

Dynamic Superscalar Grid for Technical Debt Reduction

by

Rudi Killian 193007959

Thesis submitted in fulfilment of the requirements for the degree

Master of Technology: Information Technology

in the Faculty of Informatics and Design

at the Cape Peninsula University of Technology

Supervisor: Dr. Boniface Kabaso

Co-supervisor: Amlan Mukherjee

Cape Town

May 2018

CPUT copyright information

The dissertation/thesis may not be published either in part (in scholarly, scientific or technical
journals), or as a whole (as a monograph), unless permission has been obtained from the

University

DECLARATION

I, Rudi Killian, declare that the contents of this dissertation/thesis represent my own unaided
work, and that the dissertation/thesis has not previously been submitted for academic
examination towards any qualification. Furthermore, it represents my own opinions and not
necessarily those of the Cape Peninsula University of Technology.

Signed Date

ABSTRACT

Organizations and the private individual, look to technology advancements to increase their
ability to make informed decisions. The motivation for technology adoption by entities sprouting
from an innate need for value generation. The technology currently heralded as the future
platform to facilitate value addition, is popularly termed cloud computing. The move to cloud
computing however, may conceivably increase the obsolescence cycle for currently retained
Information Technology (IT) assets. The term obsolescence, applied as the inability to
repurpose or scale an information system resource for needed functionality. The incapacity to
reconfigure, grow or shrink an IT asset, be it hardware or software is a well-known narrative of
technical debt. The notion of emergent technical debt realities is professed to be all but
inevitable when informed by Moore’s Law, as technology must inexorably advance. Of more
imminent concern however are that major accelerating factors of technical debt are deemed
as non-holistic conceptualization and design conventions. Should management of IT assets
fail to address technical debt continually, the technology platform would predictably require
replacement. The unrealized value, functional and fiscal loss, together with the resultant e-
waste generated by technical debt is meaningfully unattractive.

Historically, the cloud milieu had evolved from the grid and clustering paradigms which allowed
for information sourcing across multiple and often dispersed computing platforms. The parallel
operations in distributed computing environments are inherently value adding, as enhanced
effective use of resources and efficiency in data handling may be achieved. The predominant
information processing solutions that implement parallel operations in distributed environments
are abstracted constructs, styled as High Performance Computing (HPC) or High Throughput
Computing (HTC). Regardless of the underlying distributed environment, the archetypes of
HPC and HTC differ radically in standard implementation. The foremost contrasting factors of
parallelism granularity, failover and locality in data handling have recently been the subject of
greater academic discourse towards possible fusion of the two technologies.

In this research paper, we uncover probable platforms of future technical debt and
subsequently recommend redeployment alternatives. The suggested alternatives take the form
of scalable grids, which should provide alignment with the contemporary nature of individual
information processing needs. The potential of grids, as efficient and effective information
sourcing solutions across geographically dispersed heterogeneous systems are envisioned to
reduce or delay aspects of technical debt. As part of an experimental investigation to test
plausibility of concepts, artefacts are designed to generically implement HPC and HTC. The
design features exposed by the experimental artefacts, could provide insights towards
amalgamation of HPC and HTC.

Keywords:
Design Science Research, Grid Computing, Heterogeneous Platforms, High Performance
Computing, High Throughput Computing, Technical Debt

ACKNOWLEDGEMENTS

I wish to thank:

▪ Boniface Kabaso - for his patience, enthusiasm & unyielding support

▪ Amlan Mukherjee – for championing & defending technical research papers

▪ Wilhelm Rothman – for his constructive critique

▪ Varsity College CPT – for providing computer lab infrastructure

▪ The MASM32 forum – for beta testing various artefact constructs

▪ Intel Corporation – Steve Caroompas & Ronald Benson for providing access to

Parallel Studio XE Cluster Edition for Windows

▪ Published IS scholars – on who’s giant shoulders we may stand and hope to be

counted worthy

DEDICATION

I would like to dedicate this work to my past and present mentors, teachers and lecturers;
without whom my academic ambitions would not have endured. Enormous appreciation and
devotion is expressed to my wife and son for providing me the drive and allowing me the time,
to complete the paper.

TABLE OF CONTENTS

DECLARATION .. ii
ABSTRACT ... iii
ACKNOWLEDGEMENTS ... iv
DEDICATION ... v
GLOSSARY .. x
CHAPTER ONE... 1

INTRODUCTION ... 1
1.1 Background to Research Problem ... 1

1.2 Research Problem ... 6

1.3 Research Aim ... 6

1.4 Research Question .. 6

1.5 Research Sub-Questions .. 6

1.6 Objectives .. 7

1.7 Envisioned Contribution .. 7

1.8 Research Methodology ... 7

1.9 Thesis Organisation ... 8

1.10 Chapter Summary .. 9

CHAPTER TWO .. 10
LITERATURE REVIEW ... 10

2.1 Literature Study Selection Protocol .. 11

2.2 Technical Debt ... 13

2.2.1 A Historic Perspective on Technical Debt .. 13

2.2.2 The Contemporary Technical Debt and the E-waste Link ... 15

2.2.3 Current and Future Sources of Technical Debt ... 18

2.3 The Operating System Construct .. 22

2.3.1 Application and Operating System Interactions .. 23

2.3.2 Abstraction and the Heterogeneous Environment ... 24

2.4 The Execution Environment .. 27

2.4.1 Parallelism, Concurrency and Threading ... 27

2.4.2 The Central Processing Unit .. 29

2.4.3 Cache Memory Architectures .. 31

2.4.4 Cache Optimization and Management Strategies ... 34

2.4.5 Random Access Memory and Secondary Storage Interactions....................................... 39

2.5 Networking the Grid .. 41

2.5.1 Network Packet Formation ... 42

2.5.2 Packet Fragmentation Characteristics ... 43

2.5.3 Traditional Socket Networking .. 45

2.5.4 Performance Networking .. 46

2.5.5 Contemporary HPC and HTC Networking .. 47

2.5.6 Grid Formation and Fault Tolerance ... 48

2.6 Chapter Summary .. 50

CHAPTER THREE .. 51
RESEARCH METHODOLOGY ... 51

3.1 Research Theory Development ... 51

3.2 Design Science Research ... 52

3.2.1 Practical Application .. 54

3.2.2 Strategy, Outcome and Process .. 55

3.2.3 Artefact Evaluation Criteria and Methods... 58

3.3 Research Design .. 63

3.3.1 Context, Strategy and Intended Outcome .. 63

3.3.2 Research Method .. 63

3.3.3 Metrics and Analysis .. 64

3.3.4 Validity ... 64

3.3.5 Research Resources ... 64

3.3.5.1 Code Development .. 64

3.3.5.2 Artefact Development Platform .. 65

3.4 The Design Cycle .. 66

3.5 Chapter Summary .. 67

CHAPTER FOUR .. 68
ARTEFACT DESIGN ... 68

4.1 The Technical Debt Context .. 68

4.1.1 Problem Investigation ... 68

4.1.1.1 Conceptual Design Assumptions ... 68

4.1.2 Treatment Design .. 69

4.1.3 Treatment validation ... 72

4. 2 The Execution Environment Context... 74

4.2.1 Problem Investigation ... 74

4.2.2 Treatment Design .. 74

4.2.3 Treatment validation ... 77

4. 3 The Network Utility Context.. 80

4.3.1 Problem Investigation ... 80

4.3.2 Treatment Design .. 80

4.3.3 Treatment validation ... 83

4.4 Chapter Summary .. 85

CHAPTER FIVE .. 86
FINDINGS, DISCUSSIONS & LIMITATIONS .. 86

5.1 The Technical Debt Context .. 86

5.1.1 Heterogeneous Operating Systems ... 86

5.1.2 Security Context and Abstraction .. 87

5.2 The Execution Environment Context... 88

5.3 The Network Utility Context.. 91

5.4 Limitations of Research ... 94

5.4.1 Generalizability Limitations ... 94

5.4.2 Design Limitations ... 95

5.5 Chapter Summary .. 95

CHAPTER SIX... 96
CONCLUSION ... 96

BIBLIOGRAPHY .. 97
APPENDICES ... 103

APPENDIX A: DETAILED COMPARISON OF SURVEYED SYSTEM PROFILERS 103
APPENDIX B: DESCRIPTIVE OF SYSTEM PROFILING DATA POINTS...................................... 104

B1 Central Processing Unit ... 104

B2 Cache Topology ... 105

B3 Random Access Memory ... 105

B4 Secondary Storage ... 106

B5 Operating System .. 106

B6 Network Configuration .. 107

APPENDIX C: ARTEFACT SUNDRIES .. 108
C1 Sample Data Structure for Static System Profiling .. 108

C2 Screenshot Output of System Profiling Module .. 109

C3 Screenshot Output of Client Module .. 110

C4 Screenshot Output of Server Module ... 110

LIST OF FIGURES

Figure 1 Literature selection logic process .. 12
Figure 2 Historic computer sales data – inclusive of servers .. 18
Figure 3 Computer shipment forecasts world wide ... 19
Figure 4 Global desktop operating system sales .. 21
Figure 5 Modern modular operating system kernels ... 22
Figure 6 Comparing technology stacks, highlighting abstraction .. 23
Figure 7 Conceiving a CPU package topology ... 30
Figure 8 Cache associativity ... 33
Figure 9 Simplified sockets ... 41
Figure 10 MTU path minimum size aggregation ... 44
Figure 11 Network stack comparison .. 47
Figure 12 Elementary grid formation for HPC or HTC .. 49
Figure 13 Research and theory development ... 51
Figure 14 Design science research nominal process model .. 55
Figure 15 Selecting DSR evaluation methods .. 59
Figure 16 The FEDS artefact evaluation framework ... 60
Figure 17 DSR engineering cycle.. 66
Figure 18 Conceptual design of a dynamic grid .. 69
Figure 19 Design technology stack ... 70
Figure 20 System profiling criteria comparison ... 75
Figure 21 Environmental characteristics of design ... 76
Figure 22 Design of overlapped I/O completion port model .. 82
Figure 23 Artefact portable executable header ... 87
Figure 24 Stress testing IOCP module .. 93

LIST OF TABLES

Table 1 Research domains that inform literature choice ... 10
Table 2 Survey database sources ... 11
Table 3 Evaluation of computer market data .. 19
Table 4 Possible node heterogeneity .. 26
Table 5 Instruction sets supporting data parallel operations ... 29
Table 6 The N-MASS algorithm .. 37
Table 7 Seven guidelines of design science research .. 53
Table 8 Design evaluation methods .. 58
Table 9 Laboratory Environment ... 65
Table 10 System profiling solutions... 75
Table 11 Contemporary HPC and HTC solutions ... 81
Table 12 Appraisal of artefact resource extents .. 94

LIST OF CODELETS

Codelet 1 Artefact environmental declarations ... 88
Codelet 2 Using the CPUID opcode to reveal functions and features .. 89
Codelet 3 CPU Topology brand specific detection .. 89
Codelet 4 Profiling the operating system .. 90
Codelet 5 Enumerating the network configuration .. 90
Codelet 6 A highly scalable IOCP service module .. 91
Codelet 7 Dynamic accept scaling .. 92
Codelet 8 Winsock extended function referencing .. 92
Codelet 9 Sensing and eliminating stale connections ... 93

file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050635
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050636
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050637
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050638
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050639
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050640
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050642
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050643
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050644
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050645
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050646
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050647
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050648
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050649
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050650
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050651
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050652
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050653
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050654
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050655
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050656
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050657
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050658
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050669
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050670
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050671
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050672
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050673
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050674
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050675
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050676
file:///Z:/Thesis%20Rudi%20ver%202.8.docx%23_Toc514050677

GLOSSARY

Acronyms/Abbreviations Definition/Explanation

API Application Programmable Interface
APIC Advanced Programmable Interrupt Controller
AVX Advanced Vector Extensions
CPU Central Processing Unit
DFS Distributed File System
DMA Direct Memory Access
DSR Design Science Research
FEDS Framework for Evaluation in Design Science Research
FMA Fused Multiply and Addition
GB Gigabyte
GUID Globally Unique Identifier
HPC High Performance Computing
HTC High Throughput Computing
I/O Input / Output
ICT Information & Communications Technologies
IDE Integrated Development Environment
IOCP I/O Completion Ports
IP Internet Protocol
IS Information System
IT Information Technology
iWARP Internet Wide Area RDMA Protocol
KB Kilobytes
LAN Local Area Network
LLC Last Level Cache
MB Megabyte
MIMD Multiple Instruction, Multiple Data
MMX Matrix Multiplication Extensions
MPI Message Passing Interface
MPKI Cache Misses per 1000 Instructions
MTU Maximum Transmission Unit
NIC Network Interface Card / Adapter
NUMA Non-Uniform Memory Access
OS Operating System
PMU Performance Monitoring Unit
RAM Random Access Memory
RDMA Remote Direct Memory Access
RoCE RDMA over Converged Ethernet
RPC Remote Procedure Call
SAN System Area Network
SIMD Single Instruction, Multiple Data
SISD Single Instruction, Single Data
SSE Streaming SIMD Extensions
TB Terabyte
TCP Transmission Control Protocol
UDP User Datagram Protocol
VM Virtual Machine
WAN Wide Area Network
WINE Wine Is Not an Emulator
x64 Compatible to the 64-bit Intel instruction set
x86 Compatible to the 32-bit Intel instruction set

1

CHAPTER ONE
INTRODUCTION

1.1 Background to Research Problem

Organizations are aware that business intelligence is key to competitive advantage

(Ward & Peppard, 2002; Schiesser, 2010; Bidgoli, 2016). The inquiries concerning

business intelligence gathering exercises within the contemporary setting, notes

scholarly agreement, in that organisations are increasing reliant on the ability to

leverage data (Chen, et al., 2012; Dhar & Mazumder, 2014; Hashem, et al., 2015). How

such business intelligence from data could be facilitated, may potentially be of critical

interest to organisational decision makers.

The mechanisms of business intelligence normally regard the utilization of tools and

techniques to transform organizational data into useful information. However, the

control, processing and analysis of these prospective data assets may require fresh

doctrines in planning as well as implementation. Importantly awareness is required that

traditional techniques for data manipulation and analysis, are known to be ineffectual

in dealing with the realities of modern day organisational data landscapes (Katal, et al.,

2013; Hashem, et al., 2015). When working with data assets from which potential

business intelligence might be gleaned, several native difficulties could be uncovered.

Cognizance needs to be taken of the internal organizational capabilities, before

designing platforms for modern data analysis and demanding workloads, as such

capabilities may easily be exceeded (Hashem, et al., 2015). The size and properties of

data are at the root of the problem. The major challenges uniformly originating from the

growth rate and large varying types of data obtainable. In lieu of solutions towards

effective business intelligence generation within an unconventional data or big data era,

acquaintance with technologies that have the potential to mitigate obstacles in creation

are needed. A technology that could produce or enhance capabilities on demand would

arguably have direct fit with the organisational capacity problem.

The term grid computing was first devised in the 1990’s to describe a paradigm by

which on demand computing power could be obtained (Foster, et al., 2008). As demand

dictates, multiple processing resources combine logically as a singular managed

object. The resources and processing capacity of the effectively assembled grid object,

may then easily surpass the capabilities of any individual or cooperative constituents.

The activity of constructing the managed grid resource is frequently termed as

clustering or creating a distributed computing platform (Foster, et al., 2008; Deelman,

2010). Other appealing benefits obtained from the grid paradigm, are noted to include:

better resource utilization, data federation and centralization of control.

2

The modern manifestation of on demand and distributed computing, is popularly known

as cloud computing. Indeed, the technological base of current cloud environments are

purposefully modelled after grid, distributed and clustered computing platforms (Foster,

et al., 2008; Youseff, et al., 2008; Deelman, 2010; Reyes-Ortiz, et al., 2015). Given

sufficient scale (i.e., the major semantic distinction between clouds and grids), on

demand computing power is universally associated with the existing understanding

around the topic of cloud infrastructure formation. The dynamic and enabling capacity

generation, as facilitated by grid computing can subsequently also be mimicked by use

of cloud computing.

The organisational Information Technology (IT) function and private individuals alike,

are increasingly adopting cloud based technological mechanisms to for-fill and

augment their mandate (Chen, et al., 2012; Hashem, et al., 2015). Conceivably the IT

strategy in an attempt to align with business, would therefore also be looking to

popularized cloud technologies as an enabler of business intelligence. The adoption of

cloud technologies has inopportunely engendered the creation of a veritable

terminology zoo to describe any discreet organisational data endeavours. The

frequency of such cloud jargon may serve only to undermine focus and add complexity

to the business intelligence building issue. Of interest rather, would be the extensive

dialogue of benefits gained from the move to cloud and the use of platform aided data

technologies. Foremost of these value propositions are:

• Exploiting economies of scale (Foster, et al., 2008)

• Enhanced fiscal flexibility, based on per unit purchase choices (Foster, et al., 2008)

• High speed processing, produces insights more rapidly (Dobre & Xhafa, 2014)

• High volume of data throughput, produces higher accuracy in analysis (Chang &

Wills, 2015)

• Capacity building to deal with exponential growth and storage of data (Gupta, 2015)

The benefits of the cloud computing also transcend business, to include academic

research (Deelman, 2010; Masud, et al., 2012; Dobre & Xhafa, 2014; Reyes-Ortiz, et

al., 2015; Leetaru, 2016). The same benefits targeted by business, would therefore

have equivalency and import for academia. Assuredly, the prevalent trends of

incentivized discounts, research grants and unprecedented ease of access to large

data sets would appeal to researchers. Inferences of apprehension regarding the move

to cloud may however be noted in the research literature. The peer-reviewed concerns

predominating around the adoption of cloud technology, before wide-ranging maturity

and internal efficiencies of intended functionality are achieved (Dhar & Mazumder,

2014; Grolinger, et al., 2014; Hashem, et al., 2015; Botta, et al., 2016).

3

The maturity, effectiveness and efficiency theme is arguably not new within the field of

IS research, but may require contextual scrutiny. The IT management discipline, per

illustration, uses indicators of maturity, effectiveness and efficiency to rectify or address

gaps in IT and business alignment (Ward & Peppard, 2002; Schiesser, 2010; Bidgoli,

2016). The subject of cloud adoption trends and their impacts, given these indicators,

suggestively imparts the importance of alignment before adoption. The Gartner

research group predicts that the majority of IT spend by the year 2020 will be on cloud

and related services (Gartner Inc., 2016). Of looming concern would be the non-aligned

IT function scenario, where business demands the move to cloud or eliminates the

cloud purchase choice.

Even when disregarding IT alignment, deductive reasoning suggests that tangible

consequences must somehow manifest should future ICT budgets be diverted towards

the cloud. In the immediate aftermath of cloud adoption, the reconfiguration of existing

hardware and software architectures would certainly seem inevitable. Structurally not

all IT resources might find redeployment in the cloud technology environment, which

could result in technical debt (Martini, et al., 2014). The term technical debt describes

the inability of IT resources to be grown, shrunk or reconfigured, consequently resulting

in possible organizational dysfunction. The failure of a resource to be reconfigured or

scaled could potentially undermine the business processes being supported. The

cause of technical debt is provided as being some form of loss, due to non-holistic

decisions made in support of short-term goals, with disregard for long-term outcomes

(Martini, et al., 2014). Lack of plans that address common cloud technology pitfalls

when juxtaposed with existing resource allocation may lead to such potential loss. The

existing computer applications and underlying infrastructure would need either to be

reconfigured or made obsolete to facilitate cloud migration. Innovative solutions would

be required to address the likelihood of abrupt obsolescence.

The cloud model in the setting of data analytics requires scaling of computing

infrastructure, which is multi-node and typically multi-processor. In contemporary data

analysis, a given problem domain is frequently subdivided between network nodes,

which in turn independently or cooperatively process instructions and data (White,

2012; Dobre & Xhafa, 2014; Doulkeridis & Nørvåg, 2014). Once individual node

processing is complete, the result may be unified centrally, producing the information

base for the decision-making process. On examination, two distinct and divergent grid

application models are therefore classifiable (Foster, et al., 2008; Dobre & Xhafa,

2014): High Performance Computing (HPC) and High Throughput Computing (HTC).

4

Both HPC and HTC models have inherent value in application, though their approach

to computation and data storage differ radically. HPC provides for tightly coupled

parallel runs per computation node, in scenarios where data and instructions have been

localized (Deelman, 2010; Dobre & Xhafa, 2014; Reyes-Ortiz, et al., 2015). The HTC

application model could potentially support both tightly and loosely coupled parallel

runs per computation node, in scenarios where data and/or instructions are externally

sourced (Foster, et al., 2008; Youseff, et al., 2008; Deelman, 2010; Shvachko, et al.,

2010; Montero, et al., 2011; White, 2012; Reyes-Ortiz, et al., 2015). The word

parallel(ism) provisionally referring to either the computer processor or networked

node-based interaction capabilities of an infrastructure platform. The HPC model

derives its efficiencies by attempting balanced targeting of parallelism, per computation

node, at processor level. To gain efficiencies, the model is therefore cognizant of higher

orders of parallelism at the node level. The HTC model contrasts by delivering better

data management capabilities amongst participant nodes. In processor-based

parallelism, a single node may have multiple physical processors. Each physical

processor package or die, may be further deconstructed to reveal central processing

units (CPU’s) or cores. A processor package may have multiple cores that

independently or cooperatively compute towards a given solution (Intel Corporation,

2016). Modern CPU’s additionally contain parallelism at the data and instruction level,

termed vector instructions they gain processing speed-ups by executing a single

instruction that simultaneously operates on multiple data streams per clock-cycle.

Vector parallelism and facilitating instruction sets, when used in conjunction with multi-

core CPU architectures, are known to significantly increase processing throughput

(Akhter & Roberts, 2006; Jeong & Lee, 2012; Sabharwal, et al., 2013; Reyes-Ortiz, et

al., 2015; Saxena, et al., 2016). It ought to be evident that technologies that provide for

efficient data processing, therefore be designed with mindful and inherent parallelism

beyond the multi-node setting. Importantly, parallelism must be reflected in the design

of an effective and thus generalizable HPC or HTC solution framework, if any

reasonable uptake of such technology is to be expected (Reyes-Ortiz, et al., 2015). The

effects of ignoring inherent parallelism could be the underutilization of processing and

data resources, which could potentially weaken the value assertion of data analytics.

Literature has long shown that data analytics technologies are missing the opportunity

to holistically incorporate value-adding features. The remedial recommendations in

topical research, overwhelmingly suggests frameworks that could ultimately lead to

hybridized versions of HPC and HTC (Alverson, et al., 1992; Montero, et al., 2011;

Chang, et al., 2014; Dobre & Xhafa, 2014; Doulkeridis & Nørvåg, 2014; Grolinger, et

al., 2014; Zhao, et al., 2014; Mantripragada, et al., 2015; Nelson, et al., 2015; Reyes-

Ortiz, et al., 2015; Saxena, et al., 2016).

5

An additional hindrance to value add, comes from the fact that software developers

predominant in industry, are mostly incapable of programming for parallelism

(Darlington, et al., 1993; Berlin, et al., 2004; Lee, 2006; Herlihy, 2010; Newburn, et al.,

2011; Breivold & Crnkovic, 2014; Saxena, et al., 2016). Programming skillsets that

disregard parallelism would consequently negate possible benefits as originally

envisioned in the endeavour. To alleviate the shortcomings in skillset, milieu solutions

abstract programming languages via application programmable interface, additional

libraries or run-time script interpreters. The solution then becomes reliant on

compilation interfaces and background services that add additional processing

overhead. Compounding the problem is that it might not be reasonably expected for

software developers, skilled in parallelism or not, to target a single binary executable

for heterogeneous hardware platforms (Berlin, et al., 2004; Newburn, et al., 2011).

Developing for homogeneous platforms, would limit future agility and ultimately benefit

potential. The selected homogenous platform would dictate the development, testing,

scope, operational and maintenance deployment environment of a utilitarian solution

(Satzinger, et al., 2012). Current solutions then also further abstract the hardware and

storage platform of the network operating system, to facilitate heterogeneous platforms.

The potential to make informed decisions from structured and unstructured data with

unprecedented speed is assuredly desirable for business and the scientific researcher

alike. The information sourcing and processing requirements necessary for decision

making, in the reflected context of the cloud and big data value proposition, have

however several obstacles to realization (Deelman, 2010; Kraska, 2013; Dhar &

Mazumder, 2014; Grolinger, et al. 2014, Hashem, et al., 2015). During a

comprehensive literature review of cloud computing, the open research problems that

effect cloud adoption was identified as (Hashem, et al., 2015): regulatory governance

concerns, legal issues, scalability, privacy, availability, data quality, data heterogeneity;

data integrity and data transformation. Of notice are the problems around scalability,

availability and data heterogeneity, which functionally have bearing on data analytics

and HPC or HTC. Scalability speaks to the ability to grow or shrink the data storage

and infrastructure, as demand or need requires (Schiesser, 2010; Martin, et al., 2014;

Hashem, et al., 2015). Availability, defined as having resources available to authorized

entities at the time of demand (Schiesser, 2010; Ciampa, 2015). Current computational

infrastructures find it problematic to scale data storage and platform, whilst also

maintaining availability (Deelman, 2010; Martin, et al., 2014; Hashem, et al., 2015). The

mitigations of fault tolerance and various forms of redundancy have been the mainstay

solutions to the availability issue in the past. However, when coupling availability with

scalability, non-trivial outcomes may be assured.

6

The heterogeneity of data refers to the characteristics of data begotten from multiple

sources. The characteristics of heterogeneous data would present as having different

type and size, as well as data quality attributes (Che, et al., 2013; Hashem, et al., 2015).

What is more, heterogeneous data has inconsistency in representation. The

operationalization of activities that function on heterogeneous data would notably be a

technical challenge. Feasibly however, programmable solutions that are informed by

the application purpose could be found for specific heterogeneous data environments.

1.2 Research Problem

The move to cloud-based computing could demand structural IT environmental

changes leading to substantial amounts of technical debt. The future value proposition

of data management and analytical solutions might be undermined by inherent

inefficiencies of abstraction due to compensating factors. The existing design solutions

that incorporate both high performance computing and high throughput computing are

not necessarily generalizable.

1.3 Research Aim

The research aim is to create a software artefact, which could provide insights into the

design environment of a generalizable grid implementation. The artefact should

amalgamate high performance computing and high throughput computing, whilst

addressing future technical debt.

1.4 Research Question

Could innovative application design, facilitate the repurposing of technical debt as grid

implementations?

1.5 Research Sub-Questions

1. What hardware and software architectures will constitute the most probable

sources of technical debt?

2. What hardware information is required to target grid implementations

programmatically?

3. How may hardware and network platforms be enumerated for the grid?

4. What is the predominate functionality exposed by current grid technologies?

5. What enhanced functionality is exposed by the designed artefact?

7

1.6 Objectives

1. Ascertain the contemporary architectures at risk of technical debt accretion

2. Determine programmable ingredients that would facilitate diverse hardware

integration into potential grid platforms

3. Establish a base line of current utility and extents as begotten from existing grid

solutions

4. Measure a candidate design artefact’s utility and extents against the baseline,

highlighting efficacy at technical debt reduction

1.7 Envisioned Contribution

The study aims to contribute theoretical and applied understanding, by designing an

innovative software artefact to be used in the grid environment. Design outcomes are

proposed to facilitate theory enhancements for the body of knowledge. The artefact

itself should create opportunity or alternative for entities facing technical debt issues.

1.8 Research Methodology

The research initial ontological stance is objectivism but would not exclude an

evolutionary prospect of pragmatism over the research timeline.

The term objectivism means that there is an independent reality that may be understood

by investigating the laws that govern it (Neuman, 2011; Bryman, et al., 2014). Equally

pragmatic values are not discarded as research investigations may lead to new insights

within the workings of the perceived reality, which when practically applied, may change

the understanding of the phenomenon under investigation (Neuman, 2011; Bryman, et

al., 2014). The research epistemology is principally identified as positivism. Yet the

philosophically purest interpretation of positivism is not expected to be adhered to as

software artefact building and evaluation activities, are not synonymous with the

epistemology.

A reductionist approach, which investigates the smaller constituent components of

larger phenomenon is anticipated. Only deductive factual observation and quantifiable

truths are of interest. The validity of research findings made are paramount in adding

academic value, therefore quantitative data would be collected and analysed.

The research paper’s focus is on unravelling an impending problem. An expectantly

reproducible exploration, drawing from contemporary theory across multivariate

research domains could speculatively provide new understanding. For these reasons

8

the Design Science Research (DSR) paradigm, subordinate strategies, evaluation

criteria and methods are implemented.

1.9 Thesis Organisation

The remaining balance of the research paper is ordered as follows:

Chapter 2, at first provides inclusion rational and grounding guidelines for survey

literature selection. The subsequent narrative underpins and explores the technical

debt phenomenon as an outflow of cloud adoption. To delay the burden of technical

debt and e-waste, the repurposing of infrastructure, hardware and software assets are

suggested. Accordingly, the research investigation initially identifies probable future

technical debt platforms. The identified platforms, are to be the subject of scalable HPC

and HTC grid solutions as alternative to potential obsolescence. The nature of

parallelism as well as heterogeneity, within HPC and HTC is found to be problematic in

literature. Successive research inquiries, delve deeper into the inherent parallelism and

heterogeneity of computing platforms. During the course of such inquiries, concerted

efforts are made to consistently provide relevant fit for HPC and HTC environs. The

understanding generated, should clarify difficulties and suggest ingredients that

facilitate an effective and efficient collaborative computing platform. In brief, an atomic

examination of a hypothetical HPC and HTC grid node is undertaken. Starting with the

application’s interactions with the operating system, a holistic case for reduced

abstraction may be conceived. Scrutinizing the hardware, software, network and

environmental characteristics of a potential grid participant, could provide insights

towards how improved computational efficiency and effectiveness may be achieved.

In Chapter 3, the Design Science Research paradigm, its subordinate strategies,

processes and methods, together with artefact evaluation are discussed in detail. The

quantitative data collection methods, metric characteristics and analysis thereof are

explained.

Chapter 4 describes the experimental artefact build environment, as well as the

modular and iterative design endeavour. The design elements and constructs

developed, are independently compared with similar technology, theories or schemes.

In Chapter 5, the design artefact is experimentally instanced and then rigidly analysed

for utility and performance in operation. The discussions and findings made, are

presented in a conversant but clear manner. Innovations exposed by the artefact’s

integral design, is emphasized for consideration in enhancing the body of knowledge.

9

To end with, Chapter 6 summarizes the research contribution and suggests avenues

of future work.

1.10 Chapter Summary

In this chapter, the salient problems faced in building business intelligence within a

modern day data analytical environment was initially deliberated. A major concern for

business intelligence building, was identified as dealing with capacity shortfalls. On-

demand computing capacity generation, as provided by the distributed computing

paradigm, could facilitate a potential solution to the capacity problem. Revealingly,

entities are now increasingly looking to cloud technologies to provide such on-demand

services.

The benefits that may be gained from the cloud and big data analytics, assuredly pose

an attractive value proposition for organisations and the private individual alike.

However, the move to cloud could increase the technical debt exposure and

infrastructure obsolescence cycle for currently retained IT assets. An obligation is

engendered to seek repurpose of IT assets, in a manner that remains aligned with the

organisational need. Creating on demand grids from current and legacy IT assets, in

the form of HPC or HTC computing platforms, could have potential fit to the immediate

alignment issue.

Further discussions provided insights into the contrasting nature of HPC and HTC. The

potential efficiencies for parallel computation at participant node level is a desirable

aspect of HPC. Then also the cooperative data handling, scalability and fault tolerance

found in HTC appeals. The surveyed literature overwhelmingly calls for a best of both

worlds approach to HPC and HTC, though on reflection significant obstacles to the data

analytical value proposition remains.

10

CHAPTER TWO
LITERATURE REVIEW

The research literature choice was informed by availability of the originally authored

and peer reviewed documents in their entirety. The selected papers had to conform to

the specific keyword domains and supplementary extents, as highlighted in the

research endeavour. Popular scholarly search engines, IS conference proceedings and

journals were employed as utility to acquire articles of interest. Only multi-cited or

considered seminal author works were designated for inclusion within the review.

Where required, additional technical specification or clarification was obtained from

official organizational websites, white papers and tertiary educational textbooks. The

rationale and need for secondary sources, stem from the fact that the research

endeavour encompasses multiple diverse fields of academic study. The contained

research primary and secondary domains within the review have been organized in

Table 1. It should be noted that a definitive case of previous academic research having

been undertaken to incorporate all comprised research domains, could not be made

using prevailing resources.

Table 1 Research domains that inform literature choice

Primary Domains Sub Domains

Design Science Research Research and Systems theory

Grid computing & Heterogeneity Abstraction

Application environments

Cache topologies and management

CPU topologies

Network socket environments

Inter process communications

Operating Systems

Parallelism

Security contexts

Software optimization

High Performance Computing Message Passing Interface

High Throughput Computing Distributed File Systems

Fail-over and fault tolerance

Generic storage

Remote Procedure Call

Technical Debt E-waste

Strategic information systems

11

2.1 Literature Study Selection Protocol

Preliminary results for article selection were obtained via search strings written in the

English language, as inputted into online search engines and academic databases.

Predominant database sources for articles have been presented for perusal in Table 2.

The search strings comprised unary or combinatorial keywords as identified within in

the research undertaking. The possibility of keyword alternate spelling or synonymic

use was explored and actioned for pertinent relevance.

Table 2 Survey database sources

Database Source
(EBSCOhost / Google Search / Google Scholar / Sage journals)

% in use

Institute of Electrical and Electronics Engineers (IEEE) 35%

Association for Computing Machinery (ACM) 18%

Springer 7%

Elsevier 7%

Other 33%

As part of initial selection, foundation articles had to expose best fit within the principles

of peer review, contemporary authority and research domain bearing. Where possible,

supportive literature reviews or assessments across discreet domain body of

knowledge areas were sought to reveal additional articles of interest. The need for

cross sectional supporting literature was deemed important, as justification for such

could be established. Per illustration, it was recognized that title or keyword matching

did not continually provide relevant papers for the selection process.

Nevertheless, only freely available and full text papers were eventually promoted for

scrutiny. The explicit research applicability was determined by examining the article

authors’ abstract and closing statements. The preliminary papers obtained were then

categorized by extent and consequently independently investigated. Within an

academic domain extent, author viewpoints and recommendations from isolated

investigations were mapped for consensus, enhancement or divergence.

12

The examinations conducted per isolated article reviewed, in certain instances

produced supplementary atomic domain principles which required external

enhancement. As shown in Figure 1, a sub process for selection was initiated in such

circumstance, to augment core concepts or contextualize foundation narratives. The

use of technical white papers, academic courseware and brand official websites were

not excluded as instrument of such enhancement.

The additional sources acquired by means of the sub process, were vetted to satisfy at

least one of the following conditions:

• Multi-cited in topical academic literature

• Tertiary educational courseware (undergraduate or above level)

• Technical reference work or industry white-paper

• Internet based, official product website article

The overarching consideration for secondary sourced papers, regardless of the

gauging qualification being the official or normative sanction of such material. The need

to lend validity to claims made by imposing selection criteria on secondary sourced

articles was perceived as warranted in reducing possible shifts with regard to burden

of proof.

Figure 1 Literature selection logic process

13

2.2 Technical Debt

2.2.1 A Historic Perspective on Technical Debt

The term Technical Debt, was first coined via an article in 1992 by Ward Cunningham

titled: “The WyCash Portfolio Management System. OOPSLA’ 92 Experience Report”.

Originally, the term technical debt is used by Cunningham as a metaphor. An allegory

is generated to describe how stopgap actions targeting quality may impact holistic

system lifecycles (Brown, et al., 2010; Klinger, et al., 2011; Martini, et al., 2014). The

induced speed of development that marginalizes quality considerations is at the heart

of the matter. Organizational pressures advocate quick win conditions that may weaken

problem identification, investigation and analysis, design and development rigor. An

organization plausibly perceives that cost and resource gains may be achieved by

reducing the system’s development effort and schedule. The decrease of effort and

time associated with the endeavour, should directly constitute cost savings. However,

the reality is, that similar to actual financial debt scenarios technical debt could arise.

The organization would need to service the debt of maintaining and rectifying the low

quality or faulty system as a result (Brown, et al., 2010; Klinger, et al., 2011; Martini, et

al., 2014). The long term consequences for spontaneous operational or tactical actions,

however originally defensible, may need to be considered. In this context, the debt

metaphor has found popular contemporary traction, as it provides a collective

understanding of the implications for rushed or ill-conceived decision making.

The main contributors of technical debt are often the non-technical stakeholders

(Klinger, et al., 2011). Management decisions concerning financing and resourcing of

system products are prepared without understanding the long-term implications of

technical debt creation. The communication gap between technical and non-technical

stakeholders then exacerbate the situation, by not articulating the implications and cost

of incurring technical debt.

A mutual understanding of the term debt by both engineers and management, should

ideally act as an enabler (Brown, et al., 2010; Klinger, et al., 2011;Tom, et al., 2013).

The universal concept and implications of financial debt are typically well understood

by all stakeholders. We take on debt naively or on purpose, but the debt needs to be

paid sooner or later. The sooner we can service the debt, the less influence it has on

our lives. The debt narrative may then be extended to relate to information systems,

allowing debate amongst stakeholders.

14

The discussions generated from using a focused terminology such as technical debt,

may reveal numerous topical aspects for consideration. As an example, consider a pre-

development scenario. The technical debt features deliberated could very well provide

inputs into pending venture decisions. In a post-development scenario, identified

technical debt issues may be traced backwards to flawed conception. Demonstratively

both view contexts provide information to stakeholders, which may enhance

understanding and accumulate knowledge towards augmenting processes or

organizational business intelligence. Several discourse benefits are highlighted for

additional clarity (Brown, et al., 2010; Klinger, et al., 2011; Tom, et al., 2013):

• Discussion facilitates wider stakeholder involvement from all organisational

spheres, revealing possible sources of technical debt that might otherwise lead to

sub-optimal decision making

• Possible escalated total cost of ownership of a system can be identified early on

• Discussion generated, may expose currently unforeseen complexity in integration

with existing systems that has bearing on the scope or resulting agility of the

proposed system

• Improper business cases for systems may be pre-emptively discarded by

quantifying financial implications of possible technical debt

Notably it should be understood that technical debt is fundamentally inevitable. A

system would carry initial and residual quantities of technical debt, even after due

diligence conceptualization, development or maintenance expenditure (Martini, et al.,

2014). The repercussions then are that cumulatively over time and across the

organization’s system entities, the technical debt would eventually reach crisis

proportions. Some technical debt may even have been entered into on purpose. The

technical debt intentionally created for situations where the organization wanted to

advance opportunities it may not have otherwise been able to afford (Klinger, et al.,

2011). The crisis or tipping point descriptive can be important for continual

organizational awareness in regards technical debt.

Principally the descriptive of technical debt could be used to galvanize support from

stakeholders to ensure long-term value is generated from information technology

resources on a persistent basis. At the outset the term technical debt, as described by

Cunningham, was meant to refer to software development environs (Brown, et al.,

2010; Klinger, et al., 2011; Martini, et al., 2014). The technical debt payable, due to

non-holistic decision making since Cunningham’s original publication, has however

been found to be rather more multi-dimensional.

15

2.2.2 The Contemporary Technical Debt and the E-waste Link

The impetus by contemporary technical debt researchers is to extend the terminology

understanding to a more comprehensive ecological form (Tom, et al., 2013; Betz, et al.,

2015; Ernst, et al., 2015). Topically, an argument may be made that after all software

executes on hardware and supporting infrastructure. To address the absence of a wide-

ranging and academically sound scope for technical debt, a comprehensive taxonomy

was proposed by Tom et al. (2013). Primarily the taxonomy is meant to be used as a

technical debt exploratory framework. Elements listed by the Tom et al. (2013)

taxonomy, consists of: dimensions, attributes, precedents and outcomes. The universal

dimensions of technical debt are identified as: code, design and architecture,

environment, knowledge distribution and testing (Tom, et al., 2013). Each dimension

mentioned in the list, containing attributes of interest. The matrix when formed

accordingly with the remaining elements, provides exploratory information between

technical debt components and ultimately elaborate towards probable outcomes. As

such, the environmental attributes when measured, may reveal additional debt burden

which when factored provides for a better total accrued technical debt picture. In

practice when considering hardware as an example, the obligation is then to also

scrutinize the infrastructure and supporting applications for architectural, environmental

or sustainability debt (Tom, et al., 2013; Betz, et al., 2015; Ernst, et al., 2015).

The functional demands influencing software over time will speed the eventual

obsolescence of the hardware architecture that currently supports such (Fitzpatrick, et

al., 2014; Remy & Huang, 2015). It is known that obsolescence is unavoidable in most

cases as technology would continually advance. Remarkably, contributing factors cited

for hardware obsolescence have both planned and unplanned associations. Planned

obsolescence is informed by the effects of Moore’s Law regarding the decrease in

hardware observable lifecycles, due to technological advancement (Widmer, et al.,

2005; Blevis, 2007; Remy & Huang, 2015). Unplanned obsolescence is importantly

conversant towards flawed or inadequate design as a major contributor to the formation

of hardware obsolescence (Blevis, 2007; Betz, et al., 2015; Remy & Huang, 2015).

Flawed or inadequate design and related decision-making inferences, have perceptible

equivalents in the technical debt arena (Tom, et al., 2013; Betz, et al., 2015). Whether

it be planned or unplanned obsolescence, the design of the information technology

solution is incomplete without due consideration as to what would become of the

system objects after loss of originally intended functionality (Blevis, 2007; Betz, et al.,

2015; Remy & Huang, 2015). An entire field of academic research has evolved to study

the obsolescence phenomenon more closely.

16

Academia use key words such as e-waste, short form for the word pairing electronic

waste, to describe their efforts in the obsolescence arena. Importantly the e-waste

generated from hardware retirement has long been viewed as an imminent global

environmental threat (Widmer, et al., 2005; Blevis, 2007; Robinson, 2009; Fitzpatrick,

et al., 2014; Betz, et al., 2015; Remy & Huang, 2015). The scholarly e-waste research

focuses on causes, main contributors towards, physical outcomes and viable solutions

to what is in fact literally an electronic garbage creation problem. Hardware and

software are inextricably linked in the obsolescence cycle (Blevis, 2007; Robinson,

2009; Tom, et al., 2013; Betz, et al., 2015). An argument may be made that e-waste

generation is a natural outflow of technical debt. Ill-conceived decisions around

software have real physical outcomes in the form of hardware objects that may be

unable to sustain functionality as intended.

Proposed solutions to technical debt, like the phenomenon itself, have multi-

dimensional characteristics in literature. As an example, consider a specific and

recurring theme in the code dimension of technical debt regarding the software

development and maintenance setting. The specific technical debt solution suggests

the continuous refactoring of code. The word refactoring, meaning the rewrite of system

source code without influencing the intrinsic system’s behaviour or functionality. The

refactoring exercise itself however has complex proportions that impact the

effectiveness of the technical debt reduction endeavour (Brown, et al., 2010; Martini, et

al., 2014; Ernst, et al., 2015). Consider an additional example eluded to earlier, the

technical debt solutions in topical literature which specifically address hardware

concerns are initially found to be sparse or non-existent. On closer scrutiny however,

technical debt articles promote the key dimensions of architecture and environment to

encompass hardware objects (Tom, et al., 2013; Martini, et al., 2014; Ernst, et al.,

2015).

The complexity generated when extruding all the dimensions of technical debt as

provided for in literature, then builds conceptual appreciation for its non-trivial

landscape. In mitigation of complexity, Martini et al. (2014) contends that all technical

debt literature largely focuses around understanding the root causes, whilst attempting

to reduce or delay the burden of payment.

17

The motivation around research aswell as contextual issues incurred within the subject

matter of e-waste and technical debt have been found to be strikingly similar.

Importantly, the proposed solutions to e-waste predominantly include (Blevis, 2007):

promoting renewal and reuse together with the ability to link invention with disposal.

The e-waste justification of promoting renewal and reuse, imitates the technical debt

concept of refractoring. Linking invention with disposal as described in e-waste, has

connotations of technical debt’s ability to perform traceability to flawed design. The

milieu of subject matter for both technical debt and e-waste, may be mutually inclusive.

As to re-iterate this connection, Betz et al. (2015) draws special significance to human

social responsibility around technical debt creation. The design decisions around

information systems must consider sustainability or sustainability debt as a subset of

the technical debt metaphor (Betz, et al., 2015). An ill-judged concession on information

system design, could equate to compromising future generations in the form of e-waste.

The technical debt phenomenon is consequently, amongst others not just a software

development, management or process problem but also an ethical one.

The subscription to a more fixated definition of technical debt may be appropriate,

particularly given its interconnected relationship with e-waste. Contemporary technical

debt research articles reveal that a de facto definition for technical debt has as yet not

been adopted. Due in part to the multi-dimensional nature of technical debt

phenomenon, discussion in literature continues to redefine or augment the metaphor

(Brown, et al., 2010; Klinger, et al., 2011; Tom, et al., 2013; Martini, et al., 2014; Betz,

et al., 2015). To avoid ambiguity, the term technical debt would non-prescriptively

henceforth describe:

The inability of information technology resources to be reconfigured or scaled due to

short term non-holistic decision making, without regard for long term outcomes leading

to potential loss.

Initially, the derived definition should acknowledge the legacy perspective of what is

undoubtedly known and understood to be technical debt. The primary aspects

pertaining to people and their decisions with resultant tangible impacts needs to be

reproduced. Moreover, the definition should apprise that the scope of technical debt

contains amongst others, both the hardware infrastructure and software facets. Lastly

the possibility of loss narrative, should provide motivation to potential stakeholders that

the product of the debt metaphor may well be negative and thus of concern.

18

Academic literature surveyed does provide credence to the theory that e-waste would

be produced on a near exponential scale within the next decade (Dwivedy & Mittal,

2010; Yu, et al., 2010; Petridis, et al., 2016). The proportional metric of e-waste

production as an outflow of technical debt is currently indistinct. What is clear though,

is that the speed at which hardware obsolescence is occurring may be caused by ever

decreasing computer system lifecycles (Petridis, et al., 2016). Given current trends in

ICT, it may be possible to hypothesize the extents of technical debt’s physical outflows

by investigating historic and predictive statistical data.

2.2.3 Current and Future Sources of Technical Debt

As shown in Figure 2 & 3, the initial thriving global computer sales market at the

beginning of the century appears to now be in steady decline. The cause of the

degeneration observed could justifiably be argued to be multivariate. The generation of

plausible arguments would however require qualification by foundational principles.

To create a sound premise as to factors driving market environments, the use of

Michael Porter’s Five Forces Model is widely advocated (Grundy, 2006; Bidgoli, 2016).

Well accepted by academia and practitioners alike, Porter’s model provides for the

analysis of market environments to facilitate understanding of underlying influences.

The strategic abstraction and analysis of the market environment by use of the model,

should provide insights that could enhance decision making.

Figure 2 Historic computer sales data – inclusive of servers

(adapted from Statistic Brain Research Institute, 2016)

19

Applying Porter’s model in its original form to the observed global computer sales data,

may create six immediate theoretical scenarios as shown in Table 3, which could

explain the current downward trend.

Table 3 Evaluation of computer market data

1. Product saturation has been realized

2. A change in buyer behaviour has manifested

3. Affordability of the product has reduced buyer uptake

4. Reduced product or aggregate resulted in reduced sales stock

5. Substitute products have been introduced or technology shift has occurred

6. Rivalry amongst competitors have strategic product swing dynamics

Figure 3 Computer shipment forecasts world wide

(adapted from Statista Inc, 2016)

20

Presumptively the first four derived theoretical scenarios may however be discarded as

major contributors to the decline in global computer sales. In scenario 1, the known

ubiquitous nature of computing as well as the growing demand for computing within an

information age should preclude imminent saturation (Yu, et al., 2010; Bidgoli, 2016;

Petridis, et al., 2016). An argument may be made for scenarios 2, 3 & 4 as possible

bases, however it might not be able to adequately explain the measured trend of the

decline observed. If such influences were apparent, more pronounced movement or

demand dislocation over short periods of time would have been expected in the data

plot. The proposition of possible substitute products and strategic focus swing amongst

competitors, as described in scenario 5 & 6 are more likely candidates. The introduction

and subsequent large-scale adoption of cloud computing and allied technologies could

be just such substitute products, with accompanying organizational strategic focus

implications (Botta, et al., 2016). The notion of cloud computing’s influence on reduced

global computing sales was perhaps provided for in recent commercial research. Per a

Gartner Research Group prediction in 2016, the majority of IT spend by the year 2020

would be on cloud and related services. Cloud computing as platform and infrastructure

alternatives to existing computing environments may well build a feasible case for the

downward trend in current global computing sales. An additional factor could be that

the uptake of virtualization technologies has impacted the quantity of computing

systems sold. The advent of so called smart technologies, as exhibited in cellular

phones, may have constituted viable computer system replacements and therefore

have influenced the observed decline (Bidgoli, 2016). The important consideration in

regards holistic technical debt and e-waste manifestations are that in practical terms,

the potential for e-waste generation is being increased.

The computing platforms at risk for technical debt and e-waste creation, could further

be informed by the global market for systems software. Application software

necessitates execution via application programmable interface (API) interaction, as

exposed by an operating system. The operating system in turn controls and interacts

with the underlying hardware, which ultimately enables the application’s functionality.

As shown in Figure 4, the Microsoft™ Windows© platform at time of writing, holds much

of the desktop system software market share at approximately 90%. Also noteworthy

is that the data displays the natural decline and uptake cycle of replacement versions

of the Microsoft™ Windows© operating system. The Microsoft™ Windows©

(henceforth Windows) operating system, is completely proprietary and commercially

licensed, on an effectively singular unit basis. Installations of an operating system are

either physical, regard remote access or are virtual implementations (Mclean &

Thomas, 2010; Microsoft Corporation, 2016; Microsoft Corporation, 2017).

21

The licensing of Windows typically has additional restrictions imposed dependent on

the version or edition under consideration. Significant restrictions of interest include

(Mclean & Thomas, 2010; Microsoft Corporation, 2016; Microsoft Corporation, 2017):

number of concurrent networkable nodes accessible; the number, type and size of

processors as well as random access memory supported; restrictions around

underlying hardware architecture, version and edition upgradeability. The elimination

of choice by imposing such restrictions around operating systems, may possibly

influence the speed of reduced functionality experienced by both software and

hardware. As new minimum hardware requirements need to be met to support ever

larger footprint operating systems, not only are previous operating system editions and

versions being discarded, but conceivably also the existing hardware infrastructure.

The interdependence of the infrastructure, hardware and software environment could

play a significant role in an attempt to repurpose currently held organisational IT assets

as HPC and HTC grid solutions.

Figure 4 Global desktop operating system sales

(adapted from Net Applications, 2017)

22

2.3 The Operating System Construct

At the individual computing node level, the relationship between hardware and the

operating system would dictate the functionality exposed. The compatibility of the

operating system with its underlying hardware, forms the basis on which functionality

through user application and configuration could ultimately be achieved.

Modern operating systems, as depicted in Figure 5, realize compatibility with underlying

hardware via a scheme of detection, subsequent kernel compilation, together with

exposing hardware abstraction layer and device driver instances for a given platform.

The operating system construct is considered for all intents and purposes to be unique

per installed node (Microsoft Corporation, 2003; IBM Corporation, 2008, Mclean &

Thomas, 2010). The ability of the operating system to gain fine grained compatibility

with the hardware environment, facilitates multi-manufacturer and therefore dissimilar

hardware platform support. Ultimately the dissimilar hardware and operating system

environments would speak to the heterogeneous nature of commodity computing

platform realities.

Figure 5 Modern modular operating system kernels

(adapted from Microsoft TechNet, 2003 & IBM developerWorks, 2008)

23

2.3.1 Application and Operating System Interactions

Although the ability of the operating system to conform to the hardware environment is

assuredly desirable, the operating system through inherent or enforced architecture

feature restrictions could expose quite wide-ranging functionality. As a consequence,

to such wide-ranging execution environments, contemporary application development

stereotypically focusses on abstraction via programming language and accompanying

frameworks, in order to gain run time or cross platform compatibility. The term

abstraction, meaning an emphasis on simplifying certain underlying system

characteristics using some form of summarization, whilst suppressing details and

properties of others (Shaw, 1980; Kiczales, et al., 1997). The use of application

abstraction has however significant advantages and disadvantages for consideration.

Abstraction would gain application code understand ability and maintainability, but

inevitably sacrifice efficiency (Kiczales, et al., 1997; Berlin, et al., 2004; Akhter &

Roberts, 2006; Newburn, et al., 2011; Rossbach, et al., 2013). Each layer of

abstraction, to facilitate software to hardware interaction via the operating system, as

shown in Figure 6, would add obligatory layered complexity and processing overhead.

In opposition, a reduction in abstraction of the functional application has the potential

to lessen processing overhead and deployment complexity whilst significantly

decreasing wall clock time for discreet application runs. Normally the disadvantage for

reducing application abstraction would be the necessity of recompilation, versioning

and configuration management per platform supported (Shaw, 1980; Kiczales, et al.,

1997; Rossbach, et al., 2013).

Figure 6 Comparing technology stacks, highlighting abstraction

24

2.3.2 Abstraction and the Heterogeneous Environment

The accurate discovery of operating system, hardware and network topology

environments would be key to any meaningful HPC or HTC implementation (Buyya, et

al., 2000; Kennedy, et al., 2004; Youseff, et al., 2008; White, 2012; Dobre & Xhafa,

2014; Mantripragada, et al., 2015). Pertaining to previous deliberations around

abstraction and application technology stacks however, a three-way trade off condition

is created in that conflicting goals of the intrinsic endeavour could manifest (Berlin, et

al., 2004; Kennedy, et al., 2004; Reyes-Ortiz, et al., 2015; Saxena, et al., 2016). The

source of such trade-off conditions being conversant of the heterogeneous nature, as

well as the programmable environment of computing platform realities:

• Goal 1- The implementing application should have best fit to the underlying

hardware as to assure high efficiency

• Goal 2- The application should be portable across a variety of platforms as to

increase possible functional exposure

• Goal 3- The application should be easy to create, use and maintain

In ensuring best fit with underlying hardware, the application would need to be

abstracted as little as possible. However, to gain portability across heterogeneous

platforms the use of abstraction would be unavoidable. Conversely for application

development to be rapid, efficiency in execution would need to be compromised via

additional layers of yet more abstraction. The current HPC and HTC application

environments are built on numerous interactions of abstraction (White, 2012;

Grossman, et al., 2013; Rossbach, et al., 2013; Gupta, 2015; Reyes-Ortiz, et al., 2015;

Saxena, et al., 2016). An argument for the idea that influences on efficiency may occur

due to abstraction within HPC and HTC implementations could well be justified. The

HPC and HTC commodity heterogeneous platform realities, provide for difficulties when

it concerns implementation choice and efficiency in performance (Xie, et al., 2012;

Dobre & Xhafa, 2014; Reyes-Ortiz, et al., 2015). Assuredly the contemporary HPC and

HTC implementations do overwhelmingly have the ability to execute on commodity

hardware. Though on scrutiny of the fundamental design intents of popularly available

HPC or HTC implementations, the target platforms display fundamental homogenous

characteristics (White, 2012; Dobre & Xhafa, 2014; Microsoft Corporation, 2016; Open

Science Grid, 2016; Intel Corporation, 2017; University of Wisconsin-Madison, 2017).

The most notable supported platform design limitations were found to be: component

brand and type of individual hardware components, operating system distribution,

application frameworks, network fabric, supporting interface libraries and programming

languages.

25

The literature surveyed further supports the notion of design homogeneity inherent in

HPC and HTC. The terms heterogeneous and commodity, as it concerns the holistic

computing architecture, may have found multivariate meaning in use. The commodity

hardware compatibility of HTC per example, explicitly does not mean inexpensive

(White, 2012). Interestingly then also, within the academic literature surveyed when

providing metrics in support of findings, truly heterogeneous platforms are not actually

considered.

The term heterogeneous as used by Grossman, et al. (2013) describes comparison of

platform and not architectural dissimilarity within the potential functional application’s

execution environment. Although the believed and inferred intent by Grossman, et al.

(2013) is to demonstrate heterogeneous architecture interactions within an

experimental hybridized HPC and HTC solution, the heterogeneity paradigm is possibly

not extended to its complete form. As a result, it seems a standalone experiment

conducted on one homogenous platform is optionally compared with the same

experiment on another architecturally different platform.

Due diligence inspection of findings by other HPC or HTC authors, reveals similar

singular platform runs being used as data points in support of conclusions. Habitually

authors within the published works surveyed omit the all-inclusive possibility of

heterogeneity influences at the computational node level. The selected review papers

within the last decade that do reference heterogeneity concerns for inclusion in HPC

and HTC design constructs, have been catalogued for perusal within Table 4. It may

be noted that no singular author captures all these heterogeneous concerns

emphatically.

The oversight of excluding heterogeneous characteristics may have wide ranging

impacts on efficiency and specifically performance. Assuredly heterogeneity must exist

at all the technology levels per participant node, if solutions are claimed to be

heterogeneous. Considering these and other corroborating actualities exposed by

modern-day HPC and HTC implementations via inherent design, it may be plausible

that uncontaminated generalizability might be an unrealistic pursuit.

Gaining computational high performance and/or throughput requires assumptions

about abstraction tolerances, communication environment and heterogeneous platform

architecture in all its varied forms. The assumptions required by the undertaking could

viably preclude purest generalization.

26

Table 4 Possible node heterogeneity

Source of heterogeneous characteristics Cited by Author(s)

Application support constructs & security context

Montero, et al., 2011

Moreton-Fernandez, et al., 2017

Rossbach, et al., 2013

CPU topology

Broquedis, et al., 2010

Buono, et al., 2014

Grossman, et al., 2013

Lee, et al., 2010

Moreton-Fernandez, et al., 2017

Nelson, et al., 2015

Newburn, et al., 2011

Rossbach, et al., 2013

Saxena, et al., 2016

Graphics Processor

Broquedis, et al., 2010

Grossman, et al., 2013

Lee, et al., 2010

Moreton-Fernandez, et al., 2017

Rossbach, et al., 2013

Saxena, et al., 2016

Memory storage attributes

Broquedis, et al., 2010

Dobre & Xhafa, 2014

Grossman, et al., 2013

Lee, et al., 2010

Nelson, et al., 2015

Rossbach, et al., 2013

Network protocol stack, link speed & bandwidth

Broquedis, et al., 2010

Chang, et al., 2014

Dobre & Xhafa, 2014

Nelson, et al., 2015

Shvachko, et al., 2010

Zhao, et al., 2014

OS edition, version & exposed API

Chen, et al., 2012

Dobre & Xhafa, 2014

Lee, et al., 2010

Nelson, et al., 2015

Storage type, size and availability

Chang, et al., 2014

Dobre & Xhafa, 2014

Nelson, et al., 2015

Shvachko, et al., 2010

Xie, et al., 2012

Zhao, et al., 2014

27

2.4 The Execution Environment

A cognizance of the ability to harness parallelism at all levels of a possible HPC or HTC

implementation is important, as efficiency and performance correlations may be drawn

(Berlin, et al., 2004; Lee, 2006; Broquedis, et al., 2010; Newburn, et al., 2011; Ali, et

al., 2014; Buono, et al., 2014; Gupta, 2015; Mantripragada, et al., 2015; Nelson, et al.,

2015; Reyes-Ortiz, et al., 2015; Saxena, et al., 2016; Moreton-Fernandez, et al., 2017).

The onus therefore is to seek parallelism opportunities progressively whilst optimizing

the use of data processing, communication and storage capabilities within the grid. The

proper enumeration of the software application’s execution environment should ensure

effective and efficient use of available resources. In opposition the absence of

environmental characteristics enumeration, could potentially create fatal dysfunction or

suboptimal execution runs.

The inventorying of environmental resources could inform the idealized use,

management and scheduling of resources as sought by the HPC or HTC venture.

Moreover, the connectivity and interdependency of resources, together with dynamic

avenues to possible integration may be gleaned. The foremost aim would be to uncover

as many opportunities that could facilitate parallelism.

2.4.1 Parallelism, Concurrency and Threading

The similar terminology of parallelism, parallel or concurrent should not be

misconstrued within the milieu of HPC and HTC. In single node concurrent

computation, the operating system provides for the ability of software to simultaneously

execute on a particular hardware processing resource (Akhter & Roberts, 2006). The

simultaneous or parallel software workload execution achieved in concurrency might

however mislead the unwary. Each discreet software workload or software thread at

any given point in time, may only be executed exclusively per processing resource. In

practice, multiple software threads are combined as an OS scheduled process or

instruction stream (Alverson, et al., 1992; Akhter & Roberts, 2006; Majo & Gross, 2011).

An instruction stream materializing the interleaved nature of the software threads to be

executed. The operating system then designates a processing resource or hardware

thread, as target for instruction stream execution. At any given point in time during

execution, remaining software threads enter a wait state whilst a single thread

executes. The environment of thread execution in concurrency therefore results in only

one software thread making progress per interval. The interleaved software thread

workloads merely imitate simultaneous execution and therefore do not constitute

parallelism.

28

Eloquently in parallelism, multiple software threads concurrently make progress on

different hardware resources simultaneously (Akhter & Roberts, 2006). The distinction

then is that parallelism doesn’t just leverage concurrency but also multiple physical

processing resources which could potentially significantly enhance overall efficiency

and performance.

The clarification of the terminology thread or threading might be required, when

informed by the fact that reviewed literature surveyed could potentially obscure its

meaning in use. Per illustration of possible opportunities for confusion, Lee (2006) uses

the term to describe process sequences that share memory environments whereas

Stratton, et al. (2008) uses the term logical threads to describe programmer functions

or kernels that result in an execution thread blocks. Futhermore, Akhter & Roberts

(2006) describes a thread, as a related sequence of instructions that excutes

independantly of other instruction sequences. Conversely Buono, et al. (2014) and

Dobre & Xhafa (2014) uses the term threading to describe communication thread

interplay and thread provisioning in hardware. As a central principle, unity in denotation

of threading is however found to be concrete. The dominant implications of threading,

should be understood to be the smallest encapsulated construct that can be individually

managed. It might nevertheless be prudent in order to avoid amiguity, that the term be

explicitly contextualized as either being hardware, kernel, communications or software

threading.

The efficiencies at node level may further be improved by considering how instructions

and data are processed. The individual separate data sources or data streams which

instruction streams operate on, could be leveraged for additional parallelism (Akhter &

Roberts, 2006; Lee, et al., 2010; Jeong & Lee, 2012; Sabharwal, et al., 2013; Fog,

2017). Three distinctive machine environments have evolved to describe the

relationship between data and instructions as found in commodity hardware, namely:

1. A serial machine construct that innately does not support parallelism, executing

a single instruction stream that operates on a single data stream (SISD).

2. A single instruction and multiple data (SIMD) vector machine executing a single

instruction stream, operating on a multiple separate data streams

simultaneously. SIMD machines support parallelism at data level by operating

on multiple data elements per executing instruction.

3. A multiple instruction stream and multiple data stream (MIMD) machine. A

MIMD machine platform has multiple processors, each supporting separate

instruction streams working on multiple separate data streams. MIMD machines

therefore support parallelism at instruction and data level.

29

The major instruction sets available in commodity hardware, which provides for data

parallelism via SIMD and MIMD, have been categorized in Table 5.

Table 5 Instruction sets supporting data parallel operations

Instruction Set Descriptive

3DNow! Packed single-precision, integer & floating-point vectorization

3DNow! Plus Enhances 3DNow! by adding digital processing features

AVX

Advanced vector extensions, enhances MMX & SSE inclusive of

additional support for: Advanced Encryption Standard (AES), FMA,

packed carry-less multiplication

FMA Fused Multiply and Add, A = A * B + C

MMX Packed single-precision, integer vectorization

SSE
Streaming SIMD Extensions, supporting up to packed double-precision,

integer & floating-point vectorization

2.4.2 The Central Processing Unit

The speed, type, number of processors, related cache hierarchies and facilitating

instruction set supported on a CPU, could potentially significantly impact application

functionality and performance (Advanced Micro Devices, 2005; Akhter & Roberts,

2006; Broquedis, et al., 2010; Jeong & Lee, 2012; Kusswurm, 2014; Intel Corporation,

2016; Kuo, 2017). The discovery of the CPU capabilities at computational node level

would be important in determining the capabilities an application could exploit for

parallelism.

The enumeration of CPU attributes and features however, should be considered non-

trivial given real-world commodity heterogeneous platform realities.

30

At grid node level, the computing platform could either have a single CPU (known as a

package) or support multiple CPUs. Each package may then support a singular

processor (known as a core), or multiple physical processors (Advanced Micro Devices,

2005; Akhter & Roberts, 2006; Intel Corporation, 2016; Kuo, 2017). Additionally, each

core could support simultaneous hardware multi-threading technology, as shown in

Figure 7, revealing supplementary logical processors. The term logical processor

meaning two addressable processors sharing the same physical processor resource

environment (Nakajima & Pallipadi, 2002; Akhter & Roberts, 2006; Gepner & Kowalik,

2006). Fundamentally each logical processor could be sharing nearly half of the

resource capabilities of the physical core (Nakajima & Pallipadi, 2002; Akhter &

Roberts, 2006). Arguably significant performance disparity would be intrinsic when

comparing logical processors with their physical core counterparts. The latent

performance loss due to simultaneous hardware multi-threading is however in practice

largely avoided. An operating system would only need to distinguish between logical

and physical processors in designating execution workloads to unlock potential

performance gains. Modern operating systems use a mechanism known as a scheduler

to determine the optimum placement of software threads onto logical or physical

processors (Nakajima & Pallipadi, 2002; Akhter & Roberts, 2006). The OS scheduler

monitors and load-balances processor resource bandwidth to achieve higher

efficiencies.

Figure 7 Conceiving a CPU package topology

31

In theory an application may even interact with the OS scheduler to suggest resource

requirements or elect workload targets across physical or logical processors. Principally

an application could bind its specific workloads to a discreet set of processors using an

OS scheduler apparatus known as affinity and manipulate workload precedence,

known as setting thread-priority (Nakajima & Pallipadi, 2002; Akhter & Roberts, 2006;

Kazempour, et al., 2008; Broquedis, et al., 2010; García-Dorado, et al., 2013). The

exploitation of fine grained threading should notably enhance holistic application

performance. However, when linking threading to the topic of abstracted or managed

applications, the conclusions are that such applications seldom have the ability to

leverage threading (Akhter & Roberts, 2006). A managed application would have to

rely exclusively on the operating system or additional run-time libraries to manage

threading and in so doing, sacrifice possible efficiency gains.

2.4.3 Cache Memory Architectures

The cognizance of cache hierarchies and interactions within the CPU, play a vital role

in possible application performance gains (Smith & Goodman, 1985; González, et al.,

1995; Suh, et al., 2004; Akhter & Roberts, 2006; Majo & Gross, 2011; Kusswurm, 2014;

Intel Corporation, 2016; Fog, 2017). The term cache describing a small fast memory

type that endeavours to accelerate a slower but larger memory type’s operations. The

throughput from interactions with cache should therefore always be much higher than

could be achieved via the alternate memory store (Smith & Goodman, 1985; Drepper,

2007). The internal speed of a CPU is typically faster than the variable external speeds

of other hardware components within the computing platform. As rudimentary steps in

the processing cycle the CPU requires prefetching instructions and data from random

access memory (RAM), then also storing or flushing resultant data after processing.

The speed discrepancy or latency between RAM and the CPU would inevitably cause

processing stalls and resultant wasted processor cycles if not somehow mitigated.

The mechanism used by cache is to anticipate CPU memory access by prefetching

data, thus not just improving data locality but also reducing potential latency (Smith &

Goodman, 1985; González, et al., 1995; Suh, et al., 2004; Kusswurm, 2014; Fog,

2017). The term locality expressing the proximity of data and instructions for immediate

CPU access. A CPU may even expose cache-ability control instructions, which allow

an application to formulate a cache strategy to influence data access locality. The three

cache locality data patterns of interest which may guide a conceivable application

caching strategy, are listed as: temporal, spatial and non-temporal locality.

32

In abridged terms a cache prediction strategy would involve CPU near future data

access, in terms of (Drepper, 2007; Kusswurm, 2014; Intel Corporation, 2016):

• Temporal locality, the same data elements previously accessed will require access

again

• Spatial locality, the adjacent data elements to those previously accessed will require

access

• Non-Temporal locality, the data accessed previously will not be accessed

A successful data access reference to a specific cache store which results in

instructions or data being interpreted by the CPU, is known as a cache hit. Alternatively,

if no reference is found, a cache miss occurs (Smith & Goodman, 1985; Kusswurm,

2014). As cache stores are accessed in sequence of availability from highest level and

proximity to lowest level before obligated to access physical RAM, data locality and

resultant latency caused by cache misses become important. An application could

undertake to reduce cache misses and in so doing, increase processor efficiency. Any

cache system memory store is a contiguous, power of 2 set of memory blocks. The

prefetching and eviction of cache blocks are determined by a mechanism known as the

replacement policy (Smith & Goodman, 1985; González, et al., 1995; Suh, et al., 2004;

Kusswurm, 2014). The number of CPU accessible cache stores, their type and size

could be crucial information an application could therefore leverage to gain processing

enhancements. An application may well attempt to manage instruction and data blocks

via means of internal build or the interface apparatuses of the replacement policy to

avoid cache misses (Smith & Goodman, 1985; González, et al., 1995; Suh, et al., 2004;

Intel Corporation, 2016; Fog, 2017). The CPU and memory interaction characteristics

which may impact or inform performance considerations are further supplemented by

cache associativity. The term associativity relating to how memory blocks are mapped

from RAM to cache, as shown in Figure 8. Tellingly the associativity of cache would

have direct bearing on data locality patterns during processing. Originally the mapping

for a particular cache store was said to be either direct mapped, fully or set associative

(Smith & Goodman, 1985; Drepper, 2007). Primarily in direct mapped associativity,

each discreet entry or cache line may only refer to a specific RAM memory location.

Whilst with a fully associative caching scheme, each cache line may refer to any RAM

memory location independently. Finally, in a set associate scheme, cache lines are

grouped into a number of sets, with each set capable of caching a specific memory

area in set number of ways. Each caching scheme has its advantages and

disadvantages in tangible implementation. Over time however, set-associate caching

and variations thereof predominated, for having better real-world application fit.

33

The management of cache and program blocks by a cache aware application are

known to positively influence time critical processing (Drepper, 2007; Kazempour, et

al., 2008; Advanced Micro Devices, 2014; Kusswurm, 2014; Intel Corporation, 2016;

Fog, 2017). At nearest layer to the CPU, primary or level one (L1) cache is smaller and

faster than supplementary caches. Per illustration, the speed of interaction between a

physical processor and L1 cache approaches zero wait state, having little to no

resultant latency (Drepper, 2007; Fog, 2017). Conversely, the level two (L2) and

supplementary cache stores would be larger than L1 but would incur higher latency in

access. In modern CPU topologies L1 cache is sectioned or split equally into instruction

and data caches (Smith & Goodman, 1985; Advanced Micro Devices, 2005; Intel

Corporation, 2016; Fog, 2017). Relating to previous discussions, recollect that such

spilt cache at L1 would impact simultaneous multi-threading enabled platforms, as

subdivision of the cache would ensue for each addressable logical processor (Nakajima

& Pallipadi, 2002; Drepper, 2007; Intel Corporation, 2016; Kuo, 2017). The platform

detected L1 cache resources, could therefore potentially be halved for simultaneous

multi-threading implementations. The L2 and supplementary caches are stereotypically

termed unified caches, that do not distinguish between data and instructions blocks.

The L2 and lower caches may also display partitioning characteristics in that sharing of

a cache store may manifest across physical or logical cores and packages (Advanced

Micro Devices, 2005; Kazempour, et al., 2008; Intel Corporation, 2016; Fog, 2017). The

sharing of cache stores amongst processing resources and resultant potential

performance impacts can only be informed by CPU model specifications. A cache

strategy targeted for homogenous CPU environments would therefore be a singular

effort, whereas a hetrogenous environment requires a more multipronged approach.

Figure 8 Cache associativity

34

2.4.4 Cache Optimization and Management Strategies

The most generic cache optimization technique necessitates that code instructions and

the data it operates on, at least fit into L2 cache (Suh, et al., 2004; Akhter & Roberts,

2006). If multi-core processors are available, performance may be improved by shifting

software threads to exploit caching architecture via processor affinity (Drepper, 2007;

Kazempour, et al., 2008; Majo & Gross, 2011; Majo & Gross, 2013). Other equally

universal suggestions that could potentially improve cache utilization are briefly listed

as (Advanced Micro Devices, 2014; Intel Corporation, 2016; Fog, 2017):

• Utilizing the same memory operand sizes consistently

• Use PREFETCH instructions to hide bus bandwidth latencies in sequential,

irregular or very large memory access

• Memory alignment of code, stack and data segments

• Do not store data in code segments or use self-modifying code

• Interleave SIMD type instructions in a Load-Store pattern

The application caching techniques proposed for performance enhancement, would

however have nominal or even adverse effect when not considered within the context

of thread contention, cache thrashing and pollution. Importantly the memory access

patterns for individual software threads running on the same or separate processors,

could implicitly create shared memory reference conflicts (Herlihy & Moss, 1993; Suh,

et al., 2004; Eklöv & Hagersten, 2010; Herlihy, 2010; Sandberg, et al., 2010; Majo &

Gross, 2011; Seshadri, et al., 2012; Majo & Gross, 2013). Thread contention occurs

when separate software threads read and modify the same memory area. In

circumstances of thread contention, cache thrashing could occur as large blocks of high

use data would start evicting each other within the confines of cache size. Cache

pollution occurs in situations where useful data is evicted and overwritten by non-useful

data, causing subsequent references to such useful data to be reloaded.

Presumptively the interaction of a software thread’s access would require data to be

written or read from RAM via the cache hierarchy. The ensuing modification and access

of a shared memory areas by multiple software threads could cause incoherent

memory states during the prefetching and eviction cycles. Although CPU instructions

potentially could allow software threads to bypass certain caches, pollution and

resultant contention is all but inevitable if not somehow managed.

35

The efforts by a section of reviewed authors within the theme of cache management,

suggests modification in algorithmic circuitry logic for multi-core systems to reduce

cache pollution and thrashing (Herlihy & Moss, 1993; González, et al., 1995; Suh, et

al., 2004; Seshadri, et al., 2012). The probable worth of topical algorithmic solutions

are varied but seemingly undeniable in alleviateing caching issues. Steroetypically

though within the surveyed papers, simulated evidence is provided in support of

recommendations. The use of simulation debatably constitutes a potential theoretical

solution, which by definition may have unclear pratical application characteristics.

Undoubtably it would seem an unrealistic endeavour to modify hardware circuitry

across existing hetrogenous platforms as a means to implement such algorithmic

caching logic. As a consequence of the research context, adoption of such hardware

algorithmic cache circuitry logic solutions may be excluded from consideration.

The management of the adverse effects of cache thrashing and pollution could

potentially be viewed as a software design problem (Eklöv & Hagersten, 2010;

Sandberg, et al., 2010; Majo & Gross, 2013). In reference to previous deliberations, a

programmer might merely be required to sequence instructions and data in grouped

blocks that favourably fit in higher level caches. Additionally, the programmer could

produce code sequences with subsequent data access, which do not overtly evict

useful blocks prematurely (Eklöv & Hagersten, 2010; Sandberg, et al., 2010).

Nevertheless, the control exerted by the programmer would only extend to the thread

contexts of the self-authored application. As the execution environment undoubtedly

contains resource competing application threads, a cache strategy tediously

implemented may have diminutive global impact. The endeavour to implement a

caching strategy would have complexity dimensions beyond a singular application

build, as mixed independent application workload realities may negate planned

performance goals.

A work-around technique that targets mixed workloads of independent applications,

relies on the pre-emptive profiling or classification of applications to recognize

performance impacts and dependencies (Eklöv & Hagersten, 2010; Sandberg, et al.,

2010). Within such a mixed workload environment of independent applications, a

probabilistic model of cache misses may be generated for discreet short application

runs. By monitoring the reuse distance of sparse and randomly selected memory

references, reasonably accurate cache performance predictions can be made for

differing cache topologies (Eklöv & Hagersten, 2010).

36

The classification of an application within a mixed workload also provides an

opportunity to inject cache bypass instructions directly into the binary executable to

reduce performance degradation of future execution runs (Sandberg, et al., 2010).

Initially however this classification technique would be reliant on profiling the application

within a specific and contextualized mixed workload environment. The effort expended

towards the actual application classification also inducing varying supplementary

overhead. Although such overhead is reported to be marginal and bespoke for a

particular platform, best fit for truly heterogeneous platforms becomes indistinct. The

predetermination of application context within a specific mixed workload scenario and

the compulsory additional overhead imposed, may be considered undesirable or

impractical. The OS scheduler itself could per example negate potential performance

gains of the technique, due to its own internal logic attempts at reducing thread

contention (Majo & Gross, 2011). The notion of predetermining the mixed independent

workload environment, the subsequent modification and compilation of targeted

application executables for a platform, is questionably a homogenous solution. As the

truly heterogeneous memory environment contains indeterminate execution actualities,

a sub-optimal cache management strategy could result from the profiling and

classification technique.

The significance of classifying or profiling an application, should however not be

discarded out of hand, since it could provide invaluable understanding of application’s

run-time behaviour. The understanding generated from profiling and diagnostics, would

notably create opportunity in aiding application performance enhancements. As can be

evidenced by the pervasive nature and uptake of commercial, as well as open-source

profiling products, the software engineering community has had long standing

appreciation of such in use. Some contemporary examples of profiling tools are: Intel®

Vtune™ Amplifier & Advisor, Rouguewave® ThreadSpotter™, AMD® / CodeXL,

DynaTrace™, Microsoft® Visual Studio™ Toolbox.

The emphasis for predictive profiling and classification falls into the realm of functional

software development, when considered in the context of heterogeneous memory

environments. The pre-optimization of internal application logic and cache usage via

means of profiling is therefore not an all-inclusive exercise. The monolithic application

construct developed from classification and profiling, importantly cannot by itself

provide sureties of performance within arbitrary workload, shared and non-uniform

memory (NUMA) platforms (Majo & Gross, 2011; 2013; 2015). A more dynamic and

real-time control system would be needed beyond internal functional build, to regulate

and normalize caching performance across heterogeneous systems.

37

A promising solution aimed at heterogeneous single threaded workload environments,

that share last level caches (LLC), requires the combination of process scheduling and

memory management. The basic premise of a coupled solution aims to curtail cache

contention whilst maximizing data locality (Majo & Gross, 2011; 2013; 2015).

Confronted by the feasibly conflicting objectives of cache contention and data locality,

the former is said to take precedence in ensuring higher overall performance. The

authors’ Majo & Gross, (2011) proposed instituting a three-phase algorithmic process,

baptized N-MASS as depicted in Table 6, to realize higher overall performance

coupling.

Table 6 The N-MASS algorithm

N-MASS algorithm - adapted from Majo & Gross, (2011) Output

Phase 1: Sort application processes by NUMA penalty

NUMA penalty = CPIremote / CPIlocal
Per processor sorted lists

Phase 2: Calculate maximum local mapping Maximize data locality

Phase 3: Refine maximum local mapping Reduce cache contention

The N-MASS algorithm is mainly reliant on calculating the parameters of cache misses

for an application process or cache pressure, together with a possible NUMA penalty

(Majo & Gross, 2011). The term cache pressure denotes the MPKI or cache misses

per 1000 instructions, as observed in LLC during execution of a single threaded

application process. The NUMA penalty parameter, being the estimated ratio of

execution cycles per instruction (CPI) of an application process when measured locally

versus remotely (Majo & Gross, 2011). The term local in this context, denotes the first

addressable logical processor on a CPU core which could spawn an application

process and its data. The local application process is then said to be homed on the

specific CPU core. Conversely remote execution of an application process,

disregarding data placement, takes place on the next addressable logical processor on

a different core. The salient theme is that single threaded application processes could

potentially be sharing CPU cores and LLC. When inferring a heterogeneous CPU

topology, the discovery of parameters in regards cache pressure and NUMA penalty

could direct best effort towards placement of application processes. In the first phase

of N-MASS, sorted lists of NUMA penalties in descending order are obtained for

application processes. During the second phase, the sorted lists are combined and

process mapping onto physical CPU cores with underlying logical processors is

conceived. The essential assurance is that application processes that exhibit higher

NUMA penalty, are mapped with higher priority than low NUMA penalty processes

when homed on the same core.

38

In the last phase of N-MASS, the cache contention is reduced by comparing the

process cache pressure against a predetermined threshold. If the cache pressure is

higher than the threshold, a process may be shifted to achieve better contention

balance whilst still favouring data locality.

The N-MASS algorithm, as originally conceived by Majo & Gross, (2011) does however

expose several major limitations. Firstly, an assumption must be made that the

functional application processes will not exceed the available number of logical

processors (Majo & Gross, 2011). The implications being that N-MASS can account for

the spatial multiplexing of a set number of application processes to maximize memory

use. However, N-MASS cannot assure maximization without information interchange

with- and exercising control over, the default OS scheduler. Secondly, the algorithm is

reliant on telemetry access to the CPU’s PMU or performance monitoring unit (Majo &

Gross, 2011). The difficulty is that certain operating systems deem PMU directives to

be kernel privileged or ring zero instructions, which may therefore require additional

vendor signed kernel mode drivers. Thirdly, N-MASS does not address the impacts of

migrating process data across cores (Majo & Gross, 2011). Although the algorithm

considers the overhead and performance penalty of shifting the application process

based on the threshold value, no such deliberations for data are catered for. Lastly, the

applicability of N-MASS for multi-threaded processes becomes unclear as cache

sharing could potentially improve performance in such instances (Majo & Gross, 2011).

Hence the potential shared address space of multi-threaded applications, continued to

make the mapping and scheduling of processes across specifically NUMA

environments difficult. Only the later work by Majo & Gross, (2013; 2015) determined

that several supplementary and major factors were at play for NUMA environments, as

it concerned multi-threaded workload performance. As also previously discussed in this

research paper, the specific data access patterns of software threads for a functional

application may be determined by profiling and characterization. Subsequently the data

access pattern, together with an understanding of modern CPU hardware prefetcher

mechanisms, could then be used to make source code changes, facilitating the

reduction of next-run contention (Majo & Gross, 2013). The important contribution by

the authors, highlighting the role of the prefetcher and its causal effects on NUMA cache

placement for multi-threaded workloads.

Lastly, proper configuration of process affinity scheduling with identity mapping, can

associate software threads beneficially to physical cores and underlying logical

processors (Majo & Gross, 2013; 2015). Be the nature of software threads symbiotic or

autonomous, data access shared or independent, the process placement is key.

39

2.4.5 Random Access Memory and Secondary Storage Interactions

The computing node’s physical RAM availability is yet another crucial element of

interest, which could potentially be controlled to enhance overall efficiency. An

envisioned grid node’s RAM resources would constantly be in a state of contention.

The operating system, background libraries and services, component input/output (I/O)

buffers as well as running applications would all vie for immediate CPU accessible

storage. When exploring the survey literature around memory resource concerns

however, appreciative understanding beyond mere RAM availability is gained.

The traditional instrument used by an OS to curb the potential disparity in storage

requirements and thus alleviate contention to physical RAM, is via the use of secondary

storage augmentation (Ousterhout, 1982; Mclean & Thomas, 2010; Microsoft

Corporation, 2013). The logical extension of primary storage by means of this type of

OS functionally would fundamentally create a virtual storage area larger than physical

RAM, but still accessible as a singular unit.

The modern OS manages primary storage contention by exchanging data from RAM

to secondary storage and visa-versa. This mechanism employed by the OS to increase

CPU accessible storage, is frequently termed swapping or virtual paging (Li & Hudak,

1989; Mclean & Thomas, 2010; Microsoft Corporation, 2013). For practical efficiency

purposes, obvious concerns that stem from the inequality in access speed as well as

bandwidth between primary and secondary storage would need scrutiny. A bottleneck

scenario that informs potential reduced system efficiency by means of virtual paging

may become apparent. The term thrashing in this context, describes a running

application stall or page fault due to the CPU requesting access to memory which was

previously swapped to secondary storage (Ousterhout, 1982; Li & Hudak, 1989; Mclean

& Thomas, 2010; Microsoft Corporation, 2013). Page faults and subsequent disk

thrashing, occurs when the amount of actively running processes’ memory

requirements exceed the size of physical RAM, forcing potentially extensive secondary

storage access.

During disk thrashing, ensuing secondary storage access generates high processing

latencies, which may result in a pseudo unresponsive system state. A system could

become especially prone to disk thrashing in parallel processing environments

(Ousterhout, 1982; Li & Hudak, 1989; Sabharwal, et al., 2013; Sharmilarani, et al.,

2017). It should be understood then that disk thrashing is a symptomatic outcome of

real-time machine load.

40

One dialogue for competing software threads that cause disk thrashing and I/O stalls,

suggests utilizing larger buffer block sizes, consolidating read/write operations into a

single thread, defragmenting the file system as well as using native asynchronous

command queing (Sabharwal, et al., 2013). The overarching assertions being that not

only would system performance increase, but also energy usage decrease by use of

these techniques. Using larger buffer block sizes, above eight kilobytes for large

sequential file transfer is said to require less processing resources and energy. The

consolidation of read and write operatations into a single thread reduces contention,

thereby increasing run-time performance. Defragmenting the underlying file system

reduces the effect of secondary storage operational latencies. Asynchronous command

queing reduces I/O blocking events thereby isolating read and write actions.

Although the mentioned disk thrashing mitigation techniques, by means of presented

evidence are assuredly usefull, it may however on inspection raise concerns

surrounding the specific mechanism of enactment. As presented by Sabharwal et al,

(2013) these mitigation techniques require access to detailed hard disk drive metrics

as input into the solution decision. The gathering of detailed hard disk metrics must

arguably incur additional management overhead which is not emphatically addressed.

Likewise the supposition that secondary storage devices would be physical platter

based hard disk drives, becomes problematic within the research context of

heterogeneous grid environments. The prescriptive use of detail level disk metrics such

as rotation latency and revolutions per minute, could debateably skew the potential

solution decision logic for non platter based systems. Not discounting the validity in

implimentation of these generic techniques, nor the value of hard disk metrics, the

consistant accuracy and the lowering in performance penalty due to overhead should

be idealized.

The use of page faults as metric indicator is much more useful in determining workload

conditions than reliance on pervasive or free storage metrics alone (Sharmilarani, et

al., 2017). Per illustration the amount of free memory and disk space, does assist in

formulating a decision path towards a feasible disk thrashing solution. However,

whether used in isolation or combined, the free memory and disk metrics have no

additional value in determining pressure on the system memory resources. The

inclusion of system page fault counts, due to its weighting characteristics are better

suited in formulating decision avenues in regards system workloads. Advantageously

operating systems normally do support easily accessible, low performance penalty

telemetry, whereby page fault count of selected or overall system processes may be

acquired.

41

The page fault count when combined with the other specific metrics of CPU utilization

and coarse-grained disk I/O channel throughput, would at minimum provide enough

information to paint a reasonably accurate picture of system state (Sharmilarani, et al.,

2017). Based on the prevailing system state, an informed solution may either terminate

overloading processes, reschedule or redeploy workloads across less pressurized

resources. Such mitigating actions would only be feasible by monitoring and reporting

the three basic resources mentioned, on a per grid node basis. Subsequently the

directive to redeploy or reschedule a discreet process under review, would need to be

made by some form of scheduling mechanism.

2.5 Networking the Grid

The grid formation and clustering of computing resources in either HPC or HTC, is

facilitated via socket based derivative network communications (Speight, et al., 2000;

Romanow & Bailey, 2003; Broquedis, et al., 2010; Shvachko, et al., 2010; White, 2012;

Chang, et al., 2014). Figure 9 shows that nodes on a grid are interconnected using

some form of hardware Network Interface Card (NIC) and communications media. A

functional software application may then send and receive messages via the NIC, by

binding to an exposed socket or network service end-point.

A socket fundamentally comprises an Internet Protocol (IP) address together with a

logical port number (Jones & Ohlund, 2002; Kozierok, 2005; Mclean & Thomas, 2010).

In rudimentary communication actualities, applications use derived socket information

to fully qualify the source and destination of network traffic. The IP address portion,

uniquely identifies the network node, whilst the port number associates an interpreting

application to an enabling communication channel. A communicating sender

application, offloads a message by targeting the socket of a destination node.

Figure 9 Simplified sockets

42

2.5.1 Network Packet Formation

A message is normally first segmented or fragmented for fit to the underlying network

communication protocols in an encapsulation process known as packet formation,

before being transmitted across the physical media as a network frame. In opposition,

the destination node decapsulates the packet and reconstitutes the message for

interpretation by a receiving application.

The predominant underlying protocols that facilitate network communications over

Local Area Networks (LAN) and the Internet is currently the TCP/IP protocol suite: IPv4

and IPv6 (Jones & Ohlund, 2002; Kozierok, 2005; Mclean & Thomas, 2010; Murray, et

al., 2012; Bidgoli, 2016). The IP portion of the TCP/IP acronym pertains to the logical

addressing, naming and routing functions of the protocol suite. The Transmission

Control Protocol (TCP) portion of the acronym presentation, a minor contradiction in

terms, as two or more contrasting transmission control protocols are in fact provided

for. In clarification, the de facto TCP protocol is used to establish connection orientated

or synchronous, error free communications between participants. Whilst the User

Datagram Protocol (UDP) per example produces faster, error agnostic, asynchronous

or connectionless communications. The important consideration as it pertains

transmission control is that an application’s information interchange needs could

potentially be conversant of the selectable transmission protocol and by choice,

leverage intrinsic network service characteristics beneficially.

The network frame size is another important influence in network communication

efficiency (Romanow & Bailey, 2003; Regnier, et al., 2004; Kozierok, 2005; Murray, et

al., 2012). An application’s messages are typically segmented and encapsulated within

a transmission control protocol. The encapsulation process generates normatively

structured network packets, containing the sequenced message fragments. The

maximum payload size of message fragments within an encapsulated IPv4 TCP/UDP

packet, could theoretically approximate up to 64 Kilobytes (Kb). Initially, these

potentially large packet size limits may conceivably be perceived as flexible and ample

extents. The reality however is that network transmission sizes could have more

complex parameter considerations beyond the transmission protocol choice. The

interplay between the lower layers of the logical network model, could impose additional

variables that may subvert network efficiency planning (Kozierok, 2005; Murray, et al.,

2012). The network and data link layers of the logical network model requires

mandatory additional utility overhead on a per layer basis. The overhead applied would

reduce the amount of payload space a message fragment could occupy.

43

An effective strategy geared towards network efficiency, would therefore require

insights into the underlying network capabilities beyond initial transmission protocol

selection and configuration.

2.5.2 Packet Fragmentation Characteristics

The Maximum Transmission Unit (MTU) of a network frame is determined by use of

restrictions enacted by logical or physical network devices along the transmission path

(Romanow & Bailey, 2003; Regnier, et al., 2004; Kozierok, 2005; Murray, et al., 2012).

The MTU is fundamentally the largest single message segment that can traverse a

network without causing further fragmentation. The MTU size can be established

programmatically at run-time for point to point communications, or alternatively

automatically or manually configured per network device. The importance of the MTU

value stems from its association with the underlying network capabilities. Regardless

of TCP/UDP packet size programmatically or indirectly configured, an application

message may potentially be further fragmented for fit inside the MTU restriction.

The configured size of the MTU value would have significant impact on the quality of

network communications and the overall performance efficiencies sought (Romanow &

Bailey, 2003; Regnier, et al., 2004; Kozierok, 2005; Murray, et al., 2012; Prakash, et

al., 2013). The effects of the MTU size on the quality and performance of network

communications are found to be vigorously documented in the peer reviewed literature.

The consensus viewpoints expressing direct association towards quality and

performance of network communications attributed to MTU size dynamics. The

impacted areas of interest, highlighted as:

• Processing overhead (CPU, system, generic network and protocol)

• Network throughput and bandwidth utilization

• Network end-to-end latency

• Data serialization delay and jitter

A large MTU value could potentially alleviate network congestion, reduce protocol and

system related processing overhead, whilst increasing network throughput (Regnier, et

al., 2004; Murray, et al., 2012; Prakash, et al., 2013). Using large frames naturally

requires less network packets to be formed and transmitted. The reduction in the

number of transmissions should as consequence necessitate less processing

overhead. A large frame also plausibly contains more application data payload per

transmission, which ought to provide for better utilization of the available network

bandwidth.

44

In opposition, a small MTU value should notionally reduce network latency and increase

responsiveness (Regnier, et al., 2004; Murray, et al., 2012; Prakash, et al., 2013). Small

frames would require less bandwidth and traverse internetwork devices in shorter

amounts of time. Within a traditional socket environment problematic disadvantages

could however manifest in either large or small MTU size choices.

The disadvantages that could possibly result from large MTU values comprises

(Murray, et al., 2012): reduced error checking effectiveness, increased latency and

inefficient packet queuing. The cyclic redundancy error checking mechanism’s

processing performance, could substantially degrade for frame sizes in excess of

12000 bytes. Packet prioritization also becomes problematic in especially low link

speed environments. As larger frames take longer to serialize and transmit, delay and

jitter may occur when prioritized packets are superseded in the queue. The possible

drawbacks of small MTU sizes in comparison to large frames, are noted to be increased

processing overhead and network congestion (Murray, et al., 2012). The more packets

that require headers generated, the higher the processing burden to manage such.

Equally, the propagation of additional packets could exacerbate network bottlenecking.

A deductive argument within the context of MTU frame sizes towards a balanced or

mediated solution may be made. In lieu of advantages and disadvantages exhibited,

this would indeed seem to be the prudent approach. Though to affect any such

compromise for MTU frame sizes, it should be acknowledged that complete

administrative control over the end to end network environment is needed (Kozierok,

2005; Murray, et al., 2012; Prakash, et al., 2013). As shown in Figure 10, the salient

issue is that all homed and internetwork devices require MTU size compatibility. The

lowest MTU configured from the network device aggregate, should not to be surpassed

as inefficiency or dysfunction would result.

Figure 10 MTU path minimum size aggregation

45

Nevertheless, the use of large MTU frames, also popularly termed as jumbo frames,

are known to substantially outperform legacy Ethernet based MTU implementations

(Murray, et al., 2012; Prakash, et al., 2013). The term jumbo frame, broadly refers to

frame sizes larger than the default Ethernet MTU of 1500 bytes. A recommended jumbo

frame size approaching 9000 bytes is reported to be optimal for generic high throughput

and performance communication requirements. The benefits of large frames,

correspondingly hold true for jumbo frames. Notably, when supporting network device

compatibility for jumbo frames are available, the historic disadvantages of large frames

are frequently negated.

2.5.3 Traditional Socket Networking

The processing overhead, I/O bandwidth bottleneck and latency produced by traditional

socket-based network communications, creates significant concerns for HPC or HTC

environs (Speight, et al., 2000; Microsoft Corporation, 2001; Romanow & Bailey, 2003;

Regnier, et al., 2004; Jin, et al., 2005; Zhang, et al., 2012; Prakash, et al., 2013).

Primarily as it regards traditional socket based communications, grid nodes require OS

kernel interactions by use of socket APIs. The use of any generic kernel API invocation,

would predictably contribute CPU cycles to a software thread context. Yet when

considering the use of kernel provided API socket calls, the resultant performance

impacts could become especially pronounced (Microsoft Corporation, 2001; Jones &

Ohlund, 2002; Romanow & Bailey, 2003; Microsoft Corporation, 2017). Dependend on

the message workload, the application’s socket configuration and interactions, the

resultant CPU overhead from API socket invokes could degrade performance

substantially. For the most part the functional application’s use of the API message

handling apparatus, could for instance cause undesirable processing stalls due to

socket blocking operations (The WinSock Standard Group, 1997; Jones & Ohlund,

2002; Zhang, et al., 2012). A blocking event occurs when an associated process

invoked by a socket API function call does not return until completion of the operation.

Fundamentally, application processing can be halted or enter a quasi unresponsive

state pending socket function completion.

An exacerbating factor of interest is the fact that host processing overhead associated

with network I/O increases in high speed network environments (Speight, et al., 2000;

Romanow & Bailey, 2003; Regnier, et al., 2004; Jin, et al., 2005; Zhang, et al., 2012).

The higher the ratio of network link speed compared with internal system bandwidth,

the more evident the I/O bottleneck. The combinatorial effects of overhead and

bottlenecking increases overall latency, which would be undesirable in high

performance or throughput communications.

46

In the interest of communications efficiency, when programming for traditional socket-

based networking, at least overlapped I/O with completion ports (IOCP) are

recommended (The WinSock Standard Group, 1997; Jones & Ohlund, 2002; Regnier,

et al., 2004; Zhang, et al., 2012; Microsoft Corporation, 2017). When mapped onto

hardware threads, the asynchronous nature of overlapped I/O can alleviate the effects

of processing overhead associated with traditional network sockets. For all intents and

purposes, an application’s API socket calls return immediately, which allows user mode

processing to continue in a non-blocking fashion. The socket operations initiated by the

funtional application is completed by the OS kernel in the background. An application

then interrogates message queues associated with a number of instanced sockets,

known as I/O completion ports, to determine the status of socket operations.

2.5.4 Performance Networking

The varied combinations of supporting network hardware and media, together with OS

kernel provisioning could considerably improve holistic network performance in

comparison with traditional socket operations (Speight, et al., 2000; Microsoft

Corporation, 2001; Romanow & Bailey, 2003; Liu, et al., 2004; Regnier, et al., 2004;

Jin, et al., 2005; García-Dorado, et al., 2013; Prakash, et al., 2013; Ali, et al., 2014;

Kalia, et al., 2016). It should be noted that the enabling solutions alluded to here, are

in some instances programmatically transparent to a functional application’s use of

sockets. A performance enhanced, attuned and transparent solution, may therefore

possibly not necessitate a rewrite or recompilation of the application. However it would

be important to progressively elaborate, as well as dissect each attribute of a

combinatorial solution in order to accurately establish applicability and compatibility.

The socket transparent NIC technologies of interrupt moderation, checksum and large

segment offload as implemented in modern hardware, could lessen network related

processing overhead whilst increasing throughput (Romanow & Bailey, 2003; Regnier,

et al., 2004; García-Dorado, et al., 2013; Prakash, et al., 2013). The term interrupt

moderation refers to the ability of a NIC to accumulate a number of incoming network

packets before signalling once for CPU interaction, thereby liberating processing

cycles. The word paring of checksum offloading, denoting the removal of responsibility

for calculating TCP/IP error control checksums from the CPU. Instead, checksums are

calculated using the NIC hardware. If large segment offload is supported, the NIC takes

on the duties of processing application messages into segments and forming the

corresponding TCP/IP headers. Large segment offloads could greatly increase egress

throughput and reduce host processing linked with TCP/IP socket based network

communications.

47

Further overhead reductions for traditional socket implimentations, can be gained from

OS provisioned and improved socket API functions, that directly or indirectly implement

zero copy features (Microsoft Corporation, 2001; Jones & Ohlund, 2002; Romanow &

Bailey, 2003; Jin, et al., 2005; García-Dorado, et al., 2013). The switching between

user and kernel execution contexts, would normatively necessitate data duplication. A

data copy operation, innately accrues overhead by consuming memory bandwidth and

processing cycles. A zero copy feature eases context switching overhead by providing

a means to bidirectionally copy file data via sockets, without changing execution

modes. In essence the kernel context is often bypassed, as data movement could occur

between the memory spaces of the NIC and application directly.

2.5.5 Contemporary HPC and HTC Networking

The most widely purported combinatorial solution for high performance or throughput

networking, which potentially provides best fit for HTC and HPC, implement forms of

Remote Direct Memory Access (RDMA) by means of hardware infrastructure and

platform provisioning (Microsoft Corporation, 2001; Romanow & Bailey, 2003; Liu, et

al., 2004; Jin, et al., 2005; Ali, et al., 2014; Kalia, et al., 2016).

Figure 11 Network stack comparison

(adapted from Microsoft MSDN, 2001 and Jin et al, 2005)

48

The network topology for RDMA solutions are constructed using specialized and often

expensive hardware, which intrinsically expose high bandwidth and low latency

characteristics. Of overarching significance however is that RDMA featured networks,

provide the capability to directly access the memory of remote participant nodes. As

shown in Figure 11, the mechanics of RDMA implement hardware accelerated versions

of previously discussed features such as zero copy, large frame transmission and

kernel bypass.

Compatible internetwork devices, node hardware, physical media and supporting OS

kernels, frequently combine to form the holistic RDMA support solution. The result itself

is often termed a System Area Network (SAN), referring to the vendor provided

hardware and software platform features that may be exploited. Some popular

examples of SAN networks include: iWARP (Internet Wide Area RDMA Protocol),

RoCE (RDMA over Converged Ethernet) and InfiniBand.

2.5.6 Grid Formation and Fault Tolerance

The fundamental clustering of computing resources into a singly managed object for

either HPC or HTC utility, may be presented as a two-tier network topology (Foster, et

al., 2008; Shvachko, et al., 2010; White, 2012 ; Reyes-Ortiz, et al., 2015). A server

node (i.e., a master, name node or resource manager) associates and interacts with

multiple networked client nodes (i.e., workers, slaves or compute resources). The

relationship has also been illustrated in Figure 12. The responsibilities of the server

node encompass scheduling of client processing workloads and managing the integrity

of the functional distributed computing platform.

In most HPC and HTC implementations, an optional data tier (i.e., a data node) as

either a separate entity or imposed role can be added to improve data locality (Foster,

et al., 2008; Shvachko, et al., 2010; White, 2012; Zhao, et al., 2014). Specifically for

HTC platforms, the design could call for an implementation of a Distributed File System

(DFS) to extend the data locality scenario for enchanced benefit (White, 2012). A DFS

fundamentally constitutes a virtual file and directory hierarchy abstraction, or

namespace. Each particular entry in the namespace in actuallity a logically mapped or

aliased remote data storage location.

When established and appropriately configured onto a name node, the features

provided by the DFS namespace may consequently be enhanced to include the

replication of data and/or computation state between networked participants.

49

The design of the DFS replication scheme, could per example enable desirable stability

features such as load-balancing and fail-over between participants (Montero, et al.,

2011; White, 2012). Should HTC participant nodes transition into an offline state for

any given reason, the integrity of the computing environment could viably be

maintained. The computation workload and data of the faulting nodes, would remain

accessable by means of preconfigured replicants (i.e, fail-over, fault tolerance).

Similarly, the faulting nodes’ workload can be resheduled evenly among the remaining

aggregate compute clients (i.e., load-balancing). The supplementary benefits of such

DFS configurations innately easing the platform constraints of scalability and availibility.

The major differences in grid formation between HPC and HTC, concern the

construction of the computation platform and the ability to deal with discreet node

failure. The scheduled workloads of HPC platforms normally require static network

topologies in order to function and therefore do not scale well (Ali, et al., 2014;

Mantripragada, et al., 2015; Reyes-Ortiz, et al., 2015). Whereas in the case of HTC

platforms, some topology dynamism is facilitated via inherent design (White, 2012;

Reyes-Ortiz, et al., 2015). For HPC, node failure historically generates uncertainty in

attaining intended outcomes, whereas HTC is semi tolerant of such failure.

Figure 12 Elementary grid formation for HPC or HTC

50

2.6 Chapter Summary

This chapter started off by articulating the conceptual preparations and literature survey

parameters employed in research material selection. Next, the historic roots and

contemporary nature of technical debt phenomenon was investigated. Importantly, a

link was made between technical debt and e-waste. The growing trend of organisational

cloud and related services adoption, presented evidence towards reduced lifecycles for

currently retained IT assets. The imminent loss of value as a result, is emphatically

unattractive. To delay the burden of technical debt, the repurposing of assets that still

conform to the organisational need is recommended.

The probable sources of future technical debt, are identified as platforms and

infrastructure, supporting the Microsoft operating system. In this section and in previous

deliberations, it was established that on demand computing power, by means of grid

computing could pose as viable solution to the capacity and alignment problem.

Specifically the grid applications of HPC and HTC, provide fit and exude the same value

proposition characteristics of the cloud and modern data analytics. However, the nature

of parallelism and heterogeneity in HPC and HTC is found to be problematic.

The chapter’s following inquiries, explore the parallelism and heterogeneity issues in

an atomic fashion. A conceptual model that represents a computing platform as a grid

participant, is dissected in an effort to understand underlying issues for HPC and HTC

implementations. The resulting awareness engendered by the focused literature

investigations, are to be instrumental in creating the generalizable design construct.

51

CHAPTER THREE
RESEARCH METHODOLOGY

3.1 Research Theory Development

The selection of research methodology should first and foremost be cognisant of the

ontological stance. An ontology would speak to an inherent conviction of how reality

would be constructed or experienced (Neuman, 2011; Bryman, et al., 2014). Notably

the researcher’s observational point of view and influence on the perceived reality

should be garnered. Given an ontological decision, various more focused

epistemological avenues are revealed. An epistemology refers to how scientific

discourse and knowledge accumulation may be facilitated (Neuman, 2011; Bryman, et

al., 2014). The outflow of the epistemology choice could indicate an ideal

methodological paradigm to use. A research methodology describing the conceptual

framework or pattern, together with a research process by which studies are conducted.

The holistic objective of the research exploration proposed needs to apprise on the

practical applicability in design, as indicated by the expected contribution. Existing

theory informs design, but during exploration using an aligned research methodology,

potential emergent theory may result that could add academic value. As shown in the

Figure 13, an adapted Pasteur’s Quadrant, the pure applied research region is well

suited to depict such undertaking. The quest for fundamental understanding is

downgraded in favour of considerations regarding value in use, whilst inherently not

excluding theory enrichment opportunities. The Design Science Research paradigm is

known to be applicable in research environments that propose to develop new designs,

software artefacts and instantiations (Fischer, 2011; Prat, et al., 2014).

Figure 13 Research and theory development

 (an adapted Pasteur’s Quadrant as originally proposed by Donald Stokes, 1997)

52

3.2 Design Science Research

Information Systems (IS) are implemented to enable some arrangement to enhance

effectiveness and/or efficiency. The computerized IS, could arguably be described as

interrelated and in most cases interdependent artificial constructs of engineering

(Brooks, 1996; Simon, 1996).

Design-Science Research (DSR) has proven a valid conceptual, execution and

evaluation framework for the study of IS, which has been gaining larger traction within

the scientific information technology research community (Fischer, 2011; Prat, et al.,

2014). DSR’s origins can be traced to the latter half of the 1980’s, with rudimentary

maturity in research application being witnessed after the mid-1990’s. Primarily DSR in

the legacy setting was used as an emergent pattern for engineering the artificial (Simon,

1996). When discussing DSR, the use of the term processes clarifies and circumscribes

the interrelated as well as interdependent nature of IS constructs. Correspondingly the

term artefacts in the conceptual framework of IS, delineates the artificially engineered;

thus targeted functional computer programs together with their means of operation

(Hevner, et al., 2004).

The DSR archetype endeavours to create or expand capabilities via innovation

(Hevner, et al., 2004). The target area of application for such innovation is real world

human or organizational environments. Typically, such environments could benefit from

innovative application artefacts as solutions to given problem domains. A clear

understanding of the given problem domain facilitates an understanding of the

performance characteristics of an artefact and whether it indeed alleviates the identified

problem (Hevner, et al., 2004). The outcome of DSR endeavours are artefacts,

instantiations, methods and models that add value in practice (Hevner, et al., 2004;

Kuechler & Vaishnavi, 2008; Prat, et al., 2014). Fundamentally DSR provides a basis

in which artefacts can be developed whilst also imparting prescriptions as to the

process of such artefact creation and eventual use.

The context of the perceived problem provides input into the initial design process,

which in turn outputs a possible design artefact as solution (Hevner, et al., 2004;

Kuechler & Vaishnavi, 2008; Fischer, 2011; Prat, et al., 2014). Artefact construction

may in cases, precede the knowledge of why and in what manner it functions (Simon,

1996; Gregor & Jones, 2007). Importantly the candidate design artefact is evaluated as

to its suitability for solving the problem. The evaluation process in turn expands the

understanding of the problem.

53

Similar to classic transformation models and Soft Systems Modelling, timeless

characteristics of input, process, output, feedback and control are created, in turn

forming an iterative loop of build-and-evaluate until the final design artefact is generated

(Checkland, 1985; Hevner, et al., 2004; Kuechler & Vaishnavi, 2008; Prat, et al., 2014).

According to Hevner et al. (2004) “Truth informs design and utility informs theory”. As

social-science research endeavours to justify, develop or predict behavioural truth;

design science seeks to establish utility that informs such hereto unknown truth

(Hevner, et al., 2004; Fischer, 2011). DSR artefacts are seldom all-inclusive information

systems that make it into practice, however during the endeavour of research the ideal

solution to the problem domain becomes manifest, which enhances and adds to the

knowledge base (Hevner, et al., 2004).

Design-Science as research paradigm, is suited for addressing historically difficult IS

problems (Hevner, et al., 2004). Characteristics of such difficult IS problems include:

instability of requirements, integration complexity, fluid process or design environments

and dependency of successful outcomes on human interaction (Brooks, 1996; Hevner,

et al., 2004). These difficulties as described, are assuredly not unique to the field of IS.

Per illustration, nearly all management knowledge areas suffer the same or similar

difficulties and are therefore popular topics for books as well as field research (Ward &

Peppard, 2002; Schiesser, 2010; Gido & Clements, 2014). And yet, a distinguishing

factor amongst others is that DSR provides non-mandatory guidelines, shown in Table

7, which specifically alleviate complications to IS artefact creation.

Table 7 Seven guidelines of design science research

(adapted from Hevner, et al., 2004)

1 Construct purposeful utilitarian artefacts

2 Ensure alignment with the problem domain

3 Evaluate artefacts thoroughly for intended functionality

4 Innovation is key for heretofore unsolved- or effectiveness/efficiency problems

5 Rigorously defined, formally presented, coherent and internally consistent

6
Numerous solutions to the problem are possible, technique optimal choice
criteria

7
Communicate effectively to the mixed stakeholder audience of the problem
domain

54

Rigor ultimately augments the relevance and importance of the DSR endeavour

(Hevner, et al., 2004; Ostrowski & Helfert, 2012; Venable, et al., 2016). Notably

guideline 5, ‘rigorously defined, formally presented, coherent and internally consistent’

is then ultimately the major difference between DSR and other comparable paradigms.

Interestingly this supposition by Hevner, et al. (2004) differentiating DSR was initially

disputed, but later found to have achieved academic validity (Fischer, 2011; Prat, et al.,

2014). The contemporary seminal scholars whom are contributing to DSR,

consequently and consistently reiterate broad agreement with Hevner, et al. (2004)

guidelines. The DSR author contributions and research standpoints, in the reviewed

publications after Hevner, et al.’s (2004) initial work, then frequently predominate

around practical implementation or interpretation of these guidelines.

3.2.1 Practical Application

A paper by Gregor & Jones (2007) emphasises that goal and scope, together with

constructs of theory be apparent in the DSR descriptive. Comparison of theory with

similar prior theories when indicating goal and scope of research should provide metrics

(Gregor & Jones, 2007). The quantification of such is important, for it allows a means

to determine the contribution of research to the body of knowledge. Investigating similar

theories and how the research theory under review was derived, reveals the amount of

value innate (Gregor & Jones, 2007). Accordingly, the undesirable tendency in

academic research to generate additional terms and theories, which duplicate existing

knowledge as well as technologies may be curbed. The influential DSR authors Peffers,

Tuunanen, Rothenberger & Chatterjee bolsters the DSR methodology in late 2007.

Highly acclaimed, the published work dramatically increases DSR acceptance within

the IS research community. Of significance is that Peffers, et al. (2007) provides the

research practitioner with a consensus conceptual methodology framework and toolset

by which to implement DSR consistently. The procedures, practices and principals for

DSR as described by Peffers, et al. (2007) may be used to target all-inclusive IS

research actions. The authors highlight three key objectives in creating the

methodology enhancements for DSR namely: nominal research process model (see

Figure 14), terminology consistent in literature and a mental model for evaluating IS

research. Importantly the activities described in the DSR process model have direct fit

to Hevner, et al.’s (2004) guidelines, but have demonstrated practical application value.

Additionally, the mental model for DSR provides insights into gauging the research

worth, during and post development (Peffers, et al., 2007). The DSR mental model

could for example serve as instrument in determining whether envisioned research

objectives are being achieved, or exhibit evidence towards enhancement of the

research body of knowledge.

55

The academics Kuechler & Vaishnavi, (2008) recommend that narratives underpin and

are applied to all abstracted models. Metaphors that tell or encourage a story, yield

better results to conceptually focus stakeholders whilst stimulating goal orientated

thinking. Pointedly, “grammatical element salience in conceptual modelling” enhances

all of Hevner, et al.’s (2004) other guidelines (Kuechler & Vaishnavi, 2008). Secondary

benefits of this approach are that it provides for more accurate, common, persistent

and communicable understanding of the problem domain. Such understanding is then

extended to encompass the artefact design, development and evaluation process

steps.

3.2.2 Strategy, Outcome and Process

The DSR contributor Juhani Iivari, reiterates and promotes cognisance of the two

contrasting research strategy choices particular to information systems. Expressively

the choice regarding strategy, could have very real implications for the context,

outcomes, process and resource requirements of a DSR undertaking (Iivari, 2015).

Consequently, Iivari clarifies and differentiates the two DSR strategies that target

information systems, along sixteen apportioned dimensions. Guided by these

dimensions of a strategy choice, the researcher should be able to holistically

comprehend the research environment, maximize the research process for possible

benefits, avoid pitfalls and add focus to the potential research contribution sought.

Figure 14 Design science research nominal process model

(adapted from Peffers, et al., 2007)

56

In the first identified research strategy choice (i.e., Strategy 1), a case for

generalizability of solution to a perceived problem domain is created by building meta-

artefacts, using overwhelmingly objective and deductive patterns (Iivari, 2015). The

resultant meta-artefacts, may or may not eventually become instantiations. The second

DSR strategy (i.e., Strategy 2) differs by attempting generalizability of solution through

the development and subsequent reflection on, real-world system implementations

(Iivari, 2015). The dominant deliberations around Strategy 1 or 2, should therefore

contextualize whether the envisioned research requires interaction with a perceived

client entity and their specific problem. The fundamental divergence on the DSR

strategy, regards the concept of general problem domains versus entity conveyed,

specific or so-called concrete problem domains.

Strategy 1 would be conversant of multiple uncertainties surrounding the problem in

practice, how the solution may be formulated and what the eventual research

contribution will be (Iivari, 2015). For Strategy 2 the problem presents with immediate

complexity dimensions and an involved client entity. The path towards the solution in

this strategy is also unclear, but considerable uncertainty regarding the eventual

research contribution is generated (Iivari, 2015). It could be said that both strategies

have central, but dissimilar degrees of uncertainty surrounding the problem and

direction toward possible solutions. Nonetheless of more substantial and imminent

concern for the research practitioner would be, whether perceptible research

contributions could ultimately be realized by means of the DSR strategy choice.

Once furnished with the DSR strategy selection, the avenues to likely research

outcomes may be generated (Iivari, 2015):

• Strategy 1 - meta-artefacts (optionally instanced), proof of concept evaluations,

reasoned design that exhibits innovation and exposes possible practical

applicability

• Strategy 2 – instanced artefacts for a specific problem (possibly meta-artefacts as

DSR contribution), evaluations that concern real-world systems that depict

innovation by design, proof of practical applicability

The outcomes of both strategies, engenders firm onus onto the researcher to uncover

value and build legitimacy for claimed contribution to the body of knowledge. The theme

of reasoned design that includes innovation is also reflected in either strategy outcome.

Key variances are however explicit for the outcomes of practical applicability and

evaluation targeting, as a natural outflow of causal strategy contextualization.

57

Investigating the research processes or methods attributed to the DSR strategy choice,

demonstrates similar disparity along the same motif (Iivari, 2015):

• Strategy 1 – iteratively constructed meta-artefact as generic solution, empirical

artefact evaluation, generalization stemming from and informed by the problem

statement

• Strategy 2 – experiences from a specific solution in practice, action-based research

as intervention, constructions around concepts may yield meta-artefacts (elective

empirical evaluation), generalization stemming from and informed by design

patterns for a class of problem

For Strategy 1 the process is driven by means of cyclic versioning of candidate solution

meta-artefacts, which should expose universal fit to the problem domain (Iivari, 2015).

The major process activities in the strategy, are centred on building and empirically

evaluating the artefact as an evolutionary progression. Seeking generalization is also

noted as fundamental in the applied process.

The Strategy 2 process contrasts by using experiential knowledge of solving a problem

in practice, as input into meta-artefact design patterns that may suggest generalizability

of solution for a specific class of problem (Iivari, 2015). Again, the salient theme

indicates that the researcher is immersed in solving a specific client problem. Studies

conducted during solution creation could uncover design principles that have generic

applicability for a class of problem. The design patterns and their generalizability

rational are revealed or inspired during the client’s system development process.

The final implication of DSR strategy choice for information systems, regards resource

requirements. The resource needs for Strategy 2 is expectantly greater than its

counterpart (Iivari, 2015):

• Strategy 1 – primary problem domain expertise (optionally sub-domain specialists),

research team comprises single individual or small team, schedule and cost of

research varies greatly dependant on ambition

• Strategy 2 – necessary client involvement, larger research teams (optional

interdisciplinary teams), longer schedule periods and cost prohibitive

58

3.2.3 Artefact Evaluation Criteria and Methods

The representation of criteria and methods, by which DSR artefacts are vetted would

be important in establishing the measure of research rigor and contribution (Hevner, et

al., 2004; Peffers, et al., 2007; Pries-Heje, et al., 2008; Ostrowski & Helfert, 2012;

Peffers, et al., 2012; Venable, et al., 2012; Prat, et al., 2014; Venable, et al., 2016). An

information systems artefact, may certainly be evaluated using any number of criteria

within a given context. Nevertheless the criteria and methods selected, are required to

pass research community muster. In remedy to potential difficulties in establishing

artefact evaluation validity, Hevner, et al. (2004) proposes five classes of evaluation

methods as shown in Table 8. Of significance for the research practitioner is that the

applicable methods within each class, has consensus authority in the research

knowledge base. In abridged terms the design artefact’s context is matched with the

appropriate method(s) of evaluation.

Table 8 Design evaluation methods

(adapted from Hevner, et al. 2004)

Evaluation Class Appropriate Method

Observational
Field Study

Case Study

Analytical

Dynamic Analysis

Optimization

Architecture Analysis

Static Analysis

Experimental
Controlled Experiment

Simulation

Testing
Structural Testing

Functional Testing

Descriptive
Scenarios

Informed Argument

Also be reminded, that within the Peffers, et al., (2007) DSR process model the

evaluation activity is conceived in two stages (Peffers, et al., 2007; Ostrowski & Helfert,

2012). The ‘demonstration’ action, illustrates that the indented purpose of the artefact

is feasibly achieved within at least a single context. Whereas the ‘evaluation’ action,

elaborates on the applicability of the artefact towards solving a problem. The

appropriate method and criteria of evaluation, therefore requires further situational

awareness regarding the current DSR process stage.

59

The artefact evaluation situational context, as depicted in Figure 15, can be described

as either ‘artificial’ or ‘naturalistic’ (Pries-Heje, et al., 2008; Venable, et al., 2012). The

scope or dimensions of the research strategy being the major driver of the artefact’s

evaluation strategy and method. An ex ante (i.e., prior to artefact creation) and ex post

(i.e., after artefact creation) perspective can be used to codify the evaluation strategy

and provide appropriate methods for evaluation (Pries-Heje, et al., 2008; Venable, et

al., 2012). Additional factors of goal, condition and constraint can also be used as

contextual inputs into the evaluation strategy and method choices (Venable, et al.,

2012).

The DSR framework known as FEDS (Framework for Evaluation in Design Science

Research), is the de facto vehicle for contemporary artefact evaluation strategy

selection. The FEDS framework, as shown in Figure 16, reveals evaluation strategy

agendas for DSR artefacts, beyond the initial paradigm of naturalistic or artificial

evaluations. Prominently, the functional purpose of the artefact’s evaluation is

considered to have weightings of formative and summative extents (Venable, et al.,

2016). The proportions of summative evaluations would determine the magnitude of

efficacy or matching outcomes to expectations. The scope of formative evaluations,

endeavouring to increase the process or efficiency by which outcomes are achieved.

When the dimensions regarding the paradigm of evaluation, counter to the functional

purpose of evaluation is accordingly formed, the evaluation strategies are said to be

(Venable, et al., 2016): Quick & Simple, Human Risk & Effectiveness, Technical Risk

& Efficacy and Purely Technical.

Figure 15 Selecting DSR evaluation methods

(adapted from Venable, et al., 2012)

60

The characterization of evaluation strategies by use of the FEDS framework, explaining

the idealized DSR evaluation process in terms of “When to evaluate, for what purpose,

and how” (Venable, et al., 2016).

The Human Risk and Effectiveness evaluation strategy is well suited to the naturalistic

paradigm. The strategy choice is enabled by research settings that display

fundamentals of rigor and utility sought over longer periods of time, where research

costs are perceived to be low and/or major social risk could manifest (Venable, et al.,

2016). The Human Risk and Effectiveness strategy applies multiple episodes of

meticulously conducted, typically naturalistic formative evaluations, which culminate in

naturalistic summative evaluations. The effectiveness of the DSR artefact in providing

long term utility or benefit for a client audience is said to be of significance.

The evaluation strategy as a DSR case for Quick and Simple, comprises a diminutive

design endeavour, which presents with low technical and social risk (Venable, et al.,

2016). Suited for more naturalistic problem domains, the evaluation is initially formative

but develops rapidly towards a naturalistic summative effort. The Quick and Simple

approach is then also pigeon-holed by few evaluation episodes and a low research cost

environment.

Figure 16 The FEDS artefact evaluation framework

(adapted from Venable, et al., 2016)

61

The Technical Risk and Efficacy strategy is used primarily for evaluations of the

artificial. Numerous and iterative artificial formative evaluations, progress towards

summative evaluations that rigorously expose innate value of the design artefact. A

final summative evaluation does however normally include naturalistic deliberations of

the design artefact in use. The research environmental features that fit the strategy,

present as having one or more of the following criteria (Venable, et al., 2016):

• The design endeavour’s risk profile is predominantly technically orientated

• It would be impractical or incur high research costs, if conducted within a social

setting

• The effectiveness of the artefact’s utility or benefit, needs to be intrinsic and not

necessarily reliant on social interactions

Lastly, the Purely Technical evaluation strategy selection is derived by the research

circumstances where no social aspects are involved and/or where design artefacts are

for future consideration (Venable, et al., 2016). The use of naturalistic evaluations are

therefore irrelevant, only purely artificial formative and artificial summative evaluations

are conducted.

The artefact evaluation strategy choice itself, is actioned through use of a FEDS four

step process. Each step in the process engendering efficacy, rigor, goal orientation and

environmental focus for the discreet evaluation activity. In telling contrast to other

frameworks, Venable, et al., (2016) furthermore delivers evidence of risk reduction,

effectiveness and efficiency in practical application.

The FEDS evaluation design process steps, are provided as (Venable, et al., 2016):

1. Clarify the goals of artefact evaluation

2. Select the appropriate artefact evaluation strategy or strategies

3. Conclude which properties of the artefact to evaluate

4. Plan the individual artefact evaluation episodes

The first step in evaluation design process establishes rigor, addresses ethics, reduces

risk and uncertainty, whilst balancing efficiency against other goals (Venable, et al.,

2016). The aspects of rigor include two key perspectives of artefact instantiation. In an

artificial paradigm, the observed measure of the artefact should not be influenced by

external factors. Whereas in a naturalistic setting, the effectiveness of the instantiation

needs to be measured in the real-world environment. The application of ethics

surrounding any evaluation, must endeavour to perpetually limit potential harm befalling

stakeholders.

62

A proper evaluation design should also acknowledge social or technical risks and seek

reduction of uncertainty. To achieve such risk and uncertainty reduction, it is

recommended that formative evaluations be scheduled at the earliest possible stage.

Meanwhile the efficacy planning context of the evaluation considers how research costs

and resources may be prudently spent.

The second stage of the evaluation design process considers and selects an

appropriate FEDS strategy dependant on the ‘why, when, and how’ of the evaluation

(Venable, et al., 2016). The characterization of the research environment, as it

concerns the risks and constraints of the envisioned design artefact provides the

primary direction of choice.

The FEDS evaluation design process’s third step, determines the detailed properties

of the artefact instantiation that will be the subject of evaluation (Venable, et al., 2016).

The properties exhibited by the artefact, would present with unique features that link

and frame the situational design goals. The artefact properties under review affords

rational and justification towards the selection of scientifically valid evaluation methods.

The last step in the evaluation design process, prioritizes and schedules the evaluation

episodes within the research environmental constraints (Venable, et al., 2016). The

number and type of evaluations are notably contextualized dependant on resource

availability. An artefact evaluation episode involves such factors as the time of

evaluation, what to evaluate, resource requirements, method of evaluation and

responsible party assigned.

63

3.3 Research Design

3.3.1 Context, Strategy and Intended Outcome

The DSR Strategy 1 context and process descriptive for information system artefacts,

accurately maps the intended research action. The research effort is primarily geared

towards the design and instantiation of a utilitarian software artefact. A real-world client

or customer will be absent from the research environment.

There is a need for objective and deductive build patterns to be persistently used in the

design endeavour. The design artefact will be iteratively built and empirically evaluated.

It is projected that the generalizability of the research contribution, would stem from the

problem statement and the efficacy of the artefact as solution. The solution would need

to expose innovation and provide indications of practical applicability.

The Hevner, et al. (2004) DSR guidelines and Peffers, et al., (2007) DSR nominal

process model, will be applied in framing the research undertaking. The theory and

practical application considerations of Gregor & Jones (2007), as well as Kuechler &

Vaishnavi (2008) and Iivari (2015) can provide internal focus and feedback in attaining

research value.

The design artefact evaluation strategy, criteria and methods will be conversant of the

DSR evaluation method selection framework of Pries-Heje, et al., (2008) and Venable,

et al., (2012). The evaluation strategy then also subjected to the FEDS subordinate

evaluation strategy and four-step process model by Venable, et al., (2016).

3.3.2 Research Method

The envisioned design artefact and research environment, is conducive to the FEDS

‘Purely Technical’ and ‘Artificial’ evaluation model. Pointedly, the proposed design

solution is future problem domain orientated and no social actors are required. Only

quantitative methods such as mathematical or logical proofs, together with criteria-

based evaluations are employed.

The bounded constraints of design and evaluation of the artefact, is informed by

rationale established in the literature surveyed. The numerical measurement and

reporting of functional extents, exposed by the instantiated artefact’s system

dimensions are of interest. The evaluations are conducted as multi episode activities

within a laboratory setting.

64

3.3.3 Metrics and Analysis

The research units of analysis comprise the efficiency and efficacy levels of the design

artefact. The usefulness and performance of the design artefact is therefore to provide

a measure in determining overall applicability as potential solution. The units of

observation contain the hardware, software and network components of discreet

runtime instantiations. The data points as metrics of system extents, are to be gathered

using only industry and academically scrutinized tools or techniques. The metric types

in data collection across instantiations, would include varying physical or logical

dimensions of effectiveness and efficiency. The presentation of quantitative research

data takes the form criteria comparison tables, graph plots, mathematical and statistical

schemes.

3.3.4 Validity

The research undertaking needs to make comparisons of theory with similar prior

theories. The goal and scope of the research narrative should therefore provide for

proportions, whereby the contribution of research to the body of knowledge may be

measured. Building and exposing validity is intended to be a fundamental component

of the research model.

3.3.5 Research Resources

The research case is built and informed by the architecture and operational

environments as identified by subsequent research questions. Cognizance is taken of

environmental characteristics that promote heterogeneous grid computing realities. A

grid participant blend of virtualization, mobile, generic server and desktop settings is

expected. Scalable academic computer laboratories located in the Western Cape,

South Africa are the intended proving grounds for the envisioned design artefacts.

3.3.5.1 Code Development

To reduce the multitude of difficulties caused by abstraction and heterogeneity in

current HPC or HTC platforms, the software design artefact is developed in assembly

language. The initial motivation is that a reduced application stack can be generated

by use of assembly language. The compiled executable artefact, consequently is not

reliant on additional or intermediate run-time libraries and interpreters. A major

additional motivation for the use of assembly language, is the requirement of direct

access to hardware configurations as identified in the research. Furthermore, assembly

language programming enables numerous optimization opportunities via unrestrained

instruction set support.

65

3.3.5.2 Artefact Development Platform

The following platform was used as development and primary data gathering source:

ASUS laptop Model: X554L, Windows 8.1 (x64) Non-Domain Bound, UASM (The

Unified Assembler) fork of the Watcom assembler, MASM32 SDK libraries and macros,

RADASM & Easy Code visual assembly integrated development environment, OllyDbg

2.01 (x86/x64) debugger, CodeXL 2.4 version Win 2.4.45, Intel Parallel Studio XE

Cluster Edition for Windows 2018 (initial release), MS Windows ADK: Performance

Recorder, MS Visio/Office 365 Pro, HxD – Hexeditor version 1.7.7.0. The laboratory

environment for artefact instantiation and testing has been detailed in Table 9.

Table 9 Laboratory Environment

24

HP ProOne All-in-One 600, Intel Core i5-4590S 3 GHz 4 Core/Threads,

8GB RAM, 200 GB HDD, Microsoft Windows 10 Enterprise (x64) Build

16299, Domain Bound, MS Hyper V ver.10.0.16299.15, Intel I217-LM NIC

in Full-Duplex 100Mbps, Average Passive Load: CPU 7%, RAM 46 %

1

HP ProCurve 2650 L3 Switch 48-port x 10/100

2 x SFP + 2 x 10/100/1000

Twisted Pair CAT 5E Network Cabling using TIA 568B wiring schema

1
Hyper V Virtual Machine, 2 x CPU, 2GB RAM, 40GB HDD, Windows 2012

R2 Server Standard Edition Build 9600, Non-Domain Bound

1
Hyper V Virtual Machine, 2 x CPU, 2GB RAM, 40GB HDD, Windows 8.1

Enterprise Build 9600, Non-Domain Bound

1
Hyper V Virtual Machine, 2 x CPU, 2GB RAM, 40GB HDD, Windows XP

SP3 (x32), Non-Domain Bound

1
Hyper V Virtual Machine, 2 x CPU, 2GB RAM, 40GB HDD, Linux

OpenSUSE Leap 42.3 DVD Edition, x86_64, Non-Domain Bound

66

3.4 The Design Cycle

It has been established that a central activity of DSR, concerns the design and study

of a meta-artefact within a problem context. The interactions of the design artefact and

the problem context should observably advance by means of outcome the utility

realized. The depiction of the design effort would therefore play a vital role in mapping

the design artefact to the problem context. In order to structure a resilient DSR design

descriptive, the proposed outline by Roel Wieringa, shown in Figure 17, known as the

Engineering cycle or regulative cycle is applied.

The Engineering cycle initiates by means of ‘Problem investigation’ and

‘Implementation evaluation’ (Wieringa, 2009; 2016). The stakeholders and their goals,

as well as the environment, describes a conceptual problem framework. Particularly

the problem framework, could potentially benefit by means of new technology

introduction. The current effects experienced, their causes and mechanisms within the

problem context are of interest. The magnitude of the effects on stakeholder goals, are

an expression of the problem context importance. The core values in the problem

investigation stage, therefore regards the description and diagnosis of the problem

context (Wieringa, 2009).

Figure 17 DSR engineering cycle

(adapted from Wieringa, 2016)

67

As potential solution, the eventual design artefact could realistically be imperfect or

generate additional problems within the problem context (Wieringa, 2009; 2016). A

design solution is consequently understood to be either a singular or possible

‘treatment’ to the problem context. The solution design stage of the Engineering cycle,

is then aptly labelled ‘Treatment design’. A design is specified that argues and

documents the distinct design decisions (Wieringa, 2009; 2016). The requirements of

within the design specification, needs to have clear problem context and goal

counterparts. Importantly, relevant existing treatments are deliberated and new designs

considered.

The ‘Treatment validation’ stage justifies the goal contribution before artefact

instantiation (Wieringa, 2009; 2016). Essentially the design artefact’s predicted effects

are conceived to satisfy the stakeholder requirements as knowledge tasks. The design

requirements themselves having narrow fit with the original research questions. The

internal and external validity of the design, together with design trade-off studies,

should create norms of inherent design value. The internal validity step, attempts to

satisfy the design against the criteria set out within the problem investigation (Wieringa,

2009). While trade-offs or alterations in the design are considered, in determining

whether problem criteria would remain satisfied. The external validity or sensitivity

context step, investigates whether the design could meet similar or same criteria within

an altered problem context (Wieringa, 2009; 2016). Feasibly then, the design’s

sensitivity within an altered context, would infer generalizability of a particular

treatment.

The ‘Treatment implementation’ stage, concludes the Engineering cycle. The prototype

construction of the design is undertaken (Wieringa, 2016). The design is executed and

may then be assessed within discretionary evaluation sequences.

3.5 Chapter Summary

To begin with, the chapter modelled generic research theory development as a

process. Afterwards the discussions build a case for the Design Science Research

paradigm, as a pertinent methodology to conduct research. The importance of the DSR

research context, strategy, method and outcome for information systems was

deliberated. The written accounts of strategy frameworks, techniques and models for

DSR artefact evaluation, provide additional value in research practice. Lastly the

research action’s design, the artefact’s development and execution environment were

detailed.

68

CHAPTER FOUR
ARTEFACT DESIGN

4.1 The Technical Debt Context

4.1.1 Problem Investigation

The root causes and effects of technical debt, are acknowledged to be multi-

dimensional in literature. However, a major contributing factor for increased technical

debt in the near future, may be cloud and related services adoption. The reasons for

organisational cloud adoption, regard subjects such as on-demand capacity

generation, leveraging potential benefits and strategic positioning. Yet cloud adoption

would create potential or immediate obsolescence scenarios for currently retained

organisational IT assets. The scope of retained assets is wide-ranging, but may include

quantifiable facets of hardware, software and network components. Dependant on

organisational size dynamics, loss of value caused by technical debt and obsolescence

may be decidedly unattractive. To delay the burden of technical debt, the

reconfiguration or repurposing of assets is recommended. The platforms found to be at

risk for technical debt accretion, are expected to be Microsoft operating system

environments and supporting infrastructure. A case was made in the survey literature,

to repurpose platforms in the form of scalable grids, which continue to support and align

with the current organisational need.

4.1.1.1 Conceptual Design Assumptions

The repurposing of currently retained IT assets in the form of on-demand grids would

require assumptions about the conceptual effort involved. The potential benefit

proposed by a grid alternative, versus the cost of the technical debt manifestation,

would logically be of concern to decision makers. The flexibility and utility of the design

would further require articulation of expectations in respect to the constituent grid

components. To increase the potential worth and appeal of a conceptual design

solution, the formation of the grid is suggested to approximate a zero investment. A

plausibly optimum design solution, should repurpose existing hardware, software,

network and supporting infrastructure, with little or no, administrative or procurement

overhead. The primary commitment is to reuse legacy and current operating systems,

computational platforms, functional software and transmission devices. The envisioned

grid design is to be autonomous and not predisposed to current deployment topology,

security framework, computational architecture or administrative configuration. By

implicit design, the planned grid prototype ought to be non-persistent and truly dynamic.

69

4.1.2 Treatment Design

The design artefact should ultimately facilitate HPC and HTC hybridized functionality

within a singular construct. During the literature investigation, it was uncovered that

design obstacles of inherent parallelism, abstraction, restrictive practice and

heterogeneity are evident within the currently obtainable solutions. Hence, the

feasibility of an innovative design solution requisites cognisance of design requirements

that have bearing on these obstacles.

Drawing from the literature survey, the consensus was that parallelism should be

sought at every available opportunity within an HPC and HTC design solution.

Parallelism brings about maximization of function and efficiency, begotten from the

underlying computational platform. Importantly, efficiency and efficacy correlations are

evident around the theme of parallelism. The first step in creating mechanisms for

parallel operations is through detailed discovery of the execution environment. In

addition, literature informs that abstraction adds deployment complexity and execution

overhead, whilst simplifying user interactions and enabling heterogeneous computing.

Figure 18 Conceptual design of a dynamic grid

70

On the other hand, when considering conflicting goals of efficiency versus convenience,

the evidence points to efficiency in execution to be paramount within HPC and HTC. A

suitable design solution deductively requires exposing diminutive levels of abstraction.

The HPC and HTC heterogeneity problem seems not to have enjoyed holistic coverage

in the survey literature. Then also, the available open source and commercial solutions

later examined conclude as having perceived homogenous characteristics. The

restrictive design practices of currently available solutions, which limit compatibility and

choice, could even arguably be self-inflicted. The motivation for placing restrictions via

inherent design might have speculative connotations of specialization or financial

incentive. In answer to the design for heterogeneity issue, the approach taken in this

research is to find common denominators of platform aggregates. The dictum being

that commonality indicates points of compatibility without additional restriction. As

potential point of departure, consider that Windows operating systems are by enlarge

backward compatible, irrespective of underlying processor architecture. Pursuing the

lowermost kernel supported API of the operating system aggregate and architecture

feasibly produces compatibility across heterogeneous Windows platforms. A

supplementary advantage of this approach is that the application technology stack is

specifically less abstracted, as revealed in Figure 19.

Figure 19 Design technology stack

71

The proposed design solution is depicted as modular software. A server grid node

accepts connection requests from computational client nodes and integrates the

collective to form the grid. Each node within the grid is initially profiled to ascertain

underlying computational potential, which is reported to the server. The server node in

turn, calculates the amassed grid potential. The HPC and HTC work-products or jobs,

are submitted to the grid for computation in the form of targeted binary executables.

The design choice of including targeted binary executable support, provides for several

key opportunities. The primary reasoning is that the restrictive programming

environmental constraints of present HPC and HTC solutions may feasibly be

overcome. Using existing skillsets and tools, current software assets that provide for

data analytics, can viably be reused or reconfigured, to more efficient executable forms.

Principally, an executable binary allows for external performance profiling. Moreover,

curtailed abstraction may be facilitated by eliminating third party dependency. Likewise,

the need for parallel programming skillsets is characteristically negated, as

computational node targeting and management may yield optimum parallelization

utility. The intent is to support singular or multiple functional binary executables, each

matched intimately with the computational platform designated for execution. A client

node’s job scheduler would via configuration options, generate hardware thread

attuned execution environments per binary workload.

The modular design solution framework furthermore, should allow for the creation of

the hybridized data management function. The data manipulation efficiency

requirements of HPC and HTC, mandates data sourcing that improves locality of

access. For HPC the data sourcing needs are normatively node-local, whereas HTC

could additionally exhibit data locality needs as external or near-local. In the context of

Windows platform environments however, the barriers to implementation of data

locality features becomes problematic. The support compatibility inherent to the

Windows OS, is notably due to version and edition. The design arrangements for known

solutions to the data locality problem such as DFS, would therefore be determined by

the constituent Windows OS platform interactions. Importantly, the DFS participants

and functionality in an arrangement, could create implementation difficulties for a

potential design solution. The constraints imposed are in reality not just particular to

Windows OS versions and editions, but normally encompass administrative and

security group membership as well. It would therefore be unreasonable to design for

existing DFS environmental support, within the identified technical debt and

heterogeneous context. The proposed design solution would require design elements

that resolve data locality and scheduling issues, irrespective of the Windows OS

runtime environment.

72

4.1.3 Treatment validation

The statistical data for global desktop operating system sales of the last decade,

revealed that the Microsoft Windows operating system platform was at most probable

risk for technical debt formation. In order to delay a technical debt burden, the

reconfiguration or repurposing of retained IT assets is recommended in literature. The

platform constituents of the Windows infrastructure, which may expose technical debt

or eventual obsolescence attributes, are consequently of interest in formulating a

repurposing strategy. In planning for IT asset redeployment, investigations are

mandated in order to identify specific enabling opportunities that reduce or delay

technical debt. The exploration of the Windows platform components of hardware,

software and network infrastructure are by virtue encompassed.

The physical hardware environment supported by the Microsoft Windows OS,

incorporates proprietary patterns for server, virtual machine, workstation or desktop

installations. Of prominence however is that any installation prerequisites CPU

instruction set compatibility with the Intel® (henceforth Intel) x86 or x64 architecture.

The x86 architecture family, describes an arbitrary CPU platform that has backward

compatibility with the Intel 16-bit and/or 32-bit instruction set. Equally, the x64

architecture family signifies backward compatibility with Intel’s 64-bit instruction set.

The backward compatibility of the x64 architecture is notably extended to also include

x86 architectures. The specific backward compatibility of a given platform, is not

however guaranteed for any particular qualifying CPU architecture.

The difficulties in achieving backward compatibility within CPU architectures are

importantly due to the heterogeneous nature of CPU brand and supporting instruction

sets. Consider the addition of CPU evolutionary features, which inherently necessitates

the brand manufacturer to amend the underlying instruction set. Should a hypothetical

software product utilize the newer CPU features, the essential architecture support and

compatibility thereof would realistically become fixed. Counter to backward

compatibility, the software could possibly only achieve future CPU instruction set

support. Of significance to a potential design solution is that the potential future

technical debt hardware and software environs, could credibly be supporting varied x86

and x64 architectures. The motivation for abstraction as answer to the heterogeneous

platform problem, is known to be well served by degrees of complexity inherent to the

scope of the development effort. The addition of abstraction to the proposed design, is

however questionably regarded as indolent and efficiency defeating.

73

With the aim of repurposing the holistic technical debt environment, the projected

design solution would make use of a minimal base x86 architecture. The commonality

of inherent CPU platform instructions, can importantly be considered as solution critical

in avoiding abstraction whilst reducing processing overhead. A carefully deliberated

x86 architecture design should theoretically derive cross platform and architecture

compatibility, for either legacy or modern hardware and software. The proposed

design’s OS cross platform compatibility is likewise inferred.

The varying Microsoft Windows OS editions and versions are for the most part

backward compatible. The customary method of gaining cross platform and

architecture software compatibility for any arbitrary OS, advantages commonality of

exposed kernel API. The differing kernel API compatibility and feature support

facilitated between editions or versions of the Windows OS, are indeed readily

overcome for trivial software development scenarios. The problem dimensions however

increase dramatically for multifaceted software endeavours. As discovered in the

literature survey, enforcing restrictive practice definitely also has a role to play. Even

so, the use of abstraction would add undesirable processing and throughput overhead,

which detracts from the efficacy and efficiency sought. The projected design solution

would therefore make use of minimal base API compatibility, to achieve Windows OS

cross platform, network and architecture support. Pursuing the lowermost common OS

kernel API aggregate, should viably safeguard compatibility whilst maximising

performance and utility across the entire technology stack. The proposed design’s

transformation effort would however significantly increase during the initial

development stages.

The design approach that seeks architecture instruction set and kernel API

compatibility, as enabler of holistic cross platform integration is surely not new.

However within a technical debt context, the rational of the approach is plausibly

weighted due to the potential benefit return. Besides platform integration, flexibility in

functional deployment and predictable run time performance may be realized. This

design approach per illustration, permits the use of fat executables. A shrewd

application design may have multiple procedural calls that for fill the same function but

implement differing instruction sets. The application could then dynamically exploit the

aggregate instruction set to uncover features and efficiencies. Knowledge of the

underlying architecture and OS would nevertheless be key.

74

4. 2 The Execution Environment Context

4.2.1 Problem Investigation

The organisational need is best served by efficiency and effectiveness of the utility. The

utility of a HPC and HTC grid, would seek idealized use and management of potentially

diverse organisational processing resources. However the actuality of diverse

resources, under normal conditions presents significant difficulties in application. The

heterogeneity problem is meaningfully persistent. Certainly, information regarding the

environmental execution context can play a key role in achieving higher levels of

effectiveness and efficiency. Yet, enacting environmental discovery and leveraging

resources for potential benefit is known to be a non-trivial exercise.

The organisational environmental scope, dauntingly yields differing resource

characteristics and attributes at every level of the technology stack. To abridge

complexity and allow integration, the identification of environmental characteristics that

produce actionable parallelism opportunities is recommended. The environmental

contextual features of interest, are the recognized causes of processing and throughput

bottle-necking.

4.2.2 Treatment Design

The processing platform characteristics that influence efficiency and efficacy as grid

participants, was motivated in the literature review. A suitable design artefact would

then logically require the environmental concerns to be addressed. The platform

characteristics of foremost concern are: CPU instruction set, CPU topology, cache

sizes and associativity, RAM and secondary storage interaction, OS provided features,

network configuration and media support.

The currently available open source and commercial system profiling solutions,

described in Table 10 and depicted in Figure 20, are problematically not particular to

both HPC and HTC deployments. The environmental detection features which are

delivered by these solutions, could however add conceptual input design value. The

solutions scrutinized, are noted to be sensitive to administrative security environments,

frequently owing to the use of ring zero kernel drivers. Undesirably also, these solutions

habitually demonstrate lengthy execution run-time dynamics. Some of the investigated

system profilers, are observed to have programmable interface features that enforce

restrictive prerequisites. But most importantly, the considered system profiling solutions

do not wholly address the areas of contextual design as highlighted in the survey

literature.

75

Table 10 System profiling solutions

ATTRIBUTE

OpenMPI
hwloc / nwloc

v2.0.1
Windows

CPUID™
CPU-Z
v1.84.0

REALiX™
HWiNFO

V5.74

OpenHardware
Monitor
v.0.8b

Apache®
Hadoop
YARN
v2.8.0
Node

Manager*

RESOURCE PERSPECTIVE

Functional
Execution Wall-
clock Time (sec)

0,479 3,998 6,326 2,889 -

Process Memory
Working Set

(bytes)
5 840 896 12 447 744 52 695 040 44 105 728 -

Functional on
Disk Size (bytes)

1 441 792 - 1 133 680 270 336
Java

Runtime

GUI on Disk Size
(bytes)

2 289 664 3 555 328 4 235 264 1 327 104
Java

Runtime

Additional
Dependencies

Infiniband
Fabric

None None
.NET

Framework
version 2.0

Other

Ring Zero Driver Yes Yes Yes Yes No

License

Berkeley
Software

Distribution
(Clause 3)

Freeware &
Commercial
End-User
License

Agreement

Freeware &
Commercial
End-User
License

Agreement

Mozilla Public
License V2.0

Apache
License

V2.0

A detailed comparison of the literature review motivated HPC and HTC profiling criteria,

has been presented in Appendix A for perusal. Of likely interest, the review authors

Broquedis, et al. (2010) are the original creators of OpenMPI’s hwloc system profiler.

Figure 20 System profiling criteria comparison

76

The identification of supported CPU instruction set can provide exploitable avenues for

parallelism. The instruction sets that support SIMD and MIMD, are reiterated to be

especially desirable in achieving effective and efficient parallel operations. The

identification of the instruction set, further enables architecture enumeration, which can

be important in gaining software compatibility. The detection of the CPU topology,

principally relates logical processing units and hardware threads, which can be

intimately controlled for utility. The topology attributes of the CPU, are correspondingly

able to qualify and schedule performance workloads in a useful manner. Likewise,

understanding of the caching hierarchy of the potential compute node, is known to be

critical in planning instruction and data allocation across the CPU addressable

processing units. A point of departure for an operational cache management strategy

at compute node level, may thus be formulated.

The close relationship between RAM and secondary storage, allows programmable

assessment of the system state. The detection of current RAM utilization and free

storage in itself was found to provide an incomplete overall picture of the real-time

system state. Nevertheless, such information is potentially adequate, in an initial

workload placement decision.

Figure 21 Environmental characteristics of design

77

Identification of the OS discloses edition and version information. The API

programmability, features and inherent underlying OS hardware support, affords a

contribution towards establishing integration and software compatibility. The detection

of the OS network API suite per example, may determine if zero copy features and

egress offload are supported. Finally, the enumeration of physical and logical network

environmental configurations, allows for planning of dynamic global and node-local

data placement, in addition to enhanced bandwidth consumption.

4.2.3 Treatment validation

To form a HPC and HTC grid, the design artefact should gather information about the

environmental architecture, OS and network capabilities. A fuller list of requirements

together with feasible motivations, are available in Appendix B for assessment. Within

the design purview, the requisites for information gathering could be understood to

have static and dynamic elements. The information sourcing needs of the anticipated

design solution are importantly mutable. The system profiling solutions examined,

although not specifically built for hybridized HPC and HTC, do however provide relevant

insights to the problem.

The observed profiling solutions are repeated to use mechanisms of API interfaces and

in most instances ring zero drivers. Under normal circumstances any third party API’s

programmatic communications, requires the in-memory instantiation of its function. The

same could be said of ring zero drivers that enable amongst others, the use of kernel

privileged features. However the design choice of a ring zero driver additionally entails

deployment complexity, development and administrative commitments in addressing

the solution’s security environment.

In terms of physical instantiation, an exposing API design solution is found to be

problematic for the environmental discovery context. The ratio of static versus transient

platform information required, is noted to be significantly skewed towards the static for

both HPC and HTC utility. The mutable information need for near real-time workload

placement decisions, is considered to be diminutive when compared with the static

information requirements. Meaningfully, the bulk of the information need is geared

towards holistic platform profiling, which enables targeted workload scheduling. Much

of resources occupied by a profiling solution, would therefore become immediately

wasteful after the workload scheduling requirements were met. The in-memory and

dynamic processing load of a singular API design solution, cannot then be easily

justified.

78

The proposed design solution accommodates a system profiling module that

dynamically loads and sheds its function, allowing for resource reclamation. Only the

all-inclusive result of static system profiling is to be captured within a minor data

structure and made available for future enquiries.

The anticipated design’s real-time system profiling need, is met using a separate thin

profiler, embedded within the compute node’s job scheduler. Intentionally the marginal

and mutable information need will be locally serviced, where its resource processing

and storage overhead can be better justified.

The projected design solution further recommends not making use of ring zero drivers

and kernel privileged instructions. The stated norms of the design problem context are

reminded to simply disqualify the addition of deployment complexity, security and

administrative overhead. The functional expediency of ring zero drivers would therefore

involve substitution, by supplementary development effort to gain comparable solution

outcomes. The feasibility of this specific substitution, regards making innovative use of

the backward compatible Windows API and architecture instruction set functions.

Another issue explicit to the popular HPC and HTC profilers reviewed, is that of

perceived information quality. A study of both these system profilers, reveals that the

platform environmental data is principally sourced from the presiding OS. The design

intent of relying on the OS as primary enumeration source, is then also prominently

motivated as ensuring cross platform heterogeneous support. Only within the HPC

profiler can a CPU instruction set backend, supplement the activity should OS support

be found absent. However, on further analysis conspicuous limitations of the employed

design choice in these solutions become apparent. By implication, the processing

sequences that gather environmental information in both solutions, are exclusive and

produce singular answers per instantiation.

Consider that the OS may well inaccurately abstract or interpret the hardware layer.

Undoubtedly virtual machine, improperly configured hardware or OS environments,

could easily yield such erroneous data on runtime instantiation. The OS provided

environmental information is importantly not necessarily reflective of the underlying

platform reality. The environmental data sourced by means of an instruction set

backend, is for the same reasons considered to be unreliable. The detected hardware

reality, significantly cannot by itself produce an accurate account of the supported OS

runtime environment.

79

The proposed design alternative, makes use of both instruction set backend and OS

environmental sourcing, often sampling the same information for subsequent reporting

or comparison. A more accurate picture of the run-time environment as a result, may

feasibly lead to better processing decisions.

Discernments can be made around the generalizability of the proposed design’s system

profiling function. When disregarding substantial portions of the research context, the

potential design remains useful in the accurate determination of generic platform

environments. The scope of information afforded by the proposed design, can

convincingly be applied as remedy to wide-ranging problem scenarios. Per brief

illustration, consider circumstances such as: asset inventorying, software license

enforcement, holistic topology discovery, environmental problem detection and

isolation.

Additionally, the proposed design’s profiling features are attractively resource savvy.

By separating the static and mutable information needs, the processing and storage

requirements of the design solution takes on minimalistic dimensions. Moreover,

avoiding internal design adoption of kernel ring zero and API functionality, makes the

solution non-specific and potentially extensible to other OS distributions.

80

4. 3 The Network Utility Context

4.3.1 Problem Investigation

The control of organisational IT assets concerns the functional administrative

deployment and configuration, of the network environment by which utility can be

acquired. How to generate capacity for data analytical utility and at what cost, would be

of interest to organisations. A potential data analytical solution should logically be

investigated to establish its value proposition. The detailing of the endeavour cost and

benefit extents, would reveal the realistic effort and total cost of ownership metrics,

used as criteria in the acquisition decision.

The configuration and deployment of a contemporary HPC or HTC solution, requires

varied and often complex processes to be effected. The design homogeneity within a

multitude of available solutions, could conceivably confine future choice after the initial

purchase. Once implemented, the solution may have observably static characteristics,

requiring additional effort and expense to conform to shifting organisational need. An

exacerbating factor to consider includes the fact that commodity support claimed by

solutions, are predominantly not meant to imply inexpensive infrastructure would be

supported. The total administrative control over the solution’s execution environment is

often then also mandatory. Conceivably a deployed solution not actively instanced,

would integrally continue to occupy potentially useful resources. The actual expense

and effort incurred by an HPC or HTC solution may well be difficult to isolate. The

projected solution’s network context is for these reasons a highly relevant design topic.

Based on derivative stakeholder requirements, an ideal design solution would have low

overall fiscal and administrative cost, whilst still preserving organisational flexibility. The

solution would continuously promote support for diverse infrastructure, yet not

passively consume physical resources. A potential design solution, necessitates

counsel on how network deployment features may meet these requirements and still

maintain utility and function.

4.3.2 Treatment Design

On inspection of existing HTC and HPC design solutions, described in Table 11, the

seeming fulfilment of the raw composite requirements of design is not reflected. The

problem context is the most credible underlying influence in failing to meet these

requirements. The distinctive nature of contemporary design solutions, is objectively

inert and unwieldly.

81

Table 11 Contemporary HPC and HTC solutions

FEATURE
OpenMPI

V3.0.0
Apache® Hadoop

v3.1.0

Microsoft® HPC Pack
2016 Update 1

5.1.6086.0

UW Madison
HTCondor

v8.6.10

CORE SOLUTION PERSPECTIVE

Type
HPC

Library

HTC Platform
(Build from

Source)

HPC Platform &
Library (MS-MPI)

HTC Platform
&

Library

Pre-requisites -

- Java SDK /
Runtime1.6

- Maven 3.0

- Windows SDK

- CMake 2.6

- GnuWin32

Head Node

- Win Server 2012 R2

Compute Node

- Win Server 2008 R2 SP1

Workstation Node

- Win 7 (x86 & x64)

Cluster Database

- SQL Server 2008 R2

.NET Framework 4.6.1

- Visual C++

2012 Runtime

Minimum
System

Requirements
-

- Win 7

- x64 Architecture

- x64 Architecture (Roles)

- 4 CPU Cores

- 4 to 8GB RAM

- 50 GB HDD

- Win Vista

- x86 & x64

Architecture

> 300 MB HDD

Native
Programming

Language
Support

C, FORTRAN &
C++

Java, Python
& C++

C, FORTRAN & C++ Python & C++

Unpacked
Size on Disk

Prior to
Installation

106 MB + 168 MB + 1 063 MB + 124 MB +

A proposed design solution recognizes that socket derivative messaging is at the heart

of IPv4 and IPv6 network communications. The modern manifestations of HPC and

HTC solutions, take advantage of various forms of SAN socket provisioning, backed by

dedicated network infrastructure. An appropriately configured SAN or RDMA enabled

platform, can notably achieve higher HPC or HTC efficiencies and throughput.

Ordinarily when using SAN and related technologies, as attested to in the literature

survey, the execution environment is transparent to a functional application.

However, within the problem context, an arbitrary organisational network and

supporting platform reality would be indistinct. Opportunely SAN or RDMA technology

support is inferred not to be critical to a design solution. The main features of existing

SAN and RDMA enabled solutions do however provide problem context awareness for

a potential design. A rational design pattern should impose obligation to seek

performance-enhancing features exposed by the network infrastructure and execution

environment.

82

The aforementioned stakeholder network context requirements, could possibly be met

with an IOCP design treatment. Primarily the implementation mechanisms of IOCP

socket operations are programmatically compatible with the majority of commodity

operating systems and supporting infrastructure. During instantiation, the design

artefact is suggested to completely enclose the IOCP functionality as a software

module. The anticipated design outcome is that artefact instantiation will not impede

deployment flexibility, nor consume passive resources outside of grid formation.

Furthermore the design provisioning of overlapped IOCP socket handling, is reported

in literature to significantly reduce overall processing overhead. An overlapped IOCP

socket scheme would intrinsically progress in a non-blocking fashion. The application

processing overhead attributed to network socket communications, could thus be

considerably reduced. A proposed design that includes overlapped IOCP socket

services, presents supplementary opportunity. When mapped onto hardware threads,

overlapped IOCP is known to facilitate highly scalable and available network

environments.

The potential design solution, as shown in Figure 22, would couple system profiling and

run-time IOCP services configurations. Such a design should allow for the dynamic

shaping of the communications environment whilst complementing the physical

network reality. The design may well leverage the run-time elasticity of the network

environment to achieve higher performance and throughput. Per illustration, knowledge

of the network MTU combined with an attuned memory transfer configuration, could

facilitate beneficial use of larger transmission frames.

Figure 22 Design of overlapped I/O completion port model

83

4.3.3 Treatment validation

The prevalent HPC and HTC solutions available, routinely delineate implementations

of mainly two inter-process communication schemes. The discernment of inter-process

communications describing locally hosted or remote application processes that require

interaction. HPC enactments classically adopt the Message Passing Interface (MPI),

whereas the HTC solutions gravitate towards the use of Remote Procedure Call (RPC).

Of importance would be that the functional mechanisms of the two schemes, have

direct relationship with the characteristics of the utility supported. The understandings

produced by probing the underlying mechanisms of MPI and RPC, potentially could be

crucial information to amalgamate HPC and HTC onto a single platform.

The MPI communication scheme, concerns application development and execution

scenarios that use parallel computing architectures as platform. An enabled MPI

application, conspicuously features a distributed memory or distributed shared memory

model. In brief, the application’s processes are designated for execution onto a number

of logical processors within a larger virtual topology. Each application process having

access to its own private memory store (i.e. distributed memory). The application

process could also share a logically addressable memory store with another related

process (i.e. distributed shared memory).

The MPI developed application would remain reliant on the specific build

implementation for execution. A normative MPI distribution, unpacks as components,

frameworks and modules that expose APIs. Modest arrangements are fundamentally

portable tools and core programmable libraries. The goal of the MPI library is to

facilitate the abstraction of an application’s computational environment, inter-

processor, network socket and supporting protocol services. When used in conjunction

with a supported programming language, the MPI library would allow a software utility

to transfer messages between spawned constituent application processes. Further

prominent traits of MPI, include ad-hoc atomic thread safe data interchange and

process synchronization.

The RPC communication scheme, concerns application development and execution

scenarios that use distributed client-server architectures as platform. An enabled RPC

application allows for the invocation of software subroutines regardless of actual code

and data locality. Similar to the MPI scheme, RPC is a programming language level

construct that requires compilation or run-time interpreter support. The transparency

provided by RPC, is fundamentally based on the ability to uniquely address the

procedural space within a supported application.

84

The RPC application communicates with its constituent distributed components, by

marshalling parameters and procedural handles into serialized forms. Dependant on

the address space of the invoked application subroutine, the RPC mechanics

encapsulates and reroutes the request to the unique addressee for un-marshalling. The

destination can importantly be either an abstracted socket derived network node or

locally hosted process. The RPC memory model is typically more flexible, yet could

requires more storage and processing overhead than that of MPI. By default, each RPC

request allocates and deallocates shared process memory on a node by node basis.

Other shared memory configurations could include combinations of node confined

persistent and dynamic contiguous allocations. Thread safety for RPC is achieved

through explicit binding of process handles and serialization of the resultant execution

requests.

The points of commonality for MPI and RPC, are derived to necessitate programming

language level support and the ability to uniquely address the constituent application

processes. Likewise, both schemes abstract the network socket environment to

facilitate remote process communications. The contrasting themes of interest within

both schemes, involves perspectives on memory locality and thread safety. The MPI

scheme encourages memory locality and shared data integrity at logical processor

level. The RPC scheme opposes, by sharing memory across dissimilar locations and

implementing thread safety through serialization.

The actual workload capabilities envisioned for the design platform, is reaffirmed to

ultimately cater for specialized HPC, HTC or hybridized composites. Consider then the

application environment of the two dissimilar inter-process communication schemes of

MPI and RPC, whilst also bearing in mind the restrictive requisites the use of such

would enact. The salient concerns are of prescriptive programming languages,

libraries, OS, runtime environment and supported network fabric. An idealistic design

solution within the research context, should seek to reduce restriction within the

execution environment, by maximizing the flexibility of choice surrounding the utility.

The proposed design as offered, uses the IOCP overlapped apparatus to establish grid

formation. The server vehicle of the design, can feasibly enable efficient command and

control of the grid platform’s resources. The client portion of the design, responsible for

the targeted processing of workloads. An IOCP design implementation would purely

perform insular OS level integration of the server and compute clients. The design’s

intent is not to dictate how an application workload would achieve its utility. This

approach could viably increase the tractability of classifiable workloads supported.

85

By not dictating the inter-process and memory mechanism of a workload utility, a

number of potential support scenarios may evolve. As the platform and the workload

application are on the whole insular constructs by design, the following utility choices

become available:

• The programming language for development, would only be constrained by the

ability to compile an instantiating stub executable

• No pre-emptive restriction are placed on the infrastructure, security or

administrative environment

• Prerequisite utility configuration and divergent memory models become possible

• Implementing thread safety could make use of any relevant mechanism

• Single threaded workloads that do not share memory, may take advantage of full

computational node parallelism

The shared characteristics of MPI and RPC, to uniquely address application processes,

could also feasibly be duplicated within the proposed design. A server instance would

dynamically configure and publish a data structure for consumption by compute nodes

through use of IOCP sockets. The structure containing detailed information regarding

the timed individual application process’ state and locality. A client node would declare

the data structure locally, for access by the application utility processes. The method

of data structure exposure, being the universally supported OS API of non-persisted

memory mapped file. The utility’s inter-process and memory sharing mechanics could

then use the information to facilitate global inter-process communications.

4.4 Chapter Summary

Chapter 4, discussed the artefact design endeavour in terms of problem contexts.

Within the research descriptive, a problem context was invariably referenced and

related back to the survey literature. Of importance was that each problem context

recognized, conceptually informed rational responses to the initial research questions

posed. The primary contexts of technical debt, execution and network environment,

deduced stakeholder requirements and concerns within the larger research problem

domain. The requirements of each isolated context, formulated selection and defence

of solution design choices. The problem context and related requirements, made

design comparisons with existing technologies, schemes and solutions. The

discussions surrounding the validity and generalizability of design, were intended to

serve as measure in assessing the overall research contribution.

86

CHAPTER FIVE
FINDINGS, DISCUSSIONS & LIMITATIONS

5.1 The Technical Debt Context

The research investigations conducted, imparted that the Microsoft OS supported

platforms would be at highest potential risk for future technical debt manifestations. The

observed statistical data in Figure 4, moreover relating the scope of the OS versions

from which technical debt can conceivably originate. Meaningfully, the market share

data showed established support for OS platforms, ranging from versions and editions

of Windows XP up till Windows 10. The supported instruction set architecture of a

Windows platform OS, was also reputed to be unclear within a realistic technical debt

environment. The available HPC and HTC solutions gaged within the research

descriptive, were debatably never designed to function within truly heterogeneous

technical debt environments. In answer to partial heterogeneity, the observed HPC and

HTC solutions relied unanimously on abstraction schemes and/or restrictive practices.

5.1.1 Heterogeneous Operating Systems

The prior research design treatment and validation discussions, motivated OS API

backward compatibility to integrate heterogeneous platforms. Plausibly the lowest

backward compatible OS kernel release supported, could establish cross platform

integration. The design artefact establishes platform support starting from the Windows

NT 5.1 OS kernel (i.e. Win XP build 2600 & Win Server 2003 build 3790), which notably

encompasses all the Windows platforms identified within the research data. The

significant implications of the design’s kernel provisioning are that extended

compatibility is achieved across subsequent server or desktop versions of the Windows

platform suite. Importantly, architecture compatibility is accomplished by exploiting the

x86 32-bit architecture, which promotes basic instruction set operability with editions of

the Windows 64-bit platforms. Predictably due to the solution compatibility choices

deliberated and implemented during development, the artefact theoretically achieved

compatibility with Linux POSIX compliant platforms as well. A Linux system installed

with the WINE (Wine Is Not an Emulator) open source package, should natively allow the

design artefact’s execution. The following figure illustrates the prototype artefact’s initial

portable executable header, as viewed in a typical hex file editor. Recognizably, as

evidenced in Figure 23, the artefact compilation is meant for execution on a 32-bit Intel

compatible architecture machine and x86 Windows platform (i.e. values 014C, 010B &

0A00 hex). The portable executable header declaring the OS kernel attributes,

conforming to compatibility with Windows NT 5.1 (i.e. values 0005 & 0001 hex).

87

The solution’s facility to realize cross platform and architecture compatibility, is asserted

to meet with the heterogeneous platform requirement of a technical debt context.

5.1.2 Security Context and Abstraction

The generic computational environment is classically managed by instruments that

segregate the rights and privileges assigned to authorized user groups, resource

objects or individual members. The normative assignment of rights and privileges,

pertaining to the minimal assignment possible that still allows the intended functional

role to be accomplished. The administrative role, stereotypically reserving the rights to

arbitrate platform configuration changes. A recurring security contextual problem, which

impacts the proposed solution may as a consequence be identified. The act of software

deployment and installation is customarily regarded as a platform change, hence

necessitating administrative arbitration and overhead.

The deployment of contemporary HPC and HTC solutions surveyed, is reminded to

exhibit fundamental reliance on pre-requisite administrative oversight. The use of

technology stack abstraction, is conversely central and generic to modern software

development practice. The examined manifestations of HPC and HTC, potentially

escalating degrees of prior discernment regarding abstraction. To attain function, the

studied HPC and HTC build environments principally added or operated on multiple

layers of abstraction.

Figure 23 Artefact portable executable header

88

A proverbial paradox is engendered, in that efficacy and efficiency within an HPC or

HTC solution, are deemed major characteristics of the utility. Yet owing to internal

design abstraction, opportunities for improved performance and proficiency of resource

utilization are being reduced.

The prototype artefact registers an observably minimalistic technology stack. An

artefact instantiation, achieving autonomous and encapsulated run-time directly above

the OS layer. Prominently the solution meets the reduced abstraction need within a

technical debt context. By implication, no third-party libraries, language interpreters or

frameworks are required to perform execution. Suggestively neither is administrative

intervention required to perform deployment, installation or instantiation.

The autonomous portable executable form of the solution artefact, suitably entails

distribution and installation by means of file copying. The assigned rights and privileges

of the instantiating user security context, realistically the only inhibitor to utility.

5.2 The Execution Environment Context

The design solution would be required to manage and control, diverse organisational

processing resources in order to facilitate grid formation. To gain potential efficiency

and efficacy from participant grid resources, the discovery of underlying hardware and

software environs was purported as essential. Information regarding resource attributes

that promote higher throughput, parallelism and reduced latency computation are of

documented interest.

The scope of information about the preliminary environmental hardware characteristics

pursued, includes platform detection of attributes for CPU, cache, RAM, secondary

storage and network configurations. The range of software attributes, reflecting on OS

capabilities and API compatibility. In order to avoid dysfunction, the attributes

influencing the solution’s strategy or operational decision making, was recommended

to necessitate corroboration from more than one source.

.686 ; Intel Pentium Pro compatible instruction set, 32-bit
 ; - non-privileged instruction set mode
.model flat, stdcall ; 32 bit memory model, standard call convention
option casemap :none ; case sensitive
. . .

Codelet 1 Artefact environmental declarations

89

The prototype artefact for both client and server utility, uses a system profiling module

that functions as a dynamic link library. The profiler can subsequently be loaded,

executed and unloaded on an ad-hoc basis. However the planned instantiation is

envisioned to be singular per grid participant node. The environmental context needs

of the overall solution, was previously motivated to have static and mutable elements.

The system profiling module explicitly addressing the static need.

The platform hardware attributes are gathered by directly interrogating the CPU

instruction set. A leading theme during the interactions with the instruction set,

concerns the CPUID opcode. CPUID is conspicuously reliant on derived function and

feature values, to produce the desired enumeration attributes of interest. Frequently

the attributes availed by the CPUID opcode, requires further processing to enable

useful logical transformations.

; Detect CPUID Opcode
pushfd
pop eax
xor eax, 200000h
push eax
popfd
pushfd
pop edx
xor edx, eax
bt edx, 21
jnc @@A1 ; CPU486 > ?
. . .
@@A1:
lea edi,CPU.Manufacturer
cpuid
mov CPU.InputValue, eax
. . .

; Detect CPU Extended
; -Function Support
mov eax, 80000000h
cpuid
. . .
mov eax, 80000001h
cupid
. . .
bt edx, 27 ;RDTSCP
jnc @@B1
. . .
bt edx, 29 ; x64Arch
jnc @@B2
. . .
bt edx, 31 ; 3DNow!
jnc @@B3
. . .

; Detect CPU Basic Info
; & Feature Bits (ex.SIMD)
mov eax, 1
cpuid
bt edx, 25 ; SSE1
jnc @@C1
. . .
bt edx, 26 ; SSE2
jnc @@C1
. . .
bt ecx, 0 ; SSE3
jnc @@C1
. . .
bt ecx, 19 ; SSE4
jnc @@C1
. . .

; AMD Specific Topology
mov eax, 80000008h
cpuid
mov eax, ecx
mov ebx, 2
shr eax, 12 ; ApicIdCoreIdSize
and ecx, 0FFh ; NumCores
and eax, 0Fh
mov edx, ecx
.if (eax) ; ApicIdCoreIdSize >0?

mov ecx, eax
nop
dec ecx
nop
shl ebx, cl

.else ; ApicIdCoreIdSize = 0

. . .

; INTEL Specific Topology
.if (CPU.InputValue >= 11)
call Funtion11_MASKS
.else
call Function4_MASKS
.endif
. . .
.if (CPU.InputValue >= 11)

mov eax, 11
 cpuid ; x2APIC in edx
.else
 mov eax, 1
 cpuid
 shr ebx, 24 ; get bits: 24..31
 mov edx, ebx ; APIC in edx
.endif
. . .

Codelet 2 Using the CPUID opcode to reveal functions and features

Codelet 3 CPU Topology brand specific detection

90

The derived hardware information, contributes initial points of corroboration for the CPU

brand specific topology enumeration process. The OS reported information could later

be related back to their specific hardware profiling counterparts.

Network configuration discovery is found to be initially contingent on minimal Windows

OS platform support for WinSock API version 2.2. The major motivation for seeking

WinSock API version support, concerns the literature evidenced obligation for

leveraging zero copy network features. Supplementary network information gathered,

yields environmental attributes for routing, physical or logical addressing, protocol

stack, path MTU, LAN isolation and latency. Often the resultant network attributes are

congruently captured in programmable and human readable forms.

The system profiler finally populates a diminutive data structure as the overall static

result of a potential grid node’s environment. The invoking module receives the data

structure and unloads the system profiler to reclaim resources. A sample of the

artefact’s system profiler data structure and visualized output is available in Appendix

C. The artefact’s profiling module, observably meets with all 38 comparison criteria

used in the contemporary solution review process. Of additional significance is that the

entire node profiling result could potentially be transmitted as a single network packet

within a default MTU Ethernet packet.

; Operating System Information
call Detect_ADMIN
call Detect_OS_64
call Detect_OS_CPU
call Detect_OS_SYSTEM
call Detect_OS_MEMORY
call Detect_OS_AFFINITYMASK
call Detect_OS_DISPLAY
call Detect_STORAGE
. . .

; Detect_OS_64 – determine x86 or x64 OS architecture
Invoke GetModuleHandle, reparg("kernel32")
Invoke GetProcAddress,eax,reparg("IsWow64Process")
.if (eax)

xchg eax,ebx
Invoke GetCurrentProcess

. . .

.if (eax)
mov CPU.OSx64, TRUE

. . .

; Network Configuration & State Discovery
call Detect_WINSOCK2
.if (CPU.WINSOCK2) && (!CPU.ERR_MEM) && (!CPU.ERR_NET)
 call Detect_PROTOCOL ; Detect Protocol Stack = IPv4 / IPv6 / ICMP / NetBIOS
 call Detect_ROUTING ; Detect Logical Addressing/ FQDN / Network ID
 call Detect_LANGROUP ; Detect Gateway MAC / LAN Isolation
 call Detect_MTU ; Detect Path MTU and LAN Latency (RTT)
.endif
invoke WSACleanup
. . .

Codelet 4 Profiling the operating system

Codelet 5 Enumerating the network configuration

91

5.3 The Network Utility Context

High performance and throughput computational environments, certainly requisite

design patterns that pursue performance-enhancing features wherever possible. A

decomposition of contemporary HPC and HTC network arrangements, revealed

fundamental dependence on techniques that implement socket derivate

communications. However the network related performance-enhancing features

specifically employed by present HPC and HTC solutions, do not provide adequate fit

with realistic technical debt scenarios. The investigated solutions pointedly abstracted

network socket communications and became largely contingent on network hardware

acceleration to gain performance. The erstwhile artefact design descriptive of the

network problem context, then proposes a software IOCP instrument as alternative for

enabling socket based communications. An overlapped IOCP que when mapped onto

hardware threads, can markedly provide for highly available and scalable concurrent

communication platforms. Coupled with knowledge of the underlying computational

platform and supporting network conditions, an IOCP solution argument may

advantage additional functional flexibility.

The solution artefact equips both the server and client constructs with the same IOCP

module. As the client build takes on the responsibility for eventual workload processing,

the IOCP configuration is logically geared towards consuming less resources when

compared with the server instance. Irrespective of the node role, the IOCP service can

dynamically adjust its configuration to benefit the detected platform reality.

; IOCP Server Configuration
BUFFER_SIZE EQU 4096 ; I/O Buffer Size in Bytes (Default)
TCP_PORT EQU 999 ; TCP Port Number
UDP_PORT EQU 995 ; UDP Port Number
MAX_THREADS EQU 64 ; Maximum Worker Thread Count
MIN_OVERLAPPED EQU 5 ; Minimum overlapped RECEIVES per Socket
MIN_ACCEPTS EQU 5 ; Minimum pre-created ACCEPT Sockets
MAX_ACCEPTS EQU 500 ; Maximum ACCEPT Sockets
MAX_RECVS EQU 200 ; Maximum overlapped RECVS per Socket
MAX_SENDS EQU 200 ; Maximum overlapped SENDS per Socket
BURST_ACCEPTS EQU 100 ; Burst by ACCEPT Count
. . .
; Adjusting IOCP Service to the Underlying Platform
mov esi, NODEDATA
mov eax, BUFFER_SIZE
mov ebx, [esi].OSPagesize
mov ecx, [esi].OSCores
mov edx, [esi].wsa_IPv4Address
.if (ecx > MAX_THREADS) ; Ensure MAX THREADS or less

mov ecx, MAX_THREADS
.endif
. . .

Codelet 6 A highly scalable IOCP service module

92

The IOCP configurations of potential interest regard accept scaling and I/O buffer

tuning. The per socket I/O memory buffers, are adjusted at start-up to reflect the OS

RAM page size of the platform. Accept scaling refers to a contrivance that pre-emptively

creates and manages a number of accept sockets in anticipation of new connections.

Importantly accept scaling reduces the connection latencies and processing

overheads, normally associated with on-demand socket creation.

A curious caveat of the Microsoft socket implementation concerns the desired zero

copy and egress offload APIs. The kernel interface requires the APIs to be referenced

and invoked via their globally unique identifiers (GUID) at run-time. In the absence of

API referencing, the Winsock library is loaded and unloaded per program invocation of

these functions. An implementation oversight of Winsock API referencing, would

therefore cause detrimental performance loss.

Each Winsock API function call from the extended range, is singularly aliased as static

memory address pointers on artefact instantiation. The required parameter sets per

API function, are likewise data typed in order to attain the overall utility.

; Dynamic Accept Scaling Ex. Ensuring min of 5 accepts, scaling by 100 accepts, to a max of 500
mov eax, Event
mov Limit, 0
.if (eax == [esi].AcceptEvent)
 invoke WSAEnumNetworkEvents,[esi].hSocket,[esi].AcceptEvent,addr NEvent
 .if (eax == SOCKET_ERROR)
 mov SCKTErrorITM, 20
 .else
 and NEvent.lNetworkEvents, FD_ACCEPT
 .if (NEvent.lNetworkEvents == FD_ACCEPT)
 mov Limit, BURST_ACCEPTS
 .endif
 .endif
.elseif (eax == [esi].RepostAccept)
 invoke InterlockedExchange,addr [esi].RepostCount,0
 mov Limit, eax
 invoke ResetEvent,addr [esi].RepostAccept
.endif
. . .

Codelet 7 Dynamic accept scaling

; Provision Microsoft WinSock Extended APIs – (requires non-official sourcing of GUIDs values)
GuidAcceptEx GUID <0b5367df1h,0cbach,011cfh,{095h,0cah,000h,080h,05fh,048h,0a1h,092h}>
. . .
GuidWSARecvMsg GUID <0f689d7c8h,06f1fh,0436bh,{08ah,053h,0e5h,04fh,0e3h,051h,0c3h,022h}>
. . .
invoke WSAIoctl,DummySocket,SIO_GET_EXTENSION_FUNCTION_POINTER,addr /
GuidAcceptEx,sizeof GUID, addr fnAcceptEx,sizeof fnAcceptEx,addr dwBytes,NULL,NULL
. . .

Codelet 8 Winsock extended function referencing

93

A full list of the expanded Winsock API GUIDs currently remains unpublished by

Microsoft. To add additional convolution, the OS supported release versions of the

extended Winsock APIs are also erroneously indicated on the official developer

website. It would seem that the periodic discontinuation of official support for a legacy

Windows OS version warrants Microsoft to claim API support only for the next still

supported version.

A noteworthy IOCP design feature within the prototype artefact, regards safeguards

from notional malicious denial of service and stale connections. Principally, all pending

and established connections would be subjected to time-out values. The connection is

terminated and occupied resources released, should valid communications not be

associable within the established timeframe. The current version of the artefact IOCP

server was stress tested as a simple message echo implementation. Although not fully

optimized using zero copy logic, the throughput achieved on an 802.11g wireless

network exceeded 34 000 packets per second using a default MTU of 1500 bytes.

; Avoiding Stale Connections and Malicious Denial of Service
mov ebx, [esi].PendingAccepts
. . .
@@ParseStale:
.if (ebx != NULL)
invoke getsockopt,[ebx].sclient,SOL_SOCKET,SO_CONNECT_TIME,addr cTime, addr sTime

.if (eax != SOCKET_ERROR) && (cTime != 0FFFFFFFFh) && (cTime > 20)
 invoke closesocket,[ebx].sclient
 mov [ebx].sclient, INVALID_SOCKET
 .endif
 mov ebx, [ebx].Next
 jmp @@ParseStale
.endif
. . .

Codelet 9 Sensing and eliminating stale connections

Figure 24 Stress testing IOCP module

94

Table 12 Appraisal of artefact resource extents

Artefact Component

Functional

Execution Wall-

clock Time (sec)

Process Memory
Working Set

(bytes)

Functional on

Disk Size

(bytes)

GUI on Disk

Size (bytes)

System Profiler

(Sample)
0,538 37 023 744 12 288 151 552

System Profiler

(Dynamic link library)
0,023 4 784 128 12 288 -

Server - 9 449 472 - 163 840

Client - 4 718 592 32 768 -

The combined artefact’s resource usage and physical footprint, as described in Table

12, is noted to be perceptibly diminutive. Per example the functional extents of the

artefact system profiler, uses less than 5% the secondary storage requirement of the

smallest functional profiling solution surveyed. Actual functional utility is achieved within

an average reported wall-clock time of 0,023 seconds. The deployed artefact prototype,

when compared with the smallest footprint non-deployed HPC or HTC solutions

reviewed, reveals the artefact currently uses less than 0.5% of the secondary storage

space. Granted that the artefact build is still in its infancy, the trending eventual build

dimensions appear favourable. The resource extents of the artefact, therefore

conforming to the ideal of rather maximizing resource availability towards actual

workload utility consumption.

5.4 Limitations of Research

5.4.1 Generalizability Limitations

Due to the multi-dimensional nature of the research scope, the probability of reduced

generalizability may be concluded for highly divergent research contexts. Per

illustration, the range of literature engaged within the research action was by no means

exhaustive for a particular scope context. The comprehensive problems experienced

within a particular research area, could reveal counter arguments and exceptions to

generalizability. Any claims to generalizability should only be considered within the

exacting milieu of the described technical debt context. In retrospect, the researcher’s

ambition undoubtedly outstripped the latitude afforded by the research sponsor body.

The innate nature of the research topic’s derived subject material is clearly voluminous

and on occasion exceedingly technical. As a result, the research narrative may have

perceptually suffered to mention enough detail to satisfy the discerning reader. The

potential to reproduce outcomes, by including the reference works, reviewed

contemporary solution binaries and prototype design artefacts (i.e. available on

accompanying DVD) are offered in mitigation of possible apprehension.

95

5.4.2 Design Limitations

The presented design artefact as holistic solution is incomplete and untested for use in

real-world HPC and HTC hybridized enactments. Pointedly, the predominant

characteristics of the design, currently only meet the defined minimal standards of an

HPC solution. Although the initial ingredients of an HTC implementation is present, the

scheduling, DFS and failover modules are conspicuously absent. What's more, the

prototype artefact instantiation is imperfect at reflecting the design intent. Some

preliminary enhancements suggested for incorporation include:

• The system profiler could benefit from added detection mechanisms for modern

hardware features, such as random number generators and transactional

synchronization extensions (e.g. lock elision)

• The IOCP module requires broad optimisation and the merger of Winsock

extensions into the backend decision logic

• The overall solution’s binary executables require extended validation level code

signing, to nullify administrative and security context issues experienced on newer

Windows platforms that support Microsoft Authenticode and User Access Control

The lacking module components and real-world demonstration of hybridized utility is

envisioned to be the subject of a future research action.

5.5 Chapter Summary

Chapter 5 establishes the design solution as an experimental artefact instantiation. The

research endeavour’s major contexts are successively evaluated against the observed

utility of the artefact. An outline regarding the functional responsibility of an individual

design module, together with its link to a particular research context is conducted. In

most instances, program codelets are presented to reinforce discussions. The

deductive findings made are of importance on the subject of generalizability. To

conclude the chapter, the foremost limitations incurred by the research action and its

design construct was deliberated.

96

CHAPTER SIX
CONCLUSION

The research investigations directed within this paper initially chronicles and uncovers,

the probable causes and outcomes of the technical debt phenomenon. Largely the

research descriptive reinforces the link between technical debt, obsolescence and e-

waste as an outflow. The connotations of technical debt should be of realistic concern

for organisations and entities considering cloud adoption. Importantly the value

proposition afforded by the move to cloud, necessitates assessment against the fact

that significant loss could manifest from adoption. The value sought by cloud adoption,

regards the leveraging of purported benefits in the creation of effective and efficient

environments. The narrative of loss, labels amongst others the fiscal, ethical and

functional impacts of non-holistic decision making. The currently retained IT assets that

support needful processes, may explicitly require reconfiguration or be made obsolete.

The assets comprising aspects of platform hardware, software and network

infrastructure. According to the currently available global market data, indications are

that entities overwhelmingly operate on Microsoft Windows platforms. Reasonably the

potential for technical debt accumulation experienced by these entities may be greater.

In an effort to complement and align with the future value sought by cloud and data

analytical solutions, this research paper proposes a design alternative that may delay

the technical debt burden. Presumptively an innovative design artefact could facilitate

the integration of major aspects of a contextualized technical debt platform and in so

doing enable prolonged utility. The research design consequently calls for the creation

of scalable HPC and HTC grid solutions. Not only could grid solutions factually

reproduce most of the stated cloud adoption benefits, but importantly utilize existing IT

assets as platform. The design discussions however expose several obstacles to grid

realization. Notably the obstacles of heterogeneous platforms and abstraction are

prominent. A comprehensive heterogeneity problem environment has questionably not

been addressed in the survey literature. The role of abstraction in modern software

development, furthermore resulting in difficulties surrounding the subjects of efficacy

and performance. In response to these obstacles, the research endeavour takes on

concrete assumptions and radical design patterns that embrace additional

transformation effort to garner realization.

The immediate design outcomes and evidenced artefact instantiations promisingly

exhibit several theoretically generalizable features and capabilities. Future research will

endeavour to finalize the design model and demonstrate hybridized HPC and HTC

workloads.

97

BIBLIOGRAPHY

Advanced Micro Devices, 2005. AMD Processor Recognition, Sunnyvale, California, United States:
Advanced Micro Devices Inc.
Advanced Micro Devices, 2014. Software Optimization Guide for AMD Family 15h Processors,
Sunnyvale, California, United States: AMD.
Akhter, S. & Roberts, J., 2006. Multi-Core Programming: Increasing Performance through Software
Multithreading. 1st ed. Santa Clara, California, United States: Intel Press.
Ali, M. M., Southern, J., Strazdins, P. & Harding, B., 2014. Application Level Fault Recovery: Using
Fault-Tolerant Open MPI in a PDE Solver. Phoenix, AZ, International Parallel & Distributed Processing
Symposium Workshops - IEEE.
Alverson, G. et al., 1992. Exploiting Heterogeneous Parallelism on a Multithreaded Multiprocessor.
Washington, D.C., USA, Proceedings of the International Conference on Supercomputing - ACM.
Berlin, K. et al., 2004. Evaluating the Impact of Programming Language Features on the Performance
of Parallel Applications on Cluster Architectures. Heidelberg, Languages and Compilers for Parallel
Computing.
Betz, . et al., 2015. Sustainability Debt: A Metaphor to Support Sustainability Design Decisions.
Ottawa, Canada,
Fourth International Workshop on Requirements Engineering for Sustainable Systems (RE4SuSy).
Bezuidenhout, R., Davis, C. & Du Plooy-Cilliers, F., 2014. Research Matters. Claremont: Juta and
Company Ltd.
Bidgoli, H., 2016. Management Information Systems 6. 6 ed. Boston: Cengage Learning.
Blevis, E., 2007. Sustainable Interaction Design: Invention & Disposal, Renewal & Reuse. San Jose,
California, USA, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
Botta, A., Donato, W. d., Persico, V. & Pescapé, A., 2016. Integration of Cloud computing and Internet
of Things: A survey. Future Generation Computer Systems - Elsevier, 56(C), pp. 684-700.
Breivold, H. P. & Crnkovic, I., 2014. Cloud Computing Education Strategies. Klagenfurt, IEEE
Software Engineering Education and Training.
Brooks, F. P., 1996. The Computer Scientist as Toolsmith II. Communications of the ACM March
1996/Vol. 39, No. 3, 1 March, 39(3), pp. 61-68.
Broquedis, F. et al., 2010. Structuring the Execution of OpenMP Applications for Multicore
Architectures. Atlanta, GA, USA, IEEE International Symposium on Parallel & Distributed Processing
(IPDPS).
Broquedis, F. et al., 2010. hwloc: A Generic Framework for Managing Hardware Affinities in HPC
Applications. Pisa, Italy, 18th Euromicro International Conference on Parallel, Distributed and
Network-based Processing - IEEE.
Brown, N. et al., 2010. Managing Technical Debt in Software-Reliant Systems. Santa Fe, New Mexico,
USA, FoSER '10, ACM, pp. 47-52.
Bryman, A. et al., 2014. Research Methodolgy: Business and Management Contexts. 1st ed.
Goodwood: Oxford University Press.
Buono, D., Matteis, T. D., Mencagli, G. & Vanneschi, M., 2014. Optimizing Message-Passing on
Multicore Architectures using Hardware Multi-Threading. Turin, Italy, 22nd Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing IEEE.
Buyya, R., Abramson, D. & Giddy, J., 2000. Nimrod/G: AnArchitecture for a Resource Management
and Scheduling System in a Global Computational Grid. Beijing, China, Proceedings Fourth
International Conference/Exhibition on High Performance Computing in the Asia-Pacific Region IEEE.
Chang, L. et al., 2014. HAWQ: A Massively Parallel Processing SQL Engine in Hadoop. Snowbird, UT,
USA, Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data.
Chang, V. & Wills, G., 2015. A model to compare cloud and non-cloud storage of Big Data. Future
Generation Computer Systems, Volume 57, p. 56–76.
Checkland, P., 1985. From Optimizing to Learning: A Development of Systems Thinking for the 1990s.
The Journal of Operational Research Society, April, 36(9), pp. 757-767.
Che, D., Safran, M. & Peng, Z., 2013. From Big Data to Big Data Mining: Challenges, Issues and
Opportunities. In: W. Winiwarter & W. Song, eds. Database Systems for Advanced Applications.
Berlin: Springer, pp. 1-15.
Chen, H., Chiang, R. H. & Storey, V. C., 2012. Business Intelligence and Analytics: From Big Data to
Big Impact. MIS Quarterly, 36(4), pp. 1165-1188.
Ciampa, M., 2015. Security+ Guide to Network Security Fundementals. 5th ed. Boston, MA: Cencage
Learning.
Darlington, J. et al., 1993. Parallel Programming Using Skeleton Functions. Munich, Germany,
Proceedings of the 5th International PARLE Conference on Parallel Architectures and Languages
Europe.

98

Deelman, E., 2010. Grids and Clouds: Making Workflow Applications Work in Hetrogenous Distributed
Environments. The International Journal of High Performance Applications - Sage Journals, 24(3), pp.
284-298.
Dhar, S. & Mazumder, S., 2014. Challenges and Best Practices for Enterprise Adoption of Big Data
Technologies. Journal of Information Technology Management, 25(4), pp. 38-44.
Dobre, C. & Xhafa, F., 2014. Parallel Programming Paradigms and Frameworks in Big Data Era.
International Journal of Parallel Programming, 43(5), pp. 710-738.
Doulkeridis, C. & Nørvåg, K., 2014. A survey of large-scale analytical query processing in MapReduce.
The VLDB Journal, 23(DOI 10.1007/s00778-013-0319-9), pp. 355-380.
Drepper, U., 2007. What Every Programmer Should Know About Memory, Raleigh, North Carolina,
United States: Red Hat Inc..
Dwivedy, M. & Mittal, R., 2010. Future trends in computer waste generation in India. Waste
Management, 30(11), pp. 2265-2277.
Eklöv, D. & Hagersten, E., 2010. StatStack: Efficient Modeling of LRU Caches. New York, USA,
International Symposium on Performance Analysis of Systems and Software - IEEE.
Ernst, N. A. et al., 2015. Measure It? Manage It? Ignore It? Software Practitioners and Technical Debt.
Bergamo, Italy, ESEC/FSE’15, ACM.
Fischer, C., 2011. The Information Systems Design Science Research Body Of Knowledge - A
Citation Analysis In Recent Top-Journal Publications. Brisbane, AIS Electronic Library, PACIS 2011
Proceedings, Paper 60, pp. 1-12.
Fitzpatrick, C., Hickey, S., Schischke, K. & Maher, P., 2014. Sustainable life cycle engineering of an
integrated desktop PC; a small to medium enterprise perspective. Journal of Cleaner Production,
Volume 74, pp. 155-160.
Fog, A., 2017. Optimizing Subroutines in Assembly Language: An optimization guide for x86
platforms, Lyngby: Technical University of Denmark.
Foster, I., Zhao, Y., Raicu, I. & Lu, S., 2008. Cloud Computing and Grid Computing 360-Degree
Compared. Austin, IEEE .
García-Dorado, J. L. et al., 2013. High-Performance Network Traffic Processing Systems Using
Commodity Hardware. Lecture Notes in Computer Science: Data Traffic Monitoring and Analysis,
7754(1), pp. 3-27.
Gartner Inc, 2016. Gartner News Room. [Online]
Available at: http://www.gartner.com/newsroom/id/3354117
[Accessed 28 June 2016].
Gepner, P. & Kowalik, M. F., 2006. Multi-Core Processors: New Way to Achieve High System
Performance. Bialystok, Poland, International Symposium on Parallel Computing in Electrical
Engineering - IEEE.
Gido, J. & Clements, J., 2014. Successful Project Management. 6th ed. Boston: Cengage Learning.
González, A., Aliagas, C. & Valero, M., 1995. A Data Cache with Multiple Caching Strategies Tuned to
Different Types of Locality. Barcelona, Spain, International Conference on Supercomputing - ACM.
Gregor, S. & Jones, D., 2007. The Anatomy of a Design Theory. Journal of the Association for
Information Systems, 8(5), pp. 312-225.
Grolinger, K. et al., 2014. Challenges for MapReduce in Big Data. Alaska, IEEE, pp. 182-189.
Grossman, M., Breternitz, M. & Sarkar, V., 2013. HadoopCL: MapReduce on Distributed
Heterogeneous Platforms through Seamless Integration of Hadoop and OpenCL. Boston, IEEE.
Gupta, A., 2015. Big Data Analysis Using Computaional Intelligence and Hadoop: A Study. New Delhi,
Computing for Sustainable Global Development.
Hashem, I. A. T. et al., 2015. The rise of “big data” on cloudcomputing: Review and open research
issues. Elsevier Information Systems, Volume 47, pp. 98-115.
Herlihy, M., 2010. Transactional Memory Today. Berlin Heidelberg, International Conference on
Distributed Computing and Internet Technology - Springer.
Herlihy, M. & Moss, J. E. B., 1993. Transactional Memory: Architecture Support for Lock-Free Data
Structures. San Diego, CA, USA, International Symposium on Computer Architecture - IEEE.
Hevner, A. R., March, S. T. & Park, J., 2004. Design Science in Information Systems Research. MIS
Quaterly, March, 28(1), pp. 75-105.
IBM Corporation, 2008. IBM developerWorks. [Online]
Available at: https://www.ibm.com/developerworks/library/l-devctrl-migration/index.html
[Accessed 28 June 2017].
Iivari, J., 2015. Distinguishing and Contrasting Two Strategies for Design Science Research.
European Journal of Information Systems, 24(1), p. 107–115.
Intel Corporation, 2016. Intel® 64 and IA-32 Architectures Optimization Reference Manual, Santa
Clara, California, United States: Intel.
Intel Corporation, 2017. Product Brief: Intel® HPC Orchestrator, Santa Clara, USA: Intel.

99

Jeong, H. & Lee, W., 2012. Performance of SSE and AVX Instruction Sets. Cairns, Proceedings of
Science.
Jin, H.-W.et al., 2005. Performance Evaluation of RDMA over IP: A Case Study with the Ammasso
Gigabit Ethernet NIC. Research Triangle Park, NC, USA, Workshop on High Performance
Interconnects for Distributed Computing; In conjunction with HPDC-14.
Jones, A. & Ohlund, J., 2002. Network Programming for Microsoft Windows. 2nd ed. Redmond,
Washington, USA: Microsoft Press.
Kalia, A., Kaminsky, M. & Andersen, D. G., 2016. Design Guidelines for High Performance RDMA
Systems. Denver, CO, USA, Proceedings of USENIX Annual Technical Conference.
Katal, A., Wazid, M. & Goudar, R. H., 2013. Big Data: issues, Challenges, Tools and Good Practices.
Noida, IEEE.
Kazempour, V., Fedorova, A. & Alagheband, P., 2008. Performance Implications of Cache Affinity on
Multicore Processors. Las Palmas de Gran Canaria, Spain, European Conference on Parallel
Processing - Springer.
Kennedy, K., Koelbel, C. & Schreiber, R., 2004. Defining and Measuring the Productivity of
Programming Languages. The International Journal of High Performance Computing Applications,
18(4), pp. 441-448.
Kiczales, G. et al., 1997. Aspect-Oriented Programming. Finland, European Conference on Object-
Oriented Programming.
Klinger, T., Tarr, P., Wagstrom, P. & Williams, C., 2011. An Enterprise Perspective on Technical Debt.
Waikiki, Honolulu, Hawaii, ICSE ’11, ACM.
Kozierok, C., 2005. The TCP/IP Guide: A Comprehensive, Illustrated Internet Protocols Reference. 1st
ed. San Francisco: No Starch Press.
Kraska, T., 2013. Finding the Needle in the Big Data Systems Haystack. IEEE Internet Computing, 15
January/February, pp. 84-86.
Kuechler, B. & Vaishnavi, V., 2008. Theory Development in Design Science Research: Anatomy of a
Research Project. Georgia, Proceedings of the Third International Conference on Design Science
Research in Information Systems and Technology.
Kuo, S., 2017. Intel Developer Zone - WhitePapers. [Online]
Available at: https://software.intel.com/en-us/articles/intel-64-architecture-processor-topology-
enumeration
[Accessed 15 2 2017].
Kusswurm, D., 2014. Modern X86 Assembly Language Programming 32-bit, 64-bit, SSE, and AVX.
1st ed. New York: Apress.
Lee, E., 2006. The Problem with Threads. Computer - IEEE Computer Society, 39(5), pp. 33-42.
Leetaru, K., 2016. Forbes Media, Tech / #Big Data. [Online]
Available at: https://www.forbes.com/sites/kalevleetaru/2016/08/24/how-the-cloud-stands-to-reshape-
academic-computing/#29d408355372
[Accessed 7 3 2018].
Lee, V. W. et al., 2010. Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput
Computing on CPU and GPU. Saint-Malo, France, Proceedings of the 37th annual international
symposium on Computer architecture - ACM.
Li, K. & Hudak, P., 1989. Memory Coherence in Shared Virtual Memory Systems. Transactions on
Computer Systems - ACM, 7(4), pp. 321-359.
Liu, J., Wu, J. & Panda, D. K., 2004. High Performance RDMA-Based MPI Implementation over
InfiniBand. International Journal of Parallel Programming, 32(3), pp. 167-198.
Majo, Z. & Gross, T. R., 2011. Memory Management in NUMA Multicore Systems: Trapped between
Cache Contention and Interconnect Overhead. San Jose, California, USA, The International
Symposium on Memory Management - ACM.
Majo, Z. & Gross, T. R., 2013. (Mis)understanding the NUMA Memory System Performance of
Multithreaded Workloads. Portland, Oregon, USA, International Symposium on Workload
Characterization - IEEE.
Majo, Z. & Gross, T. R., 2015. A Library for Portable and Composable Data Locality Optimizations for
NUMA Systems. New York, USA, Proceedings of the Symposium on Principles and Practice of
Parallel Programming - ACM.
Mantripragada, K., Binotto, A. & Tizzei, L. P., 2015. A Self-adaptive Auto-scaling Method for Scientific
Applications on HPC Environments and Clouds. Amsterdam, Netherlands, ADAPT Workshop
proceedings.
Martin, A., Britoy, A. & Fetzer, C., 2014. Elastic and Secure Energy Forecasting in Cloud
Environments. London, IEEE.
Martini, A., Bosch, J. & Chaudron, M., 2014. Architecture Technical Debt: Understanding Causes and
a Qualitative Model. Verona, Italy , 2014 40th EUROMICRO Conference on Software Engineering and
Advanced Applications, IEEE.

100

Masud, M. A. H., Yong, J. & Huang, X., 2012. Cloud Computing for Higher Education: A Roadmap.
Wuhan, China, International Conference on Computer Supported Cooperative Work in Design - IEEE.
Mclean, I. & Thomas, O., 2010. Configuring Windows 7 - MCTS Self-Paced Training Kit (Exam70-
680). 1 ed. Redmond, Washington: Microsoft Press.
Microsoft Corporation, 2001. Winsock Direct: The Value of System Area Networks. [Online]
Available at: https://msdn.microsoft.com/en-us/library/bb742608.aspx
[Accessed 4 10 2017].
Microsoft Corporation, 2003. Microsoft Technet. [Online]
Available at: https://technet.microsoft.com/en-us/library/cc776246(v=ws.10).aspx
[Accessed 28 June 2017].
Microsoft Corporation, 2013. Understanding Node Metrics and Properties in HPC Cluster Manager.
[Online]
Available at: https://technet.microsoft.com/en-us/library/hh301098(v=ws.11).aspx
[Accessed 17 8 2017].
Microsoft Corporation, 2016. Microsoft Volume Licensing. [Online]
Available at: http://www.microsoftvolumelicensing.com
[Accessed 31 March 2017].
Microsoft Corporation, 2016. System Requirements for HPC Pack 2016. [Online]
Available at: https://technet.microsoft.com/en-us/library/mt791806(v=ws.11).aspx
[Accessed 12 7 2017].
Microsoft Corporation, 2017. High-performance Windows Sockets Applications. [Online]
Available at: https://msdn.microsoft.com/en-
us/library/windows/desktop/ms738551%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
[Accessed 31 10 2017].
Microsoft Corporation, 2017. Microsoft. [Online]
Available at: https://www.microsoft.com/en-us/Licensing/licensing-programs/licensing-programs.aspx
[Accessed 31 March 31].
Microsoft Corporation, 2017. Microsoft Support. [Online]
Available at: https://support.microsoft.com
[Accessed 31 March 31].
Montero, R. S., Moreno-Vozmediano, R. & Llorente, I. M., 2011. An elasticity model for High
Throughput Computing clusters. Journal of Parallel and Distributed Computing, Volume 71, pp. 750-
757.
Moreton-Fernandez, A., Ortega-Arranz, H. & Gonzalez-Escribano, A., 2017. Controllers: An
abstraction to ease the use of hardware accelerators. The International Journal of High Performance
Computing Applications.
Murray, D., Koziniec, T., Lee, K. & Dixon, M., 2012. Large MTUs and Internet Performance. Belgrade,
Serbia, International Conference on High Performance Switching and Routing - IEEE.
Nakajima, J. & Pallipadi, V., 2002. Enhancements for hyper-threading technology in the operating
system: seeking the optimal scheduling. Boston, MA, USA, Proceedings of the 2nd conference on
Industrial Experiences with Systems Software - IEEE, USENIX Association Berkeley.
Nelson, J. et al., 2015. Latency-Tolerant Software Distributed Shared Memory. Santa Clara, CA, USA ,
Proceedings of the USENIX Annual Technical Conference - ACM.
Net Applications, 2017. Netmarketshare. [Online]
Available at: http://www.netmarketshare.com/operating-system-market-share.aspx
[Accessed 27 March 2017].
Neuman, W., 2011. Social Research Methods Qualitative and Quantitative Approaches. 7th ed.
Boston: Pearson Education, Inc. publishing as Allyn & Bacon.
Newburn, C. J. et al., 2011. Intel’s Array Building Blocks: A Retargetable, Dynamic Compiler and
Embedded Language. Chamonix, IEEE: International Symposium on Code Generation and
Optimization.
Open Science Grid, 2016. Open Science Grid Wiki. [Online]
Available at: https://twiki.opensciencegrid.org/bin/view/Documentation/WhatIsOSG
[Accessed 21 7 2017].
Ostrowski, L. & Helfert, M., 2012. Design Science Evaluation – Example of Experimental Design.
Journal of Emerging Trends in Computing and Information Sciences, 3(9), pp. 253-262.
Ousterhout, J. K., 1982. Scheduling Techniques for Concurrent Systems. New York, Proceedings of
the 3rd International Conference on Distributed Computing Systems - IEEE.
Peffers, K., Rothenberger, M., Tuunanen, T. & Vaezi, R., 2012. Design Science Research Evaluation.
Design Science Research in Information Systems. Advances in Theory and Practice. , 7286(1), pp.
398-410.

101

Peffers, K., Tuunanen, T., Rothenberger, M. A. & Chatterjee, S., 2007. A Design Science Research
Methodology for Information Systems Research. Journal of Management Information Systems, 24(3),
pp. 45-78.
Petridis, N. E., Stiakakis, E., Petridis, K. & Dey, P., 2016. Estimation of computer waste quantities
using forecasting techniques. Journal of Cleaner Production, 112(4), pp. 3072-3085.
Prakash, P. et al., 2013. Jumbo Frames or Not: That is the Question!, West Lafayette, Indiana, USA:
Computer Science Technical Reports, Paper 1770 - Purdue University.
Prat, N., Comyn-Wattiau, I. & Akoka, J., 2014. Artifact Evaluation in Information Systems Design-
Science Research - a Holistic View. Chengdu, AIS Electronic Library, PACIS 2014 Proceedings,
Paper 23, pp. 1-16.
Pries-Heje, J., Baskerville, R. & Venable, J. R., 2008. Strategies for Design Science Research
Evaluation. Galway, Ireland, 16th European Conference on Information Systems.
Regnier, G. et al., 2004. TCP Onloading for Data Center Servers. Computer - IEEE, 37(11), pp. 48-58.
Remy, C. & Huang, E., 2015. Addressing the Obsolescence of End-User Devices: Approaches from
the Field of Sustainable HCI. Zürich, Switzerland, Springer, pp. 257-267.
Reyes-Ortiz, J. L., Oneto, L. & Anguita, D., 2015. Big Data Analytics in the Cloud: Spark on Hadoop vs
MPI/OpenMP on Beowulf. Procedia Computer Science, Volume 53, pp. 121-130.
Robinson, B. H., 2009. E-waste: An assessment of global production and environmental impacts.
Science of the Total Environment, Volume 408, p. 183–191.
Romanow, A. & Bailey, S., 2003. An Overview of RDMA over IP. CERN, Geneva, Switzerland,
Proceedings of the Workshop on Protocols for Fast Long-Distance Networks - The Internet Society.
Rossbach, C. J. et al., 2013. Dandelion: a Compiler and Runtime for Heterogeneous Systems.
Farmington, Pennsylvania, USA, Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles.
Sabharwal, M., Agrawal, A. & Metri, G., 2013. Enabling Green IT through Energy-Aware Software. IT
Professional - IEEE, 15(1), pp. 19-27.
Sandberg, A., Eklöv, D. & Hagersten, E., 2010. Reducing Cache Pollution Through Detection and
Elimination of Non-Temporal Memory Accesses. New Orleans, Louisiana, USA, International
Conference for High Performance Computing, Networking, Storage and Analysis - IEEE / ACM.
Satzinger, J., Jackson, R. & Burd, S., 2012. Introduction to Systems Analysis and Design: An agile,
iterative approach. 6th ed. Toronto: Cengage.
Saxena, S., Sharma, S. & Sharma, N., 2016. Parallel Image Processing Techniques, Benefits and
Limitations. Research Journal of Applied Sciences, Engineering and Technology, 12(2), pp. 223-238.
Schiesser, R., 2010. IT Systems Management. 2nd ed. Boston, MA: Pearson Education, Inc.
Seshadri, V., Mutlu, O., Kozuch, M. A. & Mowry, T. C., 2012. The Evicted-Address Filter: A Unified
Mechanism to Address Both Cache Pollution and Thrashing. Minneapolis, Minnesota, USA,
International Conference on Parallel Architectures and Compilation Techniques - IEEE / ACM.
Sharmilarani, D., Vinothini, K., Ramya, V. & Shobika, R., 2017. An Efficient Resource Aware
Scheduling Algorithm for Mapreduce Clusters. International Journal of Scientific Research in
Computer Science, Engineering and Information Technology, 2(2), pp. 517-523.
Shaw, M., 1980. The impact of abstraction concerns on modern programming languages. Proceedings
of the IEEE, 68(9), pp. 1119 - 1130.
Shvachko, K., Kuang, H., Radia, S. & Chansler, R., 2010. The Hadoop Distributed File System. Incline
Village, NV, USA, The Symposium on Mass Storage Systems and Technologies - IEEE.
Simon, H. A., 1996. The Sciences of the Artificial. 3rd ed. Massachusetts(Cambridge): MIT Press.
Smith, J. & Goodman, J., 1985. Instruction Cache Replacement Policies and Organizations. IEEE
Transactions on Computers, 34(1), pp. 234-241.
Speight, E., Shafi, H. & Bennett, J. K., 2000. WSDLite: a Lightweight Alternative to Windows Sockets
Direct Path. Seattle, Washington, USA, Proceedings of the conference on USENIX Windows Systems
- ACM.
Statista Inc, 2016. Satista - The statistics portal. [Online]
Available at: https://www.statista.com/statistics/272595/global-shipments-forecast-for-tablets-laptops-
and-desktop-pcs/
[Accessed 27 March 2017].
Statistic Brain Research Institute, 2016. Statistic Brain. [Online]
Available at: http://www.statisticbrain.com/computer-sales-statistics/
[Accessed 27 March 2017].
Stratton, J. A., Stone, S. S. & Wen-mei, H. W., 2008. MCUDA: An Effcient Implementation of CUDA
Kernels on Multi-cores. Edmonton, AB, Canada, International Workshop on Languages and Compilers
for Parallel Computing.
Suh, G., Rudolph, L. & S.Devadas, 2004. Dynamic Partitioning of Shared Cache Memory. The Journal
of Supercomputing, 28(1), pp. 7-26.

102

The WinSock Standard Group, 1997. Windows Sockets 2 Application Programming Interface, s.l.: The
WinSock Group .
Tom, E., Aurum, A. & Vidgen, R., 2013. An exploration of technical debt. The Journal of Systems and
Software, Volume 86, p. 1498– 1516.
University of Wisconsin-Madison, 2017. HTCondorTM Version 8.7.2 Manual. [Online]
Available at: http://research.cs.wisc.edu/htcondor/manual/v8.7/index.html
[Accessed 28 7 2017].
Venable, J., Pries-Heje, J. & Baskerville, R., 2012. A Comprehensive Framework for Evaluation in
Design Science Research. Las Vegas, NV, USA, International Conference on Design Science
Research in Information Systems - Springer.
Venable, J., Pries-Heje, J. & Baskerville, R., 2016. FEDS: a Framework for Evaluation in Design
Science Research. European Journal of Information Systems, 25(1), p. 77–89.
Ward, J. & Peppard, J., 2002. Strategic Planning for Information Systems. 3rd ed. New York: Wiley.
White, T., 2012. Hadoop: The Definitive Guide. 3rd ed. Beijing, Cambridge, Farnham, Köln,
Sebastopol, Tokyo: O'Reilly, Yahoo! Press.
Widmer, R. et al., 2005. Global perspectives on e-waste. Environmental Impact Assessment Review,
Volume 25, p. 436–458.
Wieringa, R., 2009. Design Science as Nested Problem Solving. Philadelphia, Pennsylvania,
Proceedings of the International Conference on Design Science Research in Information Systems and
Technology.
Wieringa, R., 2016. Design Science Methodology MIKS, Enschede, Netherlands: University of
Twente.
Xie, J. et al., 2012. Improving MapReduce Performance through Data Placement in Heterogeneous
Hadoop Clusters. Atlanta, USA, Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW) IEEE.
Youseff, L., Butrico, M. & Silva, D. D., 2008. Toward a Unified Ontology of Cloud Computing. Austin,
TX, USA, Grid Computing Environments Workshop IEEE.
Yu, J., Williams, E., Ju, M. & Yang, Y., 2010. Forecasting Global Generation of Obsolete Personal
Computers. Environmental Science & Technology, 44(9), pp. 3232-3237.
Zhang, W., Shi, D. & Li, L., 2012. The Design of the Underlying Network Communication Module
Based on IOCP. Communications and Information Processing: Communications in Computer and
Information Science, 289(2), pp. 17-24.
Zhao, D. et al., 2014. FusionFS: Towards Supporting Data-Intensive Scientific Applications on
Extreme-Scale High-Performance Computing Systems. Washington, USA, IEEE International
Conference on Big Data (Big Data) .

103

APPENDICES

APPENDIX A: DETAILED COMPARISON OF SURVEYED SYSTEM PROFILERS

DATA POINT

OpenMPI
hwloc / nwloc

v2.0.1
Windows

CPUID™
CPU-Z
v1.84.0

REALiX™
HWiNFO

V5.74

OpenHardware
Monitor
v.0.8b

Apache®
Hadoop
YARN
v2.8.0
Node

Manager*

CENTRAL PROCESSING UNIT

Brand Yes Yes Yes Yes No

Run-time
Speed

No Yes Yes Yes Yes

Instruction Set No Yes Yes Partial No

Model & Family Yes Yes Yes Yes No

Packages Yes Yes Yes Yes Yes

Cores Yes Yes Yes Yes Yes

CPU Threads Yes Yes Yes Yes Yes

CPU
Architecture

Yes Yes Yes Yes No

NUMA
Topology

Yes Yes Yes Partial Yes

APIC Binding Yes No Yes Yes No

APIC Type No Yes Yes Partial No

Clock Type No Yes Yes Partial No

CACHE TOPOLOGY

L1 Instruction
Size

Yes Yes Yes Partial No

L1 Data Size Yes Yes Yes Partial No

L2 Size Yes Yes Yes Partial No

L3 Size Yes Yes Yes Partial No

Associativity Yes Yes Yes Partial No

NUMA
Topology

Yes Yes Yes Partial No

RANDOM ACCESS MEMORY

Paging Size No No Yes No No

Physical Size Yes Yes Yes Yes Yes

Available Size No No Yes Yes Yes

Process
Maximum

No No No No Yes

Cache Line
Size

Yes Yes Yes No No

SECONDARY STORAGE

Disk Size No Partial Yes Yes Yes

Disk Free No No No Yes Yes

Process Start No No No No Yes

OPERATING SYSTEM

Version &
Edition

Partial Yes Yes Yes Yes

Service Pack No Yes Yes No No

Suite No No No No No

OS Architecture Yes Yes Yes Yes No

OS Threads No No Yes No Yes

Security
Context

Partial Partial Partial Partial Partial

NETWORK CONFIGURATION

Socket API No No No No No

Routing No No No No Yes

Protocol Stack No No No No Partial

Addressing Partial No Partial No Yes

Local Latency No No Partial No Yes

Path MTU Size No No No No No

104

APPENDIX B: DESCRIPTIVE OF SYSTEM PROFILING DATA POINTS

B1 Central Processing Unit

Brand – The CPU brand is vital in determining the individual features and functions

used for later platform profiling. To accurately reflect the hardware reality, CPU

manufactures often publish prescriptive processes and mechanisms to adhere to.

Run-time Speed – The reported CPU speed may be different to manufacturer’s factory

release speed, due to aftermarket configuration or speed stepping. The difference

between run-time and manufacturer intended speed, is frequently of interest. A

potential bottle-neck in performance.

Instruction Set – The detection of instruction set features provided by the CPU, are

important for parallelism opportunities. Especially SIMD and MIMD instructions are

regarded as advantages. The detection of virtual machine extensions or speciality

features, may indicate computational environmental constraints or prospects.

Model & Family – The model and family information of a processor may designate its

intended computer form-factor, such as desktop, server or mobile platform. The

information could potentially further be used to circumvent known CPU microcode

issues.

Packages – The number of physical CPU dies supported. The more the better. Whether

the CPU dies enable interaction, would be of programmatic concern.

Cores – The number of physical CPU processors supported per die. The number of

physical hardware threads onto which software threads may be associated.

CPU Threads – The number of logical processors supported per CPU core. Either the

same number as CPU cores or possibly double that number, dependant on hyper

threading. The total number of CPU threads, should typically match the OS detected

threads. A potential bottle-neck in performance.

CPU Architecture – The instruction set, maximum theoretical addressable memory and

register width supported by the CPU, meaningfully being either x86 or x64. The OS

may or may not have equivalent support.

105

NUMA Topology – The logical and/or physical processor topology could be different.

The addressable CPU constituents may be combined as autonomous entities, although

sharing the same or different physical underlying platform.

APIC Binding – The CPU addressable units or components, are enumerated and

referenced using the advanced programmable interrupt controller. Of initial interest

would be the bounded addressable CPU unit of the running software process.

Important information for shifting software threads across physical processors (affinity)

or setting software thread priority.

APIC Type – The advanced programmable interrupt controller type, indicates

extensibility of the CPU’s functional addressability. This would be important for NUMA

and CPU cache detection scenarios.

Clock Type – The precision of the exposed platform timings, as measured in clock

cycles per second, could be important for programmatic synchronization.

B2 Cache Topology

L1 Instruction & Data Size – The available storage at lowest level to the processor. The

more the better. Valuable information for planning a fine-grained caching strategy. Also,

of interest would be whether this storage is shared by other logical processors. A

potential bottle-neck in performance.

L2 & L3 Size – The level 2 and 3 caches, are normally unified caches that do not discern

between data or instructions. The more the better. Valuable information for planning

any coarse-grained caching strategy. Also, of interest would be whether this storage is

shared by other physical processors. A potential bottle-neck in performance.

Associativity – The cache associativity or mapping of cache entries to RAM, may be

used in optimizing a fine-grained caching strategy.

NUMA Topology – As CPUs can be logically combined to form autonomous entities,

the exposed caching structure could differ radically from the detected physical CPU

package topology.

B3 Random Access Memory

Paging Size – The unit data size for virtual memory management. The page size value

is stereotypically a variable in an I/O or cache management strategy.

106

Physical Size – The size of the physical RAM installed. Running processes share this

storage area. A potential bottleneck in performance.

Available Size – The amount of free RAM. A process could use this information in

determining the current primary storage load. A potential bottleneck in performance, as

virtual memory paging could initiate when physical RAM storage is depleted.

Process Maximum – The maximum addressable memory a process could claim. The

value includes the configured physical RAM and extending virtual storage areas.

Cache Line Size – The size of a cache block. Essentially a replica of line size value,

from the corresponding are in RAM. May be used in devising of a fine-grained caching

strategy.

B4 Secondary Storage

Disk Size – The secondary storage size. Typically a hard disk, network or solid state

drive.

Disk Free – The amount of free hard disk space. The available secondary storage

available to the process that initiated system profiling, could be of interest in assigning

computational workload. The value is contextualized to the storage quota limit of the

user initiating the profiling process.

Process Start – A process is initiated from within an executable file. The location of the

file may create a reference point for storage planning.

B5 Operating System

Version & Edition – The version and edition of the OS, is vital information in determining

holistic API compatibility for cross platform integration.

Service Pack – The service pack exposed by the OS might be important data regarding

the security stance and general functionality provided.

Suite – Besides the kernel, an accompanying suite mask and type mask, can identify

the additional OS components installed. The suite variable may well define the OS

class. Some examples of OS classes, amongst others include enterprise server, data

centre server, blade server, back office server, embedded or workstation.

107

OS Architecture – The hardware architecture supported by the OS kernel. The OS

architecture and the CPU instruction set architecture, should ideally match.

OS Threads – The OS utilizes logically addressable CPU units as processing

resources. Importantly, an obvious association between the hardware detected and the

OS reported processing units could be difficult to make. The factors causing the

phenomenon ranging from misconfiguration, license enforcement, NUMA

implementations, virtual machine instantiation, manufacturer provisioning or hyper-

threading scenarios.

Security Context – A process normally executes within the instantiated security context

of a user. The privilege level of the user would be a key parameter for realizing I/O

operations.

B6 Network Configuration

Socket API – The OS API available for socket operations, could expose appealing

features that may enhance network performance and throughput.

Routing – Knowledge of the inter-network connection points can aid in LAN isolation

and functional network topology planning. Plausibly, reduced latency and higher

bandwidth environments are shared by LAN participants within an isolated or reduced

broadcast domain. The information could be used to beneficially derive grid node roles

within a LAN.

Protocol Stack – The information regarding the network protocols supported, can

provide for flexibility and utility of network communications.

Addressing – Logical and physical network address resolution, may assist in LAN

isolation and network topology planning. The domain administrative context of

individual grid participants, could potentially be concluded.

Local Latency – The latency characteristics within an isolated LAN, can be used to

embed situational efficiencies within grid node roles.

Path MTU Size – The minimum aggregate size of the maximum transmission unit over

a network path. Used to advantage network I/O buffers and jumbo frames.

108

APPENDIX C: ARTEFACT SUNDRIES

C1 Sample Data Structure for Static System Profiling

PackageCount dd ? ; CPU Package count
TotalAPICs dd ? ; Logical addressable "Processors" / number of APIC's
TotalCores dd ? ; Total reported Cores (AMD might report more than actual)
TotalThreads dd ? ; Total reported Logical Threads
CoresperPackage dd ? ; Number of Cores per Package
ThreadsperCore dd ? ; Number of Threads per Core
LocalApicId dd ? ; Default APIC ID
;--
Stepping dd ? ; Speed step Technology
Model dd ? ; CPU Model number
Family dd ? ; CPU Family Number
InputValue dd ? ; Max function level supported
ExtendedValue dd ? ; Max extended feature supported
CpuSpeed dd ? ; Approx. CPU Speed in Mhz, timed algorithm reported
;--
OSCores dd ? ; OS Reported Core count
OSArchitecture dd ? ; Processor architecture of the installed operating system
OSPagesize dd ? ; Page size /granularity of page protection/commitment
CacheLine dd ? ; Cache Line size in bytes
AProcMask dd ? ; Active Processor Mask
PhysicalRAM dd ? ; Physical Installed RAM
AvailableRAM dd ? ; Available Installed RAM
ApplimitRAM dd ? ; Max Limit for application use
MemLoad dd ? ; Approximate percentage of physical memory that is in use
OSMajor dd ? ; OS Major version
OSMinor dd ? ; OS Minor version
OSSrvPackMaj dd ? ; Service Pack Major
OSSrvPackMin dd ? ; Service Pack Minor
OSSuiteMask dd ? ; Bit mask identifying the product suites on the system
OSProdType dd ? ; OS Product Type ex. WRKST, SERVER, DOMAINCNTLR
;--
L1_D_Cache dd ? ; L1 DATA cache size
L1_D_Share dd ? ; L1 DATA cache - number of threads sharing
L1_D_Assoc dd ? ; L1 DATA Associativity
L1_I_Cache dd ? ; L1 INSTRUCTION cache size
L1_I_Share dd ? ; L1 INSTRUCTION cache - number of threads sharing
L1_I_Assoc dd ? ; L1 INSTRUCTION Associativity
L2_Cache dd ? ; L2 Cache size
L2_Assoc dd ? ; L2 Associativity
L3_Cache dd ? ; L3 Cache size
L3_Assoc dd ? ; L3 Associativity
;--
DiskSize dd ? ; Process Storage Size (MB)
DiskFree dd ? ; Process Storage Free (MB)
;--
wsa_MaxMajor dd ? ; Winsock Maximum Major version supported
wsa_MaxMinor dd ? ; Winsock Maximum Minor version supported
wsa_IPv4Address dd ? ; IPv4 Local NIC address in Network format
wsa_IPv4Subnet dd ? ; IPv4 Local Subnet Mask in Network format
wsa_IPv4Gateway dd ? ; IPv4 Local Gateway address in Network format
wsa_IPv4NetID dd ? ; IPv4 Network ID address in Network format
wsa_MTU dd ? ; Maximum Transmission Unit size in bytes
wsa_RTT dd ? ; Round Trip Time (on MTU frame size)
wsa_GatewayMAC db 18 dup (?) ; Gateway MAC address (LAN unique isolator)
wsa_IPv4Address_R db 16 dup (?) ; IPV4 Local NIC address human readable - char limit 15
wsa_IPv4Subnet_R db 16 dup (?) ; IPV4 Local Subnet human readable - char limit 15
wsa_IPv4Gateway_R db 16 dup (?) ; IPV4 Local Gateway human readable - char limit 15
wsa_IPv4NetID_R db 16 dup (?) ; IPV4 Network ID human readable - char limit 15
;--
OS_VERSION db 35 dup (?) ; Windows OS Version Name - char limit 34
OS_TYPE db 25 dup (?) ; Windows OS Type Workstation / Server - char limit 24
Display_ADAPTER db 129 dup (?) ; First Primary Display Description attached to Desktop
OS_PROCPATH db 261 dup (?) ; Process Executable Path (*possibly truncated)
. . .

109

C2 Screenshot Output of System Profiling Module

110

C3 Screenshot Output of Client Module

C4 Screenshot Output of Server Module

