
DEVELOPMENT OF A SOFT-CORE BASED POWER ELECTRONIC

CONVERSION CONTROLLER

Thesis submitted in partial fulfilment of the requirements for the degree

Master of Technology: Electrical Engineering in the Faculty of Engineering

at the

CAPE PENINSULA UNIVERSITY OF TECHNOLOGY

by

Cassandra Daviane Nsumbu

Supervisor: Mr Daan de Beer

Co-supervisor: Mr Andrew Van der Byl

Cape Town Campus

June 2014

i

DECLARATION

I, Cassandra Daviane Nsumbu, declare that the contents of this dissertation/thesis represent

my own unaided work, and that the thesis has not previously been submitted for academic

examination towards any qualification. Furthermore, it represents my own opinions and not

necessarily those of the Cape Peninsula University of Technology.

Signed Date

ii

ABSTRACT

The application of digital control techniques has become dominant in power electronics

owing to several advantages they present, when compared to analogue solutions. Their

development is based on the use of microprocessors and microcontrollers, such as

Application Specific Integrated Circuit (ASIC), Digital signal processors (DSP), Field

Programmable Gate Arrays (FPGA), or a combination of these devices.

This thesis presents an investigation of a soft-core based FPGA control system as a solution

for power electronic applications. The aim was the development and implementation of a

conversion controller, which purpose is to supply control inputs in the form of digital Pulse

Width Modulation (PWM) signals, to a number of power electronic applications, such as

single half and full bridge DC-DC converters, three phase and multicell inverters. The PWM

control technique is achieved via their power semiconductor switching devices. These PWM

control signals are necessary for the high frequency conversion of an analog input voltage

(AC, DC or unregulated) to an analog output voltage of another level (AC or DC). This was

intended to be achieved by exploiting and combining the advantages that FPGA and

embedded processors provide such as high reconfigurability and multipurpose ability. This

controller’s digital outputs, namely PWM switching signals, can be directly delivered to an

analog signal amplification circuit to create an adequate voltage level before being processed

by the converters’ switches.

The full design consists of the Nios® II processor, which executes the control algorithm in

the form of software codes; a Hardware Descriptive Language (HDL) peripheral that forms

the Pulse Width Modulator (PWM), which is necessary in the operation of power electronic

applications in open-loop control mode; and MATLAB® Graphical User Interfaces (GUI) to

serve as communication platforms between the controller user and the soft-core. The

proposed soft-core is the Nios® II processor from Altera® Corporation, which acts as the

central method of implementation in this work. The soft-core is integrated along with several

other modules, and is configured onto an FPGA to produce a reconfigurable and expandable

hardware/software solution in the form of a System-On-Programmable-Chip (SOPC).

iii

Software is developed in C and implemented to control the interaction and operation of the

SOPC hardware components via the Nios® II processor. It also ensures data transfer between

MATLAB® GUIs and the processor. Changes can be easily implemented in the software in

order to ensure the control of the hardware aspect of the soft-core based conversion controller

(SCBC).

The design software, Quartus® II and its development tool, DSP Builder are used in this

work, for the creation of the HDL firmware and SOPC system. Another development tool

from Quartus® II, the Nios® II Integrated Development Environment (IDE), is used to create

and debug the software code, which is intended to program the Nios® II soft-processor.

MATLAB was used to serve to develop the GUIs, which serve as a user communication

interface between a host PC and the soft-core based embedded system.

Simulation, synthesis and experimental test results are presented and discussed in this

research study to evaluate the operation of the processor core and its overall SOPC system.

Simulation and synthesis tests were conducted at each stage of the controller’s development

process in order to check and monitor the progress in both hardware and software

development. They also allowed for a comparison with the expected experimental test results.

The latter was performed on the overall Nios® II system, while using the MATLAB® GUIs,

which were designed to enter user inputs. The controller hardware’s outputs, Pulse Width

Modulation (PWM) control signals, were measured at various instances following different

inputs, accordingly, to evaluate the controller’s performance. These signals are responsible

for the control and operation of power electronic applications in real hardware. The

conclusion drawn from these results is that this method of implementation was successful in

its intended objectives. Further research should address the application of the closed-loop

control mode, and a more independent method of communication between the user inputs

into the controller and the Nios® II processor.

iv

ACKNOWLEDGEMENTS

I wish to thank:

 Our Almighty God;

 Prof Robert van Zyl, Daniel de Beer, Dr Wilkinson, Mr Van der Byl, Prof

Biermann and Mr Kaplan for their enthusiasm, guidance and knowledge;

 My family, especially my mother, for their constant support;

 The CIR staff; and

 My colleagues for their support during the development phase.

I am very grateful for the financial support from the National Research Foundation (NRF)

and the French South African Institute of Technology (F’SATI).

Finally I extend my gratitude to all who has indirectly contributed to the successful

completion of this work.

v

LIST OF ABBREVIATIONS

AC Alternating Current

ASIC Application Specific Integrated Circuit

CAD Computer-Aided Design

CIR Centre of Instrumentation Research

CLK Clock

CPU Central Processing Unit

DAC Digital-to-analog

DC Direct Current

DDS Direct Digital Synthesis

DPWM Digital Pulse Width Modulation

DSP Digital Signal Processing

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

F’SATI French South African Institute of Technology

GUI Graphical User Interface

HDL Hardware Descriptive Language

HSMC High Speed Mezzanine Card

vi

IC Integrated Circuit

IDE Integrated Development Environment

IGBT Insulated Gate Bipolar Transistor

I/O Input/Output

IP Intellectual Property

IRQ Interrupt Request

JTAG Join Test Action Group

LED Light Emitting Diode

LE Logic Element

LHD Low Harmonic Distortion

LUT Lookup Table

MM Memory Mapped

MOSFET Metal Oxide Semiconductor Field Effect Transistor

MSPS Million samples per second

PCB Printed Circuit Board

PE Power Electronics

PIO Parallel Input/Output

PLL Phase Locked Loop

SCBC Soft-Core Based power conversion Controller

SOC System On Chip

SRAM Static Random Access Memory

ST Streaming Interface

vii

RAM Random Access Memory

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

UART Universal Asynchronous Receiver/Transmitter

UPS Uninterruptible Power Supply

USB Universal Serial Bus

VHDL VHSIC Hardware Descriptive Language

VHSIC Very High Speed Integrated Circuit

viii

TABLE OF CONTENTS

DECLARATION.. I

ABSTRACT.. II

ACKNOWLEDGEMENTS ...IV

LIST OF ABBREVIATIONS ... V

LIST OF FIGURES ... XII

CHAPTER 1... 1

INTRODUCTION.. 1

1.1 Project background..1

1.2 Motivation ...6

1.3 Objectives ..6

1.4 Research questions ..6

1.5 Research methodology ..7

1.6 Delineation of the research..7

1.7 Contributions of the research ..8

1.8 Thesis outline...8

1.9 Summary..9

CHAPTER 2...10

ix

BACKGROUND OF DIGITAL CONTROL FOR POWER ELECTRONIC APPLICATIONS .10

2.1 Introduction...10

2.2 Open-loop control mode..10

2.3 Introduction to Pulse Width Modulation (PWM) ...11

2.3.1 PWM techniques ... 11

2.3.2 Deadtime... 13

2.4 Overview of FPGA based digital controllers ...14

2.4.1 DSP/ FPGA based digital controller ... 14

2.4.2 FPGA based digital controller .. 15

2.4.3 FPGA embedded soft-core processors .. 15

2.5 Nios® II Soft Processor core..17

2.6 Contributions of the Nios® II soft-core application in power electronics ..20

2.7 Related and past work on digital control for power electronics ...20

2.8 Summary..23

CHAPTER 3...24

HARDWARE AND SOFTWARE TOOLS ...24

3.1 Introduction...24

3.2 Cyclone® III EP3C25 Starter Development board..24

3.3 Controller software components ...27

3.3.1 DSP Builder and MATLAB/Simulink .. 28

3.3.2 Altera® Quartus II .. 29

3.3.3 SOPC builder.. 29

3.3.4 Nios® II IDE .. 30

3.4 Software languages..30

3.4.1 VHDL.. 30

3.4.2 C language ... 31

3.5 Summary..31

CHAPTER 4...32

HARDWARE/SOFTWARE CO- DESIGN AND IMPLEMENTATION....................................32

4.1 Introduction...32

4.2 Soft-core based controller specifications ...33

x

4.3 Controller overview ...34

4.3.1 Hardware design overview.. 35

4.3.2 Software design overview ... 36

4.4 Project design flow ..36

4.4.1 Stage 1 – DSP Builder design and implementation ... 37

4.4.2 Stage 2 – SOPC creation .. 56

4.4.3 Stage 3 – Quartus® II system completion.. 60

4.4.4 Stage 4 - MATLAB® GUI design and implementation .. 61

4.4.5 Stage 5 – Software code development ... 65

4.5 Summary..72

CHAPTER 5...73

SIMULATION AND EXPERIMENTAL RESULTS..73

5.1 Introduction...73

5.2 Nios® II and DSP Builder simulation ...74

5.3 Experimental testing ..76

5.4 Switching and reference signal frequency control results ..77

5.5 Application control results ...90

 Five-cell inverter .. 90

 Three phase inverters.. 92

 Half bridge converter... 95

 Full bridge converter ... 96

5.6 Deadtime control results..97

5.7 PWM duty cycle control ...99

 15 % duty cycle ...100

 25 % duty cycle ...101

 50 % duty cycle ...102

 75 % duty cycle ...103

 90 % duty cycle ...104

5.8 Summary..105

CHAPTER 6.. 106

CONCLUSIONS AND FUTURE WORK... 106

6.1 Introduction...106

6.2 Conclusions ..106

xi

6.4 Encountered problems...108

6.5 Future work ...109

LIST OF REFERENCES .. 110

APPENDIX A – SOPC BUILDER CONFIGURATION SETTINGS .. 119

xii

LIST OF FIGURES

Figure 1.1: Power electronics and interdisciplinary concepts (Mohan, 2003)2

Figure 1.2: Structure of a power electronics switching converter (Erickson & Maksimovic,

2004) ..4

Figure 1.3: Open-loop controller block diagram ...11

Figure 2.1: Sinusoidal PWM generation (Klumpner, 2004)..13

Figure 2.2: DC based PWM generation ...13

Figure 2.3: Illustration of dead time (Venkatesh, 1994) ..14

Figure 3.1: FPGA architecture (Zeidman, 2009) ...25

Figure 3.2: Top View of the Cyclone® III FPGA Starter Board from (Altera Corporation,

2010b) ..26

Figure 4.18: RTL diagram of the soft-core based controller’s Nios II system61

Figure 5.1: Testing setup block diagram..73

Figure 5.3: Sine samples validity verification process block diagram75

Figure 5.4: Activation of application and signal generation control GUI78

Figure 5.5: DSP Builder simulation for a switching frequency of 400 kHz and a 25 kHz

reference signal ..79

Figure 5.6: Experimental result of a switching frequency of 400 kHz and a 25 kHz reference

signal ..79

Figure 5.7: Measured FFT of a single 400 kHz PWM gating signal displaying the 25 kHz

reference frequency..80

Figure 5.8: DSP Builder simulation of interleaved switching for a switching frequency of 100

kHz and a 6.25 kHz reference signal ...81

Figure 5.9: Measured 100 kHz PWM signal ...81

Figure 5.10: Measured FFT of a single 100 kHz PWM gating signal displaying 6.25 kHz

reference frequency..82

Figure 5.11: DSP Builder simulation of interleaved switching for a switching frequency of

200 kHz and a 6.25 kHz reference signal ..83

xiii

Figure 5.12: Simulation GUI for Half bridge converter ..83

Figure 5.13: Simulation GUI zoom screenshots of a) interleaved switching and b)the ed

PWM signals ..84

Figure 5.14: DSP Builder simulation of interleaved switching for a switching frequency of

200 kHz and a 6.25 kHz reference signal ..85

Figure 5.15: Three phase inverter - interleaved switching and PWM signals for a switching

frequency of 200 kHz and reference signal of 50 kHz. ...86

Figure 5.16: Measured 200 kHz high –side PWM signal ..86

Figure 5.17: Measured FFT of a single 200 kHz PWM gating signal displaying 50 kHz

reference frequency..87

Figure 5.18: Measured 1.6 kHz high –side PWM signal ...88

Figure 5.19: Measured FFT of a single 1.6 kHz PWM gating signal displaying 100 Hz

reference frequency..88

Figure 5.20: Measured 833 Hz high –side PWM signal ..89

Figure 5.21: Measured FFT of a single 1.6 kHz PWM gating signal displaying 100 Hz

reference frequency..89

Figure 5.22: 5-cell multilevel inverter PWM signals (simulation – DSP Builder)..................91

Figure 5.23: 5-cell multilevel inverter PWM signals (hardware level)91

Figure 5.24: Three phase inverter PWM signals (simulation – DSP Builder).........................92

Figure 5.25: Three phase inverter inverter PWM signals (simulation - MATLAB)93

Figure 5.26: Enlarged screenshot of Three phase inverter inverter PWM signals (simulation -

MATLAB) ...93

Figure 5.27: Three High –side PWM signals running at 833 Hz (hardware level)94

Figure 5.28: Half bridge converter PWM signals (simulation – DSP Builder)95

Figure 5.29: Half bridge converter PWM signals (hardware level)...95

Figure 5.30: Full bridge converter PWM signals (simulation – DSP Builder)........................96

Figure 5.31: Full bridge converter PWM signals (hardware level) ...96

Figure 5.32: Deadtime control GUI ...97

Figure 5.33: 40 ns deadtime implementation results, in simulation and hardware level.........98

Figure 5.34: 100 ns deadtime implementation results, in simulation and hardware level.......98

Figure 5.35: 200 ns deadtime implementation results, in simulation and hardware level.......98

Figure 5.36: PWM duty cycle control GUI ...99

Figure 5.37: 15 % duty cycle (simulation)...100

Figure 5.38: 15 % duty cycle (hardware level)..100

Figure 5.39: 25 % duty cycle (simulation)...101

Figure 5 40: 25 % duty cycle (hardware level)..101

Figure 5.41: 50 % duty cycle (simulation)...102

Figure 5.42: 50 % duty cycle (hardware level)..102

Figure 5.43: 75 % duty cycle (simulation)...103

Figure 5.44: 75 % duty cycle (hardware level)..103

Figure 5.45: 90 % duty cycle (simulation)...104

xiv

Figure 5.46: 90 % duty cycle (hardware level)..104

1

CHAPTER 1

INTRODUCTION

Over the last two decades there has been a rapid growth of technological advances in power

electronics, microelectronics, improvements of control algorithms, and demand for new

applications. Hence, a generic digital controller is necessary as an educational contribution

and basis for further research on digital controllers in the Centre of Instrumentation (CIR),

where a high number of power electronics projects are developed. This controller should be

efficient by providing as much reconfigurability as possible without any or little change in the

developed hardware.

This thesis presents the research work, development tools, design, implementation and

simulation and experimental results of a solution in the form of a Nios® II processor based

controller. This controller is intended to be operational on several power electronic

applications such as half bridge, full bridge, three phase, as well as multicell converters. The

purpose of this work is to acquire an understanding of a FPGA embedded processor, and its

application and contributions in power electronics. The chapter details the project’s

background, motivation, objectives, research questions, methodology, delineation and,

finally, the thesis’ structure.

1.1 Project background

Power electronics is a field of electrical engineering, which involves electrical energy

processing and control through circuits that are termed switching converters. Switching

2

converters are found in applications, which range from milliWatts to GigaWatts (Erickson &

Maksimovic, 2004). Power electronics deals with the interdisciplinary concepts from the

same field, as shown in Figure 1.1 below.

Solid-state physics

System and control
theory

Simulation and
computing

Power electronics

Circuit Theory Signal and control
theory

Electronics

Electromagnetics

Electrical machines Power systems

Figure 1.1: Power electronics and interdisciplinary concepts (Mohan, 2003)

Switching converters are the power heart of any power electronic system, as they convert an

input source signal (AC or DC) into an output signal (AC or DC) with a voltage of a different

magnitude, current or frequency. These converters are classified into four groups according to

the type of the input and output signal that they deliver, as listed in Table 1.1.

Figure 1.2 is an illustration of a basic PE switching converter, which consists of an input,

control and output signal ports. In PE applications, control and monitoring systems such as

digital controllers are required to ensure production of the required regulated and conditioned

power output signal from converters.

3

Table 1.1: Different types of switching converters, their functions and applications (Mohan,
2003; Singh, 2008)

They make up a vital part of any power processing system (Erickson & Maksimovic; Mohan

et al., 2003). Power regulation is achieved through the control of transitional on-off states of

semiconductor switching devices (Maksimovic & Erickson, 2004). This control process is

known as Pulse Width Modulation (PWM), which is a widely used control technique in

power electronic systems.

Converters use power semiconductor devices such as diodes, thyristors (SCR), power

transistors such as Bipolar Junction Transistors (BJT), Metal Oxide Silicon Field Effect

Transistor (MOSFET), Insulated Gate Bipolar Transistors (IGBT), Gate Turn-Off thyristors

(GTO) and Insulated Gate Controlled Thyristors (IGCT). All these elements operate within a

switching state, with the exception of the diode (Luo, 2005).

Switching

converter

Function Applications used in:

AC to DC

(rectifier)

Conversion of an AC input signal

into a DC output signal

High voltage DC transmission

systems, regulated DC power

supplies, DC motor drives,

electronic devices connected to

the mains such as computers

and TV.

DC to AC

(inverter)

Conversion of a DC input signal into

an AC output signal of controllable

magnitude and frequency

Uninterruptible Power Supplies

(UPS), emergency lighting

systems, aircraft and space

power supplies, induction

heating supplies and induction

and synchronous motor drives.

DC to DC Conversion of a DC input signal into
an DC output signal of different
magnitude or polarity

Buck, boost, flyback and

buck/boost converters, battery

chargers, switch mode power

supplies, mobile devices,

distributed power systems,

electrical isolation and power

factor correction.

AC to AC Conversion of an AC input signal

into an AC output signal of different

magnitude or frequency

International power adaption,

power distribution networks,

cycloconverters and light

dimmers

4

Power electronics
Switching converter

Load

Input source:
AC
DC
Unregulated

Output:
AC
DC

Control input

Figure 1.2: Structure of a power electronics switching converter (Erickson & Maksimovic,

2004)

Figure 1.3 illustrates the inclusion of the proposed SCBC block and its role in the control of a

switching power converter. In this work, Altera®’s Nios® II soft-processor is the heart of the

controller, as it provides control of the entire system and its peripherals. The controller

delivers the control input in the form of digital Pulse Width Modulation (PWM) signals to

switching converters via the semiconductor switches that they consist of. These PWM signals

are necessary for the conversion of an analog input voltage (AC, DC or unregulated) to an

analog output voltage of another level (AC or DC).

The growing replacement of analogue control techniques by digital counterparts is promoted

by the advantages the latter provide in the area of power electronics. Digital controllers offer

configurability, greater noise and ageing immunity, greater resistance to environmental

interference, ease of other digital technology integration (Martin et al., 1995), and flexibility

Kariyappa & Kumari, 2009).

Most digital controllers that are developed today have been implemented by using Digital

Signal Processors (DSPs), Field-Programmable Gate Arrays (FPGAs), a combination of both

(Prodic et al., 2001; de Castro et al., 2003), Application-Specific (ASIC), microcontrollers or

microprocessors. FPGAs involve flexible technology that has become extremely popular as a

platform of choice in digital control. This is owing to the various advantages that it presents,

which include higher density, higher performance, higher speed, flexibility and reasonable

cost. FPGAs increasingly integrate embedded resources such as hardware multipliers,

processors and RAM blocks on a single integrated circuit (Quasim et al., 2010).

5

Figure 1.3: Block diagram of the soft-core based controller, modified from (Erickson &

Maksimovic, 2004)

FPGAs, along with configurable processor cores integrated into FPGA technology have

become an appealing option in producing a digital controller (Nurmi, 2007; Chamberlain et

6

al., 2005). This combination provides a high level of configurability of hardware peripherals

in the production of System-On-Programmable-Chip (SOPC) systems (Urriza et al, 2009).

1.2 Motivation

There is a need for a generic power electronic controller at the Centre of Instrumentation

research (CIR) owing to an increase in power electronic projects. Even though a DSP-FPGA

based controller was recently developed (Jooste & Wilkinson, 2009), the need for a more

integrated and reconfigurable controller arose, where only a single Integrated Circuit (IC)

would be required. This is realizable, as a processor would be embedded in a FPGA chip to

produce a complete SOPC system. Centre for Instrumentation Research (CIR) students and

researchers can benefit from the advantages that SOPCs provide by applying them in the

development of control system solutions in power electronics.

1.3 Objectives

The aims of this study are:

 To investigate embedded system based controllers and FPGA/soft-core technology;

 To design and implement a digital controller, which incorporates a Nios® II

processor, both in hardware and software aspects. The controller should be able to

work on the above - mentioned PE; and

 To use Pulse Width Modulation (PWM) as the control technique, with the internal

generation of carrier signals and reference signals with adjustable frequencies as

inputs from the Nios® II processor.

1.4 Research questions

The following research questions have been formulated in respect of the present study:

 Is it feasible or possible to use a soft-core processor as the main core of a generic

power electronic controller?

7

 Is it possible to define a soft-core-based controller for power electronic applications?

 Can it work on a variety of power electronic applications?

1.5 Research methodology

A literature investigation of the implementation of the Nios® II processor, SOPC design and

the use of the Very High Speed Integrated Circuit Hardware Description language (VHDL),

was conducted. Power converters and their operation and topologies were also investigated.

The hardware aspect of the work was developed in VHDL through Altera®’s development

tools, DSP Builder and Quartus® II. The software was developed and written in C by using

the Nios® II Integrated Development Environment (IDE). MATLAB® was used to create

Graphical User Interfaces (GUI) to develop a communication platform for user inputs into the

controller’s Nios® II system. Several measurement tests were performed to ensure the

feasibility of the entire hardware/software co-design.

1.6 Delineation of the research

The proposed work consists of the development and implementation of a conversion

controller for power electronic applications based on a Nios® II soft-core, which is

implemented in FPGA and co-processing logic for PWM control. This study does not focus

on the theory or practical nature of digital control, but rather on the rapid development of an

efficient and fast controller for power electronics by using low-cost FPGA-based

development tools. A Nios® II-based controller is designed to work on PE applications such

as:

 Single half bridge DC-DC converters and inverters;

 Single phase full bridge DC-DC converters and inverters;

 Three phase inverters; and

 Multicell inverters.

The physical construction and implementation of these individual applications were not

considered. The research only focused on the open-loop control mode for design simplicity

and easy implementation, and did not consider the closed-loop control mode. Both simulation

8

and experimental tests were performed for comparison and performance monitoring

purposes. The experimental tests were based on the final product’s outputs, which are PWM

signals.

1.7 Contributions of the research

An interest in a combination of methods, in this case, a soft-core processor and the FPGA

arose at the CIR in an attempt to provide a new, easy and feasible hardware/software solution

for the control of power electronic applications.

The use of a single chip to construct an entire and expandable PE control system limits the

cost of the work. The reconfigurability offered by this work is beneficial, as the FPGA chip

can be re-programmed to adjust to different applications’ specifications whenever it is

required. The amount of flexibility that is gained through SOPCs is also extremely

advantageous. Since software is required to run on the processor, late modifications and

simplified debugging can be implemented whenever necessary during the design process

without a need for hardware changes. Thus, the controller’s development process becomes

less expensive. More costs are reduced as the system development cycle is considerably

reduced, and this increases the efficiency of the FPGA chip. Flexibility in the selection of a

specific set of CPUs, peripherals and interfaces helps to accelerate only the necessary

functions that are involved in the operation of the SOPC system, and to prevent processor

obsolescence (Alcade, 2009).

This Nios® II processor-based controller provides a better understanding on embedded soft-

core processors, SOPCs and their implementation methods, as well as a solid foundation for

further research and practice for power electronics at the CIR.

1.8 Thesis outline

Chapter 2 presents a literature review on Pulse Width Modulation (PWM), several controller

topologies and contributions of soft-core processors within power electronics.

9

Chapter 3 describes different hardware and software tools, which are involved in the

development of the soft-core based controller. The Cyclone® 3C25 FPGA development

board, software tools such as Quartus® II, DSP Builder, MATLAB®, the Nios® II IDE and

software languages, are all presented in this chapter.

Chapter 4 elaborates on details of the hardware and software co-design. It presents and

describes all the stages that are involved in the development and completion of the entire

controller system. The chapter begins with project specifications, followed by brief

overviews on hardware/software co-design, DSP Builder firmware, implementation of the

Nios® II processor and its peripherals in a SOPC system, and ends with implementation

stages of the operating controller system.

Chapter 5 discusses various test results that were obtained from the research study, and

analyses from the project from DSP Builder/Simulink, Nios® II IDE (Integrated

Development Environment) and oscilloscope, and digital analyser measurement readings.

Chapter 6 summarizes the findings of the thesis, as well as the advantages of the method that

was used in the study. The chapter also recommends future research in terms of further

development of the study.

1.9 Summary

This chapter dealt with the project’s background, motivation, objectives, research questions,

research methodology, delineation, contributions and, finally, the thesis outline.

10

CHAPTER 2

BACKGROUND OF DIGITAL CONTROL FOR POWER ELECTRONIC

APPLICATIONS

2.1 Introduction

The purpose of this chapter is to provide a review of the open-loop control mode, Pulse

Width Modulation (PWM), different embedded systems based controller topologies and the

Nios® II processor. It also elaborates on the importance and contributions of work that have

been done in power electronics control during the last decade.

2.2 Open-loop control mode

The digital systems mentioned above act as system controllers while dealing with dynamical

systems behaviour. There are two types of digital control: open-loop and closed-loop control

modes. The closed-loop control mode is beyond the scope of this work, hence only the open-

loop control mode will be examined. Open-loop control is commonly applied in converters’

industrial applications as the main control mode in digital control (Luo, 2005). It is mostly

useful for well-defined and simple systems where the relationship between input and output

can be modelled by a mathematical formula, and output values are predictable. This control

system is controlled directly and only by its input (Mastascusa, 2002). The proposed

controller is a good representation of this control scheme, and computes its input into the

system by using only the current state and the system’s model. The advantages that the open-

loop control presents and, which makes it more beneficial to apply are simplicity, ease in

construction of the system’s layout and stability owing to the system’s simplicity (Speaking

Technology, 2012). Figure 1.3 displays a basic block diagram of the open loop control mode,

11

where the system block represents the switching converter, and the controlled variables

represent the regulated power output signal. Input signals are fed into the control system to

generate the required output signals. In this work, the input source signal is processed, as

specified by the control input, namely PWM signals, which are generated by the soft-core

based controller (SCBC), as shown in Figure 1.4. This yields conditioned output power,

which is required (Erikson & Maksimovic, 2004).

Figure 1.3: Open-loop controller block diagram

2.3 Introduction to Pulse Width Modulation (PWM)

As mentioned in Chapter One, PWM is the most widely used control technique in power

electronic systems. It performs output voltage regulation by producing a wave of pulses as an

output. These pulses have the same voltage level, but might have different widths, depending

on the technique that is used to produce the wave. These widths are responsible for output

frequencies and voltages control. The important application of PWM lies in power electronics

applications as means to control power converters through their electronic power switches

(Koutroulis et al., 2006). PWM control is achieved by controlling power switches’ gate

voltages and currents. These power switches operate in complementary pairs, and each has

one PWM signal to activate them. The main advantage that the PWM method offers is the

reduction of systems costs, reduced component space usage, reduced total harmonic

distortion of load current (Bakar, 2009), increased noise immunity, high performance and

efficiency, high energy saving and power consumption reduction (Ababu, 2007).

2.3.1 PWM techniques

Different PWM schemes and techniques are employed to provide variable voltage, frequency

and power to applications with the adequate efficiency, and the necessary performance for the

12

application in use. The average value of these parameters is controlled by turning the power

switches on and off at a chosen pace.

This work employs two different carrier-based PWM techniques to control the SCBC system

outputs. These digital techniques involve a comparator, a triangular (carrier) signal and a

reference sinusoidal or DC signal. A counter is developed to produce the triangular wave by

counting from zero to a specific value. Then the counter counts from this maximum value

back to zero. The produced triangular wave is then compared to the sinusoidal or DC signal.

Each time the two signals intersect, the PWM signal goes from a ‘high’ to a ‘low’, or from a

‘low’ to a ‘high’. This results in the formation of duty-cycles. The maximum value of the

counter determines the resolution, the period time of the PWM signal (Bengtsson & Jonsson,

2009) and the PWM switching frequency. It also contributes towards determining the

maximum value of the duty cycle, just as the maximum amplitude of the reference signal

does when both signals are compared. The word duty cycle describes the ratio of ‘on’ time

over ‘off’ time. The power and voltage, which is delivered to the loads is proportional to the

duty cycle. The duty cycle formula is shown below:

Duty cycle =
T on

T signal
(2.1)

where: T on is the ON signal period

T signal is the signal period.

The sinusoidal PWM technique involves the carrier and a sinusoidal signal for inverters. This

technique results in the generation of a string of pulses of varying duty cycles. This technique

promotes harmonic content reduction, and makes it favourable for power electronics

inverters, which take pulses with varying duty cycles as inputs and generate AC voltage

outputs (Venkatesh, 1994). The sinusoidal PWM technique is illustrated in Figure 2.1 below.

In the case of DC-DC converters, PWM is produced as a string of pulses with a fixed duty

cycle value like a D.C component, and with a specific amplitude which is compared to the

carrier signal. This technique is shown in Figure 2.2. Since the DC signal’s amplitude is

directly proportional to the PWM duty cycle, its amplitude can range between the minimum

and maximum amplitude of the carrier wave, according to the required duty cycle.

13

Figure 2.1: Sinusoidal PWM generation (Klumpner, 2004)

Figure 2.2: DC based PWM generation

2.3.2 Deadtime

During switches control via PWM, switches from a complementary pair are supplied with

one inverted and a non-inverted PWM signal. The dead time should be inserted between each

intersection between the carrier and reference signals in the digital controller system. This is

14

implemented to prevent unfavourable implications in the form of short circuits and system

failure, caused by switching pairs that are on and off at the same. It should be ensured in

order to prevent. Hence, dead time should be inserted in the digital controller system. The

dead time is inserted between each intersection between the carrier and reference signal. The

implementation of dead time on the low side switch is displayed in Figure 2.3. The high-side

and low-side switches correspond to the two switches belonging to a complementary pair.

Figure 2.3: Illustration of deadtime (Venkatesh, 1994)

2.4 Overview of FPGA based digital controllers

2.4.1 DSP/ FPGA based digital controller

Recently, DSPs are commonly used in the control of power electronics. In digital signal

processing applications such as wireless signals, DSPs are the best option. They perform

complex digital signal processing and math-intensive tasks more efficiently, with more

functionality, much faster and at a lower cost when compared to microprocessors, ASICs and

FPGA hardware (Daya, 2009). These characteristics render DSPs suitable for power

converters control, but their application for high speed switching is less common, where

massive parallel algorithms are required (Zhang, 2006).

The DSP/FPGA-based controller provides more advantages than the single DSP based

controller. The division task implemented by this solution provides faster control speed, extra

15

system flexibility and easier software design. However, this structure has disadvantages of

increasing the controller’s complexity and costs. It also makes measurement testing more

difficult owing to its complicated structure. Another approach comprises implementing

control algorithms in one single FPGA chip (Zhang, 2006).

2.4.2 FPGA based digital controller

A FPGA based digital controller has more advantages compared to single DSP and

DSP/FPGA controllers (Zhang, 2006). FPGAs are part of flexible technology that has

become extremely popular as a platform of choice in digital control. This is owing to the

various advantages that it presents, which include higher density, higher performance, higher

speed, flexibility and reasonable costs. They can integrate embedded resources such as

hardware multipliers, processors and RAM blocks on a single integrated circuit (Quasim et

al., 2010). They are configured by using a hardware description language (HDL) such as

Verilog or VHDL or a schematic design diagram. HDL codes offer a better alternative when

working large systems designs, while schematic entry is more suitable for smaller designs,

which can be drawn piece by piece.

This provides direct hardware implementation with the same flexibility that software

alternatives provide. VHDL codes can also be easily reused and synthesized into any FPGA

platform. This makes FPGAs significantly more advantageous than DSP devices,

microcontrollers and ASICs in terms of reconfigurability (Zhang, 2006; Leonov, 2009).

Digital system designs such as a PWM system for power electronics are known to be easily

implemented on FPGAs. Designs are implemented on FPGA in a way that they can be easily

modified to address problems, or to add or remove new functions and features, if necessary.

This flexibility amounts to ease of changing interconnections between logic blocks. FPGA

designs can provide design complexity and time spent on design and implementation (Daya,

2009; Zhang, 2006)). Reconfiguration is then easily performed by using the JTAG interface.

2.4.3 FPGA embedded soft-core processors

FPGAs, along with embedded microprocessors, have become a powerful option as means to

produce a digital controller (Nurmi, 2007; Chamberlain et al., 2005). This combination

16

allows the development and control of a configurable System-On-Programmable-Chip

(SOPC) system, by using a soft-core processor and a set of hardware peripherals (Urriza et

al., 2009).

A soft-core processor is a processor integrated into FPGA architecture. It is implemented in a

hardware description language to become customized, by configuring their architecture and

behaviour, for given applications. A FPGA embedded soft-core processor and custom

peripherals, which should meet the exact design requirements, are described by using an

HDL (which is flexible if an open source), synthesized and mapped to an FPGA, which is a

reconfigurable device (Tong et al., 2006). The entire design can be mapped to different

FPGA platforms. The use of a soft-core on an FPGA holds several advantages, which are

outlined below:

 A soft-core can be removed from the design when it is not needed. This saves a lot of

area, which can be used for other elements.

 It can be easily customized for a specific application owing to its reconfigurability

properties.

 A soft-core is feature-rich and allows peripherals to be added or subtracted from the

SOPC system with ease (Tong et al., 2006).

 Open source soft-cores can have their source code taken and modified by the designer

to meet the needs of the applications (Anemaet & van As, 2008).

 It offers more flexibility and parallelism.

The main advantage that this type of processor provides digital control systems is the

important amount of flexibility, as the existing reconfigurable logic elements from the FPGA

are used to implement the processor (Arbinger & Erdmann, 2006). It can be implemented in

any FPGA, as long as there are enough configurable logic resources available (Maxwell,

2004). Soft-core processors are provided by FPGA manufacturers to operate on their own

FPGAs and have them mapped onto the chip. They are provided by open source communities

and commercial vendors. The most widely used commercial soft-cores are Nios® II,

MicroBlaze®, PicoBlaze® and Xtensa from Altera®, Xilinx® and Tensilica®, respectively.

Some of the most widely used open source soft-cores are OpenRISC® 1200 and LEON 3®.

Table 2.1 below clarifies the differences between some soft-cores in terms of features and

characteristics.

17

Table 2.1: Comparisons between known soft-cores (Tong et al, 2006)

This project used the Nios® II soft-core from Altera® Corporation, which provides a wide

range of customizable options such as those shown above, and possesses Harvard memory

architecture. It is available for use in academia for research, and comes in three versions,

which include economy, standard and fast core. The fast core version should be used, since it

provides the most features and performance. It has the capability to execute up to 256 custom

instructions, and has a fair performance of 150 DMIPS and one of the highest operating

frequencies on a FPGA platform (Tong et al., 2006).

2.5 Nios® II soft-core processor

The Nios® II soft-core processor is programmed by software code in C/C++ language. As

this processor is incorporated into the FPGA hardware, the latter is controlled to work in

conjunction with the code and help in accelerating some functions (Joshi, 2010). For reasons

mentioned above, it is the most essential element involved in this entire project. As an FPGA

18

embedded processor, the benefits that contributed to its selection as the major element of this

project, are described in the rest of this chapter.

The Nios® II processor is a popular 32 bit RISC embedded processor by Altera®, which was

designed to address a wide range of embedded applications. It exists in three cores, which are

described below:

 Fast (Nios® II/f) - Optimized for best and high performance on computationally

intensive, arithmetic performance-critical applications, and also for applications,

which require large amounts of data and codes, such as a full-featured operating

system. Hence, it consumes the most LEs.

 Economy (Nios® II/e) - Optimized to use the fewest LE, area and memory. But it is

efficient enough to provide sufficient performance for small applications.

 Standard (Nios® II/s) - This core offers better performance and consumes more LEs

and memory than the economy core. The Nios® II/s core is optimal for applications,

which require medium performance and more amounts of code and/or data for which

an economy core would be less suitable (Altera Corporation, 2010f).

Following the level of complexity and for optimization, the Fast Nios® II core was selected

for this project. The set of processor elements includes:

 Full 32-bit instruction set, data path, and address space;

 32 general-purpose registers;

 32 external interrupt sources;

 Single-instruction 32 × 32 multiply and divide producing a 32-bit result;

 Dedicated instructions for computing 64-bit and 128-bit products of multiplication;

 Floating-point instructions for single-precision floating-point operations;

 Single-instruction barrel shifter;

 Access to a variety of on-chip memories; and

 Instruction set architecture systems (Albiach, 2006).

19

The flexible nature of the Nios® II processor is promoted by the ability given to designers to

implement the core, which is tailored according to system specifications and requirements by

defining custom instructions and peripherals through the SOPC Builder tool.

Figure 4.2: Nios® II processor core block diagram from (Altera Corporation, 2010f)

In order to provide memory and I/O access, the core presents several features, as displayed

above in Figure 4.2, and are presented below:

 Instruction master port – Its role is to fetch instructions that will be executed by the

processor and connects to instruction memory via the Avalon switch fabric. The

instruction master port does not perform any write operations.

 Instruction cache - Fast cache memory internal to the Nios® II processor.

 Data master port – It is a 32-bit Avalon master port that connects to data memory and

peripherals via Avalon switch fabric. It reads data from memory or a peripheral, when

the processor executes a load instruction and writes data to memory or a peripheral

when the processor executes a store instruction.

20

 Data cache - Fast cache memory internal to the Nios® II processor.

 Tightly coupled instruction or data memory port - Interface to fast memory outside

the processor.

 JTAG debug module - Its function is to provide a communication bridge between the

design’s system and the host PC running on Nios® II IDE by downloading programs

to memory and starting and stopping code execution. The debug module connection

system consists of a download cable such as the Altera® USB Blaster or a system

analyzer probe (Altera Corporation, 2010f).

The Nios® II system custom peripheral, via the Avalon switch fabric, is responsible for

communication, and for linking both internal logic in FPGA and external hardware in the

FPGA development board.

2.6 Contributions of the Nios® II soft-core application in power electronics

The application of a Nios® II soft-core allows for low power consumption, high performance

and reduced design time to design reconfigurable power electronic systems. It also presents

advantages of flexibility over DSP and other microcontrollers when selecting, configuring,

customizing, duplicating or removing easily needed intellectual property (IP) cores, CPUs,

peripherals, and interfaces to design power electronic systems at any time by reprogramming

the FPGA device. This results in a better hardware performance (Alcalde et al., 2009). Large

systems can also be produced in a small design size on a single FPGA chip. Some soft-core

processors’ internal architecture can be changed in order to suit a particular design. This

method of implementation is also extremely fast owing to the straight forward nature of

VHDL (Krah et al., 2011). Another advantageous characteristic is the frequency adjustment

of the Nios® II processor using Phase Locked Loops (PLL) which plays a crucial role in

developing the different ranges of PWM signal frequencies that the SCBC must generate.

2.7 Related and past work on digital control for power electronics

A number of solutions for digital control in the field of power electronics have been proposed

and implemented in various academic institutions. These are discussed in the following

section.

21

According to Francis and Boroyevich (2003), the Virginia Polytechnic Institute and State

University designed and implemented a Universal Controller for distributed control and

Power Electronics Applications was designed and implemented, based on a previous

prototype, which was not specific enough to the needs of a distributed controller. The purpose

of this work was to save a large amount of time and engineering costs by developing a

universal controller that can satisfy the needs of most medium and high power applications in

power electronics. The controller interfaces include a dual ring fibre optic interface, a PMC

(PCI based mezzanine interface, a generic pin header interface, an upper level control

(ControlNet) interface and synchronous serial communications interfaces. The controller uses

an Analog Devices ADSP-21160 DSP. The controller is multiprocessor capable (self-

stacking), and can be configured to work in single processor mode, multiprocessor cluster

mode, or multiprocessor data flow mode. This project provides a solution for the digital

control of several power electronic applications.

Heerden (2003) states that the PEC33 reconfigurable controller for power electronic

applications was developed at the University of Stellenbosch. This controller is a follow up of

the PEC31 controller, which was also developed at the same institution. Its control algorithm

was implemented by a TMS320VC33 DSP, and the digital logic design was implemented in

PLDs. The development of the control system also involved the design and construction of

voltage and current probes for ADC measurements. This work provided information on the

overall structure of a digital controller for power electronics applications.

Rauma (2006) asserts that an FPGA-based controller for power electronics was designed at

the Laapeeranta University of Technology (LUT) in Finland by Dr Kimmo Rauma. This

work compares the control electronics of an analog design and to that of the FPGA-based

design. A new generic communication architecture, effective implementation and testing

methods were developed. Evaluation of the use of FPGAs and the proposed development

methodology is performed with simulations and laboratory measurements by using two

power electronic applications; a switched-mode welding machine; and a frequency converter.

In both test cases, the implemented algorithms exploited the parallel calculation. This

project’s results show FPGA-based digital control’s high efficiency and superior performance

over traditional control design.

According to Jooste and Wilkinson (2009), a generic digital controller for power electronics

applications was developed on an FPGA at the Cape Peninsula University of Technology

22

(CPUT). A Pulse Width Modulation (PWM) modulator for a 5-multicell inverter was

developed with the use of VHDL and Quartus® II software. Its purpose is to drive a 5-cell

multicell inverter with a 20 kHz sinusoidal reference waveform and 300 kHz switching

frequency. A DSP development board, in conjunction with a code written in C language,

generates sinusoidal reference waveforms, which are required to produce PWM signals.

Another code was developed for the transfer of data and communication between the DSP

and the FPGA, and the development of some external peripherals. This project provides a lot

of information on generic digital control and hence served its purpose, but required two ICs

to work with.

Alcade et al. (2009) state that the application of the Nios® II processor in a PFC converter

was performed at the Federal University of Santa Catarina (Brazil). The focus of this work

was to apply the Nios® II soft-core processor to the digital control of a single-phase pre-

regulated rectifier, which showed advantages and disadvantages of the use of this technology.

A particular control strategy was implemented to obtain Power Factor Correction

(PFC) of a single-phase voltage doubler rectifier with a center tap at the voltage output. This

project served its purpose by providing information and displaying multiple characteristics of

the FPGA, incorporating the Nios® II soft-core processor and its application in power

electronics.

According to Urriza et al. (2009), a team of researchers from the Departamento de Ingenieria

Electronica y Communicaciones, Universidade de Zaragoza in Spain developed a soft-core

based FPGA digital controller for a DC-DC converter. In their design, the controller

combines a Microblaze® core with a specific customized peripheral. The Microblaze® core

was programmed in C language. It facilitated control algorithm by using floating point type

variables, which are usually difficult to implement in FPGAs. The customized was described

by using a Hardware Description Language (VHDL) to generate the PWM signals, and to

transmit signals to the analog to digital converter (ADC). This project has provided insight

for the implementation of a commercial soft-core based digital controller by using floating

point data type. However, its drawback is that it can operate on only one power electronic

application.

23

2.8 Summary

This chapter briefly described the open-loop control and PWM, and provided an overview of

soft-core processors. Controller topologies such as DSP, FPGA, and DSP/FPGA controllers

were discussed and compared. An overview of the Nios® II processor was also provided.

Finally, several digital controllers’ implementation methods in power electronics from

previous work were also mentioned. A FPGA embedded processor was chosen as the core of

this work, and regarded as a potential tool to create an efficient and generic digital controller

for power electronic applications.

24

CHAPTER 3

HARDWARE AND SOFTWARE TOOLS

3.1 Introduction

This chapter presents the required hardware and software for the development of this project

are presented, while the features of the FPGA development board, and Cyclone®

3C25F324C8, which is involved in the realization of the digital controller, are also presented.

3.2 Cyclone® III EP3C25 Starter Development board

FPGAs are programmable ICs, which consist of programming logic components called logic

blocks, which are surrounded by programmable I/O cells and are interconnected together

with routing programmable wires, forming logic blocks, as shown in Figure 3.1 below. Logic

blocks consist of programmable Look-Up Table and registers (flip-flops). The LUT can be

configured to perform any logic function on its inputs to produce one single logic output. The

final output is either this new value or the previous value that is stored in the register (Grout,

2008: 28). Their reprogrammability is promoted by the presence of memory elements such as

EPROM, EEPROM, flash and SRAM chips.

The FPGAs’ structure enables the implementation of digital hardware functions, simple ones

such as AND and XOR logic gates or more complex ones. These can be accomplished by

utilizing programming procedures, which can be performed without a long and expensive

design process. The applications of FPGAs are seen in a variety of industrial applications and

25

areas such as digital signal processing, medical systems, embedded systems and electrical

systems.

Figure 3.1: FPGA architecture (Zeidman, 2009)

An FPGA design is made possible with the use of CAD tools that convert the designer’s

specifications into the desired FPGA configuration. It is described by using an HDL such as

Verilog or VHDL or a schematic design diagram. They are then synthesized, placed and

routed to form a bit file, which is used to program the FPGA. The HDL codes offer a better

alternative when working large systems designs, while schematic entry is more suitable for

smaller designs, which can be drawn piece by piece. HDL codes and schematic diagrams are

inputs into these CAD tools, while the output is a .sof file. This file is a Quartus® II SRAM

Object File for FPGA configuration.

The Cyclone ® III EP3C25F324C8 Starter Development board is the chosen FPGA platform,

among the others, for the development of the SCBC. This board provides a low cost and easy

introduction to FPGA technology. Other advantages are its low power consumption, high

functionality. This kit includes all components, which are necessary to create and implement

26

automotive, consumer, wireless communications, video processing, or other high-volume,

cost-sensitive application designs.

Figure 3.2: Top View of the Cyclone® III FPGA Starter Board from (Altera

Corporation, 2010b)

It provides enough I/O pins to work with and Intellectual Properties (IP) are available for this

series of FPGA chip (Altera Corporation, 2010b). Figure 3.2 displays some of the hardware

components of the Cyclone® 3C25F324C8 board, while all the main components of the

Cyclone III starter development board are listed below:

 Low-power consumption Altera® Cyclone III EP3C25 FPGA chip;

 25K logic elements (LEs);

 66 M9K memory blocks;

 16 18x18 multiplier blocks;

 4 PLLs;

27

 214 I/O pins (of which 84 I/O pins for communicating with HSMC

daughter cards);

 HSMC connector;

 USB type B connector;

 32-Mbyte DDR SDRAM;

 50 MHz on-board oscillator;

 16-Mbyte parallel flash device (CFI);

 1 Mbyte high-speed SSRAM memory;

 Four user push-button switches;

 External power supply with U.S. adaptor;

 Four user LEDs;

 Power switch;

 DC power input; and

 Built-in USB-Blaster interface (Altera Corporation, 2010f).

Digital systems such as the PWM modulator for power electronics is easily implemented on

FPGAs. Designs are implemented on FPGA so that they can be easily modified to address

problems or to add or remove new functions and features, if necessary. This flexibility

amounts to the ease of changing interconnections between logic blocks. Their designs

provide a reduction in costs, design complexity and time spent on design and implementation.

The reconfiguration is then easily performed by using the JTAG interface.

3.3 Controller software components

The software tools that were involved in the process of designing and development are

discussed in this section. Table 3.1 lists these tools and are described in the next section

below.

28

Tools /Package Usage

MATLAB R2009 version 7.8.0 Mathematical computation and analysis tool

Quartus® II software version 9.1 Integrated synthesis and implementation tool

from Altera®

DSP Builder version 9.1 Mathematical computation, simulation and

analysis tool from Altera®

Nios® II IDE version 9.1 C/C++ compiler, design and verification

environment for Nios® II systems

Table 3.1: Software tools used for the SCBC development

3.3.1 DSP Builder and MATLAB/Simulink

In this work, DSP Builder was the first software tool to be used for the PWM modulator’s

development. DSP Builder allows designers to perform algorithmic design, system

integration and simulation of VHDL based descriptions in a single GUI, on

MATLAB®/Simulink models in sampled time, whilst porting them to hardware description

language (HDL) files and Tcl scripts for synthesis, hardware implementation and simulation

with the Quartus® II software. Algorithms that are developed in DSP Builder can be

connected to a Nios® II processor as a custom peripheral by involving SOPC Builder.

Figure 3.3 shows this possibility of a DSP Builder design to be inserted into a SOPC system

as a peripheral PIO or custom instructions.

MATLAB® (MATrix LABoratory), which is commercially available by MathWorks®, is a

most popular software for an algorithm design as it enables numerical computation, system

simulations and data visualization by providing a technical computing environment, which is

designed to support the implementation of computational tasks (EE TimesAsia, 2007;

Chapman, 2008). MATLAB® guide, the GUI Development Environment, is the tool, which

is used to create MATLAB® GUIs. The programmer can layout the GUI, selecting and

placing various components to be placed in it, hence creating a graphical display, while

eliminating the need of typing commands or writing command scripts.

29

Figure 3.3: Diagram of DSP Builder designs as custom peripherals or custom instructions
from (Altera Corporation, 2002)

3.3.2 Altera®’s Quartus® II software

This is the principal software, which was used in this project and operates with several

important, highly efficient and convenient CAD tools, depending on the design’s complexity

to develop VHDL or Verilog structures as overall projects in order to download to FPGA

boards. These Quartus® II tools include the SOPC builder, the Nios® II IDE and

ModelSim® (Albiach, 2006). Even in the absence of the other tools mentioned above,

Quartus® II can still provide a complete design environment for low complexity designs.

3.3.3 SOPC builder

SOPC Builder is part of the Quartus® II software, and is a powerful system development tool

that creates the hardware structure of an embedded system-on-programmable chip system by

specifying and integrating hardware components such as processors, peripherals and

memories. It facilitates both hardware and software design. All a designer needs to do is to

specify the components when using SOPC Builder. It automatically generates the

interconnect logic, simulation projects files, testbenches, execution scripts for simulation,

header files and driver routines.

30

3.3.4 Nios® II IDE

Nios® II IDE is an Altera® software development environment for all Nios® II processors. It

is separate from the SOPC Builder tool, but it acts as the software development platform by

utilizing SOPC Builder outputs. It accomplishes this by providing the software toolset that

allows the designer to enter the design software source code to carry out all crucial tasks such

as creating, editing, building, running and debugging of software. It also goes through

essential phases, which are necessary for the source code to be executed, to accommodate

project management, and to offer software code debugging.

3.4 Software languages

The software part of an embedded system consists of codes, which are written with

programming languages such as C/C++, VHDL, VHDL-AMS, SPICE, Verilog, assembler

and Java that control the functioning and interaction of individual hardware parts. This work

utilized VHDL and C/C++, MATLAB® to develop the controller.

3.4.1 VHDL

VHDL stands for VHSIC Hardware Description Language, where VHSIC stands for Very

High Speed Integrated Circuits. VHDL is a modern, powerful, portable, readable and general-

purpose hardware language defined by IEEE standards. It describes electronic circuits or

systems on behavioural, structural, physical aspects, which can be implemented as a physical

circuit or system (Grout, 2008: 195). CPLDs, ASICs and FPGAs are the three main digital

architectures, which utilize VHDL. One important benefit of VHDL is that it allows design

systems to be accurately described for automatic circuit synthesis or/and simulation without

any hardware being manufactured. Modifications can easily be applied at any time, while

sparing unnecessary costs for hardware prototyping (Pedroni, 2004: 3; Guan, 2010).

31

3.4.2 C language

C language is compiled on UNIXᵀᴹ, Windows, and Linux operating systems and is one of the

most common programming languages today. Its closeness with hardware language makes it

widely used in embedded systems development, and is mostly employed to develop software

codes to program processors in embedded system designs. This software description language

is processor-independent and can be easier to define complex algorithms than HDL, and can

thus facilitate FPGA design. Another advantage is that C Compilers are easily available for

most processors (Barr, 1999: 18).

3.5 Summary

This chapter discussed the different hardware and software parts involved in the soft-core

based controller design. The hardware components consist of the embedded Nios® II core in

a Cyclone® 3C25 FPGA, and a peripheral board acting as a communication interface

between the controller SOPC system and power electronic applications. The software

elements involved consist of MATLAB®, DSP Builder, Quartus® II and Nios® II IDE

software.

32

CHAPTER 4

HARDWARE/SOFTWARE CO- DESIGN AND IMPLEMENTATION

4.1 Introduction

This project involves the development of an embedded system-on-programmable-chip

(SOPC). Many embedded systems consist of processors, which run software codes and are

interfaced to external hardware circuitry. Such designs require that both hardware and

software parts should be designed together in parallel (Grout, 2008: 63). In this case, the

referred hardware is the HDL system design. A System-on-a-Programmable-Chip (SoPC or

SOPC) is developed by integration of an electronic system’s components into a single

programmable integrated circuit (chip). It may contain various types of signals and performs

various functions. SOPCs are the core of modern embedded systems (Koskinen, 2009).

The hardware comprises of blocks that are placed together by using CAD tools. The software

aims to control the soft-processor and the external hardware peripherals the SOPC consists

of. This is achieved by creating codes in a software development environment.

This chapter elaborates on the specifications of this project, and provides details about the

portioning of the overall design into hardware and software parts, while it also discusses the

interfacing of these parts to complete the overall system development and design

implementation, both in hardware and software.

33

4.2 Soft-core based controller specifications

In order to ensure the generic, reprogrammable and flexible characteristics of the SCBC, the

following project specifications were established and are listed in Table 4.1 below.

SOFT-CORE BASED CONTROLLER SPECIFICATIONS

Programmable Logic Device Altera® Cyclone 3C25F324C8 FPGA chip,
from the Cyclone series FPGAs

FPGA embedded processor Reconfigurable Altera® 32-bit Reduced
Instruction Set Computer (RISC) Nios II
soft-core processor, running at 50 MHz.

Switching techniques Pulse Width Modulation (PWM), with fixed
or variable duty-cycle

Switching frequency range 50 Hz – 3 MHz
Number of reference signal inputs A single internal reference (sine) signal from

the Nios® II processor
Number of gate switching digital outputs 10 (5 complimentary pairs of high and low

side switches), to accommodate the
maximum number of switching signals for
the 5-cell multilevel

User Communication Interface MATLAB® GUIs

Memory High capacity volatile and non volatile
memory for program and data storage.
SSRAM: 1Mbyte
Flash: 16 Mbytes

P.E. Applications to operate on Half bridge converter
 Half bridge inverter
 Full bridge converter
 Full bridge inverter
 Three phase inverter
 5-cell multilevel inverter

Connectors (Internal) Avalon Interconnect Fabric,
connecting all the internal hardware modules
of the Nios® II system.
(External) USB-blaster download cable,
connecting the FPGA to the PC.

Table 4.1: Soft-core based controller specifications

34

4.3 Controller overview

As mentioned earlier in Chapter Two, embedded processors provide overall system

integration, faster execution and flexibility, while partitioning the system between hardware

and software. In order for these specifications to be realized, the digital controller integrates

four crucial parts, which are developed in parallel. These are described below:

 A DSP builder based PWM modulator firmware - This module generates PWM

signals that are required to drive and control the converters and inverters’ switches

gates via the FPGA I/O pins. They are produced from sine and triangular waveform

comparison.

 Quartus® II/SOPC system module - It consists of the digital controller’s architecture

in terms of FPGA hardware and is generated by the SOPC Builder. The hardware

system is completed once the SOPC Builder module is instantiated in the Quartus® II

project.

 The Nios® II software module - Based on the Nios® II IDE project which involves

the building, compiling and running of the C source programs that run on the

processor.

 MATLAB® GUI-based communication interfaces - It will provide the digital

controller user with choices on the controller’s system input parameters.

 PCB production - It holds a connection platform between the SCBC’s outputs and the

external world.

Figure 4.1 gives an illustration of the proposed controller’s architecture in terms of this

hardware / software co-design and implementation.

35

Figure 4.1: Nios® II - based controller’s hardware and software architecture

4.3.1 Hardware design overview

In this work the hardware development of the SCBC system was implemented on a DSP

Builder design, which was inserted into a Quartus® II project, and incorporated the Nios® II

processor. The FPGA was a Cyclone® 3C25F324C8 FPGA, as mentioned in the previous

chapter and was available at the CIR laboratory. The architecture of the SOPC system was

determined by using the SOPC Builder tool in the Quartus® II software, while the hardware

aspect of the PWM modulator was realized by using VHDL imports on DSP Builder. A small

peripheral PCB was also developed to place a communication platform between the

embedded Nios® II system and power electronic applications by placing a High speed

Mezzanine Card on it.

36

In order to make the hardware design possible, some factors had to be taken into

consideration during the hardware design of the digital controller, which are the following:

 The amount of available LE and memory space;

 The compatibility and interconnection of the DSP Builder design with the rest of the

FPGA and Nios® II systems;

 The number of I/O FPGA pins available to drive PE application gates; and

 Availability of Intellectual Properties (IP) cores.

4.3.2 Software design overview

In this work the system’s software was executed by the Nios® II processor. It is a VHDL

defined circuit built around a CPU and, which used the FPGA, m's general logic resources in

order to implement hardware functions in parallel. The software development of the soft-core

based digital controller was based on all the software tools, mentioned in Chapter Three. As

in the case of hardware design, certain factors were taken into consideration for the software

design:

 The compatibility of HDL imports and data formatting within the DSP Builder

design;

 Programming methods of controlling both DSP Builder design and Nios® II system

and their intercommunication via a C code;

 An adequate description of SOPC modules and tasks in a C code;

 Adequate usage of memory bits; and

 Possible communication methods between the Nios® II system and PC.

4.4 Project design flow

In order to develop and demonstrate the capabilities of the controller, five stages were

undertaken together, in parallel, namely:

 Stage 1. PWM modulator hardware design was created and implemented on a DSP

Builder/Simulink model via HDL imports and Altera® Avalon Slave blocks;

37

 Stage 2. Creation of the controller’s SOPC system;

 Stage 3. Completion of the overall Quartus® II system;

 Stage 4. Development of C code for sine wave samples generation and overall control

of the digital controller;

 Stage 5. Creation of MATLAB® GUIs and m-files for the controller’s parameters

control, signal capture and communication between the controller’s user, the DSP

Builder and the Nios® II system; and

 Stage 6. Production of a peripheral PCB to place a communication interface between

the controller and the external world.

4.4.1 Stage 1 – DSP Builder design and implementation

The DSP Builder tool provides an integrated environment where hardware peripherals are

developed on Simulink models. This software tool was used for the PWM modulator’s

hardware implementation. The modulator design was made up of HDL import IPs and DSP

Builder blockset library elements, which were converted into a HDL Avalon custom

peripheral, integrated in a SOPC system and finally downloaded onto the FPGA platform via

programming. Each hardware block of the DSP Builder design is presented in Figure 4.3, and

are listed below:

 Avalon Slave Interface block;

 RAM block;

 Reference (sinusoidal) signal generator block;

 Carrier (triangular) signal generator block;

 Comparator block;

 Shift and deadtime block; and

 PWM block.

38

Figure 4.2: The controller’s DSP Builder design block diagram

39

4.4.1.1 Avalon Slave Interface block

To integrate the DSP Builder design as a hardware slave peripheral into the SOPC system,

Avalon Memory Mapped (MM) Slave Interface blocks have to be placed onto the model.

This also ensures a connection to the Avalon Interconnect Fabric, which in turn allows

communication with the Nios® II CPU, the master peripheral, and the rest of the SOPC slave

peripherals. This communication is performed by data transfer through the SOPC

components addresses.

Figure 4.3: Avalon Slave Write block as a sine wave generator

In order for these interfaces to be supported by the Avalon Interconnect fabric, their address

alignment must be set to ‘dynamic’. This setting allows the processor master and slave

address widths to match by making the Slave Interfaces byte addressable (Altera forums,

2011). Figure 4.3 shows the communication interfacing between the Nios® II CPU and

Avalon Write Slave Interface signals (Address, WriteBit, WriteData) through the Avalon

Interconnect Fabric.

40

Figure 4.4: Avalon MM write slave interface for control data generation in DSP Builder

In general, an Avalon Slave peripheral pasted on a DSP Builder model is directly connected

to the FPGA®’s global clock signal. In this case, it should have been connected to the 50

MHz clock signal, with a 20 ns as the real-world clock period. In order to make the

generation of a 50 Hz sinusoidal signal for three phase inverters or other reference signal

frequencies possible, different base clock signals were employed.

To transfer the sine wave samples, generated by the Nios® II processor, to the rest of DSP

Builder hardware implementation, a pair of 16-bit Avalon Write Slave interface blocks was

employed. Another single 8-bit Avalon Write Slave interface block was connected to a 1-to-8

bit demultiplexer, as shown in Figure 4.4 to create a selection system that generates

coefficient values to serve as control inputs to the DSP Builder hardware design. Data

generated from this slave interface cannot be higher than 8 bits.

4.4.1.2 RAM Block

The memory and LUT blocks of the FPGA architecture were configured as the external

memory SSRAM. This memory module is essential to the software part, since it stores sine

41

samples generated by the Nios® II core (Schietekat, 2011). The wordlength of the processor

memory is directly proportional to the amount of available memory.

Figure 4.5: Structure of “RAM_4096” IP into a HDL import unit

A pair of MegaFunction single-port RAMs, displayed by Figure 4.5, was employed in the

DSP Builder design. The advantage they offer compared to regular RAM blocks is the

reduction in the number of LEs to be used in the design. Each of these RAM units forms a

sine Lookup table (LUT), as it stores a quarter of a sinusoidal wave. Their memory capacity

of 65536 ram_bits allows signal quarter to run at the lowest frequency of 50 Hz. The

“addr(11:0)” parameter represents the sample addresses, namely 2¹² addresses, which are

generated and controlled by the Nios® II through the C code. The “d(15:0)” parameter

42

represents the magnitude of the 16 bit (unsigned integer) sine samples, which are generated

by the Avalon Write Slave. The “wren” parameter is the write enable bit of the RAMs. The

SSRAM was configured with a size of 1 MByte during the SOPC Builder development

process. The formula below was employed to determine the capacity of the RAMs and the

number of sine samples required to generate the reference signal of a specific frequency:

݂�reference =
∆ x�݂�clock

2ⁿ samples
(4.1)

Where: f reference is the reference (sine) signal frequency

 ∆ is the incremental step

f clock is the FPGA clock signal, which controls the DSP Builder model

n is the number of bits

 2ⁿ is the number of clock count, samples for a full wave period. This 2ⁿ value divided

by 4 is the number of RAM address lines.

Figure 4.6 shows the whole section of the Avalon slave blocks and the RAMs from the

overall DSP Builder’s design. The output signals from “Avalon_MM_Write_Slave” and

“Avalon_MM_Write_Slave1” interfaces serve as input signals to the RAM block, as shown

in Figure 4.9. The output signals from the “indicator_selection” interface are inputs to the

sections, which involve the development of both carrier and reference signals.

43

Figure 4.6: Avalon Memory-Mapped slaves and RAMs section

20 ns

osc_clk

d

sel(2:0)

ena

0

1

2

3

4

5

6

7

DEMUX

one-to-n Demux1

Address

i3:0

Write

ibit

Write Data

i7:0

indicator_selection

x5/1

clk2

Signal Compiler

address(11:0)

data(15:0)

wren

q(15:0)ram_4096

HDLImport25

address(11:0)

data(15:0)

wren

q(15:0)ram_4096

HDLImport23

[mode]

[sine_bit]

[out2]

[out1]

[trian1]

[offset2]

[sine_clk1]

[sine_clk2]

[dc]

[write]

[addr]

[app1]

Cyclone III EP3C25 Starter Board

Address

i11:0

Write

ibit

Write Data

i15:0

Avalon_MM_Write_Slave1

Address

i11:0

Write

ibit

Write Data

i15:0

Avalon_MM_Write_Slave

44

4.4.1.3 Reference (sine) wave signal generation block

The generation of sinusoidal waves was achieved by exploiting their symmetrical properties,

as it helps in saving large amounts of logic and memory bits in the SOPC system. Own-

written HDL imports and DSP Builder blockset library elements were used. As mentioned

above and displayed below in Figure 4.5, the process started as a pair of MegaFunction

single-port RAMs. They were used to produce two sine Lookup tables (LUTs), storing the

first and second quarters of a sinusoidal signal. Both quarters are connected together by some

HDL logic block to produce the first half of the sine wave.

Figure 4.7: Full reference (sine) signal development

45

Figure 4.7 illustrates the full sine wave development process. Another HDL logic block was

employed to create a reverse half signal from the first half one. Both signals were then finally

attached to form a full sine wave.

The incremental step worked on an address hopping method, where sine samples were

skipped and thus higher frequencies were achieved this way. This was easily performed by

“for” loops in the C code program, which operated on the Nios® II core. Figure 4.8 below

describes the method.

Figure 4.8: Illustration of the incremental step along a circle, which represents a sine wave
(Zhang, 2010)

The circle represents the 360° full cycle of a sine wave, while the dots represent the samples

of the signal. The incremental value represents the increase of advance along the sine wave.

As n dots are skipped, the incremental step value becomes 2ⁿ. This results in the generation of

higher frequencies and in turn, fewer samples make up LUTs to make up a full circle. It was

determined that 4096 was the maximum number of words for each RAM block, which could

be implemented to obtain the lowest required frequency on the Cyclone® 3C25F248 FPGA.

Since the soft-core controller was required to work on a range of sine wave frequencies, the

lowest frequency was taken as the reference frequency when frequency adjustments were

necessary. The incremental step in the “for” loop in the C code was increased whenever the

reference signal frequency was required to decrease as the sine samples were generated.

46

The global clock of the FPGA is 50 MHz and the overall number of sine samples was 16384.

This gave the lowest reference frequency of 3.125 kHz, as the calculations below show after

using (4.5):

݂�reference =
1 x 50 MHz

16384 samples
(4.2)

= 3.125 kHz (4.3)

From this reference frequency, the sine wave could operate at higher frequencies of up to 100

kHz. For power electronic applications such as half, full bridge and 5-cell multilevel

inverters, such a range proved satisfactory. But in order to generate a 50 Hz reference signal,

which is required for three phase inverters, a large memory space was required, since the

lower the frequency, the more samples are needed. Two options are available to remedy to

this problem:

 Memory size increase; and

 Change of FPGA’s operating clock frequency.

With a 50 MHz global clock, approximately one million sine samples would be required to

generate a 50 Hz reference signal. The first option could involve the introduction of a 32

Mbyte SDRAM module in the SOPC system. This would be the best solution, as a large

amount of logic cells would be consumed, which would make the overall unable to fit into

the FPGA device.

The second option is realized by having a phase lock loop (PLL) clock input to the DSP

Builder design with the use of the SOPC Builder tool. The 50 MHz FPGA global clock is

either multiplied or divided to produce a clock signal that allows both carrier and reference

signals to run in a specific lower frequency range. In this work this clock signal was termed

“peripheral_clk” and was the DSP Builder design operating clock. According to the reference

signal frequency formula above, to generate a 50 Hz sine wave of 16384 samples

“peripheral_clk” should run at approximately 833 kHz. The 50 MHz clock would need to be

divided by 60. By decreasing “peripheral_clk”, which is the clock that the DSP Builder

47

design works on, other ranges for both carrier and reference signal frequencies were created.

Possible input signals specifications are summarized in Table 4.2 and Table 4.3.

Input Signal Frequency ranges

Peripheral_clk 50 MHz 10 MHz 833 kHz

Reference frequency range 100 – 3.125 kHz 20 kHz – 625 Hz 1.66 kHz - 52 Hz

Carrier frequency range 1.6MHz – 50 kHz 800 – 10 kHz 26kHz - 833 Hz

Table 4.2: Input signal frequency ranges

As the 50 MHz FPGA’s global clock signal is divided by a specific denominator, reference

and carrier signals are divided by the same denominator, as demonstrated by Table 4.1 above.

Frequency ratio = 16

Number of memory words
(LUT Samples)

128 256 512 1024 2048 4096

Samples size 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit

Reference signal frequency 100 kHz 50 kHz 25 kHz 12.5 kHz 6.25 kHz 3.125 kHz

Carrier signal frequency 1.6 MHz 800
kHz

400
kHz

200 kHz 100 kHz 50 kHz

Frequency ratio = 8

Reference signal frequency 200 kHz 100
kHz

50 kHz 25 kHz 12.5 kHz 6.25 kHz

Carrier signal frequency 1.6 MHz 800
kHz

400
kHz

200 kHz 100 kHz 50 kHz

Table 4.3: Examples of input signal frequencies in respect to frequency ratios

According to the Nyquist theorem, a frequency ratio, also termed as a frequency modulation

ratio, at least 2 is required.

48

Fortunately, different frequency ratios can be established on the SCBC by using the formula

below (Luo et al., 2005):

Frequency ratio =
Carrier frequency

Reference frequency
(4.4)

Ratios higher than 9 are the best ones for good PWM representations and lowered harmonic

distortion (LHD) (Luo et al., 2005). The formula below was used to determine both carrier

and sine signal amplitude (Luo et al., 2005; Wilkinson, 2004):

݉ ₐ =
Reference signal amplitude peak

Carrier signal amplitude peak
(4.5)

Reference signal (t) = ݉ ₐ x sin(wᵣ t) (4.6)

where: mₐ is the modulation index

wᵣ is the phase angle.

The generation of sine waves is performed in the software code. This was achieved with the

“sin” function by including the “math.h” header from the C standard library. A modulation

index of 0.8 is already set in the code, but can be modified to generate other sine values, if

required.

Figure 4.9 shows the entire section responsible for the generation of full sine waves in the

DSP Builder’s design. Inputs, “out1” and “out2” feed the section with the one quarter of a

sine wave’s sample values, written by the Nios® II core, which are processed by the rest of

this part to produce the required reference signals to be compared with the generated carrier

waves.

PWM was also produced as a DC signal is compared to the carrier signal, instead of the sine

wave, as stated in Chapter Two.

49

Figure 4.9: Reference (sine) wave signal generation block

Scope50

obit

Non-synthesizable Output23

coef(4:0)
clkout(16:0)

sine_indicator(3:0)
bit_no2

HDLImport9

add_sub

dataa(19:0)

datab(19:0)

result(19:0)add_sub2

HDLImport8

coef(15:0)
clkout

sine_indicator(3:0)
clk_coef

HDLImport6

add_sub

dataa(19:0)

datab(19:0)

result(19:0)add_sub2

HDLImport5

add_sub

dataa(19:0)

datab(19:0)

result(19:0)add_sub2

HDLImport44

updown

in1(20:0)

in2(20:0)

digit1(20:0)passage_de_signal_last2

HDLImport42

updown

in1(20:0)

in2(20:0)

digit1(20:0)passage_de_signal_last

HDLImport33

coef(15:0)
clkout

sine_indicator(3:0)
clk_coef

HDLImport24

coef(4:0)
clkout(16:0)

sine_indicator(3:0)
bit_no2

HDLImport19

add_sub

dataa(19:0)

datab(19:0)

result(19:0)add_sub2

HDLImport18

updown

in1(20:0)

in2(20:0)

digit1(20:0)passage_de_signal_last2

HDLImport14

updown

in1(20:0)

in2(20:0)

digit1(20:0)passage_de_signal_last

HDLImport13

dataa(15:0)

datab(7:0) result(23:0)multiply

HDLImport10

[C]

Goto26

[D]

[enfin]

[out2]

From9

[enfin]

From8

[enfin]

From19

[C]

From17

[sine_clk1]

From12

[sine_clk2]

From11

[out1]

From10

z
-1

Delay

1

Constant8

1

Constant19

-1

Constant18

0

Constant17

1

Constant16

0

Constant11

1

Constant10

50

More values can be included by modifying the “pre-comparator” VHDL firmware code (see

Appendix C) by employing the following formula:

DC level = Maximun clock count value x duty cycle (4.7)

Where the maximum clock count value was determined by the 2ⁿ value from (4.8) in the next

section.

4.4.1.4 Carrier (triangular) signal generator block

HDL frequency dividers were employed the production of carrier waves. As the SCBC is

required to operate on several PE applications, the adjustable frequency divider block acts on

the 50 MHz FPGA’s global clock signal to generate carrier signals of adjustable amplitude

and frequency. It is controlled by the n coefficient that a user enters, as the generation of

carrier waves was based on the formula below:

��݂�carrier =
݂�clock

(2ⁿ − 1) x 2
(4.8)

Where f carrier is the carrier frequency

f clock is the main clock frequency

n is the number of counter bit

2ⁿ is the number of clock count

For instance, for a 50 kHz switching frequency:

50 000 ≈
50 000 000

(2ⁿ− 1) x 2
(4.9)

(2ⁿ − 1) ≈
50 000 000

100 000
(4.10)

(2ⁿ− 1) ≈ 500 (4.11)

According to calculations for approximately 50 kHz, the counter’s resolution to enter must be

9 bits, to ensure that the PWM signal’s resolution is the same. The counter was synchronized

51

with the system’s clock and started counting up from 0 to approximately 511, and then back

down to 0. This would produce a triangular shape and 1022 steps for every carrier wave

cycle. As mentioned above, the maximum value of the counter determines the PWM

switching frequency, since it is the same as the carrier frequency. The choice of switching

frequency is based on the switching losses in the inverter, the amount of LTD and the

properties of the switching devices used (Klumpner, 2004). The carrier waves can run on

various switching frequencies, ranging from 833 Hz to approximately 1.6 MHz.

4.4.1.5 Comparator, application selection and signal shift control

A number of MATLAB® GUIs are developed and are available for users to have the option

of choosing the PWM switching frequency over a specific range, and the application of the

digital controller is required to work on. Parameters are written onto binary files and are read

by the soft-processor via the C code. This results in numerical values to be written as inputs

to some HDL import modules for carrier signal generation and control, reference signal

frequency control, application selection control and signal shift control. This is achieved by

the connection of an 8-bit Avalon Write slave interface to a demultiplexer on the DSP

Builder design, as mentioned above.

As the reference and carrier signals are generated, they are directly routed to a data

comparator block, which is used to support two signals of different magnitudes to process

their intersection. This generates one PWM output signal, which is directly routed to another

HDL import block, which is involved in the application selection control, where a choice can

be made between single phase half bridge, full bridge DC-DC converters or half bridge, full

bridge, three phase and multicell inverters. The same block is responsible for signal shift,

according to the requested application. As this work focused on the control of the PE

applications mentioned above, it was vital to first obtain a simple understanding of their

topology and implementation of PWM signals on them. Figures 4.10 - 13 display the

topologies of the applications mentioned above. Figure 4.10 displays the single phase half

bridge converter topology, which is the simplest one and consists of only one pair of

complimentary switches. Each switches’ gates are supplied with PWM signals that are

represented by the “S1a” and “S1b” PWM elements.

52

Figure 4.10: Half bridge converter topology

Figure 4.11: Full bridge converter topology

Figure 4.11 displays the full bridge converter topology, which consists of two complimentary

switches. Two pairs of PWM signals are delivered to the switches and are phase-shifted by 2

2

pi
 radians (180°) from one another.

53

Figure 4.12: Three phase inverter topology

The three phase converter has three switches pairs, as displayed in Figure 4.12. Three

reference and one carrier signals are necessary for this P.E application operation. Reference

signals are each phase-shifted from one another by
3

2
pi

 radians (120 °).

The number of PWM signals delivered to multicell inverters depends on the number of cells

that they incorporate. For one cell, two PWM signals are required. This work focused mostly

on the 5-cell inverter, since this topology is already available at the CIR laboratory. In this

instance, ten PWM signals were required as five complimentary switch pairs were involved

in the application’s operation, as shown by Figure 4.13 below. For realization of PWM

production for the inverter, five carrier waves were required and were phase-shifted by 1.257

radians, namely 72° (Molepo, 2003).

54

Figure 4.13: 5-cell inverter topology

4.4.1.6 Deadtime control

Another HDL block was inserted to complete the PWM production process. It consisted of an

adjustable deadtime block created and implemented to prevent the semiconductors’

complimentary switching signals to go on and off at the same time. This prevents system

damage caused by short circuits. The controller user has the option of choosing between 40,

80, 100, 160 and 200 ns deadtime. A range of different deadtime values are necessary since

the controller runs at different frequencies. This would cause some signals to be destroyed

whenever too much deadtime is implemented. Another reason is the compensation for

different rise and fall times from different switching semiconductor devices, which can be

accommodated.

Figure 4.14 shows the entire section that is responsible for the comparison of reference and

carrier signals and the production of PWM switching signals in the DSP Builder’s design.

Inputs, “out1” and “out2” feed the section with the one quarter of a sine wave’s sample

values, written by the Nios® II core and these are processed by the rest of this part to produce

the required reference signals that are compared with the generated carrier waves.

55

Figure 4.14: Carrier (triangular) signal and PWM generators

trian

To Workspace1

sine

To Workspace

Scope18

obit

PWM9

obit

PWM8

obit

PWM7

obit

PWM6

obit

PWM5

obit

PWM4

obit

PWM3

obit

PWM2

obit

PWM10

obit

PWM1

o8:0

Non-synthesizable Output2

o15:0

Non-synthesizable Output17

o8:0

Non-synthesizable Output1

coef(4:0)
clkout(16:0)

sine_indicator(3:0)
bit_no2

HDLImport7

freq_selector(7:0)

coef(15:0)

updown

digit(15:0)trian_freq_ultra_coef

HDLImport45

mode(1:0)

trian1(3:0)

sine(9:0)

dc_value(9:0)

AeqB(9:0)pre_comparator

HDLImport3

coef(15:0)
clkout

sine_indicator(3:0)
clk_coef

HDLImport2

app1(2:0)

trian1(3:0)

din1

din2

din3

din4

din5

dout1

dout2

dout3

dout4

dout5

dout6

dout7

dout8

dout9

dout10

pwm_deadtime

HDLImport17

add_sub

dataa(19:0)

datab(19:0)

result(19:0)add_sub2

HDLImport12

add_sub

dataa(19:0)

datab(19:0)

result(19:0)add_sub2

HDLImport11

app1(2:0)

bit_no(3:0)

sine_bit(3:0)

din1

dout1

dout2

dout3

dout4

dout5

phase2

HDLImport1

bit_no(3:0)

sine(17:0)

trian(17:0)

AeqBcomparator_ultra

HDLImport

[B]

Goto27

[dc]

From23

[B]

[D]
[sine_bit]

From14

Display4

5

Constant9

1

Constant7

1

Constant6

0

Constant5

5

Constant4

5

Constant27

5

Constant20

1

Constant15

1

Constant13

5

Constant12

5

Constant1

56

The “pre_comparator” and “comparator_ultra” HDL imports make up the comparator,

“phase2”, and involve the control of signal phase, while “pwm_deadtime” controls the

PWM’s deadtime. The numbered HDL output elements, from PWM1 to PWM10 on the far

right side, directly send the PWM signals to the FPGA’s output pins to the HSMC connector.

4.4.2 Stage 2 – SOPC creation

After satisfactory development of the PWM modulator on the DSP Builder/Simulink model

and the generation of the SignalCompiler block output files, the SOPC Builder tool was used

to advance further in the development of the overall project.

Once the DSP Builder design compilation was completed, its logic design had to be

instantiated as a custom peripheral to the soft-processor in SOPC Builder. For this to be

accomplished, a new top level project was created where the logic design was included in the

form of Tcl scripts in Quartus® II project, generated from SignalCompiler in DSP Builder.

The DSP Builder design and all the necessary hardware peripherals are assembled into the

SOPC system, which makes up the SCBC. Following system generation, the rest of the

embedded processor system was completed by using the standard Nios® II development

design flow. The different hardware modules of the controller system are described below:

 CPU

Communication between custom hardware components and the CPU on which the

software runs is best done through the Avalon Interconnect Fabric bus. The Nios® II

CPU acts as a master peripheral on the Avalon bus, and initializes the actual transfer

of data with slave peripherals. During a read transfer, the CPU transfers data from the

hardware peripheral to the CPU, and during a write transfer, data is transferred from

the CPU to the hardware peripheral (Sicking, 2005). Since the SCBC’s operation

requires large amounts of data and code and arithmetic calculations, the fast (Nios®

II/f) core configuration was used.

57

 Sysid

The Altera® System ID provides a SOPC Builder system with a unique identifier, as

it verifies that the system compilation targets a specific board.

 “Soft_core_controller_Interface_0” custom peripheral

The “Soft_core_controller_Interface_0” is the custom peripheral, which is created as

the DSP Builder that involves hardware implementation of the digital controller. The

“soft_core_controller_Interface_0” is attached to the Nios® II system as a co-

processor. The module involves the three Avalon write interfaces, carrier signal, sine

wave, transfer function, shift and delay, comparator and PWM blocks.

The main advantage of custom peripherals is their fast data transfer compared to the

one provided by PIOs.

Figure 4.15: Input and output signals from the DSP Builder design- turned SOPC peripheral
interface.

58

Figure 4.15 shows and lists all the clock, input and output signals involved in the DSP

Builder design. PWM1 – 10 signals are the outputs of the PWM generator block and of the

SCBC.

“Avalon_MM_Write_Slave”, “Avalon_MM_Write_Slave1” and “indicator_selection” are the

Avalon Write slaves address signals, while “peripheral_clk” and “clk2” are the operating

clocks. They all become part of the SOPC system after the model compilation via

SignalCompiler.

 Off-chip memory – SRAM and FLASH memories

Memory is vital for any embedded system. The design of the controller required the use of

file management C commands and DSP Builder model, consisting of several VHDL

elements. These occupy a lot of memory space in the FPGA. In this work off-chip memory

was used owing to their high storage capabilities. It is used to store, provide access to, and

allow modification of data and program code to run within the Nios® II processor and

program code used by the entire SOPC system.

The off-chip memory consists of the Cypress® CY7C1380 SSRAM and CFI FLASH

memories. The SSRAM is configured with a memory capacity of 1 Mbyte and stores the

software program code, stack, and exception sections. The flash memory is a non-volatile

memory, which retains the program’s contents when the FPGA’s power is off. The flash

memory device is configured with a memory capacity of 16 Mbytes, and stores Nios® II

application software, and the CPU reset vector (Altera Corporation, 2010e).

 PHASE LOCKED LOOP (PLL)

The Nios® II system usually consists of different modules, which operate at different

frequencies. Hence, Altera® ATLPLL MegaWizard Plug-In-Manager was used in order to

specify and generate other frequencies, apart from the 50 MHz main frequency in this work.

This helped to generate various sampling rates to synchronise the inputs and outputs of the

digital controller. Figure 4.16 displays all the operating clocks of the overall Nios® II system.

“Osc_clk” represents the global clock signal, “cpu_clk” and “ssram_clk” are clock

59

signals that are required for the SSRAM and other modules, and “peripheral_clk” for the

“soft_core_controller_Interface_0” peripheral. “Peripheral_clk” can be modified to meet

requirements in terms of frequency range, simply by opening the MegaWizard Plug-In-

Manager in SOPC Builder for configuration.

Figure 4.16: PLL clock signals integrated into the SOPC system

 JTAG UART

The Altera® JTAG UART core provides data communication between a PC host and

the SOPC Builder system. The host PC can connect to the FPGA® via any Altera®

JTAG download cable such as the USB-Blaster cable or Blyster cable. This core

enables software files’ downloading, running and debugging by either using the

Nios® II integrated development environment (IDE) debugger or the SignalTap II

Logic Analyzer (Altera Corporation, 2010d).

Figure 4.17 shows all the hardware modules that are involved in the development of the

controller’s complete Nios® II SOPC system, its modules connections and clock settings.

60

The section highlighted in blue is the custom peripheral, “Soft_core_controller_Interface_0”,

which was created by DSP Builder.

Figure 4.17: Hardware configuration of the controller’s Nios® II system

4.4.3 Stage 3 – Quartus® II system completion

This stage involved the completion of the overall project by adding the created SOPC system

to the top-level Quartus® II project. It was done through compilation as analysis, synthesis,

fitting, place-and-route, and timing analysis were performed. As the system was generated in

SOPC Builder, input and output signals, from the DSP Builder design’s hardware modules,

were exported to the top level system files. They became PIO input and output signals as pin

outs were assigned to them via the Quartus® II Assignment Editor. The Register Transfer

Level (RTL) of the system design is first checked visually via Quartus® II RTL Viewer

before any compilation to ensure all the necessary logic and connections are included in the

system for its full functioning. Figure 4.18 displays the generated RTL viewer diagram of the

digital controller with the SCBC‘s outputs, which are the PWM switching signals on the

upper left hand side.

61

Figure 4.181: RTL diagram of the soft-core based controller’s Nios® II system

These signals, from the DSP Builder project, are connected to the FPGA host High Speed

Mezzanine Connector (HSMC) pins through the Quartus® II Assignment Editor. Through

this process, they became PIO signals which are directly controlled by the software

components of the project.

This stage is concluded by the programming of the FPGA chip, as a (.sof) SRAM object file

is produced after the Quartus® II project compilation and downloaded on the FPGA board. A

compilation report is also generated and displays all the hardware resource usage of the

Quartus® II project design. As Figure A.6 shows (see Appendix A), the Cyclone®

3C25F324C8 FPGA has sufficient resources to sustain the chosen RAM capacity in the

design. Only about 55% memory bits were used to allow for hardware expansion. This

provided enough memory space for the .elf file to be generated in Nios® II IDE.

4.4.4 Stage 4 - MATLAB® GUI design and implementation

MATLAB® GUIs were developed as additional peripherals to the Nios® II system of the

SCBC. Some of these help the user to control the SCBC inputs and outputs. They help in

saving time and the need to do all the calculations that are required, while modifying the C

62

codes on the Nios® II IDE each time change is required. Figures 4.19 – 21 present the

control GUIs. They are associated with application selection control, carrier and reference

signal frequency control, deadtime and duty cycle control. They serve as a communication

interface between the user and the SCBC, via MATLAB®, the DSP Builder design and the

Nios® II processor, as they replace the absence of a UART component on the FPGA board.

Users can enter numerical values, which represent signal parameters into the C code running

on the Nios® II processor via the GUIs by selecting radiobuttons. As new configuration

values are entered and loaded into the FPGA design from the processor, application selection

and frequencies are changed, according to the new values. New configuration data can only

be loaded and read after re-running the Nios® II system project on the IDE each time that

change is implemented.

The GUI in figure 4.19 represents the communication interface to the Nios® II core. It

consists of three panels of radiobuttons that represent the four power electronic applications,

and the carrier and reference signal frequencies. Figure 4.20 shows the GUI that is

responsible for duty cycle selection, while the one from Figure 4.21 involves deadtime

selection.

As a radiobutton is selected, input data is sent and read by the processor, which in turn sends

off control data and generates sine wave samples to the rest of the logic design. Some of the

MATLAB® .m files were created in order to write numerical values onto binary and text files

following the PC host based file system. Pushbuttons are also available for converter and

inverter mode, as well as deadtime selection.

Other GUIs such as those that are one presented in Figure 4.22 are developed as DSP Builder

simulation platforms as graphing and monitoring tools. These GUIs display signals that are

stored in the Simulink ”To Workspace” blocks, which are inserted on the DSP Builder

design. In turn, these signals are simulated and displayed in MATLAB® to monitor their

validity against their validity in VHDL. MATLAB® GUIs development involves two parts,

the MATLAB® .m code and the graphic skin. The .m code actively communicates with

binary files by writing numerical values onto them.

63

Figure 4.19: MATLAB® GUI for application, frequency ratio and carrier (switching)
frequency selection control

Figure 4.20: MATLAB® GUI for duty cycle control

64

Figure 4.21: MATLAB® GUI for deadtime control

Figure 4.22: MATLAB GUI for simulation (5-cell inverter)

65

4.4.5 Stage 5 – Software code development

The fifth stage involves C code development and compilation. Software implementation is

advantageous in saving the hardware area and in rapidly performing complex functions that

are more difficult to implement in hardware by involving a processor and some memory.

Hence, a software code was implemented to control the interaction and operation of the

SOPC hardware components via the Nios® II processor. The other function of the processor

involves sine waves generation on the Nios® II IDE, and generation of additional logic

control, which is necessary for PWM production and file handling to communicate with

binary and text files that are contained by a PC host-based file system via the RS232

communication interface. This Nios® II software intercommunication is illustrated in Figure

4.23 below.

Figure 4.23: Nios® II IDE design flow (Hong, 2008)

66

4.4.5.1 Source C code design

Two C codes were created to control the Nios® II processor in the system. The first one

handles the sine wave samples generation as signal parameters are established, while the

other one deals with writing these same sine wave samples into the SSRAM. The second

code contains one “ int main” function, which calls all the subfunctions, which are

categorized into several main functions: Code initialization, reading of binary and text files

from the PC host file system, writing of sine samples into SSRAM memory, carrier wave

production, signal frequency, application selection and PWM production control.

Initialization

Initialization functions initialize all peripherals and parameters to the Nios® II processor to

be used for the digital controller operation.

PC host-based file system

This work made use of an Altera®'s GNU debugger filing system, as it offers a simpler

alternative way of communication between the Nios® II core and the digital controller user.

Parameter values are entered into MATLAB® GUIs, which in turn are written into binary

and text files. File handling commands such as “fopen”, “fscanf”, “fread” and “fclose” are

each employed in order to make binary and text files from the PC – Host File System

possible. However, these commands were employed as little as possible by having a few files

to read from, since such commands require a large amount of memory bits.

Reference wave generation

The Nios® II processor generates the sine wave samples into an array by performing float

type calculations with the mathematical sin function from the included “math.h” library. As

Appendix D shows, parameters such as “MAX_NUM” represents the number of samples that

is required to generate the sine wave; “h” is its offset and “f” is the carrier wave amplitude

multiplied by the modulation index then subtracted by the offset. Two arrays “buff[i]” and

“buff2[i]” generate the required sine samples values for two separate RAM components and

print them on the IDE console window.

67

Figure 4.24 below displays the sine wave sample values generated by the processor, as they

are also displayed on the IDE console after the “printf” command was utilized to display

them. The sine samples are extracted from the arrays and converted into sine tables in the

form of arrays. Since the processor generates sine samples for sine signals of varying known

amplitudes according to frequency ranges, several sine tables of similar magnitude were

created. As mentioned above, the lowest reference frequency is taken as the reference

frequency from which the design operates. It also provides a higher quality signal, as this

frequency presents the highest number of different sample values. As higher frequencies are

required, the samples values are divided by the “mul_div” parameter in the “for” loop.

Figure 4.24: Sine waves sample values generated and displayed on the Nios® II IDE console

In order to generate sine wave samples and load them directly into Avalon slave interfaces,

custom instructions should be incorporated into the Nios® II CPU. It will guarantee the

production of adequate PWM signals, as these instructions accelerate time-consuming

software algorithms. Their absence will result in timing delays and, subsequently, in

inadequate sine wave generation, however, also occupy a large amount of memory bits in the

system. Since a few simple arithmetic operations such as multiplication and division were

performed by the processor, and the “sin” trigonometric function posed a problem, and there

was an absence of such instructions, the sine table approach was adopted in this work and

68

another C code was required to run on the processor. Figure 4.25 shows the design flow chart

of the second C code.

The sine tables’ content was then written into the SSRAM via the Avalon Write MM

interfaces by utilizing writing commands for dynamic address alignment and Avalon

peripheral commands come in specific formats such as IORD_8DIRECT(BASE, OFFSET)

or IOWR_16DIRECT(BASE, OFFSET, DATA). These commands are declared by the

“alt_types.h” file, included in the C code as well. The sine table method was adopted owing

to the large amount of memory space that inclusion of Nios® II custom instructions requires.

This method is implemented for inverters, but in case of converters, numerical values are

generated instead of sine waves to produce PWM signals with a duty cycle. File pointers

were required for binary file handling and access in the PC host file system by the second C

code.

There are three main software methods to communicate with the processor peripherals: Direct

register access, Hardware abstraction layer (HAL) interface and standard ANSI C library

functions. In this project all three methods were used. The HAL approach provides the C-

language macros IOWR and IORD (Hamblen & Furman, 2001: 326). The “system.h” file is

included in the source code by declaring it in the beginning. This file provides a software

description of the microprocessor hardware and information about each peripheral in the

specified SOPC Builder system analyzer (Altera Corporation, 2010d).

69

Start

End

Inverter
Or

Converter ?

Converter Inverter

Read duty cycle percentage
frequency from “duty_cycle”

binary file

Sine table is selected

Switching frequency control value
loaded into hardware design for up/

down counters operation

Read value representing the
required reference signal frequency

from “sine” binary file

Load incremental step value into
hardware design

Read value representing a PE
application from “application”

binary file

Generation of sine wave quarters

Read value representing a
switching frequency from “carrier”

binary file

Read value representing a
switching frequency from “carrier”

binary file

Switching frequency control value
loaded into hardware design for up/

down counters operation

Figure 4.25: The second C code’s flow chart

70

4.4.5.2 Nios® II IDE software implementation

The steps involved in software code implementation are described below:

 Creation of a new C/C++ application, consisting of two projects, an application

project and a library project. The application project is the C/C++ source code

developed by the designer, and the library project consists of BSP automated device

component configuration files referencing to SOPC Builder processing (Tang, 2008);

 Hardware system.ptf file assignment to the newly created C/C++ application;

 A source C/C++ code development and insertion in the application and projects

configuration;

 Project building, using the two projects, where an Executable and Linked Format

(.elf) file is generated and loaded into the Nios® II system memory if no error has

been located; and

 Project loaded and running by the Nios® II processor on hardware.

4.4.6. PCB production and completion of overall system

The creation of a custom FPGA board is beyond the scope of this project, but an additional

hardware platform is needed to work in conjunction with the embedded Nios® II system to

complete the digital controller design. One peripheral PCB was developed by using Altium®

Designer v.6. This platform serves as a communication interface between the embedded

Nios® II system and power electronic applications. It also operates for measurement and

testing purposes for signals from the designed Nios® II system. For these activities to be

made possible, this board accommodates a High Speed Mezzanine Card (HSMC). This card

was a SAMTEC® ASP-122953-01 host board socket, which was plugged into the

corresponding HSMC on the FPGA board. As the development of the peripheral PCB was

completed and connected to the FPGA board through the HSMC connecter, the soft-core

based controller is ready to be operational. The block diagram of the developed soft-core

based controller is presented below in Figure 4.26 as a summary of the internals of the Nios®

II system design and their interaction within the system.

71

Figure 4.26: Block diagram of the developed soft-core based controller

72

4.5 Summary

This chapter presented the controller specifications, its design flow and the Nios® II

processor functions in the SOPC system. It also provided details of the design and

implementation steps involved in both software and hardware aspects. The controller’s

flexibility is maintained by the ability of input reconfiguration on both the DSP Builder

design and C code.

73

CHAPTER 5

SIMULATION AND EXPERIMENTAL RESULTS

5.1 Introduction

This chapter presents and discusses results following performance tests at various points of

the controller’s design and implementation process.

Figure 5.1: Testing setup block diagram

74

The simulation test comprised evaluating the Nios® II processor’s performance via the

validity of sine samples that it generates by DSP Builder simulation. The hardware level of

the completed PWM modulator was also tested by DSP Builder. The experimental test

involved evaluation on the Nios® II core performance of the digital controller from the

FPGA hardware level. The controller’s flexibility in terms of signal frequency ranges and

application selection was monitored, as all the necessary modules and units were integrated to

complete the controller system. The block diagram of the Nios® II-based controller and its

test environment are illustrated in Figure 5.1.

5.2 Nios® II and DSP Builder simulation

The PWM modulator design was verified by testing it entirely in synthesizable VHDL format

before it was implemented into the FPGA. The entire DSP Builder simulation was performed

in the DSP Builder/Simulink environment.

As stated in the previous chapter, the advantage of the DSP Builder model simulation is that

it is the visualization of the exact hardware implementation of the controller system without

any hardware manufacturing. It allows the designer to rapidly identify any problems,

troubleshoot them and re-simulating the model until satisfactory results are obtained.

In this work, the testing process began with sine samples’ data which was extracted from the

Nios® II IDE console. These sine sample values were generated digitally from trigonometric

calculations based on the formulae that were given in Chapter Four to determine the right

parameters of the signal running on the Nios® II processor, and are expected to be the exact

hardware representation of a fourth of a sine wave.

It was first intended to have floating point custom instructions integrated into the processor

core to increase the calculations’ speed, but they occupy a large amount of memory space, as

mentioned in Chapter Four. A simple C code was developed by using some parameter values

that were determined through calculations. The carrier signal and application selection blocks

were configured manually, according to calculations. As C codes were run onto the

75

processor, the sine waves values, which were generated, could not be viewed and monitored

directly from the Write Interface. Hence, in this testing process the samples were not written

directly into the Avalon MM Write Slave Interfaces ‘s addresses, but were rather collected

from the IDE console to form HDL sine tables, as Figure 5.3 shows.

Figure 5.2: Sine samples validity verification process block diagram

This specific testing process showcased the validity of the sample values that were generated

by the Nios® II core trigonometric and arithmetic calculations and their implementation in

FPGA hardware. In this instance, the sine sample values that were acquired from the Nios®

II core were used as HDL input data. Some “constant” DSP Builder blocks were configured

to emulate Nios® II control data, and used as control inputs to complete the hardware design

of the digital controller for simulation. The operating clock “peripheral_clk” on the DSP

Builder design could be altered at any time on the DSP Builder design to emulate a different

ALTPLL clock signal. This change generated other frequency ranges for switching and

reference sine signals that could not be obtained with the 50 MHz FPGA global clock signal.

Some MATLAB® GUIs were created and used to display simulation results by using

Simulink “To Workspace” blocks on the DSP Builder to store signal data into MATLAB®’s

workspace. All this data appeared to be similar to the ones displayed by the DSP Builder

scopes and proved their compatibility with MATLAB®.

76

5.3 Experimental testing

In order to verify the possibility of applying the SCBC’s in a practical PE environment,

simulations are not enough to prove its reliability and adequate operation. Hence an

experimental test on the HDL design had to be realized in order to evaluate the performance

of the controller. The controller’s outputs, the PWM switching signals, are responsible for the

control of the required PE applications, as stated in Chapter Two. Thus they were the focus in

this hardware test. The Nios® II processor’s functionality was tested, as it controls the

digital controller’s hardware through both its input and output signals by producing the

required PWM signals for specific applications and controlling their frequency, duty cycle

and deadtime.

This testing process was carried out upon completion of the digital controller’s SOPC system.

The configuration of the FPGA was performed by downloading the generated .sof

programming file onto the board with the USB-Blaster download cable and making the

Nios® II system operate as the direct brain of the controller. The latter was accomplished by

building and running another C program code on Nios II® IDE, based on the sine samples

collected from the IDE console and, which compute data read from binary files stored in the

PC- host based file system. The data on the binary files originate from MATLAB® GUIs.

The experimental results were captured in the form of digital waveform signals at the output

of a SAMTEC® ASP-122952-01 High Speed Mezzanine daughter Card (HSMC) connector

placed on a peripheral board to be plugged into the corresponding SAMTEC® ASP-122953-

01 HSMC host connector on the FPGA kit. This facilitates the use of measurement

equipment probes on the FPGA development kit. The controller’s hardware operation is

verified by using measurement equipment, which is displayed in Figure 5.1 and listed in

Table 5.1 below.

Measurement equipments

Oscilloscope Tektronix® TDS2024B

Logic analyser Agilent® Technologies 1683A

Table 5.1: Measurement equipments

77

The oscilloscope was used to display the switching signal frequency, high side PWM signals,

and to perform FFT analysis for reference sine waves. PWM outputs consist of a spectrum of

several harmonic frequency components. FFT signals were obtained by passing a single

PWM signal out through a second order LC low-pass filter acting as some kind of a DAC.

The LC filter filters out all the higher frequency components in the PWM signal, and omits

out the reference signal frequency component to be captured on the oscilloscope.

The logic analyser is advantageous for capturing and displaying multiple switching PWM

signals in one time and over varying ranges of time periods.

As mentioned in Chapter Four and shown in Figure 5.4, some MATLAB® GUIs were

created to serve as a communication interface between the SCBC user and the Nios® II

processor. They were also tested and were successful in communicating with the processor by

making it control the FPGA hardware design as expected. To demonstrate the effects of

altering the size of sine tables on the C code by selecting different frequencies from the

MATLAB® GUIs, the results of this aspect were presented. The adequate frequencies were

captured and displayed on the oscilloscope. It should be remembered that altering the PLL

clock on the SOPC Builder will produce other frequencies than the ones termed on the

MATLAB® GUIs. These frequencies were altered in the same way by the same value that

was used for the PLL clock signal.

This chapter presents both simulation and experimental test results for comparison purposes.

During the simulation testing, carrier, reference and PWM signals were analyzed and

displayed on the Simulink scopes. During the experimental testing of the SCBC, only PWM

and FFT signals were captured, analysed, displayed and compared to the simulation results.

5.4 Switching and reference signal frequency control results

The SCBC’s reconfigurability, in terms of input and output frequency variation was verified

in simulation and on the hardware level. As mentioned earlier, “constant” blocks were

inserted on the DSP Builder design to represent the number of signal bits that were required

by the hardware. The GUI in Figure 5.4 was used as the input generator for the SCBC’s

signal frequency control in the experimental testing. As the user activated the GUI’s

radiobuttons, data was written onto binary files, which was then computed by the Nios® II

78

processor to control the DSP Builder design to generate the required switching and reference

frequencies.

By altering the “peripheral_clk” signal on SOPC Builder, carrier and reference signals

running in different frequency ranges were produced; were equally tested; and proved to be

adequate for the SCBC’s operation. Different frequency ratios were also implemented and

verified throughout the testing process. The reference signal frequency component was

captured and analyzed from the PWM harmonic spectrum in order to validate adequate

reference signal generation.

Figure 5.3: Activation of application and signal generation control GUI

All the frequencies for both carrier range (50 kHz to 1.6 MHz) and reference range (3.125 to

100 kHz) were tested and proved to be correctly generated, but only some of them are

displayed below.

 Figures 5.5 and 5.6 display one cycle of the 400 kHz PWM signal, while Figure 5.7

displays the 25 kHz reference signal component in the 400 kHz PWM harmonic

spectrum. Figure 5.5 also displays the simulation of the carrier and reference signals

involved in the PWM production on the upper section of the scope window.

79

Figure 5.4: DSP Builder simulation for a switching frequency of 400 kHz and a 25 kHz
reference signal

Figure 5.5: Experimental result of a switching frequency of 400 kHz and a 25 kHz reference
signal

80

Reference signal frequency
Component

(25 kHz)

Figure 5.6: Measured FFT of a single 400 kHz PWM gating signal displaying the 25 kHz
reference frequency

 Figures 5.8 and 5.9 display one cycle of the 100 kHz PWM signal, while Figure 5.10

displays the 6.25 kHz reference signal component in the 100 kHz PWM harmonic

spectrum. Figure 5.8 also displays the simulation of the carrier and reference signals

involved in the PWM production on the upper section of the scope window.

81

Figure 5.7: DSP Builder simulation of interleaved switching for a switching frequency of 100
kHz and a 6.25 kHz reference signal

Figure 5.8: Measured 100 kHz PWM signal

82

Figure 5.9: Measured FFT of a single 100 kHz PWM gating signal displaying 6.25 kHz
reference frequency

 Figures 5.11 and 5.15 display the 200 kHz PWM signal. Figure 5.8 also displays the

simulation of the carrier and reference signals involved in the PWM production on the

upper section of the scope window. A simulation GUI for 3-cell inverters is shown in

Figure 5.12. Figure 5.13 and 5.14 are enlarged screenshots of interleaved switching

signals and PWM signals, respectively, from the simulation GUI.

83

Figure 5.10: DSP Builder simulation of interleaved switching for a switching frequency of
200 kHz and a 6.25 kHz reference signal

Figure 5.11: Simulation GUI for Half bridge converter

84

a)

b)

Figure 5.12: Simulation GUI zoom screenshots of a) interleaved switching and b)the ed
PWM signals

85

Figure 5.13: DSP Builder simulation of interleaved switching for a switching frequency of
200 kHz and a 6.25 kHz reference signal

 Figures 5.15 and 5.16 display one cycle of the 200 kHz PWM signal, while Figure

5.17 displays the 50 kHz reference signal component in the 200 kHz PWM harmonic

spectrum. Figure 5.15 also displays the simulation of the carrier and reference signals

involved in the PWM production on the upper section of the scope window.

86

Figure 5.14: Three phase inverter - interleaved switching and PWM signals for a switching
frequency of 200 kHz and reference signal of 50 kHz.

Figure 5.15: Measured 200 kHz high –side PWM signal

87

Figure 5.16: Measured FFT of a single 200 kHz PWM gating signal displaying 50 kHz
reference frequency

 For the next instances, the “peripheral_clk” signal was changed to 833 Hz in order to

produce another frequency range. Figure 5.18 displays one cycle of the 1.66 kHz

PWM signal, while Figure 5.19 displays the 100 Hz reference signal component in the

833 Hz PWM harmonic spectrum. Figure 5.20 displays one cycle of the 833 Hz PWM

signal and Figure 5.21 displays the 50 Hz reference signal component in the PWM

harmonic spectrum.

88

Figure 5.17: Measured 1.6 kHz high –side PWM signal

Figure 5.18: Measured FFT of a single 1.6 kHz PWM gating signal displaying 100 Hz
reference frequency.

89

Figure 5.19: Measured 833 Hz high –side PWM signal

Figure 5.20: Measured FFT of a single 1.6 kHz PWM gating signal displaying 100 Hz
reference frequency.

90

The collected results above prove the successful operation and flexibility of the SCBC in

terms of signal frequency control, as all this section’s figures exhibit adequate PWM signals,

which operate at some of the possible frequencies.

5.5 Application control results

In this section the SCBC’s reconfigurability in terms of PE application selection was tested

and verified in simulation and on the hardware level. The SCBC can only operate on one PE

application at a time though. Adequate HSMC pin assignments were carried out through the

Quartus® II software to ensure the right selection, and the number of PWM signals to be

produced accordingly. The number of PWM output signals is dependent on the number of

power semiconductor devices that are present in the switching converter. For each P.E.

application, required signal shifting was implemented and tested. In the case of three phase

inverters, reference signals are phase-shifted by 120°. In the case of a 5-cell multilevel

inverter, carrier signals are phase-shifted by 72°. To accomplish this, a time delay system was

implemented in the DSP Builder design. The GUI from Figure 5.5 was involved in the PE

application control.

 Five-cell inverter

As both Figures 5.22 and 5.23 show, the ten required PWM signals were observed in both

simulation and experimental results. The 72° phase shifting can also be observed on both

figures as they run the five complimentary PWM signal pairs. In Figure 5.22, the

complimentary PWM signal pairs are shown to run after 72° of one another, creating a

noticeable increased time delay.

91

Figure 5.21: 5-cell multilevel inverter PWM signals (simulation – DSP Builder)

Figure 5.22: 5-cell multilevel inverter PWM signals (hardware level)

92

 Three phase inverters

The 120° phase shifting and the three complimentary PWM signal pairs are clearly apparent

in Figures 5.24 – 5.27. Figures 5.24 – 5.26 display simulation results, which show a

noticeable increased time delay after each PWM signal namely the 5-cell inverter. In this

instance, it occurs after 120° of one PWM signal pairs.

Figure 5.23: Three phase inverter PWM signals (simulation – DSP Builder)

93

Figure 5.24: Three phase inverter inverter PWM signals (simulation - MATLAB)

Figure 5.25: Enlarged screenshot of Three phase inverter inverter PWM signals (simulation -
MATLAB®)

94

Figure 5.26: Three High –side PWM signals running at 833 Hz (hardware level)

95

 Half bridge converter

Figures 5.28 and 5.29 display the two required PWM signals.

Figure 5.27: Half bridge converter PWM signals (simulation – DSP Builder)

Figure 5.28: Half bridge converter PWM signals (hardware level)

96

 Full bridge converter

Figures 5.30 and 5.31 show the four required PWM signals and the 180° phase shift between

the two PWM signal pairs.

Figure 5.29: Full bridge converter PWM signals (simulation – DSP Builder)

Figure 5.30: Full bridge converter PWM signals (hardware level)

97

As Figures 5.22 – 5.31 show above, signal shifting is visible and is successfully implemented

in the DSP Builder design owing to the implemented delays. The same was observed for

application selection control. Nevertheless, the amount of shifting implemented in hardware

and I/O pins selection was verified, and proved to be correctly implemented, even when other

reference signals were used.

5.6 Deadtime control results

In this section the SCBC’s reconfigurability in terms of deadtime value selection was tested

and verified in simulation, and on the hardware level. As mentioned in Chapter Two,

deadtime is essential for adequate switching, and must be implemented to avoid short circuits

during switching periods of complimentary signals. The following GUI in Figure 5.32 was

involved in the deadtime value control. The controller user had the option of choosing

between 40, 80, 100, 160 and 200 ns deadtime. Only some of these deadtime values are

displayed below though. Different deadtime values are necessary in order to accommodate

several power switching devices, which possess different characteristics in terms of rise and

fall time requirements. An excess of deadtime could damage some PWM signals, which

operate at low frequencies.

Figure 5.31: Deadtime control GUI

98

Figure 5.32: 40 ns deadtime implementation results, in simulation and hardware level

Figure 5.33: 100 ns deadtime implementation results, in simulation and hardware level

Figure 5.34: 200 ns deadtime implementation results, in simulation and hardware level

99

Figures 5.33 – 5.35 showcase the successful implementation both in simulation and

experimental testing of the developed deadtimes.

5.7 PWM duty cycle control

In this section the SCBC’s reconfigurability in terms of duty cycle control was tested and

verified in simulation and on the hardware level. In DC-DC converters, output signal

regulation is determined by the duty cycle control. The controller user has the option to

choose between 15, 25, 50, 75 and 90 % duty cycle. All these values were successfully

implemented, simulated, experimentally tested and are displayed below. The GUI, which is

presented in Figure 5.36 was involved in the PWM duty cycle control.

Figure 5.35: PWM duty cycle control GUI

100

 15 % duty cycle

Figure 5.36: 15 % duty cycle (simulation)

Figure 5.37: 15 % duty cycle (hardware level)

101

 25 % duty cycle

Figure 5.38: 25 % duty cycle (simulation)

Figure 5.39: 25 % duty cycle (hardware level)

102

 50 % duty cycle

Figure 5.40: 50 % duty cycle (simulation)

Figure 5.41: 50 % duty cycle (hardware level)

103

 75 % duty cycle

Figure 5.42: 75 % duty cycle (simulation)

Figure 5.43: 75 % duty cycle (hardware level)

104

 90 % duty cycle

Figure 5.44: 90 % duty cycle (simulation)

Figure 5.45: 90 % duty cycle (hardware level)

105

5.8 Summary

This chapter presented results from both the simulation and experimental testing. The

simulation testing platform was the DSP Builder/Simulink environment, while experimental

testing was performed by analyzing the PWM output signals from the SCBC, and then

capturing them on an oscilloscope and logic analyser. Both simulation and experimental

results were compared, proved to be similar and correlated to the theory presented in

Chapters Two and Four. This also proved the Nios® II‘s overall system design, including

sine wave and carrier signal generation and interleaved switching, which were all

successfully implemented in the hardware of the FPGA architecture.

106

CHAPTER 6

Conclusions and future work

6.1 Introduction

This thesis focused on the development of a digital controller for PE applications by

implementing a Nios® II processor embedded onto a FPGA platform. The simulation and

experimental tests in Chapter Five were performed to analyse and prove the capabilities of

the SCBC’s individual units, which were designed and developed during Chapter Four. These

test results prove that the soft-core based controller worked as planned, and according to this

thesis’ objectives and given specifications.

6.2 Conclusions

From the presented outcomes in Chapter Five, the established objectives from Chapter One

were fulfilled, namely:

 The investigation of different embedded system based controllers and FPGA/soft-core

technology;

 The design and implementation of a digital controller, which incorporates a Nios® II

processor both in hardware and software aspects. The controller can operate on the

mentioned P.E. above; and

107

 The use of Pulse Width Modulation (PWM) as the control technique, with the internal

generation of carrier signals and reference signals with adjustable frequencies, as

inputs from the Nios® II processor.

Intensive research on power electronics, embedded systems and, especially FPGA/soft-core

systems, was conducted with the help of numerous sources such as theses, journals and

conference papers, websites and books in order to gain as much information as possible.

These sources were useful in providing insight on these reconfigurable technologies, as well

as knowledge on how to implement them successfully.

The embedded Nios® II soft-core processor was utilized to set up and implement an entire

control system for PE applications. It proved to be an efficient device and provided a high

amount of flexibility and reconfigurability. It was showcased as it creates systems of almost

any size by selecting and implementing a specific set of peripherals to meet the designer’s

needs. This is achieved in less time than expected if done manually with analogue elements.

The SCBC design consisted of four units, which were each implemented successfully, as

shown in Chapter Five. Reconfigurability is again showcased by easily modifying parameters

in the Nios® II C code.

The first unit of the overall design is the DSP Builder design, which consists of a sine

generator, carrier signal generator, an adjustable comparator block, application selection and

PWM control blocks. This module proved to operate successfully, and allowed the controller

to generate switching and reference signals at adjustable frequencies, and to work for a

variety of PE applications.

The second unit was the Quartus® II/SOPC system, which incorporates the Nios® II

processor as the “brain” of the whole system and the DSP Builder design as a custom

peripheral interface. Interaction between the Nios® II processor, SOPC components and the

custom peripheral was successfully established. Adequate PWM signals were sent to specific

I/O FPGA pins on the HSMC card once they were correctly configured with the Quartus® II

Assignment Editor. It can be concluded that DSP Builder and Quartus® II SOPC Builder

tools are efficient for the development of reconfigurable, large and complex PE systems onto

a single chip without a need to create long and extremely time-consuming HDL codes.

108

The third unit involved the development of the C code, which operates on the processor via

the Nios® II IDE environment. The use of one fourth of a sine wave and LUT methods were

introduced and were useful in reducing the usage of FPGA memory resources significantly.

As the DSP Builder simulation results from Chapter Five show, the sine wave samples

generated by the Nios® II processor proved to be valid and compatible with the other

developed portion of hardware to generate the adequate PWM signals as required. Direct

interaction of the C code with the DSP Builder was also successfully established to have the

processor directly control the controller’s hardware.

The fourth unit consisted of the creation of MATLAB® GUIs whose function is to provide a

communication interface between the SCBC user and the Nios® II processor and graphic and

monitoring tools. They enable the user to enter data as input parameters in the system, and to

display simulation results that are also provided. They were all successful in their operations.

The final outcome of this work relates to the successful operation of the SCBC in open loop

control mode for half and full bridge, three phase and 5-cell multilevel inverters, as required

by the specifications. Its level of reconfigurability was impressive, as the control calculations

implemented in the C code running on the processor may be altered, and the same applies to

the digital logic in the DSP Builder design as well. This work has increased the understanding

of the FPGA embedded Nios® II processor, SOPC systems and their application in power

electronics, from theory to hands-on experience. An important lesson was learnt in

considering how a small change in software can affect the entire system by ensuring the

successful interaction of each module of the system.

6.4 Encountered problems

The biggest challenge in the design and implementation was fitting all the necessary design

parts together, while still respecting the limit amount of LE resources and memory space

available from the Cyclone® 3C25F324C8 FPGA. Part of this challenge was to develop a

wide enough frequency range without altering the system’s PLL clock signal,

“peripheral_clk”. A lot of work and time was spent to write import VHDL codes in a

convenient way in order to minimize the size of the overall design, to implement adequate

data formatting for all the individual design units, and still obtain the correct results after

109

synthesis. The same was applied when selecting only necessary and relevant SOPC modules

to be inserted in the design.

A lack of time and available Nios® II custom instructions for trigonometric functions led to a

disadvantage, and a procedure in generating sine wave values through sine tables. A better

option would have been the values generation in higher resolutions directly from the soft-core

processor without using sine tables.

6.5 Future work

Although a large amount of work was completed, several more ideas were excluded owing to

time constraints, and to remain focussed on the main part of the work. These same ideas

would be interesting to see implemented in future studies, and are shown below.

 Implementation of closed-loop control mode for PE applications (ADC

implementation). Closed-loop control in digital controllers provides several

advantages such as disturbance rejection, guaranteed performance even with design

uncertainties, high system stability and reduced sensitivity to parameter variations

(Geethanjali et al., 2010). The SPI protocol can be used as the communication

protocol between the ADC chips and the rest of the Nios® II system.

 Finer resolution for direct reference signal computation and generation from the

Nios® II core without the use of sine tables.

 Introduction of a UART module in the SOPC system to provide a more flexible

communication interface, with or without MATLAB® GUIs, and with the help of a

keypad or LCD module.

 Turning the MATLAB® GUIs into stand-alone applications. A way of eliminating a

need for repetitive running of the software in the Nios® II IDE whenever new input

data is entered into the system would be of great interest. This will render the Nios®

II system mobile and more independent.

110

List of References

Ababu, T. 2007, Design of Pulse Width Modulation (PWM) and its implementation in Xilinx

Field Programmable Gate Array (FPGA), MSc Thesis, Addis Ababa University, Addis

Ababa, Ethiopia.

Albiach, J. I. M. 2006. Interfacing a Processor Core in FPGA to an Audio System, MSc

Thesis, Linköping Institute of Technology, Linköping, Sweden.

Alcalde, A. L. P., Mohr H.B., Borgonovo D., Mussa S. A. 2009. Experimental validation of

the Nios II processor-FPGA on the digital control of PFC converter, Brazilian Power

Electronics Conference (COBEP), Florianopolis, Brazil, pp. 895 – 900.

Altera Corporation, 2002. Altera SOPC Solution, 2002 SOPC World Conference, USA.

[Online] Available at: http://www.pldworld.com/_exhibit/2002/A_1st_Session.pdf.

Altera Corporation 2004. The World’s Most Versatile Processor Nios II.

[Online] Available at: http://www.ee.mut.ac.th/FPGA/SupportFile/Achieva/Nios_II_6.pdf.

Altera Corporation, 2010a. Avalon Interface Specifications, version 1.3. [Online] Available

at: http://www.altera.com/literature/manual/mnl_avalon_spec.pdf.

Altera Corporation, 2010b. Cyclone III FPGA Starter Board Reference Manual, version 1.3
[pdf].

[Online] Available at: http://www.altera.com/literature/manual/rm_ciii_starter_board.pdf.

111

Altera Corporation, 2010c. DSP Builder Handbook Volume 2: Blockset, version 1.0.

[Online] Available at: http://www.altera.com/literature/hb/dspb/hb_dspb_std.pdf.

Altera Corporation, 2010d. Quartus II Handbook, Version 1.3 Volume 5: Embedded

Peripherals [pdf].

[Online] Available at: www.altera.com/literature/ug/ug_embedded_ip.pdf.

Altera Corporation, 2010e. Nios II Processor Reference Handbook, version 10.1. [Online]

Available at: http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf.

Altera Corporation, 2010f. Nios II Software Developer’s Handbook. [Online] Available at:

www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf.

Altera Corporation, 2011. Embedded Design Handbook, version 11.0. [Online] Available at:

http://www.altera.com/literature/hb/nios2/edh_ed51008.pdf.

Altera Corporation, 2012, DSP Builder (picture). [Online] Available at:

http://www.altera.com/products/software/products/dsp/dsp-builder.html.

Altera Forums, 2010. How the avalon mm slave "address alignment" works? [Forum].

[Online] Available at: http://www.alteraforum.com/forum/showthread.php?t=21324

Anemaet, P., van As, T. 2008. Microprocessor Soft-Cores: An Evaluation of Design Methods

and Concepts on FPGAs, Computer Architecture (Special Topics), Publication View.

42624821, ET4 078, The Netherlands.

112

Arbinger D. & Erdmann J. 2006. Designing with an embedded soft-core processor, the

Plexus Technology Group. [Online] Available from http://www.embedded.com/design/mcus-

processors-and-socs/4006632/Designing-with-an-embedded-soft-core-processor. Accessed

on 25/11/12.

Bakar, A. A., Abdullah, F. S. & Ahmad M. Z. 2009. Design of FPGA-based SPWM Single

Phase Full Bridge Inverter, Proceedings of Malaysian Technical Universities Conference on

Engineering and Technology (MUCEET) 2009, Johor, Malaysia.

Barr, M. 1999. Programming Embedded Systems in C and C++, first edition, O'Reilly

Media, pp.18.

Bengtsson, H. & Jonssson, M. 2009. Control of Switch-mode Power Supplies: A digital

approach for half-bridge converters, MSc Thesis. Chalmers University of Technology,

Göteborg, Sweden.

Chamberlain, R., Lockwood, J., Gayen, S., Hough, H. & Jones, P. 2005. Use of a Soft-Core

Processor in a Hardware/Software Co-design Laboratory, Proceedings of 2005 IEEE

International Conference on Microelectronic Systems Education (MSE'05), California, USA,

pp. 97-98.

Chapman, S. J. 2002. MATLAB programming for engineers, Second Edition, Brooks/Cole-

Thomson Learning, pp. 14.

Daya, B. 2009. Rapid Prototyping of Embedded Systems Using Field Programmable Gate

Arrays, BSc thesis, University of Florida, Florida, USA.

113

De Castro, A., Zumel, P., García, O., Riesgo, T. & Uceda, J. 2003. Concurrent and Simple

Digital Controller of an AC/DC Converter with Power Factor Correction Based on FPGA,

IEEE Transaction on Power Electronics, Volume 18, no. 1, Texas, USA, pp. 334-343.

EE TimesAsia, 1997. New MATLAB software generates C code (article), EE TimesAsia

DSP DesignLine. [Online] Available at:

http://www.eetasia.com/ART_8800482220_499495_NP_6a075c56.HTM. Accessed on

03/09/11.

Erickson, R.W. & Maksimovic, D. 2004. Fundamentals of Power Electronics, Second

Edition, Springer, pp. 1-2, pp. 7.

Francis, J. & Boroyevich, D. 2001. Design of a Universal Controller for Distributed Control

and Power Electronics Applications, Proceedings of Center for Power Electronics Systems

(CPES) and National Science Foundation (NSF)/Industry Annual Review, PEBB

Publications, Virginia, USA.

[Online] Available from http://web-cat.cs.vt.edu/PEBB/R94_Francis.pdf [12/10/2010].

Geethanjali, P., Vijaya, P. P., Kowsalya, M. & Raju J. 2010. Design and Simulation of

Digital PID Controller for Open loop and Closed Loop Control of Buck Converter,

International Journal of Computer Science and Technology (IJCST),Volume 1, Issue 2,

Vellore, India, pp 202 – 206.

Guan, T. G. 2010. Wireless Channel Model Development using FPGA, BSc thesis,

University of Technology Malaysia (UTM), Johor, Malaysia.

Grout, I. 2008. Digital systems design with FPGAs and CPLDs, Newnes / Elsevier

publishers, Oxford, UK, pp. 28, pp. 63 – 64, pp. 195.

114

Hamblen, J.O. & Hall, T.S. 2006. Using System-on-a-Programmable-Chip Technology to

Design Embedded Systems, Proceedings of International Journal of Computers and Their

Applications (IJCA), Volume 13, No. 3, pp. 1-11.

Hamblem, J. O. & Furman, M. D. 2002. Rapid Prototyping of Digital Systems, SOPC edition,

Kluwer Academic Publishers, pp. 326.

Van Heerden, G. J. 2003. Design and Implementation of a DSP Based Controller for Power

Electronic Applications, MSc Thesis, University of Stellenbosch, Stellenbosch, South Africa.

Jooste, C. & Wilkinson, R.H. 2009. Development of a Generic Digital Controller for Power

Electronic Applications, Proceedings of South African Universities Power Engineering

Conference (SAUPEC), Stellenbosch, South Africa, pp. 163-166.

Joshi, N. N., Dakhole, P. K. & Zode, P. P. 2009. Embedded Web Server on Nios II

Embedded FPGA Platform, Second International Conference on Emerging Trends in

Engineering and Technology, ICETET-09, Nagpur, India, pp. 372 – 377.

Kariyappa, B. & Uttara Kumari, U. 2008. FPGA Based Speed Control of AC Servomotor

Using Sinusoidal PWM, International Journal of Computer Science and Network Security

(IJCSNS), Volume 8 No.10, Bangalore-59, India, pp. 346-350.

Kimmo, R. 2006. FPGA-Based control design for power electronic applications, PhD thesis,

Lappeenranta University of Technology, Lappeenranta, Finland. [Online]Available from

https://oa.doria.fi/bitstream/handle/10024/31138/TMP.objres.472.pdf.

Klumpner, C. 2004a. Inverters (pdf), Power Electronics course, University of Nottingham.

115

[Online] Available at:

http://hermes.eee.nott.ac.uk/teaching/h5cpe2/Inverters%20%28with%20pics%29.pdf.

Klumpner, C. 2004b. Inverters - Triangular PWM (Photograph), Power Electronics course,

University of Nottingham.

[Online] Available at: http://hermes.eee.nott.ac.uk/teaching/h5cpe2/triangular_PWM.gif.

Koskinen, T. J. 2009. Metadata-based Automated Configuration of System-on-Chip, MSc

thesis, Information Technology Department Council meeting, Tampere University of

Technology, Tampere, Finland.

Koutroulis, E., Dollas, A. & Kalaitzakis, K. 2006. High-Frequency Pulse Width Modulation

Implementation using FPGA and CPLD ICs, Journal of Systems Architecture, Volume 52,

Technical University of Crete, Crete, Greece, pp. 332–344.

Krah, J., Höltgen, M., Rath, A. & Ritcher, R. 2011. FPGA-based Control of Three-Level

Inverters, PCIM Europe 2011 International Exhibition & Conference for Power Electronics,

Intelligent Motion, Power Quality, Nuremberg, Germany, pp. 66.

Leonov, M. 2009. Method and Implementation of Multi-Channel Correlation in the Hybrid

CPU+FPGA System, MSc thesis, Auckland University of Technology (AUT), New Zealand.

Luo, F.L., Ye, H. & Rashid, M.H. 2005. Digital Power Electronics and Applications.

Academic Press, pp. 32, 88 – 89.

Maksimovic, D., Zane, R. & Erickson, R. 2004. Impact of digital control in power

electronics. Proceedings of the 16th International Symposium on Power Semiconductor

Devices and ICs (ISPSD), Kitakyushu, Japan, pp. 2 – 22.

116

Malik, J. & P, Ratna S. 2010. Design of MP3 Player Application with Nios II Embedded

Evaluation Kit, BTech thesis, National Institute of Technology (NIT), Rourkela, India.

Martin, T.W. & Ang, S.S. 1995. Digital Control for Switching Converters. Proceedings of the

IEEE International Symposium on Industrial Electronics, Arkansas, USA, pp. 480-484.

Mastascusa, E. J. 2002.Control Systems lessons, Bucknell University. [Online] Available

from http://www.facstaff.bucknell.edu/mastascu/econtrolhtml/Intro/Intro1.html.

Mohan, N., Undeland, T. M., Robbins, W. B. 2003. Power Electronics - Converters,

Applications and Design, Second Edition. John Wiley & Sons, Inc.

Molepo, S. A. 2003. A Multilevel Inverter for DC Reticulation, MSc thesis, University of

Stellenbosch, Stellenbosch, South Africa.

Noman, M. 2004. Low-Power Embedded Processor, ECE 290 Final Report, University of

Connecticut, Connecticut, USA.

Nurmi, J. 2007. Processor Design: System-On-Chip computing for ASICs and FPGAs.

Springer publishers, pp. 230.

Pedroni, A. V. 2004. Circuit Design with VHDL, first edition, The MIT Press, London,

England, pp.3.

Prodic, A., Maksimovic, D. & Erickson, R. W. 2001. Design and Implementation of a Digital

PWM Controller for a High-Frequency Switching DC-DC Power Converter, 27th Annual

Conference of the IEEE Industrial Electronics Society (IECON), University of Colorado,

Boulder, USA, pp. 893 - 898.

117

Quasim, S. M., Telba, A. A. & AlMazroo A. Y. 2010. FPGA Design and Implementation of

Matrix Multiplier, Architectures for Image and Signal Processing Applications, International

Journal of Computer Science and Network Security (IJCSNS), Volume 10 No.2, pp. 168 -

176.

Sicking, J. 2005. Implementation of Asynchronous Communication for ForSyDe in Hardware

and Software, MSc Thesis, Institute of Microelectronics and Information Technology, Royal

Institute of Technology (KTH), Stockholm, Sweden.

Simka, M. 2002. Conception of Connection of Embedded Processor to Arithmetic Co-

processor in SOPC Altera, MSc thesis, Technical University of Kosice, Kosice, Slovakia.

Schietekat, L. M. 2011. Design and Implementation of the Main Controller of a Solid-State

Transformer, MSc thesis, University of Stellenbosch, Stellenbosch, South Africa.

Singh, K. B. K. 2008. Power Electronics. Second Edition, McGraw – Hill, pp. 11 – 12.

Speaking Technology – Electrical and Electronic Engg, 2012. Open & Closed Loop Control

System - Advantages & Disadvantages. [Online] Available from

http://amitbiswal.blogspot.com/2012/01/open-closed-loop-system-advantages.html. Accessed

on 15/11/2012.

Tong, J.G., Anderson, I.D.L. & Khalid, M.A.S. 2006. Soft-Core Processors for Embedded

Systems, Proceedings of the 18th International Conference on Microelectronics (ICM),

Ontario, Canada, pp. 170 - 173.

Urriza, I., Barragán, L. A., Navarro, D., Artigas, J. I., Lucía, O. & Jiménez, O. 2009. FPGA

Embedded Soft-Core Processor Implementation of a Digital Controller for a DC-DC

118

Converter, Proceedings of the 14th Conference on Design of Circuits and Integrated Systems,

Zaragoza, Spain, pp. 72-77.

[Online] Available from http://dcis2009.unizar.es/FILES/CR2/p72.pdf . Accessed on

12/10/2010.

Venkatesh, S. C. 1994. The Development of a Digital Controller for a Three Phase Induction

Motor, MSc. Thesis, Massachusetts Institute of Technology, Massachusetts, USA.

Wilkinson, R.H. 1997. Topology, Control and Development of High Power Multilevel

Converters, MSc thesis, University of Stellenbosch, Stellenbosch, South Africa.

Wilkinson, R.H. 2004. Natural Balancing of Multicell Converters, PhD thesis, University of

Stellenbosch, Stellenbosch, South Africa.

Williams, B. W. Power inverters [pdf].

[Online] Available at: http://www.eee.strath.ac.uk/~bwwilliams/Book/Chapter 14.pdf.

Accessed on 19/10/2010.

Zeidman, C. 2004. Zeidman Technologies [article].

[Online] Available at: http://chipdesignmag.com/display.php?articleId=386. Accessed on

03/05/2010.

Zhang, D. 2006. A Stochastic Approach to Digital Control Design and Implementation in

Power Electronics, PhD Thesis, the Florida State University College of Engineering, Florida,

USA.

Zhang, Z. & Dong, F. 2010. A Harmonic Signal Generator Based on DDS and SOPC,

Chinese Control and Decision Conference (CCDC), Tianjin University, Tianjin, China, pp.

1542 – 1547.

119

Appendix A – SOPC Builder configuration settings

Figure A.1: Nios® II processor core configuration

120

Figure A.2: Off-chip memory cores utilized by the Nios® II core CPU

121

Figure A.3: SSRAM off-chip memory configuration

Figure A.4: FLASH off-chip memory configuration

122

Figure A.5: Output pins assignments on Quartus® II Assignment Editor

Figure A.6: Hardware resource usage displayed by the Quartus® II Compilation Report

