

AVAILABILITY AND RELIABILITY STUDY OF NOSQL DATA STORES ON

COMMODITY HARDWARE

by

WALDON HENDRICKS

Thesis submitted in fulfilment of the requirements for the degree

Master of Technology: Information Technology

in the Faculty of Informatics and Design

at the Cape Peninsula University of Technology

Supervisor: Dr. Boniface Kabaso

Cape Town

August 2019

CPUT copyright information

The thesis may not be published either in part (in scholarly, scientific or technical

journals), or as a whole (as a monograph), unless permission has been obtained from

the University

ii

DECLARATION

I, Waldon Hendricks, declare that the contents of this thesis represent my own unaided work,

and that the thesis has not previously been submitted for academic examination towards any

qualification. Furthermore, it represents my own opinions and not necessarily those of the

Cape Peninsula University of Technology.

Signed Date

11.11.2019

III

ABSTRACT

Modern application development and the delivery of these applications have changed

drastically during the last few years. Applications are deployed on every mobile device to cloud

devices hosted on servers and because of this change, users expect much faster response

times from servers. To determine which data store, to store information and which data

structure to choose, for a high availability and scalable architecture, is still a challenge for

developers. Modern applications need to follow the reactive manifesto approach to be more

responsive, elastic, resilient and message-driven to be classified as a failure-tolerant system.

Four NoSQL categories were chosen to be studied using a common programming language

driver. Our research strategy conducted an experiment and this work followed an experimental

design approach to send objects using Create, Read Update and Delete (CRUD) operations

to measure the read metrics and write metrics per data store. Our research results showed

which NoSQL database can be used as read model and which database as write model for a

Command Query Responsibility Segregation (CQRS) application, using the reactive manifesto

approach.

Key words: developers, data store, scale, NoSQL, JAVA, CQRS, Reactive, CRUD

IV

ACKNOWLEDGEMENTS

I want to thank:

My Heavenly Father for His mercy and grace, this enabled me to complete this study.

My supervisor, Dr Boniface Kabaso for inspiring me to take this kind of research approach.

My reviewers Martin Madioma, Amlan Mukherjee and Janvier Kamanzi for providing the

support I needed to formulate this. My editors, Nicole Wessels and Naseema Allie for the

editing done. I would like to thank my wife Stephia Hendricks, family and friends for their

support while doing this thesis.

V

DEDICATION

I would like to dedicate this work to my mother that’s looking over me every day from heaven.

My dad that’s always there when I need to tell him something. My grandma, my pillar of strength

and my wife for encouraging me to complete the thesis.

VI

GLOSSARY

Computing Cluster A group of shared individual computers, linked by high-speed
communications in a local area network topology using
technology such as gigabit network switches and incorporating
system software, which provides an integrated parallel
processing environment for applications with the capability to
divide processing among the nodes in the cluster.

COTS Commodity off the shelf. Used to describe commodity hardware

(personal computers, disks, network) that can be purchased
from multiple sources.

Data-Intensive Computing Used to describe computing applications that are I/O bound or

with a need to process large volumes of data. Such applications
devote most of their processing time to I/O and movement of
data.

A Distributed System is an application that executes a collection of protocols to

coordinate the actions of multiple processes on a network, such
that all components cooperate to perform a single or small set of
related tasks.

Intrinsic in computer software, in compiler theory, an intrinsic function (or
built-in function) is a function (subroutine) available for use in a
given programming language where implementation is handled
specially by the compiler.

CQRS stands for Command Query Responsibility Segregation. It's a

pattern that I first heard described by Greg Young. At its heart is
the notion that you can use a different model to update
information than the model you use to read information.

NoSQL stands for "not only SQL," it is an alternative to traditional

relational databases in which data is placed in tables and data
schema is carefully designed before the database is built.
NoSQL databases are especially useful for working with large
sets of distributed data.

CAP Theorem is a concept that a distributed database system can only have 2

of the 3: Consistency, Availability and Partition Tolerance. CAP
Theorem is very important in the Big Data world, especially when
we need to make tradeoffs between the three, based on our
unique case use.

CALM Theorem CALM is an acronym for "consistency as logical monotonicity."
The CALM Theorem shows that the programs that have
consistent, coordination-free distributed implementations are
exactly the programs that can be expressed in monotonic logic.

DC/OS Datacenter Operating System (DC/OS) is an open source

operating system based on the Apache Mesos distributed

VII

systems kernel. Developed by Mesosphere, DC/OS is available
as both, an open source and a commercial offering.

TABLE OF CONTENTS

DECLARATION ... ii

ABSTRACT .. III

ACKNOWLEDGEMENTS... IV

DEDICATION .. V

GLOSSARY ... VI

CHAPTER ONE ... 1

1. INTRODUCTION TO THE RESEARCH STUDY ... 1

1.1 Introduction... 1

1.2 Background.. 6

1.3 Research problem ... 9

1.4 Motivation ... 12

1.5 Research questions and sub-questions ... 13

1.6 Research methodology ... 13

1.7 Implications of the results of the study .. 16

1.8 Thesis outline .. 16

CHAPTER TWO .. 18

2. LITERATURE REVIEW .. 18

2.1 Introduction... 18

2.2 Background.. 19

2.2.1 Commodity servers .. 19

2.2.2 High performance computing .. 19

2.2.3 Commodity cluster computing ... 20

2.2.4 Benefits of cluster computing .. 21

2.2.5 Commercial-off-the-shelf (COTS) hardware ... 22

2.2.6 Parallel computing ... 22

2.3 Distributed systems ... 22

2.3.1 Introduction to distributed system design ... 23

2.3.2 Challenges for a distributed system ... 24

2.3.3 Heterogeneity .. 24

2.3.4 Transparency .. 25

2.3.5 Openness .. 26

2.3.6 Concurrency ... 26

2.3.7 Security ... 26

2.3.8 Scalability.. 26

2.3.9 Failure handling .. 27

2.3.10 Gray failures ... 27

2.4 Basics of a distributed system ... 30

2.4.1 Distributed programming ... 30

2.4.2 Scalability.. 31

2.4.3 Performance and latency ... 31

2.4.4 Availability .. 31

2.4.5 Replication .. 32

2.4.6 Synchronous replication ... 33

2.4.7 Asynchronous replication ... 33

2.5 Replication algorithms .. 33

2.5.1 Partition tolerant consensus algorithms .. 34

2.5.2 CRDTs: convergent replicated data types .. 34

2.5.3 The CALM theorem .. 36

2.5.4 Partition and replicate .. 37

2.5.5 Partitioning ... 38

2.5.6 Replication .. 38

2.6 Introduction to NoSQL data store ... 39

2.6.1 Key-value stores ... 39

2.6.2 Wide column stores (extensible record stores) ... 40

2.6.3 Graph databases... 42

2.6.4 Document stores .. 43

2.6.5 Features of NoSQL data stores ... 45

2.7 Programming language Java ... 45

2.7.1 The reactive manifesto ... 46

2.7.2 Reactive programming in Java ... 47

2.8 Systematic review ... 49

2.8.1 Defining research questions ... 49

2.8.2 Defining the systematic literature review protocol ... 49

2.8.3 Search strategy ... 50

2.8.4 Search results ... 51

2.8.5 Study selection ... 53

2.8.6 Quality assessment .. 55

2.8.7 Rationale for the criteria .. 56

2.8.8 Results of the review .. 56

2.9 Findings of literature review ... 59

CHAPTER THREE .. 61

3. RESEARCH METHODOLOGY .. 61

3.1 Introduction... 61

3.2 Research paradigms .. 62

3.3 The scientific paradigm ... 64

3.3.1 Empirical research .. 65

3.3.2 From the view point of the causal relationship ... 65

3.3.4 From the viewpoint of the study design .. 66

3.3.5 From the viewpoint of the unit of measurement .. 66

3.4 Research design ... 66

3.5 The conceptual framework ... 67

3.6 Data collection... 69

3.7 Data analysis .. 69

3.7.1 Coding ... 70

CHAPTER FOUR .. 71

4. RESEARCH FINDINGS AND DISCUSSIONS .. 71

4.1 Persistence technologies and drivers .. 72

4.2 High availability and reliable architectures setup ... 72

4.2.1 Requirements ... 73

4.2.2 Network plugins ... 75

4.2.3 Creating highly available clusters with kubeadm ... 76

4.2.4 Configure the cluster .. 77

4.2.5 Installing kubeadm, kubelet and kubectl ... 78

4.2.6 Initializing master node .. 79

4.2.7 Accessing Kubernetes Dashboard .. 79

4.2.8 Kubectl proxy .. 79

4.3 Read, write, update and relete results .. 83

4.3.1 Create esults ... 83

4.3.2 Read results .. 88

4.3.3 Update results .. 91

4.3.4 Delete Results ... 94

4.3.5 CQRS write-model results .. 96

4.3.6 CQRS read-model results ... 97

4.4 Limitations of the research and validity .. 98

4.4.1 Testing platforms limitations ... 98

4.4.2 Language limitations .. 98

4.5 Generalizability limitations.. 99

4.6 Findings of the research study .. 99

CHAPTER FIVE .. 102

5. CONCLUSION AND RECOMMENDATIONS ... 102

5.1 What has been done so far? ... 102

5.2 Recommendations .. 103

5.3 Future work ... 104

REFERENCES .. 105

Appendix A .. 110

Systematic review, quality assessment ... 110

Appendix B .. 111

Systematic review, Search strategy .. 111

Appendix C Quality Assessment QCQA ... 112

Appendix D .. 114

Data extraction form. .. 114

Appendix E... 132

Comparing studies by the variables .. 132

LIST OF FIGURES

Figure 1.1: The architecture of a classic spring web application ... 3
Figure 1.2: The clean architecture.. 5
Figure 1.3: Key principles of modern applications development ... 7
Figure 1.4: The Reactive Manifesto 2.0 ... 8
Figure 1.5: CQRS core principle .. 9
Figure 1.6: The outline of the research process ... 16
Figure 2.1: Cluster computing demonstrating .. 21
Figure 2.2: The major challenges in distributed systems .. 24
Figure 2.3: A distributed system for several applications running on different operating
systems ... 25
Figure 2.4: An abstract model to characterize gray failure ... 28
Figure 2.5: Quadrant of gray failure ... 29
Figure 2.6: Gray failure cycle ... 29
Figure 2.7: Performance advantage of a cluster built with high-end server nodes over a
cluster with low-end server nodes .. 30
Figure 2.8: Understanding replication in databases and distributed systems ((Adopted from
Wiesmann et al., 2002) .. 33
Figure 2.9: Splitting of partitioned data and replicated data .. 38
Figure 2.10: Key-value data store .. 40
Figure 2.11: Column store and row store tables ... 41
Figure 2.12: Graph data store .. 43
Figure 2.13: Document store .. 44
Figure 2.14: Importance of topic by years .. 52
Figure 2.15: Distribution of paper by publisher adopted from (Daiga PLASE, 2017) 52
Figure 2.16: Venn diagram showing the combination of the search terms used 53
Figure 3.1: Model of the research design ... 61
Figure 3.2: Scientific method research paradigm ... 63
Figure 3.3: Empirical cycle ... 64
Figure 3.4: The conceptual framework ... 69
Figure 4.1 Simplified view showing how services interact with pod networking in a
Kubernetes cluster ... 73
Figure 4.2: This figure illustrates how the data(X) gets distributed amongst the server nodes
 .. 73
Figure 4.3: Kube Cluster and Gluster FS ... 78
Figure 4.4: Kubeadm, kubelet and kubectl install ... 78
Figure 4.5: Kubernetes nodes .. 80
Figure 4.6: Packages domain model .. 81
Figure 4.7: YAML config file of JAVA app .. 82
Figure 4.8: NoSQL Mongo, Cassandra, Redis, Dgraph kubernetes pods............................. 83
Figure 4.9: Dgraph create test 3000 objects .. 84
Figure 4.10: MongoDB write 700 objects ... 85
Figure 4.11: Cassandra create 3000 objects .. 85
Figure 4.12: RedisDB create 950 objects ... 86
Figure 4.13: Create-results all DBs 200-500 objects created ... 87
Figure 4.14: Create-results Cassandra, MongoDB and Dgraph ... 87
Figure 4.15: Create-results Cassandra and Dgraph and RedisDB 88
Figure 4.16: Redis read 400 objects .. 89
Figure 4.17: CassandraDB and MongoDB read of 1000 objects .. 90
Figure 4.18: Create 400 objects results ... 90
Figure 4.19: Read-results CassandraDB and MongoDB using IDE client............................. 91
Figure 4.20: RedisDB, MongoDB and CassandraDB update results 92
Figure 4.21: CassandraDB and MongoDB update 3000 objects .. 93
Figure 4.22: Update 300 objects results ... 94

file:///C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/thesis/CPUT_Master%20thesis%20-final21082019%20WH%20updated%20TOC.docx%23_Toc23066720
file:///C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/thesis/CPUT_Master%20thesis%20-final21082019%20WH%20updated%20TOC.docx%23_Toc23066720
file:///C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/thesis/CPUT_Master%20thesis%20-final21082019%20WH%20updated%20TOC.docx%23_Toc23066721
file:///C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/thesis/CPUT_Master%20thesis%20-final21082019%20WH%20updated%20TOC.docx%23_Toc23066721

Figure 4.23: Delete-results using IDE client ... 95
Figure 4.24: Write-model data stores ... 96
Figure 4.25: Read-model data stores ... 97

LIST OF TABLES

Table 2.1:Summary of key-value data store features (adapted from Zafar et al., 2017) 40
Table 2.2: Summary of column data store features (adapted from Zafar et al., 2017) 42
Table 2.3: Graph data store features (adapted from Zafar et al., 2017) 43
Table 2.4: Document data store features (adapted from Zafar et al., 2017) 45
Table 2.5: Online search databases adopted from (Milani & Navimipour, 2017) 51
Table 2.6: The four groups of search terms ... 51
Table 2.7: Search results ... 51
Table 2.8: The inclusion criteria for the study ... 53
Table 2.9: Exclusion criteria for the study ... 54
Table 2.10: Quality assessment questions and answers .. 55
Table 3.1: Casual model variables ... 65
Table 3.2: Active and attribute variables .. 66
Table 4.1: Master node required ports ... 74
Table 4.2: Worker nodes required ports ... 74
Table 4.3: Runtimes for kubernetes ... 75
Table 4.4: The CQRS application architecture’s objectives .. 97

1

CHAPTER ONE

1. INTRODUCTION TO THE RESEARCH STUDY

1.1 Introduction

Everyday huge amounts of data are generated by researchers and developers, which may be

unstructured data, semi-structured and structured (Haseeb & Pattun, 2017). More NoSQL data

stores are constantly added to the ecosystem and this brings new challenges to determine

which NoSQL database to implement and which data structure and programming language to

use with cloud applications. Data generated by researchers exceed their ability to design an

appropriate cloud application for data analysis and generating workloads (Haseeb & Pattun,

2017).

Two Internet cloud companies developed their own distributed non-relational systems to help

with the scaling of data (Chang et al., 2008). These systems were written from scratch so they

created their own unique query language. Relational databases could not scale all the large

amounts of data, leading to the rise of NoSQL (DeCandia et al., 2007). Developers had to learn

more new languages and connect databases to applications, so most companies had to

develop their own visualization tools to interact with the NoSQL databases. There are over 150

NoSQL databases in use and the number continues to increase by the second (Feuerlicht,

2010).

NoSQL data stores provide high concurrent read-writes, database scalability and high

availability (Peng Xiang et al., 2010). NoSQL is an alternative, but not to replace relational

databases (Abramova et al., 2014). Thus, the NoSQL and relational databases complement

each other in database activities and management of data sets (Mackin et al., 2016).

Running web applications and accessing these applications, researchers found that data

stores need to provide a more scalable data storage to handle the ever increasing capacity of

data storage (Peng Xiang et al., 2010). This led towards a strong interest in NoSQL data stores

for researchers. In terms of scalability, speed, cost, non-relational data stores have a stronger

advantage of relational data stores (Peng Xiang et al., 2010).

Software engineers and developers should design applications that can operate in the cloud

and not just to deploy to the cloud (Grozev & Buyya, 2014). Researchers found that when

using multiple cloud environments clients don’t need to rely on any interoperability

functionalities that’s implemented by a provider, this allows the application to be deployed

2

across different cloud environments (Grozev & Buyya, 2014). Case studies done by IBM and

e-Bay demonstrated how three-tier applications utilized multiple data centers to provide better

availability and customer Quality of Experience (QoE) and adapt to changes needed (Grozev

& Buyya, 2014).

The change to convert a standard application to cloud application is not easy at all. The cloud

environment is not the same as a development environment and makes it difficult to just

transfer an application to a cloud environment (Grozev & Buyya, 2014). Software applications

should be more scalable in design and fault tolerant to dynamically adapt to different workloads

and respond in a timely manner.

The most common pattern used in software architecture is the layers’ pattern or layered style.

The approach to this design was to organize a large-scale logical structure of a system into

discrete layers with related responsibilities (Pruijt et al., 2013). The pattern allowed a clean,

cohesive separation of concerns, where lower layers are classified as low-level and general

services and the higher layers are more application specific (Pruijt et al., 2013). Figure 1.2,

represents a strict layered design, the usage relationships are from top to bottom or outside

towards the inside layers, described in detail on page 5.

Layered designs are often poorly defined and many violate the key principles for which the

layers were designed for. Student projects encounters many layered designs showing only the

names of the layers without any specification of the contents and communication rules (Pruijt

et al., 2013). Projects designed like this provides no guidance to the developers, therefore a

specification of responsibilities of the layers are needed (Pruijt et al., 2013).

Software developers developing software applications needs to understand that architecture

design is always necessary and that the well-designed architecture diagrams do not describe

the real architecture of an application. Developers should be good at designing their own

architecture when they write code. If they don’t they will end up with more than one architecture

(Kainulainen, 2014). Many developers follow the designs of software architects and believe

that software architects are always right and this led developers to follow architecture designs

of software architects (Kainulainen, 2014). According to Kainulainen (2014), developers should

follow two principles to create their own architecture design.

Principle one: The Separation of concerns (SOC).

This is a design principle for separating an application into distinct sections, which means each

section addresses a separate concern. This principle helps developers identify the required

3

layers and the responsibilities of each layer (Kainulainen, 2014).

Principle two: The keep it simple stupid (KISS) principle.

Systems should be kept simple rather than complicated, simplicity should be kept as a key

goal design in developing applications. According to Kainulainen (2014), adding new features

takes longer because information has to travel through every layer. Maintaining the application

could be impossible if the developers don’t understand the architecture.

Developers can adopt these concerns above by using only three layers (Kainulainen, 2014).

As shown in Figure 1.1 the web layer of the web application will receive the user’s input and

return the response back to the user. The web layer should also handle the exceptions thrown

by the other layers. This is also the entry point of an application and should take care of

authentication and prevent unauthorized users (Kainulainen, 2014).

The service layer resides below the web or presentation layer and contains both the application

and the infrastructure services. The application services provide the public Application

Programming Interface (API) of the service layer. The infrastructure services contains the code

that communicates with external resources such as the file systems, databases or email

servers (Kainulainen, 2014).

The repository layer is the lowest layer of the application; this layer is responsible for

communicating with the data storage.

Figure 1.1: The architecture of a classic spring web application

According to Gierke (2013), who studied the importance of architectures in programming code

4

bases and focuses on Java packages, when splitting up a complex problem into smaller ones,

one can approach the smaller ones individually. This is known as a core principle “divide and

conquer” and this was done in Java software programming when deploying deployment units

(WARs, JARs), packages and classes.

Developers should understand layering is a technical aspect that decomposes the software. A

question came to mind that if developers understood the value and benefits of layering

software and slicing the code horizontally, developers won’t neglect this approach when they

have to vertically decompose business programming functionalities (Gierke, 2013).

Programming language software layers are well understood by developers, but less important

to business processes, while slices are new to developers and a key business process

requirement. Deployment units are ones managed by either Gradle or Maven, which are a

dependency management and build automation tools (Gierke, 2013).

Developers generally skip packages as a means to control the visibility of types, they keep the

information in the classes or properties hidden, but not on the classes in a package level. This

means if the class is not public they don’t have to manage the dependency on the global level,

but within the package only (Gierke, 2013). Packages are created when developers use

architecture tools like Sonargraph to help them, by moving the vertical slices into the focus of

the package naming and to model the slices in a way that the public API of the slice is as small

as possible in the first section or place. Packages can help developers achieve visibility of

control when they write their code (Gierke, 2013).

There have been a whole range of ideas of architecture of systems, which included the

hexagonal architecture adopted by Steve Freeman and Nat Pryce, the onion architecture by

Jeffery Palermo and the screaming architectures. They are very similar in their details as they

all had the same objective to separate the concerns and dividing software into layers see

Figure 1.2 (Martin, 2012).

5

Figure 1.2: The clean architecture

(Martin, 2012)

As shown in Figure 1.2 systems were produced using ideas as above. They were independent

of frameworks and did not depend on the existence of libraries or overloaded software and this

allowed the use of frameworks as tools. The business rules could also be tested without the

user interface, database and web servers. As being independent of the user interface, the user

interface could change easily without changing the rest of the program or affecting the business

rules. Developers could swap out the database like structured query language (SQL) servers

to another database, like not only Structured (NoSQL) databases as the system was

independent of a database (Martin, 2012).

According to Martin (2012), the circles in Figure 1.2 show all the different areas of software.

The outer circles are mechanisms and the inner circles are policies. To make this all work,

developers should use the dependency rule that all source code dependencies can only point

inwards. The inner circles shouldn’t know what’s happening in the outer circles. If declaring a

name in the outer circle, this shouldn’t be mentioned in the inner circle and vice versa, so when

all the external parts of the program change or become obsolete, like the database or the web

frameworks, it will be easy to replace those external parts (Martin, 2012).

Layered architecture designs used in practice should be designed to meet the specific

requirements of a system, as the required layers and responsibilities of each layer may vary

amongst different software applications (Pruijt et al., 2013). More literature and case studies

are needed on the responsibilities of other types of software applications and other software

6

architectures.

1.2 Background

Modern application development and the delivery of these applications have changed

significantly in the last years. These shifts of applications development generated principles

when building, designing and delivering of applications to the end users (Stetson, 2018).

Currently there’s two types of three-tier applications in terms of the domain layer design, as

mentioned the domain layers are responsible to allow the client to access the data layer where

the data gets stored and retrieved (Grozev & Buyya, 2014).

The two types of domain layer designs are stateful and stateless applications. Stateful

applications keep the session data in memory to ensure all requests of the session are routed

to the same application service. Stateless applications do not keep any data in memory, but

data are routed across different application services (Grozev & Buyya, 2014).

Supported by middleware, micro services are for communication and used on low-cost

deployments, these are small applications that can be deployed independently and easy to

integrate (Esposito et al., 2016). The small applications are designed to achieve simple

responsibility tasks.

The awareness of micro services has increased. Regardless of the efforts required to

implement micro services (Esposito et al., 2016) container technologies are used to overcome

virtualization limitations and this encourages the use of micro services for software deployment

and software development (Esposito et al., 2016).

The first principle as shown in Figure 1.3, applications should be kept small to lower the

cognitive load that developers have to maintain, to focus on solving problems and not to make

a complex model of an application and designs. By using micro services developers would

also reduce the cognitive load, as each service would be focused on each one’s functionality

and would communicate using API calls via Representational State Transfer (REST) (Esposito

et al., 2016).

The second principle is that the application should be developer-oriented. The developer’s

environment should be easy to work with and the code should be easy to understand. The

architecture and code should have RESTful APIs and these should have endpoints expressed

as nouns and Create, Read, Update and Delete (CRUD) operations (Stetson, 2018).

7

The third principle is that the application should be networked, as applications run on local

systems that they are hosted on. As applications become larger, the developments and

delivery have become more distributed, this leads to the increase of speed and makes

networks more reliable and applications have become more networked. By networking your

application, it makes your application architecture more resilient and deployment easier. But

since moving from local deployment to network applications have persisted, things slowed

down. Applications are getting more networked because the network structure makes the

application more resilient and deployment and management easier (Stetson, 2018).

Networking your application provides many benefits over monolithic applications and provides

high availability because of the design. Network applications are easier to manage and easier

to monitor, when scaling your application to handle more traffic you simply just have to scale

an individual service rather than the entire application (Esposito et al., 2016).

Figure 1.3: Key principles of modern applications development

(Adapted from Stetson, 2018)

If developers implement the principles above, they would take advantage of the modern trends

in software development and the delivery of the these applications by using containers like

Docker and implementing container orchestration frameworks like kubernetes as well as micro

services architectures for applications (Stetson, 2018).

Modern applications support multiple clients, like running on an Android or IOS app for a client,

connecting an application through an API or when the client is a UI using the React JavaScript

8

Library. Modern applications allow users to access the data and services through an API which

should be constant as different clients will connect to it through a GUI or CLI interface of

HTTP(S).

Modern applications need to follow the goals of the Reactive Manifesto as illustrated in Figure

1.4 to be classified as message-driven, elastic, resilient and responsive (Debski et al., 2018).

To make a modern application that is scalable and highly available, applications should be

designed with scalability as their first objective, to allow for high volumes of client requests and

to easily adjust the resources needed (Debski et al., 2018).

To achieve the Reactive Manifesto approach, developers should use the Command Query

Responsibility Segregation (CQRS) design pattern and domain-driven design (Debski et al.,

2018). This approach will allow applications to be scalable and more responsive.

Figure 1.4: The Reactive Manifesto 2.0

(Adopted from Bonér et al., 2014)

So the need to build scalable, responsive systems would be to include a message driven

approach. To make sure the system has elasticity and be resilient. This approach would make

the system more flexible and scalable as well as to be a failure-tolerant system (Debski et al.,

2018).

According to Debski et al., (2018:62) The CQRS principle as shown in Figure 1.5 advised that

if developers separate the operations that mutate state (commands) from queries, this would

create possibilities to allow developers to choose different databases for write operations and

read operations. Developers will be able to select the best-performing alternative database for

queries and they would be able to optimize each query separately.

9

Figure 1.5: CQRS core principle

(Adapted from Debski et al., 2018)

1.3 Research problem

To achieve high availability a system should have a built-in disaster recovery mechanism.

RDBMS need to keep multiple replicas consistently seamless on a grid of systems mapped

across regions. This would make all resources available during normal operations and if

failures occur, this would only affect fewer resources, but this approach makes a machine sit

and idle waiting to take over if the primary system fails. The use of vertical fragmentation on

relational databases makes the tables split subsequently across multiple workstations

(Lourenço, Cabral, et al., 2015). According to Strauch (2014:21), consistency is one of the

critical factors and scaling horizontally is a challenging task.

Changes are happening because application requirements have changed in the last few years.

Large applications use gigabytes of data, hours of offline maintenance are needed and only

one single storage of data. Currently applications are deployed on everything, including mobile

devices to cloud-based servers hosted on clusters that run thousands of multi-core processors.

Because of these changes users expect a much faster response time and 100% high

availability applications.(Bonér et al., 2014).

According to Debski et al., (2018:63) the existing client-server application stacks can’t take full

advantage of the scalable needs of today’s cloud environments. According to Stonebraker et

al., (2018:1150), disk volumes have increased, making it impossible to keep everything on just

one server, as many technologies are different today than what it was years ago. Within two

decades a number of database systems evolved, which includes text management, stream

processing and data warehousing. These systems have different requirements than the

business data processing used for Structured Query Language (SQL).

As mentioned in the introduction, we discussed the three-tier architecture of an application

10

where we separate the data, logic and presentation layers. This approach allowed the data

store to be seen as one CRUD database which allowed all queries and commands to be

performed on one database (Kabbedijk et al., 2014). As the data stores increase and more

commands and queries are sent to the data store, many experience performance problems,

scalability problems and locking of input and output queries, which will lead to a high probability

of data inconsistency (Kabbedijk et al., 2014).

Data layers of applications can cause performance bottlenecks due to the requirements for

transactional access and atomicity (Grozev & Buyya, 2014). According to the Consistency,

Availability and Partition (CAP) theorem it’s impossible for a distributed system to have

consistency, availability and partition tolerance all at the same time, this would make it hard to

scale horizontally, within a distributed architecture there should be a balance between

persistent storage consistency, availability and partition tolerance (Grozev & Buyya, 2014).

These strategies are application specific, and it’s impossible to implement within a general

framework containing all the three-tier applications, the balance regarding the CAP theorem

requirements is domain inherent (Grozev & Buyya, 2014). Some applications may require

data not replicated across different nodes, and others may allow this to achieve availability.

Application engineers should design the data layer in a scalable way to allow all domain layers

to access and retrieve data without any time constraints. Database design is the first step in a

three-tier system design to serve to other applications.

In a multi-tier application each layer can be the cause of slow performance and the possible

solution would be to adopt separate controllers for each layer and tier and use the coordination

methods such as message passing techniques as explained in Figure 1.4. So the option to

split the parts of the distributed system data layer into multiple, different environments would

be to adopt the CQRS pattern for data storage and retrieval (Kabbedijk et al., 2014).

The need to choose the right highly available NoSQL data store for an appropriate system are

one of the many challenges for software developers and the research community (Cooper et

al., 2010). The NoSQL data models can be documented and compared qualitatively, however

comparing the performance of different systems is a harder problem (Cooper et al., 2010).

Understanding the performance of NoSQL data stores and the implications of the type of

application needs is a challenging task, developers of these various NoSQL systems report

positive performance figures to support the capacity of workloads generated by their systems,

11

which might not match the workload of a target application (Cooper et al., 2010).

Software development companies make use of NoSQL data stores that need high

specifications and should have the ability to handle data in very fast modes using no fixed

schemas and unstructured data (Petreley, 2006). Based on the Meta data to achieve a high

performance rate, this allowed NoSQL to become more common to use (Sareen et al., 2017).

Many software companies and organisations make use of workstations that use resources like

computational power, memory and hard drives for storage. Most times the resources go to

waste, as they do not use the workstation’s full capacity and electricity is wasted. Finding

empirical data on the availability and reliability of the existing data stores and the new ones

being created, is adding to the complexity of the choices to be made in the selection process

of creating storage clusters on commodity hardware (Adya et al., 2002).

Normal operations would only have half the resources available causing degrade in

performance. This approach can be redesigned by implementing peer-to-peer High availability

(HA) within RDBMS (Stonebraker et al., 2018).

In this thesis, the study looked at the open source NoSQL data stores to be used across

multiple workstations called commodity hardware as a data center cluster.

The research problem addressed, allowed developers to choose the right NoSQL database

programming language driver on a particular data structure used during the development of a

program or service. The problem used during this research work can be identified as a simple

problem. The problem used a recipe which was essential for the research study to test the

different variables and provide the results.

It can be divided into:

 NoSQL data store categories as input

 Programing Java Language drivers as inputs

 Data objects used as inputs

 Commodity hardware used as inputs

The first part of the problem referred to the four different NoSQL data store categories. This

identified the different data storage methods used per category. The challenge with this part

was to identify the different hardware requirements that this can operate on. The four

categories determine how data gets stored and retrieved.

12

Key-Value Stores: Key-Value based are closely related to document stores as they store

values against a key and there is no need for schemas to be associated with the values. The

programing language used for some NoSQL data stores are written in C (Vaish, 2013).

Wide Column Stores (Extensible Record Stores): Column-oriented databases will store its

data in columns instead of rows like in a RDBMS. The implementing programming languages

used are JAVA, Python and Go (Vaish, 2013).

Graph Databases: This is a special category of NoSQL databases that characterizes

relationships as graphs. This may include social relationships amongst people and many other

network topologies. The implementing programming language is JAVA code (Vaish, 2013).

Document Stores: Allows the inserting, retrieving and manipulating of semi-structured data,

most databases will use XML, JSON, BSON or YAML where the data access will be over the

HTTP protocol by using RESTful APIs, this provides flexibility. Implementing programming

languages used are JAVA, Erlang, C++ and C (Vaish, 2013).

,

The second part of this problem looked at the programming language driver used when

sending objects for storage and retrieving the objects for validation. The challenge was to find

the best driver based on the popularity of language drivers and the use of three-tier applications

with NoSQL data stores, through checking the driver usage and ranking to determine the

drivers commonly used when implementing Create, Read, Update and Delete (CRUD)

operations. The programming language drivers used for this work was the JAVA programming

language based on the driver packages available for NoSQL.

The third part of the problem used the second part of the problem to determine how the third

part could be implemented for this research work. The study maintained using the same

objects when establishing client connections to the NoSQL databases.

This problem allowed the use of commodity hardware nodes that scaled data across the

cluster. This hardware was inexpensive workstations and selected to measure the

performance, scalability, availability and reliability of NoSQL data stores. The study selected

how many instances of the NoSQL data stores can be scaled across the commodity hardware

data center.

1.4 Motivation

13

Software Developers are always looking for scalable, cheap and reliable data stores to

distribute data across distributed systems. This research looked at the highly available and

reliable NoSQL database per data type category, based on the read and write metrics and to

also determine how each NoSQL database performs on inexpensive commodity hardware. As

developers use different programming languages with different data types, by undertaking this

research they can select which NoSQL database of their chosen programming language are

most reliable and highly available. The research aimed to determine and select which NoSQL

database can be used as read model and write model for a CQRS application using the

Reactive Manifesto approach.

This research problem was to implement and analyse a system to determine which databases

are more responsive, reliable, scalable and elastic. The study used experiments to generate

and analysed the data to get results.

1.5 Research questions and sub-questions

For the purpose of the study, the question of concern would be, how to identify the best NoSQL

data store to use in order to guarantee high availability and reliability of deployed applications.

This should look at the current set of NoSQL technologies that exists and how to make

developers use and implement these technologies for their applications.

This gave rise to the following research question:

What are the best NoSQL data stores that currently exist, in order to guarantee high availability

and reliability of deployed applications?

Research sub-questions

1 What are the different hardware requirements for NoSQL data stores to operate on, to

achieve high availability and reliability?

2 What is the best architecture for high availability and reliability?

3 What are the best Java drivers used to persist data in the four types of NoSQL DBs?

4 What is the most common pattern for persisting data objects used by Java developers?

1.6 Research methodology

An experimental method was adopted by using an experimental design methodology. To

address the research questions, the study used a conceptual framework model as illustrated

in Figure 3.4.

14

The study wanted to answer the first research sub-question by conducting a systematic

literature review to identify which solutions currently exist. This allowed the study to deal with

sub-objectives of the study.

To answer sub-objective one, articles identified that researchers have a challenge to determine

which data model they should use for applications. Modern applications are required to be

highly available to handle big data (Yassien & Desouky, 2016). This allowed the review to

determine which architectures can be classified as a highly available architecture. The second

sub-objective explored if any of the articles used language drivers that developers use to

connect to NoSQL data stores, the focus led to choosing only one language driver per NoSQL

category to be explored and studied. The third sub-objective led to the setup of the experiment

to find the most common objects used when using Java language drivers and focus on the four

NoSQL categories. The third sub-objective used the conceptual framework in Figure 3.4 to

implement and study the variables used in the study.

The purpose was to find out what empirical evidence exists by following the guidelines

described by Kitchenham et al., (2010). The systematic review helped trim down the work done

in this thesis in order to answer the other sub-questions. The output of the systematic review

was based on the results of the quality assessment. The quality assessment was used to select

the nine articles to the review the literature. The results of the quality assessment articles

identified which article performed benchmarks, to select if any client tests were done during

the study and if the study used programming language drivers. This allowed the final selection

of literature to be analysed and compiled into a table (Appendix A) where experiments

performed were classified.

This study’s conceptual framework in Figure 3.4 explained how and in what sense these

variables have been used in this study. Because the results and outputs would be similar, this

would be seen as repeatable research. The study wanted to understand how the variables

relate to one another. The study wanted to investigate the effect of changing conditions on the

variables by increasing the values and decreasing the values and to establish whether certain

conditions produce better results when changing them.

The study chose the quantitative research method approach to study the variables known as

NoSQL databases, programming language and data types, to determine the relationships

between the variables and then to manipulate them. Based on the theory gathered during the

systematic literature review, the study developed a conceptual framework, where the study

15

added concept and variables to explore and test the relationships between the variables.

The study followed a deductive approach, and was concerned with the generation of new

theory emerging from the data collected and made observations from the theories to formulate

the results towards the end of the research.

Figure 1.6 shows the outline of our research process that the study followed to gather results

and findings. This research process allowed the study to be mapped to ensure that researchers

and academia accept the results. The study used the Oates’s research model for the purpose

of the study and defines the research process as seen in Figure 1.6. The research questions

were formulated from the previous relevant research literature and also areas of interest to

answer the research questions. The conceptual framework allowed the study to describe the

manner in which the researcher’s thoughts is structured around the research process

(Terblanche et al., 2013). The strategy to conduct the research was selected as an

experimental strategy to focus on the cause and effects of an occurrence, in order to prove or

disprove the current research questions.

As every academic project required data, this study process used the indirect observation

technique to determine the relationships and the effects of the variables, indirect observation

was applied to record and observe the data to be analysed at a later stage. The study process

evaluated the data obtained and analysed the results using quantitative analysis to present

defensible findings.

16

Figure 1.6: The outline of the research process

1.7 Implications of the results of the study

The thesis presented:

 The study of NoSQL databases to determine the best scalable, elastic and reliable data

store to select and to implement.

 The highest available open source NoSQL data store was determined by this research

 Which database to use as read model based for a CQRS approach design?

 Which database to use as write model based for a CQRS approach design?

1.8 Thesis outline

The dissertation comprises five chapters. In the first chapter, the background to the research

and objectives are described, and the aim of the research is defined.

In the next chapter, the study will focus deeper on the research problem with the use of a

literature review.

Chapter 2: Literature review

In this chapter, the study will describe the most relevant discussions surrounding the research

study and bring the most important aspects to light and point out how the current work directly

affects the study. This research will look at NoSQL distributed systems running on commodity

17

servers, using distributed consensus on each data store. The study will also look at the

programming language Java and reactive systems.

Chapter 3: Research methodology

This section, which is a recipe for the experiment, describes the plan or protocol that is used

to perform the experiment and analyze the results. It should provide all information that is

necessary to replicate the study and integrate it into the body of knowledge. Further, this

section allows readers to evaluate the internal validity of the study, which is an important

selection criterion for systematic review.

Chapter 4: Research findings and discussions

In this section the study sets up the experiment, the requirements and the installation of the

distributed system cluster on the commodity hardware. The study explains step by step and

provides instructions on how to reproduce this experiment for further research and findings.

This section will also show the results produced from the experiments, and how the study

analysed the results of the experiment. The study will look at the CRUD operations of objects

created per NoSQL databases on the commodity hardware. The study will look at the results

when scaling the data stores on the commodity hardware to achieve high availability. From the

results the study can determine which data store to select for a read model and which data

store to select for the write model. This section would show our discussions applying the CQRS

principle to see which selected data store would be used from the findings as a read model for

output data and which one data store could be used as a write model for accepting input from

users.

Chapter 5: Conclusions and recommendations

This section would include a description of what the study could not achieve during the study

period and the limitations. The conclusions of the study would highlight what the study

achieved. It will also identify what was left out and recommendations for future research in the

field. This would also include the limitations of methodology and research limitations and

factors surrounding it. The study would then include recommendations on how to continue the

research project

18

CHAPTER TWO

2. LITERATURE REVIEW

2.1 Introduction

Based on the Beckman report on database research, a group of researchers found that Big

Data aroused due to three major trends (Abadi et al., 2016). Big Data became very cheap to

generate large amounts of data because of inexpensive storage. Large amounts of data

became cheap due to multicore processors, solid-state storage cloud-computing and open

source software. Managing data has evolved to not just database professionals but now

application users, journalists, researchers, scientists and even everyday clients manage data.

Huge amounts of data will be stored and this captured data gets queried and finally processed

to be turned into knowledge (Abadi et al., 2016).

According to Abadi et al. (2013:93), systems created to handle Big Data didn’t follow the

Database Management System (DBMS) guidelines. A transaction defined as a sequence of

operations performed as a single logical unit of work and a logical unit of work must exhibit

four properties called the atomicity, consistency, isolation, and durability (ACID) properties, to

qualify as a transaction.

When completed, a transaction must leave all data in a consistent state. Big Data systems

focused more on scalability and fault tolerance on commodity hardware (Abadi et al., 2016).

With these new improvements to handle big data, the design and implementation can bring

massive challenges about the volumes, velocity and variety, and this requires drastic

reconsidering of the current system design (Abadi et al., 2016).

In this chapter, the study will describe the most relevant discussions surrounding the research

study and bring the most important aspects to light and point out the current work, which

directly affects the study. This research will look at NoSQL distributed systems running on

commodity servers, using distributed consensus on each data store.

The sources of evidence as listed below:

 Commodity Servers

 Distributed Systems

 Distributed Consensus

 High availability and reliability

 Introduction to NoSQL data store

19

 Programming language Java

2.2 Background

Commodity servers are inexpensive computers that uses low resources, but have high failure

rates that uses commercial off-the-shelf computer hardware components (Ngxande & Moorosi,

2014). As stated by Dorband et al. (2013:1), the purpose of commodity cluster computing is

to utilize large numbers of readily available computing components for parallel computing.

Parallel computing is distributing a large task into several single tasks by using more than one

processor to execute the tasks (Ngxande & Moorosi, 2014).

The cluster computing architecture is where a set of loosely connected computers work

together to be logically viewed as one computer. This method was adapted from distributed

systems. Distributed systems are computers that are connected together that share computing

tasks (Ngxande & Moorosi, 2014). Clusters consist of computers and switches. Two types of

nodes exist namely, a master node and computing nodes or slaves connected across the

network (Ghemawat et al., 2003).

2.2.1 Commodity servers

According to Baker et al. (2018), cluster computing is best characterized by a number of off-

the-shelf commodity computers and their resources that are integrated by hardware, networks

and software to behave like a single computer. The networks can have high speed or low –

latency switches and this could be a single switch or a stack of switches. In essence, a

computer cluster is a group of compute nodes working together to act as a single computer.

This is to improve the performance and availability of a system other than that of a single

computer (Baker et al., 2018).

The expanding of information and data made many organisations adopt technologies to

analyse their data. As data grows rapidly, organisations needed to address this by adopting

scalable systems that runs on hardware clusters of commodity servers and have specialized

software to create distributed file storage systems.

2.2.2 High performance computing

To do research experiments for large data sets, most institutions have to make use of High

Performance Computing (HPC) hardware, which can be very expensive. HPC makes use of

20

high computational power, which researchers use to analyse large data sets as pointed out by

Ngxande, (2015:1). Scientific researchers used super computers to compute research

problems, and more data intensive applications use specialized multicore processors and large

amounts of memory to perform calculations (Middleton & Risk, 2015).

This led to the rise of the new trend of super computer designs using clusters of independent

processors connected in parallel. Middleton & Risk (2015:5) found that computing problems

using independent compute nodes use parallelism to distribute or divide the computing

problem.

2.2.3 Commodity cluster computing

Commodity cluster computing evolved due to the need of high performance computing

requirements. As described by Middleton & Risk (2015:6), a computer cluster can be defined

as a group of individual computers sharing resources. Cluster computing improves the

performance of applications. Cluster computing provides high availability and reliability and are

more cost-effective than the single computer with the same performance (Middleton & Risk,

2015). System software and tools that provide parallel job execution environments is the key

to capability and performance of the throughput of a computing cluster. Programming

languages with parallel processing features that use high-degree of optimizations are needed

to insure high-performance results and improves the programmer’s productivity (Middleton &

Risk, 2015).

The literature reveals that clusters using the available computing resources partition data with

available computing resources are able to achieve performance and scalability depending on

the amount of data. This approach is referred to as the “shared nothing” approach, since each

node in the cluster is using parallel processing that consists of a processor, memory and disk

resources that shares nothing with other nodes (Middleton & Risk, 2015). Clusters separate a

problem into smaller parallel tasks and this makes them enormously effective, as there is no

dependency or communication required between tasks, just the managing of tasks.

Studies that are more recent indicated the sequential workstations cannot provide enough

computing power to applications and the only way to overcome this would be to improve the

operating speed of the processors and other components to provide more power needed by

computationally intensive applications (Baker et al., 2018).

This is evidence that applications have evolved to the use of parallel or distributed platforms

21

as they depend on the availability of multi core processors and fast networks. Off-the-shelf

commodity hardware plays a big role and form part to support the high performance and high

availability applications (Baker et al., 2018). As seen in Figure 2.1, independent computer

nodes form a unified system with software and networking. When two or more computers solve

a problem together, they are a cluster.

Figure 2.1: Cluster computing demonstrating

(Adopted from Baker et al., 2018)

According to Baker et al. (2018:2), clusters provide great computational power to High

Performance Computing (HPC) hardware for High Availability (HA) and greater reliability than

what a single computer can deliver. High Performance Computing (HPC) clusters grow in

mass, they become very complex and time consuming to manage. That is why you need an

automated cluster computing solution for tasks such as deployment, maintenance and

monitoring services of the cluster.

2.2.4 Benefits of cluster computing

Clusters have three main benefits namely scalability, availability and performance (Baker et

al., 2018). When a cluster runs parallel databases or cluster-enabled applications on compute

nodes using their combined processing power, adding more nodes to the cluster achieves

scalability. Availability is achieved when the nodes inside the cluster provides a backup to each

other in the event of a failure of one of the nodes. In High Availability (HA) clusters, when one

service or node fails, the service is redeployed to another node (or nodes) in the cluster. This

is a transparent operation for the client as the applications and data running on the failed nodes

get carried over to the failover nodes. The user does not know or care if the application is on

a single server alternatively, a cluster.

22

It is clear from the above discussion that clusters provide scalable a capacity for compute data

and support of mix workloads. They support horizontal and vertical scalability without downtime

and the ability to handle unexpected peaks in workload. They have a central system

management of a single systems image and 24x7 availability. They are cost efficient, flexible

and have high availability of resources (Baker et al., 2018).

2.2.5 Commercial-off-the-shelf (COTS) hardware

High performance clusters use commercial off-the-shelf (COTS) hardware. This cluster makes

use of Linux as their operating system. The COTS hardware used for high performance

computing is classified as being homogeneous as each node has the same processor, memory

and disk drives.

2.2.6 Parallel computing

Ngxande (2015:29) described parallel computing as using more than one processor to divide

one large job into several tasks. Clearly, this showed that parallel computing solves larger

problems and have a fast turn-around time. Parallel computing uses cheap inexpensive

components to achieve high performance to overcome the limits of serial computing.

2.3 Distributed systems

NoSQL databases are classified as distributed systems because of their horizontal scalability

on commodity clusters (Tiwari, 2011). A distributed system is an application that coordinates

the actions of multiple processes on a network using a group of protocols, so that all modules

cooperate to perform tasks (Ghemawat et al., 2003).

Reliability is one of the functions of distributed systems which suggests that a system should

operate continuously, as defined by Shooman, (2002) in terms of a time interval instead of an

instant in time. This system should work without pauses during an extended amount of time or

periods (Hoda & Azad Kamali, 2014).

It should be highly available and recoverable so that nodes restart after failures (Birman, 2012).

NoSQL databases perform better on commodity hardware systems, based on their ability to

work in a cluster to gracefully recover from failures (Tiwari, 2011). This type of arrangement

works well because of the consensus algorithm or distributed consensus, most NoSQL

23

databases use either Raft or Paxos consensus algorithms (Helland & South, 2007).

Consensus algorithms like Paxos used to manage replication amongst distributed computer

systems. These algorithms provide a mechanism to enforce consensus within a cluster

(Ongaro & Ousterhout, 2014).

2.3.1 Introduction to distributed system design

A distributed system has the ability to connect remote users with remote resources in an open

and scalable way (Sukuba, 2015). According to Sukuba, (2015:2) “open” means the protocols

or component have an open interaction with other devices or components. When we say

“scalable”, the system can accommodate changes for the number of resources, users and

computing needs. Clearly, this showed that a distributed system, if given all the combined

capabilities of the distributed components, could be much larger and powerful than the

combinations of stand-alone systems (Sukuba, 2015).

For a distributed system to be reliable, it should have the following characteristics:

Fault-tolerant: it should be able to recover from component failures without any system

problems when running tasks or processes. When components fail, the system should be able

to restore operations permitted. If any failures occur, the failed components should be able to

restart themselves and rejoin the system after being repaired. The system can act like a non-

distributed system, meaning it can coordinate actions or tasks using multiple components

during failures. This means that the system can operate even if the system is increased to a

larger size. The system should provide responses in a timely manner. The system should have

authentication and access needed to access the services (Sukuba, 2015).

It is clear from the above discussion that these are high standards and challenging to achieve,

the most difficult characteristic would be that the distributed system should be able to continue

operating even if system components fail.

You have to design a distributed system with the expectation that failures will occur (Sukuba,

2015). Sukuba (2015:2) notes: “When you design distributed systems you have to expect

failures to happen, so you design for failures. This should be the number one concern, for

example, design for failure means if I sent a message to you and a network failure occurs,

there would be two possible outcomes. One of the possible outcomes would be that the

message got to you, the network had a failure and I did not get the response from you. The

other concern would be that the message never got to you, because the network had a failure

before it arrived.”

24

Therefore, we would not know which of the two failures occurred. We can only determine the

outcome by finding out from you if the message was delivered. The network has to be repaired

or you have to come up online, because another outcome could be that the network was up

and running but you died.

2.3.2 Challenges for a distributed system

Bouchrika (2018) described the major challenges of distributed systems as listed below:

Figure 2.2: The major challenges in distributed systems

(Adopted from Bouchrika, 2018)

2.3.3 Heterogeneity

Heterogeneity, as described by Bouchrika (2018), is the collection of computers and networks

that runs applications and services for the users to access over the internet. These collections

of computers and networks include the following:

Hardware devices: computers, tablets, mobile phones, embedded devices, etc.

Operating System: MS Windows, Linux, Mac, UNIX, etc.

Network: Local network, the Internet, wireless network, satellite links, etc.

Programming languages: Java, C/C++, Python, PHP, etc.

25

Different roles of software developers, designers, system managers.

The different programing languages present different characters and data objects such as

arrays and records. If developers use different programming languages and write programs,

they should be able to communicate with each other (Bouchrika, 2018).

Middleware: this term applies to the software layer that provides a programming abstraction

and masks the heterogeneity of the layers below like the networks, hardware, operating

systems (OS) and programming languages. Middleware deals with the differences in operating

systems and hardware (Bouchrika, 2018).

Figure 2.3 below illustrates a distributed system for several applications running on different

operating systems where the middleware are responsible for the heterogeneity of the

communications.

Figure 2.3: A distributed system for several applications running on different operating
systems

(Adopted from Bouchrika, 2018)

2.3.4 Transparency

According to Bouchrika (2018), transparency is defined as to conceal the separation of

components that make up the distributed system, so the user and the developer sees the

system as one system. Some terms of transparency in distributed systems are:

26

Access Hide differences in data representation and how a resource is accessed.

Location Hide where a resource is located.

Migration Hide that a resource may move to another location.

Relocation Hide that a resource may be moved to another location while in use.

Replication Hide that a resource may be copied in several places.

Concurrency Hide that a resource may be shared by several competitive users.

Failure Hide the failure and recovery of a resource.

Persistence Hide whether a (software) resource is in memory or a disk.

2.3.5 Openness

The openness of a distributed system determines if the system can be re-implemented. The

point of when new resource sharing services can be added determines this. It should be easy

for developers to add new features or replace sub systems in the future. For example, Twitter

and Facebook have an Application Programming Interface (API) that allows developers to

develop their own software interactively (Bouchrika, 2018).

2.3.6 Concurrency

For an object to be safe in a concurrent system, the operations should be coordinated. This is

so that it remains consistent when several clients attempt to access a shared resource as a

data structure that records bids for an auction that is accessed (Bouchrika, 2018). This can be

achieved by semaphore used in operating systems.

2.3.7 Security

Information resources in distributed systems have a high essential value to their users. Their

security is therefore of substantial importance. Security for information resources has three

components namely, confidentiality (protection against disclosure to unauthorized individuals),

integrity (protection against alteration or corruption) and availability for the authorized

(protection against interference with the means to access the resources) (Bouchrika, 2018).

2.3.8 Scalability

Distributed systems must be scalable as the number of users increase. Neuman (1994),

defines the scalability as the following: “A system is said to be scalable if it can handle the

27

addition of users and resources without suffering a noticeable loss of performance or increase

in administrative complexity.”

Scalability has three dimensions:

 Size

Number of users and resources to be processed. Problem associated is overloading.

 Geography

Distance between users and resources. Problem associated is communication

reliability.

 Administration

As the size of distributed systems increases, many of the systems needs to be

controlled. Problem associated is an administrative mess (Bouchrika, 2018).

2.3.9 Failure handling

Computer systems fail from time to time. When faults occur in hardware or software, programs

may produce incorrect results or may stop before they have completed the intended

computation. The handling of failures is particularly difficult (Bouchrika, 2018).

2.3.10 Gray failures

Huang et al. (2017:4), described the gray failures as limping around in a degraded mode, you

trying to keep the system at your best and mask the problems, this in the end are one of the

main causes of availability breakdowns and performance anomalies in distributed systems.

The larger you scale, the more common gray failures become.

28

Gray failure characterized in an abstract model as shown in Figure 2.4 below:

Figure 2.4: An abstract model to characterize gray failure

(Adopted from Huang et al., 2017)

From Figure 2.4 above we can observe that a failure detector (Observer) is monitoring the

system. If the observer detects a fault, the reactor takes action (for example restarting

components) and this happens while the user accesses applications. These applications make

their own observations regarding the health of the system like are responses slow, errors

reported, etcetera.

Huang et al. (2017:3), defined: “gray failure as a form of differential observability. More

precisely, a system is defined to experience gray failure when at least one app makes the

observation that the system is unhealthy, but the observer observes that the system is healthy.”

29

Figure 2.5: Quadrant of gray failure

(Adopted from Colyer, 2017)

Huang et al. (2017:3), argued that,

 “Initially the system experiences minor faults (latent failure) that it tends to suppress.

Gradually, seen in Figure 2.6 the system transits into a degraded mode (gray failure)

that is externally visible, but which the observer does not see. Eventually the

degradation may reach a point that takes the system down (complete failure), at which

point the observer also realizes the problem. A typical example is a memory leak.”

Figure 2.6: Gray failure cycle

(Adopted from Colyer, 2017)

30

2.4 Basics of a distributed system

According to Takada (2018) there are two consequences of distribution when dealing with

distributed programming. The first one would be that information travels at the speed of light

and the second would be that independent mechanisms fail independently. Distributed

programing is about dealing with the distance and having more than one of the same

mechanisms.

2.4.1 Distributed programming

Takada (2018) emphasizes that distributed programming is about solving the same problem

that one would use on a single computer, but using multiple computers due to the problem not

residing on the same single computer. Computation and storage would be very fast if done on

a single, fast reliable system hosted in the cloud by a cloud service provider.

But most communities don’t have these resources, they would try to upgrade the hardware,

but as the problem they are trying to solve increases, you may not solve the problem by just

using one computer. Figure 2.7 illustrates how the performance gap between high-end and

commodity hardware decreases with the cluster size. Adding a new computer to a cluster

would increase the performance and the capacity of a system, but this would not be possible,

as we need to take in to account that the computers are all separate from each other. Data

sent across the nodes and the commutation tasks must be coordinated.

Figure 2.7: Performance advantage of a cluster built with high-end server nodes over a cluster
with low-end server nodes

31

(Adapted from Barroso et al., 2013)

Ideally, adding a new machine would increase the performance and capacity of the system

linearly. However, of course this is not possible, because there is some overhead that arises

due to having separate computers. Data needs to be copied around, computation tasks have

to be coordinated and so on (Barroso et al., 2013).

2.4.2 Scalability

According to Takada, (2018) a problem becomes harder once you pass a certain volume in

size and then reach a size limit. The scalability of a system should be to handle the increase

of volumes in a capable manner and be able to handle the given load. Adding more nodes to

a system should make the system operate faster. Multiple data centers spread across the

globe should reduce the time it would take to respond to user queries. A system should have

the ability to add more nodes to the system without causing any administrative costs.

2.4.3 Performance and latency

According to Takada (2018), performance is the amount of work done by a computer system

compared to the time and resources used. Performance can be achieved by a short response

time or low latency. The high throughput using low utilization of computing resources would

also increase the performance of the system.

Latency is about the delay measured between the initiation phase and the event when

something happened (Takada, 2018). Based on Takada (2018), latency is not about the

amount of old data, but the speed by which new data gets generated. To measure latency

would be to measure how long it writes new data to make it visible to the users.

2.4.4 Availability

If a system cannot be accessed by a user, it would be classified as unavailable. As pointed out

by Takada (2018), a distributed system can tolerate failures whereas a single system cannot.

Clearly this showed that distributed systems can be built with unreliable components together

and still build a reliable system layer on top of the system. Therefore, systems that have no

redundancy can only be available as their underlying components. And systems built with

redundancy can be tolerant of partial failures and be more available (Takada, 2018).

32

The formula for availability can be described as: Availability = uptime / (uptime + downtime)

Availability is about being fault tolerant. The probability of failures occurring would increase the

number of components. When the number of components, servers and datacenters increases,

the system should not become less reliable (Takada, 2018).

For example:

Availability % How much downtime is allowed per year?

90% ("one nine") More than a month

99% ("two nines") Less than 4 days

99.9% ("three nines") Less than 9 hours

99.99% ("four nines") Less than an hour

99.999% ("five nines") ~ 5 minutes

99.9999% ("six nines") ~ 31 seconds

2.4.5 Replication

According to Takada (2018), replication is one of many problems in distributed systems.

Replication provides a context or many sub-problems such as leader election, failure detection

and consensus. Replication allows the system to achieve scalability, performance and fault

tolerance (Takada, 2018).

For example, let’s say there is a database that clients make requests that would change the

state of the database. This arrangement and communication pattern has several stages as

shown in Figure 2.8. Stage one shows the request that the client sends to the server, then

stage two synchronisation takes place. At stage three a response gets returned to the client

and at phase four asynchronous replication takes place.

33

Figure 2.8: Understanding replication in databases and distributed systems ((Adopted from
Wiesmann et al., 2002)

2.4.6 Synchronous replication

During the synchronous phase the first server contacts the other servers and waits for replies

from the other servers before sending a response to the client. The client is blocked because

it has to wait for replies from the system. This type of system cannot tolerate the loss of any

servers. If and when a server is lost, the system won’t be able to write to all the nodes, such a

system can allow read-only access, but won’t allow write-access to the data (Takada, 2018).

2.4.7 Asynchronous replication

Asynchronous replication can be seen as a passive replication. The master or leader sends

the response back to the client immediately, so the client is not forced to wait for the

communication to occur between the servers. The master server contacts the other servers to

update their copies of the data (Takada, 2018).

From a performance perspective this type of system is fast and this system is also more

tolerant of network latency. If nothing goes wrong the data is replicated to all the servers, but

if the server containing the data is lost, all the data will be permanently lost (Takada, 2018).

2.5 Replication algorithms

Distributed systems should behave like a single system, this ensures that only a single copy

of the system is active and that the replicas are always in agreement. This is known as the

34

consensus problem (Takada, 2018).

The term consensus is a collective decision process where a group of workstations must all

agree in order to operate as a group. The master node will send broadcasts to the rest of the

network and the various different computers making up the network (called ‘nodes’) come to

an agreement to make a collective decision.

Consensus algorithms allow a cluster of servers to act as a coherent group. They should be

able to continue functioning even though some servers experience hardware failures (Ongaro

& Ousterhout, 2014).

According to Rao et al. (2011), 2-way replication (master–slave) can lead to a disaster and

huge data loss. This resulted in introducing a 3-way replication (master-master-slave) to

protect against data loss or disk failures running on commodity servers. Consensus gives the

assurance that the drive will be available for all reads and writes during 3-way replication.

2.5.1 Partition tolerant consensus algorithms

“Raft is a consensus algorithm for managing a replicated log. Its structure is different

from Paxos; this makes Raft more understandable than Paxos. It also provides a better

foundation for building practical systems. Raft separates the key elements of

consensus, such as leader election and log replication. Raft enforces a stronger degree

of coherency to reduce the number of states. Raft also includes a new mechanism for

changing the cluster membership, which uses overlapping majorities to guarantee

safety” (Ongaro & Ousterhout, 2014).

2.5.2 CRDTs: convergent replicated data types

For a set of operations to converge on the same value in an environment, the operations need

to be order-independent and insensitive to duplication or redelivery (Takada, 2018). So their

operations need to be:

 Associative (a+(b+c)=(a+b)+c), so that grouping doesn't matter.

 Commutative (a+b=b+a), so that order of application doesn't matter.

 Idempotent (a+a=a), so that duplication does not matter.

These data objects are known as semi lattices in mathematics. A partially ordered set known

35

as the lattice has a distinct top and a distinct bottom, a semi lattice is like a lattice, but only has

a distinct bottom. To guarantee convergence, a data type should be expressed as a semi

lattice data structure (Takada, 2018).

For example, if you calculate the max() of a set of values, this will always return the same

results regardless of order in which the values were received, because max() operation is

associate, cummutative and idempotent (Takada, 2018).

Another example by Takada (2018), two lattices: one drawn for a set, where the merge

operator is union (items) and one drawn for a strictly increasing integer counter, where the

merge operator is max (values).

The data indicated that data types can be expressed as semi lattices where you can have

replicas that communicate in any patterns and receive updates in any order, they will eventually

agree on the end result as long as they see the same information (Takada, 2018).

The limitation of expressing a data type as a semi lattice requires a level of interpretation, as

many data types have operations that are not order dependent. When adding items to a set,

its associative, cummutative and idempotent. But if items are removed from a set then they

would need to resolve the conflicting operations like add (A) and remove (A).

This means that data types have implementations such as CRDTs that makes it a different

tradeoff by resolving conflicts and also doing it in an order-independent manner. NoSQL Key-

value data store deals with registers and for a developer to know which data store to choose

he needs to make use of the right data type to avoid anomalies (Takada, 2018).

According to Takada (2018), “A lattice is a partially ordered set with a distinct top (least

upper bound) and a distinct bottom (greatest lower bound). A semi lattice is like a

lattice, but one that only has a distinct top or bottom. A join semi lattice is one with a

distinct top (least upper bound) and a meet semi lattice is one with a distinct bottom

(greatest lower bound).”

Some examples of the different data types specified as CRDT's include (Takada, 2018):

 Counters

o Grow-only counter (merge = max (values); payload = single integer)

36

o Positive-negative counter (consists of two grow counters, one for increments

and another for decrements)

 Registers (Key-value store)

o Last Write Wins -register (timestamps or version numbers; merge = max (ts);

payload = blob)

o Multi-valued -register (vector clocks; merge = take both)

 Sets

o Grow-only set (merge = union (items); payload = set; no removal)

o Two-phase set (consists of two sets, one for adding, and another for removing;

elements can be added once and removed once)

o Unique set (an optimized version of the two-phase set)

o Last write wins set (merge = max (ts); payload = set)

o Positive-negative set (consists of one PN-counter per set item) observed-

remove set

 Graphs and text sequences

To ensure an anomaly-free operation, developers should use the right data type for their

application. For example, if you only going to remove an item once, then a two-phase set would

be used. If you need to add items to a set and never remove them then a grow-only set works

(Takada, 2018).

Clearly, this showed that “Not all data objects have known implementations as CRDTs, but

there are CRDT implementations for Booleans, counters, sets, registers and graphs” (Takada,

2018).

2.5.3 The CALM theorem

CALM tells programmers which operations and programs can guarantee safety when used in

an eventually consistent system. Any code that fails CALM tests is a candidate for stronger

coordination mechanisms.

“Consider building a database for queries on stock trades. Once completed, trades cannot

change, so any answers that are based solely on the immutable historical data will remain true.

However, if your database keeps track of the value of the latest trade, then new information

such as new stock prices might retract old information, as new stock prices overwrite the latest

ones in the database. Without coordination between replica copies, the second database might

return inconsistent data” (Bailis & Ghodsi, 2013).

37

Clearly, order-independence is an important property of any computation that converges: if the

order in which data items are received influences the result of the computation, then there is

no way to execute a computation without guaranteeing order. However, the order of

statements does not play a significant role in many programming models. For example, in the

Map Reduce model, both the Map and the Reduce tasks are specified as stateless tuple-

processing tasks that need to be run on a dataset. Concrete decisions about how and in what

order data is routed to the tasks is not specified explicitly, instead, the batch job scheduler is

responsible for scheduling the tasks to run on the cluster.

Similarly, Structured Query Language (SQL) specifies the query, but not how the query is

executed. The query is simply a declarative description of the task, and it is the job of the query

optimizer to figure out an efficient way to execute the query (across multiple machines,

databases and tables). Of course, these programming models are not as permissive as a

general-purpose programming language. Map Reduce tasks need to be expressible as

stateless tasks in an acyclic dataflow program. SQL statements can execute fairly

sophisticated computations, but many things are hard to express in it (Takada, 2018).

“Programming models which express a desired result, while leaving the exact order of

statements up to an optimizer to decide, often have semantics that are order-independent.

This means that such programs may be possible to execute without coordination, since they

depend on the inputs they receive, but not necessarily the specific order in which the inputs

are received” (Takada, 2018).

2.5.4 Partition and replicate

There is a manner in which a data set gets distributed between multiple nodes. This is very

important for any computation to occur, the data need to be located to act on it. Two basic

techniques can be applied to a data set. The first one is to split the data set over multiple nodes

(partitioning) to allow for more parallel processing. The second one would be to copy or cache

on different nodes to reduce the distance between the client and the server to allow for greater

fault tolerance (replication) (Takada, 2018).

We can illustrate the difference between the two techniques below:

Figure 2.9 illustrates the partitioned data (A and B) divided into independent sets. The

replicated data (C) is copied into multiple locations.

38

Figure 2.9: Splitting of partitioned data and replicated data

(Adopted by Takada, 2018)

2.5.5 Partitioning

Partitioning is dividing the dataset into smaller distinct independent sets; this is used to reduce

the impact of dataset growth since each partition is a subset of the data. Partitioning improves

performance by limiting the amount of data to be examined and by locating related data in the

same partition.

Partitioning improves availability by allowing partitions to fail independently, increasing the

number of nodes that need to fail before availability is sacrificed. Partitioning is also very much

application specific, so it is hard to say much about it without knowing the specifics. Partitioning

is about defining partitions based on the primary access pattern and dealing with the limitations

that come from having independent partitions (e.g. inefficient access across partitions, different

rate of growth etc.).

2.5.6 Replication

Replication is making copies of the same data on multiple machines; this allows more servers

to take part in the computation. Replication improves performance by making additional

computing power and bandwidth applicable to a new copy of the data. Replication improves

39

availability by creating additional copies of the data and increasing the number of nodes that

need to fail before availability is sacrificed. Replication is about providing extra bandwidth and

caching where it counts.

2.6 Introduction to NoSQL data store

The term Structured Query Language (SQL) evolved in the nineteen seventies to store

structured data in relational data stores (Lourenço, Abramova, et al., 2015). Most NoSQL

databases are designed to scale well in the horizontal direction and these data stores are key-

value, wide column, graph and document stores described below in detail.

2.6.1 Key-value stores

Key-Value based are closely related to document stores as they store values against a key

and there is no need for schemas to be associated with the values. The programing language

used for some NoSQL data stores are written in C (Vaish, 2013). Key-value stores have the

ability to process the data in real time. Key-value stores provide horizontal scalability through

nodes in clusters and used in applications where results are rapidly required (Zafar et al.,

2017).

The key-value store database is used in web applications for session management. The

database uses a key-value pair scheme to store data to provide support for interaction with

social media applications (Zafar et al., 2017). Data stored on key-value data stores are shared

between nodes. The data stores include Redis, Riak, Kyoto, Cabinet, Amazon Dynamo

Database (DB), Couch DB, Berkeley DB, Memcached, Aerospike, EHCache, Voldermot and

Cassandra (Zafar et al., 2017).

As much as 300K to 400K read/write operation can be achieved with an Intel Core 2 Duo, 2.4

GHz using key-value stores for application development when operated on custom built

computers. Figure 2.10 shows the structure of a key value based database in which there is

one key and many values related to that key (Zafar et al., 2017). Table 2.1 shows the summary

of key-value stores and features of each one.

40

Figure 2.10: Key-value data store

(Adapted from Zafar et al., 2017)

Table 2.1:Summary of key-value data store features (adapted from Zafar et al., 2017)

Data store name Features

Memcached Shared-nothing architecture, in-memory object caching systems
with no disk persistence. Automatic sharding but no replication.
Client libraries for popular programming languages including Java,
.Net, PHP, Python, and Ruby.

Cassandra Shared-nothing, master-master architecture, in-memory database
with disk persistence. Key range based automatic data partitioning.
Synchronous and asynchronous replication across multiple data
centers. High availability. Client interfaces include Cassandra
Query Language (CQL), Thrift, and MapReduce. Largest known
Cassandra cluster has over 300 TB of data in over 400-node
cluster.

Redis Shared-nothing architecture, in-memory database with disk
persistence, ACID transactions. Supports several data Redis
structures including sets, sorted sets, hashes, strings, and blocking
queues. Backup and recovery. High availability. Client interface
through C and Lua.

Voldemort Shared-nothing architecture, in-memory database with disk
persistence, automatic data partitioning and replication, versioning,
map and list data structures, ACID with relax option, backup and
recovery, high availability. Protocol Buffers, Thrift, Avro and Java
serialization options. Client access through Java API

Riak Shared-nothing architecture, in-memory database with disk
persistence, data treated as BLOBs, automatic data partitioning,
eventually consistency, backup and recovery, and high availability
through multi data center replication. Client API includes Erlang,
JavaScript, MapReduce queries, full text search, and REST.

Aerospike Shared-nothing architecture, in-memory database with disk
persistence. Automatic data partitioning and synchronous
replication. Data structures support for string, integer, BLOB, map,
and list. ACID with relax option, backup and recovery, high
availability. Cross data center replication. Client access through
Java, Lua, and REST.

2.6.2 Wide column stores (extensible record stores)

41

Column-oriented databases store data in columns instead of rows like in a RDBMS. The

implementing programming languages used are JAVA, Python and Go (Vaish, 2013). In

RDBMS, the data is processed based on row-major order. The rows are exclusively recognized

by the auto generated IDs for each row. On the contrary, the Column based database follows

the column-major order (Zafar et al., 2017).

A column database is similar to relational database. The column based databases are similar

to the key value structure. Database applications is categorized by short variations and easy

to use schema. If the data is changed, it is stored with a changed version of same column data

by the addition of a timestamp. Fractional data access may increase the performance of some

applications (Zafar et al., 2017).

The data store performs different operations such as the computation of datasets. The

performance is enhanced by gathering the columns with same features in a family. The

concept of column family is similar to the column notion in the relational databases (Zafar et

al., 2017). The data stores include Apache Cassandra, Google Big Table, HBase, Hypertable,

Cloudata, Oracle RDBMS Columnar Expression, and Microsoft SQL Server 2012 Enterprise

Edition.

Table 2.2 contains the name of NoSQL databases and features for a better understanding and

selection of database system for user. Figure 2.11 shows an example of column store and a

row store. The database sorts the data by columns to ensure rapid retrieval (Zafar et al., 2017).

Figure 2.11: Column store and row store tables

Adapted from Zafar et al., 2017)

42

Table 2.2: Summary of column data store features (adapted from Zafar et al., 2017)

Data store name Features

BigTable A sparse, persistent, distributed, multi-dimensional-sorted map.
Features strict consistency and runs on distributed commodity for
data that is in the order of billions of rows with millions of columns.

HBase Open Source Java implementation of BigTable. No data types and
everything is a byte array. Client access tools: shell (i.e., command
line), Java APT, Thrift, REST, and Avo (binary protocol). Row
HBase keys are typically 64-bytes long. Rows are byte-ordered by
their row keys. Users distributed deployment model. Works with
Hadoop Distributed File System (HDFS), but uses file system APT
to avoid strong coupling. HBase can also be used with CloudStore.

Cassandra Provides eventual consistency. Client interfaces: phpcasa (a PHP
wrapper), pycassa (Python binding), command line/shell, Thrift,
and Cassandra Query Language (CQL). Popular for developing
financial services applications.

2.6.3 Graph databases

This is a special category of NoSQL databases that characterizes relationships as graphs. This

may include social relationships amongst people and many other network topologies, the

implementing programming language are JAVA code (Vaish, 2013). The core algorithm is the

graph data model. In some applications, the associations between entities are more important

than the entities, this can be dynamic or fixed. The social media applications data are modeled

with graphs. Graph data models are used in many industries e.g., oil and gas and airlines.

(Zafar et al., 2017).

The database that is built using graph data models include Infinite Graph, Titan, Microsoft

Trinity, Flock Database (DB), Orient DB, DEX, Facebook open graph, Google knowledge

graph and Neo4J.

Figure 2.12 shows the example of graph based database that shows the data is linked and the

correlation of the data.

43

Figure 2.12: Graph data store

(Adopted from Zafar et al., 2017)

Table 2.3: Graph data store features (adapted from Zafar et al., 2017)

Data store name Features

Neo4J In-memory or in-memory with persistence. Full support for
transactions. Nodes/vertices in the graph are described using
properties and the relationships between nodes are typed and
relationships can have their own properties. Deployed on compute
clusters in a single data center or across multiple geographically
distributed data centers. Highly scalable and existing applications
have 32 billion nodes, 32 billion relationships, and 64 billion
properties. Client interfaces: REST, Cypher (SQL-like), Java, and
Gremlin.

AliegroGraph In-memory or in-memory with persistence. Full support for
transactions. Nodes/vertices in the graph are described using
properties and the relationships between nodes are typed and
relationships can have their own properties. Deployed on compute
clusters in a single data center or across multiple geographically
distributed data centers. Highly scalable and existing applications
have 32 billion nodes, 32 billion relationships, and 64 billion
properties. Client interfaces: REST, Cypher (SQL-like), Java, and
Gremlin

2.6.4 Document stores

Document stores allow the inserting, retrieving and manipulating of semi-structured data.

These databases will use XML, JSON, BSON or YAML where the data access will be over the

HTTP protocol by using RESTful API’s and this provides flexibility. The Implementing

programing languages used are JAVA, Erlang, C++, and C (Vaish, 2013).

According to Zafar et al. (2017:6), the document based database relies on documents or texts.

44

The system is used to manage non-structured data sets as key-value data types. These

databases are identified by their key identifier. Using non-structured document, main values

are efficient for applications used for document groups. The databases which are designed

using this technique include Mongo DB, Couch DB, CouchBase, Raven DB and Fat DB. Figure

2.13 shows the example of a document based database operation and Table 2.4 shows the

document data store features (Zafar et al., 2017).

Figure 2.13: Document store

(Adapted from Zafar et al., 2017)

45

Table 2.4: Document data store features (adapted from Zafar et al., 2017)

Data store name Features

MongoDB No transaction support. Only modifier operations offer atomic
consistency. Lack of isolation levels may result in phantom reads.
Uses memory-mapped files storage. Support is available for
geospatial processing and Map Reduce framework. Indexing,
replication, GridFS, and aggregation pipeline. JavaScript expressions
as queries. Client access tools: JS Shell (command line tool), and
drivers for most programming languages. Suitable for applications
that require auto-sharding, high horizontal scalability for managing
schema-less semi-structured documents.

CouchDB Open Source database written in Erlang. JSON format for
documents. Client access tools: REST API, CouchApps (an
application server), and MapReduce. JavaScript is used for writing
Map Reduce functions.

Couchbase Incorporates functionality of CouchDB and Membase. Data is
automatically partitioned across cluster nodes. All nodes can do both
reads and writes. Used in many commercial high availability
applications and games.

According to Zafar et al. (2017:7), There are many applications for NoSQL and each

application has a unique architecture and structure. To date, the size of data in NoSQL has

greatly increased. To better understand the NoSQL data stores, four categories of NoSQL data

stores have been discussed.

2.6.5 Features of NoSQL data stores

According to Hu et al. (2016:2), NoSQL data stores can handle structured, semi-structured and

unstructured data. NoSQL data stores are simple and faster. NoSQL data stores allow object-

oriented programming. NoSQL data stores have the ability to connect multiple NoSQL data

stores so that they can work as a single logical unit together using horizontal scalability.

Modern applications like mobile applications desire efficient and scalable databases, NoSQL

data stores meet these requirements, NoSQL do not intend to replace relational databases,

but they complement each other (Hu et al., 2016).

2.7 Programming language Java

According to Dwarampudi et al.(2010), it’s difficult to determine the scope of one programming

language over another one. Java is an object-oriented language that is similar to C++. Scala

is a language that addresses the needs of a modern developer, it reduces the code by two or

three times compared to Java. C++ is a middle-level language as it has both high and low level

language features (Dwarampudi et al., 2010).

Based on criteria for each programming language used during the study Dwarampudi et al.

46

(2010:2), claims that Java is regarded amongst others as one of the best default security

programming languages. Java provides web services and have outstanding XML (Extensible

Markup Language) support with libraries, APIs (Application Programming Interface) and many

frameworks (Dwarampudi et al., 2010). Java also provides aspect oriented programming using

extensions. Java can also perform automation, macros and shell scripting on different

platforms (Dwarampudi et al., 2010).

In addition to the studies described above, Dwarampudi et al. (2010) conclude that every

language has its ups and downs. Every language has its own specialty and better programing

practices made it popular to revolutionize the computing industry. Both Java and PHP

languages are two very good languages for developing web-applications. However, Java has

better performance and is more scalable than PHP. Both languages confidently address the

most common website attacks of cross-side-scripting, path manipulation and SQL injection.

However, Java is much more secure than PHP. The present paper is a fraction of the study

conducted to compare Java and PHP languages. The aim would be to provide an answer to

the question of which of the two languages is the best for web programming (Dwarampudi et

al., 2010).

2.7.1 The reactive manifesto

Reactive systems deal with problems effectively without affecting the users using the

application, this approach simplifies error handling (Bonér et al., 2014). Reactive systems stay

responsive and highly-available during failures. If a system is not resilient it will not be

responsive after failures. To achieve resilience, the application should be able to replicate, be

contained, isolated and delegated. If failures occur this would be contained within each

component thus isolating the components from each other (Bonér et al., 2014). This ensures

that if certain parts of a system fail it can be recovered without compromising the system or

application. The recovery of each component would then be delegated to another component

and high availability will be ensured by replicating where necessary without affecting the client

(Bonér et al., 2014).

Reactive systems handle the workload of the end-user by increasing or decreasing the

resources needed for an application. This gets achieved by predictive live performance

measures and reactive scaling algorithms. This makes the system more elastic to run on

commodity hardware (Bonér et al., 2014).

Reactive systems rely on asynchronous message-passing to get a boundary established

between the components that ensures loose coupling. Using the message-passing enables

47

load management, elasticity and flow control by the shaping and monitoring of message

queues in the systems. The non-blocking communication allows recipients to make use of

resources only when being active, to allow for less system overhead (Bonér et al., 2014).

The reactive manifesto describes how to build modern architecture that can scale as more

resources are needed (Sachdeva, 2019). Reactive systems should follow the following

principles:

1. The system should be able to respond in a timely manner and be responsive.

2. The system should be able to handle workload under high load to be classified as

elastic.

3. The system should be able to handle failures of components and be resilient.

4. The system should use asynchronous message passing between its components and

be message driven.

The first three principles listed above, relates to the architectures choices of design. Micro

services architecture and technologies like Docker containerization are important aspects of

Reactive systems (Sachdeva, 2019). Running a single LAMP (Linux Apache MySQL PHP)

stack does not meet the requirements of the Reactive Manifesto.

There are a few attributes for Java developers based on the last principle. When failures

happen the program should gracefully handle the situation, than to throw out an exception.

Back pressure is an important attribute of reactive programming. This happens when a

database query returns thousand records queried. But when the client cannot accept any more

records then the client goes into a blocked state. This will keep the database in a waiting state

and continue with other operations (Sachdeva, 2019). The last attribute is non-blocking, where

the program uses multiple CPU threads and consumes more resources and to be able to send

requests in a non-blocking manner and less switching of threads.

2.7.2 Reactive programming in Java

Reactive programing was first introduced in 1960, and became very popular during the last

few years (Sachdeva, 2019). Reactive programming, like functional programming is just

another programming paradigm. Reactive programming deals with asynchronous data

streams and change propagation in an ordered manner. Reactive programming provides

simplistic solutions for high-load applications. Social networks, chat clients, proxy servers, load

balancers and real-time data streaming.

Reactive programing and reactive systems can be used together interchangeably, but they are

48

not the same. Reactive systems are the design and architecture that allows the developer to

build a responsive application. The combination of the two gives an application more benefits

to make them more loosely coupled and efficient use of resources (Sachdeva, 2019).

The next phase of the literature review included a detailed, systematic and transparent means

of gathering appraising and synthesizing peer-reviewed evidence to answer the study’s sub-

question one: What are the different hardware requirements for NoSQL data stores to operate

on, to achieve high availability and reliability?

The systematic reviews were used to reduce bias at all stages of the review process.

The stages of conducting the review:

1 Defining the systematic review questions

2 Followed by a proposed methodology for the review or review protocol

3 Then a search strategy was performed to conduct a thorough search of literature

4 Results were screened against a pre-specified selection criterion to identify the

included studies

5 An appraisal of the quality of studies found

6 Synthesizing the evidence found

7 Then the results were published to disseminate the review

8 Update the review where new evidence was found

49

2.8 Systematic review

To begin the first step of the systematic review the study identified the goals of this review. The

study wanted to find solutions done by other researchers and how they differ from each other

and look at the implications they would have on the research study. A systematic literature

review paper by Kitchenham et al. (2010:2) argued that all empirical software engineers should

adopt evidence-based practices as this is a repeatable research method and could be

replicated by other researchers in the field (Milani & Navimipour, 2017).

2.8.1 Defining research questions

RQ1: What empirical evidence exists to help developers choose the right NoSQL database for

their project that would guarantee high availability and reliability?

RQ2: How does the empirical evidence found, compare with each other in terms of their

approach, methods and constraints used in addressing RQ1?

RQ3: What is the strength of the empirical data found for each solution or approach used?

I. What implications would these findings have?

RQ4: What are the implications of the findings for the design of the new empirical data

framework of what has been found in RQ3?

I. What is the gap that could be created or exploited to create a solution after looking

at other solutions?

2.8.2 Defining the systematic literature review protocol

The study also explored that reviewing the existing literature and addressing a particular topic,

the normal review process rarely shows any systematic procedures used. This does not ensure

the use of all relevant material to be included in a study, mostly just material that supports the

arguments in a review. Most research methods and frameworks do exist in the field of

computing but software engineers are not exposed to these procedures and frameworks

(Kitchenham et al., 2010). A systematic review should be the obvious research method for this

research. The study tried to understand the problem and find a solution on how to solve the

problem (Milani & Navimipour, 2017). The systematic review has improved the position of

computer science and software engineering in many ways. Authors and students benefit

having clear procedure-driven research when reviewing the background material for their

thesis and identifying where the background supports or conflicts with the thesis.

50

The goal to define the systematic review was to specify systematically how the review process

works. To see how each stage of the process unfolds, and to focus on the objective of the

review process. Before moving on to the next stage, each stage of the review process was

reviewed. The study specified the steps before starting any stage in order to keep the structure

and integrity of the review process and the objective of the systematic review.

2.8.3 Search strategy

The research followed a two-step procedure for the search strategy:

I. Gather a list that includes all sources that would be relevant studies for the review.

II. Decide how the study would search these sources.

The study used the university library online research databases to create the list of sources.

The study also added relevant journals searched online manually. As part of the review, the

study made sure that all the sources are active and available by importing them into Mendeley-

reference-management software for citations.

The search process was restricted to search only for published journal articles and papers

presented at conferences. The query strings applied based on the titles and abstract, papers

from 2014-2017 was searched using the online research database. The most used databases

we searched a keyword or string was the Google scholar search engine. The online research

databases used included ACM digital, Emerald insight, IEEE Explore, ScienceDirect and

SpringerLink. The online search databases are illustrated in Table 2.5. Our four groups created

formed the search string, which are the key terms used as shown in Table 2.6.

From the search terms, the study created the four groups and added synonyms to search

similar words that have the same meaning or related semantic meanings within the study

literature. Directly related to the first systematic review research question (RQ1) and based on

results (RQ2) would be answered by uniquely gathering different sets of research studies:

Group 1 finds all the studies that focuses on NoSQL data stores; Group 2 finds the literature

related to databases; Group 3 find all the studies relating to relational databases; Group 4 finds

literature about programming data structures. The study used a Venn diagram to create an

intersection of the four sets as illustrated in Figure 2.16. The study used a Boolean expression

for the search strategy by using the logical OR-operator within the groups to focus the studies

to include any of the terms used per group. The study then put the groups together with an

AND-operator. The study used at least one of each of the terms in each group as seen in Table

2.6 when performing the search string. Practically this allowed to use the one search string to

51

perform 48 different searches as shown below:

([G1, T1] OR [G1, T2]) OR ([G1, T3] AND ([G2, T1] OR [G2, T2] OR [G2, T3]) OR ([G2, T4]

AND ([G3, T1] OR [G3, T2] OR [G3, T3] OR [G3, T4] AND ([G4, T1] OR [G4, T2])

Table 2.5: Online search databases adopted from (Milani & Navimipour, 2017)

Online Research database Website URL

Google Scholar https://scholar.google.co.za/

ACM Digital http://dl.acm.org

Emerald Insight http://www.emeraldinsight.com

IEEE Explore http://www.ieeexplore.ieee.org

SpringerLink http://link.springer.com

ScienceDirect http://www.Sciencedirect.com

Table 2.6: The four groups of search terms

 Group 1 Group 2 Group 3 Group 4

Term 1 NoSQL Databases Relational Data structures

Term 2 Not-only SQL Data stores RDBMS hierarchical

Term 3 Non-relational Databanks Relative

Term 4 Records

2.8.4 Search results

This contains the summarized results of the systematic literature review. Out of 61 papers only

23 articles were selected and qualified; these are shown in Table 2.7. The articles published

from 2014 to 2017 are all related to NoSQL data stores, relational databases and relational

data structures. This search query used to gather the research articles from the online research

databases from 2014 – 2017.

Table 2.7: Search results

Year Online research databases / Digital libraries Total

IEEE ACM Science
Direct

Emerald Springer Scholar

2010

2011 1

2012

2013 1 1

2014 3 1 2

2015 2 2 1

2016 3 1

2017 3 2

Total 11

Analyzed 11 2 2 2 3 3 23

As shown below in Figure 2.14 there was a visualization of the keywords used when using the

https://scholar.google.co.za/
http://dl.acm.org/
http://www.emeraldinsight.com/
http://www.ieeexplore.ieee.org/
http://link.springer.com/
http://www.sciencedirect.com/

52

Boolean expression searching for articles during the last seven years and the number of

publications and research articles based on the Boolean expression used. As illustrated in

Figure 2.14 and Figure 2.15, there was a significant increase of research articles from 2012 to

2014.

Figure 2.14: Importance of topic by years

Figure 2.15: Distribution of paper by publisher adopted from (Daiga PLASE, 2017)

53

Figure 2.16: Venn diagram showing the combination of the search terms used

As mentioned, the Venn diagram was used to create an intersection of the four group sets

shown in Table 2.6 above. This allowed to use the Boolean expression and search the key

terms. Below in Table 2.8, the study applied an inclusion criteria to match each article against

the criterion.

Table 2.8: The inclusion criteria for the study

Criterion Identifier Criterion

IC1 Articles concerning NoSQL data store types and platforms

IC2 Articles concerning NoSQL issues and challenges

IC3 The study focuses on choosing the right NoSQL database

IC4 The study focus on comparing NoSQL and RDBMS data structures

IC5 Articles concerning NoSQL data store experiments

QC1 Is there a clear statement of the aims of the research

QC2 Is the study put into context of other studies and research

2.8.5 Study selection

The study selected research papers based on the online research database search query.

Articles about NoSQL and relational databases and data structures were selected. The study

checked the title that’s relevant to the study and the research and filtered the search query.

The study ignored books and removed articles that were not published and focused on

studying the abstracts and the conclusion of these papers (Milani & Navimipour, 2017).

The study had a goal to filter down the studies found during the search stage and there were

studies relevant to answer the research question. The study used a set of inclusion criteria and

quality screening criteria as illustrated in Table 2.8 and Table 2.9.

54

The inclusion criteria used a three stage process:

1. Abstract inclusion criteria screening

2. Full-text inclusion criteria screening

3. Full-text quality screening

The study summarized the exclusion criteria using these stages:

1. The exclusion criteria were based on the study area (Software engineering and

computer science).

2. Exclusion based on the title of the article.

3. Exclusion based on removing books and unpublished articles.

Exclusion based on the abstracts and conclusions.

Table 2.9: Exclusion criteria for the study

Criterion Identifier
(Exclusion)

Criterion (Clarification)

EC1 Articles created or published prior to January 2012, Figure 2.14
shows the number of hits published, concerning NoSQL in our six
databases used for our systematic reviews, there is a rise in the
number of articles published since 2012.

EC2 Articles comparing NoSQL with SQL, it’s not relevant in this
research

EC3 Articles concerning the CAP theorem, it’s not relevant in this
research

EC4 Articles not written in English language, this is necessary for the
authors and its reviewers of this paper

EC5 Articles only focused on comparing NoSQL data store types without
discussing how they distribute the data across nodes

EC6 Articles that’s not free to obtain through the Cape Peninsula
University of Technology library, don’t have a budget to purchase
articles

EC7 Articles without experiments on how to setup NoSQL databases on
systems.

The study found a number of articles that did not contain NoSQL or databases. The study

filtered the studies based on reading the abstracts of the 61 papers found during the search

phase. If the studies in the abstract included the first two inclusion criteria, they would have

been accepted for the next stage of the study. Based on the inclusion criteria above only

papers from 2014 to 2017 were selected containing the IC1 to IC3, due to time constraints the

study had to filter the results from 2014 till present. The result of the abstract filtering rejected

29 articles and 21 articles passed to the full-text screening. The study filtered out the articles

that failed to meet requirements from the inclusion criteria IC4 and IC5. The study could not

get all the full details of the articles using only the abstracts, therefore needed the full-text

inclusion criteria screening, and applied the same strategy used for the abstract inclusion

55

criteria. The results of this stage were that the study rejected eight articles leaving 15 articles

for the final stage of the study selection process.

In the final stage of the study selection, the study had to filter out studies that did not meet the

quality criteria QC1 and QC2. In this stage, the study assessed the remaining articles to see if

these articles meet the quality criteria. All 15 articles passed the quality screening criteria and

they all formed the literature basis for the systematic review.

2.8.6 Quality assessment

To focus on the RQ3 where the study needed to look at the strength of evidence presented by

the studies in the review, the study accessed the quality of each study using the following

criteria:

Table 2.10: Quality assessment questions and answers

ID Question / Answer

QC1 Is there a clear statement of the aims of the research?
1.0: Yes, there is a clear statement
0.5: Partly, part of the statement
0 : No statement

QC2 Is the study put into context of other studies and research?
1.0: Yes, study is put into context with other studies
0.5: Partly put into context
0 : Not specified

QC3 Are system/algorithm design decisions justified?
1.0: Yes, the design decisions are justified
0.5: partly decisions justified
0 : No system or algorithm decision

QC4 Is the test data set reproducible?
1.0: Yes, the data set is reproducible
0.5: Partly reproducible
0 : No reproducible test data

QC5 Is the study algorithm reproducible?
1.0: Yes, the study algorithm is reproducible
0.5: Partly reproducible
0 : No study algorithm used

QC6 Is the experimental procedure thoroughly explained and reproducible?
1.0: Yes, the experimental procedure is properly explained
0.5: partly reproducible
0 : no experimental procedure

QC7 Is it clearly stated in the study which other algorithms the study algorithm(s)
have been compared
1.0: Yes, algorithms have been compared
0.5: Partly compared algorithms
0 : No algorithms compared

QC8 Are the performance metrics used in the study explained and justified?
1.0: Yes, performance metrics are used and properly explained

56

2.8.7 Rationale for the criteria

The first two criteria were used in the study selection process; these two are considered a good

research practice as they clearly identify the aims of the systematic review search strategy and

allows the current research to be in context of the other research. The third criteria checked

that the current process or algorithms used are properly analysed. This allows the study to

analyse an approach, before conducting experiments on it and to answer (RQ4). The criteria

QC4, QC5, QC6 and QC8 are related to reproducible research to allow other researchers to

reproduce each step done of the work done by the study, to compare results to their own

approaches. Criteria QC7 looked at the approaches done and how the study compared the

results of other studies against the current study. Criteria QC9 and QC10 checked if the results

are thoroughly analysed as a quality assessment to check if the evidence supported the

findings presented in the study. There should be a clear connection between the evidence

presented and the conclusions of the study. The study accessed each article with the quality

questions above and exclusions as illustrated Table 2.9.

2.8.8 Results of the review

Nine articles were selected for the final selection. Upon a closer look, the final selection

revealed that eight of the articles all performed experiments. Benchmark tests were performed

on eight of the articles selected. None of the articles selected tested the programing language

drivers used in NoSQL data stores (see Appendix A).

To answer the systematic review research questions, the study investigated selected papers

in order to provide a broader understanding of the research aim and to highlight the review

research questions. According to Yassien & Desouky (2016:1), researchers have a challenge

to determine which data model they should use for applications. The study also explored

different workloads studying the latency, throughput and runtime using a Yahoo Cloud Serving

Benchmark test. Yassien & Desouky (2016:1) found that modern web applications require high

0.5: Partly explained and justified
0 : No performance metrics used

QC9 Are the test results thoroughly analysed?
1.0: Yes, the test results are thoroughly analysed
0.5: Partly analysed
0 : Nothing analysed

QC10 Does the test evidence support the findings presented?
1.0: Yes, evidence does support findings
0.5: Partly support findings
0 : No findings presented

57

availability and low latency to handle big data sets.

The datasets were executed using an experimental research setup on a single workstation.

Yassien & Desouky (2016:2) used three different databases, one SQL database and two other

NoSQL databases. More studies should be conducted to cover more data models as not all of

the NoSQL models were used in this research. Yassien & Desouky (2016:8) found that SQL

is ideal for applications that just read mostly from databases. HBase, which is a NoSQL

column-family store database, utilized more CPU resources and writes in memory of average

4GB of RAM. MongoDB, which is a document store NoSQL database, had a high allocation of

memory used with an average of 8GB RAM.

According to Yassien & Desouky (2016:8), more studies would need to be done for the rest of

the NoSQL data stores and choosing the right database system for an application would still

be a high critical task. Some studies analyzed the role of NoSQL and the challenges it presents

when having to choose the right NoSQL database. As pointed out by Bajpayee et al. (2015:1),

the architecture decision should be made based on the requirements as the features of NoSQL

databases are not always the same and can’t make any general comparisons.

According to Bajpayee et al. (2015:2), its impractical to prototype a design for production as

this would require hundreds of servers and new databases are constantly emerging. The aim

of the research used two-use cases first, was to retrieve recent medical results for a particular

patient; second was to read a new medical test result from all locations about a medical patient

updated. Bajpayee et al. (2015:2) compared the performance and scalability using one server

scaling to nine instances. The authors used three NoSQL data stores, MongoDB, which is a

document store; Cassandra which is a column store and Riak, which is a key-value store

database.

The nine instances replicated a distributed environment across three data centers. In addition

to the studies described above, Amazon EC2 cloud instances had to be created to run the

database servers and the test client was also executed using an Amazon cloud instance.

Bajpayee et al. (2015) used the Yahoo Cloud Serving Benchmark for their test client to test

latency and throughput. The test client used a selected workload and ran it three times and the

client threats were simulated from 1 -10, 25, 50, 100- 500, 1000. Bajpayee et al. (2015) argued

that using the single node made the research impractical to use for a production environment.

Clearly, this showed that they wanted to illustrate which database can distribute the records

efficiently and use the single node to give insight why scaling and adding more nodes would

be better than using faster nodes with more storage.

58

Not all the 21 papers from 2014 to 2017 focus directly on the programming language drivers

used by developers to store read and write to databases. The papers did not give a clear and

reliable answer to the research sub-question three about the best performing language driver

to use. In summary, there is little evidence NoSQL data stores have advantages over relational

databases management systems as they can scale on commodity hardware (Qi et al., 2014).

Using inexpensive commodity hardware, NoSQL scaling horizontally proves to be cost

effective handling large volumes of data, to distribute the data for replication (Qi et al., 2014).

NoSQL data stores can also be defined as fault-tolerance to handle server failures and

continue uninterrupted. One advantage over relational databases systems is that NoSQL do

not have data structure requirements like relational database management systems, they can

virtually support any data structure (Qi et al., 2014).

The next phase of the review provides the results of the key results obtained in the literature

review articles, these were papers found by searching the sources of evidence discussed in

the introduction of the literature review.

59

2.9 Findings of literature review

It is clear from the findings of the literature review, that while studies have been performed on

performance and reliability of distributed systems and commodity hardware, commodity

hardware or low-end cost-efficient server hardware as defined by Barroso & Hölzle (2013:24),

are the building blocks for data centers. Most of the performance benchmarks were done on

HPC (High End Performance Clusters). This is an expensive approach, as opposed to using

inexpensive commodity computers.

NoSQL Key-value data stores have to handle registers and developers should know which

data store to use. Developers should use of the right data type to avoid inconsistencies

(Takada, 2018). To ensure an anomaly-free operation, developers should use the right data

type for their application.

There is limited research done on the programming language use on specific data types and

empirical evidence for the existence of associations between code quality programming

language choice, language properties, and usage domains, could help developers make more

informed choices (Ray et al., 2017).

The data collected by Ray et al. (2017:10), “indicates functional languages are better

than procedural languages; it suggests that strong typing is better than weak typing;

that static typing is better than dynamic; and that managed memory usage is better

than unmanaged. Further, that the defect proneness of languages in general is not

associated with software domains. In addition, languages are more related to individual

bug categories than bugs overall.”

Meyerovich & Rabkin (2013:9), studied factors that determined programming language

adoption: the first would be the use of open source libraries that is available for developers to

use; this is the most influential factor for choosing a programming language. The second is the

availability of existing code as this outweighs intrinsic or build-in functions such as language

simplicity, safety and ranking. The third factor would be the developer experience, libraries and

legacy code. The fourth factor is the company size, as employees at large enterprises that

value legacy code more than smaller size companies, simplicity, platform constraints and

development speed matter less. Compared to developers overall, those at larger organizations

weigh commercial libraries more and open source libraries less (although open source is still

weighted more highly). These factors help developers choose which language to adopt.

60

Based on the finding of the literature review, NoSQL data stores needed to be reliable and

highly available for this research study. In order for an application to be scalable and

responsive it needs to use the Reactive Manifesto. High availability applications should use

the Reactive Manifesto supported by the CQRS approach design. This will allow the research

to focus on what NoSQL database to put on the write-side model and what database to put on

the read-side of the model.

The next section will discuss the research method chosen for this study, based on the research

sub-question two, research sub-question three and research sub-question four, as well as the

objectives we needed to achieve. The unit of measurement and data collection methods will

be discussed. The data analysis will explain how we analysed the data captured and what

methods we applied.

61

CHAPTER THREE

3. RESEARCH METHODOLOGY

3.1 Introduction

 A research process has to be mapped properly. This allows academics to accept the results

of a study (Terblanche et al., 2013). Thus this chapter will cover a detailed description of the

research process and the reason for the study. The research methodology is built around the

research questions which arise from external factors as a need to solve a problem (Terblanche

et al., 2013). The main research question and sub-questions are discussed on page 13 within

this thesis.

The term ‘research design’ and ‘research methods’ are many times used

interchangeably but according to Jalil (2013), “they are distinct concepts. ‘Research

design’ refers to the logical structure of the inquiry. It articulates what data is required,

from whom, and how it is going to answer the research question.”

Figure 3.1 shows the five components that forms part of the research design.

Figure 3.1: Model of the research design

(Adopted from Maxwell, 1998)

The top part of the model gets developed first, because the research questions should have a

clear relationship with the goals of the study. The goals of the study should be based on the

current knowledge and theories relevant to the study. The methods used in this study should

62

answer the research questions and deal with possible validity threats to the answers.

3.2 Research paradigms

To understand the philosophical underpinnings of the research design and methods, the study

needed to draw a clear line between ontology and epistemology. Ontology deals with the

existence of truth and facts and believes about reality. Epistemology is concerned about

learning about the reality and deals with the nature of knowledge and to gain knowledge.

Axiology refers to the study’s aims of the research and to clarify the value of the research.

Thus a positivism approach was taken as this research was independent from the data

gathered and maintained an objective stance.

A positivist researcher believes that an object that’s being studied has characteristics which

can be measured using quantitative research methods (Terblanche et al., 2013). A useful

insight into paradigms would be that ontology deals with the nature of reality, epistemology

deals with the relationship between the researcher and the research object, and methodology

deals with how we gather knowledge about the world (Steenhuis & de Bruijn, 2006). The

ontological viewpoint of a positivist is that the researcher and the research object are

considered independent of each other and also logically aligned, thus the preferred

methodological choice is experimentation, manipulation and testing of the hypothesis

(Steenhuis & de Bruijn, 2006).

The study followed a positivism paradigm by using a quantitative methodology approach. The

use of this scientific method allowed an experiment to be setup to get measurements of what

the study wanted to observe as the main goal, to discover and provide results (Mertens, 2014).

Research is one of various ways of knowing or understanding, to do a systematic inquiry

designed to collect, analyse, interpret and use data. Therefore research can be conducted for

different reasons in order to understand, describe, predict, or to do empirical research by

building existing knowledge about an educational phenomenon (Mertens, 2014). Please see

Figure 3.2 below illustrating the scientific research approach.

To construct the hypothesis, we used the following variables see Table 3.1:

A. NoSQL data stores (dependent)

B. Nodes (Extraneous)

C. Programming language driver, JAVA (independent)

D. Data objects (independent)

63

The study could change the value of D to see the effect it had on A and C. The value of D

depended on the different test cases. The study increased and decreased this value to see

the effect it had on A and C. The Conceptual framework as illustrated in Figure 3.4 allowed

the study to test the experiment after constructing the hypothesis.

Figure 3.2: Scientific method research paradigm

As illustrated in Figure 3.3 below, the first step of the empirical cycle would be observation, by

collecting the empirical facts and organizing it. The second step would be induction where the

hypothesis gets formulated on the basis of the observed facts. The hypothesis needs to be

defined in measurable variables in order to derive concrete predictions (Steenhuis & de Bruijn,

Ask questions

Experimental data

becomes

background

research for

future/new

projects. Ask new

questions form new

hypothesis,

experiment again!

Results align with

hypothesis

Analyse data and draw

conclusions

Procedure working?

Test with experiment

Do background

research

Construct a

hypothesis

Troubleshoot

procedure. Check

all steps and setup
No Yes

Communicate results

Results aAlign partially or

not at all with hypothesis

64

2006).

Figure 3.3: Empirical cycle

(Aadapted from Steenhuis & de Bruijn, 2006)

According to Steenhuis & de Bruijn (2006:3), “the main focus is the deduction phase, then next

the predictive statements are checked in the testing phase by collecting new empirical data in

order to examine whether the relationships among the variables as predicted can be found in

the new data obtained”.

Figure 3.3 illustrates the process of generating new empirical material from the research

questions. The last phase of the empirical cycle identified the results are interpreted. This

phase generates new ideas for new hypothesis and research questions, which completes the

cycle and returns to the first phase of the empirical cycle (Steenhuis & de Bruijn, 2006).

3.3 The scientific paradigm

Computer science is a branch of natural (empirical) sciences, on par with “astronomy,

economics, and geology” (Eden, 2007). Many programs are unpredictable, the scientific

paradigm seeks a posteriori (deductive reasoning) knowledge originating from the empirical

evidence by conducting scientific experiments (Eden, 2007).

As defined by Eden (2007), “computer science is the study of the phenomena that

surrounds computers which is an empirical discipline and experimental science”.

65

The scientific paradigm tests hypothesis (claims) as experiments with programs tend to go

beyond establishing just reliability. To discover empirical evidence through simulations and

artificial intelligence, research method types should be controlled experiments and validity is

very important (Eden, 2007). The deductive methods of theoretical computer science have

been effective in theorizing, reasoning, constructing and even predicting. Computer science is

indeed part of the branch of natural sciences as the methods include deductive and analytical

methods of investigation (Eden, 2007).

According to Eden (2007:21), all programs are non-linear or self-modifiable, a priori knowledge

(deductive reasoning) is unstainable, thus the methods of computer science must be combined

with deductive reasoning and scientific experimentation.

3.3.1 Empirical research

Empirical research is used to gain knowledge by means of direct and indirect observation.

Empirical evidence or observations can be analysed using quantitative research. When

researchers use the quantitative research method they can answer empirical questions with

the evidence collected usually called data.

3.3.2 From the view point of the causal relationship

The study used the concepts from the conceptual framework to convert the concepts into

variables. The study used these variables to investigate the causal relationship between them.

The study used three sets of variables for the study.

There is a classification of the causal model variables used for the study as shown in Table

3.1. The independent variable will affect or bring change in the dependent variable. The

extraneous variable will not be measured in the study but will increase or decrease the strength

of the relationship between the independent and dependent variable (Kumar, 2005).

Table 3.1: Casual model variables

Independent
variable

Dependent variable Extraneous variable

Data objects
JAVA Programming
language driver

Graph data stores,
Column data stores,
Key-value stores,
Document stores
Duration

Computer nodes
Memory
CPU cores
Hard drive storage

66

3.3.4 From the viewpoint of the study design

Being a control experiment, the study manipulated the independent (cause) variable as seen

in Table 3.2. The study’s intervention focused on the different NoSQL data stores, using an

experimental intervention, by measuring the write metrics, read metrics, update metrics and

delete metrics per data store. The study focused on the four NoSQL categories namely; graph,

document, key-value and column stores. The study was able to change and control the active

variables during the study. The study couldn’t change or control the attribute variables for the

study, but could choose which graph, document, key-value and column store to choose.

Table 3.2: Active and attribute variables

Study intervention (active variables) Study population/category (attribute
variables)

Different NoSQL data stores per category,
Java Programming language driver

Graph data store
Document data store
Key-value data store
Column data store

3.3.5 From the viewpoint of the unit of measurement

The study measured the variables continuously as numeric values. The level of measurements

for time was used as a quantifiable variable to measure the differences in ratios (ratio scale)

to achieve objectives and accurate results (Kumar, 2005). The attributes of the time variable

are differentiated by the degree of difference between them, there is absolute zero or a fixed

starting point. The study could find the ratio between the attributes and measure time in

nanoseconds, seconds, or minutes (Kumar, 2005).

3.4 Research design

The experimental research design is the plan and strategy to show how the study obtained

answers to the research questions and problem statement. This is the study blueprint for how

the research study should be done by operationalizing the variables so they can be measured.

To select the sample of interest, to study and to collect the data to be used as the basis for

answering the research questions and analysing the results (Kumar, 2005). The experimental

research used laboratory experiments carried out in a specially created setting so the

experimenter would be able to control the extraneous variables.

To determine the events during experimental design, researchers control and manipulate the

conditions of an experiment. Intervention is presented to measure the difference the

67

experiment makes when changing the value of an independent variable. By changing the value

of the independent variable, the study can determine the change and effect the independent

variable has on the dependent variable.

3.5 The conceptual framework

The conceptual framework presents synthesis of the literature to explain the phenomenon.

This maps the actions required during the duration of the research, given the previous

knowledge of other researchers’ points of view and highlights the observations on the subject

of the research.

According to McGaghie et al. (2001:2) the conceptual framework sets a stage for the

presentation of the research questions which then drives the investigation. Reports based on

the problem statement, which explains why the problem statement of the thesis highlights the

situation and concerns why the study decided to conduct the research study. The conceptual

design framework in Figure 3.4, illustrates how the study generated the results based on using

experiments from the experiment setup. The study looked at several data stores and installed

each chosen data store on the cluster.

The third sub-objective of the study used the conceptual framework to implement and study

the variables used in the study. NoSQL data stores would be used as inputs and can be

changed based on the study’s objective as seen illustrated by the arrows pointing inwards

towards the CRUD operations. The use of API was to send and retrieve objects from the

NoSQL data stores. The language drivers were also used as inputs to be studied using the

CRUD operations. The nodes on the right side of the conceptual model were use to increase

and decrease the resources needed when scaling the NoSQL data store across the nodes.

Using the CRUD operations, the output results were generated based on the CRUD metrics

to generate the performance metrics for each NoSQL data store category.

The data stores were each characterised as documents store, key-value store, column store

and graph store. Each of the databases had different setup requirements based on their design

principles. For the developer’s approach to the post-setup of the cluster, the study installed

JetBrains IntelliJ Integrated Development Environment (IDE) on a workstation to create the

reactive three-tier application and used the JAVA Development Kit (JDK) and libraries for the

programming language driver. The study used the IDE with many dependencies and libraries

to select the best performing driver for JAVA programming language. The IDE allowed the

study to convert the three-tier application into a container to be used within the kubernetes

68

cluster. This allowed the study to scale the application based on resources needed or to

decrease the amount of instances.

The model had to be adjusted for the research aim and to stay focused on achieving just that.

From the NoSQL family the study chose only one database per data store. For Document store

the study chose Mongo DB. The study looked at the Key-value category and chose Redis DB

for that category. For the Column store the study chose Cassandra DB and for the Graph data

store the study selected Dgraph DB. The selection was based on the available drivers for the

JAVA programming language. For each of the selected NoSQL categories the study could use

a JAVA driver to interact with the databases.

The study created connections within the three-tier application to connect to all databases at

the same time. The model used was using a domain model which would have the common

data objects. In the experiment the study used an object called person, from the domain model

the object was used to create several objects and increase the stages every time. The person

object had to go through each layer of the application to generate the results from the domain

model.

69

Figure 3.4: The conceptual framework

3.6 Data collection

The study used the duration of seconds as a unit of measurement to obtain the speed of write,

read, update and delete of NoSQL data stores and the programming language driver. The

study wanted to compare the effectiveness of the four NoSQL data stores on measuring their

read, write, update and delete speed. The study used randomization to ensure compatibility

by using the same JAVA language driver and the same data objects. The study recorded the

observation on numeric scales in a tabular form.

3.7 Data analysis

The study classified information collected during data collection as raw data. The study needed

to ensure that data was clean and free from inconsistencies and this is the first step of the

analysis (Kumar, 2005). The data collected had to go through a process to transform the data

into numeric values called codes, to allow the information to be easily analysed. The unit of

70

analysis would be the data obtained from the experiment. The population of interest was the

measure of the duration (time) of the results obtained. The sampling technique applied, as

mentioned above, would be random sampling, and this the sample strategy used. The rationale

for using probability sampling is to generalise the results from the sample to the research

population and to minimize sampling bias. By using simple random sampling (not haphazard),

there would be an equal chance that each of the samples will be selected.

3.7.1 Coding

The data output during data collection was captured as JavaScript Object Notation (JSON)

format. This was captured as JSON format with start, end, duration and objects as the

variables.

The study converted the JSON format file to a comma-separated values (CSV) file which

allowed data to be saved in a tabular format. The study used a free, browser-based JSON to

CSV program to convert the file. The study used RStudio Integrated Development Environment

(IDE) as the coding program to code the data directly from the CSV format tabular data to plot

the graphs.

The next section the study used a Kubernetes cluster as part of the commodity cluster setup

to achieve high availability and reliability of NoSQL data stores. Based on popularity

Kubernetes became the standard way of deploying distributed applications. This platform

allowed developers to scale applications to support heavier workloads and be a more robust

system.

71

CHAPTER FOUR

4. RESEARCH FINDINGS AND DISCUSSIONS

In this section, the basic informational and formal assumptions made were discussed. To be

clear about which assumptions may be driving the results. The results determined the changes

in the parameters and by this, the study meant the following:

Not every research paper developed will contain a full theoretical model. If the researcher

explains the assumptions, mechanisms and the results are clear, then a theoretical model

could be redundant. The empirical model used in the research study, should be included in

every paper.

It is always better to start with the simplest model for the research questions addressed. Think

carefully about the continue vs the discrete time, be open to assumptions about how the results

would be obtained.

To help illustrate the question(s) used during testing, the model should be simple. The form of

the conceptual model should be appropriate to the research problem. During the experiment

pre-phase, the study determined that the study target group needed special setup needs.

The study setup a data center, clustering the nodes for the experiment to gather the data

needed. The study chose the Kubernetes (Production Ready Cluster) because it is an open-

source system for automating deployment, scaling and management of containerized

applications. The Kubernetes cluster clearly scaled the research instruments by adding

multiple nodes to the cluster. The NoSQL databases were deployed as containers using

Docker as the distributed services. During the next phase of the experiment, the study setup

the client developer environment. The study used the common programming language driver

JAVA to test the NoSQL data stores to measure the read metrics and write metrics.

There has been a lot of excitement around using containers and Docker as open-source

systems for automating deployment. The study used kubernetes distributed system that

allowed the packages and application to scale across the network. Applications such as the

Kubernetes NoSQL data stores needed the setup constructed like this, so that they can handle

the demands of performance, reliability and availability. This setup allowed developers to

deploy framework of services needed to run the modern NoSQL data stores using Docker

containers on the same set of shared computing resources.

72

4.1 Persistence technologies and drivers

As a datacenter operating system, Kubernetes is a distributed system, a cluster manager, a

container platform, micro services platform. As a distributed system, Kubernetes includes a

group of pods, services and disk volumes that are coordinated by a group of containers. This

forms part of the experiment. The data stored on the disk volumes should be persistent even

after the pod or service is removed and should be non-volatile storage.

4.2 High availability and reliable architectures setup

Kubernetes are defined as a set of building blocks, which collectively provides deployments

and scaling applications based on their CPU, memory and disk space requirements. Thus,

Kubernetes is loosely coupled in order to meet different workloads. Kubernetes makes use of

a Kubernetes API which the internal components used to communicate to the compute and

storage resources which can be defined as objects.

The basic scheduling unit Kubernetes uses is called a pod, a pod consists of one or more

containers that share resources. Every pod within the Kubernetes cluster gets assigned a

unique pod IP address which allows the applications to use ports without conflicts. Applications

developers should never use the pod IP address, instead they should use the service name.

A pod can also be a volume of a disk.

Kubernetes make use of services which is a set of pods that work together such as the three-

tier application we had setup for this experiment. Kubernetes makes use of a Domain Name

Service (DNS) to assign to the services and load balances the traffic in a round-robin manner,

so if the pods experience any failures on machines or nodes, they can move to another node.

The file systems used in Kubernetes volumes provides persistent storage that stays present

as the pod exists. The storage is used as shared disk storage space for the containers that

live inside the pod. Namespaces are called non-overlapping sets because that provides the

ability to partition resources it manages, used for environments that’s spread across multiple

teams and projects. Please see below for a visual representation of how the Kubernetes cluster

works in Figure 4.1 below.

73

4.2.1 Requirements

For the study to achieve the experimental design, the study needed to focus on commodity

clusters to present a consistent peer to peer view, this forms part of research question. Below

we can see in Figure 4.2 how data gets distributed amongst the nodes, the same data stored

on Node1 are stored on Node4 and the data gets evenly spread across the nodes, If Node1

crashes the data still remains on Node4.

Requirements for the commodity cluster:

Figure 4.1 Simplified view showing how services interact with pod networking in a Kubernetes

cluster

Figure 4.2: This figure illustrates how the data(X) gets distributed amongst the

server nodes

74

 The target servers must have access to the Internet in order to pull Docker images,

otherwise additional configuration is required

 The target servers are configured to allow IPv4 forwarding.

 Your ssh key must be copied to all the servers as part of your inventory.

 The firewalls are not managed; you'll need to implement your own rules the way you

used to. In order to avoid any issue during deployment you should disable your firewall.

 If kubespray is run from a non-root user account, the correct privilege escalation

method should be configured in the target servers.

Before you begin this study make sure you have the following setup:

 One or more machines running:

o Ubuntu 16.04+

 2 GB or more of RAM per machine

 2 CPUs or more

 Full network connectivity between all machines in the cluster (public or private

network is fine)

 Unique hostname, MAC address

 Swap disabled. You MUST disable swap in order for the kubelet to work

properly

It is very likely that hardware devices will have unique addresses, although some virtual

machines may have identical values. Kubernetes uses these values to uniquely identify the

nodes in the cluster. If these values are not unique to each node, the installation process

may fail (Baier, 2017).

Table 4.1: Master node required ports

Protocol Direction Port Range Purpose Used By

TCP Inbound 6443* Kubernetes API server All

TCP Inbound 2379-2380 etcd server client API kube-apiserver, etcd

TCP Inbound 10250 Kubelet API Self, Control plane

TCP Inbound 10251 kube-scheduler Self

TCP Inbound 10252 kube-controller-manager Self

Table 4.2: Worker nodes required ports

Protocol Direction Port Range Purpose Used By

TCP Inbound 10250 Kubelet API Self, Control plane

TCP Inbound 30000-32767 NodePort Services** All

75

Table 4.3: Runtimes for kubernetes

Runtime Domain Socket

Docker /var/run/docker.sock

containerd /run/containerd/containerd.sock

CRI-O /var/run/crio/crio.sock

If both Docker and containerd are detected together, Docker takes precedence. This is

needed, because Docker 18.09 ships with containerd and both are detectable. If any other two

or more runtimes are detected, kubeadm will exit with an appropriate error message (Baier,

2017).

Refer to the CRI installation instructions for more information.

Installing kubeadm, kubelet and kubectl

You will install these packages on all of your machines:

 Kubeadm: the command to bootstrap the cluster.

 Kubelet: the component that runs on all of the machines in your cluster and does things

like starting pods and containers.

 Kubectl: the command line utility to talk to your cluster.

Kubeadm will not install or manage kubelet or kubectl for you, so you will need to ensure they

match the version of the Kubernetes control plane you want kubeadm to install for you. If you

do not, there is a risk of a version skew occurring that can lead to unexpected, buggy behaviour

(Baier, 2017).

4.2.2 Network plugins

You can choose between 6 network plugins. (Default: calico, except Vagrant uses flannel)

 flannel: gre/vxlan (layer 2) networking.

 calico: bgp (layer 3) networking.

 canal: a composition of calico and flannel plugins.

 cilium: layer 3/4 networking (as well as layer 7 to protect and secure application

protocols), supports dynamic insertion of BPF bytecode into the Linux kernel to

implement security services, networking and visibility logic.

 contiv: supports vlan, vxlan, bgp and Cisco SDN networking. This plugin is able to apply

firewall policies, segregate containers in multiple network and bridging pods onto

physical networks.

 weave: Weave is a lightweight container overlay network that doesn't require an

external K/V database cluster. (Please refer to weave troubleshooting documentation).

https://kubernetes.io/docs/setup/cri
https://github.com/kubernetes-sigs/kubespray/blob/master/docs/flannel.md
https://github.com/kubernetes-sigs/kubespray/blob/master/docs/calico.md
https://github.com/projectcalico/canal
http://docs.cilium.io/en/latest/
https://github.com/kubernetes-sigs/kubespray/blob/master/docs/contiv.md
https://github.com/kubernetes-sigs/kubespray/blob/master/docs/weave.md
http://docs.weave.works/weave/latest_release/troubleshooting.html

76

 kube-router: Kube-router is a L3 CNI for Kubernetes networking, aiming to provide

operational simplicity and high performance: it uses IPVS to provide Kube Services

Proxy (if setup to replace kube-proxy), iptables for network policies, and BGP for ods

L3 networking (with optionally BGP peering with out-of-cluster BGP peers). It can also

optionally advertise routes to Kubernetes cluster Pods CIDRs, ClusterIPs, ExternalIPs

and LoadBalancerIPs.

 multus: Multus is a meta CNI plugin that provides multiple network interface support to

pods. For each interface Multus delegates CNI calls to secondary CNI plugins such as

Calico, macvlan, etc.

 The choice is defined with the variable kube_network_plugin. There is also an option

to leverage built-in cloud provider networking instead. See also Network checker.

4.2.3 Creating highly available clusters with kubeadm

For both methods you need this infrastructure:

 Three machines that meet kubeadm’s minimum requirements for the masters

 Three machines that meet kubeadm’s minimum requirements for the workers

 Full network connectivity between all machines in the cluster (public or private network)

 sudo privileges on all machines

 SSH access from one device to all nodes in the system

 Kubeadm and kubelet installed on all machines. Kubectl is optional.

 For the external etcd cluster only, you also need:

 Three additional machines for etcd members

1. Create a kube-apiserver load balancer with a name that resolves to DNS.

o In a cloud environment you should place your control plane nodes behind a

TCP forwarding load balancer. This load balancer distributes traffic to all healthy

control plane nodes in its target list. The health check for an apiserver is a TCP

check on the port the kube-apiserver listens on (default value :6443).

o It is not recommended to use an IP address directly in a cloud environment.

o The load balancer must be able to communicate with all control plane nodes on

the apiserver port. It must also allow incoming traffic on its listening port.

o HAProxy can be used as a load balancer.

o Make sure the address of the load balancer always matches the address of

kubeadm’s ControlPlaneEndpoint.

 Add the first control plane nodes to the load balancer and test the connection:

https://github.com/kubernetes-sigs/kubespray/blob/master/docs/kube-router.md
https://github.com/kubernetes-sigs/kubespray/blob/master/docs/multus.md
https://github.com/kubernetes-sigs/kubespray/blob/master/docs/netcheck.md
https://kubernetes.io/docs/setup/independent/install-kubeadm/#before-you-begin
https://kubernetes.io/docs/setup/independent/install-kubeadm/#before-you-begin
http://www.haproxy.org/

77

A connection refused error is expected because the apiserver is not yet running. A timeout

however, means the load balancer cannot communicate with the control plane node. If a

timeout occurs, reconfigure the load balancer to communicate with the control plane node. Add

the remaining control plane nodes to the load balancer target group (Baier, 2017).

Steps for the first control plane node:

1. On the first control plane node, create a configuration file called kubeadm-

config.yaml: controlPlaneEndpoint should match the address or DNS and port of the

load balancer. It’s recommended that the versions of kubeadm, kubelet, kubectl and

Kubernetes match. Initialize the control plane sudo kubeadm init --config=kubeadm-

config.yaml --experimental-upload-certs. The --experimental-upload-certs flag is

used to upload the certificates that should be shared across all the control-plane

instances to the cluster. If instead, you prefer to copy certs across control-plane nodes

manually or using automation tools, please remove this flag and refer to the Manual

certificate distribution section bellow.

 Kubeadm join ip address: 6443 --token --discovery-token-ca-cert-hash.

Please note that the certificate-key gives access to cluster sensitive data, keep it secret!

As a safeguard, uploaded-certs will be deleted in two hours; if necessary, you can use

kubeadm init phase upload-certs to reload certs afterward.

You can then join any number of worker nodes by running the following on each as root:

Kubeadm join ip address: 6443 --token --discovery-token-ca-cert-hash.

4.2.4 Configure the cluster

For the experiment the study setup the cluster as shown below. The study setup five nodes for

the Kubernetes cluster using inexpensive commodity hardware and two nodes for the Gluster

file system which is a free open source software scalable network file system. The Kubernetes

cluster used the Gluster file system if the study needed to scale large files on the cluster, see

Figure 4.3.

The Kubernetes cluster nodes:

 Node 1 – 8 CPUs, 16 GB memory

 Node 2 – 8 CPUs, 16 GB memory

 Node 3 – 4 CPUs, 32 GB memory

 Node 4 – 4 CPUs, 32 GB memory

https://kubernetes.io/docs/setup/independent/high-availability/#manual-certs
https://kubernetes.io/docs/setup/independent/high-availability/#manual-certs

78

 Node 5 – 4 CPUs, 32 GB memory

Figure 4.3: Kube Cluster and Gluster FS

4.2.5 Installing kubeadm, kubelet and kubectl

As shown below in Figure 4.4, this starts the process of installing the three packages on the

nodes. For the experiment we used the Ubuntu Linux operating system.

Figure 4.4: Kubeadm, kubelet and kubectl install

After kubeadm was installed, the study run apt-get update && apt-get upgrade or yum

update in the terminal to get the latest version of kubeadm. The kubelet restarted every few

seconds as it waited in a crash loop for kubeadm to tell it what to do. This crash loop is

expected and normal. After initializing the master node, the kubelet runs normally.

79

4.2.6 Initializing master node

The Master Node is the machine where the control plane components run, including etcd (the

cluster database) and the API server (which the kubectl CLI communicates with).

The study had to choose a pod network add-on, and verify whether it required any arguments

to be passed to kubeadm for initialization, depending on which third-party provider set the --

pod-network-cidr to a provider-specific value. To use different container runtime or if there is

more than one installed on the provisioned node, specify the --cri-socket argument to kubeadm

init. (Optional) Unless otherwise specified, kubeadm uses the network interface associated

with the default gateway to advertise the master’s IP. To use a different network interface,

specify the --apiserver-advertise-address=<ip-address> argument to kubeadm init.

4.2.7 Accessing Kubernetes Dashboard

IMPORTANT: HTTPS endpoints are only available if the Recommended Setup,
followed Getting Started guide to deploy Dashboard or manually provided --tls-key-file and --
tls-cert-fileflags (Baier, 2017).

4.2.8 Kubectl proxy

The Kubectl created a proxy server between the nodes and the Kubernetes API server, this

should only be accessible locally by default for security reasons.

As illustrated below in Figure 4.5, the screenshot of the nodes showing that they all have a

healthy status can only be viewed with the Kubernetes-dashboard.

https://github.com/kubernetes/dashboard/wiki/Installation#recommended-setup
https://github.com/kubernetes/dashboard/blob/master/README.md#getting-started

80

Figure 4.5: Kubernetes nodes

To build the three-tier application, the study used the reactive approach based on the Reactive

Manifesto, this provided security against failures within the tree layers. This was the

asynchronous message-passing style, where there would be constant communication

between the three layers. This also provided less system overload and only consumed

resources while active. The application adapted to the changes as we increased or decreased

the input load and we didn’t experience any bottlenecks. This provided a cost-effective way to

run the application on commodity hardware. The study could easily change the repository

packages data stores if needed to recover a service that failed in the upper layer without

stopping the presentation layer. Please see Figure 4.6 for illustration of the package domain

model.

The presentation layer was responsible to create the sessions between the application and the

NoSQL databases, while the service layer created the amount of objects from the presentation

layer. The repository layer stored the objects within the different databases as needed.

81

Figure 4.6: Packages domain model

As illustrated in Figure 4.6, the study developed the application in layers using Java

programming language and then used Docker (docker.com), Docker file and Maven

(maven.apache.org) plugins to create a JAVA Archive (JAR) file. This JAR file was used to

package and compress the JAVA class files and resources into one file for distribution to build

a Docker container image. The Docker image when deployed was uploaded on Docker hub

(hub.docker.com). This allowed to import the compressed three-tier application to be pulled

down from Docker hub into the cluster environment Kubernetes. Using the Kubernetes

environment, the study used a Yaml file. YAML stands for "YAML Ain't Markup Language," this

allowed the study to configure the application design needs and requirements.

82

Figure 4.7: YAML config file of JAVA app

This could be easily adjusted based on the application needs. Under “spec” the study specified

the Docker hub link where the image was kept and pulled from. The Docker hub created a

container “https://hub.docker.com/r/waldonhendricks/research” for the image to be pulled from

Docker hub.

A similar approach was done for the NoSQL data stores, but for this the study used the YAML

file to build the NoSQL data stores and pull them from Docker hub repositories into the

Kubernetes cluster environment. The study achieved elasticity by scaling the NoSQL data

stores across the Kubernetes nodes and could replicate the data stores across the nodes.

https://hub.docker.com/r/waldonhendricks/research

83

Figure 4.8: NoSQL Mongo, Cassandra, Redis, Dgraph kubernetes pods

In the next section the study discussed the results of the different test cases made and how
CRUD operations performed with each NoSQL data store and the JAVA programming driver
that created the objects using the package domain model discussed above.

4.3 Read, write, update and relete results

The study selected the four data stores to do the create tests using the API endpoint to connect

the data stores. The tests determined which data store would be chosen as the CQRS

approach design for the write-model. The results from the create phase used each data store

and created a session via the JAVA API driver. The study used the API endpoint sending 50

objects to the NoSQL data stores from the IDE client workstation and incremented the objects

each time by 50 objects. The goal was to send and receive 3000 objects by incrementing the

previous results by 50 objects than 100 objects to see the effect on the JAVA driver used per

NoSQL category.

4.3.1 Create esults

For the Dgraph test the study created 50 records, then 100, then 150 and so forth, each time

84

incrementing the objects by 50 objects. After creating 50 objects the study captured the

duration results and then deleted the objects created each time and calculated the duration

per 50 objects on every test made. The first 50 objects created were 0.221 seconds and at

1000 objects the duration to create was 2.709 seconds. The study then increased the

incremented total by 100 objects each time at 1000 objects created, the total duration until

3000 objects was 7.833 seconds (see Figure 4.9).

Figure 4.9: Dgraph create test 3000 objects

The Mongo API endpoint with the java driver created 50 objects. The study incremented each

test by 50 objects, and experienced a slow response from the client each time increasing the

objects. The Mongo API endpoint created more connections each time the study created

objects. For 100 objects, 100 connections were created and for 150 objects, 150 connections.

The study noticed that as the studies increment the objects, the application consumed more

memory usage as Mongo was an in-memory data store. The JAVA client consumed more

memory and the applications of the host operating system started to respond slower and

slower. The study created 50 objects, then incremented by 50 to reach 100, then 150 and

finally reached 700 objects. The workstation had no more memory left and had to be restarted

to free up more memory. When the study created 50 objects the duration was 0.671 seconds,

at 700 objects created the duration was 9.437 seconds (see Figure 4.10).

85

Figure 4.10: MongoDB write 700 objects

The study used the datastax Cassandra API driver and started with one keyspace creating 50

objects, then incrementing the 50 objects by 50 more with each repetition test. The Cassandra

data store performed well. The study completed several tests on Cassandra using the create

API endpoint and could successfully reach the goal. Of 3000 objects created the duration for

3000 objects was 9.247 seconds. After creating 50 objects the duration was 0.188 seconds

and at 1000 objects by incrementing each test by 50 each time the duration was 3.122 seconds

(see Figure 4.11).

Figure 4.11: Cassandra create 3000 objects

86

The study used the Jedis JAVA driver to connect to the Redis DB. Created 50 keys or objects

from the client to the databases. The connections showed 50 clients connected. The study

increased the keys from 50 to 100 keys and noticed 151 clients were connected to the

database. The study then continued incrementing the keys by 50 keys each time. And at this

moment noticed the client connections multiplied by two. For 150 keys, 301 clients were

connected. The study created 300 keys but had 1051 clients socket connections connected.

The study flushed the DB each time the study created keys. The study incremented the list of

objects, but noticed that the client closed connection at a certain socket port number value and

then restarted the connections by 150 connections. The study experienced a connection reset

at 600 keys and couldn’t allocate more resources for the client.

Figure 4.12: RedisDB create 950 objects

When investigating the object creation, the study noticed that if it restarts the Redis DB Server

to close the client connections, the client could create 900 objects all at once. The study

created 950 objects, but the database closed connections to the client, as no socket

connections were available. The study also noticed that when it restarted the DB server the

object creation took slightly faster to create than the previous attempt, as the DB server had 0

connections before the study created those objects. The study tried creating 1000 objects, but

had an unexpected error (type=Internal Server Error, status=500). java.net.

SocketTimeoutException: read timed out and only 816 objects were created. The duration was

0.16 seconds to create 50 objects, but with 950 objects the client duration time was 2.796

seconds to create (see Figure 4.12).

The Cassandra DB object creation did not put pressure on the JAVA client. Cassandra DB

increased slowly as the study added more objects to the test. MongoDB took the longest

duration in seconds. The Redis DB started well with fewer objects but as the study started

increasing the objects, at 350 objects the Redis DB closed socket connections and the client

87

connections restarted and also the duration to create objects increased. Dgraph DB performed

well as the study incremented the objects by 50 each time and at 200 objects Dgraph was

slightly higher in duration of objects created than RedisDB and Cassandra DB. But at 300

objects Dgraph DB stayed steady as the study incremented the amount of objects by 50 each

time and performed better when reaching 500 objects than Cassandra DB (see Figure 4.13).

Figure 4.13: Create-results all DBs 200-500 objects created

Figure 4.14: Create-results Cassandra, MongoDB and Dgraph

88

Figure 4.15: Create-results Cassandra and Dgraph and RedisDB

Cassandra and Dgraph had the lowest duration when objects were created and increased by

each test run. Mongo took the longest duration and the drop in the duration by 700 objects

where the client IDE had to be restarted. Redis failed at 600 at first and after a connection

reset it had only reached 1000 objects (see Figure 4.14 and Figure 4.15).

4.3.2 Read results

The study discarded Dgraph DB for the read phase, as the dropout for Dgraph not to be

selected for further tests. The selection was to choose the other data stores and do tests on

the read API endpoint to determine the best selected data store for the read-model. For this

phase the study created the objects and then read the objects created, then deleted the objects

again and recreated the next set of tests and this was an iterative process.

The study used the Jedis client API driver to measure the read duration of the database.

Started with 50 keys or objects and incremented the tests by 50 each time, then the JAVA

driver gave a java.net. Socket Exception: Connection reset at 450 keys with 2486 client socket

connections. The study read 50 objects and the duration was 0.207 seconds. Read 350 objects

the duration was 3.418 seconds and after this test the socket connections closed at 350 objects

(see Figure 4.16). The drop after 350 objects was the client connections that restarted due to

the socket connections that was closed by the client to the Redis DB.

89

Figure 4.16: Redis read 400 objects

Cassandra DB performed with no problems. The study read 50 objects and incremented the

objects by 50 with a duration of 0.08 seconds. Reached 1000 objects with duration 0.028

seconds to read 1000 objects (see Figure 4.17). Based on this tests phase the study had to

create 10 objects, read the 50 objects, get the read metric then delete the 50 objects again

and so that was also an iterative process. With the Mongo DB, the study started with 50 objects

and incremented by 50 each time the study completed a test. The study could only create and

read 800 objects as the client ran out of memory resources available. Read 50 objects which

was 0.007 seconds, but as the study increased the read objects by incrementing by 50 each

time per test, the study consumed more memory from the host. At 800 objects read the duration

was 0.011 seconds, but couldn’t continue as the study didn’t have any memory left as seen in

Figure 4.17 below.

90

Figure 4.17: CassandraDB and MongoDB read of 1000 objects

Figure 4.18: Create 400 objects results

Figure 4.18 above shows that between 50 objects and 400 objects read, Mongo DB and

Cassandra DB read the fastest objects. Redis DB could only reach 400 objects, then closed

socket connections as too many connections were created. At this point the study considered

91

RedisDB as a dropout of the experiment for the read metrics captured.

Figure 4.19: Read-results CassandraDB and MongoDB using IDE client

In Figure 4.18 above RedisDB took the longest duration to read the objects. MongoDB ran out

of memory by 800 objects on the IDE client, but Cassandra was the only data store out of the

three data stores to reach 1000 objects with 0.028 seconds (see Figure 4.19).

4.3.3 Update results

The study wanted to achieve the aim and complete the CRUD operations, and continued with

the three data stores to see which database would update objects by adding data to the already

created object. Simply the study wanted to create 50 objects, then update the objects by adding

text “update” next to the object already created.

The study used the Jedis driver API and created 50 objects, the study performed an update

on the objects and noticed the objects created more client connections as the study updated

the objects each time by 50 objects. The study could only update 350 objects and by this time

had 2494 clients connected and got a java.net. Socket Exception: Connection reset error. To

update 50 objects the duration was 0.811 seconds, but could only update 300 objects with a

duration of 5.931 seconds, see below in Figure 4.20.

92

Figure 4.20: RedisDB, MongoDB and CassandraDB update results

The study had no errors with the update API using the datastax Cassandra driver and started

from 50 and incremented by 50 each time and read and update objects till 3000 objects could

be updated. At 50 objects updated the study had reached a duration of 0.18 seconds to update.

At 300 objects updated the duration was 0.942 seconds and continued to update 800 objects

with a duration of 2.478 seconds. The study reached 3000 objects updated within 9.326

seconds (see Figure 4.21).

93

Figure 4.21: CassandraDB and MongoDB update 3000 objects

The study started using the mongo client update from 50 objects, and then incremented the

tests by 50 each. The study noticed that the client consumed memory each time the study

incremented the objects using a create then updating the object adding the word “updated”

next to the object already created. The study could only update up till 800 objects as the client

workstation had almost no memory left. The study also noticed all programs running had a

slow response and had to stop the API service running on the IDE. To update 50 objects, the

duration was 1.041 seconds. To update 300 objects, the duration was 2.166 seconds, but

could only update till 800 objects with a duration of 12.838 seconds, see Figure 4.22.

94

Figure 4.22: Update 300 objects results

Cassandra updated the objects created till 3000 updated objects. Mongo consumed more

memory from the host. Each time an update was made Mongo incremented the objects by 50

till only 800 objects and took the longest duration. Redis created more connections to the

database each time the study incremented the update operations. This caused the Redis data

store to close connections as it couldn’t handle anymore connections. Cassandra DB updated

3000 objects within 9.326 seconds.

4.3.4 Delete Results

During the delete phase the goal was to see which database deleted the fastest by choosing

3000 objects, then decrease the amount by 1000 objects each time till 500 objects. Since

Redis DB couldn’t handle the amount of objects sent, Redis DB was not part of the delete

phase. RedisDB was considered a dropout for the delete phase experiment. The study focused

on MongoDB and Cassandra DB. Started creating 3000 objects. This consumed 2000 MB

memory from the host client. The study noticed the duration was 20.412 seconds to create the

objects, which was still longer than the create phase results above. The Delete duration for

3000 objects was 21.846 seconds. The study created 2000 objects and 17.81 seconds to

create. The study then deleted the objects with the delete API and the duration was 21.029

seconds. The study had to stop the Mongo DB client as it consumed almost all the memory of

the workstation.

The study started with Cassandra from 3000 objects and the duration for Cassandra was

10.359 seconds to create the objects, slightly more than in its create phase, but that was done

by incrementing the tests each time. The study then deleted those objects with the delete API

95

and the duration was 10.09 seconds to delete 3000 objects. Then decrease the objects starting

from 2000 objects and those were created in 6.388 seconds. The delete API duration was

6.505 seconds to delete 2000 objects. The study noticed that the less objects created, the

quicker the duration took to create and delete them. When the study created 500 objects the

duration was 1.558 seconds and the delete duration was 1.549 seconds.

The study we created 3000 objects with MongoDB the API crashed with a java.net. Socket

Exception: Connection reset, only 2486 objects were created and couldn’t delete as the study

received a java.net. Socket Exception: Software caused connection abort: receive failed. The

study had to decrease the object creation by 1000 objects. But ran out of socket connections

when trying to delete the records with the delete API.

 In Figure 4.23 deleting on the Mongo DB 3000 objects the duration was 21.846 seconds to

delete. The study tried to delete 2000 objects and could not continue with the tests as the study

ran out of memory to do any further delete API requests. Cassandra DB continued deleting

objects till it reached zero objects. At 500 objects Cassandra DB could delete those

objects in 1.549 seconds.

Figure 4.23: Delete-results using IDE client

In Figure 4.23 above Cassandra DB deleted 3000 objects over the fastest duration. As the

study decreased the amount of objects, Cassandra DB deleted the objects faster from the data

store. Mongo DB consumed almost all the host memory and also took the longest duration

deleting objects and could only delete 2000 objects.

96

4.3.5 CQRS write-model results

Figure 4.24: Write-model data stores

Figure 4.24 shows the two data stores that performed the best when sending objects to the

database. The study experiment results showed that the wide column stores and graph data

stores performed the best. The write model create workload simulated multiple users. The

study added 50 users called person and incremented on each test by adding 50 more persons

on each test case. Based on the results gathered the study selected graph data stores as the

preferred write model when designing a CQRS pattern application.

97

4.3.6 CQRS read-model results

Figure 4.25: Read-model data stores

Figure 4.25 shows the two chosen data stores that performed the best when reading objects

from the database. The study selected wide column data store Cassandra DB and Document

Store Mongo DB as the read models. Based on the results of the read model the study found

that Mongo DB as document store started reading faster than Cassandra DB. Mongo DB was

able to read 800 person objects, but each increment of read tests consumed more memory

from the host operating system. After 800 objects Cassandra DB continued with read tests

until 1000 objects was read. The study could also see a rise in the duration with Mongo DB

and Cassandra DB object read duration dropped as the study continued each test. Based on

these results the study selected Cassandra DB as the preferred read model when designing a

CQRS pattern application.

Table 4.4: The CQRS application architecture’s objectives

Architecture element Considered solutions NoSQL data store

Write model Graph-oriented database Dgraph data store

Read model Column-oriented database Cassandra data store

98

4.4 Limitations of the research and validity

Random selection ensures external validity and the generalizability of the study results.

Random allocation of the subjects ensures internal validity to control the intervention or

experiment groups. The intervention should be applied multiple times to ensure validity. The

sequence of treatments was set to be random.

The measurement tool used in this research study can be used by other researchers to obtain

reproducible results when applied in the same setting. If the dependent variable is the same

as this study the measurement instrument won’t be a problem. The assumption will be that the

manipulation of the independent variable caused the change in the dependent variable. The

advantages of the research design would be that we eliminate or we can control the unwanted,

unrelated variables of the study. The manipulation of the independent variable and the

observation of the effect it has on the dependent variable makes it possible to determine the

cause and effect relationships. Another advantage is the experiments are in a controlled

environment, which means they repeatedly experimented and the results can be compared

with one another. This is known as replication.

4.4.1 Testing platforms limitations

The study aimed to scale the application on distributed clusters and achieve that, but couldn’t

do the tests on the clusters due to time constraints. For the application to be elastic the study

could have explored the commodity hardware more and scaled more applications on these

nodes, but the study could not achieve that as that would take the focus away from the main

objective. More studies would need to be done regarding distributed database systems running

on inexpensive commodity hardware.

4.4.2 Language limitations

The study determined the common data objects used in programming languages using the

reactive manifesto three-tier application design, the presentation layer package, the service

layer package and the repository package classes. The data objects such as key spaces,

column families, and indexes all make up the NoSQL data store different categories. The study

used the person object and generated several users in keyspaces, column families, and

indexes stored for each data category. The data objects for the research was stored and read

as lists. The best performing drivers for the Java programming language was the Datastax

Java Driver for Apache Cassandra used with Maven project object model (POM). This driver

allowed the study to do all create, read, update and delete operation tests and performed the

best based on the results achieved.

99

It’s clear from the above discussion that the study had limitations towards the end of the study.

The study couldn’t study other programming languages and could have explored more drivers

based on the Java programming language. Considering that research has shown that

Cassandra Java programming language driver performed the best.

4.5 Generalizability limitations

The application used the three-tier architecture to be more responsive, resilient, elastic and

message driven. This followed the Reactive Manifesto approach, but for the research the study

could only test the application to be responsive and message driven. Further investigation

should be conducted in order to test the application needs, to be resilient and elastic. This

would complete the Reactive Manifesto design approach. The experiment results indicated

that the application had the basic traits of the reactive manifesto application.

4.6 Findings of the research study

The first research sub-question was, what are the different hardware requirements for NoSQL

data stores to operate on, to achieve high availability and reliability? The reason for this

question was to determine the different hardware devices NoSQL data stores can operate on.

These hardware devices should allow the data stores to be highly available and reliable.

Chapter 2 Literature review:

Studied the commodity hardware and how they can be used as highly available and reliable

hardware. This chapter showed that studies were performed on commodity hardware,

benchmarking these inexpensive commodity computers. Most benchmarks done were on

cloud servers and the experiments done were to test the performance of these cloud

environments. The study needed to look at the different hardware requirements to achieve

scalability, reliability, replication and availability of NoSQL data stores. To answer this, the

study setup a data center with inexpensive commodity hardware to run the NoSQL databases

on. The study made use of low end computers that’s cheap and easy to buy. The study

installed Kubernetes on the commodity computers to coordinate the services to run NoSQL

data stores on.

The second research sub question asked what is the best architecture to achieve high

availability and reliability? The reason for this question was to find out what types of application

architecture can be classified as highly available and reliable. The study found evidence that

discussed how to help developers should they want to design their own architecture for their

100

applications. These principles when adopted would allow developers to create highly available

applications. Evidence discussed in Chapter 1.

The study needed the Reactive manifesto and the framework that supports this is the CQRS.

The CQRS allowed the study to identify what NoSQL database to put on the read-side and

what to put on the write-side.

The study used a Conceptual framework as a tool to achieve the results of the study. The

limitation of the drivers was to only look at the Java driver. Future work can look at other

languages like Go Lang, Scala and PHP for the NoSQL databases and have empirical

evidence to find out which one is the best driver. The study chose this driver based on

popularity, through the checking of the usage of the driver used in reactive systems.

Chapter 3 Research Methodology:

The methods were formulated from the findings of the literature review. Since the study wanted

to answer the research question the study used the concepts gathered from the literature

review and created a conceptual framework to answer the research question using the

experimental research method applied. The study followed the Reactive Manifesto guidelines

to make the application highly available against failures and reliable. The study answered this

question by setting up a lab experiment using a three-tier programming language design where

we separated the classes of the code into three different layers. The study separated the

database and API code from the services into three layers. If the repository or database had

to change, the study could change the code segment without affecting the rest of the

application classes like the services and endpoint API.

The third research sub question was about finding the best Java Drivers used to persist data

in the four types of NoSQL DBs. The reason for this question was to find programming

language drivers most commonly used with NoSQL data stores. To find the answer to the

question the study selected only four NoSQL categories for each category. The study selected

only one data store per category for the research. This selection was possible by searching

the best programming driver package used by developers through the literature review. Most

research papers used benchmark tools and didn’t focus on the developer environment. The

study chose the document store driver based on popularity by checking the usage of the driver

on document store NoSQL data stores. The study followed the same process for column store,

key value store and graph data store categories. Based on popularity in the four categories the

study checked the usage of the driver and compared the drivers. The study chose Java

101

programming language based on usage in all the four NoSQL data store categories.

The experimental setup used Kubernetes to help build the CQRS infrastructure application

architecture. The study was able to have the database somewhere else as a stateless

container. This helped to scale the nodes if more resources were needed. The study could

have chosen the DCOS (Datacenter operating system) architecture, but for the study chose

Kubernetes by increasing the nodes, changing databases and keeping the application in the

same state.

Chapter 4 Findings and Discussions:

The study selected the best Java programming language for this research based on popularity

and usage in the programming language community. The study aimed to answer the research

sub question about finding the most common pattern for persisting data objects used by Java

Developers. The reason for this question was to determine the most common patterns used

for persisting data objects that’s used by developers. The study answered this question by

running the lab experiment and sending objects to the four different data store categories. The

study used the CRUD operations for each data store per category. To answer the research,

question the study selected the most reliable and available data store based on sending

objects and retrieving objects. As the maintained using the same objects testing the data

stores, the results found answered the research question to add to the body of knowledge. The

study found that two NoSQL categories could be used as either read or write data store when

setting up a CQRS model according to the Reactive Manifesto approach.

The next section will cover the conclusions for the study, what work the study covered and

what the study could achieve during the research experiments. The study will look at the

recommendations for further studies for this project and highlight limitations and what future

work can be done following this research project.

102

CHAPTER FIVE

5. CONCLUSION AND RECOMMENDATIONS

5.1 What has been done so far?

This study was done to select and identify the highly available and reliable unstructured NoSQL

data store in each of the four categories based on empirical evidence. The study achieved this

by the systematic review. Searching for the relevant papers regarding NoSQL data stores on

experimental research done and looked at benchmarks performed on the data stores. As part

of the search using the systematic review reviewed for evidence, where client tests were done

and if articles mentioned programming language, drivers are used in the study. The last part

of the systematic review was to look at the platforms where the studies were done and how

the data stores performed and explored the settings based on the aim to use inexpensive

commodity hardware in the research study.

The objectives for the research study followed an experimental design approach. The study

evaluated the research questions based on the dependent variables and the independent

variables to determine the relationships between them. The research instrument at first was

just the integrated development environment but when scaling the application, the research

instrument changed to a cluster environment. The study could collect the data using the

integrated development environment and apply for testing and data collection. This allowed

the research approach to replicate variables and to allow the study in another setting or cluster

environment.

The study recommends what NoSQL database to use for a CQRS application design

approach. This would help developers decide which data store performs the best when doing

CRUD operations. The focus of the study was to find the read-model data store and the write-

model data store and use these data stores for a CQRS pattern approach to design

applications and most importantly, stay focused on the Reactive Manifesto application design

needs. The study recommends using a Graph-reoriented data store for the write model and a

column-oriented data store for the read-model of a CQRS application design.

Based on the CQRS core principle there should be a strict separation of commands and

queries, a pattern is where each method used is either a command sent to the data store from

the client or query that needs to return data back to the client. Both command and query should

be performed independently. In simple terms when a user asks a question this should not

change the answer.

103

The study’s research design allowed the study to view the data by measuring the interventions

and collect all the data points where interventions were made. The study could share the same

amount of objects every time, per data store when an intervention was made, as this was

repeatedly observed over time. The study used the same amount of objects persons for each

intervention per data store and the timing of each measurement was captured.

5.2 Recommendations

Based on the results achieved, the study would recommend more studies to be done with more

than one programming language driver. The study would recommend to explore Go, Scala and

Kotlin programming languages using the Reactive Manifesto approach to focus on the three-

tier application design. The study would recommend looking at more data structures and

objects to send to a data store. The study only focused on looking at four NoSQL data store

categories and could only choose one data store per category. The recommendation for further

studies would be to look at more than just one data store category and add more data stores

to study further.

The study would recommend increasing the memory and central processing units when setting

up the research instrument on a single node while running an integrated development

environment. The study would recommend using a solid state drive (SSD) instead of a normal

hard drive to see the change of speed in storage for input and output. The research instrument

can be setup in a cluster environment. The study recommends scaling the data stores to test

the down time and recovery of a node that failed and measure the downtime duration of the

node when it failed and how long it takes to be active again.

For the research study the study managed to scale the application from a single development

environment to a Kubernetes cluster as a Docker container. However, the study would have

wanted to interact with the NoSQL data store environment on the kubernetes cluster. The

recommendation would be that after scaling the application, to follow the research approach

and measure the read and write performance of the data stores. This would allow the study to

be valid and reliable to be setup in another setting and answer the research questions.

104

5.3 Future work

For further studies to follow, studying more than just one programming language driver would

help developers choose which one to adapt. This should be tested on the Reactive Manifesto

three tier application to separate the packages application layer or presentation layer, service

layer or coordinator layer and the repository or data store layer. The study recommends looking

at more data stores and NoSQL categories that developers can make use of when sending

data to the databases for storage, and when reading data storage from the databases. The

application stored as containerized, could be tested on different Kubernetes platforms from

bare metal to virtual machines hosted on cloud servers. Create, read, update and delete

(CRUD) operations tests could adapt streaming data for input and output metrics as part of

further studies on NoSQL data stores.

105

REFERENCES

Abadi, D., Franklin, M.J., Gehrke, J., Haas, L.M., Halevy, A.Y., Hellerstein, J.M., Ioannidis,
Y.E., Jagadish, H. V., Kossmann, D., Madden, S., Mehrotra, S., Agrawal, R., Milo, T.,
Naughton, J.F., Ramakrishnan, R., Markl, V., Olston, C., Ooi, B.C., Ré, C., Suciu, D.,
Stonebraker, M., Walter, T., Ailamaki, A., Widom, J., Balazinska, M., Bernstein, P.A., Carey,
M.J., Chaudhuri, S., Dean, J. & Doan, A. 2016. The Beckman report on database research.
Communications of the ACM, 59(2): pp.92-99.

Abramova, V., Bernardino, J. & Furtado, P. 2014. Which NoSQL Database? A Performance
Overview. Open Journal of Databases (OJDB), 1(2): pp.17-24.

Adya, A., Wattenhofer, R.P., Bolosky, W.J., Castro, M., Cermak, G., Chaiken, R., Douceur,
J.R., Howell, J., Lorch, J.R. & Theimer, M. 2002. Farsite. ACM SIGOPS Operating Systems
Review, 36(SI): pp.1-14. http://doi.acm.org/10.1145/1060289.1060291.

Baier, J. 2017. Getting Started with Kubernetes.
https://books.google.co.za/books?hl=en&lr=&id=fnc5DwAAQBAJ&oi=fnd&pg=PP1&dq=kube
rnetes+setup&ots=ZtM0AXNxzP&sig=_V-H65EVFJGgnOFt0U4N4ghAJpo 21 August 2019.

Bailis, P. & Ghodsi, A. 2013. Eventual consistency today: Limitations, extensions, and
beyond. Communications of the ACM, 11(3): p.20.

Baker, M., Buyya, R. & Kaushik, K. 2018. Learning & Experience. : pp.1-3.
http://learning.maxtech4u.com/what-is-cluster-computing/.

Barroso, L.A., Clidaras, J. & Hölzle, U. 2013. The Datacenter as a Computer: An Introduction
to the Design of Warehouse-Scale Machines, Second edition. Synthesis Lectures on
Computer Architecture, 8(3): pp.1-154.

Birman, K.P. 2012. Guide to Reliable Distributed Systems: Building High-Assurance
Applications and Cloud-Hosted Services. Springer Science & Business Media.

Bonér, J., Farley, D., Kuhn, R. & Thompson, M. 2014. The Reactive Manifesto (Version 2.0).
Reactivemanifesto.Org, 2(16 September 2014): pp.1-2.

Bouchrika, I. 2018. Introduction-to-distributed-systems. distributed-systems.
http://www.ejbtutorial.com/distributed-systems/introduction-to-distributed-systems.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A. & Gruber, R.E. 2008. Bigtable: A Distributed Storage System for Structured Data.
ACM Transactions on Computer Systems, 26(2): p.4.

Colyer, A. 2017. Gray failure: the Achilles’ heel of cloud-scale systems. the morning paper.
https://blog.acolyer.org/2017/06/15/gray-failure-the-achilles-heel-of-cloud-scale-systems/ [29
April 2018].

Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R. & Sears, R. 2010. Benchmarking
cloud serving systems with YCSB. Proceedings of the 1st ACM symposium on Cloud
computing - SoCC ’10, 10: pp.143-154.

Daiga PLASE. 2017. A Systematic Review of SQL-on-Hadoop by Using Compact Data
Formats A Systematic Review of SQL-on-Hadoop by Using Compact Data Formats. , 5(2):
pp.233-250.

106

Debski, A., Szczepanik, B., Malawski, M., Spahr, S. & Muthig, D. 2018. A scalable, reactive
architecture for cloud applications. IEEE Software, 35(2): pp.62-71.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P. & Vogels, W. 2007. Dynamo. In ACM SIGOPS Operating
Systems Review. pp.205-220.

Dorband, J., Raytheon, J. & Ranawake, U. 2013. Commodity computing clusters at goddard
space flight center. Journal of Chemical Information and Modeling, 53: pp.1689-1699.

Dwarampudi, V., Dhillon, S.S., Shah, J. & Sebastian, N.J. 2010. Comparative study of the
Pros and Cons of Programming languages Java , Scala , C ++ , Haskell , VB . NET , AspectJ
, Perl , Ruby & Scheme. arXiv preprint arXiv:1008.3431.

Eden, A.H. 2007. Three paradigms of computer science. Minds and Machines, 17(2):
pp.135-167.

Esposito, C., Castiglione, A. & Choo, K.K.R. 2016. Challenges in Delivering Software in the
Cloud as Microservices. IEEE Cloud Computing, 3(5): pp.10-14.
https://ieeexplore.ieee.org/abstract/document/7742281/ [9 October 2019].

Feuerlicht, G. 2010. Database trends and directions: Current challenges and opportunities. In
CEUR Workshop Proceedings. pp.163-174.

Gessert, F. & Ritter, N. 2016. Scalable data management: NoSQL data stores in research
and practice. 2016 IEEE 32nd International Conference on Data Engineering, ICDE 2016:
pp.1420-1423.

Ghemawat, S., Gobioff, H. & Leung, S.-T. 2003. The Google file system. ACM SIGOPS
Operating Systems Review, 37(5): p.29.

Gierke, O. 2013. whoops-where-did-my-architecture-go. http://olivergierke.de.
http://olivergierke.de/2013/01/whoops-where-did-my-architecture-go/.

Grozev, N. & Buyya, R. 2014. Multi-Cloud Provisioning and Load Distribution for Three-Tier
Applications. ACM Transactions on Autonomous and Adaptive Systems, 9(3): pp.13-21.
http://dl.acm.org/citation.cfm?doid=2676689.2662112 [9 October 2019].

Haseeb, A. & Pattun, G. 2017. A review on NoSQL: Applications and challenges.
International Journal of Advanced Research in Computer Science, 8(1): pp.27-30.

Helland, P. & South, F.A. 2007. Life beyond Distributed Transactions : an Apostate ’ s
Opinion Position Paper [2007]. Cidr, 14(5): pp.132-141.

Hoda, R. & Azad Kamali, R. 2014. Calculating Total System Availability. Information Services
Organization, Amsterdam.

Hu, W.-C., Kaabouch, N., Guo, H. & Yang, H.-J. 2016. An Empirical Study of NoSQL
Databases for Big Data. : pp.60-76.

Huang, P., Guo, C., Zhou, L., Lorch, J.R., Dang, Y., Chintalapati, M. & Yao, R. 2017. Gray
Failure: The Achilles’ Heel of Cloud-Scale Systems. USENIX Conference on Hot Topics in
Operating Systems, (17): pp.150-155.

Kabbedijk, J., Jansen, S. & Brinkkemper, S. 2014. A case study of the variability
consequences of the CQRS pattern in online business software. Proceedings of the 17th
European Conference on Pattern Languages of Programs: p.2.

107

Kainulainen, P. 2014. understanding-spring-web-application-architecture-the-classic-way.
www.petrikainulainen.net. https://www.petrikainulainen.net/software-
development/design/understanding-spring-web-application-architecture-the-classic-way/]17
October 2018].

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O.P., Turner, M., Niazi, M. & Linkman,
S. 2010. Systematic literature reviews in software engineering-A tertiary study. Information
and Software Technology, 52(8): pp.792-805.

Kumar, R. 2005. RESEARCH METHODOLOGY a step-by-step guide for beginners. 3rd ed.
SAGE Publications.

Lourenço, J.R., Abramova, V., Vieira, M., Cabral, B. & Bernardino Jorge. 2015. NoSQL
Databases: A Software Engineering Perspective. In Advances in Intelligent Systems and
Computing. pp.741-750.

Lourenço, J.R., Cabral, B., Carreiro, P., Vieira, M. & Bernardino, J. 2015. Choosing the right
NoSQL database for the job: a quality attribute evaluation. Journal of Big Data, 2(1): p.18.

Mackin, H., Tappert, C. & Perez, G. 2016. Adopting NoSQL Databases Using a Quality
Attribute Framework and Risks Analysis. Proceedings of Student-Faculty Research Day,
CSIS, A(9): pp.97-104.

Martin, R.C. 2012. The Clean Architecture. https://blog.cleancoder.com.
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html [29 April
2018].

Maxwell, J.A. 1998. Designing a qualitative study: Handbook of applied social research
methods. : pp.1-22.

McGaghie William C, Bordage Georges Shea, J.A. 2001. Problem Statement, Conceptual
Framework, and Research Question. Academic Medicine, 76(9): pp.923-924.

Mertens, D. 2014. Research and Evaluation in Education and Psychology: Integrating
Diversity With Quantitative, Qualitative, and Mixed Methods: Integrating Diversity With.

Meyerovich, L.A. & Rabkin, A.S. 2013. Empirical analysis of programming language
adoption. ACM SIGPLAN Notices, 48(10): pp.1-18.

Middleton, A.A.M. & Risk, P.D.L. 2015. White Paper Introduction to HPCC (High-
Performance Computing Cluster).

Milani, B.A. & Navimipour, N.J. 2017. A Systematic Literature Review of the Data Replication
Techniques in the Cloud Environments. Big Data Research, 1: pp.1-7.

Mohammad, J.M. & M. Jalil. 2013. Practical Guidelines for conducting research.
Summarising good research practice in line with the DCED Standard, 2013.

Neuman, C. 1994. Scale in Distributed Systems. Readings in Distributed Computing
Systems.: pp.1-28.

Ngxande, M. 2015. Development of Beowulf Cluster to Perform Large Datasets Simulations
in Educational Institutions. International Journal of Computer Applications, 99(15): pp.29-35.

Ngxande, M. & Moorosi, N. 2014. Development of Beowulf Cluster to Perform Large
Datasets Simulations in Educational Institutions. International Journal of Computer
Applications, 99(15): pp.29-35.

108

Ongaro, D. & Ousterhout, J. 2014. In Search of an Understandable Consensus Algorithm.
Proceedings of the 2014 USENIX Annual Technical Conference: pp.305-320.

Peng Xiang, Ruichun Hou & Zhiming Zhou. 2010. Cache and consistency in NOSQL. In
2010 3rd International Conference on Computer Science and Information Technology. IEEE:
pp.117-120. http://ieeexplore.ieee.org/document/5563525/ [9 October 2019].

Petreley, N. 2006. The Ultimate Linux Server. Linux Journal, 2006, 184(3): pp.5-8.

Pruijt, L., Wiersema, W. & Brinkkemper, S. 2013. A typology based approach to assign
responsibilities to software layers. Proceedings of the 20th Conference on Pattern
Languages of Programs, (2): pp.1-14. https://dl.acm.org/citation.cfm?id=2725672 [9 October
2019].

Qi, M., Liu, Y., Lu, L., Liu, J. & Li, M. 2014. Big Data Management in Digital Forensics. 2014
IEEE 17th International Conference on Computational Science and Engineering: pp.238-243.

Ray, B., Posnett, D., Devanbu, P. & Filkov, V. 2017. A large-scale study of programming
languages and code quality in GitHub. Communications of the ACM, 60(10): pp.91-100.

Sachdeva, G. 2019. The Road to Reactive Programming in Java. : p.1.
https://www.thistechnologylife.com/the-road-to-reactive-programming-in-java/ [18 August
2018].

Sareen, P., Professor, A. & Kumar, P. 2017. Nosql Database and Its Comparison With Sql
Database. International Journal of Computational Intelligence Research, 13(7): pp.1645-
1651.

Shooman, M.L. 2002. Reliability of computer systems and networks. Fault tolerance, analysis
and design. NY: John Wiley & Sons.

Steenhuis, H.-J. & de Bruijn, E.J. 2006. Empirical research in OM: three paradigms. OM in
the New World Uncertainties. Proceedings of the 17th Annual Conference of POMS: pp.1-10.

Stetson, C. 2018. Principles of Modern Application Development.
https://www.nginx.com/blog/principles-of-modern-application-development/ [25 August 2018].

Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S., Hachem, N. & Helland, P. 2018.
The end of an architectural era: it’s time for a complete rewrite. Making Databases Work: the
Pragmatic Wisdom of Michael Stonebraker: pp.463-489.

Strauch, C. 2014. NOSQL Databases. Lecture Notes Stuttgart Media: p.20. http://nosql-
database.org/.

Sukuba, T. 2015. Google Code University – Introduction to Distributed Systems Design. : 1–
10. http://www.hpcs.cs.tsukuba.ac.jp/~tatebe/lecture/h23/dsys/dsd-tutorial.html [29 April
2018].

Takada, M. 2018. Distributed systems for fun and profit. http://book.mixu.net/distsys.

Terblanche, J.T., Kroeze, J.H. & Gilliland, S. 2013. Why using a design and creation strategy
to translate a paperbased form into an E-registration web form using HCI principles falls
within the context of design science. 22nd International Business Information Management
Association Conference, IBIMA 2013, 3(July 2018): pp.1491-1499.

Tiwari, S. 2011. PROFESSIONAL NoSQL INTRODUCTION. John Wiley & Sons, Inc.

109

Vaish, G. 2013. Getting Started with NoSQL. Packt Publishing ©2013.

Wiesmann, M., Pedone, F., Schiper, A., Kemme, B. & Alonso, G. 2002. Understanding
replication in databases and distributed systems. Proceedings 20th IEEE International
Conference on Distributed Computing Systems: pp.464-474.

Yassien, A.W. & Desouky, A.F. 2016. RDBMS , NoSQL , Hadoop : A Performance-Based
Empirical Analysis. AMECSE ’16 Proceedings of the 2nd Africa and Middle East Conference
on Software Engineering, (2): pp.52-59.

Zafar, R., Yafi, E., Zuhairi, M.F. & Dao, H. 2017. Big Data: The NoSQL and RDBMS review.
ICICTM 2016 - Proceedings of the 1st International Conference on Information and
Communication Technology, (May): pp.120-126.

110

Appendix A
Systematic review, quality assessment

Articles Experiment
performed

Benchmark
performed

Client
tests

language
drivers

Platform
used

[1] RDBMS,
NoSQL,
HadoopA
Performance-
Based
Empirical
Analysis

YES Yahoo!
Cloud
Serving
Benchmark
(YCSB)

NO NO NO
CLUSTER

[2] Performance
Evaluation of
NoSQL
Databases A
Case Study

YES Yahoo!
Cloud
Serving
Benchmark
(YCSB)

AMAZON
EC2
INSTANCE

NO AMAZON
EC2
CLOUD

[3] Experimental
Eevaluation of
NOSQL
Databases

YES Yahoo!
Cloud
Serving
Benchmark
(YCSB)

NO NO NO
CLUSTER

[4] Quality
Attribute-
Guided
Evaluation of
NoSQL
Databases A
Case Study

YES Yahoo!
Cloud
Serving
Benchmark
(YCSB)

AMAZON
EC2
INSTANCE

NO AMAZON
EC2
CLOUD

[5] Quantitative-
Analysis-of-
Consistency-
in-NoSQL-Key-
values-Stores

YES Yahoo!
Cloud
Serving
Benchmark
(YCSB)

 YES NO NO
CLUSTER

[6] Consistent and
Durable Data
Structures for
Non-volatile

YES Yahoo!
Cloud
Serving
Benchmark
(YCSB)

NO NO CLUSTER

[7] A review on
NoSQL
Applications
and challenges

 NO NONE NO NO REVIEW

[8] Which NoSQL
Database

YES Yahoo!
Cloud
Serving
Benchmark
(YCSB)

 NO NO NO
CLUSTER

[9] Big Data
Management in
Digital
Forensics

YES Yahoo!
Cloud
Serving
Benchmark
(YCSB)

NO NO AMAZON
EC2
CLOUD

file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/ACM%20digital/RDBMS,%20NoSQL,%20HadoopA%20Performance-Based%20Empirical%20Analysis.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/ACM%20digital/RDBMS,%20NoSQL,%20HadoopA%20Performance-Based%20Empirical%20Analysis.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/ACM%20digital/RDBMS,%20NoSQL,%20HadoopA%20Performance-Based%20Empirical%20Analysis.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/ACM%20digital/RDBMS,%20NoSQL,%20HadoopA%20Performance-Based%20Empirical%20Analysis.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/ACM%20digital/RDBMS,%20NoSQL,%20HadoopA%20Performance-Based%20Empirical%20Analysis.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/ACM%20digital/RDBMS,%20NoSQL,%20HadoopA%20Performance-Based%20Empirical%20Analysis.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/ACM%20digital/RDBMS,%20NoSQL,%20HadoopA%20Performance-Based%20Empirical%20Analysis.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/ACM%20digital/Performance%20Evaluation%20of%20NoSQL%20Databases%20A%20Case%20Study.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/ACM%20digital/Performance%20Evaluation%20of%20NoSQL%20Databases%20A%20Case%20Study.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/ACM%20digital/Performance%20Evaluation%20of%20NoSQL%20Databases%20A%20Case%20Study.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/ACM%20digital/Performance%20Evaluation%20of%20NoSQL%20Databases%20A%20Case%20Study.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/ACM%20digital/Performance%20Evaluation%20of%20NoSQL%20Databases%20A%20Case%20Study.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/EXPERIMENTAL%20EVALUATION%20OF%20NOSQL%20DATABASES.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/EXPERIMENTAL%20EVALUATION%20OF%20NOSQL%20DATABASES.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/EXPERIMENTAL%20EVALUATION%20OF%20NOSQL%20DATABASES.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/EXPERIMENTAL%20EVALUATION%20OF%20NOSQL%20DATABASES.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/Quality%20Attribute-Guided%20Evaluation%20of%20NoSQL%20Databases%20A%20Case%20Study.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/Quality%20Attribute-Guided%20Evaluation%20of%20NoSQL%20Databases%20A%20Case%20Study.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/Quality%20Attribute-Guided%20Evaluation%20of%20NoSQL%20Databases%20A%20Case%20Study.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/Quality%20Attribute-Guided%20Evaluation%20of%20NoSQL%20Databases%20A%20Case%20Study.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/Quality%20Attribute-Guided%20Evaluation%20of%20NoSQL%20Databases%20A%20Case%20Study.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/Quality%20Attribute-Guided%20Evaluation%20of%20NoSQL%20Databases%20A%20Case%20Study.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/Quality%20Attribute-Guided%20Evaluation%20of%20NoSQL%20Databases%20A%20Case%20Study.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/Quantitative-Analysis-of-Consistency-in-NoSQL-Key-values-Stores.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/Quantitative-Analysis-of-Consistency-in-NoSQL-Key-values-Stores.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/Quantitative-Analysis-of-Consistency-in-NoSQL-Key-values-Stores.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/Quantitative-Analysis-of-Consistency-in-NoSQL-Key-values-Stores.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/Quantitative-Analysis-of-Consistency-in-NoSQL-Key-values-Stores.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/Consistent%20and%20Durable%20Data%20Structures%20for%20Non-volitile.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/Consistent%20and%20Durable%20Data%20Structures%20for%20Non-volitile.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/Consistent%20and%20Durable%20Data%20Structures%20for%20Non-volitile.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/Consistent%20and%20Durable%20Data%20Structures%20for%20Non-volitile.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/A%20review%20on%20NoSQL%20Applications%20and%20challenges.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/A%20review%20on%20NoSQL%20Applications%20and%20challenges.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/A%20review%20on%20NoSQL%20Applications%20and%20challenges.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/A%20review%20on%20NoSQL%20Applications%20and%20challenges.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/Which%20NoSQL%20Database.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/google%20scholar/Which%20NoSQL%20Database.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/IEEE%20Explore/Big%20Data%20Management%20in%20Digital%20Forensics.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/IEEE%20Explore/Big%20Data%20Management%20in%20Digital%20Forensics.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/IEEE%20Explore/Big%20Data%20Management%20in%20Digital%20Forensics.pdf
file:///C:/Users/C:/Users/waldon/Dropbox/Waldon%20Thesis%20review/IEEE%20Explore/Big%20Data%20Management%20in%20Digital%20Forensics.pdf

111

Appendix B
Systematic review, Search strategy

112

Appendix C Quality Assessment QCQA

Article 1 2 3 4 5 6 7 8 9 10 Total

1 Yassien, A.W. and Desouky, A.F., 2016, May. RDBMS, NoSQL, Hadoop: A
Performance-Based empirical analysis. In proceedings of the 2nd Africa and
Middle East Conference on Software Engineering (pp. 52-59). ACM.

1 1 1 1 1 1 1 1 1 1 10

2 1 1 1 1 1 1 1 1 1 1 10

3 Abramova, V., Bernardino, J. and Furtado, P., 2014. Experimental evaluation
of NoSQL databases. International Journal of Database Management
Systems, 6(3), p.1.

1 1 1 1 1 1 1 1 1 1 10

4 Klein, J., Gorton, I., Ernst, N., Donohoe, P., Pham, K. and Matser, C., 2015.
Quality Attribute-Guided Evaluation of NoSQL Databases: A Case Study.
CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING
INST.

1 1 1 1 1 1 1 1 1 1 10

5 Liu, S., Nguyen, S., Ganhotra, J., Rahman, M.R., Gupta, I. and Meseguer, J.,
2015, September. Quantitative analysis of consistency in NoSQL key-value
stores. In International Conference on Quantitative Evaluation of Systems (pp.
228-243). Springer, Cham.

1 1 1 1 1 1 1 1 1 1 10

6 Venkataraman, S., Tolia, N., Ranganathan, P. and Campbell, R.H., 2011,
February. Consistent and Durable Data Structures for Non-Volatile Byte-
Addressable Memory. In FAST (Vol. 11, pp. 61-75).

1 1 1 1 1 1 1 1 1 1 10

7 Haseeb, A. and Pattun, G., 2017. A review on NoSQL: Applications and
challenges. International Journal of Advanced Research in Computer Science,
8(1).

1 1 1 1 1 1 1 1 1 1 10

8 Abramova, V., Bernardino, J. and Furtado, P., 2014. Which nosql database? a
performance overview. Open Journal of Databases (OJDB), 1(2), pp.17-24.

1 1 1 1 1 1 1 1 1 1 10

9 Qi, M., Liu, Y., Lu, L., Liu, J. and Li, M., 2014, December. Big data management
in digital forensics. In Computational Science and Engineering (CSE), 2014
IEEE 17th International Conference on (pp. 238-243). IEEE.

1 1 1 1 1 1 1 1 1 1 10

10 Alomari, E., Barnawi, A. and Sakr, S., 2015. Cdport: A portability framework for
nosql datastores. Arabian Journal for Science and Engineering, 40(9),
pp.2531-2553.

11 Anjard, R.P., 1994. The basics of database management systems (DBMS).
Industrial Management & Data Systems, 94(5), pp.11-15.

12 Lourenço, J.R., Cabral, B., Carreiro, P., Vieira, M. and Bernardino, J., 2015.
Choosing the right NoSQL database for the job: a quality attribute evaluation.
Journal of Big Data, 2(1), p.18.

113

13 Gessert, F. and Ritter, N., 2016, May. Scalable data management: NoSQL
data stores in research and practice. In Data Engineering (ICDE), 2016 IEEE
32nd International Conference on (pp. 1420-1423). IEEE.

14 Sareen, P. and Kumar, P., 2015. NoSQL Database and its Comparison with
SQL Database. Int J Comput Sci Commun Networks, 5, pp.293-298.

15 Haseeb, A. and Pattun, G., 2017. A review on NoSQL: Applications and
challenges. International Journal of Advanced Research in Computer Science,
8(1).

16 Srivastava, P.P., Goyal, S. and Kumar, A., 2015, October. Analysis of various
NoSql database. In Green Computing and Internet of Things (ICGCIoT), 2015
International Conference on (pp. 539-544). IEEE.

17 Poljak, R., Poščić, P. and Jakšić, D., 2017, May. Comparative analysis of the
selected relational database management systems. In Information and
Communication Technology, Electronics and Microelectronics (MIPRO), 2017
40th International Convention on (pp. 1496-1500). IEEE.

18 Lourenço, J.R., Abramova, V., Vieira, M., Cabral, B. and Bernardino, J., 2015.
Nosql databases: A software engineering perspective. In New Contributions in
Information Systems and Technologies (pp. 741-750). Springer, Cham.

19 Bajpeyee, R., Sinha, S.P. and Kumar, V., 2015. Big Data: A Brief Investigation
on NoSQL Databases,“. International Journal of Innovations & Advancement
in Computer Science, 4(1), pp.28-35.

20 Zafar, R., Yafi, E., Zuhairi, M.F. and Dao, H., 2016, May. Big Data: The NoSQL
and RDBMS review. In Information and Communication Technology (ICICTM),
International Conference on (pp. 120-126). IEEE.

21 Domaschka, J., Hauser, C.B. and Erb, B., 2014, September. Reliability and
availability properties of distributed database systems. In Enterprise
Distributed Object Computing Conference (EDOC), 2014 IEEE 18th
International (pp. 226-233). IEEE.

114

Appendix D
Data extraction form.

Author title Abstract Keywords Publisher Conclusions

A, Veronika
Abramova
A, Jorge
Bernardino
B, Pedro
Furtado

Which
NoSQL
Database? A
Performance
Overview

NoSQL data stores are widely
used to store and retrieve
possibly large amounts of
data, typically in a key-value
format. There are many
NoSQL types with different
performances, and thus it is
important to compare them in
terms of performance and
verify how the performance is
related to the database type.
In this paper, we evaluate five
most popular NoSQL
databases: Cassandra,
HBase, MongoDB, OrientDB
and Redis. We compare
those databases in terms of
query performance, based on
reads and updates, taking
into consideration the typical
workloads, as represented by
the Yahoo! Cloud Serving
Benchmark. This comparison
allows users to choose the
most appropriate database
according to the specific
mechanisms and application
needs.

NoSQL
databases,
performance
evaluation,
execution time,
benchmark,
YCSB

Open Journal of
Databases
(OJDB)
2014
Journal article

As an overall analysis, in
terms of optimization,
NoSQL databases can be
divided into two categories,
the databases optimized
for reads and the
databases optimized for
updates. As future work,
we will compare and
analyze the performance
of NoSQL databases
further: we will increase the
number of operations
performed and run NoSQL
databases over multiple
servers. This evaluation
will allow us to better
understand how NoSQL
behaves while running in
distributed and parallel
environments. We also
plan to evaluate the
performance of Graph
databases.

Alomari,
Ebtesam
Barnawi,
Ahmed
Sakr, Sherif

CDPort: A
Portability
Framework
for NoSQL
Datastores

Cloud computing technology
has been growing over the
past few years. Currently,
cloud providers provide their
consumers with several cloud

Cloud computing
· Database-as-a-
Service · NoSQL
· Portability

Arabian Journal
for Science and
Engineering
(2015)
Journal article

The portability of data
between different
databases in the
cloud platform becomes
one of the main obstacles

115

services. However,
developers face many
difficulties when they have to
move their data or software
from one cloud platform to
another due to the lack of
standards. This challenge is
considered as one of the key
obstacles that prevent many
applications from moving to
the cloud environment. In this
paper, we focus on the
challenge of data portability.
We propose a common data
model and a standardized
API for SQL and NoSQL
cloud databases. In
particular, our approach hides
the possible variations of the
backend data storage models
from the application layer. In
addition, our framework is
equipped with tools that
support the conversion,
transformation and data
exchange between the
different data storage models.
The current implementation
of our framework supports
four different data storage
systems: Amazon RDS,
Google Datastore, Amazon
SimpleDB and MongoDB.
However, our framework is
designed in a flexible way
such that it can be easily

toward
pervasive cloud adoption.
Users may be locked-in to
one
platform provider because
the other platforms offer
different
APIs to manage or access
the data. Further, the
databases
have different data models,
and in NoSQL there is no
unified way to access the
data. Therefore, the
movement of data
between them becomes a
more difficult and time-
consuming
process.

116

extended to support other
data storage systems.
Moreover, we offer a
standard query abstraction to
enable automatic translation
between NoSQL query
patterns and their associated
SQL queries (in both
directions). The experimental
evaluation of our framework
shows that using our
framework eliminates or
minimizes the effort of
rewriting the application code
when the backend data
storage system is changed.
Further, the proposed
transformation tool reduces
the effort of maintaining data
portability between the
different data models that we
have considered.

Anjard Sr,
Ronald P

The basics of
database
management
systems
(DBMS)

During the past 30 years,
data processing has
undergone evolutionary
changes. Processing with a
database management
system (DBMS) provides a
number of advantages. For
example, the location of the
DBMS within the software
chain provides data
interdependence. A software
mask within the DBMS
provides data integrity.
Structured query language

Software &
systems;
Business And
Economics--
Computer
Applications;
Data base
management
systems; Data
processing;
Implementations;
Systems
development

Industrial
Management &
Data Systems
(1994)

This article has presented
the very basics of today’s
dynamic DBMS. As
evidenced from the
professional magazines,
there is dynamic growth
and development. New,
more user-friendly
systems are being
developed the better to
meet customers’
increasing and complex
requirements.

117

(SQL) is a standard database
language used to query and
update the vast majority of
client-server DBMSs. The
demand for better PC-based
DBMSs has driven the
development of client-server
technology. In early
implementations of DBMSs,
data processing departments
continued designing
database applications using
methods they had used with
conventional files. However,
the design methodology
improved over the years. The
online environment for a
DBMS permits users outside
the data center to access
databases. The number of
fields, segment types, record
types, and tables in
mainframe DBMSs has no
practical limits.

Lourenço, João
Ricardo
Cabral, Bruno
Carreiro, Paulo
Vieira, Marco
Bernardino,
Jorge

Choosing the
right NoSQL
database for
the job: a
quality
attribute
evaluation

For over forty years, relational
databases have been the
leading model for data
storage, retrieval and
management. However, due
to increasing needs for
scalability and performance,
alternative systems have
emerged, namely NoSQL
technology. The rising
interest in NoSQL
technology, as well as the

NoSQL
databases;Key-
value;Document
store;Columnar;;
columnar;
document store;
engineering;
graph; key-value;
nosql databases;
quality attributes;
software;
software

Journal of Big
Data
(2015)

There is still not enough
information to verify how
suited each non-relational
database is in a specific
scenario or system.
Moreover, each working
system differs from
another and all the
necessary functionality
and mechanisms highly
affect the database choice.
Furthermore, we tried to

118

growth in the number of use
case scenarios, over the last
few years resulted in an
increasing number of
evaluations and comparisons
among competing NoSQL
technologies. While most
research work mostly focuses
on performance evaluation
using standard benchmarks,
it is important to notice that
the architecture of real world
systems is not only driven by
performance requirements,
but has to comprehensively
include many other quality
attribute requirements.
Software quality attributes
form the basis from which
software engineers and
architects develop software
and make design decisions.
Yet, there has been no quality
attribute focused survey or
classification of NoSQL
databases where databases
are compared with regards to
their suitability for quality
attributes common on the
design of enterprise systems.
To fill this gap, and aid
software engineers and
architects, in this article, we
survey and create a concise
and up-to-date comparison of
NoSQL engines, identifying

architecture find the best databases on
a quality attribute perspec-
tive, an approach still not
found in current literature.
The summary table we
presented makes it clear
that there is a current need
for a broad study of quality
attributes in order to better
understand the NoSQL
ecosys-tem, and it would
be interesting to conduct
research in this domain. In
particular, research is
currently lack-ing in terms
of Reliability, Robustness,
Durability and
Maintainability, with most
work in literature focusing
on raw performance.

119

their most beneficial use case
scenarios from the software
engineer point of view and the
quality attributes that each of
them is most suited to.

Gessert, Felix
Ritter, Norbert

Scalable data
management:
NoSQL data
stores in
research and
practice

The unprecedented scale at
which data is consumed and
generated today has shown a
large demand for scalable
data management and given
rise to non-relational,
distributed NoSQL database
systems. Two central
problems triggered this
process: 1) vast amounts of
user-generated content in
modern applications and the
resulting requests loads and
data volumes 2) the desire of
the developer community to
employ problem-specific data
models for storage and
querying. To address these
needs, various data stores
have been developed by both
industry and research,
arguing that the era of one-
size-fits-all database systems
is over. The heterogeneity
and sheer amount of these
systems - now commonly
referred to as NoSQL data
stores - make it increasingly
difficult to select the most
appropriate system for a
given application. Therefore,

 2016 IEEE 32nd
International
Conference on
Data
Engineering,
ICDE 2016

There are many open
challenges for NoSQL data
management. NoSQL
systems need to support
novel application
architectures (e.g., single-
page or real-time apps)
and deliver
low latency in face of
distributed storage and
application tiers. There are
currently no means to turn
the functionality-
performance trade-off into
a tunable runtime
configuration.
Polyglot database services
lack the capability to
automate,
optimize and learn the best
choice of given database
systems.
They can neither route
queries and data to
minimize SLA
violations nor preserve
consistency and
transaction guarantees.

120

these systems are frequently
combined in polyglot
persistence architectures to
leverage each system in its
respective sweet spot. This
tutorial gives an in-depth
survey of the most relevant
NoSQL databases to provide
comparative classification
and highlight open
challenges. To this end, we
analyze the approach of each
system to derive its
scalability, availability,
consistency, data modeling
and querying characteristics.
We present how each
system's design is governed
by a central set of trade-offs
over irreconcilable system
properties. We then cover
recent research results in
distributed data management
to illustrate that some
shortcomings of NoSQL
systems could already be
solved in practice, whereas
other NoSQL data
management problems pose
interesting and unsolved
research challenges.

Berrington,
James

Databases A database is a structured
collection of records or data
that is stored in a computer so
that it can be consulted by a
program to answer queries.

Data;
information;
normalization;
relational
database

Anaesthesia &
Intensive Care
Medicine (2017)

121

Records retrieved through
queries become information
that can be used to make
decisions. A database
consists of one or more tables
containing records of values
for fields that pertain to the
attri- butes of the object being
represented by the table.
Relational data- bases
contain multiple tables that
are linked by means of key
fields. A database
management system is the
computer program that man-
ages the database and
queries the data to produce
reports of informa- tion.
Examples of simple
databases and how they are
produced are described in
this article.

Sareen, Pankaj
Professor,
Assistant
Kumar,
Parveen

Nosql
Database
and Its
Comparison
With Sql
Database

-NOSQL databases is an
emerging alternative to the
most widely used relational
databases. As the name
suggests, it does not
completely replace SQL but
compliments it in such a way
that they can co-exist. In this
paper we will be discussing
the NOSQL database, types
of NOSQL database type,
advantages and
disadvantages of NOSQL.

-NOSQL; Data
Stores;
Relational
Databases

Int J Comput Sci
Commun
Networks
(2015)

There are few limitations in
SQL database:
Scalability: Users have to
scale relational database
on powerful servers that
are expensive and difficult
to handle. To scale
relational database, it has
to be distributed on to
multiple servers. Handling
tables across different
servers is a chaos.
Complexity: In SQL
server’s data has to fit into

122

tables anyhow. If your data
doesn’t fit into tables, then
you need to design your
database structure that will
be complex and again
difficult to handle.
RDBMS is a great tool for
solving ACID problems
when data validity is
crucial, when you need to
support dynamic queries.
NoSQL is a great tool for
solving data availability
problems, when it’s more
important to have fast data
than up-to-the-minute just
updated data, when you
need to scale based on
changing requirements.
Pick the right tool for the
job.

No, Issn
Sigar, Kenneth
Otula

A review on
NoSQL:
Applications
and
challenges

Now a day the technology is
growing rapidly stimulating
and generating whopping
amount of data. Every day
people and companies
generate huge amounts of
data and this data may be
unstructured, semi-structured
and structured. That’s why we
need to design databases
which can store this type of
data in huge volumes. The
name of this database is
NoSQL databases. NoSQL
database solves this type of

NoSQL, Graph
DB, Key value
DB, Column DB,
Document DB

2015
International
Journal of
Advanced
Research in
Computer
Science

Now in this modern era
people are moving on SQL
to
NoSQL. In NoSQL have
lots of features in the
perspective of huge
amount of storage
management and their
utilization. We will plan for
enhancement the security
issues for better use of
recourses in future.

123

problems. NoSQL database
is being used widely and it is
a commonly known as
engines well scale.
Therefore, it is useful to
investigate how different
factors, such as workload,
data size and number of
simultaneous sessions
influence scaling capabilities.
In this paper we describe the
brief introduction of NoSQL
and its categories and also
what the benefits of NoSQL
are and why we are using
now.

Klein, John
Gorton, Ian
Ernst, Neil
Donohoe,
Patrick
Pham, Kim
Matser,
Chrisjan

Performance
Evaluation of
NoSQL
Databases: A
Case Study

For software developers, the
selection of a particular
NoSQL technology imposes a
specific distributed software
architecture and data model,
making the technology
selection difficult to defer.
NoSQL database
technologies provide high
levels of performance,
scalability, and availability by
simplifying data models and
supporting horizontal scaling
and data replication. Each
NoSQL product embodies a
particular set of consistency,
availability, and partition
tolerance (CAP) tradeoffs,
along with a data model that
reduces the conceptual

big data; nosql;
performance

Proceedings of
the 1st
Workshop on
Performance
Analysis of Big
Data Systems
(2015)

NoSQL database
technology offers benefits
of scalability and
availability through
horizontal scaling,
replication, a nd simplified
data models, but the
specific implementation
must be chosen early.
There were a number of
challenges in carrying out
such a performance
analysis on big data
systems. These included:
Creating the test
environment –
performance analysis at
this scale requires very
large data sets that mirror
real application data. This

124

mismatch between data
access and data storage
models. This means
technology selection must be
done early, often with limited
information about specific
application requirements, and
the decision must balance
speed with precision, as the
NoSQL solution space is
large and evolving rapidly. In
this paper we present the
method and results of a study
to compare the
architecturally-relevant
characteristics of three
NoSQL databases for use in
a large, distributed healthcare
organization. We reflect on
some of the fundamental
difficulties of performing
detailed technical evaluations
of NoSQL databases
specifically, and big data
systems in general, that have
become apparent during our
study

raw data must then be
loaded into the different
data models that we
defined for each different
NoSQL database. A minor
change to the data model
in order to explore
performance implications
required a full data set
reload, which is time-
consuming. Validating
quantitative criteria -
Quantitative criteria, with
hard “go/no-go”
thresholds, were
problematic to validate
through
prototyping, due to the
large number of tunable
parameters in each
database, operating
system, and cloud
infrastructure. Minor
configuration parameter
changes
can cause unexpected
interactions
performance effects, often
due to non-obvious
between the different
parameters. In order to
avoid entering an endless
test and analyze cycle, we
framed the performance
criteria in terms of the
shape of the performance

125

curve, and focused more
on sensitivities and
inflection points.

Srivastava,
Pragati
Prakash
Goyal, Saumya
Kumar, Anil

Analysis of
various
NoSql
database

In the age of internet, when
data production has gone off-
bounds, organizations are
facing a tough challenge in
terms of processing,
analyzing and storing big
data. The major drawback
with this data is that it is not
only being created at a
lightning fast pace but it is
also unstructured i.e. does
not have a fixed schema.
Moreover, it is arising from
disparate and discrete
sources such as the social
media. NoSql or Not Only Sql
databases offer a highly
flexible and horizontally
scalable solution to store
structured, semi-structured
and unstructured data. These
databases store data in the
form of key-value pairs which
offers better availability and
high throughput performance
in terms of processing
queries. They are designed to
be highly customizable
according to the user’s
requirements, and well suited
for the needs of the overlying
application as well as the
underlying data being stored.

Availability; Big
Data;
Consistency;
NoSql;
Scalability

roceedings of
the 2015
International
Conference on
Green
Computing and
Internet of
Things,
ICGCIoT 2015

Currently the NoSql
technology is emerging
and a lot needs to be
discovered. According to a
study conducted by the
Information Week
magazine, 44% of
organizations do not
know what NoSql
databases are [13]. It is
important to realize the
potential that this storage
technology carries which
can
cause a massive paradigm
shift in an organization’s
method of storing and
processing data. In this
paper we have evaluated
the most popular NoSql
solutions and also
discussed their
architectural working and
best use cases. In future
an objective
comparison of these
databases using fixed
workloads of reads and
writes can be carried out to
compare their relative
performance.

126

This paper firstly provides a
general overview of the
NoSQL storage technology.
Later a thorough analysis will
highlight the features,
strengths and limitations of
six most popular NoSQL
databases and thus would
help the organizations to
choose a NoSql database
which is well suited to their
needs.

Poljak, R.
Poscic, P.
Jaksic, D.

Comparative
analysis of
the selected
relational
database
management
systems

The database management
system is a software that
enables easier work with
databases i.e. to define
database structure, retrieve
stored data, enter data into
the database and process the
previously stored data in the
database. In this article we
have compared 3 relational
database management
systems (RDBMS) - Oracle
11g, MySQL and
PostgreSQL. They are
compared according to the
simple criteria that we
defined, such as the
comparison of basic data,
syntax, data types and speed
performance. The main
contribution of the article is a
comparison of 3 different
RDBMSs by our own score
criteria

 2017 40th
International
Convention on
Information and
Communication
Technology,
Electronics and
Microelectronics
(MIPRO)

However, we must
State conclusions are
based on a very simple
database and
benchmark - more
comprehensive syntax and
data type comparison, as
well as speed performance
will be done in
the future (with larger and
more complex database,
as well as more complex
queries).

127

Lourenço, João
Ricardo
Abramova,
Veronika
Vieira, Marco
Cabral, Bruno
Bernardino
Jorge

NoSQL
Databases: A
Software
Engineering
Perspective

For over forty years, relational
databases have been the
leading
model for data storage,
retrieval and management.
However, due to increasing
needs for scalability and
performance, alternative
systems have started being
developed, namely NoSQL
technology. With increased
interest in NoSQL
technology, as well as more
use case scenarios, over the
last few years these
databases have been more
frequently evaluated and
compared. It is necessary to
find if all the possibilities and
characteristics of non-
relational technology have
been disclosed. While most
papers perform mostly
performance evaluation using
standard benchmarks, it is
nevertheless important to
notice that real world
scenarios, with real
enterprise data, do not
function solely based on
performance.
In this paper, we have
gathered a concise and up-to-
date
comparison of NoSQL
engines, their most beneficial

NoSQL
databases; Key-
Value; Document
Store; Columnar;
Graph;
Cassandra;
MongoDB;
Couchbase;
Software
engineering;
Quality attributes

Springer
International
Publishing
Switzerland
2015 Á. Rocha
et al. (eds.),

there is a current need for
a broad study of quality
attributes in order to better
understand the NoSQL
ecosystem, and it
would be interesting to
conduct research in this
domain.
NoSQL is still an in-
development field, with
many questions and
a shortage of definite
answers. Its technology is
ever-increasing and ever-
changing,
rendering even recent
benchmarks and
performance evaluations
obsolete. There is
also a lack of studies which
focus on use-case oriented
scenarios or software
engineering quality
attributes. All of these
reasons make it difficult to
find the best
pick for each of the quality
attributes we chose in this
work, as well as others.
We concluded that
although there have been
a variety of studies and
evaluations of
NoSQL technology, there
is still not enough
information to verify how

128

use case scenarios from the
software engineer viewpoint,
their advantages and
drawbacks by surveying the
currently available literature.

suited each
non-relational database is
in a specific scenario or
system.

Bajpayee, R
Sinha, SP
Kumar, V

Big Data: A
Brief
investigation
on NoSQL
Databases

As the usage of information
technology has increased in
the world, the Data
generation from various
resources has unexpectedly
increased. The technology for
handling the vast amount of
data has not developed as
compared to the data
generation. Traditional
database systems are unable
to handle the increased
volume of data due to its
volume, Variety, Complexity,
variability. To deal with this
problem, Hadoop Distributed
File System (HDFS) like
technology is developed. The
data to be processed exists in
different format that is why
the traditional relational
database management
System is suitable for the big
data. To deal with the
unstructured data various
database tools have been
developed. This paper mainly
focuses on the various
NoSQL Database tools that
are available to deal with
different types of data. It also

big data; big data
tools; hdfs; nosql
database; ntfs

International
Journal of
Innovations &
Advancement in
Computer
Science IJIACS
ISSN 2347 –
8616 , January
2015

In the age of information
technology, data is a very
important
to extract the useful
information. It is obvious
that data exists
in different format. The
processing of big data is
still a
challenging task. There is
no universal tool which can
handle
enormous and data of
various formats. Document
oriented,
Key-Value pair, Column
and graph type of NoSQL
databases
are developed to handle
this variety of data. The
summarized
discussion about different
NoSQL databases is
helpful in
selection of suitable
NoSQL database.

129

includes a brief comparison
between (NTFS and HDFS)
and (NoSQL and Traditional
Relational Database).

Zafar, Rashid
Yafi, Eiad
Zuhairi, Megat
F.
Dao, Hassan

Big Data: The
NoSQL and
RDBMS
review

-The quantity of data
transmitted in the network
intensified rapidly with the
increased dependency on
social media applications,
sensors for data acquisitions
and smartphones utilizations.
Typically, such data is
unstructured and originates
from multiple sources in
different format.
Consequently, the
abstraction of data for
rendering is difficult, that lead
to the development of a
computing system that is able
to store data in unstructured
format and support
distributed parallel
computing. To data, there
exist approaches to handle
big data using NoSQL. This
paper provides a review and
the comparison between
NoSQL and Relational
Database Management
System (RDBMS). By
reviewing each approach, the
mechanics of NoSQL
systems can be clearly
distinguished from the
RDBMS. Basically, such

NoSQL,
databases,
structured data,
unstructured
data, /Jig Data,
Management

CICTM 2016 -
Proceedings of
the 1st
International
Conference on
Information and
Communication
Technology

In conclusion, huge data
volumes and complex
associated
data present great
challenge that RDBMS is
the only way to handle big
data. Reliability, readiness
and fault tolerance are the
determining factor to
choose the data organizing
tool. Nettlix converted its
data management system
from Oracle to Cassandra.
After conversion, the
company achieves over
10,000 writes per second
per node and the average
latency rate is less than
0.015. The total cost of
Cassandra set for running
on the AmazonEC2 is $60
per hour for a cluster of 48
nodes. Such cases have
shown that the NoSQL
data models are built to
support the insertion and
reading operations
effectively, keeping extra
data and column-major
data handling, error
tolerance to short-time
conflict and its effects. The

130

systems rely on multiple
factors, that include the query
language,
architecture, data model and
consumer API. This paper
also defines the application
that matches the system and
subsequently able to
accurately correlates to a
specific NoSQL system.

NoSQL system is being
accepted globally and the
key benefit is that the web
based servers can perform
the verification and user
rights on a centralized
server. The transfer of data
from RDBMS to NoSQL
systems is easy because
both systems employ the
same retrieval value i.e. in
JSON form. The NoSQL
systems are basically used
for the applications that
need high performance,
reliability of the data, and
data that run on multiple
nodes connected to one
cluster. The applications
running currently can be
converted on the NoSQL
systems by using process
of refactoring. The issues
that are currently in the
data management
systems will help the
people to use applications
that meet most of their
needs.

Domaschka,
Jorg
Hauser,
Christopher B.
Erb, Benjamin

Reliability
and
Availability
Properties of
Distributed
Database
Systems

Distributed database systems
represent an essential
component of modern
enterprise application
architectures. If the overall
application needs to provide
reliability and availability, the

Reliability,
availability,
database
systems, replica-
tion, partitioning,
consistency,
scalability

2014

131

database has to guarantee
these properties as well.
Entailing non-functional
database features such as
replication, consistency,
conflict management, and
partitioning represent
subsequent challenges for
successfully designing and
operating an available and
reliable database system. In
this document, we identify
why these concepts are
important for databases and
classify their design options.
Moreover, we survey how
eleven modern database
systems implement these
reliability and availability
properties.

132

Appendix E
Comparing studies by the variables

133

Comparing studies by variables

Author (s), title Year Relational
databases

NoSQL database data
structures

James Berrington
,Databases

2017 X

Comparative Analysis of
the Selected Relational
Database Management
Systems
R. Poljak, P. Poši and
D. Jakši

2017 X X

NOSQL Database and
Its Comparison with
RDBMS Dr. A. B. Raut

2017 X X X

Big Data: The NoSQL
and RDBMS review
Rashid Zafar, Eiad Yafi,
Megat F. Zuhairi,
Hassan Dao

2017 X X

Scalable Data
Management: NoSQL
Data Stores in
Research and Practice
Felix Gessert, Norbert
Ritter

2016 X

Analysis of Various
NoSql Database
Pragati Prakash
Srivastava; Saumya
Goyal; Anil Kumar

2016 X X

Performance Evaluation
of NoSQL Databases: A
Case Study
John Klein, Ian Gorton,
Neil Ernst, Patrick
Donohoe

2015 X X

NoSQL Databases: A
Software Engineering
Perspective João
Ricardo Lourenço,
Veronika Abramova,
Marco Vieira, Bruno
Cabral, and Jorge
Bernardino

2015 X X

Choosing the right
NoSQL database for the
job: a quality attribute
evaluation João Ricardo
Lourenço, Bruno
Cabral, Paulo Carreiro,
Marco Vieira and Jorge
Bernardino

2015 X X

CDPort: A Portability
Framework for NoSQL
Datastores Ebtesam
Alomari · Ahmed

2015 X

134

Barnawi · Sherif Sakr

Big Data: A Brief
investigation on NoSQL
Databases Roshni
Bajpayee Raipur (C.G)
Sonali Priya Sinha
Raipur (C.G)
Vinod Kumar

2015 X X

Which NoSQL
Database? A
Performance Overview
Veronika Abramova A,
Jorge Bernardino A, B,
Pedro Furtado

2014 X X

A review on NoSQL:
Applications and
challenges Abdul
Haseeb Geeta Pattun

2014 X

Reliability and
Availability Properties of
Distributed Database
Systems
Jorg Domaschka
Christopher B.
Benjamin Erb

2014 X X X

135

Create API objects in seconds

Create API results

Objects CassandraDB MongoDB RedisDB Dgraph

50 0.188 0.671 0.16 0.221

100 0.343 0.973 0.239 0.463

150 0.509 1.651 0.397 0.574

200 0.654 1.952 0.693 0.873

250 0.812 1.745 0.974 0.924

300 1.065 2.705 1.443 1.004

350 1.132 3.179 3.169 1.051

400 1.275 3.486 1.52 1.119

450 1.472 3.334 2.097 1.203

500 1.554 4.183 2.794 1.401

550 1.731 5.176 3.595 1.477

600 1.916 6.18 1.804 1.705

650 1.993 6.95 2.847 1.66

700 2.167 9.437 3.654 1.905

750 2.294 13.729 2.155 1.915

800 2.505 19.942 3.398 2.311

850 2.63 19.259 4.647 2.35

900 2.788 20.281 4.886 2.376

950 2.943 23.438 2.796 2.57

1000 3.122 44.999 3.319 2.709

1100 3.422 66.082 N/A 2.9

1300 4.011 69.369 N/A 3.777

1500 4.65 95.238 N/A 4.19

1700 5.305 188.308 N/A 5.039

1900 5.913 15.829 N/A 5.234

2000 6.148 20.406 N/A 5.644

2100 6.486 24.432 N/A 5.956

2300 7.192 23.772 N/A 6.366

2500 7.821 47.034 N/A 6.827

2700 8.378 81.553 N/A 7.089

2900 9.027 N/A N/A 7.529

3000 9.247 N/A N/A 7.833

Read API objects in seconds

Objects CassandraDB MongoDB RedisDB

50 0.08 0.007 0.207

100 0.039 0.007 0.317

150 0.034 0.009 0.537

200 0.039 0.009 0.876

250 0.071 0.011 1.34

136

300 0.042 0.014 1.777

350 0.03 0.009 2.47

400 0.026 0.024 3.418

450 0.026 0.013 N/A

500 0.023 0.011 N/A

550 0.02 0.016 N/A

600 0.033 0.013 N/A

650 0.051 0.02 N/A

700 0.033 0.041 N/A

750 0.02 0.019 N/A

800 0.022 0.011 N/A

850 0.025 N/A N/A

900 0.024 N/A N/A

950 0.03 N/A N/A

1000 0.028 N/A N/A

RStudio import data for plot

	DECLARATION
	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	GLOSSARY
	CHAPTER ONE
	1. INTRODUCTION TO THE RESEARCH STUDY
	1.1 Introduction
	1.2 Background
	1.3 Research problem
	1.4 Motivation
	1.5 Research questions and sub-questions
	1.6 Research methodology
	1.7 Implications of the results of the study
	1.8 Thesis outline

	CHAPTER TWO
	2. LITERATURE REVIEW
	2.1 Introduction
	2.2 Background
	2.2.1 Commodity servers
	2.2.2 High performance computing
	2.2.3 Commodity cluster computing
	2.2.4 Benefits of cluster computing
	2.2.5 Commercial-off-the-shelf (COTS) hardware
	2.2.6 Parallel computing

	2.3 Distributed systems
	2.3.1 Introduction to distributed system design
	2.3.2 Challenges for a distributed system
	2.3.3 Heterogeneity
	2.3.4 Transparency
	2.3.5 Openness
	2.3.6 Concurrency
	2.3.7 Security
	2.3.8 Scalability
	2.3.9 Failure handling
	2.3.10 Gray failures

	2.4 Basics of a distributed system
	2.4.1 Distributed programming
	2.4.2 Scalability
	2.4.3 Performance and latency
	2.4.4 Availability
	2.4.5 Replication
	2.4.6 Synchronous replication
	2.4.7 Asynchronous replication

	2.5 Replication algorithms
	2.5.1 Partition tolerant consensus algorithms
	2.5.2 CRDTs: convergent replicated data types
	2.5.3 The CALM theorem
	2.5.4 Partition and replicate
	2.5.5 Partitioning
	2.5.6 Replication

	2.6 Introduction to NoSQL data store
	2.6.1 Key-value stores
	2.6.2 Wide column stores (extensible record stores)
	2.6.3 Graph databases
	2.6.4 Document stores
	2.6.5 Features of NoSQL data stores

	2.7 Programming language Java
	2.7.1 The reactive manifesto
	2.7.2 Reactive programming in Java

	2.8 Systematic review
	2.8.1 Defining research questions
	2.8.2 Defining the systematic literature review protocol
	2.8.3 Search strategy
	2.8.4 Search results
	2.8.5 Study selection
	2.8.6 Quality assessment
	2.8.7 Rationale for the criteria
	2.8.8 Results of the review

	2.9 Findings of literature review

	CHAPTER THREE
	3. RESEARCH METHODOLOGY
	3.1 Introduction
	3.2 Research paradigms
	3.3 The scientific paradigm
	3.3.1 Empirical research
	3.3.2 From the view point of the causal relationship
	3.3.4 From the viewpoint of the study design
	3.3.5 From the viewpoint of the unit of measurement

	3.4 Research design
	3.5 The conceptual framework
	3.6 Data collection
	3.7 Data analysis
	3.7.1 Coding

	CHAPTER FOUR
	4. RESEARCH FINDINGS AND DISCUSSIONS
	4.1 Persistence technologies and drivers
	4.2 High availability and reliable architectures setup
	4.2.1 Requirements
	4.2.2 Network plugins
	4.2.3 Creating highly available clusters with kubeadm
	4.2.4 Configure the cluster
	4.2.5 Installing kubeadm, kubelet and kubectl
	4.2.6 Initializing master node
	4.2.7 Accessing Kubernetes Dashboard
	4.2.8 Kubectl proxy

	4.3 Read, write, update and relete results
	4.3.1 Create esults
	4.3.2 Read results
	4.3.3 Update results
	4.3.4 Delete Results
	4.3.5 CQRS write-model results
	4.3.6 CQRS read-model results

	4.4 Limitations of the research and validity
	4.4.1 Testing platforms limitations
	4.4.2 Language limitations

	4.5 Generalizability limitations
	4.6 Findings of the research study

	CHAPTER FIVE
	5. CONCLUSION AND RECOMMENDATIONS
	5.1 What has been done so far?
	5.2 Recommendations
	5.3 Future work

	REFERENCES
	Appendix A
	Systematic review, quality assessment
	Appendix B
	Systematic review, Search strategy
	Appendix C Quality Assessment QCQA
	Appendix D
	Data extraction form.
	Appendix E
	Comparing studies by the variables

