

Perceptions of computer programming students on

interactive environments for teaching Object-Oriented

concepts using Java

by

PATRICK MWANSA

Thesis submitted in partial fulfilment of the requirements for the degree

Master of Technology: Business Information Systems

in the Faculty of Business and Management Sciences

at the

CAPE PENINSULA UNIVERSITY OF TECHNOLOGY

Supervisor: Dr. Michael Twum-Darko

September 2017

CPUT copyright information

The thesis may not be published either in part (in scholarly, scientific or technical journals), or as

a whole (as a monograph), unless permission has been obtained from the University.

i

DECLARATION

I, Patrick Mwansa, declare that the contents of this thesis represent my own unaided work, and

that the thesis has not previously been submitted for academic examination towards any

qualification. Furthermore, it represents my own opinions and not necessarily those of the Cape

Peninsula University of Technology.

Signed Date

ii

ABSTRACT

The skill of programming necessitates knowing programming tools, problem solving and

effective techniques of program design and implementation. Most students are incapable of fully

understanding and utilising the feature set of Integrated Development Environments (IDEs). The

feature set of certain IDEs comes with a lot of functionalities and students have to spend a lot of

their time studying the features of the IDE without paying much attention to the syntax and

semantics of the programming language.

The main objective of this study was to examine the perceptions of students on interactive

environments for teaching Object-Oriented concepts using the Java programming language in

two integrated development environments. This was done by adopting the ISO 9126 model to

select generic external system quality characteristics and sub-characteristics that might

influence student evaluation of an IDE. The proposed model was applied on NetBeans and

JCreator LE 5.0 as IDEs for teaching Java programming using OOP concepts.

The study adopted a mixed method research approach using interviews and questionnaires. A

single-case study was used for data collection and analysis. The approaches collected data from

two groups of students using either NetBeans or JCreator and who were learning OOP

concepts. The study further looked at the students’ class tests and exam results in an effort to

have an objective overview of how students performed. These groups of students were at two

different campuses of the selected University. Each group had already been exposed to the

Java syntax.

The result from this study was general guidelines to establish an interactive OOP development

environment for teaching and learning of Java programming that enhances OOP

comprehension.

This research study involved human subjects. It was, therefore, a requirement to seek ethics

approval. Additionally, the objects involved were students of a selected University and as such a

consent letter was sought from the University.

Keywords: Object-Oriented Programming, Java, NetBeans, JCreator 5.0, IDE

iii

ACKNOWLEDGEMENTS

I would like to show gratitude to GOD, my creator, for giving me strength, health and life to

soldier on through my studies.

I would sincerely like to thank my supervisor Dr. Michael Twum-Darko for his encouragement

and guidance while working on this thesis. You were not only a supervisor, but an excellent

role model for me. This work would never have been completed without you.

Additionally, I would like to thank, from the bottom of my heart, my wife (Melisa Mulenga),

parents, brothers and sisters, for their support during the journey that marked this work. Their

phone calls and emails have been a valuable source of encouragement and strength–

especially when things were not going so well.

I also acknowledge the financial assistance from Walter Sisulu University. Opinions expressed

in this thesis and the conclusions arrived at are those of the author, and are not necessarily to

be attributed to the Walter Sisulu University and Cape Peninsula University of Technology.

iv

DEDICATION

I dedicate this thesis to my parents Laban Musalula Mwansa (late) and Josephine Kombe

Mwansa.

v

GLOSSARY

Abbreviations and Acronyms

OOP Object-Oriented Programming

CS2 Computer Science Level 2

IDE Integrated development environment

RCP Rich Client Platform

SWT Standard Widget Tool Kit

ISO International Organisation for standards

GUI Graphical User Interface

UI User Interface

OSGI Open Specification Group Initiative

LTK Language Tool Kit

Definition of terms

JFace: The user interface toolkit with classes handling many common UI programming tasks.

ITICSE: A conference that has been held annually since 1996, in late June or early July. It has

been held in many different countries.

Syntax: The structure of statements in a computer language.

Debug: The process of identifying and removing errors from computer hardware or software.

vi

TABLE OF CONTENTS

DECLARATION .. i

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iii

GLOSSARY .. v

Abbreviations and Acronyms ... v

Definition of terms .. v

TABLE OF CONTENTS .. vi

LIST OF FIGURES .. xii

LIST OF TABLES ... xiv

CHAPTER One : INTRODUCTION .. 1-1

1.1 Introduction ... 1-1

1.2 Background .. 1-2

1.3 Problem Statement .. 1-4

1.3.1 Introduction.. 1-4

1.3.2 Research objective ... 1-4

1.3.3 Research questions .. 1-5

1.4 Research Methodology .. 1-5

1.4.1 Introduction.. 1-5

1.4.2 Case study .. 1-6

1.4.3 Unit of analysis ... 1-6

1.5 Delineation of the research.. 1-6

1.6 Research ethics considerations .. 1-7

1.7 Justification and contribution to research ... 1-7

1.8 Overview of the chapters ... 1-8

CHAPTER Two : LITERATURE REVIEW .. 2-9

2.1 Introduction ... 2-9

2.2 Difficulties of learning computer programming .. 2-9

2.3 Object-Oriented paradigm ... 2-10

2.4 Student cognition ... 2-11

2.5 Programming tools ... 2-12

2.6 Integrated Development Environments .. 2-13

vii

Figure 2-1: Eclipse Rich Client Platform (RCP) cloud with various integrated components 2-14

Figure 2-2: Eclipse Platform architecture “bento box” design that partitions tools (IBM, 2006) 2-15

2.6.1 JCreator LE. 5.0 ... 2-15

Figure 2-3: JCreator LE 5.0 “Bento box” Partitioned interface (Xinox Software, 2010) 2-16

2.6.2 NetBeans IDE .. 2-17

Figure 2-4: NetBeans “Bento box” partitioned interface (ORACLE, 2013) 2-17

2.7 ISO 9126 framework .. 2-18

2.8 Problem conceptualisation .. 2-20

Figure 2-7: Teaching and learning OOP concepts ... 2-20

2.9 Summary .. 2-20

Figure 2-8: Research variables and outcome ... 2-21

CHAPTER Three : RESEARCH DESIGN .. 3-22

3.1 Introduction ... 3-22

Figure 3-1: Research Onion (Saunders et al., 2009) ... 3-22

3.2 Research philosophy .. 3-23

Research Methods .. 3-24

3.2.1 Positivist ... 3-25

3.2.2 Interpretive .. 3-25

3.2.3 Critical .. 3-25

3.2.4 Qualitative approach .. 3-26

3.2.5 Quantitative approach ... 3-26

3.2.6 Mixed methods approach .. 3-27

3.3 Research design ... 3-27

3.3.1 Research process .. 3-28

Figure 3-4: The Research Process ... 3-28

3.3.2 Problem statement restated .. 3-28

3.3.3 Research objective restated ... 3-29

3.3.4 Research questions restated .. 3-29

The research design that was used during this research study is illustrated in Figure 3-5. 3-29

3.4 Research strategies .. 3-31

3.4.1 Case study .. 3-32

3.4.2 Case selection ... 3-33

3.4.3 Research population .. 3-33

Table 3-2 shows the target population of selected students. ... 3-33

viii

Table 3-2: Age category and Gender of students (target population) .. 3-34

3.4.4 Unit of analysis ... 3-34

3.4.5 Sampling technique (Purposive) .. 3-35

3.5 Data collection methods .. 3-35

3.6 Data generation ... 3-36

Table 3-3: Quantitative Data-Generation Instruments ... 3-36

Table 3-4: Qualitative Data-Generation Instruments ... 3-36

3.7 Data analysis techniques .. 3-37

3.8 Ethical Considerations .. 3-37

3.9 Summary .. 3-38

CHAPTER Four : ANALYSIS AND DISCUSSION ... 4-39

4.1 Introduction ... 4-39

4.2 Findings .. 4-39

Table 4-1: Research questions ... 4-40

4.3 FINDINGS FOR CAMPUS USING JCreator ... 4-40

4.3.1 Demographics... 4-40

Figure 4-1: Gender .. 4-41

Figure 4-2: Age category .. 4-41

Figure 4-3: Timeframe of programming ... 4-42

Table 4-2: Programming languages used ... 4-42

4.3.2 Understanding object-oriented concepts using JCreator .. 4-43

Figure 4-4: Understanding object-oriented concepts using JCreator .. 4-43

4.3.3 Easiness of JCreator Software .. 4-43

Table 4-3: Student perceptions on JCreator LE 5.0 IDE ... 4-44

4.3.4 Confidence gained using JCreator on the following object-oriented concepts 4-45

Figure 4-5: Confidence gained from using JCreator .. 4-45

4.3.5 Recovering from errors and common mistakes using JCreator 4-45

Figure 4-6: Recovering from error Messages ... 4-46

4.3.6 Recovering when output (animation) is not the movement expected 4-46

Figure 4-7: Recovering when output is not the movement expected .. 4-46

4.3.7 Using JCreator to complete task .. 4-47

Figure 4-8: Completing Tasks in JCreator ... 4-47

4.3.8 Difficult Tasks to accomplish in JCreator .. 4-47

Figure 4-9: Difficult tasks in JCreator ... 4-48

ix

4.3.9 Misconceptions .. 4-48

4.4 Data Analysis and Interpretation: Campus using JCreator .. 4-49

4.4.1 Difficulties of learning Programming ... 4-49

Gender .. 4-49

Figure 4-10: Gender analysis .. 4-50

Age ... 4-50

Figure 4-11: Software easy to use per age and gender .. 4-51

Table 4-4: Software easy to use in relation to timeframe programming 4-52

4.4.2 Object-Oriented concepts: ... 4-52

Figure 4-12: Understanding OOP concepts with JCreator .. 4-52

Figure 4-13: JCreator LE satisfying to use .. 4-54

Figure 4-14: Students will be able to learn all offered with software ... 4-55

Figure 4-15: Contents of menus and toolbars match student needs... 4-56

4.4.3 OOP Misconceptions .. 4-56

4.4.4 Motivation to learn OOP .. 4-56

4.5 Findings for campus using NetBeans ... 4-57

Table 4-5: Research Questions ... 4-57

4.5.1 Demographics... 4-57

Figure 4-16: Gender .. 4-58

Figure 4-17: Age category .. 4-58

Figure 4-18: Timeframe of programming ... 4-59

Table 4-6: Programming languages used ... 4-60

4.5.2 Understanding object-oriented programming concepts using NetBeans 4-60

Figure 4-19: Understanding OOP concepts using NetBeans ... 4-61

4.5.3 Easiness of NetBeans Software .. 4-61

Table 4-7: Student perceptions on NetBeans IDE ... 4-62

4.5.4 Confidence gained using NetBeans on the following object-oriented concepts 4-62

Figure 4-20: Confidence gained from using NetBeans.. 4-63

4.5.5 Recovering from errors and common mistakes using NetBeans 4-63

Figure 4-21: Recovering from system (IDE) messages in NetBeans .. 4-64

4.5.6 Recovering when output is not the movement expected ... 4-64

Figure 4-22: Recovering when output is not expected in NetBeans ... 4-64

4.5.7 Using NetBeans to complete task .. 4-65

Figure 4-23: Completing tasks in NetBeans .. 4-65

x

4.5.8 Difficult Tasks to accomplish in JCreator .. 4-65

Figure 4-24: Difficult tasks to complete in NetBeans ... 4-66

4.5.9 Misconceptions .. 4-66

4.5.10 Motivations to learn OOP using Java language .. 4-66

4.6 Data Analysis and Interpretation: Campus using NetBeans .. 4-67

4.6.1 Difficulties of learning programming using NetBeans ... 4-67

Gender .. 4-67

Figure 4-25: Gender analysis .. 4-67

Age ... 4-67

Figure 4-26: Software easy to use per age and gender .. 4-68

Table 4-8: Software easy to use in relation to timeframe programming 4-68

4.6.2 Object-Oriented concepts: ... 4-69

Figure 4-27: Understanding OOP concepts with NetBeans ... 4-69

Figure 4-28: Confidence gained on OOP concepts ... 4-70

Figure 4-29: Satisfying to use .. 4-71

4.6.3 Motivation to learn OOP .. 4-71

4.7 Student results ... 4-72

Figure 4-30: Tests and Exam comparison ... 4-72

Table 4-9: IDE satisfaction ... 4-73

Figure 4-31: Understanding OOP concepts .. 4-74

4.8 Empirical Findings .. 4-75

4.8.1 JCreator and NetBeans: a comparison ... 4-75

Table 4-10: Age category and Gender ... 4-75

4.8.2 Timeframe of programming ... 4-75

Table 4-11: Timeframe of programming .. 4-76

4.8.3 First research sub-question .. 4-76

Understanding OOP Concepts using JCreator and NetBeans .. 4-76

Table 4-12: Understanding OOP concepts JCreator and NetBeans ... 4-77

Coping with Errors ... 4-77

Table 4-13: Coping with Errors .. 4-77

4.8.4 Second research sub-question ... 4-78

Confidence in Learning Object-Oriented Concepts.. 4-78

Table 4-14: Confidence in learning OOP concepts .. 4-79

Student perceptions on JCreator compared to NetBeans .. 4-79

xi

Table 4-15: Students’ perception of JCreator compared to NetBeans ... 4-80

4.8.5 Third research sub-question .. 4-81

Common Mistakes ... 4-81

4.9 Expert review ... 4-82

4.9.1 Understanding object-oriented concepts using NetBeans .. 4-82

Figure 4-32: Understanding OOP concepts from experts ... 4-83

4.9.2 Recovering from errors and common mistakes using IDEs .. 4-83

Table 4-16: Recovering from unexpected output ... 4-83

4.9.3 Difficult tasks to accomplish in JCreator .. 4-83

4.9.4 Comments .. 4-84

4.10 Summary .. 4-84

CHAPTER Five : CONCLUSION .. 5-85

5.1 Introduction ... 5-85

5.2 Overview of the research ... 5-85

5.3 Research contributions .. 5-86

5.3.1 Theoretical Contributions .. 5-86

5.3.2 Methodological Contributions ... 5-86

5.3.3 Practical Contributions ... 5-87

In the next section, the contributions in this research are assessed. .. 5-90

5.3.4 Assessing the contributions ... 5-90

Who cares? Who amongst academia would be interested in this topic? 5-93

5.4 Direction for future research ... 5-93

REFERENCES ... 5-94

APPENDICES ... 5-101

APPENDIX A: Questionnaire NetBeans IDE .. 5-101

Specific questions. Section A (participant’s profile) ... 5-101

None at all ... 5-101

NetBeans .. 5-102

Section A: Specific questions to be completed during and/or after software use 5-102

Section B:Please rate the following statements ... 5-103

Section C:Please complete the following sentences. .. 5-104

APPENDIX B: Questionnaire JCreator IDE .. 5-105

Specific questions. Section A (participant’s profile) ... 5-105

None at all ... 5-105

xii

JCreator LE 5.0 .. 5-106

Section A: Specific questions to be completed during and/or after software use 5-106

Section B: Please rate the following statements .. 5-107

Section C:Please complete the following sentences. .. 5-108

APPENDIX C: Interview schedule student .. 5-109

Participant’s profile .. 5-109

Specific questions. Section A (participant’s profile) ... 5-109

Less than 1year ... 5-109

Questions to be answered by the interviewee .. 5-109

APPENDIX D: Interview schedule expert .. 5-110

Participant’s profile .. 5-110

Specific questions. Section A (participant’s profile) ... 5-110

Less than 1year ... 5-110

Questions to be answered by the interviewee .. 5-110

LIST OF FIGURES

Figure 2-1: Eclipse Rich Client Platform (RCP) cloud with various integrated components 2-14

Figure 2-2: Eclipse Platform architecture “bento box” design that partitions tools (IBM, 2006) 2-15

Figure 2-3: JCreator LE 5.0 “Bento box” Partitioned interface (Xinox Software, 2010) 2-16

Figure 2-4: NetBeans “Bento box” partitioned interface (ORACLE, 2013) 2-17

Figure 2-5: Software quality characteristics .. 2-18

Figure 2-6: Adopted ISO 9126 model ... 2-19

Figure 2-7: Teaching and learning OOP concepts ... 2-20

Figure 3-1: Research Onion (Saunders et al., 2009) ... 3-22

Figure 3-2:Framework for Design (Creswell, 2008) ... 3-24

Figure 3-3: Philosophical assumptions (Myers, 1997) ... 3-24

Figure 3-4: The Research Process ... 3-28

Figure 3-5: The Research Design overview .. 3-30

Figure 4-1: Gender .. 4-41

Figure 4-2: Age category .. 4-41

Figure 4-3: Timeframe of programming ... 4-42

Figure 4-4: Understanding object-oriented concepts using JCreator .. 4-43

Figure 4-5: Confidence gained from using JCreator .. 4-45

Figure 4-6: Recovering from error Messages ... 4-46

xiii

Figure 4-7: Recovering when output is not the movement expected .. 4-46

Figure 4-8: Completing Tasks in JCreator ... 4-47

Figure 4-9: Difficult tasks in JCreator ... 4-48

Figure 4-10: Gender analysis .. 4-50

Figure 4-11: Software easy to use per age and gender .. 4-51

Figure 4-12: Understanding OOP concepts with JCreator .. 4-52

Figure 4-13: JCreator LE satisfying to use .. 4-54

Figure 4-14: Students will be able to learn all offered with software ... 4-55

Figure 4-15: Contents of menus and toolbars match student needs... 4-56

Figure 4-16: Gender .. 4-58

Figure 4-17: Age category .. 4-58

Figure 4-18: Timeframe of programming ... 4-59

Figure 4-19: Understanding OOP concepts using NetBeans ... 4-61

Figure 4-20: Confidence gained from using NetBeans.. 4-63

Figure 4-21: Recovering from system (IDE) messages in NetBeans .. 4-64

Figure 4-22: Recovering when output is not expected in NetBeans ... 4-64

Figure 4-23: Completing tasks in NetBeans .. 4-65

Figure 4-24: Difficult tasks to complete in NetBeans ... 4-66

Figure 4-25: Gender analysis .. 4-67

Figure 4-26: Software easy to use per age and gender .. 4-68

Figure 4-27: Understanding OOP concepts with NetBeans ... 4-69

Figure 4-28: Confidence gained on OOP concepts ... 4-70

Figure 4-29: Satisfying to use .. 4-71

Figure 4-30: Tests and Exam comparison ... 4-72

Figure 4-31: Understanding OOP concepts .. 4-74

Figure 4-32: Understanding OOP concepts from experts ... 4-83

xiv

LIST OF TABLES

Table 3-1: Criteria for user selection in the accessible population .. 3-33

Table 3-2: Age category and Gender of students (target population) .. 3-34

Table 3-3: Quantitative Data-Generation Instruments ... 3-36

Table 3-4: Qualitative Data-Generation Instruments ... 3-36

Table 4-1: Research questions ... 4-40

Table 4-2: Programming languages used ... 4-42

Table 4-3: Student perceptions on JCreator LE 5.0 IDE ... 4-44

Table 4-4: Software easy to use in relation to timeframe programming 4-52

Table 4-5: Research Questions ... 4-57

Table 4-6: Programming languages used ... 4-60

Table 4-7: Student perceptions on NetBeans IDE ... 4-62

Table 4-8: Software easy to use in relation to timeframe programming 4-68

Table 4-9: IDE satisfaction ... 4-73

Table 4-10: Age category and Gender ... 4-75

Table 4-11: Timeframe of programming .. 4-76

Table 4-12: Understanding OOP concepts JCreator and NetBeans ... 4-77

Table 4-13: Coping with Errors .. 4-77

Table 4-14: Confidence in learning OOP concepts .. 4-79

Table 4-15: Students’ perception of JCreator compared to NetBeans ... 4-80

Table 4-16: Recovering from unexpected output ... 4-83

1-1

CHAPTER ONE : INTRODUCTION

1.1 Introduction

Students often face difficulties in using Integrated Development Environments (IDEs). Tasks

relating to program compilation, debugging and execution are not easily accomplished. In

addition, students cannot easily locate and interpret error messages that exist in the program

code. Therefore, the ease of use is not realised and coupled with the non-existence of object-

orientation support. Teaching Object-Oriented programming (OOP) concepts remains a

challenge at many universities. Ala-Mutka (2012) reasons programming as being an art that

includes knowledge of programming tools and languages, problem-solving skills, and also

effective approaches for program design and implementation. A collective approach emphasises

on teaching the basics of a programming language and then builds upon to more complex

strategies of the whole programming process.

Teaching programming using OOP concepts requires a suitable programming environment.

Many IDEs are available with different functionalities and feature sets. An IDE is a graphical user

interface (GUI)-based workbench designed to aid a developer in building software applications

with all the required tools combined in one environment (Techopedia, 2014).

Generally, many academics argue on the features of various OOP languages, but little attention

is given to the programming environments. Today, several programming environments exist for

OOP languages like Java. However, picking the right one that enhances OOP concepts

comprehension for students remains a problem.

This study focused on the use of IDEs specifically developed for teaching and learning OOP in

Java. Two IDEs, namely JCreator LE 5.0 and NetBeans, were used as an intervention to the

current curriculum to observe students’ reactions at the selected University with regard to ease

of use, complexity and many other features that improves OOP understanding. However, many

other IDEs exit that can be used to evaluate OOP comprehension, including other aspects that

can assist or hinder students’ learning of OOP. This research considered only students’

perception of usability on IDEs and how it affects OOP comprehension but did not consider other

factors that might influence usability of IDEs.

1-2

Consideration was given to the adoption of the ISO 9126 model for selecting generic external

system quality characteristics and sub-characteristics appropriate for user evaluation that might

influence the assessment of these programming tools. The motivation for using these two IDEs

for this research was based on the availability as they are open source software and require no

licence implications. Furthermore, the selected University has in previous years been using

these IDEs for teaching and learning of Java programming. The emphasis was on students who

had already been exposed to the syntax of Java programming language and were currently

focusing on OOP concepts. This approach was aimed at establishing an interactive

programming environment to be used in the teaching and learning of OOP concepts in Java.

The selected University is situated in the densely populated and generally under-developed far-

eastern surroundings of South Africa’s Eastern Cape Province. Most students originate from

rural schools with deprived educational resources and are often understaffed with teachers (

Magwashu, 2013). In addition, majority of students come from economically deprived homes,

therefore most of these students have had little or no exposure to a computer in their first-year

enrolment at university.

The study aimed at contributing to the curriculum development on how to teach object-oriented

programming concepts using appropriate tools. This ascertained measures that provide

solutions to the identified problems in the OOP teaching methods.

1.2 Background

More often than not, learning OOP concepts consists of a difficult mental challenge for students.

It is due to this fact that this research was carried out to uncover the hindrances behind the

phenomenon(Tan et al., 2009a). Furthermore, research studies show that most difficulties faced

are those independent of the program paradigm, whereas other difficulties are associated with

the particular attributes of each paradigm (Wahid et al., 2008).

Bennedsen and Caspersen (2007:32-36) claim that false views on failure and pass rates can

have severe repercussions on the quality of introductory programming. This is because a

lecturer with high failure rates tends to accept that “this is just the way programming courses are

since all programming courses have high failure rates” and therefore not take any action to

improve the performance. These false views also grow in the students’ perceptions thus

1-3

affecting their performance, whereas there are actually underlying challenges that need to be

investigated.

The IDEs that are used for coding OOP concepts normally produce syntactical errors that are

both time and effort consuming as they are not easily displayed. Detecting their occurrence is

almost unachievable coupled with execution problems. However, many misconceptions, if not

most of them, have to do with things that are not readily visible, but hidden within the execution-

time (Sirkiä & Sorva, 2012). Murphy et al. (2010) adds that debugging is problematic for novice

programmers and further suggests a pairing of students approach. Nevertheless, if an IDE is not

user friendly, the problem still remains unsolved.

In more instances than one, students often call for the attention of the lecturer to problems that

relate to the IDEs, for example failure to debug or locate output screens of their compilations.

Students are lost in these environments as they are developed for more professional users; they

present an overwhelming set of components and functionalities. The effect is the same as

having no IDE at all (Kölling et al., 2003).

The feature set of certain IDEs come with numerous functionalities and students have to spend

a lot of their time studying the features of the IDE without paying much attention to the syntax

and semantics of the Java language. This impacts on the loss of time to improve teaching and

learning through the use of better tools (Kölling et al., 2003). Kölling et al. (2003) further add that

such environments focus on building the Graphical User Interface (GUIs) which conveys a

misleading picture of programming and object-orientation.

Nienaltowski, Pedroni and Meyer (2008) argue that providing more detailed compiler messages

after program compilation does not seem to help novice programmers’ comprehension, or help

identify the error faster or better. However, integration of various information exchange into an

IDE tool where richer ways for collecting, presenting and interacting with code are available

would be helpful (Hartmann et al., 2010).

Generally, the introductory courses in computer science follow the sequence that introduces

students to programming basics with extra one or two courses teaching data abstraction / data

structures. The first course is referred to as Computer Science 1(CS1) and the second as

Computer Science 2(CS2) using the ACM’s 1978 computing curricula (Hertz, 2010). However,

1-4

this study will be done on the CS2 course consisting of students doing OOP concepts in Java

programming.

This research investigated the use of IDEs in teaching and learning of OOP. A comparative

study was done on two IDEs using generic external system quality characteristics and sub-

characteristics of the ISO 9126 model. The IDEs used include: JCreator LE 5.0 and NetBeans.

1.3 Problem Statement

1.3.1 Introduction

Some students are incapable of fully understanding and utilising the feature set of Integrated

Development Environments (IDEs), thus affecting the comprehension of OOP concepts. The

feedback that results from using these IDEs in response to error messages is also not sufficient

(Nienaltowski et al., 2008). One of the biggest problem for students learning to program is

correcting syntactical errors (Denny et al., 2014). Furthermore, Settle et al. (2014) argue that

motivation is perceived as significant in the usage of programming tools as students are not

highly motivated to relate their existing goals to the tool (IDE) being used.

The activities in teaching computer programming that are proposed for students do not relate to

their life activities and experience (Kaucic & Asic, 2011). Mostly a variety of tools for teaching

students is not utilised. Xinogalos (2009) suggests the usage of multiple tools for teaching

cognitively challenging subjects. Although there are currently formally accepted IDEs as

teaching tools in use, which has facilities for creating, editing, compiling and testing Java

programs, students’ comprehension of OOP concepts still leaves a lot to be desired. The special

characterised difficulties like programming techniques and the language that is used need to be

resolved (Xinogalos, 2012). This is also to counteract the high failure rate that has not changed

significantly overtime so as to meet the industry demands for good programmers (Watson & Li,

2014).Therefore, this research through a perception study produced guidelines that helped to

identify an interactive OOP development environment for teaching and learning of Java

programming.

1.3.2 Research objective

The main objective of this study was to examine the perceptions of students on interactive

environments for teaching Object-Oriented concepts using the Java programming language in

two integrated development environments. Given this objective, an attempt was made to

1-5

develop a relationship between IDEs quality of use and OOP concepts. Furthermore, this led to

a framework that intends to address why this problem has existed. To address this objective the

following questions were devised to tease out the factors likely to influence the election of an

IDE to improve teaching and learning of OOP concepts using Java.

1.3.3 Research questions

The main research question to address the objective of this research is:

Does the quality of use of an IDE enhance the comprehension of object-oriented programming

concepts through teaching and learning of Java programming language?

In order to answer this question, a number of secondary research questions have to be

answered. They include the following:

(a) Does the use of an IDE affect students’ understanding of OOP concepts?

(b) Does the use of a particular IDE increase students’ confidence in learning Object–

Oriented concepts?

(c) What are the most common mistakes and misconceptions students make during program

development in a particular IDE?

1.4 Research Methodology

1.4.1 Introduction

In this study positivist research philosophy was used to determine the impact of quality of use of

IDEs on students’ comprehension of OOP. However, to enrich the data and analysis thereof,

mixed method research approach was adopted as a data collection instrument. While the

research philosophy is phenomenological, the study used interviews on a focus group of

programming students during the research process. A large part of the interviews focused on

the intended students’ use of the selected IDEs using the Java programming language. The

outcome of the interviews was used to develop themes which underpinned the design of the

questionnaire. The survey questionnaire collected data that was used to establish the

relationship of the data set. As secondary data, the study further looked at the students’ class

tests and exam results in an effort to have an objective overview of how students performed.

1-6

1.4.2 Case study

Robson (1993:146) defines a case study as “a strategy for doing research which involves an

empirical investigation of a particular contemporary phenomenon within its real life context using

multiple sources of evidence”. There are different types of case studies. Yin (2003) categorises

case studies as explanatory, exploratory, or descriptive, and furthermore they can be

differentiated between single, holistic case studies and multiple-case studies (Baxter & Jack,

2008). This study, however, followed a single case study approach. This was relevant as data

was collected from two groups of students based on two different campuses as the unit of

analysis. Each group was taught by a different lecturer using the same OOP curriculum in Java

programming language but different IDEs.

1.4.3 Unit of analysis

The analysis was conducted on two groups of students studying Java programming at Computer

Science level 2 (CS2) on two different campuses at the selected University. At this level, students

are already exposed to OOP concepts and the two IDEs namely: JCreator LE 5.0 and NetBeans,

only one IDE was used on either campus. A total population of 55 students with consideration of

demographics were used. One group had a total of 34 students on one campus and 21 students

on the other campus. Most of the selected students before university enrolment originated from

rural schools with deprived educational resources (including use of computer technology) and

are often understaffed with teachers and therefore are technologically disadvantaged.

1.5 Delineation of the research

This research was focused on students’ perception of usability on IDEs and establishing general

guidelines to establish an interactive OOP development environment for teaching and learning of

Java programming that enhances OOP comprehension through quality of use. The guidelines

were based on the respondents’ participation and feedback.

The following limitations of the study should be borne in mind:

(a) This study focused on how students use programming tools to improve the

understanding of OOP concepts;

(b) The study used only the Java programming language; and

(c) JCreator LE 5.0 and NetBeans were used as IDEs.

1-7

1.6 Research ethics considerations

This research study involved human subjects. Therefore, it was a requirement to seek ethics

approval from the Cape Peninsula University of Technology (CPUT) ethics committee.

Additionally, the objects involved are students of a selected University and as such, a consent

letter was sought from the university used as a case study. This process was carefully explained

to the students about what was expected of them so as to solicit their full participation and

contribution.

According to Bazerman and Gino (2012:3), ethics is the behavioural method of the study of

methodical and forecasted behaviour in which individuals make ethical conclusions and

judgments of others that are in conflict with the institution and the assistance of the broader

society. The data provided by the students of the selected University was sanitised (omission of

student names and identification numbers) for confidentiality of respondents’ information. An

agreement was signed between the selected University and the Cape Peninsula University of

Technology that the confidential information can only be for the intended purpose.

Confidentiality: The researcher assured the contributors confidentiality on the information

provided by them.

Right to Privacy: The study valued the privacy of contributors and guaranteed that the

description of the contributor’s performance remains confidential.

Informed Consent: The researcher notified the contributors of the type of research being

conducted and acquired approval from them.

Protection from harm: It was required that due to the type and subject matter of the

questionnaire, no contributor was hurt. The researcher advised descriptively beforehand the

subject matter and type of questionnaire to the contributor.

Honesty with professional colleagues: The researcher did not manufacture data to assist the

results. The research conclusions were projected in a comprehensive and sincere manner.

Dignity: The researcher did not humiliate and mock contributors.

1.7 Justification and contribution to research

Conducting this research brought major contribution to curriculum development for OOP

concepts. The contribution provided informed facts on the following:

(a) The problems students face while using IDEs;

(b) If the IDE “quality of use” has an effect on learning OOP concepts; and

(c) Misconceptions and mistakes students make when using the selected IDEs.

1-8

1.8 Overview of the chapters

This thesis is presented in the following chapters. Chapter 2 consists of the literature review on

computer programming students’ difficulties, Object-Oriented paradigm, student cognition and

integrated development environments. Chapter 3 describes the research methodology,

consisting of the rational of the method and the actual method. Chapter 4 presents the results

analysis and major findings of this research. Conclusion and recommendations for future

research study are presented in chapter 5.

2-9

CHAPTER TWO : LITERATURE REVIEW

2.1 Introduction

In the previous chapter, the fundamental reasons and the objectives of this research were

delineated. The problem statement and the main research questions were also discussed. To

recapitulate, the study examines the teaching and learning of OOP concepts in Java

programming language using two software programming environments: JCreator LE 5.0 and

NetBeans. The focus is to evaluate students’ perception of usability on IDEs through quality of

use using the ISO 9126 model. This in turn determines which environment best influences

student interaction and enhances the comprehension of OOP concepts. The chapter further

narrates on programming difficulties, Object-Oriented paradigm, student cognition and integrated

development environments with due consideration given to the two selected IDEs.

The aim of this chapter is to provide an overview of the concepts in academic literature

concerning the teaching and learning of object-oriented programming including the tools used.

This is presented by topics to help in understanding and interpreting how the problems identified

in the teaching and learning of OOP at a selected University is to be addressed by this thesis.

2.2 Difficulties of learning computer programming

According to Lister et al. (2004), students often do not know how to program at the conclusion of

their introductory programming courses as reported in the study by the ITiCSE 2001 working

group (“the McCracken Group”). This is because of their inability to problem-solve. A good

explanation for this phenomenon is that students lack the ability to describe a problem which can

be decomposed into sub-problems, implement them and then put them back together as a

finished solution. Whalley et al. (2006) agree by stating that students lack the knowledge of

basic programming constructs; however, those who are familiar with the constructs lack the

ability to problem solve. On the contrary, Kinnunen and Malmi (2006) claim that students do not

dedicate much time to programming and they mostly lack motivation. Furthermore, time

constraints and class size at tertiary institutions result in students not receiving feedback or

individual explanations and attention (Rogerson & Scott, 2010).

2-10

Experience has shown that students are faced with challenges when using programming

languages to write computer programs that solve problems. This is a serious worry because of

the high failure levels which in turn demotivates students. Therefore, traditional teaching

approaches and learning methods are not appropriate for many students. In addition, Gomes

and Mendes (2007a) postulate that since teaching is not personalised, the classroom

environment needs to provide permanent student supervision. This can be achieved by allowing

a tutor to monitor students evolution, clarify doubts and propose problems and activities. Tan et

al. (2009b), however, describe students as being poor in mastering the skill because they start

learning programming in single context before learning structure and style which leads to a

negative programming habit.

Considering the observation of Tan et al. (2009b), one can conclude that a systematic approach

which follows defined logical steps and trend can easily reinforce comprehension which this

research intends to determine.

In the next section, the Object-Oriented paradigm is reviewed in order to understand the main

aspect that leads to students having difficulties with learning computer programming. The

Object-Oriented paradigm is one of the key computer programming features that students find

difficult to easily comprehend.

2.3 Object-Oriented paradigm

OOP concepts are of paramount importance in the programming arena. Almost all universities

globally offering computer science or Information Technology have programmes running with

modules that include OOP concepts. However, students’ understanding of the concepts has

been the main obstacle. Besides working in a particular programming language, many aspects

must be considered whether focusing on the syntax or the underlying paradigm (Börstler et al.,

2003). In contrast to these views, Lahtinen et al. (2005) argue that students tend to have

problems in various aspects of program construction, thus it is important for students to do

programming by themselves while they are learning. This should include carefully designed

materials that lecturers can use to guide students’ knowledge and skill construction. However,

learning to program is related to the students’ perception of what establishes program

correctness (Stamouli & Huggard, 2006).

2-11

On the other hand, Eckerdal et al. (2005) claim that students need to learn fundamental abstract

concepts and reach a certain level of understanding of these concepts for them to appreciate the

Object-Oriented paradigm. Eckerdal (2009) further adds that students’ learning of concepts is

reached at different levels of granularity. However, Sorva (2013) suggests that unproductive

behaviour and dysfunctional programs are as a result of incorrect and incomplete understanding

of programming concepts.

When it comes to the topic of OOP concepts, this study postulates that independent learning will

develop the skill of programming; however, most students lack self-motivation. Whereas some

are convinced that students can learn and improve while they do it themselves, this study

maintains that the environment in which students program in has adequate influence.

The next section gives an insight into students’ cognitive skills. Cognitive skills are required as

this helps students’ ability to preserve information. The next section is relevant in order to give a

picture of students’ ability for OOP concepts retention.

2.4 Student cognition

Or-Bach and Lavy (2004) suggest that programming OOP concepts is a complex cognitive

activity associated with a programming paradigm and hence it is not an isolated technical skill.

Furthermore, it constructs a cognitive task analysis classification which deals with abstraction

and inheritance, and further relates abstraction to Object-Oriented programming while at the

same time determining the higher order cognitive skill which students find hard to conceptualise.

In contrast, Vihavainen et al. (2011) argue that learning programming is efficient when beginners

learn from people who already know the skill, thus cognitive apprenticeship focuses on learning

by doing that encourages maximising coaching and guidance to students. On the other hand,

Caspersen and Bennedsen (2007) state that optimisation in learning is a question of balancing

and not maximising nor minimising the cognitive load.

According to Gaspar and Langevin (2012), educational research studies often have interventions

distinguished by whether they affect pedagogy of content or pedagogy of instruction. The former

is discussed as focusing on what topics are being taught, in what order, and how they link to one

another, for example objects-first versus fundamentals-first. The latter is more concerned with

how these topics are taught, for instance active learning versus traditional learning. Alternatively,

Segedy et al. (2013) mention a systematic approach that is used to interpret and evaluate the

2-12

learner behaviour in open-ended learning environments using a model-driven assessment. The

model uses cognitive and metacognitive processes important for completing an open-ended

learning task. It shows that students employ several learning behaviours relating to solution

construction and evaluation.

After looking at the learning behaviour, it is important to also discuss the programming tools. The

next section delves into programming tools.

2.5 Programming tools

Many novice programmers interpret programming tools as error free and capable of doing

everything. This is a misconception that tends to be detrimental as learners perceive any fallible

and malfunctioning of such tools as their personal failure (Lee & Ko, 2011). This is because the

first line of code beginners write often leads to unexpected behaviours, such as syntax errors,

runtime errors, or program output that the learner did not intend. In addition, Storey (2005)

suggests using adaptive interfaces which may perhaps be tailored to suit different kind of users

and tasks. This is because software tools normally have many features which may be

overwhelming not only to novice users, but also to expert users. On the other hand, Kasurinen et

al. (2008) claim that students often lose interest in programming because complex models and

structures have to be learned before anything visually impressive can be created.

Generally, lecturing object-oriented programming has mainly focused on showing the students

the syntax and semantics of the language. Literature shows that many tools have been

proposed to help address programming learning difficulties. Many of those tools use animation

and simulation techniques, trying to take advantage of the human visual system potential.

Inherent dynamic concepts are better understood using animation as compared to static formats

(Gomes & Mendes, 2007b). Although most students are visual learners, lecturers are still

inclined to present information verbally. Visual aids in the classroom improve learning by up to

400 percent and demonstrated by fact that 65 percent of the population are visual learners

(Kydiam, 2012).

Carlisle (2009) argues that a large body of evidence has supported the idea that students

understand programming concepts better when given a visual representation. This brought

about the development of a visual programming environment for introducing object-oriented

programming called RAPTOR.

2-13

Analysing Carlisle’s view, one therefore poses the question: what then enhances students’

understanding of OOP concepts?

In answering this question, van Haaster and Hagan (2004) drew the following conclusion:

“The underlying objective of educational software visualisation tools is to support student

understanding of the mechanisms of software development. Visualisations can help students in

numerous ways; for example, visual debuggers can help students to reconcile the cause and

effect relationship between the source code that they write and the resulting output” (Van

Haaster & Hagan, 2004: 455–470).

Although dynamic and interactive external representations have the potential to improve

learning, they can also impede learning as they put pressure on the learner to consistently

interpret various visualisation dynamics (Bodemer et al., 2004).

Most research has shown the need for visualisations in the teaching and learning of object-

oriented programming, though the distinction between the environment and the execution of a

program must be clarified (Ragonis & Ben-Ari, 2005). But the question remains, does it improve

the conceptualisation of object-oriented concepts?

In the next section, an in-depth description of IDEs is provided. This is to understand what IDEs

are and how they function, including the internal system characteristic and how it responds to

human interactions. This is important to understand before applying user evaluation.

2.6 Integrated Development Environments

An integrated development environment (IDE) is a packaged application software program that

has a programming environment embracing a code editor, compiler, debugger and a graphical

user interface (GUI) builder (Rouse, 2007). Olivero et al. (2011) claim that IDEs are tools that

provide means to construct programs. The authors further add that IDEs create a platform for

program comprehension of which certain IDEs generate an impediment to program

understanding as they treat software elements as text, thus creating counter productiveness in

program comprehension. IDEs are generally meant to provide an environment that makes

program development easier in one integrated software. In contrast, DeLine and Rowan (2010)

argue that the “bento box” design that partitions tools in distinct areas makes programmers

disoriented in locating information that exist in different areas and putting it together. This also

2-14

causes interruption that requires extensive time and effort for a programmer to recover from

(Parnin & Rugaber, 2012).

Figures 2-1, 2-2, 2-3 and 2-4 are relevant to this study to give us an understanding of various

components that exists in IDEs. This examines the literature on the functioning and how IDE

interfaces are generated. The abbreviations in the diagrams are provided in the glossary section

of this thesis.

“Eclipse Software Development Kit (SDK) which is both the leading Java™ integrated

development environment (IDE) and the single best tool available for building products based on

the Eclipse Platform” (IBM, 2006) is shown in Figure 2-1 as a cloud depicting the various

components of Eclipse IDE.

Figure 2-1: Eclipse Rich Client Platform (RCP) cloud with various integrated components

 (IBM, 2006)

Figure 2-2 shows the Eclipse platform with seamlessly-integrated tools that can be plugged in

and be part of the integrated environment.

2-15

Figure 2-2: Eclipse Platform architecture “bento box” design that partitions tools (IBM, 2006)

Despite all the complications that come with the seamlessly-integrated tools, the partitioned

design, however, offers various advantages that assist more especially experienced

programmers to do their work. Salman (2010) articulates some advantages as follows:

 Less time and effort: The tools and features help you to organise resources, prevent

mistakes and provides short cuts accordingly.

 Enforce project or company standards: IDEs allow programmers within a certain

company to adhere to certain standards in the way they do things. Standards are

enforced by templates and predefined libraries that are shared by programmers working

on the same team.

 Project management: The IDEs encompass features that automate required tasks like

documentation which is very helpful for entry programmers because of the visual

presentation of resources that clearly outline the project and make easier management of

the various tasks in the project.

2.6.1 JCreator LE. 5.0

In this case study, JCreator is one the IDEs to be assessed for quality of use. JCreator is a

powerful IDE developed by Xinox Software Company. Unlike most IDEs, JCreator has two types

of tools that can be configured. The first type is the Java Development Kit (JDK) tools. The user

can use JDK tools to compile, debug, and run the project (Xinox Software, 2010). JCreator, like

2-16

any other IDE, also comes with a partitioned design with different tools in separate portions. In

this IDE package, the following feature set includes:

 Advanced editor with code-folding;

 Popup for code completion;

 Popup for code snippets;

 Popup for code identifiers;

 Source code navigation;

 JSP, Ant and CVS support; and

 Feature rich Debugger.

The diagram in Figure 2-3 shows the JCreator interface that is used in this study.

Figure 2-3: JCreator LE 5.0 “Bento box” Partitioned interface (Xinox Software, 2010)

2-17

2.6.2 NetBeans IDE

This study also looks at NetBeans IDE which is an integrated development environment

available for Windows, Mac, Linux, and Solaris. The NetBeans project consists of an open-

source IDE and an application platform that enable developers to rapidly create web, enterprise,

desktop and mobile applications using the Java platform (ORACLE, 2013). Apart from its rich

user interface, NetBeans allows:

 Best Support for Latest Java Technologies;

 Fast and Smart Code Editing;

 Easy and Efficient Project Management;

 Rapid User Interface Development; and

 Write Bug Free Code.

The diagram in Figure 2-4 shows the NetBeans interface that is used in this study.

Figure 2-4: NetBeans “Bento box” partitioned interface (ORACLE, 2013)

2-18

Section 2.7 gives a description of the ISO 9126 software quality model. This model is significant

for this study on account of its ability to be adopted and used for a specific software quality

evaluation because of its generic nature.

2.7 ISO 9126 framework

Software quality models are necessary for evaluation and setting goals for software products

quality (Zeiss et al., 2007). The international ISO/IEC standard 9126 defines a general quality

model for software products. Padayachee et al. (2010a) claim that “Quality of use” is the user’s

view of the quality of software operating in an environment, and is measured by the results of

using the software in the environment rather than properties of the software itself.

Although the ISO 9126 has been criticised as difficult to be made operational and non-practical

(Kanellopoulos et al., 2010), it nevertheless fits as a model that can be customised because of

its generic nature and therefore meets the intended evaluation for software quality for this study

on IDEs.

The ISO 9126 model is defined by six software quality characteristics: functionality, reliability,

effectiveness, usability, maintainability, portability and 22 sub-characteristics. However, to test

student usage of IDEs and appreciation of OOP concepts, only four characteristics and seven

sub-characteristics were tested on the two IDEs. The diagram in Figure 2-5 shows the ISO 9126

model and Figure 2-6 shows the adopted ISO 9126 model for this study.

Accuracy

Suitability

Interoperability

Compliance

Security

Maturity

Fault -

tolerance

Recoverability

Understand-

ability

Learnability

Operability

Time-

behaviour

Resource-

utilisation

Analysability

Changeability

Stability

Testability

Adaptability

Installability

Co-existance

Conformance

Replaceability

Functionality Reliability Usability Efficiency Maintainability Portability

Software

Quality

 Figure 2-5: Software quality characteristics
(Bevan,1999 as cited by Padayachee et al., 2010b)

2-19

The identified sub-characteristics were assessed on two IDEs and a comparative analysis was

done to achieve the best interactive IDE. The other characteristics and sub-characteristics have

been omitted in the adopted model as they do not fit user external quality evaluation for this

study. Sub-characteristics like suitability aims at identifying if the software features are fit for use

to encourage comprehension, learnability and operability. Time is an important factor in software

use therefore assessing its response time plays a major role in software quality of use.

External and Internal software qualities are differentiated by the ISO 9126 and their related

metrics. Internal qualities concern the intermediate deliverables such as source code. In contrast

external qualities concern the behaviour of the computer system of which software is part of it

(Seffah et al., 2006). In this sense, metric of measurement such as reliability, efficiency, usability

and functionality play a vital role in evaluating software use. On the other hand Alrawashdeh et

al. (2013) lists a number of scholars that have used the ISO 9126 model metrics, the e-book

system (Fahmy et al.,2012), website eLearning systems (Padayachee et al.,2010), computer

based systems (Valenti et al.,2002) and government systems (Quirchmayr et al.,2007), claiming

the generic nature of the ISO 9126 allows easy measurement of users perceptions using

selected metrics that suits the objective of measurement. Hence using IDEs will require usability,

functionality, efficiency and reliability as applicable metrics.

Figure 2-6: Adopted ISO 9126 model

Suitability

Fault tolerance

Recoverability

Understand- ability

Learnability

Operability

Time behaviour

Functionality Reliability Usability Efficiency

Software

Quality

2-20

2.8 Problem conceptualisation

Given the literature surveyed thus far, the figure below illustrates how the research perceived the

problem.

Figure 2-7: Teaching and learning OOP concepts

Figure 2-7 is as a result of the analysis of the ISO 9126 framework and the various literatures

reviewed on OOP concepts and student cognition while learning to program. Therefore, the

context of the study involved analysing students’ cognition and how it affects their behaviour.

Student behaviour also has a connection with the system “quality of use” and its response to

student interactions or usage of the IDE. In addition, the OOP misconceptions faced by students

and how OOP is interpreted in the IDEs were analysed. System (IDE) characteristics features

play a major role in the evaluation of student (user) satisfaction. Figure 2-7 has, however, not

been covered in various previous studies analysed in this literature. It nevertheless gives the

basis of this study to establish guidelines of how quality of use influence OOP comprehension.

2.9 Summary

This chapter set out to review current literature on the nature of teaching and learning of object-

oriented programming. This purpose was achieved by first reviewing the difficulties of learning

computer programming, which was further supported by a review of Object-Oriented paradigm

and student cognition with regard to their behaviour and conceptualisation of OOP concepts.

2-21

Secondly, the various aspects associated with programming tools and specific IDEs literature

was reviewed. Lastly, a discussion on ISO 9126 as framework led to the development of a

problem conceptualisation diagram called Teaching and Learning of OOP concepts on which

this research is focused. This led to the identification of the research variables marked in Figure

2-8 with V, W, X, Y. “W” will therefore evaluate all the research variables including IDE quality of

use, student behaviour and OOP concepts as shown in the diagram below.

Figure 2-8: Research variables and outcome

In the next chapter (Chapter 3) a discussion of the research approach for this study is made; in

addition, the selected University as a case study is further explained in depth.

3-22

CHAPTER THREE : RESEARCH DESIGN

3.1 Introduction

The previous chapter reviewed the relevant literature on teaching and learning of object-oriented

programming and IDEs. It also presented the ISO 9126 model as an appropriate framework for

evaluating perceptions of computer programming students on IDEs for teaching OOP concepts.

This chapter describes the research design and methodology used in this study. The

methodology was designed to answer the research questions and address the objectives of the

study, as outlined in Chapter 1. The chapter apprehends and defines the context of the research

philosophy, research design, research approach, data collection methods and data analysis

techniques to ensure the reliability and validity of the research. Finally, data triangulation as

used in the study is discussed. The research methodology is outlined in Figure 3-1 of the

research onion.

Figure 3-1: Research Onion (Saunders et al., 2009)

3-23

The parts of the research methodology are shown in different layers of the research onion in

Figure 3-1 and will be elaborated further in the applicable sections of this chapter. The research

onion illustrates the phases of the research process that was conducted in this study. Detaching

each layer of the onion will reveal each part of the research process that was undertaken. The

research onion has been engulfed with the research philosophy as the outer layer; this carries

high relevance to this research. Flowers (2009a) articulates the importance of allowing various

research paradigms and issues of ontology and epistemology as they refer to perceptions,

beliefs, assumptions and nature of reality and truth to research of this kind.

3.2 Research philosophy

Information Systems as a field has utilised a wide range of research strategies with different

fundamental philosophical paradigms to make people understand the use of Information

Systems (Oates, 2005). Oates (2005) further defines a paradigm as a set of shared assumptions

or ways of thinking about some aspect of the world, with different philosophical paradigms

having different views about the nature of the world (ontology) and the ways we acquire

knowledge (epistemology). On the other hand, Flowers (2009b) stresses the importance of

considering different research paradigms as they describe perceptions, beliefs, assumptions and

the nature of reality and truth (knowledge of that reality), this can influence the way in which

research is carried out from design through to conclusion. In addition, Granell (2014) indicates

research philosophy as guiding the researcher in the following aspects:

 Helps the researcher to refine and specify the research methods to be used in a research

project, that is, to clarify the overall research strategy to be used. This would include the

type of evidence gathered and its origin, the way in which such evidence is interpreted,

and how it helps to answer the research questions posed.

 Enables and assists the researcher to evaluate different methodologies and methods and

avoid inappropriate use of research methods and unnecessary work by identifying the

limitations of particular approaches at an early stage.

 Helps the researcher to be creative and innovative in either selection or adaptation of

methods that were previously outside his or her experience.

According to Creswell (2008), philosophical ideas still influence the practice of research and

need to be identified. Creswell (2008) further suggests that researchers need to advocate the

3-24

philosophical ideas explicitly by the interconnections of worldviews, strategies of inquiry and

research methods as shown in Figure 3-2.

Philosophical worldviews Selected strategies of inquiry

 Research Designs

 Qualitative
 Quantitative
 Mixed methods

Research Methods

The research onion model by Saunders et al. (2009) has identified ten philosophies. However,

Oates (2005) and Creswell (2009) mention three philosophies as the most important for

research in Information Systems namely: Positivism, Interpretivism and Critical research. The

diagram in Figure 3-3 illustrates three philosophical assumptions.

Postpositive
Social construction
Advocacy/participatory
Pragmatic

Qualitative strategies (e.g., ethnography)

Quantitative strategies (e.g., experiments)

Mixed methods strategies (e.g., sequential)

Questions
Data collection
Data analysis
Interpretation
Write-up
Validation

Influences/Guides

Qualitative Research

Positivist Critical Interpretive

Figure 3-2:Framework for Design (Creswell, 2008)

Figure 3-3: Philosophical assumptions (Myers, 1997)

3-25

3.2.1 Positivist

Gray (2013) defines Positivism as a philosophy which argues that reality exists external to the

researcher and must be investigated through the rigorous process of scientific inquiry and is

closely linked to Objectivism. In principle, Positivism argues the following:

 Reality consists of what is available to the senses – that is, what can be seen, smelt,

touched, etc.

 Inquiry should be based upon scientific observation (as opposed to philosophical

speculation), and therefore on empirical inquiry.

 The natural and human sciences share common logical and methodological

principles, dealing with facts and not with values.

This will, however, provide generalisation of results to a larger degree and due to its quantitative

nature, future predictions can be made. According to Johnson and Onwuegbuzie (2004:14-26),

Positivism is “useful for obtaining data that allow quantitative predictions to be made”. In

contrast, Cohen et al. (2007) add that it fails to take account of our unique ability to interpret our

experiences and represent them to others.

3.2.2 Interpretive

Interpretivism is closely linked to constructivism. Interpretivism asserts that natural reality (and

the laws of science) and social reality are different and therefore require different kinds of

methods (Gray, 2013). On the other hand, Oates (2005) describes interpretive research as being

concerned with understanding the social context of an information system: the social processes

by which it is developed and construed by people and through which it influences and is

influenced by the social settings. Constructivism often addresses the interaction among

individuals and focuses on the specific context in which people live and work in order to

understand the historical and cultural settings of the participants (Creswell, 2009). In theoretical

terms, Interpretivism sees the world as too complex to be reduced to a set of observable ‘laws’.

Generalisation is less important than understanding the real workings behind ‘reality’.

3.2.3 Critical

According to Porter (2003), the essence of critical theory lies in its interest in the ways people

think and act and how social circumstances influence those thoughts and actions.

3-26

In this study Positivism was used to identify a measurable quantity of students that either agree

or disagree on the satisfaction of using IDEs. This could not have been achieved by an

interpretive approach alone as it only focuses on the perceptions of how students interpret and

feel about the quality of use. However, it was used to support positivism approach by adding on

how students feel when using the selected IDEs. Nonetheless, Positivism and Interpretivism are

the most common paradigms used (Altinay & Paraskevas, 2008; Dominick, 2006; Oates, 2005).

The integration of these two paradigms provided a broader context to the students’ perceptions

and a better understanding of the different angles in which the research problem was handled.

The study focused on a detailed understanding of a specific environment and groups of the

selected University and may look to offer generalisable knowledge to other similar settings.

The bases for this study are the underlying theoretical paradigms which influence the reasoning

and approach taken in this study. The research paradigm is also an indication of which school of

thought (principles) the study is aligned to. Quite a number of philosophical paradigms exist; but

for the purposes of this study the philosophical framework was narrowed down to the choice of

Positivism supported by Interpretivism by using a qualitative approach through interviews on

focus groups..

3.2.4 Qualitative approach

Flick (2007) defines and identifies qualitative approach as an intention to approach the world ‘out

there’ (not in the specialised research settings or laboratories) and to understand, describe and

sometimes explain social phenomena in a number of ways by:

 Analysing experiences of individuals or groups.

 Analysing interactions and communication in the making which can be done based on

observing or recording practices of interacting and communicating and analysing the

material.

 Analysing documents (text, images, film or music).

3.2.5 Quantitative approach

Quantitative approach is the process of testing objective theories by examining the relationship

between variables where these variables can be measured, typically on instruments, so that

numbered data can be analysed using statistical procedures (Creswell, 2008). Oates (2005) on

3-27

the other hand, defines quantitative data as evidence based on numbers which is generated by

experiments and surveys.

3.2.6 Mixed methods approach

In this type of research, the investigator collected and analysed data, integrated the findings, and

drew inferences using both quantitative and qualitative approaches in a single study or program

of inquiry (Tashakkori & Crewwell, 2007 as cited in Teddlie, 2009).

In this study, mixed methods research was used to achieve the following as alluded to by

Creswell (2012):

 When both quantitative and qualitative data, together, provide a better

understanding of your research problem than either type by itself.

 When one type of research (qualitative or quantitative) is not enough to address the

research problem or answer the research questions.

 To incorporate a qualitative component into an otherwise quantitative study.

 To build from one phase of a study to another.

Establishing guidelines for an interactive environment that enhances OOP concepts

comprehension with quantitative data only could not have provided sufficient data to incorporate

the students and experts views. Therefore, qualitative data was needed to provide more

information regarding students’ motivation towards learning OOP and capture all the research

variables that were identified through problem conceptualisation.

3.3 Research design

Thyer (1993) defines traditional research design as a blueprint or detailed plan for how a

research study is to be completed by operationalising variables so that they can be measured,

selecting a sample of interest to study, collecting data to be used as a basis for testing

hypothesis, and analysing the results. In addition, Kerlinger (1986) delineates a research design

as a plan, structure and strategy of investigation conceived in order to obtain answers to

research questions and problems. Therefore, through a research design one can attain the

following functions:

 Conceptualise an operational plan to undertake the various procedures and tasks

required to complete your study (Kumar, 2005).

3-28

 Ensure that these procedures are adequate to obtain valid, objective and accurate

answers to the research questions (Kerlinger, 1986).

3.3.1 Research process

The research process outlines the summary of the various stages undertaken to achieve the

objectives. The diagram in Figure 3-4 depicts the process followed for this study.

Figure 3-4: The Research Process

The research design in this study is developed, based on the following problem statement,

objectives and research questions:

3.3.2 Problem statement restated

Some students are incapable of fully understanding and utilising the feature set of Integrated

Development Environments (IDEs), thus affecting the comprehension of OOP concepts. The

feedback that results from using these IDEs in response to error messages is also not sufficient

(Nienaltowski et al., 2008). One of the biggest problems for students learning to program is

syntactical errors (Denny et al., 2014). On the other hand, Settle et al. (2014) argue motivation

3-29

as having perceived significance in the usage of programming tools as students are not highly

motivated to relate their existing goals to the tool (IDE) being used. If this is not addressed,

universities will continue to produce programmers who are not fully capable of perfectly

developing and deploying a software system that solves problems.

3.3.3 Research objective restated

The main objective of this study was to examine the perceptions of students on interactive

environments for teaching Object-Oriented concepts using the Java programming language in

two integrated development environments. Given this objective, an attempt was made to

develop a relationship between IDEs and OOP concepts. Furthermore, this led to a framework

that will address why this problem exists. To address this objective, the following questions were

devised to tease out the factors likely to influence the selection of an IDE to improve teaching

and learning of OOP concepts using Java.

3.3.4 Research questions restated

The main research question that addressed the objective of this research is:

Does the quality of use of an IDE enhance the comprehension of object-oriented programming

concepts through teaching and learning of Java programming language?

In order to answer this question, a number of sub research questions have to be answered.

They included the following:

- Does the use of an IDE affect students’ understanding of OOP concepts?

- Does the use of a particular IDE increase students’ confidence in learning Object–Oriented

concepts?

- What are the most common mistakes and misconceptions students make during program

development in a particular IDE?

The research design that was used during this research study is illustrated in Figure 3-5.

3-30

The research study started with an investigation into teaching and learning of object-oriented

concepts that helped define its background. It was aimed at identifying the existing challenges

that students encounter with respect to utilising the IDEs, and particularly OOP comprehension.

This helped to identify and define the research questions (cf. Chapter 1, Section 1.3.3) which

were answered after the completion of this study. This was presented as part of the research

proposal for this study.

The aim of the second phase was to perform the literature review to provide a clear

understanding of the problems students face when learning computer programming. It also

provided definitions and discussion on the object-oriented paradigm with due consideration of

students’ cognition while learning to program focusing on the selected University. This phase

also aimed at identifying various programming tools and their role in assisting OOP

comprehension. In addition, an ISO 9126 framework was discussed which led to the adoption of

external sub-characteristics to be used in the testing of students’ perceptions of usability of

selected IDEs.

User Evaluation

-Questionnaire
- Interview

Heuristic
Evaluation

-Questionnaire
-Interview

IDE

selection

Participants

selection

ISO 9126 Framework Application

Stage 2

Data Collection Design

(Case study)

Stage 1

Sample Design

(Case study)

Research design

(Triangulation)

Figure 3-5: The Research Design overview

3-31

After conducting the literature review, the next step concentrated on:

 Developing a problem conceptualisation framework as perceived by this study to identify

the research variables involved and also to guide this research towards developing

general guidelines to assist on selecting which IDE enhance OOP comprehension;

 Identifying and selecting the two applications (IDEs) that meet the criteria set by the

researcher, and

 Identifying the participants to evaluate the selected applications. Similar to the

application, the participants had to meet the criteria set by the researcher. The

participants were separated into two groups: the users and the experts (students and

Java lecturers).

The third phase concentrated on the development of the case study in the form of

testing students’ perception of usability in using the selected IDEs and how it relates to OOP

comprehension, whereby students evaluations and expert reviews were obtained. After

completing the students’ perception of usability evaluations, phase four of this research aimed at

analysing and interpreting the data collected from both students’ perception of usability

evaluations and expert reviews, and the study further looked at the students’ class tests and

exam results in an effort to have an objective overview of how students performed.

These interpretations were used in the final phase (phase five) of this research study, which

aimed at recommending general guidelines to establish an interactive OOP development

environment for teaching and learning of Java programming that enhances OOP comprehension

through quality of use.

3.4 Research strategies

Saunders et al. (2009:600) define research strategy as “the general plan of how the researcher

will go about answering the research questions”. On the other hand, Bryman (2012:22) identified

research strategy as “a general orientation to the conduct of research”. There are various

different research strategies with distinctive characteristics available from which a researcher

may select. In Saunders et al.'s (2009) research onion survey, case study, experiment,

grounded theory, action research and ethnography are listed. From these various strategies, this

research sought to adopt the case study research strategy as the appropriate strategy for

research. The following sections briefly describe the case study strategy and justify its

preference as opposed to other strategies.

3-32

3.4.1 Case study

According to Robson (1993:146), a case study is “A strategy for doing research which involves an

empirical investigation of a particular contemporary phenomenon within its real-life context using

multiple sources of evidence”. Case studies can be done in different types. Yin (2003) categorises

case studies as explanatory, exploratory, or descriptive and furthermore they can be differentiated

between single, holistic case studies and multiple-case studies (Baxter & Jack, 2008).

The three case studies as categorised by Yin (2003) are:

 Exploratory study: This is used to define the questions or hypotheses to be used

in the subsequent study.

 Descriptive study: This leads to a detailed analysis of a particular phenomenon

and its context.

 Explanatory study: This explains why events happened as they did, or why

particular outcomes occurred.

Whether exploratory, descriptive or explanatory, a case study can be a single case or multiple

cases (Oates, 2006:144; Yin, 2003).

 Single case: This examines one case only.

 Multiple cases: These examine more than one case. The researcher must look at

any similarities between the cases.

The following indicate a case study research approach process as specified by Simons (2009)

and Y in(2003):

 To determine and define the research questions;

 To select the cases;

 To perform the sampling;

 Selection of data collection and analysis techniques;

 Prepare and collect data; and

 Evaluate and analyse the data collected.

Given the above, the research design of this case study followed these steps. The first step

(identifying research questions) was tackled in Section 3.3.4. The remaining steps are discussed

next.

3-33

3.4.2 Case selection

In this research, a single case is investigated with the intention of performing a descriptive study.

Ryan and Filene (2012:1) define a single case as “an evaluation method that can be used to

rigorously test the success of an intervention or treatment on a particular case (i.e., a person,

school, and community) and to also provide evidence about the general effectiveness of an

intervention using a relatively small sample size”. This step involves the choice of IDE tools to

evaluate, sample and select the subject participants.

3.4.3 Research population

Salkind (2012) defines population as the total of all the individuals who have certain

characteristics that are of interest to a researcher. For the purpose of this research, the

researcher saw the participants as consisting of three groups: the NetBeans IDE application

users, JCreator IDE application users, and the usability experts for both IDE applications.

The target population in this case was typical students who are learning to program in Java at a

selected University. However, for the purpose of this study it was appropriate to target learners

doing Java programming at second year Computer Science (CS2) as the accessible population.

The following criteria were used to select them:

Table 3-1: Criteria for user selection in the accessible population

 They had to have been already exposed to the Java syntax at CS1 level;

 They had to have usability knowledge of either NetBeans or JCreator IDE;

 Expert reviewers must have been teaching Java programming; and

 Expert reviewers must have used several IDEs during their experience as Java

programming lecturers.

Table 3-2 shows the target population of selected students.

3-34

Table 3-2: Age category and Gender of students (target population)

Age Category JCreator NetBeans

 Male Female Male Female

18 – 21 5 7 1 0

22 - 25 9 10 12 3

26 - 30 2 1 3 2

Total 16 18 16 5

The selected students performed a crucial part of this study to determine whether IDE quality of

use affects OOP concepts comprehension. The responses were used to determine the

guidelines for an interactive environment for teaching and learning OOP concepts. On the

other hand, experts were seen as people with experience in lecturing Java programming

language with exposure to different IDEs. The experts were chosen to evaluate and uncover

their perception of usability on IDEs, to comment on the design issues of the selected IDE

applications, and also give feedback on students’ behaviour with regard to motivation while

learning to program. The expert reviews assisted in determining the relationship between

learning OOP concepts, students’ perception of usability in using IDEs and the students’

behaviour while learning to program.

3.4.4 Unit of analysis

The analysis was conducted on two groups of students doing Java programming at CS2 level on

two different campuses at the selected University. Students at this level were already exposed to

OOP concepts and the two IDEs: JCreator LE 5.0 and NetBeans, these two IDEs were used in

the previous years with each campus only using either and not both at the same time. 55

students indicated in Table 3-2 with consideration of demographics were used as total

population. One group had a total of 34 students on one campus and 21 students on the other

campus. Three Java programming lecturers as expert reviewers were used for heuristic

evaluations. Most of the selected students before university enrolment originate from rural

schools with limited or no educational resources and are often understaffed with teachers and

therefore are technologically disadvantaged.

3-35

3.4.5 Sampling technique (Purposive)

Field (2005:120) defines sampling as “a smaller (but hopefully representative) collection of units

from a population used to determine truths about that population”. The main objective of

sampling was to make sure that the target population is represented in the process (Mouton,

1996). The research adopted the purposive sampling technique to enable a deliberate hand-

picked potential user-participants that are likely to produce valuable data to meet the purpose of

the research (Oates, 2005).The sample was chosen on who the researcher thought would be

appropriate for the study. This was used primarily because of the limited number of people that

have expertise in the area being researched.

3.5 Data collection methods

There are different methods that a researcher can utilise to gather data from the selected

population. The following are some of them:

 Observation: This is an organised process of observing, recording, describing,

analysing and deriving meaning out of an individual’s or from a group of people’s

behaviour (Saunders, Lewis &Thornhill,2009).

 Interview: This is a method in which an interviewer poses questions to a respondent,

and the respondent provides answers to the questions. They can be structured or

unstructured. Structured interviews comprise a set of questions asked in a standardised

order and the interviewer does not deviate from the interview schedule; these are based

on close-ended questions. While unstructured interviews questions are sometimes

referred to as ‘Discovery Interviews’ and are more like a ‘Guided Conservation’ than a

strict structured interview (McLeod, 2014).

 Questionnaire: This is a method in which the respondents are asked to answer the

same questions in a certain order. They are appropriate to collect data in a large

population and can take the form of an interview-administered questionnaire, an online

questionnaire, a postal questionnaire, or a self-administered questionnaire (Saunders,

Lewis & Thornhill, 2009).

Given the above, questionnaire and unstructured interview schedule was used in this study.

The interview schedule contains a set of prepared questions designed to be asked exactly as

worded (McLeod, 2014). The standardised format of interview schedule assisted in asking each

3-36

interviewee some questions in the same order. Students were interviewed in groups and they

recorded their response in the interview schedule. This was done so as to accommodate even

the shy students.

A set of eleven questions were used on the questionnaire to test usability of the software,

including efficiency and reliability that looks at response time of IDEs and ease of use. To attest

the confidence in understanding OOP concepts students were given a further set of question on

the questionnaire and interview schedule to gather their confidence in understanding OOP

concepts. These questions were made up of Object-Oriented concepts, e.g. class,

encapsulations and many other Object-Oriented concepts.

3.6 Data generation

A means whereby empirical field data or evidence can be produced is called data generation

(Oates, 2005:36). Data can take two forms (Oates, 2006: 36): Quantitative or Qualitative. The

former is numerical data; the latter is all other types of data other than numerical, such as words,

images and sounds, etc. (Oates, 2006: 36). In this study, both qualitative data and quantitative

were collected using the data-collection instruments in Table 3.3 and Table 3.4.

Table 3-3: Quantitative Data-Generation Instruments

Quantitative data generation instruments

 Satisfaction questionnaires; Likert-scale ratings;

 Expert review ratings; and

 Students’ actual Test and Exam mark results

Table 3-4: Qualitative Data-Generation Instruments

Qualitative data generation instruments

 Expert’s comments;

 and

 Expert answers to questionnaire open ended questions

This study used more than one data-generation method for the following reasons, according to

Oates (2005: 37):

3-37

(a) To look at a phenomenon of interest in different ways, resulting in the production of more

data; these extra data could improve the quality of the research.

(b) To enable a comparison of the findings from one method with the data from another

method.

The above is mostly referred to as method triangulation.

In this study, user (student) evaluations and expert reviews were chosen. It aimed at gathering

three types of data: students’ perception of usability in using IDEs, OOP concepts

misconceptions while using IDEs, and user behaviour while programming.

3.7 Data analysis techniques

The collected data through questionnaire, interviews schedule, class tests and exam results

was analysed using an Excel spreadsheet through the use of pivot tables and graphs. Excel

was found to be easy to use and was sufficient for the task. The analysis of uncovering patterns

and trends in data sets were done using the spreadsheet and subsequently interpreted, i.e.,

explaining those patterns and trends. The analysis and interpretation were done to the research

questions with the objective of highlighting useful information, suggesting conclusions, and

supporting decision-making (Walsham, 2006).

Most research questions in qualitative approach studies lead to different classes of data

analysis namely within-cases, cross-cases and holistic-case analysis. This research, however,

employed the within-case analysis. Creswell (2007) defines within-case analysis as analysing,

interpreting and legitimising data that help to explain a phenomenon in a bounded context and

make up a single case, department, organisation or community.

3.8 Ethical Considerations

At the time when the study proposal was submitted for consideration, The Cape Peninsula

University of Technology Research Ethics Committee had requested for a completed research

ethics form on how the research was to be carried out. Risks to the participants and any other

person had to be clearly stated. The research proposal satisfied the stringent requirements set

by the University.

In the study, procedures stated in the ethics form were followed. All participants were given a

clear picture of what the study was about and what they were required to do. They were also

told that they could withdraw at any time and that a joint decision would be made on what to do

3-38

with the data collected upon withdrawal from the study. Furthermore, confidentiality was

ensured through the use of pseudonyms and the identity of the participants was not revealed

without their permission.

3.9 Summary

This chapter narrated the research study questions with the associated objective. It raised the

need to investigate factors that affect OOP comprehension through quality of use by performing

user evaluations. User-satisfaction questionnaires, unstructured interview schedules and expert

reviews were used to gather data in order to develop an understanding towards creating

guidelines of an interactive environment for teaching and learning OOP concepts using Java

programming language. Method triangulation was used to analyse the data using an Excel

spreadsheet.

The next chapter focuses on the findings of the collected data and further give an analysis and

interpretations of the patterns and trends in the data.

4-39

CHAPTER FOUR : ANALYSIS AND DISCUSSION

4.1 Introduction

The purpose of this chapter is to discuss the result of the semi-structured questionnaire and

interview schedule responded to by a total of 55 participants. Prior to the commencement of the

research study, the importance, basis and intention of the study were provided to the

respondents. Moreover, the respondents were also given the assurance that all the data they

gave was used solely for the purpose of the research and the identities of the respondents were

kept confidential.

The findings presented in this section addressed the research question: Does the quality of use

of an IDE enhance the comprehension of object-oriented programming concepts through

teaching and learning of Java programming language. It focused on the most common mistakes

students make during program development in a particular IDE; it attempted to answer whether

the use of an IDE affects the understanding of OOP concepts and whether mistakes suggested

usability problems in IDEs with any other misconceptions. The focus was mostly centred on

students’ perceptions on how they are currently fairing with the IDEs while learning OOP

concepts using Java. The findings were from the questionnaires and focus groups done with

students based at two different sites of the selected University’s Department of Information

Technology.

The chapter presents the general demographics of the students, such as their gender, age,

timeframe programming and previously used programming languages. Focus was on the

students’ perceptions on the flexibility of using IDEs and whether it assisted them to understand

OOP concepts. After presentation of the overall findings, an analysis and interpretation of the

results is narrated.

4.2 Findings

This section presents findings for the two campuses of the selected University with one campus

using JCreator and the other NetBeans as IDEs for learning OOP concepts using Java. The

findings to the following research questions

 as presented in Table 4.1 follows:

4-40

Table 4-1: Research questions

Does the quality of use of an IDE enhance the comprehension of object-oriented

programming concepts through teaching and learning of Java programming language?

- Does the use of an IDE affect students’ understanding of OOP concepts?

- Does the use of a particular IDE increase students’ confidence in learning Object–Oriented

concepts?

- What are the most common mistakes and misconceptions students make during program

development in a particular IDE?

The study findings are based on students’ perceptions on how they are currently fairing with the

JCreator and/or NetBeans IDE on their computers. The findings from the questionnaires and

focus groups done with students are independently presented beginning with the campus which

uses JCreator and then the campus which uses NetBeans. The section will first present the

demographics of the friendliness of the current software on the student computers. The study

goes on to look into detail the students’ perceptions on the flexibility of using JCreator and

whether it assists them to understand Object-Oriented (OOP) concepts. After presenting the

findings, an analysis of the results will be presented.

4.3 FINDINGS FOR CAMPUS USING JCreator

4.3.1 Demographics

4.3.1.1 Gender

A total number of 34 students fully answered the questionnaires for this study on this campus

with 18 (53%) females and 16 (47%) males as shown in Figure 4-1.

4-41

Figure 4-1: Gender

4.3.1.2 Age

The majority of the students were from the age category of 22 – 25 years with 30% females and

26% males.

Figure 4-2: Age category

4.3.1.3 Timeframe of programming

The findings show that 91% of the students have more than a year programming and only 9%

have less than a year programming. Figure 4-3 shows that of the 91% of the students with more

than one year programming, 50% are females and 41% are males.

4-42

Figure 4-3: Timeframe of programming

Findings indicate that regardless of the number of years spent on programming, all 34 students

have used Vb.Net and Java programming languages. Students who have more than a year of

programming have in addition used other programming languages such as ASP.net; HTML;

C#.Net and php.

Table 4-2: Programming languages used

Timeframe
programming

Programming languages used
before

Total
%

Less than 1 year Vb.Net and Java 9

More than 1 year

Java 3

Java, Vb.Net, ASP.net and HTML 3

php, html , javascript and Java 3

Vb.Net 15

Vb.Net and Java 56

Vb.Net, C#.Net 3

Vb.Net, html, php and Java 9

Grand Total 100

4-43

4.3.2 Understanding object-oriented concepts using JCreator

The findings reflected that majority of the students found it easy to understand object-oriented

concepts using JCreator with the highest recorded on Class concept (76, 5%), followed by

Object (67, 6%) , 65% find Method Overriding easy, and 59% on Inheritance. Encapsulation and

Polymorphism recorded the lowest each with only 35% of the students stating that it is easy to

understand, with 32% stating that they feel it is moderate to understand.

Figure 4-4: Understanding object-oriented concepts using JCreator

The findings from the focus group discussion also confirmed that 92% of the students find it easy

to learn OOP. The remaining 8% stated that although learning OOP is challenging, it becomes

interesting as one learns. They further stated that learning OOP requires clear presentations and

examples to make it easy to understand and grasp. Other students stated that in order to

understand OOP, it is essential to have more practice and pay more attention to details. They

further reiterated that there are many concepts that one needs to understand before one can

fully master OOP.

4.3.3 Easiness of JCreator Software

The study was also concerned about students’ perceptions if they find JCreator easy to use. The

findings indicate that 56% of the students find it easy to use the JCreator software; 47% are able

to learn how to use everything offered with JCreator. 50% agreed that navigating through menus

4-44

and toolbars is easy to do. Moreover, 47% agree that it is easy to find options they need in the

menus and toolbars.

The findings show that students find five sections of the JCreator software as neutral to use

namely that the software is engaging (65%), contents of the menus and toolbars matching their

needs (41%). 41% were neutral on whether getting started with the JCreator version is easy.

44% stated that they are neutral when it comes to discovering new features and 50% are neutral

on the satisfaction they get from using JCreator.

The most prominent feature that most students disagree to be easy to use was discovering new

features (32%) followed by finding the contents of the menus and toolbars matching student’s

needs (21%). Only 21% disagree with the following notions that getting started with the software

version is easy, finding options and the software responding timeframe is easy.

Table 4-3: Student perceptions on JCreator LE 5.0 IDE

 Question

Disagree

(%)

Neutral

(%)

Agree to Strongly

Agree (%)

Blank

(%)

1 Software easy to use 6 38 56 0

2
I am in control of contents of
menus & toolbars 12 44 44 0

3
I will be able to learn all
offered in software 9 41 47 3

4
Navigating through menus &
toolbars is easy 9 41 50 0

5 Software is engaging 9 65 24 3

6
Contents of menus & toolbars
match my needs 24 41 29 6

7
Getting started with the
software version is easy 21 41 38 0

8
Finding options in menus &
toolbars is easy 21 32 47 0

9 Software responds in time 21 38 41 0

10
Discovering new features is
easy 32 44 24 0

11 Software is satisfying to use 18 50 32 0

4-45

4.3.4 Confidence gained using JCreator on the following object-oriented concepts

As depicted in Figure 4-5, it was largely affirmed by 53% of the students that they gain more

confidence on Class object oriented concept by using JCreator. At par with 38% of the students,

they acknowledged that they gain confidence in Method Overloading, Method Overriding and

Inheritance, and just 18% stated Encapsulation.

Object had 14 (41%) students stating that they gain confidence quite a bit, followed by

Inheritance, Encapsulation and Polymorphism all with 12 (35%) students citing that they gain

quite a bit of confidence.

Figure 4-5: Confidence gained from using JCreator

When it comes to being able to relate between a Class and an Object in JCreator, 90% of the

students affirmed that they can easily relate the two. The remaining 10% did not state whether

they can relate between a Class and an Object in JCreator.

4.3.5 Recovering from errors and common mistakes using JCreator

44% of the students acknowledged that they find it easy to very easy to recover from system

(IDE) error messages in JCreator as shown in Figure 4-6. The majority find it somewhat hard to

very difficult to recover from system (IDE) errors.

4-46

Figure 4-6: Recovering from error Messages

4.3.6 Recovering when output (animation) is not the movement expected

A few students find it easy to very easy to recover when output (animation) is not the expected

movement (32%), and 29% cited that they find it moderate/fair to recover from unexpected

movements. The other 29% emphasised that it is somewhat hard to difficult for them to recover

once the output is not the expected movement as shown in Figure 4-7.

Figure 4-7: Recovering when output is not the movement expected

4-47

Findings from the focus group discussions had students admitting that they usually make

spelling mistakes. For instance, they misspell Class names, variables and many others since the

IDE does not correct spellings. They also confuse the lower and upper case. When compiling,

students make the mistake of running the program and they find it difficult to stop it. One of the

critical errors stated was that the student fails to create the correct object. They only try to create

it after they realise that it is needed. The other error is making all Class variables private. It was

also stated that students find it difficult to debug. On the other hand, some students admitted

that they simply forget certain things and they feel that they need more motivation and to remain

focused so as to avoid these mistakes.

4.3.7 Using JCreator to complete task

Figure 4-8 show that 50% of the students find it easy to complete tasks using JCreator software.

38% reported that it is moderate and the remaining 11% stated that it is difficult; 3% failed to

give a response.

Figure 4-8: Completing Tasks in JCreator

4.3.8 Difficult Tasks to accomplish in JCreator

Figure 4-9 shows that fixing and handling errors in JCreator has been cited by 29% of the

students as the most difficult tasks to accomplish. The students (15%) also mentioned that they

find it difficult to save multiple files and classes. 9% reported that solving exceptions is difficult

and also Polymorphism was cited as some of the difficult tasks.

4-48

Figure 4-9: Difficult tasks in JCreator

4.3.9 Misconceptions

A few students stated that they have not seen the application of JCreator IDE being applied

practically in the real world of programming; some opined that they consider the software as

outdated and not used in the industry. Another student felt that JCreator is only good to orient

students to the programming field, but not for practical use.

32% of the students find Coding with JCreator to be exciting and gives them the feeling of

wanting to learn more. JCreator is easy and friendly to use for most students. They further assert

that the IDE is not too complex to understand and they would highly recommend the software.

They view JCreator as user friendly. When compared to NetBeans, JCreator is said to have

more positives than negatives. In addition, they mentioned that JCreator provides a good

platform for being introduced to programming. Amongst those who prefer JCreator, they also

acknowledge that JCreator improves error handling because errors can be easily detected.

Others admit that JCreator has helped them to comprehend Java and has greatly assisted them

to improve their programming skills.

Some students (18%) who do not consider JCreator as a good IDE stated that the interfaces are

so difficult to understand, even keywords like ‘super’. They further asserted that JCreator can be

hard at times, especially when it comes to detecting and fixing errors and most of the time it

leaves errors that are not easy to modify. On the other side, even though they view JCreator as

4-49

not very user friendly, they do acknowledge that JCreator can be easy to use if one understands

it well.

One student cited that although using JCreator is very easy, sometimes it can be difficult as

there are tasks that need much attention and concentration such as testing classes.

Generally, the findings show that most students find it easy to learn using IDE. They

acknowledge that although it can be challenging, it is quite interesting. IDE requires much

attention and one needs to be willing to explore the tools, controls and features. Students stated

that it would be much easier to learn using IDE if it could locate and fix errors.

4.4 Data Analysis and Interpretation: Campus using JCreator

4.4.1 Difficulties of learning Programming

4.4.1.1 Demographics

Gender

The findings as shown in Figure 4-10 show that 66.7% of females find JCreator software easy to

use as compared to the males with only 44%. 50% of the males find JCreator neutral to use.

Neutral may imply that they do not understand fully how the software works or they understand

how the software works to a lesser extent and they do not have confidence to fully rate how easy

it is to use the software. This implies that the students have an incomplete understanding of

programming concepts as stipulated by Sorva (2013). The results are also consistent with the

study done by Chege et al., (2013), who also confirms that with regard to outcomes of schooling

such as academic performance, school attendance or even completion, females outperformed

males in over half of the school, as an example in rural Kirinyaga, Kenya.

4-50

Figure 4-10: Gender analysis

Age

Amongst the 67% of females who find JCreator easy to use, 58% fall in the 18 – 21 age group

category, followed by the 33% who fall on the 22 -25 age category. Amongst the 44% of males

who find JCreator easy to use, the majority fall between the 22 – 25 age group (43%), followed

by the 29% falling between 18 – 21 and 26 – 30 age categories respectively. The results indicate

that females between 18 – 21 easily understand and grasp concepts and as they grow older the

level of understanding drops. Whereas with males, they perform better when they are between

the 22 – 25 age group category as reflected in Figure 4-11. Thus, it may be advisable to enrol

females at a younger age and males when they are much older and mature between the ages of

22 – 25.

4-51

Figure 4-11: Software easy to use per age and gender

4.4.1.2 Programming timeframe and previous programming experience

Results as shown in Table 4.4 indicate that 61% of females with more than a year of

programming experience find it easy to use JCreator. This can be attributed to the experience

acquired during the timeframe of programming and the fact that they had less new concepts to

familiarise with. Unlike with the males, 50% who have been programming still stated that they

find the software neutral to use. This can be due to the issue of age as the results indicate that

males who are much older easily grasp and understand concepts well. The results also reflect

that when students are not able to gain from their prior knowledge, it is either because they

struggle to change their mindsets to new paradigm, or after obtaining the OOP mindset are

unable to apply their previous knowledge in the new environment (Goosen & Pieterse, 2005). So

regardless of the fact that these males have had a year of programming experience, the issue of

age can be pointed out as a contributing factor. Studies conducted by Byrne and Lyons (2001)

and Allert (2004) indicated that students who had previous programming experience tended to

perform better than other students.

4-52

Table 4-4: Software easy to use in relation to timeframe programming

Gender
Software easy to
use

Timeframe
programming %

Female Disagree More than 1 year 5.56%

 Neutral More than 1 year 28%

 Agree Less than 1 year 6%

 More than 1 year 61%

Female Total 100.00%

Male Disagree More than 1 year 6%

 Neutral More than 1 year 50%

 Agree Less than 1 year 13%

 More than 1 year 31%

Male Total 100%

4.4.2 Object-Oriented concepts:

4.4.2.1 Understanding OOP concepts using JCreator

Figure 4-12: Understanding OOP concepts with JCreator

Sicilia (2006) argued that programming instructors should carefully help their students in

comprehending the OOP concepts and in translating the conceptual models into Java programs.

The study found that most students understand most of the OOP concepts, especially Class,

4-53

Object, Method Overloading, Method Overriding and Inheritance. This reflects that most of the

students have a strong base as Object refers to the main component of the OO paradigm that is

used for carrying out specific tasks. A good understanding of Object tends to give the student a

good potential to carry out most tasks.

The study realises that only 35% of the students respectively understand Encapsulation and

Polymorphism.

According to Ghanim and Al-khafaji (2014), Polymorphism refers to the provision of multiple

forms and methods. When used in the OOP context, this term implies that different objects may

respond individually to the same message. Therefore, Polymorphism may be used to indicate

different implementations. Polymorphism also supports greater abstraction wherein a single

message can evoke different behaviour. This implies that students still find it difficult to fully

understand this OOP concept. If its application is more or less done in real world scenarios, it

may actually enhance students understanding.

4.4.2.2 Confidence gained

JCreator has boosted 60% of the students’ confidence to understand the Class concept.

However, when it comes to other Object-Oriented concepts, such as Object, Method

Overloading, Method Overriding and Inheritance, merely 39% of the students affirmed to have

gained confidence to understand these concepts. The fact that JCreator does not fully build

confidence for students to understand most of the OOP concepts could be the reason why most

students find it difficult to fix errors and to recover from unexpected movements. Most scholars

stipulate that understanding the programming language is an essential part of computer science

and the key to success. The results indicate that the use of IDEs does not guarantee that

students will be able to fully understand OOP concepts.

4.4.2.3 Common mistakes and difficult tasks to accomplish in JCreator

Only 44% of the students acknowledged that they find it easy to very easy to recover from

system (IDE) error messages in JCreator. The results are quite consistent as only 29% of the

students reported that they find it difficult to fix and handle errors in JCreator. In addition, 15%

confirmed that they struggle to save multiple files and classes and solving exceptions as well as

Polymorphism. Furthermore, merely 32% find it easy to recover from unexpected movements.

This can be due to the fact that students do not fully understand the JCreator software itself and

they do not take much time to broadly understand it. Kinnunen and Malmi (2006) assert that

4-54

because students do not dedicate a lot of time to programming, they end up lacking motivation

and dedication to fully learn and understand the program. This further confirms the claim by

Kasurinen et al. (2008) that students often lose interest in programming because complex

models and structures have to be learned before anything visually impressive can be created.

This leads to some students to believing that JCreator programme is more theoretical and

difficult to be practically implemented in the real world.

4.4.2.4 Satisfaction in using JCreator LE

Figure 4-13 shows that 64% of the students find the JCreator LE software satisfying to use with

39% females and 25% males. When students lack a full understanding of a software, they lose

interest thus resulting in low satisfaction levels. Ironically, 50% of the students reported that they

find it easy to complete tasks in JCreator, yet they also affirmed that they do not find much

satisfaction in using the software and they do not have much confidence in understanding most

of the Object-Oriented concepts when using JCreator.

Figure 4-13: JCreator LE satisfying to use

Overall, as depicted in Figure 4-14 below, JCreator has great potential to capacitate students to

comprehend programming and moreover understand OOP concepts as almost half of the

students (47%) acknowledge that if properly mentored they will be able to use all that the

software has to offer. This implies that students need to be mentored by experts who are highly

skilled in programming as affirmed by Vihavainen et al.(2011). It is also important to bear in mind

4-55

that most of these students come from rural disadvantaged backgrounds where they had limited

opportunities to clearly understand programming and the value it offers to the real-world

environment.

Figure 4-14: Students will be able to learn all offered with software

More efforts need to be effected to further motivate students to unlock their potential and

sharpen their skills of comprehension and memorization abilities which are crucial to

programming. For instance, the findings indicate that the software menus and toolbars need to

be adjusted to meet various needs since only 29% of the students find the menus and toolbars

matching their needs as shown in Figure 4-15.

4-56

Figure 4-15: Contents of menus and toolbars match student needs

This means that the majority of students do not find much relevance as the menus and toolbars

do not quite match their needs. This results in students having low interest in using the software.

It is crucial to find mechanisms to instil interest for students to enjoy using the software. Storey

(2005) suggests using adaptive interfaces which may perhaps be tailored to suit different kind of

users and tasks. Software tools normally have many features which may be overwhelming not

only to novice users but also to expert users.

4.4.3 OOP Misconceptions

Some students stated that they have not seen the application of JCreator IDE being applied

practically in the real world of programming, while others cited that they consider the software as

outdated and not used in the industry. Other students felt that JCreator is only good to orient

students to the programming field, but not for practical use. These assertions or misconceptions

are due to the fact that students do not properly understand programming. A strong orientation

into the field of programming might be required. If the students remain with these beliefs it

becomes very difficult, if not impossible, for them to develop much interest to learn programming

let alone understand OOP concepts.

4.4.4 Motivation to learn OOP

The research findings show that students are motivated by various factors to learn OOP.

Among the reasons stated, the most prominent ones were the mere pleasure, excitement and

4-57

satisfaction that they get when programming. They also cited that programming is in demand in

this information age and it will be easy for them to accomplish more career wise. Furthermore,

some students stated that it is easy to understand OOP concepts using Java; this motivates

them to further pursue on learning OOP. It would appear that poor understanding of the basics

of programming tends to de-motivate students, thus strategies need to be in place on how to

boost student motivation. McDowell et al. (2003) confirmed that students who used pair

programming produced better programs, were more confident in their solutions, and enjoyed

completing the assignments more than students who programmed alone. Thus, the idea of

pairing students when programming may enhance the quality of their programs and encourage

them to pursue programming further. Paired programming has a high impact to reduce mistakes

made by students such as misspelling Class names and variables, confusing the lower and

upper case, and simply forgetting certain things.

4.5 Findings for campus using NetBeans

Below are the findings to the following research questions as presented in Table 4-5.

Table 4-5: Research Questions

Does the quality of use of an IDE enhance the comprehension of object-oriented

programming concepts through teaching and learning of Java programming language?

- Does the use of an IDE affect students’ understanding of OOP concepts?

- Does the use of a particular IDE increase students’ confidence in learning Object – Oriented

concepts?

- What are the most common mistakes and misconceptions students make during program

development in a particular IDE?

This section presents the findings from the campus using NetBeans on how students are faring

and perceive learning Object-Oriented concepts using NetBeans.

4.5.1 Demographics

4.5.1.1 Gender

A total number of 21 students out of 29 fully answered the questionnaires for this study from the

campus using NetBeans with females and males as shown in Figure 4-16.

4-58

Figure 4-16: Gender

4.5.1.2 Age

Majority of the students were from the age category of 22 – 25 years as shown in Figure 4-17.

The findings show that within the 22 – 25 years age category, 80% were males and 20%

females.

Figure 4-17: Age category

4-59

4.5.1.3 Timeframe of Programming

The research findings show that all the females have more than one year of programming

experience, 88% of the males have more than one year programming experience, and only 13%

have less than a year of programming experience as indicated in Figure 4-18.

Figure 4-18: Timeframe of programming

Findings indicate that regardless of the number of years spent on programming, all 21 students

have used Java software before. Students who have more than a year of programming

experience have in addition used other programming languages such as Vb.Net, HTML; PHP

and C++ as shown in Table 4-5.

4-60

Table 4-6: Programming languages used

Timeframe
programming

Programming
languages used before Total

Less than 1 year Dephi, Java and Vb.net 1

 Java and VB.net 1

More than 1 year Java 5

 Java and C++ 1

 Java and VB.net 7

 Java programming 1

Java,c/c++,PHP and
HTMl 1

 Python 1

 VB and Java 2
 VB.net 1

Grand Total 21

4.5.2 Understanding object-oriented programming concepts using NetBeans

The study aimed to understand whether students find it easy to understand Object-Oriented

concepts using NetBeans software. The findings confirmed that students understand some of

the concepts as 62% of the students stated that they find it easy to very easy to understand

Class. 57% affirmed they find it easy to very easy to grasp Object, and only 43% respectively

stated Method Overloading and Method Overriding. Merely 33% agreed to find Inheritance and

also Encapsulation easy to understand. Polymorphism only had 24% of the students

understanding the concept.

The results show that when it comes to understanding other oriented concepts, some students

stated that they find it moderate to grasp OOP concepts using NetBeans. For instance, over

52% find it moderate to grasp Inheritance, and then 43% respectively stated Method

Overloading, Encapsulation and Polymorphism. Method Overriding had 38% and Class had 33%

of the students admitting that they find it moderate to understand these Object-Oriented

concepts using NetBeans.

Few of the students reported that they find it difficult to very difficult to understand some of the

Object-Oriented concepts. Only 10% of the students admitted that Inheritance, Encapsulation

and Polymorphism Object-Oriented concepts are difficult to understand. Refer to Figure 4-19 for

the summarised results on how students are faring in understanding OOP using NetBeans.

4-61

Figure 4-19: Understanding OOP concepts using NetBeans

The findings from the focus group discussions show that three quarters of the students (86%)

find it easy to learn OOP. The students stated that although learning OOP concepts are not so

difficult, much time practising and participating to understand the concepts is required. They

further acknowledged that they need a lot of guidance to comprehend OOP concepts. Object-

Oriented concepts were deemed to be challenging but exciting to learn. Only 7% reported that

they find learning OOP neutral. In their exact words, they report that it is “not difficult and at the

same time it is not easy as well”. Only 7% admit that it is difficult to learn OOP concepts.

4.5.3 Easiness of NetBeans Software

The study enquired on whether the students found NetBeans software easy or difficult to

understand. The results as presented on Table 4-7 shows that 67% of the students affirmed that

the NetBeans software is easy to understand. 52% stated that the NetBeans software responds

in time. When it comes to satisfaction levels, 48% of the students are satisfied with using

NetBeans and only 43% find the software engaging.

Majority of the students (52%) confirmed that they feel neutral regarding if they will be able to

learn everything that the software offers and finding options in menus and toolbars. When it

comes to navigating through menus and toolbars, 48% of the students find NetBeans software

neutral to use. In addition, 43% of the students reported that they find it neutral in getting started

4-62

with the NetBeans software and also on the software contents of menus and toolbars matching

their needs.

The students (52%) acknowledged that discovering new features is not easy using the NetBeans

software, and merely 10% find it easy to discover new features. 33% of the students disagree

that the software is satisfying to use to accomplish tasks.

Table 4-7: Student perceptions on NetBeans IDE

%NetBeans Question Disagree Neutral
Agree to Strongly
Agree Blank

1 Software easy to use 0 33 67 0

2
I am in control of contents of
menus & toolbars 14 48 38 0

3
I will be able to learn all offered
in software 10 52 38 0

4
Navigating through menus &
toolbars is easy 19 48 33 0

5 Software is engaging 19 38 43 0

6
Contents of menus & toolbars
match my needs 19 43 38 0

7
Getting started with the
software version is easy 24 43 33 0

8
Finding options in menus &
toolbars is easy 24 52 24 0

9 Software responds in time 10 38 52 0

10
Discovering new features is
easy 52 38 10 0

11 Software is satisfying to use 33 19 48 0

4.5.4 Confidence gained using NetBeans on the following object-oriented concepts

The study found that very few students gained confidence in understanding Object-Oriented

concepts using NetBeans. For example, the highest percentage who reported to have gained

confidence in Class, Method Overriding and Method Overloading was merely 19%. This was

followed by the 10% who stated all the other remaining Object-Oriented concepts namely

Polymorphism, Encapsulation, Inheritance and Object as depicted in Figure 4-20.

Object had 52% of the students who reported that they gained confidence quite a bit, followed

by the 43% who gained confidence quite a bit on Class. 38% stated that their confidence was

boosted quite a bit on Inheritance.

4-63

Figure 4-20: Confidence gained from using NetBeans

When it comes to being able to relate between a Class and an Object in NetBeans, 90% of the

students affirmed that they can easily relate the two. Only 10% admitted that they cannot relate

to and between Class and Object in NetBeans.

4.5.5 Recovering from errors and common mistakes using NetBeans

57% of the students find it easy to very easy to recover from system (IDE) error messages as

shown in Figure 4-21. 19% of the students reported that they find it moderate, 5% find it

somewhat hard, and the other 10% find it difficult to very difficult to recover from system (IDE)

errors. The remaining 10% did not respond.

4-64

Figure 4-21: Recovering from system (IDE) messages in NetBeans

4.5.6 Recovering when output is not the movement expected

A few students (38%) find it easy to very easy to recover when output (animation) is not the

expected movement. The majority, 48%, stated that they find it moderate to recover from

unexpected animation. Only 10 % emphasised that it is somewhat hard and 8% stated that it is

difficult to recover from unexpected output as shown in Figure 4-22.

Figure 4-22: Recovering when output is not expected in NetBeans

4-65

The students reported that they do make mistakes when using IDE during focus group

discussions. The most commonly cited mistakes include leaving out commas or sometimes

using a semicolon instead of a comma. Another common mistake is using syntax of VB in Java;

using the term or reserved words in an incorrect place. The students admitted that

misunderstanding the features in IDE often leads them to make mistakes, for example having

exceptions that they do not understand how they come about. They also cited that using the

command prompt and program validation are usually challenging.

The focus group discussions confirmed that most of the mistakes made by students come from

misunderstanding IDE features, as stated by 57% of the students during the focus group

discussions. 43% refuted that their mistakes emanate from misunderstanding IDE features.

4.5.7 Using NetBeans to complete task

Only 38% of the students found it easy to complete tasks using NetBeans software. The

majority, 43%, reported that they find it moderate and the remaining 19% stated that it is

somewhat hard to complete tasks using NetBeans as indicated in Figure 4-23.

Figure 4-23: Completing tasks in NetBeans

4.5.8 Difficult Tasks to accomplish in JCreator

Students stated that the most difficult tasks to complete in NetBeans are: Method overloading

(24%), Graphic User Interface (GUI 19%), and finding and correcting errors (14%). Some of the

4-66

tasks mentioned by 5% of the students respectively are namely: debugging, Inheritance,

database connectivity, compilation complexities and classes.

Figure 4-24: Difficult tasks to complete in NetBeans

4.5.9 Misconceptions

Students commented that NetBeans software is quite interesting to learn although it is

challenging. For the beginner, it is hard to find the way around and it takes time to find an error.

Other students reported that NetBeans software has been very easy to learn and use throughout

the year, and they further stated that NetBeans makes programming interesting to continue to

pursue. Another student reported that NetBeans matches most of their needs and it is

understandable which makes it more interesting to continue learning.

4.5.10 Motivations to learn OOP using Java language

The findings on whether students have any motivation to learn OOP using Java language

indicates that the majority of the students felt motivated to learn. Some of them stated that

programming games is more motivating when using Java. Another student stated that they are

motivated with the introduction of the different types of objects and the Graphic User Interface. In

addition, the students cited that when learning OOP using Java, there is no limit; one can do so

much with the software.

4-67

4.6 Data Analysis and Interpretation: Campus using NetBeans

4.6.1 Difficulties of learning programming using NetBeans

4.6.1.1 Demographics

Gender

It would appear that females find it much easier to use the NetBeans software than males with

the findings indicating 100% acknowledgements from females as compared with 56% of the

males stating that they find the software easy to use. The remaining 44% are neutral.

Figure 4-25: Gender analysis

Age

The age group category did not seem to have any effect on the rate of understanding the

NetBeans software as both females and males fall between the age groups of 18 – 21, 22 – 25,

and 26 – 30.

4-68

Figure 4-26: Software easy to use per age and gender

4.6.1.2 Programming timeframe and previous programming experience

The study noted that the timeframe of programming has a direct effect on how the students

faired with using the NetBeans software. All the females stated that they find NetBeans software

easy to use and they all have more than a year of programming experience. Only 44% of the

males who stated that they find the NetBeans software neutral have less than one year of

programming experience. This could possibly be due to the fact that they have to learn new

concepts and they are still trying to familiarise themselves with the programming concepts.

Table 4-8: Software easy to use in relation to timeframe programming

Gender Software easy to use
Timeframe
programming

Total
%

Female Agree More than 1 year 100
Female Total 100

Male
Agree to Strongly
Agree More than 1 year 44

 Neutral More than 1 year 44
 Agree Less than 1 year 12
Male
Total 100

4-69

4.6.2 Object-Oriented concepts:

4.6.2.1 Understanding OOP concepts using NetBeans

Most students acknowledged that they find it easy to understand most OOP concept when using

NetBeans such as: Class (62%), Object (57%), Method Overloading (43%), and Method

Overriding (43%). The least cited OOP concept was Polymorphism with only 24% of the

students stating that they find it easy to very easy to understand the concept.

Figure 4-27: Understanding OOP concepts with NetBeans

4.6.2.2 Confidence gained

NetBeans software has been confirmed to have boosted students’ confidence on few of the

OOP concepts such as Method Overloading (19%), Method Overriding (19%) and Class (19%),

all with only 19% of the students’ acknowledgement. Most students mentioned that NetBeans

has boosted their confidence quite a bit. It can be concluded that even the timeframe of

programming has no influence on boosting the confidence gained on understanding OOP

concepts. More practice and enthusiasm to use the NetBeans software is recommended to

boost student confidence.

4-70

Figure 4-28: Confidence gained on OOP concepts

4.6.2.3 Common mistakes and difficult tasks to accomplish in NetBeans

The study results show that almost half of the students (57%) find it easy to recover from system

(IDE) error messages. The majority (48%) find it moderate to recover from unexpected

animation. This is supported by the fact that most students find it difficult to fully grasp Object-

Oriented programming concepts, especially Polymorphism. Most scholars argue that it is vital for

students to do programming by themselves while they are learning (Lahtinen et al., 2005).

The students admitted that misunderstanding the features in IDE often leads them to make

mistakes, for example having exceptions that they do not understand how they come about.

They also cited that using the command prompt and program validation are usually challenging

and they forget to insert the necessary commands such as commas. Such mistakes strongly

suggest that students do not dedicate a lot of time to programming and they need to develop

interest and determination.

4.6.2.4 Satisfaction in using NetBeans

Figure 4-29 shows that only 48% of the students find NetBeans software satisfying to use with

19% females and 29% males. This may be attributed to the fact that the contents of menus and

4-71

toolbars do not match the students’ needs as only 38% reported that the contents of menus and

toolbars match their needs. Furthermore, 52% of the students admit that they find it difficult to

discover new features using NetBeans. This leads students to lack the satisfaction to use the

NetBeans software. Storey (2005) suggests using adaptive interfaces which may perhaps be

tailored to suit different kinds of users and tasks. This is because software tools normally have

many features which may be overwhelming not only to novice users but also to expert users.

Figure 4-29: Satisfying to use

The study shows that only a few students (38%) will be able to fully learn all that is offered in

NetBeans. Although the NetBeans software responds on time, it needs to be tailored more to

suit students’ expectations and more independent learning may assist to increase the student

level of understanding the software. The study also shows that 62% of the students find it

difficult to complete tasks using NetBeans software. This further contributes to the students

finding NetBeans dissatisfying as they struggle to complete tasks.

4.6.3 Motivation to learn OOP

Students felt motivated to learn OOP using Java when they are working on work that they can

easily visualise the outcomes, for instance games. Kasurinen et al. (2008) support this notion as

they stated that students often lose interest in programming because complex models and

structures have to be learned before anything visually impressive can be created. The students

realise that they can do so much when learning OOP using Java.

4-72

4.7 Student results

The study went further to check on the student results from the different campuses, one that

uses JCreator and the other that uses NetBeans. The study seeks to get an objective reflection

on how the students are fairing with the software, other than basing the conclusions on students’

perceptions.

Figure 4-30 depicts that for test 2 and test 3, students using JCreator scored the highest with an

average of 80% as compared to the students using NetBeans who scored an average of 68%

and 70%. However on the average year test marks, the findings show that both students using

JCreator and those using NetBeans were at par scoring an average of 70%. Students using

JCreator scored less compared to students using NetBeans with an average difference of 15.2%

for test 4. Although the students from both campuses were performing well above average

(50%), the final results show that students using NetBeans performed far better compared to the

students using JCreator.

0
10
20
30
40
50
60
70
80
90

Test 1 Test 2 Test 3 Test 4 Average
Year Test

Mark

Exam
Mark

Final
Mark

Av
er
ag
e
M
ar
ks

Comparison mark results: JCretaor &
NetBeans

JCreator

NetBeans

Figure 4-30: Tests and Exam comparison

It can be argued that since students from both campuses scored low on test 1 (slightly above

average), the students were still learning the software and trying to grasp what the various object

oriented programming concepts meant. As they proceeded doing other tests their results

improved gradually, especially on JCreator. On the other hand, students using NetBeans

4-73

improved gradually as well and their results are more consistent as compared with the students

using JCreator. Overall the findings indicate that students using NetBeans outperformed

students that use JCreator.

The results from the actual student class marks, which indicate that students using NetBeans

perform better than students using JCreator, are in agreement with the students’ responses on

how they find the software and other elements easy to use (see Table 4-9). Table 4-9 has 67%

of the students using NetBeans rating the software as easy to use compared to the students

using JCreator with only 56%. In addition, the students using NetBeans rated the software as

responding on time (52%) and as engaging and satisfying to use compared to the students using

JCreator. Although the results in other areas were below 50%, NetBeans recorded the highest

on contents of menus and toolbars matching students’ needs.

Table 4-9: IDE satisfaction

JCreator NetBeans

 Statement Agree to Strongly Agree Agree to Strongly Agree

1 Software easy to use 56 67

2
I am in control of contents of
menus & toolbars 44 38

3
I will be able to learn all offered
in software 47 38

4
Navigating through menus &
toolbars is easy 50 33

5 Software is engaging 24 43

6
Contents of menus & toolbars
match my needs 29 38

7
Getting started with the
software version is easy 38 33

8
Finding options in menus &
toolbars is easy 47 24

9 Software responds in time 41 52

10
Discovering new features is
easy 24 10

11 Software is satisfying to use 32 48

The student test and exam results, however, conflict with the findings from the students’

perception on how they understand the OOP concepts as shown in Figure 4-31. Students using

4-74

JCreator stated that they understand most Object-Oriented concepts better as compared to the

students using NetBeans. Conversely, the class tests and exam results depict that students

using NetBeans performed better than students using JCreator. Possibly the students using

NetBeans underestimated their level of understanding of the OOP concepts.

0
10
20
30
40
50
60
70
80

Pe
rc
en
ta
ge
s
(%
)

Understanding OOP Concepts

Jcreator (%)

NetBeans (%)

Figure 4-31: Understanding OOP concepts

It could also be that the lecturers who marked the NetBeans students’ exams could have been

lenient when assessing students’ answers. Other scholars suggest that student performance on

examinations is influenced by the level of difficulty of the questions(Sheard et al., 2013).

Students could have misunderstood the exam questions or some were frightened by the mere

fact they are seating for an exam. Moreover, the teaching methods of the lecturers could have

influenced on both the perception and student class test and exam results. It is probable that the

lecturers for the JCreator students are enthusiastic and motivate the students to enjoy

programming, and as some result students end up believing that the JCreator software is easy

to use. Whereas the lecturers for the NetBeans students maybe more concerned about students’

achievements on tests and exams, but do not go the extra mile to assure students that the

software is manageable and easy to use. This is evidently shown by more students using

JCreator stating that they feel more confident to learn OOP concepts using JCreator compared

to the students using NetBeans. So, it could be the different motivation levels that the students

receive that have a direct influence on students’ perceptions.

4-75

4.8 Empirical Findings

4.8.1 JCreator and NetBeans: a comparison

This section makes a comparison between JCreator and NetBeans based on the students’

responses to the questionnaires, focus group discussions, class test marks and exam marks.

Before presenting the comparison, the study made a comparison of student respondents’ gender

and age for the two campuses as shown in Table 4-10 to determine if there are any significant

variances that may affect the results. For the campus that uses JCreator, there were more

females than males. More males than females were recorded at the campus that uses NetBeans

for the study. The age category 22 – 25 dominated for both campuses. There were slightly more

students responding from the campus where they are using JCreator. The study sought to

understand if the gender and age categories had any effects on how students understand

programming and their understanding of the Object-Oriented concepts. Even though previous

researchers indicated that females perform better than males, the study found that the test and

exam mark results confirmed that students who used NetBeans performed better than the

students using JCreator. The most interesting aspect to note is that there were more males than

females at the best performing campus that uses NetBeans as compared to JCreator, thus the

study concludes that the gender of the students were not much of a determinant factor on

students’ performance and understanding of OOP concepts.

Table 4-10: Age category and Gender

Age Category JCreator NetBeans

 Male Female Male Female

18 – 21 5 7 1 0

22 - 25 9 10 12 3

26 - 30 2 1 3 2

Total 16 18 16 5

4.8.2 Timeframe of programming

The study also made a comparison of students’ timeframe of programming as it may have an

effect on how the students understand OOP concepts. The results show that both campuses, as

illustrated in Table 4-9, have more students with more than one year of programming. All the

females from the campus using NetBeans had more than one year of programming experience.

The results are in agreement with studies conducted by Byrne and Lyons (2001) and Allert

(2004) which identified that students with previous programming experience tend to perform

4-76

better. It can be confidently concluded that previous programming experience has a positive

influence on how students understand the OOP concepts. This is not only affirmed by the

perception-based responses but also the students’ final year mark results, which speaks

volumes as in both campuses students passed with more than 50% marks.

Table 4-11: Timeframe of programming

 JCreator (%) NetBeans (%)

 Males Females Males Females

Less than one

year

12 6 12 0

More than one

year

88 94 88 100

After having looked at the general students’ demographics, the study then goes into detail

through the various sub-headings to critically analyse the results as per each research question

stated in chapter 1 under the sub sub-heading issue as follows.

4.8.3 First research sub-question

This sub-question focuses on investigating the students’ perception of usability on IDEs and

understanding of OOP concepts. A detailed discussion of the findings to the first research sub-

question is provided below.

Understanding OOP Concepts using JCreator and NetBeans

The perception-based results derived from the study showed that the use of JCreator or

NetBeans by student respondents in understanding the object-oriented concepts of Class and

Object do not appear to differ. However, the use of JCreator to the concepts of Method

Overloading, Method Overriding and Inheritance does appear to make a difference as majority of

the students reported that they understand these Object-Oriented programming concepts better

as compared to the students using NetBeans. For both campuses using JCreator or NetBeans,

both IDEs do not seem to assist students to better understand Encapsulation and Polymorphism

as both scored merely 33% of the students admitting understanding these OOP concepts. This

means that the use of IDEs have a significant impact for students understanding OOP concepts,

although not all of them as shown in Table 4-12.

- Does the use of an IDE affect students’ understanding of OOP concepts?

4-77

Table 4-12: Understanding OOP concepts JCreator and NetBeans

Understanding OOP
Concepts

JCreator
(Out of 34 Students)

NetBeans
(Out of 21 Students)

 Easy to very easy to
understand
 % Actual no.

 Easy to very easy to
understand
 % Actual no

Class 76 26 62 13

Object 68 23 57 12

Method Overloading 68 23 43 9

Method Overriding 65 22 43 9

Inheritance 59 20 33 7

Encapsulation 35 12 33 7

Polymorphism 35 12 24 5

Coping with Errors

Based on the perception-based results, Table 4-13 showed how respondents coped with errors

using the programming tools. For System (IDE) Error Messages, NetBeans had 57% of the

students stating that they find it easy to very easy to recover from system (IDE) error messages,

unlike in JCreator which only recorded 44% of student acknowledgement. Recovering from

wrong output expectedly was recorded to be difficult with few students agreeing that they can

easily recover: JCreator (32%) and NetBeans (38%). The study gathered that since most

students using NetBeans find it easy to very easy to recover from system (IDE) error messages

and recovering from unexpected wrong output, it implies that they had a good and firm

understanding of the IDE and the programming language which is an essential part of computer

science and the key factor to succeed in programming.

Table 4-13: Coping with Errors

Types of Errors

JCreator
Easy to very
easy

NetBeans
Easy to very
easy

System (IDE) Error
messages 44 57

Output 32 38

Completing Tasks 50 38

Interestingly, when it comes to being able to complete tasks, more students using JCreator

(50%) admitted that they are able to complete tasks. Merely 38% of the students using

NetBeans stated that they are able to complete tasks. This interesting perception-based result

4-78

on completing tasks could be attributed to the fact that students at the campus using JCreator

have more confidence than students at the campus using NetBeans. In actual fact, the exam

final mark results prove that even though the students at the campus using JCreator have more

confidence in relation to the students at the campus using NetBeans, the NetBeans students

have managed to grasp the programming better than the JCreator students, thus making

NetBeans a more favourable software to use in understanding OOP concepts and to basically

learn programming. The next section will address the second research sub-question which

addressed the confidence gained in learning OOP concepts during IDE use of the research

study.

4.8.4 Second research sub-question

This sub-question focuses on investigating whether the use of an IDE increases students’

confidence in learning OOP concepts. A detailed discussion of the findings to the second

research sub-question is provided below.

Confidence in Learning Object-Oriented Concepts

Based on the perception-based results, Table 4-14 described how JCreator and NetBeans

increased respondents’ confidence in learning object-oriented programming concepts. The

results show that when it comes to Class Object-Oriented programming concept, more students

using JCreator gained confidence (53%). For the Object-Oriented concepts Encapsulation and

Polymorphism, students gained less confidence with the use of either JCreator or NetBeans.

Although JCreator scored slightly higher than NetBeans in increasing students’ confidence, the

scores were still too low all ranging between 32% – 38%. Thus, it can be safely concluded that

for all object-oriented programming concepts, there was no significant difference between the

uses of JCreator or NetBeans in increasing student respondents’ confidence. The worse

recorded was OOP concepts Encapsulation and Polymorphism. The notion that students from

the campus using JCreator tend to be over-confident as compared to the students using

NetBeans could be pointed to as the reason why the perception-based results depicted in Table

4-14 are like that. Students from the campus using NetBeans need to be highly motivated so

that they can realise the great potential they have when it comes to programming and

- Does the use of a particular IDE increase students’ confidence in learning Object–Oriented

concepts?

4-79

understanding OOP concepts. The fact that majority of the NetBeans campus students are able

to recover from system (IDE) error messages and unexpected outputs as well as scoring high

marks based on the final exam marks, which is over 70%, is evidence enough to show their

great potential.

Table 4-14: Confidence in learning OOP concepts

OOP Concepts JCreator NetBeans

Very Much
(%) Actual no

Very Much
(%)

Actual
no

Class 53 18 19 4

Object 32 11 10 2

Method Overloading 38 13 19 4

Method Overriding 38 13 19 4

Inheritance 38 13 10 2

Encapsulation 18 6 10 2

Polymorphism 15 5 10 2

Student perceptions on JCreator compared to NetBeans

Students from both campuses were asked to rate on the quality of the software installed on their

machines, JCreator or NetBeans. NetBeans scored highest on being easy to use (67%) as

compared to JCreator with 56%. NetBeans also had high scores on software responding on time

(52%), engagement of the software (43%), and on satisfaction that students get using the

software (48%) as shown in table 4-15. This is highly attributed to the fact that students using

NetBeans software had a firm foundation in terms of understanding the basics of programming

and they find it easy to apply the concepts that they learned as compared to the students using

JCreator. When students understand the basic programming from its introductory level they tend

to find it satisfactory to use.

Although below half compared to NetBeans, JCreator scored high in terms of students being in

control of contents of menus & toolbars (44%); able to learn all offered in software (47%);

navigating through menus & toolbars is easy (50%); and finding options in menus & toolbars is

easy (47%).

When it comes to discovering new features; contents of menus & toolbars matching students’

needs, and getting started with the software version is easy, both JCreator and NetBeans are

lowly ranked. In as much as the NetBeans software may be the ideal software to use to

understand OOP concepts, it also has its downside as reflected by the students’ perception-

4-80

based responses on how they are faring with discovering new features, being in control of

contents of menus & toolbars and the other aforementioned features.

Table 4-15: Students’ perception of JCreator compared to NetBeans

JCreator NetBeans

 Statement Agree to Strongly Agree Agree to Strongly Agree

1 Software easy to use 56 67

2
I am in control of contents of
menus & toolbars 44 38

3
I will be able to learn all offered in
software 47 38

4
Navigating through menus &
toolbars is easy 50 33

5 Software is engaging 24 43

6
Contents of menus & toolbars
match my needs 29 38

7
Getting started with the software
version is easy 38 33

8
Finding options in menus &
toolbars is easy 47 24

9 Software responds in time 41 52

10 Discovering new features is easy 24 10

11 Software is satisfying to use 32 48

The following section addresses mistakes and misconception students face.

4-81

4.8.5 Third research sub-question

This sub-question focuses on mistakes and misconceptions students make while using IDEs. A

table below discusses the findings to the third research sub-question.

Common Mistakes

JCreator NetBeans

Findings from the focus group discussions had

most students admitting that they usually make

spelling mistakes. For instance, they misspell Class

names, variables and many others since the IDE

does not correct spellings. They also confuse the

lower and upper case. When compiling, students

make the mistake of running the program and they

find it difficult to stop it. One of the critical errors

stated was that the students fail to create the

correct object. They only try to create it after they

realise that it is needed. The other error is making

all Class variables private. It was also stated that

students find it difficult to debug. On the other hand,

some students admitted that they simply forget

certain things and they feel that they need more

motivation and to remain focused so as to avoid

these mistakes.

 The students reported during focus group

discussions that they do make mistakes when using

IDE. The most commonly cited mistakes include

leaving out commas or sometimes putting a

semicolon instead of a comma. Another common

mistake is using syntax of VB in Java, using the

term or reserved words in an incorrect place. The

students admitted that misunderstanding the

features in IDE often leads them to make mistakes,

for example having exceptions that they do not

understand how they come about. They also cited

that using the command prompt and program

validation are usually challenging.

Mistakes come from misunderstanding IDE features

Generally, the findings show that most students find

it easy to learn using IDE. They acknowledge that

although it can be challenging, it is quite interesting.

IDE requires much attention and one needs to be

willing to explore the tools, controls and features.

Students stated that it would be much easier to

learn using IDE if it could locate and fix errors.

The focus group discussions confirmed that most of

the mistakes done by students come from

misunderstanding IDE features as stated by 57% of

the students. 43% refuted that their mistakes

emanate from misunderstanding IDE features.

- What are the most common mistakes and misconceptions students make during program development

in a particular IDE?

4-82

The mistakes stated by students from both campuses do not suggest usability problems in IDEs,

but they show an outcry that students need to be motivated to grasp basic programming

concepts. Certain activities, for instance spelling mistakes and forgetting to put commas and

other commands where they are necessary, show that the students are not dedicating much of

their time to make an effort to grasp the vital skills. However, on the other side, the IDEs must at

least have in-build capabilities to at least try to limit the number of mistakes and errors that

students make while using the software packages. The next section provides an analysis from

the experts lecturing Object-Oriented concepts in Java.

4.9 Expert review

4.9.1 Understanding object-oriented concepts using NetBeans

The research went further to interview the lecturers (experts) on how students are faring with

understanding the Object-Oriented concepts. The findings show that 67% of the experts stated

that students find it easy to very easy to understand Class, Method Overloading and Method

Overriding. Only 33% reported that they find it easy to very easy to understand Object, the

remaining 67% find it moderate.

Only 33% of the lecturers stated that students find it somewhat hard to understand OOP

concepts such as Class, Inheritance and Polymorphism. Most of the lecturers (67%) interviewed

acknowledged that Encapsulation is difficult to very difficult to understand. The remaining 33%

respectively cited Method Overloading, Method Overriding, Inheritance and Polymorphism as

being difficult to very difficult to understand as depicted in Figure 4-32.

4-83

Figure 4-32: Understanding OOP concepts from experts

4.9.2 Recovering from errors and common mistakes using IDEs

The lecturers admitted that it is not easy to recover from system (IDE) errors with 33% stating

that it is moderate and 33% reporting that it is somewhat hard. Only 33% reported that it is easy

to recover from system (IDE) errors.

Table 4-16: Recovering from unexpected output

System (IDE) error messages Total

Easy 33%

Moderate 33%

Somewhat hard 33%

Grand Total 99%

Most of the lecturers (67%) who responded to the questionnaire stated that they find it easy to

very easy to recover when output is not the result expected, and only 33% stated that it is

moderate.

4.9.3 Difficult tasks to accomplish in JCreator

The lecturers highlighted Inheritance and testing classes as some of the most difficult tasks to

accomplish when using IDE.

4-84

The findings from the experts do not tally with students’ perceptions. This symbolises a different

level of understanding by experts and students. The observation made by lecturers carries more

weight as these are the people with more knowledge in the field.

4.9.4 Comments

IDEs like NetBeans help students identify syntax errors, assist students in construction of code

segments and visual forms designer. The lecturers emphasised that programming requires

practicing and comprehensive approach whether it is on structures or object-oriented. They

further advised that it is important for students to experience an active learning environment

which is a result of pedagogical shifts, learning and authentic problem alignments. This curbs the

fact that similar features are not always understood by students.

4.10 Summary

In this chapter the results from the interview schedule, questionnaire, test and exam marks were

analysed and discussed. These results were compared to the findings of the critically reviewed

literature to find out whether the results of the primary data are consistent with the explanations

of the findings. This was achieved through inductive analysis and the results of the primary data

are found to be consistent with some of the explanations.

The next chapter (Chapter 5) gives a full summary of the research findings and its contribution.

5-85

CHAPTER FIVE : CONCLUSION

5.1 Introduction

The aim of this research has been to contribute towards the teaching and learning of OOP

concepts by interpreting the usability of an interactive Object-Oriented programming (OOP)

development environment for teaching and learning of Java programming language that

enhances OOP comprehension through quality of use. To accomplish the previously stated goal,

the thesis adopted a single case strategy to analyse in detail the factors that influence OOP

concepts comprehension. It is argued that some students are incapable of fully understanding

and utilising the feature set of Integrated Development Environments (IDEs), thus affecting the

comprehension of OOP concepts.

5.2 Overview of the research

The preceding chapters consist of a comprehensive introduction of the study, reviewed

literature, research methodology, findings and interpretations of data were discussed. The

identified problem and main objective of this study are explained in Chapter 1. Chapter 2

provides a thorough investigation into the nature of teaching and learning of object-oriented

programming. This was achieved by first outlining difficulties of learning computer programming;

this was further supported by looking at the Object-Oriented paradigm and thereafter

highlighting on student cognition with regard to their behaviour and conceptualisation of

concepts. Secondly, the various programming tools and specific IDEs were explored. Lastly, a

discussion on ISO 9126 as a framework to evaluate the quality of use of IDEs was deliberated.

These deliberations led to the formulation of a problem conceptualisation diagram on which this

research was concentrated. The procedures carried out in collecting the data are presented in

the research methodology in Chapter 3. Chapter 4 presented the findings, data analysis and

interpretation obtained from the questionnaire and interview schedule conducted on students

and experts. The interpretations of the student perceptions were further compared with the tests

and exam results in an effort to have an objective overview of students’ performance.

All these chapters have assisted in addressing the main objective of this study which is to

examine the perceptions of students on interactive environments for teaching Object-Oriented

concepts using the Java programming language in two integrated development environments.

5-86

This chapter concludes the research effort by analysing how each chapter has contributed

towards addressing the research questions. The next section continues with the discussion of

the research contributions and their implications. The contribution of the study is assessed using

criteria formulated by Whetten (1989). The final section discusses opportunities for further

research.

5.3 Research contributions

This section reviews the theoretical, the methodological and the practical contributions of the

research.

5.3.1 Theoretical Contributions

The ISO 9126 model was used in this study in order to evaluate software quality of use. ISO

9126 is defined by six software quality characteristics: functionality, reliability, effectiveness,

usability, maintainability, portability and 22 sub-characteristics. However, to test student usage

of IDEs and appreciation of OOP concepts, only four characteristics and twelve sub-

characteristics were tested on two IDEs. This consisted of selecting generic external system

quality characteristics and sub-characteristics that fit student evaluation of an IDE. The

proposed model was applied on NetBeans and JCreator LE 5.0 as IDEs that are used for the

development of Java programs using OOP concepts. This study has proven that applying

selected characteristics and sub-characteristics of the ISO 9126 theoretical model can be used

to ascertain and evaluate software only in certain areas of interest that benefit the user. A brief

discussion including primary data used to validate the model is provided in the research

methodological contribution section below.

5.3.2 Methodological Contributions

This study employed the mixed method approach for collecting and analysing data. The

research philosophies and research methodologies followed in this study combined both

positivistic and phenomenological approaches. These philosophies contributed to gathering the

information required. A large part of the work focused on the intended users using a single

case analysis. This was conducted on two groups of students doing Java programming at

second year Computer Studies (CS2) on two different campuses at the selected University. The

integration of these two paradigms provided a broader context to the students’ perceptions and

a better understanding of the different angles in which the research problem was handled. The

5-87

model was validated by collecting in-depth primary data through questionnaires, semi-

structured interviews with 34 students using JCreator, 21 students using NetBeans, and 3

experts in Java programming; their responses were compared to the common tests and exam

students had written and supported by literature. This study used an Excel spreadsheet to

present the data numerically and graphically. It followed an inductive approach to analyse the

collected data so as to discover whether theoretical explanations of literature support or oppose

the findings of primary data. It was found that the findings of primary data are consistent with

the literature findings. The study focused on a detailed understanding of a specific environment

and groups from the selected University and may look to offer generalisable knowledge to other

similar settings. The next section gives a detailed discussion of the practical contributions which

are core to this research.

5.3.3 Practical Contributions

5.3.3.1 JCreator IDE software

Generally, students find it easy to use JCreator software, with females recording the highest.

The results indicate that females aged 18 to 21 easily understand and grasp concepts and as

they grow older the level of understanding drops. Conversely, males perform better when they

are in the age group category of 22 – 25. Students who had previous programming experience

tend to perform better than other students with no programming experience.

The study found that generally students understand most of the OOP concepts, especially

Class, Object, Method Overloading, Method Overriding and Inheritance. A good understanding

of Object tends to give the student a good potential to carry out most tasks.

The study realised that students struggle to understand Encapsulation and Polymorphism. The

fact that JCreator does not fully build confidence for students to understand most of the OOP

concepts could be the reason why most students find it difficult to fix errors and to recover from

unexpected movements.

The results indicate that the use of IDEs does not guarantee that students will be able to fully

understand OOP concepts. Moreover, students struggle to save multiple files of classes and

solving exceptions as well as Polymorphism.

The fact that students do not fully understand the JCreator software leads them to believe that

5-88

JCreator IDE is more theoretical and difficult to be practically implemented in the real world. In

as much as students stated that they do not find much satisfaction in using JCreator, the study

found that JCreator has great potential to capacitate students to comprehend programming and

moreover understand OOP concepts as almost half of the students acknowledged that if

properly mentored, they will be able to use all that the software has to offer.

It would appear that poor understanding of the basics of programming tends to de-motivate

students, thus strategies need to be in place on how to boost student motivation. The idea of

pairing students when programming may enhance the quality of their programs and encourage

them to pursue programming further. More efforts need to be effected to further motivate

students to unlock their potential and sharpen their skills of comprehension and memorisation

abilities which are crucial to programming.

5.3.3.2 NetBeans IDE software

The study found that students find it easy to use the NetBeans software with 100% females and

56% males’ acknowledgement. The age group category did not seem to have any effect on the

rate of understanding of NetBeans IDE software. The timeframe of programming had a direct

effect on how the students faired using the NetBeans software with students with more than one

year of programming experience reporting that they find NetBeans software easy to understand.

NetBeans had most students acknowledging that they find it easy to understand most OOP

concepts except Polymorphism. On the other hand, it can be concluded that even the timeframe

of programming have no influence on boosting the confidence gained in understanding OOP

concepts. More practice and enthusiasm to use the NetBeans software is recommended to

boost student confidence.

More than half of the students find it easy to recover from system (IDE) error messages and the

majority find it moderate to recover from unexpected output. The study findings also affirmed

with most scholars that in addition to paired programming, it is vital for students to do

programming by themselves while they are learning (Lahtinen et al., 2005).

Misunderstanding the features in IDE often leads students to make mistakes, for example

having exceptions that they do not understand how they come about. Mistakes strongly suggest

that students do not dedicate a lot of time to programming and they need to develop interest

and determination.

5-89

Very few students find the NetBeans software satisfying to use and they also find it difficult to

complete tasks. This may be attributed to the fact that the contents of menus and toolbars do

not match the students’ needs. In addition, the study also shows that only a few students will be

able to fully learn all that is offered in NetBeans. Although the NetBeans software responds on

time, it needs to be tailored more to suit students’ expectations and more independent learning

may assist to increase the student level of understanding the program. Students feel motivated

to learn OOP using Java when they are working on tasks that they can easily visualise the

outcomes for, for instance games.

5.3.3.3 Summary of practical contributions

The results derived from the study showed that the use of JCreator or NetBeans by student

respondents in understanding the object-oriented concepts of Class and Object do not appear

to differ. Both campuses using JCreator or NetBeans do not seem to assist students to better

understand Encapsulation and Polymorphism OOP concepts.

Most students find it easy to recover from system (IDE) error messages using NetBeans unlike

in JCreator. Recovering from wrong output unexpectedly was recorded to be difficult using

JCreator or NetBeans software.

More students using JCreator admitted that they are able to complete tasks as compared to the

students using NetBeans. Although JCreator scored slightly higher than NetBeans in increasing

students’ confidence, the scores were still too low. Thus, it can be safely concluded that for all

object-oriented programming concepts, there was no significant difference between the uses of

JCreator or NetBeans in increasing student respondents’ confidence. The worse recorded was

OOP concepts Encapsulation and Polymorphism.

NetBeans scored highest on being easy to use as compared to JCreator. NetBeans also had

high scores on software responding on time, engagement of the software and on satisfaction

that students get using the software. When it comes to discovering new features; contents of

menus & toolbars matching students’ needs, and getting started with the software version is

easy, both JCreator and NetBeans are lowly ranked.

The study findings are a bit conflicting as the students’ perception results show that JCreator is

much better to use as programming IDE and the student test and exam marks show that

5-90

NetBeans is easier as most students using NetBeans had better results compared to students

that use JCreator.

The study concludes that quality of use of an IDE increases the confidence in students to learn

Object-Oriented concepts. In this study NetBeans is better programming software based on the

class tests and exam results as the results give an objective picture of how students fared. The

perception findings point out that NetBeans scored highest on being easy to use (67%) as

compared to JCreator (56%). Moreover, 57% of the students using NetBeans acknowledge that

it is easy to recover from system (IDE) error messages compared to JCreator with only 44%.

This signifies that students using NetBeans have a better understanding of the software

compared to students using JCreator as they struggle to recover from system (IDE) error

messages. Inasmuch as perceptions are important, they tend to be subjective. However, further

work needs to done on various IDEs to accommodate other programming environments to show

how they enhance Object-Oriented concepts comprehension in students learning to program in

Java.

In the next section, the contributions in this research are assessed.

5.3.4 Assessing the contributions

Whetten (1989) identified four aspects to be taken into account as part of an assessment of the

contribution made by a research study to the body of knowledge in the particular field. These

are as follows:

1. What? What factors and concepts should be included as part of the explanation of the

contribution? This involves the inclusion of all relevant factors and parsimony. However,

it excludes those factors that have little role to play in improving the understanding of the

contribution.

2. How? Subsequent to the identification of the factors and concepts which are part of the

contributions, the researcher should reflect on how these factors are interrelated.

3. Why? Why select certain factors? That is, what are the underlying assumptions of the

theory or model? This means that the logic of the proposed conceptualisation should be

of interest to other researchers.

4. Who, where and when? These enquiries define the boundaries for generalisation.

5-91

Given Whetten’s (1989) framework for the assessment of the contribution of this research, the

following questions are asked to help assess the contribution.

What is new? What is new in this research study which makes a significant contribution to
current thinking?

This study has contributed in the following ways: Firstly, the relevant literature was

reviewed that pertains to students’ difficulties in understanding OOP concepts. This was

supported by rereading the cognitive skills which affects knowledge retention in a

student. Examining various programming tools with their characteristics and how they

help a student to program OOP concepts was also a major contribution.

Secondly, the contribution gives an insight into the single case study by looking at

students’ perception towards programming OOP concepts in this environment. It shows

that poor understanding of the basics of programming tends to de-motivate students,

thus strategies need to be in place on how to boost student motivation. This study also

contributes by suggesting the idea of pairing students when programming to enhance the

quality of their programs and encourage them to pursue programming further. More

efforts need to be effected to further motivate students to unlock their potential and

sharpen their skills of comprehension and memorisation abilities which are crucial to

programming.

Lastly but not the least, the contribution lies in the application of the ISO 9126 model to

evaluate software quality of use and the role software (IDE) play to encourage students

to program. However, the ability of a student to use a certain IDE effectively does not

portray their true knowledge of OOP concepts comprehension. This is because students

who had difficulty in using the software had better exam results.

So what? Is the theory likely to change in the way teaching and learning of OOP

concepts with particular IDEs?

Relying on the understanding that proper use of IDEs can encourage students to

program and understand OOP concepts could be coupled with the fact better motivated

students make good programmers. Thus carefully analysing the findings of this study and

applying them in a learning environment would improve the way OOP concepts teaching

5-92

and learning is perceived.

How so? Are the underlying logic and supporting evidence compelling?

Chapter 1 reviewed the research problem from various angles, It outlined students’

inability to fully utilise IDEs and further stated with supporting evidence how students fail

to interpret the errors messages from their program compilation. This also makes them

not to relate the real-life experience with programming. In Chapter 2 the context of

existing literature on OOP comprehension was presented. In Chapter 3 different research

approaches were also discussed. This led to the choice of the interpretive approach and

case study strategy to conduct this study. In Chapter 4 the findings from the data

collected were analysed and interpreted. The contribution of this study in Chapter 5 was

therefore derived from this solid base of evidence.

How well does the research work reflect seasoned thinking, convey completeness and

thoroughness?

The research problem, as well as the results of the case studies, was viewed from different

angles using triangulation. This included students’ perceptions, expert reviews, student tests and

exam results. The various research approaches were discussed in Chapter 3 and the

interpretation of the results was undertaken from multiple perspectives in Chapter 4. The last

chapter of the thesis is used to review the research, and, in particular, the contributions made by

the research study. This indicates thoroughness and reflection on the part of the researcher.

How well is the thesis written? Does it flow logically? Are the central ideas easily

accessed?

In Chapter 1 the thesis was introduced, followed by detailed background information to the

research problem. Chapter 2 further supported Chapter 1 by examining the current findings in

the literature that relates to the teaching and learning of OOP concepts. This chapter led to a

research gap and various research variables were identified. Throughout the thesis, the central

theme of the thesis was in focus. Research approaches were then discussed in Chapter 3 where

a single case study was found more benefiting for this type research. After data was devised

from the research approaches used, Chapter 4 gave a detailed interpretation of the data. The

5-93

interpreted data provided the contributions given in Chapter 5. The Table of Contents and the

Glossary allow for easy access to the central ideas.

Why now? Why is this topic of contemporary interest to scholars and practitioners in this area?

The current throughput of good programmers from universities has been disappointing. It

is due to this fact that measures are taken to ensure the industry that is in need of well-

groomed programmers capable of solving real world programs is catered for.

Who cares? Who amongst academia would be interested in this topic?

This research is of much interest to students currently learning to program in OOP concepts.

Besides the researcher, it also applies to institutions that are willing to restructure and improve

on the existing curriculum in learning OOP concepts. This also highly benefits lecturers that are

currently teaching programming.

5.4 Direction for future research

Further research can be undertaken to explore more factors that can improve student cognition

towards learning OOP concepts. In addition, research might also explore the relationships

between various teaching practices in the classroom and how it supports assimilation of OOP

concepts by students.

5-94

REFERENCES

Ala-Mutka, K., 2012. Problems in Learning and Teaching Programming. Codewitz Needs Anal.

Allert, J., 2004. Learning Style and Factors Contributing to Success in an Introductory Computer

Science Course. IEEE, pp. 385–389. doi:10.1109/ICALT.2004.1357442

Alrawashdeh, T.A., Muhairat, M., Althunibat, A., 2013. Evaluating the quality of software in erp

systems using the iso 9126 model. Int. J. Ambient Syst. Appl. IJASA 1, 1–9.

Altinay, L., Paraskevas, A., 2008. Planning Research in Hospitality and Tourism. Routledge.

Baxter, P., Jack, S., 2008. Qualitative Case Study Methodology: Study Design and

Implementation for Novice Researchers. Qual. Rep. 13, 544–559.

Bennedsen, J., Caspersen, M.E., 2007. Failure Rates in Introductory Programming. ACM

SIGCSE Bull. 39, 32–36.

Bodemer, D., Ploetzner, R., Feuerlein, I., Spada, H., 2004. The Active Integration of Information

During Learning with Dynamic and Interactive Visualisations. Learn. Instr. 14, 325–341.

doi:10.1016/j.learninstruc.2004.06.006

Börstler, J., Bruce, K., Michiels, I., 2003. Sixth Workshop on Pedagogies and Tools for Learning

Object Oriented Concepts, in: ECOOP. pp. 84–87.

Bryman, A., 2012. Social research methods, 4th ed. ed. Oxford University Press, Oxford; New

York.

Byrne, P., Lyons, G., 2001. The Effect of Student Attributes on Success in Programming, in:

ACM SIGCSE Bulletin. ACM, pp. 49–52.

Carlisle, M.C., 2009. Raptor: A Visual Programming Environment for Teaching Object-Oriented

Programming. J. Comput. Sci. Coll. 24, 275–281.

Caspersen, M.E., Bennedsen, J., 2007. Instructional Design of a Programming Course: A

Learning Theoretic Approach, in: Proceedings of the Third International Workshop on

Computing Education Research. ACM, pp. 111–122.

Chege, F.N., Likoye, F., Nyambura, S., Guantai, H.K., 2013. Declining Boys’ Participation and

Performance in Kenyan Schools: Are Girls’ Education Projects Influencing New Forms of

Masculinities? CICE 叢書 5 Afr.-Asia Univ. Dialogue Educ. Dev. Final Rep. Phase II Res.

Results1 Gend. Equity 1–17.

Cohen, L., Manion, L., Morrison, K., 2007. Research Methods in Education, 6 edition. ed.

Routledge, London; New York.

Creswell, J.W., 2012. Educational Research: Planning, Conducting, and Evaluating Quantitative

and Qualitative Research, 4th ed. ed. Pearson, Boston.

5-95

Creswell, J.W., 2009. Research Design: Qualitative, Quantitative, & Mixed Methods Approaches,

3rd Edition, Inc.,2009. ed. Sag Publications.

Creswell, J.W., 2008. Research Design: Qualitative, Quantitative, and Mixed Methods

Approaches, 3rd edition. ed. SAGE Publications, Inc, Thousand Oaks, Calif.

Creswell, J.W., 2007. Qualitative inquiry & research design: choosing among five approaches,

2nd ed. ed. Sage Publications, Thousand Oaks.

DeLine, R., Rowan, K., 2010. Code Canvas: Zooming Towards Better Development

Environments, in: Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering-Volume 2. ACM, pp. 207–210.

Denny, P., Luxton-Reilly, A., Carpenter, D., 2014. Enhancing Syntax Error Messages Appears

Ineffectual. ACM Press, pp. 273–278. doi:10.1145/2591708.2591748

Dominick, R.D.W. and J.R., 2006. Mass Media Research: An Introduction, Eighth Edition edition.

ed. Thomson, Beijing.

Eckerdal, A., 2009. Novice Programming Students’ Learning of Concepts and Practise.

Eckerdal, A., Thuné, M., Berglund, A., 2005. What Does It Take to Learn’programming

Thinking’?, in: Proceedings of the First International Workshop on Computing Education

Research. ACM, pp. 135–142.

Field, A., 2005. Discovering Statistics Using SPSS, Second Edition. ed. Sage Publications Ltd,

London.

Flick, U., 2007. Managing Quality in Qualitative Research, The sage qualitative research kit.

Sage Publications, Thousand Oaks, CA.

Flowers, P. (2009a). Research Philosophies Importance and Relevance, MSC Research
Leading. Learning and Change, Cranfield School of Management: Issue 1

Flowers, P. (2009b). Research Philosophies Importance and Relevance, MSC Research
Leading. Learning and Change, Cranfield School of Management: Issue 1

Gaspar, A., Langevin, S., 2012. An Experience Report on Improving Constructive Alignment in

an Introduction to Programming. J. Comput. Sci. Coll. 28, 132–140.

Ghanim, S.A., Al-khafaji, N.J., 2014. Using the Literature to Develop a Preliminary Conceptual

Model for the Student Success Factors in a Programming Course: Java as a Case Study.

Gomes, A., Mendes, A.J., 2007a. Learning to Program-Difficulties and Solutions, in: International

Conference on Engineering Education–ICEE.

Gomes, A., Mendes, A.J., 2007b. An Environment to Improve Programming Education, in:

Proceedings of the 2007 International Conference on Computer Systems and

Technologies. ACM, p. 88.

5-96

Goosen, L., Pieterse, V., 2005. Students Perceptions of Learning Object-Oriented Programming.

Granell, X., 2014. Multilingual Information Management: Information, Technology and

Translators. Chandos Publishing.

Gray, D.E., 2013. Doing Research in the Real World. Sage.

Hartmann, B., MacDougall, D., Brandt, J., Klemmer, S.R., 2010. What Would Other

Programmers Do: Suggesting Solutions to Error Messages, in: Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems. ACM, pp. 1019–1028.

Hertz, M., 2010. What Do CS1 and CS2 Mean?: Investigating Differences in the Early Courses,

in: Proceedings of the 41st ACM Technical Symposium on Computer Science Education.

ACM, pp. 199–203.

IBM, 2006. Eclipse Platform Technical Overview [WWW Document]. URL

https://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-

whitepaper.html#figure3 (accessed 11.8.14).

Kanellopoulos, Y., Antonellis, P., Antoniou, D., Makris, C., Theodoridis, E., Tjortjis, C., Tsirakis,

N., 2010. Code Quality Evaluation Methodology Using the ISO/Iec 9126 Standard. Int. J.

Softw. Eng. Appl. 1, 17–36. doi:10.5121/ijsea.2010.1302

Kasurinen, J., Purmonen, M., Nikula, U., 2008. A Study of Visualization in Introductory

Programming, in: Proc. 20th Annual Meeting of Psychology of Programming Interest

Group, Lancaster, UK.

Kaucic, B., Asic, T., 2011. Improving Introductory Programming with Scratch?, in: MIPRO, 2011

Proceedings of the 34th International Convention. IEEE, pp. 1095–1100.

Kerlinger, F.N., 1986. Foundations of Behavioral Research, 3rd ed. Rinehart and Winston, New

York,Holt.

Kinnunen, P., Malmi, L., 2006. Why Students Drop Out Cs1 Course?, in: Proceedings of the

Second International Workshop on Computing Education Research. ACM, pp. 97–108.

Kölling, M., Quig, B., Patterson, A., Rosenberg, J., 2003. The Bluej System and Its Pedagogy.

Comput. Sci. Educ. 13, 249–268.

Kumar, R., 2005. Research methodology: a step-by-step guide for beginners, 2nd ed. ed. SAGE,

London ; Thousand Oaks, Calif.

KydiamS, 2012. Statistics on Visual Learners - College Essay - Kydiams [WWW Document].

StudyMode. URL http://www.studymode.com/essays/Statistics-On-Visual-Learners-

1211593.html (accessed 2.2.14).

Lahtinen, E., Ala-Mutka, K., Järvinen, H.-M., 2005. A Study of the Difficulties of Novice

Programmers, in: ACM SIGCSE Bulletin. ACM, pp. 14–18.

5-97

Lee, M.J., Ko, A.J., 2011. Personifying Programming Tool Feedback Improves Novice

Programmers’ Learning, in: Proceedings of the Seventh International Workshop on

Computing Education Research. ACM, pp. 109–116.

Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R.,

Moström, J.E., Sanders, K., Seppälä, O., others, 2004. A Multi-National Study of Reading

and Tracing Skills in Novice Programmers. ACM SIGCSE Bull. 36, 119–150.

McDowell, C., Werner, L., Bullock, H.E., Fernald, J., 2003. The Impact of Pair Programming on

Student Performance, Perception and Persistence, in: Proceedings of the 25th

International Conference on Software Engineering. IEEE Computer Society, pp. 602–

607.

McLeod, S., 2014. Structured and Unstructured Interviews | Simply Psychology [WWW

Document]. URL http://www.simplypsychology.org/interviews.html (accessed 2.11.15).

Mouton, J., 1996. Understanding Social Research, 1st ed., 3rd. impression. ed. Van Schaik

Publishers, Pretoria.

Murphy, L., Fitzgerald, S., Hanks, B., McCauley, R., 2010. Pair Debugging: A Transactive

Discourse Analysis, in: Proceedings of the Sixth International Workshop on Computing

Education Research. ACM, pp. 51–58.

Nienaltowski, M.-H., Pedroni, M., Meyer, B., 2008. Compiler Error Messages: What Can Help

Novices?, in: ACM SIGCSE Bulletin. ACM, pp. 168–172.

Oates, B.J., 2005. Researching Information Systems and Computing, 1 edition. ed. SAGE

Publications Ltd, London ; Thousand Oaks, Calif.

Olivero, F., Lanza, M., D’Ambros, M., Robbes, R., 2011. Enabling Program Comprehension

Through a Visual Object-Focused Development Environment, in: Visual Languages and

Human-Centric Computing (vl/Hcc), 2011 Ieee Symposium On. IEEE, pp. 127–134.

ORACLE, 2013. NetBeans IDE - Overview [WWW Document]. URL

https://netbeans.org/features/index.html (accessed 11.13.14).

Or-Bach, R., Lavy, I., 2004. Cognitive Activities of Abstraction in Object Orientation: An Empirical

Study. ACM SIGCSE Bull. 36, 82–86.

Padayachee, I., Kotze, P., van Der Merwe, A., 2010. Iso 9126 External Systems Quality

Characteristics, Sub-Characteristics and Domain Specific Criteria for Evaluating E-

Learning Systems. South. Afr. Comput. Lect. Assoc. Univ. Pretoria South Afr.

Parnin, C., Rugaber, S., 2012. Programmer Information Needs After Memory Failure, in:

Program Comprehension (Icpc), 2012 Ieee 20th International Conference On. IEEE, pp.

123–132.

5-98

Porter, S., 2003. The A-Z of Social Research. SAGE Publications, Ltd, 1 Oliver’s Yard, 55 City

Road, London England EC1Y 1SP United Kingdom.

Ragonis, N., Ben-Ari, M., 2005. On Understanding the Statics and Dynamics of Object-Oriented

Programs, in: ACM SIGCSE Bulletin. ACM, pp. 226–230.

Rogerson, C., Scott, E., 2010. The Fear Factor: How It Affects Students Learning to Program in

a Tertiary Environment. J. Inf. Technol. Educ. Res. 9, 147–171.

Rouse, M., 2007. What Is Integrated Development Environment (ide)? - Definition from

Whatis.com [WWW Document]. URL

http://searchsoftwarequality.techtarget.com/definition/integrated-development-

environment (accessed 11.8.14).

Ryan, MA, K., Filene, MPH, J., 2012. Selecting Appropriate Single Case Designs for Evaluating

Miechv Funded Home Visiting Programs March 2012.

Salkind, N.J., 2012. 100 questions (and answers) about research methods. SAGE Publications.

Salman, A., 2010. Advantages and Disadvantages of Using IDE. Consult. Knowl. Base.

Samantha Magwashu, 2013. 20 Years into Democracy but Still a Huge Difference Between

“model C” and Public Schools. wsusna.

Saunders, M., Lewis, P., Thornhill, A., 2009. Research Methods for Business Students. Prentice

Hall, New York.

Seffah, A., Donyaee, M., Kline, R.B., Padda, H.K., 2006. Usability measurement and metrics: A

consolidated model. Softw. Qual. J. 14, 159–178. doi:10.1007/s11219-006-7600-8

Segedy, J.R., Loretz, K.M., Biswas, G., 2013. Model-Driven Assessment of Learners in Open-

Ended Learning Environments, in: Proceedings of the Third International Conference on

Learning Analytics and Knowledge. ACM, pp. 200–204.

Settle, A., Vihavainen, A., Sorva, J., 2014. Three Views on Motivation and Programming. ACM

Press, pp. 321–322. doi:10.1145/2591708.2591709

Sheard, J., Carbone, A., Chinn, D., Clear, T., Corney, M., D’Souza, D., Fenwick, J., Harland, J.,

Laakso, M.-J., Teague, D., others, 2013. How Difficult Are Exams?: A Framework for

Assessing the Complexity of Introductory Programming Exams, in: Proceedings of the

Fifteenth Australasian Computing Education Conference-Volume 136. Australian

Computer Society, Inc., pp. 145–154.

Sicilia, M.-Á., 2006. Strategies for Teaching Object-Oriented Concepts with Java. Comput. Sci.

Educ. 16, 1–18.

Simons, H., 2009. Case Study Research in Practice. SAGE Publications Ltd, Los Angeles ;

London.

5-99

Sirkiä, T., Sorva, J., 2012. Exploring Programming Misconceptions: An Analysis of Student

Mistakes in Visual Program Simulation Exercises, in: Proceedings of the 12th Koli Calling

International Conference on Computing Education Research. ACM, pp. 19–28.

Sorva, J., 2013. Notional Machines and Introductory Programming Education. ACM Trans.

Comput. Educ. 13, 1–31. doi:10.1145/2483710.2483713

Stamouli, I., Huggard, M., 2006. Object Oriented Programming and Program Correctness: The

Students’ Perspective, in: Proceedings of the Second International Workshop on

Computing Education Research. ACM, pp. 109–118.

Storey, M.-A., 2005. Theories, Methods and Tools in Program Comprehension: Past, Present

and Future, in: Program Comprehension, 2005. IWPC 2005. Proceedings. 13th

International Workshop On. IEEE, pp. 181–191.

Tan, P.-H., Ting, C.-Y., Ling, S.-W., 2009a. Learning Difficulties in Programming Courses:

Undergraduates’ Perspective and Perception. IEEE, pp. 42–46.

doi:10.1109/ICCTD.2009.188

Tan, P.-H., Ting, C.-Y., Ling, S.-W., 2009b. Learning Difficulties in Programming Courses:

Undergraduates’ Perspective and Perception. IEEE, pp. 42–46.

doi:10.1109/ICCTD.2009.188

Techopedia, 2014. What Is an Integrated Development Environment (ide)? - Definition from

Techopedia [WWW Document]. Techopedia.com. URL

http://www.techopedia.com/definition/26860/integrated-development-environment-ide

(accessed 3.25.14).

Thyer, B.A., 1993. The Handbook of Social Work Research Methods. SAGE Publications, Inc.,

2455 Teller Road, Thousand Oaks California 91320 United States of America.

Van Haaster, K., Hagan, D., 2004. Teaching and Learning with Bluej: An Evaluation of a

Pedagogical Tool, in: Information Science+ Information Technology Education Joint

Conference, Rockhampton, QLD, Australia.

Vihavainen, A., Paksula, M., Luukkainen, M., 2011. Extreme Apprenticeship Method in Teaching

Programming for Beginners. Association for Computing Machinery, New York, N.Y.

Wahid, A., Mustafa, K., Khan, R.A., 2008. Wbis for Computer Programming., in: CSREA EEE.

pp. 413–419.

Walsham, G., 2006. Doing Interpretive Research. Eur. J. Inf. Syst. 15, 320–330.

doi:10.1057/palgrave.ejis.3000589

Watson, C., Li, F.W.B., 2014. Failure Rates in Introductory Programming Revisited. ACM Press,

pp. 39–44. doi:10.1145/2591708.2591749

5-100

Whalley, J.L., Lister, R., Thompson, E., Clear, T., Robbins, P., Kumar, P.K., Prasad, C., 2006.

An Australasian Study of Reading and Comprehension Skills in Novice Programmers,

Using the Bloom and Solo Taxonomies, in: Proceedings of the 8th Australasian

Conference on Computing Education-Volume 52. Australian Computer Society, Inc., pp.

243–252.

Whetten, D.A., 1989. What Constitutes a Theoretical Contribution? Acad. Manage. Rev. 14,

490–495.

Xinogalos, S., 2012. Programming Techniques and Environments in a Technology Management

Department, in: Proceedings of the Fifth Balkan Conference in Informatics. ACM, pp.

136–141.

Xinogalos, S., 2009. Guidelines for Designing and Teaching an Effective Object-Oriented Design

and Programming Course, in: Hijon-Neira, R. (Ed.), Advanced Learning. InTech.

Xinox Software, 2010. JCreator — Java Ide [WWW Document]. URL

http://www.jcreator.com/about.htm#a6 (accessed 11.13.14).

Zeiss, B., Vega, D., Schieferdecker, I., Neukirchen, H., Grabowski, J., 2007. Applying the ISO

9126 Quality Model to Test Specifications. Softw. Eng. 231–242.

5-101

APPENDICES

APPENDIX A: Questionnaire NetBeans IDE

Specific questions. Section A (participant’s profile)

1. Name………………………………………………………………………….. (Optional)

2. To which age category do you belong to?

 Less than 18
18 - 21

 22 - 25
 26 - 30
 31 -35
 35 +

3. Gender:

Male
Female

4. How long have you been programming?

None at all
Less than 1year
More than 1 year

5. What programming languages have you used before?

5-102

NetBeans

Section A: Specific questions to be completed during and/or after software use

1. In this section, answer to your satisfaction of the IDE indicated.

a) With respect to the version of NetBeans currently installed on your machine, please

indicate the extent to which you agree or disagree with the following statements:

This software is easy to use. 1 2 3 4 5

I am in control of the contents of the menus

and toolbars.

1 2 3 4 5

I will be able to learn how to use all that is

offered in this software.

1 2 3 4 5

Navigating through the menus and toolbars

is easy to do.

1 2 3 4 5

This software is engaging. 1 2 3 4 5

The contents of the menus and the toolbars

match my needs.

1 2 3 4 5

Getting started with this version of the

software is easy.

1 2 3 4 5

Finding the options that I want in the menus

and toolbars is easy.

1 2 3 4 5

The software responds in time. 1 2 3 4 5

Discovering new features is easy. 1 2 3 4 5

This software is satisfying to use. 1 2 3 4 5

1=Strongly Disagree

2=Disagree

3=Neutral

4=Agree

5= Strongly Agree

5-103

Section B:Please rate the following statements

Statement
s

Very easy

(1)

Easy

(2)

Moderate

(3)

Somewhat
hard
(4)

Difficul
t

(5)

Very
difficult

(6)

How easy is it to use
NetBeans in completing
your tasks?

How easy is it to use
NetBeans in
understanding the
following object-oriented
concepts?

Class

Object

Method Overloading

Method Overriding

Inheritance

Encapsulation

Polymorphism

How easy is it to recover
from the following in
NetBeans?

 System (IDE) error
messages

Output(animation) is not
the movement you
expected

5-104

Statements

Not at

all
(1)

Somewhat

(2)

Moderately

(3)

Quite a

bit
(4)

Very much

(5)

How much has NetBeans
increased your confidence
in learning the following
Object-Oriented
Concepts?

Class

Object

Method Overloading

Method Overriding

Inheritance

Encapsulation

Polymorphism

Section C:Please complete the following sentences.

1. Can you relate between a Class and an Object in NetBeans (Yes/No)? ………..

2. What is the most difficult task to accomplish in NetBeans?……………………….

3. Comments

--
--
--
--
--
--
--
--

5-105

APPENDIX B: Questionnaire JCreator IDE

Specific questions. Section A (participant’s profile)

1. Name………………………………………………………………………….. (Optional)

2. To which age category do you belong to?

 Less than 18
18 - 21

 22 - 25
 26 - 30
 31 -35
 35 +

3. Gender:

Male
Female

4. How long have you been programming?

None at all
Less than 1year
More than 1 year

5. What programming languages have you used before?

5-106

JCreator LE 5.0

Section A: Specific questions to be completed during and/or after software use

1. In this section, answer to your satisfaction of the IDE indicated.

b) With respect to the version of JCreator LE currently installed on your machine, please

indicate the extent to which you agree or disagree with the following statements:

This software is easy to use. 1 2 3 4 5

I am in control of the contents of the menus

and toolbars.

1 2 3 4 5

I will be able to learn how to use all that is

offered in this software.

1 2 3 4 5

Navigating through the menus and toolbars

is easy to do.

1 2 3 4 5

This software is engaging. 1 2 3 4 5

The contents of the menus and the toolbars

match my needs.

1 2 3 4 5

Getting started with this version of the

software is easy.

1 2 3 4 5

Finding the options that I want in the menus

and toolbars is easy.

1 2 3 4 5

The software responds in time. 1 2 3 4 5

Discovering new features is easy. 1 2 3 4 5

This software is satisfying to use. 1 2 3 4 5

1=Strongly Disagree

2=Disagree

3=Neutral

4=Agree

5= Strongly Agree

5-107

Section B: Please rate the following statements

Statements
Very easy

(1)

Easy

(2)

Moderate

(3)

Somewhat
hard
(4)

 Difficult

(5)

Very
difficult

(6)

How easy is it to use
JCreator in completing
your tasks?

How easy is it to use
JCreator in understanding
the following object-
oriented concepts?

Class

Object

Method Overloading

Method Overriding

Inheritance

Encapsulation

Polymorphism

How easy is it to recover
from the following in
JCreator?

System (IDE) error
messages

Output(animation) is not
the movement you
expected

5-108

Statements

Not at

all
(1)

Somewhat

(2)

Moderately

(3)

Quite a

bit
(4)

Very much

(5)

How much has JCreator
increased your confidence
in learning the following
Object-Oriented
Concepts?

Class

Object

Method Overloading

Method Overriding

Inheritance

Encapsulation

Polymorphism

Section C:Please complete the following sentences.

1. Can you relate between a class and an Object in JCreator (Yes/No)? ………..

2. What is the most difficult task to accomplish in JCreator?……………………….

3. Comments

--
--
--
--
--
--
--
--

5-109

APPENDIX C: Interview schedule student

Participant’s profile

Specific questions. Section A (participant’s profile)

1. Name………………………………………………………………………….. (Optional)

2. To which age category do you belong to?

 Less than 18
18 - 21

 22 - 25
 26 - 30
 31 -35
 35 +

3. How long have you been lecturing Java programming?

Less than 1year
 For a Year
 More than 2 year

4. Gender:

Male
Female

Questions to be answered by the interviewee

1. Do you think learning OOP is difficult?

2. From your own observations, are you motivated to learn OOP using Java programming

language?

3. Which mistakes do you make normally when using the IDEs?

4. Do you find it difficult to learn and use the IDEs?

5. Is there any other misconception that you encounter when learning OOP?

5-110

APPENDIX D: Interview schedule expert

Participant’s profile

Specific questions. Section A (participant’s profile)

1. Name………………………………………………………………………….. (Optional)

2. To which age category do you belong to?

 Less than 18
18 - 21

 22 - 25
 26 - 30
 31 -35
 35 +

3. How long have you been lecturing Java programming?

Less than 1year
 For a Year
 More than 2 year

4. Gender:

Male
Female

Questions to be answered by the interviewee

1. Do you think learning OOP is difficult?

2. From your own observations, are students motivated to learn OOP using Java

programming language?

3. Which mistakes do students make normally when using the IDEs?

4. Do students find it difficult to learn and use the IDEs?

5. Is there any other misconception that students encounter when learning OOP?

