
 

 

DETERMINATION OF THE HEAD LOSS COEFFICIENT OF CLOSELY SPACED PIPE 

BENDS 

 

by 

 

 

THOKOZANI JUSTIN KUNENE 

 

 

Thesis submitted in fulfilment of the requirements for the degree 

 

 

Master Technology: Mechanical Engineering 

 

in the Faculty of Engineering 

 

at the Cape Peninsula University of Technology 

 

Supervisor: Professor Greame Oliver 

Co-supervisor: Professor Jasper Steyn  

 

Bellville 

May 2017 

 

CPUT Copyright Information 
The dissertation/thesis may not be published either in part (in scholarly, scientific or technical 

journals), or as a whole (as a monograph), unless permission has been obtained from the 
university 

  



ii 
 

 

DECLARATION 

 

I, Thokozani Justin Kunene, declare that the contents of this dissertation/thesis represent my own 

unaided work, and that the dissertation/thesis has not previously been submitted for academic 

examination towards any qualification. Furthermore, it represents my own opinions and not 

necessarily those of the Cape Peninsula University of Technology. 

 

 

 

 

   

Signed       Date 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



iii 
 

ABSTRACT 

 

Space limitation in ships and the complex pipe layouts in chemical, mineral and food processing 

plants lead to the employment of closely spaced bends. The limited information regarding the head 

loss coefficient of pipe bends orientated as bend-spacer-bend has led pipeline designers to treat 

them as isolated bends with the same loss coefficient. Thus, to calculate the head loss in the piping 

system would simply involve summing the head loss coefficient of bends and neglecting their 

configuration. This practice causes inaccurate computation of head losses in the system. 

 

In this study a computational model is developed for the head loss coefficient of closely spaced 

pipe bends. This is then supported by experimental verification. A more accurate but still simple 

and easy to use empirical correlation is derived. The empirical correlation is established and the 

data presented under isothermal conditions for turbulent flows in a range 7.3x104 ≤ Re ≤ 5.8x105 

and a spacing ratio of 1D ≤ L/d ≤ 10Dand curvature ratio of 3 ≤ rc/d ≤ 5. Using ANSYS® CFX® 11, a 

commercial computational fluid dynamics (CFD) package, the fluid domain representing two 900 

smooth pipe bends separated by a short pipe was solved and the mechanisms causing the head 

loss coefficient were explored by using the CFD results to visualise the fluid flow structure/pattern. 

The computational model was validated by comparing the head loss coefficient of a single bend 

and the model was found to be sound. The experiments conducted in the built test facility using 

smooth pipes showed similarities in the trends between the CFD work and the published data and 

they were to be found have a similar trend. The experiment had shown results that agree to the 

findings from literature. 
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CHAPTER 1 

 

INTRODUCTION TO THE RESEARCH TOPIC 

 

This chapter briefly introduces the research topic. It outlines the need for the research, the aims 

and the methodology that will be followed. 

 

1.1 Background 

 

Space limitations in ships and the complex pipe layouts in chemical, mineral and food processing 

plants lead to the use of pipe bends that are closely spaced (Papworth & Miller, 1974:27) and (Ito 

1987:548). The limited information with regard to the head loss coefficient of pipe bends arranged 

as bend-spacer-bend, (see Fig. 1.1), has led pipeline designers to treat pipe bends configured in 

such a manner as isolated bends. Thus, calculating the head loss in the piping system would 

simply involve summing the head loss coefficient of bends and neglecting their configuration 

(Daugherty, 1977:228). This practice may cause errors in the calculation of the head losses in the 

system. Therefore, it is essential to have enough information for the design and performance 

prediction of equipment in pipe and duct systems. The efficiency of industrial plants depends on the 

accurate prediction of internal flows (Flowmaster, 2010:1). 

 

Figure 1.1: Configuration of two closely spaced bends in the same plane 

 

L 
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For a piping system, costs are both capital and running. Designs that do not take into account 

features that cause energy loss adequately result in high expenditures. Reliable design data for the 

prediction of friction losses in isolated bends is readily available. Although closely spaced bends 

find many applications there is minimal published design data on closely spaced bends. Hence it is 

important to investigate and publish such information. 

 

Experimental work and numerical computations were used in the investigation. The pressure 

difference between the upstream and downstream sides of the pipe bends was determined by 

using computational fluid dynamics (CFD). Experiments were conducted using a custom built test 

apparatus to record pressure and flow rate outputs for comparison with the CFD results. 

 

1.2 Statement of research problem 

 

The flow characteristics in a single pipe bend for Newtonian fluids are well understood and have 

been investigated in many experiments and numerical simulations. The resulting data for the 

prediction of friction losses and the calculation of a loss coefficient in a single pipe bend is well 

established and reliable. However, despite being common in many applications, there is relatively 

little data for closely spaced pipe bends. Therefore, the research problem is: What is the 

relationship between head loss coefficient and the geometry of a pair of closely spaced bends?  

 

1.3 Research objectives 

 

The aim of this research is to establish an empirical correlation (or correlations) for the head loss 

coefficient of closely spaced 900 bends by taking into account the curvature ratios, flow regimes 

and the spacing ratio. In order to achieve this, the following objectives were meet, i.e.  

 To develop a CFD model to calculate pressure values and loss coefficients for closely 

spaced pipe bends. 

 To obtain pressure losses experimentally and compute the head loss coefficients of closely 

spaced pipe bends to check the validity of the CFD model. 

 To derive a correlation for smooth pipe bends using the CFD model. 
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1.4 Scope  

 

The research was limited to incompressible, single-phase Newtonian fluids flowing through two 900 

pipe bends. The investigation covered the following ranges: 

 Curvature ratios of centre line radius (rc) to inside diameter of the pipe (d), rc/d = 3, 4 & 5. 

 Newtonian fluid (water). 

 Turbulent flow, 7.3x104 ≤ Re ≤ 5.8x105. 

 Length of the straight pipe between the bends from 1d to 10d (spacing ratio (L/d) from 1 to 

10). 

 Two 900 bends in the same plane separated by a short straight pipe. 

 

 

1.5 Methodology 

 

CFD was performed over the full scale of parameter values listed above. The experiments to verify 

the CFD results were conducted at a curvature ratio of rc/d = 3, three Reynolds numbers (7.3x104, 

3.2x105 & 5.8x105) and three spacer lengths (0d, 5d & 10d). The numerical data was gathered was 

of pressure and velocity profiles of the flow upstream and downstream of the bends, as well as in 

the spacer between bends. The data for the head loss coefficient was combined to form an 

empirical correlation. The methods used to conduct this study were as indicated below. 

 

1.5.1 Computational Modelling 

 

The ANSYS® CFX® 11 computational fluid software uses finite volume techniques to solve a wide 

range of turbulence models that model fluid flow in any domain. It provides a quantitative and 

qualitative approach to enable analyses on solved fluid flow scenarios. Amongst the turbulence 

models that were available from the software, the Shear Stress Transport Model (SST) was used 

for this study because it is robust, and it accurately implements the flow in the near-wall region (the 

viscous sub-layers in the boundary layer are modelled accurately). The SST model excels with flow 

separation prediction as opposed to the k- model, ANSYS (2006:2). Even though the k- model is 

robust, economical and generally an accepted turbulence model, it under predicts separation which 

results in an optimistic prediction of pressure drop for curvatures.  
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1.5.2 Experimental Investigation  

 

The test rig that was used for experiments was set up in a mechanical engineering fluids 

laboratory. Pressure readings were obtained from transducers upstream and downstream of the 

test bends. Flow rate was obtained from an ultrasonic flowmeter. The test section was comprised of 

two 900 pipe bends separated by a short straight pipe. The pressure drop across the test section 

was used to compute the value of the head loss coefficient.  

 

The experiments conducted for this study were as follows:  

 For each straight length and curvature, readings of pressure at three flow rates (Reynolds 

numbers) were taken.  

 The flow rate was varied using a gate valve. 

Readings on a curvature ratio (rc/d = 3) with each spacer ratio (L/d = 0, 5 & 10) were taken at each 

Reynolds number (7.3x104, 3.2x105 & 5.8x105). 

 

1.5.3 Data analysis methods  

 

Flow behaviour was studied through CFD visualisation and the graphics that depict pressure 

distribution inside the bends and the spacer. Calculations were carried out to derive an empirical 

formula that can be used to compute a loss coefficient of closely spaced pipe bends. The formula 

was derived using multiple linear regression models through a stepwise procedure: The logarithmic 

of the dimensionless groups were transformed and the data from the groups was transferred to the 

statistical packages to determine the coefficients of the power functions. The correlation for the 

friction factor was calculated using the statistical analysis program StataQuest while the Microsoft 

Excel Data Analysis package (applying multi-linear regression) was used for the head loss 

coefficient. 

 

1.6 Importance and benefits 

 

The importance of this study arises from the need to more accurately calculate the pressure drop in 

the system to find a suitable device (e.g. a pump) to overcome the friction. The study provides loss 

coefficient data for closely spaced bends determined by CFD analysis and verified by experiment 

as well flow visualisation from ANSYS
®
 CFX

®
 11. From the CFD analysis correlations for predicting 
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the head loss coefficient of closely spaced pipe bends were calculated. Neglecting the effects of 

close spacing can result in selection of the wrong size of pump or fan. 
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CHAPTER 2 

 

THEORY 

 

2.1 Introduction 

 

This chapter deals with the theoretical aspects of CFD that includes theories of the Navier-Stokes 

(N-S) and the Reynolds-Average Navier-Stokes (RANS) equations. These are equations that 

describe the flow of any fluid. The boundary layer theorem is also illustrated and is essential in 

providing understanding on the viscous resistance of fluids. The subject was approached from the 

perspective of certain geometrical effects that cause flow separation. This chapter also provides a 

theoretical analysis of the head loss coefficient, i.e. for single and closely spaced bends, and of the 

experimental methods of determining the head loss coefficient. 

 

2.2 Navier-Stokes equations 

 

The N-S equations describe the motion of a fluid in three dimensions. The equations are used to 

represent the motion of an incompressible fluid. As the relevant flow domain is turbulent flow, a 

turbulence model was used (see sections 2.3 and 2.4) (Sekavčnik et al, 2006:139). 

 

Generally, the N-S equations are presented in mathematical statements that describe the laws of 

physics, applicable to fluid flow. The N-S equations are non-linear partial differential equations that 

often display different mathematical forms that are parabolic, hyperbolic or elliptic and sometimes a 

combination of them (Iudecello, 2008:44). Hence, they are complicated to solve analytically even 

for very a simple configuration (solving friction flow through a straight pipe) and require numerical 

solutions (Tryggeson, (2007:1). 

 

2.2.1 Governing equations of fluid dynamics 

 

The Navier-Stokes equations for compressible viscous flow can be presented as follows (Anon, 

2008:8), (Iudecello, 2008:33) and (Tryggeson, 2007:4-5): 
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Continuity equation: 

 

  0



udiv

t



           2.1 

 

Momentum equations: 

 

x component:  
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Sugraddiv
x

p
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u
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y component:  
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z component:  
 
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z

p
wdiv
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w





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


  )( 


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Where: 

  = fluid density 

 wvuU ,,  = fluid velocity 

p  = pressure experienced by a fluid 

  = dynamic viscosity 

Mx
S = 

My
S =

Mz
S = g  = body forces to gravity 

The above equations are four transport equations with five unknowns. In order to balance the 

equations, one algebraic equation (Eq. 2.3) that relates density to pressure must be added 

 

  = )( p             2.3 

If the viscosity of a Newtonian fluid does not change and flow is incompressible, the N-S equations 

can be simplified. The continuity equation is: 

 

u.  = 0             2.4 

 

The momentum equations become: 

 

x component:  Mx
S

x

p
udiv
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u

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
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
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
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y component:  
My
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y
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z component:  Mz
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Where: 

 

  = 



 = kinematic viscosity 

These transport equations can be expressed in a general form. In this manner any scalar variable, 

i.e., pressure, force, velocity, etc, can be incorporated and investigated.  

 

 
 





Sgraddivdiv

t





)( V       2.6 

 

Where: 

 

  = scalar variable 

  = diffusion coefficient  


S = source term, can be B (Body force), F (Distributed resistance) or V (other viscous forces) 

etc.  

 

The terms in Eq. 2.6 represent the rate of change, the convection, the diffusive and the source 

term.  

 

2.2.2 Reynolds-Averaging Navier-Stokes (RANS) equations 

 

Most of the fluid flow in industrial applications is turbulent (Iudecello, 2008:42). In order to predict 

from turbulent flow using the N-S equations, the scalar variables must be averaged. The Reynolds 

averaging method is introduced in the N-S equations in order to account for unsteady disturbances 

in the form of fluctuating variables, i.e., velocities and pressures which are found in turbulent flows.  

 

Turbulent flows are three-dimensional and time-dependent. They contain fluctuations in their 

variables that are bounded in terms of frequency, amplitude and space (Anon, 2008:10). The stated 
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characteristics of a turbulent fluid can be analysed using statistical tools such as an ensemble 

averaging of time-dependent variables (Cebeci et al, 2005:55). The procedure is to replace the 

instantaneous values in the N-S equations by the sum of their mean and fluctuating parts.  

 

uuu  , vvv  , www  , ppp          2.7 

 

The combination of the Reynolds-Averaging Navier-Stokes and the turbulence models (the core of 

CFD) produce Reynolds stresses. The Reynolds stresses (Reynolds stress tensor) appear 

because of the averaging of the velocities (scalars variables) in the momentum equations in order 

to address turbulent fluctuations in a fluid. Further explanation is provided in section 2.3 and 2.4: 

 

2.3 Background to computational fluid dynamics 

 

Computational Fluid Dynamics (CFD) as an engineering tool has its origins in the aerospace 

industry in the 1960s and 1970s. The availability of high-speed computers promoted the 

development of numerical algorithms. Thus, numerical methods (computer simulation) became an 

addition to the two conventional approaches of solving fluid dynamics problems, namely theory and 

experiments (Iudecello, 2008:4). If CFD users do not apply fundamentals of fluid mechanics 

principles then the CFD tool would be futile. It is important to adhere to the following requirements 

to obtain most out of a CFD approach: The CFD users must: 

 

 Anticipate flow characteristics, i.e. the physics of flow 

 Select an appropriate modelling technology, i.e. turbulence model and boundary conditions. 

 Construct an appropriate grid for the domain 

 Ensure that the solution is converged in all senses. 

 

CFD, however, still remains subject to validation. Therefore, the results obtained after the CFD 

modelling and the grid dependence computation must be compared to experimental data 

(Levchenya et al, 2007:1). 

 

CFD solves the Navier-Stokes equations within a given geometry using numerical methods. CFD’s 

numerical solutions are based on discretisized grids of the domain using one of three numerical 

methods, namely, the Finite Difference Method (FDM), the Finite Element Method (FEM), or the 

Finite Volume Method (FVD).  
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Three steps that are followed to solve fluid flow problems. These steps comprise use of the Pre-

processor, the Solver and the Post-processor (Iudecello, 2008:5). These processes are described 

as follows: 

 

2.3.1 Pre-Processor 

 

 The computational domain, which is the geometry or the region of interest (where the fluid 

flow of interest occurs), is defined. 

 A grid is generated. 

 The properties of the fluid are defined. 

 The boundary conditions are defined. 

 The parameters of the numerical solution are specified. 

 

2.3.2 Solver 

 

The solver is used to produce results which contain flow parameters such as the velocity and 

pressure. It achieves this by using the following numerical techniques: 

 Approximation of unknown flow variables by simple functions. 

 Discretisation by substitution of the approximations into the governing flow equations. 

 Solution of the resulting algebraic equations. 

 

2.3.3 Post-Processor 

 

In the post-processor, the results passed on from the solver are visualised in terms of graphs, plots 

and animations. It eases understanding of the flow patterns and the associated physical 

phenomena.  

 

2.4 Introduction to turbulence modelling 

 

Almost all flows of Newtonian fluids are turbulent. Turbulent flow is identified by means of a 

Reynolds number which is a dimensionless number that is the ratio between inertial forces acting 

on the fluid and the viscous forces on the fluid. When inertia forces predominate the flow exhibits a 

turbulent structure. The Reynolds number can be used to classify the flow of a fluid can be 
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classified as either laminar of turbulent. Turbulent flow will have a Reynolds number of above 4000 

and its characteristics include irregularity, diffusivity and dissipation. These characteristics are in 

the nature of turbulent flows because turbulence is a complex, random state of motion of continual 

velocity and pressure changes with time (Iudecello, 2008:60). While turbulent flow is three-

dimensional, when its equation of motion is averaged, the flow can be treated as two-dimensional 

(Davidson, 2003:5). 

 

Turbulence can be modelled in CFD. However, some of the length scales in turbulence are much 

smaller than the size of practical CFD meshes. It is close to impossible presently to model precisely 

all the important effects in turbulence due to limitations in computational power. 

 

A full description of the available turbulence models is beyond the scope of this study. Instead the 

general features and limitations of different classes of models will be discussed. These turbulence 

models have been investigated to the extent to aid in the final choice of the appropriate model in 

the CFD analysis. Furthermore, in light of the purpose of this research only eddy-viscosity (two-

equation) models will be presented. Some models in a branch of the eddy-viscosity are the non-

linear eddy-viscosity model and Reynolds-stress transport models.  

 

The equations used in industrial CFD to model flows are based on the Navier-Stokes equations. 

These equations are time-dependent and describe both laminar and turbulent flows. However, 

Reynolds-Averaged Navier-Stokes (RANS) models are based on averaging the Navier-Stokes 

equations in both time and space. In essence, it is more economical on computational effort to 

simulate RANS than Direct Numerical Simulations (DNS) (Iudecello, 2008:63). The available 

simulating methods will be discussed further in the following sections of this chapter. A brief 

explanation of RANS is as follows: 

 

If the time-mean and fluctuations of velocity and pressure E.q 2.7 are substituted into Navier-

Stokes equations (2.8), the RANS equations (2.9) are formed.  



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The last term in Eq.2.9 is an additional term in the RANS to indicate the effects of turbulence. It 

contains the Reynolds stresses. These stresses are difficult to determine directly, but can be 

modelled by additional closure models (Lasher & Sonnenmeier, 2007:49). Thus, the different 

methods of solving these stresses result in various types of turbulence models (Iudecello, 2008:64). 

 

Modern turbulence models approximate three-dimensional turbulent flow and employ additional 

partial differential equations. These equations model turbulence kinetic energy, turbulence 

dissipation and the six Reynolds stresses.  

 

2.4.1 Eddy viscosity models (EVM) 

 

Prandtl (1945) introduced the concept of the turbulent viscosity to be a function of a turbulent 

kinetic energy, which led to the development of one-equation models (Sodja, 2007:11). The two-

equation model of eddy viscosity which is the Boussinesq assumption followed. The Boussinesq 

assumption states that the Reynolds stress tensor, the velocity gradients and the eddy viscosity are 

related (Davidson, 2008:15). The EVM is a source of two-equation models and is one of the closure 

problem equations (Menter, 1994:2). In essence, the EVM assumes the turbulent stress to be 

proportional to the mean rate of strain. It is derived from the turbulent transport equation as a 

framework kinetic equation and one other quantity (Sodja, 2007:5). 

 

The eddy viscosity in the sub-layer must be reduced by means of damping functions. These 

damping functions are needed to numerically stabilise the model and reduce the requirement of 

excessive grid resolution near the wall Menter (1994:5) and Suga (1998:4). An important factor, 

and arguably a major reason for damping functions, is their ability to produce the mean velocity 

field. Therefore, the relationship between the eddy viscosity model and the damping function is vital 

for a proper representation of near the wall behaviour of the fluid. 

 

The isotropic turbulent eddy viscosity is defined as (Chan, 2000:2): 


 

2k
fCT             2.10 
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Where C a turbulent viscosity parameter is equal to 0.09 and f  is a wall damping function. 

 

2.4.2 Overview: The standard k- model 

 

The standard k-model is a linear eddy viscosity model. The kinetic energy equation (k) and the 

rate of dissipation of turbulent kinetic energy () assume that the turbulent viscosity t is isotropic. 

This means that the ratio between Reynolds stress and mean rate of deformation is the same in all 

directions. However, turbulence is always non-isotropic in a turbulent boundary layer. Hence, there 

are flow regimes where non-isotropic effects are important. These include flows with strong 

curvature, swirling flows flows with strong acceleration or retardation (Davidson, 2003:40). Such 

flows are predominant inside a pipe bend, e.g. flows under centrifugal forces, secondary flows and 

separation. Thus, if a turbulent model fails to address these effects, it leads to inaccurate flow 

predictions.  

 

2.4.2.1  The standard k- equations 

 

In general, the standard k- model is good for plane and radial jet problems. It does not perform 

well for strong adverse pressure gradients such as those that occur along the inner wall of a bend. 

Although the standard k- model was developed for simulating highly turbulent flows it provides 

limited accuracy in computational fluid dynamics (CFD) when flows have low velocities, dead 

zones, and flow separation and reattachment areas (Raven et al, 2007:558). It is therefore not 

recommended for separated flows. The standard k- model tends to predict the onset of separation 

too late as well as to under-predict the extent of separation (Rigas et al, 2007:171). Due to the 

model’s poor performance in regions near the wall, it has been found that direct numerical 

simulation (DNS) is a better option in the region close to the wall, while the k- model can be used 

for regions further away from the wall (Zamora et al, 2006:2). 

 

The standard k- model by Launder and Spalding (1974) is composed of a set of equations that 

have additional non-linear partial differential equations to the set of transport equations (Versteeg & 

Malalasekera, 1995:70). These equations are solved simultaneously to obtain solutions to turbulent 

flows. The equations are written in terms of the turbulent kinetic energy (k) and turbulent dissipation 

rate (), which are as follows: 
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Where: 


 

2k
CCt               2.13 

 

2
1

k   


2
3

k
            2.14 

 

The turbulence equations that have damping functions contain closure coefficients which are used 

to close equations. These coefficients are found experimentally through computer optimisation (trial 

and error). The coefficients of the k- model are as follows: 

 

C = 0.09;  k = 1.00;   = 1.30;  C1 = 1.44;  C2 = 1.92 

 

2.4.3 Overview: The RNG (Re-Normalisation Group) k- model 

 

A need arose to improve the standard k- turbulence model because does not accurately predict 

the re-circulating flows and complex shear layers found in flows subject to curvature. The main flaw 

of the standard k- model was its dissipative nature. An investigation by Papagergakis & Assanis 

(1999:1) found that the linear RNG k- model gave much improved results over the standard k- for 

recirculation flows due to its less dissipative nature. The different forms of the k- models are 

differentiated by the way the closure conditions are defined and the manner of computing 

constants. Hence, the fundamental nature of the RNG k- model is via the constants that have 

been explicitly calculated. Thus, the renormalization group is described as follows: 

 

2.4.3.1  The RNG k- equations 
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Where:  

teff               2.17 

 


 

2k
Ceff            2.18 

 

The closure coefficients in the RNG k- model are: 

 

C = 0.0845; k =  = 1.39; C1 = 1.42; C2 = 1.68       

And  
31

*
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2.4.4 Overview: The Wilcox k- model 

 

The turbulence models, i.e. k- and RNG k- do not to accurately predict flow separation in adverse 

pressure gradients. They fail to address important parts in internal and external flow applications by 

not accounting for the physics concerning flow separation.  

 

Therefore, an improvement on k- and RNG k- models was needed. The Wilcox k- model 

developed in 1994 replaces  by an equation  which is a dissipation rate per unit turbulent energy. 

The  is easier to integrate and therefore it becomes more robust and can be integrated in the sub-

layer without the need for an addition of non-linear damping functions (Zamora et al, 2006:4). As a 

result, it addresses the near wall treatment for Low-Reynolds number computations. Low-Reynolds 

number here refers to the sub-layer region where low y+ values exist and have a resolution of y+< 2. 
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2.4.4.1  The Wilcox k- equations 
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The closure coefficients in the Wilcox k- model are: 

 

09.0*  ; 
9

5 ; 075.0 ; 2k ; 2  

 

The unknown Reynolds stress tensor, , is calculated from: 

kst 
3

2
2       

 

2.4.5 Overview: The Shear Stress Transport (SST) model  

 

Menter (1994) proposed combining two turbulence models, namely the k- and k-. The originator 

of this model applied a blending function to ensure a smooth transition between the k- and k- 

models (Iudecello, 2008:66). The k- model is effective in the viscous sub-layer while the k- 

model, on the other hand, is effective for free-stream flow. In essence, the k- model compensates 

for the lack the k- model has on free-stream modelling and vice versa. The SST as a combination 

of the two models provides best solution to flow separation as an important phenomenon in internal 

and external flows. Overall, the SST model has the ability to demonstrate the particle behaviour 

and the reattachment length after separation (Siriboonluckul et al, 2005:6). 

 

The SST model is superior to the previously discussed turbulence models. It manages to perform 

better because it takes into account the transport of the turbulent shear stress and the inclusion of 

transform effects into the formulation of the eddy-viscosity.  
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2.4.5.1  The Shear Stress Transport (SST) equations (Siriboonluckul et al, 2005:4): 
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Terms in E.q 2.21 and 2.22 are explained as follows: 

 

  k*
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2  represents the dissipation of k  and   due to turbulence 
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The constants are expressed in terms of the blending function “ 1F  “are:   2111 1  FF   

Where, 1  and 2  stand for coefficients of the k  and k  model respectively, for which the 

following values are recommended: 

 

21 k ; 12 k  ; 21  ; 168.1 ; 075.01  ; 0828.02 
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A limiter, similar to the introducer by Durbin (1996), is included to prevent the excessive growth of 

the turbulent shear stress. 
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Where: 

 

y  is the distance to the next surface 

 

2.5 The boundary layer theorem 

 

2.5.1 Introduction to the boundary layer theorem 

 

Euler who gave a description of a fluid flow by using a three-dimensional model for pressure and 

velocity fields in a form of infinitesimally small fluid elements was no doubt a pioneer in theoretical 

fluid dynamics. However, he ignored viscosity. He did not think friction could be acting on the 

motion of fluid elements (Anderson, 2005:42). In 1904, Ludwig Prandtl demonstrated that the 

Navier-Stokes equations which describe the motion of a fluid can be simplified to give solutions for 

flows at high Reynolds numbers. Additionally, these equations were the bases for his boundary 

layer theory (McMahon, 2003:1). 

 

Prandtl’s hypothesis was that the velocity on the surface was zero (no-slip condition because of the 

existence of friction). The frictional effects were experienced only in a boundary layer, which is a 

thin region near the wall surface. However, as it has been understood two centuries before his 

theory, inviscid flow existed outside the boundary layer but not inside the boundary layer 

(Anderson, 2005:43). With Prandtl’s boundary layer theory there was a mathematically based 

quantitative way of computing friction on a surface that is submerged in a fluid. There was also a 

mechanism that gives an understanding of how separation is generated on a surface (Anderson, 

2005:45). 

 

2.5.1.1 Description of the boundary layer theory  

 

In an attempt to describe the boundary layer theory, a flat plate of sufficient length and a large 

width has been used to demonstrate the behaviour of the fluid when it travels along it, see Fig 2.1. 

The main focus is the fluid flow beginning from the plate’s surface leading edge to the free stream 
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above the surface. Here, a non-moving surface will have a zero-velocity component relative to the 

free stream velocity. This situation, whereby the surface of the plate brings the fluid in contact to 

rest (u = 0), corresponds to the primary condition of boundary layer theory which is the no-slip 

condition (Sayers, 1992:282). 

 

 

 

Figure 2.1: Boundary Layer on a Flat Plate, www.cortana.com/Drag_Description.htm 

 

 

Boundary layer theory demarcates the start and the end of the boundary layer. In order words there 

is a level described by Tilton (1999:5) at which the fluid returns to the irrotational state. This state 

allows the fluid to be regarded as inviscid. Thus, according to Munson et al (1994:561) the vorticity 

at this region is zero and thus perfectly complements the irrotationality of the fluid. There is a 

feature called the boundary layer thickness “”. Sayers (1992:282) describes it as the height above 

the plate’s surface whereby the fluid moving parallel to the plate reaches a velocity of 99 per cent of 

the free stream velocity, i.e. u = 0.99 U∞.  

 

The boundary layer thickness on flat surfaces increases without limit in the direction of flow. 

However, Douglas et al (1995:370) considered the maximum thickness of the boundary layer in 

pipes to be close to its radius. This is a state, whether the fluid is laminar or turbulent where the 

flow be fully developed, i.e., when the boundary layer grows to fill the whole cross-section of the 

pipe.  

http://www.cortana.com/Drag_Description.htm
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Inside the boundary layer a thin layer called the laminar sub-layer exists. Its magnitude is as high 

as the absolute roughness of the surface (Sayers, 1992:300). Sayers (1992:300) describes the 

boundary layer’s (inclusive of the laminar sub-layer) shear stress to be a summation of shear 

stresses. The shear stress, 

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
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dy

du and the eddy shear stress are called the apparent shear 

stress expressed as, eddyapp dy
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2.5.1.2 The boundary layer equations (Sayers, 1992:282-284): 

 

In order to establish the boundary layer equations, the following assumptions were made: 

 The fluid is two-dimensional and with constant properties. 

 The terms which are very small compared to other terms were ignored. 

 

The velocity boundary layer equations 

 u  

x

v

y

v

x

u

y

u












 




,,  

 

The shear stress approximations are: 

 No pressure gradient perpendicular to the surface. 
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 The shear stress acting on the surface is given by 
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The simplified boundary layer equations are: 

 Continuity equation 
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 The momentum equation in the x direction 
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 The momentum equation in the y direction 
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These equations mean that: 

 The boundary layer pressure varies only in the x-direction. 

 The pressure inside the boundary layer is equal to the pressure outside the boundary layer. 
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CHAPTER 3 

 

LITERATURE REVIEW 

 

3.1 The boundary layer in view of flow separation. 

 

Higher losses are found in pipe bends than the losses in straight pipes of equal length. The 

secondary flow and flow separation cause these losses. Additional losses are due to separation 

and secondary flows. Separation occurs on the inner radius of the bend which is a convex surface 

for the flow. It results in secondary flows in the form of vortices (Jianfu & Gabriel, 2004:207). 

 

Separation is geometry sensitive because it follows on sections where an adverse pressure exists. 

Modi & Jayanti (2004:321) have found, in their CFD study of pressure losses in sharp bends with a 

vane that separation occurs on the outer radius where an adverse pressure gradient occurs. They 

found that an incipient separation, i.e., point of separation, exists just about at the beginning of the 

curvature. Then when the flow has been fully separated the secondary flows dominate until the 

start of flow re-attachment some length within a bend. 

 

3.1.1 Separation inside the 900 bend convex curved surface 

 

The separation of the boundary layer from the surface is caused by an increasing pressure in the 

direction opposing the flow. Figure 3.1 indicates the convex surface found in a bend (inner surface). 

It illustrates the motion and the separation experienced by a fluid. Brodkey (1967:138-139) 

describes the flow that is separated from the convex surface as follows: 
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Figure 3.1: Turbulent layer over a cylindrical object, Brodkey (1967:138) 

 

 

 In moving from the forward partof the curved surface the flow will experience a deceleration 

in moving to the rear portion. The forward portion brings about an increase in velocity

0
dx

dU , and a decrease in pressure 0
dx

dp , i.e. a favourable pressure gradient. On 

the rear an adverse pressure gradient exists, which is described as pressure increasing in a 

direction opposing the flow path 0
dx

dp  where velocity is decreasing 0
dx

dU
.
 

 The fluid elements on the rear portion decelerate due to interactions of the pressure 

gradient and the shear force that exists near the wall. The viscous forces and the velocity 

will eventually become zero because of deceleration of the fluid elements coming to a rest. 

 In the interim, the adverse pressure will continue to act and cause the fluid in that region to 

have a backward flow. At this point, the separation of the boundary layer from the surface 

starts and the flow still continues in the direction of increasing pressure. 

 

3.2 Wake and vortex formation over a convex curved surface 

 

A wake forms when the flow over a convex surface reaches the separation point. Its structure 

depends on both the Reynolds number and the detailed shape of the body. Evidence by Jawarneh 

and Vatistas (2006:1378) has shown that the geometrical and flow parameters have an impact on 

the swirl.  
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3.3 Head loss coefficient of an isolated bend 

 

It is well researched that the distorted flow within a bend causes the magnitude of the head losses 

to be significantly higher than of an equivalent straight length of pipe. The first study of internal flow 

was the work of Thomson (1876). He recognised the effects of the centrifugal force in a curved 

geometry. Using glass tubes with different degrees of bending, Eustice (1876) conducted 

experiments over a wide range of Reynolds numbers, involving a large amount of flow visualisation 

work. Liu et al (1994:307) explained that the interaction between the centrifugal force and the slow 

motion of fluid in the boundary layer induce a secondary flow. 

 

The flow inside the bend is three-dimensional and complex. It is due to the inertia of the fluid and 

the secondary motion that is generated adversely. Arada et al (2006) studied the inertia and 

viscosity effects on flow in curved pipes using the Finite Element Method. Their findings show that 

the complex nature of flow in curved pipes is largely due to the distortion of axial velocities and the 

asymmetrical wall stresses that develop in higher-shear and low pressure regions within the bend. 

Generally, the studies conducted so far describe the behaviour of the fluid in bend as curved 

streamlines in which the presence of a centrifugal force causes the pressure increase near the 

outer wall of the bend, starting at point A (Fig.3.2) and rise to a maximum value at B, Tony et al 

(2006:12). Therefore, in region A-B the fluid flow is opposed by an adverse pressure gradient. At 

the inside of the bend, the pressure decreases to point C and then rises again in the exit section. 

For this reason an adverse pressure gradient exists from C to D at the inside wall. The magnitude 

of these losses depends to a large extent on the sharpness of the curvature of the bend. 
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Figure 3.2: Regions of increased pressure in a pipe bend 

 

Flow separation is a result of the geometrical elements of the bend (curvature and deflection 

angle). The major attributes of this increase in the pressure gradient are the centrifugal forces 

acting on the fluid due to a strong curvature of the bend, White (1929:661). As established by Dean 

(1927) in his theory of the increased resistance owing to the curvature of the bend, secondary flows 

perpendicular to the axial flow are formed in the bend. In the absence of the curvature, the flow 

near the wall travels slowly whilst in the centre it is faster. However, due to the curvature the fluid 

adjacent the walls moving inwardly and the centre flow moves outward because of the imbalance of 

the centrifugal forces on the main flow secondary flows become prevalent, Dey (2001:283). Thus, 

secondary flows are generated by this transverse movement of the flow across the bend, Modi & 

Jayant (2004:321). 

 

The next aspect of this study is the recovery length required for the velocity profile of the fluid to 

reach its normal state which would resemble the 1/7th power-law profile for turbulent flows. The 

insufficient recovery length found between the bends is the basis of this study. The short length 

(L/d <<150 downstream of the first bend) commonly found between bends does not give enough 

flow recovery length. Modi & Jayant (2004:321) deduced that the changes in the development of 

the velocity profile to its fully developed state becomes significant within the first ten diameters 
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downstream the bend. The distorted fluid carries a swirl velocity that persists for far more than 10 

diameters. Ouazzaane & Benhaji’s (2004:2244) findings suggest a settling length of 100 diameters.  

 

Literature on this matter has brought understanding regarding the definition of a short length 

because a required downstream pipe length for flow development is set as 150D (Mukhtar et al, 

1994:330). The effects of the downstream tangent length (as a redevelopment length to fully 

developed velocity profiles of either laminar or turbulent flows) affect the accurate computation of 

the loss coefficient of a bend (Ito, 1986:548). When computing the loss coefficient for 900 bends on 

the same plane (1800) the sum of the two loss coefficients is multiplied by a correction factor in 

order to compensate for the length between the bends, Miller (1990:227). The approach taken in 

this study involves investigating a single loss coefficient for two bends in the same plane (bend-

spacer-bend). 

 

3.4 Experimental determination of the head loss coefficient 

 

It is important to accurately compute the pressure drop caused by pipe bends. The curvature 

surfaces of pipe bends induce secondary flow which significantly affect the hydrodynamic 

performance of devices, viscous power loss and heat transfer (Tony et a,l 2006:121). The 

determination of the head loss coefficients of local losses (fittings) has until recently, been through 

experiments. Pienaar et al (2001:4) explains the experimental method used to obtain the loss 

induced due to a fitting. The overall process that the friction in the straight pipe is subtracted from 

the total friction loss (fittings and straight pipes) measured (Turian et a,l 1998:244). 

 

A detailed procedure and an in-depth guide for determining the head loss coefficient of a fitting was 

provided by Marn & Primoz (2006). They state that the pressure drop that is measured consists of 

two components that are the pressure drop that exists in the absence of PF, and the existence of 

Pbend. They formulate the composition of the total pressure drop as follows: 

 

3.1 

 

PF accounts for the fully developed wall friction given by the Darcy-Weisbach equation for the 

friction loss coefficient in the turbulent region of rough or smooth pipes (f). The pressure drop as a 

result of Pbend is presented as the sum of the pressure loss due to the wall friction (Pbend,F)and the 

Fbendoutintot PPPPP 
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pressure loss (Ploss) due to the curved flow within the bend that induces secondary flow and flow 

redevelopment at the exit to the bend. 

 

        3.2 

 

Pbend,F and PF are expressed as:  

 

3.3 

 

 

3.4 

 

Lu and Ld are the fully developed upstream and downstream lengths of the pipe respectively 

 

and 

 

 

LB is the length and rc is the curvature ratio of a 900 pipe bend respectively.  

 

Thus, by combining equations (3.1-3.4) the pressure drop across the bend is expressed as: 

 

3.5 

 

Equation 3.5 leads to the final determination of a loss coefficient for a fitting, i.e., isolated bend, as 

found by Ward-Smith (1980) as: 

 

           3.6 

 

3.5 Head loss coefficient of two bends with an interaction 

 

From literature the established basis for determining the loss coefficient is comparison with the 

pressure loss in a fully developed flow over the same length. The head loss coefficient is a function 

of the tangential length (upstream and downstream of a bend) (Ito, 1987:548). Hence, the loss 

coefficient of any fitting (as a flow disturbance), i.e., bends, wyes, valves, etc., is best computed 
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when the flow entering and exiting the disturbance is fully developed. This understanding caused 

past researchers to identify the need to investigate how the loss coefficient would be affected if two 

components (disturbances) are closely spaced to each other. In such a configuration the distorted 

flow after exiting the first bend it enters the second bend not fully developed due to the inadequate 

recovery length between the bends. Therefore, there ought to be a different computing approach to 

the loss coefficient as it would be incorrect to treat the bends with this configuration as isolated 

bends (Modi & Jayant, 2004:321). 

 

The spacing ratio is a ratio of the length of the straight pipe between bends to the inside diameter 

of the pipe. Therefore, by having a length range of one diameter to ten diameters would mean the 

length is below an acceptable flow settling length of 100 diameters (Ouazzane & Benhadji, 

2002:224). This is the premise of this research which has expanded on the work done by 

(Papworth & Miller, 1974:27). They established an interaction factor that was applied to correct the 

head losses in two components with interaction (spacer). Miller (1990:228) further points out that 

the total loss does not only depend on the space between bends, but also on the directions of the 

bends and the planes of their orientation (Daugherty & Franzini, 1977:228). Initially the short length 

between the pipe bends was understood to have an influence on the value of the head loss 

coefficient but this was not quantified. Quantification was only introduced when Miller (1990:80) 

demonstrated that there is a direct interference between pressure and flow distributions when 

bends are less than two pipe diameters apart.  

 

Gan and Riffat (1996) calculated the loss coefficients, by means of CFD, for wide angle diffusers. 

They coupled this investigation with the prediction of the effects on the loss coefficient of a bend 

preceding the diffuser at various spacer lengths. This study builds on their work through using CFD. 

Their findings correlated with Miller’s findings. Their common base was that flow and pressure 

interacts between the components, i.e., diffuser and a bend. Determining the loss coefficient for 

such a configuration is not as simple as summing the loss coefficients of the individual 

components, but an interaction factor must be used to account for the interaction. The extent of the 

interaction is dependent on the spacer length.  

 

Coffield et al (1997) proposed a generic term that is self-explanatory for the loss in components 

with a spacer between them and various orientations as “the irrecoverable pressure loss”. Coffield 

et al (1997:6-7) found that the pressure drop of elbows with a separating distance of less than 20 
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diameters is less than twice the pressure drop of a single elbow. It was found that the irrecoverable 

loss coefficient varies based on the following conditions 

 

 Shorter separating distances between elbows allow swirl in a form of counter rotating 

vortices from the first elbow to feed more directly into the second elbow. 

 Then for longer separating distances, more friction pressure loss is experienced. After the 

second elbow the swirl intensity is more than after the first elbow. 

 

Modi & Jayant (2004) carried out CFD simulations on successive 900 sharp bends connected by a 

short straight section for ducting systems. They computed the loss coefficients of the sharp bends 

joined at mutual planes in three configurations, see Fig.3.3 (1800, 900 and the 00 angle). Modi & 

Jayant (2004:327) found that each case was different in terms of the magnitude of the loss 

coefficients but what was common that the loss coefficient (as a single value in view of two bends) 

increases with increase of the distance between the bends.  

 

 

Figure 3.3: Orientation angles of bends, Cofield et al (1997:12) 
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Further contributions on this subject came from Maharudrayya et al (2004) when they investigated 

the geometric effects viz., spacer between sharp bends, on the pressure losses. These pressure 

losses if not minimised, increase pumping power so that the efficiency of the system will be 

compromised (Maharudrayya et al, 2004:1). Using CFD, they established three-regime correlations 

for excess loss coefficient as a function of the Reynolds number, aspect ratio, curvature ratios and 

spacer lengths between the channels. Overall, Maharudrayya et al (2004:5-6) came to the same 

conclusion as past researchers that the flow separation in the second bend is suppressed by the 

presence of the upstream bend. This effect becomes less when the separating distance (spacer) is 

increased. This, therefore, means that a loss coefficient for two bends increases as space length is 

increased. 

 

In the previous chapters the theory of CFD and its N-S equation, the boundary layer theorem, the 

theoretical and experimental methods of computing the head loss coefficient of isolated bends and 

closely spaced bends have been presented. The next chapter provides findings of a CFD 

investigation of smooth closely spaced pipe bends. 
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CHAPTER 4 

 

COMPUTATIONAL FLUID DYNAMICS 

 

4.1 Introduction 

 

This chapter documents the numerical investigation of the effects of the length of the straight pipe 

(spacer) between 900 circular pipe coplanar bends. The objective was to characterise this effect in 

terms of a head coefficient. The effects on the head loss coefficient were investigated taking into 

account the following attributes: 

 The velocity profiles of the flow in a bend-spacer-bend configuration. 

 The curvature ratio of the bends. 

 The Reynolds number of the fluid flow 

 The spacer L/d ratio 

This resulted in a correlation for determining the loss coefficient. 

 

The configuration that was simulated, comprised of two 900 bends with a spacing ratio (L/d) from 

one to ten at Reynolds numbers from 7.3x104 to 5.8x105. This range of Reynolds numbers 

encompassed the capabilities versions of experimental apparatus considered for the experimental 

part of the work. 

 

ANSYS® CFX® 11 was used to model the configuration. The objective was to expand on previous 

findings that the value of the loss coefficient for closely spaced bends is less,  than for a spacer 

with sufficiently long separation (Modi & Jayant, 2004:328), but increasing as the separation length 

increases. Furthermore, the findings of an increase in the pressure drop with increase in curvature 

of the closely spaced bends were investigated. 

 

4.2 CFD Modelling 

 

The finite volume method was used for CFD modelling. It numerically solves the fundamental 

governing equations of flow (conservation of mass and momentum equations) for incompressible 

isothermal flow. These equations are non-linear, second order partial differential equations. Once 
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discretized, each partial differential equation is converted into a set of non-linear algebraic 

equations. The discretization of the equations involves using a second order high resolution 

scheme. In order to reduce iteration errors in the solution, a convergence criterion of 1x10-10 was 

applied. The simulations were performed on a computer with 1GB RAM and a processing speed of 

1.8GHz in a Windows XP operating system. The average time taken per simulation was 

approximately 6hrs 40min to converge in 200 iterations.  

 

4.2.1 Topology 

 

Figure 4.1 shows the fluid domain. It is meshed using tetrahedral elements. In Fig 4.1 (a), the fluid 

in the two bends and the spacer, as well as the upstream and downstream pipes are modelled.  

       

(a)        (b) 

Figure 4.1: (a) Topology of a tetrahedral meshed fluid for the full geometry. (b) Inlet with prismatic 
layers. 

 

 

Fig. 4.2 shows the geometry of two 900 bends separated by a short straight pipe. The lengths of the 

tangent pipes (pipes upstream and downstream of the bends), were to ensure fully developed 

conditions at the inlet and at the outlet. 

 

The inside diameter (D) of the pipe was taken as 65mm. This is an industrial scale pipe size, but of 

small enough diameter that laboratory testing would be feasible. The bends were 900 long radius 

bends of curvature ratios of three, four and five. The lengths of the tangent pipes for the inlet and 

outlet were five diameters and 50 diameters respectively. The outlet length is as guided in ESDU 

CFD Best Practise Guidelines for Internal Flow (2007:7), to provide for fully developed flow of a 

turbulent fluid. 
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Figure 4.2: Geometry indicating the inlet tangent (5D), test section and outlet tangent (50D) 

 

 

The boundary condition at the inlet of the pipe was assumed to be fully turbulent with the inlet 

velocity profile a fully developed one. The 1/7th power-law formula (Eq. 4.1) was chosen to 

represent the mean velocity of the turbulent flow in a pipe. 

  7
1

/1 Rrwu
wlocalinlet

     4.1 

 

The modelling parameters used, are given in Table. 4.1. 

Table 4.1: Modelling parameters 

Feature Description Details used/achieved 

Grid 

 Tetrahedral with prismatic layers 

 Wall functions, the viscosity-affected sub-layer 

 Minimum expansion factor for prismatic layers 

 Grid size 

 

 

 25 prismatic layers 

 y
+
 = 0.768 

 1.04 

 9 mm 

 

 

Convergence 

Criterion 

 

 RMS residuals to ensure mass, pressure and 

velocity residuals are less than threshold of 10
-5

. 

 

 

 Asymptote of 10
-10

 Wall 

Scale = 6x10
-9

  

 P-Mass = 2x10
-9
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 Higher resolution scheme  

 

 

 2
nd

 order 

 

Boundary 

Conditions 

 

 Inlet Boundary  

 

 

 Upstream pipe length  

 Inlet velocity profile 

 Turbulence intensity at 

inlet of the pipe 

 

 5D 

 1/7th power law 

 5% 

 

 Outlet Boundary 

 

 Downstream pipe length 

 Relative pressure 

 

 50D, turbulent flow 

 0 Pascal 

 

Time 

Dependence 

and Turbulence 

Modelling 

 

 Transient calculations  

 Iteration 

 Shear Stress Transport (SST) model with 

AUTOMATIC near-wall treatment 

 

 

 For flow separation 

 200 

 For separation in pipe 

bends 

 

 

 

The modelling parameters presented in Table 4.1 were chosen with the aim of ensuring that the 

results were at the required level of accuracy. They are presented here in four main parameters 

normally considered for accurate computational modelling. 

The parameters detail values or categories of the parameters were obtained:  

 Grid: The grid near the wall needed to have a fine mesh in order to represent flow 

behaviour in that region. The solution therefore required 25 prismatic layers on the walls for 

a 9mm grid size mesh (explained in section 4.2.2) for adequate boundaries of low Reynolds 

number models since they require modelling in the viscous sub-layer. Thus, after iterative 

modelling for the most accurate near-the-wall turbulence modelling, the viscous sub-layer 

value was within the range of 0 ≤ y+ ≥ 5. The final number of prismatic layers (25) at the 

default expansion factor of the software made it possible to achieve y+ = 0.768. 

 Convergence Criterion: Since this study involves a steady state is was important to iterate 

in time until a steady-state is reached. Iudicello (2008:77) defines convergence as”…the 

property of a numerical method to produce a solution which approaches the exact solution 
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as the grid spacing is reduced to zero”. It was found that the convergence has criterion an 

acceptable magnitude of 10-9 at 200 iterations in a 2nd order high resolution scheme. 

 Boundary conditions: The Dirichlet and Neumannn mathematical formulations were 

applied for the inlet and outlet respectively, for the boundary conditions. The inlet conditions 

of the computational domain involved a defined velocity profile (1/7th power law) and a 

turbulence intensity of 5%. This figure was chosen because it is assumed that the 

turbulence at the inlet is moderate. Hence, only 5D of a straight pipe was used as an 

upstream tangent length. The outlet conditions meant that fully developed flow was 

assumed at 50D downstream of the second bend. The choice of zero pressure at the outlet 

is a general practice in CFD because the second derivative of the velocity components and 

the turbulent quantities are assumed to be zero in the main flow direction. 

 Time dependence and turbulence modelling: The advantage of the SST model in 

computing near wall turbulence is explained in section 2.1.5. Nevertheless, the model still 

required 200 time-step iterations to allow for convergence.  

 

4.2.2  Grid Sensitivity study 

 

In computational modelling, the accuracy of the results is dependent on the sensitivity to the 

domain’s grid size. Figure 4.3 shows the varying grid size of tetrahedral elements of double bends 

that are closely spaced. Starting with the default, the grid size was a constant y+ value (y+ = 0.768). 

The y+ value is as result of the number of prismatic layers placed at the wall. This was kept 

constant throughout the refinement of the grid size. The results for pressure difference acrpss the 

configuration as a function of the grid size are shown below. 
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Figure 4.3: Grid sensitivity with the pressure difference as key parameter  

 

 

Finer grids require more elements, using more computer memory. Due to the limitations in the 

academic license for ANSYS® CFX® 11.0, also only models with up to a million elements could be 

solved. Therefore, the next step was to select a grid size that could be accommodated by the 

memory available on the computer. It was found that for finer grids, the memory required to solve 

was more than what the operating system would allocate, see Fig. 4.3. Thus, a less fine grid size of 

9mm was selected, but without compromising convergence.  

To achieve an adequate level of the residuals, the number of iterations was increased from the 

default of iterations 100 to 200 iterations. All variables residual were less than 10-5, demonstrating 

sufficient convergence. 

 

4.2.3 Turbulence models (model sensitivity) 

 

Multiple turbulence models are available in ANSYS® CFX ® 11 and they do not give the same 

solution. The different commercial turbulence models are built for different type of flows. It was 

decided to select one turbulence model, viz. the Shear Stress Transport (SST) model, as the 

benchmark, and to compare three other turbulence models with it. The three models selected were 

k-, RNG k- and k-. 

 

(mm) 
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Such comparisons are generally conducted with respect to how each model will perform against 

experimental work or literature studies. In this instance, the selected turbulence models were 

compared to Miller’s (1990) findings on the corrected loss coefficient of interacting bends, i.e. bend-

spacer-bend.  

 

 

Figure 4.4: Validation of the various turbulence models 

 

 

It can be seen from Fig 4.4, that the k- and RNG k- models clearly do not provide good 

correlations with Miller’s data. Further information with respect to the other models and their 

comparison on eddy viscosity will be detailed in the sections that follow. 

 

Figure 4.5 shows the range covered by each model regarding the prediction of eddy viscosity. The 

modelling parameters described in Table 4.1 were used per model for all the cases selected for this 

study. The ability of the turbulence model to predict eddy viscosity from the wall is demonstrated in 

Fig 4.5. For each turbulence model the maximum and minimum values of computed eddy viscosity 
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are shown. A model that predicts a lower of minimum eddy viscosity provides greater detail near 

the wall. As seen from Fig 4.5, the SST model has the smallest range of eddy viscosity predictions. 

These results present the SST model as better for near the wall effects, which are an important part 

of this study. Since separation of flow propagates from the boundary layer separation, it is 

important to use a turbulence model that will simulate this best.  

 

 

Figure 4.5: Changing Eddy Viscosity for the turbulence models. Constant y
+
 and r/d and various 

Reynolds numbers 

 

 

In this study, part of verification of the models involved investigating a turbulence model that would 

best present separation of flow on areas where is it prevalent. The velocity profiles of all four 

turbulence models have been plotted for areas where flow separation and the reattachment of flow 

are known to exist. This approach has been taken in order to see which turbulence model best 

addresses separation and thus, with previously mentioned modelling parameters (Table 4.1) 
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qualifies to be the model to be used for the rest of the CFD investigation. Figure 4.6 depicts various 

turbulence models where axial velocity profiles on the symmetry plane are plotted on specific 

positions in the geometry. Specific positions of interest are as follows: 

 The inlet and the exit of the first bend.  

 The entrance of the spacer (hydraulic pipe length). 

  And the remainder of the spacer to the entrance of the second bend.  

 

The axes of the graphs were made dimensionless by dividing: 

 Specific velocity by the free stream velocity (Y axis) 

 Specific position by the radius of the pipe (X axis) 

 

Zero on the z/R parameter represents the inner wall of the pipe whilst the highest value, being 

number two represents the outer wall. All the models present, in general, the expected distorted 

velocity profile from the inlet’s 1/7th power law velocity profile. As flow exits the first bend, the 

centrifugal force owing to the curvature sends the flow to the outer wall. The same physics is 

shown by all the models. However, the models which in their nature do not model on the viscous 

sub-layers, i.e. k- and RNG k-, present this profile with a delay. The k- and RNG k- models 

begin the velocity profile at 0.4 of the u/Vm parameter; see Fig. 4.7, whilst the k- and SST begin at 

0.1. It was deduced that the k- and the RNG k- models under-predict the onset of separation 

because their velocity profiles suggest that separation occurs at a later higher velocity.  

 

A further important selection criterion is which model best presents the onset of re-attachment of 

flow. It has been found through the velocity profiles of the SST turbulence model in Fig 4.6 that flow 

starts to show re-attachment on the outer wall from ten diameters (10D) as though flow is taking up 

its normal velocity profile of a turbulent flow, i.e., the 1/7th power law. However, there is still 

separation from the inner wall because there are no values in the u-direction (radial velocity) of the 

velocity component that suggest there is flow from the wall towards the centre. On contrary, the k- 

and the RNG k- with a slight exception on k-, suggest that there is flow from the inner wall and 

the beginning of the re-attachment of a turbulent velocity profile is as early as ten diameters 

downstream the first bend.  

 

The SST model shows that there is still separation at entry to the second bend, while the other 

models (k-, RNG k- and k-) suggest that flow has started to re-attach. This difference in the 
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models’ prediction confirms that these models under-predict flow separation. It does so, on a much 

earlier onset than the k- and the RNG k- models. It is seen from the SST model in Fig. 4.6 that 

the value indicating separation starts just over the 0.1 u/Vm value, whilst the k-, RNG k- and k- 

models indicate that separation stopped at a just under the 0.5 u/Vm value.  

 

The SST model achieved a significantly more accurate representation of the flow than the after 

turbulence models included in this comparison. It can produce results even on the smallest range 

of eddy viscosities. Modelling is performed in the sub-viscous layer of the fluid (boundary layer). 

Therefore, the detachment of the fluid from the surface is detected accurately. By using it, the 

modelling results will be more reliable and much closer to the physics of motion and behaviour of 

the fluid 
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Figure 4.6: Velocity profiles on symmetry plane for various turbulence models at Re = 5.8x10
5
and r/d = 3 



42 
 

4.2.4 Validation of the SST model using a single bend loss coefficient 

 

The final validation of the SST model is with respect to its ability to predict the loss coefficient 

values of a single bend as reported in the literature. This validation will also help in deciding on the 

method of computing the head loss coefficient that will be most accurate.  

 

 

The CFD results in Table 4.3 were achieved through the modelling parameters in Table 4.1. Eq. 4.2 

was used to find the loss coefficient when a total pressure drop is considered together with a 

Blasius friction factor (f = 0.316/Re0.25) for smooth pipes. The Blasius friction factor was used 

because the investigation was for the loss coefficient of smooth bends and pipes. Eq 4.2 was used 

to find the loss coefficient of the single 900 bend.  

 

 

4.2 

 

Turian et al (1997:248) presents an empirical correlation developed by Ito (1960) for bends with 

long tangents as: 

 91  2Refor    )/2(Re00241.0 284.017.0   )r (d/drK
cc

        4.3 

Where: 

 7.19  )/2(for  /d)2(2.1795.0 :90 -1.960  drr cc
 

 

The value of the CFD loss coefficient was compared to Ito’s (1960) empirical correlation (Eq. 4.3). It 

was also compared to the values from the ASHRAE Handbook (see Table 4.2). The comparison of 

the three results is provided in Table 4.4.  

 

Table 4.2: ASHRAE loss coefficient for smooth bends, Crowe et al (2005:391) 

rc/d K 

1 0.35 

2 0.19 

4 0.16 

6 0.21 
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Table 4.3: CFD results of a r/d = 3 smooth single bend 

P K 

inlet (Pa) outlet (Pa) CFD-SST model 

442.960 7.361 0.184 

 

Table 4.4: Comparison of a loss coefficient of a r/d = 3 smooth single bend 

ASHRAE-Table 4.3,smooth pipes bends 
CFD-SST 

model 

Ito 

Eq 4.3 

0.175 0.184 0.213 

 

4.3 Findings 

The loss coefficient calculated by CFD falls within the range of the empirically determined loss 

coefficient. Using the models and parameters as indicated above, the CFD analysis was 

concluded.  

 

4.3.1 Determination of the head loss coefficient of closely spaced pipe bends (bend-

spacer-bend) 

 

4.3.1.1 Effects of the spacing ratio, K vs. L/d 

 

The CFD analysis showed that the head loss coefficient of closely spaced pipe bends has a linear 

relationship with the spacing distance between the bends for various curvature ratios and Reynolds 

numbers (Fig. 4.8 and Fig 4.9). It increases as the spacer length between the pipe bends is 

increased. The results are consistent with Modi & Jayant (2004:328) who found that the loss 

coefficient increases with increased distance between bends. The recovery length assists the 

velocity profile to develop more fully and that increases pressure drop across the second bend and 

therefore the head loss coefficient. There appears to be mutual interaction of the flow the bends 

that is caused by proximity. It means that there should a single head loss coefficient for the closely 

spaced pipe bends. Miller (1990) found that if the distance between the bends becomes long 

enough, the head loss coefficient of the bends does not change. This indicates that there is no 

mutual interaction of the flow through the bends. 
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Figure 4.7: Head loss coefficient of closely spaced 90
0
 bends at 180

0
 configuration, Re = 7.3x10

4
  

 

 

Therefore, flow between pipe bends a distance less than 160D does not have normal fully 

developed turbulent velocity profile (Ito, 1987:548), causing flow interaction. The CFD analysis 

allows calculation of the head loss coefficient that quantifies that interaction for design of piping 

system.  
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Figure 4.8a: Head loss coefficient at various Reynolds numbers at a constant curvature ratio, r/d = 3 

  

Figure 4.8a: Head loss coefficient at various Reynolds numbers at a constant curvature ratio, r/d = 4 
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Figure 4.8: Head loss coefficient at various Reynolds numbers at a constant curvature ratio, r/d = 5 

 

 

Flow development that is based on the spacing distance between the bends is indicated in Fig. 

4.10. The velocity profile of a turbulent fluid is seen from Fig. 4.9 in its normal 1/7th power law 

profile at entry to the first bend. Axial profiles inside the 900 bend show the distortion of the flow 

where the fluid on the outside of the bend flows at higher velocity than at the inside of the bend. 
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Figure 4.9: Velocity profiles on the symmetry plane at Re = 5.8x10
5
, r/d = 3 at the inlet of the upstream 

tangent pipe 

 

 

Figure 4.10 indicates this flow movement and its redevelopment as it goes through the spacer that 

is located between the bends. It is noticeable that on the inside surface of the spacer at 1D 

downstream of the upstream bend that there is no sign of the presence of flow, which can be 

interpreted as the start of flow separation. It continues until 10D where the flow begins to take up 

an almost a flat shape which indicates that it is progressing to a fully developed profile. 

 

 

 

Outside  

 

Inside  
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Figure 4.10: Velocity profiles in the x and z direction of the symmetry plane at Re = 5.8x10
5
, r/d = 3 

 

 

4.3.1.2  Effects of the Reynolds number, K vs. Re 

 

Figure 4.11 indicates that at low Reynolds numbers the loss coefficient of closely spaced pipe 

bends is more than at high Reynolds numbers (as also can be seen on Fig 4.8). Higher energy 

wakes eddies are formed at higher Reynolds numbers than at lower Reynolds numbers. It is 

expected for the loss coefficient to be lower at higher Reynolds numbers because it is inversely 

related as Eq.4.3 suggests. It is because at higher Reynolds numbers the fluid within the bend 

separates from the surface with larger eddies (vortices). Thus, more mechanical energy is 

dissipated in the straight pipe, which leads to large relative pressure losses compared to the loss in 

the bend. 
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Figure 4.11: Overall loss coefficient of various spacer lengths at r/d = 3 

 

 

4.3.1.2.1 CFD plots 

 

The plots that follow present the pressure distribution, streamlines and velocity vectors within the 

bend-spacer-bend. They aim to aid understanding and outline the behaviour and effects of fluid in 

the system. 
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Figure 4.12a: Pressure distribution at exit of the first 
bend, Re = 7.3x10

4
 at L/d = 10 

 

 

Figure 4.12b: Pressure distribution at exit of the first 
bend at Re = 7.3x10

4
  for L/d = 10 spacer  

 

 

Figure 4.12c: Pressure distribution at entrance to the 
second bend, Re = 7.3x10

4
  

 

 

Figure 4.12d: Pressure distribution at 45
0
 planes inside 

both bends, Re = 7.3x10
4
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Figure 4.12e: Dean Type secondary flows, 2D downstream 
from the first bend 

 

 

Figure 4.12g: Streamlines of the fluid, Re = 7.3x10
4
  

 

 

Figure 4.12f: Pressure distribution on the symmetry plane, 
Re = 5.8x105  

 

 

Figure 4.12h: Pressure distribution on the symmetry 
plane, Re = 7.3x10

4
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Flow 

Flow 
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Figure 4.12i: Vector representation of the secondary flow 2D downstream the first bend 

 

 

Figure 4.12j: Vector distribution on the symmetry plane, Re = 5.8x10
5 

 

Inside 
Outside 
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The dynamic pressure distributed inside the bend is depicted in Fig. 4.12a, b and c. The plane at 

the exit of Fig. 4.12a indicates the sections where the pressure varies across the bend. It is seen 

that the pressure is lower on the inside and higher on the outside of the bend. The variation simply 

confirms that the streamlines in bends are curved and centrifugal forces cause a pressure increase 

near the outer wall of the bend; and a pressure decrease on the inside of the bend.  

 

It is noticeable from Fig. 4.12c, that the variation in pressure level at the entry of the second bend 

(length L/d = 10 from the first bend exit) is much less than at the exit from the first bend. This is 

owing to the distorted fluid beginning at the redevelopment stage when the outside of bend still 

experiences the effects of the centrifugal forces. Hence, the fluid is forced to separate from the 

inner wall due to the curvature of the bend. The streamlines of the flow are indicated in Fig. 4.12e 

demonstrate the bending effect of an internal flow. The phenomenon of the interaction between the 

centrifugal force and the slow motion of fluid in the boundary layer that induce secondary flows is 

known as the Dean-type secondary flows. 

 

The effects of turbulent flow are further demonstrated through Fig. 4.12i, where a spacer length of 

L/d = 10 was used to show velocity vectors which translate to varying Reynolds numbers at a cross 

section plane that is 2D downstream from the second bend. It is seen from Fig. 4.12h that the 

pressure distribution on the symmetry plane indicates that at a higher Reynolds number (Fig 4.12f) 

the variation in pressure within the spacer is more than at a lower Reynolds number. It is as 

expected because the high speed moving fluid leaves the first bend much more distorted and its re-

development would require extra spacing length than at lower Reynolds numbers.  The head loss 

coefficient of closely spaced bends is lower at higher Reynolds number than at low Reynolds 

number despite the pressure within the spacer being higher. 

 

4.4 Choosing a correlation 

 

The dimensionless groups (Table A1) that are functions of the head loss coefficient of closely 

spaced pipe bends and the friction factor were presented in form of an equation. Then correlations 

were developed based on the Blasius type correlation which is of a power-law type. The first step in 

choosing the type of a correlation was to plot the data of the various variables on a log-log scale. 

The plots, therefore, formed straight lines which indicated that the choice of a power-law type 

correlation was appropriate.  
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The CFD friction factors for the straight pipe section for a smooth pipe at D = 0.065m and L= 3.25m 

(L/d = 50) downstream the second bend were computed from Eq 4. 4 

2

52

8 QL

Dp
fCFD




     4.4 

 

Table 4.5: CFD simulation of the friction factors at d = 0.065m and L= 3.25m (L/d = 50) downstream the 
second bend 

P1 (Pa) P2 (Pa)  P (Pa) Q (m^3/s) f-CFD 

348.107 7.844 340.263 0.003 0.014 

4848.050 146.368 4701.682 0.014 0.010 

15413.600 497.835 14915.765 0.027 0.009 

 

   
d

cba

d
r

d
LCk 







 Re       4.5 

Where: 

 a, b, d = fractional exponents 

 C = constant of generic shape 

 

4.4.1 Friction factor and the head loss coefficient correlation 

 

E.q 4.5 was linearized by a logarithmic transformation in to order to perform a least-squares 

regression. A linear regression analysis was then applied using a MS Excel (see Appendix A2) to 

find the constants a,b, C,d, in the resulting linear equation. 

 

Table 4.5: Comparison of the friction factors at d = 0.065m and L= 3.25m (L/d = 50) downstream the 
second bend 

P1  

(Pa) 

P2 

(Pa) 

Q  

(m
3
/s) 

f-CFD f-Blasius f' f' vs. f-CFD 
f' vs. f-

Blasius 

348.1070 7.8444 0.0033 0.0137 0.0192 0.0131 3.97% 31.81% 

4848.0500 146.3680 0.0144 0.0101 0.0133 0.0099 1.33% 25.55% 

15413.6000 497.8350 0.0265 0.0094 0.0114 0.0088 5.56% 22.75% 

 

 

The friction factor correlation for the smooth pipe based on the CFD data is represented with 

Eq.4.4. Its deviation from the Blasius equation is high but decreasing with increasing Reynolds 
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number. However, its error from the CFD friction factor (from Darcy’s equation) is lower see Table 

4.5 and Fig 4.13.  

 

 

Figure 4.13: Blasius friction factor vs. the CFD friction factor found from the correlation 

 

 

The head loss coefficient correlation of closely spaced pipe bends is represented by Eq.4.6.  

 

 

4.6 

 

This is valid for smooth pipes under the following conditions: 

 

𝟏 ≤ 𝐋
𝐝⁄ ≤ 𝟏𝟎;   𝟕. 𝟑𝐱𝟏𝟎𝟒 ≤ 𝐑𝐞 ≤ 𝟓. 𝟖𝟒𝐱𝟏𝟎𝟓 & 𝟑 ≤

𝐫𝐜
𝐝⁄ ≤ 𝟓 

 

The correlation was based on the data presented in Table A. 2. It is seen that the absolute error of 

the correlation is 1.9%. It is in a good agreement with the data. The same is further demonstrated 

in Fig. 4.14, where the regression value between the data and the correlation is about 97%.  

∴ 𝑘′ = 4.8
𝐿

𝑑⁄
0.06 𝑟

𝑑⁄
0.07

𝑅𝑒0.21
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Figure 4.14: Comparison of the loss coefficients 
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CHAPTER 5 

 

EXPERIMENTAL RESULTS 

 

5.1 Overview of experiments 

 

The aim of the experiments was to verify the numerical data (CFD). An experimental study to 

determine the head loss coefficient of closely spaced pipe bends was performed. Two long radius 

bends of a curvature ratio of rc/d = 3 that were separated by a short (10D and 0D, relative to the 

recommended 100D for a fully developed flow) straight pipe were tested. Flow rates were varied 

and pressure data was recorded. The overall head loss coefficients of closely spaced pipe bends 

were calculated and presented through relevant graphical plots. The head loss coefficients of 

closely spaced pipe bends were compared to the literature values.  

5.2 Experimental facility  

 

Figure.5.1 represents a schematic diagram of the test rig that was used to determine the head loss 

coefficient of the closely spaced pipe bends. Water was used as a working fluid. It was supplied 

from the municipal water mains at a constant pressure of 450kPa. The entire rig was constructed 

using a 50mm UPVC pipe class 1 with an inside diameter of 46mm. Flow control came from 

throttling (opening and closing) a gate valve. Flow was measured using an ultrasonic flowmeter 

with its output obtained from the data logger (HOBO U12 Outdoor Industrial Data Logger with 4 

External Channel Inputs) (2) see Fig 5.1 overleaf. 
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Figure 5.1: Schematic view of the test facility 
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The rig had three main sections which were the upstream section; the test section and the 

downstream section. The upstream section was supplied with water from the municipal water 

mains. A ball valve (1) was used to control the supply into the system. A maximum Reynolds 

number of 1.12x105 was obtainable from the mains pressure at a velocity of 2.5 m/s. The flow 

variance was from throttling (varying the flow area through the pipe) the gate valve downstream. 

 

In total the pipe length for the upstream pipes and the fittings was 24m. A straight pipe of 6m was 

needed after the last disturbance generated by a reducer (upstream of the first test bend), in order 

to ensure that the flow was fully developed before the test section. At 50D upstream of the first 

bend, two pressure transducers were installed at 1800 (opposite sided of the pipe) to have a 

differential reading a single point (PT1). The pressure transducer was non-linearity of ±0.5%; were 

installed to measure the absolute pressure upstream and downstream of the test section. All taps 

were 2mm inside diameter (ID) which were deburred as confirmed by visual examination. 

 

The test section consisted of two 900 long constant radius bends that were connected by a short 

straight pipe (spacer) between them. In the test section bends having a curvature ratio rc/d = 3 were 

fixed and two spacers with the lengths of 10D and 0D, respectively, were interchanged to 

investigate their influence on the head loss coefficient. The downstream section had two pressure 

points placed at 217D and 304D spacing from the last bend to ensure that the flow was fully 

developed and for computing the friction factor of the pipes. The downstream section had a total 

length of 18m (348D), which was enough for the flow to be fully developed and to allow for any flow 

separation effects to diminish to negligible levels. Mukhtar et al (1994:330) found that in order to 

ensure a fully developed flow the pipe length must be at least 150D. The water temperature was 

municipal supply at a temperature that remained practically constant at 200C for the duration of the 

experiments. 

 

5.3 Experimental uncertainty analysis 

 

It is known that scientific experiments usually have uncertainties from the acquired data and it was 

necessary that all contributing measurements to the results be error analysed. This was done to 

determine the potential effects of errors associated with all the measured quantities. These errors 

were anticipated and analysed because they had an effect on the desired values (loss coefficient-

values). It was appreciated that measurements usually have a percentage error. Therefore, it is 
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necessary to ensure that experimenting time and the resources be spent productively by evaluating 

and limiting probable errors (Coleman & Steele, 2009:4). 

 

The approach was to compute an uncertainty estimate that was to indicate a percentage of 

confidence within which the true value would fall (Coleman & Steele, 2009:14). The following 

paragraphs explain the steps that were taken in analysing errors and in identifying error sources.  

 

In this analysis the error sources were first identified. These sources were potentially from the 

possible standards used; and the imperfect calibrating methods. However, the calibration 

certificates that were issued from the newly bought instruments were an acceptable measure in the 

accuracy of the instruments. The experiments had parameters which had repeatable 

measurements, e.g., pressure and flow. Then the parameters that were measured only once were 

the inside pipe diameter and pipe lengths (spacer length; upstream and downstream flow 

development lengths).  

 

The errors found in this study, as many other experimental studies would have, were categorised in 

two forms, namely, systematic and random errors (White, 2008:46). The systematic error was 

thought of being the lack of applying precise calibrating methods of the instruments. The other type 

of error, the random error, was minimised through statistical methods of averaging scatter readings 

(moving averages and discarding points outside set limits). 

 

The analysis began by determining the overall uncertainly level in the experiments viz., by finding 

the uncertainty in the pressure measurement. It then offered a confidence value for measuring the 

friction factor. Then, subsequently, a confidence level was determined for the loss coefficient of 

closely spaced pipe bends.  

 

5.3.1  Mathematical error estimate in experiments (White, 2008:47): 

 

The various independent variables of the friction factor and their uncertainty error estimates were 

identified and defined: 

 

The uncertainty of the friction factor was given as  
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     𝛿𝑃 ≈
𝜕𝑃

𝜕𝑥
𝛿𝑥       5.1 

 

The multiple variables of the friction factor were given as 

 

     𝑓 = 𝑓(𝑑, ∆𝑃, 𝑄, 𝐿)      5.2 

 

Where: 

 

d = inside diameter of the pipe (m) 

P = pressure difference in the direction of flow (Pa) 

Q = fluid flow rate (m3/s) 

L = length of the measured pipe (m) 

 

The expression of the friction factor was found through a rearrangement of Eq. 3.4 to become: 

 

𝑓 =
𝜋2∆𝑃𝑑5

8𝜌𝑄2𝐿
      5.3 

 

The power-law exponent of the independent variables in Eq. 5.4 is presented as: 

 

     𝑓 = 𝐶𝑜𝑛𝑠𝑡(𝑑5 ∙ ∆𝑃1 ∙ 𝑄2 ∙ 𝐿1 ∙ 𝜌1)     5.4 

 

The subsequent root-mean-square estimate of the uncertainties is given as: 

 

   
𝜕𝑓
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2
]

1
2⁄

   5.5 

 

The errors associated with the aforementioned parameters are indicated in Table 5.1. Their 

estimated errors, which were used in computing the overall uncertainty of the experiments are 

rationalised as on the bases listed. 

 

Table 5.1: Results of the error analysis 

Uncertainties Accuracy Rationale 

δd 0.3%  There was a confidence level of 99.5% on the weighting scale’s 
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accuracy. 

 A gravimetric-volumetric calibration was performed. Where only the 

wetted volume of the pipe, i.e., the mass water inside, was considered. 

The mass of the hollow pipe was ignored by zeroing the scale before 

water could be poured in the pipe.  

 Measured against the computed. A ratio of diameter measured using a 

vernier calliper over the diameter determined through the balance of 

forces. 

δ∆P 0.5% 

 The pressure transducer had an accuracy of ±0.5%. The practical set 

up of pressure gauge was followed through best practises. For 

instance, the radial hole on the pipe wall needed to be drilled 

perpendicular to the wall and the burrs were removed. The static 

pressure would have been affected and it would have had a resulting 

error leading to 1.1% if such was ignored.  

δQ 0.5% 
 Sudden losses in pressure due to the usage of large water mains in the 

district.  

δL 0.1% 

 The length of the pipe length would only have an error if the measuring 

tape itself had some unlikely calibration needs. The major concern was 

with regard to the flow developing lengths. The developing lengths 

were followed as per literature as those respective lengths were 

measured accordingly. The instruments were positioned adequately 

with reference of the test section for upstream and downstream pipes.  

δρ 1.2% 
The temperature of water during the tests was kept constant at 20

0
C. That the 

variance in water temperature would be at range 2
0
C.   

 

 

The overall uncertainty of the experiments was found to be 𝜕𝑓/𝑓 = 2.19%, resulting in a 97.8% 

confidence in the experimental data of the friction factor.  

  

 

                                                   𝑛 ∙ (𝑘′) ∙ 𝐶1−2 =
2∆𝑃𝑡𝑜𝑡𝑎𝑙

𝜌𝑣2 −
𝑓

𝑑
(𝐿𝑢 + 𝐿𝑠 + 𝐿𝑑) + 𝑓 ∙

𝐿𝑏

𝑑
    5.6 
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The overall uncertainty of the loss coefficient of closely spaced pipe bends was found to be (𝜕𝑘′)/

𝑘′ = 2.49%, resulting in a 97.5% confidence. 

 

5.4 Findings 

 

5.4.1 Friction Factor 

The head losses resulting from the flow of a fluid through a pipe are expressed by the Darcy 

formula (Eq. 5.2).  

     ∆𝑃 = 𝑓 ∙
𝐿

𝑑

𝜌𝑣2

2
      5.8 

 

At high Reynolds number (complete turbulence, rough pipes) the friction factor can be obtained 

from the Colebrook-White (1937) equation 

 

    
1

√𝑓
= −2𝑙𝑜𝑔 (

𝜀

3.7𝑑
+

2.51

𝑅𝑒√𝑓
)     5.9a 

 

    1 = −2𝑙𝑜𝑔 (
𝜀

3.7𝑑
+

2.51

𝑅𝑒√𝑓
) ∙ √𝑓     5.9b 

 

The procedure used to compute the friction factor was as follows: 

 Two pressure tappings were set 4 m apart on a straight PVC pipe. The first tapping was 

placed 217D downstream of the second bend to ensure fully developed flow. The tappings 

were used to measure the pressure drop along the pipe at various Reynolds numbers.  

 In order to ensure that the results were accurate, the pressure transducers (upstream and 

downstream) were positioned where the swirl had decayed and the flow was fully 

developed. The downstream pipe was 174D after the second bend. According to Mukhtar et 

al (1994:330), this pipe length was sufficient for a fully developed flow. Miller (1990:82) 

inferred that the swirl that is caused by a combination of bends could persist for more than 

100D. 

 The Reynolds numbers were varied by throttling a gate valve. 
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 The readings of the pressure differences were gathered and the Colebrook-White equation 

(Eq. 5.3) was used to find the friction factor. The Reynolds number which was computed 

from the flow rate data was inserted in Eq. 5.9a.  

 An iterative method was used to solve Eq 5.3 for the friction factor. The friction factor on the 

Right-Hand-Side (RHS) of Eq 5.9b was iterated, while the other variables were kept 

constant, until the RHS came to a unit. When the RHS was equal to a unit but an accuracy 

of three decimals, the last iterative value was taken as the friction factor for that specific 

Reynolds number. The results are presented in Fig. 5.2. The iterative values of the friction 

factor are presented in Appendix B, Table B1.  

 

 

Figure 5.2: Comparison of the friction factor found through experiments against the Colebrook-White 
equation on the roughness of a PVC pipe 

 

 

In this representation a Colebrook-White plot was compared to the experimental results, see 

Fig.5.3. Table B1 shows the data gathered from computing the friction factor of the pipe system.  
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5.4.3 The Head Loss Coefficient of closely spaced pipe bends 

  

The formula used to compute a single head loss coefficient of closely spaced pipe bends was 

based on Eq.5.10a by Miller (1974). This equation is a combination of the head loss equations for 

straight pipe and bends. It was manipulated in order to find the head loss coefficient “k” as a 

variable of interest. 

  

             

            5.10a 

             

 

 

The principle of conservation of energy with an inclusion of a correction factor for closely spaced 

pipe bends, presents: 

 

 

5.10b 

 

In essence, the representation of the losses in Eq. 5.10b indicates that: 

    

5.10c 

 

Where: 

  

           5.10d 

 

And 

  

5.10e 

 

5.10f 
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 LB = length of a bend 

  

Ld = length downstream of the bends 

  

 Lu = length upstream of the bends 

  

 d = constant inside diameter of the pipeline 

  

 rc = radius of the curvature  

  

f = constant friction factor as a function of a Reynolds number and the relative roughness of 

the pipe 

  

Ptot = pressure difference upstream and downstream of the bends. 

  

 C1-2 = correction factor of closely spaced pipe bends.  

  

A loss coefficient of a bend was found by  

 

5.10g 

 

  

5.10h 

 

The combined loss coefficient for two closely spaced bends was regarded by Miller (1974) as the 

sum of single isolated bends, multiplied by a correction factor: 

 

5.10j 

Where: 

 

 k1, k2 = loss coefficient of isolated bends found through Ito’s correlation, see Eq. 5.10k 
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Turian et al (1997:248) present an empirical correlation developed by Ito (1960) for bends with long 

straight pipes as: 

 

                           91  
2

2Refor    
84.0

)/2(
17.0

Re00241.0 


 )cr (d/dcrk     5.10k 

 

                           7.19  )/2(for   -1.96)/2(2.1795.0 :090  dcrdcr      5.10l 

 

Now: 

      

Thus, the correction factor is: 

 

5.10m 

 

Table 5.2: Miller: rc/d = 3 + spacer + rc/d = 3, at Re = 1x10
6 

 

 

 

 

 

 

 

 

The trend in Fig. 5.3 shows a linear relationship between the loss coefficient and the spacer length 

to pipe diameter ratio, which indicates that with an increase in length between the bends, the 

severity of the losses of the bends increases (as found by Miller 1990). It had been predicted that 

with the increased length of the spacer, the loss coefficient will become constant. When this 

happens, the secondary flow generated by the first bend would have dissipated by the time the 

second bend is reached. At shorter separation lengths the bends will mutually interact, thus 

affecting the combined loss coefficient. 

 

Miller’s findings were based on a higher Reynolds number than that used in the experiments. The 

difference in the Reynolds numbers is significant because, when the Reynolds number is increased 

the losses due to the secondary flows induced in the bends change in comparison with the losses 

L/d C* k* 

0 0.71 0.194 

1 0.73 0.199 

4 0.79 0.216 

8 0.85 0.232 

Miller
kk 

 21

*

21
kk

k
C


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associated with skin friction. Thus, at higher Reynolds numbers the loss coefficient reduces in 

magnitude and it would tend to behave as an isolated bend (single bend) because of the trend line 

becomes constant.  

 

 

Figure 5.3: Loss coefficient vs. Spacing ratio contrasted  

 

 

Nonetheless, it is encouraging to still have results that present principles known about the factors 

influencing the head losses in terms of added skin friction, wake friction and the magnitude of flow. 

It is seen from the graph that the loss coefficient decreases with the increasing Reynolds number 

as expected relative to the dominance, turbulence loss has over skin friction. 

 

The correction factor found from the experiments is presented in Table 5.4 to demonstrate its 

variance in terms of the spacer length and the curvature ratios of the bends in the same plane. This 

data was computed from the manipulated equation that Miller used, Eq. 5.6m. Thus, has been used 

to express the correction factor for experiments conducted in this study. The trend lines in Fig. 5.4 

should be linear but have steps which simply indicate experiments errors that were anticipated.  
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Figure 5.4a: Loss coefficient per spacer for a bend with a curvature ratio of, rc/d = 3 

 

 

Table 5.3: Loss coefficient of a single bend, Ito 

2r/d   Re rc/d Ito, k 

6 90 1.463 8.36E+04 3 0.208 

6 90 1.463 8.40E+04 3 0.208 

6 90 1.463 8.45E+04 3 0.208 

6 90 1.463 8.54E+04 3 0.207 

6 90 1.463 8.58E+04 3 0.207 

6 90 1.463 8.61E+04 3 0.207 

6 90 1.463 8.71E+04 3 0.207 

6 90 1.463 9.26E+04 3 0.205 

6 90 1.463 9.28E+04 3 0.205 

6 90 1.463 9.84E+04 3 0.202 

6 90 1.463 9.93E+04 3 0.202 

6 90 1.463 1.00E+05 3 0.202 

 

 

Table 5.4: Correction factor for closely spaced pipe bends 

C1-2 L/d Re 

1.075 10 8.50E+04 

1.086 10 9.09E+04 
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1.174 10 9.95E+04 

0.867 10 1.06E+05 

0.906 10 1.10E+05 

0.906 5 8.50E+04 

0.980 5 9.09E+04 

1.274 5 9.95E+04 

0.729 5 1.06E+05 

0.781 5 1.10E+05 

0.645 0 9.09E+04 

0.730 0 9.95E+04 

1.214 0 1.06E+05 

0.544 0 1.10E+05 
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CHAPTER 6 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 CFD summary 

 

It is found that the loss coefficient of closely spaced pipe bends in principle shares a linear 

relationship with the length between the bends (spacer). However, the loss coefficient of closely 

spaced pipe bends is dependent on the spacer ratio (length between the bends over the inside 

diameter), turbulent flow (high Reynolds numbers) and the curvature ratio. The following has been 

found. 

 

 The head loss increases with the spacer length. 

 The correlation for calculating the head loss coefficient of closely spaced pipe bends for 

smooth pipe is: 

 

 

Valid for: 

𝟏 ≤ 𝐋
𝐝⁄ ≤ 𝟏𝟎;   𝟕. 𝟑𝐱𝟏𝟎𝟒 ≤ 𝐑𝐞 ≤ 𝟓. 𝟖𝟒𝐱𝟏𝟎𝟓 ; 𝟑 ≤

𝐫𝐜
𝐝⁄ ≤ 𝟓 

 

Table 6.1: Deviation of experimental results from CFD results 

L/d 
Exp-K  

(Re = 9.09e4) 
CFD-k'  

(Re = 7.3e4) 
error 

10 0.456 0.598 -24% 

5 0.412 0.558 -26% 

1 - 0.519 - 

0 0.271 - - 

 

 

∴ 𝑘′ = 4.8
𝐿

𝑑⁄
0.06 𝑟

𝑑⁄
0.07

𝑅𝑒0.21
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Figure 6.1: Comparison of the CFD results and experiments at Re = 9.09x10
4
 and Re = 7.3x10

4
 

respectively 
 

 

6.2 Recommendation for future work 

 

This work indicates potential for useful additional analysis and experimentation: 

 Numerical modelling of Newtonian fluids (in the laminar and turbulent regimes) for smooth 

bends at 00 and 900 mutual planes.  

 Numerical modelling of closely spaced combinations of: 

- 900 bends and other pipe fittings, viz. ball valve, gate valve, diaphragm valve, tee, 

wye, etc. 

 Developing sets of empirical correlations and tables for most fluid flow conditions and 

component (minor losses) combinations.  
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APPENDIX A 

 

COMPUTATIONAL FLUID DYNAMICS RESULTS: CLOSELY SPACED PIPE BENDS 

 

A1 Correlation for the loss coefficient of closely spaced pipe bends 

 

The investigation of the head loss coefficient of closely spaced pipe bends required an investigation 

of factors that influence its existence. Hence, the intention for performing a dimensional analysis 

was to establish a mathematical model that will calculate the loss coefficient of closely spaced pipe 

bends. The Buckingham’s pi-theorem was used in the dimensional analysis of the system. It 

produced dimensional groups that led to the formulation of an empirical correlation of this study.  

 

),,,,,,( PLrdvfnk   

Number of fundamental dimensions = 3 

Number of variables = 7 

Number of dimensionless groups = 7-3 = 4 

 

Table A1: Variables affecting the loss coefficient 

Variable 

(Independent) 
Symbol 

 

Dimensions 

(MLT) 

 

Water velocity inside the pipe 

 

v 

 

LT
-1

 

 

Inside diameter of the pipe 

 

d 

 

L 

 

Radius of curvature of the bend 

 

r 

 

L 

 

Pipe length between bends (Spacer 

length) 

 

L 

 

L 

 

Absolute pressure inside the pipe 

 

P 

 

ML
-1

T
-2

 

 

Viscosity of the liquid 

 



 

ML
-1

T
-1
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Density of the liquid  ML
-3
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The found pi-groups represent the following: 

 Curvature ratio, 
d

r
 

 Loss coefficient, 
2v

p


 

 Reynolds number, 


vd
 

 Spacing ratio, 
d

L
 

 

A2 Statistical method for a formulation an empirical correlation for smooth pipe bends: MS 

Excel 

 

 

 

 

 

The interpretation of the regression output in Table. A2 is explained as follows (Anagnoson et al, 

1997:238-240): 

 Source, total sum of squares (TSS) where it is the sum of the model (explained sum of 

squares, ESS) and the residual (residual sum of squares, RSS). The SS, df and MS 

denotes the sum of the squares, denotes degrees of freedom and mean sum of squares.  

 The number of observations explains the amount of the data used.  

 F-statistic at degrees of freedom is a quotient of the Model MS divided by the Residual MS. 

It is used to measure the null hypothesis that all slopes equal to zero. 
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 Significance F it means there is less than one chance in ten thousand that an F-statistic as 

large or larger.  

 R Square as a ratio of ESS to TSS (called the coefficient of determination), it is used a 

measure of a measure the goodness-of-fit of the regression model.  

 Adjusted R Square discounts small improvements on variance of new variables thenit 

decreases the R Square value as more variables are added.  

 Coefficients are the constants in the regression equation.  

 

A statistical analysis of the of the head loss coefficient after ninety observations is presented in 

Table A 2. The independent variables in consideration are as follows: 

 

 X Variable 1 = Spacer ratio (L/d) 

 X Variable 2 = Reynolds number (Re) 

 X Variable 3 = curvature ratio (r/d) 

 

 

 

 

 

 

 



82 
 

Table A2: The Multiple regression statistical representation  

 

SUMMARY OUTPUT 
        

         
Regression Statistics 

       
Multiple R 0.994164263 

       
R Square 0.988362581 

       
Adjusted R Square 0.987956625 

       
Standard Error 0.00896921 

       
Observations 90 

       

         
ANOVA 

        

 
df SS MS F Significance F 

   
Regression 3 0.587579231 0.195859744 2434.651646 5.03849E-83 

   
Residual 86 0.006918418 8.04467E-05 

     
Total 89 0.594497649 

      

         

 
Coefficients 

Standard 
Error 

t Stat P-value Lower 95% Upper 95% Lower 95% Upper 95% 

Intercept 0.684069177 0.014940645 45.78578617 3.56239E-62 0.654368158 0.713770196 0.654368158 0.713770196 

X Variable 1 0.057934483 0.003130468 18.50665365 9.78488E-32 0.051711319 0.064157647 0.051711319 0.064157647 

X Variable 2 -0.207527646 0.002495616 -83.15687733 5.98997E-84 -0.212488767 -0.202566525 -0.212488767 -0.202566525 

X Variable 3 0.070912526 0.010411163 6.81120125 1.24661E-09 0.050215819 0.091609233 0.050215819 0.091609233 
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Table A3: CFD data of the loss coefficient 
 

k' k L/d Re r/d 
Error % 

 (k' v.s k) 

0.570 0.598 10 7.3E+04 3 -4.660 

0.567 0.590 9 7.3E+04 3 -3.961 

0.563 0.583 8 7.3E+04 3 -3.445 

0.558 0.575 7 7.3E+04 3 -2.960 

0.553 0.567 6 7.3E+04 3 -2.483 

0.547 0.558 5 7.3E+04 3 -1.920 

0.540 0.547 4 7.3E+04 3 -1.358 

0.530 0.539 3 7.3E+04 3 -1.539 

0.518 0.529 2 7.3E+04 3 -2.112 

0.497 0.519 1 7.3E+04 3 -4.251 

0.419 0.434 10 3.2E+05 3 -3.441 

0.417 0.428 9 3.2E+05 3 -2.650 

0.414 0.422 8 3.2E+05 3 -2.036 

0.410 0.417 7 3.2E+05 3 -1.496 

0.407 0.410 6 3.2E+05 3 -0.895 

0.402 0.403 5 3.2E+05 3 -0.254 

0.397 0.395 4 3.2E+05 3 0.479 

0.390 0.389 3 3.2E+05 3 0.172 

0.381 0.381 2 3.2E+05 3 -0.201 

0.365 0.374 1 3.2E+05 3 -2.278 

0.368 0.395 10 5.8E+05 3 -6.730 

0.366 0.390 9 5.8E+05 3 -6.093 

0.364 0.386 8 5.8E+05 3 -5.789 

0.361 0.382 7 5.8E+05 3 -5.517 

0.357 0.376 6 5.8E+05 3 -4.991 

0.353 0.369 5 5.8E+05 3 -4.321 

0.349 0.360 4 5.8E+05 3 -3.098 

0.343 0.354 3 5.8E+05 3 -3.230 

0.335 0.349 2 5.8E+05 3 -4.128 

0.321 0.342 1 5.8E+05 3 -6.095 

0.582 0.606 10 7.3E+04 4 -3.992 

0.578 0.598 9 7.3E+04 4 -3.320 

0.574 0.591 8 7.3E+04 4 -2.869 

0.570 0.584 7 7.3E+04 4 -2.475 

0.564 0.577 6 7.3E+04 4 -2.186 

0.558 0.565 5 7.3E+04 4 -1.298 

0.551 0.559 4 7.3E+04 4 -1.487 

0.541 0.551 3 7.3E+04 4 -1.690 

0.528 0.544 2 7.3E+04 4 -2.915 

0.507 0.535 1 7.3E+04 4 -5.337 

0.428 0.434 10 3.2E+05 4 -1.491 

0.425 0.433 9 3.2E+05 4 -1.766 

0.422 0.423 8 3.2E+05 4 -0.182 
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0.419 0.420 7 3.2E+05 4 -0.405 

0.415 0.413 6 3.2E+05 4 0.558 

0.410 0.404 5 3.2E+05 4 1.636 

0.405 0.398 4 3.2E+05 4 1.591 

0.398 0.392 3 3.2E+05 4 1.409 

0.388 0.392 2 3.2E+05 4 -1.050 

0.373 0.381 1 3.2E+05 4 -2.297 

0.376 0.396 10 5.8E+05 4 -4.972 

0.374 0.390 9 5.8E+05 4 -4.274 

0.371 0.386 8 5.8E+05 4 -3.901 

0.368 0.387 7 5.8E+05 4 -4.870 

0.365 0.378 6 5.8E+05 4 -3.653 

0.361 0.370 5 5.8E+05 4 -2.554 

0.356 0.364 4 5.8E+05 4 -2.160 

0.350 0.358 3 5.8E+05 4 -2.408 

0.341 0.360 2 5.8E+05 4 -5.142 

0.327 0.349 1 5.8E+05 4 -6.135 

0.591 0.620 10 7.3E+04 5 -4.615 

0.587 0.613 9 7.3E+04 5 -4.139 

0.583 0.606 8 7.3E+04 5 -3.784 

0.578 0.599 7 7.3E+04 5 -3.416 

0.573 0.591 6 7.3E+04 5 -3.068 

0.567 0.584 5 7.3E+04 5 -2.852 

0.559 0.575 4 7.3E+04 5 -2.638 

0.550 0.567 3 7.3E+04 5 -3.042 

0.537 0.561 2 7.3E+04 5 -4.419 

0.515 0.552 1 7.3E+04 5 -6.772 

0.434 0.448 10 3.2E+05 5 -3.021 

0.432 0.438 9 3.2E+05 5 -1.437 

0.429 0.433 8 3.2E+05 5 -1.049 

0.425 0.428 7 3.2E+05 5 -0.647 

0.421 0.422 6 3.2E+05 5 -0.186 

0.417 0.416 5 3.2E+05 5 0.145 

0.411 0.409 4 3.2E+05 5 0.537 

0.404 0.408 3 3.2E+05 5 -0.872 

0.394 0.400 2 3.2E+05 5 -1.315 

0.378 0.393 1 3.2E+05 5 -3.604 

0.382 0.403 10 5.8E+05 5 -5.264 

0.379 0.399 9 5.8E+05 5 -4.811 

0.377 0.392 8 5.8E+05 5 -3.803 

0.374 0.391 7 5.8E+05 5 -4.510 

0.370 0.386 6 5.8E+05 5 -4.025 

0.366 0.380 5 5.8E+05 5 -3.661 

0.361 0.372 4 5.8E+05 5 -2.923 

0.355 0.367 3 5.8E+05 5 -3.318 

0.347 0.365 2 5.8E+05 5 -5.093 

0.333 0.358 1 5.8E+05 5 -7.039 
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APPENDIX B 

 

EXPERIMENTAL RESULTS: Friction factor 

 

Table B1: experimental data of the friction factor 

   
v (10D) Re (10D) LHS RHS RHS/LHS f f (10D) 

Blasius 
(smooth 
pipes) 

Error 
% 

Parameters 
   

Goal Seek method 
worksheet 
Iteration 

Re (10D) 
 

Pipe roughness 
(m) 

0.00002 e 1.8500 8.41E+04 7.045194 7.047365 1.000308 0.020147 0.02014 0.01856 8.496413438 

Pipe Diameter 
(m) 

0.0455 D 1.8600 8.45E+04 7.047937 7.050415 1.000352 0.020131 0.02012 0.01853 8.549499609 

Viscosity (Pa s) 0.001 mu 1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

Density (kg m
-3

) 998 rho 1.8700 8.50E+04 7.050909 7.053423 1.000357 0.020115 0.02010 0.01851 8.602485484 

Relative 
roughness 

0.000 e/D 1.8600 8.45E+04 7.047937 7.050415 1.000352 0.020131 0.02012 0.01853 8.549499609 

   
1.8700 8.50E+04 7.050909 7.053423 1.000357 0.020115 0.02010 0.01851 8.602485484 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8600 8.45E+04 7.047937 7.050415 1.000352 0.020131 0.02012 0.01853 8.549499609 

   
1.8600 8.45E+04 7.047937 7.050415 1.000352 0.020131 0.02012 0.01853 8.549499609 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 
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1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8600 8.45E+04 7.047937 7.050415 1.000352 0.020131 0.02012 0.01853 8.549499609 

   
1.8600 8.45E+04 7.047937 7.050415 1.000352 0.020131 0.02012 0.01853 8.549499609 

   
1.8600 8.45E+04 7.047937 7.050415 1.000352 0.020131 0.02012 0.01853 8.549499609 

   
1.8600 8.45E+04 7.047937 7.050415 1.000352 0.020131 0.02012 0.01853 8.549499609 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8700 8.50E+04 7.050909 7.053423 1.000357 0.020115 0.02010 0.01851 8.602485484 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8600 8.45E+04 7.047937 7.050415 1.000352 0.020131 0.02012 0.01853 8.549499609 

   
1.8600 8.45E+04 7.047937 7.050415 1.000352 0.020131 0.02012 0.01853 8.549499609 

   
1.8700 8.50E+04 7.050909 7.053423 1.000357 0.020115 0.02010 0.01851 8.602485484 

   
1.8700 8.50E+04 7.050909 7.053423 1.000357 0.020115 0.02010 0.01851 8.602485484 
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1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8600 8.45E+04 7.047937 7.050415 1.000352 0.020131 0.02012 0.01853 8.549499609 

   
1.8600 8.45E+04 7.047937 7.050415 1.000352 0.020131 0.02012 0.01853 8.549499609 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8700 8.50E+04 7.050909 7.053423 1.000357 0.020115 0.02010 0.01851 8.602485484 

   
1.8700 8.50E+04 7.050909 7.053423 1.000357 0.020115 0.02010 0.01851 8.602485484 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8600 8.45E+04 7.047937 7.050415 1.000352 0.020131 0.02012 0.01853 8.549499609 

   
1.8600 8.45E+04 7.047937 7.050415 1.000352 0.020131 0.02012 0.01853 8.549499609 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8300 8.31E+04 7.038898 7.041268 1.000337 0.020183 0.02017 0.01861 8.389961688 
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1.8300 8.31E+04 7.038898 7.041268 1.000337 0.020183 0.02017 0.01861 8.389961688 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8400 8.36E+04 7.041932 7.044337 1.000342 0.020166 0.02015 0.01858 8.443238119 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8500 8.41E+04 7.044945 7.047386 1.000347 0.020149 0.02014 0.01856 8.49641729 

   
1.8600 8.45E+04 7.047937 7.050415 1.000352 0.020131 0.02012 0.01853 8.549499609 

   
1.8600 8.45E+04 7.047937 7.050415 1.000352 0.020131 0.02012 0.01853 8.549499609 

   
1.8300 8.31E+04 7.038898 7.041268 1.000337 0.020183 0.02017 0.01861 8.389961688 

   
1.8300 8.31E+04 7.038898 7.041268 1.000337 0.020183 0.02017 0.01861 8.389961688 

   
1.8300 8.31E+04 7.038898 7.041268 1.000337 0.020183 0.02017 0.01861 8.389961688 

   
1.8300 8.31E+04 7.038898 7.041268 1.000337 0.020183 0.02017 0.01861 8.389961688 
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APPENDIX C 

 

EXPERIMENTAL RESULTS: CLOSELY SPACED PIPE BENDS 

 

Table C1: Head loss coefficient of closely spaced pipe bends 

d   Lu Lb Lt Ld 

0.046 m 0.00002 998 m^3/kg 2.276 m 0.217 m 10.698 m 7.967 m 

L/d = 10 

Blasius m^3/s m/s Re 
P1 

(bar) 
P2 (bar) 

P3 
(bar) 

f (Cole-
Brooke) 

D h1-3 
(m) 

D h2-3 (m) f (Darcy) L/d 
K 

 (head) 
V^2/2g 

0.0185 0.0153 1.8700 8.50E+04 15.8327 15.3448 15.2999 0.0180 0.5237 0.000458793 0.0141 10 0.451 0.1782 

0.0182 0.0125 2.0000 9.09E+04 12.8834 12.5701 12.5379 0.0205 0.3396 0.000328543 0.0088 10 0.456 0.2039 

0.0178 0.0090 2.1900 9.95E+04 9.5836 8.9959 8.9592 0.0205 0.6138 0.000374652 0.0084 10 0.493 0.2444 

0.0175 0.0053 2.3300 1.06E+05 5.9888 5.3681 5.3111 0.0205 0.6662 0.000582436 0.0116 10 0.364 0.2767 

0.0173 0.0034 2.4300 1.10E+05 4.0379 3.3299 3.3860 0.0205 0.6407 0.000573570 0.0105 10 0.380 0.3010 

L/d = 5 

Blasius m^3/s m/s Re 
P1 

(bar) 
P2 (bar) 

P3 
(bar) 

f (Cole-
Brooke) 

D h1-3 
(m) 

D h2-3 (m) f (Darcy) L/d 
K 

 (head) 
V^2/2g 

0.019 0.015 1.870 8.50E+04 15.3540 14.866 14.821 0.0205 0.524 0.000458793 0.014 5 0.381 0.1782 

0.018 0.013 2.000 9.09E+04 13.4715 13.158 13.126 0.0205 0.340 0.000328543 0.009 5 0.412 0.2039 

0.018 0.009 2.190 9.95E+04 10.0155 9.428 9.391 0.0205 0.614 0.000374652 0.008 5 0.535 0.2444 

0.018 0.006 2.330 1.06E+05 6.9810 6.360 6.303 0.0205 0.666 0.000582436 0.012 5 0.306 0.2767 

0.017 0.004 2.430 1.10E+05 4.2400 3.644 3.588 0.0205 0.641 0.000573570 0.010 5 0.328 0.3010 

L/d = 0 

Blasius m^3/s m/s Re 
P1 

(bar) 
P2 (bar) 

P3 
(bar) 

f (Cole-
Brooke) 

D h1-3 
(m) 

D h2-3 (m) f (Darcy) L/d 
K 

 (head) 
V^2/2g 

0.018 0.0135 2.000 9.09E+04 14.0790 13.501 13.546 0.0205 0.5237 0.000458793 0.0124 0 0.271 0.2039 

0.018 0.0115 2.190 9.95E+04 11.8690 11.491 11.523 0.0205 0.3396 0.000328543 0.0074 0 0.307 0.2444 

0.018 0.0073 2.330 1.06E+05 7.9460 7.285 7.322 0.0205 0.6138 0.000374652 0.0074 0 0.510 0.2767 

0.017 0.0033 2.430 1.10E+05 3.9765 3.242 3.299 0.0205 0.6662 0.000582436 0.0106 0 0.228 0.3010 
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Figure C1: Pressure readings for the L/d = 10 
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Figure C2: Fluid flow for L/d = 10 
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Figure C3: Fluid flow for L/d 5 and L/d 0 
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Figure C4: Pressure readings for L/d = 5 and L/d = 0 
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Figure C5: Connection to the municipal mains 
 

 

Figure C6: Overview of the rig indicating inlet and outlet 
 

inflow outflow 



95 
 

 

Figure C7: Ball valve upstream the bends and a gate (flow throttling) 
valve downstream 
 

 

Figure C8: Two pressure transducers on a pressure point 
 

inflow 

outflow 
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Figure C9: Ultrasonic flowmeter 
 

 

Figure C10: HOBO data logger 
 


