
 
 

 

 

A system on chip based error detection and correction 
implementation for nanosatellites 

 

by  

 

Caleb Pedro Hillier 

 

Thesis submitted in fulfilment of the requirements for the degree Master of Engineering in 

Electrical Engineering in the Faculty of Engineering at the Cape Peninsula University of 

Technology  

 

 

Supervisor: Dr. Vipin Balyan 

 

 

Bellville 

October 2018 

 

 

 

CPUT Copyright Information 

 

This dissertation/thesis may not be published either in part (in scholarly, scientific or 

technical journals), or as a whole (as a monograph), unless permission has been obtained 

from the university



i 
 

DECLARATION 

I, CALEB HILLIER, declare that the contents of this dissertation/thesis represents my 

own unaided work and that the dissertation/thesis has not previously been submitted 

for academic examination towards any qualification. Furthermore, it represents my own 

opinions and not necessarily those of the Cape Peninsula University of Technology. 

 

   10/10/2018 

   

  Signed       Date 

 

Caleb Hillier 

CPUT Bellville 

October 2018 

  



ii 
 

ABSTRACT 

 

This thesis will focus on preventing and overcoming the effects of radiation in RAM on 

board the ZA cube 2 nanosatellite. The main objective is to design, implement and test 

an effective error detection and correction (EDAC) system for nanosatellite applications 

using a SoC development board. By conducting an in-depth literature review, all 

aspects of single-event effects are investigated, from space radiation right up to the 

implementation of an EDAC system. During this study, Hamming code was identified 

as a suitable EDAC scheme for the prevention of single-event effects. 

 

During the course of this thesis, a detailed radiation study of ZA cube 2’s space 

environment is conducted. This provides insight into the environment to which the 

satellite will be exposed to during orbit. It also provides insight which will allow accurate 

testing should accelerator tests with protons and heavy ions be necessary. In order to 

understand space radiation, a radiation study using ZA cube 2’s orbital parameters was 

conducted using OMERE and TRIM software. This study included earth’s radiation 

belts, galactic cosmic radiation, solar particle events and shielding. The results confirm 

that there is a need for mitigation techniques that are capable of EDAC. 

  

A detailed look at different EDAC schemes, together with a code comparison study 

was conducted. There are two types of error correction codes, namely error detection 

codes and error correction codes. For protection against radiation, nanosatellites use 

error correction codes like Hamming, Hadamard, Repetition, Four Dimensional Parity, 

Golay, BCH and Reed Solomon codes. Using detection capabilities, correction 

capabilities, code rate and bit overhead each EDAC scheme is evaluated and 

compared. This study provides the reader with a good understanding of all common 

EDAC schemes. 

 

The field of nanosatellites is constantly evolving and growing at a very fast speed. This 

creates a growing demand for more advanced and reliable EDAC systems that are 

capable of protecting all memory aspects of satellites. Hamming codes are extensively 

studied and implemented using different approaches, languages and software. After 

testing three variations of Hamming codes, in both Matlab and VHDL, the final and 

most effective version was Hamming [16, 11, 4]2. This code guarantees single error 

correction and double error detection. All developed Hamming codes are suited for 

FPGA implementation, for which they are tested thoroughly using simulation software 

and optimised. 



iii 
 

ACKNOWLEDGEMENTS 

 

The author would like to thank the following people for their contribution which led to 

the success of this thesis, and without whose support its completion would not have 

been possible: 

 

 Dr. Vipin Balyan (supervisor), for his invaluable support, advice and guidance 

throughout this thesis. 

 Dr. Yaseen, for all his help in selecting a thesis topic, as well as all advice and 

guidance offered. 

 Prof. Francois Rocaries and Dr. Ifriky Tadadjeu, for the advice and guidance 

upon their review of my proposal. 

 Ashley van Oudtshoorn, for all her love, support and for reminding me to stay 

focused through all the ups and downs.  

 My family and friends, for their love, support, and prayers.  

 Prof. Robert van Zyl for his support and for presenting me with the opportunity to 

pursue a master’s degree.  

 French South African Institute of Technology (F’SATI), for their generous 

support through NRF financial assistance, equipment and additional courses to 

assist me during the completion of this thesis.  

 God, who assisted me through it all. 

 The financial assistance of the National Research Foundation towards this 

research is acknowledged. Opinions expressed in this thesis and the conclusions 

arrived at, are those of the author, and are not necessarily to be attributed to the 

National Research Foundation. 

 

 

LIST OF PUBLICATION 

1. Hillier, C. & Balyan, V., 2018. Review Paper: Error Detection and Correction 

onboard Nanosatellites. 2018 International Conference on Advanced Computation 

and Telecommunication (ICACAT). [Accepted] 

2. Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. 

Journal of Applied Engineering Science (JAES). [Under review]. 

3. Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board 

Nanosatellites Using Hamming Codes. Journal of Electrical and Computer 

Engineering. [Accepted] 

  



iv 
 

TABLE OF CONTENTS 
 

Declaration ............................................................................................................................ i 

Abstract ................................................................................................................................. ii 

Acknowledgements ............................................................................................................... iii 

List of publication .................................................................................................................. iii 

Table of Figures ................................................................................................................... vii 

Table of Tables ................................................................................................................... viii 

Appendices ........................................................................................................................... ix 

Glossary ............................................................................................................................... x 

Chapter 1. ............................................................................................................................. 1 

Introduction ........................................................................................................................ 1 

 Statement of the research problem ...................................................................... 1 

 Background .......................................................................................................... 1 

 Review of literature............................................................................................... 2 

 Research questions............................................................................................ 12 

 Objectives of the research .................................................................................. 12 

 Delineation of the research................................................................................. 12 

 The significance of the research ......................................................................... 13 

 Thesis layout ...................................................................................................... 14 

Chapter 2. ........................................................................................................................... 15 

Space Radiation ............................................................................................................... 15 

 Introduction ........................................................................................................ 15 

 ZA-CUBE 2 orbital parameters ........................................................................... 16 

 Understanding radiation ..................................................................................... 17 

 Earth radiation belts ........................................................................................... 21 

 Solar cosmic radiation ........................................................................................ 26 

 Galactic cosmic radiation.................................................................................... 28 

 Shielding ............................................................................................................ 29 

 Summary ............................................................................................................ 35 

Chapter 3. ........................................................................................................................... 36 



v 
 

Error correcting codes ...................................................................................................... 36 

 Introduction ........................................................................................................ 36 

 Error detection and correction ............................................................................ 37 

 Error detection and correction schemes ............................................................. 41 

 EDAC Selection ................................................................................................. 48 

Chapter 4. ........................................................................................................................... 51 

Hamming code ................................................................................................................. 52 

 Introduction ........................................................................................................ 52 

 Overview of Hamming code ............................................................................... 55 

 Design process .................................................................................................. 60 

 Implementation ................................................................................................... 70 

 VHDL optimization of Hamming [16, 11, 4]2 ........................................................ 72 

Chapter 5. ........................................................................................................................... 77 

Simulation and Test results of Hamming code in VHDL.................................................... 77 

 Introduction ........................................................................................................ 77 

 Software tests and reports.................................................................................. 78 

 Optimisation ....................................................................................................... 83 

 Hardware tests ................................................................................................... 86 

Chapter 6. ........................................................................................................................... 90 

Conclusion ....................................................................................................................... 90 

 Findings ............................................................................................................. 90 

 Outcomes ........................................................................................................... 92 

 Recommendations ............................................................................................. 93 

References ......................................................................................................................... 95 

Appendices ......................................................................................................................... 98 

 Simulink model of Hamming [7, 4, 3] (proof of concept) ..................................... 98 

 Matlab code for Hamming [16, 11, 4]2 ................................................................ 99 

 Explanation and code flow of Hamming [16, 11, 4]2 in Matlab .......................... 101 

 Explanation and code flow of Hamming [16, 11, 4]2 in VHDL............................ 102 

 VHDL code for Hamming [16, 11, 4]2 – main .................................................... 103 



vi 
 

 VHDL code for Hamming [16, 11, 4]2 - encoder ................................................ 104 

 VHDL code for Hamming [16, 11, 4]2 – decoder ............................................... 106 

 Gate level VHDL code for Hamming [16, 11, 4]2 – encoder .............................. 108 

 Gate level VHDL code for Hamming [16, 11, 4]2 – decoder .............................. 109 

 VHDL code for Hamming [16, 11, 4]2 - testbench ............................................. 111 

 

  



vii 
 

TABLE OF FIGURES 

Figure 1-1: ZA cube 1, a 1U CubeSat (CPUT 2017)................................................... 1 

Figure 1-2: The Earth's Magnetosphere (Miller 2012) ................................................ 5 

Figure 1-3: ERBs including 2 Van Allen Probes satellites (Zell 2013) ......................... 5 

Figure 1-4: SAA Using STK SEET (System Tool Kit (STK) 2017) .............................. 6 

Figure 1-5: Orbital position of OBC386 Ramdisk memory upsets (Bentoutou 2012)... 6 

Figure 1-6: Block diagram of TMR-based EDAC (Bentoutou 2012) ............................ 9 

Figure 2-1: ZACube-2 Conceptual Layout (Villiers & Zyl n.d.) .................................. 15 

Figure 2-2: Omere orbital parameters: initialisation (left) and output file (right) ......... 16 

Figure 2-3: Heliophysics and Space Weather (Bensusen et al. 2013) ...................... 17 

Figure 2-4: Effects of heavy ions (left) & protons (right) -  (Halbert 2006) ................. 18 

Figure 2-5: Magnetic field (Jensen Cain) at 550km in 2018 ...................................... 21 

Figure 2-6: Orbital average integral and differential fluxes of trapped particles......... 22 

Figure 2-7: Maximum trapped electrons (differential) ............................................... 23 

Figure 2-8: Maximum trapped electrons (integral) .................................................... 23 

Figure 2-9: Maximum trapped protons (differential) .................................................. 24 

Figure 2-10: Maximum trapped protons (integral) ..................................................... 24 

Figure 2-11: Orbital minimum trapped electrons – AE8 – Jensen Cain – Differential 25 

Figure 2-12: Orbital minimum trapped protons – AP8 – Jensen Cain – Differential .. 25 

Figure 2-13: Solar Particle (Proton) – Setup ............................................................. 26 

Figure 2-14: Integral and differential fluences of solar protons ................................. 26 

Figure 2-15: Solar Particle (Ion) Z = 2 to Z = 17 – Setup .......................................... 27 

Figure 2-16: Integral and differential fluence of solar ions Z = 2 (He) to Z = 17 (Cl) .. 27 

Figure 2-17: Heavy ion integral (Z = 1 to Z =17) ....................................................... 28 

Figure 2-18: Heavy ion differential (Z = 1 to Z =17) .................................................. 28 

Figure 2-19: Dose (rad) vs thickness ........................................................................ 29 

Figure 2-20: Dose (rad) vs thickness (zoom in) ........................................................ 30 

Figure 2-21: Orbital dosage graph for 2mm Aluminium shield .................................. 30 

Figure 2-22: Fluxes of incident and transmitted trapped protons in ERBs ................ 31 

Figure 2-23: Fluxes of incident and transmitted solar peak and mean heavy ions .... 31 

Figure 2-24: Integral LET spectrum diagram for 98• and 2mm Al shield ................... 32 

Figure 2-25: TRIM set-up windows ........................................................................... 33 

Figure 2-26: Protons (+ hydrogen) of 10 MeV depth into 2mm aluminium ................ 33 

Figure 2-27: Protons (+ hydrogen) of 19 MeV depth into 2mm aluminium ................ 34 

Figure 3-1: Classification of error control systems .................................................... 39 

Figure 3-2: EDAC layout (FEC) ................................................................................ 40 

Figure 3-3: General construction of a codeword ....................................................... 40 

Figure 3-4: Barcode using 2-out-of-5 ........................................................................ 42 

file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885576
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885587
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885603
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885604
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885605


viii 
 

Figure 3-5: Likelihood of error occurring in a day ..................................................... 51 

Figure 4-1: Classification of Hamming code ............................................................. 53 

Figure 4-2: General layout of Hamming code ........................................................... 55 

Figure 4-3: Parity VS data, Hamming (7,3) (left) & Hamming (15,11) (right) ............. 57 

Figure 4-4: Gate/graphical expression of Hamming encoder formula ....................... 58 

Figure 4-5: Gate/graphical expression of Hamming decoder formula ....................... 59 

Figure 4-6: Parity relationship to data, extended Hamming (8, 4) ............................. 59 

Figure 4-7: Overview of the design process ............................................................. 60 

Figure 4-8: Overview of Matlab code (flow chart) ..................................................... 70 

Figure 4-9: Overview of VHDL code (flow chart) ...................................................... 71 

Figure 4-10: I/O overview of VHDL code (hamming_11_16_main.vhd) .................... 72 

Figure 4-11: RTL overview of the encoder (hammen16.vhd) .................................... 73 

Figure 4-12: RTL overview of the decoder (hammde16.vhd) .................................... 73 

Figure 4-13: RTL overview of the optimised decoder (hammde16.vhd) .................... 75 

Figure 4-14: Quartus Prime advisor optimization options ......................................... 76 

Figure 4-15: Timing (left) and Resource (right) Optimization Advisor ....................... 76 

Figure 4-16: Resource Optimization Advisor breakdown .......................................... 76 

Figure 5-1: Full RTL overview of VHDL code (hamming_11_16_main.vhd) ............. 78 

Figure 5-2: ModelSim simulation of Hamming [16, 11, 4] SECDED capabilities ....... 79 

Figure 5-3: Resource usage report on non-optimised Hamming (16, 11, 4) ............. 80 

Figure 5-4: ALM for Intel Stratix series (Intel 2018) .................................................. 81 

Figure 5-5: Timing report – Path summary for non-optimised Hamming (16, 11, 4) .. 82 

Figure 5-6: Timing report – Waveform for non-optimised Hamming (16, 11, 4) ........ 82 

Figure 5-7: Resource usage report on optimised Hamming (16, 11, 4) .................... 83 

Figure 5-8: Timing report (TimeQuest) for resource optimised Hamming (16, 11, 4) 84 

Figure 5-9: Timing report (TimeQuest) for timing optimised Hamming (16, 11, 4) .... 85 

 

TABLE OF TABLES 

 

Table 1-1: Effects of charged particles in a space environment. (Holbert 2007) ......... 3 

Table 1-2: Effects of radiation on CMOS devices. (Wall & Macdonald 1993).............. 3 

Table 1-3: Summary of well-known EDAC schemes .................................................. 8 

Table 2-1: Possible SEE as a function of component technology and family ............ 19 

Table 3-1: ECC history ............................................................................................. 37 

Table 3-2: Error detection and correction capabilities of common EDAC schemes .. 41 

Table 3-3: Hamming code classification and parameters ......................................... 43 

Table 3-4: Hadamard code classification and parameters ........................................ 44 

file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885608
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885610
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885611
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885613
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885614
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885615
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885616
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885619
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885620
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885621
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885622
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885624
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885626
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885662


ix 
 

Table 3-5: Golay codes classification and parameters ............................................. 45 

Table 3-6: BCH code classification and parameters ................................................. 46 

Table 3-7: Reed Solomon code classification and parameters ................................. 47 

Table 3-8: EDAC scheme comparison ..................................................................... 49 

Table 3-9: Memory errors that were observed on Alsat-1 during a 7 year period ...... 50 

Table 4-1: Hamming code classification and parameters ......................................... 52 

Table 4-2: Systematic and non-systematic codewords ............................................. 54 

Table 4-3: Bit layout of Hamming code (non-systematic) ......................................... 56 

Table 4-4: Bit layout of extended Hamming code (16, 11) ........................................ 59 

Table 4-5: Construction of the Hamming [7, 4, 3] codeword ..................................... 61 

Table 4-6: Calculated performance aspects of Hamming [7, 4, 3] ............................ 61 

Table 4-7: Construction of the Hamming [8, 4, 4] codeword ..................................... 63 

Table 4-8: Calculated performance aspects of Hamming [8, 4, 4] ............................ 63 

Table 4-9: Construction of the Hamming [16, 11, 4] codeword ................................. 66 

Table 4-10: Calculated performance aspects of Hamming [16, 11, 4] ...................... 66 

Table 4-11: Deriving gate-level code from VHDL code and RTL viewer ................... 74 

Table 5-1: Cyclotron parameters at iThemba labs (IThemba n.d.) ............................ 89 

Table 6-1: Evaluation of Hamming code................................................................... 91 

Table 6-2: Summary of developed codes ................................................................. 91 

Table 6-3: Original VS optimised Hamming compression ......................................... 92 

 

APPENDICES 

 

8.1 Simulink model of Hamming [7, 4, 3] (proof of concept) 

8.2 Matlab code for Hamming [16, 11, 4]2 

8.3 Explanation and code flow of Hamming [16, 11, 4]2 in Matlab 

8.4 Explanation and code flow of Hamming [16, 11, 4]2 in VHDL 

8.5 VHDL code for Hamming [16, 11, 4]2 – main 

8.6 VHDL code for Hamming [16, 11, 4]2 - encoder 

8.7 VHDL code for Hamming [16, 11, 4]2 – decoder 

8.8 Gate level VHDL code for Hamming [16, 11, 4]2 – encoder 

8.9 Gate level VHDL code for Hamming [16, 11, 4]2 – decoder 

8.10 VHDL code for Hamming [16, 11, 4]2 - testbench 

8.11  ICACAT acceptance letter 

8.12 J.A.E.S. submission acknowledgement 

 
 

file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885674
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885675
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885676
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885677
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885678
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885679
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885680
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885681
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885682
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885683
file:///C:/Users/Caleb%20Hillier/Documents/Varsity/2017-18%20M.Eng/EDAC/Thesis/Thesis%20word%20documents/Caleb%20Hilllier_MEng_Thesis_213183552_V1.17_3rd%20draft.docx%23_Toc526885684


x 
 

GLOSSARY 

 

Abbreviations Definition 

  

A/D Analog to Digital  

ADCS Attitude Determination and Control System 

ALM Adaptive Logic Module  

ALUT Adaptive Look-Up Tables 

ARQ Automatic Repeat-reQuest 

ASIC Application Specific Integration Circuit 

CGR Cosmic Galactic Radiation 

CLK Clock 

COTS Commercial off-the-shelf 

DEC Double Error Correction  

DED Double Error Detection 

DMA Direct Memory Access 

DSP Digital Signal Processing 

DUT Device Under Test 

ECC Error Correcting Code 

ECSS European Cooperation for Space Standardization 

EDAC Error Detection and Correction 

ERB Earth Radiation Belts 

FEC Forward Error Correction 

FF Flip Flops 

FPGA Field Programmable Gate Array 

GCR Galactic Cosmic Radiation  

HARQ Hybrid Automatic Repeat-reQuest 

HDL Hardware Descriptive Language 

HVD Horizontal Vertical Diagonal 

I/O Input / Output 

LEO Low Earth Orbit 

LUT Look-Up Table 

MDPC Multi-Dimensional Parity-check Code 

MEC Multiple Error Correction  

MED Multiple Error Detection 

MMU Memory Management Unit 

NASA National Aeronautics and Space Administration 

NRF National Research Fund 



xi 
 

OBC On-board Computer 

PCB Printed Circuit Board 

POR Power On Reset 

RTL Register Transfer Level  

S/W Software 

SAA South Atlantic Anomaly 

SANSA South Africa National Space Agency 

SCR Solar Cosmic Radiation 

SEC Single Error Correction  

SED Single Error Detection 

SEE Single Event Effects 

SEL Single Event Latch-up 

SEU Single Event Upset 

SoC System on Chip 

SPE Solar Particle Events 

SRAG Space Radiation Analysis Group 

SRAM Static Random Access Memory 

TID Total Ionizing Dose 

TMR Triple Modular Redundancy 

TR 

AIS 

ESL 

ESP 

HCD 

RAM 

SEFI 

SEGR 

SHE 

SET 

SSO 

TRIM 

VDE 

VHDL 

Temporal Redundancy 

Automatic Identification System 

Electronic Systems Laboratory 

Emission of Solar Protons 

Human capacity development 

Random Access Memory 

Single Event Functional Interrupt 

Single Event Gate Rupture 

Single Event Hard Errors 

Single Event Transient 

Sun Synchronous Orbits 

Transport of Ions in Matter 

VHF Data Exchange 

VHSIC Hardware Description Language 



Hillier, C. & Balyan, V., 2018. Review Paper: Error Detection and Correction onboard Nanosatellites. 2018 International 
Conference on Advanced Computation and Telecommunication (ICACAT). [Accepted] 

1 

CHAPTER 1. 

INTRODUCTION 

 Statement of the research problem 

This thesis will focus on preventing and overcoming the effects of radiation in RAM of 

nanosatellites. The issues that will be addressed are the single event upsets (SEU) 

and multiple event upsets (MEU) caused by space radiation.  This study will include 

the protection of memory found within the satellites OBC and develop an effective 

EDAC based on a SoC (FPGA) development board specifications. All EDAC designs 

will be tested thoroughly using simulation software. 

 Background 

Nanosatellites are small satellites often referred to as CubeSat (Figure 1-1) due to their 

physical appearance. A nanosatellite can weigh between 1 kg to 10 kg. Owing to their 

fast development time and low manufacturing costs, these satellites have become 

extremely popular for university programs around the world.  

 

Figure 1-1: ZA cube 1, a 1U CubeSat (CPUT 2017) 

In the past few years, nanosatellites have evolved into the ideal platform to test new 

technologies, discover more about space and for developing the skills of future 

engineers. Most nanosatellites are made up of off-the-shelf components. This is done 

to ensure fast development and to minimise the cost.  

 

During the history of satellites, many SEU and MEU have been recorded. These upsets 

are mainly owing to radiation. The South African Sumbandila microsatellite is an 

extreme example of the damage these events can cause as it was rendered 

unresponsive after being exposed to a severe amount of radiation (Keith Campbell 

2012). 

 

In order to ensure data integrity and to prevent disasters like Sumbandila, methods 

such as radiation-hardened devices and EDAC systems have been developed. This 

thesis focuses on an EDAC-based solution, as digital/programmed solutions are more 

cost effective and can be implemented using existing systems.  



Hillier, C. & Balyan, V., 2018. Review Paper: Error Detection and Correction onboard Nanosatellites. 2018 International 
Conference on Advanced Computation and Telecommunication (ICACAT). [Accepted] 

2 

 Review of literature 

This section’s main objective is to provide a solid foundation and show the results of 

research already done in the field of EDAC schemes.  

 Research background 

The research conducted during the completion of this thesis touches on a number of 

aspects of engineering and scientific phenomena. EDAC systems have been around 

for quite some time and certain EDAC schemes have been implemented and tested 

extensively. There are a number of articles, journals and thesis that are focused at 

EDAC’s in general. However, this thesis is a more focused study on finding the best 

suited EDAC solution for nanosatellites.  

 

Based on my existing knowledge and knowledge gained completing an undergraduate 

degree in electrical engineering at Cape Peninsula University of Technology (CPUT) I 

will research, develop and implement an EDAC scheme, designed specifically for the 

nanosatellites orbiting at low-earth orbits (LEO).  

 

Most research was conducted using the IEEE Explore database. The IEEE Explore 

database aim is to allow full-text access to the world's highest-quality technical 

literature in engineering and technology.  

 Search string 

Based on the obtained information and the problem statement, certain research topics 

were identified. The following list shows the main search strings used during conducted 

research: 

 Space radiation 

 Glitches and upsets 

 Geomagnetism 

 EDAC schemes 

 Implementing EDAC systems 

 Space radiation 

Space radiation is a general term given to ionizing radiation found in space. This form 

of radiation is made up of highly energized particles which are mainly protons and 

heavy ions. The sources of space radiation are identified by NASA’s Space Radiation 

Analysis Group (SRAG) in the following manner: “There are three naturally occurring 

sources of space radiation: trapped radiation, galactic cosmic radiation (GCR), and 

solar particle events (SPE) ” (Langford 2014). According to sources on radiation, SPE 



Hillier, C. & Balyan, V., 2018. Review Paper: Error Detection and Correction onboard Nanosatellites. 2018 International 
Conference on Advanced Computation and Telecommunication (ICACAT). [Accepted] 

3 

has the biggest impact on satellites. The effects of radiation are often minor, however 

there are some extreme examples of incidents occurring that have cause space 

missions to fail (Keith Campbell 2012). 

 

Radiated solar particles are responsible for electronic malfunctions, deterioration of 

materials and surface charging and discharging. Due to the severe impact radiation 

can have on a satellite, radiation is considered to be a fundamental and important factor 

when it comes to the design and operations of satellites (Maki 2009). 

 

The effects of charged particles in a space environment is summarized using Table 

1-1. Table 1-1 shows the three main sources of the radiation in space along with their 

effects on CMOS devices. 

 

 

Table 1-1: Effects of charged particles in a space environment. (Holbert 2007) 

  

 

Table 1-2: Effects of radiation on CMOS devices. (Wall & Macdonald 1993) 

 

 

 

 

 

 

 

 

 

 

 

It is important to ensure that all electronic devices and components used to make up 

any space system have been tested and are able to resist the dose of radiation they 

might be exposed to. This is essential to ensure data integrity and reliability. 

  

Spacecraft 
Charging 

Total Ionizing Dose 
Displacement 
Damage 

Single Event Effects 

· Surface Charging 
from Plasma 
· Deep Dielectric from 
High Energy 
Electrons  

· Trapped Protons and 
Electrons 
· Solar Protons  

· Protons 
· Electrons  

· Protons: both Trapped 
and Solar 
· Heavy Ions: both 
Galactic Cosmic Rays 
and Solar Events  

Space Radiation Environments and their Effects on CMOS Devices 

Radiation Source Particle Types Primary Effects in Devices 

Trapped radiation belts 

Electrons Ionization damage 

Protons 
Ionization damage; SEE in sensitive 
devices 

Galactic cosmic rays High-energy charged particles Single-event effects (SEEs) 

Solar flares 

Electrons Ionization damage 

Protons  
Ionization damage; SEE in sensitive 
devices  

Lower energy/heavy-charged 
particles  

SEE  



Hillier, C. & Balyan, V., 2018. Review Paper: Error Detection and Correction onboard Nanosatellites. 2018 International 
Conference on Advanced Computation and Telecommunication (ICACAT). [Accepted] 

4 

 Glitches and upsets 

A glitch is defined as a sudden, usually temporary malfunction or fault of equipment.  

Glitches experienced by a satellite can be caused by many factors, such as hardware 

problems, corrupted software or space weather. The exact cause of glitches and 

upsets is often hard to determine, especially when satellites are exploring unknown 

areas of space and interplanetary space. 

 

The first warnings for single event upsets were first brought to light by Wallmark and 

Marcus in 1962 (Wallmark & Marcus 1962). SEU are errors that occur in electric and 

digital circuits. According to NASA these SEU occur: "when charged particles lose 

energy by ionizing the medium through which they pass, leaving behind a wake of 

electron-hole pairs” (NASA/SP 2012). MEU occurs when two or more bits are upset by 

a single ion. These upsets are usually soft errors and can be corrected by on-board 

EDACs or prevented using hardened devices. 

 

There are numerous examples of satellites being affected by glitches and upsets. The 

Magellan spacecraft on route to Venus suffered both power-panel and star-tracker 

upsets after being exposed to a solar flare (Odenwald 2001). Intelsat officials reported 

on the 13th of January 2011 that their Intelsat’s Galaxy 15 telecommunications satellite 

was unable to receive any commands from earth for eight months due to electrostatic 

discharge that caused a major software error (Choi 2011).  

 

The source of these types of glitches can normally be determined by analysing the 

housekeeping data of the satellite. The referred articles are relevant to this project as 

solving the problem of glitches and upsets is ultimately the aim of the thesis. 

 Geomagnetism 

Geomagnetism refers to the earth’s magnetic field. This field expands into outer space 

from the earth’s core, affecting orbiting spacecraft and also deflects particles from outer 

space. Figure 1-2 provides a well-laid-out illustration of the magnetic fields produced 

by the earth, as well as the factors that influence it. 

 



Hillier, C. & Balyan, V., 2018. Review Paper: Error Detection and Correction onboard Nanosatellites. 2018 International 
Conference on Advanced Computation and Telecommunication (ICACAT). [Accepted] 

5 

 

Figure 1-2: The Earth's Magnetosphere (Miller 2012) 

Geomagnetism is directly linked to radiation, as its fields cause particles to be trapped, 

which results in belts, like the Van Allen Radiation Belts. The Van Allen Radiation Belts 

contain highly energized particles which can have devastating results on unprotected 

satellites. In 2012, NASA launched two Van Allen Probes spacecrafts with the mission 

to “study two extreme and dynamic regions of space known as the Van Allen Radiation 

Belts that surround Earth” (Zell 2015).  Figure 1-3 shows both the inner and outer 

radiation belts. 

 

 

Figure 1-3: ERBs including 2 Van Allen Probes satellites (Zell 2013) 



Hillier, C. & Balyan, V., 2018. Review Paper: Error Detection and Correction onboard Nanosatellites. 2018 International 
Conference on Advanced Computation and Telecommunication (ICACAT). [Accepted] 

6 

When discussing radiation with regards to nanosatellites, the South Atlantic Anomaly 

(SAA) is the main culprit of single error upsets (SEU) and multiple error upsets (MEU). 

The South Atlantic Anomaly (Figure 1-4) is the area where the earth’s magnetic field is 

at its weakest. This means it is the area where the Van Allen Radiation belt is the 

closest to earth.   

 

From an article written by Y. Bentoutou, the effect of radiation on board the Alsat-1 

spacecraft is shown clearly in Figure 1-5. The orbital location of each upset that 

occurred from the 29th November 2002 to 12th October 2009 is plotted. It can be noted 

that the majority (+/- 80%) of SEU fell within the SAA (Bentoutou 2012). 

 

 

Figure 1-4: SAA Using STK SEET (System Tool Kit (STK) 2017) 

 

 

Figure 1-5: Orbital position of OBC386 Ramdisk memory upsets (Bentoutou 2012) 

 

 



Hillier, C. & Balyan, V., 2018. Review Paper: Error Detection and Correction onboard Nanosatellites. 2018 International 
Conference on Advanced Computation and Telecommunication (ICACAT). [Accepted] 

7 

From the provided information on Geomagnetism, its connection and relevance to 

nanosatellites design and implementation become clear. It is important that methods 

and schemes are designed that will allow Nano-satellites to withstand and operate 

normally within environments produced by SAA and others. 

  EDAC schemes 

EDAC systems are responsible for ensuring reliable data transfer between the 

satellites onboard computer and its local memory. An EDAC system is a software 

solution to prevent the effects of radiation on a satellite. There are a number of EDAC 

schemes that have been developed during the past few years. Below is a list of some 

of these EDAC schemes that have been developed (Ahmad et al. 2013): 

 

 2 of 5 Code  

 Berger Code  

 Parity Code (Bilal et al. 2013) 

 Hamming Code (Jindal 2006) 

 Hadamard Code 

 Repetition Code 

 Four Dimensional Parity Code (Bilal et al. 2013) 

 Golay Code (Kanemasu 1999) 

 BCH Code (Poolakkaparambil et al. 2011) 

 Reed Solomon Code (Parvathi 2015) 

 

However, each scheme has its own advantages and disadvantages. These advantages 

and disadvantages are summarized in Table 1-3: Summary of well-known EDAC 

schemes.



Hillier, C. & Balyan, V., 2018. Review Paper: Error Detection and Correction onboard Nanosatellites. 2018 International Conference on Advanced Computation and Telecommunication (ICACAT). 
[Accepted] 

8 

EDAC scheme SED SEC DED DEC MED MEC Description 

Parity Code  Yes No No No No No 

This scheme is considered the simplest and most basic error detection scheme. Using a parity bit the scheme 

determines whether the string of bits is even or odd. This is done by evaluating the 1s contained in the string. 

Creating two variants, even and odd parity bit. 

2 of 5 Code Yes No No No No No 

Most popular was the 2-out-of-5 code, which allows decimal digits to be represented using five bits. This code 

was implemented in barcodes. The m-out-of-n code makes use of codeword weightings (m) and length (n) to 

perform error detection. The weighting value normally represents the sum of the 1’s within a codeword. 

Berger Code Yes No No No No No 

This unidirectional error detecting code is only capable of flipping ones into zeroes or only zeroes into ones, 

such as in asymmetric channels. Used mainly in telecommunications. Berger Code counts all the ones or 

zeroes within the information data (k bits long) and then attaches the binary equivalent of the sum to the 

information forming the codeword (n + k bits). 

Hamming Code  Yes Yes No No No No 

This scheme adds additional parity bits (r) to the sent information (k). The codeword can be calculated as n = 

2r – 1. This means information data can be calculated by k = 2r − r – 1. Using a parity check matrix and a 
calculated syndrome, the scheme can self-detect and self-correct any SEE that occur during transmission. 

Extended 

Hamming Code 
Yes Yes Yes No No No 

The original scheme allows SECSED, but with an addition of one bit, an extended Hamming version allows 

DECSED. 

Hadamard Code Yes Yes Yes Yes No No 

Based on unique mathematical properties namely Hadamard matrixes, this linear code allows both DED and 

double error correction (DEC). This code was used in 1971 by NASA space probe Mariner 9, to send photos 

of  Mars back to Earth (Malek n.d.). 

Repetition Code Yes Yes Yes Yes No No 
This code is one of the most basic codes as it simply resends a message several times. This result is low 

performance and transfer rates makes the code less than ideal. 

Four 

Dimensional 

Parity Code  

Yes Yes Yes Yes No No 

Also referred to as multidimensional parity-check code (MDPC), this code makes uses of multiple parity bits.  

This means the code basically arranges a message into a grid and then generating parity rows according to 

horizontal, vertical and cross diagonally. Ideally used for DDR RAM protection. 

Golay Code  Yes Yes Yes Yes Yes Yes 
This code is a perfect linear error correction and makes use of a look-up table.  This code has the following 

parameters [24, 12, 8] & [23, 12, 7]. 

BCH Code  Yes Yes Yes Yes Yes Yes 

This cyclic code is constructed using polynomials over a finite field. This code generally uses a linear-

feedback shift register (LFSR) to encode the message block and uses syndromes polynomial to determine the 

error location during decoding.  This results in Bose Chaudhuri Hocquenghem (BCH) codes being complex 

and difficult to implement while requiring significant processing time. 

Reed Solomon 
Code  

Yes Yes Yes Yes Yes Yes 

This non-binary cyclic code is based on univariate polynomials over finite fields. The error locator polynomial 

is then found using both the syndrome polynomial and Euclidian algorithm.  Errors can then be located and 
corrected by applying the Chien Search Algorithm and Forney algorithm. This results in Reed Solomon (RS) 

codes being complex and difficult to implement, while requiring significant processing time. 

Table 1-3: Summary of well-known EDAC schemes 



Hillier, C. & Balyan, V., 2018. Review Paper: Error Detection and Correction onboard Nanosatellites. 2018 International 
Conference on Advanced Computation and Telecommunication (ICACAT). [Accepted] 

9 

Out of all the EDAC schemes mentioned in Table 1-3, Hamming and Reed Solomon 

Code are most commonly used in modern-day satellites (Bentoutou 2012).  

 

An additional EDAC technique has to be mentioned as it is normally implemented 

together with a software EDAC such as Hamming code. This EDAC technique is 

referred to as Triple modular redundancy (TMR). TMR’s definition is dependent on the 

section/hardware for which TMR is implemented. In simple terms, TMR consists of 

having three identical devices that perform the exact same operation but communicate 

through a voter. The voter compares all received information to ensure the information 

matches and that the right result is returned. Figure 1-6 shows a block diagram of a 

TMR based EDAC system which is implemented for RAM (Bentoutou 2012). TMR, 

however, is not the ideal solution as three times the necessary hardware is needed to 

perform a single operation. This ultimately adds to the satellite cost, complexity and 

computing time. 

 

 

 

Figure 1-6: Block diagram of TMR-based EDAC (Bentoutou 2012) 

 

  



Hillier, C. & Balyan, V., 2018. Review Paper: Error Detection and Correction onboard Nanosatellites. 2018 International 
Conference on Advanced Computation and Telecommunication (ICACAT). [Accepted] 

10 

 Implementing EDAC systems 

Before getting started it is important to know what EDAC systems are currently being 

implemented onboard nanosatellites and if additional hardware is needed in order to 

implement these EDAC schemes.  

 

First, there are mainly two types of memory that need protection against upsets, 

namely program memory (SRAM) and Ramdisk. SRAM is faster than Ramdisk and is 

directly linked to the satellite’s OBC, as it is typically used as the CPU cache. This 

implies that the integrity of the information stored within the SRAM is vital to the lifespan 

and health of the satellite. Ramdisk, on the other hand, refers to the memory that serves 

as a disk drive, mostly used to store image files and memory-intensive information.  

 

Most commonly used EDAC schemes implemented onboard nanosatellites for SRAM 

protection is Hamming code and TMR. These are the most popular schemes because 

they are relatively easy to implement and have short encoding and decoding delays. 

RS codes, on the other hand, are more popular for large sets of information, as used 

in Ramdisk. For this reason, RS codes are known as block codes. RS is popular mainly 

due to its EDAC capabilities, as it is able to ensure MED-MEC. 

 

From the literature review, it was clear that implementing EDAC systems on FPGAs is 

quite popular. In a paper by V. Tawar, a 4-dimensional parity EDAC scheme was 

designed, tested and synthesized on Xilinx FPGA Device XC3S500E-4FG320 (Tawar 

& Gupta 2015). A Horizontal Vertical Diagonal (HVD) EDAC was developed for 

Xilinx (Singh et al. 2013)(Road 2015). Other examples are Orthogonal codes written 

in Verilog using Altera Quartus-II software (Reshmi et al. 2015) and Hamming code 

implemented on FPGA using Verilog (Jindal 2006) and Xilinx Spartan-3 FPGA 

(Hosamani & Karne 2014). 

 

From the finding of this search string, it is clear that EDAC schemes can be 

implemented and efficiently tested using FPGA design software. It can also be noted 

that the coding language needed is VHDL or Verilog.  

  



Hillier, C. & Balyan, V., 2018. Review Paper: Error Detection and Correction onboard Nanosatellites. 2018 International 
Conference on Advanced Computation and Telecommunication (ICACAT). [Accepted] 

11 

 Summary 

To summarise, it is obvious that there is a need for designing effective and reliable 

EDAC systems for the nanosatellites. While researching this topic as a whole, 

information seemed hard to find, however, once broken up into small topics and 

research areas, information was found. 

 

Space radiation has caused numerous mission failures. This was shown and proved in 

the section titled Space radiation. Through further research, it became apparent that 

some failures are owing to the SEU and MEU (see section 1.3.4 Glitches and upsets). 

These upsets are almost impossible to predict but there are certain areas of space 

where upsets are more frequent, for example, the Van Allen Radiation belts. Within the 

context of nanosatellites which are mostly low-earth orbiting (LEO) special attention 

needs to be paid to the SAA (see section 1.3.5 Geomagnetism). 

 

It was found that there are a number of EDAC schemes and techniques currently used. 

Most commonly Hamming, RS codes and TMR (see section 1.3.6 EDAC schemes). It 

was also found that the most effective, non-evasive method of implementing an EDAC 

system would be to implement the system using an FPGA (see section 1.3.7 

Implementing EDAC systems). Using the summarized information as a starting point 

this thesis will take a more detailed look at the design, development and 

implementation of an effective SoC based EDAC for nanosatellites. 

 

From the literature survey, it is clear that there is a need for research in the area of 

EDACs. This field is new and constantly evolving as nanosatellites provide a platform 

from which the boundaries of space and technology are constantly being pushed. This 

thesis, upon completion, will contribute to further research and technological 

improvements.  



12 

 Research questions 

Once this thesis has been concluded, the following questions would have been 

answered: 

1. Do satellites in LEO need EDAC systems? 

2. What degree of protection does ZA cube 2 need against space radiation? 

3. What EDAC scheme provides the best protection against SEU? 

4. Can a functional EDAC scheme be coded and tested within Matlab? 

5. Can a functional EDAC scheme be coded and tested within VHDL? 

6. Can the timing and resource usage of the designed EDAC system be evaluated? 

7. To what degree of confidence can the designed EDAC system be tested and 

functionality be proven?  

 Objectives of the research 

 Primary objective 

To develop and test an efficient EDAC system design for SoC implementation onboard 

a nanosatellite. 

 Secondary objectives: 

1. The EDAC system should detect and correct more than 90% of all bit errors. 

2. The EDAC system should provide protection (both read and write) in under 8 ns. 

3. The EDAC system should be capable of single error correction and double error 

detection. 

 Delineation of the research 

By the thesis title “A system on chip based error detection and correction for nano-

satellites” it is clear this thesis is aimed at nanosatellites. This limits the following: 

 The power consumption of the proposed system. 

 Computational power available. 

 The number of memory banks to protect. 

 

The title also implies the following: 

 This thesis is focused on low-earth orbiting (LEO) satellites (300 km and 800 km 

above the earth's surface). 

  



13 

 The significance of the research 

This section will indicate the importance and significance of the research conducted in 

this thesis. This will be done by establishing why this thesis is important, whom and 

what industries will benefit, as well as the effect this thesis could have on space 

exploration and science. 

 Benefits 

The benefits of a fully functional prototype are endless. Once incorporated into a 

functional nanosatellite, this EDAC system will ensure data integrity and reliability. This 

will ultimately improve the lifespan and capabilities of a satellite. 

For example [Benefit (Affected sectors/studies): Explanation]: 

 Earth monitoring (Environmental studies): Satellites that previously switched off 

while passing through the SAA can continue normal operations. 

 Reliable data (Exploring the unknown): Readings from sensors and the results of 

experiments conducted on board satellites will be more accurate and trustworthy.  

 Satellite lifespan (All space missions): By protecting the OBC, CPU and cache, the 

satellite’s health information will be used to protect against SEE. This will ultimately 

decrease the chance of major system failures.  

 Target group 

This thesis is aimed at the nanosatellite industry. The group targeted are designers 

and engineers who would like to ensure data integrity and reliability during space 

missions. Another targeted group would be satellites that need to be turned on and 

functional at all times, for example, when passing over the South Atlantic or during 

solar flares. 

  



14 

 Thesis layout 

A brief overview of each chapter will be given in the descriptions below, to make 

navigating through this thesis easier and more efficient. 

 

Chapter 2: Space Radiation: In this chapter, the ZA-Cube 2 nanosatellite launched 

by French South African Institute of Technology (FSATI) is used as a case study. A 

detailed look at the space environment which ZA-Cube 2 will be exposed to is 

simulated using Omere Software. The results obtained will be discussed and 

concluded. 

 

Chapter 3: Error correcting code: This chapter introduces error control codes, giving 

the reader some perspective and background on the topic. A number of error detection 

and correction codes such as Parity, Hamming, Golay, BCH and Reed Solomon Codes 

are mentioned and discussed. 

 

Chapter 4: Hamming code: This code is identified as the foundation code of this 

thesis. An overview, as well as a focused study on the encoding and decoding aspect 

of this code, is presented and explained. Different Hamming variation are also 

mentioned and discussed. 

 

Chapter 5: Simulation and Testing results of Hamming code in VHDL: Using the 

simulation tool like ModelSim, together with resource reports and timing analysis tools, 

the performance of the Hamming code will be thoroughly discussed and concluded. 

The hardware implementation of the Hamming code in Quartus Prime will be 

introduced and the optimization steps will be shown. 

 

Chapter 6: Conclusion: All important outcomes and findings made during the different 

chapters of this thesis will be summarised and concluded. Based on the knowledge 

gained during the completion of this thesis future recommendations will be made. 

 



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 15  

CHAPTER 2. 

SPACE RADIATION 

 Introduction 

In order to understand space radiation, a study was conducted using the orbital 

parameters of nanosatellite ZA Cube 2. The ZA Cube missions are a series of 

nanosatellite missions being developed by FSATI in collaboration with CPUT. The aim 

of these missions is to develop South Africa’s space industry and space experience. 

The first satellite of this program was launch in November of 2013 and is currently still 

active. The name of this initial nanosatellite is the ZACube-1 (CPUT 2017). 

 

The successor to ZACube-1 will be ZA Cube 2 (Figure 2-1). The set launch date for 

ZACube-2 was May 2018. ZA Cube 2’s primary focus is on maritime domain 

awareness (MDA) applications (Villiers & Zyl n.d.). This satellite has the following 

objectives: 

 Technology demonstration of AIS/VDE message reception using the primary 

payload 

 Technology demonstration of a medium resolution imager payload 

 Human capacity development (HCD) 

 Flight heritage for F’SATI/CPUT hardware and also hardware from technology 

partner ESL 

 

These mission objectives will be achieved using the VHF AIS/VDE receiver and the 

Medium resolution CMOS imager acting as the primary and secondary payloads 

(CPUT 2016). 

 

Figure 2-1: ZACube-2 Conceptual Layout (Villiers & Zyl n.d.) 



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 16  

This will be a radiation study, using OMERE and TRIM software. This study will 

consider the three main sources of space radiation, namely: earth radiation belts 

(ERB), galactic cosmic radiation (GCR), and solar particle events (SPE). This study is 

important to prevent SEE and to assist in the correct selection of error control codes, 

components and shielding. Using the proposed orbital parameters set by FSATI this 

document will simulate and explore the environment in which the ZACube-2 will be 

orbiting. From the results obtained in this document, conclusions will be formulated and 

recommendations made. 

 

 ZA-CUBE 2 orbital parameters 

Using the information provided by FSATI, the following orbital parameters were 

established and entered into OMERE software (Figure 2-2). 

 

Orbital parameters: 

 Date of Launch: 01/05/2018  

Time: 12:00 - Midday (Assumption) 

 Inclination: 98deg (inclination for SSO orbit) 

 Apogee and Perigee: 550km (orbital altitude under 600km (Villiers & Zyl n.d.) ) 

 Orbit type: Circular orbit 

 Segment Duration: 4 years  (life spanned 3 to 5 years) 

 

 

 

 

 

  

#================================== 

# OMERE 5.0.1.4 - ORBIT 

# 2017/11/06    14:48:12 

#================================== 

# Number of segment(s) in the mission: 1 

#************************************** 

# Name:                                          ZA cube 2 

# Duration:                                      4 year(s) 

# Perigee:                                       550km 

# Apogee:                                       550km 

# Inclination:                                   98° 

# Argument of Perigee:                   0° 

# Longitude of ascending node:      0° 

# (with respect to Greenwich) 

# True Anomaly:                              0° 

# Period:                                          5.74e+003s 

# Number of orbits:                         392 

# Number of points per orbit:          100 

 
Figure 2-2: Omere orbital parameters: initialisation (left) and output file (right) 



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 17  

 Understanding radiation 

With the continuous improvements and developments of technology, we are becoming 

more and more dependent on technology, especially space technology. It is a known 

fact that electronic systems are affected by radiation. This could cause data to be 

unreliable and can result in major failures. It is necessary for all engineers in the space 

industry to have some basic knowledge of the effects radiation can cause, namely, 

SEE. 

 Single event effects 

SEE is electrical noise induced by the natural space environment (high energy ionising 

particles). This “noise” results in data corruption, transient disturbances and high 

current conditions which could lead to unwanted functional interruption or in the worst 

case, catastrophic failures. SEE are caused mainly by space radiation or energetic 

particles. 

 

Main causes of Single Event Effects are: 

 Galactic cosmic rays 

 Cosmic solar particles (heavily influenced by solar flares) 

 Trapped protons in radiation belts 

 

 

Figure 2-3: Heliophysics and Space Weather (Bensusen et al. 2013) 

 

  



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 18  

These SEE effect many types of devices and technologies. Single Event Effects 

includes Single Event Upset (SEU), Single Event Gate Rupture (SEGR) and others. 

Vulnerability to SEE has increased drastically, as devices like IC’s operating speeds 

and density increases. When radiation strikes a device, it results in the collection of 

charges and hence changes the electrical performance. These SEE largely impact the 

reliability of electronic circuits used in the space environment. 

 

The section to follow, with the help of Figure 2-4, shows how particles can cause SEE 

within devices: 

 

Cosmic rays: Heavy ions cause direct ionization which results in SEE. When an ion 

particle travels through a device and deposits sufficient charge, an event such as a 

memory bit flip or transient may occur.      

Radiation belts and solar flares: Protons are capable of causing a nuclear reaction 

near a sensitive node, thus creating an indirect ionization effect, potentially causing an 

SEE. They could also cause direct ionization in highly sensitive devices. 

 

Figure 2-4: Effects of heavy ions (left) & protons (right) -  (Halbert 2006) 

 

 Effects of radiation in terms of SEE 

SEE are usually split into two categories. These categories are listed and shown below: 

 

Non-destructive: Events which momentarily or permanently change the state of a 

device or cell/node without affecting its functionality. For example: 

 Single Event Upset (SEU) – Bit flips in memory cell and registers 

 Single Event Functional Interrupt (SEFI) – Temporal device functionality loss, 

recovered by a power cycle 

 Single Event Transient (SET) - momentary variation in current or voltage to or from 

a device 



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 19  

Destructive: Events which interrupt device function and permanently damage the 

device without external interaction. For example: 

 Single Event Latch-up (SEL) - Can cause circuit lockup, recovered by a power cycle 

 Single Event Burnout (SEB) - Localized current in the body of a device,  turning on 

parasitic bipolar transistor 

 Single Event Gate Rupture (SEGR) - Dependent on the angle of incidence and on 

the electric field in the gate oxide 

 Single Event Hard Errors (SHE) – A rare case which renders a single cell unable to 

change state 

 

For further insight into types of SEE, their effects and the components affected, refer 

to the ECSS-E-ST-10-12C document produced by ECSS.    Table 2-1 identifies the 

components and the possible effect SEE could cause. For a more extensive table see 

section 9.3 of the ECSS E-ST-10-12C document. (ECSS 2008) 

 

 

   Table 2-1: Possible SEE as a function of component technology and family 

  

Component 

type 
Technology Family Function S

E
L

 

S
E

S
B

 

S
E

G
R

 

S
E

B
 

S
E

U
 

M
C

U
/S

M
U

 

S
E

D
R

 

S
E

H
E

 

S
E

F
I 

S
E

T
 

S
E

D
 

Transistors Power MOS     X X        

ICs 

CMOS or 

BiCMOS or 

SOI 

Digital SRAM X*    X X  X    

   
DRAM/ 

SDRAM 
X* X   X X  X X   

   FPGA X*    X  X  X  X 

   

EEPROM/ 

Flash 

EEPROM 

X*      X  X  X 

   
μP/ 

μcontroller 
X    X   X X  X 

  Mixed ADC X*    X    X X X 

  Signal DAC X*    X    X X X 

  Linear  X*      X   X  

 Bipolar 
Digital      X     X  

Linear      X     X  



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 20  

 Mitigation techniques 

Mitigation techniques are methods used to reduce the severity and seriousness of 

SEE. There are a number of different ways to mitigate SEE. 

 

The methods are categorised in the following levels: 

 System level: For example, TMR. 

 Circuit level: For example, radiation hardened devices protecting FFs and SRAM 

cells. 

 Software level: For example, 3 processing + voting. 

 Chip-level: For example, EDAC codes. 

 

From a mechanical point of view, it is possible to prevent SEE. This is done by using 

materials that have a natural resistance against radiation and by using purified 

fabrication materials. Large satellites make use of radiation hardened technologies and 

devices which are resistant to damage and malfunctions caused by ionizing radiation. 

These devices and components are called RadTolerant. However, these devices are 

not the ideal option for nanosatellites due to cost and availability in third world 

countries. A more practical and logical approach to prevent SEE is to exploit the 

satellites’ PCB and component layout. For example, placing sensitive components 

behind the battery banks which are able to block most radiation. 

 

Prevention is one approach to handling SEE, but error detection and correction 

techniques can prove just as effective when implemented correctly. Redundancy on a 

system, software and at chip level can be highly effective. Error Detection and 

Correction Codes (EDAC) such as Hamming and Reed Solomon (RS) codes have 

been used extensively in telecommunication and during deep space missions. EDAC 

codes are preferred, as they are implemented in software and do not require too much 

additional power. These types of approaches are more feasible and suited for the 

nanosatellite industry. 

 

  



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 21  

 Earth radiation belts 

Earth radiation belts (ERB) are belts formed in space around the earth due to the 

earth’s magnetic field. These belts contain and trap energised particles. The most 

predominant ERB are the Van Allen radiation belts. 

 Magnetic field 

Using the flux mapping options it is possible to plot particle fluxes (AE8 and AP8 

modes) and magnetic fields in 2D or 3D views. These views and plots are effective in 

helping establish where magnetic fields are strongest and where protons and electrons 

are mostly concentrated. 

 

The magnetic fields displayed in Figure 2-5, range from 19.5 KnT to 48.7 KnT.  This 

plot was set up to simulate the magnetic fields at the altitude of 550km (+/- the altitude 

of ZA cube 2) for the year 2018. The magnetic field selected for the simulation is Jensen 

Cain. From Figure 2-5 it is clear that the magnetic fields are strongest around the poles 

and weakest around the equator, especially the south Atlantic anomaly (SAA) area. 

 

 

Figure 2-5: Magnetic field (Jensen Cain) at 550km in 2018 

  



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 22  

 Trapped particles 

ZA cube 2 will travel through the Van Allen radiation belts (Zell 2015)(Zell 2013). For 

this reason, AP8 and AE8 models were selected when simulating the trapped particles. 

NASA’s AP8 and AE8 models have been the European standard since the seventies 

(D.Heynderickx 2002) and allow for max and min models to be simulated. Mean flux 

was selected as an output for both the Proton and Electron models. The mean flux was 

selected as the flux spectrum is first calculated at each orbit point and then averaged. 

 

Figure 2-6 shows the average integral and differential fluxes of the trapped particles 

within the defined orbit. From the graph, it is clear that the maximum integral flux for 

trapped electrons is at 8.15 x 104 cm-2.s-1 flux at an energy of around 40 KeV, this 

decays to the minimum flux of 2.61 x 10-2 cm-2.s-1 with a maximum of 6 MeV energy. 

The maximum integral flux for trapped protons, on the other hand, is 1.65 x 103 cm-2.s-

1 flux at an energy of around 100 KeV, this decays to the minimum flux of 1.55 cm-2.s-

1 with a maximum of 300 MeV.  

 

 

 

Figure 2-6: Orbital average integral and differential fluxes of trapped particles 

  



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 23  

 Trapped electrons 

Figure 2-7 and Figure 2-8 show the maximum trapped electrons at an altitude of 

550km. Figure 2-7 (differential) and Figure 2-8 (integral) show that the trapped 

electrons of around 1 MeV.cm2.s to 1 x 105 MeV.cm2.s for integral and differential. The 

trapped electrons are concentrated in a channel just below the North Pole and above 

the South Pole, as well as the SAA region. 

 

 

 

Figure 2-7: Maximum trapped electrons (differential) 

 

 

 

Figure 2-8: Maximum trapped electrons (integral) 

 

  



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 24  

 Trapped protons 

Figure 2-9 and Figure 2-10 show the maximum trapped protons at an altitude of 550km. 

Figure 2-9 (differential) and Figure 2-10 (integral) show that the trapped protons of 

around 1 MeV.cm2.s to 1x105 MeV.cm2.s for integral and differential. These protons 

are concentrated intensively around the SAA. It is important to note regions of 

concentrated protons and electrons as they can cause SEE and in some cases the 

failure of a satellite mission. 

 

 

 

Figure 2-9: Maximum trapped protons (differential) 

 

 

Figure 2-10: Maximum trapped protons (integral) 

 



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 25  

 Orbital trapped particles 

The figures to follow shows the differential intensity of the electrons (Figure 2-11) and 

protons (Figure 2-12) during a specific LEO. Their intensities reach about 10 MeV.cm2 

during the high-intensity regions, such as the SAA, and are slight in Figure 2-11 while 

passing the North and South Pole trapped electron channels. Satellites travelling in this 

orbit should be able to withstand trapped electrons of around 10 MeV.cm2 or new orbital 

parameters need to be implemented. 

 

 

 

Figure 2-11: Orbital minimum trapped electrons – AE8 – Jensen Cain – Differential  

 

 

 

Figure 2-12: Orbital minimum trapped protons – AP8 – Jensen Cain – Differential 

  



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 26  

 Solar cosmic radiation 

Solar cosmic radiation (SCR) is one of the main sources of radiation in space. Using 

OMERE this radiation source is simulated on fluxes and fluences vs energy graphs.  

 Protons 

The proton model used is 

ESP, this model was 

selected to comply with the 

European Cooperation for 

Space Standardization 

(ECSS). The ECSS 

ensures uniformity and 

standardizations. For this 

simulation, a confidence 

level of 90% and a solar 

active period of four years 

was used. 

 

 

Using the plotted graph in Figure 2-14, the solar protons that ZACube-2 will be exposed 

to can be seen. The integral flux maximum is 1.65 x 102 protons.cm-2.s-1 at an energy 

level of 1 MeV and a minimum flux of 4.66 x 10-3 protons.cm-2.s-1 at an energy level of 

3 x 102 MeV. 

 

 

 

Figure 2-14: Integral and differential fluences of solar protons 

  

Figure 2-13: Solar Particle (Proton) – Setup 

 



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 27  

 Ions 

Using the OMERE software it is possible to plot specific solar ions according to selected 

elements. As shown in Figure 2-15, elements Z=2 (He/Helium) to Z=17 (Cl/Chlorine) 

are taken into account during a solar active period of 4 years. Figure 2-16 shows the 

integral and differential flux of the selected elements vs the energy range.  

 

 

 

Figure 2-15: Solar Particle (Ion) Z = 2 to Z = 17 – Setup 

 

 

Figure 2-16: Integral and differential fluence of solar ions Z = 2 (He) to Z = 17 (Cl) 

  



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 28  

 Galactic cosmic radiation 

Galactic cosmic radiation (GCR) is one of the main sources of space radiation. Using 

OMERE, the heavy ions that ZACube-2 will be exposed to can be found using the 

generated graphs shown below. The figures show the energy verse flux graphs for 

galactic cosmic radiation during a solar minimum. It can be noticed that the flux level 

decreases as the atomic numbers of the GCR heavy ions increase from Z=1 to Z=17. 

This observation can be said for both integral (Figure 2-17) and differential flux (Figure 

2-18). The differential flux tends to peak at 5.78 x 10-4 ion.cm-2.s-1. (MeV/nuc)-1 this is 

a well-known feature and should be noted for shielding purposes. 

 

 

 

Figure 2-17: Heavy ion integral (Z = 1 to Z =17) 

 

 

 

Figure 2-18: Heavy ion differential (Z = 1 to Z =17) 



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 29  

  Shielding 

Shielding is used to protect satellites against energized protons and heavy ions in 

space. The type of material and coatings thickness influences how radiation tolerant a 

satellite is.  

 Dose 

The dose is defined as the total amount of ionizing radiation absorbed by a material. In 

this case study, the ZA cube 2 nanosatellite structure consists mainly of aluminium. 

Aluminium was used to reduce weight and not for its shielding properties, however the 

aluminium structure does provide a minimal amount of protection. 

 

The graph below plots the different sources of radiation against the thickness of 

aluminium. Typically 2 mm Al is used to shield a nanosatellite, however, this thickness 

should be carefully chosen by considering graphs (like Figure 2-19), cost and weight.  

From the graph shown in Figure 2-19, the following can be noted: 

 20mm Al will block majority of the radiation, but will add too much weight. 

 10mm Al will block a large portion of radiation, but will still add too much weight. 

 5mm Al will block most of the high-level radiation but will still add too much weight. 

 2mm Al only blocks the high levels of radiation (Figure 2-20). This thickness will 

be the best trade-off when looking at weight and cost vs radiation. 

 

 

Figure 2-19: Dose (rad) vs thickness 

 

It is important to note that 2mm Al is used in most of the simulations as this is the 

standard thickness of ZA cube 2’s casing. Aluminium is not used for its radiation 

prevention properties but because it is light weighted and cheap. 

 



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 30  

 

Figure 2-20: Dose (rad) vs thickness (zoom in) 

 

Figure 2-21 shows the orbital dosage graph for a nanosatellite with a 2mm Al structure. 

Orbital rotations plotted were kept to a minimum in order to reduce the computational 

power needed to run the simulation. When comparing these results to the flux mapping 

graphs it is clear that the satellite structure will provide some shielding when travelling 

through the high radiation regions of space, like the SAA. From this, we can conclude 

that 2mm Al is able to provide some radiation protection but not enough. 

 

 

 

Figure 2-21: Orbital dosage graph for 2mm Aluminium shield 

 

  



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 31  

 Transport 

The figures to follow compare the incident flux and transmitted flux for trapped protons 

(Figure 2-22) and solar peak and mean heavy ions for hydrogen (Figure 2-23). The 

transmitted flux is the resulting flux after implementing 2mm Al shielding. Figure 2-22 

shows 2mm Al has a very high absorption of the low energized proton but basically 

nothing for energies above 20 MeV. From Figure 2-23 it is also clear that 2mm Al 

shielding will help protect the satellite against heavy ions of energies below 30 MeV 

but is useless for energies above 30 MeV. 

 

 

Figure 2-22: Fluxes of incident and transmitted trapped protons in ERBs 

 

 

Figure 2-23: Fluxes of incident and transmitted solar peak and mean heavy ions 

 



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 32  

  Linear energy transfer 

Figure 2-24 is the calculated LET spectra graph. The graphs to follow shows the flux 

vs Liner-energy-transfer (LET). This integral LET spectrum was plotted specifically for 

ZACube-2 orbital parameters of 98• degrees inclination with 2mm Al shield. 

 

 

 

Figure 2-24: Integral LET spectrum diagram for 98• and 2mm Al shield 

 

 TRIM – The transport of ions into a matter 

TRIM was created by James F. Ziegler and was described by him in the following 

manner (James Ziegler 2013): 

 

“TRIM (the Transport of Ions in Matter) is the most comprehensive program included. 

TRIM will accept complex targets made of compound materials with up to eight layers, 

each of different materials. It will calculate both the final 3D distribution of the ions and 

also all kinetic phenomena associated with the ion's energy loss: target damage, 

sputtering, ionization, and phonon production. All target atom cascades in the target 

are followed in detail. The programs are made so they can be interrupted at any time 

and then resumed later. Plots of the calculation may be saved, and displayed when 

needed.” 

 

Using TRIM, protons of different energies will be aimed at Aluminium and other 

materials. The results will help establish how effective the material is at shielding the 

satellite. These results will be shown in the sections to follow.  

  



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 33  

2.7.4.1 TRIM Set-up 

Using the set-up tables shown by Figure 2-25, different aspects to test can be selected. 

In this document the following scenario was simulated and tested: 

 Protons (+ hydrogen) of 10 MeV depth into 2mm Aluminium 

 Protons (+ hydrogen) of 19 MeV depth into 2mm Aluminium 

 

 

Figure 2-25: TRIM set-up windows 

2.7.4.2 Protons of 10 MeV depth into Aluminium 

When aiming a proton of 10 MeV at Aluminium, the proton is able to penetrate to about 

0.7mm into the 2mm Al shield. This interaction can be seen in Figure 2-26. 

 

 

Figure 2-26: Protons (+ hydrogen) of 10 MeV depth into 2mm aluminium 



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 34  

2.7.4.3 Protons of 19 MeV depth into Aluminium 

When aiming a proton of 19 MeV at Aluminium, the proton is almost able to make it 

through the 2mm Al shield. This interaction can be seen in Figure 2-27. 

 

 

 

Figure 2-27: Protons (+ hydrogen) of 19 MeV depth into 2mm aluminium   



Hillier, C. & Balyan, V., 2018. Effect of space radiation on LEO nanosatellites. Journal of Applied Engineering Science (JAES). 
[Under review]. 

 35  

  Summary 

In this document, the orbital mission for ZA cube 2 was simulated using OMERE 

software and different shielding was tested using TRIM. From the research done during 

the initial stages of this assignment, we know that space radiation causes SEE. The 

main cause of these events are protons and heavy ions. There are three main sources 

of space radiation, namely earth radiation belts (ERB), solar cosmic radiation (SCR) 

and galactic cosmic radiation (GCR).  

 

Using the mentioned software, the following radiation environments that the ZA Cube 

2 will be exposed to were simulated and analysed: 

 Differential and integral spectra for the trapped particle in ERB 

 Differential and integral spectra for the trapped particle in energetic solar particle 

events 

 Differential and integral spectra for the trapped particle in GCR 

 Transport curves for 2mm Al shielding at 98 degrees inclination 

 LET curve for ZA cube 2 

 

For all simulations involving shielding the thickness of 2 mm Al was used. It was proven 

that 2mm Al is only effective up to 20 MeV for protons shielding (Figure 2-22) and 30 

MeV for heavy ions shielding (Figure 2-23 - hydrogen). It is also important to note that 

various orbits and Al thickness do not affect the LET. This is important to know when 

trying to prevent and predict single event effects. Using TRIM, the observations made 

in the paragraph above were re-enforced. Using this software a proton (positively 

charged hydrogen) was aimed and shot at 2mm of aluminium. The maximum energy 

that the 2mm Al was able to stop was just over 19 MeV.  

 

As a final conclusion a 2mm Al shield is not able to block all the radiation that ZA cube 

2 will be exposed to, however, the majority of low energized particles will be stopped. 

In order to ensure that SEE does not occur, additional mitigation techniques are 

needed to protect sensitive and vulnerable devices. These techniques could be Triple 

modular redundancy (TMR), software EDAC schemes, and others. 

 

 



 
36  

CHAPTER 3. 

ERROR CORRECTING CODES 

 Introduction 

Error correcting is used to prevent errors from occurring. Initially, error correcting was 

done manually and formed part of the quality check in most industries. However, once 

digital systems started to be implemented the need for error correcting codes became 

apparent. Unlike previously where an error would just result in a customer complaint, 

errors in digital systems can cause complete failure. This introduces the need for error 

correcting codes (ECC). 

 

Error correcting codes allow systems to perform stand-alone error checking. Such 

systems ensure reliability and prevent any failures from occurring. ECC often go 

unnoticed as they run in the background of almost all digital-related devices. These 

error correcting codes are also often referred to as error-correction and detections 

(EDAC) codes. 

 Definitions 

Error detection is the detection of errors caused by interference, radiation and noise 

during data transmission and storage. Error correction is the recovery processes that 

ensure any corrupted data is corrected and reconstructed to the original error-free form.  

 History 

Error control codes as mentioned previously, started when digital systems and 

computers were introduced in the early to mid-nineteenth century. The development of 

these EDAC schemes was spearheaded by companies and individuals associated with 

telecommunication and computer science industries. In Table 3-1 a basic timeline is 

given, showing major developments in information theory that are linked to ECC. 

  



 
37  

Table 3-1: ECC history 

 

 

 Error detection and correction 

 Key terms and definitions 

EDAC coding techniques can be split into block codes and convolutional codes. The 

main difference between the two is the memory. Block codes need no memory while 

convolutional codes need memory. Block coding converts the information signal of k-

bit size to a codeword of n-bit after appending redundancy bits. Convolutional coding 

encodes a stream of data rather than a block of data. This means that convolutional 

codes are dependent not on only the current bits of data but also previous bits of data. 

 

  



 
38  

Once the information data (k – bits long) has been encoded, additional bits have been 

added to form a new data set called codeword (n – bits long). This codeword can be 

systematic or non-systematic. A codeword is considered systematic when the 

information data is unaltered in the codeword. However, should the information data 

be manipulated or some bits rearranged, the codeword is considered non- systematic. 

For example (d – shows information data and p –shows added bits): 

 

Systematic = [d0 d1 d2 d3 d4 d5 d6 d7 p0 p1 p3] 

Non-systematic = [p0 p1 d0 p3 d1 d2 d3 d4 d5 d6 d7] 

  

  

Distance or minimum Hamming distance is often used to help describe an EDAC 

scheme. Minimum Hamming distance is described as the number of coordinates in 

which two words of the same length differ. 

 Classification 

Error control can be implemented using different techniques. These techniques can be 

split into three main categories, namely: 

 

1. Automatic repeat request (ARR): This technique is sometimes referred to as 

backward-error correction. Using error detection schemes, the system detects an 

error in the data received and requests that the data is retransmitted.  ARR and 

slight variations are used in Internet Protocol (IP), local area networks (LAN - up to 

1 Gbits/s), shortwave radio and live video transmissions. 

2. Forward-error correction (FEC): This technique uses both error detection and 

correction. The transmitted data is encoded in a redundant manner to form a 

codeword and then decoded. If an error occurs during transmission, the added 

redundant bits are used to correct the error. This error correction is done without 

requesting the data to be sent again. FEC is popular when re-transmissions of data 

is costly or impossible, such as satellite data transmissions. Most EDAC schemes 

are FEC.  

3. Hybrid automatic repeat request (HARR): This technique is a combination of ARR 

and FEC. The technique uses FEC for small errors but implements ARR if the 

implemented FEC EDAC scheme is not able to handle the error or cause an 

unacceptable delay in transmission. HARR is mainly used when reliable high-speed 

data transmission is needed.  



 
39  

Figure 3-1 shows a chart detailing the classification of error control schemes. 

 

Figure 3-1: Classification of error control systems 

 Implementation 

Error control in digital systems has been developing for years. As mentioned previously 

the two main error control methods are ARR and FEC. ARR methods are basically an 

error detection system that requests data to be resent when an error is found. FEC, 

however, needs both error detection and error correction. In all EDAC systems, the 

process is almost the same, only the method differs. This process is shown in Figure 

3-2. 

 

 

 

 

ERROR CONTROL

Automatic repeat 
request (ARR)

Block code

Hybrid automatic 
repeat request 

(HARR)

Forward error 
correction (FEC)

Block code

Non-binary 

Reed-Solomon 
Codes

Systematic

Non-
systematic

Binary

Hamming 
codes

BCH codes

Convolutional 
Code

Binary

Systematic

Turbo codes

Non-
systematic

Viterbi 
Algorithm

Non-binary



 
40  

Figure 3-3: General construction of a codeword 

 

EDAC systems ensure no information transmitted or stored is corrupted.  These 

systems usually follow the process shown in Figure 3-2. The transmitter (sender) sends 

errorless information of n-bit long to the encoder. The encoder then applies the chosen 

EDAC scheme and encodes the received information data to form a codeword of n-

bits. The now-processed information is then ready for transmission/storage.  

 

The type of transmission or storage is dependent on the application, for example, optic 

fibre, telephone wire, radio frequency, memory, etc. Transmission/storage is where 

error and event upsets occur. The cause of these errors can be noise, interference, 

radiation, etc. In some cases the cause is unknown, making errors significantly more 

severe as they cannot be predicted or expected. Errors are defined as bit flips in the 

data or memory. These errors are categorized according to the number of bits affected. 

For example, a single bit flip is called single event effect, two bits flipped is a double 

event effect. As the amount of affected bits increases, so does the severity of these 

errors. This influences the complexity and selection of the EDAC scheme implemented. 

 

The transmitted information which potentially contains errors, is sent to the receiver. 

The receiver then decodes the information data it received or requested, by following 

the decoding steps of the selected EDAC scheme. This process decodes the message 

and corrects the errors using the added bits which makes up the codeword. This 

decoding process can often add a significant delay time to the retrieving process. The 

decoded codeword returns the transmitted data to its errorless form of n-bits long. 

 

 

 

Figure 3-2: EDAC layout (FEC) 

Receiver

• Informaiton data of 
k-bits long

• No errors

Decoder

• Apply EDAC 
scheme

• Correct any errors

• n-bits long

• No errors

Transmission 
/ Storage

• Corrupted 
information

• Radiation/ noice/ 
interferance

• Error (SEU, DEU, 
MEU ....)

Encoder

• Introduce EDAC 
scheme

• Codeword

• n-bits long

• No error

Transmitter

• Informaiton data of 
k-bits long

• No errors

Information data (k-bits) Redundancy data (r-bits) 
 

Codeword (n-bits) 



 
41  

 Error detection and correction schemes 

EDAC schemes are best described using common parameters and by their 

capabilities. In the sections to follow, common EDAC schemes are mentioned with a 

short description.  

 

This is done using Table 3-2 and the following parameters: 

 Block length (n): Refers to the number of bits that make up a single block. These 

blocks are also referred to as codewords. A block is made up of information bits 

and redundancy bits. 

 Message length (k): Refers to the number of bits that make up the information 

data contained within a codeword.  

 Code rate: It is a measure of how much data (k – bits) is being transferred in each 

codeword (n – bits).  It is defined as the ratio of raw data bits to the encoded bit 

stream. Higher code rates normally imply that a scheme is more efficient. 

 Distance (dmin): Also referred to as the minimum Hamming distance. It is defined 

as the number of coordinates in which two words of the same length differ. 

 Alphabet (Σ): Describes the modelled type used to encode the data. Most 

commonly Σ of size q = 2 is used and implies that the scheme is a binary block 

code. Σ holds more significance when describing polynomial block codes, as it 

represents the prime powers and finite fields used during encoding. 

 Notation: Describes the entire scheme in a generalized manner : ( n , k , dmin )q 

 

       Table 3-2: Error detection and correction capabilities of common EDAC schemes 

 

 

 

 

 

 

 

 

 

 

 

 

  

 SED SEC DED DEC MED MEC 

Parity Code Yes No No No No No 

m-out-of-n Codes Yes No No No No No 

Berger Code Yes No No No No No 

Hamming Code Yes Yes Yes No No No 

Hadamard Code Yes Yes Yes Yes No No 

Repetition Code Yes Yes Yes Yes No No 

Four Dimensional Parity 
Code 

Yes Yes Yes Yes No No 

Golay Code Yes Yes Yes Yes Yes Yes 

BCH Code Yes Yes Yes Yes Yes Yes 

Reed Solomon Code Yes Yes Yes Yes Yes Yes 



 
42  

 Error detection 

 

Parity Code 

This scheme is considered the simplest and most basic error detection scheme. When 

implemented only to detect single bit flips this scheme is effective, however, it is unable 

to correct any errors, determine the error’s location or detect more than one error. This 

scheme functions on one of the simplest coding principles, namely, odd and even parity 

(Hamming 1950). The code determines whether the information data (of fixed block 

size) is either odd or even and then attaches a single “parity” bit to the data string. For 

example, information data “1100” is odd, therefore Parity code will append a “0”, 

outputting a codeword of “11000”. When an error occurs in the codeword, the codeword 

will no longer be odd. This means the appended “0”, should have been a “1” indicating 

an error. 

 

M-out-of-N Codes 

These codes are also known as constant weight codes. Variations of the m-out-of-n 

codes were used in many write-once applications like PROM. Most popular was the 2-

out-of-5 code, which allows decimal digits to be represented using five bits. This code 

was implemented in barcodes (Figure 3-4). The m-out-of-n code makes use of 

codeword weightings (denoted by m where m ≤ n) and length (n) to perform error 

detection (Ramabadran 1990). The weighting value normally represents the sum of the 

1s within a codeword. When an error occurs 

within an n length data set, the weighting would 

change. This means if an error occurs that flips 

a zero to a one the weighting would increase 

and should an error flip a one to a zero the 

weighting would decrease.  

 

Checksum Codes  

Checksum Codes have many variations but can only perform error detection. These 

polynomial codes use the summing of bits to determine if an error occurred. The 

information data is broken up into segments. These segments are then summed 

column by column. The summed bits are then appended to the information data and 

sent together to the receiver. The receiver then performs the same summing 

procedure. Should no error have occurred the result will contain only zeros, or else an 

error has occurred during transmission. These codes have been extensively analysed 

based on unidirectional errors and are used in Cyclic Redundancy Check (Saxena & 

McCluskey 1990).  

Figure 3-4: Barcode using 2-out-of-5 



 
43  

Berger Code 

J. M. Berger initially developed the Berger error detection code for the 

telecommunication industry in 1961. This systematic detection code allows the 

detection of all unidirectional errors. This means that the code is only able to detect 

when errors flip from ones into zeroes or zeroes flip to ones. Berger Code counts all 

the ones or zeroes within the information data (k bits long) and then attaches the binary 

equivalent of the sum to the information forming the codeword (n + k bits). The check 

bits of the scheme can be calculated by r = [log2 (k + 1)] and then rounding the result 

off to the highest closest integer (Metra et al. 1995). This code is able to detect 

numerous bit flips as long as the flips are in the same direction, meaning all errors are 

flipping 1s to 0s or 0s to 1s. The receiver counts the number of ones or zeros in the 

information data and then compares the result with the number shown by the check 

bits. There are a number of improved versions of this code which have been developed 

over the years. 

 

 Error detection and correction 

Hamming Code  

Hamming code is a linear block error detection and correction scheme developed by 

Richard Hamming in 1950 (Hamming 1950). This scheme adds additional parity bits 

(r) to the sent information (k). The codeword can be calculated as n = 2r – 1. This 

means information data can be calculated by  k = 2r − r – 1. Using a parity check matrix 

and a calculated syndrome, the scheme can self-detect and self-correct any SEE errors 

that occur during transmission. Once the location of the error is identified the code 

inverts the bit, returning it to its original form. Hamming codes form the basis of other 

more complex error correction schemes. The original scheme allows SECSED, but 

with an addition of one bit, an extended Hamming version allows SECDED (Gil et al. 

2014). Table 3-3, shows the Hamming code’s classification and parameters. 

 

Table 3-3: Hamming code classification and parameters  

Hamming Code 

Developed by Richard Hamming 

Type Linear block code 

Block length n = 2r − 1 where r ≥ 2 

Message length k = 2r − r − 1 

Code rate 1 – (r / (2r -1)) 

Distance Dmin = 3 

Alphabet (Σ) q = 2 

Notation [2r − 1, 2r − r − 1, 3]2 



 
44  

Hadamard Code 

The Hadamard code (or Walsh–Hadamard code) is a linear block error detection and 

correction scheme named after Jacques Hadamard, as they are based on the 

Hadamard matrixes he defined in 1893. The Hadamard Code was cemented in history 

when it was implemented onboard the Mariner 9 satellite, launched by NASA in 1971.  

The scheme enabled the Mariner 9 to transmit images of Mars back to Earth. The bit 

overhead of this scheme are extremely large, however, it ensures data reliability in 

extremely noisy environments. The Hadamard code was improved to form the 

punctured Hadamard code, which has a slightly better code rate. Table 3-4, shows the 

Hadamard code’s classification and parameters. 

 

 Table 3-4: Hadamard code classification and parameters 

 

 

 

 

 

 

 

 

 

 

 

Repetition Code 

This code is considered the most basic EDAC scheme. Repetition Code takes the 

simple approach of repeating information data a number of times with the idea that an 

error cannot affect all the information sent. The decoder then uses majority decision to 

compare all repeated information it received. The decoder then decides which 

repetition information is error free. The obvious drawback to this code is the 

transmission time delay due to the increased bit overhead size. 

  

Hadamard Code 

Named after Jacques Hadamard 

Type Linear block code 

Block length n = 2k 

Message length k 

Code rate k / 2k 

Distance Dmin = 2k - 1 

Alphabet (Σ) q =2 

Notation [2k , k , 2k-1 ]2 

Punctured Hadamard code 

Named after Jacques Hadamard 

 Type Linear block code 

Block length n = 2k 

Message length k + 1 

Code rate (k + 1) / 2k 

Distance Dmin = 2k - 1 

Alphabet (Σ) q = 2 

Notation [2k , k , 2k-1 ]2 



 
45  

Golay Codes 

Golay codes are linear block error detection and correction schemes developed by 

Marcel J. E. Golay in 1949. There are two main Golay codes: perfect Golay code and 

the extended Golay code. The perfect Golay code allows the correction of a 3-bit error 

and 6-bit error detection. The extended version of Golay code uses an additional parity 

bit to increase the minimum distance by 1. This allows correction of a 3-bit error and 7-

bit error detection. Table 3-5 shows the Golay codes’ classification and parameters. 

 

Table 3-5: Golay codes classification and parameters 

 

 

 

 

 

 

 

 

 

 

 

Four-Dimensional Parity Code 

Four-dimensional parity code works on establishing parity bits for a memory block (of 

size h x v). This means generating parity rows according to horizontal, vertical and 

cross diagonally. This allows the scheme to correct up to two-bit errors and detect up 

to five. A number of variations of this scheme have been developed through the years, 

for example, additional parity bit to increase the schemes correction ability and by 

changing the cross diagonally to forward and backward diagonal.  

 

Perfect Golay code 

Named after Marcel J. E. Golay 

Type Linear block code 

Block length n = 23 

Message length k = 12 

Code rate k / n = 12/23 = 0.522 

Distance Dmin = 7 

Alphabet (Σ) q = 2 

Notation [23 , 12 , 7 ]2 

Extended Golay code 

Named after Marcel J. E. Golay 

Type Linear block code 

Block length n = 24 

Message length k = 12 

Code rate k / n = 12/24 = 0.5 

Distance Dmin = 8 

Alphabet (Σ) q = 2 

Notation [24, 12, 8 ]2 



 
46  

BCH Code 

The BCH or Bose–Chaudhuri–Hocquenghem codes where first proposed in 1959 by 

A. Hocquenghem and then separately developed by R. Bose and D. K. Ray-Chaudhuri 

in 1960. BCH codes are capable of multiple bit error detection and correction. This 

code generally uses a linear-feedback shift register (LFSR) to encode the message 

block and uses syndromes to determine the error location during decoding. BCH codes 

are extremely flexible when it comes to parameter selection, block length and code 

rate. These parameters are selected according to application type and the manner in 

which BCH codes are implemented. Table 3-6 shows the BCH code’s classification 

and parameters that exist where m ≥ 3 and t ≤ 2m-1. 

 

Table 3-6: BCH code classification and parameters 

 

 

 

 

 

 

 

Reed Solomon Code 

Reed Solomon Code is a polynomial linear block error detection and correction scheme 

developed by I. S. Reed and G. Solomon in 1960. This scheme is used in many 

applications such as Blu-ray Discs, storage systems like RAID 6 and for satellite 

communication.  

 

This scheme treats data blocks as finite fields. Finite fields contain a set of pre-

determined elements. These finite fields are ideal for error detection and correction as 

they are based on prime numbers, which allow unique values to be produced when the 

finite fields are manipulated. The most common of these fields is the base (2) finite 

field, well known as Galois Field (GF). GF (2n) fields are generated using an irreducible 

polynomial rather than an integer. RS code then uses three polynomials to produce the 

wanted codeword, name the GF, generator and encoding polynomial.  

 

The receiver takes the codeword and creates a syndrome polynomial S(x). Using S(x) 

together with the Euclidian algorithm the error locator polynomial can be found, then 

using the Chien Search Algorithm the error can be located or pin-pointed. Once the 

BCH Code 

Developed by A. Hocquenghem, R. Bose and D. K. Ray-Chaudhuri 

Type Cyclic Linear block code 

Block length n = 2m- 1 

Check bits r = n−k  ≤ m*t 

Message length k = n - r 

Distance Dmin ≥ 2*t +1 



 
47  

error’s location is found, the Forney algorithm is applied and the error (or errors) can 

be corrected.  

The explained approach is one of many to implement RS code. Table 3-7, shows Reed 

Solomon codes’ classification and parameters. 

 

Table 3-7: Reed Solomon code classification and parameters 

 

 

  

Reed Solomon Code 

Developed by I. S. Reed and G. Solomon 

Type Polynomial Linear block code 

Block length n 

Message length k 

Distance Dmin = n – k +1 

Alphabet (Σ) 
q = pm ≥ n (p prime)  
Often n = q − 1. 

Notation [n , k , n – k +1]2 



 
48  

 EDAC Selection 

The selection of the EDAC scheme is normally solely dependent on its application. 

Each EDAC scheme mentioned has different advantages, disadvantages, capabilities, 

resource demands, complexity, etc.  There are however a number of aspects that these 

schemes have in common, which are: 

 

 Error detection capabilities (Ed) 

o This is the number of error bits the EDAC scheme is capable of detecting. 

o The detection capabilities are generally dependent on the minimum 

Hamming distance (dmin) of a codeword but this is not always true.  

o Generally defined as:    Ed = dmin -1  

 Error correction capabilities (Ec) 

o This is the number of error bits the EDAC scheme is capable of correcting. 

o The correction capabilities are also generally dependent on the minimum 

Hamming distance (dmin) of a codeword.  

o Generally defined as:         Ec = (Ed) / 2  

 Code rate 

o It is a measure of how much data (k – bits) is being transferred in each 

codeword (n – bits).  It is defined as the ratio of raw data bits to the encoded 

bit stream. 

o Defined as:           Code rate = k / n  

 Bit overhead  

o It is the amount of redundant data in each codeword (n – bits). It is defined 

by the ratio of parity bits (r – bits) to data bits (k – bits). 

o Defined as:                Bit overhead = r / k    

 Time and space complexity 

o Time complexity refers to the delay and response times that are associated 

with the implementation of different EDAC schemes.  

o Space complexity refers to the total algorithm space requirements after 

taking into account the program size and memory needed to implement the 

code effectively. 

o These complexities, however, can only be monitored accurately once 

implemented in hardware, which would allow live simulations and active 

testing to be conducted. 

 

3-1 

3-2 

3-3 

3-4 



 
49  

 EDAC scheme evaluation 

Table 3-8 shows a summary of a study conducted which compares common EDAC 

schemes. The table allows a graphical overview of each scheme according to 

codeword length, information data and minimum Hamming distance versus the error 

detection and correction capabilities, code rate (%) and bit overhead.  

 

Table 3-8: EDAC scheme comparison 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schemes (n, k, Dmin) Ed Ec 
Code rate 
(%) 

Bit 
overhead 

Hadamard Code 
16 5 8 7 3 31,25% 220,00% 

32 6 16 15 7 18,75% 433,33% 

64 7 32 31 15 10,94% 814,29% 

Repetition Code 

5 1 - 4 2 20,00% 400,00% 

6 1 - 5 2 16,67% 500,00% 

Golay Code 

23 12 7 6 3 52,17% 91,67% 

11 6 5 4 2 54,55% 83,33% 

BCH Code m=3 

22 16 5 4 2 72,73% 37,50% 

14 8 5 4 2 57,14% 75,00% 

BCH Code m=4 

23 16 5 4 2 69,57% 43,75% 

16 8 5 4 2 50,00% 100,00% 

BCH Code m=5 

26 16 5 4 2 61,54% 62,50% 

18 8 5 4 2 44,44% 125,00% 

Reed Solomon Code 

6 2 5 4 2 33,33% 200,00% 

8 4 5 4 2 50,00% 100,00% 

10 6 5 4 2 60,00% 66,67% 

12 8 5 4 2 66,67% 50,00% 

20 16 5 4 2 80,00% 25,00% 

Four-dimensional parity code 

Memory 32 x 8 
- 5 2 75,29% 32,81% 

340 256 

Memory 32 x 16 
- 5 2 83,66% 19,53% 

612 512 

Memory 128 x 8 
- 5 2 78,77% 26,95% 

1300 1024 

Memory 128 x 16 
- 5 2 87,52% 14,26% 

2340 2048 

Hamming 

7 4 3 1 1 57,14% 75,00% 

15 11 3 1 1 73,33% 36,36% 

31 26 3 1 1 83,87% 19,23% 

63 57 3 1 1 90,48% 10,53% 

Extended Hamming 

8 4 4 2 1 50,00% 100,00% 

16 11 4 2 1 68,75% 45,45% 

64 58 4 2 1 90,63% 10,34% 

1024 1017 4 2 1 99,32% 0,69% 



 
50  

 EDAC scheme selection 

The EDAC scheme selection is almost solely dependent on its application. By referring 

to the title of this thesis it is clear the application is for EDAC onboard a nanosatellite. 

This implies that a solution is needed to detect and correct errors induced by radiation 

onboard a nanosatellites during its LEO. Continuing with the case study done 

previously in this thesis, the ZA-cube 2 (orbit of about 550 km) is used. 

 

Ideally the effects of SEU and MEU should have been monitored in ZA-cube 1, 

unfortunately, this was not done and therefore this information is unavailable. However, 

this data was gathered by the Alsat-1, which was the first Algerian microsatellite 

launched into LEO. This information was published in a paper titled: “A Real-Time 

EDAC System for Applications Onboard Earth Observation Small Satellites” by Y. 

Bentoutou (Bentoutou 2012). This data is a good indication of what ZA-cube 2 will be 

exposed to, as the Alsat-1 is also SSO and LEO (ZA-cube 2 orbit being roughly 100 

km closer to earth). This means the radiation dosages for ZA-cube 2 should be slightly 

lower than that experienced by the Alsat-1. However, the data from the Alsat-1 can be 

considered as a worst case scenario for ZA-cube 2. This data is shown in Table 3-9 

(Bentoutou 2012). 

 

Table 3-9: Memory errors that were observed on Alsat-1 during a 7 year period 

 

 

 

 

 

 

 

 

  

Event upset observation for Alsat-1 

System monitored OBC 386 RAMDISK Memory 

EDAC code R-S (256,252) 

Memory size 32 Mbytes 

Hybrid SYS84000RKXLI-70 (4M x 8-bit) 

Device Samsung SEC KM684000BLT-5L: 512K x 8-BIT SRAM 

Observation period 2510 days November 29, 2002— October 12, 2009 

Bits monitored 268435456 

No. of single-bit errors 244150 (98.6%) 

No. of multiple-bit errors 217 (0.08%) 

No. of double-byte errors 2996 (1.21%) 

No. of severe errors 230 (0.09%) 



 
51  

Using the data provided in Table 3-9, it becomes apparent that SEU is by far more 

likely to occur as a result of radiation. SEU on average cause +/- 97 bit flips to occur 

during a single day (Figure 3-5). Obviously, the majority (about 80%) of these errors 

occur while the nanosatellite is traversing through the SAA which could range roughly 

between 5 to 10 minutes.  

 

 

Figure 3-5: Likelihood of error occurring in a day 

 

Using the information obtained in Figure 3-5, Hamming code will be used as the EDAC 

scheme implemented to deal with SEU. Hamming code allows both error detection and 

correction of single bit upset and can be extended to detect double bit flips. Once a 

double bit flip is detected the information can be erased and a request to resend the 

information can be made. Should the nanosatellite be travelling through the SAA it is 

possible to implement TMR that can deal with double-byte errors and severe errors. 

Hamming code was selected mainly as it meets the EDAC requirements, 

implementation complexity is minimum and cost of additional hardware is kept 

minimum (COTS devices can be used).  

 

0,00%

20,00%

40,00%

60,00%

80,00%

100,00% 98,60%

0,08% 1,21% 0,09%

P
er

ce
n

ta
ge

Type of Error

Likelihood of error occurring in a day

No. of single-bit errors No. of multiple-bit errors

No. of double-byte errors No. of severe errors



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

52  

CHAPTER 4. 

HAMMING CODE 

 Introduction 

Hamming code is a linear block error detection and correction scheme developed by 

Richard Hamming in 1950 (Hamming 1950). This scheme adds additional parity bits 

(r) to the sent information (k). The codeword bits can be calculated according to          

𝑛 =  2𝑟 –  1. This means the amount of information data bits can be calculated by          

𝑘 =  2𝑟 −  𝑟 –  1. Using a parity check matrix and a calculated syndrome, the scheme 

can self-detect and self-correct any SEE errors that occur during transmission. Once 

the location of the error is identified and located the code inverts the bit, returning it to 

its original form. Hamming codes form the basis of other more complex error correction 

schemes. The original scheme allows SECSED, but with an addition of one bit, an 

extended Hamming version allows SECDED (Gil et al. 2014). Table 4-1 shows the 

original Hamming code’s classification and parameters:  

  

 Table 4-1: Hamming code classification and parameters 

 

 

 

 

 

 

 

 History 

The Hamming error detection and correction code was first introduced by Richard 

Hamming in 1950. R. Hamming’s initial paper titled “Error Detecting and Error 

Correcting Codes”, was published in the 29th volume 2nd issue of The Bell System 

Technical Journal. The paper’s main aim was to allow large-scale computing machines 

to perform a large number of operations without a single error in the end result 

(Hamming 1950). With the paper concentrating on systematic codes, R. Hamming 

proposed an EDAC scheme which is now commonly known as the Hamming code. 

 

Richard Wesley Hamming (February 11, 1915 – January 7, 1998) was an American 

mathematician and pioneer who worked in the fields of computer science and 

telecommunication. He received his doctoral degree in 1942 for the thesis he wrote 

Hamming Code Hamming (7, 4)  

Developed by Richard Hamming 

Type Linear block code 

Code rate 1 – (r / (2r -1)) 

Alphabet (Σ) q = 2 

Block length n = 2r − 1 where r ≥ 2 n = 7 

Message length k = 2r − r − 1 k = 4 

Distance Dmin ≤ n – k +1 Dmin = 3 

Notation [2r − 1, 2r − r − 1,  Dmin]2 [7, 4, 3]2 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

53  

titled: “Some Problems in the Boundary Value Theory of Linear Differential Equations”. 

During his career, he was considered to be a teacher, mathematician, professor and a 

scientist. Hamming is known mostly for his work in error detection and correction 

(Hamming codes), but is also known for developing the Hamming window, Hamming 

numbers, Hamming distance and for his time spent as president of the Association for 

Computing Machinery (ACM). He received many awards for his contributions to 

science but the most prestigious of these is the one he received in 1988 from the IEEE. 

This award was named after him: “For exceptional contributions to information sciences 

and systems”. He was also the first recipient of this award (Morgan 1998). 

 

The Hamming code initially started as a solution for the IBM machines that crashed 

when an error occurred. It then progressed to automatically correcting errors that occur 

due to punched card readers. When the code was developed it was considered a 

breakthrough but no one in 1950 could have predicted it being used to ensure data 

reliability onboard nanosatellites. To this day new applications are being found that 

would not have been possible without Hamming codes or at the very least the 

foundation set by Hamming codes. 

 Classifications 

EDAC codes are classified mainly according to the approach the code takes when 

performing error detection and correction. Hamming codes fall under the following 

classifications: Error detection and correction codes => Forward error correction => 

Block => Binary codes. This is shown graphically in Figure 4-1. 

 

Figure 4-1: Classification of Hamming code 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

54  

Forward error correction (FEC): refers to codes capable of both error detection and 

correction without the data being sent again. The transmitted data is encoded in a 

redundant manner to form a codeword. The codeword is later decoded, allowing errors 

to be located and corrected. When an error occurs during transmission, the added 

redundant bits are used to correct the error. FEC is popular when re-transmissions of 

data is costly or impossible, such as satellite data transmissions. Most EDAC schemes 

are FEC.  

 

Block code: refers to codes that encode, decode and process data in set sized blocks. 

This approach is used in many practical applications. Block codes are useful because 

they enable data to be synchronized, balanced and enable error detection/correction. 

They allow distinct limitations and boundaries to be defined. This, in turn, relates to the 

adjustment of parameters to increase the capabilities and functions of EDAC codes. 

 

Binary code: refers to a two-symbol language that is used to relate text, instructions, 

images and signals into a form that digital devices can interpret. Binary codes normally 

represent data by stringing together a combination of 1s and 0s. For example, a binary 

string of 4 bits can represent 16 possible characters. This means 4 binary bits can 

represent numbers zero to fifteen.  Binary code is classed in terms of the alphabet (Σ) 

of size q = 2. 

 

Hamming codes are block codes, which means no memory is needed for the code to 

function correctly. A Hamming block is basically a codeword containing both the 

information signal (k-bit long) and parity bits (r-bit long). The Hamming scheme can 

function using a systematic or non-systematic codeword. A codeword is considered 

systematic when the information data is unaltered in the codeword. However, should 

the information data be manipulated or some bits rearranged, then the codeword is 

considered non-systematic. This is shown in Table 4-2. 

 

 

 

  
Systematic = [k0 k1 k2 k3 k4 k5 k6 k7 r0 r1 r2] 

Non-systematic = [r0 r1 k0 r2 k1 k2 k3 k4 k5 k6 k7] 

Table 4-2: Systematic and non-systematic codewords 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

55  

 Overview of Hamming code 

In the sections to follow, a detailed overview of the Hamming code will be given. By 

touching on the parameters and foundation principles the reader should have a solid 

understanding of the Hamming code. 

Hamming code is an EDAC scheme that ensures no information transmitted/stored is 

corrupted or affected by single bit errors.  Hamming codes tend to follow the process 

illustrated in Figure 4-2. The input is errorless information of k-bits long which is sent 

to the encoder. The encoder then applies Hamming theorems, calculates the parity bits 

and attaches them to the received information data, to form a codeword of n-bits. The 

processed information which contains additional parity bits is now ready for storage.  

 

The type of storage is dependent on the application, which in this thesis is RAM used 

by the OBC of a nanosatellite. It is during storage that errors are most likely to occur. 

Errors usually occur when radiated particles penetrate the memory cells contained 

within the RAM. These errors are defined as bit flips in the memory. Hamming codes 

are capable of SECSED but can be extended to SECDED with an additional parity bit. 

 

The decoder is responsible for checking and correcting any errors contained within the 

requested data. This is done by applying Hamming theorems, which use a parity-check 

matrix to calculate the syndrome. The method of decoding used by the Hamming code 

is sometimes referred to as syndrome decoding. The decoder checks, locates and 

corrects the errors contained in the codeword before extracting the now error-free 

information data.  

Output

•Extracts 
Informaiton data 
from error-free 
codeword (k-bits 
long)

•No errors

Decoder

•Uses a parity-
check matrix to 
calculate the 
syndrome

•Locates and 
corrects any 
errors

•Codeword of n-
bits long

•All errors 
corrected

Storage

•Errors due to 
space radation

•Error in the form 
of SEU, DEU 
and MEU

Encoder

•Uses a generator 
matrix to 
calculate the 
Hamming 
codeword

•Codeword of n-
bits long

•No error

Input

•Informaiton data 
(k-bits long)

•No errors

Figure 4-2: General layout of Hamming code 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

56  

 General Algorithm  

As mentioned previously Hamming code uses parity bits to perform error detection and 

correction. The placement of these parity bits is dependent on whether or not the code 

is systematic or non-systematic. In Table 4-3: Bit layout of Hamming code (non-

systematic), a typical codeword layout is shown. Please note, this table only includes 

bit positions 1 to 16 but can continue indefinitely. 

 

From Table 4-3 the following observations can be made: 

 Bit position (codeword) is dependent on the amount of data bits protected. 

 Parity bit positions are placed according to, 2 to the power of parity bit:  

o 20 = 1, 21 = 2, 22 = 4, 23 = 8 and 24 = 16. 

 Parity bit’s relationship to bit position and data bits (also shown using Figure 4-3) 

o Parity bit 1 (P1) represents bit position: 1(P1), 3, 5, 7, etc. (all the odd numbers) 

o Parity bit 2 (P2) represents bit position: 2(P2), 3, 6, 7, 10, 11, etc. (sets of 2) 

o Parity bit 4 (P4) represents bit position: 4(P4), 5, 6, 7, 12, 13, etc. (sets of 4) 

o Parity bit 8 (P8) represents bit position: 8(P8), 9, 10, 11, 12, 13, etc. (sets of 8) 

o Parity bit 16 (P16) represents bit position: 16(P16), 17, 18, 19, etc. (sets of 16) 

 The position in-between the parity bits are filled with data bits. 

 The layout makes each column have a unique parity bit combination, for each bit 

position. 

 This unique parity bit combination is known as the syndrome value.  

 

 

 

The syndrome allows errors to be located and corrected. For example, if parity bit P1, 

P4 and P8 show an error, the location of the error can be found by 1(P1) + 4(P4) + 

8(P8) = 13. Therefore, the error affected data bit 9 (D9) in position 13, shown by        

 

The explanation given by Table 4-3 shows the general algorithm used when 

implementing Hamming code. 

Bit position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Encoded data bits P1 P2 D1 P4 D2 D3 D4 P8 D5 D6 D7 D8 D9 D10 D11 P16 

E
n
c
o
d
e
d
 d

a
ta

 c
o
v
e
ra

g
e
 

(N
o
n
-s

y
s
te

m
a
ti
c
) 

S
y
n
d
ro

m
e
 

 

 

P1                  

P2                   

P4                   

P8                   

P16                               

Table 4-3: Bit layout of Hamming code (non-systematic) 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

57  

 

Figure 4-3: Parity VS data, Hamming (7,3) (left) & Hamming (15,11) (right) 

 

 Construction of generator matrix (G) 

Generator matrix (G) is used when encoding the information data to form the codeword. 

G forms one of the foundations on which the Hamming code is based. Due to the 

relationship between the generator matrix and parity-check matrix the Hamming code 

is capable of SECSED. 

 

G (k x n) is defined as the combination of an identity matrix (I) of size k x k and a 

submatrix (P) of size k x r. This is shown in equation 4-1 (Chitode 2009). 

𝑮𝒌 𝒙 𝒏 =  [𝑰𝒌 𝒙 𝒌 | 𝑷𝒌 𝒙 𝒓 ]      4-1 

 Construction of parity-check matrix (H) 

Parity-check matrix (H) is used when decoding and correcting the codeword, in order 

to extract an error-free message. H forms one of the foundations on which the 

Hamming code is based. Due to the relationship between the parity-check matrix and 

generator matrix the Hamming code is capable of SECSED.  

 

H (r x n) is defined as the combination of a negative transposed submatrix (P) of size 

k x r and an identity matrix (I) of size r x r. This is shown in equation 4-2 (Chitode 2009). 

𝑯𝒓 𝒙 𝒏 =  [−𝑷𝒌 𝒙 𝒓
𝑻  | 𝑰𝒓 𝒙 𝒓 ]     4-2 

 The relationship between generator matrix (G) and parity-check matrix (H) 

The construction of G and H can be systematic or non-systematic. However, under 

both conditions, the rule shown in equation 4-3 should be met. Due to the relationship 

between G and H, it is possible to obtain G from H. This can be done by taking the 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

58  

transposed submatrix (left-hand side) contained in H and combining it with an identity 

matrix of size k. This is a simple but efficient test when uncertain of G and H. 

𝑮 ∗ 𝑯𝑻 = 𝟎      4-3 

As a final note on G and H, it is possible to manipulate this matrix from systematic to 

an equivalent non-systematic matrix by using elementary matrix operations, which are: 

 Interchange two rows (or columns) 

 Multiply each element in a row (or column) by a non-zero number. 

 Multiply a row (or column) by a non-zero number and add the result to another row 

(or column). 

  Hamming encoder 

The Hamming encoder is responsible for generating the codeword (n-bits long) from 

the message (msg) and generator matrix (G). Once generated the codeword contains 

both the message and parity bits. The codeword is calculated using the formula 

expressed in equation 4-4.   

𝑪𝒐𝒅𝒆𝒘𝒐𝒓𝒅𝒏−𝒃𝒊𝒕𝒔 = 𝒎𝒐𝒅𝟐(𝒎𝒔𝒈𝒌−𝒃𝒊𝒕𝒔 ∗ 𝑮𝒌 𝒙 𝒏)    4-4 

The mathematical expression in equation 4-4 is essentially made up of AND and XOR 

gates. The gate/graphical expression is illustrated using Figure 4-4. 

 

 

 

 

 

 

 

 

 Hamming decoder 

The Hamming decoder is responsible for generating the syndrome (r-bits long) from 

the codeword (n-bits long) and parity-check matrix (H). Once generated, the syndrome 

contains the error pattern that allows the error to be located and corrected. How this is 

done is explained in Chapter 1.  4.2.1 General Algorithm. The syndrome is calculated 

using the formula expressed in equation 4-5.   

𝑺𝒚𝒏𝒅𝒓𝒐𝒎𝒆𝒓 = 𝒎𝒐𝒅𝟐(𝑪𝒐𝒅𝒆𝒘𝒐𝒓𝒅𝒏−𝒃𝒊𝒕𝒔 ∗ 𝑯𝒓 𝒙 𝒏
𝑻 )    4-5 

Message (k-bits) 

Generator matrix 

(k x n) 

AND gate 

& 

XOR gate 

 
Codeword (n-bits) 

Figure 4-4: Gate/graphical expression of Hamming encoder formula 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

59  

The mathematical expression in equation 4-5 is essentially made up of AND and XOR 

gates. The gate/graphical expression is illustrated using Figure 4-5. 

 

 

 

 

 

 

 Extended Hamming code 

The extended Hamming code makes use of an additional parity bit. This extra bit is the 

sum of all the codeword bits (Figure 4-6), which increases the Hamming code 

capabilities to SECDED. The extended Hamming code can be done in both a 

systematic and non-systematic form. Table 4-4 shows this in a graphical manner.  

 

Figure 4-6: Parity relationship to data, extended Hamming (8, 4) 

 P16, in this case is the added parity bit that allows double error detection. By 

monitoring this bit and checking whether the bit is odd or even allows the double bit 

error to be detected, which this is shown in Table 4-4 by      . 

 

 

Bit position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Encoded data bits P1 P2 D1 P4 D2 D3 D4 P8 D5 D6 D7 D8 D9 D10 D11 P16 

E
n
c
o
d
e
d
 d

a
ta

 c
o
v
e
ra

g
e
 

(N
o
n
-s

y
s
te

m
a
ti
c
) 

S
y
n
d
ro

m
e
 

 

P1                  

P2                   

P4                   

P8                   

P16                               

Codeword (n-bits) 

Transposed Parity-
check matrix         

(r x n) 

AND gate 

& 
XOR gate 

 
Syndrome (r-bits) 

Figure 4-5: Gate/graphical expression of Hamming decoder formula 

Table 4-4: Bit layout of extended Hamming code (16, 11) 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

60  

 Design process 

The design process started with understanding the principles on which the Hamming 

code is based, such as generator matrix (G), parity-check matrix (H) and syndrome. 

Once a solid understanding of the code was established an online search through open 

source codes was conducted. This search was not programming language specifically 

but rather focused on implementation techniques. The search included Java, VHDL, 

C, C++ and Verilog.  

 

The design process’s ultimate goal was to implement an efficient Hamming code in 

VHDL. The design process followed, which led to the successful completion of this 

goal, is shown using Figure 4-7. 

 

 

 

 

 

For each step a working model was produced in Matlab (C programming language). 

These Matlab models served as proof of concept before the scheme was implemented 

in Quartus (VHDL). Working models for the improved Hamming codes where produced 

in Quartus. Each model was tested and their capabilities confirmed. Each step will now 

be explained in the sections to follow. 

  

Hamming [16, 11, 4]2

Extended 
Hamming code

Non-systematic 
approach

SECDED
Inproved Hamming 
distance, overhead 

and code rate
Matlab model VHDL code

Hamming [8, 4, 4]2

Extended 
Hamming code

Non-systematic 
approach

SECDED
Inproved Hamming 

distance
Matlab model VHDL code

Hamming [7, 4, 3]2

Orignal Hamming 
code

Systematic 
approach

SECSED No improvements Matlab model VHDL code

Figure 4-7: Overview of the design process 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

61  

 Hamming [7, 4, 3]2 

This was the first approach taken to implement Hamming code. Hamming [7, 4, 3]2 is 

the original Hamming code proposed by R. Hamming in 1950. This code was 

implemented in a systematic manner, meaning all parity bits are appended to the end 

of the information data, forming the codeword. The construction of the generated 

codeword is shown in Table 4-5. Using the formulas shown in Chapter 1.  3.4: EDAC 

Selection, some performance aspects of the Hamming [7, 4, 3]2 can be calculated. This 

is shown in Table 4-6. From the code’s Hamming distance of 3 and its known 

capabilities, it can be stated that the Hamming [7, 4, 3]2 is capable of SECSED. 

 

 

 

 

  

 

 

 

 

 

 

In order to implement the Hamming [7, 4, 3]2 a generator matrix (G) and parity-check 

matrix (H) is needed for the encoding, decoding and the calculation of the syndrome 

(S). The following calculations were done in order to implement the code: 

 

Submatrix (P) of 𝑘 𝑥 𝑟 dimensions: 

𝑷𝒌 𝒙 𝒓 = 𝑷𝟒 𝒙 𝟑 =



















110

101

011

111

    4-6 

Identity matrix (I) of 𝑘 𝑥 𝑘 dimensions: 

𝑰𝒌 𝒙 𝒌 = 𝑰𝟒 𝒙 𝟒 =



















1000

0100

0010

0001

     4-7 

 

Codeword (n = 7) 

Information data ( k = 4) Parity ( r = 3) 

D1 D2 D3 D4 P1 P2 P3 

Scheme Ed Ec Code rate (%)  Bit overhead 

Hamming [7, 4, 3]2 1 1 57,14% 75,00% 

Table 4-5: Construction of the Hamming [7, 4, 3] codeword 

 

Table 4-6: Calculated performance aspects of Hamming [7, 4, 3] 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

62  

From equation 4-1 the generator matrix is calculated as follows: 

𝑮𝒌 𝒙 𝒏 = 𝑮𝟒 𝒙 𝟕 =  [𝑰𝟒 𝒙 𝟒 | 𝑷𝟒 𝒙 𝟑 ]𝟒 𝒙 𝟕 =



















1101000

1010100

0110010

1110001

        4-8 

Identity matrix (I) of 𝑟 𝑥 𝑟 dimensions: 

𝑰𝒓 𝒙 𝒓 = 𝑰𝟑 𝒙 𝟑 =  [
𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

]    4-9 

From equation 4-2 the parity-check matrix is calculated as follows: 

𝑯𝒓 𝒙 𝒏 = 𝑯𝟑 𝒙 𝟕 =  [−𝑷𝟒 𝒙 𝟑
𝑻  | 𝑰𝟑 𝒙 𝟑 ]

𝟑 𝒙 𝟕
=























1001101

0101011

0010111

 4-10 

Once G and H have been derived, it is possible to encode and decode the information 

data in a manner that is capable of SECSED. The data is encoded using equation 4-4. 

This was implemented in Matlab using mod-2 additions which are essentially exclusive-

OR functions. The same equation was used to encode the information data in VHDL, 

however, exclusive-OR gates where used to perform the operation. 

 

Hamming [7, 4, 3]2 made use of syndrome decoding to locate and correct any errors 

that may occur in the codeword during transmission or storage. The syndrome is 

calculated according to equation 4-5. A for-loop or case statement can then be used to 

locate the bit which is flipped within the codeword. Once located the bit is simply 

inverted, returning it back to its original and correct state. With the codeword now error 

free, the information bits are separated and extracted, returning an error-free 4-bit 

message to the receiver. 

  



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

63  

 Hamming [8, 4, 4]2 

Hamming [8, 4, 4]2 is considered as an extended version of Hamming code. With an 

additional parity bit, the code is capable of double error detection (DED). This code 

was implemented in a non-systematic manner, which simplifies the detection of double 

errors. The construction of the generated codeword is shown in Table 4-7. Using the 

formulas shown in Chapter 1.  3.4 EDAC Selection, some performance aspects of the 

Hamming [8, 4, 4]2 can be calculated. This is shown in Table 4-8. By looking at Table 

4-8 the obvious drawback of Hamming [8, 4, 4]2 is the increase in bit overhead 

percentage. From the code’s Hamming distance of 4 and its known capabilities, it can 

be stated that the Hamming [8, 4, 4]2 is capable of SECSED. 

 

 

 

 

 

 

 

 

 

 
In order to implement the Hamming [8, 4, 4]2 a generator matrix (G) and parity-check 

matrix (H) is needed for the encoding, decoding and the calculation of the syndrome 

(S). The following calculations were done in order to implement the code. 

 

Submatrix (P) of 4 𝑥 3 dimensions: 

𝑷𝟒 𝒙 𝟑 =



















111

110

101

011

     4-11 

Identity matrix (I) of size 4 𝑥 4 (equation 4-7) is used when calculating G. From equation 

4-1 the generator matrix is calculated as follows: 

𝑮𝟒 𝒙 𝟕 =  [𝑰𝟒 𝒙 𝟒 | 𝑷𝟒 𝒙 𝟑  ]𝟒 𝒙 𝟕 =



















1111000

1100100

1010010

0110001

    4-12 

Codeword (n = 8) 

Information data ( k = 4) Parity ( r = 4) 

D1 D2 D3 D4 P1 P2 P3 P4 

Scheme Ed Ec Code rate (%) Bit overhead 

Hamming [8, 4, 4]2 2 1 50,00% 100,00% 

Table 4-7: Construction of the Hamming [8, 4, 4] codeword 

 

Table 4-8: Calculated performance aspects of Hamming [8, 4, 4] 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

64  

Hamming rules state G should be of size 𝑘 𝑥 𝑛. Therefore an additional column is 

needed to satisfy this condition for Hamming [8, 4, 4]2. An 8th parity column is added to 

G. This is done by adding an odd or even parity bit to each row. 

𝑮𝒌 𝒙 𝒏 = 𝑮𝟒 𝒙 𝟖  =



















01111000

11100100

11010010

10110001

                4-13 

By considering the non-systematic Hamming bit layout in Table 4-3, G calculated in      

4-16 can be rearranged to form a non-systematic matrix G. 

𝑮𝟒 𝒙 𝟖 =  



















01001011

10101010

10011001

10000111

    4-14 

Identity matrix (I) of size 3 𝑥 3 (equation 4-9) is used to calculate H. From equation 4-2 

the parity-check matrix can be calculated. With the additional parity bit, the negative 

submatrix is not used, as the result is the same. H is calculated in 4-15 

𝑯𝟑 𝒙 𝟕 =  [𝑷𝟒 𝒙 𝟑
𝑻  | 𝑰𝟑 𝒙 𝟑 ]

𝟑 𝒙 𝟕
=

















1001110

0101101

0011011

    4-15 

Hamming rules state H should be of size 𝑟 𝑥 𝑛. Therefore an additional column and row 

are needed to satisfy this condition for Hamming [8, 4, 4]2.  Due to the fourth parity bit 

only being used for detection, the entire row can be filled with ones. With a fourth row 

added, an 8th parity column is also added to H. This is done by adding an odd or even 

parity bit to each row. 

𝑯𝒓 𝒙 𝒏 = 𝑯𝟒 𝒙 𝟖  =



















11111111

01001110

00101101

00011011

   4-16  

 

 

 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

65  

By considering the non-systematic Hamming bit layout in Table 4-3, H calculated in     

4-16 can be rearranged to form a non-systematic matrix H: 

𝑯𝟒 𝒙 𝟖 =



















11111111

01111000

01100110

01010101

       4-17 

Once G and H have been derived, it is possible to encode and decode the information 

data in a manner that is capable of SECDED. The data is encoded using equation        

4-4. This was implemented in Matlab using mod-2 additions which are essentially 

exclusive-OR functions. The same equation was used to encode the information data 

in VHDL, however, exclusive-OR gates were used to perform the operation. 

 

Hamming [8, 4, 4]2 makes use of syndrome decoding to locate and correct any errors 

that may occurred in the codeword during transmission or storage. The syndrome is 

calculated according to equation 4-5. A for-loop or case statement can then be used to 

locate the bit which is flipped within the codeword. Once located the bit is simply 

inverted, returning it back to its original and correct state. With the codeword now error 

free, the information bits are separated and extracted, returning an error-free 4-bit 

message to the receiver. 

 

  



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

66  

 Hamming [16, 11, 4]2 

Hamming [16, 11, 4]2 is considered as an extended version of Hamming code. With an 

additional parity bit, the code is capable of double error detection (DED). This code 

was implemented in a non-systematic manner, which simplifies the detection of double 

errors. The construction of the generated codeword is shown in Table 4-9. Using the 

formulas shown in Chapter 1.  3.4 EDAC Selection some performance aspects of the 

Hamming [16, 11, 4]2 can be calculated. This is shown in Table 4-10. Using Table 4-10 

it is clear that Hamming [16, 11, 4]2 has a better code rate and bit overhead than 

Hamming [8, 4, 4]2. From the code’s Hamming distance of 4 and its known capabilities, 

it can be stated that the Hamming [16, 11, 4]2 is capable of SECSED. 

 

 

 

 

 

 

 

In order to implement the Hamming [16, 11, 4]2 a generator matrix (G) and parity-check 

matrix (H) is needed for the encoding, decoding and the calculation of the syndrome 

(S). The following calculations were done in order to implement the code: 

 

Submatrix (P) of 11 𝑥 4 dimensions: 

𝑷𝟏𝟏 𝒙 𝟒 =









































1001

1101

1111

1110

0111

1010

0101

1011

1100

0110

0011

     4-18 

Codeword (n = 16) 

Information data ( k = 11) Parity ( r = 5) 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 P1 P2 P3 P4 P5 

Scheme Ed Ec Code rate (%) Bit overhead 

Hamming [16, 11, 4]2 2 1 68,75% 45,45% 

Table 4-9: Construction of the Hamming [16, 11, 4] codeword 

 

Table 4-10: Calculated performance aspects of Hamming [16, 11, 4] 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

67  

 

Identity matrix (I) of size 11 𝑥 11 is used when calculating G.  

𝑰𝒌 𝒙 𝒌 = 𝑰𝟏𝟏 𝒙 𝟏𝟏 =









































10000000000

01000000000

00100000000

00010000000

00001000000

00000100000

00000010000

00000001000

00000000100

00000000010

00000000001

   4-19 

From equation 4-1 the systematic generator matrix is calculated as follows: 

𝑮𝟏𝟏 𝒙 𝟏𝟓 =  [𝑰𝟏𝟏 𝒙 𝟏𝟏  | 𝑷𝟏𝟏 𝒙 𝟒  ] =









































100110000000000

110101000000000

111100100000000

111000010000000

011100001000000

101000000100000

010100000010000

101100000001000

110000000000100

011000000000010

001100000000001

 4-20 

 

 

 

 

 

 

 

 

 

 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

68  

Hamming rules state G should be of size 𝑘 𝑥 𝑛. Therefore, an additional column is 

needed to satisfy this condition for Hamming [16, 11, 4]2. An 8th parity column is added 

to G. This is done by adding an odd or even parity bit to each row. 

𝑮𝒌 𝒙 𝒏 = 𝑮𝟏𝟏 𝒙 𝟏𝟔  =









































1100110000000000

0110101000000000

1111100100000000

0111000010000000

0011100001000000

1101000000100000

1010100000010000

0101100000001000

1110000000000100

1011000000000010

1001100000000001

  4-21 

By considering the non-systematic Hamming bit layout in Table 4-3, G calculated in     

equation 4-12 can be rearranged to form a non-systematic matrix G: 

𝑮𝟏𝟏 𝒙 𝟏𝟔 =









































1100000000000011

1010000000001010

1001000010001011

1000100010001000

0000010010001010

0000001010000001

1000000100001011

0000000011000010

1000000000101001

0000000010011001

0000000010000111

   4-22 

Identity matrix (I) of size 4 𝑥 4 (equation 4-7) is used to calculate H. From equation 4-2 

the parity-check matrix can be calculated. With the additional parity bit, the negative 

submatrix is not used, as the result is the same. H is calculated in equation 4-23. 

𝑯𝟒 𝒙 𝟏𝟓 =  [𝑷𝟏𝟏 𝒙 𝟒
𝑻  | 𝑰𝟒 𝒙 𝟒 ]

𝟒 𝒙 𝟏𝟓
=



















100011110101100

010001111010110

001000111101011

000111101011001

4-23 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

69  

Hamming rules state H should be of size 𝑟 𝑥 𝑛. Therefore an additional column and row 

are needed to satisfy this condition for Hamming [16, 11, 4]2.  Due to the fourth parity 

bit only being used for detection, the entire row can be filled with ones. With a fourth 

row added, an 8th parity column is added to H. This is done by adding an odd/even 

parity bit to each row. 

𝑯𝒓 𝒙 𝒏 = 𝑯𝟓 𝒙 𝟏𝟔  =























1111111111111111

0100011110101100

0010001111010110

0001000111101011

0000111101011001

  4-24  

By considering the non-systematic Hamming bit layout in Table 4-3, H calculated in     

equation 4-24 can be rearranged to form a non-systematic matrix H: 

𝐇𝟓 𝐱 𝟏𝟔 =  























1111111111111111

0011110100111000

0001111011010100

1000111100100110

1011101001100001

        4-25 

Once G and H have been derived, it is possible to encode and decode the information 

data in a manner that is capable of SECDED. The data is encoded using equation        

4-4. This was implemented in Matlab using mod-2 additions which are essentially 

exclusive-OR functions. The same equation was used to encode the information data 

in VHDL, however, exclusive-OR gates where used to perform the operation. 

 

Hamming [16, 11, 4]2 makes use of syndrome decoding to locate and correct any errors 

that may occurred in the codeword during transmission or storage. The syndrome is 

calculated according to equation 4-5. A for-loop or case statement can then be used to 

locate the bit which is flipped within the codeword. Once located the bit is simply 

inverted, returning it back to its original and correct state. With the codeword now error 

free, the information bits are separated and extracted, returning an error-free 11-bit 

message to the receiver. 

  



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

70  

 Implementation 

Hamming code was implemented in both Matlab and VHDL. The approach taken to 

achieve the desired results is explained with the help of detailed flow charts. Should 

further insight be needed, refer to the attached appendixes.  

 Matlab 

For each variation of the Hamming code, a proof of concept model was designed in 

Matlab. The approach outlined in Figure 4-8. 

Figure 4-8: Overview of Matlab code (flow chart) 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

71  

 VHDL 

Once proof of concept was established using Matlab, Quartus was used to implement 

the working VHDL model. The Hamming code was programmed using VHDL as it 

allows the behaviour of the required system to be modelled and simulated. This is a 

major advantage when optimization is required. A working model of Hamming [8, 4, 4]2 

and Hamming [16, 11, 4]2 was programmed in VHLD using the approach detailed in 

Figure 4-9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4-9: Overview of VHDL code (flow chart) 

 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

72  

 VHDL optimization of Hamming [16, 11, 4]2 

In this section, the optimization of Hamming [16, 11, 4]2 is done. The aim of optimization 

is to reduce resource usages, reduce time delays, improve efficiency, etc. 

 Code optimization 

There are many ways of optimizing VHDL code. Some of the main topics when it comes 

to optimization are (Gschwind & Salapura 2014): 

 Efficient adder implementation 

 State machines 

 Signal selection 

 Storage structure 

 Placement and Routing 

 

Most VHDL design analysers and compilers contain tools that assist in the optimization 

of the mentioned aspects. It is important to understand the selected architecture, as it 

will help with selecting the correct design analyser and compiler. In this thesis, the 

Quartus Prime package is used to code, analyse, compile and optimize the Hamming 

code. 

4.5.1.1 Register transfer level (RTL) viewer of Hamming [16, 11, 4]2 

Using the RTL viewer provided under tools in Quartus Prime, an overview of the I/O 

and VHDL code layout can be seen in Figure 4-10. Note: the overview excludes the 

registers and clock circuit (see Chapter 5 for full overview). The overview displays the 

input and outputs, as well as the components defined in hamming_11_16_main.vhd. 

 

Continuing to use the RTL viewer tool it is possible to step into both the encoder and 

decoder. The RTL viewer optimizes the netlist in order to maximize readability. This 

allows a unique insight into each VHDL code. To open RTL viewer, go to the tools 

menu in Quartus, under Netlist Viewer and click on RTL Viewer. The RTL view of the 

encoder and decoder is shown in Figure 4-11 and Figure 4-12. 

Figure 4-10: I/O overview of VHDL code (hamming_11_16_main.vhd) 

 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

73  

 

Figure 4-11: RTL overview of the encoder (hammen16.vhd) 

 

Figure 4-12: RTL overview of the decoder (hammde16.vhd) 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

74  

4.5.1.2 Optimization of Hamming [16, 11, 4]2  

As mentioned before, optimization can be done on a number of different levels. The 

following steps are taken to optimize the code: 

 Remove unnecessary and redundant code.  

 Reduce constants and variables where possible.  

 Minimize the use of if statements and loops. 

 Convert code to structural-level or gate-level. 

 

All of the points are taken into account and with the help of the RTL viewer, the code 

was optimized. With a good understanding of Hamming [16, 11, 4]2, VHDL code, 

programming, FPGAs and digits, it is possible to derive the equivalent gate-level code. 

Using the original working VHDL code and RTL viewer, the Hamming [16, 11, 4]2 code 

was reduced to structure or gate level. In Table 4-11 are a few examples of how the 

gate-level code for Hamming [16, 11, 4]2 was derived. 

 

 

Original VHDL code RTL viewer Derived gate-level code 

Constant MaskP1: std_logic_vector(0 to 15) 

signal din1: std_logic_vector(0 to 15) 

din1 <= dedatain AND MaskP1; 

synd(0) <= din1(0) XOR din1(1) XOR din1(2) 
XOR din1(3) XOR  din1(4) XOR din1(5) XOR 
din1(6) XOR din1(7) XORdin1(8) XOR 
din1(9) XOR din1(10) XOR din1(11) XOR  
din1(12) XOR din1(13) XOR din1(14) XOR 
din1(15); 

 

synd(0) <= dedatain(0) XOR 
dedatain(5) XOR dedatain(6)  
XOR dedatain(9) XOR 
dedatain(11) XOR dedatain(12) 
XOR dedatain(13) XOR 
dedatain(15); 

case synd is  

when "10001" => dedataout(0) <= NOT 
dedatain(0); 

when … 

when … 

when others => dedataout <= dedatain; 

end case; 

 

mux(0)  <=   dedatain(2) XOR 
((NOT synd(0)) AND synd(1) AND 
synd(2) AND (NOT synd(3))); 

if (synd = "00000") then 

      dedataout <= dedatain; 

      NE <= '1'; 

Else …. 

End if  

noerror  <= (NOT synd(0)) AND 
(NOT synd(1)) AND (NOT synd(2)) 
AND (NOT synd(3)) AND (NOT 
synd(4)); 

If ()… 

else  

     SEC <= '1'; 

end if; 
 

noerror  <= (NOT synd(0)) AND 
(NOT synd(1)) AND (NOT synd(2)) 
AND (NOT synd(3)) AND (NOT 
synd(4)); 

if (synd(4) = '0') then 

     DED <= '1'; 

     dedataout <= "0000000000000000"; 

Else …. 

End if  

DED <= ((NOT noerror) AND 
(NOT synd(4))) OR (noerror AND 
'0'); 

Table 4-11: Deriving gate-level code from VHDL code and RTL viewer 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

75  

From Table 4-11 it can be observed that redundant code, IF-statements, loops, 

constants and variables, were either removed or reduced as the code was converted 

to gate level. By performing this operation, the lines of code that made up the encoder 

and decoder went from 176 to 127. This observation does not imply that the code has 

been optimized but is impressive none the less.  

 

By reducing the code to gate level the following changes occurred:  

 Encoder contains no constants or variables. 

 Encoder went from performing 320 logic (AND and XOR) bit operations to only 30 

XOR operations. 

 Decoder contains no constants. 

 Decoder contains a reduced amount of variables. 

 Decoder went from 2 IF statements to none and from 1 case statement to none. 

 

The results of reducing Hamming [16, 11, 4]2 to gate-level is shown for the decoder 

using Figure 4-13. The actual results and proof of optimisation of Hamming [16, 11, 4]2 

will be shown in Chapter 5 (Simulation and Test results of Hamming code in VHDL). 
 

 

 
Figure 4-13: RTL overview of the optimised decoder 

(hammde16.vhd) 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

76  

 Quartus Prime Advisor 

Quartus Prime is a design analyser and compiler from Intel. Quartus is extremely 

powerful in the sense that it comes with optimization advisor tools. These tools are 

available in all versions of Quartus, including the lite edition which is free. Figure 4-14 

shows where to find the optimization advisors: Tools => Advisor => Select wanted 

optimization advisor.  

 

Most useful of these toolboxes are the Resource and Timing Optimization Advisor 

(Figure 4-15). Once the code has gone through compilation, the advisor provides a list 

of recommendations for different 

improvements that can be made. 

Each recommendation comes in 

three types: already met, warning, 

and information recommendation. 

For each recommendation, a table 

showing the recommendation, 

description, summary and action is 

provided (shown in Figure 4-16). 

 

For the optimisation of Hamming [16, 11, 4]2 all recommendations made by the advisor 

were noted and changed where applicable. In most cases the recommendations were 

considered and taken if the summary stated logic elements usage may decrease. The 

change of an increase in compilation time was not really an issue due to Hamming [16, 

11, 4]2 code being so small. 

 

 

 

 

  

 

 

 

  

Figure 4-15: Timing (left) and Resource (right) Optimization Advisor  

Figure 4-14: Quartus Prime advisor 

optimization options 

Figure 4-16: Resource Optimization Advisor breakdown 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

77  

CHAPTER 5. 

SIMULATION AND TEST RESULTS OF HAMMING CODE IN VHDL 

In Chapter 1 Hamming codes were discussed in full, with detailed descriptions of their 

encoding and decoding procedures. Chapter 1 also touched on different variations of 

Hamming codes and the optimisation methods. This chapter will show the result of the 

Hamming code implemented in VHDL and touch on physical protocols and testing 

procedures. 

 Introduction 

Hamming codes have many communication and memory applications. They are 

extremely popular for their effectiveness when it comes to correction of single bit flips 

and the detection of double bit flips.  

 

Three Hamming codes where implemented and analysed in this thesis, namely 

Hamming [7, 4, 3]2, Hamming [8, 4, 4]2 and Hamming [16, 11, 4]2. With each step the 

code was improved. Hamming [16, 11, 4]2 allows SECDED, while providing a better 

code rate and bit overhead than Hamming [8, 4, 4]2.  Hamming [16, 11, 4]2 generates 

a codeword of double-byte size, which is convenient as most memory blocks work on 

a byte standard. 

 

In this thesis, Hamming [16, 11, 4]2 has been implemented in VHDL on both a 

behaviour/dataflow and gate level (optimised). The simulation results of the Hamming 

[16, 11, 4]2 code for both levels of abstraction are shown in the section titled 5.2 

Software tests and reports. Hamming [16, 11, 4]2 will also be optimised using a 

resource reduction approach and timing analysis approach. This is well documented in 

the section titled Optimisation. 

 

Although software tests are able to prove functionality and test performance, it is near 

impossible to generate a test capable of representing a space environment exactly. 

Hardware tests capable of testing how a device reacts to energised protons and heavy 

ions is therefore needed. The international standards used during these tests to ensure 

valid results are documented and facilities capable of conducting these tests are in the 

section titled Hardware tests. 

  



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

78  

 Software tests and reports 

Using software, the developed Hamming code is tested and analysed.  This is done on 

three levels, namely functionality (ModelSim), resource usage (compilation report) and 

timing analysis (TimeQuest). An overview of the tested VHDL code is shown in Figure 

5-1. Figure 5-1: Full RTL overview of VHDL code (hamming_11_16_main.vhd) shows 

the inputs and outputs (I/O), I/O registers, clocking circuit and the components that 

make-up the Hamming [16, 11, 4]2 code. 

 

Figure 5-1: Full RTL overview of VHDL code (hamming_11_16_main.vhd) 

 

 

 Functionality 

Hamming [16, 11, 4]2 is capable of single error correction and double error detection. 

With the help of ModelSim, this is clearly shown in Figure 5-2. I/O registers are 

triggered using the rising edge of clk and can be cleared using clr. This will allow 

synchronisation and enables the OBC to do a full EDAC reset if necessary. Datain 

(input), dataout (output) and data_to_memory (stored codeword) display the data in 

the system, while NE (no error), DED (double error detection) and SEC (signal error 

correction) serve as indication flags.



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of Electrical and Computer Engineering. [Accepted] 
79  

Using Figure 5-2 the functionality of Hamming [16, 11, 4]2 is proven. In Figure 5-2 the following should be noted:  

 All registers are cleared using the clear signal “clr” (this is shown using       ). 

 Single bit errors are introduced in memory using a bit flip in data_to_memory (bits 0 to 15) and flagged by SEC (this is shown using       ). 

 Double bit errors are introduced in memory using bit flips in data_to_memory (bits 0 to 15) and flagged by DED (this is shown using       ). 

 Note: thanks to Hamming [16, 11, 4], dataout is unaffected by single bit errors and only gets cleared upon the detection of double bit 

errors. 

 

 

 

 

 

 

 

Figure 5-2: ModelSim simulation of Hamming [16, 11, 4] SECDED capabilities 

 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

80  

 Resource usage summary 

The resource usage summary is produced as part of the compilation report, during 

analysis and synthesis of Hamming [16, 11, 4]2. This summary allows the designer to 

understand the components, registers and gates, which will be implemented when 

downloading the VHDL code to an FPGA. This knowledge is especially useful when 

selecting an FPGA that would match the design best, ultimately reducing 

implementation costs and power requirements when implemented onboard a nano-

satellite. The resource usage summary for Hamming [16, 11, 4]2 is shown in Figure 

5-3. 

 

 

Figure 5-3: Resource usage report on non-optimised Hamming (16, 11, 4) 

  



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

81  

Important terms to understand from the resource usage summary: 

 Adaptive Logic Module (ALM): basic building block of Intel devices to maximize 

performance and resource usage. The make-up of an ALM for Stratix Series is 

shown in Figure 5-4. 

 

 

 

 

 

 

 

 

 

 

 Adaptive Look-Up Tables (ALUT): show the combinations of LUT implemented in 

the ALM. 

 Registers: used to hold small sets of information. This information can be temporary 

values or instruction sets. Often used to synchronise different sections of code. 

 I/O pins: refers to the input and output pins needed on the FPGA. Used to allow the 

FPGA to communicate with external devices, such as memory, CPU, OBC, etc. 

 Maximum fan-out: it is the greatest number of inputs that an output of a single logic 

gate can safely supply. 

 

From Figure 5-3, it is obvious that Hamming [16, 11, 4] is already a small design, 

considering no resource optimisation has been done yet (see Chapter 1.  5.3 for 

optimisation results). 

 Timing Analyser (TimeQuest) 

Quartus II packages include a timing analyser program called TimeQuest. TimeQuest 

can be accessed once the Synopsis Design Constraint (.sdc) file has been included 

and compilation has been successfully completed.  The timing analyser allows the 

designer to analyse all timing delays that can be expected once the code has been 

implemented. The main point of reference during timing analysis is maximum 

frequency (fmax), which is defined as the longest delay between two registers that run 

on the same clock.  This analyser is especially useful when establishing clocks, delays 

and understanding the reaction time of paths in the code. 

 

Figure 5-4: ALM for Intel Stratix series (Intel 2018) 

 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

82  

TimeQuest is able to detect the longest delay amongst all paths, which is known as the 

critical path. The critical path is then analysed and different timing aspects of the path 

are calculated. This was done for Hamming [16, 11, 4]2 using a 1 ns clock. The results 

are shown in Figure 5-5 and Figure 5-6. 

 

 

 

 

 

 

 

Figure 5-5: Timing report – Path summary for non-optimised Hamming (16, 11, 4) 

Figure 5-6: Timing report – Waveform for non-optimised Hamming (16, 11, 4) 

Important terms to understand from the TimeQuest Timing Analyser: 

 Data arrival time: refers to the time it takes the data to arrive at the input of the 

receiving register. 

 Data required time: refers to the time when the data is required to be accessible at 

the same register. 

 Slack: refers to the time difference between the required time and arrival time. A 

negative slack indicates a violation, while a small positive slack means the time is 

close to fmax (ideal). 

 
From the Figure 5-5 and Figure 5-6, it is obvious that the time has not been set up or 

optimised. The negative slack of -0.797 ns, indicates a violation which is corrected 

during Chapter 1.  5.3 Optimisation. 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

83  

 Optimisation  

During optimisation, it is important to understand what happens at chip-level. This will 

enable code optimisation and reduction. Quartus II comes with optimisation advisors 

that assist with resource reduction and timing optimisation. There is a definite trade-off 

between resource reduction and timing optimisation. It is therefore important to identify 

the application, and FPGA chip used for implementation, before optimising any code. 

Optimisation for Hamming [16, 11, 4]2 from a resource reduction approach and timing 

optimisation is shown in the sections to follow. 

 Optimisation from a resource usage reduction approach 

Due to the Hamming code also already being condensed, resource optimisation is 

limited. However, better ALUT combination can be implemented, as well as total fan-

out reduced. The optimised resources usage is shown in Figure 5-7. 

 

 

 

Figure 5-7: Resource usage report on optimised Hamming (16, 11, 4) 

  



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

84  

Once resource optimisation is complete, timing analysis is done. This is done using 

TimeQuest which calculates the slack of the critical path. This slack can then be 

optimised using Synopsys Design Constraint (.sdc) file and selecting an appropriate 

clock signal. Using TimeQuest a clock of period 2.25 ns is selected, which produces a 

slack of +0.089 ns. These results are shown in Figure 5-8. 

 

 

 

 

Figure 5-8: Timing report (TimeQuest) for resource optimised Hamming (16, 11, 4) 

  



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

85  

 Optimisation from a timing analysis approach 

Using the recommendations suggested by Quartus II and by fine-tuning the clock 

signal, the timing and delays experienced by Hamming [16, 11, 4] were improved. 

Clocking improvement was done with the help of TimeQuest, which calculated the 

slack of the critical path. This was then improved and minimized by editing Synopsys 

Design Constraint (.sdc) file and implementing an appropriate clock signal. Once all 

time optimisation was completed, TimeQuest was used to show the improvements. 

Using TimeQuest a clock of period of 1.8 ns is selected, which produces a slack of 

+0.097 ns. These results are shown in Figure 5-9. 

 

 

 
 

Figure 5-9: Timing report (TimeQuest) for timing optimised Hamming (16, 11, 4) 

  



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

86  

 Hardware tests 

Electronic components used onboard satellites need protection against SEE that may 

occur due to space radiation. Components that have been developed for space 

environments are referred to as rad-hardened components. These rad-hardened 

components however normally come with a large price tag and are extremely hard to 

obtain. This makes commercial off-the-shelf (COTS) electronic components highly 

attractive in nanosatellite projects, where budgets are low and experimental devices 

are welcomed (in some case encouraged).  

 

COTS components come with a number of advantages and disadvantages. 

Advantages being better performance, lower prices, accessibility, etc. Disadvantages 

of COTS components include unreliability and weakness against transient errors. 

These COTS components require fault-tolerant techniques and architectures to 

increase reliability. One of these fault-tolerant techniques are EDAC schemes which 

help prevent SEE within the memory of nanosatellites. 

 

These schemes, however, require significant testing and validation before being 

implemented by the space project team. There is no better manner to conduct these 

tests than using real energised particles to simulate the space environments. For 

obvious reasons, this will best represent how an EDAC would perform in space. This 

manner of testing is considered hardware testing. In the sections to follow, international 

standards and protocols will be mentioned as well as testing facilities located in Cape 

Town, South Africa. 

 Standards and protocols 

In this thesis, JEDEC standards will be referred to and referenced. JEDEC has been 

the global leader in developing open standards and publications for the 

microelectronics industry for over 50 years. The JEDEC committee has many focus 

areas, one being solid state technology which include space products. There are two 

main documents which hold relevance when it comes to testing of EDAC schemes, 

namely JESD234 - SEE caused by proton radiation (JEDEC 2013) and JESD57A - 

SEE caused by Heavy Ion Irradiation (JEDEC 2017).  

5.4.1.1 JESD234 

The JESD234 document is titled: “Test standards for the measurement of proton 

radiation single event effects in electronic devices”. This document defines the 

requirements and procedures for 40 to 500 MeV proton irradiation of electronic devices 

for Single Event Effects (SEE), and reporting the results. 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

87  

The proton (MeV) range should be determined by the space environment the satellite 

in question will be exposed too. This study could be done using software that predicts 

the space environment and radiation effects on electronic devices, like OMERE. This 

was done in Chapter 2 Space Radiation. Proton energy levels of below +/-50 MeV are 

significantly harder to test and are therefore only tested in unique cases. It is also 

important to note that these tests can reduce the reliability of the device and maybe 

render the device radioactive. This implies the device-under-test (DUT) should be a 

test model. Testing of above 200 MeV is considered unnecessary when testing for non-

destruction SEU. With the focus on nanosatellites (LEO) the range is usually between 

40 – 300 MeV.  

 

A test facility should be selected which meets all requirements and should be able to 

provide documentation on: 

 Proton range 

 Beam characteristics 

 Operating conditions 

 Experimental set-up: physical arrangement of test facilities and test equipment. 

 SEE detection: the closest to real-time detection as possible. 

 Flux range: usually 105 to 109 protons/cm2s 

 Fluence levels: nominal fluence of 1 x 1010 protons/cm2 for soft devices. This is 

done with the hope that at least 100 events occur during testing. 

 

The testing facility is also normally responsible for dosimetry, which refers to the 

equipment and techniques used to measure all aspects of the test. This includes proton 

accelerator accuracy (usually +/- 10%) and beam degraders. The researcher or 

engineer is responsible for putting together a detailed test plan. This is laid out in detail 

in the JESD234 document. Special attention should be given to test matrix, list of 

proton energies to be utilised and data collection. Usually lab technicians will assist 

with providing all relevant information and also advice on what is possible and yields 

the best results. 

5.4.1.2 JESD57A 

The JESD57A document is titled: “Procedures for the measurement of single-event 

effects in semiconductor devices from heavy ion irradiation”. The standards laid out in 

the JESD57A are specifically for heavy ion (ions with an atomic number of Z > 1). The 

test results for SEE caused by heavy ion irradiation is a plot or table of the SEE cross 

section vs. linear energy transfer (LET). This can lead to the prediction of expected 

SEE rate for the DUT.  



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

88  

 

When conducting heavy ion tests, beam dosimetry is important. This should be done 

before the test and consists of two main aspects: measuring the energy and purity of 

the beam, and measuring the ion flux and the spatial uniformity. These tests normally 

consider beam energy variations up to 10% and a 1% beam impurity acceptable. 

During the test, it is important to document any additional materials in the beam’s path, 

such as composed casing, as it affects test energies, LET and penetration range. 

These assessments and measurements are usually done by the test facility staff but it 

is ultimately the user’s responsibility to ensure valid test results. 

 

A detail test plan is required before testing is conducted. The requirements of a good 

test plan and testing procedures are detailed in JESD57A document (JEDEC 2017), 

however, certain aspects should be highlighted: 

 Sample size: should be the largest possible size for the DUT 

 Test conditions: for application-specific condition or worst-case conditions 

 SEE detection methods: SEE must be done by comparison of the DUT response to 

some reference state(s) or post-irradiation bit patterns or current levels with the pre-

irradiation pattern or current levels. 

 Beam characteristics: refers to species and characteristics of the heavy-ion source 

to be used, as well as angles of incidence on the DUT. 

 Flux range: typically ion flux range is 1x103 cm-2.s-1 to 1x105 cm-2.s-1 

 

In the case of operating procedures, the DUT operation conditions are fixed and the 

beam conditions are varied. A test duration usually lasts until the desired number of 

errors has been measured or the desired maximum fluence has been reached. Usually, 

lab technicians will assist with providing all relevant information and also advice on 

what is possible and yields the best results. 

 Test facilities 

iThemba labs provides an accelerator and ancillary facilities for research and training 

in nuclear and accelerator physics, radiation biophysics, radiochemical and material 

sciences and radionuclide productions. Situated close to Blue Downs in Cape Town, 

iThemba labs is the first choice when it comes to radiation testing of electronic devices. 

This is not only due to the lab location and test facility, but also because it is an NRF 

facility. FSATI who produced the ZA cube 1 and ZA cube 2 nanosatellites is also 

partially NRF funded. This allows certain advantages when it comes to research related 

to space advances. 

 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

89  

The iThemba labs testing facilities are equipped with a Seperated Sector Cyclotron 

(SSC) and two injectors namely Solid Pole Injector Cyclotron 1 (SPC1) and Solid Pole 

Injector Cyclotron 2 (SPC2). SSC is designed to allow proton acceleration of up to 200 

MeV, and also to accelerate light and heavy ions using SPC1 and SPC2 (Cornell et al. 

1992). The SPC1 provides pre-acceleration of light-ion beams from its internal hooded-

arc PIG ion source. The SPC2 provides pre-acceleration of heavy-ion and polarised-

ion beams, produced by two external ion sources. The cyclotron parameter is shown 

using Table 5-1. 

 

 

 

Cyclotron Parameters 

Separated Sector Cyclotron (SSC) 

K-value 200 MeV 

Injection radius (hill) 1.01 m 

Largest extraction radius (hill) 4.43 m 

Magnetic flux density 1.26 T (max) 

Magnetic sectors 4 × 34° sectors 

Resonators 2 × 49° deltas, λ/2 

Dee voltage 250 kV (max) 

Power amplifier 130 kW 

RF power dissipation 80 kW/resonator 

Frequency range 5 – 27.5 MHz 

Harmonic numbers 4 & 12 

Frequency variation Short-circuit plates and variable capacitors 

Solid Pole Injector Cyclotron 1 (SPC1) 

K-value 8 MeV 

Extraction radius 0.476 m 

Magnetic flux density 0.86 T (max) 

Number of sectors 4 

Resonators 2 × 90° degrees, λ/4 

Frequency range 5 – 27.5 MHz 

Harmonic numbers 2&6 

Ion source PIG source 

Solid Pole Injector Cyclotron 2 (SPC2) 

K-value 10 MeV 

Extraction radius 0.476 m 

Magnetic flux density 0.86 T (max) 

Number of sectors 4 

Resonators 2 × 90° degrees λ/4 

Frequency range 5 – 27.5 MHz 

Harmonic numbers 2&6 

Ion source ECR source & polarised hydrogen source 

Table 5-1: Cyclotron parameters at iThemba labs (IThemba n.d.) 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

90  

 

CHAPTER 6. 

CONCLUSION 

In this thesis, EDAC schemes are extensively discussed. ZA cube 2 nanosatellite was 

used as a case study when conducting research on space radiation, error correction 

codes and Hamming code. All findings, results and recommendations are concluded 

in the sections to follow. 

 Findings 

Space radiation has caused numerous mission failures. Through research it became 

apparent that failures caused by SEU and MEU are extremely common and SEE are 

more frequent while the nanosatellite is in the SAA. It was found that there are a 

number of EDAC schemes and techniques currently used, most commonly Hamming, 

RS codes and TMR. The EDAC schemes are usually implemented using an FPGA. 

From the literature survey, it is clear that there is a need for research in the area of 

EDACs. By conducting an in-depth literature review, it was established that Hamming 

code was capable of performing the functionality desired. 

 

In order to understand space radiation, a study was conducted using the orbital 

parameters of nanosatellite ZA Cube 2, which is a nanosatellite being developed by 

FSATI in collaboration with CPUT. Using ZA cube 2’s orbital parameters a radiation 

study was conducted using OMERE and TRIM software which looked at earth radiation 

belts (ERB), galactic cosmic radiation (GCR), solar particle events (SPE) and shielding. 

In the case of ERB, trapped protons of a maximum integral flux of 1.65 x e3 cm-2.s-1 flux 

at energy +/- 100 KeV, which decays to a minimum integral flux of 1.55 cm-2.s-1 flux at 

energy +/- 300 MeV. It was found that the common nanosatellite casing of 2mm Al was 

only effective as a shield against protons below 20 MeV and heavy ions below 30 MeV. 

In order to ensure that SEE does not occur, additional mitigation techniques are 

needed to protect sensitive/vulnerable devices. These techniques could be Triple 

modular redundancy (TMR), software EDAC schemes, and others. 

 

There are two types of ECC, namely, error detection codes and error correction codes. 

For protection against radiation, nanosatellites use error correction codes like 

Hamming, Hadamard, Repetition, Four Dimensional Parity, Golay, BCH and Reed 

Solomon codes. Using detection capabilities, correction capabilities, code rate and bit 

overhead, each EDAC scheme is evaluated. The evaluation of Hamming codes is 

shown in Table 6-1. Nanosatellites in SSO LEO of around 550 km, experience on 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

91  

average +/- 97 SEU bit flips per day, with an average of 98.6% of all errors being SEU. 

Around 80% of all errors occur within the SAA region. 

 Table 6-1: Evaluation of Hamming code 

 

 

 

 

 

 

 

 

 

 

Hamming codes are classified as error detection and correction codes that are forward 

error correction block binary codes. These codes are based on the use of parity bits 

which allows EDAC using a generator matrix and parity check matrix. Normal Hamming 

codes make use of a syndrome decoder which ultimately allows the error to be located. 

Once located the error is corrected to its original state. Three variations of Hamming 

was designed and tested during the completion of this thesis. A short summary of these 

codes is shown in Table 6-2.  

 

 Table 6-2: Summary of developed codes 

 

 

Hamming [16, 11, 4]2 was then converted to gate level and optimised from a resource 

approach and timing approach. The results of the optimised code are shown in Table 

6-3. With the Hamming code design complete, hardware tests were considered. The 

international JEDEC standards are recommended when conducting a proton 

(JESD234) and heavy ion tests (JESD57A). These standards ensure reliable and 

accurate test results. iTemba lab in Cape Town house an accelerator capable of proton 

(up to 200 MeV) and heavy ion testing. In order to conduct SEE tests at a facility like 

iTemba lab, detailed and extensive planning is necessary. This planning and actual 

Schemes (n, k, Dmin) Ed Ec 
Code rate 

(%) 
Bit 

overhead 

Hamming 

7 4 3 1 1 57,14% 75,00% 

15 11 3 1 1 73,33% 36,36% 

31 26 3 1 1 83,87% 19,23% 

63 57 3 1 1 90,48% 10,53% 

Extended Hamming 

8 4 4 2 1 50,00% 100,00% 

16 11 4 2 1 68,75% 45,45% 

64 58 4 2 1 90,63% 10,34% 

1024 1017 4 2 1 99,32% 0,69% 

Hamming 
scheme 

Variation Approach Capabilities Improvements 
Matlab 
model 

VHDL 
model 

Hamming 
[7,4,3]2 

Original Systematic SECSED None Yes Yes 

Hamming 
[8,4,4]2 

Extended 
Non - 

Systematic 
SECDED 

Hamming 
distance 

Yes No 

Hamming 
[16,11,4]2 

Extended 
Non - 

Systematic 
SECDED 

Hamming 
distance, 

overhead and 
code rate 

Yes Yes 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

92  

testing are done by both the ion beam operators and satellite engineers. This ensures 

cost and time is kept minimal. 

 

Table 6-3: Original VS optimised Hamming compression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Outcomes 

During the course of this thesis, an in-depth radiation study of ZA cube 2’s space 

environment is conducted. This provides insight into the environment to which the 

satellite will be exposed to during orbit. It also provides insight which will allow accurate 

testing should accelerator tests with protons and heavy ion be conducted.  

 

A detailed look at different EDAC schemes, together with a code comparison study 

was conducted. This study provides the reader with a good understanding of all 

common EDAC schemes, which is extremely useful should different EDAC capabilities 

be needed. 

 

Hamming code was extensively studied and implemented using different approaches, 

languages and software. The final version of the Hamming code was Hamming [16, 

11, 4]2. This code allows SECDED. Using only 12 ALM the code is extremely small, 

Hamming [16,11,4]2 

Description 
Original 

Resource 
reduction 

Timing 
reduction 

R
e
s
o

u
rc

e
 s

u
m

m
a
ry

 

ALM 12 12 12 

ALUT 13 13 13 

7- input 0 0 0 

6- input 7 2 7 

5- input 0 0 0 

4- input 0 0 0 

≤ 3- input 6 22 6 

Dedicated logic 
registers 

24 24 24 

I/O pins 27 27 27 

Max fan-out 24 24 24 

Total fan-out 165 145 165 

Average fan-out 1.81 1.59 1.81 

T
im

in
g

 a
n

a
ly

s
is

 Clock period 1 ns 2.25 ns 1.8 ns 

From node Datain_s[5] Datain_s[2] Datain_s[8] 

To node Dataout_s[10]~reg0 Dataout[1]~reg0 Dataout[8]~reg0 

Data arrival time 5.624 ns 5.987 ns 5.394 ns 

Data required time 4.827 ns 6.076 ns 5.491 ns 

Slack -0.797 ns (violation) 0.089 ns 0.097 ns 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

93  

meaning the selected FPGA will consume a minimal amount of power. By optimising 

the resource usage the average fan-out can be reduced from 1.81 to 1.59 and runs on 

a period of 1.8 ns with no violation and an arrival time of 5.987 ns. When optimised 

from a timing perspective the code can be optimised to run off a clock period of 1.8, 

with no violations and an arrival time of 5.394 ns.  

 

Due to Hamming [16, 11, 4]2 resource usage of the original code already being so 

small, the timing optimisation approach is recommended, as it is 0.593 ns faster. This 

implies that a Hamming code was developed capable of protecting 11 bits of 

information against SEU and capable of DED. The code is capable of reading and 

writing to memory within 5.394 ns using only 12 ALMs and 24 registers. 

 

The field of nanosatellites is constantly evolving and growing at an astonishing pace! 

This is due to the fact that it provides a platform from which the boundaries of space 

and technology are constantly being pushed. As technology advances memory chip 

cell architecture is becoming more and more dense, especially with the development 

of nanotechnology. This creates a growing demand for more advanced and reliable 

EDAC systems that are capable of protecting all memory aspects of satellites. The 

code developed in this thesis may not have the best capabilities but it can guarantee 

SECDED at fast speeds. 

 Recommendations   

During the completion of this thesis, a few aspects were identified that could be 

improved or further developed. These aspects are highlighted in the sections to follow. 

 Investigate hybrid designs – Hamming plus TMR 

It has been shown and proven in this thesis that Hamming code is an effective EDAC 

scheme for single error correction and double error detection. The code itself can be 

implemented from a software approach (in the actual code of the satellites OS) or from 

a hardware approach (by adding an external FPGA). In both cases, implementation is 

relatively easy and additional delays and power demands are low when compared to 

other EDAC schemes. Under normal conditions in LEO, Hamming code is sufficient for 

dealing with SEE, however when traversing through the SAA, multiple bit flips (+/- 

0.08% chance of occurrence) and double byte errors (+/- 1.21% chance of occurrence) 

are possible. In these cases, a hybrid of Hamming code could prove more effective. 

For example, a Hamming (SECDED) code implemented in a TMR (MECMED) manner 

could be a viable option for satellites in LEO. Further research into these hybrid 

Hamming systems and their implementation is recommended and needed. 



 

Hillier, C. & Balyan, V., 2019. Error Detection And Correction On-Board Nanosatellites Using Hamming Codes. Journal of 
Electrical and Computer Engineering. [Accepted] 

94  

 Real data of SEE recorded on board the ZA-cube 2 

Using ZA-cube 2 as a case study during this thesis, gave the work a real problem to 

solve and relate to. It is recommended that if possible, RAM on board the ZA-cube 2 

be monitored and all SEE be recorded. This will provide a huge amount of information 

with regards to SEE probability, the rate of occurrence, amount of bits affected and 

generating an accurate test matrix. This will allow the correct EDAC scheme to be 

selected for the specific orbit. Should an EDAC already be implemented onboard, its 

performance can be monitored and even improved depending on the type of FPGA 

used. 

 Conduct hardware test according to JEDEC standards 

Before an EDAC is implemented on board a nanosatellite, the engineers and invested 

parties need to be convinced of its performance and capabilities. Using the JEDAC 

standards while conducting protons and heavy ion tests, ensure the data obtained is 

both accurate and reliable. Results of such tests are essential should the developed 

device be commercialised after gaining flight history. 

 Implement Hamming code on an anti-fused based FPGA 

The Hamming code designed in this paper has been tested and complied for a Cyclone 

V: DE1-SoC FPGA. This thesis establishes the size and resources needed to 

implement an effective Hamming code. Using this information, a suitable FPGA should 

be selected that meets all design specification of the nanosatellite and the code. Due 

to the properties of an anti-fused based FPGA, it is recommended that the tested code 

be implemented on a suitable anti-fused based FPGA. In an article published by The 

Journal of Military Electronics and Computing, the following was stated: “Further, 

radiation-tolerant anti-fuse FPGAs offer the following additional benefits: reduced 

weight and board space due to decrease in devices required; ease of implementation 

with no configuration components; the lowest FPGA power consumption; high 

reliability; and availability of medium-to-high-density solutions” (O’Neill 2003). 

 

Once this is done and all JEDEC standards are met, the EDAC system can be 

implemented, launched and tested on board a nanosatellite and tested while in orbit. 

 

 

  



 

95  

REFERENCES 

 

Ahmad, S. et al., 2013. Comparison of EDAC Schemes for DDR Memory in Space 

Applications. International Conference on Aerospace Science & Engineering (ICASE), 

pp.1–5. 

Bensusen, S. et al., 2013. Hyperwall Heliophysics and Space Weather. 

Bentoutou, Y., 2012. A Real Time EDAC System for Applications Onboard Earth Observation 

Small Satellites. IEEE transaction on aerospave and electrionic systems, 48(1), pp.648-

657. 

Bilal, Y., Khan, S.A. & Khan, Z.A., 2013. A Refined Four-Dimensional Parity Based EDAC and 

Performance Analysis Using FPGA. International Conference on Open Source Systems 

and Technologies (ICOSST), pp.81–86. 

Chitode, J. S., 2009. Digital Communication Second, Technical Publication Pune. 

Choi, C.Q., 2011. Software Glitch Blamed for Turning Satellite Into Space Zombie. 

Cornell, J.C., Conradie, J.L. & Fourie, D.T., 1992. Beamlines for a Second Injector Cyclotron 

at NAC. 13th International Conference on Cyclotrons and their Applications, pp.621–624. 

CPUT, F., 2017. ZACUBE-1 - French South African Institute of Technology. 

CPUT, F., 2016. ZACUBE-2 - French South African Institute of Technology. 

D. Heynderickx, 2002. Review on modelling of the radiation belts. Matter, anti-matter and dark 

matter, pp.87–96. 

ECSS, 2008. Space engineering - ECSS-E-ST-10-12C, (November). 

Gil, P. et al., 2014. Modified Hamming Codes to Enhance Short Burst Error Detection in 

Semiconductor Memories. 2014 Tenth European Dependable Computing Conference, 

pp.62–65. 

Gschwind, M. & Salapura, V., 2014. Optimizing VHDL code for FPGA targets, pp.1–13. 

Halbert, 2006. Single Event Effects. 

Hamming, R.W., 1950. Error Detecting and Error Correcting codes. The Bell System Technical 

Journal, XXIX(2). 

Holbert, K.E., 2007. Space Radiation Environmental Effects. 

Hosamani, R. & Karne, A.S., 2014. Design and Implementation of Hamming Code on FPGA 

using Verilog. International Journal of Engineering and Advanced Technology (IJEAT), 

4(2), pp.180–184. 

Intel, 2018. Stratix Series FPGA Fracturable Look-Up Table Logic Structure. 

IThemba, Cyclotron Parameters. 

James Ziegler, 2013. James Ziegler - SRIM & TRIM. 

JEDEC, 2017. Test Procedures for the Measurement of Single-Event Effects in Semiconductor 

Devices from Heavy Ion Irradiation, JEDEC Solid State Technology Association 2017. 

 



 

96  

JEDEC, 2013. Test standard for the measurement of proton radiation single event effects in 

electronic devices, JEDEC Solid State Technology Association 2013. 

Jindal, V., 2006. Design of Hamming code using Verilog HDL. Electronics for you, (February), 

pp.94–96. 

Kanemasu, M., 1999. Golay Codes. MIT Undergraduate Journal of Mathematics, pp.95–100. 

Keith Campbell, 2012. Engineering News - Sumbandila provided lessons for next SA satellite. 

Creamer Media’s. 

Langford, M., 2014. Space Radiation Analysis Group - NASA, JSC. NASA, JSC. 

Maki, A., 2009. 2-1-5 Space Radiation Effect on Satellites. Journal of the National Institute of 

Information and Communications Technology, 56(1-4), pp.49–55. 

Malek, M., Coding Theory Hadamard Codes. California State University, East Bay, pp.1–8. 

Metra, C., Riccb, B. & Bologna, U., 1995. Novel Berger Code Checker, pp.287–295. 

Miller, I., 2012. Geomagnetics 2012 - The Sedona effect. Sedonanomalies.  

Morgan, S.P., 1998. Richard Wesley Hamming (1915 - 1998). Notices of the AMS, 45(8), 

pp.972 – 977. 

NASA/SP, 2012. NASA Thesaurus Volume 1 - Hierarchical Listing With Definitions. National 

Aeronautics and Space Administration, 1, p.879. 

O’Neill, K., 2003. Antifuse FPGA Technology Best Option for Satellite Applications. The 

Journal of Military Electronics and Computing, December. 

Odenwald, S.F., 2001. The 23rd Cycle: Learning to Live with a Stormy Star, New york: 

Columbia University Press. 

Parvathi, P., 2015. FPGA based design and implementation of Reed-Solomon encoder & 

decoder for Error Detection and Correction. Conference on Power, Control, 

Communication and Computational Technologies for Sustainable Growth (PCCCTSG), 

pp.261–266. 

Poolakkaparambil, M. et al., 2011. BCH Code Based Multiple Bit Error Correction in Finite Field 

Multiplier Circuits. IEEE - International Symposium on Quality Electronic Design (ISQED), 

(12th), pp.615–621. 

Ramabadran, T. V., 1990. A Coding Scheme for rn-out-of-n Codes. IEEE Transactions on 

communications, 38(8), pp.1156–1163. 

Reshmi, R., Joseph, S. & Praveen, U.K., 2015. EDAC by Using Orthogonal Codes. 

International Journal of Advanced Research in Electronics and Communication 

Engineering (IJARECE), 4(3), pp.632–635. 

Road, H., 2015. FPGA implementation of 4d-parity based data coding technique. IJRET: 

International Journal of Research in Engineering and Technology, 4(3), pp.593–598. 

Saxena, N.R. & McCluskey, E.J., 1990. Analysis of checksums, extended-precision 

checksums, and cyclic redundancy checks. IEEE Computer Society, 39(7), pp.969–975. 

 



 

97  

Singh, N.P. et al., 2013. RAM error detection & correction using HVD Implementation. 

European Scientific Journal, 9(33), pp.424–435. 

System Tool Kit (STK), 2017. STK - Ionizing Radiation from the South Atlantic Anomaly (SAA) 

Using STK SEET. 

Tawar, V. & Gupta, R., 2015. A 4-Dimensional Parity based Data Decoding Scheme for EDAC 

in Communication Systems. International Journal for Research in Applied Science & 

Engineering Technology (IJRASET), 3(Iv), pp.183–191. 

Villiers, D. De & Zyl, R. Van, ZACube-2 : The successor to Africa’s first nanosatellite.  

Wall, J. & Macdonald, A., 1993. NASA ASIC Guide Title Page. Jet Propulsion Laboratory 

California Institute of Technology and National Aeronautics and Space Administration.  

Wallmark, J.T. & Marcus, S.M., 1962. Minimum Size and Maximum Packing Density 

Nonredundant Semiconductor Devices *. Proceedings of the IRE, 50(3), pp.286–298. 

Zell, H., 2013. Radiation Belts with Satellites - NASA. National Aeronautics and Space 

Administration. 

Zell, H., 2015. Van Allen Probes Mission Overview - NASA. National Aeronautics and Space 

Administration. 

 

 



 

 
98  

APPENDICES 

 Simulink model of Hamming [7, 4, 3] (proof of concept) 

 

 



 

 
99  

 Matlab code for Hamming [16, 11, 4]2 

% Caleb Hillier 
% 213183552 
% Thesis matlab simulation 
% Simple hamming code [16,11] for SECDED 

  
clear all; close all; clc 

  
% Generate the parity check matrix H, the generator matrix G, the codeword 
% length n, and the message length k for the Hamming code with m = 4 
[H,G,n,k] = hammgen(4) 

  
% Add a parity column to generator matrix G 
G = [mod(sum(G,2),2) G]        % sums up each row, finds the remainder and  
                               % concatenates it to the from of G 
% Converts generator matrix G to non-systematic  
G = [G(:,1) G(:,2) G(:,6) G(:,4) G(:,7) G(:,8) G(:,9) G(:,3) G(:,10) 

G(:,11) G(:,12) G(:,13) G(:,14) G(:,15) G(:,16) G(:,5)] 

  
% Add a parity column and a row of ones to parity check matrix H  
H = [H mod(sum(H,2),2); ones(1,16)] 
% Converts parity check matrix H to non-systematic 
H = [H(:,1) H(:,2) H(:,6) H(:,4) H(:,7) H(:,8) H(:,9) H(:,3) H(:,10)         

H(:,11) H(:,12) H(:,13) H(:,14) H(:,15) H(:,16) H(:,5)] 
% Transposes parity check matrix H 
H = H' 

  
% INPUT - users choice% 
msg = [ 0 0 0 0 0 0 0 0 0 0 0] %Message block vector-change to any 4 bit 

sequence 

  
% Set-up parameters already generated by hammgen(4) 
%k = 4;                         %# of message bits per block 
%r = 4;                         %# of parity bits per block 
%n = k + r;                     %# of codeword bits per block 
n = 16 

  
% ENCODER % 
code = mod(msg*G,2)             %Encode message - generates codeword 

  
% ERROR INJECTOR - INTRODUCING AN ERROR (add one error to code)% 
%code(1)= ~code(1); 
%code(2)= ~code(2); 
%code(3)= ~code(3); 
%code(4)= ~code(4);              %Pick one, comment out others 
%code(5)= ~code(5); 
%code(6)= ~code(6); 
%code(7)= ~code(7); 
%code(8)= ~code(8); 
%code(9)= ~code(9); 
%code(10)= ~code(10); 
%code(11)= ~code(11); 
%code(12)= ~code(12);            %Pick one, comment out others 
%code(13)= ~code(13); 
%code(14)= ~code(14); 
%code(15)= ~code(15); 
%code(16)= ~code(16); 
recd = code                      %Received codeword with error 

  
% DECODER% 



 

 
100  

syndrome = mod(recd * H,2)       %Syndrome = remainder of ((message with  
                                 %error * Parity-check matrix)/2) 
                                 %Returns the remainder after division 
                                 %Result always positive as devisor is  
                                 %positive 

  
% CHECKS FOR NO ERRORS % 
if syndrome == [0 0 0 0 0] 
    disp('There are no errors in the received codeword'); 
else 

     
% CHECKS FOR DOUBLE ERRORS % 
syndrome_dec = bin2dec(num2str(syndrome)) 
if mod(syndrome_dec,2) == 0     %A Double error has occurred if syndrome  
                                %is even 
    disp('Two errors have been detected in the received code word'); 
else 

     
% DETECTION AND CORRECTION OF SINGLE BIT ERRORS %     
%Find position of the error in codeword (index) 
%index = 100; 
find = 0;                       %Initialise variable 
for ii = 1:n                    %Run if statement for full length of code  
                                %word 
    if ~find                    %Run loop till find = 1 
        errvect = zeros(1,n);   %Create vector containing only zeros same 
                                %size as code word   
        errvect(ii) = 1;        %Please 1 in position being tested 
        search = mod(errvect * H,2);   %Search = remainder of ((test  
                                        %vector * Parity-check matrix)/2) 
                                        %Returns the remainder after  
                                        %division 
        if search == syndrome  %Run if loop if search and syndrome vector 
                               %are the same 
            find = 1;          %Set find to 1 to exit previous if statement 
            index = ii;        %Stores position of error in variable index 
        end     %Exit if loop 
    end     %Exit if loop 
end     %Exit for loop 

  
%Display position of error 
disp(['Position of error in codeword = ',num2str(index)]); 
correctedcode = recd; 
correctedcode(index) = mod(recd(index)+1,2);%Corrected codeword 

  
%Strip off parity bits 
msg_decoded = correctedcode; 
a = msg_decoded(3); 
b = msg_decoded(5:7); 
c = msg_decoded(9:15); 
msg_decoded = cat(2,a,b,c) end end 

  



 

 
101  

DECODER 

 

For-loop 

 

If statement 

 

Use syndrome decoding: 

Syndrome = mod-2 (codeword* H') 

Run for the full length of codeword 

Check for any errors by generating a   

“search syndrome” for each position in 

codeword 

 

If statement 

 

Compares syndrome and “search 

syndrome”. When equal, the error is found 

and the program exits the loop 

 

INPUT 

 

 

 

Define all parameters 

 Message bits (k) 

 Parity bits (r) 

 Codeword bits (n) 

 Generator matrix (G) 

 Parity-check matrix (H) 

Start a new Matlab scripted file 

(.m) 

Input message (msg) 

Use hammgen toolbox 

to generate and check 

parameters 

OUTPUT 

 

Invert the bit at the found location 

Extract message bits from codeword, print 

to screen location of error and    the error 

free message  

 

ERROR INJECTOR 

 

Simply invert or flip selected bit or   bits 

User injected error 

ENCODER 

 

 

Generate parity bits for msg 

Generate codeword: 

Codeword = mod-2 (msg * G) 

 Explanation and code flow of Hamming [16, 11, 4]2 in Matlab 

 

 

 

 

  



 

 
102  

MAIN.VHD 

 

Open a new VHDL file (.vhd) 

in Quartus 

IF statement 

 

Else IF 

Checks for errors using syndrome 

Checks for double bit errors using the added 

parity bit or syndrome (3) 

 
Else – Case statement 

 
Searches syndrome value. When equal, the 

error is found and the identified bit is flip to 

original state  

ERROR INJECTOR  
 

 

 

INPUT 

 

 

 

ENCODER.VHD 

 

 

OUTPUT 

 

Define all variables 

 Data in (input msg - k) 

 Data out (output msg - k) 

 No error (NE) 

 Double error detected(DED) 

 Single error correction (SEC) 

Input data (msg) 

Encoder.vhd 

Decoder.vhd 

 

ModelSim  

User injected error  

Simply invert or flip 

selected bit or bits 
 

Define generator matrix and signals 

Generate codeword: 

Codeword = mod-2 (msg * G) 

 

Define all components  
 

Call and port map components: 
 

Msg * G => 

AND Gate 

Mod-2 => 

XOR Gate 

 

Return an error free msg or raise an error 

flag 

 
Output the following variables: 

 Data out (output msg - k) 

 No error (NE) 

 Double error detected(DED) 

 Single error correction (SEC) 

 

Extract message bits from codeword 

Define parity-check matrix and signals 

Use syndrome decoding: 

Syndrome = mod-2 (Codeword * H) 

 

Codeword * H => AND 

Gate 

Mod-2 => XOR Gate 

 

 

DECODER.VHD 

 

 Explanation and code flow of Hamming [16, 11, 4]2 in VHDL 

 

  



 

 
103  

 VHDL code for Hamming [16, 11, 4]2 – main 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

use ieee.std_logic_unsigned.all; 

 

entity hamming_11_16_main is 

  port ( 

    clk : in std_logic; 

  clr : in std_logic; 

  datain: in std_logic_vector (0 to 10); 

     dataout : out std_logic_vector(0 to 10); 

  NE  : out std_logic; 

      DED : out std_logic; 

      SEC : out std_logic); 

end hamming_11_16_main; 

 

ARCHITECTURE beh OF hamming_11_16_main IS 

 

component hammen16 is 

  port ( 

  endatain: in std_logic_vector (0 to 10); 

      endataout : out std_logic_vector(0 to 15)); 

end component; 

 

component hammde16 is 

  port ( 

    dedatain: in std_logic_vector (0 to 15); 

    demsgout : out std_logic_vector(0 to 10); 

    NE  : out std_logic; 

    DED : out std_logic; 

    SEC : out std_logic); 

end component; 

 

signal data_to_memory: STD_LOGIC_VECTOR(0 to 15):= "0000000000000000"; 

signal dedatain_S: std_logic_vector (0 to 10):= "00000000000"; 

signal demsgout_S : std_logic_vector(0 to 10):= "00000000000"; 

signal NE_S  : std_logic:= '0'; 

signal DED_S : std_logic:= '0'; 

signal SEC_S : std_logic:= '0'; 

 

BEGIN 

 

 Encoded: hammen16 port map(dedatain_S,data_to_memory); 

 Decoded: hammde16 port map( data_to_memory, demsgout_S, NE_S,         

DED_S, SEC_S); 

 

 process( clk, clr, data_to_memory) 

 begin 



 

 
104  

  if (clr = '0') then 

   dataout <= "00000000000"; 

   NE  <= '0'; 

   DED <= '0'; 

   SEC <= '0'; 

  else if (rising_edge(clk)) then 

   

   dedatain_S <= datain; 

   dataout <= demsgout_S; 

   NE <= NE_S; 

   DED <= DED_S; 

   SEC <= SEC_S; 

   

  end if; 

  end if; 

 end process; 

END beh; 

 VHDL code for Hamming [16, 11, 4]2 - encoder 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

use ieee.std_logic_unsigned.all; 

 

entity hammen16 is 

  port ( 

  endatain: in std_logic_vector (0 to 10); 

      endataout : out std_logic_vector(0 to 15)); 

end hammen16; 

 

ARCHITECTURE beh OF hammen16 IS 

 

  Constant MaskP1  : std_logic_vector(0 to 10) := "11101100101"; 

  Constant MaskP2  : std_logic_vector(0 to 10) := "10011010111"; 

  Constant MaskP3  : std_logic_vector(0 to 10) := "10000000000"; 

  Constant MaskP4  : std_logic_vector(0 to 10) := "01101011110"; 

  Constant MaskP5  : std_logic_vector(0 to 10) := "01000000000"; 

  Constant MaskP6  : std_logic_vector(0 to 10) := "00100000000"; 

  Constant MaskP7  : std_logic_vector(0 to 10) := "00010000000"; 

  Constant MaskP8  : std_logic_vector(0 to 10) := "11010111100"; 

  Constant MaskP9  : std_logic_vector(0 to 10) := "00001000000"; 

  Constant MaskP10 : std_logic_vector(0 to 10) := "00000100000"; 

  Constant MaskP11 : std_logic_vector(0 to 10) := "00000010000"; 

  Constant MaskP12 : std_logic_vector(0 to 10) := "00000001000"; 

  Constant MaskP13 : std_logic_vector(0 to 10) := "00000000100"; 

  Constant MaskP14 : std_logic_vector(0 to 10) := "00000000010"; 

  Constant MaskP15 : std_logic_vector(0 to 10) := "00000000001"; 

  Constant MaskP16 : std_logic_vector(0 to 10) := "00110101111"; 

      



 

 
105  

  signal din1, din2, din3, din4, din5, din6, din7, din8 : std_logic_vector(0 to 10):=   

"00000000000"; --to hold datain AND maskp 

  signal din9, din10, din11, din12, din13, din14, din15, din16 : std_logic_vector(0 to 

10):= "00000000000"; --to hold datain AND maskp 

 

BEGIN 

  

 -- din = datain * MaskP1 

 din1 <= endatain AND MaskP1; 

 din2 <= endatain AND MaskP2; 

 din3 <= endatain AND MaskP3; 

 din4 <= endatain AND MaskP4; 

 din5 <= endatain AND MaskP5; 

 din6 <= endatain AND MaskP6; 

 din7 <= endatain AND MaskP7; 

 din8 <= endatain AND MaskP8; 

 din9 <= endatain AND MaskP9; 

 din10 <= endatain AND MaskP10; 

 din11 <= endatain AND MaskP11; 

 din12 <= endatain AND MaskP12; 

 din13 <= endatain AND MaskP13; 

 din14 <= endatain AND MaskP14; 

 din15 <= endatain AND MaskP15; 

 din16 <= endatain AND MaskP16; 

  

  -- Generate encoded message:   [p1 p2  d1 p4 d2 d3 d4 p8] 

  endataout(0)  <= din1(0) XOR din1(1) XOR din1(2) XOR din1(3) XOR din1(4) XOR   

din1(5) XOR din1(6) XOR din1(7) XOR din1(8) XOR din1(9) XOR din1(10); 

  endataout(1)  <= din2(0) XOR din2(1) XOR din2(2) XOR din2(3) XOR din2(4) XOR  

din2(5) XOR din2(6) XOR din2(7) XOR din2(8) XOR din2(9) XOR din2(10); 

endataout(2)  <= din3(0) XOR din3(1) XOR din3(2) XOR din3(3) XOR din3(4) XOR  

din3(5) XOR din3(6) XOR din3(7) XOR din3(8) XOR din3(9) XOR din3(10); 

  endataout(3)  <= din4(0) XOR din4(1) XOR din4(2) XOR din4(3) XOR din4(4) XOR  

din4(5) XOR din4(6) XOR din4(7) XOR din4(8) XOR din4(9) XOR din4(10); 

  endataout(4)  <= din5(0) XOR din5(1) XOR din5(2) XOR din5(3) XOR din5(4) XOR  

din5(5) XOR din5(6) XOR din5(7) XOR din5(8) XOR din5(9) XOR din5(10); 

  endataout(5)  <= din6(0) XOR din6(1) XOR din6(2) XOR din6(3) XOR din6(4) XOR  

din6(5) XOR din6(6) XOR din6(7) XOR din6(8) XOR din6(9) XOR din6(10); 

  endataout(6)  <= din7(0) XOR din7(1) XOR din7(2) XOR din7(3) XOR din7(4) XOR  

din7(5) XOR din7(6) XOR din7(7) XOR din7(8) XOR din7(9) XOR din7(10); 

endataout(7)  <= din8(0) XOR din8(1) XOR din8(2) XOR din8(3) XOR din8(4) XOR  

din8(5) XOR din8(6) XOR din8(7) XOR din8(8) XOR din8(9) XOR din8(10); 

  endataout(8)  <= din9(0) XOR din9(1) XOR din9(2) XOR din9(3) XOR din9(4) XOR  

din9(5) XOR din9(6) XOR din9(7) XOR din9(8) XOR din9(9) XOR din9(10); 

  endataout(9)  <= din10(0) XOR din10(1) XOR din10(2) XOR din10(3) XOR din10(4)  

XOR din10(5) XOR din10(6) XOR din10(7) XOR din10(8) XOR din10(9) XOR 

din10(10); 

endataout(10) <= din11(0) XOR din11(1) XOR din11(2) XOR din11(3) XOR din11(4)  

XOR din11(5) XOR din11(6) XOR din11(7) XOR din11(8) XOR din11(9) XOR  



 

 
106  

din11(10); 

  endataout(11) <= din12(0) XOR din12(1) XOR din12(2) XOR din12(3) XOR din12(4)  

XOR din12(5) XOR din12(6) XOR din12(7) XOR din12(8) XOR din12(9) XOR  

din12(10);   

  endataout(12) <= din13(0) XOR din13(1) XOR din13(2) XOR din13(3) XOR din13(4)  

XOR din13(5) XOR din13(6) XOR din13(7) XOR din13(8) XOR din13(9) XOR  

din13(10); 

endataout(13) <= din14(0) XOR din14(1) XOR din14(2) XOR din14(3) XOR din14(4)  

XOR din14(5) XOR din14(6) XOR din14(7) XOR din14(8) XOR din14(9) XOR 

din14(10); 

endataout(14) <= din15(0) XOR din15(1) XOR din15(2) XOR din15(3) XOR din15(4)  

XOR din15(5) XOR din15(6) XOR din15(7) XOR din15(8) XOR din15(9) XOR 

din15(10); 

  endataout(15) <= din16(0) XOR din16(1) XOR din16(2) XOR din16(3) XOR din16(4)  

XOR din16(5) XOR din16(6) XOR din16(7) XOR din16(8) XOR din16(9) XOR 

din16(10);    

 

END beh; 

 VHDL code for Hamming [16, 11, 4]2 – decoder 

library ieee; 

use     ieee.std_logic_1164.all; 

 

entity hammde16 is 

  port ( 

    dedatain: in std_logic_vector (0 to 15); 

    demsgout : out std_logic_vector(0 to 10); 

    NE  : out std_logic; 

    DED : out std_logic; 

    SEC : out std_logic); 

end hammde16; 

 

architecture beh of hammde16 is 

 

  Constant MaskP1 : std_logic_vector(0 to 15) := "1000011001011101"; 

  Constant MaskP2 : std_logic_vector(0 to 15) := "0110010011110001"; 

  Constant MaskP3 : std_logic_vector(0 to 15) := "0010101101111000"; 

  Constant MaskP4 : std_logic_vector(0 to 15) := "0001110010111100"; 

  Constant MaskP5 : std_logic_vector(0 to 15) := "1111111111111111"; 

 

  signal dedataout : std_logic_vector(0 to 15):= "0000000000000000"; 

  signal synd : std_logic_vector(0 to 4):= "00000"; 

  signal din1, din2, din3, din4, din5: std_logic_vector(0 to 15):= "0000000000000000";   

--to hold dedatain AND maskp 

   

  begin 

 

  din1 <= dedatain AND MaskP1; 

  din2 <= dedatain AND MaskP2; 



 

 
107  

  din3 <= dedatain AND MaskP3; 

  din4 <= dedatain AND MaskP4; 

  din5 <= dedatain AND MaskP5; 

   

  synd(0) <= din1(0) XOR din1(1) XOR din1(2) XOR din1(3) XOR  

   din1(4) XOR din1(5) XOR din1(6) XOR din1(7) XOR 

   din1(8) XOR din1(9) XOR din1(10) XOR din1(11) XOR  

   din1(12) XOR din1(13) XOR din1(14) XOR din1(15); 

 

  synd(1) <= din2(0) XOR din2(1) XOR din2(2) XOR din2(3) XOR 

             din2(4) XOR din2(5) XOR din2(6) XOR din2(7) XOR 

   din2(8) XOR din2(9) XOR din2(10) XOR din2(11) XOR 

             din2(12) XOR din2(13) XOR din2(14) XOR din2(15); 

 

  synd(2) <= din3(0) XOR din3(1) XOR din3(2) XOR din3(3) XOR 

             din3(4) XOR din3(5) XOR din3(6) XOR din3(7) XOR 

   din3(8) XOR din3(9) XOR din3(10) XOR din3(11) XOR 

             din3(12) XOR din3(13) XOR din3(14) XOR din3(15); 

 

  synd(3) <= din4(0) XOR din4(1) XOR din4(2) XOR din4(3) XOR 

             din4(4) XOR din4(5) XOR din4(6) XOR din4(7) XOR 

   din4(8) XOR din4(9) XOR din4(10) XOR din4(11) XOR 

             din4(12) XOR din4(13) XOR din4(14) XOR din4(15); 

      

  synd(4) <= din5(0) XOR din5(1) XOR din5(2) XOR din5(3) XOR 

             din5(4) XOR din5(5) XOR din5(6) XOR din5(7) XOR 

  din5(8) XOR din5(9) XOR din5(10) XOR din5(11) XOR 

             din5(12) XOR din5(13) XOR din5(14) XOR din5(15); 

 

  process(dedatain, synd, dedataout) 

  begin 

    NE <= '0'; 

    DED <= '0'; 

    SEC <= '0'; 

    dedataout <= dedatain; 

 

    if (synd = "00000") then 

     dedataout <= dedatain; 

             NE <= '1'; 

               elsif (synd(4) = '0') then 

  DED <= '1'; 

  dedataout <= "0000000000000000"; 

  else  

    

          SEC <= '1'; 

          case synd is  

     

when "10001" => dedataout(0) <= NOT dedatain(0);  --position 0 

 when "01001" => dedataout(1) <= NOT dedatain(1);  --position 1 



 

 
108  

 when "01101" => dedataout(2) <= NOT dedatain(2);  --position 2 

 when "00011" => dedataout(3) <= NOT dedatain(3);  --position 3 

 when "00111" => dedataout(4) <= NOT dedatain(4);  --position 4 

 when "11011" => dedataout(5) <= NOT dedatain(5);  --position 5 

 when "10101" => dedataout(6) <= NOT dedatain(6);  --position 6 

when "00101" => dedataout(7) <= NOT dedatain(7);  --position 8 

 when "01011" => dedataout(8) <= NOT dedatain(8);  --position 8 

 when "11101" => dedataout(9) <= NOT dedatain(9);  --position 9 

  when "01111" => dedataout(10) <= NOT dedatain(10); --position 10 

 when "11111" => dedataout(11) <= NOT dedatain(11); --position 11 

 when "10111" => dedataout(12) <= NOT dedatain(12); --position 12 

 when "10011" => dedataout(13) <= NOT dedatain(13); --position 13 

when "00001" => dedataout(14) <= NOT dedatain(14); --position 14 

 when "11001" => dedataout(15) <= NOT dedatain(15); --position 15 

            when others => dedataout <= dedatain; 

 

        end case; 

end if; 

   

demsgout <= dedataout(2) & dedataout(4 to 6) & dedataout(8 to 14); 

 

end process; 

end beh; 

 Gate level VHDL code for Hamming [16, 11, 4]2 – encoder 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

use ieee.std_logic_unsigned.all; 

 

entity hammen16 is 

  port ( 

 endatain: in std_logic_vector (0 to 10); 

     endataout : out std_logic_vector(0 to 15)); 

end hammen16; 

 

ARCHITECTURE beh OF hammen16 IS 

 

BEGIN 

 

  endataout(0)<= endatain(0) XOR endatain(1) XOR endatain(2) XOR endatain(4)  

   XOR endatain(5) XOR endatain(8) XOR endatain(10); 

  endataout(1)  <=  endatain(0) XOR endatain(3) XOR endatain(4) XOR endatain(6)   

   XOR endatain(8) XOR endatain(9) XOR endatain(10); 

  endataout(2)  <=  endatain(0); 

  endataout(3)  <=  endatain(1) XOR endatain(2) XOR endatain(4) XOR endatain(6) 

   XOR endatain(7) XOR endatain(8) XOR endatain(9);   

  endataout(4)  <=  endatain(1); 

  endataout(5)  <=  endatain(2);  



 

 
109  

  endataout(6)  <=  endatain(3); 

   

endataout(7)  <=  endatain(0) XOR endatain(1) XOR endatain(3) XOR endatain(5) 

    XOR endatain(6) XOR endatain(7) XOR endatain(8); 

  endataout(8)  <=  endatain(4); 

  endataout(9)  <=  endatain(5); 

  endataout(10) <=  endatain(6); 

  endataout(11) <=  endatain(7);   

  endataout(12) <=  endatain(8); 

  endataout(13) <=  endatain(9); 

  endataout(14) <=  endatain(10); 

  endataout(15) <=  endatain(2) XOR endatain(3)XOR endatain(5) XOR endatain(7)  

   XOR endatain(8) XOR endatain(9) XOR endatain(10); 

END beh; 

 Gate level VHDL code for Hamming [16, 11, 4]2 – decoder 

library ieee; 

use     ieee.std_logic_1164.all; 

 

entity hammde16 is 

  port ( 

    dedatain: in std_logic_vector (0 to 15); 

    demsgout : out std_logic_vector(0 to 10); 

    NE  : out std_logic; 

    DED : out std_logic; 

    SEC : out std_logic); 

end hammde16; 

 

architecture beh of hammde16 is 

 

  signal dedataout : std_logic_vector(0 to 15):= "0000000000000000"; 

  signal mux : std_logic_vector(0 to 10):= "00000000000"; 

  signal synd : std_logic_vector(0 to 4):= "00000"; 

  signal noerror : std_logic := '0'; 

   

  begin 

 

  synd(0) <= dedatain(0)  XOR dedatain(5)  XOR dedatain(6)  XOR dedatain(9)  XOR  

 dedatain(11) XOR dedatain(12) XOR dedatain(13) XOR dedatain(15); 

 

  synd(1) <= dedatain(1)  XOR dedatain(2)  XOR dedatain(5)  XOR dedatain(8)  XOR  

 dedatain(9)  XOR dedatain(10) XOR dedatain(11) XOR dedatain(15); 

 

  synd(2) <= dedatain(2)  XOR dedatain(4)  XOR dedatain(6)  XOR dedatain(7)  XOR  

 dedatain(9)  XOR dedatain(10) XOR dedatain(11) XOR dedatain(12); 

 

  synd(3) <= dedatain(3)  XOR dedatain(4)  XOR dedatain(5)  XOR dedatain(8)  XOR  

 dedatain(10) XOR dedatain(11) XOR dedatain(12) XOR dedatain(13); 

      



 

 
110  

  synd(4) <= dedatain(0)  XOR dedatain(1)  XOR dedatain(2)  XOR dedatain(3)  XOR 

             dedatain(4)  XOR dedatain(5)  XOR dedatain(6)  XOR dedatain(7)  XOR 

  dedatain(8)  XOR dedatain(9)  XOR dedatain(10) XOR dedatain(11) XOR 

             dedatain(12) XOR dedatain(13) XOR dedatain(14) XOR dedatain(15); 

       

process(dedatain, synd, dedataout, mux, noerror) 

begin 

  

noerror  <= (NOT synd(0)) AND (NOT synd(1)) AND (NOT synd(2)) AND (NOT  

synd(3)) AND (NOT synd(4)); 

  

SEC <= ((NOT noerror) AND synd(4))    OR (noerror AND '0'); 

DED <= ((NOT noerror) AND (NOT synd(4))) OR (noerror AND '0'); 

   

mux(0)  <=   dedatain(2)  XOR ((NOT synd(0)) AND synd(1) AND synd(2) AND (NOT  

synd(3))); 

mux(1)  <=   dedatain(4)  XOR ((NOT synd(0)) AND (NOT synd(1)) AND synd(2)  

AND synd(3)); 

mux(2)  <=   dedatain(5)  XOR (synd(0) AND synd(1) AND (NOT synd(2)) AND  

synd(3)); 

mux(3)  <=   dedatain(6)  XOR (synd(0) AND (NOT synd(1)) AND synd(2) AND (NOT  

synd(3))) ; 

mux(4)  <=   dedatain(8)  XOR ((NOT synd(0)) AND synd(1) AND (NOT synd(2))  

AND synd(3)); 

mux(5)  <=   dedatain(9)  XOR (synd(0) AND synd(1) AND synd(2) AND (NOT  

synd(3))) ; 

mux(6)  <=   dedatain(10) XOR ((NOT synd(0)) AND synd(1) AND synd(2) AND  

synd(3)); 

mux(7)  <=   dedatain(11) XOR (synd(0) AND synd(1) AND synd(2) AND synd(3)); 

mux(8)  <=   dedatain(12) XOR (synd(0) AND (NOT synd(1)) AND synd(2) 

 AND synd(3)); 

mux(9)  <=   dedatain(13) XOR (synd(0) AND (NOT synd(1)) AND (NOT synd(2))  

AND synd(3)); 

mux(10) <=   dedatain(14) XOR ((NOT synd(0)) AND (NOT synd(1)) AND (NOT  

synd(2)) AND (NOT synd(3))); 

   

demsgout(0)  <=  (dedatain(2)  AND noerror)  OR ( ( ((synd(4)) AND mux(0))  OR (NOT synd(4)  

AND '0') ) AND (NOT noerror) );    

demsgout(1)  <=  (dedatain(4)  AND noerror)  OR ( ( ((synd(4)) AND mux(1))  OR (NOT synd(4)  

AND '0') ) AND (NOT noerror) );  

 demsgout(2)  <=  (dedatain(5)  AND noerror)  OR ( ( ((synd(4)) AND mux(2))  OR (NOT synd(4)  

AND '0') ) AND (NOT noerror) );  

 demsgout(3)  <=  (dedatain(6)  AND noerror)  OR ( ( ((synd(4)) AND mux(3))  OR (NOT synd(4)  

AND '0') ) AND (NOT noerror) );   

demsgout(4)  <=  (dedatain(8)  AND noerror)  OR ( ( ((synd(4)) AND mux(4))  OR (NOT synd(4)  

AND '0') ) AND (NOT noerror) );  

 demsgout(5)  <=  (dedatain(9)  AND noerror)  OR ( ( ((synd(4)) AND mux(5))  OR (NOT synd(4)  

AND '0') ) AND (NOT noerror) );  

 demsgout(6)  <=  (dedatain(10) AND noerror)  OR ( ( ((synd(4)) AND mux(6))  OR (NOT synd(4)  



 

 
111  

AND '0') ) AND (NOT noerror) );    

  

demsgout(7)  <=  (dedatain(11) AND noerror)  OR ( ( ((synd(4)) AND mux(7))  OR (NOT synd(4)  

AND '0') ) AND (NOT noerror) );    

 demsgout(8)  <=  (dedatain(12) AND noerror)  OR ( ( ((synd(4)) AND mux(8))  OR (NOT synd(4)  

AND '0') ) AND (NOT noerror) );   

 demsgout(9)  <=  (dedatain(13) AND noerror)  OR ( ( ((synd(4)) AND mux(9))  OR (NOT synd(4)  

AND '0') ) AND (NOT noerror) );    

 demsgout(10) <=  (dedatain(14) AND noerror) OR ( ( ((synd(4)) AND mux(10)) OR (NOT  

synd(4) AND '0') ) AND (NOT noerror) ); 

 

NE <= noerror; 

  

  end process; 

end beh; 

 VHDL code for Hamming [16, 11, 4]2 - testbench 

-------------------------------------------------------------------------------- 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

USE ieee.std_logic_unsigned.all;    -- ADD 

USE ieee.numeric_std.ALL;  

   

entity hamming_11_16_main_tb is 

end hamming_11_16_main_tb; 

   

architecture bhv of hamming_11_16_main_tb is 

  

component hamming_11_16_main is 

  port ( 

    clk : in std_logic; 

  clr : in std_logic; 

  datain: in std_logic_vector (0 to 10); 

    dataout : out std_logic_vector(0 to 10); 

  NE  : out std_logic; 

    DED : out std_logic; 

    SEC : out std_logic); 

end component; 

   

  --Inputs 

   signal clk : std_logic:= '0'; 

   signal clr : std_logic:= '0'; 

   signal datain : std_logic_vector(0 to 10):= "00000000000"; 

 

 --Outputs 

   signal dataout : std_logic_vector(0 to 10); 

   signal NE : std_logic; 

   signal DED : std_logic; 



 

 
112  

   signal SEC : std_logic; 

  

   constant clk_period : time := 2 ns; 

BEGIN 

  

   uut: hamming_11_16_main PORT MAP ( 

 clk => clk, 

 clr => clr, 

 datain => datain, 

 dataout => dataout, 

 NE => NE, 

 DED => DED, 

 SEC => SEC); 

     

   -- Clock process definitions (clock with 50% duty cycle is generated here) 

   clk_process :process 

   begin 

        clk <= '0'; 

        wait for clk_period/2;  --for 1 ns signal is '0'. 

        clk <= '1'; 

        wait for clk_period/2;  --for next 1 ns signal is '1'. 

   end process; 

 

   stim_proc: process 

   begin 

  

datain <= "11111000000"; 

 wait for 100ns; 

 

   end process; 

END 

 


