

A DECISION SUPPORT SYSTEM FRAMEWORK FOR TESTING AND
EVALUATING SOFTWARE IN ORGANISATIONS

by

TEFO GORDON SEKGWELEO

Thesis submitted in fulfilment of the requirements for the degree

Doctor of Philosophy: Informatics

in the Faculty of Informatics and Design

at the Cape Peninsula University of Technology

Supervisor: Prof T. Iyamu

Cape Town
12 July 2018

CPUT copyright information
This thesis may not be published either in part (in scholarly, scientific or technical journals),
or as a whole (as a monograph), unless permission has been obtained from the University

 ii

DECLARATION

I, Tefo Gordon Sekgweleo, declare that the contents of this thesis represent my own unaided

work, and that the thesis has not previously been submitted for academic examination

towards any qualification. Furthermore, it represents my own opinions and not necessarily

those of the Cape Peninsula University of Technology.

Signed Date

 iii

ABSTRACT

Increasingly, organisations in South African and across the world rely on software for various

reasons, such as competitiveness and sustainability. The software are either developed in-

house or purchased from the shelf. Irrespective of how the software was acquired, they do

encounter challenges, from implementation to support, and use stages. The challenges

sometimes hinder and are prohibitive to processes and activities that the software is

intended to enable and support.

Majority of the challenges that are encountered with software are attributed to the fact that

they were not tested or appropriately tested before implementation. Some of the challenges

has been costly to many organisations, particularly in South Africa. As a result, some

organisations have been lacking in their efforts toward growth, competitiveness and

sustainability. The challenges manifest from the fact that there are no testing tools and

methods that can be easily customised for an organisation’s purposes. As a result, some

organisations adopt more tools and methods for the same testing purposes, which has not

solved the problem, as the challenges continue among South Africa organisations.

Based on the challenges as stated above, this study was undertaken. The aim was to

develop a decision support system framework, which can be used for software testing by

any organisation, owing to its flexibility for customisation. The interpretivist and inductive

approaches were employed. The qualitative methods and the case study design approach

were applied. Three South African organisations, a private, public and small to medium

enterprise (SME) were used as cases in this study. A set of criteria was used to select the

organisations. The analysis of the data was guided by two sociotechnical theories, actor

network theory (ANT) and diffusion of innovation (DOI). The theories were complementarily

applied because of their different focuses.

The actor network theory focuses on actors, which are both human and non-human,

heterogeneity of networks, and the relationship between the actors within networks. This

includes the interactions that happen at different moments as translated within the

heterogeneous networks. Thus, ANT was employed to examine and gain better

understanding of the factors that influence software testing in organisations. The DOI

focuses on how new (fresh) ideas are diffused in an environment, with particular focus on

innovation decision process, which constitute five stages: knowledge, persuasion, decision,

implementation and confirmation.

 iv

Findings from the data analysis of the three cases were further interpreted. Based on the

interpretation, a decision support system framework was developed. The framework is

intended to be of interest to software developers, software project managers and other

stakeholders, most importantly, to provide guide to software testers in their tasks of testing

software. Thus, this research is intended to be of interest and benefit to organisations and

academic through its theoretical, practical and methodological contribution as detailed in the

chapter seven (conclusion).

In conclusion, even though this research is rigorous, comprehensive and holistic, there are

room for future studies. I would like to propose that future research should be in the areas of

measurement of software testing. Also, sociotechnical theories like structuration theory and

technology acceptance model should be considered in the analysis of such studies.

 v

ACKNOWLEDGEMENTS

I wish to thank the following:

God

I would like to thank God Almighty for giving me life, wisdom, strength, love and respect. The

fear of the Lord is the beginning of wisdom. I would like to encourage everyone to welcome

strangers in their homes because they may welcome angels without knowing.

Supervisor

I would like to thank my supervisor Professor Tiko Iyamu for the guidance and supervision

he provided before and during the research. May the good Lord increase your days,

increase your research knowledge, so that you can keep on helping those who aspire to be

researchers. We are blessed to have someone like you who is able to carve a rough

diamond into a shining stone.

CPUT

I would like to thank the Department of Information Technology (IT) at CPUT for allowing and

supporting me in carrying out this research.

Family

I would like to thank my late wife (Moipone Sekgweleo) for her support while she was still

living. Mogatsake, you have no replacement; I will always love you and may your soul rest in

peace. I am taking care of our boys (Botshelo and Boitsheko Sekgweleo). You are always in

our minds and we miss you tremendously. My late father, thank you for encouraging me to

study. I listened to you and I am still studying. My late mother, thank you for raising a

gentleman like me. You will always be remembered. My mother in-law, I thank you for giving

your daughter in marriage to me. May their souls rest in peace.

 vi

DEDICATION

This research is dedicated to:

 Mr Andries Kgarubane Sekgweleo, my late father, for encouraging me to study (May

his soul rest in peace)

 Mrs Bafedile Priscilla Sekgweleo, my late mother, for always caring for me (May her

soul rest in peace)

 Mrs Sinah Moipone Sekgweleo, my late wife, my other half, my love, the mother of

my two sons (May her soul rest in peace)

 Mrs Diatlana Motoma, my late mother in law, my other mother (May her soul rest in

peace)

 Botshelo Sekgweleo and Boitsheko Sekgweleo, my two lovely boys who supported

me

 My sister, Jeany Sekgweleo, and my brothers, Kagiso Sekgweleo and Utlwanang

Sekgweleo

 My late brothers Kgosietsile, Mosimanegape, Diane (Selapi), Kagisonyane, Modise

(May their souls rest in peace)

 My colleagues: Annatjie Mogaladi, Kholo Motadi, Mogomotsi Mokoka, Lungelo

Boilane, Lerato Matsapola, Mamphofore Ntabane and Mimi Moatshe

 My friends: Solomon Makgale, Monaisa Kgajane and Jerry Molale

You will always be remembered, especially those who have passed on. Those who are still

alive, let’s enjoy the fruits of my success.

 vii

TABLE OF CONTENTS
DECLARATION ... ii
ABSTRACT ...iii
ACKNOWLEDGEMENTS ... v
TABLE OF CONTENTS ...vii
CHAPTER ONE .. 13

INTRODUCTION ... 13
1.1 Introduction .. 13
1.2 Background of research problem .. 14
1.3 Problem statement .. 14
1.4 Literature review .. 15

1.4.1 Software development .. 15
1.4.2 Software testing .. 16
1.4.3 Software testing methods .. 17
1.4.4 Software testing tools .. 18
1.4.5 Decision support system ... 19
1.4.6 Theories underpinning the study ... 20

1.4.6.1 Actor Network Theory ... 20
1.4.6.2 Diffusion of Innovation ... 21

1.5 Research objectives .. 23
1.6 Research questions .. 23
1.7 Research design and methodology .. 23

1.7.1 Research paradigm ... 23
1.7.2 Epistemology ... 24

1.7.2.1 Interpretivism ... 24
1.7.3 Research methods .. 25

1.7.3.1 Qualitative research methods ... 25
1.7.3.2 Exploratory research methods .. 26

1.7.4 Research design ... 26
1.7.4.1 Case study .. 26

1.7.5 Data collection ... 28
1.7.5.1 Interviews .. 28
1.7.5.2 Documentation .. 29

1.8 Data analysis ... 29
1.8.1 Unit of analysis .. 30

1.9 Delineation of the research ... 31
1.10 Significance of the research .. 31
1.11 Ethical considerations ... 31
1.12 Structure of the thesis ... 32
1.13 Summary ... 33
CHAPTER TWO .. 35

LITERATURE REVIEW ... 35
2.1 Introduction .. 35
2.2 Information technology .. 35
2.3 Software development .. 36
2.4 Software implementation ... 38
2.5 Software testing .. 39
2.6 Software testing process ... 41
2.7 Software testing methods .. 43

2.7.1 Black box method .. 43
2.7.2 White box method ... 44
2.7.3 Grey box method ... 45

2.8 Software testing tools .. 46
2.9 Decision support system ... 48
2.10 Underpinning theories ... 50

2.10.1 Actor network theory ... 50
2.10.2 Moments of translation .. 52
2.10.3 ANT and information systems ... 53
2.10.4 Diffusion of innovation ... 54

 viii

2.10.5 Innovation-decision process .. 56
2.10.6 DOI and information studies .. 56
2.10.7 ANT and DOI ... 57

2.11 Summary ... 58
CHAPTER THREE .. 60

RESEARCH METHODOLOGY ... 60
3.1 Introduction .. 60
3.2 Philosophical assumption .. 60

3.2.1 Epistemology ... 60
3.2.2 Ontology .. 61
3.2.3 Methodology .. 62
3.2.4 Axiology ... 62
3.2.5 Doxology ... 63

3.3 Paradigm taxonomies ... 64
3.3.1 Positivism .. 64
3.3.2 Realism ... 64
3.3.3 Interpretivism ... 64

3.4 Research approach ... 65
3.4.1 Deductive approach .. 66
3.4.2 Inductive approach .. 66

3.5 Research methods .. 66
3.5.1 Quantitative methods .. 66
3.5.2 Qualitative methods .. 67
3.5.3 Mixed methods .. 68

3.6 Research design ... 68
3.6.1 Action research design .. 69
3.6.2 Grounded theory ... 69
3.6.3 Ethnography .. 69
3.6.4 Survey ... 70
3.6.5 Case study .. 70

3.7 Data collection ... 71
3.7.1 Observation ... 72
3.7.2 Experiment .. 72
3.7.3 Interview .. 72
3.7.4 Field work .. 73
3.7.5 Documentation .. 78

3.8 Data analysis ... 79
3.8.1 Unit of analysis .. 80

3.9 Ethical consideration ... 81
3.10 Summary ... 81
CHAPTER FOUR .. 82

CASE STUDY OVERVIEW ... 82
4.1 Introduction .. 82
4.2 Overview: Mootledi Logistics ... 82

4.2.1 Organisational structure .. 83
4.2.2 IT structure .. 84
4.2.3 Roles and responsibilities ... 85

4.3 Overview: Mmuso Technologies ... 86
4.3.1 Organisational structure .. 86
4.3.2 IT structure .. 88
4.3.3 Roles and responsibilities ... 89

4.4 Overview: Bokamoso Solutions .. 89
4.4.1 Organisational structure .. 91
4.4.2 IT structure .. 91
4.4.3 Roles and responsibilities ... 92

4.5 Summary ... 93
CHAPTER FIVE .. 94

DATA ANALYSIS .. 94
5.1 Introduction .. 94
5.2 Overview of data analysis ... 94

 ix

5.3 Case study one: mootledi logistics .. 95
5.4 Actor network theory ... 95

5.4.1 Actors .. 95
5.4.2 Networks ... 96
5.4.3 Moments of translation .. 98

5.4.3.1 Moments of translation: problematisation ... 99
5.4.3.2 Moments of translation: interessement ... 101
5.4.3.3 Moments of translation: enrollment ... 102
5.4.3.4 Moments of translation: mobilisation ... 105

5.5 Diffusion of innovation ... 106
5.5.1 Innovation decision process .. 106

5.5.1.1 Innovation decision process: knowledge .. 107
5.5.1.2 Innovation decision process: persuasion .. 109
5.5.1.3 Innovation decision process: decision .. 110
5.5.1.4 Innovation decision process: implementation ... 111
5.5.1.5 Innovation decision process: confirmation .. 112

5.6 Case study two: mmuso technologies .. 113
5.7 Actor network theory ... 113

5.7.1 Actors .. 113
5.7.2 Networks ... 115
5.7.3 Moments of translation .. 116

5.7.3.1 Moments of translation: problematisation ... 116
5.7.3.2 Moments of translation: interessement ... 118
5.7.3.3 Moments of translation: enrolment .. 120
5.7.3.4 Moments of translation: mobilisation ... 121

5.8 Diffusion of innovation ... 122
5.8.1 Innovation decision process .. 122

5.8.1.1 Innovation decision process: knowledge .. 122
5.8.1.2 Innovation decision process: persuasion .. 123
5.8.1.3 Innovation decision process: decision .. 124
5.8.1.4 Innovation decision process: implementation ... 125
5.8.1.5 Innovation decision process: confirmation .. 126

5.9 Case study three: bokamoso solutions ... 127
5.10 Actor network theory ... 127

5.10.1 Actors .. 127
5.10.2 Networks ... 128
5.10.3 Moments of translation .. 129

5.10.3.1 Moments of translation: problematisation ... 130
5.10.3.2 Moments of translation: interessement ... 132
5.10.3.3 Moments of translation: enrolment .. 133
5.10.3.4 Moments of translation: mobilisation ... 134

5.11 Diffusion of innovation ... 135
5.11.1 Innovation decision process .. 135

5.11.1.1 Innovation decision process: knowledge .. 136
5.11.1.2 Innovation decision process: persuasion .. 137
5.11.1.3 Innovation decision process: decision .. 138
5.11.1.4 Innovation decision process: implementation ... 139
5.11.1.5 Innovation decision process: confirmation .. 140

CHAPTER SIX .. 141
FINDINGS AND INTEPRETATION ... 141

6.1 Introduction .. 141
6.2 Findings and discussions: mootledi logistics .. 141

6.2.1 Lack of testing framework ... 142
6.2.2 Lack of management buy-in .. 143
6.2.3 Network of employees ... 143
6.2.4 Quality of software .. 144
6.2.5 Lack of standards and procedures .. 145

6.3 Findings and discussions: mmuso technologies ... 145
6.3.1 Software evaluation ... 146
6.3.2 Process oriented ... 147

 x

6.3.3 Implementation policy ... 149
6.3.4 Change management .. 149
6.3.5 Power relationship ... 150
6.3.6 Organisational structure .. 151

6.4 Findings and discussions: bokamoso solutions .. 152
6.4.1 Heterogeneity of software testers ... 153
6.4.2 Outsourcing ... 154
6.4.3 Documentation .. 155
6.4.4 Queuing system .. 156
6.4.5 Standardisation ... 156
6.4.6 Procedural ... 157

6.5 Decision support system framework for testing and evaluating software 157
6.5.1 Requirements .. 158
6.5.2 Methodology .. 160
6.5.3 Filtering .. 160
6.5.4 Repository ... 161
6.5.5 Governance ... 162
6.5.6 Assessment ... 163
6.5.7 Institutionalisation .. 164
6.6 Summary ... 165

CHAPTER SEVEN .. 166
CONCLUSIONS AND RECOMMENDATIONS ... 166

7.1 Introduction .. 166
7.2 Summary of the study ... 167
7.3 Evaluation of the study .. 169
7.4 Contribution of the research .. 175
7.4.1 Theoritical contribution .. 175
7.4.2 Methodical contribution ... 176
7.4.3 Practical contribution ... 176
7.5 Recommendations .. 177

7.5.1 Documentation .. 177
7.5.2 Standards and procedures .. 177
7.5.3 Quality of software .. 178

7.6 Benefit of the study ... 178
7.7 Further study ... 179
7.8 Conclusion ... 179
BIBLIOGRAPHY/REFERENCES .. 181

APPENDICES ... 196

 xi

LIST OF FIGURES
Figure 1.1: Moments of translation (Adapted from Rhodes, 2009) ... 21
Figure 1.2: DOI stages (Adapted from Nemutanzhela & Iyamu, 2011) .. 22

Figure 2.1: V-Model (Adapted from Skidmore, 2006) ... 42
Figure 2. 2: Innovation-decision process (Adapted from Nemutanzhela & Iyamu, 2011) 55
Figure 3.1: The research ‘onion’ (Adapted from Saunders et al., 2007) ... 63

Figure 4.1: Mootledi Logistics organisational structure ... 84
Figure 4.2: IT structure of Mootledi Logistics .. 84
Figure 4.3: Mmuso Technologies organisational structure ... 87
Figure 4.4: IT structure of Mmuso Technologies .. 88
Figure 4.5: Bokamoso Solutions organisational structure .. 91
Figure 4.6: IT structure of Bokamoso Solutions .. 91

Figure 6.1: Factors influencing software testing and evaluation ... 142
Figure 6.2: Factors influencing software testing and evaluation ... 146
Figure 6.3: Factors influencing software testing and evaluation ... 153
Figure 6.4: Decision support system framework for testing and evaluating software......................... 158

LIST OF TABLES

Table 2.1: Software testing levels (Hooda & Chhillar, 2015) .. 41
Table 2.2: Black box techniques (Hussain & Singh, 2015) ... 44
Table 2.3: White box techniques (Khan & Khan, 2012) .. 45
Table 2.4: Grey box techniques (Acharya & Pandya, 2012) ... 46
Table 2.5: Software Testing Tools (Sharmila & Ramadevi, 2014) .. 48
Table 2.6: ANT Tools (Iyamu & Sekgweleo, 2013) ... 53
Table 2.7: Innovation-decision process (Sang & Tsai, 2009) ... 56
Table 3.1: Participants .. 75
Table 3.2: Units of analysis ... 80

Table 5.1: Moments of translation (Case 1) ... 99
Table 5.2: Moments of translation (Case 2) .. 116
Table 5.3: Moments of translation (Case 3) .. 130

APPENDICIES

APPENDIX A: Interview Questions ... 196
APPENDIX B: Ethical Consideration Letter .. 197

GLOSSARY

 xii

Terms/Acronyms/Abbreviations

Software

Software developer

Software tester

Software testing tools

SDLC

DSS

ANT

DoI

 Definition/Explanation

Computer program written to be used by
organisation

 A person responsible for developing software
A person responsible for testing and
evaluating software

 Tools used for software testing

 System Development Life Cycle

 Decision Support System

 Actor Network Theory

 Diffusion of Innovation

IT

 Information Technology

 13

CHAPTER ONE

INTRODUCTION

1.1 Introduction

Organisations increasingly rely on software for their processes and objectives, which

makes quality critical. Thus, software testing is an essential aspect of systems

development cycle (SDLC) towards fulfilling business requirements and objectives.

Thus, software testing is performed by following software quality standards to identify

defects and flaws in the software and ensure they are removed (Sowunmi, Misra,

Fernandez-Sanz, Crawford & Soto, 2016). Therefore, organisations require skilled

personnel, software testers, who understand various types of testing as well as the

right tools that enable them to properly conduct software testing and evaluation.

Through the use of testing tools, software testers generate, manage and execute the

testing of software in a specific environment maintained for a particular type of test

(Bhardwaj, 2015). According to Abbas, Sultan and Bhatti (2017) with the automation

of software testing tools, software testers can reliably test the software in less time

and repeatedly reuse those tools to retest the software.

Organisations invest much money to purchase these tools which simulate what the

software testers do manually in an effort to increase efficiency and productivity. The

purpose of automated testing is to decrease the number of test cases which could be

executed manually with the intention of completely eradicating manual testing

(Gautam & Nagpal, 2016). It enables software testers to cover as many test

scenarios as possible within a short period of time, saving organisations time and

money as compared to performing manual testing. Therefore, it is important for

management to be knowledgeable of various software testing tools on the market

which they could purchase. They must be in a position to make sound and well-

informed decisions pertaining to which software testing tools to purchase.

This chapter, divided into twelve main sections, discusses the overview of this study.

The first and second sections discuss the background of the research as well as the

problem statement. The third section covers the literature review relevant to this

study. The fourth and fifth sections discuss the research objectives and questions.

The sixth section covers the research design and methodologies that were followed

in the study. The seventh section explains the data analysis and units of analysis.

 While the eighth, ninth and tenth sections cover the delineation of the research,

significance of the research and ethical considerations, respectively. The eleventh

 14

section outlines the structure of the thesis. And finally, the last section concludes the

chapter.

1.2 Background of research problem

The research problem emanates from the researcher’s own experience working with

numerous organisations in South Africa, including financial institutions such as First

National Bank, Standard Bank, Telecommunication, Telkom, and the energy and

power supply company, ESKOM. These organisations were lacking in testing tools or

tools capable of covering end-to-end testing, resulting in a negative impact on the

quality of software developed in-house. The poor quality of software is due to lack of,

or improper testing that has been a challenge for long time. Within the South African

context, Scott, Zadirov, Feinberg and Jayakody (2003) attribute the challenges of

software to lack of curriculum coverage in institutions of higher learning. This

unfortunately manifests in poor and challenging services provided to consumers.

According to Farooq and Quadri (2013), potential failures of software can be avoided

by performing exhaustive system testing, allowing possible permutations of inputs

which can be either valid and invalid. Some organisations, therefore, sought the use

of automated testing tools to address these challenges.

Through automated testing tools, tests can be effortlessly rerun as many times as

possible, alleviating human error during software testing (Mishra & Pradhan, 2012).

However, the problem remains as there is no framework to guide how the tools can

be used, resulting in human error. It is vital for organisations to have a framework in

place to guide complementary use of multiple tools when carrying out software

testing.

1.3 Problem statement

Software is used to enable and support organisations’ processes and activities for

competitiveness and sustainability. Thus, software is critical in organisations. As a

consequence, it is important to ensure that software is properly implemented, to most

effectively address organisational needs. To this end, organisations make use of

different tools and methods in testing software to ensure quality and appropriateness

for organisational needs.

However, the tools and methods do not allow the organisation to perform multiple

testing activities (manual, automation and performance testing), using a single tool.

As a result of tool limitations, the organisation fails to achieve its objectives in

 15

conducting end-to-end testing. This has, for many years, caused severe problems for

some organisations, affecting their time to respond to business change. The primary

problem is that there is no framework to guide complementary use of multiple tools

when carrying out software testing.

1.4 Literature review

A literature review presents the existing knowledge that has been explored and

reviewed by other researchers. Other researchers utilise this existing literature

relating to studies to support claims made. This is because literature review assists to

identify gaps in a study (Denney & Tewksbury, 2012). Thus, the following sections

were discussed: software development, software testing, software testing methods,

software testing tools and decision support systems, as well as actor network theory

(ANT) and diffusion of innovation (DoI) theory.

1.4.1 Software development

Software development is a process of developing a software system following a

particular system development methodology. Scott et al. (2003) explain the full circle

of systems development life cycle (SDLC) from the basis of its components, and how

the objectives are integrated with each other. Along the same line of understanding,

Sekgweleo (2015a) describes the SDLC as a practical and systematic process

adopted by software developers in developing software enabling the software

development team to plan, develop and control the way in which software is

developed. These methodologies are comprised of various stages or phases.

According to Bukhari, Faisal and Hira (2014), SDLC consists of various stages

including the collection of requirements, design, development, testing and

implementation. SDLC methodologies can be either traditional or agile.

The phases within the traditional methodology follow each other sequentially and the

preceding phase has to be completed before starting with the next phase (Bassil,

2012). On the other hand, agile methodology is a subcategory of iterative and

evolutionary ways that are based on iterative enhancement and adaptable

development processes. Kannan, Jhajharia and Verma (2014) allude that the agile

development promotes closer relationship with customers in order for them to assess

the software and provide continuous feedback. Sekgweleo (2015b:18) describes

agile methodology as “subset of iterative and evolutionary methods that are based on

iterative enhancement and opportunistic development processes”. This methodology

is feedback driven with less documentation, with the aim of delivering modules of

 16

software that are functional. Both methodologies have their own strengths and

limitations. Agile, for example, makes it possible for software developers to develop

software that satisfies users through perpetual delivery of functioning software by

getting feedback from the users (Shrivastava & Date, 2010). Van Dijk (2011) argues

that due to the little documentation produced in the agile methodology, the artefact

developed requires continuous redesign as agile focuses on solving specific

problems.

The waterfall model is documentation intensive and software development planning

has to be completed prior to the actual software development (Alshamrani &

Bahattab, 2015). As a result, quality of the software becomes a concern. Both the

requirements and technology continuously change; therefore, if planning continues

for too long, by the time the software development is completed, the technology

could very well be outdated. Also, the requirements might have changed. According

to Kannan, Jhajharia and Verma (2014), the waterfall methodology does not tolerate

uncertainty and risk due to lack of feedback from business thereby rendering it

difficult to improve on the early deficiencies that might have occurred during planning.

As a result, poor quality software will be delivered. Therefore, the above mentioned

risks needs to be mitigated and managed properly to achieve good quality.

1.4.2 Software testing

Software testing occurs throughout the development or enhancement of existing

software. Hooda and Chhillar (2015) describe software testing as a process in which

both software requirements and components are tested manually or through the use

of software automation tools to determine if the software meets the specified user

requirements. Software is evaluated with the intention of producing quality software.

Organisations rely on software for competitiveness and sustainability as it enables

business to smoothly execute its functions without any disruptions.

It is vital to have clear business requirements prior to software development, testing

and evaluation to deliver the quality software required. According to Lee (2014),

quality software has to meet various quality factors such as ease of use, user

interface aesthetics, functional appropriateness, accuracy and error tolerance.

Problems relating to user requirements, when determined late in the software

development process, often negatively impact the software cost (Sener & Karsak,

2012). These problems might be realised as early as the planning stage if the

software testing is involved early in the software development life cycle. Software

 17

inspection enables the software testing team to systematically detect defects in all

stages of software development (Qazi, Shahzadi & Humayun, 2016). This practice

assists in exposing defects early so they can be fixed on time. It is much less

expensive to correct defects sooner rather than later in the software development life

cycle. There are various software testing methods that can be employed to test the

software.

1.4.3 Software testing methods

Software testing methods are basically the approach that can be adopted to test and

evaluate software within the organisation, pointing out which direction to follow when

conducting software testing. According to Mishra, Ostrovska and Hacaloglu (2017),

the two commonly used types of testing methods are black box (functional) and white

box (structural) testing. In black box testing, the software is tested upon expected

output; the tester does not need to know the internal workings of the software

(Dhiman & Sharma, 2016). When using this method, software testers are only

mindful of what the software is supposed to do. This testing is purely based on the

requirement specification knowledge (Nidhra & Dondeti, 2012). As a result, when the

actual result from the software does not correspond with the expected result from the

requirement specification, a defect is logged.

In white box testing the software tester tests both the functionality as well as the

internal workings of the software (Jamil et al., 2016). With this kind of testing, the

software tester has the exceptional knowledge of how the software functions.

According to Nidhra and Dondeti (2012), the software tester is granted access to the

code when performing white box testing to be able to test the code of the software.

As the white box testers perform testing beyond the user interface, they are able to

detect defects from the code perspective. For example, enterprise resource planning

(ERP) systems are complex to implement in large organisations as compared to their

medium or small counterparts (Muscatello, Small & Chen, 2003). Goyette, Cassivi,

Courchesne and Elia (2015) highlighted that recent statistics indicate that more than

50% of projects experience cost overruns and more than 60% have schedule

overruns and these numbers have hardly changed since 15 years ago, when 70% of

ERP implementations were considered to be failures. Therefore, in order to deliver

quality software, regorious testing of such software is required.

More recently, the third method that has been introduced is known as grey box

testing. In grey box testing, the software tester has limited knowledge about the

 18

internal workings of the software (Jan, Shah, Johar, Shah & Khan, 2016). This

combines the strengths of both white box and black box testing (Khan & Khan, 2012).

With this kind of testing the software tester is not required to have full access of the

software’s source code. Each of the above testing methods can be used in

conjunction with various software testing tools.

1.4.4 Software testing tools

Software testing can be conducted manually and also through automation testing

tools. Manually, software testers create test cases and execute them through a

manual testing tool. However, this process is tedious, and it is easy for software

testers to commit mistakes. Bamotra and Randhawa (2017) argue that manual

testing is time consuming, resource intensive and allows some defects to remain

uncovered. Automation tools, then, enable automation testers to record and replay

those test cases or user actions which could be performed manually by a software

tester (Singh & Tarika, 2014). With automated testing, the software testing is capable

of reducing time, cost and productivity because automation test scripts can be run

repetitively for the software under test. Whenever the software is enhanced, or some

functionality changed, the automation test scripts are also modified in order to be re-

used in testing the software.

Software automation tools can be either proprietary or free open source. The

proprietary software testing tools are commercialised and require licensing per use.

Free open source tools, on the other hand, are free and downloadable from the

Internet. According to Singh and Tarika (2014), the free open source automation

software testing tools do not require any licences to be purchased for use and the

software code is available to the user for further enhancements to be done. Some of

the open source automation tools include Apache Selenium, Geb, Windmill, GitHub

Protractor, SpecFlow, Tyto Software Sahi and BSDW (Saravanan & Prasad, 2016).

Commercial automation testing tools include HP Unified Functional Testing, IBM

Rational Functional Tester, Oracle Application Testing Suite, Borland Micro Focus

SilkTest, SmartBear Test Complete and Testing Anywhere (Waje, Gaikwad &

Chaudhari, 2014). Many organisations purchase proprietary software testing tools

because they are ready to be used (Monier & El-mahdy, 2015). While with open-

source testing tools are freely downloadable from the internet however, further

development is often needed, which some organisations are usually not prepared to

undertake (Singh & Tarika, 2014).

 19

Additionally, there are performance software testing tools which are both open

source and proprietary. According to Abbas et al. (2017) currently there are various

open source and commercial load testing tools available in the market, including

LoadRunner, Apache JMeter, LoadRunner, Siege and Microsoft Visual Studio (TFS).

Clearly, organisations have variety of software testing tools from which to choose.

1.4.5 Decision support system

Managers within organisations are faced with various decisions to make, some

difficult and others not so difficult. The decisions they make, however, become a final

choice, without any frame of reference, which is problematic for many organisations

in South Africa. Thus, support systems are needed to guide the decision of the

managers and software testers. However, most current frameworks and

methodologies were created by European countries, which are not necessarily

suitable for the South African environment (De Wet & Visser, 2013). Currently,

systems such as decision support are available to assist managers in making

decisions which enable the organisations to continue functioning. Decision Supports

Systems (DSS) are computer-based information systems designed to assist

managers in making informed decisions when faced with problems (Tripathi, 2011).

According to Jain and Raju (2016:42), "DSSs serve the management, operations,

and planning levels of an organisation and help to make decisions, which may be

rapidly changing and not easily specified in advance".

At times it is difficult for humans to make decisions, especially if the root cause of a

problem is not well-understood. Thus, Filip, Zamfirescu and Ciurea (2017),

emphasising that for decision-makers to overcome limits and constraints

encountered, explain that they may need to rely on DSS to assist in making difficult

decisions to solve complex problems. Decision-making is one of the essential

activities of management and is a huge part of any process of implementation.

According to Liu, Duffy, Whitfield and Boyle (2010), various DSSs were developed to

support decision makers at all levels in the organisation, including systems that could

support problem structuring, operations, financial management and strategic decision

making, even extending to support for optimisation and simulation. Even in software

testing and evaluation, DSS can be used to assist managers in making right

decisions.

 20

1.4.6 Theories underpinning the study

This study aimed at developing a decision support system framework for testing and

evaluating software in organisations. The study was underpinned by two theories –

actor network theory (ANT) and Diffusion of Innovation (DOI) – meaning that the

theories guided the study from two different perspectives.

1.4.6.1 Actor Network Theory

The actor network theory (ANT), originating from the field of sociology, focuses on

performance relations between human and non-human actors and how they connect

in formulation of socio-technical networks with aligned interests (Effah, 2012). Both

human and non-human actors contribute equally to networks. Luoma-aho and

Paloviita (2010) assert that humans are not the only entities that act with agency: all

actors (including objects) play equal roles within the network. Each actor has

something to contribute for the network to be functional. Teles and Joia (2011) further

alluded that actor-network theory is a combination of agency and structure, as none

of them, actor or network, exists independently of the other.

The two complement each other in a way that if one is absent, the actor network

becomes dysfunctional. It is vital to understand the entire concept of actor network.

Williams-Jones and Graham (2003) emphasised that in order for us to distinguish the

origins of power and structure in the actor network, we need to consider all the

components that collaborate, co-operate, compete and lead to creation, persistence

or perishing of that network. Mahring, Holmstrom, Keil and Montealegre (2004)

explained that the actor-network creation, also referred to as translation, is comprised

of four major stages: problematization, interessement, enrollment and mobilization.

These four moments of translation were used as a lens to zoom into the collected

data. The diagram below depicts the four moments of translation of ANT.

 21

Figure 1.1: Moments of translation (Adapted from Rhodes, 2009)

The actor network theory suggests that knowledge is created, though the creation is

as the result of a heterogeneous/diverse network of people, devices and texts which

make a form of balance (Steen, 2010). ANT was used as a lens to zoom into actors

involved in the evaluation and testing of software within the three organisations.

1.4.6.2 Diffusion of Innovation

The process from the diffusion of innovation (DOI) theory was also employed in the

data analysis for this study. The DOI theory, introduced by Rogers in 1962, is defined

as a process by which innovation of technologies is communicated to the members

of social system through certain communication channels to masses over time

(Chang, 2010). This theory is concerned with introducing new ideas or technologies

to the target market. With new technology being introduced to an organisation, it is

evident that resistance from software users usually occurs. Software users may not

like the new software (because it has new features, is difficult to use, takes time to

read user manuals) and prefer the older one (because there is nothing new to learn,

they know it by heart) or they just don’t care to change. Therefore, DOI focuses on

diffusing new ideas to the environment, with particular focus on innovation decision

 22

process, which constitute five stages: knowledge, persuasion, decision,

implementation and confirmation.

Rogers also identified five significant characteristics of the innovation that influences

its adoption: namely relative advantage, compatibility, complexity, trialability, and

observability (Olsson, Skovdahl & Engström, 2016).

Figure 1.2: DOI stages (Adapted from Nemutanzhela & Iyamu, 2011)

Relative advantage describes how potential adopters expect the innovation to

improve their lives (Montfort, Brown & Pegg, 2009). This new idea or concept is

expected to bring change and simplify how things are done within the organisation.

Compatibility refers to a point which the innovation is seen as reliable with current

values, previous experiences and requirements of potential adopters (Zolkepli &

Kamarulzaman, 2015). Complexity refers to a point at which the innovation is

considered difficult to understand, implement and use (Loukis, Charalabidis &

Androutsopoulou, 2017). Trialability is the point at which the innovation may be

tested on a limited basis before making an adoption (or rejection) decision (Ekdale et

al., 2015). And finally, observability is the point at which the results of the innovation

are visible to others (Olsson et al., 2016). Both ANT and DoI theories were adopted

in this study.

 23

1.5 Research objectives

The aim of this present research is to develop a decision support system framework

for testing and evaluating software. The framework is intended to help guide

organisations in complementary use of multiple tools when carrying out software

testing. The objectives are as follows:

i. examine and understand the tools (for manual, automation and performance

testing) used for software testing;

ii. explore and understand methods (approaches adopted for testing such as white

or black box testing) involved in testing the software;

iii. examine the factors (factors triggering testing to be conducted) that could

influence the testing and evaluating of software in organisations; and then

iv. based on the findings from the objectives as stated above, a decision support

system framework will be created. The aim of this decision support system

framework will be for addressing the challenges which occur during software

testing and evaluation in organisations.

1.6 Research questions

To achieve the above research objectives, four main questions have been

formulated:

i. What are the tools that are used in testing software?

ii. What are the methods involved in the testing of the software?

iii. What factors influence the testing and evaluating of software in organisations?

iv. How can a decision support system framework be developed for addressing the

challenges which occur during software testing and evaluation in organisations?

1.7 Research design and methodology

The purpose of this study was to develop a decision support system framework to

test and evaluate software within organisations. In order to achieve this goal, various

methods and approaches were employed, including a qualitative research approach,

case studies and data collection approaches.

1.7.1 Research paradigm

A paradigm is how the world views things. Petersen and Gencel (2013:81) describe

paradigm as "a basic set of beliefs that guide action". The word paradigm is used

interchangeably with the word philosophy in the field of research. The aim of a

paradigm is not meant to lead people into making conclusions, but to guide them get

 24

where they want to. The paradigm, or worldview, influences the types of research

methods that can be adopted by a researcher as part of the research methodology in

delivering trustworthy evidence about the examined phenomenon of interest (Brown,

2009).

A paradigm points the researcher in the right direction, keeping the researcher

focused on the subject researched. The knowledge of research paradigms helps the

researcher to assess various methodologies and methods to avoid incompatible use

and unrequired work, confronting the limitations of certain methods at an early stage

of the research (Wijesinghe, 2009). There are four major aspects of research

paradigms, namely ontology, epistemology, axiology and pragmatic (Ihuah & Eaton,

2013).

1.7.2 Epistemology

Epistemology is something that can be known about what exists. Epistemology

focuses on the nature and forms of knowledge (Cohen, Manion & Morrison, 2007:7).

According to Scotland (2012), epistemological assumptions emphasise how

knowledge is created, acquired and communicated. Saunders, Lewis and Thornhill

(2009) further stated that epistemological assumptions are concerned with what is

acceptable as knowledge and also that which creates the acceptable knowledge

within a field of study. Similarly, according to Tennis (2008), epistemology is how we

know, helping to determine whether the knowledge acquired or created is valid. It

enables the researcher to analyse the nature of knowledge. Epistemology could

follow various paradigms, including post-positivist, constructionist and interpretivist

(Levers, 2013).

1.7.2.1 Interpretivism

The interpretive paradigm enables researchers to explore their world by interpreting

what other individuals know or understand. Cresswell (2007) asserted that with

interpretive paradigm, the researcher aims at making sense or interpreting the

meanings other individuals have about the world. Thus, the interpretive paradigm

emphasises recognising and reciting the meaning of human actions and experiences

(Levers, 2013). Interpretivists must understand the context of any type of research

conducted and the criticality of the interpretation of collected data (Thanh & Thanh,

2015). The researcher’s interpretation thus becomes subjective as it is influenced by

feelings and emotions. That is how reliable knowledge gets created. Thus,

 25

interpretivist research is “guided by the researcher’s set of beliefs and feelings about

the world and how it should be understood and studied” (Terreberry, 2017:55).

Therefore, the role of the interpretivist researcher is to understand, explain and

interpret social reality through a different eye (Mack, 2010). The intention of this

present research is to create a decision support system framework for the testing and

evaluation of software in an organisation. Therefore, the interpretivism paradigm was

employed for this study because of its characteristics. The researcher subjectively

interpreted the qualitative data that was collected following the theories underpinning

this study (actor network theory and diffusion of innovation). Actor network theory

was applied first, followed by diffusion of innovation, primarily because it was critical

to first establish the formulation and existence of networks so as to know how the

technology can be diffused in the environment. Also, it was necessary to first

understand the tools, methods, and relationships between the actors involved in

software testing, prior to assessment of innovative and diffusion.

1.7.3 Research methods

Research methodology, a vehicle enabling a researcher to conduct research on a

topic of choice, offers a set of methods that can be applied to a particular case. Abu-

Dalbouh (2013) describes research methodology as procedures, ways, methods and

techniques used to collect the required information relating to the research objective.

There are a variety of research methods, namely qualitative, quantitative and mixed

method, which are selected based on the purpose of the research. For the purpose

of this research, qualitative research methodology was employed.

1.7.3.1 Qualitative research methods

Qualitative research aims at explaining a social phenomenon by examining people’s

beliefs, culture and experiences. A qualitative approach enables the researchers to

capture the thoughts and feelings of the research participants, further enabling the

understanding of the meaning that people ascribe to their experiences (Sutton &

Austin, 2015). It provides rich descriptive accounts of the phenomenon under

investigation (Gelo, Braakmann & Benetka, 2008).

This approach investigates the why and how of the phenomena. Rajasekar,

Philominathan and Chinnathambi (2013) characterise this approach as being non-

numeric, descriptive, applying reasoning and using words to describe the findings.

The justification for using qualitative research was that it has the capability of digging

 26

deeply into peoples’ experiences, behaviours, thoughts and beliefs, assisting the

researcher in understanding the factors influencing the testing and evaluation of

business software. This understanding was established through interviewing

participants, encouraging them to share how the software was tested and evaluated

within the organisation. The qualitative approach was used in conjunction with the

case study.

1.7.3.2 Exploratory research methods

Exploratory research is the method appropriate for investigating new or a problem

that has not been studied clearly. The intention of exploratory research is to

formulate a problem to precisely investigate or develop working hypotheses from an

operational point of view (Kothari, 2004). It allows people to think, to use their

imagination, experience, insight and skill to propose innovative ways for

understanding and interpreting reality (Reiter, 2013). This is where a researcher has

an idea or has observed something and seeks to understand more about it, laying

the groundwork for future research. For this particular study, the researcher was

seeking to provide knowledge about testing and evaluation of software within various

organisations. To gain this broad understanding, and as organisations operate

differently, the selected organisations included a private, a public and a small-

medium enterprise (SME).

1.7.4 Research design

Research entails a great deal of information searching and reading surrounding the

objective of the study. Ragab and Arisha (2018:1) define research as “systematic

investigation into and study of materials and sources in order to establish facts and

reach new conclusions”. These facts expand on the existing knowledge. Therefore a

research design is required to guide a researcher when conducting the research.

Wedawatta, Ingririge and Amaratunga (2011) argue that a research design offers

direction for the research as well as the process by which the research is conducted.

The case study approach was employed in this study.

1.7.4.1 Case study

The case study aims at investigating an ‘instance’ which may be an organisation,

department, project, information system, a person or even a kind of illness. Yazan

(2015:138) defines case study as “a contemporary phenomenon within its real-life

context, especially when the boundaries between a phenomenon and context are not

clear and the researcher has little control over the phenomenon and context”. Yin

 27

(2013) explains that the case study approach enables the researcher to clarify

questions such as the "how" and "why" of an event or phenomena. The approach

can be used to investigate the phenomenon in its real-life context through the use of

one or multiple entities (cases) (Benbasat, Goldstein & Mead, 1987). Through the

detailed investigation, such as the use of the case study approach, deeper

understanding of the phenomenon can be gained (Nabukenya, 2012). The case

study offers a systematic way of viewing events, gathering data, evaluating

information and reporting results as it provides detailed contextual views on

phenomenon of interest.

Three organisations were selected as case studies for this research to gain a deeper

understanding of how software was tested and evaluated within these organisations.

The cases consisted of a private (Mootledi Logistics), public (Mmuso Technologies)

and small and medium enterprise (SME) (Bokamoso Solutions). The business

objectives and focuses of these organisations were different at the time of this

research. Mootledi Logistics was in automobile and logistics sector; whilst the other

two organisations, Mmuso Technologies and Bokamoso Solutions focused on

information technology (IT) as their core business. Organisations are classified in

terms of sector, size, total number of employees, total turnover and total gross asset

value. A private company is a privately-owned company that is prohibited from

offering its shares to the public – the transferability of its shares are restricted – but it

may have more than 50 shareholders (Department of Trade and Industry, 2010). A

public company is one in which the ownership is distributed among the overall public

with many shares of stock which are freely traded on a stock market but restricts their

right of pre-emption (Department of Trade and Industry, 2010).

In South Africa, an SME is any enterprise with fewer than 100 to 200 employees, an

annual turnover of less than R4 million to R50 million and gross assets, excluding

fixed assets, less than R2 million to R18 million depending upon the industry and has

direct managerial involvement by owners (Abor & Quartey, 2010). The public

organisation has its own way of conducting business, different from the private

organisation and the small medium enterprise (SME). All three organisations’

operational activities are conducted differently. Hence, the researcher was able to

identify how different or similar things were conducted in the mentioned organisations

when testing and evaluating software.

 28

1.7.5 Data collection

After the research design, the next step to consider was data collection, achieved by

consulting as many relevant participants as possible. Data collection enabled the

researcher to systematically collect data about a chosen topic. Data collection

methods influence the reliability and validity of the results (Yang, Wang & Su, 2006).

According to Oates (2006), data can be collected through various data collection

methods such as interviews, questionnaires, observations and documentation. This

study employed interviews and documentation as the different approaches in the

data collecting process.

1.7.5.1 Interviews

Interviews are widely used in research as a data collection tool. Unlike

questionnaires, interviews are more powerful in obtaining rich data that allows

researchers to examine people's views in greater depth (Alshenqeeti, 2014). An

interview, a conversation that occurs between the interviewer and interviewee,

enables the interviewer to explore the meaning of what an interviewee says.

Likewise, Harris and Brown (2010) assert that the intention of an interview is to

gather in-depth insights on participant attitudes, thoughts and actions. Interviews,

then, enabled the researcher to gather more information from the interviewee

regarding the investigated topic of software testing and evaluation. There are three

different interview approaches: structured, semi-structured and unstructured.

A semi-structured interview, is a pre-planned interview where the researcher writes

the interview questions prior to conducting the interview, enables the interviewer to

allow the interviewee to elaborate on particular issues which are ambiguous

(Alsaawi, 2014). This type of interview is a controlled way of obtaining information

from interviews. Therefore, semi-structured interviews were employed for this study

as the interviewer could prompt the interviewee for further clarity on answers that

were unclear.

However, with structured interviews, the interviewer is not required to follow the

questions as prepared in sequential order but can meander through the questions

depending on the flow of the conversation. This means the interviewee is free to

respond to questions and even ask questions. This approach allowed the interviewer

to take notes during the interview and record the conversation. The recording of the

interview enables the researcher to focus on the interview content and verbal

 29

prompts, simplifying interview transcriptions (Jamshed, 2014). A recording captured

the entire conversation.

For this study, a voice recorder was used to capture the interview conversation which

was later transcribed word by word. The interviews were conducted in English as this

is the common language of the information technology field. Permission to record the

conversation was requested prior to each interview.

1.7.5.2 Documentation

Documentation is the other data collection tool chosen for this research. Document is

a broad term defined to cover variety of written records, physical traces and visual

images (Merriam & Tisdell, 2015). Documents can be classified as either ‘found’ or

‘researcher-generated’. According to Kolhe, Khetri and Deshmukh (2013), found

documents exist prior to the research and can be found in most organisations, whilst

researcher-generated documents are compiled solely for the purpose of the

research. These found documents include user manuals, user requirements,

functional specifications, minutes and status reports, for example. On the other hand

researcher-generated documents include interview notes, interview recordings, field

notes, answers to questionnaires, journals and articles, for example.

Access to documents such as software testing tools and methods and strategies

related to the study were requested from the organisations and used as supporting

documentation for the interviews conducted when discussing areas such as software

development, software testing and decision support.

1.8 Data analysis

Data analysis occurs after the completion of data collection. Binckman and Rog

(2009:234) state that data analysis is “what does a researcher do with the collected

evidence to make sense of it”. Two theories – actor network theory and diffusion of

innovation – were used as lenses at both macro and micro levels in the analysis of

the data. ANT was used at the macro level, mainly because it guided the DoI, which

was used at micro level, to diffuse the innovation. The two theories were employed

as follows:

 30

First, ANT was applied as follows:

i. to understand software testing through an examination of the problematisation

of tools (e.g. for manual, automated and performance testing) that are used

for software testing;

ii. to examine the relationship between actors to gain understanding of software

testing methods, through their selection and adoption; and

iii. to examine the factors that influence testing and evaluation of software

through moments of translation.

This was followed by the use of DOI, as follows:

iv. to understand how decisions are made in testing software in organisations;

and

v. to explore how software innovation is diffused across the organisations.

The rationale for adopting DOI was that decisions made in software testing were vital.

Such decisions could either impact the quality of software negatively or positively.

Negative in a sense that when software testing activities (such as which testing

methods and techniques to adopt) are not planned and executed properly, poor

quality software may be implemented. As a result, business would not be impressed

with the software delivered by the software development team. Therefore, the

software testing team must be innovative at all times in terms of deciding how the

software needs to be tested, what are the anticipated risks, how can they be

mitigated, which functionality or test cases needs to be prioritised, which software

testing methods and techniques to adopt, whether automation and performance

testing is necessary and at what stage can they be carried out. Software testing is

allocated time as other activities in the systems development cycle. Therefore,

making the right decisions from the onset when the testing team is involved would

assist the team in meeting the scheduled timelines without compromising the quality

of software. Through innovative ideas quality software would be achieved in testing

software.

1.8.1 Unit of analysis

A unit is a single thing that can be regarded as complete but individually forms part of

a bigger thing, while analysis means breaking a complex topic into smaller portions in

order to gain better understanding. Bhattacherjee (2012) describes unit of analysis as

a person, group or object that needs to be explored to be understood better. Elo and

 31

Kynga (2007) further describes unit of analysis as a letter, sentence, and a portion of

pages or words, number of participants in discussions or time used for discussion. In

this study, three cases were explored, consisting of technical (IT) and non-technical

(business) participants.

1.9 Delineation of the research

The study focused on software testing. The physical boundary (where software

testing is conducted) was not part of the research. Therefore, for the purpose of this

study, software testing referred to manual, automation and performance testing. This

study purely addressed the software testing component, not the implementation of

the software.

1.10 Significance of the research

The benefits of the study were threefold: theoretical, methodological and practical:

i. Theoretical perspective: studies have been conducted with regard to software

testing and evaluation. However, little is known about the factors influencing

software testing and evaluation in an organisation. As a result, this study

seeks to contribute to the academic body of knowledge, increasing the

existing literature.

ii. Methodological perspective: employing two sociotechnical theories, as lenses

through which to analyse the data, brings a renewed perspective to how

software testing and evaluation has been studied.

iii. Practical perspective: the study will assist decision makers as well as

managers in knowing more of what software testing and evaluation is about.

Decision makers and managers will understand the challenges which occur

during software testing and evaluation in organisations.

1.11 Ethical considerations

The process of this research adhered to the university, Cape Peninsula University of

Technology (CPUT) research ethics code of conduct. It is within the code of conduct

that anonymity was emphasised in the consent form and at the briefings. Thus, the

researcher:

i. Explained to the participants their right to withdraw from the process at time

they deem fit to do so.

ii. Provided a consent form, requesting respondents to complete it as a

guarantee that their identities will not be revealed.

 32

1.12 Structure of the thesis

The research study consists of seven chapters, summarised as follows:

CHAPTER 1: Introduction

This chapter introduces the research topic as documented in the study. It also

provides the introduction to the study, including the research problem, research

objectives and research questions. This chapter also covers the literature review

relating to the study, research methodologies applied and the underpinning theories

that were applied in the data analysis and the conclusions reached. Thus, the chapter

provides an overview of the entire study, explaining how the thesis is organised.

CHAPTER 2: Literature review

This chapter presents the acknowledgement and recognition of existing studies to

support the objectives of the research. Furthermore, it covers the discussion on

literature related to the testing and evaluation of software within organisations. The

literature review covers six main parts of the study: software development, software

testing, software testing methods, software testing tools, decision support system and

the theoretical underpinnings of the study. Two theories underpinning the study, actor

network theory (ANT) and diffusion of innovation (DOI), were also discussed. The

moments of translation, also known as the lens of ANT, was applied. Thereafter, the

innovation decision process was applied to diffuse the innovation.

CHAPTER 3: Research methodology

This chapter focused on the research methods and approaches adapted for the study

which include research strategy, design and data gathering techniques. The research

methodologies, including approaches, methods and techniques that were applied in

the study were discussed in this chapter. The researcher applied a qualitative

research method, while also opting for a case study and various data collection

techniques such as interviews and documentation. The case study research

approach was employed in the study, with interviews generated the data to collect

from all three different organisations (a private, an SME and a public organisation).

The intention was to understand how these three organisations conduct software

testing and evaluation in order to develop a decision support system framework for

testing and evaluating software.

 33

CHAPTER 4: Case study overview

The overview of three cases used in the study is presented in this chapter, including

the goals, strategy and vision of the individual organisations, the organisational

structure, and the roles and responsibilities of the departments within the

organisations. The three case study interviews were carried out using the same

strategy, but the organisations were treated differently since they operate in different

businesses (private, SME and public). The businesses chosen as case studies are

not in competition with each other as they have different cultural settings, one being

in the automobile and logistics sector and others in the information technology (IT)

sector.

CHAPTER 5: Data analysis

The analyses and subsequent findings for all three case studies are presented in this

chapter. The analyses were carried out using moments of translation from the

perspective of the actor network theory as well as the innovation diffusion process

from the perspective of the diffusion of innovation theory as discussed in Chapter 2.

The stages of the moments of translation were used to analyse the data. Also, the

innovation decision process stages were used to analyse data. Actor network theory

was used to establish actors (human and non-human) as well as networks involved in

the testing and evaluation of software.

CHAPTER 6: Findings and interpretation

The findings and interpretations of this study are presented in this chapter. The

findings for each case were explained separately. Then, based on the findings and

interpretation, the decision support system framework for testing and evaluating

software was developed. The framework is aimed at addressing the challenges which

occur during software testing and evaluation in organisations.

CHAPTER 7: Conclusion and recommendations

This final chapter summarises all the previous chapters and provides the evaluation

of the study. The theoretical contributions of the study are presented and

recommendations and suggestions for further research are made in this chapter.

1.13 Summary

The aim of the study was to create a decision support system framework for testing

and evaluating software within organisations. In this chapter, the qualitative research

method, together with the case study, was introduced to examine how software

 34

testing and evaluation was performed within three types of organisations: a private, a

public and a small medium enterprise, respectively. This was necessary as

organisations rely on software for sustainability and competitiveness. Therefore, it is

imperative for all software developed to be rigorously tested and evaluated to ensure

that business carried on without any interruptions. As such, customers will be

delighted to be associated with the organisation that satisfied its customers. This

software enables an organisation to function effectively and perform its duties

efficiently. Therefore, all software produced needs to be of high quality to retain and

even advance the organisation’s competitiveness. Customers expect to receive

services rendered to them at all times and at their convenience, without faults or

disruption. In the next chapter, the review of literature relating to this study that was

conducted is presented.

 35

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter, discusses the literature relating to this study, and it is divided into nine

main parts. The first part covers the information technology (IT). The second part

discusses software development and implementation. The third to the sixth part

covers software testing, software testing processes, software testing methods as well

as software testing tools. The seventh and eighth part, describe the decision support

system (DSS) and the theories underpinning this study: the actor network theory

(ANT) and the diffusion of innovation (DOI) theory.

2.2 Information technology

Information technology (IT) is the use of computers to store, disseminate or retrieve

information. Ghobakhloo, Sabouri, Hong and Zulkifli (2011:54) describe IT as

“capabilities offered to organisations by computers, software applications, and

telecommunications to deliver data, information, and knowledge to individuals and

processes”. IT allows organisations to function more efficiently and thereby maximise

productivity and profits. It also provides faster communication, electronic storage and

the protection of records within the organisation. Hence, many organisations depend

on IT as an enabler to function. According to Sembiring and Adi (2015), IT assists

organisations to adapt and improve the quality of their service. However, once

implemented, the employees might still decide not to use it. Therefore, organisations

need to instigate better ways of enforcing the use IT.

As technology improves, tasks that were previously performed by human employees

are now carried out by IT systems. As a result, some employees ultimately lose their

jobs due to technology. In other instances, however, employees tend to prefer the

manual ways of performing their daily operations even though the organisation has

purchased IT systems. Sweis et al. (2014) argue that a wide negative perception and

strong resistance of employees in using IT may translate to a lack of support as well

as a shortage of skills required for using IT systems. The lack of IT knowledge within

the organisation can be viewed as a barrier to IT adoption (Ghobakhloo, Hong,

Sabouri & Zulkifli, 2012). Therefore, organisations that are relying on IT have to

consistently train employees to keep them abreast with the latest technology and to

remain efficient and effective. The consequence of not keeping employees up to date

is that employees are rendered as unnecessary in the face of changing technologies.

 36

Some organisations purchase or develop software in-house and implement it so long

as they have relevant skills in place.

2.3 Software development

Software development is a process of developing a software system following a

particular systems development methodology. These methodologies, either

traditional or agile, are comprised of a sequence of stages that need to be followed

by software developers to produce and deliver software requested by business

(Alshamrani & Bahattab, 2015). These methodologies offer discipline to software

development processes for efficiently developing the requested software (Bukhari &

Khan, 2014). Amlani (2012) further explained that software development life cycle

(SDLC) enables the software development team to plan, develop and control the way

in which software is developed.

The deliverables on agile methodology occur iteratively based on the functionality

prioritised by business. Kannan et al. (2014) asserted that agile methodology is a

mixture of iterative and incremental process models which promote flexibility and the

timely delivery of software. This methodology does not allow software to be

developed for reusable purposes, but only focuses on solving specific and not

general problems (Sekgweleo, 2015b). The traditional methodology, such as the

waterfall method, is documentation intensive and software development planning has

to be completed prior to the actual software development (Alshamrani & Bahattab,

2015). As a result, quality of the software becomes a concern.

Both the requirements and technology are continuously changing; therefore, if

planning takes too long, by the time the development of software is complete the

technology might already be outdated, or the requirements might have changed.

According to Kannan et al. (2014) the waterfall methodology does not tolerate

uncertainty and risk due to lack of feedback from the business. Consequently, it

makes it difficult to improve on the early deficiencies that might have occurred during

planning.

The phases within the traditional methodology follow each other sequentially and the

preceding phase has to be completed before starting with the next phase (Bassil,

2012). The deliverables on agile methodology occur iteratively based on the

functionality prioritised by business. Sekgweleo (2015b:18) describes agile

methodology as “subset of iterative and evolutionary methods that are based on

 37

iterative enhancement and opportunistic development processes”. This methodology

is feedback driven with less documentation, with the aim of delivering modules of

software that are functional. Both methodologies have strengths and limitations. Agile

makes it possible for software developers to develop software that satisfies users

through perpetual delivery of functioning software by getting feedback from the users

(Shrivastava & Date, 2010). Van Dijk (2011) argue that due to the little

documentation produced in agile, the artefact developed requires continuous

redesign as agile focuses on solving specific problems.

The waterfall model is documentation intensive and software development planning

has to be completed prior to the actual software development (Alshamrani &

Bahattab, 2015). As a result, quality of the software becomes a concern. Both the

requirements and technology continuously change, so if planning takes too long by

the time the development of software is complete the technology might be outdated.

Also, the requirements might have changed. According to Kannan et al. (2014) the

waterfall methodology does not tolerate uncertainty and risk due to lack of feedback

from business. Therefore, it makes it difficult to improve on the early deficiencies that

might have occurred during planning. As a result, poor quality software will be

delivered.

The methodology (agile or traditional) is chosen according to the needs of the project

(Vinekar, Slinkman & Nerur, 2006). Therefore, it is imperative to understand that

software testing is informed by the type of methodology that is adopted by the

software development team. According to Sekgweleo (2015a), it is vital for the

stakeholders involved in the software development team to decide wisely on the

methodology to be adopted for a particular project because software development

methodology is not a silver bullet for all projects. Software development methodology

is just a framework to be followed when developing software. Software testing is

influenced by the software development methodology adopted by the software

development team. Saleh (2011) argued that the intention of software testing is to

deliver good quality software to the customer or project outcome as anticipated by all

stakeholders.

There are various activities carried out in the development phase which includes

database design and creation, user interface design, application, library and system

sources and binary code, and the developing and testing of software against the

business requirements specification (Iyamu, Sekgweleo & Mkhomazi, 2013). The

 38

creation of user interface and source code requires tools to mention few such as

C++, Java, Oracle and Delphi to aid in the aspects of software (Avison & Fitzgerald,

2006). These tools enable the software developers to convert the business

requirements into programs that can be used for daily operations within the

organisation. Once the software development is complete, software testing

commences. Once the software testing is complete and the business has accepted

what they requested, then software implementation occurs.

Organisations develop software for sustainability and competitiveness. According to

Tarrant (2016:n) from Moneyweb, “South Africa’s ‘Big Four’ retail and commercial

banks spent in excess of R30 billion on information technology over the 12 months to

30 June 2016, including the cost of staff involved in this function”. Clearly,

organisations invest huge amounts of money in IT to improve how they do business

and to out-compete their rivals. So software must be tested thoroughly prior to its

implementation.

2.4 Software implementation

Software implementation is a process of deploying the tested software into the

production environment. Nahas and Maaita (2012) describe software implementation

as a way of translating the software specification into the executable software. This

simply means that the software has been developed, tested and is ready for use and

can be deployed into production environment. However, the implementation phase in

some software development methodologies includes development and testing. In

some methodologies development, testing and implementation are stand-alone

phases. Once the software has been developed and tested, only then it can be

deployed to production. There are still possibilities, however, that when software is

implemented, errors could occur. When those errors have occurred, it means that the

production environment malfunctions and the operational specialists have to roll back

in order to repair the production environment.

Some organisations are still conducting their business manually, rather than

automating their processes and activities with software. Some may be operating with

existing software which needs replacement. New software could be implemented by

one of the various approaches, namely pilot, parallel or big bang (Okrent & Vokurka,

2004). Hertzum, Bansler, Havn and Simonsen (2012:2) explain a pilot

implementation “as a field test of a properly engineered, yet unfinished system in its

intended environment, using real data, and aiming; through real-use experience; to

 39

explore the value of the system, improve or assess its design and reduce

implementation risk”.

Pilot implementation makes it possible for the software to be tried in one area and,

when found acceptable, can be rolled out in other areas. Alternatively, big bang

implementation refers to replacing the existing software with a new one at one go

(Capaldo & Rippa, 2009). The risk with big bang implementation is that should

software go awry, the organisation must quickly roll back in fast efforts to make the

production environment functional again. Parallel implementation refers to when the

old software runs parallel with the new software to ensure data integrity as well as

data migration (Okrent & Vokurka, 2004). With this strategy, both old and new

software runs parallel for a particular period of time and when the new software

proves stable, the old one is switched off. However, prior to software implementation,

regardless of the implementation approach, software testing must occur to verify that

the software functions as expected.

2.5 Software testing

Software testing occurs throughout the development or enhancement of existing

software. The intention of testing software is to find defects, mistakes or missing

requirements in the software under test (Jamil et al., 2016). This is imperative to

deliver quality software that will enable the organisation to do business smoothly and

remain competitive. The software under test is verified against the business

requirements to detect any mistakes that might have been committed by software

developers. As explained, software can be conducted manually or automatically

through the use of software testing tools.

Manual testing requires the software tester to play the role of end user by performing

features on the software under test to ensure its expected behaviour (Bamotra &

Randhawa, 2017). Automation testing is performed through software testing tools to

reduce the necessity for manual or human participation and repetitive tasks (Singla &

Kaur, 2014). According to Hooda and Chhillar (2015), software testing tools are

mainly used to conduct performance testing because of the difficulty of testing load

manually.

Automation testing is designed to re-run test scenarios, previously performed

manually, quickly and repetitively (Waje et al., 2014). Moreover, it increases the

depth and scope of testing to improve software quality. Automation testing assists in

 40

executing many complex test cases during every test run supplying coverage that is

impossible with manual tests. Performance testing, to assist in testing non-functional

requirements of the software, is conducted to determine inadequate performance

behaviours of the software under test such as longer execution time and/or lower

throughput (Luo, 2016). According to Bhatti and Kumari (2015), there are several

types of performance tests – load, stress, volume, endurance, spike and scalability

testing – which can be executed to measure performance.

These types of tests allow the performance testers to test the non-functional

requirements of the software under test. The Department of Education in Gauteng as

well as Safair Airlines experienced performance problems after implementing their

software: “The Minister of Education in Gauteng, Panyasa Lesufi, said the software

crashed after it received 600 hits per second. The software was upgraded to receive

3 000 hits a second but that still failed and was increased again to 20 000 hits a

second” (Monama, Ndlazi & Mabotja, 2016:n). “The airline experienced high traffic

volumes in sales due to its R1 birthday bargain on flight tickets. The company says it

managed to sell at least 5,000 tickets so far and will extend the deadline for the sale”

(Koza, 2015:n). But having tested the functional requirements of the software does

not necessarily mean the entire software has been tested. There are also non-

functional requirements that require testing as well.

It is much less expensive to correct defects sooner rather than later in the software

development life cycle. Some goals of software testing, then, are to identify the

correctness, completeness, security and quality of developed computer software,

thereby determining the status of the product during and after the build (Khojasteh,

Zeki, Naji & Sanatnama, 2012). According to Kapur, Yadavalli and Kumar (2006),

software engineering (body of knowledge) does not only help to deliver functional

software on time and within the budget, but aids in satisfying specific quality

standards. There are industry quality standards that must be adhered to in regard to

product quality for the software to be globally accepted.

ISO/IEC/IEEE 29119 is the latest international standard intended to be more

inclusive by encompassing various levels of testing processes (Alaqail & Ahmed,

2018). It covers an internationally agreed set of software testing standards readily

adopted by any organisation for conducting any type of software testing (Matalonga,

Rodrigues & Travassos, 2015). These standards place emphasis on some software

testing aspects such as concepts and definitions, testing processes, testing

 41

documentation, test design techniques and keyword-driven tests (Alaqail & Ahmed,

2018). Organisations adopting these software testing standards are able to compete

globally and locally because they are exposed to international agreed standards. The

table below presents the main types of functional testing that can be conducted:

Table 2.1: Software testing levels (Hooda & Chhillar, 2015)

Unit/Component Testing It is performed by software developers to ensure that

the units of the software in isolation work as specified

in the requirement specification.

Integration Testing Testing the communication and interaction between

different modules to ensure that data flows correctly

between various components.

System Testing Testing the entire system to ensure it functions as

stipulated in the software requirements specification.

User Acceptance Testing Testing the final software with the client to ensure it

accomplishes intended functionality.

However, to successfully achieve the above-mentioned testing levels, the software

testing must adhere to the software testing process. It is vital for the team to know

what type of testing to conduct, how and when to conduct it.

2.6 Software testing process

As much as planning is critical for software development, the same applies to

software testing. The software testing process is required early in the life cycle, prior

to any system coding and during each of the stages preceding implementation

(Munassar & Govardhan, 2010). According to Skidmore (2006), methodologies such

as V-Model provide a relationship between development and testing in ensuring

proper testing and quality assurance throughout the entire project life cycle, as

illustrated in figure 2.1 below:

 42

Figure 2.1: V-Model (Adapted from Skidmore, 2006)

Kasurinen (2012) asserted that a test process encompasses test planning and

control, test analysis and design, test implementation and execution, evaluating exit

criteria, reporting and test closure activities.

The software process offers the flow of the software and expands the assurance of

the software product under production (Hooda & Chhillar, 2015). Test planning

begins with the creation of the test plan. This first step, the test plan, ensures that the

testing activities are adhered to and determines precisely what the testing is meant to

achieve. The test plan specifies the items to be tested, the level of testing, the

sequence of testing, the manner in which the test strategy will be applied to the

testing of each item, as well as description of the test environment (Agarwal, Sharma

& Nikhil, 2012). With such details, the test plan establishes a clear indication to

stakeholders pertaining to the software testing.

The test process describes the test analysis and design as the activity of designing

the test cases using the techniques selected during planning. This can be

successfully achieved if the software tester understands the user requirements.

However, if the software tester fails to understand the user requirements and

architecture software under test, it would not be possible to create test cases which

will reveal more errors in short amount of time (Quadri & Farooq, 2010). A test case

 43

outlines the steps required to test any functionality of the software and contains

expected and actual result (Hooda & Chhillar, 2015). Such a comparison means the

software tester can readily determine whether or not the software under test satisfies

requirements or works correctly. These test cases could be captured in a

spreadsheet or a testing tool if the organisations have one.

2.7 Software testing methods

Software testing methods are basically the approaches that can be adopted to test

and evaluate software within the organisation. It points out which direction to follow

when conducting software testing. According to Mishra, Ostrovska and Hacaloglu

(2017), the two commonly used types of testing methods are black box (functional)

and white box (structural) testing. Hussain and Singh (2015) also refer to black box

testing as behavioural testing whereby the software is tested without the knowledge

of the internal workings of the software. White box testing is where the software

tester knows the internal workings of the software (Jamil et al., 2016). Nidhra and

Dondeti (2012), asserted that in white box testing, the software tester is granted

access to the code when performing white box testing to test the code of the

software.

There is also a third testing method that has more recently been introduced: grey box

testing. In grey box testing, the software tester has limited knowledge about the

internal workings of the software (Jan et al., 2016). Combining the strengths of both

white box and black box testing (Khan & Khan, 2012), with this kind of testing the

software tester is not required to have full access of the software’s source code.

These testing methods can be used in conjunction with various software testing tools.

2.7.1 Black box method

Black box method is concerned with examining the functionality of the software

without looking into its internal workings of the software. Black box testing is

performed to compare the actual functionality of the software with the intended

functionality described in the software specification document (Ahamed, 2009).

Mainly conducted to test the behaviour of the software, this method is divided into

various techniques which includes equivalence partitioning, boundary value analysis

testing and decision table testing (Williams, 2006). Other black box testing

techniques are the cause-effect graphing techniques, comparison testing, fuzz

testing and model-based testing (Irena, 2008). Table 2.2 describes the various black

box techniques:

 44

Table 2.2: Black box techniques (Hussain & Singh, 2015)

Equivalence Partitioning This technique divides the input domain of a program into

equivalence classes, a set of valid or invalid states for input

conditions.

Boundary Value Analysis Testing It is a positive or negative test focused on boundary or limit

conditions of the software being tested.

Decision Table Testing It is a test designed to execute the combinations of inputs

based on conditions shown in the decision table.

Comparison Testing It is a technique whereby the software engineering teams

produce independent versions of the system and each

version is tested with the same test data, so the same output

can be confirmed.

Fuzz Testing It is a degree to which a software can function correctly in

the presence of invalid inputs.

Model-Based Testing It is an automatic generation of efficient test procedures

using models of system requirements and specified

functionality.

During black box testing, some parts of the software, especially the back end, are not

tested at all (Mishra & Pradhan, 2012), allowing the testing team to actually perform

tests on only a selected number of test scenarios which leads to limited coverage

(Khan & Khan, 2012) as a result of the lack of knowledge of internal workings of the

software. Aichernig (2001) contends that the black box approach does not consider

how the test-object is implemented but considers what its requirements are. Some

important parts of the tested software may be easily overlooked. The alternative to

the black box testing is an approach known as the white box testing method.

2.7.2 White box method

The white box method is concerned with testing software by examining the internal

workings of the software. It requires the tester to possess the internal knowledge of

the software as well as the programming skills. It is typically effective in validating

design, decision, assumptions and finding programming errors and implementation

errors in the software (Khan, 2011). The testing is based on the code coverage,

paths, branches and conditions. The intention is not to find every software defect that

exists but to expose situations that could negatively impact the customer. This

method is divided into various techniques: control flow/coverage testing, basic path

testing, loop testing and data flow testing (Nidhra & Dondeti, 2012). Table 2.3 below

describes the above-mentioned white box techniques:

 45

Table 2.3: White box techniques (Khan & Khan, 2012)

Control Flow/Coverage Testing It uses the flow of the program as a model to

control flow and favours simpler paths over less

but complicated paths.

Basic Path Testing It ensures that each possible outcome from the

condition is tested at least once.

Loop Testing It exclusively focuses on the validity of loop

construct.

Data Flow Testing It ensures that the control flow graph has the

information about how the program variables are

defined and used.

Branch Testing It ensures that every option (true or false) is

tested on every control statement, including

compound decisions.

It is wise to begin testing early in the system development life cycle. Steegmans et al.

(2004) state that the biggest limitation of white box testing is that test suits can only

be developed late in the life cycle of a software component. And beginning such

testing late in the development life cycle affects testing timelines negatively as it

leads to lapsing deadlines. As a result, even more time is required, increases the

testing costs. There are, however, software testing tools in place that save time and

cost. White box requires intimate knowledge of a target system, testing tools and

coding languages and modelling (Acharya & Pandya, 2008). These testing methods

can be used in conjunction with various software testing tools. Another testing

method that can be used is the grey box method.

2.7.3 Grey box method

The grey box method, a combination of black box and white box testing, is a method

used to test the software with limited knowledge of the internal workings of the

system (Sawant, Bari & Chawan, 2012). Moreover, it is the testing approach used

when some knowledge of internal structure is known, but not in detail. Saxena and

Singh (2014) argue that the purpose of grey box testing is to examine if there is any

defect due to improper structure or usage of the software. According to Bhasin and

Kumar (2015), this method is well suited for web applications, web services,

functional or business domain testing, security assessment, GUI and distributed

environments. Below, Table 2.4 describes the above-mentioned grey box techniques:

 46

Table 2.4: Grey box techniques (Acharya & Pandya, 2012)

Matrix Testing The software developer begins by defining all the

variables that exist in their programs and each

variable has an inherent technical risk.

Regression Testing This testing is performed after making a

functional improvement or repair to the program

to ensure that what was fixed have not affected

other aspects of the program.

Pattern Testing It helps to dig within the code and determines

why the failure has happened.

Orthogonal Array Testing It is a statistical testing technique that is

extremely valuable for testing complex

applications.

Some parts of the software may be missed due to limited access to internal workings

of the software, resulting in partial code coverage (Saxena & Singh, 2014). This,

however, defeats the purpose of end-to-end testing. The aim of software testing is to

cover most parts of the software as much as possible. Due to restricted knowledge of

the tester, it is not feasible to cover every part of the software with the situation that

many program paths go untested. According to Archarya and Pandya (2012), grey

box testing continues to rely on how well the software throws exceptions and how

well these exceptions are spread within a distributed web service environment. The

tester relies on how the software reacts. These testing methods can be used in

conjunction with various testing tools.

2.8 Software testing tools

The software automation tools enable software testers to create scripts that can run

automatically to test the software. According to Hoffman (1999), software automation

is valuable to enhance the tester by performing tasks that are tedious if not

impossible for a human or are more cost effective to automate. Automation testing is

when the tester writes scripts for testing the software. Such scripts, running over and

over again at no additional cost, are much faster than manual tests, capable of

reducing the time to run repetitive tests from days to hours. Kaur and Kumari (2011)

argue that manual testing is time consuming, resource intensive and allow some

defects to remain uncovered. Therefore, automation testing tools are there to help

uncovered defects.

 47

Automated testing diminishes the cost of producing software while simultaneously

increasing its reliability (Shao, Khurshid & Perry, 2007). Due to the complexity and

increasing size of software, testing efforts are expected to increase; therefore,

automation testing arises as a practical necessity to reduce time and cost (Mandi &

Kumar, 2013). Furthermore, automation testing reduces the amount of manual work,

increasing high coverage by executing more test cases and eliminating human errors

especially when people tire after multiple repetitions (Nawaz & Malik, 2008).

Automation testing will also likely rectify some of the other problems, but it certainly is

not a panacea for solving all problems (Tretmans, 1999). In fact, it is always best to

possess the skills for utilising automation tools because without these skills, it is

pointless to possess such tools.

Software automation tools can be either proprietary or free open source. The

proprietary software testing tools are commercialised and require licensing per use.

Free open source tools, on the other hand, are free and downloadable from the

Internet. According to Singh and Tarika (2014), the free open source automation

software testing tools do not require licences to be purchased for use and the

software code is available to the user for further enhancements. Some open source

automation tools include Apache Selenium, Geb, Windmill, GitHub Protractor,

SpecFlow, Tyto Software Sahi and BSDW (Saravanan & Prasad, 2016). Commercial

automation testing tools include HP Unified Functional Testing, IBM Rational

Functional Tester, Oracle Application Testing Suire, Borland Micro Focus SilkTest,

SmartBear Test Complete and Testing Anywhere (Waje et al., 2014).

Also, there are performance software testing tools which can be both open source

and proprietary. According to Abbas et al. (2017) currently there are various open

source and commercial load testing tools available on the market such as

LoadRunner, Apache JMeter, LoadRunner, Siege and Microsoft Visual Studio (TFS).

Therefore, organisations have variety of software testing tools to choose from. The

table below illustrates the functions of various automation tools:

 48

Table 2.5: Software Testing Tools (Sharmila & Ramadevi, 2014)

Apache JMeter It can be used to simulate a heavy load on a

server, network or object to test its strength or to

analyse overall performance under different load

types.

NeoLoad It is used for measuring and analysing the

performance of the website.

LoadRunner It is quite useful in understanding and

determining the performance and outcome of the

system when there is actual load.

LoadUI It is open source and load testing software used

for measuring the performance of web

applications.

WebLOAD It is a tool used for load testing and stress

testing.

WAPT (Web Application Performance
Tool)

It is an analysing tool for measuring the

performance and output of any web application

or web-related interface.

Rational Performance Tester It is an automated performance testing tool which

can be used for a web application or a server-

based application where there is a process of

input and output involved.

Testing Anywhere It is an automated testing tool which can be

employed for testing the performance of any web

sites, web applications or any other objects.

Software testing tools are used as part of the testing phase within the software

development lifecycle (SDLC) to automate certain tasks, improve testing efficiency

and discover issues that are likely difficult to identify using manual testing alone. The

aim of this study, then, is to create a decision support system framework for testing

and evaluating software within the organisation.

2.9 Decision support system

Decision support systems (DSSs) are designed to assist individuals or groups with

decision making in solving problems. Hertz, Cavalieri, Finke, Duchi and Schönsleben

(2014:71) describe DSS as “interactive computer-based systems that help people

use computer communications, data, documents, knowledge, and models to solve

 49

problems and make decisions’’. Decision support systems replace human decision

making as they help humans to make informed decisions regarding problems they

are facing, thereby enhancing the decision-making process. DSSs are not designed

to automate decisions but to fairly support decision making because they are flexible

enough to react to changing requirements (Hertz, Cavalieri, Finke, Duchi and

Schönsleben, 2013). According to Engel, Choi, Harbor and Pandey (2003), typically

most DSSs have three main components: a model system, a data system and user

interface.

Each component fulfils its particular activity within the DSS. The data relating to the

problem is stored in the knowledge base, the model generates decisions based on

the content of the knowledge, and the user interface allows users to build models and

attain decision support through the adjustment of input parameters (Hosio,

Goncalves, Anagnostopoulos & Kostakos, 2016). DSSs are available to managers in

support of decision making processes for solving complex issues (Athanasiadis &

Andreopoulou, 2011). Therefore, decision makers can utilise these tools to compile

useful information from documents, raw data and personal knowledge to make

decisions in solving problems. Athanasiadis and Andreopoulou (2015) further state

that some DSSs give structured information directly to managers and store

knowledge which is availed to managers anytime it might be needed.

At times, it can be surprisingly difficult for people to make decisions, especially when

they do not understand the root cause of the problem. Thus, Filip et al. (2017)

highlight that in order for the decision-maker to overcome limits and constraints

encountered, they need DSS to assist them in making difficult decisions for solving

complex problems. Decision-making is one of the essential activities of business

management, a huge component of any process of implementation. According to Liu

et al. (2010) various DSSs were developed to support decision makers at all levels in

the organisations, including systems that could support problem structuring,

operations, financial management and strategic decision making, even extending to

support optimisation and simulation. Even in software testing and evaluation, DSSs

can assist managers in making right decisions. For this study, two theories where

identified: the actor network theory (ANT) and the Diffusion of Innovation (DOI)

theory.

 50

2.10 Underpinning theories

The study aimed to develop a decision support system framework for testing and

evaluating software. This research is underpinned by two theories, actor network

theory (ANT) and Diffusion of Innovation (DOI), meaning that these theories guide

the study from two different perspectives. The theories are discussed below.

2.10.1 Actor network theory

The study aims at developing a decision support system framework for testing and

evaluating software within the organisation. In this regard, this study is underpinned

by the actor network theory (ANT). This theory, originating from sociology, focuses

on bringing people and objects (i.e. technology) together through processes of

translation to form heterogeneous networks with similar interests (Cho, Mathiassen &

Nilsson, 2008). People and objects are referred to as actors. In ANT, people are not

the only entities to act nor beings with agency, all are actors (including objects),

playing an equal role within the network (Luoma-Aho & Paloviita, 2010). Each actor

has something to contribute for the functionality of the network.

Actor network cannot exist without the actor or the network. Teles and Joia (2011)

posit that actor network theory is a combination of agency and structure or context in

which none of them (actor-network) exist independently of the other. The two

complement each other in way that if one is absent the actor network combination

becomes completely dysfunctional. Consequently, it is vital to understand the entire

concept of actor network. Williams-Jones and Graham (2003) state that for us to

distinguish the origins of power and structure in a network, we need to consider all

the components that collaborate, co-operate, compete and lead to creation,

persistence or perishing of that network. The actor network proposes that knowledge

is created, nevertheless the creation is the result of a heterogeneous/diverse network

of people, devices and texts which render a form of steadiness (Steen, 2010).

As with any other theory, the ANT has been criticised for treating human and non-

human actors equally. Williams-Jones and Graham (2003) argue that humans have

different (superior) moral status from objects. There is a belief that objects cannot

operate themselves but rely on humans to make them operational. Therefore, human

and non-human actors supposedly cannot be treated equally. According to Bruun

and Hukkinen (2003), however, actors (human and non-human) are studied

differently: humans are interviewed while non-humans are investigated via the

 51

mediation of humans (for instance, research reports). This is therefore regarded as a

contradiction in ANT.

Black box methodology, one of the tenants of the actor network theory, is described

by Lihosit (2014) as something that is not easy to understand or explain. For

instance, while not much is known about new technologies, people still eagerly adopt

these technologies, assuming they can do what they want. Therefore, this new

technology could be regarded as a black box. With black box, while inputs and

outputs are both known, the process of arriving at those outputs is often taken for

granted (Besel, 2011). The process concerns the internal workings of the black box

which is not known. In order to understand the internal workings of the box, it needs

to be opened. The black box is opened to gain more insight into the construction of

effectiveness data within collaboratives (Broer, Nieboer & Bal, 2010). According to

Besel (2011), black boxes consist of knowledge which is accepted and used on a

regular basis as a matter of fact. And not only the new technologies, but the actor too

can in many ways also be regarded as a black box: when the cover of the box is

opened it will constitute a whole network of other, perhaps more complex

associations (Tatnall & Gilding, 1999).

Both ANT and software testing consists of black box testing. In ANT, black box is

something that is not easy to understand or explain. In software testing, black box is

when the software under test is tested without regards for the internal code structure,

implementation details and knowledge of internal paths of the software (Acharya &

Pandya, 2012). The similarity between the black box within ANT and software testing

is that the internal workings of the software or technology are unknown. However, in

ANT, this black box needs to be open to gain understanding, whereas in software

testing there is no need to open the black box because the purpose is to test the

functionality of the software, so it is not important to know the internal workings of the

software but rather to ensure that the software behaves as expected.

Lee and Oh (2006) posit that ANT is a theory that helps analyse the ways in which

actors form coalitions and involve other actors within the network to strengthen such

coalitions and to secure its interests through the use of technology. Through the lens

of ANT, the researcher intends to examine the testing and evaluation of software to

create a decision support system framework. The lens of ANT involves four stages of

translation: problematization, interessement, Enrolment and mobilization (Chen,

 52

Zhang, Zheng & Ciu, 2009). These stages are referred to as the moments of

translation.

2.10.2 Moments of translation

In ANT, the translation is triggered by the four moments of translation. The term

translation is associated with the network in terms of representation of actors or

networks. Translation is described as a way of collaborating different entities and

convincing them to have interest in connecting and relating to produce results (Van

Der Duim, 2007). The translation occurs between humans and objects once the

actor-network has been formed (Comber, Fisher & Wadsworth, 2003). The

translation begins with problematization, whereby the issues or problems are defined

with relevant actors with the intent of resolving them through the obligatory passage

points (Potts, 2009). Obligatory passage point (OPP) is a channel through which all

the actors have to pass to satisfy the interest endorsed by the focal actor (Timpka,

Bang, Delbanco & Walker, 2007). The primary/focal actor aims at becoming OPP for

the network (Luoma-aho & Paloviita, 2010). The focal actor becomes indispensable

or irreplaceable within the network. The roles to be played by actors within the actor

network are also identified during problematization.

It is during the second stage, interessement, where the focal actor persuades,

motivates and negotiates with the actors to get them interested and involved in the

network (Luoma-Aho & Paloviita, 2010). Actors are not forced to participate in the

actor network but are given a choice to do so. It is through interessement where the

focal actor attempts to impose and stabilise the identity of other actors in the same

network (Lee & Oh, 2006). The third stage is Enrolment, whereby the actors accept

the roles defined for them when enrolling in the network (Iyamu & Roode, 2010). The

alliance of networks is formed with the aim of creating an agreement between the

stakeholders regarding their interests (Alcouffe, Berland & Levant, 2008).

The focal actor ensures that any kind of training required by the actors is offered for

the network to be productive. Mobilisation is the final stage in which the focal actor

uses a set of methods to ensure that all actors have spokespersons to represent

other actors to avoid betrayal by various collectives (Gunawong & Gao, 2010). At this

stage, the formed network begins to operate at new targets to implement the

proposed solution (Van Der Duim & Van Marwijk, 2006). However, the actors

become productive and efficient when they know they are well-presented by their

spokespersons; a sense of security enables the actor network to reach targets.

 53

Within the moments of translation, the focal establishes itself indispensable and sets

the obligatory point of passage (OPP), the channel through which the actors should

pass (Lee & Oh, 2006). Iyamu and Sekgweleo (2013) further describe OPP as an

entity that is liable for representing other actors in a way that suits their significance

and actions in the world of translation. OPP is a state of little or no negotiation

(Tatnall, 2014). Actor network theory consists of key conceptual tools which provide

descriptions about the terms used in the network. Table 2.6 below describes the key

conceptual ANT tools:

Table 2.6: ANT Tools (Iyamu & Sekgweleo, 2013)

Tenets Description

Actor (or Actant) Both human beings and non-human actors such as technological

artefacts.

Actor Network Heterogeneous network of aligned interests, including, for example,

people, organisations and standards

Enrolment and

Translation

Creating a body of allies, human and non-human, through a

process of translating their interests to be aligned with the actor

network

Delegates and

Inscription

Delegates are actors who “stand in and speak for” particular

viewpoints that have been inscribed in them

Irreversibility The degree to which it is subsequently impossible to go back to a

point where alternative possibilities exist

Black Box A frozen network element, often with properties of irreversibility

Immutable Mobile Network element with strong properties of irreversibility and effects

that transcend time and space

The actor-network suggests that knowledge is created, though the creation is the

result of a heterogeneous/diverse network of people, devices and texts which form a

balance (Steen, 2010). ANT will be used as a lens to zoom into actors involved in the

evaluation and testing of software within the organisation.

2.10.3 ANT and information systems

ANT is a socio-technical theory which could be applied in various disciplines such as

organisational studies, accounting, science and technology and economic sociology.

Hanseth, Aanestad and Berg (2004) contend that ANT accepts that networks are

socio-technical and assist in better understanding the relationship between the social

 54

and the technical system. Information system (IS) is therefore a combination of

technical and non-technical resources intended to support various requirements of

business within the organisation (Iyamu & Sekgweleo, 2013). As a result, IS is vital

as it enables an organisation to operate efficiently and effectively and to remain

competitive.

The formation or existence of IS is achieved through the collaboration of a

heterogeneous network. Tatnall (2014) state that equal contribution of both human

and non-human actors within the network makes the existence of IS a reality. Actors

work together to deliver the requested information system by the organisation

(Dwivedi, Henriksen, Wastell & De, 2013). Iyamu and Sekgweleo (2013) view ANT as

a network formed by various elements such as humans, technological artefacts,

organisations and institutions. It takes a collective to create information systems, a

collective such as human actors (e.g. project managers, business analysts, software

developers, software testers and those who implement it) as well as the technology

(hardware and software) required to deliver the information system.

2.10.4 Diffusion of innovation

The diffusion of innovation (DOI) theory was also employed in the data analysis of

this study. DOI theory was introduced by Rogers in 1962. He described DOI as the

process by which the innovation is communicated to the members of social system

via certain communication channels to multitudes over time (Chang, 2010). This

theory is concerned with introducing new ideas or technologies to the target market,

and with this new technology being introduced to the organisation, it is evident that

resistance from systems users usually occurs. Systems users may not like the new

system (because it has new features, is difficult to use, requires odious user

manuals) and prefer the older one (because there is nothing new to learn, they know

it by heart) or they just do not want to change. Hence, Rogers identified five

significant characteristics of the innovation that influence its adoption: relative

advantage, compatibility, complexity, trialability and observability (Zhai, 2011).

Relative advantage describes how potential adopters expect the innovation to

improve their lives (Montfort et al., 2009). This new concept is expected to bring

change and simplify how things are done within the organisation. Compatibility refers

to the degree to which an innovation is perceived as being consistent with the

existing values, past experiences and needs of potential adopters (Alemneh &

Hastings, 2010). Complexity is a point to which an innovation is alleged as difficult to

 55

understand and use (Raus, Flügge & Boutellier, 2008). New technologies or

concepts may be difficult to apply because individuals must learn how to use them

and must get used to them. Trialability refers to a point at which an innovation

technology may be tested on a limited basis before adopting (or rejecting) with a

decision (Soroka & Jacovi, 2004). Observability is the degree to which the results of

an innovation are visible to others (Luqman, Abdullah & Ghapar, 2011).

Innovation is the new idea that is developed to be adopted by the social system. The

rate of adoption is measured according to how it is accepted within the social system.

According to Alqahtani and Wamba (2012), DOI theory investigates how, why and at

what rate, new ideas or technologies spread through cultures. Culture is the way in

which people live, behave and do things within a particular environment. As a result,

the key elements in diffusion of innovation come into play. Montfort et al. (2009)

describe diffusion as the procedure by which innovation is transferred through certain

channels over time among the social system. Below is a diagram portraying various

tenets of DOI.

Figure 2. 2: Innovation-decision process (Adapted from Nemutanzhela & Iyamu, 2011)

 56

2.10.5 Innovation-decision process

Diffusion, occurring through the innovation-decision process, consists of five stages

that can be followed to diffuse the innovation to the social system: knowledge,

persuasion, decision, implementation and confirmation. These stages are described

in the table below:

Table 2.7: Innovation-decision process (Sang & Tsai, 2009)

Knowledge The earliest awareness a potential user has and the

understanding of how the innovation operates.

Persuasion This occurs once the potential user forms an opinion about the

innovation.

Decision This happens when the user moves toward making the choice to

either adopt or reject the innovation.

Implementation This occurs when the user begins to use the innovation.

Confirmation This will occur when the user seeks reinforcement of the decision

to use the innovation.

Innovation is not an overnight occurrence, but rather occurs over a period of time.

Therefore, the above-mentioned process plays a vital role because the target market

needs must be informed about new ideas and technology to decide whether to

accept it or not. Technology incessantly changes; therefore, it is vital to keep up with

all the changes. Those who reject technological changes are ‘left behind’ so to

speak, and those who accept it, reaps the benefits associated with new technologies.

2.10.6 DOI and information studies

An information study is the merger of library science and information science. Library

science is concerned with the practices, perspectives and tools of management,

information technology, education and other areas to libraries. The information

science is concerned with how information is gathered, analysed, organised,

manipulated, stored and retrieved. Tumuhairwe (2013:2) defines information studies

as “education entailing librarianship, information management, records management

and archive practice and teacher librarianship”. Diffusion of innovation is a process of

spreading the innovation to the society. According to Overhage and Schlauderer

(2012), DOI theory clarifies the why and at what rate innovations gets diffused to a

social system over a period of time.

 57

Information has to be arranged and presented in a way that makes sense to the

audience. If the information is not presented well, this obviously causes confusion.

Therefore, when diffusing new ideas and technologies to the social system, it is

important to do this in such a way that the community understand the pros and cons

of that particular technology. Decisions will depend on how well the innovation is

understood. Therefore, innovative ideas need to be diffused to inform the social

system to constantly adjust to the advantages of technology and estimate the risk of

absorbing diffusion information and to ultimately decide on the value of specific

technology (Yan, 2009). Without information, it is difficult for the social system to

understand the innovation. Communication occurs through the innovation-decision

process of DOI, has been discussed above, as this is what helps spread the

innovation to the social system.

2.10.7 ANT and DOI

Actor network theory (ANT) has been criticised for treating human and non-human

actors equally as it is argued that humans have a different moral status than

machines or corporations (Williams-Jones & Graham, 2003) and therefore they

require special treatment as compared to objects. The core criticism about ANT is

that it is too descriptive and fails to suggest in detail how actors should be viewed,

and their actions analysed and interpreted (Cresswell, Worth & Sheikh, 2010).

According to Greenhalgh, Potts, Wong, Bark and Swinglehurst (2009), ANT can be

best used in conjunction with other theories, particularly in relation to the analysis

and interpretation of data (Greenhalgh et al., 2009).

According to Muller (2015), ANT provides concrete theoretical and methodological

apparatus which could be applied to the empirical work, especially with terms like

‘centre of calculation’, ‘oligopticon’, ‘black box’, ‘immutable mobiles’ and ‘translation’

which help make sense of the formation of associations. Cresswell et al. (2010:3)

asserted that “ANT helps to conceptualise how different realities are experienced and

enacted by different actors, resulting in a more nuanced picture of the dynamic

relationships between different actors without neglecting their inter-relatedness”. Both

human and non-human actors can be part of multiple networks. Steen (2010)

explained that heterogeneity of networks of people, devices and texts makes the

network steady.

The testing and evaluation of software is considered a challenge, a daunting and

complex task in many organisations as it depends upon a diversified number of

 58

complementary skills, processes and tools to thoroughly test and evaluate software.

Since actor network theory supports the involvement of both human and non-human

actors, it was essential to employ this when examining the testing and evaluation of

software. During software testing and evaluation, different networks were formed to

carry out the tasks. The application of actor network theory does not only focus on

the creation of the network, but also help identify the roles, technologies and the

connection between the two, both human and non-human actors, within the network.

Due to the close interdependency between the actors, and the influential nature of

some actors, it was vital to consider the employment of OPP at all times.

However, with ANT, the innovation that has been created by the network could not

be diffused within the organisation. DOI, a complementary theory, seeks to explain

the how, why and at what rate innovation is spread within the social community. As

the tested and evaluated software had to be diffused within the organisation, DOI

was employed to complement ANT. Furthermore, DOI assisted in understanding how

decisions were made during software testing and evaluation. Essential decisions had

to be made to test and evaluate software successfully. DOI was utilised in this

research to understand the decisions made in software testing and how software

innovation was diffused within the organisation.

2.11 Summary

This chapter aimed at assisting the researcher in gaining a thorough understanding

about testing and evaluating software. It assisted in identifying potential areas of

research, the knowledge gaps that require further investigation as well as similar

work conducted pertaining to software testing and evaluation. The testing and

evaluation of software is a challenging and complex task to perform within many

organisations as it requires skilful software testers who understand the software

testing processes, standards, procedures and complementary tools to best test and

precisely evaluate software. Actor network theory was employed because it supports

the involvement of both human and non-human actors for the testing and evaluation

of software. During software testing and evaluation, different networks were formed

to carry out the tasks. Diffusion of innovation was used because it complemented

ANT in terms of making crucial decisions during software testing as well as diffusing

the tested and evaluated software within the organisation. Software cannot be left

hanging once it has been tested, it has to be diffused in its environment for use. If not

it may turn into turn into a white elephant.

 59

No organisation intentionally plans to deploy poor quality software, but there are real

possibilities of failure if things are not done properly and established steps not

followed. Success relies on how well the processes and activities are planned and

executed. Also, support is required from top-level management to the users for the

successful adoption of new software. As mentioned earlier, software is not only

implemented merely for the sake of having it in the organisation, but to solve specific

problems and improve the overall competitive advantage of the organisation.

Organisations are now exposed to global competition, so for them to survive, they

need to be technologically advanced. The next chapter covers the research

methodology that was applied in this study.

 60

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

This chapter discusses the research methodology that was employed in the study.

The research methodology consists of different approaches, methods and techniques

carefully applied to achieve the objectives of the study. This present study aimed at

investigating for better understanding the testing and evaluation of software within

organisations. This chapter is divided into nine main sections. The first section

discusses the philosophical assumptions. The second section covers the research

paradigm taxonomies. The third, fourth and fifth sections explain the research

approach, research methods and research design. The sixth section provides

detailed information on data collection. The seventh section describes the data

analysis. The eighth section explains the ethical considerations. And finally, the last

section concludes the chapter.

3.2 Philosophical assumption

In information systems studies, two philosophical assumptions are common: ontology

and epistemology. Research philosophy is the belief system and set of assumptions

that underpin the creation of knowledge (Biedenbach & Jacobsson, 2016). Ontology

focuses on the nature of world entities as well as the assumptions of reality about

those entities (Ansari, Panhwar & Mahesar, 2016). On the other hand, as Shin (2014)

describes, epistemology is the study of what humans know, how they know it and

how to confirm the knowledge claims.

3.2.1 Epistemology

Epistemology is about what can be known about what exists. Kivunja and Kuyini

(2017) argue that epistemology is concerned about the bases of knowledge, its

nature, how it is formed, how it can be attained, and how it can be conversed to other

people. It provides answers to questions that are asked about what is known.

According to Bowleg (2017), epistemology is the study of nature, its scope, and

justifies and evaluates the knowledge that is produced. It also enables the researcher

to determine the nature of knowledge (whether true or false) through the use of

proper methods of evaluation. Levers (2013), contends that epistemological inquiry

looks at the relationship between the knower and the knowledge and asks, “how do I

know the world?”

 61

In order to achieve quality software, it is important for the software testers to have

knowledge of software testing methods and skills to utilise the software testing tools.

Therefore, business users would be in a position to use the quality software to

perform day-to-day duties as well as rendering services customers. . Henderson

(2016) further argues that epistemology emphasises the knowledge needed to

resolve a specified research question. In creating knowledge, there are epistemic

stances to be followed, such as pragmatic, positivistic, operationalist, referential,

instrumental, empiricist, rationalist and realist, which make claims concerning what

type of knowledge can be created through research (Tennis, 2008). According to

Houghton, Hunter and Meskell (2012), when researchers are selecting a suitable

paradigm (ontology, epistemology and methodology), they must ensure that it

manifests in research strategies and methods adopted for the research. Similarly,

they should be able to achieve the objectives of their research while answering

research questions appropriately. The epistemology paradigm was employed for this

study as this paradigm guided the researcher in creating knowledge around the

testing and evaluation of software.

3.2.2 Ontology

Ontology refers to the underlying assumption made about the nature of reality.

Henderson (2016) asserts that ontology is concerned with the nature of social entities

and the perception of reality researched. Ontology is applied in different fields of

study such as computer science, engineering, mathematics, philosophy and

psychology. Busse et al. (2015), state that ontology has been used in various

disciplines with entirely different meanings. However, “ontology is the most

comprehensive of all sciences, insofar as it covers everything that exists” (Busse et

al., 2015:31). Irrespective of how different it is defined in all disciplines, it remains the

science of being. In fact, Henderson (2016) posits that ontology influences the

selection of research objectives, questions and even the methodology.

Software testing is conducted in various organisations. Also, there are various testing

methods, techniques and software testing tools. These testing methods, techniques

and tools are the same but they are applied differently from one organisation to

another. However, these organisations intend to achieve quality software through the

use of the testing methods, techniques and tools. Henceforth, Sefotho (2015:30)

alluded that “ontology is the starting point of all research as it allows the researcher

to start asking philosophical questions about the reality they want to study”. It

 62

questions the assumptions about the way in which the world works and concerns

itself with the nature of reality (Ihuah & Eaton, 2013). Moreover, ontology reveals the

explanation for the individual about what constitutes fact, as explanation is linked with

the question of whether or not social entities need to be observed as objective or

subjective.

3.2.3 Methodology

The methodology chosen for research is a vehicle enabling the researcher to carry

out the specific research based on a topic of choice. It offers a set of methods that

can be adopted to investigate a particular case. Methodology refers to the research

design, methods, approaches and procedures that are utilised in an investigation that

is planned for discovering something (Kivunja & Kuyini, 2017). Raadschelders (2011)

argues that it is vital for researchers to reflect first on the nature of the study, then

pay attention to the research objective and methodology, as finally, embed the

research either in ontology and epistemology. They would then be in a position to

conduct the research without any confusion.

Carefully considered methodology guides the researcher in the work of the research.

According to Saunders, Lewis and Thornhill (2012), methodology can be perceived

as a theory, a paradigm of an assumption that builds the foundation for conducting

the research. There are a variety of research methods from which a researcher can

choose when performing research, including the most popular ones, qualitative and

quantitative approaches. The application of these particular methodologies enables

the researcher to answer the particular research questions (Henderson, 2016).

3.2.4 Axiology

Axiology is concerned with what the individual values in the particular environment.

Thus, researchers are expected to conduct themselves in a particular way. The

researcher’s values impact how they conduct the research and what they appreciate

in their research findings. According to Morgan (2007), axiology does not fall under

the philosophy of knowledge (e.g. ontology, epistemology and methodology) but

under the philosophy of ethics and aesthetics. As a philosophy that studies

judgements about the values (Saunders et al., 2012), it is used to critically examine

the diversity of existing questions relating to the crux of values such as good conduct

and responsibility (Biedenbach & Jacobsson, 2016). It questions the roles which

values play in research choices and emphasises the value judgement capability of

the researcher (Ihuah & Eaton, 2013). Clearly, the researcher’s values play a vital

 63

role in the outcome of the research. Thus, Saunders et al. (2007) suggest that values

play an important role in all stages of the research process for obtaining credible

research results.

3.2.5 Doxology

Doxology is what is believed to be true. According to Gicheru (2013), the term

doxology refers to the study of opinion or of what is believed to be true as opposed to

epistemology (the study of what is knowable). Doxology philosophy does not require

science to prove what is believed to be true. It regards the truth as it is. There are

additional philosophies besides the ones mentioned above. The research onion,

depicted below in Figure 3.1, provides an overview of various philosophical

approaches, strategies and choices as well as techniques and procedures for

conducting research.

Figure 3.1: The research ‘onion’ (Adapted from Saunders et al., 2007)

The research paradigms are accompanied by various research approaches in the

creation of knowledge. As portrayed in the onion, there are various research

paradigms, methods and approaches that can be selected by the researcher

depending on what the researcher intends to achieve.

 64

3.3 Paradigm taxonomies

As mentioned earlier, a paradigm is how the world views things. Mackenzie and

Knipe (2006) categorise theoretical paradigms as positivist (post-positivist),

constructivist, interpretivist, transformative, emancipatory, critical, pragmatism and

deconstructivism, postpositivist or interpretivist. These paradigm taxonomies can be

embedded in the ontology and epistemology.

3.3.1 Positivism

Positivism is an approach that relies on scientific evidence to reveal the true nature of

how society operates. It is of a view that things have to be proven mathematically,

with the goal of discovering laws about how the world works in order to create

generalisable statements about causal relationships (Schlegel, 2015). Such laws

have the status of truth: social objects, then, can be studied in much the same way

as natural objects (Crossan, 2016). Positivism is based on the assumption that it is

possible to observe social life and establish reliable and valid knowledge about how it

works. According to Mack (2010), positivism alleges that all genuine knowledge is

based on sense experience and can be advanced by means of observation and

experiment. It eradicates a researcher’s bias by providing legitimate causality for the

research study.

3.3.2 Realism

Realism is the belief that reality lies outside the human mind. Scotland (2012), for

example, asserts that realism is the view that objects have an existence independent

of the knower. Therefore, realism holds a perception that objects really exist

regardless of whether or not they are examined, analysed or studied by science.

Kivunja and Kuyini (2017) assert that nature and existence of objects are known to

be true by sense experience. For example, the sun rises from the east and sets in

the west. The fact is, this cannot change: it is a ‘reality’. According to Oppong (2014),

as reality exists out there, it is the responsibility of the researcher to access and

assess this reality by means of ‘objective’ data collection techniques. To do so, the

researcher uses their subjective or objective mind to verify objects.

3.3.3 Interpretivism

The interpretive paradigm enables researchers to explore their world by interpreting

what other individuals know or understand. Cresswell (2007) asserts that with

interpretive paradigm the researcher aims at making sense or interpreting the

meanings other individuals have about the world. Thus, the interpretive paradigm

 65

puts emphasis on recognising and reciting the meaning of human actions and

experiences (Levers, 2013). Interpretivists must understand the context of any type

of research conducted and the criticality of the interpretation of collected data (Thanh

& Thanh, 2015). Consequently, the researcher’s interpretation becomes subjective

as it is influenced by feelings and emotions.

Yanow and Schwartz-Shea (2011) assert that interpretivist researchers ascertain

reality through participants’ views coupled with their own background and

experiences. Researchers who adopt qualitative research usually collect data from

participants through interviews. Finally, that data is analysed to make sense out of it.

According to Thanh and Thanh (2015), researchers believe that the

interpretivist/constructivist paradigm mainly utilises qualitative methods. Willis

(2007:90) emphasises that “interpretivists tend to favour qualitative methods such as

case studies and ethnography”. Qualitative approaches generally provide rich reports

that enable interpretivists to fully understand contexts (Thanh & Thanh, 2015). Thus,

interpretivist research is “guided by the researcher’s set of beliefs and feelings about

the world and how it should be understood and studied” (Terreberry, 2017:55).

According to Mack (2010), the role of the interpretivist researcher is to understand,

explain and interpret social reality through a different eye. As a result, the

researcher’s interpretation becomes subjective as it is influenced by feelings and

emotions.

The intention of this present research was to create a decision support system

framework for testing and evaluating software in organisations. Therefore, this study

employed the interpretivism approach to explore participants’ subjective views of

their experience in their own environments. The researcher subjectively interpreted

the qualitative data that was collected for this study.

3.4 Research approach

There are two main research approaches: deductive and inductive. In the inductive

approach, the theory is non-existent at the beginning of the research and only

evolves as a result of research (Babbie, 2014). The deductive approach constitutes

the creation of the assumption grounded on the existing theories, forming a research

plan to then test the assumption (Zalaghi & Khazaei, 2016).

 66

3.4.1 Deductive approach

In research, there are two broad methods of reasoning, namely deductive and

inductive approaches, which could be used to analyse data. The deductive approach

enables the researcher to study what other researchers have done, read existing

theories of whatever phenomenon is studied and test the hypotheses that arise from

those theories. Cho and Lee (2014) assert that the deductive approach enables the

researcher to examine existing theory or re-examine the existing data in a new

context. It is concerned with testing or confirming hypotheses which leads to

confirming or denying the original theory. Therefore, it is important to understand that

deductive reasoning (also known as theory-testing) is not just about testing a theory

but about refining, improving and extending it (Bhattacherjee, 2012). This approach

allows the researcher to apply rules to narrow the facts, moving from general to more

specific reasoning, until a conclusion is reached.

3.4.2 Inductive approach

Inductive reasoning works the other way. It begins by detecting patterns and

regularities within specific observations. The researcher takes the particular

observations and uses them to propose a general theory. The logic moves from

specific observations to broader generalisations. Saunders et al. (2009) affirm that

with inductive reasoning, data is first collected, and the theory is advanced as a result

of the data analysis (Saunders et al., 2009). As such, particular instances are

observed and combined into a general statement to develop a theory (Elo & Kynga,

2008). This current study aims at developing a decision support system framework to

test and evaluate software within organisations. Therefore, the inductive approach

will be employed effectively for this study.

3.5 Research methods

There are popular research approaches that can be adopted when conducting

research: these include quantitative and qualitative research approaches, as well as

a mixed method which combines both qualitative and quantitative (Azorin &

Cameron, 2010). A brief discussion of these three types of research methods will

follow.

3.5.1 Quantitative methods

Quantitative research methodology is concerned with collecting numeric data in order

to describe the phenomena being studied. Yilmaz (2013) describes quantitative

research as a type of empirical research that focuses on social phenomenon, testing

 67

a theory that consists of variables which are measured with numbers and analysed

with statistics to determine if the theory explains a phenomenon of interest.

Quantitative research is compared to the positivistic empirical research which

focuses on experimental design and statistical procedures such as multiple

regression and structural equation modelling (Petrescu & Lauer, 2017). The data is

converted into numerical form through statistical calculations, enabling the

researcher to draw a conclusion. This is done with the hope that the numbers will

produce an unbiased result that can be generalised to some larger population. The

limitation of the quantitative approach, though, is that it does not offer deeper

understanding of the social phenomenon due to reliance on simple data sets (Ansari

et al., 2016).

3.5.2 Qualitative methods

Qualitative research aims at explaining the social phenomena by examining people’s

beliefs, culture and experiences. The qualitative approach enables researchers to

capture the thoughts and feelings of the research participants, leading to an

understanding of the meaning that people ascribe to their experiences (Sutton &

Austin, 2015). As it provides rich descriptive accounts of the phenomenon under

investigation (Gelo et al., 2008), it is concerned with addressing the social aspects of

the world and seeks to find answers regarding people's behaviour, opinions, cultures

and differences between social groups (Barker, Linsley & Kane, 2016). The

qualitative research method enables the researcher to delve into a deeper

understanding of the problem.

This approach investigates the why and how of the subject. Investigations can be

conducted on individuals, groups of people, communities, organisations and

institutions (Zubber-Skerritt & Fletcher, 2007). Rajasekar et al. (2013) characterise

this approach as non-numeric, descriptive, applying reasoning and using words to

describe the findings. The data collected in qualitative approach tends to be in the

form of transcripts, of words rather than numbers. Qualitative research is effective in

understanding and explaining complicated situations by obtaining daily knowledge in

order to create theories (Petrescu & Lauer, 2017).

The qualitative research approach provides detailed descriptions of how people

experience a given research problem (Rajasekar et al., 2013). Researchers obtain

such information through the use of various data collection approaches. The

qualitative approach consists of the collection, analysis and interpretation of narrative

 68

forms of data (Hayes, Bonner & Douglas, 2013). Such methods are explained in

detail under data collection section. The engagement with participants helped the

researcher to explore why things occurred, the way they did when testing and

evaluating software within the organisation. Therefore, this study employed the

qualitative approach.

3.5.3 Mixed methods

Mixed methodology combines the concepts of both quantitative and qualitative

research methods. De Lisle (2011) describes mixed methods research as a type of

research in which a researcher mixes the elements of qualitative and quantitative

research methods for the broad purposes of breadth and depth of understanding and

corroboration. Researchers usually adopt mixed methods when their research

objectives address both quantitative and qualitative methods within a study. It allows

a researcher to gather, examine, combine and pull interpretations from both

quantitative and qualitative data within a single study of inquiry (Cameron, 2011),

enabling the researcher to answer questions from two perspectives (quantitative and

qualitative). The researcher is able to analyse both numeric and non-numeric data in

reaching conclusions concerning the subject being examined.

3.6 Research design

Research requires a great deal of information searching and reading based on the

objective of the study. Ragab and Arisha (2018:1) define research as “systematic

investigation into and study of materials and sources in order to establish facts and

reach new conclusions”. These facts expand on the existing knowledge. Therefore, a

research design is required to guide a researcher in carrying out the research.

Wedawatta et al. (2011) argue that the research design delineates the complete

direction of the research as well as the process by which the research is conducted.

The approach selection depends on what the researcher would like to investigate,

together with the type of research approach the researcher finds appropriate for the

research. Therefore, the research design is not related to any particular research

approach for collecting data or any particular type of data.

The research design can be coupled with any research approach. Dube and Pare

(2003) describe research design as the elements related with the design of the study,

such as the nature of research questions, the theoretical foundations as well as the

criteria adopted for selecting the cases. The purpose of a research design is to

ensure that the evidence obtained enables the researcher to successfully address

 69

the research problem as clearly as possible. Logic also plays a vital role in research

as it allows the researcher’s work to flow. There are various types of research

designs that can be followed, including action research, grounded theory,

ethnography, survey and case study.

3.6.1 Action research design

Action research is concerned with learning by doing. Bhattacherjee (2012) defines

action research as design that accepts intricate social phenomena that is understood

when action is introduced to the phenomena and perceiving the effects of such

actions. The actions of a researcher have to be based on a theory that explains the

why and how such actions may cause the anticipated change (Bhattacherjee, 2012).

Thereafter, the researcher observes and learns from those actions to generate

insights about the phenomena under study.

3.6.2 Grounded theory

Grounded theory is a systematic research design that enables the researcher to

construct theory through data analysis. It provides the capability of analysing data

that has been collected using any technique of data collection. Wedawatta et al.

(2011) suggest that grounded theory is concerned with developing a well-integrated

set of concepts that provide a thorough theoretical explanation of phenomena being

studied. According to Bryman (2008), grounded theory is created from data that is

systematically gathered and analysed through the research process in an iterative

process. Therefore, the researcher needs a theoretical framework to analyse the

collected data as it assists the researcher in remaining tightly focused and not

floundering all over the place.

3.6.3 Ethnography

Ethnography refers to a type of research carried out to study people within their own

environment. It is conducted with the intention of gaining insight about people.

Hernandez and Fisher (2013) state that ethnography intends to generate knowledge

about people and their surroundings, achievable through the use of observation and

face-to-face interviews. During observation, the researcher has the opportunity to

observe how people do things and is able to document those experiences. Moreover,

with face-to-face interviews, the researcher has the opportunity to ask questions and

probe for follow up material to elicit more information about the interviewee.

According to Wedawatta et al. (2011), ethnography necessitates that the researcher

become part of the group under study to understand the phenomenon under study.

 70

The researcher’s involvement escalates the possibility of obtaining knowledge about

the phenomenon being studied.

3.6.4 Survey

A survey, a data collection method for collecting data about people, is also used to

collect data about things that occur in the real world regarding phenomena under

study. Leeuw, Hox and Dillman (2008) explain that a survey can be regarded as

method used to systematically collect quantitative data from a large sample extracted

from a population relevant to the phenomena under study. It enables the researcher

to collect large quantities of data quickly and inexpensively as it consists of questions

that help the researcher seek relevant answers to the phenomena being studied.

This data can be collected in person, via email, telephonically or online depending on

the researcher’s choice. Researchers have noted that surveys and experiments have

been used primarily in the marketing environment (Petrescu & Lauer, 2017) as it is

convenient for marketers to collect necessary information from the target market.

3.6.5 Case study

The case study aims at investigating an instance which may be an organisation,

department, project, information system, a person or even a kind of illness. Yazan

(2015:138) describes case study as “a contemporary phenomenon within its real-life

context, especially when the boundaries between a phenomenon and context are not

clear and the researcher has little control over the phenomenon and context”. As it

enables the researcher to get clarity to questions such as ‘how’ and ‘why’ of an event

or phenomena, it is selected for detailed investigations of a particular phenomenon of

interest to gain deeper understanding (Nabukenya, 2012). The case study, offering a

systematic manner for viewing events, gathering data, evaluating information and

reporting results, provides detailed contextual views on phenomenon of interest.

A case can be studied through various means of collecting data such as interviews

and questionnaires with the intent of gaining in-depth understanding of the

phenomenon. Hilburn, Towhidnejad, Nangia and Shen (2006) posit that a case study

involves the application of knowledge and skills, by an individual or group, to the

identification and solution of a problem associated with a real-life situation.

According to Henderson (2016), a case study is suitable in the environment where

there are large numbers of variables in a small number of applied units of analysis

when the context is of great importance (Henderson, 2016). Baxter and Jack (2008)

highlight that through case study, the problem is not explored through only one lens

 71

but rather with multiple lenses which then reveal several facets of the phenomenon.

Yin (2014) argues that a high-quality case study puts emphasis on rigour, validity and

reliability.

Three organisations were chosen as case studies to gain a deeper understanding

pertaining to how software was tested and evaluated in different organisations. The

cases consisted of a private, a public and a small and medium enterprise (SME).

Organisations are classified in terms of sector, size, total number of employees, total

turnover and total gross asset value. Thus a private company is a privately-owned

company that is prohibited from offering its shares to the public and the transferability

of its shares are restricted, but it may have more than 50 shareholders (Department

of Trade and Industry, 2010). Ownership in a public company is spread among the

general public in many shares of stock which are freely traded on a stock exchange

but restricts, limits or negates their right of pre-emption (Department of Trade and

Industry, 2010).

In South Africa, an SME is any enterprise with fewer than 100 to 200 employees,

annual turnover of less than R4 million to R50 million and gross assets, excluding

fixed assets less than R2 million to R18 million depending upon the industry, and has

direct managerial involvement by owners (Abor & Quartey, 2010). The public

organisation has its own way of conducting business which differs from the private

organisation and the small medium enterprise (SME). All the three organisations’

operational activities are conducted differently. Hence, this helped the researcher to

realise how differently or similarly software testing and evaluation was conducted in

the chosen organisations.

The way software was tested and evaluated in these organisations varied in

numerous ways, including how the software testing was approached, the tools used

and the manner in which they were used, why those tools were chosen and which

testing methods were applied. The case study, together with the qualitative research

approach, was adopted for this study.

3.7 Data collection

After the research design, the next step to consider was data collection. This was

achieved by consulting as many relevant participants as possible. Data collection

enabled the researcher to systematically collect data about a chosen topic. Data

collection methods influenced the test reliability and validity (Yang, Wang & Su,

 72

2006). According to Oates (2006), data can be collected through various data

collection methods such as interviews, questionnaires, observations and

documentation. This present study employed two different approaches and methods

in data collecting process, interviews and documentation.

3.7.1 Observation

Data can be collected in different ways: through observation, experiment, interview

and documentation. Observation is collecting data by observing how things are done

or how they occur. Driscoll (2011) asserts that observation entails observing and

measuring the world around us, including observations of people and other

measurable events. It is used by researchers to examine people and events in

natural settings and naturally occurring situations. As such, what is observed gets

documented and will afterwards be analysed.

3.7.2 Experiment

An experiment can also be used for data gathering. The purpose of experiment is to

study causal links between two variables, independent and dependent (Saunders et

al., 2009). An experiment is conducted to support, disprove or validate a hypothesis.

Kothari (2004) argues that experiments are conducted to test a hypothesis to

discover new relationships. Experiments generate insights into cause and effect by

demonstrating what outcomes occur when a particular factor is manipulated.

3.7.3 Interview

Interviews are widely used in research as a data collection tool. Unlike

questionnaires, interviews are more powerful in obtaining rich data that allows

researchers to examine people's views in greater depth (Alshenqeeti, 2014). An

interview, a conversation that occurs between the interviewer and interviewee, has

the purpose of enabling the interviewer to understand the meaning of what the

interviewees say. Harris and Brown (2010) assert that the intention of an interview is

to gather in-depth insights on participant attitudes, thoughts and actions. Interviews

enabled the researcher to gather more information from the interviewee regarding the

investigated topic. There are three different interview approaches: structured, semi-

structured and unstructured (Dicicco-Bloom & Crabtree, 2006).

A semi-structured interview is a pre-planned interview where the researcher writes

down the interview questions prior to conducting the interview so the interviewer can

get the interviewee to elaborate and explain particular issues which are ambiguous

 73

(Alsaawi, 2014). This type of interview is a controlled way of obtaining information

from interviews. Therefore, semi-structured interviews were employed for this study

as they allow the interviewer to prompt the interviewee for greater clarity on answers

that are unclear.

With structured interviews, the interviewer does not have to follow the questions as

prepared in ascending order but can follow any order depending on the conversation.

Consequently, the interviewee is free to respond to questions and even ask

questions. This approach allowed the interviewer to take notes during the interview

and record the conversation, which then enabled the researcher to focus on the

interview content and verbal prompts. This simplifies the interview transcriptions as

well (Jamshed, 2014) as by recording the interview, the researcher is able to capture

the entire conversation.

Various types of media may be employed during an interview. Such media sources

can help to capture the interview conversation and even images. Van Iddekinge,

Raymark and Roth (2006) state that rich media sources such video-taping and video

conferencing increase credibility because they establish more opportunities to verify

information (e.g., by asking follow-up interview questions). Follow-up questions

enable the interviewer to gain a heightened understanding of the subject.

The interviewer can decide to take notes during the interview, record the audio of the

interview, or video tape it. Whiting (2008) argues that audio recorders, note taking or

video cameras are the three most common methods of recording interview data. For

this study, the voice recorder and note taking were selected to capture the interview

conversation which was subsequently transcribed word-for-word. Interviews were

conducted in English as this the common language of the information technology

field. Permission to record the conversation was requested prior to the interview.

Recording the interview tends to be the best way to retain accurate information

because note taking during the interview may cause interviewees to feel as if they

are not receiving direct attention; important points might be missed.

3.7.4 Field work

Prior to conducting semi-structured interviews within the organisations involved, the

researcher acquired a consent letter from the university for requesting permission to

conduct interviews within those organisations. Various organisations were

approached by the researcher and permission was granted. In return, the university

 74

expected a signed consent letters from those organisations, which the researcher

duly provided. Then, the researcher made appointments with the IT managers of the

involved organisations.

Interviews set up

Interviews were conducted at various locations, including manager offices,

boardrooms, a cafeteria and even one participant’s house. Participants were

interview separately, one at a time based on their availability. At Mootledi Logistics,

interviews were conducted in the Development and Support Manager’s office while

others took place in the boardroom. The interviews were conducted in two phases

because of time, availability and content. In the first phase, a total of 9 interviews

were conducted with the following employees: Project managers, business analysts,

software developers, development and support manager, and IT operation manager

were interviewed. . From the second phase, additional five interviews were

conducted. In total, 14 interviews were conducted when there new information was

not forthcoming.

The second organisation where interviews were conducted was Mmuso

Technologies. The Test Manager’s office was the location for conducting all

interviews. The researcher interviewed 14 participants individually, interviewing to a

point whereby he was getting the same responses, the researcher decided to stop

interviewing because no new information was coming forward. Participants included

project managers, business analysts, software developers, software testers and

functional support personnel. These participants were interviewed based on their

availability.

The third organisation was Bokamoso Solutions and the interviews were conducted

at their client’s premises. Some interviews were conducted in the boardroom, some

the cafeteria, and one at a software developer’s house. Initially 10 interviews were

conducted, but the researcher felt that more data was required. As a result, two more

interviews were conducted and the researcher was receiving the same information as

other interviewees. Participants who were available included project managers,

software developer/Architects, software testers (test analysts, automation testers and

performance testers). They were interviewed individually.

Prior to interviewing participants, the researcher introduced himself and the topic of

the study, explaining the code of ethics and requesting the option to record the

 75

conversations. Participants willingly agreed, and semi-structured interviews

commenced. During the interview the researcher took notes to probe for clarity on

the responses he got from the participants. English was the medium language

because it is a common language in the information technology field. At the end of

each interview, the researcher conscientiously thanked each participant for taking

part in the study.

When the researcher was done with all the interviews for one organisation, the

interviews were transcribed word-for-word. Similar transcriptions were also done for

the second and third organisation. After transcribing the data, the researcher cleaned

the data to be readable. The transcribed data was formatted in Microsoft Word

documents in accordance with individual organisations. Pages and lines in each

document were numbered. For the purpose of analysis, each participant was

labelled. This was to preserve the anonymity and confidentiality of the identities of

the participants. Based on these attributes, a referencing standard was formulated

and adopted, including the organisation’s name, the participant, the page number

and the line number. The table below illustrates the total number of participants, from

three organisations:

Table 3.1: Participants

Organisation Name Type of Organisation Total Number of Participants

Mootledi Logistics Private Company 14

Mmuso Technologies Public Company 14

Bokamoso Solutions Small Medium Enterprise 12

Organisation and participants coding

 Mootledi Logistics: participants - ML01 to ML14. ML = Organisation name;

01 to 14 indicates the numbers of participants.

 Mmuso Technologies: participants - MT01 to MT14. MT = Organisation

name; 01 to 14 indicates the numbers of participants.

 Bokamoso Solutions: participants - BS01 to BS12. BS = Organisation

name; 01 to 12 indicates the number of participants.

Case study one: mootledi logistics

Mootledi Logistics is located in Kempton Park, in Gauteng. It is a car rental

organisation that renders services locally and internationally. It relies on software it

 76

purchases from vendors as well as the software it develops in-house to serve its

customers and perform day-to-day duties. However, such software requires testing

and evaluating prior to its deployment into production to ensure that business

continued as usual without interruptions. Initial interviews and follow-up interviews

were conducted at the organisation’s premises in Kempton Park.

Interview location

The interviews were conducted in the office of the Software Development and

Support Manager. Other interviews were conducted in the boardroom. All the

interviews were recorded because the researcher wanted to capture the entire

conversations without risking loss of any information. Immediately after the

interviewer introduced himself, he then requested permission from each participant to

record the interview conversation. Fortunately, all participants agreed to the recording

of the conversation. During the interviews, the interviewer was also making notes in

preparation for asking follow-up questions. Interviews were conducted up to the point

of saturation whereby the interviewer was getting the same responses from the

various participants.

Interview duration

The researcher managed to interview 14 participants, including a Development and

Support Manager, an IT Operations Manager, project managers, business analysts

and software developers. The longest interview lasted for 80 minutes and the

shortest interview lasted only 10 minutes and 39 seconds. On the same night after

concluding all interviews, the researcher began transcribing those interviews. The

interviews were transcribed word-by-word and later data cleaning occurred to convert

spoken English into readable English.

Case study two: mmuso technologies

Mmuso Technologies is located at Centurion, Gauteng, with branches in various

provinces around South Africa. Mmuso Technologies is responsible for providing

government departments with software solutions to fulfil their duties. Once this

software is developed, tested and evaluated it is then accepted by the government

department that requested it, and adopted to perform day-to-day activities of that

particular department. The software is used to render necessary services to the

citizens of the Republic of South Africa.

 77

Interview location

Interviews were conducted at the organisation premises in Centurion. The Test

Manager’s office was used as the destination to interview all participants. All the

interviews were recorded because the researcher desired to capture entire

conversations without losing any information. However, after the interviewer had

introduced himself, he then requested permission from each participant to record the

interview. Fortunately, all participants agreed to the recording of the conversation.

During the interviews, the interviewer was also making notes in preparation for

follow-up questions for additional clarity. Interviews were conducted to the point of

saturation whereby the interviewer was getting similar responses from participants.

Interview duration

The total number of participants who were interviewed at Mmuso Technologies was

14. These participants included project managers, business analysts, software

developers, software testers and functional support personnel. The same set of

questions was asked of all who participated. Thereafter, the interviews were

transcribed word-by-word, followed by data cleaning to convert spoken English into

writable English. After transcribing the interviews, the interviewer realised that some

interviews needed follow-up interviews.

Case study three: bokamoso solutions

Bokamoso Solutions, situated in Illovo, Johannesburg, is an organisation which

invests in research to ensure its convergence and relevance to the industry, thereby

providing solutions that add value to its market base. Bokamoso Solutions

employees are based at client site to offer their specialised services. Those services

include software development, infrastructure management, software testing and

consulting.

Interview locations

Interviews were conducted at one of Bokamoso Solutions’ clients in Johannesburg.

Bokamoso Solutions Managing Director liaised and arranged appointments with the

manager at the client side who was managing the resources. The manager at the

client side arranged a boardroom for the researcher to conduct interviews. The

boardroom was used as a destination to interview some participants. Other

participants were interviewed at the cafeteria because the boardroom was occupied,

while other participants were interviewed at a software developer’s house because

 78

they were committed with projects during the interviews. Interviews were recorded

because the researcher did not want to risk losing valuable information.

However, after the interviewer introduced himself, he then requested permission from

each participant to record the interview. Fortunately, all participants agreed to the

recording of the interview. During the interviews, the interviewer was also making

notes in order to ask follow-up questions. Interviews were conducted until the point of

saturation whereby the interviewer was receiving similar responses from participants.

Interview duration

The researcher managed to interview 12 participants including project coordinators,

software developers, and software testers (manual software testers, automation

testers and performance testers). The longest interview lasted for 32 minutes and the

shortest interview only lasted 6 minutes and 29 seconds. On the same night after

conducting all interviews, the researcher started transcribing those interviews.

3.7.5 Documentation

Documentation is the other data collection tool that can be used in research.

Document is a broad term defined to cover variety of written records, physical traces

and visual images (Merriam & Tisdell, 2015). Documents can be classified as either

‘found’ or ‘researcher-generated’ documents. According to Kolhe et al. (2013), ‘found’

documents exist prior to research and can be found in most organisations whilst

research-generated documents are put together solely for the purpose of research.

Access to documents pertaining to policy and strategy related to the study was

requested from the organisations and used as supporting documentation for

interviews conducted. The researcher was able to get the organisational structures

as well as IT structures by employees within the organisation.

On the other hand, ‘research-generated documents’ include things like interview

notes, interview recordings, field notes, answers to questionnaires, journals and

articles. Feng and Hannafin (2005) argue that qualitative documentation methods

such as tape recordings and written field notes are widely used to collect original

data. Multi-method approached research involves combined data collection

techniques, such as interviews and documentation organised to provide multiple but

different data sets regarding the phenomena (Dube & Pare, 2003). Documentation

was also used to supplement data collected from the interviews as this helped to

verify the information provided by participants.

 79

3.8 Data analysis

Data analysis occurs after the completion of data collection. Binckman and Rog

(2009:234) argue that data analysis is “what does a researcher do with the collected

evidence to make sense of it”. However, such evidence requires interpretation to

become something that makes sense. Nenty (2009) describes interpretation as

“analytical thinking that squeezes meaning out of the mere accumulation of facts”.

Therefore, a researcher has to apply investigative and analytical skills to the

collected evidence and make sense out of it. As a result, the interpretation of data

analysis becomes the findings of the study.

Two theories, actor network theory and diffusion of innovation, were used as lenses

at both the macro and micro levels in the analysis of the data. ANT was used at

macro level, mainly because it guided the DoI, which was used at a micro level to

diffuse the innovation. The two theories were employed as follows:

First, ANT was applied to:

i. understand software testing, through its examination of the

problematisation of tools (e.g. for manual, automated and performance

testing) that are used for software testing;

ii. examine the relationship between actors. This was to gain

understanding of software testing methods, through their selection and

adoption; and

iii. examine the factors that could influence testing and evaluation of

software through moments of translation.

This was followed by the use of DOI, to:

iv. understand how decisions are made in testing software in organisations;

and

v. explore how software innovation is diffused across the organisations.

The data collected through semi-structured interviews was analysed using ANT and

DOI. The data for the first case study was analysed using four moments of translation

of ANT, including problematisation, interessement, Enrolment and mobilisation. Once

that was completed, the same data was analysed using the innovation-decision

process of DOI. They include knowledge, persuasion, decision, implementation and

confirmation. The same was done for the second and third cases studies. The

 80

researcher was asking questions such as what, who, how, when, where and why on

each stage of the moments of translation as well as on each stage of innovation-

decision process. Such questions enabled the researcher to explore relevant

answers from the data analysed.

3.8.1 Unit of analysis

A unit is a portion of a complete entity. The unit of analysis is the main entity that is

analysed within a study. Bhattacherjee (2012) describes unit of analysis as a person,

group or object that needs to be explored to be understood better. Elo and Kynga

(2007) further describe unit of analysis as a letter, sentence or portion of pages or

words, number of participants in discussions or time used for discussion. In this

study, three cases were explored, consisting of technical (IT) and non-technical

(business) participants. Table 3.2 illustrates the units of analysis.

Table 3.2: Units of analysis

Cases (Three) Technical (IT) Non-Technical (Business)

Company A (Private Company) Project Managers (2) Business Managers (0)

Software Developers (5) Business Analysts (5)

Software Testers (0) End Users (0)

Systems Analysts (0)

Support Specialist (0)

IT Managers (2)

Company B (Public Company) Project Managers (1) Business Managers (0)

Software Developers (2) Business Analysts (1)

Software Testers (6) End Users (0)

Systems Analysts (0)

Support Specialist (3)

IT Managers (1)

Company C (Small Medium
Enterprise)

Project Managers (2) Business Managers (0)

Software Developers (2) Business Analysts (0)

Software Testers (8) End Users (0)

Systems Analysts (0)

Support Specialist (0)

IT Managers (0)

This study makes use of three cases studies which are comprised of both technical

and non-technical actors. The technical actors are IT people whilst non-technical

actors are business people. Therefore, the data will be collected from both technical

(IT) and non-technical (business) actors. Thereafter, that collected data will be

analysed accordingly in units. Due to the nature of the study, to test and evaluate

software within an organisation, it was deemed fit to interview both technical and

 81

non-technical actors. These participants may have knowledge about what happens

within the system development life cycle. The units of analysis enabled the

researcher to identify which participants needed to be interviewed.

3.9 Ethical consideration

Ethical consideration is concerned with deciding what information to disclose and

how to disclose it. The disclosure of information could occur between two or more

individuals. Therefore, the individuals involved have to agree to keep the information

a secret prior to its revelation. Revealing such private information could have

negative impact on the owner of the information. In research, ethical consideration

occurs between the researcher and participants. The researcher has to offer

informed consent to those who are participating that whatever they disclose will be

private between researcher and participant. Informed consent means that a person

knowingly, voluntarily and intelligently and in a clear way, offers his agreement

(Fouka & Mantzorou, 2011). As a result, the participants are able to disclose

information relevant to the research without fear of being discriminated against.

Institutions of higher learning have their own research code of ethics to protect all

parties that are involved in a research. Therefore, the researcher had to abide by the

CPUT University Research Code of Ethics. The researcher also adhered to each

organisation’s ethical code. Anonymity was emphasised in the consent form and at

the briefings. The researcher provided the consent form and requested that

respondents complete it as a guarantee that identities will not be revealed.

3.10 Summary

The aim of this chapter is to present the research methodology for this study. The

research methodology serves as a plan, a road map, for how research is conducted.

The researcher explained why certain research strategies were chosen for this study.

Also, various data collection methods were explained, and reasons provided as to

why they were chosen for this study. The researcher also touched on the stages that

will be used to analyse data, including the lens of ANT, innovation within DOI as well

as the communication channels. The next chapter, which is chapter four presents a

detailed information about the three organisations that were used as cases in the

research.

 82

CHAPTER FOUR

CASE STUDY OVERVIEW

4.1 Introduction

The research aims to examine the testing and evaluation of software within

organisations. Three case studies were employed to understand how software is

tested and evaluated within each organisation. The scope of the study was to

understand tools used for software testing, understand how software testing methods

were selected and adopted, understand factors influencing software testing and

evaluation, and understand how decisions were made regarding testing software in

organisations, and finally, to explore how software innovation was diffused across the

organisations.

This chapter provides an overview of the organisations studied. The same data

collection methods and approaches were applied to all cases. The objectives for all

organisations were also the same, as the study aims at examining the testing and

evaluation of software. However, the organisations were treated as separate cases.

The three organisations used as case studies are Mootledi Logistics, Mmuso

Technologies and Bokamoso Solutions. All the names used are pseudonyms to

protect the identity of the organisations.

The rest of the chapter is structured into three main sections per case. The first

section presents the overview, structure and IT structure of the organisation as

applied in all three cases: Mootledi Logistics, Mmuso Technologies and Bokamoso

Solutions, respectively. The final part is the summary of this chapter.

4.2 Overview: mootledi logistics

Mootledi Logistics is a car rental organisation established in 1967 in South Africa.

The Kempton Park branch has 800 employees, 54 of whom are in the IT department.

It offers a wide variety of rental cars that best serve the individual or collective

requirements. These cars fall within various categories including fleet, vans, trucks,

safari vehicles and luxury cars as well as chauffeur-driven services. It is up to the

renter to choose what is required. The usual fleet includes a range of small, mid and

large cars as well as SUVs. These cars can be used to get around town, attend a

conference and to carry the team or just for the pleasure of a luxurious drive. Vans

can be used for moving things to new home, transporting materials or to carry heavy

 83

belongings of the renter. The organisation also offers refrigerated trucks and roll-back

trucks for the transportation of forklifts and compressors.

Mootledi Logistics safari vehicles have many features it can be compared to an over

land version of the Swiss army knife. These vehicles, built for rugged terrain, allow

the individual to journey through the wildest landscapes of Southern Africa, making

every trip an unforgettable experience. There is also a range of exclusive luxury cars

to choose from. Their service is world-class, ensuring the best treatment wherever

they go, with personalised meet-and-greet on pickup and delivery of vehicles. Clients

choose Mootledi Logistics cars because it's not just about a great rental car, it's

about the way the organisation makes clients feel.

All vehicles are less than 12 months old and have fewer than 60 000 kilometres on

the clock. Vehicles are regularly serviced as per manufacturer specification and are

free of damage, fitted with vehicle management systems to assist Mootledi Logistics

luxury car services with real-time geographical position, speed and route monitoring.

All vehicles used for Mootledi Logistics luxury car services have valid road

transportation permits for the provinces in which they operate. Mootledi Logistics is

found in all provinces in South Africa as well as other African countries. However, the

particular branch chosen for this study is situated in Gauteng, Kempton Park.

4.2.1 Organisational structure

The organisational structure reflects the hierarchy within the organisation, indicating

the roles and responsibilities of the employees within the organisation. It also

displays how different roles relate to one another as well as the structure of the

departments within the whole organisation. Below is the organisational structure of

Mootledi Logistics, as shown in Figure 4.1:

 84

Figure 4.1: Mootledi Logistics organisational structure

4.2.2 IT structure

The IT structure of Mootledi Logistics displays the hierarchy and roles of those

involved in Information Technology (IT) as well as Business. Both IT and Business

reports to their various managers, who report directly to the Chief Information Officer

(CIO) as depicted in Figure 4.2. Below is the IT structure of Mootledi Logistics:

Figure 4.2: IT structure of Mootledi Logistics

 85

4.2.3 Roles and responsibilities

Business Analyst

 Assisting with the business case

 Planning and monitoring

 Eliciting requirements

 Overseeing requirements of organisation

 Translating and simplifying requirements

 Overseeing requirements of management and communication

 Overseeing requirements for analysis

Software Developer

 Reviewing current systems

 Presenting ideas for system improvements, including cost proposals

 Working closely with analysts, designers and staff

 Producing detailed specifications and writing the program codes

 Testing the product in controlled, real situations before going live

 Preparing training manuals for users

 Maintaining the systems once they are up and running

Enterprise Architect

 Ensuring that technological goals of the enterprise are in line with the business

goals

 Checking that the quality and reusability of enterprise software is convincing to

ensure prospective cost savings with Service Oriented Architecture (SOA)

 Communicating comfortably the good and bad of a project and its deadlines

 Aligning efficiently the business goals with IT infrastructure supporting those

goals

 Understanding the enterprise business while probing gritty IT issues

Business Intelligence Personnel

 Developing information architecture

 Managing current and future needs for data design and content

 Resolving semantic discrepancies in data definitions that arise among multiple

sources and projects

 Creating reports

 Gaining consensus among users on common business data definitions

 86

4.3 Overview: mmuso technologies

Mmuso Technologies was founded in April 1999 to combine and manage the

government’s information technology (IT) resources to save cost through scale

increase delivery competences and improving interoperability. The Centurion branch

has 450 employees, within which the IT department has 55 employees. This is a

government institution responsible for providing information technology services to

other government institutions. Its mandate is to improve service delivery to the public

through the provision of information technology, information systems and related

services in a maintained information system security environment to departments and

public bodies. It also promotes the efficiency of departments and public bodies

through the use of information technology.

Most government departments had internal IT facility divisions, which to a smaller or

larger degree performed this work. The bigger departmental IT divisions tended to

provide more services than the smaller divisions. A great deal more was contracted

out to the private sector. Large numbers of departments were unable to recruit

suitably qualified, experienced or knowledgeable staff to perform these functions and

were forced to either contract the work out to the private sector or recruit consultants.

In many cases, these consultants became full-time ‘employees’ at considerable cost

to the department. The consequent over-dependence of government on contractors

and alluring reduction of costs for services rendered are two key issues for resolution

by Mmuso Technologies.

The primary reasons for the creation of Mmuso Technologies were the government's

difficulty in recruiting, developing and retaining skilled IT personnel; managing IT

procurement and ensuring that the government gets value for money; using IT to

support transformation and service delivery; utilising expensive IT resources; and

integrating IT initiatives. The organisation is situated in Gauteng, Centurion, with

other branches throughout other provinces.

4.3.1 Organisational structure

Mmuso Technologies has its own unique organisational structure, depicted below in

Figure 4.3:

 87

Minister of Telecommunication and Postal

Services

Mmuso Technologies Board

Company Secretary
1. Stakeholder Management

2. Compliance & Regulations

3. Governance

4. Policy Management

Executive Support
1. Stracemic Planning

2. OCED Administration

3. EPMO

Chief Internal AuditCEO

Deputy CEO – Support &

Governance

Deputy CEO – ICT Service

Delivery

PROCUMENT

Chief Procurement Officer

1. Demand Management

2. Strategic Sourcing

3. Basic Sourcing

4. Commodity Sourcing

5. Center of Excellence

CORPERATE SERVICES

Executive Corporate Services

1. HC Management

2. Corporate Communication

& Marketing

3. Legal Services

4. CPM

RISK MANAGEMENT

Chief Risk Officer

1. Risk Management

2. Fraud Prevention & Awareness

3. Project Risk Management

4. Procurement Risk Management

FINANCE

Chief Financial Officer

1. Financial Accounting

2. Management Accounting

3. Financial Systems & Processes

1. Facilities Management
2. Internal Audit

OPERATIONS

Executive Operations

1. Infrastructure Services

Management

2. System Management Services

STRATEGIC TECHNOLOGY

MANAGEMENT

Chief Technology Officer

1. Architecture Technology Life

Cycle Management

2. Norms, Standards & Quality

PRODUCT, SERVICES &

CUSTOMER SOLUTIONS Executive

 Products, Services & Solutions

1. Product & Service Life Cycle

Management

2. Customer Solutions Development

Security

CUSTOMER RELATIONS
Executive Customer Relations
1. Customer Engagement
2. CRM
3. Provinces
4. Service Management

PROJECT DELIVERY FOR KEY CLIENTS

1. E-Government Gov ERP/FMS

2. Broadband- SA Connect

3. Research & Development

4. DHA

Figure 4.3: Mmuso Technologies organisational structure

 88

4.3.2 IT structure

The IT structure of Mmuso Technologies reveals the hierarchy and roles of those

involved in Information Technology (IT) as well as business. The focus is under the

divisional Head of Norms, Standard & Quality which consists of various departments

including Norms & Standards, Advisory Services, ICT Certification & Accreditation,

Testing & QA and User Support Materials, as shown in Figure 4.4 below:

Figure 4.4: IT structure of Mmuso Technologies

 89

4.3.3 Roles and responsibilities

Test Analyst

 Writing and executing test scripts for software and systems to detect faults

 Keeping written records of defects and bugs discovered during testing

 Analysing the defects and bugs to identify what is causing them

 Recommending solutions to fix any problems discovered during testing

 Tracking the success of the solutions

 Keeping software and systems documentation up to date

 Testing Lead/Senior: a Test Lead or Senior will often have the same

responsibilities as a Test Analyst but will often have the added responsibility

for mentoring junior members of the team and keeping the testing on track

when the Test Manager is unavailable. They should definitely be writing their

own test scripts.

Test Manager

 Showing team/ people management

 Defining the test strategy, then leading, guiding and monitoring the analysis,

design, implementation and execution of the test cases, test procedures and

test suits

 Deploying the appropriate testing framework to meet the testing mandate

 Defining the scope of testing within the context of each release/delivery

 Estimating the testing and negotiating to acquire the necessary resources

 Ensuring the test environment is set before and during test execution

 Communicating with others in the business to report on the test status (be it

Project Managers or the senior leadership team).

4.4 Overview: Bokamoso Solutions

Bokamoso Solutions, situated in Illovo, Johannesburg, was established in 2010 and

current has 30 employees. 18 of whom are in the IT department. The organisation

invests in research to ensure its relevance in the industry, providing solutions that add

value to its market base. The organisation offers specialised services in the software

domain tailored to client needs, backed up by years of extensive practical experience

which guarantees high levels of quality in everything they do. Bokamoso Solutions

prefers to work with an organisation, not for an organisation, to deliver concepts,

designs, installations, day-to-day operations and administration, capacity planning

and longer-term growth strategies. Bokamoso Solutions offer the following services:

custom software development, infrastructure management, software testing and

consulting.

 90

Custom Software Development

Bokamoso Solutions are the suppliers of business applications using in-house

expertise, with extensive expertise in both the Java and MS.NET technologies,

across all sizes of business applications, including mobile applications. The

organisation’s relational database management systems expertise ranges from MS

SQL Server, Oracle, MySQL and DB2.

Infrastructure Management

They distribute equipment through partnerships with reputable hardware vendors,

ranging from light-duty office equipment such as desktop PCs, notebook PCs,

printers and facsimile machines, to heavy duty servers suitable for handling high

transaction volumes. They not only distribute equipment but also provide setup and

installation services.

Software Testing

Bokamoso Solutions provide software and systems testing services based on

internationally acceptable standards such as IEEE 829 and IEC/EIA 12207. Their

testing service includes (but is not limited to) the following elements: manual

functional testing, automated regression testing, performance testing including load

and stress testing, security testing, usability testing, backup and recovery testing, and

data migration testing.

Consulting

They provide the following: analysis and advisory, project management, architecture

and design, data management and data governance, and business intelligence.

How the organisation works

Bokamoso Solutions calls their work model an Engagement Model as they bring to

other businesses the two most important pillars to those businesses. They bring to

other businesses a strong enough software team with the necessary skills to build

custom software. They design their own software solution according to specific

business operations so other businesses can garner a competitive advantage relative

to its competitors. Its custom fit solutions fit a custom budget, as they build according

to special needs, supporting others with software building specialization. What this

means is that customer do not pay for functionalities they do not need or use. Every

cent paid is towards archiving special needs.

 91

4.4.1 Organisational structure

The organisational structure for Bokamoso Solutions indicates the roles and

responsibilities of the employees within the organisation. It also displays how different

roles relate to each other as well as the structure of the departments within the whole

organisation. Below is the organisational structure of Bokamoso Solutions, as shown

in Figure 4.5:

Figure 4.5: Bokamoso Solutions organisational structure

4.4.2 IT structure

Within the organisation, the IT unit has its own structure. The structure was divided

into eight main units, as shown in Figure 4.6. The primary functions of each of the

units are stated below:

Figure 4.6: IT structure of Bokamoso Solutions

 92

4.4.3 Roles and responsibilities

 Automation Tester

 Work as part of cross functional, passionate agile project team to ensure

quality is driven into the heart of the development process from requirement

definition to delivery

 Designing, developing and supporting frameworks for test infrastructure and

providing automation expertise to development teams

 Contributing toward predictable delivery of quality releases

 Research, recommend and implement tools as needed with the goal of

increasing automation

 Mentoring team members on automation

 Proactively bringing problems to the attention of the team

 Generating and implementing innovative solutions to solve problems

 Being meticulous about documentation

 Maintaining a robust log of all test cases and test results

 Ensuring that all tests are executed and give regular feedback to the team

lead on the status of quality

 Using appropriate measures and KPIs to validate software quality

 Working closely with the software engineering team, Product Management,

Technical Operations, business users and Senior Management, as required

 Thinking creatively, quickly identifying and testing for functional ‘edge cases’

outside of expected functionality workflow.

Performance Tester

 Builds and maintains a scalable, portable, configurable automated testing

framework designed using COTS and open-source tools as required

 Builds and maintains performance testing strategy and framework

 Front and back end performance testing, including WCF/API testing

 Performance, load, concurrent user and stress testing development, execution

and publishing results

 Requirements and Functional Specifications review

 Test environment configuration/management

 Extensive troubleshooting in distributed/high availability environments

 Design and build intelligent test systems to simulate production load traffic

 Evaluate system performance, establishing baselines and identifying relative

change on a build/release basis and potentially per customer basis

 Perform capacity, scenario, and endurance tests

 Analyse scalability, throughput and load testing metrics against test servers

 93

 Compare and contrast system performance with varying levels of physical

resources (RAM, CPU cores, Disk caches, Network) and compute nodes

 Execute performance optimization experiments

 Recommend short and long-term procedures

4.5 Summary

The three organisations used as case studies for this research – Mootledi Logistics,

Mmuso Technologies and Bokamoso Solutions – are doing business in three different

markets: transportation, information technology and power supply. The aim is to

understand the way their information technology departments test and evaluate

software. The various organisational structures as well as the information technology

structures, including the roles of specific team members, have been highlighted. The

relationships between various departments and roles have also been highlighted. In

the next chapter, the analysis of data is carried out.

 94

CHAPTER FIVE

DATA ANALYSIS

5.1 Introduction

This chapter presents the analysis of data from the three cases (organisations) under

investigation in this study. As stated in Chapters 1 and 3, the objectives of the study

were to examine and understand the methods applied in the testing of software. This

includes examining the factors that influence software testing. Based on the results, a

decision support system framework was created, which can be used to guide and

improve testing and evaluation of software in organisations. This chapter is divided

into three main sections and four sub sections. The main sections include case study,

Actor Network Theory (ANT) and Diffusion of Innovation (DOI). The sub sections

include actors, networks, moments of translation of ANT and the innovation decision

process.

5.2 Overview of data analysis

As discussed in Chapter 3, three cases (organisations), Mootledi Logistics, Mmuso

Technologies and Bokamoso Solutions were studied in this research. As discussed in

Chapters 1 and 3, the analysis was carried out using two theories, Actor Network

Theory (ANT) and Diffusion of Innovations (DOI). From the ANT perspective, the four

moments of translation were applied for analysis. Complementarily, the innovation-

decision process of DOI was applied. These two theories were employed to underpin

the study primarily because of the vastness and extensiveness of the study. As

explained in Chapters 2 and 3, it would have been difficult to achieve the objectives of

the study, without gaps, if only one single theory was applied.

The focuses of these two theories are quite different. ANT focuses on actors (human

and non-human), heterogeneity of networks and their relationships. Thus, ANT helps

to understand how different networks are formed, as well as the interactions that

happen between actors within heterogeneous networks. This makes it possible to

gain an understanding of how actors got involved in the selection and use of tools

and methods for testing. This includes gaining an understanding of the factors that

influence the actions relating to software testing and evaluation. However, ANT does

not explicitly focus on how technological artefacts such as software or the innovations

(e.g. methods of use) implemented or diffused, which the DOI covers. Both theories,

ANT and DOI have been presented at length in Chapter 2. The application of the

theories was discussed in Chapter 3.

 95

Another important factor was to determine which of the theories should be applied

first in the analysis of the data. Iyamu (2013) discusses the criticality of order-of-

use when theories are combined in a study, which assist to maintain logical flow,

and for methodological value. In this study, ANT was applied first, followed by

DOI, primarily because it was critical to first establish the formulation and

existence of networks so as to know how the technology can be diffused in the

environment. Also, it was necessary to first understand the tools, methods, and

relationships between the actors involved in software testing, prior to assessment of

innovative and diffusion.

For the purpose of data analysis, participants and organisations were labelled. As

shown in Table 8 of Chapter 3, 14, 14, and 12 employees from Mootledi Logistics,

Mmuso Technologies and Bokamoso Solutions, respectively, participated in the

study. An example of the referencing standard is ML01, 5:1-3, which means

organisation ML, participant 01, page number 5, and line numbers 1 to 3 for each of

the cases are as follows:

i. Mootledi Logistics: participants - ML01 to ML14. ML = Organisation name;

01 to 14 indicates the numbers of participants.

ii. Mmuso Technologies: participant - MT01 to MT14. MT = Organisation name;

01 to 14 indicates the numbers of participants.

iii. Bokamoso Solutions: participants - BS01 to BS12. BS = Organisation name;

01 to 12 indicates the number of participants.

5.3 Case study one: mootledi logistics

As discussed earlier, both ANT and DOI were applied as lenses in the data analysis.

As explained in the overview section concerning order-of-use, ANT was applied first,

followed by DOI.

5.4 Actor network theory

ANT treats actors equally, both human and non-human. Human actors are not treated

superior to non-human actors. Various actors and networks were directly, indirectly,

consciously or unconsciously involved in software testing activities within the

organisation, Mootledi Logistics.

5.4.1 Actors

At Mootledi Logistics, both human and non-human actors were involved in the testing

and evaluation of software. The human actors were from both the IT and business

 96

departments. The actors had a common interest, to achieve the objectives of the

organisation through software testing, evaluation and use. The actors from the IT

department included project managers, business analysts, software developers and

software application manager. From the business department perspective, the actors

were business end-users, including business managers, and employees from

finance, sales, operations, fleet services, human resources and risk management

units. The non-human actors in the testing of software within theorganisation fell into

two categories: technical and non-technical, with technical actors including hardware,

software and network. Some hardware for enabling and supporting software testing

and evaluation included personal computers, servers and scanners.

Operating systems and software testing tools such as Mentis and Selenium were

involved in the testing of software in the organisation. The network consists of local

area network (LAN), wide area network (WAN) and WiFi. The non-human actors

involved in the testing and evaluation of software in the organisation included

documentation, process and methodology. The process that was followed was

defined by the organisation. The methodology was agile method. One of the

participants explained:

“We make use of N-Unit for integration testing, we use Selenium for

automated web testing. Part of the agile methodology was followed in

the delivering of software in an iterative and efficient manner” (ML01,

08:0283-0284).

Together, these actors had a common interest to produce software, using various

tools and processes, which ANT also refers to as non-human actors. In ANT, human

actors are not necessarily superior to non-human actors. For example, the software

developers and software testers (human actors) rely on tools and processes (non-

human actors) to fulfil their tasks. Without those tools and processes, such as

Selenium and agile methodology, the software development and testing cannot be

performed. Similarly, without the humans, the non-humans such as hardware,

software and processes cannot by themselves produce software for the organisation.

Therefore, collaboration between human actors and non-human actors made testing

and evaluation of software possible.

5.4.2 Networks

At Mootledi Logistics, groups and units (networks) existed through which testing and

the evaluation of software were carried out. These networks were divided into two

main groups: the IT and business departments. Within the main networks, there were

sub networks. Also, some networks replicated themselves within other, which ANT

 97

refers to as heterogeneity. The networks were consciously and unconsciously formed.

From the IT department perspective, the networks involved in the testing and

evaluation of software were divided into two categories: technical and non-technical

factors. The networks that focused on technical factors were the IT steering

committee, a team of project stakeholders, a project management office (PMO), and

a software development team.

The IT steering committee consisted of head of departments. The stakeholders were

employees, which included product owners, project managers, IT managers and

business managers. The PMO consisted of project managers within the organisation.

Software developers, software project managers and software testers formed the

software development team. Each of these teams or committees had roles, tasks

assigned to them by the focal actors (software development manager) for reaching a

common goal, to test and evaluate software in the organisation. However, some of

the networks were in collaboration, as explained by one of the employees:

“The software development team and the business analysis team

work together very closely and agree on certain parts of the software

that needs to be released” (ML01, 10:0338-0340).

The other group of networks focusing on non-technical factors in the testing and

evaluation of software included a team of business users consisting of employees

from all departments and units. Similar to networks that existed within the IT

department, these groups of business users had various roles, responsibilities and

tasks they collectively undertook as assigned to them by the focal actors. Also, some

employees were members of different networks which enact heterogeneity from an

ANT perspective. For example, project sponsors and project owners were members

of an IT steering committee and project management team and the team of

stakeholders. The teams of software developers, business analysts and business

users were responsible for software testing in the organisation. On the other hand,

the IT steering committee was responsible for evaluating and approving changes or

new projects logged by business:

“The requests coming to IT are recorded and there is now a change

management process whereby if you want changes to be made you

have to log them and they have to be approved by the IT steering

committee” (ML02, 19:0673-0675).

These networks were formed to perform various software testing and evaluation tasks

within the actor network. The networks were directly or indirectly connected through

 98

individuals and groups, roles and responsibilities. This created heterogeneity of

networks within the environment:

“Once the software development was complete the development

team tested the software and when they were satisfied they handed it

over to the business analysts to start testing. The user acceptance

testing was conducted with the users to ensure that the software is

acceptable to the users” (ML04, 25:0377-0378; ML01, 06:0202-

0203).

However, there was no network or team that was specifically dedicated to software

testing within Mootledi Logistics. As a result, other team members were occasionally

assigned the responsibilities of software testing and evaluation. The individuals were

from the business analysis team, software development team and business end

users. Gradually, this group of individuals unconsciously formed a network. Actors

and networks were inseparable during software testing and evaluation, in that a group

of actors constitute a network, and networks were created by actors. In ANT, the

actor can join more than one network at the same time, manifesting itself differently in

each particular network (Iyamu & Tatnall, 2009). The networks were consciously and

sub-consciously formed.

Also, there were networks which were heterogeneous in that they were in both IT and

the business departments. For example, the team of senior management, which

comprised of the CEO, CIO and departmental heads, were responsible for

overseeing and making business decisions for both IT business departments. The

team (network) formed part of other networks, which included project management,

business analysis and software development teams.

5.4.3 Moments of translation

Through moments of translation, actors agree to the building of a network and

acknowledge it to be worth defending. Translation serves as a mechanism of

progressive temporary social orders or the transformation from one order to another

through changes in the alignment of interests within the heterogeneous network

(Gunawong & Gao, 2010). The translation occurs through four moments, which

includes problematisation, interessement, Enrolment and mobilisation (Rhodes,

2009). These four moments of translation of ANT were used in the analysis of the

data as a lens to zoom into the data that was collected at Mootledi Logistics.

 99

Table 5.1: Moments of translation (Case 1)

1: Problematisation

The IT operations manager was the one
who problematised the software testing and
evaluation at Mootledi Logistics. The IT
department needed new ways of how they
can test and evaluate the developed
software. During change management
process meeting, it was raised that
introducing the software testing techniques
can help in developing and improving the
software development team performance.

2: Interessement

Not everyone was interested with what was
proposed (software testing and evaluation).
Some were worried of the change that
software testing will bring to the software
development team. The CIO understood what
it meant to deliver quality projects, so he
sponsored the project. Those who gained
interest included business analysts, software
developers and business users. Even the
customers were also interested because they
needed the software to serve themselves at
any time they wanted to.

4: Mobilisation

The software development and support
manager encouraged software
development team to research more about
software testing tools so that they could be
adopted to automate software testing. The
use of these automation tools improved
how software was tested within the
organisation. Customers out there were
also encouraged to use the tested
organisation web site to serve themselves
at their convenience. This shortened long
queues that were experienced by
customers at the rental counters.

3: Enrolment

Business analysts participated by gathering
business requirements and creating test
cases so that the software could be
developed and tested. Software developers
converted the business requirements into
functional software and wrote automation
scripts to automate software testing using
Selenium. Business users tested the software
and signed it off. The project manager
ensured that those who participated delivered
their tasks on time.

5.4.3.1 Moments of translation: problematisation

Mootledi Logistics relies on software for competitiveness and sustainability as

software assists its employees to do their day-to-day activities as well as serving the

organisations’ customers. Therefore, any software that was developed within the

organisation needed to be tested. Whenever a need arose to develop the new

software, a certain process was followed within Mootledi Logistics: to log the request

with the information technology (IT) department through the change management

process. The change management process was a platform used to decide on

whether the request made business sense. The project management team was

responsible for evaluating the request and reported the outcome to the IT steering

committee. Then, the IT steering committee’s responsibility was to approve the

requests based on whether it made business sense.

Those who were responsible for conducting software testing and evaluation within

Mootledi Logistics included software developers, business analysts and business end

users. It was vital for them to properly and rigorously test the software before it could

be deployed to production for use. It is always better and less expensive to discover

 100

faults while the software is still in the testing environment (because they could be

fixed) rather than when it is in the production environment. Faults discovered by

business end users in the production environment can have dire consequences on

the image of the organisation. One participant stated that:

“With proper software testing we minimise faults coming back and

forth which saves a lot of time and it enables us to deliver quality

software” (ML09, 46:1665-1666).

Discussions regarding software testing and evaluation took place at the redline

meetings that occurred within the organisation. The redline meetings improved the

relationship between managers and their subordinates and between business and IT

departments. It was an ongoing process of improving how things were done within

the organisation, enabling all parties involved in the testing and evaluation of software

to be on the same page (to have the same understanding). It also assisted managers

in providing more information about the requests they have logged to avoid rolling out

software that remained within the business without being used. The IT Operations

Manager further stated that:

“I think the link between business and IT department is being defined

much better than what it was before, and it would encourage the

better output within the IT department” (ML02, 19:0699-0701).

Lack of processes within the organisation made it impossible to deliver the requested

software. Previously the organisation had no proper quality assurance processes in

place and the employees did not conduct thorough testing of the software developed.

Poor analysis as well as no proper functional requirements specifications negatively

affected the testing and evaluation of software. The software development and

support manager highlighted that:

“We had no process previously and it was a question of let’s test this

software a little bit” (ML01, 13:0454-0455).

The intention of delivering quality software was dependent on the IT department

following proper quality assurance process. Failure in following due process resulted

in deploying poorly functional software in production. In order for the IT department to

deliver quality software, it was vital to adhere to the quality assurance process. One

participant stated that:

“It had negative impact on the customers we serve which would

ultimately cost the organisation money” (ML03, 23:0847-0848).

 101

5.4.3.2 Moments of translation: interessement

Software testing and evaluation attracted the attention of various actors within the

organisation whose interest was either of a voluntary or obligatory nature or both.

The actors included individuals and groups from the management to operational level

such as chief executive officer (CEO), chief information officer (CIO), IT steering

committee, project management team, software development team, business

analysis team as well as business end users. These actors had various roles and

responsibilities in the testing and evaluation of software. Some were indirectly linked,

and others directly linked to the software testing activities. The CIO, for example, was

indirectly linked to software testing activities because he only sponsored the

approved requests:

“A sponsor being someone at the executive level who values the

project and agrees to provide resources to execute the project”

(ML01, 07:0257-0258).

The actors had diverse interests in the testing and evaluation of software within the

organisation. Their interests were influenced by various factors. From the

management perspective, they were expected to ensure that software was in place to

enable business end users from various departments to perform their day-to-day

duties, to serve customers and to provide customers with self-service software. Those

departments included finance, risk and fleet department even to the point of Mootledi

Logistics’ customers out there.

“The end users can be as broad as the public (customers), anyone

who can go to our web site and reserve a vehicle from the web site”

(ML01, 03:0079-0080).

The interest of teams and individuals was triggered by lack of quality assurance

processes and standards especially for conducting software testing and evaluation

within the organisation. Other teams, such as software development and business

analysis, had their own standards which they followed when doing their tasks. When

software had to be tested and evaluated, there was no software testing standard that

was followed. The software developers, business analysts and business end users

shared the responsibility of testing and evaluating software. Therefore, they followed

their various team standards to conduct software testing:

“The software developer’s standard may not be exactly the same as

the software tester standard or the business analyst standard

because they may not know what exactly the expectations are”

(ML07, 45:1395-1396).

 102

Some software passed testing in the testing environment and failing in the production

environment. Therefore, those responsible for software testing and evaluation needed

to follow software testing processes and standards to test properly. Software testing

is a career as much as project management, business analysis and software

development, and it deserve the same respect shown to other careers:

“I think that software testing is not really given its due respect” (ML09,

43:1575-1576).

Some employees were interested in the software testing and evaluation because they

were bound by the performance contract signed with their line managers on behalf of

the organisation. These performance contracts were used to assess the performance

of individual employees and teams concerning effectiveness and productivity,

assisting managers to identify employee strengths and weaknesses. As a result,

relevant training was provided to develop those who lack in skill. Performance

contracts were also used to determine whether actors deserved salary increases or

bonuses. Actors were expected to perform their duties as agreed with their

managers:

“It is part of our annual employee performance” (ML01, 11:0381).

Other employees were interested due to the research that was conducted within the

organisation regarding the investigation of software testing tools. These testing tools

were open source and required no licensing, which were meant to make software

testing and evaluation effective and efficient. Therefore, some software developers

involved in this research gain more software testing knowledge and skills which could

improve software testing and evaluation within the organisation:

“At the moment we are exploring the open source automation tool

called Selenium. We plan to use it to automatically conduct our

testing” (ML01, 01:0018-0019).

While several efforts were made by managers to stir interest for the proposed solution

to the problematisation of software testing and evaluation, the building of interest

among the employees could not be regarded a success. Not all actors who were

interested participated in the testing and evaluation of software. Therefore, enrolment

of employees was not completely successful as some employees were not willing to

take part in the testing of software and evaluation.

5.4.3.3 Moments of translation: enrollment

Participation of actors was pursued through different means in the organisation. The

managers of various teams engaged with their subordinates and negotiated their

participation in the testing and evaluation of software. Redline meetings were held as

 103

the negotiation platform to get those interested to enrol in the network that was going

to test the requested software. Hence, software testing couldn’t exist in isolation;

various teams, including project management, business analysis, software

developers as well as business department collaborated their skills to play a vital role.

The managers of these teams used the power bestowed on them by the organisation

to entice employees to participate and accept the roles and responsibilities allocated

to them during the testing and evaluation of software:

“The scrum master should be someone who can liaise with business,

product owner, software developers and business analysts” (ML14,

68:2523-2524).

Even though there was no dedicated software testing team within Mootledi Logistics,

some kind of software testing was conducted. Software developers conducted unit

testing and end-to-end testing, business analysts conducted functional testing and

business end users conducted user acceptance testing. This was to ensure that when

the software was handed over to the business department for use, it functioned as

expected. The responsibility of the IT department was to enable the business

department to execute its day-to-day functions of serving customers:

“Currently we don’t have software testing teams, so testing is

conducted by software developers, business analysts, business

users and even the production support personnel” (ML13, 63:2302-

2303).

As stated earlier in the previous stage, interest from employees was either of a

voluntary or obligatory nature, or both. The managers of various teams used the

power bestowed on them by the organisation to get employees to participate and

accept the roles and responsibilities allocated to them during the development,

testing and evaluation of software. These managers used their managerial discretion

to enrol the employees in the network responsible for testing and evaluating software:

“The managers from different teams got to decide who they wanted

to place on the project based on their skills” (ML10, 47:1719-1720).

The IT managers ensured that they enrol competent, skilled and dedicated

employees who would fulfil their roles in the testing and evaluation of software.

Mootledi Logistics relied on software for competitiveness and sustainability.

Therefore, new software was developed, and existing software upgraded when a

need arose. It was important for managers to have strong teams to fulfil these needs:

 104

“There is diverse software that require testing within our organisation,

therefore, we conduct different types of testing in order to test and

evaluate them” (ML01, 01:0010-0011).

Without quality assurance processes in place, it was difficult for those who were

testing and evaluating software to deliver quality software. Previously, the

organisation was following the traditional methodologies, such as waterfall, to

develop, test and evaluate software. They used to encounter challenges such as

changes in requirements, business users not knowing exactly what they want,

software taking too long to be completed and late inclusion of business end users in

the software development life cycle. Therefore, re-examining user requirements and

re-developing the software cost the organisation both time and money. Now the

organisation has moved into agile software development such as scrum to improve

on the challenges which they previously faced:

“Traditional methodologies are not as flexible as agile because with

waterfall if a requirement is missed or has changed you have to wait

until the software is deployed to production and then log a change

request” (ML10, 50:1832-1835).

It is through functional software that Mootledi Logistics is able to function and serve

its customers. Therefore, the IT department’s responsibility is first and foremost to

deliver quality functional software. Mootledi Logistics seems not to be concerned

much about performance testing. Performance testing is another important aspect of

software testing and evaluation for determining how the software performs in terms of

responsiveness and stability under a particular workload. There were no tools within

the organisation that enabled the software developers to check the performance of

the software on the network. Performance testing provides confidence that when the

software is deployed to production it would be able to respond well under strenuous

load on the network. However, software developers were improvising the

performance element within the code they were writing when developing the

software:

“I take much time to actually make sure that the efficiency in the

processing is there so that the code I am writing will not slow the

software.” (ML12, 58:2098-2100).

The most important thing within the organisation was to ensure that the software

functioned as expected and business continued as usual. Enrolment was a success

because actors accepted their roles and worked cooperatively towards delivering the

tested and evaluated software, despite the challenges.

 105

5.4.3.4 Moments of translation: mobilisation

Pursuance of employees was carried out along the structure and channels as defined

by the organisation. In accordance with the organisational structure the product

owner requested for the software, the IT steering committee decided on whether the

software made business sense, and when approved, it was handed over to the IT

department to develop, test and evaluate the software:

“Business owner is someone who has requested for the software”

(ML14, 69:2524-2525).

The CEO sponsored the entire initiative of developing, testing and evaluating the

software. This software was going to be used by business users to serve customers

and perform their day-to-day duties. The managers of various teams persuaded their

subordinates to be part of the network to deliver quality software. The scrum master

mobilised teams by ensuring that they delivered accordingly and also reported

progress to the business owner:

“The scrum master and the team held sprint meetings to plan and

communicate about the activities that needs to be done” (ML13,

64:2330-2331).

Persuasion was very important from all the above-mentioned parties because

software development is a joint effort. As a result, everyone had to deliver on the

tasks assigned to them on time in order to deliver the tested and evaluated software.

Failure in doing so would negatively impact the delivery of the software. Some actors

in the network were able to manage themselves and deliver accordingly whilst other

had to be managed and checked on in terms of how far they were with their

deliverables:

“As a project manager I track, monitor and check on the progress to

ensure that the team is meeting the deadlines, they are on schedule

and everything is moving as it should all the way from start until we

hand the project over to business” (ML10, 46:1687-1689).

Mobilisation occurred through various platforms, including redline meetings as well as

scrum meetings. Redline meetings used to be attended only by managers to discuss

progress and issues within the project. Business users were formerly excluded but

now they are included in those meetings because managers were unable to provide

some crucial information regarding projects. Due to agile adoption, now there are

scrum meetings attended by the members of the same team to discuss challenges

and progress:

 106

“During the scrum meeting everyone has to report about what they

have done and what they are going to do” (ML14, 69:2518-2519).

It was always helpful to provide feedback to the product owner in order to know the

progress about the software requested. Such feedback was also critical for project

sponsors because no one wanted to waste the organisation’s time and money on

something that was not achievable or something that was failing. Therefore, feedback

persuaded all the actors to do their best to deliver the tested and evaluated software.

At the end of the day, the requested software had to be signed off and accepted by

business owners and business users:

“Then there was user acceptance testing whereby the business user

runs through the testing in order to accept the software” (ML01,

06:0211-0212).

Therefore, product owners had to mobilise their teams to make use of the software

that had been thoroughly tested and evaluated. The business team became the focal

actor because the testing and evaluation of the software is initially instigated by them.

The management was encouraged by the task of mobilisation which was linked to

their performance appraisals. Mobilisation was successful, and employees were

excited about the contribution in the testing and evaluation of software.

5.5 Diffusion of innovation

Diffusion of innovation (DOI) theory explains how new ideas or ideas that are

perceived as new are spread within and between members of a social system

(Sampaio, Varajão, Pires & de Moura Oliveira, 2012). It starts as an idea that is

eventually converted into a product. That product cannot be left hanging without

being diffused to the target market for utilisation. This diffusion was possible through

the innovation decision process.

5.5.1 Innovation decision process

Innovation decision process was used as a lens to zoom into the data that was

collected from Mootledi Logistics. Rogers explained that the innovation decision

process is a process whereby “innovative” technologies are adopted and diffused

following a five-stage model (Fuller, Hardin & Scott, 2007). Those stages include

knowledge, persuasion, decision, implementation and confirmation (Sang &Tsai,

2009). This theory was covered extensively in Chapters 2 and 3. DOI was utilised in

this present research to understand the decisions made in software testing and how

software innovation was diffused within the organisation.

 107

5.5.1.1 Innovation decision process: knowledge

The IT department had the enormous responsibility of delivering the software

requested by the business department. The delivery of this initiative (software) was a

new thing within the organisation; therefore, the IT department, which included project

managers, business analysts, software developers and business intelligence

personnel, needed to fully understand the business requirements to best deliver the

tested, evaluated and functional software. The business analysts had the enormous

responsibility of gathering the business requirements which would establish the

development, testing and evaluation parameters for the requested software:

“The business analyst is the person who documented the business

requirements the individual who have a clearer idea of how the

software should function” (ML10, 49:1786-1787).

Therefore, the business requirement specification, or functional requirement

specification, provided absolute knowledge about what business required. However,

this does not necessarily mean that the business requirements would be accurate at

the first attempt. Sometimes business department would be uncertain as to what

exactly they wanted. In such cases, the business analyst was able to assist as this

person has both business and technical knowledge. There were also possibilities that

some business requirements could be missed during the business requirement

gathering process which would hinder the development and testing as well as the

evaluation of software:

“If the software developer does not understand the business

requirements they would automatically build incorrect software”

(ML14, 68:2490-2491).

The comprehension of the requested software was very important to the software

development team as it enabled the team to develop, test and evaluate the software.

It was important for everyone involved in the software development life cycle to have

a clear and well-defined understanding of what business wanted. The software

development life cycle process is a collaborated initiative that requires combined skills

from various fields of specialisation such as business analysis, software development

and software testing. For example, software testing cannot occur if the software does

not exist; without business requirements software developers could not develop the

software. Therefore, knowledge from business assisted business analysts to gather

and document business requirements. As a result of the compiled skills and

knowledge, the software development team was able to develop, test and evaluate

the requested software:

 108

“Business knowledge was also important to decide whether the test

case was sufficient to actually test against the functional requirement”

(ML01, 13:0445-0446).

Furthermore, the understanding of the existing software within the organisation

helped the software development team to make informed decisions concerning the

development of the new software as it was imperative that this new software integrate

with the existing software. Undeniably, knowledge about this software was important:

“The knowledge of the systems that we have helps us a lot because

we know what scenarios to test” (ML09, 45:1656-1657).

It would be virtually impossible to develop, test and evaluate software without

understanding what was required. Therefore, it was crucial to understand the

business requirements to accurately develop the software and identify scenarios to

test. Those responsible for software testing and evaluation could not just test what

they thought needed to be tested. They needed to have some sort of a guide for what

to test and how to test it. Therefore, the business requirement specification assisted

the software development team in that regard:

“One cannot test the software by just thinking that it should behave a

certain manner, they needed to test it against the business

requirements specification” (ML01, 13:0446-0448).

It was the responsibility of the software development team to seek clarity on vague

business requirements in order to develop the correct software, as it is a challenge to

develop and test software with ambiguous business requirements. Therefore, the

software developers and software testers had to be innovative in clarifying vague

business requirements in order to do precisely what was expected of them. There

were instances, for example, whereby software developers were issued three pages

of business requirement specifications which were not clear. As result, they had to

liaise with business analysts as well as business users to find the necessary clarity.

One of the software developers stated that:

“I would rather sit with the business users to get clarity, liaise with the

business analysts and then start developing the software because

jumping straight into software development without understanding

what was required leads to back and forth which wastes time” (ML14,

69:2502-2504).

 109

5.5.1.2 Innovation decision process: persuasion

The IT department was somewhat unfamiliar with the software that the business

department had requested. Therefore, the IT department put together the software

development team that was purposed with developing, testing and evaluating the

requested software. This team included a project manager, business analyst,

software developers and business intelligence personnel:

“Since our organisation has decided to go the agile route, the project

manager is assigned the dedicated team of five individuals that

includes a business analyst, two software developers, the business

intelligent personnel and the K2 developer” (ML10, 47:1721-1723).

This team was interested in the innovation (requested software) and it actively looked

for related information in order to develop, test and evaluate this software. Each

individual had to actively play their role so that the team could succeed in delivering

quality software. Therefore, the business analysts liaised with business users in order

to find out what they really wanted in order to document the business requirements.

The entire software development team (scrum) was dependent on the business

requirement specification to perform their duties.

Failure in working as a team would negatively impact the output as well as delay the

delivery timelines of the IT department. Consequently, the product owner as well as

product sponsors would be dissatisfied with the IT department delivering the software

later than the agreed timelines. The business department only expected what they

have requested on the agreed timelines. They wanted software that would make their

lives easier in terms of performing their duties and servicing customers:

“With proper software testing we minimize faults coming back and

forth which save a lot of time, money and it enables the IT

department to deliver quality software” (ML09, 46:1665-1666).

A lot was at stake for the organisation because the development and testing of the

requested software was sponsored by the management. Also, the requested software

was intended to simplify day-to-day performance of duties by business users and

increase customer convenience. This software was envisioned to enable customers

to help themselves any time of the day with the service they required from Mootledi

Logistics. Therefore, it was imperative for the IT department to rigorously test and

evaluate the software prior to its implementation in production:

“Roll backs in production costs time and money, it is better to test the

software now while it is on the testing environment” (ML14, 70:2539-

2540).

 110

Finding defects in production puts the organisation in disrepute, especially when

those defects are found by the customer. Defects found in production bring business

to a standstill because the software ceases to be functional. Business end users are

not able to perform their daily duties as well as rendering services to customers.

Moreover, customers are prohibited from booking vehicles online. As a result, the

organisation is depicted as unprofessional, as failing to provide services to its

customers.

5.5.1.3 Innovation decision process: decision

Neither business end users nor customers could use the innovated software without

having to test and evaluate it. Any software that is promoted to the production

environment needed to be rigorously tested and evaluated to avoid mishaps in

production. Hence, business users were required to conduct user acceptance testing

(UAT) before the software could be promoted or deployed to production environment.

UAT is the final stage of the software testing process, the process whereby business

users test the software to ensure that it can handle required tasks in real-world

scenarios, according to specifications:

“After the actual software testing the business analyst goes through

the whole process with the business user to the point whereby the

business user accepts the solution, which we call user acceptance

testing” (ML05, 28:1026-1028).

However, UAT is preceded by system integration testing (SIT) which helps the

software development team to verify whether the subsystems constituting the

software solution work as expected and cooperate in a streamlined manner. A variety

of software testing needed to be conducted for delivering software that met business

requirements. During software development, software developers conducted unit

testing which was termed developer testing at Mootledi Logistics. Unit testing is a

software development process in which the smallest testable parts of the software,

called units, are individually and independently tested for proper operation. This type

of testing increased the confidence of software developers that when handing over

the software to the business analysts and business users to test, it was fully

functional. However, this was unfortunately not always the case at Mootledi Logistics:

“The biggest challenge is that the software developers don’t test the

software properly the first time because they are expected to test it

before deploying it to the testing environment but when the software

is handed over to the business analysts to test it just keeps on failing”

(ML07, 37:1354-1356).

 111

The organisation had a definite need to improve how software was developed, tested

and evaluated. Previously, the organisation followed traditional methodologies such

as waterfall to develop software. Some participants stated that the waterfall

methodology was too rigid, business requirement gathering and compilation of the

requirements specification took too long to be completed, business users were

involved too late in the software development process, and business requirements

changed while the software was being developed. Also software developers, software

testers, business intelligence personnel and support personnel had to wait for the

requirements specification to be completed before performing their duties. As a result,

by the time the software development was completed, the technology had already

changed or advanced. Hence one software developer asserted that:

“The biggest issues in technology is that by the time you are done

with the waterfall project the business rule has changed so what you

are delivering doesn’t apply anymore” (ML12, 59:2168-2170).

Due to the above waterfall weaknesses, the organisation decided to adopt scrum

agile methodology. Scrum is designed for teams of between three to nine software

developers who break their work into actions that can be completed within sprints.

The scrum team holds daily scrums (stand-up meetings) to report on progress, issues

and the way forward. With agile methodology, business users were involved from the

beginning of the project because they needed to verify all the functionalities they had

requested. The changing of software development methodologies as well as the use

of software testing tools were aimed at improving software development, software

testing and its evaluation. This was the step in the right direction in terms of delivering

quality software.

5.5.1.4 Innovation decision process: implementation

The software gets deployed to production once the business end users and product

owner has accepted and signed it off. Thereafter, the software developers prepared

the installation manual guide to assist the production support team in deploying the

software. The production support team configured the production environment to

accommodate the new software. Once the software was deployed, it was ready for

use.

However, after deployment, the software needs to be tested to ensure that it functions

as expected on the production environment before handing it over to business end

users for use. The responsibility of the production support team was to ensure that

the new software was always available for use and functional at all times. They also

maintained the existing and new software, assisted business users with technical

 112

production matters, carried out necessary research and provide in-depth analysis for

resolving production issues. They were also expected to know and understand how

all the software they maintained functioned. One business analyst stated that:

“At the end of the day the production support needs to support the

software” (ML07, 39:1418).

The manager who requested had software for their department had to use the power

bestowed on them to encourage staff to actually use the new software. Staff needed

to understand, that the software was meant to simplify the day-to-day duties as well

render services more efficiently to Mootledi Logistics customers. At Mootledi

Logistics, any problems arising within the department needed to be attended to as

soon as possible to ensure the efficient running of the department. Unresolved

problems within the department will certainly have a negative impact on the

organisation itself. Every department within the organisation has to function

effectively for the entire organisation to be competitive.

5.5.1.5 Innovation decision process: confirmation

At this stage, it is critical to recognise and appreciate the benefits of using the

innovation (new software), making the software part of the ongoing routine and

promoting it to others within the department. This gives the department the

opportunity to function more effectively. Business users are able to perform their daily

duties using the new software as well as rendering the service to customers. One

participant highlighted that:

“Some of the software at our rental counters are used by our staff to

serve the customers” (ML01, 03:0077-0078).

Some of this software, such as the organisation web site, enables customers to serve

themselves. Customers are able to make bookings and reserve cars through Mootledi

Logistics web site, at their personal convenience, without having to be physically

present at the Mootledi Logistics premises. The organisation had to develop efficient

software that would enable it to maximise profits. Another participant asserted that:

 “The organisation must ensure that the software it implements saves

time and make the work environment friendlier” (ML06, 34:1247-

1248).

Business user output indicated that the organisation made the right decision by

implementing this new software. The organisation was heading in the right direction

by introducing this new software which enhanced efficiency of services. The IT

Operations Manager confessed that the organisation is not yet there but:

 113

“I think we are heading in the right direction hopefully we would get

there” (ML02, 19:0682-0683).

The individual finalises his decision to continue using the innovation. This stage is

both intrapersonal (may cause cognitive dissonance) and interpersonal, confirmation

the group has made the right decision.

5.6 Case study two: mmuso technologies

Similar to the first case of Mootledi Logistics, ANT was first applied to Mmuso

Technologies, followed by DOI.

5.7 Actor network theory

5.7.1 Actors

The implementation of software within Mmuso Technologies was carried out by both

human and non-human actors. The human actors were from IT and business

departments, respectively. Through their combined efforts they were able to test and

evaluate the requested software by other government departments. From the IT

department there were project managers, business analysts, software developers,

software testers and functional support personnel. Alternatively, business users and

representatives from other government departments were from business, responsible

for requesting the software that would enable them to perform their duties. However,

business people worked closely with the business analysts to provide business

requirements:

“We gather the business requirements for a change or a new project”

(ML07, 17:0664).

These requirements were later converted into the requested software. The

collaboration of actors’ skills contributed immensely towards the development, testing

and evaluation of software within the organisation. Clearly, software testing cannot

occur in isolation. Other activities needed to occur prior to the existence of software

such as gathering of business requirements, translation of those requirements into

functional specifications and then the development of the requested software:

 “We needed to work together as a team” (ML04, 10:0358-0359).

Those skills were dependent on each other to deliver quality software. However,

human actors required non-human actors in order to perform software testing and

evaluation of the requested software. The non-human actors were threefold:

hardware, software and process. Hardware included personal computers, laptops,

servers, external hard-drives and memory sticks. In order for hardware to function, it

required software such as operating systems, programming languages, databases,

 114

software testing tools and unified modelling languages. The organisation was still

following the traditional methodologies or processes for testing and evaluating

software:

“We are not yet using agile methodologies, we are still following

traditional methods such as waterfall model and the V-Model” (ML05,

12:0468-0469).

The V-Model presented software testing at each stage of software development.

Therefore, software testing did not have to be conducted at the final stages of the

project. Each stage on the V-Model has a corresponding software testing activity

which assisted in identify missing requirements and incorrect design early in the

software development life cycle. As highlighted earlier, the organisation was planning

to introduce agile methodologies to improve how software development was done.

“We are using the V-Model and we are trying to integrate it with the

agile model” (ML04, 10:0358).

These tools were used for capturing test requirements, creating test cases, test case

execution, logging defects and reporting software testing status. Software testers

needed to undergo training to be able to utilise these tools accordingly. These tools

were used to perform manual software testing. Due to cost, Mmuso Technologies

employed free open source tools for performance testing. The selection of this tool

was based on various factors. The organisation looked at the capability and

proficiency of the software testing team for the tool adoption:

“We use J-Meter as a tool to conduct performance testing which is

primarily used amongst others to simulate virtual users that were

required in an event that simulate concurrent login” (MT14, 33:1268-

1270).

Performance testing is another crucial part of testing and evaluating software as it

measures the quality attributes of the software such as consistency and resource

usage. The software testing tools enabled the software testers to perform software

testing to the best of their abilities. At the completion of software testing, the software

testing team would be in a position to confirm the quality of the software, intelligently

advising on whether the software was ready or not ready for production:

“Our organisation produced quality software for another government

department and business users were happy to use the software”

(MT04, 12:0453-0454).

 115

The quality software was expected to be functional at all times to enable business

users to perform their day-to-day activities as well as to deliver services to the citizens

of the Republic without any interruptions.

5.7.2 Networks

Networks, which refer to groups, units and departments, existed at Mmuso

Technologies. The networks deployed software that was developed, tested and

evaluated. As mentioned earlier, these networks were consciously and unconsciously

formed. The formations of these networks were from business and Information

Technology (IT) departments. IT department was responsible for converting business

requirements into the requested software:

“We rolled out Integrated Financial Management System (IFMS) that

integrates supply chain management, human resource management,

financial management, payroll and business intelligence” (MT01,

01:0040-0041).

However, this software underwent software development process as well as rigorous

software testing and evaluation. Mmuso Technologies was responsible for providing

other government departments with software solutions that enabled them to function

effectively. The IT department consisted of various teams directly linked to each other

as they were expected to deliver quality software. Collaboration amongst the teams

played a vital role in the development, testing and evaluation of software:

“We needed to work together as a team including project managers,

systems analysts, business analysts, test analysts and software

developers” (MT04, 10:0358-0360)

These teams formed heterogeneous networks within the organisation. The software

project teams were derived from the above teams for every software project that was

requested by another government department. The stakeholders within the software

project team worked together to deliver quality software. The stakeholders from the

management perspective included project owners and sponsors. From the operations

perspective, the stakeholders included business analysts, software developers and

software testers:

“So collectively the stakeholders included business which represent

the government department that we were developing the solution for

and others within the project includes the business analyst, systems

analyst, software developers, the project manager and the other

colleagues within our team we also regard them as project

stakeholders” (MT14, 38:1471-1474).

 116

The change management team was responsible for evaluating change requests

logged, issues relating to those changes, the impact of those changes and evaluating

new software projects to be developed by Mmuso Technologies.

5.7.3 Moments of translation

Table 5.2: Moments of translation (Case 2)

1: Problematisation 2: Interessement

There were instances whereby Mmuso
Technologies collaborated with
vendors/consultants to develop some
software requested by the government
departments. The project manager
problemitised the formation of independent
software testing team in order to verify the
work done by the vendors. However, the
challenge was that the software testers were
unable to test and evaluate the software
efficiently due to lack of knowledge and
documentation of the software they were
testing. As a result, software testing and
evaluation appeared to be delaying the
development of the requested software within
the organisation

Some people within the organisation were
excited by the formation of the independent
software testing team. They thought that the
software testing team was going to solve all
the problems encountered during the
software development. While others thought
that software testing was just going to delay
the deployment of software. Those who
gained interest were from various teams
including project management, business
analysis, software analysis, software
development, software testing as well as
software support. The software testing team
was going to ensure that government
departments received quality software. As a
result, those government departments
supported the idea of having the
independent software testing team

4: Mobilisation 3: Enrolment

Mobilisations of employees were carried out
along this structure. Managers of various
teams that were involved in the software
testing and evaluation acted as
spokespersons for their teams. The
government department that requested the
software became the focal actor because the
testing and evaluation of software was
initially initiated by them. Mobilisation was a
success and employees were enthusiastic
about what they were going to contribute in
the testing and evaluation of software

Those who participated had a role to fulfil in
the software development life cycle. They
included project manager, business analyst,
software developers, software testers and
software support personnel. The release
manager approved changes or new
software that had made it through the
software quality gate. The test manager
provided necessary feedback the project
stakeholders regarding software testing and
evaluation. As a result, the release manager
made use of the feedback received from the
test manager to make appropriate decisions
regarding the implementation of the
changes or new software

5.7.3.1 Moments of translation: problematisation

It is the responsibility of Mmuso Technologies to develop software for other

government departments. Therefore, when any government department needed the

software, they logged a request with Mmuso Technologies. This software was

developed to enable the government departments to function efficiently and to render

services to the citizens of South Africa. To accomplish this, software had to be

rigorously tested and evaluated to ensure that it functioned as expected. There were

 117

instances whereby Mmuso Technologies collaborated with external organisations and

vendors to develop and configure other software, primarily due to lack of skills within

the organisation. One participant alluded that:

“We wanted to have a total independent software testing team which

will verify the work of the vendors” MT01, 03:0102-0103).

Due to the absence of independent software testing, the testing that was conducted

was not intense. The software developers concentrated on doing software

development and tested the piece of functionality they were assigned to verify

whether it was working. Thereafter, it was assumed that the software was functional

and ready for deployment, even without fully interrogating it. However, it is not easy

for software developers to detect their own mistakes. So in many instances, the

software testing team would only learn about the software when it was in production

and already dysfunctional:

“In our organisation they are able to bypass software testing, as long

as they want the software to be implemented it gets implemented

without being tested” MT04, 11:0435-0436).

There was a change management as well as the release management team within

the organisation. The change management team was responsible for evaluating the

change requests logged, addressing issues relating to those changes and

determining the impact of those changes on other projects. The release management

team was responsible for approving changes and new software projects that needed

to be implemented. Both teams, then, had processes and procedures that needed to

be followed when dealing with changes or with new software projects needing

implementation.

The other teams perceived the software testing team as a stumbling block or bottle

neck regarding the deployment of changes and new software due to the release

management process which required every single change or new software to be

thoroughly tested and evaluated prior to deployment. Whenever the change or new

software failed the software quality gates, it could not be approved by the release

management. The strict release management process forced the software testing

team to ensure that all changes and the new software was tested and evaluated

before they could be implemented. One participant asserted that:

“It was important to make sure that processes were followed because

in that case software testing would not be bypassed” (MT04,

11:0427- 0428).

 118

According to the release management process, changes and software had to be

rigorously tested in the Quality Assurance (QA) and Pre-Production (Pre-Prod)

environments before they could be implemented, and they had to pass the necessary

software quality gates. In one instance, to bypass this, one software tester spotted

the business analyst changing the business requirement specification without

consulting business:

“I think the challenge that we are facing in our organisation is that

processes are not followed” (MT02, 06:0235- 0236).

As a result, the other teams worked against the software testing team. The release

management process involved the software testing team to make crucial decisions

regarding the deployment of changes and new software. Therefore, the other teams

perceived software testing as problematic because of this process. The relationship

between software testers and software developers was challenging, especially when

defects were logged against software developers. One software tester highlighted

that:

“When a software tester logs a defect against the software developer

they would argue with you and even fight with you verbally” (MT03,

09:0317- 0318).

5.7.3.2 Moments of translation: interessement

The software development, testing and evaluation within the organisation attracted

the attention of various actors. While some of these actors volunteered, others were

obligated to partake in the testing and evaluation of software. From the management

perspective, the actors included teams and individuals such as the change and

release management teams, the business team, technology team, release manager,

product owner, project managers, business analysts, software developers, software

testers, and functional support personnel. These actors had various roles and

responsibilities in the development, testing and evaluation of software:

“We need to work together as a team including project managers,

systems analysts, business analysts, test analysts and software

developers” (MT04, 10:0358-0360).

The actors had diverse interests in the testing and evaluation of software within the

organisation, interests that were influenced by various factors. From the management

perspective, they were expected to ensure that software produced enabled other

government departments to perform their daily duties and render services to South

African citizens. Some of those government departments included Environmental

Affairs, the Development Bank of South Africa and Home Affairs. Each team from IT

 119

and the business department would have a representative in the change

management board:

“We would have a representative from the department who would

represent the department that requested the software or change”

(MT14, 38:1486-1487).

The government departments are not there to make profit but to serve the citizens of

the country. Therefore, it was important for those departments to have quality

software that would enable them to fulfil their duties as public servants. At the

operational level, business analysts, software developers, software testers, functional

support and business end users were liable to deliver quality software. Some of the

factors that influenced their interest included enforcing processes and standards for

conducting software testing and evaluation, involvement of all project stakeholders at

the early stages of developing the software and promoting the culture of collective

teamwork within the organisation:

“Actually what I believe needs to be done is to involve the software

testers from the initiation of the project so that the tester can also give

inputs and recommendations when coming to the testing of the

software” (MT04, 11:0396-0398).

Some employees felt that it was human nature to bypass processes. Others felt that

things could be done more quickly but the established processes prolonged things.

So, even when processes were put in place, this did not necessarily mean that

people would follow them. As a result, it was management responsibility to ensure

that processes were followed. Failure in enforcing employees to follow processes

would lead to Mmuso Technologies failing to produce quality software. Some

participants stated that:

“Processes are not followed. It is important to make sure that

processes are followed because in that case testing will not be

bypassed. Processes are not followed at all and the management is

doing nothing about the situation” (MT02, 06:0235-0584; MT04,

11:0427-0428; MT05, 14:0545).

Other employees wanted to be part of the software testing team that provided other

government departments with quality software. One business analyst even left the

business analysis team for software testing, desiring to learn to use software testing

tools that were adopted within the organisation. Those tools included IBM Rational

tools and JMeter, open source software used for performance testing. Mmuso

 120

Technologies was lacking in test automatons; therefore, they focused more on

manual and performance testing:

“The reason why automation was not viable technology for us to

improve on our testing capability the maturity of our testing team is

not at a mature level where we are ready to automate” (MT14,

33:1262-1264).

As a result, individuals needed to be empowered in order to automate software

testing. Not all actors who were interested enrolled, though, so the enrolment of

individuals was not completely successful as some people were not willing to take

part in the testing of software and evaluation.

5.7.3.3 Moments of translation: enrolment

Participation of actors was pursued through different means within Mmuso

Technologies. The managers of various teams engaged with subordinates and

negotiated their participation in the testing and evaluation of software. The team

meetings were used as the negotiation platform to get those interested to enrol in the

network that would test the requested software. Hence, software testing couldn’t exist

in isolation, various teams including project management, business analysts, software

developers, software testing as well as business department collaboration of skills

played a vital role. The managers of these teams used the power they had to

encourage individuals to participate, to accept the roles and responsibilities allocated

during the testing and evaluation of software:

“We have got a test manager who overlooks the testing capability

who monitors the projects and plan and coordinate the testing

activities and who work closely to the test lead” (MT14, 35:1345-

1346).

The change and release management team existed within Mmuso Technologies. Any

new software requirement or enhancement to existing software had to undergo the

rigours of this team. Even after the software had been developed or enhancements

made, these needed to be thoroughly tested and evaluated because this team relied

on the test results from the software testing team. But even though this process

existed, some employees still went ahead and bypassed processes and standards.

The same participant highlighted that:

“You find out that the software was implemented without testing and we tested

it while the software was in production those are the challenges we are facing”

(MT04, 11:0414-0415).

 121

The software testing team was faced with incessant challenges during the testing and

evaluation of software. Some software developers did not have a good working

relationship with software testers. Whenever software testers detected defects and

logged them against respective software developer, arguments arose. As a result,

software developers would think that software testers were attacking them or did not

value the work they had produced. Meanwhile, project managers were committing to

timelines without involving test managers. As the software testers were not always

involved early in software development life cycle, teams involved in the software

testing and evaluation were not treated the same. One software tester complained

that:

“Another challenge is that all the projects that I worked on the

development time could be extended but system testing time is never

extended, and I don’t understand why” (MT02, 06:0202-0204).

The software testing team was treated unfairly because they had to sacrifice family

time to work overtime to complete tasks assigned to them. Even so, they were

perceived as enemies within the organisation. Even though they complained about

how they were treated, management did not respond to their complaints. Mmuso

Technologies adopted V-Model to develop software and enhance existing software.

With the V-Model, each software development stage is countered by the software

testing stage. After the delineation of requirements, the software testing team has to

validate those requirements to create test requirements and test cases. Any

ambiguous requirements needed to be clarified. The organisation also had software

testing tools to capture all the testing activities.

5.7.3.4 Moments of translation: mobilisation

At this stage, employees acted on behalf of the organisation during the testing and

evaluation of software in the organisation. Others were delegated to act as

spokespersons to convince and persuade employees to participate in the delivery of

quality software through its testing and evaluation. According to the organisational

structure, the test manager was responsible for heading the testing team. Similarly,

the change and release manager headed the change management board. The other

members of various teams – such as project management, software development,

and business analysts – reported to their respective managers. Mobilisations of

employees were carried out along this structure. One participant explained as follows:

“We have got a test manager who overlooks the testing capability

who monitors the projects and plan and coordinate the testing

 122

activities and who work closely to the test lead” (MT14, 35:1345-

1346).

The test manager appointed team leads who were responsible for individual projects.

These team leads, assigned projects and three to four software testers depending on

the scope of the project, were responsible for supervising the software testers

assigned and also reported on the testing status of the project. Additionally, the team

leads compiled their reports concerning their projects and submitted them to the test

manager:

“Then they will do the execution and manage the day-to-day statuses

and they will give the test manager a report on a daily basis” (MT14,

32:1245-1246).

The test manager would then gather all the reports from the team leads and

consolidate them into one report which was then issued to the Head of Department.

This process simplified reporting. The management was willing to accept the task of

mobilisation which was linked to their performance appraisals. Mobilisation was a

success and employees were enthusiastic about their contribution in the testing and

evaluation of software.

5.8 Diffusion of innovation

Once the software was developed and tested it could not be left hanging without

being diffused to the target market for proper utilisation. This diffusion was made

possible through the innovation decision process.

5.8.1 Innovation decision process

Innovation decision process of DOI was used as a lens in the data analysis. This

theory was covered extensively in Chapters 2 and 3. DOI was used to understand the

decisions made in software testing and how software innovation was diffused within

the organisation.

5.8.1.1 Innovation decision process: knowledge

Unlike business users who used one or two types of software, such as SAP or

Oracle, to conduct their day-to-day activities, the software testing team had to test a

variety of software. To this end, it was imperative for the software testing team to

acquire knowledge about each and every software needing testing and evaluating.

During the testing and evaluation of SAP, for example, there were no resources

internally who understood SAP within the organisation other than vendors. Therefore,

this lack of knowledge regarding SAP rendered it difficult for the software testing team

to efficiently test and evaluate the software:

 123

“I think software testers did not understand the functionality or know

how to use SAP functioned which made software testing inefficient”

(MT01, 03:0107-0109).

Vendors do not usually share knowledge about their work because this is how they

generate money for their organisations or themselves. They intentionally keep certain

knowledge to themselves so that they could be called in when something was not

working. Even though that was the case, the test manager believed in upskilling his

team members. The software tester’s responsibility was only to execute the test

cases, log defects and re-test those defects. The test analyst, who was senior to the

software tester, was responsible for extracting test requirements from the business

requirement specification, creating test cases and capturing them on Rational Quality

Manager. They could also perform the functions of the software tester. Therefore, at

times the test manager would assign the software tester the functions of the test

analyst:

“In my team I encourage cross skilling, where testers will fulfil the role

of analysis so that they can grow towards becoming full fleshed test

analyst but primarily we have got the test manager, test lead, test

analyst and a tester” (MT14, 35:1351-1353).

Mmuso Technologies equipped the software testing team by sending them for training

regarding the software testing tools the organisation had purchased. Not only that, the

organisation also took its software testers on international software testing courses to

learn the concepts, various types of software testing and how to apply those types of

testing. This training greatly improved the skills of software testers and helped them

perform testing efficiently:

“We attended International Software Testing Qualifications Board

(ISTQB) which provides various testing courses, training on software

testing and certification exams on those testing courses” (MT05,

14:0536-0537).

The software testing team acquired knowledge through testing various software within

the organisation. As a result, their experiences were amassed through their skills.

5.8.1.2 Innovation decision process: persuasion

The IT department was persuaded by the change and release management to deliver

quality software. All the various team members who were involved in the testing and

evaluation of the software had to fulfil their roles to meet the timelines agreed upon

with the particular government department requesting the software. It was not only

 124

the responsibility of the software testing team to deliver on time, but the entire project

team. Software testing and evaluation was a collaborated duty that relied on other

skills for timely fulfilment:

“The requirements were gathered, software development took place,

then software testing was performed then the software goes through

the change management” (MT07, 18:0677-0678).

The business analysis team compiled the business requirement specification which

was used to develop the software or make enhancements to the existing software.

With these requirements, the software development team and software testing teams

were able to perform their functions. As a result, this new innovation (software)

persuaded the teams involved in the testing and evaluation of software to deliver

quality software. However, there were challenges that occurred during the testing of

the software:

“Not enough time was allocated to testing the project and we were

pushed to complete our testing within a short space of time” (MT03,

08:0308-0309).

That, however, did not discourage the software testing team from doing their work.

The software testers worked tirelessly in order to deliver quality software. They

worked extra hours during the week and even came in on weekends to work. They

never sat back and complained but worked as hard as possible because they

understood that those who requested the software were expecting a finished product

functioning as expected. One participant stated that:

“It was crucial that when you promise to deliver a product within the

specified time let the delivery occur within the agreed time” (MT06,

16:0622-0624).

The change and release management was expecting the testing results from the

testing team to make informed decisions about the tested and evaluated software.

5.8.1.3 Innovation decision process: decision

During software testing and evaluation, the software testing team decided to conduct

various types of testing in order to deliver quality software. Once the team was

satisfied with the quality of the software, they submitted the testing results to the

change and release management. Based on the test results, the government

department requesting the software was invited to conduct user acceptance testing.

That was the final type of testing conducted with the customer (government

department) with the help of the software testing team. The customer needed to test

 125

the software to ensure that it functioned as expected. When satisfied, the department

needed to sign off the software to confirm their satisfaction with the delivered

software:

“The software testing team was involved in the user acceptance

testing, we are the ones who facilitate it, we help the user with their

acceptance criteria, the sign off” (MT08, 21:0806-0808).

The test results from the testing team were then issued to the change and release

management team. The change and release management team used these test

results to decide whether or not the software was ready for implementation. However,

the change and release manager did not make all the decision alone; these were

collaborative decisions with the managers of various teams within the IT department.

One participant stated that:

“We formed a change management board and we signed off the

change collectively from a business owner, software testing, and

software development perspective so it was being cleared by the

release manager who assumed a role of a chairperson in the change

management board” (MT14, 38:1491-1494).

5.8.1.4 Innovation decision process: implementation

At this stage, the functional support team worked closely with the change and release

management team as well as the software development team to implement the tested

software at Mmuso Technologies. The functional support team needed the

implementation plan created by the software development as well as the packaged

software to deploy the software to production. The functional support team also had

to configure the production environment prior to the deployment of software. The

change management process still continued:

“If there was a change in the software, the change request was

logged, and it followed all the necessary channels like it was

developed, tested by software developers, tested by software testers

and tested by functional specialist then it was deployed to production”

(MT11, 26:0988-0990).

Once the software was deployed, the change management team altered the status of

the implemented software to ‘complete’. The IT department at Mmuso Technologies

officially handed over the software to the government department that requested the

software. The product owner of the software notified their staff about the new

software prepared for use. As expected, some employees were delighted to use the

software and to even read more about the usefulness of the software, while others

 126

were sceptical, too comfortable with how they did things prior to the new software

deployment. One software tester asserted that:

“Our organisation produced quality software for development bank of

South Africa and users are happy to use the system” (MT04,

12:0453-0454).

The manager who requested the software for their department had to engage the

power bestowed with the position to encourage staff to use the new software. Staff

needed to understand that the software intended to simplify their daily activities as

well as to render efficient services to the citizens of the country. The staff also needed

to understand that the organisation spent time and money in developing the software

to ensure the government department was efficient in rendering these services to the

citizens of South Africa. Therefore, the organisation had managers who were willing

to engage their staff, especially when issues and conflicts arose.

5.8.1.5 Innovation decision process: confirmation

At this stage, it was necessary to recognise the benefits of using the innovation (new

software), making the software part of the ongoing routine and promoting it to others

within the department. As a result, this improves the government department’s

opportunity to function effectively. The public servants who were end users were able

to perform their daily duties with the new software as well as render the service to the

citizens of the country. One participant highlighted that:

“Our organisation produced quality software for development bank of

South Africa and users are happy to use the system” (MT04,

12:0453-0454).

The software is still being used to render services to the public. The software Mmuso

Technologies developed enabled the government department to meet its mandate of

delivering quality service to the citizens of the country. The end user output indicated

that the government department made the right decision by implementing this new

software. The government was heading in the right direction by introducing this new

software, increasing efficiency. One participant praised the software testing:

“I am not saying the software testing team is the best of the best

because even them they are in a growing phase, but I think it is a

step in the right direction” (ML06, 15:0584-0585).

The government department finalised the decision to continue using the software

(innovation), a stage of confirmation that the government department has made the

right decision.

 127

5.9 Case study three: bokamoso solutions

As described in Chapter 3, a brief description about Bokamoso Solutions was

provided. Also in Chapter 4, a detailed overview of the organisation was presented.

5.10 Actor network theory

Various actors and networks were directly, indirectly, consciously or unconsciously

involved in software testing activities within Bokamoso Solutions.

5.10.1 Actors

Bokamoso Solutions offers specialised services in the software domain tailored to the

client needs. The organisation prefers to work with other organisations and not for

those organisations. Bokamoso Solutions offer the following services: custom

software development, infrastructure management, software testing and consulting.

Bokamoso Solutions tests new software and enhancements made to existing

software for their partners to ensure that all software is of acceptable quality prior to

its deployment. There were combined efforts from human and non-human actors in

the testing and evaluation of software. Both human and non-human actors have the

ability to apply agency upon others, with neither being any more capable than the

other (Lihosit, 2014). Bokamoso Solutions resources were based at the client site to

efficiently provide the testing services they were employed to do.

The human actors were from both IT and the business departments, respectively. The

actors had a common interest: to achieve the objectives of the organisation through

software testing, evaluation and use. From the business department perspective, the

actors were business end users, including business managers and employees from

the respective department requesting the software. The actors from the IT department

included project managers, business analysts, software developers, software testers

and functional support. One of the participants stated that:

“The structure within the organisation is divided into different levels

within the testing team, there are testers, test analysts, senior test

analysts and test managers and they all play different roles within a

project” (BS02, 05:0189-0191).

The non-human actors in the testing of software within the organisation were in two

categories: technical and non-technical. The technical actors included hardware,

software and network. Some of the hardware that was used to enable and support

software testing and evaluation included personal computers, servers and mobile

devices. Operating systems, software testing tools, such as HP Quality Center,

Unified Functional Tester (UFT) and Load Runner were utilised in the testing of

 128

software within the organisation. The network consists of local area network (LAN),

wide area network (WAN) and WiFi. The testing and evaluation of software occurred

on the mentioned networks.

The non-technical actors involved in the testing and evaluation of software in the

organisation included documentation, process and methodology. The process that

was followed was defined by the organisation. The organisation adopted the V-Model

because it made it possible to involve a software testing team in the software

development life cycle. Each stage of software development is linked to software

testing in the V-Model. These actors had a common interest: to produce quality

software through the use various tools and processes, which ANT also refers to as

non-human actors.

In ANT, human actors are not necessarily superior to non-human actors. For

example, the software developers and software testers (human actors) rely on tools

and processes (non-human actors) to carry out their tasks. Without those tools and

processes, such as Quality Center, Unified Functional Tester (UFT), Load Runner

and V-Model methodology, the software development and testing could not be

performed. Similarly, without humans, non-humans such as hardware, software and

processes cannot by themselves produce software for the organisation. Therefore,

collaboration between human actors and non-human actors made testing and

evaluation of software possible at the organisation.

5.10.2 Networks

At the Bokamoso Solutions client, there were groups or networks that existed through

which the testing and evaluation of software was performed. These networks were

divided into two main groups: IT and business departments, respectively. Within the

main network, there were networks formed. Also, some networks replicated

themselves within other, which ANT refers to as heterogeneity. The networks were

consciously and unconsciously formed, consciously in that the networks were

officially created as part of the organisational structure. From the IT department

perspective, the networks involved in the testing and evaluation of software were

divided into two categories: technical and non-technical factors. The networks that

focused on technical factors were comprised of a team of project stakeholders, a

project management team, a software development team, a software testing team

and a functional support team.

 129

The stakeholders were employees, including product owners, project managers, IT

managers and business managers. The project management team consisted of

project managers within the organisation. Software developers, software testers and

functional support personnel formed the software development team. Each of these

teams had roles, specific tasks assigned to them by the focal actors (software testing

functional manager) towards reaching a common goal, which was to test and

evaluate software in the organisation. However, some of the networks worked in

collaboration, as explained by one of the employees:

“We work in different teams, the software developers are a different

team, the software testers are a different team, then people who

compile specifications business analysts are a different team as well.

So we are not one team therefore it is hard to coordinate all this

teams” (BS01, 03:0112-0114).

Also, some employees were members of different networks, which enacts

heterogeneity from an ANT perspective. For example, a software tester would part of

the software testing team as well as the team of stakeholders. These teams were

responsible for software testing and evaluation within the organisation. These

networks were formed in order to perform various software testing and evaluation

tasks within the actor network. The networks were directly or indirectly connected

through individuals and groups, roles and responsibilities. This created heterogeneity

of networks within the environment:

“When you are working together things go a bit smoother than when

everyone is just doing their own thing” (BS01, 04:0137-0138).

Bokamoso Solutions was providing the full range of software testing services for their

client. Actors and networks were inseparable during software testing and evaluation,

in that a group of actors constitute a network, and networks were created by actors.

5.10.3 Moments of translation

As explained earlier in case 1 and case 2, the moments of translation were also used

for case 3 as a lens to zoom into the data that was collected at the Bokamoso

Solutions client.

 130

Table 5.3: Moments of translation (Case 3)

1: Problematisation

The senior functional manager problematised
software testing at Bokamoso Solutions. The
manager was responsible for issuing projects
as well as software tester to the test manager
to test and evaluate the software within the
organisation. Software was tested to ensure
that business continued without any
interruption.

2: Interessement

Some employees were interested when
notified about software that needed to be
tested. Business analysts, software
developers and software testers were
interested and couldn’t wait start testing and
evaluating software that needed to be
tested. They wanted to deliver quality
software that was going to assist enable
business users to perform their duties as
well as rendering services to customers.

4: Mobilisation

The product owners became a spokesperson
because they had to come up with innovative
ideas concerning new software. Managers of
various teams such as business analysis,
software development and software testing
represented their teams in accordance to the
organisational structure.

3: Enrolment

Test managers participated by assigning
tasks to software testers and reporting about
testing status to the senior manager. Project
managers worked with all project
stakeholders in delivering the requested
software by business. The software testing
utilised software testing tools such as
Quality Center to capture test cases.
Automation testers used unified functional
tester to automate manual test cases.
Performance testers used load runner to
test the performance of the software on the
network.

5.10.3.1 Moments of translation: problematisation

The Bokamoso Solutions client used software to make business, selling products and

rendering services to its customers through software. Furthermore, other existing

software was enhanced to keep business going as technology continued to advance.

Therefore, the Bokamoso Solutions client had a list of software that needed to be

tested. The senior functional manager was responsible for assigning those projects to

test managers. One of test manager alluded that:

“The senior functional manager manages the whole software testing

division, they oversee all the projects that are coming in for testing,

they source projects which are to be tested by their division” (BS02,

06:0213-0214).

From time to time, a need arose from business to request the IT department to

develop new software or enhance existing software for them. The process followed

was for business to log the request with the information technology (IT) department in

which a committee was responsible for approving new projects or enhancements to

existing software. The demand management committee (DMC) committee validated

the requests and the costs that would be incurred to develop, test and evaluate that

 131

request (software). The change management process was a platform for deciding

whether or not the request made astute business sense.

The DMC committee responsibility was to approve the requests based on whether it

made business sense and the cost to be incurred. After approval, the request is

handed over to the IT department to develop the requested software. Once the

software was developed, it was tested intensely prior to deployment to production for

use by business users. However, there were instances whereby the software testing

team was not provided with the business requirement specification but expected to

perform software testing anyway. One software test analyst suggested that:

“A rule needed to be introduced emphasizing that whoever was

logging a request needed to provide documentation, if they didn’t

have a documentation the testing team was not going to test their

software, we are not going to assist you” (BS06, 29:1129-1131).

Without necessary documentation, it was difficult for the software testing team to plan

software testing activities. The business or functional requirement specifications

enable the team to extract requirements, identify scenarios to test and create test

cases. Performing software testing without the stated documents was disastrous

because the software testing team wouldn’t know what to test or what to cover. The

developed software had to be tested against the business or functional requirement

specification. The same participant stated that:

“It is many projects that you are not provided with documentation.

Documentation is the biggest challenge within our organisation”

(BS06, 29:1123).

Moreover, the business department had tendencies of pressurising the project

manager to deliver the software on unrealistic timelines. As a result, such pressure

negatively impacted the quality of the software because the project manager,

software developers and software testers were pushed to complete their work in an

unrealistically short period of time. At times, project managers estimated testing

timelines without consulting the testing team, generating conflicts between project

stakeholders and deteriorating the relationships among project stakeholders. One

participant complained that:

“Actually the resources within the testing team at some point they are

seen as inferior by other project stakeholders” (BS03, 18:0703-0704).

The best technology alone, good processes alone as well as skilled people alone

cannot deliver quality software. Hence, there were networks formed by both human

 132

and non-human actors collaboratively. Together, the network was capable of

delivering quality software. The IT department just needed to follow the processes

and utilise the available technology to produce quality software. As a result, business

would be satisfied with what would be delivered to them.

5.10.3.2 Moments of translation: interessement

Various actors were enticed by the idea of testing and evaluation software within the

organisation. Some actors’ interest was voluntary while for others, interest was

obligatory in nature, or both. The actors included individuals and groups from

management to operational levels such as IDR committee, senior functional manager,

project management team, software development team, business analysis team,

software testing team, functional support team as well as business end users. These

actors had various roles and responsibilities in the testing and evaluation of software.

Some were indirectly linked while others directly linked to software testing activities:

“The role of the test manager would be to create the statement of

work, test plan, oversee at what the test analyst and testers are

doing” (BS01, 04:0142-0143).

The actors held diverse interests in the testing and evaluation of software within the

organisation influenced by various factors. From the management perspective, IT was

expected to deliver quality software that would enable business to continue without

interruption. The requested software was needed by departments like human

resources, finance, marketing and public relations to perform their work functions

properly and render services seamlessly to their customers. Hence, quality was

emphasised on all software that was tested and evaluated within the organisation.

As a result, those who were interested wanted to improve how things were done

within SDLC. If the software was not developed properly it not only impacted the

software development team but affected the entire team responsible for delivering

quality software. When the business analysis team produced unclear requirements,

this befitted the entire project team. Therefore, it was important for all the project

stakeholders to work collaboratively in the delivery of quality software:

“It is much better to get people together to understand what each

other is doing because they are in one team” (BS05, 27:1062-1063).

Other employees were interested because they wanted to learn how software testing

was performed. They expressed a desire to learn to use software testing tools that

were adopted within the organisation. Those tools included Load Runner, UFT,

Quality Center in order to perform various types of testing. As a result, software

 133

testing teams were strengthened and produced quality software every time they had

to test and evaluate the software:

“People learn best at work when they practically perform activities

assigned to them” (BS02, 08:0312).

Furthermore, individuals were empowered and in turn empowered other teams to be

efficient and productive. Not all actors who were interested enrolled, though.

Therefore, enrolment of individuals was not completely successful as some people

were not willing to take part in the testing of software and evaluation.

5.10.3.3 Moments of translation: enrolment

Participation of actors was pursued through different means within the organisation.

The managers of various teams engaged with their subordinates and negotiated their

participation in the testing and evaluation of software. The team meetings were used

as the negotiation platform to entice those interested to enrol in the network for

testing the requested software. Hence, software testing couldn’t exist in isolation:

various teams, including project management, business analysis, software

developers, software testing as well as the business department, played a vital role in

the collaboration of useful skills. The managers of these teams relied on the power

bestowed upon them by the organisation to convince individuals to participate and

accept the roles and responsibilities allocated to them during the testing and

evaluation of software:

“We have got test managers who oversee the overall progress of the

testing team” (BS08, 37:1440-1441).

The software does not just exist but must be developed and tested before it can be

delivered to business. This then required interdependency of skills such as project

management, business analysis, software development, software testing and

software deployment. Various employees within the organisation were required to

fulfil those roles for successful delivery of quality software to business. There were

project managers, business analysts, software developers and software testers:

“Performance testers overseas the non-functional requirements of the

software like load, stress and performance of the system” (BS07,

33:1299-1300).

As stated earlier, interest from employees was either of a voluntary or obligatory

nature, or occasionally both. The managers of various teams used the power

bestowed on them by the organisation to lure employees to participate and accept the

roles and responsibilities allocated to them during the development, testing and

 134

evaluation of software. These managers used their managerial discretion to enrol the

employees in the network responsible for testing and evaluating software:

“The test manager oversees the testing for projects assigned to them

and reports to the senior functional manager” (BS02, 47:0208-0209).

The managers also enforced the tasks allocated to individuals through to

organisation’s compulsory performance evaluation, and as such, other employees

were forced to participate. The managers of various teams were under pressure to

establish a high-performance team responsible to deliver the solutions for the

business request. All that business expected from the IT department was to develop,

test, evaluate and deploy the software that could enable them to perform their day-to-

day duties for providing the best uninterrupted services to their customers. As a

result, these managers had to ensure that they enrol competent, skilled and

dedicated employees who would fulfil their roles in the testing and evaluation of

software. The Bokamoso Solutions client relied on software for competitiveness and

sustainability. Therefore, new software was developed, and existing ones upgraded

when a need arose. It was important for managers to compile strongly skilled teams

to fulfil these needs:

“People should have the right skills to avoid testing incorrectly

because the software they are testing is going to be used business

end users and not the tester” (BS08, 37:1428-1429).

These tools assisted the software testing team in terms of delivering the tasks on time

and potentially even quicker. At least Bokamoso Solution performed testing for both

functional and non-functional requirements. The functionality of the software can work

properly but its performance, if not tested, can fail in production. The software should

be able to perform no matter how many users are logging in simultaneously to the

software. Thus, performance testing was conducted. Enrolment was a success

because actors accepted their roles and worked together towards delivering the

tested and evaluated software even though there were challenges.

5.10.3.4 Moments of translation: mobilisation

In the testing and evaluation of software in the organisation, employees acted on

behalf of individuals, the team or the organisation in entirety. Others acted as a

spokesperson to convince and persuade employees to participate in the delivery of

quality software. In accordance with the organisational structure, the senior functional

manager heading the software testing division in the organisation was responsible for

the testing all software. The managers of various teams within the IT department

reported to their respective managers. Mobilisation of employees was carried out

 135

along the structure and channel as defined by the organisation. One participant

alluded that:

“The structure within the organisation is divided into different levels

within the testing team, there are testers, test analysts, senior test

analysts and test managers and they all play different roles within a

project” (BS02, 05:0189-0191).

The software testing team was responsible for ensuring that the software was

rigorously tested and evaluated before it could be implemented to production.

Therefore, the team conducted various types of testing and utilised the software

testing tools existent within the organisation. Various team members had to play their

part in the testing and evaluation of the software:

“Therefore, you have a project manager, product owner, software

developers and software testers so everybody performed what they

were assigned to do” (BS03, 12:0460-0461).

The product owners became spokespeople because they had to generate innovative

ideas concerning new software or clever enhancements on existing software to

enable the business to remain sustainable and competitive. The business end users

had to sell products and render services to customers at all times without interruption.

Therefore, the product owner worked very closely with the project team to ensure that

quality software was produced for keeping the business going:

“There is a product owner who actually updates the team on what

actually needs to be done” (BS10, 41:1617-1618).

Once the mobilisation was successful, then the actor network began to function with

the objective of delivering the requested software by business. The business team

became the focal actor because the testing and evaluation of software was initially

instigated by them.

5.11 Diffusion of innovation

The diffusion was made possible through the innovation decision process.

5.11.1 Innovation decision process

The innovation decision process of DOI was used as a lens to zoom into the data

collected from Bokamoso Solutions. This theory was presented extensively in

Chapters 2 and 3.

 136

5.11.1.1 Innovation decision process: knowledge

The delivery of quality software to business was not the sole responsibility of the

software testing team but rather the entire IT department. It was a team effort to

ensure that business received sufficient quality software. Therefore, a positive

relationship among the project stakeholders was vital in terms of delivering good

quality software. Software testing is a complex endeavour because software testers

test not only single but multiple types of software. Therefore, software testers need to

be fully equipped with knowledge about the software under test. Software testing is

not all about detecting defects but also uncovering situations that could negatively

impact the customer in terms of usability and maintainability. One participant asserted

that:

“The software tester needs to know how much testing to perform that

is critical, accuracy and understanding what they are testing and at

least they know they are focusing on the right direction and producing

the right results as expected” (BS02, 07:0236-0238).

Therefore, if the software tester does not have the necessary knowledge of the

software, the testing will not be done sufficiently. They could easily miss some

important functionality of the software. As a result, poor quality software would be

delivered to business and the business would surely not be impressed with such

software. Consequently, the entire IT department would be perceived as

unprofessional, as a team that does not know what they are doing. For example, for

both manual and performance testing, it is vital for the software tester and

performance tester to understand what they need to test. With a failure in

understanding the requirements, software testing would waste time, money and

resources:

“So with performance testing we start by engaging with the user to

understand the requirements for the software they want us to test”

(BS04, 20:0774-0775).

Thus, business requirement specifications, functional requirement specifications, are

clearly needed before software testing could commence. This document provided

software testers with the necessary information and understanding of what business

has requested. With such information, the software testing team was able to

understand the scope of testing and plan accordingly. As a result, software testers

identified various scenarios which were used to create test cases using tools adopted

within the organisation:

 137

“It was important to understand the business requirements, how the

users were using the software and their expectations” (BS05,

26:0993-0994).

Software testers need to be innovative, analytical and good in communicating with the

rest of the project stakeholders to elicit the relevant information to assist them in

testing and evaluating software. Also, some departments at the Bokamoso Solutions

client did not know exactly what the software testing team was doing. Therefore,

during the monthly meeting, called Imbizo, the software testing team needed to

prepare presentations about projects they had tested in the past and the ones they

were currently testing to educate other departments concerning their role:

“So in those sessions I think that was where we pulled out items that

we educated other team members that this was what testing was all

about and the value it added to the organisation” (BS02, 09:0327-

0328).

5.11.1.2 Innovation decision process: persuasion

The software testing team was persuaded to get clarity on ambiguous requirements

which were in the business requirements. Therefore, other project stakeholders such

as business analysts, software developers and business users were there to assist

the software testing team with any unclear requirements to enable the software

testing team to cover as many scenarios as possible in the delivery of quality software

to business. The risk with ambiguous requirements was that business rules could be

incorrectly built within the code and some important functionality could be overlooked,

thereby being detected as a defect. Therefore, it was vital to detect such defects early

in the software development life cycle:

“In most cases you find that the business analyst was not aware that

they missed some requirements” (BS02, 10:0376-0377).

Therefore, through the assistance of the software testers, any missing requirements

could be detected early. As mentioned before, human beings are prone to committing

mistakes. Project stakeholders needed to work together to deliver quality software, as

blaming each other will not rectify mistakes committed by other stakeholders. It was a

challenge for various teams to interact smoothly with each other because different

teams have their own ways of doing things. Therefore, it was imperative for the

stakeholders to build a good relationship in order to deliver quality software on time:

“I kind like created a work relationship so it was easier for me to

communicate with the project manager and also the other people that

I needed information from” (BS01, 05:0173-0174).

 138

Without good relationships among project stakeholders, it would have been difficult to

test and evaluate software. Some stakeholders had information about things that

others did not know about. There were specialists who had intense knowledge about

their work. Therefore, those specialists were a good point of reference in clarifying

requirements which were not clear to software testers:

“There are specialist who have been supporting or working on a

software for a number of years, so they are key people who know the

ins and the outs of the software” (BS01, 05:0173-0174).

As a result, consultations with those who understood the environment better assisted

the software testing team in getting the information required for testing and evaluating

the software.

5.11.1.3 Innovation decision process: decision

The software testing team was faced with numerous decisions regarding the testing

and evaluation of software. For example, the team needed to decide which testing

methods to adopt, how many cycles of software testing they needed to conduct and

when and how to report on the testing progress. They also needed to decide which

types of testing they were going to conduct, for example, manual, automation or

performance testing. The intention was to cover the entire software testing scope for

the software under test:

“So for us to decide whether we were going to automate software or

not we looked at how stable enough the software was to be

automated” (BS03, 17:0348-0349).

The software testing team had to further ensure that they performed performance

testing on the software under test. Therefore, it was vital for the software testing to

cover non-functional testing of the software. Software could work perfectly well

functionally but fail on non-functional requirements. As a result, Bokamoso Solutions

decided to conduct performance testing for all the software they tested to ensure that

they also covered non-functional requirements. It vital to cover the response time,

speed and stability of the software under test:

“Performance testers overseas the non-functional requirements of the

software like load, stress and performance of the software” (BS07,

33:1299-1300).

It was crucial for software testing to cover both functional and non-functional

requirements of the software under test. At the completion of software testing and

evaluation, end users from business were invited to conduct user acceptance testing.

 139

This testing was coordinated by the software testing team. The team also assisted

end users during the testing whenever they needed help. This testing determined

whether end users or the business were satisfied with the software:

“User acceptance testing, it is whereby the user was accepting that

what was tested was what they have requested, and they were happy

with the software” (BS01, 01:0029-0031).

5.11.1.4 Innovation decision process: implementation

Once the business end users were satisfied with the quality of software, they signed

off the user acceptance testing. All the software testing documents signed off by

various stakeholders involved in the software testing were stored confidentially as

these documents were needed during the auditing period. The user acceptance

testing closure report was one such requirement. When business end users were

satisfied with the software, the next step was to deploy that software to production. As

a result, the production environment was configured accordingly, and the software

deployed:

“The production environment is a live environment where the tested

application is deployed” (BS03, 14:0522).

The functional support team worked closely with the software development team and

software testing team to deploy the software. The functional support team configured

the production environment according to the implementation plan. Software

developers packaged the software and also prepared the implementation plan. The

software testing team conducted smoke testing after the deployment testing just to

ensure that the software was still functioning as expected.

The software was deployed because business was dependent on it to sell products

and render necessary services to customers. The software also enabled them to

perform their daily duties. Many organisations rely on software to do business and

remain competitive. Therefore, the IT department was the solution to the business

request. The product owner of the software notified their staff about the new software

that would be available for use. As expected, some employees were delighted to use

the software and even to explore more about the usefulness of the software, while

others were not. One software tester asserted that:

“There is a product owner who actually updates the team on what

actually needs to be done” (BS10, 41:1617-1618).

Once the software was implemented, it was ready for use. The manager who

requested the software for his department had to wield the power bestowed on him to

 140

encourage staff to use the new software as staff needed to accept that the software

was meant to simplify their daily activities as well as render efficient services to the

customers. The staff also needed to understand that the organisation expended

valuable time and money in developing the software to ensure the organisation was

efficient in selling products and rendering services to customers. The Bokamoso

Solutions client was revenue driven; therefore, the organisation had managers who

were willing to engage their staff, especially when there were issues.

5.11.1.5 Innovation decision process: confirmation

At this stage, it is important to acknowledge the benefits of using the innovation (the

new software), integrating the software into the company’s ongoing routine and

promoting it to others within the department. This provided the department with the

opportunity to function more effectively. Business end users were able to perform

their daily duties using the new software as well as render the service to customers.

One participant highlighted that:

“We wanted to make sure that the end product was usable and was

user friendly as our customers was our users of the software” (BS07,

31:1220-1221).

The business was able to revert to IT and confirm the outcome of the deployed

software. Even when things were not working properly in production, business could

still come back and report problems to the IT department. The IT department was

available to ensure that business continued at all times. At the confirmation stage, the

business finalised its decision regarding the software that was implemented,

confirming how well the software was being used by business end users. In chapter

six, the next chapter, the findings from the data analysis are presented. Also, covered

in the chapter is the discussion of the interpretations.

 141

CHAPTER SIX

FINDINGS AND INTEPRETATION

6.1 Introduction

This chapter presents the findings of three case studies: namely Mootledi Logistics,

Mmuso Technologies and Bokamoso Solutions. Moreover, it presents the

interpretation of the study. The objective of the study was to create the decision

support system framework for testing and evaluation software in organisations. Based

on the analysis and findings from the three case studies, interpretation was carried

out from which a framework (Figure 6.4) was developed. The framework is aimed at

gaining a better understanding and thereby addressing the challenges which occur

during software testing and evaluation within organisations. The analysis was done

using the moments of translation, the lens of actor network theory (ANT). Additionally,

the innovation decision process of diffusion of innovation (DOI) was also used to

analyse the data.

The remainder of this chapter is structured into six main sections. The first section

covers the introduction. The second, third and fourth sections incorporate the findings

and the discussions surrounding the three specific case studies. The fifth section

presents the interpretation of the findings and discusses the framework for testing and

evaluating software within organisations. The final section summarises the chapter.

6.2 Findings and discussions: mootledi logistics

Based on the analysis of the empirical data from case 1, Mootledi Logistics, five factors

were found to have a critical influence on the software testing and evaluation within

the organisation: (1) lack of testing framework; (2) lack of management buy-in; (3)

network of employees; (4) quality of software; and (5) lack of standards and

procedures. Figure 6.1 depicts these factors and their relation to each other. These

factors are discussed below:

 142

Network of Employees

Management

Business Analyst

Software Developer

Business End-User

Quality Software

Framework

Standards, Procedures

Figure 6.1: Factors influencing software testing and evaluation

6.2.1 Lack of testing framework

A framework can be regarded as a helpful structural tool that is often used to guide

scope, boundaries and procedural activities. At Mootledi, however, there was no

framework adopted and used for testing and evaluation of software. As a result,

software was tested by different employees, such as a software developer, business

analyst or end user, at various stages of testing. This was as a result of two factors:

(1) individuals were selected to carry out testing based on favouritism, who the

managers were more comfortable with, rather than on merit; and (2) employees were

selected or rotated based on their availability.

Some of the implications arising from lack of testing framework were as follows: (1)

there was no handover from one employee to another for smooth continuance of the

process until completion; (2) there were inconsistencies in how testing was

conducted, which detrimentally impacted the quality of some software in the

organisation; (3) software testing and evaluation sometimes took longer to complete

because employees might have been testing the same scenarios over and over

without realising that these were tested before; (5) defects in software were hardly

traced or tracked; and finally, (5) some crucial scenarios were missed as a result of

poor structure, improper processes and many employees testing the same software.

 143

6.2.2 Lack of management buy-in

Even though software was heavily relied upon at Mootledi Logistics for business

processes and services, management buy-in was a challenge. There was no

investment made in the testing and evaluation of software from the management

perspective. For example, instead of purchasing proprietary software, they resorted to

adopting open source software. This type of software does not require licensing for

use and can be accessed for free. While the software development team trained

themselves on how to use those tools, this sometimes had a negative impact on

software testing timelines. The time spent, learning how to use the tools could have

been utilised for actual software testing and evaluating activities.

Also, the organisation did not have a dedicated software testing team to perform

testing and evaluation activities of software that were developed within the

organisation. Software testing is a specialised field and requires a dedicated team.

Software testers have to be trained and equipped with the necessary skills for testing

various types of software at any given time. The lack of management buy-in and

weak commitment did not entice many of the employees to commit to the concept of

testing either. This frequently impacted the quality of software that was developed

and managed in the organisation.

6.2.3 Network of employees

As in many environments, networks were consciously and sometimes unconsciously

formed within Mootledi Logistics. During testing and evaluation of software, many of

the employees worked along organisational structure, an indication of consciousness.

However, some of the employees, specifically software developers, were uneasy with

the formal approach, and rather preferred their individual approaches. Thus, some of

the employees unconsciously formed the network in carrying out testing and

evaluation of software in the environment.

Rather than follow the organisational structure, some employees identified

themselves through interaction during the testing and evaluation of software. As

result, some employees felt comfortable only working with certain other employees.

Therefore, after software development, software developers would hand over the

software to the business analyst or business end user with whom they felt

comfortable working to test and evaluate the software.

That became the normative practice by some employees to determine who would test

which software. However, the implication of performing testing and evaluation of

 144

software in that fashion compromised the quality of software. If the business analyst

or end-user was a friend to a software developer, they would be lenient in testing and

evaluating the software, thereby imploring favouritism. As a result, software was not

always properly or thoroughly tested. Those who were strict and thorough in testing

and evaluating software were often bypassed or avoided because they were capable

of detecting defects, which some software developers were uncomfortable with, in

that it exposed their inability to do a good work.

In addition to friendship, some employees were selected to carry out testing of

software based on availability. Such an approach enacted interaction and

relationships, through networks that were unconsciously formed. Based on this

network, some of the employees consciously and frequently made themselves

available and were often selected for this reason as opposed to skill-set and ability.

The impact of choosing employees on availability resulted in producing poor quality

software. And poorquality software not only reflects bad on the IT department but had

a negative impact on the business as a whole. When business is interrupted, this

impacts customers because they couldn’t reserve vehicles online, so revenue

dropped and the image of the organisation got tarnished.

6.2.4 Quality of software

While the organisations preached quality at all times, this did not necessarily and

often reflect on the software produced in the environment. Quality of software was

challenged in that there were no real or formal criteria or requirements that could be

used to guide the testing. The lack of framework and weak commitment from the

management negatively affected the quality of software. Employees needed to be

guided by some kind of framework to deliver quality software. Without such a

framework, employees wouldn’t be aware of what to cover when testing and

evaluating software. The management support regarding software testing and

evaluation was critical in the delivery of quality software. Management needed to

invest money in software testing by establishing a dedicated software testing team,

training software testers and purchasing proper software testing tools. The dedicated

software testing team would have assisted the software development team in

delivering quality software. Therefore, lack of commitment from management

impacted the software quality.

Poor quality software stirred dissatisfaction from the customers. Customers couldn’t

receive the products and services rendered to them, services including booking of

vehicles online. As a result, end users as well as customers couldn’t perform their

 145

duties because of dysfunctional software. While organisations believe in keeping their

customers happy at all times, with poor quality software, it is impossible to achieve

that.

6.2.5 Lack of standards and procedures

Standards and procedures set the criteria that can be used in the selection of

software testing methods. There were various types of software testing methods that

can be followed in conducting software testing and evaluation, including black box,

white box and grey box testing. Black box testing is conducted purely based on the

requirement specification knowledge. White box testing is conducted when the

software tester has exceptional knowledge about the software as opposed to its

functionality. Software testers are provided access to the code because they have the

skills to perform testing from the code. Grey box testing, is conducted when the

software tester has the limited knowledge of the software.

Standards and procedures also assist in selecting software testing tools and how to

utilise those tools. It is a wasteful expenditure to purchase software testing tools and

not know how to use them. Therefore, it is the responsibility of the management team

to ensure that employees are trained and equipped with software testing skills as well

as knowledge for using those tools. Software testing tools are expensive but when

the organisation has those tools, they can save excessive time and money in the long

run. These tools enable employees to create test requirements, test cases, execute

test cases, and log defects. Reports for execution status can also be prepared from

these tools.

Defects detected need to be fixed and retested, particularly as the fixing of defects

may affect the functionality that was working previously. Therefore, after retesting the

repaired defect, it is critical to perform regression testing to ensure that what has

been fixed did not affect the functionality that was previously acceptable. The

automation scripts prepared through automation testing tools could come handy in

performing regression testing.

6.3 Findings and discussions: mmuso technologies

Based on the analysis of the empirical data from case 2, Mmuso Technologies, six

factors were found to be critical to building a decision support system for testing and

evaluating software in an organisation. As shown in Figure 6.2, the factors include

software evaluation, process oriented, implementation policy, change management,

 146

power relationship and organisational structure. These factors are presented in Figure

6.2 below:

Organisational

Structure

Implementation

Policy
Software EvaluationProcess Oriented

Power

Relationship
Change Management

Requirements

Method

Interaction

Decision

R
e
la

ti
o

n
s
h

ip

Tool

Figure 6.2: Factors influencing software testing and evaluation

6.3.1 Software evaluation

At Mmuso Technologies, software was evaluated from various perspectives such as

sustainability, maintainability, usability and functionality. The focus on software

sustainability was to evaluate whether the software can continue to be available for

future purposes, such as its compatibility with newer platforms and changing

business and technical requirements. The emphasis was on continuity mainly

because some software gets discontinued after a short period of time. As a

consequence, it become a loss to the organisation from a return on investment (ROI)

viewpoint. Also, the software was tested for maintainability in order to ensure the

ease in which the software can be enhanced for additional requirements,

enhancement to correct faults detected, and adaptability to change of environments

to improve performance. Organisations want to have flexible software that could be

modified as change happens within the organisation.

Therefore, all software, new or with enhancements, needs to be thoroughly tested

and evaluated to ensure it fulfils the requirements. This is an action that requires

decisions at various levels, including business (product owners), management

(product sponsor) and IT (technical experts). At Mmuso Technologies, a committee

was responsible for accepting requests to develop or modify software for government

 147

departments. Once the development or modifications were completed, the software

testing team had to thoroughly test and evaluate the software, employing various

testing methods and tools to perform the testing. Through those methods and tools,

test results were produced to report on the software testing status. Other teams, such

as the change and release management team, relied on those test results to make

informed decisions regarding implementation of the software.

These test results included the test cycles performed during testing, the total number

of test cases executed, and the total number of defects detected and resolved.

Moreover, the test results included recommendations from the software testing team

about the software tested and evaluated. That information assisted the change

management team to make appropriate decisions as the test result determined

whether or not the software was ready for deployment. The change management

adopted implementation policy to deploy the software. However, there were situations

where the change management was bypassed, which could have been associated to

power relationships that existed. This often caused software failure, which resulted in

immediate damage control that the organisation was always not prepared to carry

out.

Once the software has been deployed, the management used their power to

encourage end users to use the software.. It was not obvious that when the software

was deployed within the organisation, end users would automatically adopt it. Hence,

the management had to use the power inherent in their positions to diffuse the new

software or the enhancement to the government department that requested the

software. It was critical that the software function as expected as the potential of

dysfunctional software provided a reason for end users to reject the software. The

process of testing and evaluating software was quite intense.

6.3.2 Process oriented

As empirically revealed, software testing is process-oriented in that it follows a set of

steps, instructions, guidelines and policies to complete, with the intention of producing

quality software. Without such intensive and rigorous processes, quality would be

difficult to achieve. The testing of software at Mmuso Technologies was not always

automated; manual processes were also involved. Software testers had to execute a

set of test cases manually to ensure that the software functioned as expected.

Manual testing was a tedious process, repetitive and requiring full concentration of

the tester. One of the challenges was that, at times, software testers were not

allocated enough time to properly carry out their tasks. This resulted in software

 148

testers working long hours, occasionally causing fatigue, which then detrimentally

affected the quality of their testing – a poor cycle. Therefore, some test cases might

mistakenly pass or fail. However, software testing automation is required to fast track

the testing process by using the necessary tools. Currently, Mmuso Technologies

make use of manual tools to capture test requirements, test cases and defects (IBM

Rational Tools) as well as the performance testing tool (JMeter). These tools and

processes require a decision support system that can seamlessly enable and support

it.

The process includes the following: defects detected during the testing and evaluation

of software which were logged and needed to be fixed by software developers.

However, at times these defects erupted conflicts between the software developer

and software tester who logged the defect. Such conflicts manifest from the relation

that they have, a relationship of power. For example, the software developer would

inform the software tester that the defect logged was not a defect. These conflicts

tarnished the relationship between the two parties, who saw themselves as networks

with the implication being that the quality of software was worsened.

Software testers needed to be analytical, innovative and able to communicate

appropriately. Analytical skills enabled them to understand both the business

requirements specification and the other group (network) of people that contribute to

complete the tasks of software so that it can be implemented and used (diffused). The

technical experts (software testers and developers) need to be more innovative to

improve on the issues and factors that were not explicitly stated on the business

requirement specification. This can be achieved through a decision support system

that can validate various steps and required actions.

Communication also played a vital role because software testers needed to be able

communicate well with software developers in terms of building a relationship which

can bridge an understanding of defects. Failure in understanding the business

requirements meant that software testers would have neglected other scenarios

unintentionally and the software would only be partially tested, potentially hindering

the quality of the product. Software testers also needed to understand the

environment in which the software was deployed. Software fails not only due to

functional requirements but can fail due to non-functional requirements.

 149

6.3.3 Implementation policy

Software testing and evaluation are intensive types of processes, which many

employees in the organisation struggled to comprehend and abide by. Thus, an

implementation policy is required, which was not in existence at Mmuso Technologies

as revealed from the empirical evidence. Many of the employees recognise the

significance of such policy. The management buy-in was necessary to enforce the

necessary measures in implementing policy for software testing and evaluation. The

software should be tested and evaluated through this intensive process for quality

purposes. Necessary software testing processes must be followed as bypassing

these processes affected the quality of the software.

It was necessary for the management to offer their support in terms of enforcing

software testing processes between the project stakeholders. The software testing

team has to abide by processes when testing software. Both the management and

technical teams have to ensure the implementation policies are followed in the

processes of development, testing and evaluation of software in the organisation.

This can be done through governance, forming part of a system for decision support

of the entire software production cycle.

This approach can enable requirements to be fulfilled, and as well prevent software

from being deployed without the knowledge of testing and evaluation criteria and

processes, which impact how change is currently managed in the organisation. For

example, there were instances whereby software testing was bypassed, and yet the

software still found its way to production. As a result, the software failed and the

same team that was earlier bypassed was then requested to assist with the testing of

that software. The rationale for not observing the implementation policies leads to bad

quality software being implemented in production.

6.3.4 Change management

Change management can be linked back to the implementation policy. Any new

software or enhancements to existing software were managed through the change

management process. This was to ensure that the software functions as expected

and meets the business requirements. Proper governance needed to be enforced by

the change management team to ensure that only quality software was deployed to

production within the organisation. Change management rely on the test results that

are provided by the software testing team to make informed decision about

implementing the software.

 150

The change management can be manual or automated, but through a system that

supports the entire process of software testing and evaluation. The change

management includes completion and signed off documentation such as

specification, change and closure reports. Other signed off documents, such as test

plan and closure reports, serve as the entry criteria to the change management team

stating the outcome of software testing. As a result, decisions are influenced and

guided by the test results. Thereafter, the implementation policy can be adopted (or

diffused) to allow the enhancement or new software to be deployed to production.

This process assured the management that the software deployed can be of high

quality and would not have a negative impact on existing software within the

government department that requested for it. Bypassing the necessary processes can

lead to implementation of poor quality software in the organisation.

6.3.5 Power relationship

In the software development project, various stakeholders, including project

managers, business analysts, software developers, software testers and functional

support personnel were involved at Mmuso Technologies. In the process of

development, testing and evaluation of software the stakeholders interacted, through

which relationships were created both consciously and unconsciously. The conscious

relationships were often created through organisational structure. For example,

software developers physically communicate to resolve logged defects. Unconscious

relationships were guided by informal friendships and favouritisms (e.g. some

software testers communicated with those with whom they were comfortable rather

than what the structure of the organisation dictated in the deployment of software into

production).

However, relationships could be twofold, good or bad, and often used as source of

power. Good relationships are earned through respect, effective communication, and

delivering tasks assigned to project stakeholders on time. This kind of relationship

needs to be maintained as it motivates project stakeholders to perform their tasks to

the best of their ability. As a result, quality software could be delivered before or on

time. Good relationships also enable the project stakeholders to abide by software

testing processes and policies to deliver quality software. Process-oriented

implementation policy as well as change management played a vital role in managing

power relationships, in that organisation objectives took precedence over individual

preferences. When power relationships are managed well, it leads to conducive

communication within an environment which enacts improved productivity of software

delivery.

 151

The management of power relationships can be implemented through an automated

system that can support the entire testing and evaluation of software within an

organisation. Otherwise, power relationships can also lead to bullying within

workplace. As revealed from the analysis, some software developers bullied software

testers over the defects they detected in the software. For instance, the software

developer informing the software tester that they are unable to develop the software,

the only thing they knew was to test it, whereas the software developer can develop

and test. That resulted in a bad relationship that came about through disrespect and

undermining roles of other project stakeholders. Such a relationship rendered the

team dysfunctional and poor-quality software was produced. This impacted the

testing results negatively.

6.3.6 Organisational structure

The organisational structure is a hierarchical arrangement in terms of authority,

communications, rights and duties of employees in an organisation. Some of the

essentials of the organisational structure include the following, (1) power of each or

group of individuals is controlled through formal communication along various levels

in the organisation; (2) the activities of change management are governed within the

organisation’s aim and objectives; and (3) policies are implemented by using the

governance. These essential factors can be enabled and supported through a

decision support system to reduce complexity and conflict of interest.

The organisational structure therefore helps in many ways such as, to determine how

roles, power and responsibilities are assigned; how roles and responsibilities are

controlled and coordinated; and how information flows between the different levels of

management in the testing, evaluation and deployment of software. Every employee

within the organisation when employed was assigned roles and responsibilities,

functions they were expected to perform. Such roles and responsibilities come with

some sort of power, to manage subordinates and control activities during testing and

evaluation of software. For example, the test manager was responsible for creating a

test strategy, test plan and various reports. They also supervised software testers to

ensure that they were doing what they were tasked to do and to deliver on time. The

test manager was expected by superiors to report regularly on the testing status

whenever required. Therefore, the test manager had the power to assign tasks to

software testers at any given time and discipline them if they were not fulfilling those

tasks. Also, the responsibility of the test manager was higher than of a tester.

 152

When project stakeholders undermined processes due to power they hold,

organisational structure could be the solution to that problem. The management

needed to manage the situation so that the software could be tested and evaluated.

The management needed to outline and make project stakeholders aware of the

software testing processes and implementation policies, and then enforce them for

testing the software. Unruly behaviour by some project stakeholders also needed to

be minimised to ensure that such behaviour did not undermine and disrespect other

team members. The organisational structure needed to align processes, policies,

changes and power to ensure that the testing of software is performed accordingly.

The project stakeholders needed to understand the effect that software testing could

have when not performed. Defects would be detected in production by end users. As

a result, IT department would appear as people who did not know what they were

doing. As a ripple effect, management would be blamed for failing to do their work.

Therefore, the organisational structure helped align processes in order for the project

stakeholders to function properly.

6.4 Findings and discussions: bokamoso solutions

Based on the analysis of the empirical data from case 3, Bokamoso Solutions, six

factors were found to influence testing and evaluation of software in an organisation

as depicted in Figure 6.3. This includes, heterogeneity of testers, outsourcing,

documentation, queuing system, standardisation and procedural. The factors are

discussed below:

 153

ProceduralStandardisation

Queuing System

Documentation

Outsourcing

Heteroginity of Testers

Governance

Process

People & Skill

Tools

M
a
n

a
g

e
m

e
n
t

Figure 6.3: Factors influencing software testing and evaluation

6.4.1 Heterogeneity of software testers

Heterogeneity signifies diversity. In software testing and evaluation, software testers

form part of the software testing team, a network. Software testers also form part of

the software development team which is organised to develop, test and evaluate a

particular software. As a result, teams can be part of other teams which make

software testers and software testing teams heterogeneous. At Bokamoso Solutions,

software testers belonged to the software testing team and project software

development team. Multiple projects were tested and evaluated. As a result, software

testers were involved in the software projects to which they were assigned. If

assistance was needed in other software projects, software testers simultaneously

worked on the software projects assigned to them as well as other software projects

that required assistance.

At Bokamoso Solutions, there were also instances whereby some software projects

were put on hold and software testers were temporarily reassigned to other software

projects to assist with software testing and evaluation. Once the software project

resumed, the software testers went back to work on their initial software project as

well as the other software projects they were moved to. As a result, of this shifting, of

software testers became heterogeneous. The value of heterogeneous software

testers was that they were able to work in multiple software projects to produce

quality software. Software testers were able to multi-task in multiple software projects

 154

and perform various software testing activities to meet project timelines. Software

testers who were involved in these software projects were both contractors and

permanent employees. With their software testing skills, they made use of various

documentations such as business requirements and technical requirement

specifications to understand other software projects. Software testers needed to have

the knowledge and understanding of the software that needed testing and evaluation.

6.4.2 Outsourcing

Outsourcing is the use of software testers from service providers who render software

testing services to the organisation for a contracted period of time. Organisations

outsource major functions to specialised and efficient service providers who ultimately

become valued business partners. Bokamoso Solutions is one of those organisations

that provides other companies with resources, specialising in various fields such as

business analysis, software development and software testing. However, these

resources needed to be highly skilled and knowledgeable in software testing and in

making use of the software testing tools. Organisations that outsource software

testing want resources immediately ready to perform software testing, not those who

only wanted to start learning how to test or use software testing tools. They expect

productivity from the outsourced resources from day one at work.

It was imperative for the organisation that was outsourcing software testing to have

standards and procedures for conducting software testing. Those standards and

procedures had to be there to guide outsourced resources in producing quality

software. It was the management responsibility at Bokamoso Solutions to enforce

those standards, as these standards had to be adopted irrespective of whether the

software testers were internal or external. External resources were employed for a

period of time to conduct software testing and evaluation, so it was important to

manage them well in order to receive quality work. If standards and procedures were

bypassed during software testing, the organisation would suffer because the quality

of work received would not be acceptable. As a result, they would have lost their

investment in software testing.

It would then be up to the internal resources to fix what had gone awry resulting in

loss on the organisational side because they would have to pay their internal

resources. Internal resources would then have to deal with the mess left behind by

external resources. At the end of the day, the organisation would have lost money

spent on software testing that was improperly conducted. So it was imperative for the

management to ensure that the work of external resources was governed and verified

 155

at all times to ensure that testing was performed according to organisational

standards and procedures.

6.4.3 Documentation

Organisations document strategies, policies, standards and procedures so that they

could be shared. Any new employee could access any of those documents to learn

how the organisation functions. Even in software testing, the same principle applies.

Organisations compile documents such as test strategies and test policies at the

organisational level. The test strategy outlines the testing approach and informs the

project stakeholders about some key issues surrounding the testing process. The test

policies provide the direction which the testing team should adhere to. Every

organisation operates differently, each having a unique way of doing things.

Bokamoso Solutions had to adhere to their partner’s test strategies and policies for

performing software testing and evaluation.

Documentation in software testing plays a vital role in testing because software

testers rely on it to plan and execute their software testing activities. The

documentation needed from the beginning to the end of software specified the

requirements. Out of the requirements, the test plan was compiled by the software

testing to outline the scope of testing. Also, testing activities such as test

requirements and test cases were extracted from the requirement specification. The

test cases covered scenarios that needed to be tested and evaluated.

During and at the completion of software testing, reports were produced to retain the

testing status. Test managers produced these reports for reporting purposes to the

senior software test manager. The test results from these reports were also used for

software evaluation prior to its deployment. Every process and activity that happens

in software testing needs to be documented because software is not only tested

once. Whenever enhancements were made to the existing software, it needed to be

retested. Therefore, some of the documented information, if not all, could be re-used

to re-test the software. Updates to that information would be retained to be re-used.

As software testing is a repetitive process, whenever software is enhanced or

upgraded it needed to be re-tested. This information equipped the software testing

team with the awareness of what needed to be done and how to do it. It also assisted

with upskilling and knowledge transfer between software testers.

 156

6.4.4 Queuing system

As stated earlier, a list of software projects that needed to be tested was issued to the

senior test manager. As such, a queuing system was required to prioritise the projects

within the organisation. When projects were not in a queue, the organisation was

running a risk of not fairly assigning projects for testing, imposing a challenge of

suspending projects in the middle of testing at Bokamoso Solutions’ partner.

Consequently, it was necessary for the organisation to introduce a queuing system

that would serve to prioritise its projects. Fairness in queuing projects was not to be

underestimated and it would assist in properly prioritising projects requiring testing.

This system eliminates situations whereby projects are prioritised through favouritism.

If the product owner or end user was not liked by the senior test manager their

projects were shifted last or not even tested at all. The queuing system was needed

to allocate projects fairly.

6.4.5 Standardisation

Every software that was developed or enhanced needed to be tested and evaluated

following a particular standard agreed upon within the organisation. The organisation

that Bokamoso Solutions was providing testing services for had their own testing. As

a result, Bokamoso Solutions had to adhere to those standards in delivering quality

software. Standards were twofold: internal and external. Internal standards were

agreed upon within the organisation, implemented using templates. For example, the

test manager had to use templates to create a test plan, test closure reports and test

estimates. Deviations from standards were possible although not recommended and

require a thorough motivation that was reviewed and signed off by the custodians of

the standards within the organisation. Standards might include but are not limited to

naming conventions, test case design and coding standards for automation testing.

External standards could be international such International Organisation Standard

(ISO) and best practices in testing software. Some of the organisations for which

Bokamoso Solutions was conducting software testing and evaluation were audited

from time to time to ensure that the software complied with these international

standards. Many organisations around the globe develop and implement different

standards to improve the quality needs of their software.

By implementing these standards, the organisation was adopting the internationally-

recognised and agreed standards for software testing which provided the

organisation with a high-quality approach to testing that could be communicated

throughout the world. The rationale for testing the software according to the

 157

international standards enabled organisations to compete globally with their quality

software. Any organisation that was not compliant to international standards ran a risk

of losing their quality certificate and having their name removed from ISO.

Organisations that were compliant with international standards were still able to

compete internationally.

6.4.6 Procedural

The entire software testing was procedural, meaning that software testing activities

were procedural. For example, software cannot be tested if the business

requirements were non-existent because the developed software needed to be

verified against the business requirements. The test results could not exist if the

software was not tested. Therefore, sequence was vital in testing and evaluating

software. The business requirement specification was necessary for the test

processes and activities to be created (such as testing strategy, test plan, test design

and test execution).

To achieve proper software testing, the above-mentioned testing processes and

activities needed to be followed. When testing and evaluating software, Bokamoso

Solutions did its best to comply to the best practices as well as ISO standards for

producing quality software that could be used to compete globally, as some of its

customers were ISO registered. The standards and the best software testing

practices aided the organisations in eradicating the worst incidents that can occur

while software was in production.

6.5 Decision support system framework for testing and evaluating software

From the findings, seven factors were found to have a critical influence on the testing

and evaluation of software within an organisation: requirements, methodology,

filtering, repository, governance, assessment and institutionalisation. Figure 6.4

depicts these factors and how they relate to each other. Each of the factors consist

of phases (P1 . . .P+n) in the sequential order of the activities. Some of the activities

can be implemented in parallel. For example, policy, standard and principles within

governance can be carried out concurrently. To understand the framework, the

discussion should be read in conjunction with Figure 6.4. These factors are discussed

below:

 158

Assessment

Criteria (P1) Test (P2) Evaluation (P3)

Document (P4)

R
E

P
O

S
IT

O
R

Y

C
e
n

tr
a

lis
e

d
 (

1
)

D
e
p

o
s
it
 (

P
2
)

R
e
tr

ie
v
e

 (
2

)

Requirements

Business (P1) Translation (P2)

Technical (P3)

Methodology, Tools

Select (P1) Implement (P2)

Use (P3)

Governance

Policy (P1) Standard (P1)

Principles (P1)

Filtering

Capture (P1) Assign (P2)

Queue (P3) Allocate (P4)

Institutionalisation

Culture (P1) Norm (P1)

Figure 6.4: Decision support system framework for testing and evaluating software

6.5.1 Requirements

In software testing and evaluation, requirements could be either functional or non-

functional, coming from both business and technical units, of an organisation

respectively. The functional requirements basically describe what the software should

do. Some of the typical functional requirements include factors such as business

rules, authentication, external interfaces, reporting and administrative functions. The

non-functional requirements describe how the software should technically behave

within the environment. Non-functional requirements cover all the remaining

requirements not covered by the functional requirements. The non-functional

requirements specify the criteria used for the assessment of software in an

organisation. For example, the software should be able to coexist with other software

in the environment. Also, the non-functional requirements elaborate a performance

characteristic of the software. Some characteristics of non-functional requirements

include response times, throughput and utilisation of the software.

Manual software testers and automation testers extract the functional requirements

from the business requirements they receive from the business analysis team. These

functional requirements enable the creation of test requirements and test cases which

are then captured in the software testing tools adopted by the organisation. According

to Hooda and Chhillar (2015), a test case outlines the steps required to test any

 159

functionality of the software and contains expected and actual result. Test cases are

basically scenarios that have been identified from the requirement specification.

These test cases can be automated by automation testers to assist the manual

testers with regression testing. Therefore, organisations can purchase software

testing tools or utilise open source tools, depending on the investment the

organisation is willing to make in software testing.

Performance testers make use of non-functional requirements to test the performance

of the software, monitoring the software’s continuous load on the network. For

example, potential leaks can be detected in memory utilisation along with analysis of

performance degradation and how the software copes under strenuous use.

Performance testing is also performed through software testing tools adopted by the

organisation. Testing concurrent authentication, for example, means that a hall would

be filled with a number of users that need to log concurrently on the software tested.

As it would be too expensive to get, for example, 1000 users in the same room to log

in concurrently on the particular software at same time. Also, a database nowadays

lock inputs into the database for creating records per user. Therefore, it queues the

inputs and create individual records in the database.

Two good examples of software that failed in production because performance testing

was not conducted are school online registration in Gauteng and the Fly Safair

website. Functionally of the software was working as expected but failed when

concurrent users logged into this software. “The minister of education in Gauteng

Panyasa Lesufi said the software crashed after it received 600 hits per second. The

software was upgraded to receive 3 000 hits a second but that still failed and was

increased again to 20 000 hits a second” (Monama et al., 2016:n). “The Safair Airline

experienced high volumes of sales due to its R1 birthday reduced on flight tickets.

The company says it managed to sell at least 5,000 tickets so far and will extend the

deadline for the sale” (Koza, 2015:n). Performance testing is crucial because if not

performed, organisations experience a loss or fail to achieve objectives.

Both functional and non-functional requirements get stored in the software testing tool

used by the organisation. Some organisations that don’t have these tools, create test

cases on spread sheets and store them on a repository such as Microsoft share

point, hyper wave, intranet or a shared drive. This storage enables any other team

that might need that information to easily access or retrieve it.

 160

6.5.2 Methodology

Software testing methodologies are the different ways of ensuring that the software

under test is fully tested. Methodologies and tools are selected and implemented

based on organisational requirements. Software testing methodologies encompass

functional and non-functional testing to validate the software under test. The testing

methods include unit testing, integration testing, system testing and performance

testing. As software increases in complexity and enmeshed with the large number of

different platforms and devices that need to be tested, it is more important than ever

to have robust testing methodologies for making sure that software being developed

has been carefully tested. This is to make sure that the software meets its specified

requirements and can successfully operate in all anticipated environments with the

required usability and security.

The software testing methodology has a definite test objective, test strategy and

deliverables. Irrespective of which software development methodology (traditional or

agile) has been adopted within the organisation, the testing methodologies stated

above can be applied in the testing and evaluation of software depending on the

scope of the project. However, to successfully apply some of these methodologies

software testers require software testing tools. For example, performance testing is

performed to determine the performance of the software on the network in terms of

response, speed and stability under a particular workload.

Both human and non-human actors are dependent on each other to test and evaluate

software. This is to ensure that quality software is delivered to those who requested it.

Software testers, including manual, automation and performance, require software

testing tools to perform various types of software testing, as stated above. These

tools could be proprietary or open sources. According to Sharmila and Ramadevi

(2014), Load Runner is a tool that can be used in determining the performance and

outcome of the software under load. Software testing tools enable software testers to

successfully perform their duties.

6.5.3 Filtering

Filtering in software testing and evaluation is a process of removing unwanted

functionality or defects from the software, a process guided by requirements as

illustrated in the framework (Figure 6.4). The main activities of the process is as

follows: (1) capture the software into the systems; (2) thereafter the software is

assigned to a domain; (3) this is put in a queue; (4) and then it is allocated to

personnel for testing and evaluation. The fact is that human beings are prone to

 161

making mistakes. For example, the business analysts can incorrectly state the

business rule in the requirement specification or specify a requirement ambiguously.

If the mistake is not picked up by the software developer, the business rule will be

built into the code and the software wouldn’t behave as expected. When software

testers are testing the software, the incorrect business rule would be detected as a

defect because the software would not be functioning as expected. Therefore,

detecting such defects is filtering unwanted functionality from the software. Regarding

ambiguous requirements, the software tester would not be in a position to create

some test cases due to unclear requirements. As a result, clarity regarding those

requirements would be required from the business analyst. This, then, is a filtering

process in terms of requirements.

When compiling test plans, the test managers are able to identify risks from the

requirement specification. Also, during execution of test cases, risks could be

identified which might impact detrimentally on the quality of software. These risks

must be mitigated to produce quality software. Defects detected and logged during

the testing and evaluation of software form part of the filtering process and it is the

responsibility of the software testing team to filter all unwanted things from the

software under test in their efforts to deliver quality software.

6.5.4 Repository

A repository generally refers to a central place where information gets stored,

accessed and maintained. The repository is defined by the organisational

requirements. Activities of governance and assessment, including the methodology

and tools that are applied for testing and evaluation are stored in the repository,

primarily to enable and support the ease of access to the stock of organisational

knowledge, which fosters quality testing and evaluation of software. Additionally, a

repository enables control of organisational stock. Thus, those who wish to access

the information that is stored in the repository must apply for access to retrieve

whatever information they seek. All materials or information stored in the repository

must be secured at all times to protect organisational information against attack and

leakages.

In terms of software testing and evaluation, requirements which could either be

functional and non-functional must also be stored in the repository so that when the

project stakeholders are in need of this information, they can easily access it. In some

organisations, teams that are involved in software testing and evaluation are not

 162

situated at the same premises. Therefore, when information is stored in the

repository, it is easier for other project team members to access such information.

There are other documents prepared by the software testing team which include

statements of work, test plans and test closure reports which also must be stored in

the repository as auditors require these documents during auditing to validate how

the organisation has tested and evaluated their software. This information assists

them in compiling their audit reports for the organisation they are auditing. Also, the

information that resides in the software testing tools such as test cases, execution of

those test cases, and defects logged and fixed for the particular software assists

auditors in validating whether or not the software was tested and evaluated according

to software testing standards. All these audit findings aid the organisation in fixing

their mistakes and improving how they test and evaluate software.

6.5.5 Governance

Governance plays a pivotal role in the process of evaluating the quality of the

software. Governance includes policy, standards and principles which can be applied

in the process of software testing and evaluation concurrently. Governance involves

the definition of organisational test processes, test documentation and the derivation

to testing techniques. The software testing process affords the organisation with

governance on ways to implement the adopted testing policy, standards and

principles that aid the stakeholders to deliver quality software. Test governance

enforces compliance to the organisation’s testing process. Governance also ensures

that the testing processes are continually improved to ensure the constant,

uninterrupted delivery of quality software.

Key documentation such as the test policy and the organisational test strategy

requires management support as these documents form part of the organisational

test processes. According to IEEE 29119, testing processes can be broken into three

parts: organisational test processes, test management processes and dynamic test

processes. All three test processes have key documentation that goes along with

them for a successful testing organisation. The test policy, for example, defines the

overall principles that guide testing in the organisation. This document is the primary

testing document informing the entire testing organisation of why software testing is

performed. All other testing documentation and processes are based on the test

policy. It should include the test policy statement, policy principles and testing

standards, as it is the foundation provision of the testing processes (IEEE 29119).

 163

There are various standards available in the testing industry. The common one is the

IEEE 29119 which has a series of five standards. The purpose of the standards is to

provide generally acceptable methods of testing across the entire testing industry.

Organisations can choose to comply fully with these standards or opt for partial

compliance. The standards are not only limited to the international standards, the

organisation can still produce and implement internal testing standards that can best

fit the local context of their organisation.

The principles of software testing, regarded as the beliefs of the testing organisation,

remind the software testers within the organisation the reason why they test and how

they test in the first place. The principles form the foundation of the software testing

organisation and are clearly articulated in the testing policy. These generally

accepted testing principles are formulated by testing industry bodies like the

International Software Testing Qualifications Board (ISTQB). These principles form

part of the early training and development curriculum in software testing.

All these policies, standards and principles of software testing must be stored in the

repository for the software testers to access to remind themselves of the best

practices.

6.5.6 Assessment

Assessment promotes quality of software in an environment. Thus, many

organisations find value in benchmarking their progress to improve their processes

through assessment. Organisations that develop or enhance existing software have

test processes in place to test and evaluate their software. The software testing

processes begin with test planning, designing of test cases, preparing for execution

and evaluating status till the test closure. During the test planning, the scope and

risks, test approaches and testing objectives are identified, enabling the software

testing team to identify how much testing needs to happen and what possible risks

might be encountered.

The next stage is the analysis and design where software testers identify test

conditions, evaluate the testability of requirements and the test environment is set up.

During the test implementation, test cases are prioritised, and test data is created for

those test cases. Thereafter, the test cases are executed. Once the execution is

complete, the software testing team reports on the outcome of testing and the test

closure report is compiled. Organisations that test and evaluate software have their

own testing processes in place.

 164

Therefore, organisations must assess their software testing process to improve the

way in which they conduct software testing. It provides the opportunity for the

organisation to know itself and its competition better. As a result, the organisation can

strive to produce quality software that would enable it to out-compete its rivals.

Through requirements, organisations are able to identify testing objectives; they are

able to determine the scope of testing, determine which testing approaches to employ

and determine risks that might be incurred during testing. All these activities are

documented and stored in the repository for future reference.

6.5.7 Institutionalisation

Institutionalisation is a state of stability that is required in software to guarantee

quality. It is ways, such as continuous assessment and adherence to governance, in

which the software team performs their daily activities for testing and evaluation of

software. Iyamu (2011) defines institutionalisation as the process where practices are

assimilated into the norm: the ways in which project stakeholders perform their testing

and evaluation of software, finally becomes the organisational norm. Those norms

should match the internationally agreed set of standards for software testing

applicable within any organisation. By implementing these standards, the

organisation would be adopting the only internationally-recognised and agreed

standards for software testing, giving the organisation a high-quality approach to

testing software.

Such norms become the software testing culture that is adopted by software testers

within the organisation. The culture of software quality must be practised in all parts

of the organisation because quality is essential for success. Software teams involve

various stakeholders such as project managers, business analysts, software

developers, software testers, designers, product owners and executive. All these

stakeholders play a role in the quality of the final software. Because of this, they need

to align their work and practices with agreed international standards, best practices

and the test maturity levels in order to deliver quality software. Quality software

enables the organisation to compete locally and globally with other organisations.

Finally, institutionalisation and norms manifest into the organisation culture.

Organisational culture is a combined means of regulating the behaviour of employees

within organisation which diffuses all activities as catalysts for the development and

growth of the organisation (Gavric, Sormaz & Ilic, 2016). So if the foundation of this

organisational culture is hinged upon incorrect norms, then the organisation would not

 165

be in a position to produce quality software. Thus, organisations need to align

themselves with the best software testing practices, ISO testing processes as well as

testing maturity models. In so doing, the best organisational culture would be

practiced by employees. The organisational culture must be documented and stored

in the repository so that new employees joining the organisation can learn how quality

software is produced within the organisation. Moreover, existing employees can

remind themselves of certain practices they may have forgotten.

6.6 Summary

The findings for each case were explained separately and a diagram was created.

The diagram created relates to the explanation of the findings. Lastly those findings

were interpreted and the decision support system framework for testing and

evaluating software within organisations was created. This framework could be

adopted by either private, public or small medium enterprise for testing and

evaluating software. This is due to the three cases which were employed for this

study. The next chapter concludes the study, and proposes and recommendations.

 166

CHAPTER SEVEN

CONCLUSIONS AND RECOMMENDATIONS

7.1 Introduction

This final chapter of the thesis presents the recommendations made and the

conclusions drawn from the study. The research problem was driven by the need to

understand the challenges occurring during software testing and evaluation in

organisations. Literature was reviewed to escalate the understanding of the factors

and elements which relate to the objectives of the study. The literature was collected

from authentic academic databases. A qualitative research method, together with the

case studies, was adopted for this study. Various methods, techniques and

approaches were employed in the study to achieve the study objectives. Additional

detail on the research methodology was covered in Chapter 3.

The study was underpinned by actor network theory (ANT) and diffusion of innovation

(DOI). These two theories – actor network theory and diffusion of innovation – were

applied as lenses at macro and micro levels in the data analysis. ANT was used at

macro level to gain understanding of testing methods, selection of tools and factors

influencing the testing and evaluation of software in organisations. DOI was used at

the micro level, to diffuse the innovation. Three organisations were selected as case

studies to investigate more thoroughly how software was tested and evaluated in

different organisations. The cases consisted of a private business, a public business

and a small and medium enterprise (SME).

Interviews were conducted separately, while documents were collected from the three

organisations in the study. The purpose of conducting the interviews and collecting

documents was to understand with more precision how software projects are tested

and evaluated in the organisations. The interviews were conducted with various

employees involved in the testing and evaluation of software projects in the

organisations. The interviews were recorded, transcribed, and responses analysed

with the moments of translation from the perspective of the actor network theory as

well as the innovation decision process from diffusion of innovation theory. The

findings from the analysis of the three case studies were interpreted separately and

then based on the analyses and interpretations, a guiding framework was developed.

The objective of the framework was for proposing a decision support system to be

used in understanding and addressing the challenges which occur during software

 167

testing and evaluation in organisations. This included understanding how software

testing tools were selected, methods involved in software testing and the factors

influencing the testing and evaluating of software in organisations. The framework will

guide the organisations in addressing the challenges which occur during software

testing and evaluation because these challenges, if left unattended, have the

potential to hamper software projects.

7.2 Summary of the study

The study is divided into seven chapters. The outline of the thesis is presented briefly

in Chapter 1. The subsequent chapters are summarised as follows:

CHAPTER 1: Introduction

This chapter introduces the research topic as documented in the study while

simultaneously provides the introduction to the full study: the research problem,

research objectives and research questions. While previous studies have been

conducted around software testing and evaluation, there is no single study that has

yet developed a decision support system framework for addressing challenges

encountered during testing and evaluation of software in organisations. The use of

three organisations as case studies makes the case for generalisation (Lokke &

Sorensen, 2014). The framework is intended to guide organisations in making

informed decisions about testing the software as well as eradicating challenges that

are encountered during software testing. Software testing is the most essential part of

the software development life cycle. Failure in recognising this, can likely result in

organisations implementing poor quality software.

This chapter also covers the literature review relating to the study, research

methodologies which were applied and the two underpinning theories that were

applied in the data analysis for assessing the findings and drawing conclusions. Thus,

the chapter provides an overview of the entire study, specifically concerning the

organisational structure of the thesis.

CHAPTER 2: Literature study

This chapter presents the discussion on literature related to the testing and evaluation

of software within organisations. The literature review covers six main parts of the

study, including software development, software testing, software testing methods,

software testing tools, decision support system and the theoretical underpinnings of

the study. The two theories underpinning the study, actor network theory (ANT) and

diffusion of innovation (DOI), were also discussed. The moments of translation, also

 168

known as the lens of ANT, was applied. Thereafter, the innovation decision process

was applied to diffuse the innovation.

CHAPTER 3: Research methodology

The research methodologies used in the study were discussed in this chapter. The

research methodologies include approaches, methods and techniques that were

applied in the study. The researcher applied a qualitative research method. The case

study and various data collection techniques such as interviews and documentation

were also employed. The case study research approach was employed in the study

and interviews conducted from which to collect data from all three case studies (a

private business, a public business, and an SME). The intention was to understand

how these three organisations conduct software testing and evaluation with the intent

of developing a decision support system framework for testing and evaluation of

software in an organisation.

Semi-structured interview techniques were used to collect data, a technique enabling

the researcher to record conversations, take notes and refine the research questions

during the interviews process, in order to clarify things that were unclear during the

interviewing process. Interviewees were assured that their anonymity would be

respected and their right to privacy upheld. Also, organisational documents such as

organisational structure, standards and policies about the organisation were gathered

in addition to the information received from respondents. The interpretivism approach

was employed in this study to explore participants’ subjective views of their own

experiences in their own environments regarding software testing and evaluation.

CHAPTER 4: Case study overview

The overviews of the three cases selected for this study are presented in this chapter.

This includes the goals, strategy and vision of the individual organisation, the unique

organisational structures, and the roles and responsibilities of the departments within

the organisations. The three case study interviews were conducted using the same

strategy, but the organisations were treated differently since they operate in different

businesses (private, public and small medium enterprise). The businesses chosen as

case studies are not in competition with each other and have entirely different cultural

settings, one being in the automobile and logistics sector and others from the

information technology (IT) sector.

CHAPTER 5: Data analysis and findings

 169

The analysis and findings from the three case studies are presented in this chapter.

The analysis were carried out using moments of translation from the perspective of

the actor network theory and the innovation diffusion process from the perspective of

diffusion of innovation, the two theories extensively discussed in Chapter 2. The

stages of the moments of translation were used to analyse the data. Also, the

innovation decision process stages were used to analyse data. Actor network theory

was used to establish the relationships and examine the interaction between actors

(human and non-human) as well networks involved in the testing and evaluation of

software.

Diffusion of innovation was used to examine how tools and methods were diffused

towards testing and evaluation of software in the organisation. This includes the

knowledge that was gained for making decisions that persuaded other actors who

participated or did not participate in the process of software testing and evaluation.

The analysis of the three cases were done separately, but in the same format with

insights from the analysis presented in this chapter.

CHAPTER 6: Findings and interpretation

The findings and interpretations of this study are presented in this chapter, with the

findings for each case explained separately. Based on the findings and interpretation,

the decision support system framework for testing and evaluating software was

developed. The framework is aimed at addressing the challenges which occur during

software testing and evaluation in organisations.

CHAPTER 7: Conclusion and recommendations

This is the last chapter of the thesis and it summarises all the chapters. The chapter

provides the evaluation of the study. The theoretical contributions of the study are

presented and the recommendations and suggestions for further research are also

covered in this chapter.

7.3 Evaluation of the study

The conclusions have been drawn from the analysis of the data, findings from the

analysis and interpretation of the findings. The findings became the results from the

answers to the research questions. The research objectives of the study as stated

and repeated in Chapters 1 and 3, respectively, include the following:

i. examine and understand the tools (for manual, automation and performance

testing) used for software testing;

 170

ii. explore and understand methods (approaches adopted for testing such as white

or black box testing) involved in testing the software;

iii. examine the factors (factors triggering testing to be conducted) that could

influence the testing and evaluating of software in organisations; and

iv. Create a decision support system framework based on the findings from the

objectives as stated above. The aim of this decision support system framework

is to address the challenges which occur during software testing and evaluation

in organisations.

To achieve the above-mentioned research objectives, four main questions were

formulated. Each of the questions had sub-questions during the data collection. The

main questions include the following:

i. What are the tools used in testing software?

ii. What are the methods involved in the testing of the software?

iii. What are the factors influencing the testing and evaluating of software in

organisations?

iv. How can a decision support system framework be developed and used in

addressing the challenges which occur during software testing and evaluation in

organisations?

In evaluating the study, the research questions, which follow, are discussed to

ascertain how the objectives of the study were fulfilled:

i. What are the tools that are used in testing software?

Software testing can be performed manually or with software testing tools, tools which

are either free, open source or proprietary software. Open source tools are often

provided freely by those who developed them, freely downloaded from the Internet.

Proprietary tools, on the other hand, are commercialised, which means that they

require licensing right per use. The tools can be cost prohibitive, making affordability

difficult for some organisations, from a purchase viewpoint. As a result, some

organisations opt to using a Microsoft spread sheet to capture test requirements, test

cases and defects logged. Other organisations, though, can afford to invest larger

amounts of money in software testing. This investment is used to set up independent

software testing teams and purchase software testing tools that enable them to more

readily perform various types of testing.

However, there is no single software testing tool that allows an organisation to

perform multiple testing activities such as manual, automation and performance

testing. As a result of tool limitations, the organisation fails to achieve its objectives in

 171

conducting end-to-end testing. Software testing needs to cover all requirements, both

functional and non-functional. Therefore, the software testing team cannot claim to

have produced quality software if they have only covered functional requirements or

non-functional requirements as opposed to both. Consequently, organisations need

to acquire these tools to cover the entire spectrum of software testing. For

organisations it is costly, but for the companies producing these tools, it is profitable.

The main reason for separating these tools is for the suppliers to make profits.

Having explored all three cases, one organisation opted purely for open source tools.

However, they couldn’t use Selenium effectively to perform automation testing

because they relied on self-training. There wasn’t enough time, therefore, for them to

learn because they were also involved in the development, testing and evaluation of

software. As there was no independent software testing team, there was lack of skill

regarding software testing in this organisation. As a result, poor quality software was

produced.

The second organisation purchased IBM rationale tools which enabled them to

capture test requirements, test cases and log defects. Due to low budget, however,

they adopted JMeter (open source) for performance testing. At least they had an

independent software testing team, a manual testing tool and a performance testing

tool. They had the advantage of producing quality software because they were able to

cover both functional and non-functional testing. The only disadvantage was that they

did not have an automation tool to accelerate the testing and evaluation of software.

Therefore, they required too many testers to perform manual and functional testing.

The third organisation was using HP Quality Center (manual), Unified Functional

Testing (automation) and LoadRunner (performance), proprietary tools produced by

Harlwet Parkard but sold separately. However, these tools can integrate to each

other. For example, test cases in Quality Center can be executed manually and also

through automation scripts created through Unified Functional Testing tool. These

automation scripts can be linked to manual test cases and be run automatically within

Quality Center. As a result, the third organisation had the advantage of producing

quality software. However, it is possible to deliver poor quality software even if the

organisation relies on these testing tools. Software testing is procedural; therefore, it

is imperative for the software testing team to follow software testing standards and

procedures. Bypassing them would negatively impact software quality.

ii. What are the methods involved in the testing of the software?

 172

Software testing methods are the approaches that can be adopted by the software

testers to test and evaluate software within the organisation. Thus, software testers

are trained and equipped with necessary testing knowledge to assist with testing the

software. These testing methods include black box, white box and grey box testing

which have been discussed extensively in Chapter 2. Experienced software testers

know which testing method to follow and when. For example, black box testing is

performed when the software tester does not know the internal workings of the

software. Those who know the internal workings of the software and have

programming knowledge perform white box testing. Software testers with limited

knowledge of the software conduct grey box testing.

Not anyone is qualified to be a software tester. Software testing is a career field just

like software development, project management and business analysis. There are

international software testing standards approved by ISO which need to be adopted

to produce quality software. Software testing is process-oriented; therefore, software

testers must follow testing processes and frameworks to deliver quality software. It is

an intense process which requires software testers to carefully follow a set of steps,

instructions, guidelines and policies to produce quality software. The lack of

framework, lack of standards and lack of procedures within the organisation serve to

compromise software quality. It is like picking up someone from the street who

doesn’t have a clue about software testing and simply instructing them to test the

software.

iii. What factors influence the testing and evaluating of software in

organisations?

Software is a product and therefore like every product released to the public or within

the organisation, it needs to undergo testing. The software testing team needs to

verify and validate whether the software behaves as expected. They need to test and

evaluate both functional and non-functional requirements of the software. Performing

functional testing enables software testers to detect defects which could be fixed

while the software is still undergoing testing. Detecting defects in production is risky

because it hinders business, it taint the image of the organisation and impacts

customer reaction negatively. Quality software that sustains and enables the

organisation to be competitive must be delivered to business. However, even if the

software works as expected, this does not necessarily mean it will automatically

function without testing the non-functional requirements. Performance testing is

performed to determine the response and stability of the software under countless

workloads, measuring the quality attributes of the software such as scalability,

 173

reliability and resource usage. The Department of Education in Gauteng and the

Safair Airlines previously encountered performance challenges whereby their

software couldn’t handle the load of users accessing their software. Therefore, it is

vital for business to cover all the requirements when testing the software.

iv. How can a decision support system framework be developed and used to

address the challenges occurring during software testing and evaluation in

organisations?

Analysis and interpretation of the data indicate that if challenges that occurs during

software testing and evaluation are not addressed, they will continue to impact the

quality of software negatively. The consequences of not addressing these challenges

will result in the software project not being implemented or, perhaps even more

deleteriously, being implemented with defects. As a result, the organisation’s

challenges will negatively impact business and customers.

Using the lens of ANT and innovation decision process of DOI in the analysis, certain

factors were found to clearly influence the testing and evaluation of software. Based

on the interpretation of these factors, a framework was developed. The decision

support system framework for testing and evaluating software was designed to assist

in addressing the challenges occurring during the testing and evaluation of software

in the organisation.

How the objectives of the study were achieved:

i. Examine and understand the tools (for manual, automation and performance

testing) used for software testing

There was an evident lack of management buy-in within the organisation. It was

evident that management was not willing to invest money in software testing. Firstly

there was no independent software testing team to test and evaluate software in

order to produce quality of software within the organisation. Employees who

specialised in other fields such as business analysis and software development were

tasked to do the software testing. As software testing is a specialised skill, the

organisation needed to utilise trained software testers to perform software testing.

Secondly, free open source software testing tools were adopted: instead of

purchasing proprietary tools, the organisation settled for free open source software

testing tools. Employees researched these tools, trained themselves on these tools

and adopted those tools. However, they couldn’t fully utilise the tools but used the

tools only to perform automation testing. As a result, proper quality software couldn’t

be achieved. Hence, this research objective was achieved.

 174

ii. Explore and understand methods (approaches adopted for testing such as

white or black box testing) involved in testing the software

The following factors indicated that quality was not taken seriously: process-oriented,

lack of framework, lack of standards and procedures, software evaluation. Software

testing is process-oriented. It is an intense process which requires software testers to

follow a particular set of steps, instructions, guidelines and policies to produce quality

software. Therefore, if the organisation does not have a dedicated software testing

team trained to perform software testing, they wouldn’t know how to test, what to test

and when to test what. Because software testing is procedural, software testers follow

a particular sequence to execute their testing activities. Also, if there is no testing

framework, no testing standards and no procedures, employees wouldn’t know how

to test and evaluate the software. As a result, quality software cannot be delivered.

This objective was also achieved.

iii. Examine the factors (factors triggering testing to be conducted) that could

influence the testing and evaluating of software in organisations

Organisations rely on software for competitiveness and sustainability. Therefore,

organisations must continue to develop software while also enhancing existing

software. It is evident that this creates a need and influences the software testing and

evaluation in organisations. However, in order for the software testing team to be able

to test, they require documentation such as business requirement specifications and

technical design specifications. They must follow testing standards and procedures

when conducting software testing. Both functional and non-functional requirements

must be integrated to achieve quality software. Various teams interact and work

together in order to deliver quality software. Therefore, this objective was achieved.

iv. Based on the findings from the objectives as stated above, a decision

support system framework will be created. The aim of this decision support

system framework will be to address the challenges occurring during

software testing and evaluation in organisations

The decision support system framework for testing and evaluating software in

organisations was achieved based on the findings from the three selected

organisations. Therefore, any organisation either private, public, or small to medium

may adopt this framework in testing and evaluating software. This framework, when

followed, will guide the organisation in delivering quality software.

 175

7.4 Contribution of the research

This section presents the contribution of the research from theoretical,

methodological and practical perspectives.

7.4.1 Theoritical contribution

The study contributes to body of knowledge through its addition to literature. From

this study, two articles have been published: (1) Diffusion of innovation theory for

information technology decision making in organisational strategy; and (2) The

connectedness in selecting socio-technical theory to underpin information systems

studies.

(1) Diffusion of innovation theory for information technology decision

making in organisational strategy

The Diffusion of innovation (DOI) theory was employed as a lens to examine the

influencing factors and how decisions were made in applying technologies for

organisational strategy. As a result, the IT decision-making framework for

organisational strategy was developed to guide organisations in diffusing systems

and technologies to enable organisational strategy. The framework outlines the

organisational activities, technologies and governance. The organisation activities

included culture, people and operations. Technology covered the dimensions of

systems, innovation and adoption. Governance included transformation, awareness

and collaboration. Therefore, IT decisions needed to be made to achieve the

organisational strategy. This framework can be adopted by any organisation that

intends to use technology to implement organisational strategy. For those

organisations that have already implemented their strategy, the framework can assist

in improving their organisational strategy.

(2) The connectedness in selecting socio-technical theory to underpin

information systems studies

This journal article was influenced by the fact that postgraduate students are

struggling to choose a socio-technical theory to underpin their studies in the field of

Information Systems (IS). The search was carried out on ten different socio-technical

theories used in IS studies in the recent decade. A set of empirical data was

analytical, extracted from Google scholar database, using criteria that included IS

fields and year of publication. The descriptions about the theories were provided in a

tabular format. Socio-technical theories such as actor network theory, structuration

theory and diffusion of innovation were covered in this article.

 176

7.4.2 Methodical contribution

The use of the moments of translation from the perspective of actor network theory

(ANT) and innovation decision process from the perspective of diffusion of innovation

(DOI) in the study is methodological, a contribution to teaching, learning and research

in the field of information systems (IS). Prior to this study, the researcher struggled to

identify any study where the two theories were combined in application within IS

studies. This renders this particular result unique from other research that has been

conducted. Actor network theory emphasised the four stages necessary for

theoretically understanding the social-technical factors which interrelate during the

testing and evaluation of software in the organisation. The five stages of innovation

decision process from the perspective of diffusion of innovation were applied to

diffuse the innovation within the organisation, which ANT lacked.

Without the combination of ANT and DOI, it would be difficult to determine the

outcome of the study, from the data collection stage to the interpretation of the

research. The scope, as defined by the four stages of moments of translation and five

stages of innovation decision process, was vitally significant in this study making a

difference. The difference, mainly in testing and evaluating of software within the

organisation, includes how factors and actors connect, associate, relate and manifest

themselves during the testing and evaluation of software. The theorised factors can

now be put into practice by organisations intending to improve their performance in

this field.

7.4.3 Practical contribution

The other contribution of the study is practical in nature. This is mainly because the

findings of the study are factors which organisations could relate to in terms of their

existence. Organisations are still facing the challenge of ensuring that software

projects are tested and evaluated successfully so as not to disrupt business.

However, the organisations tend to invest in technology and place less emphasis on

equipping software testers with software testing knowledge and skills. Hence the

same challenges continue to repeat themselves over the years. The contribution is

mainly on empirical evidence, giving confidence to employers and employees in

adjusting and managing the processes and activities in the testing and evaluation of

software in their various organisations.

It is practical for the employers and employees to understand the research and relate

to the findings, more easily eradicating the challenges by using the decision support

system framework generated by this study.

 177

7.5 Recommendations

The research has investigated various challenges encountered in the testing and

evaluation of software in organisations. Organisations must pay attention to such

challenges to ensure that they are prevented as early as possible in the software

testing and evaluation process. In so doing, organisations would be able to achieve

goals and objectives by producing quality software.

7.5.1 Documentation

Documentation, plays an essential role in software testing and evaluation, as it

provides software testers with crucial information about what needs to be tested and

evaluated. Documents, such as business requirement specifications, functional

requirement specifications and technical requirement specifications, provide software

testers with both functional and non-functional requirements about the software that

needs to be tested and evaluated. The software testers rely on these documents to

extract test requirements, test scenarios and test cases. Without these documents,

software testers would be unclear about what to test.

The software under test is verified against the requirements specification. Any

mismatch between the software and documents provided becomes a defect.

Therefore, software testers would log that defect against a particular software

developer to fix it. Once the defect is fixed, the software testers re-test the defect.

Thereafter, they would perform regression testing to ensure that whatever was fixed

has not affected the functionality that was previously working.

In some organisations, there is a tendency of neglecting to document the business

requirements, and yet software testers are still expected to test and evaluate the

software. As a result, the verification of software under test becomes a challenge

because software testers would rely on what they are being told by software

developers or what the software under test does. The quality of software is easily

compromised due to lack of documentation.

7.5.2 Standards and procedures

Software testing is governed by software testing standards and procedures. These

standards, are agreed upon by the international standard bodies such as ISO, to

guide software testers in performing proper software testing. These standards and

procedures enable organisations to benchmark themselves with the best practices in

software testing. However, if these standards and procedures are bypassed quality

software cannot be delivered. As software testing is process-oriented and procedural,

 178

it is vital to follow the software testing standards and procedures. Failure to adhere to

such standards leads to delivering poor quality software. If the organisation is

affiliated with ISO, audit findings are expected from the registered organisation in

order to verify that software was tested and evaluated accordingly. If the organisation

still does not abide to the audit findings, they lose their affiliation. Therefore, the

management needs to enforce these standards and procedures to produce quality

software and retain their affiliations with ISO.

7.5.3 Quality of software

It is still not a guarantee that quality software would be produced when the

organisation has an independent software testing team as well as sophisticated

software testing tools. The organisation may have all this in place but fail to deliver as

expected by the organisation. Here’s why: it is vital to train the software testers to

equip them with the necessary software testing skills. The software testers need to be

passionate in what they are doing to take the organisation to the next level of quality.

Management must support the needs of software testing team in terms of the good

work they are doing. As organisations rely on quality software for competitiveness

and sustainability, the management needs to enforce software testing standards and

procedures to ensure that they are adhered to by all employees within the

organisation. If the management fails in playing their part, employees are likely to

ignore the software testing quality standards. As a result, the organisation may be out

of competition due to poor quality software.

7.6 Benefit of the study

The benefits of the study are two-fold: first, it contributes to the body of knowledge

and secondly, it undergirds to the organisation that deploys software. The benefits

are discussed as follows:

The output of the study would contribute to the body of knowledge through literature.

Many organisations, academic institutions and students depend on literature for their

related work. The dedicated and in-depth nature of this study makes it authentic and

gives others the confidence to apply it. Organisations can apply the decision support

system framework and advance it regarding software testing and evaluation.

Moreover, the study illustrates that the testing and evaluation of software is of vital

importance to organisations in this competitive environment. To a certain extent,

many organisations are aware of some of the factors highlighted by the study, but too

often ignored them. This was attributed to the fact that there was no empirical

evidence for them. But it is crucial for organisations to be aware of such challenges to

 179

ensure that they are prevented as early as possible in software testing and

evaluation.

7.7 Further study

The study contributes to the body of knowledge from both a theoretical and practical

perspective. Organisations invest so much money in developing software and

enhancing existing software. However, most software is not utilised as it’s supposed

to be. This does not mean that the software is not used by many employees, but

often they do not maximise its use as they are supposed to. Such software is referred

to as ‘white elephants’. According to Money Web, organisations such as the big four

banks in South Africa spend around R30 billion on developing software each year.

The reason why they spend so much money is because they continuously develop

new software and enhance existing software. However, some of this software is not

used and when new management is employed, often new software gets developed.

Software are not used because it is of low quality, a situation arising from a lack of

proper software testing. If proper software testing and evaluation were performed,

then quality software would be produced. As a result, employees would be happy to

fully utilise such software. Having rigorously carried out this study, the researcher is

confident in recommending that further research in the area of this study should be

carried out. The factors influencing the testing and evaluation of software are needed

to develop new software and enhance existing ones. The factors enabling the testing

include documentation, relationships between team members, and heterogeneity of

testers, standardisation, and procedural and implementation policies. Without this

study, these factors would have not been established empirically. Also, the use of

different theories such as structuration theory and activity theory for analysis could be

applied for further studies.

7.8 Conclusion

This chapter has presented the conclusions drawn from the findings of this study,

clearly establishing that the testing and evaluation of software has an enormous

effect on IT projects. Failure to follow software testing standards and procedures can

result in the software project team delivering poor quality software. All stakeholders

involved in the software project team need to respect each other to work

collaboratively in achieving quality software that would satisfy business requirements

and customers. This study has been successful as it achieved all its objectives as

articulated in Chapter 1 and repeated in Chapter 3 and Chapter 7. The empirical

findings from the study will infuse confidence in management and sponsors for testing

 180

and evaluating all software projects which are initiated for competitive advantage in

organisations.

 181

BIBLIOGRAPHY/REFERENCES

Abbas, R., Sultan, Z. & Bhatti, S.N. 2017. Comparative analysis of automated load testing
tools: Apache JMeter, Microsoft Visual Studio (TFS), LoadRunner, Siege. In Communication
Technologies (ComTech), 39-44.

Abor, J. & Quartey, P. 2010. Issues in SME Development in Ghana and South Africa.
International Research Journal of Finance and Economics, 39:218-228.

Abu-Dalbouh, H.M. 2013. A Questionnaire Approach Based on the Technology Acceptance
Model for Mobile Tracking on Patient Progress Applications. Journal of Computer Science,
9(6):763-770.

Acharya, S. & Pandya, V. 2012. Bridge between Black Box and White Box – Grey Box.
International Journal of Electronics and Computer Science Engineering, 2(1):175-185.

Agarwal, S., Sharma, P. & Nikhil, K. 2012. A Review of the software testing process in
SDLC. International Journal of Electronics Communication and Computer Engineering,
3(1):18-21.

Ahamed, S.S.R. 2009. Study the feasibility and importance of software testing: An Analysis.

International Journal of Engineering Science and Technology, 1(3):119-128.

Aichernig, B.K. 2001. Systematic Black-Box Testing of Computer-Based Systems through

Formal Abstraction Techniques. Institute for Software Technology.

Alaqail, H. & Ahmed, S. 2018. Overview of Software Testing Standard ISO/IEC/IEEE 29119.
IJCSNS International Journal of Computer Science and Network Security, 18(2):112-116.

Alcouffe, S., Berland, N. & Levant, Y. 2008. Actor-networks and the diffusion of management

accounting innovations: A comparative study. Management Accounting Research, 19:1-17.

Alemneh, D.G. & Hastings, S.K. 2010. Exploration of Adoption of Preservation Metadata in

Cultural Heritage Institutions: Case of PREMIS. American Society for Information Science

and Technology.

Alqahtani, S. & Wamba, S.F. 2012. Determinants of RFID Technology Adoption Intention in

the Saudi Retail Industry: An Empirical Study. 45th Hawaii International Conference on

System Sciences, 4720-4729.

Alsaawi, A. 2014. A Critical Review of Qualitative Interviews. European Journal of Business
and Social Sciences, 3(4):149-156.

Alshamrani, A. & Bahattab, A. 2015. A Comparison Between Three SDLC Models Waterfall
Model, Spiral Model, and Incremental/Iterative Model. IJCSI International Journal of
Computer Science Issues, 12(1):106-111.

Alshenqeeti, H. 2014. Interviewing as a Data Collection Method: A Critical Review. English
Linguistics Research, 3(1):39-45.

Amaratunga, D., Daldry, D., Sarshar, M. & Newton, R. 2002. Quantitative and qualitative
research in the built environment: application of “mixed” research approach. International
Journal of Productivity and Performance Management, 51(1):17-31.

 182

Amlani, R.A. 2012. Advantages and Limitations of Different SDLC Models. International
Journal of Computer Applications & Information Technology, 1(3):6-11.

Ansari, S., Panhwar, A.H. & Mahesar, G.A. 2016. Mixed Methods Research: Ontological,
Epistemological and Methodological underpinnings. International Research Journal of
Language and Literature, 27:133-141.

Athanasiadis, A. & Andreopoulou, Z.S. 2011. DSS applications in forest policy and
management: Analysis of current trends. Proceeding of the International Conference on
Information and Communication Technologies, 549-557.

Athanasiadis, A. & Andreopoulou, Z. 2015. A DSS for the identification of forest land types by
the Greek Forest Service. International Journal of Sustainable Agricultural Management and
Informatics, 1(1):76-88.

Avison, D. & Fitzgerald, G. 2006. Information Systems Development Methodologies,
Techniques & Tools. 4th ed. United Kingdom: McGraw-Hill.

Azorin, J.M. & Cameron, R. 2010. The Application of Mixed Methods in Organisational
Research: A Literature Review. The Electronic Journal of Business Research Methods,
8(2):95-105.

Babbie, E. 2014. The basics of social research. 6th ed. Wadsworth, Cengage Learning, USA.

Bamotra, A. & Randhawa, A.K. 2017. Software Testing Techniques. International Journal of
Innovative Computer Science & Engineering, 4(3):122-126.

Barker, J., Linsley, P. & Kane, R. 2016. Evidence-based Practice for Nurses and Healthcare
Professionals. 3rd ed. Sage Publications Inc.

Bassil, Y. 2012. A Simulation Model for the Waterfall Software Development Life Cycle.
International Journal of Engineering & Technology, 2(5):742-749.

Baxter, P. & Jack, S. 2008. Qualitative Case Study Methodology: Study Design and
Implementation for Novice Researchers. The Qualitative Report, 13(4):544-559.

Benbasat, I., Goldstein, D.K. & Mead, M. 1987. The Case Research Strategy in Studies of
Information Systems. MIS Quarterly, 11(3):369-386.

Besel, R.D. 2011. Opening the ‘‘Black Box’’ of Climate Change Science: Actor-Network
Theory and Rhetorical Practice in Scientific Controversies. Southern Communication Journal,
76(2):120-136.

Bhardwaj, S. 2015. Performance Testing Tools: A Comparative Analysis. International
Journal of Engineering Technology Management and Applied Sciences, 3(4):100-105.

Bhasin, A. & Kumar, M. 2015. Study of White Box, Black Box and Grey Box Testing
Techniques. International Journal of Research in Engineering & Advanced Technology,
3(3):23-27.

Bhattacherjee, A. 2012. Social Science Research: Principles, Methods, and Practices. 2nd ed.
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

 183

Bhatti, S. & Kumari, R. 2015. Comparative Study of Load Testing Tools. International Journal
of Innovative Research in Computer and Communication Engineering, 3(3):2334-2338.

Biedenbach, T. & Jacobsson, M. 2016. The Open Secret of Values: The Roles of Values and
Axiology in Project Research. Project Management Journal, 47(3):139-155.

Binckman, L. & Rog, D.J. 2009. The SAGE Handbook of Applied Social Research Methods.
3rd ed. SAGE Publications, Inc.

Bowleg, L. 2017.Towards a Critical Health Equity Research Stance: Why Epistemology and
Methodology Matter More Than Qualitative Methods. Health Education & Behavior,
44(5):677–684.

Broer, T., Nieboer, A.P. & Bal, R.A. 2010. Opening the black box of quality improvement
collaboratives: An Actor-Network theory approach. BMC Health Services Research,
10(265):1-9.

Brown, S.F. 2009. Naivety in systems engineering research: are we putting the
methodological cart before the philosophical horse. In 7th Annual Conference on Systems
Engineering Research (CSER 2009).

Bryman, A. 2008. Social research methods. 4th ed. Oxford University Press.

Bukhari, A., Faisal, S. & Hira, K. 2014. A comparative study on usage of traditional and agile
software development methodologies in software industry of Asia. Proceedings of the
International Conference on Software Engineering Research and Practice (SERP).

Busse, J., Humm, B.G., Lübbert, C., Moelter, F., Reibold, A., Rewald, M., Schlüter, V., Seiler,
B. & Tegtmeier, E. 2015. Actually, What Does “Ontology” Mean? A Term Coined by
Philosophy in the Light of Different Scientific Disciplines. Journal of Computing and
Information Technology, 23(1):29–41.

Bruun, H. & Hukkinen, J. 2003. Crossing Boundaries: An Integrative Framework for Studying
Technological Change. Social Studies of Science, 33(1):5-116.

Cameron, R. 2011. Mixed Methods Research: The Five Ps Framework. Journal of Business
Research Methods, 9(2):96-108.

Capaldo, G. & Rippa, P. 2009. A planned-oriented approach for EPR implementation
strategy selection. Journal of Enterprise Information Management, 22(6):642-659.

Chang, H.C. 2010. A New Perspective on Twitter Hashtag Use: Diffusion of Innovation
Theory. Proceedings of the American Society for Information Science and Technology,
47(1):1-4.

Chen, W., Zhang, C., Zheng, Y. & Ciu, L. 2009. The Interpretive Flexibility of an E-

government Project: From an Actor-Network Theory Perspective. Proceedings of the 42nd

Hawaii International Conference on System Sciences, Hawaii, 1-10.

Cho, S., Mathiassen, L. & Nilsson, A. 2008. Contextual dynamics during health information
systems implementation: an event-based actor-network approach. European Journal of
Information Systems, 17(1):614–630.

Cho, J.Y. & Lee, E.H. 2014. Reducing Confusion about Grounded Theory and Qualitative
Content Analysis: Similarities and Differences. The Qualitative Report, 19(64):1-20.

 184

Cohen, L., Manion, L. & Morrison, K. 2007. Research methods in education. 6th ed. London:
Routledge.

Comber, A., Fisher, P. & Wadsworth, R. 2003. Actor–network theory: a suitable framework to

understand how land cover mapping projects develop? Land Use Policy, 20(1):299–309.

Cresswell, J.W. 2007. Philosophical, Paradigm, and Interpretive Frameworks. Qualitative
inquiry & research design: choosing among five approaches. 2nd ed. Sage Publishers.

Cresswell, K.M., Worth, A. & Sheikh, A. 2010. Actor-Network Theory and its role in
understanding the implementation of information technology developments in healthcare.
BMC Medical Informatics and Decision Making, 1-11.

Creswell, J.W. 2009. Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches. 3rd ed. Sage Publications, Thousand Oaks CA.

Crossan, F. 2016. Research philosophy: towards an understanding. Nurse Research,
11(1):46-55.

De Lisle, J. 2011. The Benefits and Challenges of Mixing Methods and Methodologies:
Lessons Learnt from Implementing Qualitatively Led Mixed Methods Research Designs in
Trinidad and Tobago. Caribbean Curriculum, 18:87-120.

Department of Trade and Industry. 2010. THE COMPANIES ACT, NO. 71 OF 2008 AN
EXPLANATORY GUIDE. Replacing the Companies Act, No. 61 of 1973. Available at:
http://c.ymcdn.com/sites/www.iodsa.co.za/resource/collection/CB7E5DC1-E790-4BED-9693-
9F8AA33E0032/Companies_Act_Guide.pdf (Accessed: 26 April 2018).

Denney, A.S. & Tewksbury, R. 2012. How to Write a Literature Review.
Journal of Criminal Justice Education, 1-17.

De Wet, B. & Visser, J.K. 2013. An evaluation of software project risk management in

SOUTH AFRICA. South African Journal of Industrial Engineering, 24(1):14-28.

Dhiman, S. & Sharma, P. 2016. Performance Testing: A Comparative Study and Analysis of
Web Service Testing Tools. International Journal of Computer Science and Mobile
Computing, 5(6):507-512.

DiCicco-Bloom, B. & Crabtree, B.F. 2006. The qualitative research interview. Medical
Education, 40:314–321.

Driscoll, D.L. 2011. Introduction to Primary Research: Observations, Surveys, and
Interviews. Writing Spaces: Readings on Writing, 2:153-174.

Dube, L. & Pare, G. 2003. Rigor in Information Systems Positivist Case Research: Current
Practices, Trends, and Recommendations. MIS Quarterly, 27(4), 597-635.

Dwivedi, Y.K., Henriksen, H.Z., Wastell, D. & De, R. 2013. Grand Successes and Failures in
IT. IFIP WG 8.6 International Working Conference on Transfer and Diffusion of IT, TDIT
2013, Bangalore, India.

 185

Effah, J. 2012. Mobilizing Culture for E-Business in Developing Countries: An Actor Network
Theory Account. The Electronic Journal on Information Systems in Developing Countries,
52(5):1-18.

Ekdale, B., Singer, J., Tully, M. & Harmsen, S. 2015. Making Change: Diffusion of
Technological, Relational, and Cultural Innovation in the Newsroom. Journalism & Mass
Communication Quarterly, 92(4):938-958.

Elo, S. & Kynga, S.H. 2008. The qualitative content analysis process. Journal of Advanced
Nursing, 62(1):107–115.

Engel, B.A., Choi, J.Y., Harbor, J. & Pandey, S. 2003. Web-based DSS for hydrologic impact
evaluation of small watershed land use changes. Computers and Electronics in Agriculture,
39:241-249.

Farooq, S.K. & Quadri, S. M. K. 2013. Empirical Evaluation of Software Testing Techniques -
Need, Issues and Mitigation. Software Engineering: An International Journal (SEIJ), 3(1):41-
51.

Feng, W. & Hannafin, M. J. 2005. Design-Based Research and Technology-Enhanced
Environments. Educational Technology Research and Development, 53(4):5-23.

Filip, F.G., Zamfirescu, C.B. & Ciurea, C. 2017. Computer-Supported Collaborative Decision-
Making. Springer International Publishing.

Fouka, G. & Mantzorou, M. 2011. What are the Major Ethical Issues in Conducting
Research? Is there a Conflict between the Research Ethics and the Nature of Nursing?
Health Science Journal, 5(1):3-14.

Fuller, M.A., Hardin, A.M. & Scott, C.L. 2007. Diffusion of Virtual Innovation. The DATA
BASE for Advances in Information Systems, 38(4):40-44.

Gautam, S. & Nagpal, B. 2016. Descriptive Study of Software Testing & Testing Tools.
International Journal of Innovative Research in Computer and Communication Engineering,
4(6):10288-10295.

Gavric, G., Sormaz, G. & Ilic, D. 2016. The Impact of Organizational Culture on the Ultimate
Performance of a Company. Faculty of Business Economics and Entrepreneurship, 3(4):25-
30.

Gelo, O., Braakmann, D. & Benetka, G. 2008. Quantitative and Qualitative Research:
Beyond the Debate. Integrative Psychological and Behavioral Science, 42:266–290.

Ghobakhloo, M., Sabouri, M.S., Hong, T.S. & Zulkifli, N. 2011. Information Technology
Adoption in Small and Medium-sized Enterprises; An Appraisal of Two Decades Literature.
Interdisciplinary Journal of Research in Business, 1(7):53-80.

Ghobakhloo, M., Hong, T.S., Sabouri, M.S., & Zulkifli, N. 2012. Strategies for Successful
Information Technology Adoption in Small and Medium-sized Enterprises. Information, 3:36-
67.

Gicheru, E. 2013. The psychology of unmarried men in Nairobi: A case study of three
bachelors over forty. African Journal of History and Culture, 5(6):126-137.

 186

Goyette, S., Cassivi, L., Courchesne, M. & Elia, E. 2015. The ERP post-implementation
stage: a knowledge transfer challenge. International Journal of Information Systems and
Project Management, 3(2):5-19.

Greenhalgh, T., Potts, H.W.W., Wong, G., Bark, P., & Swinglehurst, D. 2009. Tensions and
Paradoxes in Electronic Patient Record Research: A Systematic Literature Review Using the
Meta-narrative Method. The Milbank Quarterly, 87(4):729-788.

Gunawong, P. & Gao, P. 2010. Challenges of eGovernment in Developing Countries: Actor-
Network Analysis of Thailand's Smart ID Card Project. Proceeding ICTD '10 Proceedings of
the 4th ACM/IEEE International Conference on Information and Communication
Technologies and Development.

Hanseth, O., Aanestad, M. & Berg, M. 2004. Guest editors’ introduction Actor-network theory
and information systems. What’s so special? Information Technology & People, 17(2):116-
123.

Harris, L.R. & Brown, G.T. 2010. Mixing interview and questionnaire methods: Practical
problems in aligning data. Practical Assessment, Research & Evaluation, 15(1):1-19.

Hayes, B., Bonner, A. & Douglas, C. 2013. An introduction to mixed methods research for
nephrology nurses. Renal Society of Australasia Journal, 9(1):8-14.
Henderson, S. 2016. Research Methodology. International Journal of Sales, Retailing and
Marketing, 4(9):1-97.

Hernandez, R.A. & Fisher, B. 2013. A Qualitative Methodology for the Design of Visual
Analytic Tools for Emergency Operation Centers. 46th Hawaii International Conference on
System Sciences, 126-135.

Hertz, P., Cavalieri, S., Finke, G.R., Duchi, A. & Schönsleben, P., 2013. A simulation-based

decision support system for industrial field service network planning. Simulation:

Transactions of the Society for Modeling and Simulation International, 1-16.

Hertz, P., Cavalieri, S., Finke, G.R., Duchi, A. & Schönsleben, P., 2014. A simulation-based

decision support system for industrial field service network planning. Simulation, 90(1):69-84.

Hertzum, M., Bansler, J.P., Havn, E.C. & Simonsen, J. 2012. Pilot Implementation: Learning
from Field Tests in IS Development. Communications of the Association for Information
Systems, 30(1):313-328.

Hilburn, T.B., Towhidnejad, M., Nangia, S. & Shen, L. 2006. A Case Study Project for
Software Engineering Education. 36th ASEE/IEEE Frontiers in Education Conference. San
Diego, CA.

Hoffman, D. 1999. Test Automation Architectures: Planning for Test Automation. Software

Quality Methods.

Hooda, I. & Chhillar, R.S. 2015. Software Test Process, Testing Types and Techniques.
International Journal of Computer Applications, 111(13):10-14.

Hosio, S., Goncalves, J., Anagnostopoulos, T. & Kostakos, V. 2016. Leveraging wisdom of

the crowd for decision support. In Proceedings of the 30th International BCS Human

Computer Interaction Conference: Fusion!

 187

Houghton, C., Hunter, A. & Meskell, P. 2012. Linking aims, paradigm and method in nursing
research. Nurse Researcher, 20(2):34-39.

Hussain, T. & Singh, S. 2015. A Comparative Study of Software Testing Techniques Viz.
White Box Testing Black Box Testing and Grey Box Testing. IJAPRR International Journal
Peer Reviewed Refereed, 2(5):1-8.

Ihuah, P.W. & Eaton, D. 2013. The Pragmatic Research Approach: A Framework for
Sustainable Management of Public Housing Estates in Nigeria. Journal of US-China Public
Administration, 10(10):933-944.

Irena, J. 2008. Software Testing Methods and Techniques. The IPSI BgD Transactions on
Internet Research, 30-41.

ISO/IEC/IEEE International Standard. 2013. Software and systems engineering -- Software
testing --Part 3: Test documentation. ISO/IEC/IEEE 29119-1:2013(E), 1-64. IEEE.

Iyamu, T. & Roode, D. 2010. The Use of Structuration Theory and actor Network Theory for
analysis: Case Study of a financial Institution in South Africa. International Journal of Actor-
Network Theory and Technological Innovation, 2(1):1-26.

Iyamu, T. 2011. Institutionalisation of the Enterprise Architecture: The Actor-Network
Perspective. International Journal of Actor-Network Theory and Technological Innovation,
3(1):27-38.

Iyamu, T. 2013. Underpinning theories: order-of-use in information systems research.
Journal of Systems and Information Technology, 15(3), 224-238.

Iyamu, T. & Sekgweleo, T. 2013. Information Systems and Actor-Network Theory Analysis.
International Journal of Actor-Network Theory and Technological Innovation, 5(3):1-11.

Iyamu, T., Sekgweleo, T. & Mkhomazi, S.S. 2013. Actor Network Theory in Interpretative
Research Approach. IFIP International Federation for Information Processing, 605-610.

Jain, R. & Raju, S.S. 2016. Decision Support System in Agriculture using Quantitative
Analysis. Agrotech Publishing Academy.

Jamil, M.A., Arif, M., Abubakar, N.S.A. & Ahmad, A. 2016. Software Testing Techniques: A
Literature Review. 6th International Conference on Information and Communication
Technology for The Muslim World, 177-182.

Jamshed, S. 2014. Qualitative research method-interviewing and observation. Journal of
Basic and Clinical Pharmacy, 5(4):87-88.

Jan, S.R., Shah, S.T.U., Johar, Z.U., Shah, Y. & Khan, F. 2016. An Innovative Approach to
Investigate Various Software Testing Techniques and Strategies. International Journal of
Scientific Research in Science, Engineering and Technology, 2(2):682-689.

Kannan, V., Jhajharia, S. & Verma, S. 2014. Agile vs waterfall: A Comparative Analysis.
International Journal of Science, Engineering and Technology Research (IJSETR),
3(10):2680-2686.

Kapur, P.K., Yadavalli, V.S. & Kumar, A. 2006. A General Software Reliability Growth Model
for a Distributed Environment. South African Statistical Journal, 151-185.

 188

Kasurinen, J. 2012. Software Organizations and Test Process Development. Advances in
Computers, 85:1-63.

Kaur, M. & Kumari, R. 2011. Comparative Study of Automated Testing Tools: TestComplete
and QuickTest Pro. International Journal of Computer Applications, 24(1):1-7.

Khan, M.E. 2011. Different Approaches to White Box Testing Technique for Finding Errors.

International Journal of Software Engineering and Its Applications, 5(3):1-14.

Khan, M.E. & Khan, F. 2012. A Comparative Study of White Box, Black Box and Grey Box

Testing Techniques. International Journal of Advanced Computer Science and Applications,

3(6):12-15.

Khojasteh, J., Zeki, T.S., Naji, H. R. & Sanatnama, H. 2012. A Functional Testing Modeling
for Enhanced Software Testing. International Journal of Science and Technology, 2(10):738-
741.

Kivunja, C. & Kuyini, A.B. 2017. Understanding and Applying Research Paradigms in
Educational Contexts. International Journal of Higher Education, 6(5):26-41.

Kolhe, P.R., Khetri, G.P. & Deshmukh, N.K. 2013. Study of Standard Assumptions of
Graphical User Interface (GUI) Based on Usability, Adaptability and Security Factors.
International Journal of Emerging Research in Management & Technology, 2(12):92-95.

Kothari, C.R. 2004. Research Methodology Methods and Techniques. 2nd ed. New Age
International Publishers.

Koza, N. 2015. FLY SAFAIR’S R1 BARGAIN CAUSES WEBSITE TO CRASH. [online]
Available at: http://ewn.co.za/2015/08/25/Fly-Safairs-R1-bargain-causes-website-crash.
[Accessed 26 May 2018].

Lee, H., & Oh, S. 2006. A standards war waged by a developing country: Understanding
international standard setting from the actor-network perspective. Journal of Strategic
Information Systems, 15:177-195.

Lee, M. 2014. Software Quality Factors and Software Quality Metrics to Enhance Software
Quality Assurance. British Journal of Applied Science & Technology, 4(21):3070-3095.

Leeuw, E.D., Hox. J.J. & Dillman, D.A. 2008. International Handbook of Survey Methodology.
European Association of Methodology.

Levers, M.J.D. 2013. Philosophical Paradigms, Grounded Theory, and Perspectives on
Emergence. Sage Publications Inc, 1-6.

Lihosit, J. 2014. Breaking Down the Black Box: How Actor Network Theory Can Help
Librarians Better Train Law Students in Legal Research Techniques. Law Library Journal,
106(2):211-220.

Liu, S., Duffy, A., Whitfield, R. I. & Boyle, I. M. 2010. Integration of decision support systems

to improve decision support performance. Knowledge and Information Systems, 22(3):261-

286.

Lokke, A. & Sorensen, P. 2014. Theory Testing Using Case Studies. The Electronic Journal
of Business Research Methods, 12(1):66-74.

 189

Loukis, E., Charalabidis, Y. & Androutsopoulou, A. 2017. Promoting open innovation in the
public sector through social media monitoring. Government Information Quarterly, 34:99–
109.

Luo, Q. 2016. Input-sensitive performance testing. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, 1085-1087.

Luoma-Aho, V. & Paloviita, A. 2010. Actor-networking stakeholder theory for today’s

corporate communications. Corporate Communications: An International Journal, 15(1):49-

67.

Luqman, A., Abdullah, N.K. & Ghapar, M.A. 2011. Modeling the Adoption of E-business

amongst SMEs in Terengganu. IEEE Colloquium on Humanities, Science and Engineering

Research (CHUSER 2011).

Mack, L. 2010. The Philosophical Underpinnings of Educational Research. Polyglossia, 19:5-
11.

Mackenzie, N. & Knipe, S. 2006. Research dilemmas: Paradigms, methods and
methodology. Issues in Educational Research, 16:193-205.

Mahring, M., Holmstrom, J., Keil, M. & Montealegre, R. 2004. Trojan actor-networks and swift
translation Bringing actor-network theory to IT project escalation studies. Information
Technology & People, 17(2):210-238.

Mandi, G. & Kumar, P. 2013. Reducing the size of test suite using a variant of Non-
dominated Sorting Genetic Algorithm II. International Journal of Advance Research in
Computer Science and Management Studies, 1(6):66-75.

Matalonga, S., Rodrigues, F. & Travassos, G.H. 2015. Matching context aware software
testing design techniques to ISO/IEC/IEEE 29119. In International Conference on Software
Process Improvement and Capability Determination, 33-44.

Merriam, B.M. & Tisdell, E.J. 2015. Qualitative Research: A Guide to Design and
Implementation. 4th ed. John Wiley and Sons.

Mishra, D., Ostrovska, S. & Hacaloglu, T. 2017. Exploring and expanding students’ success
in software testing. Information Technology & People, 30(4): 927-945.

Mishra, S. & Pradhan, A. 2012. Software Testing Techniques Adopted in Corporate Sectors:
A Precise Study. International Journal of Emerging Technology and Advanced Engineering,
2(9):290-295.

Monama, T., Ndlazi, S. & Mabotja, K. 2016. Online applications: Bring it on, says Lesufi.
[online] Available at: https://www.iol.co.za/lifestyle/family/parenting/online-applications-bring-
it-on-says-lesufi-2011891. [Accessed 26 May 2018].

Monier, M. & El-mahdy, M.M. 2015. Evaluation of automated web testing tools. International

Journal of Computer Applications Technology and Research, 4(5):405-408.

Montfort, D., Brown, S. & Pegg, J.M. 2009. An Investigation of the Adoption of an
Assessment Instrument for Capstone Design Courses. Proceedings of the 39th IEEE
international conference on Frontiers in education conference, 148-153.

 190

Morgan, D.L. 2007. Paradigms Lost and Pragmatism Regained: Methodological Implications
of Combining Qualitative and Quantitative Methods. Journal of Mixed Methods Research,
1(1):48-76.

Munassar, N.M. & Govardhan, A. 2010. A Comparison Between Five Models of Software

Engineering. IJCSI International Journal of Computer Science Issues, 7(5):94-101.

Muscatello, J.R., Small, M.H. & Chen, I.J. 2003. Implementing enterprise resource planning
(ERP) systems in small and midsize manufacturing firms. International Journal of Operations
& Production Management, 23(8):850-871.

Nabukenya, J. 2012. Combining Case Study, Design Science and Action Research Methods
for Effective Collaboration Engineering Research Efforts. 45th Hawaii International
Conference on System Sciences, 343-352.

Nahas, M. & Maaita, A. 2012. Choosing Appropriate Programming Language to Implement
Software for Real-Time Resource-Constrained Embedded Systems. In Embedded Systems-
Theory and Design Methodology. InTech.

National small business Act, 1996. [online] Available at:
https://www.thedti.gov.za/sme_development/docs/act.pdf. [Accessed 09 April 2018].

Nawaz, A., & Malik, K.M. 2008. Software Testing Process in Agile Development. Department
of Computer Science School of Engineering, Blekinge Institute of Technology

Nemutanzhela, P. & Iyamu, T. 2011. A Framework for Enhancing the Information Systems
Innovation: Using Competitive Intelligence. The Electronic Journal Information Systems
Evaluation, 14:242-253.

Nenty, H.J. 2009. Writing a Quantitative Research Thesis. Int J Edu Sc, 1(1):19-32.

Nidhra, S. & Dondeti, J. 2012. Black box and white box techniques - A literature review.

International Journal of Embedded Systems and Applications, 2(2):29-50.

Oates, B.J. 2006. Researching information systems and computing. 1st ed. Thousand Oaks,
California. Sage Publications, Inc.

Okrent, M.D. & Vokurka, R.J. 2004. Process mapping in successful ERP implementations.
Industrial Management & Data Systems, 104(8):637-643.

Olsson, A., Skovdahl, K. & Engström, M. 2016. Using diffusion of innovation theory to
describe perceptions of a passive positioning alarm among persons with mild dementia: a
repeated interview study. BMC geriatrics, 16(1):1-6.

Oppong, S. 2014. A Critique of the Philosophical Underpinnings of Mainstream Social
Science Research. Academicus International Scientific Journal, 10:242-254.

Overhage, S. & Schlauderer, S. 2012. Investigating the Long-Term Acceptance of Agile
Methodologies: An Empirical Study of Developer Perceptions in Scrum Projects. 2012 45th
Hawaii International Conference on System Sciences, 5452-5461.

Petersen, K. & Gencel, C. 2013. Worldviews, research methods, and their relationship to
validity in empirical software engineering research. In Software Measurement and the 2013

https://www.thedti.gov.za/sme_development/docs/act.pdf

 191

Eighth International Conference on Software Process and Product Measurement (IWSM-
MENSURA), 81-89.

Petrescu, M. & Lauer, B. 2017. Qualitative Marketing Research: The State of Journal
Publications. The Qualitative Report, 22(9):2248-2287.

Potts, L. 2009. Using Actor Network Theory to Trace and Improve Multimodal

Communication Design. Technical Communication Quarterly, 18(3):281-301.

Qazi, A.S., Shahzadi, S. & Humayun, M. 2016. A Comparative Study of Software Inspection
Techniques for Quality Perspective. International Journal of Modern Education and
Computer Science, 8(10):9-16.

Quadri, S.M.K. & Farooq, S.U. 2010. Software Testing – Goals, Principles, and Limitations.
International Journal of Computer Applications, 6(9):7-10.

Raadschelders, J.C.N. 2011. The Future of the Study of Public Administration: Embedding
Research Object and Methodology in Epistemology and Ontology. Public Administration
Review, 916-924.

Ragab, M.A.F. & Arisha, A. 2018. Research Methodology in Business: A Starter’s Guide.
Management and Organizational Studies, 5(1):1-14.

Rajasekar, S., Philominathan, P. & Chinnathambi, V. 2013. Research Methodology.
Physics.gen-ph, 1-53.

Raus, M., Flügge, B. & Boutellier, R. 2008. Innovation Steps in the Diffusion of e-Customs
Solutions. The Proceedings of the 9th Annual International Digital Government Research
Conference, 316-324.

Reiter, B. 2013. The Epistemology and Methodology of Exploratory Social Science
Research: Crossing Popper with Marcuse. Government and International Affairs Faculty
Publications, 1-17.

Rhodes, J. 2009. Using Actor-Network Theory to Trace an ICT (Telecenter) Implementation
Trajectory in an African Women’s Micro-Enterprise Development Organization. Information
Technologies and International Development, 5(3):1-20.

Saleh, M.F. 2011. An Agile Software Development Framework. International Journal of

Software Engineering (IJSE), 2(5):97-106.

Sampaio, L., Varajão, J., Pires, E.J.S. & de Moura Oliveira, P.B. 2012. Diffusion of
Innovation in Organizations: Simulation using Evolutionary Computation. 2012 Fourth World
Congress on Nature and Biologically Inspired Computing (NaBIC), 25-30.

Sang, H.A. & Tsai, D.R. 2009. Analyzing Strategies of Integrating ICT into Teaching Activities
Using Innovation Diffusion Theory. Fifth International Joint Conference on INC, IMS and IDC,
1876 -1878.

Saravanan, K. & Prasad, P.C.P. 2016. Open Source Software Test Automation Tools: A
Competitive Necessity. International Journal of Management & Development, 3(6):103-110.

Saunders, M., Lewis, P. & Thornhill, A. 2007. Research methods for business students. 4th
ed. London: Financial Times Prentice Hall.

 192

Saunders, M., Lewis, P. & Thornhill, A. 2009. Research methods for business students. 5th
ed. Pearson Education Limited.

Saunders, M., Lewis, P. & Thornhill, A. 2012. Research Methods for Business Students. 6th
ed. Pearson Education Limited.

Sawant, A.A., Bari, P.H. & Chawan, P.M. 2012. Software Testing Techniques and Strategies.
International Journal of Engineering Research and Applications, 1(3):980-986.

Saxena, R. & Singh, M. 2014. Grey Box Testing: Proactive Methodology for the Future
Design of Test Cases to Reduce Overall System Cost. Journal of Basic and Applied
Engineering Research, 1(8):62-66.

Schlegel, D. 2015. Cost-of-Capital in Managerial Finance, Contributions to Management.
Springer International Publishing Switzerland.

Scott, E., Zadirov, A., Feinberg, S. & Jayakody, R. 2004. The Alignment of Software Testing
Skills of IS Students with Industry Practices – A South African Perspective. Journal of
Information Technology Education, 3:161-172.

Scotland, J. 2012. Exploring the Philosophical Underpinnings of Research: Relating Ontology
and Epistemology to the Methodology and Methods of the Scientific, Interpretive, and Critical
Research Paradigms. English Language Teaching, 5(9):9-16.

Sefotho, M.M. 2015. A Researcher’s Dilemma: Philosophy in Crafting Dissertations and
Theses. Journal of Social Science, 42(1,2):23-36.

Sekgweleo, T. 2015a. Understanding Traditional Systems Development Methodologies.
International Journal of Advances in Management and Economics, 4(3):51-58.

Sekgweleo, T. 2015b. Understanding Agile System Development Methodologies.
International Journal of Advanced Research in Computer Science and Software Engineering,
5(7):18-24.

Sembiring, J. & Adi, S. 2015. Business Value of Information Technology Service Quality
Based on Probabilistic Business-Driven Model. Journal of ICT Research and Applications,
9(1):39-67.

Sener, Z. & Karsak, E.E. 2012. A decision model for setting target levels in software quality
function deployment to respond to rapidly changing customer needs. Concurrent Engineering
Research and Applications, 20(1):19-29.

Sharmila, S. & Ramadevi, E. 2014. Analysis of Performance Testing on Web Applications.
International Journal of Advanced Research in Computer and Communication Engineering,
3(3):5258-5260.

Shao, D., Khurshid, S. & Perry, D.E. 2007. A Case for White-box Testing Using Declarative
Specifications Poster Abstract. Testing: Academic and Industrial Conference Practice and
Research Techniques, 137-137.

Shin, S.Y. 2014. Two epistemological paradigms of self-management intervention for older
adults with osteoarthritis. Japan Journal of Nursing Science, 11:144–149

Shrivastava, S.V. & Date, H. 2010. Distributed Agile Software Development: A Review.
Journal of Computer Science and Engineering, 1(1):10-17.

 193

Singh, I. & Tarika, B. 2014. Comparative Analysis of Open Source Automated Software
Testing Tools: Selenium, Sikuli and Watir. International Journal of Information & Computation
Technology, 4(15):1507-1518.

Singla, S. & Kaur, H. 2014. Selenium Keyword Driven Automation Testing Framework.
International Journal of Advanced Research in Computer Science and Software Engineering,
4(6):125-129.

Skidmore, S. 2006. The V-model. Professional Scheme Paper, 2:48-49.

Sowunmi, O.Y., Misra, S., Fernandez-Sanz, L., Crawford, B. & Soto, R. 2016. An empirical
evaluation of software quality assurance practices and challenges in a developing country: a
comparison of Nigeria and Turkey. SpringerPlus, 5(1):1-13.

Steegmans, E., Bekaert, P., Devos, F., Delanote, G., Smeets , N., Van Dooren, M. &
Boydens, J. 2004. Black & White Testing: Bridging Black Box Testing and White Box Testing.
Conferentie Software Testing: Beheers Optimaal de Risico's van IT in uw Business, 1-12.

Steen, J. 2010. Actor-network theory and the dilemma of the resource concept in strategic
management. Scandinavian Journal of Management, 26(3):324-331.

Sutton, J. & Austin, Z. 2015. Qualitative Research: Data Collection, Analysis, and
Management. The Canadian Journal of Hospital Pharmacy, 68(3): 226–231.

Soroka, V. & Jacovi, M. 2004. The Diffusion of ReachOut: Analysis and Framework for the
Successful Diffusion of Collaboration Technologies. Proceeding CSCW '04 Proceedings of
the 2004 ACM conference on Computer supported cooperative work, 6(3):314-323.

Sweis, R.J., Isa, A., Azzeh, H., Shtyh, B., Musa, E. & Albtoush, R.M. 2014. Nurses’
Resistance to the Adoption of Information Technology in Jordanian Hospitals. Life Science
Journal, 11(4):8-18.

Tarrant, H. 2016. Big Four’ IT spending tops R30 billion a year. [online] Available at:
https://www.moneyweb.co.za/news/tech/big-four-it-spending-tops-r30-billion-a-year.
[Accessed 26 May 2018].

Tatnall, A. & Gilding, A. 1999. Actor-Network Theory and Information Systems. Proc. 10th
Australasian Conference on Information Systems, 955-966.

Tatnall, A. 2014. Technological Advancements and the Impact of Actor-Network Theory.
Information Science Reference IGI Global.

Teles, A. & Joia, L.A. 2011. Assessment of digital inclusion via the actor-network theory: The
case of the Brazilian municipality of Pirai. Telematics and Informatics, 28(3):191-203.

Tennis, J.T. 2008. Epistemology, Theory, and Methodology in Knowledge Organization:
Toward a Classification, Metatheory, and Research Framework. In Knowledge Organization,
35(2/3):102-112.

Terreberry, S.C. 2017. Understanding Student and Faculty Perceptions of the
Accommodation and Support Procedures for Students with LD in Ontario Universities: A
Mixed Methods Approach. Electronic Thesis and Dissertation Repository.

Thanh, N.C. & Thanh, T.T. 2015. The Interconnection between Interpretivist Paradigm and
Qualitative Methods in Education. American Journal of Educational Science, 1(2):24-27.

 194

Timpka, T., Bang, M., Delbanco, T. & Walker, J. 2007. Information infrastructure for inter-
organizational mental health services: An actor network theory analysis of psychiatric
rehabilitation. Journal of Biomedical Informatics, 40:429-437.

Tretmans, J. 1999. Testing Concurrent Systems: A Formal Approach. International
Conference on Concurrency Theory, 46-66.

Tripathi, K.P. 2011. Decision support system is a tool for making better decisions in the
organisation. Indian Journal of Computer Science and Engineering (IJCSE), 2(1):112-117.

Tumuhairwe, K.G. 2013. Analysis of Library and Information Science/Studies (LIS) Education
Today: The Inclusion of Indigenous Knowledge and Multicultural Issues in LIS Curriculum.
Creative Commons Attribution 3.0 Unported License, 1-20.

Van Der Duim, R. 2007. Tourismscapes an Actor-Network Perspective. Annals of Tourism
Research, 34(4):961–976.

Van Dijk, R.W. 2011. Determining the Suitability of Agile Methods for a Software Project.
University of Twente, Faculty of Electrical Engineering, Mathematics and Computer Science.

Van Iddekinge, C.H., Raymark, P.H. & Roth, P.L. 2006. Comparing the psychometric
characteristics of ratings of face-to-face and videotaped structured interviews. International
Journal of Selection and Assessment, 14(4):347-359.

Vinekar, V., Slinkman, C.W. & Nerur, S. 2006. Can Agile and Traditional Systems
Development Approaches Coexist? An Ambidextrous View. Information Systems
Management, 31-42.

Waje, S., Gaikwad, V. & Chaudhari, P. 2014. Software Testing, Mythology & Methodologies.
International Journal of Emerging Technology and Advanced Engineering, 4(2):673-677.

Wedawatta, G., Ingririge, B. & Amaratunga, D. 2011. Case study as a research strategy:
Investigating extreme weather resilience of construction SMEs in the UK. 7th Annual
International Conference of International Institute for Infrastructure, Renewal and
Reconstruction.

Whiting, L.S. 2008. Semi-structured interviews: guidance for novice researchers. Nursing
standard, 22(23):35-40.

Wijesinghe, G. 2009. Philosophy and methodological tradition of hermeneutics and
phenomenology in researching' lived experience. 3rd Critical Tourism Studies Conference
Proceedings, 161-171.

Williams, L. 2006. White-Box Testing. [online] Available at:
https://students.cs.byu.edu/~cs340ta/spring2018/readings/WhiteBox.pdf. [Accessed 05
February 2018].

Williams-Jones, B. & Graham, J.E. 2003. Actor-Network Theory: a toll to support ethical
analysis of commercial genetic testing. New Genetics and Society, 22(3):271-296.

Willis, J.W. 2007. Foundations of qualitative research: interpretive and critical approaches.
London: Sage.

Yan, K. 2009. Research into Behaviors at Initial Stage of IT and Courses Integration Project
Based on Innovative Diffusion. Intelligent Systems and Applications, 1-4.

https://students.cs.byu.edu/~cs340ta/spring2018/readings/WhiteBox.pdf

 195

Yang, Z., Wang, X. & Su, C. 2006. A review of research methodologies in international
business. International Business Review, 15(6):601-617.

Yanow, D. & Schwartz-Shea, P. 2011. Interpretive Approaches to Research Design:
Concepts and Processes. Netherlands: Routledge.

Yazan, B. 2015. Three Approaches to Case Study Methods in Education: Yin, Merriam, and
Stake. The Qualitative Report, 20(2):134-152.

Yilmaz, K. 2013. Comparison of Quantitative and Qualitative Research Traditions:
epistemological, theoretical, and methodological differences. European Journal of Education,
48(2):311–325.

Yin, R.K. 2013. Validity and generalization in future case study evaluations. Evaluation,
19(3):321-332.

Yin. R.K. 2014. Case Study Research Design and Methods. 5th ed. Thousand Oaks, CA:
Sage.

Zalaghi, H. & Khazaei, M. 2016. The Role of Deductive and Inductive Reasoning in
Accounting Research and Standard Setting. Asian Journal of Finance & Accounting, 8(1):24-
37.

Zhai, C. 2011. B2B e-marketplace adoption in China: from the perspective of innovation
diffusion theory and network externalities. IEEE.

Zolkepli, I.A. & Kamarulzaman, Y. 2015. Social media adoption: The role of media needs and
innovation characteristics. Computers in Human Behavior, 43:189-209.

Zuber‐Skerritt, O. & Fletcher, M. 2007. The quality of an action research thesis in the social
sciences. Quality Assurance in Education, 15(4):413-436.

 196

APPENDICES

APPENDIX A: Interview Questions

Interview Questions

1. How would you describe the way in which software is tested and evaluated within

your organisation?

2. What are some of the processes involved in testing and evaluating software?

3. In your view, what do you consider significant factors in testing the software?

4. What are some of the factors considered during software testing and evaluation?

5. What do you think are the implications of those factors?

6. What do you think is the role of technology such as software and hardware in the

testing and evaluation of software?

7. What do you think are the challenges encountered during software testing and

evaluation?

8. Why do you think those challenges are there?

9. What are the roles of people during the testing and evaluation of software?

10. What are some of the perceptions of employees with regard to software testing?

11. Could you please share some of your experiences in the testing and evaluation of

software within your organisation?

 197

APPENDIX B: Ethical Consideration Letter

