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ABSTRACT 

 
Industrial processes tend to have very complex mathematical models that in 

most instances result in very model specific optimal estimation and designs of 

control strategies. Such models have many composition components, energy 

compartments and energy inventories that result in many process variables that 

are intertwined and too complex to separate from one another. Most of the 

derived mathematical process models, based on the application of first principles, 

are nonlinear and incorporate unknown parameters and unmeasurable states. 

This fact results in difficulties in design and implementation of controllers for a 

majority of industrial processes. There is a need for the existing parameter and 

state estimation methods to be further developed and for new methods to be 

developed in order to simplify the process of parameters or states calculation and 

be applicable for real-time implementation of various controllers for nonlinear 

systems. 

 

The thesis describes the research work done on developing new parameter and 

state estimation methods and algorithms for bilinear and nonlinear processes. 

Continuous countercurrent ion exchange (CCIX) process for desalination of 

water is considered as a case study of a process that can be modelled as a 

bilinear system with affine parameters or as purely nonlinear system. Many 

models of industrial processes can be presented in such a way. The ion 

exchange process model is developed based on the mass balance principle as a 

state space bilinear model according to the state and control variables.  

 

The developed model is restructured according to its parameters in order to 

formulate two types of parameter estimation problem – with process models 

linear and nonlinear according to the parameters. The two models developed are 

a bilinear model with affine and a nonlinear according to the parameters model. 

Four different methods are proposed for the first case: gradient-based 

optimization method that uses the process output measurements, optimization 

gradient based method that uses the full state vector measurements, direct 

solution using the state vector measurements, and Lagrange’s optimization 

technique. Two methods are proposed for the second case: direct solution of the 

model equation using MATLAB software and Lagrange’s optimisation 

techniques. 



 

 

v) 

 

The state estimation problem is formulated for the original model of the process 

and is solved by two proposed methods: for design of a bilinear observer based 

on the pole placement approach, and for design of two types of Kalman filters 

based on minimization of the least square of the filter error using general and 

direct formulations of the problem.  

 

The developed methods are verified by software simulations in the environment 

of MATLAB/SIMULINK for various conditions of the process and problem 

formulations. Data from experiments with 6 stages ion exchange process are 

used to perform the parameter and state estimation algorithms. 

 

The significance of this research is that it is based on industrial bilinear and 

nonlinear processes with the intention for further real-time implementation of the 

proposed methods. The new methods and algorithms provide: 

ο modern and optimal control techniques that are easily manipulated for 

different control synthesis, 

ο possibility of real-time implementation of control strategies for 

complex nonlinear processes, 

ο quick recalculation of specific variables using software based on 

“newly” available process data, and  

ο possibility to be used for various types of linear and nonlinear models.  

 

There is always a cross field necessity for improvement of control techniques in 

process control, and optimization has taken the centre stage in allowing cross-

field analysis and multidisciplinary collaboration in engineering. In this research 

work, the interrelation between chemical and control engineering processes is an 

integral part of the work covered in that control system design is applicable to 

almost all industrial processes. 

 

Community relevance of this research is its applicability on most industrial 

processes since they are nonlinear in nature. The application of research in the 

continuous countercurrent ion exchange process could not have come at any 

better time than at the current experienced problem of water scarcity as a 

resource that is deepening almost every day in the country. 
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measurement at moment )1( +k  

{ }TkkekvE )1()1( ++  covariance relating the a priori estimate error to 

measurement noise 

{ })(kwE   mean value of the system noise 

{ }TkvkwE )()(   covariance of the measurement and system noises 
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OH 2    chemical formula for water 
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+
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+
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),...,,,...,,( 121 qi
j
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)1( +kJ   criterion of the prediction error 
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))(~( txJ   objective function for estimating the system state 

)(xJ    performance index determining closeness of estimated 
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)( kk    a posteriori moment defined at the thk  moment 

)1( −kk   a priori moment defined at the thk  moment 

)1( kk +   a priori moment defined at the thk )1( +  moment 

)11( ++ kk   a posteriori moment defined at the thk )1( +  moment 

)(* kK    Kalman filter gains at the moment k  

)1(* +kK   Kalman filter gains at the moment 1+k  

)( ..., ),(  ),(  ),( 321 tltltltl N  elements of the observer gain matrix 

L    Luenberger gain matrix for state observer 

)(tL    observer gain matrix in continuous time 

mL    likelihood function 

aL    Lagrange function used to estimate unknown parameters 

in the nonlinear model 

nlRL ×∈   observer matrix 

m    maximum number of observations 

M    large number for stopping iteration procedure 

−M    negative anion ions in resin 

4MgSO   magnesium sulphate 

−N    negative anion ions in liquid solution that must exchange to 

resins in the anion column 

+Na    sodium ions 

NaCl    sodium chloride 

iN    total number of measurement points 

))(,0( kQN   covariance of the system noise 

))(,0( kRN   covariance of the measurement noise 
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),0( *VN   probability distribution of measurement noise 

),0( *WN   probability distribution of system noise 

O    linear observability matrix determined using the state and 

output matrices pair ),( AC  

o    rank value of the observability matrix rank, )(Orank  

Nppp  ..., ,  , 21   desired poles used in the pole placement method for 

estimating the unknown states 

p    vector of unknown parameters (to be estimated) 

ip    system parameter values at each measurement moment 

0p    initial parameter values to be estimated 

qRp∈   vector of the system parameters with 1×q  dimensions 

np    parameter vector of the process model with noise 

p̂    estimated value of the unknown parameter p  

)(kp    unknown parameter of p  discrete vector 

0P    initial error covariance matrix 

)0(P    initial error covariance matrix 

0kP
   covariance matrix of the initial state 0x  in discrete time 

)(kP    covariance matrix of the prediction error 

)1( +kP   probability of the estimation error, known as the covariance 

matrix of the prediction error 

)( kkP    error covariance matrix that represents the covariance of 

the error difference between the true state and its estimate, 

)1( kkP +    error covariance matrix at the next moment given the 

current error difference, 

)1( −kkP   a priori covariance matrix represented at moment k  with 

measurements coming from the moment measurement 

from the previous discrete moment 1−k  

)1( kkP +   probability matrix known as a priori covariance matrix 

)11( ++ kkP   probability matrix known as a posteriori covariance matrix 

of the estimate error 
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))(( kvP   probability distribution of system noise 

))(( kwP   probability distribution of measurement noise 

q    total number of parameters in the vector of unknown 

parameter 

iQ    symmetrical, positive (non-negative), definite weighting 

matrix 

iQ*    symmetrical, non-negative, definite weighting matrix  

),( Na
HkQ α   matrix representing the function that defines the 

relationship between the separation factor and the 

disturbance input of the model 

)(kQ    covariance matrix relating observation matrix and error 

estimate covariance matrix 

)( kkQ    a priori covariance matrix relating observation matrix and 

error estimate covariance matrix 

1)( −kkQ   inverse matrix of the a priori covariance matrix relating 

observation matrix and error estimate covariance matrix 

)1( +kQ    system noise covariance matrix at the next moment 1+k  

+R    resins in positively charged form representing the solid 

phase in the exchange, 

−R    resins in negatively charged form representing the solid 

phase in the exchange, 

R    weighting matrix 

CaR −2   calcium ions attached to the cation resin 

HR−    strong cation resin in hydrogen H  form 

)(kR    measurement noise covariance matrix 

LR/    resin to liquid ratio in the solution 

MgR −2   magnesium ions attached to the cation resin 

NaR−   weak cation resin in sodium Na  form after the exchange 

NHClR ≡   hydrochloric acid protonation in resin 

S    weighted sum of the least squares minimization error 

)(kS    cost function for state estimation of a discrete time model 

)1( +kS   innovation covariance used to calculate filter gain 
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T    process upflow period, 

)(tu    system’s control input in continuous time 

lRku ∈)(   control input vector 

)( dku −   discrete model input delayed by d  

)( nudku −−   discrete model input delayed by d  and n  

)( iku −   past model inputs 

)( nku −   past model inputs 

)(tu    process input variable 

)(kv    measurement noise vector in discrete time 

)(kv    discrete time noise vector from measurement device 

{ })(kv    measurement noise sequence in discrete time 

)( kkv    a posteriori measurement noise determined at thk  moment 

)(tv    measurement noise in continuous time 

)(* kV    measurement noise covariance matrix 

)(tw    system disturbance variable (input noise) 

lRtw ∈)(   disturbance to the system with l  dimensions 

)(kw    discrete time noise vector representing process 

(disturbance input) noise 

)( kkw    a posteriori system noise determined at thk  moment 

Tkkw )(   transpose of the a posteriori system noise determined at 

thk  moment 

{ })(kw    system noise sequence in discrete time 

W    system disturbance matrix 

)(kW    system disturbance coefficients matrix in discrete time 

lnRkW ×∈)(   input disturbance coefficients matrix with dimensions ln×  

)(* kW    covariance matrix of the system noise 

)(~ tx    error difference between model calculated and measured 

state values 

x    state of the process model 

0x    initial state of the system at time 0=t  or 0=k  

)0(x    initial state of the system at time 0=t  or 0=k  
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0kx    initial state value at discrete moment 0=k  

+H
x    equivalent ionic fraction of hydrogen ions ( +H ) in the liquid 

phase 

Hx    hydrogen ionic fraction in liquid phase 

)(liquid
Hx    amount of hydrogen content in liquid phase of the solution 

1

0
↑Hx    hydrogen ionic fraction through the column from the most 

bottom stage (first stage) to the last stage at the top of the 

column 

)(txin    input concentration coming in to the first stage of the 

process 

)(kx    system state in discrete time 

nx    state variable representing liquid concentration at stage n  

)(kxN    measured state variable at the output of the process (liquid 

concentration coming out at the top stage of the column) 

+Na
x    equivalent ionic fraction of sodium ions ( +Na ) in the liquid 

phase 

Nax    sodium ionic fraction in liquid 

)(liquid
Nax    amount of sodium content in liquid phase of the solution 

0

1
↑Nax    sodium ionic fraction as decreasing throughout the column 

from the first column (most bottom) stage to the last (the 

top) stage 

)(tx    state of the process in time domain 

)(txn    mole fraction of the liquid phase at stage n  

)(txN    mole fraction of the liquid phase at the last column stage, 

N  

)(tx f    input feed concentration at the first stage (bottom stage) of 

the column which changes according to the effluent’s 

content; it is considered a disturbance to the process 

l
f Rkx ∈)(   input disturbance vector of the process 
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{ })(kx    state sequence in discrete time 

)(ˆ kix    estimated state of the system for every thi  sample in 

discrete time 

)(ˆ kkx    a posteriori estimate at the moment k  

)(ˆ 00 kkx   initial conditions of the a posteriori estimate at the moment 

k  

)00(x̂    initial state estimate at the beginning of the estimation 

procedure 

)(ˆ kkx    unbiased real estimate of )(kx  given the measurements of 

)(kz  

)1(ˆ −kkx   estimated state at discrete time k  given the previous 

measurement )(kz  at moment 1−k  

)1(ˆ kkx +   estimated state at moment 1+k  given the measurement 

)(kz , 

)(ˆ tx    estimates of the state in continuous time 

)(ˆ ttx    estimate of the state at time t  given the output 

measurement of time t  

)1(ˆ −kkx   a priori estimated state at the thk  moment 

)1(ˆ kkx +   a priori estimated state at the )1( +k  moment 

nRkkx ∈+ )1(ˆ  a priori state estimate vector at the )1( +k  moment 

)11(ˆ ++ kkx   a posteriori estimate at the moment at the )1( +k  moment 

ny    state variable representing resin concentration at stage n  

+H
y

   equivalent ionic fraction of hydrogen ions ( +H ) in the resin 

phase 

Hy    hydrogen fractional content in resin phase 

1

0
↓Hy    hydrogen ionic fraction in resin, decreasing from the top 

(last) stage to the first (most bottom) stage of the column, 

arrow indicates resin directional flow 
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)( sinre
Hy    amount of hydrogen content in resin phase of the solution 

+Na
y

   equivalent ionic fraction of sodium ions ( +Na ) in the resin 

phase 

Nay    hydrogen content in resin 

0

1
↓Nay    sodium ionic fraction in resin increasing from the first stage 

(most bottom stage) to the last stage at the top of the 

column 

resin)
Nay

(

   amount of sodium content in resin phase of the solution 

Y    exchanging compound in liquid 

z    observed system output 

iz    system output observed at thi  specific moments 

)(kz    system output in discrete time 

lRkz ∈)(   output measurement vector 

{ })(kz    output sequence in discrete time 

)( ikz −   past model outputs 

)(tz    model output in continuous time 

)( itz    model output in continuous time 

),( ptz i   model output determined using unknown parameters 

)(tz    measured output 

)(ˆ tz    estimated model output 

lRpz ∈)ˆ(ˆ   estimated output vector based on estimated parameters 

p . 
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CHAPTER ONE 

1. INTRODUCTION 

1.1. Introduction 
 
Most if not all physical processes are dynamic in nature due to energy transfer 

within the constituents of these systems. When developing a model for a 

dynamic process, the resulting model has nonlinear relationship among its 

variables resulting in a process model called the nonlinear dynamic model 

(Chitralekhaa, et al., 2010; Safdarnejad, Gallacher & Hedengren, 2016). 

Nonlinear systems are usually characterised by complex structure, non-

stationary behaviour and time delays and it is these characteristics that create a 

challenge for engineers when designing and or implementing real-time control to 

such system (Ding, et al., 2017). Kravaris, Hahn and Chu (2013) present the 

latest advances and developments in parameter and state estimation for 

nonlinear processes. 

The research work analyses the available nonlinear methods of modelling and 

parameter and state estimation and suggests improved methods or develops 

new methods with the intention of applying such methods in industrial 

applications.  

This chapter introduces the overall research approach followed in developing 

new methods for modelling, parameter and state estimation of nonlinear 

processes as an objective of this research. The chapter considers the following 

subtopics: 1) Awareness of the problem, 2) problem statement, 3) project aims 

and objectives, 4) hypothesis, 5) scope of the project, 6) delimitations, 7) 

research assumptions, 8) research methods, 9) chapters breakdown, 10) 

motivation and significance of research. The chapter is then ended with 

conclusion remarks. 

 
1.2. Awareness of the problem 
 
Bilinear process models are considered a subsection on nonlinear models. The 

bilinear models have found many applications in various physical systems 

including a wide variety of fields such as engineering, economics, biological, 

including biomedical, neuroscientific systems, etc. 

Studies that were identified in bilinear systems are focused on either the control 

strategy of bilinear processes, including stability, state feedback and disturbance 

feed forward analysis or state estimation using different observer formulations 

etc. (Bruni, DiPillo & Koch, 1974; Derese & Noldus, 1980; Derese & Noldus, 
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1981; Derese, Stevens, & Noldus, 1979; Dreano, Fantini & Laurent, 1997; 

Hammami & Jerbi, 2001; Hou & Pugh, 1997; Ying, Rao & Sun, 1990). 

Most of the methods developed for parameter and state estimation in bilinear 

systems tend to be very complex, in that these methods are integrated 

techniques involving parameters that are estimated using data obtained from 

state estimation by filtering methods or observers (Dai, Sinha & Puthenpura, 

1989; Frick & Valavi, 1978; Liu, Xu & Wang, 2012; Ober, Lin & Zou, 2005; Frick 

& Valavi, 1978). The research work in the thesis aims to overcome this problem 

by extending the existing and developing new methods on the basis of a 

proposed model with reduced complexity. 

The models of the industrial processes tend to be very complex – nonlinear, with 

nonlinear parameters and variables and described by large set of differential 

equations. The reduced complexity in process models results in relaxed 

calculations requirements (Lalonde, Hartley & De Abreu-Garcia, 1992; Peng, et 

al., 2001; Safdarnejad, et al., 2016; Schei & Singstad, 1998; Weiss & Preisig, 

1998). These models can be obtained by capturing some realistic aspects of a 

nonlinear model and relaxing some others, following the assumptions that must 

always be included in developing a model (Bai-Lan & Xiao-Lin, 1988; Ikonen & 

Najim, 2002:3-12; Fliess & Normand-Cyrot, 1910). Such possibility will be 

considered in the thesis. 

The research work considers the parameter and state estimation for bilinear 

affine and nonlinear in parameters process models. The interest is to produce 

simplified and non-integrated parameter and state estimation methods for bilinear 

affine or nonlinear in parameters systems. The project considers the possibility of 

applying the newly developed methods in real-time control strategy. The main 

aim is to reduce complexity in estimation and simulation of the developed control 

strategy for the class of nonlinear systems. 

 
1.3. Statement of the problem 
 
The problem has been identified as non-availability of simplified and non-

integrated methods for parameter and state estimation for a bilinear process 

models affine or purely nonlinear in parameters. In addition application of state 

and parameter methods for the case of complex industrial processes is done 

using some simplified models which do not present the true dynamics and 

behavior of these processes.  This puts forward the argument which is the basis 

for this thesis, the development of new methods for modelling and parameter and 
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state estimation for nonlinear systems with primary focus on bilinear systems. 

Two main thesis development sub-problems considered are: 

1) The sub-problem for developing of new simplified models of complex 

processes (that preserve the dynamics) and methods for parameters and 

state estimation of bilinear processes, and 

2) The sub-problem of implementation of the developed methods for the case of 

a complex industrial process. 

 
1.3.1. The development sub-problem 

The development sub-problem includes the following considerations: 

o Analysis of the available published models of nonlinear processes, and 

parameter and state estimation methods, 

o Development of a simplified bilinear model that fully represents the 

dynamics of the process, 

o Development of methods for parameter estimation of bilinear process 

models with affine parameters, 

o Development of methods for parameter estimation of bilinear processes 

models with nonlinear  parameters, 

o Development of methods for state estimation for bilinear process models 

with affine parameters. 

 
1.3.2. The implementation sub-problem 

The implementation sub-problem is concerned with evaluation and validation of 

the developed methods using an ion exchange (IX) process as a case study. The 

following considerations are included: 

o Develop software programs using available process data to evaluate and 

validate parameter estimation methods, and 

o Develop software programs using available process data to evaluate and 

validate the developed state estimation methods. 

 
1.4. Research aim and objectives 
 
The research work considers the parameter and state estimation for bilinear 

affine and nonlinear in parameters process models, considering the possibilities 

of applying the new methods in real-time control strategy. The developments are 

directed in two fields: 1) development of compact simplified models of complex 

dynamic processes for the purpose of simplification of the parameter and state 

estimation procedures – according to the requirements of the control problem 
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and, 2) development of new methods for parameter and state estimation of the 

developed models. At the end of the study the investigator hopes to reduce the 

time needed for algorithm calculations since these calculations can be time 

consuming. 

The main aim of the project is to develop simplified bilinear models of the 

complex industrial Ion exchange counter current process for desalination of 

water, and new methods for parameter and state estimation for the developed 

models, considering affine or nonlinear parameters. 

The research objectives are as follows: 

1) To conduct literature review on modelling of nonlinear processes in 

general, with the primary focus on bilinear models, 

2) To derive a state space bilinear model of the ion exchange process fully 

representing the structure and dynamics of the process, 

3) To develop methods for parameter estimation considering the bilinear 

affine in parameters model of the ion exchange process, 

4) To develop methods for parameter estimation considering the bilinear 

nonlinear in parameters model of the ion exchange process, 

5) To develop state observer design for the bilinear with affine parameters 

model of the ion exchange process, 

6) To develop a Kalman filter for state estimation of the bilinear with affine 

parameters model of the ion exchange process, 

7) To develop algorithms and software for implementation of the developed 

method for parameter estimation of the bilinear affine in parameters 

model, 

8) To develop algorithms and software for implementation of the developed 

method for parameter estimation of the bilinear nonlinear in parameters 

model, 

9) To develop algorithms and software for implementing the state observer 

for the bilinear affine in parameters model, 

10) To develop algorithms and software for implementing the developed 

Kalman filter for state estimation of the bilinear affine in parameters 

model, 

11) To develop software for simulation, comparison, and evaluation of results. 

All developments are described in the following thesis chapters. 

 
1.5. Hypothesis 
 
The research work in the thesis considers the following hypotheses: 
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1) Nonlinear processes tend to have very complex models and the models 

complexity can be reduced without losing the important aspect of the process 

dynamics. The ion exchange multi-stage counter current process model can 

be derived to be in a state space domain, with a bilinear behavior, and to 

have both linear and nonlinear parameters on the basis of application of the 

first mass balance principle and mathematical transformations. 

2) Possibility to express the model parameters as affine ones allows reduction 

of the complexity of the methods for state and parameter estimation and 

reduces the time for calculation of the estimated states and parameters. 

3) State space presentation of the bilinear model allows the software for 

implementation of the developed methods for parameter and state estimation 

to be more compact and simpler as the calculations are done for the whole 

state vector at once. 

 
1.6. Scope of the project 
 
The thesis scope of the research work consists in development of a state space 

bilinear model of the counter current ion exchange process, acquiring data from 

experiments with the pilot plant built at the University of Cape Town (Hendry, 

1982a; Hendry, 1982b) to be used for state and parameter estimation, 

development of methods for state and parameter estimation, software 

development and investigation of the performance of the developed methods 

through MATLAB/SIMULINK case studies. More data to determine deeper the 

thesis scope are given below: 

Model development : Two models of the counter current multi-stage ion 

exchange process, a bilinear affine in parameters and a bilinear nonlinear in 

parameter are developed using assumptions and the first mass balance principle. 

The parameters and the states of the models are not known. 

Acquiring data : Data for the input, output and input disturbance from 

experiments with the pilot plant are available. The data are normalized and 

verified before to be used. 

Development of methods for parameter and state esti mation : The project 

considers current methods used in parameter and state estimation and then 

develops and proposes new methods and algorithms to be used in parameter 

and state estimation. The state estimation problem is considered only for the 

bilinear affine in parameters model. The parameter estimation problem is 

considered for both bilinear models – with affine and with nonlinear parameters. 

Deterministic problems are considered for parameter estimations and problems 
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with white model and measurement noises are considered for the state 

estimation problem. 

Generally, when designing a control strategy for physical processes, before the 

full strategy can be developed, it is naturally inherent that unknown parameters 

must be identified. The problem of parameter estimation is important to 

determine the unknown or the partially known process parameters. Once the 

unknown or partially known parameters have been identified, the state estimation 

is the next step that allows identification of the unknown states of a process in 

case the process’ states are not measureable, Figure 1.1. 

The state estimation problem is used for developing a strategy for control and 

monitoring of a plant more especially in optimal control. Parameter estimation 

can be developed around two strategies: 1) the offline parameter estimation or 2) 

the on-line parameter estimation. In offline parameter estimation, the problem of 

determining unknown or partially known parameters is achieved using data that 

is pre-collected and the full set of the data is available to use. In on-line 

parameter estimation, data is collected during the process of determining the 

unknown parameters. In this research project all the data was available 

beforehand. 

The estimation method followed is also dependent of the model structure. The 

commonly used model structures are: 

1) Linear model with linear parameters, 

2) Nonlinear model; firstly with parameters entering the model equation in a 

linear way and secondly with parameters entering the model equation in a 

nonlinear manner. 

Two models will be considered for the parameter estimation problems. The first 

model is the bilinear affine in parameters model and the second one, the 

nonlinear model. 

 

For the state estimation problem, the following are considered: 

1) Suppose the parameters are known to solve the state estimation problem. 

2) State estimation problem for the nonlinear model that considers the bilinear 

affine model is considered. 

3) This problem is solved with the bilinear observer design and the Kalman 

filter design. 
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Figure 1.1.  Overall proposed estimation structure 
 

(Adapted from Ray & De, 1997; Eykhoff, 1968; Robert s & Williams, 1981)  
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The thesis considers optimization methods to formulate and solve the state and 

parameter estimation problems in a way that a cost function must be minimized. 

The cost function consists of a sum of the squared prediction errors; the sum of 

errors must be minimized. The prediction errors are the differences between the 

predicted values of the output of the process to that of the measured one. The 

estimation techniques use measured data to estimate the parameter values of 

the model. Similar problems are proposed in (Ikonen & Najim, 2002; Corlis & 

Luus, 1969; Pierre, 1969; Nicholson, Lopez-Negrete & Biegler, 2014; Olsson & 

Newell, 1999; Peng, et al., 2001; Schei, 2008; Schei & Singstad, 1998). 

State estimation is the process of determining the state from these output 

measurements given the dynamic model of the system (Ching, et al., 2006; 

Muske & Edgar, 1997; Yang, et al., 2016). 

The developed methods are innovative in that, currently from the literature, no 

methods were identified that propose state and parameter estimation methods 

for the bilinear affine in parameters model. The developed methods differ from 

most existing methods since they use real measured data as opposed to using 

an observer or filter generated states data to estimate parameters. 

The developed parameter estimation methods for bilinear affine model are as 

follows: 

1) a gradient method based on output measurements, 

2) a gradient method that considers the full-order state observation, 

3) a direct estimation method using state vector measurements, and 

4) Lagrange’s optimization procedure based on state vector measurements. 

Algorithms and software programs are developed on the MATLAB platform using 

the ion exchange case study. 

The developed parameter estimation methods for the bilinear nonlinear in 

parameters model are: 

1) a solution based on  a function of MATLAB software, and 

2) Lagrange’s optimization method using state vector measurement. 

Methods developed for state estimation problem solution are: 

1) a Luenberger based bilinear observer, designed using pole-placement 

which is a novel method in that it is being introduced for the first time in 

bilinear affine in parameter models, and 

2) a Kalman filter – based estimation problem designed by two methods: the 

general formulation and the direct optimization technique. Algorithms for 
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the two methods are developed and only one software program is 

developed – for the second method. 

 
1.6.1. Process considered as a case study 

An ion exchange process is a chemical process that involves replacement of ions 

of the same charge from liquid to solid and vice versa, i.e., positive ions from 

liquid will exchange with positive ions from the solid material. The ion exchange 

process has a vast number of applications in fields as far apart as; mining, 

medical, water treatment, etc. In water desalination application, the process 

removes salts from water to purify it. 

The basic countercurrent ion exchange process consists of four columns in pairs, 

Figure 1.2. The first two are cation load and cation regeneration. In the cation 

load column, water being purified is passed through the column and the resin is 

fluidized in the process, and salt ions from water are exchanged with resin ions. 

During the process of exchanging ions in the cation load, salts in water are 

extracted and the resulting solution is a weak acidic stream (Dodds, et al. 1973; 

Fronza, et al., 1969; Horn, 1967). 

The second pair is anion load and anion regeneration columns, where the weak 

acid from the cation load is passed through weak base resin which has high 

affinity for acid. This results in the exchange of ions from the weak acid stream 

and strong base resin producing purified water as the final product. Regeneration 

columns in both cases are used for replenishing partially exhausted resins. As 

resin beds constantly exchange ions, after a while they get exhausted, 

fortunately resins allow the reversing of their exchange properties. Resins can 

always be renewed through regeneration by passing them through acid for the 

strong acid resins and through base for the weak base resin, Figure 1.2. pH and 

conductivity measurements are taken at the input and output of each phase to 

determine the amount of salt concentration in each stream (Dube, 2002; Dube & 

Tzoneva, 2001; Dube & Tzoneva, 2002; Dube & Tzoneva, 2003a; Dube & 

Tzoneva, 2003b; Dube & Tzoneva, 2005; Dube & Tzoneva, 2006; Dube & 

Tzoneva, 2006b). 

It is of interest to note that for the pilot plant to be used in the study the liquid 

concentration measurements are not possible at each state, this demands the 

need for state estimation. The application of the state estimation solution will be 

to observe the dynamic behaviour of the sodium concentration in every stage of 

the process and for implementation of the state space controller if required. 
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Figure 1.2. Basic continuous countercurrent ion exchange (CCIX)  process 
configuration 

 
(Adapted from CCIX University of Cape Town 1982, He ndry, 1982) 
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changes its values. This will be aiming at keeping the optimal control conditions 

irrespective of the disturbances introduced by the change of sodium 

concentration (Dube & Tzoneva, 2004: 470–483). 

 
1.7. Delimitation of research 
 
The research work only considers bilinear models of the ion exchange process. 

No other models and other processes are considered. The research is restricted 

to the abovementioned four methods for the parameter estimation problem and 

the two methods for state estimation problem. The research does not include 

integrated methods of parameter and state estimation. 
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1.8. Assumptions 
 
The following assumptions are considered: 

1) The data obtained from the experiments with the real plant is measured 

correctly and normalized correctly. 

2) The missing data is for a small number of points and can be approximated 

on the base of the closest points’ values. 

3) All assumptions done for the derivation of the mathematical model of the 

counter current multi-stage ion exchange process are based on the 

application of the first principles of the physical laws and are correct. 

4) Grouping of some of the nonlinear model parameters using their 

mathematical relationship does not change the dynamic behavior of the 

process model. 

5) Initial conditions of the ion exchange process are determined by the value of 

the input process disturbance and change when the disturbance changes. 

6) Iterative implementation of the gradient procedures in the developed 

methods based on introduction of a very small numbers for stopping criteria 

brings very small errors in the final ideal results of the calculations. 

7) MATLAB/SIMULINK software environment has all functions and models 

necessary for implementation of the developed methods. 

 
1.9. Research method 
 
The procedure for the research method executed is as follows: literature review, 

data acquisition, model development, design of methods and algorithms, 

software development, application of methods and case study investigation, and 

analysis of the results. Short description is given below. 

Literature review : Research into linear and nonlinear systems has been 

conducted to gain knowledge on the work developed and the current trends of 

research in this field of study. The research was then narrowed to be able to 

address the research problem by focusing on methods used for parameter and 

state estimation in nonlinear systems. 

From the literature review, it has been observed that from many different 

parameter and state estimation problems, none of the studies considered a 

nonintegrated estimation procedure, particularly for bilinear affine in parameters 

models. 
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The research problem is then formulated around developing new methods and 

algorithms for nonintegrated parameter and state estimation for bilinear affine in 

parameters models. The developed methods should be such as to reduce 

complexity in the algorithm to help reduce the necessary calculations. 

Data acquisition : Data that were obtained from a previous study of the same 

process (Henry, 1982a; Hendry, 1982e) is used to evaluate and validate the 

methods and algorithms developed to solve the research problem. 

Model development:  Based on the bilinear model developed for a different 

study (Dube, 2002a), data and a new model are reformulated for parameter and 

state estimation as a nonintegrated problem. Two models have been developed, 

1) a bilinear affine in parameters model, and 2) a bilinear nonlinear in parameters 

model. 

Design of methods and algorithms : New methods and algorithms for 

parameter and state estimation are developed independently of each other. For 

parameter estimation methods, both above models are used and corresponding 

methods are developed. For state estimation problem, only the bilinear affine 

model is considered and state observer and state predicting Kalman filter are 

developed. 

Software : MATLAB software is used for data analysis and for development of 

software for implementation of the proposed methods. Before the data is used for 

implementing and testing the validity and accuracy of the developed methods, 

analysis of these data is done using MATLAB plots. 

MATLAB programs were generated for each method based on the 

accompanying algorithms as a tool for testing and analysis of results. The 

developed methods and algorithms are tested using the available experimental 

data for each method developed. 

Application of methods and case study investigation : A continuous 

countercurrent ion exchange process is used as a case study for application and 

analysis of the developed methods and algorithms. The investigation is done to 

verify the performance of the developed methods for different conditions of the 

process and parameters of the algorithms. 

Analysis of results : Different experiments are run based on each method and 

algorithm developed. The results are then collated and a comparative analysis 

performed. 
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1.10. Motivation and significance of the research 
 
In developing a model for control and monitoring of a physical plant, the model is 

considered satisfactory if it captures most aspects without losing the essence of 

the process and it is not too complex to be used in the practical control strategy. 

Model parameters must be verified using experimental data, and this is achieved 

through parameter estimation. In instances where not all states of the process 

are accessible, it also becomes necessary that those unknown states are 

estimated. This argument is the motivation behind this research work; the 

research considers complex nonlinear models that are applicable in real-time 

process control and monitoring. The aim is to develop the full strategy from 

model development, through estimation of parameters and the states up until the 

application of the model. 

If one needs to develop a model for real-time control, it is not possible to include 

all parameters of the process, and therefore only parameters that are of interest 

to the study are considered. In considering some of the parameters and not 

others, it is important that a model does not become over simplified and thus 

losing out on the important aspects of the plant. The developed models allow all 

or a separate group of parameters to be estimated. Parameter estimation helps 

in qualifying a model. Based on existing data (usually experimental data) versus 

data received from the new model, one can estimate some parameters of the 

model, using different parameter estimation techniques. 

State estimation is necessary to develop the optimal control strategy for physical 

processes. The requirement for the state estimation is that some measurement 

data is available. Model parameters must also be known or partially known for 

state estimation to be possible (Kamoun, 2007; Nicholson, et al., 2014; Zhao, et 

al., 2013). Also in some cases, depending on the nature of the process and the 

resulting model, it may be necessary to perform combined state and parameter 

estimation (Bezzaoucha, et al., 2013; Chitralekha, 2010; Tulsyana, et al., 2013). 

The methods for state estimations developed in the thesis are for real-time 

implementation of the state observer or the Kalman state predictor. They apply 

the existing methods to the case of the bilinear models of the process by 

introduction of a special condition for the bilinear term of the model. These 

methods can be used also for linear systems when the bilinear term is 

considered to be zero. The developed observer and Kalman filter can 
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successfully be applied for implementation of the closed loop system controlled 

by state space controllers. 

 
1.11. Chapter breakdown 
 
The project is formulated over ten chapters as follows: 

ο Chapter one is the introduction of the project, 

ο Chapter two is the literature review of nonlinear processes, parameter 

and state estimation techniques, 

ο Chapter three deals with the theory of nonlinear systems, 

ο Chapter four describes the case study, the continuous countercurrent ion 

exchange process (CCIX) and its model development, 

ο Chapter five presents experimental data and the reformulation of the 

CCIX model for parameter and state estimation problem, 

ο Chapter six describes the parameter estimation methods for the bilinear 

affine in parameters model, 

ο Chapter seven presents the parameter estimation methods for the bilinear 

nonlinear in parameters model, 

ο Chapter eight is the deals with the estimation observer design for the 

bilinear affine in parameters model, 

ο Chapter nine describes the state estimation Kalman filter design for the 

bilinear affine model, 

ο Chapter 10 presents the conclusion and deliverables of the thesis. 

 
1.12. Conclusion 
 
The research work proposes developing new methods and algorithms for 

parameter and state estimation for nonlinear processes. Available estimation 

methods have been studied and analyzed with the intention of producing 

improved nonlinear models representation and estimation methods. The main 

goal is to develop new methods that are not only specific to certain classes of 

nonlinear processes, but can be extended to other classes of nonlinear systems. 

The study aims at producing methods that should be applicable for real-time 

control and monitoring of nonlinear processes. The new methods are based on 

optimization techniques. 

This chapter covered the research methodology followed in responding to the 

thesis’ aim and objectives. The following sections were covered: background to 
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the need for undertaking the research, awareness and statement of the problem, 

the research aim and objectives, hypothesis and the scope of the project, 

research delimitations, assumptions, the research method, the significance and 

motivation for the research and finally, the chapter breakdown. 

The next chapter considers comparative analysis of all existing theoretical and 

practical developments in the field of the modelling, state and parameter 

estimation of nonlinear processes by a literature review. 
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CHAPTER TWO 
2. COMPARATIVE ANALYSIS AND DISCUSSION ON THE 

DEVELOPMENTS IN THE EXISTING LITERATURE FOR MODELLI NG 

AND ESTIMATION OF NONLINEAR SYSTEMS 

2.1. Introduction 
 
This chapter deals with the comparative analysis between latest developments in 

the three major sections involved in the subject matter of this thesis, that is, 

methods for modelling, parameter and state estimation for nonlinear processes. 

The focus is on nonlinear systems in general, and on how parameter and state 

estimation in such systems are performed. 

The chapter also deals with the important aspects of estimation techniques, that 

is, optimization theory, and approximation principles, more especially the latest 

developments in nonlinear systems. Complexity involved in these topics is further 

extended by the fact that the nonlinear systems are a subject matter; though, the 

system of interest is a bilinear model with affine parameters, the approach to the 

solution has been based on nonlinear systems in general. 

Further, to simplify the presentation of this chapter, the chapter is divided into 

three main parts: 

1) criteria for comparison of the existing methods for parameter and state 

estimation covered in Section 2.2, 

2) the literature search in Section 2.3 and 

3) literature review for parameter estimation, state estimation and combined 

state and parameter estimation in Section 2.4. 

 
2.2. Criteria for comparison of the existing method s for parameter and 

state estimation 

 
Almost all, if not all physical processes (including natural occurring or biological, 

and industrial systems) are nonlinear in their behaviour; this is mainly due to 

internal interactions (dynamics) within these systems, borne out of their existence 

(Salhi & Kamoun, 2015). Because of this dynamic behaviour, industrial 

processes also tend to exhibit high nonlinear characteristics in their operations. 

Generally, models developed for nonlinear systems tend to be very process 

specific. Table 2.1 below shows the criteria used to compare methods for 

parameter and state estimation procedures in the thesis. 
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Development in the estimation of the parameters or states has evolved from work 

done in the early sixties up to the end of the twentieth century; work done in the 

sixties and early seventies was based on dynamic linear models, Figure 2.1.–

Figure 2.6. At the start of the twenty first century majority of the work focused on 

nonlinear models due to nonlinear dynamics and nonlinearities contained within 

physical systems (Demirbas, 2015; Ganguly, Sairam & Saraf 1993; Keesman, 

2000; Li, Mu & Zuo, 2016; Salau, Trierweiler & Secchi, 2014). 

Estimation (of parameters or states) in nonlinear models can be solved by 

linearization, optimization, or statistical methods. Linearization process does 

introduce some system error in the corresponding estimates of parameters or 

states. These errors should be taken care of when formulating the estimation 

problem. Optimization and statistical methods are basically search algorithms 

used to find a local or a global minimum of the given minimization criterion. 

The stochastic search methods are easy to implement but suffer the drawback of 

no guarantee to locating a global minimum within finite computations. These 

methods are based on probabilistic approaches. On the other hand, the 

deterministic search methods do provide some assurance in terms of locating a 

global minimum over a finite number of computations. 

Generally, in estimation procedure for parameter estimation or state estimation, 

the idea is to seek estimates of the real parameters or states that would minimize 

an objective function; this objective function is described by the error difference 

between the model output (based on parameter estimates) and the measured 

data output, or error difference between the model output (based on estimated 

states) and that of the measured data. 

When such a procedure is used to solve for unknown parameters or states such 

a formulation becomes an optimization problem. This allows application of 

optimization techniques to solve for unknown parameters or states in a model. 

Optimization techniques used for estimation problems are generally: 1) least 

squares methods, 2) Maximum Likelihood (ML) methods and 3) Bayesian 

methods. Other well-known methods include; linearization transformation, 

minimax deviation, minimum Chi-Squared ( 2χ ) method, and Pseudomaximum 

Likelihood (Bard, 1970:47–82). 
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Table 2.1:  Criteria for comparison of the methods for paramet er and state estimation procedures  
Criterion  Description  

 Subdivision Considerations 

1. Type of plant (according to variables) 1. Linear model linear variables   

 2. Nonlinear model nonlinear variables   

2. Type of plant (according to parameters) 1. Linear linear parameters only   

  linear parameters nonlinear parameters  

 2. Nonlinear nonlinear/linear parameters nonlinear/nonlinear parameters  

3. Type of model 1. Transfer function    

 2. Differential equation    

 3. ARMA    

 4. State space    

 5. Description Deterministic Stochastic  

   (type of noise considered)  

4. Method used for estimation     

5. Criterion for optimization     

6. Error of estimation     

7. Online time for estimation     

8. Novelty of the method     

9. Drawbacks of the method     

10. Numerical methods used for calculation System order    

11. Application 1. Process    

 2. Purpose of estimation Monitoring Control (MPC) Fault detection 

12. Real-time implementation Time for online estimation Simplicity Applicability  

13. Method of measurement data Data processing Online Offline  

14. Software used 1. Simulation software    

 2. Data acquisition software    
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Chi-Squared is sometimes considered an extension of least squares method and 

Pseudomaximum Likelihood, the extension of Maximum Likelihood method 

(Ching, et al., 2006; James & Petersen, 1998; Ungarala, Chen & Li, 2006). 

Currently, there is also a lot of work being done in complex nonlinear systems 

such as weather prediction, ecosystems, seismic systems, power systems and 

networked control systems in terms of modelling and estimation (state estimation 

and parameter estimation). Most of these systems, unfortunately, are extremely 

dynamic, highly nonlinear, high model-dimensioned, and do not have much 

available data and also, have low quality data where data is available. These 

complications in estimation have led to development of new methods, the latest 

optimization methods, such as the evolutionary or swarm methods (Salau, et al., 

2014; Tashkova, et al., 2012). 

Comparitive analysis of the existing methods for parameter and state estimation 

is done according to the criteria in Table 2.1. 

 
2.3. Literature search 
 
In doing literature search, each key concept in the thesis title, modelling of 

nonlinear systems, estimation, parameter estimation and state estimation were 

searched individually. ‘Modelling of nonlinear systems’, in this case, produced 

most results, and ‘estimation’ produced the next best results, followed by 

‘parameter estimation’ and ‘state estimation’, in that order. On searching the 

terms, ‘modelling nonlinear systems’, and ‘identification and estimation’, this 

search produced best results overall in terms of number of papers available. In 

terms of relevancy, ‘modelling nonlinear systems’ yielded the best results. 

Based on the method of solution for the thesis, searches were also conducted for 

the method of solution keywords: ‘parameter estimation’, ‘state estimation’, 

‘observer design’, ‘Kalman filter’, and ‘combined state and parameter estimation’. 

‘Observer design’ search produced most results, also in terms of relevancy, with 

‘parameter estimation’ producing second best and ‘Kalman filter’ produced best 

results in terms of relevancy, followed by ‘state estimation’. ‘Combined state and 

parameter estimation’ search did produce relevant results when the search was 

focused on it alone, but overall not so many papers were found. 

Graphical presentation of these results are shown below, with each section 

showing how research work has progressed from early fifties in some cases up 

to date, Figure 2.1.–Figure 2.6. The graphs are organized according to the type 

of estimation problem to be solved in the thesis: 1) parameter estimation, 2) state 
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estimation, 3) observer design, 4) Kalman filter, 5) other filtering methods, 6) 

parameter and state estimation, and 7) combined state and parameter 

estimation. 

 
2.4. Literature review 

2.4.1. Review of existing literature for nonlinear systems, modelling and 

estimation in general (the current state) 

The aim of this section is to the review available literature on nonlinear systems 

in relation to parameter estimation, state estimation and or both, but it is by no 

means a generalized review on nonlinear systems. Due to complexity associated 

with the nonlinear systems, there is no one definitive solution of parameter 

estimation or state estimation problems for these systems. Each estimation 

solution is based on a model type as applicable to a certain class of (nonlinear) 

systems or even worse, on a specific system model; “estimation in nonlinear 

systems is extremely difficult” (Biagola & Figueroa 2002:4777; Ching et al., 

2006:396; Inoue, et al., 2008:677; Julier & Uhlmann, 2004; Moradkhani, et al., 

2005; Norgaard, Poulsen & Ravn, 2000:1627). 

One could consider many different aspects of the model and decide on the 

direction of the solution. There are different combinations of system 

characteristics that make a model nonlinear. The two main ones are nonlinearity 

with respect to parameters or variables. This is further subdivided into models 

with parameters that are a mix of nonlinear and linear combination within a 

model. 

Depending on the parameters of interest, if any nonlinear element of the process 

will be included in the model formulation, then the system model is considered 

nonlinear – Table 2.1. There is a possibility that a system may contain nonlinear 

parameters, and if these parameters are not part of the estimation problem 

formulation and only the linear parameters are considered, such a system can be 

solved using linear methods. 
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Figure 2.1. Number of the relevant papers for the parameter est imation methods for the period 1950 to 2018  
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Figure 2.2. Number of the relevant papers for the state estimat ion methods for the period 1950 to 2018  
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Figure 2.3. Number of the relevant papers for the observer desi gn methods in the period 1950 to 2018  
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Figure 2.4. Number of the relevant papers for the Kalman filter  design methods in the period 1950 to 2018  
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Figure 2.5. Number of relevant papers for the parameter and sta te estimation methods for the period 1950 to 2018  
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Figure 2.6. Number of relevant parers for the combined state an d parameter estimation techniques for the period 19 50 to 2018 
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This will have to be accompanied by relevant assumptions (Biagiola & Figueroa, 

2002; Khodadadi & Jazayeri-Rad, 2011; Rolain, 2005; Schoukens, et al., 2005; 

Zhang, et al., 2010; Keesman, 2000). If the proposed solution considers the part 

of the model with nonlinear variables, the system will be solved based on 

nonlinear methods. 

Another possible type of process model is that of bilinear systems, where two 

model variables are in a product relation, usually the input and the state 

variables. Depending on how parameters of such a model enter the model, 

linearly or in a nonlinear fashion, the solution of parameter estimation may be 

based on linear or nonlinear methods. And for state estimation, the bilinear part 

can also be solved using linear or nonlinear methods depending on how the state 

variable is presented in the model. 

 
2.4.2. Discussion 

The necessity of estimation of parameters and or of states of a real process 

forms part of an overall goal of a control system analysis, design, operation, 

control and monitoring, and optimization of the system. The main objective is the 

optimization of the system overall’s performance. 

According to Alaei, Salahshoora and Alaei (2010), for stabilization of processes 

in the presence of nonlinearities and uncertainties, there are a few design 

techniques that can be applied; these include Model Predictive Control (MPC) 

which has become the most utilized technique in control strategies in the recent 

decades. Analysis and design methods for linear systems can always be 

generalized to nonlinear systems (Jamel, et al., 2010; Ladeveze, 2016; 

Thangavel, Paulen, & Engell, 2016; Rad & Hancu, 2017; Schei & Singstad, 

1998). 

Further, it is known from control theory and observation principles that state 

estimation is closely associated with control and stabilization (Moireau, Chapelle 

& Le Tallec, 2008). The state of a system is only determinable if model 

parameters are known. This creates the need for estimation of both parameters 

and state variables in cases where they are unknown. 

 
2.4.3. Review of the existing literature for parame ter estimation 

Parameter estimation has grown to become a very rich field in engineering and in 

other fields such as science and economics (Elliott & Hyndman, 2007). 

Parameter estimation is the process of determining unknown parameters using 

the error difference between data of a system’s measured output and that 
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produced by the system’s model output. The measured data are considered the 

real values. If parameters are well tuned, these two data sets should match. 

Since the concern is the minimization of the error difference between data sets, 

parameter estimation is basically an optimization problem (Tashkova, et al, 

2012). This is also the reason why the parameter estimation problem is 

sometimes referred to as, parameter fitting, model calibration or the inverse 

problem. Ding (2014) states that in control systems, parameter estimation is the 

basis for 1) controller design, 2) filtering, and 3) state estimation. 

Most nonlinear parameter estimation problems are formulated as nonlinear 

optimization problems. The two most important aspects of such parameter 

estimation problem are the type of mathematical model and the type of objective 

function to be minimized. The interest is to consider the latest developments in 

parameter estimation methods, the criterion used for estimation procedure and 

the type of error of estimation considered (Zhao, An & Xu, 2012:1696; Linga, Al-

Saifi, & Englezos, 2006; Gau & Stadtherr 2000:631; Hassan, et al., 1982). Many 

different procedures and algorithms have been developed to solve the parameter 

estimation problems for different processes; these methods are highlighted in the 

text. They can generally be grouped under three main estimation techniques, 

error methods, maximum likelihood methods and Bayesian methods (Schindler & 

Phillips, 2009; Young, 1981). 

Strejc (1980) and Young (1981) give some major historical aspects of the least 

squares method. In least squares sense, Strejc (1980) defines parameter 

estimation as a technique used to determine the ‘most probable’ value of an 

unknown quantity for which the sum of squares of the difference between the 

measured values and that computed values using these probable values is 

minimized. 

Variations of least squares methods for practical use have been proposed in the 

literature, these include: the recursive least squares methods, instrumental 

variable method, generalized least squares, extended least squares, square root 

filtering method, recursive prediction error least squares method; implicit least 

squares algorithm applicable to models with regression terms that are subjected 

to noise, adjusted least squares (ALS), multi-fold least squares etc., (Cimpoesu, 

Ciubotaru & Stefanoiu, 2013; Hassan, et al, 1982; Iqbal, Bhatti, Iqbal, Khan & 

Kazmi 2009; Young, 1981; Strejc, 1980; Wang, Dai & Ding, 2009; Zhu, 2005). 

Wang, Wang and Ji (2017) propose a very interesting novel parameter 

estimation method. Their method has two stages; the first stage is based on bias-



 

31 

eliminating least squares method and a second stage that uses singular value 

decomposition method. 

Other least squares methods presented include, a two level algorithm for 

parameter estimation using multiple projections; the total least squares (TLS), 

also known as orthogonal regression in statistics, this method is based on 

singular value decomposition (SVD) technique; the kernel partial least squares 

formulation, quadratic partial least squares; partial least squares combined with 

neural networks; dictionary-based estimation; noise compensation technique 

methods have been introduced recently (Austin, Ash & Moses, 2013; Chen & 

Suter, 2007; Zhang, et al, 2010, Chianeh, Stigter & Keesman, 2011; Currier & 

Danai, 2011; Khalil, et al., 2015; Lagrange, et al., 2006; Lee, et al., 2004; 

McCusker, et al., 2011; Zhang, et al., 2010). 

 
Numerical methods 

Ding (2014) states that numerical methods are generally used for solving matrix 

equations thus the application in determination of model parameters for dynamic 

systems. Typical numerical methods include: gradient search, least squares and 

Newton methods. These methods can be further divided into iterative or 

recursive techniques (Ding, 2014; Schittkowski, 1994; Salhi & Kamoun, 2015). 

Ding, Liu and Liu (2016) propose a recursive least squares method for Wiener-

type nonlinear models, while Kazemi & Arefi (2017) present a fast iterative 

recursive least squares method for Wiener-type highly nonlinear model. Liu, Xiao 

and Ding (2013) presented a Newton based iterative parameter estimation 

method for Wiener nonlinear systems. 

 
Local and global optimization techniques 

Many global and local optimization techniques have been proposed by different 

authors: Esposito and Floudas (2001), Faber, et al. (2007), Linga, et al. (2006), 

Luus (2001) and Zarzini, McAuley and McLellan (2008a). These methods include 

sub-techniques such as the branch-and-bound (B&B) algorithm that is derived 

from deterministic global optimization (Li, et al., 2015; Zarzini, McAuley & 

McLellan, 2008a), the incremental identification procedure Michalik, et al., 

(2009a) etc. Other work under optimization techniques include that of Esposito 

and Floudas (2000), Michalik, et al. (2009a), Esposito and Floudas (2001), 

Chianeh, et al. (2011). Esposito and Floudas (2000) and Michalik, et al. (2009a) 

considered the problem of multiple local minima in optimization techniques as a 

solution to parameter estimation. 
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Li and Ding (2013) propose a method that transforms a complex nolinear 

optimization problem into a linear or a simpler nonlinear optimization problem. 

Other optimization based methods include: quasilinearization method, the 

Marquardt method Levenberg-Marquardt algorithm which is a Marquardt method 

incorporated to the quasilinearization algorithm to improve on convergence 

region. The Levenberg-Marquardt algorithm is defined as a nonlinear parameter 

estimation learning algorithm that is known to converge quickly and accurately; 

the branch-and-bound (B&B) algorithm that is derived based on deterministic 

global optimization; the incremental identification procedure (Remaker, Smith & 

Murrill, 1970; Zarzini, et al., 2008a, Michalik, et al., 2009a; Shawash & Selviah, 

2013; Simunek, Wendroth & van Genutchen, 1998). 

 
Maximum likelihood methods 

The maximum likelihood optimal minimization technique is one of the best of 

minimization techniques. It always guarantees a global minimization. Many 

authors have attempted parameter estimation problems using direct maximum 

likelihood or using it as part of the solution. In cases where noise probability 

density function is known, the maximum likelihood technique is the most viable 

option, or in cases where prior probability density function is available for the 

parameter vector, the maximum a posteriori estimation is the best method to use. 

The bounded-error estimation methods should be applied in cases when only 

bounds are available for measurement noise and state disturbances. Therefore, 

to ensure proper parameter estimation, the parameter set has to be defined to be 

consistent with available model structure, available measurement data and noise 

bounds (Britt & Luecke, 1973; Johansen, Doucet & Davy, 2006; Kok, et al., 2015; 

Schon, et al., 2006). 

Other maximum likelihood techniques include, the Estimation Maximization (EM); 

approximate maximum likelihood estimation (AMLE); maximum a posteriori 

(MAP) estimation; contrast functions for static parameters; pseudo-likelihood 

function which is maximized using EM type algorithms (Andrieu & Doucet, 2003; 

Andrieu, Doucet, & Tadic, 2005; Hanson, 2000; Zarziri, et al., 2008a; Zarziri, 

McAuley & McLellan 2008b; Yang, et al., 2001; Wills, Schon, & Ninness, 2008). 

The Estimation maximization (EM) is an estimation method that calculates 

maximum likelihood and Bayes modal parameter estimates in cases where some 

data may be missing, the algorithm is performed over two steps, 1) the 

expectation step and 2) the maximization step. EM is also generally used to 
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provide maximum likelihood estimates in nonhomogeneous trees in dynamic 

trees models. 

 
Heuristic methods 

Heuristic optimization methods are general purpose optimization methods based 

on empirical evolutionary rules that resemble optimization in natural systems 

(Abonyi, et al., 1999; Oh, et al., 2004; Schwaab, Biscaia Jr., Monteiro & Pinto, 

2008). Heuristic is referred because the optimization solution does not guarantee 

the exact solution. 

A number of heuristic methods are available and have been suggested for 

solving nonlinear parameter estimation problems. These include: simulated 

annealing (SA), the genetic algorithm (GA), particle swarm optimization (PSO) 

algorithm, usually applied in complex stationary models, hybrid differential 

evolution (DE) algorithm for solving kinetic parameter estimation and dynamics 

on trees methods (Schwaab, et al., 2008; Wang, Su & Jang 2001; Zhao, et al., 

2012). Kannan, et al., (2000) presented an algorithm for estimation of the 

parameters for a multi-scale stochastic process using scale-recursive dynamics 

on trees. 

 
Observer based parameter estimation 

In some cases, parameters are modelled into models such that they are entered 

as a subset of the state variables and once parameters to be estimated are 

chosen, a state estimation algorithm is used (Al-Hosani & Utkin, 2012; 

Safdarnejad, et al., 2015; Zhou, 2013; Farza, et al., 1998). Iqbal, et al. (2011) 

introduced an algorithm for robust parameter estimation of uncertain nonlinear 

dynamic systems using a variable-structure differentiator observer. 

Other observer based methods are presented in different settings; Zhou (2013) 

presented a parameter estimation method and an adaptive observer design for a 

class of uncertain systems; due to nonlinear complexities, an adaptive law for 

parameter estimation is introduced (Na, et al., 2011). Other authors considered a 

large class of time-varying nonlinear systems (Faber, et al., 2007; Kenne, et al., 

2008; Ortega, et al., 2015; Schwaab, et al., 2008). 

 
Parameter estimation in conjunction with other esti mation methods 

In some cases the focus of parameter estimation is based on the type of the 

model whether it is linear, nonlinear or bilinear; deterministic or stochastic (Alaei, 

Salahshoor & Alaei, 2010; Bregon, Biswas & Pulido, 2012; Cari & Alberto, 2011; 

Faber, et al., 2003; Faber, Li & Wozny, 2004; Faber, et al., 2007; Ganguly, et al., 
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1993; Kenne, et al., 2008; Lototsky & Rosovskii, 2000; Meskin, et al., 2013; 

Kieffer, Walter & Simeonov, 2003; Michalik, Hannemann & Marquardt, 2009b; 

Poyton, et al., 2006; Varziri, et al., 2008a; Mahyuddin, et al., 2012; Na, et al., 

2011; Liu, Xu & Wang, 2012; Soroush, 1998; Wang, Su & Jang 2001). 

Lin, Zhai and Antsaklis (2003) suggest that practical systems’ parameters are 

always affected by some unknown probability time-varying perturbations which 

suggest the need to deal with uncertain parameters when dealing with real 

systems. Their work dealt with a class of uncertain linear systems affected by 

both parameter variations and exterior disturbances. 

Different moving average methods have been also studies by many authors, 

Halim, et al., (2009) present a space-time autoregression moving average 

(STARMA) models family, generally used to describe stationary or weak 

stationary space-time processes. 

Chen and Suter (2007) used a low-rank matrix approximation to solve a general 

parameter estimation problem based on a bilinear approach. He, Yuan and Mu 

(2011) developed an estimation method for affine transformation parameters. 

Iqbal, et al., (2009) presented a method for parameter estimation of uncertain 

nonlinear systems based on accurate and robust derivatives using high-order 

sliding modes. Xiang, Mueller and Cheng (2007) proposed an estimation method 

that consists of three algorithms in a sequence: 1) least squares estimates, 2) 

grid searching and 3) the gradient search algorithms. Schön, Wills and Ninnes 

(2006) introduced a different parameter estimation technique for a general class 

of nonlinear dynamic systems, using maximum likelihood framework. (Bonilla, et 

al., 2009) presented a convex approach for parameter estimation involving 

parameter affine dynamic systems. 

Kar, Moura and Rawanan (2012) studied distributed static parameter estimation 

in sensor networks with nonlinear observation models and noisy inter-sensor 

communications. Parameter estimation in frequency analysis were considered by 

Yang, et al., (2001), Xiang, et al., (2007), and Kim (2013). Meng, Li and Veres 

(2010) used parameter estimation in an aerodynamic system for aerospace 

system modelling using measured data from flight test. Some work on biological 

and chemical systems has been presented, (Alonso, et al., 2000; Wu & Mu, 

2009; Ubeda, et al., 2012; Chianeh, et al., 2011; Simunek, et al., 1998) A 

psychological and educational measurement theory called the item response 

theory (IRT) which is an improvement from the classical test theory (CTT) was 

presented by Wang, Chen and Ma (2010) and Henson (2000). 
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On-line parameter estimation methods 

A number of online parameter estimation solutions are also presented by a 

number of authors (Bregon, et al., 2012; Fujii & Karoda, 2011; Ravindra & Gudi, 

2010; Badwe, et al., 2010; Tatiraju & Soroush, 1997; Tatiraju & Soroush, 1998; 

Schei & Singstad, 1998; Sirohi & Choi, 1996; Zhang, et al., 2010). According to 

Tatiraju and Soroush (1998) existing online parameter estimation include: 1) 

prediction-error-based methods, 2) parameter estimation via state estimation, 3) 

parameter estimation via online optimization, and calorimetric methods (for 

kinetic and thermal processes). 

 
Software implemented and real application parameter  estimation solutions 

Alaei, et al., (2010) used the HYSYS real-time simulation software to collect data 

of a distillation column. From the obtained data, they applied MATLAB software 

program for identification and application of their predictive control schemes. 

Bengea, et al. (2011) presented a method for demand-response control of a 

building system and district HVAC systems. 

 
Discussion 

Initially, parameter estimation was mostly found in identification where models 

are developed using experimental data, mostly this work could be defined as 

parameter identification. With growth in modelling of physical processes, this led 

to development of parameter estimation techniques based on first principle of 

systems’ energy transfer. 

As it can be seen in the work presented in this section, parameter estimation is 

almost applicable to vast fields of engineering and non-engineering fields. In 

control engineering, it seem to have taken the centre stage, and it is further 

applied in different kinds of control system’s requirements and properties, 

including; real-time control, nonlinear property of most models. The calculation 

algorithm divergence issues are the main indicator if the proposed algorithm will 

be a success or a failure. Parameter estimation methods have since evolved into 

including other estimation methods as means of solution. 

Many new techniques based on heuristic solution have been developed, and 

seem to cover even most complex nonlinear systems, e.g. the particle swarm 

optimization algorithm and its variations. Models that consider measurement 

errors are known as error-in-variables, with other variations such as bilinear 

multivariate errors-in-variables model, interval analysis etc., (Gau & Stadtherr 

2000; Kukush, Markovsky & van Huffel, 2003; Esposito & Floundas, 1998; 
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Lagrange, et al., 2006) presented a system of parameter estimation in cases 

where the input is not measurable. 

Rumschinski, et al. (2010) investigated the difference between parameter 

estimates of a continuous-time nonlinear model and that of a corresponding 

nonlinear discrete-time approximation of the same continuous-time nonlinear 

process model (Vajda, Valkos & Godfrey, 1987; Rumschinski, et al., 2010). 

 
2.4.4. Review of the existing literature for the st ate estimation problem 

In physical systems, it is often a necessity to estimate unknown parameters and 

reconstruct states that cannot be measured due to: 1) lack of sensors, 2) 

unreachable positions in a plant, 3) mixtures that are impossible to measure or 4) 

measurements that may be too costly to perform (Bogaerts, 2008; Hulhoven, 

Vande Wouwer, Zhu & Pagilla, 2003; Mangold, et al., 1994; Moradkhani, et al., 

2005; Patwardhan, et al., 2012; Shahrokhi & Fanaei, 2001; Sundarapandian 

2011a; Tyukin, et al., 2008). 

In such cases the unknown model states can be reconstructed using 

approximation techniques. This suggests that state estimation is one of the major 

aspects of analysis, design, and control and monitoring of physical processes 

(Afshari, et al., 2015; Dunik,et al., 2015; Chen, et al., 2004; Ching, et al., 2006). 

States in physical processes define the process’s behaviour and carry 

information about the dynamics of the process, which thus dictates the structure 

of the control system to be implemented. State estimation techniques, as it is the 

case in parameter estimation can be broadly divided into three main categories; 

the direct/error methods, maximum likelihood (ML) methods and Bayesian 

methods (Nicholson, et al., 2014; Kottakki, et al., 2014). 

Generally, the state estimation problem for continuous time linear systems with 

Gaussian noise is solved using a Luenberger observer design, or the Kalman 

filter for discrete time linear systems. The extended Kalman filter is best suited 

for discrete time nonlinear systems. Pure nonlinear systems state estimation 

problems are best solved using Bayesian based methods (Ahmed, 1994; Lopez, 

2012; Norgaard, et al., 2000). According to Robertson and Lee (1995) 

nonlinearity and prior knowledge requirements for state estimation can be 

addressed by considering state estimation problem as a least squares problem. 

 
Linearization and approximation techniques  

Statistical approximation techniques use a model and measurement functions 

are represented by polynomial series expansion. The idea is to find the minimum 



 

37 

of mean square error (MSE) between the system model and the polynomial. The 

parameters are determinable by taking derivatives of mean square error with 

respect to each coefficient (Muske & Edgar, 1997). The state conditional 

probability density of the system is required to determine the solution of the 

expectation operation. Generally the probability density is not easily available 

and approximations must be used. The most general approximation is known as 

the statistical linearization or quasilinearization (Dunik, et al., 2015; Feng, et al., 

2015; Muske & Edgar, 1997). 

Norgaard et al., (2000:1627) proposed a method that uses polynomial 

approximations to determine state estimates. The novelty of this technique is the 

fact that the polynomial approximations take care of the uncertainty of the state 

estimates, whereas Taylor approximation based methods for nonlinear systems, 

like the extended Kalman filter, consider only the current state estimate. The 

method also considers the stochastic decoupling techniques to introduce the 

measurement noise.  

 
Maximum Likelihood methods 

A maximum likelihood (ML) estimation criterion uses statistics theory to estimate 

an unknown quantity given observation measurements. It is customary for 

maximum likelihood procedure in linear dynamic system to use gradient methods 

to determine the unknown quantity. Such a solution to estimation may have some 

implementation limitations; and another possibility is to use expectation 

maximization (EM) procedure to calculate maximum likelihoods (Hansson & 

Wallin, 2012; Schon, et al., 2006; Siouris, 1996; Zia et al., 2008). The maximum 

likelihood procure has the advantages of requiring no a priori knowledge about 

the unknown quantitiy, requires minimal statistical information and produces 

unbiased estimates (Kok, et al., 2015; Siouris, 1996). 

Many different maximum likelihood estimation algorithms have been produced for 

many diiferent models. Most of these solutions use either the expectation 

maximization (EM) or the maximum aposteriori (MAP) properties. Khodadadi & 

Jazayeri-Rad, (2011) state that the extended Kalman filter is one of the best 

methods for generating approximate maximum likelihood estimates in nonlinear 

discrete-time systems. 

 
Bayesian estimation techniques 

The Bayesian estimation technique constructs the conditional probability density 

function of the state by combining historical information and measurements data 
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according to the Bayesian rule. The problem of Bayesian state estimation of 

systems with noisy measurements revolves around construction of a state vector 

based on probability density function (PDF) using all available information 

(Ching, et al., 2006; Fiechter, et al., 2013; Mansouri, et al., 2013; Parslow, et al., 

2013; Routtenberg & Tabrikian, 2010; Ungarala et al., 2006; Zhao, et al., 2013). 

The formed probability density function contains almost all statistical information 

about the state. This is one of the two main advantages of using Bayesian based 

techniques for state estimation; the other is that these methods produce the 

probability density function required (Ching, et al., 2006). Once the probability 

density function is received, optimality criterion is then used to calculate state 

estimations using this complete set of information. 

According to Ungarala et al., (2006), using the conditional probability function is 

the most complete statistical method from which practical optimization can be 

observed. The central issue in state estimation using probability density functions 

is the method used to construct the probability density function. The idea is to 

use the a priori information about the state conditional probability density function 

to modify it into an a posteriori conditional probability density function using the 

current measurement data. 

 
2.4.5. Review of existing literature of observer de sign state estimation 

methods 

A state observer is one of many methods used to determine unknown states of a 

system. Bornard, Celle-Couenne and Gilles (1995:173) describe an observer as 

a dynamic system used to precisely produce the current value of the state with 

the given input–output measurement values (Robertson & Lee, 1995; Siouris, 

1996:164). State variables are used to determine the algorithm to be 

implemented, and thus used to calculate the required input value to be applied 

for a required output. The requirement for such a system to be functional is that 

the system it estimates must be observable (Bornard, et al., 1995; Bouraoui et 

al., 2015; Robertson & Lee, 1995; Siouris, 1996:163). 

State observers can be designed to be local or global observers; and both these 

design methods are important in control engineering applications 

(Sundarapandian, 2012; Bornard, et al., 1995). The major drawback for most 

observer designs is that they become unstable in presence of uncertainties, e.g., 

perturbations on observer parameters (Funahashi, 1979; Garimella & Yao, 2003; 

Zak & Walcott, 1987). 
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Sundarapandian (2012) argues that the design of the local observer in nonlinear 

systems is one of the central problems in control system’s system design. 

Drawbacks associated with linear Gaussian approximations, such as biasness in 

residuals, correlation of states and non-Gaussian residuals, correlation of 

residuals in the system and measurement equations, etc., will result in non-

robust estimation which in turn results in non-convergence are easily 

determinable in nonlinear non-Gaussian systems (Ungarala et al., 2006; 

Robertson & Lee, 1995). 

For this reason, the linear state observer is not adequate to reconstruct states in 

nonlinear systems (Gauthier, Hammouri & Othman, 1992; Krener & Respondek, 

1985; Misawa & Hedrick, 1989; Shim, Seo & Teel, 2003; Wang & Zhang, 2006; 

Zak, 1990). Many different methods have since been developed to deal with 

uncertainties in the observer design structure. Suboptimal methods are 

suggested for cases where nonlinearity and non-Gaussian property are very 

intense such that the Taylor approximation cannot be used (Misawa & Hedrick, 

1989). 

The above mentioned drawbacks also necessitate the need for estimating 

unknown states before application of the designed optimal control strategy of the 

process. In designing the observer, generally, two conditions must be met, 1) 

minimization of the error difference between the model states and observer 

estimated state, and 2) keeping error dynamics and its rate at zero or close to 

zero under changing input or state variables (Beikzadeh & Taghirad, 2012; 

Gauthier, et al., 1992; Marquez & Riaz, 2005; Zak & Walcott, 1989; Zak & 

Walcott, 1987). 

The initial nonlinear observer design was introduced by Thau in 1973. This work 

has grown to include or establish three most important characteristics that would 

determine success of the observer design for nonlinear systems; viz. are: 1) 

asymptotical stability, 2) robustness, and 3) exponential convergence. The 

success of the observer is based on the reduction of the dynamic error system of 

the observer within finite time. 

The state observer design has always been classified into two but lately into 

three main categories; 1) full-order state observer, 2) reduced-order state 

observer and 3) the recently introduced partial reduced-order state observer. The 

reduced-order observer estimates only the unmeasurable states of the system 

under consideration; on the other hand, the full-order observer estimates all state 

variables of the system including states that are determinable from the system 

outputs (Besancon & Munteanu, 2015; Biagiola & Figuerroa, 2002; Bernstein & 
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Haddard, 1989; Boutat, Zheng & Hammouri, 2010; Emel’yanov & Korovin, 2011; 

Khan, et al., 2016; Lee & Park, 2003; Mahmoud, 1982; Zhang, et al., 2014; 

Zhang & Xu, 2015). The partial reduced-order considers only a certain number of 

the states based on the practicality of estimating the specified states (Balemi, 

2008; Trinh, Fernando & Nahavandi, 2006; Zhou & Men, 2011). 

 
Observer design based on a model description 

Observer design based on deterministic or stochastic nature of the process 

model, continuous-time or discrete–time, time–invariant or time-varying systems 

has been a focus for a number of authors (Beikzadeh & Taghirad, 2012; Dani, 

Chung & Hutchinson, 2012; Dani, et al., 2015; Doris, et al., 2008; Germani, et 

al.,1975; Heemels & Weiland, 2007; Juloski, Manes & Pepe, 2002; Krokavec & 

Filasova, 2007; Wang, et al. 2015; Weiss, 1977; Yaz, et al., 2007; Zhang & Xu, 

2015; Zhou & Men, 2011). 

Other authors proposed a nonlinear observer design problem for a class of state-

delayed nonlinear systems with or without time-varying uncertainties (Germani, 

et al, 2002; Lu, et al., 2006; Zemouche et al., 2005). Bak, Michalik & Szarfan, 

2003) attempted to design a nonstationary state observer using time-varying gain 

matrix calculated from a Kalman filter. 

 
Linear observers and Luenberger observer design 

Directly from work of Luenberger (1964) a lot of work has been generated by 

different authors on the basis of the Luenberger linear observer design structure 

(Juloski, et al., 2007; Luenberger, 1964; Luenberger, 1966; Luenberger, 1971; 

Williamson, 1977; Jouili, et al., 2011; Krokavec & Filasova, 2007; Pagilla & Zhu, 

2004; Pertew, et al., 2005; Robenack & Lynch, 2006; Sawant & Ginoya, 2010; 

Wang & Zhang, 2006). Pertew, et al., (2005) showed that the classical 

Luenberger-like observers are special cases of a generalized framework for 

dynamic observers. 

Work on linear observers of systems with unknown inputs and the highlight on 

shortfall of this design has been presented in the literature by many authors 

(Bara, et al., 1999; Basile & Marro, 1969; Darouach, et al,1994; Engel & 

Kreisselmeier, 2002; Hou & Muller, 1992; Hou & Muller, 1994; Kazantzis & 

Kravaris, 1998; Mahmoud, 1982; Paraskevopoulos, Koumboulis, Tzierakis & 

Panagiotakis, 1991; Luenberger, 1971; Zasadzinski, Magarotto & Darouach, 

2000). Some authors considered canonical observers (Busawon & Saif, 1999; 
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Busawon, Farza & Hammouri, 1998; Emel’yanov & Korovin, 2011; Fortmann & 

Williamson, 1972; Luenberger, 1966; Xia & Gao, 1988). 

Some of these designs included piece-wise linear systems, systems with time 

delay and or with uncertainties (Doris, et al., 2008; Engel & Kreisselmeier, 2002; 

Hou, Zitek & Patton, 2002; Ugrinoskii, 2003). 

 
Design of observers for bilinear systems 

Bilinear systems can be considered a special class of nonlinear systems, and 

also to be good approximations to nonlinear systems (Bai & Liu, 2006; Busawon 

& Saif, 1999; Tibken & Hofer, 1989; Saif, 1993; Rafaralahy, et al., 1996; Joshi, et 

al., 2005; Zasadzinski, et al., 1998). Many different forms of solution for observer 

design of bilinear systems have been proposed by a number of authors (Behal, 

Jain & Joshi, 2006; Joshi, et al., 2005; Gauthier, et al., 1992; Goncharov, 2012; 

Grasselli & Isidori, 1981; Hammami & Jarbi, 2001; Hara & Furuta, 1976; Hsu & 

Desai, 1984; Rafaralahy, et al, 1996; Saif, 1993; Souley Ali, et al., 2005; 

Taniguchi, Eciolaza & Sugeno, 2014; Tibken, & Hofer, 1989; Wang & Burnhan 

2001; Vries, Keesman & Zwart, 2007; Wang & Zhang, 2006; Williamson, 1977; 

Ying, Rao & Sun, 1990; Zasadzinski, et al., 1998; Zasadzinski, et al., 2000). 

Zasadzinski, Boutayeb and Darouach (1996) presented an observer for a 

singular, time-invariant descriptor bilinear system. 

Krokavec and Filasova (2007) presented a state observer design procedure for 

the regional pole assignment for discrete-time uncertain system. The approach is 

based on controlled system model, where the model input is the difference 

between the actual system output and the estimated output of the system. The 

pole placement technique is also followed in this thesis but the method applied 

here differs significantly in the approach from that of Krokavec and Filasova 

(2007). 

 
Nonlinear observer formulations 

According to Krener and Respondek (1985), Beikzadeh and Taghirad (2012), 

Busawon and Saif (1999), Raghavan and Hedrick (1994), and Yaz, et al., (2007) 

research in nonlinear state observer design resulted in the following techniques: 

extended linearization, feedback linearization, variable structure, high-gain 

observer design, extended Kalman filter family, stabilization of the original 

unstable system using feedback control etc. (Alanis, et al., 2014; Atroune, 1988; 

Azemi & Yaz, 1999; Boker & Khalil, 2013; Braiek & Rotella 1993; Beikzadeh & 

Taghirad, 2012; Chen & Chen, 2007; Fortmann & Williamson, 1972; Gauthier, et 
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al., 1992; Hou & Muller, 1994; Goncharov, 2012; Grasselli & Isidori, 1981; Kou, 

Elliott & Tarn, 1975; Ma & Xie, 2015; Menini & Tornambe, 2014; Misawa & 

Hedrick, 1989; Nagy-Kiss, et al., 2014; Paraskevopoulos, et al., 1991; Rafaralay, 

et.al, 1996; Raghavan & Hedrik, 1994; Saif, 1993; Sundarapandian, 2005; Tibken 

& Hofer,1989; Wang, Rajamani & Bevly, 2014; Yaz, et al., 2007; Walcott & Zak, 

1987; Wang,et al, 2006; Williamson, 1977). 

Lyapunov-based techniques and state-dependent Riccati equation based 

techniques have also been demonstrated. Another method for observer design is 

known as the state-dependent coefficient (SDC) forms, used mostly for 

stochastic systems. This method is sometimes referred to as state-dependent 

coefficient parameterization since it parameterizes a system’s nonlinearity in an 

extended linear form (Beikzadeh & Taghirad, 2012; Yaz, et al., 2007; Walcott, & 

Zak, 1988). 

Other approaches are based on the nature or characteristics of the systems, and 

this has led to further system properties being used for the observer design, 

properties such as; 1) linear matrix inequality (LMI), 2) asymptotic design, 3) set-

membership and set-value techniques, 4) robust and resilient designs, 5) 

dynamic nature of the system, 6) Lipschitz property, 7) error dynamic stability 

and 8) Lyapunov stability etc. 

Software simulations, software observer design solutions and some specific 

applications have also been considered by some authors (Behal, et al, 2006; 

Gauthier, et al., 1992; Raghavan & Hedrick, 1994; Song & Hedrick, 2011; Vries, 

et al., 2007; Yaz, et al, 2007; Ying, Rao & Sun, 1990; Wang & Zhang, 2006). 

 
Nonlinear observer design 

Many possible solutions for observer design for nonlinear systems have been 

developed and are continuously in a process of development to solve state 

estimation problem. Some authors have proposed using coordinate 

transformation to modify a nonlinear system into a linear one (Aguilar, Martinez-

Guerra & Maya-Yescas 2003; Barbot, Boutat & Floquet, 2009; Besancon & 

Munteanu, 2015; Besancon & Hammouri, 1996; Boutayeb & Darouach, 2000; 

Braiek & Rotella, 1993; Busawon, et al., 1998; Chen & Kano, 2002; Delgado, 

Hou & Kambhampati, 2005; Jamel, et al., 2013; Juloski, et al., 2007; Kazantzis, 

Huynh & Wright 2005; Komatsu & Takata, 2009; Komatsu & Takata, 2010; 

Krener & Isidori, 1983; Phelps, 1989; Robenack & Lynch, 2006; Zak & 

Walcott,1975; Zeitz, 1987; Zemouche, et al., 2005). 
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In single-input single-output (SISO) systems, the solution is to find a coordinate 

change transformation that would modify the nonlinear system into a linear one 

plus at least a nonlinear term which is a function of the input and output of the 

system (Delgado, et al., 2005). Other solutions involved multi-input multi-output 

systems (Barbot, Boutat & Floquet, 2009; Deza, et al., 1993; Farza, M’Saad & 

Rossignol, 2004; Fortmann & Williamson, 1972; Guay, 2002; Shim & Seo, 2003). 

Nonlinear control affine systems with a maximum relative degree and a class of 

nonlinear differential equations can be transformed into what is known as the 

normal form. Kravaris, et al., (2007) designed a nonlinear observer for state 

estimation that included uncertainty (disturbance) estimation (Kravaris, et al., 

2004). Some authors considered nonlinear systems with global Lipschitz property 

(Abbaszadeh & Marquez, 2006; Chen & Chen, 2007; Gauthier, et al., 1992; Lu & 

Ho, 2004; Lu et al., 2006; Kou, et al., 1975; Kreisselmeier & Engel, 2003; Pagilla 

& Zhu, 2004; Pertew et al., 2005; Raghavan & Hedrick, 1994; Xu & Xu, 2004; 

Zhu & Han, 2002; Wang, et al., 2014). 

Another observer design method which has become focus for most authors is the 

moving horizon observer. The moving horizon observer design was developed to 

handle nonlinearities of systems. This type of the observer is motivated by full 

order state observer but suffers the increased dimensions (Chu et al., 2007; 

Robertson & Lee, 1995). Some authors designed observers based on the 

Takagi-Sugeno model structure of neural networks (Delgado et al., 2005; Jamel, 

et al., 2013). The Takagi-Sugeno structure type model is mostly used in multiple 

model approach. 

 
System properties used with observers 

The following properties have been used by many authors to produce observer 

state estimators: set-membership/set-value state estimation, linear matrix 

inequality (LMI), error dynamics stability & Lyapunov stability. Some authors 

propose using set-value state estimation as means of dealing with nonlinearities 

in the system model, (James & Peterson, 1998; Lin, et al., 2003; Walcott & Zak, 

1987; Walcott, & Zak, 1988). The linear matrix inequality (LMI) property is used 

to guarantee the observer convergence (Abbaszadeh & Marquez, 2006; Dani, et 

al., 2012; Essabre, Soulami & Elyaagoubi, 2013; Hassan, 2014; Hassan & Zribi, 

2014; Jamel, et al., 2010; Jamel, et al., 2013; Jeong, Yaz & Yaz, 2011; Juloski, et 

al., 2007; Lien, 2004; Lu, et al., 2006; Tyukin, et al., 2013; Yaz, Jeong & Alotaibi, 

2004; Zemouche, Boutayeb & Bara, 2005; Yang & Dubljevic, 2014; Wang, Shen, 

Zhang & Wang, 2012; Zhou & Men 2011). 



 

44 

Silverman and Meadows (1967) provide thorough presentation of different types 

of controllability and observability properties as characterized by known system 

coefficients (Conticelli & Bicchi, 2000; Salau, et al., 2014). 

The Lyapunov condition of stabilization has been intensively applied in solving 

observer design problems (Biagiola & Figuerroa, 2002; Essabre et al., 2013; 

Jamel et al., 2013; Jouili et al., 2011; Juloski et al., 2007; Kazantzis & Kravaris, 

1998; Krokavec & Filasova, 2007; Robenack & Lynch, 2006; Sundarapandian, 

2002; Sundarapandian, 2006; Sundarapandian, 20011a, 2011b, 2011c; Tsinias, 

1989; Zemoche et al., 2005; Zhou & Men, 2011; Zhu & Pagilla, 2006). The error 

dynamics stability procedure has been considered by some authors as means of 

observer design solution (Bernstein & Haddad, 1989; Lee & Park, 2003; Yuksel & 

Bongiorno Jr., 1971). 

Based on complexities associated with nonlinearities in different system models, 

different types of observers have since been developed; 1) dynamic observers, 

2) asymptotic observers, 3) adaptive observers, 4) robust/resilient observers, 5) 

switched observer design, 6) partial-states nonlinear observers, 7) high-gain 

observers, 8) exponential observers, 9) non-stationary state observers. 

 
Discussion 

Many different observer design techniques have been proposed, including: 1) 

feedback linearization, 2) variable structures, 3) extended linearization, 4) high 

gain observers and Lyapunov based techniques. Since the original work by 

Luenberger, the state observer has found many useful applications including 

system monitoring and control, detection as well as fault and failures detection in 

dynamical systems; but the Luenberger observer design is limited to systems 

with accurate models. This observer tends to ignore internal and external 

uncertainties. Since almost all observer designs are based on the mathematical 

model of the plant, the presence of disturbances, dynamic uncertainties, and 

nonlinearities pose great challenges in practical applications (Wang & Gao, 

2003). 

Multiple model approach in solving nonlinear systems modelling and estimation 

problems is becoming a new trend. From the very beginning, the use of state 

observers has shown not to be useful only for system monitoring and control, but 

also for detection and identification of failures in dynamic systems. Generally, 

one of the main challenges in designing an observer is the fact that it is heavily 

dependent on the accuracy of the process model, the state, the input and the 

output matrices. 
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2.4.6. Review of the existing literature of Kalman filter and other filtering 

methods 

There are basically three main Kalman filter techniques in the Kalman family plus 

one, viz are: the (traditional) Kaman filter (KF), the extended Kalman filter (EKF) 

and the unscented Kalman filter (UKF), and the latest established ensemble 

Kalman (EnKF) filter. The EnKF is more of a particle filter method of state 

estimation rather than a real Kalman filter in the traditional sense. Generally the 

Kalman filter is used to solve state estimation problem for discrete-time systems. 

The extended Kalman filter was introduced to deal with practical implementation 

of the Kalman filter in nonlinear systems since the Kalman filter is only applicable 

to linear systems. Robertson and Lee (1995:296) describe the Kalman and the 

extended Kalman filters as stochatic estimation techniques. Rawlings and Lima 

(2008) presented lectures on state estimation in linear and nonlinear dynamic 

with a full discussion on EFK and UFK. 

Recently, an increased interest in developing robust and optimal control 

strategies for complex practical system has led to a development of the 

unscented Kalman filter which deals with complexities in nonlinear processes. 

This discussion is thus going to be broadly divided according to these three 

estimators, since each one is simply an improvement of the previous one 

(Bohner & Wintz, 2013; Huber, 2013; Kao, et al., 1992; Li & Peng, 2014; 

Moussakhani, et al., 2014; Pritsker, 2015; Xiong & Zheng, 2015; Zghal, Mevel & 

Del Moral, 2014). 

The original Kalman filter shall be referred to as the classical, or traditional, or the 

standard Kalman filter or simply the Kalman filter. This form of estimation has 

evolved to include many different variations. A few such methods include two-

stage Kalman filter, the robust Kalman filter working in conjunction with the 

adaptive Kalman filter to produce the robust-adaptive Kalman filter (Huang, et al., 

2012; Luo, Hoteit & Moroz, 2012; Tang & Li, 2015). 

When using Kalman filter for state estimation of nonlinear systems, propagating 

the state error covariance as required by the filter procedure tends to be very 

difficult; and therefore, approximation methods are used in estimating the 

systems’ states (Gillijns, et al., 2006; Robertson & Lee, 1995). Julier and 

Uhlmann (2004) give full review of all the three filters, and Robertson & Lee, 

(1995) give the main drawbacks of the Kalman filter. 

Most available nonlinear system’s state estimators are simply the extension of 

the most celebrated and widely used extended Kalman filter, and depending on 
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the application there would be tradeoffs in terms of accuracy, implementation 

requirements, robustness and computational complexity (Norgaard et al., 2000; 

Robertson & Lee, 1995). When using an extended Kalman filter based technique, 

the algorithm requires that a Ricatti equation be solved to obtain the filter 

(estimator) gain. There are two main drawbacks associated with such solutions; 

the first one is the requirement that the noise model be known to obtain optimal 

estimates; and worse even, wrong associated noise model will lead to biased 

estimates or even divergence. The second drawback is the relationship that 

exists between the filter covariance matrix and the convergence speed; the initial 

values of the covariance matrix must be guessed at the beginning of the filter’s 

algorithm (Biagiola & Figuerroa, 2002; Robertson & Lee, 1995). 

Historical aspects and analysis of the least-squares methods and then 

development till the application of the Kalman filter have been fully analysed by 

Sorenson (1970). Other historical reviews have also been done by other authors 

(Anderson & Moore, 1991; Humpherys, Redd & West, 2012; Kalman, 1960; 

Welch & Bishop, 2006). 

 
2.4.6.1. The (traditional) Kalman filter 

The original work of Kalman (Kalman, 1960) was an improvement on the Wiener 

filer where extensions by other authors were confronted by different limitations. 

Kalman then introduced the new design with focus on: 1) optimal estimates and 

orthogonal projections, 2) models of random processes, 3) solution of Wiener 

problem and 4) applications of the method. The aim was to solve and in some 

cases avoid all limitations that confronted authors who worked with the Wiener’s 

filter (Awathi & Raj, 2011; Dean, 1986; Kalman, 1960; Kalman & Bucy, 1961; 

Mendel, 1970; Rubinstein, 1978; Sorenson, 1970; Welch & Bishop, 2006). The 

original Kalman filter is a state estimator for only linear models. 

Comparative studies of other filters with Kalman filter have been covered by a 

number of authors (Germani, Manes & Palumbo, 2002; Wang & Ho, 2003; 

Nakamori & Hitaji, 1982). Other filters include a cell filter, robust filtering for a 

class of uncertain nonlinear systems, (James & Petersen 1998; Ungarala et al., 

2006). A lot of authors aimed at improving the traditional Kalman filter by working 

on the robust version of the Kalman filter (Anderson & Moore, 1991; Humpherys, 

et al., 2012; Faragher, 2012; Fitzgerald, 1971; Xia, et al., 1994; Xu & Mannor, 

2009). 
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Robust Kalman filter 

Many improvements on the original Kalman filter with the intention to create a 

robust filter have been dealt with by a lot of authors. These improvements include 

a single iteration of Newton’s method on a certain quadratic form, estimators with 

fading memory, adaptive fading Kalman filter (AFKF) based on m-interval 

polynomial approximation etc., (Anderson & Moore, 1991; Faragher, 2012; 

Fitzgerald, 1971; Humpherys, et al., 2012; Humpherys, et al., 2012; Xia et al., 

1994; Xiong, et al., 2012; Xu & Mannor, 2009). 

Other authors proposed different improvements on the traditional Kalman filter so 

that it can be used in nonlinear systems, like using linearization based 

techniques, suboptimal Kalman filter, robust Kalman filter, approximation 

methods, etc., (Ching et al., 2006; Biagiola & Figuerroa, 2002; Diversi, Guidorzi & 

Soverini, 2005; Gabrea, 2003; Huang, et al., 2012; Kim, Jee, & Song, 2008; 

Paleologu, Benesty & Ciochina, 2013; Yang, Wang & Hung, 2002).  

Many different applications of the traditional Kalman filter and its robust version 

have been presented by many authors, from smoothing, bilinear stochasic 

multivariable systems, a unified method of Kalman filtering and the errors-in-

variables filtering, finite-horizon adaptive Kalman filter, adaptive fading Kalman 

filter, parameter estimation algorithm that uses orthogonal decomposition 

approach, linear two-stage Kalman filter, noise reduction methods to hydrological 

models (Ashayeri, Shafiee & Menhaj, 2013; Cao & Schwartz, 2004; 

Bhattacharjee & Das 2013; Gabrea, 2003; Germani et al., 2002; Hsieh, 2003; 

Kalman, 1960; Kim, Kim, & Huang, 2012; Liang, et al., 2004; Myrseth, Saetrom, 

& Omre, 2013; Pastorino, et al., 2013; Saab, 2004; Schilling, & Martens, 1986; 

Xia, et al.,1994). 

 
2.4.6.2. Extended Kalman filter 

The best definition of the extended Kalman filter is that given by Young (1981) 

who states that the basic idea of this estimation method is to “extend the state 

vector by adjoining the vector of unknown parameters”. The extended Kalman 

filter is based on the first order Taylor linear approximations and the Taylor 

linearization does not produce accurate representation in many cases. Methods 

based on Taylor linearization may also suffer from biasness of estimates and 

even convergence problems. Almost all methods of solving the estimation of the 

state involve some form of linearization about the current estimates (Anderson & 

Moore, 1971; Bhatt, et al., 2013; Bolognani, Tubiana & Zigliotto, 2003; Chatzis, 

Chatzi & Triantafyllou, 2017; Haseltine & Rawlings, 2005; Kalman & Bucy, 1960; 
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Meng, Li & Veres, 2010; Moradkhani, et al., 2005; Norgaard et al., 2000; Sabet, 

Sarhadi, & Zarini, 2014). 

Other methods of extended Kalman filter proposed by some authors include 

iterative extended Kalman, maximum likelihood formulation, Stirling’s 

interpolation formula (Bolognani, et al., 2003; Cao, et al., 2016; Norgaard et al., 

2000; Sargantaris & Karim 1994; Young, 1981). 

 
2.4.6.3. Unscented Kalman filter 

The unscented Kalman filter was introduced to solve some drawbacks 

experienced by the extended Kalman filter concerning nonlinearities; the 

extended Kalman filter suffers from: 1) divergence of the filter if error propagation 

is not well approximated by the linear function, 2) does not guarantee unbiased 

estimates, and 3) calculated error covariance matrices may not represent true 

covariances. The unscented transformation uses a nonlinear transform based on 

a group of sigma points to approximate the state probability distribution of the 

estimated system (Awasthi & Raj, 2011:69; Hu, et al., 2013:2942; Kulikov & 

Kulikova, 2017). Sarkka (2007) describes the unscented Kalman filter as a 

derivative free algorithm used to determine approximation solutions to discrete-

time nonlinear optimal filtering problems. Full description of how to formulate and 

solve the unscented Kalman filter problems is given in most works (Hu, et al., 

2013; James & Peterson, 1998; Julier & Uhlmann, 2004; Kolas, Foss & Schei, 

2009; Maradkhani, et al., 2005; Romanenko, Santos & Afonso, 2004; 

UmaMageswari, Ignatious & Vinodha, 2012). Applications of unscented Kalman 

filter were covered by a few authors (Straka, et al., 2014; Maradkhani, et al., 

2005; Romanenko & Castro, 2004; Romanenko, et al., 2004; Sabet, et al., 2014). 

 
2.4.6.4. Ensemble Kalman filter 

In the last few years, the Kalman filter family has grown to include: the ensemble 

Kalman filter (EnKF), the deterministic ensemble Kalman filter and the 

augmented Kalman filter; these filter methods were introduced to deal with the 

problem of high nonlinearities, high dimensions, nonGaussian distribution of 

variables and constraints associated with parameters and variables (Evensen, 

2009:83; Simon & Bertino, 2012:1; Jahanbakhshi, Pishvaie & Boozarjomehry, 

2015; Fujii & Kuroda, 2011:1035; Moradkhani, et al., 2005:136). Ensemble 

Kalman filter is defined as a sequential Monte Carlo estimation method 

(Evensen, 2009:83). Gillijns, et al., (2006) give the full description and 

background of the ensemble Kalman filter. Due to failure of the extended Kalman 
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filter to account for nonlinear dynamics in propagating the error covariance, 

which in turn means failure to represent the probability density of the 

minimization error, the ensemble Kalman filter was introduced. 

The ensemble Kalman filter falls under what is known as particle filters. Particle 

filters are used to avoid Jacobian matrix calculations, and the state-dependent 

Riccati equation (SDRE) approach. According to Gillijns, et al., (2006), the 

starting point for particle filters is choosing a set of sample points that is an 

ensemble of state estimates that capture the initial probability distribution of the 

state. Moradkhani, et al., (2005:137,138), Evensen, (2009) give a full description 

of the ensemble Kalman filter. 

 
Discussion 

Until the end of the twentieth century and earlier parts of the first decade of the 

twenty first century, the extended Kalman filter was the dominating technique for 

estimation in nonlinear models (Ching et al., 2006; Norgaard et al., 2000, Dani, et 

al., 2012). Ching et al., (2006) also suggested that the Kalman filter and its 

extensions as commonly applied to state estimation are simple Bayesian type 

methods (Ching et al., 2006; Rafieeinasab, et al., 2014). 

Under nonlinear state estimation, the broad methods of solution involve: moving 

horizon estimation, extended Kalman filter, unscented Kalman filter, ensemble 

Kalman filter and particle filter (Kolas, et al., 2009). Julier and Uhlmann (2004) 

state that though there is some relation between the unscented transformation 

and particle filters, there are two clear distinctions between these two: 1) sigma 

points are obtained from statistics of the transformation in a deterministic manner 

and 2) the transformation itself can be interpreted more generally instead of it 

being considered a probability distribution. 

The unscented filtering method has since been used for mostly, high-order, 

nonlinear couple systems, and systems with hard nonlinearities. With the growing 

interest in high-order, hard nonlinearities and more complex systems, the 

ensemble Kalman filter seem to be taking off as the best technique. 

 
2.4.7. Review of the existing literature of combine d state and parameters 

estimation 

Work of simultaneous estimation of parameters and states of a system that has 

been produced covers the whole range of control systems’ descriptions: single 

variable systems (i.e. SISO), multivariable systems (e.g. MIMO), discrete-time, 

continuous-time, time-varying and time-invariant systems. In some cases it is 
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possible to estimate both unknown states and unknown parameters by first 

assuming the one set of unknowns and then using these initial values to 

calculate the other set of unknowns (Bezzaoucha, et al., 2013; Chong, et al., 

2014; Fang, de Callafon & Cortes, 2013; Ibrir, 2015; Specker, Buchholz & 

Dietmayer, 2014; Zhuang, Pan & Ding, 2012). Siouris (1996:190) states that the 

problem of combined state and parameter estimation was initially proposed as 

nonlinear state estimation problem formulated as an extended Kalman filter 

problem. 

Generally, the combined nonlinear parameter and state estimation problem was 

solved by augmenting the state vector with the parameter vector; and the Kalman 

filter is then used to estimate the states (Nelson & Stear, 1976; Vafamand, & 

Safarinejadian, 2013). Eykoff (1968) suggests that statistical estimation 

techniques can be broadly divided into three categories: 1) Maximum likelihood, 

2) Markov, and 3) Least squares estimation methods. Other known methods 

include sequential Monte-Carlo (SMC), or particle filter algorithms. These are 

considered online simultaneous estimation techniques, since they are based on 

online optimization theory (Tulsyan, et al., 2013). 

 
Bayesian methods 

Bayesian estimation formulation can be considered a general solution for all 

types of systems. This technique is known to produce more accurate estimates in 

comparison to approximate techniques such as, 1) the extended Kalman filter, 2) 

the moving-horizon estimator, etc. The Bayesian based estimation approach 

provides more information on uncertainties since the procedure estimates the 

whole data distribution (Chen, et al., 2004). 

According to Ching, Beck, Porter, & Shaikhutdinov, (2006) the Bayesian-based 

state estimation methods have the following asvantages: 1) the methods are 

strictly based on the probability functions, and thus preserving information about 

the process, 2) the availability of probability density function further allows 

description of uncertainties within the system (Patwardhan et al., 2012). Ching et 

al., (2006) suggest that the first known Bayesian estimation algorithm was the 

Kalman filter formulated for linear systems with Gaussian uncertainties. 

The main aim of the Bayesian estimation procedures is to construction estimates 

of the system’s state sequence using stochastic difference equation process 

model. In the Bayesian framework the estimation is solved under certain 

additional assumptions, 1) the state follows a first order Markov process, and 2) 

measurement errors are indipendent of the given states. The objective of the 
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Bayesian estimation problem is to find conditional probability density function. 

According to Patwardhan, et al., (2012), different methods developed for 

estimation can be divided into two main categories: 

1) methods that obtain approximation of the conditional density function and 

then use optimization criterion to estimate the state, and 

2) methods that assume a suitable form for the priori probability density function 

and then converts estimation problem into an optimization problem. 

Many authors have proposed Bayesian methods for solving parameter and state 

estimation problem jointly. In some cases, the interest is to solve the parameter 

estimation problem and that requires that the exact state of the system to be 

known, and in cases where it is not known, one is obliged to solve both the state 

and the parameter estimation procedure; and for the combined state and 

parameter estimation Bayesian based approaches tend to produce accurate 

estimates (Chen, et al., 2004; Ching, et al., 2006; Kabouris & Georgakakos, 

1996; Patwardhan, et al., 2012; Routtenberg & Tabrikian, 2010; Zia, et al., 2008). 

 
Maximum likelihood methods 

The maximum likelihood method for estimating unknown state and parameters 

jointly is a natural procedure since when determining unknown parameters; the 

method requires that the state be known. Generally, the state estimaton problem 

for a class of nonlinear systems which assumes non-Gaussian process noise 

with uncertainties in measurements model can be considered a maximum 

likelihood estimation problem. This problem is solved by optimal state estimation 

that considers the system uncertainties. The problem can be considered state 

tracking within a parameter estimation procure (Zia, et al., 2008). 

A maximum likelihood based method for simultaneous estimation of the state and 

parameters of a system, that uses a combination of expected maximization (EM), 

nonlinear filtering and smoothing algorithms was presented by Chitralekha, et al, 

(2010). Bar-Shalom (1972) presented an optimal estimation method based on 

maximum likelihood criterion. The following authors also produced combined 

paramerer and state estimation using maximum likelihood technique, Kabouris & 

Georgakakos (1996) and Zai et al., (2008). 

 
Least squares and associated methods 

Ding (2014) presents a combined parameter estimation procedure that estimates 

parameters using a recursive least squares algorithm; and the states of the 

system are then estimated using the Kalman filter based on these estimated 
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parameters (Suzdaleva & Nagy, 2012). Dai, Sinha & Puthenpura (1989) apply 

the method of stochastic decoupling for the states to be estimated. The solution 

is a bootstrap method based on Haber’s principle is developed using the 

extended least squares method. The model considered is stochastic bilinear 

model with additive noise having probability density function (Wang & Zhang, 

2015; Zheng & Boutat, 2014). 

The cost function to be approximated contains a Hessian matrix that needs to be 

approximated. This is achievable by solving the model error gradient. The novelty 

of the method is the fact that in using extended Kalman filter to estimate 

parameters, the filter simultaneously estimates the states, which appear as linear 

dynamic subsystem of the Wiener model. This further allows linear control 

techniques to be applied using state feedback. The gradient is approximated by 

numerical differentiation but can also be determined analytically. The model 

fitting error is greatly improved by using the Wiener model (Basin, Shi, & 

Calderon-Alvarez, 2011). El-Sherief & Sinha (1979) proposed a solution that 

eliminates the divergence and heavy computation requirement associated with 

original augmented method of solution (Bian, et al., 2011; Bisht & Singh, 2014; 

Keesman, 2015). 

 
Joint state and parameter estimation in nonlinear &  bilinear systems 

Chitralekha, et al., (2010) produced a method of simultaneous state and 

parameter estimation for nonlinear state-space models. A simultaneous online 

state and parameter estimation for discrete-time stochastic nonlinear systems 

has been presented (Straka, Dunik, & Simandl, 2014; Tulsyan, et al., 2013; 

Vafamand & Safarinejadian, 2013). Halme & Selkano (1981) presented a 

nonlinear filter based solution for simultaneous state and parameter estimation 

problem. The authors developed algorithms for nonlinearities approximated by a 

polynomial such as the orthogonal expansion. In Bar-Shalom (1972) solution, 

linear discrete-time dynamic systems with noise and measurement noise are 

considered. Other combined state and parameter estimation methods include 

work of Bezzaoucha, et al., 2013; El-Sherief, 1984 and others. 

 
Model errors and uncertainties 

Hu, et al., (2010) consider simultaneous state and parameter estimation as 

means of dealing with model errors and uncertainties using state augmentation 

approach. Tyukin, et al., (2008) proposed a method for state and parameter 

reconstruction for uncertain dynamic systems that cannot be transformed into 
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canonical form. Cox (1964) designed an estimator for discrete-time systems with 

random disturbances and measurement noise. Linear solution based on the 

dynamic programming approach and nonlinear solutions based on approximation 

technique are presented. The approximation approach applied produces real-

time estimates. Ahmed (1994) presented an innovation model based solution by 

deriving a recursive prediction error (RPE) algorithm. Mangold et al., (1994) 

proposed a method that corrects model errors. Their solution is based on a 

simplified linear distributed parameter model. More methods that deal with 

nonlinearities in combined state and parameter estimation are found in 

Bezzaoucha, et al., 2013; Bisht & Singh, 2014; Yang, et al., 2007). 

 
Observer based combined parameter and state estimat ion 

Ding (2014) estimated both the parameters and states of dynamic systems jointly 

using an observer canonical state space system. Tyukin, et al., (2008) suggest 

that most observer based methods for simultaneous state and parameter 

estimation consider the fact that the system can be transformed into the 

canonical adaptive observer form. El-Sherief and Sinha, (1979) suggested that 

using a canonical form state equations simplifies the parameter estimation 

problem by directly relating the measurement equation to the parameters of the 

canonical state model. Garimella and Yao (2003); Zhu and Pagilla (2006) 

presented a novel nonlinear adaptive robust observer (ARO) and a stable 

adaptive observer respectively, that estimates both the unmeasurable states and 

unknown constant parameters for a class of systems described as being 

parametric semi-strict in feedback.  

Dai et al. (1989) propose a robust bootstrap method for joint estimation of the 

states and parameters based on Huber’s minimax principle. They suggest 

solving the nonlinear model estimation problem by introducing linear 

transformations based on Cholesky factor of the covariance matrix. Hulhoven et 

al., (2008) proposed a very attractive method of combined state and parameter 

estimation that combines two types of observers, the receding-horizon and 

asymptotic observers. 

Other presentations include the work of (Ahmed–Ali, et al., 2017; Farza, 2015; 

Khan, Wagg, & Sims, 2016; London Jr., Mili & Bretas, 2004; Simon, et al., 2015; 

Tulsyana, et al., 2013; Zheng & Boutat, 2014; Zhu, 2012). 
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Kalman filter based combined state and parameter es timation 

Hu, Zhang and Nielsen-Gammon (2010); Khodadadi and Jazayeri-Rad (2011) 

presented an extended Kalman filter based methods that generate state and 

parameter maximum-likelihood estimates for a discrete-time nonlinear dynamic 

system. Bocquet and Sakov (2013); Maradkhani, et al., (2005) propose a dual 

state-parameter estimation approach based on the Ensemble Kalman filter 

(EnKF) for hydrologic models. Havlena (1993) presents an adaptive Kalman filter 

method for simultaneous parameter tracking and state estimation in a linear time 

varying input-output ARMAX model with Gaussian noise and known noise 

parameters. More work on filter based filtering and parameter estimation is found 

in (Basin, et al., 2011; Ding, F. 2014; Gadsden, et al., 2014; Gharamti, Ait-El-

Fquih, & Hoteit, 2015; Runggaldier & Visentien, 1990; Vafamand & 

Safarinejadian, 2013). 

 
Measurement based combined parameter and state esti mation 

Singh and Hahn (2005) considered optimal location of sensor for measurements 

that will in turn produce highest degree of observability of the system. This is to 

produce optimal parameter and state values. Roberts and Williams (1981) 

presented an algorithm based on the design of a control scheme that can be 

separated into: 1) parameter estimation and 2) optimization problem. The two 

problems are interconnected in that the optimization problem depends on the 

parameters, and parameter values are affected by the controller values. An 

improved version of this optimization and parameter estimation that provide 

online optimizing control problem has been proposed by Kambhampati et al., 

(1989). They provide a generalized solution to methods commonly referred to as 

ISOPE (Integrated System Optimization and Parameter Estimation) (Ding & 

Chen, 2004; Jaoua, et al., 2014; Kreuzinger, Bitzer & Marquardt, 2006; Kupper, 

et al., 2009). 

 
Applications 

A lot of applications been covered in joint parameter and state estimation for 

geosciences including mesoscale meteorology, data assimilation methodologies, 

conceptual rainfall run-offs, hydrologic models, etc. (Moireau, et al., 2008; 

Maradkhani, et al., 2005; Schilling & Martens, 1986). Moireau, et al., (2008) 

suggest that data assimilation methods can be broadly divided into two, viz.: 1) 

variational and 2) sequential (filtering) algorithms. Variational methods minimize 

a criterion based on observation error, with respect to system unknown 
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parameters. Sequential algorithms may not be conducive for distributed 

mechanical systems, since they require conversion steps and covariance 

matrices of the size of the state in their method of solution (Bezzaoucha, 2013; 

Mansouri, et al., 2014; Sulaiman, et al., 2013). 

In the bioprocess sciences, applications include work of Hulhoven et al., (2008) 

who applied their design to solve kinetic parameters and states simultaneously in 

a bioprocess model. Moireau, et al., (2008) proposed a joint parameter and state 

estimation technique based on state estimation feedback system (that utilizes 

stabilization strategies) for a biomechanical system. Mangold et al., (1994) 

considered the adsorption column process with limited measuring points and no 

information about the state of the system. The model numerical calculations are 

solved using software program called DIVA. 

 
Discussion 

Combined state and parameter estimation methods take the same order like 

parameter estimation or state estimation as individual problems. The procedures 

of solution can be considered under the main categories of: 1) least squares, 2) 

maximum likelihood or 3) Bayesian. 

Estimation problem formulations and correspondint solutions for different 

nonlineat models presented by different authors has been given. For combined 

state and parameter estimation problem the maximum likelihood based 

algorithms seem provide a natural solution to such problems becasue for 

parameter estimation problem, the state has to be known. Possible solutions 

include (Zia, et al., 2008): 

1) the traditional method of treating the unknown parameters as extra state 

variables in the state vector, 

2) the problem can be separated into two joint problems that of parameter 

estimation and state estimation, or 

3) the problem that needs adaptve fitering method to decide on the most 

approprite form of the model to use. 

 
2.5. Conclusion 
 
There are many reasons associated with building a model; models built for 

simulation of the dynamic behaviour of processes, for prediction and or analysis 

of the process behaviour, prediction of time evolution behaviour of the process. 

In physical systems most models are nonlinear or bilinear and contain unknown 

parameters and unknown states that may be due to unavailable sensors or 
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unmeasurable parts of these processes. This chapter presented a number of 

different solutions and different types methodologies to solve the estimation 

problem. 

The focus of this thesis is on parameter estimation and two state estimation 

methods: 1) observer design methods and 2) the Kalman filter and its extended 

family, and other methods associated with all these techniques for nonlinear 

systems. Mostly, for nonlinear system estimation specifically, the extended 

Kalman filter has been the intensely used method but it has some limitations in 

highly nonlinear systems and newer methods have since been developed to 

attend to this inadequacy.  

 
Parameter estimation 

The chapter considered a number of different possible solutions that have been 

introduced to deal with unknown parameters. The parameter estimation solutions 

have been presented according to the method of solution, whether based on 

model structure, model properties, etc. Algorithms based on numerical 

meethods, optimization techniques, heuristic methods, observer based methods, 

online procedures, methods based on other estimation techniques and software 

programs used to implement some of the algorithms have been discussed; and 

lastly, applications of these methods in real processes were also presented. 

 
State estimation 

The state estimation problem has been presented based on two commonly used 

methods, 1) the observer design and the Kalman filtering methods. The extended 

forms of Kalman filter have also been presented. Different observer design 

methods were presented. The original Kalman filter as an observer method of 

estimating unknown state variables of a system is strictly applicable to linear 

systems has some limitations when it comes to nonlinear models. 

The available solutions range from deterministic to stochastic, discrete-time to 

continuous time, time varying and to time-invariant, linear, nonlinear and bilinear 

systems. This is the most well covered topic under state estimation. 

 
Combined state & parameter estimation 

A number of methods using combined state and parameter estimation procedure 

have been proposed for solving estimation problem for most systems, linear or 

nonlinear. Most methods are based on some form of Kalman filtering or its 

extensions, i.e., extended Kalman filter, unscented Kalman filter and Ensemble 

Kalman filter methods in conjunction with another for parameter estimation. 
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Different schemes have been presented that are based on three main categories 

of estimation, i.e., least squares formulations, maximum-likelihood methods and 

Bayesin methods. Most of papers produced presented observer based solutions. 

Other solutions are measurement based, error correction based, filtering based 

and or uncertainty based. A few applications have also been presented here. 

The next chapter introduces theoretical aspects behind modeliling, parameter 

and state estimation. The focus is on how nonlinear parameter and state 

estimation problems are solved based on models with uncertainties and 

nonlinearities. 
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CHAPTER THREE 

3. NONLINEAR SYSTEM THEORY 

3.1. Introduction 
 
This chapter deals with the relationship between three major sections involved in 

the subject matter of the project, that is, “methods for modelling, parameter and 

state estimation for nonlinear processes”. The focus is on nonlinear systems in 

general, and on how parameter and state estimation in such systems is 

performed. The chapter also presents an overview of the most important aspects 

of nonlinear estimation techniques, the optimization theory.  

The chapter intends to provide streamlined background information to solve 

parameter and state estimation problems using optimization techniques in 

nonlinear systems, without necessarily reducing these subjects to any less 

complexity than they are. The focus is on giving a specific path within a labyrinth 

of the subject matter involving modelling, estimation theory, optimization theory 

and nonlinear processes. The chapter considers nonlinear system theory, 

nonlinear modelling and nonlinear estimation and how these concepts are 

applied in parameter and state estimation methods. Fundamental model building 

techniques are also considered. 

 
3.2. Nonlinear system theory: modelling and estimat ion 
 
Physical systems tend to exhibit high nonlinear characteristics in their operations 

(Rad & Hancu, 2017). The interest of engineers is to find a way of controlling 

such processes in some optimal manner. The engineer analyses the system, 

determines variables and parameters of interest, and system constants based on 

laws that govern the behaviour of the system and then suggests means of 

controlling it (Roxin, 1997). 

If a process has at least one nonlinear component, the process model will be 

nonlinear. Designing a real-time control system for a nonlinear process is more 

complex than that of a linear process. Nonlinear systems where the operation 

range of a process is relatively small, a nonlinear system may be approximated 

by a linear equivalent model that would capture all the required dynamics of the 

system. In linear control analysis, solutions are always obtained easily by either 

applying time domain or frequency domain solutions. However, for nonlinear 

systems, these standard solutions are not applicable, direct solutions for 

nonlinear variables are usually impossible and frequency domain transformations 

do not apply (Slotine & Li, 1991:1-16; Jamshidi, Tarokh & Shafai, 1992). 
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Seborg and Henson (1997:1) suggest that nonlinearity in control systems for 

physical processes is further translated into the relationship between controlled 

and manipulated variables dependence on the process operating conditions. In 

some instances it is possible to represent a nonlinear system by its linear 

approximate if the process remains in a steady state condition within its operating 

region (Grancharova & Johansen, 2009; Rad & Hancu, 2017; Seborg & Henson, 

1997:1). 

Seborg and Henson (1997:7) state that physical–based models, those designed 

from the first principles (e.g., mass and energy balances) tend to be more 

appealing because of the amount of physical detail they provide and the fact that 

they are applicable over a wide range of operating conditions. In most industrial 

operations such models are not easily available due to costs involved in 

developing them and their maintenance.  

There are three main factors that heavily contribute to the model building 

process, these are: 1) a priori knowledge, 2) experimental data and 3) the 

modelling objectives. In most physical applications of modelling, the a priori 

knowledge contains high quality value such that the overall system framework 

and important aspects of the model can be deduced from it alone. It is also 

possible to use the methodology used in modelling such systems to solve the 

parameter estimation problem and also make minor adjustments to the model 

using experimental validation methods (Jeppsson, 1996:32–33). 

In cases where prior experimental data is not available, it is possible to use 

identification methods to solve parameter estimation problem for unknown 

parameters. In identification the ultimate aim is to obtain or give each parameter 

of the model a unique value. Complex system structures with unidentifiable 

model parameters are unusable and reduced-order models should be considered 

in such cases. In some cases, it may be useful to consider a priori identification 

analysis but the ultimate quantification of parameter identification is determined 

largely by estimation of accuracy and the correlation between the estimated 

parameters (Jeppsson, 1996:32–33). 

According to Biagiola and Figueroa (2002:4777) automation of physical 

processes with interest in improving product quality against reduced costs, 

increased product outputs, and other improvement possibilities has been of 

special interest in recent years which led to improvements in modelling 

techniques, control and monitoring techniques etc. Such requirements have led 

to state estimation becoming a strategic topic for control system (process control) 

engineers and researchers. The requirement of knowledge of some parts of, or 
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the entire system state vector becomes an important feature in control system’s 

operations since the state vector describes the internal (dynamic) behaviour of 

the system in full or gives some meaningful understanding of the underlying 

processes. 

This system requirement of knowledge of the state vector, among many other 

possibilities, allows improved nonlinear control, enhanced monitoring of specific 

variables in the process which allows well suited process measurements for data 

collection, etc. If the system is well monitored and at highest possible frequency, 

it becomes possible to apply optimization techniques for the improved product 

quality and output at reduced cost. Optimization techniques are formulated to 

provide best physically sound and realistic results. 

In cases where there are physical limitations or where it is impossible to measure 

all physical attributes associated with the state vector, state estimation 

techniques (such as a state observer) may be used. A number of linear and 

nonlinear state estimation techniques have since been established to determine 

unknown states using available process measurements (Bose, 1959; Goldberg & 

Durling, 1971; Biagiola & Figueroa, 2002; Seborg & Henson, 1997). 

According to Biagiola and Figueroa (2002), nonlinear estimation techniques are 

structured to handle specific nonlinearities depending on the process model. This 

is by no stretch of imagination the anticlimax of research in nonlinear estimation 

given the well-established linear estimation techniques, system robustness, 

uncertainty in performance, system and measurement noise etc.; it is probably 

the only beginning (Biagiola & Figueroa, 2002; Thangavel, Paulen & Engell, 

2016). 

In this thesis, the reason for going through process modelling, parameter 

estimation, and state estimation, is concerned with optimal control system design 

methodologies for use in control and monitoring of nonlinear processes. The aim 

is to improve and or enhancing some aspect of the process control so as to 

match the real-world process dynamics with the control system’s design 

methodologies. A short overview of methods in model building for the purposes 

of control, formulation of the problems for parameter and state estimation, and 

types of optimization problems necessary to be solved are described in the 

sections below. 

 
3.3. Model building and development for purpose of estimation 
 
Models are developed to describe the underlying principles that define the 

behaviour of a process. This helps in better understanding of the complex 



 

62 

dynamical processes which makes design, control and operating strategies easy. 

Mathematical models are generally used to describe the process behaviour using 

variables that describe process parameters. A mathematical model can only 

successfully be applied if its structure and parameters give a proper description 

of the process behaviour (Dochain & Vanrolleghem, 2001:1–3; Fliess & 

Normand-Cyrot, 1910; IDA, 1997; Olsson & Newell, 1999; Luyben, 1990; 

Luyben, 1973). 

A model can be thought of as an imperfect or incomplete representation of the 

reality. This may be due to a lack of knowledge about the process behaviour or 

may be because of deliberate simplification to satisfy some requirements. In 

general a model will be a compromise between some predetermined 

expectations and the means at getting to those expectations, either by 

experiments, simulations, etc. (Bornard, 1995; Barret, 1963; Junkins, 1991; 

Luyben, 1990; Luyben, 1973; Pierre, 1969). 

A model may never capture all the physical aspects of the process; it all depends 

on the aim and objectives for developing that particular process model. What 

may be of interest to one designer may not be the case for the other designer, 

though both of them studying the same process. In this regard a model can be 

classified based on the objective as either being a model for: conceptualisation, 

simulation and or control (Bornard, 1995; Franks, 1972; Olsson & Newell, 1999). 

Model building consists of the following steps, 1) problem specification, 2) 

determination of model structure based on some physical knowledge (a priori 

knowledge), 3) model verification, 4) fitting of parameters onto available 

experimental data, and 5) model validation. Mathematical models allow 

conceptualization of some knowledge about a process under scrutiny, 

formulating hypothesis about certain aspects of a system, and or testing and 

verification of new ideas about any process concerned.  

A well-constructed model will be a true reflection of the behavioiur of a process 

even if some aspects have been left out; such a model will allow a designer to: 1) 

predict process behaviour under different operating conditions, 2) and in turn 

allow optimization of the process operations and control. Models may also serve 

as a training tool and a starting point for experimentation before constructing a 

full scale plant that may produce disastrous results if it was never simulated and 

tested as a model (Li & Ding, 2013; Jeppsson, 1996). 

A model development is guided by the intended use and goals of the model 

based on some system requirements. A key feature of a model is its meaningful 

prediction of the process behaviour within a relative time frame. Models are 
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developed for different purposes based on the goals of the designer. These 

purposes may be classified as: 1) research, 2) process design, 3) process 

operations and control, 4) process optimization, 5) prediction, and 6) 

process/plant diagnosis (fault detection) etc. It is almost impossible to develop a 

single model that could fit all of these purposes (Billings & Fakhouri, 1979; Ching, 

Beck & Porter, 2006; Dochain & Vanrolleghem, 2001; Gardiner, 1973; Franks, 

1972; Ikonen & Najim, 2002; Johansen & Foss, 1995; Luyben, 1990; Kortmann & 

Unbehauen, 1988; Olsson & Newell, 1999). 

Dynamic process models development built from first principles are derived from 

laws of conservation of mass and energy. These laws are guided by the fact that 

what goes into a vessel (system in enclosed space) is either stored inside this 

space or it comes out at some boundary of the space. This is referred to as 

conservation of mass and energy and the mathematical descriptions generated 

from these laws are known as mass or energy balances and thus the term 

balance equations (Olsson & Newell, 1999). In developing a model, balances for 

each component to be considered must be generated (Olsson & Newell, 1999; 

Schetzen, 1974; Stone & Womack, 1970; Thathachar & Ramaswamy, 1973). 

This produces a set of differential equations which shows the interrelationships 

between these components. 

The general conservation (balance) equation can be expressed as follows: 

















−
















+

+
















−
















=
















systemtheinside

consumedmaterials

ofRate

systemtheinside

materials

generatedofRate

systemtheto

flowoutput

ofRate

systemtheto

flowinput

ofRate

systemenclosedan

withincontentsof

changeofRate

    

 

  

   

  

                                       

  

 

 

  

 

  

  

   

  

(3.1) 

The rate of change is generally described as the derivative with respect to time. 

Before deriving mass or energy balance, boundaries for the volume over which 

the balance is written must be defined. The boundary definition should be stated 

as part of the assumptions used to develop the model. 

It is important to specify if the model is built from the first principle or it will be an 

empirical one, Figure 3.1. The process of using experimental data to generate a 

model is known as identification and should not be confused with parameter 

estimation. Parameter estimation is one step of building a model that is used to 

determining unknown parameters whether using the first principles or using 

experiments. Parameter estimation is generally referred to as fitting of data in 
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identification and as parameter estimation if using the first principle; these terms 

are not fixed in this fashion, they are equally interchangeable in their usage 

(Eykhoff, 1974:8; Ikonen & Najim, 2002:7; Jeppsson, 1996:112; Shanshiashvilia 

& Prangishvili, 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1.  Estimation of parameters and fitting of parameters  in model building 

process 
 

(Adapted from Eykhoff, 1974; Ikonen, Ikonen & Najim , 2002; Jeppsson, 1996) 
 

Modelling assumptions are important in defining the process operations. In some 

instances assumptions may be used to simplify the process model being 

developed or to take care of those process aspects that cannot be defined. It is 

important that the assumptions made are relevant to the model and its intended 

use, Figure 3.1. 

 
3.4. Dynamic process models 
 
In general, physical processes experience some disturbance in their operations. 

This could result from the process environment and or measurement or 

approximation errors, Figure 3.2. A model should capture the essential 

characteristics of the disturbance as an essential component of the model 

(Ikonen & Najim, 2002:53). 
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Figure 3.2. Process model definition 
 

(Adapted from Olsson & Newell, 1999:41) 
 

The measurement disturbance vector, )(tv  represents the error caused by the 

measuring instrument and the process disturbance vector, )(tw  represents the 

process unmeasured system noise that affects the process state. Disturbances 

can be categorized into two main classes: 1) deterministic and 2) stochastic 

disturbances. In some cases, deterministic disturbances are predictable. Such 

disturbances include constant and sinusoidal effects (Ikonen & Najim, 2002:53). 

In physical processes, effects of the process environment are modelled as 

system (process) disturbances, )(tw  and approximation errors resulting from 

generating linear equivalent models of the nonlinear physical processes are also 

modelled as process disturbances. 

Model disturbances are further divided into two categories: 1) measured and 2) 

unmeasured (e.g., material compositions) disturbances. Modelling of 

unmeasured disturbances is based on assumption that they consist of sequential 

independent random variables )(tγ  with zero mean and variance σ  and random 

disturbances are assumed to be stationary (Ikonen & Najim, 2002:54) and the 

relationship between these variables is as follows (Ikonen & Najim, 2002:54; 

Martin-Lof, 1966:603; Schennach, 2004): 

τσγ += )()( ttb         (3.2) 

where  

)(tb  – is a random sequence, 

)(tγ  – is a sequence of independent random variables, 

σ  – is the model variance and 

τ  – is a constant not dependent on t . 

Equation (3.4) is based on the assumptions that: 

)(twi  
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ip  
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1) the random variables have a zero mean, Equation (3.5), 

{ } 0)( =tE γ         (3.3) 

2) the variance is defined by 

12 =σ          (3.4) 

3) Equation (3.4) is true, only under the following assumptions, 

{ } τ=)(tbE         (3.5) 

{ } 22)( σ=tbE         (3.6) 

Olsson and Newell (1999:101–103) suggest that parameters that are fitted to real 

data will have some element of uncertainty, but this does not necessarily 

translate to a stochastic model; this is true only in cases where parameter 

uncertainty is built into the model as a statistical distribution. Disturbances may 

also determine classification of a model, if a model is static or dynamic, based on 

the formulation of the solution and or design requirements for the model. 

Dynamic models are defined as those that would predict the system behaviour as 

a function of time in response to the disturbances (Olsson & Newell, 1999:102). 

In process control terminology, a process is defined in terms of the operating 

space and the state space. The input-output relationship of a model can be used 

to determine the type of a model. Generally, the dynamic process models are 

described using the following two categories, the: 

1) Input–output (dynamical) model, and 

2) State space (dynamical) model. 

A model can be an input-output or state space model. Input-output model is a set 

of transfer function(s) that relates the inputs directly to the outputs (Ding, et al., 

2017; Diaz & Desrochers, 1988; Haber & Keviczky 1999; Leontaritis & Billings, 

1985). The state of the system is defined as the values of the state variables at 

any instant of time. The state space model introduces the state variables (state 

vector) in a model to act as link between the inputs and outputs. 

A dynamic model generated on the basis of only input and output measurements, 

such as the ARMAX model can be described by Equation (3.7) (Fattah, Zhu & 

Ahmad, 2008; Fujimoto & Takaki, 2016; Ikonen & Najim, 2002; Liao, Wang & 

Ding, 2009; Mukkula & Paulen, 2017; Peng, et al., 2001; Stecha, 1997): 

)()2()1()(...

...)2()1()(

21

21

nkubkubkubnkza                  

kzakzakz

nn −+−+−+−+
+−+−=

  (3.7) 

where 

naa ,.......,1  and nbb ,......,1  are the model coefficients,  
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)(kz  – is the discrete model output,  

)( nkz −  – are the past outputs, 

)( nku −  – are past inputs and 

[ ]Nn bbaap ,...,,,...., 11=  – is a vector of unknown parameters. 

The operating space is defined in terms of manipulated variables (process input 

variables). Any physical process is delineated by a set of operating constraints; 

and these constraints may be process related, equipment related or safety 

conditions related; this is known as feasible operating space. The state space is 

defined in terms of the state variables and it usually has a higher dimensional 

space then the operating space (Olsson & Newell, 1999:41). 

 
Level of complexity of models 

The level of complexity in a model has direct influence on the ultimate outcome 

of the problem formulation and the relevant solution, whether for control or 

otherwise. It also directly impacts on estimation of parameters or states as may 

be required. If a model is developed for control and monitoring, depending on the 

model structure, (including disturbances), uncertainties, the number of important 

parameters and the control objective, a control system used may be classified 

under one of the following categories: 1) classical feedback control, 2) adaptive 

control or 3) optimal control. 

Complexity of models that result directly from physical laws are often simplified to 

models which include only part of the initial information already known and which 

may have to be adapted according to their behaviour (Bornard, 1995:7; Haber & 

Kevikczky 1974:393–414; Schei & Singstad, 1998). There needs to be a balance 

between minimum information required to capture the reality and the complexity 

accompanying that reality (Carvalho, et al., 2015; Palm III, 1986; Safdarnejad, et 

al., 2016; Schei & Singstad, 1998; Shanshiashvilia & Prangishvili, 2017).  

 
3.5. Model types used in estimation 

3.5.1. Linear versus nonlinear models 

The mathematical expressions describing the interrelationship between the 

system components using vector notation are generalized as follows: 

1) for linear systems, 

)()()()( twtButAxtx ++=& , 00)( xtx =      (3.8) 

)()()( tvtCxtz +=  

2) for nonlinear systems, 
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)),(),(),(()( ptwtutxftx =& , 00)( xtx =      (3.9) 

)),(),(),(()( ptvtutxgtz =  

where  

lnRtx ×∈)(  – is the state of the system of ln×  dimensions, 

mRtu ∈)(  – is the input vector of the system of 1×m  dimensions, 

nRtw ∈)(  – is the disturbance to the system with 1×n  dimensions, 

lRtv ∈)(  – is the vector of measurement disturbances with 1×l  dimensions, 

lRtz ∈)(  – is the output vector of the system of 1×l  dimensions, 

qRp∈  – is the vector of the system coefficients of 1×p  dimensions, 

lRg ∈  – is the nonlinear output vector function with output vector dimensions, 

and 

nnRA ×∈ , mnRB ×∈ , and nlRC ×∈  are the state, the control and output matrices 

respectively with corresponding dimensions. 

 
3.5.2. Linear-in-parameters models 

A process model is called linear-in-parameters if the process neglects the noise 

vector and the output variable can be described by a scalar product of two 

vectors 

pkz T
mφ=)(         (3.10) 

where  

p  – is the parameter vector and  

mφ  – is the memory vector containing measured values or values calculated from 

some measurements (Haber & Keviczky, 1999:3–5). 

A process model with a noise vector is called linear-in-parameters if the source 

noise can be determined from the measurements by a scalar product of two 

vectors 

n
T
m pkw φ=)(         (3.11) 

where  

)(kw  – is the calculated source noise called the residual, and 

np  – is the parameter vector of the process model with noise. 
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3.5.3. Nonlinear-in-parameters models 

Haber and Keviczky (1999) define the nonlinear-in-parameters with noise and 

without noise as follows: A noise-free process model is called nonlinear-in-

parameters if its output cannot be defined using Equation (3.11) above. A 

process model with a noise vector is said to be nonlinear-in-parameters if the 

source noise scalar product cannot be determined using Equation (3.11) above 

(Alexandrov, Alexandrov & Shatov, 2016; Haber & Keviczky, 1999; Kamoun, 

2007). 

 
3.5.4. Parametric and nonparametric models 

A model is said to be parametric if it is defined by a finite number of parameters 

and nonparametric if a large number of infinite parameters are required to 

describe the model (Keesman & van den Brink, 2015; Haber, 1979:515–522; 

Vuchkov, Velev & Tsochev, 1985). Simple nonparametric models can be 

grouped into the following categories (Haber & Keviczky, 1999:4): 

1) models linear-in-parameters, 

2) block oriented models, 

3) quasi-linear models with signal dependent parameters and 

4) quasi-linear models with piecewise constant parameters (multi-models). 

 
3.5.5. Deterministic and stochastic models 

A mathematical model will not cover all the physical aspects of the process 

except those that are relevant for that particular study. The mathematical models 

used in estimation are therefore either deterministic or stochastic. In the 

deterministic representation the noise is either not acting on the system or has a 

negligible effect. Some deterministic approaches admit zero mean noise but 

cannot express the uncertainty caused by the noise (Strejc, 1981). In the 

stochastic models the assumptions are that the measured input signal is not 

affected by any noise and only the output is affected by noise. This means that 

either the process is disturbed by external noise or the measured output is 

affected by the noise. Stochastic discrete equation can be represented by (Strejc, 

1981): 

∑ ∑
= =

+−=−
a bN

i

N

i
ii kwikubikza

0 0

)()()(      (3.12) 

where  

ia  and ib  – are the system parameters,  

n  – is the order of the dynamic system, 
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)( ikz −  and )( iku −  – are the output and input polynomials of the system, 

)( ik −  – is the past moment and 

)(kw  – is the noise vector representing noise acting on the system. 

Stochastic nonparametric model is defined by: 

)](),...,(),(),...,([)( wukk nkekendkudkufkz −−−−=    (3.13) 

And stochastic parametric model is defined by 

)](),...,(),(),...,(),(),...([)( wzukk nkekenkykzndkudkufkz −−−−−=  (3.14) 

where  

kd  – is the integer time delay relative to the sampling period, 

un , zn , wn  – order of the equation of the input, output and the noise respectively. 

A stochastic nonparametric model can be obtained from a parametric model by 

omitting the output signal on the right hand side of the stochastic parametric 

representation, (Equation 3.14). 

 
3.6. Parameter estimation 
 
Parameter estimation can be thought of as a technique used to identify process 

model parameters by evaluating coefficients in a known mathematical model 

using measured data (input–output measurements) (Kamoun, 2007; Siouris, 

1996:63–85). Parameters can be estimated off-line where model parameter 

values are identified just once and used for the rest of the control operation. 

Parameters can also be estimated on-line where parameter values are updated 

every time measurements are taken (Nicholson, López-Negrete & Biegler, 2014; 

Peng, et al., 2001; Schei, 2008; Schei & Singstad, 1998). This type of estimation 

is used for predictive control. The estimation techniques use measured data to 

estimate the parameter values of the model. Olsson and Newell (1999) state that, 

parameter estimation using experimental data is commonly referred to as 

regression.  

Parameter estimation problem is an optimization problem, in that a cost function 

must be minimized. The cost function consists of a sum of the squared prediction 

errors, i.e., the sum of errors must be minimized. The prediction errors are the 

differences between the predicted values of the output of the process to that of 

the measured one. These errors are commonly referred to as residuals (Olsson 

and Newell, 1999:157; Ikonen & Najim, 2002; Corlis & Luus, 1969; Pierre, 1969). 
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3.6.1. Linear parameter estimation 

There are many different techniques used to estimate parameters in linear 

systems. The three most commonly used ones are: the least squares, linear 

regression, maximum likelihood, and Beyes methods (Jacob, 2010; Barham & 

Drane, 1972; Liao, et al., 2009; Sarris & Eisner, 1973; Strejc, 1980). In the first 

two methods the optimal criterion is a scalar. Other techniques are either the 

variances of the above three methods or their extensions. Most of these 

techniques are developed for specific practical problems for which no solution 

exists or to improve on the well-accepted estimation procedures (Ding, et al., 

2017). 

 
3.6.2. Nonlinear parameter estimation 

In general, nonlinear parameter estimation problem can be formulated as in 

Figure 3.3. One may observe any of the system’s variables, the input signal )(tu , 

state vector )(tx , input disturbance )(tw  and or the output signal )(tz  (Tang, et 

al., 2016). The observation model may be represented by the following discrete 

model (Siouris, 1996; Soderstrom & Stoica 1989; Strejc, 1981): 

)),(),(),(),(),(()( kkvkpkwkukxgkz =      (3.15) 

where )(kp  – represents the vector of unknown parameters of the system, 

consisting of the mean and variance parameters of the input noise )(kw  and 

observation noise )(kv . It may be assumed that the state vector evolves from the 

stochastic nonlinear model. Such a model can be described by Equation (3.16): 

)),(),(),(),(()1( kkpkwkukxfkx =+      (3.16) 

 
3.6.3. Least squares parameter estimation 

The least squares method is the most commonly used method for estimation of 

parameters. Its history is traceable to as far back as 1795 when Karl Friedrich 

Gauss formulated its basic concept and used it practically for astronomical 

computations. The least squares method is concerned with determining the most 

probable estimate value of parameter p̂  (Barham & Drane, 1972; Billings & 

Voon, 1984; Liao, et al., 2009; Marquardt, 1963; Strejc, 1981). This least squares 

method is defined by the expression (Keating et al, 1993:1): 

)ˆ(ˆ pzze −=         (3.17) 

where  

z  – is the observed value, 
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p  – is the unknown parameter, 

)ˆ(ˆ pz  – is the output estimated value, and  

e – is the additive experimental error. 

 

 

 

 

 

 

 

 
Figure 3.3.  Nonlinear process model structure 

 
(Adapted from Strejc, 1980) 

 
The expression (Equation 3.17) can be extended for a number of observations 

taken to measure an unknown vector p . 

)ˆ(ˆ pzze ii −=         (3.18) 

where  

iz  – is the thi  observed value of m  observations for mi ,...,2 ,1=  and 

ie  – is the additive error at each measurement. 

The estimate value is the value that minimizes the sum of squares of the 

estimation errors, the residuals (Strejc, 1972). The estimate value p̂  is also 

known as the least squares estimator and is given by (Keating et al., 1993) 








= ∑
=

m

i
iz

m
p

1

1
ˆ         (3.19) 

The formulation of the least squares method of parameter estimation is: 

To calculate p  so that the cost function 

eQepzzQpzzJ TT 1*1* ))ˆ(ˆ())ˆ(ˆ( −− =−−=      (3.20) 

is minimized. 

For ordinary least squares method, *Q  is an identity matrix. 

 
3.6.4. Maximum likelihood parameter estimation 

The maximum likelihood estimation method is based on the maximization of 

probability functions. The aim is to determine parameters such that the likelihood 

function attains its maximum. For linear systems, the maximum likelihood 
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approach yields the same conditions for the parameter calculation as the least 

squares (Kok, et al., 2015; Strejc, 1981:5). 

The maximum likelihood estimation is based on the likelihood function mL  

defined as a joint probability density function. The likelihood function can be 

represented by (Sarris & Eisner, 1973): 

):,.....,(),......,( 11 puufuupl nn =       (3.21) 

where  

nuu ,.....,1  – is a function of the unknown parameters. 

Whenever the functions nuu ,.....,1  are independent and identically distributed 

with common density function ):( puf , the model can be reduced to 

),(),.....,,(),.....,( 11 pufpufuupl nn =      (3.22) 

Keating et al (1993) suggest that the maximum likelihood estimator (MLE) is the 

value of parameter that produces the absolute maximum of the likelihood 

function ),.....,( 1 nuupl  and is a function of nuu ,.....,1 . It is however, not always to 

represent the estimator as a function of nuu ,.....,1 . In some cases, it may even be 

difficult to establish an absolute minimum. 

The discrete time function of the maximum of the likelihood can be described by: 

),:)0,(),0,(()]0,(),0,(:,[ RpKu KzfKu Kz RpL =    (3.23) 

where
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3.6.5. Linear regression estimation 

Considering a random quantity (random variable) γ  which is a function of one or 

more independent (deterministic) variables m ρρρ ,....,, 21 . Deterministic system 

assumes process noise to be negligible. The aim is to estimate the relationship 

between γ values and the independent variables m ρρρ ,....,, 21 ., on basis of the 

given sample, γ  values (Siouris, 1996:63-82; Strejc, 1980).  

Considering the function ()f  to be a function of only a single variable γ  and the 

two are linear. The term linear, implies that the mean of γ , { }γf  is known to be 

a linear function of ρ . This model can be expressed as follows: 
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{ } ϕρρργ += ),....,,( 21 mipf , m  i ....,,2,1=     (3.24) 

where the two unknowns are the error terms ϕ  and unknown parameters ip . 

iρ  – vector of deterministic independent variables, the predictor. 

These unknown constants (or population parameters) are to be estimated from a 

sample of γ  values with their associated values of iρ  vector. 

The more general discrete time regression model is given by (Dzhaparidze, et 

al., 1994; Strejc, 1980; Strejc, 1981): 

)()()()(
1 1

kwikubikzakz
a bN

i

N

i
ii +−+−=∑ ∑

= =

     (3.25) 

where aN  and bN  are the highest order of the output and input polynomials. 

 
3.6.6. AR and ARMA regression estimation 

Auto-regression models can be classified into: AR (auto-regression), ARMA 

(auto-regression moving average) and the so called, NARMA (nonlinear auto-

regression moving average) models (Dzhaparidze, et al., 1994; Li, Liu & Ding, 

2017; Sarris & Eisner, 1973; Seong, 2007; Wang, Wang & Shen, 2016). An 

ARMA model can be generated by extending the general regression equation 

using the expression: 

∑
=

−=
cN

i
i ikwckw

0

)()(        (3.26) 

where ic  are the weighting factors. 

Hence )(kw  is a linear combination of random and unknown values of the noise 

w  at the time instants )( ik − , cNi ,...,1 ,0=  

The full ARMA model can then be written as (Chon & Cohen, 1997:168; Ding, et 

al., 2017; Lu, Ju & Chon, 2001:1117; Wang, et al., 2016): 

∑∑∑
===

−+−+−=
cba N

i
i

N

i
i

N

i
i ikwcikubikzakz

000

)()()()( , 10 =c   (3.27) 

This type of parameter estimation is justified for closed loop control. The output 

noise in this case consists of the noise acting on the system at the instant of 

observation and the noise transferred through feedback of the system (Strejc, 

1981:2). 

 
3.6.7. Bayes parameter estimation 

Bayesian methods can be used on models where a priori information about the 

values of the parameters to be estimated is known. The information is formalized 
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into a prior distribution on the parameter and estimators are then formed from the 

posterior distribution of the parameter given the data (Ching, et al., 2006; 

Fujimoto & Takaki, 2016; Keating, Mason & Sen, 1993; Miguez, Marino & 

Vazquez, 2018; Romeres, et al., 2016; Zhao, Huang & Liu, 2013). 

The interest is to determine or estimate values for system parameters. Given a 

continuous random variable p  as a parameter to be estimated and p̂  as its 

estimate value, the interest is to find the values of p̂  that will estimate values of 

p̂  over the range of the given data. The cost can be assigned to all data pair 

defined by ]ˆ,[ ppC  over the range of interest. The assumption is that the cost 

depends only on the error of the estimate. The error is defined by the equation 

(Romeres, et al., 2016; Siouris, 1996:82–83): 

ppe ˆ−=          (3.28) 

The cost function is given by what is referred to as Bayes risk, (Ching, et al., 

2006; Miguez, Marino & Vazquez 2018; Romeres, et al., 2016) defined as: 

)]}(ˆ,[{)ˆ( zppCwp =β        (3.29) 

Equation (3.29) suggests that once the cost function and the a priori probability 

have been specified, the risk can be minimized. The risk can be minimized by the 

proper choice of p̂ . This means that the estimate minimizes the risk, Equation 

(3.30). 

)}ˆ({)}ˆ({ ppCpCw −=≅ εβ       (3.30) 

 
3.7. State estimation 
 
The process model state is defined as the minimum amount of information 

necessary to uniquely determine the dynamic behaviour of the system at all 

future moments given the current inputs and parameters of the system. State 

estimation is the process of determining the “uknown” state of the system from 

output measurements given the dynamic model of the system (Ching, et al., 

2006; Muske & Edgar, 1997:311–325; Yang, et al., 2016). 

Some processes may be defined by a finite number of parameters that define the 

internal behaviour of the system, for example, nxxx ,.....,, 21 . These parameters 

can be collectively arranged to form a vector, ),.....,,( 21 nxxx and are then 

referred to as a state of a process model (Roxin, 1997:4). 

Some possibilities for state estimation are based on the objective of the study: 

1) The system exists and its parameters are known, 
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2) The process model exists but some states are not measurable and some 

are. Non-measurable states are important for control, design and real-time 

control of processes. 

3) Determination of the non-measurable from the measured states and 

measured outputs of the system. 

In general, the number of state variables required for model development will be 

equal to the number of energy storage components of the process. 

 
3.7.1. Linear state estimation 

The estimation of the state of a linear system is performed using the well-

established optimal linear estimation theory. Due to complexity involved in 

nonlinear models, the corresponding estimation theory tends to be very complex 

in comparison to linear estimation theory. The commonly used techniques to 

estimate unknown state for linear models include: least squares method, Kalman 

filter and the Leunberger observer. 

Before embarking on the process of estimating the states of the system, it is 

important to determine if the system is obserevable. The process of testing if a 

system is observable or not, is known as observability. If a linear system has the 

state can be determined uniquely from the output measurements, the system is 

onsidered observable (Dochain, 2003; Muske & Edgar, 1997:311–325). 

 
3.7.1.1. Least squares state estimation 

The process disturbance vector models unmeasured disturbances to the process 

that will affect the process state. The aim of this approach is to estimate the state 

of the system in Equation (3.8) by minimizing the estimated process and the 

measurement disturbances. The measurement disturbance vector represents the 

error in the measuring device caused by measuring instrument noise. 

 
3.7.1.2. Kalman filter 

Kalman filter is one of the most used state estimation algorithms. The Kalman 

filter generates estimates of the state variables of the process by processing the 

measured output variable. In conjunction with a closed loop algorithm, the input 

to the process is processed to minimize the difference between the estimated 

state values and the actual states determined using measured data. The aim is 

to find the best estimate of the state vector )(tx  according to the linear 

combination of the measurementvector )(tz  and the present state estimate )(ˆ tx  

so as to minimize the cost function given by (Siouris, 1996:92–109): 
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min)]}(̂)([)](ˆ)({[ →−− txtxtxtxE T      (3.31) 

The solution to this problem is given by the optimal estimator equation derived 

from the filter in (Siouris, 1996:96) 

)](ˆ)([)(ˆˆ * txCtzKtxAx −+=&       (3.32) 

where *K  is the filter gain. Equation (3.37) is also known as Kalman-Bucy filter. 

 
3.7.1.3. Leunberger observer 

Leunberger observer uses a constant gain matrix to meet the cost function of 

form: 

))1(ˆ)(()1(ˆ

))(ˆ)(()1(ˆ)(ˆ

−−+−=

=−+−=

kkxCkzLkkx          

kzkzLkkxkkx
     (3.33) 

where  

L  – is the observer gain matrix,  

)(kz  – is the current observed output, and 

)1(ˆ −kkxC  – is the predicted output. 

The observer gain matrix is used to correct the predicted state estimate from the 

difference of the observed output and predicted output, Equation (3.33). The 

performance is based on the dynamic behaviour of the reconstruction error and 

the stochastic properties of the process, and the system and measurement 

disturbances )(kw  and )(kv  are ignored. 

Since the stochastic properties are neglected, the Leunberger observer is a 

deterministic estimator that is employed when the stochastic model of the 

process is unknown and if the optimal filter cannot be employed. The advantage 

of the Leunberger observer is the reduced computational requirements (Muske, 

& Edgar, 1997). 

The reconstruction error of this method is given by: 

)()()1( keALCAke −=+        (3.34) 

The requirement for the reconstruction error is that the eigenvalues of the matrix 

)( ALCA−  must have a moduli strictly less than one. The eigenvalues of this 

matrix are also known as the closed loop observer poles. The procedure of 

determining the relevant eigenvalues for the correction error is known as pole 

placement technique. The choice of observer poles is a compromise between 

fast reduction of the reconstruction error (which requires that the poles be placed 

close to the origin), and sensitivity to measurement noise and modelling error, 

(which increases as the poles are moved closer to the origin (Muske & Edgar, 
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1997:324–325). The continuous time equivalent equation can be given by 

(Muske & Edgar, 1997:324) 

)()()( teALCAte −=&        (3.35) 

)(ˆ)()( ttxtxte −=  

 
3.7.2. Nonlinear state estimation 

Nonlinearities of a dynamic process model increase the level of complexity to the 

state estimation problem. The complexity applies to the derivation as well as the 

implementation of the nonlinear estimator. Optimal estimator methods are not 

generally available for the nonlinear models, therefore nonlinear estimation 

problems are solved using suboptimal approach to estimation problem. 

Continuous-time nonlinear system state space and output model equations 

respectively, can be represented by (Nicholson, et al., 2014; Muske & Edgar, 

1997:327; Salau, Trierweiler & Secchi, 2014): 

)),(),(()( ttutxftx =&        (3.36) 

),()( txgtz =  

The assumption is that the model parameters are known and are not included in 

the argument list. The discrete time equivalent models are: 

)),(),(()1( kkukxfkx =+       (3.37) 

)),(()( kkxgkz =  

 
3.7.2.1. Extended Kalman filter 

The easiest method to estimate state estimation is to linearize a nonlinear model 

and then to apply linear state estimation to the linearized system. The extended 

Kalman filter is one of the methods that can be applied to achieve this type of 

estimation. The extended Kalman filter computes a state estimation at each 

sampling time by the use of the Kalman filter on a linearized model of a nonlinear 

system. 

 
3.7.2.2. Recursive state estimation methods 

Siouris (1996) states that in recursive estimation methods, the prior estimate can 

be used as the starting point for a sequential estimation algorithm. The algorithm 

assigns a proper relative weighting to the old and new data. Assuming a given 

linear system with Gaussian noise, the state estimates of such a system will be 

determined from the conditional probability density of the state given the output 

measurements. The conditional probability density of the state with Gaussian 
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noise is Gaussian but for a nonlinear system, it is not Gaussian even if the state 

and measurement disturbances, )(tw  and )(tv  are Gaussian. The determination 

of the conditional probability density requires the nonlinear model Equation (3.38) 

be represented as vector nonlinear stochastic differential equation (Muske & 

Edgar, 1997): 

βddtttutxftdx += )),(),(()(       (3.38) 

)(twd =β  

 
3.7.2.3. Gradient state estimation methods 

Gradient methods are a general purpose unconstrained optimization methods 

used to estimate parameters. These methods can be broadly divided into two 

categories; direct search methods and gradient search methods. Gradient search 

methods require derivatives of the objective function whereas the direct search 

methods are derivative free. The derivative may be determined analytically or be 

approximated in some way. The direct search techniques which use function 

values which are more effective for highly discontinuous functions (Srinivasan, 

Francois & Bonvin, 2011; Englezos & Kalogerakis, 2001) 

The aim of the gradient methods is to reduce value of the cost function at each 

moment of iteration. The basic problem is formulated in the following way: find 

the parameter vector k  that minimizes the function, )(kS  (Englezos & 

Kalogerakis, 2001), 

∑
=

=
N

i
ii

T
i eQekS

1

*)(         (3.39) 

where  

)),(( kxfze iii −=   – is the m  dimensional vector of the residuals, 

with T
mee ee ],.....,,[ 21= . 

Commonly used types of gradient methods include: steepest descent, Newtons, 

quasi-Newton (variable metric or Secant method) and conjugate gradient. Direct 

methods use function evaluations. They search for the minimum of an objective 

function. 

 
3.8. Integrated approximation methods 
 
The integrated approximation techniques use the extended state vector which 

includes all parameters to be estimated. For the discrete time system the 
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problem of estimating unknown states is solved by minimizing the cost function 

given by: 

}]),(),(),([)]([)]([{)(
0

00 ∑
=

+−=
N

kk

kkwkupfppEJ ζζθζθζ   (3.40) 

where  

{ }E  – is the mean value, 

θ  – is the vector of combined unknown states and parameters, 

)( pζ  – is the extended state vector, which includes all unknown parameters,  

)(kw  – is a vector of stochastic disturbance with presumed known probability 

density function. 

 
3.9. Optimization methods in parameter and state es timation 
 
In optimization of a system, the idea is to set possible operating conditions so as 

to obtain the best possible results given some limits of the system. 

Accompanying such an idea is the concept of defining the system and its 

limitations. The meaning of best possible (optimal) results must be clearly 

identified, system boundaries, system limits and constraints, selectable operating 

conditions and the manner of making the selection, known as the optimization 

technique must also be identified. 

In parameter estimation, the process of adjusting parameters such that model 

output based on predictions matches that received from process measured data 

is in real terms a minimization problem. This is achieved by minimizing the 

objective function given by Equation (3.9). Parameters are continuously adjusted 

until the model output matches that of measured data. 

There are a few different forms the criterion takes depending on the minimization 

technique to be applied. These include: 1) sum of squared errors, 2) maximum 

likelihood (ML), 3) weighted least squares (WLS), also known as Chi squared 

( 2χ ), 4) ordinary least squares, 5) Bayesian. The most common of these is the 

sum of squared errors function. The other functions are all some form of 

extension of the maximum likelihood method, using different assumptions for 

each (Dochain & Vanrolleghem, 2001:215–225). In some cases, it is possible to 

have a multivariable objective function where more than one variable has been 

measured. 

In the state estimation problem, the objective function is formulated in two 

different ways, depending whether the solution is, 1) an observer or 2) a filter. In 
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the case of the observer, the objective function does not follow the same 

structure as that in the parameter estimation problem; and in the case of a filter, it 

takes the same structure. The two methods of solution are derived around the 

error difference between the measured states (obtained from the output) and the 

model estimated states. 

The observer design follows two stages: 1) that of minimizing the error between 

the actual states )(tx  and the estimated states )(ˆ tx  as t  approaches infinity: 

min)(ˆ)()( →−= txtxtex   for ∞→t      (3.41) 

2) and that of keeping the rate of change of the error at zero (or near zero). 

0)( =tex&          (3.42) 

This rate of change must stay at or close to zero for all the input and state 

values. 

In the filter design approach, the objective is that optimal estimates should 

minimize the objective function )(~ tJx based on the difference between estimated 

states and real states obtained from the measurement data. The objective 

function does not appear as the only equation to be solved when dealing with a 

filter. The algorthim involves solving a number of sequential equations based on 

measurement updates. The final equation for the procedure is based on the 

objective function given as: 

{ }== )()()(ˆ teteEtJ x
T

xx        (3.43) 

{ }))(ˆ)(())(ˆ)(( txtxtxtxE T −−=  

where { }E  – is the covariance index (expectation operator), (Siouris, 1996:96). 

 
3.10. Parameter and state estimation algorithms 

3.10.1. Parameter estimation algorithm 

Parameter estimation procedure indicated here is for nonlinear system using 

optimization techniques. Dochain and Vanrolleghem (2001:226–228) give the 

generalised parameter estimation procedure. The accompanying algorithm for 

the parameter estimation procedure is given in Figure 3.4. 

At the start of the procedure, guesses of parameter values must be provided and 

the model structure and measurement data must also be available. The very first 

algorithm procedure will calculate predictions based on these initial parameter 

values. 

Model predictions are determined from solving the set of model equations; these 

values are then passed on to calculate the objective function, where the 
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prediction’s confidence is tested. If the test criterion is not met based on the 

applicable rule of the algorithm, determined by the user, a new set of parameters 

is proposed and sent to the solution step, mentioned above. If the criterion is 

met, the calculated parameter values are considered the optimal ones and are 

passed to the model for use. Alternatively, if the criterion is never met, a stopping 

condition is applied; usually this is based on some practical big number, which 

specifies how many times should the algorithm be run over should the criterion 

be never satisfied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.  Algorithm for linear parameter estimation based on  minimization 
procedure 

 
(Adapted from Dochain & Vanrolleghem, 2001:228) 

 
3.10.2. State estimation algorithms 

There are many different approaches to state estimation problem that can be 

classified as maximum likelihood, least squares or Bayesian methods. In this 

thesis, the state estimation problem is solved based on the two well known 
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methods, the observer design and Kaman filter based procedures. Algorithms 

presented are therefore for these two cases.  

 
The observer design 

The aim of the observer is to estimate unknown state of a system, and the 

procedure requires the knowledge of the input and output data over the specified 

period Kk ,1=  (Bornard, Celle-Couenne, & Gillles, 1995:176). An estimation 

(prediction) problem posed as a least-squares problem irrespective of application 

can be solved as a non-sequential (known as batch) estimation, or as a 

sequential (known as a recursive) estimation problem. In the non-sequential 

solution all measurements up to k  are required for the solution whereas in the 

recursive solution, only data from the previous sample are necessary for the 

solution (Muske & Edgar, 1997:321). 

The basic observer design is a recursive estimator and the estimator constant 

gain matrix is used to meet some stipulated performance criteria. The system 

reconstructs the system state using input–output measurement information, thus 

the name observer (Primbs, 2006; Siouris, 1996:164). The performance criterion 

is based on the estimator reconstruction error (Muske & Edgar, 1997:321; 

Primbs, 2006). The observer is a deterministic operation that ignores the 

stochastic behaviour of the system by ignoring the system disturbance and the 

measurement noises (Wang & Zhang, 2006; Muske & Edgar, 1997:321). 

 
Linear case 

For a linear discrete-time system presented by 

)()()1( kBukAxkx +=+        (3.44) 

)()( kCxkz =  

The full-order observer for such a system may be represented by 

)]()(ˆ[)()(ˆ)1(ˆ kzkzLkBukxAkx −++=+      (3.45) 

)(ˆ)(ˆ kxCkz =  

where )(ˆ kx  – is the estimate of the true state )(kx . 

The observer gain must be chosen such that the estimation error 

)()(ˆ)( kxkxke −=  converges to zero, Equation (3.41). 

0)]()(ˆ[)( →−= kxkxke        (3.46) 

This means that the estimate )(ˆ kx  converges to the true state )(kx  

exponentially. The observer design becomes the exercise of determining the 
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values of the observer gain matrix L . The determination of the observer gain can 

be solved using different methods, such as the pole placement method, constant 

solution of a Riccati equation etc. If the system is observable, that is, its state 

parameters and observation matrices pair ),( CA  is an observable pair, by 

placing the observer matrix ( LCA− ) on the negative real part of operational 

spectrum, the estimation error will converge to zero, 0)]()(ˆ[)( →−= kxkxke  

(Bornard, et al, 1995:182). The procedure for the observer algorithm according to 

the Equations (3.22)–(3.27) can be presented as follows: 

1) Initialization: set model parameters matrices A , C  and the initial estimate 

)0()00( 0 xxx ==  and initial error, )0()(0 eke = , set a large number M  

iterations for stopping of the calculation procedure, 

2) set the initial discrete-time moment 1=k , 

3) set observer trajectory–set real output data for the full trajectory Kk  ..., ,2 ,1= , 

)( ..., ),2( ),1()( Kuuuku = , 

4) state prediction – calculate the state estimate )1( kkx + , 

5) calculate the error difference based on estimated state and the real state from 

measurement data, )1( kke + ,  

6) store the current value of state estimate )1(ˆ kkx +  in a vector, 

7) determine the value of the gain matrix L , using pole placement method based 

on the requirement that 0)1( →+ kke&  

8) increment the discrete moment count, 1+= kk , 

9) test the stopping procedure, )()( kxke ε≤  

if 9) not true, repeat from step 4) 

if 9) true continue to step 10, 

10) increment the stop procedure index 1+= ii  

11) test if large number stopping procedure is reached, Mi =  

if 11) not true, repeat from step 4) 

if 11) true, end procedure. 

 
Nonlinear case 

Attempts have been made to design nonlinear observers using nonlinear 

systems theory. Such has been achieved in the nonlinear extended Kalman filter, 

but has not been truly extended to observer design methods (Muske & Edgar, 
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1997:346; Primbs, 2006). In the same fashion as in the linear case, the nonlinear 

observer design considers the deterministic behaviour of the state reconstruction 

error (Muske & Edgar, 1997:346. The idea is to therefore find a transformation 

that can linearize the reconstruction error. Many authors have presented many 

methods to deal with this limitation, methods such as, error linearization 

methods, extended Luenberger observers, sliding mode observers, Lyapunov 

functions based solutions, Lie-algebra methods, etc. 

A deterministic discrete-time nonlinear system of the form 

)),(()( kkxfkx =         (3.47) 

),(()( kkxgkz =  

is considered. 

Attempting this problem using linear approach considers the estimation error and 

its dynamics. This will require an observer with linear output injection and error 

dynamics of the form (Primbs, 1996): 

)]()(ˆ[)),(ˆ()1(ˆ kzkzLkkxfkx −+=+      (3.48) 

)),(ˆ()(ˆ kkxgkz =  

where pnRL ×∈  is the observer gain matrix, 

)()(ˆ)( kxkxke −=         (3.49) 

)]),(()),(ˆ([)),(()),(ˆ()1( kkxhkkxhLkkxfkkxfke −+−=+   (3.50) 

The error dynamics is a nonlinear function and its stability is not clearly identical 

(Primbs, 1996). One approach to solving this problem is the attempt to linearize 

the error dynamics, about a fixed point 0)( =ke . 

[ ])),(()]()),([(                                 

)),(()]()),([()1(

kkxhkekkxhL

kkxfkekkxfke

−++
+−+=+

   (3.51) 

The procedure for observer state reconstruction methods tends to be model 

specific, Figure 3.5. In this sense, only the linear state estimation observer 

procedure has been presented. It gives enough understanding into steps that 

must be followed to solve the state estimation problem using observer design 

technique even for nonlinear systems. The final solution can be presented as 

)(
)(

))((

)(

))((
)1( ke

kx

kxh
L

kx

kxf
ke 









∂
∂+

∂
∂=+      (3.52). 

 
The Kalman filter procedure 

The Kalman filter is very attractive in real-time estimation applications, since it 

presents a simple and efficient algorithm. The considered system models for 
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Kalman filter solutions are for the linear and nonlinear, time-invariant, discrete-

time systems, i.e., the system has constant coefficients over the observed period. 

 
The linear case 

The conventional discrete-time Kalman filter algorithm for a stochastic time-

invariant or slowly varying linear system is based on the following Equations 

(3.44)–(3.46): 

1) the system and observation model, 

)()()(),1()1( kwkWkxkkAkx ++=+ , .... ,2  ,1  ,0=k    (3.53) 

)()()()( kvkxkCkz +=  

2) the filter noises statistics (described by the system and observation noise) 

))(,0()( kQNkw ≈        (3.54) 

))(,0()( kRNkv ≈  

3) the prediction model (including the estimation error statistics) 

)(ˆ)1()1(ˆ kkxkkAkkx +=+       (3.55) 

)()1()()1()()1()1( ** kWkQkWkkAkkPkkAkkP
TT ++++=+  (3.56); 

this model can be expressed in a different notation, as 

)]1(ˆ)()()[()1()(ˆ * −−+−= kkxkCkzkKkkxkkx    (3.57) 

)1()()()1()( * −−−= kkPkCkKkkPkkP     (3.58) 

4) the Kalman gain for measurement update 

1* )]()()1()()[()1()( −+−−= kRkCkkPkCkCkkPkK TT   (3.59) 

where )(kx – is the current state value of the system, 

)1( +kx – is the state value at the next discrete moment of k , 

)(kz  – is the current value of observation measurements, 

)(kw  and )(kv  – are system and observation noise values respectively, that 

are assumed white, Gaussian and with zero mean; 

• the system matrices 

),1( kkA +  – the transition matrix used to transform a given state at moment 

k  to the next moment 1+k , 

)1( kkA +  – is the state transition matrix at 1+k given )(kz  measurement, 

)(kW  – the system noise coefficients matrix, 

)(kC  – is the system output observer matrix; 



 

87 

• the estimator variables 

)1(ˆ kkx +  – is the estimated state at time 1+k  given the measurement )(kz , 

)(ˆ kkx  – is an unbiased real estimate of )(kx  given the measurements of 

)(kz ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.  Algorithm for nonlinear state estimation based on minimization 
procedure 

 
Based on the given noise assumptions above, the following noise statistics 

are deduced for the estimator, 

0)}({ =kwE  – is the system noise probability, 

Initialization: system parameters, A , C , initial estimate and error 
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0)}({ =kvE  – is the measurement noise probability, 







=

=

0)}()({

0)}()({

kwkvE

kvkwE
T

T

 for all values of k , 

)()}()({ kQkwkwE T = , 

)()}()({ kRkvkvE T = ; 

• the estimator matrices 

)(kQ  – is the system noise covariance matrix, used to relate errors in the 

state propagation to the uncertainty of the current estimate, 

)1( +kQ  – is the system noise covariance matrix at the next moment 1+k  

)(kR  – is the measurement noise covariance matrix, 

)( kkP  – is the error covariance matrix that represents the covariance of the 

error difference between the true state and its estimate, 

)1( kkP +  – is the covariance error matrix at the next moment given the 

current error difference, and  

)(* kK  – is the Kalman filter gain used to update measurements. 

The procedure for implementing the filter is as given below. At the beginning of 

the procedure for a linear filter as applied to a linear dynamic state model of a 

system, the following filter properties must be provided: 1) the filter dynamics, A , 

W  and C , 2) the noise statistics, both the system and measurement noise 

covariances, )(kQ  and )(kR , and 3) the a priori data [ ])0(),0(ˆ Px . The 

implementation is done over two main steps, 1) the prediction step and 2) the 

update/correction step as presented by Siouris, (1996:111–124), and Ikonen and 

Najim, (2002:42–44). 

 
Step 1 – Prediction 

1) initialization – set the initial state values and initial prediction values, 

0kk = , 
0

)(ˆ)(ˆ 00 kxkkxkkx == , and 
0

)( 00 kPkkP =    (3.60) 

2) state prediction – set the initial count 1=k  and the state estimate, 

)(ˆ)1()1(ˆ kkxkkAkkx +=+       (3.61) 

3) observation prediction – set the initial observation prediction, 

)1(ˆ)1(ˆ kkxCkkz +=+        (3.62) 

4) innovations calculation – determine innovations using the initial observation 

prediction, 
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)1(ˆ)()( kkzkzkv +−=        (3.63) 

5) covariance prediction – calculate the covariance matrix for the error in the 

current estimate )1(ˆ kkx + , 

)()()()()()()1( kAkQkAkAkkPkAkkP TT +=+     (3.64) 

where )()()( * kKkAkA =  

 
Step 2 – Update/correction 

1) obtain new measurement – observe the next measurement, 

)1()1( +=+ kCxkz        (3.65) 

2) innovation covariance – determine the innovation covariance to use in 

calculating the filter gain, 

1)()1()1( −++=+ kRCkkCPkS T       (3.66) 

3) determine the filter gain,  

1* )]1([)1()1( −++=+ kSCkkPkK T      (3.67) 

4) state correction – update the state estimate at 1+k  moment using the filter 

gain and new measurement, 

)()()1()11(ˆ * kvkKkkxkkx ++=++      (3.68) 

5) update covariance – update the covariance matrix based on new 

measurement and the filter gain, 

)()1()()1()11( ** kKkSkKkkPkkP
T+++=++    (3.69) 

6) obtain the next sample – increase the sample index 

1+= kk          (3.70) 

Figure 3.6 represents the classical linear Kalman filter algorithm for estimating a 

system state. The classical linear Kalman filter is only applicable to linear 

systems with linear measurements including both the system noises and 

measurement noises. The system noises are considered the driving dynamics of 

the filter. The driving noises and measurement noises are considered 

uncorrelated.  

 
The nonlinear case 

For nonlinear systems of which most physical systems fall under, an extended 

Kalman filter was introduced. If a Kalman filter for such systems is to be designed 

for estimating unknown states, it means, the system must first be linearized 

(linear approximated) before designing the filter. Such a Kalman filter concept is  
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Figure 3.6.  Algorithm for the basic Kalman filter 

 
(Adapted from Ikonen & Najim, 20022:113–124 and Sio uris, 1996:111–125) 
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referred to as the extended Kalman filter (EKF). The extended Kalman filter is for 

use in nonlinear systems. Nonlinear systems can be classified according to noise 

considerations of a system model. Nonlinear systems are considered 

deterministic if noise disturbances are not included in the model, and stochastic if 

the noise disturbances are considered, either the system noise or measurement 

noise or both (Mukkula & Paulen, 2017; Siouris, 1996:190–191). 

In its application for estimation of nonlinear systems, the extended Kalman filter 

assumes linearization in the system being estimated. The extended Kalman filter 

can also be applied in very unique systems that may be continuous-time systems 

but have discrete measurements, such a Kalman filter extension is referred to as 

the continuous-time discrete-time extended Kalman filter (CDEKF) (Siouris, 

1996:190). 

The procedure for applying a nonlinear extended Kalman filter is not so different 

from the linear Kalman filter except for the part where the nonlinear system is to 

be linearized. In the extended Kalman filter algorithm, the dynamics model and 

observation model become nonlinear systems. Siouris (1996) states that the 

system state and the covariance matrices are presented in the same form as that 

of the linear Kalman filter, Equations (3.53)–(3.59). Also the noise statistics stay 

the same as in the linear case.  

These models are presented as follows: 

1) The system and observation models, 

)( )),(()),(()1( kwkkxWkkxAkx +=+ , ... ,2  ,1  ,0=k    (3.71) 

)()),(()( kvkkxhkz +=  

2) The state and state estimation equations, 

)()(),1()1( kwkxkkAkkx ++=+      (3.72) 

)()1,()1()1()1( kQkkAkPkkAkkP T +−−−=−     (3.73) 

)]1(ˆ)()()[()1(ˆ)(ˆ * −−+−= kkxkCkzkKkkxkkx    (3.74) 

)1()]()([)( * −−= kkPkCkKIkkP      (3.75) 

where 1* )]()()1()()[()1()( −+−−= kRkCkkPkCkCkkPkK TT   (3.76) 

Based on these system of equations, Equations (3.34)–(3.39) and the 

corresponding equations from the linear Kalman filter, the procedure for 

implementing the nonlinear extended Kalman filter is as given here and 

demonstrated in Figure 3.7. 

1) Initialization: 



 

92 

set the initial state and the initial system covariance matrix  

)0(ˆ)00(ˆ xx = , )0()00( PP =       (3.77) 

2) Set the discrete moment k  and the count indices i  to one, and the first 

estimate )(kiξ  

1=k , 1=i  

)1()( −=ξ kkxki         (3.78) 

3) read measurement vector – filter input data 

)()()()( kvkxkCkz +=        (3.79) 

4) read noises covariances – filter input data 

)(kR , )(kQ         (3.80) 

5) calculate observation model )(kCi  

)(
)(

)),((
)(

k

i

i
kx

kkxg
kC

ξ∂
∂=        (3.81) 

where ]),([)( kkgkg ii ξ=  

6) determine the filter gain matrix )(* kK i  

1* )]()()()()[()()( −+= kRkCkPkCkCkPkK T
ii

T
ii     (3.82) 

7) increment the i  index 

1+= ki  

8) calculate filter estimation value, )(kiξ  

[ ])]1()([)()(             

)1(ˆ)(

111
* −−−−+

+−=

−−− kkxkCkgkzK

kkxk

iiii

i

ξ

ξ
   (3.83) 

9) test if minimum (optimal) estimate is reached 

valuetestkk ii  )()( 1 ≥ξ−ξ −       (3.84) 

» if reached go back to step 5), calculate observation model, 

» if not, continue to step 10), 

10) determine current state estimate at the moment )(ˆ kx  

)()(ˆ kkx iξ=         (3.85) 

11) calculate the state dynamic model, ]),([ kkxf , 

)(
)),(()(

ki

kkxfkA
ξ

= &        (3.86) 

12) calculate state prediction estimate 
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]),(ˆ[)1(ˆ kkxfkkx =+        (3.87) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.7.  Algorithm for nonlinear extended Kalman filter 

 
(Adapted from Siouris, 1996:111–125) 
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End 
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14) work out predictor error covariance )1( +kP  

)()()()()()()1( ** kWkQkWkAkPkAkP
TT +=+     (3.89) 

15) increase discrete time step 1+= kk  

 
Each of the filter stages (linear or nonlinear) contain discrete-time equations for 

propagation of the estimate and its covariance matrix; and in cases where a priori 

information is not available, batch processing can be considered (Siouris, 

1996:121–122). In case of batch processing all measurements are 

simultaneously incorporated into the estimate. Another important property of the 

filter is the stability. There are many different techniques that were developed to 

deal with the Kalman filter stability, Siouris (1996) deals with a few of these 

methods. 

 
3.11. Conclusion 
 
There are many reasons associated with building a model; models are built for 

simulation of the dynamic behaviour of processes, for prediction and or analysis 

of the process behaviour, prediction of time evolution behaviour of the process, 

but generally, models are developed for monitoring with the main aim of being 

able to control the process optimally. If one could control the process based on 

some knowledge or understanding of its future behaviour, it gives more scope in 

terms of control and economic benefit associated with plant operations more 

especially the process feeds costs. 

The focus of this chapter is the different methods used in solving nonlinear 

parameter estimation and nonlinear state estimation problems. Due to complexity 

relating modelling of nonlinear processes and application of estimation 

techniques the chapter is subdivided into three sections with focus on application 

of modelling theory, estimation theory (parameter estimation and state estimation 

theory) and then the application of optimization theory to solve these estimation 

problems. Different methods used for parameter estimation have been 

presented. For the state estimation problem, different estimators and some 

algorthims have been presented. 

The next chapter deals with the continuous countercurrent ion exchange (CCIX) 

process model construction, and the extension of the model for parameter and 

state estimation to allow capabilities of applying it in optimal control. The 

developed model is a bilinear state model. 
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CHAPTER FOUR 

4. ION EXCHANGE PROCESS AND ITS MODEL DEVELOPMENT 

4.1. Introduction 

 
In this chapter the continuous countercurrent ion exchange (CCIX) process is 

discussed. The selection of the CCIX was determined by the availability of the 

plant at the Chemical Engineering Department of Cape Peninsula University of 

Technology. The plant is based on an earlier design that was implemented at the 

University of Cape Town in 1982 and the plant measurement data used came 

from this study. 

The difference between the newly designed control system and the previous one 

is that the current process modelling is based on state space representation in 

which optimization techniques are directly implementable and allows better 

system analysis. This allows wider system handling capabilities, provides widely 

and well established optimization techniques in parameter and state estimation 

methods, and relatively easy solution methods. 

Using the CCIX process, a bilinear model has been developed using component 

balance equations. Different main operating methods (batch and fluidized bed) 

are presented and their different operational techniques. The model was initially 

developed for the MTech qualification (Dube, 2002); and is reviewed and 

extended for the purpose of parameter and state estimation. 

The chapter starts with the general discussion on ion exchange process and its 

technical detail to the ionic level. The material balance of the process is 

discussed in detail giving rise to the usage of the mass balance equation to 

describe the internal component characteristics of the exchanging ions and their 

behaviour at this level. The process model is then developed with relevant 

accompanying assumptions. Continuous and discrete time model structures are 

given. The chapter ends with the state space discrete time model generated for 

application of different thesis solutions based on computer software programs 

developed.  

 
4.2. The ion exchange process 
 
An ion exchange process is a reversible chemical process where ions with 

similar polarities are exchanged between solids and an electrolyte solution if the 

two are contacted. This permits the separation and fractionation of electrolyte 

solutes. During the exchange process, there is an interaction of the ions with 
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solid phase and also diffusion of ions within the solid phase (Hendry, 1982a; 

Hendry, 1982b; Rochette, 2006; Sasan, et al., 2017; Treybal, 1980:566). 

According to Treybal (1980:566) and Dyer (2013) the ion exchange process 

resembles adsorption process in its behaviour and the ion exchange process 

itself tends to be more complex than the concept of exchanging of ions. Streat 

(1995:2841) argues that ion exchange process differs from adsorption in that the 

adsorbent material used is a functional group or dynamic polymer matrix or an 

inorganic structure with exchangeable functional groups. 

The countercurrent ion exchange process configuration consists of four columns 

and two phases (Hendry, 1982a; Hendry, 1982d; Randal, 1984; Steinebach, et 

al., 2017). Each phase is made up of two columns of the four columns. The two 

phases are cation exchange and anion exchange. Each of the phases consists of 

a loading column and a regeneration column, Figure 4.1. It is stated in Hendry 

(1982a:1) report that there are two major decisions to be considered when 

designing an ion exchange plant; 1) the nature of the contacting device to be 

used and, 2) the type of the regenerant chemicals to be used. Contacting devices 

may be either of a fixed bed type or a moving bed type. In this project, the 

process considered is the CCIX process for treatment of salt water. In this case 

the process is based on the fluidized moving bed contact device (Bochenek, et 

al., 2011; Hendry, 1982a; Hendry, 1982b). 

Ion exchange has found many applications including treatment of ore slurries for 

collection of valuable metals, water softening, complete water deionization and 

treatment and concentration of dilute waste solutions (Cappelle & Davis, 2016; 

Grafa, Cornwell & Boyer, 2014; Treybal, 1980:642). Water upgrading and 

recovery systems can be divided into two main categories (Hendry, 1982b:4): 

1) systems with desalination function, and  

2) systems that perform tertiary treatment function. 

According to Hendry (1982b, 1982c, 1982d, 1982e) the developed systems at 

the time could not provide both functions of desalination and tertiary treatment in 

one treatment; usually systems had to be cascaded in order to achieve both 

treatment methods. 

Desalination process can be described in simpler terms as a process concerned 

with removal of salts from a liquid. Hendry (1982b:4) argues that the process of 

desalination of water used for production of potable water varies between two 

extremes: 1) water with extreme saline content, e.g., sea water which has a TDS 

(total dissolved solids) content of about 35 lmg/  and 2) water with low saline 
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content e.g., borehole water which has TDS content of between 1 lmg/  to about 

10 lmg/ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1. Basic continuous countercurrent ion exchange (CCIX)  configuration 

 
(Adapted from Hendry, 1982a:535, 537; Hendry 1982b, c,d) 

 

In Hendry (1982a–d) the project was an improvement of an earlier pilot project 

that produced 6 daykl /  product water. Improvements of the system included a 

microprocessor’s controlled system that used pH and conductivity (K) 

measurements at specific strategic points to determine product water quality. The 

pH and conductivity measurements were used to determine concentrations of 

different streams and then fed information to a computer system to make proper 

adjustments to the plant with the aim of obtaining optimal performance. With the 

new system development at Cape Peninsula University of Technology, the aim is 

to use modern optimal control techniques to improve the plant performance 

which led to the MTech study taken which was a predecessor to this current 
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study which focuses on modelling, parameter and state estimation. The 

developed model is equally applicable to each phase of the CCIX process. 

In Hendry (1982a, 1982c) the chemicals considered for the process of 

regenerarion were a combination of nitric-acid and ammonia; and sulphuric-acid 

and lime. Each of the chemical combinations has its merits and associated 

problems. In the current project, based on the findings in the UCT project, the 

sulphuric-acid and lime have been considered. Some of the reasons for choosing 

sulphuric-acid and lime regenerant system include the following (Hendry, 1982b; 

Hendry, 1982c; Hendry, 1982d; Hendry, 1982e; Mendow, et al., 2017): 

1) these chemicals are less expensive compared to their nitric-acid and 

ammonia counterparts, 

2) the nitric-acid and ammonia system, from the operational point of view 

is the easiest to deal with and has less waste disposal problems – but 

needs an extra column for this purpose, 

3) in case of the sulphuric-acid and lime combination, both chemicals are 

general purpose regenerants and are readily available at a lower cost, 

4) problems associated with the sulphuric-acid and lime combination are 

low solubility of lime as an anion regenerant and the formation of 

calcium sulphate scaling when sulphuric acid is used as a cation 

regenerant, but these problems were successfully overcome. 

 
4.2.1. General description of an ion exchange proce ss 

According to Hendry (1982b:3), Mendow, et al., (2017), Rochette, (2006), and 

Treyball (1980) the accepted definition of ion exchange process is that, “an ion 

exchange is a reversible interchange of cations (positively charged ions) or 

anions (negatively charged ions) between a solid phase and a liquid phase”. In 

general the liquid phase is the solution being treated, and the solid phase is the 

resin being used for the exchange. Resins are commonly presented in a form of 

microporous beads that are packed together to form a bed of solid material. This 

ion interchange can be represented as follows (Hendry, 1982b:8; Treybal, 1980, 

Streat, 1980).  

YABRYBAR ++−++− +−→←+−      (4.1) 

for the cation exchange where A  and B  are positively charged exchanging ions 

(cations) and 

YMNRYNMR −−+−−+ +−→←+−      (4.2) 
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for the anion exchange where M  and N  are negatively charged exchanging 

ions (anions), where 

+R  – is the resins in positively charged form representing the solid phase in the 

exchange, 

−R  – is the resins in negatively charged form representing the solid phase in the 

exchange, 

Y  – represents the component of the exchanging compound. 

Ion exchange resins with the opposing polarities in the exchanging materials are 

called the counter-ions, e.g., +A  and +B  in the cation reaction, Equation (4.1) 

and −M  and −N  in the anion reaction, Equation (4.2). Ions that have the same 

polarity as that of the exchanger in a reaction are called co-ions, e.g., +A  in the 

cation reaction, Equation (4.1) and Y  in the anion reaction, Equation (4.2). 

Resins are manufactured in either porous polymer spheres or in granular form. 

One of the most valued properties of resins is their ability to reverse exchanging 

ions, which allows resins to be reversed back to their original form which the 

resins were in before the exchange. This allows resins to be used for very long 

periods of time running into decades. Strong cation resins (sulphonic acid group) 

are only regenerated by a strong acid such as hydrochloric acid, sulphuric acid 

and ammonium hydroxide and in case of the weak cation resins (carboxylic acid 

group) resins can be regenerated by any acid that produces pH lower than the 

pK value of the resin (Sasan, et al., 2017). 

Anion resins are rather grouped according to the structure of the nitrogen 

grouping of amine within the resin matrix structure; primary amine, secondary 

amine, tertiary amine and quaternary ammonium. The quaternary ammonium 

group behaves like the strong cation acid resin due to its ability to dissociate 

easily. The quaternary ammonium group anion resins require a strong base to 

regenerate back to the hydroxyl form. In the case of the weak base group (i.e., 

primary amine, secondary amine and tertiary amine) and one of the most 

important characteristics of this group is that for the for the ion exchange to 

occur, “the solution must have low enough pH to provide the required hydrogen 

ions” (Hendry, 1982c; McGarvey & Gonzalez, 1992; Sasan, et al., 2017). 

 
4.2.2. Characteristics of ion exchange columns 

Ion exchange operation can be broadly divided into two categories, 1) the fixed 

bed ion exchange or 2) the fluidized bed ion exchange. Both these types use 

columns where a solution is passed through solid particles (resins) usually a bed 
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of beads. In the fixed type ion exchange operation, all the exchange cycles, i.e., 

loading, resin regeneration and resin wash are all performed in one vessel. 

Different forms of operations are achieved by changing the direction of flow of the 

feed in a vessel. In the fixed bed type, the feed flow is passed through a bed of 

resin downward thus keeping resins in a bed layer. If the feed flow direction is 

changed to move upwards resulting in the fluidized resin filling up the vessel, the 

process is a fluidized bed type (Hendry, 1982b:37). 

The relationship between the feed and the regeneration flow directions is also 

used to describe the form of flow a system is using. A system where the feed 

direction is the same as the regeneration is known as co-current flow (or co-

current load and regeneration system). A system where the feed is flowing in the 

opposite direction as that of regeneration is called the countercurrent flow. 

Moving beds are divided into two categories, 1) the moving fixed beds also 

known as the moving packed beds and 2) the moving fluidized beds. In the 

moving packed beds, the feed is done in one vessel and then resin bed is moved 

into another vessel for regeneration. In the fluidized moving beds, the resins are 

fluidized during loading and also at regeneration stage; this is explained further in 

the next section. 

The moving beds system can be defined also by the direction of feed versus that 

of regeneration. If the direction of feed is the same as that of regeneration the 

system is said to be co-current moving bed and in the case where the feed is 

moving in the opposite direction to that of the regeneration, then the system is 

said to be countercurrent. The “moving packed beds” can either be co-current or 

countercurrent unlike the fluidized moving beds that are based on the 

countercurrent flow (Hendry, 1982b:38, 42). 

The system of moving beds (packed or fluidized) has become more attractive 

more especially in cases where fixed beds were mostly used. The design of 

fluidized moving beds is based on what is generally referred to as continuous 

countercurrent flow system. Though the term continuous is used, in reality resin 

flow is cyclic but continuous in the sense that there is a constant flow of resin 

between the feed and the regeneration stage; this happens cyclically (Hendry, 

1982b:42). 

 
4.3. The fluidized bed columns system of operation 
 
Fluidized bed systems are based on the Cloete-Streat contact design, Figure 4.1. 

The three phases shown below are within one column. The system has two 

major cycles for each of the load columns: the loading operational  cycle which 
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consists of resin fluidization, resin settle and then resin pulldown (Figure 4.2), 

and the secondary operational  cycle which involves dewatering of the resin 

from the load column, refluidisation and resin transportation to the regeneration 

column. The system regeneration columns have regeneration operational  cycle 

includes, resin fluidization, resin settle and resin pulldown and the secondary 

operational  cycle involves only two stages, resin refluidization and resin 

transportation to the load column. The dewatering step is not required since the 

small dilution of load column product will not be detrimental to the mixing of the 

solution in the load column. 

During the upflow period, the feed enters the bottom stage of the column and 

flows upward in the column fluidizing resin beds in each stage. The upflow period 

is determined by the required throughput based mainly on the feed flow rate, 

column stage capacity, the feed concentration, and other operational factors. 

After the required upflow period, the feed flow is stopped and the resin is allowed 

to settle down at the bottom of each stage which is a very short period. After the 

settle period the resin is then pulled out at the bottom stage of the load column 

for transfer to the regeneration column. Pulldown is only activated if there is 

enough resin (one stage amount of resin) ready to be transferred to the top stage 

of the load column (Hendry, 1982a; Hendry, 1982e). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2. The basic Cloete-Streat ion exchange contacting dev ice 

 
(Adapted from Streat, 1995:2844) 
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It may be important to mention at this point that resin beds at the top end stages 

of a load column are less concentrated with exchanging ions from the feed 

compared to the beds at the bottom columns, and thus the most bottom stage is 

the one always taken out for regeneration. This means that the top stage of the 

loading column is always having the freshest resin after regenerated resin has 

been transfered to the loading column. Operational cycles in loading and 

regeneration columns may come in and out of phase during the process 

operation due to column sizes. There are two main coordinating events between 

operational cycles: 1) load pulldown can never be done if there is no enough 

resin available to fill the top stage of the loading column, and 2) in the secondary 

cycles of the load column, dewatering, refluidizing and resin transport must all 

occur during the load upflow period (Hendry, 1982e:9). 

In the regeneration column, the three primary operational cycles identical to the 

ones of the loading column are also used. The only difference is that these cycle 

times are shorter than in the loading column since the regeneration column is 

smaller in diameter compared to the loading column. Due to this out of phase 

control of the operational cycles, it becomes very important to design a proper 

timing device for the sequences. The most important aspect of the operation at 

this point is to make sure that there is enough regenerated resin available before 

load column pulldown is activated (Hendry, 1982d:8, 9). 

 

4.3.1. Cation and anion loading 

In the cation load column natural salts are split into their corresponding strong 

acids using strong cation resin in the hydrogen form (Hendry, 1982c:10; Hendry, 

1982; Randal, 1984): 

HClNaRNaClHR +−→←+−      (4.3) 

42242 SOHMgRMgSOHR +−→←+−     (4.4) 

HClCaRCaClHR 22 22 +−→←+−      (4.5) 

where  

HR−  – is the strong cation resin in hydrogen form, 

NaR−  – is the sodium ions attached to resin after the ion exchange, 

NaCl  – is sodium chloride, 

HCl  – is hydrochloric acid, 

4MgSO  – is magnesium sulphate, 
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MgR −2  – is the magnesium ions attached to resin after the ion exchange, 

CaR −2  – is resin with calcium ions attached after the exchange of ions 

42SOH  – is the sulphuric acid and 

2CaCl  – is calcium chloride. 

Acids formed in the cation loading column are then fed into the anion loading 

column where they are absorbed by the weak anion resin in the free base form. 

According to Hendry (1982c:12) anion resin in its free base form is uncharged 

and protonation must first occur to be able to attract the anions, Equations (4.6 

and 4.7). 

NHClRClHHCl ≡′→+→← −+      (4.6) 

HNRHNR +≡′→←+−′ *       (4.7) 

where   

−+ + ClH  – is the protonation of hydrochloric acid during the exchange 

*H  – is hydrogen ions 

NR−'  – is the weak anion resin in nitrogen form, 

NHClR '≡  – is the hydrochloric acid attached to the nitrate resin 

Once the protonation has occurred the entire acid molecule is then taken up by 

the resin, releasing ‘clean water’ molecule: 

HClNRClHNRHClNR +′→+−′→←+−′ −+    (4.8) 

 
4.3.2. Cation and anion regeneration 

In the cation regeneration column, the resin that is now loaded with the counter-

ions is contacted with sulphuric acid as a regenerant chemical to release all the 

exchanged ions and reverse the resin to its original form: 

242 22 NaHRSOHNaR +−→←+−      (4.9) 

4422 2 CaSOHRSOHCaR +−→←+−      (4.10) 

4422 2 MgSOHRSOHMgR +−→←+−     (4.11) 

where  

2Na  – is two sodium ions as a compound, and 

4CaSO – is the calcium sulphate, 

Regenerated cation resin coming out of the cation regeneration column needs to 

be washed with decationized water (feedwater may also be used for this 

purpose), this is to remove sulphuric acid from the resin pores, after which the 

resin will be ready for use in the loading column.  
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Hendry (1982c:14) states that for anion regeneration, loaded resin from the anion 

load column is regenerated using a slurry of lime, 

02)(2 222 HCaClNROHCaNHClR ++−→+≡    (4.12). 

where  

2)(OHCa  – is the calcium hydroxide and 

OH 2  – is water. 

The slurry of lime dissolves in the process as the reaction proceeds. The 

protonation step that occurs during loading is then reversed. During anion 

regeneration, the resulting calcium salts from the organic acids stripped from the 

resin form an insoluble flocculated sludge with abundant calcium ions and free 

lime, Equation (4.12). 

Hendry (1982d:42) report states calcium is the most difficult ion to remove in the 

regeneration of the anions loaded resin; and the ionic fraction of calcium 

remaining in the regenerated resin becomes the determining factor of the resin 

effective working capacity. For this reason, the design of regeneration column 

may be reduced to calculating the number of stages required to fully extract 

calcium from anion loaded resin using the calcium-hydrogen equilibrium 

relationship. Generally it is acceptable to have more stages than calculated to 

offset any inaccuracies that may have occurred in the calculation. 

For resin regeneration in both columns, resin is pulled down with a solution from 

the loading columns, feed water in the cation load and weak acid stream in the 

anion load. These streams must be separated from the resin before it is 

introduced into the top stages of the regeneration columns to prevent diluting the 

waste solutions and feedwater wastage. The regenerated anion resin may be 

rinsed with desalinated (product) water to remove electrolytes from the resin 

pores and to disengage lime and organic sludge from the voids. After rinsing off 

the electrolytes, the anion resin will be ready for use in the next anion loading 

cycle (Hendry, 1982d:14). 

 
4.4. Bilinear model development for the continuous countercurrent ion 

exchange (CCIX) process  

 
Sundstrom and Klei (1979:301) state that it is possible to apply thermodynamic 

concepts in natural water systems. These concepts allow in part or full 

application of thermodynamic equilibrium. Applying thermodynamic principles 

allows the determination of composition of the system at equilibrium (Sundstrom 
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& Klei, 1979:301). According to Treybal (1980:646), the controlling factor in an 

ion exchange reaction may be kinetics of the reaction or the rate of diffusion. In 

cases where the kinetics are faster than the rate of diffusion, the kinetics of the 

reaction become the controlling factor. During the process of exchanging ions, 

rate of transfer of ions can be defined by the following processes that take place 

(Foust, et al, 1980:408; Treybal, 1980:643): 

1) diffusion of ions from the bulk liquid to the surface of the resin particle, 

2) diffusion of ions from the surface of the resin into the site of exchange, 

3) exchange of the ions at the active site, 

4) diffusion of the replaced ions from the resin active site to the surface of 

the particle and, 

5) the diffusion of the released ions from the resin surface to the bulk 

liquid. 

It is on these bases that compositions in the ion exchange process are used for 

developing the proposed bilinear model of the Continuous Countercurrent Ion 

Exchange (CCIX) process. The focus is on development of a model based on the 

exchanging ions that control the mass transfer rate, i.e., sodium and hydrogen 

cations. According to Sundstrom & Klei (1979:301), when applying equilibrium 

analysis, rates of reactions between species should be faster than time scale of 

the process. Generally, in aqueous systems, thermodynamic analysis is 

commonly used with inorganic reactions due to the fact that inorganic reactions 

that involve ionic mechanism tend to be faster in nature. On the other hand 

organic reactions are mostly associated with radical or biochemical mechanisms 

and tend to be slower than ionic reactions. 

Sundstrom and Klei (1979:302) argues that “all important chemical species 

present in the system should be included in an equilibrium model” but 

considerations should be given to the limitations that may arise from analytical 

complexities. According to Sundstrom and Klei (1979:302) it is possible for the 

system to reach a steady state if all flows and concentrations that enter or leave 

the system are not varying with time. Treybal (1980:19) suggests that the rate at 

which each component in the ion exchange is transferred from one phase to 

another depends on the mass transfer rate or the mass transfer coefficient and 

also upon the degree of departure from the equilibrium. Mass transfer will stop 

when equilibrium is reached. 

As the transfer of solute from one phase to another continues, the concentration 

within each phase also changes throughout the contacting device. Coulson, et 

al., (1996:526) state that mass transfer processes that involve two fluid streams 
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are usually carried out using continuous countercurrent or co-current flows in a 

column equipment. According to Treybal (1980:644) operational techniques used 

for adsorption processes are also used for the ion exchange process, these 

include; batch or stagewise treatments, fluidised or fixed beds operations and 

countercurrent or co-current operations and continuous operations (Treybal, 

1980; Coulson et al, 1996:526). 

According to Coulson et al., (1996:26) material balance can be described in 

terms of volume or time. In cases where compositions vary with position in the 

column, differential element of volume must be used and in cases where 

compositions are constant, a unit volume must be used, for example, in a case of 

a well-mixed batch reactor or a continuous stirred tank. Given all the arguments 

above, material balance equation may be generalized as follows (Coulson et al., 

1996:26): 
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The proposed ion exchange bilinear model can be formulated based on mass 

transfer between the exchanging ions in the ion exchange column for each stage. 

The development of the model is based on the law of conservation of mass, the 

mass balance and component balance. According to the principle of conservation 

of mass when applied to dynamic systems; the mass balance (total continuity) 

equation is given by: 
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 (4.14) 

The units for the mass balance equation in Equation (4.13) given above are 

][ time per mass . 

Fogler (1991:543) describes the mass transfer as being concerned with the 

process of diffusion where diffusion could be a spontaneous intermixing of atoms 

or molecules due to thermal heat. In mass transfer problems diffusion is usually 

divided into four types: 1) equimolar counter-diffusion, 2) dilute concentration, 3) 

diffusion through a stagnant gas and 4) forced convection (Fogler, 1991:548). 



 

108 

Unlike mass or energy balances, chemical components are not conserved. If a 

reaction occurs inside a system, the number of moles of an individual component 

will increase if it is a product of the reaction or decrease if it is a reactant. The 

component continuity equation (component balance) for the thi  chemical species 

of a system is given by Equation (4.15). This equation is given in units of 

[ ]time unit per i component of moles  (Fogler, 1991:6): 
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 (4.15). 

 
4.4.1. Mass transfer analysis for the continuous co untercurrent ion 

exchange (CCIX) 

The flows in and out of the system can be both convective due to bulk flow and 

molecular due to diffusion. The ion exchange process theoretical models are 

based on macroscopic descriptions using lumped variables. 

In developing the considered model the following assumptions are made (Dube, 

2002:137; Hendry, 1982): 

1) Both the volume of every stage and the amount of resin holdup and 

liquid holdup in each stage are equal just before the transfer; and equal 

volumes of resin are transferred between stages, 

2) The transfer of resin between states is instantaneous, and neither ion 

exchange reaction nor adsorption takes place during this period. This 

implies that hydrodynamic delays in liquid and resin streams are 

neglected, 

3) The resin particles are uniform, both in size and density at all 

conversion levels, so that segregation does not occur, 

4) The fluidized phase is perfectly mixed in each stage and the expanded 

fluidized bed fills the entire stage volume, i.e., concentration of material 

in the stage is the same throughout each stage. 

5) Resin back mixing does not occur, 

6) Operation of the column is at steady state, i.e., electroneutrality is 

maintained. 
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7) There exists a linear equilibrium between the liquid and the resin 

phases. 

The developed mathematical model has to predict the liquid and resin 

compositions in each stage for every cycle after the step change. The 

calculations are based on equilibrium and kinetic data and resin and liquid flow 

rates. These calculations are done stagewise starting from the bottom stage, 

which is considered the first stage, to the top stage which is considered the last 

stage. Changes in the lower stages will affect the stages above. 

The general formulation for the material balances are considered for any stage 

( nstage  ) using the loading column. Based on the exchanging ions within each 

stage, Figure 4.3, the following formulation is considered:  

)(tFL  is the molar flow rate of the solution (liquid), )(tFR  is the molar flow rate of 

the resin (solid), )(txn  is the mole fraction of the material in the liquid phase 

going out of stage n , )(1 txn−  is the mole fraction of material in the liquid phase of 

stage 1−n  going to stage n , )(tyn  is the mole fraction of the material in resin 

phase going out of stage n , )(1 tyn+  is the mole fraction of the material in resin 

phase going into stage n  from the stage 1+n . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Mass transfer in each stage ion of the exchange pro cess  
 

(Adapted from Hendry, 1982b)  
 

)(tHn  is the liquid holdup and )(thn  is the resin holdup in the n  stage, *
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total concentration in solution of all exchanging materials, and *
nq  is the total 

stage n  
)(tHn , )(thn  
*
nC , *

nq  

)(),( 11, txtF nnL −−  

)(),(, txtF nnL  )(),( 11, tytF nnR ++  
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concentration in resin of all exchanging materials. Each phase within the stage is 

considered uniformly mixed separate subsystem with interphase mass transfer 

between the two phases, liquid and solid, Figure 4.3. 

 
4.4.2. Component balance used to develop the CCIX m odel 

The ion exchange model is obtained based on the thi component mass balance 

on stage n . The component mass law of material balance based on the rate of 

accumulation and rate of materials formation, Equation (4.14) can be expressed 

as (Dube, 2001): 

[ ]
[ ])()()()(                                  

)()()()(                   

))()(())()((

,,

11,11,

tytFtxtF

tytFtxtF
dt

tythd

dt

txtHd

nnRnnL

nnRnnL

nnnn

⋅+⋅−
−⋅+⋅=

=+

++−− , Nn ,1=   (4.16) 

where  

)()( 11, txtF nnL −− ⋅  – is the rate of material input with the liquid coming from the 

plate 1−n , 

)()( 11, tytF nnR ++ ⋅  – is the rate of material input with the resin coming from the 

plate 1+n , 

)()(, txtF nnL ⋅  – is the rate of material output with the liquid leaving the plate n  for 

plate 1+n , 

)()(, tytF nnR ⋅  – is the rate of material input with the resin leaving the plate n for 

1−n , 

dt

txtHd nn ))()((
 – is the rate of accumulation of species i  in the liquid phase on 

the plate n , 

dt

tythd nn ))()((
 – is the rate of accumulation of species i  in the resin phase on the 

plate n , and 

N  – is the total number of stages and numbered from the bottom stage to the 

top one. 

The total mass balance equation for the stage n  can be written as 

)()()()(

)()(

,11,,11, txFtyFtxFtxF                

tyhtxH

nnRnnRnnLnnL

nnn

−+−=
=+

++−−

&&
, Nn ,1=  (4.17) 

Based on assumptions made, holdups and flow rates are considered constants, 

i.e., 
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HtHn =)( , hthn =)( , RnR FtF =)(,  and LnL FtF =)(,    (4.18) 

The equilibrium in the stage n , Nn ,1=  assumed to be linear to maintain 

electroneutrality, and the relationship between exchanging cations is given by: 

nnnn btxaty += )()(        (4.19) 

where  

na  – is the slope of the pseudo equilibrium curve, 

nb  – the corresponding intercept. 

Equation (4.19) describes the linear relationship between the liquid and the resin 

at equilibrium. After substituting the conditions for the same holdups and flow 

rate in Equation (4.17), the component balance equation becomes, 

))()(())()(()()( 11 tytyFtxtxFtyhtxH nnRnnLnn −+−=+ +−&& , Nn ,1=  (4.20) 

and then substituting for the linear relationship between exchanging components 

Equation (4.19) in Equation (4.20), the component mass balance becomes 
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and finally, 
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The variable RF  is considered the control variable and )(txn , Nn ,1=  in 

Equation (4.22) are the state variables. The model has parameters that are linear 

and variables that are nonlinear. 

The control variable RF  is a constant variable according to the design of the 

CCIX process and cannot be used for dynamic optimization. This problem is 

solved by proposing representation of resin flow rate as a variable with the same 

value for every stage but with values that are changing with time. 

)()(, tFtF RnR =
        (4.23) 

Then the Equation (4.23) can be rewritten in the following way: 
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Equation (4.24) can be used for optimal state and parameter estimation. For the 

total number of N  stages, the model can be expressed using the state space 

representation. From Equation (4.24) above, for 1=n , the variable 

)()(1 txtx fn =−  is considered to be the input feed concentration at the first stage 

of the column which changes according to the effluent content. This is therefore 

considered the disturbance to the process )(tw , and thus, 

)()( twtx f =         (4.25). 

The last (top) stage liquid concentration leaving the load column is considered 

the output variable, i.e., )()( txtz N= . Other conclusions that can be derived from 

the model equation are that; 0)(1 =+ txN  since there is no stage after the N th 

stage and the state space model can be written as: 
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The output of the process is defined by the following equation, Equation (4.27) 

and it is also used for development of the parameter estimation methods, 

covered later in the thesis. The state space bilinear model, Equation (4.26) is 

used for estimation of its unknown parameters and for estimation of the process 

none measurable states. 

[ ] [ ]T
Nn txtxtxtxtz )(...)(...)()(1000)( 21×= L  (4.27) 

The final state space representation of the model using state space matrices can 

be expressed by (Dube, 2002:146-148; Dube & Tzoneva, 2004:480): 

)()()()()()( 1 tWxtBFtFtxBtAxtx fRR +++=& , 0)0( xx =    (4.28) 

)()( tCxtz =  

where  

nnRA ×∈ , nnRB ×∈1 , lnRB ×∈ , lnRW ×∈  and nlRC ×∈  – are the model matrices 

for the state, input, disturbance and output variables respectively, 

l
R RtF ∈)(  – is the control input, 

lnRtx ×∈)(  – is the state vector, 

lRtw ∈)(  – is the input disturbance vector  

0)0( xx =  – represents the system state initial condition and, 

)(tz  – is the output of the model. 
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The model, Equation (4.28) is a bilinear one as it contains an expression of a 

product between the components of the state and control vectors. The state 

space bilinear model is used further for estimation of its unknown parameters 

and for estimation of it is none measurable states. 

 
4.5. Conclusion 
 
This chapter deals with the understanding of the ion exchange process used for 

the proof of the hypothesis for developing new techniques for modelling, 

parameter and state estimation of a bilinear system. The full description of the 

ion exchange process has been given and the method used to develop the 

bilinear model for the process has been discussed. The developed model is 

based on the continuous countercurrent ion exchange (CCIX) process as 

previously built at the University of Cape Town Chemical Engineering 

Department.  

The ion exchange process is a process that involves ionic interaction in an 

electrolyte solution with a solid material as an adsorbant. The process involves 

counter exchange of dissociated ions of the same polarity between the solute 

and the adsorbant. Such exchange is driven by mass transfer within the system. 

This mass transfer continues until some equilibrium is reached, though in the 

case of ion exchange no 100% equilibrium is reached. As the transfer of solute 

from one phase to another occurs, concentration within the phase also changes 

in the system (Streat, 1995:2841; Treybal, 1980:19, 117, 256) 

The plant considered is operated in a continuous fashion but periodical, which 

means that there is a continuous feed supplied and continuous resin 

regeneration. These two distinct operations are such that they occur periodically 

but simultaneously without having to stop the one operation to get to the other. 

Though, the system is said to be continuous, in reality it is periodical, in the 
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sense that there are two distinct cycles of operation, the primary cycle and the 

secondary cycle. The primary cycle is for both columns of each phase, where 

there are three main cycles, the upflow period, resin settle period and the resin 

pulldown period. The secondary cycle is mostly for resin transfer from the 

regeneration column back to the loading column. The secondary cycle is 

considered for the load column only; it includes, resin dewatering, resin 

fluidisation and resin transportation. 

It has been suggested by a few authors that the rate at which each component is 

transferred from one phase to another depends on the mass transfer rate. It is on 

basis of this mass transfer using the continuity equation that a model for the 

given CCIX has been developed. The developed model is a bilinear model, with 

parameters entering the model linearly and variables nonlinearly. From the 

developed model, unknown parameters have to be estimated and the system 

states estimated since it is impossible to measure these variables in the plant. In 

this case the system states represent the concentration in each and every stage 

of the column. Once values of the unknown parameters and not measurable 

states are estimated the process model may be used for real-time optimal 

control. 

In the next chapter, the data used for the continuous countercurrent Ion 

exchange process model development and reformulation for parameter and state 

estimation problems are presented. The chapter describes the procedure for 

validating the performance of the developed methods for parameter and state 

estimation with the possibility of using the model for optimal control of the CCIX 

plant. Simulation results are presented for the state trajectories. 
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CHAPTER FIVE 

5. DATA AND MODEL REFORMULATION FOR ESTIMATION PROB LEMS 

5.1. Introduction 

 
Measurement data received from the project of wastewater treatment plant 

produced by the University of Cape Town, Chemical Engineering Department 

were used to build a case study to validate the performance of the developed in 

the thesis methods for parameter and state estimation. Data used were collected 

from the continuous countercurrent ion exchange (CCIX) process under steady 

state operating conditions. The model developed also considers disturbances to 

the steady state operating conditions, such as resulting from any change in feed 

concentration depending on the effluent level in the feed water. The data 

presented consider the change in feed concentration to be a disturbance input to 

the process. 

According to Hendry (1982d:80) report: “typical domestic sewage effluent 

undergoes concentration fluctuations of about 20% to 30% during a 24 hour 

cycle whereas industrial effluents may vary by several hundred percent during 

the same period.” Fluctuations in concentration necessitate a proper control 

action, if the plant experiences greater concentration fluctuations in the feed, it 

becomes very important to control this change effectively so as to keep the cost 

within minimum stipulated requirements. If this condition is not met, the 

implemented control system cannot be considered effective. 

Optimization of the CCIX process requires that the control system’s operating 

conditions should be such that the required quality of product water is at a 

constant throughput with the minimum usage of regenerant chemicals. It is on 

this basis that the control strategy for the process is developed and specific data 

measurements are needed for this purpose. It is therefore important that prior to 

implementation of any control strategy, reliable data is acquired and be available 

in a convenient form in a computer system to be used. Data (the salt 

concentration measurements) are collected at specific points in the plant for use 

in the overall optimization of the control system of the process. Salt concentration 

is used as the main ionic fraction that determines the process performance. This 

is estimated from the measurement of conductivity. The error due to the 

presence of other ions in the resin is negligible. 

Data presented are the ionic fraction of the two main ion species involved in the 

exchanging process, viz. the sodium, +Na  and hydrogen +H  ions. For the 

parameter and state estimation model presented here, data are presented using 
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the +Na  ionic fraction. According to Hendry (1982d:73), errors that may occur in 

determining concentration using this procedure due to other unknown cations 

present in the solution are minimal as compared to errors due to unknown anions 

present in the solution which may result in up to 10% errors. Another observation 

from the report was that organics have negligible contribution towards the 

conductivity of the sewage effluent used as inflow for the ion exchange process 

(Hendry, 1982d:75). 

Given that throughout the column from the bottom stages, the concentration of 

counter ions are decreasing from one stage to the next and increasing in each 

stage throughout the number of cycles to reach steady state; from this 

observation it was also concluded that this data can never be that of 1) sodium in 

liquid ( +Na
x ) or hydrogen in resin ( +H

y ). The data were identified to be that of 

either 1) sodium in the resin ( +Na
y ) or 2) hydrogen in the liquid ( +H

x ). The state 

trajectories are generated using MATLAB software program based on this data; 

simulation results of these trajectories are presented later in this chapter. 

The chapter is structured as follows: measurement data considerations; 

experiment methods and practical considerations for use of previous data from 

Hendry 1982; experimental data and results used in the thesis; model 

reformulation from the model developed in Dube (2001) for parameter estimation 

problem. Two cases of parameter estimation are considered, the linear and 

nonlinear parameter estimation; then, parameters selection and formulation of 

parameter estimation problem, and the concluding remarks. 

 
5.2. Measurement data considerations 
 
In the Hendry (1982d:75) report, it is mentioned that for a control system 

designed to maintain constant ionic composition in the product water, the 

conductivity of the feed solution, and the pH and conductivity of the product will 

be the most useful parameters. The feed solution conductivity could be used 

accurately to determine the total salt concentration and in turn be used to 

determine the nominal cycle times for the load columns (Hendry, 1982d). 

The liquid concentration can be considered to be describing the process’s 

dynamic behaviour; it is selected as the state of the process in the model, and 

thus used for optimization of the process based on state space analysis. Based 

on the process plant design it is impossible to measure concentration in each 

stage. It is therefore important to find means of estimating concentration values 
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in each stage of the loading columns. State estimation techniques are thus used 

to determine the state trajectories in each stage.  

Data are acquired using pH and conductivity measurements at the inflow and 

outputs of the process columns. pH and conductivity (K) measurements are then 

used to calculate the corresponding salt concentration values of the different 

streams. These data are presented as inflow-output measurements of the 

process. From the inflow-output measurement data, concentration for every 

stage is estimated using the state estimation techniques and required parameter 

values are determined. Based on the calculated data, the model parameter 

values, the state values, and the feed concentration disturbances, further control 

actions required for the full control of the plant can be determined. 

The plant has to be able to respond correctly according to the changes in the 

feed concentration. What happens when the feed concentration goes up, what 

happens when it goes down and for how long must the change in the 

concentration be presented by measurements before the control action responds 

to the change. All these questions are addressed in the next section based on 

data collected from Hendry (1982a–e). 

 
5.3. Experiment methods and practical consideration s 
 
The presented data are based on experiments that were conducted for the 6 

stage column system and the 12 stage column system. In both cases a step 

change in feed concentration was introduced, firstly by moving from low to high 

and then another one by moving from high to low. The ion exchange columns 

used were mm50  inside diameter and were with mm500  in height. Each system 

had a pair of columns one for loading the resin and the other for regeneration of 

the loaded resin using sulphuric acid. Both the load and regeneration columns of 

each pair were of the same measurements mm50  inside diameter and mm500  

high. 

Two tanks of feed solution were prepared with enough solutions to run the 

experiments for each system. The solutions were N05.0  and N10.0  

concentration of sodium chloride salt ( NaCl ). Data collected are presented in 

Tables 5.1.–5.12. These data sets show the concentration in fractional change of 

+H  as determined from the equation, 

++

++

−
−=

initialfinal

initialn
n FIHFI

HFIHFI
FC

....
....

      (5.1) 

where  
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nFC  – is the fractional change of n th cycle from the change of the inflow 

concentration, 

+
nHFI ..  – is the ion fraction concentration of +H  ions of the current 

measurement at the thn  cycle from the inflow concentration step 

change moment, 

+
initialHFI ..  – is the fractional concentration of +H  ions at the initial moment of 

inflow concentration change, 

+
finalHFI ..  – is the fractional concentration of +H  ions at the final moment of the 

experiment. 

The measurements include data from the start of the experiment for the time 

before introducing the step change. This technique of data collection can be 

represented as follows (Figure 5.1). After the determination of each +H  value, 

the values are then transformed to start at zero level after the introduction of the 

step change as indicated by the +
nH  dotted lines in Figure 5.1. using the 

equation: 

1
....

.... −
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−= ++

++
+

initialfinal

initialn
n FIHFI
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HFC      (5.2) 

where +HFCn  – are the +H  fractional change values transformed to zero-level 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.  Procedure for determining resin/liquid component c oncentration 
 

(Adapted from Hendry, 1982d) 
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experiment results are showed below with the accompanying data for the 

columns and the operating conditions. 

 
5.3.1. The 6 stage system data 

1 Run  considers the concentration step change from LOW to HIGH in the feed 

concentration in the 6 stage system. The operating conditions and data received 

from this system are presented in Table 5.1 and Table 5.2. The operational 

cycles and state trajectories are presented in Figure 5.2: 

 
Table 5.1:  6 stage system LOW-to-HIGH step change in salt con centration 

Operating conditions 

Number of stages 6 

Resin volume 590 ml  

Feed flow rate 750 min/ml  

Upflow time 15 min  

Feed concentration before step change (start) 41.3 lmeq/  

Feed concentration at step change (final) 96.2 lmeq/  

LR/  ratio at start before step change 1.78 

 
Table 5.2:  Run 1 +H  fractional change values for the 6 stage system sh owing 

LOW–to–HIGH concentration step change as determined  from Equation (5.2) 

Concentration as determined by fractional change +HFCn  

Stage No. 
Cycle No. 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 

1 0.221 0.000 0.000 0.000 0.000 0.000 
2 0.577 0.140 0.004 0.000 0.000 0.000 
3 0.730 0.314 0.066 0.004 0.000 0.000 
4 0.847 0.523 0.184 0.035 0.003 0.000 
5 0.920 0.656 0.295 0.082 0.020 0.000 
6 0.936 0.766 0.454 0.168 0.052 0.001 
7 0.968 0.842 0.601 0.277 0.113 0.024 
8 0.969 0.886 0.690 0.361 0.167 0.024 
9 0.974 0.900 0.758 0.440 0.207 0.063 

10 0.981 0.933 0.804 0.522 0.340 0.124 
11 0.989 0.958 0.877 0.698 0.474 0.167 
12 0.988 0.963 0.881 0.784 0.547 0.233 
13 0.997 0.982 0.951 0.899 0.780 0.482 
14 1.000 0.974 0.965 0.931 0.860 0.539 
15 1.000 0.991 0.972 0.966 0.899 0.672 
16 1.000 0.993 0.981 0.966 0.905 0.779 
17 1.000 0.994 1.00 0.991 0.975 0.940 
18 1.000 0.993 0.988 0.991 0.973 0.972 

 
2 Run  considers the 6 stage system with concentration moving from a HIGH to 

LOW. The operational and obtained data are presented in Tables 5.3 and 5.4. 

The resulting process cycles and state trajectories are presented in Figure 5.3. 
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Table 5.3: 6 stage system showing HIGH–to–LOW step change in s alt 

concentration  

Operating conditions 

Number of stages 6 

Resin volume 590 ml  

Feed flow rate 750 min/ml  

Upflow time 15 min  

Feed concentration before step change (start) 90.2 lmeq/  

Feed concentration at step change (final) 50.7 lmeq/  

LR/  ratio at start before step change 0.81 

LR/  ratio at the end (start of step change) 1.44 

 
Table 5.4:  Run 2 +H  fractional change values for the 6 stage system sh owing 

HIGH–to–LOW concentration step as determined from E quation (5.2)  

Concentration as determined by fractional change +HFCn  

Stage No. 
Cycle No. Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 stage 6 

1 0.014 0.009 0.014 0.013 0.077 0.085 
2 0.002 0.003 0.021 0.059 0.115 0.254 
3 0.031 0.017 0.057 0.141 0.185 0.571 
4 0.036 0.052 0.079 0.204 0.311 0.764 
5 0.063 0.059 0.126 0.264 0.482 0.882 
6 0.062 0.085 0.170 0.388 0.612 0.901 
7 0.088 0.117 0.235 0.475 0.703 0.940 
8 0.119 0.152 0.312 0.560 0.782 1.000 
9 0.152 0.191 0.403 0.668 0.853 0.995 

10 0.183 0.250 0.471 0.739 0.879 1.000 
11 0.209 0.295 0.591 0.790 0.904 1.000 
12 0.204 0.350 0.407 0.825 0.927 1.000 
13 0.000 0.490 0.693 0.836 0.942 1.000 
14 0.332 0.476 0.716 0.875 0.962 1.000 
15 0.170 0.538 0.756 0.916 0.968 1.000 
16 0.413 0.577 0.764 0.918 0.981 1.000 
17 0.449 0.645 0.840 0.942 0.990 1.000 
18 0.525 0.664 0.874 0.953 1.000 1.000 
19 0.591 0.752 0.881 0.965 1.000 1.000 
20 0.634 0.780 0.916 0.968 1.000 1.000 
21 0.670 0.809 0.000 1.000 1.000 1.000 
22 0.694 0.829 0.961 0.987 1.000 1.000 
23 0.775 0.868 0.995 1.000 1.000 1.000 
24 0.812 0.920 1.000 1.000 1.000 1.000 
25 0.836 0.939 1.000 1.000 1.000 1.000 
26 0.903 0.959 1.000 1.000 1.000 1.000 
27 0.931 1.000 1.000 1.000 1.000 1.000 

 
The results for the plots obtained from a MATLAB software programs for each of 

the above operational cases for the 6 stage and the 12 stage ion exchange 

processes are shown in Figures 5.2.–5.3. below (the corresponding MATLAB 

software programs are attached in APPENDIX A1–A2. 
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Figure 5.2. +H  fractional change values for the 6 stage system of  a LOW to HIGH 

concentration step change  
 

 

 

Figure 5.3. +H  fractional change values for the 6 stage system of  a HIGH to LOW 
concentration step change 

 

 
5.3.2. The 12 stage system data 

Table 5.5. below show the operational conditions for 3 Run , which considers the 

concentration step change at the input feed that moves from a LOW to HIGH. 

The operational conditions and the resulting measurement data obtained are 

presented in the Tables 5.5. and 5.6. The resulting stage trajectories and the 

data are presented in Figure 5.4–5.5. 
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Table 5.5: 12 stage system LOW–to–HIGH step change in concentr ation  

Operating conditions 

Number of stages 12 

Resin volume 550 ml  

Feed flow rate 750 min/ml  

Upflow time 15 min  

Feed concentration before step change (start) 45.7 lmeq/  

Feed concentration at step change (final) 92.3 lmeq/  

LR/  ratio at start before step change 1.50 

LR/  ratio at the end (start of step change) 0.74 

 
Table 5.6:  Run 3 +H  fractional change values for the 12 stage system m oving from 

LOW–to–HIGH as determined from Equation (5.2)  

Concentration as determined by fractional change +HFCn  

Stage No. 
Cycle No. stage 2 stage 4 stage 6 stage 8 stage 10 stage 12 

1 0.000 0.012 0.000 0.000 0.010 0.014 
2 0.254 0.013 0.024 0.000 0.000 0.020 
3 0.517 0.046 0.000 0.000 0.015 0.057 
4 0.698 0.088 0.000 0.000 0.014 0.000 
5 0.726 0.238 0.008 0.000 0.000 0.000 
6 0.776 0.299 0.021 0.000 0.000 0.000 
7 0.910 0.633 0.171 0.000 0.000 0.000 
8 0.849 0.725 0.283 0.001 0.000 0.011 
9 0.948 0.778 0.000 0.044 0.026 0.000 
10 0.954 0.814 0.523 0.147 0.044 0.000 
11 0.960 0.821 0.673 0.210 0.061 0.014 
12 0.980 0.797 0.737 0.279 0.100 0.010 
13 0.986 0.946 0.841 0.532 0.144 0.006 
14 0.984 0.946 0.892 0.633 0.235 0.060 

15 1.000 0.960 0.918 0.727 0.340 0.083 
16 1.000 0.965 0.934 0.805 0.506 0.140 
17 1.000 0.955 0.937 0.830 0.000 0.000 
18 1.000 0.969 0.904 0.861 0.657 0.271 
19 1.000 0.973 0.980 0.879 0.800 0.374 
20 1.000 0.992 0.973 0.937 0.858 0.470 
21 1.000 0.992 0.983 0.967 0.914 0.637 
22 1.000 0.984 0.995 0.960 0.975 0.814 
23 1.000 1.000 1.000 1.000 1.000 1.000 

 
 
For simplicity in plotting of the plant behaviour, stages in the 12 stage system 

have been renamed stage 1 through to stage 6 instead of stages 2 through to 12.  
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Figure 5.4. +H  fractional change values for the 12 stage system m oving from a 

LOW to HIGH concentration step change 
 
Operational conditions for 4 Run  which considers a HIGH to LOW concentration 

step change at the input feed of the 12 stage system are presented in Table 5.7. 

Measurement data obtained from this system are presented in Table 5.8. The 

resulting operational cycles and system trajectories are presented in Figure 5.5. 

 
Table 5.7:  12 stage system HIGH–to–LOW step change in concent ration  

Operating conditions 

Number of stages 12 

Resin volume 660 ml  

Feed flow rate 750 min/ml  

Upflow time 15 min  

Feed concentration before step change (start) 90.8 lmeq/  

Feed concentration at step change (final) 52.8 lmeq/  

LR/  ratio at start before step change 0.89 

LR/  ratio at the end (start of step change) 1.56 

 
Table 5.8:  Run 4 +H  fractional change values for the 12 stage system m oving from 

HIGH–to–LOW as determined from Equation (5.2)  

Concentration as determined by fractional change +HFCn  

Stage No. 
Cycle No. 

Stage 2 Stage 4 Stage 6 Stage 8 Stage 10 Stage 12 

1 0.058 0.020 0.002 0.000 0.000 0.000 

2 0.066 0.009 0.033 0.101 0.000 0.000 

3 0.037 0.016 0.026 0.083 0.307 0.210 

4 0.075 0.024 0.134 0.204 0.567 0.540 

5 0.037 0.026 0.092 0.337 0.641 0.780 
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6 0.073 0.071 0.310 0.489 0.762 0.810 

7 0.074 0.085 0.188 0.569 0.787 0.780 

8 0.089 0.164 0.380 0.764 0.875 0.931 

9 0.113 0.191 0.499 0.823 0.897 1.020 

10 0.139 0.245 0.569 0.861 0.926 0.991 

11 0.146 0.322 0.674 0.902 0.949 1.080 

12 0.170 0.376 0.690 0.909 0.982 1.000 

13 0.201 0.448 0.756 0.953 0.972 1.000 

14 0.227 0.548 0.815 0.962 1.000 1.000 

15 0.300 0.620 0.846 0.986 1.000 1.000 

16 0.332 0.596 0.887 1.000 1.000 1.000 

17 0.405 0.643 0.885 1.000 1.000 1.000 

18 0.554 0.839 0.956 1.000 1.000 1.000 

19 0.648 0.894 0.973 1.000 1.000 1.000 

20 0.760 1.000 1.000 1.000 1.000 1.000 

21 0.898 1.000 1.000 1.000 1.000 1.000 
 
5.4. Results and developments for the current proje ct 
 
Since the developments in the thesis are done considering the sodium 

concentration in the liquid, the +Na  ionic fraction, values for the corresponding 

fractional change of +Na  data are obtained from the +H  fractional change data 

above using Equation (5.3) and are presented below in the next four tables, 

Table 5. 9–5.12. 

++ −= nn FCHNaFC 1        (5.3) 

 

 
Figure 5.5. +H  fractional change values for the 12 stage system m oving from 

HIGH to LOW concentration step change 
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Table 5.9:  Run 5 +Na  fractional change values from LOW to HIGH concentr ation 

step change for the 6 stage system as determined fr om Equation (5.3) 

Concentration as determined by fractional change +− NaFCn1  

Stage No. 
Cycle No. 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 

1 0.779 1.000 1.000 1.000 1.000 1.000 

2 0.423 0.860 0.996 1.000 1.000 1.000 

3 0.270 0.686 0.934 0.996 1.000 1.000 

4 0.153 0.477 0.816 0.965 0.997 1.000 

5 0.080 0.344 0.705 0.918 0.980 1.000 

6 0.064 0.234 0.546 0.832 0.948 0.999 

7 0.032 0.158 0.399 0.723 0.887 0.976 

8 0.031 0.114 0.310 0.639 0.833 0.967 

9 0.026 0.100 0.242 0.560 0.793 0.937 

10 0.019 0.067 0.196 0.478 0.660 0.876 

11 0.011 0.042 0.123 0.302 0.526 0.833 

12 0.012 0.037 0.119 0.216 0.453 0.767 

13 0.003 0.018 0.049 0.101 0.220 0.518 

14 0.000 0.026 0.035 0.069 0.140 0.461 

15 0.000 0.009 0.028 0.034 0.101 0.328 

16 0.000 0.007 0.019 0.034 0.095 0.221 

17 0.000 0.006 0.000 0.009 0.025 0.060 

18 0.000 0.007 0.012 0.009 0.027 0.028 
 
Table 5.10:  Run 6 +Na  fractional change values from LOW to HIGH concentr ation 

step change for the 6 stage system as determined fr om Equation (5.3) 

Concentration as determined by fractional change +− HFCn1  

Stage No. 
Cycle No. 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 

1 0.986 0.991 0.986 0.987 0.923 0.915 

2 0.998 0.997 0.979 0.941 0.885 0.746 

3 0.969 0.983 0.943 0.859 0.815 0.429 

4 0.964 0.948 0.921 0.796 0.689 0.236 

5 0.937 0.041 0.874 0.736 0.518 0.118 

6 0.938 0.915 0.830 0.612 0.388 0.099 

7 0.912 0.883 0.765 0.525 0.297 0.060 

8 0.881 0.848 0.688 0.440 0.218 0.000 

9 0.848 0.809 0.597 0.332 0.147 0.005 

10 0.817 0.750 0.529 0.261 0.121 0.000 

11 0.291 0.705 0.409 0.210 0.096 0.000 
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12 0.760 0.650 0.593 0.175 0.073 0.000 

13 1.000 0.510 0.307 0.164 0.058 0.000 

14 0.668 0.524 0.284 0.125 0.038 0.000 

15 0.830 0.462 0.244 0.084 0.032 0.000 

16 0.587 0.423 0.236 0.082 0.019 0.000 

17 0.551 0.355 0.160 0.058 0.010 0.000 

18 0.475 0.336 0.126 0.047 0.000 0.000 

19 0.409 0.248 0.119 0.035 0.000 0.000 

20 0.366 0.220 0.084 0.032 0.000 0.000 

21 0.330 0.191 1.000 0.000 0.000 0.000 

22 0.306 0.171 0.039 0.013 0.000 0.000 

23 0.225 0.132 0.005 0.000 0.000 0.000 

24 0.188 0.080 0.000 0.000 0.000 0.000 

25 0.164 0.061 0.000 0.000 0.000 0.000 

26 0.097 0.041 0.000 0.000 0.000 0.000 

27 0.069 0.000 0.000 0.000 0.000 0.000 
 
 
Table 5.11:  Run 7 +Na  fractional change values from LOW to HIGH concentr ation 

step change for the 12 stage system as determined f rom Equation (5.3) 

Concentration as determined by fractional change +− HFCn1  

Stage No. 
Cycle No. 

Stage 2 Stage 4 Stage 6 Stage 8 Stage 10 Stage 12 

1 1.000 0.988 1.000 1.000 0.990 0.986 

2 0.746 0.987 0.976 1.000 1.000 0.980 

3 0.483 0.954 1.000 1.000 0.985 0.943 

4 0.302 0.912 1.000 1.000 0.986 1.000 

5 0.274 0.762 0.992 1.000 1.000 1.000 

6 0.224 0.701 0.979 1.000 1.000 1.000 

7 0.090 0.367 0.829 1.000 1.000 1.000 

8 0.151 0.275 0.717 0.999 1.000 0.989 

9 0.052 0.222 1.000 0.956 0.974 1.000 

10 0.046 0.186 0.477 0.853 0.956 1.000 

11 0.040 0.179 0.327 0.790 0.939 0.986 

12 0.020 0.203 0.263 0.721 0.900 0.910 

13 0.014 0.054 0.159 0.468 0.856 0.994 

14 0.016 0.054 0.108 0.367 0.765 0.940 

15 0.000 0.040 0.082 0.273 0.660 0.917 

16 0.000 0.035 0.066 0.195 0.494 0.860 

17 0.000 0.045 0.063 0.170 1.000 1.000 
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18 0.000 0.031 0.096 0.139 0.343 0.729 

19 0.000 0.027 0.020 0.121 0.200 0.626 

20 0.000 0.008 0.027 0.063 0.142 0.530 

21 0.000 0.008 0.017 0.033 0.086 0.363 

22 0.000 0.016 0.005 0.040 0.025 0.186 

23 0.000 0.000 0.000 0.000 0.000 0.000 
 
 
Table 5.12:  Run 8 +Na  fractional change values from HIGH to LOW concentr ation 

step change for the 12 stage system values as deter mined from 
Equation (5.3) 

Concentration as determined by fractional change +− HFCn1  

Stage No. 
Cycle No. 

Stage 2 Stage 4 Stage 6 Stage 8 Stage 10 Stage 12 

1 0.942 0.980 0.998 1.000 1.000 1.000 

2 0.934 0.991 0.967 0.899 1.000 1.000 

3 0.963 0.984 0.974 0.917 0.693 0.790 

4 0.925 0.976 0.866 0.796 0.433 0.460 

5 0.963 0.974 0.908 0.663 0.359 0.220 

6 0.927 0.929 0.690 0.511 0.238 0.190 

7 0.926 0.915 0.812 0.431 0.213 0.220 

8 0.911 0.836 0.620 0.236 0.125 0.069 

9 0.887 0.809 0.501 0.177 0.103 0.020 

10 0.861 0.755 0.431 0.139 0.074 0.009 

11 0.854 0.678 0.326 0.098 0.051 0.080 

12 0.830 0.324 0.310 0.091 0.018 0.000 

13 0.799 0.552 0.244 0.047 0.028 0.000 

14 0.773 0.452 0.185 0.038 0.000 0.000 

15 0.700 0.380 0.154 0.014 0.000 0.000 

16 0.668 0.404 0.113 0.000 0.000 0.000 

17 0.595 0.357 0.115 0.000 0.000 0.000 

18 0.446 0.161 0.044 0.000 0.000 0.000 

19 0.352 0.106 0.027 0.000 0.000 0.000 

20 0.240 0.000 0.000 0.000 0.000 0.000 

21 0.102 0.000 0.000 0.000 0.000 0.000 
 
The expected outputs per stage are plotted in the following graphs, Figures 5.6–

5.10. The accompanying MATLAB software programs are attached in the 

APPENDICES A.1–A.8. For simplicity in plotting of the plant behaviour, the even 

numbered stages in the 12 stage system have been renamed Stage 1 through to 

Stage 6 instead of Stages 2 through to 12, and are presented. 
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Figure 5.6. +Na  fractional change values of the 6 stage system for  a LOW to HIGH 

concentration step change 
 

 

 

 
Figure 5.7.  +Na  fractional change values of the 6 stage system for  a HIGH to LOW 

concentration step change 
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Figure 5.8.  +Na  fractional change values of the 12 stage system fo r a LOW to HIGH 

concentration step change 
 
 

 
Figure 5.9. +Na  fractional change values of the 12 stage system fo r a HIGH to LOW 

concentration step change 
 

The ionic fraction of sodium in liquid data presented from MATLAB software 

programs (Figures 5.6–5.9) validate the feasibility of using +Na  ionic fraction in 

liquid for optimal control purposes. The system trajectories do match the process 

model design trajectories based on calculations. It is therefore possible to use 

this data for both parameter and state estimation purposes for validation of the 

developed model. 
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5.5. Model reformulation for parameter estimation p roblem based on 

process ionic fraction data 

 
The data presented above has been identified as that of either 1) sodium in the 

resin ( +Na
y ) or 2) hydrogen in the liquid ( +H

x ), given that throughout the column 

from the bottom up, the concentrations of counter ions are decreasing from one 

stage to the next and increasing in each stage throughout the number of cycles 

to reach steady state. From this observation it was also concluded that this data 

can never be that of 1) sodium in liquid ( +Na
x ) or hydrogen in resin ( +H

y ). 

The flow direction of each phase is very important in presenting these dynamic 

behavioural structures. Firstly, starting with simpler presentations, for the resins 

going down the column, and its hydrogen content at the top stage; resin has 

highest content of hydrogen. At the top stage the hydrogen content of resin is 

highest and if normalized, it can be presented to having a value of 1 and if resin 

is well exchanged, it would have a lowest value of hydrogen, close to 0 in the 

bottom stage Figure 5.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10. The basic ion exchange resin hydrogen ionic fractio n 
 

If the sodium behaviour is considered throughout the column in the resin phase, 

the ionic content of sodium is lower at the most top stage (last stage) compared 

to the bottom stages, Figure 5.11. More sodium ions are absorbed by the resin at 

the top stage since there is more hydrogen to exchange with sodium ions 

compared to the more saturated resin at the bottom, take note not to confuse 

with sodium in the liquid phase. 
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If the liquid phase is considered, the liquid going up the column, the sodium at 

the most bottom stage (first stage) is at its highest throughout the column 

compared to the highest stage.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11. The basic ion exchange resin hydrogen ionic fractio n 
 

This is shown by the graphical representation in Figure 5.12. The hydrogen in the 

liquid phase can be seen to be the lowest in the highest (top) stage since 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.12. The basic ion exchange sodium ionic fraction in liq uid phase 
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most hydrogen is in the resin. More hydrogen ionic content ( +H ) is found in the 

liquid at the most bottom stage (first stage) due to more sodium ionic content 

being exchanged with the more sodium coming in with the feed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.13. The basic ion exchange hydrogen ionic fraction in l iquid phase 

 

This means that the resin will release more hydrogen at the first stage (bottom 

stage) compared to the last stage (top stage) looking at it in terms of the liquid 

phase, Figure 5.13. 

Considering the behaviour of the counter ions instantaneously in each stage and 

the ionic fraction in each flow against time, the behaviour of each ionic species 

within a stage is the same in time whether at the top stage or bottom stage; the 

only difference is the behaviour throughout the column for each flow, going up 

the column (liquid phase) or down the column (resin phase). This ionic behaviour 

throughout the column is presented in the flow chart in Figure 5.13. This 

presentation can be supplemented by the flow chart representing the behaviour 

of the counter ions species as seen throughout the load column (from bottom up, 

for liquid flow and top to bottom for resin flow), Figure 5.14. The darker shades 

mean more ionic species of the relevant ion. 

Based on this ionic dynamic behaviour, the parameter estimation problem can be 

formulated and solved. Using the load column exchanging cations between in 

liquid (sodium) and resin (hydrogen), the exchange dynamics are represented by 

the equation, 

HClNaRNaClHR +−↔+−       (5.4) 
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According to Equation (5.4) for the ion exchange to occur, the cation resin is in 

+H  form and the liquid contains a strong electrolyte, in this case the sodium 

chloride, NaCl . If enough time is allowed for the exchanging ions to react, the 

reaction will proceed until some equilibrium is reached. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14. The basic ion exchange sodium and hydrogen ionic fr action 
relationship in each stage of the CCIX column for b oth the liquid 

and resin phases 
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According to Hendry (1982b:19) at this equilibrium point there will be competing 

counter ions ( +Na  and +H ) in both the liquid and the resin, i.e., for every 

movement of one counter ion from one phase to the other, there will be another 

movement of the same counter ion but in the opposite direction, Figure 5.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15.  Behaviour of hydrogen and sodium ionic fraction th roughout the 
cation column 

 

5.5.1. Model parameters selection 

The resin phase is represented by ny  and the liquid phase is represented by nx  

ionic fractions in the resin and liquid phases. The ionic balance in each phase 

can be defined as follows: 
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where  

+Hy  – is the equivalent ionic fraction of hydrogen ions ( +H ) in the resin phase, 

+Nay  – is the equivalent ionic fraction of sodium ions ( +Na ) in the resin phase, 
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+Hx  – is the equivalent ionic fraction of hydrogen ions ( +H ) in the liquid phase, 

+Nax  – is the equivalent ionic fraction of sodium ions ( +Na ) in the liquid phase, 

+HC  – the concentration of hydrogen ( H ) in the liquid phase, 

+NaC  – the concentration of sodium ( Na ) in the liquid phase, 

+HC  – the concentration of hydrogen ( H ) in the resin phase,  

+NaC  – the concentration of sodium ( Na ) in the resin phase, 

+Hm  – is the absolute value of the electrochemical valence of hydrogen in a 

stage, 

+Nam  – is the absolute value of the electrochemical valence of sodium in a stage. 

For each phase (resin or liquid), the total ionic content is defined by (Hendry, 

1982a; Hendry, 1982e): 

1
)()(

=+
resin

Na
resin

H yy         (5.6) 

1
)()(

=+
liquid

Na
liquid

H xx         (5.7) 

On the bases of these equilibria equations, Equations (5.6)–(5.7) and the general 

state space model from Chapter 4, given by Equation (5.8), a reformulated state 

space model can be developed with the aim of solving the parameter estimation 

problem using the linear relationship that exists between the phases, Equations 

(5.9) and (5.10). The general model is given by: 

))()(())()(()()( )1()1( tytyFtxtxFtyhtxH nnRnnLnn −+−=+ −−&& , Nn ,1=  (5.8) 

The linear relationship between resin and liquid phase can be given by: 

n
sinre

nn
liquid
n btyatx +=

)()(

)()(        (5.9) 

n
liquid
nn

sinre
n btxaty +=

)()(

)()(
       (5.10) 

Coefficients in Equations (5.9) depend on the value of the coefficients in 

Equation (5.10). If the liquid ionic content in Equation (5.10) is represented by the 

resin ionic content it can be written in the following manner:  

nnnnnnn btyaabtyatx +=−= )(/)()/(1)(      (5.11) 

From the Equation (5.11), the unknown coefficients can be solved as, 

nn aa /1= ; nnn abb /=       (5.12) 

Considering the model using concentration in the liquid phase to express the 

concentration in the resin phase, Equations (5.8) and (5.10), and following the 
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derivations in Chapter 4, the model given by Equation (4.24) is obtained as 

follows: 
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Considering the concentration in resin phase, Equations (5.8) and (5.11), 
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          (5.15) 

Depending on measurements data available, the relevant model (variable or 

variables of interest in resin or liquid phase) will be considered in solving the 

estimation problems. In this case, the model Equation (5.17) cannot be used with 

the developed model for parameter estimation given that the available data from 

Hendry (1982d) is presented only for hydrogen content in liquid. There are a 

couple of important factors to consider before choosing a relevant model to use. 

The closeness in the presentation of a variable of interest may render the model 

unusable if incorrect combination of model and data are used. The following are 

a few points that confronted the author for the model reformulation for parameter 

estimation problem: 

• Measurements data presented were the ionic fraction of hydrogen in liquid 

( +H
x ) and the initial model developed (see Chapter 4) is based on sodium 

content in the liquid ( +Na
x ), 

• In the project documents of Hendry (1982) the reference to hydrogen +H  

content was always based on the resin ( +H
y ), 

• The behaviour of each counter ion +H  or +Na  is very different when 

considered in 1) a different phase, resin or liquid, 2) different stage and 3) 

throughout a column, 
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• Decision on which variable of interest to choose and where it is considered 

in the three points mentioned above will make or break the estimation 

solution; and therefore needs to match the design requirements, 

• The dynamic behaviour of the counter ions is the same in some of the 

possibilities from the three points above but with different values, 

• The model may become too complex when trying to directly related resin 

phase and liquid phase using a single counter ion, e.g., +Na  in resin and 

liquid, Equations (5.6) and (5.7). On the basis of these equations such a 

property called the separation factor can be considered as follows: 

(resin)(liquid)

(resin)(liquid)

  

 

NaH

HNa

yx

yx=α         (5.16) 

The separation factor describes the exchanging counter ions at equilibrium. 

Separation factor for sodium +Na  and hydrogen +H  ions in this case, can be 

described using Equations (5.17) and (5.18). 

)1(

)1(

NaNa

NaNa

HNa

NaHNa
H xy

yx

xy

xy

−
−==α       (5.17) 

)1(

)1(

HH

HH

HNa

NaHH
Na yx

xy

xy

xy

−
−==α       (5.18) 

From Equation (5.17) the sodium ionic fraction can be related to hydrogen ionic 

fraction through separation factor in this way, 

)1(

)1(

Na
Na
H

NaNa
Na x

yx
y

−α
−=        (5.19) 

NaNaNaNa
Na
HNa

Na
HNa yxxxyy −=α−α      (5.20) 

Na
Na
HNa

Na
H

Na
Na xx

x
y

+α−α
=        (5.21) 

Attempting to use the model in Equation (5.21) direct with the general model will 

result in a very complex model that may be almost impossible to be used for 

parameter and state estimation problems. This model is then used as a nonlinear 

case, and it is considered in Chapter 7. 

There were two possibilities in choosing the model parameters to be determined 

with the available measurements data – that of hydrogen ionic fraction in liquid 

as presented. The model parameters could be estimated using the sodium in the 

resin ( +Na
y ) or by using hydrogen in the liquid ( +H

x ). There are two possible 
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scenarios from these options to use: 1) the model based on measured hydrogen 

in resin, or 2) the model based on measured hydrogen in liquid. 

 
5.5.2. Model based on measured hydrogen in the resi n 

For a model where the solution is based on sodium in resin with available data as 

hydrogen in the resin, the ionic fraction of the two counter ions from Equation 

(5.26) will be presented by  

)resin()resin(

1 HNa yy −=         (5.22) 

where  

Hy  – is the available measured data, hydrogen content in the resin, 

1

0
↓Hy  – means hydrogen ionic fraction in resin is decreasing from the top to the 

bottom of the column; the arrow indicates the direction of resin flow and 

0

1
↓Nay  – is the sodium ionic fraction in resin and it is increasing from the top to the 

bottom of the column. 

This presentation is possible since the hydrogen in resin phase is a known 

variable. If the sodium Na  in the resin Nay  is a variable of interest, then the state 

space variable in the model has to be Hy . It will be considered as the measured 

variable. The substitution has to be HNa yy −=1 , if the existing model is written 

for Nay . Nay  and Hy  does not refer to the process output in this case, but 

represent the ionic fractions of +Na  and +H  in the resin. 

 
5.5.3. Model based on measured hydrogen in the liqu id 

This model is based on the sodium content )(tx
Na+  of liquid phase. The dynamic 

behaviour of this variable in the process can be presented by Figure 5.16. Based 

on the fact that the hydrogen ionic fraction is the available measurements data, 

the model solution must contain +Na
x  presented in the form of +H

x  or solved 

using the Equation (5.25) and this brings about two possible solutions as 

discussed below, 

)liquid()liquid(

1 HNa xx −=         (5.23) 

where  

Nax  – is the sodium ionic fraction in the liquid, 
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0

1
↑Nax  – sodium ionic fraction is decreasing through the column going from the 

bottom to the top, the arrow indicates the direction of liquid flow, 

1

0
↑Hx  – is the hydrogen ionic fraction and its ionic content increases going up the 

column from the bottom to the top.  

Hx  – is the hydrogen ionic fraction in the liquid obtained from measured data. 

 

 

 

 

 

 

 

 

Figure 5.16.  Dynamic behaviour of sodium in the liquid phase th roughout the 
process column stages  

 

Using the linear relationship between the counter ions given by Equation (5.10), 

the model equation based on measured Hx  can be expressed as Equation 

(5.13). Alternatively, another possibility to use one ionic fraction equation to 

determine the unknown cation in the model based on the available measured 

data. 

From the main model equation based on known data measurements that of 

hydrogen in the liquid ( +H
x ), Equation (10.15), the solution for the model can be 

presented as follows: 

R
n

nn
HnR

n

n

HnR
n

n
Hn

n

L

Hn
n

LHn

F
haH

bb
txF

haH

a

txF
haH

a
tx

haH

F

tx
haH

F

dt

txd

)(
)(1

)(
                                          

)(1
)(

)(1
)(

             

)(1
)(

)](1[

)1(
,

),1(
)1(

,

),1(
,

+
−

+







−

+
−

−







−

+
+







 −
+

−

−






 −
+

=
−

+

+
+

−

 (5.24) 

The final equation can be expressed as, Equation (5.25). This equation is used to 

with the measured data to calculate the unknown parameters and or states.  

)(tx
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t  
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The unknown variables are the parameters na  and nb .for Nn ,1= . The 

summary of all model equations presented in this chapter is given in Table 5.13 

below. 

 
5.6. Parameter estimation problem formulation based  on the process ionic 

fraction content  

 
Based on data formulation in the previous section, two cases can be considered 

for parameter estimation, that is, 1) problem based on model’s ionic fraction 

linearization coefficients and 2) a problem based on the process model’s 

separation factor. 

 
Case 1: Linear model 

Parameter estimation problem is formulated based on linear connection between 

the ionic fractions in the liquid and resins. The model contains a total of twenty 

three parameters to be estimated. 

 
Case 2: Nonlinear model 

In this case the parameter estimation problem is formulated based on the 

process separation factor. In this case, a total of only six parameters are to be 

estimated. Two types of estimation methods are considered based on the two 

cases above, the linear parameter estimation case and the nonlinear parameter 

estimation case. The linear case has three possible methods of solution and 

these are covered in Chapter 6. The nonlinear case is considered as a separate 

nonlinear parameter estimation problem, and it is covered in Chapter 7. 

The linear parameter estimation problem is solved by three methods, 1) the 

direct method that considers the state vector, 2) the optimization problem solved 

by a gradient method that considers measured data (the output only and the full 

state vector), and 3) the Lagrange method that considers state vector 

measurements. The nonlinear parameter estimation problem is solved by 

considering the state vector measurement using the Lagrange method. 
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Table 5.13:  Summary of the model types that can be used for th e Continuous Countercurrent Ion Exchange Process (C CIX) 
using the relationship between the liquid and resin  phases  

Model Type Model 

General continuous countercurrent 

ion exchange (CCIX) model 

showing liquid and resin 

relationship in each stage: 

))()(())()((
)()(

)1()1( tytyFtxtxF
dt

tdy
h

dt

tdx
H nnRnnL

nn −+−=+ −− , Nn ,1=  

          (5.8) 

Linear model relationship between 

liquid and resin defined in terms of 

liquid content: 

n
sinre

nn
liquid
n btyatx +=

)()(

)()(        (5.9) 

Linear model relationship between 

liquid and resin defined in terms of 

resin content: 

n
liquid
nn

re
n btxaty +=

)()sin(

)()(        (5.10) 

Model representing process 

concentration in the liquid phase 

obtained from Equations (5.8) and 

(5.10): 
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Model representing process 
concentration in the resin phase: )(
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Model of separation factor for 

sodium ions in the solution: )1(

)1(

NaNa

NaNa

HNa

NaHNa
H xy

yx

xy

xy

−
−==α       (5.18) 

Model for separation factor for 

hydrogen ions in the solution: )1(

)1(

HH
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−
−==α       (5.19) 

Sodium ionic fraction model in 

relation to hydrogen ionic fraction: 
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Model based on measured 

hydrogen in the resin: )resin()resin(

1 HNa yy −=         (5.23) 

Model based on measured sodium 

in the liquid: 
)liquid()liquid(

1 HNa xx −=         (5.24) 

CCIX model based measured 
sodium in liquid: 
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5.7. Conclusion 
 
Data collected from the University of Cape Town, Department of Chemical 

Engineering project used to validate the performance the methods that were 

developed in the thesis. The collected data are also used to test the model’s 

validity. Trajectories of sodium concentration that the model is based have been 

generated using MATLAB software programming and presented. Techniques 

developed for solving parameter estimation and state estimation problems will be 

tested against the presented real data. 

Model development based on ionic fraction content of the CCIX process columns 

has been presented. Both the sodium, +Na  and hydrogen +H  contents were 

presented. Data from the UCT project were presented as that of: 1) sodium in the 

resin ( +Na
y ), and 2) hydrogen in liquid ( +H

x ). From these presentations a 

suitable model more convenient for the thesis’ hypothesis has been developed to 

solve the problem of parameter and state estimation. Two cases have been 

considered, 1) ionic fraction linearizing coefficients based model and 2) 

separation factor based model. The first case has four possible methods of 

solution, the direct method solution, the optimization problem solution based on 

measured output, the optimization problem solution based on full state vector, 

and the state vector measurements based solution using the Lagrange method. 

The second case is considered as a separate problem, that of nonlinear 

parameter estimation and it is solved using MATLAB software program; and the 

formulation of these problems has been presented. 

The next chapter, Chapter 6 considers the first case of the parameter estimation 

problem solutions; the model linear coefficients based estimation. 

 

 



 

146 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER SIX 

METHOD FOR PARAMETER ESTIMATION (BILINEAR MODEL WIT H AFFINE 

PARAMETERS) 

 

 



 

147 

CHAPTER SIX 

6. METHOD FOR PARAMETER ESTIMATION (BILINEAR MODEL WITH 

AFFINE PARAMETERS) 

6.1. Introduction 

 
The developed bilinear model for the continuous countercurrent ion exchange 

(CCIX) process in Chapter 4 allows for the usage of linear techniques in that the 

model is linear according to its parameters. The first case of linear parameter 

estimation methods as proposed in Chapter 5 is considered in this chapter. 

This case has a number of possible solutions based on the proposed methods of 

parameter estimation techniques. There are four suggested methods: 1) a 

gradient method that considers the process output measurements only, 2) a 

gradient method that considers the full-order state observation); 3) the direct 

solution using the state vector measurements, and 4) the Lagrange optimization 

procedure based on state vector measurements. Each of these methods is 

implemented using MATLAB software and results from simulations are produced, 

presented and discussed under each subsection of the chapter. 

The chapter covers the model reformulation for parameter estimation in discrete 

time; and the procedures, algorithms and results for the linear model parameter 

estimation based on all methods mentioned. Concluding remarks are then 

provided, first for each method and then for all four methods. 

 
6.2. Reformulation of the process model to be linea r towards the 

unknown parameters 

 
From the standard representation of the continuous countercurrent ion exchange 

(CCIX) process model developed in Chapter 4, 
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the following model equations can be generated: 
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          (6.2) 

where )()(1 twtxn =−  for 1=n  is the disturbance input variable. 

Using the above representation the following parameter notations are introduced 
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In common notation the above model parameters can be expressed by 
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The model Equations (6.2) can be generalized as follows: 

)()()()()()()()( 1112121111 tFktFtxmtFtxmtxltxltx RRRf +−+−=&  

)()()()()()()( 22232322122 tFktFxmtFtxmtxltxltx RRR +−+−=&  
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LLLL                                                                             

)()()()()()()( 11,1 tFktFtxmtFxmtxltxltx RnRnnRnnnnnnnn +−+−= ++−&  

LLLL                                                                             

)()(0)()()( 1 tFktxmtxltxltx RNNNNNNNN +−+−= −    (6.5) 

The output equation is determined by  

[ ] [ ] )()(...)(...)()(1000

)()(

21 txtxtxtxtx       
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N
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Nn

N

=×=

==

L
 (6.6) 

The state variables are the mole fractions of Na  (sodium) in the liquid phase, 

determined by [ ])(    )(    )(  )( 21 txtxtxtx Nn LL , the input variable is the flow rate 

of resin in the column )(tFR , but the process real input considered is the length 

of the up-flow period T , which is calculated from the mass balance using the 

volume of the resin in each stage, and it is given by hdTtFR =)( , where d  is the 

fraction of the resin hold up which is moved from one stage to another and 

3/2=d , h  is the resin holdup, calculated or given, H  is the liquid holdup, 

calculated or given. The output variable is given by the mole fraction of Na  

(sodium) in the liquid of the last stage, )(txN , Equation (6.6). The disturbance 

variable is the mole fraction of Na  in the liquid solution of the feed water, 

)()( 1 txtx nf −=  for 1=n . 

The parameters introduced above represent mathematical expression between 

known and unknown constants in the process. The known ones are H , h  and 

LF . The unknown ones are na  and nb , Nn ,1= , which are introduced by the 

linear relationship between ionic fractions of the sodium and hydrogen. If the 

parameter estimation problem considers only na  and nb , then the parameters na  

make the problem nonlinear according to the parameters. If the mathematical 

expressions in Equation (6.3) are considered as parameters then the parameter 

estimation model becomes linear according to parameters. This allows faster 

solution of the parameter estimation problem. 

 
6.3. Discrete time model formulation for use with e xperimental data for 

parameter estimation 

 
It is necessary to develop a discrete time model for use with the experimental 

data. Based on the continuous time model, Equations (6.2), (6.5) and (6.6) a 

corresponding discrete time model can be developed using Euler equation 
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t

kxkx

dt

tdx

∆
−+= )()1()(

, where t∆  is the sampling period. The corresponding 

model difference equations are presented by 

[ ])()()()()()()()()1( 11121211111 kFkkFkxmkFkxmkxlkxltkxkx RRRf +−+−∆+=+
[ ])()()()()()()()()1( 222323221222 kFkkFkxmkFkxmkxlkxltkxkx RRR +−+−∆+=+  

LLLL                                                                                                     =  

[ ])()()()()()()()1( 11,1 kFkkFkxmkxmkxlkxltkxkx RnRnnnnnnnnnnn +−+−∆+=+ ++−  

LLLL                                                                                                       =  

[ ])( )()( )()()()1( 1 kFkkFkxmkxlkxltkxkx RNRNNNNNNNN +−−∆+=+ −  

)()( kCxkz N=         (6.7) 

The developed CCIX process model is bilinear according to the control and the 

state but linear according to the parameters nl , 1, +nnm , nm  and nk  for Nn ,1=  as 

determined by Equation (6.5) or Equation (6.7). Every equation is characterized 

by four parameters and there are a total of six equations but the common number 

of parameters is twenty three due to the parameter 1, +NNm  being equal to zero. 

In order to estimate values of the unknown parameters, experimental data for 

input, states and output measurements is required and is sourced from the 

previous experiments performed in Hendry (1982a-d). Experimental data is 

considered for two distinct possibilities; the case where the states (concentration 

in each stage) are measurable and the case where only input and output data is 

measurable. This gives rise to four possible solutions as suggested in Section 

6.1. Each of these methods is considered in the next sections. 

 
6.4. Linear model parameter estimation using the me asured data of the 

process output 

 
Based on the process model as formulated in Chapter 4 and using the Equations 

(6.2), (6.4) and (6.7), the following re-parameterized model structure has been 

generated for determining unknown parameters (for better notation of the 

parameters), for the considered process data, where: 

[ ]23876543212222211121 ,...,,,,,,,,,,,,,,,,, pppppppppkmmlkmml =L , (6.8) 

and for the general case 

[ ]qm ppppkmml ,...,,....,,,... , , , 2111121 =      (6.9). 
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The method of determining the parameter values using the process output data 

has only one possible solution based on the fact that the method considers the 

case where only the input and output are measurable and the states are 

unknown. The aim is to find the values of the parameters qmm ppppp ,...,,..., 121 +  

such that the error between the measured output values, )()( kxCkz N=  and the 

model output values, )()( kCxkz N=  is minimized under the constraints of the 

model for an expressed number of points Kk ,0=  in time which becomes the 

trajectory period for comparison. 

According to this requirement, the error difference needs to be expressed as a 

computational criterion over the trajectory period. The chosen technique uses the 

least squares method to determine the error between measured data and the 

model estimated output from the estimated set of parameter values as shown in 

Equation (6.11) below, starting at some initial set of parameter values. 
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where  

)()()( kzkzke −=  – is the error difference between the measured output and the 

model output values, 

NRC ×∈ 1  – is the output vector with N  dimension depending on the number of 

states involved, 

N  – is the total number of stages in the process model, 

Nx , Nx  – are the last states of the real process and that of the model 

respectively. 
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The proposed procedure is an iterative method that searches for the minimum 

error between the output values obtained using the current estimates of the 

parameter vector versus the output values as determined from the measured 

data. If the parameter set does not agree a step increment of each parameter 

value in the set is made to improve the set until it agrees, alternatively the 

stopping procedure is reached, and the calculation is stopped. 

The criterion gives the best strategy for fitting the trajectory of the model to that of 

the real process output. One of the main advantages of this criterion is to give a 

unique trajectory for every given set of data. This procedure can be represented 

by the structure in Figure 6.1 (Li & Ding, 2013; Li, Mu & Zuo, 2016; Olsson & 

Newell, 1999; Walter & Pronzato, 1995:113). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Parameter estimation procedure using optimization t echniques based 
on the output of measured plant data 

 
(Adapted from Olsson & Newell, 1999; Walter & Pronz ato, 1995:113) 

 
The idea is that the solution must give the minimum of the criterion in Equation 

(6.10). The criterion is the function of the output of the model, and in the same 

fashion it is compared to that of the state )(kx , where )()( kzkCxN = . But in each 

state space equation the state is the function of the parameter from the model 

Equations (6.1) and (6.5), or the criterion can be thought of as being the function 

of the parameters. If the error difference is smaller than a preselected small 

number, the current parameter values are considered suitable for the model. 
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In searching for a minimum for optimality of a criterion according to the 

necessary conditions for optimality, the first derivatives towards the parameters 

of the criterion must be equal to zero. 

The gradient search method is used to solve the given optimization problem. This 

method considers the first derivatives of the criterion towards the parameters 

such that 

0
)( =

∂
∂

ip

pJ
  q   i ...,,2,1=       (6.12) 

where qRp∈  is the vector of parameters with q  dimension. 

The vector of parameters does not appear explicitly in the criterion equation and 

therefore, it becomes necessary to use the criterion dependence shared through 

the output of the state space representation, Equations (6.1) and (6.2). This is 

achievable by using an algorithm that will permit the use of this dependency to 

minimize the criterion. The minimization is possible through different gradient 

methods for computation. In this case the fastest descent method is chosen due 

to its simplicity and quick convergence capabilities. 

 
6.4.1. The procedure for solving the linear model p arameter estimation 

using the measured data (the measurement output dat a) based on 

the method of fastest descent 

The method of fastest descent used in solving the optimization problem 

Equations (6.9)–(6.10) is characterized by the simplest iterative gradient 

procedure to reach the required minimum through improving the initial estimates 

of the vector of the unknown parameters qRp∈ . The method can be used to 

minimize the error difference in a least squares optimization technique. This 

method is applied here to determine optimal parameter estimates based on the 

model Equation (6.10) and the optimization criterion, Equation (6.11). 

The direction of the fastest descent is opposite to the direction of the gradient. At 

the initial point, the direction of the gradient coincides with the direction in which 

the criterion reduces in the fastest way for infinitely small changes of the vector of 

parameters. The direction of the fastest descent is given by the vector 

dppp jj +=+1         (6.13) 
where  








= qdpdpdpdp ,...,, 21  is the direction of the descent and  

1+jp  – is the improved value of the parameters, 
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jp  – is the previous value of the parameters, and  

j  – is the index of iteration used to determine the best parameter values. 

The gradient of the criterion toward the thi  component of the vector of 

parameters p  is given by 
ip

pJ

∂
∂ )(

. A step of the gradient procedure α , is 

required to determine the amount of change of the parameter value. The 

direction of the descent for each vector calculation is given by the equation: 

2/1

1

2
)(

)(























∂
∂










∂
∂−

=

∑
=

q

i i

i
i

p

pJ

p

pJ

dp

α
       (6.14) 

It is not possible to directly calculate the vector of gradients 
ip

pJ

∂
∂ )(

 by analytical 

methods using derivatives since the model is dynamical and the criterion is not 

the explicit function of the state and parameters. The approximation technique is 

therefore applied. The technique is based on the first principle of the gradient by 

introducing small perturbation ∆  for every parameter, independently. 

p

qiiqipi

i

pppppJpppppJ

p

pJ

∆
−∆+

=
∂

∂ ++ ),...,,,...,,(),...,,,...,,()( 121121 , 

qi ..., ,2  ,1=       (6.15) 

where  

p∆  – is a small deviation of the each component of the vector of parameters.  

On the basis of the above mentioned considerations, the parameter estimation 

procedure can be formalized. 

 
6.4.2. The algorithm for the calculation procedure of the linear model 

parameter estimation using the measured data (outpu t based on 

available data) 

1. The following process data values must be initialized: 

LF  the liquid flow rate entering the first stage of the load column, 

RF  the resin flow rate entering the top stage of the load column, 

H  the liquid holdups per column diameter, 

h  the resin holdups per column diameter, 

a  ionic fraction of resin in a stage of the process column, 
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b  ionic fraction of liquid in a stage of the process column, 

d  the resin/liquid ionic fraction ratio 

N  total number of stages per column, 

T  process upflow period, 

t∆  sampling period. 

2. The following initial parameters for the gradient method must be set: 

0x  initial values of the state vector, 

M  very large number for terminating iterations if no optimal values are 

reached in time, 

K  the number of discrete time steps in the optimization period, 

θα  the step of the gradient procedure, 

ε  the preselected very small number for determining the end of 

calculation, 

j  the number of iterations for the gradient procedure, 

0pp j =  the initial estimates of the parameter vector p , 

q  the total number of parameters in the parameter vector, and 

p∆  the value of deviation for each parameter as tested for optimality. 

3. Generate the vector of parameters, in this case from Equations (6.3–6.5) and 

(6.8) 
[ ]

[ ]NNNnnnnn

T 
qmm

kmlkmmlkmmlkmml         

pppppp

,,,...,,,,,...,,,,,,,,

,...,,,...,,

1,2223211121

1210

+

+

=

==
 

For 6=N , the number of parameters is 23=q , 23RpRp q ∈=∈ . 

4. Solve the model parameters, Equation (6.10) using initial values for 

parameters 0p  and initial state values 0)( xkx =  as obtained from the 

measured data 

)()()(                                                     

)()()()()()1(

32

111

ktFpkFktxp

kFktxpktxpktxpkxkx

RmRnm

Rnmnmnmnn

∆+∆−
−∆+∆−∆+=+

++

++−  

4.1. Set the optimization period Kk ,1=  and solve the model Equations 

(6.10) for the full trajectory of the optimization period, 

4.2. The solution is an KNRx ×∈  matrix. 

5. Calculate the value of the criterion based on the measured output data )(kz  

and obtained output solution determined by )()()( kxkCxkz NN ==  from the 
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state values calculated in step 4., i.e., 
2

1

2

1

)()()()( ∑∑
==

−==
K

k

K

k

kzkzkepJ  for 

the full optimization period. 

6. Initialize the gradient procedure, and Mjwhile <   : 

6.1. Declare the () istates  function arguments, )(kstates , )(kFR , 

)(_ kinstates , 0x , p , dt  for full trajectory Kk ,1=  

6.2. And then call the () istates  function to determine the current state values, 

6.3. Set the deviated value of the parameter for the thi  component starting 

with the first parameter value 1p , where p
j

i
j

i pp ∆+=∆ , 

6.4. Solve the model equations (6.9) for every thi  component and separately 

for every j
ip  component, 

6.5. Calculate the deviated value of the criterion for the thi  component, 

qi
j

i pppppJ ,...,,,...,,( 121 +∆ , 

6.6. Calculate the gradients 
ip

pJ

∂
∂ )(

 using the Equation (6.13) for every 

parameter, qi ,1= . 

7. Calculation of the gradients for the fastest descent idp  

7.1. Calculate the weighted sum 

2/12

1

)(
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∂= ∑

=

K

k
j

ip

pJ
S , 

7.2. Calculate the direction of the gradients 
S

p

pJ

dp
j

ij
i










∂
∂−

=

)(α
, qi ,...,2,1= , 

Equation (6.11). 

8. Calculate the (improved) estimates of the parameter vector using 

j
i

j
i

j
i dppp +=+1 , qi ,...,2,1= . 

9. Determine the error difference between the previous parameters and the 

(improved) latest calculated parameters for termination of the calculation 

j
i

j
i

j
iip dpppe =−= +1 , qi ,...,2,1= . 

10. The criterion for termination of the calculation: 
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10.1. if the error difference is smaller than or equal to the preselected very 

small number, ε , i.e., ε≤
ipe  for all parameters qi ,...,2,1= , the optimal 

parameters have been obtained, and the calculation is terminated, 

10.2. if the error difference is still greater than the preselected very small 

number, ε>= j
iip dpe , the calculations are restarted from step 4 using 

the current parameters of the parameter vector j
ip  until the maximum 

number of iterations M  is reached, 

10.3. if at any point within the procedure, Mj ≥ , i.e., the procedure step has 

reached the maximum number of iterations required, the calculations 

must be stopped. 

The flowchart of the output measurement-based parameter estimation algorithm 

is presented in Figure 6.2. 

 
6.4.3. The experiments and results of the linear mo del parameter 

estimation problem using the process output (output  measured 

data) 

Experiments were run for the calculation of process dependencies on: the 

sampling period t∆ , model coefficient vectors a  and b , process holdups and 

iteration gradient step α . Once the best values of these parameters are 

obtained, they are then applied on analysing the process behaviour under input 

disturbance changes and changes of initial model parameters. 

The strategy for investigation of t∆  is to select its best value and apply it in the 

rest of the experiments. This best value of t∆  is also used to identify the best 

model parameters based on a  and b  coefficients. The criterion for evaluating 

the best results is based on two parameters: the least squares error 

∑
=

=
K

k

TkekepJ
1

)()()(  and the method’s calculation run time calculated from 

MATLAB processor time. In all experiments’ results nn xbarx = , )(~ kxx nn =  for 

Nn ,1= , Equation (6.11). 
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6.4.4. The flowchart for implementing the procedure  
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2) Determine the direction of the gradients j
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Figure 6.2. The procedure for linear model parameter estimation  based on process 
output measurement  

 
 
The first set of experiments for the measured outpu t method 

The first set experiments and the corresponding sets of results are presented in 

Table 6.1 and Figures 6.3–6.8. The aim of this experiment is to evaluate the 

influence of the sampling period on the overall process behaviour. The initial 

sampling period is set to min35.2=∆t  
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Table 6.1:  First set of experiments showing the changing samp ling period t∆  

The changing sampling period ∆t 

Process parameter (units) Run 1 Run 2 Run 3 Run 4 Run 5 
lh   32.93=  � � � � � 

lH   42.809=  � � � � � 

min)/ ( 60/2000 lFL =  � � � � � 

435.0=fx  � � � � � 

]25.0  3.0  4.0  5.0  6.0  8.0[=a  aa ×= 230  � � � � 

]2.0  1.0  08.0  05.0  02.0  01.0[=b  bb ×= 60  � � � � 

M  1000 2000 � � � 

dt , sampling period ( t∆ ) min35.2=∆t  tt ∆=∆  tt ∆=∆ 2
1  tt ∆=∆ 4

1  tt ∆=∆ 32
1  

p∆ , parameter deviation 0.001 � � � � 

grad , iteration gradient step (α ) 0.82 � � � � 

ε , epsilon (very small number) 0.0001 � � � � 

� means the value stays the same as in the previous mention in the table 

 

The table shows the changing sampling period with all other process parameters fixed. The aim is to obtain the best sampling 

period and to apply it in the rest of the experiments that follow. The best sampling period refers to the sampling period that 

would produces the best estimation values (i.e., the estimated output tracks the real output very closesly). 
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Figure 6.3. The measured and estimated output and the output er ror difference 

from the worse case results – Run 1 of Table 6.1  
 

 

 

 
Figure 6.4. The output error signal in detail for the worst cas e results – Run 1 of 

Table 6.1  
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Figure 6.5. Model dynamic behaviour showing the real and estima ted states of the 

worst case results – Run 1 Table 6.1 
 

 

 

 
Figure 6.6. The measured output and estimated output and the ou tput error for the 

best results – Run 5 of Table 6.1  
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Figure 6.7. The output error signal in detail for the best resu lts – Run 5 of Table 6.1  
 

 

 

 
Figure 6.8. Model dynamic behaviour showing the real and estima ted states for the 

best results – Run5 Table 6.1 
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Table 6.2:  Results of first set of experiments for changing t he sampling period t∆  
showing the error behaviour and calculated run time  

Estimation criterion the least squares error and th e estimation run time for 
the first set of experiments 

Case 1: (First set of experiments) )( pJ  Run time ( calct ) [sec] 

Run 1 1.2787e+163 3.7900 

Run 2 1.2787e+163 3.8060 

Run 3 8.3037e+009 225.9510 

Run 4 673.1209 230.6180 

Run 5 20.2932 225.6700 

 
Results and discussion of the first set of experime nts of the measured 

output method 

The first set of results from the changing sampling period, produced no estimates 

of the process output for the first three runs up to tt ∆=∆ 2
1 . From tt ∆=∆ 8

1  the 

estimation results are acceptable though the error is relatively high. At 

tt ∆=∆ 32
1 , the error improves quite drastically. The results of this run are 

displayed in Figures 6.3–6.8, where 6x  is the measured output, 6
~x  is the 

estimated output and 
6xe  is the error between the measured output and 

simulated output using the estimated parameters. Table 6.2 demonstrates the 

estimation criterion value and the processing time taken for each run. The 

process is faster for the poor error, this could be associated with reaching of the 

stopping procedure faster than in the improved error case. As the sampling 

period decreases, the error also becomes smaller. 

 
The second set of experiments of the measured outpu t method 

The second set of experiments show different combinations of a  and b  model 

coefficients, Table 6.3. The aim of this experiment is to get the best combination 

between model coefficients and the best smallest number for stopping the 

estimation procedure. The original a  and b  coefficients are 

]25.0  3.0  4.0  5.0  6.0  8.0[=a  and ]20.0  1.0  08.0  5.0  02.0  01.0[=b . The 

same vector coefficients have been used in the first sets of experiments. Results 

are presented in Figures 6.9–6.14. The vectors a and b are multiplied by the 

factors of 23 and 6 correspondingly, Table 6.3. 
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Table 6.3:  The second set of experiments to investigate the i nfluence of a  and b  model coefficients with respect to stopping 
time 

Changing different sets of model coefficients  

Process parameter (units) Run 1 Run 2 Run 3 Run 4 Run 5 

lh   93.32=  � � � � � 

lH   42.809=  � � � � � 

min)/ ( 60/2000 lFL =  � � � � � 

435.0=fx  � � � � � 

]25.0  3.0  4.0  5.0  6.0  8.0[=a  aa ×= 23  aa ×= 23  aa ×= 230  aa ×= 230  aa ×= 60  

]2.0  1.0  08.0  05.0  02.0  01.0[=b  ab ×= 6  ab ×= 6  bb ×= 60  bb ×= 60  bb ×= 230  

M  2000 � � � � 

dt , sampling period ( t∆ ) 0.012 � � � � 

p∆ , parameter deviation 0.001 � � � � 

grad , iteration gradient step (α ) 0.82 � � � � 

ε , epsilon (very small number) 0.001 0.0001 0.001 0.0001 0.0001 

� means the value stays the same as in the previous mention in the table 

 

Different sets of a  and b  coefficients are changed with respect to changing very small positive number ε  for stopping the 

estimation procedure; the aim is to obtain the best combination of these two process parameters and used them for the rest 

of the experiments. 
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Figure 6.9. The process output, estimated output and the output  error from the 

worst case results – Run 1 of Table 6.3  
 

 

 
Figure 6.10. The output error signal in detail for the worst cas e results – Run 1 of 

Table 6.3  
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Figure 6.11. Model dynamic behaviour showing the real and estima ted states for 

the worst case scenario – Run1 Table 6.3 
 

 

 
Figure 6.12. The process output, estimated output and the output  error from the 

best results – Run 4 of Table 6.3  
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Figure 6.13. The output error signal in detail for the best resu lts – Run 4 of Table 

6.3 
 

 

 
Figure 6.14. Model dynamic behaviour showing the real and estima ted states from 

the best results – Run 4 Table 6.3 
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Table 6.4:  Results of the second set of experiments for chang ing sampling period 
t∆  showing the error behaviour and calculated run tim e 

Estimation criterion the least squares error and th e estimation run time for the 
second set of experiments 

Case 2: (Second set of experiments) )( pJ  Run time ( calct ) [sec] 

Run 1 29.4149 168.8080 

Run 2 28.5245 224.8900 

Run 3 23.7122 173.3330 

Run 4 22.9868 233.2180 

Run 5 28.0460 230.4770 

 
Results and discussion of the second set of experim ents of the first 

method 

The fourth run of Case 2 at aa ×= 230  and bb ×= 60  of the given vectors and 

at the smallest number of stopping the procedure 0001.0=ε  produces the best 

error results in comparison to the rest of vectors sets. The rest of the results are 

also not far from these results except for the improved error. Run 2 shows that at 

reduced stopping number 0001.0=ε , the error is improved compared to higher 

stopping number 001.0=ε ; but the calculation time is longer as expected. 

 

The third set of experiments of the measured output  method 

The third set of experiments shows the effect of model coefficient vectors at 

reduced holdups values, Table 6.5 and Figures 6.15–6.22. The aim of this 

experiment is to observe the influence of reduced holdups values at different 

model coefficients. A new multiplication factor for a  is also introduced at the last 

run of these experiments. These set of coefficients were chosen from a few 

different sets after a number of runs; they carry the most influence on the 

process dynamic behaviour. The rest of the experiments parameters used in the 

second set are maintained through out this set of experiments, the sampling 

period, the gradient and the procedure stopping number and the parameters 

deviation value. 
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Table 6.5:  The third set of experiments for the changing a  and b  model coefficients 

Changing model coefficients at reduced holdup value s 

Process parameter (units) Run 1 Run 2 Run 3 Run 4 Run 5 

lh   3293.0=  � � � � � 

lH   42809.0=  � � � � � 

min)/(  60/2000 lFL =  � � � � � 

435.0=fx  � � � � � 

a  (see Run number below) aa ×= 230  aa ×= 230  aa ×= 230  aa ×= 230  aa ×= 480  

b  (see Run number below) bb ×= 30  bb ×= 30  bb ×= 2.5  bb ×= 30  bb ×= 30  

M  2000 � � � � 

dt , sampling period ( t∆ ) 0.012 � � � � 

p∆ , parameter deviation 0.001 � � � � 

grad , iteration gradient step (α ) 0.076 � � � � 

ε , epsilon (very small number) 0.0001 � � � � 

� means the value stays the same as in the previous mention in the table 

Each set of the different model coefficients used is shown below. 

Run 1 ]1.0  3.0  4.0  5.0  6.0  8.0[=a  ]6.0  5.0  4.0  3.0  25.0  1.0[=b  

Run 2 ]2.0  3.0  4.0  5.0  6.0  8.0[=a  ]6.0  5.0  4.0  3.0  25.0  1.0[=b  

Run 3 ]2.0  3.0  4.0  5.0  6.0  8.0[=a  ]6.0  4.0  3.0  2.0  1.0  025.0[=b  

Run 4 ]2.0  3.0  4.0  5.0  7.0  8.0[=a  ]9.0  8.0  7.0  25.0  2.0  08.0[=b  

Run 5 ]2.0  3.0  4.0  5.0  7.0  8.0[=a  ]7.0  6.0  5.0  25.0  1.0  025.0[=b  
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Figure 6.15. The process output, estimated output and the output  error from the 

results of Run 1 of Table 6.5  
 

 

 
Figure 6.16. The process output, estimated output and the output  error from the 

results of Run 2 for Table 6.5  
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Figure 6.17. The process output, estimated output and the output  error from the 

results of Run 3 for Table 6.5  
 

 

 
Figure 6.18. The process output, estimated output and the output  error from the 

results of Run 4 of Table 6.5  
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Figure 6.19. The process output, estimated output and the output  error from the 

results of Run 5 of Table 6.5  
 

 

 
Figure 6.20. Model dynamic behaviour showing the real and estima ted states – the 

best results – Run 5 Table 6.5 
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Figure 6.21. The process output, estimated output and the output  error from the 

best results of Case 2 Table 6.3  
 

 

 

 
Figure 6.22. Model dynamic behaviour showing the real and estima ted states – the 

best results of Case 2 Table 6.3 
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Table 6.6:  Results of the third set of experiments for changi ng a  and b  model 
coefficients showing the error behaviour and calcul ation run time  

Estimation criterion the least squares error and th e estimation run time for 
the third set of experiments 

Case 3: (Third set of experiments) )( pJ  Run time ( calct ) [sec] 

Run 1 327.1028 233.6670 

Run 2 329.7488 266.0760 

Run 3 338.1485 229.3940 

Run 4 340.1815 233.6500 

Run 5 130.9912 232.8440 

Run with best values from Case 2 332.1313 233.2540 

 

Results and discussion of the third set of experime nts of the measured 

output method 

All the combinations of given coefficients produced the same process behaviour. 

They also produced the same value for estimation error criterion and run time. In 

comparison to the best coefficients from the second set of experiments, the 

influence of holdups is the improvement of all the state estimates, Figures 6.20 

and 6.22. The error stayed the same as the rest of runs. Run 5 produced the best 

criterion error but the overall states were not close in comparison to best values 

from Case 2. 

 

The fourth set of experiments for the measured outp ut method 

The fourth set of experiments considers the influence of the gradient step using 

the best coefficients and sampling period from second and third sets of 

experiments. The aim of this experiment is to understand what influence the 

gradient step has in the estimation process. This would help to identify the best 

value to use for the gradient procedure that would produce the best estimate 

error. The results from this set of experiments are given in Figures 6.23–6.28. 
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Table 6.7:  The fourth set of experiments showing the changing  values of iteration gradient step  α  

The changing values of iteration gradient step  ε  

Process parameter (units) Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 

lh   32.93=  � � � � � � 

lH   42.809=  � � � � � � 

min)/ ( 60/2000 lFL =  � � � � � � 

435.0=fx  � � � � � � 

]25.0  3.0  4.0  5.0  6.0  8.0[=a  aa ×= 230  � � � � � 

]2.0  1.0  08.0  05.0  02.0  01.0[=b  bb ×= 60  � � � � � 

M  2000 � � � � � 

dt , sampling period ( t∆ ) 0.012 � � � � � 

p∆ , parameter deviation 0.001 � � � � � 

grad , iteration gradient step (α ) 0.01 0.076 0.1 0.56 0.82 2.0 

ε , epsilon (very small number) 0.0001 � � � �  

� means the value stays the same as in the previous mention in the table 

 

The table shows the set of experiments for the changing gradient step value, starting from the smallest of 0.01 up to the last 

value of 2.0 in no specific order. The best model coefficients from set of experiments of Case 3 of the measured output 

method. 
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Figure 6.23. The process output, estimated output and the output  error of the worst 

case results – Run 1 of Table 6.7  
 

 

 
Figure 6.24. The output error signal in detail for the worst cas e results – Run 1 of 

Table 6.7  
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Figure 6.25. Model dynamic behaviour showing the real and estima ted states of the 

worst case results – Run1 Table 6.7 
 

 

 
Figure 6.26. The process output, estimated output and the output  error of the best 

results – Run 6 of Table 6.7  
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Figure 6.27. The output error difference in detail for the best results – Run 6 of 

Table 6.7  
 

 

 
Figure 6.28. Model dynamic behaviour showing the real and estima ted states from 

the best results – Run 6 Table 6.7 
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Table 6.8: Results of fourth set of experiments for changing v alues of iteration 
gradient step  α  showing the error behaviour and calculated run time  

Estimation criterion the least squares error and th e estimation run time for the 
fourth set of experiments 

Case 4: (Fourth set of experiments) )( pJ  Run time ( calct ) [sec] 

Run 1 64.2635 138.7950 

Run 2 64.7528 207.9740 

Run 3 64.5122 180.7280 

Run 4 33.9885 224.7270 

Run 5 22.9868 233.9430 

Run 6 13.5571 257.0940 
 
 
Results and discussion of the fourth set of experim ents of the measured 

output method 

Though the best estimation error result is produced at a highest run time, the 

smallest error is considered best because all the other run times are relatively 

high. The best criterion is obtained at the highest value of the gradient of the 

given values 0.01 to 2.0, Table 6.7. The highest gradient step value is 2.0. 

 

The fifth set of experiments for the measured outpu t method 

The experiment considers the changing disturbance input at the best sampling 

period, model coefficients, and best gradient step as calculated in the earlier sets 

of experiments, Table 6.9. Figures 6.29–6.34 show the best and the worse case 

scenarios of this set of experiments. 
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Table 6.9: The fifth set of experiments of the changing distur bance input fx  at best sampling period  

Changing disturbance input at best sampling period 

Process parameter (units) 
Values/ 

(Reference) 
Run 1 Run 2 Run 3 Run 4 Run 5 

lh   32.93=  � � � � � � 

lH  809.42=  � � � � � � 

min)/ ( 60/2000 lFL =  � � � � � � 

]25.0  3.0  4.0  5.0  6.0  8.0[=a  aa ×= 230  � � � � � 

]2.0  1.0  08.0  05.0  02.0  01.0[=b  bb ×= 60  � � � � � 

fx , disturbance input 435.0=fx  055.0=fx  110.0=fx  550.0=fx  755.0=fx  00.1=fx  

M  2000 � � � � � 

dt , sampling period ( t∆ ) 0.012 min � � � � � 

p∆ , parameter deviation 0.001 � � � � � 

grad , iteration gradient step (α ) 2.0      

ε , epsilon (very small number) 0.0001 � � � �  

� means the value stays the same as in the previous mention in the table 

 

In this set of experiments the best sampling period and constant control input are used. The investigation is to observe the 

influence of the disturbance signal on the process and to identify the worse and optimum cases of process dynamics based 

on the disturbance values. 
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Figure 6.29. The process output, estimated output and the output  error of the best 

results – Run 2 of Table 6.10  
 

 

 
Figure 6.30. The output error difference in detail for the best results – Run 2 of 

Table 6.10  
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Figure 6.31. Model dynamic behaviour showing the real and estima ted states of the 

best results – Run 2 Table 6.10 
 

 

 
Figure 6.32. The process output, estimated output and the output  error of the worst 

case – Run 4 of Table 6.10  
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Figure 6.33. The output error difference in detail for the worst  case – Run 4 of Table 

6.10 
 

 
Figure 6.34. Model dynamic behaviour showing the real and estima ted states for 

the worst case – Run 4 Table 6.10 
 
 

Table 6.10:  Results of the fifth set of experiments for the ch anging disturbance 
input fx  showing the error behaviour and calculated run tim e 

Estimation criterion the least squares error and th e estimation run time for the 
fifth set of experiments 

Case 4: (Fourth set of experiments) )( pJ  Run time ( calct ) [sec] 

Run 1 13.5529 254.2890 
Run 2 13.5492 253.3760 
Run 3 13.5574 254.5300 
Run 4 13.5618 255.8380 
Run 5 13.5596 253.2850 
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Results and discussion of the fifth set of experime nts of the measured 

output method 

The best criterion is obtained at the disturbance input of 110.0=fx ; this is on 

the lower scale of the reference value, Table 6.10. It can also be concluded that 

though there is some change in the criterion, the difference is insignificantly 

small; which means that the method reacts well to all the possible range of 

disturbances that may occur. The algorithm for all other given parameter values 

produces best result at the lower disturbance, though not the lowest of all the 

tested values. 

 

The sixth set of experiments for the measured outpu t method 

The experiment considers the changing initial model parameter values at the 

best sampling period, model coefficients, and best gradient step as calculated in 

the earlier sets of experiments. Figures 6.35–6.40 show the best case and the 

worst case scenario of this set of experiments. The criterion results are 

demonstrated on the Table 6.12. 
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Table 6.11: The sixth set of experiments of the changing initia l parameter values at best sampling period  

Changing initial parameter values of the process mo del  

Process parameter (units) Values Run 1 Run 2 Run 3 Run 4 Run 5 

lh   32.93=  � � � � � � 

lH   42.809=  � � � � � � 

110.0=fx  � � � � � � 

]25.0  3.0  4.0  5.0  6.0  8.0[=a  aa ×= 230  � � � � � 

]2.0  1.0  08.0  05.0  02.0  01.0[=b  bb ×= 60  � � � � � 

Parameters ( p ) pp =  pp 5.0=  pp 5.1=  pp 5.2=  pp 10=  pp 25=  

M  2000 � � � � � 

dt , sampling period ( t∆ ) 0.012 min � � � � � 

p∆ , parameter deviation 0.001 � � � � � 

grad , iteration gradient step (α ) 2.0      

ε , epsilon (very small number) 0.0001 � � � �  

� means the value stays the same as in the previous mention in the table 

 

The table shows the changing initial parameter values in multiples of 0.5 and not in any particular order from 0.5 to 25. 
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Figure 6.35. The process output, estimated output and the output  error of the best 

results – Run 4 of Table 6.11  
 

 

 
Figure 6.36. The output error difference in detail for the best results – Run 4 of 

Table 6.11  
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Figure 6.37. Model dynamic behaviour showing the real and estima ted states from 

the best results – Run 4 Table 6.11 
 

 

 
Figure 6.38. The process output, estimated output and the output  error of the worst 

case results – Run 5 of Table 6.11  
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Figure 6.39. The output error difference in detail for the worst  case results – Run 5 

of Table 6.11  
 

 

 
Figure 6.40. Model dynamic behaviour showing the real and estima ted states for 

the worst case results – Run 5 Table 6.11 
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Table 6.12:  Results of the sixth set of experiments for the ch anging initial 
parameters showing the error behaviour and calculat ed run time  

Estimation criterion the least squares error and th e estimation run time for the 
sixth set of experiments 

Case 4: (Fourth set of experiments) )( pJ  Run time ( calct ) [sec] 

Run 1 15.2090 254.9090 
Run 2 16.9866 256.3560 
Run 3 14.8062 255.7330 
Run 4 14.5746 257.1210 
Run 5 19.8859 256.1220 

 
Results and discussion of the sixth set of experime nts of the measured 

output method 

The best result is obtained at ten times the original values of initial parameters, 

and the values above that tend to produce higher least squares error, Table 6.12. 

The best results are obtained at ten times the original value, Figures 6.35–6.37. 

 
6.5. Linear model parameter estimation using the st ate vector 

measurements (the least squares method) 
 
The method of solution of determining the unknown parameters using the 

process state vector measurements has two possible solutions, i.e., 1) the least 

squares method, and 2) the direct method. This section covers the measured 

output method of solution and the direct method is covered in the next section. 

 
6.5.1. The procedure for linear model parameter est imation using the state 

vector measurements 

The least squares method can be presented using the flow diagram below, 

Figure 6.41 (Olsson & Newell, 1999; Walter & Pronzato, 1995:113). 

This technique is similar to the measured output method of solution in Section 

6.4, except that the criterion is now based on the error difference between the 

real and estimated state vectors, )(ˆ)()( kxkxkex −= . The two state vectors are; 

the set state values obtained from measured data and the ones calculated from 

the model equations and therefore the criterion becomes 

∑∑
==

=−=
K

k
x

K

k

kekxkxpJ
1

2

1

2
)()()()(      (6.16) 

where  

)(kx  – are the measured states and  
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)(ˆ kx  – are the model simulated states. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.41.  Parameter estimation procedure using optimization techniques based 

on the state of measured plant data 
 

(Adapted from Olsson & Newell, 1999; Walter & Pronz ato, 1995:113) 
 
The procedure can be summarised as follows: 

Using the model Equations (6.9), the initial state values are set to obtain the 

initial measured state values from the given data, then both the initial state value 

sets are extended for the full optimization period, Kk ,0= . The minimization 

criterion is determined using error difference between the two sets, Equation 

(6.13), based on current parameter values ),...,,,...,,()( 121 qmmi pppppJpJ += . 

Then the deviated value of the parameters pii pp ∆+=∆ , is calculated. From 

this value, the model Equations (6.9) are determined again using the deviated 

parameters ip∆ . 

The minimization criterion is recalculated, now using the deviated parameters 

),...,,,...,,()( 121 qipii pppppJpJ +∆+= . In this case, it is not possible to 

determine the values of the parameters analytically and therefore the gradient 

approximation method is used. The gradients are determined by Equation (6.15) 

p

qiiqii

i

pppppJpppppJ

p

pJ

∆
∆−

=
∆

∂ ++ ),...,,,...,(),...,,,...,,()( 121121
 

The method of fastest descent is then applied to find the direction where the 

parameters reduce the fastest (for optimality). The direction of the fastest 

descent is opposite the direction of the gradient and at the initial point it coincides 
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with the direction where the criterion reduces the fastest way for infinitely small 

changes in the vector of parameters. 

The gradients of the fastest descent dp are then calculated, where 

[ ]T
qi dpdpdpdpdp  

21 ,...,,...,,= . From the gradients, the direction of the gradient 

S

p

pJ

dp i
i










∂
∂−

=

)(α
 is then determined from Equation (6.14), where S  is the 

weighted sum of parameters 

2/1

1

2
)(























∂
∂= ∑

=

K

k ip

pJ
S  over optimization period 

Kk ,1= . The procedure is repeated until optimal values of parameter vector are 

obtained or the terminating condition is reached. 

 
6.5.2. The algorithm of the linear model parameter estimation using the 

least squares method 

 
1. Initialize the process data values as in Section 6.4.2: 

2. Initial parameters for the gradient procedure as in Section 6.4.2: 

3. Generate the vector of parameters, in this case from Equations (6.3–6.5) and 

(6.8) 

[ ]
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T
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,...,,,...,,

1,2223211121
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For 6=N , the number of parameters is 23=q , 23RpRp q ∈=∈ . 

4. Solve the model Equations (6.9) using initial values for parameters 0p  and 

initial state values 0)( xkx =  as obtained from the measured data 

)()()(                                                     

)()()()()()1(
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RmRnm
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∆+∆−
−∆+∆−∆+=+

++

++−  

4.1. Set optimization period Kk ,1=  and solve the equations for the full 

trajectory of the optimization period. 

5. Declare the measured states )(kx  from the measured data. 

6. Calculate the value of the criterion based on the measured states )(kx  and 

on the calculated state model variables for the full optimization period, i.e., 

2

1

2

1

)()()()( ∑∑
==

−==
K

k

K

k

kxkxkepJ . 
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7. Initialize the gradient procedure stopping condition 1=j : 

7.1. Declare the () states  function arguments, )(kstates , )(kFR , 

)(_ kinstates , 0x , p , dt  for full trajectory Kk ,1= , 

7.2. And then call the () states  function to determine the current state 

values, 

7.3. Calculate the error difference between the measured states and the 

current model states, )()()( kxkxke −= , 

7.4. Calculate the least squares difference, for the full state trajectory 

2

1

)()( ∑
=

=
K

k

kepJ , 

7.5. For total number of parameters, ri  ..., ,2 ,1=  solve for deviated 

parameter for the thi  component of the vector of parameters starting 

with the first parameter value 1p , 

p
j

i
j

i pp ∆+=∆  and 23=r , 

7.5.1. Calculate the deviated value of the criterion for the thi  component, 

) ..., , ,  ..., , ,( 121 ri
j

i pppppJ +∆ , 

7.5.2. Calculate the new state values based on deviated parameters for the 

full trajectory as in step 7.1, 

7.5.3. Calculate deviated value of the criterion,  

» first clear the previous deviation values, 0)( =pJ  

» for the full trajectory, Kk ,1=  calculate the deviated values, 

2

1

)()()( ∑
=

+=
K

k

kepJpJ , 

7.5.4. Calculate the gradients 
ip

pJ

∂
∂ )(

 using the Equation (6.13) for every 

parameter, ri ,1= , 

7.5.5. Form a vector of the criterion gradients for all newly calculated 

parameters, ],...,,[ 21 qdpdpdpdp = , 

7.5.6. Calculate the new value of parameters, pipip ∆+= )()( . 

8. Calculation of the gradients for the fastest descent idp : 
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8.1. Calculate the weighted sum 

2/12

1

)(
























∂
∂= ∑

=

K

k
j

ip

pJ
S , 

8.2. Calculate the direction of the gradients 
S

p

pJ

dp
j

ij
i










∂
∂−

=

)(α
, 

qi , ... ,2 ,1= , Equation (6.13). 

9. Determine the error difference between the measured states and the 

calculated states based on estimated parameters. 

10. Determine criterion for termination of the calculation, test if the norm with the 

new parameters is smaller than or equal to the small positive number, ε  for 

all parameters ri  ..., ,2 ,1= , 

10.1. first set the current state vector values to be initial values, 0)( xkx = , 

10.2. determine the current state values based on improved parameters, 

same as in point 7.1, 

10.3. test if the norm condition is reached, ε≤)( ipnorm : 

» if true, terminate calculation and end the procedure, the current 

parameters are considered optimal, 

» if the norm is still greater than ε , calculate improved parameters 

using the current parameters of the parameter vector j
ip , 

» increase termination count, 1+= jj , 

» improve the gradient by reducing delta, 2/∆=∆ , and exit test 

loop, 

10.4. repeat from step 7.1, 

10.5. if at any point within the gradient procedure j , Mj > , i.e., the 

procedure step has reached the maximum number of iterations 

required, the calculations must be stopped and the current values of 

parameters be used. 
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6.5.3. The flowchart for implementing the procedure  

The flowchart of implementing the algorithm is presented in Figure 6.42. 
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Initialize parameters for the gradient 
procedure: 

p
j qpjKMx ∆  ,  ,  ,  ,  ,  ,  ,  ,0 εαθ  

Set the initial values of the 
parameters 0pp j =  

Calculate ],...,,...,,[ 21 qm ppppp =  using 0p , 

Equation (6.9) 

1 

Calculate the criterion ∑ −=
=

K

k
kxkxpJ

1

2
)()()(  

Solve for the state KNRkx ×∈)(  using 
Equation (6.10) 

Declare the measured state 
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KN RkxRkx ×× ∈=∈ )()(  

Initialize process data: 

fRL x N b a H h F F ,,,,,,,  

Mj ≤  
No 

Call the ()istate  function to solve KNRkx ×∈)(  
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=
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k
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Calculate the new parameters 
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Determine the fastest descent of the gradients idp : 

1) Calculate gradients weighted sum 
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2) Calculate the direction of the gradients j
idp  

2 

Set 0)( =∂ p  

For Kk ,1=  calculate the gradients 
ip

p

∂
∂ )(

 

Increase parameter index 
1+= ii  

1 

For qi ,1=  

23=i  

Calculate pii pp ∆+=  

Set )(0 kstatesx =  

For Kk ,1=  calculate new state using 
()1istatek  function 

Calculate new error )(ke  

2 3 

4 
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Figure 6.42. The least squares procedure for linear model parame ter estimation 
based on process state vector  

 

6.5.4. The experiments and results of the linear mo del parameter 

estimation problem using the state vector measureme nts (the least 

squares method) 

Different experiments were run to test the performance of the developed method 

and the algorithm convergence speed. Experiments monitoring the influence of 

the sampling period t∆ , the error behaviour )(ke , the state behaviour )(kx , the 

disturbance input and initial parameter values 0p  were performed. The criterion 

for evaluating the success of the different experiment sets is based on the least 

Calculate the error difference between 
previous and improved parameters 

ipe  

3 
4 

2 

ε≤
ipe  

No 

Calculate improved parameters, ip  

Set the current state to next initial state 

Increase iteration, 1+= jj  

Yes 

Stop 

For Kk ,1=  calculate the last state KNRkx ×∈)(  

Set )(0 kstatesx =  
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squares error ∑
=

=
K

k

TkekepJ
1

)()()( and convergence speed of the algorithm, 

directly calculated from MATLAB during the algorithm processing. In all 

experiments nñ xx ˆ~ = , Nn ,1= , Equation (6.16). 

 

The first set of experiments of the least squares m ethod 

The first set experiments is the observation of the gradient step influence on the 

process using the best sampling period and the best coefficients a  and b  from 

the measured output method. The aim of the experiment is to find the best 

gradient step value for the best error correction in fastest time possible (Table 

6.13). The results are presented in Figures 6.43–6.48 and Table 6.14. 
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Table 6.13: The first set of experiments of the cha nging value of the iteration gradient step  

The changing iteration gradient step values 

Process parameter (units) Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 

lh   32.93=  � � � � � � 

lH   42.809=  � � � � � � 

min/  60/2000 lFL =  � � � � � � 

435.0=fx  � � � � � � 

]02.0  3.0  4.0  5.0  7.0  8.0[=a  aa ×= 230  � � � � � 

]6.0  4.0  3.0  2.0  1.0  025.0[=b  bb ×= 30  � � � � � 

M  2000 � � � � � 

dt , sampling period ( t∆ ) 0.012 min  � � � � 

p∆ , parameter deviation 0.001 � � � � � 

grad , iteration gradient step (α ) 0.01 0.035 0.076 0.1 1.2 2.5 

ε , epsilon (very small number) 0.0001 � � � � � 

� means the value stays the same as in the previous mention in the table 

 

The table shows the set of experiments for the changing gradient step value, starting from the smallest of 0.01 up to the last 

value of 2.5 in no specific order. The best model coefficients from set of experiments of Case 1 of the measured output 

method. 
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Figure 6.43. Model dynamic behaviour showing the real and estima ted states of the 

best results – Run 1 Table 6.13 
 

 

 
Figure 6.44. Model dynamic behaviour showing the error differenc e in relation to 

estimated states – the best case results – Run 1 Ta ble 6.13 
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Figure 6.45. Model dynamic behaviour showing the overall real an d estimated 

states – the best results – Run 1 Table 6.13 
 

 

 
Figure 6.46. Model dynamic behaviour showing the real and estima ted states of the 

worst case results – Run 6 Table 6.13 
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Figure 6.47. Model dynamic behaviour showing the error differenc e in relation to 

estimated states – the worst case results – Run 6 T able 6.13 
 

 

 
Figure 6.48. Model dynamic behaviour showing the overall real an d estimated 

states – the worst case results – Run 6 Table 6.13 
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Table 6.14:  Results of the first set of experiments of the cha nging gradient step  
Estimation criterion the least squares error and th e estimation run time for the first set 

of experiments 

Case 1: (First set of experiments) )( pJ  Run time ( calct ) [sec] 

Run 1 6.0759 271.7600 
Run 2 6.0758 283.2140 
Run 3 6.0759 274.9940 
Run 4 6.0759 257.8400 
Run 5 6.0948 272.7450 
Run 6 6.1459 259.7940 

 
 
Results and discussion of the first set of experime nts of the least squares 

method 

The best results are obtained at the gradient step value of 035.0=α , Figures 

6.43–6.48. As the gradient step value goes higher, the error criterion also starts 

to inrease, Table 6.10. This means that at higher gradient values, the process 

behaves relatively poor, though for the given values the change is minute. 

 
The second set of experiments of the least squares method 

The second set of experiments considers the changing sample period, Table 

6.15 and the sets of corresponding results are presented in Figures 6.49–6.54. 

The aim of this experiment is to evaluate the influence of the sampling period on 

the overall process behaviour and identify its best value for application in the 

process. The initial sampling period is set to min35.2=∆t . 
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Table 6.15: The second set of experiments of the changing sampl ing period  

The changing sampling period  

Process parameter (units) Run 1 Run 2 Run 3 Run 4 Run 5 

lh   32.93=  � � � � � 

lH   42.809=  � � � � � 

min)/ ( 60/2000 lFL =  � � � � � 

435.0=fx  � � � � � 

]25.0  3.0  4.0  5.0  6.0  8.0[=a  aa ×= 230  � � � � 

]2.0  1.0  08.0  05.0  02.0  01.0[=b  bb ×= 60  � � � � 

M  2000 � � � � 

dt , sampling period ( t∆ ) 2.35 min tt ∆=∆ 2
1  tt ∆=∆ 4

1  tt ∆=∆ 16
1  tt ∆=∆ 32

1  

p∆ , parameter deviation 0.001 � � � � 

grad , gradient step (α ) 0.076 � � � � 

ε , epsilon (very small number) 0.0001 � � � � 

� means the value stays the same as in the previous mention in the table 

 

The table shows the changing sampling period, it is changed at 2/1 n  for 5,1=n . 
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Figure 6.49. Model dynamic behaviour showing the real and estima ted states of the 

worst case results – Run 1 Table 6.15 
 

 

 
Figure 6.50. Model dynamic behaviour showing the error differenc e in relation to 

estimated states – the worst case results – Run 1 T able 6.15 
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Figure 6.51. Model dynamic behaviour showing the overall real an d estimated 

states – the worst case results –– Run 1 Table 6.15  
 

 

 
Figure 6.52. Model dynamic behaviour showing the real and estima ted states of the 

best results – Run 5 Table 6.15 
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Figure 6.53. Model dynamic behaviour showing the error differenc e in relation to 

estimated states – the best results – Run 5 Table 6 .15 
 
 

 
Figure 6.54. Model dynamic behaviour showing the overall real an d estimated 

states – the best results – Run 5 Table 6.15 
 
 

Table 6.16:  Results of second set of experiments for the chang ing sampling period 
t∆  

Estimation criterion the least squares error and th e estimation run time for 
the second set of experiments 

Case 2: (Second set of experiments) )( pJ  Run time ( calct ) [sec] 

Run 1 7.1148 274.5560 
Run 2 6.4099 227.3860 
Run 3 6.1996 272.1070 
Run 4 6.0867 267.2340 
Run 5 6.0786 234.2510 
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Results and discussion of the second set of experim ents for the least 

squares method 

The process performs best at higher sampling periods, Table 6.16. Though the 

best value to produce acceptable error is at tt ∆=∆ 32
1  for practicality, in the rest 

of the experiments, the value is reduced even further 0.012 min, which equals to 

tt ∆=∆ 195
1 . 

 

The third set of experiments of the least squares m ethod 

The third set of experiments is for observing the influence of the disturbance 

input on the process Table 6.17 and the sets of corresponding results are 

presented in Figures 6.55–6.58. The aim of this set of experiments is to 

determine the critical disturbance input value that should be monitored for 

corrective measures to be taken when necessary. 
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Table 6.17: The third set of experiments for monitoring the inf luence of the disturbance input on the process  

The changing disturbance input signal amplitude 

Process parameter (units) 
Value/ 

(Reference) 
Run 1 Run 2 Run 3 Run 4 Run 5 

lh   32.93=  � �  � � � 

lH   42.809=  � �  � � � 

min)/ ( 60/2000 lFL =  � �  � � � 

fx , disturbance input 435.0=fx  055.0=fx  110.0=fx  55.0=fx  75.0=fx  00.1=fx  

]25.0  3.0  4.0  5.0  6.0  8.0[=a  aa ×= 230  �  � � � 

]2.0  1.0  08.0  05.0  02.0  01.0[=b  bb ×= 60  �  � � � 

M  2000 �  � � � 

dt , sampling period ( t∆ ) 0.012 min �  � � � 

p∆ , parameter deviation 0.001 �  � � � 

grad , gradient step (α ) 0.82 �  � � � 

ε , epsilon (very small number) 0.0001 �  � � � 

� means the value stays the same as in the previous mention in the table 

 

In this set of experiments the investigation is to observe the influence of the disturbance signal on the process and to identify 

the worse and optimum cases of process dynamics based on the disturbance values.  
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Figure 6.55. Model dynamic behaviour showing the real and estima ted states of the 

best results – Run 1 Table 6.17 
 

 

 
Figure 6.56. Model dynamic behaviour showing the error differenc e in relation to 

estimated states – the best results – Run 1 Table 6 .17 
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Figure 6.57. Model dynamic behaviour showing the real and estima ted states of the 

worst performing disturbance input – Run 4 Table 6. 17 
 

 

 
Figure 6.58. Model dynamic behaviour showing the error differenc e in relation to 

estimated states for the worst performing disturban ce input – Run 4 
of Table 6.17  

 

 
Table 6.18:  Results of third set of experiments for the changi ng disturbance input 

amplitude fx  

Estimation criterion the least squares error and th e estimation run time for the 
third set of experiments 

Case 3: (Third set of experiments) )( pJ  Run time ( calct ) [sec] 

Run 1 6.0839 241.7610 
Run 2 6.0839 247.6290 
Run 3 6.0840 244.6560 
Run 4 6.0840 249.2570 
Run 5 6.0840 241.7830 
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Results and discussion of the third set of experime nts for the least squares 

method 

For all the experiments of the third set, the states produced the tracking of the 

states as shown in Figure 6.55 and Figure 6.57. This procedure produced best 

results at the lowest disturbance value, 055.0=fx , but the next best result is 

obtained at the highest value of the disturbance 00.1=fx . Further, this proves 

that the model is responding well to the disturbances. Considering the error least 

squares criterion, there is the negligible difference in the error for all the runs; 

only the calculation time differed but also by infinitesimal amounts Table 6.18. 

The relatively “worst case scenario” is obtained at 755.0=fx , in comparison to 

the rest. 

 

The fourth set of experiments of the least squares method 

The fourth set of experiments considers the changing initial values of model 

parameters based on the best model coefficients of a  and b . Table 6.19 shows 

the changing variables and the sets of corresponding results are presented in 

Figures 6.59–6.62. The aim of this experiment is to identify the best initial model 

parameters at the best sampling period. 
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Table 6.19: The fourth set of experiments of the changing model  parameter initial conditions  

Changing the model parameter initial conditions 

Process parameter (units) Run 1 Run 2 Run 3 Run 4 Run 5 

lh   32.93=  � � � � � 

lH   42.809=  � � � � � 

min)/ ( 60/2000 lFL =  � � � � � 

435.0=fx  � � � � � 

]25.0  3.0  4.0  5.0  6.0  8.0[=a  aa ×= 230  � � � � 

]2.0  1.0  08.0  05.0  02.0  01.0[=b  bb ×= 60  � � � � 

0p , initial model parameters 00 1.0 pp ×=  00 5.0 pp ×=  00 0.1 pp ×=  00 0.2 pp ×=  00 10 pp ×=  

M  2000 � � � � 

dt , sampling period ( t∆ ) 0.012 min � � � � 

p∆ , parameter deviation 0.001 � � � � 

grad , gradient step (α ) 0.82 � � � � 

ε , epsilon (very small number) 0.0001 � � � � 

� means the value stays the same as in the previous mention in the table 

 

The table shows the changing initial conditions from 0.1 to 10 in five runs.  
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Figure 6.59. Model dynamic behaviour showing the real and estima ted states of the 

best results – Run 1 Table 6.19 
 

 

 
Figure 6.60. Model dynamic behaviour showing the error differenc e in relation to 

estimated states – the best case results – Run 1 Ta ble 6.19 
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Figure 6.61. Model dynamic behaviour showing the real and estima ted states of the 

worst case results – Run 5 Table 6.19 
 

 

 
Figure 6.62. Model dynamic behaviour showing the error differenc e in relation to 

estimated states – the worst case results – Run 5 T able 6.19 
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Table 6.20:  Results of the fourth set of experiments of the ch anging initial 
parameter values  

Estimation criterion the least squares error and th e estimation run time for 
the third set of experiments 

Case 4: (Fourth set of experiments) )( pJ  Run time ( calct ) [sec] 

Run 1 8.8236 231.6910 

Run 2 8.7964 234.1340 

Run 3 8.8446 268.6780 

Run 4 8.8014 270.5910 

Run 5 6.3211 269.9240 

Extra values tested:   

00 100 pp ×=  7.3261 234.1560 

00 250 pp ×=  7.3382 234.3010 
 

Results and discussion of the fourth set of experim ents for the least 

squares method 

The best error criterion is obtained at higher initial values of the parameters, but 

at higher run time, Table 6.20. Though the run time is the highest, the rest of run 

times are relatively high as well. This makes the best result an acceptable even if 

the run time is the highest. 

 

6.6. Linear model parameter estimation using the st ate vector 

measurements (direct method) 

 
This method of solution for parameter estimation is derived from the case where 

all states are measureable. In this case data that was obtained from Hendry, 

(1982d) is for all stages in the CCIX (continuous countercurrent ion exchange) 

process, which makes it possible to apply this method of solution. In this case, 

the state variables must be measured, the process input and the discrete states 

determined from the measured data are also available and then parameters can 

be determined from this data. 

From the developed process model, using Equation (6.6), the following 

representation has been derived considering that the parameter vector )(tp  is 

unknown 

)()),(),(()( tpttFtxFtx R=&       (6.17) 

where )(tp  is the vector of unknown parameters that must be determined. 
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In its expanded form, using the discrete form, Equation (6.19) can be expressed 

as Equation (6.18): 

[ ] +=+ T
n kxkxkxkxkxkxkx )()()()()()()1( 654321  



















−−
−−
−−

−−

∆+

−

+−

)()()())()((0                      ...              ...0

0...)()()()()())()((0...0

0         ...     )(    )()(    )()(    ))()((    0    0    0    0

0...0000)()()()()())()((

1

11

2321

121

kFkFkxkxkx

kFkFkxkFkxkxkx

kFkFkxkFkxkxkx

kFkFkxkFkxkxkx

t

RRNNN

RRnRnnn

RRR

RRRin

[ ]Tqm kpkpkpkp )(...)(...)()( 21× , Nn ,1=    (6.18). 

Equation (6.18) can also be expressed as: 

)()(
)()1(

kpkF
t

kxkx =
∆

−+
      (6.19) 

where  

)(kF  – is the coefficients matrix for the state and bilinear terms of the process 

as shown in Equation (6.18). 
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The solution of Equation (6.21) in shortened version can be written as Equation 

(6.22) below. 

)()()(
)()1(

)( kpkFkF
t

kxkx
kF TT =









∆
−+

    (6.20) 

[ ] )()()()(
1

kEkFkFkp T −=       (6.21) 

where 








∆
−+=
t

kxkx
kFkE T )()1(
)()(      (6.22) 

The solution is implemented in MATLAB software based on the matrix division 

operator (\). This operator is said to be more accurate and time efficient in 

calculating a quotient of a matrix. The operator is based on Guassian elimination 

and it does not implement inverse approach, this helps to eliminate the matrix 

inverse singularity problem. 
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6.6.1. The algorithm and flowchart for implementing  the direct method 

1. The following process data values must be initialized: 

d    the resin/liquid ionic fraction ratio 

h   the resin holdups per column diameter, 

N    total number of stages per column, 

T    process upflow period, 

RFku =)(   the resin flow rate entering the top stage of the load 

column, 

fx    feed concentration of sodium in the liquid entering the 

column, 

KNRkx ×∈)(  measured data 

t∆    sampling period. 

2. Set the following parameters for the process trajectory: 

0x  initial values of the state vector, 

K  the number of discrete time steps in the optimization period. 

3. Project the state, the disturbance and control input for full observation 

trajectory Kk ,1= : K
R RF ×∈ 1 , K

f Rx ×∈ 1  and )(0 kxx = . 

4. For the full trajectory Kk ,1=  for each discrete moment: 

ο Set the current input, )(kFF RR = , 

ο Set the current state, )()( kxkx = , 

ο Set the current disturbance, )(kxx ff = , 

ο Calculate the )(kF  matrix, 

ο Calculate the )(kE  matrix, 

ο Calculate the parameter vector )(kp , Equation (6.23), 

ο Calculate the estimated states kRkx ×∈ 6)(ˆ  using estimated parameter 

values, 

ο Calculate the error difference between estimated and measured states 

)()(ˆ)( kxkxke −= . 

5. Repeat from step 4 until the maximum number of discrete moments is 

reached. 

The flowchart of the implementation of this method is presented in Figure 6.63. 
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Figure 6.63. The procedure for linear model parameter estimation  based on 

measured state vector  
 

Initialize the process data: 
)(,,,  ,, kxKTFhd R  

Declare the input, the state and the 
disturbance for Kk ,1=  

Set 1=k  

Kk =  

Read the variables: 
)(kxx ff = , )(kFF RR = and )()( kxkx =  

Calculate )(kF  

Calculate )(kF  

Calculate )(kE  

Determine estimated state using )(ˆ kx  

the calculated parameter vector )(kp  

Determine the error difference 
)()(ˆ)( kxkxke −=  

1+= kk  

No 

Yes 

End 

Save current values of )(kp  

and the error )(ke  

Save current values of )(kp  and the error )(ke  
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6.6.2. Experiments and results for the linear model  parameter estimation 

problem using measurements of the state vector (the  direct method) 

In the set of experiments conducted under the direct method, the following 

variables are varied: the sampling period t∆ , the control input RF  and the 

disturbance signal fx . The evaluation criteria for each set of experiments are the 

least squares error ∑
=

=
K

k

TkekepJ
1

)()()( and the calculation run time. The direct 

method does not allow too many parameters to be varied, thus a lesser number 

of experiments in comparison to other methods. In all experiments’ results 

nn xbarx = , )(~ kxx nn =  for Nn ,1= , Equation (6.6) and Equation (6.18). 

 

The first set of experiments of the the direct meth od 

The first set of experiments considers the changing values of the sampling period 

at constant control input, Table 6.21. The results are presented in Figures 6.64–

6.71 and Table 6.22. The aim of this set of experiments is to identify the best 

sampling period for the direct estimation method. The evaluation criterion is 

based on the estimation error and the calculation run time for the rest of the 

experiments. 

 

 



 

222 

Table 6.21: The first set of experiments of the changing sampli ng period at constant control input  

Changing sampling period at constant control input 

Process parameter (units) Values Run 1 Run 2 Run 3 Run 4 Run 5 

lh   32.93=  � � � � � � 

3/2=d  ( lr /  ratio) � � � � � � 

T  (liquid upflow period) min17=T  � � � � � 

ThdFR /)( ×=  3049.0=RF  � � � � � 

435.0=fx  � � � � � � 

dt , sampling period ( t∆ ) 2.35 min tt ∆=∆ 2
1  tt ∆=∆ 16

1  tt ∆=∆ 64
1  tt ∆=∆ 128

1  tt ∆=∆ 195
1  

� means the value stays the same as in the previous mention in the table 

 

The table shows the changing sampling period, it is changed at n)2(2/1  for 6 ,5 ,3 ,0=n  and tt ∆=∆ 195
1 . 
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Figure 6.64. Model dynamic behaviour showing the overall real an d estimated 

states of the worst case results at tt ∆=∆ 2
1  Run 1 Table 6.21 

 

 

 
Figure 6.65. The error signal in detail for the worst case resul ts – Run 1 of Table 

6.21 
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Figure 6.66. Model dynamic behaviour showing the overall real an d estimated 

states at tt ∆=∆ 16
1  Run 2 Table 6.21 

 

 

 
Figure 6.67. Model dynamic behaviour showing the overall real an d estimated 

states at tt ∆=∆ 64
1  Run 3 Table 6.21 
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Figure 6.68. Model dynamic behaviour showing the overall real an d estimated 

states at tt ∆=∆ 128
1  Run 4 Table 6.21 

 

 

 
Figure 6.69. Model dynamic behaviour showing the overall real an d estimated 

states for the best results at tt ∆=∆ 195
1  Run 5 Table 6.21 
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Figure 6.70. Model dynamic behaviour showing the error differenc e in relation to 

estimated states for the best case results – Run 5 Table 6.21 
 

 

 
Figure 6.71. The error signal in detail for the best results – R un 5 of Table 6.21  

 

 

Table 6.22:  Results of the first set of experiments of changin g the initial parameter 
values  

Estimation criterion the least squares error and th e estimation run time for the 
first set of experiments 

Case 1: (First set of experiments) )( pJ  Run time ( calct ) [sec] 

Run 1 2.1301e+006 0.0150 
Run 2 520.0396 0.0240 
Run 3 2.0314 0.0200 
Run 4 0.1270 0.0200 
Run 5 0.0236 0.0200 
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Results and discussion of the first set of experime nts of the the direct 

method 

Estimated states start tracking the measured values in an excellent fit at 

tt ∆=∆ 64
1 , Figure 6.64. The best results are obtained at tt ∆=∆ 195

1 , and all the 

results are shown in Figures 6.64–6.71. 

For the direct method it seems that the process run time is improved drastically 

and the estimation square error far outweighs all the other previous cases, 

including those of the measure output based and the least squares methods. 

 

The second set of experiments of the direct method 

The second set of experiments considers changing of the control input using the 

best minimum sampling period, tt ∆=∆ 195
1  and the results are given in Figures 

6.72–6.75. The control input is regulated by the process upflow period T , Table 

6.23. The aim of this set of experiments is to observe the influence of the control 

input on the overall performance of the process. The criterion for evaluating the 

results is the least squares error and the process run time. 
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Table 6.23:  The second set of experiments of the changing cont rol input at best minimum sampling period tt ∆=∆ 32
1  

Changing control input at best sampling period 

Process parameter (units) Values Run 1 Run 2 Run 3 Run 4 Run 5 

lh   32.93=  � � � � � � 

3/2=d  (liquid/res-ratio) � � � � � � 

T  (lupflow period in min) min17=T  TT ×= 1.0  TT ×= 2.0  TT ×= 5.0  TT =  TT ×= 0.2  

ThdFR /)( ×=  1.2914=RF  12.9137=RF  6.4569=RF  2.5827=RF  1.2914=RF  0.6457 =RF  

435.0=fx  � � � � � � 

dt , sampling period ( t∆ ) 0.012 min  � � � � 

� means the value stays the same as in the previous mention in th table 

 

The table shows the changing the control input by changing the upflow period. The “Values” heading in the table refers to 

reference values used to compare the changing values. The upflow period T  is inversely proportional to the control input RF . 
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Figure 6.72. Model dynamic behaviour showing the overall real an d estimated 

states of the worst case results – Run 1 Table 6.23  
 

 

 
Figure 6.73. Model dynamic behaviour showing the error differenc e in relation 

to estimated states for the worst case results – Ru n 1 Table 6.23 
 

 

 

 

 



 

230 

 
Figure 6.74. Model dynamic behaviour showing the overall real an d estimated 

states for the best results – Run 5 Table 6.23  
 

 

 
Figure 6.75. Model dynamic behaviour showing the error differenc e in relation 

to estimated states for the best results – Run 5 Ta ble 6.23 
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Table 6.24:  Results of second set of experiments of the changi ng control input 
at best minimum sampling period  

Estimation criterion the least squares error and th e estimation run time for the 
second set of experiments 

Case 2: (Second set of experiments) )( pJ  Run time ( calct )[sec] 

Run 1 230.7372 0.1550 
Run 2 14.4303 0.0250 
Run 3 0.3711 0.0200 
Run 4 0.0236 0.0180 
Run 5 0.0016 0.0150 

 

Results and discussion for the second set of experi ments of the direct 

method 

The best estimation results are obtained at smaller values of the control input 

at 0349.0=RF , this corresponds to the highest value of the process upflow 

period (in this case, TT 10= ) Table 6.24. The direct method once again 

produced the best results in terms of the least squares error and the smallest 

run time in comparison to all other cases tested so far. 

 

The third set of experiments of the direct method 

The last set of experiments considers the changing disturbance at constant 

control input, Table 6.25. The aim of this set of experiments is to consider the 

effect of the disturbance on the overall performance of the estimation of the 

direct method. The disturbance value will be varied in the order of 0.55 from 

0.055 to 1.0. The results are presented in Figures 6.76–6.79. 
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Table 6.25: The third set of experiments of the changing distur bance input at constant control input  

Changing disturbance input at constant control inpu t and best minimum sampling period 

Process parameter (units) Values/(Reference) Run 1 Run 2 Run 3 Run 4 Run 5 

lh   32.93=  � � � � � � 

3/2=d  (liquid/resin ratio) � � � � � � 

T  (upflow period (min) min17=T  � � � � � 

ThdFR /)( ×=  1.2914=RF  � � � � � 

fx  disturbance input 435.0=fx  05.0=fx  110.0=fx  550.0=fx  754.0=fx  00.1=fx  

dt , sampling period ( t∆ ) 0.012 min � � � � � 

� means the value stays the same as in the previous mention in the table 

 

In this set of experiments the best sampling period and constant control input are used. The control input used is based on 

the experimental liquid upflow period of min17=T . The investigation is to observe the influence of the disturbance signal on 

the process and to identify the worse and optimum cases of process dynamics based on the disturbance values. 

 

 



 

233 

 
Figure 6.76. Model dynamic behaviour showing the overall real an d estimated 

states of the worst case results – Run 1 Table 6.25  
 

 

 
Figure 6.77. The error difference in detail for the worst case r esults – Run 1 of 

Table 6.25  
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Figure 6.78. Model dynamic behaviour showing the overall real an d estimated 

states for the best results – Run 5 Table 6.25  
 

 

 
Figure 6.79. The error difference in detail for the best results  – Run 5 of Table 6.25  

 

 

Table 6.26: Results of third set of experiments of the changing  disturbance input at 
constant control input 

Estimation criterion the least squares error and th e estimation run time for the 
third set of experiments 

Case 3: (Third set of experiments) )( pJ  Run time ( calct ) [sec] 

Run 1 0.0236 0.0200 
Run 2 0.0236 0.0150 
Run 3 0.0236 0.0150 
Run 4 0.0235 0.0150 
Run 5 0.0235 0.0150 
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Results and discussion of the third set of experime nts of the direct method 

The best results are obtained from above the midpoint of the disturbance value 

754.0=fx ; these are only best in terms of the least squares error, Table 6.26 

The method seems to handle the disturbances fairly well, from the lowest to the 

highest. The criteria show that there is a very slight or almost no difference in the 

least squares error and the run time. The differences between the runs can be 

considered immaterial. 

 
6.7. Linear model parameter estimation using the st ate vector 

measurements (Lagrange based method) 

 
The Lagrange technique is one of many optimization methods used to minimize 

or maximize a function depending on the optimization requirement. The method 

uses gradient techniques of optimization if the problem is nonlinear. The basic 

requirement for optimization is the test for optimality conditions and then applying 

necessary conditions to minimize or maximize the function’s variables of interest 

including the Lagrange multiplier (Polak, 1997:1). 

Generally, there are two optimality conditions that must be met, the necessary 

and sufficient conditions: 

1) the necessary conditions that must be met by the solution in all cases, and  

2) the sufficient conditions that stipulate that if the necessary conditions are 

satisfied, an extrema (minima/maxima) is guaranteed (Polak, 1997:1; Pun, 

1969:25). 

The Lagrangian method if applied to solve the problem for parameter estimation 

formulated as follows: 

Find the vector of the parameters )(kp , Kk ,1=  that minimizes the error 

between the measured process states and the expected model states under the 

model structure (constraints) of the considered process. 

∑
=

−=
K

ki
Qx kxkxpJ
2

))()(ˆ()(       (6.23) 

[ ])()()()()()()1( 1 kWxkBFkFkxBkAxtkxkx fRR +++∆+=+   (6.24) 

The Lagrangian function is formed by the performance index and the model 

equation using the Lagrangian variables )(kλ . 

[ ]






 +++∆++−+= )()()()()()1()()( 1 kWxkFBkFkBxkAxtkxkpJL fRR
T

xa λ  

          (6.25) 
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where NRk ∈)(λ  – is the vector of the Lagrangian variables. 

The values of the Lagrangian variables λ  are unknown and need to be 

determined from the necessary conditions: 0
)(

=
∂
∂

kp

La  and 0
)(

=
∂
∂

k

La

λ
,  

where, 

[ ])(),...(),...,(),(),(),()( 4321 kpkpkpkpkpkpkp qm=    (6.26) 

and the vector of Lagrange is 

[ ]T
N kkkkk  

321 )( ..., ),( ),( ),()( λλλλλ =      (6.27). 

The resulting vectors for the optimality condition 0
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The notations 
)(

,

kp

L nap

∂
∂

 are derivatives of the Lagrange function, Equation (6.25) 

with respect to each parameter, qppp ,1=  for all stages, Nn ,1= . The second 

part of the necessary conditions expression is: 

[ ] 0)()()()()()1(
)( 1 =
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fRR
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          (6.34) 

where NR∈λ , 6=N  

The derivative of the Lagrange function aL  with respect to the multipliers 

represents the gradient of the model according to the multipliers λ , and the 

gradient function is not a function of the Lagrange variables, Equation (6.34). The 

necessary conditions, Equations (6.28)–(6.33) and Equation (6.34) are solved 

using the gradient methods since these equations cannot be solved analytically. 

The unknown parameters and Lagrangian multipliers must be determined. It is 
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necessary to guess the initial values of the )(kp  and )(kλ , i.e., 0p  and 0λ  

before proceeding with the procedure. The vectors )(kx  and )(kFR  are 

measured or obtained from the existing data. 

The improved values of the vectors )(kp  and )(kλ  are then calculated using the 

gradient step procedure where for each and every stage 

)(
)()(

kp

L
kpkp a

p
oldnew

∂
∂

−= α       (6.35) 

)(
)()(

k

L
kk aoldnew

λ
αλλ λ ∂

∂
+=       (6.36) 

where pα  – is the step of the gradient for parameters and  

λα  – is the step of the gradient for the Lagrange multipliers. 

The iterations for variables improvement are repeated until gradient search 

reaches some small number, i.e.,  

p
a

kp

L ε<
∂
∂

)(
        (6.37) 

λε
λ

<
∂
∂

)(k

La         (6.38), 

where pε  and λε  are very small numbers for stopping the procedure for 

unknown parameters and unknown Lagrangian multipliers respectively. 

or a maximum number of operations M  is reached. Both the gradient conditions 

must be met to stop the gradient iterations, and this translates to optimal values 

of the parameters and multipliers being reached. 

 
6.7.1. Procedure for linear model Lagrange based pa rameter estimation 

In order to determine the unknown parameters using Lagrange’s method, the 

following procedure is used (Figure 6.80): 

ο initialization of the unknown parameters and the Lagrange’s multipliers. 

ο The procedure starts at the given initial Lagrange multipliers, 0λ . Then 

the creation of a Lagrange function aL . 

ο The function is composed of the function to be optimized and constraints 

if included, Equation (6.25). 

ο Find the derivatives of the Lagrange function with respect to each variable 

involved (partial derivatives), including the Lagrangian multipliers λ , 

Equations (6.28)–(6.33) and Equation (6.34). 
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ο Each derivative are set to zero Equation (6.28)–(6.34), for the procedure 

to produce optimal variables. 

ο An iteration condition is then declared such that calculations are repeated 

until optimal values are obtained. At the beginning of the iteration, the 

unknown variables/parameters are initial guesses. 

ο The solution procedure is gradients based; after the first iteration, use the 

previous values to improve the unknown variable/parameter in the next 

calculation, Equations (6.35) and (6.36). The iterations are repeated until 

some stopping procedure is reached, Equations (6.37) and (6.38). 

 
6.7.2. Algorithm and flowchart for the linear model  parameter estimation 

using the state vector measurements (theLagrange me thod) 

1. Initialize the process data values as in Section 6.4.2: 

2. Initial parameters for the gradient procedure as in Section 6.4.2: 

3. Formulate the initial parameters vector, 0p  from process parameters and 

initialize state vector 0x  and the disturbance fx . 

4. Initialize the gradient procedure parameters, )(kλ , pα , λα , pε  and λε . 

5. Initialize parameters for the full process trajectory, KRp ×∈ 23
0 , KRx ×∈ 6

0 , 

K
f kx ×∈1)( , KR ×∈ 6

0λ . 

6. While Mj ≤ : 

6.1. Using all the necessary model parameters t∆ , A , B , and 1B , and the 

model variables, the state )(kx , the control output )(kFR , and the 

disturbance )(kx f , perform the following calculations: 

ο Calculate the gradients for the unknown parameters, Equations 

(6.30)–(6.35), 

ο Formulate the gradient vector from calculated gradients 

)(
)(

ke
kp

L
p

a =
∂
∂

       (6.39) 

6.2. Check for optimality (stopping procedure) 

» If the gradient is less than the preselected very small number 

pp ke ε<)( , then, 

)()( )()1( kpkp ii =+       (6.40) 

» or else, calculate the improved parameters, 
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)()()( )()1( kekpkp pp
ii α−=+      (6.41) 

6.3. Calculate the gradient of the Lagrange multipliers, Equation (6.44) 

)(
)(

ke
k

La
λλ

=
∂
∂

       (6.42) 

6.4. Check for optimality (stopping procedure): 

» If the gradient is less than the preselected very small number, 

λλ ε<)(ke , then 

)()( )()1( kk ii λλ =+       (6.43) 

» or else, calculate the improved Lagrange multipliers 

)()()( )()1( kekk ii
λλαλλ +=+      (6.44) 

6.5. Increment iteration index 1+= jj  and repeat from step 5. 

7. For Kk ,1=  calculate the estimated states using obtained parameters. 

8. Calculate the error difference between measured and calculated states. 

9. Plot the both states trajectories and the error condition. 

 
6.7.3. Results from the experiments with the linear  model Lagrange based 

parameter estimation procedure using state vector m easurements 

Experiments were conducted to validate the performance of the Lagrange 

method for parameter estimation. The following process parameters, sampling 

period t∆ , Lagrangian and parameters gradient steps, λα  and pα , and the 

initial model parameters’ vector p  are changed in values to observe their 

influence on the overall process dynamics. Each parameter’s influence is 

considered in a different set of experiments and the best results are applied in 

the next set. The criterion for evaluation of results is once again is based on the 

value of the least squares error 
2

1

)()( ∑
=

=
K

k

kepJ  and the algorithm’s run time. 

In all experiments’ results nn xbarx = , and )(ˆ~ kxx nn =  for Nn ,1= , Equation 

(6.23)  
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Initial process parameters: 
a , b , h , H , LF , fx , T , d , RF , N , t∆  

Formulate 0p  using process parameters 

Initialize state vector 0x  and disturbance 
0fx  

Initialize gradient procedure parameters 
λ , pα , λα , pε  and λε  

Extend initial parameters for the full process trajectory 
KRp ×∈ 6

0 , KRx ×∈ 6
0 , K

f Rx ×∈ 1  and KR ×∈ 6
0λ  

Initialize iteration 1=j  

Mj ≤  

For Kk ,1=  

Set )(kx f , )(kFR , )(kx  and )(kλ  

Calculate the gradient vectors 
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∂
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Figure 6.80.  Flowchart for the linear Lagrange–based model param eter estimation 
using the state vector measurements  

 
The first set of experiments of the Lagrange based method 

The first set of experiments considers varying the values of the sampling period 

at the constant control input, model parameters and gradient steps, Table 6.27. 

The results are presented in Figures 6.81–6.84. For this set of experiments to 

obtain improved estimated parameter values, holdup values were reduced. 

 

2 1 3 

For 1,1 −= Kk  

Set )(kx f , )(kFR , )(kx  and )1( +kx  
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λλα ekpkp ii +=+ )()( )()1(  )()( )()1( kpkp ii =+  

Increase iteration 1+= jj  

Stop 

No 

Yes 

Calculate estimated states )(ˆ kx  

For 1,1 −= Kk  

Calculate error difference between 
states )()(ˆ)( kxkxke −=  
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Table 6.27: The first set of experiments of the changing sampli ng period at fixed gradient steps  

Changing sampling period at fixed gradient steps 

Process parameter (units) Values Run 1 Run 2 Run 3 Run 4 Run 5 

lh   3293.0=  � � � � � � 

lH   42809.0=  � � � � � � 

min)/(  60/2000 lFL =  � � � � � � 

435.0=fx  � � � � � � 

]02.0  3.0  4.0  5.0  7.0  8.0[=a  aa ×= 230  � � � � � 

]6.0  4.0  3.0  2.0  1.0  025.0[=b  bb ×= 60  � � � � � 

M  2000 � � � � � 

dt , sampling period ( t∆ ) 2.35 min tt ∆=∆ 4
1  tt ∆=∆ 8

1  tt ∆=∆ 16
1  tt ∆=∆ 64

1  tt ∆=∆ 128
1  

Parameters gradient step ( pα ) 0.3 � � � � � 

Lagrange multiplier gradient step ( λα ) 0.1 � � � � � 

pε , epsilon (very small number) 0.0001 � � � � � 

λε , epsilon )(kλ  (very small number) 0.0001      

� means the value stays the same as in the previous mention in th table 

 

The table shows the changing sampling period, with the reference value of min35.2=∆t . This value is reduced in multiples 

of a quarter of the previous value for every run. 
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Figure 6.81. Model dynamic behaviour showing the overall real an d estimated 

states for the worst case results – Run 1 Table 6.2 7 
 

 

 
Figure 6.82. Model dynamic behaviour showing the error differenc e in relation to 

estimated states for the worst case results – Run 1  Table 6.27 
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Figure 6.83. Model dynamic behaviour showing the overall real an d estimated states for 

the best results – Run 5 Table 6.27  
 

 

 
Figure 6.84. Model dynamic behaviour showing the error differenc e in relation to 

estimated states for the best case results – Run 5 Table 6.27  
 

Table 6.28:  Results of the first set of experiments of changin g the disturbance 
input  

Estimation criterion the least squares error and th e estimation run time for the 
first set of experiments 

Case 1: (First set of experiments) )( pJ  Run time ( calct ) [sec] 

Run 1 2.6357e+003 29.5310 

Run 2 179.0961 29.4530 

Run 3 17.9705 29.7490 

Run 4 6.2011 30.0280 

Run 5 6.1682 30.4820 
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Results and discussion of the first set of experime nts for the Lagrange 

based method 

From the first set of experiments that of changing sampling period t∆  with fixed 

gradient steps, pα  and λα , Table 6.27, the estimated states start tracking the 

measured values convincingly at tt ∆=∆ 64
1 , Figure 6.81–6.84. At the lowest 

sampling period given, tt ∆=∆ 128
1  the algorithm produces the best results, Table 

6.28. 

 

The second set of experiments of the Lagrange based  method 

The second set of experiments considers the varying parameters gradient step at 

constant Lagrange multipliers gradient step 3.0=λα , using the best sampling 

period, Table 6.29. For practical reasons and better presentation, the sampling 

period has been set at tt ∆=∆ 195
1 . The results are presented by Figures 6.85–

6.88. The evaluation criterion of the method is presented in Table 6.30. 
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Table 6.29: The second set of experiments of the changing param eters gradient step values and constant Lagrange gr adient 
step at best sampling period  

Changing parameters gradient step values and consta nt Lagrange gradient step 

Process parameter (units) Values 
(Reference) 

Run 1 Run 2 Run 3 Run 4 Run 5 

lh   3293.0=  � � � � � � 

lH   42809.0=  � � � � � � 

min)/(  60/2000 lFL =  � � � � � � 

435.0=fx  � � � � � � 

]02.0  3.0  4.0  5.0  7.0  8.0[=a  aa ×= 230  � � � � � 

]6.0  4.0  3.0  2.0  1.0  025.0[=b  bb ×= 60  � � � � � 

M  10 000 � � � � � 

dt , sampling period ( t∆ ) 0.012 min � � � � � 

Parameters gradient step ( pα ) 0.1 0.01 0.05 0.1 0.5 1.0 

Lagrange multiplier gradient step ( λα ) 0.3 � � � � � 

pε , epsilon (very small number) 0.001 � � � � � 

λε , epsilon (very small number) 0.001 � � � � � 

� means the value stays the same as in the previous mention in the table 

 

The table show the changing values of the parameters gradient step from 0.1 to 1.0 nor respective order. 
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Figure 6.85. Model dynamic behaviour showing the overall real an d estimated 

states for the best results – Run 4 Table 6.29  
 

 

 
Figure 6.86. Model dynamic behaviour showing the error differenc e in relation to 

estimated states – the best results – Run 4 Table 6 .29 
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Figure 6.87. Model dynamic behaviour showing the overall real an d estimated 

states for the worst case results – Run 1 Table 6.2 9 
 

 

 
Figure 6.88. Model dynamic behaviour showing the error differenc e in relation to 

estimated states – the worst case results – Run 1 T able 6.29 
 

Table 6.30:  Results of the second set of experiments for the c hanging parameter 
gradient step and constant Lagrange gradient step a t best sampling period  

Estimation criterion the least squares error and th e estimation run time for the 
second set of experiments 

Case 2: (Second set of experiments) )( pJ  Run time ( calct ) [sec] 

Run 1 6.1806 31.9750 

Run 2 6.1765 31.2930 

Run 3 6.1765 30.9660 

Run 4 6.1774 30.2480 

Run 5 6.1806 31.7870 
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Results and discussion of second set of experiments  for the Lagrange 

based method 

The best results are obtained at the parameters gradient step of 5.0=pα . At the 

parameters gradient step of 0.1=pα , the algorithm starts behaving like those of 

lower values, Table 6.30. This set of experiments also demonstrates that for the 

given values, the estimation process was not influenced much by the given 

parameter gradient step values. 

 

The third set of experiments of the Lagrange based method 

The third set of experiments (Table 6.31) considers the changing Lagrange 

multipliers gradient iteration step at (best) constant parameters gradient step, 

5.0=pα  from the previous experiment. With not so big difference in the 

criterion, the first and the last runs are simply presented as a reference, Figures 

6.89–6.92. 
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Table 6.31:  The third set of experiments for changing the Lagr ange gradient step at the constant parameter gradie nt step and 
sampling period  

Changing Lagrange gradient iteration step at consta nt parameter gradient iteration step 

Process parameter (units) Values/(Reference) Run 1 Run 2 Run 3 Run 4 Run 5 

lh   3293.0=  � � � � � � 

lH   42809.0=  � � � � � � 

min)/(  60/2000 lFL =  � � � � � � 

leqx f /  435.0=  � � � � � � 

]0.25  0.3  0.4  0.5  0.6  0.8[=a  aa ×= 230  � � � � � 

]0.2  0.1  0.08  0.05  0.02  0.01[=b  bb ×= 60  � � � � � 

M  2 000 � � � � � 

dt , sampling period ( t∆ ) min012.0  � � � � � 

Parameters gradient step ( pα ) 0.5 � � � � � 

Lagrange multiplier gradient step ( λα ) 0.01 0.001 0.01 0.1 0.5 1.0 

pε , epsilon- p  (very small number) 0.0001 � � � � � 

λε , epsilon- )(kλ  (very small number) 0.0001 � � � � � 

� means the value stays the same as in the previous mention in the table 

 

The table shows the changing values of the Lagrange gradient step while keeping all other values constant. 
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Figure 6.89. Model dynamic behaviour showing the overall real an d estimated 

states for Run 1 of Table 6.31  
 

 
Figure 6.90. Model dynamic behaviour showing the error differenc e in relation to 

estimated states for Run 1 of Table 6.31 
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Figure 6.91. Model dynamic behaviour showing the overall real an d estimated 

states for Run 5 of Table 6.31  
 

 
Figure 6.92. Model dynamic behaviour showing the error differenc e in relation to 

estimated states for Run 5 of Table 6.31 
 

 

Table 6.32:  Results of the third set of experiments for the ch anging Lagrange 
gradient step  

Estimation criterion the least squares error and th e estimation run time for the 
third set of experiments 

Case 3: (Third set of experiments) )( pJ  Run time ( calct ) [sec] 

Run 1 6.2014 29.2970 

Run 2 6.2014 30.8260 

Run 3 6.2014 29.5460 

Run 4 6.2014 29.8590 

Run 5 6.2014 29.2650 
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Results and discussion of third set of experiments for the Lagrange based 

method 

The results for Table 6.30 experiments are presented in Figures 6.89–6.92. The 

results show that at this best parameters gradient step, 5.0=pα , the Lagrange 

multipliers gradient step values have no much influence over the estimated 

parameters nor the error difference between calculated and measured states. All 

the runs produced very good least squares error and run times. The results from 

all the experiment runs are so close from one another such that there is no 

distinctive separation between all results. 

 

The fourth set of experiments for the Lagrange base d method 

The fourth set of experiments considers both the parameter and the Lagrange 

multipliers gradient steps changing at the same rate, Table 6.33. The 

experiments results are demonstrated in Figures 6.93–6.96. Higher values of the 

Lagrange multipliers gradient step produce a higher error difference between 

calculated and estimated states. 
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Table 6.33: The fourth set of experiments of both the gradient steps changing at the same rate 

Increasing and decreasing iteration gradient step v alues at the same rate 

Process parameter (units) Values/ 
(Reference) 

Run 1 Run 2 Run 3 Run 4 Run 5 

lh   3293.0=  � � � � � � 

lH   42809.0=  � � � � � � 

min)/(  60/2000 lFL =  � � � � � � 

435.0=fx  � � � � � � 

]0.25  0.3  0.4  0.5  0.6  0.8[=a  aa ×= 230  � � � � � 

]0.2  0.1  0.08  0.05  0.02  0.01[=b  bb ×= 60  � � � � � 

M  2000 � � � � � 

dt , sampling period ( t∆ ) 0.012 min � � � � � 

Parameters gradient step ( pα )  0.01 0.01 0.05 0.1 0.5 1.0 

Lagrange multiplier gradient step ( λα ) 0.01 0.01 0.05 0.1 0.5 1.0 

pε , epsilon- p  (very small number) 0.001 � � � � � 

λε , epsilon- )(kλ  (very small number) 0.001 � � � � � 

� means the value stays the same as in the previous mention in the table 

 

The table shows both the parameter and Lagrange multiplier iteration gradient steps changing at the same rate. 

 



 

256 

 
Figure 6.93. Model dynamic behaviour showing the overall real an d estimated 

states for Run 1 of Table 6.33 
 

 

 
Figure 6.94. Model dynamic behaviour showing the error differenc e in relation to 

estimated states for Run 1 of Table 6.33 
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Figure 6.95. Model dynamic behaviour showing the overall real an d estimated 

states for Run 5 of Table 6.33 
 

 

 
Figure 6.96. Model dynamic behaviour showing the error differenc e in relation to 

estimated states for Run 5 of Table 6.33 
 

 
Table 6.34:  Results of the fourth set of experiments of changi ng both the 

parameter and Lagrange gradient steps values  
Estimation criterion the least squares error and th e estimation run time for the 

fourth set of experiments 

Case 4: (Fourth set of experiments) )( pJ  Run time ( calct ) [sec] 

Run 1 6.1765 30.8160 
Run 2 6.1765 32.2260 
Run 3 6.1765 31.0400 
Run 4 6.1774 31.0460 
Run 5 6.1806 31.1260 
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Results and discussion of the fourth set of experim ents for the Lagrange 

based method 

At very high gradient steps values the overall gradient steps influence on the 

error criterion, the calculation time and parameter values remain practically the 

same throughout all the runs. At very low gradient steps values, the tracking is 

the best, Table 6.34. 

 

The fifth set of experiments of the Lagrange based method 

The fifth set of experiments considers the changing initial parameter values at 

best sampling period and the parameter gradient step 5.0=pα  and the 

Lagrange multipliers gradient step of 5.0=λα , Table 6.35. The results are 

presented in Figures 6.97–6.100. Higher initial parameter values improve the 

problem of most parameters settling around zero or close to zero. 
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Table 6.35: The fifth set of experiments of the changing initia l parameter values at best sampling period  

Changing initial values of model parameters 

Process parameter (units) Values Run 1 Run 2 Run 3 Run 4 Run 5 

lh   3293.0=  � � � � � � 

lH   42809.0=  � � � � � � 

min/  60/2000 lFL =  � � � � � � 

755.0=fx  � � � � � � 

]02.0  3.0  4.0  5.0  7.0  8.0[=a  aa ×= 230  � � � � � 

]6.0  4.0  3.0  2.0  1.0  025.0[=b  bb ×= 60  � � � � � 

Parameters ( p ) pp =  pp 5.0=  pp 5.1=  pp 5.2=  pp 10=  pp 25=  

M  2000 � � � � � 

dt , sampling period ( t∆ ) 2.35 min � � � � � 

Parameters gradient step ( pα ) 0.3 � � � � � 

Lagrange multiplier gradient step ( λα ) 0.01 � � � � � 

pε , epsilon- p  (very small number) 0.001 � � � � � 

λε , epsilon- )(kλ  (very small number) 0.001 � � � � � 

� means the value stays the same as in the previous mention in the table 

 

The table shows the changing initial parameter values in multiples of 0.5, and not in any particular order from 0.5 to 25. 
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Figure 6.97. Model dynamic behaviour showing the overall real an d estimated 

states for the best results – Run 3 Table 6.35  
 

 

 
Figure 6.98. Model dynamic behaviour showing the error differenc e in relation to 

estimated states for the best results – Run 3 Table  6.35 
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Figure 6.99. Model dynamic behaviour showing the overall real an d estimated 

states for the worst case results – Run 5 Table 6.3 5 
 

 

 
Figure 6.100. Model dynamic behaviour showing the error differenc e in relation to 

estimated states for the worst case results – Run 5  Table 6.35 
 

 
Table 6.36: Results of the fifth set of experiments of changing  the initial parameter 

values 
Estimation criterion values and estimation run time  for the fifth set of 

experiments 

Case 5: (Fifth set of experiments) )( pJ  Run time ( calct ) [sec] 

Run 1 6.1895 29.5460 
Run 2 6.1656 29.3280 
Run 3 6.1496 29.6080 
Run 4 6.2857 32.1710 
Run 5 7.9117 31.6590 
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Results and discussion of the fifth set of experime nts of the Lagrange 

based method 

The best results for the changing initial parameter values in multiples of 0.5 is 

obtained at 00 5.2 pp = , Table 6.36. At high multiples of initial parameter values, 

the least square error starts to grow drastically high. 

 
6.8. Summary of the best results from all methods 
 
Tables 6.37–6.40 show the collection of all the best results of each case for all 

the parameter estimation methods presented. Each table presents the different 

parameters varied for each case in an experiment set. 

 
Table 6.37: Results from the process output based parameter est imation method  

Method Algorithm technique & the system 
parameter varied Criterion 

Method 1 
Process output (output from measured 
data) )( pJ  

Run time ( calct ) 

[sec] 

Case 1 Sampling period 20.2932 225.6700 

Case 2 Model coefficients 22.9868 233.2180 

Case 3 Model coefficients at reduced holdups 338.1485 229.3940 

Case 4 Iteration gradient step 13.5571 257.0940 

Case 5 Disturbance input 113.5492 253.3760 

Case 6 Initial model parameters ( 0p ) 14.5746 257.1210 
 
 

Table 6.38: Results from the least squares method of parameter estimation  

Method Algorithm technique & the system 
parameter varied Criterion 

Method 2 
Least squares method (state vector 
measurements) )( pJ  

Run time ( calct ) 

[sec] 
Case 1 Iteration gradient 6.0758 283.2140 
Case 2 Sampling period 6.0786 234.2510 
Case 3 Disturbance input 6.0839 241.7610 
Case 4 Initial model parameters 6.3211 269.9240 
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Table 6.39: Results from the direct method (state vector measur ement based 
parameter estimation)  

Method Algorithm technique & the system 
parameter varied Criterion 

Method 3 
Direct method (state vector 
measurements) )( pJ  

Run time ( calct ) 

[sec] 
Case 1 Sampling period 0.0236 0.0200 
Case 2 Control input 0.0016 0.0150 
Case 3 Disturbance input 0.0235 0.0150 

 
 

Table 6.40: Results from the Lagrange based parameter estimatio n method  

Method Algorithm technique & the system 
parameter varied Criterion 

Method 4 
Lagrange method (state vector 
measurements) )( pJ  

Run time ( calct ) 

[sec] 

Case 1 Disturbance input 6.1682 30.4820 

Case 2 Parameter gradient step 6.1774 30.2480 

Case 3 Lagrange multipliers gradient step 6.2014 29.2650 

Case 4 
Parameters and multipliers gradient 
steps 6.1774 31.0460 

Case 5 Initial model parameters 6.1496 29.6080 
 
6.9. Discussion on all four methods 
 
The overall best performance for each method is presented in Table 6.41. The 

best results are obtained from the direct method in all aspects from all cases. 

The direct method seems to outperform all the other methods by a very big 

margin if one considers the criteria used, the least square error and algorithm 

processing time. This could be associated with the fact that the direct method 

does not use the gradient iteration. The output based method has been the most 

poorly performing method. Its least square error is in the highest region and 

produced longest processing time. 

Table 6.41:  Results of the best criterion values from each meth od  
Estimation criterion the least squares error and th e estimation run time for the four 

estimation methods 

Method Algorithm technique Case )( pJ  

Run time 
( calct ) [sec] 

1 
Process output (output from measured 
data) 1 20.2932 225.6700 

2 
Least squares method (state vector 
measurements) 2 6.0786 234.9240 

3 Direct method (state vector measurements) 2 0.0016 0.0150 

4 
Lagrange method (state vector 
measurements) 5 6.1496 29.6080 
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The state vector based least squares method performed in the same region as 

the Lagrangian based method in terms of the least squares error but has a very 

poor processing time. This make the Lagrange based parameter estimation 

method to be the second best performing followed by the state vector based 

least squares parameter estimation method. 

 
6.10. Conclusion 
 
Four different methods for the parameter estimation problem of the continuous 

countercurrent ion exchange (CCIX) process bilinear model have been 

presented. 

The first method uses only the measurable output vector of the process. Its 

solution is based on the gradient method of optimizing the error difference 

between the model output and the process measurable output. The method 

considers that states are not measurable. 

The second method is based on the possibility that the full state of the process is 

measureable. In this method, the model parameters are determined using the 

least squares gradient minimization procedure. 

The third method is the direct method where the state vector is known and the 

model parameters are directly calculated using an inverse matrix. 

The fourth method of solution is based on the Lagrangian optimization procedure 

to solve for the unknown parameters and the newly introduced Lagrangian 

vector. 

The direct state vector based method produced the best results by far. In all 

different cases of the sets of experiments performed, the direct method 

performed extremely well. This method will be best in terms of real-time 

implementation of the estimation process. It does not involve a lot of calculation 

as long as its matrices are set correctly; it will produce best estimates in shortest 

time possible. 

The next chapter considers the parameter estimation problem for the CCIX 

nonlinear model. The problem is solved using nonlinear formulation of the 

separation factor between the process’s sodium content (in liquid) and hydrogen 

content (in resin) of the exchanging streams. The chapter proposes a solution 

based on either liquid phase or resin phase. 
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CHAPTER SEVEN 

7. METHOD FOR PARAMETER ESTIMATION (NONLINEAR MODEL ) 

7.1. Introduction 

 
This chapter considers the second case of parameter estimation problem, the 

nonlinearity according to the parameters of the model. This is the second 

development of methods for parameter estimation as proposed in Chapter 5. Due 

to problems experienced with estimating parameters using the linear vector 

models that relate the resin and liquid inter-phase connection, a model that is 

based on only one phase, either liquid or resin is proposed. In this model, the 

relationship between the two ion exchange process phases (liquid and solid) is 

expressed through both phases but using the relevant ionic cation of interest, i.e., 

either sodium or hydrogen, depending on the available data. The advantage of 

this model is that there is not so much ionic inter-phase conversion required for 

changing from one phase to the other using assumed linear relationship. 

The proposed process model directly relates the behaviour of one cation to the 

other using the fractional interchange between the resin and liquid phases. The 

drawback of this model is its nonlinear characteristics according to the model 

parameters. An algorithm for parameter estimation is developed for 

implementation using a MATLAB software program. The simulation results are 

presented at the end of the chapter. 

In the first section of the chapter, the process model for nonlinear parameter 

estimation is developed. Design of nonlinear parameter estimation method using 

direct solution is proposed and simulation results presented. In the second 

section, the design of nonlinear parameter estimation method using Lagrange 

optimization technique is proposed based on matrices presentation.  

 
7.2. Model reformulation for nonlinear parameter es timation 
 
The relationship between sodium in liquid and sodium in resin presented using 

the separation factor is described by (Hendry, 1982a; Hendry, 1982d) as follows: 
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where  
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)(
sin

ty
re

Na  – is the equivalent ionic fraction of sodium ions ( Na ) in the resin phase, 

as seen from the resin phase perspective, 

)(tyNa  – is the equivalent ionic fraction of sodium ions ( Na ) in the resin phase, 

as seen from the liquid phase perspective, 

)(tyH  – is the equivalent ionic fraction of hydrogen ions ( H ) in the resin phase, 

)(txNa  – is the equivalent ionic fraction of sodium ions ( Na ) in the liquid phase, 

)(txH  – is the equivalent ionic fraction of hydrogen ions ( H ) in the liquid phase, 

)(tNa
Hα  – is the separation factor between the two exchanging cations. 

Recalling the general model, based on the case where it is derived for the 

sodium ions: 
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          (7.3) 

where  

h  and H – are resin and liquid holdups in the exchanging solutions, respectively, 

LF  – is the process liquid flow rate, 

)(tFR  – is the process resin flow rate, 

)(, tx nNa  – is the state variable representing the equivalent ionic fraction of 

sodium ions ( Na ) in the liquid phase, in the thn  stage, 

)()1(, tx nNa −  – is the state variable representing the equivalent ionic fraction of 

sodium ions ( Na ) in the liquid phase, in the thn )1( −  stage, 

)(, ty nNa  – is the state variable representing the equivalent ionic fraction of 

sodium ions ( Na ) in the resin phase, in the thn  stage, 

)()1(, ty nNa −  – is the state variable representing the equivalent ionic fraction of 

sodium ions ( Na ) in the resin phase, in the thn )1( −  stage. 

Equation (7.2) is substituted to the main model equation, Equation (7.3) and the 

resulting model is nonlinear according to its parameters. Considering the model 

written for each stage of the column, the separation factor will be different for 

each stage and therefore, every stage is considered independently in the 

following manner; 
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[ ] [ ])()()()()()( ,)1(,,)1(,,, tytyFtxtxFtyhtxH nNanNaRnNanNaLnNanNa −+−=+ +−&& ,  

        Nn ,1=  (7.4) 
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Using the first principle of differentiation, if )(/)()( 21 tftftf =  then the 

differentiation of )(tf  is given by 
2
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where )(,, tNa
nH

Na
nH αα =  

The above equation, Equation (7.6) can be simplified to, 
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Finally, rearranging the expression in Equation (7.8) results in 
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The model is then presented in a discrete form to allow it to be used with a 

computer software program. The solution is based on the first principle of 

gradient determination, 
t

kxkx
tx

∆
−+= )()1(

)(& , where t∆  is the sampling period at 

every k th moment. The model in Equation (7.9) then becomes 
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The following functions of parameters are identified from the complex model in 

Equation (7.10) and presented in a simplified form in the state space 

representation: 
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The unknown variable is the separation factor, )(,, kNa
nH

Na
nH αα =  over the stages 

Nn ,1= . The state variables )(, kx nNa  are known from the measured data of the 

sodium content in the liquid, and the control variable is the resin flow rate )(kFR . 

The state vector is therefore given by T
NNaNaNanNa kx  kx kxkx )](...,),(),([)( ,2,1,, =  

and the control variable is defined based on the process upflow period (T ) in the 

following approach, 
T

hd
kFku R == )()( ; where h  is the resin holdups in each 

stage, and d  is the fractional exchange coefficient relating the exchanging ions 

in the resin and the liquid. The state space equations are defined as follows, 
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In a matrix form the state space representation of the model is as follows, 
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where )(,, kff jiji = , 3,1=i  and 6,1=j  

)()()(, kwkxkx ffNa ==  – is the disturbance input representing the changing 

sodium content in the feed concentration, 

[ ]TNaNaNaNaNaNanNa kxkxkxkxkxkxkx )()()()()()()( 6,5,4,3,2,1,, = . 

In general form, the nonlinear model in Equation (7.15) can be expressed as  
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The model, Equation (7.15), has N  unknown coefficients )(, kNa
nHα , Nn ,1= . The 

measurements for )(, kx nNa , Nn ,1=  are known from the measurement data, this 

means that )1( +kxNa  and )(kxNa  are known. The control variable is also known 
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T

hd
kFR =)( , where 300.2=d , 4906.0=h  and 6378.0=T . When these known 

variables are substituted in the model Equation (7.15), only the values of the 

separation factor Na
nH ,α  are unknown. 

There are two possible approaches to solving the problem for estimation of the 

values of the separation factor, 

1) Direct method of using MATLAB nonlinear function, fsolve in order to 

determine the unknown separation factor values, or 

2) Using parameter estimation method based on a Lagrange’s functional. 

 
7.3. Nonlinear model parameter estimation of the se paration factor 

7.3.1. Nonlinear model parameter estimation of the separation factor – the 

direct method 

The direct method used in solving the nonlinear parameter estimation problem is 

based on a MATLAB software ) ( fsolve  function. The function determines a root 

(zero) of a system of nonlinear equations. The ) ( fsolve  function has a number 

of variations in solving optimization problems. The variations are presented here 

below as given by Mathworks (2001): 

x = fsolve(fun,x0),  starts at x0 and tries to solve the equations described in 

fun. 

x = fsolve(fun,x0,options),  minimizes with the optimization parameters 

specified in the structure options. 

x = fsolve(fun,x0,options,p1,p2,...), passes the problem-dependent parameters 

p1, p2, etc., directly to the function fun. Pass an 

empty matrix for options to use the default values for 

options. 

[x,fval] = fsolve(fun,x0),  returns the value of the objective function fun at the 

solution x. 

[x,fval,exitflag] = fsolve(...), returns a value exitflag that describes the exit 

condition. 

[x,fval,exitflag,output] = fsolve(...), returns a structure output that contains 

information about the optimization. 

[x,fval,exitflag,output,Jacobian] = fsolve(...), returns the Jacobian of a function at 

the solution x. 
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The basic )(  fsolve  function listed here above as x = fsolve(fun,x0,options) was 

used since there were no parameters being passed to th function and the interest 

was simply to find the caluse of unknown parameter Naα  with the display options 

of the method applied and the total number of iterations used. 

 
Optimization options used with )(  fsolve  function 

)(  fsolve  uses a few algorithms, depending on the size of the optimization 

problem (Mathworks, 2001): 

1) the Line-Search method,  

2) the Large-Scale algorithm,  

3) the Medium-Scale algorithm, and  

4) the Large-Scale and Medium-Scale algorithms. 

Optimization options parameters used by fsolve function apply to all algorithms, 

some are only relevant when using the Large-Scale algorithm, and others are 

only relevant when using the Medium-Scale algorithm. The Large-Scale 

algorithm option states a preference for which algorithm to be used. It is only a 

preference since certain conditions must be met to use the large-scale algorithm. 

Some of these optimization options are (Mathworks, 2001): 

1) Diagnostics 

Print diagnostic information about the function to be minimized. 

2) Display 

Level of display. 'off' displays no output; 'iter' displays output at each 

iteration; 'final' (default) displays just the final output. 

3) Jacobian 

If switched 'ON', fsolve uses a user-defined Jacobian (defined in fun), or 

Jacobian information (when using JacobMult), for the objective function. If 

'OFF', fsolve approximates the Jacobian using finite differences. 

4) MaxFunEvals 

Maximum number of function evaluations allowed. 

5) MaxIter 

Maximum number of iterations allowed. 

6) TolFun 

Termination tolerance on the function value. 

7) TolX 

Termination tolerance on x. 
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Input and output arguments of the )(  fsolve  function 

A number of input arguments are used with fsolve function, some have been 

presented above. The most common are fun, options and vector parameters, 

etc., more information on different input arguments can be obtained in Mathworks 

(2001). 

The function returns the following arguments as its outputs: iterations, funcCount, 

algorithm, cgiterations, stepsize, and firstorderopt. These arguments are defined 

respectively to stand for, the number of iterations taken to reach the optimal 

solution, the number of function evaluations, the type of algorithm used, the 

number of Preconditioned Conjugate Gradients method (PCG) iterations (for 

large-scale algorithm only), the final step size taken (for medium-scale algorithm 

only) to reach optimal solution, and measure of first-order optimality (large-scale 

algorithm only) and for large scale problems, the first-order optimality is the 

infinity norm of the gradient. 

 
7.3.2. The procedure for the direct method using th e ) ( fsolve  function 

The procedure for calculation is divided into two according to the main program 

and the solution of the fsolve () function. 

1. The main program: 

1.1) Declare the total number of the system trajectory points K  according 

to the available measurements,  

1.2) Set the initial value of )0(Na
H

Na
H αα = , the variable to be optimized, 

1.3) Declare the required options for minimization procedure using 

()optimset  function as described in Section 7.3.1. 

1.4) Call ) ( fsolve  function to obtain calculated optimal value of the 

separation factor, )(kNa
Hα . 

 
2. The fsolve () function program: 

2.1) Declare the function name for the separation factor, falpha, 

2.2) Initialize the system parameters, h , H , LF , d , the initial values of 

the input )(kFR , the disturbance )(kx f  and the states, 00 )( xkx = , 

2.3) Project the input, the disturbance and the states for the full trajectory, 

Kk ,1= , 

2.4) For each stage calculate the separation factor individually, 

2.4.1) for Kk ,1= , 
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Declare total number of samples 
Kk ,1=  

Declare initial values for the 
separation factor )0(,

Na
nHα  for Nn ,1=  

Set required options for fsolve() 
function using optimset() function: 
‘Display’ (optional), 
‘Iterations’ 
‘Maximum Iterations’ 
‘Maximum Function Evaluations’ 

Call the fsolve() function to calculate 
optimal separation factor 

Plot the obtained optimal separation 
vector for  Kk ,1=  

End 

» calculate nf ,1 , Equation (7.11), 

» calculate nf ,2 , Equation (7.12), 

» calculate nf ,3 , Equation (7.13), 

2.4.2) Calculate the optimal separation factor Na
Hα  and return its value to 

the falpha function. 

3. End calculation. 

 
7.3.3. The flowchart for nonlinear model parameter estimation 

1) The main program flowchart (Figure 7.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.1.  The main program flowchart for nonlinear model par ameter estimation 
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2) The fsolve() function calling routine (Figure 7.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.2.  The fsolve() function calling routine flowchart for nonlinear  model 

parameter estimation 
 

Declare function as named in the 
main program 

Declare process parameters and variables: 
d , LF , h , H , t∆  and )(kx f , )(kx , )(kFR  

Declare measured data )(kxn , Kk ,1=  

Project process variables initial values for the full 
trajectory: )(kFR , )(kx f , )()( kxkx nn = , for Kk ,1=  

For Kk ,1=  

Kk =  
Yes 

No 

Set:  ),()( knxkxn = , 

)1,()1( +=+ knxkxn  

),1()(1 knxkxn +=+  

),()( ,, knk Na
nH

Na
nH αα =  

),1()( 1,1, knk Na
nH

Na
nH += ++ αα  

Calculate sub-functions 1f , 2f  and 3f  
Equations (7.11 – 7.13) 

Calculate optimal separation factor 
*

, )(kNa
nHα  

Declare ),(, kiNa
nHα  vector, Kk ,1=  

End 
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7.3.4. The experiments of the nonlinear model param eter estimation 

problem using the fsolve MATLAB function 

A limited number of experiments were performed under the direct method 

described in Chapter 6 due to complexity in the developed model. Initial values of 

the separation factor, the disturbance input and the sampling period were 

incremented and decremented to observe their influence on the overall 

performance of the process. The criterion for evaluating these experiments is 

based on the fsolve function iteration index and the system processing time. 

 
The first set of experiments of the direct method ( changing the initial 

values of the separation factor) 

The first set of experiments is concerned with changing the initial values of the 

separation factor, Table 7.1. The results of this set of experiments are presented 

in Table 7.2 and Figures 7.3 and 7.4. 

 

Table 7.1: Experiment for changing the system noise at constan t measurement 
noise  

Control 

input 

Disturbance 

input 

Separation 

factor (Ref.) 
Changing initial separation factor values 

)(kFR  )(kx f  [l/min] )0(Na
Hα  Run 1 Run 2 Run 3 Run 4 

1.1088 1.00 1.0 Na
Hα×0  Na

Hα×1.0  Na
Hα×5.0  Na

Hα×0.1  

[ ]TNa
H 0.10.10.10.10.10.1)0( =α  

 

 
Figure 7.3.  The best results of estimated separation factor val ues from Run 1 of 

Table 7.1. 
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Figure 7.4.  The worst case results for the estimated separatio n factor values from 

Run 4 of Table 7.1. 
 
Table 7.2:  Results of the first set of experiments for changi ng the system noise at 

constant measurement noise  
Estimation criterion based on iteration value and t he estimation run time for 

the first set of experiments 

Case 1: (First set of experiments) Iteration value Run time ( calct ) [sec] 

Run 1 892 249.8920 
Run 2  –  47.4210 
Run 3 891 266.9290 
Run 4 892 268.7320 

– means optimizer is stuck in the local minimum 
 

Results and discussion of the first set of experime nts 

The best results are received at separation factor initial conditions of zero, 

0)0( =Na
Hα . At higher values of initial conditions, the system performs poorly in 

terms of the processing time, Table 7.2. The total number of iterations are the 

same for all the runs. 

 

The second set of experiments of the direct method (changing the values 

of the disturbance input) 

The second set of experiments is concerned with changing the value of the 

disturbance input, Table 7.3. The results of this set of experiments are presented 

in Table 7.4 and Figures 7.5 and 7.6. 
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Table 7.3: Experiment for changing the value of the disturbanc e input  

Changing disturbance input Sampling 
period Control input Separation 

factor 

 )(kx f  t∆  [min] )(kFR  [l/min] )0(Na
Hα  

Reference values 435.0=fx  2.7 1.1088 0 

Run 1 055.0=fx  � � � 

Run 2 110.0=fx  � � � 

Run 3 550.0=fx  � � � 

Run 4 755.0=fx  � � � 

Run 5 00.1=fx  � � � 

� means the value stays the same as in the previous mention in the table 
 

 
Figure 7.5.  The worst case results for the estimated separatio n factor values from 

Run 1 of Table 7.3. 
 

 
Figure 7.6.  The best results of estimated separation factor va lues from Run 4 of 

Table 7.3. 
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Table 7.4:  Results of the second set of experiments for chang ing the disturbance 
input value  

Estimation criterion based on iteration value and t he estimation run time for 
the second set of experiments 

Case 2: (Second set of experiments) Iteration value Run time ( calct ) [sec] 

Run 1 891 239.1690 
Run 2 – 66.2090 
Run 3 892 236.0650 
Run 4 892 230.3500 
Run 5 892 229.8500 

– means optimizer is stuck in the local minimum 
 
Results and discussion of the second set of experim ents 

The best and the worst results for the changing disturbance input are presented 

in Figures 7.5 and 7.6. At lower values of the disturbance input, the estimation 

procedure tends to perform poorly and better results are obtained at higher 

values of the disturbance input in terms of processing time, Table 7.4. The first 

stage of the process is greatly affected by the disturbance input since this is 

where this input enters the process; this is demonstrated by the sharp climb of 

the sparation factor in all experiments, Figures 7.5 and 7.6. 

 
The third set of experiments of the direct method ( changing the values of 

the sampling period) 

The third set of experiments is changing the value of the sampling period, Table 

7.5. The results of this set of experiments are presented in Table 7.6 and Figures 

7.7 and 7.8. Though the earlier experiment indicates that results for best results 

are obtained at disturbance of 0.1=fx , this set of experiments considers the 

worse case disturbance because it should indicate the best sampling period at 

the worse case disturbance. 

 
Table 7.5: Experiment of changing the value of the sampling pe riod  

Changing sampling period Disturbance 
input Control input Separation 

factor 

 t∆  [min] )(kx f  )(kFR  [l/min] )0(Na
Hα  

Reference values min7.2=∆t  000.1=fx  1.1088 0 

Run 1 tt ∆=∆  � � � 

Run 2 t∆×5.0  � � � 

Run 3 1.00 � � � 

Run 4 0.50 � � � 

Run 5 t∆×1.0  � � � 
� means the value stays the same as in the previous mention in the table 
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Figure 7.7.  The worst case results of estimated separation fac tor values from Run 1 

of Table 7.5. 
 

 
Figure 7.8.  The best results of estimated separation factor va lues from Run 3 of 

Table 7.5. 
 
Table 7.6:  Results of the third set of experiments for changi ng the sampling period  

Estimation criterion based on iteration value and t he estimation run time for 
the third set of experiments 

Case 3: (Third set of experiments) Iteration value  Run time ( calct ) [sec] 

Run 1 892 251.3550 
Run 2 – 226.1500 
Run 3 892 244.9100 
Run 4 893 246.4920 
Run 5 – 169.4590 

– means optimizer is stuck in the local minimum 
 
Results and discussion of the third set of experime nts 

The experiment results for the changing sampling period’s influence of the 

nonlinear model are presented in the Figures 7.7 and 7.8. The best results in 
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terms of the evaluation criteria were obtained at the sampling period 

min00.1=∆t , Table 7.6. At lower sampling period or faster sampling, the 

estimation procedure performed poorly; this is linked to the measurement data 

used, which was sampled at higher values (Hendry, 1982a). There is an 

unexpected sharp decrement of the estimated values of the separation factor 

5=Naα , the fifth stage around the sampling period 10=k ; though this could not 

be clearly explained, it could be related to data being used and possibly the 

switching of techniques within ) ( fsolve  function. 

 
7.3.5. Remarks on nonlinear parameter estimation us ing the fsolve 

function of MATLAB software 

In calculating the nonlinear parameters of the model using the direct method, 

some problems were initially encountered with the usage of )(  fsolve  function. 

These problems were not experienced when calculating a minimum based on a 

single dimension scalar, but were encountered when vectors were introduced. It 

was later observed that they related to initialization of the unknown variable, and 

the available data. It is recommended that care should be taken when initializing 

the unknown variable, more especially in the mfile. Reliable data also plays an 

important role in the success of the optimization procedure, if unreliable data is 

used, problems may arise. Data applied could have had some effect in some of 

the results that were poor. 

 
7.4. Parameter estimation of the separation factor for the nonlinear 

model – using Lagrange’s estimation technique 

7.4.1. Formulation of the problem 

Mathematically, the problem for estimation of the parameters )(, kNa
nHα , Nn ,1= , 

Kk ,1=  is formulated as follows: Find the values of the separation factor vector 

)(kNa
Hα  such that the criterion, for Kk ,1= : 

[ ] ∑∑
==

−==
K

k
QNameasNa

K

k
QNa kxkxkeJ

1

2

,
1

2
)(ˆ)()(     (7.17) 

is minimized under the model  

)(),(),(),()(),()1( , kxkQkFkGkxkFkx fNa
Na
H

Na
HR

Na
HNa

Na
HNa αααα ++=+  

          (7.18) 

where  

J  – is the minimization criterion for calculating the error, 
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)(keNa  – is the error difference between the measured and the estimated states 

of the system, 

)(ˆ kxNa  – is the vector of the process states calculated using the separation 

factor parameter estimates )(, kNa
nHα  for Nn ,1= , and  

)(, kx measNa  – is the vector of the measured data based on the sodium content of 

the liquid for the period. 

The problem defined by Equations (7.17) and (7.18) is solved using the 

Lagrange’s functional defined by the model equation and the cost function. 
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where  

aL  – is the Lagrange function used for the minimization procedure, 

)(kλ  – is the vector of Lagrange multipliers, Kk ,1=  and NRk ∈)(λ . 

According to the necessary conditions for optimality, the following conditions are 

to be met, for every moment Kk ,1=  

0)(
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       (7.20) 
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        (7.21) 

where  

)(ke Na
Hα

 – is the minimum error of the derivative of the Lagrange function based 

on the separation factor, 

)(keλ  – is the minimum error of the derivative of the Lagrange function based on 

the Lagrange multipliers 

A gradient procedure is used to obtain the optimal values of the unknown vectors 

)(kNa
Hα  and )(kλ . The improved values of the unknown parameters are 

determined in the procedure by, 

)(
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k

L
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H Na

H α∂
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      (7.22) 
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L
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∆+λ=λ λ
+       (7.23) 

where  
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)1(

)(
+j

Na
H kα  – is the improved separation factor at the next iteration of the procedure, 

)()1( kj +λ  – is the improved Lagrange multipliers at the next iteration of the 

procedure, 

)(

)(
j

Na
H kα  – is the separation factor at the current iteration of the procedure, 

)(kjλ  – is the the Lagrange multiplier at the current iteration of the procedure, 

Na
nH ,α∆  – is the gradient step for the separation factor, and 

λ∆  – is the gradient step for the Lagrange multipliers. 

The derivatives Equations (7.20) and (7.21) are expressed from the Lagrangian 

Equation (7.19) as follows: 
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The differentiation of Equation (7.24) is based on Equation (7.14) and contains 

two derivatives for each process stage since each equation of (7.14) contains 

two separation factor variables, Na
nH ,α  and Na

nH )1,( +α , Equation (7.26) and Equation 

(7.27). It is thus necessary to differentiate the Lagrange’s function in a vector-

matrix format. 
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where for 1=n , )()()( )11()1( kxkxkx fn == −−  

The derivative of the Lagrange’s function according to the vector of parameters 

Na
nH ,α  is expressed by the derivatives of the matrices ),( ,

Na
nHkF α , ),( ,

Na
nHkG α  and 

),( ,
Na

nHkQ α  according to the vector of parameters, )(, kNa
nHα . 

These derivatives can be expressed analytically following the rules for 

determination of derivatives of a matrix towards a vector. For this purpose the 

functions )(,1 kf n , )(,2 kf n  and )(,3 kf n  determined by Equations (7.13)–(7.13) 

can be expressed in the following manner: 

),()( ,1,1
Na

nHn kfkf α= , Nn ,1=       (7.28) 

),()( ,2,2
Na

nHn kfkf α= , Nn ,1=       (7.29) 

),,()( 1,,3,3
Na

nH
Na

nHn kfkf += αα , Nn ,1=      (7.30) 

 
Derivatives of the )(kG  matrix 

The derivatives of these matrices are now given and simplified below, 
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The simplified equations for the derivatives of the )(kG  matrix are: 

For the first row, 
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and all other derivatives are zero. 

For the second row, 

0
)(1,

21 =
∂

∂
k

G
Na
Hα

 

)()(

)()()(

)(

)(

)(

2,

22
12

2,

12
22

2,

22
1222

2,

12

2,

2212

2,

22

k

f
f

k

f
f                                                         

k

f
ff

k

f

k

ff

k

kG

Na
H

Na
H

Na
H

Na
H

Na
H

Na
H

αα

αααα

∂
∂

−
∂

∂
−=

=
∂

∂
−

∂
∂

−=
∂
∂−

=
∂
∂

)()()()(

)(

)(

)(

3,

33
12

3,

33
1233

3,

12

3,

3312

3,

23

k

f
f

k

f
ff

k

f

k

ff

k

kG
Na
H

Na
H

Na
H

Na
H

Na
H ααααα ∂

∂
=

∂
∂

+
∂

∂=
∂
∂

=
∂
∂

 

all other derivatives are zero. 
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The fifth row 
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The matrix 
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 is given by Equation (7.32): 
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The terms of the 
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 matrix may be generalized as follows: 
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For the general equations in the derivative of the Lagrange equation with respect 

to the separation factor for n  and 1+n , the following expressions are generated. 

The elements of the derivatives of the matrices are expressed following Equation 

(7.15) using the argument that, 
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Derivatives of the )(kF  matrix 
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The diagonal elements of the matrix )(kF  are represented by the expressions,  

Lnnn FfF ,1, 1−= , Nn ,1=       (7.39) 

The corresponding derivatives are given by 
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For separate elements of the matrix, considering them row by row; the 

derivatives for the off diagonal elements are all zeros: 
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The Lagrange function derivative in Equation (7.24) can be presented using 

matrices as in Equation (7.16). 
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Then the derivative of Equation (7.44) becomes 
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where every derivative is calculated on the basis of 
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Calculation of the )(kQ  matrix derivatives, 
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The Lagrange derivative is given by 
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 (7.44) 

The first condition for optimality according to the Lagrange’s variable is given by Equation (7.25). 
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7.4.2. Algorithm for the parameter estimation of th e separation factor for 

the nonlinear model using the Lagrange method 

 
1) Set all initial process model values, 

2) Read all measured values, K
Na Rkx ×∈ 6)( , 

3) Set initial values of KRk ×∈ 6)(λ , 

4) Set initial values of KNa
H R ×∈ 6α , 

5) Set K
R RkF ×∈ 1)( , 

6) Set gradient method parameters initial conditions, 

7) Calculation of 
)(

)(

k

kLa

λ∂
∂

, Equation (7.25) using values from steps 1)– 3) above: 

7.1) Calculate the function )(,1 kf n , Equation (7.11), K
n Rkf ×∈ 6
,1 )( , 

7.2) Calculate the function )(,2 kf n , Equation (7.12), K
n Rkf ×∈ 6
,2 )( , 

7.3) Calculation of the function )()1(,3 kf n+ , Equation (7.13), K
n Rkf ×

+ ∈ 6
)1(,3 )( , 

7.4) Form the matrix )(kF , Equation (7.16), 

7.5) Forming the matrix )(kG , Equation (7.16), 

7.6) Forming the matrix )(kQ , Equation 7.16), 

7.7) Calculate 
)(

)(

k

kLa

λ∂
∂

, Equation (7.25) and the error )(keλ . 

8) Check the condition for optimality (for stopping calculations), 

8.1) if λλ ε≤)(ke , stop the calculation, λε  is a small positive number used for 

stopping the calculation, and 

9) Calculate the new (improved) value of λ  

)()()()1( kekk jj
λλλλ ∆+=+ . 

10) Calculation of the derivative of the Lagrange 
)(
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k
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Na
H

a

α∂
∂

, Equation (7.24), 

using the improved value of the Lagrange multiplier )1( +jλ  and the guessed 

values of the separation factor, )(kNa
Hα , 
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,
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 for NNnn ,... ;2 ,2  ;1 ,1, = , Kk ,1= , 

10.2) Form the matrix, 
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10.3) Form the )(kQ  matrix 
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10.4) Calculate the derivatives of the matrix 
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, Kk ,1= , 

10.6) Calculate )(
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kL
Na
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a
αα

=
∂
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, Kk ,1= . 

11) Check the condition for optimality, 

11.1) if αα ε<)(ke , then )()(
)()1(

kk
jNa

H

jNa
H αα =+

, 

11.2) if not, calculate the new value of )(kNa
Hα . 

12) Calculate the new value of )(kNa
Hα  

)()(
)()1(

kek
jNa

H

jNa
H αααα ∆−=+

, Kk ,1= . 

13) Check if maximum number of iterations ( M ) has been reached 

13.1) if Mj = , then stop the calculation, 

13.1) if not, continue calculation, 1+= jj , 

14) Plot the calculated parameter values received, KNa
H Rk ×∈ 6)(α . 

 
7.4.3. Flowchart of the nonlinear parameter estimat ion using Lagrange 

method 

Figure 7.9 presents the flowchart of the developed Lagrange method for the 

nonlinear model. 

Due to the complex nature of the developed Lagrange method; this method 

would dictate further complex program development. As it has been seen from 

the direct method, there are a number of issues that need further interrogation 

and that has meant that this method could not be investigated further beyond the 

development stage. It is suggested this part of the work be considered as a 

possible future study where indepth and experimental interrogation would be 

considered with the intention of producing better results or analysis. 
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Figure 7.9.  The flowchart of the nonlinear parameter estimatio n using the Lagrange 
method 

 
7.5. Conclusion 
 
This chapter presented the approach to the solution of the parameter estimation 

problem for the model of the continuous countercurrent ion exchange process 

(CCIX) nonlinear towards its parameters. The nonlinear model is developed 

based on the separation factor between the two core exchanging ions of the 

CCIX process, +Na  and +H . The separation factor defines the behaviour of the 

ion exchange process at equilibrium. Once the model has been developed, 

unknown parameters need to be identified, and two methods of solution are 
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proposed to solve the nonlinear model parameter estimation problem, 1) the 

direct method that uses a MATLAB software program optimization function called 

) ( fsolve , and 2) the Lagrange optimization method. 

Though the experiments of the nonlinear model produced some relevant results, 

there were a number of issues that may need interrogation in the future, more 

especially the usage of the fsolve() function. The usage of this function is further 

complicated by the fact that the design of ion exchange process has stages that 

have a direct influence on one another. Every other stage is influenced by the 

previous stage and these stages are interdependent via the state vector. It 

became impossible to run the experiments considering only one particular stage 

at a time. It also seems that the fsolve() function works best with scalar values 

and since the model being used is vectors/matrix based, the fsolve() function 

could not produce expected result. This was tested with scalar values and 

calculations were quickly produced, but in introducing vectors, the computation 

period was extremely long and in most cases, the optimization procedure had to 

be terminated. 

Conclusion from these observations is that when using fsolve() function, one 

needs to take note of the model structure and decide if it is worth using or not. 

fsolve() function may not have been the best option for the nonlinear model 

developed here due to its complexity. 

Once again, due to the complex nature of the nonlinear model for the CCIX plant 

developed, the Lagrange method source code was not written. It may be 

considered in the furure developments of the project. 

The next chapter, Chapter 8 deals with the state estimation problem solved using 

a bilinear observer design. Once the unknown model parameters have been 

estimated, it is possible to use them in the developed model to determine 

unknown states of the model. A Luenberger type observer is designed and 

solved using pole placement method. 
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CHAPTER EIGHT 

8. METHOD FOR DESIGN OF A BILINEAR OBSERVER 

8.1. Introduction 
 
This chapter deals with the solution of the state estimation problem developed for 

the continuous countercurrent ion exchange (CCIX) process. The states of the 

plant were not measurable due to the plant design, except for the last stage of 

the column. The liquid inflow to the column at the first stage is considered as the 

system disturbance, and the outflow from the last stage is considered as the 

system output variable. The state values are needed for the state space control 

of the process. It is therefore necessary to estimate the unmeasured states. The 

state estimation problem is solved by two different approaches; the observer 

design (with and without the inflow disturbance) and the Kalman filter. This 

chapter, Chapter 8 deals with the observer design solution and the Kalman filter 

solution is covered in the next chapter, Chapter 9. The process model used in 

implementing these solutions is that of a bilinear system as generated in Chapter 

5. 

The observer design method used considers two possible solutions, the solution 

where the disturbance is not included in the model (the system is assumed to 

have no external disturbance); and secondly, the case where the disturbance is 

assumed constant for a long period of time. Another focal point of the method of 

solution is the behaviour of the input signal based on a given input trajectory of 

the system. In the first case, the input signal varies with time (this is more proper 

for a closed loop system that includes an observer design as part of the solution 

for designing a controller of the system); and the second part considers the input 

signal as constant over the given input signal trajectory. 

The chapter covers the following topics: Section 8.2 is the procedure for the 

design of the observer to estimate the unknown system states; the observer 

design for the CCIX bilinear model with and without the system disturbance in 

Section 8.3; determination of the observer matrix based on constant input signal; 

the application of the pole placement method for design of the desired observer 

matrix and the accompanying procedure; the usage of determinants as means of 

solving the pole placement problem in Section 8.6; Section 8.7, 

MATLAB/SIMULINK software programs and the accompanying algorithms as 

part of the solution of the pole placement problem to determine the observer gain 

matrix; and finally the results from the MATLAB and SIMULINK programs, 

Section 8.7. The chapter ends with concluding remarks. 
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8.2. Procedure for design of the observer for solut ion of the state 

estimation problem 

 
The main aim of the design of the state observer is to minimize the error between 

the actual process states )(tx  and the estimated states )(ˆ tx . In designing the 

observer, generally, two conditions must be met: 

1) minimizing the error between the actual state variables and the estimated 

state variables, i.e., 

min)(ˆ)()( →−= txtxte , ... ,2 ,1 ,0=t      (8.1) 

2) the error rate of change (derivative of the error) must stay zero under every 

input and state variables, in some areas determined by the physical limitations of 

the process, Equation (8.3), 

0
)( =

dt

tde
, ... ,2 ,1 ,0=t        (8.2). 

The first condition can be determined for various initial conditions of the state 

variables for the state and for the estimated state. Two cases are considered: 

1) if the estimated state )(ˆ 0tx  at the current computation is such that it 

coincides with the state vector )( 0tx  at some initial moment in time 0t , 

then this coincidence is necessary to be kept for the rest of moments in 

time that follow; 

 

)()(ˆ       ,  allfor      

 )()(ˆ                ,        

0

000

txtxttthen

txtxttatif

=>
==

, ,...3 ,2 ,1=t    (8.3) 

2) if the estimated state )(ˆ 0tx  does not coincide with the initial state )( 0tx , 

i.e., )()(ˆ 00 txtx ≠ , then, the error )(te  has to tend to zero as ∞→t , 

0)](ˆ)([lim)(lim =−=
∞→∞→

txtxte
tt

     (8.4) 

In the considered case of the bilinear process model, unlike in the linear case, 

the error dynamics are not totally independent of the input and the state due to 

the bilinear term (Khalil, et al., 2015; Komatsu & Takata, 2009; Williamson, 

1977). The procedure for design of the observer matrices is developed through 

fulfillment of the conditions (Equation 8.1) and (Equation 8.4). The procedure for 

the design of the observer is divided into two cases, 1) the case where there is 

no disturbance signal 0)( =tx f , and 2) the case where the disturbance signal is 

assumed to be constant for long periods of time, as this will be the most practical 
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case in the real plant operation (Ahmed–Ali, et al., 2017; Trinh, et al., 2006; 

Misawa & Hedrick, 1989). 

The system disturbance is described by )()( 1 txtx nf −= , for 1=n , that is, the 

disturbance signal is the input concentration )(txin  at the first stage of the 

column. 

 
8.3. Observer design for the continuous countercurr ent ion exchange 

(CCIX) process bilinear model without a disturbance  

8.3.1. Derivation of the observer equation 

Consider the case where the model given in Chapter 5, Data and Model 

Reformulation, Equation (5.8), if the model equation has no disturbance vector, 

i.e., 0)( =tx f , the model equation is then represented by 

)()()()()( 1 tBFtFtxBtAxtx RR ++=& , 0)0( 0 == xx    (8.5) 

)()( tCxtz =  

where  

nnRA ×∈  – is system state matrix, 

nmRB ×∈  – is the system state matrix, 

nnRB ×∈1  – is the system matrix, 

nlRC ×∈  – is the output matrix, 

lnRtx ×∈)(  – is the state vector, 

l
f Rtx ∈)(  – is the disturbance vector, 

l
R RtF ∈)(  – is the control input signal, 

lRtz ∈)(  – is the output vector, and 

0)0( xx =  – is the initial state of the system. 

The observer model for the plant model Equation (8.5) is considered to be of the 

form 

)()()()(ˆ)(ˆ)(ˆ 321 tLztFLtFtxLtxLtx RR +++=& , 0)0(ˆ xx =   (8.6) 

)()( tCxtz =  

where  

1)(ˆ ×∈ NRtx  – is the estimated state vector, 

1)0(ˆ ×∈ NRx  – is the initial estimate state vector, 

NNRL ×∈1  – is the state matrix of the observer, 
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NNRL ×∈2  – is the bilinear term matrix of the observer, 

1
3

×∈ NRL  – is the control input matrix of the observer, and 

NRL ×∈ 1  – is the output (the observation) matrix. 

In this first case, the process of the observer design involves determination of the 

matrices, 1L , 2L , 3L , and L  in such a way that the two error requirements, 

Equations (8.2)–(8.4) representing the error between the state and the estimated 

state are met. The derivative of the error equation is determined by, 

[ ] 0)(ˆ)()( =−= txtxtex &&&        (8.7) 

[ ]
[ ] 0)()()()(ˆ)(ˆ

)()()()()(

321

1

=+++−
−++=

tLztFLtFtxLtxL                         

tBFtFtxBtAx te

RR

RRx&   (8.8) 

=








−+
+−+−−

=⇒
)()(

)()(ˆ)()()(ˆ)()(
)(

3

211

tFLB                                                                      

tFtxLtFtxBtxLtxLCA
txe

R

RR
x&  

=








−+−
−−+−−−

=  
)()()())(                                                       

)(()()())()(()()(

3

211

tFLBtFte

txLtFtxBtetxLtxLCA

RR

R

0
)()(                                                                          

)())(()()()()()(

3

21211 =








−+
++−−+−−

=
tFLB

tetFLLtFtxLBtxLLCA

R

RR  (8.9) 

Conditions (8.2) and (8.3) are applied to Equation (8.9). The observer will 

produce the exact state estimate if 0)( =te  and 0)( =tex& . In order for )(tex&  to be 

equal to zero, all terms on the right side of Equation (8.9) have to be equal to 

zero. 

From the two required conditions for the error dynamics, the following equations 

can be derived from the Equation (8.9), considering each term for the Equation 

(8.9) to be zero. In solving this equation, )(tx  cannot be zero which means 

that )( 1LLCA −−  must be zero; the bilinear term )()( tFtx R  can also not be zero 

which means that )( 21 LB −  must be zero; )(tFR  also, cannot be zero and 

therefore )( 3LB −  must be zero; and finally the error )()( tete x=  must be zero 

which means that the term ))(( 21 tFLL R+  cannot be zero, Equations (8.10)–

(8.13). The first three equations can be solved using the first condition, Equation 

(8.2) and the last equation can be solved using the second condition, Equation 

(8.3). 

01 =−− LLCA         (8.10) 

021 =− LB         (8.11) 
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03 =− LB          (8.12) 

0
21  ,    

, 0)(
ttt

tFLL R =∀


≠+

      (8.13) 

The solutions to the Equations (8.10) to (8.13) are given as: 

12 BL =          (8.14) 

BL =3          (8.15) 

LCAL −=1         (8.16) 

And from equations (8.13) and (8.16)  

0)())(( 2 →×−+ teLCAtFL R       (8.17) 

according to condition Equation (8.3). 

In order to determine the 1L  state observer matrix, firstly, the observer output 

matrix L  must be obtained. L  is determinable from the second condition where 

0)(])([ 1 =×−+ teLCAtFB R , as the error )(te  and the rate of change of the error 

)(te&  have to be zero for every moment of time. For this condition the requirement 

is that; 

[ ] 0)(ˆ)()( =−= txtxte &&&  

[ ]
[ ]=+++−

−++=
)()()()(ˆ)(ˆ

)()()()()(

321

1

tLztFLtFtxLtxL                                         

tBFtFtxBtAxte

RR

RR&
 (8.18) 

0
)()(                                                                

)()(ˆ)()()(ˆ)()(

3

211 =








−+
+−+−−

=
tFLB

tFtxLtFtxBtxLtLCxtAx

R

RR  

Using Equations (8.15)–(8.17), Equation (8.18) can be rewritten as 

=








−+−+
+−−−

=
)()()())(ˆ)((

)(ˆ)()()(
)(

11 tFBBtFtxBtxB                                

txLCAtxLCA
te

RR

&  

0))(ˆ)(()())(ˆ)()(( 1 =−+−−= txtxBtFtxtxLCA R    (8.19) 

The error derivative from the Equation (8.19) can be expressed as follows 

[ ]
[ ] 0)()(

))(ˆ)(()()(

1

1

=+−=
=−+−=

teBtFLCA          

txtxBtFLCAte

R

R&
     (8.20) 

where )]([ 1 tFBLCAA Rerr +−=  – is the error matrix in Equation (8.20). 

Equation (8.20) has to converge to zero and the requirement to satisfy this 

condition is that the term ])()[( 1BtFLCA R+−  is to be a stable constant matrix, 

i.e., real part of the poles of the characteristic equation of the error matrix in 

Equation (8.20) must be negative. After determining the poles of the desired 
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characteristic equation of the observer it becomes possible to determine the 

value of L , which at this stage is still unknown. 

This bilinear case differs from the linear case in that the coefficients of the 

observer have to be calculated for every moment of time in real-time because the 

value of the input )(tFR  will change with time, depending on the input 

concentration of the process. This means that the condition for stability has to be 

determined for every moment of time. This will result in increased time for 

calculation of the estimates a bit. 

The final equations of the observer are 

)()()(ˆ)(ˆ)()(ˆ 1 tBFtFtxBtxLCAtx RR ++−=& , 00 ˆ)(ˆ xtx =    (8.21) 

or 

)()()()(ˆ)(ˆ)(ˆ 1 tLztBFtFtxBtxAtx RR +++=& , 00 ˆ)(ˆ xtx =    (8.22) 

The Equations (8.20) and (8.22) are used further for simulation of the observer 

behaviour under various control input values. The results are given in the last 

section of this chapter, Section 8.6. 

 
8.3.2. Procedure for design of the observer gain ma trix L  

The procedure for design of the observer matrix L  is built on the basis of the 

pole placement method using Equation (8.20) and following the requirement that 

the error matrix ])([ 1BtFLCAA Rerr +−=  has to be a stable matrix. Two cases 

are considered: 

1) the case where the input signal varies with time, this is more of the 

practical approach, i.e., values of the control input coming from the 

controller will vary based on the process behaviour at the time; and 

2) the case where the input is considered constant in time. 

 
8.3.3. Determination of the gain matrix L  based on every moment of time 

calculations with varying input signal 

1) Trajectory of the control (input) is given, )()( tFtu R= , ftt  ..., ,2 ,1 ,0=  

2) The observer error matrix [ ])()( 1 tFBCtLAA Rerr +−=  is derived for every 

moment of time fttt :0= , where )(tL  is the unknown observer matrix at 

every moment of time based on )(tFR  value; )(tL  is considered a constant 

matrix for each separate moment of time, as follows: 

2.1) Specify the input signal )()( tFtu R=  
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2.2) Derivation of the determinant of the observer error matrix errA  given 

by errerror AsIs −=)(det  and formation of the characteristic equation 

of the observer, 

2.3) Calculation of the observer matrix )(tL  

2.3.1) Determination of the desired poles and formation of the desired 

characteristic equation, )(det sdes  

2.3.2) Comparison of the two characteristic equations and calculation of 

the observer matrix consttL =)(  for ftt  ,...,2 ,1 ,0=  

 
8.3.4. Determination of the gain matrix L  based on constant input signal 

The same algorithm as from Section 8.3.2.1 is used, but in this case the process 

input )(tFR  is constant, i.e., constFtu R ==)(  for ftt ,...,2 ,1 ,0= . The 

procedures for calculation of the observer matrix are described in Section 8.6. 

MATLAB/SIMULINK software programs have been developed for both cases and 

the program listing presented in APPENDICES D1–D3. 

 
8.4. Observer design for the CCIX (continuous count ercurrent ion 

exchange) process bilinear model in the presence of  a constant 

disturbance 

 
The second case considered for solving state estimation problem for the 

continuous countercurrent ion exchange (CCIX) process is the case where the 

system disturbance is included in the model equation. In this model formulation 

one of the main assumptions is that the process experiences a piecewise 

constant disturbance. The disturbance is considered as the change of the 

concentration of the liquid that enters the first stage (the most bottom stage) of 

the process column in the CCIX. This disturbance has been modelled as: 

)()( txtx inf =         (8.23) 

In this case, the disturbance is no longer zero. The process model equation now 

becomes 

)()()()()()( 1 tWxtBFtFtxBtAxtx fRR +++=&     (8.24) 

The observer equation for the process model given in Equation (8.24) is 

described by  

)()(ˆ)()()(ˆ)(ˆ)( 4311 tLztxLtFLtFtxBtxLtx fRR ++++=&    (8.25) 
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Based on the condition for error dynamics of the observer estimated states and 

the model states, Equations (8.24) and (8.25), the condition of zero error for the 

rate of change of the error as expressed by Equation (8.7) 0)( →te&  simplifies to 

[ ]
[ ])()()()()(ˆ)(ˆ

)()()()()()(

4321

1

tLztxLtFLtFtxLtxL                              

tWxtBFtFtxBtAxte

fRR

fRR

++++−

−+++=&
 (8.26). 

Generally the output )(tz  can be expressed using the output matrix and state 

variables as )()( tCxtz = . This equation is then substituted in the error Equation 

(8.26). The resulting error equation is given by 

[ ] [ ] [ ]
[ ])()()(ˆ)(ˆ

)()()()()()()()(

421

13

txLtFtxLtxL                               

tWxtFtxBtFLBtxLCAte

fR

fRR

−−−+

+++−+−=&
 (8.27) 

Given that the error difference is defined by )(ˆ)()( txtxte −= ; this means that 

)()()(ˆ tetxtx −= . The Equation (8.27) can therefore be expressed as 

[ ] [ ] [ ]
[ ])()()()()()()()(          

)()()()()()()()(

442211

13

teLtxLtFteLtFtxLteLtxL

tWxtFtxBtFLBtxLCAte

fRR

fRR

+−+−+−+

+++−+−=&
(8.28) 

The first condition for observer design states that 0)( →te  for ∞→t  and 

therefore the Equation (8.28) is simplified to 

[ ] [ ] [ ]
[ ] [ ] )()()()(                                          

)()()()()()()()(

4214

2131

teLtFLLtxLW

tFtxLBtFLBtxLLCAte

Rf

RR

+++−+
+−+−+−−=&

 (8.29) 

The second condition for the error dynamics requires that 0)( =te&  and then it 

follows that each term in Equation (8.29) must be zero for this condition to be 

true. From this requirement the following equations, Equations (8.30) to (8.33) 

can be generated. It is important to note that )(tx  and )(tFR  cannot be zero in 

this case for the condition to hold, and therefore 

0)( 1 =−− LLCA         (8.30) 

0)( 3 =− LB         (8.31) 

0)( 21 =− LB         (8.32) 

0)( 4 =− LW         (8.33) 

From Equations (8.30) to (8.33), the observer matrices are determined, where 

LCAL −=1         (8.34) 

12 BL =          (8.35) 

BL =3          (8.36) 



 

307 

WL =4          (8.37) 

In the same fashion as the case where the disturbance is not considered, the 

observer synthesis is reduced into the choice of the observer matrix L  as clearly 

seen from the Equations (8.35) to (8.37). In designing the observer, one has to 

make sure that the observer poles are on the far left section in a complex plane 

for stability. The observer matrix, matrix L  needs to be determined from the 

second condition by substituting the matrices backwards using Equations (8.35) 

to (8.37). 

[ ]
[ ])()()()()(ˆ)(ˆ)(

)()()()()(

0
)(ˆ)(

)(

1

1

tLCxtWxtBFtFtxBtxLCA              

tWxtBFtFtxBtAx          

dt

txd

dt

tdx
te

fRR

fRR

++++−−

−+++=

==




 −=&

 (8.38) 

[ ] [ ]
[ ] [ ] 0)()()()(

))()(ˆ)()(()(ˆ)()()()( 11

=−+−+
+−+−−−=

tWxtWxtBFtBF                           

tFtxBtFtxBtxLCAtxLCAte

ffRR

RR&
 (8.39) 

[ ] [ ]
[ ] 0))()((

)(ˆ)()()())(ˆ)(()( 11

=−+
+−+−−=

txtxW                                                           

txBtFtxBtFtxxLCAte

ff

RR&
  (8.40) 

[ ] [ ] 0))(ˆ)(()())(ˆ)()(()( 1 =−+−−= txtxBtFtxtxLCAte R&    (8.41) 

[ ] [ ] 0)()()()()()()( 11 =+−=+−= tetFBLCAteBtFteLCAte RR&   (8.42) 

where 1RFR ∈  – is a constant input, 

For Equation (8.42) to converge to zero, the requirement is that the term 

)()( 1 tFBLCA R+−  must be a stable matrix. From this requirement,  

1) the entries for the observer matrix L  can be determined,  

2) but again, for every moment of time in which it is accepted that the 

matrix  

constFBLCA R =+− ])[( 1       (8.43) 

Comparison of the Equations (8.21) and (8.43) shows that the condition for 

stability of the observer for both cases, – without or with a presence of the 

constant system disturbance is the same, and this allows the same design 

method of the observer gain matrix L  to be used for both cases. 

The equations of the observer for the case with a constant disturbance are 

Equation (8.44) or Equation (8.45) 

)()()()()(ˆ)(ˆ)(ˆ 1 tLztWxtBFtFtxBtxAtx fRR ++++=& , 00)( xtx =   (8.44) 

)()()(ˆ)()(ˆ)()(ˆ 1 tWxtBFtxtFBtxLCAtx fRR +++−=& , 00 ˆ)(ˆ xtx =   (8.45) 
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Simulation based on the equations are performed and described in the results 

section of this chapter, Section 8.9., and the associated software programs used 

are presented in APPENDIX D.1–D.3 The same procedure for calculation of the 

observer gain matrix L  as used in the case of no disturbance, is also used for 

the solution that considers the disturbance with a varying and a none varying 

input signal.  

From these interpretations, the observer design problem can be summarized as 

a problem of choosing or selecting the observer gain matrix L  such that the error 

rate dynamics goes to zero (Conticelli & Bicchi, 2000; Raghavan & Hedrick, 

1994). Firstly, the developed MATLAB software program is used to find the 

model matrices and then the SIMULINK environment used to determine the error 

rate dynamics based on matrices values obtained from MATLAB workspace.  

 
8.5. Pole placement method for design of the observ er matrix 

8.5.1. Procedure for design of the observer gain ma trix 

The procedure for design of the matrix L  is built on the basis of the pole 

placement method. The solution for the procedure is given in two folds, 1) the 

case where the input is assumed constant for the entire process time trajectory, 

and 2) the case where the input continually changes over time over the full 

trajectory. The more realistic approach into the real plant behaviour is the one of 

the assumption that the input is varying in time as the plant operation progresses. 

The solution is derived from the stability requirement of the error rate dynamics, 

Equation (8.42). This requirement translates to the pole placement procedure for 

system stability, i.e., the real parts of the poles of the characteristic equation of 

the observer error must be on the negative side of the Cartesian plane, but not 

far from the imaginary line. This is the reason why the solution is also considered 

the pole placement method. This method requires that the observer error matrix 

be calculated every moment in time, and in real-time, because the value of the 

input signal will be also changing at every moment. Two characteristic equations 

of the observer are needed for the solution, one from Equation (8.43) and the 

desired one, Equations (8.47) and (8.48) respectively. 

[ ] errRerr AsIBtFLCAsIs −=+−−= 1)()(det    (8.46), 

0)()(det

    0))...()(()(det 21

=+=

=+++=
N

des

Ndes

pss

orpspspss
    (8.47) 

where  

s  – is the Laplace variable, 
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[ ] 1
21 ... ×∈= NT

N RlllL  - are the elements of the observer gain matrix, 

Nppp ,...,  , 21  – are the desired poles for every stage of the process, 

p  – is the desired pole, of equal value for all column stages, and 

])([ 1BtFLCAA Rerr +−= . 

The desired characteristic equation is solved by placing all the N  necessary 

poles at the negative side of the Cartesian plane, Equation (8.47) and then 

determining the corresponding polynomial equation which is to be equated to the 

characteristic Equation (8.46) solved using the determinant derivation. 

 
8.5.2. Derivation of the determinant equations 

The observer error characteristic equation, Equation (8.46) is derived for the 

considered case of the ion exchange process as follows: 
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 (8.48) 

where 6,1  , =il i  – are the parameters of the observer matrix L  and these 

matrix elements are unknown. 

In evaluating Equation (8.48), the resulting simplified expression of the )(det serror  

is a 66×R matrix given by Equation (8.49), 

[ ]{ } 66det)(det ×∈−= RAsIs errerror       (8.49) 
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where 

)(0000

)(000

00

00

00

000

)(det

6666665
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443

334333332

223222221

1121111

lgasa

gl

la

lggasa

lggasa

lggas

serr
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−+−
−+

=

=

OO

OO

 

with iiRii btFg )(= , Ni ,1= , i.e., 6,1=i , 

ijRij btFg )(= , 5,2=j  

The resulting determinant can be represented as a sum of sub-determinants 

considering its first row which further aids to simplifying the calculation, 

Equations (8.50) and (8.51), 

)(det)(det)(det)(det)(det 621 tssss obserr =++=    (8.50) 
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 (8.52) 
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 (8.53) 

Derivation of the determinant of the observer error matrix continues in the same 

fashion until all sub-determinants are calculated, )(det1 s , )(det2 s  and )(det6 s , 
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and the characteristic equation of the observer is obtained. The sub-determinant 

equations are presented considering their first rows as follows: 

[ ])(det)(det)(det)(              

)()(det

1621223112222

11111

slsgsgas

gass

×+×−×−+×
×−+=

 (8.54) 

[ ])(det)(det)(det)(det 26222232121122 slsgsags ×+×−×=   (8.55) 

[ ])(det)(det)()(det            

)(det

63236222226121

16

sgsgassa

ls

×+×−+−×−×
×=

 (8.56) 

This procedure is continued until one equation written according to the powers of 

the Laplace variable is obtained. This final equation is used for calculation of 

)(tL  at every moment of time ftt ,0= . The desired characteristic equation is 

calculated for a real negative desired pole 5=ip , Ni ,1= . Determination of this 

equation is via a MATLAB software system functions, simplify( ) and expand( ) 

functions, 









= )ce( expandp

)N)^p+((s simplify = ce

s   syms

      (8.57) 

where ce stands for characteristic equation. 

After evaluating both characteristic equations, they are equated to determine the 

values of )(tl i , ftt ,0=  for Nil i ,1 , = . 

6 ,1  ),(det                     

15625187509375250037530)(det 23456

==

=++++++=

il

sssssss

iobs

des
 (8.58) 

Calculation of the elements of )(tL  can be based on mathematical derivation or 

numerical solution of Equation (8.58). 

 
8.5.3. Algorithm for the observer design for the CC IX using the pole 

placement method for determination of the L  matrix 

The algorithm for calculation of the observer gain matrix based on the derivation 

in Subsection 8.5.2 is given by Figures 8.1 and 8.2. Its procedure is as follows: 

1) Give a trajectory of fR tttF ,0),( = , 

2) Select the input signal )(tFF RR = – for a given time fttt ,0, =  



 

312 

3) Form the mathematical expression of the determinant of the observer 

error ),(det serror with unknown observer gain matrix L , 

[ ]T
N tltltltL )(),...,(),()( 21= , 

4) Form the mathematical expression of the desired determinant )(det sdes , 

5) Compare the two determinants and calculate the gain matrix elements, 

Ni  tl i ,1),( = . 

The solution to step 5) can be obtained numerically or analytically, e.g., using 

) ( fsolve  function in MATLAB software program provides a numerical solution. 

The thesis follows the analytical technique of back substitution between the two 

characteristic equations. The derivation is expressed in Figure 8.3. 

 
8.6. Algorithm and MATLAB software programs develop ed for 

calculation and verification of the observer matrix  L  

8.6.1. Simulation procedure 

The developed algorithms for design of the observer are used, first to calculate 

the observer matrices, and second, to validate the performance of the observer 

in a case of the closed loop system that consists of the models of the process, 

the observer and a controller. These tasks are performed by the algorithms 

developed in MATLAB software implementing the following simulation procedure 

APPENDIX D1–D3. Steps for the simulation follow three stages: 

Stage I  – MATLAB workspace program for determining model parameters and 

determinants 

1) Process model parameters are obtained using provided 

experimental data, 

2) The observer error determinant is calculated following the 

procedure in Section 8.5.2, 

3) The desired determinant is calculated, 

4) Then the observer gain matrix )(tL  unknown entries il , Ni ,1=  

are derived using determinant of the observer error, and the 

desired one. 

Stage II  – SIMULINK program is used to simulate the closed loop system, 

1) The values of the observer matrix L  are sent to the SIMULINK 

environment, Figure 8.3, 

2) The simulation is run for the given period of time, 
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3) The error and the derivative of the error of the observer are 

calculated, 

4) If the errors are greater than some given small numbers, 1ε  and 

2ε , the procedures in stage I and stage II are repeated, 

5) If the errors are acceptable the procedure stops and the results 

can be plotted. 

Stage III  – MATLAB workspace program used for extracting trajectory values 

and plotting these values: 

1) This program is used to extract all trajectory data points as 

calculated in the Stage II using SIMULINK, 

2) Trajectories are displayed as shown in Figure 8.4–Figure 8.21. 

The proposed algorithm for design, Figure 8.1 can be used for real-time control 

too, when the control action is changing, but having constant values in the 

sampling periods for the calculation of the observer gain matrix L , this is 

demonstrated by Figure 8.3. 

In the real-time case, the algorithm is run for every new value of the control 

signal and the obtained value of L  is directly used for calculation of the 

estimated state values. In turn, these values are used for calculation of the 

control action. The structure of the algorithm is similar as in Figure 8.1., but the 

difference is that the real-time system replaces the SIMULINK block, Figure 8.2, 

and the calculated observer gain matrix is directly used to produce the real-time 

state estimates.  

The MATLAB software program developed for process simulation is in three 

stages; the first part is used to calculate the model parameters based on the 

experimental data, and to calculate the observer matrix )(tL . Once observer 

model parameters are determined, the second phase of the program is to 

simulate the system error based on specified control input value for the full 

trajectory of the system until the error rate dynamics requirement is met. 

SIMULINK environment in the MATLAB software is used for this part, Figure 8.3. 

From the SIMULINK trajectories, values of the state vector and the estimated 

state vector are generated. The program is then run at different input signals, and 

estimated state vector initial conditions as shown in the results section. A few 

runs are presented in the results section. The last part of the software developed 

is the MATLAB program in MATLAB environment used to extract both the state 

vectors from the SIMULINK environment. The same program is used to plot the 

two trajectories.  
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Figure 8.1. Algorithm for the design process  
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Figure 8.2.  Algorithm for the real-time observer design process  

 

8.7. Application of the design to the continuous co untercurrent ion 
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bilinear model of the continuous countercurrent ion exchange (CCIX) process. 

The results are based on normalized data of a six stages CCIX process column. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3. Simulation diagram of the process and observer syst em 
 
Process parameters were calculated for the input flow rate hmFL /2000 3= , the 

upflow period of hT )60/17(= , resin liquid constant ratio 3/2=d , the liquid 

holdups l809.42  and the resin holdups of l93.32 . In the diagram the input signal 

)(tFR  is represented by )(tu . Original data measured from the University of 

Cape Town (UCT) project [Hendry, 1982a] is presented in Table 8.1. 

 
Table 8.1: CCIX data showing concentration in each stage of th e cation column as 

per UCT project (Hendry, 1982a & Henry, 1982b) 
Stage H+ fractional change in liquid concentration using data obtained from 

UCT Project (Hendry, 1982b ,Volume 4) 
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 
0.221 0.000 0.000 0.000 0.000 0.000 
0.577 0.140 0.040 0.000 0.000 0.000 
0.730 0.314 0.066 0.004 0.000 0.000 
0.847 0.523 0.184 0.035 0.003 0.000 
0.920 0.656 0.295 0.082 0.020 0.000 
0.936 0.766 0.454 0.168 0.052 0.001 
0.968 0.842 0.601 0.277 0.113 0.024 
0.974 0.886 0.690 0.361 0.167 0.033 
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0.981 0.900 0.758 0.440 0.207 0.063 
0.989 0.933 0.804 0.522 0.340 0.124 
0.988 0.958 0.877 0.698 0.474 0.167 
0.997 0.963 0.881 0.784 0.547 0.233 
1.000 0.982 0.951 0.899 0.780 0.482 
1.000 0.974 0.965 0.931 0.860 0.539 
1.000 0.991 0.972 0.966 0.899 0.672 
1.000 0.994 0.981 0.966 0.905 0.779 
1.000 0.993 1.000 0.991 0.975 0.940 
1.000 0.993 0.988 0.991 0.973 0.972 

 

This data set shows the concentration in fractional change of sodium ions, +H  as 

determined from the equation, 

++

++

−
−

=
initialfinal

initialn
n

FIHFI

HFIHFI
FC

....

....
     (8.59) 

where  

nFC  – is the fractional change (Hendry, 1982b) 

+
nHFI ..  – ion fraction of +H  ions of the current measurement at the thn  cycle 

from step change moment (Hendry, 1982b), 

+
initialHFI ..  – is the initial ion fraction of the +H  ions in the stage (Hendry, 1982b), 

+
finalHFI ..  – is the final ion fraction of the +H  ions in the stage (Hendry, 1982b). 

Calculation of values for model matrices are based on data from the UCT project, 

Table 8.1., which were obtained using a six stage column ion exchange process 

(Hendry, 1982a; Hendry, 1982b). MATLAB software programs were run using the 

values to determine the unknown process parameters and were calculated to be: 
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[ ]T B 3500.00500.01000.01000.00500.00400.0= , 

[ ]T W 000004065.26−=  and [ ]T C 100000=  

The observer gain matrix evaluated with the constant input signal value and 

model parameters from the model matrices is shown in Equation (8.61). 

[ ]TL 0016.0020.0024.0235.1975.1782.0101 5×=   (8.60) 

 
8.7.2. Evaluation of the observer performance 

Multiple simulation sets were performed with different input signal values, initial 

conditions for the observer and the same initial conditions for the process, as per 

Table 8.2. A selected sample of the runs is presented here. The steps followed in 

the simulation procedure are also presented. 

 
Table 8.2: Input and initial conditions values used in traject ory runs for the 

process and the observer  
 Trajectory for process states and observer 

estimated states 

Run 1 Run 2 Run 3 Run 4 Run 5 

Input value 0.0 1.0 5.0 10.0 20.0 

Process initial conditions 1.0 1.0 1.0 1.0 1.0 

Observer initial conditions      

Set 1 – 1.0 – 1.0 – 1.0 – 1.0 – 1.0 

Set 2 0.0 0.0 0.0 0.0 0.0 

Set 3 0.5 0.5 0.5 0.5 0.5 

Set 4 1.0 1.0 1.0 1.0 1.0 

Set 5 10.0 10.0 10.0 10.0 10.0 

Set 6 20.0 20.0 20.0 20.0 20.0 

 
8.8. Results and discussion 
 
The following graphs show the behaviour of the process states (from the model) 

versus that of the estimated states (observer) based on SIMULINK simulation 

runs with a constant input signal of 1.0, constant initial conditions of the states of 

the model at 1.0, and the changing observer initial conditions of -1.0, 0, 1/2, 1.0, 

5.0 and 10.0 for states; and they are the same for every stage of the column. 

The observer has shown that it converges within a reasonable time and 

maintains the error rate close to zero for the rest of the observed period, Figures 

8.4–8.21, Dube & Tzoneva (2016). The error (Figures 8.5, 8.8, 8.11, 8.14, 8.17, 

8.20), and error rate (Figures 8.6, 8.9, 8.12, 8.15, 8.18 and 8.21) are also 

presented. The observer has also shown to be very sensitive to the input signal. 

The input signal values should also be kept within normalized values (0–1.0), 
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otherwise overshoot will be experienced in some process stages. The observer 

gain matrix values tend to be very high; this could be associated with the 

determinants calculation that involves a very large number of computations. 

 

 
Figure 8.4.  Model states and estimated states for observer init ial conditions of –1.0 

and model initial conditions of 1.0 using a constan t control input of 1.0.  
 

 
Figure 8.5. Error between process states and estimated states f or observer initial 

conditions of –1.0 and model initial conditions of 1.0 using a 
constant control input of 1.0. 
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Figure 8.6. Rate of change of the error for observer initial co nditions of –1.0 and 

model initial conditions of 1.0 using a constant co ntrol input of 1.0. 
 

 

 
Figure 8.7. Model states and estimated states for observer init ial conditions of 0.0 

and model initial conditions of 1.0 using a constan t control input of 1.0. 
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Figure 8.8. Error between process states and estimated states f or observer initial 

conditions of 0.0 and model initial conditions of 1 .0 using a 
constant control input of 1.0. 

 

 

 
Figure 8.9. Rate of change of the error for observer initial co nditions of 0.0 and 

model initial conditions of 1.0 using a constant co ntrol input of 1.0. 
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Figure 8.10. Model states and estimated states for observer init ial conditions of ½ 

and model initial conditions of 1.0 using a constan t control input of 
1.0. 

 

 
Figure 8.11. Error between process states and estimated states f or observer initial 

conditions of ½ and model initial conditions of 1.0  using a constant 
control input of 1.0. 
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Figure 8.12. Rate of change of the error for observer initial co nditions of ½ and 

model initial conditions of 1.0 using a constant co ntrol input of 1.0. 
 

 
Figure 8.13. Model states and estimated states for initial condi tions of 1.0 for both 

the observer and model using a constant input signa l of 1.0. 
 
In Figure 13, in the same fashion for 11 ~xx = , 22 ~xx = , etc., 44 ~xx =  and 

55 ~xx = . 
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Figure 8.14. Error between process states and estimated states f or observer initial 

conditions of 1.0 and model initial conditions of 1 .0 using a constant 
control input of 1.0. 

 

 
Figure 8.15. Rate of change of the error for observer initial co nditions of 1.0 and 

model initial conditions of 1.0 using a constant co ntrol input of 1.0. 
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Figure 8.16. Model states and estimated states for observer init ial conditions of 5.0 

and model initial conditions of 1.0 using a constan t input signal of 
1.0. 

 

 
Figure 8.17.  Error between process states and estimated states f or observer initial 

conditions of 5.0 and model initial conditions of 1 .0 using a constant 
control input of 1.0. 
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Figure 8.18. Rate of change of the error for observer initial co nditions of 5.0 and 

model initial conditions of 1.0 using a constant co ntrol input of 1.0. 
 

 
Figure 8.19. Model states and estimated states for observer init ial conditions of 

10.0 and model initial conditions of 1.0 using a co nstant input signal 
of 1.0. 
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Figure 8.20. Error between process states and estimated states f or observer initial 

conditions of 10.0 and model initial conditions of 1.0 using a constant 
control input of 1.0. 

 

 
Figure 8.21. Rate of change of the error for observer initial co nditions of 10.0 and 

model initial conditions of 1.0 using a constant co ntrol input of 1.0. 
 
These results are based on a system with constant observer gain matrix L . It 

can be clearly seen from Figures 8.4–8.21 that the observer fully tracks the 

system and converges at a very short time period around 30 cycles; the ion 

exchange process is a very slow process. In the case where the observer and 

the system have the same initial conditions, the observer converges at a shorter 

period even, just below 20 cycles. This case also shows that the observer is 

stable. These simulation results clearly show that the observer is performing very 

well. At higher observer initial conditions, compared to that of the system (Figure 
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8.4); the observer seems to be unstable in its tracking but does converge in time 

compared to other cases where the initial conditions are not far from that of the 

system (Dube & Tzoneva, 2016). 

The system response times have also been considered over the changing input 

signals versus different initial conditions, and these cases are presented by the 

Tables 8.3–8.5. The system responses of the rise time (Tr ), the delay time (Td ) 

and the settle time (Ts) for the first, the third and the sixth stages of the 

considered CCIX plant are presented. Both the model and the observer 

(estimated) system responses are presented. 

The rise time for almost all data sets per changing input signal seem to be the 

same time irrespective of the observer initial conditions, and this indicates the 

stability of the observer. In cases where the values are shown as #NA means 

that the rise time could not be determined. 

 
Table 8.3: Rise time (Tr) vs. observer changing initial condit ion  

Process rise time vs. observer changing initial conditions 

Input 
Signal 

Observer 
Initial 

Condition 

State x1 State x3 State x6 

1x  1x̂  3x  3x̂  6x  6x̂  

0 -1 9.319 9.319 9.170 9.170 11.42 1.622 
0 0 8.846 0 8.940 0 11.42 #NA 
0 0.5 8.079 8.079 8.993 8.993 11.42 1.622 
0 1 4.061 4.061 4.625 4.625 4.237 4.237 

 
1 -1 9.351 9.290 9.331 9.015 11.56 1.624 
1 0 8.870 8.814 9.100 10.22 11.57 #NA 
1 0.5 8.111 7.138 9.130 9.264 11.53 8.831 
1 1 4.078 4.078 4.693 4.693 4.294 4.294 

 
5 -1 9.483 9.173 10.07 8.638 12.13 1.633 
5 0 8.964 8.823 10.02 10.85 12.21 #NA 
5 0.5 8.238 8.380 9.847 11.43 12.08 9.550 
5 1 4.145 4.145 4.964 6.309 6.300 6.309 

 
10 -1 9.651 9.026 11.61 8.249 12.91 1.643 
10 0 9.236 8.841 11.58 10.69 13.13 #NA 
10 0.5 8.413 8.850 11.47 #NA 12.96 10.75 
10 1 4.231 4.231 5.400 5.400 6.728 6.724 

 
20 -1 10.04 8.863 #NA 7.731 18.56 1.667 
20 0 9.783 8.947 #NA 10.89 18.21 #NA 
20 0.5 8.723 10.30 13.26 12.86 17.95 17.10 
20 1 4.407 4.407 20.96 20.96 20.96 20.96 

 
The settle time for each run varies per initial conditions set; what is noticeable is 

that for the same observer initial conditions, the settle time increases gradually 

with the increase of the input signal. The rise time also increases through stages 

of the column respectively. 
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The delay time is the same for all the column stages irrespective of the 

increasing input signal value or changing observer initial conditions. 

 
Table 8.4: Settle time (Ts) vs. observer changing initial cond itions 

Process settle time vs. observer changing initial conditions 

Input 
Signal 

Observer 
Initial 

Condition 

State x1 State x3 State x6 

1x  1x̂  3x  3x̂  6x  6x̂  

0 -1 16.00 16.00 23.00 22.90 26.50 28.50 
0 0 28.20 16.40 40.00 21.00 45.00 42.00 
0 0.5 14.30 14.40 19.20 21.20 27.70 36.00 
0 1 11.00 16.00 22.00 22.00 0.000 0.000 

 
1 -1 16.20 15.90 24.00 22.50 29.80 28.80 
1 0 31.50 21.30 39.70 42.80 46.50 59.00 
1 0.5 14.50 14.50 22.30 20.30 27.20 28.00 
1 1 11.50 11.50 14.60 14.60 25.50 29.10 

 
5 -1 17.00 15.20 32.00 26.00 36.00 32.00 
5 0 39.00 37.50 47.50 38.50 54.00 48.00 
5 0.5 15.55 19.30 21.10 21.50 30.40 29.70 
5 1 12.00 12.00 21.00 21.00 28.00 28.00 

 
10 -1 16.00 13.40 23.50 18.20 29.80 28.30 
10 0 37.50 37.50 41.50 36.00 59.00 59.00 
10 0.5 17.74 27.50 21.88 21.60 28.40 35.00 
10 1 15.50 15.50 25.60 25.60 26.00 26.00 

 
20 -1 16.00 16.10 23.00 17.80 29.30 28.00 
20 0 31.50 25.00 41.50 35.00 58.00 51.00 
20 0.5 22.00 14.50 21.70 22.00 35.00 29.80 
20 1 11.75 11.75 13.30 13.30 30.00 25.30 

 
Table 8.5: Delay time (Td) vs. observer changing initial condi tion  

Process delay time vs. observer changing initial conditions 

Input 
Signal 

Observer 
Initial 

Condition 

State x1 State x3 State x6 

1x  1x̂  3x  3x̂  6x  6x̂  

0 -1 1.000 1.000 1.000 1.000 1.000 1.000 
0 0 1.000 1.000 1.000 1.000 1.000 1.000 
0 0.5 1.000 1.000 1.000 1.000 1.000 1.000 
0 1 1.000 1.000 1.000 1.000 1.000 1.000 

 
1 -1 1.000 1.000 1.000 1.000 1.000 1.000 
1 0 1.000 1.000 1.000 1.000 1.000 1.000 
1 0.5 1.000 1.000 1.000 1.000 1.000 1.000 
1 1 1.000 1.000 1.000 1.000 1.000 1.000 

 
5 -1 1.000 1.000 1.000 1.000 1.000 1.000 
5 0 1.000 1.000 1.000 1.000 1.000 1.000 
5 0.5 1.000 1.000 1.000 1.000 1.000 1.000 
5 1 1.000 1.000 1.000 1.000 1.000 1.000 

 
10 -1 1.000 1.000 1.000 1.000 1.000 1.000 
10 0 1.000 1.000 1.000 1.000 1.000 1.000 
10 0.5 1.000 1.000 1.000 1.000 1.000 1.000 
10 1 1.000 1.000 1.000 1.000 1.000 1.000 

 
20 -1 1.000 1.000 N/A 1.000 1.000 1.000 
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20 0 1.000 1.000 1.000 1.000 1.000 1.000 
20 0.5 1.000 1.000 1.000 1.000 1.000 1.000 
20 1 1.000 1.000 1.000 1.000 1.000 1.000 

 
 
8.9. Conclusion 
 
The observer design for a bilinear model of the CCIX process has been 

presented. The observer design has been developed based on real data of the 

ion exchange process obtained from experiments conducted previously in an ion 

exchange process of the same type.  

Data have been normalized for this exercise and simulation results from 

SIMULINK and MATLAB showed the design to be competently conclusive. The 

observer converges even if different initial conditions are applied (Figures 8.4–

8.21). The results show that the bilinear type observer is applicable in this type of 

a bilinear model. 

 

The next chapter discusses state estimation for the CCIX bilinear process model 

using Kalman filtering. The design of the filter is developed using two methods, 1) 

the mean square approach and 2) the direct optimization technique. 
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CHAPTER NINE 

9. METHODS FOR DESIGN OF A KALMAN FILTER 

9.1. Introduction 
 
This chapter deals with the second method of solution for the state estimation 

problem developed for the continuous countercurrent ion exchange (CCIX) 

process. The major challenge in the CCIX control is that the states in the plant 

were not measurable except for the last one at the output of the plant. The state 

values are needed for monitoring and control of the process more especially for 

real-time control strategy. It is therefore necessary to estimate the rest of these 

states. This chapter is based on two derivations of the filter; the one that uses the 

common technique of the mean square approach and the other that uses direct 

optimization method based on the optimization criterion. 

The process model used in implementing the Kalman filter is that of a bilinear 

system as generated in Chapter 5. A MATLAB software program is developed to 

simulate the Kalman filter based state estimate solution. Data used to confirm the 

validity of the developed solution were obtained from the same process 

(continuous countercurrent ion exchange process) implemented at the University 

of Cape Town, Cape Town, Western Cape, South Africa in 1982. Results from 

the software program are presented in the last section of the chapter. 

The rest of the chapter is structured in the following manner:  the design of the 

Kalman filter for state estimation; derivation of the Kalman filter, the theory; 

formulation of the problem of Kalman filter; application of the Kalman filter in the 

CCIX; the concept of covariance matrices and the filter gain for prediction and 

correction; two filter design methods are presented, the general formulation and 

direct optimization; algorithms for the two methods are developed; software 

program is developed based on the second method; and finally the results from 

the developed software and discussion of results. The programs listing are in 

APPENDIX E 

 
9.2. Introduction to the design of the Kalman filte r for the state 

estimation problem 
 
Kalman filter design as one of many state estimation methods that was 

developed by optimization technique became an important part of estimation 

theory. One can therefore consider the Kalman filter as one of many optimal 

state estimation methods (algorithms). According to Siouris (1996:92) one of 
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many advantages of the Kalman filter is that it is equally applicable to both 

continuous time and discrete time linear systems.  

The Kalman filter has since been extended to different applications in many 

different forms to improve its solution. In this thesis the basic Kalman filter 

technique is considered, Figure 9.1 (Anderson & Moore, 2005; Bozic, 1979; 

Sorenson, 1985; Grewal & Angus, 1993; Siouris, 1996). The concept of a basic 

discrete linear Kalman filter design is extended to the bilinear model that 

represents the continuous countercurrent ion exchange process (CCIX). The 

discrete filter model allows optimization techniques to be implemented in 

estimating the unknown states of the CCIX process. 

The Kalman algorithm uses the same equations for filtering and for prediction 

solutions. The most important part of the Kalman filter is that it uses optimization 

techniques (statistical approximation) to estimate unknown variables. This makes 

it the most favourable method in solving state estimation problems (Anderson & 

Moore, 1979; Meinhold & Singpurwalla, 1983; Mortensen, 1968; Siouris, 1996). 

Siouris (1996:92) and Sorenson (1985) describe the Kalman filter as consisting a 

linearized model of a system dynamics and employing statistical estimates of the 

system error sources to compute the gains for processing of the external 

measurements data. The measurement data is then used to generate corrections 

and improve the system compensation for critical error sources (Bar-Shalom & 

Xiao-Rong,1993; Bozic, 1979; Dean, 1986; Grewal & Angus, 1993; Siouris 1996; 

Sorenson, 1985). 

According to Romanenko, et al., (2004), Anderson and Moore (1979), and 

Siouris (1996), the Kalman-type filtering method consists of two major steps: 

prediction and correction. In the prediction step a new a priori estimate of the 

state vector is computed using the system model; and in the correction step, the 

predicted estimate is improved using available measurements (Maybeck, 1996; 

Kumar, Jerome & Ayyappan, 2013; Romanenko, et al., 2004; Siouris, 1996; 

Swerling, 1971; Rhodes, 1979). 

This filtering method has become increasingly the most commonly used method 

due to its simplified procedure. The algorithm allows generating estimate of state 

variables by available measured variable (the output data). According to Siouris 

(1996:92) the method allows optimized error corrections if the system error 

dynamics and the associated statistics are accurately modelled in the filter 

(Straka, Dunik & Simandl, 2014; Shyamalagowri & Rajeswari, 2016). 
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Figure 9.1.  Continuous time Kalman filter design structure for  a linear system 

 
(Adapted from Siouris, 1996:98) 
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The filter also allows fine tuning of estimated variables to bring the estimates into 

agreement with the nominal performance of the system (Jazwinski, 1970; Siouris, 

1996; Welch, 2001; Welch & Bishop, 2006). 

Kalman filter is designed based on stochastic processes theory and random 

variable theory (Lewis, 1986; Maybeck, 1982; Maybeck, 1979). Ikonen and Najim 

(2002:37) describe this process using parameter estimation comparison. 

According to Ikonen and Najim (2002:37) in estimation procedures where a 

parameter of interest is considered a random variable and is determinable using 

other random variables that are somehow correlated to the parameter in 

question, this method is called a Bayesian approach. Kalman filter design for 

state estimation takes the same approach (Ikonen & Najim, 2002:37; Meinhold & 

Singpurwalla, 1983; Julier & Uhlmann, 2004). An unknown observable state 

vector is assumed to be correlated with the output of the system being observed 

and based on the output measurements, the values of the unknown state vector 

are possible to estimate (Ikonen & Najim, 2002:37). 

According to Mortensen (1968) the Kalman filter takes different forms for state 

estimation, in some instances it takes the form of, 1) the prediction observer or 2) 

the current observer. The presentation in this text is that of the current observer 

format. 

Let a discrete linear time invariant system be described by the form (Anderson & 

Moore, 1979; Ikonen & Najim, 2002:37; Mortensen, 1968; Siouris, 1996): 

)()()()1( kwkBukAxkx ++=+       (9.1) 

)()()( kvkCxkz +=  

where 

nnRA ×∈  – is the matrix of system parameters, 

mnRB ×∈  – is the system input matrix, 

nlRC ×∈  – is the system output matrix, 

1)( ×∈ nRkx  – are the state variables, 

mRku ∈)(  – is the system input variable, 

lRkz ∈)(  – is the system output variable, 

lRkw ∈)(  – is the random process disturbance and, 

lRkv ∈)(  – is the measurement random variables (noise). 

According to Mortensen (1968) and Ikonen and Najim (2002:37) the aim of the 

observer is to estimate the state vector of the system )(kx  with the vector )(ˆ kx  
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for every moment k  based on the measured output values )(kz  assumed to be 

containing some noise )(kv . The system parameters A  and output coefficients 

C  are assumed known; the system noise )(kw  and the output noise )(kv  are 

assumed to be zero mean, independent Gaussian processes with known mean 

values and covariances (Julier, Uhlmann, & Durrant-Whyte, 1995; Julier, 

Uhlmann, & Durrant-Whyte, 2000; Jover, & Kailath, 1986; Lefebvre, Bruyninckx, 

& De Schutter, 2004; Rhodes, 1979; Rowell, 2004; Sorenson, 1970): 

kj
T kVjvkvE and  kvE δ)(})()({;0)}({ *==     (9.2) 

kj
T kWjwkwE and  kwE δ)(})()({;0)}({ *==     (9.3) 

{ } 0)()(;0})()({ == TT jwkvE and   jvkwE     (9.4) 

where  

kjδ  – is the Kronecker delta function (Ikonen & Najim, 2002:39; Julier, et al., 

1995; Julier, et al., 2000), 



 =

=
else where    0

       1

every

jkif
kjδ  

)(kv  and )(kw  – are noises have covariance matrices )(* kV  and )(* kW  

respectively, which are non-negative and symmetric (Ikonen & Najim, 

2002:39). 

The assumption made is that )}({ kz  is available for measurements but )}({ kx  is 

not measurable and the intention is to predict a sequence )}({ kx  from the 

measured values of the measurement sequence )}({ kz . According to Ikonen & 

Najim (2002:42), “if the disturbances { })(kw  and { })(kv  as well as the initial state 

)0(x  are Gaussian (with mean values of 0 , 0 , and 0x  and have covariances 

)(* kW , and )(* kV  respectively, )0(P , the initial error covariance matrix, then 

the estimate )1(ˆ +kx  is the mean of conditional distribution of )1( +kx ”. The 

solution is mostly based on the measurements and the measured output )(kz , 

the observation model given by (Ikonen & Najim, 2002; Kushner, 1967): 

)()()( kvkCxkz +=        (9.5) 

The filter is generalized around the use of the observation model, Equation (9.5). 

The state equation, Equation (9.1), represents the real dynamic activities within a 

process, through values of the state vector at time k , )(kx . The observation 

model, Equation (9.5) represents the measurement process. It further relates the 
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actual state at the measured output to the system state using the output matrix, 

nlRC ×∈ , Equations (9.1). The estimation error of the process is given by 

Equation (9.6) (Julier, et al., 1995; Lefebvre, et al., 2004; Siouris, 1996; 

Sorenson, 1970): 

)(ˆ)()( kixixkie −=        (9.6) 

where )(ix  – is the state at the thi  time sample, 

)(ˆ kix  – is the estimate of the state at the thi  sample based on the thk  sample”. 

Using the argument in Equation (9.1), the estimation process can be defined as: 

filtering, smoothing or extrapolation: 

1) If ki = , the process is known as filtering,  

2) for ki < , the model represents smoothing and 

3) if ki > , the process is known as extrapolation. 

The estimated state is equal to the predicted estimate from the previous moment 

in k  plus the error difference between what should have been observed compare 

to what was observed, multiplied by the filter gain. The Kalman filter gain 

determines, by how much should the current estimate be changed based on the 

new observation. The Kalman filter gain changes with time and should be kept at 

its optimal value. This is achievable by introducing optimality criterion in the 

filtering procedure design. It is also highly dependent on the characterization of 

the measured noise, )(kv . 

 
9.3. Derivation of the Kalman filter for the state estimation problem (the 

necessary terms and theory for the procedure) 

 
In designing the Kalman filter for the solution of the state estimation problem, 

there are few steps that are necessary to complete, so as to achieve an 

optimized filter (Anderson & Moore, 1979; Anderson, & Moore, 2005; Gelb, 1974; 

Rowell, 2004). The design procedure includes an optimization step which is an 

integrated part of the filter design, and this makes the Kalman filter and its 

multiples of variations the most attractive and commonly used method for state 

estimation in process control problems (Grewal & Angus, 1993; Rowell, 2004). 

The Kalman filter has two important steps of the estimation solution, i.e., the 

Time Update step (which is the initial estimation of the state at a moment k ) and 

the Measurement Update step, (used as a correction term of the previous 

estimate using measured output value, applied at a moment )1( +k . It is 

therefore important to distinctly specify calculations that are necessary for the 
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first step and those for the second step because if these are not correctly applied 

one may end up with incorrect estimates that may still work as a solution but not 

optimal to the best of the filter’s abilities (Cao et al., 2016; Chatzis, Chatzi & 

Triantafyllou, 2017; Rowell, 2004; Romanenko, et al., 2004). 

The Kalman filter design method can be considered as calculating the Kalman 

filter gain matrix used as a correction term in the estimation process. The Kalman 

filter gain matrix is calculated using a difference between the variables used for 

estimation; i.e., in this case, the real state )(kx  and the estimated state )(ˆ kx . 

Firstly, it is very important to specify if a calculation is done at the Time Update or 

Measurement Update moment and with respect to which moment in time, k  or 

)1( +k  and or )1( −k  or k . These terms are defined as either being a priori or a 

posteriori to the calculation of the estimate. The set of equations in the Time 

Update moment are for the prediction part of the estimation and those at the 

Measurement Update are for the correction part of the estimation, Figure 9.2 

(Kumar, et al., 2013; Rowell, 2004; Welch & Bishop, 2006). 

 

 

 

 

 

 

 

Figure 9.2.  Prediction and correction steps of the procedure f or predicting 
unknown states of a system (Ikonen & Najim, 2002; S iouris, 1996) 

 
Ikonen and Najim (2002:39) suggest that there are a number of methods that can  

be used to derive the Kalman filter gain, but the mean square approach is the 

common one and thus, this method is followed here to indicate how the 

procedure and calculations of the mentioned terms are obtained. Later this 

method is extended specifically for use as one of the methods to solve the state 

estimation problem of the developed bilinear system. 

There are three most important derivation for the Kalman filter design in a 

general sense, the Kalman filter gain matrix, )(* kK , the state estimate, )1(ˆ +kx , 

and the probability of the estimation error, known as the covariance matrix of the 

prediction error )1( +kP  (Julier, et al., 1995; Kumar, et al., 2013). The prediction 

error between the two state variables, Equation (9.7) forms the basis of the 

estimation procedure, 

k  1+k  
)(kz  )1( +kz  

)1(ˆ −kkx  )(ˆ kkx  )1(ˆ kkx +  )11(ˆ ++ kkx  
prediction correction prediction correction 
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)1()1(ˆ)1( +−+=+ kxkxke       (9.7) 

where  

)1( +kx  – is the current state value at the next moment of 1+k  based on the 

previous estimation, 

)1(ˆ +kx  – is the predicted state value based on measured output for the next 

moment of k . 

The estimates are given by two different equations, that at the start of the 

procedure (the prediction stage) using the model, Equation (9.8) and then that at 

the correction stage given by the model, plus the Kalman gain multiplied by the 

error difference between the measured output )()( kCxkz =  and that calculated 

from the estimated state, Equation (9.10). 

)(ˆ)()(

)()(ˆ)1(ˆ

kxCkCxke

kBukxAkx

−=
+=+

       (9.8) 

)()()()(ˆ)1(ˆ * kekKkBukxAkx ++=+      (9.9) 

[ ])(ˆ)()()()(ˆ)1(ˆ * kxCkCxkKkBukxAkx −++=+     (9.10) 

where )(* kK  is the Kalman filter gain at the moment k . 

The equation at the start of the procedure uses an initial state estimation value 

which is then corrected at the correction stage by the second state estimate 

equation. Equation (9.10) is used for derivation of the Kalman gain based on 

posteriori error )1( +ke . 

The requirements for the Kalman filter are, that: 

o the filter must be stable, 

o be sensitive to the changes in the measurements, 

o to have fast convergence towards the real state space variables and 

o to have small amount of computations for implementation of the 

algorithm. 

 
9.3.1. Formulation of the discrete Kalman filter pr oblem for a linear 

discrete time system 

The aim is to determine the covariance matrix of the prediction error that will 

minimize the mean square criterion )1( +kJ  determined by, 

})1()1({)1( TkekeEkJ ++=+       (9.11). 

The optimization problem can be formulated as follows: the aim is to minimize 

the prediction error )1( +ke  such that the system defined by the Kalman filter 
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gain matrix, is optimized. This requires that the Kalman filter gain matrix be 

calculated before determining the optimization solution. 

The gain matrix is determined as follows; using the correction error equation, 

Equation (9.10) and the state prediction equation, Equation (9.7); the prediction 

error )1( +ke  is expressed as: 

[ ]
[ ]=++−++−=

=+−+−+=+

)()()()()()()(ˆ])([

)1()()](ˆ)()[()(ˆ)1(
**

*

kwkBukAxkBukzkKkxCkKA         

kxkBukxCkCxkKkxAke
 

)()()()()(ˆ])([ ** kwkAxkzkKkxCkKA −−+−=    (9.12) 

Substituting for the output )(kz  and rearranging the Equation (9.12) results in, 

)()()()(])([)(ˆ])([             

)()()]()()[()(ˆ])([)1(
***

**

kwkvkKkxCkKAkxCkKA

kwkAxkvkCxkKkxCkKAke

−+−−−=
=−−++−=+

 (9.13) 

Finally,  

)()()()(])([             

)()()())()(ˆ]()([)1(
**

**

kwkvkKkeCkKA

kwkvkKkxkxCkKAke

−+−=
=−+−−=+

  (9.14) 

Based on the prediction error equation, Equation (9.14), the cost function can 

now be expressed as follows: 

[ ]
[ ] =













−+−×

×−+−
=+

T
kwkvkKkeCkKA

kwkvkKkeCkKA
EkJ

)()()()(])([

)()()()(])([
)1(

**

**

 

{ }
{ } { }
{ } ( )( ){ }
{ } { }
{ } ( )( ){ }T

T

T

kwkwEkwkvkKE

kwkeCkKAEkvkKkwE

kvkKkvkKEkvkKkeCkKAE

keCkKAkwEkeCkKAkvkKE

keCkKAkeCkKAE

)()()()()(

)()(])([)()()(

)()()()()()()(])([

)(])()[()(])()[()(

)](])()][[(])([[

*

**

****

***

**

+−

−−−−

−+−+

+−−−+
+−−=

 (9.15) 

From Equation (9.4) { } 0)()( =kvkwE , the cost function can be expressed as 

[ ][ ]{ }
{ } { }
{ } ( )( ){ }
{ } ( )( ){ }T

T

T

kwkwEkwkeCkKAE

kvkKkvkKEkvkKkeCkKAE

keCkKAkwEkeCkKAkvkKE

keCkKAkeCkKAEkJ

)()()()(])([              

)()()()()()()(])([              

)(])()[()(])()[()(              

)(])([)(])([)1(

*

****

***

**

+−−

−+−+

+−−−+
+−−=+

 (9.16) 

Given that )(kw , )(kv  and )(ke  are statistically independent; and )(* kK  and 

])([ * CkKA−  are known, then 

{ }
{ } { }TT

TT

kwkwEkKkvkvkKE

CkKAkekeECkKAkJ

)()()()()()(               

])([)()(])([)1(
**

**

++
+−−=+

   (9.17) 
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From Equations (9.2) and (9.3), { } )()()( * kWkwkwE T =  and 

{ } )()()( * kVkvkvE T =  given that 


 =

=
else

jkif
kj    everywhere       0

           1
δ  Equation (9.17) 

simplifies to 

{ }
T

TT

kKkVkKkW

CkKAkekeECkKAkJ

)()()()(                               

])([)()(])([)1(
****

**

++

+−−=+ ⋅    (9.18) 

The following assumptions are made in connection with Equation (9.18) )(kw  

and )(kv  are statistically independent; )(ke  is given by )()(ˆ)( kxkxke −= ; the 

state prediction )(ˆ kx  depends on the past output measurement )1( −kz  and 

thus on )1( −kv ; the current calculated state )(kx  depends on the system noise 

)1( −kw  disturbing the state, not dependent on the current disturbances and 

noise of )(kw  and )(kv  respectively; and thus )(ke , )(kv  and )(kw  are 

statistically independent. 

{ } [ ][ ]{ }TT kxxkxkxEkekeEkP )(ˆ)(ˆ)()()()( −−== ⋅    (9.19) 

where )(kP  is the covariance matrix of the estimation error )(ke  

Therefore, the criterion is expressed by the covariance matrices of the error, and 

the process and measurement noises. 

)()()()(])()[(])([)1( ****** kKkVkKkWCkKAkPCkKAkJ T ++−−=+  

          (9.20) 

 
9.3.2. Derivation of the Kalman filter gain matrix 

In Equation (9.20) the Kalman gain is unknown. It is determined on the basis of 

the necessary conditions for optimization of Equation (9.20). It is considered in 

terms of the estimation error covariance matrix, )(kP  and is rewritten as follows 

(Ikonen & Najim, 2002:41): 

TkKkVkKkWCkKAkPCkKAkJ )()()()(])()[(])([)1( ****** ++−−=+  

          (9.21) 

=+++

+−−=+

)()()()()()()(                    

)()()()()()1(
******

**

kKkVkKkWCkKkCPkK

CkKkAPAkCPkKAkAPkJ
TTT

TTTT

 

[ ]
[ ] )()()()()(                          

)()()()()(
****

**

kWkKkVCkCPkK

CkKkAPAkCPkKAkAP
TT

TTTT

+++

++−=
 (9.22) 

The following notation can be introduced, 

TCkCPkWkR )()()( * +=        (9.23) 
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[ ]TTT

TT

CkKkAPAkCPkK

kKkRkKkWAkAPkJ

)()()()(               

)()()()()()1(
**

***

+−
−++=+

   (9.24) 

The last two terms of the Equation (9.24) that contain )(* kK  can be grouped as 

)1( +kJK  and be solved by completing a square of a quadratic equation; let this 

new term be defined by, 

[ ] =−=+ TT
K AkCPkKkKkRkKkJ )()(2)()()()1( ***  

[ ][ ]

)(
2

)()(2
)()(

2

)()(2
)( 

)()()()(2)()(
21

*

21
*

1***

kR
kRAkCP

kKkR
kRAkCP

kK

kRkRAkCPkKkKkK

TT

TT









−−








−=

=−=

−−

−

(9.25) 

And this simplifies to  

[ ] [ ]
[ ] [ ]TTT

TTT
K

AkCPkRAkCP

kRAkCPkKkQkRAkCPkKkJ

)()()(                        

)()()()()()()()1( 1*1*

−

+−−=+ −−

 (9.26) 

Finally, 

[ ]
[ ] [ ]TTT

TTTT

kRCkAPkKkRkRCkAPkK

AkPCkRAkCPkWAkAPkJ

)()()()()()()(       

)()()()()()1(
1*1*

*

−− −−+

+−+=+
  (9.27) 

From Equation (9.27) it can be seen that only the last term of the equation 

depends on )(* kK , the optimization criterion requires that the cost function be 

minimized such that all the values’ expression of terms that contain )(* kK  go to 

zero, [ ] [ ] 0)()()()( )()()( 1*1* →−− −− TTT kRCkAPkKkRkRCkAPkK ; this 

implies that 

0)()()( 1* =− − kRCkAPkK T       (9.28) 

From this necessary condition of optimality, the gain matrix equation can be 

derived as follows: 

[ ] 1*1* )()()()()()(
−− +== TTT CkCPkWCkAPkRCkAPkK   (9.29) 

Substituting the gain matrix Equation (9.29) back to the criterion, Equation (9.27) 

gives 

])()([)()()1( ** TT AkCPkKkWAkAPkJ −+=+    (9.30) 

According to Ikonen and Najim (2002:42), for Kalman filter algorithm to receive 

an optimal estimate in terms of the mean square error, the next state )1( +kx  

estimated on the available output measurements up to k  moment is based on 

the following equations: 
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1) the filter gain matrix 

[ ] 1** )()()()(
−+= TT CkCPkWCkAPkK     (9.31) 

2) the next state estimate 

)]()(ˆ)[()(ˆ)1(ˆ * kzkxCkKkxAkx −−=+     (9.32) 

3) the cost function based on covariance of the estimation error, 

TT AkPkKkWAkAPkJ )()()()()1( ** −+=+    (9.33) 

Though, the Kalman filter general design for a linear discrete time system has 

been presented in the simplest form and derivation of terms necessary for the 

implementation of the filter covered; in this form the filter is not implementable. It 

is necessary that the predictor part equations be developed separately and the 

correction part equations also be derived based on the predictor equations, for 

the full optimal filter presentation. 

In the next two sections of this text, two different methods for deriving the filter 

design procedure are shown for the considered bilinear process of water 

desalination, and then followed by the algorithm for the implementation of the 

filter. 

 
9.4. The Kalman filter gain design methods for the bilinear model of the 

continuous countercurrent ion exchange (CCIX) proce ss 

9.4.1. Ion exchange model with process and measurem ent noises 

A bilinear model for the continuous countercurrent ion exchange process has 

been developed and it is considered to have two types of disturbances: 1) 

deterministic and 2) stochastic noises. The deterministic noise in the system is 

the noise that comes from the liquid inflow concentration )(kx f  and the 

stochastic noises are the process noise in the model )(kw , and the output 

measurement noise, )(kv . The system to be estimated is represented by the 

bilinear model of the form 

)()()()()()()1( 1 kwkWxkBukukxBkAxkx f ++++=+    (9.34) 

)()()( kvkCxkz +=  

0)0( xx =          (9.35) 

where  

lnRkx ×∈)(  – is the state vector of the system, 

mlRku ×∈)(  – is the vector of system inputs, 

lRkz ∈)(  – is the output of the system, 
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)(kx f  – is the deterministic disturbance of the system, the inflow concentration, 

(concentration entering the first stage of the process column,) 

lRkw ∈)(  – is the system disturbance with Gaussian distribution, 

lRkv ∈)(  – is the output measurement noise with Gaussian distribution, 

nnRA ×∈  – the state transition matrix, 

nnRB ×∈1  – the state transition matrix with influence from inputs (bilinear 

transition matrix of the system states and inputs) 

lnRB ×∈  – the control input transition matrix 

nlRC ×∈  – is the system output matrix 

lnRW ×∈  – is the disturbance transition matrix. 

The model is different from that considered in the other chapters of this 

document in that the internal noise and the output measurement noise were 

assumed to be of no great influence in those solutions, thus not considered; but 

for the state estimation solution using the Kalman filter it is important that all the 

noise components be identified. 

The system contains two types of noise processes; the deterministic noise 

process and the stochastic noise process. The stochastic noise component is 

from two noise sources; the system noise )(kw and the measurement noise )(kv . 

The stochastic noise variables )(kw  and )(kv  are considered independent of 

each other and are represented by white noise processes. These variables have 

probability distributions )(wP  and )(vP . These two distributions are given by: 

),0())(( *WNkwP = , or       (9.36) 

{ }




=
≠

=
jkkW

k
jwkwE T

   ),(

0      ,0
)()(

*
      (9.37) 

),0())(( *VNkvP = , or       (9.38) 

{ }




=
≠

=
jkkV

jk
jvkvE T

   ),(

    ,0
)()(

*
      (9.39) 

where *W  is the process noise covariance and *V  is the measurement noise 

covariance matrices and are assumed constants. 

The requirement for the noise characteristics is to preserve the diagonal structure 

of the covariance matrices. Since the noise variables are considered not 

correlated, the following expression holds true; 

{ } kfkwkvE T   allor  ,0)()( =       (9.40) 
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The initial state is also considered to be a normal (Gaussian) distribution and has 

a mean value of 0)0( xx = . Also, the system stochastic noises, )(kw  and )(kv  

have normal (Gaussian) distribution determined by, 0)( =kw  and 0)( =kv  

respectively. 

At the start of the calculation procedure, the following variables must be known 

for the entire transition period, 1:1 −= Kk , i.e., kjkkkk ≤++= ,...,2,1, 000 , 

values of transition matrices, A , B , C , and W , and the covariances: 

{ } 0)()( =TkwkeE         (9.41) 

{ } 0)()( =TkvkeE ,        (9.42) 

0
)( 0 kxkx =  and { }

0
)(cov 0 kPkx =       (9.43) 

For the design of the full filter procedure the following terms must be identified: 

1) the initial estimate at k th moment, )(ˆ kx ,  

2) the covariance matrix of the estimation error between the estimate and 

the real value based on measured output at k th moment, )(kP , 

3) the filter gain matrix at the )1( +k  moment, )1(* +kK , and the covariance 

matrix of estimation error at the )1( +k  moment, )1( +kP . 

The Kalman gain matrix takes the centre stage in the design of the filter because 

it links the two steps in the procedure of the solution of the estimation problem. 

 
9.4.2. Kalman filter gain design methods developed in the thesis 

There are a number of methods for deriving a Kalman filter gain to solve a state 

estimation problem of a process. In this text, two methods are considered: 

1) general formulation of mean square approach and 

2) direct optimization approach. 

Each of these methods follows the same implementation procedure. The Kalman 

filter design is based on two sets of equations: the Time Update equations (for 

prediction) and the Measurement Update equations (for correction). The idea is 

to start with Time Update (which is used as a prediction of the state at a moment 

k ) and then the Measurement Update (which is used as a correction of the 

estimates using measured output value). The Measurement Update equation is 

responsible for the feedback of the noisy measurements through the covariance 

matrix of the prediction error (Jover & Kailath, 1986; Kumar, et al., 2013; 

Maybeck, 1979; Swerling, 1971; Rhodes, 1979; Xiong, Wei & Liu, 2012). 
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The two steps connect two consecutive points in the time domain as shown in 

the diagram (Figure 9.3) (at k th moment, with k  the current step and )1( −k  the 

previous step. At )1( +k  moment, )1( +k  is the current moment and k  defines 

the previous moment. 

The method of solution requires the knowledge of the probability matrix of the 

estimation error at the k th moment, known as a priori covariance matrix 

)1( kkP +  in the Time Update moment; and then, the probability of the 

estimation error at the k th moment for error correction is done during the 

Measurement Update moment, 1+k . This probability matrix is known as a 

posteriori covariance matrix of the error, and it is given by )11( ++ kkP . It is 

important to connect these probability matrices to obtain optimal state estimates, 

and this is achieved by using an optimal gain matrix, )1(* +kK  (Kumar, et al., 

2013; Lefebvre, et al., 2004; Ikonen & Najim, 2002; Siouris, 1996). 

Both the considered methods incorporate optimal solutions in their procedures. 

The first method uses completion of a square to the )1(* +kK , gain matrix of the 

criterion function to determine the optimal value of the filter gain; and the second 

method determines the optimal filter gain matrix by differentiating the criterion 

functional with respect to the )1(* +kK  gain matrix, and then solving the 

obtained equation of the first derivative for the filter gain. 

One of the most important assumptions in developing the Kalman filter is that, it 

is assumed that the behaviour of the process prior to the )1( +k  moment is 

available (Figure 9.3). The estimate nRkkx ∈+ )1(ˆ  is defined as a priori state 

estimate and it is determinable from the available information about the process 

at the moment k . 

Two possible solutions are developed in the thesis, for the derivation of the 

Kalman filter gain, 1) the general formulation, and 2) the direct optimization 

method. The first method is dependent on the output measurement at the current 

thk  moment )()()( kvkCxkz += , and the second method is based on the output 

measurement at the )1( +k  moment, )1()1()1( +++=+ kvkCxkz . 

Both solutions are based on the prediction and correction using error covariance 

matrix formulations, Figure 9.3 (Gelb, 1974; Lefebvre, et al., 2004; Rhodes, 

1979; Sorenson, 1970). 
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Figure 9.3.  Prediction and correction steps of the procedure f or predicting 

unknown states in a system used for the developed m ethods 
 
 
9.5. Derivation of the discrete Kalman filter gain for the bilinear model of a 

continuous countercurrent ion exchange process (CCI X) – general 
formulation 

 
At the beginning of the procedure, it is assumed that the behaviour of the 

process prior to the moment 1+k  is known. The estimate nRkkx ∈+ )1(ˆ  is 

defined as a priori state estimate as it is determined on the basis of the process 

available information. The a priori estimate at the moment )1( kk +  assumes that 

the a posteriori estimate defined by )(ˆ kkx  is known, for it to be calculated. At the 

start of the procedure, this a posteriori estimate is given by initial conditions, 

where )(ˆ)(ˆ 00 kkxkkx = . The a priori estimate at a moment )1( kk +  is defined 

by: 

)()()()(ˆ)(ˆ)1(ˆ 1 kWxkBukukkxBkkxAkkx f+++=+    (9.44) 

The most important part of the Kalman filter for use in state estimation is the 

connection between the a priori and the a posteriori estimations, which is 

provided by the available output measurement at the next sampling moment, 

)1( +k , Figure 9.3. This connection is provided by supposition that the a 

posteriori estimate at the next moment of time, )11(ˆ ++ kkx  is calculated on the 

basis of the a priori estimate and added to it the value of the Kalman filter gain 

multiplied by the difference between the actual measured output and the output 

estimated from the state estimate (Ikonen & Najim, 2002:40–42) 

)()()( kvkkCxkz +=        (9.45) 
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a posteriori 

prediction correction 

)(ˆ kkx  )1(ˆ kkx +  )11(ˆ ++ kkx  

using data from )(ˆ kkx  using data from 
measurements 

)1()1( kkCxkz +=+  
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The a priori error of estimation is determined by the difference between the 

measured states and the estimated states at the moment )1( kk + , 

)()1(ˆ)1( kkxkkxkke −+=+       (9.46) 

The a posteriori estimate is given by: 

)](ˆ)()[()1(ˆ)11(ˆ * kkxCkzkKkkxkkx −++=++     (9.47) 

This difference between the output terms )](ˆ)([ kkxCkz −  is called measurement 

innovation or a residual. The measurement innovation is used to improve the 

estimate. Together with the Kalman filter gain, this difference is used to minimize 

the criterion such that optimal estimates are obtained (Ikonen & Najim, 2002).  

The covariance matrix of the error at the Time Update is described using the 

prediction estimate )1(ˆ kkx + ; it is known as the a priori estimate error 

covariance matrix, defined by )1( kkP + . It is expressed by the following two 

equations (Lefebvre, et al., 2004; Sorenson, 1970; Welch & Bishop, 2006): 

{ }TkkekkeEkkP )1()1()1( ++=+ , for the moment )1( kk +    (9.48) 

{ }TkkekkeEkkP )1()1()1( −−=− , for the moment )1( −kk   (9.49) 

For optimality it is necessary that the Kalman filter gain matrix be determined 

such that the a posteriori covariance of the estimation error at moment )1( +k  is 

minimized, 

min)11( →++ kkP        (9.50). 

The covariance matrix of the prediction error )1( kkP +  is used to update the 

time (prediction) using )1(ˆ kkx +  and then as a correction at measurement 

update based on optimal values of a posteriori estimate )11(ˆ ++ kkx  at the 

moment )11( ++ kk .  

The error at the moment )11( ++ kk  is given by Equation (9.51). This error is for 

the a posteriori covariance matrix and criterion calculation, Equation (9.52) 

)1()11(ˆ)11( +−++=++ kxkkxkke      (9.51) 

The error is calculated based on the availability of the output measurement at the 

moment )( kk . Since the output measurement is done at the moment )( kk , it is 

possible to express the error )11( ++ kke  directly as follows:  
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Finally, 
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 (9.53) 

The a posteriori covariance matrix is expressed by 

{ } )1()11()11()11( +=++++=++ kJkkekkeEkkP T    (9.54) 

The derivation of the a posteriori covariance matrix is achieved through 

substitution of the error )11( ++ kke  into the Equation (9.54). 

The error equation must now be substituted back into the criterion, 
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 (9.55) 

Using the condition that there is no correlation between the error )(ke  and the stochastic noise processes of the system 

)(kw  and )(kv , the criterion simplifies to  

)()()()()]()[()(

)]()[(])([])()[()(])()[(])([)1(
****

11

1
**

1
**

kkWkKkkVkKkuBkkPkuB                                                                                  
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TT

TTT

+++
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  (9.56) 

where  

{ } )()()( kkPkkekkeE T =  and )( kkP  is the covariance matrix of the estimation error at the current moment k .  
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It can be seen that minimization of the criterion function is equivalent to the 

minimization of the covariance matrix of the prediction error at the same moment 

of time as in that of the criterion, thus,  

min)1(min)11( →+≅→++ kJkkP      (9.57) 

Equation (9.59) shows that the posteriori covariance matrix )11( ++ kkP  is 

expressed by the a priori matrix )( kkP . The connection between these 

covariance matrices is through the Kalman gain )(* kK , as determined 

previously. The derivation of the Kalman gain is presented as shown by 

Equations (9.58)–(9.66) 
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          (9.58) 

The covariance matrix )( kkP  is nonnegative and symmetrical and that implies 

)()( kkPkkPT = ; and therefore,  
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Let  

)()()( * kkQkkVCkkCP T =+       (9.60) 

Then, the final expression for the posteriori covariance becomes, 
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  (9.61) 

To determine the Kalman gain matrix from Equation (9.61) the mean square 

method on the )(* kK  terms of the equation is used. This means that at optimal 

values of the criterion function, the expressions containing the Kalman matrix 

gain terms will approach zero. This expression is derived as follows: 

[ ] 0)()()()(2)()()( *
1

** =+− TTTT kKCkkPkuBCkkAPkKkkQkK  (9.62) 

[ ] 0)()()()(2)()( 1*
1

** =+− − kkQkKCkuBCkkAPkKkK TTTT   (9.63) 

where )(1 kkQ−  is a block diagonal matrix. 

The Equation (9.63) can be regrouped using completion of a square to arrive at 

Equation (9.64) 
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To simplify this equation further, both sides of the equation are multiplied by 

)( kkQ , 
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The )(* kK  filter gain terms in the Equation (9.65) must go to zero for optimal 

filter gain values, i.e.,  

( )[ ] 0)()( )()()(
21

1
* =+− − kkQkkQCkuBCkkAPkK TT   (9.66) 

Equation (9.66) can be expressed in the following manner: 
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or  
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From this point the criterion for minimization has to be implemented 
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Substituting the Kalman gain matrix )(* kK  from Equation (9.67) back to the 

covariance matrix for the prediction error, Equation (9.61) gives, 
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Equation (9.67) determines the Kalman gain at the moment )( kk  in terms of the 

posteriori covariance matrix at the moment )( kk , the control input )(ku  and the 

covariance matrix of the output measurements. The posteriori covariance matrix 

)11( ++ kkP  is determined in terms of the covariance matrix )( kkP , the control 

input, the Kalman gain in the moment )( kk  and the covariance matrix of the 

process noise )(* kkW . 

 
9.6. Derivation of the discrete Kalman filter gain for the continuous 

countercurrent ion exchange (CCIX) process (bilinea r model) –method 
of direct optimization 

 
The second method’s problem is formulated as follows: find the values of the 

Kalman gain matrix at every moment of time k  in such a way that the errors of 

the state estimates from their true values are minimized according to the criterion 

[ ]{ } min)1()11(ˆ
2

1
)(

2 →+−++= kxkkxEkJ     (9.69) 

where )11(ˆ ++ kkx  is the estimate of the state vector at the moment )11( ++ kk  

obtained by the Kalman filter. 

The following are the assumptions for computational foundation of the Kalman 

filter gain: 



 

354 

1) the behaviour of the process prior to the moment )11( ++ kk  is available. 

The estimate nRkkx ∈+ )1(ˆ  is defined as a priori state estimate as it is 

determined on the basis of the process available data. 

2) a priori state estimate error is defined as: 

)1()1(ˆ)1( +−+=+ kxkkxkke      (9.70) 

for the 1+k  under given knowledge for the process until the moment 

)1( +k  and  

)()1(ˆ)1( kxkkxkke −−=−       (9.71) 

for the previous sampling moment. 

3) the state estimate nRkkx ∈++ )11(ˆ  is determined at the moment 

)11( ++ kk  using the given measurement )1( +ky  and is called a 

posteriori state estimate. 

4) a posteriori state estimate error is defined as, 

)1()11(ˆ)11( +−++=++ kxkkxkke      (9.72) 

and  

)()(ˆ)( kxkkxkke −=        (9.73) 

for the previous moment. 

5) a priori estimate error covariance is calculated as 

{ }TkkekkeEkkP )1()1()1( ++=+      (9.74) 

and  

{ }TkkekkeEkkP )1()1()1( −−=−      (9.75) 

for the previous moment. 

6) a posteriori estimate error covariance matrix is calculated as 

{ }TkkekkeEkkP )11()11()11( ++++=++     (9.76) 

and  

{ }TkkekkeEkkP )()()( =       (9.77) 

for the previous moment. 

7) a posteriori estimate )1(ˆ kkx +  is obtained from the model. It is supposed 

that the a posteriori estimate )(ˆ kkx  is known and the a priori estimate at 

the moment )1( kk +  is 
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)()()()(ˆ)(ˆ)1(ˆ 1 kWxkBukukkxBkkxAkkx f+++=+   (9.78). 

8) the a posteriori and the a priori estimates are connected by the 

measurement of the output at the moment 1+k  

[ ])1(ˆ)1()1()1(ˆ)11(ˆ * kkxCkzkKkkxkkx +−++++=++   (9.79). 

It is supposed that a posteriori estimate is calculated on the basis of the a priori 

one with added to it value of the weighted difference between the actual 

measurement )1( +kz  and the predicted output )1(ˆ kkxC + . 

The difference between these measurements )1(ˆ)1( kkxCkz +−+  is called the 

measurement innovation or a residual. This difference determines the error 

between the real measurement and the estimated measurement. The matrix 

)(* kK  (the state output) is called the Kalman gain. It has to be determined in 

such a way that the value of the a posteriori error covariance matrix )11( ++ kkP  

is minimized. 

The derivation of the Kalman filter is based on the assumptions as listed (Cao, et 

al., 2016; Julier, et al., 2000). It is necessary to calculate the Kalman gain based 

on the a priori and a posteriori covariance matrices for the estimation errors at 

the moments )1( kk +  and )11( ++ kk . At the same time the value of the 

criterion for optimization )1( +kJ  is equal to that of the a posteriori covariance 

matrix at the moment )11( ++ kk . This means that the minimization of the 

criterion function is equivalent to the minimization of the a posteriori covariance 

matrix )11( ++ kkP . The derivation is as follows: 

 
9.6.1. Derivation of the a priori estimate error covariance matrix 

The derivation of the a priori estimate error covariance matrix is done following 

Equation (9.74). First, the estimation error is determined as follows: 

=+−+=+ )1()1(ˆ)1( kxkkxkke  
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  (9.80) 

Equation (9.80) is then substituted into Equation (9.74) 
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 (9.81) 

In Equation (9.81) )()( kuku T =  as the input )(ku  is a simple variable. On the 

basis that the variables )(ku  and )( kke , and the variables )( kke  and )(kw  are 

not correlated as )(kx  and not )( kke  directly depends on )(ku  and )(kw . This 

relationship can be expressed as: 

{ } 0)()( =TkkekwE ,       (9.82) 

{ } 0)()( =TkwkkeE        (9.83) 

In addition, from the definition of the noise )(kw  

{ } )()()( * kWkwkwE T =        (9.84) 

and from  

{ }TkkekkeEkkP )()()( =       (9.85) 

Using the arguments in Equations (9.73), the error covariance matrix can be 

written as 

{ } { }
{ } { }TTT

TTTTT

kwkwEBkkekkekuBE

BkkekkekAuEAkkekkAeEkkP

)()()()()(                  

)()()()()()1(

1
2

1

1

++

++=+
 (9.86) 

And from the error covariance matrix at the current moment k , Equation (9.74), 

finally Equation (9.86) is simplified to 

)()()()()(                       

)()()()1(
*

1
2

11

1

kWBkkPkuBBkkPkAu

AkkPkuBAkkAPkkP
TT

TT

+++

++=+
  (9.87) 

 
9.6.2. Derivation of the a posteriori estimate error covariance matrix 

For the determination of )11( ++ kkP ; first, the model output is added to the 

estimate Equation (9.79). And then the obtained equation can be written as 

[ ]
[ ] )()1()1()1()1(ˆ)1(                 

)1(ˆ)()1()1()1(ˆ)11(ˆ
***

*

kvkKkCxkKkkxCkKI

kkxCkvkCxkKkkxkkx

+++++++−=

=+−+++++=++
 

          (9.88) 
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Equation (9.88) is substituted into the equation for calculation of the a posteriori 

error, Equation (9.72) 

=+−+++
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=+−++=++

)1()1()1(                                                          
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         (9.89) 

Finally, 

)1()1()1(])1([)11( ** +++++−=++ kvkKkkeCkKIkke   (9.90) 

where )1()]1()1(ˆ[ kkekxkkx +=+−+ , Equation (9.70). 

Second, the calculation of the covariance matrix )11( ++ kkP  is done using 

Equations (9.74) and (9.90). 
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 (9.91) 

In Equation (9.91), the following is observable; there is no correlation between 

)1( kke +  and )1( +kv  since )1( +ky  and not, )1( kke +  depends on )(kv . From 

this observation, the following statements can be generated: 

{ } 0)1()1( =++ TkvkkeE        (9.92) 

{ } 0)1()1( =++ TkkekvE        (9.93) 

Based on the same argument as that used in Equations (9.15)–(9.25), the 

following statements can be written: 

{ } )()1()1( * kVkvkvE T =++       (9.94) 

{ } )1()1()1( kkPkkekkeE T +=++      (9.95) 
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This means that the expression in Equation (9.91) can be simplified as 

{ }
{ }

T

T

TT

TT

kKkVkK

CkKIkkPCkKI

kKkvkvEkK

CkKIkkekkeECkKIkkP

)1()1()1(                                  

])1()[1(])1([                      

)1()1()1()1(                               
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***
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**

**

++++
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=+++++

++−+++−=++
⋅

(9.96) 

 
9.6.3. Determination of the optimal value for the K alman filter gain 

In order to optimize the Kalman filter, it is necessary to minimize the error 

covariance matrix, 

min)1()11( →+=++ kJkkP       (9.97) 

according to the Kalman gain matrix )1(* +kK , or written differently, 
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 (9.98) 

for ,...3,2,1   k =  

where 
[ ] [ ]

)1()1()1(                                        
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***

**

++++

++−++−=++

kKkVkK
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T

 (9.99) 

According to optimization theory, it is possible to obtain the optimal gain on the 

basis of the first derivative of the criterion functional according to the Kalman 

gain; this can be done as follows 
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         (9.100) 
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          (9.101) 

Since both the covariance matrices are symmetrical in the first derivatives, 

TkkPkkP )1()1( +=+  and TkVkV )1()1( +=+ . Equation (9.101) then 

becomes 

[ ] 0)1()1()1()1(
)1(

)1( **
*

=++++++−=
+∂

+∂
kVCkkCPkKCkkP

kK

kJ TT  (9.102) 

where  

TT CkkPkkCP )1()1( +=+ , 

TTTT CkkCPkKkKCkkCP )1()1()1()1( ** ++=++ ,   (9.103) 

TT kVkKkKkV )1()1()1()1( **** ++=++ , and 

since )1(* +kV  and )1( kkP +  are symmetrical, this implies that, 

TTT CkkPCkkPkkCP )1()1()1( +=+=+      (9.104) 

and  

TTT CkkCPkKkKCkkCP )1()1()1()1( ** ++=++     (9.105) 

)1()1()1()1()1()1( ***** ++=++=++ kVkKkVkKkKkV TT   (9.106) 

The optimal gain of the filter can then be expressed as, 

[ ] 1** )1()1()1()1(
−++++=+ kVCkkCPCkkPkK TT    (9.107) 

This is known as the optimal Kalman filter gain. 

Equation (9.107) is different from Equation (9.67) where 

[ ] [ ] 1

1
* )(*)()()()(

−++= kkVCkkCPCkuBCkkAPkK TTT , the expression 

TCkuB )(1  is not included but in the )1( kkP +  expression. 

 
9.6.4. Update of the error a posteriori covariance matrix on the basis of the 

optimal filter gain matrix 

Optimal values of the gain )1(* +kK  can be used to calculate the optimal value 

of the error covariance matrix )11( ++ kkP  by substituting Equation (9.107) as 

TTT CkkCPkKCkkPkVkK )1()1()1()1()1( ** ++−+=++ to Equation (9.96). 
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          (9.108) 

From Equation (9.108) it can be seen that a posteriori covariance matrix is 

determined by the a priori covariance matrix. 

[ ] )1()1()11( * kkPCkKIkkP ++−=++ ⋅
    (9.109) 

Equation (9.106) determines the optimal Kalman filter gain at the moment of 

)11( ++ kk  as a function of the a priori error covariance matrix )1( kkP +  at the 

moment )1( kk + , and of the covariance matrix for the noise in the measurement 

at moment )1( kk + , Figure 9.3. The value of the a posteriori covariance matrix at 

the moment )11( ++ kk  is a function of the Kalman filter gain )1(* +kK  and the 

a priori error covariance matrix )1( kkP + . 

 
9.7. Comparison of the two developed methods for de rivation of the filter 

 
The Kalman filter is a recursive algorithm as mentioned earlier, and calculations 

are done through two stages to produce optimal filter gains. The first stage is a 

prediction stage followed by the correction stage. Each stage is also at a different 

discrete moment of time, )1( +k  and k , Figure 9.3. The prediction stage is 

referred to as Time Update. It contains all necessary equations to determine the 

prediction of the state estimate. The correction stage is known as the 

Measurement Update, and it contains a set of equations necessary to correct the 

estimate if need be. At the Measurement Update, the key factor is the moment 

for the output measurement. 

The nature of the output measurement used in the algorithm determines which 

method to follow. The first method assumes that the measurement output is 



 

361 

coming from the previous measurement at the moment )( kk , and that the 

current measurement is not available during the correction. The second method, 

the direct optimization considers a case where it is possible to use the current 

measurement at moment )11( ++ kk . 

There is also a need that the two moments of time be connected, this relates the 

state estimates at prediction moment to the correction update moment. This 

provides the recursive nature of the Kalman filter in that it predicts and corrects 

system states for every moment of time )11( ++ kk  using measurements at the 

previous moment )1( kk + , until such time that the estimates are optimal, Figure 

9.4. 

 

 

 

 

 

 

 
Figure 9.4.  Schematic representation of the two step procedure  for estimating 

unknown states using measured data  
 
Based on the chosen moment of time, state estimates are defined as a priori or a 

posteriori, Figure 9.3. If the moment k  is used, the a priori is the moment 

)1( −kk  and the a posteriori is the moment )( kk . If the moment )1( +k  is used, 

the a priori is the moment )1( kk +  and the a posteriori is the moment 

)11( ++ kk . 

The filter algorithm revolves around the next moment )1( +k  because this is 

where the measurement (correction) is done. The two methods use naming 

convention based on the output update moment used, either at moment )1( +k  

or moment k . The procedures for each method are discussed in the subsections 

below. 

 
9.7.1. The first method (general formulation of the  filter) 

In the general formulation method, at the beginning of the estimation procedure, 

the process dynamic behaviour is assumed to be known prior to moment )1( +k , 

and thus the state estimate at this moment is defined by the a posterori state 

Time Update 
(Predict) 

Measurement Update 
(Correct) 
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estimate, given by )(ˆ kkx . The a priori estimate assumes that the previous 

estimate is known (is available), the a posteriori state estimate, given by )( kkx . 

In the first method: 

ο the correction is done at the moment )11( ++ kk  but the Kalman gain is 

calculated at moment )( kk  and the measurement is done at )( kk . This 

means that in the filter application, the procedure needs to store the 

previous state estimate; which is a negative in comparison to the direct 

optimization method. 

The general method involves a very long derivation procedure before getting to 

the final gains calculation. Starting with the a priori state estimate at the current 

moment )1( kk + , and then at the next sampling moment the filter provides a 

correction to the current estimate via the connection between a priori and a 

posteriori estimates. This connection is achieved through an assumption that at 

the next moment )11( ++ kk , an a posteriori estimate, Equation(9.47), which 

depends on a priori estimate Equation (9.44) is determinable. 

The error difference must then be determined, to be able to minimize any 

variance of the estimated state from the real state. This procedure is based on 

statistical methods using covariance of the estimation error. This means that an a 

posteriori covariance matrix, Equation (9.49) must be calculated. Based on the 

derivation method, in order to be able to determine the a posteriori covariance 

matrix, the Kalman filter gain must first be calculated. 

At the moment )11( ++ kk , the estimation error and the a posteriori covariance 

matrix are defined by )11( ++ kke  and )11( ++ kkP  respectively. The a 

posteriori covariance matrix is used as an optimization criterion to produce 

optimal estimate. The final a posteriori prediction covariance error matrix is given 

in terms of: the system input )(ku , the a priori prediction covariance error matrix 

)( kkP , the Kalman gain filter )(* kK , and the system noise covariance 

)(* kkW . All these terms are calculated at the previous moment )( kk . The full 

procedure for calculation of the optimal estimate is given in the algorithm, in the 

next section. A summary of equations involved is given. 
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9.7.2. The second method (direct optimization) 

The second method utilizes the direct optimization technique. The method 

minimizes an optimization criterion based on the prediction error between the 

current estimate and that obtained from the output using the measurement 

update (correction) at the moment )11( ++ kk . Even in this method, it is 

necessary to calculate the Kalman filter gains before obtaining the optimal states 

estimates. The filter gains require the following information to be available before 

they could be calculated: 

o the process dynamic behavioiur prior to the moment )1( +k , 

o this allows the determination of the state estimate )1(ˆ kkx + , the a priori 

state estimate, 

o from all these details, the optimal state estimate is obtained via the a 

posteriori estimate calculated at moment )11( ++ kk , 

o the calculation of the a posteriori state estimate requires that the output at 

moment )1( +k  be known which is the major difference with the first 

method which uses the output from the measurement at the moment k . 

In the same fashion as in the first method, it is necessary to calculate the state 

estimate at the next moment of measurement to produce optimal estimates. The 

state estimate )11(ˆ ++ kkx  for correction of the error in estimation is obtained 

using the output measurement )1( +ky , and all the calculations are done at 

moment )11( ++ kk . The estimate at this moment is known as the a posteriori 

state estimate )11(ˆ ++ kkx . Once again to calculate this estimate, the previous 

state estimate )1(ˆ kkx +  is required. 

The statistical methods are again used to connect the two estimates at prediction 

and correction moments. The methods combine a posteriori, moment 

)11( ++ kk  and the a priori, moment )1( kk +  to produce the current estimate. 

The connection requires the use of covariance matrices, the a posteriori state 

estimate error covariance )11( ++ kkP  at moment )11( ++ kk  and the a priori 

state estimate error covariance matrix )1( kkP + . From the derivation of the 

equations for use in optimal estimates, it has been shown that minimization of the 

estimation error through optimization criterion, )1( +kJ  is achieved through 

minimization of the a posteriori covariance matrix )11( ++ kkP , Equations 
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(9.97–9.99). This a posteriori covariance matrix is dependent on the a priori 

covariance matrix. 

The final solution is dependent on two sets of equations, that, at the prediction 

stage and at the correction stage (Figures 9.5 and 9.6): 

1) the first set of equations produces the a priori estimate covariances, and, 

2) the second set is used to determine the a posteriori estimate covariances. 

The connection between the two sets is via the output measurements )1( +kz , 

the filter gains )1(* +kK , and the process noise covariances )11(* ++ kkW . 
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Figure 9.5. First method for state estimation using general for mulation of the Kalman filter  

 

 

 

 

 

 

 

 

 

 
Figure 9.6. Second method for state estimation using direct opt imization technique  
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9.7.3. The summary of equations for the two methods  of solution 

For both methods, the procedure is more or less the same: 

o provide the initial estimate, at the beginning of the procedure, 

o determine the current estimate based on the output measurement, 

o determine the prediction error, 

o calculate the filter gain using previous prediction error covariance, 

o calculate the prediction error covariance, 

o optimize the prediction error covariance (for optimal state estimates). 

 
The differences are: 

1) Moment of measurement – in the first method, the measurement is 

taken at moment )( kk , and in the second method, it is done at the 

moment )11( ++ kk , 

2) In the derivation of the a priori and a posteriori equations – in the first 

method, the a priori and a posteriori estimates are considered to be 

expressed only by one equation that includes both the time update 

and the measurement update. 

In the second method two separate equations are considered, one for 

the time update and second for measurement update. 

3) The optimization of the criterion is done in two different ways – in the 

first method by making the term containing the Kalman gain equal to 

zero; in the second method deriving the first derivation of the criterion 

according to the Kalman gain and equalizing the obtained expression 

to zero. 
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Table 9.1: The summary of equations for the two methods of sol ution for determining Kalman filter gain 

Method of solution and description of the 
equation for optimal state estimates Equation used in the procedure 

First method  General formulation equations 

The a priori estimate at moment k : )()()()(ˆ)(ˆ)1(ˆ 1 kWxkBukukkxBkkxAkkx f+++=+    (9.44) 

The a priori estimation error at the moment 

)1( +k : 
)()1(ˆ)1( kkxkkxkke −+=+       (9.46) 

The a posteriori estimate defined by 

)(ˆ kkx  is known, obtainable from the 

output: 

[ ])(ˆ)()()1(ˆ)11(ˆ * kkxCkzkKkkxAkkx −++=++     (9.47) 

The a posteriori covariance of the 

estimation error at moment )1( +k : 
min)11( →++ kkP         (9.50) 

The error at the moment )11( ++ kk  for 

the a posteriori covariance matrix and 

criterion calculation: 

)1()11(ˆ)11( +−++=++ kxkkxkke      (9.51) 

The final error equation used to determine 

the a posteriori state estimate at moment 

)11( ++ kk : 

[ ] )()()()()()()()11( *
1

* kkwkkvkKkkeBkkeCkKkkAekke −++−=++  

          (9.53) 

Equation for the a posteriori covariance 

matrix: { } )1()11()11()11( +=++++=++ kJkkekkeEkkP T    (9.54) 
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The solution to the a posteriori covariance 

matrix after substituting the error equation: )()()()()]()[()(        

)]()[(])1([])()[()(        

])()[(])([)1(

****
11

1
**

1

**

kkWkKkkVkKkuBkkPkuB

kuBkkPCkKACkKAkkPkuB

CkKAkkPCkKAkJ

TT

TT

T

+++

++−+−+

+−−=+

 (9.56) 

)( kkP  is the covariance matrix of the 

estimation error at the current moment k : 
{ }TkkekkeEkkP )()()( =        (9.56) 

Minimization of the criterion function is the 

same as the minimization of the covariance 

matrix of the prediction error at the same 

moment of time: 

min)1(min)11( →+≅→++ kJkkP      (9.57) 

A block diagonal matrix used in 

covariances calculation )( kkQ : 
)()()( * kkQkkVCkkCP T =+       (9.60) 

The final expression for the a posteriori 

covariance matrix: [ ] )()()()(                          

)()()()()(2)()11(

*
1

*

111

kkWCkuBCkkAPkK

BkukkPkuBAkkPkuBAkkAPkkP
TTT

TTTT

++−

−++=++
 (9.61) 

The Kalman filter gain used in calculating 

the a posteriori covariance matrix: 
1*

1
* )]()([])()([)( −++= kkVCkkCPCkuBCkkAPkK TTT   (9.67) 

Second method Direct optimization of the estimation error 

The criterion for minimizing the variances 

of state estimates from their true values: 

[ ]{ } min)1()1(ˆ
2

1
)( 2 →+−+= kxkxEkJ      (9.69) 
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The equation for a priori estimate error at 

moment )1( kk + : 
)1()1(ˆ)1( +−+=+ kxkkxkke       (9.70) 

The a priori state estimate at moment 

)1( kk + : 
)()()(ˆ)(ˆ)1(ˆ 1 kWxkukkxBkkxAkkx f++=+      (9.78) 

The final a priori estimate error at moment 

)1( kk + : 
1

1 )(                   ),()()()()1( RkuwithkwkukkeBkkAekke ∈−+=+  (9.80) 

The a priori error covariance matrix at the 

current moment )1( kk + : 
)(

)()()()()()()()1(
*

1
2

111

kW                        

BkkPkuBBkkPkAuAkkPkuBAkkAPkkP TTTT

+

++++=+

          (9.87) 

The a posteriori state estimate at the next 

moment )11( ++ kk : 

)1()1()1()1()1(ˆ])1([)11(ˆ *** ++++++++−=++ kvkKkCxkKkkxCkKIkkx  

          (9.88) 

The a posteriori estimate error at the 

moment )11( ++ kk : 
)1()1()1(])1([)11( ** +++++−=++ kvkKkkeCkKIkke    (9.90) 

The equation for calculation of the a 

posteriori estimate covariance matrix: 

[ ] [ ]
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The solution to the a posteriori estimate 

covariance matrix at moment )11( ++ kk : T

T

kKkVkK                                

CkKIkkPCkKIkkP

)1()1()1(

])1()[1(])1([)11(
***

**

++++

++−++−=++
  (9.96) 

Criterion to minimize the error covariance 

matrix so as to optimize the Kalman filter 

gain: 

min)1()11( →+=++ kJkkP       (9.97) 

Equation (9.97) expressed differently: 
{ } [ ] [ ]









=+













++++

++−++−
=





+
+

3,2,1                                                       , )1(

)1()1()1(                  

)1()1()1(
    min  

)1(

)1(min
***

*

kforkK

kKkVkK

CkKIkkPCkKI

kK

kJ
T

 (9.98) 

Obtaining the optimal gain on the basis of 

the first derivative of the criterion functional 

according to the Kalman gain: 

[ ] 0)1()1()1()1(
)1(

)1( **
*

=++++++−=
+∂

+∂
kVCkkCPkKCkkP

kK

kJ TT  (9.102) 

Equations that are part of solution to 

(9.102): 

TTT CkkCPkKkKCkkCP )1()1()1()1( ** ++=++     (9.103) 

)1()1()1()1()1()1( ****** ++=++=++ kVkKkVkKkKkV TT   (9.106) 

The optimal Kalman filter gain: [ ] 1** )1()1()1()1(
−++++=+ kVCkkCPCkkPkK TT    (9.107) 

The a posteriori covariance matrix is 

determined from the a priori covariance 

matrix: 

[ ] )1()1()11( * kkPCkKIkkP ++−=++ ⋅
     (9.109) 
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9.8. Algorithms and MATLAB software program develop ed for the 

calculation of the Kalman filter gain for the bilin ear model of the 

continuous countercurrent ion exchange (CCIX) proce ss 

 
Algorithms for both methods developed for the Kalman filter are presented. The 

Kalman filter, mainly, has two sets of equations: 

• Time update equations (prediction) and  

• Measurement update equations (correction). 

The schematic representation of this operation for the bilinear process is shown 

in Figure 9.7 following the presentation in Welch & Bishop (2006:6). 

 
9.8.1. Algorithm for the first general method 

1) Set the initial values for the: 

o Initial time 0kk = , initial state 
0

)()( 00 kxkkxkkx == , initial state 

estimate )(ˆ kkx , initial covariance matrix 
0

)( 00 kPkkP =  

2) Time update calculations (prediction) 

o Set the trajectory period, Kk ,1=  

o Calculate the state estimate from Equation (9.44) 

)()()()(ˆ)(ˆ)1(ˆ 1 kWxkBukukkxBkkxAkkx f+++=+  

o Calculate the error )1( kke +  at the moment )1( kk +  

)()1(ˆ)1( kkxkkxkke −+=+  

o Update the error covariance matrix )( kkP  at the moment )1( kk +  

3) Measurement update calculations (error correction) 

o Obtain the output measurement at the moment )( kk  

)()()( kvkkCxkz +=  

o Calculate the measurement noise covariance matrix )(* kkV  based on 

the measurement noise 

o Calculate the filter gain matrix )(* kK  using Equation (9.67) 

1*
1

* )]()([])()([)( −++= kkVCkkCPCkuBCkkAPkK TTT  

o Update the state estimate at the moment )1( kk +  

[ ])(ˆ)()()1(ˆ)11(ˆ * kkxCkzkKkkxAkkx −++=++  

o Update the a posteriori covariance matrix to optimize the estimate 
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min)1()11( →+=++ kJkkP  

[ ] )()()()(                          

)()()()()(2)()11(

*
1

*

111

kkWCkuBCkkAPkK

BkukkPkuBAkkPkuBAkkAPkkP
TTT

TTTT

++−

−++=++
 

o The a posteriori covariance matrix is used in the next calculation of the 

next a priori covariance matrix. 

o The calculation goes back to 2), the Time Update and then followed by 

3), Measurement Update calculations until the end of the projection time 

period k  when thK  moment is reached. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.7.  The Kalman filter presentation showing equations a nd the order of 
prediction and correction procedure for the general  method  

 

9.8.2. Algorithm and flowchart for the direct optim ization method 

1) Set the initial values for the: 

Initial estimates )( kkx , 

)(ˆ kkx , )( kkP  

Time Update calculations 

1) Project the state ahead 

)()()()(ˆ)(ˆ)1(ˆ 1 kWxkBukukkxBkkxAkxx f+++=+  

2) Project the error covariance ahead 

TT

TT

BkukkPkuBBkkPkAu

AkkPkuBAkkAPkkP

111

1

)()()()()(          

)()()()1(

++

++=+
 

Measurement Update calculations 

1) Calculate the Kalman gain 

)()()()()(()( *
1

* kkVCkkCPCkuBCkkAPkK TTT ++=  

2) Update the estimate using measured output )(ky  

)](ˆ)()[()1(ˆ)11(ˆ * kkxCkzkKkkxAkkx −++=++  

3) Calculate the correction error covariance 

)(*       

])()()[()()()(       

)()(2)()11(

1
*

11

1

kkW

CkuBCkkAPkKBkukkPkuB

AkkPkuBAkkAPkkP

TTTT

TT

+

+−+

++=++
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o Initial time 0kk = , initial state 
0

)()( 00 kxkkxkkx == , initial state 

estimate )(ˆ kkx , initial covariance matrix 
0

)( 00 kPkkP =  

2) Time update calculations (prediction) 

o Set the trajectory period, Kk ,1=  

o Calculate the state estimate from Equation (9.44) 

)()()()(ˆ)(ˆ)1(ˆ 1 kWxkBukukkxBkkxAkkx f+++=+  

o Calculate the error )1( kke +  at the moment )1( kk +  

)()()()()1( 1 kwkukkeBkkAekke −−=+  

o Update the error covariance matrix )( kkP  at the moment )1( kk +  

)()()()()(                       

)()()()1(
*

1
2

11

1

kWBkkPkuBBkkPkAu

AkkPkuBAkkAPkkP
TT

TT

+++

++=+

 
3) Measurement update calculations (error correction) 

o Obtain the output measurement at the moment )11( ++ kk  

)11()1()11( ++++=++ kkvkCxkkz  

o Calculate the measurement noise covariance matrix )(* kkV  based on 

the measurement noise 

o Calculate the filter gain matrix )1(* +kK  using Equation (9.106) 

1** )]1()1([)1()1( −++++=+ kVCkkCPCkkPkK TT  

o Update the state estimate at the moment )11( ++ kk , Equation (9.88) 

)]1()1()[1(                                         

)1(ˆ])1([)11(ˆ
*

*

+++++

+++−=++

kvkCxkK

kkxCkKIkkx
 

o Update the a posteriori covariance matrix to optimize the estimate 

min)1()11( →+=++ kJkkP  

)1(])1([)11( * kkPCkKIkkP ++−=++  

o The a posteriori covariance matrix is used in the next calculation of the 

next a priori covariance matrix. 

o The calculation goes back to 2), the Time Update and then followed by 

3), Measurement Update calculations until the end of the projection time 

period when K  is reached. 
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9.8.3. The Kalman filter software implementation fl owchart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9.8. Flowchart for implementing the Kalman filter algori thm used for state 
estimation of the bilinear model for the CCIX plant  (based on method 

for direct optimization with measurements at )11( ++ kk  

Set initial values of: the discrete moment 0kk = , the initial state estimate 

0
)( 00 kxkkx = , 

0
)( kxkkx =  and the covariance matrix of the initial estimate 

kkPkkP =)( 00 ; given trajectories )()( kv and  kw . 

Calculate the estimate )1(ˆ kkx +  at moment )1( +k  

given all previous (initial) data up to moment k  

Update the a priori covariance estimate error )1( kkP +  

using the estimate at )1( +k  

Obtain next output measurement 
)1()11( +=++ kCxkkz  at moment )1( +k . 

Calculate the Kalman filter gain )1(* +kK  

Determine the prediction update 
)11(ˆ ++ kkx using the filter gain )1(* +kK  value 

Update the a posteriori error covariance matrix 
)11( ++ kkP  for use in the next calculation 

Kk =+ )1(  

Set )11()( ++= kkPkkP  

Move to the next moment )1( += kk  

End 
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The procedure for the direct optimization method is implemented in MATLAB 

software using the flowchart in Figure 9.8. The MATLAB code is listed in 

APPENDIX E. 

 
9.9. Experiments and results 
 
Experiments were conducted to observe the behaviour of the designed filter 

under the influence of both the system and measurement noises; the 

combination of their variations of noises and initial values of the state vector. The 

criterion for evaluating the success of the experiments is the least square error 

between the measured states and the estimated states, 
2

1

)()( ∑
=

=
K

k

keeJ and the 

overall processing time. 

The following sets of experiments have been conducted: 

ο Experiment for changing system noise and a constant measurement 

noise, 

ο Experiment for changing measurement noise and a constant system 

noise, 

ο Experiment of both system and measurement noises changing at the 

same rate and direction and 

ο Experiment of the changing initial values for the estimated states and the 

constant initial system states. 

Figure 9.9 represents smoothened real data obtained from the study of 

continuous countercurrent ion exchange (CCIX) of Hendry, (1982). This figure is 

consistent for all experiments as presented by all the sets of experiments from 

Table 9.2 to Table 9.5. The Kalman filter gains behaviour has been presented for 

each set of experiments. Its corrective nature is demonstrated for all cases, this 

clearly demonstrates the success of the developed method of the Kalman filter 

for state estimation of the bilinear system considered. 

 
Experiment conditions: 

1) The system noise covariance: { } { }



≡≠
≠

=
T

T

kwkwEjk  kW

k   
jwkwE

)()(),(

0,0
)()(

*
 

where NNRkW ×∈)(*  a diagonal matrix, 

2) The measurement noise covariance: { }




≠
≠

=
jk  kV

jk  
jvkvE T

),(

,0
)()(

*
 

where llRV ×∈* , 
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Figure 9.9.  CCIX process real system dynamic behaviour  

 
3) Requirements for the noise characteristics is to preserve the dialog structure 

of the covariance matrices. 

4) The noise variables must not be corrected, then { } ,0)()( =TkwkvE  for all k . 

5) The two noise variables )(kw  and )(kv  must be stochastic noises, and 

6) At 0=k , { }TxxEkP )0()0()( 0 = , where )0(x  is the average of the stochastic 

process; and NNRP ×∈  is not the function of time for the initial moment. 

 
The first set of experiments (the changing amplitud e of the system noise at 

constant measurement noise) 

The first set of experiments in Table 9.2 is based on the changing system noise 

under the assumption that the measurement noise stays constant. The aim of the 

experiment is to observe how the system noise affects the filter at constant 

measurement noise. The filter gain, estimated state and estimation error are 

measured. The results are presented in Figures 9.10–9.13. This set of 

experiments considers a scenario where system noise maybe higher than and or 

increasing in comparison to the measurement noise. 

 
Table 9.2: Experiment for changing the amplitude of the system  noise at a constant 

measurement noise  
Experiment 

set 

System and 

measurement noises 
Changing system noise 

1 )'(kw  )'(kv  Run 1 Run 2 Run 3 Run 4 

 Details 
below 

0.8138 )(1.0 kw×  )(5.0 kw×  )(0.1 kw×  )(10 kw×  

)(kw , see APPENDIX E 
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The best case scenario: 
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Figure 9.10. The estimated states for the CCIX process for the b est case scenario 

at )(1.0)( kwkw ×=  Run 1 of Table 9.2. 

 

 
Figure 9.11. Kalman filter gain values for the best case scenari o at 

)(1.0)( kwkw ×=  Run 1 of Table 9.2. 

 

The worst case scenario: 
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Figure 9.12. The estimated states for the CCIX process for the w orst case at 

)(10)( kwkw ×=  Run 4 of Table 9.2. 

 

 
Figure 9.13. Kalman filter gain values for the worst case at )(10)( kwkw ×=  Run 4 

of Table 9.2. 
 

 

 



 

379 

Table 9.3:  Results of the first set of experiments for changi ng the system noise at 
constant measurement noise 

Estimation criterion the least squares error and th e estimation run time for the 
first set of experiments 

Case 1: (First set of experiments) )(eJ  Run time ( calct ) [sec] 

Run 1 238.9205 0.0150 

Run 2 238.0485 0.0160 

Run 3 228.4817 0.0310 

Run 4 1.0293e+003 0.0320 
 
Results and discussion of the first set of experime nts 

The filter responds very well to noise changes; the effect of system noise is 

demonstrated in Figures 9.10–9.13. At lower system noise, the filter seems to 

produce best response according to the criteria, Table 9.3. At the lower system 

noise, the filter gains tend to be extremely small, close to zero, Figure 9.11. 

 
The second set of experiments (the changing measure ment noise at 

constant system noise) 

The second set of experiments is that of changing measurement noise while 

keeping all other parameters constant, and using the best performance system 

noise )(kw  from the first set of experiments, Table 9.4. The results for this set of 

experiments are presented in Table 9.5 and Figures 9.14–9.17. The experiments 

consider the case where the measurement noise may be increasing while the 

system noise stays constant and or lower than the measurement noise. 

 
Table 9.4: Experiment of the changing measurement noise and co nstant system 

noise  
Experiment 

set 

System and 

measurement noises 
Changing system noise 

2 )'(kw  )'(kv  Run 1 Run 2 Run 3 Run 4 

 )(1.0 kw×  0.8138 )(1.0 kv×  )(5.0 kv×  )(0.1 kv×  )(10 kv×  

)(kw , see APPENDIX E 
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Figure 9.14. The estimated states for the CCIX process for the b est case at 

)(1.0)( kvkv ×=  Run 1 of Table 9.4.  

 
 

 
Figure 9.15. Kalman filter gain values for the best case at )(1.0)( kvkv ×=  Run 1 of 

Table 9.4. 
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Figure 9.16.  The estimated states for the CCIX process for the worst case scenario 

at )(10)( kvkv ×=  Run 4 of Table 9.4. 

 

 

 
Figure 9.17. Kalman filter gain values for the worst case scenar io at 

)(10)( kvkv ×=  Run 4 of Table 9.4. 

 

 
Table 9.5:  Results of the second set of experiments for chang ing the measurement 

noise at constant system noise  
Estimation criterion the least squares error and th e estimation run time for the 

second set of experiments 

Case 2: (Second set of experiments) )(eJ  Run time ( calct ) [sec] 

Run 1 239.9425 0.0150 
Run 2 239.4595 0.0310 
Run 3 238.9205 0.0320 
Run 4 241.5419 0.0150 
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Results and discussion of the second set of experim ents 

The filter response to the effects of measurement noise is demonstrated in 

Figures 9.14–9.17. The criteria for evaluation of the best results are presented in 

Table 9.5. The filter performs poorly at high measurement noise, Table 9.5. This 

is the same effect to that of system noise. 

 

The third set of experiments (changing both the mea surement and system 

noises – simultaneous increase or decrease) 

The third set of experiments considers the both system and measurement noises 

increasing simultaneously. This behaviour is presented in Table 9.6 and the 

corresponding results are shown in Figures 9.18–9.21. For both noises 

increasing at the same rate and in the same direction, the filter performed better 

at lowest system and measurement noises. 

 

Table 9.6: Experiment of changing both system and measurement noises at the 
same rate and direction  

Experiment 

set 

System and 

measurement noises 

Simultaneously changing system and 

measurement noises 

3 )'(kw  )'(kv  Run 1 Run 2 Run 3 Run 4 

 
Details 
below 

0.8138 
)(1.0 kv×  

)(1.0 kw×  

)(5.0 kv×  

)(5.0 kw×  

)(0.1 kv×
)(0.1 kw×  

)(10 kv×  

)(10 kw×  

)(kw , see APPENDIX E 

 

For the best case results: 
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Figure 9.18.  The estimated states for the CCIX process for the best case scenario 

at )(1.0)( kwkw ×=  and )(1.0)( kvkv ×=  Run 1 of Table 9.6. 

 

 

 
Figure 9.19. Kalman filter gain values for the best case scenari o at 

)(1.0)( kwkw ×=  and )(1.0)( kvkv ×=  Run 1 of Table 9.6. 

 

For the worst case scenario: 
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Figure 9.20.  The estimated states for the CCIX process for the worst case at 

)(10)( kwkw ×=  and )(10)( kvkv ×=  Run 4 of Table 9.6. 

 

 

 
Figure 9.21.  Kalman filter gain values for the worst case at )(10)( kwkw ×=  and 

)(10)( kvkv ×=  Run 4 of Table 9.6. 

 

 
Table 9.7:  Results of the third set of experiments for changi ng both the 

measurement and system noises simultaneously  
Estimation criterion the least squares error and th e estimation run time for the 

third set of experiments 

Case 3: (Third set of experiments) )(eJ  Run time ( calct ) [sec] 

Run 1 239.8075 0.0150 
Run 2 239.1048 0.0160 
Run 3 233.9360 0.0320 
Run 4 2.3083e+004 0.0160 
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Results and discussion of the third set of experime nts 

Results for both noises increasing simultaneously show that the system noise 

takes precedence over measurement noise, Table 9.7. At higher system noise 

the filter produced worse results at constant (or lower) measurement noise; but at 

both low noises the filter performed well, Figures 9.18–9.21. 

 
The fourth set of experiments (changing the initial  conditions of the 

estimated states) 

The fourth set of experiments deals with changing initial conditions of the 

estimated states of the system at the constant system state initial conditions 

[ ]Tkx 0.10.10.10.10.10.1)( = , and the reference initial estimated state 

of [ ]Tkx 0.10.10.10.10.10.1)(ˆ = , Table 9.8. This experiment uses the 

lowest values of )(kv  and )(kw  that produced best results in experiment one 

and two. The results for this experiment are presented in Figures 9.22–9.25 and 

in Table 9.9. 

 

Table 9.8: Experiment of the changing estimated state initial conditions  
Experiment 

set 

System and 

measurement noises 
Changing initial estimated state values 

4 )'(kw  )'(kv  Run 1 Run 2 Run 3 Run 4 

 Details 
below 

0.8138 0)(ˆ =kx  )(ˆ0.1 kx×  )(ˆ0.5 kx×  )(ˆ10 kx×  

)(kw , see APPENDIX E 
 

[ ]Tkx 0.10.10.10.10.10.1)( =  

[ ]Tkx 0.10.10.10.10.10.1)(ˆ =  
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Figure 9.22.  The estimated states for the CCIX process for the best case results at 

)(ˆ10)(ˆ kxkx ×=  Run 4 of Table 9.8. 

 

 

 
Figure 9.23. Kalman filter gain values for the best case results  at )(ˆ10)(ˆ kxkx ×=  

Run 4 of Table 9.8. 
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Figure 9.24. The estimated states for the CCIX process for the w orst case scenario 

at )(ˆ0.0)(ˆ kxkx ×=  Run 1 of Table 9.8. 

 

 
Figure 9.25. Kalman filter gain values for the worst case scenar io at 

)(ˆ0.0)(ˆ kxkx ×=  Run 1 of Table 9.8. 

 

 

Table 9.9:  Results of the fourth set of experiments for the c hanging estimated state 
initial conditions  

Estimation criterion the least squares error and th e estimation run time for 
the fourth set of experiments 

Case 4: (Fourth set of experiments) )(eJ  Run time ( calct ) [sec] 

Run 1 235.5467 0.0160 

Run 2 235.7558 0.0160 

Run 3 237.8325 0.0160 

Run 4 243.2189 0.0150 
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Results and discussion of the fourth set of experim ents 

The best filter performance for the changing state estimate initial conditions is 

obtained at the initial values of )(ˆ10)(ˆ kxkx ×= , Table 9.9, and Figures 9.21–

9.25. The processing time is lowest at the highest initial conditions )(ˆ10 kx×  and 

the least square error did not differ much throughout all the runs except for 

highest initial conditions. The state estimates also did not change in value much 

between the worst case and the best case scenarios. 

 
9.10. Discussion of results from all experiments 
 
Though the filter produced relevant results, these could be improved by 

investigating the developed software program further. The filter tended to 

converge too quickly in all experiments; this could be associated with effects of 

sampling on data used, Figures 9.10–9.25. This may need further investigation. 

All experiments produced more or less the same error condition; this indicates 

that the filter is performing accordingly except for data issues mentioned above. 

 
Table 9.10:  Best results from all the filter experiments  

Method System attribute used in the 
experiment Criterion 

Experiment Procedure of the experiment )( pJ  
Run time ( calct ) 

[sec] 

Case 1 
Changing the system noise at a 
constant measurement noise 238.9205 0.0150 

Case 2 
Changing the measurement noise at 
constant system noise 239.9425 0.0150 

Case 3 
Changing measurement noise and 
system noise (simultaneous 
increase/decrease) 239.8075 0.0150 

Case 4 
Changing the initial conditions of the 
estimated states 

243.2189 0.0150 

 

9.11. Conclusion 

 
This chapter presents two methods for design of Kalman filter used state 

estimation of the considered bilinear model representing a continuous 

countercurrent ion exchange (CCIX) process. General concepts of state 

estimation procedure have been discussed in the introduction of the chapter. 

This included the usage of statistical methods to solve estimation problems to 

produce optimal results. A Kalman filter for a discrete system has been 

considered in a general sense of linear systems to provide the basic 

understanding of the concept of how the Kalman filter is used to estimate an 
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unknown state of a system. The Kalman filter design is then extended for the 

case of a bilinear discrete time system to estimate its unknown states using 

optimization techniques.  

This Kalman filter for the bilinear model of the CCIX process has been derived 

using two methods: the first method is a general formulation of the Kalman filter 

design based on measurements available only up to )( kk  moment, Figure 9.3; 

and the second method is based on direct optimization of the estimation error. 

The second method considers measurements that are available up to the 

measurement update moment )11( ++ kk . 

Derivation of the filter algorithms for each of the two methods has been 

presented. The algorithms and a flowchart for the methods are presented in 

detail, and also showing the methods’ implementation in MATLAB software. The 

filter methods developed produced successful results, Figures 9.9–9.33. The 

experiments were conducted using MATLAB software, APPENDIX E. 

MATLAB software program developed for the observer design has produced the 

best results in terms of estimating the process states. The MATLAB software 

program for the Kalman filter produced relevant results but needs some further 

investigation on issues of convergence. 

The next chapter concludes all the work covered in the thesis: DEVELOPMENT 

OF METHODS FOR MODELLING, PARAMETER AND STATE ESTIMATION 

FOR NONLINEAR PROCESSES. 
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CHAPTER TEN 
10. CONCLUSION 

10.1. Introduction 
 
Countries like South Africa have always had some water shortages one way or 

the other; and it seems as if the problem is getting worse by day. This has been 

made more complicated by high intensity of urbanization and population 

explosion. Recently, South Africa has experienced worse drought in many years; 

this means that any form of water recovery systems should be considered and be 

given priority, if the country is to grow economically for continued support of its 

population. Water is the basis of life irrespective of one’s social standing. 

Processes like ion exchange should be considered as one of many strategies 

that can be implemented to prevent devastation that comes with extreme water 

shortages as currently experienced in the country and in the whole of sub-

Saharan region. 

An ion exchange process has many different formulations and thus many 

applications; it is a very convenient chemical process for recovery and reuse of 

water in its desalination capabilities. It is also used for recovery of industrial 

effluents, such as in: 

o removal of organics and colloidal particulates, 

o neutralisation of acidic mine drainage systems, 

o desalination of hard brackish water, 

o combined neutralisation and desalination of acidic effluents etc. 

The ion exchange process can be used for a desalination function which is a 

huge benefit for water treatment. This means ion exchange process can be used 

as a treatment process of water coming out of water treatment plants, to recover 

domestic used water. 

Work done in this thesis includes model development (reformulation), parameter 

estimation and state estimation methods for application in optimal control. The 

application is the continuous countercurrent ion exchange (CCIX) process used 

for desalination of water. A study for the chemical requirements and analysis of 

this process was done by the University of Cape Town Chemical Engineering 

Department in 1982. Though the focus of this earlier study was not optimal 

control, but on optimization of resin and regenerant chemicals based on the 

effluent being used (Hendry, 1982a; Hendry, 1982b). The data and results 

obtained from that study are equally applicable for parameter and state 

estimation procedures and serve as model validation tool for the current study; 



 

392 

and thus have been used for validating and estimating both parameters and the 

states of the process. 

The developed model of the desalination process in the thesis is based on the 

reduction of sodium in the feed water but the available data was that of hydrogen 

content in the liquid. The model was therefore presented using both techniques 

but the final model is that presented by the sodium in liquid. This led to a number 

of proposed methods for solving the model equations; it also led to new ground in 

developing methods for the parameter estimation. This is as a result of 

introduction of nonlinear model of the process brought about by the model 

coefficients. 

The chapter is presented as follows: 1) the deliverables of the study, process 

model development and reformulation, methods for parameter estimation, 

methods for state estimation, 2) applicability of deliverables, and 3) future 

developments 

 
10.2. Deliverables 
 
The continuous countercurrent ion exchange process model developed in Dube 

(2002) has been reformulated for solving the parameter and state estimation 

problems. The procedure for reformulation of the model with the aim that it is 

applied in optimal control design has been described. The developed model is 

then further translated into a discrete model to allow it to be used in optimal 

control process analysis (which includes parameter and state estimation 

procedures). In optimal control, if process analysis is considered with the 

intention of real-time implementation of the control strategy, parameter and state 

estimation are usually one of the requirements. This study did not consider 

optimal control design, but the model development, parameter and state 

estimation problems as applied to nonlinear processes. 

The parameter methods developed can be categorized in two main types: 1) 

methods for estimation of parameters entering the model linearly, and 2) 

nonlinear methods. Under the linear methods, four solutions have been 

developed and are presented in the subsequent sections. 

State estimation problem has also been solved based on two main techniques, 

the observer method and the Kalman filter. The observer method developed is 

based on the pole placement technique to solve for unknown states of the 

process. The Kalman filter method is a direct Kalman technique applied to the 

developed bilinear model. The solution is approached from two different 

possibilities; 1) the solution developed based on mean square difference of the 
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error between estimated states and real states (referred to as the direct solution), 

and 2) the solution developed using optimization of the error difference between 

real states and estimated states. 

 
10.2.1. Model development reformulation and discret ization 

Two models have been developed for continuous countercurrent ion exchange: 

1) a bilinear model with affine parameters and 2) a nonlinear model based on the 

separation factor of the CCIX process. The first model was reformulated and 

discretized for use in parameter and state estimation. The data from the previous 

study (Hendry, 1982a; Hendry, 1982b) were rearranged to represent sodium (Na) 

ions in the liquid instead of hydrogen (H) ions as was in the previous study. The 

aim for reformulation was the possibility for implementation of the model in 

optimal control design of the process. These data, the original and the 

rearranged data are presented in MATLAB simulation runs performed in Chapter 

5, and the results were successful. 

The nonlinear model, nonlinear according to process parameters is considered 

under the parameter estimation problem and solved separately. The model is 

very complex and derivations of the solution have been presented in Chapter 7. 

Due to the complex nature of this model, it was not used in the state estimation 

problem and such a problem could be considered as a future study. 

 
10.2.2. The parameter estimation deliverables 

From the standard presentation of the continuous countercurrent ion exchange 

process model, developed in Chapter 4, the process model has been 

reformulated for parameter estimation problem (Chapter 6). Two models have 

been developed; 1) a bilinear model with affine parameters which allows 

application of linear techniques to solve the parameter estimation problem since 

the model is linear according to its parameters, and 2) the nonlinear model 

according to the parameters. The second model is firstly solved using MATLAB 

software and also solved using the Lagrange optimization technique. 

 
10.2.2.1. Methods for linear parameter estimation 

The parameter estimation problem for a bilinear model with affine parameters 

has been solved using four different methods: 1) optimization gradient-based 

method that uses the process output measurements, 2) optimization gradient-

based method that uses the full state vector measurements, 3) direct solution 

using the state vector measurements, and 4) Lagrange’s optimization technique 
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based on state vector measurements. Derivation of each problem formulation of 

the above methods has been presented. 

The results for all the four parameter estimation methods developed have been 

successful in variable levels, and these are presented and discussed at the end 

of Chapter 6. The direct method seems to have been the best of all four methods 

in terms of calculation speed and error evaluation criterion. 

 
10.2.2.2. Methods for nonlinear parameter estimatio n 

The nonlinear according to parameters model was developed based on 

introduction of the separation factor of the ion exchange process, Chapter 7. In 

this case, the model parameters enter the process equations in a nonlinear 

manner. Two methods for nonlinear parameter estimation were derived: 1) one 

method based on the direct solution of the model equations using MATLAB 

software functions and 2) a second one, developed based on the Lagrange’s 

function optimization. The results from the direct method have been presented 

and the derivation of the solution for the Lagrangian method was developed. 

 
10.2.3. The state estimation deliverables 

The state estimation problem for the developed bilinear model of the CCIX 

process has been formulated and solved using two methods: 1) the observer 

method based on pole placement technique and the Kalman filter based method. 

The derivation of the solutions of these methods is presented in Chapter 8 and 9 

respectively. The observer method produced very positive results. The results 

and discussion are presented in Chapter 8. The Kalman filter technique also 

produced satisfactory results. These results and the discussion are presented in 

Chapter 9. 

 
10.2.3.1. Methods for design of a bilinear observer  

A method for design of a bilinear observer based on pole placement technique 

has been proposed for the bilinear model of the CCIX process. The derivation of 

the observer matrices is based on determinants of the characteristic equation 

and is presented in Chapter 8. The results from MATLAB simulation are also 

presented in the same chapter. 

 
10.2.3.2. Method for design of a Kalman filter 

The method for design of the Kalman filter proposed is based on two 

approaches. The first approach is a general method based on minimization of 

least squares of the filter error. The second approach is based on direct 
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optimization of the error between estimates and the real states. The final 

estimation solution simulation is presented in Chapter 9 and has shown the 

solution to be successful. 

 
10.3. Developed software 
 

Table 10.1: A table showing developed software for all the pr oject methods  

No.  Name of 
software Functions of the software Chapter 

number 
Appendix 
reference 

1. MATLAB 

MATLAB software program for +H  
fractional change for the 6 stage 
system of a LOW to HIGH 
concentration step change 

Chapter 5 APPENDIX A.1 

2. MATLAB 
MATLAB software program for +H  
fractional change for the 6 stage 
system of a HIGH to LOW 
concentration step change 

Chapter 5 APPENDIX A.2 

3. MATLAB 
MATLAB software program for the +H  
fractional change for the 12 stage 
system moving from a LOW to HIGH 
concentration step change 

Chapter 5 APPENDIX A.3 

4. MATLAB 
MATLAB software program for the +H  
fractional change for the 12 stage 
system moving from HIGH to LOW 
concentration step change 

Chapter 5 APPENDIX A.4 

5. MATLAB 

MATLAB software program for the 
+Na  fractional change values of the 6 

stage system for a LOW to HIGH 
concentration step change 

Chapter 5 APPENDIX A.5 

6. MATLAB 

MATLAB software program for the 
+Na  fractional change values of the 6 

stage system for a HIGH to LOW 
concentration step change 

Chapter 5 APPENDIX A.6 

7. MATLAB 

MATLAB software program for the 
+Na  fractional change values of the 

12 stage system for a LOW to HIGH 
concentration step change 

Chapter 5 APPENDIX A.7 

8. MATLAB 

MATLAB software program for the 
+Na  fractional change values for the 

12 stage system moving from high to 
low concentration step change 

Chapter 5 APPENDIX A.8 

9. MATLAB 
Program for parameter estimation 
using the measured data of the process 
output 

Chapter 6 APPENDIX B.1 

10. MATLAB 
Program for parameter estimation 
using the state vector measurements 
(the least squares method) 

Chapter 6 APPENDIX B.2 

11. MATLAB 
Program for parameter estimation 
using the state vector measurements 
(direct method) 

Chapter 6 APPENDIX B.3 

12. MATLAB 
Program for parameter estimation 
using the state vector measurements 
(Lagrange method) 

Chapter 6 APPENDIX B.4 



 

396 

13. MATLAB 
Program for nonlinear parameter 
estimation – the direct method using 
MATLAB fsolve() function 

Chapter 7 APPENDIX C.1 

14. MATLAB Program for bilinear observer design Chapter 8 APPENDIX D.1 

15. SIMULINK Simulink program for the design of the 
bilinear observer 

Chapter 8 APPENDIX D.2 

16. MATLAB 
MATLAB program for extracting values 
of the design of the observer back to 
workspace 

Chapter 8 APPENDIX D.3 

17. MATLAB Program for state estimation using 
design of the Kalman filter 

Chapter 9 APPENDIX E 

 

10.4. Application of the thesis deliverables 
 
The developed deliverables may be applied in the following settings: 

o in classes for control systems, 

o for research, 

o for real-time process observation, modelling, and control, and 

o relevant for design and development of new ion exchange plants. 

The work covered could be used for educational purposes, for example, 

introduction of theory of modelling, parameter and state estimation in nonlinear 

processes at a graduate level. It could be used as a basis for practical 

implementation of different estimation methods and algorithms developed using 

software. The methods developed for parameter estimation and state estimation 

allow for further research in estimation of nonlinear processes. 

The developed methods for modelling and estimation have been designed with 

the intent and purpose of being able to be applied in real-time observation and 

control of industrial processes, even if these processes constitute high 

nonlinearities within their components. The developed methods were designed 

based on the countercurrent ion exchange process, but should be applicable to 

any other process with the same characteristics. On the bases of the developed 

methods, it is further possible to advance a control system of an ion exchange 

process to a superior one using real-time optimal control. Such control strategies 

are designed to integrate commercial objectives with that of the control system. 

 
10.5. Future developments of methods and applicabil ity 
 
Optimization and process automation have since become the forerunner for 

modernized economies. Process optimization and control, bridge the gap 

between the people’s needs, engineering (technology) and the economics. 

Online system engineering has also developed over a very short period of time 

with the improved Internet services, which allow easy access to information 
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instantly irrespective of the physio-geographical location. Global Positioning 

Systems (GPS) have also opened online optimization to imaginable possibilities. 

Data storage capabilities and data transfer speeds have also increased sharply 

in the last few years at a much reduced cost. This makes process optimization 

attractive for process and or control engineers. 

Highly optimized control possibilities have been made wide open by the 

mentioned developments, and these allow the developed solutions to be easily 

implemented in real–time environment. The developed solutions can be applied 

in the following possible future strategies:  

o Application of the developed methods in a real plant for real-time control 

and monitoring, 

o Extension of developed algorithms and programs for online estimation, 

o Utilizing the proposed solutions in an optimal control problem in real–time, 

and  

o Solving the state estimation problem of the developed nonlinear model. 

 
10.6. Publications produced in connection with the thesis 
 
N.M. Dube & R.T. Tzoneva, 2016. Observer design for a bilinear model of a 

continuous countercurrent ion exchange process, SAIEE Africa Research 

Journal, Vol. 107, (4), December 2016, SOUTH AFRICAN INSTITUTE OF 

ELECTRICAL ENGINEERS (SAIEE), pp. 193–243. 

 

In progress: N.M. Dube & R.T. Tzoneva, 2017. Kalman filter design for a bilinear 

process model with affine parameters. To be submitted to SAIEE Africa 

Research Journal. 
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APPENDICES 
 
APPENDIX A: PROGRAMS FOR DATA AND MODEL REFORMULATI ON FOR 

ESTIMATION PROBLEMS 
APPENDIX A.1: MATLAB software program for +H  fractional change for 

the 6 stage system of a LOW to HIGH concentration s tep 
change 

 

% Program used for manupulation of data from a Continuous Countercurrent Ion  

% Exchange (CCIX) process used for desalination of water. 

% The program tests the H+ LOW to HIGH step change in the feed concentration. 

%  

% Author: NM. Dube 

% Dated: 16 April 2011 

% 

% Data vectors for a 6 stage system, T is the upflow period in (min),  

% The first run is a LOW to HIGH (H+) step change in the feed concentration 

% 

cycle1 = 1:1.0:18; 

T = 17; 

cycle2 = T*cycle1; 

 

% Stage liquid concentration data 

 stage1 = [0.221 0.577 0.730 0.847 0.920 0.936 0.968 0.974 0.981 0.989 0.988 

0.997 1.000 1.000 1.000 1.000 1.000 1.000]; 

 stage2 = [0.000 0.140 0.314 0.523 0.656 0.766 0.842 0.886 0.900 0.933 0.958 

0.963 0.982 0.974 0.991 0.994 0.993 0.993]; 

 stage3 = [0.000 0.004 0.066 0.184 0.295 0.454 0.601 0.690 0.758 0.804 0.877 

0.881 0.951 0.965 0.972 0.981 1.000 0.988]; 

 stage4 = [0.000 0.000 0.004 0.035 0.082 0.168 0.277 0.361 0.440 0.522 0.698 

0.784 0.899 0.931 0.966 0.966 0.991 0.991]; 

 stage5 = [0.000 0.000 0.000 0.003 0.020 0.052 0.113 0.167 0.207 0.340 0.474 

0.547 0.780 0.860 0.899 0.905 0.975 0.973]; 

 stage6 = [0.000 0.000 0.000 0.000 0.000 0.001 0.024 0.033 0.063 0.124 0.167 

0.233 0.482 0.539 0.672 0.779 0.940 0.972]; 

% 

% Graph plots 

subplot (2,1,1,figure (1)) 

plot (cycle1,stage1,'-*','LineWidth',1.5,'MarkerSize',8,'MarkerFaceColor',[0.0 0.0 1.0]) 

grid on 
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% 

% Labels for the plot and specifying font size for each 

% 

title('H+ fraction in liquid in a 6 stage system [a LOW-HIGH concentration step 

change]','fontsize',16)%'FontWeight', 'bold') 

xlabel('cycle number [number]','Fontsize',16)%,'FontWeight', 'bold') 

ylabel('H+ fraction in liquid [meq/l]','Fontsize',16)%,'FontWeight', 'bold') 

hold on 

% 

%subplot(3,2,2) 

plot(cycle1,stage2,'-o','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage3,'-s','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage4,'-d','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage5,'-p','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage6,'-^','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

% 

subplot (2,1,2,figure(1)) 

plot (cycle2,stage1,'-*','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

grid on 

title('Liquid concentration per stage in a 6 stage system [a LOW-HIGH concentration 

step change]','Fontsize',16)%,'FontWeight', 'bold') 

xlabel('cycles [min]','Fontsize',16)%,'FontWeight', 'bold') 

ylabel('Liquid concentration [meq/l]','Fontsize',16)%,'FontWeight', 'bold') 

hold on 

% 

plot(cycle2,stage2,'-o','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle2,stage3,'-s','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 
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% 

plot(cycle2,stage4,'-d','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle2,stage5,'-p','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle2,stage6,'-^','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

% 

%----------------------------------Program end------------------------------------------- 
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APPENDIX A.2:  MATLAB software program for +H  fractional change for 
the 6 stage system of a HIGH to LOW concentration s tep 
change  

 

% Program used for manupulation of data from Continuous Countercurrent Ion  

% Exchange (CCIX) process used for desalination. 

% The program is an H+ HIGH to LOW step change in the feed concentration. 

% 

% Author: NM Dube 

% Dated: 16 April 2011 

% 

% Data vectors for a 6 stage system, T is the upflow period in (min),  

% The second run is a HIGH to LOW (H+) step change in the feed concentration 

cycle1 = 1:1:27; 

T = 15; 

cycle2 = T*cycle1; 

% 

% Corrected values; values corrected using (interpolation averaging method) 

stage1 = [0.014 0.002 0.031 0.036 0.063 0.062 0.088 0.119 0.152 0.183 0.209 0.240 

0.280 0.332 0.372 0.413 0.449 0.525 0.591 0.634 0.670 0.694 0.775 0.812 

0.836 0.903 0.931]; 

stage2 = [0.009 0.003 0.017 0.052 0.059 0.085 0.117 0.152 0.191 0.250 0.295 0.350 

0.490 0.476 0.538 0.577 0.645 0.664 0.752 0.780 0.809 0.829 0.868 0.920 

0.939 0.959 1.000]; 

stage3 = [0.014 0.021 0.057 0.079 0.126 0.170 0.235 0.312 0.403 0.471 0.591 0.631 

0.693 0.716 0.756 0.764 0.840 0.874 0.881 0.916 0.938 0.961 0.995 1.000 

1.000 1.000 1.000]; 

stage4 = [0.013 0.059 0.141 0.204 0.264 0.388 0.475 0.560 0.668 0.739 0.790 0.825 

0.836 0.875 0.916 0.918 0.942 0.953 0.965 0.968 1.000 0.987 1.000 1.000 

1.000 1.000 1.000]; 

stage5 = [0.077 0.115 0.185 0.311 0.482 0.612 0.703 0.782 0.853 0.879 0.904 0.927 

0.942 0.962 0.968 0.981 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

1.000 1.000 1.000]; 

stage6 = [0.085 0.254 0.571 0.764 0.882 0.901 0.940 1.000 0.995 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

1.000 1.000 1.000]; 

% 

% Graph plots 

subplot (2,1,1) 
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plot (cycle1,stage1,'-*','LineWidth',1.5,'MarkerSize',8,'MarkerFaceColor',[0.0 0.0 1.0]) 

grid on 

title('H+ fraction in liquid in a 6 stage system [a HIGH-LOW concentration step 

change]','FontSize',16)%'FontWeight', 'bold') 

xlabel('cycle number [number]','FontSize',16)%,'FontWeight', 'bold') 

ylabel('H+ fraction in liquid [meq/l]','FontSize',16)%,'FontWeight', 'bold')) 

hold on 

% 

plot(cycle1,stage2,'-o','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage3,'-s','LineWidth',1.5,'MarkerSize',7) 

hold on 

% 

plot(cycle1,stage4,'-d','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage5,'-p','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage6,'-^','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

% 

% Graph plots 

subplot (2,1,2) 

plot (cycle2,stage1,'-*','LineWidth',1.5,'MarkerSize',8,'MarkerFaceColor',[0.0 0.0 1.0]) 

grid on 

title('Liquid concentration per stage in a 6 stage system [a HIGH-LOW concentration 

step change]','Fontsize',16)%,'FontWeight', 'bold') 

xlabel('cycles [min]','Fontsize',16)%,'FontWeight', 'bold') 

ylabel('Liquid concentration [meq/l]','Fontsize',16)%,'FontWeight', 'bold') 

hold on 

% 

plot(cycle2,stage2,'-o','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle2,stage3,'-s','LineWidth',1.5,'MarkerSize',7) 

hold on 

% 
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plot(cycle2,stage4,'-d','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle2,stage5,'-p','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle2,stage6,'-^','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

% 

%----------------------------------Program end------------------------------------------- 
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APPENDIX A.3:  MATLAB software program for the +H  fractional change 
for the 12 stage system moving from a LOW to HIGH 
concentration step change  

 

%--------------------------------------------------------------------------------------------------- 

% Program used for manupulation of data from a Continuous Countercurrent Ion 

Exchange (CCIX) process 

% used for desalination of water. 

% The program is an H+ LOW to HIGH step change in the feed concentration for a 

12 stage system. 

% 

% Author: NM Dube 

% Dated: 16 April 2011 

% 

% Data vectors for a 12 stage system, T is the upflow period in (min),  

% The third run is a LOW to HIGH (H+) step change in the feed concentration 

cycle1 = 1:1:23; 

T = 15; 

cycle2 = T*cycle1; 

% 

% Stage liquid concentration - corrected data 

 stage1 = [0.000 0.254 0.517 0.698 0.726 0.776 0.910 0.849 0.948 0.954 0.960 

0.980 0.986 0.984 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

1.000]; 

 stage2 = [0.012 0.013 0.046 0.088 0.238 0.299 0.633 0.725 0.778 0.814 0.821 

0.797 0.946 0.946 0.960 0.965 0.955 0.969 0.973 0.992 0.992 0.984 

1.000]; 

 stage3 = [0.000 0.024 0.000 0.000 0.008 0.021 0.171 0.283 0.403 0.523 0.673 

0.737 0.841 0.892 0.918 0.934 0.937 0.904 0.980 0.973 0.983 0.995 

1.000]; 

 stage4 = [0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.044 0.147 0.210 

0.279 0.532 0.633 0.727 0.805 0.830 0.861 0.879 0.937 0.967 0.960 

1.000]; 

 stage5 = [0.010 0.000 0.015 0.014 0.000 0.000 0.000 0.000 0.026 0.044 0.061 

0.100 0.144 0.235 0.340 0.506 0.581 0.657 0.800 0.858 0.914 0.975 

1.000]; 

 stage6 = [0.014 0.020 0.057 0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.014 

0.010 0.006 0.060 0.083 0.140 0.205 0.271 0.374 0.470 0.637 0.814 

1.000]; 
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% Graph plots 

subplot (2,1,1) 

plot (cycle1,stage1,'-*','LineWidth', 1.5,'MarkerSize',8,'MarkerFaceColor',[0.0 0.0 1.0]) 

grid on 

% Labels for the plot and specifying font size for each 

title('H+ fraction in liquid in a 12 stage system [a LOW-HIGH concentration step 

change]','fontsize',16)%'FontWeight', 'bold') 

xlabel('cycle number [number]','Fontsize',16)%,'FontWeight', 'bold') 

ylabel('H+ fraction in liquid [meq/l]','Fontsize',16)%,'FontWeight', 'bold') 

hold on 

% 

plot(cycle1,stage2,'-o','LineWidth', 1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage3,'-s','LineWidth', 1.5,'MarkerSize',7) 

hold on 

% 

plot(cycle1,stage4,'-d','LineWidth', 1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage5,'-p','LineWidth', 1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage6,'-^','LineWidth', 1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

% 

subplot (2,1,2) 

plot (cycle2,stage1,'-*','LineWidth', 1.5,'MarkerSize',8,'MarkerFaceColor',[0.0 0.0 1.0]) 

grid on 

title('Liquid concentration per stage in a 12 stage system [a LOW-HIGH concentration 

step change]','Fontsize',16)%,'FontWeight', 'bold') 

xlabel('cycles [min]','Fontsize',16)%,'FontWeight', 'bold') 

ylabel('Liquid concentration [meq/l]','Fontsize',16)%,'FontWeight', 'bold') 

hold on 

% 

plot(cycle2,stage2,'-o','LineWidth', 1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 
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plot(cycle2,stage3,'-s','LineWidth', 1.5,'MarkerSize',7) 

hold on 

% 

plot(cycle2,stage4,'-d','LineWidth', 1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle2,stage5,'-p','LineWidth', 1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle2,stage6,'-^','LineWidth', 1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

% 

%----------------------------------Program end------------------------------------------- 
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APPENDIX A.4:  MATLAB software program for the +H  fractional change 
for the 12 stage system moving from HIGH to LOW 
concentration step change  

 

%------------------------------------------------------------------------------------------------------- 

% Program used for manupulation of data from Continuous Countercurrent Ion 

% Exchange (CCIX) process used for desalination of water. 

% The program is an H+ HIGH to LOW step change in the feed concentration for a 

12 stage system. 

%  

% Author: NM Dube 

% Dated: 16 April 2011 

% 

% Data vectors for a 12 stage system, T is the upflow period in (min),  

% The fourth run is a HIGH to LOW (H+) step change in the feed concentration. 

cycle1 = 1:1:21; 

T = 15; 

cycle2 = T*cycle1; 

% 

% Stage liquid concentration 

 stage1 = [0.058 0.066 0.037 0.075 0.037 0.073 0.074 0.089 0.113 0.139 0.146 

0.170 0.201 0.227 0.300 0.332 0.405 0.554 0.648 0.760 0.898]; 

 stage2 = [0.020 0.009 0.016 0.024 0.026 0.071 0.085 0.164 0.191 0.245 0.322 

0.376 0.448 0.548 0.620 0.596 0.643 0.839 0.894 1.000 1.000]; 

 stage3 = [0.002 0.033 0.026 0.134 0.092 0.310 0.188 0.380 0.499 0.569 0.674 

0.690 0.756 0.815 0.846 0.887 0.885 0.956 0.973 1.000 1.000]; 

 stage4 = [0.000 0.101 0.083 0.204 0.337 0.489 0.569 0.764 0.823 0.861 0.902 

0.909 0.953 0.962 0.986 1.000 1.000 1.000 1.000 1.000 1.000]; 

 stage5 = [0.000 0.000 0.307 0.567 0.641 0.762 0.787 0.875 0.897 0.926 0.949 

0.982 0.972 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000]; 

 stage6 = [0.000 0.000 0.210 0.540 0.780 0.810 0.780 0.931 1.020 0.991 1.080 

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000]; 

% 

% Graph plots 

% 

subplot (2,1,1) 

plot (cycle1,stage1,'-*','LineWidth',1.5,'MarkerSize',8,'MarkerFaceColor',[0.0 0.0 1.0]) 

grid on 

% Labels for the plot and specifying font size for each 
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title('H+ fraction in liquid in a 12 stage system [a HIGH-LOW concentration step 

change]','fontsize',16)%'FontWeight', 'bold') 

xlabel('cycle number [number]','Fontsize',16)%,'FontWeight', 'bold') 

ylabel('H+ fraction in liquid [meq/l]','Fontsize',16)%,'FontWeight', 'bold') 

hold on 

% 

plot(cycle1,stage2,'-o','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage3,'-s','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage4,'-d','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage5,'-p','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage6,'-^','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

% 

subplot (2,1,2) 

plot (cycle2,stage1,'-*','LineWidth',1.5,'MarkerSize',8,'MarkerFaceColor',[0.0 0.0 1.0]) 

grid on 

title('Liquid concentration per stage in a 12 stage system [a HIGH-LOW concentration 

step change]','Fontsize',16)%,'FontWeight', 'bold') 

xlabel('cycles [min]','Fontsize',16)%,'FontWeight', 'bold') 

ylabel('Liquid concentration [meq/l]','Fontsize',16)%,'FontWeight', 'bold') 

hold on 

% 

plot(cycle2,stage2,'-o','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle2,stage3,'-s','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

%) 

plot(cycle2,stage4,'-d','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 
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plot(cycle2,stage5,'-p','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle2,stage6,'-^','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

% 

%--------------------------------------Program end----------------------------------------------- 
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APPENDIX A.5:  MATLAB software program for the +Na  fractional change 
values of the 6 stage system for a LOW to HIGH 
concentration step change  

 

% ------------------------------------------------------------------------------------------------------- 

% Program used for manupulation of data from Continuous Countercurrent Ion  

% Exchange (CCIX) process used for desalination of water. 

%  

% The program is a Na LOW to HIGH step change in the feed concentration for a 6 

stage system. 

%  

% Author: NM Dube 

% Dated: 16 April 2011 

% 

% Data vectors for a 6 stage system, T is the upflow period in (min),  

% The first run is a LOW to HIGH (Na) step change in the feed concentration 

 cycle1 = 1:1.0:18; 

 T = 17; 

 cycle2 = T*cycle1; 

 

% Stage liquid concentration 

 stage1 = [0.221 0.577 0.730 0.847 0.920 0.936 0.968 0.974 0.981 0.989 0.988 

0.997 1.000 1.000 1.000 1.000 1.000 1.000]; 

 stage2 = [0.000 0.140 0.314 0.523 0.656 0.766 0.842 0.886 0.900 0.933 0.958 

0.963 0.982 0.974 0.991 0.994 0.993 0.993]; 

 stage3 = [0.000 0.004 0.066 0.184 0.295 0.454 0.601 0.690 0.758 0.804 0.877 

0.881 0.951 0.965 0.972 0.981 1.000 0.988]; 

 stage4 = [0.000 0.000 0.004 0.035 0.082 0.168 0.277 0.361 0.440 0.522 0.698 

0.784 0.899 0.931 0.966 0.966 0.991 0.991]; 

 stage5 = [0.000 0.000 0.000 0.003 0.020 0.052 0.113 0.167 0.207 0.340 0.474 

0.547 0.780 0.860 0.899 0.905 0.975 0.973]; 

 stage6 = [0.000 0.000 0.000 0.000 0.000 0.001 0.024 0.033 0.063 0.124 0.167 

0.233 0.482 0.539 0.672 0.779 0.940 0.972]; 

% 

% Obtain Na+ fractional change in liquid concentration 

stage1 = 1- stage1; 

stage2 = 1- stage2; 

stage3 = 1- stage3; 

stage4 = 1- stage4; 
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stage5 = 1- stage5; 

stage6 = 1- stage6; 

% 

% Graph plots 

subplot (2,1,1,figure (1)) 

plot (cycle1,stage1,'-o','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

grid on 

% Labels for the plot and specifying font size for each 

title('Na+ fraction in liquid in a 6 stage system [a LOW-HIGH concentration step 

change]','fontsize',16)%'FontWeight', 'bold') 

xlabel('cycle number [number]','Fontsize',16)%,'FontWeight', 'bold') 

ylabel('Na+ fraction in liquid [meq/l]','Fontsize',16)%,'FontWeight', 'bold') 

hold on 

% 

plot(cycle1,stage2,'-<','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage3,'-s','LineWidth',1.5,'MarkerSize',7) 

hold on 

% 

plot(cycle1,stage4,'-d','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage5,'-p','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage6,'-^','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

% 

subplot (2,1,2,figure(1)) 

plot (cycle2,stage1,'-o','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

grid on 

title('Liquid concentration per stage in a 6 stage system [a LOW-HIGH concentration 

step change]','Fontsize',16)%,'FontWeight', 'bold') 

xlabel('cycles [min]','Fontsize',16)%,'FontWeight', 'bold') 

ylabel('Liquid concentration [meq/l]','Fontsize',16)%,'FontWeight', 'bold') 

hold on 

% 

plot(cycle2,stage2,'-<','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 
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hold on 

% 

plot(cycle2,stage3,'-s','LineWidth',1.5,'MarkerSize',7) 

hold on 

% 

plot(cycle2,stage4,'-d','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle2,stage5,'-p','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle2,stage6,'-^','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

% 

%----------------------------------Program end------------------------------------------- 
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APPENDIX A.6:  MATLAB software program for the +Na  fractional change 
values of the 6 stage system for a HIGH to LOW 
concentration step change  

 
%------------------------------------------------------------------------------------------------------- 

% Program used for manupulation of data from continuous countercurrent ion  

% exchange (CCIX) process used for desalination of water. 

% The program is a Na HIGH to LOW step change in the feed concentration for a 6 

stage system. 

% 

% Author: NM Dube 

% Dated: 16 April 2011 

% 

% Data vectors for a 6 stage system, T is the upflow period in (min),  

% The second run is a HIGH to LOW (Na) step change in the feed concentration 

cycle1 = 1:1:28; 

T = 15; 

cycle2 = T*cycle1; 

 

% 

% Corrected values that were dropping from the norm using (interpolation) averaging 

method 

 stage1 = [0.014 0.002 0.031 0.036 0.063 0.062 0.088 0.119 0.152 0.183 0.209 

0.240 0.280 0.332 0.372 0.413 0.449 0.525 0.591 0.634 0.670 0.694 0.775 

0.812 0.836 0.903 0.931]; 

 stage2 = [0.009 0.003 0.017 0.052 0.059 0.085 0.117 0.152 0.191 0.250 0.295 

0.350 0.490 0.476 0.538 0.577 0.645 0.664 0.752 0.780 0.809 0.829 0.868 

0.920 0.939 0.959 1.000]; 

 stage3 = [0.014 0.021 0.057 0.079 0.126 0.170 0.235 0.312 0.403 0.471 0.591 

0.631 0.693 0.716 0.756 0.764 0.840 0.874 0.881 0.916 0.938 0.961 0.995 

1.000 1.000 1.000 1.000]; 

 stage4 = [0.013 0.059 0.141 0.204 0.264 0.388 0.475 0.560 0.668 0.739 0.790 

0.825 0.836 0.875 0.916 0.918 0.942 0.953 0.965 0.968 1.000 0.987 1.000 

1.000 1.000 1.000 1.000]; 

 stage5 = [0.077 0.115 0.185 0.311 0.482 0.612 0.703 0.782 0.853 0.879 0.904 

0.927 0.942 0.962 0.968 0.981 0.990 1.000 1.000 1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000]; 
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 stage6 = [0.085 0.254 0.571 0.764 0.882 0.901 0.940 1.000 0.995 1.000 1.000 

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000]; 

% 

% Obtain Na+ fractional change in liquid concentration 

stage1 = 1- stage1; 

stage2 = 1- stage2; 

stage3 = 1- stage3; 

stage4 = 1- stage4; 

stage5 = 1- stage5; 

stage6 = 1- stage6; 

% 

% Graph plots 

subplot (2,1,1) 

plot(cycle1,stage1,'-o','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

grid on 

title('Na+ fraction in liquid in a 6 stage system [a HIGH-LOW concentration step 

change]','fontsize',16)%'FontWeight', 'bold') 

xlabel('cycle number [number]','Fontsize',16)%,'FontWeight', 'bold') 

ylabel('Na+ fraction in liquid [meq/l]','Fontsize',16)%,'FontWeight', 'bold')) 

hold on 

% 

plot(cycle1,stage2,'-<','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage3,'-s','LineWidth',1.5,'MarkerSize',7) 

hold on 

% 

plot(cycle1,stage4,'-d','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage5,'-*','LineWidth',1.5,'MarkerSize',8,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage6,'-^','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

% 

% Graph plots 

subplot (2,1,2) 
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plot(cycle2,stage1,'-o','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

grid on 

title('Liquid concentration (Na) per stage in a 6 stage system [a HIGH-LOW 

concentration step change]','Fontsize',16)%,'FontWeight', 'bold') 

xlabel('cycles [min]','Fontsize',16)%,'FontWeight', 'bold') 

ylabel('Liquid concentration [meq/l]','Fontsize',16)%,'FontWeight', 'bold') 

hold on 

% 

plot(cycle2,stage2,'-<','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle2,stage3,'-s','LineWidth',1.5,'MarkerSize',7) 

hold on 

% 

plot(cycle2,stage4,'-d','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle2,stage5,'-*','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle2,stage6,'-^','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

% 

%----------------------------------Program end------------------------------------------- 
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APPENDIX A.7:  MATLAB software program for the +Na  fractional change 
values of the 12 stage system for a LOW to HIGH 
concentration step change  

 

% ------------------------------------------------------------------------------------------------------- 

% Program used for manupulation of data from a continuous countercurrent ion  

% exchange (CCIX) process used for desalination of water. 

% The program is a Na LOW to HIGH step change in the feed concentration for a 12 

stage system. 

% 

% Author: NM Dube 

% Dated: 16 April 2011 

% 

% Data vectors for a 12 stage system, T is the upflow period in (min),  

% The third run is a LOW to HIGH (Na) step change in the feed concentration 

 cycle1 = 1:1:23; 

 T = 15; 

 cycle2 = T*cycle1; 

% 

% 

% Stage liquid concentration - corrected data 

stage1 = [0.000 0.254 0.517 0.698 0.726 0.776 0.910 0.849 0.948 0.954 0.960 0.980 

0.986 0.984 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000]; 

stage2 = [0.012 0.013 0.046 0.088 0.238 0.299 0.633 0.725 0.778 0.814 0.821 0.797 

0.946 0.946 0.960 0.965 0.955 0.969 0.973 0.992 0.992 0.984 1.000]; 

stage3 = [0.000 0.024 0.000 0.000 0.008 0.021 0.171 0.283 0.403 0.523 0.673 0.737 

0.841 0.892 0.918 0.934 0.937 0.904 0.980 0.973 0.983 0.995 1.000]; 

stage4 = [0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.044 0.147 0.210 0.279 

0.532 0.633 0.727 0.805 0.830 0.861 0.879 0.937 0.967 0.960 1.000]; 

stage5 = [0.010 0.000 0.015 0.014 0.000 0.000 0.000 0.000 0.026 0.044 0.061 0.100 

0.144 0.235 0.340 0.506 0.581 0.657 0.800 0.858 0.914 0.975 1.000]; 

stage6 = [0.014 0.020 0.057 0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.014 0.010 

0.006 0.060 0.083 0.140 0.205 0.271 0.374 0.470 0.637 0.814 1.000]; 

% 

% Obtain Na+ fractional change in liquid concentration 

stage1 = 1- stage1; 

stage2 = 1- stage2; 

stage3 = 1- stage3; 

stage4 = 1- stage4; 
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stage5 = 1- stage5; 

stage6 = 1- stage6; 

% 

% Graph plots 

subplot (2,1,1) 

plot (cycle1,stage1,'-o','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

grid on 

% Labels for the plot and specifying font size for each 

title('Na+ fraction in liquid in a 12 stage system [a LOW-HIGH concentration step 

change]','fontsize',16)%'FontWeight', 'bold') 

xlabel('cycle number [number]','Fontsize',16)%,'FontWeight', 'bold') 

ylabel('Na+ fraction in liquid [meq/l]','Fontsize',16)%,'FontWeight', 'bold') 

hold on 

% 

plot(cycle1,stage2,'-<','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage3,'-s','LineWidth',1.5,'MarkerSize',7) 

hold on 

% 

plot(cycle1,stage4,'-d','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage5,'-*','LineWidth',1.5,'MarkerSize',8,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage6,'-^','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

% 

subplot (2,1,2) 

plot (cycle2,stage1,'-o','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

grid on 

title('Liquid concentration (Na) per stage in a 12 stage system [a LOW-HIGH 

concentration step change]','Fontsize',16)%,'FontWeight', 'bold') 

xlabel('cycles [min]','Fontsize',16)%,'FontWeight', 'bold') 

ylabel('Liquid concentration [meq/l]','Fontsize',16)%,'FontWeight', 'bold') 

hold on 

% 

plot(cycle2,stage2,'-<','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 
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hold on 

% 

plot(cycle2,stage3,'-s','LineWidth',1.5,'MarkerSize',7) 

hold on 

% 

plot(cycle2,stage4,'-d','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle2,stage5,'-*','LineWidth', 1.5,'MarkerSize',8,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle2,stage6,'-^','LineWidth', 1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

% 

%----------------------------------Program end------------------------------------------- 
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APPENDIX A.8:  MATLAB software program for the +Na  fractional change 
values for the 12 stage system moving from high to low 
concentration step change  

 

% ---------------------------------------------------------------------------------------------------- 

% Program used for manupulation of data from continuous countercurrent ion 

exchange (CCIX) process used for desalination of water. 

% The program is a Na HIGH to LOW step change in the feed concentration for a 12 

stage system. 

%  

% Author: NM Dube 

% Dated: 16 April 2011 

% 

% Data vectors for a 12 stage system, T is the upflow period in (min),  

% The fourth run is a HIGH to LOW (Na) step change in the feed concentration 

 cycle1 = 1:1:21; 

 T = 15; 

 cycle2 = T*cycle1; 

% 

% Stage liquid concentration 

 stage1 = [0.058 0.066 0.037 0.075 0.037 0.073 0.074 0.089 0.113 0.139 0.146 

0.170 0.201 0.227 0.300 0.332 0.405 0.554 0.648 0.760 0.898]; 

 stage2 = [0.020 0.009 0.016 0.024 0.026 0.071 0.085 0.164 0.191 0.245 0.322 

0.376 0.448 0.548 0.620 0.596 0.643 0.839 0.894 1.000 1.000]; 

 stage3 = [0.002 0.033 0.026 0.134 0.092 0.310 0.188 0.380 0.499 0.569 0.674 

0.690 0.756 0.815 0.846 0.887 0.885 0.956 0.973 1.000 1.000]; 

 stage4 = [0.000 0.101 0.083 0.204 0.337 0.489 0.569 0.764 0.823 0.861 0.902 

0.909 0.953 0.962 0.986 1.000 1.000 1.000 1.000 1.000 1.000]; 

 stage5 = [0.000 0.000 0.307 0.567 0.641 0.762 0.787 0.875 0.897 0.926 0.949 

0.982 0.972 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000]; 

 stage6 = [0.000 0.000 0.210 0.540 0.780 0.810 0.780 0.931 1.020 0.991 1.080 

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000]; 

% 

% Obtain Na+ fractional change in liquid concentration 

stage1 = 1- stage1; 

stage2 = 1- stage2; 

stage3 = 1- stage3; 

stage4 = 1- stage4; 

stage5 = 1- stage5; 



 

473 

stage6 = 1- stage6; 

% Graph plots 

% 

subplot (2,1,1) 

plot (cycle1,stage1,'-o','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

grid on 

% Labels for the plot and specifying font size for each 

title('Na+ fraction in liquid in a 12 stage system [a HIGH-LOW concentration step 

change]','fontsize',16)%'FontWeight', 'bold') 

xlabel('cycle number [number]','Fontsize',16)%,'FontWeight', 'bold') 

ylabel('Na+ fraction in liquid [meq/l]','Fontsize',16)%,'FontWeight', 'bold') 

hold on 

% 

plot(cycle1,stage2,'-<','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage3,'-s','LineWidth',1.5,'MarkerSize',7) 

hold on 

% 

plot(cycle1,stage4,'-d','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage5,'-*','LineWidth',1.5,'MarkerSize',8,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle1,stage6,'-^','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

% 

subplot (2,1,2) 

plot (cycle2,stage1,'-o','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

grid on 

title('Liquid concentration (Na) per stage in a 12 stage system [a HIGH-LOW 

concentration step change]','Fontsize',16)%,'FontWeight', 'bold') 

xlabel('cycles [min]','Fontsize',16)%,'FontWeight', 'bold') 

ylabel('Liquid concentration [meq/l]','Fontsize',16)%,'FontWeight', 'bold') 

hold on 

% 

plot(cycle2,stage2,'-<','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 
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% 

plot(cycle2,stage3,'-s','LineWidth',1.5,'MarkerSize',7) 

hold on 

%) 

plot(cycle2,stage4,'-d','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle2,stage5,'-*','LineWidth',1.5,'MarkerSize',8,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

% 

plot(cycle2,stage6,'-^','LineWidth',1.5,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

% 

%----------------------------------Program end------------------------------------------- 
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APPENDIX B: PROGRAMS FOR PARAMETER ESTIMATION OF TH E 
BILINEAR AFFINE MODEL 

APPENDIX B.1:  Program for parameter estimation using the measure d data 
of the process output  

 
% --------------------------------------------------------------------------------------------------- 

% Program for solution of parameter estimation for a CCIX (continuous  

% countercurrent ion exchange) process,  

% CCIX in this application is used for water desalination. 

% A model has been developed for rea- time optimal control and therefore, 

% parameter estimation must be performed. 

% The model is based on the six stages UCT (University of Cape Town) model, 

% and the current project has 6 stages. 

% In this program z is the output variable and z_bar is the measured output. 

% The program estimates parameters using an output-based method. 

% -------------------------------------------------------------------------------------------------- 

% Author: NM Dube 

% Dated: 23 June 2011 

% Updated: 21 February 2016 

% 

%------------------------------------------------------------------------------------------------ 

% Initializing of the model equation from available data obtained from UCT project 

% 

  N = 6;                       % number of stages of the process 

  h = 32.93;                   % resin holdups (units in litres) 

  H = 42.809;                  % liquid holdups (units in litres) 

  Fl = 2000/60;                % liquid flow rate (units in litres/min) 

% 

  conc_in = 0.435;             % sodium concentration at startup of process (eq/l) 

% conc_in = 0.055   

% conc_in = 0.110  

% conc_in = 0.435   

% conc_in = 0.550  

% conc_in = 0.754   

% conc_in = 1.000 

  T = 17;                      % liquid upflow time (units in min) 

% 

%--------------------------------------------------------------------------------------- 

% Initializing variables used in the model formulas with data from UCT project 

% % 
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  a = 230*[0.8 0.6 0.5 0.4 0.3 0.25];        % (try this for better results) 

  b = 60*[0.01 0.02 0.05 0.08 0.1 0.2];      % ionic liquid fraction in the solution 

%   

% 

  d = 2/3;                                   % resin to liquid fraction relationship 

  FR = (h*d)/T;                              % initial control variable, resin flowrate,  

%                                                             %(units in litres/hour) 

%---------------------------------------------------------------------------------------- 

% Declaration of parameters from the model equations as determined by,  

% dx/dt = Ax(t)+B1x(t)u(t)+Bu(t)+W(t)w(t) and  

% determinaton of parameters are l(i), m(i), m(i(j)) and k(i) 

% 

  for i = 1:N 

      l(i) = Fl/(H+(a(i)*h)); 

      mi(i) = a(i)/(H+(a(i)*h)); 

  end 

% 

  for i = 1:N-1  

      k(i) = (b(i+1) - b(i))/(H+a(i)*h); 

      mij(i) = a(i+1)/(H+(a(i)*h)); 

  end 

     k(N) = -b(N)/(H+a(N)*h); 

%--------------------------------------------------------------------------------------- 

% Initialize unknown parameters using the declared parameters above,  

% there will be (N*4) – 1 parameters the parameter mij(6) is thus equated to 0.  

% 

  p(1) = l(1); 

  p(2) = mij(1); 

  p(3) = mi(1); 

  p(4) = k(1); 

  p(5) = l(2); 

  p(6) = mij(2); 

  p(7) = mi(2); 

  p(8) = k(2); 

  p(9) = l(3); 

  p(10) = mij(3); 

  p(11) = mi(3); 

  p(12) = k(3); 
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  p(13) = l(4); 

  p(14) = mij(4); 

  p(15) = mi(4); 

  p(16) = k(4); 

  p(17) = l(5); 

  p(18) = mij(5); 

  p(19) = mi(5); 

  p(20) = k(5); 

  p(21) = l(6); 

  p(22) = mi(6); 

  p(23) = k(6); 

% 

%------------------------------------------------------------------------------------------------ 

% Measured data  

% Stage H+ fractional change in liquid concentration using data obtained from UCT 

Project volume 4  

% stage1 = [0.221 0.577 0.730 0.847 0.920 0.936 0.968 0.974 0.981 0.989 0.988 

0.997 1.000 1.000 1.000 1.000 1.000 1.000]; 

% stage2 = [0.000 0.140 0.314 0.523 0.656 0.766 0.842 0.886 0.900 0.933 0.958 

0.963 0.982 0.974 0.991 0.994 0.993 0.993]; 

% stage3 = [0.000 0.04 0.066 0.184 0.295 0.454 0.601 0.690 0.758 0.804 0.877 

0.881 0.951 0.965 0.972 0.981 1.000 0.988]; 

% stage4 = [0.000 0.000 0.004 0.035 0.082 0.168 0.277 0.361 0.440 0.522 0.698 

0.784 0.899 0.931 0.966 0.966 0.991 0.991]; 

% stage5 = [0.000 0.000 0.000 0.003 0.020 0.052 0.113 0.167 0.207 0.340 0.474 

0.547 0.780 0.860 0.899 0.905 0.975 0.973]; 

% stage6 = [0.000 0.000 0.000 0.000 0.000 0.001 0.024 0.033 0.063 0.124 0.167 

0.233 0.482 0.539 0.672 0.779 0.940 0.972]; 

% 

% Obtain Na+ fractional change in liquid concentration 

% stage1 = 1- stage1; 

% stage2 = 1- stage2; 

% stage3 = 1- stage3; 

% stage4 = 1- stage4; 

% stage5 = 1- stage5; 

% stage6 = 1- stage6; 

%-------------------------------------------------------------------------------------------------- 

% Introducing measurement vector expanded for the full state trajectory 
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states_bar = [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

1.0000... 

0.7800 0.7500 0.7180 0.6870 0.6550 0.6220 0.5900 0.5580 0.5270 0.4930... 

0.4620 0.4300 0.4120 0.3980 0.3850 0.3720 0.3570 0.3440 0.3290 0.3160... 

0.3030 0.2870 0.2750 0.2640 0.2530 0.2420 0.2320 0.2210 0.2100 0.2000... 

0.1885 0.1780 0.1680 0.1570 0.1490 0.1430 0.1360 0.1290 0.1240 0.1170... 

0.1100 0.1040 0.0970 0.0900 0.0840 0.0790 0.0780 0.0760 0.0750 0.0740... 

0.0730 0.0710 0.0685 0.0670 0.0660 0.0650 0.0640 0.0600 0.0580 0.0540... 

0.0520 0.0480 0.0460 0.0440 0.0400 0.0370 0.0340 0.0330 0.0320 0.0310... 

0.0300 0.0290 0.0285 0.0280 0.0275 0.0270 0.0265 0.0260 0.0255 0.0250... 

0.0245 0.0240 0.0235 0.0230 0.0225 0.0220 0.0210 0.0200 0.0190 0.0185... 

0.0180 0.0170 0.0165 0.0160 0.0155 0.0150 0.0145 0.0140 0.0130 0.0120... 

0.0110 0.0110 0.0115 0.0116 0.0117 0.0118 0.0119 0.0120 0.0121 0.0125... 

0.0127 0.0130 0.0120 0.0110 0.0095 0.0090 0.0080 0.0070 0.0060 0.0050... 

0.0045 0.0040 0.0035 0.0030 0.0025 0.0020 0.0018 0.0016 0.0012 0.0010... 

0.0008 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000... 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000... 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000... 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000... 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000... 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000; 

% 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000... 

1.0000 0.9890 0.9770 0.9640 0.9520 0.9380 0.9260 0.9140 0.9110 0.8880... 

0.8750 0.8630 0.8480 0.8320 0.8160 0.8010 0.7850 0.7690 0.7540 0.7380... 

0.7230 0.7070 0.6910 0.6740 0.6550 0.6360 0.6170 0.5980 0.5795 0.5610... 

0.5420 0.5230 0.5050 0.4850 0.4700 0.4585 0.4460 0.4340 0.4230 0.4100... 

0.3985 0.3870 0.3750 0.3630 0.3510 0.3390 0.3300 0.3200 0.3100 0.3000... 

0.2900 0.2800 0.2700 0.2600 0.2505 0.2405 0.2320 0.2250 0.2180 0.2110... 

0.2050 0.1970 0.1910 0.1840 0.1770 0.1700 0.1640 0.1570 0.1540 0.1490... 

0.1450 0.1420 0.1370 0.1340 0.1290 0.1260 0.1220 0.1170 0.1150 0.1140... 

0.1120 0.1100 0.1080 0.1070 0.1060 0.1050 0.1040 0.1030 0.1020 0.1000... 

0.0970 0.0950 0.0920 0.0880 0.0860 0.0830 0.0790 0.0770 0.0740 0.0710... 

0.0670 0.0650 0.0640 0.0610 0.0580 0.0560 0.0540 0.0520 0.0490 0.0470... 

0.0450 0.0440 0.0430 0.0420 0.0410 0.0405 0.0400 0.0390 0.0385 0.0380... 

0.0375 0.0370 0.0365 0.0360 0.0345 0.0330 0.0315 0.0290 0.0270 0.0260... 

0.0240 0.0230 0.0210 0.0180 0.0170 0.0185 0.0200 0.0210 0.0220 0.0230... 

0.0240 0.0245 0.0248 0.0250 0.0255 0.0255 0.0240 0.0230 0.0210 0.0190... 
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0.0180 0.0160 0.0150 0.0140 0.0120 0.0100 0.0085 0.0080 0.0075 0.0070... 

0.0068 0.0065 0.0063 0.0060 0.0058 0.0055 0.0053 0.0052 0.0053 0.0058... 

0.0060 0.0062 0.0063 0.0065 0.0068 0.0070 0.0073 0.0075 0.0078 0.0080... 

0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080; 

% 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000... 

1.0000 0.9980 0.9940 0.9895 0.9860 0.9830 0.9785 0.9750 0.9720 0.9680... 

0.9650 0.9610 0.9580 0.9560 0.9540 0.9520 0.9485 0.9470 0.9440 0.9430... 

0.9390 0.9370 0.9350 0.9270 0.9160 0.9055 0.8950 0.8850 0.8740 0.8640... 

0.8530 0.8430 0.8320 0.8210 0.8110 0.8010 0.7905 0.7805 0.7705 0.7605... 

0.7505 0.7405 0.7305 0.7205 0.7105 0.6985 0.6850 0.6700 0.6560 0.6420... 

0.6270 0.6130 0.5980 0.5840 0.5700 0.5560 0.5420 0.5280 0.5150 0.5020... 

0.4880 0.4750 0.4620 0.4490 0.4350 0.4230 0.4090 0.3970 0.3890 0.3810... 

0.3740 0.3650 0.3570 0.3490 0.3410 0.3330 0.3250 0.3170 0.3090 0.3040... 

0.2970 0.2910 0.2850 0.2780 0.2740 0.2670 0.2600 0.2550 0.2480 0.2430... 

0.2380 0.2340 0.2295 0.2255 0.2220 0.2170 0.2140 0.2090 0.2050 0.2010... 

0.1970 0.1900 0.1840 0.1770 0.1710 0.1640 0.1580 0.1510 0.1445 0.1375... 

0.1310 0.1250 0.1240 0.1235 0.1230 0.1225 0.1220 0.1215 0.1210 0.1205... 

0.1200 0.1190 0.1180 0.1150 0.1085 0.1030 0.0955 0.0895 0.0840 0.0770... 

0.0710 0.0650 0.0580 0.0520 0.0480 0.0470 0.0460 0.0450 0.0440 0.0430... 

0.0420 0.0390 0.0380 0.0370 0.0355 0.0350 0.0345 0.0340 0.0335 0.0330... 

0.0320 0.0310 0.0305 0.0295 0.0285 0.0280 0.0275 0.0270 0.0260 0.0255... 

0.0250 0.0245 0.0240 0.0230 0.0220 0.0210 0.0195 0.0180 0.0170 0.0150... 

0.0140 0.0130 0.0100 0.0080 0.0070 0.0050 0.0030 0.0010 0.0000 0.0000... 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000; 

% 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000... 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000... 

1.0000 1.0000 0.9998 0.9995 0.9994 0.9992 0.9990 0.9988 0.9985 0.9980... 

0.9978 0.9975 0.9970 0.9950 0.9920 0.9880 0.9860 0.9840 0.9800 0.9770... 

0.9750 0.9730 0.9685 0.9660 0.9640 0.9580 0.9545 0.9500 0.9460 0.9420... 

0.9370 0.9340 0.9285 0.9250 0.9205 0.9145 0.9060 0.8985 0.8920 0.8840... 

0.8760 0.8680 0.8600 0.8540 0.8450 0.8370 0.8290 0.8190 0.8090 0.7990... 

0.7895 0.7795 0.7700 0.7600 0.7500 0.7405 0.7305 0.7220 0.7140 0.7060... 

0.6985 0.6902 0.6840 0.6760 0.6680 0.6610 0.6540 0.6460 0.6380 0.6315... 

0.6240 0.6170 0.6095 0.6030 0.5955 0.5890 0.5820 0.5750 0.5680 0.5600... 

0.5530 0.5450 0.5380 0.5305 0.5230 0.5150 0.5090 0.5010 0.4940 0.4870... 

0.4790 0.4645 0.4480 0.4320 0.4160 0.4000 0.3850 0.3690 0.3530 0.3370... 
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0.3210 0.3050 0.2960 0.2880 0.2805 0.2703 0.2650 0.2570 0.2490 0.2420... 

0.2340 0.2260 0.2180 0.2090 0.1985 0.1880 0.1780 0.1680 0.1570 0.1470... 

0.1370 0.1270 0.1160 0.1060 0.0990 0.0970 0.0940 0.0910 0.0880 0.0850... 

0.0830 0.0790 0.0770 0.0740 0.0710 0.0680 0.0650 0.0620 0.0580 0.0550... 

0.0530 0.0480 0.0460 0.0430 0.0390 0.0360 0.0340 0.0340 0.0340 0.0340... 

0.0340 0.0340 0.0340 0.0340 0.0340 0.0340 0.0340 0.0330 0.0320 0.0290... 

0.0270 0.0250 0.0230 0.0200 0.0175 0.0160 0.0140 0.0120 0.0080 0.0080... 

0.0080 0.0080 0.0080 0.0080 0.0000 0.0080 0.0000 0.0080 0.0080 0.0080; 

% 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000... 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000... 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000... 

1.0000 1.0000 1.0000 0.9999 0.9998 0.9995 0.9993 0.9991 0.9990 0.9988... 

0.9985 0.9983 0.9981 0.9980 0.9970 0.9950 0.9940 0.9930 0.9900 0.9880... 

0.9870 0.9860 0.9840 0.9830 0.9820 0.9780 0.9760 0.9740 0.9700 0.9670... 

0.9645 0.9620 0.9580 0.9560 0.9540 0.9500 0.9460 0.9410 0.9350 0.9300... 

0.9240 0.9185 0.9140 0.9070 0.9030 0.8970 0.8920 0.8860 0.8820 0.8770... 

0.8720 0.8670 0.8625 0.8570 0.8520 0.8475 0.8420 0.8380 0.8330 0.8280... 

0.8260 0.8230 0.8180 0.8140 0.8120 0.8070 0.8045 0.8000 0.7970 0.7940... 

0.7815 0.7690 0.7570 0.7450 0.7330 0.7220 0.7090 0.6970 0.6855 0.6740... 

0.6620 0.6490 0.6380 0.6250 0.6130 0.6020 0.5885 0.5770 0.5650 0.5530... 

0.5410 0.5280 0.5210 0.5140 0.5080 0.5020 0.4950 0.4880 0.4820 0.4750... 

0.4680 0.4620 0.4550 0.4390 0.4180 0.3970 0.3760 0.3550 0.3340 0.3130... 

0.2920 0.2710 0.2500 0.2290 0.2160 0.2085 0.2020 0.1950 0.1870 0.1800... 

0.1730 0.1660 0.1580 0.1520 0.1440 0.1380 0.1350 0.1320 0.1280 0.1245... 

0.1215 0.1175 0.1145 0.1105 0.1070 0.1040 0.1020 0.1010 0.0995 0.0990... 

0.0980 0.0975 0.0970 0.0965 0.0960 0.0955 0.0950 0.0940 0.0875 0.0820... 

0.0750 0.0680 0.0630 0.0560 0.0490 0.0430 0.0370 0.0310 0.0250 0.0250... 

0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250; 

% 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000... 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000... 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000... 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000... 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000... 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9997 0.9997... 

0.9996 0.9995 0.9993 0.9990 0.9987 0.9985 0.9980 0.9960 0.9945 0.9930... 

0.9900 0.9875 0.9860 0.9845 0.9825 0.9798 0.9775 0.9760 0.9750 0.9745... 
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0.9740 0.9735 0.9725 0.9720 0.9700 0.9690 0.9680 0.9670 0.9660 0.9645... 

0.9620 0.9580 0.9560 0.9540 0.9510 0.9470 0.9450 0.9430 0.9395 0.9370... 

0.9320 0.9260 0.9210 0.9155 0.9090 0.9040 0.8980 0.8940 0.8880 0.8830... 

0.8770 0.8730 0.8680 0.8650 0.8615 0.8570 0.8530 0.8490 0.8455 0.8420... 

0.8370 0.8340 0.8280 0.8230 0.8165 0.8105 0.8050 0.7980 0.7930 0.7865... 

0.7820 0.7750 0.7685 0.7520 0.7295 0.7070 0.6850 0.6630 0.6400 0.6170... 

0.5950 0.5730 0.5500 0.5270 0.5150 0.5100 0.5050 0.4995 0.4950 0.4895... 

0.4845 0.4790 0.4745 0.4690 0.4640 0.4555 0.4440 0.4320 0.4195 0.4075... 

0.3960 0.3840 0.3720 0.3595 0.3480 0.3360 0.3250 0.3155 0.3060 0.2965... 

0.2860 0.2770 0.2670 0.2570 0.2480 0.2380 0.2285 0.2175 0.2030 0.1880... 

0.1745 0.1600 0.1455 0.1310 0.1170 0.1020 0.0870 0.0730 0.0595 0.0554... 

0.0520 0.0480 0.0430 0.0355 0.0305 0.0275 0.0210 0.0160 0.0123 0.0105]; 

%  

%----------------------------------------------------------------------------------- 

% Initializing the state vector (x0), initial state at the input  and the full trajectory 

  x0 = states_bar(:,1);       % declaring initial state variables based on measured 

states 

  states = states_bar;        % declaring current state variables based on measured 

states 

  z_bar = states_bar(6,:);    % declaring measured output from measured data 

% 

%------------------------------------------------------------------------------------------------- 

% Initializing constants required for the gradient method of minimizing the error 

between 

% the output of the experimental data and model output 

% 

  K = 200;                 % number of steps in the optimization trajectory based on 

sampling period, 

M = 1000;             % total number of iterations for stopping the iteration procedure, 

% 

  dt = 0.012;                  % realistic sampling period used with supplied data 

% 

  grad = 2.0;                 % step of the gradient procedure, 

% 

  delta = 0.001;           % small increment of parameter values as being tested for 

optimal values, 

  epsilon = 0.0001;     % error for stopping the iteration, 

% 
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  r = 23;                     % total number of parameters since N = 6. 

 %---------------------------------------------------------------------------------------------- 

% Initialize disturbance and control vectors full trajectories 

 p = 

[p(1);p(2);p(3);p(4);p(5);p(6);p(7);p(8);p(9);p(10);p(11);p(12);p(13);p(14);p(15);p(1

6);p(17);p(18);p(19);p(20);p(21);p(22);p(23)]; 

 p_initial = p 

 FR = FR*ones(1,K); 

 states_in = conc_in*ones(1,K+1);  

% 

%------------------------------------------------------------------------------------------------ 

% Iteration procedure start and initializing index of iteration (j) 

  j = 1; 

  e0 = cputime; 

  while j <= M 

    % Solving the state model equation starting with initial values of parameters 

    x0 = states(:,1); 

    for k = 1:K-1             % at the end of this iteration states should be xER^(NxK+1) 

        FRk = FR(k); 

        statesk = states(:,k); 

        statesk_in =states_in(k); 

        states(:,k+1) = iestate(statesk,FRk,statesk_in,x0,p,dt); 

    end 

    % 

    z = states(6,:); 

    %------------------------------------------------------------------------------------------- 

    % calculating the error between measured and calculated output trajectories 

    error = z_bar - z; 

    % calculate the least squares differences 

    Jp = 0; 

    for k = 1:K 

        Jp = Jp + sum(error(:,k).*error(:,k)); 

    end 

    % 

    %--------------------------------------------------------------------------------------- 

    % calculation of the deviated value of the criterion and 

    % calculation of the deviated value of the parameters 

    for i = 1:r 
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        p(i) = p(i)+ delta; 

        % calculation of the value of the output with the deviated parameter 

        x0 = states(:,1); 

        for k = 1:K-1 

            FRk = FR(k); 

            statesk = states(:,k); 

            statesk_in = states_in(k); 

            states(:,k+1) =  iestate(statesk,FRk,statesk_in,x0,p,dt); 

        end 

        % 

        z = states(6,:);  

        %--------------------------------------------------------------------------------------- 

        % calculation of the deviated value of the criterion dJp 

        error = z_bar - z; 

         dJp = 0; 

        for k = 1:K 

            dJp = dJp + sum(error(:,k).*error(:,k));        % element by element 

multiplication? 

        end 

        %--------------------------------------------------------------------------------------------- 

        % calculation of the gradient of the criterion 

        grad_dJp = (dJp - Jp)/delta; 

        % form a vector of the criterion gradients for all parameters 

        grad_dJpv(i) = grad_dJp; 

        % calculate the old value of the parameters 

        p(i) = p(i) - delta; 

    end 

    % 

    %--------------------------------------------------------------------------------------------------- 

    % calculation of the gradient for the fastest descent method and 

    % calculation of the weighted sums 

      S = grad_dJpv*grad_dJpv'; 

      S = sqrt(S); 

    %------------------------------------------------------------------------------------------------- 

    % calculation of the direction of the gradient, dpER^r = dpER^23 

      dp = -(grad*grad_dJpv)'/S; 

    % check if the achieved solution is an optimal one using the norm 

    % calculation of the norm 
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      dnorm = norm(dp); 

    % check termination of the calculation 

    if dnorm <= epsilon 

         x0 = states(:,1); 

        for k = 1:K-1 

            FRk = FR(k);  

            statesk = states(:,k); 

            statesk_in = states_in(k); 

            states(:,k+1) = iestate(statesk,FRk,statesk_in,x0,p,dt); 

        end 

    break 

    else 

        % calculate the improved estimate of the parameters 

        p = p + dp; 

        grad = grad/1.009; 

        j = j+1; 

    end 

        

end 

%-------------------------------------------------------------------------------------------- 

% Display optimal parameters calculated 

Jk1 = 0; 

for k = 1:K 

    error(k) = states_bar(6,k)-states(6,k); 

    Jk(k) = (error*error'); 

    Jk1 = Jk1 + Jk(k); 

end 

e1 = cputime; 

% for k = 1:K-1 

%     Jkx(k) = Jk(k)+Jk(k+1); 

% end 

 error = abs(error); 

 z = states(6,:); 

 %j 

 p_final = p; 

 Jk1 

 e = e1 - e0 

%  a1 = (Fl-p(1)*H)/p(1)*h 
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%  b6 = -b(N) 

  

%------------------------------------------------------------------------------------------------ 

% Plot the output trajectories 

% 

figure(1) 

k = 1:K; 

plot(k,states_bar(6,:),'Linewidth',2.5) 

hold on 

plot(k,states(6,:),':','Linewidth',2.5) 

hold on 

plot(error,'o','MarkerSize',7,'Linewidth',2.5) 

text('Position',[20.0 0.93],'String','x_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

text('Position',[50.0 0.88],'String','x^~_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

text('Position',[40.0 0.10],'String','e_x_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

xlabel('Discrete time [k]','Fontsize',16) 

ylabel('Process & estimated output & error difference [eq/l]','Fontsize',16) 

title('Dynamic behaviour of the output of the process','Fontsize',16) 

grid on 

hold off 

% 

%------------------------------------------------------------------------------------------------------ 

figure(2) 

k = 1:2:K; 

plot(error,'o','MarkerSize',7,'Linewidth',2.5) 

text('Position',[80.0 0.05],'String','e_x_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

xlabel('Discrete time[k]','Fontsize',16) 

ylabel('Error difference between outputs [eq/l]','Fontsize',16) 

title('Error difference between measured and estimated outputs','Fontsize',16) 

grid on 

% 

%--------------------------------------------------------------------------------------------- 

figure(3) 

k = 1:K; 
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subplot(3,2,1) 

plot(k,states(1,:),':') 

hold on 

plot(k,states_bar(1,:)) 

text('Position',[30.0 0.13],'String','x1bar','Fontsize',12) 

text('Position',[60.0 0.20],'String','x^~_1','Fontsize',12) 

xlabel('Discrete time [k]') 

ylabel('True & estimated states [eq/l]') 

title('Dynamic behaviour of the process') 

hold off 

% 

subplot(3,2,2) 

plot(k,states(2,:),':') 

hold on 

plot(k,states_bar(2,:)) 

text('Position',[60.0 0.15],'String','x2bar','Fontsize',12) 

text('Position',[30.0 0.90],'String','x^~_2','Fontsize',12) 

xlabel('Discrete time [k]') 

ylabel('True & estimated states [eq/l]') 

title('Dynamic behaviour of the process') 

hold off 

% 

subplot(3,2,3) 

plot(k,states(3,:),':') 

hold on 

plot(k,states_bar(3,:)) 

text('Position',[60.0 0.25],'String','x3bar','Fontsize',12) 

text('Position',[40.0 0.10],'String','x^~_3','Fontsize',12) 

xlabel('Discrete time [k]') 

ylabel('True & estimated states [eq/l]') 

title('Dynamic behaviour of the process') 

hold off 

% 

subplot(3,2,4) 

plot(k,states(4,:),':') 

hold on 

plot(k,states_bar(4,:)) 

text('Position',[80.0 0.15],'String','x4bar','Fontsize',12) 
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text('Position',[50.0 0.75],'String','x^~_4','Fontsize',12) 

xlabel('Discrete time [k]') 

ylabel('True & estimated states [eq/l]') 

title('Dynamic behaviour of the process') 

hold off 

% 

subplot(3,2,5) 

plot(k,states(5,:),':') 

hold on 

plot(k,states_bar(5,:)) 

text('Position',[60.0 0.70],'String','x5bar','Fontsize',12) 

text('Position',[40.0 0.50],'String','x^~_5','Fontsize',12) 

xlabel('Discrete time [k]') 

ylabel('True & estimated states [eq/l]') 

title('Dynamic behaviour of the process') 

hold off 

% 

subplot(3,2,6) 

plot(k,z_bar) 

hold on 

plot(k,z,':') 

text('Position',[20.0 1.35],'String','x^~_6','Fontsize',12) 

text('Position',[60.0 0.95],'String','x6bar','Fontsize',12) 

xlabel('Discrete time [k]') 

ylabel('True & estimated states [eq/l]') 

title('Dynamic behaviour of the process') 

hold off 

% 

%-------------------------------------Program-end------------------------------------------ 

 

% ------------------------------------------------------------------------------------------------- 

% The function is used to calculate the values of the states for parameter estimation, 

% the considered trajectory period is (K = 100). 

% The function is called in the main program (see details below) under the function 

name iestate() 

% The main program is called "Parameter_Estimation6a_Output.m" 

% 

% Author: NM Dube 
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% Dated: 23 June 2011 

% Updated: 21 February 2016 

% 

%----------------------------------------------------------------------------------------------- 

% declare the function iestate() 

function states = iestate(statesk,FRk,statesk_in,x0,p,dt) 

% 

% solving the model state equation using the current parameter values 

x1 = statesk(1) + dt*(p(1)*statesk_in - p(1)*statesk(1) + p(2)*FRk*statesk(2) - 

p(3)*FRk*statesk(1) + p(4)*FRk); 

x2 = statesk(2) + dt*(p(5)*statesk(1) - p(5)*statesk(2) + p(6)*FRk*statesk(3) - 

p(7)*FRk*statesk(2) + p(8)*FRk); 

x3 = statesk(3) + dt*(p(9)*statesk(2) - p(9)*statesk(3) + p(10)*FRk*statesk(4) - 

p(11)*FRk*statesk(3) + p(12)*FRk); 

x4 = statesk(4) + dt*(p(13)*statesk(3) - p(13)*statesk(4) + p(14)*FRk*statesk(5) - 

p(15)*FRk*statesk(4) + p(16)*FRk); 

x5 = statesk(5) + dt*(p(17)*statesk(4) - p(17)*statesk(5) + p(18)*FRk*statesk(6) - 

p(19)*FRk*statesk(5) + p(20)*FRk); 

x6 = statesk(6) + dt*(p(21)*statesk(5) - p(21)*statesk(6) + 0 - p(22)*FRk*statesk(6) + 

p(23)*FRk); 

%-------------------------------------------------------------------------------- 

% declaring the state variables for the state vector at k+1, k=1:K 

states = [x1 x2 x3 x4 x5 x6]'; 

% 

%---------------------------------------Function---Ends---------------------------------------- 
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APPENDIX B.2:  Program for parameter estimation using the state v ector 
measurements (the least squares method)  

 
% ---------------------------------------------------------------------------------------------------- 

% Program for solution of parameter estimation for a CCIX(continuous 

countercurrent 

% ion exchange) process, CCIX in this application is used for water desalination. 

% A model has been developed for real-time optimal control and therefore, 

% parameter estimation must be performed. 

% The model is based on the six stages UCT (University of Cape Town) model, 

% and the current project has 6 stages. 

% The program estimates parameters using an state vector-based method (the least 

squares method). 

%-------------------------------------------------------------------------------------------------------- 

% Author: NM Dube 

% Dated: 22 August 2011 

% Updated: 21 November 2016 

%---------------------------------------------------------------------------------------------------------- 

% Initializing of the model equation from available data obtained from UCT project 

% 

  N = 6;                     % number of stages of the process 

  H = 42.809;                % liquid holdups (units in litres) 

  h = 32.93;                 % resin holdups (units in litres) 

  Fl = 2000/60;              % liquid flow rate (units in litres/min) 

  %          

  conc_in = 0.435;           % sodium concentration at startup of process (meq/l) 

% conc_in = 0.055   

% conc_in = 0.110  

% conc_in = 0.435   

% conc_in = 0.550  

% conc_in = 0.754   

% conc_in = 1.000 

  T = 17;                    % liquid upflow time (units in hours) 

%-------------------------------------------------------------------------------------------------- 

% Initializing variables used in the model formulas with data from UCT project 

% 

  a = 230*[0.8 0.6 0.5 0.4 0.3 0.02];        % (try this for better results) 

  b = 60*[0.01 0.02 0.05 0.08 0.1 0.2];       % ionic liquid fraction in the solution 

% 
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  d = 2/3;                            % resin to liquid fraction relationship 

  FR = (h*d)/T;                       % initial control variable, resin flowrate,  

                                                            %(units in litres/hour) 

%--------------------------------------------------------------------------------------------------- 

% Declaration of parameters from the model equations as determined by,  

% dx/dt = Ax(t)+B1x(t)u(t)+Bu(t)+W(t)w(t) 

% Parameters are l(i), m(i), m(i(j)) and k(i) 

% 

for i = 1:N 

    l(i) = Fl/(H+a(i)*h); 

    mi(i) = a(i)/(H+a(i)*h); 

end 

% 

for i = 1:N-1 

    k(i) = (b(i+1) - b(i))/(H+a(i)*h); 

    mij(i) = a(i+1)/(H+a(i)*h); 

end 

    k(N) = -b(N)/(H+a(N)*h); 

     

%----------------------------------------------------------------------------------------- 

% Initialize unknown parameters using the declared parameters above,  

% there will be (N*4) – 1 parameters the parameter mij(6) is thus equated to 0.  

% 

  p(1) = l(1); 

  p(2) = mij(1); 

  p(3) = mi(1); 

  p(4) = k(1); 

  p(5) = l(2); 

  p(6) = mij(2); 

  p(7) = mi(2); 

  p(8) = k(2); 

  p(9) = l(3); 

  p(10) = mij(3); 

  p(11) = mi(3); 

  p(12) = k(3); 

  p(13) = l(4); 

  p(14) = mij(4); 

  p(15) = mi(4); 
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  p(16) = k(4); 

  p(17) = l(5); 

  p(18) = mij(5); 

  p(19) = mi(5); 

  p(20) = k(5); 

  p(21) = l(6); 

  p(22) = mi(6); 

  p(23) = k(6); 

% 

%------------------------------------------------------------------------------------------ 

% 

% Display parameters to see how they look like initially, (if required) 

% 

 p = [p(1) p(2) p(3) p(4) p(5) p(6) p(7) p(8) p(9) p(10) p(11) p(12) p(13) p(14) p(15) 

p(16) p(17) p(18) p(19) p(20) p(21) p(22) p(23)]; 

 p_initial = p' 

% 

%--------------------------------------------------------------------------------------------------- 

%  

% Original data in H+ fractional change in liquid concentration using data obtained 

from UCT Project volume 4  

% stage1 = [0.221 0.577 0.730 0.847 0.920 0.936 0.968 0.974 0.981 0.989 0.988 

0.997 1.000 1.000 1.000 1.000 1.000 1.000]; 

% stage2 = [0.000 0.140 0.314 0.523 0.656 0.766 0.842 0.886 0.900 0.933 0.958 

0.963 0.982 0.974 0.991 0.994 0.993 0.993]; 

% stage3 = [0.000 0.04 0.066 0.184 0.295 0.454 0.601 0.690 0.758 0.804 0.877 

0.881 0.951 0.965 0.972 0.981 1.000 0.988]; 

% stage4 = [0.000 0.000 0.004 0.035 0.082 0.168 0.277 0.361 0.440 0.522 0.698 

0.784 0.899 0.931 0.966 0.966 0.991 0.991]; 

% stage5 = [0.000 0.000 0.000 0.003 0.020 0.052 0.113 0.167 0.207 0.340 0.474 

0.547 0.780 0.860 0.899 0.905 0.975 0.973]; 

% stage6 = [0.000 0.000 0.000 0.000 0.000 0.001 0.024 0.033 0.063 0.124 0.167 

0.233 0.482 0.539 0.672 0.779 0.940 0.972]; 

% 

% Obtain Na+ fractional change in liquid concentration 

% stage1 = 1- stage1; 

% stage2 = 1- stage2; 

% stage3 = 1- stage3; 
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% stage4 = 1- stage4; 

% stage5 = 1- stage5; 

% stage6 = 1- stage6; 

% 

%-------------------------------------------------------------------------------------------------- 

% Introducing measurement vector expanded for the full state trajectory based on 

Na+ data obtained above 

% states_bar is the measured states 

% 

 states_bar = [1.000 1.000 1.000 1.000 0.760 0.750 0.686 0.622 0.558 0.494... 

         0.490 0.398 0.371 0.371 0.344 0.316 0.228 0.264 0.243 0.220... 

         0.178 0.157 0.143 0.130 0.116 0.104 0.090 0.078 0.077 0.074... 

         0.071 0.068 0.065 0.060 0.055 0.048 0.043 0.037 0.033 0.032... 

         0.029 0.028 0.027 0.026 0.025 0.024 0.023 0.022 0.020 0.018... 

         0.017 0.016 0.015 0.014 0.013 0.012 0.012 0.012 0.012 0.012... 

         0.012 0.012 0.008 0.007 0.005 0.004 0.003 0.002 0.002 0.002... 

         0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000... 

         0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000... 

         0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000; 

     % 

         1.000 1.000 1.000 1.000 1.000 0.988 0.964 0.938 0.914 0.887... 

         0.863 0.832 0.800 0.770 0.738 0.707 0.674 0.635 0.598 0.561... 

         0.524 0.485 0.458 0.435 0.410 0.386 0.364 0.340 0.320 0.300... 

         0.280 0.261 0.241 0.225 0.212 0.197 0.184 0.170 0.157 0.149... 

         0.142 0.134 0.126 0.117 0.114 0.110 0.107 0.105 0.103 0.100... 

         0.094 0.088 0.083 0.076 0.070 0.065 0.061 0.056 0.053 0.047... 

         0.043 0.042 0.041 0.039 0.038 0.037 0.036 0.034 0.029 0.025... 

         0.023 0.018 0.018 0.022 0.023 0.024 0.025 0.025 0.023 0.019... 

         0.016 0.014 0.010 0.008 0.008 0.007 0.007 0.006 0.005 0.005... 

         0.006 0.006 0.007 0.007 0.006 0.006 0.007 0.007 0.007 0.007; 

     % 

         1.000 1.000 1.000 1.000 1.000 0.997 0.989 0.983 0.975 0.967... 

         0.961 0.956 0.952 0.946 0.942 0.937 0.927 0.906 0.885 0.864... 

         0.842 0.820 0.800 0.781 0.760 0.741 0.720 0.698 0.670 0.641... 

         0.613 0.584 0.555 0.528 0.503 0.475 0.448 0.424 0.397 0.382... 

         0.365 0.348 0.335 0.317 0.304 0.292 0.278 0.266 0.255 0.243... 

         0.234 0.226 0.217 0.209 0.201 0.190 0.177 0.164 0.151 0.138... 

         0.124 0.123 0.122 0.121 0.120 0.119 0.115 0.103 0.089 0.077... 
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         0.065 0.053 0.047 0.045 0.043 0.039 0.037 0.035 0.034 0.033... 

         0.032 0.029 0.028 0.026 0.025 0.024 0.023 0.021 0.018 0.0015... 

         0.013 0.008 0.008 0.006 0.002 0.005 0.006 0.008 0.010 0.012; 

     % 

         1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000... 

         1.000 0.999 0.999 0.998 0.997 0.996 0.995 0.988 0.984 0.977... 

         0.973 0.966 0.958 0.950 0.942 0.934 0.925 0.915 0.898 0.884... 

         0.868 0.854 0.837 0.818 0.798 0.779 0.760 0.740 0.722 0.706... 

         0.682 0.676 0.661 0.646 0.632 0.617 0.603 0.598 0.574 0.560... 

         0.546 0.530 0.516 0.501 0.486 0.464 0.433 0.400 0.368 0.337... 

         0.305 0.288 0.274 0.257 0.242 0.227 0.209 0.188 0.167 0.147... 

         0.126 0.105 0.096 0.092 0.085 0.079 0.074 0.067 0.062 0.055... 

         0.049 0.043 0.036 0.034 0.034 0.034 0.034 0.034 0.033 0.028... 

         0.025 0.020 0.015 0.012 0.008 0.008 0.008 0.008 0.008 0.008; 

     % 

         1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000... 

         1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.998... 

         0.998 0.997 0.996 0.993 0.988 0.986 0.983 0.978 0.974 0.967... 

         0.962 0.956 0.950 0.942 0.930 0.918 0.907 0.897 0.886 0.876... 

         0.867 0.857 0.847 0.837 0.828 0.822 0.815 0.807 0.800 0.793... 

         0.769 0.745 0.721 0.697 0.674 0.648 0.625 0.602 0.578 0.553... 

         0.528 0.515 0.502 0.488 0.475 0.462 0.439 0.397 0.355 0.313... 

         0.272 0.228 0.208 0.195 0.180 0.166 0.152 0.138 0.133 0.125... 

         0.117 0.110 0.104 0.100 0.098 0.097 0.096 0.095 0.094 0.082... 

         0.068 0.055 0.044 0.031 0.025 0.025 0.025 0.026 0.027 0.027; 

     % 

         1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000...  

         1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000...  

         1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000... 

         1.000 1.000 1.000 0.998 0.993 0.988 0.984 0.980 0.977 0.974... 

         0.972 0.971 0.970 0.970 0.968 0.964 0.959 0.953 0.948 0.943...  

         0.937 0.927 0.914 0.905 0.894 0.882 0.872 0.865 0.857 0.850... 

         0.842 0.834 0.823 0.810 0.798 0.787 0.775 0.750 0.705 0.660...  

         0.618 0.574 0.526 0.510 0.500 0.490 0.480 0.470 0.457 0.433... 

         0.408 0.384 0.360 0.335 0.315 0.295 0.278 0.257 0.237 0.218... 

         0.190 0.130 0.102 0.072 0.057 0.051 0.046 0.039 0.034 0.027]; 

% 

%-------------------------------------------------------------------------------------------------------- 
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% Initializing constants required for the gradient method of minimizing the error 

between 

% the output of the experimental data and model output 

% 

  K = 100;                  % number of steps in the optimization trajectory based on 

sampling period   

  M = 2000;                % total number of iterations for stopping the iteration procedure 

  % 

  % dt = 2.35;            % sampling period (original sampling period is 2.35min) 

  dt = 0.012;               % more practical sampling period  

  % 

  delta_p = 0.001;      % small increment of parameter values as being tested for 

optimal values 

  epsilon = 0.0001;     % error for stopping the iteration 

  grad = 0.82;             % step of the gradient procedure (10.78 was best), the best 

program used 10.82 

  % 

  r = 23;  

% 

%---------------------------------------------------------------------------------------------------- 

% State space and control vectors full trajectory initial values 

  FR = FR*ones(1,K);                                % the control input 

  states_in = conc_in*ones(1,K+1);           % the disturbance input 

  states = states_bar;                                % states_bar is the measured states 

% 

%---------------------------------------------------------------------------------------------------- 

% Iteration procedure start and initializing index of iteration (j) 

  j = 1; 

  e1 = cputime; 

  x0 = states(:,1); 

  while j <= M 

    % Solving the state model equation starting with initial values of parameters 

    % 

    for k = 1:K-1             % at the end of this iteration states should be xER^(NxK+1) 

        FRk = FR(k); 

        statesk_in = states_in(k); 

        statesk = states(:,k); 

        statesk1(:,k+1) = iestatek1(statesk,FRk,statesk_in,x0,p,dt); 



 

495 

    end 

    % 

    %---------------------------------------------------------------------------------------------- 

    % Calculating the full trajectories error between measured and calculated states 

based on estimated parameters 

    error = abs(states_bar - statesk1); 

    % 

    Jp = 0; 

    % Calculate the least squares differences 

    for k = 1:K 

        Jp = Jp + sum(error(:,k).*error(:,k)); 

    end 

     

    %------------------------------------------------------------------------------------------------- 

    % Calculation of the deviated value of the criterion and 

    % Calculation of the deviated value of the parameters 

    for i = 1:r 

        p(i) = p(i)+ delta_p; 

        % Calculation of the value of the states with the deviated parameters 

         x0 = statesk1(:,1); 

        for k = 1:K-1 

            FRk = FR(k); 

            statesk = states(:,k); 

            statesk_in = states_in(k); 

            statesk1(:,k+1) =  iestatek1(statesk,FRk,statesk_in,x0,p,dt); 

        end 

        %-------------------------------------------------------------------------------------------- 

        % Calculation of the deviated value of the criterion dJp based on the error 

          error = abs(states_bar - statesk1); 

          dJp = 0; 

        for k = 1:K 

            dJp = dJp + sum(error(:,k).*error(:,k)); 

        end 

        %----------------------------------------------------------------------------------------- 

        % Calculation of the gradient of the criterion 

          grad_dJp = (dJp - Jp)/delta_p; 

        % 

        % Form a vector of the criterion gradients for all newly calculated parameters 
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          grad_dJpv(i) = grad_dJp; 

        % 

        % Calculate the old value of the parameters 

          p(i) = p(i) - delta_p; 

    end 

    % 

    %-------------------------------------------------------------------------------------------------- 

    % Calculation of the gradient for the fastest descent method and 

    % Calculation of the weighted sums 

      S = grad_dJpv*grad_dJpv'; 

      S = sqrt(S); 

    %------------------------------------------------------------------------------------------------- 

    % Calculation of the direction of the gradient, dpER^r = dpER^23 

      dp = -(grad*grad_dJpv)/S; 

    % 

    % Check if the achieved solution is an optimal one using the norm 

    % Calculation of the norm 

      dnorm = norm(dp); 

    % 

    % Check termination of the calculation 

    if dnorm <= epsilon 

       x0 = statesk1(:,1) ; 

       for k = 1:K-1 

           FRk = FR(k); 

           statesk = states(:,k); 

           statesk_in = states_in(k); 

           statesk1(:,k+1) = iestatek1(statesk,FRk,statesk_in,x0,p,dt); 

        end 

    break 

    else    

        % Calculate the improved estimate of the parameters 

        p = p + dp; 

        %alpha = alpha/2;      % was used as test in fast reducing step factor 

        % 

        x0 = statesk1(:,1);     % set next initial state to current state 

        % 

        j = j+1;                % increment optimization index 

    end 
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  end 

% 

%------------------------------------------------------------------------------------------------ 

% Display optimal parameters calculated 

p_final = p'; 

%j=j 

% 

Jk1 = 0; 

for k = 1:K 

    error(:,k) = states_bar(:,k)- statesk1(:,k); 

    Jk = (error(:,k)'*error(:,k)); 

    Jk1 = Jk1 + Jk; 

end 

e2 = cputime; 

% 

%--------------------------------------------------------------------------------------------------- 

% Display optimal parameters calculated 

% j 

% p_final = p' 

  error = abs(error); 

  Jk1 

  e = e2 - e1 

%-------------------------------------------------------------------------------------------------- 

% Plot the output trajectories 

%   figure(1) 

%   k = 1:K; 

%   plot(k,states_bar,'-o','Linewidth',2.5,'MarkerSize',6) 

%   grid on 

%   xlabel('Discrete time [k]','Fontsize',16) 

%   ylabel('Process true state [eq/l]','Fontsize',16) 

%   title('System dynamic behaviour based on real state of the process','Fontsize',16) 

% 

%---------------------------------------------------------------------------------------------------- 

  figure(2) 

  i = 1:K; 

  plot(i,error,':o','Linewidth',2.5,'MarkerSize',5) 

  text('Position',[10.0 0.15],'String','e_x_1 - e_x_6','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 
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  hold on 

  % 

  plot(i,statesk1,'-o','Linewidth',2.5,'MarkerSize',5) 

  text('Position',[15.0 0.35],'String','x_1','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

  text('Position',[25.0 0.45],'String','x_2','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

  text('Position',[35.0 0.5],'String','x_3','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

  text('Position',[45.0 0.65],'String','x_4','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

  text('Position',[55.0 0.70],'String','x_5','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

  text('Position',[65.0 0.82],'String','x_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

%  

  xlabel('Discrete time [k]','Fontsize',16) 

  ylabel('Estimated states & error difference [eq/l]','Fontsize',16) 

  title('System dynamic behaviour based on estimated model','Fontsize',16) 

  grid on 

  hold off 

%  

 figure(3) 

 subplot(2,1,1) 

 i = 1:K; 

 plot(i,states_bar,':o','Linewidth',2.5,'MarkerSize',5) 

 text('Position',[15.0 0.35],'String','x_1','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[25.0 0.45],'String','x_2','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[35.0 0.5],'String','x_3','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[45.0 0.65],'String','x_4','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[55.0 0.70],'String','x_5','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[65.0 0.82],'String','x_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 
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 xlabel('Discrete time [k]','Fontsize',14) 

 ylabel('Process true state [eq/l]','Fontsize',14) 

 title('Dynamic behaviour of the process','Fontsize',14) 

 grid on 

% 

 subplot(2,1,2) 

 i = 1:K; 

 plot(i,statesk1,'-o','Linewidth',2.5,'MarkerSize',5) 

 text('Position',[15.0 0.35],'String','x^~_1','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[25.0 0.45],'String','x^~_2','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[35.0 0.5],'String','x^~_3','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[45.0 0.65],'String','x^~_4','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[55.0 0.70],'String','x^~_5','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[65.0 0.82],'String','x^~_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 xlabel('Discrete time [k]','Fontsize',14) 

 ylabel('Estimated state [eq/l]','Fontsize',14) 

 title('Dynamic behaviour of the process','Fontsize',14) 

 grid on 

 hold off 

 %--------------------------------------------------------------------------------------------------- 

% Individual plot (if preferred) 

%  figure(3) 

%  subplot(2,1,1) 

%  i = 1:K; 

%  plot(i,states_bar(1,:),':o','Linewidth',2.5,'MarkerSize',5) 

%  text('Position',[15.0 0.35],'String','x_1','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

%  plot(i,states_bar(2,:),':o','Linewidth',2.5,'MarkerSize',5) 

%  text('Position',[25.0 0.45],'String','x_2','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

%  hold on 

%  plot(i,states_bar(3,:),':o','Linewidth',2.5,'MarkerSize',5) 
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%  text('Position',[35.0 0.5],'String','x_3','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

%  hold on 

%  plot(i,states_bar(4,:),':o','Linewidth',2.5,'MarkerSize',5) 

%  text('Position',[45.0 0.65],'String','x_4','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

%  hold on 

%  plot(i,states_bar(5,:),':o','Linewidth',2.5,'MarkerSize',5) 

%  text('Position',[55.0 0.70],'String','x_5','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

%  hold on 

%  plot(i,states_bar(6,:),':o','Linewidth',2.5,'MarkerSize',5) 

%  text('Position',[65.0 0.82],'String','x_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

%  hold on 

%  hold off 

% 

%  subplot(2,1,2) 

%  i = 1:K; 

%  plot(i,statesk1(1,:),'-o','Linewidth',2.5,'MarkerSize',5) 

%  text('Position',[15.0 0.35],'String','x^~_1','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

%  hold on 

%  plot(i,statesk1(2,:),'-o','Linewidth',2.5,'MarkerSize',5) 

%  text('Position',[25.0 0.45],'String','x^~_2','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

%  hold on 

%  plot(i,statesk1(3,:),'-o','Linewidth',2.5,'MarkerSize',5) 

%  text('Position',[35.0 0.5],'String','x^~_3','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

%  hold on 

%  plot(i,statesk1(4,:),'-o','Linewidth',2.5,'MarkerSize',5) 

%  text('Position',[45.0 0.65],'String','x^~_4','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

%  hold on 

%  plot(i,statesk1(5,:),'-o','Linewidth',2.5,'MarkerSize',5) 

%  text('Position',[55.0 0.70],'String','x^~_5','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 
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%  hold on 

%  plot(i,statesk1(6,:),'-o','Linewidth',2.5,'MarkerSize',5) 

%  text('Position',[65.0 0.82],'String','x^~_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

%  hold on 

%  hold off 

%----------------------------------------------------------------------------------------------------- 

  figure(4) 

  k = 1:K; 

  plot(k,error,'o','Linewidth',2.5,'MarkerSize',6) 

  text('Position',[80.0 0.05],'String','e_x_1 - e_x_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

  text('Position',[10.0 0.8],'String','e_x_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

  grid on 

  xlabel('Discrete time [k]','Fontsize',16) 

  ylabel('Error difference between states','Fontsize',16) 

  title('Error difference between real and model states of the process','Fontsize',16) 

% 

%---------------------------------------------------------------------------------------------------- 

figure(5) 

k = 1:K; 

subplot(3,2,1) 

plot(k,statesk1(1,:),':') 

hold on 

plot(k,states_bar(1,:)) 

text('Position',[30.0 0.15],'String','x1bar','Fontsize',12) 

text('Position',[60.0 0.20],'String','x1','Fontsize',12) 

xlabel('Discrete time [k]') 

ylabel('Real & estimated states [eq/l]') 

title('Dynamic behaviour of the process') 

hold off 

% 

subplot(3,2,2) 

plot(k,statesk1(2,:),':') 

hold on 

plot(k,states_bar(2,:)) 

text('Position',[60.0 0.15],'String','x2bar','Fontsize',12) 
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text('Position',[30.0 0.40],'String','x2','Fontsize',12) 

xlabel('Discrete time [k]') 

ylabel('Real & estimated states [eq/l]') 

title('Dynamic behaviour of the process') 

hold off 

% 

subplot(3,2,3) 

plot(k,statesk1(3,:),':') 

hold on 

plot(k,states_bar(3,:)) 

text('Position',[60.0 0.25],'String','x3bar','Fontsize',12) 

text('Position',[40.0 0.55],'String','x3','Fontsize',12) 

xlabel('Discrete time [k]') 

ylabel('Real & estimated states [eq/l]') 

title('Dynamic behaviour of the process') 

hold off 

% 

subplot(3,2,4) 

plot(k,statesk1(4,:),':') 

hold on 

plot(k,states_bar(4,:)) 

text('Position',[80.0 0.15],'String','x4bar','Fontsize',12) 

text('Position',[50.0 0.35],'String','x4','Fontsize',12) 

xlabel('Discrete time [k]') 

ylabel('Real & estimated states [eq/l]') 

title('Dynamic behaviour of the process') 

hold off 

% 

subplot(3,2,5) 

plot(k,states_bar(5,:)) 

hold on 

plot(k,statesk1(5,:),':') 

text('Position',[60.0 0.25],'String','x5bar','Fontsize',12) 

text('Position',[40.0 0.30],'String','x5','Fontsize',12) 

xlabel('Discrete time [k]') 

ylabel('Real & estimated states [eq/l]') 

title('Dynamic behaviour of the process') 

hold off 
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% 

subplot(3,2,6) 

plot(k,statesk1(6,:)) 

hold on 

plot(k,states_bar(6,:),':') 

text('Position',[20.0 0.35],'String','x6','Fontsize',12) 

text('Position',[60.0 0.40],'String','x6bar','Fontsize',12) 

xlabel('Discrete time [k]') 

ylabel('Real & estimated states [eq/l]') 

title('Dynamic behaviour of the process') 

hold off 

% 

%-----------------------------------Program end------------------------------------------------- 

 

% ---------------------------------------------------------------------------------------------------- 

% The function is used to calculate the values of the states for parameter estimation, 

% the considered trajectory period is (K = 100). 

% The function is called in the main program (see details below) under the function 

name iestate() 

% The main program is called "Parameter_Estimation6a_States.m" 

% 

% Author: NM Dube  

% Dated: 22 August 2011 

% Updated: 21 November 2016 

%---------------------------------------------------------------------------------------------------------- 

% declare the function iestate() 

function statesk1 = iestatek1(statesk,FRk,statesk_in,x0,p,dt) 

% 

% solving the model state equation using the current parameter values 

 x1 = statesk(1) + dt*(p(1)*statesk_in - p(1)*statesk(1) + p(2)*FRk*statesk(2) - 

p(3)*FRk*statesk(1) + p(4)*FRk); 

 x2 = statesk(2) + dt*(p(5)*statesk(1) - p(5)*statesk(2) + p(6)*FRk*statesk(3) - 

p(7)*FRk*statesk(2) + p(8)*FRk); 

 x3 = statesk(3) + dt*(p(9)*statesk(2) - p(9)*statesk(3) + p(10)*FRk*statesk(4) - 

p(11)*FRk*statesk(3) + p(12)*FRk); 

 x4 = statesk(4) + dt*(p(13)*statesk(3) - p(13)*statesk(4) + p(14)*FRk*statesk(5) - 

p(15)*FRk*statesk(4) + p(16)*FRk); 
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 x5 = statesk(5) + dt*(p(17)*statesk(4) - p(17)*statesk(5) + p(18)*FRk*statesk(6) - 

p(19)*FRk*statesk(5) + p(20)*FRk); 

 x6 = statesk(6) + dt*(p(21)*statesk(5) - p(21)*statesk(6) + 0 - p(22)*FRk*statesk(6) + 

p(23)*FRk); 

%-------------------------------------------------------------------------------------------------------- 

% declaring the state variables for the state vector at k+1, k=1:K 

statesk1 = [x1 x2 x3 x4 x5 x6]'; 

% 

%-------------------------------------------Function end------------------------------------- 
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APPENDIX B.3:  Program for parameter estimation using the state v ector 
measurements (direct method)  

 
% ------------------------------------------------------------------------------------ 

% Program for linear parameter estimation for a CCIX(continuous countercurrent 

% ion exchange) process, based on direct method of solving a p-vector; 

% CCIX in this application is used for water desalination. 

% A model has been developed for real-time optimal control and therefore, 

% parameter estimation must be performed. 

% In this program unknown parameters are estimated using a direct solution, based 

on 

% measured initial states, process input and measured states. 

% r = 23 is the total number of parameters since N = 6. 

% The model is based on the six stages UCT (University of Cape Town) model, with 

6 stages. 

% The program estimates parameters using an state vector-based method (the direct 

method). 

% 

% Author: NM Dube 

% Dated: 6 September 2011 

% Updated: 31 December 2016 

% 

%-------------------------------------------------------------------------------------- 

% Initializing of the model equation from available data obtained from UCT project 

% 

   h = 32.93;                % resin holdups (units in litres) 

% 

%-------------------------------------------------------------------------------------- 

% 

  d = 2/3;                   % resin to liquid fraction constant 

 conc_in = 0.435;           % sodium concentration at startup of process (eq/l) 

% conc_in = 0.055   

% conc_in = 0.110  

% conc_in = 0.435   

% conc_in = 0.550  

% conc_in = 0.754   

% conc_in = 1.000 

  T = 17;                    % liquid upflow period (min) 

  FR = (h*d)/T               % the control variable, resin flowrate (units in litres/min) 
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  Tf = T/17 

% 

%--------------------------------------------------------------------------------------- 

% Initializing constants required for the gradient method of minimizing the error 

between 

% the output of the experimental data and model output 

% 

    dt = 2.35/195             % sampling period (dt = 2.7, real sampling based on 

minutes), 

   K = 100;                  % total number of points in the full trajectory,   

% 

%---------------------------------------------------------------------------------------- 

% Measured data  

% Stage H+ fractional change in liquid concentration using data obtained from UCT 

Project volume 4  

  stage1 = [0.221 0.577 0.730 0.847 0.920 0.936 0.968 0.974 0.981 0.989 0.988 

0.997 1.000 1.000 1.000 1.000 1.000 1.000]; 

  stage2 = [0.000 0.140 0.314 0.523 0.656 0.766 0.842 0.886 0.900 0.933 0.958 

0.963 0.982 0.974 0.991 0.994 0.993 0.993]; 

  stage3 = [0.000 0.04 0.066 0.184 0.295 0.454 0.601 0.690 0.758 0.804 0.877 0.881 

0.951 0.965 0.972 0.981 1.000 0.988]; 

  stage4 = [0.000 0.000 0.004 0.035 0.082 0.168 0.277 0.361 0.440 0.522 0.698 

0.784 0.899 0.931 0.966 0.966 0.991 0.991]; 

  stage5 = [0.000 0.000 0.000 0.003 0.020 0.052 0.113 0.167 0.207 0.340 0.474 

0.547 0.780 0.860 0.899 0.905 0.975 0.973]; 

  stage6 = [0.000 0.000 0.000 0.000 0.000 0.001 0.024 0.033 0.063 0.124 0.167 

0.233 0.482 0.539 0.672 0.779 0.940 0.972]; 

% 

% Obtain Na+ fractional change in liquid concentration 

  stage1 = 1- stage1; 

  stage2 = 1- stage2; 

  stage3 = 1- stage3; 

  stage4 = 1- stage4; 

  stage5 = 1- stage5; 

  stage6 = 1- stage6; 

%---------------------------------------------------------------------------------------- 

% Introducing measurement vector expanded for the full state trajectory 

states_bar = [1.000 1.000 1.000 1.000 0.820 0.750 0.686 0.622 0.558 0.524... 
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         0.490 0.401 0.371 0.361 0.354 0.300 0.268 0.254 0.237 0.220... 

         0.178 0.157 0.143 0.130 0.116 0.104 0.090 0.078 0.077 0.074... 

         0.071 0.068 0.065 0.060 0.055 0.048 0.043 0.037 0.033 0.032... 

         0.029 0.028 0.027 0.026 0.025 0.024 0.023 0.022 0.020 0.018... 

         0.017 0.016 0.015 0.014 0.013 0.012 0.012 0.012 0.012 0.012... 

         0.012 0.012 0.008 0.007 0.005 0.004 0.003 0.002 0.002 0.002... 

         0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000... 

         0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000... 

         0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000; 

% 

         1.000 1.000 1.000 1.000 1.000 0.988 0.964 0.938 0.914 0.887... 

         0.863 0.832 0.800 0.770 0.738 0.707 0.674 0.635 0.598 0.561... 

         0.524 0.485 0.458 0.435 0.410 0.386 0.364 0.340 0.320 0.300... 

         0.280 0.261 0.241 0.225 0.212 0.197 0.184 0.170 0.157 0.149... 

         0.142 0.134 0.126 0.117 0.114 0.110 0.107 0.105 0.103 0.100... 

         0.094 0.088 0.083 0.076 0.070 0.065 0.061 0.056 0.053 0.047... 

         0.043 0.042 0.041 0.039 0.038 0.037 0.036 0.034 0.029 0.025... 

         0.023 0.018 0.018 0.022 0.023 0.024 0.025 0.025 0.023 0.019... 

         0.016 0.014 0.010 0.008 0.008 0.007 0.007 0.006 0.005 0.005... 

         0.006 0.006 0.007 0.007 0.006 0.006 0.007 0.007 0.007 0.007; 

% 

         1.000 1.000 1.000 1.000 1.000 0.997 0.989 0.983 0.975 0.967... 

         0.961 0.956 0.952 0.946 0.942 0.937 0.927 0.906 0.885 0.864... 

         0.842 0.820 0.800 0.781 0.760 0.741 0.720 0.698 0.670 0.641... 

         0.613 0.584 0.555 0.528 0.503 0.475 0.448 0.424 0.397 0.382... 

         0.365 0.348 0.335 0.317 0.304 0.292 0.278 0.266 0.255 0.243... 

         0.234 0.226 0.217 0.209 0.201 0.190 0.177 0.164 0.151 0.138... 

         0.124 0.123 0.122 0.121 0.120 0.119 0.115 0.103 0.089 0.077... 

         0.065 0.053 0.047 0.045 0.043 0.039 0.037 0.035 0.034 0.033... 

         0.032 0.029 0.028 0.026 0.025 0.024 0.023 0.021 0.018 0.015... 

         0.013 0.008 0.008 0.006 0.002 0.005 0.006 0.008 0.001 0.002; 

 

         1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000... 

         1.000 0.999 0.999 0.998 0.997 0.996 0.995 0.988 0.984 0.977... 

         0.973 0.966 0.958 0.950 0.942 0.934 0.925 0.915 0.898 0.884... 

         0.868 0.854 0.837 0.818 0.798 0.779 0.760 0.740 0.722 0.706... 

         0.682 0.676 0.661 0.646 0.632 0.617 0.603 0.598 0.574 0.560... 

         0.546 0.530 0.516 0.501 0.486 0.464 0.433 0.400 0.368 0.337... 
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         0.277 0.268 0.257 0.249 0.242 0.227 0.209 0.188 0.167 0.147... 

         0.126 0.105 0.096 0.092 0.085 0.079 0.074 0.067 0.062 0.055... 

         0.049 0.043 0.036 0.034 0.034 0.034 0.034 0.034 0.033 0.028... 

         0.025 0.020 0.015 0.012 0.008 0.008 0.008 0.008 0.008 0.008; 

% 

         1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000... 

         1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994... 

         0.992 0.981 0.970 0.970 0.968 0.964 0.960 0.955 0.951 0.948...  

         0.945 0.939 0.924 0.915 0.894 0.882 0.872 0.865 0.857 0.850... 

         0.842 0.834 0.823 0.810 0.798 0.787 0.775 0.750 0.722 0.690...  

         0.678 0.646 0.626 0.590 0.582 0.573 0.566 0.532 0.517 0.493... 

         0.467 0.452 0.423 0.418 0.401 0.374 0.331 0.290 0.282 0.256... 

         0.232 0.228 0.208 0.195 0.180 0.166 0.152 0.138 0.133 0.125... 

         0.117 0.110 0.104 0.100 0.088 0.077 0.066 0.055 0.044 0.032... 

         0.028 0.020 0.014 0.011 0.009 0.007 0.005 0.002 0.002 0.002; 

% 

         1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000... 

         1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.998... 

         0.998 0.997 0.996 0.993 0.988 0.986 0.983 0.978 0.974 0.967... 

         0.962 0.956 0.950 0.942 0.930 0.918 0.907 0.897 0.886 0.876... 

         0.867 0.857 0.847 0.837 0.828 0.822 0.815 0.807 0.800 0.793... 

         0.769 0.745 0.721 0.697 0.674 0.648 0.625 0.602 0.578 0.553... 

         0.528 0.515 0.502 0.488 0.475 0.462 0.439 0.397 0.355 0.313... 

         0.299 0.284 0.278 0.266 0.251 0.247 0.233 0.221 0.211 0.205... 

         0.200 0.198 0.189 0.176 0.166 0.142 0.130 0.122 0.114 0.108... 

         0.102 0.091 0.080 0.071 0.064 0.050 0.032 0.021 0.018 0.011]; 

% 

%-------------------------------------------------------------------------------------------------- 

% Initializing the state and control vectors full trajectory initial values 

  FR = FR*ones(1,K); 

  states_in = conc_in*ones(1,K+1); 

  states = states_bar;                % declaring initial state variables 

% 

%------------------------------------------------------------------------------------------------------- 

% 

  e0 = cputime; 

  Jk1 = 0; 

  for k = 1:K-1 
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    FRk = FR(k); 

    statesk = states(:,k); 

    statesk_in =states_in(k); 

    % 

    % Calculate the F(k) matrix 

     Fk = [(statesk_in-statesk(1)) statesk(2)*FRk -(statesk(1)*FRk) FRk 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0; 

            0 0 0 0  (statesk(1)-statesk(2)) statesk(3)*FRk -(statesk(2)*FRk) FRk 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0; 

            0 0 0 0 0 0 0 0 (statesk(2)-statesk(3)) statesk(4)*FRk -(statesk(3)*FRk) FRk 0 

0 0 0 0 0 0 0 0 0 0; 

            0 0 0 0 0 0 0 0 0 0 0 0 (statesk(3)-statesk(4)) statesk(5)*FRk -

(statesk(4)*FRk) FRk 0 0 0 0 0 0 0; 

            0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (statesk(4)-statesk(5)) statesk(6)*FRk -

(statesk(5)*FRk) FRk 0 0 0; 

            0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (statesk(5)-statesk(6)) -(statesk(6)*FRk) 

FRk]; 

    % 

    % Work out the parameters for each k-moment 

    Ek = Fk'*(states(:,k+1)-states(:,k))/dt; 

    P1 = Fk'*Fk; 

    p = Ek\P1;              % constant parameters 

    pk(:,k) = p';            % or this can be left out and use p above to see p vales at each 

k moment, 

                                % but if used in that manner p values are not stored. 

% 

%--------------------------------------------------------------------------------------------------- 

    x1 = statesk(1) + dt*(p(1)*statesk_in - p(1)*statesk(1) + p(2)*FRk*statesk(2) - 

p(3)*FRk*statesk(1) + p(4)*FRk); 

    x2 = statesk(2) + dt*(p(5)*statesk(1) - p(5)*statesk(2) + p(6)*FRk*statesk(3) - 

p(7)*FRk*statesk(2) + p(8)*FRk); 

    x3 = statesk(3) + dt*(p(9)*statesk(2) - p(9)*statesk(3) + p(10)*FRk*statesk(4) - 

p(11)*FRk*statesk(3) + p(12)*FRk); 

    x4 = statesk(4) + dt*(p(13)*statesk(3) - p(13)*statesk(4) + p(14)*FRk*statesk(5) - 

p(15)*FRk*statesk(4) + p(16)*FRk); 

    x5 = statesk(5) + dt*(p(17)*statesk(4) - p(17)*statesk(5) + p(18)*FRk*statesk(6) - 

p(19)*FRk*statesk(5) + p(20)*FRk); 
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    x6 = statesk(6) + dt*(p(21)*statesk(5) - p(21)*statesk(6) + p(22)*FRk*0 - 

p(22)*FRk*statesk(6) + p(23)*FRk); 

%     

%---------------------------------------------------------------------------------------------------- 

%  Declaring the state variables for the state vector at k+1, k=1:K using calculated 

parameters 

    states_est(:,k) = [x1 x2 x3 x4 x5 x6]'; 

    error(:,k) = states_bar(:,k)- states_est(:,k); 

    % 

    Jk = (error(:,k)'*error(:,k));            % calculate the least square error 

    Jk1 = Jk1 + Jk;                           % calculate the improved error 

  end 

  e1 = cputime;                               % end-point for processing time 

% 

%----------------------------------------------------------------------------------------------- 

% Display of optimalilty test values 

  error = abs(error); 

  e = e1 - e0 

  Jk1 

% Plot the output trajectories 

% pk 

% 

 figure(1) 

 i = 1:K; 

 plot(i,states_bar,':o','Linewidth',2.5,'MarkerSize',5) 

 text('Position',[15.0 0.35],'String','x_1','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[25.0 0.45],'String','x_2','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[35.0 0.5],'String','x_3','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[45.0 0.65],'String','x_4','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[55.0 0.70],'String','x_5','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[65.0 0.82],'String','x_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 xlabel('Discrete time [k]','Fontsize',14) 



 

511 

 ylabel('Process true state [eq/l]','Fontsize',14) 

 title('Dynamic behaviour of the process','Fontsize',14) 

 grid on 

 %  

 figure(2) 

 subplot(2,1,1) 

 i = 1:K; 

 plot(i,states_bar,':o','Linewidth',2.5,'MarkerSize',5) 

 text('Position',[15.0 0.35],'String','x_1','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[25.0 0.45],'String','x_2','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[35.0 0.5],'String','x_3','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[45.0 0.65],'String','x_4','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[55.0 0.70],'String','x_5','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[65.0 0.82],'String','x_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 xlabel('Discrete time [k]','Fontsize',14) 

 ylabel('Process true state [eq/l]','Fontsize',14) 

 title('Dynamic behaviour of the process','Fontsize',14) 

 grid on 

% 

  subplot(2,1,2) 

  i = 1:K-1; 

  plot(i,states_est,'-o','Linewidth',2.5,'MarkerSize',5) 

  text('Position',[15.0 0.35],'String','x^~_1','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

  text('Position',[25.0 0.45],'String','x^~_2','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

  text('Position',[35.0 0.5],'String','x^~_3','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

  text('Position',[45.0 0.65],'String','x^~_4','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

  text('Position',[55.0 0.70],'String','x^~_5','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 
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  text('Position',[65.0 0.82],'String','x^~_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

  xlabel('Discrete time [k]','Fontsize',14) 

  ylabel('Estimated state [eq/l]','Fontsize',14) 

  title('Dynamic behaviour of the process','Fontsize',14) 

  grid on 

  hold off 

 % 

  figure(3) 

  i = 1:K-1; 

  plot(i,error,':o','Linewidth',2.5,'MarkerSize',5) 

  text('Position',[10.0 0.1],'String','e_x_1 - e_x_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

  hold on 

  % 

  i = 1:K; 

  plot(i,states_bar(1,:),'-ob','Linewidth',2.5,'MarkerSize',5) 

  text('Position',[15.0 0.35],'String','x_1','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

  hold on 

  plot(i,states_bar(2,:),'-ob','Linewidth',2.5,'MarkerSize',5) 

  text('Position',[25.0 0.45],'String','x_2','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

  hold on 

  plot(i,states_bar(3,:),'-ob','Linewidth',2.5,'MarkerSize',5) 

  text('Position',[35.0 0.5],'String','x_3','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

  hold on 

  plot(i,states_bar(4,:),'-ob','Linewidth',2.5,'MarkerSize',5) 

  text('Position',[45.0 0.65],'String','x_4','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

  hold on 

  plot(i,states_bar(5,:),'-ob','Linewidth',2.5,'MarkerSize',5) 

  text('Position',[55.0 0.70],'String','x_5','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

  hold on 

  plot(i,states_bar(6,:),'-ob','Linewidth',2.5,'MarkerSize',5) 
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  text('Position',[65.0 0.82],'String','x_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

  hold on 

  xlabel('Discrete time [k]','Fontsize',16) 

  ylabel('Estimated states & error difference [eq/l]','Fontsize',16) 

  title('System error & dynamic behaviour based on estimated model','Fontsize',16) 

  grid on 

  hold off 

 % ----------------------------------------------------------------------------------------------- 

 figure(4) 

 k = 1:K-1; 

 plot(k,error,':o','Linewidth',2.5) 

 text('Position',[50.0 0.02],'String','e_x_1 - e_x_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 xlabel('Discrete time [k]','Fontsize',16) 

 ylabel('Error difference between states [eq/l]','Fontsize',16) 

 title('Error difference between measured & calculated states','Fontsize',16) 

 grid on 

 hold on 

% 

 figure (5) 

 subplot(3,2,1) 

 k = 1:K-1; 

 plot(k,states_est(1,:),':') 

 hold on 

 k = 1:K; 

 plot(k,states_bar(1,:)) 

 text('Position',[30.0 0.13],'String','x1bar','Fontsize',12) 

 text('Position',[15.0 0.40],'String','x1','Fontsize',12) 

 xlabel('Discrete time [k]') 

 ylabel('Real & estimated states[eq/l]') 

 title('Dynamic behaviour of the process') 

 hold off 

  

 subplot(3,2,2) 

 k = 1:K-1; 

 plot(k,states_est(2,:),':') 

 hold on 
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 k = 1:K; 

 plot(k,states_bar(2,:)) 

 text('Position',[60.0 0.15],'String','x2bar','Fontsize',12) 

 text('Position',[15.0 0.65],'String','x2','Fontsize',12) 

 xlabel('Discrete time [k]') 

 ylabel('Real & estimated states[eq/l]') 

 title('Dynamic behaviour of the process') 

 hold off 

% 

 subplot(3,2,3) 

 k = 1:K-1; 

 plot(k,states_est(3,:),':') 

 hold on 

 k = 1:K; 

 plot(k,states_bar(3,:)) 

 text('Position',[60.0 0.35],'String','x3bar','Fontsize',12) 

 text('Position',[27.0 0.5],'String','x3','Fontsize',12) 

 xlabel('Discrete time [k]') 

 ylabel('Real & estimated states[eq/l]') 

 title('Dynamic behaviour of the process') 

 hold off 

% 

 subplot(3,2,4) 

 k = 1:K-1; 

 plot(k,states_est(4,:),':') 

 hold on 

 k = 1:K; 

 plot(k,states_bar(4,:)) 

 text('Position',[80.0 0.15],'String','x4bar','Fontsize',12) 

 text('Position',[50.0 0.5],'String','x4','Fontsize',12) 

 xlabel('Discrete time [k]') 

 ylabel('Real & estimated states[eq/l]') 

 title('Dynamic behaviour of the process') 

 hold off 

% 

 subplot(3,2,5) 

 k = 1:K-1; 

 plot(k,states_est(5,:),':') 



 

515 

 hold on 

 k = 1:K; 

 plot(k,states_bar(5,:)) 

 text('Position',[65.0 0.60],'String','x5bar','Fontsize',12) 

 text('Position',[55.0 0.70],'String','x5','Fontsize',12) 

 xlabel('Discrete time [k]') 

 ylabel('Real & estimated states[eq/l]') 

 title('Dynamic behaviour of the process') 

 hold off 

% 

 subplot(3,2,6) 

 k = 1:K-1; 

 plot(k,states_est(6,:),':') 

 hold on 

 k = 1:K; 

 plot(k,states_bar(6,:)) 

 text('Position',[60.0 0.55],'String','x6','Fontsize',12) 

 text('Position',[70.0 0.50],'String','x6bar','Fontsize',12) 

 xlabel('Discrete time [k]') 

 ylabel('Real & estimated states[eq/l]') 

 title('Dynamic behaviour of the process') 

 hold off 

%-----------------------------------------------Program end-------------------------------- 
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APPENDIX B.4:  Program for parameter estimation using the state v ector 
measurements (Lagrange method)  

 
% ------------------------------------------------------------------------------------------------------- 

% Program for solution of parameter estimation for a CCIX(continuous 

countercurrent 

% ion exchange) process, CCIX in this application is used for water desalination. 

% A model has been developed for real-time optimal control of the process and 

therefore, 

% parameter estimation must be performed. 

% The model is based on the six stages UCT (University of Cape Town) model, 

% and the current project has 6 stages. 

% The program estimates parameters using an the Lagrange method. 

% 

% Author: NM Dube 

% Dated: 23 June 2011 

% Updated: 15 December 2016 

% 

%--------------------------------------------------------------------------------------------------- 

% Initializing of the model equation from available data  

% 

  h = 0.3293;                % resin holdups (units in litres) 

  H = 0.42809;               % liquid holdups (units in litres) 

  Fl = 2000/60;              % liquid flow rate (units in litres/min) 

% 

  conc_in = 0.435;           % disturbance input 

  T = 17;                    % liquid upflow time (units in min) 

  d = 2/3;                   % resin to liquid fraction relationship 

  FR = (h*d)/T;              % initial control variable, resin flowrate. 

%  

%------------------------------------------------------------------------------------------------- 

% Initializing variables used in the model formulas with data from UCT project 

% 

  a = 230*[0.8 0.6 0.5 0.4 0.3 0.25];        % (try this for better results) 

  b = 60*[0.01 0.02 0.05 0.08 0.1 0.2];      % ionic liquid fraction in the solution 

% 

%--------------------------------------------------------------------------------------------------- 

% Declaration of parameters from the model equations as determined by,  

% dx/dt = Ax(t)+B1x(t)u(t)+Bu(t)+W(t)w(t) and  
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% determinaton of parameters are l(i), m(i), m(i(j)) and k(i) 

% 

N = 6;                        % number of stages of the process 

for i = 1:N 

    l(i) = Fl/(H+(a(i)*h)); 

    mi(i) = a(i)/(H+(a(i)*h)); 

end 

% 

for i = 1:N-1 

    r(i) = (b(i+1) - b(i))/(H+a(i)*h); 

    mij(i) = a(i+1)/(H+(a(i)*h)); 

end 

    r(N) = -b(N)/(H+a(N)*h); 

% 

%----------------------------------------------------------------------------------------------- 

% Initialization of model parameters A, B, B1 W and C using calculated parameters 

li, mi and mij 

 A(1,1) = -l(1); 

 A(2,1) = l(2); 

 A(2,2) = -l(2); 

 A(3,2) = l(3); 

 A(3,3) = -l(3); 

 A(4,3) = l(4); 

 A(4,4) = -l(4); 

 A(5,4) = l(5); 

 A(5,5) = -l(5); 

 A(6,5) = l(6); 

 A(6,6) = -l(6); 

% 

 B1(1,1) = -mi(1); 

 B1(1,2) = mij(1); 

 B1(2,2) = -mi(2); 

 B1(2,3) = mij(2); 

 B1(3,3) = -mi(3); 

 B1(3,4) = mij(3); 

 B1(4,4) = -mi(4); 

 B1(4,5) = mij(4); 

 B1(5,5) = -mi(5); 
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 B1(5,6) = mij(5); 

 B1(6,6) = -mi(6); 

% 

 B = [r(1) r(2) r(3) r(4) r(5) r(6)]'; 

 W = [l(1) 0 0 0 0 0]'; 

 C = [0 0 0 0 0 1]; 

% 

%--------------------------------------------------------------------------------------------------------- 

% Initialize unknown parameters using the declared parameters above,  

% there will be (N*4)- 1 parameters the parameter mij(6) is thus equated to 0.  

% 

   p(1) = l(1); 

   p(2) = mij(1); 

   p(3) = mi(1); 

   p(4) = r(1); 

   p(5) = l(2); 

   p(6) = mij(2); 

   p(7) = mi(2); 

   p(8) = r(2); 

   p(9) = l(3); 

   p(10) = mij(3); 

   p(11) = mi(3); 

   p(12) = r(3); 

   p(13) = l(4); 

   p(14) = mij(4); 

   p(15) = mi(4); 

   p(16) = r(4); 

   p(17) = l(5); 

   p(18) = mij(5); 

   p(19) = mi(5); 

   p(20) = r(5); 

   p(21) = l(6); 

   p(22) = mi(6); 

   p(23) = r(6); 

% 

%---------------------------------------------------------------------------------------------------- 

% Factor the parameters as required 

% 
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   p0 = 

[p(1);p(2);p(3);p(4);p(5);p(6);p(7);p(8);p(9);p(10);p(11);p(12);p(13);p(14);p(15);p(

16);p(17);p(18);p(19);p(20);p(21);p(22);p(23)]; 

   p_initial = p0 

% 

%------------------------------------------------------------------------------------------------------ 

% Initializing constants required for the gradient method of minimizing the error 

between 

% the output of the experimental data and model output 

% 

%------------------------------------------------------------------------------------------------------- 

% Measured data  

% Stage H+ fractional change in liquid concentration using data obtained from UCT 

Project volume 4  

  stage1 = [0.221 0.577 0.730 0.847 0.920 0.936 0.968 0.974 0.981 0.989 0.988 

0.997 1.000 1.000 1.000 1.000 1.000 1.000]; 

  stage2 = [0.000 0.140 0.314 0.523 0.656 0.766 0.842 0.886 0.900 0.933 0.958 

0.963 0.982 0.974 0.991 0.994 0.993 0.993]; 

  stage3 = [0.000 0.04 0.066 0.184 0.295 0.454 0.601 0.690 0.758 0.804 0.877 0.881 

0.951 0.965 0.972 0.981 1.000 0.988]; 

  stage4 = [0.000 0.000 0.004 0.035 0.082 0.168 0.277 0.361 0.440 0.522 0.698 

0.784 0.899 0.931 0.966 0.966 0.991 0.991]; 

  stage5 = [0.000 0.000 0.000 0.003 0.020 0.052 0.113 0.167 0.207 0.340 0.474 

0.547 0.780 0.860 0.899 0.905 0.975 0.973]; 

  stage6 = [0.000 0.000 0.000 0.000 0.000 0.001 0.024 0.033 0.063 0.124 0.167 

0.233 0.482 0.539 0.672 0.779 0.940 0.972]; 

% 

% Obtain Na+ fractional change in liquid concentration 

   stage1 = 1- stage1; 

   stage2 = 1- stage2; 

   stage3 = 1- stage3; 

   stage4 = 1- stage4; 

   stage5 = 1- stage5; 

   stage6 = 1- stage6; 

% 

%----------------------------------------------------------------------------------------------- 

% Introducing measurement vector expanded for the full state trajectory 

states_bar = [1.000 1.000 1.000 1.000 0.760 0.750 0.686 0.622 0.558 0.494... 
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         0.490 0.398 0.371 0.371 0.344 0.316 0.228 0.264 0.243 0.220... 

         0.178 0.157 0.143 0.130 0.116 0.104 0.090 0.078 0.077 0.074... 

         0.071 0.068 0.065 0.060 0.055 0.048 0.043 0.037 0.033 0.032... 

         0.029 0.028 0.027 0.026 0.025 0.024 0.023 0.022 0.020 0.018... 

         0.017 0.016 0.015 0.014 0.013 0.012 0.012 0.012 0.012 0.012... 

         0.012 0.012 0.008 0.007 0.005 0.004 0.003 0.002 0.002 0.002... 

         0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000... 

         0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000... 

         0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000; 

     % 

         1.000 1.000 1.000 1.000 1.000 0.988 0.964 0.938 0.914 0.887... 

         0.863 0.832 0.800 0.770 0.738 0.707 0.674 0.635 0.598 0.561... 

         0.524 0.485 0.458 0.435 0.410 0.386 0.364 0.340 0.320 0.300... 

         0.280 0.261 0.241 0.225 0.212 0.197 0.184 0.170 0.157 0.149... 

         0.142 0.134 0.126 0.117 0.114 0.110 0.107 0.105 0.103 0.100... 

         0.094 0.088 0.083 0.076 0.070 0.065 0.061 0.056 0.053 0.047... 

         0.043 0.042 0.041 0.039 0.038 0.037 0.036 0.034 0.029 0.025... 

         0.023 0.018 0.018 0.022 0.023 0.024 0.025 0.025 0.023 0.019... 

         0.016 0.014 0.010 0.008 0.008 0.007 0.007 0.006 0.005 0.005... 

         0.006 0.006 0.007 0.007 0.006 0.006 0.007 0.007 0.007 0.007; 

     % 

         1.000 1.000 1.000 1.000 1.000 0.997 0.989 0.983 0.975 0.967... 

         0.961 0.956 0.952 0.946 0.942 0.937 0.927 0.906 0.885 0.864... 

         0.842 0.820 0.800 0.781 0.760 0.741 0.720 0.698 0.670 0.641... 

         0.613 0.584 0.555 0.528 0.503 0.475 0.448 0.424 0.397 0.382... 

         0.365 0.348 0.335 0.317 0.304 0.292 0.278 0.266 0.255 0.243... 

         0.234 0.226 0.217 0.209 0.201 0.190 0.177 0.164 0.151 0.138... 

         0.124 0.123 0.122 0.121 0.120 0.119 0.115 0.103 0.089 0.077... 

         0.065 0.053 0.047 0.045 0.043 0.039 0.037 0.035 0.034 0.033... 

         0.032 0.029 0.028 0.026 0.025 0.024 0.023 0.021 0.018 0.0015... 

         0.013 0.008 0.008 0.006 0.002 0.005 0.006 0.008 0.010 0.012; 

     % 

         1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000... 

         1.000 0.999 0.999 0.998 0.997 0.996 0.995 0.988 0.984 0.977... 

         0.973 0.966 0.958 0.950 0.942 0.934 0.925 0.915 0.898 0.884... 

         0.868 0.854 0.837 0.818 0.798 0.779 0.760 0.740 0.722 0.706... 

         0.682 0.676 0.661 0.646 0.632 0.617 0.603 0.598 0.574 0.560... 

         0.546 0.530 0.516 0.501 0.486 0.464 0.433 0.400 0.368 0.337... 
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         0.305 0.288 0.274 0.257 0.242 0.227 0.209 0.188 0.167 0.147... 

         0.126 0.105 0.096 0.092 0.085 0.079 0.074 0.067 0.062 0.055... 

         0.049 0.043 0.036 0.034 0.034 0.034 0.034 0.034 0.033 0.028... 

         0.025 0.020 0.015 0.012 0.008 0.008 0.008 0.008 0.008 0.008; 

     % 

         1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000... 

         1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.998... 

         0.998 0.997 0.996 0.993 0.988 0.986 0.983 0.978 0.974 0.967... 

         0.962 0.956 0.950 0.942 0.930 0.918 0.907 0.897 0.886 0.876... 

         0.867 0.857 0.847 0.837 0.828 0.822 0.815 0.807 0.800 0.793... 

         0.769 0.745 0.721 0.697 0.674 0.648 0.625 0.602 0.578 0.553... 

         0.528 0.515 0.502 0.488 0.475 0.462 0.439 0.397 0.355 0.313... 

         0.272 0.228 0.208 0.195 0.180 0.166 0.152 0.138 0.133 0.125... 

         0.117 0.110 0.104 0.100 0.098 0.097 0.096 0.095 0.094 0.082... 

         0.068 0.055 0.044 0.031 0.025 0.025 0.025 0.026 0.027 0.027; 

     % 

         1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000...  

         1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000...  

         1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000... 

         1.000 1.000 1.000 0.998 0.993 0.988 0.984 0.980 0.977 0.974... 

         0.972 0.971 0.970 0.970 0.968 0.964 0.959 0.953 0.948 0.943...  

         0.937 0.927 0.914 0.905 0.894 0.882 0.872 0.865 0.857 0.850... 

         0.842 0.834 0.823 0.810 0.798 0.787 0.775 0.750 0.705 0.660...  

         0.618 0.574 0.526 0.510 0.500 0.490 0.480 0.470 0.457 0.433... 

         0.408 0.384 0.360 0.335 0.315 0.295 0.278 0.257 0.237 0.218... 

         0.190 0.130 0.102 0.072 0.057 0.051 0.046 0.039 0.034 0.027]; 

 % 

%------------------------------------------------------------------------------------------------------ 

% Initializing sampling parameters 

% 

    dt = 2.35/195;         % sampling period in (min)at 100 sampling points, dt = 0.012; 

    K = 100;        % total number of sampling points in the full sampling period, 

    M = 2000; 

% Initializing the Lagrange multipliers 

% 

  lambda1 = 0.110; 

  lambda2 = 0.445; 

  lambda3 = 0.122; 
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  lambda4 = 0.662; 

  lambda5 = 0.343; 

  lambda6 = 0.500; 

  lambda = [lambda1 lambda2 lambda3 lambda4 lambda5 lambda6]'; 

% 

%------------------------------------------------------------------------------------------------------ 

% Initializing optimization procedure parameters 

%  

   %grad_p = 0.043;               % gradient step for parameters, 

   grad_p = 1.0;                      % gradient step for parameters (original value), 

   grad_lambda = 1.0;            %  

   e_p = 0.001;                             % epsilon for parameters 

   e_lambda = 0.001;                   % epsilon for lambda (Lagrange multiplier) 

% 

%-------------------------------------------------------------------------------------------------- 

% Initialize process parameter, control input, disturbance and state vectors full 

trajectories 

  p = p0*ones(1,K); 

  FR = FR*ones(1,K); 

  states_in = conc_in*ones(1,K); 

  states = states_bar;                    % declaring current state variables based on 

measured states 

  lambdak = lambda*ones(1,K); 

%-------------------------------------------------------------------------------------------------- 

% Iteration procedure start and initializing index of iteration (j) 

  j = 1; 

  e0 = cputime; 

  while j <= M                               % beginning of iteration M 

% 

% Solving the state model equation starting with initial values of parameters 

%  

  for k = 1:K 

     FRk = FR(k);                           % process control input, FR(k) 

     statesk_in = states_in(k);        % process disturbances, xf(k) 

     statesk = states(:,k);               % states(k) = x(k), the process states 

     lambdak1 = lambdak(:,k);       % Lagrange multipliers 

     % 

     % Collect values for k points, se we need to use vectors 
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      La1_p(:,k) = dt*lambdak1(1)*[(statesk_in - statesk(1)) statesk(2)*FRk -

statesk(1)*FRk FRk]';  

      La2_p(:,k) = dt*lambdak1(2)*[(statesk(1) - statesk(2)) statesk(3)*FRk -

statesk(2)*FRk FRk]'; 

      La3_p(:,k) = dt*lambdak1(3)*[(statesk(2) - statesk(3)) statesk(4)*FRk -

statesk(3)*FRk FRk]'; 

      La4_p(:,k) = dt*lambdak1(4)*[(statesk(3) - statesk(4)) statesk(5)*FRk -

statesk(4)*FRk FRk]'; 

      La5_p(:,k) = dt*lambdak1(5)*[(statesk(4) - statesk(5)) statesk(6)*FRk -

statesk(5)*FRk FRk]'; 

      La6_p(:,k) = dt*lambdak1(6)*[(statesk(5) - statesk(6)) -statesk(6)*FRk FRk]'; 

    % 

    % Formulate the full La_p vector 

     La_p(:,k) = [La1_p(:,k);La2_p(:,k);La3_p(:,k);La4_p(:,k);La5_p(:,k);La6_p(:,k)]; 

    % 

    % Test parameters gradients for stopping iteration 

    %  

    if abs(La_p(:,k)) <= e_p | j >= M 

       p(:,k) = p(:,k); 

    else 

       p(:,k) = p(:,k) - grad_p*La_p(:,k);   

    end 

  end 

%   

  for k = 1:K-1 

      FRk = FR(k);                    % process control input, FR(k) 

      statesk_in = states_in(k);      % process disturbances, xf(k)      

      statesk = states(:,k);          % states(k) = x(k), the process states   

      statesk1 = states(:,k+1);       % states(k+1) = x(k+1), the process state 

    % 

    % Determining Lagrange multipliers gradients 

     La_lambda(:,k) = (-statesk1 + dt*(A*statesk + B1*statesk*FRk + B*FRk + 

W*statesk_in)); 

    % 

    % Test condition for stoping iteration for Lagrange multipliers 

    % 

     if abs(La_lambda) <= e_lambda | j >= M 

        lambda = lambda; 
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     else 

       lambda = lambda + grad_lambda*La_lambda(:,k); 

    end 

   end  

% 

  j = j+1; 

  x0 = statesk(:,1); 

  for k = 1:K-1 

      FRk = FR(k); 

      statesk = states(:,k); 

      statesk_in = states_in(k); 

      est_statesk(:,k+1) = curr_states(statesk,FRk,statesk_in,x0,p,dt); 

  end  

% 

  end 

%---------------------------------------------------------------------------------------------- 

% Display optimal parameters calculated 

   Jk1 = 0; 

   for i = 1:K 

     error(:,i) = states_bar(:,i)-est_statesk(:,i); 

     Jk = (error(:,i)'*error(:,i)); 

     Jk1 = Jk1 + Jk; 

   end 

 % 

   error = abs(error); 

   e1 = cputime; 

   e = e1 - e0 

   Jk1 

   %t = inv(dt/2.35) 

% 

%    j = j 

%  p_final = p(:,K) 

% 

%------------------------------------------------------------------------------------------------ 

% 

 figure(1) 

 i = 1:K; 

 plot(i,states_bar,':o','Linewidth',2.5,'MarkerSize',5) 
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 text('Position',[15.0 0.35],'String','x_1','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[25.0 0.45],'String','x_2','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[35.0 0.5],'String','x_3','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[45.0 0.65],'String','x_4','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[55.0 0.70],'String','x_5','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[65.0 0.82],'String','x_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 xlabel('Discrete time [k]','Fontsize',14) 

 ylabel('Process true state [eq/l]','Fontsize',14) 

 title('Dynamic behaviour of the process','Fontsize',14) 

 grid on 

 %  

   figure(2) 

   subplot(2,1,1) 

   i = 1:K; 

   plot(i,states_bar,':o','Linewidth',2.5,'MarkerSize',5) 

   hold on 

   grid on 

   text('Position',[15.0 0.35],'String','x_1','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

   text('Position',[25.0 0.45],'String','x_2','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

   text('Position',[35.0 0.5],'String','x_3','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

   text('Position',[45.0 0.65],'String','x_4','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

   text('Position',[55.0 0.70],'String','x_5','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

   text('Position',[65.0 0.82],'String','x_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

   xlabel('Discrete time [k]','Fontsize',14) 

   ylabel('Process true state [eq/l]','Fontsize',14) 

   title('Dynamic behaviour of the process','Fontsize',14) 
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% 

   subplot(2,1,2) 

   i = 1:K; 

   plot(i,est_statesk,'-o','Linewidth',2.5,'MarkerSize',5) 

   hold on 

   text('Position',[15.0 0.35],'String','x^~_1','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

   text('Position',[25.0 0.45],'String','x^~_2','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

   text('Position',[35.0 0.5],'String','x^~_3','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

   text('Position',[45.0 0.65],'String','x^~_4','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

   text('Position',[55.0 0.70],'String','x^~_5','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

   text('Position',[65.0 0.82],'String','x^~_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

   xlabel('Discrete time [k]','Fontsize',14) 

   ylabel('Estimated state [eq/l]','Fontsize',14) 

   title('Dynamic behaviour of the process','Fontsize',14) 

   grid on 

   hold off 

 % 

    figure(3) 

    i = 1:K; 

    plot(i,error,':o','Linewidth',2.5,'MarkerSize',5) 

    text('Position',[10.0 0.1],'String','e_x_1 - e_x_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

    hold on 

  % 

    plot(i,states_bar(1,:),'-ob','Linewidth',2.5,'MarkerSize',5) 

    text('Position',[15.0 0.35],'String','x_1','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

    hold on 

    plot(i,states_bar(2,:),'-ob','Linewidth',2.5,'MarkerSize',5) 

    text('Position',[25.0 0.45],'String','x_2','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 
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    hold on 

    plot(i,states_bar(3,:),'-ob','Linewidth',2.5,'MarkerSize',5) 

    text('Position',[35.0 0.5],'String','x_3','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

    hold on 

    plot(i,states_bar(4,:),'-ob','Linewidth',2.5,'MarkerSize',5) 

    text('Position',[45.0 0.65],'String','x_4','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

    hold on 

    plot(i,states_bar(5,:),'-ob','Linewidth',2.5,'MarkerSize',5) 

    text('Position',[55.0 0.70],'String','x_5','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

    hold on 

    plot(i,states_bar(6,:),'-ob','Linewidth',2.5,'MarkerSize',5) 

    text('Position',[65.0 0.82],'String','x_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

    hold on 

    xlabel('Discrete time [k]','Fontsize',16) 

    ylabel('Estimated states & error difference [eq/l]','Fontsize',16) 

    title('System error & dynamic behaviour based on estimated model','Fontsize',16) 

    grid on 

    hold off 

% 

    figure(4) 

    k = 1:K; 

    plot(k,error,':o','Linewidth',2.5,'MarkerSize',5) 

    text('Position',[10.0 1.0],'String','e_x_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

    text('Position',[50.0 0.05],'String','e_x_1 - e_x_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

    grid on 

    xlabel('Discrete time [k]','Fontsize',16) 

    ylabel('Error between real & measured states','Fontsize',16) 

    title('Error difference between real and model states of the process','Fontsize',16) 

% 

   figure(5) 

   k = 1:K; 

   plot(k,p,'o','Linewidth',2.5,'MarkerSize',5) 
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   grid on 

   xlabel('Time [k]','Fontsize',16) 

   ylabel('Estimated parameter values','Fontsize',16) 

   title('Parameter values over full process trajectory','Fontsize',16) 

 %    

   figure(6) 

   k = 1:K; 

   subplot(3,2,1) 

   plot(k,est_statesk(1,:),':') 

   hold on 

   plot(k,states_bar(1,:)) 

   text('Position',[30.0 0.13],'String','x1bar','Fontsize',12) 

   text('Position',[60.0 0.20],'String','x^~_1','Fontsize',12) 

   xlabel('Discrete time [k]') 

   ylabel('Real & estimated states[eq/l]') 

   title('Dynamic behaviour of the process') 

   hold off 

% 

   subplot(3,2,2) 

   plot(k,est_statesk(2,:),':') 

   hold on 

   plot(k,states_bar(2,:)) 

   text('Position',[60.0 0.15],'String','x2bar','Fontsize',12) 

   text('Position',[30.0 0.70],'String','x^~_2','Fontsize',12) 

   xlabel('Discrete time [k]') 

   ylabel('Real & estimated states[eq/l]') 

   title('Dynamic behaviour of the process') 

   hold off 

% 

   subplot(3,2,3) 

   plot(k,est_statesk(3,:),':') 

   hold on 

   plot(k,states_bar(3,:)) 

   text('Position',[60.0 0.25],'String','x3bar','Fontsize',12) 

   text('Position',[40.0 0.10],'String','x^~_3','Fontsize',12) 

   xlabel('Discrete time [k]') 

   ylabel('Real & estimated states[eq/l]') 

   title('Dynamic behaviour of the process') 
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   hold off 

% 

   subplot(3,2,4) 

   plot(k,est_statesk(4,:),':') 

   hold on 

   plot(k,states_bar(4,:)) 

   text('Position',[80.0 0.15],'String','x4bar','Fontsize',12) 

   text('Position',[50.0 0.75],'String','x^~_4','Fontsize',12) 

   xlabel('Discrete time [k]') 

   ylabel('Real & estimated states[eq/l]') 

   title('Dynamic behaviour of the process') 

   hold off 

% 

   subplot(3,2,5) 

   plot(k,est_statesk(5,:),':') 

   hold on 

   plot(k,states_bar(5,:)) 

   text('Position',[60.0 0.70],'String','x5bar','Fontsize',12) 

   text('Position',[40.0 0.50],'String','x^~_5','Fontsize',12) 

   xlabel('Discrete time [k]') 

   ylabel('Real & estimated states[eq/l]') 

   title('Dynamic behaviour of the process') 

   hold off 

% 

   subplot(3,2,6) 

   plot(k,est_statesk(6,:),':') 

   hold on 

   plot(k,states_bar(6,:)) 

   text('Position',[20.0 0.55],'String','x^~_6','Fontsize',12) 

   text('Position',[60.0 0.65],'String','x6bar','Fontsize',12) 

   xlabel('Discrete time [k]') 

   ylabel('Real & estimated states[eq/l]') 

   title('Dynamic behaviour of the process') 

   hold off 

% 

%-----------------------------------------------Program -ends------------------------------ 

 

% --------------------------------------------------------------------------------------------------- 
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% The function is used to calculate the values of the states for parameter estimation, 

% the considered trajectory period is (K = 100). 

% The function is called in the main program under the function name iestate() 

% The main program is called "Parameter_Estimation6a_Lagrang2.m" 

% 

% Author: NM Dube 

% Dated: 23 June 2011 

% Updated: 15 December 2016 

%--------------------------------------------------------------------------------------------- 

% declare the function iestate() 

function est_statesk = curr_states(statesk,FRk,statesk_in,x0,p,dt) 

% 

% solving the model state equation using the current parameter values 

 x1 = statesk(1) + dt*(p(1)*statesk_in - p(1)*statesk(1) + p(2)*FRk*statesk(2) - 

p(3)*FRk*statesk(1) + p(4)*FRk); 

 x2 = statesk(2) + dt*(p(5)*statesk(1) - p(5)*statesk(2) + p(6)*FRk*statesk(3) - 

p(7)*FRk*statesk(2) + p(8)*FRk); 

 x3 = statesk(3) + dt*(p(9)*statesk(2) - p(9)*statesk(3) + p(10)*FRk*statesk(4) - 

p(11)*FRk*statesk(3) + p(12)*FRk); 

 x4 = statesk(4) + dt*(p(13)*statesk(3) - p(13)*statesk(4) + p(14)*FRk*statesk(5) - 

p(15)*FRk*statesk(4) + p(16)*FRk); 

 x5 = statesk(5) + dt*(p(17)*statesk(4) - p(17)*statesk(5) + p(18)*FRk*statesk(6) - 

p(19)*FRk*statesk(5) + p(20)*FRk); 

 x6 = statesk(6) + dt*(p(21)*statesk(5) - p(21)*statesk(6) + 0 - p(22)*FRk*statesk(6) + 

p(23)*FRk); 

%----------------------------------------------------------------------------------------------- 

% declaring the state variables for the state vector at k+1, k=1:K 

 est_statesk = [x1 x2 x3 x4 x5 x6]'; 

% 

%--------------------------------------------------Program   ends--------------------------------- 
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APPENDIX C: PROGRAMS FOR PARAMETER ESTIMATION OF TH E 
NONLINEAR MODEL (BASED ON THE SEPARATION 
FACTOR) 

APPENDIX C.1:  Program for nonlinear parameter estimation – the d irect 
method using MATLAB fsolve() function 

 
% --------------------------------------------------------------------------------------------------- 

% Program for parameter estimation of CCIX (Continuous Countercurrent Ion 

Exchange) 

% using separation factor (Nonlinearn Model). 

% The model is based on the six stages UCT (University of Cape Town) model, 

% and the current project has 6 stages. 

% In this program state is the state variables and state_bar is the measured states. 

% The program uses direct method of function fsolve() to solve unknown parameters  

% of the separation factor, alpha01. 

% 

% Author: N. Dube 

% Dated: 10 August 2012 

% Updated: 21 November 2016 

% 

%----------------------------------------------------------------------------------------------------- 

% Original data measured  from UCT (University of Cape Town) project in 1982 

% Stage H+ fractional change in liquid concentration using data obtained from UCT 

Project volume 4  

% stage1 = [0.221 0.577 0.730 0.847 0.920 0.936 0.968 0.974 0.981 0.989 0.988 

0.997 1.000 1.000 1.000 1.000 1.000 1.000]; 

% stage2 = [0.000 0.140 0.314 0.523 0.656 0.766 0.842 0.886 0.900 0.933 0.958 

0.963 0.982 0.974 0.991 0.994 0.993 0.993]; 

% stage3 = [0.000 0.04 0.066 0.184 0.295 0.454 0.601 0.690 0.758 0.804 0.877 

0.881 0.951 0.965 0.972 0.981 1.000 0.988]; 

% stage4 = [0.000 0.000 0.004 0.035 0.082 0.168 0.277 0.361 0.440 0.522 0.698 

0.784 0.899 0.931 0.966 0.966 0.991 0.991]; 

% stage5 = [0.000 0.000 0.000 0.003 0.020 0.052 0.113 0.167 0.207 0.340 0.474 

0.547 0.780 0.860 0.899 0.905 0.975 0.973]; 

% stage6 = [0.000 0.000 0.000 0.000 0.000 0.001 0.024 0.033 0.063 0.124 0.167 

0.233 0.482 0.539 0.672 0.779 0.940 0.972]; 

% 

% Obtaining Na+ fractional change in liquid concentration 

% This data of Na+ is then plotted to obtain measured states as indicated in the table 

of states_bar (see g1 m-file, measured data) 
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% stage1 = 1 - stage1; 

% stage2 = 1 - stage2; 

% stage3 = 1 - stage3; 

% stage4 = 1 - stage4; 

% stage5 = 1 - stage5; 

% stage6 = 1 - stage6; 

% 

%--------------------------------------------------------------------------------------------------- 

% 

  N = 6; 

  K = 18; 

  e0 = cputime; 

% 

   alpha00 = 0.0*[1.000 1.000 1.000 1.000 1.000 1.000]; 

  alpha00 = alpha00'*ones(1,K); 

  options = optimset('Display','iter','MaxIter',10000,'MaxFunEvals',100000) 

% 

% options = optimset('MaxFunEvals',1000);                      % option to display 

algorithm information 

  alpha01 = fsolve(@g1,alpha00,options);  

% 

%------------------------------------------------------------------------------------------------- 

e1 = cputime; 

etime = e1 - e0 

%------------------------------------------------------------------------------------------------- 

 k = 1:K; 

 figure(1) 

 plot(k,alpha01,':o','Linewidth',2.5,'MarkerSize',5) 

text('Position',[2.0 0.5],'String','\alpha_N_a_1','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[4.0 0.1],'String','\alpha_N_a_2','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[5.0 0.0]','String','\alpha_N_a_3','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[7.0 0.5],'String','\alpha_N_a_4','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[10.0 0.7],'String','\alpha_N_a_5','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 
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 text('Position',[16.0 1.0]','String','\alpha_N_a_6','FontName','Times New Roman', 

'Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 xlabel('Discrete time [k]','Fontsize',16) 

 ylabel('Liquid/resin separation factor [eq/l]','Fontsize',16) 

 title('Nonlinear dynamic state of the process','Fontsize',16) 

 grid on 

 hold off 

% 

%-------------------------------------------Program end-------------------------------------- 

 

%-------------------------------------------------------------------------------------------------- 

% Function for solving a nonlinear model using fsolve() function 

%  

% Dated: 10 August 2012 

% 

function falpha1 = g1(alpha01) 

        % 

        %--------------------------------------------------------------------------------------------- 

        % Initialization of mass balance equation parameters of the CCIX model based 

on UCT model data 

        % Initializing all function coeffients and variables using model data 

         % 

         N = 6;                         % number of stages of the cation loading column 

         h = 32.93;                   % resin holdups (units in litres) 

         H = 42.809;                % resin holdups (units in litres)   

         Fl = 2000/60;              % liquid flow rate (units in litres per min) 

         d = 2/3;                       % resin/liquid fractional balance (constant) 

         T = 1.2*18;                  % liquid upflow time (units in min) 

        % 

         FR = (h*d)/T;               % resin flow rate (units in litres per min) 

          conc_in = 0.436;        % sodium concentration at first stage of the column (eq/l) 

– process disturbance 

         % conc_in = 0.055;   

         % conc_in = 0.110; 

         % conc_in = 0.435; 

         % conc_in = 0.550; 

         % conc_in = 0.755; 

         % conc_in = 1.000; 
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        %---------------------------------------------------------------------------------------------------- 

        % Introducing measurement vector expanded for the full state trajectory, stage 

2 data has been corrected to fit the profile 

states_bar = [1.0000 1.0000 0.9960 0.9650 0.9180 0.8320 0.7530 0.690 0.5800... 

0.5100 0.43020 0.3960 0.31010 0.2690 0.20340 0.1940 0.1120 0.0500; 

% 

1.0000 0.8600 0.6860 0.4770 0.3440 0.2340 0.1580 0.1140 0.1000... 

0.0670 0.0420 0.0370 0.0180 0.0260 0.0090 0.0060 0.0070 0.0070; 

% 

1.0000 1.0000 0.9340 0.8160 0.7050 0.5460 0.3990 0.3100 0.2420... 

0.1960 0.1230 0.1190 0.0490 0.0350 0.0280 0.0190 0.0120 0.0100; 

% 

1.0000 1.0000 0.9960 0.9650 0.9180 0.8320 0.7230 0.6390 0.5600... 

0.4780 0.3020 0.2160 0.1010 0.0690 0.0340 0.0340 0.0090 0.0090; 

% 

1.0000 1.0000 1.0000 0.9970 0.9800 0.9480 0.8870 0.8330 0.7930... 

0.6600 0.5260 0.4530 0.2200 0.1400 0.1010 0.0950 0.0250 0.0270; 

% 

1.0000 1.0000 0.9960 0.9650 0.9180 0.8320 0.7230 0.6390 0.5600... 

0.4780 0.3020 0.2160 0.1010 0.0690 0.0340 0.0340 0.0090 0.0090]; 

% 

%---------------------------------------------------------------------------------------------------- 

        % Initialize disturbance and control vectors full system trajectories 

        % 

         K = 18; 

         u = FR*ones(1,K); 

         states_in = conc_in; 

         states = states_bar;                % declaring current state variables based on 

measured states 

        % 

        %----------------------------------------------------------------------------------------------- 

        % 

          dt = 2.7;                                % sampling period in time in (minutes) 

        % 

        for n = 1:N 

           for k = 1:K-1 

               % 
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               statesnk = states(n,k); 

               statesnk1 = states(n,k+1); 

               alpha_Na1nk = alpha01(n,k); 

               % 

               if n == N 

                  alpha01(n+1,k) = 0; 

                  states(n+1,k) = 0; 

              end 

              if n < N 

                  statesn1k = states(n+1,k); 

                  alpha_Na1n1k =  alpha01(n+1,k); 

              end    

              % 

              %calculate subfunctions f1, f2 & f3 

              % 

              num1 = dt*((alpha_Na1nk + (statesnk - 

statesnk*alpha_Na1nk))*(alpha_Na1nk + (statesnk - statesnk*alpha_Na1nk))); 

              den1 = H*(alpha_Na1nk + (statesnk - statesnk*alpha_Na1nk)) + 

h*alpha_Na1nk; 

              f1 = num1/den1; 

              % 

              num2 = dt* 1; 

              den2 = alpha_Na1nk + (statesnk - statesnk*alpha_Na1nk); 

              f2 = num2/den2; 

              % 

              if n == N 

                  f3 = 0; 

              else 

                  num3 = dt*1; 

                  den3 = alpha_Na1n1k + (statesn1k - statesn1k*alpha_Na1n1k); 

                  f3 = (num3/den3); 

               end 

              % 

              %------------------------------------------------------------------------------------------ 

              % 

               if n == 1 

                  falpha1nk = -statesnk1 + (statesnk + f1*Fl*states_in - f1*Fl*statesnk + 

f1*f3*FR*statesnk1 - f1*f2*FR*statesnk); 
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               else 

                   statesnm1k = states(n-1,k); 

                   falpha1nk = -statesnk1 + (statesnk + f1*Fl*statesnm1k - f1*Fl*statesnk + 

f1*f3*FR*statesnk1 - f1*f2*FR*statesnk); 

               end 

              % 

              falpha1(n,k) = falpha1nk; 

          end 

       end 

% 

%-------------------------------------------Function end-------------------------------------- 
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APPENDIX D: PROGRAMS FOR STATE ESTIMATION METHOD US ING 
DESIGN OF THE BILINEAR OBSERVER 

APPENDIX D.1:  Program for bilinear observer design 
 
%------------------------------------------------------------------------------------------------------ 

% The Program is used for determining the observer determinant as required for  

% determination of the observer matrix. 

% Proper selection of observer matrix allows error, e(t) ~ 0, as t approaches infinity 

% 

% Author: NM. Dube 

% Dated: 15 December 2011 

% Updated: 03 September 2016 

% 

%----------------------------------------------------------------------------------------------------- 

% Initialization of mass balance equations of the CCIX model 

% 

h = 32.93;            % resin hold ups (units in litres) 

H = 42.809;         % liquid holdups (units in litres) 

Fl = 2000;            % liquid flow rate (units in litres per hour) 

N = 6;                  % number of stages of the process 

d = 2/3;                % resin/liquid fractional balance (constant) 

T = 17/60;            % cycle period (units in hours) 

% 

u = h*d/T;             % resin flow rate (units in litres per hour) 

%u = 0.25;           % using normalized value of u; 

% 

a = [1.0 0.8 0.6 0.4 0.3 0.1]; 

b = [0.01 0.05 0.10 0.20 0.30 0.35]; 

% 

%-------------------------------------------------------------------------------------------------------- 

% Calculation of model parameters to use in the matrices above, li, mi and mij 

% 

for i = 1:N 

    l(i) = Fl/(H+a(i)*h); 

    mi(i) = a(i)/(H+a(i)*h); 

end 

 

for i = 1:N-1 

    k(i) = (b(i+1) - b(i))/(H+a(i)*h); 

    mij(i) = a(i+1)/(H+a(i)*h); 
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end 

    k(N) = -b(N)/(H+a(N)*h); 

% 

%------------------------------------------------------------------------------------------------------ 

%Formation of model matrices A, B, B1, C, W and  

% 

A(1,1) = -l(1); 

A(2,1) =  l(2); 

A(2,2) = -l(2); 

A(3,2) =  l(3); 

A(3,3) = -l(3); 

A(4,3) =  l(4); 

A(4,4) = -l(4); 

A(5,4) =  l(5); 

A(5,5) = -l(5); 

A(6,5) =  l(6); 

A(6,6) = -l(6); 

% 

B(1,1) = -mi(1); 

B(1,2) = mij(1); 

B(2,2) = -mi(2); 

B(2,3) = mij(2); 

B(3,3) = -mi(3); 

B(3,4) = mij(3); 

B(4,4) = -mi(4); 

B(4,5) = mij(4); 

B(5,5) = -mi(5); 

B(5,6) = mij(5); 

B(6,6) = -mi(6); 

% 

B1 = [k(1) k(2) k(3) k(4) k(5) k(6)]'; 

%B1 = [3.0 5.0 2.0 1.0 3.0 6.0]'; 

% 

W = [l(1) 0 0 0 0 0]'; 

% 

C = [0 0 0 0 0 1]; 

% 

%-------------------------------------------------------------------------------------------------- 
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% Initialization of determinant elements 

%A 

%B 

%B1 

% 

%--------------------------------------------------------------------------------------------------- 

% 

a11 = A(1,1); 

a21 = A(2,1); 

a22 = A(2,2); 

a32 = A(3,2); 

a33 = A(3,3); 

a43 = A(4,3); 

a44 = A(4,3); 

a54 = A(5,4); 

a55 = A(5,5); 

a65 = A(6,5); 

a66 = A(6,6); 

% 

b11 = B(1,1); 

b12 = B(1,2); 

b22 = B(2,2); 

b23 = B(2,3); 

b33 = B(3,3); 

b34 = B(3,4); 

b44 = B(4,4); 

b45 = B(4,5); 

b55 = B(5,5); 

b56 = B(5,6); 

b66 = B(6,6); 

% 

%------------------------------------------------------------------------------------------------- 

% Initializing all values of observer matrix elements to 1 to obtain characteristic 

equation solution. 

% 

l1 = sym('l1'); 

l2 = sym('l2'); 

l3 = sym('l3'); 
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l4 = sym('l4'); 

l5 = sym('l5'); 

l6 = sym('l6'); 

% 

%--------------------------------------------------------------------------------------------------- 

% Formation of the characteristic equation solution based on determinant of the 

observer state matrix Aobs 

% 

digits (6) 

% 

det6 = vpa(l1*a21*a32*a43*a54*a65); 

det6 = [0 0 0 0 0 0 det6]; 

det5 = [0 0 0 0 0 0 0]; 

det4 = [0 0 0 0 0 0 0]; 

det3 = [0 0 0 0 0 0 0]; 

% 

det2a = vpa(a21*a66 + a21*l6 - a21*u*b66 + a21*a55 - a21*u*b55 + a21*a44... 

            - a21*u*b44 + a21*a33 - a21*u*b33); 

% 

det2b = vpa(a21*a55*a66 + a21*a55*l6 - a21*a55*u*b66... 

                                               - a21*u*a66 + a21*u*b55*l6 + a21*u*b55*u*b66... 

                                               + a21*a65*l5 + a21*a65*u*b56... 

                                               + a21*a44*a66 + a21*a44*l6 - a21*a44*u*b66... 

                                               + a21*a44*a55 + a21*a44*u*b55... 

                                               - a21*u*b44*a55 + a21*u*b55 + a21*u*b45*a54... 

                                               + a21*a33*a66 + a21*a33*l6 - a21*a33*u*b66... 

                                               + a21*a33*a55 - a21*a33*u*b55... 

                                               + a21*a33*a44 - a21*a33*u*b44... 

                                               - a21*u*b33*a66 - a21*u*b33*l6 + a21*u*b33*u*b66... 

                                               - a21*u*b33*a55 + a21*u*b33*u*b55... 

                                               - a21*u*b33*a44 + a21*u*b33*u*b44 + a21*u*b34*a43); 

% 

det2c = vpa(a21*a44*a55*a66 + a21*a44*a55*l6 - a21*a44*a55*u*b66... 

                               - a21*a44*u*b55*a66 - a21*a44*u*b55*l6 + 

a21*a44*u*b55*u*b66... 

                               + a21*a44*a65*l5 + a21*a44*a65*u*b56... 

                               - a21*u*b44*a55*a66 - a21*u*b44*a55*l6 + 

a21*u*b44*a55*u*b66... 
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                               + a21*u*b44*u*b55*a66 + a21*u*b44*u*b55*l6 - 

a21*u*b44*u*b55*u*b66... 

                               - a21*u*b44*a65*l5 - a21*u*b44*a65*u*b56... 

                               + a21*u*b45*a54*a66 + a21*u*b45*a54*l6 - 

a21*u*b45*a54*u*b66... 

                               + a21*l4*a54*a65... 

                               + a21*a33*a55*a66 + a21*a33*a55*l6 - a21*a33*a55*u*b66... 

                               - a21*a33*u*b55*a66 - a21*a33*u*b55*l6 + 

a21*a33*u*b55*u*b66... 

                               + a21*a33*a65 + a21*a33*a65*u*b56... 

                               + a21*a33*a44*a66 + a21*a33*a44*l6 - a21*a33*a44*u*b66... 

                               + a21*a33*a44*a55 - a21*a33*a44*u*b55... 

                               - a21*a33*u*b44*a66 - a21*a33*u*b44*l6 + 

a21*a33*u*b44*u*b66... 

                               - a21*a33*u*b44*a55 + a21*a33*u*b44*u*b55 + 

a21*a33*u*b45*a54... 

                               - a21*u*b33*a44*a66 - a21*u*b33*a55*l6 + 

a21*u*b33*a55*u*b66... 

                               + a21*u*b33*a65*l5 - a21*u*b33*u*b56... 

                               - a21*u*b33*u*a44*a66 - a21*u*b33*a44*l6 + 

a21*u*b33*a44*u*b66... 

                               - a21*u*b33*a44*a55 + a21*u*a44*u*b55... 

                               + a21*u*b33*u*b44*b44*a66 + a21*u*b33*u*b44*l6 - 

a21*u*b33*u*b44*u*b66... 

                               + a21*u*b33*u*b44*a55 - a21*u*b33*u*b44*b55 - 

a21*u*b33*u*b45*a54... 

                               + a21*u*b34*a43*a66 + a21*u*b34*a43*l6 - 

a21*u*b34*a43*u*b66... 

                               + a21*u*b34*a43*a55 - a21*u*b34*a43*u*b55); 

% 

det2d = vpa(a21*a33*a44*a55*a66 + a21*a33*a44*a55*l6 - a21*a33*a44*u*b66... 

                   - a21*a33*a44*u*b55*a66 - a21*a33*a44*u*b55*l6 + 

a21*a33*a44*u*b55*u*b66... 

                   + a21*a33*a44*a65*l5 - a21*a33*a44*u*b56... 

                   - a21*a33*u*b44*a55*a66 - a21*a33*u*b44*a55*l6 + 

a21*a33*u*b44*a55*u*b66... 

                   + a21*a33*u*b44*u*b55*a66 + a21*a33*u*b44*u*b55*l6 - 

a21*a33*u*b44*u*b55*u*b66... 
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                   - a21*a33*u*b44*a65*l5 - a21*a33*u*b44*a65*u*b56... 

                   + a21*a33*u*b45*a54*a66 + a21*a33*u*b45*a54*l6 - 

a21*a33*u*b45*a54*u*b66... 

                   + a21*a33*l4*a54*a65... 

                   - a21*u*b33*a44*a55*a66 - a21*u*b33*a44*a55*l6 + 

a21*u*b33*a44*a55*u*b66... 

                   + a21*u*b33*a44*u*b55*a66 + a21*u*b33*a44*u*b55*l6 - 

a21*u*b33*a44*u*b55*u*b66... 

                   - a21*u*b33*a44*a65*l5 - a21*u*b33*a44*a65*u*b66... 

                   + a21*u*b33*u*b44*a55*a66 - a21*u*b33*u*b44*a55*l6 - 

a21*u*b33*u*b44*a55*u*b66... 

                   - a21*u*b33*u*b44*u*b55*a66 - a21*u*b33*b44*u*b55*l6 + 

a21*u*b33*u*b44*u*b55*u*b66... 

                   + a21*u*b33*u*b44*a65*l5 + a21*u*b33*u*b44*a65*u*b56... 

                   - a21*u*b33*u*b45*a54*a66 - a21*u*b33*b45*a54*l6 + 

a21*u*b45*a54*u*b66... 

                   - a21*u*b33*l4*a54*a65... 

                   + a21*u*b34*a43*a55*a66 + a21*u*b34*a43*a55*l6 - 

a21*u*b34*a43*a55*u*b66... 

                   - a21*u*b34*a43*u*b55*a66 - a21*u*b34*a43*u*b55*l6 + 

a21*u*b34*a43*u*b55*u*b66... 

                   + a21*u*b34*a43*a65*l5 + a21*u*b34*a43*a65*u*b56 + 

a21*l3*a43*a54*a65); 

det2 = u*b12*[0 0 0 det2a det2b det2c det2d]; 

% 

det1b = vpa(a66 + l6 - u*b66 + a55 - u*b55 + a44 - u*b44 + a33 - u*b33 + a22 + 

u*b22 + a11 - u*b11); 

% 

det1c = vpa(a55*a66 + a55*l6 - a55*u*b66... 

                              - u*b55*a66 - u*b55*l6 + u*b55*u*b66... 

                              + a65*l5 + a65*u*b56... 

                              + a44*a66 + a44*l6 - a44*u*b66... 

                              + a44*a55 + a44*u*b55... 

                              - u*b44*a66 - u*b44*l6 + u*b44*u*b66... 

                              - u*b44*a55 + u*b44*u*b55 + u*b45*a54... 

                              + a33*a66 + a33*l6 - a33*u*b66... 

                              + a33*a55 - a33*u*b55 + a33*a44 - a33*u*b44... 

                              - u*b33*a66 - u*b33*l6 + u*b33*u*b66... 



 

543 

                              - u*b33*a55 + u*b33*u*b55 - u*b33*a44 + u*b33*u*b44... 

                              + u*b34*a43... 

                              + a22*a66 + a22*l6 + a22*u*b66... 

                              + a22*a55 - a22*u*b55 + a22*u*a44 - a22*u*b44... 

                              + a22*a33 - a22*u*b33... 

                              - u*b22*a66 - u*b22*l6 + u*b22*u*b66... 

                              - u*b22*a55 + u*b22*u*b55 - u*b22*a44 + u*b22*u*b44... 

                              - u*b22*a33 + u*b22*u*b33... 

                              + u*b23*a32... 

                              + a11*a66 + a11*l6 - a11*u*b66... 

                              + a11*a55 - a11*u*b55 + a11*a44 - a11*u*b44... 

                              + a11*a33 - a11*u*b33 + a11*a22 - a11*u*b22... 

                              - u*b11*a66 - u*b11*l6 + u*b11*u*b66... 

                              - u*b11*a55 + u*b11*u*b55 - u*b11*a44 + u*b11*u*b44... 

                              - u*b11*a33 + u*b11*u*b33 - u*b11*a22 + u*b11*u*b22); 

 % 

 det1d = vpa(a44*a55*a66 + a44*a55*l6 - a44*a55*u*b66... 

              - a44*u*b55*a66 - a44*u*b55*l6 + a44*u*b55*u*b66... 

              + a44*a65*l5 + a44*a65*u*b56... 

              - u*b44*a55*a66 - u*b44*a55*l6 + u*b44*u*a55*u*b66... 

              + u*b44*u*b55*a66 + u*b44*u*b55*l6 - u*b44*u*b55*u*b66... 

              - u*b44*a65*l5 - u*b44*a65*u*b56... 

              + u*b45*a54*a66 + u*b45*a54*l6 - u*b45*a54*u*b66... 

              + l4*a54*a65... 

              + a33*a55*a66 + a33*a55*l6 - a33*a55*u*b66... 

              - a33*u*b55*a66 - a33*u*b55*l6 + a33*u*b55*u*b66... 

              + a33*a65*l5 + a33*a65*u*b56... 

              + a33*a44*a66 + a33*a44*l6 - a33*a44*u*b66... 

              + a33*a44*a55 - a33*a44*u*b55... 

              - a33*u*b44*a66 - a33*u*b44*l6 - a33*u*b44*u*b66... 

              - a33*u*b44*a55 + a33*u*b44*u*b55 + a33*u*b45*a54... 

              - u*b33*a55*a66 - u*b33*a55*l6 + u*b33*a55*u*b66... 

              + u*b33*u*b55*a66 + u*b33*u*b55*l6 - u*b33*u*b55*u*b66... 

              - u*b33*a65*l5 - u*b33*a65*u*b56... 

              - u*b33*a44*a66 - u*b33*a44*l6 + u*b33*a44*u*b66... 

              - u*b33*a44*a55 + u*b33*a44*u*b55... 

              + u*b33*u*b44*a44 + u*b33*u*b44*l6 - u*b33*u*b44*u*b66... 

              + u*b33*u*b44*a55 - u*b33*u*b44*u*b55... 
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              - u*b33*u*b45*a54... 

              + u*b34*a43*a66 + u*b34*a43*l6 - u*b34*a43*u*b66... 

              + u*b34*a43*a55 - u*b34*a43*u*b55... 

              + a22*a55*a66 + a22*a55*l6 - a22*a55*u*b66... 

              - a22*u*b55*a66 - a22*u*b55*l6 + a22*u*b55*u*b66... 

              + a22*a65*l5 + a22*a65*u*b56... 

              + a22*a44*a66 + a22*a44*l6 - a22*a44*u*b66... 

              + a22*a44*a55 - a22*a44*u*b55... 

              - a22*u*b44*a66 - a22*u*b44*l6 + a22*u*b44*u*b66... 

              - a22*u*b44*a55 + a22*u*b44*u*b55... 

              + a22*u*b45*a54... 

              + a22*a33*a66 + a22*a33*l6 - a22*a33*u*b66... 

              + a22*a33*a55 - a22*a33*u*b55 + a22*a33*a44 - a22*a33*u*b44... 

              - a22*u*b33*a66 - a22*u*b33*l6 + a22*u*b33*u*b66... 

              - a22*u*b33*a55 + a22*u*b33*u*b55 - a22*u*b33*a44 + a22*u*b33*u*b44... 

              + a22*u*b34*a43... 

              - u*b22*a55*a66 - u*b22*a55*l6 + u*b22*a55*u*b66... 

              + u*b22*u*b55*a66 + u*b22*u*b55*l6 - u*b22*u*b55*u*b66... 

              - u*b22*a65*l5 - u*b22*a65*u*b56... 

              - u*b22*a44*a66 - u*b22*a44*l6 + u*b22*a44*u*b66... 

              - u*b22*a44*a55 + u*b22*a44*u*b55... 

              + u*b22*u*b44*a66 + u*b22*u*b44*l6 - u*b22*u*b44*u*b66... 

              + u*b22*u*b44*a55 - u*b22*u*b44*u*b55... 

              - u*b22*u*b45*u*b55... 

              - u*b22*a33*a66 - u*b22*a33*l6 + u*b22*a33*u*b66... 

              - u*b22*a33*a55 + u*b22*a33*u*b55 - u*b22*a33*a44 + u*b22*a33*u*b44... 

              + u*b22*u*b33*a66 + u*b22*u*b33*l6 - u*b22*u*b33*u*b66... 

              + u*b22*u*b33*a55 - u*b22*u*b33*u*b55 + u*b22*u*b33*a44 - 

u*b22*u*b33*u*b44... 

              - u*b22*u*b34*a43... 

              + u*b23*a32*a66 + u*b23*a32*l6 - u*b23*a32*u*b66... 

              + u*b23*a32*a55 - u*b23*a32*u*b55 + u*b23*a32*a44 - u*b23*a32*u*b44... 

              + a11*a55*a66 + a11*a55*l6 - a11*a55*u*b66... 

              - a11*u*b55*a66 - a11*u*b55*l6 + a11*u*b55*u*b66... 

              + a11*a65*l5 + a11*a65*u*b56... 

              + a11*a44*a66 + a11*a44*l6 - a11*a44*u*b66... 

              + a11*a44*a55 - a11*a44*u*b55... 

              - a11*u*b44*a66 - a11*u*b44*l6 + a11*u*b44*u*b66... 
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              - a11*u*b44*a55 + a11*u*b44*u*b55... 

              + a11*u*b45*a54... 

              + a11*a33*a66 + a11*a33*l6 - a11*a33*u*b66... 

              + a11*a33*a55 - a11*a33*u*b55 + a11*a33*a44 - a11*a33*u*b44... 

              - a11*u*b33*a66 - a11*u*b33*l6 + a11*u*b33*u*b66... 

              - a11*u*b33*a55 + a11*u*b33*u*b55 - a11*u*b33*a44 + a11*u*b33*u*b44... 

              + a11*u*b34*a43... 

              + a11*a22*a66 + a11*a22*l6 - a11*a22*u*b66... 

              + a11*a22*a55 - a11*a22*u*b55 + a11*a22*a44 - a11*a22*u*b44... 

              + a11*a22*a33 - a11*a22*u*b33... 

              - a11*u*b22*a66 - a11*u*b22*l6 + a11*u*b22*u*b66... 

              - a11*u*b22*a55 + a11*u*b22*u*b55 - a11*u*b22*a44 + a11*u*b22*u*b44... 

              - a11*u*b22*a33 + a11*u*b22*u*b33... 

              + a11*u*b23*a32... 

              - u*b11*a55*a66 - u*b11*a55*l6 + u*b11*a55*u*b66... 

              + u*b11*u*b55*a66 + u*b11*u*b55*l6 - u*b11*u*b55*u*b66... 

              - u*b11*a65*l5 - u*b11*a65*u*b56... 

              - u*b11*a44*a66 - u*b11*a44*l6 + u*b11*u*a44*u*b66... 

              - u*b11*a44*a55 + u*b11*a44*u*b55... 

              + u*b11*u*b44*a66 + u*b11*u*b44*l6 - u*b11*u*b44*u*b66... 

              + u*b11*u*b44*a55 - u*b11*u*b44*u*b55... 

              - u*b11*u*b45*a54... 

              - u*b11*a33*a66 - u*b11*a33*l6 + u*b11*a33*u*b66... 

              - u*b11*a33*a55 + u*b11*a33*u*b55 - u*b11*a33*a44 + u*b11*a33*u*b44... 

              - u*b11*u*b34*a43... 

              - u*b11*a22*a66 - u*b11*a22*l6 + u*b11*a22*u*b66... 

              - u*b11*a22*a55 + u*b11*a22*u*b55 - u*b11*a22*a44 + u*b11*a22*u*b44... 

              + u*b11*a22*a33 + u*b11*a22*u*b33... 

              + u*b11*u*b22*a66 + u*b11*u*b22*l6 - u*b11*u*b22*u*b66... 

              + u*b11*u*b22*a55 - u*b11*u*b22*u*b55 + u*b11*u*b22*a44 - 

u*b11*u*b22*u*b44... 

              + u*b11*u*b22*a33 - u*b11*u*b22*u*b33 - u*b11*u*b23*a32); 

% 

det1e = vpa(a33*a44*a55*a66 + a33*a44*a55*l6 - a33*a44*a55*u*b66... 

                                 - a33*a44*u*b55*a66 - a33*a44*u*b55*l6 + 

a33*a44*u*b55*u*b66... 

                                 + a33*a44*a65*l5 + a33*a44*a65*u*b56... 
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                                 - a33*u*b44*a55*a66 - a33*u*b44*a55*l6 + 

a33*u*b44*a55*u*b66... 

                                 + a33*u*b44*u*b55*a66 + a33*u*b44*u*b55*l6 - 

a33*u*b44*u*b55*u*b66... 

                                 - a33*u*b44*a65*l5 - a33*u*b44*a65*u*b56... 

                                 + a33*u*b45*a54*a66 + a33*u*b45*a54*l6 - 

a33*u*b45*a54*u*b66... 

                                 + a33*l4*a54*a65... 

                                 - u*b33*a44*a55*a66 - u*b33*a44*a55*l6 + 

u*b33*a44*a55*u*b66... 

                                 + u*b33*a44*u*b55*a66 + u*b33*a44*u*b55*l6 - 

u*b33*a44*u*b55*u*b66... 

                                 - u*b33*a44*a65*l5 - u*b33*a44*a65*u*b56... 

                                 + u*b33*u*b44*a55*a66 + u*b33*u*b44*a55*l6 - 

u*b33*u*b44*a55*u*b66... 

                                 - u*b33*u*b44*u*b55*a66 - u*b33*u*b44*u*b55*l6 + 

u*b33*u*b44*u*b55*u*b66... 

                                 + u*b33*u*b44*a65*l5 + u*b33*u*b44*a65*u*b56... 

                                 - u*b33*u*b45*a54*a66 - u*b33*u*b45*a54*l6 + 

u*b33*u*b45*a54*u*b66... 

                                 - u*b33*l4*a54*a65... 

                                 + u*b34*a43*a55*a66 + u*b34*a43*a55*l6 - 

u*b34*a43*a55*u*b66... 

                                 - u*b34*a43*u*b55*a66 - u*b34*a43*u*b55*l6 + 

u*b34*a43*u*b55*u*b66... 

                                 + u*b34*a43*a65*l5 + u*b34*a43*a65*u*b56... 

                                 + l3*a43*a54*a65... 

                                 + a22*a44*a55*a66 + a22*a44*a55*l6 - a22*a44*a55*u*b66... 

                                 - a22*a44*u*b55*a66 - a22*a44*u*b55*l6 + 

a22*a44*u*b55*u*b66... 

                                 + a22*a44*u*a65*l5 + a22*a44*a65*u*b56... 

                                 - a22*u*b44*a55*a66 - a22*u*b44*a55*l6 + 

a22*u*b44*a55*u*b66... 

                                 + a22*u*b44*u*b55*a66 + a22*u*b44*u*b55*l6 - 

a22*u*b44*u*b55*u*b66... 

                                 - a22*u*b44*a65*l5 - a22*u*b44*a65*u*b56... 

                                 + a22*u*b45*a54*a66 + a22*u*b45*a54*l6 - 

a22*u*b45*a54*u*b66... 
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                                 + a22*l6*a54*a65... 

                                 + a22*a33*a55*a66 + a22*a33*a55*l6 - a22*a33*a55*u*b66... 

                                 - a22*a33*u*b55*a66 - a22*a33*u*b55*l6 + 

a22*a33*u*b55*u*b66... 

                                 + a22*a33*a65*l5 + a22*a33*a65*u*b56... 

                                 + a22*a33*a44*a55 - a22*a33*a44*u*b55... 

                                 - a22*a33*u*b44*a66 - a22*a33*u*b44*l6 + 

a22*a33*u*b44*u*b66... 

                                 - a22*a33*u*b44*a55 + a22*a33*u*b44*u*b55... 

                                 + a22*a33*u*b45*a54... 

                                 - a22*u*b33*a55*a66 - a22*u*b33*a55*l6 + 

a22*u*b33*a55*u*b66... 

                                 + a22*u*b33*u*b55*a66 + a22*u*b33*u*b55*l6 - 

a22*u*b33*u*b55*u*b66... 

                                 - a22*u*b33*a65*l5 - a22*u*b33*a65*u*b56... 

                                 - a22*u*b33*a44*a66 - a22*u*b33*a44*l6 + 

a22*u*b33*a44*u*b66... 

                                 - a22*u*b33*a44*a55 + a22*u*b33*a44*u*b55... 

                                 + a22*u*b33*u*b44*a66 + a22*u*b33*u*b44*l6 - 

a22*u*b33*u*b44*u*b66... 

                                 + a22*u*b33*u*b44*a55 - a22*u*b33*u*b44*u*b55... 

                                 - a22*u*b33*u*b45*a54... 

                                 + a22*u*b34*a43*a66 + a22*u*b34*a43*l6 - 

a22*u*b34*a43*u*b66... 

                                 + a22*u*b34*a43*a55 - a22*u*b34*a43*u*b55... 

                                 - u*b22*a44*a55*a66 - u*b22*a44*a55*l6 + 

u*b22*a44*a55*u*b66... 

                                 + u*b22*a44*u*b55*a66 - u*b22*a44*u*b55*l6 - 

u*b22*a44*u*b55*u*b66... 

                                 - u*b22*a44*a65*l5 - u*b22*a44*a65*u*b56... 

                                 + u*b22*u*b44*a55*a66 + u*b22*u*b44*a55*l6 - 

u*b22*b44*a55*u*b66... 

                                 - u*b22*u*b44*u*b55*a66 - u*b22*u*b44*u*b55*l6 + 

u*b22*u*b44*u*b55*u*b66... 

                                 + u*b22*u*b44*a65*l5 + u*b22*u*b44*a65*u*b56... 

                                 - u*b22*u*b45*a54*a66 - u*b22*u*b45*a54*l6 + 

u*b22*u*b45*a54*u*b66... 

                                 - u*b22*l4*a54*a65... 
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                                 - u*b22*a33*a55*a66 - u*b22*a33*a55*l6 + 

u*b22*a33*a55*u*b66... 

                                 + u*b22*a33*u*b55*a66 + u*b22*a33*u*b55*l6 - 

u*b22*a33*u*b55*u*b66... 

                                 - u*b22*a33*a65*l5 - u*b22*a33*a65*u*b56... 

                                 - u*b22*a33*a44*a66 - u*b22*a33*a44*l6 + 

u*b22*a33*a44*u*b66... 

                                 - u*b22*a33*a44*a55 + u*b22*a33*a44*u*b55... 

                                 + u*b22*a33*u*b44*a66 + u*b22*a33*u*b44*l6 - 

u*b22*a33*u*b44*u*b66... 

                                 + u*b22*a33*u*b44*a55 - u*b22*a33*u*b44*u*b55... 

                                 - u*b22*a33*u*b45*a54... 

                                 + u*b22*u*b33*a55*a66 + u*b22*u*b33*a55*l6 - 

u*b22*b33*a55*u*b66... 

                                 - u*b22*u*b33*u*b55*a66 - u*b22*u*b33*u*b55*l6 + 

u*b22*u*b33*u*b55*u*b66... 

                                 + u*b22*u*b33*a65*l5 + u*b22*u*b33*a65*u*b56... 

                                 + u*b22*u*b33*a44*a66 + u*b22*u*b33*a44*l6 - 

u*b22*u*b33*a44*u*b66... 

                                 + u*b22*u*b33*a44*a55 - u*b22*u*b33*a44*u*b55... 

                                 - u*b22*a33*u*b44*a66 + u*b22*a33*u*b44*l6 - 

u*b22*a33*u*b44*u*b66... 

                                 + u*b22*a33*u*b44*a55 - u*b22*a33*u*b44*u*b55... 

                                 - u*b22*a33*u*b45*a54... 

                                 + u*b22*u*b33*a55*a66 + u*b22*u*b33*a55*l6 - 

u*b22*u*b33*a55*u*b66... 

                                 - u*b22*u*b33*u*b55*a66 - u*b22*u*b33*u*b55*l6 + 

u*b22*u*b33*u*b55*u*b66... 

                                 + u*b22*u*b33*a65*l5 + u*b22*u*b33*a65*u*b56... 

                                 + u*b22*u*b33*a44*a66 + u*b22*u*b33*a44*l6 - 

u*b22*u*b33*a44*u*b66... 

                                 + u*b22*u*b33*a44*a55 - u*b22*u*b33*a44*u*b55... 

                                 - u*b22*u*b33*u*b44*a66 - u*b22*u*b33*u*b44*l6 + 

u*b22*u*b33*u*b44*u*b66... 

                                 + u*b22*u*b33*u*b44*a55 - u*b22*u*b33*u*b44*u*b55... 

                                 + u*b22*u*b33*u*b45*a54... 

                                 - u*b22*u*b34*a43*a66 - u*b22*u*b34*a43*l6 + 

u*b22*u*b34*a43*u*b66... 
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                                 - u*b22*u*b34*a43*a55 + u*b22*u*b34*a43*u*b55... 

                                 + u*b23*a32*a55*a66 + u*b23*a32*a55*l6 - 

u*b23*a32*a55*u*b66... 

                                 - u*b23*a32*u*b55*a66 - u*b23*a32*u*b55*l6 + 

u*b23*a32*u*b55*u*b66... 

                                 + u*b23*a32*a65*l5 + u*b23*a32*a65*u*b56... 

                                 + u*b23*a32*a44*a66 + u*b23*a32*a44*l6 - 

u*b23*a32*a44*u*b66... 

                                 + u*b23*a32*a44*a55 - u*b23*a32*a44*u*b55... 

                                 - u*b23*a32*u*b44*a66 - u*b23*a32*u*b44*l6 + 

u*b23*a32*u*b44*u*b66... 

                                 + u*b23*a32*u*b44*a55 - u*b23*a32*u*b44*u*b55... 

                                 + u*b23*a32*u*b45*a54... 

                                 + a11*a44*a55*a66 + a11*a44*a55*l6 - a11*a44*a55*u*b66... 

                                 - a11*a44*u*b55*a66 - a11*a44*u*b55*l6 + 

a11*a44*u*b55*u*b66... 

                                 + a11*a44*a65*l5 + a11*a44*a65*u*b56... 

                                 + a11*u*b44*a55*a66 + a11*u*b44*a55*l6 - 

a11*u*b44*a55*u*b66... 

                                 + a11*u*b44*u*b55*a66 + a11*u*b44*u*b55*l6 - 

a11*u*b44*u*b55*u*b66... 

                                 - a11*u*b44*a65*l5 - a11*u*b44*a65*u*b56... 

                                 + a11*u*b45*a54*a66 + a11*u*b45*a54*l6 - 

a11*u*b45*a54*u*b66... 

                                 + a11*l4*a54*a65... 

                                 + a11*a33*a55*a66 + a11*a33*a55*l6 - a11*a33*a55*u*b66... 

                                 - a11*a33*u*b55*a66 - a11*a33*u*b55*l6 + 

a11*a33*u*b55*u*b66... 

                                 + a11*a33*a65*l5 + a11*a33*a65*u*b56... 

                                 + a11*a33*a44*a66 + a11*a33*a44*l6 - a11*a33*a44*u*b66... 

                                 + a11*a33*a44*a55 - a11*a33*a44*u*b55... 

                                 - a11*a33*u*b44*a66 - a11*a33*u*b44*l6 + 

a11*a33*u*b44*u*b66... 

                                 - a11*a33*u*b44*a55 + a11*a33*u*b44*u*b55... 

                                 + a11*a33*u*b45*a54... 

                                 - a11*u*b33*a55*a66 - a11*u*b33*a55*l6 + 

a11*u*b33*a55*u*b66... 
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                                 + a11*u*b33*u*b55*a66 + a11*u*b33*u*b55*l6 - 

a11*u*b33*u*b55*u*b66... 

                                 - a11*u*b33*a65*l5 - a11*u*b33*a65*u*b56... 

                                 - a11*u*b33*a44*a66 - a11*u*b33*a44*l6 + 

a11*u*b33*a44*u*b66... 

                                 - a11*u*b33*a44*a55 + a11*u*b33*a44*u*b55... 

                                 + a11*u*b33*u*b44*a66 + a11*u*b33*u*b44*l6 - 

a11*u*b33*u*b44... 

                                 + a11*u*b33*u*b44*a55 - a11*u*b33*u*b44*u*b55... 

                                 - a11*u*b33*u*b45*a54... 

                                 + a11*u*b34*a43*a66 + a11*u*b34*a43*l6 - 

a11*u*b34*a43*u*b66... 

                                 + a11*u*b34*a43*a55 - a11*u*b34*a43*u*b55... 

                                 + a11*a22*a55*a66 + a11*a22*a55*l6 - a11*a22*a55*u*b66... 

                                 - a11*a22*u*b55*a66 - a11*a22*u*b55*l6 + 

a11*a22*u*b55*u*b66... 

                                 + a11*a22*a65*l5 + a11*a22*a65*u*b56... 

                                 + a11*a22*a44*a66 + a11*a22*a44*l6 - a11*a22*a44*u*b66... 

                                 + a11*a22*a44*a55 - a11*a22*a44*u*b55... 

                                 - a11*a22*u*b44*a66 - a11*a22*u*b44*l6 + 

a11*a22*u*b44*u*b66... 

                                 + a11*a22*a33*a55 - a11*a22*a33*u*b55... 

                                 + a11*a22*a33*a44 - a11*a22*a33*u*b44... 

                                 - a11*a22*u*b33*a66 - a11*a22*u*b33*l6 + 

a11*a22*u*b33*u*b66... 

                                 - a11*a22*u*b33*a55 + a11*a22*u*b33*u*b55... 

                                 - a11*a22*u*b33*a44 + a11*a22*u*b33*u*b44... 

                                 + a11*a22*u*b34*a43... 

                                 - a11*u*b22*a55*a66 - a11*u*b22*a55*l6 + 

a11*u*b22*a55*u*b66... 

                                 + a11*u*b22*u*b55*a66 + a11*u*b22*u*b55*l6 - 

a11*u*b22*u*b55*u*b66... 

                                 - a11*u*b22*a65*l5 - a11*u*b22*a65*u*b56... 

                                 - a11*u*b22*a44*a66 - a11*u*b22*a44*l6 + 

a11*u*b22*a44*u*b66... 

                                 - a11*u*b22*a44*a55 + a11*u*b22*a44*u*b55... 

                                 + a11*u*b22*u*b44*a66 + a11*u*b22*u*b44*l6 - 

a11*u*b22*u*b44*u*b66... 
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                                 + a11*u*b22*u*b44*a55 - a11*u*b22*u*b55... 

                                 - a11*u*b22*u*b45*a54... 

                                 - a11*u*b22*a33*a66 - a11*u*b22*a33*l6 + 

a11*u*b22*a33*u*b66... 

                                 - a11*u*b22*a33*a55 + a11*u*b22*a33*u*b55... 

                                 - a11*b22*a33*a44 + a11*u*b22*a33*u*b44... 

                                 + a11*u*b22*u*b33*a66 + a11*u*b22*u*b33*l6 - 

a11*u*b22*u*b33*u*b66... 

                                 + a11*u*b22*u*b33*a55 - a11*u*b22*u*b33*u*b55... 

                                 + a11*u*b22*u*b33*a44 - a11*u*b22*u*b33*u*b44... 

                                 - a11*u*b22*u*b34*a43... 

                                 + a11*u*b23*a32*a66 + a11*u*b23*a32*l6 - 

a11*u*b23*a32*u*b66... 

                                 + a11*u*b23*a32*a66*a55 - a11*u*b23*a32*u*b55... 

                                 + a11*u*b23*a32*a44 - a11*u*b23*a32*u*b44... 

                                 - u*b11*a44*a55*a66 - u*b11*a44*a55*l6 + 

u*b11*a44*a55*u*b66... 

                                 + u*b11*a44*u*b55*a66 + u*b11*a44*u*b55*l6 - 

u*b11*a44*u*b55*u*b66... 

                                 - u*b11*a44*a65*l5 - u*b11*a44*a65*u*b56... 

                                 + u*b11*u*b44*a55*a66 + u*b11*u*b44*a55*l6 - 

u*b11*u*b44*a55*u*b66... 

                                 - u*b11*u*b44*u*b55*a66 - u*b11*u*b44*u*b55*l6 + 

u*b11*u*b44*u*b55*u*b66... 

                                 + u*b11*u*b44*a65*l5 + u*b11*u*b44*a65*u*b56... 

                                 - u*b11*u*b45*a54*a66 - u*b11*u*b45*a54*l6 + 

u*b11*u*b45*a54*u*b66... 

                                 - u*b11*l4*a54*a65... 

                                 - u*b11*a33*a55*a66 - u*b11*a33*a55*l6 + 

u*b11*a33*a55*u*b66... 

                                 + u*b11*a33*u*b55*a66 + u*b11*a33*u*b55*l6 - 

u*b11*a33*u*b55*u*b66... 

                                 - u*b11*a33*a65*l5 - u*b11*a33*a65*u*b56... 

                                 - u*b11*a33*a44*a66 - u*b11*a33*a44*l6 + 

u*b11*a33*a44*u*b66... 

                                 - u*b11*a33*a44*a55 + u*b11*a33*a44*u*b55... 

                                 + u*b11*a33*u*b44*a66 + u*b11*a33*u*b44*l6 - 

u*b11*a33*u*b44*u*b66... 
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                                 - u*b11*a33*u*b44*a55 - u*b11*a33*u*b44*u*b55... 

                                 + u*b11*a33*u*b45*a54... 

                                 - u*b11*u*b33*a55*a66 + u*b11*u*b33*a55*l6 - 

u*b11*u*b33*a55*u*b66... 

                                 - u*b11*u*b33*u*b55*a66 - u*b11*u*b33*u*b55*l6 + 

u*b11*u*b33*u*b55*u*b66... 

                                 + u*b11*u*b33*a65*l5 + u*b11*u*b33*a65*u*b56... 

                                 + u*b11*u*b33*a44*a66 + u*b11*u*b33*a44*l6 - 

u*b11*u*b33*a44*u*b66... 

                                 + u*b11*u*b33*a44*a55 - u*b11*u*b33*a44*u*b55... 

                                 - u*b11*u*b33*u*b44*a66 - u*b11*u*b33*u*b44*l6 + 

u*b11*u*b33*u*b44*u*b66... 

                                 - u*b11*u*b33*u*b44*a55 + u*b11*u*b33*u*b44*u*b55... 

                                 + u*b11*u*b33*u*b45*a54... 

                                 + u*b11*u*b34*a43*a66 - u*b11*u*b34*a43*l6 + 

u*b11*u*b34*a43*u*b66... 

                                 - u*b11*u*b34*a43*a55 + u*b11*u*b34*a43*u*b55... 

                                 - u*b11*a22*a55*a66 - u*b11*a22*a55*l6 + 

u*b11*a22*a55*u*b66... 

                                 + u*b11*a22*u*b55*a66 - u*b11*a22*u*b55*l6 - 

u*b11*a22*u*b55*u*b66... 

                                 - u*b11*a22*a65*l5 - u*b11*a22*a65*u*b56... 

                                 - u*b11*a22*a44*a66 - u*b11*a22*a44*l6 + 

u*b11*a22*a44*u*b66... 

                                 - u*b11*a22*a44*a55 + u*b11*a22*a44*u*b55... 

                                 + u*b11*a22*u*b44*a66 + u*b11*a22*u*b44*l6 - 

u*b11*a22*a44*u*b66... 

                                 + u*b11*a22*u*b44*a55 - u*b11*a22*u*b44*u*b55... 

                                 - u*b11*a22*u*b45*a54... 

                                 - u*b11*a22*a33*a66 - u*b11*a22*a33*l6 + 

u*b11*a22*a33*u*b66... 

                                 - u*b11*a22*a33*a55 + u*b11*a22*a33*u*b55... 

                                 - u*b11*a22*a33*a44 + u*b11*a22*a33*u*b44... 

                                 + u*b11*a22*u*b33*a66 + u*b11*a22*u*b33*l6 - 

u*b11*a22*u*b33*u*b66... 

                                 + u*b11*a22*u*b33*a55 - u*b11*a22*u*b33*u*b55... 

                                 + u*b11*a22*u*b33*a44 - u*b11*a22*u*b33*u*b44... 

                                 - u*b11*a22*u*b34*a43... 
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                                 + u*b11*u*b22*a55*a66 + u*b11*u*b22*a55*l6 - 

u*b11*u*b22*a55*u*b66... 

                                 - u*b11*u*b22*u*b55*a66 - u*b11*u*b22*u*b55*l6 + 

u*b11*u*b22*u*b55*u*b66... 

                                 + u*b11*u*b22*a65*l5 + u*b11*u*b22*a65*u*b56... 

                                 + u*b11*u*b22*a44*a66 + u*b11*u*b22*a44*l6 - 

u*b11*u*b22*a44*u*b66... 

                                 + u*b11*u*b22*a44*a55 - u*b11*u*b22*a44*u*b55... 

                                 - u*b11*u*b22*u*b44*a66 - u*b11*u*b22*u*b44*l6 + 

u*b11*u*b22*u*b44*u*b66... 

                                 - u*b11*u*b22*u*b44*a55 + u*b11*u*b22*u*b44*u*b55... 

                                 + u*b11*u*b22*u*b45*a54... 

                                 + u*b11*u*b22*a33*a66 + u*b11*u*b22*a33*l6 - 

u*b11*u*b22*a33*u*b66... 

                                 + u*b11*u*b22*a33*a55 - u*b11*u*b22*a33*u*b55... 

                                 + u*b11*u*b22*a33*a44 - u*b11*u*b22*a33*u*b44... 

                                 - u*b11*u*b22*u*b33*a66 - u*b11*b22*u*b33*l6 + 

u*b11*u*b22*u*b33*u*b66... 

                                 - u*b11*u*b22*u*b33*a55 + u*b11*u*b22*u*b33*u*b55... 

                                 - u*b11*u*b22*u*b33*a44 + u*b11*u*b22*u*b33*u*b44... 

                                 + u*b11*u*b22*u*b34*a43... 

                                 - u*b11*u*b23*a32*a66 - u*b11*u*b23*a32*l6 + 

u*b11*u*b23*a32*u*b66... 

                                 - u*b11*u*b23*a32*a55 + u*b11*u*b23*a32*u*b55... 

                                 - u*b11*u*b23*a32*a44 + u*b11*u*b23*a32*u*b44); 

 % 

 det1f = vpa(a22*a33*a44*a55*a66 + a22*a33*a44*a55*l6 - 

a22*a33*a44*a55*u*b66... 

              - a22*a33*a44*u*b55*a66 - a22*a33*a44*u*b55 + 

a22*a33*a44*u*b55*u*b66... 

              + a22*a33*a44*a65*l5 + a22*a33*a44*a65*u*b56... 

              - a22*a33*u*b44*a55*a66 - a22*a33*u*b44*a55*l6 + 

a22*a33*u*b44*a55*u*b66... 

              + a22*a33*u*b44*u*b55*a66 + a22*a33*u*b44*u*b55*l6 - 

a22*a33*u*b44*u*b55*u*b66... 

              - a22*a33*u*b44*a65*l5 - a22*a33*u*b44*a65*u*b56... 

              + a22*a33*u*b45*a54*a66 + a22*a33*u*b45*a54*l6 - 

a22*a33*u*b45*a54*u*b66... 
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              + a22*a33*l4*a54*a65... 

              - a22*u*b33*a44*a55*a66 - a22*u*b33*a44*a55*l6 + 

a22*u*b33*a44*a55*u*b66... 

              + a22*u*b33*a44*u*b55*a66 + a22*u*b33*a44*u*b55*l6 - 

a22*u*b33*a44*u*b55*u*b66... 

              - a22*u*b33*a44*a65*l5 - a22*u*b33*a44*a65*u*b56... 

              + a22*u*b33*u*b44*u*a55*a66 + a22*u*b33*u*b44*a55*l6 - 

a22*u*b33*u*b44*a55*u*b66... 

              - a22*u*b33*u*b44*u*b55*a66 - a22*u*b33*u*b44*u*b55*l6 + 

a22*u*b33*u*b44*u*b55*u*b66... 

              + a22*u*b33*u*b44*a65 + a22*u*b33*u*b44*a65*u*b56... 

              - a22*u*b33*u*b45*a54 - a22*u*b33*u*b45*a54*l6 + 

a22*u*b33*u*b45*a54*u*b66... 

              - a22*u*b33*l4*a54*a65... 

              + a22*u*b34*a43*a55*a66 + a22*u*b34*a43*a55*l6 - 

a22*u*b34*a43*a55*u*b66... 

              - a22*u*b34*a43*u*b55*a66 - a22*u*b34*a43*u*b55*l6 + 

a22*u*b34*a43*u*b55*u*b66... 

              + a22*u*b34*a43*a65*l5 + a22*u*b34*a43*a65*u*b56... 

              + a22*l3*a43*a54*a65... 

              - u*b22*a33*a44*a55*a66 - u*b22*a33*a44*a55*l6 + 

u*b22*a33*a44*a55*u*b66... 

              + u*b22*a33*a44*u*b55*a66 + u*b22*a33*a44*u*b55*l6 - 

u*b22*a33*a44*u*b55*u*b66... 

              - u*b22*a33*a44*a65*l5 - u*b22*a33*a44*a65*u*b56... 

              + u*b22*a33*u*b44*a55*a66 + u*b22*a33*u*b44*a55*l6 - 

u*b22*a33*u*b44*a55*u*b66... 

              - u*b22*a33*u*b44*u*b55*a66 - u*b22*a33*u*b44*u*b55*l6 + 

u*b22*a33*u*b44*u*b55*u*b66... 

              + u*b22*a33*u*b44*a65*l5 + u*b22*a33*u*b44*a65*u*b56... 

              - u*b22*a33*u*b45*a54*a66 - u*b22*a33*u*b45*a54*l6 + 

u*b22*a33*u*b45*a54*u*b66... 

              - u*b22*a33*l4*a54*a65... 

              + u*b22*u*b33*a44*a55*a66 + u*b22*u*b33*a44*a55*l6 - 

u*b22*u*b33*a44*a55*u*b66... 

              + u*b22*u*b33*a44*u*b55*a66 - u*b22*u*b33*a44*u*b55*l6 + 

u*b22*u*b33*a44*u*b55*u*b66... 

              + u*b22*u*b33*a44*a65*l5 + u*b22*u*b33*a44*a65*u*b56... 
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              - u*b22*u*b33*u*b44*a55*a66 - u*b22*u*b33*u*b44*a55*l6 + 

u*b22*u*b33*u*b44*a55*u*b66... 

              + u*b22*u*b33*u*b44*u*b55*a66 + u*b22*u*b33*u*b44*u*b55*l6 - 

u*b22*u*b33*u*b44*u*b55*u*b66... 

              - u*b22*u*b33*u*b44*a65*l5 - u*b22*u*b33*u*b44*a65*u*b56... 

              + u*b22*u*b33*u*b45*a54*a66 + u*b22*u*b33*u*b45*a54*l6 - 

u*b22*u*b33*u*b45*a54*u*b66... 

              + u*b22*u*b33*l4*a54*a65... 

              - u*b22*u*b34*a43*a55*a66 - u*b22*u*b34*a43*a55*l6 + 

u*b22*u*b34*a43*a55*u*b66... 

              + u*b22*u*b34*a43*u*b55*a66 + u*b22*u*b34*a43*u*b55*l6 - 

u*b22*u*b34*a43*u*b55*u*b66... 

              - u*b22*u*b34*a43*a65*l5 - u*b22*u*b34*a43*a65*u*b56... 

              - u*b22*l3*a43*a54*a65... 

              + u*b23*a32*a44*a55*a66 + u*b23*a32*a44*a55*l6 - 

u*b23*a32*a44*a55*u*b66... 

              - u*b23*a32*a44*u*b55*a66 - u*b23*a32*a44*u*b55*l6 + 

u*b23*a32*a44*u*b55*u*b66... 

              + u*b23*a32*a44*a65*l5 + u*b23*a32*a44*a65*u*b56... 

              - u*b23*a32*u*b44*a55 - u*b23*a32*u*b44*a55*l6 + 

u*b23*a32*u*b44*a55*u*b66... 

              + u*b23*a32*u*b44*u*b55*a66 + u*b23*a32*u*b44*u*b55*l6 - 

u*b23*a32*u*b44*u*b55*u*b66... 

              - u*b23*a32*u*b44*a65*l5 - u*b23*a32*u*b44*a65*u*b56... 

              + u*b23*a32*u*b45*a54*a66 + u*b23*a32*u*b45*a54*l6 - 

u*b23*a32*u*b45*a54*u*b66... 

              + u*b23*a32*l4*a54*a65... 

              + l2*a32*a43*a54*a65... 

              + a11*a33*a44*a55*a66 + a11*a33*a44*a55*l6 - a11*a33*a44*a55*u*b66... 

              - a11*a33*a44*u*b55*a66 - a11*a33*a44*u*b55*l6 + 

a11*a33*a44*u*b55*u*b66... 

              + a11*a33*a44*a65*l5 + a11*a33*a44*a65*u*b56... 

              - a11*a33*u*b44*a55*a66 - a11*a33*u*b44*a55*l6 + 

a11*a33*u*b44*a55*u*b66... 

              + a11*a33*u*b44*u*b55*a66 + a11*a33*u*b44*u*b55*l6 - 

a11*a33*u*b44*u*b55*u*b66... 

              - a11*a33*u*b44*a65*l5 - a11*a33*u*b44*a65*u*b56... 

              + a11*a33*l4*a54*a65... 
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              - a11*u*b33*a44*a55*a66 - a11*u*b33*a44*a55*l6 + 

a11*u*b33*a44*a55*u*b66... 

              + a11*u*b33*a44*u*b55*a66 + a11*u*b33*a44*u*b55*l6 - 

a11*u*b33*a44*u*b55*u*b66... 

              - a11*u*b33*a44*a65*l5 - a11*u*b33*a44*a65*u*b56... 

              + a11*u*b33*u*b44*a55*a66 + a11*u*b33*u*b44*a55*l6 - 

a11*u*b33*u*b44*a55*u*b66... 

              - a11*u*b33*u*b44*u*b55*a66 - a11*u*b33*u*b44*u*b55*l6 + 

a11*u*b33*u*b44*u*b55*u*b66... 

              + a11*u*b33*u*b44*a65*l5 + a11*u*b33*u*b44*a65*u*b56... 

              - a11*u*b33*u*b45*a54*a66 - a11*u*b33*u*b45*a54*l6 + 

a11*u*b33*u*b45*a54*u*b66... 

              - a11*u*b33*l4*a54*a65... 

              + a11*u*b34*a43*a55*a66 + a11*u*b34*a43*a55*l6 - 

a11*u*b34*a43*a55*u*b66... 

              - a11*u*b34*a43*u*b55*a66 - a11*u*b34*a43*u*b55*l6 + 

a11*u*b34*a43*u*b55*u*b66... 

              + a11*u*b34*a43*a65*l5 + a11*u*b34*a43*a65*u*b56... 

              + a11*l3*a43*a54*a65... 

              + a11*a22*a44*a55*a66 + a11*a22*a44*a55*l6 - a11*a22*a44*a55*u*b66... 

              - a11*a22*a44*u*b55*a66 - a11*a22*a44*u*b55*l6 + 

a11*a22*a44*u*b55*u*b66... 

              + a11*a22*a44*a65*l5 + a11*a22*a44*a65*u*b56... 

              - a11*a22*u*b44*a55*a66 - a11*a22*u*b44*a55*l6 + 

a11*a22*u*b44*a55*u*b66... 

              + a11*a22*u*b44*u*b55*a66 + a11*a22*u*b44*u*b55*l6 - 

a11*a22*u*b44*u*b55*u*b66... 

              - a11*a22*u*b44*a65*l5 - a11*a22*u*b44*a65*u*b56... 

              + a11*a22*l4*a54*a65... 

              + a11*a22*a33*a55*a66 + a11*a22*a33*a55*l6 - a11*a22*a33*a55*u*b66... 

              - a11*a22*a33*u*b55*a66 - a11*a22*a33*u*b55*l6 + 

a11*a22*a33*u*b55*u*b66... 

              + a11*a22*a33*a65 + a11*a22*a33*a65*u*b56... 

              + a11*a22*a33*a44*a55 + a11*a22*a33*a44*l6 - 

a11*a22*a33*u*b44*u*b66... 

              + a11*a22*a33*a44*a55 - a11*a22*a33*a44*u*b55... 

              - a11*a22*a33*u*b44*a66 - a11*a22*a33*u*b44*l6 + 

a11*a22*a33*u*b44*u*b66... 
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              - a11*a22*a33*u*b44*a55 + a11*a22*a33*u*b44*u*b55... 

              + a11*a22*a33*u*b45*a54... 

              - a11*a22*u*b33*a55*a66 - a11*a22*u*b33*a55*l6 + 

a11*a22*u*b33*a55*u*b66... 

              + a11*a22*u*b33*u*b55*a66 + a11*a22*u*b33*u*b55*l6 - 

a11*a22*u*b33*u*b55*u*b66... 

              - a11*a22*u*b33*a65*l5 - a11*a22*u*b33*a65*u*b56... 

              - a11*a22*u*b33*a44*a66 - a11*a22*u*b33*a44*l6 + 

a11*a22*u*b33*a44*u*b66... 

              - a11*a22*u*b33*a44*a55 + a11*a22*u*b33*a44*u*b55... 

              + a11*a22*u*b33*u*b44*a66 + a11*a22*u*b33*u*b44*l6 - 

a11*a22*u*b33*u*b44*u*b66... 

              + a11*a22*u*b33*u*b44*a55 - a11*a22*u*b33*u*b44*u*b55... 

              - a11*a22*u*b33*u*b45*a54... 

              + a11*a22*u*b34*a43*a66 + a11*a22*u*b34*a43*l6 - 

a11*a22*u*b34*a43*u*b66... 

              + a11*a22*u*b34*a43*a55 - a11*a22*u*b34*a43*u*b55... 

              - a11*u*b22*a44*a55*a66 - a11*u*b22*a44*a55*l6 + 

a11*u*b22*a44*a55*u*b66... 

              + a11*u*b22*a44*u*b55*a66 + a11*u*b22*a44*u*b55*l6 - 

a11*u*b22*a44*u*b55*u*b66... 

              - a11*u*b22*a44*a65*l5 - a11*u*b22*a44*a65*u*b56... 

              + a11*u*b22*u*b44*a55*a66 + a11*u*b22*u*b44*a55*l6 - 

a11*u*b22*u*b44*a55*u*b66... 

              - a11*u*b22*u*b44*u*b55*a66 - a11*u*b22*u*b44*u*b55*l6 + 

a11*u*b22*u*b44*u*b55*u*b66... 

              + a11*u*b22*u*b44*a65*l5 + a11*u*b22*u*b44*a65*u*b56... 

              - a11*u*b22*u*b45*a54*a66 - a11*u*b22*a54*l6 + 

a11*u*b22*u*b45*a54*u*b66... 

              - a11*u*b22*l4*a54*a65... 

              - a11*u*b22*a33*a55*a66 - a11*u*b22*a33*a55*l6 + 

a11*u*b22*a33*a55*u*b66... 

              + a11*u*b22*a33*u*b55*a66 + a11*u*b22*a33*u*b55*l6 - 

a11*u*b22*u*b55*u*b66... 

              - a11*u*b22*a33*a65*l5 - a11*u*b22*a33*a65*u*b56... 

              - a11*u*b22*a33*a44*a66 - a11*u*b22*a33*a44*l6 + 

a11*u*b22*a33*a44*u*b66... 

              - a11*u*b22*a33*a44*a55 + a11*u*b22*a33*a44*u*b55... 
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              + a11*u*b22*a33*u*b44*a66 + a11*u*b22*a33*u*b44*l6 - 

a11*u*b22*a33*u*b44*u*b66... 

              + a11*u*b22*a33*u*b44*a55 - a11*u*b22*a33*u*b44*u*b55... 

              - a11*u*b22*a33*u*b45*a54... 

              + a11*u*b22*u*b33*a55*a66 + a11*u*b22*u*b33*a55*l6 - 

a11*u*b22*u*b33*a55*u*b66... 

              - a11*u*b22*u*b33*u*b55*a66 - a11*u*b22*u*b33*u*b55*l6 + 

a11*u*b22*u*b33*u*b55*u*b66... 

              + a11*u*b22*u*b33*a65*l5 + a11*u*b22*u*b33*u*b56... 

              + a11*u*b22*u*b33*a44*a66 + a11*u*b22*u*b33*a44*l6 - 

a11*u*b22*u*b33*a44*u*b66... 

              + a11*u*b22*u*b33*a44*a55 - a11*u*b22*u*b33*a44*u*b55... 

              - a11*u*b22*u*b33*u*b44*a66 - a11*u*b22*u*b33*u*b44*l6 + 

a11*u*b22*u*b33*u*b44*u*b66... 

              - a11*u*b22*u*b33*u*b44*a55 + a11*u*b22*u*b33*u*b44*u*b55... 

              + a11*u*b22*u*b33*u*b45*a54... 

              - a11*u*b22*u*b34*a43*a66 - a11*u*b22*u*b34*a43*l6 + 

a11*u*b22*u*b34*a43*u*b66... 

              - a11*u*b22*u*b34*a43*a55 + a11*u*b22*u*b34*a43*u*b55... 

              + a11*u*b23*a32*a55*a66 + a11*u*b23*a32*a55*l6 - 

a11*u*b23*a32*a55*u*b66... 

              - a11*u*b23*a32*u*b55*a66 - a11*u*b23*a32*u*b55*l6 + 

a11*u*b23*a32*u*b55*u*b66... 

              + a11*u*b23*a32*a65*l5 + a11*u*b23*a32*a65*u*b56... 

              + a11*u*b23*a32*a44*a66 + a11*u*b23*a32*a44*l6 - 

a11*u*b23*a32*a44*u*b66... 

              + a11*u*b23*a32*a44*a55 - a11*u*b23*a32*a44*u*b55... 

              - a11*u*b23*a32*u*b44*a66 - a11*u*b23*a32*u*b44*l6 + 

a11*u*b23*a32*u*b44*u*b66... 

              - a11*u*b23*a32*u*b44*a55 + a11*u*b23*a32*u*b44*u*b55... 

              + a11*u*b23*a32*u*b45*a54... 

              - u*b11*a33*a44*a55*a66 - u*b11*a33*a44*a55*l6 + 

a11*a33*a44*a55*u*b66... 

              + u*b11*a33*a44*u*b55*a66 + u*b11*a33*a44*u*b55*l6 - 

u*b11*a33*a44*u*b55*u*b66... 

              - u*b11*a33*a44*a65*l5 - u*b11*a33*a44*a65*u*b56... 

              + u*b11*a33*u*b44*a55*a66 + u*b11*a33*u*b44*a55*l6 - 

u*b11*a33*u*b44*a55*u*b66... 
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              - u*b11*a33*u*b44*u*b55*a66 - u*b11*a33*u*b44*u*b55*l6 + 

u*b11*a33*u*b44*u*b55*u*b66... 

              + u*b11*a33*u*b44*a65*l5 + u*b11*a33*u*b44*a65*u*b56... 

              - u*b11*a33*u*b45*a54*a66 - u*b11*a33*u*b45*a54*l6 + 

u*b11*a33*u*b45*a54*u*b66... 

              - u*b11*a33*l4*a54*a65... 

              + u*b11*u*b33*a44*a55*a66 + u*b11*u*b33*a44*a55*l6 - 

u*b11*u*b33*a44*a55*u*b66... 

              - u*b11*u*b33*a44*u*b55*a66 - u*b11*u*b33*a44*u*b55*l6 + 

u*b11*u*b33*a44*u*b55*u*b66... 

              + u*b11*u*b33*a44*a65*l5 + u*b11*u*b33*a44*a65*u*b56... 

              - u*b11*u*b33*u*b44*a55*a66 - u*b11*u*b33*u*b44*a55*l6 + 

u*b11*u*b33*u*b44*a55*u*b66... 

              + u*b11*u*b33*u*b44*u*b55*a66 + u*b11*u*b33*u*b44*u*b55*l6 - 

u*b11*u*b33*u*b44*u*b55*u*b66... 

              - u*b11*u*b33*u*b44*a65*l5 - u*b11*u*b33*u*b44*a65*u*b56... 

              + u*b11*u*b33*u*b45*a54*a66 + u*b11*u*b33*u*b45*a54*l6 - 

u*b11*u*b33*u*b45*a54*u*b66... 

              + u*b11*u*b33*l4*a54*a65... 

              - u*b11*u*b34*a43*a55*a66 - u*b11*u*b34*a43*a55*l6 + 

u*b11*u*b34*a43*a55*u*b66... 

              + u*b11*u*b34*a43*u*b55*a66 + u*b11*u*b34*a43*u*b55*l6 - 

u*b11*u*b34*a43*u*b55*u*b66... 

              - u*b11*u*b34*a43*a65*l5 - u*b11*u*b34*a43*a65*u*b56... 

              - u*b11*l3*a43*a54*a65... 

              - u*b11*a22*a44*a55*a66 - u*b11*a22*a44*a55*l6 + 

u*b11*a22*a44*a55*u*b66... 

              - u*b11*a22*a44*a65*l5 - u*b11*a22*a44*a65*u*b56... 

              + u*b11*a22*u*b44*a55*a66 + u*b11*a22*u*b44*a55*l6 - 

u*b11*a22*u*b44*a55*u*b66... 

              - u*b11*a22*u*b44*u*b55*a66 - u*b11*a22*u*b44*u*b55*l6 + 

u*b11*a22*u*b44*u*b55*u*b66... 

              + u*b11*a22*u*b44*a65*l5 + u*b11*a22*u*b44*a65*u*b56... 

              - u*b11*a22*u*b45*a54*a66 - u*b11*a22*u*b45*a54*l6 + 

u*b11*a22*u*b45*a54*u*b66... 

              - u*b11*a22*l4*a54*a65... 

              - u*b11*a22*a33*a55*a66 - u*b11*a22*a33*a55*l6 + 

u*b11*a22*a33*a55*u*b66... 
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              + u*b11*a22*a33*u*b55*a66 + u*b11*a22*a33*u*b55*l6 - 

u*b11*a22*a33*u*b55*u*b66... 

              - u*b11*a22*a33*a65*l5 - u*b11*a22*a33*a65*u*b56... 

              - u*b11*a22*a33*a44*a66 - u*b11*a22*a33*a44*l6 + 

u*b11*a22*a33*a44*u*b66... 

              - u*b11*a22*a33*a44*a55 + u*b11*a22*a33*a44*u*b55... 

              + u*b11*a22*a33*u*b44*a66 + u*b11*a22*a33*u*b44*l6 - 

u*b11*a22*a33*u*b44*u*b66... 

              + u*b11*a22*a33*u*b44*a55 - u*b11*a22*a33*u*b44*u*b55... 

              - u*b11*a22*a33*u*b45*a54... 

              + u*b11*a22*u*b33*a55*a66 + u*b11*a22*u*b33*a55*l6 - 

u*b11*a22*u*b33*a55*u*b66... 

              - u*b11*a22*u*b33*u*b55*a66 - u*b11*a22*u*b33*u*b55*l6 + 

u*b11*a22*u*b33*u*b55*u*b66... 

              + u*b11*a22*u*b33*a65*l5 + u*b11*a22*u*b33*a65*u*b56... 

              + u*b11*a22*u*b33*a44*a66 + u*b11*a22*u*b33*a44*l6 - 

u*b11*a22*u*b33*a44*u*b66... 

              + u*b11*a22*u*b33*a44*a55 - u*b11*a22*u*b33*a44*u*b55... 

              - u*b11*a22*u*b33*u*b44*a66 - u*b11*a22*u*b33*u*b44*l6 + 

u*b11*a22*u*b33*u*b44*u*b66... 

              - u*b11*a22*u*b33*u*b44*a55 + u*b11*a22*u*b33*u*b44*u*b55... 

              + u*b11*a22*u*b33*u*b45*a54... 

              - u*b11*a22*u*b34*a43*a66 - u*b11*a22*u*b34*a43*l6 + 

u*b11*a22*u*b34*a43*u*b66... 

              - u*b11*a22*u*b34*a43*a55 + u*b11*a22*u*b34*a43*u*b55... 

              + u*b11*u*b22*a44*a55*a66 + u*b11*u*b22*a44*a55*l6 - 

u*b11*u*b22*a44*a55*u*b66... 

              - u*b11*u*b22*a44*u*b55*a66 - u*b11*u*b22*a44*u*b55*l6 + 

u*b11*u*b22*a44*u*b55*u*b66... 

              + u*b11*u*b22*a44*a65*l5 + u*b11*u*b22*a44*a65*u*b56... 

              - u*b11*u*b22*u*b44*a55*a66 - u*b11*u*b22*u*b44*a55*l6 + 

u*b11*u*b22*u*b44*a55*u*b66... 

              + u*b11*u*b22*u*b44*u*b55*a66 + u*b11*u*b22*u*b44*u*b55*l6 - 

u*b11*u*b44*u*b55*u*b66... 

              - u*b11*u*b22*u*b44*a65*l5 - u*b11*u*b22*u*b44*a65*u*b56... 

              + u*b11*u*b22*u*b45*a54*a66 + u*b11*u*b22*u*b45*a54*l6 - 

u*b11*u*b22*u*b45*a54*u*b66... 

              + u*b11*u*b22*l4*a54*a65... 
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              + u*b11*u*b22*a33*a55*a66 + u*b11*u*b22*a33*a55*l6 - 

u*b11*u*b22*a33*a55*u*b66... 

              - u*b11*u*b22*a33*u*b55*a66 - u*b11*u*b22*a33*u*b55*l6 + 

u*b11*u*b22*a33*u*b55*u*b66... 

              + u*b11*u*b22*a33*a65*l5 + u*b11*u*b22*a33*a65*u*b56... 

              + u*b11*u*b22*a33*a44*a66 + u*b11*u*b22*a33*a44*l6 - 

u*b11*u*b22*a33*a44*u*b66... 

              + u*b11*u*b22*a33*a44*a55 - u*b11*u*b22*a33*a44*u*b55... 

              - u*b11*u*b22*a33*u*b44*a66 - u*b11*u*b22*a33*u*b44*l6 + 

u*b11*u*b22*a33*u*b44*u*b66... 

              - u*b11*u*b22*a33*u*b44*a55 + u*b11*u*b22*a33*u*b44*u*b55... 

              + u*b11*u*b22*a33*u*b45*a54... 

              - u*b11*u*b22*u*b33*a55*a66 - u*b11*u*b22*u*b33*a55*l6 + 

u*b11*u*b22*u*b33*a55*u*b66... 

              + u*b11*u*b22*u*b33*u*b55*a66 + u*b11*u*b22*u*b33*u*b55*l6 - 

u*b11*u*b22*u*b33*a55*u*b66... 

              + u*b11*u*b22*u*b33*u*b55*a66 + u*b11*u*b22*u*b33*u*b55*l6 - 

u*b11*u*b22*u*b33*u*b55*u*b66... 

              - u*b11*u*b22*u*b33*a65*l5 - u*b11*u*b22*u*b33*a65*u*b56... 

              - u*b11*u*b22*u*b33*a44*a66 - u*b11*u*b22*u*b33*a44*l6 + 

u*b11*u*b22*u*b33*a44*u*b66... 

              - u*b11*u*b22*u*b33*a44*a55 + u*b11*u*b22*u*b33*a44*u*b55... 

              + u*b11*u*b22*u*b33*u*b44*a66 + u*b11*u*b22*u*b33*u*b44*l6 - 

u*b11*u*b22*u*b33*u*b44*u*b66... 

              + u*b11*u*b22*u*b33*u*b44*a55 - u*b11*u*b22*u*b33*u*b44*u*b55... 

              - u*b11*u*b22*u*b33*u*b45*a54... 

              + u*b11*u*b22*u*b34*a43*a66 + u*b11*u*b22*u*b34*a43*l6 - 

u*b11*u*b22*u*b34*a43*u*b66... 

              + u*b11*u*b22*u*b34*a43*a55 - u*b11*u*b22*u*b34*a43*u*b55... 

              - u*b11*u*b23*a32*a55*a66 - u*b11*u*b23*a32*a55*l6 + 

u*b11*u*b23*a32*a55*u*b66... 

              + u*b11*u*b23*a32*u*b55*a66 + u*b11*u*b23*a32*u*b55*l6 - 

u*b11*u*b23*a32*u*b55*u*b66... 

              - u*b11*u*b23*a32*a65*l5 - u*b11*u*b23*a32*a65*u*b56... 

              - u*b11*u*b23*a32*a44*a66 - u*b11*u*b23*a32*a44*l6 + 

u*b11*u*b23*a32*a44*u*b66... 

              - u*b11*u*b23*a32*a44*a55 + u*b11*u*b23*a32*a44*u*b55... 
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              + u*b11*u*b23*a32*u*b44*a66 + u*b11*u*b23*a32*u*b44*l6 - 

u*b11*u*b23*a32*u*b44*u*b66... 

              + u*b11*u*b23*a32*u*b44*a55 - u*b11*u*b23*a32*u*b44*u*b55... 

              - u*b11*u*b23*a32*u*b45*a54); 

% 

det1g = vpa(a11*a22*a33*a44*a55*a66 + a11*a22*a33*a44*a55*l6 - 

a11*a22*a33*a44*a55*u*b66... 

                            - a11*a22*a33*a44*u*b55*a66 - a11*a22*a33*a33*u*b55*l6 + 

a11*a22*a33*a44*u*b55*u*b66... 

                            + a11*a22*a33*a44*a65*l5 + a11*a22*a33*a44*a65*u*b56... 

                            + a11*a22*a33*u*b45*a54*a66 + a11*a22*a33*u*b45*a54*l6 - 

a11*a22*a33*u*b45*a54*u*b66... 

                            + a11*a22*a33*l4*a54*a65... 

                            - a11*a22*u*b33*a44*a55*a66 - a11*a22*u*b33*a44*a55*l6 + 

a11*a22*u*b33*a44*a55*u*b66... 

                            + a11*a22*u*b33*a44*u*b55*a66 + a11*a22*u*b33*a44*u*b55*l6 - 

a11*a22*u*b33*a44*u*b55*u*b66... 

                            + a11*a22*u*b33*u*b44*a65*l5 + 

a11*a22*u*b33*u*b44*a65*u*b56... 

                            - a11*a22*u*b33*u*b45*a54*a66 - a11*a22*u*b33*u*b45*a54*l6 + 

a11*a22*u*b33*u*b45*a54*u*b66... 

                            - a11*a22*u*b33*l4*a54*a65... 

                            + a11*a22*u*b34*a43*a55*a66 + a11*a22*u*b34*a43*a55*l6 - 

a11*a22*u*b34*a43*a55*u*b66... 

                            - a11*a22*u*b34*a43*u*b55*a66 - a11*a22*u*b34*a43*u*b55*l6 - 

a11*a22*u*b34*a43*u*b55*u*b66... 

                            + a11*a22*u*b34*a43*a65*l5 + a11*a22*u*b34*a43*a65*u*b56... 

                            + a11*a22*l3*a43*a54*a65... 

                            - a11*u*b22*a33*a44*a55*a66 - a11*u*b22*a33*a44*a55*l6 + 

a11*u*b22*a33*a44*a55*u*b66... 

                            + a11*u*b22*a33*a44*u*b55*a66 + a11*u*b22*a33*a44*u*b55*l6 - 

a11*u*b22*a33*a44*u*b55*u*b66... 

                            - a11*u*b22*a33*a44*a65*l5 - a11*u*b22*a33*a44*a65*u*b56... 

                            + a11*u*b22*a33*u*b44*a55*a66 + a11*u*b22*a33*u*b44*a55*l6 - 

a11*u*b22*a33*u*b44*a55*u*b66... 

                            - a11*u*b22*a33*u*b44*u*b55*a66 - 

a11*u*b22*a33*u*b44*u*b55*l6 + a11*u*b22*a33*u*b44*u*b55*u*b66... 
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                            + a11*u*b22*a33*u*b44*a65*l5 + 

a11*u*b22*a33*u*b44*a65*u*b56... 

                            - a11*u*b22*a33*u*b45*a54*a66 - a11*u*b22*a33*u*b45*a54*l6 + 

a11*u*b22*a33*u*b45*a54*u*b66... 

                            - a11*u*b22*a33*l4*a54*a65... 

                            + a11*u*b22*u*b33*a44*a55*a66 + a11*u*b22*u*b33*a44*a55*l6 - 

a11*u*b22*u*b33*a44*a55*u*b66... 

                            - a11*u*b22*u*b33*a44*u*b55*a66 - 

a11*u*b22*u*b33*a44*u*b55*l6 + a11*u*b22*u*b33*a44*u*b55*u*b66... 

                            + a11*u*b22*u*b33*a44*a65*l5 + 

a11*u*b22*u*b33*a44*a65*u*b56... 

                            - a11*u*b22*u*b33*u*b44*a55*a66 - 

a11*u*b22*u*b33*u*b44*a55*l6 + a11*u*b22*u*b33*u*b44*a55*u*b66... 

                            + a11*u*b22*u*b33*u*b44*u*b55*a66 + 

a11*u*b22*u*b33*u*b44*u*b55*l6 - a11*u*b22*u*b33*u*b44*u*b55*u*b66... 

                            - a11*u*b22*u*b33*u*b44*a65*l5 - 

a11*u*b22*u*b33*u*b44*a65*u*b56... 

                            + a11*u*b22*u*b33*u*b45*a54*a66 + 

a11*u*b22*u*b33*u*b45*a54*l6 - a11*u*b22*u*b33*u*b45*a54*u*b66... 

                            + a11*u*b22*u*b33*l4*a54*a65... 

                            - a11*u*b22*u*b34*a43*a55*a66 - a11*u*b22*u*b34*a43*a55*l6 + 

a11*u*b22*u*b34*a43*a55*u*b55*u*b66... 

                            + a11*u*b22*u*b34*a43*u*b55*a66 + 

a11*u*b22*u*b34*a43*u*b55*l6 - a11*u*b22*u*b34*a43*u*b55*u*b66... 

                            - a11*u*b22*u*b34*a43*a65*l5 - 

a11*u*b33*u*b34*a43*a65*u*b56... 

                            - a11*u*b22*l3*a43*a54*a65... 

                            + a11*u*b23*a32*a44*a55*a66 + a11*u*b23*a32*a44*a55*l6 - 

a11*u*b23*a32*a44*a55*u*b66... 

                            - a11*u*b23*a32*a44*u*b55*a66 - a11*u*b23*a32*a44*u*b55*l6 + 

a11*u*b23*a32*a44*u*b55*u*b66... 

                            + a11*u*b23*a32*a44*a65*l5 + a11*u*b23*a32*a44*a65*u*b56... 

                            - a11*u*b23*a32*u*b44*a55*a66 - a11*u*b23*a32*u*b44*a55*l6 + 

a11*u*b23*a32*u*b44*a55*u*b66... 

                            + a11*u*b23*a32*u*b44*u*b55*a66 + 

a11*u*b23*a32*u*b44*u*b55*l6 - a11*u*b23*a32*u*b44*u*b55*u*b66... 

                            - a11*u*b23*a32*u*b44*a65*l5 - 

a11*u*b23*a32*u*b44*a65*u*b56... 
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                            + a11*u*b23*a32*u*b45*a54*a66 + a11*u*b23*a32*u*b45*a54*l6 - 

a11*u*b23*a32*u*b45*a54*u*b66... 

                            + a11*u*b23*a32*l4*a54*a65... 

                            + a11*l2*a32*a43*a54*a65... 

                            - u*b11*a22*a33*a44*a55*a66 - u*b11*a22*a33*a44*a55*l6 + 

u*b11*a22*a33*a44*a55*u*b66... 

                            + u*b11*a22*a33*a44*u*b55*a66 + u*b11*a22*a33*a44*u*b55*l6 - 

u*b11*a22*a33*a44*u*b55*u*b66... 

                            - u*b11*a22*a33*a44*a65*l5 - u*b11*a22*a33*a44*a65*u*b56... 

                            + u*b11*a22*a33*u*b44*a55*a66 + u*b11*a22*a33*u*b44*a55*l6 - 

u*b11*a22*a33*u*b44*a55*u*b66... 

                            - u*b11*a22*a33*u*b44*u*b55*a66 - 

u*b11*a22*a33*u*b44*u*b55*l6 + u*b11*a22*a33*u*b44*u*b55*u*b66... 

                            + u*b11*a22*a33*u*b44*a65*l5 + 

u*b11*a22*a33*u*b44*a65*u*b56... 

                            - u*b11*a22*a33*u*b45*a54*a66 - u*b11*a22*a33*u*b45*a54*l6 + 

u*b11*a22*a33*u*b45*a54*u*b66... 

                            - u*b11*a22*a33*l4*a54*a65... 

                            + u*b11*a22*u*b33*a44*a55*a66 + u*b11*a22*u*b33*a44*a55*l6 - 

u*b11*a22*u*b33*a44*a55*u*b66... 

                            - u*b11*a22*u*b33*a44*u*b55*a66 - 

u*b11*a22*u*b33*a44*u*b55*l5 + u*b11*a22*u*b33*a44*u*b55*u*b66... 

                            + u*b11*a22*u*b33*a44*a65*l5 + 

u*b11*a22*u*b33*a44*a65*u*b56... 

                            - u*b11*a22*u*b33*u*b44*a55*a66 - 

u*b11*a22*u*b33*u*b44*a55*l6 + u*b11*a22*u*b33*u*b44*a55*u*b66... 

                            + u*b11*a22*u*b33*u*b44*u*b55*a66 + 

u*b11*a22*u*b33*u*b44*u*b55*l6 - u*b11*a22*u*b33*u*b44*u*b55*u*b66... 

                            - u*b11*a22*u*b33*u*b44*a65*l5 - 

u*b11*a22*u*b33*u*b44*a65*u*b56... 

                            + u*b11*a22*u*b33*u*b45*a54*a66 + 

u*b11*a22*u*b33*u*b45*a54*l6 - u*b11*a22*u*b33*u*b45*a54*u*b66... 

                            + u*b11*a22*u*b33*l4*a54*a65... 

                            - u*b11*a22*u*b34*a43*a55*a66 - u*b11*a22*u*b34*a43*a55*l6 + 

u*b11*a22*u*b34*a43*a55*u*b66... 

                            + u*b11*a22*u*b34*a43*u*b55*a66 + 

u*b11*a22*u*b34*a43*u*b55*l6 - u*b11*a22*u*b34*a43*u*b55*u*b66... 
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                            - u*b11*a22*u*b34*a43*a65*l5 - 

u*b11*a22*u*b34*a43*a65*u*b56... 

                            - u*b11*a22*l3*a43*a54*a65... 

                            + u*b11*u*b22*a33*a44*a55*a66 + u*b11*u*b22*a33*a44*a55*l6 - 

u*b11*u*b22*a33*a44*a55*u*b66... 

                            - u*b11*u*b22*a33*a44*u*b55*a66 - 

u*b11*u*b22*a33*a44*u*b55*l6 + u*b11*u*b22*a33*a44*u*b55*u*b66... 

                            + u*b11*u*b22*a33*a44*a65*l5 + 

u*b11*u*b22*a33*a44*a66*u*b56... 

                            - u*b11*u*b22*a33*u*b44*a55*a66 - 

u*b11*u*b22*a33*u*b44*a55*l6 + u*b11*u*b22*a33*u*b44*a55*u*b66... 

                            + u*b11*u*b22*a33*u*b44*u*b55*a66 + 

u*b11*u*b22*a33*u*b44*u*b55*l6 - u*b11*u*b22*a33*u*b44*u*b55*u*b66... 

                            - u*b11*u*b22*a33*u*b44*a65*l5 - 

u*b11*u*b22*a33*u*b44*a65*u*b56... 

                            + u*b11*u*b22*a33*u*b45*a54*a66 + 

u*b11*u*b22*a33*u*b45*a54*l6 - u*b11*u*b22*a33*u*b45*a54*u*b66... 

                            + u*b11*u*b22*a33*l4*a54*a65... 

                            - u*b11*u*b22*u*b33*a44*a55*a66 - 

u*b11*u*b22*u*b33*a44*a55*l6 + u*b11*u*b22*u*b33*a44*a55*u*b66... 

                            + u*b11*u*b22*u*b33*a44*u*b55*a66 + 

u*b11*u*b22*u*b33*a44*u*b55*l6 - u*b11*u*b22*u*b33*a44*u*b55*u*b66... 

                            - u*b11*u*b22*u*b33*a44*a65*l5 - 

u*b11*u*b22*u*b33*a44*a65*u*b56... 

                            + u*b11*u*b22*u*b33*u*b44*a55*a66 + 

u*b11*u*b22*u*b33*u*b44*a55*l6 - u*b11*u*b22*u*b33*u*b44*a55*u*b66... 

                            - u*b11*u*b22*u*b33*u*b44*u*b55*a66 - 

u*b11*u*b22*u*b33*u*b44*u*b55*l6 + u*b11*u*b22*u*b33*u*b44*u*b55*u*b66... 

                            + u*b11*u*b22*u*b33*u*b44*a65*l5 + 

u*b11*u*b22*u*b33*u*b44*a65*u*b56... 

                            - u*b11*u*b22*u*b33*u*b45*a54*a66 - 

u*b11*u*b22*u*b33*u*b45*a54*l6 + u*b11*u*b22*u*b33*u*b45*a54*u*b66... 

                            - u*b11*u*b22*u*b33*l4*a54*a65... 

                            + u*b11*u*b22*u*b34*a43*a55*a66 + 

u*b11*u*b22*u*b34*a43*a55*l6 - u*b11*u*b22*u*b34*a43*a55*u*b66... 

                            - u*b11*u*b22*u*b34*a43*u*b55*a66 - 

u*b11*u*b22*u*b34*a43*u*b55*l6 + u*b11*u*b22*u*b34*a43*u*b55*u*b66... 
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                            + u*b11*u*b22*u*b34*a43*a65*l5 + 

u*b11*u*b22*u*b34*a43*a65*u*b56... 

                            + u*b11*u*b22*l3*a43*a54*a65... 

                            - u*b11*u*b23*a32*a44*a55*a66 - u*b11*u*b23*a32*a44*a55*l6 + 

u*b11*u*b23*a32*a44*a55*u*b66... 

                            + u*b11*u*b23*a32*a44*u*b55*a66 + 

u*b11*u*b23*a32*a44*u*b55*l6 - u*b11*u*b23*a32*a44*u*b55*u*b66... 

                            - u*b11*u*b23*a32*a44*a65*l5 - 

u*b11*u*b23*a32*a44*a65*u*b56... 

                            + u*b11*u*b23*a32*u*b44*a55*a66 + 

u*b11*u*b23*a32*u*b44*a55*l6 - u*b11*u*b23*a32*u*b44*a55*u*b66... 

                            - u*b11*u*b23*a32*u*b44*u*b55*a66 - 

u*b11*u*b23*a32*u*b44*u*b55*l6 + u*b11*u*b23*a32*u*b44*u*b55*u*b66... 

                            - u*b11*u*b23*a32*u*b45*a54*a66 - 

u*b11*u*b23*a32*u*b45*a54*l6 + u*b11*u*b23*a32*u*b45*a54*u*b66... 

                            - u*b11*u*b23*a32*l4*a54*a65... 

                            - u*b11*l2*a32*a43*a54*a65); 

%  

det1 = [1 det1b det1c det1d det1e det1f det1g]; 

% 

det = det1 + det2 + det3 + det4 + det5 + det6; 

% 

%----------------------------------------------------------------------------------------------------- 

% Determining the desired observer (based on observer characteristic equation and 

placement of poles at required location(s)) 

% 

syms s 

a = simplify((s+5)^6) 

a = expand(a) 

% 

%-------------------------------------------------------------------------------------------- 

% Solving the observer matrix elements and 

% Comparison of the two characteristic equations and calculation of the observer 

matrix 

% (see if it is possible to automatically extract l's if roots are automatically changed) 

% 

l6 = (30 + 130.876); 

l5 = (375 + 74153.1 + 85.8693*l6)/43.3821; 
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l4 = (2500 - 31907.1 - 1200.41*l6 + 2097.57*l5)/1646.75; 

l3 = (9375 + 0.737398e7 - 28092.9*l6 + 0.345555e7*l5 + 91740.3*l4)/58832.6; 

l2 = (18750 - 0.161011e9 + 0.322378e7*l6 - 0.384588e7*l5 - 0.399188e7*l4 + 

0.314216e7*l3)/0.188063e7; 

l1 = (15625 + 0.132894e10 - 0.313572e8*l6 + 0.367093e8*l5 + 0.386912e8*l4 - 

0.432444e8*l3 + 0.477368e8*l2)/0.543903e8; 

% 

%-------------------------------------------------------------------------------------------------- 

% Final determination of the observer gain matrix L 

% 

L = [l1 l2 l3 l4 l5 l6]' 

% 

%---------------------------------------------Program end-------------------------------------- 
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APPENDIX D.2:  SIMULINK program for the design of the bilinear obs erver  
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APPENDIX D.3:  MATLAB program for extracting values of the design of the 
observer back to workspace 

 
%----------------------------------------------------------------------------------------------------- 

%The Program is a supplementary program for extracting Simulink values 

%so as to display them on Workspace (MATLAB Front-End) 

% 

% Author: NM. Dube  

% Dated: 12 June 2014  

% Updated: 03 September 2016 

 

%----------------------------------------------------------------------------------------------------- 

Q = 6; 

P = 3000;             % number of data points generated by Simulink for the vectors x-

state and est-state these are double arrays 

                            % (according to Workspace data/ variable details) 

% collecting data points for the state vector as generated by Simulink to display on 

Workspace 

for i = 1:1:100 

     p1(i) = xstate(1,i); 

     p2(i) = xstate(2,i); 

     p3(i) = xstate(3,i); 

     p4(i) = xstate(4,i); 

     p5(i) = xstate(5,i); 

     p6(i) = xstate(6,i); 

% collecting data points for the dynamic error vector as generated by Simulink to 

display on Workspace 

     e1(i) = ek1(1,i); 

     e2(i) = ek1(2,i); 

     e3(i) = ek1(3,i); 

     e4(i) = ek1(4,i); 

     e5(i) = ek1(5,i); 

     e6(i) = ek1(6,i); 

end 

% collecting data points for the estimated vector as generated by Simulink to display 

on Workspace 

for j = 1:1:100 
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    xp1(j) = est_state(1,j); 

    xp2(j) = est_state(2,j); 

    xp3(j) = est_state(3,j); 

    xp4(j) = est_state(4,j); 

    xp5(j) = est_state(5,j); 

    xp6(j) = est_state(6,j); 

% collecting data points for the estimated vector as generated by Simulink to display 

on Workspace 

    est_e1(j) = est_ek1(1,j); 

    est_e2(j) = est_ek1(2,j); 

    est_e3(j) = est_ek1(3,j); 

    est_e4(j) = est_ek1(4,j); 

    est_e5(j) = est_ek1(5,j); 

    est_e6(j) = est_ek1(6,j); 

end 

% calculating new error and dynamic error vectors using data collected in the above 

steps 

for k = 1:1:100 

    error(:,k) = est_state(:,k) - xstate(:,k); 

    error_ek1(:,k) = ek1(:,k) - est_ek1(:,k); 

end 

% 

% Plotting observer performance in different colours 

figure(1) 

plot(p1,'-o','Linewidth',3.0,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

plot(p2,'-<m','Linewidth',3.0,'MarkerSize',7,'MarkerFaceColor',[1,0.4,0.6]) 

hold on 

plot(p3,'-sy','Linewidth',3.0,'MarkerSize',7,'MarkerFaceColor',[1 1 0]) 

hold on 

plot(p4,'-dk','Linewidth',3.0,'MarkerSize',7,'MarkerFaceColor',[0 0 0]) 

hold on 

plot(p5,'-*g','Linewidth',3.0,'MarkerSize',8,'MarkerFaceColor',[0 1 0]) 

hold on 

plot(p6,'-^r','Linewidth',3.0,'MarkerSize',7,'MarkerFaceColor',[1 0 0]) 

hold on 
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% 

plot(xp1,':o','Linewidth',3.0,'MarkerSize',7,'MarkerFaceColor',[0.0 0.0 1.0]) 

hold on 

plot(xp2,':<m','Linewidth',3.0,'MarkerSize',7,'MarkerFaceColor',[1,0.4,0.6]) 

hold on 

plot(xp3,':sy','Linewidth',3.0,'MarkerSize',7,'MarkerFaceColor',[1 1 0]) 

hold on 

plot(xp4,':dk','Linewidth',3.0,'MarkerSize',7,'MarkerFaceColor',[0 0 0]) 

hold on 

plot(xp5,':g*','Linewidth',3.0,'MarkerSize',8,'MarkerFaceColor',[0 1 0]) 

hold on 

plot(xp6,':^r','Linewidth',3.0,'MarkerSize',7,'MarkerFaceColor',[1 0 0]) 

hold on 

title ('Process states vs estimated states dynamic behaviour','Fontsize',16) 

xlabel('Number of cycles [number]','Fontsize',16) 

ylabel('Measured and estimated states','Fontsize',16) 

grid on 

hold off 

% 

% Plotting the state error difference trajectories 

figure(2) 

k = 1:100; 

hold on 

plot(error(1,k),'o','Linewidth',3.0) 

plot(error(2,k),'om','Linewidth',3.0) 

plot(error(3,k),'oy','Linewidth',3.0) 

plot(error(4,k),'ok','Linewidth',3.0) 

plot(error(5,k),'or','Linewidth',3.0) 

plot(error(6,k),'og','Linewidth',3.0) 

title('Error between measured and estimated states','Fontsize',16) 

xlabel('Sampling period [k]','Fontsize',16) 

ylabel('Error between measured & estimated states','Fontsize',16) 

grid on 

hold off 

% 

figure(3) 
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k = 1:100; 

hold on 

plot(error_ek1(1,k),'o','Linewidth',3.0) 

plot(error_ek1(2,k),'om','Linewidth',3.0) 

plot(error_ek1(3,k),'oy','Linewidth',3.0) 

plot(error_ek1(4,k),'ok','Linewidth',3.0) 

plot(error_ek1(5,k),'or','Linewidth',3.0) 

plot(error_ek1(6,k),'og','Linewidth',3.0) 

title('The rate of change of the error','Fontsize',16) 

xlabel('Sampling period [k]','Fontsize',16) 

ylabel('Error rate','Fontsize',16) 

grid on 

hold off 

% 

%----------------------------------Program end--------------------------------------------- 
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APPENDIX E:  Program for state estimation using the design of t he Kalman 
filter 

 
% ------------------------------------------------------------------------------------------ 

% Program for state estimation of a bilinear system using a Kalman filter for  

% a CCIX (continuous countercurrent ion exchange). 

% The CCIX process in this application is used for water desalination. 

% The model is based on the six stages UCT (University of Cape Town) model. 

%  

% In this program x_curr represents estimated state variables and x_bar is the 

measured states. 

% 

% Written by: N. Dube  

% Dated: 10 January 2013 

% Updated: 30 September 2017 

% 

%-------------------------------------------------------------------------------------------- 

% Original data measured  from UCT (University of Cape Town) project in 1982 

% Stage H+ fractional change in liquid concentration using data obtained from UCT 

Project volume 4  

 stage1 = [0.221 0.577 0.730 0.847 0.920 0.936 0.968 0.974 0.981 0.989 0.988 

0.997 1.000 1.000 1.000 1.000 1.000 1.000]; 

 stage2 = [0.000 0.140 0.314 0.523 0.656 0.766 0.842 0.886 0.900 0.933 0.958 

0.963 0.982 0.974 0.991 0.994 0.993 0.993]; 

 stage3 = [0.000 0.04 0.066 0.184 0.295 0.454 0.601 0.690 0.758 0.804 0.877 0.881 

0.951 0.965 0.972 0.981 1.000 0.988]; 

 stage4 = [0.000 0.000 0.004 0.035 0.082 0.168 0.277 0.361 0.440 0.522 0.698 

0.784 0.899 0.931 0.966 0.966 0.991 0.991]; 

 stage5 = [0.000 0.000 0.000 0.003 0.020 0.052 0.113 0.167 0.207 0.340 0.474 

0.547 0.780 0.860 0.899 0.905 0.975 0.973]; 

 stage6 = [0.000 0.000 0.000 0.000 0.000 0.001 0.024 0.033 0.063 0.124 0.167 

0.233 0.482 0.539 0.672 0.779 0.940 0.972]; 

% 

% Obtaining Na+ fractional change in liquid concentration 

% This data of Na+ is then plotted to obtain measured states as indicated in the table 

of states_bar 

 stage1 = 1 – stage1; 
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 stage2 = 1 – stage2; 

 stage3 = 1 – stage3; 

 stage4 = 1 – stage4; 

 stage5 = 1 – stage5; 

 stage6 = 1 – stage6; 

% 

%-------------------------------------------------------------------------------------------------    

% Initialization of mass balance equation parameters of the CCIX model based on 

UCT model data 

% Initializing all function coeffients and variables using model data 

% 

  h = 32.93;         % resin holdups (units in litres) 

  H = 42.809;        % liquid holdups (units in litres) 

  Fl = 2000/60;      % liquid flow rate (units in litres per min) 

  %       

  N = 6;             % number of stages of the cation loading colum 

  d = 2/3;           % resin/liquid fractional balance (constant) 

  T = 18;            % liquid upflow time (units in min) 

% 

   FR = 1.0;        % resin flow rate (units in litres per min) original value FR = (h*d)/T; 

 conc_in = 1.0;   % sodium concentration at first stage of the column (eq/l) - process 

disturbance 

%---------------------------------------------------------------------------------------------- 

% Initialization of state space equations of the CCIX model 

% Original coefficients values 

% 

    a = [1.2 1.4 1.6 1.8 2.0 2.2]; 

    b = [0.08 0.09 0.10 0.11 0.12 0.13]; 

% 

%------------------------------------------------------------------------------------------------- 

% Determination of matrices for state space model x_dot = Ax + Bu and y = Cx 

% Declaration of parameters from the model equations as determined by,  

% dx/dt = Ax(t)+B1x(t)u(t)+Bu(t)+W(t)w(t) 

% parameters are l(i), m(i), m(i(j)) and k(i) 

% 

for i = 1:N 
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    l(i) = Fl/(H+a(i)*h); 

    mi(i) = a(i)/(H+a(i)*h); 

end 

 

for i = 1:N-1 

    mij(i) = a(i+1)/(H+a(i)*h); 

    k(i) = (b(i+1) - b(i))/(H+a(i)*h); 

end 

    k(N) = -b(N)/(H+a(N)*h); 

% 

%------------------------------------------------------------------------------------------------ 

% Initialization of model parameters A, B, B1 W and C using calculated parameters 

li, mi and mij 

 A(1,1) = -l(1); 

 A(2,1) = l(2); 

 A(2,2) = -l(2); 

 A(3,2) = l(3); 

 A(3,3) = -l(3); 

 A(4,3) = l(4); 

 A(4,4) = -l(4); 

 A(5,4) = l(5); 

 A(5,5) = -l(5); 

 A(6,5) = l(6); 

 A(6,6) = -l(6); 

% 

 B(1,1) = -mi(1); 

 B(1,2) = mij(1); 

 B(2,2) = -mi(2); 

 B(2,3) = mij(2); 

 B(3,3) = -mi(3); 

 B(3,4) = mij(3); 

 B(4,4) = -mi(4); 

 B(4,5) = mij(4); 

 B(5,5) = -mi(5); 

 B(5,6) = mij(5); 

 B(6,6) = -mi(6); 
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% 

 B1 = [k(1) k(2) k(3) k(4) k(5) k(6)]'; 

 W = [-l(1) 0 0 0 0 0]'; 

 C = [0 0 0 0 0 1]; 

% 

%--------------------------------------------------------------------------------------------- 

% Measurements data as obtained from UCT project experiments, 

% 

 x_bar = [1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000... 

         1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.998... 

         0.998 0.997 0.996 0.993 0.988 0.986 0.983 0.978 0.974 0.967... 

         0.962 0.956 0.950 0.942 0.930 0.918 0.907 0.897 0.886 0.876... 

         0.867 0.857 0.847 0.837 0.828 0.822 0.815 0.807 0.800 0.793... 

         0.769 0.745 0.721 0.697 0.674 0.648 0.625 0.602 0.578 0.553... 

         0.528 0.515 0.502 0.488 0.475 0.462 0.439 0.397 0.355 0.313... 

         0.299 0.284 0.278 0.266 0.251 0.247 0.233 0.221 0.211 0.205... 

         0.200 0.198 0.189 0.176 0.166 0.142 0.130 0.122 0.114 0.108... 

         0.102 0.091 0.080 0.071 0.064 0.050 0.032 0.021 0.018 0.011; 

     % 

         1.000 1.000 1.000 1.000 1.000 0.988 0.964 0.938 0.914 0.887... 

         0.863 0.832 0.800 0.770 0.738 0.707 0.674 0.635 0.598 0.561... 

         0.524 0.485 0.458 0.435 0.410 0.386 0.364 0.340 0.320 0.300... 

         0.280 0.261 0.241 0.225 0.212 0.197 0.184 0.170 0.157 0.149... 

         0.142 0.134 0.126 0.117 0.114 0.110 0.107 0.105 0.103 0.100... 

         0.094 0.088 0.083 0.076 0.070 0.065 0.061 0.056 0.053 0.047... 

         0.043 0.042 0.041 0.039 0.038 0.037 0.036 0.034 0.029 0.025... 

         0.023 0.018 0.018 0.022 0.023 0.024 0.025 0.025 0.023 0.019... 

         0.016 0.014 0.010 0.008 0.008 0.007 0.007 0.006 0.005 0.005... 

         0.006 0.006 0.007 0.007 0.006 0.006 0.007 0.007 0.007 0.007; 

     % 

         1.000 1.000 1.000 1.000 1.000 0.997 0.989 0.983 0.975 0.967... 

         0.961 0.956 0.952 0.946 0.942 0.937 0.927 0.906 0.885 0.864... 

         0.842 0.820 0.800 0.781 0.760 0.741 0.720 0.698 0.670 0.641... 

         0.613 0.584 0.555 0.528 0.503 0.475 0.448 0.424 0.397 0.382... 

         0.365 0.348 0.335 0.317 0.304 0.292 0.278 0.266 0.255 0.243... 

         0.234 0.226 0.217 0.209 0.201 0.190 0.177 0.164 0.151 0.138... 
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         0.124 0.123 0.122 0.121 0.120 0.119 0.115 0.103 0.089 0.077... 

         0.065 0.053 0.047 0.045 0.043 0.039 0.037 0.035 0.034 0.033... 

         0.032 0.029 0.028 0.026 0.025 0.024 0.023 0.021 0.018 0.015... 

         0.013 0.008 0.008 0.006 0.002 0.005 0.006 0.008 0.001 0.002; 

     % 

         1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000... 

         1.000 0.999 0.999 0.998 0.997 0.996 0.995 0.988 0.984 0.977... 

         0.973 0.966 0.958 0.950 0.942 0.934 0.925 0.915 0.898 0.884... 

         0.868 0.854 0.837 0.818 0.798 0.779 0.760 0.740 0.722 0.706... 

         0.682 0.676 0.661 0.646 0.632 0.617 0.603 0.598 0.574 0.560... 

         0.546 0.530 0.516 0.501 0.486 0.464 0.433 0.400 0.368 0.337... 

         0.277 0.268 0.257 0.249 0.242 0.227 0.209 0.188 0.167 0.147... 

         0.126 0.105 0.096 0.092 0.085 0.079 0.074 0.067 0.062 0.055... 

         0.049 0.043 0.036 0.034 0.034 0.034 0.034 0.034 0.033 0.028... 

         0.025 0.020 0.015 0.012 0.008 0.008 0.008 0.008 0.008 0.008; 

     % 

         1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000... 

         1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994... 

         0.992 0.981 0.970 0.970 0.968 0.964 0.960 0.955 0.951 0.948...  

         0.945 0.939 0.924 0.915 0.894 0.882 0.872 0.865 0.857 0.850... 

         0.842 0.834 0.823 0.810 0.798 0.787 0.775 0.750 0.722 0.690...  

         0.678 0.646 0.626 0.590 0.582 0.573 0.566 0.532 0.517 0.493... 

         0.467 0.452 0.423 0.418 0.401 0.374 0.331 0.290 0.282 0.256... 

         0.232 0.228 0.208 0.195 0.180 0.166 0.152 0.138 0.133 0.125... 

         0.117 0.110 0.104 0.100 0.088 0.077 0.066 0.055 0.044 0.032... 

         0.028 0.020 0.014 0.011 0.009 0.007 0.005 0.002 0.002 0.002; 

     % 

         1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000... 

         1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.998... 

         0.998 0.997 0.996 0.993 0.988 0.986 0.983 0.978 0.974 0.967... 

         0.962 0.956 0.950 0.942 0.930 0.918 0.907 0.897 0.886 0.876... 

         0.867 0.857 0.847 0.837 0.828 0.822 0.815 0.807 0.800 0.793... 

         0.769 0.745 0.721 0.697 0.674 0.648 0.625 0.602 0.578 0.553... 

         0.528 0.515 0.502 0.488 0.475 0.462 0.439 0.397 0.355 0.313... 

         0.299 0.284 0.278 0.266 0.251 0.247 0.233 0.221 0.211 0.205... 

         0.200 0.198 0.189 0.176 0.166 0.142 0.130 0.122 0.114 0.108... 
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         0.102 0.091 0.080 0.071 0.064 0.050 0.032 0.021 0.018 0.011]; 

% 

%------------------------------------------------------------------------------------------- 

% Initializing full trajectories for disturbance, input and control vectors  

% Initializing the state vector (x0), initial state at the input  and the full trajectory of 

state variable 

% 

  K = 100;                           % total number of sampling points 

  xf = conc_in;                      % declaring input concentration as a distubance 

  FR = FR*(ones(1,K));      % control input declaration 

% 

%-------------------------------------------------------------------------------------------- 

% Plotting the real states of the system 

figure(1) 

plot(k,x_bar,':o','Linewidth',2.5,'MarkerSize',6)  

title('Real system behabiour','Fontsize',16) 

xlabel('Discerete time[k]','Fontsize',16) 

ylabel('Real states of the system  [meq/l]','Fontsize',16) 

grid on 

text('Position',[15.0 0.23],'String','x_1','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

text('Position',[25.0 0.40],'String','x_2','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

text('Position',[35.0 0.52],'String','x_3','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

text('Position',[43.0 0.64],'String','x_4','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

text('Position',[48.0 0.76],'String','x_5','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

text('Position',[51.0 0.80],'String','x_6','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

% 

%------------------------------------------------------------------------------------------- 

% Generating random system and measurement noises, 

  for i = 1:K 

     y(i) = x_bar(6,i);                 % declaring the system output vector  
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  end 

%  

% v(k) values 

  v = 0.1*[0.8138 0.3660 0.7837 0.3020 0.5285 0.9384 0.5108 0.2094 0.7971 

0.5887... 

       0.0826 0.9439 0.5616 0.0106 0.0780 0.1694 2.0193 0.8469 0.0754 0.0205... 

       0.0976 0.0882 0.0727 0.2225 0.0648 0.3569 0.5222 0.4881 0.2899 0.8239... 

       0.2754 0.3677 0.4354 0.9323 0.2641 0.5971 0.0110 0.7416 2.0540 0.1016... 

       0.0866 0.3303 0.0478 0.8024 0.2693 0.0961 0.8892 0.2134 0.2365 0.5276... 

       0.5592 0.9470 0.4634 0.9255 0.2098 0.6307 0.6227 0.8634 0.7727 0.2212... 

       0.3024 0.0229 0.2350 0.4300 0.9217 0.5790 0.0671 0.0188 0.2151 0.4629... 

       0.3422 0.2880 0.2577 0.0219 0.3543 0.2250 0.4794 0.2197 0.5329 0.1290... 

       0.1497 0.3331 0.9176 0.3175 0.8653 0.1700 0.8714 0.2612 0.8580 0.8134... 

       0.0915 0.6576 0.5723 0.0319 0.9263 0.6234 0.4390 0.0708 0.6126 0.6460]; 

% 

% w(k) values 

 w = 0.1*[0.2803 0.0867 0.0332 0.5675 0.5385 0.8121 0.2635 0.1602 0.4682 

0.4661... 

      0.7524 0.3665 0.0390 0.6696 0.7095 0.3193 0.0014 0.2600 0.6123 0.8596... 

      0.0014 0.2600 0.6123 0.8596 0.5303 0.4197 0.4600 0.5149 0.2736 0.3570... 

      0.8432 0.0984 0.1960 0.2775 0.0657 0.6452 0.5168 0.6050 0.1869 0.2458... 

      0.3628 0.8714 0.2749 0.8225 0.3675 0.1581 0.1916 0.3287 0.1151 0.8831... 

      0.5229 0.3143 0.0643 0.6621 0.4764 0.4518 0.5462 0.9402 0.8961 0.1994... 

      0.6241 0.4416 0.0390 0.1396 0.0945 0.5786 0.5754 0.8234 0.2556 0.0549... 

      0.1419 0.9391 0.0004 0.7252 0.4241 0.5413 0.9409 0.4511 0.1052 0.1522... 

      0.3257 0.0289 0.0321 0.1035 0.0637 0.4469 0.4002 0.5299 0.7142 0.6959... 

      0.3999 0.4878 0.7129 0.2904 0.6365 0.4831 0.0704 0.7258 0.7033 0.5189; 

  % 

      0.3911 0.3367 0.4430 0.5237 0.2742 0.4974 0.1455 0.6746 0.9415 0.1039...  

      0.3242 0.6917 0.4335 0.7753 0.7818 0.5363 0.4617 0.3405 0.6010 0.8876... 

      0.0503 0.5239 0.1385 0.6332 0.3308 0.2974 0.7899 0.9531 0.1194 0.1391... 

      0.0543 0.1359 0.6961 0.6494 0.4659 0.1812 0.1157 0.5081 0.3161 0.5777... 

      0.0492 0.7345 0.6268 0.1688 0.2789 0.4803 0.5028 0.7536 0.6620 0.0765... 

      0.9674 0.6593 0.2951 0.4722 0.1787 0.8921 0.2441 0.3722 0.2630 0.9319... 

      0.2196 0.1305 0.0837 0.1473 0.0506 0.2447 0.7006 0.1453 0.1017 0.0826... 

      0.1522 0.6781 0.2726 0.4282 0.1314 0.1403 0.4357 0.8278 0.5526 0.4303... 



 

580 

      0.0951 0.3050 0.3434 0.0819 0.3515 0.4531 0.5266 0.4590 0.6127 0.3091... 

      0.4233 0.3034 0.5620 0.5215 0.8382 0.6330 0.6480 0.2589 0.4953 0.8838; 

  % 

      0.0972 0.4766 0.1289 0.2467 0.4869 0.6560 0.2915 0.9546 0.5147 0.9437... 

      0.0388 0.9302 0.5882 0.9604 0.2440 0.4599 0.7266 0.3418 0.3258 0.6148... 

      0.9970 0.9932 0.9687 0.6732 0.4717 0.1550 0.4823 0.7175 0.0807 0.0228... 

      0.6053 0.5007 0.2416 0.8493 0.0482 0.1626 0.7202 0.0857 0.5112 0.5765... 

      0.8378 0.0015 0.0050 0.0980 0.5672 0.2962 0.1220 0.4644 0.3511 0.2086... 

      0.4856 0.9539 0.9783 0.1515 0.4512 0.3042 0.2545 0.4827 0.2441 0.2122... 

      0.7252 0.3059 0.2236 0.0336 0.0116 0.3378 0.9135 0.3613 0.2333 0.7115... 

      0.3563 0.1423 0.6004 0.6239 0.5911 0.4620 0.2812 0.2315 0.0115 0.7964... 

      0.9487 0.9000 0.1928 0.4345 0.4558 0.3943 0.4074 0.3878 0.6771 0.0638... 

      0.2962 0.9351 0.9333 0.7164 0.0986 0.9532 0.0483 0.2793 0.8657 0.2234; 

  % 

      0.3431 0.2915 0.5661 0.2071 0.8291 0.2149 0.0070 0.4825 1.5198 0.1751... 

      0.6815 0.4305 0.9821 0.0254 0.7143 0.3321 0.3414 0.0266 0.8453 0.8291... 

      0.3378 0.1035 0.6191 0.4387 0.0137 0.7207 0.1809 0.6044 0.6292 0.6048... 

      0.6486 0.9367 0.3417 0.2047 0.5591 0.8385 0.1724 0.1062 1.1373 0.3045... 

      0.1276 0.1354 0.3320 0.8728 0.6691 0.6930 0.4037 0.0567 0.3686 0.5212... 

      0.7960 0.5885 0.6633 0.0481 0.0668 0.7187 0.5919 0.5170 0.2650 0.0194... 

      0.3463 0.3354 0.4814 0.0285 0.9089 0.2464 0.0800 0.6268 0.0508 0.5786... 

      0.6188 0.6858 0.1828 0.2249 0.7342 0.9713 0.4935 0.4656 0.5151 0.1722... 

      0.9178 0.0391 0.4458 0.2793 0.5221 0.1624 0.4175 0.4793 0.0673 0.8457... 

      0.5220 0.5136 0.5696 0.0641 0.4593 0.2312 0.5567 0.9927 0.5858 0.8588; 

  % 

      0.0479 0.5867 0.0963 0.8945 0.7807 0.5681 0.8342 0.3187 0.7923 0.8837... 

      0.5444 0.1434 0.7044 0.7105 0.9456 0.5552 0.9653 0.4349 0.3384 0.8158... 

      0.9602 0.8903 0.9416 0.8945 0.1970 0.3667 0.6156 0.6511 0.5357 0.5879... 

      0.9617 0.3938 0.9216 0.4586 2.2428 0.8875 0.8164 0.5809 0.3350 0.6837... 

      0.1834 0.3671 0.3307 0.5121 0.8897 0.6548 0.5808 0.4858 0.3842 0.1800... 

      0.0436 3.3466 0.3453 0.2725 0.0607 0.7225 0.8948 0.2058 0.6792 0.1552... 

      0.8135 0.4817 0.2882 0.0546 0.3499 0.5955 0.1340 0.1896 0.6326 0.3786... 

      0.2599 0.6570 0.1265 0.4208 0.6346 0.2690 0.2499 0.0210 0.8727 0.9295... 

      0.7202 0.3758 0.7409 0.1489 0.9068 0.1736 0.2933 0.5159 0.3986 0.5638... 

      0.3598 0.9712 0.9685 0.0737 0.1259 0.0313 0.0728 0.2660 0.6031 0.7628; 

  % 
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     0.3700 0.1890 0.3952 0.4279 0.3248 0.8431 0.0974 0.0425 0.0947 0.9046... 

     0.3824 0.1351 0.3894 0.2058 0.9172 0.6317 0.6981 0.6810 0.3001 0.6461... 

     0.8561 0.4312 0.8194 0.3253 0.2557 0.9680 0.6752 0.2321 0.1298 0.5518... 

     0.7139 0.5059 0.5380 0.1109 0.4209 0.2458 0.7202 0.3663 0.4160 0.0302... 

     0.9688 0.5358 0.1493 0.5666 0.4539 0.5277 0.1192 0.3004 0.5533 0.8696... 

     0.3079 0.4611 0.9794 0.7611 0.4052 0.2746 0.1572 0.0644 0.3737 0.4373... 

     0.0221 0.5859 0.4737 0.7803 0.8222 0.3872 0.7674 0.6924 0.8030 0.1741... 

     0.2703 0.0814 0.0514 0.4320 0.6748 0.0813 0.5350 0.3564 0.6596 0.4447... 

     0.8282 0.8625 0.5585 0.1935 0.4838 0.6050 0.6791 0.2848 0.8247 0.9685... 

     0.0137 0.0555 0.0266 0.2215 0.6780 0.3025 0.2967 0.3165 0.6228 0.3034];   

% 

  zout = (y + v);  

% 

%---------------------------------------------------------------------------------------------- 

% Initializing the noise covariance matrices (must be inside iteration, otherwise the 

become constant 

% 

  I = eye(6);                                   % identity matrix of 6x6 dimensions 

%   

%-------------------------------------------------------------------------------------------------- 

figure(2) 

i = 1:K; 

subplot(2,1,1) 

%at the end of this iteration states should be xER^(NxK) 

plot(k,wk,':o','Linewidth',2.5,'MarkerSize',6) 

xlabel('Discerete time[k]','Fontsize',13) 

ylabel('System noise dynamics[meq/l]','Fontsize',13) 

title('System noise dynamic behabiour','Fontsize',14) 

grid on 

% %--------------------------------------------------------------------------------------------------- 

subplot(2,1,2) 

i = 1:K; 

plot(k,vk,':o','Linewidth',2.5,'MarkerSize',5) 

xlabel('Discrete time [k]','Fontsize',13) 

ylabel('Measurement noise dynamics[meq/l]','Fontsize',13) 

title('Measurement noise of the process','Fontsize',14) 
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grid on 

%-------------------------------------------------------------------------------------------------- 

% initialization of state estimate  

% 

x_curr = [5.0 8.0 5.0 5.0 10.0 5.0]'; 

% 

% Initializing a priori state equation variables 

% Initializing parameters for start of the calculation 

  x_curr_out = x_curr(6,1) 

  x_bar_out = x_bar(6,1) 

% 

  ekk = abs(x_bar_out - x_curr_out) 

% 

  Pkk = cov(ekk*ekk');                     % covariance P(k,k) at P(0,0)  

  if Pkk == 0 

       Pkk = 1.0; 

   end 

  Pkk = Pkk  

 % 

%-------------------------------------------------------------------------------------------------------- 

% Initialize the evaluation criteria (calculation time and least square error) 

  e0 = cputime;                                  

  Jk1 = 0; 

  x_estkk(:,1) = x_curr(:,1); 

  x_currk(:,1) = x_curr(:,1); 

%  

  k = 1;                       % initialize the stopping procedure maximum number 

  while k < K 

%-----------------------------------------------------------------------------  

%  Initial values that need to be inside the iteration index (not outside, values must 

be calculated for every moment not all moments 

%  Noises have to be moving as well, if calculated outside the circle, they become 

constants-which is incorrect 

  %  

    vk = v(k+1); 

    Vk = cov(vk*vk');           % calculating Vk = E{v(k)*v(k)^T} 
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    wk = w(:,k); 

    Wk = cov(wk*wk');           % calculating Wk = E{w(k)*w(k)^T} 

 % 

Vk1 = 0.1405; 

 % 

   Wk1 = [Wk(1,1) 0 0 0 0 0;... 

          0 Wk(2,2) 0 0 0 0;... 

          0 0 Wk(3,3) 0 0 0;... 

          0 0 0 Wk(4,4) 0 0;... 

          0 0 0 0 Wk(5,5) 0;... 

          0 0 0 0 0 Wk(6,6)]; 

%--------------------------------------------------------------------------------------------------- 

% Solving the Time Update (Prediction) equation starting with initial values of 

estimated states (x^(k,k) 

% 

%   k = k ;                                       % test condition for current k moment 

    zout_k = zout(k);                       %  

    FRk = FR(k);                             % control input for each k measurement 

    x_estk1k = A*x_estkk + B*x_estkk*FRk + B1*FRk + W*xf;  % calcualte state 

estimate x(k+1,k) for current k moment 

% 

%----------------------------------------------------------------------------------------------------- 

% Determination of the a priori covariance matrix P(k+1,k) 

% calculate prediction error covariance matrix P(k+1,k) 

   Pk1k = A*Pkk*A' + B*FRk*Pkk*A' + A*FRk*Pkk*B' + B*FRk*Pkk*FRk*B' + Wk1; 

%   

%----------------------------------------------------------------------------------------------------- 

% Measurement Update equation solution; the feedback equation 

K_k1 = Pk1k*C'*(inv(C*Pk1k*C' + Vk1));                % calculate the Kalman filter gain 

K*(k+1) 

%  

x_estk1k1 = A*x_estk1k + K_k1*(zout_k - C*x_estk1k);   % estimated state at 

moment (k+1,k+1) 

% 

% calculation of the covariance a posteriori matrix  



 

584 

   Pk1k1 = (I-K_k1*C)*Pk1k;                        % calculate correction error covariance 

matrix P(k+1,k+1) 

%-------------------------------------------------------------------------------------- 

% Updating Time Update equations for the next calculation 

% 

    xk1k1_curr(:,k) = x_estk1k1;                   % collection of estimates data points 

x^(k+1,k+1) for plotting 

    x_currk(:,k) = x_estk1k1;                      % set current estimate to be the next 

estimate 

    x_estkk = x_currk(:,k); 

  % 

    Pkk = Pk1k1;                                   % set P(k,k)for next Time Update calculation to 

current P(k+1,k+1) 

  %---------------------------------------------------------------------------------------------------- 

  % Calculating the error difference between measured and estimated states 

  % 

    error(:,k) = x_bar(:,k)-x_estk1k1;      % error difference between real & estimated 

states 

    Gk(:,k) = K_k1;                    % collection of filter gain values for the full trajectory 

  % 

    Jk = (error(:,k)'*error(:,k));          % calculate the current least square error 

    Jk1 = Jk1 + Jk;                         % calculate the improved error 

    k = k+1;                                % increase integer count for the next calculation 

   end 

  e1 = cputime;                             % end-point for processing time 

  % 

%------------------------------------------------------------------------------------------------------ 

% Display of optimalilty test values (the criterion) 

  error = abs(error);                  % final error 

  et = e1 – e0                           % overall processing time 

  Jk1                                       % final least square error  

  FRk = FRk 

% 

%------------------------------------------------------------------------------------------------------- 

% Plotting  state estimates for the full trajectory 

%  % 
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 i = 1:K–1;     

 figure(3) 

 plot(i,xk1k1_curr,':o','Linewidth',2.5,'MarkerSize',5) 

 title('Estimated states based on Kalman filter gain','Fontsize',15) 

 xlabel('Discrete time[k]','Fontsize',15) 

 ylabel('State estimates [meq/l]','Fontsize',16) 

 grid on 

 text('Position',[10.0 -0.02],'String','x^~_1','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[15.0 0.020],'String','x^~_2','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[20.0 0.025],'String','x^~_3','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[25.0 0.025],'String','x^~_4','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[30.0 0.005],'String','x^~_5','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[50.0 0.05],'String','x^~_6','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

% 

 

 figure(4) 

 k = 1:K–1; 

 plot(k,Gk,'o','Linewidth',2.5,'MarkerSize',5) 

 title('Kalman filter gain values over full trajectory','Fontsize',16) 

 xlabel('Discerete time[k]','Fontsize',16) 

 ylabel('Kalman filter gains for all stages','Fontsize',16) 

 grid on 

%  

%----------------------------------------------------------------------------------------------------- 

% % Plotting error difference between measured and estimated states 

% 

 figure(5) 

 j = 1:K–1; 

 plot(j,error,'o','Linewidth',2.5) 

 xlabel('Discrete time [k]','Fontsize',16) 
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 ylabel('Error difference [meq/l]','Fontsize',16) 

 title('Error difference between measured & estimated states','Fontsize',16) 

 grid on 

 text('Position',[15.0 0.35],'String','e_x_1','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[25.0 0.45],'String','e_x_2','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[35.0 0.5],'String','e_x_3','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[45.0 0.65],'String','e_x_4','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[55.0 0.70],'String','e_x_5','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

 text('Position',[65.0 0.82],'String','e_x_6','FontName','Times New 

Roman','Fontsize',22,'FontWeight','Bold','FontAngle','Italic') 

%  

%----------------------------------------------------------------------------------------- 

% Single plots each plotted on a single graph 

figure(5) 

i = 1:K 

plot(i,x_kk(:,i)) 

grid on 

plot(i,xk1k1_curr(6,i)) 

title('Standard Kalman Filter State Estimation','FontSize',9) 

ylabel('x^6 [meq/l]','FontSize',9) 

xlabel('time[s]','FontSize',9) 

% 

plot(i,xk1k1_curr(5,i)) 

title('Standard Kalman Filter State Estimation','FontSize',9) 

ylabel('x^5 [meq/l]','FontSize',9) 

xlabel('time[s]','FontSize',9) 

%  

plot(i,xk1k1_curr(4,i)) 

title('Standard Kalman Filter State Estimation','FontSize',9) 

ylabel('x^4 [meq/l]','FontSize',9) 

xlabel('time[s]','FontSize',9) 
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%  

plot(i,xk1k1_curr(3,i)) 

title('Standard Kalman Filter State Estimation','FontSize',9) 

ylabel('x^3 [meq/l]','FontSize',9) 

xlabel('time[s]','FontSize',9) 

% 

plot(i,xk1k1_curr(2,i)) 

title('Standard Kalman Filter State Estimation','FontSize',9) 

ylabel('x^2 [meq/l]','FontSize',9) 

xlabel('time[s]','FontSize',9) 

% 

plot(i,xk1k1_curr(1,i)) 

title('Standard Kalman Filter State Estimation','FontSize',9) 

ylabel('x^1 [meq/l]','FontSize',9) 

xlabel('time[s]','FontSize',9) 

%  

%-------------------------------------Program end---------------------------------------- 

 


