"*-n"":ﬂ

CiR

Centre Tor Insorumentaoen Research

‘ Cape Peninsula
University of Technology

DEVELOPMENT OF A SOFT-CORE BASED POWER ELECTRONIC
CONVERSION CONTROLLER

Thesissubmitted in partial fulfilment of the requirementsfor the degree
Master of Technology: Electrical Engineering in the Faculty of Engineering

at the

CAPE PENINSULA UNIVERSITY OF TECHNOLOGY
by

Cassandra Daviane Nsumbu

Supervisor: Mr Daan de Beer

Co-supervisor: Mr Andrew Van der Byl

Cape Town Campus

June 2014

DECLARATION

|, Cassandra Daviane Nsumbu, declare that the contents of this dissertation/thesis represent
my own unaided work, and that the thesis has not previously been submitted for academic
examination towards any qualification. Furthermore, it represents my own opinions and not

necessarily those of the Cape Peninsula University of Technology.

Signed Date

ABSTRACT

The application of digital control techniques has become dominant in power electronics
owing to several advantages they present, when compared to analogue solutions. Their
development is based on the use of microprocessors and microcontrollers, such as
Application Specific Integrated Circuit (ASIC), Digital signa processors (DSP), Field
Programmable Gate Arrays (FPGA), or a combination of these devices.

This thesis presents an investigation of a soft-core based FPGA control system as a solution
for power electronic applications. The aim was the development and implementation of a
conversion controller, which purpose is to supply control inputs in the form of digital Pulse
Width Modulation (PWM) signals, to a number of power electronic applications, such as
single half and full bridge DC-DC converters, three phase and multicell inverters. The PWM
control technique is achieved viatheir power semiconductor switching devices. These PWM
control signals are necessary for the high frequency conversion of an analog input voltage
(AC, DC or unregulated) to an analog output voltage of another level (AC or DC). This was
intended to be achieved by exploiting and combining the advantages that FPGA and
embedded processors provide such as high reconfigurability and multipurpose ability. This
controller’s digital outputs, namely PWM switching signals, can be directly delivered to an
analog signal amplification circuit to create an adequate voltage level before being processed

by the converters switches.

The full design consists of the Nios® |l processor, which executes the control algorithm in
the form of software codes; a Hardware Descriptive Language (HDL) peripheral that forms
the Pulse Width Modulator (PWM), which is necessary in the operation of power electronic
applications in open-loop control mode; and MATLAB® Graphical User Interfaces (GUI) to
serve as communication platforms between the controller user and the soft-core. The
proposed soft-core is the Nios® |l processor from Altera® Corporation, which acts as the
central method of implementation in this work. The soft-core is integrated along with severd
other modules, and is configured onto an FPGA to produce a reconfigurable and expandable

hardware/software solution in the form of a System-On-Programmable-Chip (SOPC).

Software is developed in C and implemented to control the interaction and operation of the
SOPC hardware components viathe Nios® |l processor. It also ensures data transfer between
MATLAB® GUIs and the processor. Changes can be easily implemented in the software in
order to ensure the control of the hardware aspect of the soft-core based conversion controller
(SCBO).

The design software, Quartus® Il and its development tool, DSP Builder are used in this
work, for the creation of the HDL firmware and SOPC system. Another development tool
from Quartus® |1, the Nios® |1 Integrated Development Environment (IDE), is used to create
and debug the software code, which is intended to program the Nios® |l soft-processor.
MATLAB was used to serve to develop the GUIs, which serve as a user communication
interface between a host PC and the soft-core based embedded system.

Simulation, synthesis and experimental test results are presented and discussed in this
research study to evaluate the operation of the processor core and its overal SOPC system.
Simulation and synthesis tests were conducted at each stage of the controller’s devel opment
process in order to check and monitor the progress in both hardware and software
development. They also allowed for a comparison with the expected experimental test results.
The latter was performed on the overall Nios® Il system, while using the MATLAB® GUIs,
which were designed to enter user inputs. The controller hardware’'s outputs, Pulse Width
Modulation (PWM) control signals, were measured at various instances following different
inputs, accordingly, to evaluate the controller’s performance. These signals are responsible
for the control and operation of power electronic applications in real hardware. The
conclusion drawn from these results is that this method of implementation was successful in
its intended objectives. Further research should address the application of the closed-loop
control mode, and a more independent method of communication between the user inputs

into the controller and the Nios® 11 processor.

ACKNOWLEDGEMENTS

| wish to thank:

e Our Almighty God;

e Prof Robert van Zyl, Daniel de Beer, Dr Wilkinson, Mr Van der Byl, Prof
Biermann and Mr Kaplan for their enthusiasm, guidance and knowledge;

e My family, especially my mother, for their constant support;

e TheCIR staff; and

e My colleagues for their support during the devel opment phase.

| am very grateful for the financial support from the National Research Foundation (NRF)
and the French South African Institute of Technology (F SATI).

Finally 1 extend my gratitude to all who has indirectly contributed to the successful

completion of thiswork.

LIST OF ABBREVIATIONS

AC Alternating Current

ASIC Application Specific Integrated Circuit
CAD Computer-Aided Design

CIR Centre of Instrumentation Research
CLK Clock

CPU Central Processing Unit

DAC Digital-to-analog

DC Direct Current

DDS Direct Digital Synthesis

DPWM Digital Pulse Width Modulation

DSP Digital Signal Processing

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

F SATI French South African Institute of Technology
GUI Graphica User Interface

HDL Hardware Descriptive Language

HSMC High Speed M ezzanine Card

IDE
IGBT
/O

IP
IRQ

JTAG

LED

LE

LHD
LUT

MM
MOSFET
MSPS
PCB

PE

PIO

PLL

SCBC

SRAM

Integrated Circuit

Integrated Development Environment
Insulated Gate Bipolar Transistor

I nput/Output

Intellectual Property

Interrupt Request

Join Test Action Group

Light Emitting Diode

Logic Element

Low Harmonic Distortion

Lookup Table

Memory Mapped

Metal Oxide Semiconductor Field Effect Transistor
Million samples per second

Printed Circuit Board

Power Electronics

Parallel Input/Output

Phase Locked Loop

Soft-Core Based power conversion Controller
System On Chip

Static Random Access Memory

Streaming Interface

Vi

RAM

RISC

RTL

UART

UPS

USB

VHDL

VHSIC

Random Access Memory

Reduced Instruction Set Computer

Register Transfer Level

Universal Asynchronous Receiver/Transmitter
Uninterruptible Power Supply

Universal Serial Bus

VHSIC Hardware Descriptive Language

Very High Speed Integrated Circuit

Vii

TABLE OF CONTENTS

DECLARATION wtttttstssssssssssnssssssssssssssmssssssssssssssssssssssssssssssssssssnssassnsssssnssass I
ABST RA CT atiiitimserssisiessssssssssssssssssssssssnsssssssssssssssssssnsssssssssssnssssasssssassnssesssssesssssssassnssnssnssnssnsssssnsnss II
ACKNOWLEDGEMENT Stiiistssmssmssmsessssssssssssssmsssssssssssssssssssssssssssasssssssssssssssssssssssssassssssssnssassnsss IV
LIST OF ABBREVIATIONS....citimsmsssssssmssnssnssnssnssnssssssssssnsans V
LIST OF FIGURES .. ccrtrnissssssssssssssssssssssssssssssssssssnssssssssssssssssnsanssnssnssassnssssssssssnssnssnssnssnsans XII
CHAPTER L.ciiiiiiieiinismsansssssssssss s sss s s s s sn s s sasas s s s s sasss nnsssss sn s smssssssnsans snnssassns snssanssnssnns 1
INTRODUCTION....iiiiiiimssnisssssssssssssssssassssssnsssssssssmssssssasssssssssassss sanssssssnssmssssssmssmsssnssassns ssnssasssnssnss 1
R oY= o T € TU 4T 1
1.2 MOTIVATION «..uiiiiiieiiiiiiiiiineeeneiiisiiireesnsssssesttsssssssssssssssessnsssssssssssssnnnsssssssssssnnnes 6
TR 0. o =T o €L 6
1.4 ReSEArCh QUESTIONSciiiiiiiiiiiiiiiiiiiiiiiiiiiirnr ssssssssssssssssssssssssssssssssssssssnnnnns 6
1.5 Research MethodolOgYccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiniirsssrsissns 7
1.6 Delineation of the reSearch....... i s s s s s s s s s s s s s s s s s s sssssssssssnes 7
1.7 Contributions Of the reSarch e e e e s s e rersee s e s s e e e s nnnssssssseseennnssssssssesennnns 8
1.8 THESIS OULIINE..cciiiiiiiiiiiiiciiccccccccrrrr s s s s s s s s s s s s s s s s s s s e s s s s s ssssssssssssssssssssssssnsnnns 8
1.9 SUMMIAIY .cuuuiiiiiiiiiieiiiiiiiireeee s et rreassssss s et s s sasssssss st e s sassssssssstssssssssssssstsssssssssssssstnssnssssssssssnessnssssssssssensnnes 9
(00 5 73 0 Sl 1 D1 10

BACKGROUND OF DIGITAL CONTROL FOR POWER ELECTRONIC APPLICATIONS.10

7 I 1 T [T T o N 10
p B 0T T-Ty B LaTeY o Jolo T3 A ZoY I 1 1 o To LSRN 10
2.3 Introduction to Pulse Width Modulation (PWIM)ccicicerreeeiiiiiicnssnnneeninsisssssnseesssssssssssssssssssssssssnnssanes 11
0 T80 N SV I =Tl Y Yo U= 11
T D 1T Lo L 1o o TSP PSPPI 13
2.4 Overview of FPGA based digital CONtrollerscciiiiiiiiiiiiiiiiiiiiiiiiiieiiinieeieeeeeeeeeeeeeeeeeseeesssesssssssssssssssssses 14
2.4.1 DSP/ FPGA based digital CONTIOIIETc.veeevviiireeeie ettt ettt et ettt e etee et e eeteeeteeeeteeeabesereeears 14
2.4.2 FPGA based digital CONTIOIIEIiii ettt e e et re e e et e e e e nae e e esntaeeeensaeeeennens 15
2.4.3 FPGA embedded SOft-COre PrOCESSOIS ...ccccuuiiiiiee e ettt e ee et e e e e e e ettt e e e e e e sesabraeeeaeeeesastaseeaeeeesansens 15
2.5 NIOS® [] SOFt PrOCESSOr COM@....uuurrrriiiiiiirssnnereiisisssssssssessssssssssssssessnssssss 17
2.6 Contributions of the Nios® Il soft-core application in power electronicsc.ccccevveerereiiiicsrsseeeneesescsssnnens 20
2.7 Related and past work on digital control for power electronicscccuiiiiiiiiiiiiiiiiiniiiiiiieeieeeeeeeeeeeeeeeeeeeee 20
2.8 SUMMAIY . .iiiiieiueiiiiiiirreeeseisiitirreasssssssstrresssssssssstreesssssssssstsmsstesssssssssssssnssnnsssssss 23
(00 5 73 0 Sl 1 D1 24
HARDWARE AND SOFTWARE TOOLS ... sesssns s sssssssssessssssssssssssssssssssssssassssssasas 24
200 T T [T o o N 24
3.2 Cyclone® Ill EP3C25 Starter Development board..........ccciiiiiiiiiiiiiiiiiiiiiiiiiininiieeeeeeeeeeeeeeeeeeeseeeseesssssssssssssees 24
3.3 Controller SOftware COMPONENTEScccviiiiiiiiiiiiiiiiiiiiiiiiieieieeeeeereereeeeeeeeeeteeeeeeeemeeseeeeeesessemsssssssssssssssssssssssssss 27
3.3.1 DSP Builder and MATLAB/SIMUINKccveiiiieirieieierieeee ettt sttt st sbe et saenea 28
I I N T R O LU - [(U I3 | OSSP 29
TR T Y0] o Ol o TUT1 o 1= T OO P P PRTPPR 29
3.3 NTOS® L IDE ...t eeieee ettt ettt e ettt e e ettt e e e et e e e eetbeeeeetbeeeeeabaeeeassbeeeeassaeeeasbasaeansseseessaeeeastesasansaeeeassens 30
3.4 SOFtWAre [aNGUAEES.....ccciiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeseessessnns 30
3 RV 1 0 Nt 30
I By O - Y V= U - - S 31
T ¥ 4T 1= R 31
(00 5 74 Sl 1 D0 32
HARDWARE/SOFTWARE CO- DESIGN AND IMPLEMENTATION......ccccummsmmmssssesessnsesas 32
A.1 INTrOAUCTION ...cceeiiiiiiiiiinetetiiiiiisisneeetisiessssssssessnssesssssssssssnnsssssssssssssns 32
4.2 Soft-core based controller SPeCifiCationscccccvviiiiiiiiiiiiiiiiiisissirir s sssssssssssssssssssssssnes 33

4.3 CONTIOIIET OVEIVIBW ...ceeueeiiiiiieeeeenieeeieteeensseeeeeeeeeeenssssseeseessssssssssssessssssssssssssssssnssssssssssssssssssssssssssnnnnsssssssens 34

4.3.1 HardwWare dESIZN OVEIVIEW.......ceiieiieiiiiiieee e e eeeiittee e e e e e e eettareeeeeesestataeeeaaeeesastaseeaaseeaasstasseaessesansrssseaaenanas 35
4.3.2 SOftWAre AESIZN OVEIVIEWuvvieeiiiieeeiieeeeeitee e stteeeesete e e seete e e staeeeesteeesensseeesnaeaeassseeesassaaeesnsseesassesennnes 36
4.4 Project deSi8N FIOWeueeeeeeeiiiiisses 36
4.4.1 Stage 1 — DSP Builder design and implementationcccceeeiiiieeeciee e 37
) - Y= LI A O | S G ol T} o] [Pt 56
4.4.3 Stage 3 — QuAartus® Il system COMPIELION......uiiiii i saee e 60
4.4.4 Stage 4 - MATLAB® GUI design and implementationcc.oocuiieeeiiiii et 61
4.4.5 Stage 5 — Software code deVelOPMENTcccuiiii e e e e et e e e e e e e e areeeeaes 65
Y T 43T - 1 N 72
08 5 72 N et D1 73
SIMULATION AND EXPERIMENTAL RESULTS.....cccccunmmmummsemmsnsssmssmssssasssssssssasssssssssasssasas 73
L T T [T o o N 73
5.2 Nios® Il and DSP BUilder SIMUIAtionceeiiiiiiiinneeeiiiiiiiinnnneeiiiiiineeeiiiissmsseesissssssssessssssssssssesnss 74
5.3 EXPerimental teStiNGcccuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeieeeeeeeeeeeeteeeeeeeeeeeemeessssssesssssessns 76
5.4 Switching and reference signal frequency control resultscccciiiiiiiiiiiiiiiiiiiiiiiiieieneeeeeeeeeeeeeeeee 77
5.5 ApPlication CONLIOl rESUILSccccevviiiiiiiiiiiiiiiiiiiiiiiieiiieteeireeeeeeeeereeeeeeeeeeeeeeeeeeeeesessesssesssssssssssssssssssssssssssssssss 90
. VLR ol | T 1Y T o =Y TP 90
. TIIEE PRASE INVEITEIS ... iiiiieee e ettt ettt e e e ettt e e e e s e et a e e e e e e eessabbaaaeaeeeesastasaeaeaeeaaasssaneaaeseenassres 92
. [il T Te F= Ll ol o V=T o =Y S 95
. U1 oY Te Fod Sl oo a1V =T =Y S 96
5.6 Deadtime CONTIrol r@SUILS......cccvvreiiiiiiiiiinrteiiiiiiissneeetiisesssssssseesssssssssssnsessnnsnnss 97
5.7 PWIM duty CYClE CONTIOL...ccciiiiiiiiiiiiiiiiiiieiieiiiieieeeeineeeeeeeeeeeeeeeemeemmmeeessssssess 99
O A5 0D AULY CYCIE ittt ettt et ettt e bt he e heea e et et et e besheebeeheeneent et entennen 100
® 25 0D TULY CYCIR ettt e a et et ettt e bt heeh e a et et et e besbeebeeheeaeent et entennen 101
L O X0 014V 0y 1= TSRS 102
L SR X0 014V 0y 1= T TSRS 103
® 00 %D AULY CYCIR .ttt sttt st e a ettt et et e seeeb e e heeheeat e st ense st e besbeebeebeeneent et enteneen 104
5.8 SUMIMIAIY .cuuiiiiiiiiiiniiiiieiiiiteiitieaiitreasiitreessstresssstrssssstrssssstessssstssssssssssssssessssssssssssssnssssssnssssssnsssssansssssnnsss 105
CHAPTER 6....veieiisiieiinnissssanississsssssssssssssssssssss s sssssss s sssss sessssssssssssss s sass s ssnssasssnssnsssnssassnssnnssanns 106
CONCLUSIONS AND FUTURE WORK.....ccusmsmusnmsamssnsssmssssssssasssssssssasssssssssssssssssssssssassssssnssasans 106
R0 B 141 [T o 4T N 106
307 2 0 T 1] (1] T3S 106

6.4 ENcountered Problems..........ciiiiiiiiiiiiiiiiieieieecieeeeeeeeeeeeeeeeeeeeeeeeettesteesstsssssstsssttsssssssssssssssssssssasssssssssssassaaas 108

6.5 FULUIE WOTK .eeeuuiiieenireeeniirtenniereensiereensiereesseesesssssssssssssssssesssssssssssssssessssssssnssssssnssssssnssesssnssssssnssesasnssesannnns 109
LIST OF REFERENCEStiiiiiimiiiesiiissiiisssisinssssssssssmsssssss ssmssssmsssssns s sns s ssnmssssms sssnns ssmssssnnnssans 110
APPENDIX A - SOPC BUILDER CONFIGURATION SETTINGScccccvnrmrnsamrrmsmsssssnssssnes 119

Xi

LIST OF FIGURES

Figure 1.1: Power electronics and interdisciplinary concepts (Mohan, 2003)ccccccevveneene. 2
Figure 1.2: Structure of a power electronics switching converter (Erickson & Maksimovic,
2004) ..ottt b e bbbt h Rttt et e beehe e bt eh e e Rt et et e ntenbesbesheebeeneas 4
Figure 1.3: Open-loop controller block diagramcccceveeveecieciecece e 11
Figure 2.1: Sinusoidal PWM generation (Klumpner, 2004)..........ccceveeveneereeneeseeseeee e 13
Figure 2.2: DC based PWM gENEIation..........cccoveeerieieeieciesieete et eee e seeesee e sse e nes 13
Figure 2.3: lllustration of dead time (Venkatesh, 1994).........cccovvvienieieneeneeeseseeee e 14
Figure 3.1: FPGA architecture (Zeidman, 2009)ccceevueriereriienienieeie e 25
Figure 3.2: Top View of the Cyclone® |11 FPGA Starter Board from (Altera Corporation,

1220 10 o) IO P PSP 26
Figure 4.18: RTL diagram of the soft-core based controller’s Nios Il system........................ 61
Figure 5.1: Testing setup bIOCK diagram...........ccceeviiieiieiecieseee e 73
Figure 5.3: Sine samples validity verification process block diagram.ccccceeeveveecieennnnee. 75
Figure 5.4: Activation of application and signal generation control GUIccccceeveeeneenee. 78
Figure 5.5: DSP Builder simulation for a switching frequency of 400 kHz and a 25 kHz
FEFEIENCE SIGNEL .. .ottt et et st e s b et st esbeentesneesaeenteeneenes 79
Figure 5.6: Experimental result of a switching frequency of 400 kHz and a 25 kHz reference
S 0 0 PSS 79
Figure 5.7: Measured FFT of asingle 400 kHz PWM gating signal displaying the 25 kHz
(L= O SR T = 0 (1= 0o SR 80
Figure 5.8: DSP Builder smulation of interleaved switching for a switching frequency of 100
kHz and a6.25 KHZ referenCe Signalcc.eoceeveeiieienieeceeeee et 81
Figure 5.9: Measured 100 KHZ PWM SIgNaloovoiieiiiieieeeeeeee e 81
Figure 5.10: Measured FFT of asingle 100 kHz PWM gating signal displaying 6.25 kHz
FEFEIENCE TIEOUENCYe ottt sttt ettt e st e et e esaesreeseeseesseenseennennes 82
Figure 5.11: DSP Builder simulation of interleaved switching for a switching frequency of
200 kHz and @ 6.25 KHZ reference Signalcocceveeienienieniienieieee et 83

Xii

Figure 5.12: Simulation GUI for Half bridge Converterccocvevevveveseveececeseee e 83
Figure 5.13: Simulation GUI zoom screenshots of a) interleaved switching and b)the ed

PWM SIGNAIS....coteeieieteee ettt ettt ettt e sae e beentesaeenbeetesseesbeentesneenes 84
Figure 5.14: DSP Builder ssimulation of interleaved switching for a switching frequency of
200 kHz and @ 6.25 KHZ reference SIgnalcocceveeienienieniieseeeee et 85
Figure 5.15: Three phase inverter - interleaved switching and PWM signals for a switching
frequency of 200 kHz and reference signal of 50 KHZ.ccooveiieiieciecieececeee e 86
Figure 5.16: Measured 200 kHz high —side PWM Signalccccveieviieiieiieneeeceeseee e 86
Figure 5.17: Measured FFT of asingle 200 kHz PWM gating signal displaying 50 kHz
TEFEIENCE FIOOUENCY ... e ieieiieieeie sttt ettt ettt e s b et st e sbeentesneesaeenteeneenes 87
Figure 5.18: Measured 1.6 kHz high —side PWM Signalcccoovieniieiinieneeeceneeeeeee 88
Figure 5.19: Measured FFT of a single 1.6 kHz PWM gating signal displaying 100 Hz
(L= IO SR T = 0 (1= 0o S 88
Figure 5.20: Measured 833 Hz high —side PWM SIignalcccoooveieciiecececeeeceseee e 89
Figure 5.21: Measured FFT of asingle 1.6 kHz PWM gating signal displaying 100 Hz
TEFEIENCE FIOOUENCY e ieiiieietieie sttt sttt ettt et et s bt saeesb e e tesseesaeenteeneenes 89
Figure 5.22: 5-cell multilevel inverter PWM signals (ssimulation — DSP Buildey).................. 91
Figure 5.23: 5-cell multilevel inverter PWM signals (hardware level)cooeevvevevveiecnnenee. 91
Figure 5.24: Three phase inverter PWM signals (simulation — DSP Builder)...........cccue....... 92
Figure 5.25: Three phase inverter inverter PWM signals (simulation - MATLAB) 93
Figure 5.26: Enlarged screenshot of Three phase inverter inverter PWM signals (ssmulation -
IMATLAB) ettt ettt a et s te et e e beeseese e st e s e setesbeebeeteeneeneeneas 93
Figure 5.27: Three High —side PWM signals running at 833 Hz (hardware levdl) 94
Figure 5.28: Half bridge converter PWM signals (simulation — DSP Builde) 95
Figure 5.29: Half bridge converter PWM signals (hardware level)...........cccooovevvevecveiecnnnne. 95
Figure 5.30: Full bridge converter PWM signals (simulation — DSP Builder)...........cc..c........ 96
Figure 5.31: Full bridge converter PWM signals (hardware level)coccoveevinenceiennenne. 96
Figure 5.32: Deadtime CONIOl GUIcc.oeiiriiiieeieeece et 97
Figure 5.33: 40 ns deadtime implementation results, in simulation and hardware leve 98
Figure 5.34: 100 ns deadtime implementation results, in simulation and hardware levdl 98
Figure 5.35: 200 ns deadtime implementation results, in simulation and hardware levdl........ 98
Figure 5.36: PWM duty cycle Control GUIcocooveeiiriienieeeeeeeeie e 99
Figure 5.37: 15 % duty cycle (SMUIaion)...........cceerierieneerineeeeesee e 100
Figure 5.38: 15 % duty cycle (hardware [eVEl)........ccoevevieiieieeeeeeeeeeee e 100
Figure 5.39: 25 % duty cycle (SMUIaion).........c.ccvereeceerierieeseee e 101
Figure 5 40: 25 % duty cycle (hardware [eVEl)........ccoeeevvecieieeeeeeeee e 101
Figure 5.41: 50 % duty cycle (SMUIaion).........cooeererierieeneeee e 102
Figure 5.42: 50 % duty cycle (hardware [eVEl) ..o 102
Figure 5.43: 75 % duty cycle (SMUIaion).........c.coeererieneerieneeee e 103
Figure 5.44: 75 % duty cycle (hardware [eVEl)........ccooeeveeieeieeeeeeeeee e 103
Figure 5.45: 90 % duty cycle (SMUIaion).........c.cceevieeeereerieeeseee e 104

xiii

Figure 5.46: 90 % duty cycle (hardware [eVEl)........ccocvevvecieieeeeeeeeee e

Xiv

CHAPTER 1

INTRODUCTION

Over the last two decades there has been a rapid growth of technological advances in power
electronics, microelectronics, improvements of control algorithms, and demand for new
applications. Hence, a generic digital controller is necessary as an educational contribution
and basis for further research on digital controllers in the Centre of Instrumentation (CIR),
where a high number of power electronics projects are developed. This controller should be
efficient by providing as much reconfigurability as possible without any or little change in the

developed hardware.

This thesis presents the research work, development tools, design, implementation and
simulation and experimental results of a solution in the form of a Nios® |l processor based
controller. This controller is intended to be operationa on severa power electronic
applications such as half bridge, full bridge, three phase, as well as multicell converters. The
purpose of this work is to acquire an understanding of a FPGA embedded processor, and its
application and contributions in power electronics. The chapter details the project’s
background, motivation, objectives, research questions, methodology, delineation and,

finally, thethesis' structure.

1.1 Project background

Power electronics is a field of electrical engineering, which involves electrical energy

processing and control through circuits that are termed switching converters. Switching

1

converters are found in applications, which range from milliWatts to Gigawatts (Erickson &
Maksimovic, 2004). Power electronics deals with the interdisciplinary concepts from the

same field, as shown in Figure 1.1 below.

System and control
theory

Signal and control
theory

Solid-state physics
Power electronics

Simulation and Electromagnetics

computing

Electrical machines Power systems

Figure 1.1: Power electronics and interdisciplinary concepts (Mohan, 2003)

Switching converters are the power heart of any power electronic system, as they convert an
input source signal (AC or DC) into an output signal (AC or DC) with avoltage of a different
magnitude, current or frequency. These converters are classified into four groups according to
the type of the input and output signal that they deliver, aslisted in Table 1.1.

Figure 1.2 is an illustration of a basic PE switching converter, which consists of an input,
control and output signal ports. In PE applications, control and monitoring systems such as
digital controllers are required to ensure production of the required regulated and conditioned

power output signal from converters.

Switching Function Applicationsused in:
converter

ACtoDC Conversion of an AC input signa High voltage DC transmission
() into a DC output signa systems, regulated DC power
supplies, DC motor drives,
electronic devices connected to
the mains such as computers

and TV.
DCtoAC Conversion of aDC input signal into Uninterruptible Power Supplies
() an AC output signal of controllable (UPS), emergency lighting
magnitude and frequency systems, aircraft and space

power supplies, induction
heating supplies and induction
and synchronous motor drives.
DCtoDC Conversion of aDC input signal into Buck, boost, flyback and
an DC output signal of different puck/boost converters, battery
magnitude or polarity chargers, switch mode power
supplies, mobile devices,
distributed power systems,
electrical isolation and power
factor correction.
ACtoAC Conversion of an AC input signa International power adaption,
into an AC output signal of different power distribution networks,
magnitude or frequency cycloconverters and light
dimmers

Table 1.1: Different types of switching converters, their functions and applications (Mohan,
2003; Singh, 2008)

They make up avital part of any power processing system (Erickson & Maksimovic; Mohan
et al., 2003). Power regulation is achieved through the control of transitional on-off states of
semiconductor switching devices (Maksimovic & Erickson, 2004). This control process is
known as Pulse Width Modulation (PWM), which is a widely used control technique in
power electronic systems.

Converters use power semiconductor devices such as diodes, thyristors (SCR), power
transistors such as Bipolar Junction Transistors (BJT), Metal Oxide Silicon Field Effect
Transistor (MOSFET), Insulated Gate Bipolar Transistors (IGBT), Gate Turn-Off thyristors
(GTO) and Insulated Gate Controlled Thyristors (IGCT). All these elements operate within a
switching state, with the exception of the diode (Luo, 2005).

Power electronics ——-1 Load

Switching converter

Input source: Output:
e AC e AC
e DC e DC

e Unregulated

Control input

Figure 1.2: Structure of a power electronics switching converter (Erickson & Maksimovic,
2004)

Figure 1.3 illustrates the inclusion of the proposed SCBC block and its role in the control of a
switching power converter. In thiswork, Altera®’s Nios® |1 soft-processor is the heart of the
controller, as it provides control of the entire system and its peripherals. The controller
delivers the control input in the form of digital Pulse Width Modulation (PWM) signals to
switching converters via the semiconductor switches that they consist of. These PWM signals
are necessary for the conversion of an analog input voltage (AC, DC or unregulated) to an

analog output voltage of another level (AC or DC).

The growing replacement of analogue control techniques by digital counterparts is promoted
by the advantages the latter provide in the area of power electronics. Digital controllers offer
configurability, greater noise and ageing immunity, greater resistance to environmental
interference, ease of other digital technology integration (Martin et al., 1995), and flexibility
Kariyappa & Kumari, 2009).

Most digital controllers that are developed today have been implemented by using Digita
Signal Processors (DSPs), Field-Programmable Gate Arrays (FPGAS), a combination of both
(Prodic et al., 2001; de Castro et al., 2003), Application-Specific (ASIC), microcontrollers or
microprocessors. FPGASs involve flexible technology that has become extremely popular as a
platform of choice in digital control. Thisis owing to the various advantages that it presents,
which include higher density, higher performance, higher speed, flexibility and reasonable
cost. FPGASs increasingly integrate embedded resources such as hardware multipliers,

processors and RAM blocks on asingle integrated circuit (Quasim et al., 2010).

Power electronics b——- Load

Switching converter

Input source: Output:
e« AC e AC
e« DC e DC

e Unregulated
Control input

Digital controller

e Analog signal
A ——] Digital signal

PWM modulator

Logic
modules

Internal generation of
reference signals

Soft-core processor
(Nios II)

_ FPGA
Digital controller

Figure 1.3: Block diagram of the soft-core based controller, modified from (Erickson &
Maksimovic, 2004)

FPGAs, aong with configurable processor cores integrated into FPGA technology have
become an appealing option in producing a digital controller (Nurmi, 2007; Chamberlain et

al., 2005). This combination provides a high level of configurability of hardware peripherals
in the production of System-On-Programmable-Chip (SOPC) systems (Urriza et al, 2009).

1.2 Motivation

There is a need for a generic power electronic controller at the Centre of Instrumentation
research (CIR) owing to an increase in power electronic projects. Even though a DSP-FPGA
based controller was recently developed (Jooste & Wilkinson, 2009), the need for a more
integrated and reconfigurable controller arose, where only a single Integrated Circuit (1C)
would be required. This is realizable, as a processor would be embedded in a FPGA chip to
produce a complete SOPC system. Centre for Instrumentation Research (CIR) students and
researchers can benefit from the advantages that SOPCs provide by applying them in the
development of control system solutions in power electronics.

1.3 Objectives

The aims of this study are:

e Toinvestigate embedded system based controllers and FPGA/soft-core technol ogy;

e To design and implement a digita controller, which incorporates a Nios® |l
processor, both in hardware and software aspects. The controller should be able to
work on the above - mentioned PE; and

e To use Pulse Width Modulation (PWM) as the control technique, with the interna
generation of carrier signals and reference signals with adjustable frequencies as

inputs from the Nios® |l processor.

1.4 Research questions

The following research questions have been formulated in respect of the present study:

e Isit feasible or possible to use a soft-core processor as the main core of a generic

power e ectronic controller?

e Isit possibleto define a soft-core-based controller for power electronic applications?

e Canitwork on avariety of power e ectronic applications?

1.5 Research methodology

A literature investigation of the implementation of the Nios® Il processor, SOPC design and
the use of the Very High Speed Integrated Circuit Hardware Description language (VHDL),
was conducted. Power converters and their operation and topologies were also investigated.
The hardware aspect of the work was developed in VHDL through Altera®’s devel opment
tools, DSP Builder and Quartus® Il. The software was developed and written in C by using
the Nios® 1l Integrated Development Environment (IDE). MATLAB® was used to create
Graphical User Interfaces (GUI) to develop a communication platform for user inputs into the
controller’s Nios® Il system. Several measurement tests were performed to ensure the

feasibility of the entire hardware/software co-design.

1.6 Delineation of the research

The proposed work consists of the development and implementation of a conversion
controller for power electronic applications based on a Nios® Il soft-core, which is
implemented in FPGA and co-processing logic for PWM control. This study does not focus
on the theory or practical nature of digital control, but rather on the rapid development of an
efficient and fast controller for power electronics by using low-cost FPGA-based
development tools. A Nios® |l-based controller is designed to work on PE applications such
as.

e Single half bridge DC-DC converters and inverters;
e Single phase full bridge DC-DC converters and inverters,
e Three phase inverters; and

e Multicdl inverters.

The physical construction and implementation of these individual applications were not
considered. The research only focused on the open-loop control mode for design simplicity

and easy implementation, and did not consider the closed-loop control mode. Both simulation

7

and experimental tests were performed for comparison and performance monitoring
purposes. The experimental tests were based on the final product’s outputs, which are PWM

signas.

1.7 Contributions of the research

An interest in a combination of methods, in this case, a soft-core processor and the FPGA
arose at the CIR in an attempt to provide a new, easy and feasible hardware/software solution

for the control of power electronic applications.

The use of a single chip to construct an entire and expandable PE control system limits the
cost of the work. The reconfigurability offered by this work is beneficial, as the FPGA chip
can be re-programmed to adjust to different applications’ specifications whenever it is
required. The amount of flexibility that is gained through SOPCs is also extremey
advantageous. Since software is required to run on the processor, late modifications and
simplified debugging can be implemented whenever necessary during the design process
without a need for hardware changes. Thus, the controller’s development process becomes
less expensive. More costs are reduced as the system development cycle is considerably
reduced, and this increases the efficiency of the FPGA chip. Flexibility in the selection of a
specific set of CPUs, peripherals and interfaces helps to accelerate only the necessary
functions that are involved in the operation of the SOPC system, and to prevent processor
obsolescence (Alcade, 2009).

This Nios® Il processor-based controller provides a better understanding on embedded soft-
core processors, SOPCs and their implementation methods, as well as a solid foundation for

further research and practice for power electronics at the CIR.

1.8 Thesis outline

Chapter 2 presents a literature review on Pulse Width Modulation (PWM), severa controller

topologies and contributions of soft-core processors within power electronics.

Chapter 3 describes different hardware and software tools, which are involved in the
development of the soft-core based controller. The Cyclone® 3C25 FPGA development
board, software tools such as Quartus® Il, DSP Builder, MATLAB®, the Nios® |l IDE and
software languages, are all presented in this chapter.

Chapter 4 elaborates on details of the hardware and software co-design. It presents and
describes all the stages that are involved in the development and completion of the entire
controller system. The chapter begins with project specifications, followed by brief
overviews on hardware/software co-design, DSP Builder firmware, implementation of the
Nios® |l processor and its peripherals in a SOPC system, and ends with implementation

stages of the operating controller system.

Chapter 5 discusses various test results that were obtained from the research study, and
anayses from the project from DSP Builder/Simulink, Nios® Il IDE (Integrated
Development Environment) and oscilloscope, and digital analyser measurement readings.

Chapter 6 summarizes the findings of the thesis, as well as the advantages of the method that

was used in the study. The chapter also recommends future research in terms of further

development of the study.

1.9 Summary

This chapter dealt with the project’s background, motivation, objectives, research questions,

research methodology, delineation, contributions and, finally, the thesis outline.

CHAPTER 2

BACKGROUND OF DIGITAL CONTROL FOR POWER ELECTRONIC
APPLICATIONS

2.1 Introduction

The purpose of this chapter is to provide a review of the open-loop control mode, Pulse
Width Modulation (PWM), different embedded systems based controller topologies and the
Nios® Il processor. It also elaborates on the importance and contributions of work that have

been done in power eectronics control during the last decade.

2.2 Open-loop control mode

The digital systems mentioned above act as system controllers while dealing with dynamical
systems behaviour. There are two types of digital control: open-loop and closed-loop control
modes. The closed-loop control mode is beyond the scope of this work, hence only the open-
loop control mode will be examined. Open-loop control is commonly applied in converters
industrial applications as the main control mode in digital control (Luo, 2005). It is mostly
useful for well-defined and simple systems where the relationship between input and output
can be modelled by a mathematical formula, and output values are predictable. This control
system is controlled directly and only by its input (Mastascusa, 2002). The proposed
controller is a good representation of this control scheme, and computes its input into the
system by using only the current state and the system’s model. The advantages that the open-
loop control presents and, which makes it more beneficia to apply are smplicity, ease in
construction of the system’s layout and stability owing to the system’s simplicity (Speaking
Technology, 2012). Figure 1.3 displays a basic block diagram of the open loop control mode,

10

where the system block represents the switching converter, and the controlled variables
represent the regulated power output signal. Input signals are fed into the control system to
generate the required output signals. In this work, the input source signal is processed, as
specified by the control input, namely PWM signals, which are generated by the soft-core
based controller (SCBC), as shown in Figure 1.4. This yields conditioned output power,
whichisrequired (Erikson & Maksimovic, 2004).

Control signal ———» SYSTEM Controlled variables

Figure 1.3: Open-loop controller block diagram

2.3 Introduction to Pulse Width Modulation (PWM)

As mentioned in Chapter One, PWM is the most widely used control technique in power
electronic systems. It performs output voltage regulation by producing a wave of pulses as an
output. These pulses have the same voltage level, but might have different widths, depending
on the technique that is used to produce the wave. These widths are responsible for output
frequencies and voltages control. The important application of PWM liesin power electronics
applications as means to control power converters through their electronic power switches
(Koutroulis et al., 2006). PWM control is achieved by controlling power switches gate
voltages and currents. These power switches operate in complementary pairs, and each has
one PWM signa to activate them. The main advantage that the PWM method offers is the
reduction of systems costs, reduced component space usage, reduced total harmonic
distortion of load current (Bakar, 2009), increased noise immunity, high performance and
efficiency, high energy saving and power consumption reduction (Ababu, 2007).

2.3.1 PWM techniques

Different PWM schemes and technigues are employed to provide variable voltage, frequency

and power to applications with the adequate efficiency, and the necessary performance for the

11

application in use. The average value of these parameters is controlled by turning the power

switches on and off at a chosen pace.

This work employs two different carrier-based PWM techniques to control the SCBC system
outputs. These digital techniques involve a comparator, a triangular (carrier) signa and a
reference sinusoidal or DC signal. A counter is developed to produce the triangular wave by
counting from zero to a specific value. Then the counter counts from this maximum value
back to zero. The produced triangular wave is then compared to the sinusoidal or DC signal.
Each time the two signals intersect, the PWM signal goes from a‘high’ to a‘low’, or from a
‘low’ to a‘high’. This results in the formation of duty-cycles. The maximum vaue of the
counter determines the resolution, the period time of the PWM signal (Bengtsson & Jonsson,
2009) and the PWM switching frequency. It also contributes towards determining the
maximum value of the duty cycle, just as the maximum amplitude of the reference signal
does when both signals are compared. The word duty cycle describes the ratio of ‘on’ time
over ‘off’ time. The power and voltage, which is delivered to the loads is proportional to the
duty cycle. The duty cycle formulais shown below:

T on

Dut le = 2.1
uy e T signal 21)

where: T on isthe ON signal period
T signal isthe signal period.

The sinusoidal PWM technique involves the carrier and a sinusoidal signal for inverters. This
technique results in the generation of a string of pulses of varying duty cycles. This technique
promotes harmonic content reduction, and makes it favourable for power electronics
inverters, which take pulses with varying duty cycles as inputs and generate AC voltage
outputs (Venkatesh, 1994). The sinusoidal PWM technique isillustrated in Figure 2.1 below.

In the case of DC-DC converters, PWM is produced as a string of pulses with a fixed duty
cycle vaue like a D.C component, and with a specific amplitude which is compared to the
carrier signal. This technique is shown in Figure 2.2. Since the DC signal’s amplitude is
directly proportional to the PWM duty cycle, its amplitude can range between the minimum

and maximum amplitude of the carrier wave, according to the required duty cycle.

12

] - . /\ /\ /\ I"\I h(~®—— Triangular (carrier]
4 | | \ /\ wave - Vcon

(m r H— { g r :—i:q-—PWMsignal
IR RIEE |

Figure 2.1: Sinusoidal PWM generation (Klumpner, 2004)

Sine (reference) wave

Triangular (carrier)

- wave -Vcon
DC signal
-
PWM signal
-

Figure 2.2: DC based PWM generation

2.3.2 Deadtime

During switches control via PWM, switches from a complementary pair are supplied with
oneinverted and a non-inverted PWM signal. The dead time should be inserted between each

intersection between the carrier and reference signals in the digital controller system. Thisis

13

implemented to prevent unfavourable implications in the form of short circuits and system
failure, caused by switching pairs that are on and off at the same. It should be ensured in
order to prevent. Hence, dead time should be inserted in the digital controller system. The
dead time is inserted between each intersection between the carrier and reference signal. The
implementation of dead time on the low side switch is displayed in Figure 2.3. The high-side

and low-side switches correspond to the two switches belonging to a complementary pair.

On —

High-side
Switch

Off —
1 | | '

On i i . | —

Low-side
Switch

Off =

i i v i
' .. V i
i I .. i
(] L 1 LI}
L} (] (B} L
[ol [} i
i
] }.-. Dead time

Figure 2.3: Illustration of deadtime (Venkatesh, 1994)

2.4 Overview of FPGA based digital controllers

2.4.1 DSP/ FPGA based digital controller

Recently, DSPs are commonly used in the control of power electronics. In digital signal
processing applications such as wireless signals, DSPs are the best option. They perform
complex digital signal processing and math-intensive tasks more efficiently, with more
functionality, much faster and at alower cost when compared to microprocessors, ASICs and
FPGA hardware (Daya, 2009). These characteristics render DSPs suitable for power
converters control, but their application for high speed switching is less common, where
massive paralel algorithms are required (Zhang, 2006).

The DSP/FPGA-based controller provides more advantages than the single DSP based

controller. The division task implemented by this solution provides faster control speed, extra

14

system flexibility and easier software design. However, this structure has disadvantages of
increasing the controller’s complexity and costs. It also makes measurement testing more
difficult owing to its complicated structure. Another approach comprises implementing
control agorithmsin one single FPGA chip (Zhang, 2006).

2.4.2 FPGA based digital controller

A FPGA based digital controller has more advantages compared to single DSP and
DSP/FPGA controllers (Zhang, 2006). FPGAs are part of flexible technology that has
become extremely popular as a platform of choice in digital control. This is owing to the
various advantages that it presents, which include higher density, higher performance, higher
speed, flexibility and reasonable costs. They can integrate embedded resources such as
hardware multipliers, processors and RAM blocks on a single integrated circuit (Quasim et
al., 2010). They are configured by using a hardware description language (HDL) such as
Verilog or VHDL or a schematic design diagram. HDL codes offer a better aternative when
working large systems designs, while schematic entry is more suitable for smaller designs,

which can be drawn piece by piece.

This provides direct hardware implementation with the same flexibility that software
aternatives provide. VHDL codes can also be easily reused and synthesized into any FPGA
platform. This makes FPGAs significantly more advantageous than DSP devices,
microcontrollers and ASICs in terms of reconfigurability (Zhang, 2006; Leonov, 2009).
Digital system designs such as a PWM system for power electronics are known to be easily
implemented on FPGAs. Designs are implemented on FPGA in away that they can be easily
modified to address problems, or to add or remove new functions and features, if necessary.
This flexibility amounts to ease of changing interconnections between logic blocks. FPGA
designs can provide design complexity and time spent on design and implementation (Daya,
2009; Zhang, 2006)). Reconfiguration is then easily performed by using the JTAG interface.

2.4.3 FPGA embedded soft-core processors

FPGAS, along with embedded microprocessors, have become a powerful option as means to
produce a digital controller (Nurmi, 2007; Chamberlain et al., 2005). This combination

15

allows the development and control of a configurable System-On-Programmable-Chip
(SOPC) system, by using a soft-core processor and a set of hardware peripherals (Urriza et
al., 2009).

A soft-core processor is a processor integrated into FPGA architecture. It isimplemented in a
hardware description language to become customized, by configuring their architecture and
behaviour, for given applications. A FPGA embedded soft-core processor and custom
peripherals, which should meet the exact design requirements, are described by using an
HDL (which is flexible if an open source), synthesized and mapped to an FPGA, which is a
reconfigurable device (Tong et al., 2006). The entire design can be mapped to different
FPGA platforms. The use of a soft-core on an FPGA holds several advantages, which are
outlined below:

e A soft-core can be removed from the design when it is not needed. This saves alot of
area, which can be used for other elements.

e |t can be easily customized for a specific application owing to its reconfigurability
properties.

e A soft-core is feature-rich and alows peripherals to be added or subtracted from the
SOPC system with ease (Tong et al., 2006).

e Open source soft-cores can have their source code taken and modified by the designer
to meet the needs of the applications (Anemaet & van As, 2008).

e |t offersmore flexibility and parallelism.

The main advantage that this type of processor provides digital control systems is the
important amount of flexibility, as the existing reconfigurable logic el ements from the FPGA
are used to implement the processor (Arbinger & Erdmann, 2006). It can be implemented in
any FPGA, as long as there are enough configurable logic resources available (Maxwell,
2004). Soft-core processors are provided by FPGA manufacturers to operate on their own
FPGAs and have them mapped onto the chip. They are provided by open source communities
and commercial vendors. The most widely used commercial soft-cores are Nios® I,
MicroBlaze®, PicoBlaze® and Xtensa from Altera®, Xilinx® and Tensilica®, respectively.
Some of the most widely used open source soft-cores are OpenRISC® 1200 and LEON 3®.
Table 2.1 below clarifies the differences between some soft-cores in terms of features and

characteristics.

16

Nios Il MicroBlaze | Xtensa XL OpenRISC LEON3
(Fast Core) 1200
200MHz | 200 MHz 350MHz 300MHz | 125MHzI400MHz
Speed MH2 (ASICEEA) JiBay & (FPGA} ASIC) (ASICI (FPGA/ASIC)

Reported DMIPS Cl DMIPs 166 DMIPs 3DDDMIPS BSDMIPS

“ 32.bitRISC | 32.Bit RISC 32 bitRISC | 32 or 64-bit 32.bit RISC
RISC

Cache Memory (IiD) Upto64KB | Upto64KB | Up to 2KB Up to 64KB Up to 256KB
Floating Point Unit IEEE 754 IEEE 754 IEEE ?54 as perpheral IEEE 754
(optional]

P:pelme 3 Stages 5 Stages 6] Stages 7 Stages

[o
Custom inatractions Jp to 246 Unlimited | Unspecified limit
Instructions

Register File Size _ '!2 or 64 2 32

Implementation FPGA FPGA FPGA, ASIC FPGA, ASIC FPGA/ASIC

Table 2.1: Comparisons between known soft-cores (Tong et a, 2006)

This project used the Nios® |1 soft-core from Altera® Corporation, which provides a wide
range of customizable options such as those shown above, and possesses Harvard memory
architecture. It is available for use in academia for research, and comes in three versions,
which include economy, standard and fast core. The fast core version should be used, since it
provides the most features and performance. It has the capability to execute up to 256 custom
instructions, and has a fair performance of 150 DMIPS and one of the highest operating
frequencies on a FPGA platform (Tong et al., 2006).

2.5 Nios® II soft-core processor

The Nios® |l soft-core processor is programmed by software code in C/C++ language. As

this processor is incorporated into the FPGA hardware, the latter is controlled to work in

conjunction with the code and help in accelerating some functions (Joshi, 2010). For reasons
mentioned above, it is the most essential element involved in this entire project. As an FPGA

17

embedded processor, the benefits that contributed to its selection as the magjor element of this

project, are described in the rest of this chapter.

The Nios® |1 processor is a popular 32 bit RISC embedded processor by Altera®, which was

designed to address a wide range of embedded applications. It exists in three cores, which are
described below:

Fast (Nios® 11/f) - Optimized for best and high performance on computationally
intensive, arithmetic performance-critical applications, and also for applications,
which require large amounts of data and codes, such as a full-featured operating
system. Hence, it consumes the most LEs.

Economy (Nios® Il/e) - Optimized to use the fewest LE, area and memory. But it is
efficient enough to provide sufficient performance for small applications.

Standard (Nios® 11/s) - This core offers better performance and consumes more LEs
and memory than the economy core. The Nios® Il/s core is optimal for applications,
which require medium performance and more amounts of code and/or data for which
an economy core would be less suitable (Altera Corporation, 2010f).

Following the level of complexity and for optimization, the Fast Nios® Il core was selected

for this project. The set of processor elements includes:

Full 32-bit instruction set, data path, and address space;

32 genera -purpose registers,

32 external interrupt sources,

Single-instruction 32 x 32 multiply and divide producing a 32-bit result;

Dedicated instructions for computing 64-bit and 128-bit products of multiplication;
Floating-point instructions for single-precision floating-point operations;
Single-instruction barrel shifter;

Accessto avariety of on-chip memories; and

Instruction set architecture systems (Albiach, 2006).

18

The flexible nature of the Nios® |1 processor is promoted by the ability given to designers to
implement the core, which is tailored according to system specifications and requirements by

defining custom instructions and peripheral s through the SOPC Builder tool.

Mics Il Processor Core
= Tightly Coupled
reset General - Instruction Memary
clock Program F‘ur]_:unse -
cpu_resetrequest Con:'dler Reagisters i
2 Instruction hd
g CDU resettaken Addd Cach
: = ” Tightly Coupled
inﬁie JTAG Generation St Instruction Memory
to software Debug Module Regisiers _
debugger Exception | [nistruction Bus
Controller
Instruction Memory
ing[31..0] » Interrupt Regions
Controller Mﬂ"iﬁmm
Memory
Protection
Unit Translation
Lookaside
L Butfer
Regions
<t [ats Bus
’ Tightly Coupled
Custom e |
VO gt Gerinn DENh Dus Data Memory
Signals Logic Logic Unit Cache -
.
oo | Tightly Coupled
7| Data Memory

Figure 4.2: Nios® |l processor core block diagram from (Altera Corporation, 2010f)

In order to provide memory and 1/O access, the core presents several features, as displayed

abovein Figure 4.2, and are presented below:

e Instruction master port — Its role is to fetch instructions that will be executed by the
processor and connects to instruction memory via the Avalon switch fabric. The
instruction master port does not perform any write operations.

e Instruction cache - Fast cache memory internal to the Nios® Il processor.

e Datamaster port — It is a 32-bit Avalon master port that connects to data memory and
peripherals via Avalon switch fabric. It reads data from memory or a peripheral, when
the processor executes a load instruction and writes data to memory or a peripheral

when the processor executes a store instruction.

19

e Data cache - Fast cache memory internal to the Nios® |l processor.

e Tightly coupled instruction or data memory port - Interface to fast memory outside
the processor.

e JTAG debug module - Its function is to provide a communication bridge between the
design’s system and the host PC running on Nios® Il IDE by downloading programs
to memory and starting and stopping code execution. The debug module connection
system consists of a download cable such as the Altera® USB Blaster or a system
analyzer probe (Altera Corporation, 2010f).

The Nios® Il system custom peripheral, via the Avalon switch fabric, is responsible for
communication, and for linking both internal logic in FPGA and external hardware in the
FPGA development board.

2.6 Contributions of the Nios® II soft-core application in power electronics

The application of a Nios® |1 soft-core allows for low power consumption, high performance
and reduced design time to design reconfigurable power electronic systems. It also presents
advantages of flexibility over DSP and other microcontrollers when selecting, configuring,
customizing, duplicating or removing easily needed intellectual property (IP) cores, CPUs,
peripherals, and interfaces to design power electronic systems at any time by reprogramming
the FPGA device. Thisresultsin a better hardware performance (Alcalde et al., 2009). Large
systems can also be produced in a small design size on a single FPGA chip. Some soft-core
processors internal architecture can be changed in order to suit a particular design. This
method of implementation is aso extremely fast owing to the straight forward nature of
VHDL (Krah et al., 2011). Another advantageous characteristic is the frequency adjustment
of the Nios® |l processor using Phase Locked Loops (PLL) which plays a crucia role in
developing the different ranges of PWM signal frequencies that the SCBC must generate.

2.7 Related and past work on digital control for power electronics

A number of solutions for digital control in the field of power e ectronics have been proposed
and implemented in various academic institutions. These are discussed in the following
section.

20

According to Francis and Boroyevich (2003), the Virginia Polytechnic Institute and State
University designed and implemented a Universal Controller for distributed control and
Power Electronics Applications was designed and implemented, based on a previous
prototype, which was not specific enough to the needs of a distributed controller. The purpose
of this work was to save a large amount of time and engineering costs by developing a
universal controller that can satisfy the needs of most medium and high power applications in
power electronics. The controller interfaces include a dua ring fibre optic interface, a PMC
(PCl based mezzanine interface, a generic pin header interface, an upper level control
(ControlNet) interface and synchronous serial communications interfaces. The controller uses
an Analog Devices ADSP-21160 DSP. The controller is multiprocessor capable (self-
stacking), and can be configured to work in single processor mode, multiprocessor cluster
mode, or multiprocessor data flow mode. This project provides a solution for the digital

control of several power electronic applications.

Heerden (2003) states that the PEC33 reconfigurable controller for power electronic
applications was developed at the University of Stellenbosch. This controller isafollow up of
the PEC31 controller, which was aso developed at the same institution. Its control algorithm
was implemented by a TMS320V C33 DSP, and the digital logic design was implemented in
PLDs. The development of the control system aso involved the design and construction of
voltage and current probes for ADC measurements. This work provided information on the

overall structure of adigital controller for power electronics applications.

Rauma (2006) asserts that an FPGA-based controller for power e ectronics was designed at
the Laapeeranta University of Technology (LUT) in Finland by Dr Kimmo Rauma. This
work compares the control electronics of an analog design and to that of the FPGA-based
design. A new generic communication architecture, effective implementation and testing
methods were developed. Evaluation of the use of FPGAs and the proposed development
methodology is performed with simulations and laboratory measurements by using two
power electronic applications; a switched-mode welding machine; and a frequency converter.
In both test cases, the implemented agorithms exploited the paralel calculation. This
project’ s results show FPGA-based digital control’s high efficiency and superior performance

over traditional control design.

According to Jooste and Wilkinson (2009), a generic digital controller for power electronics

applications was developed on an FPGA at the Cape Peninsula University of Technology

21

(CPUT). A Pulse Width Modulation (PWM) modulator for a 5-multicell inverter was
developed with the use of VHDL and Quartus® Il software. Its purpose is to drive a 5-cell
multicell inverter with a 20 kHz sinusoida reference waveform and 300 kHz switching
frequency. A DSP development board, in conjunction with a code written in C language,
generates sinusoidal reference waveforms, which are required to produce PWM signals.
Another code was developed for the transfer of data and communication between the DSP
and the FPGA, and the development of some external peripherals. This project provides alot
of information on generic digital control and hence served its purpose, but required two ICs

to work with.

Alcade et al. (2009) state that the application of the Nios® Il processor in a PFC converter
was performed at the Federal University of Santa Catarina (Brazil). The focus of this work
was to apply the Nios® Il soft-core processor to the digital control of a single-phase pre-
regulated rectifier, which showed advantages and disadvantages of the use of this technology.
A particular control strategy was implemented to obtain Power Factor Correction

(PFC) of a single-phase voltage doubler rectifier with a center tap at the voltage output. This
project served its purpose by providing information and displaying multiple characteristics of
the FPGA, incorporating the Nios® |l soft-core processor and its application in power

electronics.

According to Urriza et al. (2009), ateam of researchers from the Departamento de Ingenieria
Electronica y Communicaciones, Universidade de Zaragoza in Spain developed a soft-core
based FPGA digital controller for a DC-DC converter. In their design, the controller
combines a Microblaze® core with a specific customized peripheral. The Microblaze® core
was programmed in C language. It facilitated control algorithm by using floating point type
variables, which are usually difficult to implement in FPGASs. The customized was described
by using a Hardware Description Language (VHDL) to generate the PWM signals, and to
transmit signals to the analog to digital converter (ADC). This project has provided insight
for the implementation of a commercial soft-core based digital controller by using floating
point data type. However, its drawback is that it can operate on only one power electronic
application.

22

2.8 Summary

This chapter briefly described the open-loop control and PWM, and provided an overview of
soft-core processors. Controller topologies such as DSP, FPGA, and DSP/FPGA controllers
were discussed and compared. An overview of the Nios® Il processor was aso provided.
Finally, severa digital controllers implementation methods in power electronics from
previous work were also mentioned. A FPGA embedded processor was chosen as the core of
this work, and regarded as a potential tool to create an efficient and generic digital controller

for power electronic applications.

23

CHAPTER 3

HARDWARE AND SOFTWARE TOOLS

3.1 Introduction

This chapter presents the required hardware and software for the development of this project
are presented, while the features of the FPGA development board, and Cyclone®
3C25F324C8, which isinvolved in the realization of the digital controller, are also presented.

3.2 Cyclone® III EP3C25 Starter Development board

FPGAs are programmable ICs, which consist of programming logic components called logic
blocks, which are surrounded by programmable 1/0 cells and are interconnected together
with routing programmable wires, forming logic blocks, as shown in Figure 3.1 below. Logic
blocks consist of programmable Look-Up Table and registers (flip-flops). The LUT can be
configured to perform any logic function on its inputs to produce one single logic output. The
final output is either this new value or the previous value that is stored in the register (Grout,
2008: 28). Their reprogrammability is promoted by the presence of memory elements such as
EPROM, EEPROM, flash and SRAM chips.

The FPGAS' structure enables the implementation of digital hardware functions, simple ones
such as AND and XOR logic gates or more complex ones. These can be accomplished by
utilizing programming procedures, which can be performed without a long and expensive

design process. The applications of FPGASs are seen in a variety of industrial applications and

24

areas such as digital signal processing, medical systems, embedded systems and electrical
systems.

Interconnection
Logic Block Resources

oo e ol ol L jee=——1s0 Cell

CARTEAR
LdLJLJL
FARAEART
LJLJL L

FARACIEN
b ol b e
CARACIERD
LdLJLJL

Figure 3.1: FPGA architecture (Zeidman, 2009)

An FPGA design is made possible with the use of CAD tools that convert the designer’s
specifications into the desired FPGA configuration. It is described by using an HDL such as
Verilog or VHDL or a schematic design diagram. They are then synthesized, placed and
routed to form a bit file, which is used to program the FPGA. The HDL codes offer a better
aternative when working large systems designs, while schematic entry is more suitable for
smaller designs, which can be drawn piece by piece. HDL codes and schematic diagrams are
inputs into these CAD tools, while the output is a .sof file. Thisfile is a Quartus® 1l SRAM
Object File for FPGA configuration.

The Cyclone ® |11 EP3C25F324C8 Starter Devel opment board is the chosen FPGA platform,
among the others, for the development of the SCBC. This board provides alow cost and easy
introduction to FPGA technology. Other advantages are its low power consumption, high
functionality. This kit includes all components, which are necessary to create and implement

25

automotive, consumer, wireless communications, video processing, or other high-volume,
cost-sensitive application designs.

FPGA Core Power

2.5V VO Power i t

Measurement
: 1-Mbyie SSRAM

Awry Dysiors 8§ Pewd Poard
et A

16-Moyte N
Parallel |
Flash \
HSMC
T T
USE i | Connector
Connector |
EE—
|
Flash LED
_ T .. B - Cyclone 11l Device
= 1n
wi ol ™ x T Corfiguration Done LED
UsB it gl | S F S oy
UART tofotiboRoRoNe
| /' Reconfigure i - N
JTAG ¥ pa]_:;: gﬁ;:-m Uizer Push Button Switches
/ User LED=
32-Mbyte
DDR SDRAM SO-MHz
System Clock

Figure 3.2: Top View of the Cyclone® |11 FPGA Starter Board from (Altera
Corporation, 2010b)

It provides enough 1/O pins to work with and Intellectual Properties (IP) are available for this
series of FPGA chip (Altera Corporation, 2010b). Figure 3.2 displays some of the hardware
components of the Cyclone® 3C25F324C8 board, while all the main components of the
Cyclone Il starter development board are listed below:

e Low-power consumption Altera® Cyclone 11 EP3C25 FPGA chip;
e 25K logic elements (LES);

e 66 M9K memory blocks;

e 16 18x18 multiplier blocks;

e A4PLLsS

26

e 2141/0 pins (of which 84 1/O pins for communicating with HSMC
daughter cards);

e HSMC connector;

e USB type B connector;

e 32-Mbyte DDR SDRAM,;

e 50 MHz on-board oscillator;

e 16-Mbyte parallel flash device (CFl);

e 1 Mbyte high-speed SSRAM memory;

e Four user push-button switches;

e Externa power supply with U.S. adaptor;

e Four user LEDs;

o Power switch;

e DC power input; and

e Built-in USB-Blaster interface (Altera Corporation, 2010f).

Digital systems such as the PWM modulator for power electronics is easily implemented on
FPGAs. Designs are implemented on FPGA so that they can be easily modified to address
problems or to add or remove new functions and features, if necessary. This flexibility
amounts to the ease of changing interconnections between logic blocks. Their designs
provide areduction in costs, design complexity and time spent on design and implementation.
The reconfiguration is then easily performed by using the JTAG interface.

3.3 Controller software components
The software tools that were involved in the process of designing and development are

discussed in this section. Table 3.1 lists these tools and are described in the next section
below.

27

Tools/Package

MATLAB R2009 version 7.8.0 Mathematical computation and anaysistool

Quartus® |1 softwareversion 9.1 Integrated synthesis and implementation tool
from Altera®
DSP Builder version 9.1 Mathematical computation, simulation and

analysistool from Altera®
Nios® |l IDE version 9.1 C/C++ compiler, design and verification
environment for Nios® |l systems

Table 3.1: Software tools used for the SCBC devel opment

3.3.1 DSP Builder and MATLAB/Simulink

In this work, DSP Builder was the first software tool to be used for the PWM modulator’s
development. DSP Builder alows designers to perform algorithmic design, system
integration and simulation of VHDL based descriptions in a single GUI, on
MATLAB®/Simulink models in sampled time, whilst porting them to hardware description
language (HDL) files and Tcl scripts for synthesis, hardware implementation and simulation
with the Quartus® Il software. Algorithms that are developed in DSP Builder can be
connected to aNios® |l processor as a custom peripheral by involving SOPC Builder.

Figure 3.3 shows this possibility of a DSP Builder design to be inserted into a SOPC system
as aperiphera PIO or custom instructions.

MATLAB® (MATrix LABoratory), which is commercially available by MathWorks®, is a
most popular software for an agorithm design as it enables numerical computation, system
simulations and data visualization by providing a technical computing environment, which is
designed to support the implementation of computational tasks (EE TimesAsia, 2007,
Chapman, 2008). MATLAB® guide, the GUI Development Environment, is the tool, which
is used to create MATLAB® GUIs. The programmer can layout the GUI, selecting and
placing various components to be placed in it, hence creating a graphical display, while

eliminating the need of typing commands or writing command scripts.

28

- UART || EFTTRC T
PIO -
w
@
On-Chi
ROMp § Timer
o
>
.
On-Chip
RAM SDRAM
Controller

Mios”

Cyclone lll FPGA

Figure 3.3: Diagram of DSP Builder designs as custom peripherals or custom instructions
from (Altera Corporation, 2002)

3.3.2 Altera®’s Quartus® Il software

This is the principal software, which was used in this project and operates with several
important, highly efficient and convenient CAD tools, depending on the design’s complexity
to develop VHDL or Verilog structures as overall projects in order to download to FPGA
boards. These Quartus® 1l tools include the SOPC builder, the Nios® Il IDE and
ModelSim® (Albiach, 2006). Even in the absence of the other tools mentioned above,

Quartus® Il can till provide a complete design environment for low complexity designs.

3.3.3 SOPC builder

SOPC Builder is part of the Quartus® |1 software, and is a powerful system development tool
that creates the hardware structure of an embedded system-on-programmable chip system by
specifying and integrating hardware components such as processors, peripherals and
memories. It facilitates both hardware and software design. All a designer needs to do is to
specify the components when using SOPC Builder. It automatically generates the
interconnect logic, simulation projects files, testbenches, execution scripts for simulation,

header files and driver routines.

29

3.3.4 Nios® II IDE

Nios® |l IDE isan Altera® software devel opment environment for all Nios® 11 processors. It
is separate from the SOPC Builder tool, but it acts as the software development platform by
utilizing SOPC Builder outputs. It accomplishes this by providing the software toolset that
allows the designer to enter the design software source code to carry out all crucial tasks such
as creating, editing, building, running and debugging of software. It aso goes through
essential phases, which are necessary for the source code to be executed, to accommodate

project management, and to offer software code debugging.

3.4 Software languages

The software part of an embedded system consists of codes, which are written with
programming languages such as C/C++, VHDL, VHDL-AMS, SPICE, Verilog, assembler
and Java that control the functioning and interaction of individual hardware parts. This work
utilized VHDL and C/C++, MATLAB® to develop the controller.

3.4.1 VHDL

VHDL stands for VHSIC Hardware Description Language, where VHSIC stands for Very
High Speed Integrated Circuits. VHDL isamodern, powerful, portable, readable and general-
purpose hardware language defined by IEEE standards. It describes electronic circuits or
systems on behavioural, structural, physical aspects, which can be implemented as a physica
circuit or system (Grout, 2008: 195). CPLDs, ASICs and FPGAs are the three main digita
architectures, which utilize VHDL. One important benefit of VHDL is that it alows design
systems to be accurately described for automatic circuit synthesis or/and simulation without
any hardware being manufactured. Modifications can easily be applied at any time, while
sparing unnecessary costs for hardware prototyping (Pedroni, 2004: 3; Guan, 2010).

30

3.4.2 Clanguage

C language is compiled on UNIX™, Windows, and Linux operating systems and is one of the
most common programming languages today. Its closeness with hardware language makes it
widely used in embedded systems development, and is mostly employed to develop software
codes to program processors in embedded system designs. This software description language
is processor-independent and can be easier to define complex algorithms than HDL, and can
thus facilitate FPGA design. Another advantage is that C Compilers are easily available for
most processors (Barr, 1999: 18).

3.5 Summary

This chapter discussed the different hardware and software parts involved in the soft-core
based controller design. The hardware components consist of the embedded Nios® |1 corein
a Cyclone® 3C25 FPGA, and a peripheral board acting as a communication interface
between the controller SOPC system and power electronic applications. The software
elements involved consist of MATLAB®, DSP Builder, Quartus® Il and Nios® Il IDE

software.

31

CHAPTER 4

HARDWARE/SOFTWARE CO- DESIGN AND IMPLEMENTATION

4.1 Introduction

This project involves the development of an embedded system-on-programmable-chip
(SOPC). Many embedded systems consist of processors, which run software codes and are
interfaced to external hardware circuitry. Such designs require that both hardware and
software parts should be designed together in paralel (Grout, 2008: 63). In this case, the
referred hardware is the HDL system design. A System-on-a-Programmable-Chip (SoPC or
SOPC) is developed by integration of an electronic system’'s components into a single
programmabl e integrated circuit (chip). It may contain various types of signals and performs

various functions. SOPCs are the core of modern embedded systems (K oskinen, 2009).

The hardware comprises of blocks that are placed together by using CAD tools. The software
aims to control the soft-processor and the external hardware peripherals the SOPC consists

of. Thisis achieved by creating codes in a software development environment.

This chapter elaborates on the specifications of this project, and provides details about the
portioning of the overall design into hardware and software parts, while it aso discusses the
interfacing of these parts to complete the overall system development and design

implementation, both in hardware and software.

32

4.2 Soft-core based controller specifications

In order to ensure the generic, reprogrammabl e and flexible characteristics of the SCBC, the
following project specifications were established and are listed in Table 4.1 below.

Programmable L ogic Device

FPGA embedded processor

Switching techniques

Switching frequency range
Number of reference signal inputs

Number of gate switching digital outputs

Usar Communication | nterface

Memory

P.E. Applications to operate on

Connectors

SOFT-CORE BASED CONTROLLER SPECIFICATIONS

Altera® Cyclone 3C25F324C8 FPGA chip,
from the Cyclone series FPGAs
Reconfigurable Altera® 32-bit Reduced
Instruction Set Computer (RISC) Nios |1
soft-core processor, running at 50 MHz.
Pulse Width Modulation (PWM), with fixed
or variable duty-cycle
50 Hz -3 MHz
A singleinternal reference (sine) signal from
the Nios® |1 processor

10 (5 complimentary pairs of high and low
side switches), to accommodate the
maximum number of switching signals for
the 5-cell multilevel

MATLAB® GUIs

High capacity volatile and non volatile
memory for program and data storage.
SSRAM: 1Mbyte
Flash: 16 Mbytes

e Half bridge converter

o Half bridge inverter

e Full bridge converter

e Full bridge inverter

e Three phase inverter

e 5-cell multilevel inverter
(Internal) Avalon Interconnect Fabric,
connecting al the internal hardware modules
of the Nios® Il system.
(External) USB-blaster download cable,
connecting the FPGA to the PC.

Table 4.1: Soft-core based controller specifications

4.3 Controller overview

As mentioned earlier in Chapter Two, embedded processors provide overall system

integration, faster execution and flexibility, while partitioning the system between hardware

and software. In order for these specifications to be realized, the digital controller integrates

four crucia parts, which are developed in parallel. These are described below:

A DSP builder based PWM modulator firmware - This module generates PWM
signals that are required to drive and control the converters and inverters' switches
gates via the FPGA 1/0 pins. They are produced from sine and triangular waveform
comparison.

Quartus® 11/SOPC system module - It consists of the digital controller’s architecture
in terms of FPGA hardware and is generated by the SOPC Builder. The hardware
system is completed once the SOPC Builder module is instantiated in the Quartus® 11

project.

The Nios® Il software module - Based on the Nios® Il IDE project which involves
the building, compiling and running of the C source programs that run on the
processor.

MATLAB® GUI-based communication interfaces - It will provide the digital

controller user with choices on the controller’s system input parameters.

PCB production - It holds a connection platform between the SCBC'’ s outputs and the
externa world.

Figure 4.1 gives an illustration of the proposed controller’ s architecture in terms of this

hardware / software co-design and implementation.

34

Hardware design

Figure 4.1: Nios® Il - based controller’ s hardware and software architecture

4.3.1 Hardware design overview

In this work the hardware development of the SCBC system was implemented on a DSP
Builder design, which was inserted into a Quartus® 11 project, and incorporated the Nios® I
processor. The FPGA was a Cyclone® 3C25F324C8 FPGA, as mentioned in the previous
chapter and was available at the CIR laboratory. The architecture of the SOPC system was
determined by using the SOPC Builder tool in the Quartus® Il software, while the hardware
aspect of the PWM modulator was realized by using VHDL imports on DSP Builder. A small
peripheral PCB was also developed to place a communication platform between the
embedded Nios® |l system and power electronic applications by placing a High speed
Mezzanine Card on it.

35

In order to make the hardware design possible, some factors had to be taken into

consideration during the hardware design of the digital controller, which are the following:

e Theamount of available LE and memory space;

e The compatibility and interconnection of the DSP Builder design with the rest of the
FPGA and Nios® Il systems,

e The number of 1/0 FPGA pins available to drive PE application gates; and

e Auvailability of Intellectual Properties (IP) cores.

4.3.2 Software design overview

In this work the system’s software was executed by the Nios® Il processor. It is a VHDL
defined circuit built around a CPU and, which used the FPGA, m's general logic resourcesin
order to implement hardware functions in parallel. The software development of the soft-core
based digital controller was based on all the software tools, mentioned in Chapter Three. As
in the case of hardware design, certain factors were taken into consideration for the software

design:

e The compatibility of HDL imports and data formatting within the DSP Builder
design;

e Programming methods of controlling both DSP Builder design and Nios® Il system
and their intercommunication viaa C code;

e An adequate description of SOPC modules and tasksin a C code;

e Adeqguate usage of memory bits; and

e Possible communication methods between the Nios® |1 system and PC.

4.4 Project design flow

In order to develop and demonstrate the capabilities of the controller, five stages were
undertaken together, in parallel, namely:

e Stage 1. PWM modulator hardware design was created and implemented on a DSP
Builder/Simulink model viaHDL imports and Altera® Avaon Slave blocks;

36

e Stage 2. Creation of the controller’s SOPC system;

e Stage 3. Completion of the overal Quartus® Il system;

e Stage 4. Development of C code for sine wave samples generation and overall control
of the digital controller;

e Stage 5. Creation of MATLAB® GUIs and m-files for the controller’s parameters
control, signal capture and communication between the controller’s user, the DSP
Builder and the Nios® |1 system; and

e Stage 6. Production of a peripheral PCB to place a communication interface between

the controller and the external world.

4.4.1 Stage 1 - DSP Builder design and implementation

The DSP Builder tool provides an integrated environment where hardware peripheras are
developed on Simulink models. This software tool was used for the PWM modulator’s
hardware implementation. The modulator design was made up of HDL import IPs and DSP
Builder blockset library elements, which were converted into a HDL Avaon custom
peripheral, integrated in a SOPC system and finally downloaded onto the FPGA platform via
programming. Each hardware block of the DSP Builder design is presented in Figure 4.3, and
are listed below:

Avaon Save Interface block;
RAM block;

e Reference (sinusoidal) signal generator block;

e Carrier (triangular) signal generator block;
e Comparator block;

e Shift and deadtime block; and

e PWM block.

37

Figure 4.2: The controller’s DSP Builder design block diagram

38

4.4.1.1 Avalon Slave I nterface block

To integrate the DSP Builder design as a hardware slave periphera into the SOPC system,
Avaon Memory Mapped (MM) Slave Interface blocks have to be placed onto the model.
This also ensures a connection to the Avalon Interconnect Fabric, which in turn allows
communication with the Nios® 11 CPU, the master peripheral, and the rest of the SOPC dave
peripherals. This communication is performed by data transfer through the SOPC

components addresses.

> - Avalon Write Slave Interface

Address (13:0)

Nios Il CPU Avalon Write enable bit
» Interconnect 5 s
Fabric Thoses

Writedata (15:0)

fr——
ey

Write Data
i15:0

¥

Clock

Figure 4.3: Avalon Slave Write block as a sine wave generator

In order for these interfaces to be supported by the Avalon Interconnect fabric, their address
alignment must be set to ‘dynamic’. This setting allows the processor master and slave
address widths to match by making the Slave Interfaces byte addressable (Altera forums,
2011). Figure 4.3 shows the communication interfacing between the Nios® Il CPU and
Avaon Write Slave Interface signals (Address, WriteBit, WriteData) through the Avalon

Interconnect Fabric.

39

Registers

/o

4

[trian1] |

k 4

[app1] |

k 4

|

"m Address

iz0

2 < Jrine_bif |

Counter
Limited3

] P [mode] |

irite

ibit =2l(Z:0) DEMILLE
Stepa 4 P [|
Wirite ©ata 5 PoJzine_clk1]
T
Repeating —[uurite] 51 :{-sine_cllQ]

Fequance indicator_selection
7 P Jdeadtime]

¥

I

?

one-to-n Demuxl

Figure 4.4: Avalon MM write slave interface for control data generation in DSP Builder

In general, an Avalon Slave peripheral pasted on a DSP Builder model is directly connected
to the FPGA®’s globa clock signal. In this case, it should have been connected to the 50
MHz clock signal, with a 20 ns as the real-world clock period. In order to make the
generation of a 50 Hz sinusoidal signal for three phase inverters or other reference signal

frequencies possible, different base clock signals were employed.

To transfer the sine wave samples, generated by the Nios® |1 processor, to the rest of DSP
Builder hardware implementation, a pair of 16-bit Avalon Write Slave interface blocks was
employed. Another single 8-bit Avalon Write Slave interface block was connected to a 1-to-8
bit demultiplexer, as shown in Figure 4.4 to create a selection system that generates
coefficient values to serve as control inputs to the DSP Builder hardware design. Data

generated from this slave interface cannot be higher than 8 bits.

4.4.1.2 RAM Block

The memory and LUT blocks of the FPGA architecture were configured as the external

memory SSRAM. This memory module is essential to the software part, since it stores sine

40

samples generated by the Nios® Il core (Schietekat, 2011). The wordlength of the processor

memory is directly proportional to the amount of available memory.

ram _Lll:] Yh

data[15..0] q[15.0})
wren g K- T
address[11..0] L y

@
(clnck

Block type: AUTO

A address(11:0)
A data(15:0) ram_4096 q(15:0) p
Awren

HDLImport4

Figure 4.5: Structure of “RAM_4096" IP into aHDL import unit

A pair of MegaFunction single-port RAMSs, displayed by Figure 4.5, was employed in the
DSP Builder design. The advantage they offer compared to regular RAM blocks is the
reduction in the number of LEs to be used in the design. Each of these RAM units forms a
sine Lookup table (LUT), as it stores a quarter of a sinusoidal wave. Their memory capacity
of 65536 ram bits alows signa quarter to run at the lowest frequency of 50 Hz. The
“addr(11:0)” parameter represents the sample addresses, namely 22 addresses, which are
generated and controlled by the Nios® 11 through the C code. The “d(15:0)” parameter

41

represents the magnitude of the 16 bit (unsigned integer) sine samples, which are generated
by the Avalon Write Slave. The “wren” parameter is the write enable bit of the RAMs. The
SSRAM was configured with a size of 1 MByte during the SOPC Builder development
process. The formula below was employed to determine the capacity of the RAMs and the

number of sine samples required to generate the reference signal of a specific frequency:

¢ _ Axf clock 41
f reference = 27 samples (4.1)

Where: f reference is the reference (sine) signal frequency
A is the incremental step
f clock isthe FPGA clock signal, which controls the DSP Builder model

n is the number of bits

2n is the number of clock count, samples for a full wave period. This 2* value divided

by 4 isthe number of RAM address lines.

Figure 4.6 shows the whole section of the Avalon slave blocks and the RAMs from the
overal DSP Builder's design. The output signals from “Avaon_MM_Write Slave’ and
“Avalon_MM_Write Slavel” interfaces serve as input signals to the RAM block, as shown
in Figure 4.9. The output signals from the “indicator_selection” interface are inputs to the

sections, which involve the development of both carrier and reference signals.

42

0
»
>
1
Address ~ EXED|
i3:0 gl] 2
3
Write Ll P sel(2:0) DEMUX
ibit 4
5
Wiite Data | |
i7:.0
6
na
indicator_selection < Twrite]]

one-to-n Demux1

Cyclone Il EP3C25 Starter Board

[trian1]

lappl

ldc]

T

[offset2

Address
i11:0

Write
ibit

Write Data
i15:0

address(11:0)

data(15:0) ram_4096 q(15:0)

wren

T

Avalon_MM_Write_Slave

Address
i11:0

Write
ibit

Write Data
i15:0

HDLImport25

address(11:0)

data(15:0) ram_4096 q(15:0)

\4

wren

Avalon_MM_Write_Slavel

HDLImport23

Figure 4.6: Avalon Memory-Mapped slaves and RAMs section

4.4.1.3 Reference (sine) wave signal generation block

The generation of sinusoidal waves was achieved by exploiting their symmetrical properties,
as it helps in saving large amounts of logic and memory bits in the SOPC system. Own-
written HDL imports and DSP Builder blockset library elements were used. As mentioned
above and displayed below in Figure 4.5, the process started as a pair of MegaFunction
single-port RAMs. They were used to produce two sine Lookup tables (LUTS), storing the
first and second quarters of a sinusoidal signal. Both quarters are connected together by some
HDL logic block to produce the first half of the sine wave.

address{11:0)

data(15:0) ram_4088 g{15:0) $ l One half sine wave

I is created

wren L

One quarter of sine
wave

$ Logic circuit 1 $

sddress(11:0)

dsts(15:0) ram_ 4035 qii5D) $ I G
Wren L
One quarter of sine
wave Logic circuit 2

Logic circuit 3 G

A 180 deg out of phase
half sine wave is
created

One full-cycle sine

Figure 4.7: Full reference (sine) signal development

44

Figure 4.7 illustrates the full sine wave development process. Another HDL logic block was
employed to create areverse half signal from the first half one. Both signals were then finally
attached to form afull sine wave.

The incremental step worked on an address hopping method, where sine samples were
skipped and thus higher frequencies were achieved this way. This was easily performed by
“for” loops in the C code program, which operated on the Nios® Il core. Figure 4.8 below
describes the method.

Incremental step

0000...0(N bits)

1111...1(N bits)

Figure 4.8: Illustration of the incremental step along a circle, which represents asine wave
(Zhang, 2010)

The circle represents the 360° full cycle of a sine wave, while the dots represent the samples
of the signal. The incremental value represents the increase of advance along the sine wave.
Asn dots are skipped, the incremental step value becomes 2~. This results in the generation of
higher frequencies and in turn, fewer samples make up LUTs to make up afull circle. It was
determined that 4096 was the maximum number of words for each RAM block, which could
be implemented to obtain the lowest required frequency on the Cyclone® 3C25F248 FPGA.
Since the soft-core controller was required to work on a range of sine wave frequencies, the
lowest frequency was taken as the reference frequency when frequency adjustments were
necessary. The incremental step in the “for” loop in the C code was increased whenever the

reference signal frequency was required to decrease as the sine samples were generated.

45

The global clock of the FPGA is 50 MHz and the overall number of sine samples was 16384.
This gave the lowest reference frequency of 3.125 kHz, as the calculations below show after
using (4.5):

¢ _ 1x50 MHz 42
f reference = 16384 samples (4.2)
= 3.125 kHz (4.3)

From this reference frequency, the sine wave could operate at higher frequencies of up to 100
kHz. For power electronic applications such as half, full bridge and 5-cell multilevel
inverters, such arange proved satisfactory. But in order to generate a 50 Hz reference signal,
which is required for three phase inverters, a large memory space was required, since the
lower the frequency, the more samples are needed. Two options are available to remedy to

this problem:

e Memory sizeincrease; and

e Change of FPGA’s operating clock frequency.

With a 50 MHz global clock, approximately one million sine samples would be required to
generate a 50 Hz reference signal. The first option could involve the introduction of a 32
Mbyte SDRAM module in the SOPC system. This would be the best solution, as a large
amount of logic cells would be consumed, which would make the overall unable to fit into
the FPGA device.

The second option is redlized by having a phase lock loop (PLL) clock input to the DSP
Builder design with the use of the SOPC Builder tool. The 50 MHz FPGA global clock is
either multiplied or divided to produce a clock signal that allows both carrier and reference
signals to run in a specific lower frequency range. In this work this clock signal was termed
“peripheral_clk” and was the DSP Builder design operating clock. According to the reference
signal frequency formula above, to generate a 50 Hz sine wave of 16384 samples
“peripheral_clk” should run at approximately 833 kHz. The 50 MHz clock would need to be
divided by 60. By decreasing “periphera_clk”, which is the clock that the DSP Builder

46

design works on, other ranges for both carrier and reference signal frequencies were created.
Possible input signal's specifications are summarized in Table 4.2 and Table 4.3.

Input Signal Frequency ranges
Peripheral_clk 50 MHz 10 MHz 833 kHz
S Eecnigs o IEaA bl 100 —3.125kHz 20kHz-625Hz 1.66 kHz- 52 Hz

Carrier frequency range 1.6MHz-50kHz 800-10kHz 26kHz - 833 Hz

Table 4.2: Input signal frequency ranges

As the 50 MHz FPGA’s global clock signal is divided by a specific denominator, reference
and carrier signals are divided by the same denominator, as demonstrated by Table 4.1 above.

Frequency ratio = 16

Number of memory words
(LUT Samples)

Samplessize 16-bit 16-bit 16-bit 16-bit 16-bit

FEEEEEETERTE IEeA 100kHz 50kHz 25kHz 125kHz 6.25kHz 3.125kHz

Carrier signal frequency 16MHz 800 400 200kHz 100kHz 50kHz
kHz kHz

Frequency ratio =8

FEEEEEETRERTE 1w 200 kHz 100 50kHz 125kHz 6.25kHz

kHz
Carrier signal frequency 16 MHz 800 400 200kHz 100kHz 50kHz
kHz kHz

Table 4.3: Examples of input signal frequencies in respect to frequency ratios

According to the Nyquist theorem, a frequency ratio, also termed as a frequency modulation
ratio, at least 2 isrequired.

47

Fortunately, different frequency ratios can be established on the SCBC by using the formula
below (Luo et al., 2005):

_ Carrier frequency
Frequency ratio = (4.4)
Reference frequency

Ratios higher than 9 are the best ones for good PWM representations and lowered harmonic
distortion (LHD) (Luo et al., 2005). The formula below was used to determine both carrier
and sine signal amplitude (Luo et al., 2005; Wilkinson, 2004):

Reference signal amplitude peak
m, =

4.5
Carrier signal amplitude peak (4:5)

Reference signal (t) = m, xsin(w, t) (4.6)

where: m, is the modulation index

w; isthe phase angle.

The generation of sine waves is performed in the software code. This was achieved with the
“sin” function by including the “math.h” header from the C standard library. A modulation
index of 0.8 is already set in the code, but can be modified to generate other sine values, if
required.

Figure 4.9 shows the entire section responsible for the generation of full sine waves in the
DSP Builder's design. Inputs, “outl” and “out2” feed the section with the one quarter of a
sine wave's sample values, written by the Nios® |l core, which are processed by the rest of
this part to produce the required reference signals to be compared with the generated carrier

waves.

PWM was also produced as a DC signal is compared to the carrier signal, instead of the sine
wave, as stated in Chapter Two.

48

(]

Constant11 Goto26
add_sub Ik coet clkout » obit) p 1
lkout(16:0, P|dataa(19:0) add_sub2 1t(19:0 P> f(15:0 ¢ COE -
[sine_clki] —p{coef(4:0) bit_no2 c.ou() P> dataa(19:0) add_sub2 result(19:0) P coef(15:0) sine_indicator(3:0) > Non-synthesizable Output23
- . sine_indicator(3:0) datab(19:0) Scope50
HDLImport6é
From12 HDLImport19 HDLImport5
Constant10
[C] — P 71 »[updown
ol i - . i
From17 | fn1(20:0) passage_de_signal_last digit1(20:0)
Delay >[in2(20:0)
| [out2] HDLImport13
L 2> ppaasn
From9 »[updown Constant8 P dataa(19:0)add_sub2 result(19:0) 1
| [out1] Pin1(20:0) passage_de_signal_last2 digit1(20:0) J P datab(19:0)
From10 »|in2(20:0) HDLImport18
HDLImport14
" P(updown
dataa(15:0) - ,—} in1(20:0) passage_de_signal_last digit1(20:0)
Froms datab(7:0) multiply result(23:0) 5|in2(20:0)
HDLImport10 HDLImport33
Constant18
1 P-(add_sub
clkout +— >
coef(15:0) clk coef dicator(3:0 “ e p|datab(19:0
Constantl7 dd b sine_indicator(3:0) Lp»|datab(19:0)
acd_ HDLImport24
- bit o2 clkout(16:0) P(dataa(19:0)add_sub2 result(19:0)
[sine_clke] >>——pp|coef(4.0) —'sne_indicator(3:0) datab(19:0)
From11 HDLImport9 HDLImport8
updown
—}inl(ZO:O) passage_de_signal_last2 digit1(20:0)
Constant19 From19 >(in2(20:0)

HDLImport42

dataa(19:0)add_sub2 result(19:0)

Figure 4.9: Reference (sine) wave signal generation block

49

HDLImport44

More values can be included by modifying the “pre-comparator” VHDL firmware code (see

Appendix C) by employing the following formula:

DClevel = Maximun clock count value x duty cycle (4.7)

Where the maximum clock count value was determined by the 2" value from (4.8) in the next
section.

4.4.1.4 Carrier (triangular) signal generator block

HDL frequency dividers were employed the production of carrier waves. As the SCBC is
required to operate on several PE applications, the adjustable frequency divider block acts on
the 50 MHz FPGA'’s global clock signal to generate carrier signals of adjustable amplitude
and frequency. It is controlled by the n coefficient that a user enters, as the generation of

carrier waves was based on the formula bel ow:

. fclock 48
fcarrler—(2n_1)XZ (4.8)
Wheref carrier isthe carrier frequency
f clock isthe main clock frequency
n is the number of counter bit
2n is the number of clock count
For instance, for a 50 kHz switching frequency:
50 000 50 000 000 49
T (2n—1)x2 (4.9)
2 —1) 50 000 000 410
~ 100 000 (4.10)
(2» — 1) ~ 500 (4.11)

According to calculations for approximately 50 kHz, the counter’ s resolution to enter must be

9 bits, to ensure that the PWM signal’ s resolution is the same. The counter was synchronized

50

with the system’s clock and started counting up from O to approximately 511, and then back
down to 0. This would produce a triangular shape and 1022 steps for every carrier wave
cycle. As mentioned above, the maximum value of the counter determines the PWM
switching frequency, since it is the same as the carrier frequency. The choice of switching
frequency is based on the switching losses in the inverter, the amount of LTD and the
properties of the switching devices used (Klumpner, 2004). The carrier waves can run on

various switching frequencies, ranging from 833 Hz to approximately 1.6 MHz.

4.4.1.5 Comparator, application selection and signal shift control

A number of MATLAB® GUIs are developed and are available for users to have the option
of choosing the PWM switching frequency over a specific range, and the application of the
digital controller is required to work on. Parameters are written onto binary files and are read
by the soft-processor via the C code. This results in numerical values to be written as inputs
to some HDL import modules for carrier signal generation and control, reference signa
frequency control, application selection control and signal shift control. This is achieved by
the connection of an 8-bit Avalon Write dave interface to a demultiplexer on the DSP

Builder design, as mentioned above.

As the reference and carrier signals are generated, they are directly routed to a data
comparator block, which is used to support two signals of different magnitudes to process
their intersection. This generates one PWM output signal, which is directly routed to another
HDL import block, which isinvolved in the application selection control, where a choice can
be made between single phase half bridge, full bridge DC-DC converters or haf bridge, full
bridge, three phase and multicell inverters. The same block is responsible for signal shift,
according to the requested application. As this work focused on the control of the PE
applications mentioned above, it was vital to first obtain a simple understanding of their
topology and implementation of PWM signals on them. Figures 4.10 - 13 display the
topologies of the applications mentioned above. Figure 4.10 displays the single phase half
bridge converter topology, which is the ssmplest one and consists of only one pair of
complimentary switches. Each switches' gates are supplied with PWM signals that are
represented by the “S1a’ and “S1b” PWM elements.

51

I

Il

@

=
17T

Figure 4.10: Half bridge converter topology

S2a

2
iy
B

= sib = ZE;: 2o
B

Figure 4.11: Full bridge converter topology

Figure 4.11 displays the full bridge converter topology, which consists of two complimentary

switches. Two pairs of PWM signals are delivered to the switches and are phase-shifted by 2

x % radians (180°) from one another.

52

1 Sla EES S2a EEX S3a Eﬁ
T d g a3

IFT
)

H S2b = S3h
= [
N8| g 8T

Phase A A Phase B Phase C

Figure 4.12: Three phase inverter topology

The three phase converter has three switches pairs, as displayed in Figure 4.12. Three

reference and one carrier signals are necessary for this P.E application operation. Reference

signals are each phase-shifted from one another by 2 x % radians (120 °).

The number of PWM signals delivered to multicell inverters depends on the number of cells
that they incorporate. For one cell, two PWM signals are required. This work focused mostly
on the 5-cell inverter, since this topology is aready available at the CIR laboratory. In this
instance, ten PWM signals were required as five complimentary switch pairs were involved
in the application’s operation, as shown by Figure 4.13 below. For realization of PWM
production for the inverter, five carrier waves were required and were phase-shifted by 1.257
radians, namely 72° (Molepo, 2003).

53

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

4 P e e] . AP
S2b S3b S4b S5b
I -
IFT IFL IFT NEQ

Figure 4.13: 5-cell inverter topology

4.4.1.6 Deadtime control

Another HDL block was inserted to complete the PWM production process. It consisted of an
adjustable deadtime block created and implemented to prevent the semiconductors
complimentary switching signals to go on and off at the same time. This prevents system
damage caused by short circuits. The controller user has the option of choosing between 40,
80, 100, 160 and 200 ns deadtime. A range of different deadtime values are necessary since
the controller runs at different frequencies. This would cause some signals to be destroyed
whenever too much deadtime is implemented. Another reason is the compensation for
different rise and fall times from different switching semiconductor devices, which can be

accommodated.

Figure 4.14 shows the entire section that is responsible for the comparison of reference and
carrier signals and the production of PWM switching signals in the DSP Builder’s design.
Inputs, “outl” and “out?2” feed the section with the one quarter of a sine wave's sample
values, written by the Nios® 11 core and these are processed by the rest of this part to produce

the required reference signals that are compared with the generated carrier waves.

54

[o D>—

»< obit
PWM1
PWM2

PWM3

PWM4

PWM5

PWM7

PWM8

Constant5 Constant7
Pp|add_sub
. clkout(16:0) dataa(19:0)add_sub2 result(19:0)
P> (coef(4:0) bn’nsti)nze_indicamr(i*»:o) Pdatab(19:0) add_sub
Constant4 HDLImport7 HDLImport11 :a:azgz'g;add}“bz result(19:0)
atal
HDLImport12
Constant6
Constant20 ﬂ
Ik ¢ clkout freq_selector(7:0) Goto27
P>(coef(15:0) © ’Cogne_indicator(lo) coef(15:0) trian_freq_ultra_coef digit(15:0)
HDLImport2 updown
| HDLImport45
pL 0150 H—p
Non-synthesizable Output Displayd
doutl
Papp1(2:0) dout2
Constant9 | 5 P |trian1(3:0) dout3
Constant15-| Constant27 I_; din1 dout4
Papp1(2:0) doutl din2 pwm_deadtime SDUIZ
Non-synthesizable Outputl f " dout2 ou
»
) m »|dinl douts dins dout9
Coy —
hesizable Output2 From14 FoHmportt HDLImport17
on-synthesizable p To Worlspace p
Conslanll3-| »[Mode(0) .
I | trian1(3:0) > bit_no(3:0)
Congtantl P |sne(©:0) pre_comparator - pAeqB(9:0) P(sine(17:0) comparator_ultra AeqB
dc_value(9:0) P trian(17:0)
From23 HDLImport3 HDLImport

Figure 4.14: Carrier (triangular) signal and PWM generators

55

PWM10

Scopel8

The “pre_comparator” and “comparator_ultra” HDL imports make up the comparator,
“phase2”’, and involve the control of signa phase, while “pwm_deadtime’ controls the
PWM’s deadtime. The numbered HDL output € ements, from PWM1 to PWM10 on the far
right side, directly send the PWM signalsto the FPGA'’ s output pins to the HSM C connector.

4.4.2 Stage 2 - SOPC creation

After satisfactory development of the PWM modulator on the DSP Builder/Simulink model
and the generation of the SignalCompiler block output files, the SOPC Builder tool was used
to advance further in the development of the overall project.

Once the DSP Builder design compilation was completed, its logic design had to be
instantiated as a custom periphera to the soft-processor in SOPC Builder. For this to be
accomplished, a new top level project was created where the logic design was included in the
form of Tcl scripts in Quartus® |1 project, generated from Signal Compiler in DSP Builder.
The DSP Builder design and all the necessary hardware peripherals are assembled into the
SOPC system, which makes up the SCBC. Following system generation, the rest of the
embedded processor system was completed by using the standard Nios® |1 development

design flow. The different hardware modules of the controller system are described below:

e CPU

Communication between custom hardware components and the CPU on which the
software runs is best done through the Avaon Interconnect Fabric bus. The Nios® 11
CPU acts as a master peripheral on the Avalon bus, and initializes the actual transfer
of datawith slave peripherals. During aread transfer, the CPU transfers data from the

hardware periphera to the CPU, and during a write transfer, data is transferred from
the CPU to the hardware peripheral (Sicking, 2005). Since the SCBC’s operation
requires large amounts of data and code and arithmetic calculations, the fast (Nios®

[1/f) core configuration was used.

56

e Sysd

The Altera® System ID provides a SOPC Builder system with a unique identifier, as
it verifies that the system compilation targets a specific board.

e “Soft_core controller_Interface 0" custom peripheral

The “ Soft_core_controller_Interface 0" is the custom peripheral, which is created as
the DSP Builder that involves hardware implementation of the digital controller. The
“soft_core_controller_Interface 0" is attached to the Nios® Il system as a co-
processor. The module involves the three Avalon write interfaces, carrier signa, sine
wave, transfer function, shift and delay, comparator and PWM blocks.

The main advantage of custom peripherals is their fast data transfer compared to the

one provided by PIOs.

™ coft_core_controller_Interface - soft_core_controller_|...
“ soft_core_controller_Interface -
Megotsrs’ su:uft_c:?re_curlt;ller_lnterface -

|' Block Diagram |

soft_core_controller_Interface 0
clock ekl
clock ®=peripheral_clk
corduit PPy 3
conduit PPy S
avalon B=ayvalan_hhd_Write Slave
conduit B Py Y
corduit B Py g
avalon B=Ayvalon_M_WWrite Slavel
avalon B=indicatar_selection
conduit B= P E
corduit B= Py 0
conduit B Py S
corduit =Py 2
coruit B Py
cornduit B Py 7

[Cancel H Finizh l

Figure 4.15: Input and output signals from the DSP Builder design- turned SOPC peripheral
interface.

57

Figure 4.15 shows and lists all the clock, input and output signals involved in the DSP
Builder design. PWM1 — 10 signals are the outputs of the PWM generator block and of the
SCBC.

“Avalon_MM_Write Slave’, “Avalon_MM_Write Slavel” and “indicator_selection” are the
Avaon Write daves address signals, while “periphera_clk” and “clk2” are the operating
clocks. They al become part of the SOPC system after the model compilation via
SignalCompiler.

e Off-chip memory — SRAM and FLASH memories

Memory is vital for any embedded system. The design of the controller required the use of
file management C commands and DSP Builder model, consisting of severa VHDL
elements. These occupy a lot of memory space in the FPGA. In this work off-chip memory
was used owing to their high storage capabilities. It is used to store, provide access to, and
allow modification of data and program code to run within the Nios® Il processor and

program code used by the entire SOPC system.

The off-chip memory consists of the Cypress® CY7C1380 SSRAM and CFl FLASH
memories. The SSRAM is configured with a memory capacity of 1 Mbyte and stores the
software program code, stack, and exception sections. The flash memory is a non-volatile
memory, which retains the program’s contents when the FPGA’s power is off. The flash
memory device is configured with a memory capacity of 16 Mbytes, and stores Nios® 11
application software, and the CPU reset vector (Altera Corporation, 2010e).

e PHASE LOCKED LOOP (PLL)

The Nios® Il system usualy consists of different modules, which operate at different
frequencies. Hence, Altera® ATLPLL MegaWizard Plug-In-Manager was used in order to
specify and generate other frequencies, apart from the 50 MHz main frequency in this work.
This helped to generate various sampling rates to synchronise the inputs and outputs of the
digital controller. Figure 4.16 displays all the operating clocks of the overall Nios® |1 system.
“Osc_clk” represents the global clock signal, “cpu_clk” and “ssram_clk” are clock

58

signals that are required for the SSRAM and other modules, and “peripheral_clk” for the

“soft_core _controller_Interface 0" peripheral. “Peripheral_clk” can be modified to meet

requirements in terms of frequency range, simply by opening the MegaWizard Plug-In-

Manager in SOPC Builder for configuration.

= Alera SOPC Builder - cyclonelll_embedded _evaluation_kit_standard_sopc.sope® (C:\WMp3_play\mpd_player)... [’:__|@".§J

Fie Edt Modue System View Tools Mozl Help

System Conlerds | Syctem Generation

| Companert Librry Targed ki .
Project Al | Device Famiy, Cyclone ® v, Sorce
1 New campansnt osc_clk External
- Audis epu_elk pil.ed
+ - Disphary

seram_clk piLet

+ Inferfoce Profocols peripheral ek pll.c?

i Memores and Memory ©

Library | Lsa Connactions 5
+-Awvalan Verification Sulte [f.: B cpu N [Procassar
4 Bridges and Adagters | inatruction_master Avaion Memory Mapped Master
P REETR datn_master Acvmon Memory Maoped Master
— = G oy _cstiug_moduss Avaion Memory Mepped Slava
<
IE Renme] E'El@li] | AsressMap.. | [Fiters.. | Fter; Deft

2

Waming. slow_peripheral_bridge: cpu must be restricied to bursts of lendgih 1 wihen burslieg to pl

+ Warning slow_peripheral_bridge: cpu mist be restrcted to bursts of length 1 when bursting to flag_uart
Wuming: glow_peripheral_bridge: cpo must be restricled to bursts of length 1 when bursting to sysid
Warning: slow_peripheral_bridge: cpu must be restricted to birsts of length 1 when bursling to buflon_po

&) (] ¢

(eir) (o]

Clock signals generated by
ALTPLL MegaWizzard

———

Figure 4.16: PLL clock signals integrated into the SOPC system

e JTAGUART

The Altera® JTAG UART core provides data communication between a PC host and

the SOPC Builder system. The host PC can connect to the FPGA® via any Altera®
JTAG download cable such as the USB-Blaster cable or Blyster cable. This core

enables software files downloading, running and debugging by either using the

Nios® |l integrated development environment (IDE) debugger or the SignalTap |1

Logic Analyzer (Altera Corporation, 2010d).

Figure 4.17 shows all the hardware modules that are involved in the development of the

controller’s complete Nios® |1 SOPC system, its modules connections and clock settings.

59

The section highlighted in blue is the custom peripheral, “ Soft_core _controller_Interface 0",
which was created by DSP Builder.

® Altera SOPC Builder - cyclonelll_embedded_evaluation_kit_standard_sopc.sopc* (C:\Mp3_play\mp3_player\cyclonelll_embedded _evaluation, kit standard_sopc.sopc)

File Edit Module System “isw Tools Mozl Help

System Carterts | System Generstion

Companent Libary
.P-rn.i.ecl
LI New companent...
#-Audio
Display
Intertace Protocals
) Memaries and Memary Cont
|Library
- Avalon Yerification Suite
idges and Adapters
(= DEPBuilder Systems
Lo o soft_core_cortrolle
Intertace Frotocals
+ Lesacy Companents
i Memarizs andd Memary Cont
E ripherals
g andl Performance

Use
[

icrocontroller Peripher
- Interval Timer
w8 PIO (Parallel 110]
! + Multiprocessor Coording
#PLL

Frocessor Addtions

+ Processors

B 55

+ *ideo and Image Processing

Ll

Target

Device Family: Cyclone Il

Connections

Clock Seftings:
v Name
osc_clk
{epu_clk
ssram_clk
peripheral_clk
Madule Name
Ll cpu
instruction_master
data_master

Jtan_debuy_module
E flash_ssram_pipeline_bridge

F
-
.
i

a1
ml

E pipeline_bridge_before_tristate_b...

51
mi

B flash_ssram_tristate_bridge
avalon_slave
tristate_master

B ssram
sl

B ext_flash
sl

E slow_peripheral_bridge
sl
mi

soft_core_controller_Interface 0
indicator_selection

Avalon_Mh_White_Slavel

Awalon M White Slave

Source
External
pil.co
pll.et
pll.c2

Description
MO I FHOCEES0r

Awalon Memary Mapped Master
Myalon Memory Mapped Master
Wyvalon Memary Mapped Slave
walon-hM Pipeling Bridge

Avalon Memary Mapped Slave

Wyalon Memary Mapped Master
Wwvalon-MM Fipeline Bridge

Avalon Memary Mapped Slave

Awalon Memary Mapped Master
Wyalon-Mu Tristate Bridge

Wyvalon Memary Mapped Slave

Avalon Memary Mapped Tristats Master
Cypress CYTC1380C SERAM

Wyalon Memary Mapped Tristate Slave
Fleesh Memary Interface (CF1)

Wwalon Memory Mapped Tristate Slave
|Awalon-hi Clock Crossing Bridge
Wyalon Mematy Mapped Slave

Wyalon Memary Mapped Master
zoft_core_cortroller_Interface

Avalon Memary Mapped Slave

Wyalon Memary Mapped Slave

Avwalon Memary Mapped Slave.

Clock

cpu_clk

cpu_clk

cpu_clk

epu_clk

epu_clk

cpu_clk

epu_clk
peripheral_..

osc_clk

Bigse

TRQ O

005000800

002000000

000000000

& 001000000

& 0x00000000

004000000

& 0x00000890
& 000000400

1fa 000000000

MHz
50.0

1200
1200
500

End

Ox0DEOO0EEE

Ox03fff££f

IRQ 31

Tags

Ox0D1fff££5

Avalon Memory Mapped Master

flash_ssram_pipeline_bridge.m1

ave

0z010f££££

Ox00Efff1£f

0z04000£££

0x0000083 £

02000007 £
0x000003£%

Figure 4.17: Hardware configuration of the controller’s Nios® |1 system

4.4.3 Stage 3 - Quartus® II system completion

This stage involved the completion of the overall project by adding the created SOPC system

to the top-level Quartus® Il project. It was done through compilation as analysis, synthesis,

fitting, place-and-route, and timing analysis were performed. As the system was generated in

SOPC Builder, input and output signals, from the DSP Builder design’s hardware modules,

were exported to the top level system files. They became PIO input and output signals as pin

outs were assigned to them via the Quartus® Il Assignment Editor. The Register Transfer
Level (RTL) of the system design is first checked visually via Quartus® Il RTL Viewer
before any compilation to ensure al the necessary logic and connections are included in the

system for its full functioning. Figure 4.18 displays the generated RTL viewer diagram of the

digital controller with the SCBC's outputs, which are the PWM switching signals on the

upper left hand side.

60

+ Quartus Il - C:iMp3_play/mp3_playerfcyclonelll_ embedded_evaluation_kit_standard - cyclonelll_embedded_evaluation_kit_standard - [RTL Vie... g@@

File Edit Yiew Tools Window
@ 1 Hlerarchy—x Fage Title: | cyclonelll_embedded_evaluation_kit_standard Page: ‘ 1af1 j
= Hierarchy List
Pl
h - %clonelll_embeddec cyclonelll_smbedded_sevaluation_kit_standard_sopeoyelonelll_embedded_evaluation_kit_standard_sope_instance E
3 + Instances
@\ . PUI0_tom_ihe_som_core_cenioller_inkriace o —————e= Pt 10_from_the_soft_core_controller_Interface 0O
+ = Pins FUARA_tom _he _rom_core_conkaller_niertace 0| ————JePilhd1_from_the_soft_core_controller_Interface 0
@ Fiod Metks PUAME_tom _he _rof_core_cenboller_inleriace 0| ————— P2 _from_the_soft_core_controller_Interface 0
U3 o core_cenbaler_inkerisce 0 ————— P UMA3_from_the_soft_core_controller_Interface_0
i PURs_fom_| core_cenkoiler_inkerice_of |—— FIRPhAG_from_the_soft_core_controller_Interface_0
P tom_he _som_core_cenaller_inkrisce 0| ————FPUhAS _from_the_soft_core_contraller_Interface_0
PUARE_tem_ke_rem_eore_cenraller_inkrsce_0f —————Je PUNMG _fram_the_soft_core_contraller_Interface_0
PUAT _tom_le_som_core_cenialler_inkriace_of ————J=Fthd7 _from_the_soft_core_contraller_Interface_0
M PUARES_tom_the_snl_cort_cenkaler_inkriace 0| ————=FiE_from_the_soft_core_controller_Interface_0
PRI fom_the _sol_core_cenballer_inkerisce 0| —————JIEsPUNME_from_the_soft_core_contraller_Interface_0
ozt clk e [ce_cik are_r_ko_te_rran| ——— [ozram_adsc_n
reset_n[ms——— [reseln bwe_n_bo_the _ssram | ————Ieasram_buve_n
button[3. 0] [w——— [Inpori_io_te_bullon_piogs.0 chipenable |_n__te _ssram| ————— [Ewesram_ce_n
epuslk| ———— = cpu_clk
_n_k_le_s sram [=zram_oe_n
rea_n_ko_be_exl tash| ————{IEflash_oe_n
| |—————fflash_cs_n
_ctk] |————fmzram_olk
| =l ash_wi_n
& L2 ram_bu_n[3.0]
ul:E_ A sram_Hs ke _bidge_atdre (23, 0| [maeefT ef] azh_szram_a[22..0]
5 s perl_toin_ e _ted_plof1]| fe—
st ram_H: lak_bildge_daiy31.0] —Il—l_m'e‘j[3 a
£l ash_ssram_d[31..0]
oIl azh_reset_n
¢ > v
_Hiemlch__p Lisl_/{ Find ; <4 ¥
For Help, press FL LM

Figure 4.181: RTL diagram of the soft-core based controller’s Nios® |1 system

These signals, from the DSP Builder project, are connected to the FPGA host High Speed
Mezzanine Connector (HSMC) pins through the Quartus® Il Assignment Editor. Through
this process, they became PIO signals which are directly controlled by the software

components of the project.

This stage is concluded by the programming of the FPGA chip, as a (.sof) SRAM object file
is produced after the Quartus® |1 project compilation and downloaded on the FPGA board. A
compilation report is also generated and displays al the hardware resource usage of the
Quartus® Il project design. As Figure A.6 shows (see Appendix A), the Cyclone®
3C25F324C8 FPGA has sufficient resources to sustain the chosen RAM capacity in the
design. Only about 55% memory bits were used to alow for hardware expansion. This

provided enough memory space for the .elf fileto be generated in Nios® 11 IDE.

4.4.4 Stage 4 - MATLAB® GUI design and implementation

MATLAB® GUIs were developed as additional peripheras to the Nios® Il system of the
SCBC. Some of these help the user to control the SCBC inputs and outputs. They help in
saving time and the need to do al the calculations that are required, while modifying the C

61

codes on the Nios® |l IDE each time change is required. Figures 4.19 — 21 present the
control GUIs. They are associated with application selection control, carrier and reference
signa frequency control, deadtime and duty cycle control. They serve as a communication
interface between the user and the SCBC, via MATLAB®, the DSP Builder design and the
Nios® Il processor, as they replace the absence of a UART component on the FPGA board.
Users can enter numerical values, which represent signal parameters into the C code running
on the Nios® Il processor via the GUIs by selecting radiobuttons. As new configuration
values are entered and loaded into the FPGA design from the processor, application selection
and frequencies are changed, according to the new values. New configuration data can only
be loaded and read after re-running the Nios® |l system project on the IDE each time that

change is implemented.

The GUI in figure 4.19 represents the communication interface to the Nios® Il core. It
consists of three panels of radiobuttons that represent the four power electronic applications,
and the carrier and reference signal frequencies. Figure 4.20 shows the GUI that is
responsible for duty cycle selection, while the one from Figure 4.21 involves deadtime
selection.

As aradiobutton is selected, input data is sent and read by the processor, which in turn sends
off control data and generates sine wave samples to the rest of the logic design. Some of the
MATLAB® .m fileswere created in order to write numerical values onto binary and text files
following the PC host based file system. Pushbuttons are also available for converter and

inverter mode, as well as deadtime sdlection.

Other GUIs such as those that are one presented in Figure 4.22 are developed as DSP Builder
simulation platforms as graphing and monitoring tools. These GUIs display signals that are
stored in the Simulink "To Workspace” blocks, which are inserted on the DSP Builder
design. In turn, these signals are simulated and displayed in MATLAB® to monitor their
validity against their validity in VHDL. MATLAB® GUIs development involves two parts,
the MATLAB® .m code and the graphic skin. The .m code actively communicates with

binary files by writing numerical values onto them.

62

<} frequencies2

S/08/a0

=lo|x

jﬁﬂé| R;"*\ AT B -
A= Opern-Loop Controf
By Cassandra Daviane Nsumbu

0 0 |

Centre for Instrumentarion Research
1

1
8 08
B &
04
4
0.2
2 0 . . \ \)
0 02 04 0.6 08 1
— 2. Select the carrier signal frequency:
0 \ . | \)
na na ne
91. Select the application to be tested: e i
— Panel
Appl]c_atlon Check nios connecti sw“l:hi“g
selection frequency

control control

" multilevel
 full

Cenrre for Inserumenation Research
1
Inverter mode
0.8
Converter mode | 4
04
02
Resetall] L L L L I
0 0.2 04 0.6 0.8 1
— 3. Select the reference (sine) signal frequency: —
£ 695 khz Reference
™ 125 kiz frequency
control
" 25kHz
" Bo

Figure 4.19: MATLAB® GUI for application, frequency ratio and carrier (switching)
frequency selection control

NSl M AANUDEL- G| 0EB|8D

=101

Duty cycle Control

By Cassandra Daviane Nsumbu

I .
1
0.8
0.6
Centre fosu'umenlaucm Research 0.4
02
UU U.‘Z U:4 D.IE U.‘S ﬂl

2. Select the duty cycle :

Go back to ‘Freguencies’

T~ Duty cycle control

Figure 4.20: MATLAB® GUI for duty cycle control

63

15l
Dddse | b RAODEL- 2|0 80
Deadtime Contro!
By Cassandra Daviane Nsumbu

CiR CIR

Centre for Instumentation Research 04 Centre for Instrumencation Research

Go back to 'Freq'uenc‘les’l

e Deadtime control

Figure 4.21: MATLAB® GUI for deadtime control

J button_tutorfal2 EoE

NEda | kRSO EL- G 08 a0

- Soft-core based controller for P.E. applications
‘ CiR Open-loop control
2. Select the application to be tested: Parel oy
() Half bridge 1 [
) Three phase inverter 'r
uo la} 1 1
) Mulitieved inverter | 05 05
() Full inverter 06 18t 0 0
| o {15 10 05 1
04 |7 1 i
e 0s 05
02
| o
15 D0 0s 1 0 05 1
0 1 1
3. Seliect the signal to be displayed:———————————— 4r 05 05
() Plot amplitude) Plotsine wave () Plot PWMsignal | | 31 3 .
' | i} 05 1 0 05 i
) Plot sine wave from Mios 11) Plot the carvier wave |21 1 1
() Pt sine and carrier wav.. () Plat sine, earrier and PWM signals 1t 05 05
Ofixis soxsere | ° !
ey Mochiation inde: o L : i L L L - L L 4| o 05 1 1
a " 01 02 03 04 05 06 07 08 o8 1| | , SR
s oied os 05
| 41 J o
Panal — Panel 1] 153 1 OD 05 1

Check fiber optics status
[t e e
Error 1 Error 2 Error 3 Error 4 Eror § Error 6 Error 7 Error & Erver 8 Error 10

Figure 4.22: MATLAB GUI for simulation (5-cell inverter)

64

4.4.5 Stage 5 - Software code development

The fifth stage involves C code development and compilation. Software implementation is
advantageous in saving the hardware area and in rapidly performing complex functions that
are more difficult to implement in hardware by involving a processor and some memory.

Hence, a software code was implemented to control the interaction and operation of the
SOPC hardware components via the Nios® |l processor. The other function of the processor
involves sine waves generation on the Nios® Il IDE, and generation of additiona logic
control, which is necessary for PWM production and file handling to communicate with
binary and text files that are contained by a PC host-based file system via the RS232
communication interface. This Nios® |l software intercommunication is illustrated in Figure
4.23 below.

Gul

RS232

Computer

I
> Nlos Il
< | .elf —
p
//
//

e

g L

A

FPGA

=1

FLASH
and
SSRAM

Figure 4.23: Nios® |1 IDE design flow (Hong, 2008)

65

4.4.5.1 Source C code design

Two C codes were created to control the Nios® |l processor in the system. The first one
handles the sine wave samples generation as signal parameters are established, while the
other one deals with writing these same sine wave samples into the SSRAM. The second
code contains one “ int main” function, which calls all the subfunctions, which are
categorized into several main functions: Code initialization, reading of binary and text files
from the PC host file system, writing of sine samples into SSRAM memory, carrier wave

production, signal frequency, application selection and PWM production control.
Initialization

Initialization functions initialize all peripherals and parameters to the Nios® Il processor to

be used for the digital controller operation.
PC host-based file system

This work made use of an Altera®'s GNU debugger filing system, as it offers a ssmpler
alternative way of communication between the Nios® Il core and the digital controller user.
Parameter values are entered into MATLAB® GUIs, which in turn are written into binary
and text files. File handling commands such as “fopen”, “fscanf”, “fread” and “fclose” are
each employed in order to make binary and text files from the PC — Host File System
possible. However, these commands were employed as little as possible by having afew files
to read from, since such commands require alarge amount of memory bits.

Reference wave generation

The Nios® |l processor generates the sine wave samples into an array by performing float
type calculations with the mathematical sin function from the included “math.h” library. As
Appendix D shows, parameters such as “MAX_NUM” represents the number of samples that
is required to generate the sine wave; “h” is its offset and “f” is the carrier wave amplitude
multiplied by the modulation index then subtracted by the offset. Two arrays “buff[i]” and
“buff2[i]” generate the required sine samples values for two separate RAM components and

print them on the IDE console window.

66

Figure 4.24 below displays the sine wave sample values generated by the processor, as they
are aso displayed on the IDE console after the “printf” command was utilized to display
them. The sine samples are extracted from the arrays and converted into sine tables in the
form of arrays. Since the processor generates sine samples for sine signals of varying known
amplitudes according to frequency ranges, several sine tables of similar magnitude were
created. As mentioned above, the lowest reference frequency is taken as the reference
frequency from which the design operates. It also provides a higher quality signal, as this
frequency presents the highest number of different sample values. As higher frequencies are

required, the samples values are divided by the “mul_div” parameter in the “for” loop.

. Nios Il CfC++ - test5_2.c - Nios Il IDE

File Edt Refactor MNavigate Search Project Tools Run Window Help
- = B & &~ -0~ Q- = = 5 <o

- Nios IT C}C++ Projects 52 = 0| hello_world.c L2l hello_warld.c Lt Finalite.c Lel tests_2.c 2
& <
® == altera.components -
b <_> Binaries <terminated> Facez Nios II HW configuration [Nios IT Hardw. e] s 11 Terminal Windc
@ (2 Includes {Open loop control)]Sinel sample[433]
(= Debug (Open loop control)Sinel sample[434]f113
+ - Lt] testS_2.c {(Open loop control)Sinel sample[435])f:
app_selection . bin {Open loop control)Sinel sample[436):
application, stf {(Open loop control)Sinel sample[437]:
| application_indicator txt {Open loop control)Sinel sample[438):
application_selection.bin {(Open loop control)Sinel sample[439):
.l'_"lblackJPG (Open loop control)Sinel sample[44
bomb.bin (Open loop control)Sinel sample[44
1] cirlogopet. jpg {Open loop control)Sinel sample[44
2] closed_control.jpg {Open loop control)Sinel sample[44 Generated sine
L] connection_application_nios_text.t (Open loop control)Sinel sample[449
;_; connection_control_nios_text,txt (Open loop control)Sinel sample[44 wave samples hy
1] connection_full kxt (Open loop control)Sinel sample(44 Nios Il processor
connection_half . bir (Open loop control)Sinel sample[44
] connection_hailf . txt {Open loop control)Sinel sample(44
] connection_half_nios_text bxt (Open loop control)Sinel sawple[44
2] conmection_multilewel. bxt {Open loop control)Sinel sample[450Q :
[2] connection_sine_nios_text.txt {Open loop control)Sinel sample[451f]:
] connection_three.txt {Open loop control)Sinel sawple[452):
|| connection_trian_100.bxt (Open loop control)Sinel sample[453R/:
B connection_trian_200.txt {Open loop control)Sinel sample[4541%
] conmection_trian_400 txt {Open loop control)Sinel sample[455]
;_ | connection_trian_S0.txt {(Open loop control)Sinel sample[456]
=] connection_trian_nios_text.txt {Open loop control)Sinel sample[457] 7

Figure 4.24: Sine waves sample values generated and displayed on the Nios® 11 IDE console

In order to generate sine wave samples and load them directly into Avalon slave interfaces,
custom instructions should be incorporated into the Nios® Il CPU. It will guarantee the
production of adequate PWM signals, as these instructions accelerate time-consuming
software algorithms. Their absence will result in timing delays and, subsequently, in
inadequate sine wave generation, however, also occupy alarge amount of memory bits in the
system. Since a few simple arithmetic operations such as multiplication and division were
performed by the processor, and the “sin” trigonometric function posed a problem, and there

was an absence of such instructions, the sine table approach was adopted in this work and

67

another C code was required to run on the processor. Figure 4.25 shows the design flow chart

of the second C code.

The sine tables content was then written into the SSRAM via the Avalon Write MM
interfaces by utilizing writing commands for dynamic address alignment and Avalon
peripheral commands come in specific formats such as IORD_8DIRECT(BASE, OFFSET)
or IOWR_16DIRECT(BASE, OFFSET, DATA). These commands are declared by the
“at_types.h” file, included in the C code as well. The sine table method was adopted owing
to the large amount of memory space that inclusion of Nios® |1 custom instructions requires.
This method is implemented for inverters, but in case of converters, numerical values are
generated instead of sine waves to produce PWM signals with a duty cycle. File pointers
were required for binary file handling and access in the PC host file system by the second C
code.

There are three main software methods to communicate with the processor peripherals: Direct
register access, Hardware abstraction layer (HAL) interface and standard ANSI C library
functions. In this project al three methods were used. The HAL approach provides the C-
language macros IOWR and IORD (Hamblen & Furman, 2001: 326). The “system.h” fileis
included in the source code by declaring it in the beginning. This file provides a software
description of the microprocessor hardware and information about each periphera in the
specified SOPC Builder system analyzer (Altera Corporation, 2010d).

68

Converter

Read value representing a PE
application from “application”
binary file

Inverter
Or

Read value representing a
switching frequency from “carrier”
binary file

v

Switching frequency control value
loaded into hardware design for up/
down counters operation

v

Read duty cycle percentage
frequency from “duty_cycle”
binary file

Inverter

Converter ?

Read value representing a
switching frequency from “carrier”
binary file

Switching frequency control value
loaded into hardware design for up/
down counters operation

Sine table is selected

v

Read value representing the
required reference signal frequency
from “sine” binary file

Load incremental step value into
hardware design

v

Generation of sine wave quarters

End

Figure 4.25: The second C code’ s flow chart

69

4.4.5.2 Nios® II IDE software implementation

The steps involved in software code implementation are described below:

e Creation of a new C/C++ application, consisting of two projects, an application
project and a library project. The application project is the C/C++ source code
developed by the designer, and the library project consists of BSP automated device
component configuration files referencing to SOPC Builder processing (Tang, 2008);

e Hardware system.ptf file assignment to the newly created C/C++ application;

e A source C/C++ code development and insertion in the application and projects
configuration;

e Project building, using the two projects, where an Executable and Linked Format
(.ef) file is generated and loaded into the Nios® Il system memory if no error has
been located; and

e Project loaded and running by the Nios® |l processor on hardware.

4.4.6. PCB production and completion of overall system

The creation of a custom FPGA board is beyond the scope of this project, but an additional
hardware platform is needed to work in conjunction with the embedded Nios® Il system to
complete the digital controller design. One periphera PCB was developed by using Altium®
Designer v.6. This platform serves as a communication interface between the embedded
Nios® |l system and power electronic applications. It also operates for measurement and
testing purposes for signals from the designed Nios® Il system. For these activities to be
made possible, this board accommodates a High Speed Mezzanine Card (HSMC). This card
was a SAMTEC® ASP-122953-01 host board socket, which was plugged into the
corresponding HSMC on the FPGA board. As the development of the peripheral PCB was
completed and connected to the FPGA board through the HSMC connecter, the soft-core
based controller is ready to be operational. The block diagram of the developed soft-core
based controller is presented below in Figure 4.26 as a summary of the internals of the Nios®

Il system design and their interaction within the system.

70

Data Master connection from Nios
Il core CPU to Avalon slave block.
The Avalon Interconnect Fabric
links the core to the Avalon
mapped memory slaves from the
DSP Builder design,

Feoctee
(1221

Wite
it

Weite Data
itao

Avalon Slaves interface \
block

This is the link t 1

Al

the Nios Il core and the

Refarance sent to the peripheral
signal board, which
provides an output
interface to the

PWM outputs from
the overall project are;

external world

AVA

Carrier
(iriaegulary
shanstl

DSP Builder design
PWM generation and control block for
ﬁ inverters andior converters
s DSP BUILDER DESIGN (compiled and incorporated into a CYCLONE
QUARTUS Il project) 3C25 FPGA
PLATFORM

USB-Blaster connectio

The Nios Il IDE and MATLABE softwares.
communicate by exchanging data through
Jxt and .bin files

C code program

Sine wave samples generation
Reference and carrier signal amplitude
and frequency control

Communication with MATLAB GUls and
PC host file system

Use of file handling commands, such as fopen and
Fiwvrite

Control of all SOPC components

This C code program runs on the Nios Il core, after
being created and compiled on the Nios || IDE
software

ALTERA QU‘!‘JS i NIOS Il

Imput
par:
from users
inserted
into

GUls

Figure 4.26: Block diagram of the developed soft-core based controller

71

4.5 Summary

This chapter presented the controller specifications, its design flow and the Nios® Il
processor functions in the SOPC system. It also provided details of the design and
implementation steps involved in both software and hardware aspects. The controller’s

flexibility is maintained by the ability of input reconfiguration on both the DSP Builder
design and C code.

72

CHAPTER 5

SIMULATION AND EXPERIMENTAL RESULTS

5.1 Introduction

This chapter presents and discusses results following performance tests at various points of

the controller’ s design and implementation process.

Software:

MATLAB GUIs
N Q_UARTUS I (communication
« Niosll IDE interfaces)
« MATLAB

Sine samples
From Nios Il

UsB

DSP Builder

Downloaded DSP
Builder design

P o

PWM signals

i

blocks

PWM signals

i

Logic analyzer

@O
| o
"

» stac-uarT [+ Nios Il

rocessor

e 68 @

. @ ¢ & (L

> o=
0w ¥V

008 3 &le
i.cvvvw
FF 0@

o LOW-PASS |

FPGA

o FILTER

Oscillos:

a

ope

————— .

'

MATLAB GUIs

PC Slmullnk scopes

(simulation)

PC - MATLAB GUIs

Figure 5.1: Testing setup block diagram

73

The simulation test comprised evaluating the Nios® |l processor’s performance via the
validity of sine samples that it generates by DSP Builder simulation. The hardware level of
the completed PWM modulator was also tested by DSP Builder. The experimental test
involved evaluation on the Nios® Il core performance of the digital controller from the
FPGA hardware level. The controller’s flexibility in terms of signal frequency ranges and
application selection was monitored, as all the necessary modules and units were integrated to
complete the controller system. The block diagram of the Nios® II-based controller and its
test environment areillustrated in Figure 5.1.

5.2 Nios® II and DSP Builder simulation

The PWM modulator design was verified by testing it entirely in synthesizable VHDL format
before it was implemented into the FPGA. The entire DSP Builder simulation was performed

in the DSP Builder/Simulink environment.

As stated in the previous chapter, the advantage of the DSP Builder model simulation is that
it is the visualization of the exact hardware implementation of the controller system without
any hardware manufacturing. It alows the designer to rapidly identify any problems,
troubleshoot them and re-simulating the model until satisfactory results are obtained.

In this work, the testing process began with sine samples’ data which was extracted from the
Nios® |l IDE console. These sine sample values were generated digitally from trigonometric
calculations based on the formulae that were given in Chapter Four to determine the right
parameters of the signal running on the Nios® |1 processor, and are expected to be the exact

hardware representation of afourth of asine wave.

It was first intended to have floating point custom instructions integrated into the processor
core to increase the calculations’ speed, but they occupy alarge amount of memory space, as
mentioned in Chapter Four. A simple C code was developed by using some parameter values
that were determined through calculations. The carrier signal and application selection blocks
were configured manually, according to calculations. As C codes were run onto the

74

processor, the sine waves values, which were generated, could not be viewed and monitored
directly from the Write Interface. Hence, in this testing process the samples were not written
directly into the Avaon MM Write Slave Interfaces ‘s addresses, but were rather collected
from the IDE console to form HDL sinetables, as Figure 5.3 shows.

Sine samples generated from Samples inserted into a
Nios Il processor sine array in VHDL code

VHDL sine array converted into DSP
Builder design part as FPGA hardware
Sine wave formulae used in) [S
aE o800 ARE B8 AR ~
C code
A x f clock
freference =——
2" samples

Ref_wave (t) =m, * sin(w, t)
Through simulation, valid
sine samples are generated,
| thus resuting in an adequate
| quarter of a wave

=1
wif);

Figure 5.2: Sine samples validity verification process block diagram

Reference wave amplitude peak
my =

Carrier wave amplitude peak

This specific testing process showcased the validity of the sample values that were generated
by the Nios® Il core trigonometric and arithmetic calculations and their implementation in
FPGA hardware. In this instance, the sine sample values that were acquired from the Nios®
Il core were used as HDL input data. Some “constant” DSP Builder blocks were configured
to emulate Nios® |1 control data, and used as control inputs to complete the hardware design
of the digital controller for simulation. The operating clock “peripheral_clk” on the DSP
Builder design could be altered at any time on the DSP Builder design to emulate a different
ALTPLL clock signal. This change generated other frequency ranges for switching and
reference sine signals that could not be obtained with the 50 MHz FPGA global clock signal.
Some MATLAB® GUIs were created and used to display simulation results by using
Simulink “To Workspace” blocks on the DSP Builder to store signal datainto MATLAB®’s
workspace. All this data appeared to be similar to the ones displayed by the DSP Builder
scopes and proved their compatibility with MATLAB®.

75

5.3 Experimental testing

In order to verify the possibility of applying the SCBC's in a practical PE environment,
simulations are not enough to prove its reliability and adequate operation. Hence an
experimental test on the HDL design had to be realized in order to evaluate the performance
of the controller. The controller’s outputs, the PWM switching signals, are responsible for the
control of the required PE applications, as stated in Chapter Two. Thus they were the focusin
this hardware test. The Nios® Il processor’'s functionality was tested, as it controls the
digital controller’s hardware through both its input and output signals by producing the
required PWM signals for specific applications and controlling their frequency, duty cycle
and deadtime.

This testing process was carried out upon completion of the digital controller’s SOPC system.
The configuration of the FPGA was performed by downloading the generated .sof
programming file onto the board with the USB-Blaster download cable and making the
Nios® Il system operate as the direct brain of the controller. The latter was accomplished by
building and running another C program code on Nios II® IDE, based on the sine samples
collected from the IDE console and, which compute data read from binary files stored in the
PC- host based file system. The data on the binary files originate from MATLAB® GUIs.

The experimental results were captured in the form of digital waveform signals at the output
of a SAMTEC® ASP-122952-01 High Speed Mezzanine daughter Card (HSMC) connector
placed on a peripheral board to be plugged into the corresponding SAMTEC® ASP-122953-
01 HSMC host connector on the FPGA kit. This facilitates the use of measurement
equipment probes on the FPGA development kit. The controller’s hardware operation is
verified by using measurement equipment, which is displayed in Figure 5.1 and listed in
Table 5.1 below.

M easur ement equipments

Oscilloscope Tektronix® TDS2024B
L ogic analyser Agilent® Technologies 1683A

Table 5.1: Measurement equipments

The oscilloscope was used to display the switching signal frequency, high side PWM signals,
and to perform FFT analysis for reference sine waves. PWM outputs consist of a spectrum of
several harmonic frequency components. FFT signals were obtained by passing a single
PWM signal out through a second order LC low-pass filter acting as some kind of a DAC.
The LC filter filters out al the higher frequency components in the PWM signal, and omits

out the reference signal frequency component to be captured on the oscilloscope.

The logic analyser is advantageous for capturing and displaying multiple switching PWM
signalsin one time and over varying ranges of time periods.

As mentioned in Chapter Four and shown in Figure 5.4, some MATLAB® GUIs were
created to serve as a communication interface between the SCBC user and the Nios® ||
processor. They were also tested and were successful in communicating with the processor by
making it control the FPGA hardware design as expected. To demonstrate the effects of
altering the size of sine tables on the C code by selecting different frequencies from the
MATLAB® GUIs, the results of this aspect were presented. The adequate frequencies were
captured and displayed on the oscilloscope. It should be remembered that atering the PLL
clock on the SOPC Builder will produce other frequencies than the ones termed on the
MATLAB® GUIs. These frequencies were altered in the same way by the same value that
was used for the PLL clock signal.

This chapter presents both simulation and experimental test results for comparison purposes.
During the simulation testing, carrier, reference and PWM signals were analyzed and
displayed on the Simulink scopes. During the experimental testing of the SCBC, only PWM
and FFT signals were captured, analysed, displayed and compared to the simulation results.

5.4 Switching and reference signal frequency control results

The SCBC'’s reconfigurability, in terms of input and output frequency variation was verified
in simulation and on the hardware level. As mentioned earlier, “constant” blocks were
inserted on the DSP Builder design to represent the number of signal bits that were required
by the hardware. The GUI in Figure 5.4 was used as the input generator for the SCBC's
signa frequency control in the experimental testing. As the user activated the GUI's

radiobuttons, data was written onto binary files, which was then computed by the Nios® I

77

processor to control the DSP Builder design to generate the required switching and reference
frequencies.

By altering the “peripheral_clk” signal on SOPC Builder, carrier and reference signals
running in different frequency ranges were produced; were equally tested; and proved to be
adequate for the SCBC's operation. Different frequency ratios were also implemented and
verified throughout the testing process. The reference signal frequency component was
captured and analyzed from the PWM harmonic spectrum in order to validate adequate

reference signal generation.

N .u!.l_l

T I g e —"
| Frrsuarssad
e b T B A-0 0 =i

R
= Open-Loap Conrtrol
C_ R By Cassandra Daviane Nsumbu
R L p—
Irrvarter mode /\
/\/\/\ — ‘
e [maftims control v

e |

SCEMact fow cothos Sgasl Anquanes B Selact e rebaimnce fuas] sbqnal frequm oy
1. Satwct he dppilafion b b ek e e LE T
o ™y wAr T misene
e Crars s camsace. | s bt
maws . i
oo Loy o
s
A B B o
© ol
I~ e
- - [r—— =
bl | el pons.. (1f 4R Ol W
. e = et
Cimam| 3 2 q’ @ a8 . 'u “I" l'=1[e =i e) e,

Figure 5.3: Activation of application and signal generation control GUI

All the frequencies for both carrier range (50 kHz to 1.6 MHz) and reference range (3.125 to
100 kHz) were tested and proved to be correctly generated, but only some of them are
displayed below.

e Figures 5.5 and 5.6 display one cycle of the 400 kHz PWM signal, while Figure 5.7
displays the 25 kHz reference signal component in the 400 kHz PWM harmonic
spectrum. Figure 5.5 also displays the ssmulation of the carrier and reference signals

involved in the PWM production on the upper section of the scope window.

-) Scope6

GH(LLL ABR B A S

=

oed 0 L] % o @ a6 @@ [a] e

Figure 5.4: DSP Builder simulation for a switching frequency of 400 kHz and a 25 kHz

reference signal
ek A5 ® Stop M Pas: 0,000s MEASURE
+
CH3 Off
Freq
M 5,00 s
21=Jun-12 15:07

Figure 5.5: Experimental result of a switching frequency of 400 kHz and a 25 kHz reference
signa

79

Tek J i Trio’d Pos: B2.50kHz TURSOR
+
5 Type

Reference signal frequencyé

' I Component Source

i 5 kHz) | MATH
aHz 74.50kHz

& adB 21,248

Cursor 1
25.0kHz

LA A

CH1100dB 12.5kHz (250kS/s) Flattop

Figure 5.6: Measured FFT of asingle 400 kHz PWM gating signa displaying the 25 kHz
reference frequency

e Figures 5.8 and 5.9 display one cycle of the 100 kHz PWM signal, while Figure 5.10
displays the 6.25 kHz reference signal component in the 100 kHz PWM harmonic
spectrum. Figure 5.8 also displays the ssimulation of the carrier and reference signals

involved in the PWM production on the upper section of the scope window.

80

<) Scope6

start| (3] J "7; @ @ :& |E5 ”"T ﬁl &l _" | é Address | =] {23 Desktop >>%a Pl T~} ;i‘:’i;zl F

Figure 5.7: DSP Builder ssmulation of interleaved switching for a switching frequency of 100
kHz and a 6.25 kHz reference signd

Tek i) S ® Stop M Pos: 0.000s MEASURE |
-
CH3 Off
F[Erq
M 25.0 us CH4 / -14.3mVY

Figure 5.8: Measured 100 kHz PWM signd

81

ek o || T Trig’d Pos: 5.250kHz CURSOR
: Type

-

Frequency

i Referenc:'e signal frequency
[- component Source

(6.25 kHz) MATH

= aHz 3.800kHz
dB 0.00dB

i , , Cursor 2

9.95kHz

; -61.0dB
CH1100dB 1.25kHz (25.0kS/s) Flattop

S=Jul-12 17:43 43.6335Hz

Figure 5.9: Measured FFT of asingle 100 kHz PWM gating signal displaying 6.25 kHz
reference frequency

e Figures 5.11 and 5.15 display the 200 kHz PWM signal. Figure 5.8 also displays the
simulation of the carrier and reference signals involved in the PWM production on the
upper section of the scope window. A simulation GUI for 3-cell invertersis shown in
Figure 5.12. Figure 5.13 and 5.14 are enlarged screenshots of interleaved switching
signals and PWM signals, respectively, from the simulation GUI.

82

a o - 7 22 B Gy oy o
=9 Address | =] {23 Desktop iﬁw i} 2u12fn7101!

pf 0) % 2 @ sl @

Figure 5.10: DSP Builder smulation of interleaved switching for a switching frequency of
200 kHz and a 6.25 kHz reference signal

-) open_half o 0 [l
REE EEEE

— 2. Select the ication to be tested:

ol

140 y ;

Reference wave

Carrier PWM High side

Amplitude (pu)
=
%

Amplitude (pu)

0
0 1000 2000 3000 4000 5000 GO0
Time (s) x2x10°5
— 3. 5elect the signal to be displayed:
" Plot 3 signals on same axis PWM Low side
1
" Plot sine wave from Nios Il =
€ Plot sine and carrier waves : i
i | I L | S 05
{_ - oL L | | | [11 [1| 3
itliodih i b S 0 1000 2000 3000 4000 5000 5000 |5
" Plot sine wave Time (s) x 2106 é
5 0
© Plot the carrier wave Clear axis 1 | 0 1000 2000 3000 4000 5000 60
F 2 Time (s) x 2105
Change control mode
2 Optical fibre status _l
 Plot PWM signal Nios connection status p—
Error 1 Error 2

- +
o
7

Page: 110 of 139 Words: 20709 | & English (United Kingdom} j m ‘i’
5 - 2 m 5 = 2 i 04:22 AM
Frstare| [= ";d @ é :& [E5 m 4\ EI & | = A = Address | =] {23 Desktop |* @ RO |

Figure 5.11: Simulation GUI for Half bridge converter

83

Half bridge converter sine and carrier wave
Reference wave
Carrier wave : | :
120 1 : R Rk R o S s il ralk BEE Sl sk emmemmees oo
VL Ll : s
bl ;) ! ;
00 -9 T H"n e hra [RRE SR & R L EEEEEEEEEEEEE
_ Pal¥ : b :
S i ' ' ' I
= B0+ ;f"jr Tttt e H‘"‘L-. R
2 A - - : B
2 : : : o
& BOf [T T T T R T T S
< : = :
' : K '
e R R R R et At E ER EEE b TR EEE S sl T I"‘=~1 ------------
: h
) A A —
0 | | | |
0 1000 2000 3000 4000 5000 6000
Time (s) x® 2x10°5
a)
PWM High side
1
é 0.5 1
3
LT
UU '1UIUU ZUIUU BUIUU 4000 EUIUU 600
Time (s} ¥ 21075
PWM Low side
1
g 0.5 1
£
<<
UU 1UIUU ZUIUU BUIUU 4000 EUIUU 600
Time (s) ® 2x1075
Clear axis 2 |
b)
Figure 5.12: Simulation GUI zoom screenshots of a) interleaved switching and b)the ed
PWM signals

84

ek T ® Stop M Pos: 0.000s MEASURE
-

CH3 Off
F[E:q

M 25.0us CH4 ./~ -14.3mVY

Figure 5.13: DSP Builder smulation of interleaved switching for a switching frequency of
200 kHz and a 6.25 kHz reference signal

e Figures 5.15 and 5.16 display one cycle of the 200 kHz PWM signal, while Figure
5.17 displays the 50 kHz reference signal component in the 200 kHz PWM harmonic
spectrum. Figure 5.15 also displays the ssmulation of the carrier and reference signals
involved in the PWM production on the upper section of the scope window.

85

<) Scope6

a5 opp hEE DA R

i

oo 0 % & © sl @@[[a] T w0 w0 SR

Figure 5.14: Three phase inverter - interleaved switching and PWM signals for a switching
frequency of 200 kHz and reference signal of 50 kHz.

ek I ® Stop M Pos: 0,000s MEASURE
+
CH3 Off
F[E:q
M 250 us CHY ./ -14.3mV
4-Jul-12 15:22 50.0256Hz

Figure 5.15: Measured 200 kHz high —side PWM signal

86

s
|
il

J
]
=
[

d=

¢ Reference signal frequenc§
(50 kHz)

i

ST

Figure 5.16: Measured FFT of asingle 200 kHz PWM gating signal displaying 50 kHz
reference frequency

For the next instances, the “peripheral_clk” signal was changed to 833 Hz in order to
produce another frequency range. Figure 5.18 displays one cycle of the 1.66 kHz
PWM signal, while Figure 5.19 displays the 100 Hz reference signal component in the
833 Hz PWM harmonic spectrum. Figure 5.20 displays one cycle of the 833 Hz PWM
signal and Figure 5.21 displays the 50 Hz reference signal component in the PWM

harmonic spectrum.

87

Tek JE ® Stop M Pos: 0,000s MEASURE |
+ T

CH2 Off
Freq

CH3 Off
Freq

M 1.00ms
12-Jul-12 1713

Figure 5.17: Measured 1.6 kHz high —side PWM signal

ek JL i Tria’d Pos: 625.0Hz
v ;

Reference signal

«+—— frequency component Source

T (100 Hz) MATH
. aHz 835.0Hz
odB 42.008

, Cursor 2
; 935Hz
-47.0dB

CH1100d6 125Hz (2.50kS/s) Flattop
3-Jul-12 13:50

Figure 5.18: Measured FFT of asingle 1.6 kHz PWM gating signal displaying 100 Hz
reference frequency.

88

Tek i | T ® Stop M Pos: 0.000s MEASURE
v

CH2 Off
Freq
CH3 Off
Freq
M 2.50ms
10-Jul-12 13:40
Figure 5.19: Measured 833 Hz high —side PWM signal

Tek Jl Pos: 625.0Hz CURSOR
~ :

Reference signal frequency

| -— component Source
(50 H)

aHz 945.0Hz

M» adb 52.6dB

Cursor 2
i | 9935H:
bl
CH110,0dB 125Hz (250kS/s) Flattop
10-Jul=12 19:17

Figure 5.20: Measured FFT of asingle 1.6 kHz PWM gating signal displaying 100 Hz
reference frequency.

89

The collected results above prove the successful operation and flexibility of the SCBC in
terms of signal frequency control, as al this section’s figures exhibit adequate PWM signals,
which operate at some of the possible frequencies.

5.5 Application control results

In this section the SCBC'’s reconfigurability in terms of PE application selection was tested
and verified in simulation and on the hardware level. The SCBC can only operate on one PE
application at a time though. Adequate HSMC pin assignments were carried out through the
Quartus® |1 software to ensure the right selection, and the number of PWM signals to be
produced accordingly. The number of PWM output signals is dependent on the number of
power semiconductor devices that are present in the switching converter. For each P.E.
application, required signal shifting was implemented and tested. In the case of three phase
inverters, reference signals are phase-shifted by 120°. In the case of a 5-cell multilevel
inverter, carrier signals are phase-shifted by 72°. To accomplish this, atime delay system was
implemented in the DSP Builder design. The GUI from Figure 5.5 was involved in the PE
application control.

e Five-cell inverter

As both Figures 5.22 and 5.23 show, the ten required PWM signals were observed in both
simulation and experimenta results. The 72° phase shifting can also be observed on both
figures as they run the five complimentary PWM signa pairs. In Figure 5.22, the
complimentary PWM signal pairs are shown to run after 72° of one another, creating a
noticeable increased time delay.

90

) Scope18

EEIEEE R

AR VA 00 OO N HOOOUO OV W AR I
il

a5 1 15

[1start

07:25PM

Address | 2120701 M

o d=2g e slz|léeé @S a8

Figure 5.21: 5-cell multilevel inverter PWM signals (simulation — DSP Builder)

=] {23 Desktop ”|ﬂ o B ™0

B o M2 = 25ns

Scale | 5 us/div [ﬂ] Delay -23,51709% us [E[E][E&][E
W
Bus/Signal Sitnple: Triages ‘IiE-.El-E IJIS , —:I}B.EI-E I.:S . —IEE-.El-.'l uls . —.IES.EI-E I.:S , —?‘3.;2 uls . —‘IiB.EI-E uls , —‘I13.E|-.'1 L:S , —IB.E‘IIT uls , —:I3-.51I'."Li
- Puire) oft{af1([1{[1]|1|p[1]|o]|1]ol|1]|o|1|op| o o [o [1]of1|o[1|o|1pfsl
ué--mpv.ﬂ.rmn] X v o [llof1]|oft{oft|ofa||+ |1 |t]|[1]o]|1]o|1]|o|1]o
E——EPWM[E] 1 Joltlofi|of1|eft]o]] o o [1]0|1|o[1]o 1
E F'".“JM[B‘;I ol1|o|1|o]1]o 1 o|1ol1]o]1]o
E PYWIIA] X ¥| BEEE
é——EF‘WM[S] 01 [0 |1 of1]of1]of1|o1
E—-EPWM[B] 1|0 |1]o of1fof1|o|1]|o]i]o 1)0 [1]0
@ Pu] X o|1joj1]0 o ol1]e|1]|o|1]|o1 1 (1|1 |of1|o]1]o]1
ﬂ a— X 3l (1o o [7 ([1[7 1[7 bllo[loflo[t]o]] o [o | o |o [i]of]oflo
[T el o[oo o [o [o [l LoDl Lo Ll Lo Lo [
3 1) I i | A
w1 o 1
ﬂ Ovwerview ‘J% Listing-1 .-H Waweform-1 _J

Figure 5.22: 5-cell multilevel inverter PWM signals (hardware level)

91

e Three phase inverters

The 120° phase shifting and the three complimentary PWM signal pairs are clearly apparent
in Figures 5.24 — 5.27. Figures 5.24 — 5.26 display ssmulation results, which show a

noticeable increased time delay after each PWM signal namely the 5-cell inverter. In this
instance, it occurs after 120° of one PWM signal pairs.

) Scope18

EEIEEE R

15

o 27 g e slsed @& LA

Figure 5.23: Three phase inverter PWM signals (simulation — DSP Builder)

=] & pesktop (A) 7 TR (D) 2271;2;21 =

92

Dode | | RO EA- 2| 0E D
@ note new toalbar buttons: data brushing & Inked plats g% 51, Play video x
Cin e [EEEC
i 2 .
b J i I
2. Select the 1o be tested: — Parel P
—Pan
! i Three phase inverter sine and carrier wave
70 T P 1 High side = PWI 1 Low side
. i, Three P sine wave 1 | 1 2
L) . K
(L i ‘E} & Carrier wave 05 % 05
e g lER o 20
R 5 50 0 200 40005 0 1000 2000 3000
it} = A Time (s) %2005 Time (s) X 22106
(| e =
IR e =i P 2 High side = P 2 Low side
i B 1 =5
= @
- om0 0O . O I . R 05 05
3. Select the signal to be displayed: & o EL a
() Plot amplitude () Plot sine wave oL 1 A . 0 Y o 2000 4000 < o) 2000 leD
) Plot PWM signal Time () x 2105 Time () 2x106
£ e dve el el PWM3Highside = PWM3Lowside
) Plot sine and cartier waves 0 YT =
! ! P
) Plot both sine and PWM signals 0 | ; 05 ‘ E 0.5
(&2 Plat sine, cartier and PV signais o 500 1000 1500 2000 2500 a E 1]
) e S« I a 2000 4000 0 2000 4001
Liske e carpe s i Tirme (5) % 2x10°G Time (5) % 2x10°5
ear axis
Panel Fanel
Error 1 Error 2 Error3 Error 4 Error 5 Eror 6
==il B S BN B N -

€ Unknown Zone

oy

T & odiaapm

Figure 5.24: Three phase inverter inverter PWM signals (simulation - MATLAB)

FPYWh 1 High side = Pyyhd 1 Low side
1 £
[k}
0.5 5 05
0 g g
0 2000 4000 = 0 1000 2000 3000
Time (=) x 2x1075 Time (s) ¥ 2x1075
Py 2 High side = Py 2 Lowe side
1 E i
=
0.5 S 04
0 g 0
0 2000 4000 £ O 2000 400C
Tire (5] % 2x10°5 Time (5] x 2x10™5
Pt 3 High side = Pl 3 Lowe side
1 = 1
k)
0.5 S 05
] _é 0
0 2000 4000 =€] 2000 4000
Time (5] = 2x10°5 Time (5] = 2x10°5
Clear axis 2

Figure 5.25: Enlarged screenshot of Three phase inverter inverter PWM signals (ssimulation -
MATLAB®)

93

Tek T ® Stop M Pos: 0.000s MEASURE |
' - -

_H1
o Ot 0 nn IF Freq
LUTTTTITIVLLLLLLL e
Ll U0 U UL L s
Freq
F"’i r"; 1.219kHz?
il |_ CH4
3+ L FolF Freq
813.0Hz?
TTTTILLLLLLLLTTTTIT g
: ; Freq
4r . 1.219kHz?
_H1
Freq
513.0Hz 7

CH1 2.00% M 2.50ms CH1 7 127V
CH3 200y CHA 200Y 12-Ju-121800 857.464H:

Figure 5.26: Three High —side PWM signals running at 833 Hz (hardware level)

94

o Halfbridge converter

Figures 5.28 and 5.29 display the two required PWM signals.

|

EER YT

i 5 2

o 0|7 & @ sl @] 0]

Address |

7 0120701

Figure 5.27: Half bridge converter PWM signals (simulation — DSP Builder)

MT to M2 =25ns
Scale| susfiv [B)[2ne][] Dela‘.rl -13.048245u: [B](W](ne [T (20 (w1
_ L
HusSignal Simpl= Trigger Iza.:;fl: . T’B.:lufu.l . .?":il':l.: . -:.s.:.l'E-L:s) '."2'?-5“.9] -:Ia.:TB = -Ie-.:mls B 'Elz = -EIE-?lzu
El PO} X] £
é‘"ElF'".“."f‘."l[ﬂ X ¥ 011|010 (1(0]1 1(0(1(0(1]0
[l PWHIS] X ¥
ewme [X ¥ e
> < ¥ (2 s
7 e Y o oy oy Y Y N [T O, s O O s SOy
;. Overview J % Listing-1 l‘,i._ VWaveform-1 J

Figure 5.28: Half bridge converter PWM signals (hardware level)

95

e Full bridge converter

Figures 5.30 and 5.31 show the four required PWM signals and the 180° phase shift between

the two PWM signal pairs.

=

SB|LPLL BB

i > B [

n

=] il @] 2

-
=

=] &3 Desktop i“ o & W e B

07:28PM

Address |

Figure 5.29: Full bridge converter PWM signals (simulation — DSP Builder)

il to M2 = 25ns

e 1lo]1]0

ﬂ P2 ol1]o |1
ﬂ P[] 1lo[1 |0
lD PYRI4]
ﬂ PYWMIS]
D PUWMIE]
D PYMITI

lD PIWIE]

LM puaran
k >

E I Rl B e oo o o I 8
£ < £3 £3 £24 o« “ £33 £

i
[

0

1

0

=

Overview

B

Listing-1

N
L

0 0

1 1

0

0

1

Waveform-1

Scale | 5 us/div @ Delay -36.642224 us E ne E][E

s : Ul 5854 us -51.84 us -45 54 us <184 us =38 84 us =31 84 us 2584 us 2184 us =1884 u
Bl Sl Simple Trigger A A e T B i R
L] oo | X W ol1|o (1|1][1]]1]1 1lof1lopl o | o | o o

0 010101

(RN | 1 1 1 [0(1({0)1|0]|1]|0

11010 0 0 0 0 oo o

101|010 1

1

0

1

0

1

0

G | W
L

| | | Tl I

LM

J

Figure 5.30: Full bridge converter PWM signals (hardware level)

96

As Figures 5.22 — 5.31 show above, signal shifting is visible and is successfully implemented
in the DSP Builder design owing to the implemented delays. The same was observed for
application selection control. Nevertheless, the amount of shifting implemented in hardware
and 1/O pins selection was verified, and proved to be correctly implemented, even when other

reference signals were used.

5.6 Deadtime control results

In this section the SCBC'’s reconfigurability in terms of deadtime value selection was tested
and verified in simulation, and on the hardware level. As mentioned in Chapter Two,
deadtime is essential for adequate switching, and must be implemented to avoid short circuits
during switching periods of complimentary signals. The following GUI in Figure 5.32 was
involved in the deadtime value control. The controller user had the option of choosing
between 40, 80, 100, 160 and 200 ns deadtime. Only some of these deadtime values are
displayed below though. Different deadtime values are necessary in order to accommodate
several power switching devices, which possess different characteristics in terms of rise and
fall time requirements. An excess of deadtime could damage some PWM signals, which

operate at low frequencies.

=
Ddde || ARG L% |3 |08 |80
Deadtime Contro/
By Cassandra Daviane Nsumbu

Deadtime : 40 ns

e 1

Ty

1

o | |
4"

4 I!
| [}
YQ 11

1
—

1

1

_ e
Y e
i,

Centre for Instrumentacion Research Cenrre for [nstrumenration Research

\I ?|___|_.._

\ 40 ns

— 2. Select the deadtime :
i Go back to 'Frequenclas’l
& d0ns

" 80 ns

100 ns
160 ns
200 ns

Figure 5.31: Deadtime control GUI

97

~Ioi W
GB PLLp ARBE B AR - :

Figure 5.32: 40 ns deadtime implementation results, in smulation and hardware level

=) Scope3

) scope3
SB LLL ABRB DA F

=TSR

8B 0oL ABERIG A & » o e
B2 us 8108 us 81:B8us 82085 us 82.Eb
It N R O R L I R (N IR O O R L | T

Figure 5.34: 200 ns deadtime implementation results, in simulation and hardware level

98

Figures 5.33 — 5.35 showcase the successful implementation both in simulation and

experimental testing of the devel oped deadtimes.

5.7 PWM duty cycle control

In this section the SCBC'’s reconfigurability in terms of duty cycle control was tested and
verified in simulation and on the hardware level. In DC-DC converters, output signal
regulation is determined by the duty cycle control. The controller user has the option to
choose between 15, 25, 50, 75 and 90 % duty cycle. All these values were successfully
implemented, ssimulated, experimentally tested and are displayed below. The GUI, which is
presented in Figure 5.36 was involved in the PWM duty cycle control.

=} chaty_cyche = .:lJ.:_I..’.'LJ-
B R e e e e N A W]
Duty cycle Controf
By Cassandra Daviane Nsumbu

Cencre bor Insorumentarion Reedrct AT erg (oo bmorirmsntition Fesearh

|

e, R T

1. Select the duty cycle
= o back io 'Frequances”
=N

5%
o
C I8 %
a0 %

Figure 5.35: PWM duty cycle control GUI

99

e 159% duty cycle

RI=E

&Bopp ABE DA S >

Figure 5.36: 15 % duty cycle (simulation)

ek L Tria'd M Pos: 0,000s MEASURE |
+
CH2 Off
Freq
CH3 Off
Freq
M 5.00us CHY S -14.5mY
7=Jul-12 18:09 43.9701Hz

Figure 5.37: 15 % duty cycle (hardware level)

100

o 259% duty cycle

) Scope18

EEN- IR

ved 0 | 2 B @ &z WG]
Figure 5.38: 25 % duty cycle (simulation)

- RO s s g
- | Tl oekter ” |2) 7 B D oo B

Tek B i 2 Tra’d M Pos: 0.000s MEASURE |
+
CH2 Off
Er -_I-l
CH3 D01t
Freq
M 250 .us CH4 / -14.5mY
4-Jul-12 17:20 49,8563Hz

Figure 5.39: 25 % duty cycle (hardware level)

101

¢ 50 % duty cycle

) Scopel8

aB|lrpp ABB|BA S

fil

1% ¢ @ slale @6 |5~ TN

Figure 5.40: 50 % duty cycle (simulation)

Tek AP Trig’d M Pos: 0.000s MEASLURE
+
CH3 Off
F[E.'q
M 2.50us CHY ./ -14.3mV
4-Jul-12 17116 49.8966Hz

Figure 5.41: 50 % duty cycle (hardware level)

102

e 75% duty cycle

) ScopelB

g8 ,epp ABE|E A %

05 1 15 2 25 3 3
it
el 0]2 2 @ Glull4 WA e T 0B w

Figure 5.42: 75 % duty cycle (smulation)

06:13 AM

2012/07/01

Tek 3 i 2R Tna’d M Pos: 0,000s MEASURE
-
CH2 Off
Freq
CH3 D1t
Freq
M 2.50 us CHY ./ -14.3mY
4-Jul-12 1710 49,9460Hz

Figure 5.43: 75 % duty cycle (hardware level)

103

e 90 % duty cycle

) Scopel8

EEEEER T

sl WS A st I s " 0 B D) e

Figure 5.44: 90 % duty cycle (s mulation)

Tel o L Trig'd tA Pos: 0.000s MEASLIRE
+*
CH2 Dff
Freq
CH3 Off
Freq
k25008 CHY 7 =14.3mY
4-Jul-12 17:34 43.8330Hz

Figure 5.45: 90 % duty cycle (hardware level)

104

5.8 Summary

This chapter presented results from both the ssimulation and experimental testing. The
simulation testing platform was the DSP Builder/Simulink environment, while experimental
testing was performed by analyzing the PWM output signals from the SCBC, and then
capturing them on an oscilloscope and logic analyser. Both simulation and experimental
results were compared, proved to be similar and correlated to the theory presented in
Chapters Two and Four. This aso proved the Nios® |1's overall system design, including
sine wave and carrier signa generation and interleaved switching, which were dll
successfully implemented in the hardware of the FPGA architecture.

105

CHAPTER 6

Conclusions and future work

6.1 Introduction

This thesis focused on the development of a digital controller for PE applications by
implementing a Nios® |l processor embedded onto a FPGA platform. The simulation and
experimental tests in Chapter Five were performed to analyse and prove the capabilities of
the SCBC’ sindividua units, which were designed and devel oped during Chapter Four. These
test results prove that the soft-core based controller worked as planned, and according to this
thesis' objectives and given specifications.

6.2 Conclusions

From the presented outcomes in Chapter Five, the established objectives from Chapter One
were fulfilled, namely:

e Theinvestigation of different embedded system based controllers and FPGA/soft-core
technology;

e The design and implementation of a digital controller, which incorporates a Nios® |1
processor both in hardware and software aspects. The controller can operate on the

mentioned P.E. above; and

106

e Theuse of Pulse Width Modulation (PWM) as the control technique, with the internal
generation of carrier signals and reference signals with adjustable frequencies, as

inputs from the Nios® |l processor.

Intensive research on power electronics, embedded systems and, especialy FPGA/soft-core
systems, was conducted with the help of numerous sources such as theses, journals and
conference papers, websites and books in order to gain as much information as possible.
These sources were useful in providing insight on these reconfigurable technologies, as well

as knowledge on how to implement them successfully.

The embedded Nios® |1 soft-core processor was utilized to set up and implement an entire
control system for PE applications. It proved to be an efficient device and provided a high
amount of flexibility and reconfigurability. It was showcased as it creates systems of almost
any size by selecting and implementing a specific set of peripherals to meet the designer’s
needs. Thisis achieved in less time than expected if done manually with analogue € ements.
The SCBC design consisted of four units, which were each implemented successfully, as
shown in Chapter Five. Reconfigurability is again showcased by easily modifying parameters
inthe Nios® Il C code.

The first unit of the overal design is the DSP Builder design, which consists of a sine
generator, carrier signal generator, an adjustable comparator block, application selection and
PWM control blocks. This module proved to operate successfully, and allowed the controller
to generate switching and reference signals at adjustable frequencies, and to work for a
variety of PE applications.

The second unit was the Quartus® [I/SOPC system, which incorporates the Nios® |l
processor as the “brain” of the whole system and the DSP Builder design as a custom
peripheral interface. Interaction between the Nios® |1 processor, SOPC components and the
custom peripheral was successfully established. Adequate PWM signals were sent to specific
1/0 FPGA pins on the HSMC card once they were correctly configured with the Quartus® 1
Assignment Editor. It can be concluded that DSP Builder and Quartus® 1l SOPC Builder
tools are efficient for the development of reconfigurable, large and complex PE systems onto

asingle chip without a need to create long and extremely time-consuming HDL codes.

107

The third unit involved the development of the C code, which operates on the processor via
the Nios® Il IDE environment. The use of one fourth of a sine wave and LUT methods were
introduced and were useful in reducing the usage of FPGA memory resources significantly.
As the DSP Builder smulation results from Chapter Five show, the sine wave samples
generated by the Nios® Il processor proved to be valid and compatible with the other
developed portion of hardware to generate the adequate PWM signals as required. Direct
interaction of the C code with the DSP Builder was also successfully established to have the
processor directly control the controller’ s hardware.

The fourth unit consisted of the creation of MATLAB® GUIs whose function is to provide a
communication interface between the SCBC user and the Nios® Il processor and graphic and
monitoring tools. They enable the user to enter data as input parameters in the system, and to

display simulation results that are also provided. They were all successful in their operations.

The final outcome of this work relates to the successful operation of the SCBC in open loop
control mode for half and full bridge, three phase and 5-cell multilevel inverters, as required
by the specifications. Its level of reconfigurability was impressive, as the control calculations
implemented in the C code running on the processor may be atered, and the same applies to
the digital logic in the DSP Builder design aswell. Thiswork has increased the understanding
of the FPGA embedded Nios® |l processor, SOPC systems and their application in power
electronics, from theory to hands-on experience. An important lesson was learnt in
considering how a small change in software can affect the entire system by ensuring the

successful interaction of each module of the system.

6.4 Encountered problems

The biggest challenge in the design and implementation was fitting all the necessary design
parts together, while still respecting the limit amount of LE resources and memory space
available from the Cyclone® 3C25F324C8 FPGA. Part of this chalenge was to develop a
wide enough frequency range without altering the system’'s PLL clock signd,
“peripheral_clk”. A lot of work and time was spent to write import VHDL codes in a
convenient way in order to minimize the size of the overall design, to implement adequate

data formatting for all the individual design units, and still obtain the correct results after

108

synthesis. The same was applied when selecting only necessary and relevant SOPC modules

to beinserted in the design.

A lack of time and available Nios® 1l custom instructions for trigonometric functions led to a

disadvantage, and a procedure in generating sine wave values through sine tables. A better

option would have been the values generation in higher resolutions directly from the soft-core

processor without using sine tables.

6.5 Future work

Although alarge amount of work was completed, several more ideas were excluded owing to

time constraints, and to remain focussed on the main part of the work. These same ideas

would be interesting to see implemented in future studies, and are shown below.

Implementation of closed-loop control mode for PE applications (ADC
implementation). Closed-loop control in digital controllers provides severa
advantages such as disturbance regjection, guaranteed performance even with design
uncertainties, high system stability and reduced sensitivity to parameter variations
(Geethanjai et al., 2010). The SPI protocol can be used as the communication
protocol between the ADC chips and the rest of the Nios® Il system.

Finer resolution for direct reference signal computation and generation from the
Nios® |1 core without the use of sine tables.

Introduction of a UART module in the SOPC system to provide a more flexible
communication interface, with or without MATLAB® GUIs, and with the help of a
keypad or LCD module.

Turning the MATLAB® GUIs into stand-alone applications. A way of eliminating a
need for repetitive running of the software in the Nios® Il IDE whenever new input
data is entered into the system would be of great interest. This will render the Nios®

Il system mobile and more independent.

109

List of References

Ababu, T. 2007, Design of Pulse Width Modulation (PWM) and its implementation in Xilinx
Field Programmable Gate Array (FPGA), MSc Thesis, Addis Ababa University, Addis
Ababa, Ethiopia.

Albiach, J. 1. M. 2006. Interfacing a Processor Core in FPGA to an Audio System, MSc
Thesis, Linkdping Institute of Technology, Linkdping, Sweden.

Alcalde, A. L. P., Mohr H.B., Borgonovo D., Mussa S. A. 2009. Experimental validation of
the Nios |l processor-FPGA on the digital control of PFC converter, Brazilian Power

Electronics Conference (COBEP), Florianopolis, Brazil, pp. 895 — 900.

Altera Corporation, 2002. Altera SOPC Solution, 2002 SOPC World Conference, USA.
[Onling] Available at: http://www.pldworld.com/_exhibit/2002/A_1st_Session.pdf.

Altera Corporation 2004. The World's Most Versatile Processor Nios 1.
[Onling] Available at: http://www.ee.mut.ac.th/FPGA/SupportFile/Achieva/Nios 1I_6.pdf.

Altera Corporation, 2010a. Avalon Interface Specifications, version 1.3. [Online] Available

at: http://www.altera.com/literature/manual/mnl_avalon_spec.pdf.

Altera Corporation, 2010b. Cyclone |1l FPGA Starter Board Reference Manual, version 1.3
[pdf].

[Onling] Available at: http://www.altera.com/literature/manual/rm_ciii_starter _board.pdf.

110

Altera Corporation, 2010c. DSP Builder Handbook Volume 2: Blockset, version 1.0.

[Onling] Available at: http://www.altera.com/literature/hb/dspb/hb_dspb_std.pdf.

Altera Corporation, 2010d. Quartus Il Handbook, Version 1.3 Volume 5: Embedded
Peripherals [pdf].
[Onling] Available at: www.altera.com/literature/ug/ug_embedded ip.pdf.

Altera Corporation, 2010e. Nios Il Processor Reference Handbook, version 10.1. [Onling]
Available at: http://www.altera.com/literature/hb/nios2/n2cpu_nii5vl.pdf.

Altera Corporation, 2010f. Nios Il Software Developer’s Handbook. [Onling] Available at:

www.altera.com/literature/hb/nios2/n2sw_nii5v2.padf.

Altera Corporation, 2011. Embedded Design Handbook, version 11.0. [Online] Available at:
http://www.altera.com/literature/hb/nios2/edh_ed51008.pdf.

Altera Corporation, 2012, DSP Builder (picture). [Onling] Available at:
http://www.altera.com/products/software/products/dsp/dsp-builder.html.

Altera Forums, 2010. How the avalon mm dlave "address alignment” works? [Forum].
[Onling] Available at: http://www.alteraforum.com/forum/showthread.php2=21324

Anemagt, P., van As, T. 2008. Microprocessor Soft-Cores: An Evaluation of Design Methods
and Concepts on FPGAs, Computer Architecture (Specia Topics), Publication View.
42624821, ET4 078, The Netherlands.

111

Arbinger D. & Erdmann J. 2006. Designing with an embedded soft-core processor, the
Plexus Technology Group. [Online] Available from http://www.embedded.com/design/mcus-

processors-and-socs/4006632/Desi gning-with-an-embedded-soft-core-processor. Accessed
on 25/11/12.

Bakar, A. A., Abdullah, F. S. & Ahmad M. Z. 2009. Design of FPGA-based SPWM Single
Phase Full Bridge Inverter, Proceedings of Malaysian Technical Universities Conference on
Engineering and Technology (MUCEET) 2009, Johor, Maaysia

Barr, M. 1999. Programming Embedded Systems in C and C++, first edition, O'Reilly
Media, pp.18.

Bengtsson, H. & Jonssson, M. 2009. Control of Switch-mode Power Supplies: A digital
approach for half-bridge converters, MSc Thesis. Chalmers University of Technology,
Goteborg, Sweden.

Chamberlain, R., Lockwood, J., Gayen, S., Hough, H. & Jones, P. 2005. Use of a Soft-Core
Processor in a Hardware/Software Co-design Laboratory, Proceedings of 2005 |IEEE
International Conference on Microelectronic Systems Education (MSE'05), California, USA,
pp. 97-98.

Chapman, S. J. 2002. MATLAB programming for engineers, Second Edition, Brooks/Cole-
Thomson Learning, pp. 14.

Daya, B. 2009. Rapid Prototyping of Embedded Systems Using Field Programmable Gate
Arrays, BSc thesis, University of Florida, Florida, USA.

112

De Castro, A., Zumel, P., Garcia, O., Riesgo, T. & Uceda, J. 2003. Concurrent and Simple
Digital Controller of an AC/DC Converter with Power Factor Correction Based on FPGA,
|EEE Transaction on Power Electronics, Volume 18, no. 1, Texas, USA, pp. 334-343.

EE TimesAsia, 1997. New MATLAB software generates C code (article), EE TimesAsia
DSP DesignLine. [Onling] Available at:

http://www.eetasia.com/ART 8800482220 499495 NP_6a075c¢56.HTM. Accessed on
03/09/11.

Erickson, RW. & Maksimovic, D. 2004. Fundamentals of Power Electronics, Second
Edition, Springer, pp. 1-2, pp. 7.

Francis, J. & Boroyevich, D. 2001. Design of a Universal Controller for Distributed Control
and Power Electronics Applications, Proceedings of Center for Power Electronics Systems
(CPES) and National Science Foundation (NSF)/Industry Annual Review, PEBB
Publications, Virginia, USA.

[Online] Available from http://web-cat.cs.vt.edu/PEBB/R94_Francis.pdf [12/10/2010].

Geethanjali, P., Vijaya, P. P., Kowsalya, M. & Rau J. 2010. Design and Simulation of
Digital PID Controller for Open loop and Closed Loop Control of Buck Converter,
International Journal of Computer Science and Technology (IJCST),Volume 1, Issue 2,
Vellore, India, pp 202 — 206.

Guan, T. G. 2010. Wireless Channel Model Development using FPGA, BSc thess,
University of Technology Maaysia (UTM), Johor, Malaysia.

Grout, 1. 2008. Digital systems design with FPGAs and CPLDs, Newnes / Elsevier
publishers, Oxford, UK, pp. 28, pp. 63 — 64, pp. 195.

113

Hamblen, J.O. & Hal, T.S. 2006. Using System-on-a-Programmable-Chip Technology to
Design Embedded Systems, Proceedings of International Journal of Computers and Their
Applications (1JCA), Volume 13, No. 3, pp. 1-11.

Hamblem, J. O. & Furman, M. D. 2002. Rapid Prototyping of Digital Systems, SOPC edition,
Kluwer Academic Publishers, pp. 326.

Van Heerden, G. J. 2003. Design and Implementation of a DSP Based Controller for Power
Electronic Applications, MSc Thesis, University of Stellenbosch, Stellenbosch, South Africa.

Jooste, C. & Wilkinson, R.H. 2009. Development of a Generic Digital Controller for Power
Electronic Applications, Proceedings of South African Universities Power Engineering
Conference (SAUPEC), Stellenbosch, South Africa, pp. 163-166.

Joshi, N. N., Dakhole, P. K. & Zode, P. P. 2009. Embedded Web Server on Nios Il
Embedded FPGA Platform, Second International Conference on Emerging Trends in
Engineering and Technology, ICETET-09, Nagpur, India, pp. 372 — 377.

Kariyappa, B. & Uttara Kumari, U. 2008. FPGA Based Speed Control of AC Servomotor
Using Sinusoidal PWM, International Journal of Computer Science and Network Security
(IJCSNS), Volume 8 No.10, Bangalore-59, India, pp. 346-350.

Kimmo, R. 2006. FPGA-Based control design for power electronic applications, PhD thesis,
Lappeenranta University of Technology, Lappeenranta, Finland. [Online]Available from
https://oa.doria.fi/bitstream/handle/10024/31138/TMP.objres.472.pdf.

Klumpner, C. 2004a. Inverters (pdf), Power Electronics course, University of Nottingham.

114

[Onling] Available at:
http://hermes.eee.nott.ac.uk/teachi ng/h5cpe2/I nverters¥20%28with%20pi cs%029.pdf .

Klumpner, C. 2004b. Inverters - Triangular PWM (Photograph), Power Electronics course,
University of Nottingham.
[Onling] Available at: http://hermes.eee.nott.ac.uk/teaching/h5cpe2/triangular PWM.qif.

Koskinen, T. J. 2009. Metadata-based Automated Configuration of System-on-Chip, MSc
thesis, Information Technology Department Council meeting, Tampere University of
Technology, Tampere, Finland.

Koutroulis, E., Dallas, A. & Kaaitzakis, K. 2006. High-Frequency Pulse Width Modulation
Implementation using FPGA and CPLD ICs, Journal of Systems Architecture, Volume 52,
Technical University of Crete, Crete, Greece, pp. 332-344.

Krah, J., Holtgen, M., Rath, A. & Ritcher, R. 2011. FPGA-based Control of Three-Level
Inverters, PCIM Europe 2011 International Exhibition & Conference for Power Electronics,
Intelligent Motion, Power Quality, Nuremberg, Germany, pp. 66.

Leonov, M. 2009. Method and Implementation of Multi-Channel Correlation in the Hybrid
CPU+FPGA System, MSc thesis, Auckland University of Technology (AUT), New Zealand.

Luo, F.L., Ye, H. & Rashid, M.H. 2005. Digital Power Electronics and Applications.
Academic Press, pp. 32, 88 - 89.

Maksimovic, D., Zane, R. & Erickson, R. 2004. Impact of digital control in power
electronics. Proceedings of the 16th International Symposium on Power Semiconductor
Devices and ICs (ISPD), Kitakyushu, Japan, pp. 2 —22.

115

Malik, J. & P, Ratna S. 2010. Design of MP3 Player Application with Nios Il Embedded
Evauation Kit, BTech thesis, Nationa Institute of Technology (NIT), Rourkela, India.

Martin, TW. & Ang, S.S. 1995. Digital Control for Switching Converters. Proceedings of the
|EEE International Symposium on Industrial Electronics, Arkansas, USA, pp. 480-484.

Mastascusa, E. J. 2002.Control Systems lessons, Bucknell University. [Online] Available
from http://www.facstaff.bucknell.edu/mastascu/econtrol html/Intro/Introl.html.

Mohan, N., Undeland, T. M., Robbins, W. B. 2003. Power Electronics - Converters,
Applications and Design, Second Edition. John Wiley & Sons, Inc.

Molepo, S. A. 2003. A Multilevel Inverter for DC Reticulation, MSc thesis, University of
Stellenbosch, Stellenbosch, South Africa

Noman, M. 2004. Low-Power Embedded Processor, ECE 290 Fina Report, University of

Connecticut, Connecticut, USA.

Nurmi, J. 2007. Processor Design: SystemOn-Chip computing for ASICs and FPGAs.
Springer publishers, pp. 230.

Pedroni, A. V. 2004. Circuit Design with VHDL, first edition, The MIT Press, London,
England, pp.3.

Prodic, A., Maksimovic, D. & Erickson, R. W. 2001. Design and Implementation of a Digital
PWM Controller for a High-Frequency Switching DC-DC Power Converter, 27th Annual
Conference of the IEEE Industrial Electronics Society (IECON), University of Colorado,
Boulder, USA, pp. 893 - 898.

116

Quasim, S. M., Telba, A. A. & AlMazroo A. Y. 2010. FPGA Design and Implementation of
Matrix Multiplier, Architectures for Image and Signal Processing Applications, International
Journal of Computer Science and Network Security (IJCSNS), Volume 10 No.2, pp. 168 -
176.

Sicking, J. 2005. Implementation of Asynchronous Communication for ForSyDe in Hardware
and Software, MSc Thesis, Institute of Microelectronics and Information Technology, Royal
Institute of Technology (KTH), Stockholm, Sweden.

Simka, M. 2002. Conception of Connection of Embedded Processor to Arithmetic Co-
processor in SOPC Altera, MSc thesis, Technical University of Kosice, Kosice, Slovakia.

Schietekat, L. M. 2011. Design and Implementation of the Main Controller of a Solid-State
Transformer, MSc thesis, University of Stellenbosch, Stellenbosch, South Africa

Singh, K. B. K. 2008. Power Electronics. Second Edition, McGraw — Hill, pp. 11— 12.

Speaking Technology — Electrical and Electronic Engg, 2012. Open & Closed Loop Control
System - Advantages & Disadvantages. [Onlin€] Available from
http://amitbiswal .bl ogspot.com/2012/01/open-closed-loop-system-advantages.html. Accessed
on 15/11/2012.

Tong, J.G., Anderson, I1.D.L. & Khalid, M.A.S. 2006. Soft-Core Processors for Embedded
Systems, Proceedings of the 18th International Conference on Microelectronics (ICM),
Ontario, Canada, pp. 170 - 173.

Urriza, 1., Barragan, L. A., Navarro, D., Artigas, J. |., Lucia, O. & Jiménez, O. 2009. FPGA
Embedded Soft-Core Processor Implementation of a Digital Controller for a DC-DC

117

Converter, Proceedings of the 14th Conference on Design of Circuits and Integrated Systems,
Zaragoza, Spain, pp. 72-77.

[Onling] Available from http://dcis2009.unizar.es/FILES/CR2/p72.pdf . Accessed on
12/10/2010.

Venkatesh, S. C. 1994. The Development of a Digital Controller for a Three Phase Induction
Motor, MSc. Thesis, Massachusetts Institute of Technology, M assachusetts, USA.

Wilkinson, R.H. 1997. Topology, Control and Development of High Power Multilevel
Converters, MSc thesis, University of Stellenbosch, Stellenbosch, South Africa.

Wilkinson, R.H. 2004. Natural Balancing of Multicell Converters, PhD thesis, University of
Stellenbosch, Stellenbosch, South Africa.

Williams, B. W. Power inverters [pdf].
[Onling] Available at: http://www.eee.strath.ac.uk/~bwwilliams/Book/Chapter 14.pdf.
Accessed on 19/10/2010.

Zeidman, C. 2004. Zeidman Technologies [articlg].

[Onling] Avallable at: http://chipdesignmag.com/display.php?articleld=386. Accessed on
03/05/2010.

Zhang, D. 2006. A Stochastic Approach to Digital Control Design and Implementation in
Power Electronics, PhD Thesis, the Florida State University College of Engineering, Florida,
USA.

Zhang, Z. & Dong, F. 2010. A Harmonic Signal Generator Based on DDS and SOPC,

Chinese Control and Decision Conference (CCDC), Tianjin University, Tianjin, China, pp.
1542 - 1547.

118

Appendix A - SOPC Builder configuration settings

Care Mios II Zaches

Care Mios |l

Select a Hios Il core:

Nios Il
Selector Guide
Family: Cyclone Il

foystem: 1200 MHz

cpuic: 0

Performance at 1200 MHz
Logic Usage
Memary Usage

= Nios Il Processor - cpu

Nios II Processor

and Memary Inkerfaces

% Advanced Features

MM and MPL Settings

ONios ll/e ONios Ilf/s |®@Nios IIF
RISC RISC RISC
32-bit 32-bit 32-bit
Instruction Cache Instruction Cache
Branch Prediction EBranch Prediction
Hardware Multiphy Hardweare huttiply
Hardware Divide Hardware Divide
Barrel Shifter
Data Cache
Dynamic Branch Prediction
pto 18 DMIPS I to 77 DMIPS Upta 136 DMIPS
GO0-700 LEs 1200-1400 LEs 1400-1800 LEs
Tuvn b9k (or ecjuiv.) Tuvo hAkz + cache Thres Maks + cache

Harchweare MUtiply: | Epedded Muttipliers

1| [] Hardware Divide

Reset Vector:

£

Memory: | ext flash

VI Offset: | nx0

| 0x0200000

Exception Wector: Memory: | zzram

e | Offzet: EDXED

| 0x03000020 %

-

Figure A.1: Nios® |l processor core configuration

119

™ Nios |l Processor - cpu

Nios II Processor
Advanced Features
Core Mios Il
Select a Nios Il core:
ONios Iife | o Nios Iifs
- RISC RASC
Nios Il 12 bit 132-bit
Selector Guide Instruction Cache Instruction Cache
Famiy Cyclone® Branch Prediction Branch Prediction
Hardware Multiply Hardware Multiply
Loysrem; 1000 MHz Hardware Divide
cput 0
Perfarmance at 100.0 MHz Upto 15 DMIPS Up to 64 DMIPS
Logic Usage B00.700 LEs 1200.1400 LEs
Memory Usage Towo M3KS (oF equiv.) Twvi M3Ks + cache
Harchware Muitiply: E_Emheaded Multipliers v | [] Harcware Divide
Reset Vector: | ext_flash Y v |Offset: o | OX04000000
Exception Vector: | ssram w | Offset [gen Ox0S000020
[SETAM oo N { |
‘_ﬂ'lﬁ memory
[} include ML
Oy inchude the MWL when using an operating system that explictly supports an Ml
Fast TLB Miss Exception Vector: Memory: Offset: |

Figure A.2: Off-chip memory cores utilized by the Nios® 11 core CPU

120

'™ Cypress CY7C1380C SSRAM - ssram

Cypress CY7C1380C SSRAM

Docurnentation

~Bynchronous static RAM -
The Mios Development Board (Cyclone || 2235 and Stratix || 2360 edition) has a Cypress CYYC1380C-1687AC

SSRAM chip arranged as 512K by 36 bits (32 bits are used by this component resulting in 2MBytes total
address span).

Thiz SSREAM interface allows parameterization of SSRAM size and read latency to accommodate your desired
device and clock speed selection.

Hote: Changes in SERAM read latency must be accompanied by timing analysis and clock phase adjustment.

rTiming parameters

Read latency (cyclesl 22 :|

rS5RAM size

Memory size (MBytes): [1 W 18 ward aligned address hits

rGeneric memary model {simulation anly)

Include functional memory model in the simulation testbench

Figure A.3: SSRAM off-chip memory configuration

= Flash Memory Interface (CFI) - ext_flash

Flash Memory Interface (CFI)

Documentation

) Tirnirg

Presets: | intel 128p30

=)

Size

Address VWicth (hits): i23

Data Width (hits1: |1 P V|

Create an interface to any industry-standard CFl (Common Flash Interface)-compliant
flash memary device, Select from a list of tested flash memories or provide interface
and timing infarmation for 5 CFl memary device swhich does not appear on the list.

(7] Info: Flash memory capacity: 160 MBytes (16777216 bytes).

Figure A.4: FLASH off-chip memory configuration

121

@ Assignment Editor

A # Category: JAII j [ﬁ al é Timing ‘ # Logic Options
mr) !
¥ ﬁ = | | The Assignment Editor is the interface For creating, editing, and viewing individual assignments, including pin assignments, in the Quartus IT software. T create
&
project-wide assignments, use the Settings dialog box (Assignments menu), Select the category in which you wank to create, edit, of view assignments in the Category
o Bar, The default category, All, displays all assignments created For the target device Family; the individual assignment categories display only the assignments that are
lenal For the target device, Lise the Mode Fiker Bar to display and edit assignments for specific nodes and entities, Refer to the Quartus IT online Help for more detailed
] information on assignments and the Assignment Editar,
= | !
R ¥V |
LY {From fssigrmnent Name | Value Enabled Al
12 .
£ ||{205 @ merm_dm[1] Output Enable Group |1244174944 Yes
:E.,—" 206 0 mem_dm{a] Iji standard 55TL-2 Class I Yes
] — ||| 207 € mem_dm[1] Ijc Standard GSTL-2 Class I Yes
| E;’ 208 & PWMA_from_the_soft_core_controller_Interface 0 |Location PIN_M3 Yes
% 209 TP PWM_from_the_soft_core_controller_Interface 0 |Location FIN_TZ Yes
- ([1218 &P PWMS_from_the_soft_core_controller_Tnterface 0 |Location PIN_H1S es
L& - -
[| =361 4P PWME_from_the_soft_core_controller_Interface 0 |Location FIN_H1& Yes
| o 212 &P PWMT_from_the_soft_core_controller_Interface 0 |Location FIN_M1G Yes
o 213 £ PWMS_from_the_soft_core_controller_Interface 0 |Location FIM_M15 Yes
214 L PWIMG_From_the soft_core_controller_Interface 0 |Location FIN_R16 Yes
215 £ PWMI0_from_the_soft_core_controller_Interface 0 |Location FIN_T16 Yes
216 & PWMZ_from_the_soft_core_controller_Interface 0 |Location FIN_L& Yes
217 G PWMI from_the_soft_core_controller_Interface 0 |Location FIN_D3 Yes il

Figure A.5: Output pins assignments on Quartus® |1 Assignment Editor

Flow Summary

Flow Status Successful - Mon Jul 16 16:54:44 2012
Guartuz || Version 9.1 Build 222 10/21 /2003 5J Full Version
Revizion Mame cyclonelll_embedded evaluation_kit_standard
Top-lewel Entity Mame cyclonelll_embedded evaluation_kit_standard
Farmily Cyclone (1l
Device EP3C25F324C8
Tirnirig M odelz Final
ket timing requirements M A
Total logic elements 139486/ 24 B24 [V3 %]
T atal combinational funchions 17.034 /24 B24 (B3 &]
Dedicated logic reqisters 16457 /24 B24 [B7 &]
Total registers 16587
Total ping 83/ 21641 &)
Total wirtual ping 1
Total memory bits 332E1E /BOB. 256 [B5 %)
Embedded Multiplier 3-bit elements B /132 [5 %)
Total PLL= 1/4[25%)

Figure A.6: Hardware resource usage displayed by the Quartus® |1 Compilation Report

122

