals generated by the CMC 256plus test set and

those published by the MU prototype shown in Figure 5.38 and Figure 5.40,

respectively, are 180˚ out of phase with each other, this is due to the phase shift

introduced by the step-down transformers of the AFE.

This test proves shows that the developed MU prototype is capable of publishing

accurate samples analogue voltage and current signals during harmonic

disturbances in an electrical power system. The next section presents an

interoperability test of the developed MU prototype with an IEC 61850-9-2LE-

compliant IED.

5.4.4 Merging Unit prototype interoperability test

IEC 61850-9-2LE-compliant IEDs must be able to subscribe to the SV messages

published by the developed MU prototype and therefore an interoperability test was

conducted between this the MU prototype and the MiCOM P444 IED. In this

interoperability evaluation, the CMC 256plus test set was configured to generate

and inject nominal voltage and current signals into the developed MU prototype.

The sampled value messages published by the MU prototype were then subscribed

to by the MiCOM P444 IED.

Figure 5.41 shows equipment setup in the laboratory for evaluating the developed

MU prototype’s interoperability with the MiCOM P444 IED.

166

Figure 5.41: FPGA-based Merging Unit prototype interoperability test

The MiCOM P444 IED was configured to subscribe to and extract voltage and

current measurements from the sampled value messages published by the FPGA-

based MU prototype. These measurements extracted by the MiCOM IED were

compared to those extracted by SVScout shown in Figure 5.23 in section 5.4.2 on

page 150.

The MiCOM P444 IED is configured as follows:

1. Create a new system in MiCOM S1 Studio.

Figure 5.42: Creating a new system in MiCOM S1 Studio

2. Creating devices in the system using the Quick Connect command which
connects to an IED attached to the PC through a serial RS-232 cable. This
Quick Connect command retrieves the IED type, model, serial number and
software reference numbers as shown in Figure 5.43.

167

Figure 5.43: Connecting to the MiCOM P444 IED using the Quick Connect command

3. Configuring the MiCOM P444 IED to subscribe to SV messages published
by the developed MU prototype. This is achieved by setting the NCIT logical
node value of the MiCOM IED to the svID (sampled value ID) of sampled
value messages published by the MU prototype. This configuration is shown
in Figure 5.44

Figure 5.44: Configuration of the NCIT settings for SV subscription

4. Downloading the settings to the IED as shown in Figure 5.45.

168

Figure 5.45: Downloading settings to the MiCOM P444 IED

Figure 5.46 shows phases A and B voltage and current magnitude values extracted

by the MiCOM P444 IED from the SV messages published by the developed MU

prototype.

Figure 5.46: Phase A and B voltage and current magnitude values extracted from SV
messages published by the DUT

The phase A and B for voltage and current magnitude values shown in Figure 5.46

are equal to the magnitude values for the same phases shown published by the

DUT in Figure 5.22.

This evaluation procedure proves that the current and voltage measurements

published by the developed MU prototype can be used by IEC 61850-compliant

IEDs for implementing protection schemes. The results attained from this

experiment prove that the developed MU prototype is interoperable with different

IEDs from different vendors according to the IEC 61850 standard.

Voltage (VAN and VBN)

Current (IAN and IBN)

169

The following section concludes this chapter.

5.5 Conclusion

Chapter Five has presented in section 5.3 and section 5.4 test procedures

conducted in the laboratory for evaluating the developed FPGA-based GOOSE

monitoring node and limited-function MU prototypes respectively. In these two

sections, the results obtained from the tests conducted were presented and

discussed to show that the developed GOOSE and SV message-mapping VHDL

modules are compliant with the referenced IEC 61850 standards.

Section 5.3 presents simulations and test conducted in the laboratory to evaluate

the FPGA-based GOOSE monitoring node. This section started off by validating the

structure of the GOOSE messages published by the developed GOOSE message-

mapping VHDL module against that defined in the IEC 61850-8-1 standard. The

results of this analysis show that the structure of the GOOSE messages published

by the developed VHDL module conforms to the IEC 61850-8-1 standard.

Section 5.3.2 focused on the GOOSE client state machine of the developed VHDL

module, in this section the client state machine of the developed VHDL module was

compared to that defined in the IEC 61850-8-1 standard. From the analysis of the

transition of the state and sequence numbers (stNum and sqNum) it can be

concluded that the client state machine implemented in the GOOSE message-

mapping VHDL module follows the definition in the IEC 61850-8-1 standard.

Section 5.3.3 and 5.3.4 presented laboratory test procedures for evaluating the

accuracy of the calculated RMS value (MMXN1MXVol$mag) of the injected

voltage signal. For this test a voltage-sag and voltage-swell disturbance was

simulated and the calculated RMS voltages (MMXN1MXVol$mag) were

compared to those generated by the CMC 256plus test set. The results prove that

the developed GOOSE monitoring node can be used in an IEC 61850 standard-

based automation system.

Section 5.4.3.1 to section 5.4.3.4 focused on the evaluation of the accuracy of

sampled values published by the MU prototype when current and/voltage

distortions/disturbances were introduced. With reference to the injection tests

170

conducted and the results obtained, it can be concluded that the published sampled

values equal the signals injected into the MU prototype by the CMC 256plus test

set. From the tests conducted and the results discussed in this chapter it can be

concluded that the developed sampled value and GOOSE message-mapping

VHDL modules are compliant to the IEC 61850 standard.

Chapter Six provides an overall conclusion of this research project and also

discusses the deliverables, drawbacks, future work and also the application of

results.

171

 CHAPTER SIX

CONCLUSION AND FUTURE WORK

6.1 Introduction

Since its introduction, the first edition of the IEC 61850 standard for

“communication networks and systems in substations” has progressively been

adopted into automation systems in electrical substations. This standard introduces

a communication interface referred to as the process bus which allows primary

plant equipment to communicate with bay-level devices within substations using an

Ethernet network. This communication interface reduces parallel copper wiring,

system engineering complexity and implementation time.

This process bus consists of both IEC 61850-8-1 GOOSE and IEC 61850-9-2 SV

messages. Due to the extensive and complex nature of the IEC 61850-9-2

standard, an implementation guideline known as the IEC 61850-9-2LE was

published in 2004 by the UCA International Users Group (UCAIug). This IEC

61850-9-2LE is a result of co-operation between major vendors in the industry to

reduce ambiguity and reduce time-to-market for Merging Units (MUs). Since the

inception of the implementation guideline, a host of testing software and devices

has been developed to evaluate MUs claiming conformance to this implementation

guideline of the IEC 61850-9-2 standard.

These devices tend to be very expensive and information on the development of

such devices is generally not available in the public domain. Presently there are

companies which develop hardware independent IEC 61850 standard-compliant

communication stacks, for example, Triangle MicroWorks, SISCO and

SystemCORP, however, these communication stacks come at a price.

Similarly to Merging Units, devices capable of monitoring primary plant equipment

(current/ voltage transformers and circuit breakers) and publishing analogue

measurements and digital statuses are expensive. This is due to specialised skillset

and funding for research, development and industrialisation of such devices.

172

This research project aims to disseminate information on the introduction and

application of the IEC 61850 standard, application of the IEC 61850 process bus

and the development of IEDs conforming to this standard. Chapter Five of this

thesis provided test methods for evaluating the accuracy and performance of the

developed limited-function Merging Unit and GOOSE monitoring node in the

laboratory. In the detailed test procedures the CMC 256plus test set, Wireshark,

IEDScout and SVScout software applications were used to validate the structure of

the published GOOSE and SV messages against the structure defined in the IEC

61850-8-1 standard and the IEC 61850-9-2LE respectively.

6.2 Aims and objectives

As stated in Chapter One of this document, this research project focused on the

development of VHDL modules for mapping and publishing IEC 61850-9-2 SV and

IEC 61850-8-1 GOOSE messages on an FPGA platform. These developed VHDL

modules implemented on an FPGA were combined with an Analogue Front-End

(AFE) to produce a limited-function FPGA-based Merging Unit (MU) and a GOOSE

monitoring node prototype. The developed MU and GOOSE monitoring node

prototypes were tested in the laboratory to validate their conformance to the IEC

61850-9-2LE and the first edition of the IEC 61850-8-1 standard respectively. The

test procedures conducted during the evaluation of the GOOSE monitoring node

and Merging Unit prototype are documented in Chapter Five of this thesis.

In order to achieve the aims of this research project the following objectives were

stated:

 Literature review: History of substation automation systems and the

introduction of the IEC 61850 standard.

 Literature review: Analysis of the IEC 61850 standard data modeling

techniques and communication service mapping for GOOSE and SV

messages.

 Literature Review: Discussion and comparison of software algorithms and

VHDL models for mapping and publishing IEC 61850-9-1, IEC 61850-9-2

SV messages and IEC 61850-8-1 standard-based GOOSE messages on

embedded platforms.

 Methodology: Comparative analysis of different embedded platforms for

mapping and publishing GOOSE and SV messages.

173

 Methodology: Implementation of VHDL modules for mapping and publishing

GOOSE and SV messages as specified in the IEC 61850-8-1 standard and

the UCA International users group IEC 61850-9-2 implementation guideline

(IEC 61850-9-2LE) respectively.

 Methodology: Integration of the AFE with the GOOSE and SV message-

mapping VHDL modules to produce a GOOSE monitoring node and a

limited-function Merging Unit prototype.

 Evaluation: Development of laboratory test benches for evaluating the

developed GOOSE monitoring node and Merging Unit prototype.

 Evaluation: Validation of the structure of SV messages published by the

developed MU prototype against that defined in the IEC 61850-9-2LE using

Wireshark and SVScout software applications.

 Evaluation: Conduct an interoperability test between the developed limited-

function Merging Unit prototype and an IEC 61850-compliant IED.

 Evaluation: Conduct an interoperability test between the developed GOOSE

monitoring node prototype and an IEC 61850-compliant IED.

 Evaluation: Validation of the structure of GOOSE messages published by

the developed GOOSE monitoring node against that defined in the IEC

61850-8-1 standard using Wireshark and IEDScout software applications

 Evaluation: Evaluation of the accuracy of sampled values published by the

MU prototype using the CMC 256plus test set to simulate five case studies

covering power system nominal and fault conditions.

 Evaluation: Validation of the GOOSE client state machine implemented in

the GOOSE message mapping VHDL module against that defined in IEC

61850-8-1 standard.

 Evaluation: Evaluation of the accuracy of the root mean square calculation

of the voltage injected into the GOOSE monitoring node by the CMC

256plus test set.

6.3 Thesis deliverables

174

6.3.1 Literature review

The literature review section presented in Chapter Two provides background

information on communication networks used in Supervisory Control and Data

Acquisition (SCADA) systems before the advent of the IEC 61850 standard. In this

review, shortfalls of hardwired systems and legacy protocols which prompted the

development of this IEC 61850 standard were discussed. This literature review

section discussed practical applications of the IEC 61850 process bus for data

communication between primary plant equipment and bay-level control and

protection IEDs.

Chapter Two of this thesis also presented a review of software algorithms and

hardware designs of Merging Units conforming to both the IEC 61850-9-1 and IEC

61850-9-2 standards developed in past research projects. Additionally, a review of

methodologies for designing devices capable of publishing IEC 61850-8-1 GOOSE

messages was also presented.

6.3.2 Overview of the IEC 61850 standard

Chapter Three of this thesis document provided an overview of the first edition of

the IEC 61850 standard by discussing each part of the standard from part 1 to part

10. The main objective of this chapter was to lay background information on the

IEC 61850 standard’s data modeling techniques, communication service interfaces,

device/data naming convention and the communication service mappings of

information to specific protocols for transmission.

The discussion of the IEC 61850 standard centered on part 8-1 and part 9-2, these

two parts define the nomenclature, attributes and methods for mapping and

publishing substation data using GOOSE and SV messages respectively. The

mapping and publishing of GOOSE and SV messages as defined in the IEC 61850-

8-1 standard and IEC 61850-9-2LE references the four-part IEC 61850-7 standard

(IEC 61850-7-1 to IEC 61850-7-4 standards). The four-part IEC 61850-7 standard

defines the data modelling and communication services to be employed for data

transmission. The mapping of the GOOSE and SV messages will use control

blocks, instances of common data classes and logical nodes defined in the IEC

61850-7-2, IEC 61850-7-2 and IEC 61850-7-4 standards.

175

Lastly, Chapter Three highlighted the advantages of using the IEC 61850 standard

in a substation automation system over legacy protocols and hardwired

communication systems.

6.3.3 Development of VHDL modules for mapping SV and GOOSE messages

The main aim of this research project was to develop VHDL modules for mapping

and publishing GOOSE and SV messages defined in the IEC 61850-8-1 standard

and the UCAIug IEC 61850-9-2 standard implementation guideline. To achieve this

aim the following tasks in sections 6.3.3.1 to 6.3.3.3 were conducted.

6.3.3.1 Development of VHDL code for publishing IEC 61850-8-1 GOOSE

messages

Development of finite state models and VHDL code for mapping and publishing

GOOSE messages from the Xilinx Spartan 6 FPGA was presented in section

4.4.1.1 in Chapter Four. The developed VHDL modules are shown in Table 6.1 and

provided in APPENDIX E.

Table 6.1: Developed VHDL modules for mapping and publishing IEC 61850-8-1
GOOSE messages on the Xilinx Spartan 6 FPGA

VHDL Module Function

goose_frame.vhd
GOOSE message mapping VHDL code top entity. Implements the main

state machine and mapping functions for generating GOOSE messages

fifo_core.vhd IP Core for sending data from MAC to the LAN 8710 PHY chip

MAC2PHY4IR.vhd Media Access Controller (MAC) implementation

publishSigGen.vhd
Implementation of the GOOSE client state machine as defined in the IEC

61850-8-1 standard

sigSynchronizer.vhd Synchronizing signals to the clock pulse

utcTime.vhd Time of Day module

btn_deb.vhd De-bouncing circuit for SW2 (XCBR1STPos$stVal)

ethernet_frame.vhd VHDL library containing formulas and records (GOOSE PDU)

Calculations.vhd Calculation of the value of MMXN1MXVol$mag.i (RMS voltage)

ethcrc32.vhd Calculation of the Ethernet frame 32 bit CRC value

6.3.3.2 Development of VHDL code for publishing IEC 61850-9-2LE SV

messages

Section 4.4.1.2 in Chapter Four details the development of finite state models and

VHDL modules for mapping and publishing Sampled Value messages from the

Xilinx Spartan 6 FPGA. The developed VHDL modules are shown in Table 6.2 and

provided in APPENDIX F.

176

Table 6.2: Developed VHDL modules for mapping and publishing IEC 61850-9-2LE SV
messages on the Xilinx Spartan 6 FPGA

VHDL Module Function

hello_frame.vhd

SV message mapping VHDL code top entity. Implements functions for

calculating the sampled values and mapping functions for generating SV

messages. Implements a MAC for transmission of Ethernet frames

fifo_core.vhd IP Core for sending data from MAC to the LAN 8710 PHY chip

MAC2PHY4IR.vhd MAC to FIFO module

sigSynchronizer.vhd Synchronizing signals to the clock pulse

ethernet_frame.vhd VHDL library containing formulas and records (SV PDU)

ethcrc32.vhd Calculation of the Ethernet frame 32 bit CRC value

6.3.3.3 Integration of the Analogue Front-End (AFE) to the GOOSE and SV

message mapping VHDL modules

The AFE was integrated into the GOOSE and SV message mapping VHDL

modules to produce a GOOSE monitoring node and limited-function Merging Unit

prototype. This information is documented in section 4.3.2 in Chapter Four and the

following tasks were conducted:

 Determining the maximum voltage and current signals that can be injected

into the AFE and using these values in calculation algorithms.

 Integrating the GOOSE and SV messages mapping VHDL modules into the

AFE VHDL model to extract time synchronized ADC output codes for input

voltage and current calculation.

6.3.4 Evaluation of the limited-function MU and GOOSE monitoring node

prototypes

The limited-function GOOSE monitoring node and MU prototypes developed in this

research project were evaluated in the laboratory using the CMC 256plus test set,

Wireshark, IEDScout and SVScout software applications. The results of the

evaluation of the GOOSE monitoring node and MU prototype are presented in

various sections of Chapter Five: The following tasks were conducted:

 Development of test-benches for evaluating the GOOSE monitoring node

and MU prototype as shown in Figure 5.1.

 Validation of the structure of GOOSE messages published by the developed

GOOSE monitoring node in section 5.3.1.

 Validation of the structure of SV messages published by the developed MU

prototype in section 5.4.1.

177

 Evaluation of the accuracy of the sampled values published by the

developed MU prototype under normal power system conditions presented

in section 5.4.2.

 Evaluation of the accuracy of sampled values and MU prototype

performance during voltage-sag, voltage-swell, power system frequency

variation and harmonic faults simulations. These tests and results thereof

are presented in sections 5.4.3.1 to 5.4.3.4.

 Evaluation of the accuracy of the root mean square value

(MMXN1MXVol$mag) of the injected voltage published by the developed

GOOSE message-mapping VHDL module presented in sections 5.3.3 and

5.3.4.

 Validation of the GOOSE client state machine implementation in the

developed GOOSE message-mapping VHDL module against that defined in

the IEC 61850-8-1 standard. This validation test is presented in section

5.3.2.

 Interoperability test between the developed Merging Unit prototype and an

IEC 61850-9-2LE-compliant IED (MiCOM P444 IED). This interoperability

test is presented in section 5.4.4.

 Interoperability test between the developed GOOSE monitoring node

prototype and an IEC 61850-8-1 standard-compliant IED (MiCOM P546

IED). This interoperability test is presented in section 5.3.5.

6.4 Challenges encountered

There have been some challenges encountered during the development of the IEC

61850-9-2 sampled value and the IEC 61850-8-1 GOOSE message-mapping

VHDL modules on an FPGA platform. These include:

i. There are few papers available in the public domain which details the

implementation of an algorithm for mapping sampled value messages on

processor or FPGA platform, compared to GOOSE messages. This

information is proprietary to vendors and is not made available in the public

domain for educational purposes.

ii. There are few software tools available within the public domain to facilitate

the development and testing of GOOSE and sampled value messages.

178

iii. Development of VHDL-93 code is challenging because it doesn’t support

some basic functions for floating point arithmetic which prompted the use of

a floating package requiring three times the space for fixed point arithmetic,

which resulted in additional memory usage within the FPGA. It must be

noted that there are other versions of VHDL, for instance, VHDL-2008 which

support floating point arithmetic and are therefore recommended for future

work.

iv. The Analogue Front-End provided by the Centre for Substation Automation

and Energy Management Systems (CSAEMS) at the CPUT is synchronised

using an internally generated 1PPS signal, therefore it could not be

synchronised with the CMC 256plus test set.

6.5 Application of results

This research covers the design, development and implementation of a GOOSE

and sampled value message publisher on an FPGA platform. The results presented

in this research provide many opportunities to research institutions and other

interested parties which are listed below:

1. The sampled value message-mapping VHDL module developed in this

research can be used to publish PMU measurement conforming to the

C37.11 standard using the sampled values published by this device.

2. The developed VHDL modules for both sampled value and GOOSE

messages can be used as a low cost Merging Unit or IED respectively for

educational purposes.

3. The GOOSE message-mapping VHDL design can be used for other

analogue or digital status communication, for example, circuit breaker SF6

measurement.

4. The developed GOOSE and SV message-mapping VHDL modules will be

integrated into a process interface device currently under development at

the CSAEMS at CPUT.

6.6 Future research work

The research project has been successful in achieving its stated objectives but

there is some extra work that can still be conducted to improve the design and

179

incorporate some other aspects which were not in the scope of this research

project. These include:

1. GOOSE message-mapping VHDL module: this VHDL module can be

improved by adding a GOOSE subscriber to subscribe to GOOSE

messages published by other devices in the substation automation system.

2. GOOSE message-mapping VHDL module: An MMS stack can be

developed and incorporated into this design to allow for remote device

configuration.

3. SV message-mapping VHDL module: this hardware design can be further

developed to publish sampled value messages at 256 samples per cycle for

metering functions.

4. SV message-mapping VHDL module: Investigate the effects of over-current,

over-voltage and under-voltage conditions on the published sampled value

messages.

5. Investigate using the IEEE 1588v2 synchronisation technique, its advantage

over the 1PPS method and its effect on the published sampled value

messages.

180

 REFERENCES

Adewole, A.C. & Tzoneva, R., 2014. Impact of IEC 61850-9-2 Standard Based Process
Bus on the Operating Performance of Protections IEDS: Comparative Study. In 19th
World Congress of The International Federation of Automatic Control. Cape Town,
2014. IFAC.

Ali, I., 2012. High-speed Peer-to-peer Communication based Protection Scheme
Implementation and Testing in Laboratory. International Journal of Internation
Applications, 38(4), pp.16-24.

Alstom, 2013. MiCOM Px4x-92LE. [Document] Saint Ouen: General Electric Company
(1.1) Available at:
https://www.gegridsolutions.com/alstomenergy/grid/Global/Grid/Resources/Documents/
Automation/SAS/Px4x-92LE-TM-EN-1.1-epslanguage=en-GB.pdf [Accessed 29 April
2016].

Alstom, 2014. MiCOM P40 Agile P442, P444. [Document] Saint-Ouen: General Electric
Company (1) Available at:
https://www.gegridsolutions.com/alstomenergy/grid/TechnicalManuals/P44x_EN_M_H
A6.pdf [Accessed 25 April 2016].

Altium, 2008. VHDL Language Reference. [Document] Boston: Altium (2.0) Available
at: http://valhalla.altium.com/Learning-
Guides/TR0114%20VHDL%20Language%20Reference.pdf [Accessed 6 February
2015].

Amin, M., 2014. IEEE Smart Grid, The Self Healing Grid : A concept Two decades in
the making. [Online] Available at: http://smartgrid.ieee.org/march-2013/813-the-self-
healing-grid-a-concept-two-decades-in-the-making [Accessed 30 July 2014].

Apostolov, A., 2010. IEC 61850 9-2 process bus applications and benefits. In 10th IET
International Conference on Developments in Power System Protection (DPSP).
Manchester, 2010. IET.

Apostolov, A., 2010. IEC 61850 Substation Configuration Language and its Impact on
the Engineering of Distribution Substation Systems. In CIDEL. Buenos Aires, 2010.
CIDEL.

Baigent, D., Adamiak, M. & Mackiewicz, R., 2004. IEC 61850 communication networks
and systems in substations: an overview for users. San Jaose: SISCO Systems.

Baranov, F.P. et al., 2013. Software for Emulating the Sampled Values Transmission in
Accordance with IEC 61850 Standard. In 2nd International Symposium on Computer,
Communication, Control and Automation(3CA 2013). Pulau Ujong, 2013. Atlantic
Press.

https://www.gegridsolutions.com/alstomenergy/grid/Global/Grid/Resources/Documents/Automation/SAS/Px4x-92LE-TM-EN-1.1-epslanguage=en-GB.pdf
https://www.gegridsolutions.com/alstomenergy/grid/Global/Grid/Resources/Documents/Automation/SAS/Px4x-92LE-TM-EN-1.1-epslanguage=en-GB.pdf
https://www.gegridsolutions.com/alstomenergy/grid/TechnicalManuals/P44x_EN_M_HA6.pdf
https://www.gegridsolutions.com/alstomenergy/grid/TechnicalManuals/P44x_EN_M_HA6.pdf
http://valhalla.altium.com/Learning-Guides/TR0114%20VHDL%20Language%20Reference.pdf
http://valhalla.altium.com/Learning-Guides/TR0114%20VHDL%20Language%20Reference.pdf
http://smartgrid.ieee.org/march-2013/813-the-self-healing-grid-a-concept-two-decades-in-the-making
http://smartgrid.ieee.org/march-2013/813-the-self-healing-grid-a-concept-two-decades-in-the-making

181

Basic Electronics Tutorials, 2016. RMS Voltage Tutorial. [Online] Available at:
http://www.electronics-tutorials.ws/accircuits/rms-voltage.html [Accessed 11 April
2016].

Bishop, D., 2006. VHDL-2008 Support Library. [Online] Carlifornia: VHDL Available at:
http://www.vhdl.org/fphdl/ [Accessed 1 August 2015].

Bowe, N., 2014. Analogue and Binary GOOSE transfer in an A.Eberle REG-DA
Voltage Regulating Relay. [Document] Auckland: HV Power Measurements &
Protection Ltd (2.0) Available at: www.hvpower.co.nz/TechnicalLibrary/A-
Eberle/GOOSE_transfer.pdf [Accessed 15 September 2015].

Brunner, C. & Apostolov, A., 2010. Functional Testing of IEC 61850 based systems.
Protection, Automation and Control World (PACWorld), 1 December. pp.1-5.

Cabrera, C., Chiu, S. & Nair, N.K.C., 2012. Implementation of arc-flash protection using
IEC 61850 GOOSE messaging. In IEEE, ed. International Conference on Power
System Technology (POWERCON). Auckland, 2012. IEEE.

Csanyi, E., 2015. Electrical Engineering Portal. [Online] Available at: http://electrical-
engineering-portal.com/definition-of-harmonics-and-their-origin [Accessed 2 October
2015].

D & B Power Associates, 2015. Understanding Power Disturbances. [Document] South
Carolina: D & B Power Associates Incoporated Available at:
http://www.dbpowerinc.com/resources/Understanding%20Power%20Disturbances.pdf
[Accessed 5 March 2015].

Daboul, M., Wasserbauser, V. & Orsagova, J., 2015. Laboratory testing of the
communication based protection relays. In 21st Conference student EEICT. Brně,
2015. Fakulta elektrotechniky a komunikačních technologií.

Digilent Inc, 2013. Nexys 3 Board Reference Manual. [Document] Pullman: Xilinx (1)
Available at:
http://www.xilinx.com/support/documentation/university/XUP%20Boards/XUPNexys3/d
ocumentation/Nexys3_rm.pdf [Accessed 3 June 2014].

Ellis, R.G., 2001. Power system harmonics: A reference guide to causes, effects and
corrective measures. [Document] Canada: Allen-Bradley (1) Available at:
literature.rockwellautomation.com/idc/groups/./mvb-wp011_-en-p.pdf [Accessed 18
May 2016].

Fan, C. et al., 2011. The development of tri-status measure and control device used in
smart substation of china. In IEEE, ed. Asia-Pacific in Power and Energy Engineering
Conference (APPEEC). Wuhan, 2011. IEEE.

Farhangi, H., 2010. The path of the smart grid. IEEE Power and Energy Magazine,
VIII(1), pp.18-28.

Fernandes, C., Borkar, S. & Gohil, J., 2014. Testing of GOOSE Protocol of IEC 61850
Standard in Protection IED. International Journal of Computer Applications, 93(16),
pp.30-35.

http://www.electronics-tutorials.ws/accircuits/rms-voltage.html
http://www.vhdl.org/fphdl/
file:///C:/Users/alex/AppData/Roaming/Microsoft/Word/www.hvpower.co.nz/TechnicalLibrary/A-Eberle/GOOSE_transfer.pdf
file:///C:/Users/alex/AppData/Roaming/Microsoft/Word/www.hvpower.co.nz/TechnicalLibrary/A-Eberle/GOOSE_transfer.pdf
http://electrical-engineering-portal.com/definition-of-harmonics-and-their-origin
http://electrical-engineering-portal.com/definition-of-harmonics-and-their-origin
http://www.dbpowerinc.com/resources/Understanding%20Power%20Disturbances.pdf
http://www.xilinx.com/support/documentation/university/XUP%20Boards/XUPNexys3/documentation/Nexys3_rm.pdf
http://www.xilinx.com/support/documentation/university/XUP%20Boards/XUPNexys3/documentation/Nexys3_rm.pdf
file:///C:/Users/alex/AppData/Roaming/Microsoft/Word/literature.rockwellautomation.com/idc/groups/.../mvb-wp011_-en-p.pdf

182

Gajic, Z. et al., 2014. Using IEC 61850 analogue GOOSE messages for OLTC control
of parallel transformers. In IET, ed. 10th IET International Conference on
Developments in Power System Protection (DPSP). Manchester, 2014. IET.

Gonzalez-Redondo, M.J. et al., 2013. IEC 61850 GOOSE transfer time measurement
in development stage. IEEE Symposium on Industrial Electronics, pp.1-6.

Guo, Z., Vahid, F., Najjar, W. & Vissers, K., 2004. A quantitative analysis of the
speedup factors of FPGAs over processors. In ACM, ed. ACM/IEEE Conference on
Field Programmable Gate Array. Carlifornia, 2004. ACM.

Gurbiel, M. et al., 2009. Merging Unit accuracy testing. In IEEE, ed. Power & Energy
Society General Meeting (PES). Alberta, 2009. IEEE.

Haude, J., 2010. Testing of Sampled Value Transmission over IEC 61850 Process
Bus. Amprion, 2010. OMICRON.

Honeth, N., Khurram, Z.A., Zhao, P. & Nordstrom, L., 2013. Development of the IEC
61850-9-2 software Merging Unit IED test and training platform. In PowerTech.
Grenoble, 2013. IEEE.

Hui, C., Jiong-cong, C., Xiao-bing, L. & Nan-hua, Y., 2010. Development of Digital
Protective Relay Tester under IEC 61850. In IEEE, ed. China International Conference
on Electricity Distribution (CICED). Nanjing, 2010. IEEE.

Iloh, J.P.I., Mbachu, C.B. & Uzhede, G.O., 2014. An improved Merging Unit model for
substation automation system based on IEC 61850. Interational Journal of Advanced
Research in Electrical, Electronics and Instrumentation Engineering, III(11), pp.13054-
63.

Ingram, D.M., Campbell, D.A., Schaub, P. & Ledwich, G., 2011. Test and evaluation
system for multi-protocol sampled value protection schemes. In IEEE, ed. PowerTech.
Trondheim, 2011. IEEE.

Ingram, D.M., Schuab, P., Taylor, R.R. & Campbell, D.A., 2012. Performance Analysis
of IEC 61850 Sampled Value Process Networks. IEEE Transactions on Industrial
Informatics, IX(3), pp.1445-54.

International Electrotechnical Commission, 2002-07. IEC 60044-8 : Instrument
Transformers - Electronic Current Transformers. 1st ed. Geneva: IEC.

International Electrotechnical Commission, 2003-05. Part 7-2 : Basic Communication
structure for substation and feeder equipment: Abstract Communication Service
Interface. 1st ed. Geneva: IEC.

International Electrotechnical Commission, 2003-07. Part 5: Communication
Requiremements for functions and device models. 1st ed. Geneva: IEC.

International Electrotechnical Commission, 2003-2004. Part 1: Introduction and
overview. 1st ed. Geneva: IEC.

183

International Electrotechnical Commission, 2003-2004. Part 6 : Configuration
description language for communication in electrical substations related to IEDs. 1st
ed. Geneva: IEC.

International Electrotechnical Commission, 2003-2004. Part 7-1: Basic Communication
for substation and feeder equipment - Principles and models. 1st ed. Geneva: IEC.

International Electrotechnical Commission, 2003-2005. Part 7-3: Basic Communication
Structure for Substation and Feeder Equipment - Common Data Classes. 1st ed.
Geneva: IEC.

International Electrotechnical Commission, 2003-2005. Part 7-4: Basic communication
structure for substation and feeder equipment - Compatible logical node classes and
data classes. 1st ed. Geneva: IEC.

International Electrotechnical Commission, 2004-2005. Part 8-1: Specific
Communication Service Mapping (SCSM) - Mappings to MMS (ISO 9506-1 and ISO
9506-2) and to ISO/IEC 8802-3. 1st ed. Geneva: IEC.

International Electrotechnical Commission, 2004. Part 9-2 : Specific Communication
Service Mapping (SCSM) - Sampled values over ISO/IEC 8802-3. 1st ed. Geneva:
IEC.

International Electrotechnical Commission, 2005-05. Part 10: Conformance testing. 1st
ed. Geneva: IEC.

Ito, H. & Ohashi, K., 2008. Implementation of High Perfomance Protection and Relay
Testing: IEC 61850 GOOSE. Protection, Automation and Control World (PACWorld), 1
February. pp.40-47.

Jing, L. et al., 2011. The feasibility study of advanced fuction of Merging Unit in the
intelligent digital substation. In IEEE, ed. The International Conference on Advanced
Power System Automation and Protection (APAP). Beijing, 2011. IEEE.

Khuraam, Z.A., 2012. Interface between Process Equipment and Process Bus for Light
Weight Testing of Protection Functions. Masters Thesis. Stockholm: KTH Royal
Institute of Technology KTH Royal Institute of Technology.

Kirrmann, H., 2004. Introduction to IEC 61850 substation communication standard.
Research Paper. Zurich: ABBCH-RD ABB Switzerland Ltd.

Konka, J.W., Aurthur, C.M., Garcia, F.J. & Atkinson, R.C., 2011. Traffic generation of
IEC 61850 sampled values. In IEEE, ed. IEEE First International Workshop on Smart
Grid Modeling and Simulation (SGMS). Glasgow, 2011. IEEE.

Kriger, C., Behardien, S. & Retonda-Modiya, J.C., 2013. Analysis of GOOSE and
Sampled Value Message Structure for educational Purposes. International Journal of
Computers Communications & Control, VIII(5), pp.708-21.

Lee, H.H., Kim, G.S., Lee, J.H. & Kim, B.J., 2008. Real-Time Communications on IEC
61850 Process Bus Based Distributed Sampled Measured Values Applications in
Merging Unit. In Springer-Verlag, ed. Advanced Intelligent Computing Theories and

184

Applications. With Aspects of Theoretical and Methodological Issues. Heidelberg,
2008. Springer-Verlag.

Liu, J., Li, K. & Yang, H., 2007. The design of a Merging Unit of electronic transfomers
based on ARM. In IEEE, ed. 42nd International Universities Power Engineering
Conference (UPEC). Brighton, 2007. IEEE.

Luwaca, E., 2014. Virtualization of a sensor node to enable the simulation of IEC
61850 based sampled value messages. MTech Thesis. Cape Town: CPUT Cape
Peninsula University of Technology.

Mackiewicz, R., 2011. IEC 61850 Technical Overview and Summary of Other Related
IEC Standards. Michigan, 2011. SISCO Inc.

MingCai, K., Tong, S., Qian, B.Z. & Ping, Z.X., 2012. Designation and development of
Hardware platform for Intelligent Terminal. In IEEE, ed. China International Conference
on Electricity Distribution (CICED). Shanghai, 2012. IEEE.

National Energy Regulator of South Africa, 2008. The South African Grid Code:
Network Code. [Document] Pretoria: National Energy Regulator of South Africa (7.0)
Available at:
http://www.nersa.org.za/Admin/Document/Editor/file/Electricity/Compliance%20Monitori
ng/SAGC%20Network%20Version%207_March%202008.pdf [Accessed 2 March
2016].

NettedAutomation, 2007. Previews of IEC 61850 standards: Communication networks
and systems for power utility automation. [Online] Available at:
http://www.nettedautomation.com/news/n_72.html [Accessed 17 September 2014].

Netto, U.C., de Castro G, D., Lonel, I.D. & Coury, D.V., 2012. A behaviour evaluation of
network traffic in a power substation concerning GOOSE messages. In IEEE, ed.
Power and Energy Society General Meeting. California, 2012. IEEE.

Nick, S., 2014. An Investigation approach to test Protection Intelligent Electronic
Devices (IEDs) in IEC 61850 based substation automation systems (SAS) at station
Level. Master's Thesis. Brisbane: Queensland University of Technology Queensland
University of Technology.

NIST, 2010. NIST Framework and Roadmap for Smart Grid Interoperability.
[Document] Gaithersburg: ational Institute of Standards and technology (3.0) Available
at: http://www.nist.gov/smartgrid/upload/NIST-SP-1108r3.pdf [Accessed 9 September
2015].

OMICRON, 2014. IEC 61850 testing tools. [Document] California: Omicron (1)
Available at: https://www.omicronenergy.com/fileadmin/user_upload/pdf/literature/IEC-
61850-Testing-Tools-ENU.pdf [Accessed 5 June 2015].

Retonda-Modiya, J.C., 2012. Development of an embedded system actuator node for
integration into an IEC 61850 based substation automation application. MTech Thesis.
Cape Town: CPUT CPUT.

RTDS, 2013. RTDS Application. [Online] Available at:
http://www.rtds.com/applications/applications.html.

http://www.nersa.org.za/Admin/Document/Editor/file/Electricity/Compliance%20Monitoring/SAGC%20Network%20Version%207_March%202008.pdf
http://www.nersa.org.za/Admin/Document/Editor/file/Electricity/Compliance%20Monitoring/SAGC%20Network%20Version%207_March%202008.pdf
http://www.nettedautomation.com/news/n_72.html
http://www.nist.gov/smartgrid/upload/NIST-SP-1108r3.pdf
https://www.omicronenergy.com/fileadmin/user_upload/pdf/literature/IEC-61850-Testing-Tools-ENU.pdf
https://www.omicronenergy.com/fileadmin/user_upload/pdf/literature/IEC-61850-Testing-Tools-ENU.pdf
http://www.rtds.com/applications/applications.html

185

Rudigier, M. & Steinhauser, F., 2015. Testing Sampled Values publishers with Daneo-
400. [Document] Stafford: Omicron (1.0) Available at:
https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact
=8&ved=0ahUKEwisoJyOt5HNAhXEJ8AKHT1UBnMQFggbMAA&url=https%3A%2F%
2Fwww.omicronenergy.com%2Ffileadmin%2Fuser_upload%2Fpdf%2Fappnotes%2FD
ANEO-400-AppNote-Testing-SV-Publishers-2015 [Accessed 2015 May 2].

RuggedCom Inc, 2011. Evolution of Substation Communication. [Online] Available at:
http://www.ruggedcom.com/applications/electric-utilities/evolution/ [Accessed 2013].

Schmid, J. & Kunde, K., 2011. Application of non conventional voltage and currents
sensors in high voltage transmission and distsribution systems. In International
Conference on Smart Measurements for Future Grids (SMFG). Bologna, 2011. IEEE.

Schneider Electric, 2010. [Protection Relay] MiCOM P543 P546. [Brochure] Schneider
Electric (1.0) Available at: http://download.schneider-
electric.com/files?p_File_Id=683083615&p_File_Name=P54d_ds_1317.pdf [Accessed
1 May 2016].

Schneider Electric, 2011. MiCOM P54x: P543, P544, P545 & P546 Current Differential
Relay. [Document] Rueil-Malmaison: Schneider Electric (1.0) Available at:
http://www.schneider-electric.co.kr/documents/Catalogue/MiCOM_P543to546.pdf
[Accessed 5 May 2016].

Schneider Electric, 2016. Schneider Electric Library. [Online] Schneider Electric
Available at: http://www.schneider-
electric.co.za/library/SCHNEIDER_ELECTRIC/SE_LOCAL/APS/211350_4DC2/MiCOM
_S1_Studio_-_Get_Started.pdf [Accessed 14 August 2016].

Seymour, J., 2011. The Seven Types of Power Problems. [Document] Rueil-
Malmaison: Schneider Electric (1) Available at:
https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact
=8&ved=0ahUKEwj8g9fRuJHNAhWFBsAKHaFPDMsQFggbMAA&url=http%3A%2F%2
Fwww.apcmedia.com%2Fsalestools%2FVAVR-5WKLPK%2FVAVR-
5WKLPK_R1_EN.pdf&usg=AFQjCNH_HqCnlrP0e5GvSlJMbvCIweEOFw&sig2=
[Accessed 2 May 2015].

Sidhu, T.S. & Gangadharan, P.K., 2005. Control and automation of power system
substation using IEC 61850 communication. In IEEE, ed. Conference on Control
Applications (CCA). Toronto, 2005. IEEE.

Starck, J. et al., 2013. Switchgear optimization using IEC 61850-9-2. In IET, ed. 22nd
International Conference and Exhibition on Electricity Distribution (CIRED 2013).
Stockholm, 2013. IET.

Sumec, S., 2014. Software tool for verification of sampled values transmission via IEC
61850-9-2 protocol. In 15th International Scientific Conference on Electric Power
Engineering (EPE). Brno, 2014. IEEE.

Sun, X., Redfern, M. & Aggarwal, P., 2012. Protection Performance Study for
Secondary Systems with IEC 61850 Process Bus Architecture. PhD Thesis. Bath:
University of Bath University of Bath.

https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwisoJyOt5HNAhXEJ8AKHT1UBnMQFggbMAA&url=https%3A%2F%2Fwww.omicronenergy.com%2Ffileadmin%2Fuser_upload%2Fpdf%2Fappnotes%2FDANEO-400-AppNote-Testing-SV-Publishers-2015
https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwisoJyOt5HNAhXEJ8AKHT1UBnMQFggbMAA&url=https%3A%2F%2Fwww.omicronenergy.com%2Ffileadmin%2Fuser_upload%2Fpdf%2Fappnotes%2FDANEO-400-AppNote-Testing-SV-Publishers-2015
https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwisoJyOt5HNAhXEJ8AKHT1UBnMQFggbMAA&url=https%3A%2F%2Fwww.omicronenergy.com%2Ffileadmin%2Fuser_upload%2Fpdf%2Fappnotes%2FDANEO-400-AppNote-Testing-SV-Publishers-2015
https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwisoJyOt5HNAhXEJ8AKHT1UBnMQFggbMAA&url=https%3A%2F%2Fwww.omicronenergy.com%2Ffileadmin%2Fuser_upload%2Fpdf%2Fappnotes%2FDANEO-400-AppNote-Testing-SV-Publishers-2015
http://www.ruggedcom.com/applications/electric-utilities/evolution/
http://download.schneider-electric.com/files?p_File_Id=683083615&p_File_Name=P54d_ds_1317.pdf
http://download.schneider-electric.com/files?p_File_Id=683083615&p_File_Name=P54d_ds_1317.pdf
http://www.schneider-electric.co.kr/documents/Catalogue/MiCOM_P543to546.pdf
http://www.schneider-electric.co.za/library/SCHNEIDER_ELECTRIC/SE_LOCAL/APS/211350_4DC2/MiCOM_S1_Studio_-_Get_Started.pdf
http://www.schneider-electric.co.za/library/SCHNEIDER_ELECTRIC/SE_LOCAL/APS/211350_4DC2/MiCOM_S1_Studio_-_Get_Started.pdf
http://www.schneider-electric.co.za/library/SCHNEIDER_ELECTRIC/SE_LOCAL/APS/211350_4DC2/MiCOM_S1_Studio_-_Get_Started.pdf
https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj8g9fRuJHNAhWFBsAKHaFPDMsQFggbMAA&url=http%3A%2F%2Fwww.apcmedia.com%2Fsalestools%2FVAVR-5WKLPK%2FVAVR-5WKLPK_R1_EN.pdf&usg=AFQjCNH_HqCnlrP0e5GvSlJMbvCIweEOFw&sig2=
https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj8g9fRuJHNAhWFBsAKHaFPDMsQFggbMAA&url=http%3A%2F%2Fwww.apcmedia.com%2Fsalestools%2FVAVR-5WKLPK%2FVAVR-5WKLPK_R1_EN.pdf&usg=AFQjCNH_HqCnlrP0e5GvSlJMbvCIweEOFw&sig2=
https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj8g9fRuJHNAhWFBsAKHaFPDMsQFggbMAA&url=http%3A%2F%2Fwww.apcmedia.com%2Fsalestools%2FVAVR-5WKLPK%2FVAVR-5WKLPK_R1_EN.pdf&usg=AFQjCNH_HqCnlrP0e5GvSlJMbvCIweEOFw&sig2=
https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj8g9fRuJHNAhWFBsAKHaFPDMsQFggbMAA&url=http%3A%2F%2Fwww.apcmedia.com%2Fsalestools%2FVAVR-5WKLPK%2FVAVR-5WKLPK_R1_EN.pdf&usg=AFQjCNH_HqCnlrP0e5GvSlJMbvCIweEOFw&sig2=

186

Texas Instruments, 2013. Analogue Front-End for Power Monitoring, Control and
Protection. [Document] Dallas: Texas Instruments (B) Available at:
www.ti.com/lit/gpn/ads131e08 [Accessed 25 March 2015].

UCA International Users Group, 2004. Implementation Guideline for Digital Interface to
Instrument Transformers using IEC 61850-9-2. North Carolina: UCA.

Van der Spiegel, J., 2001. VHDL Tutorial. [Online] (1) Available at:
http://www.seas.upenn.edu/~ese171/vhdl/vhdl_primer.html [Accessed 6 August 2014].

VHDL, 2015. Fixed and Floating Point support page. [Online] Available at:
http://www.vhdl.org/fphdl/vhdl.html [Accessed 25 August 2015].

Von Dollen, D., 2009. Report to NIST on the smart grid interoperability standards.
[Document] Gaithersburg: National Institute of Standards and technology (10) Available
at: http://www.nist.gov/smartgrid/upload/Report_to_NIST_August10_2.pdf [Accessed
2015 June 4].

We Energies, 2015. Disturbance Types. [Online] Available at: https://www.we-
energies.com/powerquality/disturbance_type.htm [Accessed 12 October 2015].

Wei-ming, W., Xiong-ying, D. & Yan, L., 2011. Research and Development of an
Intelligent Merging Unit based on IEC 61850-9-2. In IEEE, ed. 2011 4th International
Conference on Electric Utility Deregulation and Restructuring and Power Technologies
(DRPT). Weihai, 2011. IEEE.

Weiss, S., Graeve, P. & Andersson, A., 2011. Benefits of converting conventional
instrument transformer data into smart grid capable process data utilizing IEC 61850
merging unit. In 21st International Conference on Electricity Distribution (CIRED).
Frankfurt, 2011. CIRED.

Wester, C., Smith, T., Theron, J. & McGinn, D., 2014. Developments in Fast Load
Shedding. In 67th Annual Conference for Protective Relay Engineers. College Station,
2014. IEEE.

Xiaobin, L. et al., 2008. Development of a New Kind of Merging Unit Based On IEC
61850. CICED: Protection, control, communication and automation of distribution
network, III(III), pp.1-5.

Xilinx, 2011. Spartan-6 FPGA Block RAM Resources User Guide. [Document]
California: Xilinx (1.5) Available at:
www.xilinx.com/support/documentation/user_guides/ug383.pdf [Accessed 25 July
2015].

Yin, Z.L. & Liu, W.S., 2004. A Novel FPGA-Based Method to Design the Merging Unit
Following IEC 61850. International Conference on Power System Technology
(PowerCon) , I, pp.260-63.

Zhao, P., 2012. IEC 61850-9-2 Process Bus Communication Interface for Light Weight
Merging Unit Testing Unit Testing. Master's Degree. Stockholm: KTH Engineering KTH
Royal Institute of Technology.

file:///C:/Users/alex/AppData/Roaming/Microsoft/Word/www.ti.com/lit/gpn/ads131e08
http://www.seas.upenn.edu/~ese171/vhdl/vhdl_primer.html
http://www.vhdl.org/fphdl/vhdl.html
http://www.nist.gov/smartgrid/upload/Report_to_NIST_August10_2.pdf
https://www.we-energies.com/powerquality/disturbance_type.htm
https://www.we-energies.com/powerquality/disturbance_type.htm
file:///C:/Users/alex/AppData/Roaming/Microsoft/Word/www.xilinx.com/support/documentation/user_guides/ug383.pdf

187

Zhengyang, Z. et al., 2011. The design of the merging unit of real time and
synchronicity based on EP1C3T144 chip. The International Conference on Advanced
Power System Automation and Protection, III, pp.2341-45.

188

 APPENDICIES

APPENDIX A. IEC 61850-9-2LE dataset

This is the PhsMeas1 dataset defined in the UCAIug IEC 61850-9-2

implementation guideline for the transmission of sampled values. This dataset

consists of four TCTR and four TVTR logical node instances for the transmission of

current and voltage samples of the A, B, C and N phases.

189

APPENDIX B. Contents of an ISO 8802-3 Ethernet frame

This is the ISO 8802-3 Ethernet frame used for the transmission of GOOSE and

Sampled Value messages as defined in the IEC 61850-8-1 and IEC 61850-9-2

standards (International Electrotechnical Commission, 2004-2005), (UCA

International Users Group, 2004).

190

APPENDIX C. : Logical Node Classes

Appendix C.1 : MMXN Logical Node

This logical node class is used for the calculation of attributes of single phase

system. The calculated attributes are the power, currents, frequency, impedances

and voltages.

191

Appendix C.2 : XCBR Logical Node

This logical node is used for modelling of substation switches with short circuit

breaking capabilities, e.g., circuit breakers.

192

Appendix C.3 : TVTR Logical Node

This logical node is defined in the IEC 61850-7-4 standard for the modelling of

Voltage transformers (VTs). The measured voltage is transmitted as sampled

values according to the specific communication service mapping defined in the IEC

61850-9-2 standard.

193

Appendix C.4 : TCTR Logical Node

This logical node is defined in the IEC 61850-7-4 standard for the modelling of

Current transformers (VTs). The measured current is transmitted as sampled

values according to the specific communication service mapping defined in the IEC

61850-9-2 standard.

194

APPENDIX D. Common Data Classes

Appendix D.1 : Double Point Controllable (DPC) class

Appendix D.2 : Measured Value (MV) class

195

APPENDIX E. IEC 61850-8-1 GOOSE message-mapping VHDL module

Appendix E.1 goose_frame.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

--use ieee.std_logic_arith.all;

--use ieee.std_logic_unsigned.all;

use work.ethernet_frame.all; -- using package

entity goose_frame is

 Port (-- General purpose ports

 RST : in std_logic; -- BTND -- C9

 NUM : in STD_LOGIC_VECTOR(7 downto 0);

 --PHY ports

 SampleCnt : in std_logic_vector(11 downto 0);

 Volt : in std_logic_vector(23 downto 0); -- voltage input

 --General purpose

 MDIO : inout std_logic;

 MDC : out std_logic;

 RESETN : out std_logic;

 COL : in std_logic;

 CRS : in std_logic;

 --TX

 TXD :out std_logic_vector (3 downto 0);

 TXER : out std_logic;

 TXEN: out std_logic;

 TXCLK : in STD_LOGIC;

 --RX

 RXD : in std_logic_vector (3 downto 0);

 RXER : in std_logic;

 RXDV : in std_logic;

 RXCLK : in std_logic;

 clk : in std_logic);

end goose_frame;

196

 architecture Behavioral of goose_frame is

 --Constants and type

 Type possible_state is (Idle,Transmitting);

 --Components

 component ethcrc32 is

 port (clk : in std_logic;

 rst : in std_logic;

 en : in std_logic;

 is_msb : in std_logic;

 data_in : in std_logic_vector (7 downto 0);

 crc_out : out std_logic_vector (31 downto 0));

 end component;

 component mac2phy4IR is

 Port (

 -- General purpose ports

 RSTN : in std_logic;

 --PHY ports

 --General purpose

 MDIO : inout std_logic;

 MDC : out std_logic;

 RESETN : out std_logic;

 COL : in std_logic;

 CRS : in std_logic;

 --TX

 TXD :out std_logic_vector (3 downto 0);

 TXER : out std_logic;

 TXEN: out std_logic;

 TXCLK : in STD_LOGIC;

 --RX

 RXD : in std_logic_vector (3 downto 0);

 RXER : in std_logic;

 RXDV : in std_logic;

 RXCLK : in std_logic;

 --MAC Ports

 --General purpose

 COLLISION: out std_logic;

 CARRIER: out std_logic;

 CLK : out std_logic;

197

 --TX

 TDATA: in std_logic_vector (7 downto 0);

 TXVALID: in std_logic;

 --RX

 RDATA : out std_logic_vector (7 downto 0);

 RXVALID: out std_logic);

 end component;

 -- ADC signal

 signal VArms : std_logic_vector(31 downto 0); -- measured root

mean square value

 signal prevDigitalState, BoolChange, AnaChange, TriggerEvent : std_logic := '0';

 --GP signals

 signal gooseframe : byte_array(0 to 150) :=(others=>x"00"); --ISO 8802-3 frame;

 signal not_reset: std_logic:='1';

 signal local_clk: std_logic:='0';

 --Counter of transmitted/received bytes

 signal byte_num: integer range 0 to 200 := 0; -- Maximum length of Ethernet frame is 1521

 --Keep the state of the entity

 signal state, succ_state : possible_state := Idle; -- MAC implementation FSM

 --Shit register to bufferize the received data for crc computation purpose

 signal data_received : byte_array(3 downto 0):=(others=>x"00");

 --Received frame counter

 signal nb_received_frame: integer range 0 to 15 :=0;

 signal nb_error_frame: integer range 0 to 15 :=0;

 signal trans_klaar, trans_done : std_logic := '0'; -- done transmitting data

 signal rec, goEnable : std_logic := '0';

 signal goPDUattr : std_logic_vector(0 to 3) := b"0000";

 type state_machine is (setup, readGOCB, Idle ,Transmission); -- GOOSE message mapping state machine

 signal curr_state, next_state : state_machine := setup; -- state machine variables

 signal byteCnt : integer := 0;

 signal publish, msPulse, ControlBlock_GOOSE : std_logic := '0'; -- these flag used when setting up Record at

start up signal frame : eth_frame; -- create a signal for holding the SV frame

198

 signal goosePdu : APDU;

 signal UTCTimestamp : STD_LOGIC_VECTOR(0 to 55);

 signal timeAllowedtoLive : STD_LOGIC_VECTOR(31 downto 0); -- time allowed to Live

 -- Synchronizer module outputs

 signal smpCount : std_logic_vector(11 downto 0);

 signal newSample : std_logic := '0';

 signal enter_rise : std_logic := '0';

 signal sample_rise : std_logic := '0';

 signal transmit_rise : std_logic := '0';

 signal transmit : std_logic := '0';

 signal tempState: byte_array(0 to 3):=(others=>x"00");

 signal tempSeq: byte_array(0 to 3):=(others=>x"00");

 signal tempTL: byte_array(0 to 3):=(others=>x"00");

 signal tempUTC: byte_array(0 to 7):=(others=>x"00");

 signal element: byte_array(0 to 11):=(others=>x"00");

 signal GoosePDU_StartIndex: integer range 0 to 100 := 0; -- this is the start index of the Data set

 signal len_svpacket, count : integer range 0 to 1521:= 0; -- maximum length of Ethernet packet (IEC 61850-8-

1)

 signal testIndex, ndsComIndex, timeIndex, sqNumIndex, stNumIndex, tatlIndex, allDataIndex : integer := 0;

 -- Constants --

 --crc_core signals

 signal crc: byte_array(0 to 3):=(others=>x"00");

 signal crc_crc_out: std_logic_vector(31 downto 0);

 signal crc_data_in : std_logic_vector(7 downto 0):=x"00";

 signal crc_en: std_logic := '0';

 signal crc_is_msb: std_logic:='1';

 signal crc_rst: std_logic:='1';

 signal crc_clk: std_logic:='0';

 -- Debounce circuit port map signals ---

 signal ndsCom, boolIn, testFlag : std_logic := '0';

 signal setup_Complete : std_logic := '0';

-- setup state complete

199

 --mac2phy4IR signals

 signal m2p_COLLISION: STD_LOGIC;

 signal m2p_CARRIER: STD_LOGIC;

 signal m2p_CLK : STD_LOGIC;

 signal m2p_TDATA: STD_LOGIC_VECTOR (7 downto 0):=x"00";

 signal m2p_TXVALID: STD_LOGIC:='0';

 signal m2p_RDATA : STD_LOGIC_VECTOR (7 downto 0);

 signal m2p_RXVALID: STD_LOGIC;

 -- GOOSE Messages status and sequence numbers

 signal stNum : STD_LOGIC_VECTOR(31 downto 0);

 signal sqNum : STD_LOGIC_VECTOR(31 downto 0);

 -- button debounce module

 component btn_deb is

 Port (clk : in std_logic;

 nds : in STD_LOGIC;

 test : in STD_LOGIC;

 inBool: in STD_LOGIC;

 ndsCom : out STD_LOGIC;

 testFlag : out STD_LOGIC;

 boolIn : out STD_LOGIC);

 end component;

 -- signal Synchronizer component

 component sigSynchronizer is

 Port (clk : in STD_LOGIC;

 enter : in STD_LOGIC;

 transmit : in STD_LOGIC;

 publish : in STD_LOGIC;

 trans_klaar : in STD_LOGIC;

 enter_rise : out STD_LOGIC;

 transmit_rise : out STD_LOGIC;

 sample_rise : out STD_LOGIC;

 trans_done : out STD_LOGIC);

 end component;

 -- Root mean square calculation module

 component Calculations is

 Port (VinA : in STD_LOGIC_VECTOR (23 downto 0);

200

 VArms : out STD_LOGIC_VECTOR (31 downto 0);

 SampleCount : in std_logic_vector(11 downto 0);

 AnaChange : out STD_LOGIC;

 newSample : in std_logic;

 RST : in std_logic;

 clk : in STD_LOGIC);

 end component;

 -- publish signal generator

 component publishSigGen is

 Port (clk : in STD_LOGIC;

 goEnable : in STD_LOGIC;

 publishSig : out STD_LOGIC;

 timeAllowedtoLive : out STD_LOGIC_VECTOR(31 downto 0); -- time allowed to Live

 stateNum : out STD_LOGIC_VECTOR(31 downto 0);

 seqNum : out STD_LOGIC_VECTOR(31 downto 0);

 TriggerEvent : in STD_LOGIC;

 millisPulse : out STD_LOGIC);

 end component;

 -- UTC Timestamp function

 component utcTime is

 Port (clk : in STD_LOGIC;

 msPulse : in STD_LOGIC;

 UTCTimestamp : out STD_LOGIC_VECTOR(0 to 55));

 end component;

begin

 -- Mapping signal from the root mean calculation

 VrmsCalculator : Calculations port map (VinA => Volt,

 RST => RST,

 AnaChange => AnaChange,

 SampleCount => SampleCnt,

 VArms => VArms,

 newSample => newSample,

 clk => clk);

 -- Mapping signals from the utcTime module

 utcTimeModule : utcTime port map (clk => clk,

201

 msPulse => msPulse,

 UTCTimestamp => UTCTimestamp);

 -- Mapping the signals from sigSynchronizer to the top module

 sigSync : sigSynchronizer port map (clk => clk,

 enter => setup_Complete,

 transmit => transmit,

 publish => publish,

 trans_klaar => trans_klaar,

 enter_rise => enter_rise,

 transmit_rise => transmit_rise,

 trans_done => trans_done,

 sample_rise => sample_rise);

 -- Mapping the signals from publishSigGen to the top Module

 sigGenPublish : publishSigGen port map (clk => clk,

 goEnable => goEnable,

 publishSig => publish,

 timeAllowedtoLive => timeAllowedtoLive,

 stateNum => stNum,

 seqNum => sqNum,

 TriggerEvent => TriggerEvent,

 millisPulse => msPulse);

 --Mapping signals from the debounce Module to the Top VHD module

 btn_debounce : btn_deb port map (clk => msPulse, -- use 1 ms to debounce the switch

 nds => Num(7),

 test => Num(6),

 inBool => Num(2), -- emulated circuit breaker status

 ndsCom => ndsCom,

 testFlag => testFlag,

 boolIn => boolIn);

 -- Component instantiation

 crc_core : ethcrc32 port map (crc_clk,crc_rst,crc_en,crc_is_msb,crc_data_in,crc_crc_out);

 m2p : mac2phy4IR port map(not_reset,MDIO,MDC,RESETN,COL,CRS,

 TXD,TXER,TXEN,TXCLK,

 RXD,RXER,RXDV,RXCLK,

 m2p_COLLISION,m2p_CARRIER,m2p_CLK,m2p_TDATA,m2p_TXVALID,

 m2p_RDATA,m2p_RXVALID);

202

 --Trivial mapping

 not_reset <= not rst;

 local_clk <= m2p_CLK;

 crc(0)<= crc_crc_out(31 downto 24);

 crc(1)<= crc_crc_out(23 downto 16);

 crc(2)<= crc_crc_out(15 downto 8);

 crc(3)<= crc_crc_out(7 downto 0);

 --

 -- state transition controller for the MAC

 --

 SYNC_FSM_TRANS : process (clk, succ_state)

 begin

 state <= succ_state; -- go to the next state

 end process SYNC_FSM_TRANS;

 --

 -- state transition controller for the Main Finite State Machine

 --

 SYNC_FSM_MAIN : process (clk, next_state)

 begin

 curr_state <= next_state;

 end process SYNC_FSM_MAIN;

 --

 -- Main FSM state transition logic

 --

 FSM : process(enter_rise, curr_state, trans_done , clk, transmit_rise, goEnable)

 begin

 if clk'event and clk = '1' then

 case (curr_state) is

 when setup =>

 next_state <= setup; -- stay on setup state

 if enter_rise = '1' then

 next_state <= readGOCB; -- on rising edge of ENTER go to sampling state

 end if;

 when readGOCB => -- when reading the sampled value control block

 next_state <= readGOCB;

 if goEnable = '1' then -- if the control block has been set then continue

 next_state <= Idle; -- start sampling data

 end if;

203

 when Idle =>

 next_state <= Idle;

 if transmit_rise = '1' then -- start transmitting data as soon as it is copied onto the frame

 next_state <= Transmission;

 end if;

 when Transmission =>

 next_state <= Transmission; -- stay on setup state

 if trans_done = '1' then

 next_state <= Idle; -- if transmission is complete then shift the ASDUs asdu(n) = asdu(n-1)

 end if;

 end case;

 end if;

 end process FSM;

--

-- Finite state machine outputs

-- sv_frame

-- frame (record)

-- succ_state

--

FSM_OUTPUT : process (clk, curr_state, sample_rise, trans_done, transmit_rise, publish)

 variable conv_int : std_logic_vector(0 to 31) := x"00000000";

-- temporary array to hold converted integer

 variable index : integer range 0 to 1521 := 0;

 -- goosePDU handling signals

 variable len_gocbref : integer range 0 to 66 := 0; -- VISIBLE STRING65 + 2

 variable len_datset : integer range 0 to 66 := 0; -- VISIBLE STRING65 + 2

 variable len_GOID : integer range 0 to 66 := 0; -- VISIBLE STRING65 + 2

 variable len_IEE802 : integer range 0 to 500 := 0; -- length of the Ethernet frame

 variable len_goosepdu : integer range 0 to 500 := 0; -- length of seqASDU(n)

 variable tempIndex : integer range 0 to 100 := 0; -- length of seqASDU(n)

 begin

-- if RST = '1' then

-- gooseframe(0 to 100) <= (others=>x"00");

-- goPDUattr <= b"0000";

-- len_GOID := 0;

-- len_GOCBREF := 0;

-- len_datSet := 0;

-- len_GOOSEPDU := 0;

204

-- len_IEE802 := 0;

-- len_svpacket <= 0;

-- goEnable <= '1';

-- byteCnt <= 0;

-- transmit <= '0';

-- transmit <= Idle;

 if clk = '1' and clk'event then -- state transitions happen at rising edge of the

clock

 succ_state <= Idle; -- Transmission FSM defaults at Idle state

 goEnable <= '1'; -- default vale for svEnable

 transmit <= '0'; -- start transmit of the frame

 case (curr_state) is

 when setup =>

 goEnable <= '0';

 -- Caluculate lengths

 len_GOID := GOOSE_ID'right; -- total length of gocbRef+TAG+L

 len_GOCBREF := GOOSE_REF'right; -- length of the goID+TAG+L

 len_datSet := GOOSE_DATASET'right; -- length of datSet+TAG+L

 len_GOOSEPDU := (len_GOCBREF + 2) + goosePdu.timeAllowedtoLive'right + (len_datSet + 2) + (len_GOID

+ 2) + goosePdu.t'right + goosePdu.stNum'right + goosePdu.sqNum'right + goosePdu.test'right + goosePdu.confRev'right +

goosePdu.ndsCom'right + goosePdu.numDataSetEntries'right;

 len_GOOSEPDU := len_GOOSEPDU + goosePdu.allData'right + 2;

 len_IEE802 := len_GOOSEPDU + 8; -- total length of the IEC 802.3 frame

 len_svpacket <= len_GOOSEPDU + 25;

 -- Build frame and Record Information --

 for i in 0 to 5 loop

 gooseframe(i) <= DEST_ADDRESS(i); -- Destination MAC address

 gooseframe(6 + i) <= SOURCE_ADDRESS(i); -- Source address (MAC Add of the device)

 end loop;

 for i in 0 to 3 loop

 gooseframe(12 + i) <= IEEE_VLANtag(i);

 end loop;

 for i in 0 to 1 loop

 gooseframe(16 + i) <= IEEE_ETHERTYPE(i); -- IEC 61850 ether-type

 gooseframe(18 + i) <= IEEE_APPID(i); -- SV packets APP ID

 end loop;

205

 conv_int := std_logic_vector(to_signed(len_IEE802, 32));

 gooseframe(20) <= conv_int(16 to 23);

 gooseframe(21) <= conv_int(24 to 31); -- Frame length

 -- Start of APDU

 gooseframe(26) <= x"61";

 conv_int := std_logic_vector(to_unsigned(len_GOOSEPDU, 32));

 tempIndex := 27; -- start of temp Index after savPDU tag

 if len_GOOSEPDU > 127 then -- if the length is greater than 128 we need 2

bytes to hold the length value

 if len_GOOSEPDU < 256 then -- if the length is a 1 byte value

 gooseframe(tempIndex) <= x"81"; -- length more than 128 and in need of 2

extra bytes to represent the value

 gooseframe(tempIndex + 1) <= conv_int(24 to 31); -- length of SV frame with 2 ASDUs

 tempIndex := tempIndex + 2; -- next index

 elsif len_GOOSEPDU > 255 then -- if value has to be stored in a 2 byte value

 gooseframe(tempIndex) <= x"82";

 gooseframe(tempIndex + 1) <= conv_int(16 to 23);

 gooseframe(tempIndex + 2) <= conv_int(24 to 31);

 tempIndex := tempIndex + 3;

 end if;

 else

 gooseframe(tempIndex) <= conv_int(24 to 31); -- length of goosePdu

 tempIndex := tempIndex + 1;

 end if;

 GoosePDU_StartIndex <= tempIndex;

 -- Copy constants into the Record according to ASN.1

 -- Tag 0 -

 --this is the GOOSE Control Block

 goosePdu.gocbRef(0) <= x"80"; -- Goose ControlBlock - TAG 0 -

 conv_int := std_logic_vector(to_signed(GOOSE_REF'right, 32));

 goosePdu.gocbRef(1) <= conv_int(24 to 31); -- Lenght of gocbRef

 for i in 1 to GOOSE_REF'right loop

 goosePdu.gocbRef(1 + i) <= GOOSE_REF(i); -- gocbRef onto the record

-- length of the data in the gocbRef

 end loop;

 --Tag 1-

 -- this is the timeAlllowedtoLive for a message sent

 goosePdu.timeAllowedtoLive(1) <= x"81";

206

 goosePdu.timeAllowedtoLive(2) <= x"04"; -- Number of bytes

 --Tag 2 -

 -- Gose Data set

 goosePdu.datSet(0) <= x"82";

 conv_int := std_logic_vector(to_signed(len_datSet, 32)); -- length of GOOSE dataset

 goosePdu.datSet(1) <= conv_int(24 to 31); -- length of dataset

 for i in 1 to GOOSE_DATASET'right loop

 goosePdu.datSet(1 + i) <= GOOSE_DATASET(i); -- gocbRef onto the record

-- length of the data in the gocbRef

 end loop;

 -- Tag 3 -

 -- this is is the GOOSE ID

 goosePdu.goID(0) <= x"83";

 conv_int := std_logic_vector(to_signed(GOOSE_ID'right, 32));

 goosePdu.goID(1) <= conv_int(24 to 31); -- Lenght of goose ID

 for i in 1 to GOOSE_ID'right loop

 goosePdu.goID(1 + i) <= GOOSE_ID(i); -- goID onto the record

 end loop;

 --Tag 4 -

 -- UTC timestamp for the published GOOSE message

 goosePdu.t(1) <= x"84"; -- Goose Timestamp values - TAG 4-

 goosePdu.t(2) <= x"08";

 -- Tag 5 -

 -- This is the status number

 goosePdu.stNum(1) <= x"85";

 goosePdu.stNum(2) <= x"04";

 -- Tag 6-

 -- sequence number for the sent GOOSE message

 goosePdu.sqNum(1) <= x"86";

 goosePdu.sqNum(2) <= x"04";

 -- Tag 7 -

 -- Test Flag set to TRUE/FALSE

 goosePdu.test(1) <= x"87";

 goosePdu.test(2) <= x"01";

 -- Tag 8 -

 -- Configuaration Revision

 goosePdu.confRev(1) <= x"88";

 goosePdu.confRev(2) <= x"04";

207

 goosePdu.confRev(3) <= x"00";

 goosePdu.confRev(4) <= x"00";

 goosePdu.confRev(5) <= x"00";

 goosePdu.confRev(6) <= x"04"; -- configuration revision 4

 -- Tag 9 -

 -- Device needs commissioning

 goosePdu.ndsCom(1) <= x"89";

 goosePdu.ndsCom(2) <= x"01";

 -- Tag 10 -

 -- Number of data set entries

 goosePdu.numDataSetEntries(1) <= x"8A";

 goosePdu.numDataSetEntries(2) <= x"01";

 goosePdu.numDataSetEntries(3) <= x"02"; -- 2 elements in the dataSET

 -- IMPLICIT SEQUENCE OF DATA

 goosePdu.allData(1) <= x"AB";

 goosePdu.allData(2) <= x"0D"; -- length of list

 goosePdu.allData(3) <= x"85"; -- Analogue Value using the MMXU LN

 goosePdu.allData(4) <= x"04"; -- INT32 value with 4 bytes

 goosePdu.allData(9) <= x"84"; -- XCBR.stVal.Pos

 goosePdu.allData(10) <= x"02";

 goosePdu.allData(11) <= x"06";

 goosePdu.allData(12) <= x"C0"; -- bad state

 ControlBlock_GOOSE <= '0';

 byteCnt <= 0;

 setup_Complete <= '1'; -- start transmitting once GOOSE control block has been configured

 when readGOCB =>

 goEnable <= '0'; -- Goose publishing disbled

 succ_state <= Idle; -- stay on the transmission Idle state until we have set up the GOCB

 case (ControlBlock_GOOSE) is

 when '0' => -- before data is copied onto the gooseframe

 index := GoosePDU_StartIndex + count; -- start index value

 case (goPDUattr) is

 -- gocbRef --

 when b"0000" =>

 goPDUattr <= b"0000"; -- stay

 if byteCnt < len_GOCBREF + 2 then

 gooseframe(index) <= goosePdu.gocbRef(byteCnt); -- REMOVE index + count

 byteCnt <= byteCnt + 1; -- count number of bytes

208

 count <= count + 1;

 else

 byteCnt <= 0;

 goPDUattr <= b"0001"; -- handle next attribute

 end if;

 -- timeAllowedtoLive --

 when b"0001" =>

 goPDUattr <= b"0001"; -- stay

 if byteCnt < goosePdu.timeAllowedtoLive'right then

 gooseframe(index) <= goosePdu.timeAllowedtoLive(byteCnt + 1);

 if byteCnt = 2 then -- copy TAG and Length bytes

 tatlIndex <= index;

 end if;

 byteCnt <= byteCnt + 1; -- count number of bytes

 count <= count + 1;

 else

 byteCnt <= 0;

 goPDUattr <= b"0010"; -- handle next attribute

 end if;

 -- datSet --

 when b"0010" =>

 goPDUattr <= b"0010"; -- stay

 if byteCnt < len_DATSET + 2 then

 gooseframe(index) <= goosePdu.datSet(byteCnt);

 byteCnt <= byteCnt + 1; -- count number of bytes

 count <= count + 1;

 else

 byteCnt <= 0;

 goPDUattr <= b"0011"; -- handle next attribute

 end if;

 -- goID --

 when b"0011" =>

 goPDUattr <= b"0011"; -- stay

 if byteCnt < len_GOID + 2 then

 gooseframe(index) <= goosePdu.goID(byteCnt);

 byteCnt <= byteCnt + 1; -- count number of bytes

 count <= count + 1;

 else

209

 byteCnt <= 0;

 goPDUattr <= b"0100"; -- handle next attribute

 end if;

 -- t --

 when b"0100" =>

 goPDUattr <= b"0100"; -- stay

 if byteCnt < goosePdu.t'right then

 gooseframe(index) <= goosePdu.t(byteCnt + 1);

 if byteCnt = 2 then -- copy TAG and Length bytes

 timeIndex <= index;

 end if;

 byteCnt <= byteCnt + 1; -- count number of bytes

 count <= count + 1;

 else

 byteCnt <= 0;

 goPDUattr <= b"0101"; -- handle next attribute

 end if;

 -- stNum --

 when b"0101" =>

 goPDUattr <= b"0101"; -- stay

 if byteCnt < goosePdu.stNum'right then

 gooseframe(index) <= goosePdu.stNum(byteCnt + 1);

 if byteCnt = 2 then

 stNumIndex <= index;

 end if;

 byteCnt <= byteCnt + 1; -- count number of bytes

 count <= count + 1;

 else

 byteCnt <= 0;

 goPDUattr <= b"0110"; -- handle next attribute

 end if;

 -- sqNum --

 when b"0110" =>

 goPDUattr <= b"0110"; -- stay

 if byteCnt < goosePdu.sqNum'right then

 gooseframe(index) <= goosePdu.sqNum(byteCnt + 1); -- REMOVE index + count

 if byteCnt = 2 then

210

 sqNumIndex <= index;

 end if;

 byteCnt <= byteCnt + 1; -- count number of bytes

 count <= count + 1;

 else

 byteCnt <= 0;

 goPDUattr <= b"0111"; -- handle next attribute

 end if;

 -- test --

 when b"0111" =>

 goPDUattr <= b"0111"; -- stay

 if byteCnt < goosePdu.test'right then

 if byteCnt < 2 then -- copy TAG and Length bytes

 gooseframe(index) <= goosePdu.test(byteCnt + 1);

 else

 testIndex <= index; -- location of the Test Flag

 end if;

 byteCnt <= byteCnt + 1; -- count number of bytes

 count <= count + 1;

 else

 byteCnt <= 0;

 goPDUattr <= b"1000"; -- handle next attribute

 end if;

 -- confRev ---

 when b"1000" =>

 goPDUattr <= b"1000"; -- stay

 if byteCnt < goosePdu.confRev'right then

 gooseframe(index) <= goosePdu.confRev(byteCnt + 1);

 byteCnt <= byteCnt + 1; -- count number of bytes

 count <= count + 1;

 else

 byteCnt <= 0;

 goPDUattr <= b"1001"; -- handle next attribute

 end if;

 -- ndsCom ---

 when b"1001" =>

 goPDUattr <= b"1001"; -- stay

 if byteCnt < goosePdu.ndsCom'right then

 if byteCnt < 2 then -- copy TAG and Length bytes

211

 gooseframe(index) <= goosePdu.ndsCom(byteCnt + 1);

 else

 ndsComIndex <= index; -- index of test Flag

 end if;

 byteCnt <= byteCnt + 1; -- count number of bytes

 count <= count + 1;

 else

 byteCnt <= 0;

 goPDUattr <= b"1010"; -- handle next attribute

 end if;

 -- numDataSetEntries ---

 when b"1010" =>

 goPDUattr <= b"1010"; -- stay

 if byteCnt < goosePdu.numDataSetEntries'right then

 gooseframe(index) <= goosePdu.numDataSetEntries(byteCnt + 1);

 byteCnt <= byteCnt + 1; -- count number of bytes

 count <= count + 1;

 else

 byteCnt <= 0;

 goPDUattr <= b"1011";

 allDataIndex <= index; -- index of the Element in the dataSet

 end if;

 -- all attributes copied onto the frame --

 when b"1011" => -- if the ASDU attribute is 110 or something not defined

 byteCnt <= 0;

 goPDUattr <= b"0000";

 count <= 0; -- go to the next index when starting off with the next ASDU

 ControlBlock_GOOSE <= '1'; -- enable goose publishing

 when others =>

 ControlBlock_GOOSE <= '1';

 end case;

 when '1' =>

 goEnable <= '1'; -- enable the goose publisher

 ControlBlock_GOOSE <= '0';

 when others =>

 goEnable <= '1'; -- synthesis report other=> clause not

reached

 end case;

 when Idle =>

212

 succ_state <= Idle;

 if publish = '1' then

 succ_state <= Transmitting; -- start sending the bytes to the process bus

 transmit <= '1';

 end if;

 when Transmission =>

 succ_state <= Transmitting; -- stay on the Transmitting State (MAC)

 if trans_done = '1' then -- at the end of the transmission cycle go back to the Idle state

 succ_state <= Idle; -- MAC idle state

 count <= 0;

 byteCnt <= 0; -- reset counters for Multiple ASDU handling

 end if;

 end case;

 end if;

 end process FSM_OUTPUT;

 -- Update the value of the published state number

 process(stNum, clk, publish)

 begin

 if RST = '1' then

 tempState(0 to 3) <= (others=>x"00");

 elsif clk = '1' and clk'event then

 if publish = '1' then

 tempState(0) <= stNum(31 downto 24);

 tempState(1) <= stNum(23 downto 16);

 tempState(2) <= stNum(15 downto 8);

 tempState(3) <= stNum(7 downto 0);

 end if;

 end if;

 end process;

 -- Update the value of the published sequence number

 process(sqNum, publish,clk)

 begin

 if RST = '1' then

 tempSeq(0 to 3)<= (others=>x"00");

 elsif clk = '1' and clk'event then

213

 if publish = '1' then

 tempSeq(0) <= sqNum(31 downto 24);

 tempSeq(1) <= sqNum(23 downto 16);

 tempSeq(2) <= sqNum(15 downto 8);

 tempSeq(3) <= sqNum(7 downto 0);

 end if;

 end if;

 end process;

 -- process runs everytime the time allowed to live changes

 process(timeAllowedtoLive, publish, clk)

 begin

 if RST = '1' then

 tempTL(0 to 3) <= (others=>x"00");

 elsif clk = '1' and clk'event then

 if publish = '1' then

 tempTL(0) <= timeAllowedtoLive(31 downto 24);

 tempTL(1) <= timeAllowedtoLive(23 downto 16);

 tempTL(2) <= timeAllowedtoLive(15 downto 8);

 tempTL(3) <= timeAllowedtoLive(7 downto 0);

 end if;

 end if;

 end process;

 --process runs everytime the UTC time changes

 process(UTCTimestamp, publish, clk)

 begin

 if RST = '1' then

 tempUTC(0 to 6) <= (others=>x"00");

 elsif clk = '1' and clk'event then

 if publish = '1' then

 tempUTC(0) <= UTCTimestamp(0 to 7);

 tempUTC(1) <= UTCTimestamp(8 to 15);

 tempUTC(2) <= UTCTimestamp(16 to 23);

 tempUTC(3) <= UTCTimestamp(24 to 31); -- SecondsSinceEpoch

 tempUTC(4) <= UTCTimestamp(32 to 39);

 tempUTC(5) <= UTCTimestamp(40 to 47);

214

 tempUTC(6) <= UTCTimestamp(48 to 55);

 end if;

 end if;

 end process;

 --

 -- Runs when the value of Vrms or the state of the boolean changes

 --

 ALLDATA : process (clk, publish)

 begin

 if RST = '1' then

 element(0 to 11) <= (others=>x"00");

 elsif clk = '1' and clk'event then

 if publish = '1' then -- if there is a status change in one of the elements in the dataset then

 element(0) <= x"AB";

 element(1) <= x"0A"; -- length of list

 element(2) <= x"85"; -- Analogue Value using the MMXU LN

 element(3) <= x"04"; -- INT32 value with 4 bytes

 element(4) <= VArms(31 downto 24);

 element(5) <= VArms(23 downto 16);

 element(6) <= VArms(15 downto 8);

 element(7) <= VArms(7 downto 0);

 -- start the bit string for breaker position

 element(8) <= x"84";

 element(9) <= x"02";

 element(10) <= x"06"; -- padding

 if Boolin = '1' then

 element(11) <= x"80"; -- ON

 else

 element(11) <= x"40"; -- OFF

 end if;

 end if;

 end if;

 end process ALLDATA;

 --

 -- check whether the BOOLEAN state has changed

 --

 EVENT_TRIG_BOOL : process(boolIn, clk)

215

 begin

 if RST = '1' then

 BoolChange <= '0';

 prevDigitalState <= '0';

 elsif clk = '1' and clk'event then

 prevDigitalState <= boolIn;

 BoolChange <= '0'; -- change in

 if boolIn /= prevDigitalState then -- if the current state of SW2 is equal to its previous state

 BoolChange <= '1';

 end if;

 end if;

 end process EVENT_TRIG_BOOL;

 -- if the Boolean or the Analog Event changed then Trigger should be HIGH else LOW

 -- This process drives the publisher signal of the GOOSE FSM

 TRIGGER_EVENT : process(BoolChange, AnaChange, clk)

 begin

 if RST = '1' then

 TriggerEvent <= '0';

 elsif clk = '1' and clk'event then

 TriggerEvent <= '0';

 if BoolChange = '1' or AnaChange = '1' then

 TriggerEvent <= '1'; -- trigger event is HIGH then publish GOOSE Message

 end if;

 end if;

 end process TRIGGER_EVENT;

 -- Process detects a change in the input signals from the AFE and generates

 -- sample signal to force the publisher to the transmit state

 -- on LOW-HIGH transition of sample signal sample values are generated

 --

 MAP_SV : process(SampleCnt, RST, clk)

 variable curr_cnt, prevVal : signed(11 downto 0) := x"000";

 begin

 if RST = '1' then

 curr_cnt := x"000";

 prevVal := x"000";

 newSample <= '0';

216

 elsif clk = '1' and clk'event then -- synchronous

 curr_cnt := signed(SampleCnt);

 prevVal := signed(smpCount);

 smpCount <= SampleCnt;

 newSample <= '0';

 if curr_cnt /= prevVal then

 newSample <= '1';

 end if;

 end if;

 end process;

end Behavioral;

Appendix E.2 MAC2PHY4IR.vhd

--

--This file defines an entity that simplifies the MII interface

--with an Ethernet Physical layer. It particularly fits with the

--Nexys3 development board from Digilent.

--The entity have several types of ports:

--General purposes (RSTN)

--Physical ports to manage the communication with the MII Interface on

--the physical layer side

--Mac ports to communicate with MAC layer

--

--IMPORTANT:

--Because the physical interface has two clocks domains (RXCLK, TXCLK)

--This entity uses a FIFO component specific to the SPARTAN6 FPGA of NEXYS3 board

--As a result, the entity provide only one clock signal (CLK) to the mac layer.

--MAC PORTS/INTERFACE COMMUNICATION:

-- COLLISION is set to '1' by the entity when the PHY layer has detected a collision

-- CARRIER is set to '1' by the entity when the PHY layer has detected a carrier

-- CLK clock given to the mac layer, based on the TXCLK of the PHY layer (25Mhz)

-- TDATA: 8 bits std_logic_vector that the MAC layer must provide to be transmitted

-- TDATA value must be hold for 80 ns (2 periods clock)

-- TXVALID: A pulse of 40ns (1 period clock) must be hold when valid data is available on TDATA

-- RDATA: 8 bits std_logic_vector that the entity provide to the mac layer

-- its value changes every 40ns (1 period clock). The mac layer must look for

217

-- the SFD by checking every clock rising edge. Once the SFD is found, the

-- MAC layer only needs to check every two clock rising edges to have a valid value.

-- RXVALID: The entity set this flag to '1' when the receiver is synchronized, (ie) SFD is

-- about to be visible on RDATA.

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity mac2phy4IR is

 Port (

 -- General purpose ports

 RSTN : in STD_LOGIC;

 --PHY ports

 --General purpose

 MDIO : inout STD_LOGIC;

 MDC : out STD_LOGIC;

 RESETN : out STD_LOGIC;

 COL : in STD_LOGIC;

 CRS : in STD_LOGIC;

 --TX

 TXD :out STD_LOGIC_VECTOR (3 downto 0);

 TXER : out STD_LOGIC;

 TXEN: out STD_LOGIC;

 TXCLK : in STD_LOGIC;

 --RX

 RXD : in STD_LOGIC_VECTOR (3 downto 0);

 RXER : in STD_LOGIC;

 RXDV : in STD_LOGIC;

 RXCLK : in STD_LOGIC;

 --MAC Ports

 --General purpose

 COLLISION: out STD_LOGIC;

 CARRIER: out std_logic;

 CLK: out STD_LOGIC;

 --TX

 TDATA: in STD_LOGIC_VECTOR (7 downto 0);

 TXVALID: in STD_LOGIC;

 --RX

 RDATA : out STD_LOGIC_VECTOR (7 downto 0);

 RXVALID: out STD_LOGIC);

end mac2phy4IR;

218

architecture Behavioral of mac2phy4IR is

 signal first_nibble: Boolean :=true;

 signal nTXD : std_logic_vector(3 downto 0) :=(others=>'0');

 signal RXDbuf: std_logic_vector(7 downto 0):=(others=>'0');

 signal noDATA: std_logic:='1';

 signal fifoOUT : std_logic_vector(3 downto 0);

 signal rst : std_logic:='1';

 signal RXen : std_logic:='0';

 component fifo_core is

 Port (

 rst : IN STD_LOGIC;

 wr_clk : IN STD_LOGIC;

 rd_clk : IN STD_LOGIC;

 din : IN STD_LOGIC_VECTOR(3 DOWNTO 0);

 wr_en : IN STD_LOGIC;

 rd_en : IN STD_LOGIC;

 dout : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);

 full : OUT STD_LOGIC;

 empty : OUT STD_LOGIC);

 end component;

begin

 -- General purpose signals

 RESETN<=RSTN;

 COLLISION<=COL;

 CARRIER<=CRS;

 CLK<=TXCLK;

 --Pre cabled signals

 MDIO <='1';

 MDC <='0';

 TXER <='0';

 --Rx signals

 RDATA<= RXDbuf;

 RXVALID<=RXDV;

 --fifo signals

 RXen<= not noDATA;

 rst<= not RSTN;

 fifoRX : fifo_core port map (rst,RXCLK,TXCLK,RXD,RXDV,RXen,fifoOUT,open,noDATA); -- positional mapping of

signals in fifo_core to the local signals

 --Interfacing process

219

 process(TXCLK,RSTN) is begin

 if (RSTN='0') then

 first_nibble<=true;

 TXD<=(others=>'0');

 RXDbuf<= (others=>'0');

 elsif (rising_edge(TXCLK)) then

 RXDbuf<= RXDbuf(3 downto 0) & fifoOUT; -- receive a nibble

 TXEN <= TXVALID;

 if first_nibble and TXVALID='1' then

 TXD<= TDATA(7 downto 4);

 nTXD<= TDATA(3 downto 0);

 first_nibble<=false;

 elsif first_nibble=false then

 TXD<=nTXD;

 first_nibble<=true;

 end if;

 end if;

 end process;

end Behavioral;

Appendix E.3 publishSigGen.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

use IEEE.std_logic_unsigned.all;

use IEEE.std_logic_signed.all;

entity publishSigGen is

 Port (clk : in STD_LOGIC;

 goEnable : in STD_LOGIC;

 publishSig : out STD_LOGIC;

 timeAllowedtoLive : out STD_LOGIC_VECTOR(31 downto 0); -- time allowed to Live

 stateNum : out STD_LOGIC_VECTOR(31 downto 0);

 seqNum : out STD_LOGIC_VECTOR(31 downto 0);

 TriggerEvent : in STD_LOGIC;

 millisPulse : out STD_LOGIC);

end publishSigGen;

architecture Behavioral of publishSigGen is

 constant MaxTime: integer := 1000;

220

 constant MinTime: integer := 100; -- GOOSE message publish max

and Min Times

 signal stNum : integer := 1;

 signal sqNum, stepInt : integer := 0;

 signal afterEvent, msPulse : STD_LOGIC := '0';

begin

 stateNum <= std_logic_vector(to_unsigned(stNum, 32));

 seqNum <= std_logic_vector(to_unsigned(sqNum, 32));

 --

 -- Process : PULSE_GEN

 -- This process generates a 1 ms pulse from the SYS_CLK

 --

 PULSE_GEN : process (clk)

 variable pulseCount : integer range 0 to 110000:= 0;

 begin

 if clk'event and clk = '1' then -- synchronous FF

 if goEnable = '1' then --Enable-- -- only generate 1 ms pulse when Goose Control block is enabled

 pulseCount := pulseCount + 1;

 msPulse <= '0'; -- Pulse HIGH for 10ns and always OFF

 if pulseCount >= 100000 then -- 100 000 x 10ns equal to 1ms

 msPulse <= '1';

 pulseCount := 0;

 end if;

 end if;

 end if;

 end process PULSE_GEN;

 millisPulse <= msPulse;

 --

 -- Process : PUBLISH

 -- Publishes GOOSE messages after after MaxTime has expired or after MinTime has expired

 -- before or after an event respectively

 --

 PUBLISH : process (clk, goEnable, msPulse, TriggerEvent)

 variable timeCount : integer := 0;

 variable currPubRate : integer := 0;

 begin -- reset stNum and sqNum

221

 if clk'event and clk = '1' then -- if there is a rising edge on the clock signal

then

 publishSig <= '0';

 if TriggerEvent = '1' then -- SET --

 publishSig <= '1'; -- publish new value immediately

 afterEvent <= '1'; -- set Flag after value of data set changed

 currPubRate := MinTime; -- start at the minimum time

 timeCount := 0;

 stNum <= stNum + 1;

 sqNum <= 0;

 else

 if goEnable = '1' then -- only generate a publish timer when the Goose is enabled

 if msPulse = '1' then -- after 1ms --

 timeCount := timeCount + 1;

 if afterEvent = '1' then

 if timeCount >= currPubRate then

 timeCount := 0;

 sqNum <= sqNum + 1; -- sequence counter for the message sent within the

the same stNum

 currPubRate := currPubRate + 200; -- add 200ms to the current publishing rate

 publishSig <= '1'; -- publish

 if currPubRate >= MaxTime then -- when the normal rate of publishing has been

reached then

 afterEvent <= '0';

 end if;

 end if;

 else

 if timeCount >= MaxTime then

 sqNum <= sqNum + 1; -- next state

 currPubRate := MaxTime; -- make timeAllowedtoLive to MaxTime

 timeCount := 0;

 publishSig <= '1';

 end if;

 end if;

 end if;

 end if;

 end if;

 timeAllowedtoLive <= std_logic_vector(to_unsigned(currPubRate, 32)); -- convert the time allowed

to live and send it with the GOOSE Message

 end if;

 end process PUBLISH;

222

end Behavioral;

Appendix E.4 sigSynchronizer.vhd

entity sigSynchronizer is

 Port (clk : in STD_LOGIC;

 enter : in STD_LOGIC;

 transmit : in STD_LOGIC;

 publish : in STD_LOGIC;

 trans_klaar : in STD_LOGIC;

 transmit_rise : out STD_LOGIC;

 sample_rise : out STD_LOGIC;

 enter_rise : out STD_LOGIC;

 trans_done : out STD_LOGIC);

end sigSynchronizer;

architecture Behavioral of sigSynchronizer is

begin

 SIGNAL_SYNCH : process(clk)

 variable enter_sync : std_logic_vector(1 to 3); -- temp signals for

synchronization

 variable transmit_sync : std_logic_vector(1 to 3);

 variable sample_sync : std_logic_vector(1 to 3);

 variable trans_sync : std_logic_vector(1 to 3);

 begin

 if rising_edge(clk) then

 enter_rise <= enter_sync(2) and not enter_sync(3);

 transmit_rise <= transmit_sync(2) and not transmit_sync(3);

 sample_rise <= sample_sync(2) and not sample_sync(3);

 trans_done <= trans_sync(2) and not trans_sync(3);

 enter_sync := enter & enter_sync(1 to 2);

 transmit_sync := transmit & transmit_sync(1 to 2);

 sample_sync := publish & sample_sync(1 to 2);

 trans_sync := trans_klaar & trans_sync(1 to 2);

 end if;

 end process SIGNAL_SYNCH;

end Behavioral;

223

Appendix E.5 utcTime.vhd

entity utcTime is

 Port (clk : in STD_LOGIC;

 msPulse : in STD_LOGIC;

 UTCTimestamp : out STD_LOGIC_VECTOR(0 to 55));

end utcTime;

architecture Behavioral of utcTime is

begin

 UTC_TIME : process (clk)

 variable FractionofSeconds : integer := 0;

 variable SecondsSinceEpoch : integer := 1430001415;

 begin

 if clk'event and clk = '1' then -- Synchronous Flip-flop

 if msPulse = '1' then -- Enable --

 FractionofSeconds := FractionofSeconds + 16777; -- fraction of a seconds resolution of 1ms

 if FractionofSeconds >= 16777000 then

 FractionofSeconds := 0;

 SecondsSinceEpoch := SecondsSinceEpoch + 1; -- next second

 end if;

 end if;

 end if;

 UTCTimestamp(0 to 31) <= std_logic_vector(to_signed(SecondsSinceEpoch, 32)); -- Seconds since 1 January since

1970 @ 00:00:00

 UTCTimestamp(32 to 55) <= std_logic_vector(to_signed(FractionofSeconds, 24)); -- Fraction of a second from 1-

2^24 within 1 second

 end process UTC_TIME;

end Behavioral;

Appendix E.6 btn_deb.vhd

entity btn_deb is

 Port (clk : in STD_LOGIC;

 nds : in STD_LOGIC;

 test : in STD_LOGIC;

 inBool : in STD_LOGIC;

 ndsCom : out STD_LOGIC;

224

 testFlag : out STD_LOGIC;

 boolIn : out STD_LOGIC);

end btn_deb;

architecture Behavioral of btn_deb is

 Signal ndsCom_delay1, ndsCom_delay2, ndsCom_delay3 : STD_LOGIC;

 Signal test_delay1, test_delay2, test_delay3 : STD_LOGIC;

 Signal in1_delay1, in1_delay2, in1_delay3 : STD_LOGIC;

begin

 process (clk, inBool)

 begin

 if clk'event and clk = '1' then

 ndsCom_delay1 <= nds; -- needs Commissioning

 ndsCom_delay2 <= ndsCom_delay1 ;

 ndsCom_delay3 <= ndsCom_delay2 ;

 test_delay1 <= test; -- test Flag

 test_delay2 <= test_delay1 ;

 test_delay3 <= test_delay2 ;

 in1_delay1 <= inBool; -- Input Boolean value

 in1_delay2 <= in1_delay1 ;

 in1_delay3 <= in1_delay2 ;

 end if;

 end process;

 ndsCom <= ndsCom_delay1 and ndsCom_delay2 and ndsCom_delay3; -- debounced signal for ndsCom

 testFlag <= test_delay1 and test_delay2 and test_delay3;

 boolIn <= in1_delay1 and in1_delay2 and in1_delay3;

end Behavioral;

Appendix E.7 ethernet_frame.vhd

library ieee_proposed;

use ieee_proposed.float_pkg.all;

use ieee_proposed.fixed_float_types.all;

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use ieee.numeric_std.all;

225

package ethernet_frame is

 type byte_array is array (integer range <>) of std_logic_vector(7 downto 0);

 -- Constants

 constant DEST_ADDRESS: byte_array (0 to 5) := (x"01", x"0C", x"CD", x"01", x"00", x"01");

-- IEC 61850-8-1 MAC Addresses defined by IEEE

 constant SOURCE_ADDRESS: byte_array (0 to 5) := (x"00", x"00", x"0A", x"0A", x"01", x"01");

 constant IEEE_VLANtag: byte_array (0 to 3) := (x"81", x"00", x"80", x"01");

-- Constant declaration of VLAN Tag

 constant IEEE_ETHERTYPE: byte_array (0 to 1) := (x"88", x"B8");

-- Constant declaration of the Ethertype

 constant IEEE_APPID: byte_array (0 to 1) := (x"00", x"04");

-- Constant declaration of the Ethertype

 constant GOOSE_ID: byte_array (1 to 7) := (x"47",x"4F",x"4F",x"53",x"45",x"49",x"44"); --

Goose ID -- GOOSEID --

 constant GOOSE_REF: byte_array (1 to 30) :=

(x"46",x"50",x"47",x"41",x"2F",x"49",x"45",x"44",x"31",x"2F",x"4C",x"4C",x"4E",x"30", x"24",x"47",

x"4F",x"24",x"47",x"53",x"45",x"5F",x"43",x"42",x"5F",x"47",x"4F",x"4F",x"53",x"45"); -- GooseCBRef

FPGA/IED1/LLN0GOGSE_CB_GOOSE

 constant GOOSE_DATASET: byte_array (1 to 25) :=

(x"46",x"50",x"47",x"41",x"2F",x"49",x"45",x"44",x"31",x"2F",x"4C",x"4C",x"4E",x"30", x"24",x"47", x"4F",x"4F",

x"53",x"45",x"5F",x"45", x"76",x"61", x"6C"); -- datSET FPGA/IED1/LLN0$GOOSE_Eval

 -- Goose PDU aacording to IEC 61850-8-1

 type APDU is

 record

 gocbRef : byte_array(integer range 0 to 31); -- field - 0x80 | Length | VISIBLE STRING129

|-

 timeAllowedtoLive: byte_array(integer range 1 to 6); -- 4 byte field - 0x81 | Length | Time in ms

 datSet : byte_array(integer range 0 to 30); -- field - 0x82 | Length | VISIBLE STRING64 |-

 goID : byte_array(integer range 0 to 15); -- field - 0x83 | Length | VISIBLE STRING64 |-

 t : byte_array(integer range 1 to 10); -- 10 byte field - 0x84 | 0x08 | TIMESTAMP UTC |-

 stNum : byte_array (integer range 1 to 6); -- 3 byte field - 0x85 | Length | Status Number

 sqNum : byte_array (integer range 1 to 6); -- 3 byte field - 0x86 | Length | Sequence Number

 test : byte_array (integer range 1 to 3); -- 3 byte field - 0x87 | Length | TEST CASE :

TRUE/FALSE

 confRev : byte_array(integer range 1 to 6); -- 3 byte field - 0x88 | Length | Configuration Revision

 ndsCom : byte_array (integer range 1 to 3); -- 3 byte field - 0x89 | Length | Needs Comm TRUE/FALSE

226

 numDataSetEntries : byte_array(integer range 1 to 3); -- 3 byte field - 0x8A | Length | Num of DATASET entries

 allData : byte_array(integer range 1 to 12);

 end record APDU;

 function Calc_VOLTS (signal Sample : in std_logic_vector(23 downto 0)) return unsigned;

 function unsigned_sqrt (d : UNSIGNED) return UNSIGNED;

end ethernet_frame;

package body ethernet_frame is

 --

 -- Calculate Volts sample value using 24 bit input, Ref (Maximum Defelction), input current

 function Calc_VOLTS (signal Sample : in std_logic_vector(23 downto 0)) return unsigned is

 variable TVTR : unsigned(31 downto 0);

 variable signedVal : signed(23 downto 0);

 variable Ref, tvtr_mag,inTVTR, sqVolt : float(8 downto -23);

 begin

 signedVal := signed(Sample);

 inTVTR := to_float(signedVal, inTVTR);

-- Ref := to_float(0.00147536272, Ref); -- (Voltage)/Max_Pos_Deflection

(12376.23804V/8388607) 12376.23804 V is the maximum voltage

 Ref := to_float(0.00146151345, Ref);

 tvtr_mag := inTVTR * Ref; -- calculate feeder current

 sqVolt := tvtr_mag * tvtr_mag;

 TVTR := to_unsigned(sqVolt, 32); -- return the scaled value

 return TVTR;

 end Calc_VOLTS;

 -- Calculate the square root of an 32 bit unsigned value and return a 16 bit value

 function unsigned_sqrt (d : UNSIGNED) return UNSIGNED is

 variable a : unsigned(31 downto 0):= d; --original input.

 variable q : unsigned(15 downto 0):=(others => '0'); --result.

 variable left,right,r : unsigned(17 downto 0):=(others => '0'); --input to adder/sub.r-remainder.

 variable i : integer:=0;

 begin

 for i in 0 to 15 loop

 right(0):='1';

 right(1):=r(17);

227

 right(17 downto 2):=q;

 left(1 downto 0):=a(31 downto 30);

 left(17 downto 2):=r(15 downto 0);

 a(31 downto 2):=a(29 downto 0); --shifting by 2 bit.

 if (r(17) = '1') then

 r := left + right;

 else

 r := left - right;

 end if;

 q(15 downto 1) := q(14 downto 0);

 q(0) := not r(17);

 end loop;

 return q;

 end unsigned_sqrt;

end ethernet_frame;

Appendix E.8 Calculations.vhd

library ieee_proposed;

use ieee_proposed.float_pkg.all;

use ieee_proposed.fixed_float_types.all;

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use work.ethernet_frame.all; -- using package

entity Calculations is

 Port (VinA : in STD_LOGIC_VECTOR (23 downto 0);

 SampleCount : in std_logic_vector(11 downto 0);

 VArms : out STD_LOGIC_VECTOR (31 downto 0);

 AnaChange : out std_logic;

 newSample : in std_logic;

 RST : in std_logic;

 clk : in STD_LOGIC);

end Calculations;

architecture Behavioral of Calculations is

 signal VRMS : unsigned(47 downto 0);

228

 signal prevVRMS : signed(15 downto 0);

 signal newRMS : std_logic := '0';

 signal SumVolt : signed(31 downto 0) := x"00000000";

 signal calc_RMS : std_logic := '0';

 signal ValueChange : std_logic := '0';

 signal Root : std_logic_vector(15 downto 0);

 begin

 --

 -- Trigger message publishing when the dead bad is exceeded

 --

 ANALOG_CHANGE : process(clk, ValueChange, Root)

 variable db : signed(15 downto 0);

 variable diff : signed(15 downto 0);

 variable vrms : signed(15 downto 0);

 begin

 if clk = '1' and clk'event then

 AnaChange <= '0';

 if ValueChange = '1' then

 db := x"000A"; -- set deadband to 20V

 vrms := signed(Root);

 prevVRMS <= vrms;

 diff := abs(vrms - prevVRMS);

 if diff > db then -- dead band violated

 AnaChange <= '1'; -- signal the change in the Analogue signal

 VArms(15 downto 0) <= Root(15 downto 0); -- only assign whn deadband violated

 end if;

 end if;

 end if;

 end process;

 -- SQ_VOLT_CALC

 -- calculate the mean square voltage using ADC code over a full cycle

 SQ_VOLT_CALC : process(clk, newSample, VinA, SampleCount)

 variable ordinates, Vin_sq : unsigned(31 downto 0) := x"00000000";

 variable Sum_VinSq : unsigned(47 downto 0) := x"000000000000";

 begin

 if clk = '1' and clk'event then

 newRMS <= '0';

229

 if newSample = '1' then -- only calculate the square of the input voltage whenever a new sample

is received

 ordinates := ordinates + 1; -- count number of ordinates for the mean square value

 Vin_sq := Calc_VOLTS(VinA);

 Sum_VinSq := Sum_VinSq + Vin_sq;

 if ordinates = x"00000F9F" then -- if this is the last sample of the cycle 0-3999

 newRMS <= '1';

 VRMS <= Sum_VinSq/ordinates;

 Sum_VinSq := x"000000000000";

 ordinates := x"00000000"; -- clear the variables and calculate the rms value

 end if;

 end if;

 end if;

 end process;

 --

 -- Calculate the square root of the mean square value

 RET_RMS : process(clk, newRMS, VRMS)

 variable tempVal : unsigned(15 downto 0);

 begin

 if clk = '1' and clk'event then

 ValueChange <= '0';

 if newRMS = '1' then

 tempVal := unsigned_sqrt(VRMS(31 downto 0));

 Root <= std_logic_vector(tempVal);

 ValueChange <= '1';

 end if;

 end if;

 end process;

end Behavioral;

Appendix E.9 ethcrc32.vhd

--

--This file defines an entity that compute a CRC for 802.3 procotol

--The computation is done by group of 8 bits.

--The reset is asynchronous.

--Computation are synchronous to clk and enabled when 'en' equals 1

230

--data_in is an 8bits input port for data to consider for a crc computation

--is_msb equals '1' indicates that data_in need to be reverted (msb to lsb) before computation.

--

--IMPORTANT :

--To be used in a real Ethernet case, user must take considerations

--which are:

--1) The four first byte must be Ones' complemented

--2) data_in only considers some fields (ie not the preamble nor the SFD, see norm)

--3) data_in must be given in the same sens than transmission:

-- * LSB first for data

-- * MSB first for CRC in the case of reception

-- * ALL zero for CRC in the case of transmission

--4a) crc_out must be complemented before transmission

--4b) received crc must be complemented before given to data_in for

-- error checking in reception

--5) In the case of error checking in reception, if the received frame is correct

-- crc_out equals x"00000000"

--

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity ethcrc32 is

 port (clk: in STD_LOGIC; -- Input clock

 rst: in STD_LOGIC; -- Asynchronous reset

 en : in STD_LOGIC; -- Assert to compute calculations

 is_msb: in STD_LOGIC; -- Assert to indicate the sens of data_in

 data_in: in STD_LOGIC_VECTOR(7 downto 0); -- Data to compute

 crc_out: out STD_LOGIC_VECTOR (31 downto 0) -- CRC output

);

end ethcrc32;

--

architecture nano of ethcrc32 is

-- The Generator polynomial is

-- 32 26 23 22 16 12 11 10 8 7 5 4 2

-- x + x + x + x + x + x + x + x + x + x + x + x + x + x + 1

constant GENERATOR : STD_LOGIC_VECTOR := X"04C11DB7";

begin

 process (clk,rst) is

 variable crc_buf : STD_LOGIC_VECTOR (31 downto 0):=x"00000000";

 begin

231

 if rst = '1' then -- reset signals to values

 crc_buf := (others => '0');

 elsif rising_edge(clk) then -- operate on positive edge

 if (en='1') then

 if is_msb='1' then

 for I in data_in'reverse_range loop

 crc_buf := (crc_buf(30 downto 0) & data_in(I)) XOR (GENERATOR AND (0 to 31=>crc_buf(31)));

 end loop;

 else

 for I in data_in'range loop

 crc_buf := (crc_buf(30 downto 0) & data_in(I)) XOR (GENERATOR AND (0 to 31=>crc_buf(31)));

 end loop;

 end if;

 end if;

 end if;

 crc_out<=crc_buf;

 end process;

end nano;

232

APPENDIX F. IEC 61850-9-2LE SV message mapping VHDL module

Appendix F.1 hello_eth.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

use work.ethernet_frame.all; -- using package

entity hello_eth is

 Port (-- General purpose ports

 RST : in std_logic;

 NUM : in STD_LOGIC_VECTOR(7 downto 0);

 --PHY ports

 --General purpose

 MDIO : inout std_logic;

 MDC : out std_logic;

 RESETN : out std_logic;

 COL : in std_logic;

 CRS : in std_logic;

 --TX

 TXD :out std_logic_vector (3 downto 0);

 TXER : out std_logic;

 TXEN: out std_logic;

 TXCLK : in STD_LOGIC;

 -- Samples

 sampleCTVT : in std_logic_vector(215 downto 0);

 SampleCnt : in std_logic_vector(11 downto 0);

 --RX

 RXD : in std_logic_vector (3 downto 0);

 RXER : in std_logic;

 RXDV : in std_logic;

 RXCLK : in std_logic;

 clk : in std_logic);

end hello_eth;

233

architecture Behavioral of hello_eth is

 --Constants and type

-- Type possible_state is (Idle,Receiving,Decoding_crc,Transmitting);

Type possible_state is (Idle,Transmitting);

 --Components

 component ethcrc32 is

 port (clk : in std_logic;

 rst : in std_logic;

 en : in std_logic;

 is_msb : in std_logic;

 data_in : in std_logic_vector (7 downto 0);

 crc_out : out std_logic_vector (31 downto 0));

 end component;

 component mac2phy4IR is

 Port (

 -- General purpose ports

 RSTN : in std_logic;

 --PHY ports

 --General purpose

 MDIO : inout std_logic;

 MDC : out std_logic;

 RESETN : out std_logic;

 COL : in std_logic;

 CRS : in std_logic;

 --TX

 TXD :out std_logic_vector (3 downto 0);

 TXER : out std_logic;

 TXEN: out std_logic;

 TXCLK : in STD_LOGIC;

 --RX

 RXD : in std_logic_vector (3 downto 0);

 RXER : in std_logic;

 RXDV : in std_logic;

 RXCLK : in std_logic;

 --MAC Ports

 --General purpose

 COLLISION: out std_logic;

234

 CARRIER: out std_logic;

 CLK : out std_logic;

 --TX

 TDATA: in std_logic_vector (7 downto 0);

 TXVALID: in std_logic;

 --RX

 RDATA : out std_logic_vector (7 downto 0);

 RXVALID: out std_logic);

 end component;

 --GP signals

 signal sv_frame : byte_array(0 to 70) :=(others=>x"00"); -- my frame;

 signal not_reset: std_logic:='1';

 signal local_clk: std_logic:='0';

 --Counter of transmitted/received bytes

 signal byte_num: integer range 0 to 150 := 0; -- Maximum length of Ethernet frame is 1521

 --Keep the state of the entity

 signal state, succ_state : possible_state:=Idle;

 --Shit register to bufferize the received data for crc computation purpose

-- signal data_received : byte_array(3 downto 0):=(others=>x"00");

 --Received frame counter

-- signal nb_received_frame: integer range 0 to 15 :=0;

-- signal nb_error_frame: integer range 0 to 15 :=0;

 signal enter_deb : std_logic := '0';

 signal trans_klaar, trans_done : std_logic := '0'; -- done transmitting data

 signal svEnable : std_logic := '0';

 signal asdu_attr : std_logic_vector(0 to 2) := b"000";

 type state_machine is (setup, sampling, readSVCB, Transmission);

 signal curr_state, next_state : state_machine := setup; -- state machine variables

 signal byteCnt : integer := 0;

 signal sample : std_logic := '0'; -- these flag used when setting

up Record at start up

 signal no_asdu : integer range 0 to 2 := 0; -- asdu counters (maximum number of ASDU is

8)

-- signal NumSampleCycle : integer range 0 to 10000 := 0; -- Number of samples in a seconds

 signal apdu : APDU;

 signal enter_rise : std_logic := '0';

235

 signal sample_rise : std_logic := '0';

 signal transmit_rise : std_logic := '0';

 signal transmit : std_logic := '0';

-- signal COUNT_VAL :integer range 0 to 500000 := 0;

 signal ASDU_START_INDEX, SampleIndex: integer range 0 to 100 := 0; -- ASDU starts at 26 + number of

bytes for (savPDU, noASDU and seqASDUs)

 signal len_svpacket, count : integer range 0 to 150:= 0; -- maximum length of Ethernet packet (IEC 61850-9-2)

 -- Constants ---------------------------------

 constant PREAMBLE_SOF_LEN : integer := 8; -- total combined length of preamble and SOF

 constant SAV_CDC_SIZE : integer := 64; -- SAV CDC made up of 64 bytes

 constant NO_ASDUS : integer := 1; -- Integer made up of 4 bytes

 constant DEST_ADDRESS: byte_array (0 to 5) := (x"01", x"0C", x"CD", x"04", x"00", x"01");

-- IEC 61850-9-2 MAC Addresses defined by IEEE

 constant SOURCE_ADDRESS: byte_array (0 to 5) := (x"00", x"00", x"0A", x"0A", x"01", x"01");

 constant IEEE_VLANtag: byte_array (0 to 3) := (x"81", x"00", x"80", x"00"); -- Constant declaration of VLAN Tag

 constant IEEE_ETHERTYPE: byte_array (0 to 1) := (x"88", x"BA"); -- Constant declaration of the Ethertype

 constant IEEE_APPID: byte_array (0 to 1) := (x"40", x"00"); -- Constant declaration of the Ethertype

 constant SV_ID: byte_array (0 to 16) :=

(x"4E",x"63",x"75",x"62",x"65",x"5F",x"4D",x"55",x"63",x"70",x"75",x"74",x"30",x"30",x"30",x"31",x"00"); -- svID is

Ncube_MUcput0001\0

 --crc_core signals

 signal crc: byte_array(0 to 3):=(others=>x"00");

 signal crc_crc_out: std_logic_vector(31 downto 0);

 signal crc_data_in : std_logic_vector(7 downto 0):=x"00";

 signal crc_en: std_logic:='0';

 signal crc_is_msb: std_logic:='1';

 signal crc_rst: std_logic:='1';

 signal crc_clk: std_logic:='0';

 -- sample values per channel

 signal TCTRA, TCTRB, TCTRC, TCTRN, TVTRA, TVTRB, TVTRC, TVTRN : std_logic_vector(31 downto 0):=x"00000000";-- CDC

Values

 signal qualTCTRA, qualTCTRB, qualTCTRC, qualTCTRN, qualTVTRA, qualTVTRB, qualTVTRC, qualTVTRN : std_logic_vector(15

downto 0);

 signal cdcSamples : byte_array(0 to 63); -- data for all the 8 channels

 --mac2phy4IR signals

 signal m2p_COLLISION: STD_LOGIC;

 signal m2p_CARRIER: STD_LOGIC;

 signal m2p_CLK : STD_LOGIC;

236

 signal m2p_TDATA: STD_LOGIC_VECTOR (7 downto 0):=x"00";

 signal m2p_TXVALID: STD_LOGIC:='0';

 signal m2p_RDATA : STD_LOGIC_VECTOR (7 downto 0);

 signal m2p_RXVALID: STD_LOGIC;

 signal smpCount : std_logic_vector(11 downto 0);

 signal setup_Complete : std_logic := '0';

 component sigSynchronizer is

 Port (clk : in STD_LOGIC;

 enter : in STD_LOGIC;

 transmit : in STD_LOGIC;

 sample : in STD_LOGIC;

 trans_klaar : in STD_LOGIC;

 transmit_rise : out STD_LOGIC;

 sample_rise : out STD_LOGIC;

 enter_rise : out STD_LOGIC;

 trans_done : out STD_LOGIC;

 RST : in STD_LOGIC);

 end component;

begin

 -- synchronizer module instantiation --

 synchronizer : sigSynchronizer port map (clk => clk,

 enter => setup_Complete,

 transmit => transmit,

 sample => sample,

 trans_klaar => trans_klaar,

 transmit_rise => transmit_rise,

 sample_rise => sample_rise,

 enter_rise => enter_rise,

 trans_done => trans_done,

 RST => RST);

 -- Component instantiation

 crc_core : ethcrc32 port map (crc_clk,crc_rst,crc_en,crc_is_msb,crc_data_in,crc_crc_out);

 m2p : mac2phy4IR port map(not_reset,MDIO,MDC,RESETN,COL,CRS,

 TXD,TXER,TXEN,TXCLK,

 RXD,RXER,RXDV,RXCLK,

 m2p_COLLISION,m2p_CARRIER,m2p_CLK,m2p_TDATA,m2p_TXVALID,

237

 m2p_RDATA,m2p_RXVALID);

 --Trivial mapping

 not_reset<=not rst;

 local_clk<=m2p_CLK;

 crc(0)<= crc_crc_out(31 downto 24);

 crc(1)<= crc_crc_out(23 downto 16);

 crc(2)<= crc_crc_out(15 downto 8);

 crc(3)<= crc_crc_out(7 downto 0);

 --

-- driven signals

-- fsm_init

-- next_state

-- state

-- input signals

-- curr_state

-- sample

 SYNC_FSM : process (clk, RST, next_state, succ_state)

 begin

-- curr_state <= curr_state; infers a latch

 if(RST = '1') then

 curr_state <= setup; -- go to reset state on RST rising edge

 state <= Idle;

 elsif clk = '1' and clk'event then -- state transitions happen at rising edge of the clock

 curr_state <= next_state;

 state <= succ_state; -- go to the next state

 end if;

 end process SYNC_FSM;

 FSM : process(enter_rise, curr_state, trans_done , RST , clk, transmit_rise, svEnable)

 begin

 case (curr_state) is

 when setup =>

 next_state <= setup; -- stay on setup state

 if enter_rise = '1' then

 next_state <= readSVCB; -- on rising edge of ENTER go to sampling state

238

 end if;

 when readSVCB => -- when reading the sampled value control block

 next_state <= readSVCB;

 if svEnable = '1' then -- if the control block has been set then continue

 next_state <= sampling; -- start sampling data

 end if;

 when sampling =>

 next_state <= sampling; -- default value of next state in the Samplimg State

 if transmit_rise = '1' then -- start transmitting data as soon as it is copied onto the frame

 next_state <= Transmission;

 end if;

 when Transmission =>

 next_state <= Transmission; -- stay on setup state

 if trans_done = '1' then

 next_state <= sampling; -- if transmission is complete then shift the ASDUs asdu(n) = asdu(n-1)

 end if;

 end case;

 end process FSM;

--

-- Finite state machine

-- this is the main FSM for the packing algorithm, this FSM executes the following steps

-- 1. begins bulding the header of ISO/MAC 8802-3 frame (MAC dest and source address, VLAN tag, length

-- 2. builds a record to store the SV APDU

-- 3. copies the record into the sv_frame buffer to begin tranmission and waits in the sampling state

-- 4. When new samples are received the FSM moves to the transmit state and pushes out the ethernet frame to the PHY

-- 5. After transmission FSM goes back to the sampling state and waits for new messages

--

FSM_OUTPUT : process (clk, RST, curr_state, sample_rise, trans_done, transmit_rise, no_asdu)

 variable conv_int : std_logic_vector(0 to 31) := x"00000000";

-- temporary array to hold converted integer

 variable index : integer range 0 to 150 := 0;

 -- ASDU handling signals

 variable asdu_asdu_offset : integer range 0 to 150 := 0;

 variable len_seqASDUs : integer range 0 to 150 := 0; -- length of the seqASDUs

 variable len_savPDU :integer range 0 to 150 := 0; -- length of savPDU

 variable len_apdu : integer range 0 to 150 := 0; -- total length of the APDU

 variable len_IEE802 : integer range 0 to 150 := 0; -- length of the Ethernet frame

239

 variable len_seqASDUn : integer range 0 to 150 := 0; -- length of seqASDU(n)

 variable tempIndex : integer range 0 to 150 := 0; -- length of seqASDU(n)

-- variable SmpCnt : integer := 0; -- sample count variable

 variable cdc_index : integer := 0;

 begin

 if(RST = '1') then

 sv_frame(0 to 70) <= (others=>x"00"); -- default all sv_frame bytes to x"00"

 succ_state <= Idle; -- Do not transmit any data (wait state)

 no_asdu <= 0;

 svEnable <= '0';

 count <= 0;

 index := 0;

 len_svpacket <= 0;

 tempIndex := 0;

 transmit <= '0'; -- start transmit of the frame

 asdu_attr <= b"000";

 byteCnt <= 0; -- reset all signals on RST

number of SV packets per cycle/second

 elsif clk = '1' and clk'event then -- state transitions happen at rising edge of the

clock

 succ_state <= Idle; -- Transmission FSM defaults at Idle state

 svEnable <= '1'; -- default vale for svEnable

 transmit <= '0'; -- start transmit of the frame

 setup_Complete <= '0';

 case (curr_state) is

 when setup =>

 svEnable <= '0';

 no_asdu <= 0;

-- asdu <= 0; -- force these variables to start from

0

 -- Calculate lengths

 cdc_index := 15 + (SV_ID'right+1) + 2; -- sample index

 len_seqASDUn := SAV_CDC_SIZE + 15 + (SV_ID'right+1) + 2; -- calculation of length of

seqASDU(n)

 --seqASDUs

 len_seqASDUs := asdu_asdu_offset * NO_ASDUS; -- length of all ASDUs

 --savPDU

 len_savPDU := len_seqASDUs + 5;

 cdc_index := cdc_index + 5;

 len_apdu := len_savPDU + 2; -- 1 byte representation

240

 cdc_index := cdc_index + 2;

 len_IEE802 := len_apdu + 8; -- total length of the IEC 802.3 frame

 len_svpacket <= len_apdu + 25;

 cdc_index := cdc_index + 26; -- this where the cdc samples start

 for i in 0 to 5 loop

 sv_frame(i) <= DEST_ADDRESS(i); -- Destination MAC address

 sv_frame(6 + i) <= SOURCE_ADDRESS(i); -- Source address (MAC Add of the device)

 end loop;

 for i in 0 to 3 loop

 sv_frame(12 + i) <= IEEE_VLANtag(i); -- Copy data to frame

 end loop;

 for i in 0 to 1 loop

 sv_frame(16 + i) <= IEEE_ETHERTYPE(i); -- IEC 61850 ether-type

 sv_frame(18 + i) <= IEEE_APPID(i); -- SV packets APP ID

 end loop;

 conv_int := std_logic_vector(to_signed(len_IEE802, 32));

 sv_frame(20) <= conv_int(16 to 23);

 sv_frame(21) <= conv_int(24 to 31); -- Frame length

 --

 -- Copy constants into the Record according to ASN.1

 --

 apdu.savAPDU(0) <= x"60"; -- savAPDU tag value

 apdu.noASDU(0) <= x"80"; -- No of ASDU tag

 apdu.noASDU(1) <= x"01"; -- 1 byte values field

 apdu.noASDU(2) <= x"01"; -- 8 ASDU in an APDU

 apdu.seqofASDU(0) <= x"A2";

 -- Start of APDU

 -- savPDU

 conv_int := std_logic_vector(to_unsigned(len_savPDU, 32));

 tempIndex := 27; -- start of temp Index after savPDU tag

 sv_frame(26) <= x"60";

 -- noASDU

-- conv_int := std_logic_vector(to_signed(NO_ASDUS, 32));

 sv_frame(tempIndex) <= x"80";

 sv_frame(tempIndex + 1) <= x"01";

241

 sv_frame(tempIndex + 2) <= x"01"; -- number of ASDUS in the message

 tempIndex := tempIndex + 3; -- skip to appropriate index

 --seqofASDUs

 conv_int := std_logic_vector(to_signed(len_seqASDUs, 32));

 sv_frame(tempIndex) <= x"A2";

 tempIndex := tempIndex + 1;

 ASDU_START_INDEX <= tempIndex; -- store the ASDU start address

 SampleIndex <= cdc_index;

 apdu.asdu.seqASDU(0) <= x"30"; -- sequence of ASDU tag 0x30

 conv_int := std_logic_vector(to_signed(len_seqASDUn, 32)); -- convert integer value

(len_seqASDUn)

 apdu.asdu.seqASDU(1) <= x"62"; -- length of sequence of ASDUs

 -- svID Data

 apdu.asdu.svID(0) <= x"80"; -- svID tag 0x80

 conv_int := std_logic_vector(to_signed(SV_ID'right + 1, 32)); -- get the length of svID

 apdu.asdu.svID(1) <= conv_int(24 to 31); -- assign the length of the array as the svID

length --

 for i in 0 to SV_ID'right loop -- copy sample to Record

 apdu.asdu.svID(i + 2) <= SV_ID(i); -- copy the latest time stamp the structure

 end loop;

 -- smpCnt

 apdu.asdu.smpCnt(0) <= x"82"; -- sample count TAG

 apdu.asdu.smpCnt(1) <= x"02"; -- sample count 2 bytes long

 apdu.asdu.smpCnt(2) <= x"00";

 apdu.asdu.smpCnt(3) <= x"00";

 -- confRev

 apdu.asdu.confRev(0) <= x"83"; -- configuration revision TAG

 apdu.asdu.confRev(1) <= x"04"; -- configuration revision length (INTEGER)

 apdu.asdu.confRev(2) <= x"00"; -- initial ConfRev 0

 apdu.asdu.confRev(3) <= x"00";

 apdu.asdu.confRev(4) <= x"01";

 apdu.asdu.confRev(5) <= x"01";

 --smpSynch

 apdu.asdu.smpSynch(0) <= x"85"; -- synchronized samples TAG

 apdu.asdu.smpSynch(1) <= x"01"; -- synchronized samples Length (BOOLEAN)

 apdu.asdu.smpSynch(2) <= x"00"; -- FALSE -- sample not synchronised

 --samples

 apdu.asdu.seqData(0) <= x"87"; -- start of data values

 apdu.asdu.seqData(1) <= x"40";

242

 setup_Complete <= '1';

 when readSVCB =>

 svEnable <= '0';

 succ_state <= Idle; -- stay on the transmission Idle state until we have set up the SVCB

-- if asdu < NO_ASDU then

--

-- asdu <= asdu + 1;

-- end if;

-- if asdu = NO_ASDU then

 if no_asdu < NO_ASDUS then

-- index := (no_asdu * asdu_asdu_offset) + ASDU_START_INDEX + count;

 index := ASDU_START_INDEX + count; -- start index value

 case (asdu_attr) is

 -- seqASDUS --

 when b"000" =>

 asdu_attr <= b"000"; -- stay

 if byteCnt < apdu.asdu.seqASDU'right + 1 then

 sv_frame(index) <= apdu.asdu.seqASDU(byteCnt); -- REMOVE index + count

 byteCnt <= byteCnt + 1; -- count number of bytes

 count <= count + 1;

 else

 byteCnt <= 0;

 asdu_attr <= b"001"; -- handle next attribute

 end if;

 -- svID ---

 when b"001" =>

 asdu_attr <= b"001"; -- stay

 if byteCnt < SV_ID'right + 3 then

 sv_frame(index) <= apdu.asdu.svID(byteCnt);

 byteCnt <= byteCnt + 1; -- count number of bytes

 count <= count + 1;

 else

 byteCnt <= 0;

 asdu_attr <= b"010"; -- handle next attribute

 end if;

 -- smpCnt --

 when b"010" =>

 asdu_attr <= b"010"; -- stay

 if byteCnt < apdu.asdu.SmpCnt'right + 1 then

 sv_frame(index) <= apdu.asdu.SmpCnt(byteCnt);

243

 byteCnt <= byteCnt + 1; -- count number of bytes

 count <= count + 1;

 else

 byteCnt <= 0;

 asdu_attr <= b"011"; -- handle next attribute

 end if;

 -- confRev --

 when b"011" =>

 asdu_attr <= b"011"; -- stay

 if byteCnt < apdu.asdu.confRev'right + 1 then

 sv_frame(index) <= apdu.asdu.confRev(byteCnt);

 byteCnt <= byteCnt + 1; -- count number of bytes

 count <= count + 1;

 else

 byteCnt <= 0;

 asdu_attr <= b"100"; -- handle next attribute

 end if;

 -- smpSynch ---

 when b"100" =>

 asdu_attr <= b"100"; -- stay

 if byteCnt < apdu.asdu.smpSynch'right + 1 then

 sv_frame(index) <= apdu.asdu.smpSynch(byteCnt);

 byteCnt <= byteCnt + 1; -- count number of bytes

 count <= count + 1;

 else

 byteCnt <= 0;

 asdu_attr <= b"101"; -- handle next attribute

 end if;

 -- seqData ---

 when b"101" =>

 asdu_attr <= b"101"; -- stay

 if byteCnt < apdu.asdu.seqData'right + 1 then

 sv_frame(index) <= apdu.asdu.seqData(byteCnt);

 byteCnt <= byteCnt + 1; -- count number of bytes

 count <= count + 1;

 else

 byteCnt <= 0;

 asdu_attr <= b"110"; -- handle next attribute

 end if;

 -- allData --

 when b"110" => -- if the ASDU attribute is 110 or something not defined

244

 byteCnt <= 0;

 asdu_attr <= b"000";

 count <= 0; -- go to the next index when starting off with the next ASDU

 no_asdu <= no_asdu + 1;

 when others =>

 byteCnt <= 0;

 asdu_attr <= b"000";

 count <= 0; -- go to the next index when starting off with the next ASDU

-- clear that so that it starts from0 for new ASDU data

 no_asdu <= no_asdu + 1;

 end case;

 end if;

 if no_asdu = NO_ASDUS then

 svEnable <= '1'; -- SV enabled

 end if;

-- end if;

 when sampling =>

 transmit <= '0'; -- start transmit of the frame

 if sample_rise = '1' then

 sv_frame(cdc_index - 12) <= SampleCnt(7 downto 0);

 sv_frame(cdc_index - 13)(3 downto 0) <= SampleCnt(11 downto 8); -- Phase N quality

 succ_state <= Transmitting; -- move to Transmission state (MAC)

 transmit <= '1'; -- start transmit of the frame

 end if;

 when Transmission =>

 succ_state <= Transmitting; -- stay on the Transmitting State (MAC)

 if trans_done = '1' then -- at the end of the transmission cycle go back to the Idle state

 succ_state <= Idle; -- MAC idle state

 end if;

 end case;

 end if;

 end process FSM_OUTPUT;

 -- This process copied the calculated samples into the cdcsample buffer for transmission

COLLECT_SAMPLES : process (TCTRA, TCTRB, TCTRC, TCTRN, TVTRA, TVTRB, TVTRC, TVTRN, transmit_rise)

 begin

 if RST = '1' then

 cdcSamples(0 to 63) <= (others=>x"00");

 end if;

245

 if clk = '1' and clk'event then

 if transmit_rise = '1' then

 -------------- TCTRA --

 cdcSamples(0) <= TCTRA(31 downto 24); --TCTRA(31 downto 24);

 cdcSamples(1) <= TCTRA(23 downto 16);

 cdcSamples(2) <= TCTRA(15 downto 8);

 cdcSamples(3) <= TCTRA(7 downto 0); -- Current Values for Phase A

 cdcSamples(4) <= sampleCTVT(215 downto 208);

 cdcSamples(5) <= sampleCTVT(207 downto 200);

 cdcSamples(6) <= sampleCTVT(199 downto 192);

-- cdcSamples(6) <= qualTCTRA(15 downto 8);

-- cdcSamples(7) <= qualTCTRA(7 downto 0); -- Phase A quality

 -------------- TCTRB --

 cdcSamples(8) <= TCTRB(31 downto 24);

 cdcSamples(9) <= TCTRB(23 downto 16);

 cdcSamples(10) <= TCTRB(15 downto 8);

 cdcSamples(11) <= TCTRB(7 downto 0); -- Current Values for Phase B

 cdcSamples(14) <= qualTCTRB(15 downto 8);

 cdcSamples(15) <= qualTCTRB(7 downto 0); -- Phase B quality

 -------------- TCTRC --

 cdcSamples(16) <= TCTRC(31 downto 24);

 cdcSamples(17) <= TCTRC(23 downto 16);

 cdcSamples(18) <= TCTRC(15 downto 8);

 cdcSamples(19) <= TCTRC(7 downto 0); -- Current Values for Phase C

 cdcSamples(22) <= qualTCTRC(15 downto 8);

 cdcSamples(23) <= qualTCTRC(7 downto 0); -- Phase C quality

 -------------- TCTRN --

-- cdcSamples(24) <= TCTRN(31 downto 24);

-- cdcSamples(25) <= TCTRN(23 downto 16);

-- cdcSamples(26) <= TCTRN(15 downto 8);

-- cdcSamples(27) <= TCTRN(7 downto 0); -- Current Values for Phase N current

 -- cdcSamples(28) <= qualTCTRN(31 downto 24);

246

 -- cdcSamples(29) <= qualTCTRN(23 downto 16);

 -- cdcSamples(30) <= qualTCTRN(15 downto 8);

 -- cdcSamples(31) <= qualTCTRN(7 downto 0); -- Phase N quality

 --

 -------------- TVTRA --

 cdcSamples(32) <= TVTRA(31 downto 24);

 cdcSamples(33) <= TVTRA(23 downto 16);

 cdcSamples(34) <= TVTRA(15 downto 8);

 cdcSamples(35) <= TVTRA(7 downto 0); -- Voltage Values for Phase N

 cdcSamples(38) <= qualTVTRA(15 downto 8);

 cdcSamples(39) <= qualTVTRA(7 downto 0); -- Phase A quality

 -------------- TVTRB --

 cdcSamples(40) <= TVTRB(31 downto 24);

 cdcSamples(41) <= TVTRB(23 downto 16);

 cdcSamples(42) <= TVTRB(15 downto 8);

 cdcSamples(43) <= TVTRB(7 downto 0); -- Voltage Values for Phase B

 cdcSamples(46) <= qualTVTRB(15 downto 8);

 cdcSamples(47) <= qualTVTRB(7 downto 0); -- Phase B quality

 -------------- TVTRC --

 cdcSamples(48) <= TVTRC(31 downto 24);

 cdcSamples(49) <= TVTRC(23 downto 16);

 cdcSamples(50) <= TVTRC(15 downto 8);

 cdcSamples(51) <= TVTRC(7 downto 0); -- Voltage Values for Phase C

 cdcSamples(54) <= qualTVTRC(15 downto 8);

 cdcSamples(55) <= qualTVTRC(7 downto 0); -- Phase C quality

 -------------- TVTRN --

-- cdcSamples(56) <= TVTRN(31 downto 24);

-- cdcSamples(57) <= TVTRN(23 downto 16);

-- cdcSamples(58) <= TVTRN(15 downto 8);

-- cdcSamples(59) <= TVTRN(7 downto 0); -- Voltage Values for Phase N

--

247

 -- cdcSamples(60) <= qualTVTRN(31 downto 24);

 -- cdcSamples(61) <= qualTVTRN(23 downto 16);

 -- cdcSamples(62)(3 downto 0) <= SampleCnt(11 downto 8); -- Phase N quality

 -- cdcSamples(63) <= SampleCnt(7 downto 0);

 end if;

 end if;

 end process COLLECT_SAMPLES;

 -- This process calculates the current sample value of the input from the ADC(AFE)

 -- using this formula

 --

 -- Sample = (Input (24 bit) / 0x7FFFFF) * Current / Voltage

 --

 --

 CALC_SAMPLES : process (clk, sample_rise)

 begin

 if RST = '1' then

 TCTRA <= x"00000000";

 TCTRB <= x"00000000";

 TCTRC <= x"00000000";

 TCTRN <= x"00000000";

 TVTRA <= x"00000000";

 TVTRB <= x"00000000";

 TVTRC <= x"00000000";

 TVTRN <= x"00000000";

 elsif clk = '1' and clk'event then

 if sample_rise = '1' then

 -- TCTRN(31 downto 0) <= Calc_AMPS(sampleCTVT(23 downto 0)); -- channel 8

 -- TCTRC(31 downto 0) <= Calc_AMPS(sampleCTVT(47 downto 24)); -- channel 7

 TCTRB(31 downto 0) <= Calc_AMPS(sampleCTVT(71 downto 48)); -- channel 6

 TCTRA(31 downto 0) <= Calc_AMPS(sampleCTVT(95 downto 72));

 -- TVTRN(31 downto 0) <= Calc_VOLTS(sampleCTVT(119 downto 96)); -- channel 4

 -- TVTRC(31 downto 0) <= Calc_VOLTS(sampleCTVT(143 downto 120)); -- channel 3

 TVTRB(31 downto 0) <= Calc_VOLTS(sampleCTVT(167 downto 144)); -- channel 2

 TVTRA(31 downto 0) <= Calc_VOLTS(sampleCTVT(191 downto 168)); -- channel 1

 end if;

 end if;

 end process;

248

 -- Process detects a change in the input signals from the AFE and generates

 -- sample signal to force the publisher to the transmit state

 -- on LOW-HIGH transition of sample signal sample values are generated

 --

 MAP_SV : process(SampleCnt, RST)

 variable curr_cnt, prevVal : signed(11 downto 0) := b"000000000000";

 begin

 if RST = '1' then

 curr_cnt := b"000000000000";

 prevVal := b"000000000000";

 sample <= '0';

 elsif clk = '1' and clk'event then -- synchronous

 curr_cnt := signed(SampleCnt);

 prevVal := signed(smpCount);

 smpCount(11 downto 0) <= SampleCnt(11 downto 0);

 sample <= '0';

 if curr_cnt /= prevVal then

 sample <= '1';

 end if;

 end if;

 end process;

end Behavioral;

Appendix F.2 MAC2PHY4IR.vhd

--

--This file defines an entity that simplifies the MII interface

--with an Ethernet Physical layer. It particularly fits with the

--Nexys3 development board from Digilent.

--The entity have several types of ports:

--General purposes (RSTN)

--Physical ports to manage the communication with the MII Interface on

--the physical layer side

--Mac ports to communicate with MAC layer

--

--IMPORTANT:

--Because the physical interface has two clocks domains (RXCLK, TXCLK)

--This entity uses a FIFO component specific to the SPARTAN6 FPGA of NEXYS3 board

249

--As a result, the entity provide only one clock signal (CLK) to the mac layer.

--MAC PORTS/INTERFACE COMMUNICATION:

-- COLLISION is set to '1' by the entity when the PHY layer has detected a collision

-- CARRIER is set to '1' by the entity when the PHY layer has detected a carrier

-- CLK clock given to the mac layer, based on the TXCLK of the PHY layer (25Mhz)

-- TDATA: 8 bits std_logic_vector that the MAC layer must provide to be transmitted

-- TDATA value must be hold for 80 ns (2 periods clock)

-- TXVALID: A pulse of 40ns (1 period clock) must be hold when valid data is available on TDATA

-- RDATA: 8 bits std_logic_vector that the entity provide to the mac layer

-- its value changes every 40ns (1 period clock). The mac layer must look for

-- the SFD by checking every clock rising edge. Once the SFD is found, the

-- MAC layer only needs to check every two clock rising edges to have a valid value.

-- RXVALID: The entity set this flag to '1' when the receiver is synchronized, (ie) SFD is

-- about to be visible on RDATA.

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity mac2phy4IR is

 Port (

 -- General purpose ports

 RSTN : in STD_LOGIC;

 --PHY ports

 --General purpose

 MDIO : inout STD_LOGIC;

 MDC : out STD_LOGIC;

 RESETN : out STD_LOGIC;

 COL : in STD_LOGIC;

 CRS : in STD_LOGIC;

 --TX

 TXD :out STD_LOGIC_VECTOR (3 downto 0);

 TXER : out STD_LOGIC;

 TXEN: out STD_LOGIC;

 TXCLK : in STD_LOGIC;

 --RX

 RXD : in STD_LOGIC_VECTOR (3 downto 0);

 RXER : in STD_LOGIC;

 RXDV : in STD_LOGIC;

 RXCLK : in STD_LOGIC;

 --MAC Ports

250

 --General purpose

 COLLISION: out STD_LOGIC;

 CARRIER: out std_logic;

 CLK: out STD_LOGIC;

 --TX

 TDATA: in STD_LOGIC_VECTOR (7 downto 0);

 TXVALID: in STD_LOGIC;

 --RX

 RDATA : out STD_LOGIC_VECTOR (7 downto 0);

 RXVALID: out STD_LOGIC);

end mac2phy4IR;

architecture Behavioral of mac2phy4IR is

 signal first_nibble: Boolean :=true;

 signal nTXD : std_logic_vector(3 downto 0) :=(others=>'0');

 signal RXDbuf: std_logic_vector(7 downto 0):=(others=>'0');

 signal noDATA: std_logic:='1';

 signal fifoOUT : std_logic_vector(3 downto 0);

 signal rst : std_logic:='1';

 signal RXen : std_logic:='0';

 component fifo_core is

 Port (

 rst : IN STD_LOGIC;

 wr_clk : IN STD_LOGIC;

 rd_clk : IN STD_LOGIC;

 din : IN STD_LOGIC_VECTOR(3 DOWNTO 0);

 wr_en : IN STD_LOGIC;

 rd_en : IN STD_LOGIC;

 dout : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);

 full : OUT STD_LOGIC;

 empty : OUT STD_LOGIC);

 end component;

begin

 -- General purpose signals

 RESETN<=RSTN;

 COLLISION<=COL;

 CARRIER<=CRS;

 CLK<=TXCLK;

 --Pre cabled signals

251

 MDIO <='1';

 MDC <='0';

 TXER <='0';

 --Rx signals

 RDATA<= RXDbuf;

 RXVALID<=RXDV;

 --fifo signals

 RXen<= not noDATA;

 rst<= not RSTN;

 fifoRX : fifo_core port map (rst,RXCLK,TXCLK,RXD,RXDV,RXen,fifoOUT,open,noDATA); -- positional mapping of

signals in fifo_core to the local signals

 --Interfacing process

 process(TXCLK,RSTN) is begin

 if (RSTN='0') then

 first_nibble<=true;

 TXD<=(others=>'0');

 RXDbuf<= (others=>'0');

 elsif (rising_edge(TXCLK)) then

 RXDbuf<= RXDbuf(3 downto 0) & fifoOUT; -- receive a nibble

 TXEN <= TXVALID;

 if first_nibble and TXVALID='1' then

 TXD<= TDATA(7 downto 4);

 nTXD<= TDATA(3 downto 0);

 first_nibble<=false;

 elsif first_nibble=false then

 TXD<=nTXD;

 first_nibble<=true;

 end if;

 end if;

 end process;

end Behavioral;

Appendix F.3 sigSynchronizer.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

252

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity sigSynchronizer is

 Port (clk : in STD_LOGIC;

 enter : in STD_LOGIC;

 transmit : in STD_LOGIC;

 sample : in STD_LOGIC;

 trans_klaar : in STD_LOGIC;

 transmit_rise : out STD_LOGIC;

 sample_rise : out STD_LOGIC;

 enter_rise : out STD_LOGIC;

 trans_done : out STD_LOGIC;

 RST : in STD_LOGIC);

end sigSynchronizer;

architecture Behavioral of sigSynchronizer is

begin

 --

 -- This process synchronizes the signals to the SYS clock

 SIGNAL_SYNCH : process(clk)

 variable enter_sync : std_logic_vector(1 to 3); -- temp signals for synchronization

 variable transmit_sync : std_logic_vector(1 to 3);

 variable sample_sync : std_logic_vector(1 to 3);

 variable trans_sync : std_logic_vector(1 to 3);

 begin

 if rising_edge(clk) then

 enter_rise <= enter_sync(2) and not enter_sync(3);

 transmit_rise <= transmit_sync(2) and not transmit_sync(3);

 sample_rise <= sample_sync(2) and not sample_sync(3);

 trans_done <= trans_sync(2) and not trans_sync(3);

 enter_sync := enter & enter_sync(1 to 2);

 transmit_sync := transmit & transmit_sync(1 to 2);

 sample_sync := sample & sample_sync(1 to 2);

 trans_sync := trans_klaar & trans_sync(1 to 2);

 end if;

 end process SIGNAL_SYNCH;

 --

253

end Behavioral;

Appendix F.4 ethernet_frame.vhd

-- Package File Template

-- Purpose: This package defines supplemental types, subtypes,

-- constants, and functions

-- To use any of the example code shown below, uncomment the lines and modify as necessary

library ieee_proposed;

use ieee_proposed.float_pkg.all;

use ieee_proposed.fixed_float_types.all;

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use ieee.numeric_std.all;

package ethernet_frame is

 type byte_array is array (integer range <>) of std_logic_vector(7 downto 0);

 -- --

 --Sampled value APDU record

 type ASDU is

 record

 seqASDU : byte_array(integer range 0 to 1); -- Sequence of ASDU (2 bytes) -- 0x30 | ASDU Length |

Length byte

-- svID : byte_array (integer range 0 to 36); -- TAG | Length | Visible string of 35 bytes

 svID : byte_array (integer range 0 to 20); -- TAG | Length | Visible string of 35 bytes

 smpCnt : byte_array (integer range 0 to 3); -- 4 byte value - 0x82 | L | CountH | CountL |-

 confRev : byte_array (integer range 0 to 5); -- 6 byte field - 0x83 | L(0x04)| 4 byte Config Value| -

 smpSynch :byte_array (integer range 0 to 2); -- 3 byte field - 0x84 | L(0x01) | SYNCH | -

 seqData : byte_array (integer range 0 to 1); -- 2 byte - | 0x87 | L |

 end record ASDU;

 type APDU is

 record

 savAPDU : byte_array (integer range 0 to 3); -- 4 byte field - 0x60 | 0x82 | apduLH | apduLL |-

 noASDU : byte_array (integer range 0 to 2); -- 3 byte field - 0x80 | L(0x01) | numberofASDU |-

 seqofASDU : byte_array (integer range 0 to 3); -- 4 byte field - 0xA2 | 0x82 | L (length of ASDUs)-

 asdu : ASDU;

 end record APDU;

-- Function definition ---

254

 function Calc_AMPS (signal Sample : in std_logic_vector(23 downto 0)) return std_logic_vector;

 function Calc_VOLTS (signal Sample : in std_logic_vector(23 downto 0)) return std_logic_vector;

end ethernet_frame;

package body ethernet_frame is

 -- ------------------------FUNCTION BODY -----------------------

 -- Calculate Amps sample value using 24 bit input, Ref (Maximum Deflection), input current

 function Calc_AMPS (signal Sample : in std_logic_vector(23 downto 0)) return std_logic_vector is

 variable TCTR : std_logic_vector(31 downto 0) := x"00000000";

 variable signedVal : signed(23 downto 0) := x"000000";

 variable Ref, tctr_mag,inTCTR : float(8 downto -23) := x"00000000";

 begin

 signedVal := signed(Sample);

 inTCTR := to_float(signedVal, Ref);

 Ref := to_float(0.282989445, Ref); -- (Current * 1000)/Max_Pos_Deflection

(9600A * 100/8388607) 9600 is the over current measurement

 tctr_mag := inTCTR * Ref; -- calculate feeder current

 TCTR(31 downto 0) := std_logic_vector(to_signed(tctr_mag, 32)); -- return the scaled value

 return TCTR;

 end Calc_AMPS;

 --

 -- Calculate Volts sample value using 24 bit input, Ref (Maximum Deflection), input current

 function Calc_VOLTS (signal Sample : in std_logic_vector(23 downto 0)) return std_logic_vector is

 variable TVTR : std_logic_vector(31 downto 0);

 variable signedVal : signed(23 downto 0);

 variable Ref, tvtr_mag,inTVTR : float(8 downto -23);

 begin

 signedVal := signed(Sample);

 inTVTR := to_float(signedVal, Ref);

 Ref := to_float(0.146151345, Ref); -- (Voltage * 100)/Max_Pos_Deflection (11881.18852V * 100/8388607)

 tvtr_mag := inTVTR * Ref; -- calculate feeder current

 TVTR(31 downto 0) := std_logic_vector(to_signed(tvtr_mag, 32)); -- return the scaled value

 return TVTR;

255

 end Calc_VOLTS;

end ethernet_frame;

Appendix F.5 ethcrc32.vhd

--This file defines an entity that compute a CRC for 8802.3 procotol

--The computation is done by group of 8 bits.

--The reset is asynchronous.

--Computation are synchronous to clk and enabled when 'en' equals 1

--data_in is an 8bits input port for data to consider for a crc computation

--is_msb equals '1' indicates that data_in need to be reverted (msb to lsb) before computation.

--

--IMPORTANT :

--To be used in a real Ethernet case, user must take considerations

--which are:

--1) The four first byte must be Ones' complemented

--2) data_in only considers some fields (ie not the preamble nor the SFD, see norm)

--3) data_in must be given in the same sens than transmission:

-- * LSB first for data

-- * MSB first for CRC in the case of reception

-- * ALL zero for CRC in the case of transmission

--4a) crc_out must be complemented before transmission

--4b) received crc must be complemented before given to data_in for

-- error checking in reception

--5) In the case of error checking in reception, if the received frame is correct

-- crc_out equals x"00000000"

--

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity ethcrc32 is

 port (clk: in STD_LOGIC; -- Input clock

 rst: in STD_LOGIC; -- Asynchronous reset

 en : in STD_LOGIC; -- Assert to compute calculations

 is_msb: in STD_LOGIC; -- Assert to indicate the sens of data_in

 data_in: in STD_LOGIC_VECTOR(7 downto 0); -- Data to compute

 crc_out: out STD_LOGIC_VECTOR (31 downto 0) -- CRC output

);

256

end ethcrc32;

--

architecture nano of ethcrc32 is

-- The Generator polynomial is

-- 32 26 23 22 16 12 11 10 8 7 5 4 2

-- x + x + x + x + x + x + x + x + x + x + x + x + x + x + 1

constant GENERATOR : STD_LOGIC_VECTOR := X"04C11DB7";

begin

 process (clk,rst) is

 variable crc_buf : STD_LOGIC_VECTOR (31 downto 0):=x"00000000";

 begin

 if rst = '1' then -- reset signals to values

 crc_buf := (others => '0');

 elsif rising_edge(clk) then -- operate on positive edge

 if (en='1') then

 if is_msb='1' then

 for I in data_in'reverse_range loop

 crc_buf := (crc_buf(30 downto 0) & data_in(I)) XOR (GENERATOR AND (0 to 31=>crc_buf(31)));

 end loop;

 else

 for I in data_in'range loop

 crc_buf := (crc_buf(30 downto 0) & data_in(I)) XOR (GENERATOR AND (0 to 31=>crc_buf(31)));

 end loop;

 end if;

 end if;

 end if;

 crc_out<=crc_buf;

 end process;

end nano;

257

APPENDIX G. FPGA-based GOOSE-enabled remote monitoring node CID file

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<SCL xmlns="http://www.iec.ch/61850/2003/SCL" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <Private type="SchneiderElectric-SFT-Key">BA0F63FC6D573EFBE7319E867B65F755</Private>

 <Private type="SchneiderElectric-SFT-EditTime">2016-05-01 03:01:11</Private>

 <Private type="SchneiderElectric-SFT-Version">2.1.0</Private>

 <Header id="My Project Id" nameStructure="IEDName" revision="0" toolID="CET850 v2.0" version="2">

 <History>

 <Hitem revision="0" version="V1" what="Draft 1" when="2016-05-01" who="CET850Config"/>

 </History>

 </Header>

 <Communication>

 <SubNetwork name="NONE">

 <ConnectedAP apName="AP1" iedName="FPGA">

 <Address>

 <P type="IP" xsi:type="tP_IP">169.254.0.10</P>

 <P type="IP-SUBNET" xsi:type="tP_IP-SUBNET">255.255.0.0</P>

 <P type="IP-GATEWAY" xsi:type="tP_IP-GATEWAY">0.0.0.0</P>

 <P type="OSI-PSEL" xsi:type="tP_OSI-PSEL">00000001</P>

 <P type="OSI-SSEL" xsi:type="tP_OSI-SSEL">0001</P>

 <P type="OSI-TSEL" xsi:type="tP_OSI-TSEL">0001</P>

 </Address>

 <GSE cbName="GSE_CB_GOOSE" ldInst="IED1">

 <Address>

 <P type="MAC-Address" xsi:type="tP_MAC-Address">01-0C-CD-01-00-00</P>

 <P type="APPID" xsi:type="tP_APPID">0000</P>

 <P type="VLAN-ID" xsi:type="tP_VLAN-ID">000</P>

 <P type="VLAN-PRIORITY" xsi:type="tP_VLAN-PRIORITY">4</P>

 </Address>

 <MinTime multiplier="m" unit="s">100</MinTime>

 <MaxTime multiplier="m" unit="s">1000</MaxTime>

 </GSE>

 </ConnectedAP>

 </SubNetwork>

 </Communication>

258

 <IED configVersion="1" desc="FPGA based IEC 61850-8-1 GOOSE message publisher" manufacturer="CSAEMS_NCUBE" name="FPGA"

type="RTUType">

 <Services>

 <ConfDataSet max="0" maxAttributes="0" modify="false"/>

 <GOOSE max="10"/>

 </Services>

 <AccessPoint clock="false" name="AP1" router="false">

 <Server timeout="30">

 <Authentication none="true"/>

 <LDevice inst="IED1">

 <LN0 desc="Logical node zero" inst="" lnClass="LLN0" lnType="LLN0_0">

 <DataSet desc="" name="GOOSE_Eval">

 <FCDA daName="mag" doName="Vol" fc="MX" ldInst="IED1" lnClass="MMXN" lnInst="0"/>

 <FCDA daName="stVal" doName="Pos" fc="ST" ldInst="IED1" lnClass="XCBR" lnInst="0"/>

 </DataSet>

 <GSEControl appID="GOOSEID" confRev="2" datSet="GOOSE_Eval" name="GSE_CB_GOOSE" type="GOOSE">

 <Private type="SchneiderElectric-IED-GseRef">

 <GseRef xmlns="http://www.schneider-electric.com/IEC61850/XMLSchema" cbName="GSE_CB_GOOSE"

ldInst="IED1">

 <Address>

 <P type="MAC-Address">01-0C-CD-01-00-00</P>

 <P type="APPID">0000</P>

 <P type="VLAN-ID">000</P>

 <P type="VLAN-PRIORITY">4</P>

 </Address>

 <MinTime multiplier="m" unit="s">100</MinTime>

 <MaxTime multiplier="m" unit="s">1000</MaxTime>

 </GseRef>

 </Private>

 </GSEControl>

 </LN0>

 <LN desc="Physical device information" inst="0" lnClass="LPHD" lnType="LPHD_0" prefix=""/>

 <LN desc="Circuit breaker" inst="1" lnClass="XCBR" lnType="XCBR_0" prefix=""/>

 <LN desc="Non phase related Measurement" inst="1" lnClass="MMXN" lnType="MMXN_0" prefix=""/>

 </LDevice>

 </Server>

 </AccessPoint>

 </IED>

 <DataTypeTemplates>

 <LNodeType id="LPHD_0" lnClass="LPHD">

 <DO desc="Device name plate" name="PhyNam" type="DPL_0"/>

259

 <DO desc="Enumerated status" name="PhyHealth" type="ENS_0"/>

 <DO desc="Single point status" name="Proxy" type="SPS_0"/>

 </LNodeType>

 <LNodeType id="LLN0_0" lnClass="LLN0">

 <DO desc="Controllable enumerated status" name="Mod" type="ENC_1"/>

 <DO desc="Enumerated status" name="Beh" type="ENS_0"/>

 <DO desc="Enumerated status" name="Health" type="ENS_1"/>

 <DO desc="Logical Node name plate" name="NamPlt" type="LPL_0"/>

 </LNodeType>

 <LNodeType id="MMXN_0" lnClass="MMXN">

 <DO desc="Controllable enumerated status" name="Mod" type="ENC_0"/>

 <DO desc="Enumerated status" name="Beh" type="ENS_0"/>

 <DO desc="Enumerated status" name="Health" type="ENS_0"/>

 <DO desc="Logical Node name plate" name="NamPlt" type="LPL_0"/>

 <DO desc="Measured value" name="Vol" type="MV_0"/>

 </LNodeType>

 <LNodeType id="XCBR_0" lnClass="XCBR">

 <DO desc="Controllable enumerated status" name="Mod" type="ENC_0"/>

 <DO desc="Enumerated status" name="Beh" type="ENS_0"/>

 <DO desc="Enumerated status" name="Health" type="ENS_0"/>

 <DO desc="Logical Node name plate" name="NamPlt" type="LPL_0"/>

 <DO desc="Single point status" name="Loc" type="SPS_0"/>

 <DO desc="Integer status" name="OpCnt" type="INS_0"/>

 <DO desc="Controllable double point" name="Pos" type="DPC_0"/>

 <DO desc="Controllable single point" name="BlkOpn" type="SPC_0"/>

 <DO desc="Controllable single point" name="BlkCls" type="SPC_0"/>

 <DO desc="Integer status" name="CBOpCap" type="INS_0"/>

 </LNodeType>

 <DOType cdc="DPL" desc="Device name plate" id="DPL_0">

 <DA bType="VisString255" fc="DC" name="vendor"/>

 </DOType>

 <DOType cdc="SPS" desc="Single point status" id="SPS_0">

 <DA bType="BOOLEAN" dchg="true" fc="ST" name="stVal"/>

 <DA bType="Quality" fc="ST" name="q" qchg="true"/>

 <DA bType="Timestamp" fc="ST" name="t"/>

 </DOType>

 <DOType cdc="SPC" desc="Controllable single point" id="SPC_0">

 <DA bType="Enum" fc="CF" name="ctlModel" type="ctlModel"/>

 </DOType>

 <DOType cdc="DPC" desc="Controllable double point" id="DPC_0">

 <DA bType="Dbpos" dchg="true" fc="ST" name="stVal" type="Dbpos"/>

260

 <DA bType="Quality" fc="ST" name="q" qchg="true"/>

 <DA bType="Timestamp" fc="ST" name="t"/>

 <DA bType="Enum" fc="CF" name="ctlModel" type="ctlModel"/>

 </DOType>

 <DOType cdc="LPL" desc="Logical Node name plate" id="LPL_0">

 <DA bType="VisString255" fc="DC" name="vendor"/>

 <DA bType="VisString255" fc="DC" name="swRev"/>

 <DA bType="VisString255" fc="DC" name="d"/>

 </DOType>

 <DOType cdc="ENS" desc="Enumerated status" id="ENS_0">

 <DA bType="Enum" dchg="true" fc="ST" name="stVal" type="Mod"/>

 <DA bType="Quality" fc="ST" name="q" qchg="true"/>

 <DA bType="Timestamp" fc="ST" name="t"/>

 </DOType>

 <DOType cdc="ENC" desc="Controllable enumerated status" id="ENC_0">

 <DA bType="Enum" dchg="true" fc="ST" name="stVal" type="Mod"/>

 <DA bType="Quality" fc="ST" name="q" qchg="true"/>

 <DA bType="Timestamp" fc="ST" name="t"/>

 <DA bType="Enum" dchg="true" fc="CF" name="ctlModel" type="ctlModel"/>

 </DOType>

 <DOType cdc="ENS" desc="Enumerated status" id="ENS_1">

 <DA bType="Enum" dchg="true" fc="ST" name="stVal" type="Health"/>

 <DA bType="Quality" fc="ST" name="q" qchg="true"/>

 <DA bType="Timestamp" fc="ST" name="t"/>

 </DOType>

 <DOType cdc="ENC" desc="Controllable enumerated status" id="ENC_1">

 <DA bType="Enum" dchg="true" fc="ST" name="stVal" type="Mod"/>

 <DA bType="Quality" fc="ST" name="q" qchg="true"/>

 <DA bType="Timestamp" fc="ST" name="t"/>

 <DA bType="Enum" fc="CF" name="ctlModel" type="ctlModel"/>

 </DOType>

 <DOType cdc="MV" desc="Measured value" id="MV_0">

 <DA bType="Struct" dchg="true" fc="MX" name="mag" type="mag_0"/>

 <DA bType="Quality" fc="MX" name="q" qchg="true"/>

 <DA bType="Timestamp" fc="MX" name="t"/>

 </DOType>

 <DOType cdc="INS" desc="Integer status" id="INS_0">

 <DA bType="INT32" dchg="true" fc="ST" name="stVal"/>

 <DA bType="Quality" fc="ST" name="q" qchg="true"/>

 <DA bType="Timestamp" fc="ST" name="t"/>

 </DOType>

261

 <DAType id="mag_0">

 <BDA bType="INT32" name="i"/>

 </DAType>

 <EnumType id="Dbpos">

 <EnumVal ord="0">intermediate</EnumVal>

 <EnumVal ord="1">off</EnumVal>

 <EnumVal ord="2">on</EnumVal>

 <EnumVal ord="3">bad</EnumVal>

 </EnumType>

 <EnumType id="ctlModel">

 <EnumVal ord="0">status-only</EnumVal>

 <EnumVal ord="1">direct-with-normal-security</EnumVal>

 <EnumVal ord="2">sbo-with-normal-security</EnumVal>

 <EnumVal ord="3">direct-with-enhanced-security</EnumVal>

 <EnumVal ord="4">sbo-with-enhanced-security</EnumVal>

 </EnumType>

 <EnumType id="Health">

 <EnumVal ord="1">Ok</EnumVal>

 <EnumVal ord="2">Warning</EnumVal>

 <EnumVal ord="3">Alarm</EnumVal>

 </EnumType>

 <EnumType id="Mod">

 <EnumVal ord="1">on</EnumVal>

 <EnumVal ord="2">blocked</EnumVal>

 <EnumVal ord="3">test</EnumVal>

 <EnumVal ord="4">test/blocked</EnumVal>

 <EnumVal ord="5">off</EnumVal>

 </EnumType>

 </DataTypeTemplates>

</SCL>

262

APPENDIX H. CMC 256plus test set configuration

The CMC 256plus test set is an advanced IEC 61850 IED tester and calibration tool

which was used as both a current/voltage signal source and sampled value

message publisher. This test set was used in conjunction with Omicron Test

Universe modules to generate voltage and current signals which are injected into

the GOOSE monitoring node and limited-function Merging Unit (MU) prototypes.

The GOOSE monitoring node an the MU prototypes are a combination of

GOOSE/SV message mapping devices based on the Xilinx FPGA and an Analogue

Front-End (AFE) module.

In Chapter Five, multiple injection tests were conducted to evaluate the

performance and measurement accuracy of the GOOSE monitoring node and MU

prototypes. The voltage and current signals generated by the CMC 256plus test set

emulated secondary signals from voltage and current transformers (VTs and CTs)

connected to a power system under nominal and faults conditions. To achieve this,

the Ramping, Control Centre, QuickCMC, sampled value configuration and

Harmonics modules of Test Universe software were used. The TransView module

of the Test Universe software was used for viewing the captured COMTRADE files

for accuracy and performance evaluation.

Figure_Appendix H.1 shows Test Universe modules used for configuring the CMC

256plus test set.

263

Figure_Appendix H.1: Test Universe modules used for testing the developed MU and
GOOSE publisher VHDL modules

In Figure_Appendix H.1, the modules/functions marked from (i) to (vi) are

discussed below.

i. Test Set Association: this is the initial step required in order to associate
the CMC 256plus test set to the configuration PC.

ii. QuickCMC: This module is used for generating nominal voltage and
current signals (33 VRMS and 1 ARMS at 50 Hz) for the following:

a. MU prototype sampled value accuracy evaluation.
b. Validating the structure of sampled value messages published by

the MU prototype.
c. Validating the structure of GOOSE messages published by the

GOOSE monitoring node prototype.
d. GOOSE monitoring node prototype RMS voltage calculation

accuracy evaluation
e. Evaluating the frequency measurement range and accuracy of the

developed limited-function MU prototype.
iii. Control Center: This creates multi-function test procedures by combining

different modules. The control center will be used for configuring the CMC
256plus test set to generate voltage and current signals and publish
sampled value messages by combining the QuickCMC and the sampled
value configuration modules.

264

iv. Ramping: This module will be used for generating multiple voltage and
current signal ramps to emulate power system faults. This module was
used for emulating the following:

a. Voltage-sag,
b. Voltage-swell and
c. Frequency variation faults

v. TransView: this tool was used for viewing COMTRADE files.
vi. Harmonics: this module was used for configuring the CMC 256plus test to

generate voltage and current signals with harmonic components to
emulate harmonic distortions.

When generating current/voltage signals using the Test Universe and the CMC

256plus test set, nominal and maximum voltage and current values can be set

before the injection test to avoid damaging the device under test (DUT). For the test

procedures discussed in this research project, the nominal and maximum voltage

and current signals for the DUT are set to 33 VRMS/1 ARMS and 84 VRMS/16 ARMS

respectively. The DUT hardware configuration is shown in Figure_Appendix H.2.

Figure_Appendix H.2: Setting device under test parameters

In the following sections; Appendix H.1 to Appendix H.6 shows how the different

Test Universe modules were used to generate current/voltage signals emulating

different power system conditions.

265

Appendix H.1 : Nominal signals injection

The CMC 256plus test set was configured to generate nominal voltages and

current using the QuickCMC module as shown in Figure_Appendix H.3.

Figure_Appendix H.3: QuickCMC configuration for generating nominal voltage and
current signals

Appendix H.2 : CMC 256plus test set sampled values publisher

The CMC 256plus test set was configured to generate voltage/current signals and

at the same time publish sampled value messages containing samples of the

generated signal. This multi-function test setup was used for evaluating the

magnitude accuracy and phase angles of sampled values published by the

developed limited-function MU prototype. For this function the Control Centre

module was used for combining the sampled value configuration and the

QuickCMC functions. The QuickCMC module configured in Appendix H.1 is

adopted into this multi-functional test setup.

266

The IEC 61850 sampled value module was configured to generate one SV stream

as shown in Figure_Appendix H.4.

Figure_Appendix H.4: CMC 256plus IEC 61850 sampled value module

The resulting multi-functional module is shown in Figure_Appendix H.5

Figure_Appendix H.5: Control Centre configuration for QuickCMC and SV configuration
multi-function test

267

Appendix H.3 : Voltage-sag fault simulation

A voltage-sag fault condition is simulated using the Test Universe Ramping module

which when configured can cause the generated voltage and current signal to ramp

up or down at rates faster than 1 ms. This is achieved by executing five ramp

functions consecutively as shown in Figure_Appendix H.6. During this simulation,

phase B and C voltage and current signals are kept constant at nominal values

while phase A values dip to 16.5 VRMS and 0.5 ARMS respectively.

Figure_Appendix H.6: Voltage-sag fault emulation using the CMC 256plus test set

Appendix H.4 : Voltage-swell fault simulation

Similarly to the voltage-sag fault simulation, the CMC 256plus test was

configured to generate voltage and current signals simulating a voltage-swell

fault using the Ramping module. For this experiment, the phase A voltage and

current signals were configured to swell and peak of 49.5 VRMS and 1.5 ARMS

respectively while phases B and C signals remain constant as shown in

Figure_Appendix H.7.

268

Figure_Appendix H.7: Voltage/current swell simulation using the CMC 256plus test set

Appendix H.5 : Power system frequency variation simulation

The Test Universe QuickCMC module was used to generate voltage and current

signals with the system frequency changed between 10 Hz, 50 Hz and 100 Hz for

each injection test. Figure_Appendix H.8 show the QuickCMC module setting

changed to produce voltage and current signals at different frequencies

Figure_Appendix H.8: Power system frequency variation using the QuickCMC module

Appendix H.6 : Harmonics distortion simulation

Figure_Appendix H.9 shows the CMC 256plus test set setup for generating voltage

and current signals with harmonic distortions emulating a condition is power

269

network whereby load draws a non-linear current. This test setup shown in

Figure_Appendix H.9 configures the CMC 256plus test set to generate voltage and

current signals emulating harmonic disturbances in power systems.

Figure_Appendix H.9: Harmonics module setup for 2
nd

 and 3
rd

 order harmonic injection

