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ABSTRACT 
 
 
The concept of forward error correction (FEC) coding introduced the capability of achieving 

near Shannon limit digital transmission with bit error rates (BER) approaching 10-9 for signal 

to noise power (Eb/No) values as low as 0.7. This brought about the ability to transmit large 

amounts of data at fast rates on bad/noisy communication channels. In nano-satellites, 

however, the constraints on power that limit the energy that can be allocated for data 

transmission result in significantly reduced communication system performance. One of the 

effects of these constraints is the limitation on the type of channel coding technique that can 

be implemented in these communication systems. Another limiting factor on nano-satellite 

communication systems is the limited space available due to the compact nature of these 

satellites, where numerous complex systems are tightly packed into a space as small as 

10x10x10cm.  With the miniaturisation of Integrated-Circuit (IC) technology and the 

affordability of Field-Programmable-Gate-Arrays (FPGAs) with reduced power consumption, 

complex circuits can now be implemented within small form factors and at low cost. This 

thesis describes the design, implementation and cost evaluation of a ½-rate convolutional 

encoder and the corresponding Viterbi decoder on an FPGA for nano-satellites applications. 

The code for the FPGA implementation is described in VHDL and implemented on devices 

from the Artix7 (Xilinx), Cyclone V (Intel-fpga), and Igloo2 (Microsemi) families. The 

implemented channel code has a coding gain of ~3dB at a BER of 10-3. It can be noted that 

the implementation of the encoder is quite straightforward and that the main challenge is in 

the implementation of the decoder. 
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GLOSSARY 
 
 
Terms/Acronyms/Abbreviations Definition/Explanation 

ACS Add compare Select 

AIS  Automatic Identification System 

APP A posteriori Probability 

AR4JA Accumulate, Repeat-by-4, and Jagged Accumulate 

AWGN  Additive white Gaussian Noise 

BCJR An algorithm which provides posteriori probability 

estimates for each bit in a codeword based on a 

received signal according to the constraints imposed by 

the code structure named after its inventors, Bahl, 

Cocke, Jelinek & Raviv. 

BER Bit Error Rate 

Block Encoding A one-to-one transformation of sequences of length k of 

elements of a source alphabet to sequences of length n 

of elements of a code alphabet with n>k. 

BMU Branch metric 

BPSK Binary Phase Shift Keying 

CCSDS Consultative Committee for Space Data Systems   

Channel The medium used to transmit signals between the 

transmitter and the receiver. 

Circulant A square matrix where each row is a one element cyclic 

shift to the right of the preceding row. 

Code rate The average ratio of the number of binary digits at the 

input of an encoder to the number binary digits at its 

output. 

Codeblock A sequence of n symbols obtained as a result of block 

encoding. This is the result of encoding a sequence of k 

information symbols. 

Coding gain The difference between the SNR of an uncoded system 

and a coded system required to reach the same BER 

level when error correction is implemented. 

Concatenation The use of two or more encoders to process data 

sequentially with the output of one encoder used as the 

input of the next. 

Constraint length A term used in convolutional coding referring to the 
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number of consecutive input bits needed to determine 

the value of the output symbols at a particular time. 

COTS Commercial off the shelf 

CPUT Cape Peninsula University of Technology 

CubeSat A 10cm cube satellite with a mass of up to 1.33kg 

Decoding lag/latency The time it takes the decoder to give a valid output after 

receiving its first input  

Dynamic power In FPGA design power analysis the dynamic power is 

the fluctuating power as a design is run. It represents the 

amount of power generated by the switching user logic 

and routing.  

Eb/No A communication measure of efficiency defined as the 

ratio of received energy per bit to noise required to 

achieve a specified bit error rate, also known as the 

signal to noise ratio per bit (SNR) 

F’SATI French – South Africa Institute of Technology 

FEC Forward error correction 

FER Frame Error Rate 

FPGA Field programmable gate array 

Interleaving The process of arranging sequential data in a non-

contiguous manner to make it more resilient to burst 

errors. 

JPL Jet Propulsion Lab 

LDPC Low-Density Parity Check 

MDA Maritime Domain Awareness 

Nano-satellite A satellite with a mass between 1 and 10kg 

NASA National Aeronautics and Space Administration 

Octet A binary word consisting of eight contiguous bits. 

Packet A unit of data used to transmit information in a 

communication network. 

PAR Place and route 

Payload application information Information obtained from a satellite payload 

PE Error Probability 

Protocol A set of procedures and their enabling format 

conventions that define the orderly exchange of 

information between entities. 

QPSK Quadrature Phase Shift Keying 
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Quasi – cyclic A type of cyclic codes where a cyclic shift of a codeword 

by 1 position results in another codeword.  

Quiescent power  In FPGA design power analysis, the quiescent power is 

the power drawn by the device upon powering up and 

there is no activity in the loaded circuit.  

RAM Random Access Memory 

Satellite pass The amount of time in which the satellite is in view of the 

receiving station and communication is possible. 

Shannon  Limit The theoretical maximum rate at which data can be 

transferred through a channel of a particular bandwidth 

and noise characteristics without error. Also known as 

channel capacity. 

Space Link The communication link between the satellite and the 

ground station or between two satellites in space. 

Subsystem In this document refers to the major self-contained 

systems within a satellite such as the Communication, 

Power, On-Board Computer (OBC), Thermal, 

Propulsion, Attitude Determination and Control (ADCS), 

and Structure subsystems   

TB Trace-back referring to the Viterbi decoder truncation 

length 

Telemetry system The end-to-end system of layered data handling 

services which exist to enable a spacecraft to send 

measurement information, in an error-controlled 

environment, to receiving elements (application 

processes) in space or on Earth 

Transfer Frame A data unit that has been encoded for transmission. It 

contains all the information (synchronisation, header, 

channel frame counts, end of frame, data field) required 

for the receiver to receive and decode it. 

Trellis The state diagram of a convolutional code structure 

User A human or machine-intelligent process which directs 

and analyses the progress of a space mission. 

VHDL VHSIC Hardware Description Language  

VLSI Very Large Scale Integration 
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CHAPTER ONE 
INTRODUCTION 

 

1.1       Background 

Satellite technology has been vastly used for a number of applications, such as Earth 

observation, remote sensing, communication and technology demonstration, among 

others. However, the development and launch are costly and, therefore, a limited 

number of nations and entities had the ability to get involved in the space race since 

its conception in 1957 (Mitra, 2005).  

 

In 1999, the CubeSat standard was developed by Prof. Jordi Puig-Suari at California 

Polytechnic State University and Prof. Bob Twiggs at Stanford University. This 

innovation revolutionised the demographic of entities involved in space technology 

development. The CubeSat standard introduced a satellite development method that 

significantly reduced mission cost and development time, allowing for the increased 

space access using small satellites as shown in APPENDIX A: CUBESAT LAUNCH 

STATISTICS (Cillibot et al., 2005), (Woellert et al., 2011).  

1.1.1 CubeSat Programme at CPUT 

Owing to the development of the CubeSat standard, the Cape Peninsula University of 

Technology (CPUT) started a satellite systems engineering postgraduate programme. 

The aim of this programme is human capital development in South Africa in the field 

of satellite technology. The postgraduate programme is offered by the French-South 

African Institute of Technology (F’SATI) hosted by CPUT. Out of this programme, a 

group of postgraduate students and staff developed ZACube-1, a 1U CubeSat 

dubbed TshepisoSat (Figure 1.1.1), which was launched on November 21, 2013 

(CPUT: F'SATI, n.d.). As a result of the success of TshepisoSat, which is still 

operational to date, the second CubeSat in the ZACube-i series, ZACube-2, is under 

development. The proposed mission for this 3U CubeSat is focused on Maritime 

Domain Awareness (MDA), which will involve the tracking of ships using the 

Automatic Identification System (AIS) protocol. Due to the technology demonstration 

heritage of CubeSats, ZACube-2 will also include imagers to demonstrate fire 

tracking using CubeSats (de Villiers & van Zyl, 2015).    
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Figure 1.1.1: F’SATI CPUT CubeSat, TshepisoSat  

Adapted from (Van Zyl et al., 2013) 

 

1.1.2 Rationale 

A nano-satellite, such as TshepisoSat, is made up of compactly stacked 

interconnected subsystems responsible for the various operations of the satellite as 

illustrated in Figure 1.1.2. Achieving satisfactory efficiency in any one of the 

subsystems would improve the efficiency of the entire satellite system (Wertz & 

Larson, 1999). Each of these subsystems is made up of numerous components 

interacting to achieve the desired functionality. As such, improving and reducing the 

resource requirements and consumption of the communication system adds value to 

the improvement of the entire satellite.  

 

Improving the performance of a digital communication system and increasing the 

reliability of communication are possible at a cost, which is considered when selecting 

the method used to improve the system. An increase in the signal-to-noise ratio 

(SNR) indicates an improvement in the performance of a communication system. The 

SNR can be improved by increasing the transmission power or the antenna gain 

(Sklar & Harris, 2004). However, given the general low-budget nature of nano-

satellites, the cost of increasing these parameters is very high and, therefore, this 

approach is generally not cost effective. The physical constraints (size) of nano-

satellites also make the increase of transmit power or antenna gain unfavourable (de 

Milliano & Verhoeven, 2010). The use of forward error correction to improve the 

reliability of a communication system is, therefore, less costly than these techniques. 

Introducing channel coding in a communication system introduces the possibility of 

approaching the maximum transmission rate theoretically possible (Sklar & Harris, 

2004).  
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Figure 1.1.2: TshepisoSat internal layout  

Adapted from (Kramer, n.d.) 

 

1.2       Problem 

Implementing nano-satellites for missions that involve the handling and transfer of 

large data volumes, such as the proposed ZACube-2 AIS, requires fast and reliable 

communication systems. In general, lower data rates result in more reliable 

communication than faster data rates; however, the short overpass times of satellites 

in low Earth orbit limit the amount of information that can be transmitted or received 

during a single pass. As a result, an increase in transmission rates is required in order 

to keep up with the need for high volume applications. On the other hand, most nano-

satellite communications systems operate at relatively low data rates as a result of 

the size and power limitations. For this reason, high data volume applications require 

up- or downloading of the data over multiple passes. High bit rate communications 

systems on-board nano-satellites that reliably interpret the received data would 

increase the amount of information exchanged within one satellite pass.       

1.3       Objectives 

The main objective of this project is to implement a forward error correction (FEC) 

algorithm, which conforms to existing standards on an adaptable and reliable 

platform. This algorithm should also be capable of operating using the limited 

resources available on a nano-satellite. This means that the cost of the coding gain 
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achieved from the error correction should be acceptable considering available 

resources. 

 

The objectives can be categorised as follows: 

• implement a forward error correction encoding and decoding algorithm to 

improve reliability and transmission rates of payload application information; 

• implement an error correction coding scheme that conforms to the 

international (CCSDS) standards; and   

• implement an error correction technique that can be integrated with the nano-

satellite communication protocol in its scarce resource environment.  

1.4       Research Questions 

The primary question to be addressed by this research is: 

• How can a reliable and well-performing CCSDS1 compliant forward error 

correction encoder and decoder be selected and implemented on a nano-

satellite?   

 

There are also a number of sub-questions that are answered in order to address the 

primary question: 

• Are there CCSDS channel coding techniques defined for implementation on 

nano-satellites?  

• How is FEC coding evaluated and how does that affect the criteria used to 

select one for implementation in a satellite communication system? 

• What resources are required for FEC implementation and how can their use 

be optimised or minimised? 

• What is the trade-off between performance and resource utilisation 

appropriate for a nano-satellite?   

1.5       Assumptions & Delineation 

In order to successfully choose a suitable coding algorithm as well as the applicable 

hardware, the following assumptions are made: 

                                                
1 The Consultative Committee for Space Data Systems (CCSDS) is an organisation formed 
by the world’s major space agencies in order to discuss the common problems in the 
development and operation of space data systems. It develops standards and 
recommendation to enable interoperability and cross support between space agencies. 
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• the upper communication layer data shall provide a packet format for the 

encoder and a frame suitable for the physical communication layer shall be 

produced as the encoder output; 

• on the decoder side, compatible data frames coming from the physical layer 

are received to be decoded and provided as a packet or part of a packet for 

the higher communication layer; 

• the implementation platform (hardware) to be used is already available on the 

communication subsystem (e.g. FPGA, microcontrollers, etc.); and 

• the hardware to be used has already undergone the required radiation testing 

and qualification for space application. 

 

The extent of research is determined by the following demarcations: 

• communication must be compatible with the standards used by existing 

ground stations; therefore, only existing channel coding techniques will be 

used for the realisation of the project aims and objectives; 

• source coding and modulation that are part of the encoder are not part of this 

research and as such demodulation and source decoding are also not a part 

of this research; and 

• data synchronisation and related procedures are not part of this study. 

1.6       Document structure 

This document describes the selection, design, development and testing of a forward 

error correction encoding and decoding algorithm for nano-satellite implementation.  

 

The document is structured as follows:  

Chapter 2 presents a background to digital communication systems, outlining the 

fundamentals of the error control coding concept. This chapter also contains an 

introduction to CubeSats.   

Chapter 3 contains the comparisons of the CCSDS recommended standard error 

correction algorithms. The CCSDS standard highlights Convolutional, Reed-Solomon, 

Low-Density Parity Check (LDPC) and Turbo codes. The chapter also includes an 

introduction to the requirements for these techniques as well as the performance 

comparison according to predefined metrics.  

Chapters 4 and 5 outline the design, testing and verification details of the encoder 

and decoder selected for implementation, respectively.  

Chapter 6 contains the conclusions and recommendations for future improvement.     
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CHAPTER TWO 
BACKGROUND 

 

2.1       Introduction       

The subject of error correction is rooted in digital communication and information 

theory; as such, a basic understanding of these concepts as related to forward error 

correction is required. The basic fundamentals of digital communication are outlined 

in this chapter to establish the role played by error correction in the context of a 

complete communication system. Finally, the chapter ends with a basic introduction 

to CubeSats, a special class of nano-satellites.   

2.2       Digital Communication 

Digital communication generally refers to a method of communication where 

information between a source and receiver are manipulated such that they can be 

represented by a sequence of discrete messages (Garg & Wang, 2005). In most 

cases, the digital communication system is made up of the elements shown in Figure 

2.2.1 (Sweeney, 2002; Patankar, 2009). 

 

Transmitter

Receiver

Error	  Control	  
Encoder

Channel

Modulator

DemodulatorError	  Control	  
Decoder

Source	  
Encoder

Source	  
Decoder

Transmitted	  
information

Received	  
information

 

Figure 2.2.1: Digital communication system block 

Adapted from (Sweeney, 2002)  

 

The source encoder is responsible for mapping the data to be transmitted into a 

binary information sequence and representing it with the least possible number of 

bits.   
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The error control encoder adds redundancy to the information sequence to give the 

receiver the means to overcome the effects of any noise encountered by the signal 

during propagation. 

 

The modulator converts the encoded data stream into an analog signal waveform, 

which can be propagated over a physical channel.  

 

The channel is the medium through which the analog signal travels between the 

transmitter and the receiver. Noise in the channel may change the value of the 

encoded data being transmitted. 

 

By using the parameters of the modulator in the system, the demodulator converts 

the received analog signals into a digital format, which best estimates the transmitted 

encoded data stream. 

 

The error control decoder uses the data stream coming from the demodulator and 

estimates the original information sequence using the error control encoder 

characteristics. 

 

The source decoder, with knowledge of the source coding technique used in the 

encoder and within the limits of its code capabilities, recreates, if possible, the 

information sequence into the original data as given by the source.  

2.2.1 Performance metrics  

One of the main concerns when designing any digital communication system is to use 

transmit power and available bandwidth as efficiently as possible. The bandwidth 

efficiency can be quantified by using the ratio of data rate to signal bandwidth, 

whereas the power efficiency can be characterised by the probability of errors as a 

function of signal-to-noise ratio (SNR) (Garg & Wang, 2005).  

 

There are several figures of merit linked to digital communication, including the SNR, 

which is the ratio between the average signal power and the average noise power 

(Sklar & Harris, 2004). Eb/N0, which is the ratio between the bit energy and the noise 

spectral density as shown in equation 2.2.1 (Sklar, 2001; Sklar & Harris, 2004), is the 

most used digital communication system figure of merit:  
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𝐸!
𝑁!

=   
𝑆
𝑁
=   
𝑊
𝑅
         

 

where;  

2.2.1 

mmm 

𝑆   =   signal  power,𝑊   =   bandwidth,𝑁   = noise  power, and  𝑅   =   bit  rate. 

 

The other criterion used to evaluate digital communication system performance is the 

bit error probability (PB). In many digital communication performance analyses, plots 

of PB versus Eb/N0, such as the one illustrated in Figure 2.2.2, are used for evaluating 

systems where a smaller Eb/N0 signifies a more efficient process for the specified 

error probability (Sklar, 2001).   

 

Figure 2.2.2: Typical plot of PB vs Eb/N0  

Adapted from (Sklar, 2001) 

 

2.2.2 Effects of noise on system performance 

Errors during transmission can occur because of two classes of signal degradation: 

• degradation due to reduced received signal power or increased noise or 

interference power; and 

• degradation due to signal distortion, such as is caused by inter-symbol 

interference (ISI). 

 

Figure 2.2.3 illustrates the difference between the effects of the aforementioned 

degradation classes. It can be deduced that the degradation due to signal distortion 

would require a significantly large (essentially impractical) Eb/N0 value to achieve the 

desired PB. On the other hand, the degradation due to noise power increase or 
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reduced signal power would require a finite Eb/N0 value to achieve the required PB, 

which is, although challenging in power limited systems, achievable (Sklar, 2001).  

 

 

Figure 2.2.3: PB vs Eb/N0 for (a) degradation due to signal or noise power 
variation, and (b) signal distortion  

Adapted from (Sklar, 2001) 

 

2.2.3 Information theory 

In response to channel noise and the inability to reproduce information at the 

receiving end exactly as was transmitted at the sending end, Claude Shannon in 

1948 (Shannon, 1948) developed what is called information theory. Shannon 

theorised the existence of a maximum rate at which a signal could be propagated 

over a channel and received without the existence of errors in the received signal. 

This theoretical maximum rate, referred to as channel capacity/Shannon limit of an 

additive white Gaussian noise (AWGN) channel is given by equation 2.2.2 (Costello & 

Forney, 2007; Tse & Viswanath, 2005): 

 

𝐶 = 𝑊  𝑙𝑜𝑔!    1 +
𝑆
𝑁

    [bits/sec]   2.2.2 

[bits/sec]  

where; 

W is the bandwidth in Hz, S is the transmitting signal power in Watt, and N the added 

Gaussian noise power in Watt. 

 

As a result of this notion, efforts to practically achieve transmission at channel 

capacity are continuing (Costello & Forney, 2007). This can be achieved by 

transmitting correlated information bits, which can be inferred by the receiver using 
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probability theorems. The correlation of the input bits is generated by a ‘code’ that 

produces vectors belonging to a predefined alphabet, which is used at the receiving 

end to infer the original input bits (Shannon, 1948).  

2.2.4 Forward error correction 

The use of these ‘codes’ as mentioned in the previous paragraph introduces the 

concept of forward error correction (FEC). FEC refers to the addition of redundant bits 

to information bits to facilitate the inference of the original information bits at the 

receiver end of the communication system. The FEC system consists of an 

encoder/decoder pair, where the encoder is responsible for creating the correlation 

between information bits. The decoder is, therefore, responsible for identifying any 

errors in received vectors and correcting them to the best of its capability (Sklar & 

Harris, 2004).     

 

There are two main types of FEC codes, namely block codes and convolutional 

codes (Atlanta RF, 2013; Calhan et al., 2007). A block code encoder gives an output 

with block length 𝑛 that is made up of a message block of length 𝑘 and parity bits, 

which are used by the decoder to infer the original message. The amount of 

redundancy in relation to the information is usually defined using the rate of the code, 

which is defined as the ratio of the encoder input to the encoder output. The rate of 

block codes is, therefore, given as 𝑅 = !
!
   (Calhan, Ceken, & Erturk, 2007).  

 

The block codes memory requirement is limited as the output codeword is made up of 

the current message block and a set of generated parity bits (Sklar & Harris, 2004; 

Rong et al., 2011). A convolutional encoder has 𝑚 memory elements where the 

output code is determined by processing the input bit at the same time as the 

preceding 𝑚 information bits.  

    

The efficiency of these codes is measured by comparing the number of added 

redundant bits to the number of errors that can be corrected after the redundancy.  

 

Coding gain can also be used as a figure of merit as it gives information on the extent 

of Eb/N0 reduction due to coding implementation and is calculated as in equation                         

2.2.3 (Sklar & Harris, 2004).  
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𝐺 𝑑𝐵 =   
𝐸!
𝑁! !

𝑑𝐵 −   
𝐸!
𝑁! !

𝑑𝐵   

where  
𝐸!
𝑁! !

= uncoded    𝐸!𝑁!  and  
𝐸!
𝑁! !

= coded  𝐸!𝑁!.                         2.2.3 

  [bits/sec]  

 

Convolutional codes generally outperform their block code counterparts of the same 

complexity as a result of their continuous processing, unlike block codes that divide 

their input information sequence into separate blocks (Calhan et al., 2007; Viterbi, 

1971; MIT, 2005). 

 

At low values of Eb/N0, the implementation of error correction is not beneficial to the 

improvement of system error performance as the decoder can only correct a finite 

number of errors. As the number of transmission errors exceeds the code capacity, 

the decoder may even introduce more errors. In such cases, implementing error 

correction worsens the error performance instead of improving it (Sklar, 2001).     

2.3       CubeSats       

A nano-satellite is any satellite with a mass less than 10kg as seen in Table 2.3.1, 

which shows the classes of satellites according to mass (Sweeting & Underwood, 

2003).  

Table 2.3.1: Satellite Classification  

Class Size 
Large satellites >1000kg 
Small satellites 500 – 1000kg 
Mini satellites  100 – 500kg 
Microsatellites 10 – 100kg 
Nanosatellites 1-10kg 
Pico satellites <1kg 

 
A CubeSat is defined as a cuboid-shaped satellite with dimensions of 10x10x10cm 

and a mass of up to 1.33kg in its smallest 1-unit (1U) form factor. The CubeSat 

specifications were developed with the main objective of increasing space 

accessibility, sustaining frequent launches and reducing cost and development time 

(California Polytechnic State University, 2009).  Due to the affordability and short 

development lifecycle (Sweeting & Underwood, 2003) attributed to these small 

satellites, some educational institutions, such as CPUT, have adopted the CubeSat 

as a capacity development tool.  
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The extent of usage of these satellites is continually increasing as a result of 

advancements in technology miniaturisation, which enables the implementation of 

sophisticated functions while using very little real estate (Sweeting & Underwood, 

2003). Although the advancements in miniaturised technologies are rapid, CubeSats 

operate on extremely constrained power and volume budgets to perform missions of 

increasing complexity. As a result, any of the subsystem designs need to be efficient 

and conservative; yet still adequately functional. The availability of CubeSat specific 

space grade components is limited and when available they are costly; therefore, 

COTS are used in most projects (Rogers & Summers, 2010; Polaschegg, 2005). 

 
 

2.4       Conclusion 

This chapter has provided a brief background to the concepts related to forward error 

correction theory, and introduced CubeSats as a specific class of nano-satellites. This 

sets the foundation for the following chapter which continues the literature review, 

focusing on the subject of error correction techniques as recommended by the 

CCSDS in their TM Synchronization and Channel Coding recommended standard.  
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CHAPTER THREE 
CHANNEL CODES 

 

3.1       Introduction 

One of the objectives of this project is the implementation of an error correction 

algorithm that conforms to the CCSDS standard.  This chapter describes some of the 

codes, which are recommended by the CCSDS standard. It recommends four basic 

types of channel coding methods for satellite communication, namely Reed-Solomon, 

Convolutional, Turbo and LDPC codes, as well as concatenated versions of the 

aforementioned codes. Nano-satellite applications are not the focus area for the 

recommended standards; therefore, in order to choose a method for nano-satellite 

implementation, the recommended codes are compared through studies referencing 

literature and simulations to determine a suitable technique. The preferred code is 

selected such that the resultant transmission exhibits reasonably high data 

throughput with low energy per information bit (Eb) at the same BER in relation to the 

un-coded system. The selection of the code is also such that the resultant BER of the 

coded system is lower than the BER of an un-coded system with the same energy 

per information bit. 

3.2       Code Evaluation 

The code performance metrics introduced in Chapter 2, including some 

implementation capability parameters, are used to evaluate the performance of the 

coding algorithms. These comparison parameters are used to make an informed 

decision in the selection of a suitable algorithm for the purposes of this project. The 

performance and implementation capability parameters listed below are used: 

 

• Performance parameters 

o code rate  

o coding gain 

o BER performance 

• Implementation complexity parameters 

o Encoding complexity 

o Decoding complexity 

o Memory requirements 

o Latency/decoding lag 

o Implementation requirements 
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When simulation is used for the code evaluation, the results are obtained and 

analysed in the MATLAB numerical computing environment by creating virtual 

channels and models of complete communication scenarios. The BER analysis tool 

from MATLAB is also used to view and compare theoretical performance 

characteristics of the simulated codes.   

3.2.1 Convolutional codes 

Convolutional coding is identified mainly using code rate (r) and constraint length (K) 

with continuous data bit encoding. The CCSDS recommends a convolutional code 

with a constraint length of 7 and a rate of ½ denoted as a (7, ½) convolutional code, 

which is suitable for channels where the noise is predominantly Gaussian. The rate of 

½ means that 2 encoded output symbols are produced for every input data bit. This 

property, therefore, implies that the bandwidth requirement is twice the amount 

required when no convolutional coding is implemented (CCSDS, 2012; CCSDS, 

2011a). 

 

The number of memory elements 𝑚 can be obtained from the constraint length 𝐾 

as  𝑚 = 𝐾 − 1; therefore, the recommended code has 6 memory elements. This in 

turn implies that the 6 bits preceding each input must always be available when 

determining an output; consequently, registers large enough to store the 6 bits are 

required for convolutional encoding (CCSDS, 2011a; CCSDS, 2012) 

3.2.1.1 Performance 

Viterbi decoding of the convolutional code can be implemented using either hard 

decision or soft decision decoding. Hard decision decoding refers to the use of 1-bit 

resolution quantisation where each bit of information has two possible levels, such as 

binary data (Calhan et al., 2007). Soft decision decoding makes use of multiple bit 

quantisation, which implies that the data has an increased level of reliability as one 

information bit has multiple possible values in-between the 0 and 1 (CCSDS, 2012; 

Kumar & Gupta, 2011). The MATLAB implementation of the recommended 

convolutional code with continuous Viterbi decoding in comparison to the un-coded 

BPSK and QPSK transmissions is illustrated in Figure 3.2.1.  It can be concluded that 

introducing the code introduces a coding gain of approximately 5 dB using soft 

decision decoding and 2.5 dB using hard decision decoding.  
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Figure 3.2.1: Simulated BER performance of convolutional code vs un-coded 
QPSK using MATLAB BER tool 

Implementing convolutional codes has its advantages and disadvantages as listed 

below: 

• convolutional codes are capable of handling random errors, such as the ones 

prevalent in an AWGN channel; 

• convolutional codes are vulnerable to burst errors; 

• the encoding algorithm is simple and, therefore, requires a simple circuit for 

implementation; and 

• the decoding algorithm is, however, is slightly more complex and requires 

substantially more resources for implementation than the encoder. 

 

3.2.2 Reed-Solomon (RS) codes 

Reed-Solomon (RS) codes are non-binary block codes, which use multi-bit symbols 

to define codewords and are described using their input and output block lengths 

(Mitchell, 2009). The information blocks are constructed using symbols that are made 

up of multiple bits; when a symbol error is detected, the code corrects the entire 

symbol as if all the bits in the symbol were erroneous. This property makes RS codes 

good in correcting burst errors where binary codes falter (Mitchell, 2009; Sklar & 

Harris, 2004). The CCSDS recommends the (255,223) and the (255,239) RS codes, 

which implies that (CCSDS, 2011a): 
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• the input block length for the codes can be either 223 or 239; 

• both recommended codes have an output block length of 255; 

• the maximum number of detectable errors per block is 32 for the (255, 233) 

code, which allows for the correction of a maximum of 16 errors; and 

• the (255, 239) code can detect a maximum of 16 errors per block and correct 

a maximum of 8 errors per block. 

3.2.2.1 Performance 

The performance characteristics of the recommended RS codes with hard decision 

decoding in terms of BER versus Eb/No as obtained from the MATLAB BER analysis 

tool are illustrated in Figure 3.2.2. Comparing the RS code and the un-coded BPSK 

BER shows that implementing RS codes introduces a coding gain of approximately 

3dB at a BER of 10-6.  

 

Figure 3.2.2: Simulated BER performance of RS (255,239) and RS (255,223) vs 
un-coded QPSK using MATLAB BER tool 

 
Soft decision decoding algorithms for RS codes have also been explored in (Koetter 

& Vardy, 2003; Lu et al., 2014; Chen et al., 2013) among others; however, their 

complexity does not make them suitable at this time for CubeSat implementation.  

 

Implementing RS codes has its advantages and disadvantages as listed below 

(Mitchell, 2009; Kumar & Gupta, 2011; Costello & Forney, 2007): 
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• as a result of their non-binary nature, RS codes can correct burst errors unlike 

binary codes such as convolutional codes; 

• they are unable to handle random errors if the number of errors in one code 

word exceeds the code correcting capability; 

• in RS error correction, the number of unknowns are twice that of binary codes; 

binary codes decoders only require error location, whereas RS decoders 

require location and error value; 

• the non-binary nature of RS codes enables their decoders to be used for long 

block lengths with a shorter decoding time requirement than that of other 

codes;  

• the symbol based arithmetic and numerous calculations required for error 

correction make the implementation of RS code more complex than binary 

codes; however, the RS codes provide better throughput than binary codes; 

and 

• they are preferable for channels where the un-coded error rate is not too high 

as they provide significant error correction using minimal redundancy at 

relatively high data rates. 

3.2.3 Turbo codes 

Turbo codes were proposed by Berrou, Glavieux and Thitimajshima as high-

performance error correcting codes with a required Eb/No of 0.7 for a BER of 10-5 with 

½ code rate (Sklar, 1997; Divsalar & Pollara, 1995). These codes are a result of 

combined systematic terminated convolutional codes that are connected together 

using an interleaver to form a high-performance block code (CCSDS, 2012). The two 

convolutional codes are referred to as constituent codes and each of the codes 

contributes to the parity bit generation during encoding (Sklar, 1997). The CCSDS 

recommended encoder is made up of two recursive encoders with a constraint length 

of 5 and selectable rates of ½, ⅓, ¼ and ⅙ (CCSDS, 2011a).  

 
With reference to the convolutional encoder characteristics as described earlier in the 

chapter, the constraint length of 5 means that each constituent encoder contains 4 

memory elements, which store the preceding input bits that directly contribute to the 

encoder output. 

3.2.3.1 Performance 

As illustrated in Figure 3.2.3, Turbo code error performance is superior to that of 

convolutional and RS codes with BER values below 10-4 at very low energy per 
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information bit values. The simulated results in Table 3.2.1 contain Turbo code error 

performance of the recommended code rates for various block lengths with 10 

decoder iterations in each case. It can be seen that the codes with higher code rates 

have better BER performance. It can also be concluded that the code error 

performance increases with block length; therefore, Turbo codes can be used when 

transmitting large amounts of data (CCSDS, 2012).  

 

Figure 3.2.3: Turbo code BER performance, Block Size 1784 Bits, Measured 
from JPL DSN Turbo Decoder, 10 iterations 

 Adapted from (CCSDS, 2012) 

 

Turbo codes are generally characterised by complex encoding and decoding 

operations. However, the coding gain within 0.8dB of the Shannon limit at a BER of 

10-6 (O’Dea, 2013) is high enough to render the complexity acceptable for high 

performance applications. The implementation of Turbo codes introduces advantages 

and disadvantages as listed below (O’Dea, 2013; CCSDS, 2012; Madhow, 2008; 

Atlanta RF, 2013): 

• Turbo codes are appropriate for low power communications over long 

distances because they exhibit low BER at low SNR, which means that 

transmission can be close to error-free even with very low energy signals; 
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• the code requires a complex decoder as a result of the multiple encoder 

components; 

• the decoder calculations required for error correction require knowledge of the 

channel characteristics; 

• the decoding process is iterative and, therefore, the memory requirement is 

very large; 

• Turbo encoding introduces latency, since an entire length of information must 

be read before encoding begins; and 

• the decoder also processes an entire block before giving an output, which 

introduces decoding latency. 

•  

Table 3.2.1: Turbo decoder BER performance approximation results for various 
block lengths, 10 iterations, compiled from (CCSDS, 2012) 

Block length Rate Eb/No (dB) at BER 10-4 
1784 ½ 1.3 

⅓ 0.66 
¼ 0.43 
⅙ 0.14 

3568 ½ 1.11 
⅓ 0.47 
¼ 0.25 
⅙ -0.17 

7136 ½ 0.97 
⅓ 0.34 
¼ 0.135 
⅙ -0.25 

8920 ½ 0.9 
⅓ 0.3 
¼ 0.1 
⅙ -0.8 

16384 ½ 0.875 
⅓ 0.25 
¼ 0.02 
⅙ -0.036 

 
 

3.2.4 LDPC Codes 

LDPC codes are a class of binary codes that can be used to obtain coding gains and 

good performance at low Eb/No values (Li et al., 2006). The CCSDS standard 

recommends a code known as C2 with (n, k) = (8176, 7154) and a rate of 7/8 as well 

as a set of 9 AR4JA (Accumulate, Repeat-by-4, and Jagged Accumulate) LDPC 

codes with parameters defined in Table 3.2.2 (CCSDS, 2011a; CCSDS, 2012). C2 is 
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optimised for near Earth satellite applications, while the other 9 codes are optimised 

for deep space communication (CCSDS, 2007; CCSDS, 2011a). 

 

Table 3.2.2: Recommended AR4JA LDPC code specifications 

Information 
block length k 

Code block length n 
Rate ½ Rate ⅔ Rate ⅘ 

1024 2048 1536 1280 
4096 8192 6144 5120 

16384 32768 24576 20480 

3.2.4.1 Performance  

The performance of the LDCP codes is dependent upon both the code used and the 

decoder used for that code. The error performance of the recommended codes is 

illustrated in Figure 3.2.4, which shows very low BER values at low energy per 

information bit. The results were obtained from a hardware simulation experiment 

performed at JPL as described by (Andrews et al., 2007). 

 

Figure 3.2.4: BER (solid) and FER (dashed) for Nine AR4JA Codes and C2, with 
Code Rates 1/2 (Red), 2/3 (Green), 4/5 (Blue), and 7/8 (Black); and Block 

Lengths k=16384, 4096, 1024 (Left to Right in Each Group), and 7156 (Code C2)  

Adapted from (Andrews et al., 2007) 
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There are a number of advantages and disadvantages linked to the implementation of 

LDPC codes, such as the ones listed below: 

• at high bit rates, LDPC codes offer smaller bandwidth expansion;  

• the codes offer near Shannon limit BER performance; and 

• the codes can be used for applications that require long codewords. 

 

However, the decoding complexity of these codes makes their practical 

implementation challenging. The ideal mathematical functions are also not practically 

realisable, which results in the loss of coding gain due to approximations (Andrews et 

al., 2007; CCSDS, 2012).  

3.3       Code Selection 

3.3.1 BER performance 

The performance of a channel code can be determined by using the error rate in 

relation to the channel resources that are required in order to achieve the desired 

error rate. The recommended codes as described above are compared based on 

AWGN channel implementation in terms of the resultant BER and the Eb/No required 

to achieve that BER. Generally, a good channel code will either reduce the BER at a 

fixed Eb/No or achieve the desired BER with a lower Eb/No requirement on the 

channel. Figure 3.3.1 shows the performance comparison, in relation to BER and 

Eb/No, of most of the channel codes described in this section. The implementation of 

any one of the mentioned codes offers a substantial coding gain as listed in Table 

3.3.1, which compares the Eb/No at which the transmission can exhibit a BER of 10-6.  

Table 3.3.1: Eb/No requirements for 10-6 BER 

Transmission Eb/No (dB) 
Channel Capacity 0.2 
Un-coded 10.5 
Convolutional 4.7 
Reed Solomon 6.4 
Turbo 1.1 
LDPC 0.9 

 

Implementing convolutional coding alone can provide satisfactory coding gain while 

requiring very little complexity for encoding and "acceptable" complexity for decoding. 

The RS code can also provide good coding gain; however, RS encoding and 

decoding are more complex than convolution in terms of hardware implementation, 

and the convolutional coding gain is better than that of RS coding. 
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This comparison concludes that the Turbo and LDPC codes offer the largest coding 

gain, therefore, allow for clean transmission at very low SNR. However, the 

recommended LDPC codes are subject to patent laws for non-CCSDS member 

agencies and Turbo codes are subject to general patent laws. Permission to use 

these codes should, therefore, be sought from the appropriate regulatory parties 

(CCSDS, 2012). As a result, ease of use and accessibility are considered as factors 

for the channel code selection.   

 

 

Figure 3.3.1: Performance comparison of ½ rate Convolutional, Reed-Solomon, 
Turbo and LDPC codes in relation to un-coded and capacity transmission  

Adapted from (CCSDS, 2011)   

 

3.3.2 Signal power vs. spectral density 

Another parameter used to aid in the selection process is the power and spectral 

efficiency trade-off. Figure 3.3.2 shows the spectral efficiency for the recommended 

standard codes in relation to the required Eb/No. The figure shows that with strict 

power constraints, Turbo codes are suitable but they require large bandwidth 

expansion.  On the other hand, when bandwidth is severely constrained, the LDPC 

codes are the best choice if the increased energy per bit is acceptable. Using this 
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metric, Turbo and LDPC codes would clearly be the obvious choice for a system 

within one of these extremes. However, nano-satellites are usually both bandwidth 

and power constrained; therefore, the ideal selection would be a code that results in 

an acceptable Eb/No with minimal bandwidth expansion.  

 

 

Figure 3.3.2: Power and spectral efficiency trade-off 

Adapted from (CCSDS, 2012) 

 

The left of the figure corresponds to codes that are suitable for severely power-

constrained systems, while the bottom of the figure relates to codes that are suitable 

for bandwidth-constrained systems.  An ideal code that exhibits both spectral 

efficiency and good Eb/No would be in the bottom left corner of Figure 3.3.2.  But this 

does not exist, and a performance trade-off between spectral efficiency and Eb/No is 

necessary. The solution would be to either slightly compromise both parameters or tip 

the scales in favour of one according to the cost of each. The favourable LDPC and 

Turbo codes introduce decoder complexity, which requires significant hardware 

resources that are not readily available on nano-satellites. RS codes offer a spectral 

efficiency better than convolutional codes at the cost of a higher Eb/No, while 

convolutional codes require less Eb/No at the cost of spectral efficiency. The deciding 

factor would, therefore, be code complexity; in this case, convolutional codes would 

be preferred.  
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3.3.3 Summary 

The studies in this chapter have shown that the LDPC and Turbo codes outperform 

the other codes in every aspect. However, their implementation comes at a cost of 

high complexity, and large computation and memory requirements; traits that are 

undesirable for hardware implementation with limited resources, especially in nano-

satellites.  

 

As stated in previously, the less complex convolutional and Reed-Solomon codes are 

more suitable for the desired nano-satellite application. Taking into account the error 

correction strengths, the complexity of the decoders, and the learning curve for 

grasping the concepts involved in encoding and decoding, convolutional codes have 

been selected over RS codes for implementation in this project. Also, in terms of 

coding gain, convolutional codes outperform RS codes by achieving an approximate 

coding gain of 5dB for BPSK modulation and at a BER of 10-6, compared to 4dB for 

the RS codes.  An introduction to the convolutional encoding and decoding process 

is, therefore, given in the next section. The design and development of the 

convolutional encoder and Viterbi decoder are outlined in Chapters 4 and 5.    

3.4      Convolutional Coding 

Convolutional coding has been selected as the code to be implemented in this 

project. This section outlines the encoding and decoding processes to be used in the 

design. Convolutional codes are identified using their constraint length (K) and rate 

(r) parameters, which determine the complexity and performance of the code. As 

such, the performance of a convolutional code is directly proportional to K and 

inversely proportional to r, whereas the complexity of the code is inversely 

proportional to r and exponentially proportional to K. In this instance, K represents 

the number of consecutive input bits that contribute directly to the definition of the 

output symbols, and r is the ratio of input bits to output symbols expressed as a 

fraction (O’Dea, 2013; CCSDS, 2012).  

3.4.1 Encoding 

The recommended CCSDS convolutional encoder requires a simple circuit for 

implementation as illustrated in Figure 3.4.1. The implementation involves a shift 

register with K stages, which outputs are connected by r modulo-2 generator vectors 

producing 2 outputs C1 and C2 that are alternately switched to the output through 
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switch S1. The CCSDS recommends the inversion of one of the output symbols to 

ensure the sufficient handling of an all “0” or an all “1” input vector, resulting in the 

output sequence  C!  !C!!   C!!    C!!  ⋯   C!!    C!!  . 

 

Figure 3.4.1: Recommended (7, ½) convolutional encoder block representation 

 Adapted from (CCSDS, 2012) 

 
For each input bit, the information in the registers is shifted to the right when the input 

is shifted into the left-most position. The outputs C1 and C2 are determined using 

connection vectors of length K + 1 and the encoder algorithm is described in 3 steps: 

1. Initialise the memory registers with zeroes. 

2. At input time instance t,  

a. calculate C1 and C2 using combination vector and memory cell 

contents as defined by generator polynomials G1 and G2; 

b. shift the components of the memory elements to the right;  

c. shift input into left-most memory register; and 

d. sample C1 and C2 using the output switch. 

3. Repeat step 2 for each input time instance. 

 

The relationships among the input bits and the states of the memory elements of the 

encoder, as a function of time, can be illustrated using a trellis diagram. A trellis 

diagram can be defined as a graphical representation of the states of the encoder 

with the passage of time. The trellis diagram in Figure 3.4.3 represents a simple 

encoder with only 2 memory elements (Figure 3.4.2) for illustration purposes, as the 

trellis diagram for the recommended (7, ½) CCSDS encoder is very large and 

complex. The trellis diagram shows all the possible states of memory elements at any 

given time instance in the encoding process. The unique data sequence is 

represented by a particular path along the trellis and this property is used by the 

decoder to infer the path with the highest likelihood representing the initial data 

sequence (Calhan et al., 2007). The dashed lines in the diagram represent a branch 

along the path resulting from an input of 0 and the solid lines show transitions due to 

an input of 1. 
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Figure 3.4.2: Simple (3, ½) convolutional encoder block representation  

Adapted from (Viterbi, 1971)  

 
 

A	  	  	  	  	  00 00 00 00 00 00 00
11 11 11 11 11 11

01 01 01 01 01

10 10 10 10

01 01
01 01

11 11 11 11

10 10 10 10 10

00 00 00 00
B	  	  	  	  	  10

C	  	  	  	  	  01

D	  	  	  	  	  11
 

Figure 3.4.3: Convolutional code trellis diagram for ½ rate code with a 
constraint length of 3  

Adapted from (Viterbi, 1971) 

3.4.2 Decoding 

Every encoder requires a decoder to interpret the encoded symbols and 

subsequently determine the initial contributing input. The CCSDS recommended 

decoder for the convolutional encoder is the Viterbi decoder, which uses a maximum 

likelihood algorithm to determine the initial input using the available encoded 

symbols. The Viterbi algorithm is used because it improves communication efficiency 

by 4 to 6dB at a BER of 10-5 (Jerrold & Jacobs, 1971). 

 

As mentioned earlier, the Viterbi decoder can be implemented either as a hard 

decision decoder or a soft decision decoder. Implementing a soft decision decoder 

results in a higher level of decoding accuracy as illustrated in Figure 3.4.4; however, 
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the multiple bit quantisation increases the complexity of the practical implementation 

(CCSDS, 2012).      

 

 

Figure 3.4.4: Convolutional coding error performance  

Adapted from (CCSDS, 2012) 

 

The decoder uses the information defined by the trellis diagram to function, and 

therefore, a fixed amount of memory is required to store the information (Calhan et 

al., 2007). The decoder is also required to compute and compare the likelihood 

probabilities of every possible path along the trellis. The results of this comparison 

are then used to determine the path with the highest likelihood of representing the 

original information. This also requires memory, as the path likelihood probabilities of 

all the paths along the trellis for the duration of the data sequence must be stored for 

the comparison (Morelos-Zaragoza, 2002). 

 

Decoding a large received sequence would, therefore, require extremely large 

amounts of memory, which is practically unachievable. Attempting to decode the 

complete received sequence in one go would also result in very long latency, 

because all the paths along the trellis are to be compared before yielding an output. 

To avoid the use of large amounts of memory and high latency, the practical decoder 

divides the information sequence into blocks with a reasonable truncation length D. 

The recommended value of D, which results in negligible decoder degradation, is set 

at approximately 5 times the constraint length of the encoder (5K) (Morelos-

Zaragoza, 2002). Figure 3.4.5 shows that the BER performance of a convolutional 
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code is also dependent on D. The length of D can be increased to a certain point 

where, increasing it further, would not improve the BER performance, as seen in 

Figure 3.4.5 (for example, setting D = 60 results in the same BER as the ideal case of 

D approaching infinity).  

 

 

Figure 3.4.5: Truncation length (D) versus BER  

Adapted from (CCSDS, 2012) 
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CHAPTER FOUR 
CONVOLUTIONAL ENCODER 

 

4.1       Introduction 

The CCSDS standard recommends a convolutional encoder with a constraint length 

of 7 and a rate of ½. The encoder is made up of a shift register with 6 memory cells, 

which outputs are combined and manipulated by modulo-2 addition in a 

predetermined combination. This gives two separate data streams as illustrated in 

Figure 4.1.1. The figure includes the shift register stages labelled as D and the 

combinations of the register outputs obtained from the generator polynomials G0 and 

G1 for modulo-2 addition. Also shown in the figure are the input and output locations 

within the system as well as the direction of the flow of signals along the circuit. The 

encoder generates two streams of data from a single input data stream as a result of 

the ½ code rate. A logical inverter is seen at one of the output data streams (out1),  as 

recommended to ensure that the code is efficient even with an all ‘0’ or all ‘1’ input 

stream. The final stage of the encoding process is a selector switch to multiplex the 

two encoder outputs into one output data stream.   

D D

+

+

in

out1

out0

G1	  =	  1011011

G0	  	  =	  1111001

D D D D

+

+

+ +

+ +

out

select

 

Figure 4.1.1: CCSDS recommended (7, 1/2) convolutional encoder  

Adapted from (CCSDS, 2011) 

4.2       VHDL Design 

The encoder is to be implemented on an FPGA platform and, therefore, its 

architecture is to be described in VHDL and verified using the process illustrated in 

Figure 4.2.1. 
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VHDL	  Behavioural	  
model	  description

RTL	  Simulation

RTL	  Synthesis

Functional	  gate	  
simulation

Place	  and	  Route

Post-‐layout	  timing	  
Simulation Timing	  analysis Power	  analysis

Test	  1:	  verifies	  correctness	  of	  	  
described	  behavioural	  model

Test	  2:	  verifies	  the	  correctness	  of	  the	  
hardware	  specified	  for	  the	  behavioural	  

model

 

Figure 4.2.1: VHDL design procedure  

Adapted from (Perry, 2002) 

 

The VHDL implementation of the encoder in Figure 4.1.1 can be illustrated using the 

block diagram in Figure 4.2.2. The encoder consists of 3 main I/O signals, which are 

the clock, data input and data output.  

Signal	  
generator	  

Encoder
Selector	  

Clock

Input

Output

Encoder	  Control

Mux	  Control

 

Figure 4.2.2: Encoder implementation block diagram 
 

The encoder comprises 3 blocks/components and the roles of each block are outlined 

in Table 4.2.1 below. The encoder’s 6 memory elements are implemented as shift 

registers and the modulo-2 adders are implemented as XOR logic gates. 
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Table 4.2.1: Encoder implementation blocks/components explained 

Component Responsibility 

Signal 

generator 

Generates the 2 signals used to synchronise the encoder 

operation.  

Encoder Executes all the encoder calculations illustrated in Figure 4.1.1, 

which includes shift register logic, XOR logic and C2 inversion. 

Selector Implements the parallel-to-serial convertor, which enables the 

encoder to produce a single data output stream. 

 

The encoder architecture is completely synchronous; therefore, all the processes and 

calculations are controlled by the input clock signal. Figure 4.2.3 shows the encoder 

timing diagram, which illustrates the associations among the encoder input and 

output in relation to the clock and control/synchonisation signals. The signals named 

encoder control (enc_ctrl) and mux control (mux_ctrl) are used to synchronise the 

processes within the encoder in order to ensure that all the calculations and logical 

operations use the correct data inputs.  

 

 

Figure 4.2.3: Encoder timing diagram 

 

The significance and implications of the timing diagram in Figure 4.2.3 can be further 

visualised using the truth table described in Table 4.2.2, which shows one full 

encoder cycle. A complete encoder operation requires 5 clock cycles, as can be seen 

from the truth table. The ‘X’ indicates that the particular state of that signal is 

insignificant to the encoder operation. The ‘Valid’ label denotes when the input signal 

is used in the encoder calculations and indicates that the input should not be changed 

at this time. This means that the input should be made available before the indicated 

time instance within the encoder cycle. For the output signal, the ‘Valid’ label 

indicates when the output signal is available to be recorded. This means that the 

output should be recorded within the availability window indicated.  
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Table 4.2.2: Encoder signals truth table 

Clock cycle Clock Encoder control Mux Control Input Output 

1 ↑ 0 0 X X 

2 ↑ 1 0 Valid X 

3 ↑ 0 0 X X 

4 ↑ 0 1 X Valid 𝐶1 

5 ↑ 0 1 X Valid  𝐶2 

 

4.3       Analysis 

A spreadsheet model that computes the encoder calculations for each stage is 

created and used to verify the behavioural correctness of the VHDL implementation. 

A set of randomly generated data bits is introduced into the spreadsheet model to 

generate the expected encoder outputs. The same input data set is then used during 

the behavioural simulation of the model where the output is compared to the 

expected values from the spreadsheet model. The MATLAB random data generator 

creates a text file that is used in the VHDL behavioural simulation. This verification 

process is illustrated in Figure 4.3.1. The spreadsheet model is used for the encoder 

verification as it provides a simple method of visualising and following the progression 

of the arithmetic and logic operations involved in the encoding process. 

 

Matlab	  random	  
number	  Data	  
Generator

Excel	  
Model

Matlab	  Output	  
comparison

VHDL	  Behavioural	  
Simulation  

Figure 4.3.1: Encoder behavioural correctness verification 

 

If the behavioural model simulation results match the spreadsheet model output, the 

VHDL design is then fed into a synthesiser, which creates the hardware netlist for a 

specified device. The encoder is to be implemented on hardware that exists on 

communication system modules to reduce the cost of implementation; therefore, 

netlists are created for 3 FPGA devices from different vendors. This is done to 

determine the cost of implementing an encoder on a system with one of these 3 

FPGA devices that at this time may be found in CubeSat subsystems.    
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The major players in FPGA manufacturing are Xilinx and Altera, collectively 

controlling approximately 80% of the FPGA market value (Global Market Insights, 

2016); therefore, a device is selected from the two manufacturers’ low power, low-

cost device families. From the Xilinx 7 series 28nm technology, the Artix-7 family has 

low power, low-cost devices that are suitable for cost-sensitive applications (Xilinx, 

Inc., 2014). A device from the Artix-7 family is, therefore, used in this project to verify 

the implementation of the encoder on Xilinx devices. The Altera family FPGAs are 

designed for different user needs, with the Cyclone family tailor-made for low power, 

low-cost applications (Altera Corporation, 2012). A Cyclone V device is, therefore, 

used to verify the implementation on Altera devices. Microsemi’s IGLOO2 as of 2014 

was the lowest power FPGA family in the industry (Microsemi Corporation, 2014); 

therefore, a device from this family is also selected for use in this project. The specific 

devices used are listed in Table 4.3.1. 

Table 4.3.1: Test FPGA devices 

Manufacturer Family Device Design environment 
Altera  Cyclone V 5CEBA2F17C7 Quartus II  & ModelSim Altera 

starter edition  
Microsemi  Igloo2 M2GL010T Libero SoC v11.4 & ModelSim 

ME 10.3a 
Xilinx Artix7 xc7a100t-3fgg484 ISE design suite 14.7 

    

The VHDL design is ported onto the different design platforms listed in Table 4.3.1.  

This process illustrated in Figure 4.3.2 is followed to obtain the required analysis 

results. Validation on these three platforms also brings a certain amount of 

confidence that the code is technology-independent and will be re-usable on any new 

family that may become available in the future. 

 

START

Create Project and 
specify target 

device

Add design files to 
project  

Create constraints – 
Timing and I/O in 
required format 

Synthesise, 
Translate, Map and 

Place and route
Timing analysisPower analysis

END
 

Figure 4.3.2: Encoder design verification procedure 
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4.3.1 Device resource usage 

To determine the resource usage for the 3 test devices, the post-layout/place-and- 

route (PAR) reports are analysed. The resources, in this case, refer to the number of 

FPGA slices, look-up tables (LUT’s) and global resources. Table 4.3.2 shows that the 

encoder makes use of a very small percentage of the available resources for each 

device. It can be noted that the encoder uses 4 I/O ports, which are the clock, data 

input, data output and reset ports. The implemented encoder has an asynchronous 

reset, which is not mentioned in the encoder design section. The Cyclone V device 

uses 4 registers more than the other devices, which are used as routing optimisation 

registers.     

 
Table 4.3.2: Encoder device resource usage 

Device Resource Type Used Total % 

Igloo2 

Slice Flip Flops 15 12084 0.12 
4 input LUT’s 12 12084 0.099 
Global 2 8 25 
I/O 4 231 1.73 

     

Artix7 

Slice Registers 15 126800 0.01 
Slice LUT’s 9 63400 0.01 
Global (BUFG’s) 1 32 3 
I/O 4 285 1 

     

Cyclone V 

Registers 19 37736 0.05 
LUT’s 13 18860 0.07 
Global 1 16 6 
I/O 4 128 3 

  

4.3.2 Timing analysis 

The critical paths of the design are analysed to obtain the operating frequency of the 

encoder. The timing report obtains the pin-path-pin traversing delays and determines 

the worst case delays that are used to determine the highest operating frequency. 

The result of the timing analysis gives an indication of the possibility of implementing 

the design on the selected hardware (Perry, L.D, 2010).  

 

The technology used in each of the test FPGA’s results in a different maximum 

operating frequency for each device. However, these values are not for comparison 

as such a study would need a different kind of methodology to be put in place beyond 

the scope of this study. The post-layout/place-and-route timing analyses for each of 
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the devices give the minimum system clock period, which translates to the maximum 

frequencies recorded in Table 4.3.3.    

Table 4.3.3: Encoder maximum system clock frequencies 

Device Parameter Values 
   

Igloo2  System frequency (MHz) 505.051 
Input data rate (Mbps) 101.01 

Artix7 System frequency (MHz) 576.037 
Input data rate (Mbps) 115.207 

 Best case Worst case 

Cyclone V System frequency (MHz) 841.75 487.57 
Input data rate (Mbps) 168.35 97.514 

 

The maximum system clock frequency values for each device are obtained when a 

constraint of 50MHz is set on the clock. The timing analysis tools give results 

according to the devices’ operating conditions. For the Cyclone V device, the best 

case scenario for the encoder timing is obtained from the fast 0ºC model and the 

worst case is obtained from the slow 85ºC device model. These models are 

generated as a result of the commercial device minimum and maximum operating 

temperatures. The time quest analyser used in Quartus II for the Cyclone V device 

gives the maximum frequencies for a device operating in the best and worst case 

conditions. The maximum frequencies given for the other devices are based on the 

devices operating under worst case conditions.  

 

The maximum system clock frequency can be used to determine the input and output 

frequency. As stated during the encoder design, a complete encoder operation 

requires 5 system clock cycles to complete. The encoder input frequency can, 

therefore, be calculated as:  

  

                    𝐼𝑛𝑝𝑢𝑡  𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =   
𝑠𝑦𝑠𝑡𝑒𝑚  𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

5
 4.3.1 

 

4.3.3 Power analysis 

The design tools can be used to generate circuit representations of the encoder 

implementation on the FPGA device. These representations are used to estimate the 

power drawn by the designed circuit using activity values estimated by the power 

analysis tool. In order to obtain an accurate power estimation, a VCD (Value Change 

Dump) file describing the circuit activity in response to a particular stimulus has to be 
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generated during post-PAR simulation. The power analysis tools determine two types 

of power dissipation values, namely quiescent/static and dynamic power. These two 

values give the power drawn by the circuit when the device is powered up and idle, 

and the power dissipation due to circuit activity, respectively. The total estimated 

power required for the encoder is, therefore, the sum total of the dynamic and 

quiescent power. 

 

 A random data stream is generated using MATLAB and used as test data for the 

encoder/decoder system. In order to ensure decoding of the entire data stream, a 

sequence of 7 zeroes is appended at the end of the input data stream to flush out the 

contents of the encoder shift registers; thus, terminating the encoding process. The 

generated input is 3200 bits wide and, therefore, the resultant bit stream is 3207 bits 

wide due to the termination bits.  

 

To determine the approximate encoder power requirement, VCD files are generated 

from simulations with operating frequencies between 25MHz and 300MHz. The 

switching activity observed here gives an indication of the power requirement for an 

encoder under typical operation. Figure 4.3.3 shows that the dynamic power usage 

increases linearly with operating frequency for each of the test FPGA’s. The static 

power varies with the device junction temperature as illustrated in Figure 4.3.4. The 

total power required for the encoder operation is the sum total of dynamic power and 

static power.  This is determined from the diagrams in Figure 4.3.3 and Figure 4.3.4.  
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Figure 4.3.3: Encoder dynamic power requirement for system frequencies 
between 25MHz and 300MHz    

 

Figure 4.3.4: Encoder static power requirement versus junction temperature  

 

4.4       Conclusion 
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The encoder requires the use of negligible resources as demonstrated by the 

analysis done in this chapter. The least implementation cost is observed for the 

Igloo2 device, which displays a low average static power requirements of 13 mW for 

typical operational conditions between 15ºC and 25ºC, and a dynamic power 

requirement of ~5mW between 25MHz and 300MHz. The limitations on the system 

performance will come not from the encoder, but from its counterpart, the decoder. 
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CHAPTER FIVE 
VITERBI DECODER 

 

5.1       Introduction 

On the receiving side of an encoded communication link, a decoder is required to 

reverse the effects of the encoder so as to determine the original data. In this project, 

a hard decision trace-back Viterbi decoder is used to reverse the effects of the (7, ½) 

convolutional encoder used on the transmission side of the communication system. 

The decoder is designed using a hierarchical VHDL design methodology for 

implementation on an FPGA device.  

5.1.1 Decoder outline 

The description of a Viterbi decoder can be obtained from a trellis diagram, such as 

the one illustrated in Figure 3.4.3. The trellis diagram represents all the possible time-

related state transitions of a specific convolutional code for a given time period. The 

branches along the trellis depict the encoded data at the particular time instance; 

therefore, a received encoded data stream follows a unique path along the trellis. 

This property is used in the description of the decoder to determine the original input.   

 

In order to visualise the decoding process, an input data stream is encoded using the 

encoder in Figure 3.4.2, where the generator polynomials are 𝐺1 =   𝑖𝑛  ⊕ 𝑠1⊕ 𝑠2 

and  𝐺2 =   𝑖𝑛  ⊕ 𝑠2. The next 3 sections outline the step-by-step process implemented 

in the decoder to determine the input data stream from the received parity codeword. 

5.1.1.1 Branch metrics and the trellis diagram 

As stated earlier, the branches along the trellis give information on all the possible 

encoder outputs for all the possible encoder states in relation to the input and time, as 

shown in Figure 5.1.1.  
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Figure 5.1.1: Trellis diagram for encoder with K = 3 and rate = ½  

 

The first step in the decoding algorithm is the calculation of branch metrics, which can 

be defined as the Hamming distance between the branch-words received by the 

decoder and the expected/transmitted branch-words. The branch metrics can be 

calculated using the information available on the trellis, as illustrated in Figure 5.1.2. 

The code used for encoding is a ½-rate convolutional code.  Consequently, there are 

four possible branch-word combinations 00, 01, 10 and 11 on the trellis diagram, 

which shall forthwith be referred to as ideal branch-words. The branch metrics 

corresponding to the ideal branch-words shall be labelled as BM0, BM1, BM2 and 

BM3, respectively, as shown in Table 5.1.1.  

 

Table 5.1.1: Branch metric reference table 

Branch-word BM0 BM1 BM2 BM3 

00 0 1 1 2 

01 1 0 2 1 

10 1 2 0 1 

11 2 1 1 0 
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Figure 5.1.2: Example branch metrics for branch-word 00 

Adapted from (MIT, 2010b)  

 

5.1.1.2 Path metric accumulation and trellis butterflies  

Stage 2 in the decoding process involves the calculation of the accumulative path 

metrics along the trellis. An encoded data stream follows a unique path along the 

trellis and, therefore, the path metrics are used to determine that path. The path 

metrics (PM) can be defined as the sum of the branch metrics along a particular path 

along the trellis, which accumulate with time. This value indicates the number of bit 

errors in the particular path obtained by comparing the received branch-words to the 

ideal branch-words from time t = 0 up to the current time (MIT, 2010b). Since the 

Viterbi decoder employs a maximum likelihood algorithm, the path along the trellis 

with the smallest path metric is the path with the greatest likelihood of representing 

the unique path resulting from the input data stream.  

 
The ½-rate code has a symmetry property, whereby each source state has 2 possible 

destination states. These source/destination state pairs can be grouped to form trellis 

butterflies, such as the one shown in Figure 5.1.3. The trellis butterflies simplify the 

calculation of accumulative path metrics.   
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Figure 5.1.3: General ½-rate trellis butterfly  

 
On the trellis butterfly, the paths to be updated during the add-compare-select (ACS) 

process are on the right-hand side of the diagram. Each butterfly is used to update 2 

path metrics using equation 5.1.1, with reference to the labelling of the trellis butterfly 

in Figure 5.1.3: 

 

PM(C) = min   BM(A → C) + PM(A),BM(B → C) + PM(B)  

𝑃𝑀(𝐷) = min   BM(A → D) + PM(A),BM(B → D) + PM(B)    
5.1.1 

 

The ½-rate code with K=3 has 4 states and the trellis in Figure 5.1.1 can be 

translated into 2 butterflies, as illustrated in Figure 5.1.4. There are 2 source states 

for each destination state.  To obtain the path with the highest likelihood representing 

the input data stream at that time instance, the source path with the smallest metric is 

selected as the winner path. It can be seen from Figure 5.1.4 that the ideal branch-

words that result from a 0/1 input are the same for each source state in a butterfly. 

This property is used to determine the source input, which resulted in the transition 

from the particular source state to the winner path at a particular time instance.  
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Figure 5.1.4: K = 3, R = ½ trellis butterflies 

 

The accumulative path metrics for the example K = 3, r = ½ code can therefore be 

calculated using the formulae in equation 5.1.2: 
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PM0 = min   BM0 + PM0,BM3 + PM2  

PM1 = min   BM3 + PM0,BM0 + PM2    

PM2 = min   BM2 + PM1,BM1 + PM3    

PM3 = min   BM1 + PM1,BM2 + PM3    

 

5.1.2 

 

It is important at this stage of the decoding process to take note of the survivor 

branches, which correspond to the minimum path metric at every time instance, as 

this information is used to determine the decoder output. These branches are referred 

to as the decision branches. 

 

5.1.1.3 Decoder output  

With the path metric information and the decision branches, the decoder has all the 

information required to complete the decoding process. After the decoder has 

received the complete parity codeword, the trellis is read in reverse, starting with the 

state at the end of the trellis with the smallest path metric to trace the path most likely 

to have been followed by the input during the encoding process. The most significant 

bit (MSB) of the state along the reverse trellis path is recorded as the output bit at that 

particular time instance. 

 

Figure 5.1.5 shows the decoding process for a received codeword 11 10 00 10 11 

encoded using the K = 3, r = ½ encoder.  The first figure shows the branch metric 

information for each branch-word of the input codeword and the accumulation of path 

metrics. The figure also highlights the survivor paths at each time instance. The 

accumulative path metrics are updated in the squares, which represent the nodes of 

the trellis. It is important to note that initially the path metric for state 00 is 0 and the 

rest of the states have a path metric of infinity due to the fact that the encoder states 

are initialised to zero at time t = 0. When the path metric for the two paths entering a 

node is identical, they are equally likely and, therefore, the survivor path is randomly 

selected (MIT, 2010b).  

 

The second figure highlights the possible paths that may represent the input, 

eliminating the survivor branches from the previous diagram that do not contribute to 

a complete path traversing from the beginning of the trellis to the end. The final 

drawing highlights the unique path, which represents the input message, starting at 

the node with the lowest path metric. It can be noted that all the accumulative path 
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metrics along the path are 0, which occurs when the received codeword has no errors 

and correctly represents the encoded message (MIT, 2010b). 

 

If the received codeword contains errors, the decoder selects the path with the lowest 

path metric, which represents the codeword that most closely represents the 

transmitted codeword, as illustrated in Figure 5.1.6. As a result of the encoder 

generator polynomials and the length of the input message (N), the encoder has a 

finite number of possible resultant codewords 2!   (MIT, 2010a). The codeword 01 10 

11 10 11 used in the decoder illustration is not valid, because it cannot be obtained 

using any of the possible input combinations for a 5-bit message. There are two 

possible decoder outputs, as shown in the last 2 diagrams in Figure 5.1.6. The 2 

paths have the same path metric, which makes them equally likely. The final output 

is, therefore, randomly selected.      

 

Many Viterbi decoders have been developed over the years; however, out of 

necessity, the decoder described in this document has been developed from scratch. 

Many existing decoders are available as IP cores, but require paid licenses and have, 

therefore, not been considered for this project. The open source accessible Viterbi 

decoder solutions imposed a great learning curve for understanding the VHDL 

description as the free available code was not working correctly and no support was 

made available, despite our many requests.  The decision was, therefore, made to 

develop a new VHDL architecture and description from scratch.  

 

It must be noted that the Viterbi decoder developed is unique to the encoder with the 

generator polynomials described in this document. However, a different code of the 

same rate and constraint with different generator polynomials can be decoded using 

the same decoder by changing the branch metric values, which are linked to each 

trellis butterfly. 
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Figure 5.1.5: Viterbi decoder decoding the valid codeword 11 10 00 10 11 
producing the transmitted message 10100  
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Figure 5.1.6: Viterbi decoder decoding the invalid codeword 01 10 11 10 11 
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5.1.2 Algorithm 

The process of Viterbi decoding can now be described using an algorithm with the 

following steps, which practical implementation in VHDL is explained in detail 

throughout this chapter: 

1. Initialisation: Set the trellis to the zero state. 

2. Branch Metric calculation (BM): Calculate the branch metric for each branch in 

the trellis for a particular time instance. The branch metric is obtained by 

calculating the distance between the received branch-word and all possible 

branch-words. The number of different bits between compared branch-words 

is used as the branch metric value. 

3. Add – Compare – Select (ACS):  Calculate and update the path metric values 

for each path entering a node in the trellis and discard loser paths. The loser 

paths along the trellis at a given time instance are defined as the paths with 

the largest path metrics.  

a. Add obtained branch metrics to the relevant path metrics; 

b. Compare metrics of paths entering a node; 

c. Select a survivor path, which is given as the path with the smallest 

metric; and 

d. In case of a tie (equal metric), randomly select survivor path. 

4. Determine output (TB): 

a. Use survivor paths from ACS to select the ultimate survivor path; and 

b. Derive the output from the ultimate survivor path. 

5.2       Decoder Design 

The decoder is made up of three major blocks, namely, the branch metric unit (BMU), 

the add-compare-select unit (ACSU) and the trace-back unit (TBU) as shown in 

Figure 5.2.1. For implementation purposes and verification simplicity, the blocks are 

treated as separate entities until their independent functionality is achieved.  They are 

then combined to form one decoder entity with multiple components.    
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Figure 5.2.1: Viterbi decoder general block diagram 
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Each of the major components has a contributing role in the identification and 

correction of errors through the sharing of information among blocks. As a result, all 

the relevant blocks must communicate with each other, or use additional blocks to 

facilitate the flow of signals among the major blocks, as illustrated in Figure 5.2.2. 
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Figure 5.2.2: Major decoder blocks with additional synchronisation blocks 

 

The direction of flow of information among the decoder blocks is as shown by the 

arrows in Figure 5.2.2.  Each block needs to be activated when the correct input is 

available from the preceding block. To achieve the desired signal flow, a control unit 

block is introduced to activate the relevant blocks as desired; thus, synchronising the 

calculations, I/O control and overall decoder operation as illustrated in Figure 5.2.3. 

Each block represents a set of related processes, which contribute to the overall 

decoding process as described in Table 5.2.1. The description of the blocks is then 

used to define the VHDL behavioural architecture for the FPGA implementation. The 

decoder is implemented as a completely synchronous architecture; therefore, the 

clock is used in all the blocks in conjunction with the control signals.   
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Figure 5.2.3: Interaction of decoder blocks with control unit included 
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Table 5.2.1: Viterbi decoder block description breakdown 

Stage Name Description 
1 Control   This block is responsible for creating control signals using the 

input clock signal to synchronise the input selection, calculations, 
and output selection processes.    

2 BMU  Responsible for branch metric calculations required to determine 
the decoder output. 

3 ACS This block is used for calculating and updating the path metric 
values for each path entering a node in the trellis. This block is 
also responsible for making decisions determining the surviving 
paths along the trellis.  

4 MUX This block represents the block that selects the correct path 
metric values to be used in ACS unit calculations. It is an 
additional block used for signal synchronisation.  

5 MINU This block calculates the minimum path metric required for 
determining the state where the trace-back path begins.   

6 MU Required for the storage of the decisions made by the ACS unit. 
7 TBU Responsible for following the ultimate survivor path and 

determining the decoder output.   
 

 

5.2.1 Control unit  

The control unit generates the control signals, which synchronise the selection of 

block inputs and outputs as well as control the activation of the processes within 

these blocks. Multiple control signals are created using the system clock to control 

the propagation of information through the different blocks. The signals produced by 

the control unit are synchronised according to the timing requirements of the rest of 

the decoder system. 

 

Figure 5.2.4 shows the relationship between the system clock and the control signals, 

which indicates the parallel and sequential nature of the decoder system.  The control 

signals are used to activate/enable one or more blocks in the system. 

 

Table 5.2.2 lists the control unit signals and the blocks for which they are responsible.  
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Figure 5.2.4: Control unit signal synchronisation 

 

Table 5.2.2: Decoder control signals 

Signal System 
bmsig Enables calculation of branch metric. 
muxsig Enables MUX unit for ACS path metric input selection. 

acssig Controls the ACS unit to update the path metric value used for 
computations. 

musig Enables the writing of decision data from the ACS to memory. 

minsig Controls the calculation of the minimum path metric, which 
gives the trace-back starting point. 

tbsig Controls the saving of the valid decoder outputs. 

memwrite Controls the selection of the RAM block to be used for writing 
the ACS decision vectors. 

memread Controls the selection of the RAM block to be read from during 
trace-back. 

tbenb Activates and deactivates the entire trace-back unit.  

5.2.2 Branch metric unit (BMU) 

A metric defines the distance between elements and gives an indication of how 

closely placed the elements are in a particular space. The BMU is, therefore, 

responsible for calculating the distance metrics of the received branch-words and the 

ideal branch-words represented by the branches in a trellis diagram. 

 

As mentioned in earlier sections, the BMU is responsible for calculating the difference 

between the received branch-word and the possible codewords for each of the trellis 

branches. The resultant value from the calculations represents the number of errors 

in the received branch-words. There are 2n BM calculations for a code with rate K/n; 
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therefore, for a ½-rate decoder, the BMU carries out 4 calculations for each trellis 

branch.  

 

The BMU accepts an input that is 2 bits wide and produces 4 outputs, namely, BM0, 

BM1, BM2 and BM3, which represent the Hamming distance between the input 

branch-word and the ideal branch-words. The operation of the BMU is controlled by 

the global clock in conjunction with the BMU control signal as shown in Figure 5.2.5. 
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Figure 5.2.5: Branch metric unit 

 
The arithmetic and logic operations implemented to obtain the branch metric results 

are as illustrated in Figure 5.2.6.  
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Figure 5.2.6: BMU hard decision calculations 

 

There are, therefore, 3 possible branch metric values that can be obtained from the 

BMU for each trellis branch as displayed in Table 5.2.3.  

Table 5.2.3: Hard decision BMU expected outputs 

In[1:0] x x⊻0 x⊻1 y y⊻0 y⊻1 BM0 BM1 BM2 BM3 
00 0 0 1 0 0 1 0 1 1 2 
01 0 0 1 1 1 0 1 0 2 1 
10 1 1 0 0 0 1 1 2 0 1 
11 1 1 0 1 1 0 2 1 1 0 
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5.2.2.1 Testing  

With reference to Table 5.2.3, the expected BMU outputs are known; hence, to verify 

the BMU operation, a set of 2-bit signals is generated and used as inputs and the 

result recorded as in Figure 5.2.7. The results show that a new branch metric is only 

calculated on the rising edge of the global clock signal when the branch metric control 

signal (bmsig) is active, verifying the operation of the BMU. 

 

 

Figure 5.2.7: BMU test results 

 

5.2.3 Add compare select unit (ACSU) 

The ACSU is responsible for calculating the possible trellis survivor paths during each 

decoder time instance. The ACSU operates, assuming a trellis in a steady-state 

where more than one path enter a node at any given time. The VHDL behavioural 

description for the ACSU is a hierarchical model that is made up of multiple parallel 

ACS units.  

5.2.3.1 ACS units 

There are N/2 butterflies for an N state trellis; therefore, the trellis with 64 states can 

be broken down into 32 butterflies, such as the one illustrated in Figure 5.1.3. The 

trellis butterflies for the implemented decoder are illustrated in APPENDIX B: 

TRELLIS BUTTERFLIES. Each butterfly is represented by an ACS unit for the path 

metric update computations. The length of the input sequence used for the likelihood 

estimations determines the amount of storage required for the path metric 

information. As mentioned in Section 3, the reasonable truncation length for the 

encoded sequence is 5 times the constraint length of the encoder. In this case, the 

recommended truncation length is 35, which implies that updated path metrics for 35-

time instances need to be saved and used to determine the decoder output. This 

places a large storage requirement on the decoder, since the path metric results are 

multiple bit values. To attempt a reduction in the decoder memory required, the 
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truncation length is reduced and the decoder performance at the reduced truncation 

length is noted. The results showing the impact of the reduced truncation length on 

the decoder performance are given in Section 5.3. 

 

The trellis butterfly has a property that allows the use of single bits, referred to as 

decision bits, to represent the survivor path metrics to be saved. From Figure 5.2.8a 

and Figure 5.2.8b it can be seen that the LSB for source state A is 0 and the LSB for 

source state B is 1; a property that is true for all the trellis butterflies. The trellis 

butterfly states can, therefore, be labelled as in Figure 5.2.8c. If the surviving path 

emanates from state A, the decision bit is set to ‘0’ and if it is from state B a ‘1’ is 

saved. The same branch metric values are used for the state transitions from both 

source states, as seen in Figure 5.2.8a and Figure 5.2.8b, resulting in the new branch 

metric labels, as seen in Figure 5.2.8c. The decision bits can, therefore, be calculated 

using the formula in equation 5.2.1: 

 
dec0 = 1  if    PMA + BMtop   >     PMB + BMbottom      else  0  
dec1 = 1  if    PMA + BMbottom > PMB + BMtop      else  0  5.2.1 
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Figure 5.2.8: Trellis diagram for generating decision bits a) trellis butterfly for 
updating state 0 and 1, b) trellis butterfly for updating state 15 and 47, c) 
generic trellis butterfly diagram for all states showing the LSB and MSB 

pattern for source and destination states  
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The updated path metric is still required for use in the next time instance and is, 

therefore, temporarily stored and replaced when the next PM calculation is executed. 

As a result, each ACS unit is designed to give four outputs; 2 decision bits to be used 

by the decoder trace-back component and 2 path metric values for updating the path 

metric for the next time instance. 

 

32 ACS units with a structure as shown in Figure 5.2.9 are, thus, implemented in 

parallel to give the desired path selection and decision bit results for each trellis 

butterfly. Each unit is responsible for updating the path metric for two states 

according to the trellis butterfly relationships and determining the corresponding 

decision bits denoting survivor paths. 
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ACS	  ctrl

PMA
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Figure 5.2.9: Individual ACS unit structure 

 

To implement the ACS units, the arithmetic and logic operations as illustrated in 

Figure 5.2.10 are used. Each ACS unit requires 4 adders and 2 comparators.    
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Figure 5.2.10: ACS unit arithmetic and logic operations 

5.2.3.2 ACS top 

The ACS module is a hierarchical model with multiple interconnected components; 

the top entity (APPENDIX C: ADD COMPARE SELECT (ACS) MODULE 

INTERCONNECTION) is responsible for defining the connections among the different 

components as determined by the trellis butterfly relationships. All the individual 

decision bits obtained from each of the parallel units are merged into a data bus 

containing 64 decision bits, which are saved for future use. This implies that a 

memory unit is required to store the decision bits.  

5.2.3.3 Temporary path metric storage unit (Mux) 

A temporary path metric storage unit (MUX) is used to save the survivor path metric 

values calculated by the ACS units, which are to be used at the next time instance as 

the ACSU inputs. The interaction between the MUX unit and the ACSU is as 

illustrated in Figure 5.2.11.  
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Figure 5.2.11: ACSU and MUX interaction 

 

At time t = 0, only one state exists on the trellis as illustrated in Figure 3.4.3. The only 

existent state is the zero state, which has a path metric of zero, as it has no path 

feeding into it. The rest of the states are non-existent and, hence, their path metrics 

do not exist.  For ease of calculation, the path metrics for the states that are not 

present at t=0 are set to a high value, which represents a path metric of infinity. In this 

implementation, the number 200 is used to represent a path metric of infinity. The 

path metric values defined here are used as the initial inputs to the ACS units to be 

used for the first accumulative path metric calculation at time t = 1.  

  

The MUX unit is responsible for selecting the input to the ACSU as required at a 

particular time instance, as shown in Figure 5.2.12. At the beginning of the decoding 

process, the initial path metric as described above is used as the ACSU input.  

 

Figure 5.2.12 illustrates the hardware description of the MUX unit, which is made up 

of a memory register and a 2-to-1 multiplexer, and represented as a selector switch 

controlled by an external control input.  
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Figure 5.2.12: MUX unit path metric selection functional block diagram 

 

5.2.3.4 Testing 

To verify the successful implementation of the ACS unit, a spreadsheet reference 

model is used to give the expected decision bit output values after each stage. The 

developed ACS module is tested using the branch metric results obtained from the 

BMU functionality test. To determine the success of the implementation, the expected 

results from the spreadsheet are compared to the simulation results.  

5.2.4 Decoder output selection unit 

The decoder output selection unit is made up of the trace-back (TBU), memory (MU) 

and minimum path metric (MINU) units as shown in Figure 5.2.13. Each of these units 

contributes to the decoder output calculation as described in the following sub-

sections. 
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Figure 5.2.13: Decoder output unit 

5.2.4.1 Memory unit (MU) 

The output of the ACSU for long-term storage has been established to be a 63-bit 

wide signal containing survivor path metric decision bits. At each time instance, 

decisions are made using the path metrics from the previous time and the branch 

metrics corresponding to the given input. The obtained decisions are stored to be 

used later in determining the decoder output sequence. A last-in-first-out (LIFO) 

random access memory (RAM) is created for storing the required decision vectors. 

Three blocks of RAM, which size is determined by the trace-back depth (truncation 

length) of the decoder, are used for the storage. The stored decision bits are used in 

the trace-back block where the decoder output is generated.  

 

As shown in Figure 5.2.15, the MU reading and writing sequences are controlled by 

control signals from the decoder control unit. The selection of the RAM block to be 

used in write mode at a particular time instance is done using the finite state machine 

(FSM) illustrated in Figure 5.2.14a. The FSM state transitions are controlled by the 

memory unit write/read select control signals (memwrite/memread ctrl) obtained from 

the decoder control unit. The write select FSM gives a 3-bit output and each RAM 

block uses one bit as an enable signal as, shown in Figure 5.2.15. 
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Figure 5.2.15: Memory unit block configuration 

5.2.4.2 Minimum path metric calculation (MINU) 

At the end of each trellis, the minimum path metric must be calculated to determine 

the starting point for the decoder trace-back along the trellis to select the path that 

most likely represents the correct output. The minimum path metric value is 
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calculated and the corresponding index (between 0 and 63) of that value is used to 

determine the starting state and the decision bit for that state. All the accumulated 

metrics for each of the 64 paths are compared to determine the one with the least 

numerical value. To reduce the time consumed by the minimum path metric 

calculation, the pipeline method involving both parallel and sequential instructions is 

employed as illustrated in Figure 5.2.16. This unit introduces a delay of 5 system 

clock cycles, which are required to complete the minimum path metric calculation. 
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Figure 5.2.16: Minimum path metric calculation block diagram 

 

5.2.4.3 Trace-back unit 

The TB unit is the decoder stage where the decoder output is generated using the 

decision bits saved in the RAM. These bits are accessed and used to infer the 

information sequence with the highest likelihood of having originated from the data 

source.  

 

As established earlier, the trellis butterflies help with trellis navigation and determining 

the most probable path followed with respect to a particular input stream. As such, 

the trellis butterflies in APPENDIX B: TRELLIS BUTTERFLIES, if read from right to 

left, with help from the decision bit information, can be used to determine the decoder 

output. Figure 5.2.8 shows the generic pattern followed by the LSB and MSB of 

states in relation to the butterfly source and destination states. Using this pattern, the 

trellis butterfly can be broken down to show only one destination state with its source 

states as shown in Figure 5.2.17. The forward directional butterfly shows that the 

MSB of the destination state is 0, given that the input was a 0, and 1, given that the 

input was a 1. It can also be seen that, if the destination state is reached from a state 

of which the LSB is 1, the decision bit is set to 1. The same logic applies if the 

destination state is reached from a state of which the LSB is 0; the decision bit is set 

to 0. As such, when the butterflies are read backwards, the preceding state can be 

deduced using the decision bit and the decoder output obtained from the state MSB.   
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Figure 5.2.17: Forward and backward trellis butterfly relationships 

 

The backward trellis butterfly relationships as shown in Figure 5.2.17 are used during 

this stage of the decoder to determine the trace-back path along the trellis.  

 

Figure 5.2.18 shows the configuration of the TB unit and the interconnectivity of the 

TB sub-blocks. The implemented decoder is completely synchronous, and all the sub-

blocks of the TB unit are controlled using the global clock in conjunction with a control 

signal.   
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Figure 5.2.18: Trace-back unit configuration block diagram 
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The trace-back algorithm can be described as follows: 

Step 1. At the beginning of the trace-back process (path end) select the index 

of the path with the minimum path metric as input index; otherwise, use the 

index as generated in the previous TB unit calculation (New Index). 

Step 2. Use the index from step 1 to select the decision bit corresponding to 

that index. 

Step 3. Remove the index MSB of the index from step 1; NB: this is the 

decoder output at that time instance. 

Step 4. To get the preceding node in the path, append the decision bit from 

step 2 to the stripped down index from step 3. The decision bit is added as the 

LSB forming the new index.  

Step 5. Go back to step 1 

To further illustrate the steps of the TB algorithm, if the path index in step 1 is 15 

(001111), then the decoder output in step 3 would be 0, and the stripped down index 

would be 01111. If the decision bit corresponding to the index is 0, the result from 

step 4 would be 011110. This state transition relationship can be confirmed using the 

trellis butterfly in Figure 5.2.8b; thus, verifying the accuracy of the TB algorithm. 

The trace-back unit moves through the trellis in reverse order; hence, the output is in 

reverse order, which means that the output has to be reordered before use. The 

process of reordering is omitted in the VHDL description of the decoder and 

implemented externally as part of the overall system test.  

To test the functionality of the output unit, the expected values are obtained from the 

spreadsheet model and compared to the results obtained from the VHDL simulation. 

The output of the ACSU is used as the input to this block during the testing phase.  

5.2.5 Truncation length 

As mentioned earlier in the document, the trace-back (TB)/truncation length has an 

effect on the overall decoder performance. It is, therefore, important to note the 

effects of changing the trace-back length on the overall decoder architecture. The TB 

length only has an effect on the RAM memory requirement and has no other effect on 

the rest of the decoder architecture. The TB length also affects the decoder timing 

requirements.  This effect is explained in the decoder analysis Section 5.3. The main 

reason the TB length affects the decoder performance is that a longer TB provides 
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more historical path metric data and, therefore, increases the accuracy of the 

likelihood estimations.     

 

5.3       Analysis 

The decoder analysis and testing involve 3 stages, which are responsible for  

• verifying the decoder’s ability to replicate a given input bit stream after it is 

subjected to convolutional encoding; 

• determining the error correction capability of the decoder; and  

• quantifying the coding gain estimations attainable using the implemented 

encoder/decoder pair. 

 

A test system as illustrated in Figure 5.3.1 is used to execute the required analysis. 

The diagram shows the subsystems required for each analysis stage, as well as the 

platform used to perform the operations. The testing algorithm involves VHDL and 

MATLAB simulations as labelled in Figure 5.3.1. 
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Figure 5.3.1: Decoder test and analysis system diagram 
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The first step in the analysis is to verify that the decoder can replicate the initial input 

sequence as can be seen in Figure 5.3.1. The MATLAB data generator creates a text 

file, which is used in the VHDL test bench. The error calculator stage 1 of the decoder 

test should yield a result of zero as there should be no errors during this testing 

phase.     

 

After successful verification of the decoder’s basic operation, the error correction 

capability is tested. Estimations of the achievable coding gain, as a result of the 

encoder and decoder pair, are obtained using the sequence labelled stage 3 in the 

test system diagram. The estimates are obtained by comparing the error values from 

the decoder error correction capability test and the error values from the un-coded 

information.   

5.3.1 Error correction 

Testing the error correction capability requires the introduction of errors, which 

typically occur during space communications. For the introduction of these errors, a 

MATLAB AWGN channel model is used. In order to mimic a ‘real-life’ communication 

channel, a MATLAB BPSK modem is also implemented in the test system. The 

communication scenario is simulated for an AWGN channel with an Eb/No ranging 

from -1 dB to 12 dB, and the error rates for the decoder observed.  

 

The truncation length/trace-back depth of the decoder affects the error correction 

capability of the Viterbi decoders as seen in Figure 3.4.5. The ideal trace-back depth 

for ideal error correction is infinity, which is not practically feasible as this would 

require infinite memory and introduce infinitely long latency (CCSDS, 2012). The 

encoder data stream is, therefore, broken up into reasonably sized blocks during the 

decoding process for practically achievable Viterbi decoding. The block size aka 

truncation length or trace-back depth is varied to determine the value to be used in 

this decoder.  

 

The results obtained are as illustrated in Figure 5.3.2, which shows the error 

correction performance of the decoder over 6 different truncation lengths (TB). 
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Figure 5.3.2: Decoder error rates for variable trace-back depths for constraint 
length K = 7 (TB = 3K, 4K, 5K, 6K, 7K and 10K) 

 

According to Viterbi decoding literature, the acceptable trace-back depth is usually 

approximately 5 times the constraint length (CCSDS, 2012). To allow clearer analysis 

of the error correction capability, each of the trace-back depth values is compared to 

the recommended truncation length of 35 and the results illustrated in Figure 5.3.3. 

 

Figure 5.3.2 and Figure 5.3.3 show that the decoder error correction capability is 

nearly identical using all the different TB values when Eb/No is less than 2dB. TB35, 

TB49, and TB70 are identified as having the best BER performance when the Eb/No 

value is 3 and are, therefore, selected to be used for further analysis. TB42 has a 

BER performance, which is extremely close to the recommended TB35 for all Eb/No 

values, and is not considered for further analysis. Figure 5.3.4 illustrates the BER 

performance of the selected TB values. The 3 selected TB values are applied in 

further decoder analyses described in the following sections to determine their 

respective costs of implementation in terms of coding gain, resource and power 

utilisation. 
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Figure 5.3.3: Error correction for TB21 to TB49 compared to recommended 
Trace-back TB35 

 

Figure 5.3.4: Error correction for Trace-back depth TB70, TB35 and TB49 
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5.3.2 Coding Gain 

The same input sequence from the data generator is passed through the AWGN 

model with identical properties to the one used in stage 2 of the test system to 

determine coding gain. The results obtained are as illustrated in Figure 5.3.5, which 

shows that implementation of coding on a channel with Eb/No values below 2dB 

increases the resultant occurrence of errors as opposed to reducing them. A coding 

gain of approximately 3dB is observed at a BER of 10-3. 

 

 

Figure 5.3.5: Un-coded BER performance versus Coded BER performance for 
TB35, TB49, and TB70 

 

5.3.3 Resource utilisation 

In this section, the decoder resource utilisation of the test devices is observed for the 

selected TB values. Table 5.3.1 shows a summary of the resource utilisation when 

implemented with the 3 selected TB values. It should be noted that the number of 

dual port RAM modules on the Igloo2 device, which was used for the encoder 

analysis, are insufficient for the decoder implementation with TB = 70. A larger device 

(M2GL025T) from the same family and with the same architecture and packaging 

specifications is, therefore, selected for TB70 decoder analysis from this point 

forward.  
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A change in TB value only has an effect on the decoder memory requirement; 

however, a miniscule difference in look-up table (LUT) utilisation is observed for TB35 

and TB49, which have an identical utilisation of registers as expected. The LUT 

utilisation difference might be attributed to a change in the constant stored in order to 

instruct the decoder of the truncation length to be used, but a more in-depth analysis 

is required. TB70, on the other hand, shows a difference in the number of LUT’s and 

registers used and this difference might also be attributed to the synthesiser inference 

of logic and optimisation methods employed. The noted differences may also be 

attributed to the logic used to interface the RAM and the rest of the decoder. 

 

The same design is implemented on all the devices; however, the number of registers 

and LUT’s used differ as a result of the different synthesisers used to infer the 

hardware from the VHDL description. This can be attributed to differences in the 

synthesiser synthesis parameters and optimisation methods. The difference in the 

number of LUT’s and registers for the same VHDL description on different devices 

can also be attributed to the differences in the configuration of the technology 

available on each device and how logic resources are grouped.   

 

The logic distribution analysis reveals that the maximum resources are used by 

combinatorial logic (look-up table) and that many registers are still available. 

Furthermore, less than 3% of the logic blocks are used for routing purposes. This 

means that, with careful floor planning and maybe some architectural modification, 

the implementation can fit in smaller circuits. The difference between the number of 

registers of the various architectures may be a result of different logic synthesisers 

and implementation usage of the register replication feature. Logic replication 

duplicates the same logic in order to improve the speed of the circuit.  

 

The memory utilisation difference for the various TB values is only substantial if the 

number of memory bits used in the utilised memory blocks is considered. The 

memory blocks used in each instance for the selected devices are not utilised to 

capacity, as the different TB values require memory bits given in Table 5.3.3. The 

results of the memory utilisation analysis given in Table 5.3.4, show that a small 

percentage of the bits available in the memory blocks are allocated to the decoder. 

Similar to the registers and LUT’s, the RAM implementation can be optimised to 

increase utilisation efficiency. 
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Table 5.3.1: Decoder resource utilisation 

Device Type TB35 TB49 TB70 Available 
Artix7 Registers (Flip Flops) 2812 2812 2,813 126,800 

LUT’s 5262 5,210 5,174 63,400 
Global 1 1 1 32 
I/O 6 6 6 285 
RAM blocks 3 3 3 135 

Cyclone V 

Registers (Flip Flops) 3661 3661 3655 37736 
Logic LUT’s 5569 5558 5563 18860 
Global 2 2 2 16 
I/O 6 6 6 128 
Memory blocks RAM 
(10k) 

6 6 6 176 

Igloo2 

 M2GL010T 
Registers (Flip Flops) 3252 3252 - 12084 
Logic LUT’s 6112 6113 - 12084 
Global 2 2 - 8 
I/O 6 6 - 231 
RAM blocks 12 12 - 22 
 M2GL025T 
Registers (Flip Flops) - - 3684 27696 
Logic LUT’s - - 6561 27696 
Global - - 2 16 
I/O - - 6 265 
RAM blocks - - 24 34 

 

Table 5.3.2: Flip-flop and LUT usage and distribution  

Device Type TB35 TB49 TB70 
Artix7 LUT’s 5,262 5,210 5,174 

Logic  5,126 5,125 5,130 
Route through 136 85 44 
Flip Flop LUT pairs 5,801 5,833 5,932 
Fully used 2,032 1,999 1,910 
With unused FF 3,230 3,211 3,264 
With unused LUT 539 623 758 

Cyclone V 

LUT’s 5569 5558 5563 
Logic 5454 5454 5458 
Route through 115 105 105 
Registers 3661 3661 3655 
Design 3536 3536 3536 
Routing 125 125 119 

Igloo2 

LUT’s 6112 6113 6561 
Fabric logic 5680 5681 5697 
RAM interface logic 432 432 864 
Flip Flops 3252 3252 3684 
Fabric logic 2820 2820 2820 
RAM interface logic 432 432 864 
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Table 5.3.3: Decoder RAM requirement 

 Required memory bits 
TB35 TB49 TB70 

Width 64 64 64 
Length 35 49 70 
Memory bits 6720 9408 13440 

 

Table 5.3.4: Utilisation of allocated RAM blocks 

 Used Device memory 
Artix7 Cyclone V Igloo2  

xxxx025T 
Igloo2  

xxxx025T 
Block Size (kb) 36 10 1 1 
# of blocks 3 6 12 22 
Total # of bits 110592 61440 13824 25344 
 % of memory bits utilised by decoder 
TB35 6.08 10.94 48.61 - 
TB49 8.51 15.31 68.06 - 
TB70 12.15 21.88 - 53.03 

 

 

5.3.4 Timing analysis 

The critical path of the decoder is the path with the longest delay from net to net 

between registers with the same clock input. The logic along this slowest path 

determines the system clock frequency of the decoder. The maximum frequency of 

operation of the decoder is determined for the different trace-back depth values and 

the results are as shown in Table 5.3.5 for the selected TB values and test devices. 

The frequency values displayed below are obtained when the design timing constraint 

is set to 50MHz. By default, the Quartus II time quest analyser uses multiple process 

operating condition models for timing analyses and provides the results of each 

analysis. These models give the best and worst case maximum frequencies where 

the best (fastest) case is obtained using a model for the highest mobility silicon at 00C 

for the device speed grade. The worst case is obtained using the model for the lowest 

silicon mobility at 850C (Altera Corporation, 2010). The timing analysis tools used for 

the Artix7 and the Igloo2 devices consider the change in the process operating 

conditions and give the obtained worst case maximum frequencies (Microsemi 

Corporation, 2011; Xilinx, Inc, 2012).  
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Table 5.3.5: Maximum decoder system frequencies (in MHz) 

TB Cyclone V Artix7 Igloo2 
Best Case Worst Case   

35 267.24 123.76 123.198 117.233 
49 267.95 120.29 126.550 113.934 
70 256.61 119.49 113.186 117.800 

 
Although the Viterbi decoding algorithm is continuous, its practical implementation is 

not. The decoder accepts its input sequence divided into blocks of a specified length. 

The truncation length determines the throughput of the decoder and ultimately the 

suitable data rate of the system connected to the decoder. The length of the blocks, 

therefore, determines the delay between the first decoder input and first usable 

decoder output. The data rate of the system responsible for feeding data into the 

decoder is determined by the delay introduced during the calculation of the minimum 

path metric for trace-back calculations at the end of every input block. 

 

It takes 6 clock cycles for a decoder input, which is made up of 2 bits, to be 

processed through all the decoder sub-blocks and providing the decision bit 

information for the TB unit. The first valid decoder output is available after the 

decoder has decision bits for an input block of length TB, as described in the decoder 

algorithm. In order to start obtaining the decoder outputs, the TB unit requires the 

computation of a minimum path metric using a pipeline method that requires 5 clock 

cycles. The latency/lag 𝑇! of the decoder can, therefore, be calculated as 

 

𝑇! = 6TB + 5   𝑇!"# 

 
5.3.1 

𝑛 − 𝑘 + 1 

where 𝑇!"# is the decoder system clock period.  The results of the calculation for the 3 

selected TB values are given in Table 5.3.6. The table also shows the minimum 

latency in nanoseconds obtained using the deduced decoder maximum frequency. 

The worst case maximum frequency is used for the Cyclone V minimum latency 

calculation. 

 

Table 5.3.6: Decoding latency in clock cycles and minimum latency for obtained 
maximum frequencies 

 TB35 TB49 TB70 
Latency (clock cycles) 215 299 425 
 Minimum latency (ns) 
Artix7 1745.16 2362.7 3754.88 
Cyclone V 1737.2 2485.66 3556.78 
Igloo2 1833.95 2624.33 3607.81 
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5.3.5 Power analysis 

Based on the gate count of the placed design, the gate level power analysis gives an 

indication of the amount of the power required for the design. The best way to obtain 

an accurate power analysis is to use the switching activity from gate level simulation 

results, which are difficult to obtain for large designs (Flynn, 2004). In such cases, the 

vectorless estimation technique is applied for power analysis. The power analysis 

tools use statistical methods to determine the most probable activity for the nets in 

the design (Microsemi Corporation, 2014). The analysis process is iterative and stops 

when all the signals have some form of activity; thus, making the result the worst 

case power consumption.    

 

As discussed earlier, the total power consumed by a device for a particular design is 

the sum of the dynamic and static power. The dynamic power refers to the power 

consumed as a result of the circuit activity, while the static power is attributed to the 

leakage power consumed when the device is idle. The static power can be used to 

determine the minimum power required by the selected device. The combination of 

the static and dynamic power gives the possible maximum power required when the 

design is at maximum activity (Xilinx, Inc, 2013).  

 

Figure 5.3.6 through Figure 5.3.8 illustrate the variation of the total power usage for 

the three FPGA devices as a function of system frequency. These figures are labelled 

as displaying total thermal power, because the total power dissipated within the 

device is also referred to as thermal power. This total thermal power is generally 

made up of static power, dynamic power and I/O power (Intel Corporation, 2015).  

 

Vectorless estimation is used for the Igloo2 power analysis, whereas Value Change 

Dump (VCD) and Switching Activity Interchange Format (SAIF) files are created from 

the post-PAR simulation for the other Cyclone V and Artix7 devices, respectively. The 

Igloo2 device used the least amount of power for the same design with a larger 

percentage of the total power attributed to dynamic power. This might be attributed to 

the difference of technologies. First, the Igloo2 is specifically designed for low power 

applications. Second, the Cyclone and Artix families use static RAM to store their 

configurations, whereas the Igloo2 family uses flash memory that does not consume 

any power at all to retain its values.  
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Figure 5.3.6: Artix7 total thermal power consumption 

 

 
Figure 5.3.7: Cyclone V total thermal power consumption 
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Figure 5.3.8: Igloo2 total thermal power consumption 

 
The dynamic power is the cause of the linear increase observed in the figures above, 

since the static power and I/O power components are not affected by changes in 

operating frequency. To determine the effects of the TB variation on the power 

consumption, Figure 5.3.9 through Figure 5.3.11 illustrate the variation of dynamic 

power consumption with frequency for the 3 test FPGA devices.  

 

Figure 5.3.9: Artix7 dynamic power consumption 
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Figure 5.3.10: Cyclone V dynamic power consumption 

 

Figure 5.3.11: Igloo2 dynamic power consumption 

 

The variations in dynamic power are minimal over the TB variation for all the 3 

devices. In the Artix7 device, however, TB70 exhibits a visibly higher power 

requirement over TB35 and TB49. The decoder suitable for this device would be one 

with either a truncation length of 35 or 49. For the other 2 devices, the selection of 

decoder parameters would rely on the decoding lag introduced by the TB values. A 

reasonably fast and low-cost implementation for each device would be a decoder with 

a truncation length of 35 with a system frequency of ~60 MHz. This decoder would 

incur a decoding lag of approximately 3583.3 ns.    



76 
 

 

5.4       Conclusion 

The decoder architecture and VHDL code have been successfully developed for 

implementation on an FPGA device. The selection of the decoder parameters can be 

conducted using the results obtained from the decoder simulations given in this 

chapter. The variation of decoder truncation length has minimal effect on the resource 

requirement of the decoder. This is due to the methods employed during the decoder 

design phase. Future improvements can, therefore, be made to make the decoder 

more compact and device-specific. Possible future considerations are given in the 

following chapter.       
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CHAPTER SIX 
CONCLUSION & RECOMMENDATIONS 

 
 
An operational channel convolutional coding algorithm and its corresponding decoder, which 

are described in the CCSDS recommended TM synchronisation and channel coding 

standard, are successfully developed for implementation on an FPGA. The encoder and 

decoder algorithms are designed for implementation on three test FPGA devices from 

different popular vendors to determine the cost of implementation on devices that have a 

high likelihood of being found in nano-satellite communication systems. This reduces the 

cost of implementation by eliminating the need for additional hardware in the existing 

communication systems. 

 

Concluding remarks are made in reference to the research questions posed in this work. 

 

In response to the research sub-question “Are there CCSDS channel coding techniques 

defined for implementation on nano-satellites?”, it is evident from Chapter 3 that the CCSDS 

has no specific encoding/decoding algorithm explicitly recommended for nano-satellites. The 

implemented convolutional code is, therefore, selected as a result of the performance and 

trade-off analysis outlined.  

 

To answer the subsequent sub-question “How is FEC coding evaluated and how does that 

affect the criteria used to select one for implementation in a satellite communication 

system?”, the basic CCSDS recommended FEC codes (LDPC, Reed-Solomon, Turbo and 

Convolutional) are compared in terms of coding gain, code rate and BER performance, as 

well as implementation complexity. With reference to Figure 3.3.1 and Figure 3.3.2, LDPC 

and Turbo codes exhibit superior performance.  However, their implementation has a high 

cost in terms of complexity, as well as large computation and memory requirements. These 

are undesirable for the implementation on nano-satellites where resources are limited.  The 

less complex convolutional and Reed-Solomon codes are, thus, more suitable for nano-

satellite implementations.  

 

Convolutional codes are selected for implementation as a result of a trade involving error 

correction strengths, decoder complexity, and the learning curve involved in grasping the 

encoder and decoder implementation concepts. Convolutional codes, furthermore, 

outperform RS codes by achieving an approximate coding gain of 5dB for BPSK modulation 

at a BER of 10-6, compared to the 4dB observed for Reed-Solomon codes.  Convolutional 

coding provides satisfactory coding gain, while requiring reasonable resources in terms of 

implementation complexity, power and spectrum, as seen from Table 3.3.1 and Figure 3.3.2. 
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The selected convolutional code exhibits an acceptable Eb/No with minimal bandwidth 

expansion, which is desirable for bandwidth and power constrained nano-satellites 

implementations. 

 

To respond to the other research sub-question “What resources are required for FEC 

implementation and how can their use be optimised or minimised?”, the implementation of 

FEC coding in a communication system requires the availability of sufficient memory, power 

and physical space. As mentioned in the objectives, the algorithm is to be implemented on 

an adaptable and reliable platform that takes into account the nano-satellite constraints; 

therefore, an FPGA is selected as the implementation platform. FPGA’s are also reasonably 

sized and used in numerous modern nano-satellite communication systems, making them a 

suitable platform for implementing the FEC algorithm on existing communication systems. 

They also have large memory capacity, which makes them suitable for FEC decoding 

algorithms that require a significant amount of memory.  Low power test FPGA’s have been 

selected for the encoder/decoder implementation, which makes them suitable for nano-

satellite implementations.  

 

To answer the sub-question “What is the trade-off between performance and resource 

utilisation appropriate for a nano-satellite?”, one of the main aims of this research has been 

to establish the cost of implementing error correction codes on-board a satellite 

communication system. Convolutional encoding adds maximum power consumption of less 

than ~9mW to an existing communication system due to encoding activity, as has been 

shown in Figure 4.3.3. From Table 4.3.2, it is evident that the encoder occupies a negligible 

area on the FPGA device, occupying a maximum of ~0.099% of the device LUT’s and 

~0.12% of the device registers on the smallest igloo test FPGA. The cost of implementing the 

encoder is, therefore, reasonably low and makes it feasible for nano-satellite 

implementations.  

 

On the other hand, the decoder requires a significant percentage of the FPGA resources as 

can be deduced from Table 5.3.1. For instance, implementing the decoder with a truncation 

length of 49 on the Igloo2 device requires ~51% of the device LUT’s and ~26.9% of the 

device registers. The decoder also adds power consumption of up to ~50mW due to decoder 

activity when the decoder is operating at 100 MHz as deduced from the illustrations in 

Section 5.3.5.  The cost of implementing the decoder is, therefore, significantly higher than 

that of the encoder.  However, the selection of the decoder parameters with a feasible cost in 

relation to the available communication system can be conducted using the results presented 

in Section 5.3. With the availability of the decoder parameters, the communication system 
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designer has the ability to add it to their design and evaluate the resources available for the 

whole system. 

  

The results of the decoder analysis in Figure 5.3.5 confirm the notion that at some SNR or 

Eb/No values, adding error correction to the communication system results in the increase of 

BER as opposed to the desired reduction. According to literature, hard decision convolutional 

codes introduce a coding gain of approximately 3dB, which is also confirmed by the 

performance evaluation of the implemented decoder in Figure 5.3.5. This fulfils the objective 

pertaining to the improvement of communication system reliability and data transmission 

rates.   

 

In a nutshell, this research successfully answers the primary research question “How can a 

reliable and well-performing CCSDS compliant forward error correction encoder and decoder 

be selected and implemented on a nano-satellite?”  The main project objective “to implement 

a forward error correction (FEC) algorithm, which conforms to existing standards on an 

adaptable and reliable platform” has also been successfully realised. 

 

As a recommendation, soft decision decoding is more accurate and, therefore, introduces a 

greater coding gain than the implemented hard decision decoding.  Further studies and 

investigations can be made into evaluating the cost of implementing a soft decision decoder 

on the same FPGA devices. The translation, mapping and routing of the design onto the 

FPGA devices can be optimised, resulting in a reduction in power and area usage. 

Optimisation methods can, therefore, be investigated and implemented to improve the 

decoder performance and reduce its cost of implementation. The implemented encoder and 

decoder have been designed such that they are portable across FPGA platforms; defining the 

hardware using device specific descriptions would also improve the resource utilisation 

efficiency.       

 

The power consumption results given in this document have been obtained using simulations 

involving I/O signal activity and numerous statistical assumptions. As a further 

recommendation, determining the actual device performance requires the acquisition of the 

physical hardware and measuring the power consumption to improve the accuracy of the 

implementation cost data.  
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APPENDIX A: CUBESAT LAUNCH STATISTICS  
 

 
Figure A 1: Number of CubeSats launched versus the total number of satellites 

launched between 2000 and 2014  

Adapted from (Swartwout, n.d.) and (Lafleur, 2004) 

 
 

 
Figure A 2: CubeSats launched between 2000 and 2015  

Adapted from (Swartwout, n.d.) 
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Figure A 3: Number of CubeSats launched between 2000 and 2015 indicating 

the developing entities  

Adapted from (Swartwout, n.d.) 

 
 

 
Figure A 4: Indication of entity involvement in CubeSat development using 

CubeSats launched between 2000 and 2015 

Adapted from (Swartwout, n.d.) 
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Figure A 5: Satellites launched by university/amateur organisations between 

1961 and 2014  

Adapted from (Lafleur, 2004). 
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APPENDIX B: TRELLIS BUTTERFLIES 
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APPENDIX C: ADD COMPARE SELECT (ACS) MODULE INTERCONNECTION 
 

 


