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ABSTRACT 

 
Organizations and the private individual, look to technology advancements to increase their 
ability to make informed decisions. The motivation for technology adoption by entities sprouting 
from an innate need for value generation. The technology currently heralded as the future 
platform to facilitate value addition, is popularly termed cloud computing. The move to cloud 
computing however, may conceivably increase the obsolescence cycle for currently retained 
Information Technology (IT) assets. The term obsolescence, applied as the inability to 
repurpose or scale an information system resource for needed functionality. The incapacity to 
reconfigure, grow or shrink an IT asset, be it hardware or software is a well-known narrative of 
technical debt. The notion of emergent technical debt realities is professed to be all but 
inevitable when informed by Moore’s Law, as technology must inexorably advance. Of more 
imminent concern however are that major accelerating factors of technical debt are deemed 
as non-holistic conceptualization and design conventions. Should management of IT assets 
fail to address technical debt continually, the technology platform would predictably require 
replacement. The unrealized value, functional and fiscal loss, together with the resultant e-
waste generated by technical debt is meaningfully unattractive. 
 
Historically, the cloud milieu had evolved from the grid and clustering paradigms which allowed 
for information sourcing across multiple and often dispersed computing platforms. The parallel 
operations in distributed computing environments are inherently value adding, as enhanced 
effective use of resources and efficiency in data handling may be achieved. The predominant 
information processing solutions that implement parallel operations in distributed environments 
are abstracted constructs, styled as High Performance Computing (HPC) or High Throughput 
Computing (HTC). Regardless of the underlying distributed environment, the archetypes of 
HPC and HTC differ radically in standard implementation. The foremost contrasting factors of 
parallelism granularity, failover and locality in data handling have recently been the subject of 
greater academic discourse towards possible fusion of the two technologies. 
 
In this research paper, we uncover probable platforms of future technical debt and 
subsequently recommend redeployment alternatives. The suggested alternatives take the form 
of scalable grids, which should provide alignment with the contemporary nature of individual 
information processing needs. The potential of grids, as efficient and effective information 
sourcing solutions across geographically dispersed heterogeneous systems are envisioned to 
reduce or delay aspects of technical debt. As part of an experimental investigation to test 
plausibility of concepts, artefacts are designed to generically implement HPC and HTC. The 
design features exposed by the experimental artefacts, could provide insights towards 
amalgamation of HPC and HTC. 
 
Keywords: 
Design Science Research, Grid Computing, Heterogeneous Platforms, High Performance 
Computing, High Throughput Computing, Technical Debt 
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CHAPTER ONE 
INTRODUCTION 

 
1.1 Background to Research Problem 

 

Organizations are aware that business intelligence is key to competitive advantage 

(Ward & Peppard, 2002; Schiesser, 2010; Bidgoli, 2016). The inquiries concerning 

business intelligence gathering exercises within the contemporary setting, notes 

scholarly agreement, in that organisations are increasing reliant on the ability to 

leverage data (Chen, et al., 2012; Dhar & Mazumder, 2014; Hashem, et al., 2015). How 

such business intelligence from data could be facilitated, may potentially be of critical 

interest to organisational decision makers. 

 

The mechanisms of business intelligence normally regard the utilization of tools and 

techniques to transform organizational data into useful information. However, the 

control, processing and analysis of these prospective data assets may require fresh 

doctrines in planning as well as implementation. Importantly awareness is required that 

traditional techniques for data manipulation and analysis, are known to be ineffectual 

in dealing with the realities of modern day organisational data landscapes (Katal, et al., 

2013; Hashem, et al., 2015). When working with data assets from which potential 

business intelligence might be gleaned, several native difficulties could be uncovered. 

Cognizance needs to be taken of the internal organizational capabilities, before 

designing platforms for modern data analysis and demanding workloads, as such 

capabilities may easily be exceeded (Hashem, et al., 2015). The size and properties of 

data are at the root of the problem. The major challenges uniformly originating from the 

growth rate and large varying types of data obtainable. In lieu of solutions towards 

effective business intelligence generation within an unconventional data or big data era, 

acquaintance with technologies that have the potential to mitigate obstacles in creation 

are needed. A technology that could produce or enhance capabilities on demand would 

arguably have direct fit with the organisational capacity problem. 

 

The term grid computing was first devised in the 1990’s to describe a paradigm by 

which on demand computing power could be obtained (Foster, et al., 2008). As demand 

dictates, multiple processing resources combine logically as a singular managed 

object. The resources and processing capacity of the effectively assembled grid object, 

may then easily surpass the capabilities of any individual or cooperative constituents. 

The activity of constructing the managed grid resource is frequently termed as 

clustering or creating a distributed computing platform (Foster, et al., 2008; Deelman, 

2010). Other appealing benefits obtained from the grid paradigm, are noted to include: 

better resource utilization, data federation and centralization of control.  
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The modern manifestation of on demand and distributed computing, is popularly known 

as cloud computing. Indeed, the technological base of current cloud environments are 

purposefully modelled after grid, distributed and clustered computing platforms (Foster, 

et al., 2008; Youseff, et al., 2008; Deelman, 2010; Reyes-Ortiz, et al., 2015). Given 

sufficient scale (i.e., the major semantic distinction between clouds and grids), on 

demand computing power is universally associated with the existing understanding 

around the topic of cloud infrastructure formation. The dynamic and enabling capacity 

generation, as facilitated by grid computing can subsequently also be mimicked by use 

of cloud computing. 

 

The organisational Information Technology (IT) function and private individuals alike, 

are increasingly adopting cloud based technological mechanisms to for-fill and 

augment their mandate (Chen, et al., 2012; Hashem, et al., 2015). Conceivably the IT 

strategy in an attempt to align with business, would therefore also be looking to 

popularized cloud technologies as an enabler of business intelligence. The adoption of 

cloud technologies has inopportunely engendered the creation of a veritable 

terminology zoo to describe any discreet organisational data endeavours. The 

frequency of such cloud jargon may serve only to undermine focus and add complexity 

to the business intelligence building issue. Of interest rather, would be the extensive 

dialogue of benefits gained from the move to cloud and the use of platform aided data 

technologies. Foremost of these value propositions are: 

• Exploiting economies of scale (Foster, et al., 2008) 

• Enhanced fiscal flexibility, based on per unit purchase choices (Foster, et al., 2008) 

• High speed processing, produces insights more rapidly (Dobre & Xhafa, 2014) 

• High volume of data throughput, produces higher accuracy in analysis (Chang & 

Wills, 2015) 

• Capacity building to deal with exponential growth and storage of data (Gupta, 2015) 

The benefits of the cloud computing also transcend business, to include academic 

research (Deelman, 2010; Masud, et al., 2012; Dobre & Xhafa, 2014; Reyes-Ortiz, et 

al., 2015; Leetaru, 2016). The same benefits targeted by business, would therefore 

have equivalency and import for academia. Assuredly, the prevalent trends of 

incentivized discounts, research grants and unprecedented ease of access to large 

data sets would appeal to researchers. Inferences of apprehension regarding the move 

to cloud may however be noted in the research literature. The peer-reviewed concerns 

predominating around the adoption of cloud technology, before wide-ranging maturity 

and internal efficiencies of intended functionality are achieved (Dhar & Mazumder, 

2014; Grolinger, et al., 2014; Hashem, et al., 2015; Botta, et al., 2016).  
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The maturity, effectiveness and efficiency theme is arguably not new within the field of 

IS research, but may require contextual scrutiny. The IT management discipline, per 

illustration, uses indicators of maturity, effectiveness and efficiency to rectify or address 

gaps in IT and business alignment (Ward & Peppard, 2002; Schiesser, 2010; Bidgoli, 

2016). The subject of cloud adoption trends and their impacts, given these indicators, 

suggestively imparts the importance of alignment before adoption. The Gartner 

research group predicts that the majority of IT spend by the year 2020 will be on cloud 

and related services (Gartner Inc., 2016). Of looming concern would be the non-aligned 

IT function scenario, where business demands the move to cloud or eliminates the 

cloud purchase choice. 

 

Even when disregarding IT alignment, deductive reasoning suggests that tangible 

consequences must somehow manifest should future ICT budgets be diverted towards 

the cloud. In the immediate aftermath of cloud adoption, the reconfiguration of existing 

hardware and software architectures would certainly seem inevitable. Structurally not 

all IT resources might find redeployment in the cloud technology environment, which 

could result in technical debt (Martini, et al., 2014). The term technical debt describes 

the inability of IT resources to be grown, shrunk or reconfigured, consequently resulting 

in possible organizational dysfunction. The failure of a resource to be reconfigured or 

scaled could potentially undermine the business processes being supported. The 

cause of technical debt is provided as being some form of loss, due to non-holistic 

decisions made in support of short-term goals, with disregard for long-term outcomes 

(Martini, et al., 2014). Lack of plans that address common cloud technology pitfalls 

when juxtaposed with existing resource allocation may lead to such potential loss. The 

existing computer applications and underlying infrastructure would need either to be 

reconfigured or made obsolete to facilitate cloud migration. Innovative solutions would 

be required to address the likelihood of abrupt obsolescence. 

 

The cloud model in the setting of data analytics requires scaling of computing 

infrastructure, which is multi-node and typically multi-processor. In contemporary data 

analysis, a given problem domain is frequently subdivided between network nodes, 

which in turn independently or cooperatively process instructions and data (White, 

2012; Dobre & Xhafa, 2014; Doulkeridis & Nørvåg, 2014). Once individual node 

processing is complete, the result may be unified centrally, producing the information 

base for the decision-making process. On examination, two distinct and divergent grid 

application models are therefore classifiable (Foster, et al., 2008; Dobre & Xhafa, 

2014): High Performance Computing (HPC) and High Throughput Computing (HTC).  
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Both HPC and HTC models have inherent value in application, though their approach 

to computation and data storage differ radically. HPC provides for tightly coupled 

parallel runs per computation node, in scenarios where data and instructions have been 

localized (Deelman, 2010; Dobre & Xhafa, 2014; Reyes-Ortiz, et al., 2015). The HTC 

application model could potentially support both tightly and loosely coupled parallel 

runs per computation node, in scenarios where data and/or instructions are externally 

sourced (Foster, et al., 2008; Youseff, et al., 2008; Deelman, 2010; Shvachko, et al., 

2010; Montero, et al., 2011; White, 2012; Reyes-Ortiz, et al., 2015). The word 

parallel(ism) provisionally referring to either the computer processor or networked 

node-based interaction capabilities of an infrastructure platform. The HPC model 

derives its efficiencies by attempting balanced targeting of parallelism, per computation 

node, at processor level. To gain efficiencies, the model is therefore cognizant of higher 

orders of parallelism at the node level. The HTC model contrasts by delivering better 

data management capabilities amongst participant nodes. In processor-based 

parallelism, a single node may have multiple physical processors. Each physical 

processor package or die, may be further deconstructed to reveal central processing 

units (CPU’s) or cores. A processor package may have multiple cores that 

independently or cooperatively compute towards a given solution (Intel Corporation, 

2016). Modern CPU’s additionally contain parallelism at the data and instruction level, 

termed vector instructions they gain processing speed-ups by executing a single 

instruction that simultaneously operates on multiple data streams per clock-cycle. 

Vector parallelism and facilitating instruction sets, when used in conjunction with multi-

core CPU architectures, are known to significantly increase processing throughput 

(Akhter & Roberts, 2006; Jeong & Lee, 2012; Sabharwal, et al., 2013; Reyes-Ortiz, et 

al., 2015; Saxena, et al., 2016). It ought to be evident that technologies that provide for 

efficient data processing, therefore be designed with mindful and inherent parallelism 

beyond the multi-node setting. Importantly, parallelism must be reflected in the design 

of an effective and thus generalizable HPC or HTC solution framework, if any 

reasonable uptake of such technology is to be expected (Reyes-Ortiz, et al., 2015). The 

effects of ignoring inherent parallelism could be the underutilization of processing and 

data resources, which could potentially weaken the value assertion of data analytics. 

Literature has long shown that data analytics technologies are missing the opportunity 

to holistically incorporate value-adding features. The remedial recommendations in 

topical research, overwhelmingly suggests frameworks that could ultimately lead to 

hybridized versions of HPC and HTC (Alverson, et al., 1992; Montero, et al., 2011; 

Chang, et al., 2014; Dobre & Xhafa, 2014; Doulkeridis & Nørvåg, 2014; Grolinger, et 

al., 2014; Zhao, et al., 2014; Mantripragada, et al., 2015; Nelson, et al., 2015; Reyes-

Ortiz, et al., 2015; Saxena, et al., 2016).  
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An additional hindrance to value add, comes from the fact that software developers 

predominant in industry, are mostly incapable of programming for parallelism 

(Darlington, et al., 1993; Berlin, et al., 2004; Lee, 2006; Herlihy, 2010; Newburn, et al., 

2011; Breivold & Crnkovic, 2014; Saxena, et al., 2016). Programming skillsets that 

disregard parallelism would consequently negate possible benefits as originally 

envisioned in the endeavour. To alleviate the shortcomings in skillset, milieu solutions 

abstract programming languages via application programmable interface, additional 

libraries or run-time script interpreters. The solution then becomes reliant on 

compilation interfaces and background services that add additional processing 

overhead. Compounding the problem is that it might not be reasonably expected for 

software developers, skilled in parallelism or not, to target a single binary executable 

for heterogeneous hardware platforms (Berlin, et al., 2004; Newburn, et al., 2011). 

Developing for homogeneous platforms, would limit future agility and ultimately benefit 

potential. The selected homogenous platform would dictate the development, testing, 

scope, operational and maintenance deployment environment of a utilitarian solution 

(Satzinger, et al., 2012). Current solutions then also further abstract the hardware and 

storage platform of the network operating system, to facilitate heterogeneous platforms. 

 

The potential to make informed decisions from structured and unstructured data with 

unprecedented speed is assuredly desirable for business and the scientific researcher 

alike. The information sourcing and processing requirements necessary for decision 

making, in the reflected context of the cloud and big data value proposition, have 

however several obstacles to realization (Deelman, 2010; Kraska, 2013; Dhar & 

Mazumder, 2014; Grolinger, et al. 2014, Hashem, et al., 2015). During a 

comprehensive literature review of cloud computing, the open research problems that 

effect cloud adoption was identified as (Hashem, et al., 2015): regulatory governance 

concerns, legal issues, scalability, privacy, availability, data quality, data heterogeneity; 

data integrity and data transformation. Of notice are the problems around scalability, 

availability and data heterogeneity, which functionally have bearing on data analytics 

and HPC or HTC. Scalability speaks to the ability to grow or shrink the data storage 

and infrastructure, as demand or need requires (Schiesser, 2010; Martin, et al., 2014; 

Hashem, et al., 2015). Availability, defined as having resources available to authorized 

entities at the time of demand (Schiesser, 2010; Ciampa, 2015). Current computational 

infrastructures find it problematic to scale data storage and platform, whilst also 

maintaining availability (Deelman, 2010; Martin, et al., 2014; Hashem, et al., 2015). The 

mitigations of fault tolerance and various forms of redundancy have been the mainstay 

solutions to the availability issue in the past. However, when coupling availability with 

scalability, non-trivial outcomes may be assured.  
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The heterogeneity of data refers to the characteristics of data begotten from multiple 

sources. The characteristics of heterogeneous data would present as having different 

type and size, as well as data quality attributes (Che, et al., 2013; Hashem, et al., 2015). 

What is more, heterogeneous data has inconsistency in representation. The 

operationalization of activities that function on heterogeneous data would notably be a 

technical challenge. Feasibly however, programmable solutions that are informed by 

the application purpose could be found for specific heterogeneous data environments. 

 

1.2 Research Problem 
 
The move to cloud-based computing could demand structural IT environmental 

changes leading to substantial amounts of technical debt. The future value proposition 

of data management and analytical solutions might be undermined by inherent 

inefficiencies of abstraction due to compensating factors. The existing design solutions 

that incorporate both high performance computing and high throughput computing are 

not necessarily generalizable. 

 

1.3 Research Aim 
 
The research aim is to create a software artefact, which could provide insights into the 

design environment of a generalizable grid implementation. The artefact should 

amalgamate high performance computing and high throughput computing, whilst 

addressing future technical debt. 

 
1.4 Research Question 

 
Could innovative application design, facilitate the repurposing of technical debt as grid 

implementations? 

 

1.5 Research Sub-Questions 
 

1. What hardware and software architectures will constitute the most probable 

sources of technical debt? 

2. What hardware information is required to target grid implementations 

programmatically? 

3. How may hardware and network platforms be enumerated for the grid? 

4. What is the predominate functionality exposed by current grid technologies? 

5. What enhanced functionality is exposed by the designed artefact? 
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1.6 Objectives 
 

1. Ascertain the contemporary architectures at risk of technical debt accretion 

2. Determine programmable ingredients that would facilitate diverse hardware 

integration into potential grid platforms  

3. Establish a base line of current utility and extents as begotten from existing grid 

solutions 

4. Measure a candidate design artefact’s utility and extents against the baseline, 

highlighting efficacy at technical debt reduction 

 
1.7 Envisioned Contribution 

 
The study aims to contribute theoretical and applied understanding, by designing an 

innovative software artefact to be used in the grid environment. Design outcomes are 

proposed to facilitate theory enhancements for the body of knowledge. The artefact 

itself should create opportunity or alternative for entities facing technical debt issues. 

 

1.8 Research Methodology 
 

The research initial ontological stance is objectivism but would not exclude an 

evolutionary prospect of pragmatism over the research timeline. 

 

The term objectivism means that there is an independent reality that may be understood 

by investigating the laws that govern it (Neuman, 2011; Bryman, et al., 2014). Equally 

pragmatic values are not discarded as research investigations may lead to new insights 

within the workings of the perceived reality, which when practically applied, may change 

the understanding of the phenomenon under investigation (Neuman, 2011; Bryman, et 

al., 2014). The research epistemology is principally identified as positivism. Yet the 

philosophically purest interpretation of positivism is not expected to be adhered to as 

software artefact building and evaluation activities, are not synonymous with the 

epistemology. 

 

A reductionist approach, which investigates the smaller constituent components of 

larger phenomenon is anticipated. Only deductive factual observation and quantifiable 

truths are of interest. The validity of research findings made are paramount in adding 

academic value, therefore quantitative data would be collected and analysed. 

 

The research paper’s focus is on unravelling an impending problem. An expectantly 

reproducible exploration, drawing from contemporary theory across multivariate 

research domains could speculatively provide new understanding. For these reasons 
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the Design Science Research (DSR) paradigm, subordinate strategies, evaluation 

criteria and methods are implemented. 

 

1.9 Thesis Organisation 
 

The remaining balance of the research paper is ordered as follows: 

 

Chapter 2, at first provides inclusion rational and grounding guidelines for survey 

literature selection. The subsequent narrative underpins and explores the technical 

debt phenomenon as an outflow of cloud adoption. To delay the burden of technical 

debt and e-waste, the repurposing of infrastructure, hardware and software assets are 

suggested. Accordingly, the research investigation initially identifies probable future 

technical debt platforms. The identified platforms, are to be the subject of scalable HPC 

and HTC grid solutions as alternative to potential obsolescence. The nature of 

parallelism as well as heterogeneity, within HPC and HTC is found to be problematic in 

literature. Successive research inquiries, delve deeper into the inherent parallelism and 

heterogeneity of computing platforms. During the course of such inquiries, concerted 

efforts are made to consistently provide relevant fit for HPC and HTC environs. The 

understanding generated, should clarify difficulties and suggest ingredients that 

facilitate an effective and efficient collaborative computing platform. In brief, an atomic 

examination of a hypothetical HPC and HTC grid node is undertaken. Starting with the 

application’s interactions with the operating system, a holistic case for reduced 

abstraction may be conceived. Scrutinizing the hardware, software, network and 

environmental characteristics of a potential grid participant, could provide insights 

towards how improved computational efficiency and effectiveness may be achieved. 

 

In Chapter 3, the Design Science Research paradigm, its subordinate strategies, 

processes and methods, together with artefact evaluation are discussed in detail. The 

quantitative data collection methods, metric characteristics and analysis thereof are 

explained. 

 

Chapter 4 describes the experimental artefact build environment, as well as the 

modular and iterative design endeavour. The design elements and constructs 

developed, are independently compared with similar technology, theories or schemes. 

 

In Chapter 5, the design artefact is experimentally instanced and then rigidly analysed 

for utility and performance in operation. The discussions and findings made, are 

presented in a conversant but clear manner. Innovations exposed by the artefact’s 

integral design, is emphasized for consideration in enhancing the body of knowledge. 
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To end with, Chapter 6 summarizes the research contribution and suggests avenues 

of future work. 

 

1.10 Chapter Summary 
 

In this chapter, the salient problems faced in building business intelligence within a 

modern day data analytical environment was initially deliberated. A major concern for 

business intelligence building, was identified as dealing with capacity shortfalls. On- 

demand computing capacity generation, as provided by the distributed computing 

paradigm, could facilitate a potential solution to the capacity problem. Revealingly, 

entities are now increasingly looking to cloud technologies to provide such on-demand 

services. 

 

The benefits that may be gained from the cloud and big data analytics, assuredly pose 

an attractive value proposition for organisations and the private individual alike. 

However, the move to cloud could increase the technical debt exposure and 

infrastructure obsolescence cycle for currently retained IT assets. An obligation is 

engendered to seek repurpose of IT assets, in a manner that remains aligned with the 

organisational need. Creating on demand grids from current and legacy IT assets, in 

the form of HPC or HTC computing platforms, could have potential fit to the immediate 

alignment issue. 

 

Further discussions provided insights into the contrasting nature of HPC and HTC. The 

potential efficiencies for parallel computation at participant node level is a desirable 

aspect of HPC. Then also the cooperative data handling, scalability and fault tolerance 

found in HTC appeals. The surveyed literature overwhelmingly calls for a best of both 

worlds approach to HPC and HTC, though on reflection significant obstacles to the data 

analytical value proposition remains.  
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CHAPTER TWO 
LITERATURE REVIEW 

 
The research literature choice was informed by availability of the originally authored 

and peer reviewed documents in their entirety. The selected papers had to conform to 

the specific keyword domains and supplementary extents, as highlighted in the 

research endeavour. Popular scholarly search engines, IS conference proceedings and 

journals were employed as utility to acquire articles of interest. Only multi-cited or 

considered seminal author works were designated for inclusion within the review. 

Where required, additional technical specification or clarification was obtained from 

official organizational websites, white papers and tertiary educational textbooks. The 

rationale and need for secondary sources, stem from the fact that the research 

endeavour encompasses multiple diverse fields of academic study. The contained 

research primary and secondary domains within the review have been organized in 

Table 1. It should be noted that a definitive case of previous academic research having 

been undertaken to incorporate all comprised research domains, could not be made 

using prevailing resources. 

 

Table 1 Research domains that inform literature choice 

Primary Domains  Sub Domains 

Design Science Research Research and Systems theory 

Grid computing & Heterogeneity Abstraction 

Application environments 

Cache topologies and management 

CPU topologies 

Network socket environments 

Inter process communications 

Operating Systems 

Parallelism 

Security contexts 

Software optimization 

High Performance Computing Message Passing Interface 

High Throughput Computing Distributed File Systems 

Fail-over and fault tolerance 

Generic storage 

Remote Procedure Call 

Technical Debt  E-waste 

Strategic information systems 
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2.1 Literature Study Selection Protocol 
 
Preliminary results for article selection were obtained via search strings written in the 

English language, as inputted into online search engines and academic databases. 

Predominant database sources for articles have been presented for perusal in Table 2. 

The search strings comprised unary or combinatorial keywords as identified within in 

the research undertaking. The possibility of keyword alternate spelling or synonymic 

use was explored and actioned for pertinent relevance. 

 

Table 2 Survey database sources 

Database Source  
(EBSCOhost / Google Search / Google Scholar / Sage journals) 

% in use 

Institute of Electrical and Electronics Engineers (IEEE) 35% 

Association for Computing Machinery (ACM) 18% 

Springer 7% 

Elsevier 7% 

Other 33% 

 

As part of initial selection, foundation articles had to expose best fit within the principles 

of peer review, contemporary authority and research domain bearing. Where possible, 

supportive literature reviews or assessments across discreet domain body of 

knowledge areas were sought to reveal additional articles of interest. The need for 

cross sectional supporting literature was deemed important, as justification for such 

could be established. Per illustration, it was recognized that title or keyword matching 

did not continually provide relevant papers for the selection process. 

 

Nevertheless, only freely available and full text papers were eventually promoted for 

scrutiny. The explicit research applicability was determined by examining the article 

authors’ abstract and closing statements. The preliminary papers obtained were then 

categorized by extent and consequently independently investigated. Within an 

academic domain extent, author viewpoints and recommendations from isolated 

investigations were mapped for consensus, enhancement or divergence. 
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The examinations conducted per isolated article reviewed, in certain instances 

produced supplementary atomic domain principles which required external 

enhancement. As shown in Figure 1, a sub process for selection was initiated in such 

circumstance, to augment core concepts or contextualize foundation narratives. The 

use of technical white papers, academic courseware and brand official websites were 

not excluded as instrument of such enhancement. 

 

 
The additional sources acquired by means of the sub process, were vetted to satisfy at 

least one of the following conditions: 

• Multi-cited in topical academic literature 

• Tertiary educational courseware (undergraduate or above level) 

• Technical reference work or industry white-paper 

• Internet based, official product website article 

 
The overarching consideration for secondary sourced papers, regardless of the 

gauging qualification being the official or normative sanction of such material. The need 

to lend validity to claims made by imposing selection criteria on secondary sourced 

articles was perceived as warranted in reducing possible shifts with regard to burden 

of proof. 

Figure 1 Literature selection logic process 
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2.2 Technical Debt 
 

2.2.1 A Historic Perspective on Technical Debt 
 
The term Technical Debt, was first coined via an article in 1992 by Ward Cunningham 

titled: “The WyCash Portfolio Management System. OOPSLA’ 92 Experience Report”. 

Originally, the term technical debt is used by Cunningham as a metaphor. An allegory 

is generated to describe how stopgap actions targeting quality may impact holistic 

system lifecycles (Brown, et al., 2010; Klinger, et al., 2011; Martini, et al., 2014). The 

induced speed of development that marginalizes quality considerations is at the heart 

of the matter. Organizational pressures advocate quick win conditions that may weaken 

problem identification, investigation and analysis, design and development rigor. An 

organization plausibly perceives that cost and resource gains may be achieved by 

reducing the system’s development effort and schedule. The decrease of effort and 

time associated with the endeavour, should directly constitute cost savings. However, 

the reality is, that similar to actual financial debt scenarios technical debt could arise. 

The organization would need to service the debt of maintaining and rectifying the low 

quality or faulty system as a result (Brown, et al., 2010; Klinger, et al., 2011; Martini, et 

al., 2014). The long term consequences for spontaneous operational or tactical actions, 

however originally defensible, may need to be considered. In this context, the debt 

metaphor has found popular contemporary traction, as it provides a collective 

understanding of the implications for rushed or ill-conceived decision making. 

 

The main contributors of technical debt are often the non-technical stakeholders 

(Klinger, et al., 2011). Management decisions concerning financing and resourcing of 

system products are prepared without understanding the long-term implications of 

technical debt creation. The communication gap between technical and non-technical 

stakeholders then exacerbate the situation, by not articulating the implications and cost 

of incurring technical debt. 

 

A mutual understanding of the term debt by both engineers and management, should 

ideally act as an enabler (Brown, et al., 2010; Klinger, et al., 2011;Tom, et al., 2013). 

The universal concept and implications of financial debt are typically well understood 

by all stakeholders. We take on debt naively or on purpose, but the debt needs to be 

paid sooner or later. The sooner we can service the debt, the less influence it has on 

our lives. The debt narrative may then be extended to relate to information systems, 

allowing debate amongst stakeholders.  
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The discussions generated from using a focused terminology such as technical debt, 

may reveal numerous topical aspects for consideration. As an example, consider a pre-

development scenario. The technical debt features deliberated could very well provide 

inputs into pending venture decisions. In a post-development scenario, identified 

technical debt issues may be traced backwards to flawed conception. Demonstratively 

both view contexts provide information to stakeholders, which may enhance 

understanding and accumulate knowledge towards augmenting processes or 

organizational business intelligence. Several discourse benefits are highlighted for 

additional clarity (Brown, et al., 2010; Klinger, et al., 2011; Tom, et al., 2013): 

• Discussion facilitates wider stakeholder involvement from all organisational 

spheres, revealing possible sources of technical debt that might otherwise lead to 

sub-optimal decision making 

• Possible escalated total cost of ownership of a system can be identified early on 

• Discussion generated, may expose currently unforeseen complexity in integration 

with existing systems that has bearing on the scope or resulting agility of the 

proposed system 

• Improper business cases for systems may be pre-emptively discarded by 

quantifying financial implications of possible technical debt 

 

Notably it should be understood that technical debt is fundamentally inevitable. A 

system would carry initial and residual quantities of technical debt, even after due 

diligence conceptualization, development or maintenance expenditure (Martini, et al., 

2014). The repercussions then are that cumulatively over time and across the 

organization’s system entities, the technical debt would eventually reach crisis 

proportions. Some technical debt may even have been entered into on purpose. The 

technical debt intentionally created for situations where the organization wanted to 

advance opportunities it may not have otherwise been able to afford (Klinger, et al., 

2011). The crisis or tipping point descriptive can be important for continual 

organizational awareness in regards technical debt. 

 

Principally the descriptive of technical debt could be used to galvanize support from 

stakeholders to ensure long-term value is generated from information technology 

resources on a persistent basis. At the outset the term technical debt, as described by 

Cunningham, was meant to refer to software development environs (Brown, et al., 

2010; Klinger, et al., 2011; Martini, et al., 2014). The technical debt payable, due to 

non-holistic decision making since Cunningham’s original publication, has however 

been found to be rather more multi-dimensional.  
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2.2.2 The Contemporary Technical Debt and the E-waste Link 
 
The impetus by contemporary technical debt researchers is to extend the terminology 

understanding to a more comprehensive ecological form (Tom, et al., 2013; Betz, et al., 

2015; Ernst, et al., 2015). Topically, an argument may be made that after all software 

executes on hardware and supporting infrastructure. To address the absence of a wide-

ranging and academically sound scope for technical debt, a comprehensive taxonomy 

was proposed by Tom et al. (2013). Primarily the taxonomy is meant to be used as a 

technical debt exploratory framework. Elements listed by the Tom et al. (2013) 

taxonomy, consists of: dimensions, attributes, precedents and outcomes. The universal 

dimensions of technical debt are identified as: code, design and architecture, 

environment, knowledge distribution and testing (Tom, et al., 2013). Each dimension 

mentioned in the list, containing attributes of interest. The matrix when formed 

accordingly with the remaining elements, provides exploratory information between 

technical debt components and ultimately elaborate towards probable outcomes. As 

such, the environmental attributes when measured, may reveal additional debt burden 

which when factored provides for a better total accrued technical debt picture. In 

practice when considering hardware as an example, the obligation is then to also 

scrutinize the infrastructure and supporting applications for architectural, environmental 

or sustainability debt (Tom, et al., 2013; Betz, et al., 2015; Ernst, et al., 2015). 

 

The functional demands influencing software over time will speed the eventual 

obsolescence of the hardware architecture that currently supports such (Fitzpatrick, et 

al., 2014; Remy & Huang, 2015). It is known that obsolescence is unavoidable in most 

cases as technology would continually advance. Remarkably, contributing factors cited 

for hardware obsolescence have both planned and unplanned associations. Planned 

obsolescence is informed by the effects of Moore’s Law regarding the decrease in 

hardware observable lifecycles, due to technological advancement (Widmer, et al., 

2005; Blevis, 2007;  Remy & Huang, 2015). Unplanned obsolescence is importantly 

conversant towards flawed or inadequate design as a major contributor to the formation 

of hardware obsolescence (Blevis, 2007; Betz, et al., 2015; Remy & Huang, 2015). 

 

Flawed or inadequate design and related decision-making inferences, have perceptible 

equivalents in the technical debt arena (Tom, et al., 2013; Betz, et al., 2015). Whether 

it be planned or unplanned obsolescence, the design of the information technology 

solution is incomplete without due consideration as to what would become of the 

system objects after loss of originally intended functionality (Blevis, 2007; Betz, et al., 

2015; Remy & Huang, 2015). An entire field of academic research has evolved to study 

the obsolescence phenomenon more closely.  
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Academia use key words such as e-waste, short form for the word pairing electronic 

waste, to describe their efforts in the obsolescence arena. Importantly the e-waste 

generated from hardware retirement has long been viewed as an imminent global 

environmental threat (Widmer, et al., 2005; Blevis, 2007; Robinson, 2009; Fitzpatrick, 

et al., 2014; Betz, et al., 2015; Remy & Huang, 2015). The scholarly e-waste research 

focuses on causes, main contributors towards, physical outcomes and viable solutions 

to what is in fact literally an electronic garbage creation problem. Hardware and 

software are inextricably linked in the obsolescence cycle (Blevis, 2007; Robinson, 

2009; Tom, et al., 2013; Betz, et al., 2015). An argument may be made that e-waste 

generation is a natural outflow of technical debt. Ill-conceived decisions around 

software have real physical outcomes in the form of hardware objects that may be 

unable to sustain functionality as intended. 

 

Proposed solutions to technical debt, like the phenomenon itself, have multi-

dimensional characteristics in literature. As an example, consider a specific and 

recurring theme in the code dimension of technical debt regarding the software 

development and maintenance setting. The specific technical debt solution suggests 

the continuous refactoring of code. The word refactoring, meaning the rewrite of system 

source code without influencing the intrinsic system’s behaviour or functionality. The 

refactoring exercise itself however has complex proportions that impact the 

effectiveness of the technical debt reduction endeavour (Brown, et al., 2010; Martini, et 

al., 2014; Ernst, et al., 2015). Consider an additional example eluded to earlier, the 

technical debt solutions in topical literature which specifically address hardware 

concerns are initially found to be sparse or non-existent. On closer scrutiny however, 

technical debt articles promote the key dimensions of architecture and environment to 

encompass hardware objects (Tom, et al., 2013; Martini, et al., 2014; Ernst, et al., 

2015). 

 

The complexity generated when extruding all the dimensions of technical debt as 

provided for in literature, then builds conceptual appreciation for its non-trivial 

landscape. In mitigation of complexity, Martini et al. (2014) contends that all technical 

debt literature largely focuses around understanding the root causes, whilst attempting 

to reduce or delay the burden of payment.
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The motivation around research aswell as contextual issues incurred within the subject 

matter of e-waste and technical debt have been found to be strikingly similar. 

Importantly, the proposed solutions to e-waste predominantly include (Blevis, 2007): 

promoting renewal and reuse together with the ability to link invention with disposal. 

The e-waste justification of promoting renewal and reuse, imitates the technical debt 

concept of refractoring. Linking invention with disposal as described in e-waste, has 

connotations of technical debt’s ability to perform traceability to flawed design. The 

milieu of subject matter for both technical debt and e-waste, may be mutually inclusive. 

As to re-iterate this connection, Betz et al. (2015) draws special significance to human 

social responsibility around technical debt creation. The design decisions around 

information systems must consider sustainability or sustainability debt as a subset of 

the technical debt metaphor (Betz, et al., 2015). An ill-judged concession on information 

system design, could equate to compromising future generations in the form of e-waste. 

The technical debt phenomenon is consequently, amongst others not just a software 

development, management or process problem but also an ethical one. 

 

The subscription to a more fixated definition of technical debt may be appropriate, 

particularly given its interconnected relationship with e-waste. Contemporary technical 

debt research articles reveal that a de facto definition for technical debt has as yet not 

been adopted. Due in part to the multi-dimensional nature of technical debt 

phenomenon, discussion in literature continues to redefine or augment the metaphor 

(Brown, et al., 2010; Klinger, et al., 2011; Tom, et al., 2013; Martini, et al., 2014; Betz, 

et al., 2015). To avoid ambiguity, the term technical debt would non-prescriptively 

henceforth describe: 

 

The inability of information technology resources to be reconfigured or scaled due to 

short term non-holistic decision making, without regard for long term outcomes leading 

to potential loss. 

 
Initially, the derived definition should acknowledge the legacy perspective of what is 

undoubtedly known and understood to be technical debt. The primary aspects 

pertaining to people and their decisions with resultant tangible impacts needs to be 

reproduced. Moreover, the definition should apprise that the scope of technical debt 

contains amongst others, both the hardware infrastructure and software facets. Lastly 

the possibility of loss narrative, should provide motivation to potential stakeholders that 

the product of the debt metaphor may well be negative and thus of concern.  
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Academic literature surveyed does provide credence to the theory that e-waste would 

be produced on a near exponential scale within the next decade (Dwivedy & Mittal, 

2010; Yu, et al., 2010; Petridis, et al., 2016). The proportional metric of e-waste 

production as an outflow of technical debt is currently indistinct. What is clear though, 

is that the speed at which hardware obsolescence is occurring may be caused by ever 

decreasing computer system lifecycles (Petridis, et al., 2016). Given current trends in 

ICT, it may be possible to hypothesize the extents of technical debt’s physical outflows 

by investigating historic and predictive statistical data. 

 

2.2.3 Current and Future Sources of Technical Debt 
 

As shown in Figure 2 & 3, the initial thriving global computer sales market at the 

beginning of the century appears to now be in steady decline. The cause of the 

degeneration observed could justifiably be argued to be multivariate. The generation of 

plausible arguments would however require qualification by foundational principles. 

 

 

 

To create a sound premise as to factors driving market environments, the use of 

Michael Porter’s Five Forces Model is widely advocated (Grundy, 2006; Bidgoli, 2016). 

Well accepted by academia and practitioners alike, Porter’s model provides for the 

analysis of market environments to facilitate understanding of underlying influences. 

The strategic abstraction and analysis of the market environment by use of the model, 

should provide insights that could enhance decision making.  

Figure 2 Historic computer sales data – inclusive of servers 

(adapted from Statistic Brain Research Institute, 2016) 
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Applying Porter’s model in its original form to the observed global computer sales data, 

may create six immediate theoretical scenarios as shown in Table 3, which could 

explain the current downward trend. 

 

Table 3 Evaluation of computer market data 

1. Product saturation has been realized 

2. A change in buyer behaviour has manifested 

3. Affordability of the product has reduced buyer uptake 

4. Reduced product or aggregate resulted in reduced sales stock 

5. Substitute products have been introduced or technology shift has occurred 

6. Rivalry amongst competitors have strategic product swing dynamics 

  

Figure 3 Computer shipment forecasts world wide 

(adapted from Statista Inc, 2016) 
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Presumptively the first four derived theoretical scenarios may however be discarded as 

major contributors to the decline in global computer sales. In scenario 1, the known 

ubiquitous nature of computing as well as the growing demand for computing within an 

information age should preclude imminent saturation (Yu, et al., 2010; Bidgoli, 2016; 

Petridis, et al., 2016). An argument may be made for scenarios 2, 3 & 4 as possible 

bases, however it might not be able to adequately explain the measured trend of the 

decline observed. If such influences were apparent, more pronounced movement or 

demand dislocation over short periods of time would have been expected in the data 

plot. The proposition of possible substitute products and strategic focus swing amongst 

competitors, as described in scenario 5 & 6 are more likely candidates. The introduction 

and subsequent large-scale adoption of cloud computing and allied technologies could 

be just such substitute products, with accompanying organizational strategic focus 

implications (Botta, et al., 2016). The notion of cloud computing’s influence on reduced 

global computing sales was perhaps provided for in recent commercial research. Per a 

Gartner Research Group prediction in 2016, the majority of IT spend by the year 2020 

would be on cloud and related services. Cloud computing as platform and infrastructure 

alternatives to existing computing environments may well build a feasible case for the 

downward trend in current global computing sales. An additional factor could be that 

the uptake of virtualization technologies has impacted the quantity of computing 

systems sold. The advent of so called smart technologies, as exhibited in cellular 

phones, may have constituted viable computer system replacements and therefore 

have influenced the observed decline (Bidgoli, 2016). The important consideration in 

regards holistic technical debt and e-waste manifestations are that in practical terms, 

the potential for e-waste generation is being increased. 

 

The computing platforms at risk for technical debt and e-waste creation, could further 

be informed by the global market for systems software. Application software 

necessitates execution via application programmable interface (API) interaction, as 

exposed by an operating system. The operating system in turn controls and interacts 

with the underlying hardware, which ultimately enables the application’s functionality. 

As shown in Figure 4, the Microsoft™ Windows© platform at time of writing, holds much 

of the desktop system software market share at approximately 90%. Also noteworthy 

is that the data displays the natural decline and uptake cycle of replacement versions 

of the Microsoft™ Windows© operating system. The Microsoft™ Windows© 

(henceforth Windows) operating system, is completely proprietary and commercially 

licensed, on an effectively singular unit basis. Installations of an operating system are 

either physical, regard remote access or are virtual implementations (Mclean & 

Thomas, 2010; Microsoft Corporation, 2016; Microsoft Corporation, 2017).  
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The licensing of Windows typically has additional restrictions imposed dependent on 

the version or edition under consideration. Significant restrictions of interest include 

(Mclean & Thomas, 2010; Microsoft Corporation, 2016; Microsoft Corporation, 2017): 

number of concurrent networkable nodes accessible; the number, type and size of 

processors as well as random access memory supported; restrictions around 

underlying hardware architecture, version and edition upgradeability. The elimination 

of choice by imposing such restrictions around operating systems, may possibly 

influence the speed of reduced functionality experienced by both software and 

hardware. As new minimum hardware requirements need to be met to support ever 

larger footprint operating systems, not only are previous operating system editions and 

versions being discarded, but conceivably also the existing hardware infrastructure. 

The interdependence of the infrastructure, hardware and software environment could 

play a significant role in an attempt to repurpose currently held organisational IT assets 

as HPC and HTC grid solutions.  

Figure 4 Global desktop operating system sales 

(adapted from Net Applications, 2017) 
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2.3 The Operating System Construct 
 
At the individual computing node level, the relationship between hardware and the 

operating system would dictate the functionality exposed. The compatibility of the 

operating system with its underlying hardware, forms the basis on which functionality 

through user application and configuration could ultimately be achieved. 

 

Modern operating systems, as depicted in Figure 5, realize compatibility with underlying 

hardware via a scheme of detection, subsequent kernel compilation, together with 

exposing hardware abstraction layer and device driver instances for a given platform. 

The operating system construct is considered for all intents and purposes to be unique 

per installed node (Microsoft Corporation, 2003; IBM Corporation, 2008, Mclean & 

Thomas, 2010). The ability of the operating system to gain fine grained compatibility 

with the hardware environment, facilitates multi-manufacturer and therefore dissimilar 

hardware platform support. Ultimately the dissimilar hardware and operating system 

environments would speak to the heterogeneous nature of commodity computing 

platform realities. 

 

 

 
  

Figure 5 Modern modular operating system kernels 

(adapted from Microsoft TechNet, 2003 & IBM developerWorks, 2008) 



 
23 

2.3.1 Application and Operating System Interactions 
 

Although the ability of the operating system to conform to the hardware environment is 

assuredly desirable, the operating system through inherent or enforced architecture 

feature restrictions could expose quite wide-ranging functionality. As a consequence, 

to such wide-ranging execution environments, contemporary application development 

stereotypically focusses on abstraction via programming language and accompanying 

frameworks, in order to gain run time or cross platform compatibility. The term 

abstraction, meaning an emphasis on simplifying certain underlying system 

characteristics using some form of summarization, whilst suppressing details and 

properties of others (Shaw, 1980; Kiczales, et al., 1997). The use of application 

abstraction has however significant advantages and disadvantages for consideration. 

Abstraction would gain application code understand ability and maintainability, but 

inevitably sacrifice efficiency (Kiczales, et al., 1997; Berlin, et al., 2004; Akhter & 

Roberts, 2006; Newburn, et al., 2011; Rossbach, et al., 2013). Each layer of 

abstraction, to facilitate software to hardware interaction via the operating system, as 

shown in Figure 6, would add obligatory layered complexity and processing overhead. 

In opposition, a reduction in abstraction of the functional application has the potential 

to lessen processing overhead and deployment complexity whilst significantly 

decreasing wall clock time for discreet application runs. Normally the disadvantage for 

reducing application abstraction would be the necessity of recompilation, versioning 

and configuration management per platform supported (Shaw, 1980; Kiczales, et al., 

1997; Rossbach, et al., 2013). 

 

Figure 6 Comparing technology stacks, highlighting abstraction 



 
24 

2.3.2 Abstraction and the Heterogeneous Environment 
 

The accurate discovery of operating system, hardware and network topology 

environments would be key to any meaningful HPC or HTC implementation (Buyya, et 

al., 2000; Kennedy, et al., 2004; Youseff, et al., 2008; White, 2012; Dobre & Xhafa, 

2014; Mantripragada, et al., 2015). Pertaining to previous deliberations around 

abstraction and application technology stacks however, a three-way trade off condition 

is created in that conflicting goals of the intrinsic endeavour could manifest (Berlin, et 

al., 2004; Kennedy, et al., 2004; Reyes-Ortiz, et al., 2015; Saxena, et al., 2016). The 

source of such trade-off conditions being conversant of the heterogeneous nature, as 

well as the programmable environment of computing platform realities: 

• Goal 1- The implementing application should have best fit to the underlying 

hardware as to assure high efficiency 

• Goal 2- The application should be portable across a variety of platforms as to 

increase possible functional exposure 

• Goal 3- The application should be easy to create, use and maintain 

 

In ensuring best fit with underlying hardware, the application would need to be 

abstracted as little as possible. However, to gain portability across heterogeneous 

platforms the use of abstraction would be unavoidable. Conversely for application 

development to be rapid, efficiency in execution would need to be compromised via 

additional layers of yet more abstraction. The current HPC and HTC application 

environments are built on numerous interactions of abstraction (White, 2012;  

Grossman, et al., 2013; Rossbach, et al., 2013; Gupta, 2015; Reyes-Ortiz, et al., 2015; 

Saxena, et al., 2016). An argument for the idea that influences on efficiency may occur 

due to abstraction within HPC and HTC implementations could well be justified. The 

HPC and HTC commodity heterogeneous platform realities, provide for difficulties when 

it concerns implementation choice and efficiency in performance (Xie, et al., 2012; 

Dobre & Xhafa, 2014; Reyes-Ortiz, et al., 2015). Assuredly the contemporary HPC and 

HTC implementations do overwhelmingly have the ability to execute on commodity 

hardware. Though on scrutiny of the fundamental design intents of popularly available 

HPC or HTC implementations, the target platforms display fundamental homogenous 

characteristics (White, 2012; Dobre & Xhafa, 2014; Microsoft Corporation, 2016; Open 

Science Grid, 2016; Intel Corporation, 2017; University of Wisconsin-Madison, 2017). 

The most notable supported platform design limitations were found to be: component 

brand and type of individual hardware components, operating system distribution, 

application frameworks, network fabric, supporting interface libraries and programming 

languages. 
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The literature surveyed further supports the notion of design homogeneity inherent in 

HPC and HTC. The terms heterogeneous and commodity, as it concerns the holistic 

computing architecture, may have found multivariate meaning in use. The commodity 

hardware compatibility of HTC per example, explicitly does not mean inexpensive 

(White, 2012). Interestingly then also, within the academic literature surveyed when 

providing metrics in support of findings, truly heterogeneous platforms are not actually 

considered. 

 

The term heterogeneous as used by Grossman, et al. (2013) describes comparison of 

platform and not architectural dissimilarity within the potential functional application’s 

execution environment. Although the believed and inferred intent by Grossman, et al. 

(2013) is to demonstrate heterogeneous architecture interactions within an 

experimental hybridized HPC and HTC solution, the heterogeneity paradigm is possibly 

not extended to its complete form. As a result, it seems a standalone experiment 

conducted on one homogenous platform is optionally compared with the same 

experiment on another architecturally different platform. 

 

Due diligence inspection of findings by other HPC or HTC authors, reveals similar 

singular platform runs being used as data points in support of conclusions. Habitually 

authors within the published works surveyed omit the all-inclusive possibility of 

heterogeneity influences at the computational node level. The selected review papers 

within the last decade that do reference heterogeneity concerns for inclusion in HPC 

and HTC design constructs, have been catalogued for perusal within Table 4. It may 

be noted that no singular author captures all these heterogeneous concerns 

emphatically. 

 

The oversight of excluding heterogeneous characteristics may have wide ranging 

impacts on efficiency and specifically performance. Assuredly heterogeneity must exist 

at all the technology levels per participant node, if solutions are claimed to be 

heterogeneous. Considering these and other corroborating actualities exposed by 

modern-day HPC and HTC implementations via inherent design, it may be plausible 

that uncontaminated generalizability might be an unrealistic pursuit. 

 

Gaining computational high performance and/or throughput requires assumptions 

about abstraction tolerances, communication environment and heterogeneous platform 

architecture in all its varied forms. The assumptions required by the undertaking could 

viably preclude purest generalization.  
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Table 4 Possible node heterogeneity 

Source of heterogeneous characteristics Cited by Author(s) 

Application support constructs & security context 

Montero, et al., 2011 

Moreton-Fernandez, et al., 2017 

Rossbach, et al., 2013 

CPU topology 

Broquedis, et al., 2010 

Buono, et al., 2014 

Grossman, et al., 2013 

Lee, et al., 2010 

Moreton-Fernandez, et al., 2017 

Nelson, et al., 2015 

Newburn, et al., 2011 

Rossbach, et al., 2013 

Saxena, et al., 2016 

Graphics Processor  

Broquedis, et al., 2010 

Grossman, et al., 2013 

Lee, et al., 2010 

Moreton-Fernandez, et al., 2017 

Rossbach, et al., 2013 

Saxena, et al., 2016 

Memory storage attributes 

Broquedis, et al., 2010 

Dobre & Xhafa, 2014 

Grossman, et al., 2013 

Lee, et al., 2010 

Nelson, et al., 2015 

Rossbach, et al., 2013 

Network protocol stack, link speed & bandwidth 

Broquedis, et al., 2010 

Chang, et al., 2014 

Dobre & Xhafa, 2014  

Nelson, et al., 2015 

Shvachko, et al., 2010 

Zhao, et al., 2014 

OS edition, version & exposed API  

Chen, et al., 2012 

Dobre & Xhafa, 2014 

Lee, et al., 2010 

Nelson, et al., 2015 

Storage type, size and availability  

Chang, et al., 2014 

Dobre & Xhafa, 2014 

Nelson, et al., 2015 

Shvachko, et al., 2010 

Xie, et al., 2012 

Zhao, et al., 2014 
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2.4 The Execution Environment 
  

A cognizance of the ability to harness parallelism at all levels of a possible HPC or HTC 

implementation is important, as efficiency and performance correlations may be drawn 

(Berlin, et al., 2004; Lee, 2006; Broquedis, et al., 2010; Newburn, et al., 2011; Ali, et 

al., 2014; Buono, et al., 2014; Gupta, 2015; Mantripragada, et al., 2015; Nelson, et al., 

2015; Reyes-Ortiz, et al., 2015; Saxena, et al., 2016; Moreton-Fernandez, et al., 2017). 

The onus therefore is to seek parallelism opportunities progressively whilst optimizing 

the use of data processing, communication and storage capabilities within the grid. The 

proper enumeration of the software application’s execution environment should ensure 

effective and efficient use of available resources. In opposition the absence of 

environmental characteristics enumeration, could potentially create fatal dysfunction or 

suboptimal execution runs. 

 

The inventorying of environmental resources could inform the idealized use, 

management and scheduling of resources as sought by the HPC or HTC venture. 

Moreover, the connectivity and interdependency of resources, together with dynamic 

avenues to possible integration may be gleaned. The foremost aim would be to uncover 

as many opportunities that could facilitate parallelism. 

 

2.4.1 Parallelism, Concurrency and Threading 
 

The similar terminology of parallelism, parallel or concurrent should not be 

misconstrued within the milieu of HPC and HTC. In single node concurrent 

computation, the operating system provides for the ability of software to simultaneously 

execute on a particular hardware processing resource (Akhter & Roberts, 2006). The 

simultaneous or parallel software workload execution achieved in concurrency might 

however mislead the unwary. Each discreet software workload or software thread at 

any given point in time, may only be executed exclusively per processing resource. In 

practice, multiple software threads are combined as an OS scheduled process or 

instruction stream (Alverson, et al., 1992; Akhter & Roberts, 2006; Majo & Gross, 2011). 

An instruction stream materializing the interleaved nature of the software threads to be 

executed. The operating system then designates a processing resource or hardware 

thread, as target for instruction stream execution. At any given point in time during 

execution, remaining software threads enter a wait state whilst a single thread 

executes. The environment of thread execution in concurrency therefore results in only 

one software thread making progress per interval. The interleaved software thread 

workloads merely imitate simultaneous execution and therefore do not constitute 

parallelism.  
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Eloquently in parallelism, multiple software threads concurrently make progress on 

different hardware resources simultaneously (Akhter & Roberts, 2006). The distinction 

then is that parallelism doesn’t just leverage concurrency but also multiple physical 

processing resources which could potentially significantly enhance overall efficiency 

and performance. 

 

The clarification of the terminology thread or threading might be required, when 

informed by the fact that reviewed literature surveyed could potentially obscure its 

meaning in use. Per illustration of possible opportunities for confusion, Lee (2006) uses 

the term to describe process sequences that share memory environments whereas 

Stratton, et al. (2008) uses the term logical threads to describe programmer functions 

or kernels that result in an execution thread blocks. Futhermore, Akhter & Roberts 

(2006) describes a thread, as a related sequence of instructions that excutes 

independantly of other instruction sequences. Conversely Buono, et al. (2014) and 

Dobre & Xhafa (2014) uses the term threading to describe communication thread 

interplay and thread provisioning in hardware. As a central principle, unity in denotation 

of threading is however found to be concrete. The dominant implications of threading, 

should be understood to be the smallest encapsulated construct that can be individually 

managed. It might nevertheless be prudent in order to avoid amiguity, that the term be 

explicitly contextualized as either being hardware, kernel, communications or software 

threading. 

 

The efficiencies at node level may further be improved by considering how instructions 

and data are processed. The individual separate data sources or data streams which 

instruction streams operate on, could be leveraged for additional parallelism (Akhter & 

Roberts, 2006; Lee, et al., 2010; Jeong & Lee, 2012; Sabharwal, et al., 2013; Fog, 

2017). Three distinctive machine environments have evolved to describe the 

relationship between data and instructions as found in commodity hardware, namely: 

1. A serial machine construct that innately does not support parallelism, executing 

a single instruction stream that operates on a single data stream (SISD). 

2. A single instruction and multiple data (SIMD) vector machine executing a single 

instruction stream, operating on a multiple separate data streams 

simultaneously. SIMD machines support parallelism at data level by operating 

on multiple data elements per executing instruction. 

3. A multiple instruction stream and multiple data stream (MIMD) machine. A 

MIMD machine platform has multiple processors, each supporting separate 

instruction streams working on multiple separate data streams. MIMD machines 

therefore support parallelism at instruction and data level. 
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The major instruction sets available in commodity hardware, which provides for data 

parallelism via SIMD and MIMD, have been categorized in Table 5. 

 

Table 5 Instruction sets supporting data parallel operations 

Instruction Set Descriptive 

3DNow! Packed single-precision, integer & floating-point vectorization 

3DNow! Plus Enhances 3DNow! by adding digital processing features 

AVX 

Advanced vector extensions, enhances MMX & SSE inclusive of 

additional support for: Advanced Encryption Standard (AES), FMA, 

packed carry-less multiplication 

FMA Fused Multiply and Add, A = A * B + C 

MMX Packed single-precision, integer vectorization 

SSE  
Streaming SIMD Extensions, supporting up to packed double-precision, 

integer & floating-point vectorization 

 
 

2.4.2 The Central Processing Unit 
 

The speed, type, number of processors, related cache hierarchies and facilitating 

instruction set supported on a CPU, could potentially significantly impact application 

functionality and performance (Advanced Micro Devices, 2005; Akhter & Roberts, 

2006; Broquedis, et al., 2010; Jeong & Lee, 2012; Kusswurm, 2014; Intel Corporation, 

2016; Kuo, 2017). The discovery of the CPU capabilities at computational node level 

would be important in determining the capabilities an application could exploit for 

parallelism. 

 

The enumeration of CPU attributes and features however, should be considered non-

trivial given real-world commodity heterogeneous platform realities.  
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At grid node level, the computing platform could either have a single CPU (known as a 

package) or support multiple CPUs. Each package may then support a singular 

processor (known as a core), or multiple physical processors (Advanced Micro Devices, 

2005; Akhter & Roberts, 2006; Intel Corporation, 2016; Kuo, 2017). Additionally, each 

core could support simultaneous hardware multi-threading technology, as shown in 

Figure 7, revealing supplementary logical processors. The term logical processor 

meaning two addressable processors sharing the same physical processor resource 

environment (Nakajima & Pallipadi, 2002; Akhter & Roberts, 2006; Gepner & Kowalik, 

2006). Fundamentally each logical processor could be sharing nearly half of the 

resource capabilities of the physical core (Nakajima & Pallipadi, 2002; Akhter & 

Roberts, 2006). Arguably significant performance disparity would be intrinsic when 

comparing logical processors with their physical core counterparts. The latent 

performance loss due to simultaneous hardware multi-threading is however in practice 

largely avoided. An operating system would only need to distinguish between logical 

and physical processors in designating execution workloads to unlock potential 

performance gains. Modern operating systems use a mechanism known as a scheduler 

to determine the optimum placement of software threads onto logical or physical 

processors (Nakajima & Pallipadi, 2002; Akhter & Roberts, 2006). The OS scheduler 

monitors and load-balances processor resource bandwidth to achieve higher 

efficiencies. 

Figure 7 Conceiving a CPU package topology 
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In theory an application may even interact with the OS scheduler to suggest resource 

requirements or elect workload targets across physical or logical processors. Principally 

an application could bind its specific workloads to a discreet set of processors using an 

OS scheduler apparatus known as affinity and manipulate workload precedence, 

known as setting thread-priority (Nakajima & Pallipadi, 2002; Akhter & Roberts, 2006; 

Kazempour, et al., 2008; Broquedis, et al., 2010; García-Dorado, et al., 2013). The 

exploitation of fine grained threading should notably enhance holistic application 

performance. However, when linking threading to the topic of abstracted or managed 

applications, the conclusions are that such applications seldom have the ability to 

leverage threading (Akhter & Roberts, 2006). A managed application would have to 

rely exclusively on the operating system or additional run-time libraries to manage 

threading and in so doing, sacrifice possible efficiency gains. 

 

2.4.3 Cache Memory Architectures 
 

The cognizance of cache hierarchies and interactions within the CPU, play a vital role 

in possible application performance gains (Smith & Goodman, 1985; González, et al., 

1995; Suh, et al., 2004; Akhter & Roberts, 2006; Majo & Gross, 2011; Kusswurm, 2014; 

Intel Corporation, 2016; Fog, 2017). The term cache describing a small fast memory 

type that endeavours to accelerate a slower but larger memory type’s operations. The 

throughput from interactions with cache should therefore always be much higher than 

could be achieved via the alternate memory store (Smith & Goodman, 1985; Drepper, 

2007). The internal speed of a CPU is typically faster than the variable external speeds 

of other hardware components within the computing platform. As rudimentary steps in 

the processing cycle the CPU requires prefetching instructions and data from random 

access memory (RAM), then also storing or flushing resultant data after processing. 

The speed discrepancy or latency between RAM and the CPU would inevitably cause 

processing stalls and resultant wasted processor cycles if not somehow mitigated. 

 

The mechanism used by cache is to anticipate CPU memory access by prefetching 

data, thus not just improving data locality but also reducing potential latency (Smith & 

Goodman, 1985; González, et al., 1995; Suh, et al., 2004; Kusswurm, 2014; Fog, 

2017). The term locality expressing the proximity of data and instructions for immediate 

CPU access. A CPU may even expose cache-ability control instructions, which allow 

an application to formulate a cache strategy to influence data access locality. The three 

cache locality data patterns of interest which may guide a conceivable application 

caching strategy, are listed as: temporal, spatial and non-temporal locality.
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In abridged terms a cache prediction strategy would involve CPU near future data 

access, in terms of (Drepper, 2007; Kusswurm, 2014; Intel Corporation, 2016): 

• Temporal locality, the same data elements previously accessed will require access 

again 

• Spatial locality, the adjacent data elements to those previously accessed will require 

access 

• Non-Temporal locality, the data accessed previously will not be accessed 

 

A successful data access reference to a specific cache store which results in 

instructions or data being interpreted by the CPU, is known as a cache hit. Alternatively, 

if no reference is found, a cache miss occurs (Smith & Goodman, 1985; Kusswurm, 

2014). As cache stores are accessed in sequence of availability from highest level and 

proximity to lowest level before obligated to access physical RAM, data locality and 

resultant latency caused by cache misses become important. An application could 

undertake to reduce cache misses and in so doing, increase processor efficiency. Any 

cache system memory store is a contiguous, power of 2 set of memory blocks. The 

prefetching and eviction of cache blocks are determined by a mechanism known as the 

replacement policy (Smith & Goodman, 1985; González, et al., 1995; Suh, et al., 2004; 

Kusswurm, 2014). The number of CPU accessible cache stores, their type and size 

could be crucial information an application could therefore leverage to gain processing 

enhancements. An application may well attempt to manage instruction and data blocks 

via means of internal build or the interface apparatuses of the replacement policy to 

avoid cache misses (Smith & Goodman, 1985; González, et al., 1995; Suh, et al., 2004; 

Intel Corporation, 2016; Fog, 2017). The CPU and memory interaction characteristics 

which may impact or inform performance considerations are further supplemented by 

cache associativity. The term associativity relating to how memory blocks are mapped 

from RAM to cache, as shown in Figure 8. Tellingly the associativity of cache would 

have direct bearing on data locality patterns during processing. Originally the mapping 

for a particular cache store was said to be either direct mapped, fully or set associative 

(Smith & Goodman, 1985; Drepper, 2007). Primarily in direct mapped associativity, 

each discreet entry or cache line may only refer to a specific RAM memory location. 

Whilst with a fully associative caching scheme, each cache line may refer to any RAM 

memory location independently. Finally, in a set associate scheme, cache lines are 

grouped into a number of sets, with each set capable of caching a specific memory 

area in set number of ways. Each caching scheme has its advantages and 

disadvantages in tangible implementation. Over time however, set-associate caching 

and variations thereof predominated, for having better real-world application fit. 
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The management of cache and program blocks by a cache aware application are 

known to positively influence time critical processing (Drepper, 2007; Kazempour, et 

al., 2008; Advanced Micro Devices, 2014; Kusswurm, 2014; Intel Corporation, 2016; 

Fog, 2017). At nearest layer to the CPU, primary or level one (L1) cache is smaller and 

faster than supplementary caches. Per illustration, the speed of interaction between a 

physical processor and L1 cache approaches zero wait state, having little to no 

resultant latency (Drepper, 2007; Fog, 2017). Conversely, the level two (L2) and 

supplementary cache stores would be larger than L1 but would incur higher latency in 

access. In modern CPU topologies L1 cache is sectioned or split equally into instruction 

and data caches (Smith & Goodman, 1985; Advanced Micro Devices, 2005; Intel 

Corporation, 2016; Fog, 2017). Relating to previous discussions, recollect that such 

spilt cache at L1 would impact simultaneous multi-threading enabled platforms, as 

subdivision of the cache would ensue for each addressable logical processor (Nakajima 

& Pallipadi, 2002; Drepper, 2007; Intel Corporation, 2016; Kuo, 2017). The platform 

detected L1 cache resources, could therefore potentially be halved for simultaneous 

multi-threading implementations. The L2 and supplementary caches are stereotypically 

termed unified caches, that do not distinguish between data and instructions blocks. 

The L2 and lower caches may also display partitioning characteristics in that sharing of 

a cache store may manifest across physical or logical cores and packages (Advanced 

Micro Devices, 2005; Kazempour, et al., 2008; Intel Corporation, 2016; Fog, 2017). The 

sharing of cache stores amongst processing resources and resultant potential 

performance impacts can only be informed by CPU model specifications. A cache 

strategy targeted for homogenous CPU environments would therefore be a singular 

effort, whereas a hetrogenous environment requires a more multipronged approach.  

Figure 8 Cache associativity 
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2.4.4 Cache Optimization and Management Strategies 
 

The most generic cache optimization technique necessitates that code instructions and 

the data it operates on, at least fit into L2 cache (Suh, et al., 2004; Akhter & Roberts, 

2006). If multi-core processors are available, performance may be improved by shifting 

software threads to exploit caching architecture via processor affinity (Drepper, 2007; 

Kazempour, et al., 2008; Majo & Gross, 2011; Majo & Gross, 2013). Other equally 

universal suggestions that could potentially improve cache utilization are briefly listed 

as (Advanced Micro Devices, 2014; Intel Corporation, 2016; Fog, 2017): 

• Utilizing the same memory operand sizes consistently 

• Use PREFETCH instructions to hide bus bandwidth latencies in sequential, 

irregular or very large memory access 

• Memory alignment of code, stack and data segments  

• Do not store data in code segments or use self-modifying code 

• Interleave SIMD type instructions in a Load-Store pattern 

 

The application caching techniques proposed for performance enhancement, would 

however have nominal or even adverse effect when not considered within the context 

of thread contention, cache thrashing and pollution. Importantly the memory access 

patterns for individual software threads running on the same or separate processors, 

could implicitly create shared memory reference conflicts (Herlihy & Moss, 1993; Suh, 

et al., 2004; Eklöv & Hagersten, 2010; Herlihy, 2010; Sandberg, et al., 2010; Majo & 

Gross, 2011; Seshadri, et al., 2012; Majo & Gross, 2013). Thread contention occurs 

when separate software threads read and modify the same memory area. In 

circumstances of thread contention, cache thrashing could occur as large blocks of high 

use data would start evicting each other within the confines of cache size. Cache 

pollution occurs in situations where useful data is evicted and overwritten by non-useful 

data, causing subsequent references to such useful data to be reloaded. 

 

Presumptively the interaction of a software thread’s access would require data to be 

written or read from RAM via the cache hierarchy. The ensuing modification and access 

of a shared memory areas by multiple software threads could cause incoherent 

memory states during the prefetching and eviction cycles. Although CPU instructions 

potentially could allow software threads to bypass certain caches, pollution and 

resultant contention is all but inevitable if not somehow managed.



 
35 

The efforts by a section of reviewed authors within the theme of cache management, 

suggests modification in algorithmic circuitry logic for multi-core systems to reduce 

cache pollution and thrashing (Herlihy & Moss, 1993; González, et al., 1995; Suh, et 

al., 2004; Seshadri, et al., 2012). The probable worth of topical algorithmic solutions 

are varied but seemingly undeniable in alleviateing caching issues. Steroetypically 

though within the surveyed papers, simulated evidence is provided in support of 

recommendations. The use of simulation debatably constitutes a potential theoretical 

solution, which by definition may have unclear pratical application characteristics. 

Undoubtably it would seem an unrealistic endeavour to modify hardware circuitry 

across existing hetrogenous platforms as a means to implement such algorithmic 

caching logic. As a consequence of the research context, adoption of such hardware 

algorithmic cache circuitry logic solutions may be excluded from consideration. 

 

The management of the adverse effects of cache thrashing and pollution could 

potentially be viewed as a software design problem (Eklöv & Hagersten, 2010; 

Sandberg, et al., 2010; Majo & Gross, 2013). In reference to previous deliberations, a 

programmer might merely be required to sequence instructions and data in grouped 

blocks that favourably fit in higher level caches. Additionally, the programmer could 

produce code sequences with subsequent data access, which do not overtly evict 

useful blocks prematurely (Eklöv & Hagersten, 2010; Sandberg, et al., 2010). 

Nevertheless, the control exerted by the programmer would only extend to the thread 

contexts of the self-authored application. As the execution environment undoubtedly 

contains resource competing application threads, a cache strategy tediously 

implemented may have diminutive global impact. The endeavour to implement a 

caching strategy would have complexity dimensions beyond a singular application 

build, as mixed independent application workload realities may negate planned 

performance goals. 

 

A work-around technique that targets mixed workloads of independent applications, 

relies on the pre-emptive profiling or classification of applications to recognize 

performance impacts and dependencies (Eklöv & Hagersten, 2010; Sandberg, et al., 

2010). Within such a mixed workload environment of independent applications, a 

probabilistic model of cache misses may be generated for discreet short application 

runs. By monitoring the reuse distance of sparse and randomly selected memory 

references, reasonably accurate cache performance predictions can be made for 

differing cache topologies (Eklöv & Hagersten, 2010).
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The classification of an application within a mixed workload also provides an 

opportunity to inject cache bypass instructions directly into the binary executable to 

reduce performance degradation of future execution runs (Sandberg, et al., 2010). 

Initially however this classification technique would be reliant on profiling the application 

within a specific and contextualized mixed workload environment. The effort expended 

towards the actual application classification also inducing varying supplementary 

overhead. Although such overhead is reported to be marginal and bespoke for a 

particular platform, best fit for truly heterogeneous platforms becomes indistinct. The 

predetermination of application context within a specific mixed workload scenario and 

the compulsory additional overhead imposed, may be considered undesirable or 

impractical. The OS scheduler itself could per example negate potential performance 

gains of the technique, due to its own internal logic attempts at reducing thread 

contention (Majo & Gross, 2011). The notion of predetermining the mixed independent 

workload environment, the subsequent modification and compilation of targeted 

application executables for a platform, is questionably a homogenous solution. As the 

truly heterogeneous memory environment contains indeterminate execution actualities, 

a sub-optimal cache management strategy could result from the profiling and 

classification technique. 

 

The significance of classifying or profiling an application, should however not be 

discarded out of hand, since it could provide invaluable understanding of application’s 

run-time behaviour. The understanding generated from profiling and diagnostics, would 

notably create opportunity in aiding application performance enhancements. As can be 

evidenced by the pervasive nature and uptake of commercial, as well as open-source 

profiling products, the software engineering community has had long standing 

appreciation of such in use. Some contemporary examples of profiling tools are: Intel® 

Vtune™ Amplifier & Advisor, Rouguewave® ThreadSpotter™, AMD® / CodeXL, 

DynaTrace™, Microsoft® Visual Studio™ Toolbox. 

 

The emphasis for predictive profiling and classification falls into the realm of functional 

software development, when considered in the context of heterogeneous memory 

environments. The pre-optimization of internal application logic and cache usage via 

means of profiling is therefore not an all-inclusive exercise. The monolithic application 

construct developed from classification and profiling, importantly cannot by itself 

provide sureties of performance within arbitrary workload, shared and non-uniform 

memory (NUMA) platforms (Majo & Gross, 2011; 2013; 2015). A more dynamic and 

real-time control system would be needed beyond internal functional build, to regulate 

and normalize caching performance across heterogeneous systems.  
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A promising solution aimed at heterogeneous single threaded workload environments, 

that share last level caches (LLC), requires the combination of process scheduling and 

memory management. The basic premise of a coupled solution aims to curtail cache 

contention whilst maximizing data locality (Majo & Gross, 2011; 2013; 2015). 

Confronted by the feasibly conflicting objectives of cache contention and data locality, 

the former is said to take precedence in ensuring higher overall performance. The 

authors’ Majo & Gross, (2011) proposed instituting a three-phase algorithmic process, 

baptized N-MASS as depicted in Table 6, to realize higher overall performance 

coupling. 

Table 6 The N-MASS algorithm 

N-MASS algorithm - adapted from Majo & Gross, (2011) Output 

Phase 1: Sort application processes by NUMA penalty 

NUMA penalty = CPIremote / CPIlocal 
Per processor sorted lists 

Phase 2: Calculate maximum local mapping Maximize data locality 

Phase 3: Refine maximum local mapping Reduce cache contention 

 

The N-MASS algorithm is mainly reliant on calculating the parameters of cache misses 

for an application process or cache pressure, together with a possible NUMA penalty 

(Majo & Gross, 2011). The term cache pressure denotes the MPKI or cache misses 

per 1000 instructions, as observed in LLC during execution of a single threaded 

application process. The NUMA penalty parameter, being the estimated ratio of 

execution cycles per instruction (CPI) of an application process when measured locally 

versus remotely (Majo & Gross, 2011). The term local in this context, denotes the first 

addressable logical processor on a CPU core which could spawn an application 

process and its data. The local application process is then said to be homed on the 

specific CPU core. Conversely remote execution of an application process, 

disregarding data placement, takes place on the next addressable logical processor on 

a different core. The salient theme is that single threaded application processes could 

potentially be sharing CPU cores and LLC. When inferring a heterogeneous CPU 

topology, the discovery of parameters in regards cache pressure and NUMA penalty 

could direct best effort towards placement of application processes. In the first phase 

of N-MASS, sorted lists of NUMA penalties in descending order are obtained for 

application processes. During the second phase, the sorted lists are combined and 

process mapping onto physical CPU cores with underlying logical processors is 

conceived. The essential assurance is that application processes that exhibit higher 

NUMA penalty, are mapped with higher priority than low NUMA penalty processes 

when homed on the same core. 
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In the last phase of N-MASS, the cache contention is reduced by comparing the 

process cache pressure against a predetermined threshold. If the cache pressure is 

higher than the threshold, a process may be shifted to achieve better contention 

balance whilst still favouring data locality. 

 

The N-MASS algorithm, as originally conceived by Majo & Gross, (2011) does however 

expose several major limitations. Firstly, an assumption must be made that the 

functional application processes will not exceed the available number of logical 

processors (Majo & Gross, 2011). The implications being that N-MASS can account for 

the spatial multiplexing of a set number of application processes to maximize memory 

use. However, N-MASS cannot assure maximization without information interchange 

with- and exercising control over, the default OS scheduler. Secondly, the algorithm is 

reliant on telemetry access to the CPU’s PMU or performance monitoring unit (Majo & 

Gross, 2011). The difficulty is that certain operating systems deem PMU directives to 

be kernel privileged or ring zero instructions, which may therefore require additional 

vendor signed kernel mode drivers. Thirdly, N-MASS does not address the impacts of 

migrating process data across cores (Majo & Gross, 2011). Although the algorithm 

considers the overhead and performance penalty of shifting the application process 

based on the threshold value, no such deliberations for data are catered for. Lastly, the 

applicability of N-MASS for multi-threaded processes becomes unclear as cache 

sharing could potentially improve performance in such instances (Majo & Gross, 2011). 

Hence the potential shared address space of multi-threaded applications, continued to 

make the mapping and scheduling of processes across specifically NUMA 

environments difficult. Only the later work by Majo & Gross, (2013; 2015) determined 

that several supplementary and major factors were at play for NUMA environments, as 

it concerned multi-threaded workload performance. As also previously discussed in this 

research paper, the specific data access patterns of software threads for a functional 

application may be determined by profiling and characterization. Subsequently the data 

access pattern, together with an understanding of modern CPU hardware prefetcher 

mechanisms, could then be used to make source code changes, facilitating the 

reduction of next-run contention (Majo & Gross, 2013). The important contribution by 

the authors, highlighting the role of the prefetcher and its causal effects on NUMA cache 

placement for multi-threaded workloads. 

 

Lastly, proper configuration of process affinity scheduling with identity mapping, can 

associate software threads beneficially to physical cores and underlying logical 

processors (Majo & Gross, 2013; 2015). Be the nature of software threads symbiotic or 

autonomous, data access shared or independent, the process placement is key.  
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2.4.5 Random Access Memory and Secondary Storage Interactions 
 

The computing node’s physical RAM availability is yet another crucial element of 

interest, which could potentially be controlled to enhance overall efficiency. An 

envisioned grid node’s RAM resources would constantly be in a state of contention. 

The operating system, background libraries and services, component input/output (I/O) 

buffers as well as running applications would all vie for immediate CPU accessible 

storage. When exploring the survey literature around memory resource concerns 

however, appreciative understanding beyond mere RAM availability is gained. 

 

The traditional instrument used by an OS to curb the potential disparity in storage 

requirements and thus alleviate contention to physical RAM, is via the use of secondary 

storage augmentation (Ousterhout, 1982; Mclean & Thomas, 2010; Microsoft 

Corporation, 2013). The logical extension of primary storage by means of this type of 

OS functionally would fundamentally create a virtual storage area larger than physical 

RAM, but still accessible as a singular unit. 

 

The modern OS manages primary storage contention by exchanging data from RAM 

to secondary storage and visa-versa. This mechanism employed by the OS to increase 

CPU accessible storage, is frequently termed swapping or virtual paging (Li & Hudak, 

1989; Mclean & Thomas, 2010; Microsoft Corporation, 2013). For practical efficiency 

purposes, obvious concerns that stem from the inequality in access speed as well as 

bandwidth between primary and secondary storage would need scrutiny. A bottleneck 

scenario that informs potential reduced system efficiency by means of virtual paging 

may become apparent. The term thrashing in this context, describes a running 

application stall or page fault due to the CPU requesting access to memory which was 

previously swapped to secondary storage (Ousterhout, 1982; Li & Hudak, 1989; Mclean 

& Thomas, 2010; Microsoft Corporation, 2013). Page faults and subsequent disk 

thrashing, occurs when the amount of actively running processes’ memory 

requirements exceed the size of physical RAM, forcing potentially extensive secondary 

storage access. 

 

During disk thrashing, ensuing secondary storage access generates high processing 

latencies, which may result in a pseudo unresponsive system state. A system could 

become especially prone to disk thrashing in parallel processing environments 

(Ousterhout, 1982; Li & Hudak, 1989; Sabharwal, et al., 2013; Sharmilarani, et al., 

2017). It should be understood then that disk thrashing is a symptomatic outcome of 

real-time machine load.
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One dialogue for competing software threads that cause disk thrashing and I/O stalls, 

suggests utilizing larger buffer block sizes, consolidating read/write operations into a 

single thread, defragmenting the file system as well as using native asynchronous 

command queing (Sabharwal, et al., 2013). The overarching assertions being that not 

only would system performance increase, but also energy usage decrease by use of 

these techniques. Using larger buffer block sizes, above eight kilobytes for large 

sequential file transfer is said to require less processing resources and energy. The 

consolidation of read and write operatations into a single thread reduces contention, 

thereby increasing run-time performance. Defragmenting the underlying file system 

reduces the effect of secondary storage operational latencies. Asynchronous command 

queing reduces I/O blocking events thereby isolating read and write actions. 

 

Although the mentioned disk thrashing mitigation techniques, by means of presented 

evidence are assuredly usefull, it may however on inspection raise concerns 

surrounding the specific mechanism of enactment. As presented by Sabharwal et al, 

(2013) these mitigation techniques require access to detailed hard disk drive metrics 

as input into the solution decision. The gathering of detailed hard disk metrics must 

arguably incur additional management overhead which is not emphatically addressed. 

Likewise the supposition that secondary storage devices would be physical platter 

based hard disk drives, becomes problematic within the research context of 

heterogeneous grid environments. The prescriptive use of detail level disk metrics such 

as rotation latency and revolutions per minute, could debateably skew the potential 

solution decision logic for non platter based systems. Not discounting the validity in 

implimentation of these generic techniques, nor the value of hard disk metrics, the 

consistant accuracy and the lowering in performance penalty due to overhead should 

be idealized. 

 

The use of page faults as metric indicator is much more useful in determining workload 

conditions than reliance on pervasive or free storage metrics alone (Sharmilarani, et 

al., 2017). Per illustration the amount of free memory and disk space, does assist in 

formulating a decision path towards a feasible disk thrashing solution. However, 

whether used in isolation or combined, the free memory and disk metrics have no 

additional value in determining pressure on the system memory resources. The 

inclusion of system page fault counts, due to its weighting characteristics are better 

suited in formulating decision avenues in regards system workloads. Advantageously 

operating systems normally do support easily accessible, low performance penalty 

telemetry, whereby page fault count of selected or overall system processes may be 

acquired.
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The page fault count when combined with the other specific metrics of CPU utilization 

and coarse-grained disk I/O channel throughput, would at minimum provide enough 

information to paint a reasonably accurate picture of system state (Sharmilarani, et al., 

2017). Based on the prevailing system state, an informed solution may either terminate 

overloading processes, reschedule or redeploy workloads across less pressurized 

resources. Such mitigating actions would only be feasible by monitoring and reporting 

the three basic resources mentioned, on a per grid node basis. Subsequently the 

directive to redeploy or reschedule a discreet process under review, would need to be 

made by some form of scheduling mechanism. 

 

2.5 Networking the Grid 

 
The grid formation and clustering of computing resources in either HPC or HTC, is 

facilitated via socket based derivative network communications (Speight, et al., 2000; 

Romanow & Bailey, 2003; Broquedis, et al., 2010; Shvachko, et al., 2010; White, 2012; 

Chang, et al., 2014). Figure 9 shows that nodes on a grid are interconnected using 

some form of hardware Network Interface Card (NIC) and communications media. A 

functional software application may then send and receive messages via the NIC, by 

binding to an exposed socket or network service end-point. 

 

 
A socket fundamentally comprises an Internet Protocol (IP) address together with a 

logical port number (Jones & Ohlund, 2002; Kozierok, 2005; Mclean & Thomas, 2010). 

In rudimentary communication actualities, applications use derived socket information 

to fully qualify the source and destination of network traffic. The IP address portion, 

uniquely identifies the network node, whilst the port number associates an interpreting 

application to an enabling communication channel. A communicating sender 

application, offloads a message by targeting the socket of a destination node.  

Figure 9 Simplified sockets 
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2.5.1 Network Packet Formation 

 

A message is normally first segmented or fragmented for fit to the underlying network 

communication protocols in an encapsulation process known as packet formation, 

before being transmitted across the physical media as a network frame. In opposition, 

the destination node decapsulates the packet and reconstitutes the message for 

interpretation by a receiving application. 

 

The predominant underlying protocols that facilitate network communications over 

Local Area Networks (LAN) and the Internet is currently the TCP/IP protocol suite: IPv4 

and IPv6 (Jones & Ohlund, 2002; Kozierok, 2005; Mclean & Thomas, 2010; Murray, et 

al., 2012; Bidgoli, 2016). The IP portion of the TCP/IP acronym pertains to the logical 

addressing, naming and routing functions of the protocol suite. The Transmission 

Control Protocol (TCP) portion of the acronym presentation, a minor contradiction in 

terms, as two or more contrasting transmission control protocols are in fact provided 

for. In clarification, the de facto TCP protocol is used to establish connection orientated 

or synchronous, error free communications between participants. Whilst the User 

Datagram Protocol (UDP) per example produces faster, error agnostic, asynchronous 

or connectionless communications. The important consideration as it pertains 

transmission control is that an application’s information interchange needs could 

potentially be conversant of the selectable transmission protocol and by choice, 

leverage intrinsic network service characteristics beneficially. 

 

The network frame size is another important influence in network communication 

efficiency (Romanow & Bailey, 2003; Regnier, et al., 2004; Kozierok, 2005; Murray, et 

al., 2012). An application’s messages are typically segmented and encapsulated within 

a transmission control protocol. The encapsulation process generates normatively 

structured network packets, containing the sequenced message fragments. The 

maximum payload size of message fragments within an encapsulated IPv4 TCP/UDP 

packet, could theoretically approximate up to 64 Kilobytes (Kb). Initially, these 

potentially large packet size limits may conceivably be perceived as flexible and ample 

extents. The reality however is that network transmission sizes could have more 

complex parameter considerations beyond the transmission protocol choice. The 

interplay between the lower layers of the logical network model, could impose additional 

variables that may subvert network efficiency planning (Kozierok, 2005; Murray, et al., 

2012). The network and data link layers of the logical network model requires 

mandatory additional utility overhead on a per layer basis. The overhead applied would 

reduce the amount of payload space a message fragment could occupy.  
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An effective strategy geared towards network efficiency, would therefore require 

insights into the underlying network capabilities beyond initial transmission protocol 

selection and configuration. 

 

2.5.2 Packet Fragmentation Characteristics 

 

The Maximum Transmission Unit (MTU) of a network frame is determined by use of 

restrictions enacted by logical or physical network devices along the transmission path 

(Romanow & Bailey, 2003; Regnier, et al., 2004; Kozierok, 2005; Murray, et al., 2012). 

The MTU is fundamentally the largest single message segment that can traverse a 

network without causing further fragmentation. The MTU size can be established 

programmatically at run-time for point to point communications, or alternatively 

automatically or manually configured per network device. The importance of the MTU 

value stems from its association with the underlying network capabilities. Regardless 

of TCP/UDP packet size programmatically or indirectly configured, an application 

message may potentially be further fragmented for fit inside the MTU restriction. 

 

The configured size of the MTU value would have significant impact on the quality of 

network communications and the overall performance efficiencies sought (Romanow & 

Bailey, 2003; Regnier, et al., 2004; Kozierok, 2005; Murray, et al., 2012; Prakash, et 

al., 2013). The effects of the MTU size on the quality and performance of network 

communications are found to be vigorously documented in the peer reviewed literature. 

The consensus viewpoints expressing direct association towards quality and 

performance of network communications attributed to MTU size dynamics. The 

impacted areas of interest, highlighted as: 

• Processing overhead (CPU, system, generic network and protocol) 

• Network throughput and bandwidth utilization 

• Network end-to-end latency 

• Data serialization delay and jitter 

A large MTU value could potentially alleviate network congestion, reduce protocol and 

system related processing overhead, whilst increasing network throughput (Regnier, et 

al., 2004; Murray, et al., 2012; Prakash, et al., 2013). Using large frames naturally 

requires less network packets to be formed and transmitted. The reduction in the 

number of transmissions should as consequence necessitate less processing 

overhead. A large frame also plausibly contains more application data payload per 

transmission, which ought to provide for better utilization of the available network 

bandwidth.  
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In opposition, a small MTU value should notionally reduce network latency and increase 

responsiveness (Regnier, et al., 2004; Murray, et al., 2012; Prakash, et al., 2013). Small 

frames would require less bandwidth and traverse internetwork devices in shorter 

amounts of time. Within a traditional socket environment problematic disadvantages 

could however manifest in either large or small MTU size choices. 

 

The disadvantages that could possibly result from large MTU values comprises 

(Murray, et al., 2012): reduced error checking effectiveness, increased latency and 

inefficient packet queuing. The cyclic redundancy error checking mechanism’s 

processing performance, could substantially degrade for frame sizes in excess of 

12000 bytes. Packet prioritization also becomes problematic in especially low link 

speed environments. As larger frames take longer to serialize and transmit, delay and 

jitter may occur when prioritized packets are superseded in the queue. The possible 

drawbacks of small MTU sizes in comparison to large frames, are noted to be increased 

processing overhead and network congestion (Murray, et al., 2012). The more packets 

that require headers generated, the higher the processing burden to manage such. 

Equally, the propagation of additional packets could exacerbate network bottlenecking. 

 

A deductive argument within the context of MTU frame sizes towards a balanced or 

mediated solution may be made. In lieu of advantages and disadvantages exhibited, 

this would indeed seem to be the prudent approach. Though to affect any such 

compromise for MTU frame sizes, it should be acknowledged that complete 

administrative control over the end to end network environment is needed (Kozierok, 

2005; Murray, et al., 2012; Prakash, et al., 2013). As shown in Figure 10, the salient 

issue is that all homed and internetwork devices require MTU size compatibility. The 

lowest MTU configured from the network device aggregate, should not to be surpassed 

as inefficiency or dysfunction would result. 

 

 

  

Figure 10 MTU path minimum size aggregation 
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Nevertheless, the use of large MTU frames, also popularly termed as jumbo frames, 

are known to substantially outperform legacy Ethernet based MTU implementations 

(Murray, et al., 2012; Prakash, et al., 2013). The term jumbo frame, broadly refers to 

frame sizes larger than the default Ethernet MTU of 1500 bytes. A recommended jumbo 

frame size approaching 9000 bytes is reported to be optimal for generic high throughput 

and performance communication requirements. The benefits of large frames, 

correspondingly hold true for jumbo frames. Notably, when supporting network device 

compatibility for jumbo frames are available, the historic disadvantages of large frames 

are frequently negated. 

 

2.5.3 Traditional Socket Networking 
 

The processing overhead, I/O bandwidth bottleneck and latency produced by traditional 

socket-based network communications, creates significant concerns for HPC or HTC 

environs (Speight, et al., 2000; Microsoft Corporation, 2001; Romanow & Bailey, 2003; 

Regnier, et al., 2004; Jin, et al., 2005; Zhang, et al., 2012; Prakash, et al., 2013). 

Primarily as it regards traditional socket based communications, grid nodes require OS 

kernel interactions by use of socket APIs. The use of any generic kernel API invocation, 

would predictably contribute CPU cycles to a software thread context. Yet when 

considering the use of kernel provided API socket calls, the resultant performance 

impacts could become especially pronounced (Microsoft Corporation, 2001; Jones & 

Ohlund, 2002; Romanow & Bailey, 2003; Microsoft Corporation, 2017). Dependend on 

the message workload, the application’s socket configuration and interactions, the 

resultant CPU overhead from API socket invokes could degrade performance 

substantially. For the most part the functional application’s use of the API message 

handling apparatus, could for instance cause undesirable processing stalls due to 

socket blocking operations (The WinSock Standard Group, 1997; Jones & Ohlund, 

2002; Zhang, et al., 2012). A blocking event occurs when an associated process 

invoked by a socket API function call does not return until completion of the operation. 

Fundamentally, application processing can be halted or enter a quasi unresponsive 

state pending socket function completion. 

 

An exacerbating factor of interest is the fact that host processing overhead associated 

with network I/O increases in high speed network environments (Speight, et al., 2000; 

Romanow & Bailey, 2003; Regnier, et al., 2004; Jin, et al., 2005; Zhang, et al., 2012). 

The higher the ratio of network link speed compared with internal system bandwidth, 

the more evident the I/O bottleneck. The combinatorial effects of overhead and 

bottlenecking increases overall latency, which would be undesirable in high 

performance or throughput communications.  
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In the interest of communications efficiency, when programming for traditional socket-

based networking, at least overlapped I/O with completion ports (IOCP) are 

recommended (The WinSock Standard Group, 1997; Jones & Ohlund, 2002; Regnier, 

et al., 2004; Zhang, et al., 2012; Microsoft Corporation, 2017). When mapped onto 

hardware threads, the asynchronous nature of overlapped I/O can alleviate the effects 

of processing overhead associated with traditional network sockets. For all intents and 

purposes, an application’s API socket calls return immediately, which allows user mode 

processing to continue in a non-blocking fashion. The socket operations initiated by the 

funtional application is completed by the OS kernel in the background. An application 

then interrogates message queues associated with a number of instanced sockets, 

known as I/O completion ports, to determine the status of socket operations. 

 

2.5.4 Performance Networking 
 

The varied combinations of supporting network hardware and media, together with OS 

kernel provisioning could considerably improve holistic network performance in 

comparison with traditional socket operations (Speight, et al., 2000; Microsoft 

Corporation, 2001; Romanow & Bailey, 2003; Liu, et al., 2004; Regnier, et al., 2004; 

Jin, et al., 2005; García-Dorado, et al., 2013; Prakash, et al., 2013; Ali, et al., 2014; 

Kalia, et al., 2016). It should be noted that the enabling solutions alluded to here, are 

in some instances programmatically transparent to a functional application’s use of 

sockets. A performance enhanced, attuned and transparent solution, may therefore 

possibly not necessitate a rewrite or recompilation of the application. However it would 

be important to progressively elaborate, as well as dissect each attribute of a 

combinatorial solution in order to accurately establish applicability and compatibility. 

 

The socket transparent NIC technologies of interrupt moderation, checksum and large 

segment offload as implemented in modern hardware, could lessen network related 

processing overhead whilst increasing throughput (Romanow & Bailey, 2003; Regnier, 

et al., 2004; García-Dorado, et al., 2013; Prakash, et al., 2013). The term interrupt 

moderation refers to the ability of a NIC to accumulate a number of incoming network 

packets before signalling once for CPU interaction, thereby liberating processing 

cycles. The word paring of checksum offloading, denoting the removal of responsibility 

for calculating TCP/IP error control checksums from the CPU. Instead, checksums are 

calculated using the NIC hardware. If large segment offload is supported, the NIC takes 

on the duties of processing application messages into segments and forming the 

corresponding TCP/IP headers. Large segment offloads could greatly increase egress 

throughput and reduce host processing linked with TCP/IP socket based network 

communications.  
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Further overhead reductions for traditional socket implimentations, can be gained from 

OS provisioned and improved socket API functions, that directly or indirectly implement 

zero copy features (Microsoft Corporation, 2001; Jones & Ohlund, 2002; Romanow & 

Bailey, 2003; Jin, et al., 2005; García-Dorado, et al., 2013). The switching between 

user and kernel execution contexts, would normatively necessitate data duplication. A 

data copy operation, innately accrues overhead by consuming memory bandwidth and 

processing cycles. A zero copy feature eases context switching overhead by providing 

a means to bidirectionally copy file data via sockets, without changing execution 

modes. In essence the kernel context is often bypassed, as data movement could occur 

between the memory spaces of the NIC and application directly. 

 

2.5.5 Contemporary HPC and HTC Networking 
 

 

 

The most widely purported combinatorial solution for high performance or throughput 

networking, which potentially provides best fit for HTC and HPC, implement forms of 

Remote Direct Memory Access (RDMA) by means of hardware infrastructure and 

platform provisioning (Microsoft Corporation, 2001; Romanow & Bailey, 2003; Liu, et 

al., 2004; Jin, et al., 2005; Ali, et al., 2014; Kalia, et al., 2016).  

Figure 11 Network stack comparison 

(adapted from Microsoft MSDN, 2001 and Jin et al, 2005) 
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The network topology for RDMA solutions are constructed using specialized and often 

expensive hardware, which intrinsically expose high bandwidth and low latency 

characteristics. Of overarching significance however is that RDMA featured networks, 

provide the capability to directly access the memory of remote participant nodes. As 

shown in Figure 11, the mechanics of RDMA implement hardware accelerated versions 

of previously discussed features such as zero copy, large frame transmission and 

kernel bypass. 

 

Compatible internetwork devices, node hardware, physical media and supporting OS 

kernels, frequently combine to form the holistic RDMA support solution. The result itself 

is often termed a System Area Network (SAN), referring to the vendor provided 

hardware and software platform features that may be exploited. Some popular 

examples of SAN networks include: iWARP (Internet Wide Area RDMA Protocol), 

RoCE (RDMA over Converged Ethernet) and InfiniBand. 

 

2.5.6  Grid Formation and Fault Tolerance 
 

The fundamental clustering of computing resources into a singly managed object for 

either HPC or HTC utility, may be presented as a two-tier network topology (Foster, et 

al., 2008; Shvachko, et al., 2010; White, 2012 ; Reyes-Ortiz, et al., 2015). A server 

node (i.e., a master, name node or resource manager) associates and interacts with 

multiple networked client nodes (i.e., workers, slaves or compute resources). The 

relationship has also been illustrated in Figure 12. The responsibilities of the server 

node encompass scheduling of client processing workloads and managing the integrity 

of the functional distributed computing platform. 

 

In most HPC and HTC implementations, an optional data tier (i.e., a data node) as 

either a separate entity or imposed role can be added to improve data locality (Foster, 

et al., 2008; Shvachko, et al., 2010; White, 2012; Zhao, et al., 2014). Specifically for 

HTC platforms, the design could call for an implementation of a Distributed File System 

(DFS) to extend the data locality scenario for enchanced benefit (White, 2012). A DFS 

fundamentally constitutes a virtual file and directory hierarchy abstraction, or 

namespace. Each particular entry in the namespace in actuallity a logically mapped or 

aliased remote data storage location. 

 

When established and appropriately configured onto a name node, the features 

provided by the DFS namespace may consequently be enhanced to include the 

replication of data and/or computation state between networked participants.  
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The design of the DFS replication scheme, could per example enable desirable stability 

features such as load-balancing and fail-over between participants (Montero, et al., 

2011; White, 2012). Should HTC participant nodes transition into an offline state for 

any given reason, the integrity of the computing environment could viably be 

maintained. The computation workload and data of the faulting nodes, would remain 

accessable by means of preconfigured replicants (i.e, fail-over, fault tolerance). 

Similarly, the faulting nodes’ workload can be resheduled evenly among the remaining 

aggregate compute clients (i.e., load-balancing). The supplementary benefits of such 

DFS configurations innately easing the platform constraints of scalability and availibility. 

 

The major differences in grid formation between HPC and HTC, concern the 

construction of the computation platform and the ability to deal with discreet node 

failure. The scheduled workloads of HPC platforms normally require static network 

topologies in order to function and therefore do not scale well (Ali, et al., 2014; 

Mantripragada, et al., 2015; Reyes-Ortiz, et al., 2015). Whereas in the case of HTC 

platforms, some topology dynamism is facilitated via inherent design (White, 2012; 

Reyes-Ortiz, et al., 2015). For HPC, node failure historically generates uncertainty in 

attaining intended outcomes, whereas HTC is semi tolerant of such failure.  

Figure 12 Elementary grid formation for HPC or HTC 
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2.6 Chapter Summary 
 

This chapter started off by articulating the conceptual preparations and literature survey 

parameters employed in research material selection. Next, the historic roots and 

contemporary nature of technical debt phenomenon was investigated. Importantly, a 

link was made between technical debt and e-waste. The growing trend of organisational 

cloud and related services adoption, presented evidence towards reduced lifecycles for 

currently retained IT assets. The imminent loss of value as a result, is emphatically 

unattractive. To delay the burden of technical debt, the repurposing of assets that still 

conform to the organisational need is recommended. 

 

The probable sources of future technical debt, are identified as platforms and 

infrastructure, supporting the Microsoft operating system. In this section and in previous 

deliberations, it was established that on demand computing power, by means of grid 

computing could pose as viable solution to the capacity and alignment problem. 

Specifically the grid applications of HPC and HTC, provide fit and exude the same value 

proposition characteristics of the cloud and modern data analytics. However, the nature 

of parallelism and heterogeneity in HPC and HTC is found to be problematic. 

 

The chapter’s following inquiries, explore the parallelism and heterogeneity issues in 

an atomic fashion. A conceptual model that represents a computing platform as a grid 

participant, is dissected in an effort to understand underlying issues for HPC and HTC 

implementations. The resulting awareness engendered by the focused literature 

investigations, are to be instrumental in creating the generalizable design construct.  
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CHAPTER THREE 
RESEARCH METHODOLOGY 

 

3.1 Research Theory Development 
 

The selection of research methodology should first and foremost be cognisant of the 

ontological stance. An ontology would speak to an inherent conviction of how reality 

would be constructed or experienced (Neuman, 2011; Bryman, et al., 2014). Notably 

the researcher’s observational point of view and influence on the perceived reality 

should be garnered. Given an ontological decision, various more focused 

epistemological avenues are revealed. An epistemology refers to how scientific 

discourse and knowledge accumulation may be facilitated (Neuman, 2011; Bryman, et 

al., 2014). The outflow of the epistemology choice could indicate an ideal 

methodological paradigm to use. A research methodology describing the conceptual 

framework or pattern, together with a research process by which studies are conducted. 

 

The holistic objective of the research exploration proposed needs to apprise on the 

practical applicability in design, as indicated by the expected contribution. Existing 

theory informs design, but during exploration using an aligned research methodology, 

potential emergent theory may result that could add academic value. As shown in the 

Figure 13, an adapted Pasteur’s Quadrant, the pure applied research region is well 

suited to depict such undertaking. The quest for fundamental understanding is 

downgraded in favour of considerations regarding value in use, whilst inherently not 

excluding theory enrichment opportunities. The Design Science Research paradigm is 

known to be applicable in research environments that propose to develop new designs, 

software artefacts and instantiations (Fischer, 2011; Prat, et al., 2014). 

 

 

  

Figure 13 Research and theory development 

 (an adapted Pasteur’s Quadrant as originally proposed by Donald Stokes, 1997) 
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3.2 Design Science Research 
 

Information Systems (IS) are implemented to enable some arrangement to enhance 

effectiveness and/or efficiency. The computerized IS, could arguably be described as 

interrelated and in most cases interdependent artificial constructs of engineering 

(Brooks, 1996; Simon, 1996). 

 

Design-Science Research (DSR) has proven a valid conceptual, execution and 

evaluation framework for the study of IS, which has been gaining larger traction within 

the scientific information technology research community (Fischer, 2011; Prat, et al., 

2014). DSR’s origins can be traced to the latter half of the 1980’s, with rudimentary 

maturity in research application being witnessed after the mid-1990’s. Primarily DSR in 

the legacy setting was used as an emergent pattern for engineering the artificial (Simon, 

1996). When discussing DSR, the use of the term processes clarifies and circumscribes 

the interrelated as well as interdependent nature of IS constructs. Correspondingly the 

term artefacts in the conceptual framework of IS, delineates the artificially engineered; 

thus targeted functional computer programs together with their means of operation 

(Hevner, et al., 2004). 

 

The DSR archetype endeavours to create or expand capabilities via innovation 

(Hevner, et al., 2004). The target area of application for such innovation is real world 

human or organizational environments. Typically, such environments could benefit from 

innovative application artefacts as solutions to given problem domains. A clear 

understanding of the given problem domain facilitates an understanding of the 

performance characteristics of an artefact and whether it indeed alleviates the identified 

problem (Hevner, et al., 2004). The outcome of DSR endeavours are artefacts, 

instantiations, methods and models that add value in practice (Hevner, et al., 2004; 

Kuechler & Vaishnavi, 2008; Prat, et al., 2014). Fundamentally DSR provides a basis 

in which artefacts can be developed whilst also imparting prescriptions as to the 

process of such artefact creation and eventual use. 

 

The context of the perceived problem provides input into the initial design process, 

which in turn outputs a possible design artefact as solution (Hevner, et al., 2004; 

Kuechler & Vaishnavi, 2008; Fischer, 2011; Prat, et al., 2014). Artefact construction 

may in cases, precede the knowledge of why and in what manner it functions (Simon, 

1996; Gregor & Jones, 2007). Importantly the candidate design artefact is evaluated as 

to its suitability for solving the problem. The evaluation process in turn expands the 

understanding of the problem. 
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Similar to classic transformation models and Soft Systems Modelling, timeless 

characteristics of input, process, output, feedback and control are created, in turn 

forming an iterative loop of build-and-evaluate until the final design artefact is generated 

(Checkland, 1985; Hevner, et al., 2004; Kuechler & Vaishnavi, 2008; Prat, et al., 2014). 

 

According to Hevner et al. (2004) “Truth informs design and utility informs theory”. As 

social-science research endeavours to justify, develop or predict behavioural truth; 

design science seeks to establish utility that informs such hereto unknown truth 

(Hevner, et al., 2004; Fischer, 2011). DSR artefacts are seldom all-inclusive information 

systems that make it into practice, however during the endeavour of research the ideal 

solution to the problem domain becomes manifest, which enhances and adds to the 

knowledge base (Hevner, et al., 2004). 

 

Design-Science as research paradigm, is suited for addressing historically difficult IS 

problems (Hevner, et al., 2004). Characteristics of such difficult IS problems include: 

instability of requirements, integration complexity, fluid process or design environments 

and dependency of successful outcomes on human interaction (Brooks, 1996; Hevner, 

et al., 2004). These difficulties as described, are assuredly not unique to the field of IS. 

Per illustration, nearly all management knowledge areas suffer the same or similar 

difficulties and are therefore popular topics for books as well as field research (Ward & 

Peppard, 2002; Schiesser, 2010; Gido & Clements, 2014). And yet, a distinguishing 

factor amongst others is that DSR provides non-mandatory guidelines, shown in Table 

7, which specifically alleviate complications to IS artefact creation. 

 

Table 7 Seven guidelines of design science research 

(adapted from Hevner, et al., 2004) 

1 Construct purposeful utilitarian artefacts 

2 Ensure alignment with the problem domain 

3 Evaluate artefacts thoroughly for intended functionality 

4 Innovation is key for heretofore unsolved- or effectiveness/efficiency problems 

5 Rigorously defined, formally presented, coherent and internally consistent  

6 
Numerous solutions to the problem are possible, technique optimal choice 
criteria 

7 
Communicate effectively to the mixed stakeholder audience of the problem 
domain 
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Rigor ultimately augments the relevance and importance of the DSR endeavour 

(Hevner, et al., 2004; Ostrowski & Helfert, 2012; Venable, et al., 2016). Notably 

guideline 5, ‘rigorously defined, formally presented, coherent and internally consistent’ 

is then ultimately the major difference between DSR and other comparable paradigms. 

Interestingly this supposition by Hevner, et al. (2004) differentiating DSR was initially 

disputed, but later found to have achieved academic validity (Fischer, 2011; Prat, et al., 

2014). The contemporary seminal scholars whom are contributing to DSR, 

consequently and consistently reiterate broad agreement with Hevner, et al. (2004) 

guidelines. The DSR author contributions and research standpoints, in the reviewed 

publications after Hevner, et al.’s (2004) initial work, then frequently predominate 

around practical implementation or interpretation of these guidelines. 

 

3.2.1  Practical Application 
 

A paper by Gregor & Jones (2007) emphasises that goal and scope, together with 

constructs of theory be apparent in the DSR descriptive. Comparison of theory with 

similar prior theories when indicating goal and scope of research should provide metrics 

(Gregor & Jones, 2007). The quantification of such is important, for it allows a means 

to determine the contribution of research to the body of knowledge. Investigating similar 

theories and how the research theory under review was derived, reveals the amount of 

value innate (Gregor & Jones, 2007). Accordingly, the undesirable tendency in 

academic research to generate additional terms and theories, which duplicate existing 

knowledge as well as technologies may be curbed. The influential DSR authors Peffers, 

Tuunanen, Rothenberger & Chatterjee bolsters the DSR methodology in late 2007. 

Highly acclaimed, the published work dramatically increases DSR acceptance within 

the IS research community. Of significance is that Peffers, et al. (2007) provides the 

research practitioner with a consensus conceptual methodology framework and toolset 

by which to implement DSR consistently. The procedures, practices and principals for 

DSR as described by Peffers, et al. (2007) may be used to target all-inclusive IS 

research actions. The authors highlight three key objectives in creating the 

methodology enhancements for DSR namely: nominal research process model (see 

Figure 14), terminology consistent in literature and a mental model for evaluating IS 

research. Importantly the activities described in the DSR process model have direct fit 

to Hevner, et al.’s (2004) guidelines, but have demonstrated practical application value. 

Additionally, the mental model for DSR provides insights into gauging the research 

worth, during and post development (Peffers, et al., 2007). The DSR mental model 

could for example serve as instrument in determining whether envisioned research 

objectives are being achieved, or exhibit evidence towards enhancement of the 

research body of knowledge.  
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The academics Kuechler & Vaishnavi, (2008) recommend that narratives underpin and 

are applied to all abstracted models. Metaphors that tell or encourage a story, yield 

better results to conceptually focus stakeholders whilst stimulating goal orientated 

thinking. Pointedly, “grammatical element salience in conceptual modelling” enhances 

all of Hevner, et al.’s (2004) other guidelines (Kuechler & Vaishnavi, 2008). Secondary 

benefits of this approach are that it provides for more accurate, common, persistent 

and communicable understanding of the problem domain. Such understanding is then 

extended to encompass the artefact design, development and evaluation process 

steps. 

 

3.2.2  Strategy, Outcome and Process 
 

The DSR contributor Juhani Iivari, reiterates and promotes cognisance of the two 

contrasting research strategy choices particular to information systems. Expressively 

the choice regarding strategy, could have very real implications for the context, 

outcomes, process and resource requirements of a DSR undertaking (Iivari, 2015). 

Consequently, Iivari clarifies and differentiates the two DSR strategies that target 

information systems, along sixteen apportioned dimensions. Guided by these 

dimensions of a strategy choice, the researcher should be able to holistically 

comprehend the research environment, maximize the research process for possible 

benefits, avoid pitfalls and add focus to the potential research contribution sought.  

Figure 14 Design science research nominal process model 

(adapted from Peffers, et al., 2007) 
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In the first identified research strategy choice (i.e., Strategy 1), a case for 

generalizability of solution to a perceived problem domain is created by building meta-

artefacts, using overwhelmingly objective and deductive patterns (Iivari, 2015). The 

resultant meta-artefacts, may or may not eventually become instantiations. The second 

DSR strategy (i.e., Strategy 2) differs by attempting generalizability of solution through 

the development and subsequent reflection on, real-world system implementations 

(Iivari, 2015). The dominant deliberations around Strategy 1 or 2, should therefore 

contextualize whether the envisioned research requires interaction with a perceived 

client entity and their specific problem. The fundamental divergence on the DSR 

strategy, regards the concept of general problem domains versus entity conveyed, 

specific or so-called concrete problem domains. 

 

Strategy 1 would be conversant of multiple uncertainties surrounding the problem in 

practice, how the solution may be formulated and what the eventual research 

contribution will be (Iivari, 2015). For Strategy 2 the problem presents with immediate 

complexity dimensions and an involved client entity. The path towards the solution in 

this strategy is also unclear, but considerable uncertainty regarding the eventual 

research contribution is generated (Iivari, 2015). It could be said that both strategies 

have central, but dissimilar degrees of uncertainty surrounding the problem and 

direction toward possible solutions. Nonetheless of more substantial and imminent 

concern for the research practitioner would be, whether perceptible research 

contributions could ultimately be realized by means of the DSR strategy choice. 

 

Once furnished with the DSR strategy selection, the avenues to likely research 

outcomes may be generated (Iivari, 2015): 

• Strategy 1 - meta-artefacts (optionally instanced), proof of concept evaluations, 

reasoned design that exhibits innovation and exposes possible practical 

applicability 

• Strategy 2 – instanced artefacts for a specific problem (possibly meta-artefacts as 

DSR contribution), evaluations that concern real-world systems that depict 

innovation by design, proof of practical applicability 

The outcomes of both strategies, engenders firm onus onto the researcher to uncover 

value and build legitimacy for claimed contribution to the body of knowledge. The theme 

of reasoned design that includes innovation is also reflected in either strategy outcome. 

Key variances are however explicit for the outcomes of practical applicability and 

evaluation targeting, as a natural outflow of causal strategy contextualization.  
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Investigating the research processes or methods attributed to the DSR strategy choice, 

demonstrates similar disparity along the same motif (Iivari, 2015): 

• Strategy 1 – iteratively constructed meta-artefact as generic solution, empirical 

artefact evaluation, generalization stemming from and informed by the problem 

statement 

• Strategy 2 – experiences from a specific solution in practice, action-based research 

as intervention, constructions around concepts may yield meta-artefacts (elective 

empirical evaluation), generalization stemming from and informed by design 

patterns for a class of problem 

For Strategy 1 the process is driven by means of cyclic versioning of candidate solution 

meta-artefacts, which should expose universal fit to the problem domain (Iivari, 2015). 

The major process activities in the strategy, are centred on building and empirically 

evaluating the artefact as an evolutionary progression. Seeking generalization is also 

noted as fundamental in the applied process. 

 

The Strategy 2 process contrasts by using experiential knowledge of solving a problem 

in practice, as input into meta-artefact design patterns that may suggest generalizability 

of solution for a specific class of problem (Iivari, 2015). Again, the salient theme 

indicates that the researcher is immersed in solving a specific client problem. Studies 

conducted during solution creation could uncover design principles that have generic 

applicability for a class of problem. The design patterns and their generalizability 

rational are revealed or inspired during the client’s system development process. 

 

The final implication of DSR strategy choice for information systems, regards resource 

requirements. The resource needs for Strategy 2 is expectantly greater than its 

counterpart (Iivari, 2015): 

• Strategy 1 – primary problem domain expertise (optionally sub-domain specialists), 

research team comprises single individual or small team, schedule and cost of 

research varies greatly dependant on ambition 

• Strategy 2 – necessary client involvement, larger research teams (optional 

interdisciplinary teams), longer schedule periods and cost prohibitive 
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3.2.3 Artefact Evaluation Criteria and Methods 
 

The representation of criteria and methods, by which DSR artefacts are vetted would 

be important in establishing the measure of research rigor and contribution (Hevner, et 

al., 2004; Peffers, et al., 2007; Pries-Heje, et al., 2008; Ostrowski & Helfert, 2012; 

Peffers, et al., 2012; Venable, et al., 2012; Prat, et al., 2014; Venable, et al., 2016). An 

information systems artefact, may certainly be evaluated using any number of criteria 

within a given context. Nevertheless the criteria and methods selected, are required to 

pass research community muster. In remedy to potential difficulties in establishing 

artefact evaluation validity, Hevner, et al. (2004) proposes five classes of evaluation 

methods as shown in Table 8. Of significance for the research practitioner is that the 

applicable methods within each class, has consensus authority in the research 

knowledge base. In abridged terms the design artefact’s context is matched with the 

appropriate method(s) of evaluation. 

 

Table 8 Design evaluation methods 

(adapted from Hevner, et al. 2004) 

Evaluation Class Appropriate Method 

Observational 
Field Study 

Case Study 

Analytical 

Dynamic Analysis 

Optimization 

Architecture Analysis 

Static Analysis 

Experimental 
Controlled Experiment 

Simulation 

Testing 
Structural Testing 

Functional Testing 

Descriptive 
Scenarios 

Informed Argument 

 

Also be reminded, that within the Peffers, et al., (2007) DSR process model the 

evaluation activity is conceived in two stages (Peffers, et al., 2007; Ostrowski & Helfert, 

2012). The ‘demonstration’ action, illustrates that the indented purpose of the artefact 

is feasibly achieved within at least a single context. Whereas the ‘evaluation’ action, 

elaborates on the applicability of the artefact towards solving a problem. The 

appropriate method and criteria of evaluation, therefore requires further situational 

awareness regarding the current DSR process stage.
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The artefact evaluation situational context, as depicted in Figure 15, can be described 

as either ‘artificial’ or ‘naturalistic’ (Pries-Heje, et al., 2008; Venable, et al., 2012). The 

scope or dimensions of the research strategy being the major driver of the artefact’s 

evaluation strategy and method. An ex ante (i.e., prior to artefact creation) and ex post 

(i.e., after artefact creation) perspective can be used to codify the evaluation strategy 

and provide appropriate methods for evaluation (Pries-Heje, et al., 2008; Venable, et 

al., 2012). Additional factors of goal, condition and constraint can also be used as 

contextual inputs into the evaluation strategy and method choices (Venable, et al., 

2012). 

 

The DSR framework known as FEDS (Framework for Evaluation in Design Science 

Research), is the de facto vehicle for contemporary artefact evaluation strategy 

selection. The FEDS framework, as shown in Figure 16, reveals evaluation strategy 

agendas for DSR artefacts, beyond the initial paradigm of naturalistic or artificial 

evaluations. Prominently, the functional purpose of the artefact’s evaluation is 

considered to have weightings of formative and summative extents (Venable, et al., 

2016). The proportions of summative evaluations would determine the magnitude of 

efficacy or matching outcomes to expectations. The scope of formative evaluations, 

endeavouring to increase the process or efficiency by which outcomes are achieved. 

When the dimensions regarding the paradigm of evaluation, counter to the functional 

purpose of evaluation is accordingly formed, the evaluation strategies are said to be 

(Venable, et al., 2016): Quick & Simple, Human Risk & Effectiveness, Technical Risk 

& Efficacy and Purely Technical.  

Figure 15 Selecting DSR evaluation methods 

(adapted from Venable, et al., 2012) 
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The characterization of evaluation strategies by use of the FEDS framework, explaining 

the idealized DSR evaluation process in terms of “When to evaluate, for what purpose, 

and how” (Venable, et al., 2016). 

 

The Human Risk and Effectiveness evaluation strategy is well suited to the naturalistic 

paradigm. The strategy choice is enabled by research settings that display 

fundamentals of rigor and utility sought over longer periods of time, where research 

costs are perceived to be low and/or major social risk could manifest (Venable, et al., 

2016). The Human Risk and Effectiveness strategy applies multiple episodes of 

meticulously conducted, typically naturalistic formative evaluations, which culminate in 

naturalistic summative evaluations. The effectiveness of the DSR artefact in providing 

long term utility or benefit for a client audience is said to be of significance. 

 

The evaluation strategy as a DSR case for Quick and Simple, comprises a diminutive 

design endeavour, which presents with low technical and social risk (Venable, et al., 

2016). Suited for more naturalistic problem domains, the evaluation is initially formative 

but develops rapidly towards a naturalistic summative effort. The Quick and Simple 

approach is then also pigeon-holed by few evaluation episodes and a low research cost 

environment.  

Figure 16 The FEDS artefact evaluation framework 

(adapted from Venable, et al., 2016) 
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The Technical Risk and Efficacy strategy is used primarily for evaluations of the 

artificial. Numerous and iterative artificial formative evaluations, progress towards 

summative evaluations that rigorously expose innate value of the design artefact. A 

final summative evaluation does however normally include naturalistic deliberations of 

the design artefact in use. The research environmental features that fit the strategy, 

present as having one or more of the following criteria (Venable, et al., 2016): 

• The design endeavour’s risk profile is predominantly technically orientated 

• It would be impractical or incur high research costs, if conducted within a social 

setting 

• The effectiveness of the artefact’s utility or benefit, needs to be intrinsic and not 

necessarily reliant on social interactions 

Lastly, the Purely Technical evaluation strategy selection is derived by the research 

circumstances where no social aspects are involved and/or where design artefacts are 

for future consideration (Venable, et al., 2016). The use of naturalistic evaluations are 

therefore irrelevant, only purely artificial formative and artificial summative evaluations 

are conducted. 

 

The artefact evaluation strategy choice itself, is actioned through use of a FEDS four 

step process. Each step in the process engendering efficacy, rigor, goal orientation and 

environmental focus for the discreet evaluation activity. In telling contrast to other 

frameworks, Venable, et al., (2016) furthermore delivers evidence of risk reduction, 

effectiveness and efficiency in practical application. 

 

The FEDS evaluation design process steps, are provided as (Venable, et al., 2016): 

1. Clarify the goals of artefact evaluation 

2. Select the appropriate artefact evaluation strategy or strategies 

3. Conclude which properties of the artefact to evaluate 

4. Plan the individual artefact evaluation episodes 

 

The first step in evaluation design process establishes rigor, addresses ethics, reduces 

risk and uncertainty, whilst balancing efficiency against other goals (Venable, et al., 

2016). The aspects of rigor include two key perspectives of artefact instantiation. In an 

artificial paradigm, the observed measure of the artefact should not be influenced by 

external factors. Whereas in a naturalistic setting, the effectiveness of the instantiation 

needs to be measured in the real-world environment. The application of ethics 

surrounding any evaluation, must endeavour to perpetually limit potential harm befalling 

stakeholders.  
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A proper evaluation design should also acknowledge social or technical risks and seek 

reduction of uncertainty. To achieve such risk and uncertainty reduction, it is 

recommended that formative evaluations be scheduled at the earliest possible stage. 

Meanwhile the efficacy planning context of the evaluation considers how research costs 

and resources may be prudently spent. 

 

The second stage of the evaluation design process considers and selects an 

appropriate FEDS strategy dependant on the ‘why, when, and how’ of the evaluation 

(Venable, et al., 2016). The characterization of the research environment, as it 

concerns the risks and constraints of the envisioned design artefact provides the 

primary direction of choice. 

 

The FEDS evaluation design process’s third step, determines the detailed properties 

of the artefact instantiation that will be the subject of evaluation (Venable, et al., 2016). 

The properties exhibited by the artefact, would present with unique features that link 

and frame the situational design goals. The artefact properties under review affords 

rational and justification towards the selection of scientifically valid evaluation methods. 

 

The last step in the evaluation design process, prioritizes and schedules the evaluation 

episodes within the research environmental constraints (Venable, et al., 2016). The 

number and type of evaluations are notably contextualized dependant on resource 

availability. An artefact evaluation episode involves such factors as the time of 

evaluation, what to evaluate, resource requirements, method of evaluation and 

responsible party assigned.  
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3.3 Research Design 
 

3.3.1 Context, Strategy and Intended Outcome 
 

The DSR Strategy 1 context and process descriptive for information system artefacts, 

accurately maps the intended research action. The research effort is primarily geared 

towards the design and instantiation of a utilitarian software artefact. A real-world client 

or customer will be absent from the research environment. 

 

There is a need for objective and deductive build patterns to be persistently used in the 

design endeavour. The design artefact will be iteratively built and empirically evaluated. 

It is projected that the generalizability of the research contribution, would stem from the 

problem statement and the efficacy of the artefact as solution. The solution would need 

to expose innovation and provide indications of practical applicability. 

 

The Hevner, et al. (2004) DSR guidelines and Peffers, et al., (2007) DSR nominal 

process model, will be applied in framing the research undertaking. The theory and 

practical application considerations of Gregor & Jones (2007), as well as Kuechler & 

Vaishnavi (2008) and Iivari (2015) can provide internal focus and feedback in attaining 

research value. 

 

The design artefact evaluation strategy, criteria and methods will be conversant of the 

DSR evaluation method selection framework of Pries-Heje, et al., (2008) and Venable, 

et al., (2012). The evaluation strategy then also subjected to the FEDS subordinate 

evaluation strategy and four-step process model by Venable, et al., (2016). 

 

3.3.2 Research Method 
 

The envisioned design artefact and research environment, is conducive to the FEDS 

‘Purely Technical’ and ‘Artificial’ evaluation model. Pointedly, the proposed design 

solution is future problem domain orientated and no social actors are required. Only 

quantitative methods such as mathematical or logical proofs, together with criteria-

based evaluations are employed. 

 

The bounded constraints of design and evaluation of the artefact, is informed by 

rationale established in the literature surveyed. The numerical measurement and 

reporting of functional extents, exposed by the instantiated artefact’s system 

dimensions are of interest. The evaluations are conducted as multi episode activities 

within a laboratory setting.  
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3.3.3 Metrics and Analysis 
 

The research units of analysis comprise the efficiency and efficacy levels of the design 

artefact. The usefulness and performance of the design artefact is therefore to provide 

a measure in determining overall applicability as potential solution. The units of 

observation contain the hardware, software and network components of discreet 

runtime instantiations. The data points as metrics of system extents, are to be gathered 

using only industry and academically scrutinized tools or techniques. The metric types 

in data collection across instantiations, would include varying physical or logical 

dimensions of effectiveness and efficiency. The presentation of quantitative research 

data takes the form criteria comparison tables, graph plots, mathematical and statistical 

schemes. 

 

3.3.4 Validity 
 

The research undertaking needs to make comparisons of theory with similar prior 

theories. The goal and scope of the research narrative should therefore provide for 

proportions, whereby the contribution of research to the body of knowledge may be 

measured. Building and exposing validity is intended to be a fundamental component 

of the research model. 

 

3.3.5 Research Resources 
 

The research case is built and informed by the architecture and operational 

environments as identified by subsequent research questions. Cognizance is taken of 

environmental characteristics that promote heterogeneous grid computing realities. A 

grid participant blend of virtualization, mobile, generic server and desktop settings is 

expected. Scalable academic computer laboratories located in the Western Cape, 

South Africa are the intended proving grounds for the envisioned design artefacts. 

 

3.3.5.1 Code Development 
 

To reduce the multitude of difficulties caused by abstraction and heterogeneity in 

current HPC or HTC platforms, the software design artefact is developed in assembly 

language. The initial motivation is that a reduced application stack can be generated 

by use of assembly language. The compiled executable artefact, consequently is not 

reliant on additional or intermediate run-time libraries and interpreters. A major 

additional motivation for the use of assembly language, is the requirement of direct 

access to hardware configurations as identified in the research. Furthermore, assembly 

language programming enables numerous optimization opportunities via unrestrained 

instruction set support.  
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3.3.5.2 Artefact Development Platform 
 
The following platform was used as development and primary data gathering source: 

ASUS laptop Model: X554L, Windows 8.1 (x64) Non-Domain Bound, UASM (The 

Unified Assembler) fork of the Watcom assembler, MASM32 SDK libraries and macros, 

RADASM & Easy Code visual assembly integrated development environment, OllyDbg 

2.01 (x86/x64) debugger, CodeXL 2.4 version Win 2.4.45, Intel Parallel Studio XE 

Cluster Edition for Windows 2018 (initial release), MS Windows ADK: Performance 

Recorder, MS Visio/Office 365 Pro, HxD – Hexeditor version 1.7.7.0. The laboratory 

environment for artefact instantiation and testing has been detailed in Table 9. 

 

Table 9 Laboratory Environment 

24 

HP ProOne All-in-One 600, Intel Core i5-4590S 3 GHz 4 Core/Threads, 

8GB RAM, 200 GB HDD, Microsoft Windows 10 Enterprise (x64) Build 

16299, Domain Bound, MS Hyper V ver.10.0.16299.15, Intel I217-LM NIC 

in Full-Duplex 100Mbps, Average Passive Load: CPU 7%, RAM 46 % 

1 

HP ProCurve 2650 L3 Switch 48-port x 10/100 

2 x SFP + 2 x 10/100/1000 

Twisted Pair CAT 5E Network Cabling using TIA 568B wiring schema 

1 
Hyper V Virtual Machine, 2 x CPU, 2GB RAM, 40GB HDD, Windows 2012 

R2 Server Standard Edition Build 9600, Non-Domain Bound 

1 
Hyper V Virtual Machine, 2 x CPU, 2GB RAM, 40GB HDD, Windows 8.1 

Enterprise Build 9600, Non-Domain Bound 

1 
Hyper V Virtual Machine, 2 x CPU, 2GB RAM, 40GB HDD, Windows XP 

SP3 (x32), Non-Domain Bound 

1 
Hyper V Virtual Machine, 2 x CPU, 2GB RAM, 40GB HDD, Linux 

OpenSUSE Leap 42.3 DVD Edition, x86_64, Non-Domain Bound 
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3.4 The Design Cycle 
 

It has been established that a central activity of DSR, concerns the design and study 

of a meta-artefact within a problem context. The interactions of the design artefact and 

the problem context should observably advance by means of outcome the utility 

realized. The depiction of the design effort would therefore play a vital role in mapping 

the design artefact to the problem context. In order to structure a resilient DSR design 

descriptive, the proposed outline by Roel Wieringa, shown in Figure 17, known as the 

Engineering cycle or regulative cycle is applied. 

 

 

 

The Engineering cycle initiates by means of ‘Problem investigation’ and 

‘Implementation evaluation’ (Wieringa, 2009; 2016). The stakeholders and their goals, 

as well as the environment, describes a conceptual problem framework. Particularly 

the problem framework, could potentially benefit by means of new technology 

introduction. The current effects experienced, their causes and mechanisms within the 

problem context are of interest. The magnitude of the effects on stakeholder goals, are 

an expression of the problem context importance. The core values in the problem 

investigation stage, therefore regards the description and diagnosis of the problem 

context (Wieringa, 2009).  

Figure 17 DSR engineering cycle 

(adapted from Wieringa, 2016) 
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As potential solution, the eventual design artefact could realistically be imperfect or 

generate additional problems within the problem context (Wieringa, 2009; 2016). A 

design solution is consequently understood to be either a singular or possible 

‘treatment’ to the problem context. The solution design stage of the Engineering cycle, 

is then aptly labelled ‘Treatment design’. A design is specified that argues and 

documents the distinct design decisions (Wieringa, 2009; 2016). The requirements of 

within the design specification, needs to have clear problem context and goal 

counterparts. Importantly, relevant existing treatments are deliberated and new designs 

considered. 

 

The ‘Treatment validation’ stage justifies the goal contribution before artefact 

instantiation (Wieringa, 2009; 2016). Essentially the design artefact’s predicted effects 

are conceived to satisfy the stakeholder requirements as knowledge tasks. The design 

requirements themselves having narrow fit with the original research questions. The 

internal and external validity of the design, together with design trade-off studies, 

should create norms of inherent design value. The internal validity step, attempts to 

satisfy the design against the criteria set out within the problem investigation (Wieringa, 

2009). While trade-offs or alterations in the design are considered, in determining 

whether problem criteria would remain satisfied. The external validity or sensitivity 

context step, investigates whether the design could meet similar or same criteria within 

an altered problem context (Wieringa, 2009; 2016). Feasibly then, the design’s 

sensitivity within an altered context, would infer generalizability of a particular 

treatment. 

 

The ‘Treatment implementation’ stage, concludes the Engineering cycle. The prototype 

construction of the design is undertaken (Wieringa, 2016). The design is executed and 

may then be assessed within discretionary evaluation sequences. 

 

3.5 Chapter Summary 
 

To begin with, the chapter modelled generic research theory development as a 

process. Afterwards the discussions build a case for the Design Science Research 

paradigm, as a pertinent methodology to conduct research. The importance of the DSR 

research context, strategy, method and outcome for information systems was 

deliberated. The written accounts of strategy frameworks, techniques and models for 

DSR artefact evaluation, provide additional value in research practice. Lastly the 

research action’s design, the artefact’s development and execution environment were 

detailed.  
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CHAPTER FOUR 
ARTEFACT DESIGN 

 

4.1 The Technical Debt Context 
 

4.1.1 Problem Investigation 
 

The root causes and effects of technical debt, are acknowledged to be multi-

dimensional in literature. However, a major contributing factor for increased technical 

debt in the near future, may be cloud and related services adoption. The reasons for 

organisational cloud adoption, regard subjects such as on-demand capacity 

generation, leveraging potential benefits and strategic positioning. Yet cloud adoption 

would create potential or immediate obsolescence scenarios for currently retained 

organisational IT assets. The scope of retained assets is wide-ranging, but may include 

quantifiable facets of hardware, software and network components. Dependant on 

organisational size dynamics, loss of value caused by technical debt and obsolescence 

may be decidedly unattractive. To delay the burden of technical debt, the 

reconfiguration or repurposing of assets is recommended. The platforms found to be at 

risk for technical debt accretion, are expected to be Microsoft operating system 

environments and supporting infrastructure. A case was made in the survey literature, 

to repurpose platforms in the form of scalable grids, which continue to support and align 

with the current organisational need. 

 

4.1.1.1 Conceptual Design Assumptions 
 

The repurposing of currently retained IT assets in the form of on-demand grids would 

require assumptions about the conceptual effort involved. The potential benefit 

proposed by a grid alternative, versus the cost of the technical debt manifestation, 

would logically be of concern to decision makers. The flexibility and utility of the design 

would further require articulation of expectations in respect to the constituent grid 

components. To increase the potential worth and appeal of a conceptual design 

solution, the formation of the grid is suggested to approximate a zero investment. A 

plausibly optimum design solution, should repurpose existing hardware, software, 

network and supporting infrastructure, with little or no, administrative or procurement 

overhead. The primary commitment is to reuse legacy and current operating systems, 

computational platforms, functional software and transmission devices. The envisioned 

grid design is to be autonomous and not predisposed to current deployment topology, 

security framework, computational architecture or administrative configuration. By 

implicit design, the planned grid prototype ought to be non-persistent and truly dynamic.  



 
69 

4.1.2 Treatment Design 
 

The design artefact should ultimately facilitate HPC and HTC hybridized functionality 

within a singular construct. During the literature investigation, it was uncovered that 

design obstacles of inherent parallelism, abstraction, restrictive practice and 

heterogeneity are evident within the currently obtainable solutions. Hence, the 

feasibility of an innovative design solution requisites cognisance of design requirements 

that have bearing on these obstacles. 

 

Drawing from the literature survey, the consensus was that parallelism should be 

sought at every available opportunity within an HPC and HTC design solution. 

Parallelism brings about maximization of function and efficiency, begotten from the 

underlying computational platform. Importantly, efficiency and efficacy correlations are 

evident around the theme of parallelism. The first step in creating mechanisms for 

parallel operations is through detailed discovery of the execution environment. In 

addition, literature informs that abstraction adds deployment complexity and execution 

overhead, whilst simplifying user interactions and enabling heterogeneous computing. 

 

 

  

Figure 18 Conceptual design of a dynamic grid 
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On the other hand, when considering conflicting goals of efficiency versus convenience, 

the evidence points to efficiency in execution to be paramount within HPC and HTC. A 

suitable design solution deductively requires exposing diminutive levels of abstraction. 

 

The HPC and HTC heterogeneity problem seems not to have enjoyed holistic coverage 

in the survey literature. Then also, the available open source and commercial solutions 

later examined conclude as having perceived homogenous characteristics. The 

restrictive design practices of currently available solutions, which limit compatibility and 

choice, could even arguably be self-inflicted. The motivation for placing restrictions via 

inherent design might have speculative connotations of specialization or financial 

incentive. In answer to the design for heterogeneity issue, the approach taken in this 

research is to find common denominators of platform aggregates. The dictum being 

that commonality indicates points of compatibility without additional restriction. As 

potential point of departure, consider that Windows operating systems are by enlarge 

backward compatible, irrespective of underlying processor architecture. Pursuing the 

lowermost kernel supported API of the operating system aggregate and architecture 

feasibly produces compatibility across heterogeneous Windows platforms. A 

supplementary advantage of this approach is that the application technology stack is 

specifically less abstracted, as revealed in Figure 19. 

 

 

  

Figure 19 Design technology stack 
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The proposed design solution is depicted as modular software. A server grid node 

accepts connection requests from computational client nodes and integrates the 

collective to form the grid. Each node within the grid is initially profiled to ascertain 

underlying computational potential, which is reported to the server. The server node in 

turn, calculates the amassed grid potential. The HPC and HTC work-products or jobs, 

are submitted to the grid for computation in the form of targeted binary executables. 

The design choice of including targeted binary executable support, provides for several 

key opportunities. The primary reasoning is that the restrictive programming 

environmental constraints of present HPC and HTC solutions may feasibly be 

overcome. Using existing skillsets and tools, current software assets that provide for 

data analytics, can viably be reused or reconfigured, to more efficient executable forms. 

Principally, an executable binary allows for external performance profiling. Moreover, 

curtailed abstraction may be facilitated by eliminating third party dependency. Likewise, 

the need for parallel programming skillsets is characteristically negated, as 

computational node targeting and management may yield optimum parallelization 

utility. The intent is to support singular or multiple functional binary executables, each 

matched intimately with the computational platform designated for execution. A client 

node’s job scheduler would via configuration options, generate hardware thread 

attuned execution environments per binary workload. 

 

The modular design solution framework furthermore, should allow for the creation of 

the hybridized data management function. The data manipulation efficiency 

requirements of HPC and HTC, mandates data sourcing that improves locality of 

access. For HPC the data sourcing needs are normatively node-local, whereas HTC 

could additionally exhibit data locality needs as external or near-local. In the context of 

Windows platform environments however, the barriers to implementation of data 

locality features becomes problematic. The support compatibility inherent to the 

Windows OS, is notably due to version and edition. The design arrangements for known 

solutions to the data locality problem such as DFS, would therefore be determined by 

the constituent Windows OS platform interactions. Importantly, the DFS participants 

and functionality in an arrangement, could create implementation difficulties for a 

potential design solution. The constraints imposed are in reality not just particular to 

Windows OS versions and editions, but normally encompass administrative and 

security group membership as well. It would therefore be unreasonable to design for 

existing DFS environmental support, within the identified technical debt and 

heterogeneous context. The proposed design solution would require design elements 

that resolve data locality and scheduling issues, irrespective of the Windows OS 

runtime environment.  
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4.1.3 Treatment validation 
 

The statistical data for global desktop operating system sales of the last decade, 

revealed that the Microsoft Windows operating system platform was at most probable 

risk for technical debt formation. In order to delay a technical debt burden, the 

reconfiguration or repurposing of retained IT assets is recommended in literature. The 

platform constituents of the Windows infrastructure, which may expose technical debt 

or eventual obsolescence attributes, are consequently of interest in formulating a 

repurposing strategy. In planning for IT asset redeployment, investigations are 

mandated in order to identify specific enabling opportunities that reduce or delay 

technical debt. The exploration of the Windows platform components of hardware, 

software and network infrastructure are by virtue encompassed. 

 

The physical hardware environment supported by the Microsoft Windows OS, 

incorporates proprietary patterns for server, virtual machine, workstation or desktop 

installations. Of prominence however is that any installation prerequisites CPU 

instruction set compatibility with the Intel® (henceforth Intel) x86 or x64 architecture. 

The x86 architecture family, describes an arbitrary CPU platform that has backward 

compatibility with the Intel 16-bit and/or 32-bit instruction set. Equally, the x64 

architecture family signifies backward compatibility with Intel’s 64-bit instruction set. 

The backward compatibility of the x64 architecture is notably extended to also include 

x86 architectures. The specific backward compatibility of a given platform, is not 

however guaranteed for any particular qualifying CPU architecture. 

 

The difficulties in achieving backward compatibility within CPU architectures are 

importantly due to the heterogeneous nature of CPU brand and supporting instruction 

sets. Consider the addition of CPU evolutionary features, which inherently necessitates 

the brand manufacturer to amend the underlying instruction set. Should a hypothetical 

software product utilize the newer CPU features, the essential architecture support and 

compatibility thereof would realistically become fixed. Counter to backward 

compatibility, the software could possibly only achieve future CPU instruction set 

support. Of significance to a potential design solution is that the potential future 

technical debt hardware and software environs, could credibly be supporting varied x86 

and x64 architectures. The motivation for abstraction as answer to the heterogeneous 

platform problem, is known to be well served by degrees of complexity inherent to the 

scope of the development effort. The addition of abstraction to the proposed design, is 

however questionably regarded as indolent and efficiency defeating.  
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With the aim of repurposing the holistic technical debt environment, the projected 

design solution would make use of a minimal base x86 architecture. The commonality 

of inherent CPU platform instructions, can importantly be considered as solution critical 

in avoiding abstraction whilst reducing processing overhead. A carefully deliberated 

x86 architecture design should theoretically derive cross platform and architecture 

compatibility, for either legacy or modern hardware and software. The proposed 

design’s OS cross platform compatibility is likewise inferred. 

 

The varying Microsoft Windows OS editions and versions are for the most part 

backward compatible. The customary method of gaining cross platform and 

architecture software compatibility for any arbitrary OS, advantages commonality of 

exposed kernel API. The differing kernel API compatibility and feature support 

facilitated between editions or versions of the Windows OS, are indeed readily 

overcome for trivial software development scenarios. The problem dimensions however 

increase dramatically for multifaceted software endeavours. As discovered in the 

literature survey, enforcing restrictive practice definitely also has a role to play. Even 

so, the use of abstraction would add undesirable processing and throughput overhead, 

which detracts from the efficacy and efficiency sought. The projected design solution 

would therefore make use of minimal base API compatibility, to achieve Windows OS 

cross platform, network and architecture support. Pursuing the lowermost common OS 

kernel API aggregate, should viably safeguard compatibility whilst maximising 

performance and utility across the entire technology stack. The proposed design’s 

transformation effort would however significantly increase during the initial 

development stages. 

 

The design approach that seeks architecture instruction set and kernel API 

compatibility, as enabler of holistic cross platform integration is surely not new. 

However within a technical debt context, the rational of the approach is plausibly 

weighted due to the potential benefit return. Besides platform integration, flexibility in 

functional deployment and predictable run time performance may be realized. This 

design approach per illustration, permits the use of fat executables. A shrewd 

application design may have multiple procedural calls that for fill the same function but 

implement differing instruction sets. The application could then dynamically exploit the 

aggregate instruction set to uncover features and efficiencies. Knowledge of the 

underlying architecture and OS would nevertheless be key.  
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4. 2 The Execution Environment Context 
 

4.2.1 Problem Investigation 
 

The organisational need is best served by efficiency and effectiveness of the utility. The 

utility of a HPC and HTC grid, would seek idealized use and management of potentially 

diverse organisational processing resources. However the actuality of diverse 

resources, under normal conditions presents significant difficulties in application. The 

heterogeneity problem is meaningfully persistent. Certainly, information regarding the 

environmental execution context can play a key role in achieving higher levels of 

effectiveness and efficiency. Yet, enacting environmental discovery and leveraging 

resources for potential benefit is known to be a non-trivial exercise. 

 

The organisational environmental scope, dauntingly yields differing resource 

characteristics and attributes at every level of the technology stack. To abridge 

complexity and allow integration, the identification of environmental characteristics that 

produce actionable parallelism opportunities is recommended. The environmental 

contextual features of interest, are the recognized causes of processing and throughput 

bottle-necking. 

 

4.2.2 Treatment Design 
 

The processing platform characteristics that influence efficiency and efficacy as grid 

participants, was motivated in the literature review. A suitable design artefact would 

then logically require the environmental concerns to be addressed. The platform 

characteristics of foremost concern are: CPU instruction set, CPU topology, cache 

sizes and associativity, RAM and secondary storage interaction, OS provided features, 

network configuration and media support. 

 

The currently available open source and commercial system profiling solutions, 

described in Table 10 and depicted in Figure 20, are problematically not particular to 

both HPC and HTC deployments. The environmental detection features which are 

delivered by these solutions, could however add conceptual input design value. The 

solutions scrutinized, are noted to be sensitive to administrative security environments, 

frequently owing to the use of ring zero kernel drivers. Undesirably also, these solutions 

habitually demonstrate lengthy execution run-time dynamics. Some of the investigated 

system profilers, are observed to have programmable interface features that enforce 

restrictive prerequisites. But most importantly, the considered system profiling solutions 

do not wholly address the areas of contextual design as highlighted in the survey 

literature.  
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Table 10 System profiling solutions 

ATTRIBUTE 

OpenMPI 
hwloc / nwloc 

v2.0.1 
Windows 

CPUID™ 
CPU-Z 
v1.84.0 

REALiX™ 
HWiNFO 

V5.74 

OpenHardware 
Monitor 
v.0.8b 

Apache® 
Hadoop 
YARN 
v2.8.0 
Node 

Manager* 

RESOURCE PERSPECTIVE 

Functional 
Execution Wall-
clock Time (sec) 

0,479 3,998 6,326 2,889 - 

Process Memory 
Working Set 

(bytes) 
5 840 896 12 447 744 52 695 040 44 105 728 - 

Functional on 
Disk Size (bytes) 

1 441 792 - 1 133 680 270 336 
Java 

Runtime 

GUI on Disk Size 
(bytes) 

2 289 664 3 555 328 4 235 264 1 327 104 
Java 

Runtime 

Additional 
Dependencies 

Infiniband 
Fabric 

None None 
.NET 

Framework 
version 2.0  

Other 

Ring Zero Driver Yes Yes Yes Yes No 

License 

Berkeley 
Software 

Distribution 
(Clause 3) 

Freeware & 
Commercial 
End-User 
License 

Agreement 

Freeware & 
Commercial 
End-User 
License 

Agreement 

Mozilla Public 
License V2.0 

Apache 
License 

V2.0 

 

 

 

A detailed comparison of the literature review motivated HPC and HTC profiling criteria, 

has been presented in Appendix A for perusal. Of likely interest, the review authors 

Broquedis, et al. (2010) are the original creators of OpenMPI’s hwloc system profiler.  

Figure 20 System profiling criteria comparison 
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The identification of supported CPU instruction set can provide exploitable avenues for 

parallelism. The instruction sets that support SIMD and MIMD, are reiterated to be 

especially desirable in achieving effective and efficient parallel operations. The 

identification of the instruction set, further enables architecture enumeration, which can 

be important in gaining software compatibility. The detection of the CPU topology, 

principally relates logical processing units and hardware threads, which can be 

intimately controlled for utility. The topology attributes of the CPU, are correspondingly 

able to qualify and schedule performance workloads in a useful manner. Likewise, 

understanding of the caching hierarchy of the potential compute node, is known to be 

critical in planning instruction and data allocation across the CPU addressable 

processing units. A point of departure for an operational cache management strategy 

at compute node level, may thus be formulated. 

 

 

 

The close relationship between RAM and secondary storage, allows programmable 

assessment of the system state. The detection of current RAM utilization and free 

storage in itself was found to provide an incomplete overall picture of the real-time 

system state. Nevertheless, such information is potentially adequate, in an initial 

workload placement decision.  

Figure 21 Environmental characteristics of design 
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Identification of the OS discloses edition and version information. The API 

programmability, features and inherent underlying OS hardware support, affords a 

contribution towards establishing integration and software compatibility. The detection 

of the OS network API suite per example, may determine if zero copy features and 

egress offload are supported. Finally, the enumeration of physical and logical network 

environmental configurations, allows for planning of dynamic global and node-local 

data placement, in addition to enhanced bandwidth consumption. 

 

4.2.3 Treatment validation 
 

To form a HPC and HTC grid, the design artefact should gather information about the 

environmental architecture, OS and network capabilities. A fuller list of requirements 

together with feasible motivations, are available in Appendix B for assessment. Within 

the design purview, the requisites for information gathering could be understood to 

have static and dynamic elements. The information sourcing needs of the anticipated 

design solution are importantly mutable. The system profiling solutions examined, 

although not specifically built for hybridized HPC and HTC, do however provide relevant 

insights to the problem. 

 

The observed profiling solutions are repeated to use mechanisms of API interfaces and 

in most instances ring zero drivers. Under normal circumstances any third party API’s 

programmatic communications, requires the in-memory instantiation of its function. The 

same could be said of ring zero drivers that enable amongst others, the use of kernel 

privileged features. However the design choice of a ring zero driver additionally entails 

deployment complexity, development and administrative commitments in addressing 

the solution’s security environment. 

 

In terms of physical instantiation, an exposing API design solution is found to be 

problematic for the environmental discovery context. The ratio of static versus transient 

platform information required, is noted to be significantly skewed towards the static for 

both HPC and HTC utility. The mutable information need for near real-time workload 

placement decisions, is considered to be diminutive when compared with the static 

information requirements. Meaningfully, the bulk of the information need is geared 

towards holistic platform profiling, which enables targeted workload scheduling. Much 

of resources occupied by a profiling solution, would therefore become immediately 

wasteful after the workload scheduling requirements were met. The in-memory and 

dynamic processing load of a singular API design solution, cannot then be easily 

justified.  
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The proposed design solution accommodates a system profiling module that 

dynamically loads and sheds its function, allowing for resource reclamation. Only the 

all-inclusive result of static system profiling is to be captured within a minor data 

structure and made available for future enquiries. 

 

The anticipated design’s real-time system profiling need, is met using a separate thin 

profiler, embedded within the compute node’s job scheduler. Intentionally the marginal 

and mutable information need will be locally serviced, where its resource processing 

and storage overhead can be better justified. 

 

The projected design solution further recommends not making use of ring zero drivers 

and kernel privileged instructions. The stated norms of the design problem context are 

reminded to simply disqualify the addition of deployment complexity, security and 

administrative overhead. The functional expediency of ring zero drivers would therefore 

involve substitution, by supplementary development effort to gain comparable solution 

outcomes. The feasibility of this specific substitution, regards making innovative use of 

the backward compatible Windows API and architecture instruction set functions. 

 

Another issue explicit to the popular HPC and HTC profilers reviewed, is that of 

perceived information quality. A study of both these system profilers, reveals that the 

platform environmental data is principally sourced from the presiding OS. The design 

intent of relying on the OS as primary enumeration source, is then also prominently 

motivated as ensuring cross platform heterogeneous support. Only within the HPC 

profiler can a CPU instruction set backend, supplement the activity should OS support 

be found absent. However, on further analysis conspicuous limitations of the employed 

design choice in these solutions become apparent. By implication, the processing 

sequences that gather environmental information in both solutions, are exclusive and 

produce singular answers per instantiation.  

 

Consider that the OS may well inaccurately abstract or interpret the hardware layer. 

Undoubtedly virtual machine, improperly configured hardware or OS environments, 

could easily yield such erroneous data on runtime instantiation. The OS provided 

environmental information is importantly not necessarily reflective of the underlying 

platform reality. The environmental data sourced by means of an instruction set 

backend, is for the same reasons considered to be unreliable. The detected hardware 

reality, significantly cannot by itself produce an accurate account of the supported OS 

runtime environment.  
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The proposed design alternative, makes use of both instruction set backend and OS 

environmental sourcing, often sampling the same information for subsequent reporting 

or comparison. A more accurate picture of the run-time environment as a result, may 

feasibly lead to better processing decisions. 

 

Discernments can be made around the generalizability of the proposed design’s system 

profiling function. When disregarding substantial portions of the research context, the 

potential design remains useful in the accurate determination of generic platform 

environments. The scope of information afforded by the proposed design, can 

convincingly be applied as remedy to wide-ranging problem scenarios. Per brief 

illustration, consider circumstances such as: asset inventorying, software license 

enforcement, holistic topology discovery, environmental problem detection and 

isolation. 

 

Additionally, the proposed design’s profiling features are attractively resource savvy. 

By separating the static and mutable information needs, the processing and storage 

requirements of the design solution takes on minimalistic dimensions. Moreover, 

avoiding internal design adoption of kernel ring zero and API functionality, makes the 

solution non-specific and potentially extensible to other OS distributions.  
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4. 3 The Network Utility Context 
 

4.3.1 Problem Investigation 
 

The control of organisational IT assets concerns the functional administrative 

deployment and configuration, of the network environment by which utility can be 

acquired. How to generate capacity for data analytical utility and at what cost, would be 

of interest to organisations. A potential data analytical solution should logically be 

investigated to establish its value proposition. The detailing of the endeavour cost and 

benefit extents, would reveal the realistic effort and total cost of ownership metrics, 

used as criteria in the acquisition decision. 

 

The configuration and deployment of a contemporary HPC or HTC solution, requires 

varied and often complex processes to be effected. The design homogeneity within a 

multitude of available solutions, could conceivably confine future choice after the initial 

purchase. Once implemented, the solution may have observably static characteristics, 

requiring additional effort and expense to conform to shifting organisational need. An 

exacerbating factor to consider includes the fact that commodity support claimed by 

solutions, are predominantly not meant to imply inexpensive infrastructure would be 

supported. The total administrative control over the solution’s execution environment is 

often then also mandatory. Conceivably a deployed solution not actively instanced, 

would integrally continue to occupy potentially useful resources. The actual expense 

and effort incurred by an HPC or HTC solution may well be difficult to isolate. The 

projected solution’s network context is for these reasons a highly relevant design topic. 

 

Based on derivative stakeholder requirements, an ideal design solution would have low 

overall fiscal and administrative cost, whilst still preserving organisational flexibility. The 

solution would continuously promote support for diverse infrastructure, yet not 

passively consume physical resources. A potential design solution, necessitates 

counsel on how network deployment features may meet these requirements and still 

maintain utility and function. 

 

4.3.2 Treatment Design 
 

On inspection of existing HTC and HPC design solutions, described in Table 11, the 

seeming fulfilment of the raw composite requirements of design is not reflected. The 

problem context is the most credible underlying influence in failing to meet these 

requirements. The distinctive nature of contemporary design solutions, is objectively 

inert and unwieldly.  
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Table 11 Contemporary HPC and HTC solutions 

FEATURE 
OpenMPI 

V3.0.0 
Apache® Hadoop 

v3.1.0 

Microsoft® HPC Pack 
2016 Update 1 

5.1.6086.0 

UW Madison 
HTCondor 

v8.6.10 

CORE SOLUTION PERSPECTIVE 

Type 
HPC 

Library 

HTC Platform 
(Build from 

Source) 

HPC Platform & 
Library (MS-MPI) 

HTC Platform 
& 

Library 

Pre-requisites - 

- Java SDK / 
Runtime1.6 

 
- Maven 3.0 
 
- Windows SDK 
 
- CMake 2.6 
 
- GnuWin32 

Head Node 

- Win Server 2012 R2 

 

Compute Node 

- Win Server 2008 R2 SP1 

 

Workstation Node 

- Win 7 (x86 & x64) 

 

Cluster Database 

- SQL Server 2008 R2 

 

.NET Framework 4.6.1 

- Visual C++ 

2012 Runtime 

Minimum 
System 

Requirements 
- 

- Win 7 
 
- x64 Architecture 

- x64 Architecture (Roles) 
 
- 4 CPU Cores 
 
- 4 to 8GB RAM 
 
- 50 GB HDD 

- Win Vista 
 
- x86 & x64 

Architecture 
 
> 300 MB HDD 

Native 
Programming 

Language 
Support 

C, FORTRAN & 
C++ 

Java, Python 
& C++ 

C, FORTRAN & C++ Python & C++ 

Unpacked 
Size on Disk 

Prior to 
Installation 

106 MB + 168 MB + 1 063 MB + 124 MB + 

 

A proposed design solution recognizes that socket derivative messaging is at the heart 

of IPv4 and IPv6 network communications. The modern manifestations of HPC and 

HTC solutions, take advantage of various forms of SAN socket provisioning, backed by 

dedicated network infrastructure. An appropriately configured SAN or RDMA enabled 

platform, can notably achieve higher HPC or HTC efficiencies and throughput. 

Ordinarily when using SAN and related technologies, as attested to in the literature 

survey, the execution environment is transparent to a functional application. 

 

However, within the problem context, an arbitrary organisational network and 

supporting platform reality would be indistinct. Opportunely SAN or RDMA technology 

support is inferred not to be critical to a design solution. The main features of existing 

SAN and RDMA enabled solutions do however provide problem context awareness for 

a potential design. A rational design pattern should impose obligation to seek 

performance-enhancing features exposed by the network infrastructure and execution 

environment.  
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The aforementioned stakeholder network context requirements, could possibly be met 

with an IOCP design treatment. Primarily the implementation mechanisms of IOCP 

socket operations are programmatically compatible with the majority of commodity 

operating systems and supporting infrastructure. During instantiation, the design 

artefact is suggested to completely enclose the IOCP functionality as a software 

module. The anticipated design outcome is that artefact instantiation will not impede 

deployment flexibility, nor consume passive resources outside of grid formation. 

Furthermore the design provisioning of overlapped IOCP socket handling, is reported 

in literature to significantly reduce overall processing overhead. An overlapped IOCP 

socket scheme would intrinsically progress in a non-blocking fashion. The application 

processing overhead attributed to network socket communications, could thus be 

considerably reduced. A proposed design that includes overlapped IOCP socket 

services, presents supplementary opportunity. When mapped onto hardware threads, 

overlapped IOCP is known to facilitate highly scalable and available network 

environments. 

 

The potential design solution, as shown in Figure 22, would couple system profiling and 

run-time IOCP services configurations. Such a design should allow for the dynamic 

shaping of the communications environment whilst complementing the physical 

network reality. The design may well leverage the run-time elasticity of the network 

environment to achieve higher performance and throughput. Per illustration, knowledge 

of the network MTU combined with an attuned memory transfer configuration, could 

facilitate beneficial use of larger transmission frames. 

 

 

  

Figure 22 Design of overlapped I/O completion port model 
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4.3.3 Treatment validation 
 

The prevalent HPC and HTC solutions available, routinely delineate implementations 

of mainly two inter-process communication schemes. The discernment of inter-process 

communications describing locally hosted or remote application processes that require 

interaction. HPC enactments classically adopt the Message Passing Interface (MPI), 

whereas the HTC solutions gravitate towards the use of Remote Procedure Call (RPC). 

Of importance would be that the functional mechanisms of the two schemes, have 

direct relationship with the characteristics of the utility supported. The understandings 

produced by probing the underlying mechanisms of MPI and RPC, potentially could be 

crucial information to amalgamate HPC and HTC onto a single platform. 

 

The MPI communication scheme, concerns application development and execution 

scenarios that use parallel computing architectures as platform. An enabled MPI 

application, conspicuously features a distributed memory or distributed shared memory 

model. In brief, the application’s processes are designated for execution onto a number 

of logical processors within a larger virtual topology. Each application process having 

access to its own private memory store (i.e. distributed memory). The application 

process could also share a logically addressable memory store with another related 

process (i.e. distributed shared memory). 

 

The MPI developed application would remain reliant on the specific build 

implementation for execution. A normative MPI distribution, unpacks as components, 

frameworks and modules that expose APIs. Modest arrangements are fundamentally 

portable tools and core programmable libraries. The goal of the MPI library is to 

facilitate the abstraction of an application’s computational environment, inter-

processor, network socket and supporting protocol services. When used in conjunction 

with a supported programming language, the MPI library would allow a software utility 

to transfer messages between spawned constituent application processes. Further 

prominent traits of MPI, include ad-hoc atomic thread safe data interchange and 

process synchronization. 

 

The RPC communication scheme, concerns application development and execution 

scenarios that use distributed client-server architectures as platform. An enabled RPC 

application allows for the invocation of software subroutines regardless of actual code 

and data locality. Similar to the MPI scheme, RPC is a programming language level 

construct that requires compilation or run-time interpreter support. The transparency 

provided by RPC, is fundamentally based on the ability to uniquely address the 

procedural space within a supported application.  
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The RPC application communicates with its constituent distributed components, by 

marshalling parameters and procedural handles into serialized forms. Dependant on 

the address space of the invoked application subroutine, the RPC mechanics 

encapsulates and reroutes the request to the unique addressee for un-marshalling. The 

destination can importantly be either an abstracted socket derived network node or 

locally hosted process. The RPC memory model is typically more flexible, yet could 

requires more storage and processing overhead than that of MPI. By default, each RPC 

request allocates and deallocates shared process memory on a node by node basis. 

Other shared memory configurations could include combinations of node confined 

persistent and dynamic contiguous allocations. Thread safety for RPC is achieved 

through explicit binding of process handles and serialization of the resultant execution 

requests. 

 

The points of commonality for MPI and RPC, are derived to necessitate programming 

language level support and the ability to uniquely address the constituent application 

processes. Likewise, both schemes abstract the network socket environment to 

facilitate remote process communications. The contrasting themes of interest within 

both schemes, involves perspectives on memory locality and thread safety. The MPI 

scheme encourages memory locality and shared data integrity at logical processor 

level. The RPC scheme opposes, by sharing memory across dissimilar locations and 

implementing thread safety through serialization. 

 

The actual workload capabilities envisioned for the design platform, is reaffirmed to 

ultimately cater for specialized HPC, HTC or hybridized composites. Consider then the 

application environment of the two dissimilar inter-process communication schemes of 

MPI and RPC, whilst also bearing in mind the restrictive requisites the use of such 

would enact. The salient concerns are of prescriptive programming languages, 

libraries, OS, runtime environment and supported network fabric. An idealistic design 

solution within the research context, should seek to reduce restriction within the 

execution environment, by maximizing the flexibility of choice surrounding the utility. 

 

The proposed design as offered, uses the IOCP overlapped apparatus to establish grid 

formation. The server vehicle of the design, can feasibly enable efficient command and 

control of the grid platform’s resources. The client portion of the design, responsible for 

the targeted processing of workloads. An IOCP design implementation would purely 

perform insular OS level integration of the server and compute clients. The design’s 

intent is not to dictate how an application workload would achieve its utility. This 

approach could viably increase the tractability of classifiable workloads supported.  
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By not dictating the inter-process and memory mechanism of a workload utility, a 

number of potential support scenarios may evolve. As the platform and the workload 

application are on the whole insular constructs by design, the following utility choices 

become available: 

• The programming language for development, would only be constrained by the 

ability to compile an instantiating stub executable 

• No pre-emptive restriction are placed on the infrastructure, security or 

administrative environment 

• Prerequisite utility configuration and divergent memory models become possible 

• Implementing thread safety could make use of any relevant mechanism 

• Single threaded workloads that do not share memory, may take advantage of full 

computational node parallelism 

 

The shared characteristics of MPI and RPC, to uniquely address application processes, 

could also feasibly be duplicated within the proposed design. A server instance would 

dynamically configure and publish a data structure for consumption by compute nodes 

through use of IOCP sockets. The structure containing detailed information regarding 

the timed individual application process’ state and locality. A client node would declare 

the data structure locally, for access by the application utility processes. The method 

of data structure exposure, being the universally supported OS API of non-persisted 

memory mapped file. The utility’s inter-process and memory sharing mechanics could 

then use the information to facilitate global inter-process communications. 

 

4.4 Chapter Summary 
 

Chapter 4, discussed the artefact design endeavour in terms of problem contexts. 

Within the research descriptive, a problem context was invariably referenced and 

related back to the survey literature. Of importance was that each problem context 

recognized, conceptually informed rational responses to the initial research questions 

posed. The primary contexts of technical debt, execution and network environment, 

deduced stakeholder requirements and concerns within the larger research problem 

domain. The requirements of each isolated context, formulated selection and defence 

of solution design choices. The problem context and related requirements, made 

design comparisons with existing technologies, schemes and solutions. The 

discussions surrounding the validity and generalizability of design, were intended to 

serve as measure in assessing the overall research contribution.  
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CHAPTER FIVE 
FINDINGS, DISCUSSIONS & LIMITATIONS 

 

5.1 The Technical Debt Context 
 

The research investigations conducted, imparted that the Microsoft OS supported 

platforms would be at highest potential risk for future technical debt manifestations. The 

observed statistical data in Figure 4, moreover relating the scope of the OS versions 

from which technical debt can conceivably originate. Meaningfully, the market share 

data showed established support for OS platforms, ranging from versions and editions 

of Windows XP up till Windows 10. The supported instruction set architecture of a 

Windows platform OS, was also reputed to be unclear within a realistic technical debt 

environment. The available HPC and HTC solutions gaged within the research 

descriptive, were debatably never designed to function within truly heterogeneous 

technical debt environments. In answer to partial heterogeneity, the observed HPC and 

HTC solutions relied unanimously on abstraction schemes and/or restrictive practices. 

 

5.1.1 Heterogeneous Operating Systems 
 

The prior research design treatment and validation discussions, motivated OS API 

backward compatibility to integrate heterogeneous platforms. Plausibly the lowest 

backward compatible OS kernel release supported, could establish cross platform 

integration. The design artefact establishes platform support starting from the Windows 

NT 5.1 OS kernel (i.e. Win XP build 2600 & Win Server 2003 build 3790), which notably 

encompasses all the Windows platforms identified within the research data. The 

significant implications of the design’s kernel provisioning are that extended 

compatibility is achieved across subsequent server or desktop versions of the Windows 

platform suite. Importantly, architecture compatibility is accomplished by exploiting the 

x86 32-bit architecture, which promotes basic instruction set operability with editions of 

the Windows 64-bit platforms. Predictably due to the solution compatibility choices 

deliberated and implemented during development, the artefact theoretically achieved 

compatibility with Linux POSIX compliant platforms as well. A Linux system installed 

with the WINE (Wine Is Not an Emulator) open source package, should natively allow the 

design artefact’s execution. The following figure illustrates the prototype artefact’s initial 

portable executable header, as viewed in a typical hex file editor. Recognizably, as 

evidenced in Figure 23, the artefact compilation is meant for execution on a 32-bit Intel 

compatible architecture machine and x86 Windows platform (i.e. values 014C, 010B & 

0A00 hex). The portable executable header declaring the OS kernel attributes, 

conforming to compatibility with Windows NT 5.1 (i.e. values 0005 & 0001 hex).  
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The solution’s facility to realize cross platform and architecture compatibility, is asserted 

to meet with the heterogeneous platform requirement of a technical debt context. 

 

5.1.2 Security Context and Abstraction  
 

The generic computational environment is classically managed by instruments that 

segregate the rights and privileges assigned to authorized user groups, resource 

objects or individual members. The normative assignment of rights and privileges, 

pertaining to the minimal assignment possible that still allows the intended functional 

role to be accomplished. The administrative role, stereotypically reserving the rights to 

arbitrate platform configuration changes. A recurring security contextual problem, which 

impacts the proposed solution may as a consequence be identified. The act of software 

deployment and installation is customarily regarded as a platform change, hence 

necessitating administrative arbitration and overhead. 

 

The deployment of contemporary HPC and HTC solutions surveyed, is reminded to 

exhibit fundamental reliance on pre-requisite administrative oversight. The use of 

technology stack abstraction, is conversely central and generic to modern software 

development practice. The examined manifestations of HPC and HTC, potentially 

escalating degrees of prior discernment regarding abstraction. To attain function, the 

studied HPC and HTC build environments principally added or operated on multiple 

layers of abstraction.  

Figure 23 Artefact portable executable header 
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A proverbial paradox is engendered, in that efficacy and efficiency within an HPC or 

HTC solution, are deemed major characteristics of the utility. Yet owing to internal 

design abstraction, opportunities for improved performance and proficiency of resource 

utilization are being reduced. 

 

 

The prototype artefact registers an observably minimalistic technology stack. An 

artefact instantiation, achieving autonomous and encapsulated run-time directly above 

the OS layer. Prominently the solution meets the reduced abstraction need within a 

technical debt context. By implication, no third-party libraries, language interpreters or 

frameworks are required to perform execution. Suggestively neither is administrative 

intervention required to perform deployment, installation or instantiation. 

 

The autonomous portable executable form of the solution artefact, suitably entails 

distribution and installation by means of file copying. The assigned rights and privileges 

of the instantiating user security context, realistically the only inhibitor to utility. 

 

5.2 The Execution Environment Context 
 

The design solution would be required to manage and control, diverse organisational 

processing resources in order to facilitate grid formation. To gain potential efficiency 

and efficacy from participant grid resources, the discovery of underlying hardware and 

software environs was purported as essential. Information regarding resource attributes 

that promote higher throughput, parallelism and reduced latency computation are of 

documented interest. 

 

The scope of information about the preliminary environmental hardware characteristics 

pursued, includes platform detection of attributes for CPU, cache, RAM, secondary 

storage and network configurations. The range of software attributes, reflecting on OS 

capabilities and API compatibility. In order to avoid dysfunction, the attributes 

influencing the solution’s strategy or operational decision making, was recommended 

to necessitate corroboration from more than one source.  

.686   ; Intel Pentium Pro compatible instruction set, 32-bit 
   ; - non-privileged instruction set mode 
.model flat, stdcall ; 32 bit memory model, standard call convention 
option casemap :none ; case sensitive 
. . . 

Codelet 1 Artefact environmental declarations 
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The prototype artefact for both client and server utility, uses a system profiling module 

that functions as a dynamic link library. The profiler can subsequently be loaded, 

executed and unloaded on an ad-hoc basis. However the planned instantiation is 

envisioned to be singular per grid participant node. The environmental context needs 

of the overall solution, was previously motivated to have static and mutable elements. 

The system profiling module explicitly addressing the static need. 

 

 

The platform hardware attributes are gathered by directly interrogating the CPU 

instruction set. A leading theme during the interactions with the instruction set, 

concerns the CPUID opcode. CPUID is conspicuously reliant on derived function and 

feature values, to produce the desired enumeration attributes of interest. Frequently 

the attributes availed by the CPUID opcode, requires further processing to enable 

useful logical transformations. 

  

; Detect CPUID Opcode 
pushfd 
pop eax 
xor  eax, 200000h 
push eax 
popfd 
pushfd 
pop edx 
xor edx, eax  
bt edx, 21 
jnc @@A1 ; CPU486 > ? 
. . . 
@@A1: 
lea edi,CPU.Manufacturer 
cpuid 
mov  CPU.InputValue, eax 
. . . 

; Detect CPU Extended 
; -Function Support 
mov eax, 80000000h 
cpuid 
. . . 
mov eax, 80000001h 
cupid 
. . . 
bt edx, 27 ;RDTSCP 
jnc @@B1 
. . . 
bt edx, 29 ; x64Arch 
jnc @@B2 
. . . 
bt edx, 31 ; 3DNow! 
jnc @@B3 
. . . 

; Detect CPU Basic Info 
; & Feature Bits (ex.SIMD) 
mov eax, 1 
cpuid 
bt edx, 25 ; SSE1 
jnc  @@C1 
. . . 
bt edx, 26 ; SSE2 
jnc @@C1 
. . . 
bt ecx, 0 ; SSE3 
jnc @@C1 
. . . 
bt ecx, 19 ; SSE4 
jnc @@C1 
. . . 

; AMD Specific Topology 
mov eax, 80000008h 
cpuid 
mov eax, ecx 
mov ebx, 2 
shr eax, 12   ; ApicIdCoreIdSize 
and ecx, 0FFh ; NumCores 
and eax, 0Fh 
mov edx, ecx 
.if (eax)     ; ApicIdCoreIdSize >0? 

mov ecx, eax 
nop 
dec ecx 
nop 
shl ebx, cl 

.else     ; ApicIdCoreIdSize = 0 

. . . 

; INTEL Specific Topology 
.if (CPU.InputValue >= 11) 
call Funtion11_MASKS 
.else 
call Function4_MASKS 
.endif 
. . . 
.if (CPU.InputValue >= 11)  

mov eax, 11 
  cpuid  ; x2APIC in edx 
.else 
 mov  eax, 1 
 cpuid 
 shr  ebx, 24 ; get bits: 24..31 
 mov edx, ebx ; APIC in edx 
.endif 
. . . 
 

Codelet 2 Using the CPUID opcode to reveal functions and features 

Codelet 3 CPU Topology brand specific detection 
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The derived hardware information, contributes initial points of corroboration for the CPU 

brand specific topology enumeration process. The OS reported information could later 

be related back to their specific hardware profiling counterparts. 

 

 

Network configuration discovery is found to be initially contingent on minimal Windows 

OS platform support for WinSock API version 2.2. The major motivation for seeking 

WinSock API version support, concerns the literature evidenced obligation for 

leveraging zero copy network features. Supplementary network information gathered, 

yields environmental attributes for routing, physical or logical addressing, protocol 

stack, path MTU, LAN isolation and latency. Often the resultant network attributes are 

congruently captured in programmable and human readable forms. 

 

 

The system profiler finally populates a diminutive data structure as the overall static 

result of a potential grid node’s environment. The invoking module receives the data 

structure and unloads the system profiler to reclaim resources. A sample of the 

artefact’s system profiler data structure and visualized output is available in Appendix 

C. The artefact’s profiling module, observably meets with all 38 comparison criteria 

used in the contemporary solution review process. Of additional significance is that the 

entire node profiling result could potentially be transmitted as a single network packet 

within a default MTU Ethernet packet.  

; Operating System Information 
call Detect_ADMIN 
call Detect_OS_64 
call Detect_OS_CPU  
call Detect_OS_SYSTEM 
call Detect_OS_MEMORY 
call Detect_OS_AFFINITYMASK 
call Detect_OS_DISPLAY 
call Detect_STORAGE 
. . . 

; Detect_OS_64 – determine x86 or x64 OS architecture 
Invoke GetModuleHandle, reparg("kernel32") 
Invoke GetProcAddress,eax,reparg("IsWow64Process") 
.if (eax) 

xchg eax,ebx 
Invoke GetCurrentProcess 

. . . 

.if (eax) 
mov CPU.OSx64, TRUE 

. . . 
 

; Network Configuration & State Discovery 
call  Detect_WINSOCK2 
.if (CPU.WINSOCK2) && (!CPU.ERR_MEM) && (!CPU.ERR_NET) 
 call Detect_PROTOCOL  ; Detect Protocol Stack = IPv4 / IPv6 / ICMP / NetBIOS 
 call Detect_ROUTING  ; Detect Logical Addressing/ FQDN / Network ID 
 call Detect_LANGROUP  ; Detect Gateway MAC / LAN Isolation 
 call Detect_MTU   ; Detect Path MTU and LAN Latency (RTT) 
.endif 
invoke WSACleanup 
. . . 

Codelet 4 Profiling the operating system 

Codelet 5 Enumerating the network configuration 
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5.3 The Network Utility Context 
 

High performance and throughput computational environments, certainly requisite 

design patterns that pursue performance-enhancing features wherever possible. A 

decomposition of contemporary HPC and HTC network arrangements, revealed 

fundamental dependence on techniques that implement socket derivate 

communications. However the network related performance-enhancing features 

specifically employed by present HPC and HTC solutions, do not provide adequate fit 

with realistic technical debt scenarios. The investigated solutions pointedly abstracted 

network socket communications and became largely contingent on network hardware 

acceleration to gain performance. The erstwhile artefact design descriptive of the 

network problem context, then proposes a software IOCP instrument as alternative for 

enabling socket based communications. An overlapped IOCP que when mapped onto 

hardware threads, can markedly provide for highly available and scalable concurrent 

communication platforms. Coupled with knowledge of the underlying computational 

platform and supporting network conditions, an IOCP solution argument may 

advantage additional functional flexibility. 

 

The solution artefact equips both the server and client constructs with the same IOCP 

module. As the client build takes on the responsibility for eventual workload processing, 

the IOCP configuration is logically geared towards consuming less resources when 

compared with the server instance. Irrespective of the node role, the IOCP service can 

dynamically adjust its configuration to benefit the detected platform reality. 

 

  

; IOCP Server Configuration 
BUFFER_SIZE   EQU 4096 ; I/O Buffer Size in Bytes (Default) 
TCP_PORT    EQU 999 ; TCP Port Number 
UDP_PORT    EQU 995 ; UDP Port Number 
MAX_THREADS   EQU 64  ; Maximum Worker Thread Count 
MIN_OVERLAPPED  EQU 5  ; Minimum overlapped RECEIVES per Socket 
MIN_ACCEPTS   EQU 5  ; Minimum pre-created ACCEPT Sockets 
MAX_ACCEPTS   EQU 500 ; Maximum ACCEPT Sockets 
MAX_RECVS   EQU 200 ; Maximum overlapped RECVS per Socket 
MAX_SENDS   EQU 200 ; Maximum overlapped SENDS per Socket 
BURST_ACCEPTS  EQU 100 ; Burst by ACCEPT Count 
. . . 
; Adjusting IOCP Service to the Underlying Platform 
mov esi, NODEDATA 
mov eax, BUFFER_SIZE 
mov ebx, [esi].OSPagesize 
mov ecx, [esi].OSCores 
mov edx, [esi].wsa_IPv4Address 
.if (ecx > MAX_THREADS)    ; Ensure MAX THREADS or less 

mov ecx, MAX_THREADS 
.endif 
. . . 

Codelet 6 A highly scalable IOCP service module 
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The IOCP configurations of potential interest regard accept scaling and I/O buffer 

tuning. The per socket I/O memory buffers, are adjusted at start-up to reflect the OS 

RAM page size of the platform. Accept scaling refers to a contrivance that pre-emptively 

creates and manages a number of accept sockets in anticipation of new connections. 

Importantly accept scaling reduces the connection latencies and processing 

overheads, normally associated with on-demand socket creation. 

 

 

A curious caveat of the Microsoft socket implementation concerns the desired zero 

copy and egress offload APIs. The kernel interface requires the APIs to be referenced 

and invoked via their globally unique identifiers (GUID) at run-time. In the absence of 

API referencing, the Winsock library is loaded and unloaded per program invocation of 

these functions. An implementation oversight of Winsock API referencing, would 

therefore cause detrimental performance loss. 

 

 
Each Winsock API function call from the extended range, is singularly aliased as static 

memory address pointers on artefact instantiation. The required parameter sets per 

API function, are likewise data typed in order to attain the overall utility.  

; Dynamic Accept Scaling Ex. Ensuring min of 5 accepts, scaling by 100 accepts, to a max of 500 
mov eax, Event 
mov Limit, 0 
.if (eax == [esi].AcceptEvent) 
 invoke WSAEnumNetworkEvents,[esi].hSocket,[esi].AcceptEvent,addr NEvent 
 .if (eax == SOCKET_ERROR) 
  mov SCKTErrorITM, 20 
 .else 
  and NEvent.lNetworkEvents, FD_ACCEPT 
  .if (NEvent.lNetworkEvents == FD_ACCEPT) 
   mov Limit, BURST_ACCEPTS 
  .endif 
 .endif 
.elseif (eax == [esi].RepostAccept) 
 invoke InterlockedExchange,addr [esi].RepostCount,0 
 mov Limit, eax 
 invoke ResetEvent,addr [esi].RepostAccept 
.endif 
. . . 

Codelet 7 Dynamic accept scaling 

; Provision Microsoft WinSock Extended APIs – (requires non-official sourcing of GUIDs values) 
GuidAcceptEx GUID <0b5367df1h,0cbach,011cfh,{095h,0cah,000h,080h,05fh,048h,0a1h,092h}> 
. . . 
GuidWSARecvMsg GUID <0f689d7c8h,06f1fh,0436bh,{08ah,053h,0e5h,04fh,0e3h,051h,0c3h,022h}> 
. . . 
invoke WSAIoctl,DummySocket,SIO_GET_EXTENSION_FUNCTION_POINTER,addr  / 
GuidAcceptEx,sizeof GUID, addr fnAcceptEx,sizeof fnAcceptEx,addr dwBytes,NULL,NULL 
. . . 

Codelet 8 Winsock extended function referencing 
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A full list of the expanded Winsock API GUIDs currently remains unpublished by 

Microsoft. To add additional convolution, the OS supported release versions of the 

extended Winsock APIs are also erroneously indicated on the official developer 

website. It would seem that the periodic discontinuation of official support for a legacy 

Windows OS version warrants Microsoft to claim API support only for the next still 

supported version. 

 

 
A noteworthy IOCP design feature within the prototype artefact, regards safeguards 

from notional malicious denial of service and stale connections. Principally, all pending 

and established connections would be subjected to time-out values. The connection is 

terminated and occupied resources released, should valid communications not be 

associable within the established timeframe. The current version of the artefact IOCP 

server was stress tested as a simple message echo implementation. Although not fully 

optimized using zero copy logic, the throughput achieved on an 802.11g wireless 

network exceeded 34 000 packets per second using a default MTU of 1500 bytes. 

 

 

  

; Avoiding Stale Connections and Malicious Denial of Service 
mov ebx, [esi].PendingAccepts 
. . . 
@@ParseStale: 
.if (ebx != NULL) 
invoke getsockopt,[ebx].sclient,SOL_SOCKET,SO_CONNECT_TIME,addr cTime, addr sTime 

.if (eax != SOCKET_ERROR) && (cTime != 0FFFFFFFFh) && (cTime > 20) 
  invoke closesocket,[ebx].sclient 
  mov [ebx].sclient, INVALID_SOCKET 
 .endif 
 mov ebx, [ebx].Next 
 jmp @@ParseStale 
.endif 
. . . 

Codelet 9 Sensing and eliminating stale connections 

Figure 24 Stress testing IOCP module 
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Table 12 Appraisal of artefact resource extents 

Artefact Component 

Functional 

Execution Wall-

clock Time (sec) 

Process Memory 
Working Set 

(bytes) 

Functional on 

Disk Size 

(bytes) 

GUI on Disk 

Size (bytes) 

System Profiler 

(Sample) 
0,538 37 023 744 12 288 151 552 

System Profiler 

(Dynamic link library) 
0,023 4 784 128 12 288 - 

Server - 9 449 472 - 163 840 

Client - 4 718 592 32 768 - 

 

The combined artefact’s resource usage and physical footprint, as described in Table 

12, is noted to be perceptibly diminutive. Per example the functional extents of the 

artefact system profiler, uses less than 5% the secondary storage requirement of the 

smallest functional profiling solution surveyed. Actual functional utility is achieved within 

an average reported wall-clock time of 0,023 seconds. The deployed artefact prototype, 

when compared with the smallest footprint non-deployed HPC or HTC solutions 

reviewed, reveals the artefact currently uses less than 0.5% of the secondary storage 

space. Granted that the artefact build is still in its infancy, the trending eventual build 

dimensions appear favourable. The resource extents of the artefact, therefore 

conforming to the ideal of rather maximizing resource availability towards actual 

workload utility consumption. 

 

5.4 Limitations of Research 
 

5.4.1 Generalizability Limitations 
 
Due to the multi-dimensional nature of the research scope, the probability of reduced 

generalizability may be concluded for highly divergent research contexts. Per 

illustration, the range of literature engaged within the research action was by no means 

exhaustive for a particular scope context. The comprehensive problems experienced 

within a particular research area, could reveal counter arguments and exceptions to 

generalizability. Any claims to generalizability should only be considered within the 

exacting milieu of the described technical debt context. In retrospect, the researcher’s 

ambition undoubtedly outstripped the latitude afforded by the research sponsor body. 

The innate nature of the research topic’s derived subject material is clearly voluminous 

and on occasion exceedingly technical. As a result, the research narrative may have 

perceptually suffered to mention enough detail to satisfy the discerning reader. The 

potential to reproduce outcomes, by including the reference works, reviewed 

contemporary solution binaries and prototype design artefacts (i.e. available on 

accompanying DVD) are offered in mitigation of possible apprehension.  
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5.4.2 Design Limitations 
 
The presented design artefact as holistic solution is incomplete and untested for use in 

real-world HPC and HTC hybridized enactments. Pointedly, the predominant 

characteristics of the design, currently only meet the defined minimal standards of an 

HPC solution. Although the initial ingredients of an HTC implementation is present, the 

scheduling, DFS and failover modules are conspicuously absent. What's more, the 

prototype artefact instantiation is imperfect at reflecting the design intent. Some 

preliminary enhancements suggested for incorporation include: 

• The system profiler could benefit from added detection mechanisms for modern 

hardware features, such as random number generators and transactional 

synchronization extensions (e.g. lock elision) 

• The IOCP module requires broad optimisation and the merger of Winsock 

extensions into the backend decision logic 

• The overall solution’s binary executables require extended validation level code 

signing, to nullify administrative and security context issues experienced on newer 

Windows platforms that support Microsoft Authenticode and User Access Control 

 

The lacking module components and real-world demonstration of hybridized utility is 

envisioned to be the subject of a future research action. 

 

5.5 Chapter Summary 
 

Chapter 5 establishes the design solution as an experimental artefact instantiation. The 

research endeavour’s major contexts are successively evaluated against the observed 

utility of the artefact. An outline regarding the functional responsibility of an individual 

design module, together with its link to a particular research context is conducted. In 

most instances, program codelets are presented to reinforce discussions. The 

deductive findings made are of importance on the subject of generalizability. To 

conclude the chapter, the foremost limitations incurred by the research action and its 

design construct was deliberated.  
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CHAPTER SIX 
CONCLUSION 

 

The research investigations directed within this paper initially chronicles and uncovers, 

the probable causes and outcomes of the technical debt phenomenon. Largely the 

research descriptive reinforces the link between technical debt, obsolescence and e-

waste as an outflow. The connotations of technical debt should be of realistic concern 

for organisations and entities considering cloud adoption. Importantly the value 

proposition afforded by the move to cloud, necessitates assessment against the fact 

that significant loss could manifest from adoption. The value sought by cloud adoption, 

regards the leveraging of purported benefits in the creation of effective and efficient 

environments. The narrative of loss, labels amongst others the fiscal, ethical and 

functional impacts of non-holistic decision making. The currently retained IT assets that 

support needful processes, may explicitly require reconfiguration or be made obsolete. 

The assets comprising aspects of platform hardware, software and network 

infrastructure. According to the currently available global market data, indications are 

that entities overwhelmingly operate on Microsoft Windows platforms. Reasonably the 

potential for technical debt accumulation experienced by these entities may be greater. 

 

In an effort to complement and align with the future value sought by cloud and data 

analytical solutions, this research paper proposes a design alternative that may delay 

the technical debt burden. Presumptively an innovative design artefact could facilitate 

the integration of major aspects of a contextualized technical debt platform and in so 

doing enable prolonged utility. The research design consequently calls for the creation 

of scalable HPC and HTC grid solutions. Not only could grid solutions factually 

reproduce most of the stated cloud adoption benefits, but importantly utilize existing IT 

assets as platform. The design discussions however expose several obstacles to grid 

realization. Notably the obstacles of heterogeneous platforms and abstraction are 

prominent. A comprehensive heterogeneity problem environment has questionably not 

been addressed in the survey literature. The role of abstraction in modern software 

development, furthermore resulting in difficulties surrounding the subjects of efficacy 

and performance. In response to these obstacles, the research endeavour takes on 

concrete assumptions and radical design patterns that embrace additional 

transformation effort to garner realization. 

 

The immediate design outcomes and evidenced artefact instantiations promisingly 

exhibit several theoretically generalizable features and capabilities. Future research will 

endeavour to finalize the design model and demonstrate hybridized HPC and HTC 

workloads.  
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APPENDICES 

 
APPENDIX A: DETAILED COMPARISON OF SURVEYED SYSTEM PROFILERS 

 

DATA POINT 

OpenMPI 
hwloc / nwloc 

v2.0.1 
Windows 

CPUID™ 
CPU-Z 
v1.84.0 

REALiX™ 
HWiNFO 

V5.74 

OpenHardware 
Monitor 
v.0.8b 

Apache® 
Hadoop 
YARN 
v2.8.0 
Node 

Manager* 

CENTRAL PROCESSING UNIT 

Brand Yes Yes Yes Yes No 

Run-time 
Speed 

No Yes Yes Yes Yes 

Instruction Set No Yes Yes Partial No 

Model & Family Yes Yes Yes Yes No 

Packages Yes Yes Yes Yes Yes 

Cores Yes Yes Yes Yes Yes 

CPU Threads Yes Yes Yes Yes Yes 

CPU 
Architecture 

Yes Yes Yes Yes No 

NUMA 
Topology 

Yes Yes Yes Partial Yes 

APIC Binding Yes No Yes Yes No 

APIC Type No Yes Yes Partial No 

Clock Type No Yes Yes Partial No 

CACHE TOPOLOGY 

L1 Instruction 
Size 

Yes Yes Yes Partial No 

L1 Data Size Yes Yes Yes Partial No 

L2 Size Yes Yes Yes Partial No 

L3 Size Yes Yes Yes Partial No 

Associativity Yes Yes Yes Partial No 

NUMA 
Topology 

Yes Yes Yes Partial No 

RANDOM ACCESS MEMORY 

Paging Size No No Yes No No 

Physical Size Yes Yes Yes Yes Yes 

Available Size No No Yes Yes Yes 

Process 
Maximum 

No No No No Yes 

Cache Line 
Size 

Yes Yes Yes No No 

SECONDARY STORAGE 

Disk Size No Partial Yes Yes Yes 

Disk Free No No No Yes Yes 

Process Start No No No No Yes 

OPERATING SYSTEM 

Version & 
Edition 

Partial Yes Yes Yes Yes 

Service Pack No Yes Yes No No 

Suite No No No No No 

OS Architecture Yes Yes Yes Yes No 

OS Threads No No Yes No Yes 

Security 
Context 

Partial Partial Partial Partial Partial 

NETWORK CONFIGURATION 

Socket API No No No No No 

Routing No No No No Yes 

Protocol Stack No No No No Partial 

Addressing Partial No Partial No Yes 

Local Latency No No Partial No Yes 

Path MTU Size No No No No No 
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APPENDIX B: DESCRIPTIVE OF SYSTEM PROFILING DATA POINTS 

 
B1 Central Processing Unit 

 
Brand – The CPU brand is vital in determining the individual features and functions 

used for later platform profiling. To accurately reflect the hardware reality, CPU 

manufactures often publish prescriptive processes and mechanisms to adhere to. 

 
Run-time Speed – The reported CPU speed may be different to manufacturer’s factory 

release speed, due to aftermarket configuration or speed stepping. The difference 

between run-time and manufacturer intended speed, is frequently of interest. A 

potential bottle-neck in performance. 

 

Instruction Set – The detection of instruction set features provided by the CPU, are 

important for parallelism opportunities. Especially SIMD and MIMD instructions are 

regarded as advantages. The detection of virtual machine extensions or speciality 

features, may indicate computational environmental constraints or prospects. 

 

Model & Family – The model and family information of a processor may designate its 

intended computer form-factor, such as desktop, server or mobile platform. The 

information could potentially further be used to circumvent known CPU microcode 

issues. 

 

Packages – The number of physical CPU dies supported. The more the better. Whether 

the CPU dies enable interaction, would be of programmatic concern. 

 

Cores – The number of physical CPU processors supported per die. The number of 

physical hardware threads onto which software threads may be associated. 

 

CPU Threads – The number of logical processors supported per CPU core. Either the 

same number as CPU cores or possibly double that number, dependant on hyper 

threading. The total number of CPU threads, should typically match the OS detected 

threads. A potential bottle-neck in performance. 

 

CPU Architecture – The instruction set, maximum theoretical addressable memory and 

register width supported by the CPU, meaningfully being either x86 or x64. The OS 

may or may not have equivalent support. 
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NUMA Topology – The logical and/or physical processor topology could be different. 

The addressable CPU constituents may be combined as autonomous entities, although 

sharing the same or different physical underlying platform. 

 

APIC Binding – The CPU addressable units or components, are enumerated and 

referenced using the advanced programmable interrupt controller. Of initial interest 

would be the bounded addressable CPU unit of the running software process. 

Important information for shifting software threads across physical processors (affinity) 

or setting software thread priority. 

 

APIC Type – The advanced programmable interrupt controller type, indicates 

extensibility of the CPU’s functional addressability. This would be important for NUMA 

and CPU cache detection scenarios. 

 

Clock Type – The precision of the exposed platform timings, as measured in clock 

cycles per second, could be important for programmatic synchronization. 

 

B2 Cache Topology 
 
L1 Instruction & Data Size – The available storage at lowest level to the processor. The 

more the better. Valuable information for planning a fine-grained caching strategy. Also, 

of interest would be whether this storage is shared by other logical processors. A 

potential bottle-neck in performance. 

 

L2 & L3 Size – The level 2 and 3 caches, are normally unified caches that do not discern 

between data or instructions. The more the better. Valuable information for planning 

any coarse-grained caching strategy. Also, of interest would be whether this storage is 

shared by other physical processors. A potential bottle-neck in performance. 

 
Associativity – The cache associativity or mapping of cache entries to RAM, may be 

used in optimizing a fine-grained caching strategy. 

 

NUMA Topology – As CPUs can be logically combined to form autonomous entities, 

the exposed caching structure could differ radically from the detected physical CPU 

package topology. 

 

B3 Random Access Memory 
 

Paging Size – The unit data size for virtual memory management. The page size value 

is stereotypically a variable in an I/O or cache management strategy.  
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Physical Size – The size of the physical RAM installed. Running processes share this 

storage area. A potential bottleneck in performance. 

 

Available Size – The amount of free RAM. A process could use this information in 

determining the current primary storage load. A potential bottleneck in performance, as 

virtual memory paging could initiate when physical RAM storage is depleted. 

 

Process Maximum – The maximum addressable memory a process could claim. The 

value includes the configured physical RAM and extending virtual storage areas. 

 

Cache Line Size – The size of a cache block. Essentially a replica of line size value, 

from the corresponding are in RAM. May be used in devising of a fine-grained caching 

strategy. 

 

B4 Secondary Storage 
 

Disk Size – The secondary storage size. Typically a hard disk, network or solid state 

drive. 

 

Disk Free – The amount of free hard disk space. The available secondary storage 

available to the process that initiated system profiling, could be of interest in assigning 

computational workload. The value is contextualized to the storage quota limit of the 

user initiating the profiling process. 

 

Process Start – A process is initiated from within an executable file. The location of the 

file may create a reference point for storage planning. 

 

B5 Operating System 
 

Version & Edition – The version and edition of the OS, is vital information in determining 

holistic API compatibility for cross platform integration. 

 

Service Pack – The service pack exposed by the OS might be important data regarding 

the security stance and general functionality provided. 

 

Suite – Besides the kernel, an accompanying suite mask and type mask, can identify 

the additional OS components installed. The suite variable may well define the OS 

class. Some examples of OS classes, amongst others include enterprise server, data 

centre server, blade server, back office server, embedded or workstation.  
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OS Architecture – The hardware architecture supported by the OS kernel. The OS 

architecture and the CPU instruction set architecture, should ideally match. 

 

OS Threads – The OS utilizes logically addressable CPU units as processing 

resources. Importantly, an obvious association between the hardware detected and the 

OS reported processing units could be difficult to make. The factors causing the 

phenomenon ranging from misconfiguration, license enforcement, NUMA 

implementations, virtual machine instantiation, manufacturer provisioning or hyper-

threading scenarios. 

 

Security Context – A process normally executes within the instantiated security context 

of a user. The privilege level of the user would be a key parameter for realizing I/O 

operations. 

 

B6 Network Configuration 
 

Socket API – The OS API available for socket operations, could expose appealing 

features that may enhance network performance and throughput. 

 

Routing – Knowledge of the inter-network connection points can aid in LAN isolation 

and functional network topology planning. Plausibly, reduced latency and higher 

bandwidth environments are shared by LAN participants within an isolated or reduced 

broadcast domain. The information could be used to beneficially derive grid node roles 

within a LAN. 

 

Protocol Stack – The information regarding the network protocols supported, can 

provide for flexibility and utility of network communications. 

 

Addressing – Logical and physical network address resolution, may assist in LAN 

isolation and network topology planning. The domain administrative context of 

individual grid participants, could potentially be concluded. 

 

Local Latency – The latency characteristics within an isolated LAN, can be used to 

embed situational efficiencies within grid node roles. 

 

Path MTU Size – The minimum aggregate size of the maximum transmission unit over 

a network path. Used to advantage network I/O buffers and jumbo frames. 
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APPENDIX C: ARTEFACT SUNDRIES 
 

C1 Sample Data Structure for Static System Profiling 
 
PackageCount  dd ?  ; CPU Package count 
TotalAPICs  dd ?  ; Logical addressable "Processors" / number of APIC's 
TotalCores  dd ?  ; Total reported Cores (AMD might report more than actual) 
TotalThreads  dd ?  ; Total reported Logical Threads 
CoresperPackage  dd ?  ; Number of Cores per Package  
ThreadsperCore  dd ?  ; Number of Threads per Core  
LocalApicId  dd ?  ; Default APIC ID 
;------------------------------------------------------------------------------------------------------------------------ 
Stepping   dd ?  ; Speed step Technology 
Model   dd ?  ; CPU Model number 
Family   dd ?  ; CPU Family Number 
InputValue  dd ?  ; Max function level supported 
ExtendedValue  dd ?  ; Max extended feature supported 
CpuSpeed  dd ?  ; Approx. CPU Speed in Mhz, timed algorithm reported 
;------------------------------------------------------------------------------------------------------------------------ 
OSCores  dd ?  ; OS Reported Core count 
OSArchitecture  dd ?  ; Processor architecture of the installed operating system 
OSPagesize  dd ?  ; Page size /granularity of page protection/commitment 
CacheLine  dd ?  ; Cache Line size in bytes 
AProcMask  dd ?  ; Active Processor Mask  
PhysicalRAM  dd ?  ; Physical Installed RAM 
AvailableRAM  dd ?  ; Available Installed RAM 
ApplimitRAM  dd ?  ; Max Limit for application use 
MemLoad    dd ?   ; Approximate percentage of physical memory that is in use  
OSMajor   dd ?  ; OS Major version 
OSMinor   dd ?  ; OS Minor version 
OSSrvPackMaj  dd ?  ; Service Pack Major 
OSSrvPackMin  dd ?  ; Service Pack Minor 
OSSuiteMask  dd ?  ; Bit mask identifying the product suites on the system 
OSProdType  dd ?  ; OS Product Type ex. WRKST, SERVER, DOMAINCNTLR 
;------------------------------------------------------------------------------------------------------------------------ 
L1_D_Cache  dd ?  ; L1 DATA cache size 
L1_D_Share  dd ?  ; L1 DATA cache - number of threads sharing 
L1_D_Assoc  dd ?  ; L1 DATA Associativity 
L1_I_Cache  dd ?  ; L1 INSTRUCTION cache size 
L1_I_Share  dd ?  ; L1 INSTRUCTION cache - number of threads sharing 
L1_I_Assoc  dd ?  ; L1 INSTRUCTION Associativity 
L2_Cache  dd ?  ; L2 Cache size 
L2_Assoc  dd ?  ; L2 Associativity 
L3_Cache  dd ?  ; L3 Cache size 
L3_Assoc  dd ?  ; L3 Associativity 
;------------------------------------------------------------------------------------------------------------------------ 
DiskSize   dd ?  ; Process Storage Size (MB) 
DiskFree   dd ?  ; Process Storage Free (MB) 
;------------------------------------------------------------------------------------------------------------------------ 
wsa_MaxMajor  dd ?  ; Winsock Maximum Major version supported 
wsa_MaxMinor  dd ?  ; Winsock Maximum Minor version supported 
wsa_IPv4Address  dd ?  ; IPv4 Local NIC address in Network format 
wsa_IPv4Subnet  dd ?  ; IPv4 Local Subnet Mask in Network format 
wsa_IPv4Gateway dd ?  ; IPv4 Local Gateway address in Network format 
wsa_IPv4NetID  dd ?  ; IPv4 Network ID address in Network format 
wsa_MTU  dd ?  ; Maximum Transmission Unit size in bytes  
wsa_RTT  dd ?  ; Round Trip Time (on MTU frame size) 
wsa_GatewayMAC db 18  dup (?) ; Gateway MAC address (LAN unique isolator) 
wsa_IPv4Address_R db 16  dup (?) ; IPV4 Local NIC address human readable - char limit 15 
wsa_IPv4Subnet_R db 16  dup (?) ; IPV4 Local Subnet human readable - char limit 15 
wsa_IPv4Gateway_R db 16  dup (?) ; IPV4 Local Gateway human readable - char limit 15 
wsa_IPv4NetID_R db 16  dup (?) ; IPV4 Network ID human readable - char limit 15 
;------------------------------------------------------------------------------------------------------------------------ 
OS_VERSION  db 35  dup (?) ; Windows OS Version Name - char limit 34 
OS_TYPE  db 25  dup (?) ; Windows OS Type Workstation / Server - char limit 24 
Display_ADAPTER db 129 dup (?) ; First Primary Display Description attached to Desktop  
OS_PROCPATH  db 261 dup (?)  ; Process Executable Path (*possibly truncated) 
. . .  
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C2 Screenshot Output of System Profiling Module 
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C3 Screenshot Output of Client Module 
 

 
C4 Screenshot Output of Server Module 

 

 


