
EXPLORATION AND APPLICATION OF MISR HIGH RESOLUTION RAHMAN-
PINTY-VERSTRAETE TIME SERIES 

by 

ZHAO LIU 

Thesis submitted in fulfilment of the requirements for the degree 
Doctor of Engineering: Electrical Engineering 

in the Faculty of Engineering at the 
Cape Peninsula University of Technology 

Supervisor: Prof. Michel M. Verstraete 
Co-supervisors: Prof. Gerhard de Jager, Prof. Robert van Zyl 

Bellville 
June 2017 

CPUT copyright information 

The thesis may not be published either in part (in scholarly, scientific or technical journals), or 

as a whole (as a monograph), unless permission has been obtained from the University 



i 

DECLARATION 

I, ZHAO LIU, declare that the contents of this thesis represent my own unaided work, and that 

the thesis has not previously been submitted for academic examination towards any 

qualification. Furthermore, it represents my own opinions and not necessarily those of the 

Cape Peninsula University of Technology. 

Signed Date 



ii 

ACKNOWLEDGEMENTS 

I wish to thank: 

• Prof. Michel M. Verstraete, for his immense knowledge and patient guidance.

• Prof. Robert van Zyl and Prof. Gerhard de Jager, for their support for and promotion of

this project.

• My family, for their unlimited love.

• Ms Melanie Stark, for her editing work on this thesis.

The financial assistance of French South Africa Institute of Technology (F’SATI) towards this 

research is acknowledged. 



 

iii 

RESEARCH OUTPUT 

Peer reviewed scientific journal paper 

Title: Handling outliers in model inversion studies: A remote sensing case study using MISR-

HR data in South Africa 

Authors: Zhao Liu, Michel M. Verstraete and Gerhard de Jager 

Status: Published by South African Geographical Journal in June 2017, with DOI number: 

10.1080/03736245.2017.1339629. 

 

Presented poster 

Title: Handling outliers in model inversion studies: A remote sensing case study using MISR-

HR data in South Africa 

Authors: Zhao Liu, Michel M. Verstraete and Gerhard de Jager 

Place of presentation: The 37th International Symposium on Remote Sensing of Environment 

held in Tshwane, South Africa 8 to 12 May 2017 

 

 

 

 

 

 

 



 

iv 

ABSTRACT 

Remote sensing provides a way of frequently observing broad land surfaces. The availability 

of various earth observation data and their potential exploitation in a wide range of socio-

economic applications stimulated the rapid development of remote sensing technology. Much 

of the research and most of the publications dealing with remote sensing in the solar spectral 

domain focus on analysing and interpreting the spectral, spatial and temporal signatures of the 

observed areas. However, the angular signatures of the reflectance field, known as surface 

anisotropy, also merit attention. The current research took an exploratory approach to the land 

surface anisotropy described by the RPV model parameters derived from the MISR-HR 

processing system (denoted as MISR-HR anisotropy data or MISR-HR RPV data), over a 

period of 14+ years, for three typical terrestrial surfaces in the Western Cape Province of South 

Africa: a semi-desert area, a wheat field and a vineyard area. The objectives of this study were 

to explore (1) to what extent spectral and directional signatures of the MISR-HR RPV data may 

vary in time and space over the different targets (landscapes), and (2) whether the observed 

variations in anisotropy might be useful in classifying different land surfaces or as a 

supplementary method to the traditional land cover classification method. The objectives were 

achieved by exploring the statistics of the MISR-HR RPV data in each spectral band over the 

different land surfaces, as well as seasonality and trend in these data.  

The MISR-HR RPV products were affected by outliers and missing values, both of which 

influenced the statistics, seasonality and trend of the examined time series. This research 

proposes a new outlier detection method, based on the cost function derived from the RPV 

model inversion process. Removed outliers and missing values leave gaps in a MISR-HR RPV 

time series; to avoid introducing extra biases in the statistics of the anisotropy data, this 

research kept the gaps and relied on gap-resilient trend and seasonality detection methods, 

such as the Mann-Kendal trend detection and Lomb-Scargle periodogram methods. 

The exploration of the statistics of the anisotropy data showed that RPV parameter rho 

exhibited distinctive over the different study sites; NIR band parameter k exhibits prominent 

high values for the vineyard area; red band parameter Theta data are not that distinctive over 

different study sites; variance is important in describing all three RPV parameters. The 

explorations on trends also demonstrated interesting findings: the downward trend in green 

band parameter rho data for the semi-desert and vineyard areas; and the upward trend in blue 

band parameters k and Theta data for all the three study sites. The investigation on seasonality 

showed that all the RPV parameters had seasonal variations which differed over spectral 
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bands and land covers; the results confirmed expectations in previous literature that parameter 

k varies regularly along the observation time, and also revealed seasonal variations in the 

parameter rho and Theta data. 

The explorations on the statistics and seasonality of the MISR-HR anisotropy data show that 

these data are potentially useful for classifying different landscapes. Finally, the classification 

results demonstrated that both red band parameter rho data and NIR band parameter k data 

could successfully separate the three different land surfaces in this research, which fulfilled the 

second primary objective of this study. This research also demonstrated a classification 

method using multiple RPV parameters as the classification signatures to discriminate different 

terrestrial surfaces; significant separation results were obtained by this method. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research problem statement 
Remote sensing 1  from space platforms has changed the way people apprehend and 

comprehend the dynamic evolution of their environment. This technology offers the capability 

of repeatedly acquiring data over very large areas, at spatial and temporal frequencies that 

are appropriate for a broad range of modelling efforts and applications, and at a small fraction 

of the cost that would be incurred with traditional methods of sending observers in the field. 

Earth observation (EO) started in earnest in the second half of the 20th century, though 

historically it evolved from earlier monitoring and surveillance approaches such as airborne 

photography. The availability of EO satellites stimulated numerous studies, but technology 

evolved rapidly, generating ever richer and more complex data (Feuerbacher & Stoewer, 

2006). These, in turn, have progressively contributed to a growing range of socio-economic 

applications with clear benefits for societies, including, among others, environmental change 

detection, risk reduction and disaster management, improvements in the supply of energy and 

water, weather forecasting, early warning systems, sustainable agriculture, and biodiversity 

monitoring and conservation (Battrick, 2005). 

Remote sensing technology plays a central role in promoting a global, holistic understanding 

of the evolution of climate and the environment (Liang, 2008). The rational sustainable 

development strategies proposed by policy makers and encapsulated in the United Nations’ 

Sustainable Development Goals (SDGs, see 

https://www.un.org/sustainabledevelopment/sustainable-development-goals/.) ideally hinge 

on a general understanding of these global phenomena, which in turn, largely derives from an 

interpretation of EO data. The bulk of the research and the vast majority of the publications 

dealing with remote sensing in the solar spectral domain focus on analysing and interpreting 

the spectral, spatial and temporal signatures of the observed areas. However, all structured 

surfaces in terrestrial environments exhibit strongly varying angular reflectance 

characteristics, also known as reflectance anisotropy, which appears to be largely controlled 

by vegetation and soil structure, and may be characterised on the basis of multi-angular 

remote sensing data. Vegetation structure is critical in modelling the carbon cycle and global 

land systems (Dandois & Ellis, 2010). Since the spectral signature of terrestrial targets is not 

                                                
1 See full definition and discussion of this term in Chapter 2 below. 
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sensitive to structural information, their angular signature (anisotropy) offers a unique 

opportunity to document other aspects of the environment (Pinty et al., 2002). The Multi-angle 

Imaging SpectroRadiometer (MISR) is a very appropriate instrument for this purpose (Diner 

et al., 1999; Pinty et al., 2002). It was designed and built by the United States’ National 

Aeronautical and Space Administration (NASA)’s Jet Propulsion Laboratory (JPL) and hosted 

on NASA’s Terra satellite. The geophysical products describing land surfaces derived from 

MISR data, at spatial resolutions of 1.1 km or coarser, are freely available and accessible from 

the NASA Langley Research Center (LaRC)’s Distributed Data Active Archive (DAAC). These 

data were analysed using the MISR-High Resolution (MISR-HR) processing system to 

generate a set of Rahman-Pinty-Verstraete (RPV) products that represent the anisotropy of 

arbitrary targets, using three separate parameters (Verstraete et al., 2012).  

The current study investigated the surface reflectance anisotropy in typical environments 

found throughout the Western Cape Province of South Africa, including a semi-desert region, 

a wheat field and a vineyard area. Specifically, the current research explored to what extent 

the description of the anisotropy of land surfaces, as provided by the RPV model parameters 

derived from the MISR-HR processing system, could be used to characterise those 

environments, as such an analysis would have interesting and important implications in a 

broader context, for instance improving land cover classification schemes. Previous work in 

the literature (Pinty et al., 2002; Armston, Scarth, Phinn & Danaher, 2007) investigated the 

MISR anisotropy on a particular day or for a limited set of dates. By contrast, this research 

project investigated the quality and performance of these MISR-HR RPV products over a 

period of 14+ years, from March, 2000 to May, 2014.  

While this thesis focused on the exploration of the MISR-HR RPV parameters time series data 

for the three typical landscapes, using statistical tools to detect trend and seasonality, it 

became necessary to address the problem of outliers because of their impact on the 

estimation of time series characteristics.  

1.2 Research questions 
This study aims to answer the following research question: 

Is the anisotropy data, described by MISR-HR RPV parameters, able to distinguish between 

the selected typical landscapes: a semi-desert region, a wheat field and a vineyard area? 

To address this research question, the following research sub-questions should be 

considered: 



 3 

• What are the statistics of the MISR-HR RPV time series for the three study sites? 

• Is there a long-term trend in the MISR-HR RPV time series in each spectral band over 

the three selected targets? 

• Is there a seasonal variation in the MISR-HR RPV time series for different spectral 

bands over different land covers?  

• Are the statistics, trend or seasonality of the MISR-HR RPV time series distinctive 

over different landscapes? 

 

1.3 Objectives 

The primary objectives of this research were to explore:  

• To what extent spectral and directional signatures of the MISR-HR RPV data may vary 

in space and time over different targets (landscapes).  

• Whether the observed variations in anisotropy might be useful in classifying different 

land surfaces or as a supplementary method to the traditional land cover classification 

method.  

Since the presence of outliers affect the statistics, trend and seasonality of the examined 

MISR-HR RPV data, an improper way to detect outliers may lead to biased analysis of the 

results. In order to complete the primary objectives, a sub-objective, namely:  

• To find a method dealing with those unexpected outliers in the RPV parameters 
properly and rationally, 	

should be achieved firstly.  

1.4 Significance of research 
This research fills some of the gaps in the studies on the angular signatures of surface 

reflectance in the context of remote sensing, which are remarkably less in literature than the 

investments on the spectral, spatial and temporal signatures of the observed area. This study 

initially summarized the statistical characteristics of the MISR-HR RPV time series over 

different terrestrial surfaces, and revealed the trend and seasonality in the series. If successful 

this research could show that the anisotropy data can be used for classifying typical 

landscapes. It is hoped that further advances in this direction may lead to a new or better 

characterization of land surfaces, and improved downstream applications, such as monitoring 

climate changes and environmental degradation, or to support policy making and the 

management of natural resources. 
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1.5 Methodology 
The objectives of this research were achieved by examining the statistics of the MISR-HR 

RPV time series in each spectral band over different land covers and exploring the trend and 

seasonality in these data. The flowchart of this research methodology is shown in Figure 1.1. 

 

Figure 1.1: Conceptual flowchart of the research methodology. 

 

This research used the cost function of the RPV model inversion process (Rahman, Pinty & 

Verstraete, 1993) to detect and manage the outliers in the MISR-HR RPV time series. This 

cost function indicates how well the inversion model fits the measurement data, and is thus a 

reasonable indicator of the degree to which variations in the data can be explained by the 

model. While the cost function method may not detect all the possible outliers, it does permit 

the elimination of data points that are spurious, whether they appear to be outliers or not. A 

traditional statistical outlier detection method, the box plot method, was employed to 

compensate the cost function method.  

Missing values in remote sensing data are also quite common. To avoid introducing extra 

biases in the statistics of the MISR-HR time series, this research kept the missing values as 

gaps and relied on gap resilient trend and seasonality detection methods. The trend detection 

method used in this research was the Mann-Kendall test (Mann, 1945; Kendall, 1975) because 
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this method can be applied without the assumption of “normally distributed” for the analysed 

time series.  

Detecting seasonality in a time series may be quite challenging when there are data gaps in 

the series. The Lomb-Scargle periodogram was employed in the current research to detect 

seasonality from the unevenly spaced MISR-HR RPV time series. Once seasonality was 

detected, the seasonal component was retrieved using the reconstruction method proposed 

by Hocke and Kampfer (2009). The retrieved seasonal part of the analysed time series was 

used to reveal the vegetation signatures of the observed area. 

Finally, the classification signatures for each environment were explored by comparing the 

statistics of the MISR-HR RPV time series over the different land covers, as well as their 

seasonal variations. In this case, the 𝑘-nearest neighbour (𝑘NN) classification method was 

found to be simple and reliable. The different environments were classified by a single MISR-

HR RPV product combined with the 𝑘NN classifier. Any arbitrary target can be represented 

by the three parameters of the MISR-HR RPV products, all of which potentially may be used 

as classification signatures. Classification of the different environments was also applied using 

the multiple MISR-HR RPV parameters data in this study.  

1.6 Outline of this thesis 
This thesis is structured as follows:  

• Chapter 2 provides background on remote sensing, the MISR instrument and the specific 

sites investigated in this context, and reviews the literature.  

• Chapter 3 focuses on illustrating the outlier and missing value handling methods followed 

in this research. A new outlier detection and processing method is proposed, based on 

the cost function derived from inverting the RPV model against observations.  

• Chapter 4 analyses and discusses the trend and seasonal variations in the MISR-HR RPV 

time series. A monotonic trend detection method which is applied on the MISR-HR 

anisotropy data is shown. The seasonality detection method used in this research is 

introduced in this chapter, as well as the seasonal component reconstruction method.  

• Chapter 5 describes how the temporal, spectral and anisotropy information was used in 

distinguishing different environments. The performance of RPV parameters to classify 

different land surfaces is explored and compared to more traditional approaches.  
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• Chapter 6 summarises the findings and suggests possible future work based on this 

research.  
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CHAPTER 2 

BACKGROUND, LITERATURE REVIEW, DATA SOURCE AND TEST SITES 

 

2.1 Definition and purpose of remote sensing 

Remote sensing is broadly defined as the acquisition of information about an object without 

being in actual contact with it. It implies the acquisition and interpretation of signals that have 

interacted with the target of interest before they are absorbed in the sensor (Elachi & Van Zyl, 

2006; Chuvieco & Huete, 2010). As a matter of principle, these signals could be carried out 

as acoustic waves, electromagnetic radiation (EMR), or variations in the gravity field (Elachi 

& Van Zyl, 2006), though in practice EO from space platforms relies essentially on EMR 

(Sabins, 1987; Kerle, Janssen & Huurneman, 2001). The expression ‘remote sensing’ was 

coined in the 1960s by geographers at the U.S. Office of Naval Research to describe the 

observation of the Earth from a remote platform, using the aerial photography equipment 

available at that time (Cracknell & Hayes, 2007; Chuvieco & Huete, 2010). As space 

technology developed, remote sensing began to refer specifically to the exploitation of 

measurements obtained from artificial satellites (Cracknell & Hayes, 2007). Remote sensing, 

in the general sense, can refer to the analysis of EMR signals in a broad range of spectral 

domains, by active or passive sensors, for the purpose of characterising any given target of 

interest (e.g., the atmosphere, the oceans, land surfaces, the biosphere or the cryosphere) 

(Tempfli, Kerle, Huurneman & Janssen, 2009). The present work, however, is concerned with 

the exploitation of measurements obtained exclusively in the solar spectral range, and 

specifically from terrestrial environments. 

The primary objective of remote sensing over land surfaces is to characterise the past and 

current states, as well as the dynamic evolution, of terrestrial environments (Coppin et al., 

2004). A central motivation for this effort arises from the expectation that a proper 

understanding of the processes at work may provide a basis for predicting the future evolution 

of the observed system, or at least some range of likely scenarios concerning the future. 

2.2 Interaction of solar radiation with the atmosphere and surface targets 

The atmosphere, which is composed of various gases, particulate matter (aerosols), and 

clouds (water droplets), plays a crucial role in Earth Observation from space (Tempfli et al., 

2009). 
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• Clouds constitute the most significant hindrance by far to the observation of the planetary 

surface in the solar spectral domain, as they become quickly opaque and hide the surface (or 

cast shadows on it) when their optical thickness increases. 

• Effectively taking aerosol effects into account presents a significant scientific challenge 

because of the diversity of materials (e.g., dust, smoke, pollution, sea salt, black carbon), the 

wide range of particle sizes and shapes, as well as the complex ways in which they interact 

with light (e.g., Mie scattering). 

• The gaseous components exhibit their own spectral absorption bands, but these are the 

easiest perturbations to deal with, either because the observations that are most useful for 

characterising the surface are acquired outside the main absorption bands, or because these 

spectral bands are well-known and can be corrected for, provided the amount of gas is known, 

which is the case for most stable atmospheric constituents (oxygen, ozone, carbon dioxide), 

outside of water vapour. 

Consequently, the surface can be quantitatively characterised only in the absence of clouds, 

and provided the radiative effects of aerosols and gases have been taken into account. 

Solar radiation interacts with material objects in one of two ways: it is either absorbed or 

scattered (i.e., the direction of propagation is modified). In the special case where the target 

of interest can be represented by a planar surface, the scattering component can itself be 

separated in two contributions: the fraction of the radiation that is scattered back on the same 

side of the plane from which the light originally came (this is called the reflectance of the 

surface) and the fraction of the radiation that traverses the surface and continues to propagate 

on the other side of that plane (called the transmission). Clearly, the solar radiation that is 

absorbed in the environment can never be observed; only the scattered component is 

measurable by remote sensing. 

It is common in remote sensing theoretical studies to assume that surfaces reflect solar light 

equally well in all directions (Kimes & Kirchner, 1982). Such surfaces are called 'Lambertian'. 

However, no natural surface exhibits such a property (Diner et al., 1999). In fact, it is virtually 

impossible even to build an artificial surface that scatters incoming light in such a way, in all 

spectral bands. The smoother the material surface, the more it tends to behave like a mirror 

(thereby reflecting incoming light very preferentially in a direction symmetrical to the incoming 

direction with respect to the surface normal); and the rougher the surface, the more likely it 

will feature a 'hot spot' in the backscattering direction (i.e., a preferential reflectance in the 
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exact opposite direction of illumination). This latter situation is particularly noticeable with 

structured, three-dimensional, opaque materials (Rahman, Pinty & Verstraete, 1993). For 

these reasons, the reflectance of natural as well as man-made surfaces is generally called bi-

directional: it strongly depends on both the illumination and observation directions. 

In summary, the chemical composition of a surface target controls its spectral reflectance 

through the absorption bands of the materials involved, while its physical structure and 

properties largely determine the directional distribution of reflected light. The latter, referred to 

as the anisotropy of the material, is itself somewhat spectrally dependent. Hence, it is 

expected that the combined analysis of the spectral and directional signatures of typical 

terrestrial targets could lead to a better characterisation of the environment, or at the very 

least, a more correct retrieval of its physical and chemical properties. 

2.3 Data interpretation 

Data interpretation is the process of extracting useful information from (in this case, remote 

sensing) data. Such information is necessarily derived from the variations in the observed 

signals with respect to independent variables that describe how the measurements are 

acquired (Verstraete & Pinty, 2000). Five main sources of variability have proven useful in 

optical remote sensing (Gerstl, 1990): spatial, temporal, spectral, directional and polarimetric. 

This latter approach will not be addressed further here, as the MISR instrument used here as 

the main source of remote sensing data does not deliver any polarimetric data. As noted 

above, spectral variations provide a direct way to infer the chemical nature of the targets, while 

directional variations hint at their structure. The spatial and temporal variations permit the 

identification of the horizontal size and shape of the targets, and their dynamic evolution, 

respectively. 

While early efforts to exploit remote sensing data focused on spatial aspects (e.g., pattern 

recognition, for instance for the purpose of mapping), or on spectral variations (e.g., 

distinguishing bare soils from vegetation) (Gerstl, 1990), intense research and significant 

progress have taken place over the last few decades, resulting in the design, implementation 

and evaluation of advanced algorithms to quantitatively characterise the physical, chemical 

and biological properties of terrestrial targets (Diner et al., 1999). These developments, in turn, 

have stimulated many new applications, as well as the design of more sophisticated 

instruments, with improved sampling in all four main domains of variability, with better signal-

to-noise ratio, and with on-board calibration mechanisms to guarantee the long-term 

performance and usefulness of the data (Diner et al., 1999). As a result, the methods and 
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approaches used early on (say before about 1990) have become totally obsolete and largely 

irrelevant for the analysis and exploitation of data generated by modern instruments. 

To the extent that quantitative information on the radiative properties of targets can be derived 

from an analysis of signals acquired by space-borne instruments, these can, in turn, be 

exploited, together with information derived from other sources, to infer biogeophysical 

characteristics of the environment and serve in a multitude of applications in support of the 

management of natural resources, sustainable economic development, planning, etc., in 

addition to further research (Liu et al., 2014; Moura et al., 2012; Pisek et al., 2013). 

2.4 Multi-angle remote sensing 
Observing an object from different angles offers a unique opportunity to obtain information on 

the target that is not retrievable by standard spectral methods (Pinty et al., 2002). Diner et al. 

(1999) categorised multi-angle remote sensing into “simultaneous” and “sequential” observing 

systems. “Simultaneous” systems measure the same area on a land surface at more than one 

angle, and within a period of at most several minutes; “sequential” systems refer to the 

accumulation of data from a cross-track scanning instrument over a period of several days or 

weeks. The typical “simultaneous” multi-angle systems2 include MISR, POLDER and CHRIS; 

“sequential” systems include AVHRR and MODIS (Liang, 2008), for instance. 

2.4.1 The Multi-angle Imaging SpectroRadiometer instrument 

The Multi-angle Imaging SpectroRadiometer (MISR) instrument was designed and built by 

NASA’s Jet Propulsion Laboratory and hosted on NASA’s Terra satellite. MISR features nine 

digital cameras, with one pointing at nadir (0°), while the others are arrayed forward and 

backward of nadir, nominally at 26.1°, 45.6°, 60.0°, and 70.5° respectively. All nine cameras 

observe the same area on the ground within a period of less than seven minutes. Each camera 

has four spectral bands, in the blue, green, red and NIR (near-infrared), respectively. This 

instrument therefore features 36 data channels in total. The native spatial resolution of the 

MISR instrument is 275 m in all data channels. However, to reduce the transmission data rate 

to the ground receiving station, data are typically transferred (in global mode) at the full 

resolution of 275 m for all four nadir spectral bands and for the eight off-nadir red channels, 

and averaged to 1.1 km for the other 24 data channels (non-red and off-nadir): the data 

compression ratio is thus 16:1 in those channels. The polar-orbiting Terra platform operates 

on a 16-day cycle of 233 orbits each. The MISR instrument offers a complete global coverage 

                                                
2 See List of Abbreviations for the full names of these systems and instruments. 
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of the planet in at most nine days, though the actual frequency of revisit is highly dependent 

on latitude and varies from two days near the poles to nine days at the Equator. 

2.4.2 MISR data and MISR-HR products 

All land surface products generated by the standard MISR processing at NASA Langley are 

provided at the 1.1 km spatial resolution, or coarser. However, Verstraete et al. (2012) showed 

that it is in fact possible to derive a whole suite of surface characteristics at the full (native) 

spatial resolution of the sensor (275 m). The processing system required to generate such 

high spatial resolution (MISR-HR) products has been installed and is operational at the Global 

Change Institute (GCI) of the University of the Witwatersrand in Johannesburg, South Africa. 

This thesis is directly and exclusively focused on the analysis and evaluation of these high-

resolution products. 

The MISR-HR RPV product is one of the outcomes of this processing system; it describes the 

anisotropy of land surfaces. This product is generated by inverting the RPV model against 

MISR-HR atmospherically-corrected surface reflectance data (Verstraete et al., 2012). The 

RPV model itself is a parametric model used to describe the bidirectional reflectance of 

arbitrary terrestrial surfaces, proposed by Rahman, Pinty and Verstraete (Rahman et al., 

1993). This model is inverted against atmospherically-corrected bidirectional reflectance data, 

as explained in Verstraete et al. (2012). It requires only three independent parameters to 

represent the anisotropy of arbitrary natural surfaces such as bare ground or vegetation 

(Rahman et al., 1993). The model equations are as follows:  

ρ$	& θ(, θ, ϕ;	ρ(, Θ, k = 	 ρ(M θ(, θ, k F12 g;	Θ12 H(ρ(, G)     (2.1) 

M θ(, θ, k = 	 89$
:;<=>89$:;<=

(89$=>?89$=)<;:
     (2.2) 

F12 Θ12, g = 	 @ABCD
E

[@?GBHI89$J?BCD
E ]L/E

     (2.3) 

H ρ(, G = 	1 + @AP>
@?2

     (2.4) 

G = [tanGθ( + tanGθ − 2tanθ(tanθcosϕ]@/G     (2.5) 

cosg = cosθcosθ( + sinθsinθ(cosϕ     (2.6) 
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Here, ρ$  is the surface bidirectional reflectance factor; θ  and θ(  are the observation and 

illumination zenith angles; ϕ  is the relative azimuth angle between the illumination and 

observation directions; ρ(, k, Θ	are the parameters to be derived by the inversion procedure. 

These three parameters are denoted as rho, Theta and k, respectively, for the convenience 

of typing in the rest of this thesis. rho characterises the overall reflectance intensity of the 

surface and k indicates the shape of the surface reflectance anisotropy. Specifically, k equals 

to 1.0 represents a Lambertian surface, while k values lower or greater than 1.0 corresponds 

to a bowl-shape or bell-shape surface anisotropy pattern, respectively. The bowl-shape or 

bell-shape pattern anisotropy means the spectral bidirectional reflectance factor (BRF) values 

increase or decrease with the illumination or observation zenith angle. Parameter Theta 

controls the relative amount of forward and backward scattering.  

Along with the generation of the three main model parameters, the cost function expresses 

the ability of the expected model to account for the variability in measurement data. The cost 

function is defined as follows: 

𝐽 𝑋 = @
G
[ 𝑀 𝑋 − 𝑑 ^𝐶`A@ 𝑀 𝑋 − 𝑑 + 𝑋 − 𝑋abcdb

^
𝐶efghig
A@ 𝑋 − 𝑋abcdb ]     (2.7) 

where 𝑀(𝑋) stands for the RPV model being inverted against the data, 𝑋 is the vector of 

model parameters, 𝑑 is the vector of available measurements, and 𝐶`A@ and 	𝐶efghig
A@ are the 

inverse uncertainty covariance matrices for the data and prior values respectively, and 

𝑋abcdb	represent the prior values of model parameters. 

The process of inverting the RPV model against the MISR-HR reflectance values consists in 

minimizing this cost function, following a steepest descent algorithm, as defined by the adjoint 

model of 𝐽, and generates posterior values of the model parameters 𝑋adjk (Tarantola et al., 

1987; Errico, 1997; Giering & Kaminski, 1998; Tarantola, 2005). The value of the cost function 

indicates to what extent the model was able to explain the variability of the data: the smaller 

that value, the better fit between the RPV model and the observed bidirectional reflectance 

factors; excessively large cost function values indicate that the RPV model is incapable of 

‘explaining’ the variability present in the measurement data, or, equivalently, that one or more 

measurements do not match the pattern expected by the model. 

2.5 Study areas 
Three different sites in the Western Cape Province of South Africa were chosen to investigate 

the variations of surface anisotropy data: a semi-desert area, a wheat field and a vineyard 

area. Figure 2.1 displays a general map of the Western Cape Province in South Africa, while 
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Figure 2.2 shows the specific location of the three sites within that Province. The reason for 

choosing the semi-desert area was to explore how MISR-HR RPV parameters vary in an 

uncultivated, uninhabited and presumably temporally stable environment. Compared to the 

semi-desert area, the wheat field is a farmed area with an obvious seasonal signature, while 

the vineyard area provides a more complex example of cultivated fields in the Western Cape 

Province. 

 

 

Figure 2.1: General map of the Western Cape Province of South Africa. 
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Figure 2.2: Location of the three sites used in this thesis, within the Western Cape Province. 

 

The semi-desert study area, which lies to the south of the Tankwa Karoo National Park in 

South Africa, is located between 32.7528°S to 32.7312°S and 19.8305°E to 19.8631°E. The 

term ‘semi-desert’, also referred to as ‘steppe’ in some literature, points to ecosystems that 

arise between fully vegetated areas and desert regions. Vegetation in this study area is very 

sparse, precipitation is very limited and the sky is often clear. Figures 2.3 shows a satellite 

image of this area, with a central pixel and four boundary pixels marked by yellow pins. A 

square matrix of 11 x 11 = 121 MISR-HR pixels covers this area. The geometric coordinates 

of a pixel were used to distinguish each pixel in the study area: for instance, s05_+000_+000 

points to the central pixel of the particular site (s05 is the index of this site). The geometric 

coordinates range from -005 to +005 in the across- and along- track directions (corresponding 

roughly to east-west and north-south, respectively). Measurements over this area were 

obtained from March, 2000 to May, 2014, resulting in an observation period of 14+ years. RPV 

model parameters were derived in the four spectral bands of the instrument, namely the blue, 

green, red and NIR bands.  
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Figure 2.3: Satellite image (acquired on 7 August, 2005) of the study semi-desert area located 
between 32.7528°S to 32.7312°S and 19.8305°E to 19.8631°E. The distance between the two 
northernmost pins (or any two pins forming the sides of the square area) is 10 * 275 m = 2,750 
m or 2.75 km. 
Image data from Google Earth: ©2016 Cnes/Spot Image 

 

Pixel s05_+000_+001 (marked in Figure 2.3 by a pink pin), close to the central pixel 

(s05_+000_+000), is located at 32.7445°S and 19.8464°E and taken to be representative of 

that environment. The distance between pixel s05_+000_+001 and the central pixel is 275m.  

A wheat field was also studied in this investigation, since wheat is one of the major crops in 

South Africa and this cultivation exhibits obvious seasonal variation. Wheat is an annual winter 

crop, which in South Africa is usually planted between late April and early July, and harvested 

in November and December. The wheat field site is located to the north of the town of 

Malmesbury, with latitude ranging from 33.27°S to 33.29°S and longitude ranging from 

18.66°E to 18.69°E. The satellite view of this area (supplied by Google Earth) is shown in 

Figure 2.4. Similar to the semi-desert area, there are a total of 121 pixels in the observed 

wheat field, and the four boundary points and central point are marked in yellow pins on the 

image. There are a number of fields in the observation area; as the planting time of these 

fields may be different, the colour of each field varies. Since the central point, s10_+000_+000, 
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is covered with pure wheat cultivation (no trees or houses nearby), the MISR-HR anisotropy 

data of this pixel can be used for representing the anisotropy features of the whole area. 

 

 

Figure 2.4: Satellite image (acquired on 9 July 2005) of the study wheat field located between 
33.27°S and 33.29°S, 18.66°E and 18.69°E. The distance between the two northernmost pins (or 
any two pins forming the sides of the square area) is 10 * 275 m = 2,750 m or 2.75 km. 
Image data from Google Earth: Image © 2016 DigitalGlobe 

 

The vineyard area is one of the most topographically and economically interesting areas in 

the Western Cape, South Africa. The vineyard site is located in the Hex River Valley, with 

latitude 33.44°S to 33.46°S and longitude 19.65°E to 19.68°E. The Hex River Valley is one of 

the main table grape cultivation areas in the country and has the longest harvesting period. 

Figure 2.5 shows satellite view of this area obtained on 2 October 2005, supplied by Google 

Earth. Again, the four boundary pixels and one central pixel are marked on this satellite image.  
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Figure 2.5: Satellite image (acquired on 2 October 2015) of the study vineyard area located 
between 33.44°S and 33.46°S, 19.65°E and 19.68°E. The distance between the two 
southernmost pins is 10 * 275 m = 2,750 m or 2.75 km. 
Image data from Google Earth: ©2016 DigitalGlobe 

 

As can be seen from this image, the vineyard area is long and narrow; therefore, it was not 

possible to get a square study area with 121 pixels (11 pixels in each of the along- and across-

track directions) as in the semi-desert area and the wheat field. Due to partial obscuration of 

the surface by the local topography, only 108 pixels with full spectral bands data were available 

from the MISR-HR processing system for this study area. A few pixels lack all four spectral 

bands data, for instance, the boundary pixels in the northern part (s12_-005_-005 from the 

northwest to s12_+002_-005 on the northeast corner); and a few pixels lack part of the spectral 

bands data, for example, pixels s12_-001_-004 and s12_-002_-004 which have no data in the 

blue, red and NIR spectral bands. The results described below are based only on the 108 

pixels available for this vineyard area.  

Compared to the wheat field, the satellite images also indicate that there are more individual 

cultivated plots, and also more buildings beside the cultivated land, in this area. Pixel 

s12_+000_-003 (marked by a pink pin) was used as an example to demonstrate the variation 

of the anisotropy data in this area, since it represents a pure grape cultivation area without 

houses or planted trees nearby. This area is not exclusively a grape cultivation area, however: 
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there are uncultivated areas, for instance, around pixel s12_+005_+005, and probably other 

types of crops either mixed in with the grapevines or in adjacent fields.  

2.6 Exploratory data analysis for the three selected sites 
Simple Exploratory Data Analysis (EDA) tools were applied to some of the MISR–HR RPV 

products available to gain an appreciation for the diversity of land cover on these three sites. 

2.6.1 RPV parameter rho 
The RPV parameter rho describes the brightness of the reflectance in the selected spectral 

band. Low values are expected in the red spectral band whenever vegetation is present in the 

target area, because of the strong absorption capacity of chlorophyll. Rho in the red spectral 

band should therefore discriminate easily between vegetated and bare ground. 

Figure 2.6 shows how this parameter rho varies in time, for the selected pixels of the three 

study sites. The outliers in the parameter rho time series were processed by the method 

introduced in Chapter 3. As can be seen, the time series for the semi-desert area is relatively 

smoother than that for the vineyard area, and both of those exhibit smaller seasonal variations 

than the wheat field. The average rho value for the semi-desert site is somewhat higher than 

for the vineyard site, as expected because a lower vegetation cover implies a larger proportion 

of bright bare soil. 
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Figure 2.6: Time series plots of red band parameter rho for the semi-desert area*, the wheat 
field** and the vineyard area***, respectively. 
* Location specified by Path 174, Block 117, Line 93 and Sample 798;  
** Location specified by Path 174, Block 117, Line 358 and Sample 431;  
*** Location specified by Path 174, Block 117, Line 381 and Sample 773 

 

A box plot is an efficient and popular way of graphically representing statistics of analysed 

data. Figure 2.7 shows the box plots for parameter rho in the red spectral band for the three 

study sites. It can be seen that this parameter varies the most over the wheat field. 

In this and some of the subsequent box plots, small circles aligned with the vertical line indicate 

values that lie outside the outer fences. 
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Figure 2.7: Box plot* of red band parameter rho time series, for the three study areas. Pixel 
locations are as specified in Figure 2.6. 
* The line representing central tendency is the median; the two lines making up the box itself are the first and third 
quartiles; the small lines at both ends of the vertical line are the minimum and maximum values, respectively 

 

The basic statistics of the parameter rho for the three sites are summarised in Table 2.1 below, 

which confirms that the vineyard area has the smallest average. For the entire observation 

period (March, 2000‒May, 2014) there should be 324 measurements in total for a sampling 

frequency of 16-days, but because of the missing values and the removal of outliers (to be 

discussed in Chapter 3), only 94 measurements were left for the vineyard area, and 153 and 

187 for the wheat field and the semi-desert area, respectively. The available number of 

observations for each study site is consistent with the natural environment of that area; for 

instance, the semi-desert area is known as a dry area with usually clear sky, so more 

measurements were acquired for this area. Unlike the semi-desert, the vineyard area is 

located in a valley with more frequent cloud obscuration, which resulted in relatively fewer 

measurements. The missing values and removed outliers left gaps in the time series, which 

may alter the true statistics of the data set; while filling the gaps in a time series may introduce 

extra bias to the statistics, such as the mean and variance (as discussed in Chapter 3). 
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Table 2.1: Basic statistics for the MISR-HR RPV rho parameter in the red spectral band, for the 
selected pixels in the three study areas. Pixel locations are as specified in Figure 2.6. 

 Number of 
observations 

Mean value Variance 

Semi-desert 
area 187 8.02×10AG 6.70×10Ar 

Wheat field 153 9.25×10AG 1.49×10Av 

Vineyard area 94 4.94×10AG 1.43×10Ax 

 

The variance value for the semi-desert area is the smallest among the three study sites. This 

is quite reasonable since there is little or no vegetation in this semi-desert area. The variability 

seen in the wheat field case is due to the large variation in red spectral reflectance between 

the (dark) crop during the growing season and the (bright) soil after harvest. The variability 

observed in the vineyard case is more difficult to interpret because (1) there are fewer data 

points in that series (due to cloudiness) and (2) the land is apparently used for multiple 

cropping, with plants interspersed with vines and growing on different schedules. Figure 2.8 

shows histograms of the rho parameter in the red spectral band for the three sites. 
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Figure 2.8: Histograms of the rho parameter in the red spectral band, for the three study areas. 
Pixel locations are as specified in Figure 2.6. 
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2.6.2 RPV parameter k 
The RPV parameter k describes whether the angular reflectance distribution is bowl- or bell-

shaped. Figure 2.9 exhibits the time series of that parameter in the red spectral band for the 

three study areas. It can be seen that the time series for the semi-desert area is relatively 

smooth, exhibiting a simple seasonal cycle of small amplitude. Those for the vineyard and the 

wheat field sites show both a higher variability and a more erratic pattern than the semi-desert 

site.  

 

 

Figure 2.9: Time series of the RPV k parameter in the red spectral band for the three study 
areas. Pixel locations are as specified in Figure 2.6. 

 

The corresponding box plots are shown in Figure 2.10, and the associated statistics are 

provided in Table 2.2. It can be seen that, in this case, it is the vineyard site that exhibits the 

largest k fluctuations in the red spectral band, compared to the semi-desert and the wheat 

field sites. The largest mean value occurs for the semi-desert area (as shown also in Table 
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2.2) while the mean values for the wheat and grape cultivation are lower and similar. The 

distribution of the k parameter in the red spectral band are shown in the histograms of Figure 

2.11. 

 

Figure 2.10: Box plot of red band parameter k time series, for the three study areas. Pixels are 
as specified in Figure 2.6. 

 

Table 2.2: Basic statistics of red band parameter k time series, for the three study areas. Pixels 
are as specified in Figure 2.6. 

 Number of 
observations 

Mean value Variance 

Semi-desert 
area 190 0.879 2.96×10Av 

Wheat field 143 0.766 4.72×10Av 

Vineyard area 94 0.751 1.16×10AG 
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Figure 2.11: Histograms of the parameter in the red spectral band, for the three study areas. 
Pixel locations are as specified in Figure 2.6. 
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A similar exploration was conducted on the MISR-HR RPV k parameter in the NIR spectral 

band. A distinctive signature emerged, in that the average k values for the vineyard area were 

much higher (around 1.0) than the k values for the semi-desert and the wheat field, which 

remained under 0.8. Figure 2.12 shows the time series of this parameter in the NIR spectral 

band for the three study sites. Figure 2.13 shows the overall statistics for those sites as a box 

plot. This feature is not particular to the selected representative pixel: indeed, Figure 2.14 

exhibits the statistics for the MISR-HR RPV parameter k in the red spectral band, averaged 

over the 108 valid pixels for the vineyard site. 

A more detailed look at the temporal distribution of these k values in the NIR spectral band 

established that the usual bowl-shape anisotropy pattern (k < 1.0, near nadir reflectance lower 

than at larger observation angles) occurs mostly in the winter and spring (May to October), 

while a bell-shaped anisotropy pattern (k > 1.0, near nadir reflectance larger and at larger 

observation angles) occurs mostly in the summer and autumn (November to April). This 

observation might be consistent with the phenology of grapevine, but all investigations of the 

RPV k parameter so far have focused on the values in the red spectral band, so detailed field 

measurements would be required to establish or confirm any interpretation of this finding in 

phenological terms. 
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Figure 2.12: Time series plots for NIR band parameter k for the three study areas. Pixels are as 
specified in Figure 2.6. 

 

Figure 2.13: Box plot of the MISR-HR RPV k parameter in the NIR spectral band, for the three 
study areas. Pixel locations are as specified in Figure 2.6. 
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Figure 2.14: Spatial variations of the mean k time series, of all NIR band pixels in the vineyard 
area. 

 

2.7 Literature review 
Remote sensing investigations and applications of surface anisotropy data are relatively scant 

compared to those based on spectral signatures. Angular variations of the surface reflectance 

should be analysed because they contain information on the structure of the observed ground 

surface (Pinty et al., 2002). These authors proposed that parameter k can be used as an 

indication of surface heterogeneity at the subpixel scale. Their investigation was based on 

parameter k in the red spectral band, where the reflectance of vegetation and bare soil exhibit 

strong brightness contrasts. When tall dark vertical objects such as trees are located over a 

bright background surface and sufficiently separated from each other, nadir observations are 

influenced by the bright background and lead to relatively high reflectance observations. 

However, when the same structured target is observed at larger zenith angles, these dark 

vertical structures obscure the background, resulting in lower reflectance measurements (bell 

shape pattern). By contrast, a bare background or a fully covering canopy will result in more 

typical anisotropy shapes where the reflectance increases with the illumination or observation 

zenith angle (bowl shape pattern). Hence, these authors suggested that the anisotropy 

described by the k parameter in the red spectral band, which controls the bowl versus bell 

shape, could be used to define or refine land cover classification and change detection. They 

also foresaw that k might vary regularly with seasons.  
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Armston et al. (2007) assessed the relationship between the spectral directional reflectance 

of the land surface, which is represented by the MISR RPV data, and foliage projective cover 

(FPC) in Queensland, Australia. FPC is commonly used in Australian vegetation classification 

frameworks. That paper used multi-day MISR RPV data in 2003—2004 to display the pattern 

of the spectral directional reflectance variation. The results indicated that the MISR RPV data 

showed coincident spatial and temporal variations to known vegetation structure changes 

(e.g., a fire on 28 September, 2003) on the ground surface of the Southern Brigalow Belt 

Biogeographic Region. These encouraging results foster and justify further research on 

classifying different environments using the MISR RPV product.  

These two studies explored possible applications of the anisotropy data represented by MISR 

RPV model parameters, but no studies so far have investigated the variations of the MISR-

HR RPV product over a long observation period, for example the 14+ years available for this 

investigation. Documenting changes in the anisotropy at a finer spatial resolution and over a 

long-term period may help refine the description of the evolution of the environment. This 

thesis will take advantage of this situation and explore the potential of using the MISR-HR 

RPV product to characterize land surface processes in the selected sites. 

2.8 Summary 
This chapter introduced the definition of remote sensing, and some of the main processes 

involved. Sections 2.2 and 2.3 underscored why the varying angular reflectance signature 

should not be ignored, even though a large number of remote sensing papers focus almost 

exclusively on the spectral signature of the terrestrial target. Section 2.4 then showed that 

multi-angle remote sensing can help characterise the anisotropy of the reflectance field, and 

provided basic information on the MISR instrument, as well as described some of the MISR-

HR data products. Section 2.5 introduced the general information of the three study sites: a 

semi-desert area, a wheat field and a vineyard area. Section 2.6 provided simple statistical 

descriptions of the MISR-HR RPV rho and k parameters in the red spectral band, while Section 

2.7 surveyed some of the papers which investigated the use of the RPV model parameters in 

concrete applications.  
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CHAPTER 3 

HANDLING OUTLIERS AND MISSING DATA 

 

3.1 Background and definition 
Outliers are quite common in practical measurements in various application areas. Many 

papers are dedicated to outlier detection: Hodge and Austin (2004) and Sreevidya et al. (2014) 

studied and compared a few popular outlier detection methods applied in various areas. 

Gupta, Gao, Aggarwal and Han (2014) surveyed various outlier detection techniques 

specifically applied to temporal data. These methods include statistics, classification, proximity 

and clustering. All of them identify and remove potential outliers because “they don’t fit” some 

preconceived idea or imposed criterion. The assumption is that it may be too risky to include 

those points in the analysis, as they do not agree with or conform to the preconceived idea, 

and risk generating abnormalities in the investigation. While the surveys done by Hodge and 

Austin (2004) and Gupta et al. (2014) revealed that there is no universal outlier detection 

method suitable for all types of outliers in an arbitrary data set, they also showed that the most 

appropriate method to be used in a particular application may depend on various factors, such 

as the data size, the attributes of the data and type(s) of outliers expected, etc. 

In practice, outliers are usually considered data values that differ greatly from the vast majority 

of a data set (Triola, 2012). Although there is no universally accepted definition of an outlier, 

many statisticians and computer scientists adopted the oft-cited suggestion by Hawkins that 

an outlier is a suspicious observation, which deviates so greatly from the other observations 

that it raises the possibility that it was generated by a different mechanism (Hawkins, 1980). 

In the literature about data mining and statistics, outliers are also referred to as “anomalies”, 

“abnormalities” or “deviates” (Aggarwal, 2013). Outliers can occur in any data set, including 

those generated by space-based remote sensing instruments such as MISR.  

Optical remote sensing products describing the properties of land surfaces are often affected 

by missing values due to a number of reasons, including obscuration by deep clouds or thick 

aerosol layers, or temporary instrument glitches. These events generate gaps in time series, 

which may interfere with the performance of the subsequent analysis, as many statistical tools 

and procedures to characterise time series require regular, equally spaced values. The 

problem is amplified by the presence of outliers, if these must be removed from the dataset. 
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3.2 Outlier handling process 
The process of handling outliers usually involves two steps: identification and treatment (Liu, 

Verstraete & de Jager, 2017). Outlier detection aims to discover anomalies within a given data 

set. This technique has been studied extensively and applied widely in various data areas for 

decades (Han, Kamber & Pei, 2012). The main challenge of outlier detection is that there is 

no clear boundary to separate the outliers and the majority data values in the definition, which 

makes the detection of outliers quite subjective (Singh & Upadhyaya, 2012). Thus, outliers 

should be inspected with care in the process of analysing data. In any case, the detected 

potential outliers can be treated in the following three ways: ignoring, correcting or eliminating. 

Ignoring an outlier might be applied when it has been ascertained that its presence has no 

significant impact on the outcome of the analysis, or when analysing tools are deemed 

insensitive to such outliers (Liu, Verstraete & de Jager, 2017). Correcting an outlier is 

obviously an ideal option, but that approach requires a careful analysis of each suspect data 

point. In the majority of applications, outliers can’t be ignored because they influence the basic 

statistics of the data set, such as the mean and standard deviation (Bluman, 2012; Osborne 

& Overbay, 2004; Peterson, Vose, Schmoyer & Razuvaev, 1998). However, this approach is 

difficult or impossible to implement for very large data sets. Thus, a systematic (machine-

driven) and automatic process of identification and elimination of outliers is required.  

There is a vast literature about statistical data processing in general and outlier handling in 

particular (e.g. Grubbs (1969); Heymann, Latapy & Magnien (2012); Manoj and Senthamarai 

(2013); Seo (2006); Tukey (1977) amongst many others). Traditional statistical methods suffer 

from intrinsic limitations in identifying and eliminating outliers: firstly, they don’t supply any 

explanation why the ‘offending’ points should be removed from the data set, other than ‘they 

don’t fit’ some pre-defined statistical criterion; secondly, there is usually some degree of 

arbitrariness in setting the boundary between outliers and the bulk of the data. Too 

conservative a method, for instance, may remove all the potential outliers but may also lead 

to a significant decrease in the spatial or temporal coverage of the remaining data. On the 

other hand, eliminating only the extreme outliers may still result in biased outcomes or 

incorrect conclusions. Hence, it is highly desirable to remove suspicious outliers when there 

are good reasons to do so. Although this may not always be possible or sufficient, relying on 

objective methods to detect and handle outliers is recommended to provide explicit reasons 

for the elimination of data points. These concepts are now applied to the MISR-HR RPV 

products described in the previous Chapter. 
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The cost function that is generated in the process of inverting the RPV model and retrieving 

the model parameters indicates how well the inversion model fits the measurement data: a 

small value means the model fits the data very well; conversely, an excessively large value 

indicates that the model is incapable of explaining the variability in the data (Tarantola, 1987; 

Errico, 1997; Giering & Kaminski, 1998; Tarantola, 2005). This situation occurs when one or 

more of the data points take on values that are inconsistent with those expected by the model. 

In that case, the derived model parameters may be questionable because the inversion 

procedure forces the model to take on unreasonable values to match this (or those) unusual 

data point(s). Therefore, the cost function can be used to indicate the reliability of the RPV 

parameters retrieved by inversion, and thus to identify dubious points in the data set.  

3.3 Handling outliers in MIRSR-HR RPV products 
This section illustrates both the traditional statistical methods and the proposed cost function 

based method in handling the outliers in MISR-HR RPV parameter time series. 

3.3.1 Classical statistical methods  
Outliers can occur in any set of measurements or observations, for a variety of reasons, 

including instrumental problems, exceptional and unexpected changes in the target, or human 

errors. Remote sensing from space is no exception, as can be seen from the MISR-HR RPV 

product time series exhibited in Figure 3.1. Four points stand out of from the bulk of the data 

set: these are candidate outliers. It is easy to detect these values, any of the standard 

statistical methods will screen them out. 

 

Figure 3.1: Time series of the MISR-HR RPV parameter rho in the blue spectral band for a 
representative pixel* located in a semi-desert area of South Africa. Four points clearly stand 
out of the majority data set; they are candidate outliers. 
* Location specified by Path 174, Block 117, Line 92 and Sample 798 
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is trivially simple, and any one of the standard statistical methods to identify outliers will 
screen them out.

The sheer volume of remote sensing data usually prevents the inspection of individual 
cases, though. For instance, the MISR-HR RPV product alone generates 28 numerical values 
(3 parameters in each of the 4 spectral bands, the uncertainties associated with each of those 
retrievals and the 4 cost functions) for each individual full spatial resolution pixel. There 
are over 770,000 pixels per block, on the order of 142 blocks with usable data per path, 233 
different paths to cover the planet, each of which is revisited every 16 days, and the mission 
has been operational for 18 + years already. It is therefore imperative to establish automatic 
procedures to at least detect the presence of potential outliers.

Statistical methods to identify outliers have been extensively described in the literature 
and reviewed in SEMATECH (2013), in particular in Section 7.1.6. One classical example 
is the ‘Box plot’ method, initially proposed by Tukey (1977), which consists of collecting 
basic non-parametric statistics about the data-set and constructing ‘fences’ which are really 
thresholds used to pinpoint candidate outliers. Specifically, the two extreme quartiles Q1 
(25th percentile) and Q3 (75th percentile), as well as the interquartile range IQ = Q3 – Q1 
are estimated from the data-set. Inner and outer fences are then established as follows:

 

 

 

 

The data points lying beyond the outer fences are considered ‘extreme outliers’, while those 
situated between the outer and inner fences are ‘mild outliers’. The results generated by this 
method must be interpreted carefully, though: As explained by Dawson (2011), ‘if the pop-
ulation is normally distributed, only about .8% of the data will be found beyond the inner 
fences, and about three in a million beyond the outer fences’. Yet, up to 30% of samples of 
N values taken from such a distribution would exhibit one or more outliers, independently 
from the sample size.

(2)Lower Outer Fence (LOF) = Q1 − 3.0 × IQ

(3)Lower Inner Fence (LIF) = Q1 − 1.5 × IQ

(4)Upper Inner Fence (UIF) = Q3 + 1.5 × IQ

(5)Upper Outer Fence (UOF) = Q3 + 3.0 × IQ

Figure 1. Time series of the parameter ρ retrieved by inverting the RPV model against the 9 BRF values 
available in the blue spectral band for a single high-resolution pixel located in an arid region of South 
Africa (as specified by the indicated Path, Block, Line and Sample). Some four values clearly stand out of 
the bulk of the results; they are candidate outliers.
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Statistical methods for outlier detection have been extensively studied in the literature and 

reviewed in SEMATECH (2013), in particular in Section 7.1.6. One classical example is the 

box plot method, initially proposed by Tukey (1977), which is a simple popular graphical tool 

to characterize the variability of a reasonably well-behaved data set. This method first 

calculates the median and the two quartiles (Q1 and Q3), corresponding to the 25 and 75 

percentiles of the cumulative distribution function of the data. It then evaluates the difference 

between Q3 and Q1, called the interquartile range (IQR). Inner and outer fences are 

established as follows: 

Lower Outer Fence (LOF) = Q1 - 3.0 x IQR   （ 3.1） 

Lower Inner Fence (LIF) = Q1 - 1.5 x IQR    （ 3.2） 

Upper Inner Fence (UIF) = Q3 + 1.5 x IQR   （ 3.3） 

Upper Outer Fence (UOF) = Q3 + 3.0 x IQR （ 3.4） 

Any data values outside the inner fences but inside the outer fences are considered as mild 

outliers; data values outside the outer fences are considered as extreme outliers (Dawson, 

2011). 

Table 3.1 shows the box plot statistics for the parameter rho time series shown in Figure 3.1, 

as well as the other two RPV model parameters k and Theta time series retrieved for the same 

location. It can be seen that 14 extreme outliers in the rho time series are found by this 

classical method, including 4 mild high and 4 mild low outliers.  

The shortcoming of these purely statistical methods is that outliers would be screened out on 

the basis of their deviation from some pre-defined measures of central tendency, without 

inspecting whether they could contain any useful information. In other words, traditional 

statistical methods can detect outliers but don’t provide any insight about why these values 

are so extreme.  
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Table 3.1: Box plot statistics for the RPV parameter time series* (in the blue spectral band). 

 

* Parameter rho time series in Figure 3.1, as well as the other two RPV model parameters k and Theta retrieved 
simultaneously. 

 

3.3.2 Using the cost function to detect outliers 
The main argument proposed in this Chapter is that inspecting the value of the cost function 

associated with the corresponding RPV parameters in the time series may provide a valid 

justification for eliminating outliers, since these cases reflect situations where there is a definite 

mismatch between the underlying model and the observations. Compared to traditional 

statistical approaches, which rely on the assumption that data are normally distributed (for 

instance), this proposed cost function based method relies on the selection of a suitable model 

to describe the reflectance anisotropy, where this model can be independently tested and 

benchmarked. In other words, this study aims to detect and reject data points in a time series 

based on using a proven objective, quantifiable rationale model of anisotropy, rather than 

assuming the unknown statistical distribution of the values in the time series to some known 

distribution (e.g., normal distribution). In addition, this proposed approach is able to identify 

and remove the dubious data points whether they appear to be outliers or not.  

In the particular case exhibited in Figure 3.1, it turns out that the larger than expected rho 

values correspond to high cost function values in the same (blue) spectral band, which are J 

= 326.375 on 29 November 2000, J = 63.8284 on 21 December 2002, J = 51.8984 on 10 

October 2005 and J = 37.4346 on 17 March 2011, while in the majority of cases the cost 

function value is well under 20. 
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Table 1 provides Box plot statistics for the time series in Figure 1, as well as for the other 
RPV model parameters retrieved for the same location, at the same time and in the same 
(blue) spectral band (discussed below). It can be seen that this approach actually identifies 
14 extreme high values in the ρ time series. In addition, there are 4 mild high and 4 mild 
low outliers.

The problem with these purely statistical approaches is that outliers would be eliminated 
on the basis of their deviation from some pre-defined measure of central tendency, whether 
or not they could actually contain useful information. In other words, statistical methods 
can detect outliers but do not provide any insight about why these values are so extreme.

5. Using the cost function to screen MISR-HR products

The essence of the argument developed in this paper is that inspecting the value of the cost 
function associated with each retrieval in the time series may provide a valid justification 
for eliminating outliers (if the cost function value is much larger than for the majority of 
cases), because these cases would flag situations where there is a definite mismatch between 
the underlying model and the observations. Of course, it could be argued that statistical 
approaches also highlight data points that do not fit the assumed statistical distribution: 
the critical difference between these two approaches, though, is that the actual underlying 
statistical distribution of measurements, or of the retrieved model parameters, is rarely 
known a priori, while the model representing the anisotropy of the reflectance can be 
selected on the basis of its proven performance. Hence, traditional approaches rely on the 
assumption that data are normally distributed (for instance), while the proposed method 
relies on the selection of a suitable model to represent the bidirectional reflectance factors 
of terrestrial surfaces, where this model can be independently tested and benchmarked 
to demonstrate its relevance. Our goal is therefore to detect and reject data points in a 
time series on the basis of some objective, quantifiable rationale using a proven model of 
anisotropy, rather than on assumptions about the unknown statistical distribution of the 
values of model parameters. And as will become clear shortly, this proposed approach will 

Table 1. Number of data points in the RPV model parameter time series (in the blue spectral band) fall-
ing between the indicated reference values (unscreened for outliers).

Ref. ρ k Θ
  14 0 10
UOF .052 1.503 .084
  4 1 4
UIF .047 1.271 .016
  33 50 37
Q3 .041 1.039 −.052
  52 52 52
Q2 .039 .997 −.078
  52 52 52
Q1 .037 .884 −.098
  47 38 49
LIF .031 .652 −.166
  4 11 2
LOF .026 .420 −.234
  0 2 0
Total 206 206 206
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Since the cost function indicates how well all model parameters were retrieved from the 

inversion process in the same spectral band, it is useful to inspect those other parameters too. 

Figure 3.2 exhibits the time series for all three RPV parameters for the pixel demonstrated in 

Figure 3.1 in the blue spectral band, as well as the corresponding cost function values. It can 

be seen that there are multiple cases of relatively high cost functions corresponding to normal 

(non-extreme) parameter rho values. Besides, this Figure also reveals that (1) all three RPV 

parameters show unexpected values; (2) some outliers take on extreme low (rather than 

extreme high) values (e.g., outliers in the k time series); (3) the three parameters often show 

dubious values simultaneously, but not always and (4) those apparent outliers are typically 

associated with high cost function values. 

As mentioned in the previous Chapter, the inversion process attempts to attribute the variance 

in the data to the model parameters, subject to the mathematical description of the model and 

the constraint of minimizing the cost function. When an outlier is encountered, the unusual 

variance may be "explainable" by an odd combination of model parameter values, some of 

which may be unreasonable. It is thus possible to end up with one or more plausible model 

parameter values, but the cost function will nevertheless be larger than in more typical cases. 

Based on inspecting hundreds of cases, the net outcome of this study is that the residual cost 

function value obtained in an inversion procedure constitutes a natural indicator to screen out 

values that may be less reliable. Therefore, examining the ‘unexpected observations’ in the 

results of a model inversion procedure by means of the value of the residual cost function 

turns out to be feasible. Eliminating the dubious points by this method is reasonable since 

there is objective evidence of a relative mismatch between the model and the data. This 

approach, as importantly, will remove not only outliers that might be detected in statistical way, 

but also all results associated with a high cost function value, whether or not they are 

distinguished as outliers by traditional statistical methods. 
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Figure 3.2: Time series for all three RPV parameters, associate with the cost function, in the 
blue spectral band. Pixel is as specified in Figure 3.1. 

  

The next step for applying this cost function based method is to decide how high the cost 

function value needs to be to screen the dubious points out of the results of the inversion. 

Choosing a threshold is nontrivial, as there is no fixed universal value to separate excessive 

from acceptable cost function values. This threshold may also change according to location. 

For instance, a cost function value of 30 may be good enough to isolate the high cost function 

values for the semi-desert area, but it may not be suitable for the vineyard area, as this value 

might screen out too many measurements, resulting in a sparse time series unsuitable for 

further analysis. Generally, the selection of such a threshold should depend on the purpose 

and accuracy requirements of the downstream application. Besides, it is also important to 

keep in mind that there is a trade-off between reliability of the results and coverage (the 

number of valid data after elimination): a stricter threshold (low cost function value) may lead 

to an elimination of more data points which results in a poor temporal coverage. 

Inspecting the histogram of residual cost function values for the time series is a useful step in 

this process. Figure 3.3 shows the histogram of the cost function values in the blue spectral 

bands for the same pixel as illustrated in Figure 3.1. This is a semi-logarithmic plot, and the 

majority of the cost function values are below 20. However, this value could be different for 

different spectral bands, since the RPV model is inverted separately in each of the four 

spectral bands. The histogram also indicates that the number of cases with a cost function 

value larger than 40 is very limited (15 in this particular case, among 206 data points, which 
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even permit the identification and removal of data points of dubious quality whether they 
appear to be outliers or not.

Indeed, in the particular case exhibited in Figure 1, the unusually high values of param-
eter ρ are associated with high values of the cost function in the same (blue) spectral band: 
J = 326.375 on 29 Nov 2000, J = 63.8284 on 21 December 2002, J = 51.8984 on 10 October 
2005 and J = 37.4346 on 17 March 2011, while in the majority of cases the cost function 
value is of the order of 20 or less.

Since the cost function portrays the effectiveness of satisfactorily retrieving by inversion 
all model parameters in the same spectral band, it is useful to inspect those other parameters 
too. Figure 2 shows the time series of all three RPV model parameters for that location in 
the blue spectral band, together with the associated cost function values. It is now apparent 
that there are in fact multiple cases of relatively high cost functions, even though the cor-
responding values of the ρ model parameter did not appear to be unexpected in all cases.

From this Figure, it can be seen that (1) all three RPV model parameters exhibit unan-
ticipated values; (2) some outliers take on much lower (rather than much higher) values 
than expected (e.g. in the k time series), (3) the various model parameters often acquire 
outstanding values simultaneously, though not always and (4) such apparent outliers are 
often associated with high values of the cost function. In effect, the inversion procedure 
may need to assign unexpected values to one or more of the model parameters as part of its 
attempt to minimize the cost function, and these may or may not be so extreme that they 
clearly stand out as potential outliers in each time series. The net outcome of this exploration, 
again based on inspecting hundreds of cases, is that the residual cost function value at the 
end of an inversion procedure may constitute a natural indicator to screen out results that 
may be less reliable in the sense that some of the model parameters may not represent the 
variability in the input data as efficiently as for other more nominal cases.

Hence, screening the results of a model inversion procedure in terms of the value of the 
residual cost function turns out to be a generic way to identify ‘unexpected observations’. 
Eliminating such results is justified by the fact that there is objective evidence of a relative 

Figure 2. Time series of all three RPV model parameters for the same location as in Figure 1, together 
with the cost function, in the blue spectral band.

D
ow

nl
oa

de
d 

by
 [1

05
.2

27
.1

39
.2

10
] a

t 0
6:

31
 1

0 
Ja

nu
ar

y 
20

18
 



 37 

is about 7% of the cases). Table 3.2 shows the number of the remaining data points in the 

time series corresponding to different cost function thresholds (again for this particular case). 

 

 

Figure 3.3: Histogram of the cost function values of inverting the RPV model against the MISR-
HR surface reflectance in blue spectral bands. The pixel location is as specified in Figure 3.1 

 

Table 3.2: Trade-off between the threshold value of the cost function, and the number of 
remaining data points in the time series after elimination. 

 

 

The selection of a reasonable threshold for acceptable cost function values may vary with the 

specifics of each application as well as the choice of the bin size. Here are three possible rules 

to establish its value in practice: 

（1） The	lower	boundary	of	the	first	empty	histogram	bin.	
（2） The lower boundary of the first histogram bin containing less than 2 items.	
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(3)  The upper boundary of the largest bin for which the sequence of bin populations 
decreases monotonically.

These suggested thresholds intend to keep the bulk of the data and to discard data 
points that fall in bins disconnected from the main histogram, but the results may depend 
somewhat on the histogram bin size. The latter should not be chosen so small that each bin 
contains only 0 or 1 item, or so large that a handful of bins contain all data points. In fact, 
this point has been debated in the statistical literature for a long time (see, e.g. Freedman 
and Diaconis (1981, p. 454) and Izenman (1991, p. 210)). The general rule of thumb is to 
select the bin size W = 2 IQ/N1/3, where N is the number of items in the sample. A bin size 
of the order of 5–10 is thus considered appropriate for the current purpose of examining the 
histogram of cost function values. An alternative approach could be to set the threshold at 
the upper boundary of the first histogram bin such that the cumulative content of all bins 
up to this one includes 95% of all available data points, but this is also somewhat arbitrary.

Since MISR-HR products are systematically generated in all four spectral bands of the 
MISR instrument, it is useful to inspect the results obtained simultaneously in those other 
bands. Figure 4 exhibits the retrieved ρ parameter in the blue, green, red and near-infra-
red spectral bands, respectively, for the same location as before. It can be seen that large 

Figure 3. Histogram of residual RPV cost function values for all inversions exhibited in previous figures, 
for the same location and spectral band.

Table 2. Trade-off between product reliability, as determined by the maximum allowable cost function 
value, and coverage, i.e. number of data points remaining in the time series.
Threshold 500 200 100 50 40 30 20 10
No. of points 206 205 203 191 190 186 183 167
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(3)  The upper boundary of the largest bin for which the sequence of bin populations 
decreases monotonically.

These suggested thresholds intend to keep the bulk of the data and to discard data 
points that fall in bins disconnected from the main histogram, but the results may depend 
somewhat on the histogram bin size. The latter should not be chosen so small that each bin 
contains only 0 or 1 item, or so large that a handful of bins contain all data points. In fact, 
this point has been debated in the statistical literature for a long time (see, e.g. Freedman 
and Diaconis (1981, p. 454) and Izenman (1991, p. 210)). The general rule of thumb is to 
select the bin size W = 2 IQ/N1/3, where N is the number of items in the sample. A bin size 
of the order of 5–10 is thus considered appropriate for the current purpose of examining the 
histogram of cost function values. An alternative approach could be to set the threshold at 
the upper boundary of the first histogram bin such that the cumulative content of all bins 
up to this one includes 95% of all available data points, but this is also somewhat arbitrary.

Since MISR-HR products are systematically generated in all four spectral bands of the 
MISR instrument, it is useful to inspect the results obtained simultaneously in those other 
bands. Figure 4 exhibits the retrieved ρ parameter in the blue, green, red and near-infra-
red spectral bands, respectively, for the same location as before. It can be seen that large 

Figure 3. Histogram of residual RPV cost function values for all inversions exhibited in previous figures, 
for the same location and spectral band.

Table 2. Trade-off between product reliability, as determined by the maximum allowable cost function 
value, and coverage, i.e. number of data points remaining in the time series.
Threshold 500 200 100 50 40 30 20 10
No. of points 206 205 203 191 190 186 183 167
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（3） The upper boundary of the largest bin for which the sequence of bin 
populations decreases monotonically.	

 

These suggested methods aim to keep the majority of data and to reject the points that fall in 

the disconnected bins from the main histogram, but the results may vary according to different 

bin size. Choosing a proper bin size has been discussed extensively in literature (e.g. 

Freedman and Diaconis, 1981 and Izenman, 1991). A generic way of calculating the bin size 

is by W = 2 IQR/ N1/3, where W is the bin size, IQR is the Inter-Quartile range, and N is the 

number of items in the sample. Thus, a bin size of the order of 5 – 10 is suitable for the current 

application.  

As MISR-HR products are systematically generated in all four spectral bands, it is useful to 

examine the data values obtained on other spectral bands as well. Figure 3.4 shows the time 

series of parameter rho in all four spectral bands, which are blue, green, red and near-infrared 

bands, respectively, for the same location as described before. It can be seen that (1) the 

unexpected values occur generally simultaneously in all four bands, (2) the magnitude of the 

deviations appears to decrease in time, and (3) that the size of the deviations also decreases 

with wavelength. 

 

 

Figure 3.4: Time series of the MISR-HR RPV parameter rho in all four spectral bands. The pixel 
location is as specified in Figure 3.1. Suspected outliers occur simultaneously in all bands, 
though the deviations from the main data body decrease along with the wavelength.  
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unexpected values occur simultaneously in all bands, though the size of the deviations from 
the ‘norm’ decreases with wavelength.

Further investigations showed (1) that unexpected values also occurred simultaneously 
in the other RPV model parameters (k and Θ), again in all four spectral bands and (2) that 
exceptional values affected neighbouring pixels in the same way, also often at the same time. 
Similar results have been generated for a number of locations, with comparable results. The 
consistency of findings across model parameters, spectral bands and neighboring locations 
reinforces the presumption that these are exceptional values that need to be treated as 
outliers.

6. Is the cost function sufficient to identify outliers?

Culling data points out of the data-sets on the basis of the residual cost function values 
does remove the obvious outliers identified earlier, as well as other data points that may 
be less reliable, whether they appear to be outliers or not. All results associated with those 
excessive cost function values were removed, even if some of the model parameter values 
fell well within the expected ranges. Figure 5 shows the same time series as in Figure 2, this 
time without the inversion results for which the cost function value is larger than 20: there 
are now 183 data points per time series instead of 206.

These trimmed time series still exhibit notable, but more contained, variability, as 
expected: one is now looking at these time series with a magnifying glass. The vertical 
range of each plot is much reduced, so that the data points are visualized in greater detail 
and other values appear relatively large or small with respect to the median of each series. 
In this context, it is important to recall that an arbitrary sample from any probability dis-
tribution with an infinite domain will exhibit a finite probability of containing one or more 
values exceeding any given threshold. For instance, in the case of a normal distribution, 

Figure 4. Time series of the retrieved ρ RPV model parameter in all 4 spectral bands, for the same location 
as above. Unexpected values occur simultaneously in all bands, though deviations from the ‘norm’ 
decrease with wavelength.
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Further investigations on other RPV model parameters (k and Theta) and neighbouring pixels 

showed (1) that unexpected values may occur simultaneously in all parameter in all four 

spectral bands, and (2) the extreme values were usually found in the same way in 

neighbouring pixels, often at the same time. Similar results were found in a number of different 

locations.  

3.3.3 Is the cost function sufficient to identify outliers 
As discussed above, the residual cost function values can be used as an indicator to identify 

not only the extreme values in the data set, but also those data items which are likely unreliable 

although they do not look like outliers. Figure 3.5 shows the time series of parameters rho, k 

and Theta in the blue spectral band, for the same location as before, but with outliers removed 

on the basis of a threshold cost function value 20. The number of data points is 183 per time 

series after the elimination of those unreliable points, instead of the original 206. The result of 

applying the standard box plot method to this revised time series is shown in Table 3.3. 

It can be seen from Table 3.3 that the values of the box plot fences, as well as the three 

quartiles, are generally close to those shown in Table 3.1, which confirms the insensitivity of 

these statistics to the presence of outliers. The number of candidate outliers is now much 

reduced, but there are still 3 dubious larger than the upper outer fence in the rho time series. 

It is natural to ask whether those remaining extremes should also be eliminated from the data 

set, on the basis of some partly arbitrary statistical threshold. But since the underlying 

bidirectional reflectance factor model accounts for the implied variability of the data to an 

acceptable degree, and the corresponding cost function is below the maximum ‘authorized’ 

value, it may be appropriate to conduct a sensitivity analysis to quantify the role caused by 

these remaining outliers on the outcome of the investigation. 

In summary, to detect the outliers in the analysed MISR-HR RPV time series, two steps were 

employed in this research; firstly, checking the MISR-HR RPV data’s corresponding cost 

function value to detect and remove the outliers; secondly, applying the box plot outlier 

detection method on the MISR-HR RPV data to identify remaining suspect outliers, if any, that 

were not found by the first step. Data values outside the inner fences of the box plot method 

were treated as suspect outliers in this research. 
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Figure 3.5: Time series of the MISR-HR RPV parameter rho and the associated cost function 
values in the blue spectral band, with outliers removed on the basis of a cost value threshold 
of 20. The pixel location is specified in Figure 3.1. 

 

Table 3.3: Box plot statistics for the RPV parameter time series*, after eliminating out outliers 
based on the cost function. 

 

* Parameter rho time series in Figure 3.1, as well as the other two synchronized RPV model parameters k and 
Theta  

 

3.4 Handling missing values in MISR-HR RPV data 
Various methods have been described in the literature to replace missing values in a time 

series (Schneider, 2001; Troyanskaya et al., 2001; Alonso et al., 2008; Jiang, Lan & Wu, 2009; 

Honaker & King, 2010, Musial et al., 2011). This is not a trivial step in the whole process of 
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the IQ = 1.35 σ, where σ is the population standard deviation of the distribution (see http://
www.physics.csbsju.edu/stats/box2.html, for instance). Hence, the number of data points 
exceeding a LOF of Q1 − 4.05 σ or a UOF of Q3 + 4.05 σ is small but not null, for normally 
distributed data, and more realistic (non symmetrical) distributions would typically tend 
to have more than a few large values, especially within their long tail: not all extreme values 
are real outliers. Table 3 shows the Box plot statistics for all three RPV model parameters, 
as well as for the residual cost function, for the same location and blue spectral band, after 
outliers with a cost function value of over 20 have been removed.

It is noteworthy that the values of the various fences (LOF, LIF, UIF and UOF), as well as 
of the three quartiles, are generally rather close to those reported in Table 1 earlier, thereby 
confirming the insensitivity of these statistics to the presence of outliers. While the number 

Figure 5. Time series of the retrieved RPV model parameters and the associated cost function in the blue 
spectral band, for the same location as in Figure 2, after outliers have been removed on the basis of a 
cost value threshold of 20.

Table 3. Number of data points in the RPV model parameter time series (in the blue spectral band) fall-
ing between the indicated reference values, after culling out outliers based on the cost function.

Ref. ρ k Θ Cost
  3   0   1   5  
UOF   .051   1.437   .067   14.335
  4   0   3   12  
UIF   .046   1.238   .005   9.731
  39   46   42   29  
Q3   .041   1.040   −.058   5.126
  46   46   46   46  
Q2   .038   .990   −.081   3.387
  46   46   46   46  
Q1   .037   .908   −.099   2.056
  42   40   44   45  
LIF   .032   .710   −.162   −2.548
  3   5   0   0  
LOF   .027   .512   −.224   −7.153
  0   0   1   0  
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www.physics.csbsju.edu/stats/box2.html, for instance). Hence, the number of data points 
exceeding a LOF of Q1 − 4.05 σ or a UOF of Q3 + 4.05 σ is small but not null, for normally 
distributed data, and more realistic (non symmetrical) distributions would typically tend 
to have more than a few large values, especially within their long tail: not all extreme values 
are real outliers. Table 3 shows the Box plot statistics for all three RPV model parameters, 
as well as for the residual cost function, for the same location and blue spectral band, after 
outliers with a cost function value of over 20 have been removed.

It is noteworthy that the values of the various fences (LOF, LIF, UIF and UOF), as well as 
of the three quartiles, are generally rather close to those reported in Table 1 earlier, thereby 
confirming the insensitivity of these statistics to the presence of outliers. While the number 
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data analysis, especially when there is no prior knowledge about the underlying statistical 

distribution of the time series. Interpolation methods are easy to implement and therefore 

frequently used, but they seem most reasonable when there is some degree of correlation 

between the observations (Jiang, Lan & Wu, 2009). Using a simple interpolation method to fill 

the gaps in the series may introduce an unwanted bias to the original data set (Musial et al., 

2011). In the case of the MISR-HR time series data analysed in this work, the existence and 

strength of the correlations between the observations are unknown. However, each 

observation taken by MISR is separate from the adjacent measurements, both in space and 

time. In other words, the previous and successive measurements do not influence the current 

measurement. For these reasons, interpolation methods may not be ideal for pre-processing 

the MISR-HR time series. 

Figure 3.6 displays the time series of parameter k for one particular pixel from the semi-desert 

area. The overall proportion of missing measurements is 40.16%. Missing values are marked 

out with a low value of 0.4, which is used to make it easy to see the distribution of the missing 

dates. It can be seen from the plot that the missing values are neither systematically clustered 

nor regularly spaced. Yet, there remains ample data to document clearly a seasonal cycle that 

repeats from year to year, even considering such a large number of gaps, and without knowing 

their precise distribution in time. 

 

 

Figure 3.6: Time series of the MISR-HR RPV parameter k in the red spectral band for a pixel in 
the semi-desert area*, with missing values marked. 
* Location specified by Path 174, Block 117, Line 93 and Sample 798 
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It is clear from the above discussion that attempting to replace missing values must be done 

with caution, especially when there is no prior knowledge about the distribution of values in 

the time series. Although reconstructed, continuous, evenly spaced time series would be 

easier to analyse with standard tools, improperly filling those gaps might introduce biases (in 

particular spurious frequencies) in the data. To avoid this situation, an alternative way is to 

employ gap-resilient or gap-insensitive methods to pursue the investigation further. 

Since this thesis focuses on the identification of trends and seasonality in time series that are 

intrinsically not equally spaced and containing potentially large numbers of missing data 

points, methods that are insensitive to the temporal distribution of the data points have been 

selected, such as the Mann-Kendal test for trends and the Lomb-Scargle periodogram for 

establishing the seasonality characteristics of the time series, as will be discussed in the next 

Chapter. However, the application of a clustering algorithm in Chapter 5 below does require 

that all time series contain data for the same dates: in that case, the values reconstructed from 

an analysis in the frequency domain will be used to estimate missing values for that particular 

purpose. 

3.5 Summary 
Outliers are a ubiquitous feature of many datasets, especially those resulting from 

observations or measurements. They do occasionally hint to interesting, unexpected findings, 

but otherwise may skew or invalidate the analysis. This research proposed a new method to 

detect outliers, based on the value of the cost function at the end of the inversion of the RPV 

model against MISR-HR data. This cost function is an indicator of the performance of the RPV 

model, and therefore of the reliability of the parameters rho, k and Theta that are retrieved 

from this inversion process. Large values of this cost function identify questionable 

measurements, whether or not they appear like outliers. This is the specific merit of this cost 

function outlier detection method. 

While this cost function outlier detection method may not detect the same potential outliers as 

traditional methods, a box plot method was subsequently applied to complement the cost 

function method. It was also shown that investigating potentially spurious measurements in 

their spatial, temporal or spectral context may help confirm or infirm their status as outliers. 
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Missing values are quite common in optical remote sensing data, and this is another critical 

issue. Many gap-filling methods have been reviewed in the literature, and it was argued that 

the optimal method to be used to handle the missing observations in a time series depends 

on the purpose of the research and the attributes of the data set. For the particular case of 

this research, and to avoid of introducing extra errors in the data set by filling the missing 

values, it was decided to opt for analysis methods that are insensitive to the presence of gaps 

in the data. 
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CHAPTER 4 

TIME SERIES ANALYSIS OF MISR-HR RPV PRODUCTS 

 

This chapter explores the trend and seasonality characteristics of time series of MISR-HR 

anisotropy data.  

Time series are sequences of data (observations or measurements) that are collected at 

different points in time. This kind of data exists in various thematic areas, for example, 

astronomy, biology, economics, finance, ecology, etc. (Fan & Yao, 2003). Time series 

analyses have long been used in remote sensing. More recently, Salmon et al. (2011) 

investigated how to detect new human settlements in South Africa by analysing MODIS time 

series data with a Multilayer Perceptron. Verbesselt et al. (2010b) used satellite time series 

data to differentiate between different types of land surface changes. This latter effort focused 

on detecting and characterising the “Breaks For Additive Seasonal and Trend” (BFAST) by 

decomposing the time series data into seasonal, trend and noise components. Lhermitte, 

Verbesselt, Verstraeten and Coppin (2011) worked on monitoring ecosystem dynamics by 

measuring the time series similarity. All these applications demonstrate that satellite remote 

sensing data, combined with time series analysis, can be used successfully to document the 

evolution of terrestrial surfaces during the period of observation. Observational time series 

can be affected by measurement noise, missing values, and possibly outliers, however the 

time series analysed below have been pre-processed as explained in the previous Chapter. 

Long-term trend analysis plays an important role in the whole process of time series analysis, 

insofar as it helps describe, model and forecast time series data (Chandler & Scott, 2011). 

Fitting a straight line to the analysed data set is a common way of detecting a monotonic trend. 

This process is also known as linear regression (Press, Teukolsky, Vetterling & Flannery, 

2007). Although this linear regression method is quite popular in detecting the long-term trend, 

a few assumptions are required when applying this method (Hirsch, Slack & Smith, 1982). 

When those assumptions are unverified, or unverifiable, a non-parametric test is preferred as 

a general approach to detect the trend in the data sequence. The non-parametric Mann-

Kendall test has long been considered effective in this regard (Hirsch, Alexander & Smith, 

1991). This method does not require the data to be normally distributed, and is flexible with 

regard to missing values.  
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Seasonality detection can help in building the underlying model of a time series data 

(Verbesselt et al., 2010a). Of course, the intrinsic periods of a data set are not always known. 

Graphical techniques, for instance the run sequence plot, the seasonal sub-series plot and 

box plot, can help detect the seasonality when the period is known, while an autocorrelation 

plot is able to detect the seasonality when the period is not known (Tukey, 1977). A dedicated 

seasonality detection method may be required when the data set contains missing values or 

when the time series data are unevenly spaced. The Lomb-Scargle periodogram method has 

been widely used for detecting the seasonality from unevenly spaced time series (Ruf, 1999; 

Hocke & Kampfer, 2009; Townsend, 2010). This method, originally applied to astronomical 

data, was developed by Lomb and elaborated by Scargle (Press et al., 2007). In fact, the 

Lomb-Scargle periodogram method works well to detect frequencies in unevenly spaced data 

or in time series with missing values (Scargle, 1989). Once the frequencies are detected, the 

seasonal components can be retrieved from the data set. Based on the Lomb-Scargle 

periodogram, Hocke and Kampfer (2009) proposed a reconstruction method which is able to 

retrieve the seasonal component from a time series. This method can help rebuild the 

seasonal part or the entire time series, including estimating the missing values.  

This Chapter explores the feasibility of applying these tools to the MISR-HR RPV time series, 

as well as the results obtained. Section 4.1 briefly reviews the tools to establish the presence 

of a trend and then applies them to the time series for the three selected sites described in 

Chapter 2. Section 4.2 similarly investigates the methods available to document the 

seasonality of a time series, and assesses the periodic nature of those same time series. 

4.1 Trend analysis 

4.1.1 Mann-Kendall trend detection method 
The Mann-Kendall test is an effective non-parametric trend test method widely used in 

literature (Hirsch, Alexander & Smith, 1991). This test method is suitable for data where the 

measurement errors are not normally distributed, and also may be contaminated with missing 

values and outliers. The Mann-Kendall approach tests the null hypothesis 𝐻( that there is no 

trend in the data against the alternative hypothesis 𝐻@ that a trend does exist, at a given 

significance level (Hirsch, Slack & Smith, 1982; Longobardi & Villani, 2009). 𝐻(  is initially 

assumed to be true, while the Mann-Kendall test aims to provide reasonable doubt to reject 

𝐻( and accept 𝐻@. It can be applied under the assumption that the measurements obtained 

over time are independent and identically distributed, which means the observations are not 

serially correlated over time. 
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Let 𝑋@, 𝑋G, … , 𝑋{ be a sequence of measurements over time. The core of the Mann-Kendall 

test is to determine the sign (+/-) of all 𝑛(𝑛 − 1) 2 possible differences		𝑋} − 𝑋c, where	𝑗 > 𝑖 

(http://vsp.pnnl.gov/help/Vsample/Design_Trend_Mann_Kendall.htm). These differences are 

𝑋G − 𝑋@ , 𝑋v − 𝑋@ , …, 𝑋{ − 𝑋@ , 𝑋v − 𝑋G , 𝑋x − 𝑋G , …, 𝑋{ − 𝑋{AG , 𝑋{ − 𝑋{A@ . Under 

hypothesis	𝐻(, the Mann-Kendall statistical test is: 

𝑆 = 	 � � 𝑠𝑔𝑛(𝑋} − 𝑋c){
}�c?@

{A@
c�@            (4.1) 

where 

𝑠𝑔𝑛 𝑋} − 𝑋c = 	
+1							 𝑋} − 𝑋c > 0	
0									 𝑋} − 𝑋c = 0
−1							 𝑋} − 𝑋c < 0

              (4.2) 

When n 8, S is approximately normally distributed according to the assumptions of the Mann-

Kendall test, with zero mean and variance given by: 

𝜎G = { {A@ (G{?r)
@�

        (4.3) 

Consequently, statistic Z follows a standardised normal distribution: 

𝑍 =

�A@
�
							𝑖𝑓			𝑆 > 0

0											𝑖𝑓			𝑆 = 0
�?@
�
							𝑖𝑓			𝑆 < 0

     (4.4) 

With a given significance level α, hypothesis 𝐻( is rejected when  

𝑍 > 𝑍@A� G     (4.5) 

Otherwise, 𝐻(  is accepted. A significance level of 0.05 has been adopted for the current 

purpose. The value of 𝑍@A� G
 for a significance level of 0.05 from the standard normal table is 

1.96. 

4.1.2 Sen slope estimator 
The Mann-Kendall test only gives information about the monotonic trend, such as upward, 

downward or no significant trend. The magnitude of the trend can be measured by Sen’s slope 

estimator (Sen, 1968).  
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Sen’s slope is a rank-based parameter. Following the Mann-Kendall test, the slopes for all the 

N = 𝑛(𝑛 − 1) 2 possible differences 	𝑋} − 𝑋c are calculated by: 

𝑄� = 	
e�A	eh	
}Ac

    k = 1, 2, … , N       (4.6) 

where 𝑖, 𝑗, 𝑋c, 𝑋} have the same meaning as in Equation 4.1. Sen’s slope is defined as the 

median of these N values of 𝑄 (Sen, 1968; Yadav & Mishra, 2015). 

4.1.3 Illustration of the trend detection tools applied on MISR-HR anisotropy data 
The Mann-Kendall test was first systematically applied to the MISR-HR RPV time series of the 

three selected sites to detect the presence of a monotonic trend, in which case the Sen slope 

estimator was also computed. A subset of the results is shown and discussed below. 

Figure 4.1 illustrates the presence of a linear trend in the MISR-HR RPV k parameter in the 

blue spectral band, in this case for a single selected pixel in the semi-desert site (|Z| = 3.91 

and Q = 0.00052). This time series, spanning the period from 18 March 2000 to 12 May 2014, 

contains 183 data points (out of a theoretical maximum of 324) once outliers and missing data 

were accounted for. 

 

Figure 4.1: Time series of the MISR-HR RPV parameter k in the blue spectral band for a single 
pixel*, together with the associated linear trend line. 
* Location specified by Path 174, Block 117, Line 93 and Block 798 
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Tables 4.1, 4.2 and 4.3 summarize these results for each of the three RPV model parameters, 

in each of the 4 MISR spectral bands, and for each of the three sites described in Chapter 2, 

when all pixels are each site are combined. Specifically, each table entry indicates the 

proportion of all pixels in the specified site which exhibit a significant positive trend, no 

significant trend, or a significant negative trend. 

 

Table 4.1: Proportion of pixels in each of 3 significant trend categories for RPV parameter rho 
over the three study areas. 

Study sites Trend categories Blue 

% 

Green 

% 

Red 

% 

NIR 

% 

Semi-desert 
area* 

Upward 0.00 0.00 0.00 0.00 

No trend 100 0.82 30.58 86.78 

Downward 0.00 99.17 69.42 13.22 

Wheat field* 
Upward 0.00 0.00 0.00 0.00 

No trend 100 100 97.52 88.43 

Downward 0.00 0.00 2.48 11.57 

Vineyard 
area** 

Upward 0.00 0.00 0.92 3.70 

No trend 48.15 0.00 44.44 89.81 

Downward 51.85 100 54.63 6.48 
* This study site covered 121 pixels 
** This study site covered 108 pixels (see Section 2.5) 

 

It can be seen that the results differ among the three sites: while no appreciable trend was 

detected in the rho parameter in any of the 4 spectral bands for the wheat field site, virtually 

all pixels in the semi-desert and vineyard sites exhibit a downward trend in the green spectral 

band, and more than half of those pixels experience a downward trend in the red spectral 

band. 
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Table 4.2: Proportions of pixels in each of 3 significant trend categories for RPV parameter k 
over the three study areas. 

Study sites Trend 
categories 

Blue 
% 

Green 
% 

Red 
% 

NIR 
% 

Semi-desert 
area* 

Upward 100 36.36 0.00 0.00 
No trend 0.00 63.64 100 100 
Downward 0.00 0.00 0.00 0.00 

Wheat field* 
Upward 66.94 6.61 14.05 0.00 
No trend 33.06 93.39 85.95 96.69 
Downward 0.00 0.00 0.00 3.31 

Vineyard 
area** 

Upward 62.96 40.74 15.74 1.85 
No trend 37.04 52.78 60.19 87.96 
Downward 0.00 6.48 24.07 10.19 

* This study site covered 121 pixels 
** This study site covered 108 pixels (see Section 2.5) 

 

By contrast, in the case of the RPV parameter k, all pixels in the semi-desert site and about 

2/3 of the pixels in the other two sites exhibited a significant upward trend in the blue band. 

Results from the other sites are more mixed, though no or very few pixels showed a downward 

trend at any of the sites and in any of the spectral bands, except the vineyard site in the red 

(24%) and NIR (10%) spectral bands. 

Lastly, the results for the RPV Theta parameter show yet another pattern of trends: by and 

large, all three sites exhibit a strong upward trend in the blue spectral band, while the semi-

desert and wheat field sites exhibit little or no significant trend in the other three spectral bands. 

The vineyard site differs somewhat in this case, with varying proportions of pixels showing 

either no trend or a positive trend, depending on the spectral band. 

 

Table 4.3: Proportion of pixels in trend categories for parameter Theta over the three study 
areas. 

Study sites Trend 
categories 

Blue 
% 

Green 
% 

Red 
% 

NIR 
% 

Semi-desert 
area* 

Upward 100 0.00 0.00 0.00 
No trend 0.00 100 100 100 
Downward 0.00 0.00 0.00 0.00 

Wheat field* 
Upward 97.52 8.26 7.44 4.13 
No trend 2.48 91.74 91.74 95.87 
Downward 0.00 0.00 0.82 0.00 

Vineyard 
area** 

Upward 93.52 6.48 34.26 64.81 
No trend 6.48 93.52 55.56 35.19 
Downward 0.00 0.00 10.18 0.00 

* This study site covered 121 pixels 
** This study site covered 108 pixels (see Section 2.5) 
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The formal interpretation of these results would require access to field data to understand how 

these trends may be related to land cover or land use changes in those sites. However, there 

is another possible explanation, namely that the calibration of the MISR instrument may suffer 

from a slight but noticeable bias over this period. It is important, in this context, to note that 

the MISR instrument is calibrated on-board, through the periodic deployment of Spectralon™ 

panels in front of the cameras. However, that instrument was designed for a lifetime of 5 years 

and has now been operational for 18+ years (it is still working as of this writing). A 

comprehensive process of re-analysis of the entire MISR archive is underway at NASA and 

may be able to shed some light on this matter, so it will be interesting to re-evaluate the results 

described here in the context of those developments, once the reprocessing has been 

completed (not before 2021). 

In the meantime, since the trend statistics have been computed for every pixel, in each of the 

4 spectral bands and at each of the 3 sites, it is also possible to map the trend slope at each 

site, as measured by Sen’s estimator. Figures 4.2 and 4.3 show the spatial distribution of the 

RPV rho parameter downward slope in the green spectral band, for the semi-desert and the 

vineyard sites, as examples. In these maps, the coordinates vary from 0 to 10 (11 pixels on 

the side) and match the locations of the original MISR-HR pixels. Hence, point (10, 10) on the 

slope map corresponds to pixel s05_+005_-005 (north-east corner) in the MISR-HR dataset. 

The yellow diamond near point (1, 2) in Figure 6.1 represents the single pixel that exhibits no 

significant slope in the trend, as detected by the Mann-Kendall test at a confidence level of 

0.95 (and for which no Sen’s slope value was computed). In Figure 4.3, the greyed-out areas 

near the north-west corner and along the northern border of the map correspond to the area 

where data are missing due to topography. The colour bars in Figures 6.1 and 6.2 both range 

from −1.03×10Ax to −1.10×10Ar, with darker tones indicating stronger (negative) slopes. 
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Figure 4.2: Map of the intensity of the downward slope of the trend for the MISR-HR parameter 
rho in the green spectral band for the semi-desert site. The yellow diamond indicates the 
location of the single pixel in that site that does not exhibit a significant trend. 

 
Figure 4.3: Map of the intensity of the downward slope of the trend for the MISR-HR parameter 
rho in the green spectral band for the vineyard site. The grey area covers the region where no 
data are available due to the topography. 
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It can be seen that the downward trend over the semi-desert site is more spatially 

homogeneous and weaker than for the vineyard site. These spatial variations could result from 

local changes in the environment (although the semi-desert site is virtually free from human 

interference), or from a small, progressive degradation of the instrument that is not properly 

characterized by the regular calibration procedure, or—more likely—by a combination of both 

factors. Indeed, a calibration issue should translate into a uniform or smoothly varying trend, 

while land cover and land use (LCLU) changes could well be responsible for local changes. 

As noted earlier, unpacking these potential causes would require substantial field data. 

4.2 Seasonal analysis 
In addition to trends, time series often display a range of fluctuations that occur at specific 

frequencies. This is the case also for observations acquired from space, especially over 

vegetated areas since they follow the natural yearly seasonal cycle. Figure 4.4 shows the time 

series of the MISR-HR RPV parameter k in the red spectral band for the selected pixel of the 

semi-desert site. The yearly seasonal cycle is clearly visible despite the fact that outliers and 

missing values have partly depleted the data set. This particular time series will be used as 

the primary example for the subsequent discussions, though the data for any other pixel of 

either of the test sites would clearly be as appropriate. 

 

Figure 4.4: Time series of the MISR-HR RPV parameter k in the red spectral band for the 
selected pixel of the semi-desert site (Path 174, Block 117, Line 93 and Sample 798). Note the 
obvious seasonal cycle. 
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4.2.1 The Lomb-Scargle periodogram 
Systematic periodicity is often expected in time series, as is the case with the annual seasonal 

cycle of vegetation, because there is a clear understanding of the causal factor at work. In 

other cases, it is not known a priori whether a time series may contain periodic components 

or not. However, classical methods to determine the properties of time series in the spectral 

domain typically require complete data sets (no missing values) as well as data points equally 

spaced in time. This is hard or impossible to achieve with observations of the natural 

environment, including from space with optical instruments, because of the ubiquitous nature 

of clouds. 

Specific statistical tests such as the autocorrelation function have been developed to detect 

the presence of periodic components in time series (Nopiah et al., 2012). More importantly, 

spectral methods have been developed to analyse data sets where the observations are not 

equally spaced. The Lomb-Scargle periodogram method, in particular, is widely used for 

detecting the periodic components from unevenly-spaced time series (Ruf, 1999; Hocke & 

Kampfer, 2009; Townsend, 2010). This method was originally developed by Lomb and 

elaborated by Scargle (Press et al., 2007), who used it to analyse astronomical data that have 

irregular samples or regular samples with missing values (Scargle, 1989). 

The periodogram is one of the statistical tools used for detecting periodic variations in a time 

series (Press et al., 2007). It determines the “power” over a spectrum of frequencies. Suppose 

there is a time series with N data points ℎc = ℎ 𝑡c , where 𝑖 = 0, _, 𝑁 − 1.  The mean and 

variance of the time series are given by the following equations: 

ℎ� = @
�

ℎc�A@
c�(               (4.7) 

 𝜎G = @
�A@

(ℎc − ℎ)G�A@
c�(               (4.8) 

The Lomb-Scargle periodogram, developed by Lomb (1976) and elaborated by Scargle 

(1982), is defined as:  

𝑃� 𝜔 = 	 @
G�E

(�hA�) 89$�(khA�)h
E

89$E �(khA�)h
+ 	 (�hA�) $���(khA�)h

E

$��E �(khA�)h
     (4.9) 

where the angular frequency 	is: 

𝜔 = 2𝑓     (4.10) 
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and the frequency-dependent time offset  is calculated by: 

tan 2𝜔𝜏 = $�� G�khh
89$ G�khh

     (4.11) 

Knowing how to calculate	𝑃� 𝜔 , it is interesting to quantify how significant a peak in the 

spectrum is. Scargle (1982) pointed out that	𝑃� 𝜔 	has an exponential probability distribution 

with unit mean at any  and in the case of the null hypothesis. This means that 𝑃� 𝜔  will be a 

value between some positive 𝑧	and 𝑧 + 𝑑𝑧 and the probability is exp −𝑧 𝑑𝑧. Suppose there 

are 𝑀  independent frequencies, the probability that none gives values larger than 𝑧  is 

calculated by (1 − 𝑒A¥)¦. Thus, 

𝑃 > 𝑧 ≡ 1 − (1 − 𝑒A¨)¦     (4.12) 

is the false-alarm probability of the null hypothesis, which means the significance level of any 

𝑃�(𝜔) can be measured. Since the interesting region of the significance level is usually a very 

small number, ≪ 1, Equation 4.12 can be shortened to 

𝑃 > 𝑧 ≈ 𝑀𝑒A¨     (4.13) 

Horne and Baliunas (1986) tested the determination of 𝑀 in various cases and pointed out 

that 𝑀 is very nearly equal to 𝑁 when the time series is approximately equally spaced and 

when the sampled frequencies extend between 0 and the Nyquist frequency. With this 

assumption, the significance level of any peak in 𝑃� 𝜔  can be calculated; the smaller the 

value of the false-alarm probability, the higher the significance that a periodic signal exists. 

The Lomb-Scargle periodogram method has been used here to detect seasonality for the time 

series data illustrated in Figure 4.4; the periodogram is shown in Figure 4.5. It can be seen 

from the periodogram that there is an obvious peak with the power value almost 70. The peak 

corresponds to the frequency 0.044, which corresponds to a period of one calendar year. (The 

frequency value 0.044 was converted to a period of 22.67 data points. Because the MISR 

instrument collects data every 16 days, over the period of a year there are 22 or 23 

observations resulting in data points, so some calendar years have 22 data points and the 

others have 23. This 22.67-data-points period is an average value for the observed 14+ years, 

thus it is reasonable to approximate the period of 22.67 data points to one calendar year.) 

Significance levels 0.1, 0.05 and 0.01 are popular in practice, and sometime even a 

significance level of 0.5 is used. The false alarm values corresponding to these significance 

levels were calculated according to Equation 4.13, and were marked on the periodogram plot 
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in Figure 4.5. As the amplitude of the peak is much greater than the significance level 0.01 

threshold, it can be asserted with strong confidence that seasonality exists in the time series.  

 

Figure 4.5: The Lomb-Scargle periodogram of the parameter k time series, as specified in 
Figure 4.4. 

 

4.2.2 Seasonal component reconstruction method 
Once the seasonality of the MISR-HR RPV time series was detected by the Lomb-Scargle 

periodogram method, it was interesting to see how the seasonal variations behaved through 

the observation period, because seasonal variation may help to explain phenomena on the 

ground or help in the time series prediction. It was also interesting to see in literature how 

residuals varied when the seasonal component was extracted from the time series, because 

analysis of the residuals may reveal stochastic change in the time series. 

The seasonal part can be retrieved by the Lomb-Scargle algorithm-based reconstruction 

method. Scargle (1989) proposed a method of reconstructing an unevenly-spaced time series. 

First, he used the Lomb-Scargle method to compute the real and imaginary parts of the power 

spectrum which converted the time series into the frequency domain, and then reverted back 

to the time domain to obtain a time series of equally spaced points. Based on Scargle’s idea, 

Hocke and Kampfer (2009) extended the method to estimate the real and imaginary part of 

the spectral components, since a complex Fourier spectrum can be generated on the basis of 

the amplitude and phase information. The inverse Fourier transform can then be applied to 

that spectrum to retrieve an evenly-spaced time series. To generate a simulated signal that 

reproduces the seasonal fluctuations only, it is sufficient to include only those frequencies that 

are deemed statistically significant in the inverse Fourier transform. 
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The mathematical algorithm of this reconstruction method is described below (Hocke & 

Kampfer, 2009): 

The Lomb-Scargle periodogram method calculates the normalised amplitude 𝑃� 𝜔 . Here the 

reconstruction method needs to recover the spectrum amplitude 𝐴¬^ which is calculated by: 

𝐴¬^ 𝜔 = �
G
𝜎G𝑃� 𝜔          (4.14) 

The phase 𝜑¬^of the complex Fourier spectrum is given by: 

𝜑¬^ = arctan 𝐼, 𝑅 + 𝜔𝑡±²³ +  Θ       (4.15) 

where variables 𝑅, 𝐼 are calculated by: 

𝑅 𝜔 = (ℎc − ℎ) cos𝜔(𝑡c − 𝜏)c      (4.16) 

𝐼 𝜔 = (ℎc − ℎ) sin 𝜔(𝑡c − 𝜏)c          (4.17) 

𝜔𝑡±²³  is the phase correction variable with the average time 𝑡±²³ = (𝑡@ + 𝑡�)/2; the Lomb-

Scargle periodogram phase Θ is measured with the four-quadrant inverse tangent: 

Θ = @
G
arctan( sin(2𝜔𝑡c), cos(2𝜔𝑡c)cc )     (4.18) 

The real part of the Fourier spectrum is: 

𝑅¬^ = 𝐴¬^𝑐𝑜𝑠𝜑¬^     (4.19) 

The imaginary part of the Fourier spectrum is: 

𝐼¬^ = 𝐴¬^𝑠𝑖𝑛𝜑¬^     (4.20) 

Hocke and Kampfer (2009) used MATLAB computer language to explore this reconstruction 

method. The Fast Fourier Transform (FFT) algorithm of this programming language needs a 

complex vector F in the following format: 

𝐹 = [𝑐𝑜𝑚𝑝𝑙𝑒𝑥 0, 0 , 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑅¬^, 𝐼¬^ , 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑅¬^, −	𝐼¬^ 	]     (4.21) 
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The first number is the zero mean of the time series, followed by the complex spectrum, and 

last is the reversed complex conjugated spectrum. (The MATLAB programme lspr.m supplied 

by Hocke and Kampfer (2009) provides full details.) 

Once the complex Fourier spectrum is determined, the inverse Fourier transform can be 

applied. The real part of the inverse Fourier transform of F is the reconstructed evenly-spaced 

time series. This is the way of fully rebuilding the time series, which means all frequency 

components are taken back to the time domain. An evenly-spaced time series is reconstructed 

in this way, which also includes the noise component. 

The seasonal part can be retrieved by modifying the Fourier spectrum before the inverse 

Fourier transform is applied. The modification is the process of setting the frequency power of 

the unwanted frequency component to zero and keeping the desired spectrum. For instance, 

the modification can be applied by setting the frequency power lower than significance level 

0.05 to 0, and returning the remaining frequency component to the inverse Fourier transform; 

seasonal components with a confidence level of 0.95 are retrieved in this way. 

4.2.3 Testing the reconstruction method on MISR-HR RPV products 
Hocke and Kampfer (2009) supplied the complex Fourier spectrum construction computer 

program ‘lspr.m’ in MATLAB format. This program was converted into IDL (Interactive Data 

Language), and modified to retrieve the required seasonal component from both the evenly- 

and unevenly-spaced time series. The MISR-HR time series data used in the current research 

to test the Lomb-Scargle reconstruction method is the same data set used for illustrating the 

Lomb-Scargle periodogram algorithm, namely the red band parameter k time series as 

specified in Figure 4.4. Applying the IDL reconstruction program to this k time series, the 

reconstructed evenly-spaced time series is plotted in Figure 4.6. No modification was made 

to the Fourier spectrum in this reconstruction process, which means noise spectra were also 

taken into the inverse Fourier transform and were reconstructed. 

The seasonal part of this k time series was retrieved by setting the Fourier spectrum threshold 

at the significance value equal to 0.05 in the IDL reconstruction program, since this threshold 

can get rid of most of the noise signals and keep the significant seasonal components. The 

spectral components with the amplitude larger than this threshold were reconstructed. The 

retrieved seasonal part as well as the original time series is plotted in Figure 4.7. It can be 

seen from the plot that the seasonal part consists of an annually-repeated sinusoidal wave. It 

is also noticeable that the middle part of the reconstructed seasonal part fits the original time 

series very well, but the sinusoidal waves are ‘shrunk’ at both ends of the time series. Hocke 
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and Kampfer (2009) explained this is a drawback of the reconstruction method and suggested 

using the middle part of the reconstructed time series rather than using all of them. Musial, 

Verstraete and Gobron (2011) addressed this problem by applying the Kaiser-Bessel window 

instead of the Hamming window in Hocke’s ‘lspr.m’ program. They pointed out that the Lomb-

Scargle algorithm together with the Kaiser-Bessel window can overcome the ‘shrinkage’ 

problem and regenerate reliable reconstructed time series. Retrieving an accurate seasonal 

component is not the purpose of the current research. The retrieved seasonal period and the 

reconstructed signal pattern of each season from the MISR-HR anisotropy data are adequate 

for revealing the ground information of the studied areas. The Lomb-Scargle periodogram and 

Hocke and Kampfer’s reconstruction algorithm are good enough to display the seasonal 

period and signal patterns of the MISR-HR RPV time series. The ‘shrinkage’ problem did exist 

in the reconstructed seasonal component but only affected the amplitudes rather than the 

pattern of the seasonal waves; thus, the ‘shrinkage’ problem was put aside in this study.   

 

 

Figure 4.6: The original parameter k time series (Figure 4.4) against the reconstructed k time 
series derived by the Lomb-Scargle periodogram-based reconstruction method. 
‘+’ represents the original k time series; ‘-’ represents the reconstructed k time series 
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Figure 4.7: Time series of parameter k (Figure 4.4) against the reconstructed seasonal part* of 
the k time series. 
* Six frequencies with power greater than significance value 0.05 on the periodogram (Figure 4.5) were used to 
reconstruct this seasonal part 

 

4.2.4 Discussion of the reconstruction method 
The previous sections showed that the Lomb-Scargle algorithm can be used to estimate the 

periodogram of an unevenly-distributed time series, and that this power spectrum, in turn, can 

be exploited to regenerate a synthetic time series very similar to the original one, which can 

be sampled at arbitrary intervals. This is one way to fill the gaps in an existing time series, or 

to resample a time series on a different temporal grid. This reconstruction method also allows 

rebuilding the required frequency signal by modifying the unwanted frequency spectrum to 

zero. The seasonal component of a time series can be retrieved in this way, by setting the 

power of the frequency spectrum less than a certain significance level to zero. The retrieved 

seasonal component can help in interpreting seasonal variations in the observed area, for 

instance the vegetation. The test of this reconstruction method on the illustrated parameter k 

time series, as well as the tests made on other RPV parameters for different spectral bands, 

showed that this Lomb-Scargle-based reconstruction method worked well in representing the 

pattern and phase of the seasonal component. 
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4.3 Seasonality exploration of the MISR-HR anisotropy data 
As seen from the time series plots of parameters rho, k and Theta in Figures 2.6, 2.9 and 2.12, 

respectively, seasonal variations are obvious even though there are many missing values in 

each series. This section first reports on the tests for seasonality in the MISR-HR anisotropy 

data and then on the extracted and analysed seasonal components in the RPV time series. 

4.3.1 Results of seasonality detection 
To investigate regular variations such as seasonality in data, the Lomb-Scargle periodogram 

method was employed in the current research because it has the merit of detecting seasonality 

from unevenly spaced time series data, as discussed in Section 4.2.1. This Lomb-Scargle 

periodogram method was applied to all the pixels in the four spectral bands for all three study 

sites. Some degree of seasonality was detected at each of the three sites, at the significance 

level of 0.05; the results are summarised in Table 6.4. 

As can be seen from Table 4.4, nearly all pixels for the semi-desert area show seasonal 

variations in the k and Theta time series, for all spectral bands; all pixels for this area exhibit 

seasonal variations in the parameter rho time series, but only for the red and NIR spectral 

bands. For the wheat field, all pixels have seasonality in the parameter rho data, for the red, 

green and blue bands; nearly all pixels in the wheat field show seasonal variations in the 

parameter k time series, for all spectral bands. For the vineyard area, the majority of pixels in 

both parameter rho and k data exhibit seasonal variations in the red and NIR bands. 

 
Table 4.4: Proportion of pixels showing seasonality in the MISR-HR anisotropy data in four 
spectral bands, for the three study areas. 

Study sites RPV 
parameters 

Blue 

% 

Green 

% 

Red 

% 

NIR 

% 

Semi-desert 
area* 

Rho 0.00 54.54 100 100 

K 100 100 100 100 

Theta 99.17 100 100 100 

Wheat field* 

Rho 100 100 100 14.88 

K 100 100 99.17 100 

Theta 74.38 100 65.29 94.21 

Vineyard 
area** 

Rho 0.93 27.10 92.52 87.94 

K 59.26 71.30 98.15 99.07 

Theta 0.93 25.93 68.52 62.04 
*This study site covered 121 pixels in total 
** This study site covered 108 pixels in total (see Section 2.5) 
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4.3.2 Analysis of seasonal variations 
This section analyses the seasonal component of the MISR-HR anisotropy data. This analysis 

can help in revealing regular variations in the anisotropy data. The method used to rebuild the 

seasonal variations was introduced in Section 4.2.2. The seasonal component reconstruction 

can give details about the pattern and the phase of the seasonal signal. 

4.3.2.1 Parameter rho 

Figure 4.8 displays the reconstructed seasonal component of the rho time series in the red 

spectral band for the selected pixels in the three study areas. The selected pixels are the same 

pixels identified in Chapter 2, namely s05_+000_+001 for the semi-desert area, 

s10_+000_+000 for the wheat field and s12_+000_-003 for the vineyard area. The detected 

period of parameter rho is one calendar year for all three pixels.  

It can be seen from the plot that parameter rho of the wheat field peaks in summer (around 

January every year), while at the same time the vineyard area reaches its lowest point. This 

indicates the seasonal variation of the wheat field has an opposite phase to that of the vineyard 

area. These variations are consistent with the vegetation signatures of these two areas: wheat 

grows in winter with the green leaves absorbing red spectral band energy, while in summer 

the leaves on the mature wheat turn yellow. The growing season of grapes is just the opposite 

of wheat, with green leaves in summer which fall off in winter. As we know, green leaves 

absorb red spectral band energy so in summer in this area the reflectance of this band will be 

lower than in the area without green leaves. Thus, these vegetation signatures are 

represented by the seasonal variations of the parameter rho values.  

The differences of the phase in the three areas can be calculated by retrieving the observation 

dates of the peak and lowest values. The first peak values for the semi-desert and wheat field 

were observed on 16 January, 2001 and 17 February, 2001, respectively (one month’s 

difference); the lowest values for these two areas were observed on 24 July, 2000 and 25 

August, 2000, respectively. The first peak and lowest values for the vineyard area were 

obtained on August 25, 2000 and February 17, 2001, which means the vineyard rho parameter 

variation is exactly the opposite phase as the wheat field.  

These accurate phase determinations would be impossible without the use of the multiyear 

time series reconstruction.  
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Figure 4.8: Reconstructed seasonal components of the red band parameter rho time series, for 
the semi-desert area*, the wheat field** and the vineyard area***, respectively.  
* Location specified by Path 174, Block 117, Line 93 and Sample 798 
** Location specified by Path 174, Block 117, Line 358 and Sample 431 
*** Location specified by Path 174, Block 117, Line 381 and Sample 773 

 

4.3.2.2 Parameter k 

The period of parameter k is calculated as one calendar year—the same as for parameter 

rho—for all three study sites. The time series plots of the seasonal components of red band 

parameter k are shown in Figure 4.9 for all three study sites. The first lowest values were 

observed on 21 May, 22 June and 25 August, 2000 for the vineyard, semi-desert area and the 

wheat field, respectively. The first peak values were obtained approximately six months after 

the lowest values for these three areas. The retrieved lowest observation dates reveal a three-

month shift between the vineyard and the wheat field to reach their minimum value in each 

period. The k values themselves are very close for these two sites, such that it is not easy to 

discriminate the vineyard from the wheat field by that statistics. However, the phase difference 

between these time series offers an opportunity to discriminate between the different land 

covers. Classification can be applied by using the different phases of the seasonal 

components as the classification signatures.  



 63 

 

Figure 4.9: Reconstructed seasonal components of the red band parameter k time series, for 
the three study areas. Pixels are as specified in Figure 4.8. 

 

Since parameter k shows higher mean values in the NIR band for the vineyard area than the 

other two sites, it was interesting to explore seasonal variations of the NIR band k values for 

all three (see Figure 4.10). It can be seen from the plot that the illustrated data sets display 

seasonal variations; the shape of each seasonal cycle for the three study sites is different; 

NIR band k data go down from the start of the observation date for all the areas; the grape 

cultivation data achieved the first lowest point on 5 June, 2000, and after a little bump the 

illustrated data reached the minimum value in the first cycle on 10 September, 2000; the 

vineyard area data reached the first peak value on 29 November, 2000 and the second peak 

value on 5 March, 2001; similar to the vineyard area, the wheat field data reached their first 

lowest value on 8 July, 2000, and after a tiny bump the illustrated data of this area achieved 

minimum value on 13 October, 2000; however, the wheat field data only have one peak value 

in each cycle, with the peak value being obtained on 17 February, 2001; the illustrated semi-

desert area data only achieved one lowest point and one peak value in a seasonal cycle, 

where the lowest and peak values for this area were obtained on 8 July, 2000 and 31 

December, 2000, respectively. 
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Figure 4.10: Reconstructed seasonal components for the RPV parameter k in the NIR spectral 
band, for the three study areas. Pixel locations are as specified in Figure 4.8. 

 

For the illustrated vineyard area data, the time between the first lowest value (6 June, 2000) 

and the first peak value (29 November, 2000) was about 6 months. The period between the 

second lowest value (10 September, 2000) and the second peak value (5 March, 2001) was 

also approximately six months. The Lomb-Scargle periodogram plot of this selected time 

series shows that there are two peaks with significance level over 0.05, as demonstrated in 

Figure 4.11. However, this seasonal variation shape of the NIR band k data is not a common 

characteristic for this vineyard area. When the NIR band k data of other pixels in this area 

were examined, no similar seasonal variation shapes were found. The examined pixels were 

s12_-003_+005, s12_-002_-002, s12_+000_+000, s12_+000_-001 and s12_+005_-005. The 

selected pixel is not representative of the common seasonal variation features of the NIR band 

parameter k data for the entire vineyard area. There are however pixels that show similar 

variations in the set.  This is clear from comparing two groups of pixels as shown in Figures 

4.12 and 4.13. All in all, it does still show high mean values of NIR band k data.  
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Figure 4.11: Periodogram of the illustrated RPV k parameter in the NIR spectral band, for the 
vineyard area. Pixel location is as specified in Figure 4.8. 

 

 

Figure 4.12: Reconstructed seasonal components for the RPV parameter k in the NIR spectral 
band, for pixels s12_-005_+005, s12_+001_-002 and s12_+001_-003 in the vineyard area. These 
pixels show different variations to pixel s12_+000_-003 demonstrated in Figure 4.10. 



 66 

 

Figure 4.13: Reconstructed seasonal components for the RPV parameter k in the NIR spectral 
band, for pixels s12_-002_-002, s12_-001_-002 and s12_+000_+000 in the vineyard area. These 
pixels show similar variations as pixel s12_+000_-003 demonstrated in Figure 4.10. 

 

4.3.2.3 Parameter Theta 

The seasonal variations in parameter Theta are quite complex for the three study sites. The 

seasonal components of the illustrated red band Theta data are shown in Figure 4.14 for all 

three study areas. The periods of the Theta data for the semi-desert area and the wheat field 

are one calendar year and six months, respectively, retrieved by the Lomb-Scargle 

periodogram method with a significance level of 0.05 (Section 4.2.1). For the illustrated 

vineyard area, Theta data exhibit two peaks in the periodogram with significance level higher 

than 0.05, as seen in Figure 4.15. These two peaks show that there are two dominant seasonal 

variations in the Theta time series and explains why there is structure in the seasonal 

component plot for the vineyard area (Figure 4.14). 

As seen from the seasonality summaries for the wheat field and vineyard area in Table 4.4, 

not all pixels for these two areas show seasonal variations in the Theta data. For pixels with 

seasonality, the periods are the same for the same study area in the same spectral band; for 

instance, some pixels in the wheat field were detected with a cycle of six months in the red 
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spectral band, while a few pixels were detected with a cycle of one year for the same study 

site in the same spectral band. The diverse seasonality of the Theta data for the same study 

area makes it difficult to summarise a common feature for this area, as illustrated by the results 

from wheat field. 

 

 

Figure 4.14: Seasonal variations of RPV parameter Theta in the red spectral band for the three 
study areas. Pixel locations are as specified in Figure 4.8. 

 

Figure 4.15: Periodogram of the illustrated red band Theta data, for the vineyard area. Pixel is 
as specified in Figure 4.8. 
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4.4 Discussion of the trend detection and seasonal variation analyses 
This research undertook a preliminary exploration of the trends in the MISR-HR anisotropy 

data over a period of 14+ years, with the aim of revealing long-term change in the semi-desert 

area, the wheat field and the vineyard area, represented by time series in the RPV parameters. 

The downward trend in the green band parameter rho data for this area may reveal the 

degradation of the environment or the change in the MISR calibration system, which needs to 

be confirmed by further investigation. Changes in the wheat field and the vineyard area are 

influenced by the natural environment, MISR instrument and human activities. The trend 

detection results also indicated the upward trend of the blue band parameter k data for the 

entire semi-desert area, and more than half of the pixels covering the wheat field and the 

vineyard area. The interpretation of the blue band parameter k data is difficult, since no 

research about the application of this spectral band parameter k data was found in literature. 

Nor was any literature found on blue band parameter Theta data, which showed an upward 

trend in nearly all pixels in the three areas. Even though the current study was not able to 

interpret the trends in the MISR-HR anisotropy data, it did detect and represent the monotonic 

trends in that data.  

The seasonality detection results show that all three RPV parameters have seasonal 

variations, which may differ between different spectral bands and study areas. Pinty et al. 

(2002) suggested that parameter k may change regularly with the observation time; the 

seasonality detection results in the current research confirmed this hypothesis and, 

furthermore, showed the seasonal variations in the parameters rho and Theta data also occur. 

The reasons that caused seasonal variation in the MISR-HR anisotropy data are complex. In 

theory, the RPV model parameters are not dependent on the position of the Sun under perfect 

conditions. But due to the limited sampling measurement (the MISR instrument only collects 

nine angular measurements in each spectral band), the retrieved RPV products may not able 

to describe thoroughly the actual anisotropy of the observed area. This may result in the RPV 

products still being influenced by the solar zenith angle. For instance, the author speculates 

that seasonality in the parameter k time series for the semi-desert area is caused by the solar 

zenith angle, because this area is supposed to be constant over the observation period. 

Seasonality of parameter rho was probably influenced by vegetation conditions on the ground, 

which are represented by the different seasonal phases between different vegetation types. 

Varying seasonal phases for different types of vegetation are potentially useful for 

discriminating different land surfaces. Armston et al. (2007) presented parameter rho values 

for a cypress pine forest, eucalypt open woodland and a grassland in their research; only the 
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grassland showed a slight increase (1-2%) in the red and green bands of parameter rho, while 

the other two areas remained constant over the one-year-long observation period. These 

results are not in conflict with the seasonality found in the current research, since both the 

cypress pine and the eucalypt are evergreen vegetation with more constant reflection than 

seasonally-sensitive cultivation areas, such as the cultivated wheat and vineyard areas. 

4.5 Summary 
This research detected monotonic trends and seasonality in the MISR-HR anisotropy data 

over a period of 14+ years, for a semi-desert area, a wheat field and a vineyard area. The 

trend analysis on the MISR-HR anisotropy data could indicate long-term change of the 

observed ground surface, calibration drift or other factors. This is an area for further research.  

Three interesting trend detection results were found. There was a downward trend of the green 

band rho data for the semi-desert area and the vineyard area. An upward trend of the blue 

band k data for the entire semi-desert area and more than half of the pixels covering the wheat 

field and vineyard area was detected. An upward trend of the blue band Theta data for nearly 

all the pixels in the three study sites was also detected.  

The seasonality analysis shows that, while all the RPV parameters have seasonal variations, 

there is diversity between different spectral bands and land covers. The seasonal information 

presented by the RPV parameters corresponded to the signatures of natural phenomena (e.g., 

cultivation of different plan types) in the observed areas. This investigation of the seasonality 

confirmed that parameter k varies regularly along the observation time; and also revealed 

seasonal variations in the parameter rho and Theta data. Seasonal signatures represented by 

the RPV time series are potentially useful for classifying different land covers.  
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CHAPTER 5 

USING MISR-HR PRODUCTS TO DISCRIMINATE LAND COVERS 

 

Chapters 2 and 4 have highlighted to fact that the MISR-HR RPV products for the three 

selected sites (semi-desert, wheat field and vineyard) of South Africa's Western Cape 

Province exhibited significantly different signatures in the temporal, spectral and directional 

domains. This, in turn, suggests that these properties could be used to discriminate between 

such land cover types, as was speculated in the initial objectives of this thesis. 

Section 5.1 reviews those outcomes and associates specific signatures to each of the three 

sites. Section 5.2 outlines the clustering algorithm that was selected for this study (the kNN 

classifier), while sections 5.3 and 5.4 explore the effectiveness of the previously identified 

spectral and directional signatures in these three cases. Section 5.5 discusses these results, 

and Section 5.6 investigates the combined use of multiple criteria to improve the classification 

performance. Lastly, Section 5.7 summarizes the findings of this Chapter. 

5.1 Distinctive signatures of the MISR-HR RPV data 
The MISR-HR RPV rho parameter in the red spectral band proved to be highly useful in 

discriminating between the three sites. This was largely expected because of the strong 

absorption of the chlorophyll molecules in that spectral band. In fact, most traditional 

classification algorithms rely on one or more spectral bands (Lu, Mausel, Batistella & Moran, 

2004a), and in particular the red band, to characterize land covers, but they typically rely on 

the reflectance measurements themselves, which may have been corrected for atmospheric 

effects but rarely account for the anisotropy of the illumination field or of the surface itself. The 

main advantage and the relatively innovative use of the RPV rho parameter is that this product 

results from the inversion of a bidirectional reflectance model against multi-angular data and 

therefore is essentially decontaminated from such directional effects. 

A simple exploratory investigation of the properties of the MISR-HR RPV k parameter in the 

NIR spectral band (Section 2.6.2) unveiled that this parameter exhibited very different values 

over the vineyard compared to the other two sites (semi-desert and the wheat field), which 

were otherwise quite similar. This result is particularly interesting because it contrasts with the 

finding of Armston et al. (2007, p. 295) who found that "the mean k parameter for the NIR 

band does not show any values greater than 1.0 due to the lack of spectral contrast between 

the canopy and the soil background" in the Southern Brigalow Belt (SBB) Biogeographic 
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Region of Australia (that region covers 367,404 km2, though their investigation only used 20 

acquisitions, between 2002 and 2004). On the other hand, the RPV parameter Theta did not 

appear to be as effective in these cases than in the Australian study. This difference may be 

worth investigating in the future.  

Lastly, Section 4.3.2 showed that the three sites also exhibited specific and different temporal 

signatures, with phase differences likely due to the specific phenological properties of these 

different environment. Hence, it can be surmised that the spectral analysis of these time 

series, and in particular the timing of the seasonal onset of the growing seasons, could also 

be exploited to differentiate between these land covers. 

The second objective of this thesis will therefore focus on exploring the classification potential 

of the MISR-HR RPV parameters rho and k in the spectral and temporal domains. 

5.2 The 𝒌-nearest neighbour classifier (𝒌NN) 
The literature on clustering and classification is replete with methods and algorithms, including 

the maximum likelihood classifier, support vector machine (SVM) classifier, k-means or k-

nearest neighbour classifier (Lu et al., 2004a; Marcal, Borges, Gomes & Pinto da Costa, 2005; 

Szuster, Chen & Borger, 2011; Jia et al., 2014; Taati et al., 2014). The k-nearest neighbour 

classifier, in particular, is a supervised distance-based, non-parametric classifier, which is 

simple to understand and works very well in practice (Franco-Lopez, Ek & Bauer, 2001; 

McRoberts, Nelson & Wendt, 2002). It was adopted in this work, first for the purpose of 

exploring whether the three selected sites could be differentiated on the basis of a single 

MISR-HR RPV parameter. 

The 𝑘NN classifier computes the distance between an arbitrary test case and a set of training 

instances (with known class labels). It assigns a class label to that case on the basis of its 

proximity to its 𝑘-nearest neighbours. Various rules can be used to estimate these distances, 

and selecting the class label associated with the majority of 𝑘-nearest neighbours is commonly 

used. Euclidian metric, one of the simplest measures, is frequently used in many applications. 

The reliability of the 𝑘NN classifier has been thoroughly discussed in literature (Cooper & Hart, 

1967; Wang, Neskovic & Cooper, 2003; Wang, Neskovic & Cooper, 2006; Tsypin & Roder, 

2007; Walpole et al., 2012). Tsypin and Roder (2007) proposed a method of measuring the 

confidence level for the 𝑘NN classifier that depends only on the training data set. Their formula 

for calculating the level of confidence assumes the existence of only two classes. When the 

numbers of training instances within each class are the same, the confidence for a class, for 

instance class 1, is calculated by: 
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𝑘 = 𝑘1 + 𝑘2     (5.3) 

where 𝑘1 is the number of nearest neighbours belonging to class 1 and 𝑘2 is the number of 

nearest neighbours belonging to class 2. Hence, when the number 𝑘 of nearest neighbours to 

be checked in order to classify a new item is 5, if all of those belong to the same class (say 1, 

for the sake of the argument), then 𝑘1 = 5, 𝑘2 = 5 - 𝑘1 = 0. The confidence level associated 

with assigning that point to class 1 is thus 6/7 or 85.71%, or, equivalently, assigning that point 

to class 2 would result in a confidence value of only 1/7 or 14.29%. Similarly, if one of those 5 

neighbours belonged to class 2, the confidence level for assigning that test point to class 1 

would drop to (4 + 1) / (4 + 1 + 2) = 5/7 or 71.43%. It is seen that this confidence level indicator 

only takes on a limited number of discrete values. Its maximum value 𝑘/(𝑘 + 1) tends to 1.0 

(or 100%) when the number k of smallest distances to training points increases and all of them 

happen to belong to the same class. 

This investigation adopted the 𝑘NN classifier and the Euclidian distance estimator, combined 

with the majority voting rule to assign a class label to each point, and then used Equation 5.1 

to calculate the confidence level of the classification result. 

In order to use this approach, it is imperative that each item to be classified exhibits the same 

number of properties. In this particular case, this implies that all time series of MISR-HR RPV 

parameter values must have valid values on the same dates as the training pixel’s time series, 

as the Euclidian distance estimator would return meaningless values if the length of the time 

series were different, or if the observation dates of the two series did not match. 

Since the RPV time series discussed in Chapter 3 and 4 could contain missing values (due to 

cloudiness or detected outliers), such values should be replaced by reasonable estimates 

before applying the 𝑘NN classifier. The time series reconstruction method based on the Lomb-

Scargle periodogram and described in Section 4.2.2 was used in those cases to ensure that 

all time series were of equal length and provided data on the same dates.  

The 𝑘NN algorithm requires a set of training data to determine a priori the properties of typical 

classes. Too few or poorly chosen training points may lead to an unsatisfactory classification, 

while too many training points would significantly increase the computational cost. Ten training 
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points from each of the three sites were selected for the purpose of this work. In the case of 

the semi-desert site, the training points were chosen arbitrarily because the absence of land 

use or human interference with the landscape implied that they could all be equally relevant. 

In the case of the wheat field and the vineyard, the training points were specifically picked by 

inspection of high spatial resolution images available on Google Earth to avoid including mixed 

or different targets such as houses or obviously different land covers. Table 5.1 lists the pixels 

selected for the training of the 𝑘NN algorithm at each site. The status of the remaining pixels 

(111 for the semi-desert and wheat field, and 98 for the vineyard) was the assessed with the 

classification algorithm. 

 

Table 5.1 Training pixels for the three study areas. 

 Vineyard Wheat field Semi-desert 

1 s12_-005_+004 s10_-005_+000 S05_-004_-001 
2 s12_-005_+005 s10_-005_+001 S05_-003_+003 
3 s12_-003_-002 s10_-005_+002 S05_-002_-004 
4 s12_-003_+000 s10_-004_+000 S05_-001_+005 
5 s12_-003_+001 s10_-004_+001 S05_+000_+001 
6 s12_-003_+005 s10_-004_+002 S05_+001_-003 
7 s12_+000_-003 s10_-003_+000 S05_+002_+003 
8 s12_+000_+000 s10_-003_+001 S05_+003_-002 
9 s12_+001_-004 s10_-003_+002 S05_+004_-005 
10 s12_+001_-002 s10_-002_+000 S05_+005_+001 

 

5.3 Classification by spectral signature 
Given the historical importance of spectral information in classifying land covers, the first 

application of the 𝑘NN algorithm investigated the performance of the RPV parameter rho in 

the red spectral band to discriminate between the three sites on the basis of 14+ years of data.  

5.3.1 Distinguishing the vineyard from the wheat field 
The time series of all non-training pixels for the RPV parameter rho in the red spectral band 

were first updated using the method described earlier to replace missing values by reasonable 

estimates and therefore generate sequences with the same number of data points and for the 

same dates. Training pixels for the vineyard were assigned to class 1, while those for the 

wheat field were labelled class 2. The number of the 𝑘-nearest neighbours was set to 5. 

Applying the 𝑘NN classifier on all (209) remaining query pixels for these two areas showed 

that all query pixels for the vineyard area were assigned to class 1 (grape cultivation) and all 

query pixels for the wheat field were attributed to class 2 (wheat field) with a confidence level 
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of 85.71%. Non-grape cultivation pixels in the vineyard area were not separated out by red 

band parameter rho data in this classification test. 

5.3.2 Distinguishing the vineyard area from the semi-desert area 
A similar procedure was applied to explore whether the vineyard could also be discriminated 

from the semi-desert on the basis of the RPV parameter rho in the red spectral band. Setting 

again the vineyard training pixels to class 1 and the semi-desert area to class 2, and then 

apply the 𝑘NN classifier on all query data for these two areas, the results showed that all query 

pixels for the semi-desert area were assigned to class 2, with all but three pixels having a 

confidence level of 85.71%; pixels s12_+005_-005 and s12_+005_-003 had a confidence level 

of 71.43%, and pixel s12_+005_-004 a confidence level of 57.14%. For the query pixels of the 

vineyard area, 83 pixels were attributed to class 1 (68 pixels with confidence of 85.71% and 

15 pixels with confidence levels lower than 85.71%) and 15 pixels were assigned to class 2 

(9 of these 15 pixels with a confidence level lower than 85.71%). These 15 pixels (listed in 

Table 5.2), which the classifier allocated to the semi-desert class from the vineyard area, are 

located in the non-grape cultivation area, or at the boundary between grape cultivation and 

non-grape cultivation areas. 

 

Table 5.2: Non-grape cultivation pixels detected when discriminating the vineyard area from 
the semi-desert area, with the 𝒌NN classifier combined with red band rho data. 

 Pixel name   Pixel name 

1 s12_-005_-003 9 s12_+004_+003 

2 s12_-005_-001 10 s12_+005_-002 

3 s12_-004_-004 11 s12_+005_-001 

4 s12_+003_+003 12 s12_+005_+000 

5 s12_+004_-001 13 s12_+005_+001 

6 s12_+004_+000 14 s12_+005_+002 

7 s12_+004_+001 15 s12_+005_+005 

8 s12_+004_+002   
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Figure 5.1: Satellite map of the vineyard area. Red balloons labelled ‘B’ indicate southwest and 
northeast boundary pixels. Yellow, red and green pins indicate pixels that were declared non-grape 
cultivation by both the RPV rho parameter in the red spectral band and the RPV k parameter in 
the NIR spectral band, by the rho red only or by the k NIR only, respectively. The pink pins 
identify additional non-grape cultivation pixels identified using multiple RPV parameters. 

 

Inspection of Figure 5.1, which locates those 15 pixels on a Google Earth background map as 

yellow and red pins (the distinction between those will become clearer below), shows that 

those pixels are indeed not cultivated but rather bare ground, or perturbed by a bright surface 

such as a road (e.g. pixel s12_-005_-001). Hence, the classifier successfully assigned the 

pixels to the correct class labels and was able to separated non-grape cultivation pixels from 

the vineyard area. 

5.3.3 Distinguishing the wheat field from the semi-desert area 
The 𝑘NN classification procedure was then applied to test the feasibility of separating the 

wheat field (training pixels assigned to class 1) from the semi-desert (training pixels assigned 

to class 2). The classification results showed that all query pixels were attributed to the correct 

class with a confidence level of 85.71%. The 𝑘NN classifier can therefore be applied to the 

RPV rho parameter in the red spectral band to successfully discriminate the wheat field and 

the semi-desert. 
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5.4 Classification by directional signature 
The results described in the previous section confirm that different land cover types can be 

distinguished on the basis of their spectral signature, in this case the RPV rho parameter in 

the red spectral band, as expected given earlier findings published in the refereed literature. 

In this section, the same approach was applied to analyse the directional signatures of those 

three sites, this time characterized by the RPV k parameter in the NIR spectral band. 

5.4.1 Distinguishing the vineyard from the wheat field 
As for the previous case (Section 5.3), the time series of the RPV parameter k in the NIR 

spectral band for all pixels of the three sites were completed and made comparable by 

ensuring that they were of the same length and provided valid values for all applicable dates. 

The vineyard site was set to class 1, the wheat field to class 2, and the number of nearest 

neighbour to 5. The 𝑘NN classifier reported that all query pixels from the wheat field were 

assigned to class 2 with a confidence level of 85.71%; while 13 pixels of the vineyard area 

were assigned to class 2 and the remaining pixels were assigned to class 1. Two query pixels 

in the vineyard site (s12_+003_+003 and s12_+003_+005) were assigned a lower 

classification confidence level of 71.43% and 57.14%, respectively, while all other pixels of 

this area had a classification confidence level of 85.71%. The 13 pixels located in the vineyard 

area but assigned to the wheat field class by the 𝑘NN classifier are listed in Table 5.3, and 

marked on the satellite map in Figure 5.1 with yellow and green pins: yellow pins characterize 

those pixels which were correctly detected as non-vine cultivation by both the spectral and 

directional classification method, and green pins represent those pixels detected by the 

directional classification method only). 

 

Table 5.3: Non-grape cultivation pixels detected when discriminating the vineyard area from 
the wheat field, with the 𝒌NN classifier combined with NIR band k data. 

 Pixel name  Pixel name 

1 s12_-004_-004 8 s12_+005_+000 

2 s12_+003_+004 9 s12_+005_+001 

3 s12_+003_+005 10 s12_+005_+002 

4 s12_+004_+002 11 s12_+005_+003 

5 s12_+004_+003 12 s12_+005_+004 

6 s12_+004_+004 13 s12_+005_+005 

7 s12_+004_+005   
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As can be seen on that satellite map, pixels s12_+003_+003 and s12_+003_+005 are both 

located on the boundary between the vineyard fields (to the west) and uncultivated areas (to 

the east): this can explain their lower classification reliability. It should be remembered (1) that 

the geolocation accuracy of MISR data is of the same order of magnitude as the size of the 

high-resolution pixels, hence the actual observed area on the ground for those pixels can differ 

slightly from the positions indicated on the map of Figure 5.1. (see the NASA JPL web page 

available at https://misr.jpl.nasa.gov/Mission/geocal/migeocal.html), and (2) that the 𝑘NN 

algorithm was given only two classes to choose from: vineyard and wheat field. Hence 

anything that did not resemble a vineyard had to be classified as a wheat field, and the 

algorithm correctly indicated that the confidence level in this case was not very high (57.14%). 

5.4.2 Distinguishing the vineyard from the semi-desert area 
The 𝑘NN classification procedure was carried out once again, this time to test the separability 

of the vineyard (class 1) from the semi-desert (class 2), when using 5 nearest neighbours. It 

turned out that all the query pixels from the semi-desert area were assigned to class 2, hence 

with a confidence level of 85.71%; 82 pixels of the vineyard area were attributed to class 1, 

also with a confidence level of 85.71%, and 16 pixels of this site were allocated by the classifier 

to class 2. Of these 16 pixels, two (s12_-005_-003 and s12_+004_+001) were assigned a 

confidence level of 57.14%; another two (s12_+003_+003 and s12_+003_+005) were given 

a confidence level of 71.42%; and the remaining 12 pixels had a confidence level of 85.71%. 

These 16 pixels include all 13 non-grape cultivation pixels detected in Section 5.4.1 and three 

additional pixels, namely s12_-005_-003, s12_+003_+003 and s12_+004_+001. The latter 

are located either in the non-grape cultivation area (e.g., s12_+003_+003, s12_+004_+001) 

or on the boundary between the non-grape cultivation and the grape cultivation area (e.g., 

s12_-005_-003) (see Figure 5.1). 

5.4.3 Distinguishing the wheat field from the semi-desert area 
This section aimed to test whether the wheat field and the semi-desert area were separable 

by the 𝑘NN classifier on the basis of the RPV k parameter in the NIR spectral band. The 

number	𝑘 of the nearest neighbours to consider was set to 5, the wheat field was assigned to 

class 1 and the semi-desert area to class 2. In this case, the classification results showed that 

all the query pixels were assigned to the correct class with a confidence level of 85.71%. This 

outcome suggests that the wheat field and the semi-desert area were completely separable 

at that level of reliability by the 𝑘NN classifier using the RPV k parameter in the NIR spectral 

band. 
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5.5 Discussion of the binary classification  
As seen in Subsections 5.3.1 and 5.4.1 above, the wheat field could be separated from the 

vineyard area either on the basis of the RPV parameter rho in the red spectral band or using 

the RPV parameter k in the NIR spectral band; the main difference was that the latter approach 

was more sensitive than former in separating out non-grape cultivation pixels. 

The semi-desert area was also separable from the vineyard area (Subsections 5.3.2 and 

5.4.2) on the basis of either of these two RPV parameters. And in both binary confrontations, 

the 𝑘NN algorithm was able to detect the presence of pixels that could not be reliably assigned 

to the vineyard category. However, while the two approaches agreed in the case of 8 pixels, 

4 were classified as non-grape by the RPV parameter rho in the red spectral band only, while 

6 were identified as different from the vineyard by the RPV parameter k in the NIR. In other 

words, neither of the utilised RPV parameters was able to distinguish all the non-grape 

cultivation pixels in the vineyard area in this classification test situation. 

Discriminating between the wheat field and the semi-desert area (Subsections 5.3.3 and 5.4.3) 

turned out to be relatively simple and reliable, using either RPV parameter. 

Classification outcomes were also inspected when derived with a smaller number (3) of 

nearest neighbours. Since the confidence level is affected by the 𝑘 parameter of the 𝑘NN 

classifier (see Section 5.2), the results generated by the 3NN classifier were associated with 

relatively lower confidence levels than obtained with the 5NN classifier. Nevertheless, the 

number of non-grape cultivation pixels detected by the 3NN classifier was slightly different 

from the 5NN classifier, but all other results were identical for both the 3NN and 5NN 

classifiers. 

Classification results might change slightly if different training instances were selected as 

described in Section 5.2 within the same three sites. However, if that alternate training set 

selection involved different targets, for instance pixels containing settlements or forest 

patches, the results could obviously be substantially different, both in terms of the number of 

test pixels assigned to each class and in terms of the confidence associated with those results. 

These three land cover types therefore exhibit sufficiently different time series of spectral or 

directional properties to be correctly identified with high confidence in binary tests involving 

two training sets and a single RPV model parameter, such as rho in the red or k in the NIR 

spectral band. On the vineyard site, the 𝑘NN algorithm isolated non-grape cultivation pixels, 

with slightly different results depending on which training set was available. The next Section 
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will investigate to what extent all three land cover types could be distinguished using two RPV 

model parameters. 

5.6 Classification by multiple MISR-HR RPV parameters 
It is customary to use reflectance measurements in two spectral bands to better distinguish 

between multiple types of land cover. Such an approach is followed in this Section, though the 

clustering algorithm will exploit (1) the RPV parameter rho, a better spectral indicator than the 

straight reflectance because it is unaffected by the anisotropy of the surface, and (2) the RPV 

parameters k and Theta, to see whether land cover classification can also be derived using 

these characteristics. For this purpose, the time series available for each pixel were averaged, 

so that each location on the ground at any one of the sites was described by a single value in 

each of the RPV model parameters and spectral band, and the separability between the 

classes was evaluated visually by inspecting the distribution of pixels in 2-dimensional graphs. 

5.6.1 Classification tests 
The first test mimics the standard approach of inspecting the characteristics of the target in 

the red and NIR spectral bands. However, in this case, we used the RPV model parameter 

rho instead of the reflectance measurements, to take advantage of the fact that this product 

is decontaminated from the anisotropy of the surface (which it describes explicitly). Figure 5.2 

shows how the entire set of all pixels from the three sites are distributed in the two-dimensional 

spectral space defined by the parameters rho in the red and the NIR spectral bands. As 

expected this approach works well to distinguish between these land cover types on the basis 

of the long-term average of their properties. 
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Figure 5.2: Plot of the distribution of all pixels from all three sites in the 2-dimensional space 
defined by the MISR-HR RPV parameter rho in the red and NIR spectral bands. The red, green 
and blue crosses represent the pixels of the semi-desert, wheat field and vineyard areas, 
respectively. Pink stars represent the non-grape cultivation pixels in the vineyard site, and the 
two circled blue crosses represent pixels s12_-005_+000 and s12_-004_-003, which belong to 
the non-grape cultivation area. 

 

A second test was then conducted to explore further the capability of the MISR-HR RPV 

parameter rho in the red spectral band and the parameter k in the NIR spectral band to 

separate these land covers, since these indicators had been found useful earlier. Figure 5.3 

shows that this particular combination of parameters also works well to distinguish these three 

sites. As before, (1) the red, green and blue crosses represent the temporal averages of the 

indicated properties of the pixels in the semi-desert, wheat field and vineyard areas, 

respectively, (2) the pink stars represent the non-grape cultivation pixels in the vineyard site, 

and (3) the circled blue crosses point to the pixels s12_-005_+000 and s12_-004_-003, 

respectively. It will be recalled that the former was located on the boundary of the grape 

cultivation and near a bright road, and that the properties of the latter may have been affected 

by buildings (these two pixels are marked by pink pins on the satellite map in Figure 5.1). It is 

noteworthy that those two pixels were not properly discriminated using the simpler method of 

the previous Section.  
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Figure 5.3: Plot of the distribution of all pixels from all three sites in the 2-dimensional space 
defined by the MISR-HR RPV parameters rho in the red and k in the NIR spectral bands. The 
colour coding is the same as for Figure 5.2. 

 
 

It is also worth pointing out that the 𝑘NN algorithm may not work as expected under these 

conditions, because the semi-desert and the wheat field clusters are both elongated in shape 

but close together in distance. In this case, a different algorithm should be used, such as a 

SVM classifier (Press et al., 2007) for instance. 

In a third test, the classification of the entire set of pixels was attempted using the MISR-HR 

RPV parameters rho and k, in the NIR spectral band. The result is exhibited in Figure 5.4. 
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Figure 5.4: Plot of the distribution of all pixels from all three sites in the 2-dimensional space 
defined by the MISR-HR RPV parameters rho and k in the NIR spectral band. The colour coding 
is the same as for Figure 5.2. 

 

In this case, it can be seen that all three sites are properly separated, but that the distinction 

between grape and non-grape pixels in the vineyard site is less satisfactory. 

A fourth test was then carried out to investigate the potential of the RPV Theta parameter for 

classification purposes. 
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Figure 5.5: Plot of the distribution of all pixels from all three sites in the 2-dimensional space 
defined by the MISR-HR RPV parameters k and Theta in the red spectral band. The colour 
coding is the same as for Figure 5.2. 

 

As can be seen from Figure 5.5, the vineyard and the wheat field are largely confused in this 

case, though the semi-desert is still differentiated from the other two sites. 

On the other hand, the combination of MISR-HR RPV parameter rho in the red and Theta in 

the NIR spectral bands showed more promising results. Figure 5.6 exhibit the outcome of that 

fifth test. 
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Figure 5.6. Plot of the distribution of all pixels from all three sites in the 2-dimensional space 
defined by the MISR-HR RPV parameters rho in the red and Theta in the NIR spectral bands. 
The colour coding is the same as for Figure 5.2. 

 

Here again, it can be seen that all three land cover types are properly distinguished and that 

the non-grape cultivation pixels of the grapevine site exhibit anisotropic properties that are 

intermediary between the latter and the semi-desert sites. 

Lastly, plotting the MISR-HR RPV anisotropy parameter k in the green band versus the same 

parameter in the blue band shows that these two model parameters are quite well correlated 

for all three sites. In his case, both RPV parameters carry essentially the same information, 

and it is not useful to try to classify the sites using both. This is shown in Figure 5.7. 
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Figure 5.7 Plot of the distribution of all pixels from all three sites in the 2-dimensional space 
defined by the MISR-HR RPV parameter k in the green and blue spectral bands. The colour 
coding is the same as for Figure 5.2. 

 

5.6.2 Discussion of the multiple RPV parameters classification method 
As seen from the various classification tests in Section 5.6.1, the multiple RPV parameters 

classification method was able to separate the three different sites, with an accuracy that 

depends on the pair of RPV parameters and spectral bands used. Using two sources of 

information offers better opportunities to identify different clusters in the data set, as was 

shown with the non-grape pixels in the vineyard site. Furthermore, the special pixels identified 

with pink pins in Figure 5.1 and circled symbols in subsequent Figures were sometimes easier 

to identify and discriminate from the main clusters using this more elaborate method. 

The MISR-HR RPV model parameters thus are quite suitable for the purpose of land cover 

classification, and offer more options or additional opportunities to discriminate between sites 

than using the spectral reflectance measurements alone. 

It will be interesting to explore, in the future, whether some of these RPV parameters are 

particularly effective to identify or discriminate certain types of land cover, using a wider range 

of situations. In the meantime, this project has shown that quantitative information about the 

anisotropy of land surfaces could be used for the purpose of classifying different types of 

environments. 
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5.7 Summary 
The main outcome of this Chapter is that the spectral and directional information contained in 

the MISR-HR RPV model parameters is adequate to perform land cover classification, and 

that jointly using the temporal, spectral and directional signatures of land surfaces may be 

very effective, especially to discriminate complex situations, such as areas that do not exhibit 

properties similar to the expected, clear-cut situations, 

Section 5.2 described the 𝒌NN algorithm, a typical example of a supervised classification 

algorithm. Section 5.3 explored the performance of that method in binary tests examining the 

separability of pixels (land areas) based on their spectral values. The same approach was 

then pursued in Section 5.4, but this time using directional properties of the sites instead. It 

was shown that both approaches worked satisfactorily, with minor differences in the results. 

Section 5.5 summarized and discussed those results. 

Section 5.6 then proceeded to explore how land cover sites, represented by the long-term 

averages of their time series for the 3 RPV model parameters in each of the 4 spectral bands, 

were distributed in the 2-dimensional space of those parameters. It was shown that such 

combinations of parameters offer new opportunities to classify land cover types, and that each 

couple of such parameters may offer a different capacity of discriminating between those sites. 

Some combinations work better to separate certain land covers, while other combinations are 

more appropriate to discriminate other sites. This suggests that the combination of spectral 

and directional RPV model parameters might provide a superior capability to generate land 

cover maps. 

This initial investigation may provide further motivation for additional exploration along those 

lines, especially when attempting to characterize complex environments with more than three 

relatively well separated land cover types. In the meantime, the goal of determining whether 

anisotropy may be useful to classify terrestrial environments has been conclusively achieved. 
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CHAPTER 6 

CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

 

Remote sensing technology plays a crucial role in understanding the evolution of climate and 

environment globally and holistically. It offers a unique opportunity for policy makers to 

formulate rational sustainable development strategies. The vast majority of studies and 

publications in literature on remote sensing in the solar spectral domain are focused on 

analysing and interpreting the spectral, spatial and temporal signatures of the observed area. 

However, all structured surfaces in terrestrial environments show strongly directional 

reflectance signatures, also known as the surface reflectance anisotropy. This is largely 

determined by the physical structure of the vegetation and soil in the observed area and may 

be documented with multi-angle remote sensing data. The structural information can be 

important for some applications; for instance, vegetation structure is critical in modelling the 

carbon cycle and global land systems. As the spectral signature of terrestrial targets is unable 

to represent structural information, their angular signature (anisotropy) provides a unique way 

of documenting aspects of the environment. 

This work explored the reflectance anisotropy expressed by the MISR-HR RPV data, which is 

one of the MISR land surface products calculated by inverting the RPV model against MISR-

HR atmospherically-corrected surface reflectance data. The author was given access to a 

'data cube' of MISR-HR RPV products for 3 different sites, each containing between 108 and 

121 pixels. For each of those pixels, the 3 RPV model parameters and the cost function were 

provided for between 100 and 200 dates, in each of the 4 spectral bands of the MISR 

instrument. This dataset thus collectively amounted to more than 720,000 data items. The 

results exhibited in the previous chapters thus represent a small selection of those that have 

actually been processed and investigated. 

This thesis constitutes a first systematic look at the MISR-HR anisotropy data over a period of 

14+ years, for three typical terrestrial environments in the Western Cape Province of South 

Africa, namely, a semi-desert area, a wheat field and a vineyard area. It achieved the 

objectives proposed at the beginning of this thesis, which were to explore (1) to what extent 

spectral and directional signatures of the MISR-HR RPV data varied in time and space over 

the three studied terrestrial targets and (2) whether the observed variations in anisotropy could 

be used for classifying different land surfaces or as a supplementary method to the traditional 

land cover classification method.  
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6.1 MISR-HR anisotropy data analysing tools 
The MISR-HR RPV data utilised in this research were contaminated with outliers and missing 

values. While outliers may hint at interesting or unexpected findings, they may also skew or 

invalidate the results of a time series analysis.  

This research started by proposing a new outlier detection method ̶ the cost function-based 

outlier detection method ̶ according to the signature of the MISR-HR RPV products (see 

Section 3.1). In the process of inverting the RPV model and retrieving the model parameters, 

the cost function, which indicates how well the RPV model fits the measurement data, is 

derived simultaneously. A small cost function value means the inversion model fits the data 

very well.  Large value suggests that the model cannot adequately account for the variability 

present in the measurements. Thus, the cost function value can be used as an indicator of the 

reliability of the retrieved RPV parameters. This research used the cost function value as a 

threshold to detect the outliers in the MISR-HR RPV data. The merit of this cost function-

based outlier detection method is that it can help in detecting unreliable RPV parameters even 

when the data does not ‘appear’ like outliers. Yet, as this cost function method may not detect 

all the potential outliers in the MISR-HR RPV time series, the box plot method was employed 

to complement this approach. Checking the contexts of the detected outliers, for instance, 

spatial, temporal or spectral contexts, can help in understanding the reasons causing extreme 

values. Overall, this proposed outlier detection method can detect the outliers effectively, 

which may not be detected by traditional methods and can also explain what caused extreme 

values in a certain level. Most significantly, this work resulted in a method capable not only to 

identify outliers but also to eliminate dubious results in a remote sensing data set, whether or 

not they look like outliers. This investigation led to a publication in the refereed literature (Liu, 

Verstraete & de Jager, 2018). 

Another critical issue for MISR-HR anisotropy data is that of missing values. This research 

reviewed various methods to replace missing values by reasonable estimates (see Section 

3.4). Their effectiveness depends very much on the context and purpose of the time series 

analysis. To avoid unintentionally introducing some bias in the MISR-HR RPV time series, 

much of the analysis performed avoided this approach and preferentially selected tools and 

methods that are gap-insensitive. The 𝑘NN clustering algorithm used in Chapter 5 is the only 

algorithm that required input data on identical dates, and in that case the time series 

reconstructed on the basis of the Lomb-Scargle method was used.  

The Mann-Kendall test is a popular non-parametric trend detection method used in literature. 

This method can be applied without assuming that the time series elements are normally 
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distributed. Since there was no previous knowledge about the distribution of the MISR-HR 

anisotropy data, this work relied the Mann-Kendall test to detect the possible presence of a 

monotonic trend (see Section 4.1). In addition, this trend detection method is insensitive to 

outliers and missing values, and therefore highly applicable to the MISR-HR RPV products 

investigated here. All output results generated with this method were obtained at a significance 

level of 0.05 (see Section 4.1). 

Seasonality detection is challenging for the present data, since the RPV time series are 

unevenly spaced due to the variable number of missing values. The Lomb-Scargle 

periodogram method, which has the advantage of detecting seasonality even from unevenly 

spaced time series, was employed in this research (see Section 4.2.1). Hocke and Kampfer 

(2009) proposed a seasonal component reconstruction method based on the Lomb-Scargle 

algorithm (see Section 4.2.2). This reconstruction method was used on the MISR-HR 

anisotropy data (see Section 4.2.3). Although the reconstruction method proposed by Hocke 

and Kampfer (2009) fails to estimate the proper amplitudes on both ends of the seasonal 

component, it does retrieve the frequency and the phase of the seasonal signal in the MISR-

HR RPV time series.  

6.2 Statistical analysis of MISR-HR products 
This work explored the statistical properties of the MISR-HR anisotropy data over a period of 

14+ years for three different land surfaces. The results showed that the parameter rho 

exhibited distinctive values over the different study sites (see Section 2.6.1); variations of the 

RPV parameters are important in fully describing the RPV values, since different observed 

areas may have a different variation ranges for a single RPV parameter (Section 2.6.1). The 

exploration of the parameter k data showed that the vineyard area alone exhibited high values 

(around 1.0) in the NIR spectral band. This signature made the vineyard area separable from 

the other two study sites, as well as in a few sites studied by Armston et al. (2007) (see Section 

2.6.2). It appeared that the RPV Theta parameter in the red spectral band was less 

discriminating and therefore perhaps less useful for the purpose of land cover mapping, 

although the temporal evolution of that parameter was intriguing. The spatial analysis of all 

three RPV parameters showed interesting correlations in the semi-desert area, which 

confirmed previous arguments in literature (Armston et al., 2007) on the correlation of the 

parameter rho and Theta data. 

This work demonstrated that multiple MISR-HR RPV model parameters in various spectral 

bands exhibited monotonic linear trends, which would imply either changes of surface 

properties or a temporal drift in the calibration of the instrument over the 14+ years for which 
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data were available. There were a number of interesting findings in the trend detection results 

shown in Tables 4.1, 4.2 and 4.3. For instance, all the pixels in the vineyard area and nearly 

all the pixels in the semi-desert area showed a downward trend in the green band parameter 

rho data, and upward trends in blue band parameter k and Theta for the three study sites. As 

the semi-desert area is supposed to be influenced by the environment alone, the trend in the 

green band parameter rho data might reflect either a progressive degradation of the 

environment (discussed in Section 4.4), or a small drift in the MISR calibration system. 

Unpacking these potential factors would require access to independent field data, a task that 

lies outside the scope of this thesis. 

This project explored, for the first time, seasonality of the MISR-HR anisotropy data for a 

period of fourteen years, from March 2000 to May 2014, for three typical terrestrial surfaces. 

It turned out that all RPV parameters exhibited some seasonal variations, depending on the 

spectral band and land surface type (see Section 4.2). These results are congruent with earlier 

findings on the seasonal variation of the parameter k data, first reported by Pinty et al. (2002), 

and now also confirmed for the parameters rho and Theta data. The phase and/or the pattern 

of the seasonal component of the anisotropy data may differ over different terrestrial surfaces 

(see Section 4.3). Hence, these seasonal signatures of the MISR-HR anisotropy data could 

potentially be used for discriminating different land surfaces. 

6.3 Application of anisotropy information 
The diverse signatures of the MISR-HR anisotropy data over different land surfaces (see 

Section 5.1), motivated the classification of different terrestrial landscapes by using these RPV 

parameters data. The three study sites were successfully separated by the red band 

parameter rho data and the NIR band parameter k data combined with the 𝑘NN classifier 

respectively (see Sections 5.3 and 5.4). These results showed that MISR-HR anisotropy data 

could be used for discriminating different ground surfaces, which fulfilled the second objective 

of this research project.  

This work explored a new method using multiple RPV parameters as the classification features 

to discriminate different land covers (see Section 5.6). The tests on this proposed classification 

method proved that the three study sites could be separated successfully (see Section 5.6.1). 

In addition, different terrestrial landscapes are characterised by different combinations of the 

RPV products. Since MISR-HR RPV products represent the angular information of the 

observed area, this proposed multiple RPV parameters classification method could usefully 

complement traditional spectral methods, especially when the land covers vary mostly in 

structure. 
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6.4 Suggestions for future research 
Based on the exploration of the MISR-HR anisotropy data in this work, the following research 

directions could be pursued in subsequent studies: 

• The current investigation on the trends of the MISR-HR anisotropy data shows that 

parameter rho data in the green wavelength exhibits a downward trend for the entire 

vineyard area and in nearly all the pixels in the semi-desert area (Table 4.1), and that 

there is an upward trend in the blue band parameters k and Theta data (Tables 4.2 

and 4.3) for all the three study sites. Future work may focus on revealing what caused 

the monotonic trend in these MISR-HR RPV time series. 

• The statistical analysis of parameter k (see Section 2.6.2) shows that the vineyard area 

has distinctively high NIR band k values compared to the NIR band k values of the 

semi-desert area and the wheat field in this research, and even more ground surfaces 

as studied by Armston et al. (2007). Subsequent study may focus on investigating what 

caused the very high NIR band k values in this vineyard area, to reveal what feature 

of the grape cultivation is represented by the NIR band k data, with a view to monitoring 

grape cultivation in South Africa by this RPV parameter product. 

• Although the current study focused on discriminating different ground surfaces on the 

basis of their temporal, spectral and directional properties (see Sections 5.3, 5.4 and 

5.6), more detailed and systematic studies might be able to explore these issues in 

greater detail, in particular using longer time series as well as more combinations of 

RPV parameters and spectral bands. Thus, change detection with the MISR-HR RPV 

time series data is expected to usefully complement the more traditional methods 

based largely on the spectral information only (e.g., Lu, Mausel, Brondizio & Moran, 

2004b). 

• This research provides an initial hint that using multiple RPV parameters can be used 

to effectively classify land use and land cover (see Section 5.6). It is expected that this 

approach will help improve the accuracy of traditional approaches, in which case the 

combined methods should be tested on harder problems, which cannot be solved with 

the current methods. 
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