

CHANNEL CODING ON A NANO-SATELLITE PLATFORM

by

ANGELA – TAFADZWA SHUMBA

Thesis submitted in partial fulfilment of the requirements for the degree

Master of Engineering: Electrical Engineering

in the Faculty of Engineering

at the Cape Peninsula University of Technology

Supervisor: Dr Y. Blanchard
Co-supervisor: Prof. R. van Zyl

Bellville
November 2017

CPUT copyright information
The dissertation/thesis may not be published either in part (in scholarly, scientific or technical
journals), or as a whole (as a monograph), unless permission has been obtained from the
University

i

DECLARATION

I, Angela – Tafadzwa Shumba, declare that the contents of this dissertation/thesis represent
my own unaided work and that the dissertation/thesis has not previously been submitted for
academic examination towards any qualification. Furthermore, it represents my own opinions
and not necessarily those of the Cape Peninsula University of Technology.

Signed Date

ii

ABSTRACT

The concept of forward error correction (FEC) coding introduced the capability of achieving

near Shannon limit digital transmission with bit error rates (BER) approaching 10-9 for signal

to noise power (Eb/No) values as low as 0.7. This brought about the ability to transmit large

amounts of data at fast rates on bad/noisy communication channels. In nano-satellites,

however, the constraints on power that limit the energy that can be allocated for data

transmission result in significantly reduced communication system performance. One of the

effects of these constraints is the limitation on the type of channel coding technique that can

be implemented in these communication systems. Another limiting factor on nano-satellite

communication systems is the limited space available due to the compact nature of these

satellites, where numerous complex systems are tightly packed into a space as small as

10x10x10cm. With the miniaturisation of Integrated-Circuit (IC) technology and the

affordability of Field-Programmable-Gate-Arrays (FPGAs) with reduced power consumption,

complex circuits can now be implemented within small form factors and at low cost. This

thesis describes the design, implementation and cost evaluation of a ½-rate convolutional

encoder and the corresponding Viterbi decoder on an FPGA for nano-satellites applications.

The code for the FPGA implementation is described in VHDL and implemented on devices

from the Artix7 (Xilinx), Cyclone V (Intel-fpga), and Igloo2 (Microsemi) families. The

implemented channel code has a coding gain of ~3dB at a BER of 10-3. It can be noted that

the implementation of the encoder is quite straightforward and that the main challenge is in

the implementation of the decoder.

iii

ACKNOWLEDGEMENTS

I wish to thank:

§ God for being my rock and anchor always
§ Prof Yves Blanchard for the patience, support, and guidance
§ Prof Robert Van Zyl for the funding and support during the course of this research
§ My family for their unwavering support and love
§ F’SATI colleagues for providing assistance every time I needed it especially Dr. Ifriky

Tadadjeu Sokeng
§ The CPUT faculty of engineering for the 2015 academic year funding

The financial assistance of the National Research Foundation towards this research is
acknowledged. Opinions expressed in this thesis and the conclusions arrived at, are those of
the author, and are not necessarily to be attributed to the National Research Foundation.

iv

GLOSSARY

Terms/Acronyms/Abbreviations Definition/Explanation

ACS Add compare Select

AIS Automatic Identification System

APP A posteriori Probability

AR4JA Accumulate, Repeat-by-4, and Jagged Accumulate

AWGN Additive white Gaussian Noise

BCJR An algorithm which provides posteriori probability

estimates for each bit in a codeword based on a

received signal according to the constraints imposed by

the code structure named after its inventors, Bahl,

Cocke, Jelinek & Raviv.

BER Bit Error Rate

Block Encoding A one-to-one transformation of sequences of length k of

elements of a source alphabet to sequences of length n

of elements of a code alphabet with n>k.

BMU Branch metric

BPSK Binary Phase Shift Keying

CCSDS Consultative Committee for Space Data Systems

Channel The medium used to transmit signals between the

transmitter and the receiver.

Circulant A square matrix where each row is a one element cyclic

shift to the right of the preceding row.

Code rate The average ratio of the number of binary digits at the

input of an encoder to the number binary digits at its

output.

Codeblock A sequence of n symbols obtained as a result of block

encoding. This is the result of encoding a sequence of k

information symbols.

Coding gain The difference between the SNR of an uncoded system

and a coded system required to reach the same BER

level when error correction is implemented.

Concatenation The use of two or more encoders to process data

sequentially with the output of one encoder used as the

input of the next.

Constraint length A term used in convolutional coding referring to the

v

number of consecutive input bits needed to determine

the value of the output symbols at a particular time.

COTS Commercial off the shelf

CPUT Cape Peninsula University of Technology

CubeSat A 10cm cube satellite with a mass of up to 1.33kg

Decoding lag/latency The time it takes the decoder to give a valid output after

receiving its first input

Dynamic power In FPGA design power analysis the dynamic power is

the fluctuating power as a design is run. It represents the

amount of power generated by the switching user logic

and routing.

Eb/No A communication measure of efficiency defined as the

ratio of received energy per bit to noise required to

achieve a specified bit error rate, also known as the

signal to noise ratio per bit (SNR)

F’SATI French – South Africa Institute of Technology

FEC Forward error correction

FER Frame Error Rate

FPGA Field programmable gate array

Interleaving The process of arranging sequential data in a non-

contiguous manner to make it more resilient to burst

errors.

JPL Jet Propulsion Lab

LDPC Low-Density Parity Check

MDA Maritime Domain Awareness

Nano-satellite A satellite with a mass between 1 and 10kg

NASA National Aeronautics and Space Administration

Octet A binary word consisting of eight contiguous bits.

Packet A unit of data used to transmit information in a

communication network.

PAR Place and route

Payload application information Information obtained from a satellite payload

PE Error Probability

Protocol A set of procedures and their enabling format

conventions that define the orderly exchange of

information between entities.

QPSK Quadrature Phase Shift Keying

vi

Quasi – cyclic A type of cyclic codes where a cyclic shift of a codeword

by 1 position results in another codeword.

Quiescent power In FPGA design power analysis, the quiescent power is

the power drawn by the device upon powering up and

there is no activity in the loaded circuit.

RAM Random Access Memory

Satellite pass The amount of time in which the satellite is in view of the

receiving station and communication is possible.

Shannon Limit The theoretical maximum rate at which data can be

transferred through a channel of a particular bandwidth

and noise characteristics without error. Also known as

channel capacity.

Space Link The communication link between the satellite and the

ground station or between two satellites in space.

Subsystem In this document refers to the major self-contained

systems within a satellite such as the Communication,

Power, On-Board Computer (OBC), Thermal,

Propulsion, Attitude Determination and Control (ADCS),

and Structure subsystems

TB Trace-back referring to the Viterbi decoder truncation

length

Telemetry system The end-to-end system of layered data handling

services which exist to enable a spacecraft to send

measurement information, in an error-controlled

environment, to receiving elements (application

processes) in space or on Earth

Transfer Frame A data unit that has been encoded for transmission. It

contains all the information (synchronisation, header,

channel frame counts, end of frame, data field) required

for the receiver to receive and decode it.

Trellis The state diagram of a convolutional code structure

User A human or machine-intelligent process which directs

and analyses the progress of a space mission.

VHDL VHSIC Hardware Description Language

VLSI Very Large Scale Integration

vii

TABLE OF CONTENTS

DECLARATION I	
ABSTRACT II	
ACKNOWLEDGEMENTS III	
GLOSSARY IV	

LIST OF FIGURES IX	

LIST OF TABLES XI	
CHAPTER ONE: INTRODUCTION 1	
1.1	 Background 1	

1.1.1	 CubeSat Programme at CPUT 1	
1.1.2	 Rationale 2	

1.2	 Problem 3	
1.3	 Objectives 3	
1.4	 Research Questions 4	
1.5	 Assumptions & Delineation 4	
1.6	 Document structure 5	

CHAPTER TWO: BACKGROUND 6	
2.1	 Introduction 6	
2.2	 Digital Communication 6	

2.2.1	 Performance metrics 7	
2.2.2	 Effects of noise on system performance 8	
2.2.3	 Information theory 9	
2.2.4	 Forward error correction 10	

2.3	 CubeSats 11	
2.4	 Conclusion 12	

CHAPTER THREE: CHANNEL CODES 13	
3.1	 Introduction 13	
3.2	 Code Evaluation 13	

3.2.1	 Convolutional codes 14	
3.2.2	 Reed-Solomon (RS) codes 15	
3.2.3	 Turbo codes 17	
3.2.4	 LDPC Codes 19	

3.3	 Code Selection 21	
3.3.1	 BER performance 21	
3.3.2	 Signal power vs. spectral density 22	
3.3.3	 Summary 24	

3.4	 Convolutional Coding 24	
3.4.1	 Encoding 24	
3.4.2	 Decoding 26	

viii

CHAPTER FOUR: CONVOLUTIONAL ENCODER 29	
4.1	 Introduction 29	
4.2	 VHDL Design 29	
4.3	 Analysis 32	

4.3.1	 Device resource usage 34	
4.3.2	 Timing analysis 34	
4.3.3	 Power analysis 35	

4.4	 Conclusion 37	

CHAPTER FIVE: VITERBI DECODER 39	
5.1	 Introduction 39	

5.1.1	 Decoder outline 39	
5.1.2	 Algorithm 47	

5.2	 Decoder Design 47	
5.2.1	 Control unit 49	
5.2.2	 Branch metric unit (BMU) 50	
5.2.3	 Add compare select unit (ACSU) 52	
5.2.4	 Decoder output selection unit 57	
5.2.5	 Truncation length 62	

5.3	 Analysis 63	
5.3.1	 Error correction 64	
5.3.2	 Coding Gain 67	
5.3.3	 Resource utilisation 67	
5.3.4	 Timing analysis 70	
5.3.5	 Power analysis 72	

5.4	 Conclusion 76	

CHAPTER SIX: CONCLUSION & RECOMMENDATIONS 77	
REFERENCES 80	
APPENDICES 85	

APPENDIX A: CUBESAT LAUNCH STATISTICS 86	
APPENDIX B: TRELLIS BUTTERFLIES 89	
APPENDIX C: ADD COMPARE SELECT (ACS) MODULE INTERCONNECTION 91	

ix

LIST OF FIGURES

Figure 1.1.1: F’SATI CPUT CubeSat TshepisoSat 2	
Figure 1.1.2: TshepisoSat internal layout 3	
Figure 2.2.1: Digital communication system block 6	
Figure 2.2.2: Typical plot of Eb/N0 vs PE 8	
Figure 2.2.3: (a) Loss in Eb/N0 vs (b) irreducible PB caused by distortion 9	
Figure 3.2.1: MATLAB BERtool Convolutional code VS Un-coded QPSK BER

performance 15	
Figure 3.2.2: MATLAB BERtool performance for RS (255,239) and RS (255,223) vs un-

coded QPSK 16	
Figure 3.2.3: Turbo code BER performance, Block Size 1784 Bits, Measured from JPL

DSN Turbo Decoder, 10 iterations 18	
Figure 3.2.4: BER (solid) and FER (dashed) for Nine AR4JA Codes and C2, with Code

Rates 1/2 (Red), 2/3 (Green), 4/5 (Blue), and 7/8 (Black); and Block
Lengths k=16384, 4096, 1024 (Left to Right in Each Group), and 7156
(Code C2) 20	

Figure 3.3.1: Performance comparison of ½ rate Convolutional, Reed-Solomon, Turbo
and LDPC codes in relation to un-coded and capacity transmission 22	

Figure 3.3.2: Power and spectral efficiency trade-off 23	
Figure 3.4.1: Recommended (7, ½) convolutional encoder block representation 25	
Figure 3.4.2: Simple (3, ½) Convolutional encoder block representation 26	
Figure 3.4.3: Convolutional code trellis diagram for ½ rate code with a constraint length

of 3 26	
Figure 3.4.4: Convolutional coding error performance 27	
Figure 3.4.5: Truncation length (D) versus BER 28	
Figure 4.1.1: CCSDS recommended (7, 1/2) convolutional encoder 29	
Figure 4.2.1: VHDL design procedure 30	
Figure 4.2.2: Encoder implementation block diagram 30	
Figure 4.2.3: Encoder timing diagram 31	
Figure 4.3.1: Encoder behavioural correctness verification 32	
Figure 4.3.2: Encoder Design verification procedure 33	
Figure 4.3.3: Encoder Dynamic Power requirement for system frequencies between 25

and 300MHz 37	
Figure 4.3.4: Static power versus junction temperature 37	
Figure 5.1.1: Trellis diagram for encoder with K = 3 and rate = ½ 40	
Figure 5.1.2: Example branch metrics for branch-word 00 41	
Figure 5.1.3: General ½ rate trellis butterfly 42	
Figure 5.1.4: K = 3, R = ½ trellis butterflies 42	
Figure 5.1.5: Viterbi decoder decoding the valid codeword 11 10 00 10 11 producing

the transmitted message 10100 45	
Figure 5.1.6: Viterbi decoder decoding the invalid codeword 01 10 11 10 11 46	
Figure 5.2.1: Viterbi decoder general block diagram 47	
Figure 5.2.2: Major decoder blocks with additional synchronisation blocks 48	
Figure 5.2.3: Interaction of decoder blocks with control unit included 48	
Figure 5.2.4: Control unit signal synchronization when tbdepth = 3 50	
Figure 5.2.5: Branch metric unit 51	
Figure 5.2.6: BMU hard decision calculations 51	
Figure 5.2.7: BMU test results 52	
Figure 5.2.8: Trellis diagram for generating decision bits a) trellis butterfly for updating

state 0 and 1, b) trellis butterfly for updating state 15 and 47, c) generic
trellis butterfly diagram for all states showing the LSB and MSB pattern
for source and destination states 53	

Figure 5.2.9: Individual ACS Unit structure 54	
Figure 5.2.10: ACS unit arithmetic and logic operations 55	
Figure 5.2.11: ACSU and MUX interaction 56	

x

Figure 5.2.12: MUX unit path metric selection functional block diagram 57	
Figure 5.2.13: Decoder output unit 58	
Figure 5.2.14: RAM selection FSM state diagrams a) Write RAM select b) Read RAM

select 59	
Figure 5.2.15: Memory unit block configuration 59	
Figure 5.2.16: Minimum path metric calculation block diagram 60	
Figure 5.2.17: Forward and backward trellis butterfly relationships 61	
Figure 5.2.18: Trace-back unit configuration block diagram 61	
Figure 5.3.1: Decoder test and analysis system 63	
Figure 5.3.2: Decoder error rates for variable trace-back depths for constraint length K

= 7 (TB = 3K, 4K, 5K, 6K, 7K and 10K) 65	
Figure 5.3.3: Error correction for TB21 to TB49 compared to recommended Trace-back

TB35 66	
Figure 5.3.4: Error correction for Trace-back depth TB70, TB35 and TB49 66	
Figure 5.3.5: Un-coded BER performance versus Coded BER performance for TB35,

TB49, and TB70 67	
Figure 5.3.6: Artix7 total thermal power consumption 73	
Figure 5.3.7: Cyclone V total thermal power consumption 73	
Figure 5.3.8: Igloo2 total thermal power consumption 74	
Figure 5.3.9: Artix7 dynamic power consumption 74	
Figure 5.3.10: Cyclone V dynamic power 75	
Figure 5.3.11: Igloo2 dynamic power consumption 75	

Figure A 1: Number of CubeSats launched versus the total number of satellites

launched between 2000 and 2014 86	
Figure A 2: CubeSats launched between 2000 and 2015 86	
Figure A 3: Number of CubeSats launched between 2000 and 2015 indicating the

developing entities 87	
Figure A 4: Indication of entity involvement in CubeSat development using CubeSats

launched between 2000 and 2015 87	
Figure A 5: Satellites launched by university/amateur organisations between 1961 and

2014 88	

xi

LIST OF TABLES

Table 2.3.1: Satellite Classification 11	
Table 3.2.1: 10 iteration, Turbo decoder BER performance approximation results table

for various block lengths, compiled from (CCSDS, 2012) 19	
Table 3.2.2: Recommended AR4JA LDPC code specifications 20	
Table 3.3.1: Eb/No requirements for 10-6 BER 21	
Table 4.2.1: Encoder implementation blocks/components explained 31	
Table 4.2.2: Encoder signals truth table 32	
Table 4.3.1: Test FPGA devices 33	
Table 4.3.2: Encoder device resource usage 34	
Table 4.3.3: Encoder maximum system clock frequencies 35	
Table 5.1.1: Branch metric reference table 40	
Table 5.2.1: Viterbi decoder block description breakdown 49	
Table 5.2.2: Decoder control signals 50	
Table 5.2.3: Hard decision BMU expected outputs 51	
Table 5.3.1: Decoder resource utilisation 69	
Table 5.3.2: Flip-flop and LUT usage and distribution 69	
Table 5.3.3: Decoder RAM requirement 70	
Table 5.3.4: Utilisation of allocated RAM blocks 70	
Table 5.3.5: Maximum decoder system frequencies in (MHz) 71	
Table 5.3.6: Decoding latency in clock cycles and minimum latency for obtained

maximum frequencies 71	

1

CHAPTER ONE
INTRODUCTION

1.1 Background

Satellite technology has been vastly used for a number of applications, such as Earth

observation, remote sensing, communication and technology demonstration, among

others. However, the development and launch are costly and, therefore, a limited

number of nations and entities had the ability to get involved in the space race since

its conception in 1957 (Mitra, 2005).

In 1999, the CubeSat standard was developed by Prof. Jordi Puig-Suari at California

Polytechnic State University and Prof. Bob Twiggs at Stanford University. This

innovation revolutionised the demographic of entities involved in space technology

development. The CubeSat standard introduced a satellite development method that

significantly reduced mission cost and development time, allowing for the increased

space access using small satellites as shown in APPENDIX A: CUBESAT LAUNCH

STATISTICS (Cillibot et al., 2005), (Woellert et al., 2011).

1.1.1 CubeSat Programme at CPUT

Owing to the development of the CubeSat standard, the Cape Peninsula University of

Technology (CPUT) started a satellite systems engineering postgraduate programme.

The aim of this programme is human capital development in South Africa in the field

of satellite technology. The postgraduate programme is offered by the French-South

African Institute of Technology (F’SATI) hosted by CPUT. Out of this programme, a

group of postgraduate students and staff developed ZACube-1, a 1U CubeSat

dubbed TshepisoSat (Figure 1.1.1), which was launched on November 21, 2013

(CPUT: F'SATI, n.d.). As a result of the success of TshepisoSat, which is still

operational to date, the second CubeSat in the ZACube-i series, ZACube-2, is under

development. The proposed mission for this 3U CubeSat is focused on Maritime

Domain Awareness (MDA), which will involve the tracking of ships using the

Automatic Identification System (AIS) protocol. Due to the technology demonstration

heritage of CubeSats, ZACube-2 will also include imagers to demonstrate fire

tracking using CubeSats (de Villiers & van Zyl, 2015).

2

Figure 1.1.1: F’SATI CPUT CubeSat, TshepisoSat

Adapted from (Van Zyl et al., 2013)

1.1.2 Rationale

A nano-satellite, such as TshepisoSat, is made up of compactly stacked

interconnected subsystems responsible for the various operations of the satellite as

illustrated in Figure 1.1.2. Achieving satisfactory efficiency in any one of the

subsystems would improve the efficiency of the entire satellite system (Wertz &

Larson, 1999). Each of these subsystems is made up of numerous components

interacting to achieve the desired functionality. As such, improving and reducing the

resource requirements and consumption of the communication system adds value to

the improvement of the entire satellite.

Improving the performance of a digital communication system and increasing the

reliability of communication are possible at a cost, which is considered when selecting

the method used to improve the system. An increase in the signal-to-noise ratio

(SNR) indicates an improvement in the performance of a communication system. The

SNR can be improved by increasing the transmission power or the antenna gain

(Sklar & Harris, 2004). However, given the general low-budget nature of nano-

satellites, the cost of increasing these parameters is very high and, therefore, this

approach is generally not cost effective. The physical constraints (size) of nano-

satellites also make the increase of transmit power or antenna gain unfavourable (de

Milliano & Verhoeven, 2010). The use of forward error correction to improve the

reliability of a communication system is, therefore, less costly than these techniques.

Introducing channel coding in a communication system introduces the possibility of

approaching the maximum transmission rate theoretically possible (Sklar & Harris,

2004).

3

Figure 1.1.2: TshepisoSat internal layout

Adapted from (Kramer, n.d.)

1.2 Problem

Implementing nano-satellites for missions that involve the handling and transfer of

large data volumes, such as the proposed ZACube-2 AIS, requires fast and reliable

communication systems. In general, lower data rates result in more reliable

communication than faster data rates; however, the short overpass times of satellites

in low Earth orbit limit the amount of information that can be transmitted or received

during a single pass. As a result, an increase in transmission rates is required in order

to keep up with the need for high volume applications. On the other hand, most nano-

satellite communications systems operate at relatively low data rates as a result of

the size and power limitations. For this reason, high data volume applications require

up- or downloading of the data over multiple passes. High bit rate communications

systems on-board nano-satellites that reliably interpret the received data would

increase the amount of information exchanged within one satellite pass.

1.3 Objectives

The main objective of this project is to implement a forward error correction (FEC)

algorithm, which conforms to existing standards on an adaptable and reliable

platform. This algorithm should also be capable of operating using the limited

resources available on a nano-satellite. This means that the cost of the coding gain

4

achieved from the error correction should be acceptable considering available

resources.

The objectives can be categorised as follows:

• implement a forward error correction encoding and decoding algorithm to

improve reliability and transmission rates of payload application information;

• implement an error correction coding scheme that conforms to the

international (CCSDS) standards; and

• implement an error correction technique that can be integrated with the nano-

satellite communication protocol in its scarce resource environment.

1.4 Research Questions

The primary question to be addressed by this research is:

• How can a reliable and well-performing CCSDS1 compliant forward error

correction encoder and decoder be selected and implemented on a nano-

satellite?

There are also a number of sub-questions that are answered in order to address the

primary question:

• Are there CCSDS channel coding techniques defined for implementation on

nano-satellites?

• How is FEC coding evaluated and how does that affect the criteria used to

select one for implementation in a satellite communication system?

• What resources are required for FEC implementation and how can their use

be optimised or minimised?

• What is the trade-off between performance and resource utilisation

appropriate for a nano-satellite?

1.5 Assumptions & Delineation

In order to successfully choose a suitable coding algorithm as well as the applicable

hardware, the following assumptions are made:

1 The Consultative Committee for Space Data Systems (CCSDS) is an organisation formed
by the world’s major space agencies in order to discuss the common problems in the
development and operation of space data systems. It develops standards and
recommendation to enable interoperability and cross support between space agencies.

5

• the upper communication layer data shall provide a packet format for the

encoder and a frame suitable for the physical communication layer shall be

produced as the encoder output;

• on the decoder side, compatible data frames coming from the physical layer

are received to be decoded and provided as a packet or part of a packet for

the higher communication layer;

• the implementation platform (hardware) to be used is already available on the

communication subsystem (e.g. FPGA, microcontrollers, etc.); and

• the hardware to be used has already undergone the required radiation testing

and qualification for space application.

The extent of research is determined by the following demarcations:

• communication must be compatible with the standards used by existing

ground stations; therefore, only existing channel coding techniques will be

used for the realisation of the project aims and objectives;

• source coding and modulation that are part of the encoder are not part of this

research and as such demodulation and source decoding are also not a part

of this research; and

• data synchronisation and related procedures are not part of this study.

1.6 Document structure

This document describes the selection, design, development and testing of a forward

error correction encoding and decoding algorithm for nano-satellite implementation.

The document is structured as follows:

Chapter 2 presents a background to digital communication systems, outlining the

fundamentals of the error control coding concept. This chapter also contains an

introduction to CubeSats.

Chapter 3 contains the comparisons of the CCSDS recommended standard error

correction algorithms. The CCSDS standard highlights Convolutional, Reed-Solomon,

Low-Density Parity Check (LDPC) and Turbo codes. The chapter also includes an

introduction to the requirements for these techniques as well as the performance

comparison according to predefined metrics.

Chapters 4 and 5 outline the design, testing and verification details of the encoder

and decoder selected for implementation, respectively.

Chapter 6 contains the conclusions and recommendations for future improvement.

6

CHAPTER TWO
BACKGROUND

2.1 Introduction

The subject of error correction is rooted in digital communication and information

theory; as such, a basic understanding of these concepts as related to forward error

correction is required. The basic fundamentals of digital communication are outlined

in this chapter to establish the role played by error correction in the context of a

complete communication system. Finally, the chapter ends with a basic introduction

to CubeSats, a special class of nano-satellites.

2.2 Digital Communication

Digital communication generally refers to a method of communication where

information between a source and receiver are manipulated such that they can be

represented by a sequence of discrete messages (Garg & Wang, 2005). In most

cases, the digital communication system is made up of the elements shown in Figure

2.2.1 (Sweeney, 2002; Patankar, 2009).

Transmitter

Receiver

Error	 Control	
Encoder

Channel

Modulator

DemodulatorError	 Control	
Decoder

Source	
Encoder

Source	
Decoder

Transmitted	
information

Received	
information

Figure 2.2.1: Digital communication system block

Adapted from (Sweeney, 2002)

The source encoder is responsible for mapping the data to be transmitted into a

binary information sequence and representing it with the least possible number of

bits.

7

The error control encoder adds redundancy to the information sequence to give the

receiver the means to overcome the effects of any noise encountered by the signal

during propagation.

The modulator converts the encoded data stream into an analog signal waveform,

which can be propagated over a physical channel.

The channel is the medium through which the analog signal travels between the

transmitter and the receiver. Noise in the channel may change the value of the

encoded data being transmitted.

By using the parameters of the modulator in the system, the demodulator converts

the received analog signals into a digital format, which best estimates the transmitted

encoded data stream.

The error control decoder uses the data stream coming from the demodulator and

estimates the original information sequence using the error control encoder

characteristics.

The source decoder, with knowledge of the source coding technique used in the

encoder and within the limits of its code capabilities, recreates, if possible, the

information sequence into the original data as given by the source.

2.2.1 Performance metrics

One of the main concerns when designing any digital communication system is to use

transmit power and available bandwidth as efficiently as possible. The bandwidth

efficiency can be quantified by using the ratio of data rate to signal bandwidth,

whereas the power efficiency can be characterised by the probability of errors as a

function of signal-to-noise ratio (SNR) (Garg & Wang, 2005).

There are several figures of merit linked to digital communication, including the SNR,

which is the ratio between the average signal power and the average noise power

(Sklar & Harris, 2004). Eb/N0, which is the ratio between the bit energy and the noise

spectral density as shown in equation 2.2.1 (Sklar, 2001; Sklar & Harris, 2004), is the

most used digital communication system figure of merit:

8

𝐸!
𝑁!

=
𝑆
𝑁
=
𝑊
𝑅

where;

2.2.1

mmm

𝑆 = signal power,𝑊 = bandwidth,𝑁 = noise power, and 𝑅 = bit rate.

The other criterion used to evaluate digital communication system performance is the

bit error probability (PB). In many digital communication performance analyses, plots

of PB versus Eb/N0, such as the one illustrated in Figure 2.2.2, are used for evaluating

systems where a smaller Eb/N0 signifies a more efficient process for the specified

error probability (Sklar, 2001).

Figure 2.2.2: Typical plot of PB vs Eb/N0

Adapted from (Sklar, 2001)

2.2.2 Effects of noise on system performance

Errors during transmission can occur because of two classes of signal degradation:

• degradation due to reduced received signal power or increased noise or

interference power; and

• degradation due to signal distortion, such as is caused by inter-symbol

interference (ISI).

Figure 2.2.3 illustrates the difference between the effects of the aforementioned

degradation classes. It can be deduced that the degradation due to signal distortion

would require a significantly large (essentially impractical) Eb/N0 value to achieve the

desired PB. On the other hand, the degradation due to noise power increase or

9

reduced signal power would require a finite Eb/N0 value to achieve the required PB,

which is, although challenging in power limited systems, achievable (Sklar, 2001).

Figure 2.2.3: PB vs Eb/N0 for (a) degradation due to signal or noise power
variation, and (b) signal distortion

Adapted from (Sklar, 2001)

2.2.3 Information theory

In response to channel noise and the inability to reproduce information at the

receiving end exactly as was transmitted at the sending end, Claude Shannon in

1948 (Shannon, 1948) developed what is called information theory. Shannon

theorised the existence of a maximum rate at which a signal could be propagated

over a channel and received without the existence of errors in the received signal.

This theoretical maximum rate, referred to as channel capacity/Shannon limit of an

additive white Gaussian noise (AWGN) channel is given by equation 2.2.2 (Costello &

Forney, 2007; Tse & Viswanath, 2005):

𝐶 = 𝑊 𝑙𝑜𝑔! 1 +
𝑆
𝑁

 [bits/sec] 2.2.2

[bits/sec]

where;

W is the bandwidth in Hz, S is the transmitting signal power in Watt, and N the added

Gaussian noise power in Watt.

As a result of this notion, efforts to practically achieve transmission at channel

capacity are continuing (Costello & Forney, 2007). This can be achieved by

transmitting correlated information bits, which can be inferred by the receiver using

10

probability theorems. The correlation of the input bits is generated by a ‘code’ that

produces vectors belonging to a predefined alphabet, which is used at the receiving

end to infer the original input bits (Shannon, 1948).

2.2.4 Forward error correction

The use of these ‘codes’ as mentioned in the previous paragraph introduces the

concept of forward error correction (FEC). FEC refers to the addition of redundant bits

to information bits to facilitate the inference of the original information bits at the

receiver end of the communication system. The FEC system consists of an

encoder/decoder pair, where the encoder is responsible for creating the correlation

between information bits. The decoder is, therefore, responsible for identifying any

errors in received vectors and correcting them to the best of its capability (Sklar &

Harris, 2004).

There are two main types of FEC codes, namely block codes and convolutional

codes (Atlanta RF, 2013; Calhan et al., 2007). A block code encoder gives an output

with block length 𝑛 that is made up of a message block of length 𝑘 and parity bits,

which are used by the decoder to infer the original message. The amount of

redundancy in relation to the information is usually defined using the rate of the code,

which is defined as the ratio of the encoder input to the encoder output. The rate of

block codes is, therefore, given as 𝑅 = !
!
 (Calhan, Ceken, & Erturk, 2007).

The block codes memory requirement is limited as the output codeword is made up of

the current message block and a set of generated parity bits (Sklar & Harris, 2004;

Rong et al., 2011). A convolutional encoder has 𝑚 memory elements where the

output code is determined by processing the input bit at the same time as the

preceding 𝑚 information bits.

The efficiency of these codes is measured by comparing the number of added

redundant bits to the number of errors that can be corrected after the redundancy.

Coding gain can also be used as a figure of merit as it gives information on the extent

of Eb/N0 reduction due to coding implementation and is calculated as in equation

2.2.3 (Sklar & Harris, 2004).

11

𝐺 𝑑𝐵 =
𝐸!
𝑁! !

𝑑𝐵 −
𝐸!
𝑁! !

𝑑𝐵

where
𝐸!
𝑁! !

= uncoded 𝐸!𝑁! and
𝐸!
𝑁! !

= coded 𝐸!𝑁!. 2.2.3

 [bits/sec]

Convolutional codes generally outperform their block code counterparts of the same

complexity as a result of their continuous processing, unlike block codes that divide

their input information sequence into separate blocks (Calhan et al., 2007; Viterbi,

1971; MIT, 2005).

At low values of Eb/N0, the implementation of error correction is not beneficial to the

improvement of system error performance as the decoder can only correct a finite

number of errors. As the number of transmission errors exceeds the code capacity,

the decoder may even introduce more errors. In such cases, implementing error

correction worsens the error performance instead of improving it (Sklar, 2001).

2.3 CubeSats

A nano-satellite is any satellite with a mass less than 10kg as seen in Table 2.3.1,

which shows the classes of satellites according to mass (Sweeting & Underwood,

2003).

Table 2.3.1: Satellite Classification

Class Size
Large satellites >1000kg
Small satellites 500 – 1000kg
Mini satellites 100 – 500kg
Microsatellites 10 – 100kg
Nanosatellites 1-10kg
Pico satellites <1kg

A CubeSat is defined as a cuboid-shaped satellite with dimensions of 10x10x10cm

and a mass of up to 1.33kg in its smallest 1-unit (1U) form factor. The CubeSat

specifications were developed with the main objective of increasing space

accessibility, sustaining frequent launches and reducing cost and development time

(California Polytechnic State University, 2009). Due to the affordability and short

development lifecycle (Sweeting & Underwood, 2003) attributed to these small

satellites, some educational institutions, such as CPUT, have adopted the CubeSat

as a capacity development tool.

12

The extent of usage of these satellites is continually increasing as a result of

advancements in technology miniaturisation, which enables the implementation of

sophisticated functions while using very little real estate (Sweeting & Underwood,

2003). Although the advancements in miniaturised technologies are rapid, CubeSats

operate on extremely constrained power and volume budgets to perform missions of

increasing complexity. As a result, any of the subsystem designs need to be efficient

and conservative; yet still adequately functional. The availability of CubeSat specific

space grade components is limited and when available they are costly; therefore,

COTS are used in most projects (Rogers & Summers, 2010; Polaschegg, 2005).

2.4 Conclusion

This chapter has provided a brief background to the concepts related to forward error

correction theory, and introduced CubeSats as a specific class of nano-satellites. This

sets the foundation for the following chapter which continues the literature review,

focusing on the subject of error correction techniques as recommended by the

CCSDS in their TM Synchronization and Channel Coding recommended standard.

13

CHAPTER THREE
CHANNEL CODES

3.1 Introduction

One of the objectives of this project is the implementation of an error correction

algorithm that conforms to the CCSDS standard. This chapter describes some of the

codes, which are recommended by the CCSDS standard. It recommends four basic

types of channel coding methods for satellite communication, namely Reed-Solomon,

Convolutional, Turbo and LDPC codes, as well as concatenated versions of the

aforementioned codes. Nano-satellite applications are not the focus area for the

recommended standards; therefore, in order to choose a method for nano-satellite

implementation, the recommended codes are compared through studies referencing

literature and simulations to determine a suitable technique. The preferred code is

selected such that the resultant transmission exhibits reasonably high data

throughput with low energy per information bit (Eb) at the same BER in relation to the

un-coded system. The selection of the code is also such that the resultant BER of the

coded system is lower than the BER of an un-coded system with the same energy

per information bit.

3.2 Code Evaluation

The code performance metrics introduced in Chapter 2, including some

implementation capability parameters, are used to evaluate the performance of the

coding algorithms. These comparison parameters are used to make an informed

decision in the selection of a suitable algorithm for the purposes of this project. The

performance and implementation capability parameters listed below are used:

• Performance parameters

o code rate

o coding gain

o BER performance

• Implementation complexity parameters

o Encoding complexity

o Decoding complexity

o Memory requirements

o Latency/decoding lag

o Implementation requirements

14

When simulation is used for the code evaluation, the results are obtained and

analysed in the MATLAB numerical computing environment by creating virtual

channels and models of complete communication scenarios. The BER analysis tool

from MATLAB is also used to view and compare theoretical performance

characteristics of the simulated codes.

3.2.1 Convolutional codes

Convolutional coding is identified mainly using code rate (r) and constraint length (K)

with continuous data bit encoding. The CCSDS recommends a convolutional code

with a constraint length of 7 and a rate of ½ denoted as a (7, ½) convolutional code,

which is suitable for channels where the noise is predominantly Gaussian. The rate of

½ means that 2 encoded output symbols are produced for every input data bit. This

property, therefore, implies that the bandwidth requirement is twice the amount

required when no convolutional coding is implemented (CCSDS, 2012; CCSDS,

2011a).

The number of memory elements 𝑚 can be obtained from the constraint length 𝐾

as 𝑚 = 𝐾 − 1; therefore, the recommended code has 6 memory elements. This in

turn implies that the 6 bits preceding each input must always be available when

determining an output; consequently, registers large enough to store the 6 bits are

required for convolutional encoding (CCSDS, 2011a; CCSDS, 2012)

3.2.1.1 Performance

Viterbi decoding of the convolutional code can be implemented using either hard

decision or soft decision decoding. Hard decision decoding refers to the use of 1-bit

resolution quantisation where each bit of information has two possible levels, such as

binary data (Calhan et al., 2007). Soft decision decoding makes use of multiple bit

quantisation, which implies that the data has an increased level of reliability as one

information bit has multiple possible values in-between the 0 and 1 (CCSDS, 2012;

Kumar & Gupta, 2011). The MATLAB implementation of the recommended

convolutional code with continuous Viterbi decoding in comparison to the un-coded

BPSK and QPSK transmissions is illustrated in Figure 3.2.1. It can be concluded that

introducing the code introduces a coding gain of approximately 5 dB using soft

decision decoding and 2.5 dB using hard decision decoding.

15

Figure 3.2.1: Simulated BER performance of convolutional code vs un-coded
QPSK using MATLAB BER tool

Implementing convolutional codes has its advantages and disadvantages as listed

below:

• convolutional codes are capable of handling random errors, such as the ones

prevalent in an AWGN channel;

• convolutional codes are vulnerable to burst errors;

• the encoding algorithm is simple and, therefore, requires a simple circuit for

implementation; and

• the decoding algorithm is, however, is slightly more complex and requires

substantially more resources for implementation than the encoder.

3.2.2 Reed-Solomon (RS) codes

Reed-Solomon (RS) codes are non-binary block codes, which use multi-bit symbols

to define codewords and are described using their input and output block lengths

(Mitchell, 2009). The information blocks are constructed using symbols that are made

up of multiple bits; when a symbol error is detected, the code corrects the entire

symbol as if all the bits in the symbol were erroneous. This property makes RS codes

good in correcting burst errors where binary codes falter (Mitchell, 2009; Sklar &

Harris, 2004). The CCSDS recommends the (255,223) and the (255,239) RS codes,

which implies that (CCSDS, 2011a):

16

• the input block length for the codes can be either 223 or 239;

• both recommended codes have an output block length of 255;

• the maximum number of detectable errors per block is 32 for the (255, 233)

code, which allows for the correction of a maximum of 16 errors; and

• the (255, 239) code can detect a maximum of 16 errors per block and correct

a maximum of 8 errors per block.

3.2.2.1 Performance

The performance characteristics of the recommended RS codes with hard decision

decoding in terms of BER versus Eb/No as obtained from the MATLAB BER analysis

tool are illustrated in Figure 3.2.2. Comparing the RS code and the un-coded BPSK

BER shows that implementing RS codes introduces a coding gain of approximately

3dB at a BER of 10-6.

Figure 3.2.2: Simulated BER performance of RS (255,239) and RS (255,223) vs
un-coded QPSK using MATLAB BER tool

Soft decision decoding algorithms for RS codes have also been explored in (Koetter

& Vardy, 2003; Lu et al., 2014; Chen et al., 2013) among others; however, their

complexity does not make them suitable at this time for CubeSat implementation.

Implementing RS codes has its advantages and disadvantages as listed below

(Mitchell, 2009; Kumar & Gupta, 2011; Costello & Forney, 2007):

17

• as a result of their non-binary nature, RS codes can correct burst errors unlike

binary codes such as convolutional codes;

• they are unable to handle random errors if the number of errors in one code

word exceeds the code correcting capability;

• in RS error correction, the number of unknowns are twice that of binary codes;

binary codes decoders only require error location, whereas RS decoders

require location and error value;

• the non-binary nature of RS codes enables their decoders to be used for long

block lengths with a shorter decoding time requirement than that of other

codes;

• the symbol based arithmetic and numerous calculations required for error

correction make the implementation of RS code more complex than binary

codes; however, the RS codes provide better throughput than binary codes;

and

• they are preferable for channels where the un-coded error rate is not too high

as they provide significant error correction using minimal redundancy at

relatively high data rates.

3.2.3 Turbo codes

Turbo codes were proposed by Berrou, Glavieux and Thitimajshima as high-

performance error correcting codes with a required Eb/No of 0.7 for a BER of 10-5 with

½ code rate (Sklar, 1997; Divsalar & Pollara, 1995). These codes are a result of

combined systematic terminated convolutional codes that are connected together

using an interleaver to form a high-performance block code (CCSDS, 2012). The two

convolutional codes are referred to as constituent codes and each of the codes

contributes to the parity bit generation during encoding (Sklar, 1997). The CCSDS

recommended encoder is made up of two recursive encoders with a constraint length

of 5 and selectable rates of ½, ⅓, ¼ and ⅙ (CCSDS, 2011a).

With reference to the convolutional encoder characteristics as described earlier in the

chapter, the constraint length of 5 means that each constituent encoder contains 4

memory elements, which store the preceding input bits that directly contribute to the

encoder output.

3.2.3.1 Performance

As illustrated in Figure 3.2.3, Turbo code error performance is superior to that of

convolutional and RS codes with BER values below 10-4 at very low energy per

18

information bit values. The simulated results in Table 3.2.1 contain Turbo code error

performance of the recommended code rates for various block lengths with 10

decoder iterations in each case. It can be seen that the codes with higher code rates

have better BER performance. It can also be concluded that the code error

performance increases with block length; therefore, Turbo codes can be used when

transmitting large amounts of data (CCSDS, 2012).

Figure 3.2.3: Turbo code BER performance, Block Size 1784 Bits, Measured
from JPL DSN Turbo Decoder, 10 iterations

 Adapted from (CCSDS, 2012)

Turbo codes are generally characterised by complex encoding and decoding

operations. However, the coding gain within 0.8dB of the Shannon limit at a BER of

10-6 (O’Dea, 2013) is high enough to render the complexity acceptable for high

performance applications. The implementation of Turbo codes introduces advantages

and disadvantages as listed below (O’Dea, 2013; CCSDS, 2012; Madhow, 2008;

Atlanta RF, 2013):

• Turbo codes are appropriate for low power communications over long

distances because they exhibit low BER at low SNR, which means that

transmission can be close to error-free even with very low energy signals;

19

• the code requires a complex decoder as a result of the multiple encoder

components;

• the decoder calculations required for error correction require knowledge of the

channel characteristics;

• the decoding process is iterative and, therefore, the memory requirement is

very large;

• Turbo encoding introduces latency, since an entire length of information must

be read before encoding begins; and

• the decoder also processes an entire block before giving an output, which

introduces decoding latency.

•

Table 3.2.1: Turbo decoder BER performance approximation results for various
block lengths, 10 iterations, compiled from (CCSDS, 2012)

Block length Rate Eb/No (dB) at BER 10-4
1784 ½ 1.3

⅓ 0.66
¼ 0.43
⅙ 0.14

3568 ½ 1.11
⅓ 0.47
¼ 0.25
⅙ -0.17

7136 ½ 0.97
⅓ 0.34
¼ 0.135
⅙ -0.25

8920 ½ 0.9
⅓ 0.3
¼ 0.1
⅙ -0.8

16384 ½ 0.875
⅓ 0.25
¼ 0.02
⅙ -0.036

3.2.4 LDPC Codes

LDPC codes are a class of binary codes that can be used to obtain coding gains and

good performance at low Eb/No values (Li et al., 2006). The CCSDS standard

recommends a code known as C2 with (n, k) = (8176, 7154) and a rate of 7/8 as well

as a set of 9 AR4JA (Accumulate, Repeat-by-4, and Jagged Accumulate) LDPC

codes with parameters defined in Table 3.2.2 (CCSDS, 2011a; CCSDS, 2012). C2 is

20

optimised for near Earth satellite applications, while the other 9 codes are optimised

for deep space communication (CCSDS, 2007; CCSDS, 2011a).

Table 3.2.2: Recommended AR4JA LDPC code specifications

Information
block length k

Code block length n
Rate ½ Rate ⅔ Rate ⅘

1024 2048 1536 1280
4096 8192 6144 5120

16384 32768 24576 20480

3.2.4.1 Performance

The performance of the LDCP codes is dependent upon both the code used and the

decoder used for that code. The error performance of the recommended codes is

illustrated in Figure 3.2.4, which shows very low BER values at low energy per

information bit. The results were obtained from a hardware simulation experiment

performed at JPL as described by (Andrews et al., 2007).

Figure 3.2.4: BER (solid) and FER (dashed) for Nine AR4JA Codes and C2, with
Code Rates 1/2 (Red), 2/3 (Green), 4/5 (Blue), and 7/8 (Black); and Block

Lengths k=16384, 4096, 1024 (Left to Right in Each Group), and 7156 (Code C2)

Adapted from (Andrews et al., 2007)

21

There are a number of advantages and disadvantages linked to the implementation of

LDPC codes, such as the ones listed below:

• at high bit rates, LDPC codes offer smaller bandwidth expansion;

• the codes offer near Shannon limit BER performance; and

• the codes can be used for applications that require long codewords.

However, the decoding complexity of these codes makes their practical

implementation challenging. The ideal mathematical functions are also not practically

realisable, which results in the loss of coding gain due to approximations (Andrews et

al., 2007; CCSDS, 2012).

3.3 Code Selection

3.3.1 BER performance

The performance of a channel code can be determined by using the error rate in

relation to the channel resources that are required in order to achieve the desired

error rate. The recommended codes as described above are compared based on

AWGN channel implementation in terms of the resultant BER and the Eb/No required

to achieve that BER. Generally, a good channel code will either reduce the BER at a

fixed Eb/No or achieve the desired BER with a lower Eb/No requirement on the

channel. Figure 3.3.1 shows the performance comparison, in relation to BER and

Eb/No, of most of the channel codes described in this section. The implementation of

any one of the mentioned codes offers a substantial coding gain as listed in Table

3.3.1, which compares the Eb/No at which the transmission can exhibit a BER of 10-6.

Table 3.3.1: Eb/No requirements for 10-6 BER

Transmission Eb/No (dB)
Channel Capacity 0.2
Un-coded 10.5
Convolutional 4.7
Reed Solomon 6.4
Turbo 1.1
LDPC 0.9

Implementing convolutional coding alone can provide satisfactory coding gain while

requiring very little complexity for encoding and "acceptable" complexity for decoding.

The RS code can also provide good coding gain; however, RS encoding and

decoding are more complex than convolution in terms of hardware implementation,

and the convolutional coding gain is better than that of RS coding.

22

This comparison concludes that the Turbo and LDPC codes offer the largest coding

gain, therefore, allow for clean transmission at very low SNR. However, the

recommended LDPC codes are subject to patent laws for non-CCSDS member

agencies and Turbo codes are subject to general patent laws. Permission to use

these codes should, therefore, be sought from the appropriate regulatory parties

(CCSDS, 2012). As a result, ease of use and accessibility are considered as factors

for the channel code selection.

Figure 3.3.1: Performance comparison of ½ rate Convolutional, Reed-Solomon,
Turbo and LDPC codes in relation to un-coded and capacity transmission

Adapted from (CCSDS, 2011)

3.3.2 Signal power vs. spectral density

Another parameter used to aid in the selection process is the power and spectral

efficiency trade-off. Figure 3.3.2 shows the spectral efficiency for the recommended

standard codes in relation to the required Eb/No. The figure shows that with strict

power constraints, Turbo codes are suitable but they require large bandwidth

expansion. On the other hand, when bandwidth is severely constrained, the LDPC

codes are the best choice if the increased energy per bit is acceptable. Using this

23

metric, Turbo and LDPC codes would clearly be the obvious choice for a system

within one of these extremes. However, nano-satellites are usually both bandwidth

and power constrained; therefore, the ideal selection would be a code that results in

an acceptable Eb/No with minimal bandwidth expansion.

Figure 3.3.2: Power and spectral efficiency trade-off

Adapted from (CCSDS, 2012)

The left of the figure corresponds to codes that are suitable for severely power-

constrained systems, while the bottom of the figure relates to codes that are suitable

for bandwidth-constrained systems. An ideal code that exhibits both spectral

efficiency and good Eb/No would be in the bottom left corner of Figure 3.3.2. But this

does not exist, and a performance trade-off between spectral efficiency and Eb/No is

necessary. The solution would be to either slightly compromise both parameters or tip

the scales in favour of one according to the cost of each. The favourable LDPC and

Turbo codes introduce decoder complexity, which requires significant hardware

resources that are not readily available on nano-satellites. RS codes offer a spectral

efficiency better than convolutional codes at the cost of a higher Eb/No, while

convolutional codes require less Eb/No at the cost of spectral efficiency. The deciding

factor would, therefore, be code complexity; in this case, convolutional codes would

be preferred.

24

3.3.3 Summary

The studies in this chapter have shown that the LDPC and Turbo codes outperform

the other codes in every aspect. However, their implementation comes at a cost of

high complexity, and large computation and memory requirements; traits that are

undesirable for hardware implementation with limited resources, especially in nano-

satellites.

As stated in previously, the less complex convolutional and Reed-Solomon codes are

more suitable for the desired nano-satellite application. Taking into account the error

correction strengths, the complexity of the decoders, and the learning curve for

grasping the concepts involved in encoding and decoding, convolutional codes have

been selected over RS codes for implementation in this project. Also, in terms of

coding gain, convolutional codes outperform RS codes by achieving an approximate

coding gain of 5dB for BPSK modulation and at a BER of 10-6, compared to 4dB for

the RS codes. An introduction to the convolutional encoding and decoding process

is, therefore, given in the next section. The design and development of the

convolutional encoder and Viterbi decoder are outlined in Chapters 4 and 5.

3.4 Convolutional Coding

Convolutional coding has been selected as the code to be implemented in this

project. This section outlines the encoding and decoding processes to be used in the

design. Convolutional codes are identified using their constraint length (K) and rate

(r) parameters, which determine the complexity and performance of the code. As

such, the performance of a convolutional code is directly proportional to K and

inversely proportional to r, whereas the complexity of the code is inversely

proportional to r and exponentially proportional to K. In this instance, K represents

the number of consecutive input bits that contribute directly to the definition of the

output symbols, and r is the ratio of input bits to output symbols expressed as a

fraction (O’Dea, 2013; CCSDS, 2012).

3.4.1 Encoding

The recommended CCSDS convolutional encoder requires a simple circuit for

implementation as illustrated in Figure 3.4.1. The implementation involves a shift

register with K stages, which outputs are connected by r modulo-2 generator vectors

producing 2 outputs C1 and C2 that are alternately switched to the output through

25

switch S1. The CCSDS recommends the inversion of one of the output symbols to

ensure the sufficient handling of an all “0” or an all “1” input vector, resulting in the

output sequence C! !C!! C!! C!! ⋯ C!! C!! .

Figure 3.4.1: Recommended (7, ½) convolutional encoder block representation

 Adapted from (CCSDS, 2012)

For each input bit, the information in the registers is shifted to the right when the input

is shifted into the left-most position. The outputs C1 and C2 are determined using

connection vectors of length K + 1 and the encoder algorithm is described in 3 steps:

1. Initialise the memory registers with zeroes.

2. At input time instance t,

a. calculate C1 and C2 using combination vector and memory cell

contents as defined by generator polynomials G1 and G2;

b. shift the components of the memory elements to the right;

c. shift input into left-most memory register; and

d. sample C1 and C2 using the output switch.

3. Repeat step 2 for each input time instance.

The relationships among the input bits and the states of the memory elements of the

encoder, as a function of time, can be illustrated using a trellis diagram. A trellis

diagram can be defined as a graphical representation of the states of the encoder

with the passage of time. The trellis diagram in Figure 3.4.3 represents a simple

encoder with only 2 memory elements (Figure 3.4.2) for illustration purposes, as the

trellis diagram for the recommended (7, ½) CCSDS encoder is very large and

complex. The trellis diagram shows all the possible states of memory elements at any

given time instance in the encoding process. The unique data sequence is

represented by a particular path along the trellis and this property is used by the

decoder to infer the path with the highest likelihood representing the initial data

sequence (Calhan et al., 2007). The dashed lines in the diagram represent a branch

along the path resulting from an input of 0 and the solid lines show transitions due to

an input of 1.

26

G1

G2

D

+

+

+

D

C1

C2

INPUT

Figure 3.4.2: Simple (3, ½) convolutional encoder block representation

Adapted from (Viterbi, 1971)

A	 	 	 	 	 00 00 00 00 00 00 00
11 11 11 11 11 11

01 01 01 01 01

10 10 10 10

01 01
01 01

11 11 11 11

10 10 10 10 10

00 00 00 00
B	 	 	 	 	 10

C	 	 	 	 	 01

D	 	 	 	 	 11

Figure 3.4.3: Convolutional code trellis diagram for ½ rate code with a
constraint length of 3

Adapted from (Viterbi, 1971)

3.4.2 Decoding

Every encoder requires a decoder to interpret the encoded symbols and

subsequently determine the initial contributing input. The CCSDS recommended

decoder for the convolutional encoder is the Viterbi decoder, which uses a maximum

likelihood algorithm to determine the initial input using the available encoded

symbols. The Viterbi algorithm is used because it improves communication efficiency

by 4 to 6dB at a BER of 10-5 (Jerrold & Jacobs, 1971).

As mentioned earlier, the Viterbi decoder can be implemented either as a hard

decision decoder or a soft decision decoder. Implementing a soft decision decoder

results in a higher level of decoding accuracy as illustrated in Figure 3.4.4; however,

27

the multiple bit quantisation increases the complexity of the practical implementation

(CCSDS, 2012).

Figure 3.4.4: Convolutional coding error performance

Adapted from (CCSDS, 2012)

The decoder uses the information defined by the trellis diagram to function, and

therefore, a fixed amount of memory is required to store the information (Calhan et

al., 2007). The decoder is also required to compute and compare the likelihood

probabilities of every possible path along the trellis. The results of this comparison

are then used to determine the path with the highest likelihood of representing the

original information. This also requires memory, as the path likelihood probabilities of

all the paths along the trellis for the duration of the data sequence must be stored for

the comparison (Morelos-Zaragoza, 2002).

Decoding a large received sequence would, therefore, require extremely large

amounts of memory, which is practically unachievable. Attempting to decode the

complete received sequence in one go would also result in very long latency,

because all the paths along the trellis are to be compared before yielding an output.

To avoid the use of large amounts of memory and high latency, the practical decoder

divides the information sequence into blocks with a reasonable truncation length D.

The recommended value of D, which results in negligible decoder degradation, is set

at approximately 5 times the constraint length of the encoder (5K) (Morelos-

Zaragoza, 2002). Figure 3.4.5 shows that the BER performance of a convolutional

28

code is also dependent on D. The length of D can be increased to a certain point

where, increasing it further, would not improve the BER performance, as seen in

Figure 3.4.5 (for example, setting D = 60 results in the same BER as the ideal case of

D approaching infinity).

Figure 3.4.5: Truncation length (D) versus BER

Adapted from (CCSDS, 2012)

29

CHAPTER FOUR
CONVOLUTIONAL ENCODER

4.1 Introduction

The CCSDS standard recommends a convolutional encoder with a constraint length

of 7 and a rate of ½. The encoder is made up of a shift register with 6 memory cells,

which outputs are combined and manipulated by modulo-2 addition in a

predetermined combination. This gives two separate data streams as illustrated in

Figure 4.1.1. The figure includes the shift register stages labelled as D and the

combinations of the register outputs obtained from the generator polynomials G0 and

G1 for modulo-2 addition. Also shown in the figure are the input and output locations

within the system as well as the direction of the flow of signals along the circuit. The

encoder generates two streams of data from a single input data stream as a result of

the ½ code rate. A logical inverter is seen at one of the output data streams (out1), as

recommended to ensure that the code is efficient even with an all ‘0’ or all ‘1’ input

stream. The final stage of the encoding process is a selector switch to multiplex the

two encoder outputs into one output data stream.

D D

+

+

in

out1

out0

G1	 =	 1011011

G0	 	 =	 1111001

D D D D

+

+

+ +

+ +

out

select

Figure 4.1.1: CCSDS recommended (7, 1/2) convolutional encoder

Adapted from (CCSDS, 2011)

4.2 VHDL Design

The encoder is to be implemented on an FPGA platform and, therefore, its

architecture is to be described in VHDL and verified using the process illustrated in

Figure 4.2.1.

30

VHDL	 Behavioural	
model	 description

RTL	 Simulation

RTL	 Synthesis

Functional	 gate	
simulation

Place	 and	 Route

Post-‐layout	 timing	
Simulation Timing	 analysis Power	 analysis

Test	 1:	 verifies	 correctness	 of	 	
described	 behavioural	 model

Test	 2:	 verifies	 the	 correctness	 of	 the	
hardware	 specified	 for	 the	 behavioural	

model

Figure 4.2.1: VHDL design procedure

Adapted from (Perry, 2002)

The VHDL implementation of the encoder in Figure 4.1.1 can be illustrated using the

block diagram in Figure 4.2.2. The encoder consists of 3 main I/O signals, which are

the clock, data input and data output.

Signal	
generator	

Encoder
Selector	

Clock

Input

Output

Encoder	 Control

Mux	 Control

Figure 4.2.2: Encoder implementation block diagram

The encoder comprises 3 blocks/components and the roles of each block are outlined

in Table 4.2.1 below. The encoder’s 6 memory elements are implemented as shift

registers and the modulo-2 adders are implemented as XOR logic gates.

31

Table 4.2.1: Encoder implementation blocks/components explained

Component Responsibility

Signal

generator

Generates the 2 signals used to synchronise the encoder

operation.

Encoder Executes all the encoder calculations illustrated in Figure 4.1.1,

which includes shift register logic, XOR logic and C2 inversion.

Selector Implements the parallel-to-serial convertor, which enables the

encoder to produce a single data output stream.

The encoder architecture is completely synchronous; therefore, all the processes and

calculations are controlled by the input clock signal. Figure 4.2.3 shows the encoder

timing diagram, which illustrates the associations among the encoder input and

output in relation to the clock and control/synchonisation signals. The signals named

encoder control (enc_ctrl) and mux control (mux_ctrl) are used to synchronise the

processes within the encoder in order to ensure that all the calculations and logical

operations use the correct data inputs.

Figure 4.2.3: Encoder timing diagram

The significance and implications of the timing diagram in Figure 4.2.3 can be further

visualised using the truth table described in Table 4.2.2, which shows one full

encoder cycle. A complete encoder operation requires 5 clock cycles, as can be seen

from the truth table. The ‘X’ indicates that the particular state of that signal is

insignificant to the encoder operation. The ‘Valid’ label denotes when the input signal

is used in the encoder calculations and indicates that the input should not be changed

at this time. This means that the input should be made available before the indicated

time instance within the encoder cycle. For the output signal, the ‘Valid’ label

indicates when the output signal is available to be recorded. This means that the

output should be recorded within the availability window indicated.

32

Table 4.2.2: Encoder signals truth table

Clock cycle Clock Encoder control Mux Control Input Output

1 ↑ 0 0 X X

2 ↑ 1 0 Valid X

3 ↑ 0 0 X X

4 ↑ 0 1 X Valid 𝐶1

5 ↑ 0 1 X Valid 𝐶2

4.3 Analysis

A spreadsheet model that computes the encoder calculations for each stage is

created and used to verify the behavioural correctness of the VHDL implementation.

A set of randomly generated data bits is introduced into the spreadsheet model to

generate the expected encoder outputs. The same input data set is then used during

the behavioural simulation of the model where the output is compared to the

expected values from the spreadsheet model. The MATLAB random data generator

creates a text file that is used in the VHDL behavioural simulation. This verification

process is illustrated in Figure 4.3.1. The spreadsheet model is used for the encoder

verification as it provides a simple method of visualising and following the progression

of the arithmetic and logic operations involved in the encoding process.

Matlab	 random	
number	 Data	
Generator

Excel	
Model

Matlab	 Output	
comparison

VHDL	 Behavioural	
Simulation

Figure 4.3.1: Encoder behavioural correctness verification

If the behavioural model simulation results match the spreadsheet model output, the

VHDL design is then fed into a synthesiser, which creates the hardware netlist for a

specified device. The encoder is to be implemented on hardware that exists on

communication system modules to reduce the cost of implementation; therefore,

netlists are created for 3 FPGA devices from different vendors. This is done to

determine the cost of implementing an encoder on a system with one of these 3

FPGA devices that at this time may be found in CubeSat subsystems.

33

The major players in FPGA manufacturing are Xilinx and Altera, collectively

controlling approximately 80% of the FPGA market value (Global Market Insights,

2016); therefore, a device is selected from the two manufacturers’ low power, low-

cost device families. From the Xilinx 7 series 28nm technology, the Artix-7 family has

low power, low-cost devices that are suitable for cost-sensitive applications (Xilinx,

Inc., 2014). A device from the Artix-7 family is, therefore, used in this project to verify

the implementation of the encoder on Xilinx devices. The Altera family FPGAs are

designed for different user needs, with the Cyclone family tailor-made for low power,

low-cost applications (Altera Corporation, 2012). A Cyclone V device is, therefore,

used to verify the implementation on Altera devices. Microsemi’s IGLOO2 as of 2014

was the lowest power FPGA family in the industry (Microsemi Corporation, 2014);

therefore, a device from this family is also selected for use in this project. The specific

devices used are listed in Table 4.3.1.

Table 4.3.1: Test FPGA devices

Manufacturer Family Device Design environment
Altera Cyclone V 5CEBA2F17C7 Quartus II & ModelSim Altera

starter edition
Microsemi Igloo2 M2GL010T Libero SoC v11.4 & ModelSim

ME 10.3a
Xilinx Artix7 xc7a100t-3fgg484 ISE design suite 14.7

The VHDL design is ported onto the different design platforms listed in Table 4.3.1.

This process illustrated in Figure 4.3.2 is followed to obtain the required analysis

results. Validation on these three platforms also brings a certain amount of

confidence that the code is technology-independent and will be re-usable on any new

family that may become available in the future.

START

Create Project and
specify target

device

Add design files to
project

Create constraints –
Timing and I/O in
required format

Synthesise,
Translate, Map and

Place and route
Timing analysisPower analysis

END

Figure 4.3.2: Encoder design verification procedure

34

4.3.1 Device resource usage

To determine the resource usage for the 3 test devices, the post-layout/place-and-

route (PAR) reports are analysed. The resources, in this case, refer to the number of

FPGA slices, look-up tables (LUT’s) and global resources. Table 4.3.2 shows that the

encoder makes use of a very small percentage of the available resources for each

device. It can be noted that the encoder uses 4 I/O ports, which are the clock, data

input, data output and reset ports. The implemented encoder has an asynchronous

reset, which is not mentioned in the encoder design section. The Cyclone V device

uses 4 registers more than the other devices, which are used as routing optimisation

registers.

Table 4.3.2: Encoder device resource usage

Device Resource Type Used Total %

Igloo2

Slice Flip Flops 15 12084 0.12
4 input LUT’s 12 12084 0.099
Global 2 8 25
I/O 4 231 1.73

Artix7

Slice Registers 15 126800 0.01
Slice LUT’s 9 63400 0.01
Global (BUFG’s) 1 32 3
I/O 4 285 1

Cyclone V

Registers 19 37736 0.05
LUT’s 13 18860 0.07
Global 1 16 6
I/O 4 128 3

4.3.2 Timing analysis

The critical paths of the design are analysed to obtain the operating frequency of the

encoder. The timing report obtains the pin-path-pin traversing delays and determines

the worst case delays that are used to determine the highest operating frequency.

The result of the timing analysis gives an indication of the possibility of implementing

the design on the selected hardware (Perry, L.D, 2010).

The technology used in each of the test FPGA’s results in a different maximum

operating frequency for each device. However, these values are not for comparison

as such a study would need a different kind of methodology to be put in place beyond

the scope of this study. The post-layout/place-and-route timing analyses for each of

35

the devices give the minimum system clock period, which translates to the maximum

frequencies recorded in Table 4.3.3.

Table 4.3.3: Encoder maximum system clock frequencies

Device Parameter Values

Igloo2 System frequency (MHz) 505.051
Input data rate (Mbps) 101.01

Artix7 System frequency (MHz) 576.037
Input data rate (Mbps) 115.207

 Best case Worst case

Cyclone V System frequency (MHz) 841.75 487.57
Input data rate (Mbps) 168.35 97.514

The maximum system clock frequency values for each device are obtained when a

constraint of 50MHz is set on the clock. The timing analysis tools give results

according to the devices’ operating conditions. For the Cyclone V device, the best

case scenario for the encoder timing is obtained from the fast 0ºC model and the

worst case is obtained from the slow 85ºC device model. These models are

generated as a result of the commercial device minimum and maximum operating

temperatures. The time quest analyser used in Quartus II for the Cyclone V device

gives the maximum frequencies for a device operating in the best and worst case

conditions. The maximum frequencies given for the other devices are based on the

devices operating under worst case conditions.

The maximum system clock frequency can be used to determine the input and output

frequency. As stated during the encoder design, a complete encoder operation

requires 5 system clock cycles to complete. The encoder input frequency can,

therefore, be calculated as:

 𝐼𝑛𝑝𝑢𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

5
 4.3.1

4.3.3 Power analysis

The design tools can be used to generate circuit representations of the encoder

implementation on the FPGA device. These representations are used to estimate the

power drawn by the designed circuit using activity values estimated by the power

analysis tool. In order to obtain an accurate power estimation, a VCD (Value Change

Dump) file describing the circuit activity in response to a particular stimulus has to be

36

generated during post-PAR simulation. The power analysis tools determine two types

of power dissipation values, namely quiescent/static and dynamic power. These two

values give the power drawn by the circuit when the device is powered up and idle,

and the power dissipation due to circuit activity, respectively. The total estimated

power required for the encoder is, therefore, the sum total of the dynamic and

quiescent power.

 A random data stream is generated using MATLAB and used as test data for the

encoder/decoder system. In order to ensure decoding of the entire data stream, a

sequence of 7 zeroes is appended at the end of the input data stream to flush out the

contents of the encoder shift registers; thus, terminating the encoding process. The

generated input is 3200 bits wide and, therefore, the resultant bit stream is 3207 bits

wide due to the termination bits.

To determine the approximate encoder power requirement, VCD files are generated

from simulations with operating frequencies between 25MHz and 300MHz. The

switching activity observed here gives an indication of the power requirement for an

encoder under typical operation. Figure 4.3.3 shows that the dynamic power usage

increases linearly with operating frequency for each of the test FPGA’s. The static

power varies with the device junction temperature as illustrated in Figure 4.3.4. The

total power required for the encoder operation is the sum total of dynamic power and

static power. This is determined from the diagrams in Figure 4.3.3 and Figure 4.3.4.

37

Figure 4.3.3: Encoder dynamic power requirement for system frequencies
between 25MHz and 300MHz

Figure 4.3.4: Encoder static power requirement versus junction temperature

4.4 Conclusion

38

The encoder requires the use of negligible resources as demonstrated by the

analysis done in this chapter. The least implementation cost is observed for the

Igloo2 device, which displays a low average static power requirements of 13 mW for

typical operational conditions between 15ºC and 25ºC, and a dynamic power

requirement of ~5mW between 25MHz and 300MHz. The limitations on the system

performance will come not from the encoder, but from its counterpart, the decoder.

39

CHAPTER FIVE
VITERBI DECODER

5.1 Introduction

On the receiving side of an encoded communication link, a decoder is required to

reverse the effects of the encoder so as to determine the original data. In this project,

a hard decision trace-back Viterbi decoder is used to reverse the effects of the (7, ½)

convolutional encoder used on the transmission side of the communication system.

The decoder is designed using a hierarchical VHDL design methodology for

implementation on an FPGA device.

5.1.1 Decoder outline

The description of a Viterbi decoder can be obtained from a trellis diagram, such as

the one illustrated in Figure 3.4.3. The trellis diagram represents all the possible time-

related state transitions of a specific convolutional code for a given time period. The

branches along the trellis depict the encoded data at the particular time instance;

therefore, a received encoded data stream follows a unique path along the trellis.

This property is used in the description of the decoder to determine the original input.

In order to visualise the decoding process, an input data stream is encoded using the

encoder in Figure 3.4.2, where the generator polynomials are 𝐺1 = 𝑖𝑛 ⊕ 𝑠1⊕ 𝑠2

and 𝐺2 = 𝑖𝑛 ⊕ 𝑠2. The next 3 sections outline the step-by-step process implemented

in the decoder to determine the input data stream from the received parity codeword.

5.1.1.1 Branch metrics and the trellis diagram

As stated earlier, the branches along the trellis give information on all the possible

encoder outputs for all the possible encoder states in relation to the input and time, as

shown in Figure 5.1.1.

40

0/00
1/11

1/01

1/10

0/01

0/11

0/10

1/00

Time	 	 t	 =	 0 1 2 3 4 5

0/00 0/00 0/00 0/00
1/11 1/11 1/11 1/11

0/11 0/11

1/00 1/00

0/10 0/10 0/10

0/01 0/01

1/01 1/01 1/01

1/10 1/10

A	 	 	 	 	 00

B	 	 	 	 	 10

C	 	 	 	 	 01

D	 	 	 	 	 11

Figure 5.1.1: Trellis diagram for encoder with K = 3 and rate = ½

The first step in the decoding algorithm is the calculation of branch metrics, which can

be defined as the Hamming distance between the branch-words received by the

decoder and the expected/transmitted branch-words. The branch metrics can be

calculated using the information available on the trellis, as illustrated in Figure 5.1.2.

The code used for encoding is a ½-rate convolutional code. Consequently, there are

four possible branch-word combinations 00, 01, 10 and 11 on the trellis diagram,

which shall forthwith be referred to as ideal branch-words. The branch metrics

corresponding to the ideal branch-words shall be labelled as BM0, BM1, BM2 and

BM3, respectively, as shown in Table 5.1.1.

Table 5.1.1: Branch metric reference table

Branch-word BM0 BM1 BM2 BM3

00 0 1 1 2

01 1 0 2 1

10 1 2 0 1

11 2 1 1 0

41

00

10

00

10

0/00

1/11

0/10

1/01

01

11

01

11

0/11

1/00

0/01

1/10

00

0

2

2
0
1

1

1
1

t=i t=i	 +	 1

So
ur
ce
	 st
at
es

Destination	 states

Figure 5.1.2: Example branch metrics for branch-word 00

Adapted from (MIT, 2010b)

5.1.1.2 Path metric accumulation and trellis butterflies

Stage 2 in the decoding process involves the calculation of the accumulative path

metrics along the trellis. An encoded data stream follows a unique path along the

trellis and, therefore, the path metrics are used to determine that path. The path

metrics (PM) can be defined as the sum of the branch metrics along a particular path

along the trellis, which accumulate with time. This value indicates the number of bit

errors in the particular path obtained by comparing the received branch-words to the

ideal branch-words from time t = 0 up to the current time (MIT, 2010b). Since the

Viterbi decoder employs a maximum likelihood algorithm, the path along the trellis

with the smallest path metric is the path with the greatest likelihood of representing

the unique path resulting from the input data stream.

The ½-rate code has a symmetry property, whereby each source state has 2 possible

destination states. These source/destination state pairs can be grouped to form trellis

butterflies, such as the one shown in Figure 5.1.3. The trellis butterflies simplify the

calculation of accumulative path metrics.

42

2j j

2j	 +	 1 j	 +	 2(K-‐1)/2

A

B

C

D

A	 C

B D

0
1

0
1

B C

A	 D

Source	 Destination

Figure 5.1.3: General ½-rate trellis butterfly

On the trellis butterfly, the paths to be updated during the add-compare-select (ACS)

process are on the right-hand side of the diagram. Each butterfly is used to update 2

path metrics using equation 5.1.1, with reference to the labelling of the trellis butterfly

in Figure 5.1.3:

PM(C) = min BM(A → C) + PM(A),BM(B → C) + PM(B)

𝑃𝑀(𝐷) = min BM(A → D) + PM(A),BM(B → D) + PM(B)
5.1.1

The ½-rate code with K=3 has 4 states and the trellis in Figure 5.1.1 can be

translated into 2 butterflies, as illustrated in Figure 5.1.4. There are 2 source states

for each destination state. To obtain the path with the highest likelihood representing

the input data stream at that time instance, the source path with the smallest metric is

selected as the winner path. It can be seen from Figure 5.1.4 that the ideal branch-

words that result from a 0/1 input are the same for each source state in a butterfly.

This property is used to determine the source input, which resulted in the transition

from the particular source state to the winner path at a particular time instance.

00

01

00

10

10

11

01

11

0/00

1/11

0/11

1/00

0/00

1/11

0/11

1/00

Source	 Destination Source	 Destination

Figure 5.1.4: K = 3, R = ½ trellis butterflies

The accumulative path metrics for the example K = 3, r = ½ code can therefore be

calculated using the formulae in equation 5.1.2:

43

PM0 = min BM0 + PM0,BM3 + PM2

PM1 = min BM3 + PM0,BM0 + PM2

PM2 = min BM2 + PM1,BM1 + PM3

PM3 = min BM1 + PM1,BM2 + PM3

5.1.2

It is important at this stage of the decoding process to take note of the survivor

branches, which correspond to the minimum path metric at every time instance, as

this information is used to determine the decoder output. These branches are referred

to as the decision branches.

5.1.1.3 Decoder output

With the path metric information and the decision branches, the decoder has all the

information required to complete the decoding process. After the decoder has

received the complete parity codeword, the trellis is read in reverse, starting with the

state at the end of the trellis with the smallest path metric to trace the path most likely

to have been followed by the input during the encoding process. The most significant

bit (MSB) of the state along the reverse trellis path is recorded as the output bit at that

particular time instance.

Figure 5.1.5 shows the decoding process for a received codeword 11 10 00 10 11

encoded using the K = 3, r = ½ encoder. The first figure shows the branch metric

information for each branch-word of the input codeword and the accumulation of path

metrics. The figure also highlights the survivor paths at each time instance. The

accumulative path metrics are updated in the squares, which represent the nodes of

the trellis. It is important to note that initially the path metric for state 00 is 0 and the

rest of the states have a path metric of infinity due to the fact that the encoder states

are initialised to zero at time t = 0. When the path metric for the two paths entering a

node is identical, they are equally likely and, therefore, the survivor path is randomly

selected (MIT, 2010b).

The second figure highlights the possible paths that may represent the input,

eliminating the survivor branches from the previous diagram that do not contribute to

a complete path traversing from the beginning of the trellis to the end. The final

drawing highlights the unique path, which represents the input message, starting at

the node with the lowest path metric. It can be noted that all the accumulative path

44

metrics along the path are 0, which occurs when the received codeword has no errors

and correctly represents the encoded message (MIT, 2010b).

If the received codeword contains errors, the decoder selects the path with the lowest

path metric, which represents the codeword that most closely represents the

transmitted codeword, as illustrated in Figure 5.1.6. As a result of the encoder

generator polynomials and the length of the input message (N), the encoder has a

finite number of possible resultant codewords 2! (MIT, 2010a). The codeword 01 10

11 10 11 used in the decoder illustration is not valid, because it cannot be obtained

using any of the possible input combinations for a 5-bit message. There are two

possible decoder outputs, as shown in the last 2 diagrams in Figure 5.1.6. The 2

paths have the same path metric, which makes them equally likely. The final output

is, therefore, randomly selected.

Many Viterbi decoders have been developed over the years; however, out of

necessity, the decoder described in this document has been developed from scratch.

Many existing decoders are available as IP cores, but require paid licenses and have,

therefore, not been considered for this project. The open source accessible Viterbi

decoder solutions imposed a great learning curve for understanding the VHDL

description as the free available code was not working correctly and no support was

made available, despite our many requests. The decision was, therefore, made to

develop a new VHDL architecture and description from scratch.

It must be noted that the Viterbi decoder developed is unique to the encoder with the

generator polynomials described in this document. However, a different code of the

same rate and constraint with different generator polynomials can be decoded using

the same decoder by changing the branch metric values, which are linked to each

trellis butterfly.

45

0

∞

2

0

00

11

10

01

∞

∞

∞

∞

11

00

01

10

11PM	 t=0
00

10

01

11

PM	 t=1

2
0

0
2
1
1

1
1

3

3	

00

11

10

01

0	

2	

11

00

01

10

10 PM	 t=2
2	

0	
01

3

3

11

10

00
00

11

10

00

01

3

3
01

0

2

11

10

00

11

10

00

01

10PM	 t=3 PM	 t=4
0

2

01

3

3

11

10

00

11

10

00

01

11 PM	 t=5
1
1

1
1
0

2
2
0

0
2

2
0

1
1
1
1

1
1

1
1
0
2
2
0

2
0

0
2
1
1
1
1

0

∞

2

0

∞

∞

∞

∞

PM	 t=0
00

10

01

11

PM	 t=1
3

3

0	

2	

PM	 t=2
2	

0

3

3

3

3

0

2

PM	 t=3 PM	 t=4
0

2

3

3

PM	 t=5

0

∞

2

0

∞

∞

∞

∞

PM	 t=0
00

10

01

11

PM	 t=1
3

3

0

2

PM	 t=2
2

0

3

3

3

3

0

2

PM	 t=3 PM	 t=4
0

2

3

3

PM	 t=5

00101output

Figure 5.1.5: Viterbi decoder decoding the valid codeword 11 10 00 10 11
producing the transmitted message 10100

46

0

∞

1

1

∞

∞

∞

∞

PM	 t=0
00

10

01

11

PM	 t=1
2

2

1

3

PM	 t=2
1

2

3

3

2

2

2

3

PM	 t=3 PM	 t=4
2

2

3

3

PM	 t=5

0

∞

1

1

∞

∞

∞

∞

PM	 t=0
00

10

01

11

PM	 t=1
2

2

1

3

PM	 t=2
1

2

3

3

2

2

2

3

PM	 t=3 PM	 t=4
2

2

3

3

PM	 t=5

0output 0 1 0 0

0

∞

1

1

∞

∞

∞

∞

PM	 t=0
00

10

01

11

PM	 t=1
2

2

1

3

PM	 t=2
1

2

3

3

2

2

2

3

PM	 t=3 PM	 t=4
2

2

3

3

PM	 t=5

1output 0 0 0 1

10 10 10 10

0

∞

1

1

00

11

10

01

∞

∞

∞

∞

11

00

01

01PM	 t=0
00

10

01

11

PM	 t=1

1
1
1
1
2
0

0
2

2

2

00

11

10

01

1

3

11

00

01

10 PM	 t=2
1

2
01

3

3

11

10

11
00

11

10

00

01

2

2
01

2

3

11

00

11

10

00

01

10PM	 t=3 PM	 t=4
2

2

01

3

3

11

00

11

10

00

01

11 PM	 t=5
1
1
1
1
0

2
2
0

2
0

0
2

1
1
1
1

1
1
1
1
0
2
2
0

2
0
0
2
1
1
1
1

Figure 5.1.6: Viterbi decoder decoding the invalid codeword 01 10 11 10 11

47

5.1.2 Algorithm

The process of Viterbi decoding can now be described using an algorithm with the

following steps, which practical implementation in VHDL is explained in detail

throughout this chapter:

1. Initialisation: Set the trellis to the zero state.

2. Branch Metric calculation (BM): Calculate the branch metric for each branch in

the trellis for a particular time instance. The branch metric is obtained by

calculating the distance between the received branch-word and all possible

branch-words. The number of different bits between compared branch-words

is used as the branch metric value.

3. Add – Compare – Select (ACS): Calculate and update the path metric values

for each path entering a node in the trellis and discard loser paths. The loser

paths along the trellis at a given time instance are defined as the paths with

the largest path metrics.

a. Add obtained branch metrics to the relevant path metrics;

b. Compare metrics of paths entering a node;

c. Select a survivor path, which is given as the path with the smallest

metric; and

d. In case of a tie (equal metric), randomly select survivor path.

4. Determine output (TB):

a. Use survivor paths from ACS to select the ultimate survivor path; and

b. Derive the output from the ultimate survivor path.

5.2 Decoder Design

The decoder is made up of three major blocks, namely, the branch metric unit (BMU),

the add-compare-select unit (ACSU) and the trace-back unit (TBU) as shown in

Figure 5.2.1. For implementation purposes and verification simplicity, the blocks are

treated as separate entities until their independent functionality is achieved. They are

then combined to form one decoder entity with multiple components.

Branch
Metric

Calculator

Branch
metrics

Path
decisions

Decoded
outputAdd

Compare
Select Unit

Trace Back
Unit

Input

Figure 5.2.1: Viterbi decoder general block diagram

48

Each of the major components has a contributing role in the identification and

correction of errors through the sharing of information among blocks. As a result, all

the relevant blocks must communicate with each other, or use additional blocks to

facilitate the flow of signals among the major blocks, as illustrated in Figure 5.2.2.

ACSU

TBU

MINU

MU

BMU
Branch	
metrics

Delayed	
path	

metrics
Last	 path	
metrics	 of	
block

Index	 of	
minimum	

path	
metric

Path	
decisions Path	

decisions

input

output

MUX

calculated	
path	

metrics

Figure 5.2.2: Major decoder blocks with additional synchronisation blocks

The direction of flow of information among the decoder blocks is as shown by the

arrows in Figure 5.2.2. Each block needs to be activated when the correct input is

available from the preceding block. To achieve the desired signal flow, a control unit

block is introduced to activate the relevant blocks as desired; thus, synchronising the

calculations, I/O control and overall decoder operation as illustrated in Figure 5.2.3.

Each block represents a set of related processes, which contribute to the overall

decoding process as described in Table 5.2.1. The description of the blocks is then

used to define the VHDL behavioural architecture for the FPGA implementation. The

decoder is implemented as a completely synchronous architecture; therefore, the

clock is used in all the blocks in conjunction with the control signals.

ACSU

TBU

MINU

MU

BMU
Branch	
metrics

Delayed	
path	

metrics
Last	 path	
metrics	 of	
block

Index	 of	
minimum	

path	
metric

Path	
decisions Path	

decisions

input

output

MUX

calculated	
path	

metrics
Clock

Co
nt
ro
l	

U
ni
t	 	

Control	
Signals	

Figure 5.2.3: Interaction of decoder blocks with control unit included

49

Table 5.2.1: Viterbi decoder block description breakdown

Stage Name Description
1 Control This block is responsible for creating control signals using the

input clock signal to synchronise the input selection, calculations,
and output selection processes.

2 BMU Responsible for branch metric calculations required to determine
the decoder output.

3 ACS This block is used for calculating and updating the path metric
values for each path entering a node in the trellis. This block is
also responsible for making decisions determining the surviving
paths along the trellis.

4 MUX This block represents the block that selects the correct path
metric values to be used in ACS unit calculations. It is an
additional block used for signal synchronisation.

5 MINU This block calculates the minimum path metric required for
determining the state where the trace-back path begins.

6 MU Required for the storage of the decisions made by the ACS unit.
7 TBU Responsible for following the ultimate survivor path and

determining the decoder output.

5.2.1 Control unit

The control unit generates the control signals, which synchronise the selection of

block inputs and outputs as well as control the activation of the processes within

these blocks. Multiple control signals are created using the system clock to control

the propagation of information through the different blocks. The signals produced by

the control unit are synchronised according to the timing requirements of the rest of

the decoder system.

Figure 5.2.4 shows the relationship between the system clock and the control signals,

which indicates the parallel and sequential nature of the decoder system. The control

signals are used to activate/enable one or more blocks in the system.

Table 5.2.2 lists the control unit signals and the blocks for which they are responsible.

50

Figure 5.2.4: Control unit signal synchronisation

Table 5.2.2: Decoder control signals

Signal System
bmsig Enables calculation of branch metric.
muxsig Enables MUX unit for ACS path metric input selection.

acssig Controls the ACS unit to update the path metric value used for
computations.

musig Enables the writing of decision data from the ACS to memory.

minsig Controls the calculation of the minimum path metric, which
gives the trace-back starting point.

tbsig Controls the saving of the valid decoder outputs.

memwrite Controls the selection of the RAM block to be used for writing
the ACS decision vectors.

memread Controls the selection of the RAM block to be read from during
trace-back.

tbenb Activates and deactivates the entire trace-back unit.

5.2.2 Branch metric unit (BMU)

A metric defines the distance between elements and gives an indication of how

closely placed the elements are in a particular space. The BMU is, therefore,

responsible for calculating the distance metrics of the received branch-words and the

ideal branch-words represented by the branches in a trellis diagram.

As mentioned in earlier sections, the BMU is responsible for calculating the difference

between the received branch-word and the possible codewords for each of the trellis

branches. The resultant value from the calculations represents the number of errors

in the received branch-words. There are 2n BM calculations for a code with rate K/n;

51

therefore, for a ½-rate decoder, the BMU carries out 4 calculations for each trellis

branch.

The BMU accepts an input that is 2 bits wide and produces 4 outputs, namely, BM0,

BM1, BM2 and BM3, which represent the Hamming distance between the input

branch-word and the ideal branch-words. The operation of the BMU is controlled by

the global clock in conjunction with the BMU control signal as shown in Figure 5.2.5.

in

BMU

BM0

BM1

BM2

BM3

clock

BM	 ctrl

Figure 5.2.5: Branch metric unit

The arithmetic and logic operations implemented to obtain the branch metric results

are as illustrated in Figure 5.2.6.

In[1:0]

BM0

BM2

BM1

BM3

0

1

0

1

+

+

+

+

In(0)

In(1)

Ex-‐or

x

y

Figure 5.2.6: BMU hard decision calculations

There are, therefore, 3 possible branch metric values that can be obtained from the

BMU for each trellis branch as displayed in Table 5.2.3.

Table 5.2.3: Hard decision BMU expected outputs

In[1:0] x x⊻0 x⊻1 y y⊻0 y⊻1 BM0 BM1 BM2 BM3
00 0 0 1 0 0 1 0 1 1 2
01 0 0 1 1 1 0 1 0 2 1
10 1 1 0 0 0 1 1 2 0 1
11 1 1 0 1 1 0 2 1 1 0

52

5.2.2.1 Testing

With reference to Table 5.2.3, the expected BMU outputs are known; hence, to verify

the BMU operation, a set of 2-bit signals is generated and used as inputs and the

result recorded as in Figure 5.2.7. The results show that a new branch metric is only

calculated on the rising edge of the global clock signal when the branch metric control

signal (bmsig) is active, verifying the operation of the BMU.

Figure 5.2.7: BMU test results

5.2.3 Add compare select unit (ACSU)

The ACSU is responsible for calculating the possible trellis survivor paths during each

decoder time instance. The ACSU operates, assuming a trellis in a steady-state

where more than one path enter a node at any given time. The VHDL behavioural

description for the ACSU is a hierarchical model that is made up of multiple parallel

ACS units.

5.2.3.1 ACS units

There are N/2 butterflies for an N state trellis; therefore, the trellis with 64 states can

be broken down into 32 butterflies, such as the one illustrated in Figure 5.1.3. The

trellis butterflies for the implemented decoder are illustrated in APPENDIX B:

TRELLIS BUTTERFLIES. Each butterfly is represented by an ACS unit for the path

metric update computations. The length of the input sequence used for the likelihood

estimations determines the amount of storage required for the path metric

information. As mentioned in Section 3, the reasonable truncation length for the

encoded sequence is 5 times the constraint length of the encoder. In this case, the

recommended truncation length is 35, which implies that updated path metrics for 35-

time instances need to be saved and used to determine the decoder output. This

places a large storage requirement on the decoder, since the path metric results are

multiple bit values. To attempt a reduction in the decoder memory required, the

53

truncation length is reduced and the decoder performance at the reduced truncation

length is noted. The results showing the impact of the reduced truncation length on

the decoder performance are given in Section 5.3.

The trellis butterfly has a property that allows the use of single bits, referred to as

decision bits, to represent the survivor path metrics to be saved. From Figure 5.2.8a

and Figure 5.2.8b it can be seen that the LSB for source state A is 0 and the LSB for

source state B is 1; a property that is true for all the trellis butterflies. The trellis

butterfly states can, therefore, be labelled as in Figure 5.2.8c. If the surviving path

emanates from state A, the decision bit is set to ‘0’ and if it is from state B a ‘1’ is

saved. The same branch metric values are used for the state transitions from both

source states, as seen in Figure 5.2.8a and Figure 5.2.8b, resulting in the new branch

metric labels, as seen in Figure 5.2.8c. The decision bits can, therefore, be calculated

using the formula in equation 5.2.1:

dec0 = 1 if PMA + BMtop > PMB + BMbottom else 0
dec1 = 1 if PMA + BMbottom > PMB + BMtop else 0 5.2.1

c)

a) b)

000000 000000

000001 100000

C

D

0/00

1/11

0/11
1/00

Source	 Destination

A

B

B C

B D

A	 C

A	 D

011110 001111

011111 101111

C

D

0/01

1/10

0/10
1/01

Source	 Destination

A

B

B C

B D

A	 C

A	 D

-‐-‐-‐-‐-‐0 0-‐-‐-‐-‐-‐

-‐-‐-‐-‐-‐1 1-‐-‐-‐-‐-‐

C

D

Source	 Destination

A

B

BMtop

BMbottom

BMbottom

BMtop

Figure 5.2.8: Trellis diagram for generating decision bits a) trellis butterfly for
updating state 0 and 1, b) trellis butterfly for updating state 15 and 47, c)
generic trellis butterfly diagram for all states showing the LSB and MSB

pattern for source and destination states

54

The updated path metric is still required for use in the next time instance and is,

therefore, temporarily stored and replaced when the next PM calculation is executed.

As a result, each ACS unit is designed to give four outputs; 2 decision bits to be used

by the decoder trace-back component and 2 path metric values for updating the path

metric for the next time instance.

32 ACS units with a structure as shown in Figure 5.2.9 are, thus, implemented in

parallel to give the desired path selection and decision bit results for each trellis

butterfly. Each unit is responsible for updating the path metric for two states

according to the trellis butterfly relationships and determining the corresponding

decision bits denoting survivor paths.

PMC

PMD

Dec0

Dec1

ACSx

clk

ACS	 ctrl

PMA

PMB

BMtop

BMbottom

Figure 5.2.9: Individual ACS unit structure

To implement the ACS units, the arithmetic and logic operations as illustrated in

Figure 5.2.10 are used. Each ACS unit requires 4 adders and 2 comparators.

55

Add Compare
/	 select

+

+

+

+

>	
(comp)

BMtop

PMA

BMbottom

PMB

>
(comp)

Dec0

Dec1

PMD

PMC

Figure 5.2.10: ACS unit arithmetic and logic operations

5.2.3.2 ACS top

The ACS module is a hierarchical model with multiple interconnected components;

the top entity (APPENDIX C: ADD COMPARE SELECT (ACS) MODULE

INTERCONNECTION) is responsible for defining the connections among the different

components as determined by the trellis butterfly relationships. All the individual

decision bits obtained from each of the parallel units are merged into a data bus

containing 64 decision bits, which are saved for future use. This implies that a

memory unit is required to store the decision bits.

5.2.3.3 Temporary path metric storage unit (Mux)

A temporary path metric storage unit (MUX) is used to save the survivor path metric

values calculated by the ACS units, which are to be used at the next time instance as

the ACSU inputs. The interaction between the MUX unit and the ACSU is as

illustrated in Figure 5.2.11.

56

ACSU
Branch	 metrics	
BM[0:3]

path	
metrics	
PM[0:63]

Path	 decisions	
Dec[0:63]

MUX

Updated	 path	
metrics	 PM[0:63]

MUX	 ctrl

Clk

ACS	 ctrl

Figure 5.2.11: ACSU and MUX interaction

At time t = 0, only one state exists on the trellis as illustrated in Figure 3.4.3. The only

existent state is the zero state, which has a path metric of zero, as it has no path

feeding into it. The rest of the states are non-existent and, hence, their path metrics

do not exist. For ease of calculation, the path metrics for the states that are not

present at t=0 are set to a high value, which represents a path metric of infinity. In this

implementation, the number 200 is used to represent a path metric of infinity. The

path metric values defined here are used as the initial inputs to the ACS units to be

used for the first accumulative path metric calculation at time t = 1.

The MUX unit is responsible for selecting the input to the ACSU as required at a

particular time instance, as shown in Figure 5.2.12. At the beginning of the decoding

process, the initial path metric as described above is used as the ACSU input.

Figure 5.2.12 illustrates the hardware description of the MUX unit, which is made up

of a memory register and a 2-to-1 multiplexer, and represented as a selector switch

controlled by an external control input.

57

select

CE

D Q
CE

Path	 Metric	
from	 ACS	
PM[63:0]

Control	 signal

Clk

Initial	 Path	
Metric	
PM[63:0]

Path	 Metric	
to	 ACS	
PM[63:0]

Figure 5.2.12: MUX unit path metric selection functional block diagram

5.2.3.4 Testing

To verify the successful implementation of the ACS unit, a spreadsheet reference

model is used to give the expected decision bit output values after each stage. The

developed ACS module is tested using the branch metric results obtained from the

BMU functionality test. To determine the success of the implementation, the expected

results from the spreadsheet are compared to the simulation results.

5.2.4 Decoder output selection unit

The decoder output selection unit is made up of the trace-back (TBU), memory (MU)

and minimum path metric (MINU) units as shown in Figure 5.2.13. Each of these units

contributes to the decoder output calculation as described in the following sub-

sections.

58

TBU

MU

Last	 path	
metric	 at	 t	 =	 N	
PM[63:0]

Index	 of	 minimum	
path	 metric

Path	
decisions	
Dec[63:0]

Path	 decisions	
Dec[63:0]

Decoder	
output

MINU

Decoder Output Selection Unit

Clk

MINU	 ctrl

MU	 ctrl TBU	 ctrl

Figure 5.2.13: Decoder output unit

5.2.4.1 Memory unit (MU)

The output of the ACSU for long-term storage has been established to be a 63-bit

wide signal containing survivor path metric decision bits. At each time instance,

decisions are made using the path metrics from the previous time and the branch

metrics corresponding to the given input. The obtained decisions are stored to be

used later in determining the decoder output sequence. A last-in-first-out (LIFO)

random access memory (RAM) is created for storing the required decision vectors.

Three blocks of RAM, which size is determined by the trace-back depth (truncation

length) of the decoder, are used for the storage. The stored decision bits are used in

the trace-back block where the decoder output is generated.

As shown in Figure 5.2.15, the MU reading and writing sequences are controlled by

control signals from the decoder control unit. The selection of the RAM block to be

used in write mode at a particular time instance is done using the finite state machine

(FSM) illustrated in Figure 5.2.14a. The FSM state transitions are controlled by the

memory unit write/read select control signals (memwrite/memread ctrl) obtained from

the decoder control unit. The write select FSM gives a 3-bit output and each RAM

block uses one bit as an enable signal as, shown in Figure 5.2.15.

59

RAM1

Out	 =	 001

RAM2

Out=	 010

RAM3

Out	 =	 100

Initial	
state	

Clk	 	 &	 memwrite	 ctrl	 =	 1	 	

RAM1

Out	 =	 001

RAM2

Out=	 010

RAM3

Out	 =	 100

Initial	
state	

Clk	 	 &	 memread	 ctrl	 =	 1	 	

a) b)

Clk	 	 &	 memwrite	 ctrl	 =	 1	 	

Clk	 	 &	 memwrite	 ctrl	 =	 1	 	

Clk	 	 &	 memread	 ctrl	 =	 1	 	

Clk	 	 &	 memread	 ctrl	 =	 1	 	

Figure 5.2.14: RAM selection FSM state diagrams a) Write RAM select b) Read
RAM select

MU	 ctrl

memwrite	
ctrl

Decision	 bits	
from	 ACSU

Clk

Write	
RAM	

selector	
FSM

CE

WE

EN

add
data

out

RAM1

WE

EN

add
data

out

RAM2

WE

EN

add
data

out

RAM3

RAM2	 Read/
Write	 address

RAM3	 Read/
Write	 address

CE

Decision	
bits	 to	 TBU

RAM2	 Read/Write	 address Read	 RAM	
selector	
FSM

memread	
ctrl

FSM	 Out(0)

FSM	 Out(1)

FSM	 Out(2)

Figure 5.2.15: Memory unit block configuration

5.2.4.2 Minimum path metric calculation (MINU)

At the end of each trellis, the minimum path metric must be calculated to determine

the starting point for the decoder trace-back along the trellis to select the path that

most likely represents the correct output. The minimum path metric value is

60

calculated and the corresponding index (between 0 and 63) of that value is used to

determine the starting state and the decision bit for that state. All the accumulated

metrics for each of the 64 paths are compared to determine the one with the least

numerical value. To reduce the time consumed by the minimum path metric

calculation, the pipeline method involving both parallel and sequential instructions is

employed as illustrated in Figure 5.2.16. This unit introduces a delay of 5 system

clock cycles, which are required to complete the minimum path metric calculation.

<
Compare

64

<
Compare

32

<
Compare

16

<
Compare

8

<
Compare

4

<
Compare

2

[63:0]

min
PM

Input	 path	
metrics	 at	
t	 =	 N

Index	 of	
minimum	 path	
metric	 [5:0]

[31:0]

[15:0]

[7:0]

[3:0]

[1:0]

clk

Minu	 ctrl

Figure 5.2.16: Minimum path metric calculation block diagram

5.2.4.3 Trace-back unit

The TB unit is the decoder stage where the decoder output is generated using the

decision bits saved in the RAM. These bits are accessed and used to infer the

information sequence with the highest likelihood of having originated from the data

source.

As established earlier, the trellis butterflies help with trellis navigation and determining

the most probable path followed with respect to a particular input stream. As such,

the trellis butterflies in APPENDIX B: TRELLIS BUTTERFLIES, if read from right to

left, with help from the decision bit information, can be used to determine the decoder

output. Figure 5.2.8 shows the generic pattern followed by the LSB and MSB of

states in relation to the butterfly source and destination states. Using this pattern, the

trellis butterfly can be broken down to show only one destination state with its source

states as shown in Figure 5.2.17. The forward directional butterfly shows that the

MSB of the destination state is 0, given that the input was a 0, and 1, given that the

input was a 1. It can also be seen that, if the destination state is reached from a state

of which the LSB is 1, the decision bit is set to 1. The same logic applies if the

destination state is reached from a state of which the LSB is 0; the decision bit is set

to 0. As such, when the butterflies are read backwards, the preceding state can be

deduced using the decision bit and the decoder output obtained from the state MSB.

61

Forward Backwards

-‐-‐-‐-‐-‐0 0-‐-‐-‐-‐-‐

-‐-‐-‐-‐-‐1

A

B

C

Source	 Destination

-‐-‐-‐-‐-‐0 0-‐-‐-‐-‐-‐

-‐-‐-‐-‐-‐1

A

B

C

Source	 Destination

-‐-‐-‐-‐-‐0

1-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐1

A

B D

-‐-‐-‐-‐-‐0

1-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐1

A

B D

Decision	 =	 0

Decision	 =	 1

Decision	 =	 0

Decision	 =	 1

0

0

1

1

Decision	 =	 0

Decision	 =	 1

Decision	 =	 0

Decision	 =	 1

Figure 5.2.17: Forward and backward trellis butterfly relationships

The backward trellis butterfly relationships as shown in Figure 5.2.17 are used during

this stage of the decoder to determine the trace-back path along the trellis.

Figure 5.2.18 shows the configuration of the TB unit and the interconnectivity of the

TB sub-blocks. The implemented decoder is completely synchronous, and all the sub-

blocks of the TB unit are controlled using the global clock in conjunction with a control

signal.

Select	
decision	 	

bit

Append
&

Index	 &	 dec

Select	
Index	
MSB

Index[5:0]

Decoder	
output

Decision	 bit	
vector

Index	 of	 path	
with	 minimum	
PM

New	
Index[5:0]

Index

dec

TB	 ctrl

CE

Clk

MSB	 stripped	
index	

Figure 5.2.18: Trace-back unit configuration block diagram

62

The trace-back algorithm can be described as follows:

Step 1. At the beginning of the trace-back process (path end) select the index

of the path with the minimum path metric as input index; otherwise, use the

index as generated in the previous TB unit calculation (New Index).

Step 2. Use the index from step 1 to select the decision bit corresponding to

that index.

Step 3. Remove the index MSB of the index from step 1; NB: this is the

decoder output at that time instance.

Step 4. To get the preceding node in the path, append the decision bit from

step 2 to the stripped down index from step 3. The decision bit is added as the

LSB forming the new index.

Step 5. Go back to step 1

To further illustrate the steps of the TB algorithm, if the path index in step 1 is 15

(001111), then the decoder output in step 3 would be 0, and the stripped down index

would be 01111. If the decision bit corresponding to the index is 0, the result from

step 4 would be 011110. This state transition relationship can be confirmed using the

trellis butterfly in Figure 5.2.8b; thus, verifying the accuracy of the TB algorithm.

The trace-back unit moves through the trellis in reverse order; hence, the output is in

reverse order, which means that the output has to be reordered before use. The

process of reordering is omitted in the VHDL description of the decoder and

implemented externally as part of the overall system test.

To test the functionality of the output unit, the expected values are obtained from the

spreadsheet model and compared to the results obtained from the VHDL simulation.

The output of the ACSU is used as the input to this block during the testing phase.

5.2.5 Truncation length

As mentioned earlier in the document, the trace-back (TB)/truncation length has an

effect on the overall decoder performance. It is, therefore, important to note the

effects of changing the trace-back length on the overall decoder architecture. The TB

length only has an effect on the RAM memory requirement and has no other effect on

the rest of the decoder architecture. The TB length also affects the decoder timing

requirements. This effect is explained in the decoder analysis Section 5.3. The main

reason the TB length affects the decoder performance is that a longer TB provides

63

more historical path metric data and, therefore, increases the accuracy of the

likelihood estimations.

5.3 Analysis

The decoder analysis and testing involve 3 stages, which are responsible for

• verifying the decoder’s ability to replicate a given input bit stream after it is

subjected to convolutional encoding;

• determining the error correction capability of the decoder; and

• quantifying the coding gain estimations attainable using the implemented

encoder/decoder pair.

A test system as illustrated in Figure 5.3.1 is used to execute the required analysis.

The diagram shows the subsystems required for each analysis stage, as well as the

platform used to perform the operations. The testing algorithm involves VHDL and

MATLAB simulations as labelled in Figure 5.3.1.

St
ag
e2

St
ag
e1

St
ag
e3 Modem	 &	
Channel

Error	 rate	
Calculator

Data	
Generator

Encoder Decoder

Error	
Calculator

Encoder Modem	 &	
Channel

DecoderOrder	
System	 	

Error	
Calculator

Plotter
Gain	

Calculator

VHDL

MATLAB

VHDL

MATLAB

MATLAB

MATLAB

MATLAB

Error	 rates	 for	 coded	 system

Error	 rates	 for	 un-‐coded	 system

Figure 5.3.1: Decoder test and analysis system diagram

64

The first step in the analysis is to verify that the decoder can replicate the initial input

sequence as can be seen in Figure 5.3.1. The MATLAB data generator creates a text

file, which is used in the VHDL test bench. The error calculator stage 1 of the decoder

test should yield a result of zero as there should be no errors during this testing

phase.

After successful verification of the decoder’s basic operation, the error correction

capability is tested. Estimations of the achievable coding gain, as a result of the

encoder and decoder pair, are obtained using the sequence labelled stage 3 in the

test system diagram. The estimates are obtained by comparing the error values from

the decoder error correction capability test and the error values from the un-coded

information.

5.3.1 Error correction

Testing the error correction capability requires the introduction of errors, which

typically occur during space communications. For the introduction of these errors, a

MATLAB AWGN channel model is used. In order to mimic a ‘real-life’ communication

channel, a MATLAB BPSK modem is also implemented in the test system. The

communication scenario is simulated for an AWGN channel with an Eb/No ranging

from -1 dB to 12 dB, and the error rates for the decoder observed.

The truncation length/trace-back depth of the decoder affects the error correction

capability of the Viterbi decoders as seen in Figure 3.4.5. The ideal trace-back depth

for ideal error correction is infinity, which is not practically feasible as this would

require infinite memory and introduce infinitely long latency (CCSDS, 2012). The

encoder data stream is, therefore, broken up into reasonably sized blocks during the

decoding process for practically achievable Viterbi decoding. The block size aka

truncation length or trace-back depth is varied to determine the value to be used in

this decoder.

The results obtained are as illustrated in Figure 5.3.2, which shows the error

correction performance of the decoder over 6 different truncation lengths (TB).

65

Figure 5.3.2: Decoder error rates for variable trace-back depths for constraint
length K = 7 (TB = 3K, 4K, 5K, 6K, 7K and 10K)

According to Viterbi decoding literature, the acceptable trace-back depth is usually

approximately 5 times the constraint length (CCSDS, 2012). To allow clearer analysis

of the error correction capability, each of the trace-back depth values is compared to

the recommended truncation length of 35 and the results illustrated in Figure 5.3.3.

Figure 5.3.2 and Figure 5.3.3 show that the decoder error correction capability is

nearly identical using all the different TB values when Eb/No is less than 2dB. TB35,

TB49, and TB70 are identified as having the best BER performance when the Eb/No

value is 3 and are, therefore, selected to be used for further analysis. TB42 has a

BER performance, which is extremely close to the recommended TB35 for all Eb/No

values, and is not considered for further analysis. Figure 5.3.4 illustrates the BER

performance of the selected TB values. The 3 selected TB values are applied in

further decoder analyses described in the following sections to determine their

respective costs of implementation in terms of coding gain, resource and power

utilisation.

66

Figure 5.3.3: Error correction for TB21 to TB49 compared to recommended
Trace-back TB35

Figure 5.3.4: Error correction for Trace-back depth TB70, TB35 and TB49

67

5.3.2 Coding Gain

The same input sequence from the data generator is passed through the AWGN

model with identical properties to the one used in stage 2 of the test system to

determine coding gain. The results obtained are as illustrated in Figure 5.3.5, which

shows that implementation of coding on a channel with Eb/No values below 2dB

increases the resultant occurrence of errors as opposed to reducing them. A coding

gain of approximately 3dB is observed at a BER of 10-3.

Figure 5.3.5: Un-coded BER performance versus Coded BER performance for
TB35, TB49, and TB70

5.3.3 Resource utilisation

In this section, the decoder resource utilisation of the test devices is observed for the

selected TB values. Table 5.3.1 shows a summary of the resource utilisation when

implemented with the 3 selected TB values. It should be noted that the number of

dual port RAM modules on the Igloo2 device, which was used for the encoder

analysis, are insufficient for the decoder implementation with TB = 70. A larger device

(M2GL025T) from the same family and with the same architecture and packaging

specifications is, therefore, selected for TB70 decoder analysis from this point

forward.

68

A change in TB value only has an effect on the decoder memory requirement;

however, a miniscule difference in look-up table (LUT) utilisation is observed for TB35

and TB49, which have an identical utilisation of registers as expected. The LUT

utilisation difference might be attributed to a change in the constant stored in order to

instruct the decoder of the truncation length to be used, but a more in-depth analysis

is required. TB70, on the other hand, shows a difference in the number of LUT’s and

registers used and this difference might also be attributed to the synthesiser inference

of logic and optimisation methods employed. The noted differences may also be

attributed to the logic used to interface the RAM and the rest of the decoder.

The same design is implemented on all the devices; however, the number of registers

and LUT’s used differ as a result of the different synthesisers used to infer the

hardware from the VHDL description. This can be attributed to differences in the

synthesiser synthesis parameters and optimisation methods. The difference in the

number of LUT’s and registers for the same VHDL description on different devices

can also be attributed to the differences in the configuration of the technology

available on each device and how logic resources are grouped.

The logic distribution analysis reveals that the maximum resources are used by

combinatorial logic (look-up table) and that many registers are still available.

Furthermore, less than 3% of the logic blocks are used for routing purposes. This

means that, with careful floor planning and maybe some architectural modification,

the implementation can fit in smaller circuits. The difference between the number of

registers of the various architectures may be a result of different logic synthesisers

and implementation usage of the register replication feature. Logic replication

duplicates the same logic in order to improve the speed of the circuit.

The memory utilisation difference for the various TB values is only substantial if the

number of memory bits used in the utilised memory blocks is considered. The

memory blocks used in each instance for the selected devices are not utilised to

capacity, as the different TB values require memory bits given in Table 5.3.3. The

results of the memory utilisation analysis given in Table 5.3.4, show that a small

percentage of the bits available in the memory blocks are allocated to the decoder.

Similar to the registers and LUT’s, the RAM implementation can be optimised to

increase utilisation efficiency.

69

Table 5.3.1: Decoder resource utilisation

Device Type TB35 TB49 TB70 Available
Artix7 Registers (Flip Flops) 2812 2812 2,813 126,800

LUT’s 5262 5,210 5,174 63,400
Global 1 1 1 32
I/O 6 6 6 285
RAM blocks 3 3 3 135

Cyclone V

Registers (Flip Flops) 3661 3661 3655 37736
Logic LUT’s 5569 5558 5563 18860
Global 2 2 2 16
I/O 6 6 6 128
Memory blocks RAM
(10k)

6 6 6 176

Igloo2

 M2GL010T
Registers (Flip Flops) 3252 3252 - 12084
Logic LUT’s 6112 6113 - 12084
Global 2 2 - 8
I/O 6 6 - 231
RAM blocks 12 12 - 22
 M2GL025T
Registers (Flip Flops) - - 3684 27696
Logic LUT’s - - 6561 27696
Global - - 2 16
I/O - - 6 265
RAM blocks - - 24 34

Table 5.3.2: Flip-flop and LUT usage and distribution

Device Type TB35 TB49 TB70
Artix7 LUT’s 5,262 5,210 5,174

Logic 5,126 5,125 5,130
Route through 136 85 44
Flip Flop LUT pairs 5,801 5,833 5,932
Fully used 2,032 1,999 1,910
With unused FF 3,230 3,211 3,264
With unused LUT 539 623 758

Cyclone V

LUT’s 5569 5558 5563
Logic 5454 5454 5458
Route through 115 105 105
Registers 3661 3661 3655
Design 3536 3536 3536
Routing 125 125 119

Igloo2

LUT’s 6112 6113 6561
Fabric logic 5680 5681 5697
RAM interface logic 432 432 864
Flip Flops 3252 3252 3684
Fabric logic 2820 2820 2820
RAM interface logic 432 432 864

70

Table 5.3.3: Decoder RAM requirement

 Required memory bits
TB35 TB49 TB70

Width 64 64 64
Length 35 49 70
Memory bits 6720 9408 13440

Table 5.3.4: Utilisation of allocated RAM blocks

 Used Device memory
Artix7 Cyclone V Igloo2

xxxx025T
Igloo2

xxxx025T
Block Size (kb) 36 10 1 1
of blocks 3 6 12 22
Total # of bits 110592 61440 13824 25344
 % of memory bits utilised by decoder
TB35 6.08 10.94 48.61 -
TB49 8.51 15.31 68.06 -
TB70 12.15 21.88 - 53.03

5.3.4 Timing analysis

The critical path of the decoder is the path with the longest delay from net to net

between registers with the same clock input. The logic along this slowest path

determines the system clock frequency of the decoder. The maximum frequency of

operation of the decoder is determined for the different trace-back depth values and

the results are as shown in Table 5.3.5 for the selected TB values and test devices.

The frequency values displayed below are obtained when the design timing constraint

is set to 50MHz. By default, the Quartus II time quest analyser uses multiple process

operating condition models for timing analyses and provides the results of each

analysis. These models give the best and worst case maximum frequencies where

the best (fastest) case is obtained using a model for the highest mobility silicon at 00C

for the device speed grade. The worst case is obtained using the model for the lowest

silicon mobility at 850C (Altera Corporation, 2010). The timing analysis tools used for

the Artix7 and the Igloo2 devices consider the change in the process operating

conditions and give the obtained worst case maximum frequencies (Microsemi

Corporation, 2011; Xilinx, Inc, 2012).

71

Table 5.3.5: Maximum decoder system frequencies (in MHz)

TB Cyclone V Artix7 Igloo2
Best Case Worst Case

35 267.24 123.76 123.198 117.233
49 267.95 120.29 126.550 113.934
70 256.61 119.49 113.186 117.800

Although the Viterbi decoding algorithm is continuous, its practical implementation is

not. The decoder accepts its input sequence divided into blocks of a specified length.

The truncation length determines the throughput of the decoder and ultimately the

suitable data rate of the system connected to the decoder. The length of the blocks,

therefore, determines the delay between the first decoder input and first usable

decoder output. The data rate of the system responsible for feeding data into the

decoder is determined by the delay introduced during the calculation of the minimum

path metric for trace-back calculations at the end of every input block.

It takes 6 clock cycles for a decoder input, which is made up of 2 bits, to be

processed through all the decoder sub-blocks and providing the decision bit

information for the TB unit. The first valid decoder output is available after the

decoder has decision bits for an input block of length TB, as described in the decoder

algorithm. In order to start obtaining the decoder outputs, the TB unit requires the

computation of a minimum path metric using a pipeline method that requires 5 clock

cycles. The latency/lag 𝑇! of the decoder can, therefore, be calculated as

𝑇! = 6TB + 5 𝑇!"#

5.3.1

𝑛 − 𝑘 + 1

where 𝑇!"# is the decoder system clock period. The results of the calculation for the 3

selected TB values are given in Table 5.3.6. The table also shows the minimum

latency in nanoseconds obtained using the deduced decoder maximum frequency.

The worst case maximum frequency is used for the Cyclone V minimum latency

calculation.

Table 5.3.6: Decoding latency in clock cycles and minimum latency for obtained
maximum frequencies

 TB35 TB49 TB70
Latency (clock cycles) 215 299 425
 Minimum latency (ns)
Artix7 1745.16 2362.7 3754.88
Cyclone V 1737.2 2485.66 3556.78
Igloo2 1833.95 2624.33 3607.81

72

5.3.5 Power analysis

Based on the gate count of the placed design, the gate level power analysis gives an

indication of the amount of the power required for the design. The best way to obtain

an accurate power analysis is to use the switching activity from gate level simulation

results, which are difficult to obtain for large designs (Flynn, 2004). In such cases, the

vectorless estimation technique is applied for power analysis. The power analysis

tools use statistical methods to determine the most probable activity for the nets in

the design (Microsemi Corporation, 2014). The analysis process is iterative and stops

when all the signals have some form of activity; thus, making the result the worst

case power consumption.

As discussed earlier, the total power consumed by a device for a particular design is

the sum of the dynamic and static power. The dynamic power refers to the power

consumed as a result of the circuit activity, while the static power is attributed to the

leakage power consumed when the device is idle. The static power can be used to

determine the minimum power required by the selected device. The combination of

the static and dynamic power gives the possible maximum power required when the

design is at maximum activity (Xilinx, Inc, 2013).

Figure 5.3.6 through Figure 5.3.8 illustrate the variation of the total power usage for

the three FPGA devices as a function of system frequency. These figures are labelled

as displaying total thermal power, because the total power dissipated within the

device is also referred to as thermal power. This total thermal power is generally

made up of static power, dynamic power and I/O power (Intel Corporation, 2015).

Vectorless estimation is used for the Igloo2 power analysis, whereas Value Change

Dump (VCD) and Switching Activity Interchange Format (SAIF) files are created from

the post-PAR simulation for the other Cyclone V and Artix7 devices, respectively. The

Igloo2 device used the least amount of power for the same design with a larger

percentage of the total power attributed to dynamic power. This might be attributed to

the difference of technologies. First, the Igloo2 is specifically designed for low power

applications. Second, the Cyclone and Artix families use static RAM to store their

configurations, whereas the Igloo2 family uses flash memory that does not consume

any power at all to retain its values.

73

Figure 5.3.6: Artix7 total thermal power consumption

Figure 5.3.7: Cyclone V total thermal power consumption

74

Figure 5.3.8: Igloo2 total thermal power consumption

The dynamic power is the cause of the linear increase observed in the figures above,

since the static power and I/O power components are not affected by changes in

operating frequency. To determine the effects of the TB variation on the power

consumption, Figure 5.3.9 through Figure 5.3.11 illustrate the variation of dynamic

power consumption with frequency for the 3 test FPGA devices.

Figure 5.3.9: Artix7 dynamic power consumption

75

Figure 5.3.10: Cyclone V dynamic power consumption

Figure 5.3.11: Igloo2 dynamic power consumption

The variations in dynamic power are minimal over the TB variation for all the 3

devices. In the Artix7 device, however, TB70 exhibits a visibly higher power

requirement over TB35 and TB49. The decoder suitable for this device would be one

with either a truncation length of 35 or 49. For the other 2 devices, the selection of

decoder parameters would rely on the decoding lag introduced by the TB values. A

reasonably fast and low-cost implementation for each device would be a decoder with

a truncation length of 35 with a system frequency of ~60 MHz. This decoder would

incur a decoding lag of approximately 3583.3 ns.

76

5.4 Conclusion

The decoder architecture and VHDL code have been successfully developed for

implementation on an FPGA device. The selection of the decoder parameters can be

conducted using the results obtained from the decoder simulations given in this

chapter. The variation of decoder truncation length has minimal effect on the resource

requirement of the decoder. This is due to the methods employed during the decoder

design phase. Future improvements can, therefore, be made to make the decoder

more compact and device-specific. Possible future considerations are given in the

following chapter.

77

CHAPTER SIX
CONCLUSION & RECOMMENDATIONS

An operational channel convolutional coding algorithm and its corresponding decoder, which

are described in the CCSDS recommended TM synchronisation and channel coding

standard, are successfully developed for implementation on an FPGA. The encoder and

decoder algorithms are designed for implementation on three test FPGA devices from

different popular vendors to determine the cost of implementation on devices that have a

high likelihood of being found in nano-satellite communication systems. This reduces the

cost of implementation by eliminating the need for additional hardware in the existing

communication systems.

Concluding remarks are made in reference to the research questions posed in this work.

In response to the research sub-question “Are there CCSDS channel coding techniques

defined for implementation on nano-satellites?”, it is evident from Chapter 3 that the CCSDS

has no specific encoding/decoding algorithm explicitly recommended for nano-satellites. The

implemented convolutional code is, therefore, selected as a result of the performance and

trade-off analysis outlined.

To answer the subsequent sub-question “How is FEC coding evaluated and how does that

affect the criteria used to select one for implementation in a satellite communication

system?”, the basic CCSDS recommended FEC codes (LDPC, Reed-Solomon, Turbo and

Convolutional) are compared in terms of coding gain, code rate and BER performance, as

well as implementation complexity. With reference to Figure 3.3.1 and Figure 3.3.2, LDPC

and Turbo codes exhibit superior performance. However, their implementation has a high

cost in terms of complexity, as well as large computation and memory requirements. These

are undesirable for the implementation on nano-satellites where resources are limited. The

less complex convolutional and Reed-Solomon codes are, thus, more suitable for nano-

satellite implementations.

Convolutional codes are selected for implementation as a result of a trade involving error

correction strengths, decoder complexity, and the learning curve involved in grasping the

encoder and decoder implementation concepts. Convolutional codes, furthermore,

outperform RS codes by achieving an approximate coding gain of 5dB for BPSK modulation

at a BER of 10-6, compared to the 4dB observed for Reed-Solomon codes. Convolutional

coding provides satisfactory coding gain, while requiring reasonable resources in terms of

implementation complexity, power and spectrum, as seen from Table 3.3.1 and Figure 3.3.2.

78

The selected convolutional code exhibits an acceptable Eb/No with minimal bandwidth

expansion, which is desirable for bandwidth and power constrained nano-satellites

implementations.

To respond to the other research sub-question “What resources are required for FEC

implementation and how can their use be optimised or minimised?”, the implementation of

FEC coding in a communication system requires the availability of sufficient memory, power

and physical space. As mentioned in the objectives, the algorithm is to be implemented on

an adaptable and reliable platform that takes into account the nano-satellite constraints;

therefore, an FPGA is selected as the implementation platform. FPGA’s are also reasonably

sized and used in numerous modern nano-satellite communication systems, making them a

suitable platform for implementing the FEC algorithm on existing communication systems.

They also have large memory capacity, which makes them suitable for FEC decoding

algorithms that require a significant amount of memory. Low power test FPGA’s have been

selected for the encoder/decoder implementation, which makes them suitable for nano-

satellite implementations.

To answer the sub-question “What is the trade-off between performance and resource

utilisation appropriate for a nano-satellite?”, one of the main aims of this research has been

to establish the cost of implementing error correction codes on-board a satellite

communication system. Convolutional encoding adds maximum power consumption of less

than ~9mW to an existing communication system due to encoding activity, as has been

shown in Figure 4.3.3. From Table 4.3.2, it is evident that the encoder occupies a negligible

area on the FPGA device, occupying a maximum of ~0.099% of the device LUT’s and

~0.12% of the device registers on the smallest igloo test FPGA. The cost of implementing the

encoder is, therefore, reasonably low and makes it feasible for nano-satellite

implementations.

On the other hand, the decoder requires a significant percentage of the FPGA resources as

can be deduced from Table 5.3.1. For instance, implementing the decoder with a truncation

length of 49 on the Igloo2 device requires ~51% of the device LUT’s and ~26.9% of the

device registers. The decoder also adds power consumption of up to ~50mW due to decoder

activity when the decoder is operating at 100 MHz as deduced from the illustrations in

Section 5.3.5. The cost of implementing the decoder is, therefore, significantly higher than

that of the encoder. However, the selection of the decoder parameters with a feasible cost in

relation to the available communication system can be conducted using the results presented

in Section 5.3. With the availability of the decoder parameters, the communication system

79

designer has the ability to add it to their design and evaluate the resources available for the

whole system.

The results of the decoder analysis in Figure 5.3.5 confirm the notion that at some SNR or

Eb/No values, adding error correction to the communication system results in the increase of

BER as opposed to the desired reduction. According to literature, hard decision convolutional

codes introduce a coding gain of approximately 3dB, which is also confirmed by the

performance evaluation of the implemented decoder in Figure 5.3.5. This fulfils the objective

pertaining to the improvement of communication system reliability and data transmission

rates.

In a nutshell, this research successfully answers the primary research question “How can a

reliable and well-performing CCSDS compliant forward error correction encoder and decoder

be selected and implemented on a nano-satellite?” The main project objective “to implement

a forward error correction (FEC) algorithm, which conforms to existing standards on an

adaptable and reliable platform” has also been successfully realised.

As a recommendation, soft decision decoding is more accurate and, therefore, introduces a

greater coding gain than the implemented hard decision decoding. Further studies and

investigations can be made into evaluating the cost of implementing a soft decision decoder

on the same FPGA devices. The translation, mapping and routing of the design onto the

FPGA devices can be optimised, resulting in a reduction in power and area usage.

Optimisation methods can, therefore, be investigated and implemented to improve the

decoder performance and reduce its cost of implementation. The implemented encoder and

decoder have been designed such that they are portable across FPGA platforms; defining the

hardware using device specific descriptions would also improve the resource utilisation

efficiency.

The power consumption results given in this document have been obtained using simulations

involving I/O signal activity and numerous statistical assumptions. As a further

recommendation, determining the actual device performance requires the acquisition of the

physical hardware and measuring the power consumption to improve the accuracy of the

implementation cost data.

80

REFERENCES

Altera Corporation. 2010. Guaranteeing Silicon Performance with FPGA Timing Models.
https://www.altera.com/en_US/pdfs/literature/wp/wp-01139-timing-model.pdf [14 September
2017].

Altera Corporation. 2012. Reducing Total System Cost with Low-Power 28-nm FPGAs.
https://www.altera.com/en_US/pdfs/literature/./wp-01180-system-cost-low-power.pdf [16
September 2016].

Altera Corporation 2016. Cyclone V Device Overview., Document (v2016.06.10).

Anderws, K., Dolinar, S. & Thorpe, J. 2005. Encoders for Block-Circulant LDPC Codes.
International Symposium on Information Theory. Adelaide, 2005. IEEE [2 September 2016]

Andrews, K.S., Divsalar, D., Dolinar, , Hamkins, J., Jones, C.R. & Pollara, F. 2007. Turbo
and LDPC Codes for Deep-Space Applications. Proceedings of the IEEE, 95(11), 2142-56.

Divsalar, D., Abbasfar, A., Jones, C.R., Dolinar, S.J., Thorpe, J.C., Andrews, K.S. & Yao, K.
2009. Encoders for Block-Circulant LDPC codes.
https://www.google.com/patents/US7499490 [2 September 2016]

Atlanta RF 2013. Link Budget Analysis: Error Control & Detection.
http://www.atlantarf.com/Error_Control.php [9 April 2016]

Calhan, , Ceken, C. & Erturk, I. 2007. Comparative performance analysis of forward error
correction echniques used in wireless communications. Third international conference on
wireless and mobile communications, ICWMC '07. Guadeloupe, 2007. IEEE

Calhan, A., Ceken, C. & Erturk, I. 2009. A teaching demo application of convolutional coding
techniques for wireless communications. Application of information and communication
technologies, International conference on. Baku, 2009. IEEE

California Polytechnic State University 2009. CubeSat design specification.
http://www.cubesat.org/images/developers/cds_rev12.pdf [2 October 2013]

Cape Peninsula University of Technology: F'SATI. n.d.
http://www.cput.ac.za/blogs/fsati/cubesat/ [1 July 2016].

CCSDS 2007. Low Density Parity Check Codes for Use In Near-Earth and Deep Space
Applications., CCSDS Secretariat Washington NASA. [31 July 2013]

CCSDS 2011a. TM Synchronization and channel coding., CCSDS Secretariat Washington
NASA. [6 July 2013]

CCSDS 2011b. TM Channel coding profiles., CCSDS Secretariat Washington NASA. [31
July 2013]

CCSDS 2012. TM Synchronization and channel coding - Summary of concept and rationale.,
CCSDS Secretariat Washington NASA. [31 July 2013]

Chen, L., Tang, S. & Ma, X. 2013. Progressive Algebraic Soft-Decision Decoding of Reed-
Solomon Codes. IEEE Transactions on Communications, 61(2), 433 - 442.

81

Cillibot, E.P., Grant, C.C., Kekez, D.D. & Zee. 2005. Formation Flying Demonstration Mission
Enabled by CanX Nanosatellite Technology. 19th Annual AIAA/Utah State University
Conference on Small Satellites., 2005.

Costello, D.J.J. & Forney, D.G.J. 2007. Channel Coding: The Road to Channel Capacity.
Proceedings of the IEEE, 95(6), 1150-77.

CPUT see Cape Peninsula University of Technology.

de Milliano, M. & Verhoeven, C. 2010. Towards the next generation of nanosatellite
communication systems. Acta Astronautica, 66(9–10), 1425-33.

de Villiers, & van Zyl, R. 2015. ZACube-2: The successor to Africa’s first nanosatellite.
http://www.amsatsa.org.za/ZACube-
2%20%20The%20successor%20to%20Africa%E2%80%99s%20first%20nanosatellite.pdf [
17 September 2016].

Divsalar, D. & Pollara, F. 1995. Turbo Codes for Deep-Space Communications. http://www-
leland.stanford.edu/class/ee379b/class_reader/jpl1.pdf [26 August 2016].

Flynn, J. 2004. Accurate power-analysis techniques support smart SOC-design choices.
http://www.edn.com/Home/PrintView?contentItemId=4328121 [25 October 2016].

Foerster, J. & Liebetreu, 2000. FEC Performance of Concatenated Reed-Solomon and
Convolutional Coding with Interleaving., IEEE 802.16.
http://ieee802.org/16/tg1/phy/contrib/802161pc-00_33.pdf. [25 May 2013]

Garg, V.K. & Wang, Y.-C. 2005. Intoduction to digital communication and communication
networks. In W.-K. Chen. (ed). The Electrical Engineering Handbook. Elsevier Academic
press. 949-50.

Global Market Insights. 2016. Field Programmable Gate array (FPGA) Market Size By
Application (Data Processing, Industrial, Automotive, Consumer Electronics, Telecom,
Military & Aerospace), Regional Outline, Application Potential, Competitive Market Share &
Forecast, 215-2022. https://www.gminsights.com/industry-analysis/field-programmable-gate-
array-fpga-market-size [17 May 2016].

Haiman, M. 2003. Notes on Reed-Solomon Codes.
https://math.berkeey.edu/~mhaiman/math55/reed-solomon.pdf [14 May 2013].

Intel Corporation. 2015. Power Overview. https://www.altera.com/support/support-
resources/operation-and-testing/power/pow-overview.html [14 September 2017].

Jerrold, H.A. & Jacobs, I.M. 1971. Viterbi Decoding for Satellite and Space Communication.
IEEE transactions on communication technology, COM-19(5), 835-48.
http://ieeexplore.ieee.org.libproxy.cput.ac.za/stamp/stamp.jsp?arnumber=1090711 [30
September 2013].

Koetter, & Vardy, 2003. Algebraic Soft-Decision Decoding of Reed–Solomon Codes. IEEE
Transactions on Information Theory, 49(11), 2809 - 2825.

Kramer, H.J. n.d. ZACUBE-1 (South Africa CubeSat-1) / TshepisoSat.
https://directory.eoportal.org/web/eoportal/satellite-missions/v-w-x-y-z/zacube-1 [1 July
2016].

82

Kumar, S. & Gupta, R. 2011. Performance comparison of different forward error correction
coding techniques for wireless communication systems. International journal of computer
science and technology, 2(3), 553-7.

Lafleur, C. 2004. The Spacecrafts Encyclopedia. http://claudelafleur.qc.ca/Spacecrafts-
index.html#Stats [30 September 2015].

Li, Z., Chen, L., Zeng, L., Lin, & Fong, W.H. 2006. Efficient Encoding of Quasi-Cyclic Low-
Density Parity-Check Codes. IEEE Transactions on Communications, 54(1), 71-81.

Lu, Y.-K., Chung, S.-M. & Shieh, M.-D. 2014. Low-complexity Architecture for Chase Soft-
decision. VLSI Design, Automation and Test (VLSI-DAT), 2014 International Symposium on.
Hsinchu, 2014. IEEE

Madhow, U. 2008. Fundamentals of Digital Communication. New York: Cambridge University
Press.

Microsemi Corporation. 2011. Advanced Static Timing Analysis Using SmartTime.
https://www.microsemi.com/document-portal/doc_view/129843-ac379-advanced-static-
timing-analysis-using-smarttime-app-note [14 September 2017].

Microsemi Corporation 2014. SmartFusion2 System-on-Chip FPGAs. Engineers’ Guide to
FPGA and PLD Solutions, 27. [17 May 2016].

Microsemi Corporation 2014. SmartPower for Libero SoC Software v11.4.

Microsemi Corporation 2016. IGLOO2 FPGAs Product Brief., Product brief (v13).

Microsemi Corporation 2016. SmartFusion2 SoC and IGLOO2 FPGA Fabric., User guide
(v4).

MIT 2005. Introduction to convolutional codes. https://ocw.mit.edu/courses/electrical-
engineering-and-computer-science/6-451-principles-of-digital-communication-ii-spring-
2005/video-lectures/chap9.pdf [1 September 2017]

MIT 2010a. Convolutional Coding.
http://web.mit.edu/6.02/www/f2010/handouts/lectures/L8.pdf [5 September 2017]

MIT 2010b. Viterbi Decoding of Convolutional Codes.
http://web.mit.edu/6.02/www/f2010/handouts/lectures/L9.pdf [5 Septemeber 2017]

Mitchell, G. 2009. Investigation of Hamming, Reed-Solomon and Turbo Forward Error
Correcting Codes. www.arl.army.mil/arlreports/2009/ARL-TR-4901.pdf [8 April 2014]

Mitra, M. 2005. Satellite communication. Eastern economy ed. New Delhi, India: Prentice-
Hall of India.

Morelos-Zaragoza, R.H. 2002. The Art of Error Correcting Coding. Chechester: John Wiley &
Sons Ltd.

O’Dea, 2013. Telemetry Data Decoding. https://deepspace.jpl.nasa.gov/dsndocs/810-
005/208/208B.pdf [12 May 2016]

Perry, D.L. 2002. VHDL: Programming by example. 4th ed. McGraw-Hill Education.

83

Polaschegg, M. 2005. Study of a Cube-Sat Mission. physik.uni-
graz.at/spacesciences/archive/files/ULG_II_Master_Thesis_Polaschegg.pdf [11 February
2014]

Riley, M. & Richardson, I. 1996. Reed-Solomon Codes.
https://www.cs.cmu.edu/~guyb/realworld/reedsolomon/reed_solomon_codes.html [25
August 2016].

Rogers, A.Q. & Summers, R.A. 2010. Creating Capable Nanosatellites for Critical Space
Missions. Johns Hopkins APL Technical Digest, 29(3), 283-8.

Rong, B., Wu, Y. & Gagnon, G. 2011. Information theory, Shannon limit and error correction
codes for terrestrial DTV broadcasting.
https://www.scribd.com/document/248688746/Shannon [26 February 2014]

Shannon, C.E. 1948. A Mathematical Theory of Communication. The Bell System Technical
Journal, 27, 379–423, 623–656. [30 September 2013].

Sklar, B. 1997. A Primer on Turbo Code Concepts. IEEE Communications Magazine, 35(12),
94-102. [14 February 2014].

Sklar, B. 2001. Digital communication: Fundamentals and applications. 2nd ed. New Jersey:
Prentice Hall.

Sklar, B. & Harris, F.J. 2004. The ABCs of linear block codes. IEEE Signal Processing
Magazine, 21(4), 14 - 35.

Swartwout, M.A. n.d. CubeSat Census.
https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database/census [30 September
2015].

Sweeney, P. 2002. Error control coding: from theory to practice. Chichester: John Wiley &
Sons, Ltd.

Sweeting, M.N. & Underwood, C.I. 2003. Small Satellite Engineering and Applications. In P.
Fortescue, J. Stark & G. Swinerd. (eds). Spacecraft Systems Engineering. 3rd ed.
Chichester: John Wiley & Sons Ltd. 581-610.

Tse, D. & Viswanath, P. 2005. Capacity of wireless channels. In Fundamentals of Wireless
Communication. 1st ed. Cambridge University Press. 166-227.

Van Zyl, R.R., Visser, F.D., Cilliers, P.J. & Opperman, B.D.L. 2013. ZACUBE-1 Space
Weather Mission: Characterize the SuperDARN HF Radar Antenna Array at SANAE-IV.
Space Weather, 11(2), 52-4. [2014].

Viterbi, A. 1971. Convolutional Codes and Their Performance in Communication Systems.
IEEE Transactions on Communication Technology, 19(5), 751 - 772.
http://ieeexplore.ieee.org.libproxy.cput.ac.za/stamp/stamp.jsp?arnumber=1090700 [1
September 2017].

Wertz, J.R. & Larson, W.J. (eds). 1999. Space mission and analysis design. 3rd ed.

Woellert, K., Ehrenfreund, P., Ricco, A.J. & Hertzfeld, H. 2011. Cubesats: Cost-effective
science and technology platforms for emerging and developing nations. Advances in Space
Research, 47(4), 663-84.

84

Xilinx, Inc. 2014. Artix-7 FPGAs. Engineers’ Guide to FPGA and PLD Solutions, 28. [17 May
2016].

Xilinx, Inc. 2016. 7 Series FPGAs Memory Resources., User Guide (v1.12).

Xilinx, Inc. 2012. Timing Closure User Guide. http://www-wjp.cs.uni-
saarland.de/lehre/hadeprak/block_ss15/Upload/ug612.pdf [14 September 2017].

Xilinx, Inc 2013. ISE Help., Xilinx, Inc Xilinx, Inc.

Xilinx 2015. 7 Series FPGAs Overview., Product Specification (v 1.7).

85

APPENDICES

86

APPENDIX A: CUBESAT LAUNCH STATISTICS

Figure A 1: Number of CubeSats launched versus the total number of satellites

launched between 2000 and 2014

Adapted from (Swartwout, n.d.) and (Lafleur, 2004)

Figure A 2: CubeSats launched between 2000 and 2015

Adapted from (Swartwout, n.d.)

0	

50	

100	

150	

200	

250	

300	

20
00
	

20
01
	

20
02
	

20
03
	

20
04
	

20
05
	

20
06
	

20
07
	

20
08
	

20
09
	

20
10
	

20
11
	

20
12
	

20
13
	

20
14
	

N
um

be
r	 o

f	 S
at
el
lit
es
	 la
un

ch
ed

	 p
er
	 y
ea
r	

Year	

CubeSats	 vs	 Total	 Satellites	 launched	 since	 2000	

CubeSats	

Total	 Satellites	

87

Figure A 3: Number of CubeSats launched between 2000 and 2015 indicating

the developing entities

Adapted from (Swartwout, n.d.)

Figure A 4: Indication of entity involvement in CubeSat development using

CubeSats launched between 2000 and 2015

Adapted from (Swartwout, n.d.)

88

Figure A 5: Satellites launched by university/amateur organisations between

1961 and 2014

Adapted from (Lafleur, 2004).

89

APPENDIX B: TRELLIS BUTTERFLIES

	
0

 	 	 	
8

 	 000000	 0
0\00

0 000000	
	
010000	 16

0\11
8 001000	

	

1\11

	 	 	
1\00

	 000001	 1 0\11 32 100000	
	
010001	 17 0\00 40 101000	

	
 1\00

	 	 	
 1\11

	
	

1
 	 	 	

9
 	 000010	 2

0\01
1 000001	

	
010010	 18

0\10
9 001001	

	

1\10

	 	 	
1\01

	 000011	 3 0\10 33 100001	
	
010011	 19 0\01 41 101001	

	
 1\01

	 	 	
 1\10

	
	

2
 	 	 	

10
 	 000100	 4

0\00
2 000010	

	
010100	 20

0\11
10 001010	

	

1\11

	 	 	
1\00

	 000101	 5 0\11 34 100010	
	
010101	 21 0\00 42 101010	

	
 1\00

	 	 	
 1\11

	
	

3
 	 	 	

11
 	 000110	 6

0\01
3 000011	

	
010110	 22

0\10
11 001011	

	

1\10

	 	 	
1\01

	 000111	 7 0\10 35 100011	
	
010111	 23 0\01 43 101011	

	
 1\01

	 	 	
 1\10

	
	

4
 	 	 	

12
 	 001000	 8

0\11
4 000100	

	
011000	 24

0\00
12 001100	

	

1\00

	 	 	
1\11

	 001001	 9 0\00 36 100100	
	
011001	 25 0\11 44 101100	

	
 1\11

	 	 	
 1\00

	
	

5
 	 	 	

13
 	 001010	 10

0\10
5 000101	

	
011010	 26

0\01
13 001101	

	

1\01

	 	 	
1\10

	 001011	 11 0\01 37 100101	
	
011011	 27 0\10 45 101101	

	
 1\10

	 	 	
 1\01

	
	

6
 	 	 	

14
 	 001100	 12

0\11
6 000110	

	
011100	 28

0\00
14 001110	

	

1\00

	 	 	
1\11

	 001101	 13 0\00 38 100110	
	
011101	 29 0\11 46 101110	

	
 1\11

	 	 	
 1\00

	
	

7
 	 	 	

15
 	 001110	 14

0\10
7 000111	

	
011110	 30

0\01
15 001111	

	

1\01

	 	 	
1\10

	 001111	 15 0\01 39 100111	
	
011111	 31 0\10 47 101111	

	
 1\10

	 	 	
 1\01

	

90

	
16

 	 	 	
24

 	 100000	 32
0\10

16 010000	
	
110000	 48

0\01
24 011000	

	
1\01

	 	 	
1\10

	 100001	 33 0\01 48 110000	
	
110001	 49 0\10 56 111000	

	
 1\10

	 	 	
 1\01

	
	

17
 	 	 	

25
 	 100010	 34

0\11
17 010001	

	
110010	 50

0\00
25 011001	

	
1\00

	 	 	
1\11

	 100011	 35 0\00 49 110001	
	
110011	 51 0\11 57 111001	

	
 1\11

	 	 	
 1\00

	
	

18
 	 	 	

26
 	 100100	 36

0\10
18 010010	

	
110100	 52

0\01
26 011010	

	
1\01

	 	 	
1\10

	 100101	 37 0\01 50 110010	
	
110101	 53 0\10 58 111010	

	
 1\10

	 	 	
 1\01

	
	

19
 	 	 	

27
 	 100110	 38

0\11
19 010011	

	
110110	 54

0\00
27 011011	

	
1\00

	 	 	
1\11

	 100111	 39 0\00 51 110011	
	
110111	 55 0\11 59 111011	

	
 1\11

	 	 	
 1\00

	
	

20
 	 	 	

28
 	 101000	 40

0\01
20 010100	

	
111000	 56

0\10
28 011100	

	
1\10

	 	 	
1\01

	 101001	 41 0\10 52 110100	
	
111001	 57 0\01 60 111100	

	
 1\01

	 	 	
 1\10

	
	

21
 	 	 	

29
 	 101010	 42

0\00
21 010101	

	
111010	 58

0\11
29 011101	

	
1\11

	 	 	
1\00

	 101011	 43 0\11 53 110101	
	
111011	 59 0\00 61 111101	

	
 1\00

	 	 	
 1\11

	
	

22
 	 	 	

30
 	 101100	 44

0\01
22 010110	

	
111100	 60

0\10
30 011110	

	
1\10

	 	 	
1\01

	 101101	 45 0\10 54 110110	
	
111101	 61 0\01 62 111110	

	
 1\01

	 	 	
 1\10

	
	

23
 	 	 	

31
 	 101110	 46

0\00
23 010111	

	
111110	 62

0\11
31 011111	

	
1\11

	 	 	
1\00

	 101111	 47 0\11 55 110111	
	
111111	 63 0\00 63 111111	

	
 1\00

	 	 	
 1\11

	

91

APPENDIX C: ADD COMPARE SELECT (ACS) MODULE INTERCONNECTION

