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ABSTRACT

With the constant evolution of information systems, companies have to acclimatise to the vast
increase of data flowing through their networks. Business processes rely heavily on information
technology and operate within a framework of little to no space for interruptions. Cyber attacks
aimed at interrupting business operations, false intrusion detections and leaked information
burden companies with large monetary and reputational costs. Intrusion detection systems
analyse network traffic to identify suspicious patterns that intent to compromise the system.
Classifiers (algorithms) are used to classify the data within different categories e.g. malicious or
normal network traffic. Recent surveys within intrusion detection highlight the need for improved
detection techniques and warrant further experimentation for improvement. This experimental
research project focuses on implementing swarm intelligence techniques within the intrusion
detection domain.

The Ant Tree Miner algorithm induces decision trees by using ant colony optimisation
techniques. The Ant Tree Miner poses high accuracy with efficient results. However, limited
research has been performed on this classifier in other domains such as intrusion detection.
The research provides the intrusion detection domain with a new algorithm that improves upon
results of decision trees and ant colony optimisation techniques when applied to the domain.
The research has led to valuable insights into the Ant Tree Miner classifier within a previously
unknown domain and created an intrusion detection benchmark for future researchers.

Keywords: Ant Tree Miner, intrusion detection, decision trees, machine learning, swarm
intelligence
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CHAPTER 1

INTRODUCTION

The chapter outlines an introduction to the research. Section 1.1 introduces the challenge and
motivation for the work presented in the thesis. The problem statement is provided in section
1.2. The hypothesis and research questions undertook are outlined in sections 1.2 and 1.3
respectively. The core outcome of the research is discussed in section 1.5, followed by the
research methodology in section 1.6.

1.1 Background

With the constant evolution of information systems, companies have to acclimatise to the vast
increase of data flowing through their networks. News reports bombarded with stories of
information breaches and hackers claiming ransom for company data have become the norm
the past few years (Edwards, 2016; Heater, 2016). It is clear we live in a world where data
requirements have become dynamic, and things have changed. The field of intrusion
detection, however, has not. Traditional detection methods are still favoured for commercial
products promoting a rigid, manual and static detection platform (Kumar, 2007; Hoque, Mukit,
Bikas & Sazzadul Hoque, 2012; Aghdam & Kabiri, 2016). An Intrusion Detection System (IDS)
analyses network traffic to identify suspicious patterns, with the intention to compromise the
system. We train classifiers (algorithms) to classify the data within different categories e.g.
malicious or normal network traffic. The improvement of intrusion detection classifiers is an
ongoing research area as new attacks and improved algorithms are discovered almost daily
(Agathou & Tzouramanis, 2008; Bilge & Dumitras, 2012; Aggarwal & Sharma, 2015; Burdette,
2016).

Despite research performed within the intelligent intrusion detection domains, little to none of
the research projects have found a very effective solution (Lee, Fan, Miller, Stolfo & Zadok,
2002; Sommer & Paxson, 2010; Mohammad, Sulaiman & Khalaf, 2011; Burdette, 2016). They
have, however, proved that it is possible to create intelligent intrusion detection components.
There is, however, a constant drive to find improvements. Research has demonstrated that
decision trees and random forests are among the best classifiers to use within the intrusion
detection domain (Albayati & Issac, 2015).

Ant colony optimisation although unconventional within intrusion detection, has significant
value when used to solve optimisation problems or even classify data (Lopez-lbanez, Stutzle
& Dorigo, 2017). It is clear that machine learning, the science of giving computers the
competence to adapt and learn without being explicitly programmed, could have great
potential when applied within intrusion detection domains. This experimental research project
focuses on the recent advances in machine learning, specifically the Ant Tree Miner (ATM).



The ATM classifier proposed by Otero, Freitas & Johnson (2012) allows for ant colony
optimisation to induce decision trees. The proposed classifier builds decision trees using ant
colony optimisation instead of using traditional C4.5 or CART techniques. This hybrid classifier
showed high accuracy and excellent effectiveness during initial experiments, improving upon
traditional decision tree classifiers. Decision trees, random forests and ant colony optimisation
have been a very popular research topic when applied to the intrusion detection domain.

The research improves upon flaws within previous research by extensively ensuring reliability,
comparability and reproducibility throughout the experimentation process (Sommer & Paxson,
2010; Papernot, McDaniel, Sinha & Wellman, 2016). To the best of the researchers’
knowledge, the classifier combining decision trees with ant colony optimisation has not been
tested within the intrusion detection domain. For further information, refer to the summarised
timeline 5.1 in Chapter 5. The researcher therefore proposes, based on the evidence provided
by previous research, to experiment with the Ant Tree Miner within the intrusion detection
domain (Buczak & Guven, 2016; Folino & Sabatino, 2016; Kevric, Jukic & Subasi, 2016;
Sahasrabuddhe, Naikade, Ramaswamy, Sadliwala & Futane, 2017).

1.2 Problem statement

As the influx of mischievous and malevolent activities becomes more advanced and
adaptable, intrusion detection techniques are required to perform more intelligently to
overcome more avant-garde attacks. Business processes rely on information technology and
operate within a framework with little to no space for interruptions (Wange, Sahu & Mishra,
2016; Burdette, 2016). Cyber-attacks are aimed at interrupting businesses; false intrusion
detections and leaked information burden companies with substantial costs, not just monetary
but reputational as well (Shackelford, 2016).

Despite vast amounts of research conducted within the intrusion detection domain, little to
none of the intelligent techniques used performed sufficiently reliable, efficient and accurate
for commercial inclusion (Lee et al., 2002; Sommer & Paxson, 2010; Mohammad et al., 2011;
Sahasrabuddhe et al., 2017). Recent surveys within intrusion detection recommend improved
detection techniques and warrant further experimentation for improvement (Amudhavel,
Brindha, Anantharaj, Karthikeyan, Bhuvaneswari, Vasanthi, Nivetha & Vinodha, 2016; Chahal
& Kaur, 2016; Wange et al., 2016).

The Ant Tree Miner, a recent advance in the machine learning domain, can be considered a
worthy candidate for further experimentation. The ATM combines the functionality of ant
colony optimisation and decision trees. The latter is very popular with the intrusion detection
domain (Albayati & Issac, 2015). Despite showing promising results by Otero et al. (2012), the
algorithm and similar variants have had very little application within other domains. A literature
review (table 5.1 in Chapter 5) reveals only three such applications, namely Boryczka,
Probierz & Kozak (2016) in terms of categorising e-mails, Surjandari, Dhini, Rachman &
Novita (2015) in terms of estimating the duration of dry docking, and Bursa & Lhotska (2015)
with their ACO_DTree for biomedical data, as examples.



The research gap is highlighted with the research problem timeline (table 1.1), to summarise
research performed in both the ATM and intrusion detection domains.

Table 1.1: Research problem timeline

Sommer & Paxson (2010) note that despite extensive academic research, a
2010 - - striking gap exists in terms of the deployment of machine learning techniques
within the intrusion detection domain.

Tavallaee, Stakhanova & Ghorbani (2010) provide further insights into the
2010 - - problem as they note concerns about the validity of the techniques and
procedures undertaken by researchers to solve the problem.

Otero et al. (2012) create the ATM algorithm that induces decision trees

2012 .- ) T
using ant colony optimisation.

2014 .. .. .. The ATM is extended with the bagging ensemble technique by Chennupati
(2014) as they raise concerns about the ATM’s stability.

2015 .. .. .. Surjandari et al. (2015) extent a similar classifier called Ant Colony Decision
Tree (ACDT) for estimating the duration of dry-docking.

2015 ... ... Bursa & Lhotska (2015) build the ant-inspired method called ACO_DTree over
biomedical data.

2016 - - -- Boryczka et al. (2016) show the usefulness of ACDT to classify e-mails.

Wange et al. (2016) highlight that ant colony optimisation should be
2016 - - combined with other machine learning techniques due to its threshold
determination abilities when applied within intrusion detection.

Chahal & Kaur (2016) note that misuse detection is not adequate to solve the
2016 - - - current intrusion detection problem and further development of anomaly
detection techniques is required.

Rudd, Rozsa, Gunther & Boult (2017) outline the several flawed assumptions
2017 - - inherent to machine learning algorithms that prevent mapping stealth
malware.

1.3 Hypothesis

A machine learning task undertakes the concept of a hypothesis model (Domingos, 2012). We
theorise that a hypothesis is based on statements made about reality and known facts
(Goodman, 1999), thus, the hypothesis is a particular framework, at a given point in time,
describing the correlation between variables. In machine learning a hypothesis is developed
for each machine learning model as we consider input variables (training data set) and output
variables (classification model) to predict a given outcome (Agarwal & Dhar, 2014). A test of
the hypothesis would be against the test data set from which evaluation metrics such as a
confusion matrix is derived (Agarwal & Dhar, 2014). We further discuss the role of the
confusion matrix in testing the hypothesis for each model in section 6.5.1.

The hypothesis for this research project is that the ATM classifier can be used to classify
intrusion data and compared in terms of accuracy with traditional decision tree classifiers
when applied within the intrusion detection domain.



1.4 Research questions

Each chapter of the thesis undertakes to address the stated hypothesis where a specific
research question will be answered to obtain insights into a particular topic related to the
hypothesis. The research questions pose a platform for the development of the experiments. It
is therefore necessary to consider each question not only individually, but also as part of a
holistic contribution towards the outcomes. The research questions considered in the thesis
are as follows:

Table 1.2: Research questions

Question Description Thesis relation

1 What are the current pitfalls of implementing | Chapter 2
machine learning techniques within the intrusion | Chapter 3
detection domain? Chapter 6

2 How do decision trees and ant colony optimisation | Chapter 4

techniques perform when applied within the | Chapter 6
intrusion detection domain?

3 How should intrusion detection systems be | Chapter 6
evaluated? Chapter 7
4 How does the Ant Tree Miner classifier perform | Chapter 6

when applied within the intrusion detection domain? | Chapter 7

1.5 Outcome

The research undertaken covers a broad spectrum, from intrusion detection and machine
learning to cyber security. The main focus of the research is to establish the ATM classifier for
data classification of intrusion detection data that improves, in accuracy, on the previously
used methods, thereby leading to suggesting recommendations on improving the performance
of the classifier when applied to intrusion detection data. However, the research makes
contributions towards general knowledge within other domains as well. Additionally, the
research derives a benchmark for ATM or variant algorithms within intrusion detection to be
used by future researchers.

1.6 Research methodology

The research is aimed at the computer science community with focus areas in machine
learning and cyber security. Deductive reasoning has been applied throughout. The primary
goal of the study was to create and contribute theory with regard to the ATM classifier within
the intrusion detection as well as machine learning domains. The strategic approach to the
research study has been experimental. The researcher experimented with algorithms using
the NSL-KDD data set. The data set created by Tavallaee, Bagheri, Lu & Ghorbani (2009)
improves upon the issues within the famous KDD’99 data set, used in several research
projects. The research analyses both data sets in detail in Chapter 6. The research mostly
used quantitative analysis and the choice for analysis could be considered as a mono method.
The results generated have been analysed statistically using the performance derivatives,
Receiver Operating Characteristic (ROC) analysis and cost evaluation. Cross-sectional
research design was adopted, as quantitative analysis measures have been used to measure
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the performance and accuracy of the classifier on intrusion detection data sets at a given
period. We can draw similarities between hypothesis testing and the traditional confusion
matrix used to analyse machine learning problems. It is common for a hypothesis to be
derived for each machine learning task as explained during the hypothesis statement of the
research of Agarwal & Dhar (2014). The research methodology is further discussed in Chapter
6.

1.7 Structure

The thesis is organised as follows: Chapter 2 provides a background and introduction to
intrusion detection systems, attack classification and the detection methodologies. This is
followed by a deeper review of machine learning, specifically within the intrusion detection
domain, in Chapter 3. The problems and challenges described in the previous chapter form
the focus for the intelligent classifiers introduced in Chapter 4. As the deficiencies of these
intelligent classifiers are revealed, we look into the proposed ATM classifier for improvement in
Chapter 5. Chapter 6 details the experiment to establish the classifier within the intrusion
detection domain. In the final chapters, we analyse and summarise the results in Chapter 7
and outline research challenges with suggestions for further improvement in Chapter 8.



CHAPTER 2

INTRUSION DETECTION SYSTEMS

Chapter 2 introduces the intrusion detection domain in section 2.1, and we dig deeper by
looking into the different topologies in section 2.2. Attack classification, specifically related to
the data set, is discussed on a very high level in section 2.3, and the detection thereof is
complimented in section 2.4. We place the current state and detection techniques under
scrutiny as we look into the limitations of intrusion detection systems in section 2.5.

2.1 Introduction to intrusion detection systems

Although locks, immobilisers and other security features secure most vehicles, cars are still at
risk of being stolen. We can consider a scenario where a stranger walks up to a car, inspects
the car, looks around and then moves towards the front door, trying to open it. The door is
locked. The stranger moves closer towards the window and gently tries to pry it open. The
window too is closed and leaves the stranger’s attempts unsuccessful. The vehicle is clearly
secured, so why install an alarm? The need for implementing an IDS (alarm) is often
questioned by many security architects (Khan, Gani, Wahab, Shiraz & Ahmad, 2016). Why
bother? With firewalls, patched operating systems and sound password controls within
computer environments should be secure. The answer is simple, as the facts state that with all
the controls in place, cars still get stolen. Computer environments still get penetrated, and the
amount of data harboured and transported throughout company networks has vastly
increased in recent years (Morrow, 2012).

The data boom has left companies with significant vulnerabilities waiting to be exploited.
Malicious attacks have grown more sophisticated and widespread, even targeting smaller
companies with hopes to exploit security weaknesses (Paulsen, 2016; Kent, Tanner &
Kabanda, 2016). Intelligent systems are one of the most innovative technologies currently
used within the information security field, with high potential to narrow the wide gap between
the lines of malicious activities and security control activities (Maitra & Madan, 2017; Harel,
Gal & Elovici, 2017).

Small, medium and large organisations have identified the need to implement information
security solutions and governance activities moving towards controls and principles protecting
information between processes, technology and people (von Solms & Van Niekerk, 2013).
Most effective and core essential solutions to information security include firewalls, access
controls and encryption (Wu & Banzhaf, 2010). These can all be considered as traditional
intrusion prevention techniques that are failing daily to protect organisations from the
increasingly sophisticated pernicious activities.



Bilge & Dumitras (2012) performed an empirical study on zero-day attacks; in the real world,
typical zero-day attacks last 312 days on average. The problem worsens, as Burdette (2016)
notes that most successful corporate attacks only get discovered on average after 314 days.
The statement is significant as attackers could remain within a network for extended periods
without being detected. Zero-day attacks refer to vulnerabilities not previously disclosed to the
general public that can be exploited. Once the vulnerability is disclosed publicly, the number of
exploits increases by a factor of five (The Economist Intelligence Unit, 2016). This alarming
statement is further supported by Frei (2014) from FireEye, a well-known cyber security
research company, stating that on average, attacks remain undetected for at least 312 days. It
is evident that the real crux within the cyber security field lies with detection. It is difficult to
prevent something you are unaware of, therefore without any detection, no controls will be
able to satisfy the underlying risk properly.

Kemmerer & Vigna (2002) define intrusion detection as the process of distinguishing between
malicious and normal network activities. The core structure and component set for any IDS
consists of the following:

» Sensors or agents — gather information

» Data sources and data repository — store information

Detection algorithm — analyses information
* Response system — responds to analysis
« Management system — monitors, analyses and configures IDS

Initial intrusion detection was performed by system administrators monitoring user activities on
their computers. The late 1970s and early 1980s introduced an approach for intrusion
detection based on audit logs. The oldest system topology to have been used in intrusion
detection is Host Intrusion Detection System (HIDS), discussed in section 2.2.2 (Debar, Dacier
& Wespi, 1999).

With limited external network connections, system administrators would manually monitor logs
to determine if an intrusion occurred. The manual method of intrusion detection was done on
an ad hoc basis and was not scalable at all (Kemmerer & Vigna, 2002). As storage and
logging capabilities grew, intrusion detection significantly adopted the approach. Detection
now relied on analysing the data received to identify intrusive behaviour. Dorothy Denning and
Peter Neuman proposed such systems based on an intrusion detection model and most
research focus on constructing accurate and effective detection models (Denning, 1987;
O'Leary, 1992; Kemmerer & Vigna, 2002; Yost, 2016). As the attacks grew more
sophisticated, in the early 1990s intrusion detection systems evolved to a combination of
expert systems using statistical approaches as the core model of detection (Kemmerer &
Vigna, 2002; O’Leary, 1992).

Statistical expert systems offered real-time detection capabilities, contributing to the continued
growth in knowledge and capability for intrusion detection. The models later shifted towards
more automated events that gathered knowledge on normal and abnormal patterns; anomaly
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detection is discussed further in section 2.4.2 of this chapter. These 'modern’ systems
compared the behaviour of different profiles to identify malicious activities (Patcha & Park,
2007). The systems could easily be crippled by data designed to mislead the system or
changes in the processes being measured for comparisons. The system would create a filter
based on the user’s behaviour pattern, and attackers could spoof the filters by imitating the
behaviour. Hackers could also camouflage their malicious activities by establishing high
variance behaviour within the system. The large set of intrusion detection data profiling the
user's patterns was non-stationary and had to be updated each time the user’s behaviour
changed. This required system designers to purge data whenever the process changed
(Kemmerer & Vigna, 2002; O’Leary, 1992).

The challenges experienced with intrusion detection systems have led to the creation of
multiple intrusion detection topologies as the creators experimented with different setups and
configurations.

2.2 Intrusion detection topologies

IDS technologies are classified into three categories, namely network-based, wireless and host-
based technologies, each depending on the type of events monitored by the system and the
location of the IDS within the network environment (Scarfone & Mell, 2007). For this thesis, only
the popular network and host-based topologies are discussed.

2.2.1 Network intrusion detection systems

A Network Intrusion Detection System (NIDS), as the name suggests, examines and monitors
the network traffic and is therefore considered to be platform independent. Being implemented
within the network layer, the NIDS is able to monitor traffic from a vast amount of hosts
simultaneously. The NIDS uses anomaly and signature (rule-based) detection methods,
explained in more detail in section 2.4 (Bhuyan, Bhattacharyya & Kalita, 2014).

There are several ways to implement NIDSs, most commonly with port mirroring on a
configured and compatible switch, network taps or hub connections (Bushev, Vlasenko,
Glotov, Monakhov & Tishin, 2013). The most favoured implementation is between the firewall
and the various hosts in the network (Hamid, Sugumaran & Balasaraswathi, 2016). Figure 2.1
illustrates the network layout where NIDSs can be used. The NIDS mentioned in figure 2.1
uses a network tap to connect to the network. The NIDS captures information from the
network and analyses each stream of packets for malicious activity or deviation from the
normal network traffic. For each network packet, the NIDS monitors the IP and transport layer
headers to filter malicious content.

Network-based attacks such as Denial of Service (DoS) attacks, probe attacks and malicious
monitoring are just some of the examples where a NIDS would be more effective in detecting
the attacks than a host-based system (Lin, 2013). Depending on the detection platform, the
ability to build profiles based on the observed behaviour and then compare it to the current
behaviour adds an extra layer to the security profile.



Notwithstanding all the benefits, NIDSs do have some clear drawbacks that need to be
mentioned. Although the NIDS can monitor several hosts and the traffic between them, the
NIDS has very limited visibility inside these hosts as it is only implemented on the network
layer. If the network traffic is encrypted, the NIDS cannot decrypt the traffic effectively in
real-time. However, it is to be expected that the traffic behind the firewall is not encrypted and
only once it leaves the firewall, becomes encrypted (Holden, 2004; Kizza, 2017). Liao, Richard
Lin, Lin & Tung (2013) criticise NIDSs by mentioning that when anomaly detection is used, it
tends to show high false positives and false negative rates, and is unable to provide full
analysis when under extremely high loads. Figure 2.1, NIDS topology, outlines the traditional
NIDS intrusion detection layout.
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Figure 2.1: NIDS topology

2.2.2 Host intrusion detection systems

HIDSs, as the name suggests, examine and monitor the specific host on which it has been
deployed (Vigna & Kruegel, 2005). The HIDS consists of a server and several agents, usually
software-based on each host machine.

Unlike NIDSs, this system is platform dependent for the agents. The server can be placed
anywhere as long as it is routing the traffic from the server and the agents are uninterrupted.
The HIDS examines the host in more detail, looking at file system modifications, system calls
and application logs, to mention a few (Liao et al., 2013).

The HIDS builds profiles based on the host kernel and file system behaviours and then
compares the current activities; upon deviation the system reports an attack. The accuracy
and efficiency of HIDSs largely depend on the system characteristics monitored on the host. A
large portion of the HIDS’s success sits on the shoulder of the security administrator. Figure
2.2 illustrates an environment where agents are installed onto each host routing towards the
server.

HIDSs are considered the flavour of the month within the cloud computing environment (Modi,
Patel, Borisaniya, Patel, Patel & Rajarajan, 2013). A Virtual Machine (VM) or hypervisor allows



for much wider intrusion detection capabilities, based on its scalability and ease of
implementation (Modi et al., 2013). Best practice, however, would be to implement the HIDS
behind the firewall in the network environment (McHugh, Christie & Allen, 2000; Verwoerd &
Hunt, 2002; Hamid et al, 2016). The HIDS also uses a combination of anomaly- and
signature-based detection methods. Figure 2.2, HIDS topology, outlines the traditional HIDS
intrusion detection layout.
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Figure 2.2: HIDS topology

Some HIDSs have extremely low resource consumption, further strengthening their cause
within the cloud environment. As with NIDSs, HIDSs also have issues. Due to the system
relying heavily on agents to perform the data collection, delays in alert generation and
centralised reporting are common problems (Bukac, Tucek & Deutsch, 2012). In systems with
limited resources, modern HIDS agents can cripple the system or contribute to an unstable
host environment (Bukac et al, 2012). Its inability to look “beyond” the current host is
overcome when using intelligent management components (Bukac et al., 2012).

Host-based systems rely heavily on the logs produced from a system and therefore require a
host to be configured correctly to produce the logs. It is a known fact that logging can
sometimes increase resource consumption (Ristic, 2005). Extensive logging leads to the
HIDS-based system being less cost effective; due to specific configurations being required,
the environment will have to be reconfigured or sometimes even be upgraded. The
network-based system has a much lower cost entry point, being easier to install and requiring
fewer configurations to be done; it does however not provide the accuracy that normal
host-based systems would (Kelly, 2006; Lin, Zhang & Ou, 2010). Kelly (2006) compared the
systems and favours NIDSs for the following reasons:

1. Ownership costs: Low costs for wide coverage; single systems can detect intrusion
directed across the entire network of hosts.

2. Analysis: Perform packet analysis on network traffic containing protocol fields and
payload data.

3. Early detection: Ability to capture attacks that do not succeed due to monitoring the
network before it reaches hosts.
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4. OS independence: The system works regardless of the operating systems used, allowing
for easier implementation.

The added advantage of OS independence can be heavily debated. Research has already
shown that NIDSs do not operate with the same accuracy (Lin et al., 2010; Kelly, 2006). It can
be noted that it is partly due to system independence, without the added knowledge that the
system does not discriminate against data from different systems. Being able to do so might
increase the accuracy as seen with HIDSs.

In some cases, network and host-based systems are combined to form a hybrid system. One
can argue that this approach will be more cost effective within an environment that already has
a host-based system in place. Due to the costs and fewer configuration requirements, the
option becomes much more viable. A company currently only using a network-based system
might require more accurate results. The hybrid approach has a myriad of advantages, but the
most attractive one is the ability to integrate (Peddabachigari, Abraham, Grosan & Thomas,
2007). The network-based system might be able to detect an attack and use the host-based
system to verify if this attack is legitimate before it reports. This system will drastically
decrease detection issues found in network-based systems (Peddabachigari et al., 2007).

It is clear that these systems complement each another when used in conjunction with one
another. With the hybrid approach, the central repository will receive information from both
topologies, allowing for a wider net to build detection signatures. The hybrid system allows the
IDS managing component to push specific signatures to agents on an as-needed basis due to
the network layer still being covered. The hybrid approach operates more efficiently and
effectively, as it overcomes drawbacks in both systems when implemented separately
(Chauhan & Chandra, 2013). Kelly (2006) explains that the different characteristics should be
embraced by combining both network and host systems for increased performance and
accuracy.

2.3 Attack classification

Similar to police profiling a criminal in an active investigation, we can profile cyber attacks
as well. It is therefore crucial to understand each attack. Kroll, Barocas, Felten, Reidenberg,
Robinson & Yu (2016) identifies three characteristics to which a system must comply in order
not to be considered compromised or attacked:

+ System/user actions must conform to statistically predictable patterns

» System/user actions must not portray sequences of commands to subvert security
policies

 Actions of processes must comply with the described specifications for allowable actions

If any of the three characteristics are not met, the system could be considered under attack or

compromised. Detected attacks can be classified into four different categories, namely User to

Root (U2R), Remote to Local (R2L), DoS and probe attacks, further discussed below (Engen,

2010). We look at the attacks on an introductory basis and by no means cover all the different
variations. The researcher’s focus is placed on the attacks within the data sets used for this
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research project and the detection thereof.

Although some attacks within the data set are considered old, comparison to recent attacks
are drawn in the literature study. The outline should be read as an introduction and is by no
means a comprehensive updated list of attacks. For further information on the data set, refer
to Chapter 6. A comparison of data sets are provided in table D.1. The comparison outlines
the popularity of the NSL-KDD data set within the research communities. During the time of
experimentation (2016), the NSL-KDD data set provided comparable research results. The
methodology discussion in section 6.8 outlines the research methodology required to compare
results between research studies.

2.3.1 User to Root (U2R)

The U2R attack focuses on the attacker trying to gain administrative (root) access to the
system by exploiting vulnerabilities. The vulnerabilities would mostly be within the operating
system or underlying software used on the system. The attacker would therefore first have to
be able to access the system in a normal account environment and then try to gain root
access (Bhattacharyya & Kalita, 2013). We discuss R2L where the attack would obtain local
access in section 2.3.2.

U2R attacks could be arduous to distinguish from normal network traffic. Some examples of
these attacks include buffer-overflow attacks, loadmodule, Perl and rootkits. Ahmad, Abdullah
& Alghamdi (2010) highlight how U2R attacks are the most dangerous of all and can cause
severe losses for companies. It is no surprise that with administrative abilities on any system,
the user has no limitations on the system. The attack platform can spread from Android, web
browser plugins, software and operating systems, to name a few. Although widespread,
exploiting U2R vulnerabilities is difficult to achieve as it requires the attacker to already have
access to the system and the skill set to perform such advanced attacks.

To summarise the characteristics and features of U2R attacks, table 2.1 is adopted from
Kendall (1999) who created the DARPA data set, widely known for intrusion detection. The
DARPA data set was adopted to become the KDD Cup 99 (KDD’99) data set (KDD Cup,
2016). The researcher further updated the table to include more modern U2R attacks in the
NSL-KDD data set, used within this research project (Tavallaee et al., 2009). For further
information on the NSL-KDD data set, refer to Chapter 6.

Kendall (1999) elects the buffer overflow attack as one of the most popular U2R attacks. The
statement is based on the findings of Anderson (1972) who already detected the attack 44
years ago. Buffer overflow attacks can be performed whenever the vulnerability exists, creating
a vast threat landscape. Buffer overflow attacks form a substantial portion of all security
attacks due to its simplicity and typical vulnerability (One, 1996; Cowan, Wagle, Pu, Beattie &
Walpole, 2003; Black & Bojanova, 2016). Due to the popularity and widespread usage, we will
further discuss the attack below. Buffer overflow attacks can occur in several instances,
summarised as follows (Nelissen, 2004):

* Input into graphical user interface
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« Data sent over network to program
+ Data within a file

« Data within command line

Table 2.1: U2R attacks summarised adapted from Kendall (1999) & Tavallaee et al. (2009)

Name Service Vulnerable| Mechanism Time Impact
platform required
Eject Any (telnet, rlogin) Solaris Exploit bug (buffer | Medium Root shell
overflow)
Ffbconfig Any (telnet, rlogin) Solaris Exploit bug (buffer | Medium Root shell
overflow)
Fdformat Any (telnet, rlogin) Solaris Exploit bug (buffer | Medium Root shell
overflow)
Loadmodule | Any (telnet, rlogin) SunOS Exploit bug short Root shell
Perl Any (telnet, rlogin) Linux Exploit bug short Root shell
Ps Any (telnet, rlogin) Solaris Exploit bug short Root shell
Xterm Any (telnet, rlogin) Linux Exploit bug (buffer | short Root shell
overflow)
Anypw Any (telnet, rlogin) NT Exploit bug short Root shell
Casesen Any (telnet, rlogin) NT Exploit bug short Root shell
Ntfsdos N/A manual NT Feature abuse short Root file
access
Sechole Any (telnet, rlogin) NT Feature abuse short Root shell
Yaga Any (telnet, rlogin) NT Feature abuse short Root shell

Kendall (1999) construes that buffer overflow attacks try to copy too much data into a static
buffer, thereby exploiting the paucity of controls validating the data. To explain the attack
vector, the diagram below is used, illustrating how buffer B is pushed beyond the scope
intended.
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Figure 2.3: Buffer overflow attack

Normal operating conditions are observed within (a), as the program has not initiated any
command yet. Command A is called in (b) and initiates the input hosted within buffer B. Due
to the buffer overflow (c), the address space for B has now increased significantly within the
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address space, allowing the attacker access to virtual space not previously usable. Stack
smashing as indicated in figure 2.3 is one of the simplest buffer overflow attacks available
(Larochelle & Evans, 2001). The attack will overwrite a buffer on the stack to replace the return
address. Instead of jumping back to the return address, the control will jump to the address
placed on the stack. Once within the address space, the attacker can execute arbitrary
commands.

To simplify, let us assume a program requires the user to input their last name. The
programmer would have to decide how many characters that field buffer requires e.g. 20
characters. If the user inputs a value of 25 characters, the last five would overflow the last
name buffer. When this transpires, the residue characters will be placed onto the program
stack, overwriting the subsequent commands that should be executed. By manipulating the
overflow data in the stack, the attacker can cause arbitrary commands to execute within the
operating system.

These attacks pose a high risk as an attacker can execute any command; however, insights
into the stack and exploitation thereof are extremely technical and not easy to execute (Black
& Bojanova, 2016). Technical countermeasures help diminish the threats; it is, however,
important to note that most buffer overflow vulnerabilities exist due to negligence or errors by
programmers. Black & Bojanova (2016) note that in specific instances, buffer overflow attacks
are exceptionally hard to defend against. The attack is worthy of discussion as it constitutes a
vast amount of security issues and does have a substantial impact when exploited.

Another attack, Yet Another Get Admin (YAGA), involves exploiting the user’s registry and is
classical to the U2R nature. The attacker requires local access and couples with other attack
methods to fully exploit the victim's machine. Korba (2000) describes the process of
exploitation as follows:

1. Obtain local access to machine.

2. Upload attack files (telnet).

3. Setup registry files.

4. Crash service.

5. User added to domain admin group.

The attack abuses the debugger program in Windows by changing the registry to launch the
attack commands instead of the default debugger. Whenever the change is completed, the
attacker will launch another attack to crash services on the computer. Once completed, the
user will be added to the Domain Admins group.

It is important to note that with only two of the mentioned U2R attacks, physical access to the
device is required. We refer to these attacks as local-based attacks e.g. AnyPW and
NTFSDOS (Cowan et al., 2003). The other attacks can all be executed remotely, and
whenever the attacker gains administrative access the system is severely jeopardised.
However, to execute these attacks, local access is required before an attacker can escalate its
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privileges to administrative. Based on this we can argue that it is important to mitigate local
account exploitation as an additional security layer.

2.3.2 Remote to Local (R2L)

Very similar to U2R attacks, with R2L attacks the intruder does not have access to an account
on the host and therefore needs to obtain local access to a network connection. R2L could be
considered as a prequel to U2R attacks. The attacker would send packets to a remote
machine or network host without being a legitimate user. Bhattacharyya & Kalita (2013) name
buffer overflow and unverified input attacks as the two most commonly used R2L attacks.

We have already discussed buffer attacks in more detail during the U2R section. The attacker
would, therefore, exploit misconfigurations in the security policies or engage in social
engineering. With social engineering, the human operator is targeted and tricked instead of a
system. Some practical examples would be to take advantage of common anonymous File
Transfer Protocol (FTP) misconfigurations, guest accounts, etc.

To summarise the characteristics and features of R2L attacks, table 2.2 below is adopted from
Kendall (1999) who created the DARPA data set, widely known for intrusion detection. The
DARPA data set was adopted to become the KDD Cup ’99 data set (KDD Cup, 2016). The
researcher further updated the table to include more modern DoS attacks as included in the
NSL-KDD data set, used within this research project (Tavallace et al., 2009). For further
information on the NSL-KDD data set refer to Chapter 6.

Hoque, Bhuyan, Baishya, Bhattacharyya & Kalita (2014) iterate the difficulty of detecting R2L
attacks due to network traffic resembling normal characteristics. The statement is based on
Thomas, Sharma & Balakrishnan (2008) who emphasise the low variance within the attacks,
hindering the ability to detect with unique signatures or anomaly detection. In another study,
Tupakula, Varadharajan & Akku (2011) highlight the high amount of the network level and host
level features within R2L attacks as the main cause for detection failure.

The R2L attack category offers a diverse set of attacks ranging from execution to
implementation. Intrusion models currently proposed for R2L attacks fail to perform with
desirable detection and low false alarm rates (Sabhnani & Serpen, 2003; Anwar,
Mohamad Zain, Zolkipli, Inayat, Khan, Anthony & Chang, 2017). To illustrate the simplicity and
severe implications, we discuss a normal dictionary attack and a netbus attack. Dictionary
attacks are the most efficient and frequently used attacks before attempting brute-force
attacks (Dey, 2016). The dictionary can be created by using generally used entries or more
complicated entries based on information specifically targeting the user. Figure 2.4 below was
created to visualise a very basic dictionary attack using general entries.

To specifically target the user, the attacker would have to engage in social engineering to gain
more information about the user. The information gained will then be used to build a specific
dictionary related to the target. Information such as birth dates, first names, middle names and
even family or spouse names are commonly shared on social media and are heavily favoured
by users when creating passwords. Figure 2.5 visualises the attacker building a dictionary
based on the information gained from the victim’s social media profile to illustrate a simple

15



Table 2.2: R2L attacks summarised adapted from Kendall (1999) & Tavallaee et al. (2009)

Name Service Vulnerable| Mechanism Time Impact
platform required
Dictionary | telnet, All Feature abuse Medium User-level access
rlogin,
pop, imap,
ftp
Ftp-write ftp All Misconfiguration Short User-level access
Guest telnet, All Misconfiguration Short User-level access
rlogin
Httptunnel | http All Feature abuse Long Request information  using
cookies
Imap imap Linux Exploit Bug Short Root Shell
Named dns Linux Exploit Bug Short Root Shell
ncftp ftp All Feature abuse Medium Execute commands
netbus X, telnet NT Feature abuse Short Remote administration tool
netcat X, telnet NT Feature abuse Medium Remote access
Phf http All Exploit Bug Short Execute commands as user
http
ppmacro X NT Feature abuse Long View user files
Sendmail | smtp Linux Exploit Bug Long Execute commands as root
sshtrojan | SSH Linux Feature abuse Long Execute commands as root
Xlock X All Misconfiguration Medium Spoof user to obtain password
Xsnoop X All Misconfiguration Short Monitor keystrokes remotely
FISH 123456
PASSWORD
s
123456 _ YES!
Hacker 12345 k: Targat

Figure 2.4: Basic dictionary attack

social engineering dictionary attack.
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Figure 2.5: Dictionary attack with social engineering

One can imagine that it is almost impossible to detect these attacks, however mitigating
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controls such as account locking, strong password policies, etc. are of great importance
(Canetti, Halevi & Steiner, 2006). Using the same password for several sites almost instantly
becomes a vulnerability. The hacker would have a broad range of tools available to assist with
building dictionaries and gathering information for it. Unlike dictionary attacks, netbus attacks
require more skill and patience. Netbus attacks require the attacker to gain the trust of the
target. The attacker would stage a scenario that could trick the victim such as e.g. death of a
relative, credit card fraud or the collection of prizes. The victim would have to open and
download the malicious content. Usually, the trojan is distributed via e-mail to the user
(Kulakow, 2001; Chen, Wei & Delis, 2008). The attacker would use his imagination here, and
sometimes these attacks are heavily a hit and miss depending on how gullible the victim is.
Classic netbus attacks are illustrated in figure 2.6.
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Hacker Target

/ thser)
TCP SYN
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§5H Channel =

Target (User)
(c) Hacker
Server

Figure 2.6: Classic netbus attack

Within (a) the hacker sends the user an email containing a trojan that opens a backdoor on the
user’'s machine. A backdoor is designed to hide inside a target host, giving the attacker access
to the system for later use. Once the user opens the email attachment that executes the
backdoor (b), a Transmission Control Protocol (TCP) Synchronise (SYN) request is initiated to
the hacker’s server. The server would be waiting and listening for the requests from a specific
port to complete the traditional TCP 3-way handshake. Once this is done, the hacker’s server
will establish a Secure Shell (SSH) tunnel on top of the TCP socket, illustrated with (c)
(Stiawan, Idris, Abdullah, AlQurashi & Budiarto, 2016).

Once the SSH tunnel is created the hacker can unknowingly transfer arbitrary commands to
the victim’s computer. Not nearly as eluding as with dictionary attacks, netbus attacks can also
be "tweaked” to become stealthier; by encrypting the commands within the tunnel any IDS can
be evaded (Stewart, 2013). The R2L attack is much more dangerous than DoS or probe
attacks (discussed below) due to the user obtaining direct access to the system. They do
however sometimes require some user intervention as indicated in the attack scenario
discussed, therefore social engineering can be used. Social engineering has previously been
discussed as exploiting public information from a victim to perform an attack e.g. e-mail,
facebook etc. (Baiardi, Coro, Tonelli & Sgandurra, 2014).

2.3.3 Denial of Service (DoS)

Speculated to have started in the late 1990s, DoS attacks are one of the most common
attacks (Kessler, 2000; van Rijswijk-Deij, Sperotto & Pras, 2014). The purpose of DoS attacks
is to interrupt and cripple services on a host. Simple yet highly effective, this attack has grown
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in sophistication over the years. When combined with other attacks, the attacker can perform a
multi-stage attack on the victim using the DoS to ‘crash’ or hinder services on the target host
(van Rijswijk-Deij et al., 2014).

Most known descriptions for these DoS attacks were made by Kendall (1999), who
categorised it as follows: “abuse legitimate features”, “take advantage of bugs in a particular
daemon® and “create malformed packets that confuse the Internet Protocol (IP)/TCP stack of
the machine trying to reconstruct the packet”. The attack taxonomy has not changed much as
several years later Hashmi, Saxena & Saini (2012) noted similar definitions for defining DoS
attacks. Modern descriptions focus on Distributed Denial of Service (DDoS) attacks as
outlined by Somal & Virk (2014), indicating an attack which uses a large number of computers

to launch a coordinated DoS attack against a single machine or multiple victim machines.

The primary goal of DoS attacks is to constrain the available resources in such a way that the
remaining resources become limited or unavailable to legitimate users. The attacker relies
heavily on the computational costs to hinder services and even stop legitimate services from
running successfully. When an attacker would like to disrupt a web server, the primary goal
would be to bombard the host with a dummy request to cripple resources. These attacks could
be categorised as the following types of DoS attacks (Rittinghouse & Hancock, 2003):

+ Flaw exploitation attacks
The attacker would try to exploit a vulnerability within the host to slow it down or exhaust
the resources available. The popular Ping of Death (POD) involves the attacker sending
a malicious ping to the host. In general, a ping would consist of 64 bytes or 84 when the
IP header is included. Most computerised systems will not be able to handle pings larger
than the maximum IP packet size of 65 535 bytes (Sharma & Kunwar, 2016).

Sending such a ping, or larger, to the host computer would in most cases cause it to
crash. Within intrusion detection systems, a signature that triggers whenever ICMP
packets are longer than 64 000 bytes would potentially detect POD attacks.

Some cases lead to certain vulnerabilities which will be exploited to implement DoS
attacks such as Domain Name Service (DNS) amplification. In this specific attack, the
Internet Control Message Protocol (ICMP) echoes messages to the target being
bombarded. A signature could be devised to determine the ping of death. A study
performed by van Rijswijk-Deij et al. (2014) note that DNSSEC used to mitigate DNS
cache poisoning can be exploited to perform severe DoS attacks. This is a clear
indication of how counteractive measures can sometimes increase the threat landscape.

* Flooding attacks
This specific type of DoS attack has won flavour of the month for several years now
(Wueest, 2014). The actual benefit lies in the simplicity, and the attacker sends more
requests to the target host than it can manage. The host will then exhaust all processing
capability or the network bandwidth. Currently, these DoS attacks are some of the
hardest to combat as there is no vulnerability in the system being exploited; in
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retrospect, any secure system can be targeted and fall victim. The attack can also be
distributed and then becomes significantly more dangerous.

DDoS attacks use a resource pool to attack the victim host. The botmaster (hacker) can
use any system exploited to form part of the attack. These attacks could be compared to
firing a warning shot and are usually followed by more sophisticated attacks (van
Rijswijk-Deij et al., 2014).

To summarise the characteristics and features of DoS attacks, table 2.3 is adopted from
Kendall (1999) as his DARPA data set is the origin of the data set used within this research.
Modern DoS attacks in the NSL-KDD data set have been added to the table (Tavallaee et al.,
2009). For further information on the NSL-KDD data set refer to Chapter 6.

Table 2.3: DoS attacks summarised adapted from Kendall (1999) & Tavallaee et al. (2009)

Name Service Vulnerable| Mechanism Time Impact
platform required
Apache2 http Any Feature abuse Short Crash httpd
Apache
Back http Any Feature abuse / Short Slow server response

Apache Exploit Bug

Land N/A SunOS Exploit Bug Short Freeze machine
Mailbomb smtp All Feature abuse Short Annoyance
SYN Flood Any TCP | All Feature abuse Short Deny service on one or more

ports for minutes

Ping of Death | icmp None Exploit Bug Short Possible crash, freezing

Process Table | Any TCP | All Feature abuse Moderate | Deny new processes

Smurf icmp All Feature abuse Moderate/ | Network Slowdown

Long

Syslogd syslog Solaris Exploit Bug Short Kill Syslogd

Teardrop N/A Linux Exploit Bug Short Reboot machine

Udpstorm echo/ All Feature abuse Short Network Slowdown
chargen

Due to its simplicity, DoS attacks have significantly grown over the past years. From the early
1990s to 2000s DDoS attacks have shifted from megabytes to gigabytes (van Rijswijk-Deij
et al., 2014). Some researchers consider DoS attacks as one of the most dangerous currently
in existence (Alomari, Manickam, Gupta, Karuppayah & Alfaris, 2012).

DoS attacks are also known for stealth attacks, which are arduous to detect. Studies have
proven that simple threshold-based statistical anomaly detection methods are not able to
detect simple stealth DoS attacks (Aqil, Atya, Jaeger, Krishnamurthy, Levitt, McDaniel, Rowe &
Swami, 2015).
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The most common stealth attacks identified by Darwish, Ouda & Capretz (2013) are discussed
below.

* TCP SYN flood attacks
The attack is based on the TCP protocol and has been very popular within hacking
communities. During a normal TCP exchange, the connection starts with a three-way
handshake as shown in figure 2.7(a). The typical handshake begins with the user
sending a legitimate request to the server in the form of a SYN message. The server
responds by sending back a SYN request (SYN-ACK) to the legitimate user. To initiate
the third handshake the user sends an Acknowledge (ACK) request to the server to
establish the connection.

The attacker would take advantage of the three-way handshake by flooding the system
with requests. The system can practically only maintain X amount of states depending
on the resources. The server will pool the requests, and wait to complete the process for
all the half-open states (only completed the first handshake). Afterwards, the system will
be unable to process further legitimate requests as shown in figure 2.7(b).
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Figure 2.7: SYN flood attack adapted from Luckner (2015)

+ Slowloris is another TCP-based attack that exploits HTTP (Damon, Dale, Laron, Mache,
Land & Weiss, 2012). The attacker will establish multiple connections to the HTTP
server and keep the connection transmitting by sending incomplete HTTP headers.
Normal network exchanges are illustrated in figure 2.8. The attack exploits the machine’s
allocatable sockets by keeping multiple connections alive until the available sockets are
depleted, a traditional DoS attack modus operandi.

20



The attack is much more resource intensive due to maintaining multiple connections. To
decrease resource requirements, the attacker can send HTTP headers in short bursts
periodically. The attack can be considered very stealthy due to the sheer difficulty of
discriminating between legitimate and Slowloris traffic. The Slowloris attack is illustrated
in figure 2.9.
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Figure 2.8: Normal network exchange
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Figure 2.9: Slowloris attack

Combined with probe attacks to identify vulnerable amplifiers, a simple DoS attack becomes
hazardous. Amplifiers are any protocols (e.g., NTP, DNS) running on the host that reply with
packets, in aggregate size querying packet size. Czyz, Kallitsis, Gharaibeh, Papadopoulos,
Bailey & Karir (2014) voice their concerns regarding the rise of DoS attacks using amplification,
which causes a steady increase in such attacks. We further look at probe attacks, considered
the spawn of advanced attacks, in the next section.

2.3.4 Probes

Information gathering is a crucial part of any hack or penetration test and involves the attacker
creating a clear understanding of the system and perimeter being targeted (Wilhelm, 2009). The
intruder would scan the system for vulnerabilities scoping the network, hardware and software
to be exploited.

Probe attacks can be considered as the baseline for any attack. Therefore, detection is of
great importance. Imagine a boxer during the first round of a fight, jabbing away at his
opponent, searching for weaknesses. When the opportunity arises, the boxer will start
targeting his punches to control the fight. Within the cyber domain, the attacker would scan the
network on different layers to collect information about the system and the underlying security
controls. It is crucial to detect or completely limit system probing as this is the baseline that
leads to more sophisticated attacks. To summarise the characteristics and features of probe
attacks within the research data set, table 2.4 is adopted from Kendall (1999) who created the
DARPA data set, widely known for intrusion detection. The DARPA data set was adopted to

21



become the KDD Cup ’99 data set (KDD Cup, 2016). The researcher further updated the table
to include more modern probe attacks as included in the NSL-KDD data set created by
Tavallaee et al. (2009) and used within this research project. Refer to Chapter 6 for more
information.

Table 2.4: Probe attacks summarised adapted from Kendall (1999) & Tavallaee et al.
(2009)

Name Service Vulnerable| Mechanism Time Impact
platform required

Ipsweep ICMP All Feature abuse Short Reveals active machines

Mscan Several All Feature abuse Short Reveals known vulnerabilities

Nmap Several All Feature abuse Short Reveals active ports on one
machine

Saint Several All Feature abuse Short Reveals known vulnerabilities

Satan Several All Feature abuse Short Reveals known vulnerabilities

Portsweep | Several All Feature abuse Short Reveals machines with specific
active port

Probe attacks are often also referred to as port scans. Lee, Roedel & Silenok (2003) classify
port scans as follows:

+ Vertical scans
The scan, as the name suggests, operates vertically and targets a single host while
looking at several ports. For intrusion detection, only single host detection are required
to detect the attack, rendering it fairly detectable.

» Horizontal scans

The scan, as the name suggests, operates horizontally and targets several hosts while
only looking at specific ports. This is the inverse of vertical scans. This attack is relished
by attackers who are already aware of a vulnerability, and are probing for hosts to exploit.
Whenever the vulnerability for the specific port is published, the intrusion detection system
would be updated specifically for the attack. This is an excellent example of signature-
based detection that requires signature updates before being able to operate to its full
extent.

- Block scans
The block scans attack is the combination of both horizontal and vertical port scans to
sweep the whole address-port spectrum within a target environment.

A recent study by Patel & Sonker (2016) classifies port scans differently, with a focus on the
Probe attack’s anonymous nature. The probe attack could be considered non-stealth or stealth
probes, the latter trying to bypass firewalls, routers and masquerading as normal network
activity.

Since we are focusing on detection in this thesis, a closer look into stealth probe methods is
required. Singh & Tomar (2015) highlight that current detection techniques are infeasible to
properly detect probe attacks. Singh & Tomar (2015) state that probe techniques have
become highly distributed, composite and stealthy, hindering detection. Stealth probes do not
produce any TCP sessions, remaining untraceable within application logs. Vasilomanolakis,
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Stahn, Cordero & Muhlhauser (2016) show that defending against even basic probe attacks
require compromises. We can further classify stealth probes as summarised below.

SYN/ACK scan: This attack is fast and avoids using a three-way handshake. The source

sends a SYN with ACK flag to the target, expecting a RST packet if the port is closed. Figure
2.10 below visualises the attack and packet response.

Source Target
RST fclozed port)
Source NO RESPONE Target
(open port)

Figure 2.10: SYN/ACK probe attack adopted from Bani-Hani & Al-Ali (2013)

XMAS, NULL AND FIN scan: These attacks are grouped due to the similarities. The attacks
would target TCP ports by sending a single frame without any TCP handshake or additional
packet exchange (De Vivo, Carrasco, Isern & De Vivo, 1999; Kumar & Sudarsan, 2014).

With XMAS attacks the attacker would send a packet with the FIN, URG and PSH flags set. As
with SYN/ACK attacks, if the port is closed, the target will respond with a RST packet as
shown in figure 2.11 (Lyon, 2009). The FIN attack, shown in figure 2.12, sends a packet with
just the FIN flag set. The same response is expected as with XMAS attacks. NULL attacks
send packets without any flags set, expecting the same RST packet response as shown in

figure 2.13.
D FIN & URG & PUH _ ii

SOIECE Target
RST (closed port)
D FIMN & URG & PUH ii
Source MNO RESPONSE Target
{open port)

Figure 2.11: XMAS attack
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Figure 2.12: FIN attack
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Figure 2.13: NULL attack

Probe attacks can evade packet filters by using TCP fragmentation. This technique works for
any of the above methods by first decomposing the packets into fragments (Lyon, 2009).
Within intrusion detection systems, a signature that triggers whenever a series of User
Datagram Protocol (UDP) packets have been sent to different destination ports from a specific
host, would be one of many examples possible for detecting probe attacks. These attacks
have been around for several decades, some evolving into more sophisticated models and
others exploiting the security measures in place.

When we consider the different layers, we can analyse the attacks on a packet level,
identifying the characteristics (features) that go hand-in-hand with the attack. We analyse the
features as we split the NSL-KDD data set per attack type in Chapter 6. As the research
continued and technology advanced, intrusion detection systems that use data collection, data
pre-processing, intrusion recognition, reporting and response activities to detect potential and
actual computer intruders were created (Inayat, Gani, Anuar, Khan & Anwar, 2016).

In the modern environment, several types of IDS methodologies exist, each with its strengths
and weaknesses. In section 2.4 we introduce the methods used to detect the attacks
discussed.

2.4 Intrusion detection methodologies
IDS makes use of several methodologies to detect the variances and anomalies. The most
used detection methodologies are signature based, anomaly based detection with newer
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methodologies as artificial neural network and hybrid methods (Scarfone & Mell, 2007; Modi,
Patel, Borisanya, Patel & Rajarajan, 2012).

2.4.1 Signature detection

Signature-based detection uses threat signatures for comparisons and observes events to
identify hazardous incidents (Scarfone & Mell, 2007; Inayat et al., 2016). The signatures are
compiled from previous attacks and represent the characteristics to identify such an attack.
The core functionality relies on pre-processing the captured network packets to find a
signature and then compare them with commercial or pre-built definitions (signatures) of
known malicious content (Scarfone & Mell, 2007; Inayat et al., 2016). Not only does it analyse
the packets at a granular level (i.e. particles), it also can identify harmful behaviour.
Signature-based detection methods could easily be spoofed by using multiple attacks or
completely unknown attack vectors not identified within the threat signatures (Scarfone & Mell,
2007).

The system relies heavily on the signature and definition files to be updated with new attacks
to be effective. Signature-based detection is one of the most used in commercial products
(Han & Cho, 2005). Most commercial IDSs utilise the network and transport layer to build
signature definitions (Yegneswaran, Giffin, Barford & Jha, 2005). The operations within a
signature-based detection IDS is illustrated in figure 2.14.

—_— Attack State

Figure 2.14: Signature-based detection

During reconnaissance (gathering information of the environment under attack) the attacker
would identify systems that have not been updated with new signatures. This requires the
system to have a pre-configured knowledge base and would then require it to be updated
continuously. One can imagine that using signature-based detection will be much easier to
deploy since the system does not have to learn the environment as in anomaly detection.
Singh & Nene (2013) highlight the need for significant resources to keep up with the infinite
number of modifications to known threats. They further indicate that signature methodology is
simpler to modify and improve, since its core is built around the signatures and rules deployed
(Singh & Nene, 2013). We can summarise these characteristics as seen in table 2.5.

Detailed focus is placed on the limitations of this technique in section 2.5 as we look at recent
research on intrusion detection from a critical point of view. Features are extracted from the
incoming packets and a signature is build from the packet features. When the packet features
signature matches the signature in the intrusion database the alarm is raised. The packet
features signature is then passed to a function that evaluates whether the signature is new. If
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new, the signature will be added to the original signature database. In the event of no match
between the packet features signature and the database signature, no alarm will be raised and
the system proceeds as normal.

Table 2.5: Advantages and disadvantages of signature-based detection

Advantages Disadvantages

Accurate against known attacks | Cannot detect new
variant of attacks

Low computational cost Intensive  crafting
signatures
Easy to deploy High false alarm for

unknown attacks

The processes used with signature detection can be outlined using high level pseudocode as
displayed below in the Signature detection pseudocode listing.

1 Algorithm signature based detection is

2 input: Incoming packets INP,

3 criteria features CF from database,

4 database signature S

5 output: New signature NS,

6 real alert R

7 //Function receives incoming packets and compares with criteria features

in database
8 function evaluatePackets (INP)
9 for each INP do

10 Extract the features from INP based on CF as packet features PF
11 Build signature X from PF

12 if (X ==238) then

13 Function raiseAlarm(X) as R

14 Function addSignature (X) as NS

15 else if (X =! S) then

16 #No alarm proceed normal

17 end if

18 end for
19 end function

Listing 2.1: Signature detection pseudocode

Some of the issues experienced with signature-based detection are overcome using anomaly
detection.

2.4.2 Anomaly detection

Anomaly-based detection functions more intelligently, and constantly evaluates definitions of
‘normal’ activities created by the system against observed events to identify significant
deviations. Unfortunately, this method can also generate several false alarms if the intruders
manage to create more complex profiles of which certain malicious activities have already
been included in the systems’ pre-evaluated 'normal’ definitions (Scarfone & Mell, 2007).
Traditional anomaly detection is widely based on statistical tests, while recent research
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focuses on more sophisticated methods with machine learning. These enhancements have
been praised by Modi et al. (2013).

The general architecture for anomaly detection is shown in figure 2.15. The system
dynamically updates the profile and as the user’s pattern changes, so does the profile. In
comparison with signature-based detection, the 'database’ receives updates in a more static
way, while the anomaly-based profile generation is an ongoing process.

Some aspects of the users’ activity can be modelled precisely. Assume user X logs into the
computer at 9 am, performs database transactions, reads e-mails and then takes a break
between 1 pm and 2 pm. On average, during the morning activity X generates very few file
access and other errors. The system will generate a profile for user X based on these
behaviours. If on Sunday at 3 am activity on user X’s account is logged with numerous file
access errors, that activity would instantly be flagged as suspicious (Modi et al., 2013).

da—

Source

Deviation?

Behaviour

Profile Attack State

Generation

ﬁ

Dynamic Profile Update
Figure 2.15: Anomaly-based detection

The advantages and disadvantages of anomaly detection are summarised in table 2.6.

Table 2.6: Advantages and disadvantages of anomaly-based detection adopted from
Modi et al. (2013)

Advantages

Disadvantages

Lower false alarm rate for novel attacks

Generates more false alarms for known
attacks

High computational cost

Detection relies heavily on data collected
from system

Does not require prior knowledge able
to detect novel attacks

Environment needs to be capable of sourcing
data for profiles

Easier to maintain once implemented

Learning process takes time to become
accurate and effective

Can detect "low and slow” attacks

Difficult to predict detection sensitivity

Very tailored, normal
customised for each entity

activity

Difficult for attackers to spoof user activity
without being detected

Further analysis of anomaly detection is done in section 2.5 as we look at recent research
on anomaly-based intrusion detection from a critical point of view. The processes used within
anomaly detection can be outlined using high level pseudocode as illustrated on the next page.
The intrusion detection system receives the current network data as test data. The system
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then loops through each process within the test data; if the process is a deviation from the
normal user behaviour the alarm will be raised. If the process is considered normal, the function
calculates the probability of the normal process occurring within normal behaviour. Finally, a K-
nearest neighbour algorithm is used to identify any deviation from the user’s average normal
behaviour.

Algorithm anomaly based detection is
input: Test data D,
normal behaviour data set TD,
output: real alert R
// Function receives test data, then analyses each process against
normal behaviour as well as thresholds
function evaluateProcess (D)
for each process P in D do
if (P =! TD) then //unknown process or system call
Function raiseAlarm(P) as R
else then
for each normal process NP in TD do
calculate simProbability (P,NP)

if (simProbability == 1) then
//P is normal
end if

end for
find k biggest scores of simProbability (P,NP)
calculate simProbability_.avg for k—nearest neighbors
if (simProbability_avg > threshold) then
//P is normal
else then
Function raiseAlarm(P) as R
end if
end if
end for
end function

Listing 2.2: Anomaly detection pseudocode using k-nearest algorithm

Denning (1987) classifies anomaly-based detection into several categories. The classification
is supported by several other researchers as well (Qayyum, Islam & Jamil, 2005; Chandola,
Banerjee & Kumar, 2009; Gyanchandani, Rana & Yadav, 2012; Devare, Shelake, Vahadne &
Tamboli, 2016).

» Threshold Model: This model is based on the assumption that an anomaly can be
discovered when comparing the observations with a predefined limit, and it builds on
the cardinality of observation over a period of time. For example, user X raises several
password failures for a short time, and the system will use an event counter to estimate
when to raise the alarm.

» Markov Chain Model: This model is based on the assumption that an anomaly can be
discovered comparing current events with events that preceded it. In conjunction with an
event counter metric, the system will determine how common a specific event is by
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comparing it with preceding events. Each observation is assigned a specific state and
classified within a state transition matrix, which determines the probability of the event
occurring.

Consider user X successfully logging onto the computer — during the start-up, several
services will run and be logged. The logs contain descriptive information about the
services e.g. process ID, session ID, objects accessed, user ID, etc. Every event
performed on the computer would include a sequence of actions. The temporary
behaviour on the user’s machine can be defined as discrete-time stochastic processes.
These discrete points in time are not bound by a fixed time interval, but by times when
events take place. For the computer user, the actions to take place are related to the last
event as well as preceding events. Markov chain models represent a temporal profile of
normal behaviour for the events performed by the user on the computer.

The Markov chain, therefore, learns from historical data based on the system’s normal
behaviour. Whenever a new event is actioned, the behaviour of the computer is analysed
to draw a probability that the Markov chain model of the normal profile supports the new
behaviour (Ye, 2000). A low probability score indicates anomalous behaviour that might
result from malicious activities.

Statistical Model: Within statistics, a moment is a mean or standard deviation (Qayyum
et al., 2005). This model is based on the determination of normalcy for an observation
and assigns positive confidence within a specific range. Shrewdly, the model focuses on
user activity over a period, instead of previous user activities. Whenever an event falls
outside the set interval or above, the moment can be considered anomalous in nature.
The model also considers system changes by adapting the statistical rule base on which
decisions are based (Qayyum et al., 2005). The model trumps operation methods due to
not requiring any prior knowledge to determine normal activity and set limits. It is
focused on the "moment” by learning normal activities from observing, and the
confidence levels adapt to the increased knowledge.

The added benefit of building confidence levels from observed data is the segregation
between users. User Y's behaviour might output different confidence levels than that of
user X. The flexibility adds severe complexity to the model and therefore might hinder
implementation.

Multivariate Model: The multivariate model can be applied to monitor and detect
deviations for a process within an information system. Very similar to the mean and
standard deviation model, the core functionality is based on correlations among features.
Since two or more features are related, multivariate analysis can be considered more
suitable (Gyanchandani et al., 2012).

Debar, Dacier & Wespi (2000) reveal that the model permits the identification of potential

deviations, where the complexity of the situation relies on the correlation between
multiple parameters. The technique has been very popular within the manufacturing
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process to detect and monitor anomalies (Niaki & Moeinzadeh, 1997). Recent studies
used multivariate models to attack DoS attacks with great success (Tan, Jamdagni, He,
Nanda & Liu, 2014; Devare et al., 2016).

Within intrusion detection, the model can be useful if the data show that better
discriminating power can be obtained from a combination of features rather than
individual measures e.g. login frequency, session elapsed time and RAM usage. By
focusing on the correlation, the model can detect intrusive events at early stages. First
the model requires the event to be processed and in effect delaying the real-time
execution.

2.4.3 Neural network detection

Artificial neural network detection methods have the ability to generalise data from incomplete
data and then classify the data as either normal or intrusive (Abdlhamed, Kifayat, Shi & Hurst,
2017). Some research have revealed how traditional statistical techniques used for anomaly
detection can be replaced by artificial neural networks (Cannady, 1998; Abuadlla, Kvascev,
Gajin & Jovanovic, 2014; Al-Jarrah & Arafat, 2015). Neural networks have been applied to the
intrusion detection domain since the early 90s with great results (Lunt, 1990; Debar, Becker &
Siboni, 1992).

The neural networks have the potential to address many of the problems found within
signature and anomaly detection (Cannady, 1998). Artificial neural networks have been
researched since the 1960s and were met with several theoretical barriers (Debar et al., 1992;
Schmidhuber, 2015).

The neural network learns the characteristics of system users and identifies statistically
significant deviation from the established behaviour. This approach requires the neural
network to be trained using normal and abnormal data. Depending on the amount of data,
such training techniques can take up much time and resources. We can highlight the most
concerning drawbacks of neural networks as follows (Dumitru & Maria, 2013; Cannady, 1998):

+ Training data — large amount of data required to accurately train the model

» Black box algorithms — the neural network’s results and performance are opaque and
there is no way to test or understand the results with full confidence

We can identify the neural network approach as a step in the intelligent intrusion detection
system domain; unfortunately, it is still limited to the research domain (Ahmad, Abdullah,
Alghamdi, Demiralp, Baykara & Mastorakis, 2009).

2.4.4 Hybrid detection

Hybrid detection techniques could be viewed as a combination of two or more of the
techniques mentioned above. The system will cumulate the advantages that each of the
techniques has to improve efficiency, effectiveness and overall performance (Modi et al.,
2013). Engen (2010) mentions that most artificial neural networks combined with signature
detection are network-based, while host-based topologies favour anomaly detection with
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artificial neural networks. The system proposed by Lunt (1990), called Intrusion Detection
Expert System (IDES), combined anomaly and signature detection. IDES can be considered
the first expert intrusion detection system to combine both detection techniques.

A hybrid system combining decision trees for signature detection and self-organising maps for
profiling normal behaviour combined signature, anomaly and machine learning techniques to
classify network data on the KDD Cup '99 data set (Depren, Topallar, Anarim & Ciliz, 2005).
Another system proposed by Aydin, Zaim & Ceylan (2008) combined signature and
anomaly-based intrusions detection systems. The researchers noted that the overall system
improved upon traditional signature detection by utilising anomaly detection to detect unknown
attacks.

Although the techniques offer promising benefits when combined, there are still clear
limitations. We further analyse the intrusion detection field from a critical point of view within
the next section.

2.5 Limitations of intrusion detection systems

We have discussed the intrusion detection field on a very high level, introducing the different
topologies and detection techniques available. Wang (2008) identifies several characteristics
an intrusion detection system must fulfil. These characteristics are based on the work of Debar
etal. (1999).

* Fault tolerance — the IDS itself must be resistant to attacks

+ Completeness — identified as the core function of any IDS. The system should be able
to detect all intrusion attempts leading to a false negative rate of 0. Such as low false
negative rate is unrealistic and exceptionally hard to achieve

 Performance — the IDS should be able to function and operate without constraining the
network or host

» Accuracy — the IDS should not classify legitimate traffic as malicious and vice versa. This
relates to the false-positives within detection. We further discuss evaluation techniques in
Chapter 6

+ Scalability — the ability to process traffic in real-time is of great importance within IDS.
This also relates to the data received from different audit agents within the host topology

The requirements clearly outline why building a good and effective IDS is so difficult. The
underlying issues have already been drawn in the problem statement, and current techniques
are not coping with the sheer amount of new attacks.

A vague picture of the current intrusion detection limitations has been painted but a more
complete picture is needed. Several research papers have scrutinised the current intrusion
detection domain (Lee et al, 2002; Sommer & Paxson, 2010; Mohammad et al., 2011;
Burdette, 2016). An increase in research papers within the field also outlines the need for
improvement (Sommer & Paxson, 2010). We further investigate the issues in the next chapter
as we look at the limitations of machine learning within the intrusion detection field.
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According to Lindqvist & Porras (1999), network-based IDSs are not able to catch all forms of
intrusion; some intrusion does not happen within the network layer, therefore a hybrid system
should be used to combine host and network-based attacks. Network-based intrusion
detection cannot analyse encrypted data. Host-based systems also fail to observe network
activity that might form part of an attack on the specific host (Lindgvist & Porras, 1999).

With a successful U2R attack, the attacker can turn off the IDS agent using the root privileges.
For NIDS to be effective the system requires great visibility (Schupp, 2000). This however
depends on the network and security design; bad implementation can lead to high false
alarms or slow down network performance. For example, connecting the NIDS to a network
switch will only allow the system to process traffic directed to it. The switch network scenario is
not optimal and limits the system. Placing the IDS is exiremely important; not limiting the
system or crippling its visibility of the network should be considered (Schupp, 2000; Stingley,
2015).

The allocation and consumption of resources are imperative for an IDS. The system requires
scalable operations; without the resources to capture, store and analyse large amounts of
data in real-time, the IDS becomes just another offline reporting tool. The sheer packets per
second can reduce the IDS’ ability to keep up (Schupp, 2000). TCP connections require a
three-way handshake to detect attacks. The IDS would need to maintain states for the current
active connections.

Hackers can utilise several techniques to cripple or reduce the IDS’ abilities. The attacker can
blind the sensors by flooding the NIDS until it drops network packets. Such attacks are
overwhelming for HIDS. With HIDS, the attacker can launch several attacks simultaneously to
each endpoint. The system and administrator would have a hard time determining the source
or target of the real attack. Some tools allow the attacker to launch decoy scans that simulate
real attacks (Schupp, 2000). It is critical for the system to be fault tolerant due to several
techniques available to evade the detection system.

Current IDSs are failing to detect advanced stealth attacks. Using fragmentation, the attacker
will send network packets fragmented, breaking up the payload into smaller chunks to reduce
detection ability or reduce the ability to compare with the attack signatures. The signature
detection model lacks the flexibility as only slight variations in the attack sequence can affect
the signature comparison (Sadeghian, Zamani & Ibrahim, 2013; Holm, 2014).

Several tools can be used for evading detection and several techniques such as
method-matching, parameter hiding and session splicing are offered (Wang & Hong, 2016).
We further investigate the challenges brought by stealth, zero-day and attack variants in the
closing arguments of Chapter 3 when introducing machine learning to the intrusion detection
equation. Network intrusions are constantly evolving; such is the traffic within the network
environment. The infinite variety of attacks and the creativity of hackers would require an
extremely dedicated effort to update the signatures in the hope to accurately identify variations
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of attacks. It is evident that security researchers and security professionals operate within a
tough, complex field; the malicious efforts are ever so slightly edging past our endeavours.
The slightest improvement regarding accuracy, performance or even practicality pushes the
cyber defence domain towards levelling the battlefield. The potential within the machine
learning field warrants further investigation and research.
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CHAPTER 3

MACHINE LEARNING

In Chapter 3 we look at the machine learning domain from an intrusion detection perspective.
Section 3.1 introduces the field of machine learning and data mining. We then move on to the
machine learning classification task in section 3.2. Ensemble techniques for machine learning
is discussed in section 3.3. The benefits and limitations of machine learning within intrusion
detection are briefly discussed in section 3.3 and 3.4.

3.1 Introduction

Data mining combined with machine learning is defined by Parihar & Tiwari (2016) as
processing data to gain the implied, prior unknown potential of useful information, which can
be expressed as patterns. The previous chapter highlighted the issues and need for improved
intelligent components within the intrusion detection domain. To understand the potential of
intelligent improvements, one has to understand the different types of intelligence in
computing.

Computational intelligent systems as defined by Bezdek (1993) can be identified when it deals
with e.g. only numerical data; incorporates pattern recognition components; does not use
knowledge in the artificial intelligence sense and progressively, when it exhibits computational
adaptability; computational fault tolerance; human-like turnaround speed and failure rates
compared to approximate human performance.

Artificial intelligence provides important and comparatively low-cost techniques for designing
IDSs while taking care of the energy consumption (Alrajeh, Lloret & Loo, 2013). Artificial
intelligent systems are more concerned with improving known algorithms by utilising
problem-solving techniques similar to those used by human beings (Frank, 1994). Within this
thesis, we lightly cover some intelligent systems such as decision trees and swarm intelligence
in the next chapter. Table 3.1 represents the main differences between computational
intelligent systems and well known artificial intelligent systems.

Table 3.1: Intelligent system comparison by Craenen, Eiben (2002) & Crosbie et al. (1995)

Computational Intelligence Artificial Intelligence

Handles numerical representation of | Handles symbolic knowledge
information representation

Low-level cognitive functions High-level cognitive functions

Bottom-up analysis: structure is | Top-down analysis: analyses structure
expected to emerge from an unordered | of a given problem and attempts to
beginning construct an intelligent system based
upon the structure
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Machine learning is a branch of artificial intelligence; in essence it is the science of giving
machines the ability to learn and adapt. Doing so requires intensive use of mathematics and
statistics to model the problem and then rely on the computational power of computers to
crunch the numbers. However, this would all be in vain if the machine cannot learn. The most
popular learning techniques are either supervised or unsupervised (Balon-Perin, 2012).

Consider a generic framework for machine learning where there are data input, a machine
learning algorithm and output produced. Supervised learning requires the data input to be
labelled, i.e. each entry within the input data set has a label indicating which class the entry
belongs to. For intrusion detection, this would require each network record to be already
labelled as an attack or normal network traffic. The classification task is further discussed in
subsection 3.2.

Consider a child who has to learn to recognise an object with the help of her parents. The
parent lines up several objects and tells the child the word corresponding to the object. The
child now considers several features of the object such as shape, colour, texture, etc. to
remember. With machine learning, these would all be features within the data set. The child
will then associate a label (the word told by the parent) to the corresponding object in her
memory. When the child observes the object again, she will be able to utter the word
corresponding to the label.

Supervised machine learning works similarly. The algorithm builds a model based on the input
data set’s features and the necessary label assigned to each entry. This also becomes the
main disadvantage of supervised learning where the algorithm is unable to learn without a
labelled data set. As discussed in Chapter 6, labelled data sets are a big issue within the IDS
domain (Sommer & Paxson, 2010).

Unsupervised learning, however, does not require any label within the data set to learn, due to
drawing conclusions from the similarities in data as “moments® (Parihar & Tiwari, 2016). This
is extremely beneficial, but as one can imagine, it will not provide the same accurate results as
supervised learning because unsupervised learning has no grounded truth.

Witten, Frank, Hall & Pal (2016) summarise the following popular machine learning techniques
as follows:

* Regression — very popular for estimating numerical values such as housing prices,
product prices, stock prices, etc. Several techniques of regression exist such as
Gaussian process, linear and kernel. The technique is supervised as it requires prior
knowledge and data sets labelled to perform predictions

« Clustering — the task is all about grouping data and a label associated with each of the
groupings together. This is a popular unsupervised approach where the model identifies
common similarities in the data, and then combines them. Clustering involves algorithms
such as K-means, mean-shifts, etc.

« Classification — this technique is very simple and involves classifying unknown data
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based on learning from a labelled data set. Although most techniques involve using
supervised learning such as decision trees and naive Bayes, this is not always the case.
Neural networks can learn unsupervised and still classify data accurately, especially with
modern advances in deep learning

It is important to understand that within machine learning, there is no silver bullet. The
techniques used to solve a problem need to be tailored to fit, and regression might address
the problem predicting housing prices with high accuracy, but will however not add much value
to data that are nonlinear. In this thesis we focus on the task of classification although other
machine learning techniques might be applicable to an IDS. The underlying ATM algorithm
classifies data using supervised learning.

3.2 The classification task

Classifiers receive labelled data from training data sets, align it to groups predefined by their
specific qualities and then output a classifier that can predict the class for new items.
Classification of intrusion data is a mature research area, and several different classifiers have
had success within detecting intrusions (Nguyen & Choi, 2008; Tsai, Hsu, Lin & Lin, 2009).

The purpose of the classification task is to classify data by learning several features from an
input data set (Schapire, 2015). The machine learning classification task can be assigned too
many modern data problems such as:

» Text categorisation — spam filtering or simple sentiment analysis
» Fraud detection - Classify high risk transactions or banking events

* Machine vision — face detection or object classification e.g. identify weapons within a
picture or detect known criminals using facial recognition and surveillance techniques

+ Market segmentation — classify clients who will respond to the promotion
 Bioinformatics — classify proteins according to their function

Classifying data using machine learning is more data driven than human-crafted rules, leading
to more accurate results in the classifier (Kotsiantis, 2007). Machine learning also removes the
human element, and although the benefits have become a heavily debated topic, it still results
in a reduction of human errors and consistency when computing results (Gutzwiller & Reeder,
2017).

Machine learning tasks must be fitted and tailored to function at acceptable levels. Before
classifying data with machine learning, some requirements must be met (Witten et al., 2016):

« Easy accessible data source — to build a training data set, a data source needs to be
accessible and easy to extract data from. The quality of data extracted also needs to be
of high integrity as the model is built from it. Frequently, it is hard to obtain enough and
high-quality data with current legal regulations, privacy considerations and technical skills
required. This increases challenges for sourcing machine learning data substantially

+ Labelled training data — training data needs to be very similar to the test data for accurate
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models. Therefore the training data needs to be well crafted and accurately labelled.
Labelling data can become a tedious task as each entry needs to be labelled, the data
within the training data set also needs to be sulfficient to build a machine learning model.
If labelling the data is not possible, other machine learning techniques can be applied

* Model evaluation — machine learning has not yet evolved into a plug and play data tool
(Brink, Richards & Fetherolf, 2016). Several techniques can be used to evaluate
machine learning models, and the model needs to be correctly evaluated. The
dimensions within the training, evaluation and test data sets are crucial to understand.
The value of evaluating the model depends on the type of data used to create it. This is
seen within this thesis as well, in Chapter 6, where the performance metrics are
discussed. For example, highly unbalanced data sets might show high accuracy,
however, the metric cannot be relied on when using unbalanced data sets and the
f-measure would be a better representation on how the model performed

« Model testing — test data need to represent real situations. If this is not the case, a clear
discrepancy between test results and actual implementation performance will be noted.
Data simulating real networks are among the most difficult to label correctly

It is clear that classifying data is no easy task. Often when machine learning is tasked with real
world problems, massive amounts of data need to be worked through. We have established
the importance of data quality and the “garbage in, garbage out” methodology can haunt
accurate results with machine learning (Yang, 2010).

Data pre-processing has become a crucial part of any machine learning task. Kotsiantis,
Kanellopoulos & Pintelas (2006) state that the representation and quality of instance data are
the most important factor within machine learning tasks. Data pre-processing is a process
where data are cleaned up, normalised or relevant features are extracted (Kotsiantis et al.,
2006). The process occurs as the final training step and allows for improved performance and
accuracy.

Feature selection has become a useful technique within the pre-processing process to
improve machine learning success. Selecting useful features will reduce data dimensionality
and lead to improved performance as well (Dinakaran & Thangaiah, 2013). Kotsiantis et al.
(2006) explain the feature selection process as identifying and removing as much irrelevant
and redundant features as possible within a training data set. With fewer features to process,
machine learning algorithms operate quicker and more efficient. Kotsiantis et al. (2006)
characterise features within a data set as follows:

* Irrelevant — features that do not have any influence on the result

» Relevant — features that affect the result and their role cannot be assumed by any of the
other features

» Redundant — features which role can be assumed by another feature

A myriad of feature selection techniques exist. In this thesis, the information gain and ranker
techniques were used. The information gain technique measures the information in bits with
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regard to the class prediction (Hall & Holmes, 2003). It measures the uncertainty associated
with a random feature. If the feature produces zero information gain, it does not add value to
the class prediction and can be removed.

Utilising the ranker search method, each feature is ranked based on the feature evaluator’s
result e.g. information gain, entropy. The ranker method provides a rating for the feature,
ordered by its score in relation to the information gain (Dinakaran & Thangaiah, 2013). We
further discuss how features were selected using WEKA in Chapter 6, followed by a
discussion of the results in Chapter 7. Although machine learning results can be improved
using feature selection, ensembling can also be applied.

3.3 Ensembling

Dietterich (2000a) notes that ensembling techniques are the combination of one or more
machine learning algorithms that constructs a set of classifiers and then classifies data based
on the overall popular predictions. To simplify, ensembling produces a new classifier
combining individual decisions from several classification models. An example of a
classification prediction model is provided in Appendix C, table C.2.

The individual models can be combined based on a weighted voting, averages or unweighted
voting (Dietterich, 2000a; Gatta, Vallati, De Bari, Pasinetti, Cappelli, Pirola, Salvetti, Buglione,
Muiesan & Magrini, 2014; Lacy, Lones & Smith, 2015). The key ingredient for creating a useful
ensemble classifier is combining several diverse and accurate models (Hansen & Salomon,
1990). Ensemble classifiers can be created by using the following techniques:

1. Bagging: Manipulating the training data set by training several prediction models based
on only a sample of the training data drawn randomly (Breiman, 1996; Alfaro, Gamez &
Garcia, 2013; Lipitakis & Kotsiantis, 2015).

2. AdaBoost: Manipulates the training set to create several hypotheses. AdaBoost uses
a weighted function of each training set to reduce the error rate (Freund & Schapire,
1995; Lipitakis & Kotsiantis, 2015). We can deduce that more weight will be placed on
misclassified training sets and less on a set correctly classified, thereby progressively
improving the result.

3. Randomness: The method for implementing randomness into classifiers is highly
dependent on the type of classifier used (Dietterich, 2000a; Lipitakis & Kotsiantis, 2015).
For decision trees, Dietterich (2000b) implemented randomness by randomly selecting
the top value sets for splitting candidate decision trees.

Ensemble techniques are a matured research area and in most cases lead to higher accuracy
in classifiers (Dietterich, 2000a; Banfield, Hall, Bowyer & Kegelmeyer, 2007). We ensemble the
ATM classifier in a similar method to bagging as discussed in Chapter 6. In the next section, we
investigate the benefits of applying machine learning within the intrusion detection field.
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3.4 Benefits of machine learning within intrusion detection

In the previous chapter, we have established the requirements for intrusion detection systems
and now investigate how machine learning can bridge the gap between the current state of
intrusion detection systems and the requirements for a optimal functioning IDS.

As with any intensive data task, intrusion detection systems are required to process large sets
of data. Machine learning within intrusion detection can assist in extracting the required
information from unknown data sets and identify irregularities (Sommer & Paxson, 2010;
Holm, 2014). Regrettably, zero-day exploits or novel attacks, attacks not previously known, are
still among the most dangerous (Zetter, 2014). Signature detection systems battle
tremendously with novel attacks as discussed in Chapter 2 on page 25.

The problem worsens as attacks spawn several variants, which might not always be added to
the signature database timeously. Intelligent detection techniques built from machine learning
models would be able to learn and adapt much quicker than waiting for updates from service
providers and then the deployment thereof within a company (Buczak & Guven, 2016). Some
machine learning techniques generalise much better with data and have therefore more
accurate results.

The real power of machine learning can be harnessed from anomaly detection techniques, as
this does not depend on updating any signature (Omar, Ngadi & Jebur, 2013). The core of
anomaly detection is built upon learning normal user behaviour, as learning is what machine
learning algorithms do. This highlights another potential benefit for peeking into machine
learning techniques.

The accuracy and fault tolerance of machine learning models mainly depend on their error
rate; in several machine learning techniques the error calculation or sensitivity can be tuned
(Fawcett, 2006). This allows for a deeper sense of balance between accuracy and fault
tolerance. Machine learning techniques can process data fast, adapt and learn (Buczak &
Guven, 2016). This nudges another benefit as machine learning techniques capable of
functioning with real-time network data would be perfect for intrusion detection systems. The
vast amount of data flowing through a network requires quick processing. Machine learning
also becomes useful in offline detection; one can argue that the vast amount of data
harboured can be dissected by machine learning techniques without impacting network
performance or production capabilities when implemented in a segregated environment.
Although intrusion detection systems require real-time detection, the model can be trained
offline and still be used to detect intrusions in real-time. With all the potential benefits, one
might ask, why are we not there yet? Sommer & Paxson (2010) highlight the shortcomings of
intrusion detection systems and the effect of machine learning research within the domain.
Machine learning techniques have weaknesses that need to be overcome to build efficient or
useful intrusion detection systems (Wu & Banzhaf, 2010). Combining the two domains are
complex and demands data of high integrity in order to do so. The next section highlights
some of the weaknesses within machine learning and intrusion detection.
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3.5 Challenges of machine learning within intrusion detection

The limits of intrusion detection systems were briefly discussed in the closing arguments of
Chapter 2. Research performed by Sommer & Paxson (2010) indicates the differences
between the IDS domain and areas of machine learning, claiming that the problem originates
within the premise and that anomaly detection is suitable for finding novel attacks and does
not hold with the generality commonly implied.

Sommer & Paxson (2010) further state that the advances and potential of machine learning
tools are within finding an activity that is similar to something previously seen, without
identifying the activity’s characteristics up front. Their statements refer to signature and
anomaly-based intrusion detection systems, promoting the concepts on which
signature-based intrusion detection systems are founded.

Research has shown there is a clear “success discrepancy” within the intelligent intrusion
detection research domain, due to the domain exhibiting characteristics that would make
effective deployment of machine learning approaches much more complicated and harder
than in other contexts where the specific machine learning methods were successfully
implemented (Sommer & Paxson, 2010). Research performed by Wu & Banzhaf (2010) agree
that current intrusion detection systems had shown limitations within the requirements of
achieving high detection accuracy and “on the fly” processing speeds when confronted with
the adaptability requirements of intelligent intrusion detection. A set of guidelines aimed at
improving the current research is provided by the two authors.

First of all, intrusion detection is very different from the other domains in which machine
learning has been applied successfully. Intrusion detection demands much more real-time
detection and processing capabilities to handle massive amounts of data and highly accurate
results. In most instances, the cost of investigating false positives outweighs the cost of breach
(Sommer & Paxson, 2010). Spam detectors are a very good example of this. Machine learning
has been extensively applied within the domain, however, the level of precision required is
much lower than with intrusion detection systems (Guzella & Caminhas, 2009). We discuss
the requirements for intrusion detection research in the closing section of Chapter 6.

Gollmann (2010) states that most commercial intrusion detection systems use signature
detection. Several researchers find the false negative rate within signature detection alarming,
specifically when faced with unknown attacks (Kumar, 2007; Gollmann, 2010; Hoque et al.,
2012; Aghdam & Kabiri, 2016). Signature detection also favours low false positive rates.
Engen (2010) argues differently, stating that this general perception is not accurate for
intrusion detection systems (Liao et al., 2013). The application of machine learning techniques
within intrusion detection allows signature detection to be more flexible and detects larger
variations of attacks (Engen, 2010).

Sommer & Paxson (2010) disagree, noting that there is a certain lure to the potential benefits;
however, the problem originates on the premise that the task of finding attacks with machine

learning is similar to other applications of machine learning. Despite the popular uptake of
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intrusion detection research combining machine learning, the techniques are rarely employed
in real world” environments (Sommer & Paxson, 2010).

It is evident that intelligent components for anomaly detection would still produce too many
false positives, rendering the cost of implementing a pure anomaly detection system too high.
The traditional methods of signature detection are still the most widely adopted detection
system due to the high accuracy and simplicity (Hubballi & Suryanarayanan, 2014; Holm,
2014; Raiyn, 2014).

Signature detection is extremely effective only if the exact characteristics of the attacks are
known beforehand. The method suffers from the inability to identify attacks that occur over an
extended period or unknown attacks (Wu & Banzhaf, 2010; Holm, 2014) .

A division of an attack over time or among seemingly unrelated attackers are very difficult to
detect using signature detection methods. With signature detection, the assumption is made
that the attacks can be precisely encoded in such a manner that identifies variations of the
activities, which exploits the vulnerability (Kumar, 2007; Holm, 2014). The assumption is
flawed, as attacks grow more sophisticated, more rigid and stealthy, rendering an IDS useless.
It is easy to identify a pattern within the intrusion detection domain, a new premise based on
recent research advances (Kumar, 2007; Sommer & Paxson, 2010; Buczak & Guven, 2016).

Signature detection limitations can be overcome by implementing anomaly detection.
Delusional at best, it can be noted that this creates more problems than it solves (Sommer &
Paxson, 2010; Wu & Banzhaf, 2010; Buczak & Guven, 2016). The premise is flawed, as there
is a trade-off between detecting novel attacks and raising several false alarms as you adjust
the sensitivity of an algorithm (Sommer & Paxson, 2010; Fawcett, 2006). The unfortunate fact
is that most breaches monetarily amount to less than losses incurred from detecting false
positives (Foster, 2015; Ponemon Institute, 2015; Williams, 2016). It is, therefore, a “catch 22~
situation for the intrusion detection field. Thus, although intrusion detection systems need to
be able to adhere to the set of requirements, we first need to be able to apply anomaly
detection accurately.

This chapter tugged the intrusion detection domain closer with machine learning. The ATM is

built upon decision trees and ant colony optimisation, both popular machine learning
techniques as discussed in the chapters to follow.
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CHAPTER 4

INTELLIGENT CLASSIFIERS

In Chapter 4 we discuss the two pillar machine learning techniques that support the ATM
classifier. In the first section (4.1) we discuss a popular machine learning technique called
decision trees. Section 4.2 introduces a more complex field of machine learning called swarm
intelligence, and we specifically discuss ant colony optimisation and its implementation within
other domains.

4.1 Decision trees

4.1.1 Introduction

Decision trees can be used for classification of categorical variables or the prediction of
continuous variables. Decision trees are tree-like graphs consisting of internal nodes that
represent a test of an attribute, branches that denote the outcome of such tests, and leaf
nodes that outline the label. The path followed from the root node to the leaf indicates the
rules for classification. The main advantage of decision trees over other classification
algorithms is that they provide a rich set of rules that are easy to understand and can be
integrated with real-time technologies. Singh & Nene (2013) note that although decision trees
are very accurate, they are computationally intensive on large data sets. Figure 4.1 illustrates
a simple decision tree that classifies intrusion data.

serror_rate >3

= »  Alarm
TP N
T
\__/
- » No Alarm
£ serror_rate < 3
( 1 )
LN j logged in=1
_ »  Alarm
.-’, 3 \'_
uop ./
St » No Alarm

logged_in=0

Figure 4.1: Decision tree example

The protocols TCP and UDP represent branches of the root node 1. The two classifications,
serror_rate and logged_in, are internal nodes. TCP protocol with a serror_rate value higher
than three will trigger an alarm. The discrete function of each input attribute determines the
split for each internal node.

As with the figure above and in most cases with each test considering a single attribute, each
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instance space is then partitioned according to the attribute’s value. Although simplistic,
decision trees can quickly become complicated, numeric attributes can be geometrically
interpreted as a collection of hyperplanes, each orthogonal to one of the axes (Rokach &
Maimon, 2015).

Breiman, Friedman, Stone & Olshen (1984) note that the complexity of the tree greatly
influences the accuracy. We further investigate this statement in Chapter 6 as we create a cost
metric for the ATM classifier. We can, therefore, measure the tree complexity using the total
number of nodes, the total number of leaves, the tree depth and the number of attributes used
(Rokach & Maimon, 2005). Breiman et al. (1984) state that tree complexity is controlled by the
method used to stop and prune the decision tree. We further discuss techniques used for
decision trees in the next section.

4.1.2 Techniques for decision trees

In this section we briefly introduce the steps taken to build a decision tree. Finding optimal
decision trees for a training data set is an NP-hard problem (Rokach & Maimon, 2015).
Consequently the same applies to finding a minimal equivalent decision tree or building
optimal decision trees (Rokach & Maimon, 2015).

We can divide the heuristic methods required to solve the problem in two groups: bottom-up
and top-down. The latter group has become more popular and includes inducers such as ID3
created by Quinlan (1986), C4.5 by Quinlan (1993) and the Classification and Regression
Trees (CART) developed by Breiman et al. (1984). Although old, these techniques are among
the most popular used for decision tree induction (Kotsiantis, 2013). Some techniques create
decision trees in two phases, growing and pruning (C4.5 and CART).

We can classify the steps to build decision trees as splitting, stopping, pruning and inducing,
based on the outlines given by Rokach & Maimon (2015).

Splitting methods: Within each iteration the algorithm building the decision tree would need
to consider the partition of the training data using the outcome of a discrete function of input
attributes (Rokach & Maimon, 2015). Selecting the most appropriate function is based on the
values used to determine the split.

» The criteria can be based on the origin of the measure — information theory, dependence
and distance

» The measure structure — impurity-based criteria, normalised impurity based on criteria
and binary criteria

Stopping methods: Once the nodes are divided based on the split criteria, the algorithm
continues to subdivide the training data until no further splitting satisfies the criteria or until the
stopping criteria are satisfied. The condition for stopping is based on the following common
rules (Rokach & Maimon, 2015):

1. Instances in the training set belong to a single value of .
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2. The maximum tree depth has been reached.

3. The number of cases in the leaf nodes is less than the minimum number of cases for the
parent nodes.

4. Once the node is split, the number of cases in one or more child nodes would be less
than the minimum number of cases for the child nodes.

5. The best splitting criteria are not greater than a predetermined threshold.

6. If any of the conditions are met the algorithm would stop. These rules are only common
rules and some algorithms might contain more or less rules.

Pruning methods: If the stopping technique used is too strict, the decision trees created will
be small and underfitted. Underfitted decision trees are built when the decision tree model is
too simple and does not fit to the data well enough. Overfitted decision trees are too
complicated and large. Over- or underfitted decision trees both create prediction models that
cannot be relied on fully. Breiman et al. (1984) first suggested the use of pruning to reduce the
complexity and size of decision trees (Rokach & Maimon, 2015).

Popular techniques for pruning are performed top-down or bottom-up. The nodes are pruned if
the result would improve a certain heuristic or meet criteria. We can summarise the following
pruning techniques noted as the most frequently used when building decision trees by Rokach
& Maimon (2015) and Barros, De Carvalho & Freitas (2015):

» Cost — complexity pruning measures the average error reduced per leaf to prune the
decision tree (Barros et al., 2015). The number of errors for each node is calculated if
collapsed to leaf and then compared to the errors in the leaves. For example, to prune
a tree G in a node g means that ¢ becomes a leaf node and all descendants of ¢g are
removed. It is important to note that the technique does not consider all pruned subtrees,
but only the best ones (Barros et al., 2015)

» Minimum error pruning proposed by Clark & Niblett (1986) is performed from the bottom-
up and seeks to minimise the expected error rate for masked cases. The technique is built
on determining the importance of a priori probability on the estimation of the error, and
this is done by using a parameter m — the higher m, the more severe the pruning (Barros
et al,, 2015). The value of m should be set based on the discretion of the domain expert
and therefore results using this technique can vary

* Error-based pruning proposed by Quinlan (1993) is the default pruning technique used
in his C4.5 technique. The technique is performed in a bottom-up fashion. Replacing a
non-terminal node by a leaf is not easy; the technique considers grafting a subtree onto
the parent’s place or to not prune at all. The pessimistic estimate of the expected error is
calculated by using an upper confidence bound (Barros et al., 2015). For deciding whether
to replace a non-terminal node by a leaf (subtree replacement), to graft a subtree onto
the place of its parent (subtree raising) or not to prune at all, a pessimistic estimate of the
expected error is calculated by using an upper confidence bound

* Reduced error pruning proposed by Quinlan (1987) utilises a pruning set to evaluate
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the goodness of a given subtree 7. The classification error in the pruning set is used
to evaluate each non-terminal node, T'e(r. The conditions for pruning are based on the
decrease of error — only when the error decreases will T' be pruned. A constraint put in
by Quinlan (1987) forces the method to be performed bottom-up; the node ¢ cannot be
pruned if it contains a subtree that yields a lower classification error in the pruning set.
The method does not work well with smaller data sets (Barros et al., 2015)

Induction methods: We can build decision trees by simply constructing a decision tree based
on the training data. The induction method does not allow for generalisation within the decision
tree model. Several techniques are used to induce decision trees, and the ATM classifier can
be ranked among the latest. Let us first take a step backwards and introduce the more common
induction techniques:

+ ID3 is one of the oldest decision tree induction techniques created by Quinlan (1986).
The information gain is used as a splitting criteria, and the decision tree stops when the
information gain is smaller than zero. The ID3 technique does not utilise pruning or handle
numeric and missing values

+ C4.5 is a welcome improvement on the ID3 technique created by Quinlan (1993). The
gain ratio is used as a splitting criterion and halts once the number of instances to be split
is under a predetermined threshold. Unlike ID3, the C4.5 technique utilises error-based
pruning after the growing phase. The technique handles numeric and missing values as
well

* CART created by Breiman et al. (1984) constructs binary decision trees; therefore each
internal node has only two outgoing edges. The Twoing criteria are used for splitting, and
complexity pruning is used to prune the decision tree. CART can handle misclassification
costs during the tree induction. The created regression trees use the leaves to predict
real numbers instead of class attributes

By following the above-mentioned steps, any decision tree model can be built. The techniques
mentioned within the thesis are by no means a comprehensive list as several variations can be
combined. A survey study by Kotsiantis (2013) noted that these techniques are among the most
popular used in data mining. We look at the implementation of decision trees within intrusion
detection later in the chapter. Now that we understand the fundamentals that form a decision
tree, let us discuss some of the benefits.

4.1.3 Benefits of decision trees
The following advantages of decision trees have been identified based on the literature in the
previous sections:

» Simplistic — decision trees are simple and self-explanatory; we can even convert a
decision tree to a set of rules (Rokach & Maimon, 2015). The simplicity allows readers
without much knowledge of decision trees to use and understand a decision tree model

« Input variety — decision trees can handle both nominal and numeric input attributes, unlike
some neural network algorithms that only use numerical attributes (Rutkowski, Jaworski,
Pietruczuk & Duda, 2014). Input variety allows for a broader set of data that can be fed

45



into the algorithm and vastly improves the popularity

* Rich representation — decision trees can represent any discrete value as a classifier.
Decision trees can also handle both continuous and categorical variables fairly well
(Rutkowski et al., 2014; Rokach & Maimon, 2015)

» Generalisation — depending on the induction technique used, decision trees can handle
missing values and data sets that have errors (Bramer, 2016). This allows once again for
a greater audience of data that could potentially be applied. Although decision trees can
handle missing values, it severely impacts the accuracy and complexity as discussed in
the limitations to follow

4.1.4 Limitations of decision trees

The following limitations of decision trees have been identified based on the literature in the
previous section. According to Friedman (1996), most issues with decision trees can be split
into two categories: algorithmic problems and representation problems. With the latter,
subtrees are duplicated in disjunctive concepts and in many cases lead to the partitioning of
data into smaller fragments. According to Friedman (1996), these issues place decision trees
at a disadvantage when tasked with classifying data with many relevant features. The problem
worsens when decision trees are tasked with handling missing data as the correct branch to
take is not known, and the algorithm must use a special technique to handle the missing
values (Friedman, 1996). In the case of the C4.5 induction algorithm, the information gain will
be heavily penalised (Elomaa, 1994).

Depending on the method used to induce the decision tree, some instances might weigh
differently than others (Rokach & Maimon, 2015). This makes it harder to determine the most
accurate model and makes certain induction techniques sensitive to data. Decision trees will
struggle to classify certain elements with a limited number of training examples. A good
example of this is found and discussed in Chapters 6 and 7 as the decision tree heavily leans
towards the majority class when classifying. Depending on the complexity and induction
methods used, decision trees can be computationally extremely expensive to train. This is
investigated in depth by Latkowski (2003) who specifically notes the higher cost when
introduced to missing values. Decision trees do not handle non-rectangular regions well.
Some algorithms only utilises a single field at a time, which leads to rectangular classification
boxes that do not replicate with the distribution space in the data set (Rokach & Maimon,
2015).

4.1.5 Related work within intrusion detection

A long history of implementing decision trees within intrusion detection has been established.
We have looked at some of the recent implementations done in the field. Albayati & Issac
(2015) and Tavallaee et al. (2010) note that decision trees are regarded to be the most reliable
and accurate intelligent classifier implemented with intrusion data.

Although decision trees can generalise unseen data, it does not deal well with the missing
data. New attacks may be classified as some default class such as ‘normal’, as with the C4.5
decision tree classifier employed in an investigation by Bouzida & Cuppens (2006).
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Consequently, this causes false negatives. Therefore, Bouzida & Cuppens (2006) developed a
modified C4.5 decision tree classifier that classifies new/unseen data as a new ‘unknown’
class. By doing this, they avoid a significant amount of misclassifications for new attacks as
normal connections, particularly U2R attacks.

Ohta, Kurebayashi & Kobayashi (2008) also propose a modification to the C4.5 decision tree
classifier, aimed at reducing the false positive rate. The researchers adapted the way decision
trees are built by taking into account the type of errors that may be produced and choosing
attributes that are less likely to produce false positives. The modified decision tree classifier is
evaluated on subsets of the KDD Cup ’99 data set, and is compared with the original C4.5
decision tree. As an alternative approach to reducing the false positives, they also examined
random oversampling and undersampling of the training data. The modified C4.5 decision tree
classifier outperformed the original decision tree classifier and the sampling approach.
Over/undersampling led to similar detection rates, but obtained a much higher false negative
rate.

Tavallaee et al. (2009) applied decision trees, random forests and several of the most popular
classifiers in their NSL-KDD data set, providing a baseline result for the data set. It is
important to note that Tavallaee et al. (2009)’s research can be used as a comparative, as the
same training and test data sets are used. Refer to Chapter 7 for results analysis.

Rai, Devi & Guleria (2016) propose the creation of a decision tree classifier in which they use
their split classifier for implementation within intrusion detection. The approach follows a
similar methodology as the research described in this thesis utilising the NSL-KDD data set as
well.

Machine learning ensemble methods are used to obtain better predictive performance than
would have been impossible with any constituent learning method e.g. C4.5, tree learners,
decision tree learners and Bayesian methods (Dietterich, 2000a). Tesfahun & Lalitha Bhaskari
(2013) used cross-validation test techniques, random forests as well as their Synthetic
Minority Oversampling Technique (SMOTE) to classify intrusion detection data within the
NSL-KDD data set. Their experiments show a reduction in building time and an increased
detection rate for minority classes within the data set.

Aggarwal & Sharma (2015) trained ten classification classifiers using WEKA and the KDD Cup
‘99 data set. Their research highlights a clear dominance for tree-based classifiers, as the
random tree classifier shows the best results.

Decision trees have a clear place within the intrusion detection domain, and the
implementation thereof can be considered matured (Wu & Banzhaf, 2010; Buczak & Guven,
2016). Research even traces back to the late 1990s as Kruegel & Toth (2003) and Lee, Stolfo
& Mok (1999) implemented a decision tree classifier within the popular SNORT intrusion
detection system. It is evident that the amount of data has since grown significantly and fallen
behind many of the modern ensemble techniques. In the next section, we investigate an
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optimisation technique that is ultimately combined with decision trees in Chapter 5.

4.2 Ant colony optimisation

4.2.1 Introduction

Swarm intelligence, a field of artificial intelligence, attempts to replicate the nature of swarms
and colonies. Several such research avenues exist such as (Rani & Singh, 2017; Prakasam &
Savarimuthu, 2016):

+ Ant colony optimisation

+ Particle swarm optimisation

* Artificial immune systems

+ Bacterial foraging (e.g. biomimicry)

The foraging behaviour and indirect communication patterns of ants have galvanised several
optimisation algorithms for NP-hard problems (Prakasam & Savarimuthu, 2016). Ants exhibit
fascinating behaviour when foraging for food: they leave a chemical substance, pheromones,
to mark a specific route. Pheromones evaporate slowly over time. The strength of the
pheromone level will evaporate faster on a longer path because it takes longer to traverse.
Thus, shorter paths are chosen more often and build up higher pheromone levels than longer
paths. Based on this knowledge, Ant Colony Optimisation (ACO) algorithms are known for
solving optimisation problems and clustering data and have been particularly successful when
applied in business, engineering and science (Prakasam & Savarimuthu, 2016).

ACO can be considered a metaheuristic that creates and identifies candidate solutions for a
given problem. ACO has been used to solve several problems such as (Lépez-lbanez et al.,
2017):

+ Continuous optimisation problems
» Multi-objective problems
* Dynamic problems

The first type of ant-based algorithm created by Dorigo & Gambardella (1997) introduced a
new way of classifying data using the nature of ant colonies. This was later extended as the
ACO algorithms known today (Dorigo, Birattari & Stutzle, 2006; Rani & Singh, 2017). In order
to construct the solution, heuristic information, gathered from the problem instance and
artificial pheromone trails, and modified based on the search performance is used
(Lépez-Ibanez et al., 2017). The ACO developed by Dorigo et al. (2006) improves on the
traditional Ant System of Dorigo & Gambardella (1997) by locally updating the pheromones
instead of conducting only one global pheromone update. Once all the ants have built their
solutions, the global updating rule is applied to modify the pheromone level on the edges of
only the best solutions found so far.

As with decision trees, ACO can be created and built using several techniques. We summarise
such techniques and break down the basic ACO structure in the next section The summary is
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by no means a comprehensive guideline or list.

4.2.2 Techniques for ant colony optimisation

ACO can be viewed as other constructive metaheuristics such as a population-based
algorithm where ¢ solutions are generated at each run. The solutions are governed by a
probabilistic constructive mechanism biased towards the numerical pheromones. The
pheromone values are adjusted with each run based on the quality of the generated solutions.
We can summarise this based on the high-level pseudocode developed by Dorigo et al.
(20086).

Algorithm Ant Colony Optimisation is
input: problem’s construction graphs
output: best solution

function ACO()

Initialise

while termination condition not met do
ConstructSolutions
LocalSearch //optional
UpdatePheromones

end while

return best solution

end function

Listing 4.1: Ant colony optimisation pseudocode

A basic ACO algorithm iterates through three simple functions (Lopez-lbanez et al., 2017).
The solution is constructed during the ConstructSolutions function and the pheromone values
are updated accordingly during the UpdatePheromones function. The current iteration solution
can be improved by using a local search function (Mavrovouniotis, Muller & Yang, 2017).

The representation is significantly high-level and ACO can be constructed using several
techniques or parameter settings (Lopez-lbanez et al., 2017). We investigate the ATM
parameters in Chapter 6 as we aim to optimise the solution. We discuss some techniques that
can be used within each function to build ACO solutions.

Solution construction: With ACO, each solution is constructed by the virtual organism; each
ant represents a probabilistic solution construction function. Parameters can be used to
control the significance of the pheromone trail or other heuristic information on the decision
probability (Maniezzo, 2002). New solutions are generated with each iteration of the algorithm.
Lopez-lbanez et al. (2017) note that the solution construction function is critical to the
development of an ACO solution. The following probabilistic rules can be used to construct
ACO solutions:

» Ant System — the probabilistic rule created by Dorigo, Maniezzo & Colorni (1996) could
be considered the most popular among ACO solution constructions (Prakasam &
Savarimuthu, 2016)
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* ANTS —the probabilistic rule was extended by Maniezzo (1999) using his ANTS algorithm
combining pheromone trails and heuristic information in an additive function

+ Ant Colony System (ACS) — Dorigo & Gambardella (1997) preferred a more deterministic
construction function with their ACS algorithm

» AntMiner — The goal of the AntMiner by Parpinelli, Lopes & Freitas (2002a) is to extract
classification rules from data. Initial experiments noted that the algorithm improves upon
the traditional C4.5 algorithm

» cAntMiner — Otero, Freitas & Johnson (2008) extended the AntMiner algorithm with their
cAntMiner which uses an entropy-based discretisation method in order to cope with
continuous attributes during the rule construction process

* AntMiner,,, — the algorithm extends the AntMiner using an archive-based pheromone
model to handle mixed attribute types within a data set (Helal & Otero, 2017)

Lopez-lbanez et al. (2017) mention that to improve efficiency, a “lookahead” can be used that
considers multiple components when selecting the best current partial solution. In order to
improve efficiency, the number of solutions can be reduced by using candidate lists containing
the most promising solution components. The constructed solution greatly depends on the
pheromone, which requires a more detailed consideration of the global pheromone update.

Global pheromone update: From the solution construction function, we can deduce that the
pheromone heuristic is altered to control the bias during the construction of new solutions
(Otero et al, 2012). The pheromone component can be updated globally and locally
depending on the algorithm in question. As with normal ants, the pheromones need to
evaporate and be deposited throughout the process (Lopez-lbanez et al., 2017).

» Evaporation — reduces the pheromone value by some factor with the ultimate goal to
relieve the influence of previous pheromone depositions. Pheromone evaporation causes
poor decisions to have less influence within the solution construction (L6pez-lbanez et al.,
2017)

» Deposition —increases the amount of pheromone for a few selected solution components;
this has the inverse effect of evaporation on the solution construction

These steps are performed to bias the pheromone ftrail to ensure that only high-quality
solutions are constructed (Lépez-lbanez et al., 2017). The pheromones can be initialised by
either a small (Alonso, Cordon, De Viana & Herrera, 2004) or a large (Stutzle & Hoos, 2000)
initial pheromone deposit within the global pheromone update.

The latter would result in a more explorative search phase, as a smaller deposit will reach the
best solution much faster. In most cases the pheromone deposit is left to the user to specify.
Pheromone updating during the solution construction is referred to as local pheromone
updates (Dorigo & Gambardella, 1997). The solution pheromone, chosen by an ant, is
updated locally. Stitzle & Hoos (2000) note that resetting the pheromone values to their
original values contributes to increased exploration within the search space, given enough
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time. Often referred to as restart’, the process resets the pheromone values without altering
the global-best solution found. This method of resetting the pheromone values has been quite
popular when applied to the travelling salesman problem and the quadratic assignment
problem (Lépez-Ibanez et al., 2017). In both cases a strong local search algorithm was used.

Local search: Commences from a predefined solution and iteratively applies meagre
changes, defined by a neighbourhood operator. The local search technique has been used in
several ACO solutions by Dorigo & Gambardella (1997), Stitzle & Hoos (2000), Gambardella,
Montemanni & Weyland (2012) and Mavrovouniotis et al. (2017). The local search algorithm
can be applied in two ways:

+ Best-improvement will replace the current solution with the best

« First-improvement will replace the current solution with the first improving solution in the
neighbourhood

Local search algorithms will stop once the entire neighbourhood has been examined and no
improved solution was found. When the local search algorithm is combined with ACO, the
local search is performed against the solutions constructed by ants.

Based on the literature review, we can summarise the advantages and disadvantages of ACO
as follows:

Advantages:

1. Randall & Lewis (2002) investigated several parallelism techniques for ACO. Within
ACO, each ant and will start the induction process parallel to one another. This default
parallelism allows ACO to be applied in the modern computing environment using
parallel processing (Cecilia, Garcia, Ujaldon, Nisbet & Amos, 2011).

2. The discovery of solutions is controlled by the amount of pheromone initiated (Lépez-
Ibanez et al., 2017). To force the quick discovery of good solutions, a small amount of
pheromone can be initiated or the evaporation rate can be increased.

Disadvantages:
1. ACO is difficult to analyse theoretically (Lopez-Ibanez et al., 2017).

2. The virtual organisms consist of a sequence of randomness, as they implement a
randomised construction heuristic (Dorigo et al., 2006).

3. The ACO algorithm is dependent on probability distributions that change after each
interaction (Lopez-lbanez et al., 2017).

4. Due to the nature of ACO to work collectively with no direct communication, the lack of
a centralised processor to guide the virtual organisms towards building good solutions is
also concerning as it leads to stagnation behaviour (Mavrovouniotis & Yang, 2010).

Despite the complexity, ACO has been implemented within the intrusion detection domain as
discussed in the section to follow.

51



4.2.3 Related work within intrusion detection

Ramos & Abraham (2005) introduced the ANTIDS, an ant colony-based clustering technique
to detect intrusions, obtaining an average 90% accuracy on their test data set. The approach
offered favourable results, however fell short in comparison with decision trees to detect
normal traffic and U2R.

Tsang & Kwong (2006) improved the ant mining cluster algorithm and applied it to the KDD
Cup ’99 data set for intrusion detection. Their research however used ten-fold cross-validation
and is therefore not comparable with research using actual test data sets as they achieve a
relatively low error rate.

An ACO algorithm was boosted by Soroush, Abadeh & Habibi (2006) for computer intrusion
detection. Their approach improved on the original ant-miner algorithm by partitioning the data
set, converting the heuristic function and changing the pruning technique. The research does
not make use of a test data set and the detection rate of over 99% is incomparable and can be
considered unrealistic.

Wu & Banzhaf (2010) note that recent experiment results for ACO within intrusion detection
show that the approach can achieve equivalent or improved performance on traditional
methods. The ability of ACO algorithms to function adaptive, parallel and cost-efficient is
certainly alluring for intrusion detection.

Kolias, Kambourakis & Maragoudakis (2011) performed a survey on swarm intelligence within
intrusion detection. By comparing several experiments using the KDD Cup '99 (or KDD’99 in
short) data set, the researchers noted that using swarm intelligence significantly boosts the
performance of all the machine learning techniques in which it was applied (Kolias et al.,
2011). They concluded that more research following standard complexity analysis alongside
intrusion detection metrics is required. We can directly relate that the use of repeatable
research methodology and test data sets are required (refer to Chapter 6).

The research performed by Shrivastava & Richariya (2012) combines ACO with a Naive
Bayes algorithm to classify intrusion data. The KDD’99 data set is used for training without a
test data set. Their NB-ACO algorithm achieved over 97% detection rates.

Aghdam & Kabiri (2016) created a feature selection process using ACO in intrusion detection,
exhibiting very low computational complexity when using a simplified feature set. The KDD’99
data set and the NSL-KDD data sets were used in this research project. As a result, their
proposed method reduced the data set features by approximately 90% and the detection
errors by approximately 20%.

A recent advance, combining ACO and decision trees by Otero et al. (2012), introduced a new
way to building decision trees. Their initial experiments with other machine learning data sets
showed improvement from the traditional techniques used to build decision trees. We further
investigate the ATM algorithm created by Otero et al. (2012) in the following chapter.
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CHAPTER 5

ANT TREE MINER CLASSIFIER

We introduce the ATM classifier in Chapter 5. Section 1 is an introduction to the work done by
Otero et al. (2012). Section 2 covers the essential components that make the ATM unique from
the algorithms discussed in Chapter 4. In the last section we discuss related work within other
domains.

5.1 Introduction

The unknown spectrum of inducing decision trees with ACO algorithms has been a new
research topic since 2012 (Otero et al., 2012). The divide-and-conquer principle is used to
induce a decision tree: it involves iterating from the top down, selecting the best attribute to
label an internal node of the tree. However, this process becomes moot as the appropriate
attribute has to be selected based on a heuristic evaluation.

In the previous chapter, decision trees were discussed as reported in the related literature.
Otero et al. (2012) propose a new method to induce decision trees — the method follows the
traditional structure of ACO. The proposed ATM follows the same structure as ACO. The
following pseudocode summarises the Ant Tree Miner algorithm as created by Otero et al.
(2012).

1 Algorithm Ant Tree Miner is

2 input: training examples, list of predictor attributes
3 output: best tree identified

4

5 InitialisePheromones

6 ComputeHeuristicinformation

7 treeGB is emptySet

8 mis O

9 while m < maximum iterations and not CheckConvergence do
10 treelB is emptySet

11 for n is 1 to colony_size do

12 treeN is CreateTree(Examples, Attributes, —)
13 Prune(treeN)

14 if Q(treeN) > Q(treelB) then

15 treelB is treeN

16 end if

17 end for

18 UpdatePheromones(treelB)

19 if Q(treelB) > Q(treeGB) then

20 treeGB is treelB

21 end if
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22
23
24

mis m+ 1
end while
return treeGB

Listing 5.1: Ant tree miner pseudocode by Otero et al. (2012)

The heuristic information for each attribute is first calculated, and then each ant (during the
while loop) in the colony creates a new decision tree until the maximum number of iterations is
reached or the algorithm converges.

The virtual ants create each decision tree using high reliance on the pheromone and heuristic
information. To avoid overfitting, a decision tree is pruned once the tree is created. The
decision tree is evaluated (treelB) against the current iteration’s tree. The latter is only updated
if the quality is better and the tree is then used to update the pheromone values. A global-best
tree (treeGB) is tracked, and a new iteration of the algorithms starts. Upon conclusion, the
global-best tree is returned as the discovered decision tree.

The ATM classifier differs significantly from the AntMiner algorithm through building decision
trees instead of rules. We discuss the components of the ATM in the section to follow.

5.2 Components of Ant Tree Miner

In this section we discuss the numerous components that form the ATM algorithm and once
trained, a classifier. Some of these components e.g. pruning and pheromone have already
been introduced in the previous chapters.

5.2.1 Construction graph

Each virtual ant constructs candidate solutions by traversing the construction graph. The
dynamic construction graph consists of N vertices that represent the attributes within the data
set, one vertex per attribute (Otero et al.,, 2012). Edges coinciding with different conditions
related to values from the domain of attributes connect each vertex. Within the ATM algorithm,
each ant would start at the virtual 'start’ vertex, considering that N edges connect the start
node to every x; attribute vertex of the construction graph.

The construction graph’s interpretation of nominal and continuous attributes are summarised
as follows:

1. Nominal attributes: Edges represent the condition where the attribute x; has the value
v;j (Otero et al., 2012). However, ants cannot select the same nominal attribute multiple
times in the same path of the tree.

2. Continuous attributes: A dynamic discretisation procedure is followed to create
discrete intervals for continuous values. This is due to continuous attributes not featuring
any predefined set of fixed intervals. ATM uses two discretisation techniques, one similar
to C4.5 selecting threshold values according to the information gain. The second
technique is based on the minimum description length (MDL) as proposed by Fayyad &
Irani (1993).
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Based on the nature of discretisation, the construction graph is dynamic and adapts based on
the current path followed by an ant. The process is completed for the subset of training
examples used in the discretisation procedure (Otero et al.,, 2012). Figure 5.1 illustrates a
construction graph based on the decision tree example from the previous chapter. In the
example, the construction graph is composed of three vertices namely 1. {TCP, UDP}, 2.
{L=0, L=1} and 3. {s<3,s>3}. The start can be considered a virtual ‘start’ vertex.

start
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Figure 5.1: Construction graph example

5.2.2 Heuristics

To understand the heuristics used within ATM, we first need to unpack the C4.5 induction
technique by Quinlan (1993). For the application of C4.5 within decision trees, refer to the
previous chapter. The C4.5 uses an entropy-based criterion to select the best attributes; in
essence, the entropy measures the impurity of a set of examples relative to their class
attributes (Quinlan, 1993). The entropy is used to calculate the information gain of an attribute
A and should correspond to the reduction in entropy achieved by splitting the training
examples into V' subsets, where V is equal to the total distinct values in the domain. We can
define information gain as denoted in the formula below:

InfoGain(S, A) = Entropy(S Z ’lS’ Entropy(S;) (5.1)

where |S;| is the total number of samples in the subset of S. The information gain penalises
attributes that divide the training into very small subsets, noted as split information:

SplitInfo(S, A) Z |]S{|’ X logy( Sj”) (5.2)

The penalty is required due to the dividing attributes’ high information gain within the small
subset. The information gain of an attribute A is calculated from the InfoGain and Splitinfo
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measure as denoted below:

. . InfoGain(S, A)
at A) = .
GainRatio(S, A) SplitInfo(S, A) (5.3)

The heuristic information for each attribute vertex z; is based on the estimated quality in relation
to improving the predictive accuracy of the underlying decision tree. The ATM uses the same
heuristic information as with the C4.5 algorithm and can be denoted as:

ngi = GainRatio(S, x;) (5.4)

where z; corresponds to the i-th attribute vertex and S corresponds to the set of training
examples. The GainRatio is described in formula 5.3, where a continuous attribute’s
information gain is calculated by dynamically selecting threshold values that define discrete
intervals and ensuring that the training example is split into subsets. Once completed, the
information gain is calculated with the assumption that every discrete interval serves a
dissimilar value and therefore a different subset of the training set. The ATM differs from the
traditional C4.5 through selecting attributes based on the information gain and pheromone
values (Otero et al., 2012). Otero et al. (2012) note that the pheromone feedback improves the
quality solution by considering the entire decision tree (global attribute evaluation),
consequently compensating for imprecisions and greedy information gain ratio measures.

5.2.3 Solution construction

With the heuristics out of the way, we delve into the solution construction process. The process
used by the ATM is similar to that of the ACO algorithm. The classical divide-and-conquer
approach is followed to construct candidate decision trees. The ATM differs however from
traditional techniques by stochastically selecting attributes based on the pheromone and
heuristic information (Otero et al., 2012). The virtual ants apply the probabilistic rule with each
iteration to determine which attribute vertex should be visited. Otero et al. (2012) denote the
probability of an ant, p; to visit the vertex z; with the following formula:

T(E, L, x;) -n; .
= E , , 5.5
P > TE, L x;)n; vielr (59
icF

Refer to the paper written by the authors for further information on the formula and the
application thereof (Otero et al., 2012).

Algorithm Ant Tree Miner Solution Construction is
input: training examples (Examples),
list of predictor attributes (Attributes),
current edge (Edge)
output: root node of the decision tree

A <« probabilistically selects an attribute from Attributes to visit given the
current Edge

root < creates a new decision node representing attribute A

conditions « ?

if A is a nominal attribute then
Attributes«+ Attributes — {A}
for all value v, in domain of A do
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13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

conditions <« conditions + {A=wv;}
end for
else
conditions « Discretise (A, Examples)
end if

for all attribute condition T in conditions do
branch; + new branch representing T of root
subset; < subset of Examples that satisfies T
if subset; is empty then
Add leaf node with the majority class label of Ezamples below branch;
else if all examples in subset; have the same class label then
add a leaf node with the class label of subset; below branch;
else if number of examples in subset; is below threshold then
add a leaf node with the majority class label of subset; below branch;
else if Attributes is empty then
add leaf node with the majority class label of subset; below branch;
else
add the subtree returned by CreateTree (subset;, Attributes, branch;) below branch;
end if
end for
return root

Listing 5.2: Ant Tree Miner solution construction pseudocode by Otero et al. (2012)

The pseudocode in figure 5.2 represents the decision tree construction procedure used in the
ATM algorithm. The virtual ants originate from the ‘start’ node and follow the edge ‘-’ to build
candidate decision trees, given the full set of training examples and predictor attributes. Each
selected attribute is the origin of another decision node.

As mentioned earlier in the chapter, nominal and continuous attributes are treated differently.
Branches of the decision nodes are created based on the set of attribute conditions selected.
The training set is split into subsets e.g. examples for each attribute condition (branch). The
construction procedure evaluates whether a leaf node should be added below the current
branch or, instead, recursively add a subtree below the current branch.

The deterministic procedure to add leaf nodes to a candidate decision tree is based on the
following conditions (Otero et al., 2012):

1. None of the training examples satisfy the attribute condition represented by the current
branch e.g. the current subset of training examples is null.

2. All examples in the current subset are associated with the same class label.
3. The number of examples in the subset is below a user-defined threshold.
4. The set of available predictor attributes is null.

A leaf node representing the class label prediction is only added below the current branch if any
of the given conditions are met. If not, the construction procedure is applied recursively (Otero
et al., 2012). Once completed, the root node of the candidate tree is returned to conclude the
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construction procedure. We discuss the pruning procedure used with ATM in the section to
follow.

5.2.4 Pruning

We have already discussed the necessity and techniques used to prune decision trees in
Chapter 4. The ATM prunes each candidate decision tree once the construction procedure is
completed. The construction procedure builds candidate decision trees until there are no more
attributes available or the training set is depleted, or each training example is associated with
an exact class label (Otero et al., 2012).

The error-based pruning technique used by the C4.5 algorithm discussed in Chapter 4 is
similar to that of the ATM. The ATM prunes decision trees using two simple steps:

+ Step one — creates a potentially overfitted model by pruning the tree to fit the training data
[training model]

» Step two — prunes the overfitted model to increase generalisation power [generalised
model]

The pruned training model is created by replacing decision nodes based on two conditions
e.g. its most common used branch or the leaf node that guarantees a higher classification
accuracy on the training data. This is a crucial step as it removes decision nodes that would
have an adverse effect on the classification accuracy. The step is completed until there are no
more benefits for the replacement or the tree consists of only one leaf node.

The generalised model follows the error-based pruning technique noted in Chapter 4. Instead
of replacing leaf nodes that could potentially improve accuracy, it replaces leaf nodes that lead
to a lower estimated error rate.

A decision model based on the training data could be unable to generalise when exposed to
test data, leading to a classic low detection rate with overfitted decision models. Overfitted
models based on training data were discussed in the previous chapter. We make note of this
again in Chapter 6, as we discuss the model built by the ATM classifier on the poor training
data for U2R and R2L attacks. The contrast in tactics in step two is necessary to ensure that
the best build decision model is produced. The process concludes the pruning of the
candidate decision trees and we discuss the updating of pheromones and the pheromone
matrix in the next section.

5.2.5 Pheromones

The crucial part of the ATM algorithm is the updating and representation of pheromones. To
keep track of the pheromone values, a pheromone matrix is used. The virtual ants travel in the
construction graph as each edge represents an attribute condition. Therefore each choice
made by the virtual ants can be expressed as an edge that is followed to create a decision
tree, and each entry in the matrix is represented by a triple [edge;;, level, ;] where edge;; is
the corresponding edge of the j-th attribute (Otero et al., 2012). The level within the decision
tree where edge;; appears is noted as the level and the destination denoted as z;. According
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to Otero et al. (2012), edges that lead directly to a leaf node representing a corresponding
prediction are not represented in the pheromone matrix as they are either deterministically
introduced or during the tree creation process, or by the pruning process.

The process of pheromone updating has been introduced in the previous chapter. The ATM
algorithm uses the popular MAX-MIN technique created by Stutzle & Hoos (1998). The
pheromone values are limited to the intervals set for maximum and minimum, which are
updated after each new global-best solution. For a detailed explanation, refer to the paper by
Stutzle & Hoos (1998).

The pheromone values are updated in two simple steps:

1. Step one — using the pheromone evaporation rate (further discussed in Chapter 6), the
pheromone value for each entry in the matrix is decreased by a factor of p as defined by
the user.

2. Step two — based on the quality of the candidate solution, the pheromone value for the
entries related to each branch used for the iteration-best candidate solution is increased.
The quality is measured based on the following formula (Otero et al., 2012):

N — Error
Q= —N (5.6)
where N represents the number of training examples and Error the estimated
classification errors of the candidate tree; the lowest error rate provides the highest

quality solution.

Once these steps are completed, the pheromone update process starts. Otero et al. (2012)
created the following pheromone update rule as described in the formula below:
P TE. L) if (F,L,x;) ¢ treegp;
(B, L) = - _ (5.7)
P B La) T Q(treey), (K, L,x;) € treey;

Within the formula, p represents the MAX-MIN evaporation factor, t(x 1, ..,y the pheromone
value associated with the entry (E, L, x;), E the attribute condition of the corresponding edge,
L the level, z; the edge’s destination and the iteration-best decision tree noted as treey,.

The updating of pheromones concludes the components of the ATM algorithm. In the next
section we discuss the initial paper and related work based on ATM.

5.3 Related work within other fields

It is important to note that in this research, it is the first time that decision trees induced by
ant colony optimisation is implemented within the intrusion detection domain. This argument is
supported by the related work for the ATM illustrated in the summary below. The related work
in the fields refer to the induction of decision trees using ant colony optimisation.
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A timeline table summarising the recent developments related and leading to the development
of the ATM was constructed.

Table 5.1: Related research timeline

Boryczka & Kozak (2010) introduce the ACDT algorithm creating

2010 binary decision trees.

2011 ... ... The ACDT algorithm is adapted for continuous attributes by Boryczka
& Kozak (2011).

2012 ... .. Boryczka & Kozak (2012) create the Ant Colony Decision Forest

(ACDF) algorithm, an ensemble extension of ACDT.

Otero et al. (2012) create the ATM algorithm, not limited by creating
2012 - - only binary decision trees, and evaluate solutions based on
pheromone values and the information gain.

Kozak & Boryczka (2015) extend the ACDF algorithm by applying the

2014 - ensemble boosting technique.

2014 .. .. .. Salama & Otero (2014) extend the ATM algorithm to build a new
multi-tree classification model.

2014 .. ... The ATM is extended with the bagging ensemble technique by

Chennupati (2014).

The ACDT algorithm is extended as the Novel Numerical Ant Colony
2015 - - Decision Tree (nACDT) algorithm by Surjandari et al. (2015) for
estimating the duration of drydocking.

Evaluation techniques used within the ATM are investigated by

2015 Salama, Abdelbar & Otero (2016).
Kozak & Boryczka (2016) further investigate the use of heuristics and
2016 - - - a pheromone trail to build decision trees, similar to the approach used
in ATM.
2016 - - - - Boryczka et al. (2016) use the ACDT to classify e-mails.

It is clear that the combination of decision trees and ant colony optimisation have received
some attention since its rise early in 2010; however, implementing such algorithms within
other domains has been extremely limited, as we could only note the research performed by
Boryczka et al. (2016) to categorise e-mails and Surjandari et al. (2015) to estimate the
duration of dry docking as examples.

ATM differs significantly from other research using the traditional Ant-Miner created by
Parpinelli, Lopes & Freitas (2002b), instead of building a set of rules for the ATM build decision
trees. It can be noted that some of the research contributed significantly to the development
and understanding of the ATM algorithm, therefore these are discussed in more detail below.

The ACDT by Boryczka & Kozak (2010) can only build binary decision trees and evaluate
candidate solutions using the pheromone level and heuristic information. The heuristic
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information is based on the Twoing criteria used in the CART algorithm.

The ATM uses the information gain similar to that of the C4.5 algorithm, and based on the
research performed by Otero et al. (2012) it significantly outperforms the ACDT and variations.
Otero et al. (2012) note that the predictive accuracy of the ATM is on average statistically
significant better than C4.5, CART and ACDT.

The ATM scores only slightly lower than the best algorithm for the size of the classification
model, e.g. the number of leaf nodes. The CART model is known for its ability to build models
with a smaller classification model. Regrettably, this greatly impacts the predictive accuracy
(Otero et al., 2012).

This is clearly not the case with the ATM as it can build smaller classification models to its
counterparts while retaining superb predictive accuracy. It is important to note that the ATM
algorithm’s computational performance is significantly lower than the other algorithms, as
noted by (Otero et al., 2012). The effect is reduced due to the ATM’s ability to operate in a
cluster. Utilising this functionality will significantly increase the runtime speed. The ATM’s slow
performance does not impact its practicality for intrusion detection. The ATM algorithm will be
better suited for offline intrusion detection systems. Offline intrusion detection systems capture
live network traffic but only analyses it as historical data (SunilKumar, 2012).

The ensemble ATM algorithm created by Chennupati (2014) focuses on the instability within
the ATM classifier and concludes with a more stable algorithm through the use of ensemble
techniques. We discuss the potential for further research in Chapter 8.

From the literature review, we can understand the need to implement the algorithm within

other domains. In Chapter 7 we discuss the methodology and processes used to implement
the ATM algorithm within the intrusion detection domain.

61



CHAPTER 6

EXPERIMENTAL METHODOLOGY AND
RESULTS

6.1 Introduction

For this research, a pragmatist philosophical stance was adopted, as the researcher focused
on ‘what works’ as the truth and did not participate in the choice associated with the opposing
truth and reality. Deductive reasoning was applied throughout the study. The primary goal of
the study was to create and contribute theory with regard to the ATM classifier within the
intrusion detection domain as well as the machine learning domain. The strategic approach to
the research study has been identified as experimental; the researcher experimented with the
Ant Tree Miner classifier on intrusion detection data. The research mostly used quantitative
analysis and the choice for analysis could be considered a mono method. The results
generated have been statistically analysed using the performance derivatives Receiver
Operating Characteristic (ROC) analysis and cost evaluation, further discussed in section 6.5.
Cross-sectional research design was adopted, as quantitative analysis measures have been
used on intrusion detection data sets to measure the performance and accuracy of the
classifier at a given period.

The WEKA toolkit created by Russell & Markov (2006) was used to perform data analysis and
the pre-processing of data. The data set created by Tavallaee et al. (2009) improves the
issues associated with the famous KDD’99 data set used in several research projects. The
researcher elected to use the NSL-KDD data set for this research project. The motivation and
discussion of these data sets is done in section 6.2 of the thesis.

The researcher answered several research questions based on the literature review and
experiments performed. The literature provided a much needed theoretical background and a
baseline for decision trees and swarm intelligence research previously performed specifically
in the intrusion detection field. The goal of this approach was to evaluate and compare the
mentioned key components to form a holistic overview of the machine learning techniques
used for intrusion detection and how the proposed classifier compares.

The researcher used the Experiment Life Cycle (ELC) of the Deter project proposed by

Mirkovic, Benzel, Faber, Braden, Wroclawski & Schwab (2010) to manage the experiments.
Diagram 6.1 illustrates the ELC used with this research project.
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Drefinition Execution

=Specifications =Algorithms =Gather results
=Conceptual initialise =Analyse results
Model [Datasets initialise «Evaluate results

Evaluate & Improve Experiment

Figure 6.1: Proposed ELC

The experimentation process was carefully designed to improve on previous research,
especially using machine learning within the intrusion detection domain. The conceptual
experimental process can be outlined as follows:

1. Prepare data sets.
Feature selection.
Classifier initialisation.

Experiment run.

o > 0w D

Results gathering.
6. Results evaluation.

1. Prepare data sets: The preparation of the data sets is a crucial part of the experiment and
the foundation on which the research is built. To allow the experiments to be repeated, the
process is kept transparent and all data sets used are shared. Although the NSL-KDD data
set has been chosen as the main data set for experimentation, a pre-processing and validation
process was performed. The NSL-KDD data set has been made available publicly by Tavallaee
et al. (2009) and Tavallaee, Bagheri, Lu & Ghorbani (2011). The data set consists of several
data sets used for training and testing classifiers. To align the experiment with the ELC, the
following data sets were used:

 Training data set — used to train the classifier
+ Validation data set — used to validate the classifier
« Testing data set — included unknown data used to evaluate the classifier

Training data set — classifiers are trained using training data. The researcher modified each
NSL-KDD data set to replace the classification field or field 42 with a field, called xAttack. The
data set was also pre-processed using feature coding. In other words, categorical feature
encoding was used to change the text-based categories to numeric values; therefore, the
nominal fields were represented as numeric categories instead of text. Nominal fields
represent certain classes or categories e.g. Male or Female, House, Apartment, Duplex, etc.
For training, the classifier KDDTrain20% (also referred to as Train20%) data set was used. The
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data set and its features are further discussed in section 6.2. The pre-processed data set was
split using the xAttack field for each attack category, thereby allowing the classifier to be
trained per attack type. Thus, the data set has now become a multi-class data set, since we
need to split different attack types instead of attack or normal traffic. The xAttack field is,
however, only used to split the data sets and never to classify, and the data are converted back
to binary classification after each data set split. The ’per attack’ type data set only includes the
relevant attack and normal network traffic. Therefore the prediction class only consists of 0
[normal traffic] and 1 [attack traffic]. This totalled the training data sets to five, one for each
attack category and one full 20% training (also referred to as Train20%) data set.

Validation data set — on the initial run of the experiment, to validate the classifier with
different parameter settings, a validation data set was created by splitting the 20% training
data set into 66% training and 34% validation.

Test data set — the same process was performed for the test data set, which is further
discussed in section 6.3. The test data set’s data were never altered, only the features were
reduced for testing. Feature reduction only entails removing features to ensure that both
training and test data sets consist of the same features. The feature selection process was
only performed on the training set, thereby ensuring reliability and comparability as with the
original test data set.

2. Feature selection: Feature selection extracts statistically relevant features from the data
sets. For this research project, the information gain and ranker feature selection methods were
used. The methodology and the process used for feature selection are discussed in Chapter
3. The process was done using WEKA', a machine learning tool created by Hall, Frank,
Holmes, Pfahringer, Reutemann & Witten (2009). After the relevant features for each attack
type had been established, the five data sets were trimmed to only include those highlighted
during the feature selection process. The original NSL-KDD data set has now been
pre-processed, split per attack type and trimmed using feature selection. The final
experiments were performed on the modified NSL-KDD Train20% data sets.

3. Classifier initialisation: The main purpose of the research study was to experiment with
the ATM classifier within intrusion detection. The Java binaries can be obtained from the
project Myra Github repository (Otero, 2016). Version 4.1 of the Ant Tree Miner classifier was
used for this research project. This version offers significant improvement on the previous 3.7
version, including parallel processing and a compelling performance increase. We further
discuss the setup of the classifier in section 6.4. With the first cycle of the experiment run, i.e.
the validation cycle, we experimented with different parameters for the ATM classifier.

4. Experiment run: The experiments were performed on a Dell E6320 running OpenSuse
42.2 and operating with an Intel Core i7-2620M processor and 8GB ram. It is important to
recognise the experiment cycle as the steps performed from step 1 to 6.

' Available for download at http: //www.cs.waikato.ac.nz/ml/weka/
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Two experiment cycles were performed as follows:
» Experiment with split training and validation data set (only full 20% training data set)
» Experiment with final modified training and test data set

We first experimented with the 66 — 34 split training and validation data sets to establish the
overall ability of the classifier to accurately classify malicious data. This approach was followed
to test different parameters within the classifier and identify which parameters would perform
best with intrusion detection data. During this cycle, the feature selected training data set was
the only data set used.

The approach to limit the data set to only train the classifier per attack type allows digging
deeper into the classifier's abilities. To provide competitive results with previous research
performed, we also experimented with the full 20% training data set. The prediction models
built on the full 20% training data set can be used to create an ensemble version of the ATM
classifier. The ensemble technique and results are discussed in section 6.7.

The split attack type approach also eliminated the issues with the unfair attack representation
in the training data set, inherited from the KDD’99 data set. Each experiment was performed
10 times, and the results were averaged for overall ability. The experiment cycle is not
uncommon, as fellow researchers have used the same approach Ramos & Abraham (2005)
and Geramiraz, Memaripour & Abbaspour (2012). In their papers, the researchers identified
key features to classify the four attack classes. The first steps for the experiments were to
assess the features selected and the classifier's parameters before a test is done against a
test data set. To further knowledge on the classifier, the second cycle included experiments
with and without feature selection enabled, and this added another dimension to the results.
The experiments were performed with the assistance of the CSIR Cybersecurity Centre of
Innovation.

5. Results gathering: The classifier's results were collected for each experimental cycle. A
sample output from the ATM classifier is shown in figure 6.2. The result file for each
experiment was stored for later analysis. The analysis of each experiment was performed with
Microsoft Excel.

6. Results evaluation: The classifier’s initial ability to classify the intrusion detection data was
validated in the first experiment cycle. During the first cycle, we evaluated the results based on
the classifier's ability to classify the validation data only. We experimented with different
parameters during the initial cycle to identify the best performance. Results were evaluated as
per the guidelines outlined in section 6.5.

In order to evaluate the classifier, a specific test data set was used for the final experiment
cycle. The techniques, based on an extensive literature review, provided the researcher with
the tools to analyse the ATM’s performance. The results were compared with other tree-based
and ant colony optimisation techniques performed on the NSL-KDD data set.
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Figure 6.2: ATM classifier

6.2 Data sets
In this section, we discuss and motivate the NSL-KDD data set as the selected training data
set and test data set. First, we analyse the KDD’99 data set and highlight critical research
studies involving the data set. Any research using the KDD’99 data set has been selected as
flawed and disregarded in this research project. The motivation thereof is done in the
discussion to follow.

The next subsection introduces the NSL-KDD data set. Emphasis is placed on the data set
structure, features, attack platforms and research projects evaluating the data set. It is crucial
to understand that data sets are used to train the classifier and test its effectiveness. We
therefore use the data sets for evaluation of intrusion detection systems. To create effective
detection models, the classifier requires a vast amount of labelled data. Labelled network data
is significantly hard to come by due to the time constraints, legal considerations and
complexity of labelling each record.

One can imagine the sheer amount of time required to build such data sets. Thus, the activity
becomes time-consuming and a costly effort. Bhuyan, Bhattacharyya & Kalita (2015)
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investigated the importance of data sets within intrusion detection research. The following
reasons justify using data sets for intrusion detection:

1.

Repeatability of experiments: A critical part of experimentation is to recreate results
and verify statements by other researchers using the same approaches (Bhuyan et al.,
2015).

. Validation of new approaches: New research projects drive new methods, and

classifiers should be continuously developed. It is necessary that every new approach
be validated (Bhuyan et al., 2015).

. Comparison of different approaches: New methods and classifiers not only require

extensive validation, the improvements also need to be quantifiable. Using the same data
sets allows for comparative results and stability whenever black box approaches are used
(Bhuyan et al., 2015).

. Number of features: The optimal set of attributes or features should represent normal

and malicious attack instances (Bhuyan et al., 2015).

The research by Bhuyan et al. (2015) identified the following requirements for data sets to be
used in intrusion detection:

Real world — data sets should represent real world scenarios and realistic network traffic

Completeness in labelling — the labelling of traffic as malicious must be backed by proper
evidence for each instance. Network traffic can be modelled using two techniques: packet-
level and flow-level (Venkataramanan, Jeong & Balaji, 2011). The latter is less accurate
than its counterpart. The ideal labelled data set should provide packet and traffic flow
levels for each malicious activity

Correctness in labelling — the labelling for each network traffic instance must be correct

Unbiased — the data set must be unbiased in terms of size for attack types and network
traffic

The requirements for data sets within intrusion detection have been further supported by
Tavallaee et al. (2009) who criticised the KDD’99 data set. A summary of several alternative
intrusion detection data sets is provided in Appendix D. A shorter version of the results is
depicted in the data set summary table 6.1.

Table 6.1: Data set summary

Data set Availability | Recent
citations

DARPA 98/99 Y 62

NSL-KDD Y 424

MAWI WORKING GROUP Y 52

CAIDA P 2

PREDICT/IMPACT P Not available

UNSW-NB15 Y 74

The values: Y denotes YES, P indicates PARTIAL. The table aims to highlight the differences
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between data sets and motivate the selection of the NSL-KDD data set. The Google Scholar
count column outlines the number of citations for a given data set between 01/01/2017 and
24/09/2018. Based on the result, it is clear that the NSL-KDD data set is preferred by other
researchers as an intrusion detection data set. Appendix D provides a detailed outline on how
the table results were obtained. The main purpose of the next sections is to analyse the
NSL-KDD data set and provide insights into the limitations of its predecessor, the KDD’99 data
set.

6.2.1 KDD’99 data set

Sommer & Paxson (2010) highlight the importance of using real-network data sets and the
need for improved data sets on the old KDD’99 data set, a very popular choice within the
research community. The comparison and evaluation of the different data sets can almost
become as convoluted as the benefits and drawbacks of each machine learning method.

Intrusion detection systems will have to measure against benchmark data sets to accurately
verify the effectiveness and accuracy of the system. However, these benchmark data sets are
synthetic in nature and do not represent real-world network environments. The statement is
further supported by Shiravi, Shiravi, Tavallaee & Ghorbani (2012) and reiterates how popular
the KDD’99 data set is, despite the vast amount of criticism.

A survey study done by Ahmad et al. (2009) reveals the popularity of the KDD’99 data set.
Shiravi et al. (2012) further criticise the KDD’99 data set, highlighting that network behaviour
and patterns change and so does network intrusion, and we require a more dynamically
generated data set. Tavallaee et al. (2010) further note in their survey study in which they
reviewed 276 research articles based on anomaly intrusion detection systems that only 7% of
the studies test the robustness of their system through proper test data sets, representing real
world networks. This is a rather alarming number, considering we aim to solve real world
problems with the research.

One can draw from the research that within a simulated environment the model needs to be
trained using the most real world data set possible. It is clear that the data set and evaluation
of the systems play a critical role in the deployment of the system; one can predict that the low
rate of real network testing contributes to the slow adoption of production-based intelligent
intrusion detection systems.

Innovating the intrusion detection research area, Defence Advanced Research Project
Agency, US (DARPA) set out to generate a much-needed intrusion detection audit data set.
The data set was set to be shared among researchers, evaluate intrusion detection systems,
including a wide variety of attacks, and measure both attack detection rates and false alarm
rates for realistic normal traffic. To overcome legal issues with the publication of confidential
information or mitigate causing disruption within real network environments, an extensive test
bed was setup at MIT’s Lincoln Laboratories (Lippmann, Haines, Fried, Korba & Das, 2000).
The environment simulated the operational networks for a typical US Air Force LAN over a
period of two months.
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The famous Knowledge Discovery and Data Mining (KDD) Cup competition in 1999 focused
on intrusion detection. The KDD’99 data set was created by Lee & Stolfo (2000). The data set
consists of the 1998 DARPA data set, which has been pre-processed. Features within the data
set were split into the following categories:

» Basic features
* Content features
» Traffic features

To summarise and outline the KDD Cup (2016) data set, several tables and visualisations were
created. It is quite common to use the 10% version of the data set for training classifiers as
this constitutes a smaller sample of the full data set. Table 6.2 shows the number of attacks per
category within the KDD’99 10% data set.

Table 6.2: Attack and category summary for KDD’99 10% data set

Attack Count of attacks Attack category
back 2203 DOS
land 21 DOS
neptune 107201 DOS
pod 264 DOS
smurf 280790 DOS
teardrop 979 DOS
normal 97277 Normal
ipsweep 1247 Probe
nmap 231 Probe
portsweep 1040 Probe
satan 1589 Probe
frtp write 8 RaL
guess passwd 53 R2L
inmap 12 R2L
multihop 7 R2L
phf 4 RaL
spy 2 R2L
warezclient 1020 R2L
warezmaster 20 R2L
buffer overflow 30 U2R
loadmodule 9 U2R
perl 3 U2R
rootkit 10 U2R

A critical research study performed by Tavallaee et al. (2009) highlights several serious issues
with the KDD’99 data set. Another concern with the KDD’99 data set is the number of redundant
records (Tavallaee et al., 2009). Due to the significant number of redundant records, learning
classifiers become biased towards the more frequent records. This is the primary reason why
any results using the KDD’99 data set were not included in this research study.
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To highlight the unfair attack representation, the following chart was created:
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Figure 6.3: Attack representation within KDD’99 10% data set

We can clearly see that the data set is biased towards the DOS attacks, with very litile
representation for the R2L and U2R attacks. The very few U2R attacks almost represent 0% of
the total data set. This is however unrealistic as experience indicates that the popularity of
probe attacks are the most commonly used (McHugh, 2000; Vasilomanolakis et al., 2016).

Portnoy, Eskin & Stolfo (2001) split the KDD’99 data set into subsets of ten or 10% of the data.
The uneven distribution made cross-validation tests difficult to perform on the data sets.
Portnoy et al. (2001) mark the variance in attack categories as unrealistic, leading to flawed
evaluation. The basic features within the data set represent typical TCP/IP connections.

In general, these features lead to a delayed detection. Table 6.3 represents the basic features
within the KDD’99 10% data set.

Table 6.3: Basic features within KDD’99 10% data set

Attribute name Description Attribute type
duration length (number of seconds) of the connection continuous
protocol_type type of the protocol, e.g. tcp, udp, etc. discrete
service network service on the destination, e.g. http, telnet, | discrete
etc.

src_bytes number of data bytes from source to destination continuous
dst_bytes number of data bytes from destination to source continuous
flag normal or error status of the connection discrete
land if from same host/port =1; 0 if not discrete
wrong_fragment number of “wrong” fragments continuous
urgent number of urgent packets continuous
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Figure 6.4 below visualises the traffic per protocol within the data set as either normal or
attack data.
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Figure 6.4: Attack representation per protocol within KDD’99 10% data set

The most favoured protocol is the ICMP. Generally, one can assume it is a connectionless
protocol, favoured for diagnostics. For example, querying an UDP protocol which is closed,
would return an ICMP “port closed” message. However, the ICMP protocol has been heavily
favoured within the data set above the others by the creators.

Specific attacks have been discussed in detail in Chapter 2. It is crucial to once again touch on
the topic to fully comprehend the issues within the KDD’99 data set. It can be further argued
that UDP ports should have much better representation. TCP ports are designed to guarantee
that packets are delivered. However, UDP ports do not function this way, thus displaying much
more vulnerability than TCP ports. UDP ports represent the smallest subset of the data set
when we observe the representation in figure 6.4.

Correa, Nixon & Bienkowski (2016) mention that UDP protocols are the most commonly
abused with DDOS attacks. The protocol is common in Microsoft-based products, especially
SQL Server. UDP ports are favoured for a myriad of reasons such as speed, stateless nature
and small size. UDP has also become popular with services such as DNS, Dynamic Host
Configuration Protocol (DHCP), and Voice over Internet Protocol (VOIP) (Zhu, Hu,
Heidemann, Wessels, Mankin & Somaiya, 2015; Rajput, Tewani & Dubey, 2016;
Abdelrahman, Saeed & Alsaqour, 2016).

To further the perspective, Akamai (2016) reveals in their recent Security Report for Q3 2016
that DDOS attacks have increased by 75% since Q3 2015. The report also shows that the
most used DoS attack vectors are, in fact, UDP-based by 25%, miles ahead of the other attack
vectors. The fact that UDP ports do not maintain connection states and begin sending data
immediately without any start-up overhead should warrant better representation. These
characteristics allow the UDP protocol to handle more clients than other protocols (Lee,
Carpenter & Brownlee, 2010).
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The small UDP header increases transfer speeds significantly above those of TCP protocols.
The send rate is not controlled, allowing attackers to send data even if the connection
becomes congested. The combination of factors mentioned above makes UDP ports more
dangerous than TCP protocols. TCP ports might be more popular, but a representation of only
0.2% attack traffic for UDP ports are not justified at all. To detect the attacks using intrusion
detection, more features are required that focus on suspicious behaviour within the packet
data. These features are referred to as content features and represented in table 6.4.

Table 6.4: Content features within KDD’99 10% data set

Attribute name Description Attribute type

hot number of “hot” indicators continuous
(hot: number of directory accesses, create
and execute program)

num_failed_logins number of failed login attempts continuous
logged_in 1=successful login; O=unsuccessful discrete
num_compromised number of conditions “compromised” continuous

(compromised condition: number of file/path
not found errors and jumping commands)

root_shell 1=rootshell active; 0=not active discrete

su_attempted 1="su root” command executed; O=not | discrete
executed

num_root number of root accesses continuous

num_file_creations number of file creation processes continuous

num_shells number of shell prompts continuous

num_access_files number of access controlled files modified continuous

num_outbound_cmds numper of outbound commands within FTP | continuous
session

is_hot_login 1=hotlist login; 0=not on hotlist discrete

is_guest_login 1=guest login; 0=not on guest login discrete

Features related to time are referred to as “traffic” features. Traffic features in the data set are
divided into two groups: same host and same service groups (Lee & Stolfo, 2000).

+ Same host features are the connections for the previous two seconds that share the
same destination host with the current connection

+ Same service features are only the connections in the previous two seconds that share
the same service as the current connection

To solve the issue of identifying patterns for persistent slow probing attacks, the time features
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can be recalculated based on a window of 100 connections instead of 2 seconds. These
recalculated features are called connection-based traffic features.

The traffic-based features for the two-second period within the KDD’99 10% data set are
represented below in Table 6.5.

Table 6.5: Two-second traffic features within KDD’99 10% data set

Attribute name Description Attribute type

count number of connections to the same host as the | continuous
current connection in the past two seconds

Note: The following features refer to these same-service connections.

srv_serror_rate % of connections that have “SYN” errors continuous
srv_rerror_rate % of connections that have “REJ” errors continuous
srv_diff_host_rate % of connections to different hosts continuous

Note: The following features refer to these same-host connections.

serror_rate % of connections that have “SYN” errors continuous
rerror_rate % of connections that have “REJ” errors continuous
same_srv_rate % of connections to the same service continuous
diff_srv_rate % of connections to different services continuous
srv_count number of connections to the same service as the | continuous

current connection in the past two seconds

Tavallaee et al. (2009) discovered additional issues with the KDD’99 data set not previously
highlighted by other researchers. The data collected for the KDD’99 data set’s false alarm
characteristics were never analytically examined while creating the data set. The primary tool
used for data collection is also prone to dropping packets when under heavy loads, for which
no tests were performed. It is clear that there are several issues with the data set, and some
improvements were only made years later by Tavallaee et al. (2009).

6.2.2 NSL-KDD data set

For training of the classifier, the NSL-KDD data set was chosen, as it vastly improves on the
issues found in the old KDD’99 data set (Tavallaee et al., 2009). To address some of the known
issues discussed in the previous section, a revised version of the data sets called NSL-KDD was
created. The NSL-KDD data set created by Tavallaee et al. (2009) has several improvements
over the original KDD’99 data set. The improvements can be summarised as follows:

+ To eliminate the unbiased results obtained when classifiers are trained using the KDD’99
data set, the NSL data set has no redundant records in the training set

» To improve the reduction rates, the test data set has no duplicate records
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» The records for each difficulty level group are aligned with the records in the original KDD
data set, in other words, proportional to the percentage thereof

+ Training data set consists of 24 attacks for training and the test data set includes an
additional 14 attack types

Since the NSL-KDD data set is an extension of the KDD’99 data set, most of the features and
characteristics have been covered in the previous section. The focus of this section is to
highlight the changes within the NSL-KDD data set and concludes the feature coding process
for the data set. Table 6.6 lists the files with descriptions included in the zip file downloaded 2.

Table 6.6: NSL-KDD data set files

File name Description

KDDTrain+.ARFF The full NSL-KDD train set with binary labels in ARFF
format

KDDTrain+.TXT The full NSL-KDD train set including attack-type

labels and difficulty level in CSV format

KDDTrain+_20Percent.ARFF A 20% subset of the KDDTrain+.arff file

KDDTrain+_20Percent. TXT A 20% subset of the KDDTrain+.txt file

KDDTest+.ARFF The full NSL-KDD test set with binary labels in ARFF
format

KDDTest+. TXT The full NSL-KDD test set including attack-type

labels and difficulty level in CSV format

KDDTest-21.ARFF A subset of the KDDTest+.arff file which does
not include records with difficulty level of 21 out of 21

KDDTest-21.TXT A subset of the KDDTest+.txt file which does not
include records with difficulty level of 21 out of 21

In order to fully utilise the data set for the experiments, several changes were made. The .arff
files used for machine learning only include normal or anomaly labels and no attack labels as
with the original KDD’99 data set. The researcher, therefore, replaced the 42nd field with a
field called xAttack, which allows splitting the data set per each attack type. The xAttack
values are converted back to binary classification after each split. The full Train20% data set
also only classifies either normal or anomalous traffic.

This also includes the process of feature coding, wherein the categorical data e.g.
protocol_type are converted to numerical values or binary values when applicable. It is
important to note that the algorithm still interprets the numerical values as categories. The
following pseudo algorithm can be applied to feature code each categorical value:

Algorithm coding categorical values is

input: dataset record DR,
categorical field selected CF from database,

2Available for download at http://www.unb. ca/research/iscx/dataset/iscx-NSL-KDD-dataset . html
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output: New fields with numerical values NV

For each DR send CF value

// Function receives CF from DR and creates NV field

function codeField (CF)

Categories = distinct[CF]

features = []

for cat in categories
binary = (CF == cat)
features.append(numerical value)

end function

Listing 6.1: Feature coding pseudocode

The feature coding process was done using VBA programming and Microsoft Excel. We can
summarise the categorical fields within the NSL-KDD data set as done below in table 6.7:

Table 6.7: Categorical fields within NSL-KDD data set

Field name Number of distinct
categories

protocol_type 3

service 66

flag 11

attack 22

The process was applied to each categorical field by assigning a numerical value to each
distinct category type within the data set. The only exception was made for the attack type,
where the xAttack field was created. It is important to note that these fields are not interpreted
by the algorithm as numerical values; they are still considered categorical values. The records
represented each attack, which was then classified under the attack category.

With the process completed, the data set was left with numerical values and classifications per
attack type. The relevant files were then converted into the ARFF format using the WEKA
toolkit. To simplify, the table below summarises the xAttack field within the full modified
NSL-KDD Train20% data set:

Table 6.8: xAttack field within Train20% data set

Numerical Attack type | Attacks Representation
representation
1 DOS teardrop, smurf pod, neptun, land, back | 37%
2 U2R rootkit, perl, loadmodule, buffer | 0.1%
overflow
3 R2L ftp write, guess passwd, inmap, | 1%
multihop, phf, spy, warezclient,
warezmaster
4 Probe ipsweep, nmap, portsweep, satan 9%
5 Normal normal 53%

The table also includes the attack representation in the NSL-KDD Train20% data set for
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comparison with the KDD’99 10% data set. The full NSL-KDD Train data set with 125 973
records has the same attack representation within the 20% training data set, which only
consists of 25 192 records. However, the full NSL-KDD data set has 368 048 less records than
the 10% KDD’99, a result of removing redundant records.

The NSL-KDD data set has better normal-network representation and a significant decrease
in DOS attacks. The modified version of the NSL-KDD Train20% data set was used in the
experiments. In comparison, the full NSL-KDD data set clearly has a better attack distribution,
and represents real network traffic better than the KDD’99 data set. To provide comparative
results, the attack representation was also kept within the sampled data for training the
classifier.

The final modified NSL-KDD data sets used in the experiments are available on the Github
site: https://github.com/FransHBotes/NSLKDD-Dataset. It is important to note that after the
data were split between attack types, the xAttack field values were converted back to binary
classification, i.e. 0 for normal traffic and 1 for attack traffic.

Once the training data sets were completed, the data sets for validation were created. The
pre-processed and feature coded 20% training data set was split into two sections. Section
one represents 66% of the original data, and section two represents 34%; the latter is used for
validation. Splitting the training data set is a common approach for intrusion detection
classifier validation (Noureldien, Hussain & Khalid, 2013; Chand, Mishra, Krishna, Pilli & Govil,
2016). The original attack representation was kept for the training and validation set. The first
experiment cycle only used the data sets created for validation. The network traffic distribution
based on the xAttack field in the validation data set is summarised below in table 6.9.

Table 6.9: Validation data set distribution

xAttack 66% Set 34% Set
1 6094 3140

2 7 4

3 138 71

4 1511 778

5 8876 4573

It is important to note the difference between the test and training data sets. The process
discussed was performed on both training and test data. To test the classifier, we have to use
data not previously known to the classifier when trained. When comparing the full test data set
with the Test21 version, by attack category, the outcome is as indicated in table 6.10, on the
next page. The Test21 data set includes attacks completely unknown to the training data, which
increases the realism of the data set. The researcher elected to use the NSL-KDD Test21 data
set. The training data set only underwent the coding process and no other modifications were
made.

76



Table 6.10: NSL-KDD test data set comparison

xAttack Attack type Full Test Test21
1 DOS 25% 22%

2 U2R 0.16% 0.31%
3 R2L 10% 19%

4 Probe 5% 9%

5 Normal 43% 18%

6 New 17% 32%

It is evident that the Test21 data set gives a better ’per attack’ category representation and
therefore would be an improvement when used for testing purposes. The additional attacks not
encountered within the training data set were allocated to their relevant attack types. Table 6.11
summarises the allocation made for unknown attacks within the Test21 data set.

Table 6.11: New attack allocation within NSL-KDD Test21 data set

Numerical Attack type Attacks

representation

1 DOS apache2, mailbomb, processtable

2 U2R httptunnel, ps, sqglattack, udpstorm,
xterm

3 R2L named, sendmail, snmpgetattack,
snmpguess, worm, xlock, xsnoop,
warezmaster

4 Probe mscan, saint

The new attacks slightly changed the attack representation within the KDD Test21 data set.
With xAttack [6] field factored into each attack type, the representation was as follows per
attack type:

100

In DOS
luaNormal
e 80 |- | |08 Probe
c I R2L
5 60 1 0e U2R
<
S 4l 37.0% i
8
5 18.0% 20.0% Z20%
G: 20* . N
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Figure 6.5: New attacks influence on representation within NSL Test21 data set
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It is clear that the new attacks increase realism once factored into each relevant attack type.
Normal traffic was left unchanged, with a better balance struck between each attack type.
Considering the experiment cycles, full 20% training and “per attack” category, the training and
test data sets were split as such for each experiment.

To simplify each data set, either training or test was divided to include attack traffic and normal
network traffic. With the data sets prepared and coded into numerical values, the next
important step was selecting features to use for training. This process was only performed on
training data. However, feature reduction was carried out to create the relevant test data set for
each feature selected training data set.

6.3 Feature selection

The process of feature selection has been covered in Chapter 3. The purpose of this section is
to identify and highlight the features that will perform better detection of each attack type. The
feature selection process in this thesis is by no means comprehensive or representing the best
possible features. Consideration is made for feature selection as it is important to determine
the features relevant to the attack types, as fewer features will result in faster processing.

Some researchers have trained classifiers per attack type (Natesan & Balasubramanie, 2012;
Staudemeyer & Omlin, 2014; Petersen, 2015). It can be noted that this eliminates the unfair
attack representation, leading to the classifier becoming biased towards certain attack types.
The selective experiments allow for a deeper understanding when tasked with detecting
specific attacks.

The WEKA tool was used to perform the feature selection process. As discussed in Chapter 3,
the information gain and ranker feature selection process was used to exiract features relevant
to classifying the xAttack field Results from research using similar techniques are discussed
for each attack type. The WEKA toolkit offers a simple approach to feature selection. The
process followed is outlined below:

1. Open WEKA Explorer.

Select the pre-processed .arff file.

Open select attributes.

For attribute evaluator — InfoGainAttributeEval with default settings.
For search method — Ranker with default settings.

For attribute selection method — use full training set.

The feature for classification is xAttack.

® N @© o A © N

The selected features are then selected in WEKA, and the filtered data set is saved.

These steps were followed for each attack type and the full 20% training data sets. The feature
selection process was performed on both experiment cycles. The features identified for the full
20% training data set were applied to the validation training data set.
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The test data sets were excluded from the feature selection process. To compare the results
with other research, the test data must be left in its original form. No features were extracted
from the test data set — it can be considered to be excluded. To perform experiments, the
feature selected data set and test data set must consist of the same features, therefore feature
reduction was performed.

Since none of the data entries were modified, the feature selection test data set and approach
can be considered as reliable. Once the process was completed for five training data sets, all
with feature selection enabled and pre-processed, the data sets were ready for final
experimentation. In the sections below we provide the results gathered from the feature
selection process.

A comparison is made between the research carried out by Petersen (2015) on their modified
NSL-KDD data set and the research performed by Staudemeyer & Omlin (2014) on the
KDD’99 data set. Natesan & Balasubramanie (2012) performed feature selection per attack
type on the KDD’99 data set using rough set estimation. The main difference between the
feature selection in this thesis and that of Petersen (2015), is that this feature selection
process measured each data set split per attack type, whereas the latter used the full
combined data set. The modified data set by Petersen (2015) combines the test and train data
sets to extract features.

We further discuss the relevant features per attack type in the sections to follow. The exact
output from WEKA was added to the thesis for discussion. The selected features were also
compared with other relevant research when possible. Table 6.12 outlines all the features
within the NSL-KDD training data set on which feature selection was performed.

Table 6.12: All features within NSL-KDD

# Description # Description # Description # Description
1 Duration 12 su_attempted 23 srv_serror_rate 34 dst_host_srv_diff_host_rate
2 src_bytes 13 num_root 24 rerror_rate 35 dst_host_serror_rate
3 dst_bytes 14 num_file_creations 25 srv_rerror_rate 36 dst_host_srv_serror_rate
4 Land 15 num_shells 26 same_srv_rate 37 dst_host_rerror_rate
5 wrong_fragment 16 num_access_files 27 diff_srv_rate 38 dst_host_srv_rerror_rate
6 Urgent 17 num_outbound_cmds 28 srv_diff_host_rate 39 protocol_type
7 Hot 18 is_host_login 29 dst_host_count 40 service
8 num_failed_logins 19 is_guest_login 30 dst_host_srv_count 41 flag
9 logged.in 20 Count 31 dst_host_same_srv_rate
10 num_compromised | 21 srv_count 32 dst_host_diff_srv_rate
11 root_shell 22 serror_rate 33 dst_host_same_
src_port_rate
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The screenshot below shows the interface and selected settings:

l Preprocess ] Classify ] Cluster ] Associate Tﬁﬁgct-ammgs ] Visualize ]
Attribute Evaluator

| Choose |infoGainAttributeEval

Search Method
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Figure 6.6: WEKA feature selection screenshot

6.3.1 Probe
The following features relevant to Probe attacks were identified through information gain and
ranker-based feature extraction:

Table 6.13: Probe features selected

Attack Type Features (#)

Probe 2,40, 3, 30, 34, 9, 33, 32, 31, 38, 37, 41, 24, 25, 29, 39, 20, 26,
28, 27,21, 22,35, 1, 36

For detailed output on the feature selection process refer to Appendix A and section A.1.
Petersen (2015) extracted features relevant to each attack type using the information gain and
ranker technique. Petersen (2015) revealed a zero information gain for features 17 and 6 using
their custom data set. When compared to the original KDD’99 data set, only 14 features were
found relevant (Staudemeyer & Omlin, 2014). For this research, features with 1% or lower
significance were excluded from the data set and are marked with * in the output in Appendix
A
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6.3.2 User to Root
The following features relevant to U2R attacks were identified by means of information gain and
ranker-based feature extraction:

Table 6.14: U2R features selected

Attack type Features (#)
U2R 11,40, 7, 30,10, 29, 14,1, 33, 21,6, 13,9, 41,39, 19, 4

For detailed output on the feature selection process refer to Appendix A and section A.2. The
information gain and ranker method revealed features 40, 7, 1, 11 and 14 as the most significant
to Petersen (2015). Petersen (2015) revealed a zero information gain related to U2R attacks for
10 features, significantly less than the 24 identified in this research. When using the KDD'99
data set, only 8 features were deemed relevant based on the information gain (Staudemeyer &
Omlin, 2014). Due to the vast number of features with zero information gain, only those were
removed from this data set.

6.3.3 Remote to Local
The following features relevant to R2L attacks were identified by information gain and
ranker-based feature extraction:

Table 6.15: R2L features selected

Attack type Features (#)
R2L 2,40, 3, 30, 7, 33, 34, 21, 20, 29, 19, 28, 32, 39, 1, 36, 31, 41, 8,
9,35,27,11,4

For detailed output on the feature selection process refer to Appendix A and specifically
section A.3. The information gain and ranker method revealed 24 relevant features to classify
R2L attacks. Petersen (2015) revealed features 2, 3, 40, 1 and 21 as significant based on the
information gain to detect R2L attacks. The results compare well with the KDD’99 data set as
several features with zero information gain were also considered insignificant (Staudemeyer &
Omlin, 2014). Due to several features with no information gain, only the latter were excluded
when selecting features.

6.3.4 Denial of Service
The following features relevant to DoS attacks were identified by information gain and
ranker-based feature extraction:

Table 6.16: DOS features selected

Attack type Features (#)

DOS 2,27, 26, 41, 40, 3, 20, 36, 35, 31, 32, 22, 23, 30, 9, 34, 29, 33,
21, 28, 38, 39, 1, 37, 24, 25

For detailed output on the feature selection process refer to Appendix A and specifically
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section A.4. To detect DoS attacks, the information gain and ranker method revealed 26
significant features. When Petersen (2015) applied the information gain process, the top five
ranked features were 2, 27, 40, 3 and 41. Petersen (2015)’s experiment identified the only
feature with zero information gain as feature 17. This contradicts the three features found in
this experiment. Considering the KDD’99 data set, 11 features can be deemed relevant based
on the information gain (Staudemeyer & Omlin, 2014). The features with 1% or lower
significance were excluded from the data set and are marked with * in the output in Appendix
A.

6.3.5 Full 20% training data set
The following features relevant to detect all attacks were identified by means of information
gain and ranker feature extraction:

Table 6.17: Full 20% training features selected

Attack type Features (#)

20% Training 2, 40, 3, 41, 27, 26, 30, 31, 32, 35, 9, 36, 22, 20, 23, 34, 29, 33,
28, 21, 38, 39, 24, 37, 25, 1

For detailed output on the feature selection process refer to Appendix A and specifically
section A.5. The relevant features identified were used to extract features from the training
portion of the validation data set as well. The features with 1% or lower significance were
excluded from the data set and are marked with * in the output in Appendix A. Wahba,
Elsalamouny & Eltaweel (2015) compared different feature selection methods and identified
20 features based on the information gain.

When we further analyse the features selected, on average the overall number of features
within the data set are reduced by 42%. Table 6.18 summarises the feature reduction for each
set.

Table 6.18: Feature selection comparison

Type Total features Total reduced (%)
Probe 25 39%
U2R 17 59%
R2L 24 41%
DOS 26 37%
20% Training 26 37%

Comparing all the features selected reveals that in total six features are never selected for
training based on the information gain and ranker method. It can be noted that these features
are not relevant to the data set and unnecessarily increase the processing overhead. Table
6.19 summarises the features completely excluded based on the feature selection performed.
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Table 6.19: Features excluded

Number # Description

5 wrong_fragment

12 su_attempted

15 num_shells

16 num_access_files

17 num_outbound_cmds
18 is_host_login

6.4 Classifier setup
With the validation experiment cycle, different parameters were customised for the Ant Tree
Miner classifier. The following parameters were tuned for the Ant Tree Miner classifier:

+ Colony Size — number of artificial ants within each colony
» Max lterations — ant colony will iterate until a global-best tree is discovered

» Evaporation Factor — factor to which pheromone will evaporate (decrease) for each entry
in the pheromone matrix

As with decision trees, there is a trade-off between performance and accuracy, as shown in
the results below. By customising certain aspects of the classifier, the optimal settings were
determined for classifying intrusion data, based on the validation experiments. The results
obtained from the validation experiment can be found in section 6.6.2.

The results for the final (second) experiment cycle are discussed in Chapter 7, and the
preliminary results for the initial (first) experiment cycle are discussed below as this leads to
the parameters used to perform the final cycle. Therefore, the first experiment cycle can be
considered part of the setup process.

The first experiment cycle only used the full 20% training data set. The data set was split into
sections of 66% for training and 34% for validation purposes. Refer to section 6.2 for the
discussion. The parameter settings were selected based on the research by Otero et al.
(2012). Increasing the parameters will not improve performance or accuracy much, as the
default values have already been extensively tested by Otero et al. (2012). The goal of the first
cycle is to find the optimal performance-based parameters. A colony size of 5 and evaporation
factor of 0.9 perform slightly better than other combinations (Otero et al., 2012).

Otero et al. (2012) mentions that on average, 200 iterations need to be performed before the
classifier converges. Several versions of the ATM were experimented with, each with different

settings in an attempt to tune the parameters.

Each classifier with different parameters is referred to as a version of the classifier,
summarised in table 6.20.
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Table 6.20: Ant Tree Miner experiment versions

Parameter ATM - df ATM - cs ATM - ef ATM - mi ATM - op
Colony Size 5 2 5 5 2

Max lterations 200 200 200 50 150
Evaporation 0.9 0.9 0.3 0.9 0.9
Factor

AntTreeMiner-df — default values were assigned to the classifier. This can be considered
the baseline classifier version to which all other variants were compared

AntTreeMiner-cs — colony size was reduced to only 2

AntTreeMiner-ef — evaporation factor was lowered to 0.3

AntTreeMiner-mi — maximum number of iterations was vastly reduced from 200 to 50

L]

AntTreeMiner-op — optimal parameters and final version, based on results discussed
below

For each version, the experiment is run 10 times, with different random seed values assigned
to initiate the classifier search. The feature-selected training and test data set for validation
was used for this research project. The results in subsection 6.6.2 were analysed using the
evaluation techniques found in subsection 6.5. The following can be concluded:

* Reducing the colony size vastly reduces the classifier cost while only slightly impacting
accuracy; the parameter would favour the reduction of leaf nodes more. The result
contradicts the evaluations performed by Rami & Panchal (2012) who state that an
increase in colony size decreases accuracy

» Decreasing the evaporation factor builds more accurate classifiers, but it does not warrant
the significant increase in cost, as this increases the amount of pheromones used

» Decreasing the maximum number of iterations leads to a slight decline in accuracy
slightly. With an exceptional reduction in cost, the parameter will influence the run time
significantly. However, when Rami & Panchal (2012) evaluated the influence of
parameters, they noted that the accuracy decreased using the ATM classifier whenever
the number of iterations reached 1000

The results have identified a further need for scientific investigation and research; however,
this is outside the scope of this study. Further research based on the trade-off between
maximum iterations and colony size can add more value to the classifiers’ knowledge and on
how the virtual organism reacts to different parameters. Based on the results, lowering the
maximum iterations clearly has the best performance gain.

Regrettably, this creates issues with regard to the error rate and accuracy. To keep the
accuracy and error rate favourable both need to be considered. The results also identified a
clear link between tree quality and the FAR rate — when the latter decreased, the tree quality
increased. Due to the negative effect of decreasing the evaporation factor, the default value
was retained. We can infer that whenever the evaporation factor is lowered, the virtual
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organisms’ pheromone levels increase and allow for higher quality trees.

Unfortunately, the performance cost far outweighs the benefit. Regarding the zoomed ROC
analysis, the OP version has the best balance between the EF and MI performer. When
comparing the OP version with the DF, the decrease in cost is significant based on the faster
run time and fewer leaf nodes. This comes at a cost as DR and FAR rates worsen, but only
slightly. The optimal parameters were selected based on the above statements — a balance
between colony size and maximum iterations was chosen. The parameters lowered the
number of leaf nodes to 130.40, a 34% reduction in total. The optimal changes allowed for a
favourable run time, as the total run time improved by 74%. The balanced approach also
allowed the error rate to dip under 1% and accuracy to reach the 99% barrier. The results
were considered appropriate based on the arguments above.

6.5 Evaluation techniques

In this section, the methods used to evaluate the classifier are briefly discussed. The application
of these techniques can be viewed in the next section and the discussion thereof in the next
chapter. By no means do these techniques fully represent the evaluation of intrusion detection
systems. For each experiment performed the results are averaged for analysis. The techniques
in this section were identified by means of a literature review and further discussed and outlined
as used in the thesis.

6.5.1 IDS performance metrics and hypothesis testing

We can draw similarities between hypothesis testing and the traditional confusion matrix used
to analyse machine learning problems. It is common for a hypothesis to be derived for each
machine learning task as explained in the hypothesis statement of the research (Agarwal &
Dhar, 2014). An example of a machine learning prediction model is provided as table C.1 in
Appendix C.2. A classic confusion matrix can be derived from the above example as shown
in table 6.21. For machine learning tasks, a confusion matrix quantifies the outcome of the
trained model once it is evaluated against a test data set (Agarwal & Dhar, 2014). The below
figure outlines the four regions of a typical hypothesis test problem in the machine learning
domain, as described by Evangelista (2005).

DECISION:
STATE OF Reject H, Do Not Reject H,
NATURE: (Predict No Intrusion) (Predict Intrusion)
H, is False Good Bad — Type Il Error
. Probability =1 - 8 Probability = 8
(No Intrusmn) Frequently called Power (This will be referred to as a
(The medical community refers | False Positive — medical
fo this as specificity.) community often plots this on
the x axis as 1-specificity.)
H, is True Bad - Type | Error Good
" Probability = a Probability=1-a
(mtrusmn) Frequently called Confidence
(This will be referred to as True
Positive when discussing ROC
curves; an alternative term is
sensitivity, typically used by
the medical community.)

Figure 6.7: Hypothesis test by Evangelista (2005)
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Wu & Banzhaf (2010) state that the effectiveness of intrusion detection systems should be
evaluated by its ability to give correct classifications. Their research concludes that the most
known performance metric is the True Positive Rate — Detection Rate with the False Positive
Rate — False Alarm Rate (Wu & Banzhaf, 2010). Intrusion detection systems should have a
high Detection Rate and low False Alarm Rate according to Wu & Banzhaf (2010). Further
investigation into these metrics is required to understand the means of evaluation fully. The
confusion matrix below represents the four possible outcomes according to the real nature of
an event and the prediction of the IDS. The table is compiled based on the outline provided by
Wu & Banzhaf (2010).

Table 6.21: Confusion matrix example

Prediction outcome

p n total
D True False P/
Positive Negative
actual
value
n False Truel N/
Positive Negative
total P N

From the above confusion matrix, we can identify four possible outcomes to each event that is
classified (Wu & Banzhaf, 2010):

» True Positive (TP) events are intrusions successfully detected by the IDS
+ False Positive (FP) events are normal or non-intrusive, wrongly classified as intrusive
 True Negative (TN) events are normal or non-intrusive and successfully labelled as such

» False Negative (FN) events are intrusions that the IDS missed by classifying them as
normal or non-intrusive events

On its own, as a matrix, the confusion matrix does not actually represent a suitable metric to
evaluate the IDS. Previous research indicates several important measures, discussed below
(Wu & Banzhaf, 2010):

Detection Rate (DR) or True Positive Rate (TPR) is computed as the ratio between the
number of attacks detected correctly and the total number of attacks, also sometimes referred

to as recall or sensitivity.

DR =TP/(TP + FN) (6.1)
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False Alarm Rate (FAR) or False Positive Rate (FPR) is computed as the ratio between the
number of normal instances classified as attacks and the total number of normal instances.

FAR = FP/(TN + FP)=1—-TN/(TN + FP) (6.2)

Accuracy can be explained as the percentage of instances classified correct. It is important to
note that not all of the test data set labels are known to the classifier. Therefore the accuracy
rate can be appreciated more than in cases where training and test data are shared, as with
this thesis (Tavallaee et al., 2010).

TN +TP/TN +TP + FN + FP (6.3)

The error rate can be considered as the instances the classifier predicts wrong.

(FP+ FN)/(TP+TN + FP + FN) (6.4)

The F-measure numerates a balance between precision and recall. We can infer that it
measures the accuracy of a test. This measure is useful when test data sets are used,
especially with unbalanced data sets. Unbalanced data sets tend to have a high accuracy, low
error rate but high FAR, by favouring the most common class (Weng & Poon, 2008).
Therefore, in these cases the f-measure can be considered a better indicator.

2 x (TP/(TP + FP)) x (TP/(TP + FN))

(TP/(TP+ FP))+ (TP/(TP + FN)) (6.5)

F_measure =

When evaluating the intrusion detection system, results must be interpreted and not just
displayed, as this leads to one-sided evaluations based on only the accuracy of a classifier.
Therefore we can infer that an effective and efficient intrusion detection system should
maximise the DR and minimise the FAR. Due to the test data set revealing attacks not
previously known, we also rely on the accuracy of the classifier and F-measure where
required.

6.5.2 ROC curves

The ROC analysis is performed in conjunction with the performance measures, providing
illustrative support for finding the parameters that best balance the DR with the FAR. It is
important to understand that traditional ROC analysis balances by means of adjusting the
operating or decision threshold (Bradley, 1997).

The ATM classifier only produces factor outcomes without any probability score for the
decision made. This, however allows the ROC curve to only be plotted for one point
(x,y) = (FP,TP). A decision tree, however, has no threshold to tune, and therefore the ROC
analysis is purely a graphical representation to identify the best balance.
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The method is used quite common with detection and estimation theory van Trees (2002), and
is further supported by Axelsson (2000) in his attempt to tie detection and estimation theory to
intrusion detection domains. It is crucial to note with ROC analysis that the points (0 : 0!) and
(1;1!) are members of any intrusion detector. It is evident that if all events are intrusions, the
DR would be 1.

Unfortunately, this creates another problem in which the algorithm incorrectly classifies all
benign packets as intrusive, which in effect consequently leads to the FAR being one as well.
Conversely, the same would happen if we pose the rates as 0. Detection and estimation
theory values the rule that the DR and FAR rates are linked (van Trees, 2002).

Ostensibly we can adduce that the more events are classified as intrusive, essentially relaxing
the criteria on what constitutes an intrusion, the DR will increase but also misclassify more of
the malicious packets, hence increasing the FAR. Axelsson (2000) identifies this phenomenon
as the base-rate fallacy problem, for the factor limiting the performance of the IDS is not the
ability to identify behaviour correctly as intrusive, but rather its ability to suppress the FAR.
Shrewdly one would, however, then measure the FAR in relation to how many intrusions are
expected to be detected, and not in relation to the maximum number of potential false alarms.

In this research, the ROC employed plots the balance for each classifier under validation. With
no threshold to tweak, the assigned parameters however would influence the final result. The
graph below visualises how to evaluate the classifiers based on the ROC analysis:
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Figure 6.8: ROC analysis example

6.5.3 Cost analysis

Axelsson (2000) iterates the importance of computational complexity within intrusion
detection, drawing specific focus to the resources, storage and, specifically, time if the system
can perform in real-time. It is important to note that the purpose of this research is to establish
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ATM as a classifier for intrusion detection, either real-time or offline. The computational
complexity and comparison with other classifiers were performed by Otero et al. (2012). The
core of cost analysis for this thesis was the results observed for time and the complexity of the
decision trees constructed.

Several research projects using machine learning and intrusion detection include the time in
seconds as comparison result (Tavallaee et al, 2010). One can argue that although
comparable in that research study, the use thereof does not really trade further due to different
computer setups, e.g. processing power and algorithm design will result in incomparable
results (Tavallaee et al., 2010).

The statements can be disputed, especially in research similar to this research project. The
experiment and research do not focus on the design or creation of a commercial-based
intrusion detection system, but instead on the ability of the classifier to improve upon previous
techniques used. Thus, the computational overhead for comparing results was not such a
concern in the research. Some evaluation of the computational cost for the classifier has been
done to ensure the best performance.

To evaluate the cost of the classifier, a cost score was designed based on the validation
experiments. We argue that the transparent design motivates reproducibility for use as an
evaluation technique within future research using the ATM classifier. Ling, Yang, Wang &
Zhang (2004) emphasise that to obtain a minimalistic cost with decision trees, fewer leaf
nodes are required.

The time taken to construct the decision tree should logically also be considered since less
time would naturally require less computational resources. Another important metric is the
quality of the decision tree. The quality of a decision tree is based on the relationship between
training examples and the error rate. For ATM, the tree quality influences the number of
pheromones required to produce the model (Otero et al., 2012). During the validation
experimentation it was noted that a higher quality tree uses more pheromones. From the
above discussion we can infer that the number of leaf nodes, tree quality and time taken can
be considered as metrics for cost evaluation. We can calculate the cost score C'S for each
experiment by using

08 = (log(LN) x 2)/(1-TQ) (6.6)

Given (1 =TQ| > €) || (e=1x107°),

where LN is the total number of leaf nodes within the model and 7' represents the time taken to
build in seconds, while T'Q) is the total tree quality for the decision tree. In cases where TQ) = 1,
a highly unlikely event, however theoretically possible, a default value should be applied where
TQ = 99.99999%. The default value for TQ as 1 — 1 x 1075 is randomly selected. From the
formula we can deduce that the lowest score will represent the best cost metric.
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6.6 Results

6.6.1 Introduction

The sections to follow provide the results obtained from both experiment cycles. The results
obtained from experiment cycle one and experiment cycle two are summarised in a table and
graph in each subsection that follows.

The first experiment cycle is discussed in this chapter, in section 6.4. The second experiment
cycle is discussed and analysed in Chapter 7 as it is the cornerstone of the thesis. For a
combined overview of the results obtained for the second experiment cycle, refer to Appendix
B. Table 6.22 outlines where each statistic gathered from the experiments is obtained.

Table 6.22: Outline of experiment results

Result title Reference

TP Evaluation technique - Confusion Matrix
FP Evaluation technique - Confusion Matrix
TN Evaluation technique - Confusion Matrix
FN Evaluation technique - Confusion Matrix
Error Rate ATM result output

Accuracy ATM result output

DR Evaluation technique - Detection Rate
FAR Evaluation technique - False Alarm Rate
Tree Quality ATM result output

Total Nodes ATM result output

F-measure Evaluation technique - F-measure

Leaf Nodes ATM result output

Runtime (s) ATM result output

Tree Instances ATM result output

Cost Evaluation technique - Cost Analysis

Each results page concludes with a ROC graph as discussed in section 6.5.2. The graph is
plotted based on the results represented in the tabled summary for each experiment.
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6.6.2 Validation experiment cycle

The following evaluations were done based on the evaluation techniques. The results are based
on the average obtained for 10 experiment runs, each per classifier version. The experiments
were only performed on the feature selected validation data set.

Table 6.23: Validation experiment results

Evaluation DF CS EF Mi oP
TP 4562 4555 4560 4516 4544
FP 32 38 29 83 52
TN 3962 3956 3965 3910 3941
FN 12 19 13 57 29
Error Rate 0.5% 0.65% 0.48% 1.63% 0.95%
Accuracy 99.5% 99.35% 99.52% 98.37% 99.05%
DR 99.75% 99.60% 99.72% 98.75% 99.36%
FAR 0.00789 0.00939 0.00726 0.02079 0.01312
Tree Quality 99.24% 99.13% 99.13% 98.11% 98.82%
Total Nodes 237.2 203.2 263.9 137.2 160.00
Leaf Nodes 197.4 165 215.1 115.7 130.40
Runtime (s) 295.08 98.46 489.98 65.05 76.99
Tree Instances 188.8 190.6 131.1 36.8 139
Cost 1477.21 419.6 2200.97 118.33 230.41
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Figure 6.9: ROC analysis — evaluation experiments
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6.6.3 Experiment cycle two

The results below are based on the experiments performed for DOS attacks. The feature
selected data set is denoted with -FS in the table to follow. The results are based on the
average obtained for 10 experiment runs. A discussion of the results follows in Chapter 7.

Table 6.24: DOS experiment results

Evaluation DOS DOS-FS
TP 2010 1974
FP 1480 1438
TN 2860 2903
FN 142 179
Error Rate 24.99% 24.89%
Accuracy 75.01% 75.11%
DR 93% 92%
FAR 34% 33%
Tree Quality 99.72% 99.69%
Total Nodes 98.6 111.2
F-measure 0.71 0.70
Leaf Nodes 83.1 96.2
Runtime (s) 157.89 134.27
Tree Instances 138.6 136.7
Cost 1819.41 1419.46
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Figure 6.10: ROC analysis — DOS experiment
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The results below are based on the experiments performed for probe attacks. The feature
selected data set is denoted with -FS in the table to follow. The results are based on the average
obtained for 10 experiment runs. A discussion of the results is provided in Chapter 7.

Table 6.25: Probe experiment results

Evaluation Probe Probe-FS
TP 1911 1942
FP 760 821
TN 1642 1582
FN 241 210
Error Rate 21.99% 22.63%
Accuracy 78.01% 77.37%
DR 88.79% 90.24%
FAR 32% 34%
Tree Quality 99.39% 99.42%
Total Nodes 84 130.2
F-measure 0.79 0.79
Leaf Nodes 63.5 107.4
Runtime (s) 61.45 59.75
Tree Instances 126.1 133.3
Cost 303.34 347.52
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Figure 6.11: ROC analysis — Probe experiment
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The results below are based on the experiments performed for Remote to Local (R2L) attacks.
The feature selected data set is denoted with -FS in the table to follow. The results are based on
the average obtained for 10 experiment runs. A discussion of the results is provided in Chapter
7.

Table 6.26: R2L experiment results

Evaluation R2L R2L-FS
TP 2114 2113
FP 2518 2490
TN 236 264
FN 38 39
Error Rate 52.10% 51.56%
Accuracy 47.90% 48.44%
DR 98.22% 98.17%
FAR 91% 90%
Tree Quality 99.55% 99.56%
Total Nodes 49 41.8
F-measure 0.62 0.63
Leaf Nodes 35.2 28.2
Runtime (s) 20.1 20.35
Tree Instances 106.9 122.8
Cost 114.51 110.65
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Figure 6.12: ROC analysis — R2L experiment
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The results below are based on the experiments performed for User to Remote (U2R) attacks.
The feature selected data set is denoted with -FS in the table to follow. The results are based on
the average obtained for 10 experiment runs. A discussion of the results is provided in Chapter
7.

Table 6.27: U2R experiment results

Evaluation U2R U2R-FS
TP 2149 2150
FP 185 193
TN 17 9
FN 3 3
Error Rate 7.99% 8.31%
Accuracy 92.01% 91.69%
DR 99.86% 99.88%
FAR 92% 96%
Tree Quality 99.91% 99.91%
Total Nodes 5 6
F-measure 0.96 0.96
Leaf Nodes 3 3.5
Runtime (s) 2.04 1.74
Tree Instances 10.5 55.8
Cost 17.69 17.29
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Figure 6.13: ROC analysis — U2R experiment
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The results below are based on the experiments performed on the 20% training data set
containing all attack types. The feature selected data set is denoted with -FS in the table to
follow. The results are based on the average obtained for 10 experiment runs. A discussion of
the results is provided in Chapter 7.

Table 6.28: 20Train experiment results

Evaluation 20Train 20Train-FS
TP 1828 1810
FP 4383 4287
TN 5315 5411
FN 324 342
Error Rate 39.72% 39.06%
Accuracy 60.28% 60.94%
DR 84.94% 84.11%
FAR 45% 44%
Tree Quality 98.91% 99.00%
Total Nodes 239.4 196.9
F-measure 0.44 0.44
Leaf Nodes 2071 158.2
Runtime (s) 241.46 239.09
Tree Instances 143 140.9
Cost 852.67 875.73
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Figure 6.14: ROC analysis — 20Train experiment
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6.7 ATMa ensemble

To highlight the potential of ensemble techniques (discussed in Chapter 3), an ensemble
version of ATM was created, referred to as ATMa. The technique is similar to the popular
bagging predictions approach used in the majority of Kaggle® competitions. ATMa builds three
prediction models and then creates a final prediction model based on a threshold formula. The
final prediction model was tested against the Test21 data set and should be compared to the
ATM 20Train results. The experiment, therefore, forms part of experiment cycle two. The
threshold formula can be explained using two formulas. We discuss the results in Chapter 7.
For calculating A,

3
1
A—ggni, (6.7)

where n is the prediction model, i the index of a single model within the set and n; the element’s
value. The final prediction P can be calculated using the average obtained from A as

1 >01
P =f(A) { (6.8)
0 <01,

where P is the final binary prediction returned (e.g. malicious or normal) for the given record
and A is the average of predictions for three models. Due to ensembling the already predicted
models, the values that influence the cost metrics are calculated differently. The Tree Quality,
Total Nodes, Tree Instances and Leaf Nodes are calculated based on the average of the three
models. The run time is the total time in seconds to train all three models. No feature selection
was performed to build ATMa, and the prediction models were built based on training with the
20% training data set. The ATMa results are displayed with the 20Train experiment results,
which exclude feature selection.
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Figure 6.15: ROC analysis — ATMa experiment
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Table 6.29: ATMa experiment results

Evaluation 20Train ATMa
TP 1828 6787
FP 4383 350

TN 5315 1803
FN 324 2911
Error Rate 39.72% 27.52%
Accuracy 60.28% 72.48%
DR 84.94% 69.98%
FAR 45% 16%
Tree Quality 98.91% 98.97%
Total Nodes 239.4 308
F-measure 0.44 0.81
Leaf Nodes 2071 275.67
Runtime (s) 241.46 662.55
Tree Instances 143 145
Cost 852.67 2621.57

6.8 Methodology discussion

Research and experimentation in the combined intrusion detection and machine learning
fields have come under much criticism (Tavallaece et al., 2010; Sommer & Paxson, 2010).
Poorly designed experiments are to blame for the success discrepancy between the research
areas and the practical implementation thereof.

A lengthy chapter has summarised all the necessary choices and steps followed in this
research and the experimentation process. To further the quality and highlight the importance
of research in the intrusion detection domain, some focus needs to be placed on where
previous studies have failed.

Tavallaee et al. (2010) find that with their survey research, more than half of the research
related to the machine learning and intrusion detection domains does not specify which data
sets are used for training and test purposes. The data sets, preparation and use thereof were
discussed in rigorous detail.

Many research studies rely on data sets biased towards abnormal activity and high accuracy
scores for machine learning research (Tavallaee et al., 2010). The NSL-KDD data set has
been used and can be considered the best available data set for research combining the two
domains. The improved attack distribution was discussed, and one can argue that the data set
vastly improves the research’s reliability.
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Only 84% of research combining the two domains defines the initial parameters used within
the experiment for the classifiers (Tavallaee et al., 2010). The effect is worsened by only 12%
motivating the selection of parameters when defined (Tavallaee et al., 2010). Specific focus on
parameters, the impact and motivation have been discussed and defined in this research
project.

Only 20% of the research states the number of simulations and less than 60% indicates when
the results have been averaged based on several evaluation runs (Tavallaee et al., 2010). The
process and experiment cycle were detailed. The evaluation techniques and process were
clearly defined for each experiment in Chapter 6.

Tavallaee et al. (2010) outlines the lack of evaluating classifiers based on each attack type, as
only 26% of research has done so. This research project presented and evaluated each attack
type present in the data set separately.

Performance analysis regarding the memory, time or cost overheads is important to critical for
IDS (Tavallaee et al., 2010). Only 19% of the papers surveyed studied the performance of the
methods introduced and only 40% indicated the hardware used (Tavallaee et al., 2010). In this
research, specific focus was placed on the cost evaluation based on the ATM classifier’s
performance. The evaluation technique and hardware used were outlined in detail, allowing for
comparability and reproducibility.

Much emphasis has been placed on the validity and reliability of the research experiments.
Based on the discussion and the detailed outline for every decision and process, this research
can be considered valid and reliable. The detailed process allows for high reproducibility of the
entire research project. The research performed is valid, reliable and reproducible, therefore,
the experimentation process is considered to be of a high quality and successful. With the
experimentation completed, the focus shifted to the analysis and discussion of the results in
section 6.6.
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CHAPTER 7

RESULT ANALYSIS AND SUMMARY

7.1 Introduction

In this section, we discuss the experimental results and compare it with other studies. The
results for the second experiment cycle are scrutinised and compared, where possible, to
other research. The significance of conducting reliable, reproducible and transparent research
has been highlighted briefly in section 6.8.

Before we discuss the results, further insight into the research domain is required. Several
studies on classifiers for intrusion detection promise detection and accuracy rates of over
99%, but this needs to be considered in the context of how the experiments were performed.
Without applying the basic principles, these studies have become almost impossible to
replicate or compare.

We argue that there is a definite issue within the cross-domain research areas to provide
comparable results, and this statement is supported by Tavallaee et al. (2009) and Sommer &
Paxson (2010). Therefore, finding exact comparable results is hard, if not impossible, in some
instances. While creating the NSL-KDD data set, Tavallaee et al. (2009) also experimented
with several classifiers on their Test21 data set.

For a detailed analysis and motivation on the data set used in this research, refer to Chapter
6. We can compare the Test21 results from Tavallaee et al. (2009) with the results obtained in
the previous chapter (refer to table 6.19 and table 6.29). The experiments referred to as the
20Train and ATMa used the same training and test data sets as Tavallaee et al. (2009).

The first experimental session referred to as the validation experiment cycle was discussed in
section 6.4. The validation experiment cycle only referred to the validation of the algorithm and
is therefore excluded from further analysis in the discussion to follow. To ease the discussion
of the results obtained, the chapter is split into two sections, namely general discussion and
discussion of training per attack type.

7.2 General discussion

The purpose of the 20Train experiment was to identify the ATM classifier’s ability to classify all
attack classes as either normal or malicious network traffic. The ATM’s ability to classify the
full Test21 data set by training with only 20% of the NSL-KDD training data can be considered
adequate with an accuracy rate of 60% and 61% respectively. The high accuracy rates noted
with experiment cycle one are significantly reduced, as the Test21 data set includes hard to
detect attacks and unseen attacks (Tavallaee et al., 2009). This was explained in more detalil
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in Chapter 6.

The difficulty of the test data set explains the significant drop in accuracy across the board e.g.
99% vs. 60%. During experiment cycle one when we averaged the results, a 99% accuracy
(refer section 6.6.2) was observed. In the validation section, the data sets were split in order to
create the validation data set. Cases where cross-validation or the split of a training data set
(as with experiment cycle one) takes place, are not comparable with one another due to the
selection process randomly selecting the records when the validation data sets are created.
Therefore, the differences in the creation of validation data sets makes the results obtained
incomparable, especially with actual test data sets where the records were not randomly
selected. Experiment cycle one validates the ATM’s performance on more known network
traffic as the actual training data set is split (refer Chapter 6). The results obtained from the
Test21 data set clearly outline the above mentioned phenomenon as the ATM obtained an
accuracy rate of 60% and 61% respectively due to the difficult test data set. The difficulty is
increased, with reference to table 6.10, as 32% of the network traffic within Test21 is
completely new to the classifier and could be considered similar to zero-day attacks.

The high detection rate of 84% notes the ATM classifier’s ability to detect attacks correctly.
From an anomaly intrusion detection perspective the detection rate is unconvincing, as 16% of
all attacks would not be detected by the classifier. Another detection component would be
required to detect the residual attacks.

The false alarm rate introduces further concerns as the ATM noted high false alarm rates with
44%. Based on analysing the ROC graph, figure 6.14, the classifier scores well above the
random guess phenomenon. Although the ATM reflected a high ability to identify attacks and
the lack of ability to suppress the false alarm rate, based on only the ROC analysis we can
consider the classifier to be adequate.

By using feature selection, the ATM’s evaluation metrics improved, but with a negative effect
on the cost due to the improved tree quality. Another example is the classical machine
learning trade off between accuracy and computational cost. We argue that the increased cost
is trivial as the classifier noted improved run time and used fewer leaf nodes with feature
selection implemented. The cost overhead relates indirectly to the pheromones and
processing power required to produce the improved tree quality.

When we consider the influence of feature selection on all experiments the following can be
noted: Feature selection reduced the run time in 80% of the experiments, while the overall
cost metric improved for only 60% of the experiments performed. The improved performance
is a direct result of having fewer features to process. The effect of feature selection on the
accuracy is still debatable as the accuracy decreased in 40% of the experiments.

It can be noted that the overall improvement in accuracy is due to fewer features and the

retention of quality features for classification. The statement is supported by the results as the
tree quality improved in 80% of the experiments. Based on the results obtained we can note
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that the feature selection has a positive influence on the ATM’s ability as an intrusion detection
candidate.

To improve the results obtained, an ensemble version of the ATM classifier was built (refer to
section 6.7 for more information). The ATMa classifier experiment compares directly with the
20Train experiment performed as both use the same training and test data sets. ATMa
significantly improves on the ATM 20Train results in terms of the accuracy, error rate and the
false alarm rate. The improved results come at a cost; the run time significantly increased as
the model was built three times within the ensemble. The increased F-measure of 37%
highlights an improved balance in the precision of the classifier.

It was noted in Chapter 6 that a good intrusion detection system should maximise the
detection rate and minimise the false alarm rate. Although the detection rate decreases with
ATMa by 15%, the false alarm rate is minimised by 29%. The false alarm rate of only 16%
highlights potential as an intrusion detection classifier with further improvement. It is important
to note that the Test21 data set is considered an anomaly detection data set (Tavallaee et al.,
2009). ATMa improves the accuracy and error rates due to the underlying threshold formula
discussed in Chapter 6.

The threshold formula favours malicious predictions and therefore decreases the false alarm
rate. To simplify, let us consider a prediction model from three sets as S, S = {1, 0, 0}, is
identified. The ensemble prediction would result in 1, classified as malicious. In effect, ATMa
will only classify traffic as normal if all three predictive models agree. The threshold value is
currently set randomly at 0.1 and is another avenue for further research. When we compare
ATMa with all the experiments in cycle two (refer to Appendix B), the classifier scores the best
false alarm rate and worst detection rate — an example of the base-rate fallacy problem coined
by Axelsson (2000).

Based on the computational cost, the ATM and ATMa classifiers would not be adequate for
real-time network analysis and better suited for an offline intrusion detection system. It is
essential to compare the results obtained with other research to further examine the
experiment results. The result highlights a clear route for improvement — with ensemble
techniques we argue that further improvement to the cost of the classifier is required. The
overall positive influence of feature selection can improve the computational cost of the ATMa
classifier.

Table 7.1 outlines the results of Tavallaee et al. (2009), evaluating several machine learning
classifiers within their Test21 data set. For a combined summary of all results obtained from
experiment cycle two, refer to Appendix B. A limited amount of statistics is available from other
research performed. We therefore solely rely on accuracy as a metric for comparison.
Ensemble classifiers are denoted with * in table 7.1.
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Table 7.1: Accuracy of several classifiers on Test21 data set

Classifier Accuracy
ATMa* 72.48%
NB-Tree* 66.16%
Decision Tree J48 63.97%
Random Forest* 63.26%
ATM 60.94%
Random Tree 58.51%
Naive Bayesian 55.77%
M-Layer Perceptron 57.34%
SVM 42.29%

The Decision Tree J48 algorithm employs the C4.5 split. Intuitively, Random Forests, NB-Tree
and ATMa can be regarded as ensemble classifiers, i.e. a combination of classifiers or
prediction models. Refer to Chapter 3 for more information on ensemble techniques and
Chapter 6 for the approach followed with ATMa. Although the ATM combines ant colony
optimisation and decision trees, it cannot be considered an ensemble classifier. The ATM
induces decision trees based on ant colony optimisation. The ATM can be compared with
novel algorithms such as Decision Tree J48, SVM, M-Layer Perceptron, etc. Compared with
other novel algorithms the ATM performs favourably with only a 3% lower accuracy than the
traditional decision tree classifier. The results obtained by the ATM classifier make a strong
case as an intrusion classifier by outperforming several other classifiers. The results support
the notion that decision tree-based classifiers are among the best for intrusion detection.
ATMa outperforms all the other classifiers with an accuracy of 72%. As for intrusion detection,
ATMa is a clear winner among several classifiers due to improved accuracy, reduced false
alarms and error rates. We continue the discussion in the next section as we look at the ATM’s
ability to classify only specific attacks.

7.3 Discussion of training per attack type

In order to have a full overview of the ATM’s classification ability on the NSL-KDD data set, the
classifier was trained per attack type. This introduced the ATM classifier to highly unbalanced
data sets.

Analysing the results obtained shows instances of a high false alarm rate and very low error
rates, a classical indication of training on an unbalanced data set. This is due to the algorithm
favouring the majority class in the data set. We therefore also rely on the F-measure as
discussed in the previous chapter.

Regrettably, comparative results split per attack type using the same training and test data set
is scarce. The ATM obtained the best accuracy with classifying U2R attacks (92.01%
accuracy); with the highly unbalanced data set the F-measure of 0.96 can be considered a
good result. However, for intrusion detection, a balance between the detection rate and false
alarm rate is required. We refer to the ROC analysis later in the section.
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Revathi & Malathi (2014) experimented with detecting U2R attacks using the NSL-KDD data
set, and their multi-layer perceptron obtained the highest result with 88.46% accuracy. Revathi
& Malathi (2014) however fail to mention which of the training and test data sets were used.
The ATM’s ability to detect DOS and probe attacks could be considered good, as this includes
the lowest percentage of false alarm rates with high detection rates of over 90%. Within the full
Train20% data set, Probe and DOS attacks were among the highest represented and we can
note that an adequate amount of training data was supplied. Figure 6.5 highlights the
distribution of classes within the Test21 data set. For training a classifier per attack type, the
attack would require a sufficient amount of data. R2L and U2R attacks represented in some
instances lower than 1% of the supplied training data; however, on average it represents 20%
of the distribution within the Test21 data set. It can be argued that with more training data
representing all classes or training different models from sections of the training data, the
results of the 20Train experiment can be improved. The accuracy of 77.37% for probe attacks
can also be considered adequate with the difficult Test21 data set. The overall results for
probe attacks are considered good with the potential to improve the false alarm rate.
Noureldien & Yousif (2016) evaluated the accuracy of various machine learning techniques to
detect DOS attacks using the Train20% and Test21 NSL-KDD data sets.

The ATM outperforms the J48 Decision Tree classifier used by Noureldien & Yousif (2016) by
3%. A spike in the cost is also observed with training DOS attacks due to the very high tree
quality and run time recorded. To compare the ROC analysis for each attack type, a graph
combining the ROC for all experiments is shown below. Due to the overall positive benefit of
feature selection, the analysis is limited to only feature selected experiments.
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Figure 7.1: ROC analysis — attack type experiments

The ROC analysis for all attack types reveals the inadequacy when detecting R2L and U2R
attacks. While the results obtained for accuracy do seem favourable, for intrusion detection the
ATM’s predictions for R2L and U2R is near random guessing. The ROC results obtained for
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DOS and probe attacks are very close to the 20Train and ATMa results. Overall, when we
exclude ATMa, the ATM performs better when split per attack type than tasked with detecting
all attack types. A high F-measure of over 50% is observed in all cases trained per attack type,
indicating that a much better balance is obtained when training per attack type. A closer look
at the costs observed also notes very fast training times, and low cost metrics with only DOS
attacks the exclusion. Without more training examples the results obtained for R2L and U2R
attacks are poor and cannot be considered for intrusion detection.

Based on the results obtained from the experiments, the ATM contested and in some

instances improved on traditional decision trees, with the ATMa outperforming both novel and
ensemble techniques. We conclude the discussion and thesis in the next chapter.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

In this chapter, we conclude the work presented, outline the main contributions made and
highlight the limitations of the work presented. Additionally, possible future research areas are
explored.

8.1 Conclusion

The focus of this research was to implement the ATM within the intrusion detection field.
During the research, the ATM has been successfully applied within the intrusion detection field
while offering competitive results with other established classifiers. The results obtained are
satisfactory and among the top percentile when compared to several other classification
techniques.

The ATM scored only 3% lower than the traditional J48 Decision Tree. The results supported
notions mentioned by Chennupati (2014) that the true potential of the ATM is within ensemble
techniques, as we created the ATMa, an ensemble classifier. The results obtained for ATMa
outperformed all other classifiers experimented with by Tavallaee et al. (2009) on their
NSL-KDD data set. ATMa also outperformed other ensemble decision tree-based classifiers
and supports the belief that decision tree-based classifiers are still among the best to be used
with intrusion detection. An experiment cycle training the ATM per attack type highlighted the
need for more training data for R2L and U2R data sets. The ATM performed well when tasked
with detecting DOS and probe attacks, although the high false alarm rates were concerning.

The use of a new cost metric to analyse the results of each experiment allows a baseline for
further research, especially improved versions of the ATM classifier. The cost metric
introduced in section 6.4 is specifically tailored to the ATM classifier and has shown
usefulness when performing experiments.

The validation experiments showed contradicting results to the observations made by Rami &
Panchal (2012), as it was noted that the colony size vastly reduces the classifier cost while
only slightly decreases the accuracy.

The ATM performed too slow for real-time intrusion detection; instead, it makes a strong
argument to be considered for offline systems. The ATMa showed improvements in all areas
over the ATM except for cost and should rather be considered for intrusion detection. The
ATMa’s overall accuracy of 73% with a false alarm rate of 16% far improves on previous
results; however, it still cannot be advised for a commercial grade intrusion detection system.
Overall, the research decreases the gap between machine learning and the intrusion detection
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domain. The transparency and reproducibility within the experiments instantly vanquish the
current academic issues found in similar research. We urge researchers to consider applying
the same principles and to make use of the cost metrics implemented for analysis.

8.2 Research contributions
During the course of the research, each research question was answered and the hypothesis
successfully supported by an overall positive result.

» The baseline provided by decision trees and ant colony optimisation within intrusion
detection were highlighted in Chapter 4 and further supported by comparable research
in the results discussion in Chapter 6

» Several metrics were chosen to evaluate the classifiers. However, the emphasis was
placed on how intrusion detection systems should be evaluated, and specific metrics
were chosen in Chapter 6 based on a literature review performed

« The ATM was successfully implemented within the intrusion detection domain and
compared with other results in Chapter 6. To further the research contribution, the
classifier was trained per attack type to grasp its ability to only classify specific attacks

» The research supports notions by other researchers, as we created an ensemble version
ATMa that outperformed the ATM and other classifiers experimented on using the NSL-
KDD data set for intrusion detection

» The research introduced a new cost metric to analyse the results obtained by the ATM or
equivalent classifiers. The cost metric was designed based on the validation
experiments performed and well customised for the ATM. The metric has shown
usefulness in evaluating the computational cost of algorithms during experimentation

8.3 Future work and challenges

As this research has shown, ATM and ATMa classifiers offer a number of interesting problems
that need to be addressed before they can be used in a commercial system. Some crucial
improvements are required to the classifiers and experimentation process.

» Cost — the cost of both classifiers need to be improved significantly, based on the
researcher’s own cost metric. A closer look at minimising the features within the data set
can be considered. The feature selection process can be combined with the parameter
investigation to maximise the performance gained

+ Ensembling — the ATMa improves significantly on the ATM. More complex and optimised
techniques can be used for ensembling the classifier. The threshold formula can also be
further investigated to identify a maximum balance between the detection rate and false
alarm rate

+ Data sets — the initial premise of the research was to establish the ATM within intrusion
detection and provide a foundation for further research. The data sets, although
considered old, used for training and test phases were chosen due to the comparability
with other research. Due to the established foundation, future research should use more
realistic data sets or real network traffic. During the time of experimentation, 2016, a
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recent data set UNSW-NB15 was made available. During this period limited comparable
research was available; future research should include the modern UNSW-NB15 data
set

The last avenue for future research is building an intrusion detection system based on the
ATM or variant classifiers. It is important to iterate that all other mentioned research avenues
must first be explored before considering implementing the classifier for an actual intrusion
detection system. To further motivate the ATM classifier for intrusion detection, the operating
model in figure 8.1 is proposed.

The model operates in two phases as an intrusion detection system: the training phase and
the operating phase. The training phase is first initiated to train a classification model using the
ATM. During this phase, ensemble techniques can also be applied to improve the
classification accuracy of the initial model.
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Figure 8.1: Proposed model for intrusion detection

The initial trained model is then applied in the operating phase to be used for detection. Data
collected by means of intrusion detection monitors and sensors are fed into a network data
database as relevant features are extracted. The classifier is then tasked with classifying the
network data based on the current set of trained models. Whenever malicious network traffic is
identified, the alarm is sent to an intrusion detection administrator for verification. The
administrator then either discards the alarm or feeds the data back into the training phase. As
the process continues, trained models will be stacked together by means of an ensemble, and
the system will become more accurate as time passes.

Overall, the research decreases the gap between machine learning and the intrusion detection
domain. The research supports the notion that machine learning can fill a large void created
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by outdated detection techniques and evolving attacks within the intrusion detection field
(Sommer & Paxson, 2010; Tavallaee et al., 2010; Chahal & Kaur, 2016; Rudd et al., 2017).

The foundation for implementing ATM in intrusion detection has been established during this

research. Based on the results obtained, the researchers are satisfied with the research and
excited about future prospects utilising the ATM within intrusion detection.
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A1

APPENDIX A

FEATURE SELECTION RESULTS

Probe Weka output

=== Attribute Selection on all input data ===

Search Method:
Attribute ranking.

Attribute Evaluator (supervised, Class (nominal): 42 xAttack):
Information Gain Ranking Filter

Ranked attributes:

0.4680165 2 src_bytes

0.4348688 40 service

0.2986306 3 dst_bytes

0.2226567 30 dst_host_srv_count
0.218387 34 dst_host_srv_diff_host_rate
0.2145876 9 logged_in

0.2029187 33 dst_host_same_src_port_rate
0.1830301 32 dst_host_diff_srv_rate
0.1630371 31 dst_host_same_srv_rate
0.1545942 38 dst_host_srv_rerror_rate
0.1427631 37 dst_host_rerror_rate
0.140313 41 flag

0.1379103 24 rerror_rate

0.1148867 25 srv_rerror_rate
0.1109277 29 dst_host_count
0.1076456 39 protocol_type
0.1005102 20 count

0.0992447 26 same_srv_rate
0.094842 28 srv_diff_host_rate
0.0846589 27 diff_srv_rate

0.0579857 21 srv_count

0.0545715 22 serror_rate

0.0503095 35 dst_host_serror_rate
0.0296329 1 duration

0.025486 36 dst_host_srv_serror_rate
0.0091222 23* srv_serror_rate
0.0027702 7* hot

0.0020628 19* is_guest_login
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0.0015192 13* num_root
0.0010834 16* num_access._files
0.0009723 10* num_compromised
0.0004327 117 root_shell
0.0003028 12* su_attempted
0.0000144 4* land

0 18* is_host_login

0 15* num_shells

0 5* wrong_fragment

0 6™ urgent

0 14* num_file_creations

0 8* num_failed_logins

0 17" num_outbound_cmds

Selected attributes:
2,40,3,30,34,9,33,32,31,38,37,41,24,25,29,39,20,26,28,27,21,22,35,1,36 : 26
* - feature removed

U2R Weka output

=== Attribute Selection on all input data ===

Search Method:
Attribute ranking.

Attribute Evaluator (supervised, Class (nominal): 42 xAttack):
Information Gain Ranking Filter

Ranked attributes:

0.0030552583 11 root_shell
0.0029812954 40 service
0.002837755 7 hot

0.0026270238 30 dst_host_srv_count
0.0023905689 10 num_compromised
0.0020280154 29 dst_host_count
0.0015656604 14 num_file_creations
0.0014369499 1 duration
0.0013610344 33 dst_host_same_src_port_rate
0.001017264 21 srv_count
0.0007670554 6 urgent
0.0006807885 13 num_root
0.000141594 9 logged_in
0.0000709713 41 flag
0.0000678283 39 protocol_type
0.0000149033 19 is_guest_login
0.0000000876 4 land

0 38* dst_host_srv_rerror_rate
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0 12* su_attempted

0 37* dst_host_rerror_rate

0 8* num_failed_logins

0 15" num_shells

0 2* src_bytes

0 3* dst_bytes

0 5* wrong_fragment

0 36* dst_host_srv_serror_rate
0 31* dst_host_same_srv_rate
0 32* dst_host_diff_srv_rate

0 27 diff_srv_rate

0 26 same_srv_rate

0 28* srv_diff_host._rate

0 17" num_outbound_cmds

0 34* dst_host_srv_diff_host_rate
0 25* srv_rerror_rate

0 24 rerror_rate

0 23* srv_serror_rate

0 22* serror_rate

0 18% is_host_login

0 20* count

0 35* dst_host_serror_rate

0 16" num_access._files

Selected attributes: 11,40,7,30,10,29,14,1,33,21,6,13,9,41,39,19,4 :

* - feature removed

R2L Weka output

=== Altribute Selection on all input data ===

Search Method:
Attribute ranking.

Attribute Evaluator (supervised, Class (nominal): 42 xAttack):
Information Gain Ranking Filter

Ranked attributes:

0.06627103 2 src_bytes

0.0485375 40 service

0.04114705 3 dst_bytes

0.03155934 30 dst_host_srv_count
0.02995786 7 hot

0.02988673 33 dst_host_same_src_port_rate
0.02309435 34 dst_host_srv_diff_host_rate
0.01939977 21 srv_count

0.01741531 20 count
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A4

0.01698704 29 dst_host_count
0.01377394 19 is_guest_login
0.0075492 28 srv_diff_host_rate
0.0069388 32 dst_host_diff_srv_rate
0.00504337 39 protocol_type
0.00445705 1 duration
0.00438698 36 dst_host_srv_serror_rate
0.00348874 31 dst_host_same_srv_rate
0.00330218 41 flag

0.00285783 8 num_failed_logins
0.00220367 9 logged_in
0.00202793 35 dst_host_serror_rate
0.00073021 27 diff_srv_rate
0.0003131 11 root_shell
0.00000163 4 land

0 6™ urgent

0 38* dst_host_srv_rerror_rate

0 37* dst_host_rerror_rate

0 5* wrong_fragment

0 10* num_compromised

0 26 same_srv_rate

0 12* su_attempted

0 23* srv_serror_rate

0 24 rerror_rate

0 18% is_host_login

0 22* serror_rate

0 17* num_outbound_cmds

0 25* srv_rerror_rate

0 14* num_file_creations

0 15" num_shells

0 16 num_access._files

0 13* num_root

Selected attributes: 2,40,3,30,7,33,34,21,20,29,19,28,32,39,1,36,31,41,8,9,35,27,11,4 : 24

* - feature removed

DOS Weka output

=== Attribute Selection on all input data ===

Search Method:
Attribute ranking.

Attribute Evaluator (supervised, Class (nominal): 42 xAttack):
Information Gain Ranking Filter

Ranked attributes: 0.82137957 2 src_bytes
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0.70151747 27 diff_srv_rate
0.67011644 26 same_srv_rate
0.65622599 41 flag

0.65225583 40 service

0.62349862 3 dst_bytes

0.56179273 20 count

0.54621635 36 dst_host_srv_serror_rate
0.54490639 35 dst_host_serror_rate
0.54021198 31 dst_host_same_srv_rate
0.53594495 32 dst_host_diff_srv_rate
0.52902426 22 serror_rate
0.52835117 23 srv_serror_rate
0.50604478 30 dst_host_srv_count
0.40926381 9 logged_in

0.25300156 34 dst_host_srv_diff_host_rate
0.24004231 29 dst_host_count
0.20397168 33 dst_host_same_src_port_rate
0.1741022 21 srv_count

0.16670613 28 srv_diff_host_rate
0.06340499 38 dst_host_srv_rerror_rate
0.06213791 39 protocol_type
0.05329209 1 duration

0.04211447 37 dst_host_rerror_rate
0.03001073 24 rerror_rate

0.02765923 25 srv_rerror_rate
0.01290771 5* wrong_fragment
0.01206229 7* hot

0.00901577 10* num_compromised
0.0056462 19* is_guest_login
0.00433829 13* num_root

0.00249886 16™ num_access._files
0.00186479 14* num_file_creations
0.00099824 11* root_shell

0.00069858 12* su_attempted
0.00039909 8* num_failed_logins
0.00026603 15" num_shells
0.00000224 4* land

0 18* is_host_login

0 6™ urgent

0 17" num_outbound_cmds

Selected attributes:
2,27,26,41,40,3,20,36,35,31,32,22,23,30,9,34,29,33,21,28,38,39,1,37,24,25 : 26
* - feature removed

20Train Weka output

=== Attribute Selection on all input data ===
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Search Method:
Attribute ranking.

Attribute Evaluator (supervised, Class (nominal): 42 xAttack):
Information Gain Ranking Filter

Ranked attributes:

0.806777083 2 src_bytes

0.632370663 40 service

0.631947382 3 dst_bytes

0.519250146 41 flag

0.515902949 27 diff_srv_rate
0.507754237 26 same_srv_rate
0.47284563 30 dst_host_srv_count
0.43902981 31 dst_host_same_srv_rate
0.412562311 32 dst_host_diff_srv_rate
0.403611513 35 dst_host_serror_rate
0.401731617 9 logged_in

0.396138161 36 dst_host_srv_serror_rate
0.390504636 22 serror_rate
0.382406912 20 count

0.377279134 23 srv_serror._rate
0.268769398 34 dst_host_srv_diff_host_rate
0.194957487 29 dst_host_count
0.192532029 33 dst_host_same_src_port_rate
0.144081691 28 srv_diff_host_rate
0.093588834 21 srv_count
0.088691095 38 dst_host_srv_rerror_rate
0.063682209 39 protocol_type
0.057011737 24 rerror_rate
0.053991071 37 dst_host_rerror_rate
0.052479105 25 srv_rerror_rate
0.034316178 1 duration

0.011069506 7* hot

0.009857171 5" wrong_fragment
0.006294468 10* num_compromised
0.003833062 13* num_root
0.001968948 16 num_access._files
0.001131461 19* is_guest_login
0.000844263 14 num_file_creations
0.000755233 12* su_attempted
0.000265543 11* root_shell
0.000151506 15" num_shells
0.000000263 4* land

0 6* urgent

0 17* num_outbound_cmds

0 18* is_host_login

0 8* num_failed_logins
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Selected attributes:
2,40,3,41,27,26,30,31,32,35,9,36,22,20,23,34,29,33,28,21,38,39,24,37,25,1 : 26
* - feature removed
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APPENDIX B

EXPERIMENT CYCLE TWO - COMBINED
RESULT

Evaluation 20Train | 20Train | U2R U2R R2L R2L Probe | Probe | DOS DOS ATMa
-FS -FS -FS -FS -FS
TP 1828 1810 2149 2150 2114 2113 1911 1942 2010 1974 6787
FP 4383 4287 185 193 2518 2490 760 821 1480 1438 350
TN 5315 5411 17 9 236 264 1642 1582 2860 2903 1803
FN 324 342 3 3 38 39 241 210 142 179 2911
Error Rate (%) 39.72 39.06 7.99 8.31 52.1 51.56 21.99 22.63 24.99 24.89 27.52
Accuracy (%) 60.28 60.94 92.01 91.69 47.9 48.44 78.01 77.37 75.01 75.11 72.48
DR (%) 84.94 84.11 99.86 99.88 98.22 98.17 88.79 90.24 93 92 69.98
FAR (%) 45 44 92 96 91 90 32 34 34 33 16
Tree Quality (%) 98.91 99 99.91 99.91 99.55 99.56 99.39 99.42 99.72 99.69 98.97
Total Nodes 239.4 196.9 5 6 49 41.8 84 130.2 98.6 111.2 308
F-measure 0.44 0.44 0.96 0.96 0.62 0.63 0.79 0.79 0.71 0.7 0.81
Leaf Nodes 2071 158.2 3 3.5 35.2 28.2 63.5 107.4 83.1 96.2 275.67
Runtime (s) 241.46 | 239.09 | 2.04 1.74 20.1 20.35 61.45 59.75 157.88 | 134.27 | 662.55
Tree Instances 143 140.9 10.5 55.8 106.9 122.8 126.1 133.3 138.6 136.7 145
Cost 852.67 | 875.73 | 17.69 17.29 114.51 110.65 | 303.34 | 347.52 | 1819.41 | 1419.46 | 2621.57
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APPENDIX C

EXAMPLE DECISION TREES AND

PREDICTION MODEL

This appendix includes examples of decision trees extracted during the experimentation
process. Section C.2 illustrates a prediction model and a short explanation of how to interpret
the model.

C1

’src_bytes’ <= 28.0:

ATM example decision tree

’same_srv_rate’ <= 0.49:

’dst_bytes’ <= 0.0: 1 (8717.0/5.0)

’dst_bytes’ > 0.0:

’dst_host_srv_count’ <= 1.0:

’dst_host_srv_count’ > 1.0:

count’ <= 7.0: 0 (5.0)
’count’ > 7.0:

same_srv_rate’ > 0.49:

’src_bytes’ <=
’dst_host

’dst_host_same_srv_rate’ <= 0.18:
’dst_host_count’ > 238.0:

0.0:

1 (9.0)

_serror_rate’ <= 0.76:

1 (11.0)

1 (210.0/7.0)

’dst_host_count’ <= 238.0:

’dst_host_diff_srv_rate’ > 0.12:
’dst_host_diff_srv_rate’ <= 0.12:

1 (159.0/2.0)

’dst_host_diff_srv_rate’ <= 0.04: 0 (12.0)
’dst_host_diff_srv_rate’ > 0.04: 1 (18.0/6.0)

dst_host_same_srv_rate’ > 0.18:

’dst_host_srv_count’ > 17.0: 0 (611.0/8.0)

’dst_host_srv_count’ <= 17.0:
(0.
(0.
(0.
(0.
(0.
(0.
(0.
(0.

’service’

’service’ =

’service’ =

’service’ =

’service’ =

’service’ =

’service’ =

‘service’ =
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’service’ = 9: 0 (0.0)

’service’ = 10: 0 (0.0)
’service’ = 11: 0 (0.0)
’service’ = 12: 0 (0.0)
’service’ = 13: 0 (0.0)
’service’ = 14: 0 (0.0)
’service’ = 15: 0 (0.0)
’service’ = 16: 0 (0.0)
’service’ = 17: 0 (0.0)
’service’ = 18: 0 (0.0)
’service’ = 19: 0 (0.0)
’service’ = 20: 1 (12.0)
’service’ = 21: 0 (0.0)
’service’ = 22: 0 (0.0)
’service’ = 23: 0 (0.0)
’service’ = 24: 0 (0.0)
’service’ = 25: 0 (16.0/1.0)
’service’ = 26: 0 (0.0)
’service’ = 27: 0 (0.0)
’service’ = 28: 0 (0.0)
’service’ = 29: 1 (3.0)
’service’ = 30: 0 (0.0)
’service’ = 31: 0 (0.0)
’service’ = 32: 0 (0.0)
’service’ = 33: 0 (0.0)
’service’ = 34: 0 (0.0)
’service’ = 35: 0 (0.0)
’service’ = 36: 0 (0.0)
’service’ = 37: 0 (0.0)
’service’ = 38: 0 (0.0)
’service’ = 39: 0 (0.0)
’service’ = 40: 0 (0.0)
’service’ = 41: 0 (0.0)
’service’ = 42: 0 (0.0)
’service’ = 43: 0 (0.0)
’service’ = 44: 0 (0.0)
’service’ = 45: 0 (3.0)
’service’ = 46: 0 (0.0)
’service’ = 47: 0 (0.0)
’service’ = 48: 0 (0.0)
’service’ = 49: 0 (0.0)
’service’ = 50: 1 (2.0)
’service’ = 51: 0 (0.0)
’service’ = 52: 0 (0.0)
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| | I ’service’ = 53: 0 (0.0)
I I I 'service’ = 54: 0 (0.0)
I I I ’service’ = 55: 0 (0.0)
| | I ’service’ = 56: 0 (0.0)
I I I ’service’ = 57: 1 (3.0)
| | I ’service’ = 58: 0 (0.0)
I I I ’service’ = 59: 0 (0.0)
| | I ’service’ = 60: 0 (0.0)
| | I ’service’ = 61: 1 (1.0)
| | I ’service’ = 62: 0 (0.0)
| | I ’service’ = 63: 0 (0.0)
| | I ’service’ = 64: 0 (9.0)
| | I ’service’ = 65: 0 (0.0)
| | I ’service’ = 66: 0 (0.0)
| | I ’service’ = 67: 0 (0.0)
| | I ’service’ = 68: 0 (0.0)
| | I ’service’ = 69: 0 (0.0)
| | I ’service’ = 70: 0 (0.0)
)

dst_host_serror_rate’ > 0.76:
I ’count’ > 1.0: 1 (193.0)
I ’count’ <= 1.0:
I I ’dst_host_same_srv_rate’ <= 0.76: 1 (49.0/1.0)
I I ’dst_host_same_srv_rate’ > 0.76: 0 (7.0/1.0)
src_bytes’ > 0.0:
’dst_host_srv_serror_rate’ > 0.0: 0 (38.0)
’dst_host_srv_serror_rate’ <= 0.0:
’src_bytes’ <= 8.0:
| ’dst_bytes’ <= 103.0: 1 (1053.0/9.0)
| ’dst_bytes’ > 103.0: 0 (46.0)
’src_bytes’ > 8.0:
’src_bytes’ <= 17.0: 0 (142.0/1.0)
’src_bytes’ > 17.0:
’count’ > 2.0: 1 (166.0)
’count’ <= 2.0:

|

|

| I

| |

| I | ’service’ = 1: 1 (0.0)
| I I ’service’ = 2: 1 (0.0)
| I | ’service’ = 3: 1 (0.0)
| I I ’service’ = 4: 1 (0.0)
| I | ’service’ = 5: 1 (0.0)
I | | ’service’ = 6: 1 (0.0)
| I | ’service’ = 7: 1 (0.0)
I | | ’service’ = 8: 1 (0.0)
| I | ’service’ = 9: 1 (0.0)
| | |

’service’ = 10: 1 (0.0)
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’service’ = 11: 1 (0.0)
’service’ = 12: 0 (6.0)
’service’ = 13: 1 (0.0)
’service’ = 14: 1 (0.0)
’service’ = 15: 1 (116.0)
’service’ = 16: 1 (5.0/1.0)
’service’ = 17: 1 (0.0)
’service’ = 18: 1 (0.0)
’service’ = 19: 1 (0.0)
’service’ = 20: 0 (17.0)
’service’ = 21: 1 (0.0)
’service’ = 22: 1 (0.0)
’service’ = 23: 1 (0.0)
’service’ = 24: 1 (0.0)
’service’ = 25: 1 (0.0)
’service’ = 26: 1 (0.0)
’service’ = 27: 1 (0.0)
’service’ = 28: 1 (0.0)
’service’ = 29: 1 (0.0)
’service’ = 30: 1 (0.0)
’service’ = 31: 1 (0.0)
’service’ = 32: 1 (0.0)
’service’ = 33: 1 (0.0)
’service’ = 34: 1 (0.0)
’service’ = 35: 1 (0.0)
’service’ = 36: 1 (0.0)
’service’ = 37: 1 (0.0)
’service’ = 38: 1 (0.0)
’service’ = 39: 1 (0.0)
’service’ = 40: 1 (0.0)
’service’ = 41: 1 (0.0)
’service’ = 42: 1 (0.0)
’service’ = 43: 1 (0.0)
’service’ = 44: 1 (0.0)
’service’ = 45: 1 (0.0)
’service’ = 46: 1 (0.0)
’service’ = 47: 1 (0.0)
’service’ = 48: 1 (0.0)
’service’ = 49: 1 (0.0)
’service’ = 50: 1 (5.0)
’service’ = 51: 1 (0.0)
’service’ = 52: 1 (0.0)
’service’ = 53: 1 (0.0)
’service’ = 54: 1 (0.0)
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I | I I | I ’service’ = 55: 1 (0.0)
I | I I | I ’service’ = 56: 1 (0.0)
| | | | | I ’service’ = 57: 1 (0.0)
I | I I | I ’service’ = 58: 1 (0.0)
| | | | | I ’service’ = 59: 1 (0.0)
I | I I | I ’service’ = 60: 1 (0.0)
| | | | | I ’service’ = 61: 1 (0.0)
I | I I | I ’service’ = 62: 1 (0.0)
| | | | I I ’service’ = 63: 1 (0.0)
I | I I | I ’service’ = 64: 1 (0.0)
| | | | I I ’service’ = 65: 1 (0.0)
I | I I | I ’service’ = 66: 1 (0.0)
| | | | I I ’service’ = 67: 1 (0.0)
I | I I | I ’service’ = 68: 1 (0.0)
| | | | I I ’service’ = 69: 1 (0.0)
I | I I | I ’service’ = 70: 1 (0.0)

src_bytes’ > 28.0:
’src_bytes’ <= 333.0:
1: 0 (6726.0/14.0)
’logged_in’ 0:
’src_bytes’ <= 205.0:
’dst_bytes’ <= 174.0: 0 (2737.0/11.0)
’dst_bytes’ > 174.0:

’logged_in’

’flag’ = 10: 1 (0.0)
’flag’ = 11: 1 (0.0)
’flag’ 2:
| ’same_srv_rate’ <= 0.6: 1 (4.0)
| I ’same_srv_rate’ > 0.6: 0 (12.0/2.0)
src_bytes’ > 205.0:
I ’src_bytes’ <= 230.0: 1 (43.0/2.0)
I I ’src_bytes’ > 230.0: 0 (20.0)
src_bytes’ > 333.0:
’src_bytes’ <= 44788.0:
| ’logged_in’ = 0:
I I ’dst_bytes’ > 1.0: 0 (88.0/2.0)
I I ’dst_bytes’ <= 1.0:

| flag’ = 1: 1 (0.0)
| flag’ = 3: 1 (12.0/2.0)
| "flag’ = 4: 1 (0.0)
| flag’ = 5: 0 (1.0)
| ’flag’ = 6: 1 (0.0)
| flag’ = 7: 1 (0.0)
| ’flag’ = 8: 1 (0.0)
I ’flag’ = 9: 1 (0.0)
I

I

I

I

I
I
I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I ’
I I

I

)
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’service’ = 1: 1 (0.0)
’service’ = 2: 1 (0.0)
’service’ = 3: 1 (0.0)
’service’ = 4: 1 (0.0)
’service’ = 5: 1 (0.0)
’service’ = 6: 1 (0.0)
’service’ = 7: 1 (0.0)
’service’ = 8: 1 (0.0)
’service’ = 9: 1 (0.0)
’service’ = 10: 1 (0.0)
’service’ = 11: 1 (0.0)
’service’ = 12: 1 (0.0)
’service’ = 13: 1 (0.0)
’service’ = 14: 1 (0.0)
’service’ = 15: 1 (0.0)
’service’ = 16: 1 (565.0)
’service’ = 17: 1 (0.0)
’service’ = 18: 1 (0.0)
’service’ = 19: 1 (0.0)
’service’ = 20: 0 (205.0)
’service’ = 21: 1 (0.0)
’service’ = 22: 1 (0.0)
’service’ = 23: 1 (0.0)
’service’ = 24: 1 (0.0)
’service’ = 25: 1 (0.0)
’service’ = 26: 1 (0.0)
’service’ = 27: 1 (0.0)
’service’ = 28: 1 (0.0)
’service’ = 29: 1 (0.0)
’service’ = 30: 1 (0.0)
’service’ = 31: 1 (0.0)
’service’ = 32: 1 (0.0)
’service’ = 33: 1 (0.0)
’service’ = 34: 1 (0.0)
’service’ = 35: 1 (0.0)
’service’ = 36: 1 (0.0)
’service’ = 37: 1 (0.0)
’service’ = 38: 1 (0.0)
’service’ = 39: 1 (0.0)
’service’ = 40: 1 (0.0)
’service’ = 41: 1 (0.0)
’service’ = 42: 1 (0.0)
’service’ = 43: 1 (0.0)
’service’ = 44: 1 (0.0)
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logged_in’ = 1:
’src_bytes’ <= 334.0:
I ’count’ > 2.0: 0 (31.0)
| ’count’ <= 2.0:
| I ’dst_bytes’ <= 531.0: 1 (91.0)
| | ’dst_bytes’ > 531.0: 0 (5.0)
’src_bytes’ > 334.0:
’dst_host_same_srv_rate’ > 0.53: 0 (1677.0/22.0)
’dst_host_same_srv_rate’ <= 0.53:
’dst_host_serror_rate’ > 0.22: 0 (129.0)
’dst_host_serror_rate’ <= 0.22:
I ’src_bytes’ > 1298.0: 0 (443.0/6.0)
| ’src_bytes’ <= 1298.0:
I I ’src_bytes’ <= 1194.0: 0 (372.0/12.0)
| | I | | ’src_bytes’ > 1194.0: 1 (68.0/23.0)
src_bytes’ > 44788.0:
I ’src_bytes’ <= 54540.0: 1 (190.0)
| ’src_bytes’ > 54540.0:

| | | ’service’ = 45: 0 (8.0)
| | | ’service’ = 46: 1 (0.0)
| | | ’service’ = 47: 1 (0.0)
I | | ’service’ = 48: 1 (0.0)
| | | ’service’ = 49: 1 (0.0)
I | | ’service’ = 50: 1 (0.0)
| | | ’service’ = 51: 1 (0.0)
I | | ’service’ = 52: 1 (0.0)
I | I ’service’ = 53: 1 (0.0)
I | | ’service’ = 54: 1 (0.0)
| | I ’service’ = 55: 1 (0.0)
I | | ’service’ = 56: 1 (0.0)
| | I ’service’ = 57: 1 (0.0)
I | | ’service’ = 58: 1 (0.0)
| | I ’service’ = 59: 1 (0.0)
I | | ’service’ = 60: 1 (0.0)
| | | ’service’ = 61: 1 (0.0)
| | | ’service’ = 62: 1 (0.0)
| | | ’service’ = 63: 1 (2.0)
I | | ’service’ = 64: 1 (0.0)
I | | ’service’ = 65: 1 (0.0)
I | | ’service’ = 66: 1 (0.0)
I | | ’service’ = 67: 1 (0.0)
I | | ’service’ = 68: 1 (0.0)
I | | ’service’ = 69: 1 (0.0)
I | | ’service’ = 70: 1 (0.0)
I )

|

|

|

|

|

|

|

|

|

|

|

|

|

|

)
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’dst_bytes’ > 164.0: 0 (19.0)
’dst_bytes’ <= 164.0:

| ’src_bytes’ <= 2280318.0: 0 (86.0)
| ’src_bytes’ > 2280318.0: 1 (14.0)
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C.2 Example prediction model
This example denotes a prediction model created by a classifier. A table is provided to further
explain the output.

A simple prediction model for ten records will output as follows:

1,0
1,0
1,0
0,0
1,1
1,1
1,1
1,0
0,0
0,0

Table C.1 below further explains how a prediction model should be interpreted.

Table C.1: Example of a prediction model

Number Ground Classifier
Truth Prediction
Prediction 1 1 0
Prediction 2 1 0
Prediction 3 1 0
Prediction 4 0 0
Prediction 5 1 1
Prediction 6 1 1
Prediction 7 1 1
Prediction 8 1 0
Prediction 9 0 0
Prediction 10 0 0

The prediction model is a binary classification task, as in this thesis, where 0 is normal traffic
and 1 is malicious traffic. The Ground Truth column relates to the prediction within the Test data
set and the Classifier Prediction relates to the classification by the machine learning algorithm.
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APPENDIX D

DATA SET COMPARISON

Koch, Mario & Rodosek (2014) summarised all available data sets for intrusion detection
research. The table has been adopted to include recent data sets and a popularity counter
based on search results obtained from searching recent citations on Google Scholar.

Table D.1: Summary of intrusion detection data sets adopted from Koch et al. (2014)

Data set Payload | Flows Synthetic | Current Ground Data set Citations | Reference
Attacks | Truth Availability | Count
DARPA 98/99 Y N Y N Y Y 62 Lippmann et al.
(2000)
NSL-KDD Y N Y N Y Y 424 Tavallace et al.
(2009)
MAWI WORKING GROUP Y N N P N Y 52 Fontugne, Borgnat,
Abry & Fukuda
(2010)
CAIDA Y N N P N P 2 Team et al. (2009)
PREDICT/IMPACT N Y Y P N P Not Not available
available
UNSW-NB15 Y N Y Y Y Y 74 Moustafa & Slay
(2015)

The values: Y denotes YES, P indicates partial and N indicates NO. A short literature review
outlines that very limited labelled intrusion detection data sets are publicly available, as noted
by Koch et al. (2014) and Matowidzki, Berezinski & Mazur (2015). The table was adopted to
include the citation reference and recent citations for each data set. The results of the Google
Scholar search was obtained by filtering the research citations for the data set research paper
as outlined in figure D.1, Google Scholar citations. The search was performed on 24/09/2018
and filtered to select all citations since 01/01/2017. An additional inclusion for the
UNSW-NB15 data set by Moustafa & Slay (2015) was made.

< (& & https://scholar.google.co.uk/schalar?hl=en&as_sdt=0%2C58q=The+1999+DARPA+off-line+intrusion +detection+evaluation&btnG=
= Go gle Scholar The 1999 DARPA off-line intrusion detection evaluation
* Articles
Any time The 1999 DARPA off-line intrusion detection evaluation [PDF] ucsb.edu
Since 2018 R Lippmann, JW Haines, DJ Fried, J Korba, K Das - Computer networks, 2000 - Elsevier
Since 2017 Eight sites participated in the second Defense Advanced Research Projects Agency
Since 2014 (DARPA) off-line intrusion detection evaluation in 1999. A test bed generated live

background traffic similar to that on a government site containing hundreds of users on
thousands of hosts. More than 200 instances of 58 attack types were launched against victim
UNIX and Windows NT hosts in three weeks of training data and two weeks of test data.

Sort by relevance False-alarm (aigsauare low (less than 10 per day). The best detection was provided by
Sort by relevance
Sort by date Yr 99 {Cited by 1028 Related articles All 22 versions

Showing the best result for this search. See all results

Custom range

+ include patents
v/ include citations

Figure D.1: Google Scholar advanced search
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The "Since 2017” parameter was changed for each data set’s results and the total recent
citations extracted as per the below figure D.2, Google scholar filtered results. In the below
instance, Darpa 98 data set was included in 62 research projects since 01/01/2017 and
24/09/2018.

& https://scholar.google.co.uk/

Google Scholar

Articles
Any time, The 1999 DARPA off-line intrusion detection evaluation
Since 2018 4
Search within citing articles
Since 2014 : : : " :
Systems, methods, and media protecting a digital data processing device from
Custom range
attack
S Sidiroglou, AD Keromytis, SJ Stolfo - US Patent 9,544,322, 2017 - Google Patents
Sort by relevance In accordance with some embodiments of the disclosed subject matter, systems, methods,
Sort by date and media for protecting a digital data processing device from attack are provided. For

example, in some embodiments, a method for protecting a digital data processing device ...
Yr D9 Citedby1 Related articles All 4 versions 99
+ include citations
CYRAN: a hybrid cyber range for testing security on ICS/SCADA systems
& Create alert B Hallag, A Nicholson, R Smith, L Maglaras... - Cyber Security and ..., 2018 - igi-global.com
Abstract Cyber Security of ICS/SCADA systems is a major aspect of current research focus.
Cyber Ranges and Test-beds can serve as means of vulnerability and threat analysis of real

Figure D.2: Google Scholar filtered results
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