

A FRAMEWORK FOR SOFTWARE PATCH MANAGEMENT IN A MULTI-VENDOR

ENVIRONMENT

by

GRANT DOUGLAS HUGHES

Thesis submitted in fulfilment of the requirements for the degree

Master of Technology: Information Technology

in the Faculty of Informatics and Design

at the Cape Peninsula University of Technology

Supervisor: Mr Jay Barnes

Co-supervisor: Dr Andre de la Harpe

Cape Town

November 2016

CPUT copyright information

The thesis may not be published either in part (in scholarly, scientific or technical journals), or

as a whole (as a monograph), unless permission has been obtained from the University

ii

DECLARATION

I, Grant Douglas Hughes, declare that the contents of this thesis represent my own unaided
work, and that the thesis has not previously been submitted for academic examination
towards any qualification. Furthermore, it represents my own opinions and not necessarily
those of the Cape Peninsula University of Technology.

 November 2016

Signed Date

iii

ABSTRACT

Software often requires patches to be installed post-implementation for a variety of reasons.

Organisations and individuals, however, do not always promptly install these patches as and

when they are released. This study investigated the reasons for the delay or hesitation,

identified the challenges, and proposed a model that could assist organisations in

overcoming the identified challenges. The research investigated the extent to which the

integration of software patch management and enterprise data security is an important

management responsibility, by reviewing relevant documents and interviewing key role

players currently involved in the patch management process. The current challenges and

complexities involved in patch management at an enterprise level could place organisations

at risk by compromising their enterprise-data security.

This research primarily sought to identify the challenges causing the management of

software patches to be complex, and further attempted to establish how organisations

currently implement patch management. The aim of the study was to explore the

complexities of software patch management in order to enhance enterprise data security

within organisations.

A single case study was used, and data were obtained from primary sources and literature.

The study considered both technological and human factors, and found that both factors play

an equally important role with regard to the successful implementation of a patch

management program within an organisation.

Key words: Hot fix, software patch, Information security, patch management, Information

security policy, patch management policy, software vulnerability, zero day vulnerability, data

security, information security risk.

iv

ACKNOWLEDGEMENTS

I wish to thank:

 Mr Jay Barnes, academic supervisor

 Dr Andre de la Harpe, academic co-supervisor

 Cape Peninsula University of Technology

v

TABLE OF CONTENTS

DECLARATION ... ii

ABSTRACT .. iii

ACKNOWLEDGEMENTS... iv

LIST OF FIGURES .. x

LIST OF TABLES ... xi

ABBREVIATIONS ... xii

GLOSSARY ... xiv

CHAPTER ONE: BACKGROUND AND INTRODUCTION .. 1

1.1 Introduction .. 1

1.2 Background .. 1

1.3 Research problem statement ... 3

1.4 Research questions, methodology, aims and objectives .. 4

1.4.1 Research aims ... 5

1.4.2 Research objectives ... 5

1.5 Research methodology .. 5

1.5.1 Research philosophy .. 5

1.5.1.1 Ontology .. 5

1.5.1.2 Epistemology ... 6

1.5.1.3 Research approach .. 6

1.5.2 Research strategy .. 6

1.5.2.1 Case study ... 6

1.5.2.2 Unit of analysis ... 7

1.5.2.3 Unit of observation ... 7

1.5.3 Data collection ... 7

1.5.3.1 Sampling .. 7

1.5.4 Data analysis ... 8

1.5.4.1 Transcribing ... 8

1.5.4.2 Coding ... 8

1.5.4.3 Themes .. 8

1.5.4.4 Categories .. 9

1.6 Delineation ... 9

1.7 Ethical considerations .. 9

1.8 Chapter summary ... 10

vi

CHAPTER TWO: LITERATURE REVIEW ... 12

2.1 Introduction .. 12

2.2 Context of the literature review ... 12

2.3 Confidentiality, integrity and availability of data .. 13

2.4 Threats, risk and vulnerability (TRV) .. 14

2.4.1 Threats ... 14

2.4.1.1 Virus ... 14

2.4.1.2 Eavesdropping ... 14

2.4.1.3 Worm ... 15

2.4.1.4 Backdoor .. 15

2.4.1.5 Direct attack ... 15

2.4.1.6 Denial of Service (DOS) attack ... 15

2.4.2 Risks .. 16

2.4.3 Vulnerabilities ... 16

2.5 Zero-day vulnerabilities .. 17

2.6 The complexities of software .. 19

2.6.1 Software evolution .. 20

2.6.2 Legacy systems ... 20

2.7 Software management methods ... 21

2.7.1 Configuration management methods .. 21

2.7.2 Deployment methods ... 21

2.8 Software patches ... 22

2.9 Patch management .. 22

2.10 Software patch management and related risks ... 23

2.10.1 The importance of patch management ... 24

2.10.2 Patch automation ... 24

2.10.3 Hot patching ... 26

2.10.4 Horisontal patching .. 26

2.10.5 Patch management configuration ... 27

2.10.6 Software patch management challenges .. 27

2.10.7 Release management and patch management .. 29

2.11 The role of software vendors in the patch management process 29

2.11.1 Vendors’ behaviour .. 30

2.11.2 Disclosure .. 31

2.11.3 Initiatives and incentives .. 32

2.12 Considerations for developing a patch management strategy 33

2.12.1 Sources of patch information .. 33

2.12.2 Roles and responsibilities ... 34

vii

2.12.3 Vulnerability management .. 34

2.12.3.1 Patch classification systems ... 34

2.12.4 Testing ... 36

2.13 Chapter summary ... 37

CHAPTER THREE: RESEARCH DESIGN AND METHODOLOGY 39

3.1 Introduction .. 39

3.2 Research philosophy .. 40

3.2.1 Ontology .. 40

3.2.2 Epistemology ... 41

3.2.2.1 Interpretivist ... 41

3.2.2.2 Positivist ... 41

3.3 Research approach .. 41

3.3.1 Inductive .. 44

3.3.2 Deductive ... 45

3.4 Research strategy .. 45

3.4.1 Case study ... 45

3.5 Data collection ... 48

3.5.1 Sampling .. 49

3.5.2 Unit of analysis ... 50

3.5.3 Unit of observation ... 50

3.5.4 Interviews ... 50

3.5.4.1 Semi-structured interviews ... 51

3.5.4.2 Interview guide ... 52

3.5.5 Summary of data collection .. 52

3.6 Data analysis ... 52

3.6.1 Transcribing ... 54

3.6.2 Coding ... 55

3.6.3 Thematic analysis .. 55

3.6.4 Categories .. 55

3.7 Ethics ... 56

3.8 Chapter summary ... 57

CHAPTER FOUR: DATA COLLECTION AND PRELIMINARY DATA ANALYSIS 59

4.1 Introduction .. 59

4.2 Data collection ... 60

4.3 Document review ... 60

4.4 Description of case ... 61

viii

4.5 Research sample ... 63

4.6 Sampling .. 64

4.7 Interview process ... 64

4.8 Transcribing ... 64

4.9 Coding ... 64

4.10 Themes .. 65

4.11 Categories .. 65

4.12 Themes emerging from the literature .. 66

4.13 Key findings from interview data ... 67

4.14 Final data analysis ... 68

4.15 Mapping the findings to themes .. 70

4.16 Chapter summary ... 72

CHAPTER FIVE: DISCUSSION .. 73

5.1 Introduction .. 73

5.2 Themes developed ... 74

5.2.1 Sources of software patches and related information ... 74

5.2.2 Patch management policy development stakeholders .. 74

5.2.3 Roles and responsibilities ... 76

5.2.4 The importance and challenges of testing .. 77

5.2.5 Patch deployment prioritising mechanism .. 79

5.2.6 Interviewee familiarity: patch management issues .. 80

5.2.7 Software vendor behaviour and their effect on patch management 80

5.2.8 Patch management challenges .. 81

5.2.8.1 Resources, infrastructure and tools .. 82

5.2.8.2 No all-inclusive off-the-shelf solution .. 83

5.2.8.3 Communication .. 83

5.2.8.4 Maintenance timeslots.. 84

5.2.8.5 Legacy systems ... 85

5.2.8.6 The people aspect .. 85

5.2.9 Risks related to patch management ... 86

5.2.10 Consistency of patch management activities .. 87

5.2.11 The importance of patch management ... 88

5.3 Chapter summary ... 89

CHAPTER SIX: RESEARCH QUESTIONS, RECOMMENDATIONS AND CONCLUSION . 90

6.1 Introduction .. 90

6.2 Patch management challenges .. 91

ix

6.2.1 Resources, infrastructure and tools .. 91

6.2.2 No all-inclusive off-the-shelf solution .. 91

6.2.3 Communication and documentation ... 91

6.2.4 Maintenance timeslots.. 92

6.2.5 Testing ... 92

6.2.6 Legacy systems ... 92

6.2.7 The people aspect .. 93

6.3 Answering the research questions and research sub-questions 93

6.3.1 Research sub-questions ... 93

6.3.1.1 Patch management challenges (RSQ 1.1) ... 93

6.3.1.2 Patch management challenges created in a multi-vendor software environment

(RSQ 1.2) ... 94

6.3.1.3 Controls to assist with patch management (RSQ 1.3) .. 94

6.3.1.4 Patch management and prioritising (RSQ 2.1) ... 95

6.3.1.5 Identifying relevant software patches (RSQ 2.2)... 96

6.3.1.6 The role players in the patch management process (RSQ 2.3) 96

6.3.2 Research questions ... 97

6.3.2.1 The complexity with patch management (RQ1) .. 97

6.3.2.2 Current patch management implementation within the company (RQ2) 99

6.4 Proposed solution/model to the research problem .. 102

6.5 Recommendations ... 104

6.6 Conclusion ... 105

6.7 Future research .. 107

REFERENCES .. 109

APPENDIX A: THREE INTERVIEW TRANSCRIPTS .. 120

APPENDIX B: EXAMPLE OF CODING TECHNIQUE APPLIED (LATENT CODING) 153

APPENDIX C: UNSTRUCTURED IDENTIFIED THEMES ... 154

APPENDIX D: STRUCTURED IDENTIFIED THEMES .. 159

APPENDIX E: REPRESENTATION OF RESEARCH SAMPLE .. 164

APPENDIX F: RESEARCH INSTRUMENT: INTERVIEW QUESTIONS 165

APPENDIX G: CONSENT FORM: PARTICIPATION IN CASE STUDY RESEARCH 167

APPENDIX H: NON-DISCLOSURE AGREEMENT: TRANSCRIPTION ANALYST 168

APPENDIX I: INTERVIEWEE QUOTES TO INTERVIEWEE AND TRANSCRIPT

MAPPING .. 169

x

LIST OF FIGURES

Figure 3.1: Four paradigms for the analysis of social theory .. 43

Figure 4.1: Table of contents: the company’s patch management framework 61

Figure 4.2: Table of contents: the company’s patch management Policy 61

Figure 4.3: High-level layout of the case organisation .. 62

Figure 4.4: Example of the coding process used .. 65

Figure 4.5: Summary of data analysis process... 67

Figure 6.1: The current patch management model in the company 101

Figure 6.2: The proposed model (The Single Decision Making Model) 103

xi

LIST OF TABLES

Table 1.1: Research problem and research question summary ... 4

Table 4.1: Research sub-questions and interview guide mapping .. 59

Table 4.2: Summary of current and previous job roles of participants 63

Table 4.3: Emerging themes from the literature with supporting authors 66

Table 4.4: Explicit findings (summarised) ... 68

Table 4.5: Implied findings (summarised) ... 69

Table 4.6: Exceptions to the implicit and implied findings (summarised) 70

Table 4.7: Mapping findings to corresponding themes ... 70

Table 6.1: Research question and sub-questions summary ... 90

xii

ABBREVIATIONS

Abbreviation Definition

CIA Confidentiality Integrity Availability

CIO Chief Information Officer

COSO-ERM Committee Of Sponsoring Organisations - Enterprise Risk Management

CPUT Cape Peninsula University of Technology

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWSS Common Weakness Scoring System

DOS Denial of Service

ERM Enterprise Risk Management

FRC Further Research Community

HP Hewlett Packard’s

HTTP Hypertext Transfer Protocol

IDS Intrusion Detection System

IE Internet Explorer

IEEE Institute of Electrical and Electronics Engineers

IT Information Technology

ITIL Information Technology Infrastructure Library

MDM Mobile Device Management

NIST National Institute of Standards and Technology

RACI Responsible Accountable Consulted Informed

RDF Resource Description Framework

RSQ Research Sub-Question

RQ Research Question

SANS SysAdmin, Audit, Network and Security

xiii

Abbreviation Definition

SCCM System Centre Configuration Manager

SQL Structure Query Language

STRIDE
Spoofing, Tampering, Repudiation, Information Disclosure, Denial of

Service, Elevation of Privilege

TNIPP The National Infrastructure Protection Plan

TRV Threats, Risks and Vulnerabilities

URI Uniform Resource Identifier

xiv

GLOSSARY

Term Description

Information security policy Höne and Eloff (2002:2) define an information security policy

as “a direction-giving document for information security within

an organisation”.

Patch management Patch management is defined as the process of “identifying,

acquiring, installing, and verifying patches for products and

systems” (Souppaya & Scarfone, 2013:2).

Software patch A patch is defined as a piece of software that “corrects

security and functionality problems in software and firmware”

(Souppaya & Scarfone, 2013:2).

Software vulnerability A vulnerability is defined as “a fault on system requirements

or programs which allows an attacker to violate the system

integrity” (Okamura, Tokuzane & Dohi, 2009:120).

Zero-day vulnerability McQueen, Boyer, McQueen and McBride (2009:1) define

zero-day vulnerability as “any vulnerability, in deployed

software, which has been discovered by at least one person

but has not yet been publicly announced or patched”.

1

1 CHAPTER ONE: BACKGROUND AND INTRODUCTION

1.1 Introduction

Often, after software has been developed, it does not do what was initially required.

New requirements emerge that were not initially planned for, or the software has a

security vulnerability that can result in a security challenge, breach and/or risk. A

patch is defined as a piece of software that “corrects security and functionality

problems in software and firmware” (Souppaya & Scarfone, 2013:2). The

implementation of an integrated software patch management system could hold

various benefits for an organisation, including but not limited to the addition of new

functionality, ensuring on-going vendor support for applications and securing

vulnerable software systems. Souppaya and Scarfone (2013:2) state that “patch

management is required by various security compliance frameworks, mandates, and

other policies”.

There are different variants of software patches, as well as methods to deploy these

patches. The basic patching principles should be maintained at all times. The

software patch process is conceptually simple, yet practically challenging for many

organisations (Lahtela & Jäntti, 2011).

Mohr and Rahman (2011) report that Sony was hacked in 2011 due to some of their

internet-facing servers running outdated software. Leavitt (2011) confirms that

DigiNotar was also hacked due to unpatched software. These examples beg the

question: If deploying patches is as easy as installing a small piece of software, why

do big corporate organisations such as Sony and DigiNotar get it wrong to the extent

where the software system security is breached? This research aims to explore the

complexities of software patch management in order to enhance enterprise data

security within organisations.

The research presents a case study on a Cape Town-based retailer that is

representative of the research problem. The case organisation is referred to as ‘the

company’ for the purpose of this discussion. A model was developed to help

organisations implement a more efficient patch management process and

simultaneously improve data security.

1.2 Background

It often seems as though organisations are either not paying much attention to patch

management, or not doing it right (Gerace & Cavusoglu, 2009). Ioannidis, Pym and

2

Williams (2012) suggest there may be a link between the level of applied patches

and the level of data security in an organisation. This statement becomes evident

when examining a few examples where unpatched software led to a security breach.

In 2001, Code Red caused havoc to many networks although a patch was released

months prior to the attack being launched. According to Moore and Shannon (2002),

the worm-spread propagated through the internet by using Hypertext Transfer

Protocol (HTTP) requests and exploited a buffer overflow vulnerability that was

known at the time. In the instance of Code Red, the amount of time an administrator

would have had to test these patches was considerably longer than usual, yet more

than 115 000 websites were attacked by Code Red (Moore & Shannon, 2002). The

time between vulnerability discovery and patching is often months, or in some

instances years (Cavusoglu, Cavusoglu & Zhang, 2008).

The Structure Query Language (SQL) Slammer worm in 2003 highlighted the

importance of patching vulnerabilities as soon as possible, because a patch was

released six months prior to the worm causing havoc on the internet (Zhou, Leckie &

Karunasekera, 2010). According to Bilge and Dumitras (2012) the amount and

frequency of released patches could be a potential challenge, as it may make it

difficult for organisations to process released patches in a timely fashion.

Consequently, critical patches could be overlooked, delayed or exploited before it

has been patched.

In 2009 the Sheffield hospital was affected by the Conficker worm. The virus seized

the hospital’s entire network, leaving it digitally crippled for several days. Although

the worm broke out in November 2008, Microsoft released a patch for this specific

worm in October 2008 (Microsoft, 2008). This scenario is consistent with the opinion

of Zhao, Furnell and Al-Ayed (2009) that not all users and administrators realise and

understand the importance of software patch management.

There appears to be a tendency for organisations to not immediately action newly-

released software patches. It is possible that organisations are facing challenges

that prevent them from maintaining efficient patch management solutions and

policies, or lack the understanding of its importance. One of the reasons for not

immediately installing a software patch, according to Souppaya and Scarfone

(2013:3), was “the significant risk of installing patches without first testing them”.

3

Assuming administrators continue to manage patches in an ad hoc manner—as is

currently the case—systems may remain vulnerable to exploitation for an extended

period. Untested patches may be deployed and cause instability in environments

(Raja & Tretter, 2011). Vulnerable systems may be exploited and data integrity and

confidentiality compromised (Ackling, Alexander & Grunert, 2011). Gerace and

Cavusoglu (2009) indicate that although patches are the solution, the patch

management process may sometimes be flawed.

This research aims to explore the complexities of software patch management in

order to enhance enterprise data security within organisations. The research further

establishes where the responsibility of patching should be placed in an organisation,

both in terms of the non-technical and technical activities. As a result, a model is

proposed to address some of the challenges with the current patch management

process faced within the company. The proposed model could assist with an

increased level of data security within the organisation.

1.3 Research problem statement

Software vendors often release patches in large numbers and at irregular intervals.

This poses a challenge for organisations to stay abreast of all patches released,

decide on which patches to test, those patches to install and those not to install.

This could lead to a scenario where critical security patches may not be deployed in

a timely manner, leaving specific systems vulnerable to attacks (Bilge & Dumitras,

2012).

Ahmad, Maynard and Park (2014:5) explain that “updating and patching application

systems has become a critical preventive technique aimed at denying attackers

pathways into the organisation”. The authors clarify that since the number of

vulnerabilities is so high and resources are often limited, only a few vulnerabilities

can be addressed at any given time. The challenge now resides with the information

security manager to decide (i) what should be addressed and according to what

priority, and (ii) the level of priority to assign to the vulnerability, keeping in mind the

available resources. There are various known patch management challenges that, if

not addressed, could lead to security compromises that can be prevented

(Souppaya & Scarfone, 2013). Zero-day attacks and limited testing time are two

known patch management challenges. Another example is the 2015 Android feat

where mobile devices were exploited when receiving a picture without consent or

intervention from the device owner. Although Google released a patch for this

vulnerability, the company admitted that millions of Android devices had not yet

4

been updated (three months after the release of the patch and at the time of this

article) (BBC News, 2015).

Organisations often find themselves running IT systems that may either be unstable

or prone to intrusion because of challenges and complexities involved in patch

management at an enterprise level.

1.4 Research questions, methodology, aims and objectives

Table 1.1: Research problem and research question summary

Research Problem

Organisations often find themselves running IT systems that

may either be unstable or prone to intrusion because of

challenges and complexities involved in patch management at

an enterprise level.

Research Question 1 (RQ1)
What causes the management of software patches to be

complex?

Research Sub-Questions (RSQs)
Research

Methods(s)
Objective

1.1 What challenges do organisations

face with regard to patch management?

Case Study To identify the challenges patch management

could present for an organisation.

1.2 What challenges are created by a

multi-vendor environment?

Case Study To identify challenges that originates within

multi-vendor environments.

1.3 What controls can organisations

implement in order to deploy the

relevant patches?

Case Study To identify the effects a lack of proper

management could have on data security

within an organisation.

Research Question 2 (RQ2)
How do organisations implement patch management in order

to enhance enterprise data security?

Research Sub-Questions (RSQs)
Research

Methods(s)
Objective

2.1 How do organisations prioritise

patches for deployment?

Case Study To determine how organisations prioritise

patches offered to them by the industry.

2.2 How do organisations identify

patches best suited for their security

needs?

Case Study To identify the benefits that can be obtained

when patch management is integrated with

information security.

2.3 Who are the key role players in

managing the patch deployment

process?

Case Study To identify the stakeholders involved in the

patch management process.

5

1.4.1 Research aims

The aim of the study is to explore the complexities of software patch management in

order to enhance enterprise data security within organisations. The objective of the

study is to identify some of the challenges organisations face when implementing

patch management, to determine how patch management affects enterprise data

security, and to determine the challenges faced by organisations with multi-vendor

systems.

1.4.2 Research objectives

The objectives of the study are to:

 Identify some of the challenges organisations face when implementing patch

management

 Determine the challenges faced by organisations with multi-vendor systems

 Determine how patch management affects enterprise data security

1.5 Research methodology

For the purpose of this study, a single case study was conducted. The selected

research methodology required that data be gathered from both primary sources

and secondary sources. The primary source for the study was interviews with

participants who currently play a role in the patch management process. A literature

review was the basis of the secondary source, and a brief overview is presented

below.

1.5.1 Research philosophy

1.5.1.1 Ontology

Neuman (2011) describes ontology as the explicit specifications of a shared

conceptualisation. It thus contains the type of object or concept that exists, as well

as its containing properties and relations.

This research assumed that there is no single truth or understanding of how

organisations currently manage their patch deployment process. This research was

based on the relativist tradition, which Neuman (2011:107) describes as a principle

in “interpretive social science that no single point of view or value position is better

than others”. Real-life conditions were explained in the context in which they exist,

and in the process, the objective knowledge as was produced.

6

1.5.1.2 Epistemology

According to Neuman (2011), epistemology aims to answer:

i. What is knowledge?

ii. How is knowledge acquired?

iii. What are the most valid ways to reach the truth?

iv. How do we know what we know?

This study was conducted based on the premise that a world exists independently of

the researcher’s thoughts and perceptions and as such, drives the research

philosophy. In the case of this research, the researcher provided an interpretation of

what he found participants doing, and what he believes to be their reasons. The

problem was viewed from the perspective of the participants involved and every

effort was made to maintain an awareness of the research context.

1.5.1.3 Research approach

According to Dubois and Gadde (2002), a deductive approach is geared at testing a

theory, whereas an inductive approach is tailored toward the generation of a new

theory that emerges from the data. The authors further state that the inductive

approach is normally associated with qualitative research, while the deductive

approach is generally associated with quantitative research.

The research methodology requires that data be gathered from literature as well as

primary sources. An inductive approach to the research was followed. There was no

predetermined hypothesis; however, the research problem informed the research

process for the investigation. The factors under investigation were not purposefully

manipulated in any manner.

Specific events were described in rich detail. Given the nature of this research, a

qualitative approach was adopted. Neuman (2011) describes qualitative research as

an approach concerned with recording, analysing and attempting to uncover a

deeper meaning in human behaviour and experience. The research followed an

inductive approach.

1.5.2 Research strategy

1.5.2.1 Case study

Yin (2013) defines a case study as an empirical enquiry that explores a

contemporary phenomenon within its natural context, when the boundaries between

the context and the phenomenon are not clearly defined. As a result, multiple

7

sources of evidence are needed. Conversely, Flyvbjerg (2006:2) describes a case

study as a “detailed examination of a single example”. Both definitions are

consistent with the research method used in this study. However, for the purpose of

this research, the definition provided by Yin (2013) was used. This definition best

describes the context in which this research was conducted.

The case selected for this case study is a Cape Town-based retail organisation that

is representative of the research problem. A single case study was conducted.

1.5.2.2 Unit of analysis

The unit of analysis for this study was the patch process within the organisation. The

patch process was researched by means of conducting interviews and reviewing

company documents such as the information security policy and the patch

management policy.

1.5.2.3 Unit of observation

The unit of observation was the people within the organisation who play a role in the

current patch management process. Within the company, three relevant

departments were identified: The Head Office environment, the Server environment

and the Store environment. The people within these respective environments were

the units of observation.

1.5.3 Data collection

1.5.3.1 Sampling

The case study organisation is located in Cape Town. Convenience sampling was

used to select the organisation. Neuman (2011) describes convenience sampling as

having availability and convenience as the main criteria for selection. The selection

of interviewees was informed by the literature, and included personnel from the

server team, internal audit, system administrators, security personnel and enterprise

architecture. Purposive sampling was used to select interviewees. Purposive

sampling is described as “the most common sampling technique”, where “the

researcher actively selects the most productive sample to answer the research

question” (Marshall, 1996:523). Snowball sampling was also used to identify

participants who were not explicitly identified in the literature, and yet were

connected to the patch management process either directly or indirectly in this

particular case. Participants may not know each other, but information obtained from

one may lead to the next.

8

Semi-structured questionnaires using an interview guide was used to obtain data

from key role players in the patch management process within the case

organisation. Company documents such as the patch management policy and

framework were reviewed prior to the interviews. Interviews were used as the

method of data collection. With the necessary consent from the participants, the

interviews were recorded. The recorded interviews were encrypted with Microsoft Bit

Locker and stored on Google Drive. Only the researcher, academic supervisor,

academic co-supervisor and transcription analyst have access to the interview

recordings.

1.5.4 Data analysis

1.5.4.1 Transcribing

According to King (1994), many research studies collect data in audio or video, and

usually transcribe it into written text for closer analysis. King (1994) explains that

transcription is an interpretive and repetitive process. The researcher often had to

listen to the recording several times, paying special attention to the tone of voice,

hesitations and other distinct observations. In this study, this function was

outsourced. However, the researcher verified all recordings against the transcripts to

ensure accuracy and to become immersed with the data. For examples of three

transcribed interviews, see Appendix A. All other interview transcripts are available

on request.

1.5.4.2 Coding

According to Neuman (2011), there are two major types of coding: manifest and

latent coding. Manifest coding is described as a technique where the author may

count the number of times a word or phrase is mentioned. This process can be

achieved with the help of computer software. Latent coding is where the researcher

would look for the underlying meaning in the text. In this instance an entire

paragraph would be read, and a possible theme could be identified. In this study, the

latent approach was used as this process best describes the approach adopted. For

an example of how coding was applied to interview transcripts, see Appendix B. All

coded transcripts are available upon request.

1.5.4.3 Themes

One of the main objectives during qualitative data analysis is the task of identifying

themes (Ryan & Bernard, 2003). The literature was analysed by means of latent

coding, and in the process various themes were identified. The interview transcripts

9

were analysed using the same technique (latent coding) and themes from the

interviewee data were identified. A list of all identified themes can be found in

Appendix C.

1.5.4.4 Categories

Various pieces of data were grouped together in order to reduce the number of

different pieces of data that had to be processed in the data analysis. All similar

themes were merged into one, and a record was kept of how many interviewees

expressed a certain view. This number of interviewees expressing a certain view

was used as a weighting, and value was assigned to themes based on this

weighting. Categories are discussed in section 3.6.4 and section 4.11.

1.6 Delineation

The study is limited to one organisation in Cape Town, Western Cape. It is an in-

depth case study, and the results are not generalisable in any way. The study

excludes mobile devices (smart phones, tablets and laptops) and firmware upgrades

of hardware, although these are discussed briefly for the sake of completeness.

1.7 Ethical considerations

The Oxford Online Dictionary defines ethics as the entire field of moral science. To

address ethical issues that may arise during the research process, an open, honest

and fair approach was followed. According to Neuman (2011), most ethical issues

involve the balance of the value of the quest of scientific knowledge and the rights of

the subjects being studied. All participants involved were made aware of the

research objectives and aims. In order to avoid a conflict of interest between the

researcher and the research participants, a proviso was added to the ‘permission to

do research’ document. The condition was stipulated by the organisation and states

that the organisation remains anonymous at all times within the thesis. This

document is not included in the thesis, but is available on request.

Permission was obtained from the participants and all interviews were recorded.

Participants were informed that the researcher, academic supervisor, academic co-

supervisor and transcription analyst will listen to the recordings. Permission would

be obtained from the participant first in the event that an external person requests

access to the recordings. All recordings were encrypted using encryption software

and stored on Google Drive.

10

All company documents obtained in electronic form were encrypted and stored in

the same manner. In the event that digital copies of documents were not available,

printed versions were analysed and either returned or shredded once the analysis

was complete. All confidential documents were kept in a locked file cabinet while

being analysed, with only the researcher able to access these documents.

The research consisted of a single organisation as the case study. The aim and

objectives of the research were presented to the organisation and formal permission

was obtained from the Chief Information Officer (CIO) of the company before

conducting the research. The organisation is referred to as ‘the company’ in order to

maintain anonymity. The following ethical principles were applied to the research:

Informed consent: Before the interview, participants were presented with a full

information sheet containing all ethical issues relevant to the study. They were

thereafter presented with the consent forms. Participants were also made aware that

they could change their mind at any time, even if consent forms had already been

signed.

No pressure on individuals to participate: No incentives were provided to

persuade participants to participate.

Respect of individual autonomy: Participants maintained their freedom to decide

what to do. Even though they signed consent forms, they could change their mind at

any stage, without any explanation required.

Avoid causing harm: The research should not cause conflict and animosity among

competitors and colleagues. The research process was transparent, open and

honest.

Maintain anonymity and confidentiality: The identity of the organisation is

anonymised. A realistic degree of anonymity is promised, according to the level

afforded by the researcher. The participants’ identity and contribution should be

protected.

1.8 Chapter summary

The nature of the research assumes that there is no single truth or understanding of

how patches are currently managed within organisations. The research

methodology in this study required the gathering of data from both primary sources

and secondary sources. The setting of this research is a single case study that

11

focuses on the integration of software patch management and enterprise data

security. The unit of analysis for this study was the patch management process

within the company.

Convenience sampling was used to select the case and purposive sampling was

used to select interviewees. Snowball sampling was utilised to identify participants

who were not identified in the literature. Interviews were used and an inductive

research approach was followed.

In this chapter, the topic of software patch management and enterprise data security

was introduced. Some background to the problem was given and the research

problem statement was identified and defined. The research questions and sub-

questions were also formulated. The two main research questions are:

1) What causes the management of software patches to be complex?

2) How do organisations implement patch management in order to enhance

enterprise data security?

A brief discussion of the research methodology is included, and is covered in more

detail in Chapter Three. The research utilised a single case study and employed a

qualitative approach.

The delineation of the study confines the research to a Cape Town-based

organisation and therefore the results are not generalisable. In this chapter, the aims

and objectives of the research were discussed and all ethical matters were identified

and discussed.

The next chapter presents a discussion of the literature related to the research

problem. Topics such as concepts and terminology relating to patch management

and enterprise data security, network threats, software life cycles and software

management tools will be discussed.

12

2 CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction

This chapter reviews some of the literature available on the topics of software patch

management and enterprise data security. The literature review was conducted from

a data and software perspective. The literature was reviewed using keywords from

the problem statement, title, aim of the study and the research questions. This was

an iterative approach as new relevant keywords were identified during the literature

searches. Several data bases from the eLibrary of Cape Peninsula University of

Technology (CPUT) were explored, such as Emerald, EBSCOhost, Google Scholar,

ProQuest, Scopus, and Science direct. The literature was used in an iterative way,

to confirm the research questions, problem statement and aim of the study.

2.2 Context of the literature review

According to Bilge and Dumitras (2012), the time between the detection of a

vulnerability and the emergence of a corresponding patch is getting shorter; in some

instances it is as short as a few hours. This creates pressure on IT departments to

deploy patches as rapidly as possible, which is in direct conflict with best practices

in terms of configuration management and assurance testing standards.

Many organisations are struggling to keep up with the constant release of software

patches. Business is demanding that IT provides 100% uptime on the availability of

servers, making it difficult to introduce patch deployments and other maintenance

activities. The IT departments thus have to develop a process that ensures the

availability of resources and the installation of security patches without breaking

existing working systems (Jenkins, Arnaud, Thompson, Yau & Wright, 2014).

In many organisations, the responsibility for maintaining the server hardware reside

with one team, but the applications running on these servers is supported by a

different team. In cases like these, it is vital to adhere to proper change

management procedures. Each server should have a change control document, and

this document should state the purpose of the server, the primary and secondary

person of contact, and special comments regarding the server, as well as a detailed

disaster recovery plan (Chow & On Ha, 2009).

Patch management is often a difficult task, as organisations may have multiple

software platforms and configurations to consider at any given time (Thakare &

Gore, 2014). Gerace and Cavusoglu (2009) state that, generally, most internet

13

assaults exploit vulnerabilities caused by misconfiguration or outdated software.

They claim that the time between discovering and patching is often the problem.

They further state that the frequency of zero-day attacks on organisations is on the

rise, meaning the task for both vendors and organisations becomes more

challenging. Gerace and Cavusoglu (2009) briefly discuss an optimal patching policy

and propose a mathematical model for the trade-off between system confidentiality

and availability. Using this model, they calculate the optimal frequency of the regular

and irregular patching.

Arora, Krishnan, Telang and Yang (2010) argue that most cyber-attacks exploit

software defects. The time lapse between initial disclosure of a vulnerability and

release should thus be reduced. Sabahi (2011) states that computer security can be

achieved by means of three processes: threat prevention, detection and response.

The above processes can be implemented by using various components and

policies such as user account access control and cryptography. This control can be

used to encrypt data as well as system files.

2.3 Confidentiality, integrity and availability of data

The confidentiality, integrity and availability of data (CIA) are the most critical factors

to consider when an organisation relies on information technology (IT) to manage its

data (Torres, Sarriegi, Santos & Serrano, 2006). According to Sommerville (2011),

three main types of threats exist within any networked environment:

i) Threats to the confidentiality of the system and its data: This involves

the disclosure of information to people or systems that are not authorised to

have access to the data (Sommerville, 2011). Confidentiality is therefore

concerned with preventing unauthorised disclosure of data. Encryption is

the most common method to ensure confidentiality. Access controls help

provide confidentiality by restricting access to data. Steganography can

also assist, by hiding data within data (Gibson, 2014).

ii) Threats to the integrity of the system and its data: Threats to integrity

can corrupt or damage systems and its data (Sommerville, 2011). Integrity

provides the assurance that data has not been modified, either intentionally

or unintentionally. Hashing algorithms such as MD5 and SHA-1 can help to

verify the integrity of integrity (Gibson, 2014).

iii) Threats to the availability of the system and its data: Availability

ensures data is available when it is required. Redundancy and fault

tolerance techniques such as load balancing and server redundancies can

14

be used to increase availability (Gibson, 2014). Threats to availability can

deny access to systems and data for authorised users (Sommerville, 2011).

Threats are discussed in further detail in the following sections.

2.4 Threats, risk and vulnerability (TRV)

Threat, risk and vulnerability are the commonly used words in data security to

describe how the CIA of data can be compromised. Microsoft developed the

STRIDE model that is widely accepted. This model is developed to characterise

known threats to the type of exploits being used. According to Scandariato, Wuyts

and Joosen (2014:5) the STRIDE model categorises threats as follow:

“Spoofing refers to a rogue person or program successfully impersonating

another legitimate user or program. Tampering refers to a threat agent

illegitimately modifying application resources, such as in memory data.

Repudiation refers to a user (legitimate or malicious) able to deny the

execution of an action within the system. Information disclosure refers to a

threat agent obtaining private information he/she is not supposed to access.

Denial of service refers to a threat agent making a system resource

unavailable to its intended users. Elevation of privilege refers to a threat agent

obtaining privileged access to resources that are normally protected”.

2.4.1 Threats

A threat is defined as “circumstances that have the potential to cause loss or harm”

(Sommerville, 2011:303). Below is a brief summary of commonly encountered

computer threats:

2.4.1.1 Virus

Microsoft describes computer viruses as small software applications that are

designed and coded to spread from one computer to another with the intention to

interfere with computer operations. This is consistent with the definition provided by

Gollman (2011:178) that a computer virus is “a piece of self-replicating code

attached to some other piece of code, with a payload”. The payload in this context is

generally harmful.

2.4.1.2 Eavesdropping

Eavesdropping is defined as the act of listening to a private conversation on a

network (Rass, 2014). Applications such as Carnivore and NarusInsight are

examples of this type of software (Capriz, 2011). Social engineering is described as

the art of manipulating users to disclose information such as passwords (Long,

2011).

15

2.4.1.3 Worm

Kurose and Ross (2010:83) describe a computer worm as “malware that can enter a

device without any explicit user interaction”. Gerace and Cavusoglu (2009) discuss

the slammer attack that hit in 2003 and infected tens of thousands of computers in

less than ten minutes. In response to this outbreak, the security industry started

asking the following questions: Why did it happen? How could we have prevented

it? How can we ensure that it never happens again? Gerace and Cavusoglu

(2009:117) assert that “95% of security breaches could have been prevented by

keeping systems up-to-date with necessary patches”.

2.4.1.4 Backdoor

A backdoor can be a method of bypassing normal authentication, connecting to a

PC, obtaining access to data, yet remaining undetected. A backdoor may be in the

form of an installed program, or a modification to an existing program or even

hardware (Kermani, Zhang, Raghunathan & Jha, 2013).

2.4.1.5 Direct attack

Direct access attacks occur when someone has physical access to a computer.

Various types of malware can be installed and large quantities of data can be loaded

onto removable storage. One way to counter this type of attack is to encrypt storage

media and to keep the key separate from the system (Checkoway, McCoy, Kantor,

Anderson, Shacham, Savage, Koscher et al., 2011). An indirect attack is one that is

launched by a third party computer.

2.4.1.6 Denial of Service (DOS) attack

Denials of Service attacks are designed to render a network unusable. A simple

example would be to re-enter a user password three times, and in doing so, locking

out the account. Distributed Denial of Service attacks involve a large number of

hosts that are used as a botnet. A botnet is a collection of compromised hosts that

are infected with malware, and remotely controlled. Malicious users can use botnets

to execute targeted DOS attacks (Kurose & Ross, 2010). The target system would

then be flooded with network requests (Ehlert, Geneiatakis & Magedanz, 2010).

When the attack is coordinated from multiple hosts, it is known as a Distributed

Denial of Service attack.

16

2.4.2 Risks

A risk is defined as the “potential harm that may arise from some current process or

from some future event” (Elky, 2006:1). Foley (2009) proposes an internal controls

approach to manage security risks. The proposed approach could provide

information about security controls that are used to mitigate risks on business

processes. Security governance is responsible to prioritise and manage risks across

an organisation. Security governance goes beyond the technical-centric view, and

includes security in the context of the organisation as a whole (Patnayakuni &

Patnayakuni, 2014).

Enterprise Risk Management (ERM) is typically used by organisations to manage

risks related to their businesses. Committee Of Sponsoring Organisations – ERM

(COSO-ERM) is an example of an ERM framework for documentation of the various

relationships between business processes, as well as the risk and mitigating

controls in place for these risks (Beasley, Clune & Hermanson, 2005). Cobit is

another example of a risk management framework that focuses on various best

practices for managing information systems.

ERM can be characterised by four elements. The first element is the identification of

all relevant business processes. Each process consists of a number of sub-

processes. The second element is the assessment of risks. A risk is described as an

ambiguity in a process that could adversely impact business operations. The third

element is the control element. A control is described as a framework for

management of activities meant to thwart a business process from occurring. The

last element is testing (Arena, Arnaboldi & Azzone, 2011).

2.4.3 Vulnerabilities

According to Kouns and Minoli (2011), a vulnerability can be described as a

weakness in a system that could potentially lead to the exploitation of the system by

a malicious user. Software vulnerabilities have evolved to an ongoing and serious

concern because of the associated risk of exploitation by malicious users.

According to Farahmand, Navathe, Enslow and Sharp (2003), vulnerabilities

describe weaknesses in a system. A vulnerability can be caused by a flaw in

software (Okamura et al., 2009). Liu, Shi, Cai and Li (2012:152) state that a

software vulnerability is an “instance of a mistake in the specification, development

or configuration of software such that its execution can violate the explicit or implicit

17

security policy”. A security patch is designed, tested and deployed to correct these

weaknesses.

Bilge and Dumitras (2012) claim that security patches are the primary method for

addressing security vulnerabilities in applications. This definition is consistent with

the definition provided by Shahriar and Zulkernine (2012:2), which states that a

vulnerability is a “flaw in software that allows attackers to expose, disrupt, and

destroy information”. An exploit is defined as “a piece of software, or a sequence of

commands, or even data, that can take advantage of a ‘bug’ in order to do harm to a

system” (Begel, Khoo & Zimmermann, 2010). Vulnerabilities can therefore be

exploited if it is disclosed and not patched in a timely manner.

It is crucial for software developers and vendors to make patches available as soon

as possible to avoid possible exploitation (Arora et al., 2010). However, security

attacks, such as viruses and Denial of Service (DOS) attacks, are in most cases a

result of software vulnerabilities that have been exploited. Gerace and Cavusoglu

(2009) confirm the statement made by Arora et al. (2010), claiming that software

vulnerabilities are one of the main causes for security attacks. Program code is likely

to contain vulnerabilities that could be exploited, intentionally or accidentally, to

cause security attacks (Gerace & Cavusoglu, 2009).

Computer systems are susceptible to known and unknown attacks. Handling

unknown attacks is more difficult, owing to their irregular nature (Albanese, Jajodia,

Singhal & Wang, 2013). Sharma, Kalbarczyk, Barlow and Iyer (2011) highlight the

fact that although program vulnerabilities have been addressed for a good number

of years, security breaches are still regularly observed due to vulnerabilities being

exploited. Fossi, Egan, Haley, Johnson, Mack, Adams, Blackbird et al. (2011)

observe that a large number of vulnerabilities are often exploited after patches have

been released. This implies that patches are not being applied, even though it is

available.

2.5 Zero-day vulnerabilities

There are many ways, at many levels, that CIA of data might be compromised. One

key threat worth discussing in detail is zero-day vulnerabilities and attacks.

McQueen et al. (2009:1) define zero-day vulnerability as “any vulnerability, in

deployed software, that has been discovered by at least one person but has not yet

been publicly announced or patched”. Albanese et al. (2013:3) define zero-day

vulnerability as “unknown (zero-day) vulnerabilities, which even developers are not

18

aware of”. Zero-day vulnerability is therefore any vulnerability that has been

deployed and has been discovered by at least one entity. Zero-day attacks exploit

vulnerabilities that have not yet been disclosed on a public platform, making it

difficult to analyse such threats because data is often not obtainable until after an

attack is detected. Furthermore, these types of attacks are presumed to be rare

events that are unlikely to be detected in experimental laboratories (Bilge &

Dumitras, 2012).

According to Bilge and Dumitras (2012), there is very little defence against a zero-

day attack. As long as the vulnerability remains unidentified, the affected software

cannot be patched. Albanese et al. (2013) explain that traditional efforts generally

assign a numeric value to vulnerability based on the likelihood that the vulnerability

could be exploited. These assumptions are based on known details about each

vulnerability. This approach would not be effective against zero-day attacks,

because of the lack of knowledge.

Bilge and Dumitras (2012) assert that the race between zero-day attacks and the

remediation measures introduced by the security industry may go on for years. In

some cases, vendors may discover vulnerabilities before they are exploited or

disclosed. A disclosed vulnerability that remains unpatched creates the opportunity

for a cyber-criminal to create exploits and to conduct attacks on a larger scale. Zero-

day vulnerabilities cannot be measured because of the less predictable nature of

how these flaws are introduced in software and how they are discovered. Wang,

Jajodia, Singhal and Noel (2010) address the previously stated limitation by

proposing a security metric for zero-day vulnerabilities, defined as Zero-Day Safety.

Wang et al. (2010) assume the existence of a complete attack graph, although in

practice attack graphs for large networks are usually unfeasible.

Intrusion Detection Systems (IDSs) can help in defending against zero day attacks.

The primary purpose for IDSs is to determine whether network connectivity is

normal or not. The logic behind IDS is that it analyses network connections and

compares them to known attack signatures. Zero-day attacks are considered the

crucial challenge in the security industry. Most studies that address zero-day attacks

employ unsupervised anomaly techniques to discover new attacks. A zero-day

attack, by definition, has no previously known attack signature (AlEroud & Karabatis,

2012). Contextual anomaly is defined as the process of identifying patterns in data

that do not conform to expected behaviour (Gogoi, Bhattacharyya, Borah & Kalita,

2011), and is used to detect events with the same attack context.

19

According to Bilge and Dumitras (2012), a typical zero-day attack lasts on average

312 days. They further claim that some attacks may remain unknown for up to 2.5

years. Immediately after disclosure, the volume of attacks increases by 5 orders of

magnitude. Bilge and Dumitras (2012) then compared the reaction time of Microsoft

and Apple to newly disclosed vulnerabilities. The findings were as follow: both

vendors had un-patched vulnerabilities 180 days after public disclosure and half of

all Windows users were vulnerable to 297 vulnerabilities in one year; patches were

available for 65% of these vulnerabilities at the time it was first publicly disclosed.

Bilge and Dumitras (2012) propose an automated method for finding zero-day

attacks in field data. The proposed method allows for the measurement of the

duration of zero-day attacks. The average duration according to their research is

approximately 10 months. Full disclosure policy is based on the idea that disclosing

vulnerabilities to the public, instead of the vendor, is the most effective approach, as

it provides an enticement for vendors to release patch faster, instead of relying on

security through obscurity. Davidson (2013) defines it as trying to keep security

holes a secret. Choi, Fershtman and Gandal (2010) assert that the problem with full

public disclosure is that after vulnerability is disclosed, it causes an increase in

attacks.

2.6 The complexities of software

According to Felmetsger, Cavedon, Kruegel and Vigna (2010), it is a well-known fact

that most programs contain vulnerabilities and that these vulnerabilities may be

exploited not only intentionally but also unintentionally, which would also cause

security breaches.

Vulnerabilities may exist within software for various reasons, and if they are

triggered intentionally or unintentionally, it can lead to a compromise of information

security. A resource can be physical or logical. It may also have one or more

vulnerabilities that can be exploited and, as a result, can compromise the

availability, integrity or confidentiality of a resource (French, 2012).

Highsmith (2013) claims that software complexity is strongly linked to software

maintenance efforts. Software complexity is described as a phenomenon that

generally refers to the attributes of the data structure and procedures within software

applications that may have an impact on the difficulty of understanding and

changing them.

20

2.6.1 Software evolution

Panzica La Manna (2011) explains that generally when a system needs to be

patched, the system would be shut down, updated and restarted. The problem with

this approach is that a large number of critical element systems cannot be

interrupted, and therefore the need for dynamic patching, also referred to as online

patching, may be valid. Payer and Gross (2013) support this notion by claiming that

in most cases it is only a small part of the system that needs to be updated. The

goal of their research is to promote and support software development by

introducing online updating of components in a distributed system. The aim of their

paper is to define the conditions under which a component can be safely updated

online. Panzica La Manna (2011) claims that a common theme of these works is the

selection of proper time points. The system should be stable and ready for accepting

a user-specified state transformation. This then results in a different state from

which the system is able to continue.

Software systems are continuously changing. Changes could occur in the

surrounding area of the application or in the external components. The initial

requirements may change to simply to improve the quality of service. Changes may

also be required when software defects are discovered (Panzica La Manna, 2011).

Lehman’s laws provide a concise summary of the software evolution process and

dynamics (Sommerville, 2011). The laws state that system maintenance is inevitable

as new requirements continue to emerge. With on-going maintenance the

complexity of systems is likely to increase, resulting in large program evolution. The

laws further state that the quality of systems is likely to decline unless systems are

modified to reflect the changes in their operational environments.

2.6.2 Legacy systems

Legacy systems are old systems that are still in use, and often provide business

critical functions; they can therefore not easily be decommissioned or replaced.

These systems may be implemented using outdated programming languages and

technology, or may rely on systems that are too expensive to maintain. It is often

costly to replace these systems and documentation as it is often out of date or non-

existent. Vendors generally do not support these systems anymore, leaving them

vulnerable to exploitation (Sommerville, 2011).

The following is a good example of a problem with legacy systems: In 2014,

Microsoft ended the support for Windows XP. Windows XP is one of the most

21

popular operating systems and is still used even after Microsoft has stopped

supporting it, making it probably the most vulnerable operating system at the

moment. Windows XP can be considered a legacy system (Tutt, 2014).

2.7 Software management methods

2.7.1 Configuration management methods

The automation supplied by the configuration management system’s greatest

benefit is the ability to manage multiple devices with as little effort as possible. The

majority of vulnerabilities can be addressed by publicly released patches. The

difficulty often lies in maintaining proper patch levels on a number of different

servers in computing environments. A configuration management system reduces

the burden of this portion of the system administration process (Farwick, Agreiter,

Breu, Ryll, Voges & Hanschke, 2011).

Most configuration management systems add some form of complexity to an

environment. The primary function of the system should be to reduce workload and

simplify maintenance issues, and to streamline software and patch installations. It

may be that staff require training to master these tools. It is important to note that

these types of systems do not replace the need for application testing. Testing

remains a necessary step before deployment, and may vary from one organisation

to another, depending on size and application sets. If the configuration management

is poorly defined, it could lead to more work (Chen, Mao, Mao & Van der Merwe,

2010).

2.7.2 Deployment methods

The application of patches in large environments can be a very laborious process.

Insufficient time is often listed as one of the main reasons why organisations do not

install patches. In some instances, system administrators simply ‘forgot’ about

certain systems. These issues can be addressed with the use of configuration

management systems. This, however, requires each device to have a client installed

on it. One of the major benefits is that the system administrator does not literally

have to remember each device on the network. As long as the clients are installed

and working on the devices, patches, installations and confirmation changes can be

made automatically from a centralised console (Sethanandha, 2011).

22

2.8 Software patches

Many definitions for a software patch exist, for example: Souppaya and Scarfone

(2013:2) define a patch as a piece of software that “corrects security and

functionality problems in software applications and firmware”. Although patches can

serve other purposes such as the addition of new functionality, it is most often used

to mitigate software vulnerabilities.

 A security patch is a small software program that fixes software bugs causing

security vulnerabilities to end-users. A vulnerability can be dealt with by either

installing the applicable patch or removing the vulnerable software completely (Le

Goues, Nguyen, Forrest & Weimer, 2012). The definition provided by Souppaya and

Scarfone (2013) is used in this study, as it best describes a software patch. Patches

can either be official patches released from the vendor, or third party or unofficial

patches released by entities other than the vendor. An unofficial patch is described

as a non-commercial patch for commercial software. It is common for security

specialists to create unofficial patches if the software creators are taking too long to

publish the official patch (Sotirov, 2006). A hot fix is a single package that holds

information used to address a specific problem in a software product. The risk of

applying a hot fix should always be considered together with the risk of not applying

it (Nicastro, 2011). Prioritising which patch to install and when to install the patch is

closely related. The importance of the vulnerable system should be considered, as

well as the severity of the vulnerability. Dependencies that patches may have are

also something to consider. It may be that the installation of one patch requires

another patch to be installed first, or that the system needs to be rebooted first

(Souppaya & Scarfone, 2013). The level of concern of the CIA of a company’s data

depends on the criticality of the data and associated systems in the eyes of the

company.

2.9 Patch management

The patch update process is a complex and costly process for large organisations.

IT decision-makers often face the challenge of cutting costs while simultaneously

preventing computer systems from being compromised.

According to Arora et al. (2010), a vulnerability can be discovered by multiple parties

and can therefore incur different responses. The party discovering the vulnerability

may choose not to publicly or privately disclose the vulnerability to the vendor or a

malicious user.

23

2.10 Software patch management and related risks

According to Cárdenas, Amin, Lin, Huang, Huang and Sastry (2011), a risk

assessment should be completed for all servers on the network. This assessment

should ideally include critical data stored on servers, impact of downtime that can be

introduced by the server, and the general vulnerability of the server in terms of

internal and external attacks. Risk management also has an effect on the decision

whether to apply patches or not. Instead of blindly deploying every single patch, a

process should be followed that indicates the criticality and applicability of the

software patch. Risk management and patch management can often overlap.

Furthermore, the risk decision of applying the patch should be considered along with

the risk of not patching the reported vulnerability.

A policy that is implemented should be based on a risk assessment, as this could

potentially reduce the information security risk to a tolerable level, and in doing so,

ensure that information security is addressed continuously during the lifecycle of the

system. A good patch management plan should consist of various phases; risk

analysis and mitigation strategies, deployment and automated tools, and repeatable

defined processes (Cárdenas et al., 2011). Each server should be marked to

indicate its criticality to the organisation. A higher rating should equal higher priority.

These mission critical states would then relate to a risk level to the organisation.

This risk factor would play an important role when deciding when and how to apply

patches (Yang, Zeng, Ayachitula & Puri, 2011).

Once the organisation has been base-lined in terms of software versions, a test

environment should be built. At minimum, the test environment should have minor

test servers representing all mission critical applications. With IT budgets being as

tight as they are, it is often not feasible to have a reasonable test environment. In

these cases, patches should be deployed to the least critical servers in production

first.

The risk imposed by unknown vulnerabilities is often considered as indefinable,

mainly due to the less foreseeable nature of security faults. This scenario poses a

major difficulty for security metrics, because a more secure configuration would be

of little value if it were vulnerable to zero-day attacks (Wang et al., 2010). Souppaya

and Scarfone (2013) assert that patch management tools themselves can create a

security risk for originations if they are not managed properly. An organisation

should strive to balance the security needs with that of availability or usability. This

24

raises the fundamental issue that if a system is too secure or complicated to use,

users may try to avoid using the system at all.

2.10.1 The importance of patch management

Patch management can often be the difference between a company running a

successful IT division and an inefficient IT division. Cavusoglu et al. (2008:657) state

that “today most security incidents are caused by flaws in software, called

vulnerabilities”, highlighting the importance of patch management.

Mohammadi (2013) indicates that companies, government and various other

institutions rely on patch management to secure their workstation against being

compromised, more specifically to secure their data. They claim that patch

management is one of the main components of IT security management and that it

has become a key requisite in every IT infrastructure to defend networked resources

from exploitation, and also to maintain a secure network. It is important to ensure

that the latest patches are installed at all times across an entire computer system.

Subashini and Kavitha (2011) claim that patching is done to fix security and critical

vulnerabilities, but also to avoid compromising integrity and confidentiality of data.

It has been proven many times that faulty or non-existent patch management

policies can result in systems being compromised. The main reason for this is the

slow adoption of configuration management applications and methodologies. In

recent times, configuration management systems are more widely accepted, even

welcomed (Ioannidis et al., 2012).

2.10.2 Patch automation

According to Ramaswamy, Bratus, Smith and Locasto (2010), there is often a trade-

off between perceived platform stability and automated software patching. Although

acquiring and deploying the latest patching is considered common knowledge, it is

often ignored in practice. Ramaswamy et al. (2010) further suggest that the reasons

underlying the hesitancy to apply patches should be considered, and conclude that

the current mechanisms of the patch deployment process may be a stumbling block.

Bilge and Dumitras (2012) have a similar view that there may be a hesitancy to

deploy patches when it becomes available, by saying that users often do not deploy

the patches immediately for the following two reasons: the overhead associated with

patch management and the general perception that patches themselves contain

bugs and vulnerabilities, and potentially break a working system. Joshi

(2013) confirms the notion that systems are not always patched on a regular basis

25

because of user apathy, as well as inefficient security controls. A large number of

systems remain under threat, even after vulnerability has been published and

patches have been released.

 Zhao et al. (2009) propose an approach that will enable the automation of both the

notification and rectification phase. This approach also offers some flexibility that

enables an administrator to customise according to specific requirements,

regardless of the vendor of the products involved. The proposed solution has five

main components. First, the email client is responsible for receiving incoming

advisories from various vendors. Automated notification is responsible for reading

incoming advisories and then storing the advisories in a profile if the vendors’ digital

signature has been verified. Advisory databases store all the incoming advisories,

along with classification data. Relevant advisories are those relevant to the local

system and are displayed to the system administrator. Automated rectification acts

on the relevant advisories by downloading a specific patch from the vendor’s

website and then consulting the local patch policy for accepting them. Patches are

then stored in a repository allocated for this purpose. After subscribing to relevant

lists with the correct filtering criteria, it becomes easy for administrators to build a

system database of relevant advisories. The main advantage of this approach is that

it enables advice from multiple sources to be viewed through a common interface.

Jansen (2011) proposes the deployment of a virtual machine server. Huang, Baset,

Tang, Gupta, Sudhan, Feroze, Garg et al. (2012) explain that the server is

responsible for communicating with the vendor website, downloading and analysing

the patch, storing relevant information to a database, distributing patch files to a

client agent and then constructing information regarding the present status of the

patch installation for the client. The patch client agent has the responsibility of

communicating with the patch server, scanning the system’s information, detecting

the installed and uninstalled patches in a system and installing patches where

required.

Wei, Lu, Jafari, Skare and Rohde (2011) outline the set-up of an automated

vulnerability solution and present the details of a prototype system implementation.

This system would verify incoming alerts, process messages from several vendors

and prioritise this within a common management interface. Giuffrida, Kuijsten and

Tanenbaum (2013) focus on the automation of live updating for major operating

system upgrades without rebooting or shutting down, and his proposed solution is

based on the idea of state latency, a phenomenon that allows updates to occur only

26

in predefined system states. The solution can routinely perform transactional live

updates at the process level, improving the overall update process.

Allowing the user to manually install patches is not a good idea for a number of

reasons. Typically, the users receive a popup saying that a patch can be

downloaded. The user may dismiss this popup (leaving the computer in a vulnerable

state), or multiple users can download this patch simultaneously causing congestion

on the network. There is very little, if any, benefit to allowing a user to perform this

function (Souppaya & Scarfone, 2013). There is also a downside to bundling

patches. The time between when a vulnerability is exposed and when it is patched is

increased. The attacker thus has a greater window of opportunity to exploit the

vulnerability because of the deliberate delay in the release of the patch with the next

bundle, instead of immediately. If it becomes clear that exploitation is occurring, a

vendor may release software patches faster.

2.10.3 Hot patching

Hot patching is described as the process of applying patches without shutting down

or restarting a system (Ramaswamy et al., 2010). This phenomenon is useful for

systems that cannot be unavailable for any reason (Gonzalez & Locasto, 2013).

Ramaswamy et al. (2010) investigated the phenomenon of hot patching and

concluded that offline patching remains the predominant form of patching at present.

They believe there is value in a reliable hot patching solution as it will reduce

downtime. Their study focuses on the pros and cons of the phenomenon. They

explain that mission critical systems are often the hardest to patch as they cannot

afford downtime, or administrators may fear instability or downtime as a result of the

patch. Inaction in this case may hold as much risk as proactive action. Here the risk

of patching should be weighed against the risk of not patching. Their research aims

to make hot patching possible and less risky.

2.10.4 Horisontal patching

Stolikj, Cuijpers and Lukkien (2013) conducted an experiment with two test cases

and confirmed that horisontal patching can be used to improve the patching process

in large networks of devices that share a common software component. Horisontal

patching is defined as a method for handling code differences in systems running

several applications on top of common software.

27

Wright (2014) also reports on the phenomenon of horisontal patching. Wright

defines it as a method for optimising the size of incremental updates in a multi-

application environment, where dissimilar devices share a common software

component. Wright (2014) argues that horisontal patching gives better results as the

number of heterogonous devices grows. He further adds that the speed comes with

the trade-off of extra processing time, possibly for a number of options to grow

exponentially.

2.10.5 Patch management configuration

Another challenge for organisations is the fact that there are numerous methods by

which patches can be deployed. Souppaya and Scarfone (2013) identified six

methods by which software patches can be installed:

i) A software product may be able to automatically update itself

ii) A centralised operating system management tool may be able to initiate a

patch deployment

iii) A third-party application may be able to initiate a patch deployment

iv) Network access controls and health checks may be able to initiate patching

v) A user may manually direct software to automatically update itself

vi) A user may install software patches manually

Souppaya and Scarfone (2013) also say that having several methods of deploying

patches can cause conflict. It can be challenging when multiple methods are trying

to install the same patch, especially when the organisation explicitly does not want

to deploy certain patches. Patches may also be overlooked because one system

administrator may assume another administrator has taken care of a particular

patch.

2.10.6 Software patch management challenges

Inadequate application inventory management procedures could introduce a

challenge, because patch management is reliant on current inventory information of

the applications that is installed on every device in the environment at any given

time (Souppaya & Scarfone, 2013). The high rate of vulnerability disclosures has

placed the focus and attention mainly on practical matters and immediate matters

such as vulnerability disclosure, the speed of patch development, the dissemination

of patches and the application thereof. While these issues are important, often more

subtle issues are ignored. One such issue is the consideration of how many

vulnerabilities are already in existence that have been discovered by malicious

users, but have not yet been publicly disclosed (McQueen et al., 2009). The primary

28

contribution of their work is to propose a method for making sound estimates on the

amount of zero-day vulnerabilities in existence on any given day.

Shahriar and Zulkernine (2012) argue that the problem of patch management should

be addressed at the root. The aforementioned argument was substantiated with a

comparative analysis of various vulnerability mitigation studies that were done in the

past, and found that the mapping between various techniques and the vulnerabilities

and limitations they address may be somewhat obscure. According to Shahriar and

Zulkernine (2012), roughly 50% of all security vulnerabilities occur at application

code level, and although application vulnerabilities have been addressed by

academia for more than twenty years, security breaches still occur regularly. This

indicates that the problem has not yet been solved.

According to Okamura et al. (2009), computer security has been recognised as one

of the most important issues within the domain of software reliability engineering,

and one effective countermeasure is to remove the flaws causing these security

problems in the software. Naik and Tripathy (2011) claim that high-quality software

testing leads to high-quality secure systems. For this to be true, it requires that as

many faults are removed from software in the testing phase as possible. This is

especially important for proprietary software. This should be tested extensively

before it is shipped to the market, since the developer is withholding the source

code.

Challenges that complicate patch management often lead to compromises in

security that could easily have been prevented. If organisations can minimise the

time spent on patching activities, they can utilise that time to improve other security

efforts. Many organisations have largely operationalised their patch management

efforts, with the aim of making it a core information technology (IT) function as

opposed to a function that is part of security (Souppaya & Scarfone, 2013).

McNaughton, Ray and Lewis (2010) state that release management is a service

operation phased in service computing literature. McNaughton et al. (2010) claim

that few studies have considered release management from the Information

Technology Infrastructure Library (ITIL) viewpoint compared to other ITIL processes.

ITIL release management defines the mechanism and strategies for developing and

releasing software and hardware, and is a module of the Service support set in ITIL

version 2. Cobit and Accredit Solutions for information can be used in conjunction

with ITIL process. This could be used to define business and operational goals,

29

metrics, and roles for patch management. Both Cobit and ITIL consist of best

practices at a generic level and suggest what should be considered in the process

implementation (Sihvonen & Jäntti, 2010).

2.10.7 Release management and patch management

According to Lahtela, Jäntti and Kaukola (2010), ITIL is a widely used service

management framework. It consists of various best practices for service delivery

and is an auditable standard for IT service management. It consists of two parts.

The first component is the specification for service management and the second is

the code of practice for service management.

Lahtela et al. (2010) claim that patch management relates to ITIL release

management, configuration management, and change management. Sihvonen and

Jäntti (2010) claim that most research examines patch management as a

technologically intensive process, although it is largely affected by human

influences. It requires skilled resources and commitment from management, well

defined process and roles, and enabled - that would be the technology.

Sihvonen and Jäntti (2010) look at the implementation of release and patch

management processes and state that patch management is a sub-process of

release management within the software maintenance. Their study focuses on the

type of challenges that are related to the release management and patch

management process and makes recommendation for how these can be avoided.

Lahtela and Jäntti (2011) state that a configuration management system can

increase the capabilities of system administrators to effectively deal with patch

releases and upgrades, on both the operating system and application level, as well

as help with the management of system configuration across any environment,

regardless of the size.

2.11 The role of software vendors in the patch management process

Both IT companies and consumers need a well-defined and effective patch

management process to deploy hardware and software release packages. The IT

company is responsible for designing, building, testing and deploying the package.

The IT customer assumes the responsibility of receiving these software patches and

installing them (Sihvonen & Jäntti, 2010).

30

Singhal and Ou (2011) conducted a study on the severity impact of the number of

attacks, and determined that application vendors tend to devote more effort to

develop patches for vulnerabilities that have a more severe impact, than they do for

vulnerabilities having a less severe impact.

Implemented programs often contain vulnerabilities that might be exploited to cause

security breaches, as most security vulnerabilities belong to program code. There is

no all-inclusive analysis of different vulnerability mitigation actions. The mapping

between the techniques, the address vulnerabilities and the limitation of different

techniques may be obscured (Shahriar & Zulkernine, 2012).

2.11.1 Vendors’ behaviour

Many vendors have predefined dates for patch releases. Microsoft, for example,

releases software patches every second Tuesday of the month. It is known as

‘Patch Tuesday’ (Zseby, King, Brownlee & Claffy, 2013). The theoretical basis for

most studies is that the quality and the release time of security patches are

determined to a large extent by the economic behaviour of vendors. A vendor is

more reactive if a large portion of the customer loss is internalised by the vendor.

Software vendors might have an incentive to release a faulty software product, and

then fix it later by means of a patch (Arora et al., 2010).

The development of a patch normally starts when a vulnerability is disclosed to the

vendor. If an attacker acquires the knowledge about the vulnerability before it has

been patched, a successful attack can be launched. The entire process involves

various role players such as system administrators, software vendors, government

agencies and attackers. The state of knowledge has a direct impact on the state of

the vulnerability management (Arora et al., 2010).

Zhu, McQueen, Rieger and Basar (2011) claim that the timing between the

discovery of vulnerability and the availability of a patch for the vulnerability become

crucial for the assessment of the security risk exposure of software users.

According to Souppaya and Scarfone (2013), product vendors have countered this

conflict by improving the overall quality of patches, as well as bundling patches for

their product. This means, instead of a vendor releasing a large number of patches

over a period of time, the vendor simply releases their patch in a single bundle once

every quarter, for example. This directly reduces the need to prioritise patches, as

the organisation now only need to prioritise the bundle instead.

31

Schryen (2011) investigated the vulnerabilities and security patches of 17 closed-

and open-source application packages. The study shows that vendor policy was the

most significant factor. Vulnerabilities should be disclosed responsibly and ideally a

patch should be available at the time a vulnerability is disclosed publicly (Okamura

et al., 2009).

August and Tunca (2011) compared the effectiveness of three alternatives: keeping

the vendor liable for damages, keeping the vendor liable for patching costs, and

forcing government to impose security standards. August and Tunca (2011) argue

that with the increase of zero-day attacks, vendors should be held liable to a certain

extent.

Cavusoglu et al. (2008) studied the vulnerability disclosure mechanisms by means

of an analytical model. They showed that although each disclosure mechanism does

ensure the release of patches, early vulnerability disclosure does not necessarily

lead to faster patch release by a vendor.

Beres and Griffin (2012) state that certain vendors may decide to release patches in

a bundle once every cycle, where a cycle can be monthly, quarterly or even yearly.

An example of this is a patch release by Oracle for the month of October. This patch

contained 127 new bug fixes (Oracle, 2013). Ransbotham and Mitra (2013) state

that if vulnerabilities are publicly disclosed without the vendor responding in due

time, it can create a window of opportunity for malicious users.

The development of patches incur an expense for the software vendors, and also

the pressure of delivering a patch fast might result in poorly developed patches that

can introduces a new set of problems. It is often the case that certain patches

introduce new security vulnerabilities or system instability. Furthermore, if a user

perceives the application of patches as tedious and risky, users may skip the patch

process all together (Okamura et al., 2009).

2.11.2 Disclosure

A vulnerability may or may not be exploited, purely depending on who discovers it. A

vulnerability remains a zero-day vulnerability until it is reported to the vendor, or

publicly announced, whichever comes first. The disclosure policy ultimately affects

the quality and speed of patch development (Wright, 2014). Zhu et al. (2011:51)

propose compartmentalising “the task of vulnerability management into different

submodules: discovery, disclosure, development and patching”.

32

Bilge and Dumitras (2012) suggest that there may be value in disclosing new

vulnerabilities to the public, even if patches are not available yet. When disclosing

vulnerabilities to vendors, it can be done responsibly or irresponsibly. Publicly

announcing the vulnerability without giving the vendor an opportunity to create a

patch is considered irresponsible. Responsible disclosure would involve reporting

the vulnerability directly to the vendor, giving them a fair chance to develop a patch

before it is publicly announced (Arora, Telang & Xu, 2008). The vendor however can

decide what to do with the information. It may develop a patch, or it may keep the

vulnerability a secret in the hope that obscurity solves the problem (McQueen et al.,

2009).

Mell and Scarfone (2007) studied the disclosure threat effect that can be described

as the effect on patch release time in the possibility that another vendor releases a

patch first, and inadvertently discloses the vulnerability. Bilge and Dumitras (2012)

indicate that to mitigate the risk of disclosure, all vulnerable hosts should be patched

as soon as the patches become available. Arora et al. (2010) and Cavusoglu et al.

(2008) analysed the impact of full disclosure and they could not find any strong

evidence to suggest that patches would immediately be released following

disclosure.

Schryen (2011) considers the topic of vulnerability disclosure. He claims that public

disclosure can increase the risks posed by security attacks. He explains that publicly

disclosing information could expose the systems of unprotected users to the

possibility of attacks. Arora et al. (2010) argue that whilst public disclosure might

have some disadvantages, it can also be an effective method to accelerate the

release of software patches by vendors.

2.11.3 Initiatives and incentives

Most vulnerability researchers can now get paid for their research effort. Hewlett

Packard’s (HP) Zero-Day initiative pays a substantial bounty for vulnerabilities in

enterprise software products. In 2013, the initiative accepted 290 vulnerabilities

(Bilge & Dumitras, 2012). Szefer, Keller, Lee and Rexford (2011) state that in

addition to focusing on fixing known vulnerabilities, organisations should focus on

closing potential attack vectors. Several vendors have incentivised the approach of

vulnerability discovery. HP for example, has the zero-day initiative that pays

developers up to R80 000 for any reported exploits. Security firms also run similar

initiatives.

33

2.12 Considerations for developing a patch management strategy

2.12.1 Sources of patch information

Joshi (2013) indicates that various sources provide patches, information about

patches, as well as vulnerability information. These repositories include government

websites, technical blogs, security bulletins, software vendors, among others. By

their nature, these sources are unavailable and unused by automated vulnerability

management systems.

Most of the time, the internet is the first reference for information on software

vulnerabilities, exploits and attacks. More specifically, the information is found in text

at security bulletins, vulnerabilities databases, news reports, blogs and various chat

rooms and forums. Joshi (2013) explains that the unstructured nature of this text is a

limitation on the automation of vulnerability management, and presents an automatic

framework that enables the generation and publication of a Resource Description

Framework-linked data resource for vulnerability descriptions and other concepts

across the internet. Enterprise patch management is reliant on having a current and

comprehensive inventory list of all software that is earmarked for patching on each

host. This inventory should be as detailed as possible and should include which

software is installed to each host, and which version of the software is installed.

Keeping current with patches can be a challenging task. It is important to have

current information that will allow for quick decision-making with regard to patch

management. This could help with deciding which patches are critical, which are

merely ‘nice to have’, and which are unnecessary (Le Goues, Forrest & Weimer,

2013). Joshi (2013) claims that the collaboration of various information sources in a

machine understandable format can possibly prevent zero-day attacks. The Linked

Data Principles describe various web standards such as HTTP, Uniform Resource

Identifier (URI) and Resource Description Framework (RDF). These standards help

identify access, describe and interlink data on various sources (Joshi, 2013).

In order for an administrator to have a proper awareness of the problem,

administrators have to monitor numerous sources of information, as no single

reliable source is available (Joshi, 2013). Organisations running systems from

multiple vendors need to monitor the advisories of these vendors, typically by

subscribing to their organisation’s mailing lists or newsletters. Although some

vendors have taken the approach to automatically alert users, this only provides a

partial solution to the problem.

34

2.12.2 Roles and responsibilities

Roles and responsibilities need to be defined on an individual basis, and the roles

need to be explained from beginning to end to avoid confusion. A policy should state

who is responsible for monitoring and testing as well as patch deployment

alternatives. A monitoring team has a very critical function and their performance

can be the difference between a successful and ineffective patching strategy.

Effective monitoring will allow for patches to be tested as soon as they become

available to the public (Souppaya & Scarfone, 2013).

2.12.3 Vulnerability management

The process of rectifying vulnerabilities consists of the following: the correct patch

needs to be downloaded, tested and distributed for end-effected systems. Although

in the past these tasks were undertaken manually by system administrators, it is no

longer feasible to have these tasks undertaken manually. With the increase of the

number of vulnerabilities, and also the rate at which they are exploited, doing it

manually is not a sustainable approach anymore (Rinard, 2011).

Patch management forms part of a bigger and more broadly defined problem called

vulnerability management. Effective patch management should be a systematic and

repeatable process. Patching is necessary for security, but it is often difficult to

manage systematically. It is often the case where conflicting priorities have to be

balanced in order to minimise disruption to mission-critical systems (Liu et al., 2012).

Zhao et al. (2009) indicate that to achieve effective vulnerability management, the

system administrator should receive current information pertaining to new

vulnerabilities. Furthermore, this should be followed-up by applying any updates that

is relevant to their systems. If patches are not planned properly, it can easily cause

overload on the network if all devices try to download the same patch at the same

time. This can be addressed by staging the process in phases, relative to the

capabilities of the infrastructure such as network throughput and server capacity

(Souppaya & Scarfone, 2013).

2.12.3.1 Patch classification systems

The Common Vulnerability Scoring System (CVSS) and the Common Weakness

Scoring System (CWSS) both measure the relative severity of vulnerability. This

measurement is done in isolation and does address their overall impact. The

measurement systems also provide security professionals and vendors with a

35

standard method for assigning numerical scores to known vulnerabilities which are

listed in a public vulnerability database (Mell, Scarfone & Romanosky, 2007).

Adobe has rating systems, called the Adobe Rating System. According to Schryen

(2011), this system serves as a guideline for customers with managed

environments. The priority ranking is based on historical attack patterns, the type of

vulnerability, and the platform and potential mitigations that may be in place.

According to Adobe, a Priority 1 is defined as an update that resolves a vulnerability

being targeted, or that may have a higher risk of being targeted. Adobe

recommends Priority 1 patches be installed with 72 hours of its release. A Priority 2

is defined as an update that resolves vulnerabilities that have been at elevated risk

in the past. Their recommended time for patching this vulnerability is 30 days. A

Priority 3 patch is defined as an update fixing vulnerabilities that have not been a

target for attack in the past. Adobe recommends that customers install this patch at

their own discretion (Schryen, 2011). Adobe also rates the severity of vulnerabilities

according to the following scale: Critical, Important, Moderate and Low. A critical

vulnerability is one that, if exploited, would allow native code to execute, potentially

without a user being aware (Mell, Scarfone & Romanosky, 2006).

Souppaya and Scarfone (2013) assert that for a patch management policy to be

effective, the CEO or owner of the organisation should approve the policy.

Furthermore, the policy should provide guidelines for the responsibilities, testing and

deployment procedures. The patch management program should be included in the

policy. Wang et al. (2010) propose a network security metric called k-zero-day

safety. They believe it is impossible to measure which unknown vulnerabilities are

likely to exist, and thus start with the worst-case scenario. Their metrics then count

how many zero-day vulnerabilities would be required to compromise a network

node. The larger the overall count, the more secure a network, which means the

likelihood of having more unknown vulnerabilities at the same time, on the same

network, should be lower.

Wang et al. (2010) claim to have validated this claim by applying it to the evaluation

of existing practices in network hardening through a series of case studies. This

metric would enable a direct measurement and comparison of the various security

solutions in place. Existing metrics typically assign a numeric score to a vulnerability

based on various attributes and known facts about the vulnerability. With that being

said, this is not feasible with zero-day vulnerabilities as no previous information is

known about the vulnerability. The metrics proposed by Wang et al. (2010) consider

36

the time and effort required by potential adversaries, as referenced in the Markov

model of various attack stages. Qian, Mao, Rayes and Jaffe (2011) claim that the

length of the shortest attack patch in terms of the number of exploits and conditions

is taken as a security metric for the measurement of the amount for security of

networks.

2.12.4 Testing

In the past, Microsoft and various other vendors have been known to release

patches that caused other problems such as blue screen errors or unexpected

system reboots. Testing is often considered the difference between a good patching

program and a company losing millions in revenue as a result of downtime. It is wise

to perform a phased approach when rolling out any software to a production

environment, regardless of what testing has been done in laboratories and virtual

environments. Deployment to the production environment always holds some form

of risk, but this risk can be minimised (Mell, Bergeron & Henning, 2005).

Naik and Tripathy (2011) emphasise the importance of testing. If vulnerabilities are

discovered in the testing phase, they can be fixed before the software is released.

McQueen et al. (2009) argue that the early discovery of vulnerabilities does not

implicitly lead to them being patched. It is occasionally believed to be more

expensive to rewrite the code and is not considered cost effective.

One of the biggest challenges in patch management is the process of testing

patches before they are deployed. With too little testing you run the risk of

unexpected behaviour in the production environment, but with too much testing, you

increase the windows of exposure, thus increasing the risk of the exploitation of

vulnerabilities. Furthermore, it remains critical to test patches before they are

deployed to ensure the stability of new patches in the current environment.

Organisations might not have adequate testing facilities available, and it can

contribute to the fact that this function is often omitted. Organisations may lack the

personnel needed to test patches (Le Goues et al., 2013).

Ideally, an organisation would deploy all new patches immediately as it is released

to minimise the time that systems are susceptible to specific weaknesses. However,

in reality, this is seldom possible because organisations have constrained

resources, which call for patches to be prioritised in order of importance. There is a

significant risk in installing patches that have not been tested, as they could result in

operational disruptions and potentially do more harm than good. Souppaya and

37

Scarfone (2013) acknowledge that testing patches is a time-consuming task and

places even more strain on company resources. In patch management,

prioritisation, timing and testing are often in conflict.

After patches have been tested and are ready to be distributed, the system

custodians should document proposed changes to the system, as well as results. If

any incidents occur, they should be documented along with the solution that

resolved the issue. The testing of mission critical or business applications should be

done during office hours in case something goes wrong so that disaster recovery

tasks can easily be implemented. The maintenance window should always allow

enough time for a possible rollback (Souppaya & Scarfone, 2013).

VMware provides a cost-effective method to build a test laboratory. This method,

however, only allows for OS compatibility testing and does not account for hardware

variables at all. Although this method of testing is incomplete, it is still better than

having no test environment at all. A full backup is vital before the deployment of any

patches to production environments (Yu, Han, Schneider, Hine & Versteeg, 2012).

Deployment procedures rely heavily on the monitoring and testing guidelines that

are established by the patch management policy. Some companies still do patch

installation manually, and although there are benefits to this method, at some point

in time, the cost could outweigh the benefits (Souppaya & Scarfone, 2013).

2.13 Chapter summary

This chapter reviewed the literature from a software and data security perspective. It

became evident that the user community often does not apply patches immediately

for a variety of reasons. Some of the reasons include that fact that patch

management is likely to add some form of complexity to an environment. The

importance of a patch management policy was noted, as patch management forms

a critical part of the overall security of an organisation. Infrastructural limitations

such as available bandwidth were considered, and should be kept in mind when

designing a patch management policy. All risks related to patch management should

be identified upfront, as this can add to the complexity of patch management at a

later stage.

Different software platforms require different approaches toward patch

management. For example, high availability systems such as emergency contact

centres and online baking systems poses a challenge to patch as they generally

38

cannot be rebooted or shut down without significant consideration and a valid

reason. A link between patch management and data security was noted, as it

appears that an unpatched environment is more likely to be compromised.

Software vendors typically do not support legacy applications and this poses a risk

for organisations that rely on legacy applications and systems. Windows XP is a

well-known example of this scenario where non-vendor supported software remains

in use, despite there being no official software patches released for it.

The importance of testing emerged, specifically the challenges around a test

environment and the limitation of resources. Organisations often have constrained

resources, and patch management may not be correctly prioritised. There is no

centralised source of patch information. This implies that organisations have to

subscribe to different vendors’ newsletters and websites for patch releases and

information.

The following chapter will discuss the research philosophy, the research approach,

data collection and ethical consideration in greater detail.

39

3 CHAPTER THREE: RESEARCH DESIGN AND METHODOLOGY

3.1 Introduction

According to Welman, Kruger and Mitchell (2005), research methodology considers

the logic behind the research methods applied, as well as the research process and

the decisions that led to those processes being followed.

This chapter discusses the chosen research methodology and design. The research

philosophy and research strategy are discussed. Various data collection and

analysis methods are considered, and ethical considerations are presented. The

chapter concludes with a summary of the research methodology.

The objective of the study is to identify some of the challenges organisations face

when implementing patch management and to determine how patch management

affects enterprise data security, and the challenges faced by organisations with

multi-vendor systems.

The aim of this study is to explore the challenges preventing organisations from

proactively implementing patch management. The problem is viewed from the

perspective of the participants by means of interviews with key role players.

Awareness of the context in which the research occurs is maintained at all times.

The empirical basis of this case study is an organisation located in Cape Town.

Convenience sampling was used to select the case. Neuman (2011) describes

convenience sampling as sampling that has availability and convenience as the

main criteria for selection.

Fossey, Harvey, McDermott and Davidson (2002) state that it could be beneficial for

the researcher to assume an evolving understanding, and then design the research

strategy accordingly. The afore-mentioned approach allows for some flexibility in the

research. Noor (2008) claims that the choice of which research methodology to

employ is largely dependent on the complexity of the research problem. Morgan and

Smircich (1980) support this notion and assert that the actual suitability of the

methodology is derived from the nature of the phenomena to be studied.

According to Noor (2008), there are two methodological traditions within social

science research: positivism and post-positivism. Noor (2008) explains positivism as

an approach to the construction of knowledge by means of research that

emphasises the model of natural science. Post-positivism is described as a

40

methodology where a reality is socially constructed, instead of it being objectively

determined. The task of the social scientist should not be solely to gather facts and

establish how often certain events occur, but should rather be to appreciate the

different constructions and meanings that people place upon their experience.

According to Yin (2013), a typical assumption is that the research report should

present the data and then carry out the analysis. This is a linear sequence and

mimics the reporting of most quantitative research methods. The choice of data

collection procedures should be guided by the research questions and the choice of

design. The case study approach often combines data collection methods such as

archival research, interviews, questionnaires and observation. The choice of the

data collection method is also subject to constraints of time, finances and access

(Meyer, 2001).

Eisenhardt (1989) states that focusing on a single case forces the researcher to pay

special attention to the case. On the other hand, a multiple case study might help to

strengthen the findings from the entire study. This is consistent with the view of Yin

(2013), asserting that the researcher should decide whether or not to use theory

development to help select the case and develop a data collection protocol and

organise initial data analysis strategies. Gerring (2004) is of the same view that a

good case study involves defining the case and justifying the choice for single or

multiple cases. According to Yin (2013), the goal of the researcher is to choose a

good case study and to collect, present and analyse data fairly. For the purpose of

this study, a single case study was conducted.

3.2 Research philosophy

3.2.1 Ontology

Ontology is described as a system of belief that reflects an understanding of an

individual about what constitutes a fact, and reflects “the belief in a pre-existing

empirical reality” (Hirschheim & Klein, 1989:1207). Neuman (2011) describes

ontology as unambiguous specifications of a shared conceptualisation. It thus

contains the type of object or concept that exists, as well as their containing

properties and relations.

Ontology is concerned with the question of whether social entities need to be

observed as subjective or objective. Subjectivism and objectivism and can therefore

be seen as two important components of ontology. Objectivism is an ontological

41

view that social phenomena and their meanings have an existence that is

independent of social actors.

The nature of this research assumes no one single truth or understanding about

how organisations currently manage their patch deployment process (subjectivism).

Real-life conditions were explained in the context in which it exists, and in the

process objective knowledge is produced. Therefore a subjectivism approach was

best suited and chosen for this research.

3.2.2 Epistemology

3.2.2.1 Interpretivist

Interpretivism integrates human interest in the study and is usually focused on

meaning, and may employ multiple methods in order to gain insight in different

aspects of the issue. Interpretivism is an ontological position which asserts that

social phenomena and their meaning are continually being accomplished by social

actors.

Within the interpretivist paradigm, findings and knowledge is created as the research

progresses. The findings emerge through dialogue in which interpretations are

negotiated. Pragmatic and moral concerns are important, therefore sufficient

consideration was given to ethical issues. Furthermore, all interpretations are based

in a particular context and time, and always remain open to reinterpretation and

negotiation. Therefore, this research follows an interpretivist stance.

3.2.2.2 Positivist

According to Welman et al. (2005), the positivist seeks to expose general laws of

relationships, which considers all the people all of the time. Research design can be

viewed as the blueprint for achieving a research objective and answering the

research questions. The process of selecting the research design can be

challenging, due to the number of methods available (Blumberg, Cooper &

Schindler, 2005). Bearing this in mind, the researcher decided to use a single case

study method, and interviews with relevant participants were conducted.

3.3 Research approach

Johnson and Onwuegbuzie (2004) define qualitative research as a type of scientific

research that seeks to answer a question by gathering proof, producing findings and

using systematic approaches. In addition, qualitative research seeks to understand

a given research problem from the perspective of the affected research population.

42

According to Bryman (2006), research methods are identified in the pursuit of

obtaining answers to the research questions. By doing so the researcher is able to

address the research problem in a logical manner by using facts that can be verified.

With this in mind various types of research methods were utilised. These included

interviews as well as findings and ideas from previous studies.

Qualitative research allows for the in-depth analysis of problems and produces

descriptive data. An example would be someone’s opinion in an interview.

Qualitative research seeks to gain an insider’s view of the phenomena under

investigation by probing participants to share their experiences. Interviews were

conducted with a selected group of participants who are involved in the current

patch management process, and information was obtained, such as current

challenges, recommendations and past experiences.

Qualitative research collects information that is typically not in numerical form;

therefore, qualitative data is harder to investigate than quantitative data because it

deals with different views, opinions, feelings and experiences. The quantitative

researcher views the world as predicable and being of a single truth. The nature of

this research is empirical and the research has taken an objective approach towards

the research problem. Due to the nature of the research a quantitative research

approach was adopted.

Quantitative research methods are primarily concerned with techniques that analyse

numbers, or with the results of numerical processes. Quantitative methods may

include laboratory experiments, surveys, numerical methods and formal methods.

Qualitative research methods as those methods that generate data that is not in

numeric form, such as words and images. These methods allow the researcher to

capture what the participants wish to express, as opposed to having them tick pre-

determined responses.

Rich and detailed descriptions of specific events were used. Given the nature of the

research, a qualitative approach was adopted. Neuman (2011) describes qualitative

research as an approach that is concerned with analysing, recording, and

attempting to uncover deeper meaning in things such as human behaviour and

experience. These may include opposing behaviours, beliefs and emotions.

43

Figure 3.1: Four paradigms for the analysis of social theory

(Source: Burrell & Morgan, 1979:22)

Burrell and Morgan (1979) present four research paradigms as depicted in figure

3.1. According to Cronjé (2012), in order to achieve each of the four research

paradigms, two questions should be answered. The first research question is: “What

causes the management of software patches to be complex?” Through attempting to

answer this question, the current generic and specific challenges facing

organisations with regard to patch management became evident. The first research

question highlights the importance of patching, and the consequences of failing to

manage the patch process efficiently. The second research question is: “How do

organisations implement patch management in order to enhance enterprise data

security?” This research question highlights the components that should go into a

patch management policy. This question will also explain the benefits an

organisation can obtain from an integrated patch management framework. A single

in-depth case study (as opposed to a surface-level study of numerous cases) was

conducted.

Holloway and Wheeler (2013) indicate that qualitative research enables a holistic

perspective. Qualitative research should thus assume that a whole phenomenon is

under investigation. Ritchie, Lewis, Nicholls and Ormston (2013) add that qualitative

research typically incorporates an emergent design. The whole research design

process cannot be determined upfront. Further understanding has evolved as the

research progressed, and certain data collection and analysis techniques have led

to further collection and analysis activities.

A qualitative approach is applicable for this study because it explores a

phenomenon. The research instruments are flexible and the research methods allow

44

for the use of focus groups, semi-structured interviews and participant observation

(Cohen & Crabtree, 2006). In this study, Interviews and the literature was used.

Qualitative research is descriptive as it focuses on describing and understanding a

phenomenon, and therefore is best suited to this study. Descriptions may include,

but are not limited to, the context, participants, activities and processes (Holloway &

Wheeler, 2013).

This research is concerned with “what” and “how”. The research questions are:

“What causes the management of software patches to be complex?” and “How do

organisations implement patch management in order to enhance enterprise data

security?” According to Denzin and Lincoln (2000), qualitative research also involves

fieldwork. This implies direct contact with participants involved in the phenomenon in

the natural setting of the phenomenon.

According to Kitzinger (1994), qualitative methods allow for greater freedom in terms

of the interaction between the participant and the researcher. Open-ended questions

were used most frequently. According to Kawulich (2005), open-ended questions

have the ability to produce meaningful data that may have been unanticipated by the

researcher. The data is often considered rich and exploratory. Denzin and Lincoln

(2000) explain that qualitative research implies an importance on processes and

meanings that do not involve a rigorous examination process; it is often not

measured in terms of quantity, frequency or intensity. This method is for researchers

who are interested in insights, discovery and interpretation rather than the testing of

a hypothesis.

Benbasat, Goldstein and Mead (1987) state that in the design phase of case study

research, the researcher should define the case that is being studied. Yin (2013)

claims that a virtue of using case studies is the ability to redefine the “case” after

early data collection. This could, however, require the research to backtrack in some

ways (for example, reviewing slightly different literature and perhaps reconsidering

the initial research questions). The researcher came to the conclusion that a

qualitative approach would be best for describing and understanding the processes

and activities involved in the patch management process.

3.3.1 Inductive

Qualitative research acts on inductive logic with no pre-determined frameworks, and

the aim is to improve understanding of human behaviour. Inductive research

produces descriptions of how and why people do what they do, and enables the

45

researcher to advance their understanding of a particular phenomenon or process.

The research therefore does not gather data to support preconceived hypotheses or

theories.

In an inductive approach, a researcher begins by gathering data that is applicable to

the research topic. Once adequate data have been collected, the researcher looks

for patterns in the data. In an inductive approach, it is common practice for the

researcher to start with a set of observations and then move from specific

experiences to more general propositions about those experiences. This research

followed an inductive research approach.

3.3.2 Deductive

Quantitative research acts on deductive logic and the conceptual framework is clear;

it seeks to substantiate what is right or wrong with human behaviour. It is common

for a deductive approach to start with a hypothesis, while an inductive approach

generally starts with research questions in order to guide the scope of the study.

With inductive approaches the aim is generally focused on exploring a new

phenomenon or looking at previous studies from a different viewpoint. Inductive

approaches are normally associated with qualitative research, while deductive

approaches are usually associated with quantitative research. The deductive

approach starts with a social theory.

3.4 Research strategy

3.4.1 Case study

Eisenhardt (1989:534) defines a case study as “a research strategy which focuses

on understanding the dynamics present within single settings”. According to Yin

(1981), an exploratory case study focuses on “what” questions. The setting of this

study is a single case study focusing on the integration of software patch

management and enterprise data security. Yin (2013:13) defines a case study as an

“empirical enquiry that investigates a contemporary phenomenon within its real-life

context”. The boundaries between the phenomenon and the context may not be

clearly evident.

A single case study is described as a variant of a case study that includes one

observation of the phenomenon (Stake, 2013). The phenomenon is investigated

within the company across three different domains. The issue of patch management

46

was considered from a head-office perspective, a stores perspective and a server

perspective.

According to Stake (2013), a case study can be useful when the opportunity to learn

is considered important. A case study provides a method of enquiry for in-depth

investigation of a phenomenon; hence it is the method of choice for this study. Given

that patch management is a complex technical and managerial process that is

comprised of various activities, participants and processes, the case study method

was well justified for this study.

The case study employed various methods of data collection and analysis, such as

interviews, official company documentation reviews and literature review. The

primary source of information was interviews with relevant participants. Stake (2013)

highlights the importance of setting boundaries for the case. A time boundary should

be set indicating the beginning and end of the case. The authors maintain that

setting boundaries for the case is also known as the process of conceptualisation.

Noor (2008) states that a case study is not intended to study a complete

organisation, but rather to focus on a specific issue, or unit of analysis. In this

research, the researcher focuses specifically on the issue of patch management and

how it affects enterprise data security. In order to examine and understand the patch

management process, the researcher has decided to do an in-depth single case

study. This method enabled the researcher to understand the complexities of patch

management process activities as they are experienced in a real-life context. The

disadvantage of case studies is that they are not scientifically rigorous in their

methodology and do not address the issue of generalisability. The author further

states that a case study approach also has its strengths, in that it enables the

researcher to gain a complete view of a certain phenomenon, and it can provide a

complete picture as many sources of evidence can be used. Shavelson, Phillips,

Towne and Feuer (2003) assert that the case study method is vital when the

research aim is to address a descriptive question such as “what” or an explanatory

question such as “how” and “why.” The case study method assisted the researcher

to make direct observations and allowed for data to be collected in a natural setting,

as opposed to relying on derived data. Gummesson (2007) argues that one

advantage of a case study is the opportunity for a holistic view of the process.

Meyer (2001) claims that a case study is a loose design that requires that several

design choices be made. The first consideration is to decide how many cases to

47

include. The cases should be sampled and the researcher then decides on a unit of

analysis. The second consideration is to decide if it should be a single or multiple

case studies. Meyer (2001) further states that in a case study, the researcher has

the choice of an all-inclusive design or an embedded design. While a holistic design

examines the global nature of the phenomenon, an embedded design focuses on

sub-units. This research adopted an embedded design.

The case study method is often used to add to knowledge of an organisation, group

or individual, or of a social or political phenomenon. This method is often used in

disciplines such as sociology, psychology, political science, social work, community

planning and business. The need for case study research arises mainly out of the

need to understand complex social phenomena. The case study method allows the

researcher to investigate and retain a holistic view of actual events.

According to Yin (2013), “what” and “how” questions are more explanatory and are

likely to lead to the use of case studies, histories or experiments as the research

strategy of choice. “What” and “how” questions are the focus of this study. According

to Cronjé (2012), the research questions posed by the researcher determine what

quadrant the research resides in. Considering the research questions within this

study and keeping in mind the interpretation presented by Cronjé (2012), this

research falls within the interpretive domain.

A common concern with case studies is that they provide very little basis for

scientific generalisability. It is often the assumption that one cannot generalise from

a single case (Flyvbjerg, 2006). Yin (2013) responds to this issue by saying that

case studies, similar to experiments, are generalisable to theoretical propositions,

but not necessarily to populations of the universe in general. According to Yin

(2013), proof for case studies may come from a variety of sources such as archival

records, documents, participant-observation, interviews, direct observation and

physical artefacts.

According to Flyvbjerg (2006), the case study produces context-dependant

knowledge which allows individuals to develop from a rule-based beginner to a topic

expert. Context-dependant knowledge and experience is at the very core of expert

activities; hence the case study can also be seen as a generator of such knowledge.

Flyvbjerg (2006) claims that Harvard University is among the few universities in the

world that have adopted the notion of context-dependent learning, thus promoting

the use of case studies as a research method. The case study method should not

48

be used in the hope of proving anything, but rather in the hope of learning

something.

This research is based on a single case study at a retail organisation. The

organisation was chosen because of convenience and because the organisation is

representative of the research problem.

3.5 Data collection

Bryman (2006) states that with qualitative research, the primary instrument for data

collection should be the researcher. Qualitative research thus assumes that

collected data is mediated directly by the researcher. Qualitative research should be

inductive and focus on discovery, in order to aid in understanding. This research

does not start with a hypothesis or a preliminary conceptual model. Instead various

techniques were used for data collection and these will then be analysed using an

inductive approach. Bearing all this in mind, a qualitative research approach was

adopted for this study.

A good case study benefits from having several sources of proof. While collecting

case study data, the main idea is to triangulate converging lines of evidence to make

your finding as vigorous as possible. Yin (2013) states that case study research can

include both qualitative and quantitative data. The evidence in a case study should

be presented with adequate clarity to allow the audience to judge independently of

the researcher’s understanding of the facts.

Meyer (2001) indicates that when a researcher relies on interviews for primary data,

the issue of trust becomes a crucial factor. During the research process, the

researcher personally approached each participant and explained the research aims

and objectives. This was followed up with a formal meeting request. Interviews

should be of an open-ended nature through which key respondents are asked about

a specific matter, and also their opinions about certain events. The respondent can

suggest other persons who should be interviewed, as well as other sources of

evidence (Yin, 2013). This is a method the researcher employed within the research

instruments, by making last interview question the following: “Thank you for your

time. Who else would you recommend I speak to?” By doing this, the researcher

achieved some form of triangulation because eventually no more new names came

up.

49

Yin (2013) indicates that using recording devices is largely subjected to personal

preference, but admits that audiotapes provide a more precise version of the

interview than most other methods. According to Yin (2013), recording devices

should not be used in the following instances:

 When an interviewee refuses permission of the use of a voice recorder

 When there are no plans to transcribe an interview

 When the recording device itself creates a distraction in the interview

 When the recording device is considered an alternative for listening during

the interview

As none of the above was the case in this study, the researcher used a recording

device because there was a deliberate intention to transcribe the interviews. The

researcher obtained written permission from each participant prior to the interview

process. Furthermore, the recording device is small and easy to use, so no

distractions were caused during the interview. By using a recording device, the

researcher was able to focus all attention on asking the questions, listening to the

responses, and probing the interviewee as and when required.

3.5.1 Sampling

Sampling can be seen as a cost-effective method of collecting data when the

research sample is too large to study the entire sample. The size of the sample was

determined by choosing representatives from each of the departments involved. The

research sample is depicted in Appendix E. According to Neuman (2011) the main

source of sampling is specific cases that could deepen the researcher’s

understanding of the phenomena being studied. In this case the phenomenon was

the integration of software patch management and enterprise data security.

The case study organisation is located in Cape Town. Convenience sampling was

used to select the organisation. Neuman (2011) describes convenience sampling as

having availability and convenience as the main criteria for selection. The selection

of interviewees was informed by the literature, and included personnel from the

server team, internal audit, system administrators, security personnel and enterprise

architecture. Purposive sampling was used to select interviewees. Purposive

sampling is described as “the most common sampling technique”, where “the

researcher actively selects the most productive sample to answer the research

question” (Marshall, 1996: 523). Snowball sampling was used to identify participants

who were not explicitly identified in the literature, and yet were connected to the

patch management process either directly or indirectly in this particular case.

50

Participants may not know each other, but information obtained from one may lead

to the next.

Purposive sampling is described as a data collection method whereby the

researcher identifies additional data required, as the study progresses and

understanding emerges. According to Bock and Sergeant (2002:241), “two

objectives are at the heart of purposive sampling: ensuring that all relevant types of

people are included in the sample, and changing the sample structure during the

research process”. Purposive sampling is better described as qualitative enquiry and

is based on informational considerations as opposed to statistical considerations.

Quota sampling is considered to be a type of purposive sampling. The size and

characteristics of the research sample is determined upfront during the design

phase. Snowball sampling is when current participants refer the researcher to other

people who may possibly be able to contribute in the study (Marshall, 1996).

Purposive sampling was used in this research as a sampling method. The roles of

respondents were initially suggested by the literature and expanded as the research

progressed.

3.5.2 Unit of analysis

Neuman (2011:69) describes unit of analysis as the “units, cases, or parts of social

life that are under consideration”. The unit of analysis for this study was the patch

process within the organisation. The patch process was researched by means of

conducting interviews and reviewing company documents such as the information

security policy and the patch management policy.

3.5.3 Unit of observation

The unit of observation is the level at which data was collected. In the case of this

research it was the people within the organisation who play a role in the current

patch management process. Within the company, affected departments were

identified: the Head Office environment, the Server environment and the Store

environment. The people within these respective environments were the units of

observation.

3.5.4 Interviews

Various methods can be used to conduct research, such as interviews, user

observation, focus group and ethnographic interviews. For the purpose of this study,

Interviews were used as the method of data collection. The author was the primary

51

data collection instrument, and used an interview guide (see Appendix F) that lists

the interview questions in the sequence it was asked of interviewees. The

researcher reserved the right to ask additional questions for clarification. With the

necessary consent from the participants, the interviews were recorded. Information

obtained from these interviews was analysed. The recorded interviews were

encrypted with Microsoft Bit Locker and stored on Google Drive. Only the

researcher, academic supervisor, academic co-supervisor and transcription analyst

have access to the interview recordings.

In-depth interviews are ideal for collecting data on individual people’s histories,

perspectives and experiences. In qualitative research, the type of data generated

includes field notes, audio, video and transcripts. Interviews were selected as the

primary data-gathering instrument. Interview questions were carefully designed to

address all research questions and sub-questions that were not adequately

addressed by the literature. The questions were piloted with a participant in the

presence of the research supervisor. The purpose of the pilot interview was to

identify ambiguities, clarify the wording of the questions, test the order of the

questions and determine whether certain questions should be added or omitted.

Information was collected with the help of various information technology

professionals, who agreed to be interviewed. The interviewees included staff

members from the following departments: information security, desktop support,

server support, store support, internal audit and enterprise architecture.

3.5.4.1 Semi-structured interviews

All interviews were voice recorded with the written permission of the participants.

The reasons for recording the interviews were to: i) maintain a high level of accuracy

and richness of data; and ii) for the researcher to focus his undivided attention on

asking the questions and probing the participants as and when required. All

interviews were transcribed, which allowed for in-depth analysis of the data.

According to Meyer (2001), the goal of interviews is to see the research topic from

the perspective of the interviewee and to understand how the participant came to

have this view. To achieve this goal, King (1994:16) claims that interviews should

have a “low degree of structure”. These are called semi-structured interviews. The

questions should be predominantly open-ended and should focus on specific

situations in the world of the interviewee, as opposed to abstract and general

opinions.

52

When structured interviews are conducted, the analysis process is relatively

straightforward. All the different responses to a question can be grouped together.

Semi-structured interviews are useful when the researcher is trying to explore a

variety of points of view and does not want to be limited to a specific schedule (Berg

& Lune, 2004). For the purpose of this research, Interviews were semi-structured. A

basic set of open-ended questions was used. The researcher reserved the right to

ask additional questions for clarification. Information obtained from these interviews

was transcribed and analysed. Semi-structured interviews were used.

Participants were provided with a copy of the research guide before the time, in

order to familiarise themselves with the interview questions, enable them to opt out

should they feel they may not be able to contribute to the topic, or to choose not to

participate in the research.

3.5.4.2 Interview guide

All respondents were asked the same questions, in the same sequence and no prior

predictions were made in terms of possible responses. Purposive sampling was

used to select participants for the interviews. The interviews played an important

role in the data collection process. The research guide included open- and close-

ended questions in order to gain a deeper understanding of the phenomena under

investigation. The interview guide was used to direct the conversation in the

direction of the topics that would be of relevance towards the research. Table 4.1

maps the research sub-questions to the corresponding interview questions (see

Appendix F for a copy of the interview guide).

3.5.5 Summary of data collection

This section outlines the data collection methods and approaches adopted in the

study. Data was collected in textual form from the literature and official company

documentation. Company documents helped with verifying some of the findings in

the interview, and initially assisted with the development of the interview guide.

Primary data was collected with the interview method. Semi-structured interviews

were conducted in order to maintain a certain level of flexibility. All interviews were

voice recorded, with the written permission of each participant, to maintain a high

level of accuracy. Recorded interviews were then transcribed for further analysis.

3.6 Data analysis

Yin (2013) asserts that analysing data can often be the most troublesome process.

This is because of false expectations that the data will speak for itself. Yin (2013)

53

refers to what he calls the “reverse” lesson; the researcher will realise that the key

fundamental assumptions for later analysis are made at the beginning stages of the

case study. Yin (2013) further states that case study analysis can rely on several

methods, the usage of which might be expected during the initial design of the case

study. The analysis can be presented during a case study as one gradually builds

an argument that addresses the research questions. Furthermore, the report does

not have to follow any particular form. The opportunity therefore exists to compose a

case study that can be more exciting and allow for more creativity to report the

findings, than with other methods.

Data was collected in textual form from the literature and interviews (transcripts).

Collected data was never converted into numeric form for statistical analysis;

therefore, a qualitative research approach was used. Document analysis was used

to analyse organisational documents such as policy documents, change control

documents and release management documents. Content analysis was used to

analyse interview transcripts (Xu & Croft, 1996).

Hermeneutics refers to the theory of interpretation. Myers (1997:10) explains that

“hermeneutics is primarily concerned with the meaning of a text or text-analogue”.

Ideas are nested in historical, linguistic and cultural categories of meaning. It

maintains that a problem can only be genuinely understood through a solid

understanding of its origin. This can be better explained as the theory of

understanding text. This research considered various company documents such as

policies and frameworks. Hermeneutics was a useful method to analyse the content

in both organisational documents and interview transcripts.

All interviews were voice recorded with the permission of the respondents to ensure

an accurate account of the conversation and to prevent data loss. Recordings are

stored on Google Drive, where only the research supervisor and the researcher can

access the recordings. All recordings were labelled with sufficient metadata to

streamline the data collection process.

Documentary evidence is useful as a method to verify information that was collected

in interviews, given the fact that what people say may differ from what they do.

Documents also provide guidelines for assisting the researcher with questions for

the interviews. Only official company documents were used. According to Noor

(2008), examining a number of sub-cases enhances the validity, accuracy and

54

reliability of the results by capturing an all-inclusive essence of the topic that is being

studied.

The researcher should be concerned with the correctness of the document. The

most important use of documents is to verify evidence from other sources. The

correct spelling of a name and job title is an example of the type of information that

can be corroborated in organisation documents. If documentary evidence is

contradictory rather than corroboratory, the researcher needs to conduct further

research into the topic (Yin, 2013). Archival records were used to a small extent,

and included organisational charts, as this helped with identifying the initial list of

participants.

This is considered one of the most important sources of evidence in a case study. It

is best practice for interviews to be guided by conversations, rather than structured

queries. According to Yin (2013), the researcher has two jobs: firstly, to follow the

researcher’s personal line of enquiry as echoed by the case study’s research

methodology, and secondly, to ask interview questions in an impartial manner that

also serves the original line of enquiry.

Triangulation is the rationale for using numerous sources of evidence. The use of

only one source of evidence is not recommended for case studies, as one of the

major strengths of the case study method lies in the opportunity to use many

different sources of evidence. There are four common types of triangulation:

investigator triangulation, data triangulation, methodical triangulation and theory

triangulation. Data triangulation is often the most relevant one in terms of case

studies. This encourages the researcher to collect information from several sources

with the aim of verifying the same phenomena (Yin, 2013). According to Yin (2013),

when pursuing a corroborating strategy, it is important to note that true triangulation

occurs when facts about a study have been supported by more than one source of

evidence.

3.6.1 Transcribing

King (1994) asserts that various studies collect data in audio and textual form. In the

case of this study, data was collected in audio format during the interviews. The

researcher acquired the services of a transcriptionist to transcribe the interviews. A

non-disclosure agreement (see Appendix H) has been signed by the transcriptionist,

as the transcripts contain the name of the organisation and the names of certain

interviewees. All transcripts were verified by the researcher to ensure that it is an

55

accurate representation of the interview recording. The process was repeated until

all transcripts had been verified. For examples of three transcribed interviews, see

Appendix A. All other interview transcripts are available on request.

3.6.2 Coding

Latent coding is where the researcher would look for the underlying meaning in the

text (Neuman, 2011), and was used in this study. The researcher read transcripts

several times in order to identify common ideas, themes and phrases. Identified

statements were then highlighted as depicted (see Appendix B). A complete list of

coded transcripts is available on request.

3.6.3 Thematic analysis

All identified themes that became evident during the study, were recorded. These

themes provided the basis for the findings of the study and were used as input data

to create the final output. The themes were first divided into two main categories:

those obtained from interviews and company documents, and those obtained from

the literature. These categories were then further divided into main themes and sub-

themes. The themes were explored and summarised into a set of key themes, which

formed the basis for the discussion of results in Chapter Five.

One of the objectives during qualitative data analysis is the task of identifying

themes. The unstructured themes can be found in Appendix C and the structured

themes can be found in Appendix D. Themes are discussed in more detail in section

4.10.

3.6.4 Categories

The first stage of data analysis is to eliminate errors from the collected data. After all

errors have been removed, the latent coding technique was applied in this study.

After this process, themes were identified and categories were coded accordingly

(Vaismoradi, Turunen & Bondas, 2013).

Similar phrases and statements were grouped together to reduce the amount of

data that required analysis in the data analysis process. All identified themes were

initially divided into two main categories: those obtained from interviews, and those

obtained from the literature. The main themes are used for categorising analysed

data. These categories were then further categorised together based on similarity of

statements.

56

3.7 Ethics

Each participant was contacted in advance to explain what the research was about

and to ask if they would be interested in participating. The participants were able to

withdraw at any time; even after the interviews they had the right to request that

their interview be discarded. All recorded interview files and transcription documents

were kept in a safe location. Interviewees were presented with a consent form (see

Appendix G) that had to be signed.

According to Neuman (2011), most ethical issues involve the balance of the value of

the quest of scientific knowledge, and the rights of participants being studied. All

participants involved were made aware of the research objectives and aims. In order

to avoid conflict of interest between the research participants and the researcher, a

proviso was added to the “permission to do research” document. This point states

that the organisation remains anonymous and whatever discoveries were made can

only be published if permission is granted by the organisation. This condition was

stipulated by the organisation.

All interviews were recorded with permission from the participant. Participants were

informed that only the researcher, academic supervisor, academic co-supervisor

and transcription analyst have access to the interview recordings. Permission would

be obtained from the participant first in the event an external person requests

access to the recordings. All recordings were encrypted using encryption software

and stored on Google Drive.

The research consisted of a single organisation as the case study. The aim and

objectives of the research were presented to the organisation and formal permission

was obtained from the Chief Information Officer (CIO) of the company before

conducting the research. The organisation is referred to as ‘the company’ in order to

maintain anonymity. The following ethical principles were applied to the research:

 Informed consent: Before the interview, participants were presented with a

full information sheet containing all ethical issues relevant to the study.

Participants were thereafter presented with the consent forms. They were

also made aware that they could change their mind at any time, even if

consent forms had already been signed

 No pressure on individuals to participate: No incentives were provided to

persuade participants to participate

57

 Respect of individual autonomy: Participants maintained their freedom to

decide what to do. Even though they signed consent forms, they could

change their mind at any time, without providing an explanation

 Avoid causing harm: The research should not cause conflict and animosity

among competitors and colleagues. The research process was transparent,

open and honest

 Maintain anonymity and confidentiality: The identity of the organisation is

anonymised. A realistic degree of anonymity is promised, according to the

level afforded by the researcher. Participants need remain in control of the

disclosure of their identity and also their contribution to the research

3.8 Chapter summary

The nature of the research assumes that there is no single truth or understanding of

how patches are currently managed within organisations. The research

methodology in this study required the gathering of data from both primary sources

and secondary sources. The setting of this research is a single case study that

focuses on the integration of software patch management and enterprise data

security. The unit of analysis for this study was the patch process within the

organisation. The patch process was researched by means of conducting interviews

and reviewing company documents such as the information security policy and the

patch management policy.

The first step in the research process was to develop an area of interest and define

the research topic. This was followed by a brief literature survey and various

discussions with professionals in the field of information technology, as well as the

research supervisor. This was useful in gaining an early understanding of the

research problem that needed to be explored. After the idea was formulated and

documented, it was presented and defended at a formal meeting known as the

Faculty Research Community (FRC) at CPUT.

Convenience sampling was used to select the case; purposive and snowball

sampling were used to select interviewees. Interviews were used and an inductive

research approach was followed. The interview recordings were transcribed, and the

transcripts analysed with the coding method.

The research design and methodology was discussed in this chapter. Various data

collection and analysis methods were considered, and a single case study method

was selected for this study. Interviews and document review was used as data

58

collection methods. The difference between quantitative and qualitative research

was explained, as well as the reason for using a qualitative approach. The ethical

aspect of the study was discussed in detail, and the chapter concluded with a

summary of the research design and methodology. The next chapter will present the

data collection and preliminary data analysis.

59

4 CHAPTER FOUR: DATA COLLECTION AND PRELIMINARY DATA ANALYSIS

4.1 Introduction

The previous chapter described the research methodology that was adopted in this

study. This chapter considers the data collection process that relied on interviews, a

literature review and a document review of certain company documents. These

documents included the organisation’s information patch management framework

and patch management policy. For the convenience of the reader, table 4.1 maps

the research sub-questions to the corresponding interview questions.

Table 4.1: Research sub-questions and interview guide mapping

Research Sub-Questions Corresponding Interview Questions

1.1 What challenges do organisations

face with regard to patch

management?

 How familiar are you with the generic issues in Patch

management?

 How familiar are you with your company’s Patch

Management issues?

1.2 What challenges are created by a

multi-vendor environment?

 What are the problems associated with managing

patches from any external vendors?

 Are you are aware of any test procedure for patches

before they are deployed?

 How are patches prioritised within the organisation?

 How are patches acquired from different vendors?

1.3_What controls can organisations

implement in order to deploy the

relevant patches?

 Based on past experience, what incidents occurred as a

direct result of failing to properly manage patches?

2.1 How do organisations prioritise

patches for deployment?

 To what extent is patch management part of your job?

 What components would you like to see go into a patch

management policy?

2.2 How do organisations identify

patches best suited for their security

needs?

 What components would you like to see go into a patch

management policy?

 What are the problems associated with managing

patches from any external vendors?

2.3 Who are the key role players in

managing the patch deployment

process?

 Are you aware who the role players are in the patch

management process?

 Who do you think should be added or removed from the

patch management process?

 Who should develop the policy, implement the policy, and

police the policy?

60

4.2 Data collection

In-depth interviews were conducted with twelve participants spread across six

departments (also see section 3.4). The departments included operational teams,

enterprise architecture, information security, and internal audit. For a visual

representation of the interviewees and the departments they represent, see

Appendix E. Each participant was either directly involved in the patch management

process or represented a team that was involved in the process.

4.3 Document review

The purpose of the document review was to gain an understanding of the current

patch management process and structures in place within the organisation, and to

determine how familiar the various departments were with these two documents.

Furthermore, the patch management policy and patch management framework were

analysed using latent coding. Key themes were identified and this was primarily

used as input when designing the interview questions. The interview questions

addressed some of the issues that were not clear in the documents. Written

permission was obtained; the table of contents of both documents are presented in

figure 4.1 and figure 4.2 respectively.

Company documents were obtained from the organisation’s intranet with written

permission from the CIO, but with a disclaimer. The organisation stated that the

contents of the patch management framework and patch management policy

documents are considered private and for internal use only. The researcher was

allowed to review and analyse the documents, but not to explicitly divulge the

contents thereof as it contains confidential information such as the N-strategy that

would indicate to an outsider how vulnerable the organisation would be at any given

time, or the exceptions criteria that would indicate to an outsider what systems are

not patched at all. The organisation was anonymised and referred to only as ‘the

company’—this was a condition of the ‘permission to do research’ document.

61

Figure 4.1: Table of contents: the company’s patch management framework

Figure 4.2: Table of contents: the company’s patch management Policy

4.4 Description of case

The company is a large organisation located in Cape Town, with an ICT footprint

substantial enough to be representative of the research problem. The organisation

has three main operational divisions from a patch point of view, and each division,

62

due to their nature, has a different approach towards patch management. Figure 4.3

depicts the layout of the case at a high level.

Figure 4.3: High-level layout of the case organisation

The company has more than 15000 workstations and 750 servers. The environment

is segregated into a Head Office environment, a Server environment and a Store

environment. Below is a brief description of what each department is responsible for:

 Head Office: The head office team is responsible for the head office

workstations. These include windows workstations (operating systems

supported: Windows XP, Windows7, Windows 8 and Windows 10) as well as

Apple Mac workstations (operating systems supported: Yosemite and El

Capitan). The head office operational team is responsible for, among various

other functions, the patching of all head office workstations.

 Server Support: The server team is responsible for the entire server

infrastructure within the organisation (operating systems supported: Windows

Server 2003, 2008, 2012 and UNIX based operating systems). Services

supported on these servers include, but are not limited to, database servers,

exchange servers and web servers. The server team is responsible for the

upkeep and maintenance of all servers, and patching is included within their

responsibilities.

 Store Support: Store support is responsible for the upkeep and

management of all field workstations (operating systems supported:

Windows XP and Windows 7). These devices typically have bandwidth

limitations when compared to head office and server infrastructure. The store

support team is responsible for the maintenance of all field devices, and the

patching distribution and deployment to these machines is one of their

Head

Office

Servers Stores

The Company

63

functions. These machines are geographically dispersed across Africa and

rely on various technologies to connect them to the head office.

Technologies include, but are not limited to, ADSL, Metro Ethernet, and

wireless and fibre connections. The nature of these various technologies

adds further complexity to the patch management strategy.

As can be seen from the above descriptions, each environment has a different

hardware and software architecture. Therefore, it made sense to consider each

environment individually in terms of how the patch process was managed.

4.5 Research sample

Table 4.2 summarises the current job titles of the thirteen participants. The table

also includes the previous two job roles of each participant. The reason for

displaying table 4.2 is to assure the reader that all participants have adequate

experience and knowledge on the research topic and could potentially make a valid

contribution.

Table 4.2: Summary of current and previous job roles of participants

Interviewee (I) Current Job Role Previous Job Role 1 Previous Job Role 2

1 Head Office Manager IT Technical Specialist Service Desk Team

Leader

2 HO Technician 1 Desktop Support Analyst Junior Programmer

3 HO Technician 2 Infrastructure Specialist Desktop Support

4 Server Manager Unix Administrator Oracle Database

Administrator

5 Server Technician 1 Server Engineer Server Specialist

6 Server Technician 2 Team leader SQL Database

Administrator

7 Stores Manager Network Manager Team Leader

8 Stores Technician 1 Infrastructure Specialist Server Management

9 Stores Technician 2 IT Technical Specialist Server Engineer

10 Enterprise Architect 1 Development Architect Programmer

11 Enterprise Architect 2 Network Manager Programmer

12 Security Specialist Information Security

Specialist

IT Systems administrator

13 IT Auditor Desktop Configuration

Analyst

Desktop Support Analyst

64

4.6 Sampling

Sampling is covered extensively in Chapter Three, but for the convenience of the

reader a brief summary is presented here. Convenience sampling was used to

select the organisation. The selection of the role players to be interviewed in the

case study was informed by the literature, and included personnel from the

operational teams, internal audit, information security and enterprise architecture.

(see table 4.2 for a detailed description of each participant.) Purposive sampling was

used to select interviewees. Furthermore, snowball sampling was used to identify

additional participants who were not explicitly identified in the literature and yet were

connected to the patch management process either directly or indirectly.

4.7 Interview process

For the purpose of this study, semi-structured interviews were used as a method of

data collection. The interview guide lists the interview questions in the sequence that

the questions were asked (see Appendix F). With the necessary consent from the

participants, the interviews were recorded. The recorded interviews were encrypted

with Microsoft Bit Locker and stored on Google Drive.

4.8 Transcribing

In this study, written permission to record interviews was obtained from all

interviewees. All interview recordings were transcribed, and while this function was

outsourced, the researcher verified the accuracy of the transcripts afterwards.

Participants’ names were mentioned during the interviews, but the transcription

analyst signed a non-disclosure agreement (see Appendix H), stating that none of

the information in the interview transcripts may be divulged in order to adhere to

ethical principles and maintain the confidentiality of the interviewees. The researcher

verified all recordings against the transcripts to ensure accuracy and to become

familiar with the data. For examples of three transcribed interviews, see Appendix A.

All other interview transcripts are available on request.

4.9 Coding

For the purpose of this study, latent coding was applied. Similar themes were coded

in the same colour and these were then grouped together in an Excel spread sheet

for further analysis. The researcher looked for common phrases, but also searched

for underlying meaning in the text. The latent approach was used as this process

was best suited for the study. Figure 4.4 is an example of how coding was applied.

(A complete list of coded transcripts can be made available upon request.)

65

Figure 4.4: Example of the coding process used

4.10 Themes

The analysis of the data followed a layered approach. The first layer of analysis

involved reviewing official company documents, such as the information security

policy, patch management policy and patch management framework. The second

layer of analysis involved qualitative research methods such as interviews and

literature surveys, in order to further gain insight into the research subject. The third

layer involved identifying common themes within the data.

Several themes were identified by applying latent coding. The literature was

analysed by means of latent coding, and various themes were identified. The

interview transcripts were analysed using the same technique, resulting in further

themes being identified. The unstructured themes can be found in Appendix C and

the structured themes can be found in Appendix D.

4.11 Categories

Various pieces of data were grouped together to reduce the number of data pieces

that required processing in the data analysis process. Similar themes were

concatenated and a record was kept of how many interviewees expressed a certain

view. The number of interviewees expressing a certain view was used as a

weighting (see table 4.4). Value was assigned to themes based on this weighting.

66

4.12 Themes emerging from the literature

After the literature was reviewed, the researcher applied intensive reading and

coded several key phrases. Similar phrases were identified and concatenated into

single phrases, while duplicated phrases were removed. The results of this process

are presented in table 4.3, together with supporting authors. (Note that the themes

in table 4.3 are not quotes, but rather themes that emerged from the literature).

Table 4.3: Emerging themes from the literature with supporting authors

Key Phrases/Themes (not quotes) from literature Supporting Authors

Patch management will add some form of complexity to the

environment.

 Chen et al. (2010)

 Sommerville (2011)

 Highsmith (2013)

The patch management policy should play a critical role in the

overall security of an organisation.

 Gerace and Cavusoglu (2009)

 Arora et al. (2010)

 Felmetsger et al. (2010)

 Souppaya and Scarfone (2013)

Infrastructural limitations such as available bandwidth should

be considered when designing a patch management policy.

 Souppaya and Scarfone (2013)

 Jenkins et al. (2014)

All risks related to patch management should be identified and

classified.

 Schryen (2011)

 Foley (2009)

The user community often does not apply patches for a variety

of reasons.

 Bilge and Dumitras (2012)

 Sethanandha (2011)

High availability systems pose a challenge to patch as they

cannot be rebooted or shutdown.

 Jenkins et al. (2014)

 Giuffrida et al. (2013)

Patch management is linked to enterprise data security. Cavusoglu et al. (2008)

 Gerace and Cavusoglu (2009)

 Sharma et al. (2011)

Vendors typically do not support older versions of software. Sommerville (2011)

 Tutt (2014)

Testing plays a crucial function with patch management. Arena et al. (2011)

 Chen et al. (2010)

 Souppaya and Scarfone (2013)

Organisations have constrained resources such as funds and

personnel availability for patch activities.

 Souppaya and Scarfone (2013)

 Jenkins et al. (2014)

 Sethanandha (2011)

Different software platforms require different approaches

toward patch management.

 Thakare and Gore (2014)

 Farwick et al. (2011)

There is no centralised source of patch information. Joshi (2013)

 Le Goues et al. (2013)

67

4.13 Key findings from interview data

The data analysis process started after interviews were transcribed. The first step

was to highlight all phrases and statements that the researcher deemed important.

The data was then grouped into a table by interviewee and by question. The

responses from the various interviewees were grouped together per question. Key

phrases per interviewee and per question were copied in separate documents. Each

statement was tagged with an interview identifier in order to maintain an audit trail of

which interviewee said what.

Duplication from the same interviewee was removed, and the raw data was grouped

together per question, maintaining the interviewee tag with each block of data. The

raw data was then interrogated to further remove duplication or any statements that

may not be in context or of value. A table was created to present the raw data

statements per questions. This table was the primary input for the final data

analysis.

 The raw statements per question were processed with Word to identify the highest

frequency words. These words were used as a guideline to interrogate the raw data

table and identify common themes with the weighting attached to each theme. The

weighting is a numeric value consisting of the number of participants that had the

same view or opinions, and can be reverse looked up back to the interviewee for

audit purposes. Quotes and exceptions from specific interviews have also been

identified. Detailed proof of each step is available upon request. Figure 4.5 depicts

the data analysis process that was followed.

Figure 4.5: Summary of data analysis process

68

4.14 Final data analysis

Upon completion of the aforementioned process, the result was an Excel

spreadsheet with the following headings: interview question number, common

themes/categories, and the number of interviewees that were explicit and implicit.

Exceptions to the identified themes were also highlighted. These tables are

presented below.

The question refers to the interview question, and the themes/categories are the

emerging statements. The explicit field represents the number of interviewees who

explicitly had a specific view. The implied field represents the number of

interviewees who implied a specific view. The exceptions view is the number of

interviewees who had an opposite view compared to the general view shared by a

large number of interviewees.

The results are represented in tables 4.4, 4.5 and 4.6 respectively, and data is

sorted to display the findings in the order of strongest to weakest, determined by the

number of interviewees who agreed with a specific finding. The statement number is

used to link topics that are discussed in Chapter Five with specific findings in tables

4.4, 4.5 and 4.6 respectively.

Table 4.4: Explicit findings (summarised)

Statement

Number

Interview

Question

Number

Findings Number of

interviewees who

were explicit

4.4.1 10

Patches are generally downloaded from vendor’s website,

and in some cases with critical systems the vendor might

come on site to do the patching themselves.

13

4.4.2 13

The consensus was that a single department should not

develop the patch management policy; instead, it should be

a combined effort and all role players should be consulted.

11

4.4.3 5

Most interviewees had an idea of the role players who were

at that stage involved in the patch management process, in

relation to their department. All interviewees were aware of

what was being done, but did not necessary know who was

doing what.

10

4.4.4 8

The testing process is not formally defined, but the informal

process is to test patches in a lab environment; then do a

small pilot release, followed by a gradual release into the

production environment.

10

69

Table 4.5: Implied findings (summarised)

Statement

Number

Interview

Question

Number

Findings Number of

interviewees who

were explicit

4.4.5 9
The company does not have a defined patch prioritising

mechanism.
10

4.4.6 4

Interviewees indicated they are very familiar with generic

patch management issues within the organisation, but noted

that their familiarity is largely limited to their specific domain.

9

4.4.7 5

Key roles payers (according to interviewees) were desktop

support, server support, information security and store

support.

9

4.4.8 7

The consensus was that Microsoft is seamless in terms of

patch management, however, not all vendors are this

structured in terms of releasing software patches.

9

4.4.9 2

Several interviewees indicated they were very familiar with

generic patch management issues and could elaborate with

examples.

8

4.4.10 12
The patch management policy should define the roles and

responsibilities clearly.
8

4.4.11 13

Information security should be accountable at a stakeholder

level, while the technical implementation of patch

management tasks should be completed by the operational

teams.

8

4.4.12 11

In the past a worm (Conficker) broke out and caused havoc

on the network that could have been avoided if the company

had an active patch management strategy in place.

7

Statement

Number

Interview

Question

Number

Findings Number of

interviewees who

implied a view

4.5.1 11

There is risk associated with having an active patching

strategy as well as risk associated in not having an active

patching strategy.

11

4.5.2 3

Patch management activities are inconsistent, and the time

being spent on patch related activities varies from person to

person.

9

4.5.3 4

It is often challenging to get patch deployments approved

within the company because patches have broken many

working systems in the past.

7

4.5.4 2
Patch management is generally complicated and often

comes with a variety of challenges.
4

70

Table 4.6: Exceptions to the implicit and implied findings (summarised)

4.15 Mapping the findings to themes

For the convenience of the reader, table 4.7 presents a mapping of the findings and

the corresponding statement number to the themes. The themes will be discussed in

greater detail in Chapter Five.

If a finding was “the consensus was that a single department should not develop the

patch management policy, instead it should be a combined effort and all role players

should be consulted”, the theme deducted from this finding would be “patch

management policy development stakeholders”. As another example, if a finding

was ”the testing process is not formally defined, but the informal process is to test

patches in a lab environment, then to do a small pilot release that is followed by a

gradual release into the production environment”, the themes deducted from this

finding was “the importance and challenges of testing patches”.

For a comprehensive mapping of the findings to the themes, see table 4.7.

Table 4.7: Mapping findings to corresponding themes

Statement

Number (from

table 4.4, 4.5

and 4.6)

Findings Corresponding

Theme

4.4.1 Patches are generally downloaded from a vendor’s website, and

in some cases with critical systems the vendor might come on

site to do the patching themselves.

Sources of software

patches and related

information

Statement

Number

Interview

Question

Number

Findings Interviewee

Identifier

4.6.1 9 The company has a prioritising mechanism in place. 3

4.6.2 6 The Information Security department should be involved. 2

4.6.3 5
One interviewee was not aware of who the role players

were.
1

4.6.4 2
There are no patch management issues within the

company.
1 (i6)

4.6.5 3 The company has an active patch management strategy. 1 (i4)

4.6.6 8 The company have a defined testing strategy. 1 (i12)

71

Statement

Number (from

table 4.4, 4.5

and 4.6)

Findings Corresponding

Theme

4.4.2 The consensus was that a single department should not

develop the patch management policy, instead it should be a

combined effort and all role players should be consulted.

Patch management

policy development

stakeholders

4.4.3; 4.4.6;

4.4.10;

4.4.11; 4.6.2

and 4.6.3

i. Most interviewees had an idea of the role players who were at

that stage involved in the patch management process in relation

to their department. All interviewees were aware of what was

being done, but did not necessary know who was doing what.

ii. Interviewees indicated they are very familiar with generic patch

management issues within the organisation, but noted that their

familiarity is largely limited to their specific domain.

iii. The patch management policy should define the roles and

responsibilities clearly.

iv. Information security should be accountable at a stakeholder

level, while the technical implementation of patch management

tasks should be completed by the operational teams.

v. The Information Security department should be involved.

Roles and

responsibilities

4.4.4 and

4.6.6

i. The testing process is not formally defined, but the informal

process is to test patches in a laboratory environment; then do a

small pilot release, followed by a gradual release into the

production environment.

ii. The company has a defined testing strategy.

The importance and

challenges of testing

patches

4.4.5 and

4.6.1

i. The company does not have a defined patch prioritising

mechanism.

ii. The company has a prioritising mechanism in place.

Patch deployment

prioritising

mechanism

4.4.6; 4.4.9;

4.6.4 and

4.6.5

i. Interviewees indicated they are very familiar with generic patch

management issues within the organisation, but noted that their

familiarity is largely limited to their specific domain.

ii. Several interviewees indicated they were very familiar with

generic patch management issues and could elaborate with

examples.

iii. There are no patch management issues within the company.

iv. The company has an active patch management strategy.

Interviewee

familiarity: patch

management issues

4.4.8 The consensus was that Microsoft is seamless in terms of patch

management; however, not all vendors are this structured in

terms of releasing software patches.

Software vendor

behaviour and their

Effect on patch

management

4.4.12 and

4.5.4

i. In the past a worm (Conficker) broke out and caused havoc on

the network that could have been avoided if the company had

an active patch management strategy in place.

ii. Patch management is generally complicated and often comes

with a variety of challenges.

Patch management

challenges

4.5.1 There is risk associated with having an active patching strategy

as well as risk associated in not having an active patching

strategy.

Risks related to

patch management

72

Statement

Number (from

table 4.4, 4.5

and 4.6)

Findings Corresponding

Theme

4.5.2 Patch management activities are inconsistent, and the time

being spent on patch related activities varies from person to

person.

Consistency of patch

management

activities

4.5.3 It is often challenging to get patch deployments approved within

the company because patches have broken many working

systems in the past.

Importance of patch

management

4.16 Chapter summary

This chapter discussed the data collection process that was applied to the literature

review, interview transcripts and organisational documents. Insight was given into

the case that was selected, as well as the sampling method that was adopted to

select the case and participants. The interview method was used to collect data from

participants, and latent coding was applied to interview transcripts in order to identify

findings.

This chapter described in detail how findings were identified from the interview

transcripts and organisational documents. Strong ideas from the literature together

with supporting authors were also presented in table 4.3. It became evident that all

role players were not fully aware of the patch policy and process within the

organisation. Testing was noted as an area of concern and the consensus was that

the patch management policy should be developed with all role players being

consulted and not in isolation by a single department.

Interviewees implied that there is risk in both patching and not patching, and that

these should be weighed against each other. Some interviewees had some

opposing views, indicating a possible misalignment. The final findings are presented

in tables 4.4, 4.5 and 4.6, and these findings and matching statement numbers are

mapped to corresponding themes in table 4.7. The themes form the basis of the

discussion in Chapter Five.

73

5 CHAPTER FIVE: DISCUSSION

5.1 Introduction

For the convenience of the reader, the research questions and a summary of the

research problem statement are repeated below:

Research problem statement

Organisations often find themselves running IT systems that may either be unstable

or prone to intrusion because of challenges and complexities involved in patch

management at an enterprise level.

Research questions

1. What causes the management of software patches to be complex?

2. How do organisations implement patch management in order to enhance

enterprise data security?

Based on the data analysis process described in the previous chapter, the final data

analysis findings were presented. The final analysis was grouped in three sections:

explicit findings, implied findings, and exceptions. These results are presented in

tables 4.4, 4.5 and 4.6 respectively. Table 4.7 presents a mapping of the findings

and the corresponding themes. All of the aforementioned tables include an identifier

called the Statement Number, and the identifier is indicated next to the themes

below between brackets, in order to make the link between Chapter Four and

Chapter Five explicit. The chapter considers the following themes:

i. Sources of software patches and related information (4.4.1)

ii. Patch management policy development stakeholder (4.4.2)

iii. Roles and responsibilities (4.4.3; 4.4.6; 4.4.10; 4.4.11; 4.6.2 & 4.6.3)

iv. The importance and challenges of testing patches (4.4.4 & 4.6.6)

v. Patch deployment prioritising mechanism (4.4.5 & 4.6.1)

vi. Interviewee familiarity: patch management issues (4.4.6; 4.4.9; 4.6.4 &

4.6.5)

vii. Software vendor behaviour and their effect on patch management (4.4.8)

viii. Patch management challenges (4.4.12 & 4.5.4)

ix. Risks related to patch management (4.5.1)

x. Consistency of patch management activities (4.5.2)

xi. Importance of patch management (4.5.3)

74

5.2 Themes developed

5.2.1 Sources of software patches and related information

Current software inventory information was noted as a required input to an effective

patch management system (Souppaya & Scarfone, 2013). Inventory reports are

often skewed for reasons such as the fact that most configuration management tools

rely on a software client to be installed on the client machines. If the software client

is broken, no client machine information can be obtained (Huang et al., 2012). I13

confirms that this is a problem within the company and said that “the problem is

actually maintaining a software asset register and then following up with each and

every one of those application vendors to see if they’ve got patches” (see Appendix

I).

Joshi (2013) indicates that various sources provide software patches and related

information about available patches and software vulnerabilities. These repositories

include government websites, technical blogs, security bulletins and software vendor

websites. Although it is common practice for vendors to publish patch-related

information and patch releases on their websites, some third-party sites such as the

National Institute of Standards and Technology (NIST) and Common Vulnerabilities

and Exposures (CVE) have attempted to collate this information into central

repositories. This is considered unofficial and not all vendors are catered for. Joshi

(2013) further states that in order for administrators to have complete information

about software patches and system vulnerabilities, administrators have to monitor

numerous sources of information. I9 supports this claim and referred to software

vendor websites by saying that “we’re also signing up to their patch management

notifications” (see Appendix I).

Keeping current with patches can be a challenging task. It is therefore important to

have current information that will allow for quick decision-making with regard to

patch management. I9 supports this statement and said that Microsoft products

allows for automation to an extent by saying that “our WSUS server which is

attached to the SCCM server will then get that content for us and download it, and

based on that we’ll create templates” (see Appendix I).

5.2.2 Patch management policy development stakeholders

The first step towards developing a patch management strategy is typically to define

a patch management policy within an organisation. Souppaya and Scarfone (2013)

state that for a patch management policy to be effective, it must be endorsed by

75

senior management within an organisation. Furthermore, the policy should provide

guidelines for the role and responsibilities, the testing of software patches, and the

patch deployment procedures. When considering who is responsible to develop the

patch management policy, I1 asserted that ”it is a combined effort with the

operations teams involved so and the server team obviously, there’s the desktop

support team and, uhm, the security department as well so those are the people that

need to basically define that policy” (see Appendix I).

The majority (11 out of 13) interviewees agree that that the patch management

policy should not be developed by a single department. Instead, it should be a

combined effort with all role players consulted in the process. I3 stated:

“I think security should develop the policy but all parties involved must be

consulted for input” (see Appendix I). Some interviewees felt that if the policy

is developed in an isolated manner, it may be unrealistic and ignored by the

other role players all together. I5 suggested that the information security

department be consulted, but they should not own the process of developing a

patch management policy. I5 further stated that “an independent department

should draw up the policy and all the role players should be consulted” (see

Appendix I).

Operational teams have insight into the current challenges in terms of patch

management within the company, and are generally responsible for the technical

implementation of the policy. I4 supports the idea of involving operations teams in

the policy development process, stating that “I think we should use the practical

experience of operations teams” (see Appendix I). As a result, the operational team

is able to make a valuable contribution to the development of the patch

management policy. Patch management may be more important in some

organisations than what it is in others. For this reasons the scope and importance of

patch management should be determined within a specific organisation by means of

a patch management policy. I3 confirmed that this is applicable to the company and

said that “the importance of patching is not always well understood” (see Appendix

I). It may be helpful to determine a set of basic principles that is organisation-

specific. I3 said that:

“…the policy should reflect the importance of patching, people don’t

understand it and therefore they simply ignore it so the policy should say why

we need to patch, the policy should define roles and responsibilities and

furthermore it should state the frequency of patch deployments; it should also

state the scope of what we need to patch, and we may choose not to patch

everything” (see Appendix I).

76

Souppaya and Scarfone (2013) assert that a policy should state who is responsible

for monitoring and testing as well as patch deployment alternatives. Effective

monitoring could allow for patches to be tested as soon as patches become

available to the public. I5 confirmed this statement and said that “the policy should

also define the technique strategy and emphasise the importance thereof and then

the roles and responsibilities” (see Appendix I).

Although the company does have a patch management policy in place, the lack of a

policy was noted as a concern by a few interviewees. This could be interpreted as a

lack of awareness of the patch management policy and/or the contents thereof. The

organisation had both an information technology security policy and a patch

management policy, but not all of the role players were aware of the patch

management policy. I7 said that “I know security is busy drafting a policy but the

whole process is still at its early stages” (see Appendix I). I3 said: “I haven’t seen the

policy but it is somewhere on the intranet I believe” (see Appendix I), while I8 made

a similar comment: “I haven’t actually seen the patch management policy” (see

Appendix I). A possible approach might be to have one department assume the

responsibility of drafting the policy, and then consulting all the stakeholders in the

process.

5.2.3 Roles and responsibilities

Souppaya and Scarfone (2013) indicate that roles and responsibilities should be as

detailed as possible to avoid confusion. Sihvonen and Jäntti (2010) support the

notion that the roles and responsibilities should be defined in words and in as much

detail as possible. Several interviewees (8 out of 13) felt that the patch management

policy should explicitly define the roles and responsibilities in a clear and concise

manner. I3 said that “I think names should be associated to certain roles” (see

Appendix I). I1 further stated that the “only concern is roles and responsibilities” (see

Appendix I). I7 said: “I do feel like roles and responsibilities should be clearly

defined” (see Appendix I). When considering who should be added to the patch

management process, I13 indicated that “I’ll only add people from an information

awareness point of view” (see Appendix I).

A large number (10 out of 13) of interviewees are aware of who the role players are

within the company that is currently involved in the patch management process in

relation to their department, while a few interviewees (3 out of 13) are not as

informed as the rest in terms of the patch management role players. I8 said that, “I

think security ought to be involved more than they are, uhm, even if it’s just not

77

necessarily from a doing point of view but from a motivating point of view” (see

Appendix I). All interviewees agreed that the current role players in the patch

management process are desktop support, server support, information security, and

store support. Two interviewees felt that application developers should be part of the

process as well. Although this is compulsory from an in-house application point of

view, it may not add much value form an external vendor application perspective.

 I3 said that “I think everyone is already involved that that should be, uhm, but I

didn’t or I don’t think it’s defined properly; I think names should be associated to

certain roles and people should be held accountable for their responsibility” (see

Appendix I). Information security is involved in the patch management process. This

indicates an awareness issue among interviewees in terms of the patch

management activities. A patch management policy could thus bridge the

awareness gap. The danger of roles and responsibilities not being clearly defined is

that stakeholders may not be aware of who is doing what, and this could lead to a

duplication of work or result in the omission of work, as one team could wrongfully

assume that another team is doing the work.

After analysing the data, it became evident that no central department is looking at

the overall bigger picture. Focus is specific to the domain and task at hand, and all

activities were performed in these isolated environments. A RACI matrix could be

used to simplify the process of defining roles and responsibilities. I1 supports this

statement by saying that “in that RACI model there’s usually a table, but define in

words who’s responsible for what from a policy point of view” (see Appendix I).

5.2.4 The importance and challenges of testing

A large number of interviewees (10 out of the 13 interviewees) mentioned testing as

an area of concern. The testing process is not formally defined, but the informal

process is to test patches in a laboratory environment, followed by a pilot and then a

gradual release to the production environment. I1 elaborated on this:

“…first patch is just to test the process and make sure the application is

installed, not the application, the patch is installed and that there aren’t any

problems in the deployment process once that’s done we move on to pilot 2 if

you want to call it that or phase 2, uh, where we choose specific users in our

business; preferably people that use a large variety of applications in that

business unit” (see Appendix I).

Souppaya and Scarfone (2013) assert that testing is a time-consuming task and

places a degree of strain on a company’s resources. The danger exists that a

78

manager might not deem the testing as important as other operational tasks,

resulting in patches being released that were not properly tested. I10 said that

“we’ve had a couple of incidents where we haven’t tested things properly so we’ve

actually applied a patch and there might have been an issue as the result of a patch

and that’s typically because we didn’t test it properly” (see Appendix I). I7 reiterated

the importance of testing by explaining an example where the company “deployed a

bug fix for IE8. This was still on XP and the install prompted for a reboot and all the

machines gave a blue screen error; fortunately we created regular restore points so

we could roll back easily” (see Appendix I).

Le Goues et al. (2013) note that the test environment often does accurately reflect

the production environment. I5 asserted that the test environment is a challenge,

and mentioned an example where a patch failed that was tested. If the test

environment is not aligned to the production environment, the behaviour of patched

systems may differ in test and production environments. The result is that even if a

patch is extensively tested in the test environment, it can have a different effect in

production. I5 said that “we do have tests; yes the problem is we can test an

installation on these test boxes but we don’t have users testing the apps on the

boxes, so the true test is only really when we deploy to production” (see Appendix I).

I5 gave an example where a patch was tested, but still caused problems in the

production environment after it was deployed:

“We deployed a fix to the exchange server and suddenly all outlook desktop

lines started prompting for new user names and passwords; turns out this

patch actually broke the Kerberos protocol, I know it’s important to know we

did test this patch on our server and passed our test; it installed successfully

but that’s the thing about applications - they mustn’t just install they must

actually work” (see Appendix I).

This highlights the importance of doing extensive testing, and not just basic

deployment testing. Often various use cases have to be tested to make sure all the

functionality continue to work after a patch has been deployed.

From the vendor’s point of view, limited testing can be done in the sense that a

vendor can only test functional components within a system. Oracle, for example,

can test that the Oracle functionality works, but the vendor cannot with certainty say

how a software patch will behave in a client’s environment. Software and hardware

platforms as well as current systems and patches installed all play a role in this

regard. For this reason testing remains an important function on the client side.

79

5.2.5 Patch deployment prioritising mechanism

Prioritising which patch to install and when to install the patch is closely related to

each other. The criticality of the affected system should be considered, as well as

the severity of the vulnerability that the system is exposed to. Souppaya and

Scarfone (2013) assert that dependencies of the patches should be considered as it

may be that the installation of one patch requires another patch to be installed first,

or that the system needs to be rebooted pre- or post a patch deployment.

Not all interviewees appeared to know whether the company had a patch prioritising

mechanism in place. I3 said that “we don’t have a formal mechanism for prioritising

patches; we only do security and critical patches from Microsoft; if it’s a patch that

fixes an active issue in our environment then we deploy as soon as possible;

normally within a week” (see Appendix I). I4 confirmed this:

“…we don’t prioritise where we say every six months we patch with the latest

critical and, uhm, you know security patches that’s our policy so we don’t

prioritise in that, however if we get for instance we hit a snag or an issue, uhm,

be it anti or virus related, malware related, uhm, you know because

sometimes there’s windows security patches also for a vulnerability that gets

highlighted then typically our governance, our xxxxxxx’s [name omitted] team,

our security and governance team, they’re responsible and they will bring it

under our attention” (see Appendix I).

The company’s patch management policy does address prioritising patches. This

indicates that not all interviewees are familiar with the content of the patch

management policy. Furthermore, I8 raised a concern that “the business changes

always trump the patching, so if we say we’re gonna do patching on this day, it’s

fine until there’s business requirements” (see Appendix I). Patch management policy

could provide guidance in terms of prioritising patches, and further help to protect

timeslots and other resources that are allocated to patch management activities.

 Adobe has a rating system called the Adobe Rating System. According to Schryen

(2011), this system serves as a guideline for customers with managed

environments. The priority ranking is based on historical attack patterns, the type of

vulnerability, and the platform and potential mitigations that may be in place.

According to Adobe, a Priority 1 is defined as an update that resolves a vulnerability

being targeted, or that may have a higher risk of being targeted. Adobe

recommends that Priority 1 patches be installed within 72 hours of its release. A

Priority 2 is defined as an update that resolves vulnerabilities that have been at

elevated risk in the past. Their recommend time for patching this vulnerability is 30

80

days. A Priority 3 patch is defined as an update that fixes vulnerability that has not

been a target for attack in the past. I5 said that “we only do Microsoft patches and

we only do security and critical patches; obviously if a patch is fixing something that

is broken then you need to apply it as soon as possible” (see Appendix I).

Similarly to Adobe, Microsoft has its version of a prioritising guideline, and Google

might have theirs. The challenge is for organisations to develop their internal patch

prioritising strategy, whilst aligning with all their software vendors.

5.2.6 Interviewee familiarity: patch management issues

A large number of interviewees (9 out of 13) indicated they are very familiar with

patch management issues specific to the organisation, but noted that their familiarity

is largely limited to their specific domain. Souppaya and Scarfone (2013) state that

some companies still do patch installation manually, and although there are benefits

to this approach, at some point in time the cost could outweigh the benefits. I6 said

that “if you’re gonna install automatically, install stuff like service packs and drivers

and all other kinds of funny stuff, er, that you haven’t properly tested then you’re

gonna get some issues” (see Appendix I).

Several interviewees (8 out of 13) indicate they are very familiar with generic patch

management issues and could elaborate with examples. The technical knowledge

was evident; people know how to do what needs to be done although the central

view was not being observed by anyone.

I1 shared some insight into the patch management dependencies in the company:

“…patch management obviously adds a complexity to that environment; we

need to understand that if something goes wrong it’s not only my team that’s

gonna have to fix it; either we have to roll back but at the same time we need

to engage with development teams and say okay this patch was applied, this

is what it’s done, you need to go back and re-develop or re-engineer your

application so that it doesn’t use that loophole or vulnerability” (see Appendix

I).

5.2.7 Software vendor behaviour and their effect on patch management

All interviewees agree that patches are downloaded from the vendor’s website, and

in a few instances the vendor would come on-site to apply the software patches

themselves. The vendors would typically come on-site for mission critical systems

such as the Oracle database or the store area network. I10 said that “some of those

81

mature vendors have, uhm, processes in place where they actively pick up issues

and they release patches” (see Appendix I).

Microsoft is seamless in terms of patch management, however, not all vendors are

this structured in terms of releasing software patches (9 out of 13 interviewees).

Microsoft releases patches every second Tuesday of the month, while some other

software vendors who do not have defined patch release dates, release software

patches in an ad-hoc manner (Zseby et al., 2013). This adds a level of challenge for

organisations as they almost always have to be ready for emergency patch

releases. I4 confirms this statement by saying that as an organisation, you typically

“have to align with the application vendor of the application” (see Appendix I).

Microsoft has a solution called WSS. It is a Microsoft-only solution and only supports

Microsoft applications. I13 explained that “W-SASS only works with Microsoft so you

can’t actually deploy like Adobe or semantic patches through W-SASS, so it’s only

for Microsoft “(see Appendix I). The view is that different vendors have inconsistent

behaviour in terms of patch management. I11 said that “Microsoft patch is they

come down and they then you get things like Adobe which just spring in to life and

just patch every now and again” (See Appendix I).

The challenge for the organisation is that the organisation is forced to align with the

vendor’s patch release behaviour. It is also common for vendors not to release

patches for old versions of software. According to Tutt (2014), the most notable

example of this situation is Windows XP. Microsoft ended the support for Windows

XP in April 2014 and will not release any further patches for this operating system.

5.2.8 Patch management challenges

Due to the impact of patch management challenges on the entire patch

management process, this section will consider various patch management changes

in greater detail in sub-sections.

The high rate of vulnerability announcements has placed the focus on matters such

as vulnerability disclosure, the speed of patch generation, and the dissemination of

patches (McQueen et al., 2009). When considering patch management challenges,

the scope of the challenges increases as the number of different software platforms

increase within an environment.

82

I4 confirmed this statement:

“It’s easier if you run typical Microsoft workload for instance, so if you run an

exchange server or a domain controller, activating domain controller, to patch

them consistently, that’s typically not an issue because its Microsoft with

Patches for Microsoft, but where you get challenges is when you running third

party applications” (see Appendix I).

Insufficient software inventory information presents a challenge because patch

management is dependent on current inventory information with a given

environment (Souppaya & Scarfone, 2013). The below section will discuss various

patch management challenges identified in this study in more detail.

5.2.8.1 Resources, infrastructure and tools

Souppaya and Scarfone (2013) indicate that organisations often have limited

resources and lack the understanding of how important patch management is. With

limited resources and infrastructure, patch deployments are often in competition with

other tasks such as software version upgrades and antivirus definition updates.

Limited resources place a fair amount of strain on IT managers when deciding what

projects to run and which to cut. I1 said that “Microsoft recommends that you patch

every Tuesday; that’s not practical in a corporate such as ours, you’d probably need

a dedicated patch management team and you know here we sort of use our

resources for everything possible” (see Appendix I).

Microsoft System Centre Configuration Manager (SCCM) is an example of a

configuration management tool that allows for Microsoft software patches and

applications to be packaged and deployed. Configuration management tools provide

functionality to automate certain components of the patch management process.

The cost of the tools has a direct impact on the cost of the patch management

process as a whole. In addition to the cost of the tools, skilled employees are

required as well to manage these tools (Sihvonen & Jäntti, 2010).

I3 said that “our biggest challenge, sorry, is that we are geographically scattered and

we don’t have the infrastructure that we would wish to have” (see Appendix I). This

means that even if the company wanted to deploy patches in accordance with the

recommendation of Microsoft and or other vendors, it simply may not be possible

due to current infrastructure limitations. I13 defended this statement saying “it’s a

very well mitigated risk in our environment” (see Appendix I), while making reference

83

to compensating controls such as Intrusion Detection Systems (IDS) and perimeter

firewalls.

5.2.8.2 No all-inclusive off-the-shelf solution

Hosek and Cadar (2013) assert that there is no one-size-fits-all solution to address

all the challenges of patch management. I13 said that “when Conficker came out

but, uhm, we actually had issues where machines weren’t patched so, uhm, and

then the antivirus on the machines weren’t up to date where Conficker brought down

our environment and half of our store’s environment for more than two days” (see

Appendix I).

One of the challenges with vendor specific tools is that it provides solutions only for

their products. If the number of third party software vendors increase within an

organisation, vendor specific solutions may not be the best option. Considering the

large number of applications in the environment by different vendors, and the

geographical disparity of client within the environment, patch management activities

within the company would just be ceased all together. I3 confirmed this by saying: “I

know for a fact with XP we never patch, we did years ago then we fell behind and

then we just stopped, uh, we are hoping now to change this with Windows 7

deployment” (see Appendix I).

5.2.8.3 Communication

The patch management process involves various stakeholders from different IT

departments, business units and software vendors. For this reasons a well-defined

communication strategy is important (Sihvonen and Jäntti, 2010). I9 said that “we

don’t have that 360 degree feedback” (see Appendix I).

A few interviewees (3 out of 13) felt that the Security Department was not as

involved in the patch management process as they ought to be. According to the

Security Department, however, they were actively driving the strategy and were

well-informed of all challenges within the organisation. While both operational teams

and the security department appeared honest in their response, the problem

became evident. There was a lack of communication and awareness – no-one was

looking at the bigger picture. When asked if people should be added to the patch

management process, I13 said that “I’ll only add people from an information

awareness point of view but I think we first need to get the process established and

off the ground before we go to that, uhm, level” (See Appendix I).

84

I3 gave an example of where the testing strategy failed in the past:

“Recently in the beginning of the year we deployed a JAVA patch tested on

the virtual machine; all seemed fine, deployed to a pilot of five, no

communication made it back to us, interesting thing happened here - three of

these five people logged a call because on a web based application because

a web based application no longer worked, desktop support did a system

restore, removed the patch and the issue was resolved; all this time we were

under the illusion that we have a hundred percent success rate so far, the next

week we deployed to thirty people, uhm, then it became an issue because

thirty users could now not use the realist system, so here although we did test,

our communication strategy failed us” (See Appendix I).

All stakeholders appeared to be doing what they were supposed to do, but the

communication mechanism is assumed rather than defined. There is thus no way of

tracking communication, as it is often just an email from one party to another. This is

an area of concern because a situation could arise when important communication

does not make it to the intended party, resulting in certain functions not being

completed.

5.2.8.4 Maintenance timeslots

It is important for maintenance windows to be identified, discussed and agreed upon

upfront with business stakeholders. Maintenance windows are noted as a concern

by a few interviewees. I8 said that “our biggest challenge in the stores environment

is getting the time slots to do it because there’s so much change being driven in the

environment by the business”. I8 further said that “security ought to be involved to

protect the patching from being superseded by a business requirement” (see

Appendix I).

Shahriar and Zulkernine (2012) highlight the importance of finding the right timeslot

in which to do patch deployments. A few interviewees reported that an area of

concern is to acquire timeslots in which to do patch deployments. I7 said that “one of

our biggest challenges is time slots; at the moment business needs always to

precede patch deployments, our second challenge is bandwidth; we simply don’t

have the infrastructure to push patches to every single store” (see Appendix I).

Maintenance windows are typically scheduled at times least disruptive to the

business and include enough time for the task, as well as rollback procedures.

If the patch management policy is endorsed by top management, it could reduce

resistance and result in patch deployments being approved more easily (Souppaya

85

& Scarfone, 2013). I5 supported the view that if the patch management policy is

endorsed by senior management, it may reduce resistance towards patch

management. I5 said that “by showing the commitment of senior management

people are more likely not to push back on proposed patch deployment” (see

Appendix I).

5.2.8.5 Legacy systems

Legacy systems are old systems that are still in use and often provide business

critical functions; therefore they cannot easily be decommissioned or replaced.

Vendors generally do not support these systems anymore, leaving them vulnerable

to exploitation (Sommerville, 2011).

Legacy systems pose great risks and challenges to organisations in terms of

patches, because vendors often do not support these systems (Souppaya &

Scarfone, 2013). I4 said that “there’s definite risk also in an active patching strategy

because you’ve got Legacy applications” (see Appendix I).

A good example of a problem with legacy systems is the fact that Microsoft ended

the support for Windows XP in 2014. Windows XP is one of the most popular

operating systems and is still used (at the time of this writing) even after Microsoft

has stopped supporting it, making it a vulnerable operating system. Windows XP

can be considered a legacy system (Tutt, 2014).

I1 said that patch management is “a complicated thing to actually manage especially

in a big corporate such as ours at the moment, uhm, unfortunately we’ve got a lot of

disparate applications, some of them Legacy” (see Appendix I). Legacy system

challenges can be mitigated to an extent. If systems cannot be updated for whatever

reason, compensating controls can be put into place.

5.2.8.6 The people aspect

One of the findings was that not all patch management challenges were technology-

related. Some challenges turned out to be people problems, more specifically, a

problem with the mentality of certain role players. The main reason for these types

of challenges is often related to preconceived conceptions that are formed as a

result of past experiences. I1 gave an example of a past experience and said that

“I’ve experienced it where we patched something; it’s broken IE to hell and gone”

(See Appendix I).

86

I5 stated that:

“…the biggest challenge for me is getting the change approved in CAB, they

are very reluctant to approve because generally they perceive that patches

don’t add any value although they have the ability of breaking something now;

with that being said it’s very difficult to justify the deployment of patches in

production servers” (see Appendix I).

It is important for the non-technical challenges to be considered and addressed as

part of the overall patch management strategy.

“…we have in the past been a bit suckered where we haven’t applied patches

properly and then when you do come to the point where you have to apply the

patches you’re so far behind that it becomes, it doesn’t become worth

patching then it’s a big and expensive exercise of re-installing operating

system” (I11, see Appendix I).

I8 has the view that more people in the organisation should understand the

importance of patch management and said that “more parties need to understand

patching, uh, they need to understand the implication of patching or the implication

of not patching” (see Appendix I). I10 supports this notion and said that “one of our

issues is that we don’t patch enough” (see Appendix I).

I4 also had a similar experience where applying patches caused disruption and said

that “we’ve rather had issues patching servers, to be quite honest with you, than not

patching servers so the counter is actually more true in my practical experience”

(see Appendix I). As a result of negative past experiences, the overall approach

towards patch management is cautious, and business stakeholders tend to exercise

more resistance towards proposed patch deployments.

5.2.9 Risks related to patch management

There is risk associated with having an active patching strategy as well as risk

associated with not having an active patching strategy (11 out of 13 interviewees). I8

said that “we’re at as much risk if we don’t patch as if we do patch” (see Appendix I).

Deploying patches hold the risk of working systems breaking, and not deploying

patches hold the risk of vulnerabilities being exploited.

In some instances an organisation would decide that there would be greater risk in

not deploying patches immediately than there would be in deploying without testing.

This decision is risk-appetite dependant and would vary from organisation to

organisation.

87

“I know that we’ve had issues with software, whether it’s platform software like

Biztalk or sequel server, uhm, where we could have actually resolved those

issues if we had been pro-active around applying patches. I also know that

we’ve had issues where we’ve actually applied patches and had issues

because of it” (I10, See Appendix I).

According to Cárdenas et al. (2011), a risk assessment should be completed on all

servers on the network. This assessment should ideally include critical data stored

on servers, impact of downtime that can be introduced by the server, and the

general vulnerability of the server in terms of internal and external attacks. I4

mentioned an example:

“If you haven’t patched for long period like where we started a year ago, then

your immediate risk is that the server has been running for seven years like

this and now you patch it; there’s about 85 some of our servers had about a

135 updates that needed to apply so you’re touching 135 sets of DLL’s and

sorts of things, so chance is actually big that you might affect something on

that application, but I think once you’re active, once you’re in your second and

third cycle, it becomes a no brainer” (see Appendix I).

Foley (2009) asserts that security governance is responsible for prioritising and

managing risks across an organisation. The risk of applying patches to a working

system and then breaking it, versus the risk of not applying patches to a system and

then leaving it vulnerable, ought to be considered.

5.2.10 Consistency of patch management activities

The consistency of patch management activities in the company was noted as a

problem. I6 said that “we are not in a position where we patch very often, we haven’t

been in a, there’ve been issues in the past with applications and issues with patches

and the guys just stopped patching” (see Appendix I). Beres and Griffin (2012) state

that certain vendors may decide to release patches in a bundle once every cycle,

where a cycle can be monthly, quarterly or even yearly. An example of this is a

patch release by Oracle for the month of October 2013. This patch contained 127

new bug fixes (Oracle, 2013).

Ransbotham and Mitra (2013) state that if vulnerabilities are publicly disclosed

without the vendor responding in due time, it can create a window of opportunity for

malicious users. I3 confirmed this by saying, “there are times when we do patch and

then for a month or so we would actively be busy and then eight months could go by

and no-one talks about patching” (see Appendix I).

88

According to Zhu et al. (2011), the timing between the detection of a vulnerability

and the availability of a patch for the vulnerability becomes crucial for the

assessment of the security risk exposure of software users. Not all vendors have

predefined dates for patch releases (Zseby et al., 2013). Inconsistent vendor

behaviour could affect the consistency of organisations as organisations are often

forced to align with vendors.

5.2.11 The importance of patch management

Although there are many reasons for patching, system stability and security are the

most common reasons for applying patches (Saleem, Yu & Nuseibeh, 2012). As

important as patches are, many in the user community simply do not apply patches

(Bilge & Dumitras, 2012). I8 is of the opinion that a well-defined policy endorsed by

senior management can help to reduce the resistance towards patch management.

I8 said that “if you’ve got a policy that says well we have to do it then you can hold

the policy up and say no sorry I can’t move it because the policy says I have to do it”

(see Appendix I).

I12 explains that failing to maintain current patches can result in malware infections

and security breaches. I12 said that “the most frequent and visible sign is a worm-

breakout when a, when you have a worm breakout on the network you can easily

see which systems or work stations or which servers is the most affected and those

are the ones typically that’s the worst patched” (see Appendix I). I13 supports this

notion by referring to another incident, and said that “when Conficker came out but,

uhm, we actually had issues where machines weren’t patched so, uhm, and then the

antivirus on the machines weren’t up to date where Conficker brought down our

environment and half of our store’s environment for more than two days” (see

Appendix I).

In the past the Conficker worm broke out and caused havoc on the network; that

could have been prevented if the company had an active patch management

strategy in place (7 out of 13 interviewees). This is related to patches not being

actively applied, for a variety of reasons. “If we don’t suffer from a problem, we

typically wouldn’t apply it” (I10, see Appendix I). It is often challenging to get patch

deployments approved within the company because patches have broken many

working systems in the past (7 out of 13 interviewees). I3 said that “the importance

of patching is not always well understood” (see Appendix I). If patching is not well

understood, functional requirements may supersede patch deployment and

89

timeslots allocated to patching could be cancelled and used to deploy functionality

instead.

5.3 Chapter summary

Patch management adds a level of complexity to the environment. The risk exists for

working systems to stop working and for various unforeseen events to occur. With

the high demand for availability of certain systems, it makes it more challenging to

motivate for the patching of these systems. On the other hand, if the systems are

not patched in a timely fashion, it could result in downtime anyway. There is thus

risk associated with actively patching, as well as risk associated with not actively

patching.

The three main aspects to the patch management challenges were identified as

people, processes and technology. In the current patch management process within

the company, there are too many decision-makers. The multiple decision-makers

model introduces many undefined variables and could result in an un-patched and

vulnerable environment.

Due to a lack of a defined communication strategy, certain tasks may be overlooked

while others may be duplicated because of the lack of consistency in how and

whether activities are completed. There are no post-deployment controls in place.

The process is not explicitly owned by any department and many of the activities are

performed in isolation. The result of the current process is an unstable environment,

with different variations and versions of the same software running within the

production environment. These vulnerable systems can be exploited at any given

time, directly comprising the level of data security within the organisation.

Challenges that complicate patch management often lead to compromises in

security that could easily have been prevented. If organisations can minimise the

time spent on patching activities, they can utilise that time to improve other security

efforts. Many organisations have largely operationalised their patch management

efforts with the aim of making it a core information technology (IT) function as

opposed to a function that is part of security. The following chapter addresses the

research questions and sub-questions, and proposes a solution to the research

problem.

90

6 CHAPTER SIX: RESEARCH QUESTIONS, RECOMMENDATIONS AND

CONCLUSION

6.1 Introduction

For the convenience of the reader, the research question, sub-questions, and a

summary of the research problem statement are repeated below. The answers to

the research question and sub-questions form the basis of this chapter.

Research problem statement

Organisations often find themselves running IT systems that may either be unstable

or prone to intrusion because of challenges and complexities involved in patch

management at an enterprise level.

Table 6.1: Research question and sub-questions summary

Research Question 1

1. What causes the management of software patches to be complex?

Sub-Questions

1.1 What challenges do organisations face with regard to patch management?

1.2 What challenges are created by a multi-vendor environment?

1.3 What controls can organisations implement in order to deploy the relevant patches?

Research Question 2

2. How do organisations implement patch management in order to enhance enterprise data

security?

Sub-Questions

2.1 How do organisations prioritise patches for deployment?

2.2 How do organisations identify patches best suited for their security needs?

2.3 Who are the key role players in managing the patch deployment process?

Based on the data collected and analysed, the previous chapter discussed the

themes that emerged in further detail. This chapter starts with a discussion (section

6.2) of the patch management challenges that are relevant in terms of the research

sub-questions. The reason for addressing patch management challenges is

because the challenges overlap with all the research questions and sub-questions.

In addition to the patch management challenges, this chapter will answer the

research questions and sub-questions, make recommendations, and propose a

possible solution to the research problem.

91

The proposed solution addresses some of the challenges and complexities of the

current patch management process within the company. The chapter concludes with

the author’s view on possible future research.

6.2 Patch management challenges

Due to the impact patch management challenges have on the research questions

and sub-questions as well as the overlapping nature of patch management

challenges in terms of single and multi-vendor software environments, the author

found it appropriate to present the patch management challenges before answering

the research sub-questions,

6.2.1 Resources, infrastructure and tools

It emerged that both resources and the current infrastructure within an organisation

can cause constraints in the patch management process. Limited resources can be

in the form of human resources, monetary resources or infrastructural resources

such as available bandwidth. Organisations often have to provide highly available

and secure services to business units while being constrained by the available

budget and current available infrastructure. The challenge for IT managers is to

decide what IT projects to run, while considering the available resources and still

maintaining a secure and stable environment.

6.2.2 No all-inclusive off-the-shelf solution

Participants agreed that there is no single solution that could automate patch

deployments for all systems from start to finish. There are some commercially

available products to manage some of the components of the patch process, but no

single solution supports all software systems from all software vendors. Individual

solutions may have different limitations (Hosek & Cadar, 2013). Certain vendors

may provide vendor-specific solutions that work only with their software products.

Microsoft’s WSUS is a good example of such a solution. The challenge for

organisations that run software from multiple vendors is that it may not be feasible to

run a vendors-specific solution for each vendor’s product is their environment.

6.2.3 Communication and documentation

It is noted that patch management activities are not always properly documented,

and in other instances, not documented at all. Software patches can break working

systems, and a lack of documentation can result in an organisation making the

same mistake more than once. Liu et al. (2012) assert that some patches may

introduce new vulnerabilities, however the incidents are not always recorded and

92

linked to patch activities, making it difficult to track what was caused by patch

deployments and what was not caused by patch deployments. A lack of

communication and documentation could result in a scenario where the importance

and risks of patch management is not well understood within the organisation. The

challenge for the organisation is that patch management activities are not

consistent, and with a lack of proper documentation and communication, certain

patch management activities could be omitted or duplicated because no record is

being kept of who is doing what.

6.2.4 Maintenance timeslots

Interviewees note that a large number of systems cannot be restarted as they need

to remain available at all times, making it challenging to patch these systems. An

emergency call centre systems is an example of a high availability system that could

be challenging to patch. A lack of predefined maintenance slots is directly linked to

the inconsistency of patch management activities. Patch management is one of

various maintenance tasks, and often contend for timeslots with other maintenance

tasks such as software version upgrades and antivirus definition updates. The

challenge for the organisation is to balance the available timeslots between all

maintenance tasks in the order of highest priority first.

6.2.5 Testing

The testing of patch deployments is noted as a challenge, largely due to available

resources. Not doing enough testing could result in unexpected behaviour after

patches have been deployed, while doing too much testing could introduce a delay

and the vulnerabilities may be exploited before the patch is deployed. The test

environment is also a challenge, because it is often not representative of the

production environment, resulting in the test results being of little value. Testing

extensively is time-consuming and holds the risk that a vulnerability could be

exploited before the patch is deployed, while accelerating the testing holds the risk

that a patch may not be tested properly and could cause problems once it is

deployed. The challenge for the organisation is to ensure that the risk of testing

versus the risk of not testing is understood, and also to ensure that the test

environment is aligned with the production environment.

6.2.6 Legacy systems

Legacy systems pose a challenge in single and multi-vendor environments as the

majority of software vendors do not provide patches or support for legacy systems.

Microsoft’s Windows XP is an example of this challenge, as the support was ended

93

in 2014, yet several individuals and organisations are still using the operating

system. In the case of the organisation, certain web-based systems were initially

designed to be compatible with Internet Explorer 7 (IE7) only. Windows 7 and later

versions of Microsoft operating systems do not support IE7. The challenge for the

organisation is to remain current with supported versions of software, while ensuring

that their legacy systems (both proprietary and non-proprietary) are compatible with

the newer versions of operating systems.

6.2.7 The people aspect

It is evident that not all patch management challenges are technology related. Some

challenges are people problems. More specifically, it is how certain individuals view

patch management.

The main reason for this type of challenge is often related to the mind-set of

individuals, and preconceived conceptions such as “if it’s not broken, let’s not fix it”,

which is often based on negative past experiences with patch management. The

challenge for the organisation is to get individuals committed that may have had

negative experiences in the past with regard to patch management.

6.3 Answering the research questions and research sub-questions

6.3.1 Research sub-questions

This section addresses the research sub-questions explicitly. The abbreviation RSQ

stands for research sub-question and is used to indicate the specific research sub-

question that is being addressed. For the convenience of the reader, the applicable

research sub-question is presented in italics above the discussion.

6.3.1.1 Patch management challenges (RSQ 1.1)

What challenges do organisations face with regard to patch management?

The concept of patch management is simple, yet many organisations often have

difficulty maintaining an active and efficient patch management strategy. Part of the

reason organisations fail with patch management is because there are various

challenges they are presented with, and these challenges are often not considered

when patch management policies are developed. As an example, if an organisation

relies on a vendor for patches, the patch management policy needs to consider the

release frequency and method of the vendor as well as the time required for testing,

among others. The challenges include resource constraints, testing and

94

communication, and legacy systems. See section 6.2 for a more in-depth discussion

on the patch management challenges.

6.3.1.2 Patch management challenges created in a multi-vendor software

environment (RSQ 1.2)

What challenges are created by a multi-vendor environment?

In the case where software from multiple vendors is used, it becomes more

challenging than in the case of a single vendor environment to manage software

patches. One of the reasons for this is because there is no single comprehensive

source of patch information. An organisation may have to subscribe to various

newsletters to receive information regarding released patches. Although some

websites specialise in getting most patch-related information in one place, it is

unlikely that one website would be able to maintain this database for all software

vendors in existence.

In multi-vendor environments the public disclosure of vulnerabilities by any party has

a direct effect on the vulnerability of an organisation. After vulnerabilities are

disclosed, attacks typically first increase before they decrease. Furthermore, the

way a vulnerability is disclosed can have an effect on whether vulnerabilities are

exploited or not. The reality is that patches are released by different vendors at

different times using different methods. It becomes more challenging as the number

of applications from different vendors increase within an organisation. The key

challenge in a multi-vendor environment is that the organisation is forced to align

with multiple vendors in terms of their release schedule and the format of their patch

releases.

6.3.1.3 Controls to assist with patch management (RSQ 1.3)

What controls can organisations implement in order to deploy the relevant patches?

It is preferred for all stakeholders in the patch management process to be involved

from the start, and the development of the patch management to be a collective

effort. An all-encompassing approach could result in less resistance at a later stage

where operational teams will be required to implement the technical aspects of the

patch management process. Vendor-specific solutions are often not feasible due to

the large number of multi-vendor applications in a given environment, and

alternative approaches should be investigated.

95

The patch management policy should define communication and documentation

requirements, as well as maintenance windows for patch deployments which are

likely to result in patch management activities becoming more consistent and better

documented. Periodic risk assessments should be completed and the risk of

extensively testing patches versus the risk of not extensively testing patches should

be understood. Effort should be taken to align the test environment with the

production environment to improve the reliability of test results. The organisation

should maintain current software inventory information, as this will highlight legacy

applications that may require attention. Once a legacy system has been identified,

the organisation could then potentially build a plan to address the legacy system.

The people aspect should be kept in mind when developing the patch management

problem because individuals may have a skewed perception of patch management

as a result of bad past experience, and be reluctant to fully commit to patch

management activities.

6.3.1.4 Patch management and prioritising (RSQ 2.1)

How do organisations prioritise patches for deployment?

Vendors often provide a prioritising guideline, but this is not always realistic for

medium to large organisations. IT managers should assign priory to IT projects

according to importance and in relation to available resources and infrastructure.

The risk appetite of an organisation plays a crucial role in how patch management is

approached and prioritised. A bank might take a more stringent approach compared

to a retail company. The risk appetite will influence other factors in the patch

process. The frequency of patch deployments as well as the timing and testing of

patches are often in direct conflict with each other.

A patch management policy was noted as a critical tool that could aid with guidance

for prioritising patch deployments within an organisation. A software baseline is used

to help organisations conduct a risk analysis and provide an indication of the overall

software level and landscape of the environment, while the risk analysis could assist

with prioritising software patches. The information security policy in combination with

the patch management policy should include criteria and guidelines for the

organisation to assist with prioritising software patch deployments.

96

6.3.1.5 Identifying relevant software patches (RSQ 2.2)

How do organisations identify patches best suited for their security needs?

The source of patch information was noted as a concern, as software vendors

currently release patches and patch-related information on their websites. Some

third party services such as US Cert and CVE collate patch information into a single

source. The challenge is that none of the sources cater for all software platforms, as

organisations often have to subscribe to various mailing lists, websites, newsletters

and news feeds for the latest patches and related information. Software applications

themselves can also alert users by means of a pop-up that new updates are

available; however, this is often disabled in corporate environments. Software

patches from untrusted sources could contain malware or cause undesired system

behaviour. For this reason it is advisable for an organisation to identify trusted

sources of patch information.

An integrated patch management policy could allow organisations to distinguish

between vulnerabilities that affect them versus vulnerabilities that do not affect them.

The policy would also indicate what sources are considered trusted and which are

not. It does not necessarily have to be a list of source names, but could be a

guideline to help with the selection of a source, for example, a questionnaire to

determine if a source is valid or not.

6.3.1.6 The role players in the patch management process (RSQ 2.3)

Who are the key role players in managing the patch deployment process?

Roles and responsibilities are not clearly defined within the organisation, resulting in

all teams not being completely aware of what tasks they need to complete.

Management is responsible to ensure that adequate resources are available to

comply with the patch management policy. Management is also responsible for how

timeslots are divided between various maintenance activities, and is ultimately

responsible for compliance of their environments in terms of overall endpoint

protection.

The patch coordinator is a representative from each environment within the

organisation and is responsible for identifying all newly released patches that are

applicable to the organisation. The patch coordinator must ensure patches are

adequately tested before it is deployed, and also that all pre-requisites have been

identified.

97

Software deployment administrators are responsible for administering the software

deployment mechanism that deploys actual patches to the endpoints. In some

instances the patch coordinator may assume this role as well, while in other cases it

may be a different team. SCCM specialists generally assume this role.

Technical testers are representatives from across the IT division who are

responsible for the support of certain IT systems, and are therefore able to validate

that the patch has no negative impact on their specific systems. Business testers

are business users that test the functionality of the applications after a patch has

been deployed. This is to validate that the released patch has no negative impact on

a specific system from a usability and functionality point of view.

The information security team performs an oversight, consultancy and guidance

function and is accountable for the implementation and effectiveness of the patch

management process. In addition to the patch coordinator, the information security

team is also responsible for monitoring external sources of information around

emergency patches released by vendors and/or trusted security research

organisations.

6.3.2 Research questions

This section addresses the research questions explicitly. The abbreviation RQ

stands for Research Question and is used to indicate the specific research question

being addressed. For the convenience of the reader, the research question is

presented in italics above the discussion.

6.3.2.1 The complexity with patch management (RQ1)

What causes the management of software patches to be complex?

Patch management adds a layer of complexity to an environment. It has on

numerous occasions in the past caused problems with working systems. It has also

on many other occasions prevented software exploitations. There are risks

associated to actively applying patches, and there are risks associated to not

actively applying patches. The challenge is to find the optimal balance. This section

summarises the complexity of the patch management process within the company.

Patch management adds complexity to an environment in that it is something that

both relies on and affects other teams. The implementation of patch management

activities is done by technical staff in the operational teams, and the application of

the actual software patches could affect other systems. For this reason

98

consideration must be given to available resources and systems that could

potentially be impacted.

Testing is a critical function in the patch management process. It is documented that

patches have negatively affected working systems in the past. This could be due to

a bug in the patch itself, the deployment mechanism, or missing prerequisites in the

environment. It is however possible for a software patch to pass the testing phase

and still cause a problem in the production environment. This may occur when the

test environment does not reflect the production environment. Too much testing may

increase the vulnerability exposure window, and too little testing could result in the

patch not being properly tested. With the aforementioned in mind, testing adds a

form of complexity because it is done in conjunction with available technical

resources, while considering that that patches could be released at any given time.

The people aspect introduces a different set of challenges and complexities. People

often may have views on patch management that may affect their behaviour. These

views are formed from past experiences. A classic example is when some of the

interviewees had first-hand experiences in the past of a patch breaking a working

system. This experience changed their perception of software patches and a patch

is now viewed as a potential threat to a working system. Another challenge is that

the job role where people find themselves in may force them to act in a certain way

toward patches. An information security professional and an auditor might be of the

opinion that the latest patch must always be deployed as soon as possible, while the

operational team may not deem patches as important, as their biggest priority is

keeping the user-base operational, with or without the latest patches installed.

Users are often not familiar with the frameworks and policies that exist, and this

could be as a result of a gap in the knowledge transfer process with new employees

joining the organisation. This was evident when certain interviewees said there were

no polices in place, yet there were. Legacy applications present a form of complexity

in that these systems are often outside support agreements from software vendors,

meaning no patches or support is available for these systems. Organisations may

run legacy systems for a variety of reasons, including that it could be business

critical, and budgetary constraints may prevent the immediate replacement of these

systems. The result is that these systems may remain in production environments

for prolonged time periods. Legacy systems are often vulnerable and affect the level

of data security.

99

Documentation introduces complexity in the patch process because it is not

maintained or kept in a central location. It may exist, but people requiring the

documentation might not be aware of it or know where to find it.

Off-the-shelf patch management software may be able to address some of the

complexities highlighted, but could also introduce other complexities. A system that

seeks to automate patch deployments from end to end would still need to factor in

the testing. This will require customisation of a product to be specific to the

organisation in question. These tools often cost a significant amount of money, and

none of the solutions support all the software applications from all the vendors on

the market.

The available infrastructure within the company may have an impact on the patch

management strategy of the organisation. Infrastructural limitation may add

complexities as field staff could be required to update over 3G connections,

incurring costly data charges. Available maintenance time slots have to be equally

divided between all maintenance tasks, and this will add complexity if maintenance

tasks are not properly prioritised. Other maintenance tasks may include the

installation of new software, software upgrades and antivirus definition updates, and

should be considered when maintenance timeslots are allocated.

6.3.2.2 Current patch management implementation within the company (RQ2)

How do organisations implement patch management in order to enhance enterprise

data security?

The company adopted a patch strategy to only deploy critical and security patches.

At first glance this may appear to be a safe approach. The situation could arise

where a security or critical patch requires a non-security or non-critical patch as a

prerequisite. This will result in a situation where the prerequisite must first be

sourced, tested and deployed before the critical or security patch can be deployed. It

will complicate the process, introduce a delay, and increase the vulnerability

exposure time in the case when an emergency patch may need to be deployed.

The current patch management process is depicted in figure 6.1. Multiple software

vendors release patches, either on a defined schedule or on an ad-hoc basis. These

patches are then available to all customers with a license to use their software. In

the company, the IT landscape is split into three domains: Head Office, Stores and

Servers. Each of these departments would then assume the responsibility to obtain

100

the latest patches, test them and deploy them. This process is performed at the

discretion of the various department managers.

There is currently no process that defines who receives and tests these patches.

Patch management processes are isolated on a company level, and may also be

further isolated on a departmental level. Each of these environments has multiple

decision-makers and each decision-maker can choose to deploy a software patch or

not, or remain undecided. The current process does not have a mechanism in place

to close the loop, and the result is an inconsistent and vulnerable environment.

The problem with the current approach is that the more decision-makers there are

the more variables could exist in the process. These variables could lead to un-

patched systems that could potentially be exploited, and compromise the data

security of the organisation.

101

Figure 6.1: The current patch management model in the company

102

6.4 Proposed solution/model to the research problem

The two key problems with the current process depicted in figure 6.1 are that there

are several decision-makers, and no feedback mechanism. The multiple decision-

makers could introduce inconsistency, as some may decide to actively patch while

others may opt not to actively patch. If there is no oversight, it would not be possible

to identify outdated systems within the environment. The lack of a feedback

mechanism could directly lead to an unsecure environment that is vulnerable to

exploitation.

Figure 6.2 represents an improved patch management process flow, in comparison

to the process depicted in figure 6.1. Figure 6.2 aims to address the two main

problems highlighted in figure 6.1. Multiple vendors would still release patches as

per normal, but in this proposed model, a single decision-making unit within an

organisation would assume the responsibility of this function. This unit would be

responsible to decide what patches should be deployed, based on the patch

management policy. How these patches are deployed could remain at the discretion

of the operational teams, as they would know their environment and tools best.

Once the decision-making unit has completed their function, instructions would be

sent to the various implementers who would be responsible for the testing and

deployment of software patches within their respective environments. Once the

operations teams have completed their instructions, feedback should be sent to the

information security department in the form a compliance report on a defined

schedule. This will ensure that the loop is closed and that oversight is maintained on

a higher level. Centralising the decision-making function could result in a more

stable and secure environment that will directly increase the data security level of

the organisation.

103

Figure 6.2: The proposed model (The Single Decision Making Model)

104

6.5 Recommendations

After analysing the data and considering the various challenges, as well as

answering the research questions, the following recommendations are made by the

author:

i. The organisation should:

 Maintain current software inventory information of their environment

 Revise their current approach of only deploying critical and security

patches

 Identify a tool for the distribution of software patches

 Maintain an Exceptions Register for systems that cannot be patched due

to whatever reason

 Educate role players about the importance of patch management, and

the consequence of failing to properly manage patches

ii. The patch management policy should:

 Define the roles and responsibilities in a clear and concise manner

 Be aligned to the available resources and infrastructure of the

organisation

 Provide guidance in terms of trusted sources for patches and related

information

 Be developed in a combined effort and all stakeholders being consulted

 Define the overall test approach within the organisation and identify the

technical tester and business testers

 Define the criteria and requirements for compensating controls in cases

where regular patching is not possible

 Be endorsed by senior management

iii. Test environments should be representative of the production environment

and all patch testing should be signed off by the appropriate stakeholders

before patches are deployed.

iv. Patch management activities should be consistent and include complete and

relevant documentation.

v. Suitable maintenance windows should be identified and divided equally across

all maintenance tasks.

105

vi. Prerequisites and tasks should be identified and completed upfront in order to

ensure that there are no unforeseen events during the patch deployments.

vii. The number of decision-makers in the patch management process should be

reduced and tasked to management.

viii. Regular vulnerability scans should be conducted to identify vulnerable

systems.

ix. The communication process should be consistent, well-defined and bi-

directional between organisations and software vendors.

x. All patch deployment plans should include roll-back procedures in order to

revert back to the previous configuration if any problems arise during and after

the deployment of a software patch.

xi. The base template of the operating system should be updated with the latest

patches to minimise the future work effort. This will ensure that any deployed

system or software contains the required patches at the time of deployment,

and reduce the windows of exposure.

xii. The deployment success rate should be reviewed to ensure that the

deployment has reached all intended target devices.

6.6 Conclusion

The research presents a case study on a Cape Town-based retailer that is

representative of the research problem, and proposes a model to help organisations

implement a more efficient patch management process and simultaneously improve

data security. The objectives of the study are to identify some of the challenges

organisations face when implementing patch management, determine the

challenges faced by organisations with multi-vendor systems, and determine how

patch management affects enterprise data security. The objectives of the study are

adequately addressed and a brief synopsis of the findings and importance thereof is

presented below.

Legacy systems often fall outside support agreements with vendors and therefore

do not receive software patches or support from vendors. The result is that legacy

systems in use become vulnerable and could be exploited. The level of data security

is affected as vulnerable systems could result in a data breach and have serious

consequences for organisations.

106

Limited resources restrict the organisation’s ability to maintain an effective patch

management strategy. The limitation of resources could hinder the organisation’s

ability to implement an efficient patch management policy, and therefore result in the

organisation being vulnerable to exploitation and data breaches. The organisation

stores customer records and personally identifiable information that could be

compromised if systems are compromised.

No single documented source of patch information could be found that provides

information and software patches for all software applications from all software

vendors. For this reason, organisations are often forced to subscribe to various

websites and newsletters. An organisation could potentially miss a critical or security

update from a vendor and remain vulnerable even after a vulnerability has been

disclosed and the patch has been released.

People challenges relate to the mind-set of role players and are often formed by

past experiences. If a role-player had a negative experience in the past in terms of

patch management, they could develop a negative attitude toward patch

management and reason that ‘if it’s not broken, don’t fix it’. If all role players are not

aligned regarding the importance of patch management, it could hinder the patch

management process as role players would not actively be implementing patch

management.

There are multiple decision-makers in the current patch management process. This

could result in inconsistencies within the environment, as certain individuals may

decide one course of action, while other individuals may decide on a different course

of action. The ultimate result of the current model is that certain systems may

remain unpatched for long periods of time, or indefinitely, leaving the organisation at

risk of exploitation.

There is a lack of a proper communication mechanism. Certain role players may or

may not complete tasks, but do not communicate this with other role players. These

tasks could then either be omitted or duplicated, as decisions are based on

assumptions. This has a direct effect on the resources of the organisation.

Organisations are often forced to align with software vendors. Organisations can

only test and deploy patches once the vendor has released it. If vulnerabilities are

disclosed and software vendors do not have a patch available at the time, it leaves

the organisation vulnerable until the vendor provides a patch.

107

The organisation’s current approach is to only deploy critical and security patches. A

critical or security patch may have a non-critical or non-security patch as a

prerequisite. This could introduce undesired delays when a critical or security patch

needs to be deployed as the prerequisite would first have to be sourced, tested and

deployed before the security or critical patch can be deployed.

The test environment often does not represent the production environment. The test

results will not be of value, as patches may have a different effect in the production

environment. Resources will be wasted on testing if the test environment is not

representative of the production environment, as the test results will be of little

value.

The testing of software patches is time-consuming and resource-intensive when it is

done extensively. Organisations may opt not to test extensively in the interest of

saving costs. If patches are not tested extensively, it could result in deployment

and/or functionality problems once it has been deployed, and negatively affect the

perception around patch management.

The aim of the study is to explore the complexities of software patch management in

order to enhance enterprise data security within organisations. The study concludes

that organisations are presented with various challenges (section 6.2) that make it

difficult for organisations to manage an active and effective patch management

strategy. As a result, systems are often not patched in a timely manner, or at all,

leaving them vulnerable to exploitation and therefore compromise the level of data

security within an enterprise. For this reason it is crucial for organisations to be

aware of these challenges when planning a patch management strategy.

6.7 Future research

Future research opportunities could do the exact same study at different

organisations and compare the results. If the results are similar, it would be a step

towards proving generalisability for the study. If the results differ greatly, it would be

interesting to understand why.

Being able to quantify the return on investment in terms of the monetary value that

patch management can add, will go a long way towards obtaining buy-in from

management. This was identified as one of the challenges.

Testing is one of the single biggest challenges that emerged and special focus on

patch testing could add value. A study could consider the importance of aligning a

108

test environment with the production environment, and in so doing could ensure the

delivery of more useful and accurate test results.

Another challenge was the people aspect. Perhaps a psychological approach, rather

than a technological approach, could address the human aspect of the problem.

People’s past experiences in terms of patch management create preconceived

notions, and this affects their decision-making in present situations. An investigation

is needed on how to promote objectivity in terms of patch management.

109

REFERENCES

Ackling, T., Alexander, B. & Grunert, I. 2011. Evolving patches for software repair.

Proceedings. The 13th Annual Conference on Genetic and Evolutionary Computation,

Dublin, 12-16 July.

Ahmad, A., Maynard, S.B. & Park, S. 2014. Information security strategies: towards an

organisational multi-strategy perspective. Journal of Intelligent Manufacturing, 25(2):357-

70.

Albanese, M., Jajodia, S., Singhal, A. & Wang, L. 2013. An efficient approach to

assessing the risk of zero-day vulnerabilities. Proceedings. The 10th International

Conference on Security and Cryptography, Reykjavík, 29-31 July.

AlEroud, A. & Karabatis, G. 2012. A contextual anomaly detection approach to discover

zero-day attacks. Paper presented at the 2012 International Conference on Cyber

Security (CyberSecurity), Alexandria, Virginia, 14-16 December.

Arena, M., Arnaboldi, M. & Azzone, G. 2011. Is enterprise risk management real? Journal

of Risk Research, 14(7):779-97.

Arora, A., Krishnan, R., Telang, R. & Yang, Y. 2010. An empirical analysis of software

vendors' patch release behavior: impact of vulnerability disclosure. Information Systems

Research, 21(1):115-32.

Arora, A., Telang, R. & Xu, H. 2008. Optimal policy for software vulnerability

disclosure. Management Science, 54(4):642-56.

August, T. & Tunca, T.I. 2011. Who should be responsible for software security? A

comparative analysis of liability policies in network environments. Management Science,

57(5):934-59.

BBC News. 2015. Android bug: MMS threat affects 'one billion' phones. Available:

http://www.bbc.com/news/technology-33689399. [Accessed: 9 August 2015].

Beasley, M.S., Clune, R. & Hermanson, D.R. 2005. Enterprise risk management: an

empirical analysis of factors associated with the extent of implementation. Journal of

Accounting and Public Policy, 24(6):521-531.

Begel, A., Khoo, Y.P. & Zimmermann, T. 2010. Codebook: discovering and exploiting

relationships in software repositories. Paper presented at the Software Engineering, 2010

ACM/IEEE 32nd International Conference, Cape Town, 1-8 May.

Benbasat, I., Goldstein, D.K. & Mead, M. 1987. The case research strategy in studies of

information systems. MIS Quarterly, 11(3):369-86.

http://www.bbc.com/news/technology-33689399

110

Beres, Y. & Griffin, J. 2012. Optimizing network patching policy decisions. In Information

Security and Privacy Research. Berlin, Heidelberg: Springer: 424-442.

Berg, B.L. & Lune, H. 2004. Qualitative research methods for the social sciences. Boston,

MA: Pearson.

Bilge, L. & Dumitras, T. 2012. Before we knew it: an empirical study of zero-day attacks

in the real world. Proceedings. The 2012 ACM conference on Computer and

communications security, Raleigh, NC, 16-18 October.

Blumberg, B., Cooper, D.R. & Schindler P.S. 2005. Business research methods. 2nd ed.

Berkshire: McGraw-Hill.

Bock, T. & Sergeant, J. 2002. Small sample market research. International Journal of

Market Research, 44(2):235.

Bryman, A. 2006. Integrating quantitative and qualitative research: how is it

done? Qualitative Research, 6(1):97-113.

Burrell, G. & Morgan, G. 1979. Sociological paradigms and organisational analysis.

London: Heinemann.

Capriz, M. 2011. Ben Franklin and the internet snoops. Available:

http://www.academia.edu/6712729/Internet_Snoops_2. [Accessed: 14 July 2016].

Cárdenas, A.A., Amin, S., Lin, Z.S., Huang, Y.L., Huang, C.Y. & Sastry, S. 2011. Attacks

against process control systems: risk assessment, detection, and response. Proceedings.

The 6th ACM symposium on Information, Computer and Communications Security, Hong

Kong, 22-24 March.

Cavusoglu, H., Cavusoglu, H. & Zhang, J. 2008. Security patch management: share the

burden or share the damage? Management Science, 54(4):657-70.

Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S., Koscher,

K. et al. 2011. Comprehensive experimental analyses of automotive attack surfaces.

Paper presented at the 20th USENIX Security Symposium, San Francisco, CA, 8-12

August.

Chen, X., Mao, Y., Mao, Z.M. & Van der Merwe, J. 2010. Declarative configuration

management for complex and dynamic networks. Paper presented at the 6th International

Conference on emerging Networking EXperiments and Technologies (CoNEXT),

Philadelphia, 30 November-3 December.

Choi, J.P., Fershtman, C. & Gandal, N. 2010. Network security: vulnerabilities and

disclosure policy. The Journal of Industrial Economics, 58(4):868-94.

http://www.academia.edu/6712729/Internet_Snoops_2

111

Chow, W.S. & On Ha, W. 2009. Determinants of the critical success factor of disaster

recovery planning for Information Systems. Information Management and Computer

Security 17(3):248-75.

Cohen, D. & Crabtree, B. 2006. Qualitative research guidelines project. Princeton: Robert

Wood Johnson Foundation.

Cronjé, J.C. 2012. The abc (aim, belief, concern) instant research question

generator. Unpublished Manuscript.

Davidson, S. 2013. Privacy through obscurity. IEEE Design and Test, 30(5):96.

Denzin, N. & Lincoln, Y. (eds). 2000. Handbook of qualitative research. 2nd ed. Thousand

Oaks: Sage: 413-427.

Dubois, A. & Gadde, L.E. 2002. Systematic combining: an abductive approach to case

research. Journal of Business Research, 55(7):553-60.

Ehlert, S., Geneiatakis, D. & Magedanz, T. 2010. Survey of network security systems to

counter sip-based denial-of-service attacks. Computers and Security, 29(2):225-43.

Eisenhardt, K.M. 1989. Building theories from case study research. Academy of

Management Review, 14(3):532-50.

Elky, S. 2006. An introduction to information system risk management. Available:

https://www.sans.org/reading-room/whitepapers/auditing/introduction-information-system-

risk-management-1204. [Accessed: 24 July 2016].

Farahmand, F., Navathe, S.B., Enslow, P.H. & Sharp, G.P. 2003. Managing

vulnerabilities of information systems to security incidents. Paper presented at the 5th

International Conference on Electronic Commerce, Pittsburgh, Pennsylvania, 30

September-3 October.

Farwick, M., Agreiter, B., Breu, R., Ryll, S., Voges, K. & Hanschke, I. 2011. Automation

processes for enterprise architecture management. Paper presented at the 2011 15th

IEEE International Enterprise Distributed Object Computing Conference Workshops,

Helsinki, 29 August-2 September.

Felmetsger, V., Cavedon, L., Kruegel, C. & Vigna, G. 2010. Toward automated detection

of logic vulnerabilities in web applications. Paper presented at the 19th USENIX Security

Symposium, Washington, DC, 11-13 August.

Flyvbjerg, B. 2006. Five misunderstandings about case-study research. Qualitative

Inquiry, 12(2):219-45.

Foley, S.N. 2009. Security risk management using internal controls. Proceedings. The

first ACM Workshop on Information Security Governance, New York, 9-13 November.

112

Fossey, E., Harvey, C., McDermott, F. & Davidson, L. 2002. Understanding and

evaluating qualitative research. Australian and New Zealand Journal of

Psychiatry, 36(6):717-32.

Fossi, M., Egan, G., Haley, K., Johnson, E., Mack, T., Adams, T., Blackbird, J. et al.

2011. Symantec Global Internet Security Threat Report: Trends for 2010. Vol

XV, Symantec: 1-20.

French, A.M. 2012. A case study on e-banking security—when security becomes too

sophisticated for the user to access their information. Journal of Internet Banking and

Commerce, 17(2):1-14.

Gerace, T. & Cavusoglu, H. 2009. The critical elements of the patch management

process. Communications of the ACM, 52(8):117-21.

Gerring, J. 2004. What is a case study and what is it good for? American Political

Science Review, 98(2):341-54.

Gibson, D. 2014. Comptia Security+: get certified get ahead. United States: Ycda LLC: 2-

165.

Giuffrida, C., Kuijsten, A. & Tanenbaum, A.S. 2013. Safe and automatic live update for

operating systems. ACM SIGPLAN Notices, 48(4):279-292

Gogoi, P., Bhattacharyya, D.K., Borah, B. & Kalita, J.K. 2011. A survey of outlier

detection methods in network anomaly identification. The Computer Journal, 54(4):570-

88.

Gollman, D. 2011. Computer Security. 3rd ed. United Kingdom: Wiley: 178.

Gonzalez, R. & Locasto, M. 2013. Classifying the data semantics of patches. Technical

Report 2013-1047-14, University of Calgary.

Gummesson, E. 2007. Case study research and network theory: birds of a

feather. Qualitative Research in Organisations and Management: An International

Journal, 2(3):226-48.

Highsmith, J.A. 2013. Adaptive software development: a collaborative approach to

managing complex systems. New York: Dorset House.

Hirschheim, R. & Klein, H.K. 1989. Four paradigms of information systems

development. Communications of the ACM, 32(10):1199-1216.

Holloway, I. & Wheeler, S. 2013. Qualitative research in nursing and healthcare. United

Kingdom: John Wiley & Sons.

113

Höne, K. & Eloff, J.H.P. 2002. Information security policy—what do international

information security standards say? Computers & Security, 21(5):402-409.

Hosek, P. & Cadar, C. 2013. Safe software updates via multi-version execution.

Proceedings. The 2013 International Conference on Software Engineering, May. IEEE

Press: 612-621.

Huang, H., Baset, S., Tang, C., Gupta, A., Sudhan, K.N.M., Feroze, F., Garg, R. et al.

2012. Patch management automation for enterprise cloud. Paper presented at the 2012

IEEE Network Operations and Management Symposium [front matter], Maui, HI, 16-20

April.

Ioannidis, C., Pym, D. & Williams, J. 2012. Information security trade-offs and optimal

patching policies. European Journal of Operational Research, 216(2):434-44.

Jansen, W.A. 2011. Cloud hooks: security and privacy issues in cloud computing. Paper

presented at the 2011 44th Hawaii International Conference on System Sciences

(HICSS), Kauai, HI, 4-7 January.

Jenkins, D., Arnaud, J., Thompson, S., Yau, M. & Wright, J. 2014. Version control and

patch management of protection and automation systems. Paper presented at the 2014

12th International Conference on Developments in Power System Protection (DPSP),

Copenhagen, Denmark, 31 March-3 April.

Johnson, R.B. & Onwuegbuzie, A.J. 2004. Mixed methods research: a research

paradigm whose time has come. Educational Researcher, 33(7):14-26.

Joshi, A.P. 2013. Linked data for software security concepts and vulnerability

descriptions. Maryland University.

Kawulich, B.B. 2005. Participant observation as a data collection method. FQS Forum:

Qualitative Sozialforschung/Forum Qualitative Social Research, 6(2), Art. 43.

Kermani, M.M., Zhang, M., Raghunathan, A. & Jha, N.K. 2013. Emerging frontiers in

embedded security. Paper presented at the 26th International Conference on VLSI

Design, Pune, 5-10 January.

King, N. 1994. The qualitative research interview. In Cassel, C. & Symon, G. (eds).

Qualitative methods in organisational research: a practical guide. London: Sage: 14-36.

Kitzinger, J. 1994. The methodology of focus groups: the importance of interaction

between research participants. Sociology of Health and Illness, 16(1):103-21.

Kouns, J. & Minoli, D. 2011. Information technology risk management in enterprise

environments: a review of industry practices and a practical guide to risk management

teams. Hoboken, NJ: John Wiley & Sons.

114

Kurose, F. & Ross, K. 2010. Computer Networking. 5th ed. Boston: Pearson: 424.

Lahtela, A. & Jäntti, M. 2011. Challenges and problems in release management process:

a case study. Paper presented at the 2011 IEEE 2nd International Conference on

Software Engineering and Service Science (ICSESS), Beijing, 15-17 July.

Lahtela, A., Jäntti, M. & Kaukola, J. 2010. Implementing an ITIL-based IT service

management measurement system. Paper presented at the Fourth International

Conference on Digital Society ICDS 2010, St. Maarten, 10-16 February.

Le Goues, C., Forrest, S. & Weimer, W. 2013. Current challenges in automatic software

repair. Software Quality Journal, 21(3):421-43.

Le Goues, C., Nguyen, T., Forrest, S. & Weimer, W. 2012. Genprog: A generic method

for automatic software repair. IEEE Transactions on Software Engineering, 38(1):54-72.

Leavitt, N. 2011. Internet security under attack: the undermining of digital

certificates. Computer, 44(12):17-20.

Liu, B., Shi, L., Cai, Z. & Li, M. 2012. Software vulnerability discovery techniques: a

survey. Paper presented at the 2012 4th International Conference on Multimedia

Information Networking and Security (MINES), Nanjing, 2-4 November.

Long, J. 2011. No tech hacking: a guide to social engineering, dumpster diving, and

shoulder surfing. Burlington, MA: Syngress.

Marshall, M.N. 1996. Sampling for qualitative research. Family Practice, 13(6):522-5.

McNaughton, B., Ray, P. & Lewis, L. 2010. Designing an evaluation framework for IT

service management. Information and Management, 47(4):219-25.

McQueen, M., Boyer, W., McQueen, T. & McBride, S. 2009. Empirical estimates of 0day

vulnerabilities in control systems. Paper presented at the SCADA Security Scientific

Symposium 2010. 6-9 April.

Mell, P., Bergeron, T. & Henning, D. 2005. Creating a patch and vulnerability

management program. National Institute of Standards and Technology Special

Publication, 800:40.

Mell, P.K. & Scarfone, S. 2007. Guide to intrusion detection and prevention systems

(IDPS). NIST special publication, 800(2007):94.

Mell, P., Scarfone, K. & Romanosky, S. 2006. Common vulnerability scoring

system. IEEE Security and Privacy, 4(6):85-9.

115

Mell, P., Scarfone, K. & Romanosky, S. 2007. A complete guide to the common

vulnerability scoring system version 2.0. FIRST-Forum of Incident Response and Security

Teams.

Meyer, C.B. 2001. A case in case study methodology. Field Methods, 13(4):329-52.

Microsoft. 2008. Help protect yourself from the Conficker worm. Available:

https://www.microsoft.com/en-us/safety/pc-security/conficker.aspx. [Accessed: 24 May

2016].

Mohammadi, H. 2013. A systems engineering framework for implementing a security and

critical patch management process in diverse environments (academic departments'

workstations). Journal of Information Technology Management, XXIV(4):51-61.

Mohr, S. & Rahman, S.S. 2011. IT security issues within the video game

industry. International Journal of Computer Science and Information Technology, 3(5):1-

16.

Moore, D. & Shannon, C. 2002. Code-Red: a case study on the spread and victims of an

Internet worm. Proceedings. The 2nd ACM SIGCOMM Workshop on Internet

measurement. ACM: 273-284.

Morgan, G. &. Smircich, L. 1980. The case for qualitative research. Academy of

Management Review, 5(4):491-500.

Myers, M.D. 1997. Qualitative research in information systems. Management Information

Systems Quarterly, 21(2):241-2.

Naik, K. & Tripathy, P. 2011. Software testing and quality assurance: theory and practice.

Hoboken, NJ: John Wiley & Sons.

Neuman, W.L. 2011. Social research methods: quantitative and qualitative approaches.

Boston: Pearson: 9-65.

Nicastro, F.M. 2011. Security patch management. CRC Press.

Noor, K.B.M. 2008. Case study: a strategic research methodology. American Journal of

Applied Sciences, 5(11):1602-4.

Okamura, H., Tokuzane, M. & Dohi, T. 2009. Optimal security patch release timing under

non-homogeneous vulnerability-discovery processes. Paper presented at the ISSRE

2009 20th International Symposium on Software Reliability Engineering, Karnatakam, 16-

19 November.

Oracle. 2013. Oracle critical patch update advisory - October 2013. Available:

http://www.oracle.com/technetwork/topics/security/cpuoct2013-1899837.html. [Accessed:

24 May 2016].

116

Panzica La Manna, V. 2011. Dynamic software update for component-based distributed

systems. Paper presented at the 16th International Workshop on Component-Oriented

Programming, Boulder, CO, 20-24 June.

Patnayakuni, R. & Patnayakuni, N. 2014. Information security in value chains: a

governance perspective. Paper presented at the Twentieth Americas Conference on

Information Systems, Savannah, 2014, Savannah, 7-9 August.

Payer, M. & Gross, T.R. 2013. Hot-patching a web server: a case study of asap code

repair. Paper presented at the 2013 Eleventh Annual Conference on Privacy, Security

and Trust, Catalonia, 10-12 July.

Qian, Z., Mao, Z.M., Rayes, A. & Jaffe, D. 2011. Designing scalable and effective

decision support for mitigating attacks in large enterprise networks. In Security and

privacy in communication networks, Heidelberg: Springer: 1-18.

Raja, U. & Tretter, M.J. 2011. Classification of software patches: a text mining

approach. Journal of Software Maintenance and Evolution: Research and

Practice, 23(2):69-87.

Ramaswamy, A., Bratus, S., Smith, S.W. & Locasto, M.E. 2010. Katana: a hot patching

framework for elf executables. Paper presented at the Fifth International Conference on

Availability, Reliability, and Security ARES 2010, Krakow, 15-18 February.

Ransbotham, S. & Mitra, S. 2013. The impact of immediate disclosure on attack diffusion

and volume in Economics of information security and privacy III. New York: Springer: 1-

12.

Rass, S. 2014. Complexity of network design for private communication and the p-vs-np

question. International Journal of Advanced Computer Science and

Applications, 5(2):148-57.

Rinard, M. 2011. Manipulating program functionality to eliminate security vulnerabilities.

In Moving target defense. New York: Springer: 109-115.

Ritchie, J., Lewis, J., Nicholls, C. M. & Ormston, R. 2013. Qualitative research practice: a

guide for social science students and researchers. London: Sage.

Ryan, G.W. & Bernard, H.R. 2003. Techniques to identify themes. Field

Methods, 15(1):85-109.

Sabahi, F. 2011. Cloud computing security threats and responses. Paper presented at

the 2011 IEEE 3rd International Conference on Communication Software and Networks

(ICCSN), Xi'an, 27-29 May.

117

Saleem, S., Yu, Y. & Nuseibeh, B. 2012. An empirical study of security requirements in

planning bug fixes for an open source software project. The Open University, United

Kingdom. ISSN: 1744-1986.

Scandariato, R., Wuyts, K., & Joosen, W. 2015. A descriptive study of Microsoft’s threat

modeling technique. Requirements Engineering 20(2):163-80.

Schryen, G. 2011. Is open source security a myth? Communications of the

ACM, 54(5):130-40.

Sethanandha, B.D. 2011. Improving open source software patch contribution process:

methods and tools. Paper presented at the 33rd International Conference on Software

Engineering (ICSE), Waikiki, 21-28 May.

Shahriar, H. & Zulkernine, M. 2012. Mitigating program security vulnerabilities:

approaches and challenges. ACM Computing Surveys (CSUR), 44(3):11.

Sharma, A., Kalbarczyk, Z., Barlow, J. & Iyer, R. 2011. Analysis of security data from a

large computing organisation. Paper presented at the 2011 IEEE/IFIP 41st International

Conference on Dependable Systems & Networks (DSN), Hong Kong, 27-30 June.

Shavelson, R.J., Phillips, D.C., Towne, L. & Feuer, M.J. 2003. On the science of

education design studies. Educational Researcher, 32(1):25-8.

Sihvonen, H.M. & Jäntti, M. 2010. Improving release and patch management processes:

an empirical case study on process challenges. Paper presented at the Fifth International

Conference on Software Engineering Advances ICSEA 2010, Nice, 22-27 August.

Singhal, A. & Ou, X. 2011. Security risk analysis of enterprise networks using

probabilistic attack graphs. Gaithersburg: Citeseer.

Sommerville, I. 2011. Software Engineering. 9th ed. Boston: Pearson: 15-580.

Sotirov, A. 2006. Hotpatching and the rise of third-party patches. Paper presented at the

Hat USA 2006 Briefing and Training, Las Vegas, 29 July-3 August.

Souppaya, M. & Scarfone, K. 2013. Guide to Enterprise Patch Management

Technologies, Vol. 800. Gaithersburg: National Institute of Standards and Technology.

Stake, R.E. 2013. Multiple case study analysis. New York, NY: Guilford Press.

Stolikj, M., Cuijpers, P.J. & Lukkien, J.J. 2013. Patching a patch-software updates using

horisontal patching. IEEE Transactions on Consumer Electronics, 59(2):435-41.

Subashini, S. & Kavitha, V. 2011. A survey on security issues in service delivery models

of cloud computing. Journal of Network and Computer Applications, 34(1):1-11.

118

Szefer, J., Keller, E., Lee, R.B. & Rexford, J. 2011. Eliminating the hypervisor attack

surface for a more secure cloud. Paper presented at the 18th ACM conference on

Computer and communications security, Switzerland, 17-21 October.

Thakare, S.V. & Gore, D.V. 2014. Comparative study of cia and revised-cia algorithm.

Paper presented at the 2014 Fourth International Conference on Communication

Systems and Network Technologies, Bhopal, 7-9 April.

Torres, J.M., Sarriegi, J.M., Santos, J. & Serrano, N., 2006. Managing information

systems security: critical success factors and indicators to measure effectiveness. In

Information Security. Berlin, Heidelberg: Springer: 530-545.

Tutt, A. 2014. Aftermarketfailure: Windows XP's end of support. Michigan Law Review

First Impressions, 112:109-16.

Vaismoradi, M., Turunen, H. & Bondas, T. 2013. Content analysis and thematic analysis:

implications for conducting a qualitative descriptive study. Nursing & Health

Sciences, 15(3):398-405.

Wang, L., Jajodia, S., Singhal, A. & Noel, S. (eds). 2010. K-zero day safety: measuring

the security risk of networks against unknown attacks. In European Symposium on

Research in Computer Security. Berlin, Heidelberg: Springer: 573-587.

Wei, D., Lu, Y., Jafari, M., Skare, P.M. & Rohde, K. 2011. Protecting smart grid

automation systems against cyberattacks. IEEE Transactions on Smart Grid, 2(4):782-

95.

Welman, J.C., Kruger, F. & Mitchell, B. 2005. Research methodology. 3rd ed. Cape Town:

Oxford University Press.

Wright, J.L. 2014. Software vulnerabilities: lifespans, metrics, and case study. University

of Idaho, Moscow, Idaho.

Xu, J. & Croft, W.B. 1996. Query expansion using local and global document analysis.

Paper presented at the 19th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, Zurich, 18-22 August.

Yang, B., Zeng, S., Ayachitula, N., & Puri, R. 2011. SLA-driven applicability analysis for

patch management. Paper presented at the 12th IFIP/IEEE International Symposium on

Integrated Network Management (IM 2011), Dublin, 23-27 May.

Yin, R.K. 1981. The case study crisis: some answers. Administrative Science

Quarterly, 26(1):58-65.

Yin, R.K. 2013. Case study research: design and methods. Thousand Oaks: Sage.

119

Yu, J., Han, J., Schneider, J.G., Hine, C. & Versteeg, S. 2012. A virtual deployment

testing environment for enterprise software systems. Proceedings. The 8th International

ACM SIGSOFT Conference on Quality of Software Architectures, June. ACM: 101-110.

Zhao, D., Furnell, M. & Al-Ayed, A. 2009. The research on a patch management system

for enterprise vulnerability update. Paper presented at the 2009 International Conference

on Information Engineering – ICIE 2009, Taiyuan, 10-11 July.

Zhou, C.V., Leckie, C. & Karunasekera, S. 2010. A survey of coordinated attacks and

collaborative intrusion detection. Computers and Security 29(1):124-40.

Zhu, Q., McQueen, M., Rieger, C. & Basar, T. 2011. Management of control system

information security: control system patch management. Proceedings. The Workshop on

the Foundations of Dependable and Secure Cyber-Physical Systems (FDSCPS-11),

Chicago, IL, 11 April.

Zseby, T., King, A., Brownlee, N. & Claffy, K. C. 2013. The day after patch Tuesday:

effects observable in IP darkspace traffic in passive and active measurement.

Heidelberg: Springer: 273-275.

120

APPENDIX A: THREE INTERVIEW TRANSCRIPTS

(All transcripts and recordings available on request)

TRANSCRIPT NO 1 – SECURITY SPECIALIST

1. What is your current job title and what previous job roles did you perform before

you started your current job? (Previous companies and job roles)

Interviewee: Okay, my current job title is the IT Governance and Risk Specialist…

Interviewer: Okay

Interviewee: …and I won’t give you my complete history but I covered two previous

roles; before this role I was the Information Security Specialist at

Metropolitan life and before that I was IT systems administrator at

Ackermans.

Interviewer: Okay

Interviewee: Ya and that, as you can see it was more general earlier back and then

as years went on it became more specialised and within the context of

Patch Management I dealt with those things prior to this current role.

My current role is more documentation of the whole process and how it

should work [unclear]

Interviewer: Okay

2. How familiar are you with the generic issues in Patch Management? (In general,

not company specific)

Interviewee: Quite familiar, luckily with LinkedIn and all these internet based web

services one gets a good idea of how the issues across the world

actually and actually last week I was participating in a question that

someone posted of Patch management issues within small to medium

businesses and, ja, so I’m…

Interviewer: You’re fairly up to date.

121

3. To what extent is patch management part of your job (What percentage of your

time is spent on patch management functions)?

Interviewee: Less than five percent.

Interviewer: Less than five percent realistically speaking, okay.

4. How familiar are you with your company’s patch management issues? (What are

some of the current issues?)

Interviewee: Quite familiar actually because I’ve actually drafted the Patch

Management process document so I had a few sessions with different

stakeholders so I got some insight as to who does what and what’s

currently happening.

Interviewer: Okay that’s actually my next question

5. Are you aware who the role players are in the patch management process? (Who

is currently doing what?)

Interviewee: Indeed

6. Who do you think should be added or removed from the patch management

process?

Interviewee: Well like I said, It’s a different situation in each company but if I, ja, I

would say that there should be people removed from the process,

currently, uhm, specifically in the store area because I feel that there

isn’t a the expertise or they don’t have access to the resources that is

currently being used within the other HO domain so let me put it

plainly: the people that’s doing the store patching, that’s not the same

people that’s doing the rest of the unit…

Interviewer: Okay

122

Interviewee: That’s how I currently know the situation.

Interviewer: So there’s no central point where it feeds down from?

Interviewee: Correct, that is something I would like to change.

7. What are the problems associated with managing patches from any external

vendors? (What are the challenges when acquiring Microsoft or Adobe patches?)

Interviewee: Generally when acquiring patches, there is not much challenges. For

the most part it is seamless.

8. Are you aware of any test procedure for patches before they are deployed?

(What is the current procedure? What do you think should the procedure be?)

Interviewee: Yes I’m aware of it, but in the same breath I’ve also established those

testing procedures within the document that I set…

Interviewer: So it is established?

Interviewee: It’s not established it’s, err, it’s drafted.

Interviewer: Okay

Interviewee: So it’s not yet been followed.

9. How are patches prioritised within the organisation? (Do you have any

prioritisation policy in place or do you rely on that provided by software

vendors?) (Interviewer made an e.g. of Microsoft)

Interviewee: We have our own; it’s documented in our draft Patch Management

Policy which has also been incorporated into a process document that

I’m busy working on.

Interviewer: Okay

123

10. How are patches acquired from different vendors? (How do you know what is

available? What mechanism do you use to acquire these patches? How do you

think this process can be improved?)

Interviewee: Manually as well as automated, in some instances it’s being

automatically imported into WSUS in other ways or like in the other

domains server domain the guys are manually downloading their

Patches to be deployed.

Interviewer: And do we know who’s downloading what?

Interviewee: Like I said, uhm, it’s both manual and automated up until the process

gets applied.

Interviewer: Okay

Interviewee: The document I was talking about, so once that has been applied then

we will know exactly who’s doing what, but currently I have a rough

idea of who’s getting it automatically and who’s manually, a rough idea.

Interviewer: Okay and tell me the frequency of applying these patches.

Interviewee: Each system’s owner is currently doing it the way they perceive

necessary up until the policy and the document is being signed off.

Interviewer: Okay

11. Based on past experience, what incidents occurred as a direct result of failing to

properly manage patches? (Malware infections? Security breaches? Integrity

compromised? Confidentiality compromised?)

Interviewee: The most frequent and visible sign is a worm-breakout when, a, when

you have a worm breakout on the network you can easily see which

systems or work stations or which servers is the most affected and

those are the ones typically that’s the worst patched.

Interviewer: Okay

124

Interviewee: As well as system crashes like instability within systems or they can’t

integrate with other newer systems because they haven’t been

updated, so those are the two frequent sources or causes of systems

not being patched.

Interviewer: Okay

12. What components would you like to see go into a patch management policy?

(What should be defined in the policy?)

Interviewee: Uhm…you said who should develop the policy?

Interviewer: Uhm, number 12.

Interviewee: Oh sorry! Oh ya, uhm, the scope, what should be patched anything

ranging from business applications to the third party applications,

expectations of patch management, how often and you know all the

expectations that goes around patch management with as well as the

schedule and then the roles and responsibilities - who should be

patching and who should know about the patching.

Interviewer: Okay

13. Who should develop the policy, implement the policy, and police the policy?

Interviewee: Information security

Interviewer: Information security development and then obviously the

implementation of that policy should be delegated.

Interviewee: Yes, the implementation thereof should be delegated to the relevant

people that’s responsible for the system, the system owners basically,

the ones responsible for managing the tool that deploys the patches.

Interviewer: And then who should police this policy? You develop it, you delegate it,

who should make sure it’s actually enforced? Do you think that should

lie with security or audit?

125

Interviewee: Audit

Interviewer: You think audit should police it?

Interviewee: I think so, uhm, because with all other controls patch management is a

control to prevent a risk from patch management because it’s a control

and audit makes sure controls are there; they should do it.

Interviewer: Okay

14. Thank you for your time. Who else would you recommend I speak to?

Interviewee: Uhm, people outside our department would be xxxxxxx and xxxxxxx

(names removed to keep interviewees anonymous).

Interviewer: You think that should be my next point of call?

Interviewee: Ya because they, I’ve dealt with them and from a business application

side, probably speak to xxxxxxx.

Interviewer: xxxxxxx, thank you.

TRANSCRIPT NO 2 – ENTERPRISE ARCHITECTURE

1. What is your current job title and what previous job roles did you perform before

you started your current job? (Previous companies and job roles)

Interviewee: Shoh, the current job title is easy, is Enterprise architect.

Interviewer: Okay

Interviewee: Okay, what did I do before this…uhm there’s not in IT I haven’t done.

Interviewer: Okay

Interviewee: So…I’ve been a network manager, I’ve been a programmer, I’ve been

an analyst, I’ve been a…

126

Interviewer: You’ve been through it all.

Interviewee: Ya, I’ve been through the whole of development so there’s

nothing in development I haven’t done. I’ve done DBA work, I’ve

done, uhm, ya uhm, I mean I was fixing machines before you

were born, uhm, I was fixing machines pre PC’s [laughs] so, uhm

yes, I’ve, uhm, together with a couple of other people

manufactured boards from scratch [laughs].

Interviewer: So you’ve been, you’re quite experienced obviously.

Interviewee: I’ve done a lot.

Interviewer: Okay

 2. How familiar are you with the generic issues in patch management? (In general,

not company specific)

Interviewee: Ya, well I mean, ya, I’ve obviously read quite a bit so I do understand a

lot of it. I mean I’ve been working for this company for a long time so I’ll

clearly understand some of the patch management issues in this

company…

Interviewer: Okay

Interviewee: …which are not necessarily that different to a lot of other companies,

they, I mean, patch management there’s a lot of commonalities across

the board with patch management, uhm, but there are obviously some

industries and some situations where patch management is a lot more

difficult you know so especially some of the geographical things

logistical type things, so how do you do patch management in a war

zone for instance in Iraq? Very different to patch management here.

Interviewer: Okay [laughs]

127

3. To what extent is patch management part of your job (What percentage of your

time is spent on patch management functions)?

Interviewee: No but not specifically, as an enterprise architect clearly I have to its

part of my what I have to understand and part of what I consult on very

often within the organisation but do I go and do patch management

every day, no.

Interviewer: Okay

 4. How familiar are you with your company’s patch management issues? (What are

some of the current issues?)

Interviewee: I’m much more familiar with patch management in terms of stores than

for instance specifically with issues around head office…

Interviewer: Okay

Interviewee: …uhm although as I said there’s a lot of commonalities amongst it and

I understand some of the head office issues, uhm, I don’t pretend to

understand them all not in fine detail ya.

 5. Are you aware who the role players are in the patch management process? (Who

is currently doing what?)

Interviewee: Uh, yes

Interviewer: You know who they are?

Interviewee: Ya

6. Who do you think should be added or removed from the patch management

process?

128

Interviewee: Uhm no it’s not a people problem. I mean patch management, patch

management in stores in becoming better is becoming more under

control uhm mainly because of the fact that they put SCCM in and they

hold distribution mechanism[s] for software that has improved so that

makes the concept of patch management and the way you patch much

easier but you should understand stores have always been both more

complex and simpler than head office; now I say that deliberately…

Interviewer: Okay

Interviewee: …because uhm simpler in the sense that stores in general have a

common look and feel out there so there might be a generational

difference you might XP out there, I think they’ve only just got rid of

Windows 2000 so they might have Windows 2000 out there and

Windows XP out there and Windows 7 out there…

Interviewer: …and then of course server 2008 uhm but within the XP environment

within the windows 7 environment they all look the same so you don’t

have variations of the theme within XP or variations of the theme within

Windows 7 so the software sets that are on those various platforms are

out there are all identical.

Interviewer: Okay

Interviewee: Okay so you don’t have to worry if you’ve tested for one windows 7

you’ve tested for all in theory anyway.

Interviewer: In theory, ja.

Interviewee: Uhm even the hardware is very very very similar in stores, if you go

from one store to the next store there’s very little variance in the

machines.

Interviewer: Okay

Interviewer: So there might be an older generation machine and a later generation

but you know it’s in that way it’s simpler it’s more complex because it’s

distributed far more so in the case of stores there’s 2500 stores uhm

across a huge geographic area uhm so when you do something with a

129

store whether it’s a patch or a new piece of software whatever it is with

a store you have to be very sure it worked before you start the

distribution of it because if it gets to the 1651 store and things start to

come unstuck; it’s a little bit difficult to fix it because you already gone

and [laughs] you know what I mean?

Interviewer: I’m with you, yes.

Interviewee: At head office you have a different scenario; here it’s more complex.

The variety of machines and the variety of systems that run on those

machines are far greater than stores there’s many more types of

machines here there’s many more types of software they run on those

machines here but within a head-office context all the machines are in

a fairly close geographic location and okay there are some regional

offices as well but even then they’re not too bad if things go wrong you

can physically get to the machines and lay hands on them in stores

you can’t there’s now ways that there are enough people to go to all of

the stores and to fix them in a short time scale whereas in head office it

might take even a couple of weeks to fix for instance a campus you

can never the less do it in a couple of weeks in stores you couldn’t do it

in a couple of months.

Interviewer: Okay

Interviewee: Okay, very much more difficult so the two patch scenarios are very

very different in the one case you’ve got to be extremely careful about

before you actually start applying patches generically across the

board…

Interviewer: Okay

Interviewee: …uhm in the other one you’ve got a lot more to test but…

Interviewer: In stores now?

Interviewee: No in head office.

Interviewer: Oh in head office.

130

Interviewee: There’s a lot more testing to do okay because of the number of

different machines and the number of different uhm pieces of software

out there.

Interviewer: Okay

7. What are the problems associated with managing patches from any external

vendors? (What are the challenges when acquiring Microsoft or Adobe patches?)

Interviewee: Uhm well for the…in general I don’t really have problems acquiring

patches, uhm, in general they’re available you know some patches

come out, Microsoft releases a monthly patch for instance a patch set

and you apply those and occasionally you will have special patches

which you have to apply that’s only a result of a very direct fault so if

something’s gone wrong you inspect it you go and find what the

symptoms are you go online and you put the symptoms in you get a

thing that says that KB we’ll fix that then and normally that’s fine I

mean we have one situation at the moment where dot net 4.5 has

broken something in our environment, uhm, now that doesn’t happen

with everything in an environment in 4.5 but in a specific area it’s

broken it’s an intermittent fault and it’s not known to Microsoft so that’s

a really tricky one ‘cause that’s taken at that point in time three weeks

of trying to track this particular thing and speaking to Microsoft and

getting a patch out of them, we still don’t have the patch because they

still don’t know what’s going wrong yet…

Interviewer: Okay

Interviewee: So when you say are patches generally available, the common patches

are and, and, if you took point of sale software for instance or service

packs, they do three service packs a year and that’s the way it comes

out and because it’s very rare that they at the end of a service pack

cycle as they’re implementing the first two couple of stores that they

actually have fixes to that again ‘cause their testing is so very

thorough, they have to be very very thorough in their testing because

you can’t afford to break stores okay, and, but I do find that there’s

some anomalies in this whole patch thing. So for instance Microsoft

131

patch is, they come down and they then you get things like Adobe

which just spring in to life and just patch every now and again and uhm

far less you are less able to control those for instances Adobe patches

then you are Microsoft patches, uhm, I also find I find there for instance

in the sort of Google in the Apple scenario this idea that they patch, I

mean if you take a typical Google phone and Android phone, they’re

patching this thing three or four times a week, not at the OS level but at

the application level, you’ve gotta ask yourself I mean I’ve gotta and

there’s not an awful lot of applications on this particular phone but I can

guarantee that I’ve almost always behind on the updates, I dunno what

they’re doing I’ve got no clue, is this a big update or do they just want

to know you’re still there you don’t know, so I think that’s a less

controlled environment.

In the Microsoft environment indeed even in the AIX because we’ve got

an AIX upstairs and big oracle for instance uhm that’s far far more

stringent you know the patches are there they’re well numbered, you

know what they are, they’ve document what they fixed so you can go

into any one of those things and they’ll tell you what they fixed it’s

available to you. You can see the detail of what’s happened on these

type of devices Androids and that you’ve got no clue, uhm, in android

itself you do and indeed in Microsoft the Windows on the phones when

they put out a fix route you know exactly what they’ve done but it’s all

of the other software would be both telling you what they fixed or that

you just get a…

Interviewer: Update

Interviewee: Ya, you get an update and that’s it so you know you’ve got no clue.

Interviewer: Okay.

132

8. Are you aware of any test procedure for patches before they are deployed?

(What is the current procedure? What do you think should the procedure be?)

Interviewee: Oh ya, in the stores what they’re doing right now is they will, they are

essentially they’re testing a patch set, they’ll test a patch set here in the

lab initially…

Interviewer: Okay

Interviewee: They don’t, they don’t do extensive testing for an operating system

patch set so they don’t go and run every application through every

process to make sure it works that’s not what they do they do sort of

basic applied patches you know a couple of a few basic tests because

you’d drive yourself mad if you had to test you whole set every month

you know you couldn’t do that uhm so what they do is thy do the basic

tests and then they take that software and they put it into a store…

Interviewer: Okay

Interviewee: …they’ll patch a store and then they’ll patch a set of stores let’s say ten

and then they’ll take it slightly wider again they might do thirty or forty

stores so they’ll do internal, a small set uh one store just to make sure

bigger set, bigger set and then everything and they do that over a

period of about a month so there’s normally about a week between

each of those things.

Interviewer: Okay so there is a procedure in place for testing.

Interviewee: Ya

9. How are patches prioritised within the organisation? (Do you have any

prioritisation policy in place or do you rely on that provided by software

vendors?)

Interviewee: Both yes and no I mean at stores level we don’t necessarily patch them

there’s their 72 hours we can’t uhm but uhm we will apply all of their

critical and important patches uhm within that month…

133

Interviewer: Okay

Interviewee: …that we do ya.

Interviewer: Critical and important

Interviewee: Ya

10. How are patches acquired from different vendors? (How do you know what is

available? What mechanism do you use to acquire these patches? How do you

think this process scan be improved?) Is it strictly online downloads?

Interviewee: Ya

Interviewer: That’s the only mechanism you’re aware of?

Interviewee: Uh not exclusively but mostly.

Interviewer: Mostly

Interviewee: Ya there are there are some patches that we apply for instance in the

SAN environment the storage environment where the vendor comes on

site and does our patches but those are quite technical uhm so we

don’t download something willy nilly and apply them they much much

more studied and structured you know what I mean and the vendor

comes on site, IBM in our case IBM comes on site and applies those

patches so we don’t just simply download something and patch it.

Interviewer: And tell me how do we know patches are available? How would we

know to go and look for a patch now?

Interviewee: Well uhm it depends on what you’re talking about uhm essentially with

you know Microsoft it’s pretty much patch and their patch Tuesdays,

you know their patch Tuesdays is gonna happen of course we’ve

talked about the other cases where you actually have a fault and you

go look for it and then you know there’s a patch for that so uhm and

then on things like the SAN and that very typically it’s done on a

periodic basis that they will upgrade it…

134

Interviewer: Okay

Interviewee: …so uh unless again, unless there’s a specific fault we’re dealing with

we don’t upgrade outside of that cycle especially on the sand because

the SAN I so critical to the organisation it’s almost like the stores you

can’t break the SAN you know and if you break the SAN you’re really in

trouble and it’s happened once or twice where they applied a patch

and it’s actually broken the SAN and then they’ve had to regress it uhm

so those ones are done only at about six monthly intervals that kind of

patch.

Interviewer: And tell me you say Microsoft Windows patch Tuesday, what if it’s

JAVA week?

Interviewee: Well that’s why I say Adobe is a lot less controlled, you don’t always

know what’s going on with Adobe you know and Adobe doesn’t I

suppose you can go and look for it, we don’t typically as far as I know

bother too much with Adobe as such uhm in the case of the stores we

typically put Adobe out there we don’t allow the automatic updates…

Interviewer: Okay

Interviewee: …because it would overwhelm us we just couldn’t do it, so we typically

don’t patch Adobe that often maybe not often enough uhm but we don’t

so we don’t typically we will control when Adobe gets patched through

SCCM and it won’t be even once a month.

Interviewer: Okay

Interviewee: It’ll just be periodically.

11. Based on past experience, what incidents occurred as a direct result of failing to

properly manage patches? (Malware infections? Security breaches? Integrity

compromised? Confidentiality compromised?)

Interviewee: Uhm ya…I can tell you what went wrong when we applied patches I’ll

[unclear] framework 4.5…

135

Interviewer: Well that even too.

Interviewee: I mean uh that’s a fairly recent one where it was applied uhm as per

normal and in fact uhm it actually broke the Kerberos, now Kerberos is

the authentication protocol that’s used and in fact Kerberos broke but it

didn’t break entirely as I said intermittently Kerberos would fail to work

correctly now Kerberos is quite a complex little protocol and it involved

clock times and all sorts of things so it’s hardly surprising that it broke

uhm but break it did [laughs]. We have in the past been a bit suckered

where we haven’t applied patches properly and then when you do

come to the point where you have to apply the patches you’re so far

behind that it becomes it doesn’t become worth patching then it’s a big

and expensive exercise of re-installing operating system [audio

interruption]. So I think when you look at the long term of an

organisation especially in today’s environment where you know

everything is so well connected I think you lay yourself open to all sorts

of abuse actually if you don’t update.

Interviewer: Ya

Interviewee: Because a lot of their patches are security patches just you know

blocking otherwise known hacking holes and stuff like so I guess if you

look at an organisation like ours from a governance point of view you

oblige to patch regularly you can’t not patch otherwise you would be

breaking a governance because you would make yourself open to

abuse but also as I said you know we in the past found that er they

didn’t patch and then suddenly when you had to patch you couldn’t, the

past of patching of that much catch up…

Interviewer: Okay

Interviewee: …was just too great.

Interviewer: Okay

136

 12. What components would you like to see go into a patch management policy?

(What should be defined in the policy?)

Interviewee: Uhm…well there needs to be a set of principles about the patch

management policy so you need to set up principles like…for what you,

let me think this through properly… so you might say in principle we’re

going to apply patches one generation back so that’s a fairly typical

approach people take because they reckon I don’t want to apply a

patch until the rest of the world has applied it, if everybody did that

we’d all be in trouble.

Interviewer: So that’s the N-1 strategy?

Interviewee: Yes

Interviewer: Okay

Interviewee: So that might be a principle of what you, so you need to set up those

principles first, you need to understand how you’re operating in that

environment and then in terms of the actual policy itself uhm you need

to define how you’re going to test and how deeply you’re going to test

okay you need to define your period of this test, how often, what your

periods are…

Interviewer: Okay

Interviewee: …and ya patching patching patching ya it’s the kind of thing you need

to do. How you’re gonna test, how often you’re gonna test how you’re

actually going to deploy by the way is the other thing because there’s

several ways of deploying and you might have to have a deployment

rule with different types of software so your own bespoke systems and

whatsoever, this is how to deploy but Microsoft patches, this is how I

deploy and Adobe that’s how I deploy…

Interviewer: Why not one method for all?

Interviewee: I don’t think it’s, [yes don’t forget my stuff] I don’t think it’s viable to do

one method for all because they’re different things if you know what I

mean uhm so you know the period that you might do Microsoft patches

137

might be more frequent then you do your own bespoke stuff okay

because very often your own bespoke stuff the patching is more about

extra functionality.

Interviewer: Okay

Interviewee: …whereas Microsoft stuff might be security patches so again I don’t

think there’s a single rule but I think you can kind of categorise your

rule set, in this category it’s like this and like that in that category it’s

like that and that, that makes it much more manageable.

Interviewer: Okay

13. Who should develop the policy, implement the policy, and police the policy?

Interviewee: Uh, well, not a single person uhm typically uhm a patch policy that is

developed between for instance operational department…

Interviewer: Okay

Interviewee: …uhm security department so in our case WSS who look after the

servers they would be party to it.

Interviewer: Okay

Interviewee: Because they’re looking after the environment after all. Uhm clearly

your security department need to have a say and a hand in this and

when it comes to your own software clearly the development area also

needs to be part of that policy setting so it depends on what you’re

doing…

Interviewer: Okay

Interviewee: Ya

Interviewer: And tell me the implementation of this policy?

Interviewee: Hmm

138

Interviewer: Does it lie within operations only or should specific people be tasked

with it or?

Interviewee: No, I think I don’t I’m not a great believer in compartmentalising or silo-

ing things that much because if you have a department that only does

patching uhm they tend to become a little bit disconnected with the

world and the rest of the world disconnected from them…

Interviewer: Okay

Interviewee: …so I would rather for instance put you can talk about distribution and

actually applying of patches but you know the adoption and uhm

testing of patches I believe gets done in the appropriate area so In

terms of uhm our own stuff or packages we bought uhm that should be

done in development areas in terms of this enterprise, so they should

say we’re going to apply this patch and we’re going to test it, they

might pass that on for instance in the case of stores to Richard’s team

and Richard’s team actually deploy it and implement it, they execute

the implementation in the stores.

Interviewer: Okay

Interviewee: Uhm, but I’m not a great believer in sort of having a whole patch

department because it isolates them too much, they’re not in touch with

what’s happening and you can’t it’s one of those things you can’t

simply willy nilly apply patches you have to understand what else is

going on in the environment.

Interviewer: Ya

Interviewee: So it’s no good me applying a patch to a piece of software that’s about

to be replaced, that would be you know a bit of a waste of time uhm

and so you do it requires more, I just don’t believe that it works well

when you isolate it, or by silo-ing it.

Interviewer: Okay so we’ve got who develops it, who implements it and then who

should police it. Who should make sure that this policy is being

adhered to?

139

Interviewee: Uhm, well uhm, that’s really the operational department so for instance

if in terms of end-user uhm it is for instance uhm xxxxxxx’s (name

omitted) area that should be policing it okay and a lot of that policing is

very automatic anyway, if we use the right tools it becomes policing by

exception so it’s the same way as we do for anti-virus, I mean, we don’t

run around and check every machine for anti-virus all the time, we

simply have a system that says to us, these machines are two

generations behind in their patch of anti-virus okay and that’s the way

you need to do it especially and in big organisations, the volume is just

too great I mean I don’t know how many terminals you’ve got at head

office but it’s probably in your head office and regions probably

something like 7000, somewhere around there.

Interviewer: Yes

Interviewee: Uhm, Stores, it’s another 6000 so you know you can’t possibly manage

that on an individual basis you do it by exception so you have a as they

do so for instance in the stores they uses SCCM for the same purpose,

they use it to collect version information…

Interviewer: …and uhm they monitor uhm monitor machines that are out of version

for a particular aspect.

Interviewer: Okay

14. Thank you for your time. Who else would you recommend I speak to?

Interviewee: I dunno, who have you spoken to.

Interviewer: You can say the names, the ones already covered I’ll ignore.

Interviewee: Uhm… xxxxxxx.

Interviewer: Okay

Interviewee: He understands stores far better than I do in terms of exactly what their

process is in stores.

140

Interviewer: Okay

Interviewee: Uhm I would speak to xxxxxxx…

Interviewer: Okay

Interviewee: …‘cause he can tell you a lot about patching for instance about the x

environment for instance how they process that stuff, uhm, xxxxxxx in

terms of the stores as well, uh, either xxxxxxx or you can even or even

xxxxxxx.

Interviewer: Is it?

Interviewee: One of those two you probably already know from your own end-user

perspective; best that you talk to them and ya probably those.

Interviewer: Thank you.

TRANSCRIPT NO 3 – OPERATIONS MANAGER

1. What is your current job title and what previous job roles did you perform before

you started your current job? (Previous companies and job roles)

Interviewee: Currently I’m the head of Operations Manager for [company name

removed] InfoTech and the SMC - the service management centre, uh

responsible for all end-user computing, manage print services, AV

support as well as VIP and MAC support, among other things.

 Previous roles in the organisation is I’ve worked in the Windows server

team as an IT Technical Specialist where I look after looked after the

exchange enterprise vault, file servers and a couple of other

application servers as well. Prior to that I was a service test team

leader where we looked after a compliment of about twenty staff, uhm,

and that was just day-to-day service desk help-desk related issues

from a first and a second line point of view. Prior to that I worked in the

USSS team well previously back then it was known as the LAN

administration team where we did some server support from a server

141

administration point of view so that was looking after components of

exchange as well as looking after uhm file and print servers as well as

restores and some other general admin uh prior to that I worked in the

desktop support department within InfoTech; that was years ago and

that’s just normal desktop support related support, uhm, prior to that I

worked at RCS group as a network administrator uh where I looked

after their server environment; prior to that I was a desktop support first

line uhm support analyst if you wanna call it that at that point in time for

RCS group as well and prior to that it wasn’t an IT related job so I don’t

think it counts right now.

Interviewer: Okay then.

2. How familiar are you with the generic issues in patch management? (In general,

not company specific)

Interviewee: So generally patch management is always a, a complicated thing to

actually manage especially in a big corporate such as ours at the

moment, uhm, unfortunately we’ve got a lot of disparate applications,

some of them Legacy some of them new and unfortunately once you

do patch management, you know it has to be done in a very specific

way or you could cause uh quite a bit of disruption within the

environment, so let’s say you patch something and Microsoft sort of

plugs a specific security hole it might sort of break that specific

application and then you’d have to roll back that patch uhm there are a

lot of issues around Legacy operating systems like in our environment

we still run XP and a large footprint a large footprint of our environment

is windows XP and unfortunately patching those machines it could

basically be very time consuming considering that it’s not supported

anymore by Microsoft, uh, as well as the fact that you know we haven’t

really had too many issues in that specific space considering that we

have a lot of parameter protection from a security point of view. That’s

just Microsoft patching uh when it comes to application packaging

there are even more complicated issues because you need a specific

too which in the past didn’t really exist to try and manage all your third

party applications; thing like Adobe and you know those types of things

142

so it does become a tiresome task if you don’t have the correct tools in

place especially from a legacy application because the way

applications interface with the operating system as well as your uh let’s

say Office for instance like you know Planning, planning uses Excel

and if you basically make a change to Excel, Planning might fall over

and break and you know trying to roll back those patches and find out

exactly where the issue is, is a very time consuming process.

3. To what extent is patch management part of your job (What percentage of your

time is spent on patch management functions)?

Interviewee: So as it stands right now uh it is a big part of our job uhm it’s we did it

years ago uh we then ran a couple of projects where we, where we did

a specific desktop optimisation project where we standardised our

desktop environment by locking it down and doing specific things; at

that point in time a call was made to uhm make sure that our image

had service pack 3 installed on it and at that point it was the only

cumulative service pack that was available to XP. That project ran for a

while and we didn’t actually do patch management for about three

years or so, maybe it’s a bit longer than that uhm now that we’re

moving to the Windows 7 space uh we’re basically wanting to actively

manage our desktops from a patch point of view and ultimately our

desktop support configuration analysts, it’s their responsibility to

ensure that compliance levels are met.

Interviewer: Okay

4. How familiar are you with your company’s patch management issues? (What are

some of the current issues?)

Interviewee: So I’m fairly familiar because I’ve been here for while uhm again like I

said in some of the previous questions or one of the previous questions

the issues usually pertain to Legacy applications and some of the holes

that a patch could resolve which could then negatively impact an

143

application which unfortunately use that I wouldn’t want call it

vulnerability but use that loophole to actually work.

Interviewer: Okay

Interviewee: Uhm from an application or third party application management point of

view again, the issues in that specific space is getting a third party

utility to manage all of that so it’s like I mentioned just now it’s JAVA it’s

Adobe it’s all these little things that people take into that they don’t take

into consideration that you need to basically patch, there are lots of

tools out there and I forget the name of the tool that we are possibly

gonna use in the future for managing those things uh but again that’s a

journey we still need to basically move forward on.

5. Are you aware who the role players are in the patch management process? (Who

is currently doing what?)

Interviewee: Yes it’s obviously from a…there’s a matrix that’s involved there and I

can share that information with you so you have an understanding of

who’s all involved but from an end-user computing point of view

obviously the desktop support or desktop configuration support

analysts – the guys that actually look after our SCCM half of our

images they’re sort of the people that implement the patch

management implement the patch management roll out uh the other

role players who define policy and who define compliance is the

security department and the security department would basically

govern the rules of our organisation so they’ll say we need to be 95%

compliant we need to patch every patch Tuesday for instance or we

can Patch every quarter dependent on what that policy is so us as

[company name removed] InfoTech basically all the role players met

from a management team point of view and we define that specific

policy, we’ve got a RACI model around roles and responsibilities so

like we are basically the owners and implementers of the patch

management process where uhm the security team for instance they

advise uh obviously there are other uh role players involved like the

auditors department who actually manage or let’s say they’re the

144

policemen uhm making sure compliance is met so that the security

department is also sort of doing their job but security manages

compliance and we act on what they define as our patch management

policy is what our strategy is.

6. Who do you think should be added or removed from the patch management

process?

Interviewee: I’d say…look you need to understand that because we weren’t doing a

lot of patch management we had to start from scratch and we were

fortunate enough to have a lot of like in the security team for instance

we had a lot of I don’t really like to use the word- clever people but

people with the technical knowledge and the experience from other

organisation that started in our organisation uh who went through the

turmoil’s of patch management so ultimately they came in they gave us

a lot of guidance around what we needed to do and they defined that

specific policy and as it stands right now I think we have it spot on right

now, my only concern is roles and responsibilities and when I say that

it’s yes I agree that end-user computing is responsible for rolling out

those patches but like with everything else if your desktop functioning

and working in my life it’s functioning and working you know what I

mean uhm my role as an operations manager is to make sure that the

end-user is able to function and do what they do, patch management

obviously adds a complexity to that environment; we need to

understand that if something goes wrong it’s not only my team that’s

gonna have to fix it; either we have to roll back but at the same time we

need to engage with development teams and say okay this patch was

applied, this is what it’s done, you need to go back and re-develop or

re-engineer your application so that it doesn’t use that loophole or

vulnerability that has been exposed uhm so to answer your question I

think that we…the process and the people involved are right and uhm

we’re on a journey at the moment so ultimately going forward we’re

gonna learn a lot from the process which we’re busy with at the

moment.

145

7. What are the problems associated with managing patches from any external

vendors? (What are the challenges when acquiring Microsoft or Adobe patches?)

Interviewee: So Microsoft is easy enough I mean we got the WSUS environment

which integrates with our windows sorry our SCCM 2012 environment

and ultimately the way it’s configured at the moment is that, that WSUS

service sucks down every patch that’s required so it’s in one source so

it’s not a sprawl around every work station going to collect patches

from the internet and all our workstations are configured to point to the

WSUS server so for Microsoft there’s no problem because it’s a slick

process uhm the testing of that is another story but ultimately that’s

why we do it in phases in the form of pilot 1 pilot 2 and roll out to the

rest of the environment when it comes to third party application

packaging like sorry patching like uh Adobe and Java and things like

that, that’s where it becomes harsh because not harsh but it’s a

struggle, unfortunately you’re very dependent on the internet for that

unless you have a third party uhm patch management solution that like

this one application you know I wish I had that name for you I’ll share it

with you a bit later where it acts as your repository for all patches

similar to a WSUS server, you configure this thing and you say okay I

wanna make sure that JAVA, I wanna make sure that Adobe, I wanna

make sure that all those third party applications are there and ready to

be patched at some point in time and we can point all our work station

to that service to actually patch it so there are tools out there, they’re

costly uh and they’re sort of licensed over x amount of years so you

pay it’s almost like a subscription cost that you pay for that service uh

so you pay for it more than anything whereas the WSUS service is

usually included in your Microsoft agreements.

Interviewer: Okay then just to confirm on the testing [leads into next question].

146

8. Are you aware of any test procedure for patches before they are deployed?

(What is the current procedure? What do you think should the procedure be?)

Interviewer: Ultimately we’ll follow exactly the same process from a non-Microsoft

based patching versus a Microsoft based patch type of process so

ultimately the rule of thumb is to first basically deploy to a small group

of users and we use InfoTech users as our guinea pigs f you want to

call it that just to confirm that the process is actually sound and that it

works so we’ll deploy to x amount of people make sure you know that

all the rule sets we have in place around alerting the user that your

machine might reboot in 60minutes or give them the ability to actually

apply the patches within a time-period is there so uhm ultimately what

was the question again? [laughs].

Interviewer: Are you aware of any test procedures?

Interviewee: Test procedures ya. So that first patch is just to test the process and

make sure the application is installed, not the application, the patch is

installed and that there aren’t any problems in the deployment process

once that’s done we move on to pilot 2 if you want to call it that or

phase 2, uh, where we choose specific users in our business;

preferably people that use a large variety of applications in that

business unit. Now we’re unique to a point because we’ve got different

trading divisions in our environment so you know it’s not like other

companies where it’s Truworths for instance and it’s just Truworths you

know what I mean, we the Foschini group and we’ve got all these

brands and all of these brands have different applications sets used I

mean you know you work in the environment uhm and unfortunately

we can’t do a one size fits all so we basically ear-mark five pilot users

in each division and we make sure that those users are using a

compliment of the application for that specific division, we deploy to

them, we give it a week or so just to confirm that all the applications

sets work we then elicit feedback from them and find out has

everything you know how was the process uhm did anything break uh

we also have mechanisms I place with a service test to say these are

the users that are basically on this pilot uhm what we’re doing is we’re

147

trying to pull a report daily to see how many calls they’ve logged in the

pilot process.

If that pilot process is successful we’ll then say okay you know what

we’ve got business sign off that there weren’t any issues uh we will

then basically run our pilot per division not the pilot but the balance of

the environment per division so we’ll tackle Foschini, we’ll tackle

Markham, we’ll tackle you know whichever other division is in place.

9. How are patches prioritised within the organisation? (Do you have any

prioritisation policy in place or do you rely on that provided by software

vendors?)

Interviewee: So like you know there’s Patch Wednesday sorry Patch Tuesday uh

ultimately Microsoft recommends that you patch every Tuesday; that’s

not practical in a corporate such as ours, you’d probably need a

dedicated patch management team and you know here we sort of use

our resources for everything possible and I see you laughing but

anyways so we’ve made a call that we will only patch every quarter.

Dependent on your organisation you can, like let’s use the store’s

environment for instance because I’m speaking specifically for head

office: in a store’s environment it’s active retail and a couple of office

applications so it’s a very easy test pilot phase that you can go though,

in the head-office environment and they could possibly patch every

Tuesday if they wanted to but I think they also made a call to patch

every quarter considering the large footprint but in our environment

there’s way too many applications that could be impacted on for us to

patch every Tuesday so I work on the rule of thumb that Microsoft can

make mistakes so you could possible go and patch something and

then there’s a fault on that specific patch ‘cause it’s happened in the

past and I’ve experienced it where we patched something; it’s broken

IE to hell and gone uhm and then Microsoft will release something the

next day saying okay we’ve had a couple of complaints too bad so sad

please install this specific patch uh it’s a little bit late at that point in

time so I work on an if you want to call it a N-1 type of a scenario if I

were running a smaller organisation I would always say and I could

148

patch every Tuesday I would say I would always patch last week’s

patches this week so we had a clear indication around uhm our

anybody else that might have experienced problems that actually patch

every Tuesday.

In the Foschini group environment we decided to go every quarter just

because it’s quite a big workload for one specific team to look at.

Interviewer: Okay.

10. How are patches acquired from different vendors? (How do you know what is

available? What mechanism do you use to acquire these patches? How do you

think this process scan be improved?)

Interviewee: It’s WSUS and downloads, mainly. I mean look right now we do ad hoc

patch management in our let’s Adobe reader uhm and our DCS guys

they’ll basically pick up a bug or there’s an alert that says you need to

basically patch Adobe, we’ll then download the patch and deploy it via

SCCM, so it’s mainly from a download point of view. We do have other

applications uhm where there are vendors involved and the vendors

will recommend that you upgrade in x amount of time but that rarely

happens.

11. Based on past experience, what incidents occurred as a direct result of failing to

properly manage patches? (Malware infections? Security breaches? Integrity

compromised? Confidentiality compromised?)

Interviewee: Let’s use, we had an issue once upon a time…okay let me start here:

InfoTech is quite secure from a parameter point of view now the

security department protects our parameter quite well so nothing can

really get into our environment from an outside point of view well I

suppose if someone tried hard enough and they were clever enough

they could get in but you know we haven’t had those types of issues in

the past. From an internal point of view because you obviously have

USB sticks and people with all their viruses and and and and we

149

basically secure our desktop using our anti-virus and we trust that

semantic is actually gonna release stats and that all our compliance

levels on our in-points are up to date so that usually picks up those

issues [audio interruption: phone rang] so in my view we did have one

issue and I don’t know if you remember the Conficker virus?

Interviewer: Yes I’ve heard of it.

Interviewee: Ya, so ultimately because we didn’t patch at that point in time and with

our XP world we were hit with that specific virus because it played on

that loophole that vulnerability within the windows operating system so

it caused a whole lot of issues in our head office environment and I

forget now but I remember still spending a whole lot of time at work

trying to get that issue resolved but you know we spent an entire

weekend uhm basically having to deploy the patch that actually

patches that vulnerability and that was a direct result of not patching

and that wasn’t coming from the outside it was somebody very naively

coming in with a USB stick because they did something at home and it

basically spawned this virus in our environment so that is the one

example in the years of experience that I’ve had at Foschini that was a

direct result of not basically patching so it is an important thing uhm

and unfortunately you can’t catch it a lot but you know straight after

that I know they endeavouring patching quite a bit at that point in time.

12. What components would you like to see go into a Patch Management policy?

(What should be defined in the policy?)

Interviewee: So I mean like I said we’ve got a patch management policy which I’ll

share with you, look it’s I’m not saying you can use all the data to

plagiarise it in any way but it will give you an idea around what patch

management policy defines so ultimately first you need a Racy model

to basically understand the roles and responsibilities for the different

teams because it’s for a couple a team’s ‘cause it’s not only the

desktops, there’s the server team uhm then there’s also the security

department and there’s the management you know Esco where they

basically have, they need to have some insight around what we are

150

patching so that they can report back to the board from a compliance

point level of view. So firstly a RACI model is required then we

basically we need to define what the process of patching is so that

would a little Visio workflow diagram that says pilot 1 pilot 2 to if this

happens we can continue, if this happens roll back you know, you

know that whole Visio type of process for the document. Then also just

defined, when I say roles and responsibilities in that RACI model

there’s usually a table but define in words who’s responsible for what

from a policy point of view, uh, to end that off with you need to also

basically make sure that there are a couple of disclaimers involved

around what you define as your patch management policy because

you can I mean you know there’s important, there’s critical security,

there’s not so important and that’s not a technical term but you should

know that there are a few categories from a patch management point

of view, we’ve decided to go critical and security patches only inn our

environment ‘cause the critical patches usually take care of the hard

core stuff the important and the nice to haves are okay but they usually

take care of a silly thing, it’s a bug in Microsoft sorry it’s a bug in office

for instance you know what I mean and they don’t really cause too

much of a threat to the environment, they can possibly cause problems

for the desktop support team because ‘oh no this is not working’ but ya

so critical uhm and security are the most important ones, in that policy

you need to define what it is that you want to patch but I’ll give you

some insight to the documents that you can understand what it looks

like and you can maybe just use it as a, I’m not saying a template but

something that you can use as a point of reference.

13. Who should develop the policy, implement the policy, and police the policy?

Interviewee: It is a combined effort with the operations teams involved so and the

server team obviously, there’s the desktop support team and, uhm, the

security department as well so those are the people that need to

basically define that policy so. Security will draft the policy and will then

pull everybody into a room and say are you happy with X, Y and Z,

we’ll give our feedback they’ll then amend that specific policy, they’ll

send it back to us we will say no we don’t like that, send it back and

151

that’s a bit of a give and take so it takes a bit of time to actually develop

a policy but it’s to make sure that we meet compliance first and fore-

most uh that we aren’t vulnerable to an attack uh but also to make sure

that the operational overhead isn’t too taxing on your team dependent

on the staff members that you have.

Interviewer: And then who should be responsible for the implementation of this

policy?

Interviewee: So when you say implementation of the policy I’m assuming…

Interviewer: Physically doing the work.

Interviewee: Following the policy?

Interviewer: Yes

Interviewee: [coughs] Again your policy will have your RACI model so it’ll have roles

and responsibilities so it’s usually the technical staff, technical

operational staff would be the implementers of the policy so they get

told that you need to apply all critical and security patches they will

then use whatever tools that they have at their disposal to implement.

Interviewer: And then who should be responsible to police this policy?

Interviewee: The security department.

Interviewer: So, okay so basically…

Interviewee: They should basically be the, ‘cause they’re the ones that govern our

security compliance level uhm and obviously there’s somebody that

needs to manage them and that’s the auditors. I don’t know if every

organisation has an internal audit department but ultimately our internal

audit department will then basically make sure that the policies that are

in place are ultimately in line with what the requirement is from an

industry standard point of view.

152

Interviewer: Okay.

14. Thank you for your time. Who else would you recommend I speak to?

Interviewee: Maybe and I don’t know if you’ve had a conversation with them but

xxxxxxx who’s actually the person who’s designed and implemented

our actual WSUS and SCCM environment, so if he has some time

maybe interview him to give you an understanding of the technical

detail around how you deploy and what you deploy and you know the

pro’s and the cons of deploying. Look, nobody knows what’s gonna go

wrong from a patch management implementation point of view but I

would say if you want a full understanding it’s nice to get the people on

the ground that’s actually well I wouldn’t say on the ground, somebody

that understands the design and architecture of our environment and

how that implementation works because xxxxxxx’s responsible right

now for designing that solution, making sure that the policy is, that we

meet what the policy dictates uh documenting that process, so it’s a

process it’s not a policy that can be handed over to operations that the

operational teams are able to actually deploy and use that technology,

whatever technology is at their disposal. So xxxxxxx’s a good uh a

good person to actually speak to from a patch management process

point of view so pilot 1 pilot 2 he can give you some detail around why

we do it that way and why we basically do it.

Interviewer: Okay thank you, xxxxxxx.

Interviewee: Cool, not a problem.

153

APPENDIX B: EXAMPLE OF CODING TECHNIQUE APPLIED (LATENT CODING)

What components would you like to see go into a patch management policy?

Interviewee: I think you know a key component is what do you want to patch I think

you know uhm if for instance if you run an exchange server you need

to decide uhm and it needs to be granular as granular as possible so

you need to decide you know I’m only gonna patch windows so I’m

gonna treat applications as a separate uh s you don’t have that all-

encompassing patch strategy that says you know this covers all

technology and all applications that I run because applications are very

different to the base OS’ that you run so I think key components that

needs to feed into your strategy is: what do you want to address, what

is the risk that you, that’s why we decided on security patches critical

patches kind of thing because we didn’t want to you know patch uhm

the windows installer and patch the windows firewall service and patch

you know because those aren’t even functionalities that we use kind of

thing so we didn’t wanna go in with a strategy and like I said any

change in to your environment has a sense of risk attached to it kind of

thing so we wanted to say industry best practice what should we focus

on and I think that’s key, is to say what is the scope of my patching

gonna involve and have that for your core OS for one like we’ve got in

both AIX and Windows and then also it speaks to your server patching

as well where your firmware comes into play of your actual hardware

devices kind of thing so I think the key component is to say how big is

the scope of my strategy and what I’m going to be patching and then

decide what is your appetite for risk in the sense of am I gonna always

go the latest and greatest as soon as it gets released I’m gonna apply

it or are you going into this whole what is the period that you’re gonna

apply your patches and we’ve decided on twice yearly so every six

months uhm and to me that’s kind of key but so you can have an

overall strategy uhm but then with very key metrics inside and say this

is the scope, this is what I’m gonna focus on and this is the time period

on how I’m gonna address that.

Interviewer: Okay.

154

APPENDIX C: UNSTRUCTURED IDENTIFIED THEMES

 Patch management forms a small part of current job function

 Participants find it difficult to quantify how much time is spend on patch management

activities

 The security department is unaware of the challenges faced in the organisation

 All participants have an idea of who the role players are and what the process is, but

no one has a complete view of the entire process

 Misconceptions exist regarding who does what, who is involved, and who should be

involved

 Roles and responsibilities are not clearly defined

 Change management and application owners may need to be added to the patch

management process

 Isolated patch management activities are not being monitored and documented

 There is no defined testing strategy

 Testing is done on an ad-hoc basis

 The test environment is out of sync with production environment

 Release patches are often not well documented in terms of version number, what

they fix, and release date

 Vendors have inconsistent behaviour when I come to releasing patches

 It is a challenge to maintain a current software register

 Legacy systems pose a variety of challenges to patch

 Resource constraints are a limiting factor

 Third party tools are expensive and patch activities is time-consuming

 Patch management process is complex and adds to the complexity of the

environment

 Importance of patch management is not well understood

 Communication between role players is a problem

 Systems that have not been patched in a long period of time is more risky to patch on

the initial attempt

 Inventory reports are skewed for a number of reasons

 The risk of patching has not been identified

 Communication between roles players is a challenge

 The security department is not as involved as they should be

 There is a lack of consistent patch activities

 There are no defined maintenance windows for patch deployments

155

 There is no prioritisation mechanism or response procedure in place

 The organisation is very risk averse

 Complete automation of patches poses challenges for testing

 The organisation is often forced to align with the vendor’s patching strategy

 Too much red-tape exists in order to approve patch deployments

 None of technical teams in the process have an understanding of the challenges

faced by technical staff

 Patch management activities are not consistent

 Testing challenges; there is no real test environment, and the testing is a resource

intensive process

 The informal testing procedure is that patches are testing on a virtual machine for a

while, and then released into production in a phased approach

 Lack of proper communication mechanisms often lead to wrong decisions being

made about patch management related issues

 The patch management policy should be developed by the security department,

implemented by operational teams and policy by a joined effort between internal audit

and the information security department

 Software vendors do not provide patches for older versions of software that is no

longer supported

 Microsoft has a smooth process when it comes to patches, but most other vendors do

not

 Only security patches and critical patches are installed

 The frequency of patch deployments has not been defined

 More incidents were reported as a result of applying patches, than what was reported

as a result of not applying patches

 The organisation suffered extensive losses from the Conficker worm outbreak

 Possible components that should be covered in the patch management policy

include:

o roles and responsibilities

o information awareness

o identification od stakeholders

o categories of patching

o frequency of patch deployments

o testing strategy

o patching strategy

o set of principles

156

o deployment mechanism

o categories of patching plus rules sets per category

o the process defined in words

o the importance of patching explained

o compliance requirements

o the testing strategy

 The policy should ideally be signed by senior management

 The policy should reduce red-tape and eliminate certain current challenges

 The majority of all security related incidents are as a result of vulnerabilities being

exploited

 A patch management policy should play a major role in information security in an

organisation

 Patch management is often not an easy task

 The time between discovering vulnerability and patching is often too long

 After vulnerabilities are disclosed, attacks first increase before they decrease

 The majority of the user community do not keep systems up to date

 There is large number of systems that cannot be restarted due to availability

requirements

 Companies can benefit from having a patch management policy in place

 Challenges in patch management can lead to compromises in enterprise data

security

 Patch management is one of the main components of IT management

 Patching is done to fix security and critical vulnerabilities

 Vulnerability management and patch management should be economically controlled

 There is a lack of means to directly measure the effectiveness of a security

mechanism

 Patch related information can be obtained from a variety of sources

 More than 50% of vulnerabilities that exist in the world have patches released

 Deciding what patches to install is a challenge

 The most notable exploit of 2014 was the Heartbleed exploit

 The patch management process is often flawed

 Security breaches can have significant impact on economies

 Vendors typically do not support older versions of software

 The mapping between techniques, vulnerabilities, address, and administration are

often skewed

 Organisations have constraint resources

157

 Security breaches are a regular occurrence

 There is significant risk in installing patches that have not been tested

 Testing is resource intensive

 Installing patches can break working systems

 Certain systems cannot be started or shutdown, making them a challenge to patch

 Infrastructure can introduce certain challenges, such as bandwidth constraints

 Timing, prioritisation and testing are often in direct conflict

 All platforms should be addressed in the patch management policy, such as mobile

device, server, and workstations network nodes

 Third party tools can help with software maintenance

 Patches are a time consuming process; insufficient time is listed as one of the main

reason why patches are simply not installed

 Configuration systems will add complexity to the environment

 Testing challenging: too little testing and unexpected results may occur after

deployment, too much testing and the vulnerability maybe exploited before the patch

is deployed

 Patch management is dependent on having current inventory information available

 Conficker worm affected users around the world, after a patch had been released

 Discovering vulnerabilities is a challenge

 The mechanism used to deploy patches may be a challenge

 There are very little defences against zero-day attacks

 A large number of vulnerabilities continue to be exploited after a patch has been

released

 It is often the perception that patches contain vulnerabilities

 User apathy and inefficient security controls contribute to lack of patching

 No single system supports all software

 Complete automation of patch deployment is challenging in terms of testing

 Complete automation implies complete trust

 Different software platforms require different approaches

 Solutions may have different limitations; it often does not scale well

 Response mechanism should form part of the policy

 The way a vulnerability has been disclosed can have an effect on whether a

vulnerability is exploited or not

 Some patches introduce new vulnerabilities

 If users perceive a patch to be complex and risky, they may choose to skip it all

together

158

 Role players include system administrators, vendors and government; patch

management is a sub-set of release management

 There are no standardised concepts; the same concepts may have different meaning

to different stake holders

 ITIL release management roles are not well defined

 Lack of information of communication procedures

 Lack of metrics for patch management

 Tendency to supersede maintenance issues for production releases

 System administrators do not have strong enough support from management

 System compromises could often have been avoided if patches were up to date

 Allowing users to manually install patches is not a good idea

 Consideration should be given to the deployment method, as there are several

searches with their own benefits and side effects

 Technical challenges, disk encryption, etc.

 Homogeneous host architecture makes it more challenging to manage patches

 Security needs should be balanced with that of usability and availability requirements

 If a system is too secure, users will go out of their way not to use it

 Finding maintenance time windows are difficult

 Change management is vital as process stretches over various departments

 Testing is important

 Code advance has attempted to reduce vulnerabilities in software

 There is no central location where patch information can be found

 Patches should be categorised as far possible

 Hot patching may be a possible solution for live updating of systems when there is

legislative pressure; vendors respond quicker

 Public disclosure can increase the risk of security attacks

 Legislation can be a useful tool

159

APPENDIX D: STRUCTURED IDENTIFIED THEMES

MAIN THEMES

 Patch management activities are not consistent

 The security department is not as involved and updated as they should be

 No party is looking at the complete picture; all activities are occurring in silos

 Testing is a major concern in several aspects

 Vendors have inconsistent behaviour when it comes to patch management and the

organisation is forced to align with the vendor

 Processes are not always well documented

 Legacy systems pose a variety of challenges for the organisation

 Third party tools are costly and require skilled employees to manage the tools

 Communication challenges have a direct effect on challenges experience relating to

patch management

 The lack of current and up to date inventory reports poses a challenge

 Patch related risks have not been identified

 There are no set maintenance windows in which to do the patches, making it difficult

to prioritise patches

 Roles and responsibilities are not clearly defined

 Patch policy should be signed off by a person in authority; that way it can reduce red

tape

 Patch management adds complexity to the environment

SUB-THEMES

 In general, patch management forms a small part of participants’ current job functions

 Participants find it difficult to quantify how much time is spend on patch management

activities

 All participants have an idea of who the role players are, but no one is looking at the

complete picture

 Change management and application owners may need to be added to the patch

management process

 Resource constraints are a limiting factor

 The Importance of patch management is not well-understood

 Systems that have not been patched in a long period of time are more risky to patch

 There is not prioritisation mechanism or response procedure in place

160

 The organisation is very risk averse

 The organisation is often forced to align with the vendors’ patching strategy

 Patch management activities are not consistent

 The patch management policy should be developed by the security department,

implemented by operational teams, and policed by a joined effort between internal

audit and the information security department

 Software vendors do not provide patches for older versions of software that is no

longer supported

 Microsoft has a smooth process when it comes to patches, but most other vendors do

not

 Only security patches and critical patches are installed

 The frequency of patch deployments has not been defined

 More incidents were reported as a result of applying patches than what was reported

as a result of not applying patches

 The organisation suffered extensive losses from the Conficker worm outbreak

 Possible components that should be covered in the patch management policy

include:

o roles and responsibilities

o information awareness

o identification of stakeholders

o categories of patching

o frequency of patch deployments

o the testing strategy

o patching strategy

o set of principles

o deployment mechanism

o categories of patching plus rules sets per category

o the process defined in words

o the importance of patching explained

o compliance requirements

o the testing strategy

161

THEMES AND IDEAS COLLECTED FROM SECONDARY DATA (LITERATURE REVIEW)

MAIN THEMES

 The majority of the users simply does not apply patches for a variety of reasons

 High availability system poses a challenge to patch as they cannot be rebooted or

shut down

 Patch management is directly linked to enterprise data security

 There is a lack of metrics to measure the effectiveness of security controls

 Vendors typically so not support older versions of software

 Testing plays a crucial function within patch management

 Patch management addresses complexity to the environment

 Organisation has constrained resources

 Patch management relies heavily on current inventory information

 System administrators often do not have strong enough support from management

 There is no single solution that supports all systems

 Different software platforms require different approaches toward patch management

 Lack of communication procedure is considered a challenge

 There is no centralised source of patch information

 It is important for the policy to be signed off by senior management

 Legislation can be a useful tool within the patch management process

 All risks related to patch management should be identified and classified

 There is a lack of information documentation and communication procedures

SUB-THEMES

 The majority of all security related incidents are a result of vulnerabilities being

exploited

 Patch management is a complicated task

 The patch management policy should play critical role in the overall security of an

organisation

 The time between discovering a patch and deploying a patch is often too long

 There is little defence against zero day attacks

 An organisation should find the balance between security, usability and availability

 No defined maintenance windows make patch deployments more challenging

 Documentation is vital throughout the process

162

 A baseline policy combines with a risk analysis can be a good place to start for an

organisation wanting to adopt a patch management policy

 Patches should be categorised as far as possible

 The time between discovering vulnerabilities and patching is often too long

 After vulnerabilities are disclosed, attacks first increase before they decrease

 Patch management is one of the main components of IT management

 Patching is mainly done to fix security and critical vulnerabilities

 Vulnerability management and patch management should be economically controlled

 More than half of all vulnerabilities that exist in the world have patches released

 The most notable exploit of 2014 was the Heartbleed exploit

 The patch management process is often flawed

 Security breaches can have significant impact on economies

 Security breaches are a regular occurrence

 Installing patches can break working systems

 Infrastructure can introduce certain challenges, such as bandwidth constraints

 Timing, prioritisation and testing are often in direct conflict with one another

 Third party tool can help with software maintenance

 Patch deployment is a time-consuming process

 Insufficient time is listed as one of the main reason why patches are simply not

installed

 Configuration systems will add complexity to the environment

 Testing poses challenging; too little testing could result in unexpected behaviour after

patches have been deployed. Too much testing and the vulnerabilities may be

exploited before the patch is deployed

 Patch management is dependent on having current inventory information available

 Conficker worm affected users around the world, after a patch had been released

months before

 A large number of vulnerabilities continue to be exploited after a patch has been

released

 It is often the perception that patches contain vulnerabilities

 User apathy and inefficient security controls contribute to a lack of patching

 No single solution supports all software systems; solutions may have different

limitations

 A response mechanism should form part of the patch management policy

 The way a vulnerability is disclosed can have an effect on whether vulnerabilities are

exploited or not

163

 Some patches introduce new vulnerabilities

 If users perceive a patch to be complex and risky, they may choose to skip the patch

 Role players include system administrators, vendors, and government

 Concepts are often not standardised; the same concepts may have different meaning

to different stake holders

 System compromises could in many cases have been avoided if system patches

were up to date

 Allowing users to manually install patches is not a good idea

 Consideration should be given to the deployment method, as there are several

methods, each with their own advantages and disadvantages

 If a system is too secure, users will go out of their way not to use it

 Change management is vital as the patch management process stretches over

various departments

 Software programming advances has attempted to reduce vulnerabilities in new

software

 Hot patching may be a possible solution for the live online patching of systems

 Public disclosure can increase the risk of security attacks

 Parameter security may be seen as an alternative to patching

 Patch management can leverage off existing frameworks

 Security patches may cause system failures

 Patching should be a shared responsibility between the software vendor, private

organisations, and government

 Release management and patch management are tool-oriented, and tools should be

efficient

 The environment should be standardised as far possible

 Organisations should be able to distinguish between vulnerabilities that affect them

versus vulnerabilities that do not affect them

 A patch management policy can lead to cost savings if resources are properly

coordinated

 Security controls should be implemented properly otherwise they can do more harm

than good

 Keeping software up to date with the latest versions reduce the need for patch

deployments

 Infrastructural limitations such as available bandwidth should be considered when

designing a patch management policy

 Maintenance windows should allow enough time for a rollback procedure as well

164

APPENDIX E: REPRESENTATION OF RESEARCH SAMPLE

165

APPENDIX F: RESEARCH INSTRUMENT: INTERVIEW QUESTIONS

1. What is your current job title and what previous job roles did you perform before you

started your current job? (Previous companies and job roles)

2. How familiar are you with the generic issues in patch management? (In general, not

company specific)

3. To what extent is patch management part of your job? (What percentage of your time

is spent on patch management functions?)

4. How familiar are you with your company’s patch management issues? (What are

some of the current issues?)

5. Are you aware who the role players are in the patch management process? (Who is

currently doing what?)

6. Who do you think should be added or removed from the patch management process?

7. What are the problems associated with managing patches from any external

vendors? (What are the challenges when acquiring Microsoft or Adobe patches?)

8. Are you aware of any test procedure for patches before they are deployed? (What is

the current procedure? What do you think should the procedure be?)

9. How are patches prioritised within the organisation? (Do you have any prioritisation

policy in place or do you rely on that provided by software vendors?)

10. How are patches acquired from different vendors? (How do you know what is

available? What mechanism do you use to acquire these patches? How do you think

this process scan be improved?)

11. Based on past experience, what incidents occurred as a direct result of failing to

properly manage patches? (Malware infections? Security breaches? Integrity

compromised? Confidentiality compromised?)

166

12. What components would you like to see go into a patch management policy? (What

should be defined in the policy?)

13. Who should develop the policy, implement the policy, and police the policy?

14. Thank you for your time. Who else would you recommend I speak to?

167

APPENDIX G: CONSENT FORM: PARTICIPATION IN CASE STUDY RESEARCH

168

APPENDIX H: NON-DISCLOSURE AGREEMENT: TRANSCRIPTION ANALYST

169

APPENDIX I: INTERVIEWEE QUOTES TO INTERVIEWEE AND TRANSCRIPT

MAPPING

The table below presents all the direct quotes that was made by interviewees and extracted

from the interview transcripts. All interview transcripts are available upon request. The quotes

are presented in ascending order from interviewee 1 to interviewee 13. A mapping of the

interviewee’s identifier to the actual interviewee’s name is available on request, but is being

intentionally withheld in order to maintain anonymity of interviewees.

Quotes made by interviewees that were

extracted from interview transcripts

Interviewee (I) who

made the statement

Transcript page

number (separate

documents -

available on request)

“A complicated thing to actually manage especially

in a big corporate such as ours at the moment,

uhm, unfortunately we’ve got a lot of disparate

applications, some of them Legacy some“

I1 1

“My only concern is roles and responsibilities” I1 4

“In that RACI model there’s usually a table, but

define in words who’s responsible for what from a

policy point”

I1 8

“Patch management obviously adds a complexity

to that environment; we need to understand that if

something goes wrong it’s not only my team that’s

gonna have to fix it; either we have to roll back but

at the same time we need to engage with

development teams and say okay this patch was

applied, this is what it’s done, you need to go back

and re-develop or re-engineer your application so

that it doesn’t use that loophole or vulnerability”

I1 4

“First patch is just to test the process and make

sure the application is installed, not the application,

the patch is installed and that there aren’t any

problems in the deployment process once that’s

done we move on to pilot 2 if you want to call it

that or phase 2, uh, where we choose specific

users in our business; preferably people that use a

large variety of applications in that business unit”

I1 5

170

Quotes made by interviewees that were

extracted from interview transcripts

Interviewee (I) who

made the statement

Transcript page

number (separate

documents -

available on request)

“Microsoft recommends that you patch every

Tuesday; that’s not practical in a corporate such as

ours, you’d probably need a dedicated patch

management team and you know here we sort of

use our resources for everything possible”

I1 6

“Cause it’s happened in the past and I’ve

experienced it where we patched something; it’s

broken IE to hell and gone”

I1 6

“It is a combined effort with the operations teams

involved so and the server team obviously, there’s

the desktop support team and, uhm, the security

department as well so those are the people that

need to basically define that policy”

I1 9

“There are times when we do patch and then for a

month or so we would actively be busy and then

eight months could go by and no-one talks about

patching”

I3

1

“I know for a fact with XP we never patch, we did

years ago then we fell behind and then we just

stopped, uh, we are hoping now to change this

with Windows 7 deployment”

I3 1

“I haven’t seen the policy but it is somewhere on

the intranet I believe”
I3 1

“Honestly I think everyone is already involved that

that should be, uhm, but I didn’t or I don’t think it’s

defined properly; I think names should be

associated to certain roles and people should be

held accountable for their responsibility”

I3 2

 “Our biggest challenge, sorry, is that we are

geographically scattered and we don’t have the

infrastructure that we would wish to have”

I3 2

“We don’t have a formal mechanism for prioritising

patches; we only do security and critical patches

from Microsoft; if it’s a patch that fixes an active

issue in our environment then we deploy as soon

as possible; normally within a week”

I3 3

171

Quotes made by interviewees that were

extracted from interview transcripts

Interviewee (I) who

made the statement

Transcript page

number (separate

documents -

available on request)

“Recently in the beginning of the year we deployed

a JAVA patch tested on the virtual machine; all

seemed fine, deployed to a pilot of five, no

communication made it back to us, interesting

thing happened here - three of these five people

logged a call because on a web based application

because a web based application no longer

worked, desktop support did a system restore,

removed the patch and the issue was resolved; all

this time we were under the illusion that we have a

hundred percent success rate so far, the next

week we deployed to thirty people, uhm, then it

became an issue because thirty users could now

not use the realist system, so here although we did

test, our communication strategy failed us”

I3 4

“The policy should reflect the importance of

patching, people don’t understand it and therefore

they simply ignore it so the policy should say why

we need to patch, the policy should define roles

and responsibilities and furthermore it should state

the frequency of patch deployments, it should also

state the scope of what we need to patch we may

choose not to patch everything”

I3 4

“I think security should develop the policy but all

parties involved must be consulted for input”
I3 4

“The importance of patching is not always well

understood”
I3 1

“You have to align with the application vendor of

the application”
I4 1

“It’s easier if you run typical Microsoft workload for

instance, so if you run an exchange server or a

domain controller, activating domain controller, to

patch them consistently, that’s typically not an

issue because its Microsoft with Patches for

Microsoft, but where you get challenges is when

you running third party applications”

I4

1

172

Quotes made by interviewees that were

extracted from interview transcripts

Interviewee (I) who

made the statement

Transcript page

number (separate

documents -

available on request)

“We don’t prioritise where we say every six months

we patch with the latest critical and, uhm, you

know security patches that’s our policy so we don’t

prioritise in that, however if we get for instance we

hit a snag or an issue, uhm, be it anti or virus

related, malware related, uhm, you know because

sometimes there’s windows security patches also

for a vulnerability that gets highlighted then

typically our governance, our xxxxxxx’s [name

omitted] team, our security and governance team,

they’re responsible and they will bring it under our

attention”

I4 4

“We’ve rather had issues patching servers, to be

quite honest with you, than not patching servers so

the counter is actually more true in my practical

experience”

I4 5

“There’s definite risk also in an active patching

strategy because you’ve got Legacy applications”
I4 6

“If you haven’t patched for long period like where

we started a year ago, then your immediate risk is

that the server has been running for seven years

like this and now you patch it; there’s about 85

some of our servers had about a 135 updates that

needed to apply so you’re touching 135 sets of

DLL’s and sorts of things, so chance is actually big

that you might affect something on that application,

but I think once you’re active, once you’re in your

second and third cycle, it becomes a no brainer”

I4 6

“I think we should use the practical experience of

operations teams”
I4 7

 “the policy should also define the technique

strategy and emphasise the importance thereof

and then the roles and responsibilities”

I5 4

173

Quotes made by interviewees that were

extracted from interview transcripts

Interviewee (I) who

made the statement

Transcript page

number (separate

documents -

available on request)

“The biggest challenge for me is getting the

change approved in CAB, they are very reluctant

to approve because generally they perceive that

patches don’t add any value although they have

the ability of breaking something now; with that

being said it’s very difficult to justify the

deployment of patches in production servers”

I5 1

“By showing the commitment of senior

management people are more likely not to push

back on proposed patch deployment”

I5 2

“We do have tests; yes the problem is we can test

an installation on these test boxes but we don’t

have users testing the apps on the boxes, so the

true test is only really when we deploy to

production”

I5 3

“We only do Microsoft patches and we only do

security and critical patches; obviously if a patch is

fixing something that is broken then you need to

apply it as soon as possible”

I5 3

“We deployed a fix to the exchange server and

suddenly all outlook desktop lines started

prompting for new user names and passwords;

turns out this patch actually broke the Kerberos

protocol, l now it’s important to know we did test

this patch on our server and passed our test; it

installed successfully but that’s the thing about

applications - they mustn’t just install they must

actually work”

I5 3

“An independent department should draw up the

policy and all the role players should be consulted”
I5 4

“We are not in a position where we patch very

often, we haven’t been in a, there’ve been issues

in the past with applications and issues with

patches and the guys just stopped patching”

I6 2

“If you’re gonna install automatically, install stuff

like service packs and drivers and all other kinds of

funny stuff, er, that you haven’t properly tested

then you’re gonna get some issues”

I6 5

174

Quotes made by interviewees that were

extracted from interview transcripts

Interviewee (I) who

made the statement

Transcript page

number (separate

documents -

available on request)

“One of our biggest challenges is time slots; at the

moment business needs always to precede patch

deployments, our second challenge is bandwidth;

we simply don’t have the infrastructure to push

patches to every single store”

I7 1

“I know security is busy drafting a policy but the

whole process is still at its early stages”.
I7 2

“I do feel like roles and responsibilities should be

clearly defined”
I7 2

“Deployed a bug fix for IE8. This was still on XP

and the install prompted for a reboot and all the

machines gave a blue screen error; fortunately we

created regular restore points so we could roll

back easily”

I7 3

“our biggest challenge in the stores environment is

getting the time slots to do it because there’s so

much change being driven in the environment by

the business”

I8 2

“The business changes always trump the patching,

so if we say we’re gonna do patching on this day,

it’s fine until there’s business requirements“

I8 2

“I think security ought to be involved more than

they are, uhm, even if it’s just not necessarily from

a doing point of view but from a motivating point of

view”

I8 3

“I think security should be standing up and

motivating and uh saying that no we have to patch

it’s a requirement and you know we’re at as much

risk if we don’t patch as if we do patch so uhm I

think that they should be playing their governance

role more than they are in my opinion”.

I8 3

 “More parties need to understand patching, uh,

they need to understand the implication of

patching or the implication of not patching”

I8 3

“I haven’t actually seen the patch management

policy”
I8 8

175

Quotes made by interviewees that were

extracted from interview transcripts

Interviewee (I) who

made the statement

Transcript page

number (separate

documents -

available on request)

“If you’ve got a policy that says well we have to do

it then you can hold the policy up and say no sorry

I can’t move it because the policy says I have to do

it.”

I8 8

 “The problem we had is this is actually the first

time that they patched the store environment,

[company name removed] stores domain so for

two years they went without patching so this is

actually a very very big exercise because there

would be a lot of updates and stuff a lot of updates

that would have been superseded and all that stuff

that you needed to bear in mind and take of when

we done it“

I9 1

“We’re also signing up to their patch management

notification”
I9 4

 “Our WSUS server which is attached to the SCCM

server will then get that content for us and

download it, and based on that we’ll create

templates”.

I9 4

“We don’t have that 360 degree feedback” I9 4

“One of our issues is that we don’t patch enough” I10 2

“I know that we’ve had issues with software,

whether it’s platform software like Biztalk or sequel

server, uhm, where we could have actually

resolved those issues if we had been pro-active

around applying patches. I also know that we’ve

had issues where we’ve actually applied patches

and had issues because of it”

I10 2

“Some of those mature vendors have, uhm,

processes in place where they actively pick up

issues and they release patches”

I10 3

“We’ve had a couple of incidents where we haven’t

tested things properly so we’ve actually applied a

patch and there might have been an issue as the

result of a patch and that’s typically because we

didn’t test it properly”

I10 4

176

Quotes made by interviewees that were

extracted from interview transcripts

Interviewee (I) who

made the statement

Transcript page

number (separate

documents -

available on request)

“If we don’t suffer from a problem, we typically

wouldn’t apply it”
I10 4

“Microsoft patch is they come down and they then

you get things like Adobe which just spring in to life

and just patch every now and again”

I11 4

“We have in the past been a bit suckered where

we haven’t applied patches properly and then

when you do come to the point where you have to

apply the patches you’re so far behind that it

becomes it doesn’t become worth patching then

it’s a big and expensive exercise of re-installing

operating system”

I11 7

“The most frequent and visible sign is a worm-

breakout when a, when you have a worm breakout

on the network you can easily see which systems

or work stations or which servers is the most

affected and those are the ones typically that’s the

worst patched”

I12 4

“I’ll only add people from an information

awareness point of view”
I13 2

“I’ll only add people from an information

awareness point of view but I think we first need to

get the process established and off the ground

before we go to that, uhm, level”

I13 2

“W-SASS only works with Microsoft so you can’t

actually deploy like Adobe or semantic patches

through W-SASS, so it’s only for Microsoft”

I13 3

“The problem is actually maintaining a software

asset register and then following up with each and

every one of those application vendors to see if

they’ve got patches”

I13 3

“It’s a very well mitigated risk in our environment” I13 4

177

Quotes made by interviewees that were

extracted from interview transcripts

Interviewee (I) who

made the statement

Transcript page

number (separate

documents -

available on request)

“When Conficker came out but, uhm, we actually

had issues where machines weren’t patched so,

uhm, and then the antivirus on the machines

weren’t up to date where Conficker brought down

our environment and half of our store’s

environment for more than two days”

I13 4

