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ABSTRACT 

 

The purpose of this paper was to design and develop an electrical power train for an Urban 

Concept electric vehicle geared to complete the Shell Eco-Marathon Africa in 2019. Various 

technologies which make up the electrical drive train of an electrical vehicle were also reviewed 

which include the battery pack, the battery management system, the motors, the motor 

management system and the human interface.  

 

Upon completion of this, the various topologies best suited for this project were selected, 

designed, constructed and developed. Two motors were re-designed and constructed for this 

vehicle and the motor drive was also constructed to control these motors.  A Lithium-Ion battery 

pack was constructed and developed to drive the motors and an off-the-shelf battery 

management system was purchased and developed to suit the requirements for the Shell Eco-

Marathon competition rules. A human interface was also developed in order for the driver to 

see various parameters of the electric vehicle defined by the Shell Eco-Marathon competition 

rules. 

 

After each component of the drive train was constructed, they underwent various testing 

procedures to determine the efficiency of each individual component and the overall efficiency 

for the complete drive train of this electric vehicle was ascertained. 

 

The Product Lifecycle Management Competency Centre group developed the chassis for this 

vehicle. For this reason, only the electric subsystems were evaluated and a simulation was 

completed of the complete drive train. 

 

After the complete drive train was constructed and all the individual subsystems evaluated and 

simulated, a vehicle with an overall efficiency of about sixty percent was expected and the 

completed drive train should be adequate enough to complete the entire Shell Eco-Marathon 

Africa circuit. 
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required for either full charge or discharge, the lower will be the 
charge/discharge rate. The charge or discharge current for a 
given C-rating is obtained by dividing the Ah capacity of the 
battery by the number of hours for hull charge or discharge 
(Solanki, 2011). 
 
Also known as a data selector. It is a device that selects one of 
several analogue or digital input signals and forwards the 
selected input into a single line output (Kumar, 2014) 
 
It is the name of a method of converting solar energy into direct 
current electricity using semiconducting materials that exhibit 
the photovoltaic effect. 
 
They are frequently used in electrical systems with an inductive 
load where the sudden interruption of current flow leads to a 
sharp rise in voltage across the current switching device, in 
accordance with Faraday’s law. This transient can be a source 
of electromagnetic interference (EMI) in other circuits. 
(Wikipedia, 2017) 
 
This is the capacity of the battery given in a percentage of the 
total capacity of the battery when it is full (Pop, et al., 2008) 
  
It is defined as a fuel economy pure electrical vehicle which will 
be the closer in appearance and technology to road-going 
vehicles, addressing current transportation (IIUM research, 
Innovation & Invention Exhibition 2010 (IRIIE 2010), 2010) 
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Chapter One  

Introduction 

 

In 1939, a wager by Shell oil company employees in Wood River Illinois, United States of 

America (USA) saw the evolution of the Shell Eco-Marathon. This Shell Eco-Marathon is an 

international event and has developed over the years in the USA, Europe and recently Asia 

(Shell Global, 2014). There is now a strong drive to have South Africa partake in the Shell Eco-

Marathon.   

 

The Electrical Engineering department, in collaboration with the Mechanical Engineering 

department, the Product Lifecycle Management Competency Centre (PLMCC) and Centre for 

Instrumentation Research (CIR) of the Cape Peninsula University of Technology (CPUT) have 

embarked upon building an UrbanConcept Vehicle to compete in the Shell Eco-Marathon 

2019.  The purpose of this work was to develop the electrical subsystems to power not only 

the motors for the vehicle but to also power the auxiliary circuits. The electrical system built is 

designed to operate at maximum efficiency and will compete with other countries for the most 

energy efficient vehicle (Shell, 2013). 

 

The chassis and body was designed and developed by the Mechanical Engineering 

Department (CPUT) and PLMCC. The body of the vehicle was designed to meet the 

competitions requirements as stipulated in the Shell Eco-Marathon rules (Shell, 2013). After 

the chassis, vehicle shell and electrical system were completed, the vehicle was assembled 

and various tests were performed to evaluate the efficiency of the vehicle. All the competition 

rules and regulations regarding the UrbanConcept vehicle are enforced, and after all the 

necessary tests have been completed the vehicle will be entered in the Shell Eco-Marathon 

2019 (Shell, 2014). 

 

1.1 Statement of research problem 

The Shell Eco-marathon is a competition intended to challenge students from across the world 

in the design of a vehicle within the boundaries stipulated in the rules (Shell, 2013). There are 

limitations to the competition and this competition is designed for a student to have a “do it 

yourself” approach in building a vehicle. There are a set standard of rules which must be 

complied with regarding the vehicles (Shell, 2013) as well as safety standards for teams, 

individuals and vehicles. Failure to do so will result in a team and/or vehicle being disqualified 

(Shell, 2014). 
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Motors for this competition are not readily available. A motor was bought, rewound and then 

rebuilt to meet the competition requirements. The Shell Eco-marathon does also not permit off 

the shelf variable speed drives (VSD). An efficient power stage was developed for the motors. 

An efficient battery pack was also developed as well, and the implementation of an effective 

battery management system (BMS) was designed (Shell, 2013).  

 

Once this was completed all the peripherals pertaining to the electrical systems and 

subsystems were investigated and developed to ensure that the vehicle is fully functional. 

 

1.2 Aims and objectives 

This research led to the design and development of a battery electric, energy efficient vehicle 

to compete in the class of UrbanConcept at the Shell Eco-Marathon, Africa 2019. The vehicle 

will meet all race specifications in terms of design, safety and operation. It will be the first time 

that the CPUT will compete in this competition (Shell, 2014). 

Before any aims or objectives could be considered, it was necessary to have direction with a 

few research questions. 

1.2.1 Research questions 

The following research questions needed to be reviewed and form the main focus areas: 

 Can an effective power train be developed for this car? 

o The motor needs to be rebuilt to comply with the Shell-eco rules without sacrificing 

efficiency. 

o An effective motor drive needs to be developed. 

 Can an effective power source be developed for this vehicle? 

o The battery needs to be sized to complete the race. 

o The BMS needs to comply with the competition rules. 

 Will the total system: 

o Allow the vehicle to complete the race? 

 

With the above taken into consideration, the following aims and objectives were required to 

ensure that the vehicle met all the requirements. 
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1.2.2 Aims 

The EV that was developed was for competing in the Africa Shell Eco-Marathon 2019. Taking 

this into consideration, the EV was designed having the following aims: 

 The EV must be able to complete a complete single track length of 2.40 km (for the 

Zwartkops Raceway) without stopping. 

 As the EV developed is a battery electric vehicle, it must produce at least 60 km/kWh in 

completing a single track length. 

 The overall efficiency of the electric drive train was expected to be above 60%. 

 

1.2.3 Objectives 

For the Shell Eco-Marathon, UrbanConcept vehicle there were a few objectives in designing 

and building the vehicle. The main objectives are listed as follows: 

 Two “currently off the shelf” (COTS) motors will be taken apart and reconstructed to deliver 

750 W of mechanical power at 23 V AC. Calculations to carry 50 A for the motor wiring 

thicknesses, will be performed. 

 A battery pack containing Lithium-Ion batteries providing at least 40 A at 38 V DC (nominal), 

will be developed together with an effective BMS for this EV. 

 A 23 V AC motor drive for the vehicle will be developed. This motor drive will produce an 

output power of 1200W electrical power and a minimum of 30 A AC. 

 The efficiency of the power train will be above 60 %. 

 The vehicle electrical subsystems will be designed and developed. 

 Monitoring and measurement parameters will be implemented to ensure that the objectives 

are met. 

 All electrical peripherals will be installed and comply with the competition rules. 

 

In constructing this EV drive train, the motors will firstly be developed and evaluated. Thereafter 

the motor drive will be developed and tested. The battery pack will also be constructed followed 

by a battery management system. All these components to the drive train will be individually 

tested and evaluated. A completed drive train will be assembled and the overall testing and 

evaluation of this drive train will be completed. 

 

Benefits of this research will include developing an effective electric motor and motor drive for 

this EV. An effective battery pack and efficient battery management system will also be 

developed. As this EV is the first prototype developed by the CPUT, it will allow for future 

research and improvements in developing an EV for the CPUT. 
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1.3 Thesis structure  
The layout of the remaining part of this thesis is as follows: 

 

Chapter 2: This chapter looked at different topologies implemented and related to the 

UrbanConcept battery powered electrical vehicle in terms of battery 

technologies used, motor technologies, basic BMS systems, various batteries 

considered and various power trains utilised. This chapter also considered the 

various forces that act on an EV and other factors that influenced the efficiency 

of the EV drive train. 

Chapter 3: Looked at the electrical design specifications of the electric vehicle. A functional 

description of all the electrical parts is described, together with the electrical 

specifications and a system block diagram was designed. An investigation into 

the efficiency targets was also considered. 

.Chapter 4: This chapter looked specifically at the design of the electric motors and motor 

drive developed for the electric vehicle (EV) for the Shell Eco-Marathon 

UrbanConcept vehicle. Each component is described in detail. 

Chapter 5: This chapter looked specifically at the design of the battery pack and battery 

management system (BMS) developed for the electric vehicle (EV) for the Shell 

Eco-Marathon UrbanConcept vehicle. Each component is described in detail. 

Chapter 6: This chapter looked specifically at the design of the EV display panel and user 

interface developed for the electric vehicle (EV) for the Shell Eco-Marathon 

UrbanConcept vehicle. Each component is described in detail. 

Chapter 7: Testing and the evaluation of the EV motors and motor drive were covered in 

this chapter. 

Chapter 8: Testing and the evaluation of the battery pack and BMS were covered in this 

chapter. 

Chapter 9: Integration of the various components related to the power train was covered 

and testing of the entire system was completed. 

Chapter 10: Results on the systems and subsystems are analysed and described in this 

chapter. Final testing of all electrical subsystems was completed and 

conclusions of the study were drawn here. Recommendations are made for the 

system for future studies and a summary of all the findings are also completed. 
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Chapter Two 

Background study  

2.1 An electric vehicle 

In the 1780’s, the discovery of the battery by Alessandro Volta, an Italian inventor and chemist 

led to the development of the electric vehicle (Ellyard, 2005). The earliest electric vehicle was 

dated back to between 1890 and 1920, with England and France being the first nations to 

experiment in this field. The first commercial electric vehicle fleet was launched in the United 

States of America (USA) as New York Taxicabs in 1897 (Emadi, 2015). These electric vehicles 

however had a short range and initially a high cost. However, with the development of the 

combustion engine being able to commute over greater distances saw the decline in sales of 

electric vehicles. 

  

In the more modern day, with the depletion of fossil resources, there have been some new 

developments in the electric vehicle industry with companies such as Toyota, Nissan and 

Chevrolet developing the electric cars such as the Prius, the Leaf and the Volt (Inderwildi & 

King, 2012) 

  

2.2 Types of electric vehicles 

There are two types of electric vehicles, namely: 

 Pure electric EV’s 

 Hybrid electric EV’s 

 

The following six types of electric vehicles would fall into either the pure electric EV or the 

hybrid electric EV category. 

 Battery powered electric vehicles. 

 Hybrid electric vehicles (which utilises a combination of a battery and an internal 

combustion (IC) engine). 

 Fuel cell vehicle (which use replaceable fuel as a source of energy). 

 Vehicles powered by power lines. 

 Vehicles that utilise photovoltaic (PV) cells. 

 Vehicles that use super capacitors (to store energy). 
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Each type of electric vehicle has specific technologies in supplying energy and powering the 

electric vehicle. The following section briefly describes each technology used and the typical 

type of systems found in industry. 

 

2.2.1 Battery electric vehicles 

A battery electric vehicle comprises of two main components, namely a battery pack and an 

electric drivetrain. This would include a battery pack, a battery charger, an inverter to vary the 

current required for the electric vehicle (EV), a vehicle control unit (VCU), a power distribution 

unit (PDU) and a DC\DC inverter to allow for 12 V used on the various vehicle peripheral 

(Bakker, 2010). Battery electric vehicles also incorporate various batteries such as Lead Acid, 

Nickel Metal Hydride, Lithium-Ion, Sodium Nickel Chloride and many more. This will be more 

extensively covered in chapter 5 (Scrosati, et al., 2015). 

 

Figure 2-1: A battery electric vehicle (Union of Concerned Scientists, 2016) 
 

2.2.2 Hybrid electric vehicles (HEV’s) 

The first hybrid electric vehicle (HEV) was built in 1898 by Dr Ferdinand Porsche. It used a 

generator that provided power to motors on the hub of the vehicle (Mi, et al., 2011). Hybrid 

motors generally have two or more power sources. The most common of the hybrid electric 

motor consists of an internal combustion (IC) engine, with a battery and a generator with an 

electric motor. The most commonly EV found presently is the hybrid electric vehicle (Larminie 

& Lowry, 2012). 

 

For a hybrid electric motor that comprises of an IC engine and batteries, two types of load 

power are produced. One is produced by the IC engine fuel cell and is known as the average 

(steady) power and it has a constant value. The other load power produced is dynamic power 

produced by the electric motor. This power has a zero average during the whole driving cycle. 
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These powers will be covered when considering the different drivetrains implemented (Ehsani, 

et al., 2007).  

 

 
Figure 2-2: A hybrid electric vehicle (Union of Concerned Scientists, 2016) 

 

There are mainly three types of HEV designs. They are namely: 

 Series type HEV 

 Parallel type HEV 

 Series-parallel type HEV 

 

2.2.2.1 The series type HEV 

A HEV incorporating a series type system utilises an IC engine to power a generator which, in 

turn, charges the battery pack. The vehicle is never powered by the engine. The engine rather 

drives the generator, which powers the battery pack or the electric motor. The electric motor is 

the only source for powering the vehicle (Erjavec, 2012). 

 
Figure 2-3: The series type hybrid electric vehicle (Erjavec, 2012) 

  

2.2.2.2 The parallel type HEV 

A HEV incorporating the parallel type system utilises either a battery pack or a fuel tank via an 

IC engine to power the vehicle (Erjavec 2012).  
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Figure 2-4: The parallel type hybrid electric vehicle (Erjavec, 2012) 

 
2.2.2.3 The series-parallel type HEV 

The series-parallel type has the features of both the series and the parallel HEV. It is however 

a lot more complicated as well as costly. It has an additional mechanical link (for the series 

hybrid) and an additional generator (for the parallel hybrid) (Chan & Chau, 2001). 

 

2.2.3 Fuel cell electric vehicles 

A fuel cell vehicle works similar to an EV except that instead of batteries being the source of 

energy, fuel cells replace the batteries. An advantage of this is that fuel cells do not need to be 

recharged. Fuel cells convert chemical energy into electrical energy by combining hydrogen 

with oxygen. Hydrogen ions combine with oxygen molecules, and water, heat and electricity 

are the three by-products released (Erjavec, 2012). There are many other types of fuel cells, 

however, for the Shell Eco-marathon only hydrogen fuel cells are allowed. 

  

2.2.4 Power line vehicles 

This type of system can be seen on trams and trolley buses. This type of vehicles received 

power from overhead lines and a small battery was used on board, when not connected to the 

power lines (Larminie & Lowry, 2012). 

  

2.2.5 Photovoltaic (PV) electric vehicles 

A photovoltaic (PV) electric vehicle is one whereby the vehicle is powered by solar panels 

mounted on the vehicle. The solar panels capture solar energy, usually on the roof of the 

vehicle and convert this energy into electrical energy. PV vehicles are not currently used for 

everyday transportation but were mainly used for demonstration purposes. There is an 

increase in this technology in assisting a battery electric vehicle (Arsie, et al., 2007). 

 

2.2.6 Super capacitor electric vehicles 

In this type of electric vehicle super capacitors are placed in shunt with the battery pack. Super 

capacitors have the advantage over batteries in that they can supply short bursts or energy 

and also assist the battery with acceleration as well as regenerative braking. This also allows 

the battery pack to be more compact (Pay & Baghzouz, 2003). 
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Figure 2-5: A super capacitor electric vehicle (SAE International, 2016) 

 

2.3 Subsystems in electric vehicles 

There are various aspects of the electric vehicle that needed to be considered before 

developing the vehicle. Factors such as the requirements and rules for the class of 

UrbanConcept, the mechanical requirements as well as the electrical systems are different 

aspects taken into consideration. Various subsystems such as different motor technologies, 

the different batteries available and the battery management system (BMS) are also 

subsystems that needed to be considered. These subsystems are major contributing factors 

in developing an efficient electric vehicle (Cabrera, et al., 2015). 

 

2.3.1 Requirements 

There are mechanical and electrical requirements for the UrbanConcept vehicle but for the 

purpose of this research only the electrical requirements were looked at. The checklist in Table 

2-1 is a summary of the electrical requirements for the vehicle (Shell, 2013). 

 

Table 2-1: Design requirements for the vehicle’s electrical systems (Shell, 2013) 
Item 
No. 

Item description Yes No 

1 The EV motors must be capable of delivering 1.4 kW mechanical power.   

2 The EV must be capable of travelling at a constant speed of 60 km/h.   

3 The motors developed for the EV runs at an AC input voltage of 23 V.   

4 The motors developed must have an efficiency of above 50 %.   

5 
The motor drive must deliver a voltage higher that 38 V DC and a current rating 
higher than 30 A DC. 

  

6 The motor drive must be able to deliver a power of 1200 W (or higher).   
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7 The motor drive must have an efficiency of 80 % (or higher).   

8 
Only Lithium type batteries are to be used for this EV with a maximum voltage of 
60 V. 

  

9 
The battery management system is expected to produce an efficiency of 80 % 
(or higher). 

  

10 The electrical system is protected against overload.   

11 The accessory battery maintains a negative ground.   

12 
The capacity of the accessory battery is sufficient to power all the accessory 
loads with a sufficient safety margin. 

  

13 Cell overvoltage protection limits are provided for the BMS.   

14 Operation of the cell balancing for the BMS is provided.   

15 
The battery operates when over-voltage limits are reached for the BMS are 
provided. 

  

 

 

2.3.2 Mechanical requirements of the electric vehicle 

The vehicle was designed by the PLMCC group and the chassis/frame was constructed by 

Mechanical Engineering students. A simulation done by the PLMCC team of the car 

determined that 1.4 kW of mechanical power was required from the electrical motors at a speed 

of 60 km/h. Figure 2-6 shows a virtual image of the vehicle design. 
 

 

 
Figure 2-6: The urban concept battery electrical vehicle being designed by the CPUT 

 

 

The chassis was also designed in order to achieve optimal aero-dynamic efficiency, while still 

being rigid and lightweight (in order to comply with the shell eco-marathon strict specifications). 

Further investigations by the PLMCC found the following values for the EV.  
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The aerodynamic drag coefficient was found to be Cd = 0.4 and the characteristic frontal area 

was A = 1.15 m2 for the CPUT EV. A simulation of this can be seen in Figure 2-7. 

 

 

Figure 2-7: A screenshot of the EV chassis design simulation 

For the purpose of this research, the focus was on the design of the vehicle’s electric system. 

This included selection, design and development of the motors and motor drives for the vehicle, 

the batteries and the BMS as well as the auxiliary systems which would include, the lights, 

indicators, wiper units, measuring equipment, etc. 

 

2.3.3 Forces acting on an EV 

There are many factors which influence the efficiency of the EV and in order to calculate the 

efficiency of the entire drive train, the power and force required to propel the EV needed to be 

calculated. There were three major forces that we needed to consider before determining the 

forward motion of the EV, namely aerodynamic drag, rolling resistance and climbing 

resistance. These forces are illustrated in Figure 2-3 (Strickland, 1993). 

Figure 2-8 shows the forces acting on a vehicle in motion, where Ft is the tractive force 

measured in Newton (N), Fa the aerodynamic drag (N), Fr the rolling resistance force (N), Fg is 

the climbing resistance force (N) and  is the road angle (measured in radians). 
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Figure 2-8: Forces acting on an EV (Grunditz & Jansson, 2009) 

 

2.3.3.1 Speed 

In order to calculate the speed of the vehicle, it was necessary to know the distance travelled 

and the time taken to travel this distance (Rae, 2005): 

 

݀݁݁݌ܵ ൌ
஽௜௦௧௔௡௖௘

்௜௠௘
  (1) 

 

2.3.3.2 Acceleration 

To calculate the acceleration of the EV, it is a change in speed divided by the change in time 

(KirkPatrick & Francis, 2010). 

 

݊݋݅ݐܽݎ݈݁݁ܿܿܣ ൌ
∆௦௣௘௘ௗ

∆௧௜௠௘
  (2) 

 

2.3.3.3 Climbing force 

As a vehicle moves up or down an incline or decline, the weight of the vehicle creates a 

downward directed force. When travelling up an incline, this force opposes the motion and 

when travelling down a decline, this force contributes to the motion. The climbing resistance 

force is given by (Grunditz & Jansson, 2009): 

 

௖௟௜௠௕ܨ 	ൌ ݉ ൈ ݃ ൈ sin	ሺߙሻ  (3) 

Where: 

݉ = Mass of the vehicle (kg)   

݃ = Gravitational constant (m/s2)    

 Road angle (rad) = ߙ

The gravitational constant is g = 9.807 m/s2 (Grassmann, 1971). 
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2.3.3.4 Aerodynamic force 

The force which opposes the forward motion of the vehicle as a result of air drag, consists 

predominantly of shape drag and skin friction. As the vehicle moves, an area of high air 

pressure at the front of the vehicle and an area of low air pressure at the rear of the vehicle is 

generated. These two areas will oppose the motion of the vehicle and the resultant force on 

the vehicle is termed “shape drag”. “Skin friction” is generated due to the fact that air molecules 

travelling at different speeds produce friction. This means that, because the speed of the air 

close to the vehicle is nearly equal to the vehicle speed and the air further away from the 

vehicle is substantially slower, friction will be produced. From the equation below (for drag 

force) it can be seen that the aerodynamic forces become much more significant as the vehicle 

speed increases (Giordano, 2009) (Grunditz & Jansson, 2009). 

 

ௗ௥௔௚ܨ ൌ
ଵ

ଶ
ൈ ߜ ൈ ௗܥ ൈ ܣ ൈ  ଶ  (4)ݒ

Where: 

 Air density (kg/m3) = ߜ

    ௗ = Aerodynamic drag coefficientܥ

 Characteristic frontal area (m2) = ܣ

  Velocity of the vehicle (m/s) =	ݒ

 

Air density at sea level is typically 1.225= ߜ kg/m3 (Kreith & Yogi Goswami, 2007); the 

aerodynamic drag coefficient was found to be ܥௗ = 0.400 according to our PLMCC simulation 

and the characteristic frontal area was 1.150 = ܣ m2 as previously mentioned. 

 

2.3.3.5 Rolling force 

The biggest contributor to rolling resistance of tyres on a hard surface is hysteresis. When the 

carcass of a tyre is deformed or degraded, this results in an asymmetrical distribution of ground 

reaction forces, causing hysteresis to arise. Other factors which may influence the rolling 

resistance are friction between the tyre and the road, as well as, circulating air in the tyre itself. 

The rolling resistance force is given by the equation (Benenson, et al., 2000)(Grunditz & 

Jansson, 2009): 

 

௥௢௟௟ܨ 	ൌ C௥	 ൈ ݉ ൈ ݃   (5) 

Where: 

C௥	= Friction constant   
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The friction constant was calculated to be C௥	 = 0.010. This is the typical value for the tyres 

used for the CPUT EV. The total mass of the EV was measured at 205 kg with a minimum 

driver weight of 70 kg, according to the rules of the Shell Eco-marathon (Shell Eco-marathon, 

2016). 

 

The friction constant (C௥	) is greatly influenced by parameters like tyre material, structure, 

temperature, and pressure, as well as, tread geometry, road surface roughness, road surface 

material and the presence or absence of liquids on the road surface (Grunditz & Jansson, 

2009). 

 

2.3.3.6 Acceleration force 

The acceleration force can be described as the total tractive effort of the vehicle minus the sum 

of the forces which oppose the vehicles motion. The acceleration force is given by the equation 

(Benenson, et al., 2000)(Grunditz & Jansson, 2009): 

௔௖௖ܨ 	ൌ ݉ ൈ ܽ  (6) 

Where: 

ܽ = Acceleration of the vehicle (m/s2) 

 

The aerodynamic drag, the rolling force, the climbing force and the acceleration force have all 

been now defined.  The power for each can now be calculated based on force and speed. 

Work equals force times distance as indicated in the equation (Strang, 1991): 

 

ܹ ൌ ܨ ൈ ݀  (7) 

Where: 

ܹ = Work (Nm or J)  

 Force (N) = ܨ

݀ = Distance travelled (m) 

 

The equation for power can be written as follows, assuming that the force acts along the 

direction of travel (Newman, 2008). 

ܲ ൌ
ௐ

௧
ൌ

ிൈௗ

௧
   (8) 

Where: 

ܲ = Power 

 Time taken (s) = ݐ
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The objects speed, ݒ is 
ௗ

௧
, so the equation becomes (Newman, 2008): 

 

ܲ ൌ
ௐ

௧
ൌ

ிൈௗ

௧
ൌ ܨ ൈ  (9)  ݒ

 

However, you have to take acceleration into consideration when you apply a force, so the 

equation must be written in terms of average power and average speed (Newman, 2008). 

 

തܲ ൌ ܨ ൈ  (10)   ݒ̅

Where: 

തܲ = Power (W) 

 Force (N) = ܨ

 .Average speed and can be calculated from the formula (Newman, 2008) = ݒ̅

 

ݒ̅ ൌ
௩೔ା௩೑
ଶ

   (11) 

Where: 

 ௜ = Starting speed (m/s)ݒ

 ௙ = Ending speed (m/s)ݒ

 

The ending speed can be calculated from the equation (Newman, 2008). 

 

௙ݒ ൌ ௜ݒ ൅  (12)   ݐܽ

 

Alternatively, the average power can also be calculated by work divided by time (Newman, 

2008). 

തܲ ൌ
ௐ

௧
    (13) 

The work done by the car is the difference in kinetic energy in the beginning and in the end. 

This is represented by (Newman, 2008): 

 

ܹ ൌ ௙ܧܭ െ  ௜  (14)ܧܭ

Where: 

 ௜ = Kinetic energy in the beginning (0J)ܧܭ

 :௙ = Kinetic energy at the end, which can be calculated for the formula (Newman, 2008)ܧܭ
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௙ܧܭ         ൌ
ଵ

ଶ
௙ݒ݉

ଶ  (15) 

Where: 

 ௙ = Ending speed (m/s)ݒ

 

2.3.3.7 Chassis 

There are specific safety regulations for the chassis being constructed for the competition. 

Aspects such as the roll bar being able to withstand a static load of 700 N applied in a horizontal 

or perpendicular direction, without deforming is one of the concerns regarding the chassis 

(Shell, 2013). 

 

2.3.3.8 Vehicle design 

Stringent factors such as aerodynamic appendages, vehicle interior, vehicle body and wheels, 

luggage space, towing hook, mechanical parts, vehicle access, windscreen and wiper(s) 

requirements will be considered in the design of the Urban Concept vehicle (Shell, 2013). 

 

2.4 Electrical systems 

For the purpose of this competition and research a battery electric UrbanConcept vehicle was 

designed. This battery electric vehicle can only utilize two Lithium-Ion battery packs, one for 

vehicle propulsion and one for accessories such as safety devices namely lights, wiper(s), 

horn, etc.  

There are also other accessories such as ignition, starter motor, communication systems, GPS 

system, data loggers and ventilation/cooling of the driver than needs to be developed (Grudic, 

2008) but for the purpose of this research only the power train was developed. 

There are various components of the EV that needed to be considered, namely the motors 

being used, the batteries and BMS and the various subsystems. The EV being developed by 

the CPUT consists of the following main sub-systems; chassis (purely mechanical), electric 

motor, power stage (motor drive), batteries, a BMS and a control stage (control mechanism for 

the power stage). Figure 2-9 shows a typical block diagram for an EV.  

 

The main aspects of the EV are the electric motor, the battery bank and the power converter. 

These are discussed in the sections to follow (Husain, 2011). 
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Figure 2-9: Typical block diagram for a battery powered EV (Husain, 2011) 
 

2.4.1 Electric motors 

The criterion for the motor is that it must be efficient, reliable and suitably priced in that the 

motor should be above 60% efficient and cost not more than R1500 (within the project budget). 

Three motors were considered, namely the permanent magnet, squirrel cage and reluctance 

motors. Each motor have its own advantages and disadvantages. 

2.4.1.1 Permanent magnet motors 

Permanent magnet motors are very simple in construction; they have no commutator or slip 

rings, making for easy maintenance. These motors are high in cost and are moderately reliable. 

Their small air gap is, however, a huge drawback and the possibility of cracking rotor bars due 

to hot spots always remains an issue. Compared to synchronous motors these motors also 

have a higher efficiency (Gieras, 2010). 

 

2.4.1.2 Squirrel cage induction motors 

The squirrel cage induction motor is one of the most commonly used motors in industry and is 

very robust. In these motors, the slots are partially closed and the windings consist of 

embedded copper bars to which the short circuit rings are brazed, hence leading to the name 

“squirrel cage motor”. Squirrel cage motors are extremely low cost and very rigid and robust in 

construction. These motors are able to operate in the harshest of conditions and take much 

abuse (Rajput, 2005). 

 

2.4.1.3 Reluctance motors 

Reluctance motors are unique, in that, their mechanical output power and overall performance 

is fairly good in comparison to their maintenance and operating costs. Many timing devices, 

which require a constant speed characteristic, make use of this type of motor (Gupta, 2010). 
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2.4.1.4 Motor selection 
A comparison of the three motors considered is shown in Table 2-2. The selection of the motor 

was based on the following criteria; must be low priced (within the project budget and not more 

than R1500), have an efficiency above 60%, good reliability, light weight and must be available 

in South Africa. 

 

 
Table 2-2: Motor comparison (Hashernnia & Asaei, 2008) 

 
 

 

 

 

 

 

 

 

 

From Table 2-2, it is clear that the permanent magnet motor was the best solution for an 

economical race with its high efficiency and light weight; however, it is very expensive. The 

reluctance motor was also a good option, but is not readily available in South Africa, at an 

affordable price.  

 

The squirrel cage motor was selected as it is readily available, at an affordable price and has 

a better reliability than the other two. The objective is to complete the race within the allotted 

time. 

 

A battery voltage of 38 V DC nominal was selected due to limitations of the BMS available at 

the CPUT. This means a three phase squirrel cage motor needed to work from a 38 V DC 

power source. A three phase squirrel cage motor with such a low operating voltage was 

virtually impossible to find.  It made sense to use a “currently off the shelf” (COTS) 380 V motor 

and re-wind it to operate from this low voltage as this motor was within the R1500 budget and  

produces an efficiency of 70%. 

  

  
Permanent 
Magnet Motor

Squirrel Cage  
Motor

Reluctance  Motor 

Cost High Low Moderate 

Efficiency High Moderate Moderate 

Power Density High Moderate Moderate 

Controllability Moderate High Low 

Reliability Moderate High High 

Availability Moderate Abundant Rare in RSA 
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2.4.1.5 Rewinding the motor 
In rewinding the motor, the windings were not duplicated, but the number of turns were 

changed in order to allow the motor to operate on a three phase, 23 V alternating current (AC) 

voltage. 

A method of increasing the motors efficiency is to increase the copper cross-sectional area as 

much as is possible, as well as, keep the end turns as short as is possible. In some cases, 

however, the coil extension is crucial for rapid heat dissipation. This means, if it is too short, it 

may lead to an increase in winding temperature, and thereby increase the copper (I2R) losses 

(Electrical Apparatus Service Association, Inc., 2003). 

 

The voltage which is applied to each of the phases (of the motor) is opposed by and nearly 

equivalent to the back electromotive force (EMF). The back EMF can be described as the 

induced voltage in a coil, due to the conductors cutting field magnetic lines of flux (Electrical 

Apparatus Service Association, Inc., 2003). 

 

Back EMF is expressed by the following formula (Electrical Apparatus Service Association, 

Inc., 2003): 

ܧ ൌ 4.44 ൈ ݂ ൈ ܰ ൈ ܨ ൈ ݀ܭ ൈ  (16)  ݌ܭ

Where: 

 Back EMF per phase (V) = ܧ

݂ = Frequency (Hz) 

ܰ = Number of series turns/phase 

 Magnetic flux/pole (Wb) = ܨ

        Winding distribution factor = ݀ܭ

 Winding pitch factor (Electrical Apparatus Service Association, Inc., 2003) = ݌ܭ

 

This means ݀ܭ  and ݌ܭ must be optimised in order to ensure that fundamental EMF’s per coil 

are maximized and harmonic EMF’s minimized (Electrical Apparatus Service Association, Inc., 

2003). Efficiency is the measure of how much electrical input energy a motor can convert into 

useful mechanical work versus how much energy is wasted (due to losses). Losses are wasted 

energy, most of which is dissipated as heat. Losses comprise of: stator winding losses, stator 

core losses, rotor losses, and stray-load losses - see Figure 2-10: Typical distribution of losses 

(Electrical Apparatus Service Association, Inc., 2003). 
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Figure 2-10: Typical distribution of losses (Electrical Apparatus Service Association, Inc., 2003) 

 
Since majority of the wasted energy is dissipated as heat, it is clear that less heat means better 

efficiency. There are many ways to reduce heat loss in a new motor design, but for rewinding, 

adding more copper to windings in order to increase slot fill can reduce the copper losses. This 

change aids in lowering the winding temperature, and hence permits the use of smaller fans. 

A smaller fan will reduce the amount of power used to drive the fan and therefore increase 

efficiency. When current flows through a conductor, I2R losses are incurred (in the form of 

heat). For the same amount of current, using a larger conductor will generate less heat than a 

smaller conductor. The amount of copper in a motor is determined by the cross-sectional area 

of the paralleled conductors. This quantity is based on current density and the unit is termed 

as amperes per mm2. Generally, lower current density results in lower I2R losses, therefore, 

where it is practical, it is preferable to use a conductor with less wires and a larger cross-

sectional area, instead of more wires and a smaller cross-sectional area (Electrical Apparatus 

Service Association, Inc., 2003). 

2.4.2 Motor control options 
Induction motors, when coupled to a mains supply, can only run at their rated (nameplate) 

speed. With the EV application, as in many other applications, the ability to vary the motor 

speed was essential (Parekh, 2009). 

 

With growing technology and a reduction in natural resources, an efficient and effective way 

of driving and controlling motors has become a major concern. In the past inefficient 

mechanical motor drives and control systems, such as mechanical transmission systems 

which were mechanically coupled to the motors and differential drives were utilised (Emadi, 

2005). 
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With great technological advancements in semiconductor technology today, these inefficient 

drives may be replaced with semiconductor based motor drive and control solutions. The 

electronic motor drive, which is the power stage, is discussed in this section (Parekh, 2009). 

 

A motor-drive, also known as a variable frequency drive (VFD) or a variable speed drive (VSD), 

is an device used to control the speed and torque of an electric motor by varying the applied 

voltage and frequency to the motor in a locked or fix ratio. Controlling a motor drive can be 

anything from a potentiometer to a more advanced foot-pedal which is controlled by a human 

and/or a control display or dashboard in the EV (Yardley & Stace, 2008). 

 

This form of control is termed “human interface”. By varying the human interface, the control 

circuit determines “how much power‟ is required from the user and delivered to the motor(s) 

via the motor-drive. Figure 2-11 depicts a block diagram of the essential components in an EV, 

together with the human interface (Brain, 2001).  

 

 
Figure 2-11: A typical control system block diagram for an EV controlled by a human interface 

(Brain, 2001). 
 

The selection of a motor-drive was determined by the specific needs of the motor(s) to be 

driven.  The motor-drive selection depended on: 

 The type of motor(s),  

 The amount of motors to be driven,  

 Whether a variable speed or constant speed is required, and 

 The size or power rating of the motor(s).  

 

 



   

   22 

 

A block diagram showing a control stage and a power stage of a motor-drive for a three phase 

induction machine is illustrated in Figure 2-12 (Freescale, 2016). The purpose of the power 

stage is to produce a sinusoidal three phase waveform for the three phase motor. The pulse 

width modulator (PWM) controls the speed of the motor while the micro control unit (MCU) or 

digital signal controller (DSC) lowers the power consumption used by the motor. The analogue-

to-digital convertors convert the sinusoidal analogue signal from the power stage driver to a 

digital signal and provides feedback. 

 

 
Figure 2-12: A three phase AC induction machine voltage/frequency open loop control  

(Freescale, 2016) 
 

A typical three phase inverter bridge (variable speed drive) can have an efficiency of between 

ninety five percent and ninety eight percent. This typical value should be similar for both a 

designed system and a COTS system (Novak, 2016).  

  

2.4.2.1 Different topologies available in industry 

As this research is on a three phase, alternating current (AC) induction machine (IM), direct 

current (DC) motor-controllers will not be discussed in detail but only mentioned if and when 

applicable.  

 

According to Rockwell Automation, a leading VFD/VSD manufacturer, if a motor is run at eighty 

percent of full speed, a saving of up to fifty percent in energy can be made.  
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This is a major saving regardless of what industry this is implemented in (CMI, 2009). Early 

motor-control consists of manually changing the pole connection on the motor if a different 

speed is required; this is very labor intensive and not very practical or economical. The 

Microchip designs flow-chart (Figure 2-13) has most of the drive topologies that is implemented 

in industry (Microchip, 2016). 

 
 

 
Figure 2-13: Motor-drive topology flow-chart (Microchip, 2016) 

 
Open loop scalar or voltage/frequency control is the most common for cost effective solutions 

in industry (Rashid, 2011). The voltage and frequency applied to the motor is always in a 

specific ratio to each other. As the voltage or frequency increases, so does the revolutions per 

minute (RPM). The problem with this kind of control is that all AC IM have slip, so under hard 

acceleration or high and sudden torque conditions the motor will have more slip than normal, 

thus not operating at precisely the speed the controller is instructing it to operate at (ABB 

Webinar, 2014). 

 

Some of the advantages of this type of control are listed below: 

 The motor can be operated in both directions with fast torque response.  

 This topology is the most cost effective.  
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 It is ideal for low speed control.  

 It has a high efficiency. 

 It has precise speed control.  

 It works well on motors with unstable parameters (Freescale semiconductor, 2016). 

 

To overcome the problem of slip; several forms of feedback can be implemented to monitor 

the actual speed of the rotor, some more accurate than others. A form of feedback in a closed 

loop system is that there is an encoder on the accessory side of the motor that counts the 

RPM’s of the shaft and compares it to the pre-set value of the human interface. If the controller 

detects that the shaft has deviated too much from the requested speed it will either increase 

or decrease the speed (Ranka, et al., 2010). 

 

Other forms of feedback include - hall-effect sensors, rotary encoders, current sensing on two 

of the phases and velocity sensing. The more sophisticated the feedback function, the more 

efficient is the drive and subsequently the more expensive it becomes (ABB Webinar, 2014). 

 

Some of the advantages of feedback control are listed below (Freescale semiconductor, 

2016). 

 It is very accurate and precise speed and torque control. 

 This topology is ideal for high end control. 

 It has a high efficiency. 

 

For the motor and motor drive requirements of the EV for the Shell Eco-Marathon, the precise 

rotor position is not critical, thus the more expensive and advanced closed loop topologies will 

not be implemented. Focus will be set on acquiring a linear torque curve and a form of feedback 

to reduce the chances of rotor lockup under heavy load. 

 

2.4.2.2 Control stage options for the motor drive 

The primary purpose of the control stage is to provide PWM signals to control the six switches 

of the power stage. At the same time, the control strategy must be implemented, which will 

allow the speed of the motor to be varied, and subsequently allow the EV to vary its speed. 

There is an endless amount of platforms which can be used to provide this type of control, but 

only two, namely field programmable gate array (FPGA’s) and microcontrollers are discussed 

in this section. Additionally, the various control strategy options are also discussed. 
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2.4.2.3 FPGA’s 

The FPGA is a semi-conductor device which can be programmed post manufacturing. What 

makes FPGA’s so special is that they can be utilised to implement any logical function that an 

application specific integrated circuit (IC) can perform, but with the difference that they have 

the ability to be reprogrammed after implementation (Soni & Shah, 2011).  

 

Modern day FPGA’s comprise of various mixes of configurable static random access memory 

(SRAM), high-speed transceivers, high-speed inputs/outputs (I/O’s), logic blocks, and routing. 

FPGA’s contain programmable logic components, namely logic elements, as well as many 

levels of reconfigurable interconnects that make provision for the physical connection of logic 

elements. Logic elements can be used to perform any functions from simple logic gates to 

highly complex combinational functions. In majority of the modern FPGA’s, the logic blocks 

also possess memory elements (Soni & Shah, 2011). 

 

2.4.2.4 Microcontroller unit (MCU) 

A MCU is a small computer on a single integrated circuit, which contains a processor core, 

memory, as well as, programmable I/O peripherals. MCU’s are designed for embedded 

applications, which makes them quite different from the microprocessors used in personal 

computers or any other general purpose applications (Barry Davies, 2016). 

 

MCU’s have many uses, some of which include: engine control systems, implantable medical 

devices, remote controls, and power tools, etc. MCU’s greatly reduce the size and cost, 

compared to designs using separate microprocessors, memory and I/O devices. They make 

the digital control of devices and processes extremely economically viable. Many MCU’s have 

analog components incorporated, in order to facilitate the control of non-digital electronic 

systems (Barry Davies, 2016). An advantage of FPGA’s is that they are extremely configurable 

and the pins are even swappable (StackElectronix, 2016). Table 2-3 shows a table that 

compares FPGA’s and microcontrollers. 
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Table 2-3: FPGA's vs. microcontrollers (Rajewski, 2017) 

 

 

The different microcontroller options are listed and compared in Table 2-4. 

 

 

Table 2-4: Microcontroller options (Microchip, 2013) (Atmel, 2016) (Texas Instruments, 2017) 
(Microchip, 2011) 

Microcontroller Options 

 PIC16F737 AT90PWM3 TMS320F28232 dsPIC30F2010 

Cost 
R54 (excluding 
development 
board) 

R38 (excluding 
development 
board)

R240 (excluding 
development 
board)

R60 (excluding 
development 
board) 

Program 
memory 
(Bytes) 

4096 16000 16000 12000 

I/O's 25 19 88 28 

SRAM (Bytes) 368 1024 34k 12k 

Interrupts 16 4 58 32 

SPI Yes Yes Yes Yes 

Timers 3 2 17 3 

Comparators 2 2 0 4 

Lead Time 6 days 6 days ± 1 week 3 days 
 

 

Due to the low cost, the amount of I/O’s, comparators, and timers, the PIC16F737 was found 

to be one of the best suited packages for this application. The dsPIC30F2010 was also looked 

at as a second option in a microcontroller for the EV. 

 

FPGA's vs. Microcontrollers 

 FPGA Microcontroller 

Cost ±R6000 ±R3000 (incl. Development Board) 

Processing power Excellent Sufficient (for this application) 

Multi-tasking ability Excellent Not Possible 

Speed Very Fast Sufficient (for this application) 

Expansion capability Infinite Limited 

Reconfiguration Infinite Limited 

Setup Complicated Simple 
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2.4.3 Control strategy 

Selecting the correct control strategy was critical, as it controls the motors speed, and has the 

ability to improve the motors steady state and dynamic characteristics. Additionally, utilizing a 

good control strategy can even bring down the systems average energy consumption. These 

characteristics were imperative for the EV application (Parekh, 2009). 

  

2.4.3.1 Voltage source inverter (VSI) control 

A few disadvantages associated with VSI control: 

 There is a decreasing power factor with decreasing speed. 

 It has induced harmonics. 

 "Cogging" (jerky start/stop motion) may occur (Singh & Khanchandani, 2007) 

 
These characteristics make this method undesirable for the EV application. 

 

2.4.3.2 Current source inverter (CSI) control 

Disadvantages associated with CSI control (Turkel, 2016): 

 There are large power harmonics generated back into the power source. 

 “Cogging” occurs below 6 Hz due to a square wave output. 

 Needs to make use of large and costly inductors. 

 There are high voltage spikes to motor windings. 

 They are load dependent. 

 They have poor input power factor. 

 

Once again, these characteristics make this method undesirable for the EV application. 

 

2.4.3.3 Voltage frequency (VF) control 

Voltage frequency (VF) control consists of the generation of a variable frequency supply, which 

possesses a constant voltage to frequency ratio. VF control is well suited for a variety of motor 

drive applications, where it is required to vary motor speed and control the motor as efficiently 

as possible. Additionally, VF control is very simple to implement and at a low cost. After some 

research, it was found that the PIC16F7X7 series of microcontrollers were ideal for the 

application of the VF control strategy. Due to the fact that these microcontrollers have three 

hardware PWM modules, made them quite suitable for three phase motor control applications. 

For this reason the VF control strategy was chosen (Parekh, 2009). 
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In this section only the most important points of VF control will be highlighted, as an in depth 

discussion of induction motor control theory is beyond the scope of this study. The base speed 

of an induction motor is directly proportional to the frequency of the supply and the motors 

number of poles. The number of poles for the motor is fixed; therefore the best method of 

speed variation is to vary the frequency of the supply. The induction motor’s torque which is 

developed is directly proportional to the ratio of the voltage applied and the supply frequency. 

With the variation of the voltage and frequency (while maintaining a constant ratio between 

them), the torque developed may be kept at a constant value, throughout the speed range.  

 

This is precisely what the VF control strategy attempts to achieve. The typical torque-speed 

characteristic curve of an induction motor, which is supplied directly from the mains supply, is 

shown in Figure 2-14. Figure 2-15 illustrates what the torque-speed characteristic curve looks 

like with the use of VF control (Parekh, 2009): 

 

 
Figure 2-14: Typical torque-speed characteristics of an induction motor (Parekh, 2009) 
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Figure 2-15: Torque-speed characteristics of an induction motor with VF control (Parekh, 2009) 
 

In addition to the variation of speed, the torque-speed characteristics of the induction motor 

with VF control illustrates the following (Parekh, 2009): 

 

• The required starting current is lower. 

• There is an increase in the size of the stable operating region. The motor can run from five 

percent of the synchronous speed (NS) up to the base speed (NB), instead of just running 

at its base speed. The torque generated can also be kept constant throughout this region. 

• The voltage and frequency reach the rated values at the base speed. The motor can be 

driven beyond this base speed by increasing the frequency. The applied voltage may not, 

however, be increased beyond the rated voltage level. This means only the frequency is 

able to be increased, resulting in the reduction of torque. 

• By changing the supply frequency, with respect to time, the acceleration and deceleration 

of the motor can be controlled. 

 

2.4.3.4 Basic control technique 

The PIC16F7X7 series of microcontrollers have three 10-bit PWMs in the hardware. The duty 

cycle of each PWM has the ability to be varied independently in order to generate a three 

phase AC waveform. 
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In order to derive a varying three phase AC voltage from the DC bus, the PWM outputs are 

required to control the six switches of the power stage. This can be achieved by coupling the 

PWM outputs to the MOSFET gate drivers of the power stage. Of the six signals fed to the 

gate drivers, there are three pairs (one for each phase); each pair has one signal switching the 

upper switch and one signal switching the lower switch (Parekh, 2009). 

 

A reference voltage input can be used to vary the motor frequency. The microcontroller then 

uses the analogue-to-digital-converter (ADC) results to calculate the PWM duty cycle and thus 

determines the necessary output frequency and amplitude of the supply to the motor (Parekh, 

2009), 

 

2.4.4 Batteries 

The batteries are a critical part for any off-grid power system. Car batteries are designed for 

an entirely different purpose. They must be long lasting for a long run. The long-time standard 

batteries for this project are Lithium-polymer rechargeable batteries. These are approximately 

3.7 V (nominal) (see Appendix E). 

For the Shell Eco-Marathon rules and regulations; only Lithium type batteries may be used for 

the main storage system, with a maximum voltage of 60 V (Shell, 2013).  

Lithium-Ion batteries use a carbon anode, metal oxide cathode, and a Lithium salt electrolyte 

solution. They have excellent energy density and capacity.  They are also very commonly used 

in portable consumer electronics, such as cell phones and laptops (Buchmann, 2014) and are 

mostly used for electric vehicles as a source of energy. The Lithium air battery can be one of 

the most suitable advanced energy sources for an electric vehicle, as they have a high energy 

density due to light materials as active materials (Buchmann, 2014). 

Table 2-5 below shows the main types of Lithium-Ion batteries with their typical uses and 

chemistries (Pistoia, 2014). 

 

 

Table 2-5: Primary Lithium-ion battery chemistries and their uses (Pistoia, 2014) 

Chemical Name Material Abbreviation Application 

Lithium Cobalt Oxide LiCoO2 (60 % Co) LCO 
Cell Phone, Laptop, 
Camera 

Lithium Manganese Oxide LiMn2O4 LMO 
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Lithium-Ion Phosphate LiFePO4 LFP 

Power tools, e-bikes, EV, 

medical, hobbyist. 

Lithium Nickel Manganese 

Cobalt Oxide 

LiNiMnCoO2 (10-20 

% Co) 
NMC 

Lithium Nickel Cobalt 

Aluminium Oxide 
LiNiCoAlO2 

NCA 

 

Lithium Titanate Li4Ti5O12 LTO 
Gaining importance in 
electric powertrain and grid 
storage. 

 

 

2.4.5 Battery management system (BMS) 

The very first BMS introduced was by a company called Albercorp in 1979. Since then research 

have shed light on how and why batteries fail. Major improvements in BMS’s happened during 

the years. A BMS is used to ensure that the batteries are kept within their operating voltage 

and temperature range stated by the manufacturer during operation (Alber & Leissle, 2000). A 

BMS is an electronic system that monitors and protects the battery. It also estimates the state 

of the battery in order to maximize the batteries performance and reports to the user or an 

external device (Andrea, 2010). A battery pack built together with a battery management 

system with an external communication data bus is a smart battery pack (Bergveld, 2001).  

The main function of a BMS is to ensure maximum efficiency energy supply to a portable 

product and the risk damage to be prevented (Pop, et al., 2008). 

 

 
Figure 2-16: General architecture of a BMS (Pop, et al., 2008) 
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The purpose of the power module is to charge the battery by converting electrical energy from 

the mains into electrical energy suitable for charging the battery/ A protection integrated circuit 

(IC) connected in series with the battery is generally needed for Lithium-ion batteries. The 

reason for this is that battery suppliers are particularly concerned about safety issues due to 

liability risks. The battery voltage, current and temperature have to be monitored and the 

protection IC ensures that the battery is never operated under unsafe conditions. The DC/DC 

converter is used to efficiently condition the unregulated battery voltage for compatibility with 

stringent load requirements. The task of the load is to convert the electrical energy supplied by 

the battery into an energy form that will fulfil the load’s function, such as mechanical energy, 

light, sound, heat, EM radiation, etc. The battery status can be indicated in one light emitting 

diode (LED) or several such diodes. This indicates the battery’s state of charge (SOC) and 

condition. The processor is used to run the battery management software. Communication 

between the BMS and other devices is another important task of the BMS (Pop, et al., 2008). 

 

In multi-cell battery packs, small differences between cells due to production tolerance or 

operating tend to be magnified with each other’s charge and discharge. Weaker cells become 

overstressed during charging causing them to become even weaker, until they eventually fail 

causing premature failure of the battery (Arendarik, 2016). 

 

Cell balancing is a way of compensating for weaker cells by equalizing the charge on all the 

cells in the chain and thus extending the battery life (Arendarik, 2016). As previously stated, 

the BMS is the heart and most critical component of the EV. It ensures the power source is 

operated safely and efficiently for its maximum lifespan. The most important features that the 

BMS needs to control and monitor are: 

 Cell protection - The individual cells in a battery pack must be prevented from operating 

outside their voltage and current ranges (Andrea, 2010) (Larminie & Lowry, 2012). 

 Charge Control - It is important that the cells are not overcharged as this is a definite way 

to destroy them fast. 

 State of Charge (SOC) determination - It is important to know the SOC of the battery at all 

times. Many applications require it including the human machine interface (HMI) (Andrea, 

2010) (Scrosati, et al., 2015). 

 Cell Balancing - Small imperfections between the batteries are magnified with each charge 

and discharge cycle, causing the individual cells in the battery to be at different SOC’s. To 

protect the cells the BMS must switch off charge or discharge when one cell is full or empty. 
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Thus to achieve maximum battery life it is necessary to regularly balance the individual cell’s 

SOC (Larminie & Lowry, 2012) (Sixto, et al., 2014). 

 Communications - These are necessary for reconfiguring the BMS and obtaining the 

information for the HMI’s or system level management. The data collected and calculated 

can be sent to external devices such as microcontrollers over wireless, serial 

communications, CAN bus or direct wiring (Sixto, et al., 2014). 

 

The BMS can also provide several other useful but not essential functions such as:  

 State of health (SOH) determination - The batteries remaining lifespan can be determined. 

This will indicate if it can supply its rated power output which is essential for emergency 

battery backup systems (Andrea, 2010) (Scrosati, et al., 2015). 

 History - A log can be kept of the batteries states. It is necessary for accurate SOH 

determination (Andrea, 2010) (Scrosati, et al., 2015). 

 Demand management - The BMS can take an active role in system tasks in order to 

maximize the battery life. It may also be necessary to switch non-essential components off 

in order to provide core features for as long as possible (Electropaedia, 2015) 

 Thermal management - The operating temperature is a significant parameter that 

determines the performance of the Lithium cells, likewise the voltage and current. The cell 

temperatures must be maintained within the safe operation area as appointed by the 

manufacturer at all times, by the BMS (Gross & Clark, 2011). 

 

To provide all of the above functions several IC’s are usually required, as there is no one 

solution that enables all of these features (Linear Technology, 2016). A loop of the functions 

required from a BMS by the rest of a typical EV system is shown in Figure 2-17. This requires 

a combination of analogue measurements and calculations (Plett, 2015). 

 

Figure 2-17: Battery management IC function loop (Plett, 2015) 
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2.4.6 Cell balancing 

2.4.6.1 Cell balancing techniques  

There are several ways to balance a Lithium-Ion battery pack depending on the charge and 

discharge profiles.  

 

2.4.6.2 Bottom balance  

A bottom balance is useful for applications in which the battery is often discharged to near its 

empty state. It is also a good idea to regularly perform a bottom balance as it may extend the 

batteries’ useful lifespan ( (Andrea, 2010). Performing a bottom balance requires monitoring 

the voltage of every cell in a series while discharging and opening a bypass path around each 

cell as it reaches its empty state (3.0 V for Lithium-Ion polymer). Once all the cells are stable 

at 3.0 V normal charging may commence (Andrea, 2010). 

 

2.4.6.3 Top balance  

When a set of series cells is charged the cells may charge at different rates depending on their 

age, the equivalent series circuit (ESR), and total capacity. In order to obtain the maximum 

available charge levels, the cell’s voltage must be equalized at their maximum charge level. 

This is done by opening a discharge path for individual cells in turn, dissipating some energy 

through an external resistor when a cell exceeds a defined voltage limit, once it drops below 

the limit charging resumes until all cells are at the same (maximum) voltage (Plett, 2015). This 

disadvantage of this balancing method is that it is a waste of energy and it requires high power 

resistors and thermal management. It may also take a long time depending on how unbalanced 

the cells are. This may be performed with low power high value resistors; however it will take 

even longer to reduce a cell’s voltage to within acceptable limits to resume charging (Plett, 

2015).  

This method may also be implemented even more passively by continuously shunting a low 

current past every cell; however this will drain the battery in a few days if operated continuously 

and will only balance the cells at a rate of around one percent per hour (Moore & Schneider, 

2001). 

 

2.4.6.4 Passive cell balancing  

In passive cell balancing, the excess energy of the highest SOC cells is converted into heat 

energy and dissipated, essentially wasting the excess energy of the highest SOC cell. There 

are several methods of doing this but the most common method is to use a resistor to convert 

the energy into heat. The main benefit of passive cell balancing is that it is less expensive than 

active cell balancing.  
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However, a disadvantage of this technique is that energy is wasted as it is converted into heat 

energy. It is also more time consuming dissipating the heat energy (Warner, 2015). 

 

2.4.6.5 Active cell balancing  

Active cell balancing is used for overcoming the drawbacks of passive cell balancing. The 

sample cells voltages are measured and then instead of choosing the lowest cell voltage as 

the base, the system takes the average of the instantaneous cell voltage (Bajpai & 

Chandrasekhar, 2016). Once this average is identified, the higher voltage cells are made to 

drain out their charges which are then transferred to the cells whose cell voltage value is lower 

than the average voltage value which has been calculated.  

This optimization technique is however more complex than the passive cell balancing 

technique and it uses a lot of power electronic components for switching and regulation 

processes. However, the power losses involved in active cell balancing are minimal. The only 

losses would be due to the presence of power electronic switches which, while their switching 

process produces loss of power in the form of heat. However, if proper zero voltage or zero 

current switching resonant circuits are implemented it will enable to reduce the switching losses 

thus making active cell balancing the most optimized technique (Bajpai & Chandrasekhar, 

2016). 

 

2.4.7 Choice selection of BMS  

The BMS also needed to provide extremely rapid response to changes in the battery condition 

to protect it from short circuits, or cell failure. Dedicated application specific integrated circuits 

(ASIC’s) are usually employed (NXP Products, 2016). A comparison is made between the 

BQ77PL900 and other BMS’s.  

 The BQ77PL900 - This device from Texas Instruments provides five to ten series cell 

support and has an inter-integrated circuit (I2C) communications interface (FET isolated). It 

employs Passive cell balancing (Appendix D). 

 The MC33771 - This BMS is from Freescale Semiconductor and provides fourteen series 

cell support and serial peripheral interface (SPI) communications (transformer isolated). 

Passive cell balancing is also a feature of this BMS (Freescale, 2016). 

 LTC3300-1 – It is an active balancing controller from Linear Technologies. This chip 

provides active balancing capabilities to a stack of up to six series Lithium-Ion cells. It is 

stackable allowing it to be expanded to support up to 1000 V of series cells. It employs 

synchronous fly-back balancing using inductors as charge storage elements to shuttle 

charge between adjacent cells. This IC does not provide full analog front end (AFE) or 
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battery protection however and thus will require a separate AFE to ensure safe operation. 

Additionally a large number of external components are required to perform the active 

balancing, including a field effect transistor (FET) for every cell as well as current sense 

resistors and snubber circuitry (Linear Technology Corporation, 2014). 

 

For this project the BQ77910AEVM circuit board is used as a BMS. The reason for selecting 

the BQ77910AEVM is that it allows for a stack of ten series battery cells multiplied by four 

stacks, which suited the needs of the battery pack developed. It also provides adequate over 

charge and over discharge, short circuit and overcurrent discharge. 

 

2.4.8 The human interface (HMI) 

The user interface, also known as a Human Machine Interface (HMI), consists of a user 

oriented display, containing information that will provide feedback to the user concerning the 

performance of the electric car subsystem’s throughout the race. Moreover, the system must 

be simple and must not contain any distracting and irrelevant information to the driver. The 

HMI must be designed in order to run and stop the EV (motor), as well as control its speed. 

The HMI must be fully compatible with, and able to interface with the control stage 

(D.Rozhdestvenskiy, et al., 2015). A typical HMI dashboard can be seen in Figure 2-18 (Digital 

Trends, 2015). 

 

 

Figure 2-18: A commercial EV dashboard (Digital Trends, 2015) 

 

HMI’s in EV’s are preferably implemented into dashboard formats (similar to internal 

combustion vehicles) with the system reflecting the current state of the vehicle at all times. 
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These dashboards are generally implemented by means of software with which processed 

data is obtained from input sources that interfaces with the EV’s battery pack, monitoring and 

protection systems of the BMS. The use of existent technologies such as smartphone’s apps, 

web portals and existent gadgets are also utilized to simplify the associated design (Larminie 

& Lowry, 2012) (Shahan, 2015). The idea is to use a potentiometer (variable resistor) in order 

to generate a reference voltage for the control stage speed input. A block diagram illustrating 

the idea can be seen in Error! Reference source not found.19. 

 
Figure 2-19: A human interface block diagram (Erjavec & Pickerill, 2015) 

 
The circuit operates as follows: The control stage supplies power to the potentiometer, which 

is mechanically linked to the throttle lever. As the throttle opens and closes, the potentiometer 

would vary its resistance and hence vary the output voltage signal to the control stage, which 

in turn varies the EV motor speed (Curtis Instruments, Inc., 2015). 

This means that: 

 Full throttle = Low Ω = Logic High control signal = full speed  

 Zero throttle = High Ω = Logic Low control signal = zero speed 

 
The run/stop button simply makes or breaks a Logic High signal to the control stage, which in 

turn switches the EV motor on and off. Three points are generally agreed upon as good 

practice for the overall design of the EV HMI: 

 The system is designed to support the driver and should not give rise to a potentially 

hazardous behavior by the driver or other road users.  

 The system is designed in such a way so that the allocation of driver attention to the system 

displays or controls remain compatible with the attentional demand of the driving situation.  

 The system is designed not to distract or visually entertain the driver (European 

Commission, 2010). 

 

The control system developed for the EV was designed for speed control.  
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Chapter Three  

Design specifications 

 

The design specifications are summarised in this chapter. Aspects of the vehicle such as the 

electrical specifications will be discussed. Also a block diagram of the entire system is 

described towards the end of chapter 3. 

 

The EV developed by CPUT consists of the following main electrical sub-systems; the 

batteries, the battery management system (BMS), an electric motor, a power stage (motor 

drive), a control stage (control mechanism for the power stage) and a human machine interface 

(HMI). These sub-systems are shown in Figure 3-1 (Grunditz & Jansson, 2009).  

 

 

Figure 3-1: System block diagram for the CPUT EV 

 
3.1 The EV motors 

Simulation done by the PLMCC team of the car determined that 1.4 kW of mechanical power 

would be required from the electrical motors to run at a constant speed of 60 km/h. To ensure 

reliability of the overall system a decision was made to use two three phase, 750 W, AC 

induction motors. An off the shelf motor could not be bought and used for the competition. The 

motor purchased was taken apart, calculations completed and the motor was rebuilt to meet 

the requirements of the competition and also be compatible with the BMS. The motor is driven 

by a three phase, AC input voltage of 23 V and it produces 750 W of mechanical power to the 

wheels of the vehicle. The motor was expected to be fifty to sixty percent efficient. The required 

electrical specification for this motor is summarised in Table 3-1. 

 
 
Table 3-1: EV motor characteristics 

Motor  Rating 

Power Output 750 W 

Line Current 30 A 

Line Voltage 23 V AC RMS 

Efficiency ±65 % 

Number of Poles 4 

Phase Configuration Star 
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Each motor required approximately 1200 W of electrical power due to the relatively low 

efficiency of the induction motor and was the design requirement for the VSD. 

 

3.2 The power (motor control or inverter) stage  

The function of the power (motor control or inverter) stage was to generate a three phase AC 

output voltage from the DC input of the BMS. This three phase output was then used to power 

the three phase AC induction motor. The power stage consists of six high power switches, 

which have a current rating higher than 30 A, and a voltage rating higher than 38 V DC. The 

high and low inputs to the power stage are compatible with the control stage, meaning they 

are able to be triggered by transistor–transistor logic (TTL) voltage level control signals (i.e. 0 

to 5 V DC signals). Ideally, the power stage was rated to power a 1200 W (or higher) load. This 

is to prevent the inverter from running at more than a hundred percent which could result in 

damage of the inverter. The power stage efficiency was expected to be above seventy percent. 

 

3.3 The control stage 

The primary purpose of the control stage was to provide PWM signals to control the six 

switches of the power stage. At the same time, it had to implement the control strategy, which 

allowed the motor to be switched on and off, and subsequently allow the EV to vary its speed. 

The run/stop and speed control inputs, had to be compatible with the logic voltage level output 

of the HMI. The six outputs of the control stage are PWM signals at TTL voltage levels i.e. 0 

to 15 V DC. Of these six signals, three are be fed to ‘HIGH INPUTS 1, 2 and 3’; these control 

the lower switches of each phase. For the motor drive, based on the motor specifications, the 

design of the motor drive is finalised as tabulated in Table 3-2. 

 

 

Table 3-2: EV motor drive characteristics 
Motor-Drive Aspect Rating 

Power Output 1200 W 

Maximum Current per Line 30 A AC 

Supply Voltage 38 V DC 

Line Voltage 23 V AC 

Efficiency (High as possible) ±90 % 

Number of Phases 3 

Speed Control Yes 

Speed Feedback No 
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3.4 The batteries 

The batteries selected for the CPUT EV are Lithium-Ion polymer (LiPO) batteries. The LiPO 

batteries were selected because they have the advantages of being smaller in size and lower 

in weight. They were also lower in cost and have a high specific energy (in watts per kg) (Fuhs, 

2009).  

 

3.5 The battery management system (BMS) 

The BMS for the CPUT EV is directly interactive with the following modules as seen in Figure 

3-2. 

Figure 3-2: A block diagram of the subsystems affiliated to the BMS 

The BMS provides at least 40 A at 38 V DC (nominal) to the input of the power stage. Due to 

competition rules and regulations, the BMS was bought off the shelf and adapted to the CPUT 

EV. It is for this reason that only the inputs/outputs were of concern for the purpose of this 

thesis. Designing and developing of the BMS was not part of the scope of this project. For the 

EV being designed, two BMS’s were looked at, namely the Texas Instruments BQ77910AEVM 

and the B77PL900. 

 
3.5.1 Microcontroller (BMS) 

The microcontroller should provide features such as data acquisition, sensor interfacing and 

facilitate upgrades for the vehicle. Three microcontrollers were looked at, namely Arduino, 

Raspberry pi and Microchip (Larminie & Lowry, 2012). 

 

3.5.2 Communication protocol 

It is standard that communication is established among the EV subsystems. Such exchange 

should be provided between the microcontrollers that will gather information from the battery 

and sensors and operate the dashboard of the vehicle. Serial communication was preferred 

over parallel for this application due the limited amount of I/O pins available from the available 

microcontrollers.  
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3.5.3 Sensors 

Various sensors were required by the EV such as current sensors, temperature sensors, speed 

sensors, etc.  

 

3.5.3.1 Current sensors 

There are numerous current sensors on the market which are invaluable to an electric vehicle. 

One of the many current sensors is the Hall Effect sensor. Typically these sensors have an 

accuracy of one percent. To achieve a high accuracy over a wide range, two current sensors 

were used measuring the same current. One sensor was to detect the low current and the 

other sensor for the high current. Their outputs were sent to a processor with an A/D converter, 

to select the appropriate sensor based on the level of the current measured (Andrea, 2010). 

 

The greatest advantage of Hall Effect current sensors is that they can measure either a DC or 

an AC current. However, the magnitude of the current that can be measured with the Hall 

Effect current sensor is less than that of an inductive current sensor (Mohanty, 2015) . They 

also have the added advantage of providing electrical isolation and they have a high reliability. 

They however require an external power supply (Hossain, et al., 2012). 

 

3.5.3.2 Temperature sensors 

Temperature sensors are important in measuring various temperature aspects of any electric 

vehicle. Temperature sensors are critical for Lithium-Ion batteries that may not be discharged 

outside a certain temperature range and more importantly not be charged outside an even 

tighter range. Temperature sensors are also incorporated as a warning system should any cell 

within the battery pack become particularly hot due to external or internal reasons. 

Temperature sensors were also be incorporated to detect whether or not a balancing load was 

working or not and the temperature of individual cells (Andrea, 2010). 

 

3.5.3.3 Speed sensors 

Speed measurement is vital for monitoring the speed of the EV motor. A speed sensor 

incorporated in the EV was the Hall Effect sensor. 
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3.6 Total expected efficiencies of electrical drive train 

Figure 3-3 is a block diagram of the expected efficiencies of the various parts of the EV drive 

train.  

 

Figure 3-3: Total system efficiency from sub components of the EV drive train. 

 

As seen in Figure 3.3, the expected efficiency of the BMS is 90 %, the expected efficiency of 

the motor controller 90 %, the expected efficiency of the motor 60 % and the expected 

efficiency of the gearing 90 %.The overall efficiency of the overall drive train is expected to be 

above 43% as opposed to an expected efficiency of above 60%, as stipulated in Chapter 1. 
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Chapter Four 

The EV motor and the motor control stage design 

4.1 The EV motors 

As previously mentioned, the motor selection for the EV was based on many factors such as 

cost, reliability, durability and efficiency. The squirrel cage, three phase induction motor was 

found to be the most cost effective motor to suit the purpose of the EV. Two Motorelli 750 W 

three phase, squirrel cage induction motors were purchased. One of these motors can be seen 

in Figure 4-1. The motor dimensions and original specifications can be viewed in Appendix A.  

  

 
Figure 4-1: The Motorelli three-phase, squirrel cage induction motor 

 

4.1.1 Disassembly of the motors 

Before any work could be completed on the motor, it was essential to record all the information 

about the motor before taking it apart. Information such as the frame type, current, voltage, 

power rating, torque and weight were recorded. This information was collected from the 

nameplate of the motor and is tabulated in Table 4-1. 

 

 

Table 4-1: Motor specifications 

 

 

 

Frame 
P 

(kW) 
Efficiency 

(%) 
PF 

Volts
(V) 

ƒ 
(Hz) 

Current
(A) 

Connection 
Speed 
(RPM) 

Torque 
(Nm) 

Weight 
(kg) 

1E802‐4  0.75  74.4  0.7 
230/
400 

50  3.4/2.0  Delta or Star  1380  5  16 
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The next step taken in the disassembly of the motor was to record the layout of the terminal 

box, how the end covers of the motors were attached to the main frame of the motor, the 

positioning of the various nut and bolts and the orientation of the covers. Figure 4-2 illustrates 

the terminal connections of the motor for both the star and delta connections of the motor. 

 

 
 

Figure 4-2: EV motor connections 
 

Once this was completed it was necessary to mark the orientation of the end covers. This was 

very necessary as the axle of the rotor rotates on bearings which are located inside these end 

covers. Misalignment of these covers could cause the rotor to run uneven which in turn could 

cause the rotor to shave against the stator. This could cause the motor to cease (Hill Publishing 

Company, 1945). 

Marking of the stator housing and the end covers is seen in Figure 4-3. This was done with a 

center punch and a small pilot hole being drilled for both end covers. 
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Figure 4-3: Stator frame and end covers being marked for alignment 

 
The end covers were then removed. To remove the “O-ring” from the fan, a combination ring 

pliers was used and a pulley-puller was used in order to remove the fan. After removing the 

fan, the stator could easily be removed from the rotor. Care however was taken in removing 

the rotor as any nick in the rotor from the stator housing could adversely affect the performance 

of the motor when reassembled. After removing the rotor from the stator housing it was 

necessary to start mapping the orientation of the windings of the stator and then removal of 

the windings from the slots of the stator. The following steps were taken in removing the 

windings from the stator slots. 

 
Figure 4-4: Various components of the stator 

 

1. The twenty-four slots within the stator were firstly marked with a permanent marker. This 

was done as a reference point when rewiring the slots. 

2. The lacing twine and the insulation were removed by means of side cutters. 
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3. The plastic slot retainers were carefully removed using long nose pliers. 

4. With the windings now slightly loose within the slots and the windings also not being 

heavily varnished, they were individually and carefully removed. The very first layer of 

windings was removed and the individual coils were labeled with regards to entry and exit 

points on the twenty-four stator slots. 

5. Once all the coils were removed for a single “phase”, the entry and return leads were 

labeled and then cut using side cutters. 

6. This process was repeated in removing each winding for the remaining two “phases”. 

7. In completing the removal of the three phase windings from the stator a scalpel was used 

to remove any remaining debris. Pure alcohol was also used to ensure that the entire 

stator was clean. 

 

 
Figure 4-5: A clean stator after removal of the windings 

 
The windings were then laid out according to their labels. This was done to make mapping of 

the windings easier. Figure 4-6 illustrates this. 

 



   

   47 

 

 
Figure 4-6: Original windings laid out for mapping 

 
The drawing in Figure 4-7 better illustrates the connections and the mapping of the windings. 

It also illustrates the entry and exit points of the various coils in the slots. 
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Figure 4-7: Layout of the windings removed from the stator 
 

From the layout of the windings it can be seen that there are three layers of windings which is 

indicative of three phases. These windings also spread over twenty four slots and there are 

four poles in the stator.  
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Each winding had 128 turns (coils) and the coil pitch extended over five slot pitches. The 

thickness of the conductors in each coil was 0.57 mm in diameter and had a cross sectional 

area of 0.26 mm2. 

4.1.2  Rewiring calculations for the stator windings 

For the new windings, the motor input voltage, the number of turns, the rated current and the 

cross-sectional area of the conductor to be used, needed to be calculated. In order to 

determine the new input voltage of the motor, the RMS line-line Output Voltage (Vl-l rms) from 

the power stage had to first be calculated based on a DC supply voltage (VDC) of 38V (Siddiqui, 

et al., 2015). 

V୪ି୪	୰୫ୱ ൌ 	ට
ଷ

ଶ
ൈ

୚ీి
ଶ
ൌ 0.612 ൈ Vୈେ  (17) 

Therefore:    V୪ି୪	୰୫ୱ ൌ 0.612 ൈ 38V ൌ 	23.271V 

The number of turns for the new motor could then be determined (Bird, 1995): 

 

୒భ
୒మ
ൌ

୚భ
୚మ

   (18) 

Therefore:   Nଶ ൌ
୒భ୚మ
୚భ

ൌ
ሺଵଶ଼ሻሺଶଷ.ଶ଻ଵ୚ሻ

ସ଴଴୚
ൌ  	ݏ݊ݎݑܶ	7.446

The new rated current could be determined (Bird, 1995): 

 

୍మ
୍భ
ൌ

୚భ
୚మ

  (19) 

Therefore:   Iଶ ൌ
୚భ୍భ
୚మ

ൌ
ሺସ଴଴୚ሻሺଶ୅ሻ

ଶଷ.ଶ଻ଵ୚
ൌ  	ܣ34.378

Similarly, the new conductor cross-sectional area could be determined (Pappano & Wier, 

2013): 

୅మ
୅భ
ൌ

୍మ
୍భ

  (20) 

Therefore:  Aଶ ൌ
୍మ
୍భ
ൈ	Aଵ ൌ

ସ଴଴

ଶଷ.ଶ଻ଵ
ൈ 	0.26 ൌ 4.469	݉݉ଶ

 

Therefore, the new conductor diameter:  

݀ଶ ൌ 	2.385	݉݉ 

Due to the small size of the slot entries, the following size conductor was used. 
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 4 x 1 mm diameter conductor each with a cross-sectional area of 0.79 mm2 - (connected in 

parallel). 

 This resulted in a total cross-sectional area of 3.14 mm2  less than required, however  

(Pappano & Wier, 2013),(Sengpiel, 2014), 

 The total current carrying capacity was 4 x 16 A  = 64 A (Lund, 2016) 

 

This meant that the total amount of copper would be less than the ideal 4.469 mm2, but it 

should still be able to operate sufficiently. Unfortunately, due to the small size of the slot 

entries, not much could be done about this, unless another motor was used. The total current 

carrying capacity was, however, more than sufficient and as a result of the reduced area an 

increased stator resistance was expected, unfortunately resulting in a reduction of the motor 

efficiency. 

4.1.3  Rewiring of the stator 

The next task at hand was to rewire the stator windings. In order to do so a Perspex jig had to 

first be assembled so that an even number of stator turns could be completed for each stator 

winding.  

4.1.3.1 Perspex jig 

In order to rewire the stator, a winding template (jig) had to be constructed. The jig was made 

from Perspex so that one could clearly see the wiring configuration as well as the number of 

turns during the rebuilding phase of the stator windings. The following Perspex templates were 

constructed with the following dimensions: 

 
Figure 4-8: Templates for Perspex jig 
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 Plate Type A: 1 x (75 mm x 120 mm) 

 Plate Type B: 1 x (75 mm x 120 mm) + 3 x (50 mm x 95 mm) 

 Plate Type C: 1 x (75 mm x 120 mm) + 1 x (50 mm x 95 mm) +  

1 x (75 mm x 120 mm) + 3 x (50 mm x 95 mm) 

 

Once all the Perspex templates were built, they were clamped together, drilled on opposite 

corners and 2 x M5 bolts and nuts kept them together and in place. Thereafter an 8 mm hole 

was drilled right through the centre of the jig. This was done to assist rotation on the jig when 

winding the copper using a winding machine. Figure 4-9 shows the complete assembly of the 

jig. 

 
Figure 4-9: Completed Perspex jig 

 
4.1.3.2 Assembly of stator phase windings 

After completion of the Perspex jig, a winding machine was used to wind the copper coils with 

the exact number of turns. Four parallel conductors were used, each 1 mm thick in diameter. 

Each coil was wound to have seven turns. The turns gauge on the winding machine accurately 

measures the amount of turns, making winding really simple. This winding process was 

repeated for all three layers. The end product is seen in Figure 4-10. 
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Figure 4-10: Completed Perspex jig with completed stator winding for one phase 

 
All three windings of the stator were completed for the three phases of the machine. Thereafter, 

one phase winding was inserted into the stator. This can be seen in Figure 4-11. 

 
Figure 4-11: One winding inserted into machine stator 
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The following guidelines are important to note when rewiring the stator with the windings. 

 Inserted one completed winding at a time. 

 Started with the last winding first, then the second phase winding and finished off with the 

last/inner most phase winding. 

 After each winding was fitted, inserted a slot retainer in each slot so that the windings did 

not come out of the slots. 

 After each winding was inserted, the “overhang” was pushed outward towards the motor 

enclosure, to provide more space for the next winding. This was also to ensure that both 

the end covers fitted the machine once all the windings were inserted into the stator slots. 

 Did not remove the cable ties until all three windings were inserted and all the slot retainers 

were inserted as well. 

 

The slot retainers used for these machines were 5 mm wooden dowels cut to the stator teeth 

length. Some of the dowels had to be trimmed to ensure correct fitment into the slot. 

4.1.3.3 Power connections to stator windings 

The first step of the reassembly process, after the phase windings and slot retainers were 

inserted, was to connect the power entry/exit leads to the terminal box (Figure 4-12). 

 
Figure 4-12: Power entry/exit leads connection 

 
The cable used was selected to handle 35 A or more. The following cable was selected based 

on the current requirements per phase winding. 
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 4 mm diameter (≈6 AWG) stranded copper cable 

 Voltage (insulation) rating – 500 V DC 

 Current rating – 101 A (Lund, 2016) 

 

These cable characteristics make the selection of the cable optimal for this application. The 

power entry/exit leads were spliced to the windings according to IPC/WHMA-A-620 (Wiring 

Harness Manufacturers Assoc., 2010) and connected as follows. 

 Six 20 cm length cables were cut; namely two red, two white and two blue cables. 

 8 mm of cable insulation was stripped off on one end. 

 Each cable was then lined up with the respective winding termination point and one strand 

of copper was wrapped around the two points (to hold them in place). 

 These points were then soldered together. 

 Heatshrink of 4 cm long and 4-8 mm in thickness was slid over the termination points and 

then shrunk with a heat-gun. 

 The non-terminated ends were then routed to the terminal box. 

 
After completion of this the wiring of the terminal box wiring commenced. The final step in 
assembling the machine was to wire up the terminal box (Figure 4.13). The following steps 
were followed in completing this procedure. 

 All 6 cables were crimped using yellow ring lugs (according to IPC/WHMA-A-620) (Wiring 

Harness Manufacturers Assoc., 2010). 

 The power exit leads were connected to the star point. 

 The power entry leads were connected to the power input terminals. 

 

 
Figure 4-13: Terminal box connections 
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After completion of the assembly of the terminal box, the re-assembly of the entire machine 

could commence. This involved the following procedures. 

 The rotor was inserted into the stator. This was done very carefully, to avoid damaging 

either one. 

 The bearing caps were fitted next. All the punched markings were lined up, to ensure correct 

orientation of the bearing caps. 

 The next step was to fit the fan onto the rotor and then the fan covers. 

 Lastly the terminal box cover was replaced. 

 

The complete assembly (without terminal box cover) can be seen in Figure 4-14. 

 

 
Figure 4-14: Completed machine assembly 

 
4.1.4 Final machine inspection tests 

After the motor was completely assembled various tests had to be completed on the motor. 

4.1.4.1 Winding resistance 

The purpose of this test was to ensure that the machine windings were not damaged. Possible 

damage that could have occurred could be a complete break in winding conductor (open 

circuit), or a high winding resistance, which would create huge copper losses, and an 

unbalanced motor. 
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The approximate length of winding is as follows: 

 

݄ݐ݃݊݁ܮ	݈ܽݐ݋ܶ ൌ ሾሺܶ݊ݎݑ	݄ݐ݃݊݁ܮ ൈ 2ሻ ൅ ሺTurn	Width ൈ 2ሻሿ ൈ Number	Turns	 ൈ Number	poles	 

 

T݈ܽݐ݋	݄ݐ݃݊݁ܮ ൌ ሾሺ120	݉݉ ൈ 2ሻ ൅ ሺ70	݉݉ ൈ 2ሻሿ ൈ 7 ൈ 4 

 

݄ݐ݃݊݁ܮ	݈ܽݐ݋ܶ ൌ 10640	݉݉ ൌ 10.64	݉ 

Since the resistance per meter of the copper conductor = 0.001295928 Ω/m (Lund, 2016). 

 

݁ܿ݊ܽݐݏ݅ݏܴ݁	ܹ݃݊݅݀݊݅	݈ܽݐ݋ܶ ൌ 10.64	݉ ൈ 0.001295928	Ω/m	 ൌ 0.014	Ω	

 

Since four parallel conductors were used, the total winding resistance is: 

 

݁ܿ݊ܽݐݏ݅ݏܴ݁	ܹ݃݊݅݀݊݅	݈ܽݐ݋ܶ ൌ
0.014
4

ൌ 0.004	Ω	 

Therefore a winding resistance between 1 mΩ - 100m Ω was acceptable (Electrical 

Engineering portal, 2012). Once this was completed an insulation test using a MEGGAR meter 

was completed. The procedure in completing this test was as follows. 

 Connected the insulation tester (MEGGAR meter) to both ends of a winding. 

 Set the insulation tester to resistance measurement. 

 Pressed the “press to test” button and locked it into position. 

 Monitored the measured resistance for one minute. 

 Recorded the maximum resistance reading in that period. 

 Repeated this test for all three windings or phases. 

 

The results of the measurements can be seen in Table 4-2. 

Table 4-2: Winding resistance test results 

Winding resistance 

Winding Measured resistance Pass/Fail 

Yellow  (Layer 1) ±80 mΩ Pass 

Red (Layer 2) ±80 mΩ Pass 

Green (Layer 3) ±80 mΩ Pass 
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From this table, it can be seen that all the measurements are within specification, and the test 

was therefore successful. A value of 3 mΩ was expected from the measurement; however, 

there was a balanced outcome of approximately 100 mΩ. This was due to the Meggar meter 

having an analogue scale. This resulted in a balanced motor even though the winding 

resistance is a bit higher than expected. 

4.1.4.2 Insulation resistance 

The purpose of this test was to ensure that the winding insulation was not damaged i.e. to 

ensure that there were no short circuits between windings and from windings to ground. The 

winding resistance with an insulation resistance greater than 1 MΩ was sufficient. A picture of 

the test setup can be seen in Figure 4-15. 

 
Figure 4-15: Insulation Resistance Test Setup 

 

Procedure: 

1. Connected the insulation tester to one end of a winding and to ground. 

2. Set the insulation tester to 500 V. 

3. Pushed and locked the “press to test” button. 

4. Monitored the meter for one minute. 

5. Recorded the maximum reading for that period. 

6. Repeated the above steps for all three layers/windings. 

7. Connected the insulation tester to one end of Layer 1 and one end of Layer 2. 

8. Pushed and locked the “press to test” button. 

9. Monitored the meter for one minute. 

10. Recorded the maximum reading for that period  

11. Repeated the same process for Layer 1-3 and Layer 2-3. 
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The results of the measurements can be seen in Table 4-3 and Table 4-4. 

 
Table 4-3: Insulation resistance test phase-ground results 

Insulation resistance - Phase to Ground 

Winding Measured resistance Pass/Fail 

Yellow  (Layer 1) ∞  Pass 

Red (Layer 2) ∞  Pass 

Green (Layer 3) ∞  Pass 

 

 

Table 4-4: Insulation resistance test phase-phase results 

Insulation resistance - Phase to Phase 

Windings Measured resistance Pass/Fail 

Yellow  (Layer 1) - Red (Layer 2) ∞  Pass 

Yellow  (Layer 1) - Green (Layer 3) ∞  Pass 

Green (Layer 3) - Red (Layer 2) ∞  Pass 

 

 

From these tables, it can be seen that all the measurements are within specification, and the 

test was therefore passed. The maximum deflection on the analogue Meggar meter was at ∞ 

and the scale below this was at 100 M. When the insulation test was completed the needle 

did not deflect at all showing that the resistance of the insulation was above 100 M. 

4.2 The motor control stage 

A suitable motor control stage or inverter was required to control the motors for the EV.  This 

was necessary to convert the incoming DC to a suitable three phase AC required to power the 

motor. In order to do so, it was necessary to design an inverter which had three elements in it. 

These elements are namely a control stage, a power stage and the integration of the two 

stages for the inverter. 

4.2.1 The control stage of the inverter  

For the control stage, voltage/frequency or open loop scalar control was selected due to the 

motor which would have some unstable parameters and was operating at a very low voltage, 

when being driven. 

 

The open loop scalar controls an AC induction motor’s speed and torque by varying the 

supplied voltage and frequency to it. The voltage and frequency is always in a constant ratio 

to one another, hence the alternative name of voltage/frequency.  
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In Figure 4-16, it is evident that if a constant torque is desired over the full speed range (or 

follows the indicating red line as close as possible) and that the applied voltage and frequency 

will have to change proportionally. If half the speed is required, half the voltage and half the 

frequency are required and if a quarter of the speed is required then quarter of the voltage and 

frequency is required (Microchip, 2007). 

 

 
Figure 4-16: Voltage/frequency or open loop scalar control (Microchip, 2007) 

 

The voltage and speed changes proportionally where torque and current change 

proportionally. To calculate a constant for the relationship between the voltage and the 

frequency, the following formula was used. 

 

ܭ ൌ 	
஺௣௣௟௜௘ௗ	௩௢௟௧௔௚௘

஺௣௣௟௜௘ௗ	௙௥௘௤௨௘௡௖௬
  (21) 

 
 

ܭ ൌ
42
60

 

 
∴ ܭ ൌ 0.7 

 
Now that the constant was calculated, the applied voltage was calculated for a specific 

frequency from equation (21) (Grunditz & Jansson, 2009). 

 

݁݃ܽݐ݈݋ܸ ൌ 	ܭ ൈ  (21)       	ݕܿ݊݁ݑݍ݁ݎܨ
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4.2.1.1 Selection of the EV processor 

After some research, it was decided that using a Microchip motor drive, one of their solutions 

will be adequate for this application.  

 

Initially the processor chosen was the PIC16F7X7 from Microchip. This processor was used in 

conjunction with a power stage to power the electric motor. The package initially selected for 

the power stage was by International Rectifier and was the IRAM 136-3023B. 

 

However, after considerable testing and evaluation of this microprocessor and the power stage 

IC, it was found that the power stage IC was unsuitable for our research. The IRAM 136-3023B 

could only maintain an efficiency of around seventy percent up to an output of 600 W. Above 

this, the inverter IC went into thermal shutdown and therefore produced no output. This 

undesirable result is due to the huge amount of I2R losses in the MOSFET’s. These switching 

losses generated a huge amount of heat, which caused the inverter IC to go into thermal 

shutdown. Even after a much bigger heat sink was used, adequate heat could still not be 

dissipated. Thus, it can be concluded that even though the power stage (for the three phase 

motor drive) developed was as efficient as expected, the tendency to go into thermal shutdown 

(due to inadequate heat dissipation) made it undesirable to use for the application. The 

PIC16F7X7 solution was abandoned. 

 

The other option of a microcontroller selected for the EV was a single chip, namely the 

dsPIC30F2010, from Microchip. It has the control characteristics of a sixteen-bit single chip 

microcontroller unit (MCU) and the merits of a high speed digital signal processor (DSP), 

creating the optimum single-chip solution for embedded control of three-phase induction motor.  

 

Other features of this single chip include (Liu, et al., 2015): 

 It simplifies the control of software and external hardware. 

 The software can generate PWM waveform. 

 It can generate a three phase, six channel pulse width modulation (PWM) signal (by means 

of programming). 

 Each PWM output pin drives a current of approximately 25 mA. 
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Figure 4-17: EV Motor control processor (Microchip, 2016) 

 
The dsPIC reads an analogue signal from a foot pedal or a potentiometer at 500 Hz or every 

2 ms. It determines the value and sends it through the analogue to digital converter (ADC). 

The digital value then uses a sixty-four entry sine wave look-up table that contains all the points 

of a sine wave; the sine values are read periodically and then written to the duty cycle registers. 

The switching frequency was selected just above the audible range of 16 kHz. By keeping the 

switching frequency low, the switching losses could be kept to a minimum and the efficiency 

was improved. Determining the sine wave look-up table size was done by using the following 

calculation (Microchip, 2007). 

 

ݏ݁ݑ݈ܽݒ	݈ܾ݁ܽܶ	݂݋	ݎܾ݁݉ݑܰ ൌ 	
ி௥௘௤௨௘௡௖௬ುೈಾ

ிಾೀವିிಾಲ೉
  (22) 

           ൌ
ଵ଺଴଴଴

଺଴
 

           ൌ 267 

 

In this case a two hundred and fifty six entry table sufficed, but in practice a quarter sine wave 

needed is more than enough to get the modulated sine wave we required. The duty cycle 

registers determined the allowable PWM signals and six separate signals were generated from 

the dsPIC. They are grouped as follows in Figure 4-18. 
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Figure 4-18: PWM signal processing (Microchip, 2007). 

 
The high (HI) and low (LO) signals were used to drive the high and low side of the three single 

phase arms in the power stage.  

 

4.2.1.2 Dead-time  

One very important factor that needed to be considered with the PWM signals is dead time. 

Dead time is a time delay between one signal switching off and the next switching on. Figure 

4-19 shows both the active and inactive dead-time between the HI and LO signals (Rashid, 

2011). 

 

 
 

Figure 4-19: HI and LO signals with dead-time (Microchip, 2016) 
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If insufficient dead-time was implemented and it did occur that a HI signal was still busy 

switching off while a LO signal already started to switch on, cross-conduction could have 

occurred.  

This meant that the DC bus would have short-circuited across the metal-oxide semiconductor 

field-effect transistors (MOSFET’s) and it would have destructive results, such as blowing them 

up (Microchip, 2007). 

 

 
Figure 4-20: Cross Conduction due to insufficient dead-time (Microchip, 2007) 

 

Due to this, a 2 s delay was implemented in the code of the dsPIC. This was easily adjustable 

if it became evident that cross conduction occurred. With the current setup the resolution for 

the modulation frequency or operating frequency had to be calculated (Microchip, 2007). 

 

݊݋݅ݐݑ݈݋ݏ݁ݎ	ݕܿ݊݁ݑݍ݁ݎ݂	݊݋݅ݐ݈ܽݑ݀݋ܯ     ൌ 	 ி௥௘௤௨௘௡௖௬ುೈಾ

ଶభల
  (23) 

              ൌ 0.255	
ு௭

௕௜௧
  

The minimum circuit connections for the dsPIC pic were made, and the code was programmed 

onto the chip using MPLAB X IDE and a Microstick 2 development board (Microchip, 2011). 

Figure 4-21 shows the dsPIC30F with all the necessary components. 



   

   64 

 

 
Figure 4-21: Minimum circuit connections for the dsPIC30Fprocessor (Microchip, 2011) 

 

4.2.2 The power stage of the inverter 

For the power stage of the inverter, a bridge arrangement was chosen. The minimum 

requirement for this arrangement to work was to have six PWM signals from the control stage, 

six field effect transistors (FET’s) arranged in a bridge, a direct current (DC) voltage bus and 

an AC IM motor (International Rectifier, 2016). In order to do so, it was necessary to firstly 

select FET’s which would be appropriate for our application. 

 

4.2.2.1 MOSFET selection  

In order to select the correct FET’s we firstly needed the following information. 

Operating frequency: F = 16 kHz 

RMS Current: IRMS   = 30 A 

Max Voltage: VMAX            = 38 V DC 

 

With these values and the operating frequencies required taken into consideration, and the 

voltages and currents as seen in Figure 4.22, it was evident that MOSFET’s or IGBT’s were 

the ideal semiconductor switch for our application needs. However the MOSFET provided a 

better efficiency at low voltages compared to the IGBT (Kazanbas, 2014).   
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 Figure 4-22: Semiconductor selection guide (Kazanbas, 2014) 

 
Fairchild Semiconductor FDP3632 MOSFET’s were chosen due to their extremely low “on-

state” resistance and high current capability with more that reasonable voltage rating. It is 

common practice to use MOSFET’s in parallel with each other to reduce the “on-state” 

resistance. By reducing the “on-state” resistance the conduction is reduced and the efficiency 

is increased. The more MOSFET’s that are placed in parallel results in a lower on-state 

resistance (Fairchild, 2016). However, the negative effect of placing MOSFET’s in parallel is 

that the gate charge capacitance is increased. This means that the line drivers will have to use 

more current to ensure the gate capacitors are charged and discharged in the same time 

frame. This decreases the efficiency of the control stage (Fairchild, 2016). A good midpoint 

needed to be selected, due to the relatively low switching frequency; a high gate charge will 

not be too intrusive. The amount of FET’s chosen was based more on the current handling 

capabilities. Two FDP3632 for each section was chosen, leaving the total MOSFETs for the 

three single phase arms at twelve (Fairchild, 2016). 
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Figure 4-23: Effect of parallel MOSFET’s on gate charge and on-state resistance 

 

Once the basic circuit design was completed, a further investigation into prohibiting the 

switching noise and the node ringing commenced. 

 

The basic design of a single power stage in Figure 4-24 is an indication of the minimum 

requirement in reducing noise and node ringing reduction. Circuit protection and noise 

reduction were also implemented in the following ways. 

 

 
Figure 4-24: The basic power stage of one phase (Microchip, 2007). 

 

In order to reduce the noise and node ringing the following aspects of the power stage on the 

inverter needed to be looked at. 

 

4.2.2.2 Gate resistors  

Small 15 Ω resistors were placed on each MOSFET gate to reduce node ringing by slowing 

down the gate pulses. This increases the current draw from the line drivers. A small enough 

value was used to reduce the negative effect (Microchip, 2007). 
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Figure 4-25: Gate resistors added to the circuit (Microchip, 2007). 

 

4.2.2.3 RC snubber circuit  

Snubber’s were also placed across each side of the HI and LO terminals. This arrangement 

breaks down any high  
࢜ࢊ

࢚ࢊ
 surges that might occur due to the inductive load (Microchip, 2007). 

 

 
Figure 4-26: A resistive and capacitive (RC) snubber placed across the HI and LO terminals 

(Microchip, 2007). 
 

4.2.2.4 Transient voltage suppressors  

The main cause of MOSFET failure is a high 
ௗ௩

ௗ௧
 surge from switching an inductive load such 

as an AC IM. To further help the breakdown of these transient voltages, transient voltage 

suppressors (TVS’s) were inserted from each source to the gate on each MOSFET (Microchip, 

2007). 
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Figure 4-27: TVS’s inserted from each source gate on each MOSFET (Microchip, 2007). 

 

4.2.2.5 Decoupling capacitor  

Lastly, decoupling capacitors were placed across each side of the HI and LO terminals to break 

down any transient current ripple that would have be induced from high frequency high current 

switching (Microchip, 2007). 

 

 

 
Figure 4-28: Decoupled capacitors connected from HI to LO terminals (Microchip, 2007). 

 
4.2.2.6 Power losses in MOSFET’s  

The focus for the power losses of the EV motor controller power stage are categorised into two 

losses, namely conduction losses and switching losses. Both were reviewed and the total 

efficiency of the motor drive was calculated. Conduction losses ( ஼ܲைே஽௎஼்ூைே) are the power 

loss due to the on-state resistance and the MOSFET RMS current. Usually the HI and LO 

outputs are calculated separately, but in this case the exact same FET was used for both the 

HI and LO side (Dobkin & Williams, 2013) (Texas Instruments, 2016) 
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High on-state resistance :  ܪௌோ஽ௌೀಿ = 4.5 m 

MOSFET RMS current:  ܫை௎்ೃಾೄ
  = 20 A  

Low on-state resistance:  ܮௌோ஽ௌೀಿ = 4.5 m 

 

஼ܲைே஽௎஼்ூைே ൌ ቀܪௌோ஽ௌೀಿ ൈ ை௎்ೃಾೄܫ
ଶቁ ൅ ቀܮௌோ஽ௌೀಿ ൈ ை௎்ೃಾೄܫ

ଶቁ (35) 

∴ ஼ܲைே஽௎஼்ூைே ൌ 3.6	ܹ 

It is important to notice that the MOSFET used has a maximum ܴோ஽ௌೀಿ value of 9 mΩ and the 

maximum current (ܫை௎்) was taken to be 40 A RMS.  As the two MOSFET’s are used in parallel, 

the resistance halves and so does the current. The total maximum power loss in one stage 

was therefore 3.6 W  (Texas Instruments, 2016). 

 

In calculating the total conduction losses, the total power losses in one stage needed only to 

be multiplied by three. 

஼ܲைே஽௎஼்ூைே	்ை்஺௅ ൌ 3.6	ܹ ൈ 3 

∴ ஼ܲைே஽௎஼்ூைே	்ை்஺௅ ൌ 10.8	ܹ 

 

It takes a finite time for a MOSFET to turn on and off. During the “ON” and “OFF” transitions, 

due to the LO side clamping effects, the HI side device is affected by both high current and 

high voltage at the same time, which induces switching losses. This calculation for the 

switching losses ( ௌܲௐିோூௌா) and ( ௌܲௐିி஺௅௅) is dependent on the rise and fall time, the supply 

voltage and current, and lastly the switching frequency (Dobkin & Williams, 2013). 

 

Input voltage:   ூܸே  = 38 V 

Output current:  ܫை௎்  = 40 A 

Rise time:   ݐோ  = 39 ns 

Switching Frequency:  ௌ݂ௐ  = 16 kHz 

 

ௌܲௐିோூௌா ൌ
ଵ

ଶ
ൈ ூܸே ൈ ை௎்ܫ ൈ ோݐ ൈ ௌ݂ௐ  (36) 

ௌܲௐିோூௌா ൌ 0.474	ܹ 

 

Input voltage:   ூܸே  = 38 V 

Output current:  ܫை௎்  = 40 A 
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Fall time:   ݐி  = 46 ns 

Switching Frequency:  ௌ݂ௐ  = 16 kHz 

 

ௌܲௐିி஺௅௅ ൌ
ଵ

ଶ
ൈ ூܸே ൈ ை௎்ܫ ൈ ிݐ ൈ  ௌௐ  (37)ܨ

ௌܲௐିி஺௅௅ ൌ 0.559	ܹ 

 

The total switching losses for one FET ( ௌܲௐି	்ை்஺௅) was: 

 

ௌܲௐି	்ை்஺௅ ൌ ௌܲௐିோூௌா ൅ ௌܲௐିி஺௅௅ ൌ 1.033	ܹ	 

 

If the total switching losses was 1.033 W in one FET, then the total losses ( ௌܲௐି	்ை்஺௅) was 

12.396 W for the total of twelve FET’s. 

 

ௌܲௐି	்ை்஺௅ ൌ 12.396	ܹ	for	twelve	FET′s 

 

ெܲைௌிா் ൌ ௌܲௐି	்ை்஺௅ ൅ ஼ܲைே஽௎஼்ூைே	்ை்஺௅ 

ெܲைௌிா் ൌ 23.196	ܹ	 

 

The total power-stage losses are included in the losses of the LT1074 as well. 

 

Total switching losses for the twelve MOSFETS: ெܲைௌிா் = 23.196 W 

Total power losses of the buck converter:  ்ܲை்஺௅	஻௎஼௄ = 7.641 W 

 

	்ܲை்஺௅ ൌ ெܲைௌிா் ൅ ்ܲை்஺௅	஻௎஼௄  (38) 

∴ 	்ܲை்஺௅ ൌ 30.887	ܹ	 

 

4.2.2.7 Control stage power consumption  

The last calculation to perform for the control stage was the power consumption, or power 

loss. This and the power loss in the power stage were used to calculate the drive efficiency. 

The calculation was as follows (International Rectifier, 2016): 

 

				ܲீ ൌ 2ሾܸ ൈ ܳ௚ ൈ  ௦ሿ    (27)ܨ

∴ ܲீ ൌ 2ሾ15 ൈ ሺ110 ൈ 10ିଵଶሻ ൈ ሺ16 ൈ 10ଷሻሿ  

∴ ܲீ ൌ 15	ܹ݉ (for one driver) 
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4.2.2.8 Switch-mode power supply  

As there are several sensitive electronic components on the control stage, the higher voltage 

and high switching current were kept completely separate from them. The dsPIC required no 

more than 3.3 V DC to operate. The logic side of the IR2110 can also operate from this but 

needs approximately 15 V DC for switching the gates. This meant that 38 V had to be reduced 

to 15 V and then to 3.3 V. 

 
Figure 4-29: Stepping down stages of voltage from 38 V to 3.3 V 

 

The design specifications for the switch mode power supply regulator are as follows. The input 

voltage is ூܸே = 38 V and the output voltage is ைܸ௎் = 15 V. 

 

4.2.2.9 Calculation of switch mode power supply values 

The following parameters had to be calculated for the switch mode power supply. This included 

the duty cycle of the circuit, the output current, the power diode consumption, the output divider 

of the supply, the power losses and efficiency of the supply and the inductor inductances. 

 

The duty cycle of the regulator was calculated as follows (Dobkin & Williams, 2013): 

 

Output voltage:   	 ைܸ௎்  =  15 V 

Forward voltage of the catch diode:  ௙ܸ  =  0.5 V 

Input Voltage:     ூܸே  =  38 V 

Voltage loss across “on” switch:  ௌܸௐ  =  2.0 V 

 

ܧܮܥܻܥ	ܻܷܶܦ                     ൌ
௏ೀೆ೅ା௏೑
௏಺ಿି௏ೄೈ

   (28)  

∴ ܧܮܥܻܥ	ܻܷܶܦ ൌ 43.056	%  

 

The output current ܫைሺܶܫܴܥሻ - load current, of the buck converter, changed from a continuous 

to discontinuous mode, was calculated as follows (Dobkin & Williams, 2013). 

 

Output voltage :   ைܸ௎்  = 15 V 

Input voltage:    ூܸே  = 38 V 

Operating frequency:    ݂  = 100 kHz 

Chosen inductance value:   50 =  ܮ µF 
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ሻܶܫܴܥைሺܫ ൌ 	
௏ೀೆ೅ൈሺ௏಺ಿି௏ೀೆ೅ሻ

ሺଶൈ௏಺ಿൈ௙ൈ௅ሻ
  (29)  

∴ ሻܶܫܴܥைሺܫ ൌ  ܣ	0.908

 

The maximum output current (ܫை௎்ሺெ஺௑ሻሻ	of the buck converter used was given as follows 

(Dobkin & Williams, 2013). 

 

Output voltage:   ைܸ௎்  = 15 V 

Input voltage:    ூܸே  = 38 V 

Operating frequency:   ݂  = 100 kHz 

Chosen inductance value:   50 =  ܮ µH 

 Maximum switch current:  ܫெ  = 5.5 A (for the LT1074) 

 

ை௎்ሺெ஺௑ሻܫ ൌ ெܫ െ	
௏ೀೆ೅ൈሺ௏಺ಿି௏ೀೆ೅ሻ

ሺଶൈ௏಺ಿൈ௙ൈ௅ሻ
 (30)  

∴ ை௎்ሺெ஺௑ሻܫ ൌ  ܣ	4.592

  

The diode power consumption/dissipation ( ஽ܲூை஽ா) was calculated as follows (Dobkin & 

Williams, 2013). 

 

Maximum output current:  (ܫை௎்ሺெ஺௑ሻሻ = 4.592 A 

Output voltage :   ைܸ௎்  = 15 V 

Input voltage:    ூܸே  = 38 V 

Forward voltage of the catch diode:  ௙ܸ  =  0.5 V 

   

஽ܲூை஽ா ൌ ை௎்ሺெ஺௑ሻܫ ൈ
௏಺ಿି௏ೀೆ೅

௏಺ಿ
ൈ ௙ܸ (31)  

∴ ஽ܲூை஽ா ൌ 1.39	ܹ 

 

For the output divider, the DC output voltage was set by ܴଵ and ܴଶ. ܴଶ was set at 2.21 k (a 

standard 1 % value) to match the LT1074 reference voltage of 2.21 V. Giving a divider current 

of 1 mA, ܴଵ was then calculated to be (Dobkin & Williams, 2013). 

 

Output voltage:   ைܸ௎்  = 15 V 

 Reference voltage:   ோܸாி  = 2.21 V 
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 Standard resistance value for ܴଶ: ܴଶ  = 2.21 k 

 

ܴଵ ൌ ܴଶ ൈ
௏ೀೆ೅ି௏ೃಶಷ

௏ೃಶಷ
  (32) 

∴ ܴଵ ൌ 12.790	݇

 

The power losses of the buck converter ( ்ܲை்஺௅	஻௎஼௄) was calculated as follows (Dobkin & 

Williams, 2013). 

 

Supply current losses   Dynamic switching losses 

்ܲை்஺௅ ൌ 38 ൈ ሾ൫ሺ7 ൈ 10ିଷሻ ൅ ሺ5 ൈ 10ିଷ ൈ 0.407ሻ൯ ൅ ሺ2 ൈ 5 ൈ ሺ65 ൈ 10ିଽሻ ൈ ሺ100 ൈ 10ଷሻሻ

൅ ቀሺ0.407ሻ ൈ ൫ሺ5 ൈ 1.8ሻ ൅ ሺ0.1 ൈ 5ଶሻ൯ቁሿ 

 

   Switching conduction losses 

 

∴ ்ܲை்஺௅	஻௎஼௄ ൌ 0.362	ܹ ൅ 2.6	ܹ ൅ 4.68	ܹ 

∴ ்ܲை்஺௅	஻௎஼௄ ൌ 7.641	ܹ 

 

In calculating the efficiency () of the buck converter (Dobkin & Williams, 2013). 

 

Maximum output current:  (ܫை௎்ሺெ஺௑ሻሻ = 4.592 A 

Output voltage :   ைܸ௎்  = 15 V 

Forward voltage of the catch diode:  ௙ܸ  =  0.5 V 

 Total regulator loss:   ∑ ௅ܲ  = 4.16 W 

 

 ൌ 	
ூೀೆ೅ሺಾಲ೉ሻൈ௏ೀೆ೅

ூೀೆ೅ሺಾಲ೉ሻൈ௏ೀೆ೅ା∑௉ಽ
  (33) 

      ൌ 94.304 % 

 

Figure 4-30 is a completed design of the buck converter that was built and used for our 

application (Microchip, 2007). 
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 Figure 4-30: EV Switch mode power supply circuit (buck converter) (Microchip, 2007). 

 

4.2.3 Motor drive testing and results 

After completion of the motor testing, the next testing to be completed was on the motor drive. 

This needed to be completed in order to ensure that each component of the EV was tested 

before testing of the completed system could commence. This was also done to ensure 

compatibility with the motor and motor drive and to also test the modular design set out from 

the beginning. The test equipment used for testing the motor drive can be seen in Table 4-5. 

 
 
Table 4-5: Measuring equipment for initial testing of motor drive 

Equipment Name and Model Equipment picture

Agilent InfiniiVision DSO-X 2024A 
Digital Storage Scope 

Tektronix TDS 2024B Digital Storage Scope 
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YF-3503 Multimeter 
 

DF17315B, Variable Power Supply (5 A) 
 

Delta Elektronika SM 120-25D Variable Power 
Supply 
 

Fluke 43 Power Quality Analyzer 
 

DT-2236 Tachometer 
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4.2.3.1 Motor drive wave form results from initial testing 

After completion of building the motor drive, the HI and LO signals from the line drivers were 

the first measurement to be taken. Figure 4-31 shows the HI side signal (in orange), the LO 

side signal (in green) and then the output signal passed through a low pass filter (in blue), 

mentioned in the order from top to bottom. 

 

 
Figure 4-31: HI side signal, LO side signal and filtered output of the motor drive 

 

At this point the gate signals appeared not to be clear. The outputs were then measured with 

each phase measured with respect to ground. The outputs were then zoomed into and the 

waveforms in Figure 4-32 were captured showing the fundamental frequency, which just about 

appeared. 
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Figure 4-32: The three phase output waveforms (PWM modulated sine wave) 

 

The outputs where then passed through a low pass filter and produced three phase shifted 

sine waves as seen in Figure 4-33. 

 

 
Figure 4-33: The three phase output waveforms with a low pass filter added 

 
By placing the three phases on top of each other and keeping the low pass filter, it was clear 

that all three phases were exactly a hundred and twenty degrees out of phase with one 

another, as can be seen in Figure 4-34. 
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Figure 4-34: All three phase signals 120 degrees out of phase from each other 

 
The advantage of using the Agilent digital storage scope is that the trigger can be set to 

averaging and it “locks” onto the fundamental frequency. The scopes trigger was set to 

averaging and all three phases were measured.  

 

 
 

Figure 4-35: All three phases were set to averaging 
 

Now the fundamental frequency was clearer, at this point the results were more that convincing 

to move on the load testing. The extent of the load testing is completed in the following chapter. 

 



   

   79 

 

Figure 4-36 and Figure 4-37 are pictures of the completed final control stage and the power 

stage of the motor drive. These boards were assembled according to the design specifications 

stipulated before undergoing the initial testing described.  

 

 
Figure 4-36: Final motor drive control stage 

 
 

 
Figure 4-37: Final motor drive power stage 

 

A completed picture of the assembled motor drive is seen in Figure 4-38. 

 

 

 
Figure 4-38: Final assembled motor drive  



   

   80 

 

The integration of the power and control stage was the final step in the design of the motor 

controller. Both stages had power losses and the integrated circuits generate heat. The 

solution was to get a big enough heat-sink to cope at full load. As the MOSFET’s are the main 

heat-generators they were looked at first. A typical thermal dissipation network was set up as 

follows (Microchip, 2007). 

 

 
Figure 4.39: Thermal dissipation network (Microchip, 2007). 

 

The maximum junction-ambient thermal resistance (ܴೕೌ) had to be calculated first (Texas 

Instruments, 2011). 

Maximum junction temperature:   ௝ܶି௠௔௫  = 175 C 

Maximum ambient temperature:   ݐܾ݊݁݅݉ܣ௠௔௫ = 50 C 

Total switching losses for the twelve MOSFETS: ெܲைௌிா் = 23.196 W 

 

ೕೌܴ	ݔܽܯ ൌ
்ೕష೘ೌೣି஺௠௕௜௘௡௧೘ೌೣ

௉ಾೀೄಷಶ೅
  (39) 

∴ ೕೌܴ	ݔܽܯ ൌ 5.389	
ܥ
ܹ

 

 

After the maximum junction-ambient thermal resistance was calculated, by the power of 

deduction, the heat-sink value (ܴ೓ೌሻ could be calculated (Texas Instruments, 2011). 

 

Maximum junction-ambient thermal resistance:  ݔܽܯ	ܴೕೌ = 5.389	 ஼
ௐ

 

Thermal resistance of the interface compound used: ܴ೎೓  = 1.1	 ஼
ௐ

 

 

Thermal resistance inside the device package:  ܴೕ೎  = 0.48	 ஼
ௐ

 

 

ܴ೓ೌ ൌ ೕೌܴ	ݔܽܯ െ ܴ೎೓ െ ܴೕ೎  (40) 

∴ ܴ೓ೌ ൌ 3.809	
ܥ
ܹ
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This means that the maximum heat-sink-ambient thermal resistance had to be lower than 

4.024 
஼

ௐ
 . A heat-sink with a thermal resistance of 0.51200݉݉/ܹ/ܥ was chosen. To test if 

this heat-sink would suffice the following calculation had to be completed and the answer had 

to be lower than ܴ೓ೌ  (Texas Instruments, 2011). 

 

Thermal resistance of the heatsink:    ܴ೓ೌ  = 0.51	 ஼
ௐ

 

Thermal resistance of the interface compound used: ܴ೎೓  = 1.1	 ஼
ௐ

 

 

Thermal resistance inside the device package:  ܴೕ೎  = 0.48	 ஼
ௐ

 

 

ܴೕೌ ൌ ܴ೓ೌ ൅ ܴ೎೓ ൅ ܴೕ೎  (41) 

∴ ܴೕೌ ൌ 0.208	
ܥ
ܹ

 

 

The heat-sink chosen was more than enough for this application. The final calculation was for 

the total efficiency. 

 

ܻܥܰܧܫܥܫܨܨܧ ൌ 	
௉ೀೆ೅ି௉೅ೀ೅ಲಽ

௉ೀೆ೅
ൈ 100  (42) 

∴ ܻܥܰܧܫܥܫܨܨܧ ൌ 96.911	% 

 

4.2.4 The gate drivers (line drivers) 

The last part in the control stage was the gate drivers, or line drivers. A gate driver is a chip 

that amplifies the signal from the dsPIC. It ensures that there is enough current to charge and 

discharge the gate capacitors of the MOSFET’s for rapid response.  

 

As International Rectifiers are one of the leaders in cost effective and efficient solutions in gate 

drivers, their IR2110 gate drivers were used. The application note AN-978 was consulted and 

a recommended circuit setup was derived and values calculated to drive a three phase 

induction motor. The three phase inverter uses three IRS2110 devices to drive six IGBTs as 

seen in Figure 4-40 (International Rectifier, 2016). 
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Figure 4-40: Minimum circuit connection for three phase inverters using three IRS2110 devices 

to drive six IGBTs (International Rectifier, 2016) 
 

This setup proved to be the effective solution for this application. The only requirement was 

that a proper bootstrap capacitor and diode needed to be calculated. This was done using the 

following formula (Adams, 2008). 

 

ܥ ൒
ଶ൤ଶொ೒ା

಺೜್ೞሺ೘ೌೣሻ
೑

ାொ೗ೞା
಺೎್ೞሺ೗೐ೌೖሻ

೑
൨

௏೎೎ି௏೑ି௏ಽೄି௏೘೔೙
 (24) 

where:  
 
ܳ௚ = Gate charge of high-side FET (nC) 
݂ = frequency of operation (Hz) 
 ௖௕௦ሺ௟௘௔௞ሻ= bootstrap capacitor leakage current (only applicable on electrolytic capacitors) (A)ܫ
 ௤௕௦ሺ௠௔௫ሻ= Maximum VBS quiescent current (A)ܫ

௖ܸ௖  = Logic section voltage source (V) 
௙ܸ = Forward voltage drop across the bootstrap diode (V) 

௅ܸௌ  = Voltage drop across the low-side FET (V) 
௠ܸ௜௡ = Minimum voltage between VB and VS (V) 
ܳ௟௦  = level shift charge required per cycle (typically 5 nC for 500 V/600 V MGDs and 
     20 nC for 1200 V MGDs) (Adams, 2008) (C) 

The following values were selected and calculated before calculating the bootstrap capacitor 

value. 

 

Table 4-6: Bootstrap capacitor values 

Variable Description Value 

ܳ௚ Gate Charge of High-Side FET 84 nC 

݂ Operating Frequency 16 kHz 

 ௖௕௦ሺ௟௘௔௞ሻ Bootstrap Cap Leakage Current (Only applicable on Electrolytic capacitors) 0 Aܫ

 ௤௕௦ሺ௠௔௫ሻ Max VBS Quiescent Current 230 µAܫ

௖ܸ௖ Logic section voltage source 15 V 
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௙ܸ  Forward voltage drop across bootstrap diode 1.3 V 

௅ܸௌ Voltage drop across Low-Side FET 1.5 V 

௠ܸ௜௡ Minimum voltage between VB and VS 4 V 

ܳ௟௦ Level shift charge per cycle 5 nC 

 

 

From the values above the capacitor bootstrap value was calculated (Adams, 2008). 

 

ܥ ൒ 	
2ሾሺ2 ൈ 84 ൈ 10ିଽሻ ൅

ሺ230 ൈ 10ି଺ሻ
ሺ16 ൈ 10ଷሻ ൅ ሺ5 ൈ 10ିଽሻ ൅

0
ሺ16 ൈ 10ଷሻሿ

ሾ15 െ 1.3 െ 1.5 െ 4ሿ
 

∴ ܥ ൒   ܨ݊	45.7

The equation for the diode is a little less complicated and is calculated by (Adams, 2008): 

ܳ஻ௌ ൌ 2 ൈ ܳ௚ ൅
ூ೜್ೞሺ೘ೌೣሻ

ி
൅ ܳ௅ௌ ൅

ூ಴್ೞሺ೗೐ೌೖሻ
ி

 (25) 

            ൌ 187.375	 ൈ 10ିଽ   

ிܫ ൌ ܳ஻ௌ ൈ  (26)     ܨ

       ൌ ሺ187.375 ൈ 10ିଽሻ ൈ ሺ16 ൈ 10ଷሻ 

       ൌ 2.998 ൈ 10ିଷ 

       ൌ  ܣ݉	3
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Chapter Five 

The battery pack and battery management system design 

5.1 The battery pack  

The Lithium-Ion polymer pouch cells available at the CPUT required a high degree of protection 

and secure inter-cell connections since the battery pack was intended for use in an EV, which 

placed demanding current requirements on it. The cells had to be continually monitored to 

provide a full picture of the available power. 

 

5.1.1 Electrical requirements of the battery pack  

The limitations for the Shell Eco-marathon state that the voltage in the vehicle can at no point 

exceed 60 V maximum and 52 V nominal (Shell, 2014). The available BMS supports six to ten 

series cells, and the three phase motor driver was designed for a nominal voltage of 38 V. 

Therefore the pack was composed of a maximum of ten series elements.  

 

5.1.2 Lithium polymer pouch cell operating conditions  

The Lithium polymer pouch cells had several critical parameters which had to be maintained 

in order to ensure safe operation and maximum battery lifespan. They were as follows (Shell, 

2013): 

 The cell’s temperature should not have exceeded the safe values as listed in the datasheet.  

 The pouch cells were clamped in such a manner that it was not possible for them to expand 

beyond their manufactured tolerance.  

 The electrical tabs were clamped to each other or a contact with sufficient force to prevent 

arcing during high current discharge.  

 The cells were protected from mechanical damage that could cause a short circuit and a 

fire.  

 Both terminals of each cell were externally available in order to connect the battery 

management system.  

 At this development stage it was necessary that the cells be individually accessible and 

replaceable since the cells were at different ages (used and from storage), and the pack 

was subjected to damaging electrical conditions during testing.  

 Finally and most critically, the enclosure had to be fireproof. When Lithium cells burn the 

fire is extremely hot and impossible to extinguish by conventional methods. The only way 

to quench them is in Mica flakes, and then it is just to hold the burning cell until the fire has 

consumed its stored chemical energy.  
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The Lithium-Ion polymer cells available at CPUT for this project were the Lithium Manganese 

Oxide cells. This was determined by comparing the cell’s specifications (Table 5-1) with typical 

specifications for different Lithium-Ion chemistries (necessary because the datasheet does not 

supply the cell chemistry, only stating “Lithium-Ion Polymer”) (Battery University, 2016). 

Table 5-1: Comparison of typical Lithium Manganese oxide batteries and the Lithium-ion 
batteries available at CPUT  

Lithium Manganese Oxide: LiMn2O4 cathode 
Graphite anode, (Typical specifications)

Enertech SPB9345136UH1

Voltage, nominal  3.70 V  3.70 V 

Specific energy (capacity)  100 –150 Wh/kg  135 Wh/kg 

Charge (C-rate)  
0.7 – 1 C typical, 3 C 
maximum, charges to 4.20 V 
(most cells) 

1 C typical 2 C Maximum. 4.2 V 
charge voltage. 

Discharge (C-rate)  1 C 10 C, 30 C pulse (5 s),  
2.50 V cut-off 

Up to 30 C continuous, 50 C 
pulse 

Cycle life  300 – 700  -

Thermal runaway  250 °C (482 °F)  - 

Applications  
Power tools, medical devices, 
electric powertrains 

- 

Comments  

High power but less capacity; 
safer than Li-cobalt; commonly 
mixed with NMC to improve 
performance. 

-

 

For these reasons, the Enertech SPB9345136UH1 Lithium-Ion polymer battery cells (LiPO) 

were chosen for this project. Appendix E contains the specifications for these battery cells. 

  

These LiPO batteries were purchased from Enertech CC (Enertech, 2018) and for the purpose 

of this EV, the LiPO model type SPB9345136UH1 was selected. These batteries have a 4.4 

Ah rating and a nominal voltage of 3.7 V.  

 

They also provide a good current discharge C-rating of 132 A at 30 C (Solanki, 2011). The 

energy density of these batteries is approximately 135.6 Wh/Kg, which is very good. Li-Polymer 

energy density is about three times more than that of Lead Acid batteries and more or less 

twice that of NiCd batteries (Imanishi, et al., 2014). 

 
In designing the battery pack, there were various factors that needed to be considered.  For 

the EV to have been at an optimal efficiency, it was recommended that the EV run at a speed 

of 25 km/h (Shell, 2015).  
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It was determined that in order for the EV to have completed a single track length of 2.40 km, 

the vehicle would have needed to run continuously at 25 km/h for five minutes and forty six 

seconds. 

 

A motor was developed for the CPUT EV to deliver approximately 23 V AC RMS, with a 

maximum current of approximately 35 A, at a power of 750 W each. A motor drive was 

developed with an input voltage of 38 V DC and an output power of 750 W, with a maximum 

current of 40 A per phase, in order to drive the motors. 

 

For this reason, the Lithium-Ion batteries, which have a nominal voltage rating of 3.7 V each 

and a discharge current of 132.0 A at 30 C was incorporated. Ten cells were connected in 

series to deliver approximately 38 V DC to the BMS, which works in conjunction with the motor 

drive. Four stacks of the ten cell in series were also connected in parallel to deliver a continuous 

discharge current of 17.6 Ah to the BMS.  

 

The provided LiPO pouch cells were assembled into a safe and robust “ten batteries in series 

and four stacks in parallel” combination (10S4P) battery pack utilizing 3D printing to perform 

the bulk of the manufacturing tasks. The battery pack was tested to ensure thermal and 

mechanical stability. The cells are housed in a robust Perspex enclosure that protects it in the 

event of a crash. The electrical connections are insulated by specifically designed 3D printed 

parts. Each set of ten series cells are monitored and each cell will have its own monitoring 

system for cell balancing purposes. 

 

The battery specifications are as follows (Appendix E): 

 

Table 5-2: Battery pack characteristics 

Battery Aspect Rating

Output voltage 38 V DC

Amp hour rating 17.6 Ah

Watt hour rating 668.8 Wh

Cell technology Lithium-Ion

Amount of cells 40
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5.1.3 Terminal connections of the battery pack 

The electrical terminals were split into two types of outputs; the high current output terminals 

and the battery cell sense outputs. This is for the BMS which will carry small balancing currents 

and voltage sense signals.  

 

The high current terminals are Aluminum bus bars, and the low current sense/balancing 

terminals are wired to an automotive specification plug on the side of the battery pack. This 

allows the BMS to be easily removed and different BMS’ solutions may be tested without 

extensive rewiring.  

 

There are three ways to interconnect the terminals of batteries.  

 Soldering 

 Spot welding 

 Clamping 

 

Each of these has unique advantages and disadvantages, however, only the third option 

(clamping the terminals together) provides the ability to easily remove and replace or test 

individual cells in the pack. It was thus selected. 

  

The terminals of the pouch cells needed to be securely clamped. There are several factors to 

consider here: 

 Ease of assembly.  

 Ease of manufacture.  

 Mechanical (and thus electrical) stability.  

 Ability to modify design further after construction. 

 
The traditional clamping methods available commercially, utilize a PCB with metal or plastic 

clamps that screw into it from above, with the cell’s terminals inserted through slots in the PCB. 

This was an appealing option, however it would have been time consuming and difficult to 

manufacture since it required custom PCB’s and numerous metal parts and screws. 

  

An innovative pouch cell contact assembly mechanism was found (Maiser, 2014) was selected 

as a viable option since it is space efficient, easy to assemble and manufacture. The 

mechanical and electrical stability was dependent on the material used for the clamping bars 

and further modifications to the design. The clamping bars needed to be made of non-

conductive non-flammable material, thus plastic was the only option.  
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Perspex has good mechanical stability but is easy to break as well as having demanding 

machining requirements (Ellse & Honeywell, 2004). Other common plastics that are not 

flammable include Acrylonitrile Butadiene Styrene (ABS) and Silicon composites such as 

Tufnol. In order to minimize construction time ABS was selected since it is a durable material 

which could easily be glued or welded by ultrasonic methods, and it is one of the two primary 

materials used in desktop three dimensional (3D) printers (Ram, 1997). 

 

The design was modified to take advantage of 3D printing and other available materials. A 3D 

model was constructed using AutoCAD which provides slots for Aluminium or Copper contact 

bars as well as built in bolts which can be used to affix output wires to increase ease of 

assembly. This 3D iteration of the design (Figure 5-1) provides additional supports to keep the 

pouch cells lined up and the terminals isolated from external elements.  

 

 
Figure 5-1: 3D model of cell clamping mechanism designed in AutoCad 

 

The clamps were printed in sets of three on a Prusa i3 3D printer using black fire resistant ABS 

plastic. As a contact material between individual batteries, Aluminium was chosen due to it 

being available. As described in section 4.3.2, the battery pack’s enclosure was made of a 

fireproof material (Shell, 2013). There was also a moderate amount of clamping force applied 

to the battery pack, in which metal being the best material for the body of the battery pack. 

Aluminium was selected for its ease of use and availability. The body of the battery pack was 

cut from an Aluminium sheet and drilled to provide slots for the threaded rods. The sheet was 

folded using a press.  

 

The clamping force was provided by five millimetres threaded rods and 5 mm nuts which 

provide additional mechanical stability and prevents the cells from swelling during charging. 

The cells, clamps and casing were assembled as seen in Figures 5-2. 
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Figure 5-2: Assembly of aluminium enclosure for the battery pack 

 
Figure 5-3 shows the assembly of the Lithium-Ion polymer cells and the 3D generated pouch 

cell. The terminal connectors can be seen at the top of each pouch. 

 
Figure 5-3: The assembly of one stack of ten cells 

 
Figure 5-4 shows the completed battery pack together with all the terminal connections for one 

stack of ten cells. 
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Figure 5-4: The assembled battery pack  

 
A decision was made that the EV’s power source should be electrically isolated from the 

remaining circuitries in the EV in case of a fault or short circuit in order to fulfil the completion 

rules (Shell, 2014). Fuses and a circuit breaker was the logical and cheap option in protecting 

the battery pack. 

 

A 63 A circuit breaker was used to provide additional isolation of the battery pack from the EV’s 

remaining circuitry in case of a fault. In addition, a metal bracket was built to support ten 0.5 A 

fuses that were placed in series with each cell to provide protection of each cell in case of a 

short circuit due to a fault in the BMS system.  

 

 
Figure 5-5: The completed battery pack together with fuse protection 

 

A further decision was made to enclose the battery pack in a Perspex enclosure. This was also 

to meet the requirements of the Shell Eco Marathon (Shell, 2014).  
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A Perspex box was assembled and additional screws were fitted to secure the structure to 

the vehicle chassis. A partition was also built to separate the sections containing the 

battery pack from the main fuse.  

 

 
Figure 5-6: Battery pack enclosure 

 

5.1.4 Test results for the battery pack 

The individual stack of ten series cells, were charged and discharged several times to obtain 

data about their state of health and these tests were also done to ensure that the BMS is 

actually protecting the battery stack. 

 

5.1.4.1 Cell balancing 

In determining the efficiency of the cell balancing mechanism a set of unbalanced cells were 

charged with the cell voltages recorded before and after the test. The results of these tests can 

be seen in the figures to follow.  

 

At the end of the charge cycle the charge current switched on and off rapidly as the BMS 

stopped charging, discharged the cells that were in overvoltage and then resumed charging. 

The small number of charge cycles shown between balancing cycles was a result of the logging 

data rate which was three times per minute.  

 

Before charging, the cell voltages were spread over 1 V, ranging from 2.5 V up to 3.5 V. After 

charging and passive balancing, the cell voltages were all within 0.1 V of each other at 4 V. 

Although the battery cells had a recommended charge voltage of 4.2 V the BMS’s threshold 

was set slightly lower than this to enable effective (time efficient) balancing at the top of the 

charge. 
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Figure 5-7: The battery cell voltages before charging and balancing 
 

 
Figure 5-8: The battery cell voltages after charging and balancing 
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5.1.4.2 Battery capacity  

It can be seen in Figure 5-9 that the cells voltages began to diverge rapidly when the pack’s 

capacity was reduced below 0.5 Ah. The maximum capacity achieved with these cells using 

over-voltage at 4.0 V and under-voltage set to 3.0 V was 3.67 Ah during the second discharge 

test. 

 
  

 
Figure 5-9: The battery capacity and cell voltages during discharging 

 
Once all the above tests were completed the cell configuration was adjusted to provide 17.6 

Ah maximum capacity, so that the EV endures 43 min (max) in a total track race length of 9 

laps of 2.40 km each in length, when powering the 1.5 kW motors. 

 

5.2 The battery management system (BMS) 

Selection of the BMS came down to two options, namely the BQ77PL900 which can perform 

top of the battery pack balancing during charging. It also provides battery pack monitoring 

features for protection, health and SOC monitoring (Appendix D). 

The other option of BMS was the BQ769X0 which supports all of the same functions as the 

B77PL900.  
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However one version can support up to fifteen cells and all versions provide more accurate 

pack current and cell voltage measurements than the BQ77PL900 (Texas Instruments, 2013). 

Both required hosting a microcontroller unit (MCU) and an Inter-Integrated circuit (I2C) 

multiplexer to operate in parallel with other modules. This was required in order to support sets 

of parallel cells. The BQ77910AEVM and the BQ77PL900 both have stand-alone features but 

the BQ77PL900 was more suited for communicating with a MCU (Texas Instruments, 2013). 

The BQ77PL900 is a system available intended to provide self-contained active balancing, 

overcharge and undercharge prevention on the Lithium battery pack. The control registers in 

the internal electrically erasable programmable read-only memory EEPROM were 

programmed with the threshold values that would trigger the internal FET drive controlling the 

charge or discharge cycles of the battery. The evaluation module mainly consists of the 

BQ77PL900 IC that operated in stand-alone mode or controlled by a host microcontroller using 

the IC’s analogue front end. Two paired high current FET’s located at the pack side are 

dedicated for charging and discharging and driven ON or OFF accordingly to an unsafe 

condition (Texas Instruments, 2013). 

The BQ77PL900 (BQ) was also selected because of its availability and suitability for monitoring 

and balancing ten series cells. An evaluation module from Texas Instruments required some 

repairs. It had a damaged reverse voltage protection diode which resulted in a failure during 

initial testing with a power supply. The primary IC in the BQ was replaced along with several 

other passive components (Shell, 2017). 

 

Initially also, the resistor R5 in the board’s input was soldered into the BQ due to its prior 

inexistence which made impossible to fully connect the ten series cell battery pack available. 

A damaged resistor R1 was generating a permanent overcharge condition monitored using the 

XALERT pin which was also replaced. 

 

The BQ77910AEVM was selected due to cost constraints of the project and will be 

implemented in order to monitor and protect the batteries. Each integrated circuit in the 

BQ77910AEVM provides protection and monitoring of up to ten cells. To monitor all the cells 

for the EV, four modules were required to operate in parallel. The reason for selecting this BMS 

was mainly because of the cost of the unit and also the fact that it could monitor ten cells at a 

time (Texas Instruments, 2013). The expected efficiency of the BQ77910AEVM was above 

ninety percent. 
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5.2.1 Setup procedure 

The BQ77PL900 BMS was programmed using the EV2300 driver that uses I2C communication 

protocol to interface the board to Windows based software. This method allowed setting up the 

IC protection limits and assessing the overall functionality of the BQ board. 

 

 

A 63 A circuit breaker and fuses were installed to the battery pack as an extra precautionary 

measure. Once the fuses and circuit breaker were in place and operational, a “load” was then 

connected to the BQ board using the circuit breaker with the current off to prevent arcing or 

transients that could potentially emerge during connectivity. A heat sink was also installed to 

prevent damaging temperatures imposed on the FET’s if the enclosed thermal sensor that is 

set to trip at sixty degrees, failed to respond.  

 

The input to the board consisted of the Lithium-Ion battery pack and load banks to simulate 

normal load conditions. Heavy gauge wires were also used for the high current connections 

and the wires were positioned as close as possible to minimize inductance. On-board shunts 

were used to set cell count to ten in series and set to 5 V for the logic level voltage for EEPROM 

programming. The configuration used during tests is shown in Figure 5-10 (Texas instruments, 

2008).  

 
Figure 5-10: Hardware connections to the BMS 

 

Additionally, the following procedure should be followed to connect the cells to the board. 

 The cells should be connected in order from the lowest to the highest voltage rated starting 

by connecting the lowest cell negative terminal to the EVM BATTERY- terminal. 
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 Each cell should then be connected in ascending order, taking their voltage level into 

consideration. 

  The most positive cell or the cell with the highest voltage should only be connected to the 

module’s Battery+ terminal last after all the cells with the lower voltages have being 

connected. 

 To disconnect the board from the pack, the cells should be disconnected from the highest 

voltage rated cell to the lowest rated voltage cell i.e. they must be disconnected in reverse 

order. 

 

5.2.2 Software configuration initialization 

I2C communication was established between the IC and the electric vehicle motor (EVM) 

module when VSTARTUP was applied to the battery pack, causing the BQ device to wake up in 

standalone mode. This connection was provided by a toggle switch to prevent the FET’s from 

being bypassed by a resistor while an enabled load was connected to the output of the BQ 

board (“PACK” terminals), which caused a current to flow through the resistor causing a short 

circuit, thereby disabling this part.  

 

This start up voltage enabled the regulators “REG 1” and “REG 2” to power the IC and external 

circuitry. Once the operation of those regulators were stable, the power source was switched 

to “BAT” as long as the “BATTERY” voltage was within operating range, which is from 7 V to 

50 V (Texas instruments, 2018). If the battery input was below this range the IC did not operate 

until a charger was applied at the “PACK” terminals. If the voltage at the regulators fell the IC 

FET’s and all controllable functions were disabled. The EVM module gave access to the IC 

addressable registers, that provided status, control and configuration information for the 

protection system. Table 5-3 is a table of the BMS addressable registers (Texas instruments, 

2018). 

 

 

Table 5-3: BQ77PL900 addressable registers 

Name R/W Description 

Status R Status Register

Output control R/W Output pin control from system host and external pin

State control R/W State control from system host

Function control R/W Function control from system  host and external pin

Cell Balance R/W Battery cell selection for balancing
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Cell_Sel R/W Battery cell selection for balancing and voltage 
monitoring

OV CFG R/W Overvoltage level register

UV Level R/W Undervoltage level register

OCDelay R/W Delay time register

 

 

The registers were accessed in the registers tab of the module (Texas instruments, 2018). 

 

 
Figure 5-11: Interface of addressable registers (Texas instruments, 2018). 

 

5.2.3 Setup of overvoltage and under voltage settings 

To adjust the detection voltages, the variables were written into the “OV_CFG” and “UV_Level” 

registers. A “CHG FET” and “DSG FET” in standalone mode was controlled by these registers 

which switched on and off by a fixed algorithm and the overall protection system operated as 

summarized in Figure 5-12 (Texas Instruments, 2009). 
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Figure 5-12: A safety overview in standalone mode 

 
The IC monitored the voltage difference between the “Pack +” and “BAT”. If a difference higher 

than 0.4 V (typical) was detected the IC interpreted that a charger was connected. In obtaining 

battery information without an external microcontroller the operation mode was switched by 

“STATE_CONTROL [HOST]”. In this mode the IC still detected thresholds limits but recovery 

control was obtained by writing the command into the “CONTROL” register. The “XAlert” pin 

notified an external circuitry of an alert condition (Texas Instruments, 2009). 

 

5.2.4 Cell balancing 

The “CBEN” bit in the “OCDELAY” register was set to “1” to enable the IC’s bypass balancing 

method, a fixed algorithm which enables a NMOS switch across a cell thus providing a bypass 

path for a charging current from a cell that has reached the overvoltage threshold.  

 

The operation worked as described in the following figures. The balancing was accomplished 

by opening a bypass path around the cell which reached overvoltage status (the BQ contains 

internal cell balancing FET’s). The bypass path included two resistors and dissipated power 

until the cell was within a safe range (Vmax) minus hysteresis voltage. This is shown in Figure 

5-13. 
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Figure 5-13: The configuration of a cell when balancing with the internal NMOS activated 

 
 

During testing it was found that utilizing the internal FET’s with the default external resistor 

values, resulted in extremely slow balancing. This was sufficient for normal usage; however, 

initially the cells were severely unbalanced due to their varied origins (some had been in 

storage in a fridge while others were in use by previous students). In providing a balanced 

starting point an external passive balancing connector was made up utilizing 1 Ω resistors, 

connecting two stacks of ten series cells in a “2P10S” configuration (the connections between 

parallel cells was the resistors) (Texas Instruments, 2009). 

 

Figure 5-13 and Figure 5-14 show the cell configuration, when balancing of a cell was enabled 

and disabled. 

 
Figure 5-14: The configuration of a cell when not balancing with the internal NMOS deactivated 
 

It is recommended that the values of 500 Ω and 0,1 μF are used for “Rext” and “Cext”, to provide 

the amount of voltage necessary to activate the FET’s and limit the balancing switch. Cell 

balancing lasted approximately 50 ms, within which 10 ms were used to monitor the voltage of 

the cell and the remaining 40 ms of the period in providing a bypass path. 

 

Figure 5-15 and Figure 5-16 shows how external FET’s were connected to the BQ with lower 

value resistors in enabling higher balancing current (Texas Instruments, 2009). 
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Figure 5-15: The configuration of a cell with external balancing and the internal NMOS activated 

 

 
Figure 5-16: The configuration of a cell with external balancing and the internal NMOS 

deactivated 
 

For the overall test procedure, the BMS voltage threshold limits were set to: 

 Cell over voltage level: 4.15 V 
 Cell under-voltage level: 1.40 V 
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Figure 5-17: Setting up of cell overvoltage and under-voltage threshold limits (Texas 

instruments, 2018). 
 

To test the overall functionality of the BMS, the battery bank was subsequently charged at no 

load to the limits established, so that the under-voltage (UV) and overvoltage (OV) indicators 

as well as the response were observed. The results obtained will be discussed in detail in 

Chapter 8. 
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Chapter Six 

The EV display panel and user interface design 

6.1 Microcontrollers interface 

6.1.1 Arduino 

Arduino is a relatively inexpensive board based on the Atmega eight-bit microcontroller, with 

features such as native I/O analogue commands that adds simplicity in developing code to 

interface with a variety of sensors and chips. Also there are a large number of compatible 

boards that can provide extra functionality to the microcontroller thus facilitating easy 

redevelopment or upgrades on the hardware controlled. Most MCU’s are equipped with six 

analogue input channels and thirteen digital pins although some versions support eight to 

sixteen analogue pins and twenty to fifty three digital pins. The board responds well in battery 

powered circuits not being susceptible to abrupt power shortage but it is limited in terms of 

peripheral interfaces and associated high speed processors to provide capabilities for more 

elaborated HMI functionalities (Banzi & Shiloh, 2014) 

 

6.1.2 Raspberry pi 

Raspberry pi is a general-purpose computer based on Linux operating system, supporting two 

USB ports, connecting wirelessly to the internet, multitasking and functioning as a personal 

computer, although supporting forty general purpose input and/or output pins. It is best suitable 

for software applications; to use features like reading an analogue sensor requires additional 

hardware and development of code libraries. Also it requires a proper shutdown to avoid 

damage of its setup making it unsuitable to use in battery powered circuits (Monk, 2016). 

 

6.1.3 Microchip 

Upgrades can become a challenge using a device from the Microchip’s bewilderingly large line 

of programmable interface controller (PIC) microcontrollers’ given the fact that the architecture 

between line changes considerably (Barnett, et al., 2004). 

 

6.1.4 Selection of microcontroller 

For this application the Arduino will be used given the simplicity provided by the board and 

possibilities of implementing easier upgrades for the vehicle (Banzi & Shiloh, 2014). 

 

An “Arduino Uno” (MCU1) and the “MEGA” (MCU2) were powered using an LM317 that 

regulated the voltage from the battery pack to 5 V and provided enough current to supply the 

MCU’s and the dashboard.  



   

   103 

 

The “Arduino Uno” interfaced with a temperature sensor and a power sensor that was built 

using a shunt current sensor and a voltage divider. The digital fault flag “XALERT”, from the 

BMS that alerted the host if the BMS exited the normal operational mode, was monitored by 

the “UNO”, and the processed data results were displayed by the “MEGA” (Mantech, 2010) 

(Arduino, 2017). 

 

 
Figure 6-1: Arduino Uno complete connectivity diagram (Mantech, 2010) 

 

 

Figure 6-2: Arduino Mega complete connectivity diagram (Mantech, 2010) 
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6.1.5 Communication protocol 

Available options included (Elahi, 2001)(Heath, 1999): 

 I2C: requires two signal wires, data (SDA) and clock (SCL). The protocol allows a master 

to address individual slaves using a seven-bit or ten-bit address with speed ranging from 

slow (under 100 Kbps), fast (400 Kbps) to high (3.4 Mbps) (Elahi, 2001), (Heath, 1999). 

 Serial Peripheral Interface (SPI): requires four signals, serial clock (SCL), master in slave 

out (MISO), master out slave in (MOSI) and an active low slave select (/SS) for each slave; 

unless extra I/O pins are available or space for a de-multiplexer IC is provided. The bus 

might not be a viable solution for low-pin count microcontrollers (Elahi, 2001) (Heath, 

1999). 

 Microwire: It has equivalent signals to the SPI, signal clock (SK), serial data in to master 

(SI) and serial data out of the master (SO). Both buses are restricted to distances no longer 

than half a meter, although higher lengths, approximately three meters can be achieved by 

adjusting bus capacitance and lower bit rates (Elahi, 2001) (Heath, 1999). 

 1-Wire: A single master asynchronous bus, allows it data wire to transfer power to slave 

devices with a limited speed of 16 kbps. (Elahi, 2001) (Heath, 1999). 

 RS-232: It enables full-duplex communication between two receiver/transmitter pairs, the 

data terminal equipment (DTE) and data communication equipment (DCE). A 

driver/receiver IC or equivalent shield is required to use this protocol with an Arduino board 

(Elahi, 2001) (Heath, 1999).  

 

A comparison among the serial protocols discussed is summarized in Table 6-1 (Elahi, 2001): 

 

 

Table 6-1: Comparison of serial protocols 

Protocol Timing clock Type Duplex Maximum 
Speed 
(Kbps)

Maximum 
cable 
length 

Pins 
Count 

I2C Synchronous Multi-master Half 3400 >3 m 2 

SPI Synchronous Multi-master Full  >1000 1 m 3+12 

Microwire Synchronous Master/slave Full >625 1 m 3+1 

1-wire Asynchronous Master/slave Half 16 1 m 1 

RS-232 Asynchronous Peer Full 20 >9 m 2 to 4 
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Other communication protocols include:  

 Can Protocol (Controller Area Network): It is the standard for commercial vehicles, however 

it requires additional shield like the Multiprotocol Radio shield to enable its usage with the 

Arduino (Shahan, 2015). 

 Wireless communication: It is preferably implemented in situations where it is not feasible 

to use hardwired communication. At least two wireless modules are needed for 

transmission and the communication is susceptible to obstruction (Heath, 1999). 

 

 

A suitable protocol for the CPUT EV should provide at least a maximum cable length capability 

of more than two meters, in order to cover the length of the chassis of the EV. The I2C protocol 

was chosen due to its clock and data pin outputs which are supported by Arduino without the 

need of using general I/O pins and making use of additional coding to implement the protocol. 

 

6.1.5.1 Serial communication selection 

The Arduino Uno localized in the boot communicated via I2C with an Arduino Mega localized 

in the header panel over a two meter RS232 port based cable that was built to interlink the 

systems.  

 

In the I2C communication the Uno acted as the master by initiating the communication and 

sending to the slave namely the Mega, the values for the EV’s performance rating, the slave, 

and the interfaces with a hall sensor for RPM measurements and wrote the overall data 

received into the dashboard. The RS232 output pins is illustrated in Figure 6-3 (Arduino, 2017) 

 

 
 

Figure 6-3: RS232 output pins interface connections 
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In Figure 6-4, is the interface connections when connecting the Arduino Uno via the RS232 

cable to the Arduino Mega (Arduino, 2017). 

 

Figure 6-4: Connections between Arduino Uno and Mega via RS232 cable. 
 

The serial data line (SDA), serial clock line (SCL) and ground (GND) from the Arduino Uno 

connected to the DB9 male pins 3, 4, and 1 respectively of the interface cable. The same signal 

from the Arduino Mega connected the female header of the interface cable to pins 3, 4 and 1. 

The remaining connections follow the same order logic. The toggle switch nodes from the boot 

connected to the start switch in the dashboard via interface cable pins 7 and 8 (Arduino, 2017). 

 

6.1.6 Software flow charts 

The battery monitoring system was done by the master; the slave performed speed 

measurements and controlled the operation of the dashboard by displaying the overall 

collected data. The flow charts describing the software utilized by Arduino Uno is described in 

Figure 6-5 (Arduino, 2017). 

 

 
Figure 6-5: Flow chart of software for Arduino Uno 

 



   

   107 

 

The flow charts describing the software utilized by Arduino Mega, the slave device is described 

in Figure 6-6 (Arduino, 2017) and are high level flow diagrams. 

 

Figure 6-6: Flow chart for slave device 
 

6.1.7 Sensors 

Arduino compatible sensors were used to provide the EV’s driver with the following information. 

 The power rating of the battery pack in terms of ampere-hours (Ah), watts-hours (Wh) and 

Energy (Ws) 

 The temperature of the Lithium battery bank. 

 The speed of the EV throughout the race. 

 

There are five basic sensors required for the EV in providing the driver with information needed. 

They are namely power monitoring sensors, current sensors, voltage sensors, temperature 

sensors and angular velocity (speed) sensors. These are all essential sensors and the 

following characteristics were looked at before selection of the sensors occurred (Erjavec, 

2012). 

 

6.1.7.1 Power monitoring sensors 

To obtain the values of power and state of charge of the battery, a power sensor was built 

using voltage and current measurements from the battery pack. 
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6.1.7.2 Current sensors 

Some current sensing techniques are: 

 Current Shunt: Measures the voltage drop across a low value, high precision sense resister 

between the battery and the load and causes power loss, heats up the battery and has a 

lower accuracy in low currents and also require additional isolation amplifiers (Bartelt, 

2006). 

 Hall Effect transducers: These transducers provide good accuracy over the entire range of 

measurement while preventing drift in high side current measurements. Also they do not 

require electrical isolation techniques (Bartelt, 2006). 

 Current Transformers: These transformers can only measure AC currents, saturating in the 

presence of DC components on AC currents. Larger current sensors are bulky when 

compared to Hall sensors with the same range (Scrosati, et al., 2015) (Bartelt, 2006). 

 

The current sensor incorporated in the EV consists of a breakout board based on the Hall 

Effect, being a ACS758 current sensor. This sensor is capable of measuring AC or DC currents 

outputting a precise voltage that is proportional to the current measured. This sensor was 

chosen due to its ability of providing highly reliable measurements, a wide current range and 

a high isolation from the electrically conductive paths and the signal leads. Additional 

characteristics of the ACS758 and the setting of the device in the system can be viewed in 

Table 6-2 (Allegro MicroSystems, Inc., 2010). 

 

Table 6-2: ACS758 current sensor (Allegro MicroSystems, Inc., 2010). 

Cost R350 

Supply Voltage 3 V to 5.5 V 

Supply Current 10 mA to 13.5 mA 

Operational Temperature -40 °C to 150 °C 

Current Directionality Bidirectional 

Current Measuring Range -50 A to 50 A 

Sensitivity 40 mV/A 

Primary Conductor Resistance 100 μΩ 

Full Scale Nonlinearity -1% to 1% 

Full scale Total Output Error  2% 
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The setting of the ACS758 current sensor is described in the block diagram in Figure 6-7. 

 

 
Figure 6-7: Block diagram of current sensing 

 

The voltage from the VOUT pin of the ACS758 was translated into a current using the analogue 

to digital converter of the Arduino UNO (License, 2017) (DFRobot, 2017). 

 

 

AnalogRead[index] = (AnalogRead[index]-510)*5/1024/0.04-offsetValue (43)  

 

Equation 43 describes the conversion of the varying output voltage of the sensor from 

analogue 0 V to 5 V to a digital value from 0 to 1023 for an accurate reference point (0 A). At 

no input the measured offset value at first measurement was used instead of the 

predetermined value on the datasheet (DFRobot, 2017). 

 

The sensor was tested using load banks with a parallel current combination capable of 20 A. 

The results processed by the MCU was calibrated against a commercial E-bike power meter 

and the obtained data initially was viewed using the built in serial port viewer in Arduino IDE. 

 

The percentage error against the standard was calculated using equation 44 (Wilson & 

Hernandez-Hall, 2015): 

 

ݎ݋ݎݎܧ ൌ 	
ெ௘௔௦௨௥௘ௗ	௩௔௟௨௘ିௌ௧௔௡ௗ௔௥ௗ	௩௔௟௨௘

ௌ௧௔௡ௗ௔௥ௗ	௩௔௟௨௘
ൈ 100%		 ሺ44ሻ	

	

The overall linear relationship described is summarized in Figure 6-8. 



   

   110 

 

	
Figure 6-8: Linearity relationship of calibrated data and standard current value 

 
The results obtained were linear to the standard measurement instrument chosen and a 

maximum error of 3.14 % was measured over the full measurement range. The complete 

results are described in the Appendix H. 

 

6.1.7.3 Voltage sensors 

A voltage divider was used to provide 5 V at 42 V battery voltages according to the battery 

operational limits. The device was calibrated using a laboratory power supply. The method 

used to calculate the error in the current sensor was applied to the sample obtained. 

 
Figure 6-9: Data obtained from voltage meter evaluation 

 
Figure 6-9 shows a linear response from the calibrated meter with a maximum error less than 

2 % over the full range of measurement. The complete sampling is attached in Appendix H of 

this document. 



   

   111 

 

6.1.7.4 Temperature sensors 

There are many temperature sensors available on the market. Due to cost and availability, the 

following temperature sensors were evaluated and their features are tabulated (National 

Semiconductor, 2000), (Maxim Integrated, 2016): 

 

Table 6-3: Comparison of different temperature sensors  

 LM35 DS18B20+ 100k NTC 

Interface type Analogue Digital Analog 

Requirements Vcc, Gnd, ADC 
One MCU pin, Gnd 
(Vcc not required)

Vcc, Gnd, resistors, 
ADC. 

Accuracy 
±0.5 ºC and 
dependent on ADC

±0.5 ºC 
Dependent on ADC 
and amplifiers 

Resolution Dependent on ADC 
User selectable from 9 
to 12 bits

Dependent on ADC 

Cost (including 
measurement 
electronics 

Medium Low High 

 

 

The sensors discussed can measure the desired range to be monitored but the LM35 was 

chosen given the fact that it featured the need of using the microcontroller I2C port that was 

intended for the communication protocol. 

 

The LM35 was used to monitor the battery pack temperature calibrated directly in Celsius. It 

did not require external calibration to provide typical accuracies of ± ¼ °C to ± ¾ °C, over a full 

range from -55 °C to 150 °C. The output voltage from the sensor was linearly proportional to 

the centigrade temperature with a 10 mV scale factor; the conversion using the MCU1 was 

done in this section of the code (Texas Instruments, 2016): 

 

݁ݎݑݐܽݎ݁݌݉݁ܶ ൌ
ሺ೑೗೚ೌ೟	ൈಲ೙ೌ೗೚೒ೠ೐	ೃ೐ೌ೏	ሺೀೠ೟೛ೠ೟	ಽ೘యఱሻൈఱሻ

భబమయ

଴.଴ଵ
   (45) 

 

6.1.7.5 Speed sensors 

Optical sensors were used for speed detection by having features on a rotating target either 

interrupt or reflect a beam of light passing from an emitter (LED or laser) to a detector 

(phototransistor). They exist over a wide spectrum of forms and prices (Ramsden, 2006). 
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Variable reluctance sensors operate magnetically and consist of a coil of wire wound around 

a magnet. As ferrous targets pass the face of the sensor, they induce flux changes within the 

magnet, which are then converted into a voltage in the coil. They have the advantage of being 

inexpensive and rugged (Ramsden, 2006). 

 

Inductive proximity sensors are also known as eddy-current killed oscillator sensors. These 

sensors work by sustaining an oscillation in a high-Q LC circuit formed from a capacitor and 

sensing inductor. The magnetic flux from the sensing inductor is allowed to pass to the outside 

of the sensor, through a detecting surface. When a conductive target is brought near the 

detecting surface, it absorbs energy from the magnetic field and damps the oscillation. 

Subsequent circuitry then reports target presence or absence based on the status of the 

oscillation. Table 6-4 summarizes a few of the advantages and disadvantages of each of these 

technologies (Ramsden, 2006). 

 

 

Table 6-4: Speed sensing technology comparison 
Technology Advantages Disadvantages 
Optical Fine spatial resolution. 

Inexpensive. 
Very fast (>100 kHz) 
Digital output.

Susceptible to contamination. 
Limited temperature range. 

Variable reluctance Inexpensive. 
Hot, dirty environments. 
Fast (>10 kHz)

Requires ferrous targets. 
Minimum sensing speed. 
Additional signal processing needed.

Inductive proximity Hot, dirty environments. 
Non-ferrous metal targets. 
Digital outputs.

Slow (<1 kHz) 
Low special resolution. 

 

Typical speed sensing devices are simple to use, reliable and inexpensive (Martínez, et al., 

2013). 

 Revolutions per minute (RPM) sensors: These devices send speed data as electrical 

pulses without direct contact. Once positioned near a moving device, the generated pulse 

is then fed into a digital counter depending on the processing device. Mechanisms include 

shaft encoders with a resolution of 1-5000 pulses per revolution; proximity sensors that 

provide low to medium resolution (which is dependent on the number of pulses measured 

per revolutions); magnetic rotational speed motor (proximity type) offering a range between 

0 to 30000 rpm; and photoelectric sensors (Martínez, et al., 2013). 
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 Tachometers: Measure rotational or surface speed with resolutions ranging between 20 to 

20000 rpm. Mechanical and optical versions allow the measurement to be done with or 

without contact with the rotating mechanism (Martínez, et al., 2013). 

 

The speed monitoring of the project was done using an RPM sensor so that its result could be 

easily displayed in the vehicle dashboard and enable easier upgrades, if required. For 

determining angular velocity, three options of sensors were looked at in industry. They were 

namely an analogue voltage generator sensor, a digital Hall Effect sensor and a digital optical 

sensor (Hatch, 2016). The Hall Effect sensor was selected because it is non-contact and can 

be implemented with the addition of a small magnet on the motor’s shaft (Hatch, 2016). 

 

A speedometer was built using an LM393 Hall Effect sensor. The non-latching device 

generated an output “LOW” when a magnet was attached in the frame of the wheel of the 

vehicle and an output “HIGH” whenever the magnet was pulled away from the frame of the 

wheel of the vehicle.  

 

The number of times that the sensor detected the magnet was fed into a counter, pulsed, and 

the time was obtained from adjusting an existing Arduino function that counted milliseconds. 

The formula below was used to calculate the rotational speed of the vehicle (Beaty & Santoso, 

2015). 

 

݉݌ݎ ൌ
ଷ.ଵସଵହଽଶ଺ହସൈ଴.ହൈ௣௨௟௦௘௦

௧௜௠௘	ሺ௦ሻ
 (46) 

 

6.2 EV Dashboard panel 

The panel for the dashboard was built using a metal sheet that was drilled to fit the emergency 

button, an ignition switch and to secure the displays. It was the sheet to provide slots to fit the 

LCD displays into the panel.  

 

6.3 User interface 

The RS232 cable from the MCU1 in the “boot” of the EV was connected to the MCU2 with the 

Arduino Mega mounted in the back of the Dashboard of the vehicle. The board controls the 

operation of the LCD displays in front of the panel alongside the Hall Effect sensor connected 

to it. The Arduino LCD library was used to operate the LCD, but the default connections and 

code had to be adjusted to cater the LCD displays. Figure 6-10 shows testing of the 

functionality of three LCD displays with the Arduino Mega. 
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Figure 6-10: Testing the LCD functionality with the microcontroller 

 

The overall connection of the LCD to the Arduino Mega and the switches to the RS232 port 

were soldered onto vari-board which was secured to the back of the Dashboard. On the display 

side of the Dashboard were mounted the following: 

 An ignition switch: This was connected in parallel to an additional toggle switch in the 

battery enclosure. When triggered the switch connected the “BATT” terminal to the 

“PACK+” terminal of the BMS thereby consequently supplying the EV load. 

 An Emergency button: Triggering this button disabled all electrical operations of the EV. 

 LCD displays: Three 16x2 inch LCD displays were used to display the battery pack’s 

temperatures; speed that the motor was being driven at and overall performance rating in 

terms of ampere-hours, watt-hours and watt-seconds for the EV. An additional battery was 

added to power the LCD’s to eliminate dependency of the HMI to the BMS. The device 

should be replaced by low power rechargeable batteries in the future. 
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Figure 6-11: LCD configuration adjusted to fit into the EV dashboard 

 

Figure 6-12 is the template for the display of the dashboard being designed for the CPUT’s 

EV. 

 

 
Figure 6-12: EV dashboard display template 
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Chapter Seven 

Testing and evaluation of the EV motors and motor drive 

The various tests of the EV components are concluded in chapter seven and chapter eight. 

Tests for the motors and motor drive are extensively examined in chapter seven and in chapter 

eight, the battery pack and BMS are also covered. Upon completion of these chapters, the 

efficiencies of each component will be determined and the overall efficiency of the EV will be 

calculated. A race simulation will be concluded to determine whether or not the EV will 

complete the race. The following research questions are particularly reviewed and answered: 

 Can an efficient power train be developed for this car? 

o The motor needs to be rebuilt to comply with the Shell-eco rules without sacrificing 

efficiency. 

o An efficient motor drive needs to be developed. 

 Can an effective power source be developed for this vehicle? 

o The battery needs to be sized to complete the race. 

o The BMS needs to comply with the competition rules. 

 Will the total system: 

o Fulfil all the safety aspects of the vehicle for the competition? 

As the chassis is not available for the EV yet, the vehicle is designed according to 

the safety requirements of the competition. 

o Allow the vehicle to complete the race? 

 

7.1 Power train evaluation 

In order to calculate any dynamics of the EV, it was critical to first calculate or determine the 

average speed of the EV to cover the entire distance of the track. From previous Europe Shell 

Eco-Marathons it was determined that an average speed of 25 km/h was optimal for the race 

to cover a track length of 1.626 km per lap (Shell, 2015). This was based on the Shell Eco-

Marathon Europe race. 

 

The first Shell Eco-Marathon South Africa was hosted in 2016 at the Zwartskop Raceway in 

Johannesburg and this track has a total distance of 2.40 km. This can be seen in Figure 7-1. 
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Figure 7-1: The Zwartskop Raceway track for the South African Shell Eco-marathon 

The Zwartkops raceway is 2.40 km in length and a decision was made that an average speed 

of 25 km/h needs to be maintained for the CPUT EV, which would take the electric vehicle 5 

minutes 46 seconds to complete a single lap. This is however assuming that the track is flat 

and that the weather conditions are perfect. 

 

With an average speed of 25 km/h, the EV would require a velocity of 6.925 m/s. The EV would 

require an acceleration of 0.02 m/s2. This would result in a climbing force of 0 N (as the track 

is assumed to be flat); an aerodynamic drag of 0.542 N; a rolling resistance of 26.969 N and 

an acceleration force of 5.44 N. 

 

The respective power losses would be 0 W for the climbing power losses; 3.759 W for the 

aerodynamic power losses; 185.023 W for the rolling power and 5.44 W for the acceleration 

power losses. These values are all based from the theory in chapter 2 and these losses are 

based on one completed track length. 

 

7.2 Motor efficiency 

The purpose of this test was to determine if the off the shelf motor was successfully adapted 

for the CPUT EV application, and how efficient the re-wound motor was compared to the 

original motor. The original motor (measured) and re-wound motor (expected) efficiencies can 

be seen in Figure 7-2. 
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Figure 7-2: Efficiencies of the original motor (measured) and the new motor (expected) 

 

The original motor had a peak efficiency of 71.177 %. The re-wound motor was expected to 

produce the same output power, but at a substantially lower input voltage (23 V as opposed to 

380 V - less than a 16th of the original voltage). This means that the current increased 

drastically, and along with it, the copper losses should have increased as well, which 

subsequently would lead to a poorer efficiency. Therefore, the re-wound motor’s efficiency was 

expected to be around 65 %. An efficiency of less than 50 % would render the motor unsuitable 

for this application. 

 

7.2.1 Motor losses 

In order to perform the track physics calculations, the ideal acceleration force (with no losses) 

was determined. This was done by assuming that two 750 W motors are used and that the EV 

has a maximum speed of 50 km/h. The acceleration force calculation is: 

 

Power (Assuming that 2x750W motors will be used): ܲ = 1.5 kW 

 Velocity (Assuming a 50km/h=13.889m/s top speed) 13.899 = ݒ m/s 

 

ܲ	 ൌ ܨ ൈ  (10)           ݒ

Therefore:    ܨ	 ൌ
௉

௩
ൌ

ଵହ଴଴

ଵଷ.଼଼ଽ
ൌ 108	ܰ 
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The acceleration force is (Grunditz & Jansson, 2009): 

	

Total mass of vehicle and driver:  ݉  = 275 kg 

 Acceleration force of the vehicle: ܨ௔௖௖  = 108 N 

	

௔௖௖ܨ 	ൌ ݉ ൈ ܽ       (6) 

Therefore:   a	ൌ
ிೌ ೎೎

௠
ൌ

ଵ଴଼

ଶ଻ହ
ൌ  ଶݏ/݉	0.3927

 

7.2.2 Motor efficiency testing 

The block diagram shown in Figure 7-3 graphically illustrates the test setup. Pictures of the 

setup can also be seen in Figure 7-4, Figure 7-5 and Figure 7-6. 

 

 
Figure 7-3: The EV motor efficiency test block diagram 
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Figure 7-4: The EV motor three phase power supply 

 

 
 

Figure 7-5: The eddy current dynamometer/brake and digital scale 
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Figure 7-6: The complete test setup for the testing of the EV motor 

 

Before the test procedure for the motor could commence a pre-test had to be done to ensure 

that the motor could not be damaged during the testing stage. The procedure involved for the 

pre-test is as follows. 

 The three phase power supply was set up to produce three phase voltage of 300 V AC. 

 The variable transformer (variac) was then connected to the power supply. 

 The 1:2 tap setting on the transformer was selected and the output voltage of the 

transformer was measured giving a three phase voltage of 600 V AC. 

 The variac was then connected to the step down transformer. 

 The following step was to ensure that the 6600:260 tap setting was selected, so that a three 

phase output voltage of 23 V AC could be measured. 

 The transformer was then connected to the motor terminal box, in star configuration. 

 The motor was secured to the dynamometer and connected to the shaft, etc.  

 On the input side of the dynamometer, the DC power supply was connected. 

 The digital scale was calibrated (to ignore the mass of the dyno-scale spacer). 

 The NanoVip Plus power meter was connected to the motor terminal box. 
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The reason for using the step down transformer is due to the fact that the CPUT Heavy Current 

Laboratory’s three phase power supply was rated at 25 A. A current value of 35 A was required 

for the purpose of testing the full potential of the motor. Using the most ideal tap setting, meant 

an input of 600 V was required and for that reason a variac was also utilised. 

 

After completion of the pre-testing of the motor, the testing of the motor was completed. This 

procedure followed the following steps. 

 The three phase power supply was switched on from 0 V, 0 A. 

 The input voltage was slowly increased until the motor started turning and being allowed to 

speed up. 

 Once the motor was running at nominal speed, the input line-to-line voltage (VIN L-L), the 

input line-to-line current (IIN L-L) and the power factor were measured and recorded using the 

NanoVip power meter. 

 Thereafter a DC current was injected into the dynamometer and the current was adjusted, 

until the desired mass was displayed on the digital scale. The DC current injected into the 

dynamometer, created an eddy current, which opposed the rotation of the dynamometer 

disc, and subsequently loaded the motor. The braking force applied to the motor caused 

the dynamometer axis to tilt, thereby exerting a force on the dynamometer scale spacer and 

thus on the scale as well. The mass component of this braking force could then be 

measured on the digital scale. 

 Once again the input line-to-line voltage (VIN L-L), the input line-to-line current (IIN L-L) and the 

power factor were measured and recorded using the NanoVip power meter. The exact mass 

measured on the scale was also recorded. 

 Steps four to five above were then repeated for weights of 0.1 kg to 1.5 kg. 

 This was completed for various masses starting at 0.1 kg and going up in increments of 0.1 

kg all the way to 1.5 kg. 

 

The test results are graphically illustrated in Figure 7-7 and figure 7-8. The tabulated results 

are also available in Appendix G.  
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Figure 7-7: The re-wound motors torque versus speed curve 

 

 

Figure 7-8: The old motor (measured), the new motor (expected), and the new motor 

(measured) efficiencies and I2R Losses 

 
As can be seen in Figure 7-8, the re-wound motor has a peak efficiency of about 63 %, and 

the measured efficiency curve is very similar to the expected curve. The reason for the minute 

difference is due to the fact that the actual (measured) winding resistance was slightly more 

than the calculated, hence, leading to a slightly worse efficiency than expected. The rewound 

motor maintained an efficiency (above 50 %) from 623 W to 1.34 kW, which is ideal for the 

varying load (acceleration/deceleration) to be applied during the race. It can thus be concluded 

that the motor was successfully adapted for the application.  
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7.3 Motor drive testing and evaluation 

7.3.1 Initial motor drive testing 

 

The initial test needed to be completed on the motor drive was a load test. A test bench was 

developed (Figure 7-9) in order to determine the efficiency of the motor drive. Various 

measuring equipment was used. As damage to the developed battery pack might have 

occurred, the option of using three 12 V, 33 Ah car batteries was decided upon as a better 

option for testing purposes of the motor drive. These were connected in series to sum up the 

voltages to 36 V. The resultant energy of the source was then 36 V, 33 Ah. The power supply 

line of the electric vehicle power train was first passed through a 63 A circuit breaker for short 

circuit protection.  

From the circuit breaker, the input power metering equipment were interfaced prior to the 

inverter. The output power metering equipment were interfaced along the power line between 

the inverter and the load. This was done so that the input and output power of the inverter 

could be measured and the efficiency calculated from these values.  

 
Figure 7-9: Test bench for initial load testing of dsPIC30F2010 motor controller. 

 

On the input side of the motor controller, a decision was made to connect up a single phase 

Fluke 43B power analyser with data logging capabilities as well as a “Watts Up” single phase 

power analyser.  
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This was done to ensure that the measurements completed were similar to each other. The 

“Watts Up” meter was connected in series with the power cables by means of terminal 

connectors and the Fluke 43B meter was connected across the incoming power cables by 

means of banana sockets. A Fluke DC current clamp was clamped around the live incoming 

power cable and set to a 10 mV/A signal multiplication setting. The Fluke 43B was also set to 

the same measuring capability to ensure correct measurements. Care was taken in observing 

that the Fluke 80i-110s AC/DC current probe is a directional current clamp and had to be 

connected in the correct manner. Figure 7-10 and Figure 7-11 are of the test bench showing 

the meters connected to the input side of the motor drive as well as the current clamp employed 

and the display settings on the Fluke 43B. 

 

 
Figure 7-10: The input side to the motor drive together with the metering equipment. 
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Figure 7-11: (a) The Fluke 80i-110s AC/DC current probe (b) The display of the Fluke 43B being 

setup correctly. 
 

On the output side of the motor drive a three phase Fluke 435B, with data logging capabilities 

was connected across the three phase output terminals. The Fluke 80i-500S AC current 

clamps were also clamped around each of the three phase cables. This was completed so that 

three phase output power could be measured.  

 

A single phase Fluke 43B was also connected across the output terminals so that the AC 

frequency could be monitored. This was done yet by connecting the meter’s probes across 

any two lines of the three AC lines and a Fluke current clamp connected around the third power 

cable. Figure 7-12 illustrates the measuring equipment on the output side of the motor drive. 

 

 

Figure 7-12: The Fluke 43B and Fluke 435B connections on the output side of the motor drive. 
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The current clamps incorporated for testing was the Fluke 80i-500S current clamps. These 

current clamps can measure up to 500 A and the power cable that went through each current 

clamp needed to be wound ten times around each current clamp. This was done to boost the 

sensitivity of the current clamps as the reading expected were quite low. This meant that the 

current clamps ratings were now modified to 10 mV/A. To compensate for this the Fluke 435B 

meter scale was set to 10 mV/A so that the correct measurement readings could take place. 

Figure 7-13 is a picture of the Fluke 435B being set to the correct scale. 

 

 
Figure 7-13: The Fluke 435B being set to 10mV/A scale. 

 

In order to ensure that the load testing of the motor drive was successful, it was required that 

the initial testing of the motor drive first completed on a high-voltage resistive element bank. 

Figure 7-14 is a picture of the resistive element bank that was used for this initial testing 

purpose. 

 
Figure 7-14: The resistive, high voltage, element bank used for initial load testing. 
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The motor drive inverter efficiency tests that was carried out was completed in two stages; 

firstly with just a 100 W and then secondly with a 600 W load. This was done this way in order 

to affirm the VSD’s power capability.  

Tremendous care was taken as serious damage could have been done to the motor drive as 

well as the car batteries and metering equipment. 

7.3.1.1 Motor drive testing using a 100 W load 

For the 100 W test, a resistive element bank containing twelve resistive elements of 52  each 

was configured into a delta connected load of 13  each per phase. In order to do so, the 

twelve resistive elements were grouped into three groups of four series resistive elements. 

Each group of series elements were connected in a parallel connection resulting in 13  per 

phase as shown in Figure 7-15 (a). The phase resistances were then connected into a delta 

configuration as shown in Figure 7-15 (b). 

 
Figure 7-15: (a) The load resistances connected in parallel. (b) The phase resistances 

connected in a delta configuration. 
 

The equations and formulae to follow were used to calculate the 13  per phase of the delta 

load (Bakshi & Bakshi, 2008): 

 

 

்ܲ ൌ √3 ൈ ௅ܸ ൈ ௅ܫ ൈ cos	∅  (47) 

∴ ்ܲ ൌ 100	ܹ 

 

But ௅ܸ = ௉ܸு = 17.3 V and cos	∅ = 1 (for a pure resistive load): 

∴ 100	ܹ ൌ 	√3 ൈ ௅ܸ ൈ  ௅ܫ

But ܫ௅ ൌ √3 ൈ  :௉ுܫ

∴ 100	ܹ ൌ 	√3 ൈ ௅ܸ ൈ ሺ√3 ൈ  ௉ுሻܫ
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∴ 100	ܹ ൌ 	√3 ൈ ௅ܸ ൈ
௉ܸு

ܴ௉ு
ሻ 

∴ ܴ௉ு ൌ
ሺ3 ൈ ௅ܸ ൈ ௉ܸுሻ

100
ൌ
ሺ3 ൈ 17.3	ܸ ൈ 17.3	ܸሻ

100
 

∴ ܴ௉ு ൌ 8.98	Ω ൎ 8.67	Ω ൌ ሾ13	Ω//ሺ13	Ω ൅ 13	Ωሻሿ 

 

For 13 Ω resistors in delta connection, the total resistance across each phase is 8.67 Ω, which 

is equivalent to 13 Ω in parallel to the addition of two 13 Ω resistors. A complete picture of the 

entire system to measure a load of 100 W can be seen in Figure 7-16. 

 
Figure 7-16: Complete test bench for the inverter to measure a 100W load. 

 
The charged car batteries were connected directly to the inverter by switching the circuit 

breaker on. The inverter was then tuned by increasing its three-phase output frequency at 

constant intervals.  

 

At every set frequency as monitored on the Fluke 43B, connected at the output of the inverter, 

the input and output voltages and currents were measured and recorded from the respective 

power analysers as shown in Figure 7-17. The data was then recorded and the input power 

was then calculated as P = IV and the output power as PT = √3 x VL x IL x cos Ø where cos Ø 

is the power factor, equal to unity for pure resistive loads. 

 

 

 
 



   

   130 

 

Output line voltages (2.53 Vrms) and current (0.4 A) 

 

Frequency (10.4 Hz)             
 

 

Input voltage (38.10 V) and current (0.420 A)                                                           

Figure 7-17: Measurements of input and output power for the 100W load. 
 

After completion of this test, the batteries were disconnected from the inverter by switching off 

the circuit breaker and then allowing the batteries to charge for a full eight hours again. 
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Figure 7-18 shows that the inverter efficiency and the output power were both linear with 

changes in the inverter frequency which becomes saturated at 50 Hz. In other words, the input 

power and the output power remained constant at frequencies greater than 50 Hz. Figure 7-

18 also shows that the linearity of the efficiency was up to about 70 % and the output power 

was up to about 80 % for the 100 W power load. More importantly noted was that the meter 

started measurements of the output power only at frequencies greater than 10 Hz.  

For a fixed load and VF control, the power was expected to change with the square of the 

voltage which is linked to the frequency as voltage and frequency is proportional. 

 

 
Figure 7-18: Graph of efficiency versus the output power and frequency for the inverter for 100 

W load. 
 

7.3.1.2 Motor drive testing using a 600 W load 

After completion of this experiment and testing with a 100 W load, the 100 W load was 

disconnected and a 600 W load replaced the previous load. For the 600 W load test, a 600 W  

load was needed in order to load the inverter close to the maximum power (750 W) of the 

motor thereby verifying the reliability of the inverter. Finding such a load was really 

cumbersome since such a load has to be of a very low resistance and high temperature 

tolerance. The following resistance value was calculated for a load of six hundred watts (Bakshi 

& Bakshi, 2008): 

்ܲ ൌ √3 ൈ ௅ܸ ൈ ௅ܫ ൈ cos	∅  (47) 
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∴ ்ܲ ൌ 600	ܹ 

For a star load: IL = IPH = ௉ܸு
ܴ௉ு
ൗ  and cos Ø = 1 (for a pure resistive load): 

∴ 600	ܹ ൌ 	√3 ൈ ௅ܸ ൈ ௉ܸு
ܴ௉ு
ൗ  

But ௉ܸு ൌ ௅ܸ
√3
൘  

∴ 600	ܹ ൌ 	√3 ൈ ௅ܸ
ଶ

√3
൘ ൈ ሺ1 ܴ௉ுൗ ሻ 

∴ 600	ܹ ൌ	 ௅ܸ
ଶ

ܴ௉ு
ሻ 

∴ ܴ௉ு ൌ
௅ܸ
ଶ

600	ܹ
 

∴ ܴ௉ு ൌ
ሺ17.3	ܸሻଶ

600	ܹ
 

∴ ܴ௉ு ൌ 0.5	Ω 

To make up this 0.5 Ω phase resistance, a decision was made to use a three core multi-strand, 

2.5 mm2 power extension code, which was 31 m long in length. This three core cable would 

be used in a star configuration. The three core cable was terminated at one end using terminal 

connectors, in order to create a star point. The other ends of the cables were connected to the 

three output terminals of the inverter. Using an LCR meter, the resistance of each length of 

cable before terminating them was found to be 0.7 Ω. Upon completion of this 100 W test for 

the inverter, the next step was to connect up the motor to the inverter and continue testing. 

The 100 W load would now be replaced by the 600 W load. Figure 7-19 shows the block 

diagram of the motor drive connected to the motor of the EV together with the measuring 

equipment. 
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Figure 7-19: Test bench for load testing of dsPIC30F2010 motor controller and Motorelli motor. 

 
By this design, the electric vehicle efficiency was simulated before carrying out the test on the 

actual EV prototype. This is done by monitoring the power drawn from the source and the 

mechanical power generated by the motor. 

 

The Fluke 435B power analyser meter gives the possibility to store multiple readings with high 

resolution. The readings were observed during adjustable time intervals. At the end of the 

interval the min, max, and average values of all readings were stored in a long memory and 

the next observation interval started. This process continued for the duration of the 

observation. 

The Fluke 435B set to ‘Volts/Amps/Hertz’ display mode 

The metering equipment was connected in exactly the same fashion as the previous 

experiment whereby a 100 W load was measured. The charged batteries were disconnected 

from the charger (power supply).  

 

The Fluke 435 power analysing option; ‘Volts/Amps/Hertz’ was selected for measuring 

purposes. The batteries were then connected to the inverter by switching the circuit breaker 

on again. This was the second part in testing the efficiency of the motor controller. The inverter 

was then tuned by increasing its three-phase output frequency at constant intervals.  
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Similarly as shown in Figure 7-17, the input current & voltage and output current & voltage 

were measured, and recorded on a spreadsheet after every frequency interval. The input and 

output powers were then calculated as previous discussed.  

For safety reasons and to make sure the cable temperature did not exceed 50 ºC the core 

temperature of the cable was observed as it increased with more power drawn from the 

inverter. The maximum temperature reached at maximum frequency of 55 Hz was 45 ºC (using 

an APPA thermometer) as shown in Figure 7-20 (BrumBach, 2017). 

 

 

Figure 7-20: The 600W load testing of the motor drive measurements and temperature 
readings. 

 

Figure 7.21 shows a graph of the motor drive efficiencies versus the output power and the 

output frequency. 



   

   135 

 

 
 

Figure 7-21: Graph of efficiency versus the output power and frequency for the inverter for 600 
W load using the Volts/Amps/Hertz display option on the Fluke 435B. 

 

Figure 7-21 shows that with a higher power demanding load (600 W), the efficiency was higher 

at lower frequencies than the previous 100 W load. This was because the 600 W load drew 

more power from the VSD which in turn drew more input power from the batteries at every set 

frequency than the 100 W load. This is why the efficiency curve was shifted ‘up’. It could also 

be seen that the power output became constant at frequencies greater than 50 Hz. This was 

also true with experimental exercise-one, thus still indicating that the VSD became saturated 

at above 50 Hz. More so, the graph shows that the efficiency of the inverter was up to 100 % 

and above which was questionable. With this in mind, a decision was made to explore other 

measurement options other than the Fluke 435B power analyser. 

 

The Fluke 435B set to ‘Power and Energy’ display mode 

The Fluke 435B power analysing display option was now changed to ‘Power and Energy’. The 

“load’ was allowed to cool down for some time and the experiment repeated for the entire 

frequency range of the inverter. This was the third frequency test of the bridge inverter. The 

power input and output were recorded on an excel spreadsheet. A graph of the frequency vs 

output power and efficiency were plotted and can be seen in Figure 7-22. 
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Figure 7-22: Graph of efficiency versus the output power and frequency for the inverter for 600 

W load using the Power and Energy display option on the Fluke 435B. 
 

By using this display option of the Fluke 435B, it could be seen in Figure 7-22, that at 

frequencies lower than 20 Hz, the output power was as low as zero, thus the efficiency is unlike 

that in Figure 7-21. The efficiency then increased abruptly and linear between a short 

frequency range of 20 Hz to 35 Hz. Here, the efficiency got close to a 100 % again, but at a 

much lower frequency of 35 Hz. The frequency then remained steady from 35 Hz to 55 Hz. 

This result was worse than the result in Figure 7.21. The picture in Figure 7-23 shows the 

maximum cable temperature reached at a maximum frequency of 55.3 Hz and an output power 

of 640 W.  

 
Figure 7-23: Maximum cable temperature reached when using the Fluke 435B on the Power and 

Energy display option. 
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The Fluke 435B set to ‘Logger’ display mode 

Lastly, the Fluke 435B power analyser meter option was again changed to ‘Logger’ display 

mode. The cable was once more allowed to cool down to 25 ºC (room temperature) for a while 

and the experiment repeated for the entire frequency range of the inverter. This was the fourth 

and last efficiency test of the inverter by using the Fluke 435 power analyser. Figure 7-24(a) 

shows the set of variables selected to be logged while Figure 7-24(b) shows the output power 

being logged. 

 

(a) (b) 

  
Figure 7-24: (a) Set of variables selected to be logged on Fluke 435B when in ‘Logger’ mode (b) 

The output power being logged by the Fluke 435B when in ‘Logger’ mode 
 

The output voltage, current, power and frequency values were logged, as well as the input 

current and voltage values were also recorded. The batteries were once again disconnected 

from the rest of the circuit by switching off the circuit breaker. At the end of this experiment, 

the batteries were again put on charge for roughly eight hours. 

 

The data recorded on a spreadsheet was plotted as in Figure 7-25. 
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Figure 7-25: Graph of efficiency versus the output power and frequency for the inverter for 600 

W load using the ‘Logger’ display option on the Fluke 435B. 
 

The results seen in Figure 7-25 are the same as those seen in Figure 7-22. This lead to the 

conclusion that the Fluke 435B power analyser was not good for this inverter output wave 

which is a ‘step by step’ approximate sine wave with a high crest factor of 1.78 at 10 Hz. From 

the Fluke 435B data sheet, a crest factor of greater than 1.8 implies a high wave distortion, 

thus a high total harmonic distortion (THD). The power factor measurement by the meter may 

have been good but the true power measurement did cause the meter to have issues due to 

high harmonics from the inverter. 

 

Using the Tektronix four channel data logger for power measurements 

A proper measuring meter adopted in this experiment was the use of the digital method of 

power measurement namely, using a Blondel’s four channel digital scope. The Fluke 435 

power analyser was therefore replaced by the Blondel’s digital scope and the scope was 

connected to the three-phase output of the inverter in a similar fashion as that of the Fluke 

435B. 

 

The test exercise using a 600 W load was repeated again as per the normal procedure of 

varying the frequency by intervals and recording the input and output data. An excel plot of the 

data was plotted as shown in Figure 7-26. 
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Figure 7-26: Graph of efficiency versus the output power and frequency for the inverter for 600 
W load using the Blondel’s four channel digital scope. 

 
In Figure 7-26, as seen in Figure 7-22, it can be seen clearly that the efficiency remained zero 

at frequencies less than 20 Hz. This was because the power drawn from the supply was 

basically consumed by the active components of the bridge inverter (VSD) such as the metal 

oxide semiconductor field effect transistors (MOSFET) switches and filter capacitors, in 

becoming active. The power output then increased almost in a linear form from 20 Hz up to 50 

Hz where the VSD saturated. The efficiency then remained constant (the input power and 

output power are equal) at this maximum of about 95 %. This result clearly confirms that the 

Fluke 435 was not a suitable meter for this bridge inverter output wave form. 

7.3.1.3 Motor drive testing using the AC induction motor 

The third experiment involved a few changes from the previous two experiments, namely using 

the 100 W and 600 W loads. Both loads were now removed and the developed AC motor was 

now inserted in the test bench. The changes to the test bench are as shown in the block 

diagram in Figure 7-27. 
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Figure 7-27: Block diagram for test bench with AC induction motor incorporated and metering 

equipment. 
 

The Fluke 435 was discarded and replaced by a four channel digital oscilloscope, and the 600 

W load was also discarded and replaced by the AC induction motor. The AC induction motor 

was then connected to the eddy current brake, used for loading. The eddy current brake was 

powered by a variable DC power supply. The set up was as shown in Figure 7-28. 

 

 
Figure 7-28: Complete test bench with AC induction motor incorporated with metering 

equipment and eddy current brake for loading purposes. 
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The charged batteries were disconnected from the charger. They were then connected to the 

power train by switching the circuit breaker on again. The three phase AC frequency of the 

inverter was varied at exactly or almost exact intervals as for the previous 600 W load exercise 

of the inverter efficiency test. 

  

The motor started to rotate the eddy current brake disk at constant revolutions per minute 

(RPM) and there was a small power drawn into the inverter. This was the “no load” input power 

to the inverter-to-motor system. The power output of the inverter was negligible. This was the 

“no load” power to the motor.  

 

The ‘mass scale’ was switched on to measure the weight drawn from the eddy current brake. 

The variable DC power supply to the eddy current brake was switched on and increased slowly 

until the power drawn to the inverter was the same or almost the same as the input power in 

the previous 600 W load exercise (at the same frequency). The eddy current brake opposed 

the rotation of the disk, thereby loading the motor and as well as exerting a force (torque) on 

the mass scale. 

 

At constant RPM of the eddy current brake disk, the value on the mass scale, the RPM of the 

disk measured, the input power to the inverter, the input power to the motor and the output 

power of the inverter, were all recorded.  

 

The variable DC power supply to the eddy current brake was then turned to zero and switched 

off. The inverter AC output frequency was then turned to the next frequency increment and the 

process repeated over the frequency range of the inverter.  

 

An excel plot of the recorded data was plotted as shown on Figure 7-29. 
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Figure 7-29: Graph of efficiency versus the output power and frequency for the inverter when 

the AC induction motor and eddy current brake are connected using the Blondel’s four channel 
digital scope. 

 
By the above plot, the motor could have sufficient rotation at the VSD output frequency of 20 

Hz. A sufficient load on the motor showed that the motor was 56 % efficient at this frequency.  

The efficiency of the motor then increased at higher VSD output frequencies (motor supply 

signal frequency) to 60 % at 35 Hz. It then dropped to 57 % and remained relatively constant 

from 40 Hz through 45 Hz to 50 Hz. This was because the motor’s rotating magnetic field was 

not uniform enough. This low and nonlinear efficiency of the motor could also be attributed to 

the nature of the inverters output voltage signal. Figure 7-30 shows the data displayed by the 

respective meters used for measurement purposes. 

Figure: 

7-30 (a) shows the power (voltage & current) to the eddy current brake and VSD output 

frequency. 

7-30 (b) shows the revolutions per minutes (RPM) of the motor after being loaded by the 

brake. 

7-30 (c) shows the mass units generated by the torque from the motor, upon being loaded 

by the brake. 

7-30 (d) shows power drawn from the batteries by the VSD-motor system. 

7-30 (e) shows the AC motor input power measurement form the VSD output  
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Figure 7-30: Experimental Exercise 3 data display 

 

After completing this section of the experiment, it was noticed that the VSD was getting very 

hot while its maximum power rating of 750 W was not yet reached. This was because of the 

regenerative energy of the motor. As the voltage on the motor was very low this caused the 

phase currents in the motor being quite high. This energy created was pushed back into the 

VSD and it created internal circulating currents in the VSD. The end product of these high 

currents generated heat. The regenerative power from the IM had a voltage amplitude of 9.91 

V RMS and a current amplitude of 21.8 A RMS. Figure 7-31 shows the regenerative energy of 

the induction motor as negative power on the digital scope. 
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Positive power   Regenerative power 

 

 
Figure 7-31: Induction motor Regenerative Power 

 

This problem was reduced by connecting a 2 µF AC capacitor at the direct current input 

terminals of the VSD. This was a high frequency discharging capacitor. The supply line was 

also regulated by two power capacitors summed up by connecting them parallel together and 

then across the direct current power line as shown in Figure 7.32 (b). 

 
Figure 7.32: a) 2µF AC & power capacitors b) Regenerative power protection 
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After connecting the capacitors to the circuit, the maximum motor power output reached was 

174.027 W at 955.4 RPM, thus making the motor 60.2 % efficient. The best power 

measurements taken for the motor drive was an output power of 572 W with an input power of 

593.135 W, making the motor drive 96.437 % efficient. Combining the motor drive and motor 

the highest efficiency obtained was 53.653 % (See Appendix I). 
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Chapter Eight 

Testing and evaluation of the EV battery pack, the BMS and the display panel 

components 

8.1 Evaluation of the battery pack 

The charge profile in Figure 8-1 (Microchip, 2009) shows the balancing mechanism in effect at 

the end of the charge cycle; however the current remained constant throughout. This indicates 

the upper cell voltage limit was raised since the power supply did not enter constant voltage 

mode at the end to provide a trickle charge that tops up the battery pack. This lower cell voltage 

was chosen in order to preserve the cells lifespan since it is during the final trickle charge stage 

that Lithium-Ion cells swell the most significantly. Although the battery pack provided 

compression force to mitigate this swelling effect, it was decided to optimize battery lifespan 

over maximum charge levels. 

 

 
Figure 8-1: The battery pack voltage and current during charging 

 

Unfortunately the large disparity in cell voltages at the end of the discharge cycle (or the 

beginning of the charge cycle seen in Figure 8-2) was a result of the BMS’s inability to perform 

active balancing which allowed the cells to drift apart significantly if fully discharged. This was 

mitigated by never fully discharging the cells. 
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Figure 8-2: The battery cell voltages after charging and balancing 

 

8.2 Evaluation of the BMS 

Throughout the software configuration of the IC, it was observed that the device would trigger 

the overvoltage and under voltage alarms, disable the load and ultimately enter into shutdown 

mode. This condition emerged in standalone mode and host mode despite all cell voltage limits 

being within the values established in the EEPROM for voltage to overvoltage (VoV), voltage 

to undervoltage (VuV), the OV CFG and UV level registers. To recover from the shutdown 

mode, in standalone, the start-up voltage was applied at the IC pack terminal but the IC failed 

to recover automatically and communication between the IC and evaluation module was lost. 

Therefore the status control register was switched to host control. 
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Table 8-1: Recovery commands for the BMS 

Mode Transition Function and firmware procedure 

Over voltage protection to normal 

In the output register, toggle LTCR flag from 1 to 0.  

Read status bit to change XALERT status to HIGH. 

Set CHG FET on to enable normal operation. 

Under voltage protection to normal 

In the output register, set LTCR from 1 to 0. 

Set DSG FET on to enable normal operation. 

Read status but to change XALERT to HIGH. 

 

 

8.2.1 Fault finding of the BMS 

The recovery commands written in EEPROM failed to make the IC work in normal mode which 

indicated a possible hardware malfunction rather than failure from the standalone mode fixed 

algorithm or from the wrong host firmware command. Individual circuitries of the IC were 

checked. 

 

8.2.1.1 Cell voltage measurement 

The voltage monitoring done by the IC was checked using the Vout pin of the IC which, outputted 

the voltage measured from a series element of the battery according to the gain established 

by the host controller. The register CELL SEL enabled the host to select the series cell to be 

measured. The cell amplifier scale that varies from 0.15 to 0.20 was chosen. The bit 

State_Control [Vgain] was monitored using the following default equations (Texas Instruments, 

2009): 

௢ܸ௨௧భ ൌ 0.975 െ ሾሺ݈݈ܿ݁	݁݃ܽݐ݈݋ݒሻ 	ൈ 0.15ሿ  (48) 

 
or 

௢ܸ௨௧మ ൌ 1.2 ൈ ሾሺ݈݈ܿ݁	݁݃ܽݐ݈݋ݒሻ 	ൈ 0.20ሿ    (49) 

 
When  ௚ܸ௔௜௡ ൌ 1 
 
For the total Pack Voltage measurement (Texas Instruments, 2009): 
 

௢ܸ௨௧య ൌ ሺ݈ܶܽݐ݋	݇ܿܽ݌	݁݃ܽݐ݈݋ݒሻ 	ൈ 0.02 When register bit Pack = 1  (50) 

 

௢ܸ௨௧ర ൌ ሺ݈ܶܽݐ݋	݇ܿܽ݌	݁݃ܽݐ݈݋ݒሻ ൈ 0.02 When register bit BATT= 1  (51) 
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The pack voltage and the battery voltage was enabled and disabled by Function_Control 

[PACK] and Function_Control [BAT] respectively. During the experiment, the voltages obtained 

from the Vout pin differed completely from the actual cell value which was previously measured 

with a standard voltmeter indicating a fault in the IC´s cell voltage monitoring circuit (Figure 8-

3) (Texas Instruments, 2009): 

 

Figure 8-3: The cell monitoring circuit of the BMS 

 

To check the operation of the differentiation amplifier the device was calibrated by 

programming the CELL_SEL registers bits and Function _Control [VAEN] bit to predetermine 

the inputs of differential amplifier and enable the predefined outputs. The steps taken into the 

amplifier calibration are summarized in Figure 8-4. 
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Figure 8-4: Calibration procedure of the BMS 

 

The differential amplifier responded correctly which led to the conclusion that the sample-and 

hold (S/H) circuit was faulty. This caused the under voltage and overvoltage that are also driven 

by the S/H circuit, to fail. 

 

Figure 8-5 Faulty S/H circuit of the BMS 

 

8.3 Dashboard metering equipment 

The Shell marathon stipulates that the performance of the EV is judged on energy conservation 

rather than speed acquired. As such the assembled power sensor was used to build the 

following counters, which was calibrated. 

 



   

   151 

 

8.3.1 Ampere hour (Ah) counter 

The state of charge of the vehicle is represented in an amp-hour rate where 100 % is the 

equivalent of 17.6 Ah. This represents the actual configuration of the battery source.  

 

8.3.2 Watt hour (Wh) and watt second (Ws) counter 

The dashboard provides the amount of power used by the vehicle so that the associated 

cost in terms of electricity needed to fully charge the device can be obtained. The following 

formulas are used to calculate the power consumed (Beaty & Santoso, 2015): 

 

ܲ ൌ ܸ ൈ  (52)   ܫ

ܹ݄ ൌ ݄ܣ ൈ  (53) ݁݃ܽݐ݈݋ݒ	݇ܿܽ݌

ݏܹ ൌ ܹ݄ ൈ 3600  (54) 

 

The results obtained for the energy counter with a variable load of 20 A are recorded in the 

Appendix H. 

 

8.3.3 Simulation of the race 

To test the Wh and the Ah count, the battery bank at approximately 38 V was used to power a 

30 A load that corresponds to at least 75 % of the EV motor power, assuming that the motor 

did not always run at its peak values. The experiment was conducted for forty-three minutes, 

which is the maximum time established by the Shell Eco-marathon rules for completion of the 

race. The results obtained are found in Appendix H.  The calibrated data for the Ah counter 

against a commercial meter as well as the WH results are recorded below. 

 

Figure 8-6: Calibrated data for the Ah counter 



   

   152 

 

 

 

Figure 8-7: Calibrated data for the Wh counter 

 

The graphs depicted in Figure 8-6 and Figure 8-7 shows a linear response from the calibrated 

meter for the ampere hour and watt hour counters. The error does not exceed 6 % for both 

meters in the measurements. The complete sampling is attached in Appendix H of this 

document. As can be viewed in Appendix H, it can be seen that the efficiency of the BMS under 

race simulated conditions, reached a measured power value of 351.31 W to a standard value 

of 353.4 W, making the BMS 99.4 % efficient. 

 

8.4 Drive train system 

For a highly efficient chain drive to be developed, three alternatives were looked at. 

 A shaft and gearbox drive train system; 

 A CVT belt system; and 

 A chain and sprocket drive train. 

 

The shaft and gearbox drain train system is used in most vehicles. It is the best method of 

delivering the highest torque from the engine to the wheels. However, this type of system is 

heavier than the other two systems looked at, which will make the overall system less efficient 

(Alshodokhi, et al., 2013). 
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Figure 8-8: A shaft and gearbox drive train system (Visual Composer, 2016) 

 

A CVT belt system has the advantage over the gearbox drive train in that the gear ratio can be 

controlled, which helps with the overall efficiency. This type of system also adds weight to the 

vehicle but not as much as the gearbox system. Installing this drive train also consumes more 

time (Alshodokhi, et al., 2013). 

 
Figure 8-9: A Typical CVT belt system (Alshodokhi, et al., 2013). 

 

The chain and sprocket drive train is the lightest of the three drive trains looked at and is also 

the simplest. These drive trains are commonly found on bicycles. In order to control the torque 

coming from the engine to the  rear wheel a small transmission will be incorporated to increase 

or decrease the speed on the rear wheel, keeping in mind that the maximum speed and 

average speed needed to be achieved is 50 km/h and 25 km/h respectively. 
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Figure 8-10: A typical chain and sprocket drive train (Alshodokhi, et al., 2013). 

 

Belt drives can produce an efficiency of up to ninety eight percent if designed correctly whilst 

a chain drive produces a similarly high efficiency. Table 8-2 is a comparison of the advantages 

and the disadvantages of each type of drive (Rashid, 2007). 

 
 

Table 8-2: The advantages and disadvantages of a shaft and gearbox; a belt drive and a chain 
drive (Rashid, 2007) (Alshodokhi, et al., 2013) (Gears Educational Systems, LLC, 2014) 

 Advantages Disadvantages 

Shaft and gearbox 
drive  High reliability 

 Highest in weight. 
 Complicated in construction 
 Higher in cost than a chain drive 
 Centre-to-centre distances are 

restricted to specific dimensions for a 
given set of gear. 

 Assembly tolerances are restricted

Belt drive 

 Light in weight. 
 Simplicity in design. 
 Has a low moment of inertia 
 Not as noisy as chain or gearbox 

drives. 
 Belt drives can operate over longer 

centre distances than chain drives 
 Belts are better suited for extremely 

high-speed ratios.

 Average in reliability 
 Higher in cost than a chain drive 

Chain drive 

 Shaft centre distances are relatively 
unrestricted 

 By using a chain, light weight 
sprockets can be manufactured 

 This reduces the overall weight of the 
car 

 Also produces a sprocket with a high 
moment of inertia 

 Lowest in cost 
 Easy to install 
 Assembly tolerances are not restricted 
 Can easily be redesigned and 

reconfigured. 
 Chain drives spread operating loads 

over many teeth. 
 They require less space for a given 

loading and speed condition than 
pulleys or belts. 

 Low in reliability 
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Based on the above advantages and disadvantages, a chain drive is a more practical and 

efficient solution. A few design considerations were looked at. 

8.4.1 Sprocket size 

In general, larger diameter sprockets are more efficient in transmitting power. The idea is that 

for the same gear ratio a pair of smaller sprockets will produce higher internal forces on the 

chain, which greatly increase friction losses in the chain (Rashid, 2007). 

Ideally, the sprocket size should be closest to the rim dimension so as to allow for the largest 

possible diameter of the driver sprocket for any gear ratio (Rashid, 2007). 

8.4.2 Chain speed 

Another consideration would be the variation of the speed of the chain as it engages and 

disengages with the sprocket. This is due to the variation of the lever arm’s length from the 

time the chain bush impacts the sprocket tooth till it gets seated on the sprocket. This speed 

variation increases with decreased number of teeth and causes increased chain noise and 

wear (Rashid, 2007). 

8.4.3 Chain Pitch 

One advantage of having a small chain pitch is reducing the angle of articulation. The angle of 

articulation is the angle that the chain makes when it is tangent to the pitch circle; it is the angle 

through which the chain rotates to mesh with the sprocket.  

A larger angle of articulation will produce more wear and as a result increased elongation of 

the chain and thus it is advantageous to have a larger number of teeth for a given sprocket 

size to reduce this angle.  It is therefore advisable to find the smallest chain possible as the 

smallest pitch chains can withstand more than 1000 N of force (Rashid, 2007). 
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Chapter Nine 

Conclusion and recommendations 

9.1 Simulated race results 

As the installation of the peripherals for the car is not completed as yet, only a simulation of 

the various components together with the race results was simulated. Figure 9-1 shows the 

simulation of the various components of the CPUT EV. 

 
 

Figure 9-1: Simulated efficiency results for CPUT EV  
 

A simulation was also completed of all the forces acting on the EV, the speed the EV would be 

doing as well as the power required and loss by the motor and the battery pack, for every meter 

covered during the race (Figure 9-2). 
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Total 
length 21600 m Total time allowed 34 min Start acceleration 0 m 
Laps 9   Time per lap 3.78 min Stop acceleration 110 m 
Length / 
lap 2400 m Avg Speed 10.58 m/s Start de-acceleration 1552 m 
  Avg Speed 38.12 km/h Stop de-acceleration 1612 m

Dist. 
(m) 

Ac
c/ 
Brk 

Wheel  
(N) 

Roll. 
(N) 

Drag  
(N) 

Avail. 
(N) 

Acc.  
(m/s2) 

Speed 
(m/s) 

Speed 
(km/h) 

Time 
(s) 

Motor 
rpm 

Motor 
(W) 

Batt 
(W) 

Energy 
(J) 

0 1 134.7 -26.98 0.00 107.8 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1 1 134.7 -26.98 -0.22 107.5 0.39 0.89 3.19 1.13 113.9 119.3 173.2 195.64 
2 1 134.7 -26.98 -0.44 107.3 0.39 1.25 4.51 0.80 161.0 168.6 244.8 195.64
3 1 134.7 -26.98 -0.66 107.1 0.39 1.53 5.52 0.65 197.1 206.4 299.7 195.64
4 1 134.7 -26.98 -0.88 106.9 0.39 1.77 6.37 0.57 227.5 238.2 345.9 195.64
5 1 134.7 -26.98 -1.10 106.7 0.39 1.98 7.11 0.51 254.2 266.2 386.5 195.64 
6 1 134.7 -26.98 -1.32 106.4 0.39 2.16 7.79 0.46 278.4 291.5 423.2 195.64 
7 1 134.7 -26.98 -1.54 106.2 0.39 2.34 8.41 0.43 300.5 314.7 456.9 195.64 
8 1 134.7 -26.98 -1.75 106.0 0.39 2.50 8.98 0.40 321.1 336.2 488.2 195.64
9 1 134.7 -26.98 -1.97 105.8 0.38 2.65 9.52 0.38 340.4 356.4 517.5 195.64

10 1 134.7 -26.98 -2.19 105.6 0.38 2.79 10.03 0.36 358.7 375.5 545.2 195.64
11 1 134.7 -26.98 -2.40 105.3 0.38 2.92 10.52 0.34 376.0 393.6 571.5 195.64 
12 1 134.7 -26.98 -2.62 105.1 0.38 3.05 10.98 0.33 392.5 410.9 596.7 195.64 
13 1 134.7 -26.98 -2.84 104.9 0.38 3.17 11.42 0.32 408.3 427.5 620.7 195.64
14 1 134.7 -26.98 -3.05 104.7 0.38 3.29 11.85 0.30 423.5 443.4 643.8 195.64
15 1 134.7 -26.98 -3.27 104.5 0.38 3.40 12.26 0.29 438.1 458.7 666.1 195.64
16 1 134.7 -26.98 -3.48 104.3 0.38 3.51 12.65 0.28 452.3 473.5 687.6 195.64 
17 1 134.7 -26.98 -3.69 104.1 0.38 3.62 13.04 0.28 466.0 487.9 708.4 195.64 

Figure 9-2: Simulated results for forces acting on the EV. 
 

The final simulation is a graph of the EV performance for one single track of 2.40km in length. 

It shows the average speed maintained of the EV as well as the power consumption of the 

vehicle for the duration of the single lap. 

Accelerate for 110 m Energy 123011.6 J Battery Volt 3.8 V
Brake for 60 m Energy 0.03417 kWh/lap Battery Amp 4.4 Ah 
Cruising torque 3.6 N Energy 0.341702 kWh Battery Energy 16.72 Wh 
Max Speed = 31.77509 km/h Energy 341.7017 Wh  
Avg. Speed = 30.48043 km/h Battery Mass 2.519924 kg Need 342 Wh 
Min Speed = 0 km/h Battery volume 1.194761 L No. Battery 20.45455

   No Batteries 20.99937 Approx.  

 

 

Figure 9-3: Simulated results of the EV completing one track length 
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9.2 Efficiency diagram 

As the installation of the peripherals for the car is not completed as yet, it is difficult to measure 

the overall efficiency of the entire power train mounted in the vehicle. For this reason the 

following assumptions were concluded.  

Based on previous research completed, the assumption was made that the gear transmission 

is 98 % efficient. Figure 9-4 shows a typical drive train power demands and efficiencies 

expected from a battery EV (Gustafsson & Johansson, 2015).  

 
Figure 9-4: A typical power train of a battery EV 

 

Based on these typical efficiencies of the electric EV above, the following efficiencies for the 

CPUT battery EV were developed. As the battery pack is the main source of energy it has no 

losses and delivers a total power of 1.2 kW. As previously discussed, the battery management 

has an over efficiency of 99.4 %, the motor drive has an efficiency of 96.43 %, the motor has 

an overall efficiency of 60.2 % and the gear transmission we assumed to be 98 %. The 

complete overall efficiency expected from the CPUT EV is 56.896 %. Figure 9-5 shows the 

efficiency diagram of each component and the overall system. 

 
Figure 9-5: Efficiency diagram for overall system 
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9.3 Conclusion 

In conclusion, the following questions were asked in the research proposal and have been 

summarised as follows: 

 

 

Table 9-1: Research questions answered 

Research question Yes/No 

Is the motor that was rebuilt efficient enough and complies 
with the Shell Eco-marathon rules and regulations?

Yes 

Is the motor drive developed efficient for the power train? Yes 

Is the battery sized correctly in order to complete the race? Yes 

Does the BMS comply with the competition rules? Yes 

Does the EV power train fulfil all the safety aspects for the 
Shell Eco-marathon competition? 

Yes 

Is the EV able to complete the entire race? Yes 

 

 

The following aims were reviewed and headed the following results: 

 

 

Table 9-2: Aims questions answered 

Aims Aims obtained 

The EV must be able to complete a complete single track 

length of 2.40 km (for the Zwartkops Raceway) without 

stopping. 

Yes. This EV will complete a single track of 2.40 km in length 

without stopping in approximately 3 minutes 47 seconds. 

As the EV developed is a battery electric vehicle, it must 

produce at least 60 km/kWh in completing a single track 

length. 

Yes. This EV produces 70.237 km/kWh in completing a single 

track length of 2.40 km. 

The overall efficiency of the electric drive train was expected 

to be above 80%. 

No. Due to the in efficient motors developed the overall 

efficiency of the power train is 56.896 % 

The following most important safety standards of the EV will 

also be fulfilled: 

- A bulkhead separating the driver from the energy storage 

system, in order to protect the driver from an open flame 

in the energy compartment, will be implemented. 

- A safety harness with five mounting points for the driver 

will be incorporated in the EV. 

- The driver will be able to vacate the EV within ten 

seconds at any time. 

- An emergency shutdown switch to disable the 

propulsion system of the EV will be implemented. 

 

 

 

- Yes. A bulkhead has been installed. 

 

 

 

- A five mounting point safety harness is in the EV. 

- The driver is able to vacate the EV within ten seconds. 

- An emergency switch to disable the propulsion system is 

installed on the EV. 
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The motors employed and designed for this EV could be replaced by more efficient motors. 

The three phase AC IM motors were found to be quite heavy as well thereby adding extra 

weight to the vehicle. In the future, synchronous machines or hub motors should be 

considered, which are lighter and more efficient. 

 

Regarding the BMS, the FET driver of the BQ77PL900 is responsible for the isolation and 

connection of the Lithium battery between the load and the charger, and the response of the 

driver is dictated by the IC battery cell voltage monitor circuitry. However, during configuration 

of the IC it was observed that this circuitry was faulty which rendered the available BMS unable 

of providing the protection required and control of the battery for the electric vehicle. Therefore 

the board should be replaced to provide such features.  

 

The implemented monitoring system responded with a maximum error less than 5 % for all 

sensing devices assembled. The key parameters that dictated the operation of the vehicle 

were successfully obtained and sent to the microcontroller that drives the dashboard which 

provides relevant real time data obtained from the previous system.  

 

To provide extra functionality and modernization of the dashboard in the future, a high speed 

processor with advanced HMI capabilities should collect data from the Arduino responsible for 

data monitoring and control the operation of the user interface. A creation of a database with 

the overall readings throughout the race will help build a profile to monitor the lifecycle of the 

battery and its overall performance during operation. Finally, the necessary support was 

provided so that the electronics implemented can be placed in the chassis of the vehicle and 

be promptly used. The following objectives and the results obtained are tabulated below. 

 

Table 9-3: Objective questions answered 

Objective Was the objective obtained? 

 Two “currently off the shelf” (COTS) motors will be taken apart and 

reconstructed to deliver 750 W of mechanical power at 23 V AC. Calculations 

to carry 50 A for the motor wiring thicknesses, will be performed. 

Yes. The motors have an efficiency of 

60.2 % from and can deliver 1.34 kW 

mechanical power at 23V AC. The 

motors could comfortably carry 35A, 

which was above the optimal running 

current of 30 A. 

 A battery pack containing Lithium-Ion batteries providing at least 40 A at 38 

V DC (nominal), will be developed together with an effective BMS for this EV. 

Yes. The battery pack comfortably 

handled 40V DC providing 40 A 

consistently for 73 minutes. The BMS 

has an over efficiency of 99.4 %. 
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 A 23 V AC motor drive for the vehicle will be developed. This motor drive will 

produce an output power of 1200W electrical power and a minimum of 30 A 

AC. 

Yes. A 23V AC motor drive with an 

efficiency of 96.43 % was developed. 

The best output power developed was 

572 W mechanical power.   

 The efficiency of the power train will be above 80 %. No. Due to the in efficient motors 

developed the overall efficiency of the 

power train is 56.896 % 

 The vehicle electrical subsystems will be designed and developed. Yes. 

 Monitoring and measurement parameters will be implemented to ensure that 

the objectives are met. 

Yes. 

 All electrical peripherals will be installed and comply with the competition 

rules. 

Yes. 

 

9.4 Future work 

For future work, this electric vehicle was developed as an educational platform as it is the first 

prototype of its type developed by the CPUT. Future developments can be made in getting 

more efficient motors for the EV as there were budget constraints in purchasing an efficient 

motor. It is recommended that synchronous motors would be a better option to induction 

motors as they provide a much higher efficiency and are lighter than induction motors. 

 

The batteries purchased for this EV were purchased a few years ago and there has been 

significant developments in battery technology with Aluminium batteries being the newer 

technology compared to Lithium Ion batteries. They are however a lot more expensive but are 

a lot more compact providing the same amount of energy.  

 

The material also used to construct the chassis of the vehicle is heavy and the EV chassis 

could be made of a lighter material resulting in the overall efficiency being improved. For future 

work an aluminium chassis should be considered as opposed to mild steel. 

 

If this research was to be completed again, induction motors would not be considered as they 

are not very efficient for this research purpose. Careful selection of the motor drive microchip 

would also be reviewed as the IRAM 136-3023B by International Rectifier was not the correct 

microprocessor and had to be replaced by the dsPIC30F2010 by Microchip. The design and 

development of the motor controller was time consuming as the incorrect microprocessor was 

selected and tested. In repeating this research, a local battery supplier would also be 

considered as quite a few batteries were rendered obsolete as they could not be charged and 

were purchased overseas. 
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Appendix B – Motor Experimental Results 

Original Motor Measurements 

Old  
Efficiency 

Old 
 

Current 

Old  
Resistance 

Old Copper 
losses 
(I2R)

Old Input 
Power 

Old Rotor, Windage and 
friction losses 

Output Power 

0 1.01 7.6 23.25828 157.0235693 133.7652893 0 

27.79586267 1.02 7.6 23.72112 204.2825756 180.5614556 56.78210417 

42.83870127 1.05 7.6 25.137 264.5595025 239.4225025 113.333855 

51.83950238 1.08 7.6 26.59392 320.0996169 293.5056969 165.9380486 

58.92715703 1.13 7.6 29.11332 378.6041363 349.4908163 223.1006539 

63.72313339 1.18 7.6 31.74672 433.3715828 401.6248628 276.1579518 

66.81738853 1.24 7.6 35.05728 495.3554458 460.2981658 330.9835728 

69.03099829 1.31 7.6 39.12708 557.0815797 517.9544997 384.5589757 

69.85413155 1.39 7.6 44.05188 617.9700938 573.9182138 431.6776423 

71.17772926 1.47 7.6 49.26852 681.9513578 632.6828378 485.3974912 

70.84557594 1.57 7.6 56.19972 756.6507254 700.4510054 536.0535643 

70.30317646 1.66 7.6 62.82768 821.359624 758.531944 577.4419058 

70.25788471 1.76 7.6 70.62528 882.1487183 811.5234383 619.7790295 

69.5099538 1.89 7.6 81.44388 968.9785038 887.5346238 673.5365103 

69.20004431 2 7.6 91.2 1038.191254 946.9912541 718.4288078 

67.97877339 2.12 7.6 102.47232 1114.068936 1011.596616 757.3303973 

66.25596975 2.27 7.6 117.48612 1204.178706 1086.692586 797.8402791 

64.61783657 2.43 7.6 134.63172 1289.054738 1154.423018 832.9592839 
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Re-wound Motor Measurements 

New 
Current 

(A) 

New 
calculated 
resistance 

( 

New Copper 
losses 

(I2R) 

Old Rotor, 
Windage and 

friction losses 

New Input 
Power 

Expected 
efficiency 

 (%) 

Output 
Power 

22.6 0.055707848 85.36002133 133.7652893 219.1253106 0 0 

22.7 0.055707848 86.11709099 180.5614556 266.6785466 21.2923405 56.78210417 

22.9 0.055707848 87.64125771 239.4225025 327.0637602 34.65191463 113.333855 

23.1 0.055707848 89.17879431 293.5056969 382.6844912 43.36158176 165.9380486 

23.4 0.055707848 91.51016775 349.4908163 441.000984 50.58960455 223.1006539 

23.7 0.055707848 93.87162343 401.6248628 495.4964862 55.73358428 276.1579518 

24.2 0.055707848 97.87423231 460.2981658 558.1723981 59.29773202 330.9835728 

24.9 0.055707848 103.6182685 517.9544997 621.5727682 61.8686975 384.5589757 

26.1 0.055707848 113.8462294 573.9182138 687.7644432 62.76533289 431.6776423 

28.1 0.055707848 131.9624216 632.6828378 764.6452594 63.480089 485.3974912 

29.1 0.055707848 141.5218883 700.4510054 841.9728937 63.66636839 536.0535643 

32.7 0.055707848 178.7035344 758.531944 937.2354783 61.61118728 577.4419058 

34.6 0.055707848 200.0736219 811.5234383 1011.59706 61.26738143 619.7790295 

36.1 0.055707848 217.7970738 887.5346238 1105.331698 60.93523888 673.5365103 

37.7 0.055707848 237.5310219 946.9912541 1184.522276 60.65135476 718.4288078 

40 0.055707848 267.3976704 1011.596616 1278.994286 59.21296174 757.3303973 
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RPM 
Mass 

(g) 
Force 

(N) 
Torque  
(Nm) 

Mechanical  
Output Power 

 (W) 

Input 
Voltage 

L-L 
(V)

Input 
Current 

L-L 
(A)

Power 
Factor 

Power In 
(W) 

Efficiency 
(%) 

1492 0 0 0 0 22.9 22.6 0.33 295.814 0 

1483 100 0.981 0.363 56.372 23 22.7 0.39 352.678 15.984 

1479 201 1.978 0.730 113.002 22.9 22.9 0.44 399.654 28.275 

1471 305 2.992 1.107 170.543 22.8 23.1 0.5 456.118 37.390 

1460 401 3.933 1.456 222.546 22.7 23.4 0.55 506.017 43.980 

1452 502 4.925 1.822 277.072 22.5 23.7 0.61 563.406 49.178 

1444 599 5.876 2.174 328.788 22.2 24.2 0.67 623.453 52.737 

1432 701 6.877 2.544 381.578 21.8 24.9 0.72 676.938 56.368 

1421 813 7.976 2.951 439.144 21.2 26.1 0.78 747.535 58.746 

1415 904 8.868 3.281 486.236 22.8 28.1 0.75 832.268 59.120 

1408 1003 9.839 3.641 536.816 22.3 29.1 0.8 899.184 59.700 

1401 1100 10.791 3.993 585.805 23 32.7 0.75 977.007 59.959 

1392 1200 11.772 4.356 634.954 23.1 34.6 0.78 1079.800 58.803 

1380 1300 12.753 4.719 681.937 23.1 36.1 0.8 1155.500 59.017 

1353 1400 13.734 5.082 720.025 23.2 37.7 0.82 1242.235 57.962 

1321 1500 14.715 5.445 753.210 23.1 40 0.84 1344.349 56.028 
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