

APPENDICES FOR DEGRADATION OF TEXTILE WASTEWATER USING ULTRA-SMALL β-FeOOH/TiO₂ HETEROJUNCTION STRUCTURE AS A VISIBLE LIGHT PHOTOCATALYST

Ву

MARY SOLANGE NTIRIBINYANGE

Thesis submitted in fulfilment of the requirements for the degree

Master of Engineering: Chemical Engineering

In the Faculty of Engineering at the CAPE PENINSULA UNIVERSITY OF TECHNOLOGY

> Supervisors: Dr Mahabubur Chowdhury & Prof Veruscha Fester

> > Cape Town Campus June 2016

CPUT Copyright information

The thesis may not be published either in part (in scholarly, scientific or technical journals), or as a whole (as a monograph), unless permission has been obtained from the University

APPENDICES

Appendix A.

 Table A.1: The measured absorbances for different MO concentrations correlated to make a calibration curve

Concentration (mg/L)	Absorption (Abs)
0	0
1	0.042
2.5	0.072
5	0.28
10	0.744
20	1.267
30	2.083
40	2.823

Table A.2: Experimental conditions for photocatalytic performance of 5% β -FeOOH/TiO2 compared to
TiO2 (Anatase), P25, Peroxide and β -FeOOH photocatalysts

Photocatalyst	MO (mg)	Catalyst (g)	Peroxide(mL)	Light(W)	рН
Blank	80	0	0	300	4.5
Simulated solar light	80	0	3	300	4.5
β-FeOOH	80	0,01	3	300	4.5
TiO ₂ (Anatase)	80	0,01	3	300	4.5
Peroxide	80	0	3	300	4.5
Degusa P25	80	0,01	3	300	4.5
10% β-FeOOH/TiO ₂	80	0,01	3	300	4.5
2% β-FeOOH/TiO ₂	80	0,01	3	300	4.5
5% β-FeOOH/TiO ₂	80	0,01	3	300	4.5

Method	Time(min)	Conc (mg/L)	C _t /C ₀	In C _t /C _o	μ
1. Blank	0	80	1	0	0
	30	80	1	0	0
	60	80	1	0	0
2. Simulated solar light	0	73,87245	1	0	0
_	30	72,88028	0,986569	0,013522	1,343089
	60	72,21862	0,977612	0,022642	2,238776
3. TiO ₂ (Anatase)	0	86,6923	1	0	0
	30	67,4242	0,777742	0,251361	22,22585
	60	48,8671	0,563684	0,573261	43,63156
4. 10% β-FeOOH/TiO ₂	0	74,631	1	0	0
	30	41,95	0,562099	0,576078	43,79011
	60	17,0143	0,227979	1,478502	77,2021
5. 5% β-FeOOH/TiO₂	0	63,5137	1	0	0
5. 5% β-FeOOH/TiO ₂	30	22,7023	0,357439	1,028789	64,25606
	60	1,9411	0,030562	3,488001	96,94381
6. 2% β-FeOOH/TiO₂	0	72,4012	1	0	0
	30	32,8696	0,453992	0,789675	54,60075
	60	10,7575	0,148582	1,90662	85,14182
7. Peroxide	0	75,5296	1	0	0
	30	60,883	0,806081	0,215571	19,39187
	60	52,2799	0,692178	0,367913	30,78224
8. β-FeOOH	0	75,1741	1	0	0
	30	73,04821	0,97172	0,028687	0,02828
	60	69,68518	0,926984	0,075819	0,073016
9. TiO₂ P25	0	94.0987	1	0	0
	15	82.3454	0,87234	0,136576	12,76596
	30	75.3546	0,797872	0,225807	20,21277
	45	62.7642	0,659574	0,41616	34,04255
	60	58.1462	0,617021	0,482852	38,29787

 $\begin{array}{l} \textbf{Table A.3:} \ \text{Raw data and real concentration calculation for photocatalytic performance of 5\%\beta-} \\ \text{FeOOH/TiO}_2 \ \text{compared to TiO}_2 \ \text{(Anatase), P25, Peroxide and } \beta\text{-FeOOH photocatalysts} \end{array}$

	5mL (of 30% H ₂ O ₂)/L		
Time (min)	Concentration (mg/L)	C _t /C _o	In (Ct/Co)	μ
0	79.8667	1	0	0
15	68	0.851419	0.160851	14.85813
30	59.8165	0.748954	0.289077	25.10458
45	53	0.663606	0.410067	33.63943
60	47.3029	0.592273	0.523787	40.77269
90	39.7	0.497078	0.699008	50.29217
	0 mL	(of 30% H ₂ O ₂)/L		
Time	Concentration (mg/L)	Ct/Co	In (Ct/Co)	μ
0	80	1	0	0
15	79	0.9875	0.012579	1.25
30	80	1	0	0
45	79	0.9875	0.012579	1.25
60	79	0.9875	0.012579	1.25
90	80	1	0	0
	3 mL	(of 30% H ₂ O ₂)/L		
Time	Concentration (mg/L)	Ct/Co	In (Ct/Co)	μ
0	80	1	0	0
15	70	0.875	0.133531	12.5
30	61	0.7625	0.271153	23.75
45	55	0.6875	0.374693	31.25
60	52	0.65	0.430783	35
90	43	0.5375	0.620827	46.25
	1 mL (o	f 30% H ₂ O ₂)/L MO		
Time	Concentration (mg/L)	C _t /C _o	In (Ct/Co)	μ
0	80	1	0	0
15	78	0.975	0.025318	2.5
30	75.103	0.938788	0.063166	6.12125
45	73	0.9125	0.091567	8.75
60	70	0.875	0.133531	12.5
90	66.64	0.833	0.182722	16.7
	0.5 mL (c	of 30% H ₂ O ₂)/L MO		
Time	Concentration (mg/L)	Ct/Co	In (Ct/Co)	μ
0	80	1	0	0
15	78	0.975	0.025318	2.5
30	78	0.975	0.025318	2.5
45	77	0.9625	0.038221	3.75
60	77	0.9625	0.038221	3.75
90	76	0.95	0.051293	5

 $\begin{array}{l} \textbf{Table A.4:} \ \text{Raw data and real concentration calculation for the effect of the hydrogen peroxide load on the degradation of MO without photocatalyst performance of 5\%\beta-FeOOH/TiO_2 \end{array}$

	0 mL Peroxid	le + 5% beta-FeO	OH + Light	
Time	Concentration (mg /L)	C _t /C _o	In(Ct/Co)	μ
0	80	1	0	0
15	78	0.975	0.025318	2.5
30	75	0.9375	0.064539	6.25
45	72	0.9	0.105361	10
60	70	0.875	0.133531	12.5
90	65	0.8125	0.207639	18.75
	0.5 mL Peroxi	de + 5% beta-FeC	DOH + Light	
Time	Concentration (mg/L)	C _t /C _o	In(C _t /C _o)	μ
0	80	1	0	0
15	70	0.875	0.133531	12.5
30	59	0.7375	0.304489	26.25
45	45	0.5625	0.575364	43.75
60	35	0.4375	0.826679	56.25
90	10	0.125	2.079442	87.5
	1 mL Peroxid	le + 5% beta-FeO	OH + Light	
Time	Concentration (mg/L)	Ct/Co	In(Ct/Co)	μ
0	74.26402	1	0	0
15	61.45	0.827453	0.189403	17.25468
30	51	0.686739	0.375801	31.3261
45	40	0.538619	0.618747	46.13812
60	30	0.403964	0.906429	59.60359
90	8	0.107724	2.228185	89.22762
	3 mL Peroxid	le + 5% beta-FeO	OH + Light	
Time	Concentration	C _t /C _o	μ	In C _t /C _o
0	68	1	0	0
15	50	0.735294	26.47059	0.307485
30	36	0.529412	47.05882	0.635989
45	20	0.294118	70.58824	1.223775
60	1	0.014706	98.52941	4.219508
	5 mL Peroxid	le + 5% beta-FeO	OH + Light	
Time	(mg/L)	C _t /C _o	In (Ct/Co)	μ
0	75	1	0	0
15	47	0.626667	0.467341	37.33333
30	32	0.426667	0.851752	57.33333
45	14.35	0.191333	1.653738	80.86667
60	0.7	0.009333	4.674163	99.06667

Table A.5: Raw data and real concentration calculation for the effect of the hydrogen peroxide load on
the degradation of MO with 5% β -FeOOH/TiO2 photocatalyst

Peroxide + Catalyst				Per	oxide + L	ight	
Volume peroxide (mL)	к	Intercept	R ²	peroxide (mL)	к	intercept	R ²
5	0.039	-0.1955	0.96	5	0.0068	0.094	0.99
3	0.03	-0.3022	0.95	3	0.0058	0.091	0.99
1	0.016	-0.0347	0.99	1	0.002	0.0069	0.98
0.5	0.014	-0.104	0.98	0.5	0.0004	0.0123	0.99

Table A.6: Contribution of H₂O₂ on the degradation of MO

Table A.7: Raw data and real concentration calculation for the effect of the initial dye concentration on
the photocatalytic performance of 5% β -FeOOH/TiO2

	200 mg/L						
Time	Concentration	C _t /C ₀	In(C _t /C ₀)	μ			
0	190	1	0	0			
15	145	0.763158	0.27029	23.68421			
30	117	0.615789	0.48485	38.42105			
45	97	0.510526	0.672313	48.94737			
60	70	0.368421	0.998529	63.15789			
75	47	0.247368	1.396876	75.26316			
90	23	0.121053	2.11153	87.89474			
105	1.78	0.009368	4.670411	99.06316			
	1	50 mg/L					
Time	Concentration	C _t /C ₀	In(Ct/Co)	μ			
0	141.802	1	0	0			
15	103	0.726365	0.319703	27.3635			
30	62	0.437229	0.827297	56.27706			
45	48.42	0.341462	1.074519	65.85379			
60	23	0.162198	1.818937	83.7802			
75	8	0.056417	2.87499	94.35833			
90	1	0.007052	4.954432	99.29479			
	:	80 mg/L					
Time	Concentration	C _t /C ₀	In(C₁/C₀)	μ			
0	65	1	0	0			
15	12.79	0.196769	1.625724	80.32308			
30	1.71924	0.02645	3.632505	97.35502			

45	0.6	0.009231	4.685213	99.07692		
50 mg/L						
Time	Concentration	C _t /C ₀	In(C _t /C ₀)	μ		
0	34	1	0	0		
5	18	0.529412	0.635989	47.05882		
10	10.40911	0.30615	1.183679	69.38497		
15	4.53	0.133235	2.015639	86.67647		
20	1.773	0.052147	2.953687	94.78529		
30	1	0.029412	3.526361	97.05882		
45	1	0.029412	3.526361	97.05882		
	:	25 mg/L				
Time	Concentration	C _t /C ₀	In(C _t /C ₀)	μ		
0	25	1	0	0		
5	18	0.72	0.328504	28		
10	10.40911	0.416364	0.876194	58.36356		
15	6.7	0.268	1.316768	73.2		
20	3	0.12	2.120264	88		

Table A.8: The raw data and real concentration calculation on the effect of light intensity

		150 W			
Time	concentration	C _t /C ₀	In C _t /C ₀	μ	
0	76	1	0	0	
15	60	0.789474	0.236389	21.05263	
30	43	0.565789	0.569533	43.42105	
45	20	0.263158	1.335001	73.68421	
		250 W			
Time	concentration	Ct/Co	In C _t /C ₀	μ	
0	73.81	1	0	0	
15	40	0.541932	0.612615	45.8068	
30	25	0.338707	1.082618	66.12925	
45	5.37	0.072754	2.620666	92.72456	
	250 W (p25)				
time	Concentration	Ct/C0	In C _t /C ₀	μ	

0	94	1	0	0
15	82	0.87234	0.136576	12.76596
30	75	0.797872	0.225807	20.21277
45	62	0.659574	0.41616	34.04255
60	58	0.617021	0.482852	38.29787
90	37	0.393617	0.932377	60.6383
		300 W		
Time	Concentration	300 W Ct/Co	In Ct/C₀	μ
Time 0	Concentration 65	300 W Ct/C₀ 1	In C₁/C₀ 0	μ 0
Time 0 15	Concentration 65 12.79	300 ₩ Ct/C₀ 1 0.196769	In C₁/C₀ 0 1.625724	μ 0 80.32308
Time 0 15 30	Concentration 65 12.79 1.71924	300 ₩ C _t /C₀ 1 0.196769 0.02645	In C₁/C₀ 0 1.625724 3.632505	μ 0 80.32308 97.35502

Table A.9: The raw data and real concentration calculation on the effect of the pH of the solution

		рН 3		
Time	Concentration	C _t /C ₀	In(Ct/C0)	μ
0	27	1	0	0
10	5.75	0.212963	1.546637	78.7037
15	4	0.148148	1.909543	85.18519
25	0.38	0.014074	4.263421	98.59259
30	0.38	0.014074	4.263421	98.59259
		pH 4.5		
Time	Concentration	C _t /C ₀	In(Ct/C0)	μ
0	65	1	0	0
10	30	0.461538	0.77319	53.84615
15	12.79	0.196769	1.625724	80.32308
30	1.71924	0.02645	3.632505	97.35502
		pH = 7.52		

Time	Concentration	C _t /C ₀	In (C _t /C ₀)	μ
0	56.73076	1	0	0
10	40	0.705085	0.349437	29.49151
15	36.93652	0.651085	0.429116	34.89155
30	25	0.440678	0.819441	55.9322
45	12.44257	0.219327	1.517193	78.06733
60	1.609718	0.028375	3.562258	97.16253

Table A.10: The raw data and real concentration calculation on the effect of the pH of catalyst load

	0.0	005 g/ 100 mL		
Time	Concentration	C _t /C ₀	In(C _t /C ₀)	μ
0	74	1	0	0
15	50	0.675676	0.392042	32.43243
30	35	0.472973	0.748717	52.7027
45	15	0.202703	1.596015	79.72973
60	1.22	0.016486	4.105214	
	0.	01 g/ 100 mL		
Time	Concentration	Ct/Co	In(C _t /C ₀)	μ
0	74	1	0	0
15	45	0.608108	0.497403	39.18919
30	30	0.405405	0.902868	59.45946
45	14.35	0.193919	1.640315	80.60811
60	0.7	0.009459	4.66074	99.05405
	0.	02 g/ 100 mL		
Time	Concentration	Ct/Co	In(C _t /C ₀)	μ
0	65	1	0	0
15	12.79	0.196769	1.625724	80.32308
30	1.71924	0.02645	3.632505	97.35502
45	0.6	0.009231	4.685213	99.07692

		Yellow		
Time[min]	Conc	C _t /C ₀	In(Ct/Co)	μ
0	28.5	1	0	0
5	13	0.45614	0.784955	54.38596
10	8	0.280702	1.270463	71.92982
15	5	0.175439	1.740466	82.45614
20	1	0.035088	3.349904	96.49123
		Red		
Time[min]	Conc	C _t /C ₀	In (Ct/Co)	μ
0	80	1	0	0
5	44.5	0.55625	0.586537	44.375
10	23.5	0.29375	1.225026	70.625
15	13.5	0.16875	1.779337	83.125
20	3.4	0.0425	3.158251	95.75
	Grey			
Time	Concentration	C _t /C ₀	In(C₁/C₀)	μ
0	47	1	0	0
5	34	0.723404	0.323787	27.65957
10	28	0.595745	0.517943	40.42553
15	19	0.404255	0.905709	59.57447
20	8	0.170213	1.770706	82.97872
25	2	0.042553	3.157	95.74468

Table	e A.11:	The raw	data a	and real	concentration	calculation	for the	degradation	of commerce	ial r	netal-
						complex d	yes				

 Table A.12: The raw data and real concentration calculation for the degradation of real wastewater effluent

	Yellow						
Time[min]	C1	v1	c2	Ct/Co	In Ct/C₀	μ	
0	5.5	5	27.5	1	0	0	
30	1.3	5	6.5	0.236364	1.442384	76.36364	
60	1.5	5	7.5	0.272727	1.299283	72.72727	
90	5.6	1	5.6	0.203636	1.591419	79.63636	
120	2.6	1	2.6	0.094545	2.358675	90.54545	
				Red			

Time[min]	c1	v2	C2	Ct/Co	In Ct/Co	μ
0	2.8	5	14	1	0	0
30	0.7	5	3.5	0.25	1.386294	75
60	0.6	5	3	0.214286	1.540445	78.57143
90	2.9	1	2.9	0.207143	1.574347	79.28571
120	1.2	1	1.2	0.085714	2.456736	91.42857
				Grey		
Time[min]	C1	v1	c2	Ct/Co	In Ct/Co	μ
0	3.1	5	15.5	1	0	0
30	0.9	5	4.5	0.290323	1.236763	70.96774
60	0.9	5	4.5	0.290323	1.236763	70.96774
90	2.7	1	2.7	0.174194	1.747588	82.58065
120	1.7	1	1.7	0.109677	2.210212	89.03226

Table A.13: The raw data and real concentration calculation on the effect of recycling 5% $$\beta$-FeOOH/TiO_2$ on the degradation of MO$

		Fist recycle		
Time	Concentration	Ct/Co	In(Ct/C₀)	μ
0	65.41207	1	0	0
15	12.79096	0.195544	1.631968	80.44557
30	1.71924	0.026283	3.638824	97.37168
45	0.60863	0.009305	4.677252	99.06954
	S	Second recycle		
Time	Concentration	C _t /C ₀	In(Ct/C₀)	μ
0	71.94616	1	0	0
15	42.26902	0.587509	0.531864	41.2491
30	12.64165	0.17571	1.738921	82.42901
45	1.09922	0.015278	4.181317	98.47216
		Third recycle		
Time	Concentration	C _t /C ₀	In(Ct/C₀)	μ
0	76.83073	1	0	0
15	37.96036	0.494078	0.705062	50.59222
30	9.68389	0.126042	2.071141	87.39581
45	1.565636	0.020378	3.893313	97.96223

		Fourth recycle		
Time	Concentration	C _t /C ₀	In(Ct/C0)	μ
0	78.658	1	0	0
15	65.33386	0.830607	0.185599	16.93933
30	43.71235	0.555727	0.587479	44.42733
45	24.15274	0.30706	1.180712	69.29398

Appendix B:

Table B.1: The raw data and standard deviation calculation on the validation of $5\%\beta$ -FeOOH/TiO₂ on the degradation of MO

			Ν	l =4				
		Concentra	tion (mg/L))		C _t /	Co	
Time	Run 1	Run 2	Run 3	Run 4	RUN 1	RUN 2	RUN 3	RUN 4
0	65.0918	50.9652	50.8106	70.9767	1	1	1	1
15	37.5655	32.7076	32.6856	46.2353	0.6417	0.577116	0.64328	0.65141
30	21.4143	14.4730	18.7709	26.8317	0.2839	0.328986	0.36942	0.37803
45	8.48201	6.38875	6.62311	12.6348	0.1253	0.130308	0.13034	0.17801
60	1.57959	1.25818	2.11903	2.39736	0.0246	0.024267	0.04170	0.03377
μ		xi	-h		Stan	dard deviat	ion calcula	tion
Average	RUN 1	RUN 2	RUN 3	RUN 4	Σ(xi-μ)^2	(1/N)Σ(xi- μ)^2	sqrt((1/N)	Σ(xi-µ)^2)
1	0	0	0	0	0	0	0	0
0.62839	0.00017	0.00262	0.00022	0.00053	1.27E-05	4.22E-06	0.00205	0.20552
0.34010	0.00315	0.00012	0.00085	0.00143	3.1E-05	1.03E-05	0.00321	0.32170
0.14100	0.00024	0.00011	0.00011	0.00137	3.4E-06	1.13E-06	0.00106	0.10638
0.03110	4.12E-05	4.68E-05	0.00011	7.12E-06	4.3E-08	1.43E-08	0.00012	0.01197

RUN	Reaction rate	Average rate	% standard error
1	0.0602	0.05692	0.018901
2	0.0595	0.05692	0.011694
3	0.053	0.05692	0.026996
4	0.0538	0.05692	0.017102
INITIAL	0.0581	0.05692	0.002446

Table B.2: The % standard error calculation for the kinetics of different runs of the degradation of MO

Table B.3: Experiment details for the degradation of (80 mg/L) Acid Black using (800 mg/L) of 5% β -
FeOOH/TiO2 Catalyst load with H2O2 concentration of 50 mL/L at ph 4.5

		RUN 1			
Time (min)	Absorbance (abs)	Concentration (mg/L)	Ct/Co	ln(Ct/Co)	μ
0	1.01	57.19698	1	0	0
15	0.4	22.6173	0.39542822	0.927786	60.4572
30	0.21	11.84658	0.207118977	1.57446188	79.2881
45	0.125	7.0281	0.122875369	2.0965847	87.7125
60	0.087	4.873956	0.08521352	2.46259517	91.4786
		RUN 2	2		
Time (min)	Absorbance (abs)	Concentration (mg/L)	Ct/Co	ln(Ct/Co)	μ
0	1.08	61.16514	1	0	0
15	0.185	10.42938	0.170511831	1.7689506	82.9488
30	0.1	5.6109	0.091733625	2.38886628	90.8266
45	0.08	4.47714	0.073197576	2.61459297	92.6802
60	0.052	2.889876	0.047247108	3.05236382	95.2753
		RUN 3	3		
Time (min)	Absorbance (abs)	Concentration (mg/L)	Ct/Co	In(Ct/Co)	μ
0	0.655	37.07274	1	0	0
15	0.23	12.98034	0.35013166	1.04944602	64.9868
30	0.115	6.46122	0.174284933	1.74706377	82.5715
45	0.065	3.62682	0.097829834	2.3245257	90.217
60	0.037	2.039556	0.055014979	2.90014979	94.4985

Table B.4: The kinetics of different runs for the degradation of Acid black wastewater

		Kinetics		
Time	Run 1	Run 2	Run 3	AVERAGE

0	0.5749	0.1892	0.1935	0.3192
15	1.2694	0.8972	0.8025	0.9897
30	1.9639	1.6052	1.4115	1.6602
45	2.6584	2.3132	2.0205	2.3307
60	3.3529	3.0212	2.6295	3.0012

Table B.5: The % standard error calculation for the kinetics of different runs of the degradation of Acid black wastewater

(X1 - μ)^2	(X2 - μ)^2	(X3 - μ)^2	Σ(xi-μ)^2	(1/N)Σ(xi-μ)^2	sqrt((1/N)Σ(xi-μ)^2)
0	0	0	0	0	0
0.103003472	0.270632	0.039713	0.413349	0.137783	0.371191
0.108242381	0.235615	0.024461	0.368319	0.122773	0.35039
0.061826701	0.072554	0.000429	0.13481	0.044937	0.211982
0.117265901	0.061171	0.009047	0.187483	0.062494	0.249989

Figure C.1: (a) The % error bars calculated for the kinetics of the repeatability of MO and (b) for the repeatability of Acid black. (c) First order reaction rate for MO and (d) First order reaction rate for Acid black