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ABSTRACT 

 
 

A smart grid is an intelligent power delivery system integrating traditional and advanced 

control, monitoring, and protection systems for enhanced reliability, improved efficiency, and 

quality of supply. To achieve a smart grid, technical challenges such as voltage instability; 

power loss; and unscheduled power interruptions should be mitigated. Therefore, future smart 

grids will require intelligent solutions at transmission and distribution levels, and optimal 

placement & sizing of grid components for optimal steady state and dynamic operation of the 

power systems. At distribution levels, feeder reconfiguration and Distributed Generation (DG) 

can be used to improve the distribution network performance. Feeder reconfiguration consists 

of readjusting the topology of the primary distribution network by remote control of the tie and 

sectionalizing switches under normal and abnormal conditions. Its main applications include 

service restoration after a power outage, load balancing by relieving overloads from some 

feeders to adjacent feeders, and power loss minimisation for better efficiency. On the other 

hand, the DG placement problem entails finding the optimal location and size of the DG for 

integration in a distribution network to boost the network performance. This research aims to 

develop Particle Swarm Optimization (PSO) algorithms to solve the distribution network feeder 

reconfiguration and DG placement & sizing problems. Initially, the feeder reconfiguration 

problem is treated as a single-objective optimisation problem (real power loss minimisation) 

and then converted into a multi-objective optimisation problem (real power loss minimisation 

and load balancing). Similarly, the DG placement problem is treated as a single-objective 

problem (real power loss minimisation) and then converted into a multi-objective optimisation 

problem (real power loss minimisation, voltage deviation minimisation, Voltage stability Index 

maximisation). The developed PSO algorithms are implemented and tested for the 16-bus, the 

33-bus, and the 69-bus IEEE distribution systems. Additionally, a parallel computing method 

is developed to study the operation of a distribution network with a feeder reconfiguration 

scheme under dynamic loading conditions. 

 

Keywords: Feeder reconfiguration, distribution network, Distributed Generation, Power loss 

minimisation, Load balancing, Optimization methods, Particle Swarm Optimization, Parallel 

computing, and Smart grid 
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CHAPTER ONE 
INTRODUCTION 

 

1.1. Introduction 

 Modern electrical power distribution networks face numbers of technical challenges such 

as voltage instability, power losses, unscheduled power interruptions, and grid reliability. 

These challenges must be dealt with to ensure optimal operation of the grid, to avoid a 

poor quality of supply and consequently a financial loss to consumers. The energy demand 

is continuously growing, and power lines become overloaded. Thus, it is challenging to 

keep up with the electrical energy demand by building centralised power plants due to 

financial, environmental or technical limitations. The reconfiguration of distribution 

networks and the integration of distributed generation at distribution levels can be used to 

overcome some of the power grid challenges. Feeder reconfiguration is a subsystem of 

distribution automation, and it consists of deploying switching devices, high-speed 

communication devices and software scheme to restructure the distribution network for 

enhanced system reliability and improved customer service. Integrating Distributed 

Generation at distribution levels is an alternative solution to the ever-expanding energy 

demand. DG also serves to improve the reliability of the distribution network at end-user 

points. Many optimisation algorithms have been used to provide optimised feeder 

reconfiguration and DG placement solutions. Some of such algorithms include the Genetic 

Algorithm (GA), the Differential Evolution (DE), and the Particle Swarm Optimization (PSO)  

 This research work develops PSO optimisation algorithms to find the solutions of both the 

optimal distribution network feeder reconfiguration and the optimal DG placement & sizing 

problems. This chapter covers the awareness of the research problem, the motivation of 

the research, the problem statement, the research aim, the objectives of the research, the 

hypothesis; delimitations and assumptions of the research, and finally the research design 

and methodology. 

 

1.2. Awareness of the research problem 

The history of electrical power systems is marked by notable blackouts such as the 1999 

Southern Brazil blackout (95 million people affected) (Yu & Pollitt, 2009), the August 18, 

2005 blackout in Indonesia (100 million people affected), the July 31, 2012 Northern and 

Eastern blackouts in India (620 million people affected) and the January 26, 2015 blackout 

in Pakistan where an estimated 80% of the population (160 million people) were affected.  

Whatever their causes, these blackouts raise questions about the reliability, the robustness 
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and the security of power grids, and thus prompt the move towards smart grids.  The smart 

grid emphasises the development of a self-healing, auto-balancing, and self-monitoring 

electrical system for reliable power delivery and with minimal human intervention (Gers, 

2013). A smart grid should be able to sense disturbances in its network, to clear those 

disturbances, to reroute the power to prevent a power outage situation, and to enable real-

time communication between the consumers and utilities for optimum energy use. With 

the global energy demand likely to grow at a rate of 1.4% per year until 2020 (Oluwole, 

2016), electrical networks will face increased burden, reduced voltage stability, which may 

lead to an increased risk of bus or grid collapse. Therefore, there is a need to devise 

solutions to mitigate such problems, where the importance to develop algorithms for 

optimal distribution network feeder reconfiguration and optimal placement & sizing of 

Distributed Generation in distribution networks.  

 

1.3. Motivation of the research 

Traditionally, electricity is generated at central power plants, far from the points of 

consumption. Thus, the power system needs an infrastructure to transmit and distribute 

the electricity to the consumers. The long-distance transmission and the eventual 

distribution of the electricity to consumers result in large power losses in the power system. 

The percentage of power lost at distribution levels alone is evaluated to be approximately 

13% of the power generated (Darfoun, 2013). Reconfiguring the topology of the distribution 

networks can reduce the power losses for up to 50%. Moreover, the continuously 

increasing load demand requires power producers to generate more electricity. However, 

given that the power grid was designed to operate within certain limits, the increase of the 

power demand might lead to the overloading of the distribution networks. Additional 

generation capacities, transmission, and distribution lines may be needed. The building of 

new power generation, transmission and distribution infrastructure appears to be 

impracticable, due to economic and environmental constraints. An alternative solution is 

to integrate DG directly at distribution levels. The connection of DG directly at the point of 

consumption provides the additional power needed by the consumers, improve the bus 

voltage levels, and reduce the power loss in the distribution networks. However, power 

utilities are concerned that the reconfiguration of distribution networks and the integration 

of DG may negatively impact on the reliability, the security of the distribution networks and 

the quality of the power supply of the distribution network. Therefore, the incentive of this 

research is to develop new optimisation algorithms to solve the optimal distribution network 

feeder reconfiguration and the optimal DG placement & sizing problems. 
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1.4. Problem statement 

With the recent developments in hardware, software and communication technologies, a 

more consistent, healthy and efficient power system with moderate contingency margins 

is made possible. Computational intelligence methods are being developed to enhance 

the capabilities of distribution systems and the quality of supply. The reconfiguration of 

distribution network feeders and the placement Distributed Generation in distribution 

networks are two important methods to improve the efficiency and the operation of 

distribution networks. At distribution levels, loads are usually unbalanced due to the 

presence of asymmetrical line segments and the combination of single and three phase 

loads in the system. Moreover, these loads have an intermittent nature as they depend on 

the time, day and weather conditions. Therefore, there is a need to relocate the loads (load 

balance) from heavily loaded feeders to lightly loaded adjacent feeders and to minimise 

the real power loss in the distribution network. In addition, DG can be deployed at 

distribution levels to improve the efficiency and the overall performance of distribution 

networks. 

The research problem is to: 

- Develop a Particle Swarm Optimization (PSO) solution algorithm to determine the 

sequence of switches (tie and section switches) states which correspond to an optimal 

distribution network topology for both the minimisation of real power loss and load 

balancing. 

- Develop a PSO solution algorithm for optimal allocation and sizing of Distributed 

Generation in distribution networks. 

- Develop a sequential and parallel computing solution for the distribution network feeder 

reconfiguration problem under dynamic loading conditions. 

 

1.5. Research aim and objectives 

Distribution automation will play an important role in future smart grids as it will contribute 

to better performance, more effective communication; measurement; and monitoring at 

generation, transmission, and distribution levels. 

This project aims to develop PSO solution algorithms to improve the operation and the 

performance of distribution networks through optimal feeder reconfiguration, and optimal 

deployment & sizing of DG in distribution networks. 

Currently, the distribution network topology is restructured through human intervention 

during planned maintenance by changing the status of the section and tie switches in the 

distribution system. 
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The objectives of this research are: 

- To review the principles of optimisation, some optimisation methods, and their 

application to the distribution network feeder reconfiguration and the optimal 

Distributed Generation placement and sizing problems. 

- To mathematically formulate the single-objective distribution network feeder 

reconfiguration problem for minimisation of the real power loss in distribution networks. 

- To mathematically formulate the multi-objective distribution network feeder 

reconfiguration problem for the minimisation of real power loss and optimal load 

balancing. 

- To develop PSO algorithms to solve the single and multi-objective feeder 

reconfiguration optimisation problems. 

- To mathematically formulate the single-objective optimal Distributed Generation 

placement & sizing problem for real power loss minimisation. 

- To mathematically formulate the multi-objective optimal Distributed Generation 

placement & sizing problem to minimise the real power loss, to improve the voltage 

profile, and to maximise the Voltage Stability Index (VSI) of distribution networks. 

- To develop a PSO solution algorithm for the single-objective and multi-objective 

Distributed Generation allocation & sizing problem. 

- To compare the effectiveness of distribution network feeder reconfiguration and 

optimal Distributed Generation placement in minimising the real power loss in 

distribution networks. 

- Investigate the application of parallel computing in distribution network feeder 

reconfiguration under dynamic loading conditions. 

 

1.6. Hypothesis 

The operation and the performance of distribution networks can be improved through the 

reconfiguration of distribution feeders and the deployment of Distributed Generation. A 

complete feeder reconfiguration scheme should be operated automatically, i.e. with 

minimal human intervention.  

The hypothesis is to develop new PSO optimisation methods which provide an optimal 

distribution network topology through feeder reconfiguration; and optimal DG placement 

and sizing to ensure a better voltage profile and minimise the real power loss in the 

distribution networks. 

 



5 

 

1.7. Delimitation of the research 

The following limitations apply to this research project: 

- The research work does not cover the capacitor bank placement problem for power 

loss minimisation in distribution networks. 

- Energy management problems such as economic dispatch and voltage stability 

problems at the generation and transmission levels are not considered. 

- Only the Particle Swarm Optimization method is used to solve the distribution network 

feeder reconfiguration and the optimal DG placement and sizing problems. Other 

optimisation approaches such as the Differential Evolution (DE), the Genetic Algorithm 

(GA), and the Simulated Annealing (SA) are not considered in this research work. 

- Only the real power losses in the distribution lines are considered. Losses in equipment 

such as PV generator or Distributed Generation are not considered. 

- No DG types are prioritised. The best DG type is only known at the end of the DG 

placement optimisation. 

- The loads in the network can be either static or dynamic. 

- The distribution systems used in the case studies are limited to radial networks.  

- The testing of the algorithms is strictly done in a simulation environment. No hardware 

implementation is considered. 

- Real-time data are not used in the simulations. 

- The Fault Location, Isolation and Service Restoration (FLISR) scheme is not part of 

this research work 

 

1.8. Assumptions 

The following assumptions are considered: 

- The input data (parameters) of the distribution networks under study are known. 

- The distribution lines have a fixed line impedance. 

- The MATrix LABoratory (MATLAB) software is used for the development of the PSO 

algorithms. 

- The power loss in switching devices (section and tie switches) and generators (PV, 

Wind, Diesel…) is negligible. 

- The data of the current carrying capability of individual branches in the IEEE 16, 33 

and 69-bus distribution networks are not available. Therefore, it is assumed that all the 

branches in each distribution network have the same power rating 

- The reconfiguration scheme is only applied to the primary distribution feeders of the 

distribution system. 
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- Only one Distributed Generation can be connected at a given PQ bus during the 

optimisation process. 

- Distributed Generation cannot be placed at the source of the network as placing the 

DG at the source would no contribute to the minimization of the power loss. A DG can 

only be placed at a load point of connection. 

- The maximum size of the DG is limited to the sum of all the loads in the distribution 

network. 

- The Newton-Raphson power flow approach is used to find the power flow in the 

distribution networks during the optimisation process. 

- The real power loss in the distribution network under dynamic loading conditions is 

dependent on the load profile of the network. 

- The parallel computing application is executed in a Multiple Instructions Multiple Data 

processor. 

 

1.9. Research design and methodology 

This project aims to develop PSO solution algorithms to improve the operation and the 

performance of distribution networks through feeder reconfiguration and the deployment 

of DG.  

The research design and methodology are described as follows: 

- Literature review:  A detailed literature review is carried out on diverse optimisation 

algorithms and their application in solving the distribution network feeder 

reconfiguration and the optimal Distributed Generation placement and sizing problems. 

- Formulation of the distribution network feeder reconfiguration and optimal 

Distributed Generation placement and sizing problems: The single-objective 

distribution network feeder reconfiguration problem is formulated to minimise the real 

power loss in distribution networks. The multi-objective feeder reconfiguration problem 

is formulated to minimize the real power loss and to balance the loads in the distribution 

networks. The single-objective optimal DG placement and sizing problem is formulated 

to minimise the real power loss in distribution networks. The multi-objective optimal DG 

placement and sizing problem is formulated to minimise the real power loss in the 

distribution network, improve its voltage profile and to maximise the voltage stability 

index in the distribution network. 

- Development of the PSO algorithms: the PSO algorithms are developed for both the 

single and multi-objective optimal distribution network feeder reconfiguration and DG 

placement & sizing problems 
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- MATLAB software program: MATLAB programs are developed for implementation of 

the PSO algorithms to find the solution of the single and multi-objective distribution 

network feeder reconfiguration and optimal DG placement and sizing problems. 

- Performance analysis of the developed algorithms: the developed PSO algorithms 

are implemented in the MATLAB environment to solve the optimal distribution network 

feeder reconfiguration and the optimal DG placement and sizing problems for the IEEE 

16-bus, 33-bus, and 69-bus distribution networks. 

- Development of the parallel computing method: a data-parallel computing method 

is developed to determine how the IEEE 16-bus distribution network with a feeder 

reconfiguration scheme performs under dynamic loading. 

 

The flowchart of the research design is shown in Figure 1.1. 

 

Stage  1

Planning

Stage 2

Algorithm development

Stage 3

Simulation and analysis of the 

results

Initial study of the feeder 

reconfiguration and the 

DG placement and sizing 

problems

  1. Literature review

  2. Problem formulation

  3. Research design

  4. Data collection

Algorithm development and 

software program of the feeder 

reconfiguration and the DG 

placement and sizing problems

 

1. PSO algorithm for the feeder 

reconfiguration problem

2. PSO algorithm for the DG 

placement & sizing problem

3. Data-parallel computing 

algorithm to study the 

performance of the distribution 

network under dynamic loading

1. Implementation of the 

developed PSO algorithms 

in the MATLAB environment

2. Simulation and analysis of 

the results

3. Comparison of the 

simulation results for 

different operating 

conditions of the 

distribution network

 

Figure 1.1: Research design 

 

1.10. Conclusion 

This chapter provides the summary of the thesis outline, and the contribution of the thesis 

such as the PSO algorithm development to solve the distribution network feeder 

reconfiguration and the Distributed Generation placement and sizing problems; and the 

development of a parallel computing algorithm to study the distribution network with a 

feeder reconfiguration scheme under dynamic loading conditions. The overview, the 

awareness, the motivation, the research problem, the aim and objectives of the research, 

the hypothesis, the assumptions, and the delimitations of the project are also provided. 
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The next chapter presents the literature review of the optimisation methods used in power 

systems applications to solve the optimal distribution network feeder reconfiguration and 

the Distributed Generation placement and sizing problems. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1. Introduction 

The primary purpose of the reconfiguration of distribution network feeders is to restore as 

many loads as possible by relocating critical loads from out-of-service feeders to adjacent 

healthy feeders. The reconfiguration of distribution network feeders is also used to improve 

the operating conditions of distribution networks, either by balancing the loads or by 

minimising the power loss. Although many other methods can be used for load balancing 

of power loss reduction, feeder reconfiguration remains the preferred choice since it does 

not require the installation of extra equipment and it is cost effective. It involves the 

switching of tie and section switches to alter the topology of the distribution system while 

preserving the radial topology of the distribution network. Additionally, Distributed 

Generation is being investigated to enhance the performance, the efficiency, and the 

robustness of distribution networks. Optimal allocation of DG is done to find the right DG 

size and the best location for which the integration of DG would result in improved 

performance. Placing the DG at a non-optimal position may negatively affect the operation 

of the distribution network. Some research works have been done to improve the operation 

and performance of distribution networks using optimal distribution network feeder 

reconfiguration and DG deployment.  

This chapter reviews and analyses the existing knowledge on distribution network feeder 

reconfiguration and DG placement. It is divided into nine parts, organised as follows:  

- Part 1 provides the introduction of the literature review. 

- Part 2 provides an overview of the concept of single-objective and multi-objective 

optimisation. 

- Part 3 provides an overview of the different computation techniques and optimisation 

methods used to find the solution of the distribution network feeder reconfiguration 

problem. 

- Part 4 reviews the existing literature on distribution network feeder reconfiguration. 

- Part 5 analyses and compares the literature review on distribution network feeder 

reconfiguration. 

- Part 6 reviews the existing literature on optimal DG placement and sizing.  

- Part 7 analyses and compares the literature review on optimal DG placement and 

sizing. 
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- Part 8 is a review of existing literature dealing with both the optimal distribution network 

feeder reconfiguration and optimal DG placement and sizing. 

- Finally, part 9 provides a conclusion made about the literature review. 

  

2.2. The concept of optimisation 

Optimising a problem consists of finding the maximum or the minimum of its objective 

function by the methodical choice of input variable from an allowed set of variables 

(Maringer, 2005). Depending on the number of objective functions to be optimised in a 

problem, optimisation problems can be categorised into two types: single-objective 

problems and the multi-objective problems. 

 

2.2.1. Single-objective optimisation 

Single-objective optimisation is a decision-making process that only involves a single-

objective. Mathematically, single-objective optimisation problems are formulated as given 

in Equation 2.1. 𝐦𝐢𝐧 𝐟(𝐱)                      (2.1) 

Subject to:  

   𝐠(𝐱) ≤ 𝟎                               𝟐. 𝟏. 𝐚 

     𝐡(𝐱) = 𝟎                               𝟐. 𝟏. 𝐛  𝐱𝐢𝐋 ≤ 𝐱𝐢 ≤ 𝐱𝐢𝐔                    𝟐. 𝟏. 𝐜 

Where 𝐟(𝐱) is the objective function to be optimized. 𝐱 is the decision variable. 𝐱𝐢𝐋  and 𝐱𝐢𝐔 are the lower bound and the upper bound of xi respectively. 

 

Equation 2.1 also applies to a maximisation problem. If the objective function and the 

constraints associated with the problem are linear, then the problem is a linear optimisation 

problem. However, most real-world problems are non-linear in nature.  

A solution 𝐱 = [𝐱𝟏, 𝐱𝟐, … , 𝐱𝐢], defined by 𝐢 decision variables, is a solution of the single-

objective optimization problem if and only if it satisfies the equality and inequality 

constraints, and it lies within the decision space defined by [𝐱𝐢𝐋, 𝐱𝐢𝐔]. 𝐱𝐢𝐋 is the lower limit 

of the decision space and 𝐱𝐢𝐔 is the upper limit.  

The set of all feasible solutions is referred to as the search space.  
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Any solution to the problem that does not belong to the search space is an infeasible 

solution. Some solutions to the optimisation problem are referred to as local optima, 

meaning that they are the best solution in their respective vicinity.  

So, a solution 𝐱𝟎 is the global optimum or optimal solution if for any variable 𝐱 from the 

search space, Equation 2.2 is satisfied. 

 { 𝐟(𝐱𝟎) ≤ 𝐟(𝐱),             (𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧 𝐩𝐫𝐨𝐛𝐥𝐞𝐦)    𝐟(𝐱𝟎) ≥ 𝐟(𝐱),              (𝐦𝐚𝐱𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧 𝐩𝐫𝐨𝐛𝐥𝐞𝐦)             (2.2) 

  

2.2.2. Multi-objective optimisation 

Multi-objective optimisation is a multi-criteria decision-making process involving two or 

more objectives to be optimised. The multi-objective optimisation algorithm finds the 

optimal solutions of the multi-objective problems subject to certain constraints. 

 

2.2.2.1. Overview of the multi-objective optimisation 

When the objectives to be optimised are non-conflicting, meaning that minimising one of 

the objectives corresponds to all other objectives being also minimised, the multi-objective 

optimisation problem is treated as a single-objective optimisation problem.  

When the objectives are conflicting, a compromise needs to be made. In this regard, a 

solution is optimal with respect to all objectives. This can be illustrated by the real-world 

problem of buying a car. Two objectives are considered in this problem: the price and the 

comfort of the car. The price ranges from 10 to 100 thousand Dollars while the comfort is 

in the range 30 to 90%. The cheapest cars are expected to be the least comfortable 

whereas expensive cars provide a higher level of comfort. Now, which car offers the 

highest level of comfort for a minimal price? This dilemma is represented in Figure 2.1 

(Deb, 2001). 

For poor buyers, the concern is the price of the car while the wealthy are more concerned 

with the comfort. So, from Figure 2.1, the best solution to the car buying problem would be 

solution A for a poor buyer. Solution E would be the best solution for a wealthy buyer. 

Between the poorest and the richest, there are middle-class buyers. Depending on their 

finances and the comfort preferences, middle-class buyers would go for either solution B, 

C or D. Solutions B, C or D represent a trade-off between the price of the car and its 

comfort. Amongst A, B, C, D, and E, no solution can be said to be better than the others, 

since the betterment of a solution in one objective come at the detriment of the other 

objective (Deb, 2001). 
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Figure 2.1: Price versus comfort in a car buying decision making (Deb, 2001) 

 

The car buying problem described is limited to 2 objectives. However, objectives such as 

the colour of the car, its safety features, fuel consumption could be added to the problem, 

and they would make the problem even more challenging to solve. Lots of real-world 

problems are complex in nature, and they may have constraints that limit the solutions of 

the problem within specific boundaries. When solving such complex problems, most 

research works try to avoid the intricacy associated with them by using some user-defined 

parameters to convert the multi-objective optimisation problem into a single-objective 

problem. The weighted-sum approach can be used to convert the multi-objective problem 

into a single objective problem. However, this approach requires prior knowledge about 

the problem and the associated weight factors need to be carefully selected. 

 

2.2.2.2. Mathematical formulation of multi-objective optimisation problems 

Multi-objective optimisation problems have several objectives to be minimised or 

maximised. Mathematically, multi-objective optimisation problems can be formulated as in 

Equation 2.3. 𝐦𝐢𝐧 𝐟(𝐱) = [𝐟𝟏(𝐱), 𝐟𝟐(𝐱), … , 𝐟𝐧(𝐱)]                 (2.3) 

Subject to  𝐠𝐣(𝐱) ≤ 𝟎                   𝐣 = 𝟏, 𝟐, … , 𝐉             (inequality constraint)         2.3. a 

A

B

C

D
E

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

C
o

m
fo

rt
 (

%
)

Price (in thousand of Dollars)

Comfort versus car price



13 

 

𝐡𝐤(𝐱) = 𝟎                  𝐤 = 𝟏, 𝟐, … , 𝐊          (equality constraint)              2.3. b 

  𝐱𝐢𝐋 ≤ 𝐱𝐢 ≤ 𝐱𝐢𝐔          𝐢 = 𝟏, 𝟐, … , 𝐈             (variables limit)                       2.3. c 

Where  𝐧 is the number of objective functions. 𝐠𝐣 and 𝐇𝐤 are the inequality and equality constraints respectively. 𝐈, 𝐉, and 𝐊 are the number of decision variables, the number of inequality 

constraints and the number of inequality constraints respectively. 

 

If all the objectives and constraints of the multi-objective problem are linear, then the 

problem is a Multi-Objective Linear Problem (MOLP). Otherwise, the problem is a Multi-

Objective Non-Linear Problem (MONLP) (De Weck & Willcox, 2010). 

All the solutions of the multi-objective problem in the search space are not optimal. The 

optimisation of a multi-objective problem with conflicting objectives produces a set of 

optimal solutions. Therefore, the search space can be divided into two sets: a set 𝐒𝟏 of 

optimal solutions (non-dominated set) and a set 𝐒𝟐 of non-optimal solutions (dominated 

set).  

The concept of dominance and non-dominance is used by the multi-objective optimisation 

algorithm to find the optimal solutions.  

Any two solutions in 𝐒𝟏 are non-dominated with respect to each other and any solution of 𝐒𝟐 is dominated by at least one solution in 𝐒𝟏. 

Let us consider 𝐮 = [𝐮𝟏, 𝐮𝟐, … , 𝐮𝐢] and 𝐯 = [𝐯𝟏, 𝐯𝟐, … , 𝐯𝐢], two solutions of the search space. 𝐮 dominates 𝐯 (𝐮 < 𝐯) if and only if: 

- 𝐮 is no worse than 𝐯 for all objectives i.e. 𝐟𝐢(𝐮) ≤ 𝐟𝐢(𝐯), ∀ 𝐢 = 𝟏, 𝟐, … , 𝐧 

- 𝐮 is strictly better than 𝐯 for at least one objective i.e. 𝐟𝐢(𝐮) < 𝐟𝐢(𝐯), for at least one  𝐢 ∈{𝟏, 𝟐, … , 𝐧} 
 

The property described above is the Pareto-dominance. A solution u is Pareto-optimal 

if there is no other solution 𝐯 in the search space in such a way that 𝐟𝐢(𝐯) < 𝐟𝐢(𝐮), for all 

the objectives of the problem. 

The set S1 of all Pareto optimal (non-dominated) solutions is referred to as the Pareto-

optimal set and the curve formed by joining all the Pareto optimal solutions together is 

referred to as the Pareto-optimal front (Caramia & Dell’Olmo, 2014). 
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Altogether, when the objectives of an optimisation problem are conflicting, there is no 

single optimal solution, but a set of solutions all optimal with respect to each other. Given 

that only one solution is needed for most multi-objective optimisation problems, additional 

information is often necessary to determine the best solution from the Pareto-optimal set. 

So, irrespective of the optimisation method used to solve the multi-objective problem, it is 

recommended first to find the Pareto-optimal set, and then find the best solution in the set 

by using some additional information. 

 

2.3. Overview of the computational techniques and optimisation methods used to solve 

the distribution network feeder reconfiguration problem 

The distribution network feeder reconfiguration can be used to solve the power loss 

minimisation problem; the voltage stability enhancement problem; the fault location and 

isolation, service restoration problem; and the load balancing problem (Charlangsut et al., 

2012). In mathematical optimisation, these problems are often referred to as objectives. 

An algorithm or optimisation method is needed to control the reconfiguration process. The 

aim of the optimisation method is to find the solution that best fits the objectives without 

violating the constraints associated with the problem. The optimisation problem can have 

single or multiple solutions depending on the nature of the objective functions. The solution 

that best fits the criteria for the optimisation problem is the optimal solution. The 

optimisation methods used to solve the distribution network feeder reconfiguration problem 

are classified into classical optimisation, heuristic optimisation, metaheuristic optimisation, 

and hybrid optimisation methods. 

The next section provides a summary of those optimisation methods. 

 

2.3.1. Classical optimisation methods for the distribution network feeder reconfiguration 

problem 

Classical optimisation methods are generally based on iterative search algorithms. The 

first feeder reconfiguration scheme using a classical optimisation method was introduced 

by (Liu et al., 1989) who derived the global optimality conditions for the loss minimisation 

problem by using the “basic current profile” theory to convert the loss minimisation problem 

into a quadratic optimisation problem. The most recurring classical optimisation 

approaches are the Linear Programming, the Quadratic Programming, the Integer 

Programming, and the Dynamic programming. 
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2.3.1.1. Linear Programming (LP) methods for the feeder reconfiguration problem 

The Linear Programming method is used when the optimisation problem consists of a 

linear objective function associated with linear equality or inequality constraints (Dantzig, 

1998). The general elementary linear programming problem can be expressed as given in 

Equation 2.4 (Luenberger, 1984). 𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞 𝐟(𝐱)                    (2.4) 

Subject to 

  𝐡𝐢(𝐱) = 𝟎,      𝐢 ∈ ℕ 

    𝐠𝐣(𝐱) ≤ 𝟎,    𝐣 ∈ ℕ 

 Where, 𝐟 is the objective function of the optimization problem.  𝐱 is an n-dimentional vector of unknowns. X =  (x1, x2, … , xn). 𝐡𝐢 and 𝐠𝐣 are real-valued functions of the variable x. 

 

Linear programming formulations are popular because the objective function and the 

constraints are easy to formulate and less difficult to define, in comparison to other 

optimisation methods. Linear Programming offers reliable convergence properties and can 

quickly identify if an objective function is feasible (Sierksma, 2001).  (Abur, 1996) 

presented a distribution network feeder reconfiguration method using linear programming 

to minimise the real power loss in distribution networks. However, the formulation of the 

linear programming problem was altered to allow for the current/power constraints to be 

enforced, and for the radial configuration of the distribution network to be maintained. 

Linear programming can also be used to linearise a nonlinear optimisation problem. 

(Wagner et al., 1991), using transportation techniques, applied a linear programming 

method to a small and then to a large distribution network to minimise the real power loss. 

The authors concluded that the linear programming method was ineffective in minimising 

the power loss in distribution networks. The conclusion of (Wagner et al., 1991) outlines 

that linear programming-based techniques are unable to evaluate and minimise the power 

loss in distribution systems accurately, and consequently, linear programming techniques 

are ineffective in solving distribution network feeder reconfiguration problems. 
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2.3.1.2. Quadratic Programming (QP) methods for the distribution network feeder 

reconfiguration problem 

A quadratic objective function with linear equality and inequality constraints characterises 

a quadratic programming problem. Quadratic Programming is a non-linear programming 

technique with better accuracy than LP-based methods (Wright & Nocedal, 2006). The 

quadratic programming problem can be formulated as given in Equation 2.5 (Wright & 

Nocedal, 2006). 

 𝐦𝐢𝐦𝐢𝐦𝐢𝐳𝐞 𝟏𝟐 𝐱𝐓𝐐𝐱 + 𝐂𝐓𝐱                  (2.5) 

Subject to  

   𝐀𝐱 ≤ 𝐛 

Where 𝐱 is the decision variable. 𝐱𝐓 is the vector transpose of 𝐱. 𝐐 is a n × n-dimensional real symmetric matrix. 𝐂𝐓 is the transpose of the real-valued, n-dimensional vector 𝐂. 𝐀 is a m × n-dimensional real matrix. 𝐛 is a m-dimensional real vector. 

 

Quadratic Programming (QP) problems can be solved using methods such as Primal and 

Dual Simplex method. The primal simplex method is an iterative optimisation method in 

which the search starts with a feasible and suboptimal solution and goes through the 

iterations until the optimal solution is reached. In contrast, the dual simplex method starts 

with an exceptionally good solution and finds the optimal solution through a series of 

iterations (Norman, 1993). (Aoki et al., 1990) developed a quadratic programming method 

to find the best distribution network topology for emergency load re-allocation and service 

restoration. The authors (Aoki et al., 1990) combined the dual simplex method and the 

primal simplex method to produce a more coordinated and more efficient algorithm. The 

dual simplex method alone is inefficient in solving the feeder reconfiguration problem for 

emergency load re-allocation if the area of the distribution network which is without supply 

is large. Although good enough in large area service restoration problem, the primal-dual 

simplex method does not always find the optimal solution. 

(Glamocanin, 1990) presented an algorithm for optimal power loss minimization in 

distribution systems. The author (Glamocanin, 1990) expresses the distribution network 
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feeder reconfiguration problem as a quadratic cost function transhipment problem. The 

transhipment problem is generally used to find the minimum-cost route in the planning of 

bulk power distribution. In the method proposed by (Glamocanin, 1990), the power loss 

function is primarily linearized before the optimization problem is solved. Initially, the line 

current capacity limits, the transformer current capacity constraints, and the voltage 

constraints are not taken into. Those constraints are later included in the optimisation 

problem and a quadratic simplex method is developed to improve the accuracy of the 

solution. However, the developed QP based algorithm is only suitable if the objective of 

the distribution network feeder reconfiguration is to minimize the power loss. 

(Huddleston et al., 1990) proposed a Quadratic Programming algorithm for distribution 

network feeder reconfiguration for real power loss minimisation. The QP algorithm is based 

on a quadratic loss function with linear current constraints. The proposed QP algorithm 

uses multiple switching pairs at once to reconfigure the distribution network and then gives 

the optimal distribution network topology for real power loss minimisation without checking 

for intermediate distribution network configurations. 

 

2.3.1.3. Integer Programming methods for the distribution network feeder reconfiguration 

problem 

The distribution system feeder reconfiguration optimisation problem can also be solved 

using the Integer Programming (IP) method. Depending on the nature of the objective 

function and its constraints, there exist several IP based techniques such as Binary Integer 

Programming, Mixed-Integer Programming (MIP) /Mixed-Integer Linear Programming 

(MILP) and Mixed-Integer Nonlinear Programming (MINLP) (de Oliveira et al., 2010). 

 A MILP problem is defined by linear objective function, linear constraints, and some linear 

boundary conditions. It is generally formulated as in Equation 2.6. 

 𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞 𝐂𝐓𝐱                    (2.6) 

Subject to         

  𝐀𝟏𝐱 = 𝐛𝟏,                     𝐢 ∈ ℕ 

    𝐀𝟐𝐱 ≤ 𝐛𝟐,                     𝐣 ∈ ℕ 𝐥𝐢 ≤ 𝐱 ≤ 𝐮𝐢,               𝐢 = 𝟏, 𝟐, … , 𝐧 

where 𝐂𝐓𝐱 is the objective function of the problem to optimize.  𝐂 is a column vector of constants. 
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𝐱 is a 𝐧-dimentional vector of unknowns. 𝐗 = (𝐱𝟏, 𝐱𝟐, … , 𝐱𝐧) is the decision 

variable. 𝐀𝟏 and 𝐀𝟐 are a 𝐦𝟏 × 𝐧 matrix and a 𝐦𝟐 × 𝐧 matrix respectively. 𝐥𝐢 and uI are the respectively the lower and the upper boundary values. 

 

 If the variables can only take the value of 0 and 1 (binary values), the IP is said to be a 

Binary Integer Programming (BIP). (Sarma & Prakaso, 1995) developed a BIP based 

algorithm to solve the distribution network feeder reconfiguration problem for real power 

loss minimisation. Like the method proposed by (Huddleston et al., 1990), the BIP 

algorithm developed by (Sarma & Prakaso, 1995) uses multiple switching pairs to 

determine the optimal distribution network topology. However, the BIP algorithm does not 

stop at the first solution, but it considers if there is any other switching option that would 

further decrease the real power loss in the distribution network. The application of Integer 

Programming in distribution network feeder reconfiguration is also covered in the research 

works by (Chen & Cho, 1993) and (Schmidt et al., 2005). 

  

2.3.1.4. Dynamic Programming methods for the distribution network feeder reconfiguration 

problem 

Dynamic Programming is not really an algorithm. It is rather a concept that consists of 

solving a problem by dividing it into smaller and simpler sub-problem, and then solving the 

sub-problems one at the time (Leiserson et al., 2009). The solutions of individual sub-

problem are then combined to find the solution to the general problem. Many sub-problems 

can be computed at the same time using multi-core processors, then allowing a reduction 

of the computing time (Leiserson et al., 2009). The solution of a sub-problem can be stored 

in a memory and re-used if the same sub-problem occurs again. (Enrique et al., 2002) 

used a Dynamic programming-based approach to solve the distribution network feeder 

reconfiguration problem for real power loss minimisation in large primary distribution 

systems. (Shariatkhah et al., 2012) developed a distribution network feeder reconfiguration 

scheme using Dynamic Programming to minimise the costs of power loss, the interruption 

costs, the switching costs, and to improve the daily load profile. The results indicated that 

the Dynamic Programming algorithm is more efficient than the other classical optimisation 

method in solving the distribution network feeder reconfiguration problem. 

 
The next section presents some heuristic search methods used to solve the feeder 

reconfiguration problem in distribution networks. 
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2.3.2. Heuristic search methods for the distribution network feeder reconfiguration 

problem 

The application of classical optimisation techniques to network reconfiguration problems 

is faced with many difficulties such as the inability to handle certain constraints and the 

inability to find the optimal solution. To overcome such difficulties, heuristic search 

methods have been introduced. Heuristic search methods provide better computational 

performance when compared to classical optimisation methods. However, in comparison 

to classical methods, the accuracy of the heuristic solution is low (Gavrilas & Asachi, 2010). 

This section reviews the different types of heuristic search methods used to solve the 

distribution network feeder reconfiguration problem. 

 

2.3.2.1. Uninformed or blind search approaches  

Blind search approaches are applied with no information on the domain of the objective 

function (search space). They only use the information provided in the definition of the 

problem. The most common uninformed search strategies include the Depth-First Search 

(DFS) and Breath First Search (BrFS), the Uniform Cost Search (UCS), the Depth-Limited 

Search (DeLS), the Iterative Deepening Search (IDS) and the Bidirectional Search (Pearl, 

1984). 

(Abul’Wafa, 2011) presented a DFS based heuristic approach for optimal reconfiguration 

of distribution networks. The DFS is a tree searching algorithm. The DFS explores each 

branch of the tree, from the root node to the furthest node of the branch before finding the 

solution of the problem by backtracking (Even & Even, 2011). The DFS tree is illustrated 

in Figure 2.2. The numbers 1 to 12 represent the order of visit of each node. The approach 

presented by (Abul’Wafa, 2011) is to find the best switching combinations for power loss 

minimization with minimal computational burden. 

 

1

7 82

3 6 9 12

10 1154

 
Figure 2.2: Depth First Search pattern 
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The Breath First Search (BrFS) is also a tree searching algorithm. But unlike the DFS, the 

BrFS begins at the root node, first explores the closest nodes, and then moves to the next 

level nodes. As illustrated in Figure 2.3, numbers 1 to 12 indicate the order in which the 

nodes are explored. In the distribution networks feeder reconfiguration, this algorithm can 

be combined with the DFS to accelerate the optimisation process (Song et al., 1997). In 

fact, by combining the DFS and BrFS, the Iterative Deepening Search (IDS) is created. 

 

1

3 42

5 6 7 8

11 12109

 

Figure 2.3: Breath First Search Pattern 

 

The IDS algorithm is used to reduce the storage space and to improve the search efficiency 

(Reinefeld & Marsland, 1994). (Shirmohammadi & Hong, 1989) developed an IDS based 

heuristic distribution network reconfiguration method for power loss reduction under 

normal operating conditions. The authors (Shirmohammadi & Hong, 1989) included the 

voltage and current constraints in (Back & Merlin, 1975)’s original branch and bound 

method. (Shirmohammadi & Hong, 1989) considered the distribution network branches as 

purely resistive. The simulation results showed that the IDS method converges quite 

quickly and provides a near optimal solution. 

 

2.3.2.2. Informed heuristic approaches 

Unlike blind search techniques, informed search approaches use the information related 

to the problem to solve the objective function. Informed search strategies consist of the 

Best First Search (BeFS) and the Local Search algorithms.  

The Best-First search (BeFS) is one of the most popular heuristic algorithms. It is a graph 

algorithm that evaluates the paths of the search domain, select the path that is likely to 

give the optimal solution, and explores all the nodes along that chosen path (Dechter & 

Pearl, 1984). The Best-First Search is the fastest of heuristic algorithms. However, when 
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using the BeFS, the optimality of the solution is not always assured. The authors (Taylor 

& Lubkeman, 1990) developed a Best-First Search based method to solve the feeder 

reconfiguration problem. The developed BeFS based method can process practical 

operating constraints, and it swiftly eliminates any switching combination that would cause 

an overload, an overvoltage, or any network abnormality. Variants of the Best-First Search 

method include the Greedy Search and the A Star (A*) search. The A Star (A*) search is a 

special case of the BeFS, and it is indeed the most powerful of the heuristic approaches 

(Zeng & Church, 2009). (Botea et al., 2012) used the A Star (A*) search algorithm to 

address the distribution network feeder reconfiguration problem for service restoration. 

Many factors influenced the choice of the A* search algorithm: 

- The A* search always finds the optimal solution if the distribution network feeder 

reconfiguration problem has solutions within the defined domain (search space) 

- The computation time is drastically reduced when the A* search is used. The A* never 

explores a path that does not yield the optimal solution. 

 

2.3.2.3. Others heuristic algorithms 

Other heuristic techniques such as the Switch Exchange Method (SEM) and the Sequential 

Switch Opening Method (SSOM) have been used to solve the distribution network feeder 

reconfiguration problem. 

The Switch Exchange Method (SEM) calculates the power loss reduction that results from 

a change of switches status in a distribution network. (Civanlar et al., 1988) developed an 

SEM to solve the distribution network feeder reconfiguration problem for power loss 

minimization. The authors developed the formula given in Equation 2.7 to calculate the 

change in power loss in a distribution network after a given reconfiguration. The power loss 

solutions are recorded and then compared. The distribution network topology that gives 

the greater power loss reduction is the optimal distribution network topology. The SEM 

includes a filtering mechanism used to exclude the distribution network topologies that are 

unlikely to yield a reduced power loss during the configuration exploration process. 

 ∆𝐏 = 𝐑𝐞 [𝟐 (∑ 𝐈𝐢𝐢∈𝐃 ) (𝐄𝐦 − 𝐄𝐧)∗ + 𝐑𝐥𝐨𝐨𝐩 |∑ 𝐈𝐢𝐢∈𝐃 |𝟐]                                                                 (2.7) 
 where ∆𝐏 is the power loss that occurs after a given switching operation. 𝐃 is the set of buses disconnected from feeder 1 and connected to feeder 2. 𝐦 is the bus of feeder 1 to which loads of feeder 2 are to be connected. 
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𝐧 is the bus of feeder 2 that will be connected to bus m via a tie switch. 𝐈𝐢 is the complex bus current at bus 𝐢. 𝐑𝐥𝐨𝐨𝐩 is the Series resistance of the path between two substation buses of 

feeder 1 and feeder 2 via closure of a specified tie switch. 𝐄𝐦 is the voltage at bus  𝐦  and it is calculated as 𝐄𝐦 =  𝐈𝐁𝐮𝐬 𝐦 ∗ 𝐑𝐁𝐮𝐬 𝐦 . 𝐄𝐧 is the voltage at bus  𝐧  and it is calculated as 𝐄𝐧 =  𝐈𝐁𝐮𝐬 𝐧 ∗ 𝐑𝐁𝐮𝐬 𝐧 .
 𝐑𝐁𝐮𝐬 is the bus resistance matrix of feeder 1 before load transfer. 

 

To improve the Switch Exchange Method (SEM) presented by (Civanlar et al., 1988), 

(Baran & Wu, 1989) derived two methods to estimate the power loss for network 

reconfiguration: The Simplified Distflow method and the backwards-forward update of the 

distflow power flow update. The methods are based on recursive power flow equations in 

the distribution system when a given switching option is carried out. The developed 

methods take into consideration the reactive power in the system and can, therefore, be 

applied to unbalanced distribution networks. Additionally, a Load Balance Index (LBI) is 

developed, and it is demonstrated that the developed methods are effective in balancing 

the loads in a distribution network. 

 The SEM developed by (Gosvami & Basu, 1992) is used to solve the feeder 

reconfiguration problem for real power loss minimisation. In this SEM, a given tie switch in 

the network is closed to form a mesh in the network. The tie switch to be closed is the tie 

switch with a maximum voltage across its terminals.  After the power flow computation, a 

switch in the formed mesh is opened to restore the radial configuration of the network. The 

switch to open may be the previously closed switch or a different one within the formed 

mesh.   

Another application of the SEM in distribution network feeder reconfiguration is (Borozan 

et al., 1997)’s approach to minimise the power loss in unbalanced distribution networks. 

The authors investigated how much influence unbalanced loads had on the solution of 

distribution network feeder reconfiguration problem. (Borozan et al., 1997)’s approach 

further extended the utilisation of the SEM to three-phases three-wire distribution systems. 

(Kashem et al., 2000) developed a minimal tree search-based SEM for optimal network 

reconfiguration to minimise the power loss in distribution networks. The main advantage 

of their approach over (Baran & Wu, 1989)’s is that there is no need to perform load flow 

for every switching action. 

Another type of heuristic search method is the Sequential Switch Opening Method 

(SSOM). The SSOM was first introduced by Back and Merlin in 1975 (Back & Merlin, 1975). 
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In the SSOM, all the tie switches (Normally open switches) are primarily closed so that the 

network has a meshed configuration. The switches are then opened in sequence to form 

a radial network (Ferdavani et al., 2011). The switches are opened in such a way that the 

current flow in a branch has the lowest possible magnitude, and thus ensuring that the 

resulting distribution network topology has a minimum power loss (Ferdavani et al., 2011). 

(Flavio et al., 2005) presents an SSOM based feeder reconfiguration algorithm for power 

loss minimisation in large radial distribution networks. The proposed SSOM approach is 

based on the power flow in the branches. The main advantage of (Flavio et al., 2005)’s 

SSOM approach is that the result obtained is independent of the status of the distribution 

network switches before the reconfiguration process.   

(Peponis et al., 1995) compared the effectiveness of the SEM and the SSOM in solving 

the distribution network feeder reconfiguration problem. Based on the simulation results, 

the authors concluded that the SEM is faster than the SSOM. Unlike in the SEM, the 

solution of the SSOM is not dependent on the initial distribution network topology. Both 

methods (SEM and SSOM) find the same final solution to the feeder reconfiguration 

problem. 

Although the heuristic search methods presented above may be used to solve the problem 

of optimal distribution network feeder reconfiguration, they are still limited, and they don’t 

always find the optimal solution. Therefore, there is a need to investigate for more robust 

and efficient optimisation methods to solve the distribution network feeder reconfiguration 

problem. 

The next section presents some metaheuristic search methods used to solve the 

distribution network feeder reconfiguration problem. 

 

2.3.3. Meta-heuristic search methods 

The application of traditional and heuristic optimisation techniques in distribution network 

feeder reconfiguration is faced with many hurdles. In large distribution systems, these 

optimisation methods fail more often, especially when the objective function and the 

constraints associated with the problem are nonlinear (Rao & Savsani, 2012). Therefore, 

Metaheuristic techniques or Artificial Intelligence (AI) algorithms were introduced to solve 

non-linear problems.  

Artificial Intelligence (AI) based methods simulate either the social intelligence or the 

human intelligence. Their main characteristics are:  
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- AI based algorithms find a good solution to the problem, but it is not guaranteed that 

the solution is optimal.  

- Those techniques can solve problems with incomplete or limited information (Blum & 

Roli, 2003). 

  
Many criteria can be used to compare AI based reconfiguration schemes. These criteria 

are used as a benchmark when deciding which method to use for a given optimisation 

problem and they are:  

- The complexity of computation (How difficult is it to compute the algorithm?),  

- The simplicity of implementation (How easy is it to apply the algorithm to the 

problem?),  

- The speed of convergence (How long does it take to solve the problem?) and  

- The reliability (How often does the algorithm find the optimal solution?) (Maringer, 

2005). 

 
Meta-heuristic search methods include the Artificial Neural Network (ANN) algorithms, 

Human intelligence algorithms such as Evolutionary Algorithm (EA); Genetic Algorithm 

(GA); Evolutionary Programming (EP); and Expert Systems (ES), and social intelligence 

algorithms such as the Particle Swarm Optimization; the Ant Colony Optimization (ACO) 

and the Honey Bee Mating Optimization (HBMO). 

This section reviews and analyses some metaheuristic optimization methods used to solve 

the distribution network feeder reconfiguration problem. 

 

2.3.3.1. Artificial Neural Network based algorithms 

The Artificial Neural Network (ANN) is an algorithm developed to mimic the central nervous 

systems of humans. The fact that the human brain can swiftly solve a variety of problems 

where computerised systems failed incited the research into the design of systems with 

cerebral capabilities (Tagliarini et al., 1991).  

Figure 2.4 is a representation of the ANN architecture. The ANN architecture is a 

connection of nodes. Each node also referred to as artificial neuron, is equivalent to the 

biological neuron in the human or animal brain. The connection between the artificial 

neurons (the equivalent of the synapse) transmit the input signal to the hidden layer and 

transfer the signal from the hidden layer to the output. The hidden layer is the part of the 

ANN architecture responsible for computing the inputs of the ANN to produce the desired 

output.  



25 

 

 

Input

Output

Hidden Layer

 
Figure 2.4: Architecture of the Artificial Neural Network (Kashem et al., 1998) 

 

The effectiveness of ANN lies in its ability to approximate a function based on the observed 

data. (Kim et al., 1993) proposed a network reconfiguration method for power loss 

minimisation using the Artificial Neural Network. In their study, the ANN is trained, and the 

relationship between the load patterns and the corresponding network configurations is 

recorded. This means that the optimal system topology of a given distribution network is 

determined by the load patterns in the training knowledge. A two-level ANN algorithm is 

based on two groups of ANNs:  

- The first group of ANN is used to determine the load size  

- The second group of ANN is used to find the best distribution network topology based 

on the information provided by the first group of ANN. 

 
(Kashem et al., 1998) applies the ANN in distribution network reconfiguration for power 

loss minimisation. Their research was different from (Kim et al., 1993)’s in the way that 

only a single group of ANN is used to obtain the optimal distribution network topology. 

Furthermore, the ANN-based algorithm developed by (Kashem et al., 1998) can be applied 

to any distribution systems with no limitation on the size. 

The application of ANN based algorithms allows the finding of the optimal distribution 

network topology with reduced computation time. However, its use is curbed by difficulties 

such as: 

- The considerable amount of time necessary for ANN training, since an extensive range 

of training cases is required for real-world applications. 
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- The fact that any change in the distribution systems must be accounted for means that 

ANN training is required for each distribution network (Schmidhuber, 2015). 

- The data required for ANN training must be accurate to ensure that the final results are 

correct. 

- The large storage and processing resources required to simulate ANN based 

applications (Schmidhuber, 2015). 

 

2.3.3.2. Evolutionary Algorithms (EA) 

Evolutionary Algorithms are based on the mechanisms of natural or biological evolution 

such as reproduction, mutation, and selection. Evolutionary Algorithms are based on the 

Darwinian Theory which alleges that: “All species or organisms arise and develop through 

the natural selection of small, inherited variations that increase the individual’s ability to 

compete, survive and reproduce” (Wallace, 1889). Although all EA differ at some point, 

they have nevertheless a common biological process, defined as follows:  

- Given an initial random population of individuals (first generation), calculate the 

fitness of every individual using a fitness function.  

- Apply some external conditions to trigger the survival of the fittest (natural 

selection), which in turn produces a fitter population.  

- Individuals with the highest objective value or fitness score (parents) are selected 

to breed the next generation (offspring) either by mutation or recombination 

(crossover).  

- The offspring become part of the population and compete for survival (based on 

their fitness/objective value), along with other individuals for a place in the future 

generation. 

 
This EA biological process described above is repeated until the best result is attained 

(Back, 1996). At the end of the iterations, many good solutions are obtained rather that an 

optimal solution. It is then necessary to compare the obtained solutions to determine the 

optimal solution (Chakradeo et al., 2014). 

Several types of Evolutionary Algorithms have been used to solve the feeder 

reconfiguration problem. The Genetic Algorithm and the Differential Evolution are two of 

the most common EA. 
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a. Genetic algorithm 

GA is a random search algorithm used to solve optimisation problems with or without 

constraints (Nara et al., 1992). GA shares the fundamental principle of EA. The individuals 

in the population are referred to as chromosomes, and a new population of chromosomes 

is obtained at each iteration (Goldberg, 1989).  

In distribution network feeder reconfiguration, the application of GA has the following 

disadvantages: 

- The GA tends to converge towards the local optima instead of the global optimum. 

- The choice of the best solution is relative to other solutions, making it difficult to 

establish an iteration stop criterion. 

- Complex problems and large systems often cause the search space to increase at an 

exponential rate and thus rendering the simulation process lengthy. 

Several variants of GA have been developed to solve the power loss minimisation problem. 

Some of them are the GA with sequential encoding by (De Macedo Braz & de Souza, 

2011), the GA with restricted population and addressed operators by (Mendoza et al., 

2006), and the GA based on the Matroid theory by (Enacheanu et al., 2008). 

 

b. Differential evolution (DE) 

DE was developed in 1995 to improve the performance of the GA (Babu & Jehan, 2003). 

It is easy to use, robust, simple in structure and has a good convergence speed. DE follows 

the GA’s biological process, except for the mutation stage which is perturbed by adding 

the differential weight of one or more pairs of vectors (individual) to a target vector. DE is 

widely used in distribution network reconfiguration applications. The popularity of DE lies 

in its simplicity to code, its straightforward implementation, its low space complexity, and 

its improved performance (Das & Suganthan, 2011). 

EA applied to distribution network feeder reconfiguration are not limited to DE and GA. GA 

and DE remain the most popular algorithm for distribution feeder reconfiguration 

applications. The Evolutionary Programming (EP) is another type of EA used in distribution 

network feeder reconfiguration applications (Song et al., 1997).  

 

2.3.3.3. Swarm intelligence algorithms for network reconfiguration applications 

Swarm Intelligence algorithms are based on the social behaviours arising from the 

interactions between individuals of a colony and between the individuals with their 

environment. They were inspired by observing the nature’s biological systems, in which 



28 

 

individuals with limited capabilities come together to achieve a definite goal that requires 

a higher intelligence (Wang & Beni, 1993). Moreover, Swarm intelligence systems are 

characterised by their ability to act in a harmonised manner with no centralised control 

structure. This self-organising ability is governed by four sets of behavioural patterns or 

rules defined as follows (Garnier et al., 2007): 

- Positive feedback results from random behaviours from different individuals to create 

a structure.  

- Negative feedbacks received to balance the positive feedbacks and stabilise the 

structural patterns. 

- The fluctuation of positive feedbacks gathered enables the self-organisation to take 

place. 

- Positive feedbacks based continuous interactions between the individuals of the colony 

and with their environment are required to sustain the self-organisation, and to 

elaborate a collective pattern for subsistence against negative feedbacks (Garnier et 

al., 2007). 

 
The pheromone trail in ant colonies can illustrate this working principle. To find a source 

of food supply, individuals wander around in a random pattern. If an individual finds a food 

supply, it returns to the colony (positive feedback). Individuals that did not find a food 

source also return to the colony (negative feedback). The first group of individuals has 

been laying pheromone through the search area based on their findings. This pheromone 

trail affects the path of the next groups of individuals, and subsequently, the path with the 

best positive feedbacks (greater pheromone laying occurrence) constitutes the best path 

to the source of supply (structure) (Corne et al., 2012). 

This section reviews Swarm intelligence algorithms which have been successfully used to 

solve the feeder reconfiguration problem. Some of such swarm intelligence algorithms are 

the Ant Colony Optimization (ACO) and the Particle Swarm Optimization (PSO). 

  

a. Ant Colony Optimization (ACO) algorithm 

The Ant Colony Optimization (ACO) algorithm is derived from the foraging or the 

pheromone trail behaviour of ants. Figure 2.5 is a representation of the natural ant 

behaviour. Figure 2.5.a., the ants are leaving their nest to look for a source of food. In 

Figure 2.5.b., an obstacle is placed along the path of the ant colony. The colony disperses 

to find alternative paths to the food source as shown in Figure 2.5.c. Each ant sends a 

positive or negative feedback to the colony based on its experience and leaves a 

pheromone trail behind for other ants to follow or not. After a while, the ant colony is 
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directed to the path of greater pheromone strength. The path of greater pheromone 

strength is the new minimum distance path from the nest to the source of food, and this 

can be seen in Figure 2.5.d. (Dorigo et al., 1996). 

In the ACO algorithm, an artificial ant (a software agent) searches for candidate solutions 

of a given problem and maps down the shortest path leading to that solution using artificial 

pheromone. Based on the pheromone trail deposited by forerunner ants, subsequent 

artificial ants will also find their own solution to the optimisation problem and will update 

the pheromone, depending on the quality of the solution (Dorigo et al., 1996). The 

pheromone trail decays over the time. So, the solution with a path of greater pheromone 

strength is considered as the optimal solution (Dorigo et al., 1996). 

 

Nest

Food Food Food Food

Nest Nest Nest

a. b. c. d.  

Figure 2.5: Natural behaviour of Ants (Dorigo et al., 1996) 

 

The ACO has been successfully applied to power systems and particularly in distribution 

network feeder reconfiguration. (Perreira et al., 2006) and (Hu et al., 2008) proposed an 

application of ACO in distribution systems to minimise the power loss along the lines, 

taking into consideration operational constraints such as the voltage limits, the maximum 

loadability, and the radial configuration of the network. (Carpaneto & Chicco, 2004) and 

(Khoa & Phan, 2006) also proposed an ACO based method for power loss minimisation in 

distribution networks through feeder reconfiguration. (Carpaneto & Chicco, 2004) 

compared the performance of the ACO algorithm with that of Tabu-Search, and Simulated 

Annealing. (Khoa & Phan, 2006) analysed the performance of the ACO with those of 

Genetic Algorithm (GA) and Simulated Annealing. Both (Carpaneto & Chicco, 2004) and 

(Khoa & Phan, 2006) studies concluded that the ACO algorithm performs better in finding 
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the solution of the power loss minimisation optimisation problem, despite the slow 

convergence characteristic of ACO algorithms.  

 

b. Particle Swarm Optimization algorithms 

The Particle Swarm Optimization is also an algorithm inspired by nature and derived from 

the communal demeanour of fish schooling or of birds flocking. It is a population (swarm) 

based algorithm where the possible solutions (candidate solutions) are referred to as 

particles (Eberhart & Kennedy, 1995). In the implementation of the PSO algorithm, each 

particle is given an initial random position and velocity. The particle then moves around 

the search space, and alters its speed and velocity, depending on its best position and the 

best positions of other particles in the swarm. The movement of particles is dictated by a 

fitness function, and over time, all particles finally move to the position with the best fitness 

value (swarm’s best global position) (Parsopoulos & Vrahatis, 2002). 

In the PSO algorithm, the velocity and the position of the particles are updated according 

to Equation 2.8 and 2.9, respectively. Based on the position and velocity update equations, 

the search mechanism of the PSO algorithm is represented in Figure 2.6. 𝐯𝐢𝐝(𝐭 + 𝟏) =  𝐰. 𝐯𝐢𝐝(𝐭) +  𝐜𝟏. 𝐑𝟏. [𝐩𝐢𝐝(𝐭)– 𝐱𝐢𝐝(𝐭)]  +  𝐜𝟐. 𝐑𝟐. [𝐩𝐠𝐝(𝐭)– 𝐱𝐢𝐝(𝐭)]          (2.8) 

 𝐱𝐢𝐝(𝐭 + 𝟏) =  𝐱𝐢𝐝(𝐭) +  𝐯𝐢𝐝(𝐭 + 𝟏)                 (2.9) 

 where  𝐰 is the inertia weight 𝐯𝐢𝐝 is the velocity of the 𝐢𝐭𝐡 particle in the 𝐝𝐭𝐡 dimension. 𝐭 is the iteration number. 𝐜𝟏 and 𝐜𝟐 are positive weighting parameters (constants) to control a particle 

movement towards its individual as opposed to the global best position. 𝐩𝐢𝐝 is the individual best position of the 𝐢𝐭𝐡 particle in the 𝐝𝐭𝐡 dimension. 𝐩𝐠𝐝 is the global best position of the swarm. 𝐱𝐢𝐝 is the current position of the 𝐢𝐭𝐡 particle in the 𝐝𝐭𝐡 dimension. 𝐑𝟏 and 𝐑𝟐 are randomly selected positive numbers. 
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Figure 2.6: Search mechanism of the PSO algorithm 

 

The application of a typical PSO algorithm in feeder reconfiguration is not a straightforward 

process. Therefore, the algorithm must be altered to comply with the distribution network 

operational constraints. As such, the canonical PSO algorithm should be amended before 

to be used to solve the distribution network feeder reconfiguration problem. (Abdelaziz et 

al., 2009) modified the population size, the number of iterations of the PSO, and introduced 

a linearly decreasing inertia weight to expand the search space. In the distribution network 

feeder reconfiguration, the conventional PSO algorithm tends to converge towards the 

local optimal rather than the global optima (premature convergence). To elude that 

inclination, (Kiran et al. 2012) developed an Adaptive Mutation Particle Swarm 

Optimization (AMPSO), by introducing a mutation operator is in the original PSO algorithm. 

The simulation results showed that the developed AMPSO finds an improved solution to 

the distribution network feeder reconfiguration problem with reduced computation time. 

 

2.3.3.4. Hybrid algorithms 

Every optimisation algorithm has limitations and depending on the application in which it 

is used; it may not be able to support the constraints related to the objective function. To 

overcome this problem, two or more algorithms can be brought together to form a new 

algorithm referred to as a hybrid algorithm. The benefits of each algorithm are combined, 

which ensues to an enhanced performance (Ting et al., 2015).  

The obtained hybrid algorithm can be used for a single purpose (unified purpose hybrid). 

A typical example of such an algorithm is the Mixed Integer Hybrid Differential Evolution 

(MIHDE) algorithm used to solve the distribution network feeder reconfiguration problem 

in (Su & Lee, 2003). The MIHDE combines the advantage of the Mixed Integer 

Programming and the Differential Evolution algorithms. The MIHDE is a Parallel direct 
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search algorithm, meaning that the two sub-algorithms run simultaneously and manipulate 

the same population.  

Alternatively, each sub-algorithm of the hybrid algorithm can be used for different purposes 

(Multipurpose hybrid). The main algorithm is used to solve the optimisation problem 

whereas the auxiliary algorithm adjusts the parameters of the main algorithm. In (Niknam 

et al., 2010), the Fuzzy Adaptive Particle Swarm Optimization (FAPSO) and the Ant Colony 

Optimization (ACO) are combined to solve the distribution network feeder reconfiguration 

problem. The FAPSO is used to adjust the parameters of the algorithms while the decision-

making process is enforced by the ACO.  

Although hybrid algorithms provide improved performance while reducing substantial 

disadvantages, their significant drawbacks remain their complexity; their computational 

speed; and their difficulty in implementation. The final computation time is longer, since 

hybrid algorithms are usually longer, more complex, and have more parameters than non-

hybrid algorithms. The analysis and troubleshooting of hybrid algorithms are complicated. 

Therefore, random hybridisation should be discouraged in favour of clever, innovative and 

effective methods (Ting et al., 2015). 

 

2.4. Review of the existing literature in feeder reconfiguration 

An intensive literature search has been done using keywords such as feeder/network 

reconfiguration; feeder/distribution automation; and optimisation methods/algorithms. The 

published research works, dissertations, and thesis on distribution network feeder 

reconfiguration span from 1975 to 2018. Figure 2.7 represents the graph of the number of 

publications found for the distribution network feeder reconfiguration problem per year. 

The analysis of the histogram in Figure 2.7 shows that 343 publications have been 

published since the introduction of feeder reconfiguration in 1975. That corresponds to an 

average of 8 publications per year. Further analysis shows that only a few papers were 

published in early years. Before 2000, the number of publication per year was below the 

average. As from 2003, the number of publication per year exceeds the average and 

reaches its peak in 2014 with 31 publications. 

To complete the literature review on the distribution network feeder reconfiguration 

problem, past research works, conference papers, journals, and thesis were investigated. 

The survey and the comparison are accomplished using the following criteria: 

- Objective function: It characterises the nature of the problem to be solved. The 

objective function can be the power loss minimisation, the load balancing 
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maximisation, the service restoration, the voltage deviation minimisation, or the voltage 

stability index maximisation. 

- Constraints: the developed scheme may be subject to operational constraints such 

as voltage and current limits. 

- Algorithm used: Classical, heuristic, and meta-heuristic optimisation methods have 

been successfully used to solve the problem of distribution network feeder 

reconfiguration. 

- Distribution networks: To demonstrate their practicability, the developed distribution 

network feeder reconfiguration schemes are tested on a variety of distribution networks 

such as the 16-bus, the 33-bus, and the 69-bus IEEE distribution networks. 

- Software: There is a broad range of available software to simulate and analyse a 

distribution system. Some of those softwares are MATLAB and GAMS. However, the 

suitability of a given software is dependent on the problem to solve. 

 
Figure 2.7: Number of Publications per years 
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Table 2.1: Review of optimal feeder reconfiguration 

Reference 
paper 

Objective 
function 

Constraints Algorithm 
Software 
used 

Distribution 
system 

DG? 
Physical 
implementation? 

(Back & Merlin, 
1995) 

Power loss 
minimization 

- Voltage 
constraint 

 
- Current 

constraint 

SSOM N/A1 N/A No No 

(Abur, 1996) 
Power loss 
minimisation 

- Branch 
power 

      constraint. 
 
- Topological 

constraint 

- Linear 
Programming 

 
- Modified 

Simplex 
method 

N/A 
IEEE 16-bus 
distribution 
system 

No No 

(Wagner et al., 
1991) 

Loss 
reduction 

Power balance 
constraint 

Linear 
Programming 
methods using a 
Stepping Stone 
algorithm 

N/A 

16-bus 
distribution 
system. 
Kingston Power 
Utility Company 
44 kV, 150MW 
distribution 
system 

No No 

(Aoki et al., 
1990) 

Emergency 
load  
re-allocation 

- Voltage 
constraint 

 
- Current 

constraint 

Quadratic 
Programming 
(combined 
Primal-Dual 
Effective 
gradient) 

N/A 

Real scale 
6.6 KV 
distribution 
system 

No Yes 

(Glamocanin, 
1990) 

Loss 
reduction 

- Branch 
power limits. 

 
- voltage 

constraints. 
 
- topology 

constraint 

Quadratic 
simplex method 

N/A 
10 nodes 
distribution 
system 

No No 

(Huddleston et 
al., 1990) 

System loss 
minimization 

- Current 
constraint 

 
- Topological 

constraint 

Quadratic 
Programming 

IMSL 
Subroutine 
QPROG 

IEEE 16-bus 
distribution 
system 

No No 
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(Sarma & 
Prakaso, 1995) 

Loss 
minimization 

N/A 
Binary Integer 
Programming 

N/A 
IEEE 16-bus 
distribution 
system 

No No 

(Chen & Cho, 
1993) 

Loss 
minimization 

- Voltage 
constraint 

 
- Current 

Constraint 
 

Binary Integer 
Programming 
with branch and 
bound technique 

N/A 

Taipower 
distribution 
system (four 
substations and 
nine feeders) 

No No 

(Enrique et al., 
2002) 

Loss 
minimization 

- Voltage 
constraints 

 
- Current 

constraint 
 
- Topological 

constraint 

Algorithm-based 
on Dynamic 
Programming, 
Graph theory 
and Harmony 
Search  

C+ + 
language 

IEEE 16-bus 
distribution 
system 

No No 

(Shariatkhah et 
al., 2012) 

Power loss 
minimization 

- Voltage limit 
 
- Current limit 
 
- Topological 

constraint 
 
- Minimal 

switching 
operation 

Dynamic 
Programming 
and Harmony 
Search 

MATLAB 
95-bus 
distribution 
network 

No No 

(Momoh & 
Caven, 2003) 

Service 
Restoration 
and load 
balancing 

- Power 
balance 

  
- voltage 

constraint 
 
- Current 

constraint 
 

Integer interior 
point linear 
programming 

GAMS 
 
MINOS 

32-bus 
distribution 
system 

No No 

(Abul’Wafa, 
2011) 

Power loss 
minimisation 

- Current 
constraint 

 
- Topological 

constraint 
 

Depth-First 
Search 

MATLAB 
IEEE 33-Bus 
distribution 
system 

No No 
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(Song et al., 
1997) 

Loss 
minimization 

- Voltage 
constraint 

 
- Current 

constraint 
 
- Topological 

constraint 
 
- Power 

balance 
constraint 

Fuzzy-controlled 
Evolutionary 
Programming. 
Combined 
Depth-First and 
Breadth-First 
Search strategy 
(used to speed-up 
The optimisation) 

Turbo C++ 
IEEE 16-bus 
distribution 
system 

No No 

(Shirmohammadi 
& Hong, 1989) 

Loss 
reduction 

- Voltage 
constraint 

 
- Current 

constraint 
 
- Topological 

Constraint 
 

Iterative 
Deepening 
Search (IDS) 

DISTOP 
(Distribution 
Network 
Optimisation) 

small distribution 
system consisting 
of 3 radial feeders 
connected at the 
station 
transformer, and 
a group of 
switches  

No No 

(Taylor & 
Lubkeman, 1990) 

Transformer 
Overload 
minimisation 

- Voltage 
constraints 

 
- Line thermal 

constraints 

Best-First Search 
Knowledge 
Based System 
(KBS) 

IEEE 16-Bus 
distribution 
system 

No No 

(Botea et al., 
2012) 

Service 
restoration 

- Current 
constraint 

 
- Topological 

constraint 

Informed A Star 
(A*) search 

Java 1.6 

- Small 
distribution 
system with 
54 circuit- 
breakers, 139 
switches, and 
138 lines. 

 
- Large 

distribution 
system with 
81circuit- 
breakers, 210 
switches, and 
207 lines. 

 

No No 
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(Civanlar et al., 
1988) 

Loss 
reduction 

N/A 
Switch Exchange 
Method 

N/A 
IEEE 16-Bus 
distribution 
system 

No No 

(Baran & Wu, 
1989) 

- Power loss 
reduction 
 

- Load 
balancing 

Voltage 
constraint 

- Branch 
exchange 
with 
Simplified 
DistFlow 
method. 

 
- Branch 

Exchange 
With 
Backwards 
and Forward 
Update of 
DistFlow 
 

/ 
33-bus 
distribution 
system. 

No No 

(Gosvami & Basu, 
 1992) 

Reduction of 
line losses 

- Voltage 
constraint 

- Current 
Constraint 
 

- Topological 
constraint 

Switch Exchange 
Method 

N/A 
35-bus 
distribution 
system 

No No 

(Kashem et al., 
2000) 

Loss 
minimisation 

- Voltage 
constraint 

- Current 
constraint 

Minimal tree  
search based 
SEM 

N/A 
33-bus 
distribution 
system 

No No 

(Peponis et al., 
1995) 

Power loss 
reduction 

- Voltage 
constraint 
 

- Topological 
constraint 

Switch Exchange 
Method (SEM) 
 
Sequential Switch 
Opening Method 
(SSOM) 

N/A 

Five 20kV 
feeders, with 63 
nodes; 80 
branches and 50 
branch switches 

No No 

(Kim et al. 1993) 
Loss 
reduction 

Topological 
constraint 

Artificial Neural 
 Network 
 

FORTRAN 
16-bus 
distribution 
system 

No No 

(Kashem et al., 
1998) 

Real power 
loss reduction 

N/A 
Artificial Neural 
Network 

FORTRAN 
16-bus 
distribution 
system 

No No 
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(Nara et al., 1992) 
Loss 
minimum 

- Voltage 
constraint 
 

- Current 
constraint 

Genetic Algorithm 
(GA) 

FORTRAN 

106 sectionalizing 
 switches system 
 
1692 switches 
real scale urban 
distribution 
system. 

No No 

(Mendoza et al., 
2006) 

Real power 
loss 
minimization 

- Voltage 
constraint 
 

- Current 
constraint 

 
- Topological 

constraint 
 

Genetic Algorithm 
with restricted 
population and 
addressed 
operators 

MATLAB 

- 16-Bus 
distribution 
system. 

 
- Hypothetical 

12.66 kV 
system 
with a 2- 
feeder 
substation, 32 
buses and 5 
tie-lines 
 

No No 

(Enacheanu et 
al., 2008) 

Loss 
minimization 

- Voltage 
constraint 
 

- Current 
constraint 

 
- Topological 

constraint 
 

Genetic Algorithm 
based on the 
Matroid Theory 

MATLAB 

 
- 16-Bus 

distribution 
system. 

 
- Hypothetical 

12.66 kV 
system with a 
2-feeder 
substation, 32 
buses and 5  
tie-lines. 

 
- 11-kV radial 

distribution 
system with 2 
substations, 4 
feeders, 70 
nodes, and 78 
branches 
 

No No 
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(de Oliveira et al., 
2014) 

Power losses 
minimization 

- Voltage 
constraint 
 

- Current 
constraint 

 
- Topological 

constraint 

Artificial Immune 
Systems (AIS) 

MATLAB 
14-bus 
distribution 
system 

No No 

(Su & Lee, 2003) 

Power loss 
reduction 
 
Voltage 
profile 
improvement 

- Voltage 
constraint 
 

- Current 
constraint 

 

Mixed-Integer 
Hybrid Differential 
Evolution 
(MIHDE) 

MATLAB 

- 16-bus 
Distribution 
system. 

 
- TaiPower 

company 
distribution 
system 
(11 11.4 kV 
feeders, 83 
section 
switches, and 
13 tie- 
switches) 

No No 

(Hu et al., 2008) 
Power loss 
minimisation 

N/A ACO N/A 
69-bus 
distribution 
system 

No No 

(Su et al., 2005) 
Power loss 
minimization 

- Voltage 
constraint 
 

- Current 
constraint 

 

ACO MATLAB 

- 16-bus 
distribution 
system 

 
- 11.4 kV 

Taipower 
distribution 
system with 11 
feeders, 83 
section 
switches, and 
13 tie switches 

No No 

(Jin et al., 2004) 
Load 
balancing 

- Voltage 
constraint 
 

- Topological 
constraint 

Binary Particle 
Swarm 
Optimisation 
(BPSO) 

N/A 
16-bus 
Distribution 
system 

No No 
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(Abdelaziz et al., 
2009) 

Power loss 
minimization 

- Voltage 
constraint 
 

- Current 
constraint 

 
- Topological 

constraint 

Modified Particle 
Swarm 
Optimisation 

MATLAB 6.5 

- 33-bus 
Distribution 
system. 

 
- 69-bus 

Distribution 
system 

No No 

(Wu & Tsai, 2008) 
Load 
balancing 

- Voltage 
constraint 
 

- Topological 
constraint 

Binary Coding 
Particle Swarm 
Optimisation 

Java 

4-feeder 
distribution 
system with 24 
section switches, 
8 tie-switches and 
28 load-zones 

No No 

(Voropai &  
Bat-Undraal, 
2012) 

Power loss 
minimization 
 
Power supply 
reliability. 

- Voltage 
constraint 
 

- Current 
constraint 

 

Hybrid ACO- 
successive 
concessions 
method 

N/A 

Simplified 
distribution 
system of the 
central Power 
system of 
Mongolia with 4 
thermal power 
plants of DG size 

Yes No 

(Olamaei et al., 
2008) 

Real power 
loss 
minimization. 
 
DG Generated 
real power 
minimisation 

- Voltage 
deviation 
constraints. 

 
- Number of 

Switching 
operations 

Particle Swarm 
Optimisation 

MATLAB 

31-bus 
distribution 
system with 3 
feeders and 4 
tie-switches 
 

Yes No 

(Niknam, 2011) 

Real power 
Loss 
Minimisation 
 
Number of 
switching 
operations 
minimisation  
 
Voltage 
deviation 
minimisation 

- Branch 
capacity 
constraint 

 
- Power 

balance 
constraint 

 
- Topological 

constraints 

Multi-Objective 
Honey Bee 
Mating 
Optimisation 
(MHBMO) 

N/A 

- 94-bus 
distribution 
system with 2 
substations, 
11 feeders 
and 96 
switches. 

 
- 33-bus 

distribution 
system 

No No 

1 N/A (Not applicable) means that no information was provided 
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Table 2.1 provides a comprehensive list of some of the surveyed research works on 

distribution network feeder reconfiguration. 

 

2.5. Comparative analysis of the literature review on the distribution network feeder 

reconfiguration 

This section provides an analysis of the literature review on the distribution network feeder 

reconfiguration problem and the optimisation methods used to solve the problem. 

 

2.5.1. Analysis of the distribution network feeder reconfiguration problem objectives  

From the survey, it can be inferred that the application of optimal distribution network 

feeder reconfiguration has many goals or objectives. The most common objectives are the 

following: 

- Power loss minimisation: The energy lost in the power system in general and 

particularly in the distribution system leads to reduced energy availability and 

unnecessary operational and management costs. So, minimising the power loss 

results in surplus power availability and significant cost savings. 

- Load balancing: The objective of load balancing is to find the best distribution network 

topology to balance the loads amongst distribution feeders by altering the network 

topology via switching (ON/OFF) of the tie and section lines. Load balancing allows for 

the partial relocation of loads from heavily loaded feeders to adjacent lightly loaded 

feeders. 

- Service restoration: If a fault occurs in the distribution network, the management 

system is tasked to locate the fault and identify the type of fault. Successful fault 

location and identification is followed by an interruption of the service supply at the 

faulty part of the network. If the fault is temporary (transient faults), the grid 

management system should restore the power supply to the affected area after the 

fault is cleared. In the fault persists beyond a certain period, the optimal feeder 

reconfiguration of the distribution network should allow the power supply to be rerouted 

accordingly, to minimise the outage time and restore the power to disconnected loads. 

- Voltage profile improvement: In distribution networks, the low 
𝐑𝐗 ratio inevitably 

causes some voltage drop along the lines, from the substation to the end-user points. 

Reactive power compensation devices and voltage regulators are used to keep the 

voltage within the recommended margins. Optimal feeder reconfiguration can alter the 

topology of the network to keep the voltage in the allowable range without the need for 

additional equipment. 
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Power loss minimisation remains the most used objective function in optimal distribution 

network feeder reconfiguration. In some instances, the optimal distribution network feeder 

reconfiguration problem consists of two or more objectives, as shown in research works 

by (Niknam, 2011), (Olamaei et al., 2008), and (Voropai & Bat-Undraal, 2012).  

The trends suggest that in the research works conducted before 2000, the distribution 

network feeder reconfiguration problem is formulated as a single-objective problem. As of 

2000, the distribution network feeder reconfiguration problem is formulated as both a 

single-objective and multi-objective problem. However, most of the multi-objective 

problems are converted into a single-objective problem using the weighted-sum approach. 

Another popular method to solve the multi-objective distribution feeder reconfiguration 

problem is by using the Pareto-front approach.  

Irrespective of the objective(s), the application of feeder reconfiguration in distribution 

networks is subjected to some constraints. The most considered constraints are the 

voltage limit constraint, the current limit constraint (branch capacity) and the topological 

constraint (network radiality). 

 

2.5.2. Analysis of the optimisation methods used in feeder reconfiguration 

Classical, heuristic and meta-heuristic optimisation solution algorithms have been 

suggested to solve the distribution network feeder reconfiguration problem.  

Early solution algorithms developed to solve the feeder reconfiguration problem were 

based on successive load flows (Back & Merlin, 1975). Successive load flow methods have 

the advantages of providing a near-global optimum solution and a final network topology 

which is independent of the initial switching configuration. However, successive loads 

flows-based optimisation methods are not viable for the real-time feeder reconfiguration of 

distribution networks, due to their computational burden. The fact that a load flow is 

performed at every iteration and for every possible configuration makes successive loads 

flow approaches computationally inefficient. 

Feeder reconfiguration solution algorithms based on mathematical programming (classical 

methods) were first introduced in (Liu et al., 1989). Mathematical programming approaches 

are best suited for problems that fulfil certain conditions, and constraints with specific 

format type. For instance, the Linear Programming approach is best suited to solve 

problems with linear objective function and constraints, and it may not be a good approach 

to solve nonlinear optimisation problems. Therefore, due to the non-linear nature of the 

distribution network feeder reconfiguration problem, its objective functions and constraints 

need to be converted into a linear format type before to be solved by a Linear 
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Programming. Similarly, the objectives and constraints of the distribution network feeder 

reconfiguration problem should be converted in a quadratic format type before to be solved 

using a Quadratic Programming approach. As such, given that when using classical 

optimisation methods to solve the distribution network feeder reconfiguration problem, 

approximations are made to convert the objective functions and the constraints from a 

format type to another (e.g. from quadratic to linear), and finding good solutions to the 

distribution network feeder reconfiguration problem becomes more difficult.  

Moreover, mathematical programming-based algorithms are too time-consuming, and thus 

unsuitable for the feeder reconfiguration problem.  

To deal with the shortcomings of classical programming methods in solving the distribution 

network feeder reconfiguration problem, heuristic algorithms have been used. Heuristic 

algorithms are deemed more direct, intuitive, and fast enough to be used in the 

implementation of distribution networks feeder reconfiguration. Heuristic algorithms have 

the advantages of quickly determining the switches configuration which provides reduced 

distribution network power losses, although it is not guaranteed that the final solution is 

optimal. When heuristic algorithms are used to solve the feeder reconfiguration problem, 

the final solution is dependent on the initial distribution network switches status. 

The use of heuristic and classical programming algorithms in distribution network feeder 

reconfiguration is being phased-out as a new breed of artificial intelligence, or meta-

heuristic algorithms is emerging. Metaheuristics algorithms are effective search strategies 

used to guide the search procedure with the objective to efficiently explore the search 

space to find the optimal solution. Although local-search single-solution algorithms such 

as Tabu-Search (Zhang et al., 2007) have also been used to solve the feeder 

reconfiguration problem, the most commonly used metaheuristic algorithms are 

population-based global-search algorithms such as Genetic Algorithm (Enacheanu et 

al., 2008), Particle Swarm Optimization (Jin et al., 2004), Differential Evolution (Su & Lee, 

2003), Ant Colony optimization (Hu et al., 2008), Honey Bee Mating Optimization (Niknam, 

2011), etc. If applied adequately, almost all metaheuristic algorithms are suitable for 

optimisation of large power system networks. They have been proven to be successful in 

solving small and large distribution network feeder reconfiguration problem. A range of 

distribution systems has been used in the literature to test the performance of 

metaheuristic algorithms in feeder reconfiguration. The most recurrent distribution systems 

are the 16-bus distribution network, the 33-bus distribution network, and the 69-bus 
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distribution network. The most significant distribution system recorded in the literature is 

the 119-bus distribution system.  

Like other optimisation methods, meta-heuristic can get stuck in the local optima 

(premature convergence). But when applied accordingly, they are more likely to converge 

to the global optimum. The significant drawbacks of metaheuristic optimisation methods 

remain the convergence speed and the adequate adjustment of their search 

parameters. 

 

2.6. Review of the existing literature on optimal Distributed Generation Placement and 

sizing 

The benefits of Distributed Generation in distribution networks cannot be secured if the 

Distributed Generations are not correctly sized and placed. Independently of the objective 

function, researchers have developed a number of optimisation algorithms to solve the 

Distributed Generation placement problem. The major methods used to solve the optimal 

Distributed Generation placement and sizing problem are classified as follows:  

- Analytical methods: Analytical methods are based on logical reasoning and analysis. 

Some research works using analytical methods to solve the optimal Distributed 

Generation placement & sizing problems include (Acharya et al., 2006) which used a 

loss sensitivity factor based on the exact loss formula; and (Hung et al., 2010) which 

uses the Exact loss formula to find the optimal DG location and size 

- Classical optimisation method: Classical optimisation methods are based on 

iterative search algorithms. Classical optimisation methods used to solve the optimal 

DG placement and sizing problem include Dynamic Programming (Khalesi et al., 

2010), and Mixed Integer Non-Linear Programming (Kaur et al., 2014) 

- Heuristic and Metaheuristic methods: the concepts of heuristic and meta-heuristic 

are intertwined. As such, some heuristic optimisation methods are referred to as 

metaheuristic methods. Meta-heuristic search methods used to solve the optimal DG 

placement and sizing problem include Human intelligence algorithms Genetic 

Algorithm (Borges & Falcao, 2006); and social intelligence algorithms such as Ant 

Colony Optimization (Abu-Mouti & El-Hawary, 2011), and Particle Swarm optimisation 

(Aman et al., 2013). 

 
To complete the literature review on the optimal DG placement and sizing problem, past 

research works, conference papers, journals, and thesis were surveyed and compared. 

The survey and the comparison are accomplished using the following criteria: 
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- Objective function: It characterises the nature of the problem to be solved. The 

objective function can be the power loss minimisation, the maximisation of the system 

loadability, the maximisation of the system reliability, the voltage deviation 

minimisation, or the voltage stability index maximisation. 

- Constraints: the developed scheme may be subject to operational constraints such 

as the DG size limit, the DG placement constraints, the voltage limits, and the current 

limits. 

- Algorithm used: Analytical, classical, and meta-heuristic optimisation methods have 

been successfully used to solve the problem of optimal DG placement and sizing. 

- Distribution networks: To demonstrate their practicability, the developed distribution 

network feeder reconfiguration schemes are tested on a variety of distribution networks 

such as the 16-bus, the 33-bus, and the 69-bus IEEE distribution networks. 

- Software: There is a broad range of available software to simulate and analyse a 

distribution system. Some of those softwares are MATLAB and GAMS. However, the 

suitability of a given software is dependent on the problem to solve. 

- DG type: DG can be classified into four types, depending on their real and reactive 

power delivering capabilities. 

Type I DG only injects real power in the distribution systems (Venkatesh, 2014). 

Type II DG only injects reactive power Q in the distribution system (Hung et al., 2010). 

Type III DG can inject both the real and reactive power in the network. 

Type IV DG injects the real power (P) in the network but absorbs reactive power (Q) 

from the network (Hung et al., 2010). 

 
Table 2.2 provides the summary of some research works on the optimal DG placement 

and sizing problem.  

 

 

  



46 

 

Table 2.2: Summary of research works on the optimal Distributed Generation placement and sizing problem 

Reference 
paper 

Objective constraints Algorithm 
Distribution 
system 

Number 
of DG 

DG type Software 

(Moradi & 
Abedini, 
2012) 

Power loss 
minimization 
 
Voltage profile 
improvement 
 
Voltage 
stability 
improvement 

- Load balance 
constraint 

 
- Voltage 

constraint 
 
- DG technical 

constraints 
 
- Branch 

capacity 
constraint 
 

Combined 
Genetic  
Algorithm and 
Particle Swarm 
Optimisation 

- 33-bus 
distribution 
network 

 
- 69-bus 

distribution 
network 

Three Type I MATLAB 

(Aman et al., 
2013) 

 
Power loss 
minimisation 
 
Bus voltage 
stability 
maximisation 
 
Line voltage 
stability 
maximisation 

DG size limit 

Weighted  
Multi-Objective 
Particle Swarm 
Optimisation 
(MOPSO) 

- 12-bus 
distribution 
network 

 
- 30-bus 

distribution 
network 

 
- 33-bus 

distribution 
network 

 
- 69-bus 

distribution 
network 
 

One Type I N/A 

(Abdi & 
Afshar, 2013) 

Real and 
reactive power 
minimisation 
 
Voltage profile 
improvement 
 
System stability 
Improvement 

Voltage limit 
Constraint 
 
Branch 
Capacity 
constraint 

 
Hybrid Improved 
Particle Swarm 
Optimisation 
(IPSO)/Monte 
Carlo simulation 

33-bus 
distribution 
system 

-  One 
 
-  Two 
 
-  Three 

Type I N/A 
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(Acharya  
et al., 2006) 

Power loss 
minimisation 

Power balance 
Constraint 
 
DG size limit 

 
Loss sensitivity 
factor based on 
the Exact Loss 
formula 

- 30-bus 
distribution 
network 

 
- 33-bus 

distribution 
network 

 
- 69-bus 

distribution 
network 

One Type I MATLAB 

(Gopiya et al., 
2013) 

Real power 
loss 
minimisation 

Voltage  
Constraint 
 
current limit 
constraints 
 
DG size limit 
 
Power balance 
constraint 

Real power loss 
Sensitivity 
Analysis 
technique 

- 12-bus 
distribution 
network 

 
- 33-bus 

distribution 
network 

-  One 
  
-  Two 

Type I 
 
Type III 

MATLAB 

(Zeinalzadeh 
et al., 2015) 

Real power 
Loss 
Minimization 
 
Voltage 
Stability 
Improvement 
 
Balancing 
branch current 

Power balance 
Constraint 
 
Voltage and 
Branch 
capacity limit 
constraint 
 
DG size limit 

Pareto-optimal 
MOPSO 

- 33-bus 
distribution 
system 

 
- Actual 94-

bus 
Portuguese 
distribution 
system 

Three Type III MATLAB 

(Kansal et al., 
2013) 

Power loss 
minimisation 

Power balance 
Constraint 
 
Voltage and 
current limit 
constraints 
 
DG location 
constraint 

PSO 

- 33-bus 
distribution 
system 

 
- 69-bus 

distribution 
system 

-  One 
 
-  Two 

Type I, 
Type II, 
Type III 
Indepen- 
dently 
 
Type I 
& Type II 
Simulta- 
neously 
 

MATLAB 
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(Hung et al., 
2010) 

Power loss 
minimisation 

DG size limit 
 
Voltage limit 
constraint 

Exact loss 
formula 

- 16-bus 
distribution 
network 

 
- 33-bus 

distribution 
network 

 
- 69-bus 

distribution 
network 

One Type III MATLAB 

(Khalesi et al., 
2010) 

Power loss 
Minimisation 
 
System 
Reliability 
Enhancement 
 
Voltage profile 
improvement 

DG size limit 
 
Branch 
capacity limit 
 
Voltage limit 

Dynamic 
Programming 

Hypothetical 
9-bus 
distribution 
system 

One Type I MATLAB 

(Kaur et al., 
2014) 

Power loss 
minimization 

Power balance 
constraint 
 
Voltage and 
current limit 
constraints 
 
DG size limit 
constraint 
 
Number of DG 
limit 

Mixed 
Integer 
Non-Linear 
Programming 

- 33-bus 
distribution 
network 

 
- 69-bus 

distribution 
network 

-  One 
 
-  Two 
 
-  Three 

Type I 
 
Type III 

MATLAB 
AMPL 

(Atwa &  
El-Saadany, 
2010) 

Power loss 
minimisation 

Voltage and 
Branch 
capacity limit 
constraints 
 
DG size limit 
constraint 
 
DG penetration 
level 

Mixed 
Integer 
Non-Linear 
Programming 

IEEE RTS-96 
load 
transition 
system 

Three Type IV GAMS 
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(Rama Prabha 
et al., 2015) 

Power loss 
minimization 

Power balance 
Constraint 
 
Voltage and 
current limit 
constraints 

Combined Loss 
Sensitivity 
Factor (LSF) and 
Intelligent Water 
Drop (IWD) 
algorithm 

- 10-bus 
distribution 
network 

 
- 33-bus 

distribution 
network 

 
- 69-bus 

distribution 
network 

-  One 
 
-  Three 

Type I  MATLAB 

(Moravej & 
Akhlaghi, 
2013) 

Voltage profile 
Improvement 
 
Power loss 
minimisation 

Power balance 
constraint 
 
Voltage and 
Branch 
capacity limit 
constraints 

Cuckoo search 

- 38-bus 
distribution 
network 

 
- 69-bus 

distribution 
network 

Four Type I MATLAB 

(Abu-Mouti & 
El-Hawary, 
2011) 

Real power 
Loss 
minimisation 

Power balance 
Constraint 
 
Voltage and 
Branch 
capacity limit 
constraint 
 
DG size limit 
constraint 

Artificial Bee  
Colony (ABC) 
algorithm 

69-bus 
distribution 
system 

-  One 
 
-  Two 

Type III 
C 
programming 

(Kefayat et al., 
 2015) 

Minimisation of 
power loss, 
total emission 
produced by 
substation & 
resources, total 
cost of electrical 
energy. 
 
Voltage 
Stability 
improvement 

Power balance 
Constraint 
 
Voltage 
constraint  

Hybrid of Ant 
Colony 
Optimisation & 
Artificial Bee 
Colony 

- 33-bus 
distribution 
system 

 
- 69-bus 

distribution 
system 

-  One 
 
-  Two 
 
-  Three 
 
-  Four 
 
-  Five 
 
-  Six 
 
-  Seven 
 

Type I N/A 
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(Dehghanian 
et al., 2013) 

Minimisation of 
total imposed 
costs, total 
network losses, 
customer 
outage costs 
and private 
investments 

Power balance 
constraint 
 
Voltage 
Constraint 
 
DG size 
constraint 

NSGAII 

37-bus 
distribution 
system 
 

One Type I MATLAB 

(Borges & 
Falcão, 2006) 

Minimize power 
loss  
 
Guarantee 
acceptable 
reliability level 
 
Guarantee 
acceptable 
voltage profile 

Voltage 
constraint 
 
DG size limit 
constraint 

GA 
2 Hypothetical 
distribution 
systems 

Two Type I N/A 

(Murthy & 
 Kumar, 2013) 

Minimisation of 
the cost of power 
loss  
 
Minimisation of 
the cost of power 
supplied from DG 

N/A 

- Combined 
power 
Loss 
sensitivity 
method 

 
- Index vector 

Method 
 
- Voltage 

sensitivity 
index 

- 33-bus 

distribution 
network 

- 69-bus 

distribution 
network 

One 
Type I 
 
Type III 

N/A 

1 N/A means that no information was provided  
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2.7. Comparative analysis of the literature review on optimal DG placement and sizing 

From the literature review, it is observed that most research works on the DG placement 

and sizing problem are as recent as the year 2000. This may be due to the growing interest 

in Distributed Generation in the last two decades. Although there is an extensive number 

of research works in the topic of optimal placement and sizing of DG, only those in Table 

2.2 have been retained to illustrate the state of the research on the optimal placement and 

sizing of DG. Very few research works used classical optimisation or heuristic algorithms 

to solve the problem of optimal DG placement and sizing. This may be justified by the fact 

that by 2000, more advanced computational intelligence optimisation approaches were 

already available. Metaheuristic/artificial intelligence and analytical optimisation are the 

most used approaches to solve the optimal DG placement and sizing. The objectives used 

in the literature review includes the power loss minimisation, the load balancing, the system 

reliability enhancement, the voltage profile improvement, the total cost of DG integration, 

and voltage stability improvement amongst other. Power loss minimisation remains an 

undeniable aspect in most of the research works found in the literature. 

 

2.7.1. Analysis of the optimisation approaches used in the DG placement and sizing 

problem 

This section provides a review analysis on the analytical, classical and meta-heuristic 

optimisation algorithms used in to solve the DG placement & sizing problem. 

In analytical approaches, the distribution system is modelled by a mathematical 

expression, and a systematic approach is developed to determine the optimal solution of 

the problem. Analytical approaches are more suited for small distribution systems, with a 

limited number of parameters. In terms of accuracy and computational speed, analytical 

optimisation methods are only as accurate as the mathematical formulation of the problem 

and the developed system approach allows. The performance of analytical optimisation 

approaches in large and complex systems is mediocre (Viral & Khatod, 2012). 

The most common analytical methods are the index-based method, the Point Estimation 

method and the sensitivity index-based method (Prakash & Khatod, 2016). The index 

method is based on the deviation of a parameter from its base value. The indexes are 

measured in terms of the relative deviation (Prakash & Khatod, 2016). An application of 

the index based analytical method is found in the research works by (Kuroda et al., 2012). 

Sensitivity index-based methods are built on the belief that varying a parameter affects the 

objective variable. (Gopiya et al., 2012) used the voltage sensitivity index to find the optimal 

position of the DG in the distribution network. After calculation of the Voltage Stability Index 
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(VSI) at each bus, the authors identified the bus with the lowest VSI as the location for DG 

placement. (Murthy and Kumar, 2013) used a combined loss sensitivity to determine the 

candidate position for DG placement in the distribution network. The combined loss 

sensitivity method is derived from the fact that the installation of the Distributed Generation 

in the distribution network does not only affect the real/reactive power loss but can affect 

both the real and the reactive power. 

Analytical methods are good at finding the optimal location for DG placement, but they fail 

to find the optimal size of the DG.  

  (Khalesi et al., 2010) applied a dynamic programming approach to determine the optimal 

DG location for the minimisation of power loss, the improvement of the stability, and the 

enhancement of the voltage profile in distribution networks. Their research work only 

focused on finding the best DG location. The DG sizing was handled by varying the DG 

size as a percentage of the peak load. The dynamic programming approach developed by 

(Khalesi et al., 2010) was only tested in a small distribution system, and its performance 

and reliability in medium and large distribution systems were not examined. 

(Atwa & El-Saadany, 2010) and (Kaur et al., 2014) solved the DG allocation problem using 

Mixed Integer Non-Linear Programming (MINLP) approaches. In their research, (Atwa & 

El-Saadany, 2010) used a probabilistic approach to allocate and size a wind-based DG. 

The developed MINLP approach takes into consideration the DG uncertainties (such as 

wind speed) the load variations. The research work by (Kaur et al., 2014) subdivided the 

problem of optimal DG placement & sizing into two sub-problems: The Siting Planning 

Model (SPM) to find the DG location, and the Capacity Planning Model (CPM) to determine 

the optimal DG size. The method used loss sensitivity factors to determine the candidate 

buses for DG placement. The sizing is obtained by using a combination of Sequential 

Quadratic Programming and branch & bound methods. The proposed techniques were 

successfully applied to a range of distribution systems and are deemed efficient by the 

authors. 

Classical optimisation techniques lack the flexibility required to solve the DG allocation 

problem (Jordehi, 2015). Heuristic search algorithms are mostly pathfinding algorithms and 

therefore unsuited for the DG allocation problem. So, most of the research works used 

meta-heuristic methods to solve the optimal DG placement and sizing problem. The meta-

heuristic approaches used in the literature range from single-objective algorithm such as 

the Particle Swarm Optimization (PSO) (Kansal et al., 2013); and the Artificial Bee Colony 

(Abu-Mouti & El-Hawary, 2013), to multi-objective algorithms such as the Non-Dominated 
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Sorting Genetic Algorithm II (NSGAII) (Dehghanian et al., 2013) and the Multi-Objective 

Particle Swarm Optimization (MOPSO) (Zeinalzadeh et al., 2015). Metaheuristics have 

been proven efficient in solving the DG allocation problem (Prakash & Khatod, 2016). They 

are flexible and well suited for single and multi-objective DG placement and sizing 

problems.  

Although efficient, some metaheuristic approaches may have drawbacks. GA, for instance, 

is computationally expensive and it takes a long processing time to solve the DG allocation 

problem. To circumvent their shortcomings, two or more algorithms may be combined to 

form a new and more powerful algorithm referred to as a hybrid algorithm. (Moradi & 

Abedini, 2012) used a combination of GA and PSO in their research. (Abdi & Afshar, 2013) 

and (Kefayat et al., 2015) used a hybrid ACO/ABC and a hybrid PSO/Monte Carlo 

Simulation, respectively for multi-objective DG allocation problems. 

Another drawback of metaheuristic approaches is that they might be trapped in the local 

optima and then give an inaccurate solution. So, intensive research is being undertaken to 

devise mechanisms to avoid premature convergence in the DG allocation problem 

(Jordehi, 2015). 

 

2.7.2. Analysis of the DG types and the distribution systems used in the optimal DG 

placement and sizing problem 

The most used DG types in the literature are Type I DG, Type II DG and Type 3 DG. One 

salient characteristic of the research works in the literature is that the DG type is predefined 

before the optimisation process starts. Some research works such as (Acharya et al., 

2006) and (Hung et al., 2010) focused on the optimal placement and sizing of a single DG, 

while others such as (Aman et al., 2014) and (Abdi & Afshar, 2013) also looked at multi-

DG placement and sizing. Further details about the different DG types are given in Chapter 

Four, section 4.2.1. Research works focusing on the optimal placement and sizing of Type 

IV DG such as (Atwa & El-Saadany, 2010) are rare and not commonly found in the 

literature. 

The distribution systems used in the literature to test the effectiveness of the algorithms 

developed to solve the problem of optimal DG placement and sizing range from a 

hypothetical 5-bus distribution network to the 94-bus distribution network. Most of the 

research works use two or more distribution systems in their case studies. However, the 

most recurrent distribution systems used in the literature are the 33-bus distribution 

network and the 69-bus distribution network. 
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2.8. Review of the existing literature involving both the optimal distribution network 

feeder reconfiguration and the optimal DG placement and sizing problem  

The research works analysed so far dealt with either the optimal distribution network feeder 

reconfiguration problem or the optimal DG placement and sizing problem independently. 

However, in some research works, both the optimal distribution network feeder 

reconfiguration problem and the optimal DG placement and sizing problem are considered. 

Table 2.3 provides the summary of some research works which consider both the optimal 

distribution network feeder reconfiguration problem or the optimal DG placement and 

sizing problem. The summary is accomplished using the following criteria: 

- Objective function  

- Constraints  

- Algorithm used 

- Distribution networks 

- Software 

- Number of DG 

 
A characteristic common in these research works is that they all deal with multi-DG 

placement and sizing. 

Research works by (Chidanandappa et al., 2015), (Ma et al., 2015), (Cailian et al., 2014), 

(Hao et al., 2014) and (Guan et al., 2015) propose a solution algorithm for optimal feeder 

reconfiguration problem in distribution networks with Distributed Generation. To solve this 

optimisation problem, the authors used the Genetic Algorithm (GA), the Improved Hybrid 

Clonal Genetic Algorithm/Tabu-Search, the Immune Genetic Algorithm, the Improved 

Adaptive Genetic Algorithm, and the Decimal Encoding to Quantum Particle Swarm 

Optimization (DQPSO), respectively. In the research works above, the location and the 

size of the DG are predefined, meaning that the proposed algorithms are used only to 

solve the feeder reconfiguration problem. It is also noted that the distribution systems used 

in these research works are IEEE distribution systems which do not have DG in their 

original design. The DG location and size in the IEEE distribution systems are different for 

all the research works above, and it is unknown if the IEEE distribution systems were 

subjected to any optimisation to determine the respective DG location and size. 
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Table 2.3: Review of literature works which consider both the optimal feeder reconfiguration and Distributed Generation placement 

Reference 
paper 

Objectives 

Algorithm 
Distribution 
system 

Number of 
DG 

Comments Feeder 
reconfiguration 

DG allocation  

(Rao et al., 
2013) 

Real power loss 
minimisation 
 
Voltage 
improvement 

Harmony Search 
Algorithm (HSA) 

Sensitivity 
analysis 

- 33-bus 
distribution 
system 

 
- 69-bus 

distribution 
system 

Three 

Sensitivity analysis 
used to determine the 
candidate buses for 
DG location. 
 
HSA used for 
simultaneous DG 
sizing and feeder 
reconfiguration. 
 

(Chidanandappa 
et al., 2015) 

Power loss 
minimisation 
 
Number of 
Switching 
minimisation 

GA N/A 
33-bus 
distribution 
system 

Five 

No mention of the 
algorithm used for DG 
placement. 
 
DG allocation takes 
place before feeder 
reconfiguration 

(Ma et al., 
 2015) 

Power loss 
minimisation 

Improved hybrid 
Clonal Genetic 
Algorithm (CGA)/ 
Tabu Search 

N/A 
33-bus 
distribution 
system 

Four 
Type 3 DG with 
predefined location 
and size 

(Cailian et al., 
2014) 

Power loss 
minimisation 

Immune Genetic 
Algorithm 

N/A 
33-bus 
distribution 
system 

Four 
DG of type I, II, III 
Location and size 
predefined 

(Hao et al., 
2014) 

Power loss 
Minimisation 
 
Improvement of 
the utilisation of 
renewable 
energy resources 
(PV and wind) to 
reduce the 
demand for 
traditional energy 
consumption 
 

improved 
Adaptive 
 Genetic 
Algorithm 

N/A 
33-bus 
distribution 
system 

Two PV and wind turbine 
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(Bayat et al., 
2015) 

Maximum power 
loss reduction 

Uniform Voltage Distribution based 
constructive reconfiguration Algorithm 
(UVDA) 

33-bus 
distribution 
system 

Three 
UDVA used for DG 
allocation and feeder 
reconfiguration 

(Guan et al., 
2015) 

Real power loss 
minimisation 

Decimal 
Encoding to 
Quantum 
Particle 
Swarm 
Optimisation 
(DQPSO) 

N/A 

- 33-bus 
distribution 
system 

 
- 69-bus 

distribution 
system 

- Four 
for 33-bus 
distribution 
system 

 
- Two  

for 69-Bus 
distribution 
system 

DQPSO has a 
mechanism that 
prevent entrapment in 
local optima and 
guaranty convergence 

(Imran et al., 
2014) 

Power loss 
Minimisation 
 
Voltage stability 
enhancement 

Fireworks Algorithm 

- 33-bus 
distribution 
system 

 
- 69-bus 

distribution 
system 

Three 
DG allocation and 
Feeder reconfiguration 

(Das et al., 
2017) 

Real power loss 
reduction 

GA 
Sensitivity 
analysis 

- 33-bus 
distribution 
system 

 
- 69-bus 

distribution 
system 

Three 

Sensitivity analysis 
used to determine 
the candidate buses 
for DG location. 
 
GA used for DG 
sizing followed by 
feeder reconfiguration. 

(Sedighizadeh 
et al.,2014) 

Power loss 
minimisation 
Voltage stability 
Improvement 
 
DG cost 
Minimisation 
 
Greenhouse gas 
Emissions 
Minimisation 
 

 Hybrid Big Bang-Big Crunch  
(HBB-BC) 

- 33-bus 
distribution 
system 

 
- 22-bus 

distribution 
system 

Two 
DG allocation and 
Feeder reconfiguration 

1 N/A means that no information was provided 
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In the research work by (Das et al., 2017), the DG location and sizing is not predefined 

before the optimisation process. The authors (Das et al., 2017) use the sensitivity analysis 

method for the optimal DG placement, while the optimal DG sizing and the optimal 

distribution network feeder reconfiguration process is done using the Genetic Algorithm. 

 
The research works by (Rao et al., 2013), (Inram et al., 2014), (Sedighizadeh et al., 2014), 

and (Bayat et al., 2015) simultaneously solved both the optimal DG allocation and the 

feeder reconfiguration problems.  In the research works above, five case studies were 

used to evaluate the performance of the developed algorithms: 

- Case 1: The proposed algorithm is used to reconfigure the distribution system without 

DG present. 

- Case 2: DG are installed in the non-reconfigured distribution system  

- Case 3: The optimal distribution network feeder reconfiguration process occurs before 

the optimal DG placement and sizing 

- Case 4: The optimal DG placement and sizing process occurs before the optimal 

distribution network feeder reconfiguration. 

- Case 5: The optimal feeder reconfiguration and DG allocation processes both take 

place simultaneously. 

 
(Rao et al., 2013) used the Harmony Search Algorithm (HSA) to solve the optimal 

distribution network feeder reconfiguration problem, and the sensitivity analysis is used to 

solve the optimal DG placement and sizing problem. The research works (Inram et al., 

2014), (Sedighizadeh et al., 2014), and (Bayat et al., 2015) proposed the Fireworks 

Algorithm, the Hybrid Big Bang-Big Crush (HBB-BC) algorithm and the Uniform Voltage 

Distribution based constructive reconfiguration Algorithm (UVDA) to solve both the optimal 

distribution network feeder reconfiguration and the optimal DG placement and sizing 

problems. 

After a comparison of the results obtained from the above five case studies, the research 

works by (Rao et al., 2013), (Inram et al., 2014), (Sedighizadeh et al., 2014), and (Bayat 

et al., 2015) all support that the case study 4 (the optimal distribution network feeder 

reconfiguration process occurs before the optimal DG placement and sizing) yields better 

results. 
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2.9. Conclusion 

 This chapter reviews and analyses the concept of optimisation and the existing knowledge 

on the application of optimisation algorithms in the optimal distribution network feeder 

reconfiguration and the optimal DG placement and sizing problems.  It follows that utilities 

and network operators are forced to adjust the operation of the power grid, to comply with 

the growing energy demand and with new regulations in the power engineering field. As 

such, the shift away from fossil fuels, the integration of Distributed generations, the 

implementation of effective demand response mechanisms, and the improvement of the 

electrical grid reliability; stability; robustness and flexibility are vital issues to address. At 

the grid’s distribution levels, distribution automation will play an important role and enable 

advanced monitoring, management and protection functionalities necessary for the optimal 

operation of the smart grid. Therefore, there is a need for new algorithms and control 

schemes to be designed to achieve the functionalities of distribution automation.  

 This thesis develops new algorithms to find the optimal topology of distribution networks, 

and to find the optimal location and size of Distributed Generation to be placed in 

distribution networks.  

 In the next chapter, Particle Swarm Optimization (PSO) algorithms are developed to 

solve the single and multi-objective distribution network feeder reconfiguration problems. 
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CHAPTER THREE 
DEVELOPMENT OF THE PSO ALGORITHM FOR THE DISTRIBUTION NETWORK 

FEEDER RECONFIGURATION PROBLEM 

 

3.1. Introduction 

The particle swarm optimisation method was introduced in 1995 by Eberhart and Kennedy. 

It is a stochastic search algorithm inspired by the behavioural interaction of a flock of birds 

or a school of fish. It has since then been used to solve linear, non-linear, non-convex, 

continuous, and discrete type problems. The PSO algorithm is simple and easy to 

implement. It has a limited number of parameters to be tuned and a limited dependence 

on the initial set points. The PSO algorithm is similar to the Genetic algorithm (GA) in the 

sense that it starts by a random initialisation of a population (initial solution) and searches 

for the optimum (optimal solution) through a series of updated generations.  

This chapter provides more information about the operation of the PSO, the different 

variants of PSO and its application in solving the distribution network reconfiguration 

problem. 

 

3.2. Standard Particle Swarm Optimization 

Optimising a function 𝐟 consists of finding the set 𝐗∗ such as the function 𝐟(𝐗∗) is either a 

minimum or a maximum of function f in the search space. The function to optimize can be 

linear or non-linear, convex, or non-convex, continuous, or discrete. Depending of the 

search space, the optimization can be: an unconstrained optimization if there are no 

restrictions on the values that the variables of the optimization problem can take; a 

constrained optimization if the variables of the optimization problem are subjected to some 

limitations; and a dynamic optimization if the objective function of the problem change over 

time in such a way to change to the optimum.  Many approaches have been developed to 

solve optimization problems. The Particle Swarm Optimization (PSO) is one of such 

approaches and, it has been used to solve diverse optimization problems. 

This section presents the background or origin of the PSO algorithm, the most important 

parameters of the PSO and its operating principle. 

 

3.2.1. Background of the PSO algorithm 

The Particle Swarm Optimization (PSO) algorithm was first introduced in 1995 by Eberhart 

and Kennedy. It is a stochastic search algorithm inspired by the behavioural interaction of 

a flock of birds or a school of fish (Eberhart & Kennedy, 1995). The concept of PSO is best 
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described by a flock of birds circling over an area where they can smell a hidden source of 

food. The bird closest to the food source chirps the loudest, and the other birds fly towards 

him. If any other bird comes closer to the food that the previous, it will chirp louder, and all 

the other birds will veer towards him. This process continues until the food source is 

reached (Kennedy & Eberhart, 1995). 

In PSO algorithms, the flock of birds is represented by a set or swarm of particles 𝐏 =(𝐩𝟏, 𝐩𝟐, … , 𝐩𝐧), where 𝐩𝟏 to 𝐩𝐧 are the search agents or particles. The food source is the 

optimization target or optimal solution. The objective function f defines the optimization 

problem. The position of the birds are the candidate or possible solutions to the 

optimization problem and they are termed particles position. The speed at which a bird is 

flying is represented by the velocity of the particle. Just like the bird’s flying speed dictates 

its next position after the bird closest to the food source chirps, the velocity of a particle is 

an indication of how much the particle’s position should be changed to match the target. 

The particle’s velocity is dependent on the distance between the particle and the target: 

the bigger the distance between them, the larger the velocity value. The position 𝐱𝐢 and 

the velocity 𝐯𝐢 of particle 𝐩𝐢 change over time. The closest a particle (bird) has ever come 

to the target (food source) is the particle’s personal best position 𝐩𝐛𝐞𝐬𝐭𝐢. Therefore, in the 

PSO algorithm, each particle consists of the following: 

- Position that represents a possible solution 

- Velocity which indicates the rate of change of the particle position 

- Personal best value which indicates the closest the particle has ever come to the 

target. 

 
The next part of this section covers the parameters of the PSO algorithm.  

 

3.2.2. Parameters of the PSO algorithm 

One of the advantages of the particle swarm optimisation algorithm is the fact that it has 

only a few parameters. Some of these parameters have a significant effect on the PSO 

algorithm, and if not carefully selected they can negatively impact on the efficiency and 

performance of the PSO algorithm. Some of the PSO algorithm parameters include the 

number of particles, the dimension of the search space, the range of the particles, the 

stopping criteria, and the learning factors or acceleration coefficients 
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3.2.2.1. Number of particles or swarm size  

The number of particles in the swarm should be selected accordingly for the PSO algorithm 

to perform optimally.  The larger the swarm size, the higher the computation time taken by 

the PSO algorithm to find the optimal solution. The smaller the swarm size, the smaller the 

computation time taken by the PSO algorithm to find the optimal solution. However, a large 

swarm size covers large parts of the search space and increase the chance of finding the 

optimal solution. In contrast, a small swarm size won’t cover the whole search space, and 

consequently, the probability of the particle to be trapped in the local optima is increased. 

In most practical applications, the number of particle lies in the range [20, 60] although a 

swarm of 10 particles is large enough for some problems. 

 

3.2.2.2. Dimension of the search space 

The dimension of the search space is problem dependent. The search space is a delimited 

area within which the optimal solution lies. The particles have a better chance to find the 

optimal solution if they don’t wander out of the search space during the search process, 

and therefore the particles’ positions should be constrained within the search space. 

 

3.2.2.3. Range of the particles 

The range of a particle is dependent on the problem to be optimised. It represents all the 

possible positions the particle can occupy without leaving the search space. The particle 

should be constrained within the domain [𝐱𝐦𝐢𝐧, 𝐱𝐦𝐚𝐱], where 𝐱𝐦𝐢𝐧 and 𝐱𝐦𝐚𝐱 are the 

minimum and maximum position respectively that the particle can occupy in the search 

space. 

 

3.2.2.4. Stopping criteria 

In the PSO algorithm, the particles have no intelligence on their own, and they are not able 

to stop the search process on their own. Therefore, a stopping criterion should be 

established to terminate the PSO iterative search process. Many criteria can be used to 

stop the search (Engelbrecht, 2007). They are: 

- The maximum number of iteration: the PSO search process is terminated when the 

maximum number of iteration is reached. Precautions should be taken when choosing 

the maximum number of iterations, as a small number of iterations can prematurely 

end the search process, meaning that the search process can stop before the optimal 

solution is reached. In contrast, a high number of iterations only increases computation 

the time taken by the PSO algorithm to find the optimal solution. 
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- The stagnant global best position: When the global best position does not improve 

over a certain number of iterations, the PSO search process can be stopped. This is 

often illustrated by the velocity keeping a value of zero over several iterations.  

 

3.2.2.5. Velocity   

The velocity update equation has three components: 

- 𝐯𝐢𝐤 is the velocity of the particle 𝐢 at iteration 𝐤. This component prevents an abrupt 

change in the particle direction and force the particle to keep moving in its current 

direction. 

- 𝐜𝟏 ∗ 𝐫𝐚𝐧𝐝𝟏 ∗ (𝐏𝐛𝐞𝐬𝐭𝐢 − 𝐱𝐢𝐤) is a measure of the particle’s current performance relative 

to its past experience. This term is often referred to as the cognitive component. 

- 𝐜𝟐 ∗ 𝐫𝐚𝐧𝐝𝟐 ∗ (𝐆𝐛𝐞𝐬𝐭𝐢 − 𝐱𝐢𝐤) or 𝐜𝟐 ∗ 𝐫𝐚𝐧𝐝𝟐 ∗ (𝐋𝐛𝐞𝐬𝐭𝐢 − 𝐱𝐢𝐤) is a measure of the 

particle’s current performance relative to its neighbours’ (Local Best PSO) or the other 

particles in the swarm (Global best PSO). This term is referred to as the social 

component. 

 
The following observations are made about the components of the velocity update 

equation. 

- The cognitive and the social components of the velocity update equation are used to 

change the particle’s velocity. In the absence of those terms, the movements of the 

particle would be unidirectional, i.e. the particles would move in the same direction until 

they reach the limits of the search space (Shi & Eberhart, 1998). 

- If the cognitive component alone is zeroed, all the particles will be attracted to a unique 

point: the local/global best point.  

- In contrast, if it is the social component that is zeroed, all particles would be 

independent, i.e. a particle’s position would not be affected by other particles in the 

swarm or neighbourhood (Shi & Eberhart, 1998).  

- If it is the first term that is absent, the particles will converge to their personal or global 

best values, as the velocity would only be dependent on the particle’s current and best 

positions (Shi & Eberhart, 1998).  

 
The range of the particles [𝐱𝐦𝐢𝐧, 𝐱𝐦𝐚𝐱] usually determines the maximum velocity which can 

be calculated using Equation 3.1. 

 𝐯𝐦𝐚𝐱  = 𝛆(𝐱𝐦𝐚𝐱 − 𝐱𝐦𝐢𝐧)                  (3.1) 
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where 𝛆 is a random constant in the interval ]0, 1[. 

 

3.2.2.6. Learning factors 

Also referred to as acceleration coefficients, the learning factors 𝐜𝟏 and 𝐜𝟐 preserve the 

unpredictable effect of the cognitive and social components of the velocity. 𝐜𝟏 is a 

characteristic of how confident a particle is about itself, whereas 𝐜𝟐 highlights the 

confidence of a particle in its neighbours. In practise, 𝐜𝟏 and 𝐜𝟐 are usually selected in the 

range [0, 4] (Van Den Bergh, 2002). 

If 𝐜𝟏 ≫  𝐜𝟐 ,  the particles are more leaning towards their personal best positions. This 

results in the particles wandering excessively without being able to reach the optimal 

solution.  

In the case where 𝐜𝟏 ≪  𝐜𝟐 , the movement of the particles is more inclined towards the 

global best or local best position, and often resulting in premature convergence (Van Den 

Bergh, 2002).  

The appropriate value for the learning factors is 2 (Kennedy & Eberhart, 1995). For 𝐜𝟏 =𝐜𝟐 = 𝟐, all particles in the swarm move towards the average personal best position and 

global/local best position. 

 

3.2.3. Mode of operation of the PSO algorithm 

The operating principle of the PSO algorithm is as follows. 

- Initialisation of the parameters of the PSO algorithm. The PSO algorithm starts by 

the setting of the PSO parameters such as the acceleration constants 𝐜𝟏 and 𝐜𝟐; the 

dimension of the search space D; the swarm size, the maximum number of iterations. 

- Initialisation of the particle’s components.  

o Initialise the particles’ position. The position of the particles is randomly 

generated within the search space.  

o Initialise the particles’ velocity. The velocity can also be randomly generated, 

but it is usually set to zero to prevent the particles from swinging out of the 

search space during the first iterations (Clerc & Kennedy, 2002).  

o Initialise the particles’ best positions. The particles’ best positions should 

also be initialised. In some instances, the particles’ best positions are the same 

as their initial positions, that is if the particles have visited no other position than 

their initial position. 
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o Update the best know position in the swarm. In the case of a minimisation 

problem, the best position in the swarm is the position of the particle with the 

least objective value (fitness value). In a maximisation problem, the position of 

the particle with the highest objective value (fitness value) is the best position 

in the swarm. 

 
- In the main loop,  

o Calculate the objective value: The objective value of each particle is 

calculated using the objective function. 

o Update the particles’ s best positions.  

o Update the best position in the swarm.  

o Update the velocity of the particles. A particle adjusts its velocity according 

to his own experience and that of its neighbourhood. The velocity update 

equation is given in Equation 3.2. 

 𝐯𝐢𝐤+𝟏 = 𝐯𝐢𝐤 + 𝐜𝟏 ∗ 𝐫𝐚𝐧𝐝𝟏 ∗ (𝐏𝐛𝐞𝐬𝐭𝐢𝐤 − 𝐱𝐢𝐤) + 𝐜𝟐 ∗ 𝐫𝐚𝐧𝐝𝟐 ∗ (𝐆𝐛𝐞𝐬𝐭𝐤 − 𝐱𝐢𝐤)           (3.2) 

Where 𝐯𝐢𝐤 is the velocity of the particle 𝐢 at iteration 𝐤. 𝐜𝟏 and 𝐜𝟐 are the acceleration coefficients. 𝐱𝐢𝐤 is the position of particle 𝐢 at iteration 𝐤. 𝐏𝐛𝐞𝐬𝐭𝐢𝐤
 is the best position of particle 𝐢 at iteration 𝐤. 𝐆𝐛𝐞𝐬𝐭𝐤 is the best position in the swarm at iteration 𝐤. 𝐫𝐚𝐧𝐝𝟏 and 𝐫𝐚𝐧𝐝𝟐 are random numbers between 0 and 1. 

 

▪  Update the position of the particles. The position of a particle is updated using 

Equation 3.3.  

 𝐱𝐢𝐤+𝟏 =  𝐱𝐢𝐤 +  𝐯𝐢𝐤+𝟏                    (3.3) 

 Where 𝐱𝐢𝐤 denotes the position of particle 𝐢 at iteration 𝐤. 𝐯𝐢𝐤  is the velocity of the particle 𝐢 at iteration 𝐤. 

 

- Print the results. At the end of the PSO search process, the optimal solution should 

be displayed.    



65 

 

 
In the PSO algorithm, a particle updates its position and velocity according to his own 

experience and those of its neighbours. Depending on the size of the neighbourhood, two 

types of PSO can be derived: The Local Best (Lbest) PSO and the Global best (Gbest) 

PSO. A neighbourhood defines the extent of the social interaction between the particles in 

the swarm. Figures 3.1.a and 3.1.b represent the neighbourhood topologies for the Global 

best PSO and the local best PSO respectively, where 𝐩𝟏 to 𝐩𝟔 are the particles. 

 
 

 

a. Star neighbourhood topology                  b. Ring neighbourhood topology 

Figure 3.1: Neighbourhood topologies for the local and global best PSO 

 
 

In the local best PSO, each particle only gathers information from its immediate 

neighbouring particles as illustrated in Figure 3.1.b. So, a particle’s position and velocity 

are just influenced by its own experience and the position of its best performing 

neighbouring particle which is the particle with least (in the case of a minimisation problem) 

or highest (in the case of a minimisation problem) objective value (Li & Deb, 2010). The 

particle’s position is updated using Equation 3.3. Its velocity is updated using Equation 3.4. 

 𝐯𝐢𝐤+𝟏 = 𝐯𝐢𝐤 + 𝐜𝟏 ∗ 𝐫𝐚𝐧𝐝𝟏 ∗ (𝐏𝐛𝐞𝐬𝐭𝐢 − 𝐱𝐢𝐤) + 𝐜𝟐 ∗ 𝐫𝐚𝐧𝐝𝟐 ∗ (𝐋𝐛𝐞𝐬𝐭𝐢𝐤 − 𝐱𝐢𝐤)          (3.4) 

 Where 𝐋𝐛𝐞𝐬𝐭𝐢𝐤
 is the position best performing particle in the neighbourhood of particle 𝐢. 

 

In the global best PSO, each particle gathers information from all the other particles in the 

entire swarm as illustrated in Figure 3.1.a. So, the position and the velocity of a particle 

are influenced by its own experience and the position of the best performing particle in the 

entire swarm (Bratton & Kennedy, 2007). The particle’s position is updated using Equation 

3.3. Its velocity is updated using Equation 3.2. 
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Due to the large interconnectivity between the particles, the Global best PSO tends to 

converge faster than the Local best PSO. The Local best PSO is, however, less likely to 

be trapped in the local optima (non-optimal solution). In sum, the Global best PSO is 

recommended when quick results are desired and, the Local best PSO when refined 

results are desired (Engelbrecht, 2007). 

 

3.3. Improvement of the convergence rate of the PSO algorithm 

Two features are often used to determine the effectiveness of a Particle Swarm 

Optimization algorithm. They are: 

- The exploration which is the ability of the PSO algorithm to search through diverse 

parts of the search space to find an excellent optimal solution. 

- The exploitation which is the ability of the PSO algorithm to concentrate the search 

around a search area to refine the optimal solution (Talukder, 2011). 

These abilities should be balanced for optimal results. Therefore, many authors have 

developed diverse approaches to improve the convergence rate of the PSO algorithm. 

 

3.3.1. Inertia weight approach 

To balance the exploration and the exploitation abilities of the PSO algorithm, a trade-off 

between the local and global best PSO is established using the inertia weight ω. The inertia 

weight is to control the PSO search process and to reduce the influence of 𝐯𝐦𝐚𝐱 or even 

eliminate it completely. The Inertia weight controls the particle’s motion by weighing the 

contribution of the previous velocity. In the inertia weight approach, the velocity update 

equation is calculated using Equation 3.5. 

 𝐯𝐢𝐤+𝟏 = 𝛚 ∗ 𝐯𝐢𝐤 + 𝐜𝟏 ∗ 𝐫𝐚𝐧𝐝𝟏 ∗ (𝐏𝐛𝐞𝐬𝐭𝐢 − 𝐱𝐢𝐤) + 𝐜𝟐 ∗ 𝐫𝐚𝐧𝐝𝟐 ∗ (𝐆𝐛𝐞𝐬𝐭𝐢 − 𝐱𝐢𝐤)         (3.5) 

where 𝛚 is the inertia weight 

 

 The inertia weight is calculated using Equation 3.6. 

 𝛚 = 𝛚𝐦𝐚𝐱 − (𝛚𝐦𝐚𝐱 − 𝛚𝐦𝐢𝐧𝐭𝐦𝐚𝐱 ) ∗ 𝐭                                                                                                            (3.6) 

 

where 𝛚𝐦𝐚𝐱 is the maximum inertia weight. 𝛚𝐦𝐢𝐧 is the minimum inertia weight. 
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𝐭𝐦𝐚𝐱 is the maximum number of iteration. 𝐭 is the iteration number. 

 

The inertia weight ω is introduced to substitute the maximum velocity. It is multiplied by the 

previous particle’s velocity at every iteration to adjust the importance of the previous 

velocity in the search process.  

If 𝛚 < 𝟎. 𝟖, the PSO algorithm performs a local search and the global optimum is swiftly 

found, if it exists in the local search space. 

If 𝛚 > 𝟏. 𝟐, the PSO performs a global search and the particles try to explore new parts of 

the search space. The odds of finding the global optimum are reduced and the search 

process is longer.  

Appropriate values for the maximum and minimum inertia weight are 𝛚𝐦𝐚𝐱 = 𝟎. 𝟗 and 𝛚𝐦𝐢𝐧 = 𝟎. 𝟒, respectively. 

 
The inertia weight is efficient at ensuring that the PSO algorithm converges to the optimal 

solution (Del Valle et al., 2008).  

 

3.3.2. Constriction coefficient PSO approach 

When the PSO algorithm is executed without any limitations on the particle’s velocity, then 

the velocity quickly escalates to unacceptable levels within a few iterations. To prevent the 

explosion of the swarm, the authors (Clerc & Kennedy, 2002) introduced the constriction 

coefficient 𝛘. The constriction coefficient controls the explosion of the swarm, ensures the 

convergence of the PSO algorithm, and presumably eliminates the need for 𝐯𝐦𝐚𝐱 (Del Valle 

et al., 2008). In the constriction coefficient approach, the velocity update is calculated using 

Equation 3.7. 

 𝐯𝐢𝐤+𝟏 = 𝛘 ∗ {𝐯𝐢𝐤 + 𝛗𝟏 ∗ 𝐫𝐚𝐧𝐝𝟏 ∗ (𝐏𝐛𝐞𝐬𝐭𝐢 − 𝐱𝐢𝐤) + 𝛗𝟐 ∗ 𝐫𝐚𝐧𝐝𝟐 ∗ (𝐋𝐛𝐞𝐬𝐭𝐢 − 𝐱𝐢𝐤)}         (3.7) 

Where, 𝛘 is the constriction coefficient 𝛗𝟏 and 𝛗𝟐 are the acceleration coefficients 

 

The constriction coefficient is calculated using Equation 3.8. 

 𝛘 = 𝟐|𝟐 − 𝛗 − √𝛗𝟐 − 𝟒𝛗|                                                                                                                       (3.8) 
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Where, 

   𝛗 = 𝛗𝟏 + 𝛗𝟐 

 

The typical value of 𝛗 is 4.1.  

If 𝛗 > 𝟒, the particles converge to the optimal solution faster and the convergence is 

guarantee within the search space.  

If 𝛗 ≤ 𝟒, the particles will fly towards and around the best solution in the search space 

without guarantying convergence (Bratton & Kennedy, 2007).  

If the particle’s personal best position is far from its neighbourhood best, the swarm may 

not converge. 

Although all constricted particles will converge without using 𝐯𝐦𝐚𝐱, studies from the authors 

(Eberhart & Shi, 2000) illustrate that the constriction coefficient approach performs better 

when 𝐯𝐦𝐚𝐱 is limited to 𝐱𝐦𝐚𝐱 i.e. 𝐯𝐦𝐚𝐱 = 𝐱𝐦𝐚𝐱. 

A comparison between the Inertia Weight approach and the Constrained Coefficient PSO 

approach reveals that the PSO with the constrained coefficient performs better than the 

inertia weight approach. The PSO solution algorithms when using the constrained 

coefficient approach is even better when the maximum velocity is limited to the maximum 

position of the particle.  

 

3.4. PSO variants 

The standard PSO algorithm was developed to solve mainly continuous optimisation 

problems. However, Real life application problems are of a combinatorial nature. 

Therefore, researchers have developed many variants of the Particle Swarm Optimization 

algorithms to solve non-continuous optimization problems. 

 

3.4.1. Discrete or binary PSO (BPSO) 

The binary PSO was first proposed in 1997 by (Kennedy & Eberhart, 1997). Before his 

introduction, PSO algorithms were only applied in continuous spaces applications. The 

binary PSO is used for discrete domains applications. The position 𝐱𝒊 of a particle can only 

be either a 0 or a 1. In this case, a particle is said to be static only if none of his bits are 

changed through an iteration. Hence, the position of the particle belongs to a discrete 

domain, but the velocity 𝐯𝒊 is still a continuous state. The velocity 𝐯𝒊  is defined as the rate 

of change of the position of a particle. Thus, in binary PSO, the value of the velocity vI is 

the probability of the position  𝐱𝒊 to change from 0 to 1 or vice-versa. This means that if 𝐯𝒊 = 𝟎. 𝟑𝟎, 𝐱𝒊 has 70% of chance to change to or stay 0 and 30% to change to or stay a 1.  
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The velocity update Equation 3.4 is still valid for the BPSO. The particle’s position update 

is now determined according to Equation 3.9. 

 𝐱𝐢𝐤 = {𝟏          𝐢𝐟 𝐫 < 𝐬𝐢𝐠(𝐯𝐢𝐤)𝟎           𝐢𝐟 𝐫 ≥ 𝐬𝐢𝐠(𝐯𝐢𝐤)                (3.9) 

Where, 𝐫 is a uniformly distributed random number in the interval [0,1] 𝐬𝐢𝐠 is a sigmoid function defined by 𝐬𝐢𝐠(𝛂) = 𝟏𝟏+𝐞−𝛂 

 

 The algorithm of the BPSO is the same as the continuous PSO one, except for the position 

update equation. In continuous PSO, the velocity 𝐯𝒊 of the particle is constrained in the 

interval [𝐯𝐢𝐦𝐢𝐧, 𝐯𝐢𝐦𝐚𝐱] where 𝐯𝐢𝐦𝐢𝐧 and 𝐯𝐢𝐦𝐚𝐱 are the minimum and the maximum particle 

velocity respectively.  

When the Binary PSO is used for practical application, the velocity of particles is restricted 

to the interval [-4, 4] to prevent the sigmoid function to saturate (Kennedy et al., 2001). 

 

3.4.2. Adaptive PSO 

The adaptive PSO controls the exploration and the exploitation of the search space by 

adaptively changing its parameters. The adjusting is done by automatic control of 

parameters such as: 

- Swarm size, 

- Neighbourhood size, 

- Inertia weight,  

- Constriction coefficient, and 

- Learning factors. 

 
The authors (Zhang et al., 2009) for instance adjusted the algorithm by controlling the 

inertia weight 𝛚 and the acceleration coefficients. The authors state that instead of 

decreasing the inertia weight 𝛚 purely over time, it is more beneficial for the inertia weight 𝛚 to decrease according to the evolutionary function given in Equation 3.10. The 

acceleration coefficients are adaptively adjusted to force the search process either towards 

an exploration, an exploitation, or a convergence state. Based on their studies, the authors 

concluded that the adaptive PSO performs better than the standard PSO. 𝛚(𝐟) = 𝟏𝟏 + 𝟏. 𝟓𝐞−𝟐.𝟔𝐟                                                                                                                             (3.10) 
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Where 𝐟 is an evolutionary factor. The value of 𝐟 belongs to the interval [0, 1]. 

 

In (Clerc, 2006) adaptive PSO, the constriction coefficient, the swarm size, and the number 

of particles in the neighbourhood are adaptively modified. The adaptive adjustment follows 

these three rules given below: 

- A particle is destroyed when it is at his worst and regenerated to perform at his best. 

- The constriction factor is increased when good improvements are recorded in the 

neighbourhood and decreased when poor improvements are noted in the vicinity. 

- Best performing particles reduce their swarm size and poorly performing particles 

increase theirs. 

 
The adaptive PSO in (Clerc, 2006) is different from that of (Zhang et al., 2009) in the fact 

that the adaptation of the PSO parameters is not carried out at each iteration. Other studies 

on the applications of Adaptive PSO (APSO) include research works by (Hossen et al., 

2009), (Aghababa et al., 2010), (Rezazadeh et al., 2011) and (Alfi & Modares, 2011). 

 

3.4.3. Fully informed PSO 

The Fully Informed Particle Swarm optimisation (FIPSO) is a variant of PSO introduced in 

2004 by (Mendes et al., 2004). The FIPSO is different from the canonical PSO in the fact 

that it takes into consideration the experience of all the particles in the neighbourhood 

during the velocity update process (see Figure 3.1.a.). In traditional PSO, a particle is 

directed only by its own experience and the experience of the best particle in its 

neighbourhood. The position update of the fully informed PSO is calculated using Equation 

3.3. The velocity update is calculated using Equation 3.11. 

 𝐯𝐢,𝐣𝐭+𝟏 = 𝛘 ∗ [𝐯𝐢,𝐣𝐭 + 𝟏𝐊𝐢 . ∑ 𝐔(𝟎, 𝛗). (𝐩𝐍𝐢(𝐧),𝐣𝐭 − 𝐱𝐢,𝐣𝐭 )𝐊𝐢
𝐧=𝟏 ]                                                                (3.11. a) 

With 𝛘 =  𝟐𝐤|𝟐 − 𝛗 − √𝛗𝟐 − 𝟒𝛗|                                                                                                                (3.11. b) 

Where 𝐊𝐢 is the number of particle in the neighbourhood of particle 𝐢. 𝛘 is the constriction factor obtained using Equation 3.11.b. 
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𝐔(𝟎, 𝛗) is a uniformly distributed random number in the range [𝟎, 𝛗]. 𝛗 is the constant number referred to as acceleration coefficient (𝛗 > 𝟒).   𝐍𝐢(𝐧) is a function returning the index of the 𝐧𝐭𝐡 neighbord of particle 𝐢. 𝐩𝐍𝐢(𝐧),𝐣𝐭  is the 𝐣𝐭𝐡 component of the previous best position of the 𝐧𝐭𝐡 neighbour of 𝐢. 𝐤 is a constant number in the interval [0,1]. 
 

The constriction coefficient 𝛘 limit the explosion of the velocity of the particles, i.e. it 

prevents the particle’s velocity to increase exponentially and cause the particle to wander 

out of the search space (Montes de Oca & Stützle, 2008).  

Compared to the traditional PSO, the FIPSO uses more information to direct the search 

process. This can be detrimental to its performance as the influence of many particles may 

cancel each other. Figure 3.1.a shows six particles sharing information among each other 

in the same neighbourhood. The higher the amount of information shared by the particles 

during the search, the poorer the performance of the FIPSO algorithm. Therefore, if all 

particles in the swarm belong to the same neighbourhood and they all share information 

with each other, then the performance of the FIPSO algorithm will be drastically reduced 

(Lukasik & Kowalsk, 2014). 

 

3.4.4. Other PSO variants 

Although the inertia weight PSO approach and the discrete PSO remains the most widely 

used variant of the traditional PSO in continuous and discrete applications respectively, 

many other PSO variants have been proposed by researchers to increase the performance 

of the conventional PSO. Some of such variants include: 

- The Hybrid PSO: the conventional PSO can be merged with other metaheuristic 

algorithms with the goal to increase the search space of the particles or to auto-adapt 

some parameters in the PSO. Some hybrid PSO comprises the hybrid of Genetic 

Algorithm and PSO (GA-PSO); the hybrid of Evolutionary programming and PSO 

(EPSO); and the hybrid of Differential Evolution and PSO (DEPSO). The use of 

Differential Evolution in hybrid PSO is more geared towards the selection of the best 

parameters for optimal PSO solution. In (Naka et al., 2003), the natural selection 

mechanism of the GA is used to increase the number of particles with high objective 

value while eliminating the ones with low objective value, and then increase the 

probability of the PSO to find the global optimum. The author (Angeline, 1998) 

leveraged on the tournament selection mechanism used in Evolutionary Programming 
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to increase the effectiveness of the PSO. The author moves the worst performing 

particles closer to better performing particles at every iteration. This strategy results in 

a more consistent finding of the global optimum.  

- Multi-objective PSO (MOPSO): This type of PSO variants are used only when the 

application of PSO is subject to multiples non-compatible objectives that need to be 

solved simultaneously. The Weighted sum PSO, in which all the objectives are 

converted into a single-objective function using weight factors, remains the simplest 

MOPSO approach. The deficiency of the Weighted-Sum approach resides in the fact 

that sometimes, it is impossible to find the appropriate weight function (Del Valle et al., 

2008).  

 

Other MOPSO approaches use the concept of Pareto optimality. The selection of the 

cognitive and social leaders (personal and global best particle respectively) to guide the 

search process is the major hurdle faced by such approaches. The application of Pareto-

frontier PSO often results in multiple Pareto optimal solutions (solutions in which none is 

better than the others) when only one solution is required.  

The Dynamic Neighbourhood PSO (Hu & Eberhard, 2002) and the vector Evaluated PSO 

(Parsopoulos & Vrahatis, 2002) are some examples of MOPSO. 

 
Section 3.4 provides a comprehensive list of PSO variants. Other variants have been 

proposed and tested in a range of applications. It is difficult to conclude that a specific PSO 

variant is superior to other variants, as most PSO variants have somewhat limited 

performance and applications. 

 

3.5. Application of the PSO algorithm in the distribution network feeder reconfiguration 

The distribution system is the most intensive part of the power grid. A great deal of power 

is lost at this level because of the low 
𝐑𝐗 ratio and the low voltage levels. Distribution 

networks are usually radial in nature and they contain tie (normally open switches) and 

section switches (Normally closed switches). The reconfiguration of the distribution 

network is a means of reducing the real power loss and increasing the steady state and 

dynamic operation of distribution systems. 

This section covers the application of the binary PSO solution algorithm to the distribution 

network feeder reconfiguration problem.  
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3.5.1. Mathematical formulation of the distribution network feeder reconfiguration 

problem 

In this research work, the distribution network feeder reconfiguration is formulated as: 

- Single-objective problem, to minimise the real power loss in the distribution system. 

- Multi-objective problem, to minimise the real power loss and load balancing in the 

distribution system. 

 

3.5.1.1. Formulation of the real power loss minimisation problem 

The real power loss minimisation problem is mathematically formulated as in Equation 

3.12. In this mathematical formulation, the total real power loss in a distribution system is 

expressed as the sum of the real component of the difference of apparent power between 

the buses in the distribution system. 

 
Minimise 

𝐏𝐥𝐨𝐬𝐬 =  ∑ 𝐫𝐞𝐚𝐥(𝐕𝐣 × 𝐢𝐣𝐤∗ − 𝐕𝐤 × 𝐢𝐣𝐤∗)𝐍𝐁
𝐣=𝟏𝐤=𝟏𝐣≠𝐤

                                                                                             (3.12) 
where 

    𝐣 is the sending bus of line 𝐣 − 𝐤. 

    𝐤 is the receiving bus of line 𝐣 − 𝐤. 

    𝐕𝐣, 𝐕𝐤 are the sending and receiving end voltage of the line 𝐣 − 𝐤 respectively. 

    𝐢𝐣𝐤∗ is the conjugate of the current flow in line 𝐣 − 𝐤. 

    𝐏𝐥𝐨𝐬𝐬 is the total power loss in the distribution system. 

    𝐍𝐁 is the number of busses in the network. 

    𝐕𝐣 × 𝐢𝐣𝐤∗ = 𝑺𝒋𝒌 and 𝐕𝐤 × 𝐢𝐣𝐤∗ =  𝑺𝒌𝒋. 
 

 The real power loss in distribution can also be expressed in terms of the branch current 

(Zhu, 2009) and branch power (Mori & Komatsu, 2009), as given in Equations 3.13 and 

3.14 respectively. 

 𝐏𝐥𝐨𝐬𝐬 = ∑ 𝐤𝐥𝐑𝐣𝐤𝐈𝐣𝐤𝟐𝐍𝐋
𝐥=𝟏                                                                                                                               (3.13) 

Where 𝐥 is the branch number of the line 𝐣 − 𝐤. 
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𝐈𝐣𝐤 is the current in the branch 𝐥. 𝐑𝐣𝐤 is the resistance of branch 𝐥. 𝐤𝐥 is the topological status of the branches. 𝐤𝐥 = 𝟏 if branch l is closed and 𝐤𝐥 =𝟎 if the branch is open. 𝐍𝐋 is the number of branches in the distribution system. 

 

𝐏𝐥𝐨𝐬𝐬 = ∑ 𝐤𝐥. 𝐑𝐣𝐤. (𝐏𝐣𝟐 + 𝐐𝐣𝟐𝐕𝐣𝟐 )𝐍𝐋
𝐥=𝟏                                                                                                            (3.14) 

Where 𝐥 is the branch number of the line 𝐣 − 𝐤. 𝐕𝐣 is the voltage at node 𝐣. 𝐏𝐣 and 𝐐𝐣 are the real and the reactive power flow in branch 𝐥. 𝐤𝐥 is the topological status of the branches. 𝐤𝐥 = 1 if branch l is closed and  

     𝐤𝐥 = 0 if the branch is open. 𝐍𝐋 is the number of branches in the distribution system. 

 

The single line diagram of the two-bus distribution line in Figure 3.2. 

 

Figure 3.2: Single line diagram of a distribution line 

 

3.5.1.2. Formulation of the load balancing problem 

The Load Balancing Index is mathematically formulated and given in Equation 3.15 (Baran 

& Wu, 1989). The load balancing index LBIsys should be minimised for optimal load 

balancing. 

 
Minimise: 

𝐋𝐁𝐈𝐬𝐲𝐬 =  𝟏𝐍𝐋 ∗ ∑ 𝐒𝐥𝐒𝐥 𝐦𝐚𝐱
𝐍𝐋
𝐥=𝟏                                                                                                                        (3.15) 

where, 

   𝐥 is the branch number of the line 𝐣 − 𝐤. 



75 

 

𝐒𝐥 is the apparent power loss in the branch 𝐥. 𝐒𝐥 𝐦𝐚𝐱 is the power rating of branch 𝐥. 𝐋𝐁𝐈𝐬𝐲𝐬  is the load balance index of the network. 𝐍𝐋 is the number of branches in the distribution system. 

  

Load balancing aims to optimise the use of the network branches, to maximise the branch 

capacity utilisation, to avoid the overload of a single branch and to use other branches to 

supply a load. A low value of load balancing index indicates that the distribution system 

has more capacity reserve in its branches and that the network configuration is safer from 

an overload condition. 

The data of the current carrying capability of individual branches in the IEEE 16, 33 and 

69-bus distribution systems are not available. Therefore, it is assumed that all the branches 

in each distribution system have the same power rating. 

 

3.5.1.3. Constraints on the single and multi-objective problems 

The distribution network feeder reconfiguration problem is subject to various operational 

constraints to satisfy the electrical and the technical requirements (quality of supply, 

voltage unbalance and fluctuations, steady-state voltage, frequency variation limits, power 

factor, equipment ratings) of the distribution system. The developed distribution network 

feeder reconfiguration algorithms are subjected to the following constraints. 

 

a. Branch current constraint  

The current flowing in any branch 𝐥 should be lower than the rated current of the branch. 

This is mathematically expressed and given in Equation 3.16. |𝐈𝐥| ≤ 𝐈𝐥 𝐦𝐚𝐱     𝐥 ∈ 𝐍𝐋                 (3.16) 

Where,  

   𝐥 is the branch number of the line 𝐣 − 𝐤. |𝐈𝐥| is the magnitude of the current flowing in branch 𝐥. 𝐈𝐥 𝐦𝐚𝐱 is the maximum current allowed to flow in branch 𝐥. 𝐍𝐋 is the number of branches in the distribution system. 

 

 The branch current constraint can also be expressed in term of branch power as given in 

Equation 3.17 and 3.18. 
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|𝐏𝐥| ≤ 𝐏𝐥 𝐦𝐚𝐱     𝐥 ∈ 𝐍𝐋                 (3.17) 

 |𝐐𝐥| ≤ 𝐐𝐥 𝐦𝐚𝐱     𝐥 ∈ 𝐍𝐋                (3.18) 

Where |𝐏𝐥| and |𝐐𝐥| are the actual real and the reactive power flow in branch 𝐥 
respectively 𝐏𝐥 𝐦𝐚𝐱 and 𝐐𝐥 𝐦𝐚𝐱 are the maximum real and the reactive power flow in branch 𝐥 
respectively. 

 

b. Bus Voltage Constraint 

The voltage at each node i of the distribution system should be within the recommended 

limits. This is mathematically formulated and given in Equation 3.19. 𝐕𝐢 𝐦𝐢𝐧 ≤ 𝐕𝐢 ≤ 𝐕𝐢 𝐦𝐚𝐱     𝐢 ∈ 𝐍                     (3.19) 

Where 𝐕𝐢 𝐦𝐢𝐧 and 𝐕𝐢 𝐦𝐚𝐱 are the minimum and the maximum voltage limits of bus 𝐢. 
 

c. Topological constraint 

The topological constraint is to warrant the radial configuration of the distribution network. 

The topological constraint is satisfied if: 

- There are no isolated nodes in the distribution network. 

- There are no closed loops in the distribution network, i.e. that the distribution network 

should be of radial topology. A network topology is radial if its bus incidence matrix is 

a square matrix and the rank of the bus incidence matrix is equal to the number of rows 

in the bus incidence matrix.  

 

3.5.2. Binary PSO solution algorithm for the single-objective distribution network feeder 

reconfiguration problem 

The binary PSO algorithm is developed to minimise the real power loss in distribution 

systems through distribution network feeder reconfiguration. The developed binary PSO 

algorithm is implemented using the following steps: 

Step 1: Read the distribution system data such as the number of nodes 𝐍𝐁, the number 

of distribution lines 𝐍𝐋, the number of tie lines 𝐍𝐓, the bus type (𝐒𝐥𝐚𝐜𝐤, 𝐏𝐕, 𝐏𝐐), the load 
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data (𝐏𝐝, 𝐐𝐝, 𝐁𝐬, 𝐋𝐨𝐚𝐝𝐈𝐃), the generator data (𝐏𝐠, 𝐐𝐠) and distribution line data 

(𝐛𝐮𝐬𝐢, 𝐛𝐮𝐬𝐣, 𝐫, 𝐱, 𝐬𝐰𝐭𝐢𝐞, 𝐬𝐰𝐬𝐞𝐜). 
Step 2: Initialize the binary PSO parameters such as the acceleration coefficients 𝐜𝟏 and 𝐜𝟐; the minimum and the maximum inertia weight (𝐰𝐦𝐢𝐧 and 𝐰𝐦𝐚𝐱 respectively); the 

particle’s velocity limits (𝐯𝐦𝐢𝐧 and 𝐯𝐦𝐚𝐱); the number of particles (𝐍𝐩); the dimension of the 

search space (𝐃) and the stopping criteria (maximum number of iterations 𝐭𝐦𝐚𝐱). 

Step 3: Initialize the particle position, which is the binary coded representation of the 

section and tie-switches of the distribution network. The section and tie switches are 

represented by the binary bit ones (1) and zeros (0) respectively.  

A particle is a possible distribution network topology.  

A candidate solution is a feasible (comply with the distribution network feeder 

reconfiguration constraints) distribution network topology. 

Figure 3.3 provides the single line diagram of the IEEE 16-bus distribution system. The 

straight/solid-lines represent the section switches, and the dashed lines represent the tie-

switches of the distribution system. 
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Figure 3.3: Single line representation of the IEEE 16-bus distribution system  

 

The binary representation into 1’s and 0’s of the 16-bus distribution system in Figure 3.3 

is provided in Table 3.1. From Table 3.1, lines No 14, 15 and 16 represent the tie-switches 

with the binary bit (status) zeros, and the rest of the lines represent section switches with 

the binary bit (status) ones. 
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Table 3.1: Binary representation of the 16-bus distribution network 

Line No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Sending 
And 
receiving 
bus 

1 
- 
4 

4 
- 
5 

4 
- 
6 

6 
- 
7 

2 
- 
8 

8 
- 
9 

8 
- 
10 

9 
- 
11 

9 
- 
12 

3 
- 
13 

13 
- 
14 

13 
- 
15 

15 
- 
16 

5 
- 
11 

10 
- 
14 

7 
- 
16 

Status  1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

 
 

A particle’s position is the string of bits that represent the open or closed status of the 

section and tie-switches in the distribution network. For the 16-bus distribution system, a 

possible particle is by 𝐱𝐢𝐤 = [1   1   1   1   1   1   1   1   1   1   1   1   1   0   0   0],    where  𝐢 is the particle number. 𝐤 is the iteration number. 𝐤 = 𝟎 for the initial particle position. 

 

The group of particles in the search space forms a swarm 𝐗𝐤 and is given in the Equation 

3.20. 

 𝐗𝐤  = [𝐱𝟏𝐤; 𝐱𝟐𝐤; ⋯ ; 𝐱𝐍𝐩𝐤]                 (3.20) 

Where  𝐗𝐤 is the swarm or the set of all the particles in the search space at iteration k 𝐍𝐩 is the number of particles. 𝐤 is the iteration number. 𝐤 = 𝟎 for the initial particle position. 

 

The number of particles is calculated using the Equation 3.21. Parallel lines can be 

replaced by an equivalent single line and counted as a single line. 

 𝐍𝐩 =  𝐍𝐁 ∗ (𝐍𝐋 −  𝐍𝐁)                (3.21) 

Where 𝐍𝐩 is the number of the particles. 𝐍𝐁 is the number of the buses. 𝐍𝐋 is the number of lines. 

 

Step 4: Initialize the velocity of the particles which represents the probability for each bit 

in the particle’s position to change its status from open (0) to close (1) or from close (1) to 

open (0).  
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Each particle in the search space has a different velocity. The particle’s velocity is 

calculated using Equation 3.22. 

 𝐯𝐞𝐥𝐨𝐜𝐢𝐭𝐲(𝐢, 𝐣) = 𝐯𝐦𝐢𝐧 + (𝐯𝐦𝐚𝐱 − 𝐯𝐦𝐢𝐧) ∗ 𝐫𝐚𝐧𝐝              (3.22) 

Where  

   𝐢 is the particle number. 𝐣 is the index of the dimension of the search space. 𝐯𝐞𝐥𝐨𝐜𝐢𝐭𝐲(𝐢, 𝐣) is the probability of the 𝐣-bit of particle 𝐢 to change its status from 

open to close or close to open. 𝐯𝐦𝐢𝐧 is the minimum velocity. 𝐯𝐦𝐚𝐱 is the maximum velocity. 𝐫𝐚𝐧𝐝 is a random number in the range ]0,1[.  
 

Step 5: Find the personal best particles position. In this case, the initial particle position is 

assumed as the best particle position. Then, calculate the load flow based on the best 

particles position and find the real power loss using Equation 3.12. 

Step 6: Find the global best particle position from the set of particles best position given 

in Step 5. In this case, the global best particle position is the best particle position with the 

minimal real power loss value. 

Step 7: Compute the bus incidence matrix of the distribution network. The bus incidence 

matrix is used to identify whether a connection exists between the two nodes or not. This 

helps to determine whether the network topology is radial or not. 

Start the binary PSO iteration process and set the iteration counter 𝐭 to 1. 

Step 8: Check the topological constraints after updating the incidence matrix for the 

candidate network topologies and verify that all the candidate solutions meet the topology 

constraints. This step ensures that the real power loss is calculated only for feasible 

distribution network topologies.  

Step 9: Find The power flow in the distribution network using the Newton-Raphson power 

flow approach. Then, employ the power flow results to calculate the real power loss of 

each candidate network topology using Equation 3.12. 

Step 10: Update the particles’ personal best as per the Equation 3.23. 
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𝐏𝐛𝐞𝐬𝐭𝐢𝐭+𝟏 = {𝐏𝐛𝐞𝐬𝐭𝐢𝐭,     𝐢𝐟 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐢𝐭+𝟏 ≥ 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐏𝐛𝐞𝐬𝐭𝐢𝐭𝐱𝐢𝐭+𝟏,                                              𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞            (3.23) 

Where 𝐏𝐛𝐞𝐬𝐭𝐢𝐭
 is the personal best position of particle 𝐢 at iteration 𝐭. 𝐱𝐢𝐭+𝟏 is the position of particle 𝐢 at iteration 𝐭 + 𝟏. 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐢𝐭+𝟏 is the fitness value of particle 𝐢 at iteration 𝐭 + 𝟏. 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐏𝐛𝐞𝐬𝐭𝐢𝐭 is the fitness value of 𝐏𝐛𝐞𝐬𝐭𝐢𝐭

. 

 

Step 11: Update the global best in the swarm of particles per the Equation 3.24. 

 𝐆𝐛𝐞𝐬𝐭𝐭+𝟏 = {𝐆𝐛𝐞𝐬𝐭𝐭,     𝐢𝐟 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐏𝐛𝐞𝐬𝐭𝐢𝐭+𝟏 ≥ 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐆𝐛𝐞𝐬𝐭𝐭𝐏𝐛𝐞𝐬𝐭𝐢𝐭+𝟏,                                   𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞            (3.24) 

Where 𝐆𝐛𝐞𝐬𝐭𝐭+𝟏 is the global best solution of the swarm at iteration 𝐭 + 𝟏. 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐆𝐛𝐞𝐬𝐭𝐭 is the fitness value of  𝐆𝐛𝐞𝐬𝐭 at iteration 𝐭. 
 

Step 12: Calculate the inertia weight using Equation 3.6 and update the velocity of all 

particles per Equation 3.5. 

 𝐯𝐢𝐤+𝟏 = 𝛚 ∗ 𝐯𝐢𝐤 + 𝐜𝟏 ∗ 𝐫𝐚𝐧𝐝𝟏 ∗ (𝐏𝐛𝐞𝐬𝐭𝐢 − 𝐱𝐢𝐤) + 𝐜𝟐 ∗ 𝐫𝐚𝐧𝐝𝟐 ∗ (𝐆𝐛𝐞𝐬𝐭𝐢 − 𝐱𝐢𝐤)           

Where 𝛚 is the inertia weight. 

 
The inertia weight is calculated using Equation 3.6. 

 𝛚 = 𝛚𝐦𝐚𝐱 − (𝛚𝐦𝐚𝐱 − 𝛚𝐦𝐢𝐧𝐭𝐦𝐚𝐱 ) ∗ 𝐭                                                                                                             
Where 𝛚𝐦𝐚𝐱 is the maximum inertia weight. 𝛚𝐦𝐢𝐧 is the minimum inertia weight. 𝐭𝐦𝐚𝐱 is the maximum number of iteration. 𝐭 is the iteration number. 

 

Step 13: Update the particles’ position as per Equation 3.9. 
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𝐱𝐢𝐤 = {𝟏          𝐢𝐟 𝐫 < 𝐬𝐢𝐠(𝐯𝐢𝐤)𝟎           𝐢𝐟 𝐫 ≥ 𝐬𝐢𝐠(𝐯𝐢𝐤)                 

Where 𝐫 is a uniformly distributed random number in the interval [0,1] 𝐬𝐢𝐠 is a sigmoid function defined by 𝐬𝐢𝐠(𝛂) = 𝟏𝟏+𝐞−𝛂 

 

Step 14: Increment the iteration count of the binary PSO search process and repeat step 

8 to step 13 until the stopping criterion is reached.  

Step 15: Print the results of the search process such as the global best solution (optimal 

network topology), its corresponding fitness value (minimum real power loss) and the 

convergence rate of the binary PSO of the algorithm.  

 
The flowchart of the above-described algorithm is shown in Figure 3.4.  

 

The binary PSO algorithm is applied the distribution system to find the distribution network 

topology that results in a minimum real power loss. Feasible distribution network topologies 

are evaluated, and their corresponding real power loss is compared with the real power 

loss of the initial distribution network topology. The candidate network topology should 

meet the topological constraints of the distribution network. So, right from the start, a 

sorting strategy is introduced to ensure that only the network topologies meeting the 

constraints are evaluated. If a candidate solution has better fitness than the global best 

solution, then this candidate solution is likely to become the new global best solution. The 

end of an iteration triggers the next iteration. The iterative process continues until the 

maximum number of iteration is reached. 

 

3.5.3. Results of the PSO solution algorithm for the single-objective distribution network 

feeder reconfiguration problem 

To evaluate the performance and the effectiveness of the developed PSO solution 

algorithm for the single-objective distribution network feeder reconfiguration problem, three 

distribution systems are used for case studies: 

- The IEEE 16 bus distribution system. 

- The IEEE 33 bus distribution system. 

- The IEEE 69-bus distribution system. 
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Update the velocity of the particle i  as per Equation (3.5) 
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No

No
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No

 

Figure 3.4: Flowchart of the PSO algorithm for the single-objective distribution network feeder 
reconfiguration problem 
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A comparative analysis of the distribution system before and after reconfiguration is 

provided in this section. The evaluation is carried out based on the real power loss, the 

voltage profile and the change in the distribution network topology. The results of the 

developed binary PSO algorithm are compared with the literature ones. The distribution 

systems parameters are given in the Appendices A, B, and D, for the 16-bus, 33-bus, and 

69-bus distribution systems, respectively. The predefined parameters of the developed 

binary PSO algorithm are given in Table 3.2. The BPSO solution algorithm is designed in 

such a way to work on any radial distribution system. Therefore, the number of particles 𝐍𝐩 in the search process changes depending on the number of bus and ties switches in 

the distribution system, and it is calculated using Equation 3.21.  

 

    Table 3.2: Binary PSO parameters  wmin 0.4 wmax 0.9 

Acceleration coefficient (c1 and c2) 2 

Maximum velocity vmax 4 

 

The developed BPSO solution algorithm is implemented in MATLAB R2016b, and the 

simulations are carried out on a SUPERMICRO computer with 2 Intel Xeon CPU E5-2620 

v4 @ 2.10GHz processors and a 16GB RAM. 

 

3.5.3.1. Test case 1: IEEE 16-bus distribution system 

The 16-bus distribution system is a 12.66 kV, 100MVA radial distribution network as shown 

in Figure 3.3. It consists of three main feeders or substation transformers, 13 fixed loads, 

seven shunt capacitors, and 16 branches. 13 of these branches are section-lines, and 3 

are tie-lines. The total real power and the reactive power demands are 𝟐𝟖. 𝟕𝐌𝐰 and 𝟏𝟕. 𝟑 𝐌𝐯𝐚𝐫 respectively. The Newton-Raphson method is used to calculate the load flow 

results of the 16-bus distribution system in the MATLAB platform. The parameters of the 

IEEE 16-bus distribution system are given in Appendix A. 

 

a. Simulation results of the 16-bus distribution system before reconfiguration 

The power flow results of the 16-bus distribution system before the feeder reconfiguration 

are given in Table 3.3 and Table 3.4. Table 3.3 provides the bus voltages, the real and the 

reactive power of both the loads and the generation in the 16-bus distribution network.  
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Table 3.3: Bus voltage, real and reactive power in the 16-bus distribution system before 
reconfiguration  

Bus number 
Voltage Generation Load demand 𝐌𝐚𝐠 (𝐩. 𝐮) 𝐀𝐧𝐠 (𝐝𝐞𝐠) 𝐏(𝐌𝐖) 𝐐(𝐌𝐯𝐚𝐫) 𝐏(𝐌𝐖) 𝐐(𝐌𝐯𝐚𝐫) 1 1.0000 0.0000 8.5830     2.9790 − − 2 1.0000 0.0000 15.4901 3.9667 − − 3 1.0000 0.0000 5.1409 −0.0050 − − 4 0.9906 −0.3672 − − 2.0000 1.6000 5 0.9877 −0.5405 − − 3.0000 1.5000 6 0.9859 −0.6929 − − 2.0000 0.8000 7 0.9848 −0.7000 − − 1.5000 1.2000 8 0.9787 −0.7421 − − 4.0000 2.7000 9 0.9703 −1.4155 − − 5.0000 3.0000 10 0.9765 −0.7487 − − 1.0000 0.9000 11 0.9702 −1.4868 − − 0.6000 0.1000 12 0.9682 −1.7891 − − 4.5000 2.0000 13 0.9944 −0.3262 − − 1.0000 0.9000 14 0.9948 −0.4520 − − 1.0000 0.7000 15 0.9917 −0.5182 − − 1.0000 0.9000 16 0.9912 −0.5851 − − 2.1000 1.0000 

Total 𝟐𝟗. 𝟐𝟏 𝟔. 𝟗𝟒 𝟐𝟖. 𝟕𝟎 𝟏𝟕. 𝟑 

 

       Table 3.4: Branch power flow in the 16-bus distribution system before reconfiguration  

Branch  

number 

From 

Bus 

To 

Bus 

From bus injection To bus injection Loss 𝐏(𝐌𝐖) 𝐐(𝐌𝐯𝐚𝐫) 𝐏(𝐌𝐖) 𝐐(𝐌𝐯𝐚𝐫) 𝐏(𝐤𝐖) 𝐐(𝐤𝐯𝐚𝐫) 1 1 4 8.5830     2.9790 −8.5211    −2.8965   61.9062 82.5416 2 4 5 3.0075 0.4373 −3.0000 −0.4269 7.5300 10.3537 3 4 6   3.5135 0.8592 −3.5015  −0.8352 11.9992 23.9984 4 6 7 1.5015 1.2015 −1.5000 −1.2000 1.5220 1.5220 5 2 8 15.4901 3.9667 −15.2089 −3.6855 281.2476 281.2476 6 8 9 10.2068 0.0834 −10.1198 0.0363 87.0199 119.6523 7 8 10 1.0021 0.9021 −1.0000 −0.9000 2.0878 2.0878 8 9 11 0.6007 −0.4640 −0.6000 0.4647 0.6731 0.6731 9 9 12 4.5191 −1.4424 −4.5000 1.4687 19.1210 26.2913 10 3 13 5.1409 −0.0050 −5.1119 0.0341 29.0720 29.0720 11 13 14 1.0020 −1.0786 −1.0000 1.0812 1.9727 2.6303 12 13 15 3.1099 0.1445 −3.1020 −0.1337 7.8419 10.7826 13 15 16 2.1020 −0.7663 −2.1000 0.7684 2.0359 2.0359 14 5 11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 15 10 14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 16 7 16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Total 𝟓𝟏𝟒. 𝟎𝟐𝟗𝟑 𝟓𝟗𝟐. 𝟖𝟖𝟖𝟕 

 



85 

 

Table 3.4 provides the branch power flow results and the power loss in each branch of the 

16-bus distribution system.  

It is observed that before the network reconfiguration, the minimum voltage in the 16-bus 

distribution system is 𝟎. 𝟗𝟔𝟖𝟐∠ − 𝟏. 𝟕𝟖𝟗𝟏° 𝐩. 𝐮 at bus 12. Moreover, the initial network 

topology has three tie switches: branch 5 − 11; branch 10 − 14; and branch 7 − 16. There 

is no power flow through those tie switches before the reconfiguration process (see the 

yellow-highlighted portion of Table 3.4). Branch 5 (branch between nodes 2 - 8) has the 

highest real power loss (𝟐𝟖𝟏. 𝟐𝟒𝟕𝟔 𝐤𝐖) in the 16-bus distribution system. The total real 

power loss in the initial 16-bus distribution system is 𝟓𝟏𝟒. 𝟎𝟐𝟗𝟑 𝐤𝐖.  

 

b. Simulation results of the 16-bus distribution system after reconfiguration 

The developed binary PSO algorithm is applied to the 16-bus distribution system, and the 

power flow results after reconfiguration of the distribution system are given in Table 3.5 

and Table 3.6. Table 3.5 provides the bus voltages, the real and the reactive power of both 

the loads and the generation in the 16-bus distribution network. Table 3.6 presents the 

branch power flow results and the power loss in each branch of the 16-bus distribution 

system.  

 

      Table 3.5: Bus voltage, real and reactive power in the 16-bus distribution system after 
reconfiguration  

Bus number 
Voltage Generation 𝐌𝐚𝐠 (𝐩. 𝐮) 𝐀𝐧𝐠(𝐝𝐞𝐠) 𝐏(𝐌𝐖) 𝐐(𝐌𝐯𝐚𝐫) 1 1.0000 0 9.1925 2.5062 2 1.0000 0 13.8188 3.4329 3 1.0000 0 6.1570 0.9343 4 0.9906 −0.4230 − − 5 0.9878 −0.6576 − − 6 0.9859 −0.7486 − − 7 0.9848 −0.7557 − − 8 0.9811 −0.6672 − − 9 0.9727 −1.2764 − − 10 0.9898 −0.4827 − − 11 0.9877 −0.6831 − − 

12 0.9707 -1.6490 - - 13 0.9922 −0.3317 − − 14 0.9906 −0.4804 − − 15 0.9895 −0.5243 − − 16 0.9890 −0.5913 − − 

Total 𝟐𝟗. 𝟏𝟔𝟖𝟑 𝟔. 𝟖𝟕𝟑𝟑 
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Table 3.6: Branch power flow in the 16-bus distribution system after reconfiguration 

Branch 

number 

From 

Bus 

To 

bus 

From bus injection To bus injection Power loss 𝐏(𝐌𝐖) 𝐐(𝐌𝐯𝐚𝐫) 𝐏(𝐌𝐖) 𝐐(𝐌𝐯𝐚𝐫) 𝐏(𝐤𝐖) 𝐐(𝐤𝐯𝐚𝐫) 1 1 4 9.1925  2.5062 -9.1244  -2.4154  68.0870  90.7827 2 4 5 3.6109 -0.0437 -3.6002 0.0584 10.6306 14.6171 3 4 6   3.5135 0.8591 -3.5015 -0.8351 11.9985 23.9971 4 6 7 1.5015 1.2015 -1.5000 -1.2000 1.5219 1.5219 5 2 8 13.8188 3.4329 −13.5958 -3.2099 223.0195 223.0195 6 8 9 9.5958 0.5099 -9.5191 -0.4044 76.7469 105.5270 7 8 10 0 0 0 0 0 0 8 9 11  0 0 0 0 0 0 9 9 12 4.5191 -1.4602 -4.5000 1.4864 19.0684 26.2190 10 3 13 6.1570 0.9343 -6.1144 -0.8916 42.6598 42.6598 11 13 14 2.0044 -0.1606 -2.0007 0.1656 3.6965 4.9287 12 13 15 3.1099 0.1522 -3.1020 -0.1414 7.8780 10.8322 13 15 16 2.1020 -0.7586 -2.1000 0.7606 2.0400 2.0400 14 5 11 0.6002 −0.4851 -0.6000 0.4854 0.2442 0.2442 15 10 14 −1.0000 −0.9000 1.0007 0.9007 0.7390 0.7390 16 7 16 0 0 0 0 0 0 

Total 𝟒𝟔𝟖. 𝟑𝟑𝟎𝟒 𝟓𝟒𝟕. 𝟏𝟐𝟖𝟐 

 

It is observed that after the network reconfiguration, the minimum voltage in the 16-bus 

distribution system is 𝟎. 𝟗𝟕𝟎𝟕∠ − 𝟏. 𝟔𝟒𝟗𝟎° 𝐩. 𝐮 at bus 12. The new tie switches in the 

distribution system are branch 𝟖 − 𝟏𝟎; branch 𝟗 − 𝟏𝟏; and branch 𝟕 − 𝟏𝟔. There is no 

power flow through those tie switches before the reconfiguration process (see the yellow-

highlighted portion of Table 3.6. Branch 5 (branch between nodes 2 - 8) still has the highest 

real power loss (𝟐𝟐𝟑. 𝟎𝟏𝟗𝟓 𝐤𝐖) in the 16-bus distribution system. The total real power loss 

in the initial 16-bus distribution system is 𝟒𝟔𝟖. 𝟑𝟑𝟎𝟒 𝐤𝐖. 

 

c. Comparative analysis of the results of the 16-bus distribution system before and 

after reconfiguration 

A comparative study of the results of the 16-bus distribution system before and after feeder 

reconfiguration using the developed binary PSO algorithm is given in Table 3.7. The 

voltage profile in the distribution system is provided in Figure 3.5. It is observed that the 

distribution network topology after feeder reconfiguration is different from the initial 

topology.  
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Table 3.7: Summary of the simulation results of the 16-bus distribution system before and 
after solving the single-objective feeder reconfiguration problem 

Simulation results Before reconfiguration After reconfiguration 

Power generation (𝐌𝐕𝐀) 29.2140 + j6.9407 29.1683 + j6.8733 

Tie switches 14          15          16 7          8          16 

Real power loss 514.0293 kW 468.3304 kW 

Real power loss reduction − 8.89033% 

Minimum voltage 0.9682 p. u @ bus 12 0.9707 p. u @ bus 12 

 

 

Figure 3.5: Voltage profile of the 16-bus distribution system before and after solving the single-
objective feeder reconfiguration problem 

 

After the feeder reconfiguration, branches number 7 (branch 8 − 10), 8 (branch 9 − 11) 

and 16 (branch 7 − 16) are the tie-lines whereas branches number 14 (branch 5 − 11), 15 

(branch 10 − 14) and 16 (branch 7 − 16) are the tie-lines before the feeder reconfiguration. 

This shows that the developed BPSO algorithm effectively reconfigured the network 

topology. The change in the network topology led to a reduction of the power loss in the 

16-bus distribution system. After the feeder reconfiguration, the real power loss in the 
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distribution system is reduced to 𝟒𝟔𝟖. 𝟑𝟑𝟎𝟒𝐤𝐖 from 𝟓𝟏𝟒. 𝟎𝟐𝟗𝟑𝐤𝐖 before the feeder 

reconfiguration. This corresponds to a real power loss reduction of 𝟖. 𝟖𝟗% in comparison 

with the real power loss in the initial distribution system. The percentage of power loss is 

calculated using Equation 3.25.  

%𝐏𝐥𝐨𝐬𝐬 =  𝐏𝐥𝐨𝐬𝐬𝐀𝐟𝐭𝐞𝐫 𝐫𝐞𝐜𝐨𝐧𝐟𝐢𝐠𝐮𝐫𝐚𝐭𝐢𝐨𝐧 − 𝐏𝐥𝐨𝐬𝐬𝐁𝐞𝐟𝐨𝐫𝐞 𝐫𝐞𝐜𝐨𝐧𝐟𝐢𝐠𝐮𝐫𝐚𝐭𝐢𝐨𝐧𝐏𝐥𝐨𝐬𝐬𝐁𝐞𝐟𝐨𝐫𝐞 𝐫𝐞𝐜𝐨𝐧𝐟𝐢𝐠𝐮𝐫𝐚𝐭𝐢𝐨𝐧 × 𝟏𝟎𝟎%                            (3.25) 
Where, 

    %𝐏𝐥𝐨𝐬𝐬 is the power loss reduction in percent (%). 

 

The change in the distribution network topology also improved its voltage profile as shown 

in Figure 3.5. The minimum voltage in the distribution network is 𝟎. 𝟗𝟔𝟖𝟐 𝐩. 𝐮 before the 

feeder reconfiguration and it is improved to 𝟎. 𝟗𝟕𝟎𝟕 𝐩. 𝐮 after the feeder reconfiguration. 

 

Figure 3.6: Convergence characteristic of the developed BPSO algorithm for the 16-bus 
distribution system  

 

The computation performance of the developed BPSO solution algorithm for the 

distribution network feeder reconfiguration problem is assessed using the success rate. 
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The success rate defines how many times the developed BPSO algorithm find the optimal 

network topology for real power loss minimisation in the distribution system. The 

optimisation process is run 100 times. It results that for the 16-bus distribution system, the 

developed BPSO algorithm converges to the optimal solution every time, where a 100% 

success rate. The convergence characteristic for the developed BPSO algorithm is given 

in Figure 3.6. Initially, the real power loss is 0.514 MW. As the developed PSO algorithm 

goes through iterations, candidate network topologies with lower real power loss are found. 

The optimal distribution network topology is found after 13 iterations. It follows that for the 

16-bus distribution system, the developed algorithm goes through 160 iterations before the 

search process is complete, although the optimal solution is found at the thirteenth 

iteration. 

 

The results of the 16-bus distribution system after the feeder reconfiguration is compared 

with the literature ones and it is provided in Table 3.8. The comparison study proves that 

the results of the developed BPSO algorithm are consistent with the literature ones, and 

the developed BPSO algorithm achieves a higher real power loss reduction compared to 

the literature. It is also noted that although for both the developed BPSO algorithm and the 

literature the distribution network topology before and after feeder reconfiguration is the 

same, their total real power loss is different. The difference in real power loss between the 

developed BPSO algorithm and the literature results is mainly due to the power flow 

approach used. The Gauss-Seidal power flow approach is used in the literature whereas 

the developed BPSO algorithm uses the Newton-Raphson power flow approach for faster 

convergence and refined results. 

 

Table 3.8: Comparison of the results of the developed BPSO algorithm for the 16-bus distribution 
system with those provided in the literature 

Algorithm 
Developed 
BPSO 
algorithm 

ACO 
(Chiou et 
al., 2005) 

MINLP 
(de Oliveira 
et al., 2010) 

SEM 
(Gomes 
Et al., 
2005) 

Refined 
GA 
(Zhu, 2002) 

Before 
reconfiguration 

Tie switches 14  15  16 14  15  16 14  15  16 14  15  16 14  15  16 

Real power 
loss (kW) 

514.0293 511.4 511.44 − 511.4 

After 
reconfiguration 

Tie switches 7   8  16 7   8  16 7   8  16 7   8  16 7   8  16 

Real power 
loss (kW) 

468.3304 466.1 466.13 466.13 466.1 

Real power 
loss reduction 
(%) 

8.8903 8.858 8.856 − 8.858 
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3.5.3.2. Test case 2: IEEE 33-bus distribution system 

The developed BPSO algorithm is applied to the 33-bus distribution system to solve the 

distribution network feeder reconfiguration problem. The 33-bus distribution system is a 12.66 kV, 100 MVA radial distribution network as shown in Figure 3.7. It consists of 32 fixed 

loads and 37 branches. 32 of these branches are normally closed branches (section 

switches), and 5 are normally open (tie switches). The fixed loads account for a total real 

and reactive power demand of 𝟑. 𝟕𝟐𝐌𝐖 and 𝟐. 𝟑 𝐌𝐯𝐚𝐫 respectively. The parameters for 

the 33-bus distribution system are given in Appendix B. 
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Figure 3.7: Single line diagram of the 33-bus distribution system  

 

Initially, the tie switches in the 33-bus distribution system are branch 8 − 21; branch 9 −15; branch 12 − 22; branch 18 − 33; and branch 25 − 29. The Newton-Raphson method 

is used to calculate the load flow of the 33-bus distribution system in the MATLAB platform. 

The load flow study shows that the 33-bus distribution system has an initial real power loss 

of 𝟐𝟎𝟖. 𝟒𝟑𝟐𝟐 𝐤𝐖 and a total power generation of (𝟑. 𝟗𝟐𝟑𝟒 + 𝐣𝟐. 𝟒𝟏𝟏𝟕)𝐌𝐕𝐀. It is observed 

that before the network reconfiguration, the minimum voltage in the 33-bus distribution 

system is 𝟎. 𝟗𝟏𝟎𝟕𝐩. 𝐮 at bus 18. The load flow results of the 33-bus distribution network 

are given in Appendix C1. 

The developed BPSO algorithm is used to find the optimal network topology to minimise 

the real power loss in the 33-bus distribution system. It is observed that after the network 

reconfiguration, the new tie switches in the distribution system are: branch 7 − 8; branch 9 − 10; branch 14 − 15; branch 32 − 33; and branch 25 − 29. The load flow study shows 

that after the feeder reconfiguration, the 33-bus distribution system has a total real power 
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loss of 𝟏𝟑𝟖. 𝟗𝟏𝟎𝟓 𝐤𝐖 and a total power generation of (𝟑. 𝟖𝟓𝟑𝟗 + 𝐣𝟐. 𝟑𝟗𝟏𝟕)𝐌𝐕𝐀. The 

minimum voltage in the 33-bus distribution system is now 𝟎. 𝟗𝟒𝟐𝟑𝐩. 𝐮  at bus 32. The 

comprehensive load flow results of the 33-bus distribution system after the distribution 

network reconfiguration given in Appendix C2. 

Table 3.9 gives a comparative analysis of the results of the 33-bus distribution system 

before and after feeder reconfiguration using the developed binary PSO algorithm. 

 

Table 3.9: Summary of the simulation results of the 33-bus distribution system before and 
after solving the single-objective feeder reconfiguration problem 

 

Simulation results Before reconfiguration  After reconfiguration 

Power generation (𝐌𝐕𝐀) 3.9234 + j2.4117  3.8539 + j2.3917 

Tie switches 33    34    35    36    37  7     9    14    32    37 

Real power loss 208.4322 kW  138.9105kW 

Real power loss reduction −  33.3546% 

Minimum voltage 0.9108 p. u @ bus 18  0.9423 p. u @ bus 32 

 

 Figure 3.8 shows the voltage profile of the 33-bus distribution system before and after the 

feeder reconfiguration 

 
Figure 3.8: Voltage profile of the 33-bus network before and after the feeder reconfiguration  
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It is observed that the distribution network topology after feeder reconfiguration is different 

from the initial topology. Before the feeder reconfiguration, branches number 33 (branch 8 − 21), 34 (branch 9 − 15), 35 (branch 12 − 22), 36 (branch 18 − 33) and 37 (branch 25 −29) are the tie-lines whereas branches number 7 (branch 7 − 8), 9 (branch 9 − 10), 14 

(branch 14 − 15), 32 (branch 32 − 33) and 37 (branch 25 − 29) are the tie-lines after the 

feeder reconfiguration. This shows that the developed BPSO algorithm effectively 

reconfigured the network topology. The change in the network topology led to a reduction 

of the power loss in the 33-bus distribution system. After the feeder reconfiguration, the 

real power loss in the distribution system is reduced to 𝟏𝟑𝟖. 𝟗𝟏𝟎𝟓 𝐤𝐖 from 𝟐𝟎𝟖. 𝟒𝟑𝟐𝟐 𝐤𝐖 

before the feeder reconfiguration. This corresponds to a real power loss reduction of 

approximately 𝟑𝟑. 𝟑𝟔% in comparison with the real power loss in the initial distribution 

system. The change in the distribution network topology also improved its voltage profile 

as shown in Figure 3.8. The minimum voltage is 𝟎. 𝟗𝟏𝟎𝟕𝐩. 𝐮 at bus 18 before the feeder 

reconfiguration and it is improved to 𝟎. 𝟗𝟒𝟐𝟑𝐩. 𝐮  at bus 32 after the feeder reconfiguration. 

 

A probability study is done to determine how many time the developed PSO algorithm find 

the optimal network topology for the 33-bus distribution network. The optimisation of the 

network topology of the 33-bus distribution system is run 100 times. The convergence 

characteristic for the developed BPSO algorithm is given in Figure 3.9.  

 

Figure 3.9: Convergence characteristic of the developed BPSO algorithm for the 33-bus 
distribution system  
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It results that for the 33-bus distribution system, the developed BPSO algorithm converges 

to the optimal solution 92% of the time. The highest value of the real power loss after 

reconfiguration recorded is 𝟏𝟒𝟐. 𝟏𝟏𝟕𝟕𝐤𝐖. The average power loss after 100 runs is 𝟏𝟑𝟗. 𝟎𝟖𝟎𝟖𝐤𝐖, and therefore, the average percentage of power loss reduction is 𝟑𝟑. 𝟐𝟕𝟐𝟗%. Initially, the real power loss is 0.2084 MW. As the developed PSO algorithm 

go through iterations, candidate network topologies with lower real power loss are found. 

The optimal distribution network topology is found after 128 iterations. For the 33-bus 

distribution system, the developed algorithm goes through 330 iterations before the search 

process is complete, although the optimal solution is found at the 128th iteration. 

 

The results of the 33-bus distribution system after the feeder reconfiguration is compared 

with the literature ones and it is provided in Table 3.10. The comparison study proves that 

the results of the developed BPSO algorithm are consistent with the literature ones, and 

the developed BPSO algorithm achieves a higher real power loss reduction compared to 

the literature. For both the developed BPSO algorithm and the literature, the distribution 

network topology before and after feeder reconfiguration is the same. However, their total 

real power loss is different. The difference in real power loss between the developed BPSO 

algorithm and the literature results is mainly due to the load flow approach used. The 

Gauss-Seidal power flow approach is used in the literature whereas the developed BPSO 

algorithm uses the Newton-Raphson power flow approach for faster convergence and 

refined results. 

Table 3.10: Comparison of the results of the developed BPSO algorithm for the 33-bus distribution 
system with those provided in the literature  

Algorithm 
Developed  
BPSO 
algorithm 

SSOM 
(Afsari et al., 
2009) 

Hybrid 
PSO-HBMO 
(Niknam, 
2009) 

ISFLA 
(Kavousi-Fard 

& 
Akbari-Zadeh, 
2013) 

Before 
reconfiguration 

Tie switches 33  34  35  36  37 33  34  35  36  37 33  34  35  36  37 33  34  35  36  37 

Power loss (kW) 
208.4322 202.05 202.67 202.67 

Minimum 
voltage (p. u) 

0.9108 @ bus 18 

0.91365 @ bus 37 
0.913 − 

After 
reconfiguration 

Tie switches 7   9  14  32  37 7   9  14  32  37 7   9  14  32  37 7   9  14  32  37 

Power loss (kW) 
138.9105 139.21 139.53 139.53 

Minimum 
voltage (p. u) 

0.9423 @ bus 32 

0.93796 @ bus 32 
0.938 − 

Power loss 
reduction (%) 

33.3546 31.1012 31.14 31.154 
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3.5.3.3. Test case 3: IEEE 69-bus distribution system 

The developed BPSO algorithm is applied to the 69-bus distribution system to solve the 

distribution network feeder reconfiguration problem. The 69-bus distribution system is a 𝟏𝟐. 𝟔𝟔 𝐤𝐕, 𝟏𝟎𝟎 𝐌𝐕𝐀 radial distribution network as shown in Figure 3.10. It consists of 1 

main feeder, 48 fixed loads and 73 branches, 5 of which are tie-lines. The fixed loads 

account for a total real and reactive power demand of 𝟑. 𝟖𝟎𝟏𝟗 𝐌𝐖 and 𝟐. 𝟔𝟗𝟒𝟔 𝐌𝐯𝐚𝐫 

respectively. The parameters for the 69-bus distribution system are given in Appendix D. 
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Figure 3.10: Single line diagram of the 69-bus distribution system 

 

Initially, the tie switches in the 69-bus distribution system are branch 11 − 43; branch 13 −21; branch 15 − 46; branch 50 − 59; and branch 27 − 65. The Newton-Raphson method 

is used to calculate the load flow of the 69-bus distribution system in the MATLAB platform. 

The load flow study shows that the 69-bus distribution system has an initial real power loss 

of 𝟐𝟐𝟒. 𝟗𝟖𝟎𝟒 𝐤𝐖 and a total power generation of (𝟒. 𝟎𝟐𝟔𝟖 + 𝐣𝟐. 𝟕𝟗𝟔𝟖)𝐌𝐕𝐀. It is observed 

that before the network reconfiguration, the minimum voltage in the 69-bus distribution 

system is 𝟎. 𝟗𝟎𝟗𝟐𝐩. 𝐮 at bus 65. The complete load flow results are given in Appendix E1. 

The developed BPSO algorithm is used to find the optimal network topology to minimise 

the real power loss in the 69-bus distribution system. It is observed that the developed 

BPSO algorithm find four possible optimal network topologies as follows: 

- Network topology 1: the tie switches for this network topology are branch number 14 

(branch 14 − 15); 55 (branch 55 − 56); 61 (branch 61 − 62); 69 (branch 11 − 43); 70 

(branch 13 − 21). 
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- Network topology 2: the tie switches for this network topology are branch number 14 

(branch 14 − 15); 56 (branch 56 − 57); 61 (branch 61 − 62); 69 (branch 11 − 43); 70 

(branch 13 − 21). 

- Network topology 3: the tie switches for this network topology are branch number 14 

(branch 14 − 15); 57 (branch 57 − 58); 61 (branch 61 − 62); 69 (branch 11 − 43); 70 

(branch 13 − 21). 

- Network topology 4: the tie switches for this network topology are branch number 14 

(branch 14 − 15); 58 (branch 58 − 59); 61 (branch 61 − 62); 69 (branch 11 − 43); 70 

(branch 13 − 21). 

 
The load flow study shows that for all the four possible optimal network topologies, the 69-

bus distribution system has a total real power loss of 𝟗𝟖. 𝟓𝟗𝟓𝟐 𝐤𝐖 and a total power 

generation of (𝟑. 𝟗𝟎𝟎𝟒 + 𝐣𝟐. 𝟕𝟖𝟔𝟔)𝐌𝐕𝐀. The minimum voltage in the 69-bus distribution 

system is now 𝟎. 𝟗𝟒𝟗𝟓𝐩. 𝐮  at bus 61. The comprehensive load flow results of the 69-bus 

distribution system after the distribution network reconfiguration given in Appendix E2. 

 

Table 3.11: Summary of the simulation results of the 69-bus distribution system before and 
after solving the single-objective feeder reconfiguration problem 

Simulation results Before reconfiguration After reconfiguration 

Power generation in (MVA) 4.0268 + j2.7968 3.9004 + j2.7866 

Tie switches 69    70    71    72    73 14    55    61    69    70 

Real power loss 224.9804 kW 98.5952 kW 

Real power loss reduction − 56.1488% 

Minimum voltage 0.9092 p. u @ bus 65 0.9495 p. u @ bus 61 

 
 

Table 3.11 gives a comparative analysis of the results of the 69-bus distribution system 

before and after feeder reconfiguration using the developed binary PSO algorithm. It is 

observed that there are four possible optimal distribution network topologies after feeder 

reconfiguration, all different from the initial topology. This shows that the developed BPSO 

algorithm effectively reconfigured the network topology. The change in the network 

topology led to a reduction of the power loss in the 69-bus distribution system. After the 

feeder reconfiguration, the real power loss in the distribution system is reduced to 𝟗𝟖. 𝟓𝟗𝟓𝟐 𝐤𝐖 from 𝟐𝟐𝟕. 𝟗𝟖𝟎𝟒 𝐤𝐖 before the feeder reconfiguration. This corresponds to a 

real power loss reduction of approximately 𝟓𝟔. 𝟏𝟒𝟖𝟖% in comparison with the real power 

loss in the initial distribution system. The change in the distribution network topology also 
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improved its voltage profile as shown in Figure 3.11. The minimum voltage is 𝟎. 𝟗𝟎𝟗𝟐 𝐩. 𝐮 

at bus 65 before the feeder reconfiguration and it is improved to 𝟎. 𝟗𝟒𝟗𝟓𝐩. 𝐮  at bus 61 

after the feeder reconfiguration. 

 

 
Figure 3.11: Voltage profile of the 69-bus distribution system before and after solving the 

single-objective feeder reconfiguration problem 

 

In term of the success rate, for 100 runs, it results that for the 69-bus distribution system, 

the developed BPSO algorithm converges to the optimal solution 70% of the time. 

However, most of the local optima recorded have a real power loss close to 𝟗𝟖. 𝟓𝟗𝟓𝟐 𝐤𝐖. 

In fact, the average real power loss after 100 runs is 𝟗𝟗. 𝟏𝟎𝟏𝟒 𝐤𝐖, a 0.511% difference 

from the real power loss of the optimal distribution network topology. The highest value of 

the real power loss after reconfiguration recorded is 𝟏𝟏𝟐. 𝟕𝟐𝟐𝟏 𝐤𝐖, which still is 

approximately 𝟒𝟗. 𝟖𝟗𝟕% power loss reduction. The success rate of the developed BPSO 

algorithm can be increased by increasing the number of particles or the number of 

iterations in the algorithm. But, the computation time it would take to find the optimal 

solution would also be increased. 

 
The results of the 69-bus distribution system after the feeder reconfiguration is compared 

with the literature ones and it is provided in Table 3.12. The comparison study proves that 
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the results of the developed BPSO algorithm are consistent with the literature ones, and 

the developed BPSO algorithm achieves a higher real power loss reduction (𝟓𝟔. 𝟏𝟒𝟖𝟖 %) 

in comparison to the literature ones.  

 

Table 3.12: Comparison of the results of the developed BPSO algorithm for the 69-bus distribution 
system with those provided in the literature 

Algorithm 
Develop 
BPSO 
algorithm 

Fuzzy 
multi-objective 
approach 
Savier & Das, 
2007) 

HAS 
(Rao et al., 
2013) 

SPSO 
(Khalil & 
Gorpinich, 
2012) 

Before 
reconfiguration 

Tie switches  69  70  71  72  73 69  70  71  72  73 69  70  71  72  73 69  70  71  72  73 

Real power 
loss (kW) 

224.9804 224.9517 225 224.96 

Minimum 
voltage (p. u) 

0.9092 @ bus 65 

0.9092 @ bus 65 

0.9092 @ bus 65 
− 

After 
reconfiguration 

Tie switches 

14  55  61  69  70 14  56  61  69  70 14  57  61  69  70 14  58  61  69  70 

14  56  63  69  70 13  18  56  61  69 14  56  63  69  70 

Real power 
loss (kW) 

98.5952 99.5944 99.35 ~98.9824 

Minimum 
voltage (p. u) 

0.9495  @ bus 61 

0.9483 @ bus 63 

0.9428 @ bus 63 
− 

Real power 
loss reduction 

56.1488 % 55.7263 % 55.85 % ~56 % 

 

3.5.4. Solution algorithm for the Multi-objective distribution network feeder 

reconfiguration problem 

The BPSO solution algorithm for the multi-objective distribution network feeder 

reconfiguration problem is similar to the single-objective distribution network feeder 

reconfiguration problem’s given in section 3.5.2.  The most significant differences between 

the single and multi-objective BPSO solution algorithms are: 

- The objectives functions: the multi-objective problem consists of two objectives (real 

power loss minimisation and load balancing index minimisation) instead of one 

objective (real power loss minimisation) for the single-objective problem. 

- The personal best position update approach: In the multi-objective BPSO algorithm, 

the update of the personal best position takes into consideration the real power loss 

and the load balancing index values of each particle. In the single-objective, only the 

real power loss of the particle is considered. 
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- The global best position update approach: In the multi-objective BPSO algorithm, a 

candidate solution has two fitness values: the real power loss and the load balancing 

index. Consequently, when selecting the global best position, care must be taken to 

ensure that the chosen candidate solution is in no way dominated by any other particle 

in the search space. 

 
The Discrete PSO based solution algorithm for the multi-objective feeder reconfiguration 

problem is implemented using the following steps: 

Step 1: Read the distribution system network data such as the number of nodes 𝐍𝐁, the 

number of distribution lines 𝐍𝐋, the number of tie lines 𝐍𝐓, the bus type (𝐒𝐥𝐚𝐜𝐤, 𝐏𝐕, 𝐏𝐐), 

the load data (𝐏𝐝, 𝐐𝐝, 𝐁𝐬, 𝐋𝐨𝐚𝐝𝐈𝐃), the generator data (𝐏𝐠, 𝐐𝐠) and distribution line data 

(𝐛𝐮𝐬𝐢, 𝐛𝐮𝐬𝐣, 𝐫, 𝐱, 𝐬𝐰𝐭𝐢𝐞, 𝐬𝐰𝐬𝐞𝐜). 
Step 2: Initialize the binary PSO parameters such as the acceleration coefficient 𝐜𝟏 and 𝐜𝟐; the minimum and the maximum inertia weight (𝐰𝐦𝐢𝐧 and 𝐰𝐦𝐚𝐱 respectively); the 

particle’s velocity limits (𝐯𝐦𝐢𝐧 and 𝐯𝐦𝐚𝐱); the number of particles (𝐍𝐩); the dimension of the 

search space (𝐃) and the stopping criteria (maximum number of iterations 𝐭𝐦𝐚𝐱). 

Step 3: Initialize the particle position which is the binary coded representation of the 

section and tie-switches of the distribution network, as defined in section 3.5.2.  

 
Step 4: Initialize the velocity of the particles which represents the probability for each bit 

in the particle’s position to change its status from open (0) to close (1) or from close (1) to 

open (0).  

Each particle in the search space has a different velocity. The particle’s velocity is 

calculated using equation 3.22 given in section 3.5.2. 𝐯𝐞𝐥𝐨𝐜𝐢𝐭𝐲(𝐢, 𝐣) = 𝐯𝐦𝐢𝐧 + (𝐯𝐦𝐚𝐱 − 𝐯𝐦𝐢𝐧) ∗ 𝐫𝐚𝐧𝐝  

             

Step 5: Find the personal best particles position. In this case, the initial particle position is 

assumed as the best particle position. Then calculate the load flow based on the best 

particles position and find the real power loss and the load balancing index using Equations 

3.12 and 3.15.  

 𝐏𝐥𝐨𝐬𝐬 =  ∑ 𝐫𝐞𝐚𝐥(𝐕𝐣 × 𝐢𝐣𝐤∗ − 𝐕𝐤 × 𝐢𝐣𝐤∗)𝐍𝐁
𝐣=𝟏𝐤=𝟏𝐣≠𝐤
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where 

    𝐣 is the sending bus of line 𝐣 − 𝐤. 

    𝐤 is the receiving bus of line 𝐣 − 𝐤. 

    𝐕𝐣, 𝐕𝐤 are the sending and receiving end voltage of the line 𝐣 − 𝐤 respectively. 

    𝐢𝐣𝐤∗ is the conjugate of the current flow in line 𝐣 − 𝐤. 

    𝐏𝐥𝐨𝐬𝐬 is the total power loss in the distribution system. 

    𝐍𝐁 is the number of busses in the network. 

 𝐋𝐁𝐈𝐬𝐲𝐬 =  𝟏𝐍𝐋 ∗ ∑ 𝐒𝐥𝐒𝐥 𝐦𝐚𝐱
𝐍𝐋
𝐥=𝟏                                                                                                                         

where, 

   𝐥 is the branch number of the line 𝐣 − 𝐤. 𝐒𝐥 is the apparent power loss in the branch 𝐥. 𝐒𝐥 𝐦𝐚𝐱 is the power rating of branch 𝐥. 𝐋𝐁𝐈𝐬𝐲𝐬  is the load balance index of the network. 𝐍𝐋 is the number of branches in the distribution system. 

 

A particle’ s personal best position has two individual fitness values, representing the real 

power loss and the load balancing index for the particle’s personal best position. The 

fitness of a given particle 𝐢 is therefore defined as follows: 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐢 = [𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝟏𝐢, 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝟐𝐢]               (3.26) 

Where 

   𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐢 is the fitness of particle 𝐢. 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝟏 is the real power loss for the particle’s position. 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝟐 is the load balancing index for the particle’s position. 

 

Step 6: Find the global best particle position from the set of particles best position given 

in Step 5. In this case, the global best particle position is the best particle position with the 

minimal real power loss and load balancing index values. 

 

Step 7: Compute the bus incidence matrix of the distribution network. The bus incidence 

matrix is used to identify whether a connection exists between the two nodes or not. This 

helps to determine whether the network topology is radial or not. 
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Start the binary PSO iteration process and set the iteration counter 𝐭 to 1. 

 

Step 8: Check the topological constraints after updating the bus incidence matrix for the 

candidate network topologies and verify if all the candidate solutions meet the topology 

constraints. This step ensures that the real power loss and the load balancing index is 

calculated only for feasible distribution network topologies.  

Step 9: Find the power flow in the distribution network using the Newton-Raphson load 

flow approach. Then, employ the power flow results to calculate the real power loss and 

the load balancing index of each candidate network topology using Equations 3.12 and 

3.15 respectively. 

 

Step 10: Update the particles’ personal best as per Equation 3.27. 

 𝐏𝐛𝐞𝐬𝐭𝐢𝐭+𝟏 = {𝐱𝐢𝐭+𝟏, 𝐢𝐟 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝟏𝐢𝐭+𝟏 < 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐏𝐛𝐞𝐬𝐭𝟏𝐢𝐭𝐚𝐧𝐝 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝟐𝐢𝐭+𝟏 < 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐏𝐛𝐞𝐬𝐭𝟐𝐢𝐭𝐏𝐛𝐞𝐬𝐭𝐢𝐭,                                              𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞  (3.27) 
Where 𝐏𝐛𝐞𝐬𝐭𝐢𝐭

 is the personal best position of particle 𝐢 at iteration 𝐭. 𝐱𝐢𝐭+𝟏 is the position of particle 𝐢 at iteration 𝐭 + 𝟏. 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝟏𝐢𝐭+𝟏 is the real power loss of particle 𝐢 at iteration 𝐭 + 𝟏. 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝟐𝐢𝐭+𝟏 is the load balancing index of particle 𝐢 at iteration 𝐭 + 𝟏. 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐏𝐛𝐞𝐬𝐭𝟏𝐢𝐭 is the real power loss of 𝐏𝐛𝐞𝐬𝐭𝐢𝐭
 at iteration 𝐭. 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐏𝐛𝐞𝐬𝐭𝟐𝐢𝐭 is the load balancing index of 𝐏𝐛𝐞𝐬𝐭𝐢𝐭

 at iteration 𝐭. 
 

Step 11: Update the global best in the swarm of particles as per Equation 3.28. 

𝐆𝐛𝐞𝐬𝐭𝐭+𝟏 = {𝐏𝐛𝐞𝐬𝐭𝐢𝐭+𝟏, 𝐢𝐟 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐏𝐛𝐞𝐬𝐭𝟏𝐢𝐭+𝟏 < 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐆𝐛𝐞𝐬𝐭𝟏𝐭 𝐚𝐧𝐝 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐏𝐛𝐞𝐬𝐭𝟐𝐢𝐭+𝟏 < 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐆𝐛𝐞𝐬𝐭𝟏𝐭𝐆𝐛𝐞𝐬𝐭𝐭,                                   𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞  (3.28) 

where 

   𝐆𝐛𝐞𝐬𝐭𝐭+𝟏 is the global best solution of the swarm at iteration 𝐭 + 𝟏. 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐆𝐛𝐞𝐬𝐭𝟏𝐭 is the real power loss of  𝐆𝐛𝐞𝐬𝐭 at iteration 𝐭. 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐆𝐛𝐞𝐬𝐭𝟐𝐭 is the load balancing index of  𝐆𝐛𝐞𝐬𝐭 at iteration 𝐭 
 

Step 12: Calculate the inertia weight using Equation 3.6 and update the velocity of all 

particles per Equation 3.5. 
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𝐯𝐢𝐤+𝟏 = 𝛚 ∗ 𝐯𝐢𝐤 + 𝐜𝟏 ∗ 𝐫𝐚𝐧𝐝𝟏 ∗ (𝐏𝐛𝐞𝐬𝐭𝐢 − 𝐱𝐢𝐤) + 𝐜𝟐 ∗ 𝐫𝐚𝐧𝐝𝟐 ∗ (𝐆𝐛𝐞𝐬𝐭𝐢 − 𝐱𝐢𝐤)     

      

Step 13: Update the particles’ position as per Equation 3.9. 

𝐱𝐢𝐤 = {𝟏          𝐢𝐟 𝐫 < 𝐬𝐢𝐠(𝐯𝐢𝐤)𝟎           𝐢𝐟 𝐫 ≥ 𝐬𝐢𝐠(𝐯𝐢𝐤)            

Where 𝐫 is a uniformly distributed random number in the interval [0,1] 𝐬𝐢𝐠 is a sigmoid function defined by 𝐬𝐢𝐠(𝛂) = 𝟏𝟏+𝐞−𝛂 

 

Step 14: Increment the iteration count of the binary PSO search process and repeat step 

8 to step 13 until the stopping criterion is reached.  

 
Step 15: Print the results of the search process such as the global best solution (optimal 

distribution network topology), its corresponding fitness values (real power loss and load 

balancing index).  

The flowchart of the BPSO solution algorithm for the multi-objective feeder reconfiguration 

problem is shown in Figure 3.12.  

The personal best position and the global best position are updated using Equations 3.27 

and 3.28 respectively, to ensure that the final solution of the search process is not 

dominated by any other possible solution in the search space. This is to conform to the 

Pareto-dominance principle which stipulates that: “Given two solutions 𝐮 =[𝐮𝟏, 𝐮𝟐, … , 𝐮𝐈] and 𝐳 = [𝐳𝟏, 𝐳𝟐, … , 𝐳𝐈] in the search space, 𝐮 dominates 𝐳 (𝐮 < 𝐳) if and only 

if: 

- 𝐮 is no worse than 𝐳 for all objectives i.e. 𝐟𝐢(𝐮) ≤ 𝐟𝐢(𝐳); ∀ 𝐢 = 𝟏, 𝟐, … , 𝐧 

- 𝐮 is strictly better than 𝐳 for at least one objective i.e. 𝐟𝐢(𝐮) < 𝐟𝐢(𝐳), for at least one  𝐢 ∈{𝟏, 𝟐, … , 𝐧}.” 
 

So, a particle 𝐢 is the best solution of a minimization problem if there is no other particle 𝐤 

in the search space such as the objective value of particle 𝐤 is strictly inferior to the fitness 

of particle 𝐢 for all objectives in the problem. 
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Figure 3.12: Flowchart of the developed PSO algorithm for the multi-objective distribution 
network feeder reconfiguration problem 



103 

 

3.5.5. Results of the PSO solution algorithm for the multi-objective distribution network 

feeder reconfiguration problem 

To evaluate the performance and the effectiveness of the developed multi-objective BPSO 

solution algorithm for the single-objective distribution network feeder reconfiguration 

problem, three distribution systems are used for case studies: the IEEE 16 bus distribution 

system; the IEEE 33 bus distribution system; and the IEEE 69-bus distribution system. 

A comparative analysis of the distribution system before and after the distribution network 

reconfiguration is provided in this section. The evaluation is carried out based on the real 

power loss, the load balancing index, the voltage profile and the change in the distribution 

network topology. The results of the developed multi-objective BPSO algorithm are 

compared with the literature ones. The predefined parameters of the developed multi-

objective BPSO algorithm are given in Table 3.2. The multi-objective BPSO solution 

algorithm is designed to work on any radial distribution system. Therefore, the number of 

particles in the search process changes depending on the number of bus and ties switches 

in the distribution system, and it is calculated using Equation 3.21.  

 

3.5.5.1. Test case 1: IEEE 16-bus distribution system 

The developed multi-objective BPSO algorithm is used to find the optimal network topology 

to minimise the real power loss and the load balancing index in the 16-bus distribution 

system. It is observed that after the network reconfiguration, the new tie switches in the 

distribution system are: branch 8 − 10; branch 9 − 11; and branch 7 − 16. The load flow 

study shows that after the feeder reconfiguration, the 16-bus distribution system has a total 

real power loss of 𝟒𝟔𝟖. 𝟑𝟑𝟎𝟒 𝐤𝐖 and a total power generation of (𝟐𝟗. 𝟏𝟔𝟖𝟑 +𝐣𝟔. 𝟖𝟕𝟑𝟑)𝐌𝐕𝐀. The minimum voltage in the 16-bus distribution system is now 𝟎. 𝟗𝟕𝟎𝟕 𝐩. 𝐮  
at bus 12.  

Table 3.13 gives a comparative analysis of the results of the 16-bus distribution system 

before and after feeder reconfiguration using the developed multi-objective BPSO 

algorithm. It is observed that the distribution network topology after feeder reconfiguration 

is different from the initial topology. Before the feeder reconfiguration, branches number 

14 (branch 5 − 11), 15 (branch 10 − 14) and 16 (branch 7 − 16) are the tie-lines whereas 

branches number 7 (branch 8 − 10), 8 (branch 9 − 11) and 16 (branch 7 − 16) are the tie-

lines after the feeder reconfiguration. This shows that the developed multi-objective BPSO 

algorithm effectively reconfigured the network topology. The change in the network 

topology led to a reduction of the real power loss and load balancing index in the 16-bus 

distribution system. After the feeder reconfiguration, the real power loss in the distribution 
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system is reduced to 𝟒𝟔𝟖. 𝟑𝟑𝟎𝟒  𝐤𝐖 from 𝟓𝟏𝟒. 𝟎𝟐𝟗𝟑𝟐 𝐤𝐖 before the feeder 

reconfiguration; the load balancing index is reduced to 𝟐. 𝟕𝟔𝟕𝟔 × 𝟏𝟎−𝟑 from 𝟐. 𝟗𝟖𝟏𝟐 ×𝟏𝟎−𝟑. This corresponds to a real power loss reduction of approximately 𝟖. 𝟖𝟗𝟎𝟑𝟑% and an LBI improvement of 𝟕. 𝟏𝟔𝟔%, in comparison with the real power loss and the load balancing 

index of the initial distribution system respectively. The change in the distribution network 

topology also improved its voltage profile as shown in Figure 3.13. The minimum voltage 

is 𝟎. 𝟗𝟔𝟖𝟐 𝐩. 𝐮 at bus 12 before the feeder reconfiguration and it is improved to 𝟎. 𝟗𝟕𝟎𝟕 𝐩. 𝐮  at bus 12 after the feeder reconfiguration. 

 

 

Figure 3.13: Voltage profile of the 16-bus network before and after solving the multi-objective 
feeder reconfiguration problem 

 
The developed multi-objective algorithm is run 100 times on the 16-bus distribution system. 

And for the 100 times, the developed multi-objective BPSO algorithm converged to the 

same solution every time. This means that for the 16-bus distribution system, there is no 

better solution to the multi-objective distribution network feeder reconfiguration problem 

than the one provided in Table 3.13. The results indicate that a real power loss reduction 

of 𝟖. 𝟖𝟗𝟎𝟑𝟑% and a load balance improvement of 𝟕. 𝟏𝟔𝟔% are achieved using the 

developed multi-objective BPSO method. 
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Table 3.13: Summary of the simulation results of the 16-bus distribution system before and 
after solving the multi-objective feeder reconfiguration problem 

Simulation 
results 

Before reconfiguration  After reconfiguration 

Tie switches 
(branch number) 

14         15         16 7         8         16 

Real power loss 514.02932 kW 468.3304  kW 

Real power 
loss reduction 

− 8.89033% 

Load balancing 
index (LBI) 

2.9812 × 10−3 2.7676 × 10−3 

Load balance 
improvement 

− 7.166% 

Minimum voltage 0.9707 p. u 0.9682 p. u 

 

 

3.5.5.2. Test case 2: IEEE 33-bus distribution system 

The developed multi-objective BPSO algorithm is used to find the optimal network topology 

to minimise the real power loss and the load balancing index in the 33-bus distribution 

system. Table 3.14 gives a comparative analysis of the results of the 33-bus distribution 

system before and after feeder reconfiguration using the developed multi-objective BPSO 

algorithm. It is observed that unlike in the 16-bus distribution system, the application of the 

multi-objective feeder reconfiguration algorithm to the 33-bus distribution system does not 

return the same solution every time the algorithm is run. This may be an indication that 

there are many Pareto-optimal solutions to the problem instead of a single solution. To 

ascertain whether the obtained solutions are Pareto-optimal or not, the developed multi-

objective BPSO algorithm is run 500 times and the solutions obtained are analysed. Based 

on the Pareto-dominance principle as defined in section 2.3.2.2., it follows that the 

application of the developed multi-objective BPSO algorithm to the 33-bus network for 

optimal feeder reconfiguration has 3 Pareto-optimal or non-dominated network topologies 

solution:  

- Network topology 1: the tie switches for this distribution network topology are 

branches number 7 (branch 7 − 8), 9 (branch 9 − 10), 14 (branch 14 − 15), 32 (branch 32 − 33) and 37 (branch 25 − 29). For this network topology, the real power loss is 𝟏𝟑𝟖. 𝟗𝟏𝟎𝟓 𝐤𝐖 and the load balancing index is 𝟏. 𝟒𝟓𝟎𝟑 × 𝟏𝟎−𝟒. This corresponds to a 

real power loss reduction of approximately 𝟑𝟑. 𝟑𝟓𝟒𝟔 % and an LBI improvement of 𝟐𝟗. 𝟐𝟏𝟐𝟓 %, in comparison with the real power loss and load balancing index in the 

initial distribution system respectively. This network topology has the lowest real power 

loss in the search space. So, in term of real power loss, network topology 1 dominates 

all the candidate network topologies in the search. 
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- Network topology 2: the tie switches for this distribution network topology are 

branches number 7 (branch 7 − 8), 9 (branch 9 − 10), 14 (branch 14 − 15), 28 (branch 28 − 29) and 31 (branch 31 − 32). For this network topology, the real power loss is 𝟏𝟒𝟒. 𝟏𝟔𝟗𝟒 𝐤𝐖 and the load balancing index is 𝟏. 𝟑𝟒𝟖𝟕 × 𝟏𝟎−𝟒. This corresponds to a 

real power loss reduction of approximately 𝟑𝟎. 𝟖𝟑𝟏𝟓 % and an LBI improvement of 𝟑𝟒. 𝟏𝟔𝟗𝟕 %, in comparison with the real power loss and load balancing index in the 

initial distribution system respectively. This network topology has the lowest load 

balancing index in the search space. So, in term of load balancing index, network 

topology 2 is non-dominated in the search space. 

 

- Network topology 3: the tie switches for this distribution network topology are 

branches number 7 (branch 7 − 8), 9 (branch 9 − 10), 14 (branch 14 − 15), 28 (branch 28 − 29) and 32 (branch 32 − 33). For this network topology, the real power loss is 𝟏𝟑𝟗. 𝟗𝟔𝟒𝟓  𝐤𝐖 and the load balancing index is 𝟏. 𝟑𝟕𝟓𝟏 × 𝟏𝟎−𝟒. This corresponds to a 

real power loss reduction of approximately 𝟑𝟐. 𝟖𝟒𝟖𝟗 % and an LBI improvement of 𝟑𝟐. 𝟖𝟖𝟐𝟓𝟏 %, in comparison with the real power loss and load balancing index in the 

initial distribution system respectively.  

 

  Table 3.14: Summary of the simulation results of the 33-bus distribution system before and after 
solving the multi-objective feeder reconfiguration problem 

Simulation 
results 

Before 
reconfiguration 

   After reconfiguration 

  Topology 1   Topology 2   Topology 3 

Tie switches 33   34   35   36   37    7   9  14  32  37 7   9   14   28   31    7   9   14   28   32 

Real power loss 208.4322 kW   138.9105 kW 144.1694 kW    139.9645 kW 

Real power 
loss reduction 

−    33.3546% 30.8315%    32.8489% 

Load balancing 
index (LBI) 

2.0488 × 10−4    1.4503 × 10−4 1.3487 × 10−4    1.3751 × 10−4 

Load balance 
improvement 

-    29.2125% 34.1697%    32.88251% 

Minimum voltage 
0.9108p. u  @ bus 18 

   0.9423 p. u 

   @ bus 32 

0.9239 p. u  @ bus 32 

   0.9413 p. u    @ bus32  

 

 
The real power loss of the network topology 3 (𝟏𝟑𝟗. 𝟗𝟔𝟒𝟓𝐤𝐖) is higher than that of the 

network topology 1 (𝟏𝟑𝟖. 𝟗𝟏𝟎𝟓 𝐤𝐖) and the load balancing index of the network topology 
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1 (𝟏. 𝟒𝟓𝟎𝟑 × 𝟏𝟎−𝟒) is higher than that of the network topology 3 (𝟏. 𝟑𝟕𝟓𝟏 × 𝟏𝟎−𝟒). Likewise, 

the real power loss of the network topology 2 (𝟏𝟒𝟒. 𝟏𝟔𝟗𝟒 𝐤𝐖 ) is higher than that of the 

network topology 3 (𝟏𝟑𝟗. 𝟗𝟔𝟒𝟓 𝐤𝐖) and the load balancing index of the network topology 

2 (𝟏. 𝟑𝟒𝟖𝟕 × 𝟏𝟎−𝟒) is lower than that of the network topology 3 (𝟏. 𝟑𝟕𝟓𝟏 × 𝟏𝟎−𝟒). So, based 

on the pareto-optimality principle in section 2.3.2.2., the solution network topologies 1, 2 

and 3 are pareto-optimal and non-dominated with respect to each other. However, like with 

most real-world problems, only one solution is needed for as our final network topology. 

therefore, a higher-level information is needed to split the Pareto-optimal network 

topologies. The minimum bus voltage is used as the higher-level information.  

 

From Table 3.14, the network topology 2 has the lowest voltage level (𝟎. 𝟗𝟐𝟑𝟗 𝐩. 𝐮) 

amongst the set of optimal solution. And considering a voltage deviation of ±𝟔%, the 

minimum voltage in the network topology 2 even fall below the recommended standard. 

Although the network topology 3 has a minimum voltage within the standard, its minimum 

voltage magnitude (𝟎. 𝟗𝟒𝟏𝟑 𝐩. 𝐮) is still lower than that of the network topology 1 (𝟎. 𝟗𝟒𝟐𝟑 𝐩. 𝐮). So, the network topology 1 emerges as the preferred optimal solution to the multi-

objective feeder reconfiguration problem for the 33-bus distribution system. 

 

3.5.5.3. Test case 3: IEEE 69-bus distribution system 

The developed multi-objective BPSO algorithm is used to find the optimal network topology 

to minimise the real power loss and the load balancing index in the 69-bus distribution 

system. To ascertain whether it has Pareto-optimal solutions or not, the developed multi-

objective BPSO algorithm is run 500 times and the solutions obtained are analysed. It is 

observed the application of the multi-objective feeder reconfiguration algorithm to the 69-

bus distribution system does not return the same solution every time the algorithm is run 

and there is a handful number of non-dominated solution network topologies. Table 3.15 

gives a comparative analysis of the results of the 69-bus distribution system before and 

after feeder reconfiguration using the developed multi-objective BPSO algorithm. The non-

dominated solutions are grouped into two sets: 

-  Set 1 represents the set of solution network topologies with 𝟗𝟖. 𝟓𝟗𝟓𝟐 𝐤𝐖 of real power 

loss and a load balancing index of 𝟏. 𝟓𝟒𝟕𝟗 × 𝟏𝟎−𝟒. 

- Set 2 is the set of solution network topologies with 𝟏𝟎𝟏. 𝟐𝟗𝟔𝟏 𝐤𝐖 of real power loss 

and a load balancing index of 𝟏. 𝟓𝟐𝟗𝟓 × 𝟏𝟎−𝟒.  
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        Table 3.15: Summary of the simulation results of the 69-bus distribution system before and 
after solving the multi-objective feeder reconfiguration problem 

Simulation 
results 

Before 
reconfiguration 

   After reconfiguration 

   Set 1     Set 2 

Tie switches 
(branch number) 

69   70   71   72   73 

   14   55   61   69   70     14   56   61   69   70 

   14    57   61   69   70     14    58   61   69   70 

12   18   56   61   69 12   18   57   61   69 12   18   58   61   69 12   19   55   61   69 12   20   55   61   69 12   20   57   61   69 

Real power loss 224.9804 kW     98.5952 kW   101.2961 kW 

Real power 
loss reduction 

−     56.1761%  54.9756% 

Load balancing 
index (LBI) 

2.0488 × 10−4     1.5479 × 10−4  1.5295 × 10−4 

Load balance 
improvement 

-     35.6355%  36.4006% 

Minimum voltage 0.9092 p. u @ bus 65     0.9495 p. u @ bus 61  0.9495 p. u @ bus 61 

 

Any solution network topology from set 1 has a lower real power loss, but a higher load 

balancing index than a solution network topology from set 2. So, the solutions network 

topologies in the two sets are Pareto-optimal with respect to each other. Moreover, any 

solution network topology chosen from the two sets leads to a minimum voltage magnitude 

of 0.9495 p. u at bus 61: the minimum voltage magnitude cannot be used as the higher-

level information to determine which set of solutions is better. The importance of the 

objectives dictates which set of solutions is better. When the real power loss function is 

the primary concern, any solution in set 1 can be considered as the optimal solution. 

Likewise, when the load balancing is the primary concern, any solution in the set 2 is the 

optimal solution.  

 

3.5.6. Discussion on the simulation results of the single-objective and multi-objective 

feeder reconfiguration problem 

The developed BPSO feeder reconfiguration algorithms do not consider the current limits 

of the distribution system. If the distribution system is lightly loaded or loaded within the 

required margins, then the application of the feeder reconfiguration algorithm might 

increase the loading capability and improve the voltage profile of the distribution system. 
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In the case of a heavily loaded distribution system, an overload condition may occur and 

cause the voltage to drop outside the minimum limit. Therefore, a feeder reconfiguration 

scheme might relieve the distribution system overload and improve the voltage profile by 

reducing the real power loss. The distribution network feeder reconfiguration is however 

not a solution for distribution system overload mitigation voltage improvement. The 

improvement of the voltage profile in the distribution system after the network 

reconfiguration is merely the result of the reduced real power loss. The feeder 

reconfiguration transfers loads from the heavily loaded portions of the initial distribution 

system to lightly loaded portions.  

 
The developed BPSO feeder reconfiguration algorithms provide the optimal solutions for 

the single and multi-objective feeder reconfiguration problem. It is noticed that by 

increasing the number of particles and the number of iterations, the success rate of the 

developed algorithms is undoubtedly improved. In the single-objective feeder 

reconfiguration approach, the personal and global best positions are each updated if a 

candidate network topology has a lower real power loss. In the multi-objective algorithm, 

the personal and global best positions are updated if a candidate network topology has a 

lower real power loss and a lower load balancing Index than each best position. Thus, only 

the best particles are used to direct the search process.  

 

3.6. Conclusion  

In this chapter, BPSO optimisation algorithms were developed to solve both the single-

objective and multi-objective distribution network feeder reconfiguration problem. The 

basics of the PSO, its operating principle and some variants of PSO were presented. 

The single-objective feeder reconfiguration problem aimed to minimise the real power loss 

in the distribution systems. The objectives of the multi-objective feeder reconfiguration 

problem were to minimise the real power loss and the load balancing index of the 

distribution system. The multi-objective feeder reconfiguration algorithm uses the Pareto-

optimality principle to find the optimal distribution system topology. The IEEE 16-bus, the 

33-bus, and the 69-bus distribution system were used to test the performance and the 

efficiency of the developed BPSO algorithms. The simulation results proved that the 

developed BPSO algorithms are efficient in solving the feeder reconfiguration problem.  

 
The next chapter presents the optimal placement and sizing of Distributed generation (DG) 

in distribution systems using the BPSO method.  
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CHAPTER FOUR 

OPTIMAL PLACEMENT AND SIZING OF DISTRIBUTED GENERATORS IN 
DISTRIBUTION SYSTEMS 

 

4.1. Introduction 

With the ever-increasing energy demand, the power grid is faced with hurdles such as 

increasing power losses, voltage instability, and decreasing reliability. To meet the power 

demand economically, reliably and efficiently has become a challenge. Moreover, due to 

high construction and operating costs, environmental concerns, depleting conventional 

energy sources (coal, water, gas), and the advances in technology, the need for 

centralised traditional power plants is less and less justified: where the development in 

Distributed Generation. Distributed Generation (DG) refers to the use of small-scale 

technologies for power generation at end-user points. Unlike conventional power plants, 

DG can be disconnected from the grid. And if properly placed and sized, DG can operate 

autonomously, can strengthen the grid resilience, help to mitigate grid disturbances and 

eliminates the cost, complexity, and inefficiencies associated with transmission and 

distribution systems. 

 
This chapter first presents some DG technologies and their impacts on distribution 

networks. Secondly, the chapter covers the issues encountered in planning the size and 

location of DG in distribution systems. Then, the development and the testing of a single-

objective optimal DG placement and sizing are presented. Finally, the development and 

the testing of a multi-objective optimal DG placement and sizing are presented. The single-

objective optimal DG placement and sizing optimisation is done to minimise the real power 

loss in the distribution networks, while the multi-objective optimal DG placement and sizing 

optimisation has for objectives the minimisation of the real power loss, the minimisation or 

the bus voltage deviation and the maximisation of the bus voltage stability index. 

 

4.2. DG technologies 

DG offers numerous benefits over traditional power stations. Some of such benefits include 

increased efficiency, improved reliability and quality of supply, and deferred Transmission 

& Distribution upgrades among others. The percentage of DG generation in newly 

constructed power generation has reached the 30%, and it is projected to keep rising in 

the future (Acharya et al., 2006). Depending on their size, DGs are referred to as micro 

DG (1kW – 5kW), small DG (5kW – 5MW), medium DG (5MW – 50MW) or large DG 
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(50MW – 300MW) (Jordehi, 2015). This section covers the different types of DG 

technologies and the contributing factors to the adoption of DG. 

 

4.2.1. Types of DG 

It is a widespread belief that DG are only renewable energy technology such as solar and 

wind. However, technologies such as internal combustion engines, diesel engines, and 

microturbines are also DG technologies. Irrespective of whether they are renewable or not, 

DG can be categorised in 4 types, depending on their real and reactive power delivering 

capabilities: type I DG, type II DG, type III DG and type IV DG. 

 
 

 

Figure 4.1: Types of DG 

 

4.2.1.1. Type I DG 

This type of DG only injects real power in the distribution systems. Good examples of type 

I DG include technologies connected to the grid via a power inverter/converter such as PV, 

microturbines and fuel cells (Venkatesh, 2014). 

- Photovoltaic (PV) systems: PV systems are used to harvest sunlight and convert it 

into electricity. The typical PV system size for residential applications is about 10kW 

while commercial and industrial applications may reach Megawatts of size. The energy 

conversion efficiency of PV systems is about 17%. This efficiency is however gradually 

increasing while the initial capital cost of PV systems is continuously decreasing. The 

installed capacity of PV systems is projected to double every couple of years. 

- Microturbines: Microturbines are small combustion engines of size varying from 20kW 

– 500kW. Their combustible can be natural gas, propane or fuel oil.  They operate at 

fast speed, lower temperature, and lower pressure than in conventional combustion 
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turbines (El-Khattam & Salama, 2004). Microturbines have gained widespread 

acceptance as a DG technology due to the advance in power electronics.  

- Fuel cells: Fuel cells (FC) convert into electricity the chemical energy from a fuel 

through electrochemical reactions. They are comparable to batteries, although it is not 

necessary to charge them. Fuel cells produce energy as long as the fuel is supplied. 

Some fuel cell types include Alkaline FC (AFC), Proton Exchange Membrane FC 

(PEM/PEMFC), Phosphoric Acid FC (PAFC), Molten Carbonate FC (MCFC), Solid 

Oxide FC (SOFC) and Direct Methanol FC (DMFC) (El-Khattam & Salama, 2004).  

 

4.2.1.2. Type II DG 

Type II DG only injects reactive power Q in the distribution system (Hung et al., 2010). 

Synchronous compensators are an excellent example of Type II DG.  They are used not 

to produce electric power, but to improve network conditions such as the voltage profile 

and power factor. Typical applications of type II DG include voltage regulation and power 

factor correction. Although capacitor banks can inject reactive power in distribution 

networks, they are not considered as DG since the amount of reactive power injected into 

the network cannot be continuously fine-tuned. 

 

4.2.1.3. Type III DG 

Type III DG can inject both the real and reactive power in the network. Good examples of 

type III DG technologies include cogeneration and small hydro. 

- Cogeneration/trigeneration: Cogeneration or Combined Heat and Power (CHP) is 

the simultaneous generation of electricity and useful heat from fuel combustion at a 

power station. In small CHP plants, high-temperature steam turbines or natural gas-

fired fuel cells are used to produce electricity. The waste heat from the CHP plant is 

harvested and used for heating of spaces, water or buildings. In trigeneration or 

Combined Cooling, Heat and Power (CCHP), both electricity and useful heat are also 

produced simultaneously. However, the harvested heat can be used for both heating 

and cooling.  

- Small hydro systems: Small hydro systems are small-scale hydro turbines used to 

produce electricity to serve a small community. They are linked to the electrical 

distribution system as a low-cost renewable energy system. Their typical size varies 

from 1kW to 20MW. 

- Small wind turbines: small wind turbines with synchronous generators falls under 

type III DG. 
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Table 4.1: Characteristics of DG technologies (Ackermann et al., 2001), (Viral & Khatod, 2012) 

Technology DG type Renewable Fuel/Source Typical size (kW) 
Electrical 
efficiency (%) 

Reliability 

PV systems Type I and III Yes Sun 0.02-1000+ ~15 - 17 
No- dependent on 
insolation 

Wind Type III and IV  Yes Wind  0.2-3000 ~44 - 48 
No- dependent on 
the wind speed & 
direction 

Biomass gasification Type III Yes Biomass 100-20000 15-25 
No- dependent on 
the speed of the 
conversion process 

Small Hydro Power 
(SHP) 

Type III Yes Motion of Water 5-100000 ~64 - 90 Yes 

Ocean Energy Type III Yes Ocean waves, tides 100-1000 20 - 35 
No- dependent on 
the wave’s speed & 
tides availability 

Geothermal Type III Yes Earth internal heat 5000-100000 10-32 No 

Reciprocating Engines Type III No 
Petrol, Diesel, LPG, 
CNG 

3-6000+ 30-43 Yes 

Combustion gas 
turbines 

Type III No 
Coal gas, biogas, 
landfill, natural gas 

0.5-3000+ 21-40 Yes 

Microturbines Type I No 
Natural gas, propane, 
fuel oil 

30-1000 14-30 Yes 

Hybrid fuel cells 

Type I 

No 

Ethanol, hydrogen, 
propane 

400-20000 

30-55 Yes 
Small fuel cells No 1-300 

Automotive fuel cells No 30-60 

Micro-CHP Type III No 

Natural gas, 
hydrogen, LPG, 
Biomass,  
Solar thermal 

1-10 30+ Yes 
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4.2.1.4. Type IV DG 

Type IV DG injects the real power (P) in the distribution network but absorbs reactive power 

(Q) from the network. Wind turbines with induction generator are good examples of type 

IV DG (Hung et al., 2010). The reactive power drawn from the network is used to maintain 

the air flux gap in the induction machine. The active power delivered is a function of the 

slip above the synchronous speed, and it is only produced when the speed of the generator 

is above the synchronous speed. 

Table 4.1 provides some characteristics of diverse DG Technologies. It can be observed 

that not all DG technologies are renewables. Non-renewable DG technologies are more 

reliable than most of their renewable counterparts. This is mainly because most renewable 

DG are of intermittent nature. PV systems depend on the daily insolation; wind systems 

are dependent on the wind speed and direction, and ocean energy-based DG have a 

power output subjected to the sea waves speed. DG sizes vary from a handful of watts to 

hundredths of Megawatts. 

 

4.2.2. Drivers of the DG demand in distribution networks  

The advent of DG has been driven by environmental, economic and technical factors. The 

analysis of these factors is done below. 

 

4.2.2.1. Environmental factors 

Due to environmental concerns such as environmental degradation, global warming, and 

ozone layer depletion, policies are being put in place to reduce the emission of greenhouse 

gases and mainly the carbon dioxide (CO2) (Pepermans et al., 2005). These policies are 

the driven force behind the increased demand in DG, as power producers are forced to 

find more efficient and cleaner energy solutions. As opposed to conventional power plants, 

DG generates 30% fewer greenhouse gases (Viral & Khatod, 2012). The construction of 

large power plants requires a large land size. The erection of new transmission and 

distribution lines is subject to permitting and right of way requirements. So, the building of 

new centralised power plants is detrimental to ecosystems, hence the backing of 

Distributed Generation (Lopez et al., 2007). 

 

4.2.2.2. Economic factors 

The construction of large power plants and the erection of new transmission and 

distribution lines are commonly associated with a high capital cost. Small units of DG can 

be built and installed; the construction times of DG is shorter; the cost of commissioning, 
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operation, maintenance, and decommissioning of DG is reduced. These characteristics 

make DG technologies a low cost and attractive investment opportunity for investors 

(Lopez et al., 2007).  Additionally, the shift of the energy market from a regulated to a 

deregulated structure give DG a competitive edge over traditional power plants. 

 

4.2.2.3. Technical factors 

  From the technical point of view, reliability, quality of supply, energy efficiency and load 

expansion considerations are the major drivers of the adoption of DG in distribution 

systems. 

- Reliability and quality of supply: The electrical power delivery is subject to the power 

quality, i.e. maintaining sinusoidal voltages and currents within the rated frequency and 

magnitude margins (Dugan et al., 2012). Disruption of the quality of supply may 

negatively affect utilities and end-users. The introduction of DG in the distribution 

system may improve the stability and the quality of supply (Khalesi et al., 2010). DG 

can also increase the reliability of distribution systems. The reliability of a distribution 

network is a measure of how much interruptions or power outages the distribution 

system has sustained over a period. Utilities may invest in DG to increase the overall 

reliability of the distribution system. 

 
- Energy efficiency: Depending on the technology used, optimal sizing and placement 

of DG in distribution systems may significantly reduce the real power losses, the 

reactive power losses or even both (Hung et al., 2010). Reduced power losses mean 

increased power delivered and consequently increased distribution system efficiency. 

 
- Load expansion: proper planning of DG can reduce the power loss in distributions 

systems. This means that more power becomes available to supply the loads. DG can 

also act as a substitute for transmission and distribution lines expansion. The electricity 

produced by the DG allows the connection of additional customers locally without the 

need for erecting further transmission and distribution lines. 

 

4.3. DG placement and sizing issues 

DG is only beneficial if it is properly planned, installed and operated. Improper planning, 

installation or operation could fail to secure the projected DG benefits and could even be 

detrimental to the distribution systems.  

The integration of DG in distribution systems faces numerous challenges: 
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- Distribution networks have been designed to only handle unidirectional power flow 

from utilities to consumers. A high level of DG penetration may lead to bi-directional 

power flows through distribution lines. This condition can create increased short-circuit 

levels and affects the performance of protection systems in the distribution system. 

- The presence of DG in a distribution network adds the risk of islanding. Islanding is a 

situation in which a part of the distribution system is supplied by a DG, although the 

electrical supply from the utility gets disconnected. This situation may prove dangerous 

to personnel (utility workers, public) as they may not know that that part of the 

distribution system is still energised. Therefore, an anti-islanding system should be 

installed along with the DG to provide adequate safety in the event of a power outage. 

- A distribution system operator (DSO) is charged with the control and the operation of 

distribution systems. In future smart grids, many of the DG will be customer-owned. A 

high number of customer-owned DG will be challenging to control and monitor 

(Jordehi, 2015).  

- Some DG technologies such as PV and wind systems have an intermittent nature and 

are non-dispatchable, i.e. their output is influenced by external factors and cannot be 

controlled by operators. 

- Some DG technologies are connected to the distribution system via power electronics 

interfaces such as inverters. They may contribute to the introduction of a high level of 

harmonics in the network. This situation may result in distorted voltage waveforms and 

unexpected frequency fluctuations. 

- If the distribution system has low voltage (LV) levels, the integration of DG may provide 

voltage support to the distribution system. Otherwise, the introduction of DG may lead 

to voltage swells and excessive power losses. 

 

4.4. Single-objective DG placement and sizing problem 

The single-objective DG placement and sizing problem consists of finding the optimal bus 

location and DG size to minimise the real power loss of the distribution system. 

This section provides the mathematical formulation of the single-objective DG placement 

and sizing problem, and a PSO based solution algorithm to solve that problem. The 

developed PSO algorithm is implemented and applied to three distribution systems, 

namely the IEEE 16-bus system, the IEEE 33-bus system and the IEEE 69-bus system, 

and the results of the problem are analysed. 
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4.4.1. Formulation of the single-objective DG placement and sizing Problem 

The objective of the optimal DG placement and sizing problem is to minimise the total real 

power loss in the distribution system. The real power loss 𝐏𝐋𝐨𝐬𝐬 in a distribution system is 

the sum of the real component of power loss in individual branches of the distribution 

system and it is given in Equation 4.1.  

 𝐏𝐋𝐨𝐬𝐬 =  ∑ 𝐫𝐞𝐚𝐥(𝐒𝐣𝐤 − 𝐒𝐤𝐣)𝐍𝐁
𝐣=𝟏𝐤=𝟏𝐣≠𝐤

                                                                                                                   (4.1) 
where 

    𝐒𝐣𝐤 = 𝐕𝐣 × 𝐢𝐣𝐤∗ is the sending power in the branch 𝐣 − 𝐤. 

    𝐒𝐤𝐣 = 𝐕𝐤 × 𝐢𝐣𝐤∗ is the receiving power in the branch 𝐣 − 𝐤. 

    𝐕𝐣 and 𝐕𝐤 are the sending and receiving ends voltage of line 𝐣 − 𝐤 respectively. 

    𝐢𝐣𝐤∗ is the conjugate of the current flow in line 𝐣 − 𝐤. 

    𝐣 is the sending bus. 

    𝐤 is the receiving bus. 

    𝐍𝐁 is the number of busses in the network. 

 

4.4.2. Solution algorithm for the single-objective DG placement and sizing problem 

The solution procedure of the DG placement and sizing problem takes into consideration 

the following assumptions: 

- DG can only be installed at PQ nodes, and any DG type can be installed at a given PQ 

bus. 

- Only one DG can be installed at a given PQ node at the time. 

- The number of DG that can be installed in the network is only limited by the number of 

PQ buses. This means that for a distribution network with 10 PQ buses, it has ten 

candidate nodes for a single DG installation. 

- The DG size should be limited. The sum of the DGs capacity should be less than the 

total load demand. Should the DG size be equal to the load demand, then the loads 

would be supplied locally by DG. This means that all the power generated by the DG 

to be consumed locally.  

 
The DG placement sub-problem is treated as a discrete problem while the DG sizing 

sub-problem is treated as a continuous problem. The developed solution algorithm is 

referred to as a hybrid discrete-continuous PSO algorithm. The discrete PSO is used to 
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find the optimal location for the DG placement, and the continuous PSO is used to find the 

optimal size of the DG. The details about these 2 PSO variants (discrete and continuous) 

have been given in chapter three (refer to sections 3.3.1. and 3.2.1. respectively). 

The PSO based solution algorithm for the single-objective DG placement and sizing 

problem is implemented as per the following steps: 

Step 1: Read the distribution system network data such as the number of nodes 𝐍𝐁, the 

number of distribution lines 𝐍𝐋, the number of tie lines 𝐍𝐓, the bus type (𝐒𝐥𝐚𝐜𝐤, 𝐏𝐕, 𝐏𝐐), 

the load data (𝐏𝐝, 𝐐𝐝, 𝐁𝐬, 𝐋𝐨𝐚𝐝𝐈𝐃), the generator data (𝐏𝐠, 𝐐𝐠), the distribution line data 

(𝐛𝐮𝐬𝐢, 𝐛𝐮𝐬𝐣, 𝐫, 𝐱, 𝐬𝐰𝐭𝐢𝐞, 𝐬𝐰𝐬𝐞𝐜) and the DG limit coefficients (𝐤𝟏, 𝐤𝟐). 

Step 2: Initialize the binary PSO parameters such as the acceleration coefficients 𝐜𝟏 and 𝐜𝟐, the minimum and the maximum inertia weight (𝐰𝐦𝐢𝐧 and 𝐰𝐦𝐚𝐱 respectively), the 

particle’s velocity limits (𝐯𝐦𝐢𝐧 and 𝐯𝐦𝐚𝐱), the number of particles (𝐍𝐩), the dimension of the 

search space (𝐃) which is equal to the number of PQ buses in the network, and the stop 

criterions (𝐭𝟏𝐦𝐚𝐱, 𝐭𝟐𝐦𝐚𝐱). 𝐭𝟏𝐦𝐚𝐱 and 𝐭𝟐𝐦𝐚𝐱 are used to stop the discrete and continuous PSO 

search process respectively. 

Step 3: Initialize the particles’ positions. Two swarms are used in the search process: 

- Swarm 1 to find the optimal DG location 

- Swarm 2 to find the optimal DG size.  

The 16-bus distribution system in Figure 3.3 is used to illustrate the coding of the DG status 

in the distribution network into a string of bit as shown in Table 4.2.  

 

Table 4.2: DG status of the IEEE 16-bus distribution system 

Bus type Slack PQ Bus ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 DG status − − − 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
 

0 indicates that there is no DG connected to the corresponding PQ bus, and 1 indicates 

the presence of DG. Initially, there is no DG in the 16-bus distribution system, and that is 

why there are no 1’s in the DG status in Table 4.2. In the first swarm (Swarm 1), a particle’s 

position is the string of bits that represent the DG status in the distribution network. For the 

16-bus distribution system, there is initially no DG in the network. So, a particle position 

can be represented by 𝐱𝟏𝐤 = [𝟎     𝟎     𝟎     𝟎     𝟎     𝟎     𝟎     𝟎     𝟎     𝟎     𝟎     𝟎     𝟎], where k =0 for the initial particle position   
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Bus 1, 2 and 3 are not PQ buses, so they are omitted when assigning the particle’s position 𝐱𝟏𝟎. So, only the DG status at PQ buses are used when assigning particles in the first 

swarm. Swarm 1 is a 𝐍𝐩 × 𝐃 matrix, where 𝐍𝐩 is the number of particles in the swarm and 𝐃 the dimension of the search space. 

The developed algorithm doesn’t discriminate against the type of DG to be used. This 

means that all DG types are considered, and the DG size is defined by Equation 4.2. 

 𝐒𝐃𝐆 = 𝐏𝐃𝐆 + 𝐣. 𝐐𝐃𝐆                   (4.2) 

Where 

   𝐒𝐃𝐆 is the apparent power of the DG. 𝐏𝐃𝐆 is the real power of the DG. 𝐐𝐃𝐆 is the reactive power of the DG. 

 
- If 𝐏𝐃𝐆 = 𝟎, then the DG is of Type II. 

- If 𝐐𝐃𝐆 = 𝟎, then the DG is of Type I. 

- If 𝐏𝐃𝐆 > 𝟎 & 𝐐𝐃𝐆 >  𝟎, then the DG is of Type III. 

- If 𝐏𝐃𝐆 > 𝟎 & 𝐐𝐃𝐆 < 𝟎, then the DG is of Type IV. 

 

The maximum DG size 𝐃𝐆𝐦𝐚𝐱 should be less than the total load demand. So, the DG size 

is limited to the interval [𝐃𝐆𝐦𝐢𝐧, 𝐃𝐆𝐦𝐚𝐱], with 𝐃𝐆𝐦𝐢𝐧 and 𝐃𝐆𝐦𝐚𝐱 defined as in Equation 4.3. 

 𝐃𝐆𝐦𝐚𝐱 < 𝐤𝟏 × ∑(𝐏𝐝𝐢 + 𝐣𝐐𝐝𝐢)𝐧𝐏𝐐
𝐢=𝟏                                                                                                           (4.3. a) 

 𝐃𝐆𝐦𝐢𝐧 > 𝐤𝟐 × ∑(−𝐣. 𝐐𝐝𝐢)𝐧𝐏𝐐
𝐢=𝟏                                                                                                                 (4.3. b) 

 

Where 𝐃𝐆𝐦𝐢𝐧 is the minimum DG size. 𝐏𝐝𝐢 and 𝐐𝐝𝐢 are the real and reactive power demand respectively at load bus 𝐢. 𝐧𝐏𝐐 is the number of load buses in the distribution network. 𝐤𝟏 and 𝐤𝟐 are the maximum and minimum DG size limit coefficients respectively.  

 

The DG size limit coefficients represent the penetration levels of the DG in the distribution 

system.  



120 

 

A particle in the second swarm (Swarm 2) is defined by 𝐱𝟐𝟎 = [𝐒𝐃𝐆𝟏 , 𝐒𝐃𝐆𝟐 , ⋯ 𝐒𝐃𝐆𝐧𝐏𝐐]. 
Swarm 2 is a 𝐍𝐩 × 𝐧𝐃𝐆 matrix, where 𝐧𝐃𝐆 is the number of DG to be installed in the 

network. 

 

Step 4: Initialize the particles’ velocity. The velocity of the first swarm represents the 

probability for each bit in the particle’s position (DG status) to change its status. The 

velocity in the second swarm represents the rate of change of the particles from their 

current position to the next position. The velocity in the first swarm is limited to the interval [−4, 4] (refer to section 3.3.1.). The velocity in swarm 2 is limited in the interval [𝐯𝐦𝐢𝐧, 𝐯𝐦𝐚𝐱], 
where 𝐯𝐦𝐢𝐧 and 𝐯𝐦𝐚𝐱 are calculated using Equations 4.4.a and 4.4.b respectively: 

 𝐯𝐦𝐢𝐧 = −𝐯𝐦𝐚𝐱                (4.4. a) 
 𝐯𝐦𝐚𝐱 = 𝛆 × (𝐃𝐆𝐦𝐚𝐱 − 𝐃𝐆𝐦𝐢𝐧)            (4.4. b) 

 

Where, 𝛆 is a random number in the range ]0,1], and representing the maximum velocity 
limit factor.  

 

Step 5: Find the personal best particles position. The initial personal best position of all 

particles in swarm 1 corresponds to the string of binary bits representing the DG status a 

corresponding PQ bus. Initially, there is no DG in the distribution system. So, the initial 

personal best for all particles in the swarm 2 correspond to the nDG × 1 matrix whose 

elements are all zeroed. Initially, all particles have the same objective value, which is equal 

to the real power loss in the base distribution system.  

  

Step 6: Find the global best particle position from the set of particles best position given 

in Step 5. In this case, the global best particle position is the best particle position whose 

objective value is minimal.  

 

Step 7: Give random DG position(s) for every particle in swarm 1 and the corresponding 

DG size(s) in swarm 2. 

 

Start the discrete PSO iteration process and set the iteration counter 𝐭𝟏 to 1 for the 

discrete PSO. 
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Step 8: Check that each particle in swarm 1 for which the real power loss should be 

calculated only has 𝐧𝐃𝐆 active distributed generator(s). 

  

Start the continuous PSO search process and set the iteration counter 𝐭𝟐 to 1 for the 

continuous PSO. 

 

Step 9: Update the generator data. After analysis of the DG position, the generator data 

must be updated to include the DG location and size. For the candidate DG position and 

size solution to be evaluated, find the position of the DG by analysing for which bus ID the 

DG status is equal to 1. Then, find the corresponding DG size from swarm 2 and update 

the distribution network generator parameters. 

 

Step 10: Perform a Newton-Raphson power flow and calculate the real power loss using 

Equation 4.1 for the particles in swarm 1. 

 

Step 11: Update the personal best position of all particles in swarm 2 as per Equation 3.23 

in chapter three, section 3.4.2. 

𝐏𝐛𝐞𝐬𝐭𝐢𝐭+𝟏 = {𝐏𝐛𝐞𝐬𝐭𝐢𝐭,     𝐢𝐟 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐢𝐭+𝟏 ≥ 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐏𝐛𝐞𝐬𝐭𝐢𝐭𝐱𝐢𝐭+𝟏,                                              𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞       

Where 𝐏𝐛𝐞𝐬𝐭𝐢𝐭
 is the personal best position of particle 𝒊 at iteration 𝒕. 𝐱𝐢𝐭+𝟏 is the position of particle 𝒊 at iteration 𝒕 + 𝟏. 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐢𝐭+𝟏 is the fitness value of particle 𝒊 at iteration 𝒕 + 𝟏. 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐏𝐛𝐞𝐬𝐭𝐢𝐭 is the fitness value of 𝐏𝐛𝐞𝐬𝐭𝐢𝐭

. 

 

Step 12: Update the global best position of swarm 2 as per Equation 3.24 in chapter three, 

section 3.4.2. 

𝐆𝐛𝐞𝐬𝐭𝐭+𝟏 = {𝐆𝐛𝐞𝐬𝐭𝐭,     𝐢𝐟 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐏𝐛𝐞𝐬𝐭𝐢𝐭+𝟏 ≥ 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐆𝐛𝐞𝐬𝐭𝐭𝐏𝐛𝐞𝐬𝐭𝐢𝐭+𝟏,                                   𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞            

Where 𝐆𝐛𝐞𝐬𝐭𝐭+𝟏 is the global best solution of the swarm at iteration 𝒕 + 𝟏. 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐆𝐛𝐞𝐬𝐭𝐭 is the fitness value of  𝐆𝐛𝐞𝐬𝐭 at iteration 𝐭. 
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Step 13: Calculate the inertia weight using Equation 3.6 and update the velocity of all 

particles in swarm 2 as per Equation 3.5. 

 𝐯𝐢𝐤+𝟏 = 𝛚 ∗ 𝐯𝐢𝐤 + 𝐜𝟏 ∗ 𝐫𝐚𝐧𝐝𝟏 ∗ (𝐏𝐛𝐞𝐬𝐭𝐢 − 𝐱𝐢𝐤) + 𝐜𝟐 ∗ 𝐫𝐚𝐧𝐝𝟐 ∗ (𝐆𝐛𝐞𝐬𝐭𝐢 − 𝐱𝐢𝐤)          

Step 14: Update the position of particles in swarm 2 as per Equation 3.3. 

 𝐱𝐢𝐤+𝟏 =  𝐱𝐢𝐤 +  𝐯𝐢𝐤+𝟏                   

Where 𝐱𝐢𝐤 denotes the position of particle 𝒊 at iteration 𝒌. 𝐯𝐢𝐤  is the velocity of the particle 𝐢 at iteration 𝒌. 

 

Step 15: Increment the iteration count of the continuous PSO search process and repeat 

step 9 to step 14 until the stopping criterion is reached. 

  

Step 16: Find the real power loss of the particles in swarm 1.  

The global best position of the swarm 2 is achieved at the end of the continuous PSO, and 

it corresponds to the optimal DG size for the DG position from step 8. Consequently, the 

fitness of the particle in swarm 1 from step 8 is equal to the fitness of the global best 

position of swarm 2. 

 

Step 17: Update the personal best positions in swarm 1 as per Equation 3.23. 

 

Step 18: Update the global best in swarm 1 as per Equation 3.24. 

 

Step 19: Calculate the inertia weight using Equation 3.6 and update the velocity of all 

particles in swarm 1 as per Equation 3.5. 

 

Step 20: Update the position of the particles in swarm 1 as per Equation 3.9. 

 𝐱𝐢𝐤 = {𝟏          𝐢𝐟 𝐫 < 𝐬𝐢𝐠(𝐯𝐢𝐤)𝟎           𝐢𝐟 𝐫 ≥ 𝐬𝐢𝐠(𝐯𝐢𝐤)                 

Where 𝐫 is a uniformly distributed random number in the interval [0,1] 𝐬𝐢𝐠 is a sigmoid function defined by 𝐬𝐢𝐠(𝛂) = 𝟏𝟏+𝐞−𝛂 
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Step 21: Set the iteration count t2 for the continuous PSO search process to 0 to allow 

step 7 to step 14 to be repeated for the next iteration of the discrete search process. 

 

Step 22: Increment the iteration count t1 of the discrete PSO process and repeat step 6 to 

step 20 until the stopping criterion is reached. 

Step 23: Print the results of the search process such as the global best solution (optimal 

DG position and size), and its corresponding fitness value (minimum real power loss). 

 

The flowchart diagram of the above-defined solution algorithm for the single-objective 

optimal DG placement and sizing problem is shown in Figure 4.2. 

 

4.4.3. Results of the PSO solution algorithm for the single-objective DG placement and 

sizing problem 

Three distribution systems are used to evaluate and test the developed single-objective 

algorithm used to solve the optimal DG placement and sizing problem: 

- The IEEE 16-bus distribution system 

- The IEEE 33-bus distribution system  

- The IEEE 69-bus distribution system. 

 
For each distribution system, 3 case studies are performed: 

- single DG placement and sizing 

- Two DG placement and sizing 

- Three DG placement and sizing. 

 

The performance of the developed PSO algorithm is analysed for each case study in terms 

of optimal DG type, optimal DG placement, and DG size. The effects of the introduction of 

the DG on the distribution network’s voltage profile and power loss is also examined. 
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Evaluate fitness of particle i1 : it is equal to the 

global best fitness of swarm 2

Update the personal best position and fitness of 

particle i1 as per Equation (3.23)

Update the global best position and fitness of 

swarm 1 as per Equation (3.24)

Calculate the inertia weight for swarm 2 as per 

Equation (3.6)

Set the Dimension count j to 1 (j = 1)

Update the velocity of the particle i1  as per Equation (3.5) 

Update the position of the particle i1  as per equation (3.9) 

j > D
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Reset the iteration count t2 for the continuous PSO to 0 (t2 = 0) 
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display results

End

Yes

Yes

Yes

B C

No

No

No

 

Figure 4.2: Flowchart of the developed PSO algorithm for the single-objective DG placement 
and sizing problem 
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4.4.3.1. Simulation results of the IEEE 16-bus distribution system  

The developed PSO algorithm is used to solve the single-objective DG placement and 

sizing problem in the IEEE 16-bus distribution system. The parameters of the 16-bus 

distribution system are given in Appendix A. 

 

a. Case 1: Single DG placement and sizing problem 

The developed PSO algorithm for the single-objective optimal DG placement and sizing 

problem is applied to the 16-bus distribution system. The solution of the PSO algorithm 

provides the best location and size for a single DG placement and sizing problem. The 

simulation results are compiled in Table 4.3.  

 

Table 4.3: Simulation results for the single DG placement and sizing problem of the 16-bus 
distribution system 

Simulation results Before DG placement After DG placement 

Total generation capacity in (MVA) 29.2140 + j6.9407 15.8172 + j4.4765 

Transformer power supply in (MVA) 

8.5830 + j2.9790 @bus 1 
 15.4901 + j3.9667 @bus 2 

 5.1409 − j0.0050 @bus 3 

8.5830 + j2.9790 @bus 1 
 2.0934 + j1.5025 @bus 2 

 5.1409 − j0.0050 @bus 3 

Power loss in (kW) 514.0293 162.8352 

Power loss reduction (%) − 68.3218 

Minimum voltage in (p. u) 0.9682 @bus 12 0.9848 @bus 7 

Maximum voltage in (p. u) 1 @ bus 1, 2 & 3 1.0007 @bus 9 

No of DG 0 1 

Optimal DG size (MVA) &  
location  

− 
13.0456 + j1.7526 @bus 9 

 

The simulation results show that for a single DG placement in the 16-bus distribution 

system, the optimal location is at bus 9 and the optimal size of the DG is (𝟏𝟑. 𝟎𝟒𝟓𝟔 +  𝐣𝟏. 𝟕𝟓𝟐𝟔) MVA. After DG placement at bus 9, the real power loss is reduced 

to 𝟏𝟔𝟐. 𝟖𝟑𝟓𝟐 𝐤𝐖 from 𝟓𝟏𝟒. 𝟎𝟐𝟗𝟑 𝐤𝐖. A power loss reduction of 𝟔𝟖. 𝟑𝟐𝟏𝟖% is achieved 

after the placement of the obtained single DG in the 16-bus distribution system. The power 

loss reduction (%𝐏𝐥𝐨𝐬𝐬) is calculated using Equation 4.5. The simulation results also 

indicate an improvement of the voltage profile of the 16-bus distribution system after DG 

placement as shown in Figure 4.3. Before the DG placement, the minimum voltage was 𝟎. 𝟗𝟔𝟖𝟐 𝐩. 𝐮 at bus 12. It is improved to 𝟎. 𝟗𝟖𝟒𝟖 𝐩. 𝐮 at bus 7 after the single DG placement 

in the 16-bus distribution system. 
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%𝐏𝐥𝐨𝐬𝐬 =  𝐏𝐥𝐨𝐬𝐬𝐀𝐟𝐭𝐞𝐫 𝐫𝐞𝐜𝐨𝐧𝐟𝐢𝐠𝐮𝐫𝐚𝐭𝐢𝐨𝐧 − 𝐏𝐥𝐨𝐬𝐬𝐁𝐞𝐟𝐨𝐫𝐞 𝐫𝐞𝐜𝐨𝐧𝐟𝐢𝐠𝐮𝐫𝐚𝐭𝐢𝐨𝐧𝐏𝐥𝐨𝐬𝐬𝐁𝐞𝐟𝐨𝐫𝐞 𝐫𝐞𝐜𝐨𝐧𝐟𝐢𝐠𝐮𝐫𝐚𝐭𝐢𝐨𝐧 × 𝟏𝟎𝟎%                               (4.5) 
Where  

   %𝐏𝐥𝐨𝐬𝐬 is the power loss reduction in percent (%). 

 

 
Figure 4.3: Voltage profile of the 16-bus distribution system before and after single DG 

placement at bus 9 

 

b. Case 2: Two DG placement and sizing problem 

The developed PSO algorithm for the single-objective optimal DG placement and sizing 

problem is applied to the 16-bus distribution system to determine the optimal locations to 

place two DG in the network and to find the optimal size of these two DG. The simulation 

results are compiled in Table 4.4.  

The simulation results indicate that for two DG placement in the 16-bus distribution system, 

the optimal locations are at bus 4 and bus 9. The optimal sizes of the DG are: (𝟖. 𝟓𝟒𝟒𝟎 + 𝐉𝟐. 𝟖𝟖𝟑𝟒) 𝐌𝐕𝐀 for the DG at bus 4 and (𝟏𝟑. 𝟎𝟒𝟓𝟔 +  𝐣𝟏. 𝟕𝟓𝟐𝟔) 𝐌𝐕𝐀 for the DG 

at bus 9. After placement of the two DG at bus 4 and at bus 9 respectively, the real power 

loss is reduced from 𝟓𝟏𝟒. 𝟎𝟐𝟗𝟑 𝐤𝐖 to 𝟏𝟎𝟎. 𝟒𝟖𝟏𝟔 𝐤𝐖. This corresponds to a real power 

loss reduction of 𝟖𝟎. 𝟒𝟓𝟐𝟐%.  
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Table 4.4: Simulation results for two DG placement and sizing problem of the 16-bus 
distribution system 

Simulation results Before DG placement After DG placement 

Total generation capacity in 
(MVA) 

29.2140 + j6.9407 7.2109 + j1.4663 

Transformer power supply in 
(MVA) 

8.5830 + j2.9790 @bus 1 

 15.4901 + j3.9667 @bus 2 

 5.1409 − j0.0050 @bus 3 

−0.0234 − j0.0312 @bus 1 

 2.0933 + j1.5025 @bus 2 

 5.1409 − j0.0050 @bus 3 

Power loss in (kW) 514.0293 100.4816 

Power loss reduction (%) − 80.4522 

Minimum voltage in (p. u) 0.9682 @bus 12 0.9912 @bus 16 

Maximum voltage in (p. u) 1 @bus 1, 2 & 3 1.0007 @bus 9 

No of DG 0 2 

Optimal DG size in (MVA) 
 & locations  

− 

8.5440 + J2.8834 @bus 4 
 13.0456 + j1.7526 @bus 9 

 

 

Figure 4.4: Voltage profile of the 16-bus distribution network before and after optimal 
placement of two DG (at buses 4 and 9) 
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Further analysis of the simulation results shows an improvement of the voltage profile of 

the 16-bus distribution system after placement of the two DG. As shown in Figure 4.4, 

Before the DG placement, the minimum voltage in the distribution system was 𝟎. 𝟗𝟔𝟖𝟐 𝐩. 𝐮 

at bus 12. After the placement of the two DG, the minimum voltage is 𝟎. 𝟗𝟗𝟏𝟐 𝐩. 𝐮 at bus 

16. 

 

c. Case 3: Three DG placement and sizing problem 

The developed PSO algorithm for the single-objective optimal DG placement and sizing 

problem is applied to the 16-bus distribution system to determine the optimal locations to 

place three DG in the network and to find the optimal size of these three DG. The simulation 

results are compiled in Table 4.5.  

 

Table 4.5: Simulation results for the three DG placement and sizing problem of the 16-bus 
distribution system 

Simulation results Before DG placement After DG placement 

Total generation capacity in (MVA) 29.2140 + j6.9407 3.2889 + j1.5265 

Transformer power supply in 
(MVA) 

8.5830 + j2.9790 @bus 1 

 15.4901 + j3.9667 @bus 2 

 5.1409 − j0.0050 @bus 3 

−0.0234 − j0.0312 @bus 1 

 2.0933 + j1.5025 @bus 2 

 1.2189 + j0.0551 @bus 3 

Power loss in (kW) 514.0293 65.1744 

Power loss reduction (%) − 87.3209 

Minimum voltage in (p. u) 0.9682 @bus 12 0.9939 @bus 10 

Maximum voltage in (p. u) 1 @bus 1, 2 & 3 1.0007 @bus 9 

No of DG 0 3 

Optimal DG size in (MVA) 
& locations 

− 

8.5440 + J2.8834 @bus 4 
 13.0456 + j1.7526 @bus 9 
 3.8867 − j0.1449 @bus16 

 

The simulation results indicate that for three DG placement in the 16-bus distribution 

system, the optimal locations are at bus 4, bus 9 and bus 16. The optimal sizes of the DG 

are: (𝟖. 𝟓𝟒𝟒𝟎 + 𝐉𝟐. 𝟖𝟖𝟑𝟒) 𝐌𝐕𝐀 for the DG at bus 4, (𝟏𝟑. 𝟎𝟒𝟓𝟔 +  𝐣𝟏. 𝟕𝟓𝟐𝟔) 𝐌𝐕𝐀 for the 

DG at bus 9, and (𝟑. 𝟖𝟖𝟔𝟕 − 𝐣𝟎. 𝟏𝟒𝟒𝟗) 𝐌𝐕𝐀 at bus 16. After placement of the three DG at 

bus 4, at bus 9 and at bus 16 respectively, the real power loss is reduced from 
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𝟓𝟏𝟒. 𝟎𝟐𝟗𝟑 𝐤𝐖 to 𝟔𝟓. 𝟏𝟕𝟒𝟒 𝐤𝐖. This corresponds to a real power loss reduction of 𝟖𝟕. 𝟑𝟐𝟎𝟗%.  

Further analysis of the simulation results shows an improvement of the voltage profile of 

the 16-bus distribution system after placement of the three DG. As shown in Figure 4.5, 

Before the DG placement, the minimum voltage in the distribution system was 𝟎. 𝟗𝟔𝟖𝟐 𝐩. 𝐮 

at bus 12. After the placement of the two DG, the minimum voltage is 𝟎. 𝟗𝟗𝟑𝟗 𝐩. 𝐮 at bus 

10. 

 

 
Figure 4.5: Voltage profile of the 16-bus distribution network before and after optimal 

placement of three DG 

 

4.4.3.2. IEEE 33-bus distribution system results 

The developed PSO algorithm is used to solve the single-objective DG placement and 

sizing problem in the IEEE 33-bus distribution system. The parameters of the 33-bus 

distribution system are given in Appendix B. 

 

a. Case 1: Single DG placement and sizing problem 

The developed PSO algorithm for the single-objective optimal DG placement and sizing 

problem is applied to the 33-bus distribution system. The solution of the PSO algorithm 
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provides the best location and size for a single DG placement and sizing problem. The 

simulation results are compiled in Table 4.6.  

 

Table 4.6: Simulation results for the single DG placement and sizing problem of the 33-bus 
distribution system 

Simulation results Before DG placement After DG placement 

Transformer power supply in 
(MVA) 

3.9234 + j2.4117 @bus 1 
1.2243 + j0.6099 @bus 1 

Power loss in (kW) 208.4322 67.9575 

Power loss reduction (%) − 67.3959 

Minimum voltage in (p. u) 0.9108 @bus 18 0.9573 @bus 18 

Maximum voltage in (p. u) 1 @bus 1 1.0005 @bus 6 

No of DG 0 1 

Optimal DG size in (MVA)  
& location 

− 
2.5586 + j1.7440 @bus 6 

 

The simulation results show that for a single DG placement in the 33-bus distribution 

system, the optimal location is at bus 6 and the optimal size of the DG is (𝟐. 𝟓𝟓𝟖𝟔 + 𝐣𝟏. 𝟕𝟒𝟒𝟎) 𝐌𝐕𝐀. After DG placement at bus 6, the real power loss is reduced to 𝟔𝟕. 𝟗𝟓𝟕𝟓 𝐤𝐖 from 𝟐𝟎𝟖. 𝟒𝟑𝟐𝟐 𝐤𝐖. A power loss reduction of 𝟔𝟕. 𝟑𝟗𝟓𝟗% is achieved after 

the placement of the obtained single DG in the 33-bus distribution system.  

 

 
Figure 4.6: Voltage profile of the 33-bus distribution network before and after the optimal 

placement of a single DG  
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The simulation results also indicate an improvement of the voltage profile of the 33-bus 

distribution system after DG placement as shown in Figure 4.6. Before the DG placement, 

the minimum voltage was 𝟎. 𝟗𝟏𝟎𝟖 𝐩. 𝐮 at bus 18. It is improved to 𝟎. 𝟗𝟓𝟕𝟑 𝐩. 𝐮 after the 

single DG placement in the 33-bus distribution system. 

 

b. Case 2: Two DG placement and sizing problem 

The developed PSO algorithm for the single-objective optimal DG placement and sizing 

problem is applied to the 33-bus distribution system to determine the optimal locations to 

place two DG in the network and to find the optimal size of these two DG. The simulation 

results are compiled in Table 4.7.  

 

Table 4.7: Simulation results for two DG placement and sizing problem of the 33-bus 
distribution system 

Simulation results Before DG placement After DG placement 

Transformer power supply 
in (MVA) 

3.9234 + j2.4117 @bus 1 

1.7601 + j0.8587 @bus 1 

Power loss in (kW) 208.4322 28.5018 

Power loss reduction (%) − 86.3256 

Minimum voltage in (p. u) 0.9108 @bus 18 0.9803 @bus 25 

Maximum voltage in (p. u) 1 @bus 1 1.0011 @bus 30 

No of DG 0 2 

Optimal DG size in (MVA) 
& location 

− 

0.8456 + j0.3985 @bus 13 
 1.1378 + j1.0633 @bus 30 

 

The simulation results indicate that for two DG placement in the 33-bus distribution system, 

the optimal locations are at bus 13 and bus 30. The optimal sizes of the DG are: (𝟎. 𝟖𝟒𝟓𝟔 + 𝐣𝟎. 𝟑𝟗𝟖𝟓) 𝐌𝐕𝐀 for the DG at bus 13 and (𝟏. 𝟏𝟑𝟕𝟖 + 𝐣𝟏. 𝟎𝟔𝟑𝟑) 𝐌𝐕𝐀 for the DG 

at bus 30. After placement of the two DG at bus 13 and at bus 30 respectively, the real 

power loss is reduced from 𝟐𝟎𝟖. 𝟒𝟑𝟐𝟐 𝐤𝐖 to 𝟐𝟖. 𝟓𝟎𝟏𝟖 𝐤𝐖. This corresponds to a real 

power loss reduction of 𝟖𝟔. 𝟑𝟐𝟓𝟔%. Further analysis of the simulation results shows an 

improvement of the voltage profile of the 33-bus distribution system after placement of the 

two DG. As shown in Figure 4.7, Before the DG placement, the minimum voltage in the 

distribution system was 𝟎. 𝟗𝟏𝟎𝟖 𝐩. 𝐮 at bus 18. After the placement of the two DG, the 

minimum voltage is 𝟎. 𝟗𝟖𝟎𝟑 𝐩. 𝐮 at bus 25. 
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Figure 4.7: Voltage profile of the 33-bus distribution network before and after the optimal 
placement of two DG  

 

c. Case 3: Three DG placement and sizing problem 

The developed PSO algorithm for the single-objective optimal DG placement and sizing 

problem is applied to the 33-bus distribution system to determine the optimal locations to 

place three DG in the network and to find the optimal size of these three DG. The simulation 

results are compiled in Table 4.8. The simulation results indicate that for three DG 

placement in the 33-bus distribution system, the optimal locations are at bus 13, bus 24 

and bus 30. The optimal sizes of the DG are: (𝟎. 𝟕𝟗𝟐𝟑 + 𝐣𝟎. 𝟑𝟕𝟐𝟕) 𝐌𝐕𝐀 for the DG at bus 

13, (𝟏. 𝟎𝟔𝟗𝟗 + 𝐣𝟎. 𝟓𝟏𝟕𝟒) 𝐌𝐕𝐀 for the DG at bus 24, and (𝟏. 𝟎𝟐𝟗𝟕 + 𝐣𝟏. 𝟎𝟏𝟎𝟒) 𝐌𝐕𝐀 at bus 

30. After placement of the three DG at bus 13, at bus 24 and at bus 30 respectively, the 

real power loss is reduced from 𝟐𝟎𝟖. 𝟒𝟑𝟐𝟐 𝐤𝐖 to 𝟏𝟏. 𝟕𝟑𝟑𝟓 𝐤𝐖. This corresponds to a real 

power loss reduction of 𝟗𝟒. 𝟑𝟕𝟎𝟔%. Further analysis of the simulation results shows an 

improvement of the voltage profile of the 33-bus distribution system after placement of the 

three DG. As shown in Figure 4.8, Before the DG placement, the minimum voltage in the 

distribution system was 0.9108 p. u at bus 18. After the placement of the three DG, the 

minimum voltage is 𝟎. 𝟗𝟗𝟐𝟓 𝐩. 𝐮 at bus 8. 
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Table 4.8: Simulation results for three DG placement and sizing problem of the 33-bus 
distribution system 

Simulation results Before DG placement After DG placement 

Transformer power supply 
in (MVA) 

3.9234 + j2.4117 @bus 1 

0.8348 + j0.4091 @bus 1 

Power loss in (kW) 208.4322 11.7335 

Power loss reduction (%) − 94.3706 

Minimum voltage in (p. u) 0.9108 @bus 18 0.9925 @bus 8 

Maximum voltage in (p. u) 1 @bus 1 1.0009 @bus 30 

No of DG 0 3 

Optimal DG size in (MVA)  
& location 

− 

0.7923 + j0.3727 @bus 13 
 1.0699 + j0.5174 @bus 24 
 1.0297 + j1.0104 @bus 30 

 
 

 
Figure 4.8: Voltage profile of the 33-bus distribution network before and after the optimal 

placement of three DG 

 

4.4.3.3. IEEE 69-bus distribution system results 

The developed PSO algorithm is used to solve the single-objective DG placement and 

sizing problem in the IEEE 69-bus distribution system. The parameters of the 69-bus 

distribution system are given in Appendix D. 
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a. Case 1: Single DG placement and sizing problem 

The developed PSO algorithm for the single-objective optimal DG placement and sizing 

problem is applied to the 69-bus distribution system. The solution of the PSO algorithm 

provides the best location and size for a single DG placement and sizing problem. The 

simulation results are compiled in Table 4.9.  

 

Table 4.9: Simulation results for the single DG placement and sizing problem of the 69-bus 
distribution system 

Simulation results Before DG placement After DG placement 

Transformer power supply 
in (MVA) 

4.0268 + j2.7968 @bus 1 
1.9973 + j1.4097 @bus 1 

Power loss in (kW) 224.9804 23.1574 

Power loss reduction (%) − 89.7069 

Minimum voltage in (p. u) 0.9092 @bus 65 0.9725 @bus 27 

Maximum voltage in (p. u) 1 @bus 1 1 @bus 1 

No of DG 0 1 

Optimal DG size in (MVA) 
& location 

− 
1.8277 + j1.2993 @bus 61 

 

The simulation results show that for a single DG placement in the 69-bus distribution 

system, the optimal location is at bus 61 and the optimal size of the DG is (𝟏. 𝟖𝟐𝟕𝟕 + 𝐣𝟏. 𝟐𝟗𝟗𝟑) 𝐌𝐕𝐀. After DG placement at bus 61, the real power loss is reduced 

to 𝟐𝟑. 𝟏𝟓𝟕𝟒 𝐤𝐖 from 𝟐𝟐𝟒. 𝟗𝟖𝟎𝟒 𝐤𝐖. A power loss reduction of 𝟖𝟗. 𝟕𝟎𝟔𝟗% is achieved after 

the placement of the obtained single DG in the 69-bus distribution system.  

 
Figure 4.9: Voltage profile of the 69-bus distribution network before and after the optimal 

placement of a single DG 
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The simulation results also indicate an improvement of the voltage profile of the 69-bus 

distribution system after DG placement as shown in Figure 4.9. Before the DG placement, 

the minimum voltage was 𝟎. 𝟗𝟎𝟗𝟐 𝐩. 𝐮 at bus 65. It is improved to 𝟎. 𝟗𝟕𝟐𝟓 𝐩. 𝐮 at bus 27 

after the single DG placement in the 69-bus distribution system. 

 

b. Case 2: Two DG placement and sizing problem 

The developed PSO algorithm for the single-objective optimal DG placement and sizing 

problem is applied to the 69-bus distribution system to determine the optimal locations to 

place two DG in the network and to find the optimal size of these two DG. The simulation 

results are compiled in Table 4.10.  

 

Table 4.10: Simulation results for two DG placement and sizing problem of the 69-bus 
distribution system 

Simulation results Before DG placement After DG placement 

Transformer power supply 
in (MVA) 

4.0268 + j2.7968 @bus 1 
1.5587 + j1.1168 @bus 1 

Power loss in (kW) 224.9804 7.2210 

Power loss reduction (%) − 96.7904 

Minimum voltage in (p. u) 0.9092 @bus 65 0.9942 @bus 69 

Maximum voltage in (p. u) 1 @bus 1 1 @bus 1 

No of DG 0 2 

Optimal DG size in (MVA) 
& location 

− 

0.5156 + j0.3596 @bus 17 
 1.7348 + j1.2262 @bus 61 

 

The simulation results indicate that for two DG placement in the 69-bus distribution system, 

the optimal locations are at bus 17 and bus 61. The optimal sizes of the DG are: (𝟎. 𝟓𝟏𝟓𝟔 + 𝐣𝟎. 𝟑𝟓𝟗𝟔) 𝐌𝐕𝐀 for the DG at bus 17 and (𝟏. 𝟕𝟑𝟒𝟖 + 𝐣𝟏. 𝟐𝟐𝟔𝟐) 𝐌𝐕𝐀 for the DG 

at bus 61. After placement of the two DG at bus 17 and at bus 61 respectively, the real 

power loss is reduced from 𝟐𝟐𝟒. 𝟗𝟖𝟎𝟒 𝐤𝐖 to 𝟕. 𝟐𝟐𝟏𝟎 𝐤𝐖. This corresponds to a real power 

loss reduction of 𝟗𝟔. 𝟕𝟗𝟎𝟒%.  

Further analysis of the simulation results shows an improvement of the voltage profile of 

the 69-bus distribution system after placement of the two DG. As shown in Figure 4.10, 

before the DG placement, the minimum voltage in the distribution system was 𝟎. 𝟗𝟎𝟗𝟐 𝐩. 𝐮 

at bus 65. After the placement of the two DG, the minimum voltage is 𝟎. 𝟗𝟗𝟒𝟐 𝐩. 𝐮 at bus 

69. 
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Figure 4.10: Voltage profile of the 69-bus distribution network before and after the 
optimal placement of two DG  

 

c. Case 3: Three DG placement and sizing problem 

The developed PSO algorithm for the single-objective optimal DG placement and sizing 

problem is applied to the 69-bus distribution system to determine the optimal locations to 

place three DG in the distribution network and to find the optimal size of these three DG. 

The simulation results are compiled in Table 4.11.  

The simulation results indicate that for three DG placement in the 69-bus distribution 

system, the optimal locations are at bus 11, bus 21 and bus 61. The optimal sizes of the 

DG are: (𝟎. 𝟓𝟑𝟑𝟒 + 𝐣𝟎. 𝟑𝟓𝟗𝟓) 𝐌𝐕𝐀 for the DG at bus 11, (𝟎. 𝟑𝟒𝟐𝟏 + 𝐣𝟎. 𝟐𝟐𝟗𝟔) 𝐌𝐕𝐀 for the 

DG at bus 21, and (𝟏. 𝟔𝟕𝟗𝟑 + 𝐣𝟏. 𝟏𝟗𝟖𝟑) 𝐌𝐕𝐀 at bus 61. After placement of the three DG 

at bus 11, at bus 21 and at bus 61 respectively, the real power loss is reduced from 𝟐𝟐𝟒. 𝟗𝟖𝟎𝟒 𝐤𝐖 to 𝟒. 𝟐𝟕𝟕𝟒 𝐤𝐖. This corresponds to a real power loss reduction of 𝟗𝟖. 𝟎𝟗𝟖𝟖%. 

Further analysis of the simulation results shows an improvement of the voltage profile of 

the 69-bus distribution system after placement of the three DG. As shown in Figure 4.11, 

Before the DG placement, the minimum voltage in the distribution system was 𝟎. 𝟗𝟎𝟗𝟐  𝐩. 𝐮 
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at bus 65. After the placement of the three DG, the minimum voltage is 𝟎. 𝟗𝟗𝟒𝟑 𝐩. 𝐮 at bus 

50. 

 

Table 4.11: Simulation results for three DG placement and sizing problem of the 69-bus 
distribution system 

Simulation results Before DG placement After DG placement 

Transformer power supply 
in (MVA) 

4.0268 + j2.7968 @bus 1 
1.2512 + j0.914 @bus 1 

Power loss in (kW) 224.9804 4.2774 

Power loss reduction (%) − 98.0988 

Minimum voltage in (p. u) 0.9092 @bus 65 0.9943 @bus 50 

Maximum voltage in (p. u) 1 @bus 1 1.0001 @bus 61 

No of DG 0 3 

Optimal DG size in (MVA) 
& location 

− 

0.5334 + j0.3595 @bus 11 
 0.3421 + j0.2296 @bus 21 
 1.6793 + j1.1983 @bus 61 

 

 

 

Figure 4.11: Voltage profile of the 69-bus distribution network before and after the 
optimal placement of three DG  
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4.4.4. Discussion of the results of the developed PSO algorithm for the single-objective 

optimal DG placement and sizing problem 

The application of the developed PSO solution algorithm to the single-objective optimal 

DG placement problem on the distribution system shows that the optimal sizing and 

placement of a DG in a distribution system results in a reduction of the real power loss 

along with an improvement of the voltage profile of the system. The percentage of the real 

power loss reduction increases when multiple DG are optimally sized and placed in the 

distribution system. The simulation results indicate that for the 33-bus and 69-bus 

distribution systems, the solution of the real power loss minimisation problem complies 

with the voltage, power flow, and DG limits constraints of the distribution systems. The 

simulation results show that after placing multiple DG in the 16-bus distribution system, 

the source transformer 1 draws the real and reactive power from the downstream network. 

That means that the solutions from Tables 4.4 and 4.5 may not work in the current state of 

the power grid. However, these solutions would work in future smart distribution system 

since the future smart grid will be designed for seamless integration of DG and to 

accommodate bi-directional power flow in the distribution system.  

 
The placement of multiple DG in the 16-bus distribution system causes a power flow to the 

grid. This is the evidence that the Distributed Generations create a bidirectional power flow 

which can affect the power system performance. Therefore, there is a need to add a new 

constraint to the developed algorithm to prevent the DG power flow to the grid. The 

alternative solutions for the optimal placement and sizing of 2 and 3 DG in the 16-bus 

distribution system, resulting from the addition of the new constraint, is provided in Table 

4.12. The new voltages profiles after placement of 2 and 3 DG are given in Figure 4.12. 

From Table 4.12, it is observed that the new real power loss after the placement of 2 and 

3 DG in the 16-bus distribution system are: 𝟏𝟎𝟎. 𝟕𝟖𝟗𝟑 𝐤𝐖 after two DG placement and 𝟔𝟓. 𝟒𝟖𝟐𝟏 𝐤𝐖 after three DG placement. The new minimum voltages in the 16-bus 

distribution system are 𝟎. 𝟗𝟗𝟏𝟐 𝐩. 𝐮 at bus 16 and 𝟎. 𝟗𝟗𝟑𝟗 𝐩. 𝐮 at bus 10, for the two DG 

and three DG placement respectively. 

 
The obtained solutions of the optimal DG placement and sizing problem for real power loss 

minimisation are compared with some results from the literature, and it is given in Table 

4.13. It can be deduced that for the case studies considered above, the developed PSO 

solution algorithm performs better than the algorithms used in the available literature. 
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Table 4.12: Results of the optimal multi-DG placement in the 16-bus distribution network 

Simulation results After DG placement 

No of DG 2 3 

Total generation capacity in (MVA) 9.9605 + j2.5937 5.6624 + j2.5162 

Transformer power supply in (MVA) 

2.7261 + j1.0962 @bus 1 
 2.0935 + j1.5025 @bus 2 

 5.1409 − j0.0050 @bus 3 

2.7262 + j1.0964 @bus 1 
 2.0933 + j1.5025 @bus 2 

 1.2189 + j0.0552 @bus 3 

Power loss (kW) 100.7893 65.4821 

Power loss reduction (%) 80.3923 87.261 

Minimum voltage (p. u) 0.9912 @bus 16 0.9939 @bus 10 

Maximum voltage (p. u) 1.0007 @bus 9 1.0007 @bus 9 

DG size (MVA) & 
position  

5.7948 + j1.7468 @bus 6 
 13.0454 + j1.7526 @bus 9 

5.7947 + j1.7467 @bus 6 
 13.0456 + j1.7526 @bus 9 
 3.8867 − j0.1449 @bus 16 

 

 

 

Figure 4.12: Voltage profile results for the multi- DG placement in the 16-bus distribution 
network 
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Table 4.13: Comparison of the developed PSO solution algorithm for the single-objective optimal DG placement and sizing problem with 
the literature ones 

𝟏𝟔 𝐛𝐮𝐬 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐃𝐞𝐯𝐞𝐥𝐨𝐩𝐞𝐝 𝐏𝐒𝐎 𝐚𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 
𝐈𝐦𝐩𝐫𝐨𝐯𝐞𝐝 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐚𝐥 (𝐈𝐀)  
(Hung et al., 2010) 

𝐄𝐱𝐡𝐚𝐮𝐬𝐭𝐢𝐯𝐞 𝐋𝐨𝐚𝐝 𝐅𝐥𝐨𝐰 (𝐄𝐋𝐅) 
(Hung et al., 2010) 𝐍𝐨 𝐨𝐟 𝐃𝐆 1 1 1 𝐃𝐆 𝐭𝐲𝐩𝐞 III III III 𝐎𝐩𝐭𝐢𝐦𝐚𝐥 𝐃𝐆 𝐬𝐢𝐳𝐞 (𝐌𝐕𝐀) & 𝐋𝐨𝐜𝐚𝐭𝐢𝐨𝐧 

13.0456 + j1.7526 @bus 9 

13.1739 + j0.2276 @bus 9 
13.1196 + j0.2267 @bus 9 𝐏𝐨𝐰𝐞𝐫 𝐥𝐨𝐬𝐬 𝐛𝐞𝐟𝐨𝐫𝐞 𝐃𝐆 

514.0293 kW 511.43 kW 511.43 kW 𝐏𝐨𝐰𝐞𝐫 𝐥𝐨𝐬𝐬 𝐚𝐟𝐭𝐞𝐫 𝐃𝐆 
162.8352 kW 162.58 kW 162.58 kW 

Percentage of 
real power loss 
reduction 

68.3218% 68.2107% 68.2107% 

𝟑𝟑 𝐛𝐮𝐬 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐃𝐞𝐯𝐞𝐥𝐨𝐩𝐞𝐝 𝐏𝐒𝐎 𝐚𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 
PSO  
(Kansal et al., 2013) 

𝐆𝐀 − 𝐈𝐏𝐒𝐎 (𝐀𝐰𝐨𝐝𝐞𝐥𝐞, 𝟐𝟎𝟏𝟔) 

𝐌𝐨𝐝𝐢𝐟𝐢𝐞𝐝 𝐅𝐮𝐳𝐳𝐲  𝐚𝐧𝐝 𝐂𝐥𝐨𝐧𝐚𝐥 𝐒𝐞𝐥𝐞𝐜𝐭𝐢𝐨𝐧 (𝐌𝐮𝐫𝐭𝐡𝐲 & 𝐊𝐮𝐦𝐚𝐫 , 𝟐𝟎𝟏𝟑) 𝐍𝐨 𝐨𝐟 𝐃𝐆 1 2 3 1 2 3 1 𝐃𝐆 𝐭𝐲𝐩𝐞 III III III III I & II IV III 
𝐎𝐩𝐭𝐢𝐦𝐚𝐥 𝐃𝐆 𝐬𝐢𝐳𝐞 (𝐌𝐕𝐀) & 𝐋𝐨𝐜𝐚𝐭𝐢𝐨𝐧 

2.5586+ j1.7440 @bus 6 

0.8456+ j0.3985 @bus 13 
 1.1378+ j1.0633 @bus 30 

0.7923+ j0.3727 @bus 13 
 1.0699+ j0.5174 @bus 24 
 1.0297+ j1.0104 @bus 30 

3.0197− j0.0432  @bus 6 

2.5317 MW @bus 6 
 1.2258 Mvar @bus 30 

0.507 + j0.03  @bus 18 
 0.301 + j0.01 @bus 23 
 0.707 + j0.002 @bus 32 

3.0109 + j0.0473 @bus 6 
 

𝐏𝐨𝐰𝐞𝐫 𝐥𝐨𝐬𝐬 𝐛𝐞𝐟𝐨𝐫𝐞 𝐃𝐆 
208.4322 kW 208.4322 kW 208.4322 kW 211 kW 211 kW 211.2 kW 210.9761 kW 𝐏𝐨𝐰𝐞𝐫 𝐥𝐨𝐬𝐬 𝐚𝐟𝐭𝐞𝐫 𝐃𝐆 
67.9575 kW 28.5018 kW 11.7335 kW 67.95 kW 58.45 kW 44.60 kW 70.9072 kW 

Percentage of 
real power loss 
reduction 

 

67.3959% 86.3256% 94.3706% 67.7962% 72.2986% 78.8826% 66.3909% 
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𝟔𝟗 𝐛𝐮𝐬 

Algorithm 𝐃𝐞𝐯𝐞𝐥𝐨𝐩𝐞𝐝 𝐏𝐒𝐎 𝐚𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 
𝐏𝐒𝐎  (𝐊𝐚𝐧𝐬𝐚𝐥 𝐞𝐭 𝐚𝐥. , 𝟐𝟎𝟏𝟑) 

𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐚𝐥 𝐚𝐩𝐩𝐫𝐨𝐚𝐜𝐡 (𝐀𝐜𝐡𝐚𝐫𝐲𝐚 𝐞𝐭 𝐚𝐥. , 𝟐𝟎𝟎𝟔)) 

𝐄𝐱𝐡𝐚𝐮𝐬𝐭𝐢𝐯𝐞 𝐋𝐨𝐚𝐝 𝐅𝐥𝐨𝐰 (𝐄𝐋𝐅) (𝐇𝐮𝐧𝐠 𝐞𝐭 𝐚𝐥. , 𝟐𝟎𝟏𝟎) 𝐍𝐨 𝐨𝐟 𝐃𝐆 1 1 1 1 𝐃𝐆 𝐭𝐲𝐩𝐞 III III I III 𝐃𝐆 𝐬𝐢𝐳𝐞 (𝐌𝐕𝐀) & 𝐋𝐨𝐜𝐚𝐭𝐢𝐨𝐧 

1.8277 + j1.2993 @bus 61 

2.2238 + j0.0314 @bus 61 
1.81 MW @bus 61 

2.2427 + j0.0321 @bus 61 𝐏𝐨𝐰𝐞𝐫 𝐥𝐨𝐬𝐬 𝐛𝐞𝐟𝐨𝐫𝐞 𝐃𝐆 
224.9804 kW 225 kW 219.28 kW 219.28 kW 𝐏𝐨𝐰𝐞𝐫 𝐥𝐨𝐬𝐬 𝐚𝐟𝐭𝐞𝐫 𝐃𝐆 
23.1574 kW 23.19 kW 81.44 kW 22.62 kW 

Percentage of 
real power loss  
reduction 

89.7069% 89.6933% 62.8603% 89.6844% 
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4.5. Multi-objective DG placement and sizing problem using the weighted-sum approach 

The optimal placement of DG can be a single-objective or a multi-objective problem, 

depending on the objectives considered. In this section, a weighted sum based PSO 

approach is developed to solve a multi-objective problem. The objectives considered are 

the real power loss minimisation, the voltage deviation minimisation and the maximisation 

of the bus voltage stability index. The performance of the developed multi-objective 

solution algorithm is tested for different case studies, and the results are presented in this 

section. 

 

4.5.1. Problem formulation of the multi-objective DG placement and sizing problem 

Sometimes, optimisation problems have more than one objective. These objectives are 

often conflicting, and therefore, a compromise should be reached when solving a multi-

objective optimisation problem. In this research work, the weighted-sum approach is used 

to solve the multi-objective optimal DG placement and sizing problem. 

 

4.5.1.1. Basics of the weighted-sum approach 

The weighted-sum method consists of aggregating a set of objective functions into a 

single-objective using weight factors. The single-objective function is the sum of all 

objective functions multiplied by the respective weight factor (Marler & Arora, 2009). It is 

mathematically formulated as indicated in Equation 4.6. 

 𝐦𝐢𝐧 𝐟(𝐱) = ∑ 𝐰𝐞𝐢. 𝐟𝐢(𝐱)𝐩
𝐢=𝟏                                                                                                                     (4.6. a) 

Subject to 

𝐰𝐞𝐢 ≥ 𝟎, ∀𝐢 = 𝟏, 𝟐, ⋯ , 𝐩 

               (4.6. b) ∑ 𝐰𝐞𝐢𝐩
𝐢=𝟏 = 𝟏 

Where 𝐩 is the number of objective functions 𝐟𝐢. 𝐰𝐞𝐢 is the weight factor of the objective function 𝐟𝐢 𝐱 is the input data for each function 𝐟𝐢. 
 

The value of the weight factor 𝐰𝐞𝐢 of the objective function 𝐟𝐢 depends on the how important 

the function 𝐟𝐢 is in the problem. As an example, if for two objective functions 𝐟𝟏 and 𝐟𝟐, the 
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solution of 𝐟𝟏 are more important than that of 𝐟𝟐, then, the value 𝐰𝐞𝟏 should be greater 

than 𝐰𝐞𝟐’s. The weight factors are usually predefined before the optimization process. 

The magnitudes of the objective functions need to be normalised, to obtain a Pareto-

optimal solution consistent with the predetermined weight factors. The normalisation of all 

objective functions ensures that none of the objectives largely dominates others (Marler & 

Arora, 2009). In this research work, the normalisation approach consists of dividing 

individual objective function by their respective reference value as indicated in Equation 

4.7. 

 𝐟𝐢 𝐧𝐨𝐫𝐦(𝐱) = 𝐟𝐢(𝐱)|𝐟𝐢 𝐫𝐞𝐟 (𝐱𝟎)|                                                                                                                           (4.7) 
Where  

   𝐱 is the input data 𝐟𝐢 𝐧𝐨𝐫𝐦 is the normalized expression of the objective function 𝐟𝐢 to be optimized. 𝐟𝐢 𝐫𝐞𝐟 is the value of 𝐟𝐢 for the initial input data 𝐱𝟎. 

 
Using Equations 4.6 and 4.7, the weighted-sum based multi-objective problem is 

formulated as given in Equation 4.8. 

 𝐦𝐢𝐧 𝐟(𝐱) = 𝐰𝐞𝟏. 𝐟𝟏 𝐧𝐨𝐫𝐦(𝐱) + 𝐰𝐞𝟐. 𝐟𝟐 𝐧𝐨𝐫𝐦(𝐱) + ⋯ + 𝐰𝐞𝐩. 𝐟𝐩 𝐧𝐨𝐫𝐦(𝐱)            (4.8) 
Using the normalisation concept above, the objectives functions of the multi-objective DG 

placement and sizing problem are formulated and presented in the next section of this 

thesis. 

 

4.5.1.2. Real Power loss formulation 

The real power loss PLoss in a distribution system is the sum of the real component of the 

power loss in individual branches of the network. It can be mathematically formulated as 

in Equation 4.1. The normalised power loss formulation 𝐟𝟏 𝐧𝐨𝐫𝐦 is given in Equation 4.9. 

 𝐟𝟏 𝐧𝐨𝐫𝐦(𝐱) = 𝐏𝐋𝐨𝐬𝐬(𝐱)𝐏𝐋𝐨𝐬𝐬(𝐱𝟎)                                                                                                                             (4.9) 
Where 

   𝐱 is a distribution network with or without DG. 𝐏𝐋𝐨𝐬𝐬(𝐱𝟎) is the real power loss in the initial distribution network without DG. 

 



145 

 

4.5.1.3. Voltage profile improvement 

The improvement of the voltage profile in the distribution system is achieved by minimising 

the Voltage Deviation Index (VDI). The voltage deviation index is a measure of how far the 

bus voltage has deviated from the reference voltage, and it can be mathematically 

formulated as in Equation 4.10. 

 𝐕𝐃𝐈 = ∑|𝐕𝐢 − 𝐕𝐫𝐚𝐭𝐞𝐝|𝐍𝐁
𝐢=𝟏                                                                                                                            (4.10) 

Where  

   𝐕𝐃𝐈 is the Voltage Deviation Index. 𝐕𝐢 is the voltage at bus 𝐢. 𝐕𝐫𝐚𝐭𝐞𝐝 is the rated voltage and it is equal to 1 p. u. 𝐍𝐁 is the number of buses in the distribution system. 

 
Minimising Equation 4.10 implies that after DG placement, all node voltages should be as 

close as possible to the rated voltage. The typical voltage rating in primary distribution 

systems is 1 per-unit with a margin of ±6% (TSD, 2003). Any deviation from this voltage 

range may indicate either a disturbance or an overload in the distribution system. 

Therefore, the operating voltage in the distribution system should be kept within the 

tolerance limit. 

 
The normalised expression for the voltage deviation index objective function is given in 

Equation 4.11. 

 𝐟𝟐 𝐧𝐨𝐫𝐦(𝐱) = 𝐕𝐃𝐈(𝐱)𝐕𝐃𝐈𝟎                                                                                                                                (4.11) 
Where 𝐕𝐃𝐈𝟎 is the voltage deviation index for the initial distribution system without DG. 

 
 

4.5.1.4. Voltage stability maximisation 

Voltage stability refers to the ability of an electrical network to preserve steady voltages at 

its nodes after being subjected to a disturbance from a given operating point (Palukuru et 

al., 2014). Voltage instability may lead to a voltage collapse, characterised by 

unacceptable levels of voltage at certain nodes. Voltage instability is usually the result of 

increased load demand and reactive power deficiency (Palukuru et al., 2014). The 
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introduction of a DG in the distribution system can be considered as a small disturbance. 

So, the Voltage Stability Index (VSI) of the distribution system is likely to be changed. The 

voltage stability index in radial distribution systems can be obtained using Equation 4.12 

(Eminoglu & Hocaoglu, 2007). 

 𝐕𝐒𝐈(𝐣) =  𝟐𝐕𝐢𝟐. 𝐕𝐣𝟐 − 𝐕𝐣𝟒 − 𝟐𝐕𝐣𝟐. (𝐏𝐣. 𝐫𝐢𝐣 + 𝐐𝐣. 𝐱𝐢𝐣) − |𝐳𝐢𝐣|𝟐. (𝐏𝐣𝟐 + 𝐐𝐣𝟐)        (4.12) 

Where 𝐕𝐒𝐈(𝐣) is the voltage stability index at bus 𝐣. 𝐕𝐢 and 𝐕𝐣 are the sending and receiving bus voltages respectively. 𝐏𝐣 and 𝐐𝐣 are the real and reactive power demand at bus 𝐣 respectively. 𝐫𝐢𝐣, 𝐱𝐢𝐣, and 𝐳𝐢𝐣 are the resistance, reactance and impedance of branch 𝐢 − 𝐣. 
 

For stable operation of the distribution system, the voltage stability index should be closer 

to 1. A maximal value of VSI means that there is no load connected at the receiving end 

bus. In that case, if the sending and receiving bus voltages are equal to 1 p. u, then the VSI 

is equal to unity. Increasing the loading of the distribution system will ultimately reduce the 

stability indexes at all buses. Buses with small voltage stability index values are more 

prone to be unstable. So, the voltage stability index objective function is a measure of how 

close to the reference the VSI at all buses are. The voltage stability index objective function VSIDev is given in Equation 4.13.  

 𝐕𝐒𝐈𝐃𝐞𝐯 = ∑|𝟏 − 𝐕𝐒𝐈𝐣|𝐍𝐁
𝐣=𝟏                                                                                                                          (4.13) 

Where  𝐕𝐒𝐈𝐣 is the voltage stability index of bus 𝐣. 𝐕𝐒𝐈𝐃𝐞𝐯 is the Voltage Stability Index objective function. 𝐍𝐁 is the number of buses in the distribution system. 

 
The normalised voltage stability objective function is given in Equation 4.14. 

 𝐟𝟑 𝐧𝐨𝐫𝐦(𝐱) = 𝐕𝐒𝐈𝐃𝐞𝐯(𝐱)𝐕𝐒𝐈𝐃𝐞𝐯𝟎                                                                                                                          (4.14) 
Where 
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𝐕𝐒𝐈𝐃𝐞𝐯𝟎 is the voltage stability index objective value for the initial distribution 

system without DG. 

 

Therefore, the weighted-sum objective function for the multi-objective optimal DG 

placement and sizing problem is as given in Equation 4.15. 

 𝐟(𝐱) = 𝐰𝐞𝟏. 𝐟𝟏 𝐧𝐨𝐫𝐦(𝐱) + 𝐰𝐞𝟐. 𝐟𝟐 𝐧𝐨𝐫𝐦(𝐱) + 𝐰𝐞𝟑. 𝐟𝟑 𝐧𝐨𝐫𝐦(𝐱)      (4.15. a) 

   𝐟(𝐱) = 𝐰𝐞𝟏. 𝐏𝐋𝐨𝐬𝐬(𝐱)𝐏𝐋𝐨𝐬𝐬(𝐱𝟎) + 𝐰𝐞𝟐. 𝐕𝐃𝐈(𝐱)𝐕𝐃𝐈𝟎 + 𝐰𝐞𝟑. 𝐕𝐒𝐈𝐃𝐞𝐯(𝐱)𝐕𝐒𝐈𝐃𝐞𝐯𝟎                                                          (4.15. b) 

 

4.5.2. Solution algorithm of the weighted sum based multi-objective optimal DG placement 

and sizing problem 

A PSO based algorithm is developed to solve the multi-objective DG placement and sizing 

problem using the weighted-sum approach. 

This section provides the step-by-step procedure of the developed algorithm. 

Step 1: Read the distribution system network data such as the number of nodes 𝐍𝐁, the 

number of distribution lines NL, the number of tie lines 𝐍𝐓, the bus type (𝐒𝐥𝐚𝐜𝐤, 𝐏𝐕, 𝐏𝐐), 

the load data (𝐏𝐝, 𝐐𝐝, 𝐁𝐬, 𝐋𝐨𝐚𝐝𝐈𝐃), the generator data (𝐏𝐠, 𝐐𝐠), the distribution line data 

(𝐛𝐮𝐬𝐢, 𝐛𝐮𝐬𝐣, 𝐫, 𝐱, 𝐬𝐰𝐭𝐢𝐞, 𝐬𝐰𝐬𝐞𝐜) and the DG limits coefficients (𝐤𝟏, 𝐤𝟐) which represent the 

minimum and maximum DG penetration levels. 

Step 2: Initialize the binary PSO parameters such as the acceleration coefficients 𝐜𝟏 and 𝐜𝟐, the minimum and the maximum inertia weight (𝐰𝐦𝐢𝐧 and 𝐰𝐦𝐚𝐱 respectively), the 

particle’s velocity limits (𝐯𝐦𝐢𝐧 and 𝐯𝐦𝐚𝐱), the number of particles (𝐍𝐩), the dimension of the 

search space (𝐃) which is equal to the number of PQ buses in the network, and the weight 

factors (𝐰𝐞𝟏, 𝐰𝐞𝟐, 𝐰𝐞𝟑) and the stop criterions (𝐭𝟏𝐦𝐚𝐱, 𝐭𝟐𝐦𝐚𝐱) where 𝐭𝟏𝐦𝐚𝐱 and 𝐭𝟐𝐦𝐚𝐱 are 

used to stop the discrete and continuous PSO search process respectively.  

Step 3: Initialize the particles’ positions by following the approach defined in section 4.4.2., 

step 3. 

Step 4: Initialize the particles’ velocity as follows:  

- The velocity of the first swarm represents the probability for each bit in the particle’s 

position (DG status) to change its status.  

- The velocity in the second swarm represents the rate of change of the particles 

from their current position to the next position (DG size).  
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The velocity in the first swarm is limited to the interval [−4, 4]. The velocity in swarm 2 is 

limited in the interval [𝐯𝐦𝐢𝐧, 𝐯𝐦𝐚𝐱], where the 𝐯𝐦𝐢𝐧 and 𝐯𝐦𝐚𝐱 are calculated using Equation 

4.4.a and 4.4.b, respectively. 

 𝐯𝐦𝐢𝐧 = −𝐯𝐦𝐚𝐱                          
    𝐯𝐦𝐚𝐱 = 𝛆 × (𝐃𝐆𝐦𝐚𝐱 − 𝐃𝐆𝐦𝐢𝐧)             

 

Where 𝛆 is a random number in the range ]0,1], and representing the maximum velocity 

limit factor.  

 
Step 5: Find the personal best particles position. The initial personal best position of all 

particles in swarm 1 corresponds to the string of binary bits representing the possible DG 

status at a load bus. Initially, there is no DG in the network. So, the initial personal best for 

all particles in the swarm 2 correspond to the 𝐧𝐃𝐆 × 𝟏 matrix whose elements are zeros. 

Initially, all particles are given the same objective value, which is obtained using Equation 

(4.8) after calculation of the normalized real power loss, voltage deviation index and 

voltage stability index deviation.   

Step 6: Find the global best particle position from the set of particles best position given 

in Step 5. In this case, the global best particle position is the best particle position whose 

weighted objective value is minimal.  

Step 7: Give random DG position(s) for every particle in swarm 1 and a corresponding DG 

size(s) in swarm 2. 

Start the discrete PSO iteration process and set the iteration counter 𝐭𝟏 to 1 for the 

discrete PSO. 

Step 8: Check that each particle in swarm 1 for which the real power loss should be 

calculated only has nDG active distributed generator(s). A particle (distribution system) has 

an active generator if at least one of the binary bits representing the DG status for each 

bus is the bit 1.  

Start the continuous PSO search process and set the iteration counter for the 

continuous PSO to 1. 

Step 9: Update the generator data. After analysis of the DG position, the generator data 

must be updated to include the DG location and size. For the candidate DG position and 
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size solution to be evaluated, find the position of the DG by analysing for which bus ID the 

DG status is equal to 1. Then, find the corresponding DG size from swarm 2 and update 

the distribution network generator parameters. 

Step 10: Perform a Newton-Raphson power flow and calculate the normalised real power 

loss, voltage deviation index and voltage stability index deviation for the particles in swarm 

1 using Equations 4.9, 4.11 and 4.14 respectively. Then, calculate the weighted-sum 

objective value using Equation 4.15. 

Step 11: Update the personal best position of all particles in swarm 2 as per Equation 3.23 

from chapter three, section 3.4.2. 

 𝐏𝐛𝐞𝐬𝐭𝐢𝐭+𝟏 = {𝐏𝐛𝐞𝐬𝐭𝐢𝐭,     𝐢𝐟 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐢𝐭+𝟏 ≥ 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐏𝐛𝐞𝐬𝐭𝐢𝐭𝐱𝐢𝐭+𝟏,                                              𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞            

Where 𝐏𝐛𝐞𝐬𝐭𝐢𝐭
 is the personal best position of particle 𝐢 at iteration 𝐭. 𝐱𝐢𝐭+𝟏 is the position of particle 𝐢 at iteration 𝐭 + 𝟏. 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐢𝐭+𝟏 is the fitness value of particle 𝐢 at iteration 𝐭 + 𝟏. 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐏𝐛𝐞𝐬𝐭𝐢𝐭 is the fitness value of 𝐏𝐛𝐞𝐬𝐭𝐢𝐭

. 

Step 12: Update the global best position of swarm 2 as per Equation 3.24 in chapter three, 

section 3.4.2. 

 𝐆𝐛𝐞𝐬𝐭𝐭+𝟏 = {𝐆𝐛𝐞𝐬𝐭𝐭,     𝐢𝐟 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐏𝐛𝐞𝐬𝐭𝐢𝐭+𝟏 ≥ 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐆𝐛𝐞𝐬𝐭𝐭𝐏𝐛𝐞𝐬𝐭𝐢𝐭+𝟏,                                   𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞             

Where 𝐆𝐛𝐞𝐬𝐭𝐭+𝟏 is the global best solution of the swarm at iteration 𝐭 + 𝟏. 𝐟𝐢𝐭𝐧𝐞𝐬𝐬𝐆𝐛𝐞𝐬𝐭𝐭 is the fitness value of  𝐆𝐛𝐞𝐬𝐭 at iteration 𝐭. 
 

Step 13: Calculate the inertia weight using Equation 3.6 and update the velocity of all 

particles in swarm 2 as per Equation 3.5. 

 𝐯𝐢𝐤+𝟏 = 𝛚 ∗ 𝐯𝐢𝐤 + 𝐜𝟏 ∗ 𝐫𝐚𝐧𝐝𝟏 ∗ (𝐏𝐛𝐞𝐬𝐭𝐢 − 𝐱𝐢𝐤) + 𝐜𝟐 ∗ 𝐫𝐚𝐧𝐝𝟐 ∗ (𝐆𝐛𝐞𝐬𝐭𝐢 − 𝐱𝐢𝐤)        

 
Step 14: Update the position of particles in swarm 2 as per Equation 3.3. 

 𝐱𝐢𝐤+𝟏 =  𝐱𝐢𝐤 +  𝐯𝐢𝐤+𝟏                       
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Where 𝐱𝐢𝐤 denotes the position of particle 𝐢 at iteration 𝐤 𝐯𝐢𝐤  is the velocity of the particle 𝐢 at iteration 𝐤 

 
Step 15: Increment the iteration count of the continuous PSO search process and repeat 

step 9 to step 14 until the stopping criterion is reached.  

Step 16: Find the real power loss of the particles in swarm 1.  

The global best position of the swarm 2 is achieved at the end of the continuous PSO, and 

it corresponds to the optimal DG size for the DG position from step 8. Consequently, the 

fitness of the particle in swarm 1 from step 8 is equal to the fitness of the global best 

position of swarm 2. 

Step 17: Update the personal best positions in swarm 1 as per Equation 3.23. 

Step 18: Update the global best in swarm 1 as per Equation 3.24. 

Step 19: Calculate the inertia weight using Equation 3.6 and update the velocity of all 

particles in swarm 1 as per Equation 3.5. 

Step 20: Update the position of the particles in swarm 1 as per Equation 3.9. 

 𝐱𝐢𝐤 = {𝟏          𝐢𝐟 𝐫 < 𝐬𝐢𝐠(𝐯𝐢𝐤)𝟎           𝐢𝐟 𝐫 ≥ 𝐬𝐢𝐠(𝐯𝐢𝐤)                      

Where 𝐫 is a uniformly distributed random number in the interval [0,1] 𝐬𝐢𝐠 is a sigmoid function defined by 𝐬𝐢𝐠(𝛂) = 𝟏𝟏+𝐞−𝛂 

 
Step 21: Set the iteration count t2 for the continuous PSO search process to 0 to allow 

step 7 to step 14 to be repeated for the next iteration of the discrete search process. 

Step 22: Increment the iteration count t1 of the discrete PSO process and repeat step 6 to 

step 20 until the stopping criterion is reached. 

Step 23: Print the results of the search process such as the global best solution (optimal 

DG position and size), and its corresponding fitness value (minimum real power loss). 
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A
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global best fitness of swarm 2
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Update the global best position and fitness of 
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Figure 4.13: Flowchart of the developed PSO algorithm for the multi-objective DG placement 
and sizing problem 
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.  The developed multi-objective algorithm is quite similar to the developed single-objective 

algorithm. The only difference is the way the objective value is calculated. The developed 

single-objective algorithm only has one objective which is the real power loss minimisation; 

the developed multi-objective has three objectives: the real power loss minimisation, the 

voltage deviation minimisation and the maximisation of the bus voltage stability index. So, 

in the developed multi-objective algorithm for optimal DG placement and sizing, the 

individual objective values for real power loss, Voltage Deviation Index, and Voltage 

Stability Index must be calculated before the weighted-sum objective value is obtained.  

The flowchart diagram of the above-defined solution algorithm for the multi-objective DG 

placement and sizing problem is shown in Figure 4.13. 

 

4.5.3. Results of the weighted sum based multi-objective optimal DG placement 

The developed PSO algorithm described in section 4.5.2 is used to solve the multi-

objective DG placement and sizing problem. The optimal placement and sizing of the DG 

provides a reduction of the real power loss, an improvement of the voltage profile and 

voltage stability of the distribution system. The developed weighted sum PSO algorithm is 

implemented in MATLAB R2016b. The simulation studies are carried out on the 16-bus, 

33-bus, and 69-bus distribution systems. For each distribution system, three case studies 

are considered: single DG placement and sizing, Two DG placement and sizing and Three 

DG placement and sizing. 

However, the values of the weight factors are unknown. So, it is primordial to determine 

the weight factors for which the weighted-sum objective has the minimum value. 

 

4.5.3.1. Choice of the weight factor of each objective function 

The weight factor of each objective function is not known before the execution of the multi-

objective optimal DG placement algorithm. So, an analysis is done to determine the 

combination of the weight factors 𝐰𝐞𝟏, 𝐰𝐞𝟐 and 𝐰𝐞𝟑 for which the weighted-sum objective 

value is minimal. The following constraints are considered: 

- The weight factors are strictly positive, and their values are limited to one decimal 

place. 

- The sum of all the weight factors must be equal to 1 as per equation 4.6.b. 

 
The 16-bus distribution system is used to examine the effects that the change of weight 

factors has on the solution of the multi-objective DG placement and sizing problem. The 

results of the analysis are given in Table 4.14. For any weight factor set {𝐰𝐞𝟏, 𝐰𝐞𝟐, 𝐰𝐞𝟑}, 
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𝐟 is the corresponding optimal weighted-sum value and 𝐎𝐩𝐭𝐢𝐃𝐆 is the corresponding 

optimal DG location and size. 

 

        Table 4.14: Effects of the weight factors on the weighted sum multi-objective functions for 
single DG placement in the 16-bus distribution system 

Weight factors 

Value of the normalised objective functions 
 for the optimal DG size and position Optimal single DG  

Size and location 
(in MVA) 
 

Real power 
loss 

Voltage 
deviation 

Voltage 
Stability 
Index 

Weighted- 
sum 

𝐰𝐞𝟏 𝐰𝐞𝟐 𝐰𝐞𝟑 𝐟𝟏 𝐧𝐨𝐫𝐦 𝐟𝟐 𝐧𝐨𝐫𝐦 𝐟𝟑 𝐧𝐨𝐫𝐦 𝐟 𝐎𝐩𝐭𝐢𝐃𝐆 

0.1 0.1 0.8 0.3412 0.4800 0.4641 0.4534 
15.1539 + j3.1924 @bus 9 0.1 0.2 0.7 0.3338 0.4396 0.4744 0.4534 
15.1424 + j1.2588 @bus 9 0.1 0.3 0.6 0.3357 0.4314 0.4766 0.4489 
15.1423 + j0.8627 @bus 9 0.1 0.4 0.5 0.3354 0.4314 0.4766 0.4444 
15.1211 + j0.8808 @bus 9 0.1 0.5 0.4 0.3319 0.4316 0.4772 0.4399 
14.9443 + j1.0313 @bus 9 0.1 0.6 0.3 0.3291 0.4227 0.4915 0.434 
14.6353 + j0.8510 @bus 9 0.1 0.7 0.2 0.3268 0.4229 0.4919 0.4271 
14.4975 + j0.9685 @bus 9 0.1 0.8 0.1 0.3247 0.4231 0.4924 0.4202 
14.3554 + j1.0898 @bus 9 0.2 0.1 0.7 0.3369 0.4708 0.4664 0.4409 
15.1491 + j2.7526 @bus 9 0.2 0.2 0.6 0.3232 0.4324 0.4791 0.4386 
14.3491 + j1.5395 @bus 9 0.2 0.3 0.5 0.3225 0.4325 0.4793 0.4339 
14.2796 + j1.5991 @bus 9 0.2 0.4 0.4 0.3218 0.4326 0.4795 0.4292 
14.2111 + j1.6577 @bus 9 0.2 0.5 0.3 0.3206 0.4236 0.4935 0.4240 
14.0022 + j1.392 @bus 9 0.2 0.6 0.2 0.3192 0.4239 0.4941 0.4170 
13.8245 + j1.5443 @bus 9 0.2 0.7 0.1 0.3188 0.4239 0.4942 0.4099 
13.7689 + j1.5921 @bus 9 0.3 0.1 0.6 0.3247 0.4481 0.4747 0.427 
14.4243 + j2.2332 @bus 9 0.3 0.2 0.5 0.3203 0.4329 0.4801 0.4227 
14.0240 + 1.8211 @bus 9 0.3 0.3 0.4 0.3200 0.4333 0.4803 0.4180 
13.9662 + j1.8677 @bus 9 
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0.3 0.4 0.3 0.3196 0.433 0.4805 0.4132 
13.8968 + j1.9273 @bus 9 0.3 0.5 0.2 0.318 0.4241 0.4947 0.4064 
13.6207 + 1.7193 @bus 9 𝟎. 𝟑 𝟎. 𝟔 𝟎. 𝟏 𝟎. 𝟑𝟏𝟕𝟖 𝟎. 𝟒𝟐𝟒𝟐 𝟎. 𝟒𝟗𝟒𝟗 𝟎. 𝟑𝟗𝟗𝟑 
𝟏𝟑. 𝟓𝟕𝟕𝟕 + 𝐣𝟏. 𝟕𝟓𝟔𝟑 @𝐛𝐮𝐬 𝟗 0.4 0.1 0.5 0.3193 0.4331 0.4807 0.4114 
13.8439 + j1.9728 @bus 9 0.4 0.2 0.4 0.3192 0.4332 0.4808 0.4066 
13.8088 + j2.0029 @bus 9 0.4 0.3 0.3 0.3191 0.4332 0.4809 0.4019 
13.7745 + j2.0324 @bus 9 0.4 0.4 0.2 0.3175 0.4243 0.4951 0.3958 
13.4944 + j1.8282 @bus 9 0.4 0.5 0.1 0.3175 0.4244 0.4952 0.3887 
13.4625 + j1.8553 @bus 9 0.5 0.1 0.4 0.3189 0.4333 0.4810 0.3952 
13.7248 + j2.0751 @bus 9 0.5 0.2 0.3 0.3188 0.4333 0.4811 0.3904 
13.6998 + j2.0967 @bus 9 0.5 0.3 0.2 0.3174 0.4244 0.4953 0.3851 
13.445 + j1.8704 @bus 9 0.5 0.4 0.1 0.3174 0.4244 0.4954 0.378 
13.4036 + j1.9059 @bus 9 0.6 0.1 0.3 0.3187 0.4334 0.4813 0.379 
13.6493 + j2.1401 @bus 9 0.6 0.2 0.2 0.3185 0.4326 0.4827 0.3742 
13.6046 + j2.1371 @bus 9 0.6 0.3 0.1 0.3173 0.4245 0.4955 0.3673 
13.3757 + j1.9300 @bus 9 0.7 0.1 0.2 0.3186 0.4335 0.4815 0.3627 
13.5953 + j2.1865 @bus 9 0.7 0.2 0.1 0.3173 0.4245 0.4956 0.3566 
13.3465 + j1.9552 @bus 9 0.8 0.1 0.1 0.3173 0.4245 0.4957 0.3458 
13.3242 + j1.9743 @bus 9 

 

 
The analysis of the results in Table 4.14 shows that a change in the value of the weight 

factors results in a different solution for the multi-objective optimal DG placement and 

sizing problem. However, all the solutions of the multi-objective DG placement and sizing 

problem in Table 4.14 are non-dominated with respect to each other. Although the set of 

weight factors {𝐰𝐞𝟏 = 𝟎. 𝟖, 𝐰𝐞𝟐 = 𝟎. 𝟏 and 𝐰𝐞𝟑 = 𝟎. 𝟏} gives the minimal weighted-sum 

objective value, there is no indication that this set of weight factors results in the minimal 

weighted-sum objective value for any distribution system other than the 16-bus distribution 

system. Therefore, for the remaining part of section 4.5.3., it is recommended to use the 

combination of weight factors which gives a value of weighted-sum objective closest to the 

average of the minimum and maximum weighted-sum objective value from Table 4.14. it 

is calculated as in equation 4.16. 



156 

 

𝐀𝐯𝐠 𝐟 = 𝐦𝐚𝐱 𝐟 + 𝐦𝐢𝐧 𝐟𝟐 = 0.4534 + 0.34582 = 0.3996                                                               (4.16) 
Where  

   𝐦𝐚𝐱 𝐟 is the maximum weighted-sum objective value from Table 4.14. 𝐦𝐢𝐧 𝐟 is the minimum weighted-sum objective value from Table 4.14. 𝐀𝐯𝐠 𝐟 is the average of the minimum and maximum weighted-sum objective 

value from Table 4.14. 

 

The 𝐀𝐯𝐠 𝐟 value is 𝟎. 𝟑𝟗𝟗𝟔. The set of weight factors which results in a weighted-sum 

objective value closest to 𝟎. 𝟑𝟗𝟗𝟔 is the set {𝐰𝐞𝟏 = 𝟎. 𝟑, 𝐰𝐞𝟐 = 𝟎. 𝟔, 𝐰𝐞𝟑 = 𝟎. 𝟏} which 

corresponds to the weighted sum value 𝐟 of 𝟎. 𝟑𝟗𝟗𝟑. This set of weight factors is used for 

the remainder of section 4.5.3. 

 

4.5.3.2. Results of the developed weighted-sum multi-objective algorithm of the 16-bus 

distribution system 

The developed weighted-sum PSO algorithm is applied to the 16-bus distribution system 

to solve the multi-objective optimal DG placement and sizing problem. The selected weight 

factors are 𝐰𝐞𝟏 = 𝟎. 𝟑, 𝐰𝐞𝟐 = 𝟎. 𝟔 and 𝐰𝐞𝟑 = 𝟎. 𝟏. The developed algorithm is tested for 

the single DG, two-DG and three-DG placement. The simulation results are given in Table 

4.15 and the voltage profile of the three case studies is given in Figure 4.14. 

 

       Table 4.15: Simulation results of the developed weighted sum PSO algorithm for the 16-bus 
distribution network 𝐍𝐨 𝐨𝐟 𝐃𝐆 𝟎 𝟏 𝟐 𝟑 

𝐓𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫 𝐩𝐨𝐰𝐞𝐫  𝐬𝐮𝐩𝐩𝐥𝐲 

in (𝐌𝐕𝐀) 

8.5830 + j2.9790 @bus 1 
 15.4901 + j3.9667 @bus 2 
 5.1409 − j0.0050 @bus 3 

8.5830 + j2.9790 @bus 1 
 1.5627 + j1.4882 @bus 2 
 5.1409 − j0.0050 @bus 3 

2.1812 + j1.2523 @bus 1 
 1.5625 + j1.4883 @bus 2 
 5.1409 − j0.0050 @bus 3 

−1.3653 − j1.8205 @bus 1 
 1.5623 + j1.4885 @bus 2 
 0.4418 − j0.1818 @bus 3 𝐟𝟏 𝐧𝐨𝐫𝐦 1 0.3178 0.1982 0.1362 𝐟𝟐 𝐧𝐨𝐫𝐦 1 0.4242 0.2321 0.0967 𝐟𝟑 𝐧𝐨𝐫𝐦 1 0.4948 0.2946 0.1406 𝐟 1 0.3993 0.2281 0.1129 𝐏𝐋𝐨𝐬𝐬 (𝐤𝐖)  514.0293 163.3697 101.8557 70.0560 𝐦𝐢𝐧𝐕 (𝐩. 𝐮) 0.9682 @bus 12 0.9848 @bus 7 0.9912 @bus 16 0.9945 @bus 10 
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𝐦𝐚𝐱𝐕 (𝐩. 𝐮) 1 @bus 1 1.0017 @bus 9 1.0017 @bus 9 1.0028 @bus 4 𝐦𝐢𝐧𝐕𝐒𝐈 0.8766 @bus 12 0.9426 @bus 7 0.9650 @bus 16 0.9762 @bus 9 𝐦𝐚𝐱𝐕𝐒𝐈 0.9886 @bus 13 0.9960 @bus 12 1.0022 @bus 7 1.0057 @bus 5 

𝐎𝐩𝐭𝐢𝐦𝐚𝐥 𝐃𝐆 𝐬𝐢𝐳𝐞 (𝐢𝐧 𝐌𝐕𝐀) 𝐚𝐧𝐝 𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧 

− 
13.5768 + j1.7570 @bus 9 

6.3402 + j1.5914 @bus 6 
 13.577 + j1.7569 @bus 9 

9.8897 + j4.6648 @bus 4 
 13.5772 + j1.7567 @bus 9 
 4.6644 + j0.0874 @bus 15 

 
 

 

Figure 4.14: Voltage profiles of the 16-bus distribution system for the results of the multi-
objective optimal DG placement and sizing problem 

 

The comparison of the obtained results in Table 4.15 and Figure 4.14 against that of the 

base case (initial distribution system without DG) shows that the solutions of the developed 

multi-objective algorithm lead to reduced real power loss, enhanced voltage levels and 

improved voltage stability in the distribution systems. An increase in the number of DG in 

the distribution systems results in an increased level of improvements in real power loss, 

voltage deviation, and voltage stability. This is evidenced by the decrease in the values of 𝐟𝟏 𝐧𝐨𝐫𝐦, 𝐟𝟐 𝐧𝐨𝐫𝐦 and 𝐟𝟑 𝐧𝐨𝐫𝐦 as the number of DG increases. Further analysis of the results 
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from Table 4.15 shows that type III DG are the optimal DG type to solve the multi-objective 

optimal DG placement and sizing problem. 

The optimal DG sizes and locations are: 

- (𝟏𝟑. 𝟓𝟕𝟔𝟖 + 𝐣𝟏. 𝟕𝟓𝟕𝟎) 𝐌𝐕𝐀 at 𝐛𝐮𝐬 𝟗 for single DG placement. 

- (𝟔. 𝟑𝟒𝟎𝟐 + 𝐣𝟏. 𝟓𝟗𝟏𝟒) 𝐌𝐕𝐀 at 𝐛𝐮𝐬 𝟔 and (𝟏𝟑. 𝟓𝟕𝟕 + 𝐣𝟏. 𝟕𝟓𝟔𝟗) 𝐌𝐕𝐀 at 𝐛𝐮𝐬 𝟗 for two-DG 

placement. 

- (𝟗. 𝟖𝟖𝟗𝟕 + 𝐣𝟒. 𝟔𝟔𝟒𝟖) 𝐌𝐕𝐀 at 𝐛𝐮𝐬 𝟒, (𝟏𝟑. 𝟓𝟕𝟕𝟐 + 𝐣𝟏. 𝟕𝟓𝟔𝟕) 𝐌𝐕𝐀 at 𝐛𝐮𝐬 𝟗 and (𝟒. 𝟔𝟔𝟒𝟒 + 𝐣𝟎. 𝟎𝟖𝟕𝟒) 𝐌𝐕𝐀 at 𝐛𝐮𝐬 𝟏𝟓 for the three-DG placement. 

 

4.5.3.3. Results of the developed weighted-sum multi-objective algorithm of the 33-bus 

distribution system 

The developed weighted-sum PSO algorithm is applied to the 33-bus distribution system 

to solve the multi-objective optimal DG placement and sizing problem. The selected weight 

factors are 𝐰𝐞𝟏 = 𝟎. 𝟑, 𝐰𝐞𝟐 = 𝟎. 𝟔 and 𝐰𝐞𝟑 = 𝟎. 𝟏. The developed algorithm is tested for 

the single DG, two-DG and three-DG placement. The simulation results are given in Table 

4.16. and the voltage profile of the 33-bus distribution system is given in Figure 4.15. 

 

 

Figure 4.15: Voltage profiles of the 33-bus distribution system for the results of the multi-
objective optimal DG placement and sizing problem 
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The analysis of the voltage profile in Figure 4.15 shows that the optimisation of DG 

integration leads to improved voltage levels in the distribution system. The integration of a 

single DG increases the voltage profile, but the voltage at all buses is closer to the nominal 

value of 1 p.u only when more DG are integrated into the distribution system. 

Table 4.16 provides the results of the optimal placement and sizing of a single-DG, two-

DG and three-DG in the 33-bus distribution system. From the table, the optimal DG size 

and location are as follows: 

- (𝟑. 𝟓𝟎𝟐𝟐 + 𝐣𝟐. 𝟏𝟗𝟒) 𝐌𝐕𝐀 at 𝐛𝐮𝐬 𝟕 for the single DG placement. 

- (𝟎. 𝟖𝟔𝟗𝟖 + 𝐣𝟎. 𝟒𝟏𝟑𝟗) 𝐌𝐕𝐀 at 𝐛𝐮𝐬 𝟏𝟑 and (𝟏. 𝟒𝟎𝟗𝟔 + 𝐣𝟏. 𝟏𝟐𝟗𝟒) 𝐌𝐕𝐀 at 𝐛𝐮𝐬 𝟐𝟗 for the 

placement of two DG. 

- (𝟐. 𝟑𝟒𝟒𝟖 + 𝐣𝟏. 𝟑𝟖𝟔𝟐) 𝐌𝐕𝐀 at 𝐛𝐮𝐬 𝟑, (𝟎. 𝟖𝟏𝟏𝟗 + 𝐣𝟎. 𝟑𝟖𝟏𝟐) 𝐌𝐕𝐀 at 𝐛𝐮𝐬 𝟏𝟑 and (𝟎. 𝟗𝟐𝟏𝟕 + 𝐣𝟎. 𝟕𝟖𝟕𝟑) 𝐌𝐕𝐀 at 𝐛𝐮𝐬 𝟑𝟏 for the placement of three DG. 

 

        Table 4.16: Simulation results of the developed weighted sum PSO algorithm for the 33-bus 
distribution system 𝐍𝐨 𝐨𝐟 𝐃𝐆 𝟎 𝟏 𝟐 𝟑 𝐓𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫 𝐩𝐨𝐰𝐞𝐫  𝐬𝐮𝐩𝐩𝐥𝐲  

in (𝐌𝐕𝐀) 

3.9234 + j2.4117 @bus 1 

0.3018 + j0.1875 @bus 1 

1.4677 + j0.7801 @bus 1 

−0.3393 − j0.2366 @bus 1 𝐟𝟏 𝐧𝐨𝐫𝐦 1 0.4269 0.1542 0.1154 𝐟𝟐 𝐧𝐨𝐫𝐦 1 0.1636 0.079 0.0501 𝐟𝟑 𝐧𝐨𝐫𝐦 1 0.1611 0.0869 0.0536 𝐟 1 0.2424 0.1023 0.07 𝐏𝐋𝐨𝐬𝐬 (𝐤𝐖)  208.4322 88.9792 32.1352 24.0519 𝐦𝐢𝐧𝐕 (𝐩. 𝐮) 0.9108 @bus 18 0.9839 @bus 33 0.9815 @bus 25 0.9901 @bus 25 𝐦𝐚𝐱𝐕 (𝐩. 𝐮) 1 @bus 1 1.0238 @bus 7 1.0079 @bus 29 1.0064 @bus 31 𝐦𝐢𝐧𝐕𝐒𝐈 0.6890 @bus 18 0.9378@bus 33 0.9344@bus 25 0.9675 @bus 25 𝐦𝐚𝐱𝐕𝐒𝐈 0.9941 @bus 2 1.0717 @bus 8 1.0254@bus 30 1.0242 @bus 32 

𝐎𝐩𝐭𝐢𝐦𝐚𝐥 𝐃𝐆 𝐬𝐢𝐳𝐞 (𝐢𝐧 𝐌𝐕𝐀) 𝐚𝐧𝐝 𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧 

− 
3.5022 + j2.194 @bus 7 

0.8698 + j0.4139 @bus 13 
 1.4096 + j1.1294 @bus 29 

2.3448 + j1.3862 @bus 3 
 0.8119 + j0.3812 @bus 13 
 0.9217 + j0.7873 @bus 31 
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The developed weighted-sum multi-objective PSO algorithm find the optimal DG sizes and 

locations. The integration of such optimised DG in the 33-bus distribution system leads to 

an improvement of the voltage deviation, voltage stability and a reduction of real power 

losses as evidenced by the values of 𝐟𝟏 𝐧𝐨𝐫𝐦, 𝐟𝟐 𝐧𝐨𝐫𝐦, 𝐟𝟑 𝐧𝐨𝐫𝐦 and 𝐟  from Table 4.16. In 

increase of the number of DG leads to further improvements of the operation of the 

distribution system.  

 

4.5.3.4. Weighted-sum multi-objective algorithm results of the 69-bus distribution system 

The developed weighted-sum PSO algorithm is applied to the 69-bus distribution system 

to solve the multi-objective optimal DG placement and sizing problem. The selected weight 

factors are 𝐰𝐞𝟏 = 𝟎. 𝟑, 𝐰𝐞𝟐 = 𝟎. 𝟔 and 𝐰𝐞𝟑 = 𝟎. 𝟏. The developed algorithm is tested for 

the single DG, 2 DG and 3 DG placement. The simulation results are given in Table 4.17 

and the voltage profile of the three cases study is given in Figure 4.16. 

 
 

 

Figure 4.16: Voltage profiles of the 69-bus distribution system for the results of the 
multi-objective optimal DG placement and sizing problem 
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Table 4.17: Simulation results of the developed weighted sum PSO algorithm for the 69-bus 
distribution network 𝐍𝐨 𝐨𝐟 𝐃𝐆 𝟎 𝟏 𝟐 𝟑 𝐓𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫 𝐩𝐨𝐰𝐞𝐫 𝐬𝐮𝐩𝐩𝐥𝐲  𝐢𝐧 (𝐌𝐕𝐀) 

4.0268 + j2.7968 @bus 1 

1.9461 + j1.2888 @bus 1 

1.4532 + j1.0337 @bus 1 

1.2573 + j0.8405 @bus 1 𝐟𝟏 𝐧𝐨𝐫𝐦 1 0.1055 0.0339 0.0216 𝐟𝟐 𝐧𝐨𝐫𝐦 1 0.3045 0.0522 0.0267 𝐟𝟑 𝐧𝐨𝐫𝐦 1 0.3243 0.0583 0.0273 𝐟 1 0.2468 0.0473 0.0252 𝐏𝐋𝐨𝐬𝐬 (𝐤𝐖)  224.9804 23.7253 7.62 4.8645 𝐦𝐢𝐧𝐕 (𝐩. 𝐮) 0.9092 @bus 65 0.9732 @bus 27 0.9943 @bus 50 0.9943 @bus 50 𝐦𝐚𝐱𝐕 (𝐩. 𝐮) 1 @bus 1 1.0030 @bus 61 1.0024 @bus 16 1.0017 @bus 12 𝐦𝐢𝐧𝐕𝐒𝐈 0.6842 @bus 65 0.8970 @bus 27 0.9783 @bus 50 0.9784 @bus 50 𝐦𝐚𝐱𝐕𝐒𝐈 0.9999 @bus 2 1.0116 @bus 62 1.0079 @bus 17 1.0061 @bus 68 

𝐎𝐩𝐭𝐢𝐦𝐚𝐥 𝐃𝐆 𝐬𝐢𝐳𝐞 (𝐢𝐧 𝐌𝐕𝐀) 𝐚𝐧𝐝 𝐥𝐨𝐜𝐚𝐭𝐢𝐨𝐧 

− 
1.8795 + j1.4202 @bus 61 

0.5792 + j0.4279 @bus 16 
 1.7771 + j1.2411 @bus 61 

0.6106 + j0.399 @bus 12 
 0.2552 + j0.1962 @bus 23 
 1.6836 + j1.2659 @bus 61 

 
 
 

The analysis of the obtained results in Table 4.17 and Figure 4.16 against the base case 

(initial distribution system with no DG) results shows that just like in the case of the 16-bus 

and the 33-bus distribution systems, the developed weighted-sum multi-objective 

algorithm finds the optimal DG sizes and locations for increased performance in the 69-

bus distribution systems.  

The optimal DG sizes and locations are as follows: 

- (𝟏. 𝟖𝟕𝟗𝟓 + 𝐣𝟏. 𝟒𝟐𝟎𝟐) 𝐌𝐕𝐀 at 𝐛𝐮𝐬 𝟔𝟏 for the single DG placement. 

- (𝟎. 𝟓𝟕𝟗𝟐 + 𝐣𝟎. 𝟒𝟐𝟕𝟗) 𝐌𝐕𝐀 at 𝐛𝐮𝐬 𝟏𝟔 and (𝟏. 𝟕𝟕𝟕𝟏 + 𝐣𝟏. 𝟐𝟒𝟏𝟏) 𝐌𝐕𝐀 at 𝐛𝐮𝐬 𝟔𝟏 for the 

placement of two DG. 

- (𝟎. 𝟔𝟏𝟎𝟔 + 𝐣𝟎. 𝟑𝟗𝟗) 𝐌𝐕𝐀 at 𝐛𝐮𝐬 𝟏𝟐, (𝟎. 𝟐𝟓𝟓𝟐 + 𝐣𝟎. 𝟏𝟗𝟔𝟐) 𝐌𝐕𝐀 at 𝐛𝐮𝐬 𝟐𝟑 and (𝟏. 𝟔𝟖𝟑𝟔 + 𝐣𝟏. 𝟐𝟔𝟓𝟗) 𝐌𝐕𝐀 at 𝐛𝐮𝐬 𝟔𝟏 for the placement of three DG. 

The integration of multiple DG yields better results than the integration of a single DG. As 

shown in Table 4.17, the values of the normalised objective functions  𝐟𝟏 𝐧𝐨𝐫𝐦, 𝐟𝟐 𝐧𝐨𝐫𝐦, 
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𝐟𝟑 𝐧𝐨𝐫𝐦 and that of the weighted-sum objective value 𝐟 decrease as the number of DG 

increases. Furthermore, Figure 4.16 shows that the 69-bus distribution network with three 

DG has a better voltage profile in comparison to the other case studies. 

 

4.5.4. Discussion of the results of the developed Weighted-sum PSO algorithm for the 

multi-objective optimal DG placement and sizing problem 

The results of the application of the developed weighted sum PSO algorithm to solve the 

multi-objective optimal DG placement and sizing problem on the 16-bus, the 33-bus and 

the 69-bus distribution systems provide the optimal DG sizes and positions that result in a 

reduced real power loss, improved voltage profiles and enhanced voltage stability. These 

results are given in Tables 4.15, 4.16, and 4.17 respectively. The solutions of multi-

objective algorithm show that the more the number of optimally placed DG, the more the 

level of improvements in the operation of the distribution systems. A change in the value 

of the weight factors would affect the optimal DG size and probably the optimal position of 

the DG. Although the change of weight factors in the developed weighted-sum PSO 

algorithm as seen in Table 4.14 yields no effect on the optimal DG position for the 16-bus 

distribution system, further studies should be done to ascertain whether a change of the 

weight factors could affect the optimal DG position in other distribution systems. Based on 

the analysis of the effects of the weight factors on the solutions of the optimal DG 

placement and sizing problem for the 16-bus distribution system, it is observed that for any 

set of strictly positive weight factors {𝐰𝐞𝟏, 𝐰𝐞𝟐, 𝐰𝐞𝟑} where the sum of the weight factors 

is equal to 1, the solutions of the multi-objective optimal DG placement and sizing problem 

are non-dominated with respect to each other. 

 
The comparison of the results of the single and multi-objective optimal DG placement and 

sizing problem shows that the real power loss is minimal for the single-objective DG 

placement and sizing problem. This can be explained by the fact that since the objectives 

of the multi-objective optimal DG placement and sizing problem were conflicting, a 

compromise had to be reached between the objective functions. 

 
 

4.6. Conclusion 

In this chapter, PSO optimisation approaches were developed to solve both the single-

objective and the multi-objective optimal DG placement and sizing problems. The single-

objective problem aimed to minimise the real power loss in distribution systems. The multi-

objective problem aimed to minimise the real power loss, minimise the voltage deviation 



163 

 

and maximise the bus voltage stability index in radial distribution systems. To solve the 

multi-objective optimisation problem, the developed PSO based algorithm uses the 

weighted-sum approach to aggregate the set of objective functions into a single-objective 

function. For both the single-objective and the multi-objective optimal DG placement and 

sizing problem, the developed PSO algorithms were tested on the 16-bus, the 33-bus, and 

the 69-bus distribution systems. The results of the developed PSO algorithms were 

compared to the results from the literature. It follows that the developed PSO algorithms 

provide better solutions to both the single-objective and the multi-objective optimal DG 

placement and sizing problems. 

Chapter three and this chapter dealt with the development of PSO based algorithms to 

solve the optimal distribution network reconfiguration problem and the optimal DG 

placement & sizing problem, respectively, under constant loading conditions. The next 

chapter assesses the performance of the developed PSO algorithms under dynamic 

loading conditions. 
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CHAPTER FIVE 
DISTRIBUTION NETWORK FEEDER RECONFIGURATION AND 

DISTRIBUTED GENERATORS PLACEMENT & SIZING UNDER DYNAMIC 
LOADING CONDITIONS 

 

5.1. Introduction 

Feeder reconfiguration and DG deployment are the two main approaches used to minimise 

the real power loss in distribution networks. In feeder reconfiguration, the real power loss 

is minimized by altering the status of tie and section switches of the distribution network. 

When the DG is present in a distribution network, most of the DG power produced is 

consumed at local points of connections to reduce the amount of power flow in the 

distribution network and the real power loss. PSO solution algorithms were developed in 

chapter three and chapter four to solve the optimal distribution network feeder 

reconfiguration and the optimal DG placement & sizing problems respectively. This chapter 

compares the performance of both distribution network feeder reconfiguration and DG 

allocation in minimising the real power losses in distribution networks under constant and 

dynamic loading conditions.  

 
Based on the results from chapters three and four, the operation of a distribution network 

with a feeder reconfiguration scheme and a distribution network with DG is compared. 

Then, sequential and parallel computing solutions are developed to analyse the 

performance of the distribution network with a feeder reconfiguration scheme for a period 

of 24 hours under dynamic loading conditions. The sequential programming solution is 

used to analyse the operation of a distribution network with DG for a period of 24 hours 

under dynamic loading conditions. Finally, a conclusion is made regarding the use of both 

the optimal distribution network feeder reconfiguration and the optimal DG allocation to 

reduce the real power loss in distribution networks under dynamic loading conditions. 

 

5.2. Optimal feeder reconfiguration versus DG placement for minimising real power 

losses in distribution networks under constant loading conditions 

Chapter three and chapter four provide the PSO solution algorithms for both the optimal 

DG placement & sizing and the optimal distribution network feeder reconfiguration 

problems. The optimisation results obtained in respective chapters three and four for the 

16-bus distribution network are given in Table 5.1. The voltage profile results of the 16-bus 

distribution network under constant loading conditions are shown in Figure 5.1. 
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Table 5.1: DG placement versus feeder reconfiguration optimisation solutions of the 16-bus 
distribution network under constant loading conditions 

Description Base case After reconfiguration After DG deployment 

Total generation (MVA) 29.2140 + j6.9407 29.1683 + j6.8733 15.8172 + j4.4765 

Source transformer  
supply (MVA) 

8.5830 + j2.9790 @bus 1 
 15.4901 + j3.9667 @bus 2 

 5.1409 − j0.0050 @bus 3 

9.1925 + j2.5062 @bus 1 
 13.8188 + j3.4329 @bus 2 
 6.1570 + j0.9343 @bus 3 

8.5830 + j2.9790 @bus 1 
 2.0934 + j1.5025 @bus 2 

 5.1409 − j0.0050 @bus 3 

Tie switches 14          15          16 7          8          16 14          15          16 

Real power loss (kW) 514.0293 468.3304 162.8352 

Real power loss 
reduction (%) 

− 8.89033 68.3218 

Minimum voltage (p. u) 0.9682 @bus 12 0.9707 p. u @ bus 12 0.9848 @bus 7 

Maximum voltage (p. u) 1 @ bus 1, 2 & 3 1 @ bus 1 1.0007 @bus 9 

DG size (MVA) &  
position  

− − 
13.0456 + j1.7526 @bus 9 

 

The results given in Table 5.1 show that under constant loading conditions, optimal single-

DG deployment in the distribution network outperforms the optimal reconfiguration of the 

distribution networks in reducing the real power losses.  

 

Figure 5.1: Voltage profile of the 16-bus distribution network after the optimal feeder 
reconfiguration and the DG placement under constant loading conditions 
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The improvement of the voltage profile in the distribution network as shown in Figure 5.1 

is more pronounced in the case of optimal DG placement. However, the loads in 

distribution networks are dynamic in nature, meaning that they vary in function of the 

weather conditions, time of the day, month and the activity of the end-users. Taking into 

consideration the dynamic nature of the loads, the research question is: “Will the optimal 
deployment of a single DG still be more efficient than optimal feeder reconfiguration 

in reducing the real power loss in distribution networks with dynamic loads?” 

The next section of this chapter investigates the daily performance of the distribution 

network with feeder reconfiguration under dynamic loading conditions 

 

5.3. Development of a PSO based algorithm to analyse the performance of a distribution 

network with feeder reconfiguration under dynamic loading conditions 

In the electrical power engineering field, distribution feeder reconfiguration falls under 

network operation and management, meaning that the optimal network topology at a given 

period is dependent on the operating load and voltage levels. On the other hand, optimal 

DG placement falls under electrical network planning. This means that the optimal location 

and DG size are found beforehand, and once the DG is deployed into the network, its 

position and maximum size are not changed. Therefore, it is necessary to investigate the 

impact of dispatchable and non-dispatchable DG in the optimal DG placement and sizing. 

 

5.3.1. Description of the power demand profile 

The load profile is a representation of the variation of the loads in the distribution network 

over time. The base load is the minimum power demand in the distribution network over a 

timeframe while the peak load is the maximum power demand in the same timeframe. 

Figure 5.2 shows the load profile which is used to assess the performance of distribution 

network feeder reconfiguration and DG allocation in the 16-bus distribution network under 

dynamic loading conditions. The total real power demand is measured in kW for a typical 

summer and winter day. An analysis of the load profile given in Figure 5.2 shows that the 

baseload is approximately 𝟐𝟓 𝐌𝐖 and 𝟐𝟒 𝐌𝐖 for the winter and summer day, 

respectively. The approximate load demand peaks at 𝟑𝟔. 𝟓 𝐌𝐖 and 𝟑𝟐 𝐌𝐖 in the winter 

and summer day, respectively. The load profile in Figure 5.2 is for a period exceeding a 

day. This research work only considers the portion of the load profile that represents a 24-

hour load demand. 
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Figure 5.2: Typical summer and winter daily load profile of the 16-bus distribution network 
(Matona, 2014) 

 

According to the load profile in Figure 5.2, in the winter day, we observe an increase in the 

load demand in the early morning up to 09: 30 a. m. The demand is stable after 09: 30 a. m 

until approximately midday, where it decreases for the whole afternoon. The evening gives 

rise to the demand until 7p. m where the demand reaches its peak. At night, the load 

demand decreases continuously, until it reaches its base load.  

In the summer day, the load demand increases from 05:00 am throughout the morning. 

The demand is tight for the rest of the day, and it starts decreasing at night, after 10 p. m.  

 

The difference in loading between the winter and the summer can be explained by the 

difference in consumers’ behaviour, arising as a result of the difference in the weather 

conditions. Electricity is requested for cooling during the summer while in the winter, it is 

used for heating. Cooling is usually needed from late in the morning to late in the afternoon 

whereas, in winter, heating is required for almost the whole day. Additionally, because the 

daytime is reduced in winter, there is an increased load demand due to the early switch on 

of lightings. 

 

The winter load profile of the distribution network is used in this study because the loads 

are more dynamic in winter than in summer. As a consequence of this load dynamism, the 

power ought to be dispatched to balance the distribution system by matching the power 

supply to the power demand. In the IEEE 16-bus distribution network, the power is 

dispatched through source transformers 1, 2 and 3. To match the power demand, 
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generators may be dispatched at time intervals varying from seconds to hours. So, to 

evaluate the performance of the algorithms for a full day, the day could be divided into time 

intervals, depending on the load demand. The higher the number of time intervals, the 

more the numbers of simulations required. As an example, dispatching the power every 

15 minutes for a full day results in 96 (24 hours divided by 15 minutes) simulations being 

done, which is quite time-consuming if the simulations are computed sequentially. One 

way to reduce this computational burden is the use of parallel computing. 

The next section presents the sequential computing solution algorithm to assess the daily 

performance of a distribution network with a feeder reconfiguration scheme and under 

dynamic loading conditions. 

 

5.3.2. Sequential computation of the PSO-based solution algorithm to analyse the 

performance of a distribution network with a feeder reconfiguration scheme under 

dynamic loading conditions 

The operation of electrical distribution networks is a dynamic process. To estimate the daily 

real power loss in the distribution network, the power flow needs to be performed and the 

real power loss calculated at time intervals. The lower the time interval, the more accurate 

the daily power loss. Given that the distribution lines have a fixed impedance, the power 

loss in the distribution network is dependent on the loading of the network. The higher the 

loading, the higher the real power loss in the distribution network. So, to determine the 

power loss in the distribution network, the real and reactive power demand at each PQ bus 

should be known. Figure 5.2 shows the total daily winter real power demand in the 

distribution network. But, it does not provide the power demand at each PQ bus. Therefore, 

it is necessary to determine the real and reactive power demand at each PQ bus. 

Equations 5.1 and 5.2 are developed and used to calculate the real and reactive power 

demand at a given PQ bus, respectively.  

 𝐏𝐝𝐢𝐭 = 𝐑𝐚𝐧𝐝𝐢 ∙ 𝐏𝐝𝐭 ∙ (∑ 𝐑𝐚𝐧𝐝𝐢𝐧𝐏𝐐
𝐢=𝟏 )−𝟏                                                                                                    (5.1) 

 𝐐𝐝𝐢𝐭 = 𝐏𝐝𝐢𝐭 ∙ 𝐐𝐢𝐧𝐢𝐭𝐏𝐢𝐧𝐢𝐭                                                                                                                                      (5.2) 
Where,  
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𝐏𝐝𝐢𝐭
 and 𝐐𝐝𝐢𝐭

 are the real and reactive power demand respectively at PQ bus 𝐢 
at instant 𝐭. 𝐏𝐝 is the total real power demand in the network at instant 𝐭. 𝐏𝐢𝐧𝐢𝐭 and 𝐐𝐢𝐧𝐢𝐭 are the initial real and reactive power demand respectively in the 

network. 𝐑𝐚𝐧𝐝𝐢 is a uniformly distributed random number in the interval ]0,1[. 𝐧𝐏𝐐 is the number of 𝐏𝐐 buses in the distribution network. 

 

The random element  𝐑𝐚𝐧𝐝𝐢 in Equation 5.1 is to ensure that the load demand at each PQ 

bus stays dynamic. The real and reactive power demand at each PQ bus at a given time t 
is calculated using Equations 5.1 and 5.2 respectively, and it is given in Tables 5.3 and 

5.4. 

The following assumptions are considered: 

- The real power demand at each bus is calculated using Equation 5.1, in such a way 

that the sum of the calculated real power demand at each PQ bus corresponds to the 

total power demand from the daily winter load profile in Figure 5.2. Figure 5.2 is used 

as a reference model to create the dynamic loading conditions of the distribution 

network. Figure 5.3 approximates the reference model in Figure 5.2, and it is plotted 

using the variation of load demand data given in Table 5.2. The calculated real and 

reactive power demand at each PQ bus is given in Table 5.3 and 5.4, respectively. 

 

- The real power demand is measured, and the real and reactive powers at each PQ 

bus are calculated every time there is an increase or decrease of ± 500 kW in the daily 

winter load from Figure 5.2. The rate of change threshold dp (± 500 kW) of the real 

power demand is only considered for simulation purposes. Power utilities usually use 

the load profile to determine how much power is needed at a given time. 

 

- An identical real power demand between two distinct points A and B of the winter daily 

load profile means that at the times 𝐭𝐀 and 𝐭𝐁,  the total real power demand is the same. 

However, the real power demand at individual PQ bus may be different. 

 

The change of load demand in small intervals of time is considered to have no significant 

impact on the distribution network topology. Likewise, when feeder reconfiguration is 

performed to minimise the real power loss in the distribution network, it is unlikely that 



170 

 

small changes in load demand would impact the result of the feeder reconfiguration 

process.  

The sequential programming solution to evaluate the daily performance of a distribution 

network with a feeder reconfiguration scheme and under dynamic loading conditions is as 

follows: 

Step 1: Read the electrical distribution network data such as the number of nodes 𝐍𝐁, the 

number of distribution lines 𝐍𝐋, the number of tie lines 𝐍𝐓, the bus type (𝐒𝐥𝐚𝐜𝐤, 𝐏𝐕, 𝐏𝐐), 

the load data (𝐏𝐝𝐢𝐭, 𝐐𝐝𝐢𝐭, 𝐁𝐬, 𝐋𝐨𝐚𝐝_𝐈𝐃), the generator data (𝐏𝐠, 𝐐𝐠) and distribution line data 

(𝐛𝐮𝐬_𝐢, 𝐛𝐮𝐬_𝐣, 𝐫, 𝐱, 𝐬𝐰_𝐭𝐢𝐞, 𝐬𝐰_𝐬𝐞𝐜). 

 

Step 2: Set the threshold rate of power change 𝐝𝐩. The power demand is dependent on 

the time of the day. The power demand may be constant or have a flat profile for a period 

of time. So, it may take a while before any significant real and reactive power demand 

change occurs at each PQ bus. The rate of power change threshold (± 𝟓𝟎𝟎 𝐤𝐖) 

determines the amount of total real power increase/decrease that should occur in the load 

profile before the next measurement is done. 

 

Step 3: Find the total load demand in the distribution network at each time interval for the 

24h period.  

Figure 5.2 given in section 5.3.1 has approximately 12 slopes, each slope representing a 

different rate of change of the power demand over time. Details on the different slopes are 

given in Table 5.2. The rate of change of the power demand over time of a slope is the 

difference of the change of power divided by the difference of time of the corresponding 

period. The number of datasets for each period is the number of times the real and the 

reactive power demand at each PQ bus is calculated over the corresponding period.  

The diagonal downward right arrow (↘) indicates a descending slope, which means that 

the power is decreasing at the corresponding rate of change and period. The diagonal 

upward right arrow (↗) indicates an ascending slope, which means that the power is 

increasing. The right arrow (→) indicates that the power is constant for that corresponding 

period. 

Figure 5.3 provides the approximate winter day load profile. 
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  Table 5.2: Change of the total power demand with respect to time 

Slope 
Period 

Change of power 

demand (𝐌𝐖) 

Rate of change of power  

demand with respect to 

time (𝐌𝐖/𝐦𝐢𝐧) 

Number of  

datasets for  

each period From To From To 

1 23h00 00h06 28.7 26.36 39/1100  ↘ 5 

2 00h06 02h00 26.36 25.1 21/1900 ↘ 3 

3 02h00 04h03 25.1 25 1/1230 ↘ 1 

4 04h03 05h00 25 26 1/57 ↗ 2 

5 05h00 06h55 26 30 4/115 ↗ 8 

6 06h55 08h57 30 34 2/61 ↗ 8 

7 08h57 11h00 34 34 0 → 1 

8 11h00 14h57 34 32 2/237 ↘ 4 

9 14h57 17h00 32 32.73 73/12300 ↗ 2 

10 17h00 18h55 32.73 36.5 377/11500 ↗ 8 

11 18h55 20h57 36.5 34 5/244 ↘ 5 

12 20h57 23h00 34 28.73 527/12300 ↘ 10 

  
 

 

 

Figure 5.3: Plotted winter daily load profile 
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 and 𝐐𝐝𝐢𝐭

 at each PQ bus in the distribution 

network every time the total real power from Figure 5.2 increases/decreases by 500kW. 

The total real power demand for the different periods was determined in Step 3 (see Table 

5.2). Equations 5.1 and 5.2 are used to calculate the real and the reactive power demand 
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at each PQ bus in the distribution network, and the results are given in Table 5.3 and 5.4 

for the real and reactive power demand at each PQ bus, respectively.  

The real power results from Table 5.3 and the reactive power results from Table 5.4 are 

saved in the repertoire 𝐏_𝐫𝐞𝐩 and 𝐐_𝐫𝐞𝐩, respectively in the MATLAB coding. 

Start the iteration process and set the iteration counter 𝐤 to 1. The iteration counter 

counts the number datasets that go through the iterative process.  

Step 5: Read the real and reactive power demand 𝐏𝐝𝐢𝐭
 and 𝑸𝒅𝒊𝒕

 at each bus at time 𝐭 from 𝐏_𝐫𝐞𝐩 and 𝐐_𝐫𝐞𝐩, respectively (dataset k), and update the load demand in the distribution 

network. 

Step 6: The PSO algorithm developed in chapter three, section 3.5.2. to solve the single 

objective distribution network feeder reconfiguration problem is used to create a function spmd1 which takes the distribution network data (the number of nodes 𝐍𝐁, the number of 

distribution lines 𝐍𝐋, the number of tie lines 𝐍𝐓, the bus type (𝐒𝐥𝐚𝐜𝐤, 𝐏𝐕, 𝐏𝐐), the load data 

(𝐏𝐝𝐢𝐭, 𝐐𝐝𝐢𝐭, 𝐁𝐬, 𝐋𝐨𝐚𝐝_𝐈𝐃), the generator data (𝐏𝐠, 𝐐𝐠) and distribution line data 

(𝐛𝐮𝐬_𝐢, 𝐛𝐮𝐬_𝐣, 𝐫, 𝐱, 𝐬𝐰_𝐭𝐢𝐞, 𝐬𝐰_𝐬𝐞𝐜)) as inputs, and returns the solution of the distribution 

network feeder reconfiguration optimization process as outputs.     

Using the function 𝐬𝐩𝐦𝐝𝟏, run the optimal feeder reconfiguration algorithm and determine 

the real power loss 𝐏𝐥𝐨𝐬𝐬_𝐢𝐧; the minimum voltage 𝐦𝐢𝐧𝐕𝐢𝐧; the maximum voltage 𝐦𝐚𝐱𝐕_𝐢𝐧 

before reconfiguration, and the real power loss 𝐟𝐢𝐭𝐧𝐞𝐬𝐬_𝐆𝐛𝐞𝐬𝐭; the minimum 

voltage 𝐕𝐦𝐢𝐧_𝐆𝐛𝐞𝐬𝐭; the maximum voltage 𝐕𝐦𝐚𝐱_𝐆𝐛𝐞𝐬𝐭 after the reconfiguration process.  

Step 7: Save the results from Step 6 in the repertoire 𝐲. The repertoire y is created to 

save the results of Step 6 for each dataset. 

Step 8: Stop the iteration or increment the iteration counter. If step 5 to step 7 are 

performed for all data set from step 4, then stop the iterative process. Else, increment the 

iteration count and repeat step 5 to step 7. 

Step 9: Print the results of the sequential programming algorithm to evaluate the daily 

performance of a distribution network with a feeder reconfiguration scheme and under 

dynamic loading conditions. At the end of the simulations, the results saved in Step 7 

should be retrieved and analysed. 
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Figure 5.4: Flowchart of the sequential programming solution algorithm to assess the daily 

winter performance of the distribution network with a feeder reconfiguration 
scheme under dynamic loading conditions
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Table 5.3: Load bus real power data sets in the repertoire 𝑷_𝒓𝒆𝒑 calculated using Equation 5.1 

     Bus No. 
 
Data 
set No. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
∑ Pdit

 

 

1 0 0 0 3.2385 1.5406 3.3821 2.0451 3.2005 2.1372 0.0941 2.4338 4.3120 1.5104 0.0786 2.7889 1.9382 28.7 

2 0 0 0 1.1733 2.2446 3.7667 1.5471 2.2456 5.0678 4.3808 0.2420 1.7575 0.2363 0.5193 4.8726 0.1465 28.2001 

3 0 0 0 2.8512 2.6248 2.9452 2.4819 2.7791 2.9754 1.6177 2.8953 0.6893 2.0474 0.1712 2.3721 1.2493 27.6999 

4 0 0 0 0.0909 0.4704 3.3955 0.5234 2.8820 3.1320 0.5920 3.0904 2.9599 2.0192 3.1584 3.1861 1.6999 27.2001 

5 0 0 0 2.9136 2.9995 4.8632 1.4228 2.2620 5.0013 0.1031 0.6083 1.8705 2.3157 0.3237 0.6325 1.3839 26.7001 

6 0 0 0 2.5081 1.5390 2.7180 1.9146 3.4540 0.2965 1.0674 1.6190 2.0538 1.4617 2.1898 2.6323 2.9094 26.3636 

7 0 0 0 2.9704 1.2875 2.8266 2.4234 1.2842 3.4933 0.5220 0.2622 1.6174 1.7654 3.2239 3.8629 0.3244 25.8636 

8 0 0 0 0.8020 2.0245 2.8537 0.5262 4.1591 3.3242 0.5617 3.1486 1.6870 0.4087 2.2623 1.1896 2.4160 25.3636 

9 0 0 0 3.2033 2.2261 0.7800 3.3536 0.0267 1.8366 3.9078 2.6608 1.0425 2.3531 0.0215 2.0848 1.6031 25.0999 

10 0 0 0 1.4852 2.7427 3.0139 3.0800 3.1485 1.3521 1.1816 1.6575 0.3736 1.3031 2.7098 2.5667 0.3853 25 

11 0 0 0 0.3441 1.3326 2.0812 4.4266 0.8169 1.3811 1.1419 3.3279 2.3632 2.4739 3.5341 1.7529 0.5236 25.5 

12 0 0 0 3.1347 2.1040 3.1151 0.6773 0.7617 1.5785 0.7000 2.2183 1.8241 0.4304 3.4446 3.1487 2.8628 26.0002 

13 0 0 0 0.9062 2.6279 3.7726 1.1388 2.9447 1.7952 3.7555 1.8119 0.2727 1.5486 2.7947 2.8380 0.2932 26.5 

14 0 0 0 0.7272 2.3703 1.8387 3.0308 3.1288 1.0655 2.7572 2.6680 2.5921 2.9854 1.0456 1.4869 1.3036 27.0001 

15 0 0 0 0.8356 0.1659 1.0898 3.2341 1.5830 1.0681 0.3883 3.5796 2.9014 3.4226 3.5318 2.5031 3.1969 27.5002 

16 0 0 0 3.3936 1.2616 0.2166 2.2422 1.9721 3.5403 1.4750 3.2893 3.5881 1.3134 3.6899 0.7560 1.2619 28 

17 0 0 0 1.1730 0.1370 2.7977 1.9638 1.4031 4.0468 2.6381 1.4617 5.5283 2.5490 0.0433 2.7273 2.0309 28.5 

18 0 0 0 2.0105 1.1532 1.3525 3.3675 2.5585 3.1930 1.1526 1.3434 3.0437 0.6820 3.3390 2.5689 3.2351 28.9999 

19 0 0 0 3.2574 3.2658 1.4986 2.8242 0.4872 2.0865 2.1304 2.2323 3.5229 3.0272 0.0362 2.3678 2.7635 29.5 

20 0 0 0 2.1039 2.7621 3.7217 1.1324 3.1210 3.6687 1.1202 3.7448 3.4519 0.0183 1.0874 1.8494 2.2180 29.9998 

21 0 0 0 3.8085 0.0393 1.1729 2.0830 2.1976 3.5669 0.1232 4.1947 2.2809 3.3446 2.7215 2.4540 2.5130 30.5001 

22 0 0 0 3.5921 2.0870 4.4790 4.1546 1.6927 3.5023 0.6904 2.7274 1.2457 0.7547 0.3666 2.1905 3.5170 31 

23 0 0 0 1.8612 1.5235 3.0183 2.6992 3.2988 3.0108 4.3116 0.8329 1.5538 1.6008 3.7000 1.0852 3.0039 31.5 

24 0 0 0 3.3916 4.0911 3.4021 3.8145 1.2680 4.3122 0.6408 0.6390 1.8802 3.1034 2.0806 0.2499 3.1267 32.0001 

25 0 0 0 1.0632 1.3998 0.3611 0.9596 3.7329 3.9034 3.8453 1.0337 2.7448 2.4058 4.1777 4.3794 2.4933 32.5 

26 0 0 0 0.9657 1.5812 3.5568 3.7625 2.6392 3.1037 4.0394 2.8907 3.4542 1.8717 1.6161 2.8421 0.6766 32.9999 

27 0 0 0 3.6777 5.1825 4.5425 0.6662 0.0408 4.3502 4.9701 1.4774 1.3585 2.9513 0.3515 0.7292 3.2022 33.5001 

28 0 0 0 0.7735 3.5237 4.5456 4.2499 4.3172 4.0720 3.6115 0.1140 3.0394 1.0134 0.2992 3.5775 0.8631 34 

29 0 0 0 2.0718 4.6317 3.4433 4.3637 2.1722 0.9399 0.6908 0.5090 3.1252 2.6892 2.4224 3.2750 3.1658 33.5 

30 0 0 0 1.4924 6.2343 2.2891 0.5983 0.5335 1.6625 2.1610 2.5381 3.4529 3.0872 1.6906 4.5287 2.7315 33.0001 

31 0 0 0 2.5280 0.1894 1.9474 4.0301 0.2417 3.5781 5.1954 5.7623 1.9896 2.4509 0.4121 0.5696 3.6057 32.5003 

32 0 0 0 3.8199 2.4802 4.0356 4.0806 2.9216 2.0335 2.0322 3.6235 0.6203 2.1560 1.4874 2.1870 0.5223 32.0001 

33 0 0 0 6.8444 0.9012 2.9437 1.3628 6.7828 0.6680 1.3548 1.8233 1.0805 3.7198 1.3554 0.5436 3.1197 32.5 

34 0 0 0 3.1690 0.0717 2.1027 0.2683 1.4920 5.0112 1.5193 4.0785 2.2562 3.0208 2.4249 4.2879 3.0274 32.7299 

35 0 0 0 3.6761 2.4625 3.5932 3.7721 1.6678 0.0944 1.7491 3.0284 2.8975 3.9349 0.3033 3.2305 2.8202 33.23 

36 0 0 0 1.8689 0.4962 2.6611 5.0654 0.0050 4.5734 1.7372 4.0564 2.3704 3.4430 0.8368 1.3330 5.2833 33.7301 

37 0 0 0 0.3178 3.8033 4.3920 2.3711 0.2945 1.3658 3.9648 1.7994 3.9844 1.9302 3.2636 3.9254 2.8177 34.23 

38 0 0 0 4.0716 0.7236 1.2250 4.1431 3.1335 4.1609 0.5825 2.4020 1.5991 4.1598 1.7367 4.0217 2.7705 34.73 
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39 0 0 0 2.6624 1.8429 2.6441 1.8835 6.2338 4.0351 0.9480 2.5365 1.1391 3.1486 0.8007 1.2139 6.1414 35.23 

40 0 0 0 3.5952 1.9224 3.6262 2.9863 1.0647 1.8863 2.2591 3.9601 2.3906 3.4594 3.3484 0.7449 4.4865 35.7301 

41 0 0 0 0.9863 3.6845 0.6717 1.3706 3.7553 0.6769 4.4101 4.6038 2.4221 4.9808 1.0625 4.7466 2.8587 36.2299 

42 0 0 0 1.7382 4.0022 4.6263 4.8516 1.6151 5.1212 0.9014 0.8382 0.0386 2.9359 0.8599 4.7888 4.1825 36.4999 

43 0 0 0 3.0290 3.7334 2.3276 1.7460 1.7152 3.2128 2.6153 4.0454 4.0099 2.4221 3.0438 1.6230 2.4767 36.0002 

44 0 0 0 4.3259 1.6611 2.7400 2.8972 3.7788 3.5338 3.4036 1.3727 4.0414 2.0088 2.8373 0.9247 1.9747 35.5 

45 0 0 0 1.1459 2.0931 0.5584 4.3765 5.7580 0.4281 0.9265 2.2694 6.0609 3.2502 0.3735 6.0364 1.7230 34.9999 

46 0 0 0 3.1305 3.0261 2.7167 2.9977 3.4376 2.2813 3.1316 0.7622 3.9230 1.9249 3.8593 0.9745 2.3346 34.5 

47 0 0 0 0.5583 2.3024 4.9378 3.5064 3.0010 0.2819 0.6446 3.7034 3.6805 3.2458 3.7085 0.3225 4.1071 34.0002 

48 0 0 0 2.2413 3.0239 2.3326 0.4417 2.4866 2.4599 3.4260 4.3136 3.0491 1.0711 2.8138 3.3382 2.5021 33.4999 

49 0 0 0 0.3754 0.2929 2.5011 2.5569 4.8145 2.6010 4.7880 1.5151 2.9702 4.4529 0.0423 2.7358 3.3539 33 

50 0 0 0 0.7880 2.6941 2.8352 2.0801 2.2354 1.6491 4.1342 2.6398 1.5255 0.2551 2.9312 1.6835 7.0489 32.5001 

51 0 0 0 3.5846 2.2375 1.3243 1.4463 4.1977 0.0535 4.4446 3.1274 0.7355 0.5289 4.3172 3.0229 2.9798 32.0002 

52 0 0 0 3.0202 0.8478 2.2980 2.7428 3.7457 2.8731 2.7546 1.9005 2.0125 4.6322 3.0118 0.4497 1.2111 31.5 

53 0 0 0 0.3272 0.4178 2.4753 2.9253 3.5463 0.0346 3.6743 1.3671 1.9783 2.0178 4.9278 4.1939 3.1144 31.0001 

54 0 0 0 2.3534 3.8374 1.9033 2.3886 3.6111 0.5376 3.0991 3.5028 1.4983 1.5409 2.9219 2.3886 0.9172 30.5002 

55 0 0 0 6.0695 0.6077 0.7469 0.9502 3.1563 0.3751 2.0661 0.0899 2.6821 0.5810 6.0157 5.3081 1.3514 30 

56 0 0 0 3.4981 0.1766 3.9723 1.4591 3.1347 0.2501 1.9993 0.2072 3.6677 3.1151 3.0753 3.2036 1.7408 29.4999 

57 0 0 0 2.1229 1.8505 3.0342 1.6877 1.9060 2.4617 0.1198 1.9150 3.0862 3.1744 0.1902 3.9149 3.5365 29 

 
 
 
Table 5.4: Load bus reactive power datasets in the repertoire 𝑸_𝒓𝒆𝒑 calculated using Equation 5.2 

    Bus No. 
 
 
Data 
set No. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ∑ Qdit
 

1 0 0 0 1.9521 0.9286 2.0387 1.2328 1.9292 1.2883 0.0567 1.4671 2.5992 0.9105 0.0474 1.6811 1.1683 17.3 

2 0 0 0 0.7072 1.3530 2.2705 0.9326 1.3536 3.0548 2.6407 0.1459 1.0594 0.1425 0.3130 2.9371 0.0883 16.9986 

3 0 0 0 1.7186 1.5822 1.7754 1.4961 1.6752 1.7935 0.9751 1.7453 0.4155 1.2342 0.1032 1.4299 0.7531 16.6973 

4 0 0 0 0.0548 0.2835 2.0468 0.3155 1.7372 1.8879 0.3568 1.8629 1.7842 1.2171 1.9038 1.9205 1.0247 16.3957 

5 0 0 0 1.7563 1.8081 2.9315 0.8576 1.3635 3.0147 0.0621 0.3667 1.1275 1.3959 0.1951 0.3812 0.8342 16.0944 

6 0 0 0 1.5119 0.9277 1.6384 1.1541 2.0820 0.1787 0.6434 0.9759 1.2380 0.8811 1.3200 1.5867 1.7538 15.8917 

7 0 0 0 1.7905 0.7761 1.7038 1.4608 0.7741 2.1057 0.3146 0.1581 0.9749 1.0641 1.9433 2.3285 0.1955 15.59 

8 0 0 0 0.4835 1.2203 1.7202 0.3172 2.5071 2.0038 0.3386 1.8980 1.0169 0.2463 1.3637 0.7171 1.4563 15.289 

9 0 0 0 1.9309 1.3419 0.4702 2.0215 0.0161 1.1071 2.3556 1.6039 0.6284 1.4184 0.0130 1.2567 0.9663 15.13 

10 0 0 0 0.8953 1.6532 1.8167 1.8566 1.8979 0.8150 0.7122 0.9991 0.2252 0.7855 1.6335 1.5472 0.2322 15.0696 

11 0 0 0 0.2074 0.8033 1.2545 2.6683 0.4924 0.8325 0.6883 2.0060 1.4245 1.4912 2.1303 1.0566 0.3156 15.3709 

12 0 0 0 1.8895 1.2683 1.8777 0.4082 0.4591 0.9515 0.4220 1.3371 1.0995 0.2594 2.0763 1.8980 1.7256 15.6722 

13 0 0 0 0.5463 1.5841 2.2741 0.6864 1.7750 1.0821 2.2638 1.0922 0.1644 0.9335 1.6846 1.7107 0.1767 15.9739 

14 0 0 0 0.4383 1.4288 1.1083 1.8269 1.8860 0.6423 1.6620 1.6082 1.5625 1.7996 0.6303 0.8963 0.7858 16.2753 

15 0 0 0 0.5037 0.1000 0.6569 1.9495 0.9542 0.6438 0.2341 2.1577 1.7489 2.0631 2.1289 1.5088 1.9270 16.5766 

16 0 0 0 2.0456 0.7605 0.1306 1.3516 1.1887 2.1341 0.8891 1.9828 2.1629 0.7917 2.2242 0.4557 0.7606 16.8781 
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17 0 0 0 0.7070 0.0826 1.6864 1.1838 0.8458 2.4394 1.5902 0.8811 3.3324 1.5365 0.0261 1.6440 1.2242 17.1795 

18 0 0 0 1.2119 0.6952 0.8153 2.0299 1.5422 1.9247 0.6948 0.8098 1.8347 0.4111 2.0127 1.5485 1.9501 17.4809 

19 0 0 0 1.9635 1.9686 0.9034 1.7024 0.2937 1.2577 1.2842 1.3456 2.1236 1.8248 0.0218 1.4273 1.6658 17.7824 

20 0 0 0 1.2682 1.6650 2.2434 0.6826 1.8813 2.2115 0.6752 2.2573 2.0808 0.0110 0.6555 1.1148 1.3370 18.0836 

21 0 0 0 2.2957 0.0237 0.7070 1.2556 1.3247 2.1501 0.0743 2.5285 1.3749 2.0161 1.6405 1.4792 1.5148 18.3851 

22 0 0 0 2.1653 1.2580 2.6999 2.5043 1.0203 2.1111 0.4162 1.6440 0.7509 0.4549 0.2210 1.3204 2.1200 18.6863 

23 0 0 0 1.1219 0.9183 1.8194 1.6270 1.9885 1.8149 2.5990 0.5021 0.9366 0.9649 2.2303 0.6541 1.8107 18.9877 

24 0 0 0 2.0444 2.4661 2.0507 2.2994 0.7644 2.5993 0.3863 0.3852 1.1334 1.8707 1.2541 0.1507 1.8847 19.2894 

25 0 0 0 0.6409 0.8438 0.2177 0.5784 2.2501 2.3529 2.3179 0.6231 1.6545 1.4502 2.5183 2.6399 1.5029 19.5906 

26 0 0 0 0.5821 0.9531 2.1440 2.2680 1.5909 1.8709 2.4349 1.7425 2.0821 1.1283 0.9742 1.7132 0.4078 19.892 

27 0 0 0 2.2169 3.1239 2.7381 0.4016 0.0246 2.6222 2.9959 0.8905 0.8189 1.7790 0.2119 0.4395 1.9302 20.1932 

28 0 0 0 0.4663 2.1241 2.7400 2.5618 2.6023 2.4545 2.1770 0.0687 1.8321 0.6109 0.1804 2.1564 0.5203 20.4948 

29 0 0 0 1.2488 2.7919 2.0756 2.6304 1.3094 0.5665 0.4164 0.3068 1.8838 1.6210 1.4602 1.9741 1.9083 20.1932 

30 0 0 0 0.8996 3.7580 1.3798 0.3606 0.3216 1.0021 1.3026 1.5300 2.0814 1.8609 1.0191 2.7299 1.6465 19.8921 

31 0 0 0 1.5239 0.1141 1.1739 2.4293 0.1457 2.1568 3.1317 3.4734 1.1993 1.4774 0.2484 0.3433 2.1734 19.5906 

32 0 0 0 2.3026 1.4950 2.4326 2.4597 1.7611 1.2258 1.2250 2.1842 0.3739 1.2996 0.8966 1.3183 0.3148 19.2892 

33 0 0 0 4.1257 0.5432 1.7744 0.8215 4.0886 0.4026 0.8167 1.0990 0.6513 2.2423 0.8170 0.3277 1.8805 19.5905 

34 0 0 0 1.9102 0.0432 1.2675 0.1617 0.8994 3.0207 0.9158 2.4585 1.3600 1.8209 1.4617 2.5847 1.8249 19.7292 

35 0 0 0 2.2159 1.4844 2.1659 2.2738 1.0053 0.0569 1.0543 1.8255 1.7466 2.3719 0.1829 1.9473 1.7000 20.0307 

36 0 0 0 1.1265 0.2991 1.6041 3.0534 0.0030 2.7568 1.0472 2.4452 1.4288 2.0754 0.5044 0.8035 3.1847 20.3321 

37 0 0 0 0.1915 2.2926 2.6475 1.4293 0.1775 0.8233 2.3899 1.0847 2.4017 1.1635 1.9673 2.3662 1.6984 20.6334 

38 0 0 0 2.4543 0.4362 0.7384 2.4974 1.8888 2.5082 0.3511 1.4479 0.9639 2.5074 1.0469 2.4242 1.6700 20.9347 

39 0 0 0 1.6049 1.1109 1.5938 1.1353 3.7577 2.4323 0.5715 1.5289 0.6866 1.8980 0.4827 0.7317 3.7020 21.2363 

40 0 0 0 2.1671 1.1588 2.1858 1.8001 0.6418 1.1370 1.3617 2.3871 1.4410 2.0853 2.0184 0.4490 2.7044 21.5375 

41 0 0 0 0.5946 2.2210 0.4049 0.8262 2.2636 0.4080 2.6584 2.7751 1.4600 3.0024 0.6405 2.8612 1.7232 21.8391 

42 0 0 0 1.0478 2.4124 2.7887 2.9245 0.9736 3.0870 0.5433 0.5053 0.0233 1.7698 0.5183 2.8867 2.5212 22.0019 

43 0 0 0 1.8258 2.2504 1.4030 1.0525 1.0339 1.9366 1.5765 2.4385 2.4171 1.4600 1.8347 0.9783 1.4929 21.7002 

44 0 0 0 2.6076 1.0013 1.6516 1.7464 2.2778 2.1301 2.0517 0.8275 2.4361 1.2109 1.7103 0.5574 1.1903 21.399 

45 0 0 0 0.6908 1.2617 0.3366 2.6381 3.4709 0.2580 0.5585 1.3679 3.6535 1.9592 0.2251 3.6387 1.0386 21.0976 

46 0 0 0 1.8870 1.8241 1.6376 1.8070 2.0722 1.3751 1.8877 0.4594 2.3647 1.1603 2.3263 0.5874 1.4073 20.7961 

47 0 0 0 0.3365 1.3879 2.9764 2.1136 1.8089 0.1699 0.3885 2.2323 2.2185 1.9565 2.2354 0.1944 2.4757 20.4945 

48 0 0 0 1.3511 1.8228 1.4061 0.2662 1.4989 1.4828 2.0651 2.6002 1.8379 0.6457 1.6961 2.0122 1.5083 20.1934 

49 0 0 0 0.2263 0.1765 1.5076 1.5413 2.9021 1.5679 2.8861 0.9133 1.7904 2.6841 0.0255 1.6491 2.0217 19.8919 

50 0 0 0 0.4750 1.6239 1.7090 1.2539 1.3475 0.9941 2.4920 1.5912 0.9196 0.1538 1.7669 1.0148 4.2490 19.5907 

51 0 0 0 2.1608 1.3488 0.7983 0.8718 2.5303 0.0322 2.6791 1.8851 0.4434 0.3188 2.6023 1.8221 1.7962 19.2892 

52 0 0 0 1.8205 0.5110 1.3852 1.6533 2.2579 1.7319 1.6604 1.1456 1.2131 2.7923 1.8155 0.2711 0.7300 18.9878 

53 0 0 0 0.1972 0.2518 1.4921 1.7633 2.1377 0.0208 2.2148 0.8241 1.1925 1.2163 2.9704 2.5280 1.8773 18.6863 

54 0 0 0 1.4186 2.3131 1.1473 1.4398 2.1767 0.3240 1.8681 2.1114 0.9031 0.9288 1.7613 1.4398 0.5529 18.3849 

55 0 0 0 3.6586 0.3663 0.4502 0.5728 1.9026 0.2261 1.2454 0.0542 1.6167 0.3502 3.6262 3.1997 0.8146 18.0836 

56 0 0 0 2.1086 0.1065 2.3945 0.8795 1.8896 0.1508 1.2052 0.1249 2.2109 1.8778 1.8537 1.9311 1.0493 17.7824 

57 0 0 0 1.2797 1.1154 1.8290 1.0173 1.1489 1.4839 0.0722 1.1543 1.8603 1.9135 0.1147 2.3598 2.1318 17.4808 
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Step 1 to Step 4 from the developed sequential computation algorithm can be considered 

as the initialisation part of the sequential programming solution algorithm, and they consist 

of data preparation tasks. 

The flowchart of the sequential programming algorithm to evaluate the daily performance 

of a distribution network with a feeder reconfiguration scheme under dynamic loading 

conditions is given in Figure 5.4. 

The results of the sequential programming algorithm are presented in the next section. 

 

5.3.3. Results of the sequential computing solution algorithm to analyse the performance 

of the distribution network with a feeder reconfiguration scheme under dynamic 

loading conditions. 

The developed sequential computing solution algorithm is used to assess the performance 

of the 16-bus distribution system with a feeder reconfiguration scheme over a 24h period. 

The developed sequential algorithm is implemented in MATLAB R2016b, and the 

simulations are carried out in a SUPERMICRO computer with 2 Intel Xeon CPU E5-2620 

v4 @ 2.10GHz processor and a 16GB RAM. The computer has 16 physical cores and 16 

virtual cores, a total of 32 logical cores. 

The rate of the power change threshold is 500 kW. Equations 5.1 and 5.2 are used to 

determine the real and reactive power at each PQ bus every time the real power demand 

decreases or increases by 500 kW. Therefore, for the daily real power demand profile 

given in Figure 5.2, there are 57 datasets to be simulated. The calculated real and reactive 

power at each bus is given in Table 5.3 and 5.4 respectively. 

Given that the developed algorithm is sequential, all the 57 datasets are simulated 

consecutively, one after the other in a since processor. 

The sequential computing solution for each dataset is given in Table 5.5. The real power 

loss profile and the minimum voltage profile for each dataset are presented in Figure 5.5 

and Figure 5.6 respectively. 

 

   Table 5.5: Sequential computing solutions for the feeder reconfiguration problem 

Dataset 
No. 

Before reconfiguration After reconfiguration 

Real 
power 
loss (kW) 

Max 
voltage 
(𝐩. 𝐮) 

Min 
voltage 
(𝐩. 𝐮) 

Real 
power 
loss (kW) 

Max 
voltage 
(𝐩. 𝐮) 

Min 
voltage 
(𝐩. 𝐮) 

Optimal topology 
(tie switches) 

1 465.5 1 0.9724 423.1 1 0.9750 7 8 16 

2 473.9 1 0.9731 430.4 1 0.9766 7 8 16 

3 402.2 1 0.9766 385.9 1 0.9766 7 14 16 

4 474.3 1 0.9698 377.3 1 0.9822 8 13 15 

5 388.6 1 0.9736 353.5 1 0.9793 4 7 8 



178 

 

6 343.3 1 0.9798 339.7 1 0.9798 8 15 16 

7 335.4 1 0.9790 329.3 1 0.9792 8 15 16 

8 385.5 1 0.9710 315.0 1 0.9822 7 8 16 

9 337.8 1 0.9806 336.0 1 0.9806 11 14 16 

10 320.1 1 0.9756 318.0 1 0.9797 13 14 15 11 375.8 1 0.9769 364.4 1 0.9727 8 15 16 12 358.1 1 0.9778 358.1 1 0.9778 14 15 16 13 358.8 1 0.9801 349.2 1 0.9819 4 8 15 14 393.5 1 0.9760 358.9 1 0.9783 8 15 16 15 479.2 1 0.9729 408.3 1 0.9775 8 11 16 16 486.8 1 0.9651 388.1 1 0.9793 8 15 16 17 576.3 1 0.9626 477.7 1 0.9716 7 8 16 18 458.7 1 0.9780 430.5 1 0.9780 8 15 16 19 451.0 1 0.9777 439.5 1 0.9761 8 15 16 20 588.4 1 0.9611 472.9 1 0.9755 4 7 8 21 541.7 1 0.9670 529.9 1 0.9706 2 7 13 22 564.8 1 0.9637 560.7 1 0.9637 7 14 16 23 519.4 1 0.9746 502.1 1 0.9755 8 15 16 24 529.9 1 0.9664 527.8 1 0.9661 8 15 16 25 690.3 1 0.9700 598.7 1 0.9724 8 13 15 26 685.6 1 0.9630 589.8 1 0.9696 7 8 16 27 592.5 1 0.9737 580.7 1 0.9732 4 8 15 28 694.1 1 0.9650 626.8 1 0.9654 7 8 16 29 618.6 1 0.9650 614.0 1 0.9649 8 11 16 30 589.8 1 0.9719 576.8 1 0.9753 13 14 15 31 776.5 1 0.9532 594.4 1 0.9698 8 15 16 32 561.2 1 0.9647 544.5 1 0.9674 4 8 15 33 455.6 1 0.9781 447.9 1 0.9761 8 15 16 34 707.8 1 0.9612 531.7 1 0.9768 8 13 15 35 577.6 1 0.9679 577.6 1 0.9679 14 15 16 36 719.0 1 0.9649 640.1 1 0.9658 8 15 16 37 652.7 1 0.9728 639.4 1 0.9718 8 15 16 38 629.4 1 0.9714 590.7 1 0.9714 8 15 16 39 672.7 1 0.9690 611.5 1 0.9708 8 15 16 40 674.9 1 0.9718 668.5 1 0.9668 8 15 16 41 799.4 1 0.9631 680.8 1 0.9713 8 13 15 42 790.7 1 0.9600 790.7 1 0.9600 14 15 16 43 744.0 1 0.9589 657.0 1 0.9697 8 15 16 44 684.5 1 0.9663 628.6 1 0.9731 7 8 16 45 728.0 1 0.9648 652.1 1 0.9733 7 8 13 46 596.3 1 0.9743 582.2 1 0.9738 8 15 16 47 644.9 1 0.9689 639.8 1 0.9640 8 15 16 48 679.7 1 0.9605 572.1 1 0.9739 8 15 16 49 685.3 1 0.9666 613.6 1 0.9727 8 11 16 50 636.4 1 0.9668 609.2 1 0.9668 8 15 16 51 538.3 1 0.9752 520.0 1 0.9759 8 15 16 52 493.2 1 0.9747 451.9 1 0.9780 8 15 16 53 596.3 1 0.9673 552.3 1 0.9711 8 13 15 54 468.1 1 0.9757 468.1 1 0.9757 14 15 16 55 487.4 1 0.9714 469.5 1 0.9723 8 13 15 56 429.5 1 0.9779 423.9 1 0.9779 8 15 16 57 464.6 1 0.9734 445.2 1 0.9734 8 15 16 

Total 31373.9  28966.4  
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Figure 5.5: Daily real power loss profile using the developed sequential programming approach 

 
 

 

Figure 5.6: Daily minimum voltage profile using the developed sequential programming approach 

 

The profile summary of the sequential programming simulations is given in Figure 5.7. The 

profile summary provides information about how long it takes to simulate all the datasets 

from Table 5.3 and 5.4. The profile summary shows that in comparison with all other 

functions used in the code, the Newton-Raphson power flow takes most of the computation 

time with about 46.373 seconds.
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Figure 5.7: Profile summary of the developed sequential programming approach for  
 the feeder reconfiguration scheme under dynamic loading conditions 
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5.3.4. Discussion of the results of the sequential computing algorithm to analyse the 

performance of the distribution network with feeder reconfiguration under dynamic 

loading conditions 

The analysis of the results of the daily performance of the distribution network with a feeder 

reconfiguration scheme shows that the distribution network topology is likely to change if 

there is a significant change in load demand at each PQ bus. As seen in Table 5.5, the 

distribution network topology does not remain the same for all 57 datasets. This means 

that the topology of the distribution network changes throughout the day, depending on the 

real and reactive power demand at each PQ bus.  

Looking at the real power loss, it is observed that for any data set, the real power loss is 

reduced after the reconfiguration process. Figure 5.5 indicates that when a feeder 

reconfiguration scheme is present in a distribution network, the real power loss incurred in 

the distribution network is reduced, in comparison to a distribution network without feeder 

reconfiguration scheme. From Table 5.5, it can be calculated that when the distribution 

network is equipped with a feeder reconfiguration scheme, the total daily power is 𝟐𝟖. 𝟗𝟔𝟔𝟒 𝐌𝐖. Otherwise, the total daily power loss would be 𝟑𝟏. 𝟑𝟕𝟒𝟏 𝐌𝐖. Therefore, for 

the 16-bus distribution network, and for the real and reactive power demands provided in 

Table 5.3 and 5.4 respectively, the difference of total daily real power loss between the 

distribution network with the feeder reconfiguration scheme and the distribution network 

without the feeder reconfiguration scheme is 𝟐. 𝟒𝟎𝟕𝟕 𝐌𝐖, which corresponds to a real 

power saving of approximately 𝟕. 𝟔𝟕%. 

 

For each dataset, the distribution network has a different voltage profile, irrespective of 

whether a feeder reconfiguration scheme is present or not. However, when a feeder 

reconfiguration scheme is implemented in the distribution network, the voltage level at 

each bus is improved. Figure 5.6 provides the minimum voltage resulting from the 

simulation of each dataset.  It is observed that for the distribution network with a feeder 

reconfiguration scheme, the minimum voltages are above 𝟎. 𝟗𝟔 𝐩. 𝐮 for all 57 datasets. For 

the distribution network without feeder reconfiguration scheme, the minimum voltages are 

above 𝟎. 𝟗𝟓 𝐩. 𝐮 for all 57 datasets, and voltage below 0.96 p. u are registered. As given in 

Table 5.5, for all datasets, the maximum voltage is 1 p. u. Thus, it is concluded that the 

voltage levels of the 16-bus distribution network are within the recommended limit of ±𝟔%, 

for each of the datasets from Table 5.3 and 5.4. 

 



182 

 

5.3.5. Parallel computing solution algorithm to analyse the performance of a distribution 

network with a feeder reconfiguration scheme under dynamic loading conditions 

5.3.5.1. Introduction to parallel computing  

Parallel computing may be defined as the simultaneous execution of several processes 

within a computational problem using multiple computer resources. Several applications 

are solved using codes in which segments of code are repetitive and independent of each 

other (Almasi & Gottlieb, 1989). Such codes are traditionally computed serially, i.e. the 

problem is divided into several code instructions, the instructions are executed 

sequentially, one after another and on a single processor (Barney, 2017). In parallel 

computing, the problem is divided into multiple subproblems that can be solved 

simultaneously. The subproblems are further divided into multiple instructions, solved on 

different processors, and the results are collected after all subproblems are solved (Grama 

et al., 2003). The concepts of parallel and sequential programming are illustrated in Figure 

5.8 and 5.9, respectively. The use of parallel computing may result in a saving of time and 

possibly in computation memory. However, the use of parallel computing is not without 

limitations.  

 

Sub-problem 2

Sub-problem 1

Sub-problem n

tn Processor 1t3 t2 t1

tn Processor 2t3 t2 t1

tn Processort3 t2 t1

tn Processort3 t2 t1

tn Processor nt3 t2 t1

Problem Instructions

 

Figure 5.8: Illustration of Parallel computing (Barney, 2017) 
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Problem

tn t3 t2 t1 Processor

Instructions

 

Figure 5.9: Illustration of serial computing (Barney, 2017) 
 

The next section presents the limitations of parallel computing. 

 

5.3.5.2. Limitations of parallel computing 

Parallel computing has some benefits to the programmer. However, there are limitations 

associated with its use. These limitations are the complexity, the speed-up, the resources 

requirements, the portability, and the scalability. 

- Complexity: Compared to sequential/serial algorithms, parallel algorithms are more 

complicated to design, to code, to debug, to tune and to maintain (Barney,2017).  

- The speed-up: There is a limit to the speedup that can be achieved through parallel 

computing. This statement is supported by Amdahl’s law which states that the potential 

speed-up of an algorithm coding on a parallel platform is dependent on the percentage 

of the code that can be parallelised (Amdahl, 1967).  

Based on Amdahl’s law, the potential speed-up can be calculated using Equation 5.3. 

Another approximation of the potential speed-up of the algorithm coding is given by 

Gustafson’s law (Gustafson, 1988) as expressed in Equation 5.4. 

𝐬𝐩𝐞𝐞𝐝𝐮𝐩 = 𝟏𝐏𝐍 + 𝟏 − 𝐏                                                                                                                    (5.3) 
Where, 

    𝐏 is the percentage of the code that can be parallelized. 𝐍 is the number of processors to be used. 

 𝐬𝐩𝐞𝐞𝐝𝐮𝐩 = 𝟏 − 𝐏 + 𝐍 ∗ 𝐏                (5.4) 
 

Amdahl’s law assumes that the parallelizable portion of the code is independent of the 

number of processors used while for Gustafson’s, the parallelizable portion of the 

algorithm coding varies linearly with the number of processors (Barney, 2017). 
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- Resources requirements: Parallel computing needs multiple processors to achieve 

optimal speed-up. Additionally, the memory requirements for parallel codes may be 

higher than in serial codes (Barney, 2017). 

 
- Portability: The portability of a code refers to its use in different vendors platforms. 

Hardware architecture and operating systems may negatively affect the portability of 

parallel programs. So, reinstalling a parallel code or transferring it from one computer 

to another may be challenging (Grama et al., 2003). 

 
- Scalability: The scalability refers to the potential of a system to be enlarged to 

accommodate a growing amount of work. There is a limit in the scalability of parallel 

computers, and they will eventually fail to meet their objectives as they amount of 

processes increase. Likewise, when scaling parallel computers for a constant amount 

of work, there is a number of processors beyond which the scalability has no or 

insignificant effect on the speed-up of the parallel code (Almasi & Gottlieb, 1989). 

 

To curb the limitations of parallel computing, it is essential to adhere to good software 

development practices when working with parallel computing applications. 

 

5.3.5.3. Types of parallelism 

The ultimate purpose of parallel computing is to save time. However, depending on the 

applications and the abilities of the programmers, different parallel programming 

approaches may be used. 

- Instruction Level Parallelism (ILP): In Instruction Level Parallelism, multiple 

instructions from the same stream of instructions are executed simultaneously 

(Patterson & Henessy, 2014). The instructions can be reordered, grouped and 

executed in parallel, with no change in the result. Instruction Level Parallelism is limited 

in practice by data and control dependencies. 

 

- Data Level Parallelism (DLP): Data Level Parallelism is achieved by performing the 

same operation on independent data (Patterson & Henessy, 2014). Its usage is limited 

by non-regular data manipulation and memory bandwidth, with the memory bandwidth 

being the rate at which a processor can read from or store data in a semiconductor 

memory. 

 

- Task Level Parallelism (TLP): Task Level Parallelism consists of using multiple 

processors to run independent programs concurrently (Patterson & Henessy, 2014). It 
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contrasts with data parallelism where the operations are performed on the same or 

independent data. Task Level Parallelism is limited in practice by communication 

overheads. Therefore, It is challenging to scale with the size of the problem (Patterson 

& Henessy, 2014). 

 

Because of the multitude of datasets to be simulated, the data parallel computing solution 

is developed to assess the daily performance of the distribution network feeder 

reconfiguration in the 16-bus distribution network under dynamic loading conditions. 

 

5.3.5.4. Classification of parallel computers 

Parallel computers are those in which the operation of calculations can be performed 

simultaneously. Various criteria can be used to classify parallel computers. Some of such 

criteria include the instructions and data streams, the structure of the computer, the way 

the memory is accessed and the size of the instructions to be processed. The most 

common classification of parallel computers includes Flynn’s classification, Handler’s 

classification, the structural classification, and the Grain size-based classification. 

 

a. Flynn’s classification 

This classification is based on the multiplicity of instructions and data streams observed 

by a computer’s CPU during the execution of a program. Is was introduced in 1972 by 

Michael Flynn and does not consider the computer’s architecture (Flynn, 1972). Based on 

the sequence of instructions, computers can be classified into four types: SISD, SIMD, 

MISD, and MIMD. 

- Single Instruction Single Data (SISD): SISD machines are serial machines, i.e. they 

can only run non-parallel programs. The architecture of SISD chines is given in Figure 

5.10.  
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Figure 5.10: Architecture of SISD computers (Barney, 2017) 
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In SISD machines, only one instruction and only one data can be executed at the 

time (John, 2000). Moreover, SISD machines just have one processor or Processing 

Unit (PU). 

- Single Instruction Multiple Data (SIMD): SIMD machines are parallel computers. 

They have multiple processors, all executing the same instruction concurrently. 

However, the data processed may be either the same or entirely different and 

independent (Behrooz, 2002). The architecture of SIMD machines is given in Figure 

5.11. 
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Figure 5.11: Architecture of SIMD computers (Barney, 2017) 

 
 

- Multiple Instruction Single Data (MISD): MISD machines are parallel computers in 

which a single data stream is fed into multiple processors, each processing the data 

independently and via a separate instruction stream (Changhun, 2002). The 

architecture of MISD computers is given in Figure 5.12. 

 

Instruction Pool

D
a

ta
 P

o
o

l

MISD

PU PU

 
Figure 5.12: Architecture of MISD computers (Barney, 2017) 



187 

 

MISD Computers are not very common as a single data stream is rarely executed on 

multiple processors. 

- Multiple Instructions Multiple Data (MIMD): MIMD machines are the most common 

type of parallel computers. Almost all modern supercomputer, multicore PCs, and 

computers clusters fall under this category. The architecture of MIMD machines is 

given in Figure 5.13. In MIMD machines, processors may work with different data 

streams and execute different instruction streams (Behrooz, 2002). 
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Figure 5.13: Architecture of MIMD computers (Barney, 2017) 

 

b. Handler’s classification 

It was introduced in 1977 by Wolfgang Handler to express the parallelism type of 

computers. This classification is based on three different criteria: 

- The Processing Control Unit (PCU) or processor, or CPU. 

- The Arithmetic Logic Unit (ALU) which is the hardware that processes the arithmetic 

operations like “addition” and “subtraction”, and logical operations like “AND” and “OR” 

(Patterson & Henessy, 2014). 

- The Bit Level Circuit which is the logic circuit used to perform one-bit operations in 

the Arithmetic Logic Unit. 

 

c. Structural classification 

In the structural classification, parallel computers are classified according to the structure 

of their memory. So, based on the memory structure, there are two types of parallel 

computers: Shared Memory parallel computers and Distributed Memory parallel 

computers 
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- Shared memory parallel computers: They are also referred to as tightly coupled 

systems, they are distinguished by a common global memory for all processors/CPU. 

Although all the processors share the same memory, they run independently from each 

other. Shared memory parallel computers are subdivided into two classes, based on 

the access and access time to the memory: The Uniform Memory Access (UMA) and 

the Non-Uniform Memory Access (NUMA). The architecture of UMA and NUMA 

computers is shown in Figures 5.14 and 5.15, respectively.  
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Figure 5.14: Architecture of shared memory UMA (Culler et al.,1999) 
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Figure 5.15: Architecture of shared memory NUMA (Culler et al.,1999) 
 

In UMA, the processors have equal access and access time to the memory while in 

NUMA, the access time to the memory is not the same for all processors. Furthermore, 

in contrast to UMA, the memory access is slower in NUMA. 

Shared memory parallel computers are ideal for applications requiring fast and uniform 

data sharing. They, however, suffer from a lack of scalability between the memory and 

the CPUs (Culler et al., 1999). 
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- Distributed memory parallel computers: In the distributed memory model, each 

processor has an independent memory, and no processor can access a memory other 

than theirs. Therefore, a Message Passing Interconnection Network is required to 

manage the traffic of information between the processors. The distributed memory 

approach alleviates the memory conflict problem known to slow down the execution of 

instructions in shared memory parallel computers (Culler et al., 1999). The architecture 

of distributed memory parallel computers is given in Figure 5.16 
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Figure 5.16: Architecture of distributed memory parallel computers (Culler et al.,1999) 

 

d. Grain size-based classification 

The grain size or granularity is a measure of the number of computations involved in a 

process. It is determined by counting the number of instructions in a segment of the 

program. Thus, based on the grain size, parallelism can be classified as fine grain, medium 

grain, and coarse grain parallelisms (Barney, 2017). 

- Fine Grain: this type involves relatively small amounts of computations. The typical 

number of instructions is approximately less than 20. If the number of instructions is 

too small (too fine granularity), the communication overheads may take longer than the 

actual computation of the instructions. 

 

- Medium Grain: this type consists of sub-programs and processes involving several 

hundreds of instructions. 

 

- Coarse Grain: it consists of several independent programs involving thousands of 

instructions. The higher number of instruction make possible an opportunity for a 

performance increase. Furthermore, the communication overheads time is relatively 

small compared to the instructions’ computation time. 
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5.3.5.5. Parallel programming in MATLAB/SIMULINK 

In MATLAB/Simulink, data and computationally expensive problems are solved through 

the parallel computing toolbox and the MATLAB Distributed Computing Server/Engine 

(MDCS/MDCE), provided that they are installed on multicores or multiprocessors 

computers (MathWorks, 2017). Data and task parallel algorithms can be directly 

implemented in MATLAB parallel computing environment using parallel processing 

constructs such as parallel for loops, code blocks, distributed arrays, message passing 

functions and more (MathWorks, 2017). Figure 5.17 shows the basic parallel computing 

setup.  
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Figure 5.17: Parallel computing setup and interactions between its sessions (MathWorks, 2016) 
 
 

A job is an operation that needs to be performed. Often, it is broken into smaller segments 

of tasks before to be processed. The MATLAB client is the machine in which the tasks to 

be executed are defined and programmed. The scheduler or MATLAB Job Scheduler 

(MJS) is the session that coordinates the execution of jobs and the evaluation of tasks. It 

usually processes the jobs in the order in which they are submitted. The MJS is also 

responsible for allocating tasks to the workers. A MATLAB worker is a session that 

performs the computation of tasks allocated to it by the MJS. After executing the tasks, the 

worker returns the result to the MJS (MathWorks, 2017). 

 

The parallel computing toolbox allows the execution of parallel applications on a local 

multicores or multiprocessors computer. The MDCE is the preferred MATLAB service 

when parallel applications need to be executed on computers clusters, grids or clouds. In 

such instance, the parallel computing network might have several MJS and client sessions. 

Additionally, the MDCE must run on all workers in the network (MathWorks, 2017).  Figure 

5.18 is a representation of a computer cluster with multiple clients, MJS, and workers. 
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Figure 5.18: Computer cluster with multiple clients and MJS (MathWorks, 2017) 
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Figure 5.19: Diverse stages of a job (MathWorks, 2017) 
 

 

From Figure 5.19, it can be inferred that a job goes through many stages from its creation 

to its execution. The set of stages a job undergoes, from its creation to the end of its 

execution is referred to as the lifecycle of the job. Jobs are categorised by their stage in 

the MJS. Figure 5.19 shows the different stages of a job’s lifecycle. Further details on the 

job’s lifecycle states are given in Table 5.6. 
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    Table 5.6: Details on the states of a job's lifecycle 

Job Stage Description 

Pending 
A job is created on the scheduler with the createJob function in the client  
session of Parallel Computing Toolbox software. The job's first  
state is pending. This is when the job is defined by adding tasks to it. 

Queued 

After the job has been submitted, the MJS or scheduler places the job  
in the queue, and the job's state is queued. The scheduler executes jobs 
in the queue in the sequence in which they are submitted, all jobs moving 
up the queue as the jobs before them are finished. 

Running 

When a job reaches the top of the queue, the scheduler distributes the job's 
tasks to worker sessions for evaluation. The job’s state is now running. If  
more workers are available than what are required for a job's tasks, the scheduler 
begins executing the next job. In this way, there can be more than one job  
running at a time. 

Finished 
When all a job’s tasks have been evaluated, the job is moved to the finished  
state. Now, the results from all the tasks in the job can be retrieved with the  
function fetchOutputs. 

Failed 
When a third-party scheduler is used, a job might fail if the scheduler 
encounters an error when attempting to execute its commands or access  
necessary files. 

Deleted 
When a job’s data has been removed from its data location or the  
MJS with the delete function, the state of the job in the client is deleted. This  
state is available only as long as the job object remains in the client. 

 

5.3.5.6. Parallel computing solution algorithm to analyse the performance of a distribution 

network with a feeder reconfiguration scheme under dynamic loading conditions 

The algorithm in section 5.3.2 is a sequential algorithm. The instructions from Step 5 to 

Step 7 are executed as long as there are datasets for which the real power loss needs to 

be calculated. However, the number of data sets can be very high, especially if the 

threshold rate of power change 𝐝𝐩 as defined in Step 2 of the sequential algorithm in 

section 5.3.2. is small. Consequently, this results in a high computational burden and a 

time-consuming process. Parallel computing is used to alleviate that computational 

burden. Step 5 to Step 7 of the developed sequential programming algorithm is 

parallelizable. This portion of the code (Step 5 to Step 7) can be spread and computed on 

several workers, each processing a workload whose size is determined by the 𝐩𝐜𝐭𝐝𝐞𝐦𝐨_𝐡𝐞𝐥𝐩𝐞𝐫_𝐬𝐩𝐥𝐢𝐭_𝐬𝐜𝐚𝐥𝐚𝐫 function. The MATLAB coding of the 𝐩𝐜𝐭𝐝𝐞𝐦𝐨_𝐡𝐞𝐥𝐩𝐞𝐫_𝐬𝐩𝐥𝐢𝐭_𝐬𝐜𝐚𝐥𝐚𝐫 function is given in Appendix F. The 𝐩𝐜𝐭𝐝𝐞𝐦𝐨_𝐡𝐞𝐥𝐩𝐞𝐫_𝐬𝐩𝐥𝐢𝐭_𝐬𝐜𝐚𝐥𝐚𝐫 function divides a non-negative number of data sets into 𝐧_𝐰𝐫𝐤𝐬 smaller non-negative numbers of data sets, where 𝐧_𝐰𝐫𝐤𝐬 is the number of 

workers from the parallel computer/cluster to be used to solve the parallel problem 

(MathWorks, 2016). A limit is imposed on the number of workers as it cannot be greater 

that the numbers of processors/cores in the parallel machine. 
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In the parallelizable portion of the code (Step 5 to Step 7), only the datasets change over 

the iterations. The same program is used to evaluate a high number of datasets. As such, 

the Single Program Multiple Data (SPMD) function in MATLAB is ideal to computerise the 

algorithm in a parallel manner. The Single Program aspect of the SPMD means that an 

identical code is run in all workers (MathWorks, 2017). The Multiple Data attribute means 

that each worker can have a different data set, even though the same program code runs 

in all workers (MathWorks, 2017). When the SPMD function is executed, it creates a pool 

of workers using the default cluster profile. Each worker in the pool has a unique index 

number referred to as “𝐥𝐚𝐛𝐢𝐧𝐝𝐞𝐱”. The labindex allows you to specify the dataset to be 

used and/or the code to be executed on specific workers in the pool (MathWorks, 2017). 

 

The parallel computing algorithm is quite similar to its sequential programming algorithm 

developed in section 5.3.2. Step 1 to 4 from the sequential programming algorithm remains 

unchanged in the parallel programming algorithm.  

To obtain the parallel computing algorithm, the following instructions are added to the 

sequential programming algorithm, just after Step 4 and before the SPMD function opens 

the pool of workers: 

- Set the number of workers 𝐧_𝐰𝐫𝐤𝐬 to be used to solve the parallel problem. The 

number of workers should be less than or equal to the number of cores/processors in 

the parallel computer. 

 

- Using the 𝐩𝐜𝐭𝐝𝐞𝐦𝐨_𝐡𝐞𝐥𝐩𝐞𝐫_𝐬𝐩𝐥𝐢𝐭_𝐬𝐜𝐚𝐥𝐚𝐫 function (see Appendix F), determine the 

number of datasets from the repertoires 𝐏_𝐫𝐞𝐩 and 𝐐_𝐫𝐞𝐩 (given in Table 5.3 and 5.4, 

respectively) that is allocated to each worker. 

 

Once the parallel pool is opened by the SPMD function, step 5 to step 7 run concurrently 

on all workers. The data sets from the repertoires 𝐏_𝐫𝐞𝐩 and 𝐐_𝐫𝐞𝐩 are closely distributed 

amongst the workers. 

 

The parallel computing solution algorithm to evaluate the daily performance of a 

distribution network with a feeder reconfiguration scheme and under dynamic loading 

conditions is as follows: 

Step 1: Read the electrical distribution network data such as the number of nodes 𝐍𝐁, the 

number of distribution lines 𝐍𝐋, the number of tie lines 𝐍𝐓, the bus type (𝐒𝐥𝐚𝐜𝐤, 𝐏𝐕, 𝐏𝐐), 

the load data (𝐏𝐝𝐢𝐭, 𝐐𝐝𝐢𝐭, 𝐁𝐬, 𝐋𝐨𝐚𝐝_𝐈𝐃), the generator data (𝐏𝐠, 𝐐𝐠) and distribution line data 

(𝐛𝐮𝐬_𝐢, 𝐛𝐮𝐬_𝐣, 𝐫, 𝐱, 𝐬𝐰_𝐭𝐢𝐞, 𝐬𝐰_𝐬𝐞𝐜). 
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Step 2: Set the threshold rate of power change dp as defined in step 2 of the sequential 

programming algorithm in section 5.3.2 

Step 3: Find the total load demand in the distribution network at each time interval for the 

24h period.  This process is the same as that of the PSO-based sequential computing 

algorithm developed in section 5.3.2. 

 

Step 4: Determine the load demand Pdit and Qdit at each PQ bus in the distribution 

network. Equations 5.1 and 5.2 are used to determine the real and the reactive power 

demand at each PQ bus in the distribution network. The results are given in Tables 5.3 

and 5.4 and saved in the repertoire P_rep and Q_rep for the real and reactive power demand 

at each PQ bus, respectively.  

Step 5: Set the number of workers 𝐧_𝐰𝐫𝐤𝐬 to be used to solve the parallel problem. And 

using the  𝐩𝐜𝐭𝐝𝐞𝐦𝐨_𝐡𝐞𝐥𝐩𝐞𝐫_𝐬𝐩𝐥𝐢𝐭_𝐬𝐜𝐚𝐥𝐚𝐫 function, determine the number of datasets 𝐧𝐮𝐦𝐏𝐞𝐫𝐓𝐚𝐬𝐤 from the repertoires 𝐏_𝐫𝐞𝐩 and 𝐐_𝐫𝐞𝐩 (given in Tables 5.3 and 5.4, 

respectively) that is allocated to each worker 

Step 6: Open the pool of MATLAB workers using the SPMD function and allocate tasks 

(datasets) to each worker. 

Start the iteration process and set the iteration counter 𝐤 to 1 for each 𝐥𝐚𝐛𝐢𝐧𝐝𝐞𝐱. The 

iteration counter counts the number of load bus real and reactive dataset that go through 

the iterative loop. The iteration process is run concurrently in all the workers. 

Step 7: Read the real and reactive power demand 𝐏𝐝𝐢𝐭
 and 𝐐𝐝𝐢𝐭

 at each bus at time t from 𝐏_𝐫𝐞𝐩 and 𝐐_𝐫𝐞𝐩, respectively (dataset 𝐤), and update the load demand in the distribution 

network. 

Step 8: The PSO algorithm developed in chapter three, section 3.5.2 to solve the single 

objective distribution network feeder reconfiguration problem is used to create a function 𝐬𝐩𝐦𝐝𝟏 which takes the distribution network data defined in step 1 as inputs and returns 

the solution of the distribution network feeder reconfiguration optimization process as 

outputs.    

Using the function 𝐬𝐩𝐦𝐝𝟏, run the optimal feeder reconfiguration algorithm and determine 

the real power loss 𝐏𝐥𝐨𝐬𝐬_𝐢𝐧; the minimum voltage 𝐦𝐢𝐧𝐕𝐢𝐧; the maximum voltage 𝐦𝐚𝐱𝐕_𝐢𝐧 

before reconfiguration, and the real power loss 𝐟𝐢𝐭𝐧𝐞𝐬𝐬_𝐆𝐛𝐞𝐬𝐭; the minimum 

voltage 𝐕𝐦𝐢𝐧_𝐆𝐛𝐞𝐬𝐭; the maximum voltage 𝐕𝐦𝐚𝐱_𝐆𝐛𝐞𝐬𝐭 after the reconfiguration. 
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Step 9: Save the results from Step 8 in the repertoire 𝐲𝟏. The repertoire 𝐲𝟏 is created for 

each worker to save the results of Step 8 for each dataset. 

Step 10: Stop the iteration or increment the iteration counter. For each worker, If Step 7 to 

Step 9 are performed for all the datasets allocated to the worker from Step 5, then stop the 

iterative process. Else, increment the iteration count and repeat step 7 to step 9 until all 

datasets are evaluated. 

Step 11: Print the results of the parallel computing algorithm to evaluate the daily 

performance of a distribution network with a feeder reconfiguration scheme and under 

dynamic loading conditions. At the end of the simulations, the results from each worker 

saved in their respective repertoire as given in Step 9, should be retrieved and printed for 

analysis.  

 

The flowchart of the parallel computing algorithm to evaluate the daily performance of a 

distribution network with a feeder reconfiguration scheme under dynamic loading 

conditions is given in Figure 5.20. 

 

Step 1 to Step 4 can be considered as the initialisation part of the Parallel computing 

solution algorithm, and they consist of data preparation tasks.  

To compare the results of the developed sequential programming algorithm with those of 

the developed parallel computing algorithm, it is necessary that the datasets obtained from 

Step 4 are the same for both algorithms. Step 1 and Step 4 in the sequential programming 

algorithm in section 5.3.2 is the same as that of the parallel computing algorithm described 

above. So, in the MATLAB coding of the parallel computing algorithm, Step 1 to Step 4 

can be omitted and replaced with a Step that consists of retrieving datasets information 

from the repertoires 𝐏_𝐫𝐞𝐩 and 𝐐_𝐫𝐞𝐩 (given in Table 5.3 and 5.4, respectively) obtained 

after running the developed sequential programming algorithm. 
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Fetch output of each worker and display results of the parallel computing problem

labindex == 1 labindex == 2 labindex == n_wrks

 

Figure 5.20: Flowchart of the data-parallel computing solution to analyse the performance of the distribution network with a feeder 
reconfiguration scheme under dynamic loading conditions 
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5.3.6. Results of the Parallel computing solution to analyse the performance of the 

distribution network with a feeder reconfiguration scheme under dynamic loading 

conditions 

The developed parallel computing solution algorithm is used to analyse the performance 

of the 16-bus distribution system with a feeder reconfiguration scheme over a 24h period.  

The rate of the power change threshold is 500 kW. Due to the speed-up and the scalability 

limits in parallel applications, the heuristic formula given in Equation 5.5 is developed to 

determine the optimal number of workers used in the parallel code. 

𝐧_𝐰𝐫𝐤𝐬 = 𝐫𝐨𝐮𝐧𝐝(𝐧_𝐝𝐚𝐭𝐚𝐬𝐞𝐭 )𝟏𝟎                                                                                                              (5.5) 

Where, 𝐧_𝐝𝐚𝐭𝐚𝐬𝐞𝐭 is the number of data sets to evaluate. 𝐫𝐨𝐮𝐧𝐝(𝐧_𝐝𝐚𝐭𝐚𝐬𝐞𝐭) is the operation that rounds off the number of data sets to the 

nearest multiple of 10. 

 

After the data preparation steps (Step 1 to 3) the algorithms given in sections 5.3.3.1 and 

5.3.3.3., it resorts that there are 57 datasets to be simulated. Using Equation 5.5, the 

optimal number of workers used in the parallel code is calculated. It follows that six workers 

are needed for the parallel computing algorithm implementation in MATLAB. Thus, the first 

three workers simulate ten datasets each, and the next three workers simulate nine 

datasets each.  

Tables 5.7 to 5.12 present the outputs of worker 1 to 6, respectively at the end of the 

parallel computing simulations. The results of the parallel computing algorithm are 

analysed in terms of real power loss, minimum voltage and maximum voltage before and 

after optimal network reconfiguration. 

 
  Table 5.7: Data-parallel feeder reconfiguration solutions from worker 1 

Dataset 
No. 

Before reconfiguration After reconfiguration 

Real 
power 
loss (kW) 

Max 
voltage 
(𝐩. 𝐮) 

Min 
voltage 
(𝐩. 𝐮) 

Real 
power 
loss (kW) 

Max 
voltage 
(𝐩. 𝐮) 

Min 
voltage 
(𝐩. 𝐮) 

Optimal topology 
(tie switches) 

1 465.5 1 0.9724 423.1 1 0.9750 7 8 16 

2 473.9 1 0.9731 430.4 1 0.9766 7 8 16 

3 402.2 1 0.9766 385.9 1 0.9766 7 14 16 

4 474.3 1 0.9698 377.3 1 0.9822 8 13 15 

5 388.6 1 0.9736 353.5 1 0.9793 4 7 8 

6 343.3 1 0.9798 339.7 1 0.9798 8 15 16 

7 335.4 1 0.9790 329.3 1 0.9792 8 15 16 

8 385.5 1 0.9710 315.0 1 0.9822 7 8 16 

9 337.8 1 0.9806 336.0 1 0.9806 11 14 16 

10 320.1 1 0.9756 318.0 1 0.9797 13 14 15 
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  Table 5.8: Data-parallel feeder reconfiguration solutions from worker 2 

Dataset 
No. 

𝐁𝐞𝐟𝐨𝐫𝐞 𝐫𝐞𝐜𝐨𝐧𝐟𝐢𝐠𝐮𝐫𝐚𝐭𝐢𝐨𝐧 𝐀𝐟𝐭𝐞𝐫 𝐑𝐞𝐜𝐨𝐧𝐟𝐢𝐠𝐮𝐫𝐚𝐭𝐢𝐨𝐧 

Real 
power 
loss (kW) 

Max 
voltage 
(𝐩. 𝐮) 

Min 
voltage 
(𝐩. 𝐮) 

Real 
power 
loss (kW) 

Max 
voltage 
(𝐩. 𝐮) 

Min 
voltage 
(𝐩. 𝐮) 

Optimal topology 
(tie switches) 11 375.8 1 0.9769 364.4 1 0.9727 8 15 16 12 358.1 1 0.9778 358.1 1 0.9778 14 15 16 13 358.8 1 0.9801 349.2 1 0.9819 4 8 15 14 393.5 1 0.9760 358.9 1 0.9783 8 15 16 15 479.2 1 0.9729 408.3 1 0.9775 8 11 16 16 486.8 1 0.9651 388.1 1 0.9793 8 15 16 17 576.3 1 0.9626 477.7 1 0.9716 7 8 16 18 458.7 1 0.9780 430.5 1 0.9780 8 15 16 19 451.0 1 0.9777 439.5 1 0.9761 8 15 16 20 588.4 1 0.9611 472.9 1 0.9755 4 7 8 

 
 

  Table 5.9: Data-parallel feeder reconfiguration solutions from worker 3 

Dataset 
No. 

𝐁𝐞𝐟𝐨𝐫𝐞 𝐫𝐞𝐜𝐨𝐧𝐟𝐢𝐠𝐮𝐫𝐚𝐭𝐢𝐨𝐧 𝐀𝐟𝐭𝐞𝐫 𝐫𝐞𝐜𝐨𝐧𝐟𝐢𝐠𝐮𝐫𝐚𝐭𝐢𝐨𝐧 

Real 
power 
loss (kW) 

Max 
voltage 
(𝐩. 𝐮) 

Min 
voltage 
(𝐩. 𝐮) 

Real 
power 
loss (kW) 

Max 
voltage 
(𝐩. 𝐮) 

Min 
voltage 
(𝐩. 𝐮) 

Optimal topology 
(tie switches) 21 541.7 1 0.9670 529.9 1 0.9706 2 7 13 22 564.8 1 0.9637 560.7 1 0.9637 7 14 16 23 519.4 1 0.9746 502.1 1 0.9755 8 15 16 24 529.9 1 0.9664 527.8 1 0.9661 8 15 16 25 690.3 1 0.9700 598.7 1 0.9724 8 13 15 26 685.6 1 0.9630 589.8 1 0.9696 7 8 16 27 592.5 1 0.9737 580.7 1 0.9732 4 8 15 28 694.1 1 0.9650 626.8 1 0.9654 7 8 16 29 618.6 1 0.9650 614.0 1 0.9649 8 11 16 30 589.8 1 0.9719 576.8 1 0.9753 13 14 15 

 
 

 Table 5.10: Data-parallel feeder reconfiguration solutions from worker 4 

Dataset 
No. 

𝐁𝐞𝐟𝐨𝐫𝐞 𝐫𝐞𝐜𝐨𝐧𝐟𝐢𝐠𝐮𝐫𝐚𝐭𝐢𝐨𝐧 𝐀𝐟𝐭𝐞𝐫 𝐑𝐞𝐜𝐨𝐧𝐟𝐢𝐠𝐮𝐫𝐚𝐭𝐢𝐨𝐧 

Real 
Power 
Loss (MW) 

Max 
voltage 
(𝐩. 𝐮) 

Min 
voltage 
(𝐩. 𝐮) 

Real 
Power 
loss (MW) 

Max 
voltage 
(𝐩. 𝐮) 

Min 
voltage 
(𝐩. 𝐮) 

Optimal topology 
(tie switches) 31 776.5 1 0.9532 594.4 1 0.9698 8 15 16 32 561.2 1 0.9647 544.5 1 0.9674 4 8 15 33 455.6 1 0.9781 447.9 1 0.9761 8 15 16 34 707.8 1 0.9612 531.7 1 0.9768 8 13 15 35 577.6 1 0.9679 577.6 1 0.9679 14 15 16 36 719.0 1 0.9649 640.1 1 0.9658 8 15 16 37 652.7 1 0.9728 639.4 1 0.9718 8 15 16 38 629.4 1 0.9714 590.7 1 0.9714 8 15 16 39 672.7 1 0.9690 611.5 1 0.9708 8 15 16 
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Table 5.11: Data-parallel feeder reconfiguration solutions from worker 5 

Dataset 
No. 

𝐁𝐞𝐟𝐨𝐫𝐞 𝐫𝐞𝐜𝐨𝐧𝐟𝐢𝐠𝐮𝐫𝐚𝐭𝐢𝐨𝐧 𝐀𝐟𝐭𝐞𝐫 𝐑𝐞𝐜𝐨𝐧𝐟𝐢𝐠𝐮𝐫𝐚𝐭𝐢𝐨𝐧 

Real 
Power 
loss (MW) 

Max 
voltage 
(𝐩. 𝐮) 

Min 
voltage 
(𝐩. 𝐮) 

Real 
Power 
loss (MW) 

Max 
voltage 
(𝐩. 𝐮) 

Min 
voltage 
(𝐩. 𝐮) 

Optimal topology 
(tie switches) 40 674.9 1 0.9718 668.5 1 0.9668 8 15 16 41 799.4 1 0.9631 680.8 1 0.9713 8 13 15 42 790.7 1 0.9600 790.7 1 0.9600 14 15 16 43 744.0 1 0.9589 657.0 1 0.9697 8 15 16 44 684.5 1 0.9663 628.6 1 0.9731 7 8 16 45 728.0 1 0.9648 652.1 1 0.9733 7 8 13 46 596.3 1 0.9743 582.2 1 0.9738 8 15 16 47 644.9 1 0.9689 639.8 1 0.9640 8 15 16 48 679.7 1 0.9605 572.1 1 0.9739 8 15 16 

 
 

 Table 5.12: Data-parallel feeder reconfiguration solutions from worker 6 

Dataset 
No. 

𝐁𝐞𝐟𝐨𝐫𝐞 𝐫𝐞𝐜𝐨𝐧𝐟𝐢𝐠𝐮𝐫𝐚𝐭𝐢𝐨𝐧 𝐀𝐟𝐭𝐞𝐫 𝐑𝐞𝐜𝐨𝐧𝐟𝐢𝐠𝐮𝐫𝐚𝐭𝐢𝐨𝐧 

Real 
power 
loss (MW) 

Max 
voltage 
(𝐩. 𝐮) 

Min 
voltage 
(𝐩. 𝐮) 

Real 
power 
loss (MW) 

Max 
voltage 
(𝐩. 𝐮) 

Min 
voltage 
(𝐩. 𝐮) 

Optimal topology 
(tie switches) 49 685.3 1 0.9666 613.6 1 0.9727 8 11 16 50 636.4 1 0.9668 609.2 1 0.9668 8 15 16 51 538.3 1 0.9752 520.0 1 0.9759 8 15 16 52 493.2 1 0.9747 451.9 1 0.9780 8 15 16 53 596.3 1 0.9673 552.3 1 0.9711 8 13 15 54 468.1 1 0.9757 468.1 1 0.9757 14 15 16 55 487.4 1 0.9714 469.5 1 0.9723 8 13 15 56 429.5 1 0.9779 423.9 1 0.9779 8 15 16 57 464.6 1 0.9734 445.2 1 0.9734 8 15 16 

 

 

The 57 datasets represent the variations of power demand throughout the day. Figure 5.21 

and Figure 5.22 represent the changes of the minimum voltage and the real power loss 

throughout the day, respectively. 

The profile summary of the simulations is given in Figure 5.23. 
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Figure 5.21: Daily real power loss profile using the developed data-parallel computing approach 

 
 
 

 

Figure 5.22: Daily minimum voltage profile using the developed data-parallel computing approach 
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Figure 5.23: Profile summary of the developed data-parallel computing approach for feeder 
reconfiguration under dynamic loading conditions 
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5.3.7. Discussion of the results of the parallel computing solution algorithm to analyse the 

performance of the distribution network with feeder reconfiguration under dynamic 

loading conditions 

The comparison of the results of the sequential programming algorithm given in Table 5.5 

with the parallel computing solutions in Table 5.7 to 5.12 shows that both the developed 

sequential and parallel computing algorithms yield the same results. The daily real power 

loss profile (Figure 5.5) and the daily minimum voltage profile (Figure 5.6) for the sequential 

programming algorithm are identical to the daily real power loss profile (Figure 5.21) and 

the daily minimum voltage profile (Figure 5.22) respectively for the parallel algorithm. 

However, the parallel programming of the algorithm returns the results faster than the 

sequential programming algorithm. Figure 5.7 and Figure 5.23 represent the profile 

summary of the developed sequential programming and parallel computing algorithm, 

respectively. It is observed that the parallel computing algorithms return the solution after 

on average 29 seconds while the sequential programming algorithm does so in 173 

seconds. This means that the parallel computing algorithm is 
17329 = 5.9655  times faster 

than the sequential programming algorithm. That is a speed-up of approximately six times. 

That is because, in the parallel code, the data sets were split amongst the six workers 

while in the sequential code, only one worker is responsible for evaluating all the datasets. 

The speed-up of the developed Single Instruction Multiple Data (SIMD) parallel computing 

algorithm is in line with Amdahl’s law (Equation 5.3) and Gustafson’s law (Equation 5.4). 

Given that the distribution network feeder reconfiguration algorithm in section (3.5.4) is 

parallelised at 100% and that six workers are used to speed up the computational process, 

the parallelisation of the PSO-based algorithm resulted in a significant reduction of the 

computation time. 

 

 The next section presents the development of a solution algorithm to analyse the daily 

performance of the distribution network with DG under dynamic loading conditions. 

 

5.4. Development of a PSO-based solution algorithm to analyse the performance of the 

distribution network with DG under dynamic loading conditions 

The development of a solution algorithm to analyse the performance of the distribution 

network with DG under dynamic loading conditions is subject to the following assumptions: 

- The location and the size of the Distributed Generator are known. The optimal DG 

location and size is obtained by using the optimal DG placement and sizing algorithm 

as defined in chapter four, section 4.4.2. As such, the maximum DG capacity is  
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(𝟏𝟑. 𝟎𝟒𝟓𝟔 + 𝐣𝟏. 𝟕𝟓𝟐𝟔) 𝐌𝐕𝐀 and the DG is located at bus 9 in the 16-bus distribution 

network given in Figure 3.3 in section 3.5.2. 

 

- The data measurement for the real and reactive power at each PQ bus at different time 

intervals are known. The algorithm uses the same set of data used in section 5.3 and 

given in Tables 5.3 and 5.4. 

 

Two types of DG are considered in the performance analysis:  

- dispatchable DG and  

- Non-dispatchable DG.  

Dispatchable DG can have their output power adjusted by the power utility or the 

Distribution System Operator (DSO) while non-dispatchable DG sources can’t. These two 

DG types are considered to analyse the influence of the DG output in the distribution 

network with DG under dynamic loading conditions.  

 

5.4.1. Solution algorithm to analyse the performance of the distribution network with DG 

under dynamic loading conditions 

To analyse the daily performance of the distribution network with DG under dynamic 

loading conditions, a solution algorithm is developed and implemented as follows. 

Step 1: Read the electrical distribution network data such as the number of nodes 𝐍𝐁, the 

number of distribution lines 𝐍𝐋, the number of tie lines 𝐍𝐓, the bus type (𝐒𝐥𝐚𝐜𝐤, 𝐏𝐕, 𝐏𝐐), 

the load data (𝐏𝐝, 𝐐𝐝, 𝐁𝐬, 𝐋𝐨𝐚𝐝_𝐈𝐃), the generator data (𝐏𝐠, 𝐐𝐠) and distribution line data 

(𝐛𝐮𝐬_𝐢, 𝐛𝐮𝐬_𝐣, 𝐫, 𝐱, 𝐬𝐰_𝐭𝐢𝐞, 𝐬𝐰_𝐬𝐞𝐜). 

Step 2: Read the load profile data sets saved in the repertoires 𝐏_𝐫𝐞𝐩 and 𝐐_𝐫𝐞𝐩, and 

given in Tables 5.3 and 5.4 respectively. 

Step 3: Read the optimal Distributed Generator size 𝐃𝐆_𝐬𝐢𝐳𝐞 and location 𝐃𝐆_𝐥𝐨𝐜 for the 

base case. The optimal DG location and size are found using the PSO algorithm developed 

in section 4.4.2 to solve the optimal DG placement and sizing in distribution networks. The 

optimal DG location and size for the 16-bus distribution system are given in section 4.4.3.1. 

Step 4: Update the distribution network data and insert the DG in the network. To account 

for the Distributed Generator, a new generator should be placed and activated in the 

distribution network. 
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- If the DG is non-dispatchable, it will supply in the distribution network with fixed real 

and reactive powers equal to the optimal DG size as defined in Step 3. It is 

assumed that the non-dispatchable DG operates at full capacity. 

 
- If the DG is dispatchable, it will supply the distribution network with varying real and 

reactive powers, depending on the load demand. The maximum DG size is (𝟏𝟑. 𝟎𝟒𝟓𝟔 + 𝐣𝟏. 𝟕𝟓𝟐𝟔) 𝐌𝐕𝐀. The dispatchable DG adjusts its output power 

according to the change in power demand. 

Start the iteration process and set the iteration counter 𝐤 to 1. The iteration counter 

counts the number of datasets that go through the iterative process. 

Step 5: Read the real and reactive power demand 𝐏𝐝𝐢𝐭
 and 𝐐𝐝𝐢𝐭

 at each bus at time 𝐭 from 𝐏_𝐫𝐞𝐩 and 𝐐_𝐫𝐞𝐩, respectively (dataset k), and update the load demand in the distribution 

network. 

Step 6: Find the power flow of the distribution network using the Newton-Raphson power 

flow approach. Then, employ the power flow results to calculate the real power loss Ploss 

for the 𝐤𝐭𝐡 data set using Equation 3.12 given in chapter three, section 3.5.1.1. 

Step 7: Create a repertoire 𝐲𝟑 and save in the results from Step 6 for each dataset. 

Step 8: Stop the iteration or increment the iteration counter. If step 5 to step 7 are 

performed for all data sets from Tables 5.3 and 5.4, then stop the iterative process. Else, 

increment the iteration count and repeat step 5 to step 7. 

Step 9: Print the results of the algorithm to evaluate the daily performance of a distribution 

network with DG under dynamic loading conditions. At the end of the simulations, the 

results saved in Step 7 should be retrieved for analysis. 

The flowchart of the above-described algorithm is shown in Figure 5.24.  

  

 The next section presents the results of the application of the solution algorithm developed 

to evaluate the daily performance of the distribution network with DG under dynamic 

loading conditions for the 16-bus distribution system. 
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Start

Update the distribution network data and insert the 

DG in the network aas defined in Step 4

Set the iteration counter k to 1

Read the bus dataset k (real and reactive power 

demand at each PQ bus) and update them in the 

distribution network. 

Calculate the power flow and determine the resulting 

real power loss in the distribution network

Save the power flow results in the repertoire y3 

Iteration number greater than the 

number of datasets?

Stop iterations and display the results of 

the sequential programming algorithm

End 

Yes

Increment the 

iteration counter

(k = k + 1)

No

Read the initial data of the 

distribution network

Read the load profile datasets saved in 

the repertoires P_rep and Q_rep given 

in Table 5.3 and 5.4 respectively

Read the optimal Distributed Generator 

size  and location  for the base case 

distribution network as defined in Step 3

 

Figure 5.124: Flowchart of the PSO-based solution algorithm to analyse the performance of 
the distribution network with DG under dynamic loading conditions 
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5.4.2. Results of the solution algorithm to analyse the performance of the distribution 

network with DG under dynamic loading conditions 

The solution algorithm developed to evaluate the daily performance of the distribution 

network with DG under dynamic loading conditions is applied to the 16-bus distribution 

system and its performance on a 24h period is evaluated.  

The single line diagram of the 16-bus distribution network is given in Figure 3.3 in chapter 

three, section 3.5.2. Three source transformers supply the loads in the 16-bus distribution 

network 

A comparative analysis of the distribution network with a dispatchable DG and a with non-

dispatchable DG is done in this section. The results obtained from the 16-bus distribution 

network with a non-dispatchable DG are provided in Table 5.13. The results obtained when 

the DG is dispatchable are given in Table 5.14. The comparative analysis is done in terms 

of real and reactive power supply from the source transformers, the real power loss, the 

minimum and the maximum voltage of the considered distribution system.  

Figure 5.25 provides the daily real power loss profiles of the 16-bus distribution network 

without DG, with a non-dispatchable DG, and with a dispatchable DG. 

 
Figure 5.25: Daily real power loss profiles of the distribution network without DG, with a non-

dispatchable DG, and with a dispatchable DG 
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Figure 5.26 provides the minimum and maximum voltage profiles of the distribution 

network with a non-dispatchable DG and with a dispatchable DG for all datasets. 

 
Figure 5.262: Daily minimum and maximum voltage profiles of the distribution network with non-

dispatchable DG and the distribution network with dispatchable DG 

 

Table 5.13: Results of the distribution network with a non-dispatchable DG under dynamic loading 
conditions 

Dataset 

No. 

𝐒𝐨𝐮𝐫𝐜𝐞 𝐭𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫 𝟏 

𝐒𝐨𝐮𝐫𝐜𝐞 𝐭𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫 𝟐 

𝐒𝐨𝐮𝐫𝐜𝐞  𝐭𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫 𝟑 
Real 

power 

loss 

(kW) 

Max 

voltage 

(𝐩. 𝐮) 

Min 

voltage 

(𝐩. 𝐮) 

Real  

power 

(MW) 

Reactive 

power 

(MVar) 

Real  

power 

(MW) 

Reactive 

power 

(MVar) 

Real  

power 

(MW) 

Reactive 

power 

(MVar) 𝟏 10.3354 4.1225 −0.8276 0.0928 6.3848 0.3499 238.1 1.0062 0.9779 𝟐 8.8337 3.1893 0.7231 1.0133 5.8375 0.0115 239.9 1.0077 0.9805 𝟑 11.0519 4.5766 −2.0182 −0.7072 5.8927 0.0303 272.0 1.0150 0.9766 𝟒 4.5118 0.4833 −0.3522 0.3757 10.2187 2.7656 223.9 1.0049 0.9800 𝟓 12.3896 5.4363 −3.1481 −1.3998 4.6876 −0.7300 274.7 1.0139 0.9736 𝟔 8.7713 3.1324 −4.4319 −2.2044 9.3302 2.2131 351.7 1.0211 0.9798 𝟕 9.6220 3.6734 −5.7520 −3.0243 9.3027 2.1815 354.7 1.0221 0.9790 𝟖 6.2522 1.5533 −0.1201 0.4951 6.3389 0.3246 153.0 1.0077 0.9884 𝟗 9.6716 3.6883 −3.4584 −1.5953 6.1192 0.1719 277.9 1.0185 0.9806 𝟏𝟎 10.4704 4.2316 −5.1851 −2.6872 7.0349 0.7497 365.8 1.0257 0.9756 𝟏𝟏 8.3022 2.8879 −3.9338 −1.8709 8.3817 1.5917 295.6 1.0152 0.9769 𝟏𝟐 9.1202 3.3363 −5.8452 −3.0717 10.0534 2.6843 374.0 1.0215 0.9778 𝟏𝟑 8.5390 2.9999 −2.3380 −0.9177 7.5548 1.0757 301.4 1.0200 0.9820 
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𝟏𝟒 8.0560 2.6997 −0.7589 0.0969 6.8837 0.6431 226.4 1.0102 0.9816 𝟏𝟓 5.3736 1.0220 −3.4534 −1.5625 12.9058 4.4721 371.6 1.0129 0.9729 𝟏𝟔 7.1657 2.1023 0.8572 1.1550 7.0946 0.7914 163.1 1.0009 0.9874 𝟏𝟕 6.1280 1.4937 2.0827 1.9550 7.4368 1.0048 193.0 1 0.9850 𝟏𝟖 7.9676 2.6357 −1.7074 −0.4879 9.9881 2.6405 293.9 1.0097 0.9780 𝟏𝟗 10.9853 4.5174 −2.5271 −0.9824 8.3025 1.5513 306.3 1.0108 0.9788 𝟐𝟎 9.8358 3.8058 2.1065 1.9419 5.2215 −0.3735 209.4 1 0.9804 𝟐𝟏 7.1591 2.1043 −0.6415 0.2034 11.2157 3.3895 278.9 1.0049 0.9775 𝟐𝟐 14.6105 6.9023 −3.1254 −1.3841 6.9188 0.7014 449.5 1.0148 0.9637 𝟐𝟑 9.2165 3.4335 0.0591 0.5891 9.5267 2.3331 347.9 1.0117 0.9784 𝟐𝟒 14.9900 7.1100 −4.2332 −2.0753 8.6644 1.7712 466.7 1.0168 0.9664 𝟐𝟓 3.7983 0.0175 2.2863 2.0061 13.7573 5.0321 387.5 1.0025 0.9700 𝟐𝟔 10.0246 3.9817 3.1597 2.5884 7.0764 0.7724 306.3 1 0.9732 𝟐𝟕 14.3115 6.6380 −0.7655 0.0892 7.3135 0.9236 405.1 1.0108 0.9737 𝟐𝟖 13.3683 6.1374 2.1820 1.9379 5.8105 −0.0120 406.3 1.0038 0.9650 𝟐𝟗 14.8150 7.0249 −5.4831 −2.8422 11.7691 3.7573 646.6 1.0209 0.9650 𝟑𝟎 10.7621 4.3855 −2.6338 −1.0495 12.2791 4.0836 453.0 1.0113 0.9719 𝟑𝟏 8.8100 3.1843 3.8474 3.0525 7.1171 0.8059 320.1 1 0.9775 𝟑𝟐 14.7070 6.9475 −1.7327 −0.5270 6.4076 0.3476 427.5 1.0149 0.9647 𝟑𝟑 12.2060 5.2643 −1.2282 −0.2287 8.8463 1.8821 369.7 1.0173 0.9781 𝟑𝟒 5.6426 1.1559 1.3529 1.4643 13.0319 4.5654 343.1 1 0.9703 𝟑𝟓 13.7517 6.3212 −3.5171 −1.6133 10.4580 2.9129 508.3 1.0152 0.9679 𝟑𝟔 10.2677 4.1441 −0.2641 0.4526 11.0999 3.3367 419.1 1.0027 0.9711 𝟑𝟕 11.0599 4.6251 −1.5580 −0.3743 12.1742 4.0238 491.6 1.0101 0.9728 𝟑𝟖 10.2972 4.0970 −1.1271 −0.1365 12.9457 4.4956 431.4 1.0097 0.9714 𝟑𝟗 9.1300 3.3548 1.9000 1.7434 11.5376 3.6276 383.2 1.0055 0.9708 𝟒𝟎 12.3233 5.3980 −1.4231 −0.2986 12.2672 4.0669 483.0 1.0089 0.9720 𝟒𝟏 6.7672 1.8670 2.9340 2.4299 13.9540 5.1403 470.7 1.0017 0.9683 𝟒𝟐 15.5802 7.5628 −4.4410 −2.2259 13.0689 4.6127 753.7 1.0211 0.9600 𝟒𝟑 10.9730 4.5080 2.6157 2.2801 9.7011 2.4334 335.5 1 0.9800 𝟒𝟒 11.7894 5.0370 3.1533 2.5781 7.8307 1.2500 319.0 1 0.9749 𝟒𝟓 8.2717 2.8354 2.4638 2.1763 11.6082 3.6594 389.2 1.0004 0.9731 𝟒𝟔 12.0495 5.2108 0.5572 0.9332 9.2173 2.1312 369.6 1.0066 0.9743 𝟒𝟕 11.5176 4.9539 −1.6719 −0.4451 11.5836 3.6298 474.9 1.0095 0.9689 𝟒𝟖 8.1097 2.7004 2.7671 2.3473 9.8811 2.5662 303.5 1 0.9786 𝟒𝟗 5.7841 1.2888 3.7516 2.9298 10.7648 3.1063 346.0 1.0007 0.9761 𝟓𝟎 8.4923 2.9722 −0.7657 0.0832 12.2093 4.0974 481.5 1.0126 0.9668 𝟓𝟏 8.6687 3.0419 −0.3506 0.3318 11.0503 3.3196 414.0 1.0157 0.9759 𝟓𝟐 9.0100 3.2869 0.3046 0.7514 9.4201 2.2316 280.3 1.0085 0.9801 𝟓𝟑 6.2130 1.5617 −2.3128 −0.8874 14.6035 5.5856 549.4 1.0182 0.9673 𝟓𝟒 10.6169 4.2914 −0.7012 0.1220 7.8561 1.2677 317.4 1.0129 0.9796 𝟓𝟓 8.4378 2.8787 −4.5328 −2.2625 13.5667 4.9315 517.2 1.0217 0.9714 𝟓𝟔 9.2123 3.4177 −3.6696 −1.7141 11.3210 3.4565 409.3 1.0186 0.9779 𝟓𝟕 8.7886 3.1464 −3.4954 −1.5954 11.0228 3.2916 361.5 1.0131 0.9734 

Total  𝟐𝟎𝟗𝟎𝟒. 𝟐  
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      Table 5.14: Results of the distribution network with a dispatchable DG under dynamic loading conditions 

Dataset 

No. 

𝐬𝐨𝐮𝐫𝐜𝐞 𝐭𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫 𝟏 

𝐬𝐨𝐮𝐫𝐜𝐞 𝐭𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫 𝟐 

𝐬𝐨𝐮𝐫𝐜𝐞 𝐭𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫 𝟑 

Real 

power 

loss 

(kW) 

Max 

Voltage 

(𝐩. 𝐮) 

Min 

Voltage 

(𝐩. 𝐮) 

DG 

P 

(MW) 

Q 

(MVar) 

P 

(MW) 

Q 

(MVar) 

P 

(MW) 

Q 

(MVar) 

P 

(MW) 

Q 

(Mvar) 𝟏 10.3354 4.1225 1.6173 0.8009 6.3848 0.3499 228.1 1 0.9779 10.5907 1.0984 𝟐 8.8337 3.1893 3.2754 1.6310 5.8375 0.0115 231.5 1.0015 0.9805 10.4849 1.1869 𝟑 11.0519 4.5766 2.1620 1.0722 5.8927 0.0303 237.8 1.0031 0.9766 8.8312 0.0571 𝟒 4.5118 0.4833 1.7058 0.8449 10.2187 2.7656 217.5 1 0.9800 10.9811 1.3277 𝟓 12.3896 5.4363 1.1603 0.5742 4.6876 -0.7300 234.5 1.0013 0.9736 8.6970 -0.1332 𝟔 8.7713 3.1324 2.2223 1.1017 9.3302 2.2131 254.8 1.0011 0.9798 6.2946 -1.4572 𝟕 9.6220 3.6734 0.8860 0.4384 9.3027 2.1815 251.0 1.0017 0.9790 6.3040 -1.6095 𝟖 6.2522 1.5533 2.3199 1.1501 6.3389 0.3246 144.0 1.0016 0.9884 10.5965 1.1497 𝟗 9.6716 3.6883 1.9442 0.9674 6.1192 0.1719 216.1 1.0026 0.9806 7.5812 -0.7144 𝟏𝟎 10.4704 4.2316 2.1282 1.0550 7.0349 0.7497 245.9 1.0035 0.9756 5.6124 -1.8958 𝟏𝟏 8.3022 2.8879 0.9617 0.4762 8.3817 1.5917 242.5 1.0006 0.9769 8.0969 -0.4993 𝟏𝟐 9.1202 3.3363 0.7171 0.3548 10.0534 2.6843 272.4 1.0014 0.9778 6.3817 -1.5724 𝟏𝟑 8.5390 2.9999 3.3078 1.6458 7.5548 1.0757 238.9 1.0037 0.9820 7.3373 -0.7183 𝟏𝟒 8.0560 2.6997 2.9005 1.4410 6.8837 0.6431 203.5 1.0003 0.9816 9.3634 0.4826 𝟏𝟓 5.3736 1.0220 0.9670 0.4784 12.9058 4.4721 329.2 1 0.9729 8.5829 -0.1979 𝟏𝟔 7.1657 2.1023 1.6940 0.8396 7.0946 0.7914 162.5 1 0.9874 12.2081 2.0764 𝟏𝟕 6.1280 1.4937 1.9902 0.9880 7.4368 1.0048 191.2 1 0.9850 13.1362 2.6930 𝟏𝟖 7.9676 2.6357 1.8233 0.9035 9.9881 2.6405 270.1 1 0.9780 9.4910 0.4363 𝟏𝟗 10.9853 4.5174 1.2879 0.6387 8.3025 1.5513 276.5 1 0.9788 9.2008 0.2129 𝟐𝟎 9.8358 3.8058 2.0843 1.0332 5.2215 -0.3735 207.9 1 0.9804 13.0662 2.6379 𝟐𝟏 7.1591 2.1043 1.1386 0.5634 11.2157 3.3895 273.9 1.0007 0.9775 11.2605 1.4313 𝟐𝟐 14.6105 6.9023 1.1695 0.5789 6.9188 0.7014 409.9 1.0023 0.9637 8.7111 -0.1222 𝟐𝟑 9.2165 3.4335 3.7616 1.8735 9.5267 2.3331 326.5 1.0018 0.9784 9.3218 0.5406 𝟐𝟒 14.9900 7.1100 0.9365 0.4634 8.6644 1.7712 406.1 1.0013 0.9664 7.8152 -0.6891 𝟐𝟓 3.7983 0.0175 3.7426 1.8630 13.7573 5.0321 386.6 1.0000 0.9700 11.5883 1.9179 𝟐𝟔 10.0246 3.9817 3.2989 1.6420 7.0764 0.7724 304.9 1 0.9732 12.9050 2.6785 𝟐𝟕 14.3115 6.6380 2.4821 1.2374 7.3135 0.9236 387.2 1.0021 0.9737 9.7800 0.6729 𝟐𝟖 13.3683 6.1374 3.9148 1.9484 5.8105 -0.0120 404.5 1.0005 0.9650 11.3110 1.7716 
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𝟐𝟗 14.8150 7.0249 1.4054 0.6959 11.7691 3.7573 537.9 1 0.9650 6.0484 -1.6871 𝟑𝟎 10.7621 4.3855 1.3258 0.6575 12.2791 4.0836 420.7 1 0.9719 9.0538 0.1289 𝟑𝟏 8.8100 3.1843 2.6941 1.3436 7.1171 0.8059 309.9 1.0012 0.9775 14.1887 3.3887 𝟑𝟐 14.7070 6.9475 2.4378 1.2097 6.4076 0.3476 394.5 1.0032 0.9647 8.8421 0.0988 𝟑𝟑 12.2060 5.2643 4.0094 1.9926 8.8463 1.8821 319.9 1.0025 0.9781 7.7582 -0.3806 𝟑𝟒 5.6426 1.1559 1.4798 0.7333 13.0319 4.5654 342.1 1.0008 0.9703 12.9178 2.4678 𝟑𝟓 13.7517 6.3212 1.6798 0.8328 10.4580 2.9129 450.7 1 0.9679 7.7911 -0.5983 𝟑𝟔 10.2677 4.1441 0.8567 0.4246 11.0999 3.3367 417.3 1.0006 0.9711 11.9231 1.8007 𝟑𝟕 11.0599 4.6251 2.1045 1.0472 12.1742 4.0238 466.9 1 0.9728 9.3583 0.4076 𝟑𝟖 10.2972 4.0970 1.8250 0.9041 12.9457 4.4956 415.6 1.0017 0.9714 10.0778 0.7766 𝟑𝟗 9.1300 3.3548 3.5356 1.7558 11.5376 3.6276 381.3 1.0024 0.9708 11.4082 1.7684 𝟒𝟎 12.3233 5.3980 1.6356 0.8114 12.2672 4.0669 466.0 1.0006 0.9720 9.9698 0.7099 𝟒𝟏 6.7672 1.8670 4.0371 2.0113 13.9540 5.1403 470.8 1.0005 0.9683 11.9426 2.1817 𝟒𝟐 15.5802 7.5628 1.2353 0.6116 13.0689 4.6127 680.7 1.0040 0.9600 7.2962 -0.9862 𝟒𝟑 10.9730 4.5080 2.1326 1.0587 9.7011 2.4334 331.6 1 0.9800 13.5248 2.9317 𝟒𝟒 11.7894 5.0370 3.5443 1.7631 7.8307 1.2500 318.4 1 0.9749 12.6540 2.5556 𝟒𝟓 8.2717 2.8354 3.2897 1.6331 11.6082 3.6594 389.0 1 0.9731 12.2195 2.2985 𝟒𝟔 12.0495 5.2108 3.2397 1.6106 9.2173 2.1312 360.0 1 0.9743 10.3535 1.1297 𝟒𝟕 11.5176 4.9539 1.7903 0.8869 11.5836 3.6298 452.5 1 0.9689 9.5609 0.4947 𝟒𝟖 8.1097 2.7004 2.9168 1.4503 9.8811 2.5662 302.2 1 0.9786 12.8946 2.6303 𝟒𝟗 5.7841 1.2888 4.7524 2.3701 10.7648 3.1063 346.4 1 0.9761 12.0452 2.3178 𝟓𝟎 8.4923 2.9722 3.1468 1.5663 12.2093 4.0974 455.4 1.0018 0.9668 9.1070 0.3468 𝟓𝟏 8.6687 3.0419 4.2736 2.1296 11.0503 3.3196 378.8 1.0030 0.9759 8.3862 0.0376 𝟓𝟐 9.0100 3.2869 3.2039 1.5922 9.4201 2.2316 268.1 1.0011 0.9801 10.1341 0.9713 𝟓𝟑 6.2130 1.5617 3.5647 1.7738 14.6035 5.5856 482.3 1.0012 0.9673 7.1010 -0.8161 𝟓𝟒 10.6169 4.2914 3.3092 1.6452 7.8561 1.2677 290.1 1.0019 0.9796 9.0079 0.3076 𝟓𝟓 8.4378 2.8787 2.5704 1.2757 13.5667 4.9315 407.7 1.0005 0.9714 5.8329 -1.6918 𝟓𝟔 9.2123 3.4177 2.5266 1.2538 11.3210 3.4565 328.5 1.0003 0.9779 6.7686 -1.1193 𝟓𝟕 8.7886 3.1464 0.9936 0.4916 11.0228 3.2916 317.4 1 0.9734 8.5124 -0.2436 

Total  𝟏𝟗𝟎𝟓𝟖  
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The discussion on the results of the application of the developed algorithm to analyze the 

daily performance of the distribution network with DG under dynamic loading conditions is 

provided in the next section. 

 

5.4.3. Discussion of the results of the performance of the distribution network with DG 

under dynamic loading conditions 

The summary of the results of the application of the algorithm developed to analyse the 

daily performance of the 16-bus distribution network with DG under dynamic loading 

conditions is provided in Tables 5.13 and 5.14. From the analysis of the results in Tables 

5.13 and 5.14, it follows that the integration of Distributed Generation in distribution 

networks results in a reduction of the real power loss, in comparison to the distribution 

network without DG. 

Figure 5.25 uses the results in Table 5.13 and 5.14 to represent the daily real power loss 

in the distribution network without DG; with a non-dispatchable DG; and with a 

dispatchable DG. It can be seen from Figure 5.25 that for all datasets when a dispatchable 

DG is placed in the distribution network, the real power loss in the distribution network is 

lower than in the distribution network without DG. In some instances, the real power loss 

in the distribution network with a non-dispatchable DG is higher than the real power loss 

in the distribution network without DG. This situation can be observed in Figure 5.25, where 

the real power loss for datasets 6; 7; 10; 12; 29; and 55, the real power loss in the 

distribution network with a non-dispatchable DG is higher than the real power loss in the 

distribution network without DG. Thus, depending on the nature of the DG (dispatchable 

or non-dispatchable) and real and reactive power demands at the PQ buses, the 

integration of a DG is a distribution network can reduce or increase the real power losses 

in the distribution network.  

The daily real power loss in the distribution network are 𝟑𝟏. 𝟑𝟕𝟒𝟏 𝐌𝐖 (given in Table 5.5); 𝟐𝟎. 𝟗𝟎𝟒𝟐 𝐌𝐖 (given in Table 5.13); and 𝟏𝟗. 𝟎𝟓𝟖 𝐌𝐖 (given in Table 5.14), for the 

distribution network without DG; with a non-dispatchable DG; and with a dispatchable DG, 

respectively. 

Figure 5.26 is plotted using the results from Table 5.13 and 5.14, and it shows the daily 

minimum and maximum voltage profiles for the distribution network with a non-

dispatchable and dispatchable DG. It is observed that the minimum voltage profile of the 

distribution network with a non-dispatchable DG is the same as the one of the distribution 

network with a dispatchable DG. For the whole day, the minimum voltage in the distribution 

network is obtained at bus 7. This can be explained by the fact that by placing a DG at 
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bus 9 in the 16-bus distribution network in Figure 3.3 in chapter three, section 3.5.2, the 

DG has no effect on the load supplied by feeders 1 and 3, and consequently load bus 7. It 

is also observed in Figure 5.26 that when the DG is dispatchable, the daily maximum 

voltage profile of the distribution network is more stable at around 𝟏 𝐩. 𝐮. When the DG is 

non-dispatchable, the daily maximum voltage profile oscillates between 𝟏 𝐩. 𝐮 and 𝟏. 𝟎𝟐𝟓𝟕 𝐩. 𝐮.   

The 16-bus distribution network supplies its load via three source transformers: source 

transformer 1, 2, and 3. The analysis of the source transformer power supply for all 

datasets as given in Table 5.13 and 5.14 illustrates that when the DG is non-dispatchable, 

the distribution system is prone to the bidirectional power flow effect. When the DG is 

dispatchable, the power flows from the source transformers to the loads for all datasets, 

as indicated by the positive values of the source transformers power supply in Table 5.14. 

The DG power supply is consumed by the loads. The DG and source transformers supply 

vary with respect to the change in the loading conditions in the distribution system. As 

such, the supply and the demand are balanced, and the power flows solely from the 

generation to the loads However, when the DG is non-dispatchable, there are occasional 

power flow from the load bus to source transformer 2, as indicated by the negative values 

of the real power supply of source transformer 2 in Table 5.13. In future smart grids, it 

would be acceptable to have power flows from the source transformer to the loads and 

vice-versa. However, the bidirectional power flow would cause problems for the current 

distribution networks which are not designed to withstand the bidirectional power flow.  

From the analysis above, it is understood that the integration of DG may have a positive 

impact on the operation of distribution networks under dynamic loading conditions. 

However, in current distribution networks, it is necessary to pay attention to the DG type 

(dispatchable or not), size, and location to avoid a bidirectional power flow in the 

distribution networks. 

The next section compares the daily performance of both the 16-bus distribution network 

with DG and the 16-bus distribution network with a feeder reconfiguration scheme under 

dynamic loading conditions. 

 

5.5. Optimal feeder reconfiguration versus DG placement for minimising real power 

losses in distribution networks under dynamic loading conditions 

Section 5.3 and 5.4 provide the developed solution algorithms to analyse the daily 

performance of both the 16-bus distribution network with DG and the 16-bus distribution 

network with a feeder reconfiguration scheme under dynamic loading conditions. The 



213 

 

simulation results obtained in respective sections are used to compare the daily 

performance of both case studies, and the summary of the results is provided in Table 

5.15. 

 

Table 5.15: DG placement versus feeder reconfiguration optimisation solutions of the 16-bus 
distribution network under dynamic loading conditions 

Description Base case 
With a feeder 
reconfiguration 
scheme 

With a non-
dispatchable DG 

With a 
dispatchable 
DG 

Tie switches 14       15       16 Variable 14       15       16 14       15       16 

Total daily real  
power loss  

31374.1 kW 28966.4 kW 20904.2 kW 19058 kW 

Real power loss 
saving 

N/A 7.6742% 33.3712% 39.2556% 

Minimum voltage 
recorded in the 
day  

0.9532 p. u 0.96 p. u  0.96 p. u 0.96 p. u 

Maximum 
voltage recorded 
in the day  

1 p. u  1 p. u 1.0257 p. u 1.004 p. u 

DG size (in 𝐌𝐕𝐀) 
and position 

N/A N/A 
 13.0456 + j1.7526 
@bus 9 

Variable DG 
size @bus 9 

 

From Table 5.15, it is understood that the topology of the distribution network only changes 

if a feeder reconfiguration scheme is implemented. The topology of the distribution network 

with a DG is the same as that of the base case, and it remains unchanged throughout the 

day.  
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Figure 5.27: Daily real power loss profiles of the base case distribution network, the distribution 
network with a feeder reconfiguration scheme, with a non-dispatchable DG, and with a 
dispatchable DG 

Figure 5.27 and Figure 5.28 show respectively the daily real power loss and minimum 

voltage profiles of the base case distribution network, the distribution network with a feeder 

reconfiguration scheme, with a non-dispatchable DG and with a dispatchable DG.  

It is observed from Figure 5.27 that amongst the four cases, the real power loss in the 

distribution network is more reduced when a dispatchable DG is integrated into the 

distribution network. As given in Table 5.15, the total daily real power loss in the distribution 

network with a dispatchable DG is 𝟏𝟗𝟎𝟓𝟖 𝐤𝐖, which corresponds to a real power loss 

saving of 𝟑𝟗. 𝟐𝟓𝟓𝟔%  compared to the real power loss in the base case distribution 

network. 

 

 
Figure 5.28: Daily minimum voltage profiles of the base case distribution network, the distribution 

network with a feeder reconfiguration scheme, with a non-dispatchable DG, and with a 
dispatchable DG 

 

In term of the daily minimum voltage profiles, it is observed from Figure 5.28 that for most 

of the datasets, the minimum voltage of the distribution network with DG is higher than that 

of the base case distribution network and the distribution network with a feeder 

reconfiguration scheme. Therefore, from Table 5.15, Figure 5.27, and Figure 5.28, it can 

be concluded that the integration of dispatchable DG is a more effective way of reducing 

the real power loss and improving the voltage profile in the 16-bus distribution network. 
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5.6. Conclusion 

This chapter presents an analysis of the daily performance of the 16-bus distribution 

network under dynamic loading conditions. A sequential programming algorithm has been 

developed to evaluate the performance of both the distribution network with a feeder 

reconfiguration scheme and the distribution network with a DG. The simulation results of 

the base 16-bus distribution network are compared with that of the 16-bus distribution 

network with a feeder reconfiguration scheme, and that of the 16-bus distribution network 

with DG. 

The simulation results provide that: 

- Feeder reconfiguration and DG placement are two essential approaches to reduce the 

real power loss of the distribution networks. 

- The integration of DG in distribution networks leads to a higher reduction of real power 

losses and improved voltage levels, in comparison with the integration of a feeder 

reconfiguration scheme in the distribution network. The difference in real power saving 

is even more pronounced if the DG is dispatchable. 

- The integration of a non-dispatchable DG may cause adverse conditions in the 

distribution network due to the possibility of bidirectional power flow. 

 

The simulation of the developed PSO-based sequential algorithm to analyse the 

performance of the distribution network with a feeder reconfiguration scheme under 

dynamic loading conditions is a lengthy computation process. Thus, a data-parallel 

computing algorithm is developed to speed-up the simulation of the 57 datasets. The 

comparison of the simulation results of the developed sequential and data-parallel 

programming algorithms to evaluate the daily performance of the distribution network with 

a feeder reconfiguration scheme under dynamic loading conditions proved the simulation 

results to be the same. 

The next chapter provides the conclusion of this thesis
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CHAPTER SIX 
CONCLUSION AND FUTURE WORKS 

 
6.1. Introduction 

This research work developed PSO solution algorithms to improve the operation of smart 

distribution networks using optimal distribution network feeder reconfiguration and optimal 

DG placement and sizing. However, given that the current distribution networks are not 

designed to handle such functionalities, the power utilities should be upgraded to handle 

the growing energy demand, to allow the integration of Distributed Generators, to allow the 

implementation of distribution feeder reconfiguration schemes, and to provide effective 

demand response. The developed PSO algorithms were implemented in the MATLAB 

R2016b platform and tested on the IEEE 16-bus, the IEEE 33-bus, and the IEEE 69-bus 

distribution networks. The simulations results proved that the optimal distribution network 

feeder reconfiguration and the optimal DG placement and sizing are two valuable tools for 

real power loss minimisation and the overall improvement of the operation of distribution 

networks. 

 

6.2. Deliverables of the thesis 

This research work is proof that many of the challenges faced by utilities at distribution 

levels can be solved through the development of innovative optimisation approaches such 

as the optimal distribution network feeder reconfiguration and the optimal DG deployment. 

The review of the research on the optimal feeder reconfiguration and DG deployment 

problems, the mathematical formulation of the problems, the development of PSO solution 

algorithms to solve of these problems, the development of a data-parallel computing 

approach to study the operation of a distribution network with a feeder reconfiguration 

scheme under dynamic loading conditions, the simulations results and analysis, constitute 

the significant contributions of the thesis deliverables and are grouped as follow: 

 

6.2.1. Literature review 

The review investigates the concept of single and multi-objective optimisation. The review 

further examined the distribution networks feeder reconfiguration and optimal DG 

placement & sizing problems. It follows that early research works on the optimisation of 

feeder reconfiguration and DG placement and sizing were based on classical optimisation 

methods. The recent focus is now towards the use of metaheuristic optimisation 

approaches to solve complex problems, as metaheuristic optimisation methods are 

deemed more robust and efficient at providing optimal solutions. The optimal distribution 
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network feeder reconfiguration, along with the optimal placement and sizing of DG are 

smart tools used to minimise the real power losses, to balance the loads, improve the 

voltage levels, to detect faults, and to restore the power in distribution networks.  

 

6.2.2. Mathematical formulation and development of the single-objective feeder 

reconfiguration problem for real power loss minimisation  

The distribution network feeder reconfiguration problem is a non-linear problem. The 

development of the PSO algorithm to solve this problem is subject to operational 

constraints such as voltage limits; power balance; and current limits; and technical 

limitations such as the topological requirement of distribution networks. The discrete 

variant of the Particle Swarm Optimization (PSO) algorithm is used to solve the distribution 

network feeder reconfiguration problem. The operating principle of the PSO and its variants 

are provided in detail in Chapter three. The application of the discrete PSO algorithm in 

solving the single-objective distribution network feeder reconfiguration problem is covered 

in Chapter three. The developed discrete PSO algorithm is tested on the IEEE 16-bus, the 

IEEE 33-bus, and the IEEE 69-bus distribution networks. The simulations results prove 

that the integration of a feeder reconfiguration scheme may secure a significant real power 

loss saving in distributions systems. 

 

6.2.3. Mathematical formulation and development of the multi-objective feeder 

reconfiguration for the real power loss minimisation and the load balancing problem 

The objectives of the multi-objective feeder reconfiguration problem are the minimisation 

of the real power losses and the balancing of the loads in the distribution networks. This 

problem is a multi-objective non-linear and constrained problem. The constraints 

considered are the bus voltage limits, the line current limits and the topological constraints. 

The discrete PSO algorithm developed to solve the multi-objective problem is quite similar 

to that of the single-objective problem. However, because of the multitude of objective 

functions, the concept of non-dominance and Pareto-optimality was introduced in the 

selection of the personal and global best candidate solutions in the PSO algorithm. The 

Pareto-dominance property ensures that the global best solution is not dominated by any 

other solution for all objective functions. As a consequence of the inclusion of the non-

dominance concept, the application of the developed multi-objective algorithm on the IEEE 

33-bus and the 69-bus distribution networks yields many Pareto-optimal solutions. The 

implementation of the developed multi-objective solution algorithm on the IEEE 16-bus 

distribution network produces a single solution. 
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6.2.4. Mathematical formulation and development of the PSO solution algorithm for the 

single-objective optimal DG placement and sizing problem 

The aim of the single-objective optimal DG placement and sizing was to find the best DG 

type, the optimal DG size, and the best bus location which lead to a minimised overall real 

power loss in the distribution network, should the DG be integrated into the distribution 

network. The mathematical formulation of the single objective optimal DG placement and 

sizing problem is the same as that of the single-objective distribution network feeder 

reconfiguration problem, except that the single objective optimal DG placement and sizing 

problem is not subject to the topological constraint of the distribution networks. The 

developed algorithm is a hybrid discrete PSO (to find the optimal DG position) and 

continuous PSO (to find the optimal DG size) as described in Chapter Four. The developed 

algorithm is implemented in MATLAB R2016b, and the developed algorithm is tested for 

single, two and three DG placement problems. 

 

6.2.5. Mathematical formulation and development of the PSO solution algorithm for the 

multi-objective DG placement and sizing problem 

The multi-objective DG deployment problem aims to minimise the real power losses, 

maximise the voltage regulation and maximise the voltage stability index of the distribution 

networks. However, unlike in the multi-objective optimal distribution network feeder 

reconfiguration where the concept of Pareto-optimality was utilised to find the optimal 

distribution network topology, the weighted-sum approach is used to solve the multi-

objective DG placement and sizing problem. The considered objectives (real power loss 

minimisation, voltage regulation maximisation, and voltage stability index maximisation) 

are aggregated into a single-objective using weight factors, where a weight factor 

determines the relative importance of one objective with respect of others. The PSO 

algorithm is developed for this scenario, and the simulations are performed in the MATLAB 

R2016b environment.  

 

6.2.6. Development of a parallel computing approach to investigate the performance of a 

distribution network with a feeder reconfiguration scheme under dynamic loading 

conditions  

The PSO algorithms developed in Chapter Three and Chapter Four consider that the loads 

are static (the load does not change over time). In such a case, the DG placement is better 

than feeder reconfiguration in minimising the real power losses in distribution networks. 

However, loads in power systems are dynamic in nature, and they change over time. To 
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assess the influence of feeder reconfiguration and DG deployment on distribution networks 

with dynamic loading conditions, two cases studies were considered. They are: 

- Case 1: A feeder reconfiguration scheme is implemented in the IEEE 16-bus 

distribution network, and the performance of the distribution network is analysed for a 

24 hours period. 

- Case 2: A DG is placed in the IEEE 16-bus distribution network, and the performance 

of the distribution network is evaluated for a 24 hours period. 

 
The second case is further subdivided into two sub-cases: 

- The DG inserted in the network is dispatchable. 

- The DG inserted in the network is non-dispatchable. 

 
Algorithms were developed to simulate the above case studies. The sequential computing 

algorithm developed to evaluate the case 1 was time-consuming due to the multitude of 

data sets to be simulated. Therefore, a data-parallel computing solution algorithm was 

developed to speed-up the computation process. Finally, the solutions of both the feeder 

reconfiguration and DG deployment in distribution networks with dynamic loads were 

examined. 

 

6.3. Potential impact of the research 

This research work can be beneficial to both the academia and the industry. In academia, 

although PSO is recognised as a robust optimisation method, there is not much detailed 

documentation on its application to real-world problems. As such, PSO is generally used 

to supplement a more known optimisation method such as Genetic Algorithm. This 

research work provides some insights on the application of the PSO in solving the feeder 

reconfiguration and DG placement and sizing problems. In many research works, the size 

of the DG and its location are decided in a random fashion, which leads to higher real 

power loss or is of minimal benefits to the distribution networks. The developed PSO 

algorithm provides optimal DG placement and sizing results. 

The real-time implementation of the developed PSO algorithm in power utilities for the 

feeder reconfiguration problem will result in a significant power loss reduction in the 

distribution research. The use of the feeder reconfiguration scheme to balance the loads 

can also contribute to improved performance of the distribution network operation.  The 

integration of DG in distribution networks may result in significant benefits such as reduced 

real power losses, improved voltage profile and enhanced voltage stability. Therefore, the 

developed PSO algorithm will help Distribution Systems Operators (DSO) and power 
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companies to determine the best DG type, size, and location for deployment in distribution 

networks.   

 

6.4. Future research works 

Besides some minor refinements that can be undertaken to improve the developed PSO 

algorithms, future works based on this research may include: 

- The testing of the developed PSO algorithms on real-world distribution networks. The 

distribution network used in this research work are IEEE distribution systems. The used 

IEEE distribution systems have no distribution transformers; their branches have no 

current rating, and they also have no protection systems in place. The testing of the 

developed PSO algorithms on practical distribution networks will allow for the study of 

their effects on transformers, branch current limits, thermal limits, protective relaying 

systems, and control systems. A hardware in the loop (HIL) test bench could be 

developed for this purpose. 

- The development of the PSO solution algorithm for optimal DG deployment did not 

consider external factors affecting the performance of DG such as wind speed or 

irradiation in photovoltaic (PV) systems. Therefore, the scope of this work can be 

extended by considering such factors that affect the DG sizing and DG output power. 

 

6.5. Conclusion 

This chapter addresses the aim, objectives, and project deliverables of this thesis. It also 

covers the description of the approach used to achieve this research work, the potential 

impact of this research in both academia and the industry, and finally the future research 

directions. The distribution feeder reconfiguration and the optimal integration of DG can be 

used to solve distribution networks problems. The future work can be extended to solving 

optimisation problems such as the fault location; isolation and service restoration, 

maximisation of the DG penetration level, and more advanced topics in the framework of 

the smart grid.
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APPENDICES 

Appendix A: Data of the 16-bus distribution system 
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Appendix B: Data of the IEEE 33-bus distribution system 
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Appendix C: Load flow results of the 33-bus distribution system before and after 
feeder reconfiguration  

Appendix C1: Load flow results of the 33-bus distribution system before 
reconfiguration of the distribution network 
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Appendix C2: Load flow results of the 33-bus distribution system after 
reconfiguration of the distribution network  
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Appendix D: Data of the IEEE 69-bus distribution system 
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Appendix E: Load flow results of the IEEE 69-bus distribution system before and 
after feeder reconfiguration 

Appendix E1: Load flow results of the 69-bus distribution system before 
reconfiguration of the distribution network 
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Appendix E2: Load flow results of the 69-bus distribution system after        
reconfiguration of the distribution network   
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Appendix F: Pctdemo_helper_split_scalar 

%PCTDEMO_HELPER_SPLIT_SCALAR Divides a non-negative integer into a sum of   
%smaller non-negative integers. 
 
function [integerPerTask, numTasks] = pctdemo_helper_split_scalar(intVal, 
numTasks) 
 
%   [integerPerTask, numTasks] = PCTDEMO_HELPER_SPLIT_SCALAR(intVal, numTasks) 
%   assigns a vector of length min(numTasks, intVal) to integerPerTask.   
%   The sum of that vector is intVal. 
%   The value of numTasks returned equals min(numTasks, numIntVal). 
%    
%   The input arguments must be integers greater than or equal to zero.  If   
%   intVal is greater than zero, numTasks must be greater than zero. 
%    
%   The function is useful when dividing a Monte-Carlo simulation that is 
%   repeated intVal times into numTasks tasks.  In that case, task i should 
%   perform integerPerTask(i) simulations. 
%    
%   See also PCTDEMO_HELPER_SPLIT_VECTOR 
  
%   Copyright 2007-2012 The MathWorks, Inc. 
     
    % Validate the input arguments. 
    narginchk(2, 2); 
    tc = pTypeChecker(); 
    if ~(tc.isIntegerScalar(intVal, 0, Inf) ... 
        && tc.isIntegerScalar(numTasks, 0, Inf)) 
        error('pctexample:splitscalar:SplitScalarInputsMustBePositive', ... 
              'Input arguments must be non-negative integers'); 
    end 
    if (intVal > 0 && numTasks == 0) 
        error('pctexample:splitscalar:SplitScalarInvalidNumTasks', ... 
              ['Number of tasks must be greater than 0 if the scalar is '... 
               'greater than 0']); 
    end 
    % Input arguments have been validated. 
     
    if (intVal < numTasks) 
        numTasks = intVal; 
    end 
    if (intVal == 0) 
        integerPerTask = []; 
        return; 
    end 
     
    % At this point, both intVal and numTasks are strictly positive integers. 
    split = fix(intVal / numTasks); 
    remainder = intVal - numTasks * split; 
    integerPerTask = zeros(numTasks, 1); 
    integerPerTask(:) = split; 
    integerPerTask(1:remainder) = integerPerTask(1:remainder) + 1; 
  
end % End of pctdemo_helper_split_scalar  


